
HAL Id: tel-01659347
https://hal.science/tel-01659347v1

Submitted on 8 Dec 2017 (v1), last revised 30 Jan 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On metric and statistical properties of topological
descriptors for geometric data

Mathieu Carriere

To cite this version:
Mathieu Carriere. On metric and statistical properties of topological descriptors for geometric data.
Computational Geometry [cs.CG]. Université Paris 11, 2017. English. �NNT : �. �tel-01659347v1�

https://hal.science/tel-01659347v1
https://hal.archives-ouvertes.fr

NNT : 2017SACLS433

Thèse de doctorat de
l’Université Paris-Saclay

préparée à
l’Université Paris-Sud

Ecole doctorale n◦580

Sciences et technologies de l’information et de la communication

Spécialité de doctorat: Informatique

par

M. Mathieu Carrière

On metric and statistical properties of topological descriptors for

geometric data

Thèse présentée et soutenue à Paris, le 21 novembre 2017.
Composition du Jury :

M. Marc Schoenauer, INRIA Saclay Président
M. Gunnar Carlsson, Université de Stanford Rapporteur
M. Jean-Philippe Vert, Mines ParisTech Rapporteur
M. Julien Mairal, INRIA Grenoble Rapporteur
M. Ulrich Bauer, Université Technique de Munich Examinateur
M. Xavier Goaoc, Université Paris-Est Examinateur
M. Steve Oudot, INRIA Saclay Directeur de thèse

REMERCIEMENTS

Tout d’abord, j’aimerais remercier les personnes qui ont accepté de faire partie de mon jury de thèse :
Julien Mairal, Jean-Philippe Vert, Gunnar Carlsson (tous trois ayant de plus rapporté ce manuscrit),
Ulrich Bauer, Marc Schoenauer et Xavier Goaoc. Merci aussi à Tamy Boubekeur pour m’avoir aidé à
organiser la soutenance dans les locaux de Telecom Paris Tech. Ce travail a été financé sur la bourse
ERC Gudhi (ERC-2013-ADG-339025), obtenue par Jean-Daniel Boissonnat, que je remercie également.

Bien évidemment, la synthèse de ces trois années de travail au sein de l’équipe Geometrica/DataShape
(/Tagada?), présentée dans ce document, est moins le fruit d’un travail solitaire que de nombreuses col-
laborations. A ce titre, je souhaite manifester ma gratitude, pour nos discussions toujours enrichissantes,
envers mes coauteurs Maks Ovsjanikov, Bertrand Michel, Marco Cuturi, Ulrich Bauer et tout partic-
ulièrement mon directeur de thèse Steve Oudot, dont la disponibilité, la patience, la rigueur et les
regards profonds (même lors d’un footing) sur nos sujets d’études ont été des facteurs déterminants pour
l’épanouissement de ces trois années de travail, et, à titre plus personnel, pour le plaisir que j’ai eu à
travailler pendant ces trois années à Inria.

Ce plaisir est redevable aussi aux membres passés et présents de l’équipe (ainsi que des équipes
adjacentes). Je remercie Mickaël, Thomas, Amélie, Alice et Etienne, qui m’ont chaleureusement accueilli,
Eddie, avec qui j’ai partagé mon bureau pendant ces trois années, ainsi que les doctorants actuels Dorian,
Jérémy, Claire, Nicolas, Théo, Vincent et Raphaël, avec qui j’ai passé de très bons moments au dedans
et en dehors du labo, et pour qui je souhaite le meilleur pour les années de recherche à venir. Merci aussi
à Marc et Fred, et aux postdocs qui se sont succédés pendant ces trois ans, à savoir Hélène, Clément,
Ilaria, Pawel et Miro, pour avoir contribué à cette ambiance amicale au travers de nombreuses discussions.
Enfin, pour leur soutien administratif exemplaire, merci à Christine et Stéphanie.

Les deux mois que j’ai passés à Munich dans le groupe Géométrie et Visualisation ont été très
enrichissants. Merci à Ulrich Bauer pour avoir permis d’organiser ce séjour, ainsi qu’aux doctorants du
groupe pour le chaleureux accueil et les fréquentes séances de bloc.

En dehors du labo, mes amis proches et ma famille ont largement contribué à la qualité de ces trois
années. Je souhaite remercier Mathieu, Hugo (Cayla), Hugo (Magaldi), Pauline et Laure, ainsi que
tous mes amis parisiens, pour tous les joyeux moments passés ensemble qui ont beaucoup compté pour
moi. De même, mes fréquents retours à Toulouse ont à chaque fois été grandement revitalisants grâce
à Romain, Pierre, Clément et tous mes amis toulousains de longue date, dont l’amitié m’est très chère.
Merci aussi à mes fantastiques colocs Charlotte et Sophie pour tous nos repas et soirées réginaburgiennes
que j’ai beaucoup appréciées.

Je remercie toute ma famille (mes cousins et mes cousines, mes grand parents, oncles et tantes), et
plus particulièrement, pour leur soutien et leur affection indéfectibles, je remercie mes parents et mes
petits frères, de tout mon coeur.

Enfin, merci à toi Aisling, pour tout le temps que nous avons passé ensemble.

1

2

CONTENTS

1 Introduction 7
1.1 Introduction en français . 7

1.1.1 Analyse de donnée et apprentissage automatique 7
1.1.2 Descripteurs topologiques . 8
1.1.3 Principales limitations . 12
1.1.4 Contributions . 15

1.2 Introduction in english . 17
1.2.1 Data Analysis and Machine Learning . 17
1.2.2 Topological Descriptors . 17
1.2.3 Main bottlenecks . 21
1.2.4 Contributions . 24

2 Background on Topology 27
2.1 Homology Theory . 27

2.1.1 Simplices and Simplicial Complexes . 27
2.1.2 Simplicial Homology . 29
2.1.3 Singular Homology . 31
2.1.4 Relative Homology . 32

2.2 Persistence Theory . 33
2.2.1 Filtrations . 33
2.2.2 Persistence Modules . 34
2.2.3 Persistence Diagram . 35
2.2.4 Stability Properties of Persistence Diagrams . 36

2.3 Extended and Levelset Zigzag Persistence . 39
2.3.1 Extended persistence . 39
2.3.2 Levelset zigzag persistence . 41

2.4 Reeb graphs . 43
2.4.1 Persistence-based bag-of-features signature . 44
2.4.2 Metrics between Reeb graphs . 46
2.4.3 Simplification techniques . 48
2.4.4 Computation . 49

2.5 Mapper . 50

3 Telescopes and Reeb graphs 53
3.1 Telescopes and Operators . 54
3.2 A lower bound on db . 60
3.3 Induced Metrics . 65
3.4 Conclusion . 67

3

4 Structure and Stability of the Mapper 69
4.1 Mappers for scalar-valued functions . 70
4.2 MultiNerve Mapper . 70
4.3 Structure of the MultiNerve Mapper . 72

4.3.1 Topological structure of the MultiNerve Mapper 72
4.3.2 A signature for MultiNerve Mapper . 75
4.3.3 Induced signature for Mapper . 77

4.4 Stability in the bottleneck distance . 78
4.5 Stability with respect to perturbations of the cover . 80
4.6 Convergence in the functional distortion distance . 81

4.6.1 Operators on MultiNerve Mapper . 81
4.6.2 Connection between the (MultiNerve) Mapper and the Reeb graph. 82
4.6.3 Convergence results. 85
4.6.4 An alternative proof of Theorem 4.3.3 . 86

4.7 Conclusion . 88

5 Statistical Analysis and Parameter Selection 89
5.1 Approximations of (MultiNerve) Mappers and Reeb graphs 89

5.1.1 Approximation tools . 90
5.1.2 Discrete approximations . 91
5.1.3 Relationships between the constructions . 92
5.1.4 Relationships between the signatures . 94

5.2 Approximation of a Reeb graph with Mapper . 96
5.3 Statistical Analysis of the Mapper . 98

5.3.1 Statistical Model for the Mapper . 99
5.3.2 Reeb graph inference with exact filter . 100
5.3.3 Reeb graph inference with estimated filter . 105

5.4 Confidence sets for the signatures . 106
5.4.1 Confidence sets . 106
5.4.2 Confidence sets derived from Theorem 5.2.1 . 107
5.4.3 Bottleneck Bootstrap . 108

5.5 Numerical experiments . 109
5.5.1 Mappers and confidence regions . 109
5.5.2 Noisy data . 111

5.6 Conclusion . 112

6 Kernel Methods for Persistence Diagrams 113
6.1 Supervised Machine Learning . 114

6.1.1 Empirical Risk Minimization . 114
6.1.2 Reproducing Kernel Hilbert Space . 115

6.2 A Gaussian Kernel for Persistence Diagrams . 116
6.2.1 Wasserstein distance for unnormalized measures on R 117
6.2.2 The Sliced Wasserstein Kernel . 118
6.2.3 Metric Preservation . 119
6.2.4 Computation . 122
6.2.5 Experiments . 122

6.3 Vectorization of Persistence Diagrams . 129
6.3.1 Mapping Persistence Diagrams to Euclidean vectors 129
6.3.2 Stability of the topological vectors. 130
6.3.3 Application to 3D shape processing . 132

6.4 Conclusion . 137

7 Conclusion 139

A Proof of Lemma 3.4.5 141

4

LIST OF FIGURES

1.1 Déformations du cercle. 8
1.2 Ce nuage de points semble échantillonné sur neuf cercle à petite échelle, et sur un seul

cercle à plus grande échelle. 8
1.3 Une base de données d’images. 9
1.4 Diagrames de persistance induit par des boules grossissantes 9
1.5 Diagramme de persistance d’une image . 11
1.6 Mapper calculé sur des images . 12
1.7 Instabilité de Mappers calculés sur des espaces proches . 13
1.8 Instabilité de Mappers calculés avec des couvertures proches 13
1.9 Mapper vu comme une pixelisation du graphe de Reeb . 14
1.10 Plan de la thèse . 16
1.11 Deformations of a circle. 18
1.12 This point cloud seems to be sampled on nine circles from a small scale, and on a single

circle from a larger scale. 18
1.13 A dataset of images. 18
1.14 Persistence diagrams induced by growing balls . 19
1.15 Persistence diagram of image . 20
1.16 Mapper on images . 21
1.17 Instability of Mapper computed on nearby spaces . 22
1.18 Instability of Mapper computed with close covers . 23
1.19 Mapper as a pixelization of the Reeb graph . 23
1.20 Plan of the thesis . 25

2.1 Geometric simplices . 28
2.2 Geometric simplicial complex . 28
2.3 Boundary operator . 29
2.4 Cycles . 29
2.5 Homology of annulus . 30
2.6 Singular simplex . 31
2.7 Relative cycle . 33
2.8 Lower-star filtration . 34
2.9 Persistence diagram induced by filtration . 36
2.10 Commutative diagrams for interleaving. 37
2.11 Extended filtration . 40
2.12 Mayer-Vietoris half-pyramid . 43
2.13 Reeb graph on torus . 44
2.14 Two Reeb graphs with the same set of features but not the same layout. 45
2.15 Feature simplification . 49
2.16 Mapper on double torus . 50

5

3.1 Merge . 56
3.2 Persistence measure for Merge . 57
3.3 Split . 58
3.4 Up- and down-forks . 58
3.5 Shift . 60
3.6 Persistence measure for Shift . 60
3.7 Simplification operator . 61
3.8 Continuous maps . 63
3.9 Arc number argument . 64
3.10 Branching argument . 65
3.11 The space of Reeb graphs is not Cauchy . 67

4.1 Simplicial poset . 71
4.2 (MultiNerve) Mapper with bivariate map . 72
4.3 Left: Staircases of ordinary (light grey) and relative (dark grey) types. Right: Staircases

of extended types—QIE− is in dark grey while QIE is the union of QIE− with the light grey
area. 73

4.4 Pyramid rules . 75
4.5 Zigzag persistence modules in the half-pyramid . 76
4.6 Mapper as a pixelization of the Reeb graph . 77
4.7 Stability of the Mapper . 79
4.8 Full transformation on spaces . 83
4.9 Full transformation on persistence diagrams . 86

5.1 Functions on Mapper . 93
5.2 Interval- and intersection-crossing edges . 95
5.3 Automatic Mappers on smooth datasets . 110
5.4 Automatic Mappers on real-world datasets . 111
5.5 Automatic Mappers on a noisy dataset . 112

6.1 Kernel trick . 116
6.2 Concavity argument . 120
6.3 Orbit recognition . 125
6.4 Texture and 3D point classification . 126
6.5 Accuracy and training time dependences on direction number 127
6.6 Metric distortion . 128
6.7 Mapping of a persistence diagram to a sequence with finite support. 129
6.8 Distances to diagonal . 130
6.9 Geodesic balls . 133
6.10 Geodesic balls . 133
6.11 MDS on topological vectors . 134
6.12 kNN on topological vectors . 135
6.13 Stability of topological vectors . 135
6.14 Symmetry . 136
6.15 Improvements measured with functional maps . 138
6.16 Improvements measured directly on shapes . 138

A.1 Images of paths in Reeb graph . 142

6

CHAPTER 1

INTRODUCTION

1.1 Introduction en français

1.1.1 Analyse de donnée et apprentissage automatique

La génération et l’accumulation de données dans des secteurs d’activités variés, autant industriels
qu’académiques, ont pris beaucoup d’importance au cours des dernières années, et sont maintenant
omniprésents dans de nombreux domaines scientifiques, financiers et industriels. A titre d’exemple, en
science du numérique, le développement rapide des processus d’acquisition et de traitement d’images ont
permis la mise à disposition publique en ligne d’importantes bases de données [93, 89, 107, 112, 123]. De
la même manière, en biologie, la nouvelle génération de séquenceurs ont permis à la plupart des labora-
toires d’aisément déterminer l’ADN de différents organismes [14, 78, 88, 100]. Ainsi, la synthétisation et
l’extraction d’informations utiles à partir de ces bases de données massives sont devenus des problèmes
d’intérêt majeur.

L’apprentissage automatique est un domaine de la science des données dont le but est de fournir des
algorithmes (”automatique”) pouvant réaliser des prédictions sur de nouvelles données à partir seule-
ment de l’information déjà présente dans des données préalablement collectées (”apprentissage”). Ces
techniques permettent de répondre à de multiples problèmes de l’analyse de données, tels que la clas-
sification, où l’on cherche à prédire des labels, le clustering, où l’on cherche à regrouper les données en
différents groupes, ou la régression, où l’on cherche à approcher une fonction à partir de sa valeur sur
les points de données. Nous orientons le lecteur désireux de trouver plus de détails vers [72] pour une
introduction complète de ces problématiques. Par exemple, un problème typique de classification est la
prédiction de la présence ou non d’effets d’un médicament sur un patient P . Il s’agit d’un problème de
classification binaire en cela que les labels à prédire sont au nombre de deux, à savoir ”effet” ou ”sans
effet”. En supposant qu’une base de données est disponible, dans laquelle sont enregistrés les effets ou
non du médicament sur plusieurs patients, une des manières les plus simples de procéder est de chercher
le patient le plus proche de P dans la base de données, et d’attribuer à P le label de ce patient. Cette
méthode, simple quoique très efficace, s’appelle la prédiction par le plus proche voisin, et a déjà été
étudiée en détail. Plus généralement, la prédiction par le plus proche voisin n’est qu’une méthode parmi
de nombreuses autres en apprentissage automatique, qui peuvent traiter de problèmes aussi variés que
la classification d’images, la prédiction du genre musical ou le diagnostic médical, pour ne citer que
quelques exemples. D’autres exemples d’applications sont présentés dans [72].

Descripteurs. En général, les données prennent la forme de nuage de points dans RD, où D ∈ N∗.
Chaque point de donnée représente une observation, et chaque dimension, ou coordonnée, représente une
mesure. Par exemple, les observations peuvent être des patients, des images ou des séquences d’ADN,
dont les mesures correspondantes seraient des caractéristiques physiques (la taille, le poids, l’âge...), le
niveau de gris des pixels, ou des bases azotées A, C, T ou G composant l’ADN. Très souvent, le nombre

7

Figure 1.1: Déformations du cercle.

Figure 1.2: Ce nuage de points
semble échantillonné sur neuf
cercle à petite échelle, et sur
un seul cercle à plus grande
échelle.

de mesures est élevé, fournissant ainsi beaucoup d’informations, mais rendant dans le même temps les
données impossibles à visualiser.

Ainsi, une grande partie de l’analyse de données se consacre à la synthétisation de l’information
contenue dans les données en des descripteurs simples et interprétables, qui dépendent en général de
l’application. Par exemple, on peut touver, parmi les descripteurs usuels : le modèle sac-de-mots [130]
pour les données textuelles, les descripteurs SIFT [96] et HoG [60] pour les images, la courbure et les
images de spin [86] pour les formes 3D, les descripteurs en ondelettes [98] pour le traitement du signal,
et, plus généralement, le résultat d’une technique de réduction de dimension, comme l’ACP, MDS ou
Isomap [132]. L’efficacité des descripteurs est souvent corrélée aux propriétés dont ils bénéficient. En
fonction de l’application, il peut être pertinent d’exiger d’un descripteur qu’il soit invariant par translation
ou rotation, intrinsèque ou extrinsèque, un vecteur Euclidien, etc. Trouver des descripteurs avec de telles
propriétés est une question importante car permettant d’améliorer grandement l’interprétation et la visu-
alisation des données, comme mentionné plus haut, mais aussi le résultat des algorithmes d’apprentissage,
qui sont susceptibles de produire de mauvaises performances si alimentés avec des données brutes. Le
but de cette thèse est d’étudier une classe spécifique de descripteurs appelés topologiques, et qui sont
connus pour être invariants aux déformations continues des données qui n’impliquent pas de déchirement
ou de recollement [26].

1.1.2 Descripteurs topologiques

L’idée derrière les descripteurs topologiques est de synthétiser l’information topologique présente dans les
données [26]. Intuitivement, la topologie des données englobe toutes les propriétés qui sont préservées
par des déformations continues, comme l’étirement, le rétrécissement ou l’épaississement, sans déchirure
ni recollement. Par exemple, si un cercle est continument déformé sans déchirement ou recollement,
un trou va toujours subsister dans l’objet résultant, quelle qu’ait été la transformation. C’est ce qu’on
appelle un attribut topologique. Voir la Figure 1.1, où la présence d’un trou est attestée dans différentes
déformations du cercle.

De manière similaire, les composantes connexes, cavités, et trous de dimension supérieure sont des
attributs topologiques. Dans l’optique de formaliser la présence de tels attributs (en toute dimension),
la théorie de l’homologie, a été développée au 19e et au début du 20e siècle. Elle se présente comme un
encodage algébrique de l’information topologique. L’homologie d’un espace est une famille de groupes
abéliens (un pour chaque dimension), dont les éléments sont des combinaisons linéaires des trous de
l’espace.

Cependant, les groupes d’homologie ne sont pas des descripteurs topologiques très performants en
tant que tels, la raison principale étant que les données prennent souvent la forme de nuages de points,
dont les groupes d’homologie ne sont pas informatifs : chaque point du nuage est un générateur du groupe
d’homologie en dimension 0, puisque l’homologie en dimension 0 compte les composantes connexes, et
tous les groupes d’homologie de dimension supérieure sont triviaux puisque le nuage n’a aucun trou.
Evidemment, le nuage de points peut tout de même refléter de l’information topologique - par exemple
s’il est échantillonné sur un objet géométrique comme un cercle, une sphère ou un tore. La question
devient ainsi celle de l’échelle avec laquelle observer les données, comme illustré dans la Figure 1.2.

L’analyse de données topologiques fournit deux constructions : les diagramme de persistance, qui
synthétisent l’information topologique à toutes les échelles, et les Mappers, qui encodent plus d’information

8

géométrique à échelle fixée.

Diagrammes de persistance. Puisque chaque échelle fournit des informations topologiques
pertinentes, l’idée de l’homologie persistante est d’encoder l’homologie du nuage de points à toutes les
échelles. Considérons la base de données de la Figure 1.3, contenant des images à 128 × 128 pixels, vus
comme des vecteurs en dimension 16 384, où chaque coordonnée est le niveau de gris d’un pixel. Puisque
la caméra a tourné autour de l’objet, il s’ensuit qu’à petite échelle, les données semblent être réparties
en petits groupes, tandis qu’à échelle plus grande, elles semblent échantillonnées sur un cercle (plongé
dans R16384).

Figure 1.3: Une base de données d’images.

Pour synthétiser cette information, on peut faire grossir des boules centrées sur les points de données.
Considérons trois rayons différents pour ces boules : un petit α, un légèrement plus grand β et un
beaucoup plus grand γ, comme montré dans la Figure 1.4.

r = α r = β r = γ

α

β

γ

α β γ

Figure 1.4: Trois différentes unions de boules centrées sur des images vus comme des vecteurs dans un
espace Euclidien de grande dimension. L’apparition et la disparition d’attributs topologiques, comme
des composantes connexes ou des trous, est enregistrée dans un diagramme de persistance, dans lequel
les points représentant des attributs en dimension 0 sont en vert, et ceux représentant des attributs en
dimension 1 sont en violet.

Quand le rayon des boules vaut α, l’union des boules est simplement l’union de dix composantes
connexes, dont l’homologie en dimension 1 et supérieure est triviale. Cependant, quand le rayon devient

9

β, l’union des boules a l’homologie d’un cercle, dont le trou en dimension 1 devient rempli quand le
rayon devient γ. On dit que les composantes connexes sont nées à la valeur α, et neuf sont mortes,
c’est-à-dire se sont fait relier à la dixième, à la valeur β. De la même manière, le trou en dimension 1
est apparu au rayon β, et a disparu au rayon γ. Enfin, la dixième composante connexe est apparue au
rayon α et a persisté jusqu’au rayon γ. Cette information est encodée dans le diagramme de persistance,
qui est un multi-ensemble 1 de points, chacun représentant un attribut topologique, et ayant les rayons
de naissance et de mort comme coordonnées. La distance à la diagonale fournit une quantité utile et
interprétable dans les diagrammes de persistance. En effet, si un point est loin de la diagonale, alors son
ordonnée est largement supérieur à son abscisse, ce qui signifie que l’attribut topologique correspondant
était présent dans l’union des boules pour une large gamme de rayons différents, indiquant ainsi que
l’attribut topologique a des chances d’être présent dans l’objet sous-jacent, et d’être une information
pertinente. Au contraire, les points proches de la diagonale représentent des attributs qui ont disparu
rapidement après être apparus. Ces attributs éphemères correspondent plutôt à du bruit ou des attributs
de l’objet sous-jacent qui ne sont pas pertinents. C’est le cas par exemple des neuf composantes connexes
de l’union des boules au rayon α dans la Figure 1.4, qui ont disparu au rayon β, proche de α. Il est à
noter que nous avons éxpliqué la construction dans le cas où il n’y a que trois unions de boules, mais
il est bien sûr possible de construire un diagramme de persistance quand le rayon des boules augmente
continument de 0 à +∞. Dans ce cas, le trou de dimension 1 a une abscisse située entre α et β (car il
n’est pas encore présent pour le rayon α et est déjà là au rayon β), et une ordonnée située entre β et γ
(car il a déjà disparu au rayon γ). De même, toutes les composantes connexes ont pour abscisse 0. Neuf
d’entre elles2 ont une ordonnée comprise entre α et β et l’ordonnée de la dixième est +∞ puisqu’elle est
toujours présente, quelque soit le rayon des boules.

Les diagrammes de persistance peuvent en faire être définis beaucoup plus généralement. - même
si l’interprétation en terme d’échelle n’est plus forcément pertinente. Tout ce qui est requis est une
famille d’espaces intriqués les uns dans les autres, appelée filtration, c’est-à-dire une famille {Xα}α∈A,
où A est un ensemble d’indices totalement ordonnés, telle que α ≤ β ⇒ Xα ⊆ Xβ . La construction
du diagramme de persistance est alors la même, c’est-à-dire l’enregistrement de l’apparition et de la
disparition d’attributs topologiques quand on parcourt A par ordre croissant. Dans l’exemple précédent,
la filtration contient trois espaces, qui sont les trois différentes unions de boules, chaque union étant
indicée par le rayon de ses boules. Il est clair dans ce cas que ces trois espaces sont intriqués car une
boule est toujours incluse dans la boule de même centre avec un rayon supérieur.

Une manière pratique de construire une filtration est d’utiliser les sous-niveaux d’une fonction con-
tinue à valeurs réelles f , c’est-à-dire les espaces de la forme f−1((−∞, α]). En effet, il est évident que
f−1((−∞, α]) ⊆ f−1((−∞, β]) pour tous α ≤ β ∈ R. Par exemple, l’union des boules de rayon r centrées
sur les points d’un nuage P est égale au sous-niveau de la fontion distance au nuage P : d−1

P ((−∞, r]),
où dP (x) = minp∈P d(x, p). Ainsi, dès qu’une fonction continue à valeurs réelles est à disposition, un
diagramme de persistance peut être construit, ce qui explique pourquoi le diagramme de persistance est
un descripteur prolifique. Prenons par exemple l’image floue d’un zéro, affichée dans le coin inférieur
droit de la Figure 1.5, pour laquelle le niveau de gris des pixels est utilisé comme fonction continue pour
calculer un diagramme de persistance. De nouveau, on trouve deux points se distinguant des autres
dans le diagramme de persistance, l’un représentant la composant connexe du zéro, et l’autre son trou
de dimension 1. Le reste des points est engendré par le bruit présent dans l’image.

Une des raisons pour lesquelles les diagrammes de persistance sont des descripteurs appréciés est
qu’en plus d’être invariant par déformation continue (sans déchirement ou recollement), ils sont sta-
bles [42, 54]. En effet, si des diagrammes de persistance sont calculés avec les sous-niveaux de fonctions
similaires, alors la distance entre eux est bornée supérieurement par la différence entre les fonctions en
norme infinie :

db(Dg(f),Dg(g)) ≤ ‖f − g‖∞,

où db désigne la distance bottleneck entre diagrammes de persistance, qui est le coût de la meilleure
correspondance partielle entre les points de chaque diagramme. Cela signifie que, par exemple, si les
positions des images de la Figure 1.4 sont légèrement perturbées, ou si l’image floue du zéro de la
Figure 1.5 est légèrement modifiée, les diagrammes de persistance correspondant seront très proches des

1Un multi-ensemble est une généralisation d’un ensemble, dans laquelle les points ont des multiplicités.
2En fait, chaque point est une composante connexe au rayon 0.

10

f ≤ f ≤ f ≤ f ≤

Figure 1.5: Autre exemple d’une construction de diagramme de persistance, avec les sous-niveaux du
niveau de gris des pixels d’une image floue d’un zéro.

originaux avec la distance bottleneck.
Les diagrammes de persistance ont aidé à améliorer l’analyse des données dans de nombreuses ap-

plications, allant de l’analyse de forme 3D [38, 43] à la transition de phase de matériaux [73, 84] et la
génomique [24, 39] pour n’en citer que quelques-unes.

Mapper. Comme expliqué plus haut, les diagrammes de persistance synthétisent l’information de na-
ture topologique contenue dans les données. Cependant, ils perdent beaucoup d’information géométrique
dans le processus : ils est aisé de construire des espaces différents ayant les mêmes diagrammes de persis-
tance. Le Mapper3, introduit par [129], est une approximation directe de l’objet sous-jacent, qui contient
non seulement les attributs topologiques, mais aussi de l’information additionnelle, concernant le posi-
tionnement des attributs les uns par rapport aux autres par exemple. Comme pour les diagrammes de
persistance, une fonction réelle continue, appelée parfois filtre, est requise, ainsi qu’une couverture de
son image par des intervalles ouverts qui se chevauchent. L’idée est de calculer les antécédents par f de
tous les intervalles de la couverture, de les raffiner en leurs composantes connexes via des techniques de
clustering, et de finalement lier les composantes connexes entre elles si elles contiennent des points de
données en commun.

Nous fournissons un exemple dans la Figure 1.6, où nous considérons de nouveau le nuage d’images.
La fonction réelle continue est la valeur absolue de l’angle à partir duquel l’image a été prise, et son image
[0, π] est couverte par trois intervalles (bleu, rouge et vert). Dans les antécédents des intervalles rouge et
bleu, il y a une seule composant connexe, tandis qu’il y en a deux dans l’antécédent de l’intervalle vert.
Le Mapper est obtenu en ajoutant des arètes entre les composantes connexes, en fonction de la présence
ou non de points de données en commun à l’intérieur de ces composantes; par exemple, les composantes
connexes vertes et bleues, ou vertes et rouges, sont reliées, mais pas celles qui sont rouges et bleues. Le
Mapper a l’homologie d’un cercle, est constitue une approximation directe du support sous-jacent au

3Dans cette thèse, on appelle Mapper l’objet mathématique, et pas l’algorithme utilisé pour le con-
struire.

11

0

π

Figure 1.6: Exemple de Mapper calculé sur le nuage d’images, avec la fonction d’angle et une couverture
de trois intervalles.

nuage d’images.

Il est bon de remarquer que les longueurs des intervalles contrôlent directement l’échelle à partir de
laquelle on observe le nuage : si les intervalles sont petits, le Mapper va avoir beaucoup de composantes
déconnectées puisque les antécédents contiendront au plus un point de donnée. A l’opposé, si les inter-
valles sont larges, le Mapper aura peu de composantes puisque les antécédents vont contenir beaucoup
de points de données.

En pratique, le Mapper a deux domaines d’applications majeures. Le premier est la visualisation et le
clustering. En effet, le Mapper fournit une visualisation des données sous forme de graphe dont la topolo-
gie reflète celle des données. Il apporte ainsi une information complémentaire à celle des algorithmes de
clustering usuels concernant la structure interne des clusters par l’identification de branches et de boucles
qui mettent en lumière des attributs topologiques potentiellement remarquables dans les groupes iden-
tifiés par clustering. Voir par exemple [138, 97, 125, 83] pour des exemples d’applications. La deuxième
application est la sélection d’attributs. En effet, chaque attribut des données peut être évalué en regard
de sa capacité à différencier les attributs topologiques mentionnés plus haut (branches et boucles) du
reste des données, via l’utilisation de tests statistiques, comme celui de Kolmogorov-Smirnov. Voir par
exemple [97, 109, 122] pour des exemples d’applications.

1.1.3 Principales limitations

Même si le Mapper et les diagrammes de persistance bénéficient de propriétés désirables, plusieurs
limitations refrènent leur usage pratique, à savoir la la difficulté de la sélection de paramètres pour
Mapper et la non linéarité de l’espace des diagrammes de persistance.

Distance et stabilité pour les Mappers et les graphes de Reeb Un problème du
Mapper est que, contrairement aux diagrammes de persistance, il a un paramètre, la couverture, dont la
sélection à priori est difficile. A cause de cela, le Mapper apparâıt comme une construction très instable
: il arrive que des Mappers calculés sur des nuages de points similaires, comme dans la Figure 1.7, ou
avec des couvertures proches, comme dans la Figure 1.8, soient très différents.

Ce problème majeur est un obstacle important à son utilisation en exploration de données. La seule
réponse dans l’état-de-l’art consiste à sélectionner des paramètres dans une grille de valeurs pour lesquels
le Mapper semble stable - voir [109] par exemple.

Ainsi, prouver un résultat de stabilité pour les Mappers nécessite de les comparer avec une distance
qui dépend au moins de la couverture utilisée. Malheureusement, même si des distances théoriques
peuvent être définies [105], la définition d’une distance calculable et interprétable entre Mappers manque
dans l’état-de-l’art. Pour gérer ce problème, on peut prendre inspiration d’une classe de descripteurs
très semblables aux Mappers, les graphes de Reeb.

12

Figure 1.7: Mappers calculés sur des échantillonnages similaires du cercle, avec la fonction hauteur et
une couverture composée de trois intervalles.

g

1/r
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

15

25

35

45

Figure 1.8: Un ensemble de Mappers calculés sur le jeu de données du cratère avec des couvertures
différentes (r est la longueur des intervalles et g est le pourcentage de chevauchement) et la coordonnée
horizontale. Gauche : jeu de données du cratère coloré par les valeurs de fonction, allant de bleu à
orange. Droite : Mappers calculés avec des paramètres différents. Les rectangles violets indiquent les
attributs topologiques qui apparaissent ou disparaissent soudainement dans les Mappers.

Graphes de Reeb. Même si les Mappers sont définis pour des nuages de points, leur extension
à des espaces non discrets est évidente, la différence étant que des techniques de clustering ne sont pas
nécessaires pour calculer les composantes connexes des antécédents puisqu’elles sont bien définies. Dans
ce cas, faire tendre la longueur des intervalles vers zéro définit le graphe de Reeb. Ainsi, les Mappers
(calculés sur des espaces non discrets) ne sont que des approximations, ou des versions pixelisées des
graphes de Reeb, comme illustré dans la Figure 1.9.

Cette observation est cruciale car plusieurs distances, ainsi que des résultats de stabilité, ont été
obtenus pour les graphes de Reeb [7, 8, 61] et peuvent être étendus aux Mappers. Cependant, ces
distances ne sont pas calculables et ne peuvent pas être utilisées en tant que telles en pratique [2]. La
question de savoir s’il est possible de définir des distances stables et calculables pour les Mappers reste
ainsi ouverte.

Non linéarité de l’espace des diagrammes de persistance. Même si les diagrammes de
persistance sont stables, ils ne peuvent pas être utilisés systématiquement par des algorithmes d’apprentissage
automatique. En effet, une classe très large de ces algorithmes nécessitent que les données soient soit des
vecteurs d’un espace Euclidien (comme les forêts aléatoires), ou d’un espace de Hilbert (comme les SVM).

13

Figure 1.9: Une surface plongée dans R3 (gauche), son graphe de Reeb calculé avec la fonction hauteur
(milieu) et son Mapper calculé avec la fonction hauteur et une couverture à deux intervalles (droite).

L’espace des diagrammes de persistance, équipé avec la distance bottleneck, n’est malheureusement ni
l’un ni l’autre. Même les moyennes de Fréchet ne sont pas bien définies [136]. L’astuce du noyau permet
cependant de traiter ce genre de données. En supposant que les points de données vivent dans un es-
pace métrique (X, dX), l’astuce du noyau nécessite seulement une fonction semi-définie positive, appelée
noyau, c’est-à-dire une fonction k : X ×X → R telle que, pour tous a1, · · · , an ∈ R et x1, · · · , xn ∈ X,
on ait : ∑

i,j

aiajk(xi, xj) ≥ 0.

Gràce au théorême de Moore-Aronszajn [4], les valeurs du noyau calculées sur des points de données
peuvent être démontrées égales à l’évaluation d’un produit scalaire entre les images des points de données
par un plongement dans un espace de Hilbert spécifique qui dépend uniquement de k et qui est en général
inconnu. Plus formellement, il existe un espace de Hilbert Hk tel que, pour tous x, y ∈ X, on ait :

k(x, y) = 〈Φk(x),Φk(y)〉Hk ,

pour un certain plongement Φk. Les valeurs du noyau peuvent donc être considérées comme des produits
scalaires généralisés entre les points de données, et peuvent être directement utilisés par les algorithmes
d’apprentissage. Dans le cas qui nous intéresse, la question est ainsi de trouver de tels noyaux pour les
diagrammes de persistance.

Une manière standard de procéder pour définir un noyau pour des points d’un espace métrique
(X, dX) est d’utiliser des fonctions Gaussiennes :

kσ(x, y) = exp

(
−dX(x, y)

2σ2

)
,

où σ > 0 est un paramètre d’échelle. Un théorême de Berg et al. [11] stipule que kσ est un noyau, c’est-
à-dire une fonction semi-définie positive, pour tous σ > 0 si et seulement si dX est conditionnellement
semi-définite négative, c’est-à-dire est telle qu’on ait

∑
i,j aiajdX(xi, xj) ≤ 0 pour tous x1, · · · , xn ∈ X

et a1, · · · , an ∈ R tels que
∑n
i=1 ai = 0. Malheureusement, comme montré par Reininghaus et al. [119],

la distance bottleneck db pour les diagrammes de persistance n’est pas conditionnellement semi-définite
négative. Il est même possible de trouver des contre-exemples pour les distances de Wasserstein, une
autre classe de distance pour diagrammes. L’utilisation de noyaux Gaussiens pour les diagrammes de
persistance est donc impossible avec leurs métriques canoniques.

Néanmoins, plusieurs noyaux ont été proposés au cours des dernières années [1, 20, 90, 120], bénéficiant
tous de résultats de stabilité bornant supérieurement la distance entre les plongements des diagrammes
par les distances bottleneck ou de Wasserstein entre les diagrammes eux-mêmes. En d’autres termes, la
distorsion métrique

dist(Dg,Dg′) =
‖Φk(Dg)− Φk(Dg′)‖Hk

db(Dg,Dg′)

14

est bornée supérieurement. Cependant, le calcul d’une borne inférieure non triviale reste ouvert : il
se pourrait que les plongements de diagrammes différents soient en fait très proches l’un de l’autre, ce
qui n’est pas désirable en pratique pour la discriminativité d’un noyau. Par exemple, le plongement
constant, qui envoie tous les diagrammes sur un même point d’un espace de Hilbert spécifique, est stable
(les distances entre images dans l’espace de Hilbertétant toujours nulles), mais les résultats du noyau
correspondant seront évidemment très faibles. Plus généralement, le comportement et les propriétés des
distances dans les espaces de Hilbert induits par des noyaux sont flous, et la question de savoir s’il existe
des noyaux avec des propriétés théoriques de discriminativité est ouverte.

1.1.4 Contributions

Dans cette thèse, nous nous penchons sur trois problèmes : l’interprétation des attributs topologiques)
du Mapper (par exemple avec des régions de confiance), le réglage de ses paramètres, et l’intégration
globale des descripteurs topologiques en apprentissage automatique.

Distance entre graphes de Reeb. Dans le Chapitre 3, nous définissons une pseudodistance
calculable entre graphes de Reeb, qui revient à comparer leurs diagrammes de persistance. Nous mon-
trons aussi que cette pseudodistance est en fait localement équivalente aux autres distances existantes
pour les graphes de Reeb. Cette équivalence locale est alors utilisée pour étudier les propriétés de
l’espace métrique des graphes de Reeb, équipé des distances intrinsèques. Nous montrons que toutes ces
distances intrinsèques sont fortement équivalentes, ce qui nous permet d’englober toutes les techniques
pour comparer des graphes de Reeb en une seule approche. Ce travail a été publié dans les proceedings
du Symposium on Computational Geometry 2017 [36].

Structure du Mapper. Dans le Chapitre 4, nous fournissons un lien entre les diagrammes de
persistance du graphe de Reeb et ceux du Mapper (calculé sur le même espace topologique). Plus
spécifiquement, nous montrons que le diagramme de persistance du Mapper est obtenu à partir de celui
du graphe de Reeb en supprimant des points spécifiques, à savoir ceux qui appartiennent à des régions
du plan qui dépendent uniquement de la couverture utilisée pour calculer le Mapper. Cette relation
explicite nous permet alors d’étendre la pseudodistance entre graphes de Reeb aux Mappers. Nous
montrons finalement que cette pseudodistance stabilise les Mappers : nous fournissons un théorême
de stabilité pour des Mappers comparés avec cette pseudodistance. Ce travail a été publié dans les
proceedings du Symposium on Computational Geometry 2016 [35] et une version longue a été soumise
au Journal of Foundations of Computational Mathematics [34].

Cas discret. Dans le Chapitre 5, nous étendons les résultats précédents au cas où les Mappers sont
calculés sur des espaces discrets, c’est-à-dire des nuages de points, et les composantes connexes sont
calculées avec du single-linkage clustering. En particulier, nous fournissons des conditions suffisantes
pour lesquelles le Mapper calculé sur un nuage de points coincide avec celui calculé sur le support. De
plus, nous montrons que le Mapper converge vers le graphe de Reeb avec une vitesse de convergence
optimale, au sens où aucun estimateur du graphe de Reeb ne peut converger plus vite. Les paramètres
utilisés pour démontrer l’optimalité fournissent en plus des heuristiques pour le réglage automatique de
ces paramètres. Ces heuristiques se basent sur des techniques de sous-échantillonnage et dépendent
uniquement de la cardinalité du nuage de points de données. Finalement, nous proposons un moyen de
calculer des régions de confiance pour les différents attributs topologiques du Mapper. Ce travail a été
soumis au Journal of Machine Learning Research [33].

Méthodes à noyaux. Dans le Chapitre 6, nous appliquons des techniques d’apprentissage aux
diagrammes de persistance, via des méthodes à noyaux.

Nous définissons d’abord un noyau Gaussien en utilisant une modification de la distance de Wasser-
stein, appelée distance de Sliced Wasserstein. Nous montrons en effet que cette distance, à l’inverse de
la distance de Wasserstein, est bien conditionnellement semi-définie négative, et permet donc de définir
un noyau Gaussien. De plus, nous montrons que la distance induite dans l’espace de Hilbert associé est
équivalente à la distance de Wasserstein de départ. Ainsi, ce noyau, en plus d’être stable et Gaussien, est
aussi théoriquement discriminant. Nous en fournissons aussi une preuve empirique en obtenant de nettes

15

Chapter 5
2.2 Persistence
2.1 Homology

2.4 Reeb graphs
2.5 Mapper

2.3 Extended/Zigzag

Chapter 6

Chapter 4

Chapter 3

2.
1,

2.
2

2.1,
2.2,

2.3,
2.4

2.1, 2.2, 2.3, 2.4, 2.5

Kernel Methods

Mapper

Reeb graph

3.1

Chapter 2

Background

Figure 1.10: Les flèches indiquent des dépendances entre chapitres, et les flèches en pointillés indiquent
des dépendances partielles, c’est-à-dire que seule une petite et non essentielle partie du chapitre dépend
de l’autre.

améliorations par rapport aux autres noyaux de l’état-de-l’art dans plusieurs applications. Ce travail a
été publié dans les proceedings de l’International Conference on Machine Learning 2017 [32].

Enfin, nous définissons aussi une méthode de vectorisation pour envoyer les diagrammes de persistance
dans RD, où D ∈ N∗. Ce plongement stable, même si non injectif, permet l’usage des diagrammes de
persistance pour des problèmes et algorithmes où des vecteurs Euclidiens sont nécessaires. Nous détaillons
alors une application où une telle structure est requise, à savoir le traitement de formes 3D, pour laquelle
nous démontrons que les diagrammes de persistance apportent une information complémentaire aux
descripteurs traditionnels. Ce travail a été publié dans les proceedings du Symposium on Geometry
Processing 2015 [38].

Comment lire cette thèse ? Cette thèse est composée de quatre parties différentes :

• La première est le Chapitre 2, dans lequel nous détaillons les fondations théoriques de l’homologie,
la persistance, les graphes de Reeb et les Mappers. Nous expliquons aussi la persistance étendue
et la persistance en zigzag.

• La deuxième partie est le Chapitre 3, qui traite des graphes de Reeb et de leurs distances.

• La troisième partie est composée des Chapitres 4 et 5, qui traitent de Mapper.

• La quatrième partie est le Chapitre 6. Il traite des noyaux pour les diagrammes de persistance,
dans des espaces de Hilbert en dimension finie et infinie.

Voir la Figure 1.10. Le Chapitre 2 rappelle essentiellement les fondamentaux en topologie. Les autres
chapitres contiennent en revanche les contributions de cette thèse. Les Chapitres 3 et 4 sont très orientés
topologie, tandis que le Chapitre 5 utilise plutôt des notions de statistiques, et que le Chapitre 6 se
concentre davantage sur l’apprentissage automatique. Ces chapitres ne sont pas indépendants, comme
illustré par la Figure 1.10, mais les contributions de chaque chapitre sont énoncées dans les introductions
correspondantes. Ainsi, pour chacun de ces chapitres, le lecteur, en fonction de ses goûts ou connaissances
personnelles, peut soit se limiter à l’introduction, soit lire le chapitre dans son intégralité.

16

1.2 Introduction in english

1.2.1 Data Analysis and Machine Learning

Data collection and generation in various human activities, including both industry and academia, have
grown exponentially over the last decade and are now ubiquitous in many different fields of science, finance
and industry. For example, in digital science, the fast development of image acquisition and processing
has allowed large amounts of images to become publicly available online [93, 89, 107, 112, 123]. Similarly,
in biology, next generation high-throughput sequencing allowed most laboratories to easily determine
DNA sequences of sample organisms [14, 78, 88, 100]. Hence, the need to summarize and extract useful
information from these massive amounts of data has become a problem of primary interest.

Machine Learning is a field of data science that aims at deriving algorithms (”Machine”) that can
make predictions about new data solely from the information that is contained in already collected
datasets (”Learning”). These techniques can provide answers to multiple data analysis problems such as
classification, which aims at predicting labels, clustering, which aims at separating data into groups or
clusters, or regression, which aims at approximating functions on data. We refer the interested reader
to [72] for a comprehensive introduction to these methods. For example, a typical classification problem
would be to predict if a drug have effects on a specific patient P . This is a binary classification problem
since the label we want to predict for P is either ”effect” or ”no effects”. Assuming you have a database
of patients at hand, in which the drug effects on each patient were recorded, one of the simplest way to
proceed is to look for the closest match, or most similar patient, to P in this database, and to take the
label of this match. This extremely simple yet powerful method is called nearest neighbor prediction, and
has been extensively studied by data scientists. More generally, nearest neighbor prediction is nothing
but a small part of the large variety of methods proposed in Machine Learning, which can tackle many
real-life challenges including image classification, musical genre prediction or medical prognosis to name
a few. More examples of applications and datasets can be found in [72].

Descriptors. Usually, data comes in the form of a point cloud in RD, where D ∈ N∗. Each data
point represents an observation and each dimension, or coordinate, represents a measurement. For
instance, observations can be patients, images or DNA sequences, whose corresponding measurements
are physical characteristics (height, weight, age...), grey scale values of pixels or nucleobases A,C,T,G
composing DNA. It is often the case that the number of measurements is very large, leading to a rich
level of information, but also making data very high-dimensional and impossible to visualize.

Hence, a large part of data analysis is devoted to the summarization of the information contained
in datasets or data points into simple and interpretable descriptors or signatures, which are usually
application specific. For instance, among common descriptors are: bag-of-words models [130] for text
document data, SIFT [96] and HoG [60] descriptors for image data, curvature and spin images [86] for
3D shape data, wavelet descriptors [98] for signal data, and, more generally, outputs of data reduction
technique, such as MDS, PCA or Isomap [132]. The efficiency of descriptors is very often correlated to
the properties they enjoy. Depending on the application, one may want descriptors to be translation or
rotation invariant, intrinsic or extrinsic, to lie in Euclidean space, etc. Deriving descriptors with desirable
properties is important since it greatly enhances interpretation and visualization, as mentioned above,
but it also improves the performances of Machine Learning algorithms, which may perform poorly if
fed with raw data. The aim of this thesis is to study a specific class of descriptors called topological
descriptors, which are known to be invariant to continuous deformations of data that do not involve
tearing or gluing [26].

1.2.2 Topological Descriptors

The idea of topological descriptors is to summarize the topological information contained in data [26].
Intuitively, the topology of data encompasses all of its properties that are preserved under continuous
deformations, such as stretching, shrinking or thickening, without tearing or gluing. For instance, when
a circle is continuously deformed without tearing or gluing, the hole always remains in the resulting
object, whatever the transformation. This is a topological invariant or feature. See Figure 1.11, where
a hole is always present in the displayed deformations of the circle.

17

Figure 1.11: Deformations of a circle.

Figure 1.12: This point cloud
seems to be sampled on nine
circles from a small scale, and
on a single circle from a larger
scale.

Similarly, connected components, cavities and higher-dimensional holes are topological features. In
order to formalize the presence of such holes (in any dimension), homology theory was developed in
the 19th and the beginning of the 20th century. It provides an algebraic encoding of such topological
information. Basically, the homology of a space is a family of abelian groups (one for each topological
dimension), whose elements are linear combinations of the space’s holes.

However, it turns out that the homology groups themselves perform poorly as topological descriptors.
The main reason is that data often comes in the form of point clouds, and the homology groups are
not informative for such objects: each point of the cloud is a generator of the 0-dimensional homology
group, since 0-dimensional homology is concerned with connected components, and all higher-dimensional
homology groups are trivial since the point cloud has no holes. However, it may happen that the data
still contains topological information, for instance when the point cloud is a sampling of a geometric
object such as a circle, a sphere or a torus. Hence, the question that arises is that of the scale at which
one should look at the data, as illustrated in Figure 1.12.

Topological data analysis provides two constructions: persistence diagrams, which summarize the
topological information at all possible scales, and Mappers, which encode extra geometric information
but at a fixed scale.

Persistence diagrams. Since several different scales may contain relevant topological information,
the idea of persistent homology is to encode the homology of the point cloud at all possible scales.
Consider the dataset of Figure 1.13, containing images with 128 × 128 pixels, seen as 16,384-dimensional
vectors, where each coordinate is the grey scale value of a pixel. Since the camera circled around the
object, it follows that, from a small scale, the data looks composed of small clusters, each of which
characterizing a specific angle, whereas from a larger scale, the data seems to be sampled on a circle
(embedded in R16,384).

Figure 1.13: A dataset of images.

To summarize this information, the idea is to grow balls centered on each point of the dataset. Let
us look at three different radius values: a small one α, a slightly larger intermediate one β, and a very
large one γ for these balls, as displayed in Figure 1.14.

When the radius of the balls is α, the union of balls is a just a union of ten connected components
with trivial homology in dimension 1 and above. However, when the radius is β, the union of balls has the
homology of a circle, whose 1-dimensional hole gets filled in when the radius increases to γ. Hence, we say
that the connected components were born at value α, and nine of them died, or got merged in the tenth
one, at radius β. Similarly, the 1-dimensional circle was born, or appeared, at value β and died, or got
filled in, at value γ. Finally, the tenth connected component appeared at radius α and remained all the
way until radius γ. This is summarized in the persistence diagram, which is a multiset 4 of points, each of

4A multiset is a generalization of a set, in which points can have multiplicities.

18

r = α r = β r = γ

α

β

γ

α β γ

Figure 1.14: Three different unions of balls centered on images seen as vectors in high-dimensional
Euclidean space. The appearance and disappearance of topological features like connected components
or holes is recorded and stored in the so-called persistence diagram, in which green points represent
0-dimensional features and purple points represent 1-dimensional features.

which represents a topological feature and has the birth and death radii as coordinates. The distance to
the diagonal is a useful interpretable quantity in persistence diagrams. Indeed, if a point is far from the
diagonal, then its ordinate, or death radius, is much larger than its abscissae, or birth radius. This means
that the corresponding topological feature was present in the union of balls for a large interval of radii,
suggesting that the feature is likely to be present in the underlying object, and thus significant. On the
contrary, points close to the diagonal represent features that disappeared quickly after their appearance.
These fleeting features are likely to be nonsignificant features or noise artifacts. Consider for instance the
nine connected components in the union of balls of radius α in Figure 1.14, which disappeared at radius
β slightly larger than α. Note that we explained the construction using only three unions of balls, but
it is of course possible to compute a persistence diagram when the radius increases continuously from 0
to +∞. In that case, the 1-dimensional hole has an abscissa located between α and β (since it is not yet
present at radius α and already present at radius β), and an ordinate located between β and γ (since
it is already gone at radius γ). Similarly, all connected components have an abscissa equal to 0. Nine
of them5 have an ordinate located between α and β and the ordinate of the tenth one is +∞ since it is
always present, whatever the radius of the balls.

Persistence diagrams can actually be defined much more generally—even though the interpretation
with scales may no longer be true. All that is needed is a family of spaces which is nested with respect
to the inclusion, called a filtration. This is a family {Xα}α∈A, where A is a totally ordered index set,
such that α ≤ β ⇒ Xα ⊆ Xβ . Then, the construction of persistence diagrams remains the same, i.e.
keeping track of the appearance and disappearance of topological features as we go through all indices in
ascending order. In the previous example, the filtration had three elements, the three different unions of
balls, each union being indexed by the radius of its balls. It is clear in this case that these three spaces

5Actually, each point is a connected component at radius 0.

19

are nested since a ball is always included in the ball with same center and larger radius.
A common way to build a filtration is to use the sublevel sets of a continuous scalar-valued function

f , which are sets of the form f−1((−∞, α]). Indeed, it is clear that f−1((−∞, α]) ⊆ f−1((−∞, β]) for
any α ≤ β ∈ R. For instance, the union of balls with radius r centered on the points of a point cloud P
is equal to the sublevel set of the distance function to P : d−1

P ((−∞, r]), where dP (x) = minp∈P d(x, p).
Hence, as soon as there is a continuous scalar-valued function at hand, a persistence diagram can be
computed, which explains why the persistence diagram is a versatile descriptor. Consider for instance the
blurry image of a zero in the down right corner of Figure 1.15, where the grey value function is used to
compute the persistence diagram. Again, there are two points standing out in the persistence diagram,
one representing the connected component of the zero, and the other representing the 1-dimensional hole
induced by the zero. All other points are noise.

f ≤ f ≤ f ≤ f ≤

Figure 1.15: Another example of a persistence diagram construction with the sublevel sets of the grey
value function defined on a blurry image of a zero.

One of the reasons why persistence diagrams are useful descriptors is that, in addition to be invariant
to continuous deformations (that do not involve tearing or gluing), they are stable [42, 54]. Indeed, if
persistence diagrams are computed with sublevel sets of similar functions, then the distance between
them is upper bounded by the difference between the functions in the sup norm:

db(Dg(f),Dg(g)) ≤ ‖f − g‖∞,
where db stands for the bottleneck distance between persistence diagrams, which is the cost of the best
partial matching that one can find between the points of the persistence diagrams. This means that, for
instance, if the positions of the images in Figure 1.14 are slightly perturbed, or if the blurry image of a
zero in Figure 1.15 is slightly changed, then the resulting persistence diagrams will end up very close to
the original ones in the bottleneck distance.

Persistence diagrams have proven useful in many data analysis applications, ranging from 3D shape
analysis [38, 43] to glass material transition [73, 84] to genomics [24, 39], to name a few.

Mapper. As explained above, persistence diagrams summarize the topological information in data.
However, they lose a lot of geometric information in the process: it is easy to build different spaces with

20

the same persistence diagrams. The Mapper6, which was introduced in [129], is a direct approximation of
the underlying object. It encompasses not only the topological features, but also additional information,
on how the features are positioned with respect to each other for instance. As with persistence diagrams,
a continuous scalar-valued function, sometimes called filter, is needed, as well as a cover of its image
with open overlapping intervals. The idea is to compute the preimages by f of all intervals in the cover,
to apply clustering on these preimages in order to refine them into connected components, and finally to
link the connected components if they contain data points in common.

0

π

Figure 1.16: Example of Mapper computed on the point cloud of images with the angle function and a
cover of three intervals.

We provide an example in Figure 1.16, where we consider again the point cloud of images. The
continuous scalar-valued function is the absolute value of the angle at which the picture was taken,
and its image [0, π] is covered by three intervals (blue, green and red). In the preimage of the red and
blue intervals there is just one connected component, whereas there are two in the preimage of the
green interval. We obtain the Mapper by putting edges between the connected components according
to whether they share data points or not; for instance, the green and blue or green and red connected
components are linked whereas the red and blue are not. The Mapper has the homology of the circle,
and is a direct approximation of the underlying support of the point cloud.

Note that the lengths of the intervals in the cover directly control the scale at which the data
is observed: if the intervals are very small, the Mapper will have many disconnected nodes since the
preimages of the intervals will contain at most one point. On the opposite, if the intervals have large
lengths, the Mapper will have only few nodes since the preimages of the intervals are going to contain
many points.

In practice, the Mapper has two major applications. The first one is data visualization and clustering.
Indeed, when the cover I is minimal, the Mapper provides a visualization of the data in the form of a
graph whose topology reflects that of the data. As such, it brings additional information to the usual
clustering algorithms about the internal structure of the clusters, by identifying flares and loops that
outline potentially remarkable topological information in the various clusters. See e.g. [138, 97, 125, 83]
for examples of applications. The second application of Mapper deals with feature selection. Indeed,
each feature of the data can be evaluated on its ability to discriminate the topological features mentioned
above (flares, loops) from the rest of the data, using for instance Kolmogorov-Smirnov tests. See e.g. [97,
109, 122] for examples of applications.

1.2.3 Main bottlenecks

Even though Mapper and persistence diagrams enjoy many desireable properties, several limitations
hinder their effective use in practice, in particular the difficulty to set the parameters for Mapper and the
non linearity of the space of persistence diagrams.

6In this thesis, we call Mapper the mathematical object, not the algorithm used to build it.

21

Distances and stability for Mappers and Reeb graphs. One problem with the Mapper
is that, contrary to the persistence diagrams, it has a parameter, which is the cover, and it is unclear
how this cover should be tuned beforehand. Because of this, the Mapper seems to be a very unstable
construction: it may happen that Mappers computed on nearby point clouds, as in Figure 1.17, or with
similar covers, as in Figure 1.18, end up being very different.

Figure 1.17: Mappers of two similar samplings of the circle, computed with the height function and a
cover with three intervals.

This major drawback of Mapper is an important obstacle to its use in exploratory data analysis with
non trivial datasets. The only answer proposed to this drawback in the literature consists in selecting
parameters in a range of values for which the Mapper seems to be stable—see for instance [109].

Hence, deriving a stability theorem for Mappers would require to compare them with a metric
that depends at least on the cover. Unfortunately, even though theoretical metrics can be defined, see
e.g. [105], a computable and interpretable metric between Mappers is still lacking in the literature. To
tackle this problem, one can take inspiration from another class of descriptors, which are very similar to
Mappers: the Reeb graphs.

Reeb graphs. Note that the Mapper construction was originally defined for point clouds, but it
can straightforwardly be extended to possibly non discrete topological spaces, for which clustering is
not needed to compute the connected components of preimages. In that case, making the lengths of
cover intervals go to zero leads to a limit object called the Reeb graph. Hence, Mappers (computed on
non discrete topological spaces) are nothing but approximations, or pixelized versions of Reeb graphs, as
illustrated in Figure 1.19.

This observation is important since several natural metrics enjoying stability properties already exist
for Reeb graphs [7, 8, 61] and can be extended to Mappers. However, these metrics are not computable
and thus cannot be used as is in practice [2]. Hence, there is an open question about how to define
metrics for Mappers which would be both computable and stable.

Non linearity of the space of persistence diagrams. Even though persistence diagrams
are stable descriptors, they cannot be plugged systematically into Machine Learning algorithms. Indeed,
a large class of these algorithms require the data to lie either in Euclidean space (such as random forests),
or at least in a Hilbert space (such as SVM). However, the space of persistence diagrams, equipped with
the bottleneck distance, is neither Euclidean nor Hilbert. Even Fréchet means are not well-defined [136].
Fortunately, the kernel trick allows us to handle this kind of data. Assuming data points lie in some
metric space (X, dX), the kernel trick only requires a positive semi-definite function, called a kernel. This
is a function k : X ×X → R such that, for any a1, · · · , an ∈ R and x1, · · · , xn ∈ X:∑

i,j

aiajk(xi, xj) ≥ 0.

Due to Moore-Aronszajn’s theorem [4], kernel values can be proven equal to the evaluation of the scalar
product between embeddings of data into a specific Hilbert space that depends only on k and is generally

22

g

1/r
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

15

25

35

45

Figure 1.18: A collection of Mappers of the crater dataset computed with various covers (r is the length
of the intervals and g is their overlap percentage) and the horizontal coordinate. Left: crater dataset
colored with function values, from blue to orange. Right: Mappers computed with various parameters.
The purple squares indicate topological features that suddenly appear and disappear in the Mappers.

Figure 1.19: A surface embedded in R3 (left), its Reeb graph (middle) computed with the height function
and its Mapper (right) computed with the height function and a cover with two intervals.

unknown. More formally, there exists a Hilbert space Hk such that, for any x, y ∈ X:

k(x, y) = 〈Φk(x),Φk(y)〉Hk ,

where the embedding Φk is called the feature map of k. Kernel values can thus be seen as generalized
scalar products between data points, and can be directly plugged into Machine Learning algorithms.
Hence, in our case, the question becomes that of finding kernels for persistence diagrams.

A common way to define kernels for points lying in a metric space (X, dX) is to use Gaussian
functions:

kσ(x, y) = exp

(
−dX(x, y)

2σ2

)
,

where σ > 0 is a bandwidth parameter. A theorem of Berg et al. [11] shows that kσ is a kernel, i.e. positive
semi-definite, for all σ > 0 if and only if dX is negative semi-definite, meaning that

∑
i,j aiajdX(xi, xj) ≤

0, for any x1, · · · , xn ∈ X and a1, · · · , an ∈ R such that
∑n
i=1 ai = 0. Unfortunately, as shown by

Reininghaus et al. [119], the bottleneck distance db for persistence diagrams is not negative semi-definite.
Actually, one can build counter examples even for Wasserstein distances, which is another widely used
class of distances. Hence, the use of Gaussian-type kernels for persistence diagrams is not possible with
their canonical metrics.

23

Nevertheless, several kernels for persistence diagrams have been proposed in the last few years [1, 20,
90, 120], all of them enjoying stability properties upper bounding the distance between the embeddings of
the persistence diagrams by the bottleneck or the Wasserstein distances between the diagram themselves.
Hence, the metric distortion

dist(Dg,Dg′) =
‖Φk(Dg)− Φk(Dg′)‖Hk

db(Dg,Dg′)

is in general upper bounded. However, it is unclear whether it is also non-trivially lower bounded or not:
it may happen that the embeddings of very different persistence diagrams actually lie very close to each
other, which is not desirable for the discriminative power of the kernel. Think for instance of a constant
kernel embedding: all persistence diagrams are mapped to the same element of a specific Hilbert space.
This embedding is stable since the pairwise distances in the Hilbert space are all zero, but of course the
kernel’s results are very poor when plugged into Machine Learning algorithms. More generally, little is
known concerning the behaviour and the properties of metrics of Hilbert spaces induced by kernels for
persistence diagrams, and it remains an open question whether theoretical results on the discriminative
power of kernels can be stated and proved or not.

1.2.4 Contributions

In this thesis, we investigate three problems: the interpretation of the topological features (i.e. with
confidence regions) of the Mapper, the tuning of its parameters, and the global integration of topological
descriptors into the framework of Machine Learning.

Distance between Reeb graphs. In Chapter 3, we define a computable pseudometric between
Reeb graphs by comparing their persistence diagrams. Even though this distance is only a pseudometric,
we are able to show that it is locally equivalent to other metrics. This local equivalence is then used to
study the metric properties of the space of Reeb graphs when equipped with derived intrinsic metrics:
we prove that all such intrinsic metrics are strongly equivalent, thus encompassing all approaches to
compare Reeb graphs into a single framework. This work has been published in the proceedings of the
Symposium on Computational Geometry 2017 [36].

Structure of the Mapper. In Chapter 4, we provide a link between the persistence diagrams
of the Reeb graph and those of the Mapper (computed on the same topological space). Specifically,
we show that the persistence diagram of the Mapper is obtained by removing specific points from the
persistence diagram of the Reeb graph, namely those that lie in certain areas of the plane that only depend
on the cover used to compute the Mapper. This explicit relation allows us to extend the computable
pseudometric between Reeb graphs to Mappers. We then show that this distance stabilizes the Mapper,
i.e. we provide a stability theorem for Mappers compared with this distance. This work has been
published in the proceedings of the Symposium on Computational Geometry 2016 [35] and another
version has been submitted to the Journal of Foundations of Computational Mathematics [34].

Discrete setting. In Chapter 5, we extend the previous theoretical results to the case where
Mappers are computed on point clouds, and where connected components are computed with single-
linkage clustering. Indeed, we provide sufficient conditions for which the Mapper computed on a point
cloud coincides with the one computed on the (non discrete) support. Moreover, we show that the Mapper
computed on the sampling of a topological space converges to the corresponding Reeb graph with an
optimal rate of convergence, i.e. no other estimator of the Reeb graph can converge faster. Finding
Mapper parameters for which the rate of convergence is optimal even allows us to provide heuristics on
the choice of these parameters. These heuristics rely on bootstrap and only depend on the number of
points in the sampling. We also provide a way to compute confidence regions for the various topological
features of the Mapper. This work has been submitted to the Journal of Machine Learning Research [33].

Kernel methods. In Chapter 6, we apply Machine Learning to topological descriptors. Since
Reeb graphs and Mappers are compared using their persistence diagrams, we focus on finding kernels
for persistence diagrams.

24

Chapter 5
2.2 Persistence
2.1 Homology

2.4 Reeb graphs
2.5 Mapper

2.3 Extended/Zigzag

Chapter 6

Chapter 4

Chapter 3

2.
1,

2.
2

2.1,
2.2,

2.3,
2.4

2.1, 2.2, 2.3, 2.4, 2.5

Kernel Methods

Mapper

Reeb graph

3.1

Chapter 2

Background

Figure 1.20: Plain arrows indicate dependence between chapters, and dotted arrows indicate partial
dependence, meaning that only a small, skippable part of the chapter depends on the other.

We first define a Gaussian-type kernel by using a modification of the Wasserstein distance, called the
Sliced Wasserstein distance. Indeed, we show that this distance, contrarily to the original Wasserstein
distance, is actually negative semi-definite, and thus enables us to define a Gaussian kernel out of it.
Morevover, we prove that the induced distance between persistence diagrams is equivalent to the original
Wasserstein distance. Hence, this kernel, in addition to be stable and Gaussian, is also theoretically
discriminative. We provide empirical evidence of this, showing significant improvements over the state-
of-the-art kernels for persistence diagrams in a range of applications. This work has been published in
the proceedings of the International Conference on Machine Learning 2017 [32].

Finally, we also provide a vectorization method to map persistence diagrams to RD, D ∈ N∗. This
provably stable mapping, even though not being injective, enables the use of persistence diagrams in
algorithms and problems where Euclidean vectors are required. We detail an application example in
which such structure is needed, namely 3D shape processing, for which we demonstrate that persistence
diagrams are useful descriptors that provide additional information to the other usual descriptors. This
work has been published in the proceedings of the Symposium on Geometry Processing 2015 [38].

How to read this thesis? This thesis is composed of four different parts:

• The first part is Chapter 2, in which we provide theoretical foundations for homology, persistence,
Reeb graphs and Mapper. We also detail two extensions of persistence called extended persistence
and levelset zigzag persistence.

• The second part is Chapter 3, which deals with Reeb graphs and their distances.

• The third part is composed of Chapters 4 and 5, which are about Mapper.

• The fourth part is Chapter 6. It is about defining kernels for persistence diagrams, in both finite
and infinite dimensional Hilbert spaces.

See Figure 1.20. Chapter 2 contains the necessary background. The other chapters are contributions
of this thesis. Chapters 3 and 4 have a strong topological flavor, while Chapter 5 has a statistical flavor
and Chapter 6 is more oriented towards Machine Learning. These chapters are not independent, as
illustrated in Figure 1.20, but the principal results and contributions are summarized at the beginning
of each chapter. Hence, for each chapter, the reader can read either only the introduction, or the full
chapter, depending on its personal background and interests.

25

26

CHAPTER 2

BACKGROUND ON TOPOLOGY

In this chapter, we review the basics of homology, persistent homology, Reeb graphs and Mappers. These
descriptors are at the core of Topological Data Analysis, which heavily relies on their good properties,
such as their stability with respect to perturbations of the data—see Theorems 2.2.15, 2.3.1 and 2.4.10.

Plan of the Chapter. We introduce homology in Section 2.1, and persistence theory in Section 2.2.
We then present two extensions of persistence that we use in this thesis, namely extended and levelset
zigzag persistence in Section 2.3. We finally provide background on Reeb graphs in Section 2.4 and
Mappers in Section 2.5.

2.1 Homology Theory

Homology is the main building block of persistence theory. In this section, we first review simplicial ho-
mology, and then two extensions thereof, namely singular and relative homology. We refer the interested
reader to [106] for more details.

2.1.1 Simplices and Simplicial Complexes

We start with the definition of abstract simplices and abstract simplicial complexes.

Definition 2.1.1. Let E be a finite index set. An abstract simplex σ is an element of P(E). Its elements
are called its vertices. When σ has a finite number of vertices, we write it: σ = {v0, v1, · · · , vp}, p ∈ N.
An abstract simplicial complex K is a non-empty subset of P(E) such that ∀σ ∈ K, τ ⊆ σ ⇒ τ ∈ K.
In particular, ∅ ∈ K.

Dimension, faces and skeletons. The different sets in K are the simplices of K. The di-
mension of a simplex σ is dim(σ) = card(σ) − 1, and the dimension of a simplicial complex K is
dim(K) = maxσ∈K dim(σ). For a given simplex σ, a p-face of σ is a subset τ of σ of dimension p. Thus,
according to Definition 2.1.1, all the faces of any simplex in the complex must also be in the complex.
The union of the p-dimensional simplices of every simplex in K gives the p-skeleton of K. The 0-skeleton
of K, i.e. its set of vertices, is denoted by V (K).

Orientations. We define equivalence classes for the orderings of the vertices of a simplex σ in the
following way: two orderings of its vertices are equivalent if and only if they differ from one another by
an even permutation. This leads to two equivalence classes for the orderings of the vertices of σ, also
called two orientations of σ. When the simplex is oriented, we write: σ = [v0, v1, · · · , vp] to specify the
equivalence class of the particular ordering v0, v1, · · · , vp.

27

Definition 2.1.2. A geometric realization ψ in RD, D ∈ N∗, of an abstract simplex σ of dimension p,
is the convex hull in RD of the point set {ψ(v0), · · · , ψ(vp)}:

ψ(σ) =

{
p∑
i=0

λiψ(vi) :

p∑
i=0

λi = 1, λi ≥ 0

}
,

where the points ψ(v0), · · · , ψ(vp) are affinely independent.

Obviously, a geometric realization is not unique and is not possible for every dimension D. In
particular, we must have p ≤ D. The geometric realization ψ of an abstract simplex σ of dimension p is
a geometric simplex of dimension p.

Definition 2.1.3. A geometric realization ψ in RD, D ∈ N, of an abstract simplicial complex K maps
every vertex of V (K) to a point in RD, so that the two following properties are satisfied:

• for every abstract simplex σ in K, ψ(σ) is a geometric simplex,

• for any two distinct simplices σ1 and σ2 in K, ψ(σ1) ∩ ψ(σ2) = ψ(σ1 ∩ σ2), with the convention
that ψ(∅) = ∅.

The geometric realization ψ of an abstract simplicial complex K of dimension p is a geometric
simplicial complex of dimension p. In general, we write |K| to denote a geometric realization of K.

Examples. In R3, we can have 0, 1, 2 and 3-dimensional geometric simplices, respectively points,
segments, triangles and tetrahedra—see Figure 2.1. See also Figure 2.2 for an example of geometric
simplicial complex.

Minimal dimension. The following theorem, whose proof relies on simple codimension consider-
ations, states what is the minimum value for D so that a geometric realization of K is always possible:

Theorem 2.1.4 (Whitney’s Embedding Theorem). Any abstract simplicial complex K of dimension
n ∈ N has a generic geometric realization in R2n+1.

Figure 2.1: Example of geometric simplices in dimension 0, 1, 2 and 3.

Figure 2.2: The complex on the right hand side is not a geometric simplicial complex, because the
intersection of the two triangles should be empty, as the triangles do not share any vertex, whereas it is
not. The complex on the left hand side is a simplicial complex.

28

2.1.2 Simplicial Homology

The definition of homology is based on p-chains, i.e. formal sums of simplices.

Definition 2.1.5. The set of p-chains of K, denoted by Cp(K;Z), is the free abelian group generated by
the oriented p-simplices of K.

In practice, we often work with coefficients in a field, like Zq = Z/qZ (if q is a prime integer).

Definition 2.1.6. Let σ be an oriented simplex of dimension p. The boundary of σ is the (p− 1)-chain
given by the alternate sum of all of the oriented (p − 1)-faces of σ. Formally, if σ = [v0, · · · , vp], the
boundary of σ is:

p∑
i=0

(−1)i[v0, · · · , v̂i, · · · , vp],

where [v0, · · · , v̂i, · · · , vp] is the oriented (p− 1)-face of σ, with missing vi.

By linearity, we extend the definition of the boundary to a p-chain of K. By convention, the
boundary of a 0-chain is 0. The resulting boundary operator ∂p : Cp(K;Z)→ Cp−1(K;Z) sends a p-chain
c =

∑
i niσi to its boundary—see Figure 2.3:

∂p(c) =
∑
i

ni∂p(σi).

∂2
+ =

Figure 2.3: Action of the boundary operator on the sum of two oriented simplices. The middle edge
cancels as it is counted twice with opposite orientations.

Definition 2.1.7. A p-cycle is a p-chain whose boundary is 0. The subgroup of all p-cycles is ker(∂p).

Figure 2.4: Example of an oriented 1-cycle.

Let us state the main property of the boundary operator:

Proposition 2.1.8. ∀p ∈ N∗, ∂p−1 ◦ ∂p = 0.

Hence, we can extend this result to p-chains by linearity: if c =
∑
i niσi then ∂p−1 ◦ ∂p(c) = 0. This

property allows to define a chain complex.

Definition 2.1.9. A chain complex C is a family of abelian groups Cp, p ∈ N∗, together with homomor-
phisms φp : Cp → Cp−1 such that φp−1 ◦ φp = 0.

In particular, the family of chain groups of a simplicial complex K together with the boundary
operators is a chain complex. In Sections 2.1.3 and 2.1.4, we build other examples of chain complexes.
Since im(φp) ⊆ ker(φp−1), we can define the pth-homology group of a chain complex as the quotient of
those spaces.

29

Definition 2.1.10. The pth-homology group of a chain complex C is:

Hp(C) = ker(φp)/im(φp+1).

In particular, the simplicial pth-homology group of a simplicial complex K is:

Hp(K;Z) = ker(∂p)/im(∂p+1).

A p-cycle in im(∂p+1) is said to be trivial and two equivalent p-cycles modulo im(∂p+1) are said to be
homologous. If K is a finite simplicial complex, then Cp(K;Z) is finitely generated (by the p-simplices
of K), and so is Hp(K;Z).

Theorem 2.1.11 (Decomposition of finitely generated abelian groups.). Every finitely generated abelian
group G is isomorphic to a direct sum of the form: Zn⊕Zq1 ⊕ · · ·⊕Zqm , where q1, · · · , qm are powers of
prime numbers. The integer n is called the rank of G, and ⊕mi=1Zqi is called the torsion subgroup of G.

Definition 2.1.12. Let K be a finite simplicial complex. The pth-Betti number βp(K;Z) of K, p ∈ N,
is the rank of Hp(K;Z).

Interpretation. If we work with coefficients in Z2, then the Betti numbers β0(K,Z2), β1(K,Z2)
and β2(K,Z2) can be interpreted as respectively the number of connected components of K, the number
of holes in K and the number of cavities, or voids, in K. To convince oneself, let us look at the 0-
dimensional case. A 0-chain is a set of vertices of a simplicial complex. We claim that each of these
vertices corresponds to a specific connected component. Indeed, if we select an arbitrary vertex in
every connected component then every vertex of a given connected component is homologous to the
corresponding arbitrary vertex. The proof is immediate: if two vertices v1 and v2 are in the same
connected component, there exists a path of edges, or a 1-chain, between them. If we compute the
boundary of this path, we get the boundary of every edge in the path, which consists of two vertices.
As the edges in the path are linked, all the vertices will be counted twice and thus will disappear (since
the field of coefficients is Z2), except for the vertices at the beginning and the end of the path, in other
words v1 and v2, that are thus homologous. On the contrary, no such path exists if the vertices are not
in the same connected component.

Example on the annulus. To make these notions clearer, let us look at a specific example, the
annulus of Figure 2.5. As we said, β0 is fairly easy to compute, it is equal to 1 in the example. Let
us now look at β1. We recall that in Z2, we do not consider orientations or alternate sums. Clearly,
{a0, a1}+ {a1, a2}+ {a2, a0} is a 1-cycle because:

∂1({a0, a1}+ {a1, a2}+ {a2, a0})
= ∂1({a0, a1}) + ∂1({a1, a2}) + ∂1({a2, a0})
= {a0}+ {a1}+ {a1}+ {a2}+ {a2}+ {a0} = 0

This cycle is also non trivial. Every other 1-cycle is homologous, for instance let us consider {a0, a1}+
{a1, a3}+ {a3, a2}+ {a2, a0}, which is also non trivial. Then their sum is {a1, a3}+ {a3, a2}+ {a2, a1},
which is trivial (it is the boundary of {a1, a2, a3}). Thus β1 = 1.

a3

a0 a1

a2

Figure 2.5: Example of simplicial complex representing an annulus. The Betti numbers are β0 = β1 = 1.

30

e1

e2

e3
σ

Σ2

σ(e3)

σ(e2)

σ(e1)

X

Figure 2.6: Oriented singular 2-simplex σ on a 3D surface X.

Morphisms between homology groups. Given several chain complexes, morphisms between
their corresponding homology groups can be built from chain maps.

Definition 2.1.13. Let C = · · · φp+1−→ Cp
φp−→ Cp−1

φp−1−→ · · · and C′ = · · ·
φ′p+1−→ C ′p

φ′p−→ C ′p−1

φ′p−1−→ · · · be
chain complexes. A family of homomorphisms f = {fp : Cp → C ′p}p∈N is a chain map if

φ′p ◦ fp = fp−1 ◦ φp,

for any p ∈ N∗.

Proposition 2.1.14. A chain map f : C → C′ induces a homomorphism f∗ : H∗(C)→ H∗(C′). Moreover,
(i) the identity map id of C is a chain map, and id∗ is the identity map of H∗(C), and (ii) if f : C → C′
and g : C′ → C′′ are chain maps, then g ◦ f : C → C′′ is a chain map and (g ◦ f)∗ = g∗ ◦ f∗.

Morphisms between simplicial homology groups. Chain maps between simplicial ho-
mology groups arise from simplicial maps between simplicial complexes.

Definition 2.1.15. Let K,L be two abstract simplicial complexes. A map f : V (K) → V (L) is a
simplicial map if {v0, · · · , vp} ∈ K ⇒ {f(v0), · · · , f(vp)} ∈ L.

Proposition 2.1.16. Let K,L be two abstract simplicial complexes, and f : V (K) → V (L) be a
simplicial map. Then, f induces a chain map between the chain complexes {Cp(K;Z), ∂p}p∈N and
{Cp(L;Z), ∂p}p∈N.

2.1.3 Singular Homology

Other chain complexes can be defined if the space under consideration is not a simplicial complex. This
can be done using the so-called singular homology. Intuitively, singular simplices are images of usual
simplices under continuous functions. We refer the interested reader to [106] for further details.

Definition 2.1.17. Let Σp = {v1, · · · , vp+1} be the oriented standard p-simplex, i.e. the geometric
simplex in R∞ whose vertices are defined by vi = ei, where ei is the ith element of the standard basis of
R∞, together with the orientation induced by the basis ordering. Let X be a topological space. An oriented
singular p-simplex of X is the image of Σp under a continuous mapping σ : Σp → X, together with an
orientation induced by the one of Σp. We write σ([v1, · · · , vp+1]) to denote such a simplex together with
its orientation.

Note that σ need not be injective. It may be the constant map for instance. We give an example of
an oriented singular 2-simplex in Figure 2.6.

31

Singular homology groups. All the definitions in the previous section extend almost directly.
The group of singular p-chains is defined as the free abelian group generated by the oriented singular
p-simplices of X. Note that this group may contain uncountably many generators. The (singular)
boundary operator ∂sing

p is defined on a singular simplex as:

∂sing
p (σ([v1, · · · , vp+1])) =

p+1∑
i=1

(−1)iσi([v1, · · · , v̂i, · · · , vp+1]),

where σi is the restriction of σ on the (p − 1)-face of Σp induced by the removal of vi. It is then

extended by linearity to singular chains, and we have again ∂sing
p ◦ ∂sing

p+1 = 0, so we can define a chain
complex with these boundary operators. Hence, we define the singular pth-homology group of X as
Hp(X;Z) = ker(∂sing

p)/im(∂sing
p+1), i.e. the group of those singular p-chains with null boundary (also

called singular p-cycles) that are not images by ∂p+1 of singular (p+ 1)-chains.

Singular and simplicial homologies. Given an abstract simplicial complexK and a geometric
realization |K| thereof, one may ask for the relationships between the simplicial homology groups of K
and the singular homology groups of |K|. It turns out that they are essentially the same:

Proposition 2.1.18 (§34 in Chapter 4 in [106]). Let K be an abstract simplicial complex and let |K|
be a geometric realization of K. Then, the singular homology groups of |K| and the simplicial homology
groups of K are isomorphic.

Morphisms between singular homology groups. There is an easy way to build chain
maps between the chain complexes induced by the singular chain groups of two spaces X and Y . Indeed,
given a function f : X → Y , continuity is a sufficient requirement to build such a chain map.

Proposition 2.1.19 (Theorems 29.1 and 29.2 in [106]). Let X,Y be topological spaces and f : X → Y
be a continuous function. Then, f induces a chain map between the chain complexes {Cp(X;Z), ∂p}p∈N
and {Cp(Y ;Z), ∂p}p∈N.

Invariance to homotopy equivalence. One of the key properties of homology groups is
their invariance to continuous deformations of spaces. To formalize this, we use the notion of homotopy
equivalence between topological spaces.

Definition 2.1.20. Let X,Y be topological spaces, and let f, f ′ : X → Y be continuous functions. The
functions f and f ′ are said to be homotopic if there exists a continuous function F : X× [0, 1]→ Y such
that F (·, 0) = f and F (·, 1) = f ′. The spaces X and Y are said to have the same homotopy type, or to
be homotopy equivalent, if there exist f : X → Y and g : Y → X such that f ◦ g is homotopic to idY
and g ◦ f is homotopic to idX .

Note that if X and Y are homeomorphic, i.e. there exists a continuous bijection f : X → Y such
that the inverse f−1 is also continuous, then they have the same homotopy type (it suffices to take
g = f−1 in Definition 2.1.20). Proposition 2.1.19 allows to show the following proposition, which states
that homology is invariant under homotopy equivalences—and thus also under homeomorphisms.

Proposition 2.1.21. Let X,Y be homotopy equivalent topological spaces. Then H∗(X;Z) ' H∗(Y ;Z).

In particular, if a topological space X is triangulable, then there is an abstract simplicial complex
K such that X and |K| are homeomorphic. Thus, the singular homology groups of X are isomorphic to
the ones of |K|, which in turn are isomorphic to the simplicial homology groups of K.

2.1.4 Relative Homology

Relative homology groups are computed with pairs of topological spaces. As for singular homology, it is
a simple extension of simplicial homology.

Definition 2.1.22. Let Y ⊆ X be topological spaces. Let Cp(X;Z) and Cp(Y ;Z) be the groups of
p-chains of X and Y respectively. Then, the group of relative p-chains is the quotient group:

Cp(X,Y ;Z) = Cp(X;Z)/Cp(Y ;Z).

32

Y

X

y
y′

σ

Figure 2.7: In this example, we study the pair of spaces Y ⊆ X. The oriented singular 1-simplex
σ = [y, y′] has boundary [y′] − [y] ∈ Y . Hence, ∂1(σ) 6= 0 while ∂rel

1 (σ) = 0: σ is a cycle in relative
homology but not in usual homology.

Relative homology groups. The usual boundary operator commutes with the inclusion: letting
ιp : Cp(Y ;Z) ↪→ Cp(X;Z) denote the canonical inclusion, we have ∂p ◦ ιp = ιp−1 ◦ ∂p. Hence, ∂p induces
the (relative) boundary operator ∂rel

p : Cp(X,Y ;Z)→ Cp−1(X,Y ;Z), which satisfies ∂rel
p ◦∂rel

p+1 = 0. Once
again, this allows to define a chain complex, which in turn induces the so-called relative pth-homology
group with Hp(X,Y ;Z) = ker(∂rel

p)/im(∂rel
p+1). Note that these definitions hold also for abstract simplicial

complexes.

Example. It is easy to build examples where homology and relative homology differ. For instance,
any p-chain included in Y is trivial in Cp(X,Y ;Z). It may also happen that p-chains of nonzero boundary
with the usual boundary operator become p-cycles in relative homology. See Figure 2.7 for instance.

2.2 Persistence Theory

We now describe persistent homology for topological spaces. However, we recall from Proposition 2.1.18
that all definitions hold for simplicial complexes as well.

2.2.1 Filtrations

Intuitively, the aim of persistence is to study the evolution of the homology groups through a filtration.

Definition 2.2.1. A filtration is an R-indexed family of topological spaces {Xα}α∈R that are nested with
respect to inclusion, that is s ≤ t⇒ Xs ⊆ Xt.

Note that, when the Xi are simplicial complexes, Definition 2.2.1 means that a simplex σi ∈ Xi

cannot appear in the filtration before its faces.

Definition 2.2.2. Let f : X → R be a continuous function defined on a topological space X. The
filtration {Fα}α∈R induced by f is the filtration composed of the sublevel sets of f : Fα = f−1((−∞, α]).

One cannot choose just any function to build a filtration. For instance, when the spaces are simplicial
complexes, the value of f on a simplex σ must be superior to its values on all the faces of σ, so that the
faces of σ are included in the filtration before σ itself. We must have:

∀σ ∈ Xi, τ is a face of σ ⇒ f(τ) ≤ f(σ).

A classical way to accomplish this is to define the values of f on V (K) and to define f on simplices of
dimension p > 0 in the following way: f({v0, · · · , vp}) = max{f(v0), · · · , f(vp)}. This is also known as
the lower-star filtration of f. See Figure 2.8, where a function is defined on the 8 vertices of a simplicial
complex K. The order of appearance of the simplices depends on the values of f at these vertices.

33

f

0 1 2 3 4 5 6 7

1

3

10

11

0

1

2

3

4 5

6

7

0

4

0

2
4

6

0

1

2
4 5

6

0

1

2

3

4 5

6

K1 K3 K10 K11

K20 = K

20

V (K)

Figure 2.8: Example of lower star filtration of a function f

2.2.2 Persistence Modules

The main object of persistence theory is the so-called persistence module.

Definition 2.2.3. Let K be a field. A persistence module U is a set of K-vector spaces indexed by R,
denoted by {Uα}α∈R, together with a family of linear maps {uβα : Uα → Uβ}α,β∈R,α≤β such that:

• ∀α ∈ R, uαα = idUα and

• ∀α ≤ β ≤ γ, uγβ ◦ uβα = uγα.

Interval module. A notable example of persistence module is the interval module II on an interval
I ⊆ R, defined by: (II)α = K if α ∈ I and 0 otherwise; (iI)

β
α = idK if [α, β] ⊆ I and 0 otherwise.

Persistence module of a filtration. Let K be a field, X a topological space, {Xs}s∈R a
filtration of X, Hp(Xs;K) and Hp(Xt;K) the pth-homology groups of Xs and Xt (with s ≤ t thus
Xs ⊆ Xt). We can consider the inclusion maps ιts = Hp(Xs;K) → Hp(Xt;K) induced by the canonical
inclusion Xs ↪→ Xt. Note that these maps depend on the homological dimension p and may not be
injective. The pth-persistence module of X associated to the filtration {Xs}s∈R is the persistence module
{Hp(Xs;K), {ιts}t≥s}s∈R.

Morphisms. The persistence modules can actually be seen as the objects of an abelian category,
whose morphisms we now define.

Definition 2.2.4. Let U = {Uα, uβα} and V = {Vα, vβα} be two persistence modules. A morphism Ψ
between U and V is a family of morphisms Ψ = {ψα : Uα → Vα : α ∈ R} such that for all α, β ∈ R such
that α ≤ β, we have ψβ ◦uβα = vβα ◦ψα. If every ψα is an isomorphism, then Ψ is called an isomorphism,
and U and V are isomorphic, which we write: U ' V.

Direct sum. The direct sum of two modules W = U ⊕ V is the module defined by Wα = Uα ⊕ Vα
for all α ∈ R, and wβα = uβα ⊕ vβα for all α, β ∈ R, such that α ≤ β. We say that a persistence module U
is decomposable if it is isomorphic to the direct sum of two non zero modules.

34

Proposition 2.2.5 (Proposition 2.6 in [45]). An interval module admits no other decomposition than
the trivial one: II = 0⊕ II = II ⊕ 0.

A module U is said to be decomposable into intervals if it admits a decomposition composed of
interval modules U ' ⊕I∈III . This decomposition is unique up to isomorphism and reordering of the
terms, as stated in the following proposition.

Proposition 2.2.6 (Theorem 2.7 in [45]). Let U be a decomposable persistence module. Assume that
there exists two different decompositions: U ' ⊕I∈III ' ⊕J∈J IJ . Then there exists a bijection b : I → J
such that II ' Ib(I) for all I ∈ I.

Theorem 2.2.7 (Theorem 1.13 in [113], Theorem 2.8 in [45]). Let U = {Uα, uβα} be a persistence module.
If U is tame, i.e. uβα has finite rank for any α ≤ β, then U is decomposable into intervals.

Special case. In the case of simplicial complexes, Theorem 2.2.7 applies to the pth-persistence
module of any filtration of any simplicial complex K, provided that K has a finite number of p-simplices.

Definition 2.2.8. Let X be a topological space and f : X → R be a continuous function. We say that
f is tame if the persistence module induced by its sublevel sets is tame.

It follows that the persistence module of any tame function is decomposable into intervals.

2.2.3 Persistence Diagram

When a persistence module is decomposable into intervals, for instance when it comes from the filtration
induced by a tame function, it is convenient to plot each interval in the extended plane R̄2, where
R̄ = R ∪ {+∞}, using the endpoints of the intervals as coordinates. This way of encoding a persistence
module is called a persistence diagram.

Definition 2.2.9. Let U be a decomposable persistence module of the form

U '
⊕
α∈A

I(bα,dα),

where A is an index set, bα and dα ∈ R̄, and (bα, dα) can be the open interval (bα, dα), the closed one, or
one of the two half-closed ones. The persistence diagram of U is the multiset: Dg(U) = tα∈A{(bα, dα)}.

Birth and death. bα is called the birth time of homological feature α, and dα is called its death
time. Note that a point in a persistence diagram can encode several different homology generators. The
number of generators this point represents is called the multiplicity of the point.

Example on a simplicial complex. We compute homology with coefficients in Z2. Let us
consider the example of Figure 2.9. The final simplicial complex K is shown at the end of the discrete
filtration, it has dimension 2 with β0 = 1, β1 = 0 and β2 = 0. At time 0, there is nothing (β0 = β1 = 0).
At time 1, a new connected component is born, thus an interval with birth time equal to 1 is created in
H0 (β0 becomes 1). At time 2, three other connected components (two isolated vertices and one triangle)
are born, three other intervals with birth 2 are created in H0 (and β0 = 4), but there is still no 1-cycle.
At time 3, one of the connected components is merged with the first connected component, thus one
of the previous interval with birth time 2 in H0 has a death time set to 3. A 1-cycle appears too, an
interval with birth 3 for H1 is created (and β1 = 1). At time 4, the 1-cycle is killed, the corresponding
interval has a death time set to 4, as well as one of the two connected components added at time 2.
Finally at time 5, the two remaining connected components are merged together: one of the still non
closed intervals in H0 has a death time set to 5 (the most recent one, i.e. the one with birth time 2) and
the other to +∞ (and β0 = 1, β1 = 0).

35

K1

K2 K3

K4 K5 = K

∅ ∞
5

4

3

2

1

54321 ∞

Figure 2.9: Example of a filtration and its corresponding persistence diagram (0-dimensional points are
marked in blue and 1-dimensional points in red).

Algorithm 1: Computation of the persistence diagram

Input: {Ki}1≤i≤n.
for i = 0, · · · , n do

while ∃j < i such that lj == li 6= −1 do
Mi = Mi +Mj in Z2

end while
end for
Output: Dg = tni=1{(li, i)}.

Computation. The persistence diagram of filtrations of simplicial complexes can be computed with
Algorithm 1 below, when K = Z2, and when the filtration {Ki}1≤i≤n is such that there is a simplex σi
for which Ki+1 = Ki ∪ {σi} for each i. In Algorithm 1, M is the n× n matrix such that mij = 1⇔ σi
is a (dim(σj) − 1)-face of σj , mij = 0 otherwise. Mi is the ith column of M , and li is the index of the
lowest positive element in Mi, where li = −1 by convention when Mi = 0.

Even though this algorithm has cubic complexity n3—see [103], faster algorithms can be used in
practice depending on the application. For instance, 0-dimensional persistent homology in Z2 amounts
to track the evolution of the connected components, and there exists a very efficient data structure that
allows to update the number of connected components in a filtration: the Union-Find data structure (see
Chapter I.1. of [69] for more details). This is the data structure we use in practice when we compute
0-dimensional persistent homology.

2.2.4 Stability Properties of Persistence Diagrams

In this section, we introduce the main property of persistence diagrams, i.e. their stability with respect
to perturbations of their modules. But before presenting the main theorem, we have to detail the metrics
we are going to use on the persistence modules and their diagrams. We start with the metric between
persistence modules.

The interleaving distance. The so-called interleaving distance between persistence modules
measures the degree of interleaving, i.e. the smallest shift of indices for which one can find commutative
diagrams between the modules.

Definition 2.2.10. Two persistence modules U and V are ε-interleaved if there exist two families of
morphisms Ψ = {ψα : Uα → Vα+ε : α ∈ R} and Φ = {φα : Vα → Uα+ε : α ∈ R} such that:

∀α, ε ∈ R, ε > 0, uα+ε
α−ε = φα ◦ ψα−ε

∀α, ε ∈ R, ε > 0, vα+ε
α−ε = ψα ◦ φα−ε

36

∀α, β, ε ∈ R, α ≤ β, ε > 0, ψβ ◦ uβα = vβ+ε
α+ε ◦ ψα

∀α, β, ε ∈ R, α ≤ β, ε > 0, φβ ◦ vβα = uβ+ε
α+ε ◦ φα.

It is equivalent to saying that the diagrams in Figure 2.10 commute.

Uα

Vα+εVα−ε Uα−ε Uα+ε

Vα

vα+ε
α−ε uα+ε

α−ε

φα−ε ψα−εψα φα

Uα+ε

VβVα
vβα

φα

Uβ+ε

uβ+ε
α+ε

φβ

Vα+ε

UβUα

uβα

ψα

Vβ+ε

vβ+ε
α+ε

ψβ

Figure 2.10: Commutative diagrams for interleaving.

Definition 2.2.11. The interleaving distance dint between two persistence modules is defined by:

dint(U,V) = inf {ε ≥ 0 : U,V are ε-interleaved}.

The bottleneck distance. We now define the distance between persistence diagrams, called the
bottleneck distance. The definition of this distance is based on partial matchings between the diagrams.
Given two persistence diagrams Dg,Dg′, a partial matching between Dg and Dg′ is a subset Γ of Dg×Dg′

such that:

∀p ∈ Dg, there is at most one p′ ∈ Dg′ such that (p, p′) ∈ Γ,

∀p′ ∈ Dg′, there is at most one p ∈ Dg such that (p, p′) ∈ Γ.

The cost of Γ is:

cost(Γ) = max

{
sup

(p,p′)∈Γ

‖p− p′‖∞, sup
p∈Dg\Γ

‖p− π∆(p)‖∞, sup
p′∈Dg′\Γ

‖p′ − π∆(p′)‖∞
}
,

where, by a slight abuse of notation, we let Dg \ Γ denote the set of those points in Dg which have no
match in Γ, and similarly for Dg′ \ Γ.

Definition 2.2.12. Let Dg,Dg′ be two persistence diagrams. The bottleneck distance between Dg and
Dg′ is:

db(Dg,Dg′) = inf
Γ

cost(Γ),

where Γ ranges over all partial matchings between Dg and Dg′.

Note that db is only a pseudometric, not a true metric, because points lying on ∆ can be left
unmatched at no cost.

37

The Wasserstein distances. In addition to db, it is possible to define a 1-parameter family of
metrics for persistence diagrams by using the following 1-parameter family of cost functions:

costq(Γ) =

 ∑
(p,p′)∈Γ

‖p− p′‖q∞ +
∑

p∈Dg\Γ
‖p− π∆(p)‖q∞ +

∑
p′∈Dg′\Γ

‖p′ − π∆(p′)‖q∞

1/q

,

for any fixed q ∈ N∗. This is the definition of the q-Wasserstein distance dw,q:

dw,q(Dg,Dg′) = inf
Γ

costq(Γ).

Theorem 2.2.13 (Theorem 5.14 in [45]). Let U and V be two decomposable persistence modules. Then
we have the following inequality:

db(Dg(U),Dg(V)) = dint(U,V) (2.1)

Note that there exists a similar stability theorem for the Wasserstein distances:

Theorem 2.2.14 (Theorem 3.8 in [113]). Let U and V be two decomposable persistence modules. Then
we have the following inequality:

dw,q(Dg(U),Dg(V)) ≤ (Pers(U) + Pers(V))
1
q dint(U,V)1− 1

q , (2.2)

where Pers(U) =
∑
p∈Dg(U) 2‖p− π∆(p)‖∞.

Sublevel sets of functions. An interesting special case is when the persistence modules U and V
come from the filtrations {Fα}α∈R and {Gα}α∈R induced respectively by tame functions f and g on the
same topological space X. Let Dg(f) and Dg(g) denote the corresponding persistence diagrams, and let
‖f−g‖∞ = sup{|f(x)−g(x)| : x ∈ X} ≤ ε. Then, ∀α ∈ R, Fα−ε ⊆ Gα ⊆ Fα+ε and Gα−ε ⊆ Fα ⊆ Gα+ε.
Indeed, let x ∈ X. Then, f(x) ≤ α ⇒ g(x) ≤ f(x) + ε ≤ α + ε. The inclusion maps Fα ↪→ Gα+ε and
Gα ↪→ Fα+ε induce an ε-interleaving at the homology level. Hence, the interleaving distance is bounded
by ε, which allows to state the following stability theorem:

Theorem 2.2.15. Let X be a topological space and f, g : X → R be tame functions. Then:

db(Dg(f),Dg(g)) ≤ ‖f − g‖∞ (2.3)

dw,q(Dg(f),Dg(g)) ≤ (Pers(f) + Pers(g))
1
q ‖f − g‖1−

1
q

∞ (2.4)

This result is very useful: if one considers a function f and a perturbed version thereof, then the
persistence diagrams will be stable in the sense that their bottleneck or Wasserstein distances will be
less than the amplitude of the perturbation. Note that Theorem 2.2.15 is significantly weaker for dw,1

since, in that case, the upper bound in (2.4) does not depend on ‖f − g‖∞ anymore.

Application on point clouds. An application of Theorem 2.2.15 is the stability of persistence
diagrams built from growing balls, as in Figure 1.14. It is stated with the so-called Hausdorff distance.

Definition 2.2.16. Let Y, Z be two subsets of a metric space (X, dX). Then, the Hausdorff distance
between Y and Z is:

dH(Y,Z) = max{sup
y∈Y

inf
z∈Z

dX(y, z), sup
z′∈Z

inf
y′∈Y

dX(z′, y′)}. (2.5)

Theorem 2.2.17. Let P, P ′ be two finite point clouds in a metric space (X, dX). Let dP , dP ′ : X → R+

be the distance functions to these point clouds. Then,

db(Dg(dP),Dg(dP ′)) ≤ ‖dP − dP ′‖∞ ≤ dH(P, P ′).

38

2.3 Extended and Levelset Zigzag Persistence

In this section, we present two extensions of persistent homology, called respectively extended persistence
and levelset zigzag persistence. It turns out that they actually encode the same information—see Corol-
lary 2.3.8. However, we use them both in the following chapters of this thesis, since, depending on the
type of result we want to prove, the one or the other can be easier to work with. Again, we define these
objects for topological spaces, but the definitions hold for simplicial complexes as well.

Notation. From now, on, given a real-valued function f on a topological space X, and an interval
I ⊆ R, we denote by XI

f the preimage f−1(I). We omit the subscript f in the notation when there is no
ambiguity in the function considered.

2.3.1 Extended persistence

Filtrations with superlevel sets. Let f be a real-valued function on a topological space
X. Recall that the family of sublevel sets of f is nested, and induces a filtration of X. The family
{X [α,+∞)}α∈R of superlevel sets of f is also nested but in the opposite direction: X [α,+∞) ⊇ X [β,+∞)

for all α ≤ β ∈ R. We can turn it into a filtration by reversing the real line. Specifically, let Rop = {x̃ :
x ∈ R}, ordered by x̃ ≤ ỹ ⇔ x ≥ y. We index the family of superlevel sets by Rop, so now we have a

filtration: {X [α̃,+∞)}α̃∈Rop , with X [α̃,+∞) ⊆ X [β̃,+∞) for all α̃ ≤ β̃ ∈ Rop.

Extended filtration. Extended persistence connects the two filtrations at infinity as follows. Re-
place each superlevel set X [α̃,+∞) by the pair of spaces (X,X [α̃,+∞)). This maintains the filtration prop-

erty since we have (X,X [α̃,+∞)) ⊆ (X,X [β̃,+∞)) for all α̃ ≤ β̃ ∈ Rop. Then, let RExt = R∪{+∞}∪Rop,
where the order is completed by α < +∞ < β̃ for all α ∈ R and β̃ ∈ Rop. Finally, define the extended
filtration of f over RExt by:

Fα = X(−∞,α] for α ∈ R

F+∞ = X ≡ (X, ∅)
Fα̃ = (X,X [α̃,+∞)) for α̃ ∈ Rop,

where we have identified the space X with the pair of spaces (X, ∅). This is a well-defined filtration since

we have X(−∞,α] ⊆ X ≡ (X, ∅) ⊆ (X,X [β̃,+∞)) for all α ∈ R and β̃ ∈ Rop. The subfamily {Fα}α∈R is
called the ordinary part of the filtration, and the subfamily {Fα̃}α̃∈Rop is called the relative part. See
Figure 2.11 for an illustration.

Extended persistence module. Inclusions in the extended filtration induce the so-called ex-
tended persistence module EP(f):

EP(f)α = H∗(Fα;K) = H∗(X(−∞,α];K) for α ∈ R

EP(f)+∞ = H∗(F+∞;K) = H∗(X;K) ∼= H∗(X, ∅;K)

EP(f)α̃ = H∗(Fα̃;K) = H∗(X,X [α̃,+∞);K) for α̃ ∈ Rop.

Decomposition. As for ordinary persistence, an extended persistence module can be decomposed
as a direct sum of interval modules whenever the function f is tame, meaning that the morphisms
between the homology groups, either relative or not, of its sub- or superlevel sets have finite rank—see
e.g. Section 6.2 in [45]:

EP(f) '
⊕
α∈A

I[bα, dα),

where A is an index set, where bα ≤ dα ∈ RExt, and where each summand I[bα, dα) is made of copies of
K at each index β ∈ [bα, dα), and of copies of the zero space elsewhere, the maps between copies of K
being identities.

39

b0

bh1

bv1

b2

d0

dh1

dv1

d2

Figure 2.11: The extended filtration of the height function on a torus. The upper row displays the
ordinary part of the filtration while the lower row displays the relative part. The red and blue cycles
both correspond to extended points in dimension 1. The point corresponding to the red cycle, sometimes
called horizontal cycle, is located above the diagonal (dh1 > bh1), while the point corresponding to the
blue cycle, sometimes called vertical cycle, is located below the diagonal (dv1 > bv1).

Extended persistence diagram. Given a tame function f , its extended persistence module can
be encoded in the so-called extended persistence diagram ExDg(f). Moreover, the distinction between
ordinary and relative parts of the filtration allows to classify the points in ExDg(f) in the following way:

• points whose coordinates both belong to R are called ordinary points; they correspond to homo-
logical features being born and then dying in the ordinary part of the filtration;

• points whose coordinates both belong to Rop are called relative points; they correspond to homo-
logical features being born and then dying in the relative part of the filtration;

• points whose abscissa belongs to R and whose ordinate belongs to Rop are called extended points;
they correspond to homological features being born in the ordinary part and then dying in the
relative part of the filtration.

Note that ordinary points lie strictly above the diagonal ∆ = {(x, x) : x ∈ R̄} and relative points lie
strictly below ∆, while extended points can be located anywhere, including on ∆ (e.g. for connected
components lying inside a single critical level). It is common to decompose ExDg(f) according to this
classification:

ExDg(f) = Ord(f) t Rel(f) t Ext+(f) t Ext−(f),

where by convention Ext+(f) includes the extended points located on the diagonal ∆.

Persistence measure. From an extended persistence module EP(f) we derive a measure on the
set of rectangles in the plane, called the persistence measure and denoted µEP. Given a rectangle R =
[a, b]× [c, d] with a < b ≤ c < d ∈ RExt, we let

µEP(R) = rcb − rdb + rda − rca, (2.6)

where ryx denotes the rank of the linear map between the vector spaces indexed by x, y ∈ RExt in EP(f).
When EP(f) has a well-defined persistence diagram, i.e. f is tame, µEP(R) equals the total multiplicity
of the diagram within the rectangle R [45].

40

Stability. Extended persistence diagrams are also stable in the bottleneck and Wasserstein distances:

Theorem 2.3.1 (EP Stability Theorem in [28]). For any tame functions f, g : X → R,

db(ExDg(f),ExDg(g)) ≤ ‖f − g‖∞ (2.7)

dw,q(ExDg(f),ExDg(g)) ≤ (Pers(f) + Pers(g))
1
q ‖f − g‖1−

1
q

∞ (2.8)

Moreover, as pointed out in [55], the theorem can be strengthened to apply to each subdiagram Ord,
Ext+, Ext−, Rel and to each homological dimension individually.

Extended persistence diagrams also enjoy a symmetry theorem when X is a d-manifold, d ∈ N∗.

Theorem 2.3.2 (Symmetry Theorem in [55]). Let R : (x, y) 7→ (−x,−y). Then, for any tame
function f : X → R defined on a d-manifold X, one has, for any homological dimension p < d:

(i) Ordp(f) = R(Ordd−p−1(−f)) (ii) Relp(f) = R(Reld−p−1(−f)) (iii) Extp(f) = R(Extd−p(−f))

2.3.2 Levelset zigzag persistence

Levelset zigzag persistence [28] is specifically designed for the so-called Morse-type functions and the
stratification of the space they induce.

Morse-type functions. Morse-type functions are generalizations of the classical Morse functions
that share some of their properties without having to be differentiable nor defined over a smooth manifold.

Definition 2.3.3 (Morse-type [28]). A continuous real-valued function f on a topological space X is of
Morse type if:

(i) There is a finite set Crit(f) = {a1 < ... < an}, called the set of critical values, such that for
every open interval (a0 = −∞, a1), ..., (ai, ai+1), ..., (an, an+1 = +∞) there is a compact and
locally connected space Yi and a homeomorphism µi : Yi × (ai, ai+1) → X(ai,ai+1) such that ∀i =
0, ..., n, f |

X(ai,ai+1) = π2 ◦ µ−1
i , where π2 is the projection onto the second factor;

(ii) ∀i = 1, ..., n− 1, µi extends to a continuous function µ̄i : Yi× [ai, ai+1]→ X [ai,ai+1] – similarly µ0

extends to µ̄0 : Y0 × (−∞, a1]→ X(−∞,a1] and µn extends to µ̄n : Yn × [an,+∞)→ X [an,+∞);

(iii) Each levelset Xt has a finitely-generated homology.

Items (i) and (ii) define a stratification of X, which we use extensively in the next chapters. Morse
functions are known to be of Morse type while the converse is clearly not true. Moreover, it follows
from item (iii) in Definition 2.3.3 that Morse-type functions induce pointwise finite-dimensional (pfd)
extended persistence modules, meaning that each vector space in the extended persistence module has
finite dimension. Clearly, pfd persistence modules are tame and thus decomposable.

Zigzag persistence modules. A zigzag persistence module is a discrete persistence module
whose arrows can go indifferently forward or backward.

Definition 2.3.4. Let K be a field and n ∈ N. A zigzag persistence module U is a set of K-vector
spaces indexed by {1, · · · , n}, denoted by {Ui}1≤i≤n, together with a family of linear maps {ui : Ui ↔
Ui+1}1≤i≤n−1, where ↔ means that the linear map is either → or ←.

As for usual persistence modules, any sequence of topological spaces with canonical inclusions (go-
ing either forward or backward) induces a zigzag persistence module after computing the homology
groups. Note however that the full sequence is not required to be a filtration anymore. Particular zigzag
persistence modules, called levelset zigzag persistence modules, can be defined for Morse-type functions.

41

Definition 2.3.5. Let f : X → R be a Morse-type function, and let Crit(f) = {a1, · · · , an} be its set of
critical values. Let −∞ = a0 < s0 < a1 < s1 < a2 < · · · < sn−1 < an < sn < an+1 = +∞. Then, for
any 1 ≤ i ≤ j ≤ n, we write Xj

i for X [si,sj], and we define the levelset zigzag as the following sequence
of 2n+ 1 nodes:

X0
0 ↪→ X1

0 ←↩ X1
1 ↪→ X2

1 ←↩ · · · ↪→ Xn
n−1 ←↩ Xn

n ,

where each arrow is an inclusion. Computing the homology groups of each space and the linear maps
induced from the corresponding inclusions gives the so-called levelset zigzag persistence module LZZ(f):

H∗(X
0
0 ;K)→ H∗(X

1
0 ;K)← H∗(X

1
1 ;K)→ H∗(X

2
1 ;K)← · · · → H∗(X

n
n−1;K)← H∗(X

n
n ;K).

Decomposition. Zigzag persistence modules also enjoy a decomposition theorem:

Theorem 2.3.6 (Theorem 2.5 in [27]). Any zigzag persistence module U decomposes as a direct sum of
closed interval modules:

U '
⊕
α∈A

I[bα,dα],

where A is an index set, where 1 ≤ bα ≤ dα ≤ n, and where each summand I[bα,dα] is made of copies
of K at each index β ∈ [bα, dα], and of copies of the zero space elsewhere, the maps between copies of K
being identities.

In the case of a levelset zigzag persistence module induced by a Morse-type function f , each closed

interval [bα, dα] is of the form [X
i′α
iα
, X

j′α
jα

], where i′α is either iα or iα + 1 and similarly for j′α, hence the
following classification:

Type I II III IV
i′α = iα + 1
j′α = jα

i′α = iα
j′α = jα + 1

i′α = iα + 1
j′α = jα + 1

i′α = iα
j′α = jα

The disjoint union of all of these intervals is called the levelset zigzag persistence barcode LBc(f).

Mayer-Vietoris half-pyramid. Morse-type functions also allow us to build the so-called Mayer-
Vietoris half-pyramid [28], which is the diagram of topological spaces and inclusions displayed in Fig-
ure 2.12. Any zigzag within the Mayer-Vietoris half-pyramid that stretches from the left boundary (i.e.
the node X0

0) to the right boundary without backtracking is called monotone. Theorem 2.3.7 and Corol-
lary 2.3.8 below allow us to link the zigzag persistence modules of any pair of monotone zigzags in the
half-pyramid. We use these results extensively in Section 4.3.1.

Theorem 2.3.7 (Pyramid Theorem in [28]). For any Morse-type function f , there exists a bijection
between the barcodes of any pair of monotone zigzag persistence modules in the Mayer-Vietoris half-
pyramid.

Since the extended persistence module of f is a monotone zigzag persistence module—more precisely
the principal diagonal—of the Mayer-Vietoris half-pyramid, we have the following corollary.

Corollary 2.3.8 (Table 1 in [28]). For any Morse-type function f , there exists a bijection between
ExDg(f) and LBc(f), which is described in Table 2.1.

In particular, bottleneck and Wasserstein distances, as well as stability results, can be derived for
levelset zigzag persistence barcodes using this correspondence and Theorem 2.3.1.

42

X0
0 X1

1 X2
2 X3

3

X1
0 X2

1 X3
2

X2
0 X3

1

(X3
0 , X

3
3)

(X3
1 , X

3
2)

(X3
0 , X

3
1)

X3
0 (X3

1 , X
3
3)

(X3
0 , X

3
2)

(X3
2 , X

3
3)

EP(f)

LZZ(f)

∅

∅

∅

∅

Figure 2.12: We show the Mayer-Vietoris half-pyramid when the Morse-type function has 3 critical
values. It is composed of two faces of the full Mayer-Vietoris pyramid: the south face (red) and the
east face (green). The extended persistence module EP(f) is in blue and the levelset zigzag persistence
module LZZ(f) is in orange.

Type Ord Rel Ext+ Ext−

ExDg(f) [ai, aj) [ãj, ãi) [ai, ãj) [aj, ãi)

LBc(f) [X i
i−1, X

j−1
j−1] [X i

i , X
j
j−1]− [X i

i−1, X
j
j−1] [X i

i , X
j−1
j−1]−

Type I II III IV

Table 2.1: This table gives the correspondences between the points of ExDg(f) and the intervals of
LBc(f). The minus sign on some intervals of LBc(f) means that the homological dimension of that
interval is equal to the dimension of its corresponding point in ExDg(f) minus 1.

2.4 Reeb graphs

The Reeb graph provides a meaningful alternative to persistence diagrams as summary of a topological
space and a real-valued function defined on that space. Intuitively, it continuously collapses the connected
components of the level sets of the function into single points, thus tracking the values of the functions
at which the connected components merge or split. Reeb graphs have been widely used in computer
graphics and visualization—see [12] for a survey.

Definition 2.4.1. Given a topological space X and a continuous function f : X → R, we define the
equivalence relation ∼f between points of X by:

x ∼f y ⇔
[
f(x) = f(y) and x, y belong to the same connected component of f−1(f(x)) = f−1(f(y))

]
.

The Reeb graph Rf (X) is the quotient space X/ ∼f .

As f is constant on equivalence classes, there is an induced map f̃ : Rf (X) → R such that

43

Rf(T)

Figure 2.13: Reeb graph of the height function f of an embedding of the torus T in R3. Note how the
critical points induce changes on the graph.

f = f̃ ◦ π, where π is the quotient map X → Rf (X):

X
π //

f
��

Rf (X)

f̃��
R

(2.9)

If f is a function of Morse type, then the pair (X, f) is an R-constructible space in the sense of [61]. This
ensures that the Reeb graph is a multigraph, whose nodes are in one-to-one correspondence with the
connected components of the critical level sets of f . In that case, computing the Reeb graph of a Reeb
graph preserves all information, as stated in the following remark.

Remark 2.4.2. Let f be a Morse-type function. Then there is a bijection b : Rf̃ (Rf (X))→ Rf (X) such

that f̃ ◦ b =
˜̃
f . In other words, computing the Reeb graph is an idempotent operation.

Reeb graphs as metric spaces. Any Reeb graph can be turned into a metric space by ade-
quately defining a metric between any pair of its points.

Definition 2.4.3 ([8]). Let X be a topological space and f : X → R be a continuous function. Then, we
define the following metric between any pair x, x′ ∈ Rf (X):

df (x, x′) = min
π:x→x′

{
max
t∈[0,1]

f̃ ◦ π(t)− min
t∈[0,1]

f̃ ◦ π(t)

}
,

where π : [0, 1] → Rf (X) ranges over the continuous paths from x to x′ in Rf (X) with π(0) = x and
π(1) = x′.

2.4.1 Persistence-based bag-of-features signature

There is a nice interpretation of ExDg(f̃) in terms of the structure of Rf (X). We refer the reader to [8]
and the references therein for a full description as well as formal definitions and statements. Orienting the
Reeb graph vertically so f̃ is the height function, we can see each connected component of the graph as a
trunk with multiple branches (some oriented upwards, others oriented downwards) and holes. Then, one
has the following correspondences, where the vertical span of a feature is the span of its image under f̃ :

• The vertical spans of the trunks are given by the points in Ext+
0 (f̃);

• The vertical spans of the branches that are oriented downwards are given by the points in Ord0(f̃);

• The vertical spans of the branches that are oriented upwards are given by the points in Rel1(f̃);

• The vertical spans of the holes are given by the points in Ext−1 (f̃).

44

The rest of the diagram of f̃ is empty. These correspondences provide a dictionary to read off the
structure of the Reeb graph from the persistence diagram of the induced map f̃ . Note that it is a
bag-of-features type signature, taking an inventory of all the features (trunks, branches, holes) together
with their vertical spans, but leaving aside the actual layout of the features. As a consequence, it is an
incomplete signature: two Reeb graphs with the same persistence diagram may not be isomorphic, as
illustrated in Figure 2.14.

Ext+0

Ord0

Rel1

Ext−1

Figure 2.14: Two Reeb graphs with the same set of features but not the same layout.

Connection to the extended and levelset zigzag persistence of f .

We now show that the topological structure of Rf (X) is actually nothing but a simplification of the one
of f , which we phrase in terms of persistence diagrams. This result and its proof can be seen as an
exercise combining all concepts introduced before in a simple way.

Theorem 2.4.4. Let X be a topological space and f : X → R be a function of Morse type. Then, the
levelset zigzag persistence barcodes of f and f̃ in dimension 0 are the same: LBc0(f) = LBc0(f̃), and
the extended persistence diagram of f̃ is included in the one of f : ExDg(f̃) ⊆ ExDg(f). More precisely:

ExDg0(f̃) = ExDg0(f)

ExDg1(f̃) = ExDg1(f) \ (Ext+
1 (f) ∪Ord1(f))

ExDgp(f̃) = ∅ if p ≥ 2

Note that Ext−0 (f̃) = ∅ because every essential 0-dimensional feature corresponds to some connected
component of the domain, and it is born at the minimum function value and killed at the maximum
function value over that connected component, hence it belongs to Ext+

0 . Similarly, Rel0(f̃) = ∅ because
no 0-dimensional homology class (i.e. connected component) can be created in the relative part of
the extended filtration of f . Hence, the structure of a Reeb graph can be read off from the levelset
zigzag persistence module of f̃ . Indeed, since Ext+

1 (f̃), Ord1(f̃),Ext−0 (f̃),Rel0(f̃) and ExDgp(f̃) for
p ≥ 2 are empty, it follows from Corollary 2.3.8 that there is a bijection preserving types between
ExDg0(f̃)∪ExDg1(f̃) and LBc0(f̃). This is because all intervals in the 1-dimensional extended persistence
module of f̃ are either of type Rel or Ext−, and thus their analogues in the levelset zigzag persistence
module of f̃ have homological dimension 0 according to Table 2.1.

We now provide a proof of Theorem 2.4.4 for completeness, as we have not seen this result stated
formally in the literature. First, note that Crit(f) = {a1, · · · , an} = Crit(f̃). Hence, given i ≤ j
and [si, sj] as in Definition 2.3.5, we recall that Xj

i denote X [si,sj] = f−1([si, sj]) and Rf (X)ji denote

Rf (X)[si,sj] = f̃−1([si, sj]).

Lemma 2.4.5. Let π denote the quotient map X → Rf (X). Let i ≤ j. Then the morphism π∗ :

H0(Xj
i)→ H0(Rf (X)ji) is an isomorphism.

The proof of Lemma 2.4.5 is simpler when π admits continuous sections, i.e. when there exist
continuous maps σ : Rf (X) → X such that π ◦ σ = idRf (X). Below we give the proof under this

45

hypothesis, deferring the general case of Morse-type functions to Appendix A. The hypothesis holds for
instance when X is a compact smooth manifold and f is a Morse function, or when X is a simplicial
complex and f is piecewise-linear.

Proof. Since π is surjective, proving the result boils down to showing that x, y are connected in Xj
i if

and only if π(x), π(y) are connected in Rf (X)ji .

• If x, y are connected in Xj
i , then π(x), π(y) are connected in Rf (X)ji by continuity of π and

commutativity of (2.9).

• If π(x), π(y) are connected in Rf (X)ji , then choose a path γ connecting π(x) to π(y). By definition
of σ, we have π ◦ σ ◦ π(x) = π(x), thus σ ◦ π(x) and x lie in the same connected component of
f−1(f(x)). Let γx be a path connecting x to σ ◦ π(x). Similarly, let γy be a path connecting

σ ◦ π(y) to y. Then, γy ◦ σ(γ) ◦ γx is a path between x and y in Xj
i .

Proof of Theorem 2.4.4. We first show that LBc0(f) = LBc0(f̃). Let π denote the quotient map X →
Rf (X). Since π is continuous, it induces a morphism in homology π∗. We will show that π∗ induces an

isomorphism between LZZ(f) and LZZ(f̃) in dimension 0.
Now, let 1 ≤ i ≤ n.

• According to Lemma 2.4.5, π∗ : H0(Xi
i) → H0(Rf (X)ii) is an isomorphism, and the same holds

for π∗ : H0(Xi+1
i) → H0(Rf (X)i+1

i). Hence π∗ induces a pointwise isomorphism in dimension 0

between LZZ(f) and LZZ(f̃). Since Crit(f) = {a1, · · · , an} = Crit(f̃), it follows that both LZZ(f)
and LZZ(f̃) have 2n+ 1 nodes.

• Let ι : Xi
i → Xi+1

i and ιR : Rf (X)ii → Rf (X)i+1
i be canonical inclusions. Then, we have

π ◦ ι = ιR ◦ π by definition of ιR. Hence, the following diagram commutes:

H0(Xi
i)

ι∗ //

π∗

��

H0(Xi+1
i)

π∗

��
H0(Rf (X)ii)

ιR∗

// H0(Rf (X)i+1
i)

and the same is true for the canonical inclusions Xi
i−1 ←↩ Xi

i and Rf (X)ii−1 ←↩ Rf (X)ii.

Hence, the induced pointwise isomorphism is an isomorphism between LZZ0(f) and LZZ0(f̃).
Now, recall that there is a bijection b1 preserving types between ExDg(f̃) and LBc0(f̃). Since there

is also a bijection b2 preserving types between LBc0(f̃) and LBc0(f) and a bijection b3 preserving types
between LBc0(f) and Ord0(f)∪Ext+

0 (f)∪Rel1(f)∪Ext−1 (f) from Corollary 2.3.8, the result follows by
considering the bijection b3 ◦ b2 ◦ b1.

2.4.2 Metrics between Reeb graphs

Finding relevant dissimilarity measures for comparing Reeb graphs has become an important question in
the recent years. The quality of a dissimilarity measure is usually assessed through three criteria: its abil-
ity to satisfy the axioms of a metric, its discriminative power, and its computational efficiency. The most
natural choice to begin with is to use the Gromov-Hausdorff distance dGH [22] for Reeb graphs seen as
metric spaces—see Definition 2.4.3. The main drawback of this distance is to quickly become intractable
to compute in practice, even for graphs that are metric trees [2]. Among recent contributions, the func-
tional distortion distance dFD [8], the interleaving distance dI [61]—which is equivalent to dFD [10]— and
the edit distance dE [7, 66] share the same advantages and drawbacks as dGH, in particular they enjoy
good stability and discriminativity properties but they lack efficient algorithms for their computation,
moreover they can be difficult to interpret. By contrast, the bottleneck distance db compares Reeb graphs
with their extended persistence diagrams—which act as stable bag-of-features signatures—and can be
computed efficiently in practice. Its main drawback though is to be only a pseudometric, so distinct
graphs can have the same signature and therefore be deemed equal in db—see Figure 2.14. We now give
details on these distances.

46

The Gromov-Hausdorff distance dGH. This distance compares Reeb graphs by computing
the length distortion of corresponding curves drawn on the graphs.

Definition 2.4.6. Let X,Y be topological spaces and f : X → R, g : Y → R be continuous functions.
The Gromov-Hausdorff distance between Rf (X) and Rg(Y) is:

dGH(Rf (X),Rg(Y)) = inf
φ,ψ

D(φ, ψ), (2.10)

where:

• φ : Rf (X)→ Rg(Y) and ψ : Rg(Y)→ Rf (X) are (nonnecessarily continuous) maps,

• D(φ, ψ) = 1
2 sup {|df (x, x′)− dg(y, y′)| : (x, y), (x′, y′) ∈ C(φ, ψ)} ,

• C(φ, ψ) = {(x, φ(x)) : x ∈ Rf (X)} ∪ {(ψ(y), y) : y ∈ Rg(Y)}.

The main drawback of dGH is that it does not fully take function values into account. For instance, it
is straightforward to show that dGH(Rf (X),R−f (X)) = 0 and dGH(Rf (X),Rf+c(X)) = 0, where c ∈ R.

Functional distances. To handle this issue, Bauer et al. [9] suggested to add terms corresponding
to the absolute difference in function values:

Definition 2.4.7 ([9]). Let X,Y be topological spaces and f : X → R, g : Y → R be continuous
functions. The functional Gromov-Hausdorff distance between Rf (X) and Rg(Y) is:

dfGH(Rf (X),Rg(Y)) = inf
φ,ψ

max{D(φ, ψ), ‖f − g ◦ φ‖∞, ‖f ◦ ψ − g‖∞}, (2.11)

where φ, ψ and D(φ, ψ) are as in Definition 2.4.6.

In Section 3.2, we will show that the functional Gromov-Hausdorff distance is actually locally equiv-
alent to the bottleneck distance between the extended persistence diagrams of the functions. To ease the
analysis, we will use a third distance which constrains the maps φ and ψ to be continuous.

Definition 2.4.8 ([8]). Let X,Y be topological spaces and f : X → R, g : Y → R be continuous
functions. The functional distortion distance between Rf (X) and Rg(Y) is:

dFD(Rf (X),Rg(Y)) = inf
φ,ψ

max{D(φ, ψ), ‖f − g ◦ φ‖∞, ‖f ◦ ψ − g‖∞}, (2.12)

where φ, ψ and D(φ, ψ) are as in Definition 2.4.6, and where we also require φ and ψ to be continuous.

Requiring the maps to be continuous has very little impact on the distance properties since dfGH

and dFD are strongly equivalent:

Theorem 2.4.9 (Theorem 5.1 in [9]). Let X,Y be topological spaces and f : X → R, g : Y → R be
continuous functions. Then:

dfGH(Rf (X),Rg(Y)) ≤ dFD(Rf (X),Rg(Y)) ≤ 3dfGH(Rf (X),Rg(Y)).

Furthermore, these distances are stable with respect to changes in the function:

Theorem 2.4.10 (Theorem 4.1 in [8]). Let X be a topological space and let f, g : X → R be two
Morse-type functions with continuous sections. Then:

dfGH(Rf (X),Rg(X)) ≤ dFD(Rf (X),Rg(X)) ≤ ‖f − g‖∞.

47

The bottleneck distance db. This distance uses the extended persistence diagrams of the
functions to compare the Reeb graphs.

Definition 2.4.11. Let X,Y be topological spaces and f : X → R, g : Y → R be continuous and tame
functions. The bottleneck distance between Rf (X) and Rg(Y) is:

db(Rf (X),Rg(Y)) = db(ExDg(f̃),ExDg(g̃)), (2.13)

where f̃ : Rf (X)→ R and g̃ : Rg(Y)→ R are the induced maps on the Reeb graphs.

As a direct application of the stability theorem—see Theorem 2.3.1, the bottleneck distance is also
stable with respect to changes in the function.

A first inequality. Bauer et al. [8] related dFD and db as follows:

Theorem 2.4.12 (Theorem 4.3 in [8]). Let X,Y be topological spaces and f : X → R, g : Y → R be
continuous and tame functions. The following inequality holds:

db(Rf (X),Rg(Y)) ≤ 3 dFD(Rf (X),Rg(Y)).

This result can be improved using the end of Section 3.4 of [15] (using the fact that levelset zigzag
persistence barcodes and extended persistence diagrams are essentially the same—see Corollary 2.3.8),
and then Lemma 9 of [10] and Theorem 2.4.9:

Theorem 2.4.13. Let X,Y be topological spaces and f : X → R, g : Y → R be continuous and tame
functions. The following inequality holds:

db(Rf (X),Rg(Y)) ≤ 2 dFD(Rf (X),Rg(Y)) ≤ 6 dfGH(Rf (X),Rg(Y)).

2.4.3 Simplification techniques

Being able to simplify Reeb graphs by removing small topological features is very useful. It very often
helps to prove theoretical results concerning Reeb graphs, and has many applications, for instance in
Reeb graph computation and visualization [74, 115, 134].

In this section, we define one possible way to do such a simplification, that we will use in Section 3.2
of Chapter 3 to prove Theorem 3.0.1. We recall that, due to the bag-of-feature interpretation of ExDg(f̃),
any point p = (a, b) ∈ ExDg(f̃) \ Ext+

0 (f̃) represents either an upward branch, a downward branch or a
loop. Depending on the feature type, we define the merging path πp as follows:

• assume p ∈ Ext−1 (f̃), i.e. p represents a loop with extremities x1, x2 ∈ Rf (X), so that we have

f̃(x1) = a and f̃(x2) = b. Let πp1 and πp2 be two disjoint sub-curves of the loop that connect x1

and x2. Then, we let πp = πp1 ∪ πp2 .

• assume p ∈ Ord0(f̃) ∪ Rel1(f̃), i.e. p represents a branch. Let C1 be this branch. If p ∈ Ord0(f̃)
(resp. Rel1(f̃)), let C2 be an arbitrary connected component of f̃−1((−∞, b)) (resp. f̃−1((b,+∞)))
to which C1 gets connected at level b. We define the triple x1, x2, y as follows:{

x1 = argminx∈C1
f̃(x), y = argmaxx∈C1

f̃(x) and x2 = argminx∈C2
f̃(x) if p ∈ Ord0(f̃) and

x1 = argmaxx∈C1
f̃(x), y = argminx∈C1

f̃(x) and x2 = argmaxx∈C2
f̃(x) if p ∈ Rel1(f̃).

Note that we have f̃(x1) = a and f̃(y) = b in both cases. We now let πp1 be any arbitrary path
from x1 to y and πp2 be any arbitrary path from y to x2. Finally, we let πp = πp1 ∪ πp2 as before.

Definition 2.4.14 ([8, 74, 115]). Let X be a topological space and f : X → R a Morse-type function.
Let p ∈ ExDg(f̃) \ Ext+

0 (f̃). We define the equivalence relation ∼p as follows:

x ∼p x′ ⇔ x, x′ ∈ πp and f̃(x) = f̃(x′).

See Figure 2.15 for an illustration.

48

x1

x2

y x1

x2

y

Ord0 Rel1 Ext−1

Figure 2.15: Dotted arrows show points that are glued together by the simplification operator depending
on the topological feature p, whose merging path πp is highlighted in red.

Definition 2.4.15. Let X be a topological space and f : X → R a Morse-type function. Let α > 0,
Featα = {p ∈ ExDg(f̃) \ Ext+

0 (f̃) : 2d∞(p,∆) ≤ α} the set of points of ExDg(f̃) representing loops
and branches of Rf (X) whose vertical span is less than α and Connα the set of connected components
of Rf (X) whose vertical span is less than α. Finally, let ∼α be the transitive closure of all ∼p, where
p ∈ Featα. The simplification operator Sα is defined as:

Sα(Rf (X)) = (Rf (X) \ Connα)/ ∼α .

An illustration of the action of this operator is shown in the left part of Figure 3.7. Intuitively, the
simplification operator Sα removes all features whose vertical span is less than α (in an arbitrary order)
without perturbing the other features too much. We state this property in the following Lemma:

Lemma 2.4.16 (Theorem 7.3 and following remark in [9]). Given α > 0, the simplification operator Sα
takes any Reeb graph Rh to Rh′ = Sα(Rh) such that ExDg(h′) ∩ offα/2(∆) = ∅ and

db(Rh,Rh′) ≤ 2 dFD(Rh,Rh′) ≤ 4α,

where offα/2(∆) = {x ∈ R2 : d∞(x,∆) ≤ α/2} is the (α/2)-offset of the diagonal ∆ in the `∞-distance.

2.4.4 Computation

One issue with the Reeb graph is the computation of the graph itself. Indeed, when the pair (X, f) is
known only through a finite set of measurements, the graph can only be approximated within a certain
error. Building approximations from finite point samples with scalar values is a problem in its own right.
A natural approach is to build a simplicial complex on top of the point samples, to serve as a proxy for the
underlying continuous space; then, to extend the scalar values at the vertices to a piecewise-linear (PL)
function over the simplicial complex by linear interpolation; finally, to apply some exact computation
algorithm for PL functions. This is the approach advocated by Dey and Wang [64], who rely on the
O(n log n) expected time algorithm of Harvey, Wenger and Wang [81] for the last step. The drawbacks
of this approach are:

• Its relative complexity: the Reeb graph computation from the PL function is based on collapses
of its simplicial domain that may break the complex structure temporarily and therefore require
some repairs.

• Its overall computational cost: here, n is not the number of data points, but the number of vertices,
edges and triangles of the simplicial complex, which, in principle, can be up to cubic in the number
of data points if we use a neighborhood graph. Indeed, the triangles are needed to compute an
approximation of the Reeb graph, in the same way as they are to compute 1-dimensional homology.

49

Mf(T#T, I)

Figure 2.16: Example of the Mapper computed on the double torus T#T with the height function f .
The cover I of im(f) ⊆ R has four intervals (red, green, blue and purple), and the cover of the double
torus has five connected components (one is blue, one is red, one is purple and the other two are green).
The Mapper is displayed on the right.

2.5 Mapper

To cope with the computational issue of the Reeb graph, the Mapper was introduced by Singh, Mémoli
and Carlsson [129] as a discrete version of the Reeb graph. The main difference is that it requires to
compute the connected components of preimages of intervals instead of singletons. In the case of point
clouds, finding such connected components amounts to apply clustering methods on the preimages. For
this reason, and due to its success in many different applications [3, 5, 97, 108], the Mapper has become
an emblematic tool of Topological Data Analysis.

It is defined in a formal way as the nerve of a specific cover of a topological space.

Covers and Nerves

Nerve of a cover. Let Z be a topological space. A cover of Z is a family U of subsets of Z,
U = {Uα}α∈A, such that Z =

⋃
α∈A Uα. It is open if all its elements are open subspaces of Z. It is

connected if all its elements are connected subspaces of Z. Its nerve is the abstract simplicial complex
N (U) that has one k-simplex per (k + 1)-fold intersection of elements of U :

{α0, ..., αk} ∈ N (U)⇐⇒
⋂

i=0,...,k

Uαi 6= ∅.

Generic and minimal cover. When a subfamily V of U is itself a cover of Z, it is called a
subcover of U . It is proper if it is not equal to U . Finally, U is called minimal if it admits no proper
subcover or, equivalently, if it has no element included in the union of the other elements. Given a
minimal cover U = {Uα}α∈A, for every α ∈ A we let

Ũα = Uα \
⋃
α′ 6=α

Uα′ ∩ Uα,

be the proper subset of Uα, that is the maximal subset of Uα that has an empty intersection with the
other elements of U . U is called generic if no connected component of the proper subsets of its elements
is a singleton.

Mapper

Let X,Z be topological spaces and let f : X → Z be a continuous function. Consider a cover U of
im(f), and pull it back to X via f−1. Then, decompose every Vα = f−1(Uα) ⊆ X into its connected
components: Vα =

⊔
i∈{1...c(α)} V

i
α, where c(α) is the number of connected components of Vα. Then,

V = {V iα}α∈A,i∈{1,··· ,c(α)} is a connected cover of X. It is called the connected pullback cover, and its
nerve N (V) is the Mapper.

50

Definition 2.5.1. Let X,Z be topological spaces, f : X → Z be a continuous function, U be a cover of
im(f) and V be the associated connected pullback cover.

Then, the Mapper of X is Mf (X,U) = N (V).

See Figure 2.16 for an illustration. Note that the Mapper is a simplicial complex and, as a combina-
torial object, does not contain metric information. In particular, its edges have no associated lengths. We
recall that when the space X is a point cloud, the connected pullback cover is computed with clustering.
We study this discrete case in more depth in Chapter 5, where we use single-linkage clustering.

Computation

The construction of Mappers from point cloud data is very easy to describe and to implement, using
standard clustering methods to detect connected components. For instance, if single-linkage clustering
is used, it only requires to build the edges of a single neighborhood graph, whose size scales up at worst
quadratically (and not cubically) with the size of the input point cloud.

51

52

CHAPTER 3

TELESCOPES AND REEB GRAPHS

In this chapter, we study connections between the metrics between Reeb graphs presented in Section 2.4.2.
We recall that these metrics either enjoy good properties—like stability or discriminativity—but are
intractable to compute, such as the functional distortion distance dFD, or they are computable but
lack discriminative power globally, such as the bottleneck distance db between the extended persistence
diagrams of the Reeb graphs. The main result of this chapter is Theorem 3.0.1, which states that db is
actually locally equivalent to dFD, in some specific sense of locality.

Indeed, since the bottleneck distance is only a pseudometric—see Figure 2.14, the inequality given by
Theorem 2.4.13 in Chapter 2 cannot be turned into a global equivalence result. However, for any pair of
Reeb graphs Rf (X) and Rg(Y) that have the same extended persistence diagrams ExDg(f̃) = ExDg(g̃),
and that are at positive functional distortion distance from each other dFD(Rf (X),Rg(Y)) > 0, every

continuous path in dFD from Rf (X) to Rg(Y) will perturb the points of ExDg(f̃) and eventually drive
them back to their initial position, suggesting first that db may be locally equivalent to dFD—which is
the main result of this chapter, but also that, even though db(Rf (X),Rg(Y)) = 0, the intrinsic metric

d̂b(Rf (X),Rg(Y)) induced by db may be positive—which we state in Theorem 3.3.2.

Local equivalence. Let X,Y be topological spaces and f : X → R, g : Y → R be Morse-type
functions. Let Crit(f) = {a1, · · · , an} and Crit(g) = {b1, · · · , bm}, n,m ∈ N∗, be the critical values of f
and g respectively. Finally, let af = min{ai+1 − ai : 1 ≤ i ≤ n− 1} > 0 and ag = min{bj+1 − bj : 1 ≤
j ≤ m− 1} > 0 be the minimal distances between consecutive critical values of f or g. In this chapter,
we will show the following local equivalence theorem:

Theorem 3.0.1. Let K ∈ (0, 1/22]. If dFD(Rf (X),Rg(Y)) ≤ max{af , ag}/(8(1 + 22K)), then:

KdfGH(Rf (X),Rg(Y)) ≤ KdFD(Rf (X),Rg(Y))

≤ db(Rf (X),Rg(Y)) (3.1)

≤ 2 dFD(Rf (X),Rg(Y)) ≤ 6 dfGH(Rf (X),Rg(Y)).

Note that the notion of locality used here is slightly different from the usual one. On the one hand,
the equivalence does not hold for any arbitrary pair of Reeb graphs inside a neighborhood of some fixed
Reeb graph, but rather for any pair involving the fixed graph. On the other hand, the constants in the
equivalence are independent of the pair of Reeb graphs considered.

To prove this result, we use the so-called telescope structure of the Reeb graphs. The Reeb graph
is known to be a graph (technically, a multi-graph) when X is a smooth manifold and f is a Morse
function, or more generally when f is of Morse type, as in Definition 2.3.3. In that case, the Reeb graph
can be decomposed into edges glued together at critical levels. This can be generalized into the so-called
telescopes, which are adjunction topological spaces that can be decomposed into cylinders glued together
at specific levels termed ”critical”. This telescope decomposition allows to define several operators acting
on the critical levels that we use to prove the local equivalence.

53

Plan of the Chapter. We give the formal definition of telescopes in Section 3.1. We also use this
decomposition to define several telescope operators, which will also be used later in this thesis, such as
in Chapters 4 and 5. Next, using the telescope structure of Reeb graphs, we show Theorem 3.0.1 in
Section 3.2. Finally, we end the chapter with Section 3.3, in which we study the intrinsic metrics that
are induced by the metrics of Section 2.4, and show that they are all equivalent.

Convention. In this thesis, we work with singular homology with coefficients in Z2, which we omit
in our notations for simplicity, and we use the term ”connected” as a shorthand for ”path-connected”.

3.1 Telescopes and Operators

Recall that, given topological spaces X and A ⊆ Y together with a continuous map f : A → X, the
adjunction space X ∪f Y (also denoted Y ∪f X) is the quotient of the disjoint union X q Y by the
equivalence relation induced by the identifications {f(a) ∼ a}a∈A.

Definition 3.1.1 (Telescope [28]). A telescope is an adjunction space of the following form:

T = (Y0 × (a0, a1]) ∪ψ0 (X1 × {a1}) ∪φ1 (Y1 × [a1, a2]) ∪ψ1 ... ∪φn (Yn × [an, an+1)) ,

where −∞ = a0 < a1 < · · · < an < an+1 = +∞, and where the φi : Yi × {ai} → Xi × {ai} and
ψi : Yi × {ai+1} → Xi+1 × {ai+1} are continuous maps. The ai are called the critical values of T and
their set is denoted by Crit(T), the φi and ψi are called attaching maps, the Yi are compact and locally
connected spaces called the cylinders and the Xi are topological spaces called the critical slices. Moreover,
all Yi and Xi have finitely-generated homology.

Extended persistence diagram. A telescope comes equipped with functions π1 and π2, which
are the projections onto the first factor and second factor respectively. From now on, given any interval
I, we let T I denote π1 ◦ π−1

2 (I). Then, the extended persistence diagram ExDg(π2) can be described
using the following Lemma.

Lemma 3.1.2. Since φi and ψi are continuous,

∀α ∈ [ai, ai+1), T (−∞,α] deform retracts onto T (−∞,ai]

∀α ∈ (ai−1, ai], T
[α,+∞) deform retracts onto T [ai,+∞),

where a topological space X is said to deform retract onto Y ⊆ X if there exists a continuous function
F : X × [0, 1]→ X such that F (·, 0) = idX , F |Y×{α}(·, α) = idY for any α ∈ [0, 1], and F (X, 1) ⊆ Y . In
particular, this means that the inclusion Y ↪→ X is a homotopy equivalence.

Corollary 3.1.3. The following inclusion holds: ExDg(π2) ⊆ Crit(T)× Crit(T).

Construction from a Morse-type function. One can build telescopes from the domain
of Morse-type functions—see Definition 2.3.3. Indeed, a function f : X → R of Morse type naturally
induces a telescope T (X, f) with

• Crit(T (X, f)) = Crit(f),

• Xi = f−1(ai),

• Yi = π1 ◦ µ−1
i ◦ f−1((ai, ai+1)),

• φi : (y, ai) 7→ (µ̄i|Yi×{ai}(y, ai), ai), ∀y ∈ Yi, ∀i ∈ {1, ..., n},
• ψi : (y, ai+1) 7→ (µ̄i|Yi×{ai+1}(y, ai+1), ai+1), ∀y ∈ Yi, ∀i ∈ {0, ..., n− 1},
T (X, f) is well-defined thanks to the following Lemma:

Lemma 3.1.4. im(φi) ⊆ f−1(ai)× {ai} and im(ψi) ⊆ f−1(ai+1)× {ai+1}.

54

Proof. Let (y, ai+1) ∈ Yi × {ai+1}. Consider the sequence (y, vn)n∈N, for an arbitrary (vn)n∈N ∈
(ai, ai+1)N that converges to ai+1. Then, (f◦µ̄i(y, vn))n∈N converges to f◦µ̄i(y, ai+1) by continuity of f◦µ̄.
Moreover, for all n ∈ N we have f ◦ µ̄i(y, vn) = f ◦ µi(y, vn) = vn since f |f−1(ai,ai+1) = π2 ◦ µ−1

i . There-
fore, (f ◦ µ̄i(y, vn))n∈N converges also to ai+1. By uniqueness of the limit, we have f ◦ µ̄i(y, ai+1) = ai+1,
meaning that µ̄i(y, ai+1) ∈ f−1(ai+1). Thus, im(ψi) ⊆ f−1(ai+1)× {ai+1}. The same argument applies
to show that im(φi) ⊆ f−1(ai)× {ai}.

Correspondence between X and T (X, f). We now exhibit a homeomorphism between
T (X, f) and X. Let µ : T (X, f)→ X be defined by:

µ(y, z) =

{
y if (y, z) ∈ Xi × {ai} for some i;
µi(y, z) if (y, z) ∈ Yi × (ai, ai+1) for some i.

The map µ is bijective as every µi is. It is also continuous as every µ̄i is. Since every continuous bijection
from a compact space to a Hausdorff space is a homeomorphism (see e.g. Proposition 13.26 in [131]), µ
defines a homeomorphism between T (X, f) and X. Moreover, π2 = f ◦ µ so ExDg(f) = ExDg(π2).

Operators on telescopes

The decomposition of telescopes into cylinders can be used to define simple operators that modify the
telescope structures in a predictable way. Specifically, we detail three types of operators, corresponding
to the cases where one asks for either removal of critical values (Merge operator), duplication of critical
values (Split operator), or translation of critical values (Shift operator). To formalize this, we use
generalized attaching maps:

φai : Yi × {a} → Xi × {a}; (y, a) 7→ (π1 ◦ φi(y, ai), a),
ψai : Yi × {a} → Xi+1 × {a}; (y, a) 7→ (π1 ◦ ψi(y, ai+1), a).

Merge

Merge operators merge all critival values of a telescope located in [a, b] into a single critical value ā = a+b
2 .

Definition 3.1.5 (Merge). Let T be a telescope. Let a ≤ b. If [a, b] contains at least one critical value,
i.e. ∃i, j ∈ N such that ai−1 < a ≤ ai ≤ aj ≤ b < aj+1, then the Merge on T between a, b is the telescope
T ′ = Mergea,b(T) given by:

...(Yi−1 × [ai−1, ai]) ∪ψi−1
(Xi × {ai}) ∪φi ... ∪ψj−1

(Xj × {aj}) ∪φj (Yj × [aj , aj+1])...7→

...(Yi−1 × [ai−1, ā]) ∪fi−1
(T [a,b] × {ā}) ∪gj (Yj × [ā, aj+1])...

where ā = a+b
2 , where fi−1 = ψāi−1 if a = ai and fi−1 = idYi−1×{ā} otherwise, and where gj = φāj if

b = aj and gj = idYj×{ā} otherwise.

If [a, b] contains no critical value, i.e. ai−1 < a ≤ b < ai, then Mergea,b(T) is given by:

...(Xi−1 × {ai−1}) ∪φi−1
(Yi−1 × [ai−1, ai]) ∪ψi−1

(Xi × {ai})...7→

... ∪φi−1 (Yi−1 × [ai−1, ā]) ∪fi−1 (T [a,b] × {ā}) ∪gi−1 (Yi−1 × [ā, ai]) ∪ψi−1 ...

where ā = a+b
2 , and where fi−1 = gi−1 = idYi−1×{ā}.

See the left panel of Figure 3.1 for an illustration.

55

b

a

a

a

b

b

ā

ā

Figure 3.1: Left: Effect of a Merge on a telescope. Right: Effect on the corresponding extended
persistence diagram. Points before the Merge are disks while points after the Merge are squares.

Merge for persistence diagrams. Similarly, we define the Merge between a, b on an extended
persistence diagram ExDg as the diagram Mergea,b(ExDg) given by Mergea,b(x, y) = (x̄, ȳ), where:

x̄ =

{
x if x /∈ [a, b]
ā otherwise

and ȳ =

{
y if y /∈ [a, b]
ā otherwise

Points in the strips x ∈ [a, b], y ∈ [a, b] are snapped to the lines x = ā and y = ā respectively. See the
right panel of Figure 3.1. See also the first intermediate points along the trajectories of the red points
in Figure 4.9 for another illustration on extended persistence diagrams.

Commutativity of the operators. We now prove that extended persistent homology com-
mutes with this operator, i.e. ExDg(Merge) = Merge(ExDg).

Lemma 3.1.6. Let a ≤ b and T ′ = Mergea,b(T). Let π′2 : T ′ → R be the projection onto the second
factor. Then, ExDg(π′2) = Mergea,b(ExDg(π2)).

Proof. We only study the sublevel sets of the functions, which means that we only prove the result for
the ordinary part of the diagrams. The proof is symmetric for superlevel sets, leading to the result for
the extended and the relative parts.

Assume ai−1 < a ≤ ai ≤ aj ≤ b < aj+1. Given x ≤ y, we let Πx,y : H∗
(
T (−∞,x]

)
→ H∗

(
T (−∞,y]

)
and Π′x,y : H∗

(
(T ′)(−∞,x]

)
→ H∗

(
(T ′)(−∞,y]

)
be the homomorphisms induced by inclusions. Since f is

of Morse type, Lemma 3.1.2 relates Π′ to Π as follows (see Figure 3.2):

Π′x,y =

Πx,y if x, y /∈ [a, b] (green) Πx,ai−1 if x < a, y ∈ [a, ā) (pink)
Πai−1,y if x ∈ [a, ā), y > b (blue) Πai−1,aj if x ∈ [a, ā), y ∈ [ā, b] (orange)
Πaj ,y if x ∈ [ā, b], y > b (grey) id∗Yi−1

if x, y ∈ [a, ā) (brown)

Πx,aj if x < a, y ∈ [ā, b] (turquoise) id∗Yj if x, y ∈ [ā, b] (purple)

(3.2)

The equality between the diagrams follows from these relations and the inclusion-exclusion for-
mula (2.6). Consider for instance the case where the point (x, y) ∈ ExDg(π2) belongs to the union A
of the pink and the turquoise areas. One can select two abscissae x1 < x < x2 and an arbitrarily small
ε > 0. Then, the total multiplicity of the corresponding rectangle R in ExDg(π′2) (displayed in the right
panel of Figure 3.2) is given by:

mult(R) = rank Π′x2,a−ε − rank Π′x2,b+ε + rank Π′x1,b+ε − rank Π′x1,a−ε.

The first relation in (3.2) shows that R has exactly the same multiplicity in ExDg(π2), since all its
corners belong to the green area. As this is true for arbitrarily small ε > 0, it means that R′ = R ∩ A
also has the same multiplicity in ExDg(π2) as in ExDg(π′2). Now, if we pick a point inside R′ with an
ordinate different than ā, we can compute its multiplicity in ExDg(π′2) by surrounding it with a box
included in the turquoise area (if the ordinate is bigger than ā) or in the pink area (if it is smaller).

56

a ā b

a

ā

b

a

b

ā

−Π′x2,b+εΠ′x1,b+ε

Π′x2,a−ε−Π′x1,a−ε
Figure 3.2: Left: Areas of the extended persistence diagram used in the proof. Right: Examples of the
boxes we use to prove the result (circles represent points before the Merge, squares represent points after
the Merge).

Boxes in the turquoise area have multiplicity rank Π′x2,y1
− rank Π′x2,y2

+ rank Π′x1,y2
− rank Π′x1,y1

=
rank Πx2,aj − rank Πx2,aj + rank Πx1,aj − rank Πx1,aj = 0. Similarly, boxes in the pink area also have
multiplicity zero. Thus, all points of R′ in ExDg(π′2) have ordinate ā. Again, as it is true for x1, x2 as
close to each other as we want, it means that (x, y) is snapped to (x, ā) in ExDg(π′2). The treatment of
the other areas in the plane is similar.

Now, if [a, b] contains no critical values, then Π′ = Π, so the result is clear.

Split

Split operators split a critical value ai into two different ones ai − ε and ai + ε.

Definition 3.1.7 (Split). Let T be a telescope. Let ai ∈ Crit(T) and ε such that

0 ≤ ε < min{ai+1 − ai, ai − ai−1}.

The ε-Split on T at ai is the telescope T ′ = Splitε,ai(T) given by:

...(Yi−1 × [ai−1, ai]) ∪ψi−1
(Xi × {ai}) ∪φi (Yi × [ai, ai+1])...7→

...(Yi−1 × [ai−1, ai − ε]) ∪ψai−εi−1
(Xi × {ai − ε}) ∪id (Xi × [ai − ε, ai + ε]) ∪id (Xi × {ai + ε}) ∪

φ
ai+ε

i
(Yi × [ai + ε, ai+1])...

See the left panel of Figure 3.3 for an illustration.

Down- and up-forks. Splits create particular critical values called down- and up-forks. Intuitively,
Split operations allow to distinguish between all possible types of changes in 0- and 1-dimensional ho-
mology of the sublevel and superlevel sets, namely: union of two connected components, creation of a
connected component, destruction of a connected component, and separation of a connected component.
Unions and creations occur at down-forks while separations and destructions occur at up-forks. See
Figure 3.4 for an illustration. We formalize and prove this intuition in Lemma 3.1.11.

Definition 3.1.8. A critical value ai ∈ Crit(T) is called an up-fork if ψi−1 is an homeomorphism, and
it is called a down-fork if φi is a homeomorphism.

Since the attaching maps introduced by the Split are identity maps, we have the following lemma:

57

ai

ai

ai − ε

ai − ε

ai + ε

ai + ε

Figure 3.3: Left: Effect of a Split on a telescope. Right: Effect on the corresponding extended persistence
diagram. Points before the Split are disks while points after the Split are squares.

Xi × {ai}

Yi−1 × [ai−1, ai]

Yi × [ai, ai+1]

Union
Creation

Destruction
Separation

Xi × {ai + ε}

Xi × {ai − ε}
Xi×[ai−ε, ai+ε]

Yi−1 × [ai−1, ai − ε]

Yi× [ai+ ε, ai+1]

Figure 3.4: Left and right panels display the space before and after a Split respectively. Subsets of Xi

that are colored in red and blue correspond to im(π1 ◦ ψi−1) and im(π1 ◦ φi) respectively.

Lemma 3.1.9. The critical values ai−ε and ai+ε created with Split are down- and up-forks respectively.

The next lemma is a direct consequence of the existence and continuity of φ−1
i (resp. ψ−1

i−1) when
ai ∈ Crit(T) is a down-fork (resp. up-fork):

Lemma 3.1.10. Let ai ∈ Crit(T). If ai is an up-fork, then T (−∞,ai] deform retracts onto T (−∞,α] for
all α ∈ (ai−1, ai]. If ai is a down-fork, then T [ai,+∞) deform retracts onto T [α,+∞) for all α ∈ [ai, ai+1).

Now we can prove the previous intuition concerning down- and up-forks correct:

Lemma 3.1.11. Let ai ∈ Crit(T). If ai is an up-fork, then it can only be the birth time of relative cycles
and the death time of relative and extended cycles in ExDg(π2). If ai is a down-fork, then it can only be
the birth time of ordinary and extended cycles and the death time of ordinary cycles in ExDg(π2).

Proof. Let 0 ≤ ε, ε′ < min{ai+1 − ai, ai − ai−1}. Consider the extended persistence module of π2:

... −→ H∗
(
T (−∞,ai−ε]) −→ H∗

(
T (−∞,ai]) −→ H∗

(
T (−∞,ai+ε′]

)
−→ ...

... −→ H∗
(
T, T [ai+ε

′,+∞)
)
−→ H∗

(
T, T [ai,+∞)

)
−→ H∗

(
T, T [ai−ε,+∞)

)
−→ ...

If ai is an up-fork, then the composition H∗(T (−∞,ai−ε]) → H∗(T (−∞,ai+ε′]) is an isomorphism since
T (−∞,ai+ε′] deform retracts onto T (−∞,ai−ε] by Lemmas 3.1.2 and 3.1.10. As ε, ε′ can be chosen arbitrarily
small, there cannot be any creation of ordinary or extended cycle at ai. There also cannot be any
destruction of ordinary cycle.

Similarly, if ai is a down-fork, then the composition H∗(T, T [ai+ε
′,+∞)) → H∗(T, T [ai−ε,+∞)) is an

isomorphism since T [ai−ε,+∞) deform retracts onto T [ai+ε
′,+∞). Again, there cannot be any destruction

of extended or relative cycle at ai. There also cannot be any creation of relative cycle.

58

Split for persistence diagrams. Similarly, we define the ε-Split at ai on a diagram ExDg as
the diagram Splitε,ai(ExDg) given by Splitε,ai(x, y) = (x̄, ȳ), where:

x̄ =

 x if x 6= ai
ai + ε if x = ai and (x, y) ∈ Rel
ai − ε if x = ai and (x, y) /∈ Rel

and ȳ =

 y if y 6= ai
ai − ε if y = ai and (x, y) ∈ Ord
ai + ε if y = ai and (x, y) /∈ Ord

Points located on the lines x, y = ai are snapped to the lines x, y = ai ± ε according to their type.
Note that the definition of Splitε,ai(ExDg) assumes implicitly that ExDg contains no point within the
horizontal and vertical bands [ai− ε, ai)×R, (ai, ai + ε]×R, R× [ai− ε, ai) and R× (ai, ai + ε], which is
the case under the assumptions of Definition 3.1.7. See the right panel of Figure 3.3 for an illustration.
See also the second intermediate points along the trajectories of the red points in Figure 4.9 for another
illustration on extended persistence diagrams.

Commutativity of the operators. We now prove that extended persistent homology com-
mutes with this operator, i.e. ExDg(Split) = Split(ExDg).

Lemma 3.1.12. Let ai ∈ Crit(T). Let 0 < ε < min{ai+1 − ai, ai − ai−1}, T ′ = Splitε,ai(T) and
π′2 : T ′ → R the projection onto the second factor. Then, ExDg(π′2) = Splitε,ai(ExDg(π2)).

Proof. Note that T = Mergeai−ε,ai+ε(T
′). Hence, by Lemma 3.1.6, ExDg(π2) can be obtained from

ExDg(π′2) with ExDg(π2) = Mergeai−ε,ai+ε(ExDg(π′2)). Note also that π′2 has no critical value within
the open interval (ai − ε, ai + ε), so ExDg(π′2) has no point within the horizontal and vertical bands
R× (ai − ε, ai + ε) and (ai − ε, ai + ε)×R. Finally, Lemma 3.1.9 ensures that ai + ε, ai − ε are up- and
down-forks respectively, so Lemma 3.1.11 tells us exactly where the preimages of the points of ExDg(π2)
through the Merge are located depending on their type.

Shift

Shift operators translate critical values.

Definition 3.1.13 (Shift). Let T be a telescope. Let ai ∈ Crit(T) and ε such that

0 ≤ |ε| < min{ai+1 − ai, ai − ai−1}.

The ε-Shift on T at ai is the telescope T ′ = Shiftε,ai(T) given by:

...(Yi−1 × [ai−1, ai]) ∪ψi−1 (Xi × {ai}) ∪φi (Yi × [ai, ai+1])...7→

...(Yi−1 × [ai−1, ai + ε]) ∪
ψ
ai+ε

i−1
(Xi × {ai + ε}) ∪

φ
ai+ε

i
(Yi × [ai + ε, ai+1])...

See the left panel of Figure 3.5 for an illustration.

Shift for persistence diagrams. Similarly, we define the ε-Shift at ai on a diagram ExDg as
the diagram Shiftε,ai(ExDg) given by Shiftε,ai(x, y) = (x̄, ȳ) where:

x̄ =

{
x if x 6= ai
ai + ε otherwise

and ȳ =

{
y if y 6= ai
ai + ε otherwise

Points located on the lines x, y = ai are snapped to the lines x, y = ai + ε. Note that the definition of
Shiftε,ai(ExDg) assumes implicitly that ExDg contains no point within the horizontal and vertical bands
delimited by ai and ai + ε, which is the case under the assumptions of Definition 3.1.13. See the right
panel of Figure 3.5 for an illustration. See also the third intermediate points along the trajectories of
the red points in Figure 4.9 for another illustration on extended persistence diagrams.

59

ai

aj

ai + ε1

aj + ε2

Figure 3.5: Left: Effect of a double Shift with amplitudes ε1 < 0 < ε2. Right: Effect on the corresponding
extended persistence diagram. Points before the Shift are disks while points after the Shift are squares.

Commutativity of the operators. We now prove that extended persistent homology com-
mutes with this operator, i.e. ExDg(Shift) = Shift(ExDg).

Lemma 3.1.14. Let ai ∈ Crit(T), ε ∈ (ai−1 − ai, ai+1 − ai), T ′ = Shiftε,ai(T) and π′2 : T ′ → R the
projection onto the second factor. Then, ExDg(π′2) = Shiftε,ai(ExDg(π2)).

Proof. Again, the following relations coming from Lemma 3.1.2:

Π′x,y =

Πx,y if x, y /∈ (ai−1, ai+1) (green) Πai,y if x ∈ [ai + ε, ai+1), y ≥ ai+1 (grey)
Πx,ai−1 if x ≤ ai−1, y ∈ (ai−1, ai + ε) (pink) Πai−1,y if x ∈ (ai−1, ai + ε), y ≥ ai+1 (blue)
Πx,ai if x ≤ ai−1, y ∈ [ai + ε, ai+1) (turquoise) id∗Yi−1

if x, y ∈ (ai−1, ai + ε) (brown)

Πai−1,ai if x ∈ (ai−1, ai + ε), y ∈ [ai + ε, ai+1) (orange) id∗Yi if x, y ∈ [ai + ε, ai+1) (purple)

allow us to prove the result similarly to Lemma 3.1.6—see Figure 3.6. For instance, one can choose a box
that intersects the lines y = ai + ε and y = ai, show that the total multiplicity is preserved, then choose
another small box that does not intersect y = ai + ε inside the first box, and show that its multiplicity
is zero.

ai−1 ai + ε ai+1

ai−1

ai + ε

ai+1

ai

Figure 3.6: Areas of the extended persistence diagram used in the proof, with ε < 0.

3.2 A lower bound on db

In this section, we build on the Merge operator defined in the previous section and on the simplification
operator defined in Section 2.4.3 to prove Theorem 3.0.1. Note that the upper bound in this theorem is

60

given by Theorem 2.4.13 and always holds. The aim of this section is to prove the lower bound.

Notation. Henceforth, we write Rf and Rg instead of Rf (X) and Rg(Y) to avoid heavy notations.
We also assume without loss of generality that max{af , ag} = af and we let ε = dFD(Rf ,Rg).

Proof of Theorem 3.0.1 Let K ∈ (0, 1/22]. The proof proceeds by contradiction. Assuming that
db(Rf ,Rg) < Kε, where ε = dFD(Rf ,Rg) < af/(8(1 + 22K)), it progressively transforms Rg into some
other Reeb graph Rg′ (Definition 3.2.1) that satisfies both dFD(Rg,Rg′) < 22Kε ≤ ε (Proposition 3.2.3)
and dFD(Rf ,Rg′) = 0 (Proposition 3.2.4). The contradiction follows then from the triangle inequality.

Graph Transformation

The graph transformation is defined as the composition of the Merge operator from Section 3.1 and the
simplification operator from Section 2.4.3.

Definition 3.2.1. Let Rf be a fixed Reeb graph with critical values {a1, · · · , an}. Given α > 0, the full
transformation Fα is defined as

Fα = Merge9α ◦ S2α,

where Merge9α = Mergean−9α, an+9α ◦ · · · ◦Mergea1−9α, a1+9α.

See Figure 3.7 for an illustration of this smoothing transformation.

ai

ai+1

ai+1 − 9α

ai+1 + 9α

ai − 9α

ai + 9α

S2α
Merge9α

ai−1

ai−1 − 9α

ai−1 + 9α

Figure 3.7: Illustration of Fα applied on an arbitrary Reeb graph.

Properties of the transformed graph

Let Rf ,Rg such that db(Rf ,Rg) < Kε where ε = dFD(Rf ,Rg) < af/(8(1 + 22K)). Letting Rg′ =
FKε(Rg), we want to show both that dFD(Rg,Rg′) < 22Kε ≤ ε (Proposition 3.2.3) and dFD(Rf ,Rg′) = 0
(Proposition 3.2.4), which will lead to a contradiction as mentioned previously. Let B∞(x, r) denote the
open ball of center x and radius r > 0 in the `∞-distance.

Lemma 3.2.2. Let Rh = S2Kε(Rg). Under the above assumptions, one has

ExDg(h) ⊂
⋃

τ∈ExDg(f)
B∞(τ, 9Kε). (3.3)

Proof. Let offKε(∆) = {x ∈ R2 : d∞(x,∆) ≤ Kε} be the (Kε)-offset of the diagonal ∆ in the `∞-
distance. Since db(Rf ,Rg) < Kε, we have ExDg(g) ⊂ ⋃τ∈ExDg(f)B∞(τ,Kε) ∪ offKε(∆). Since Rh =

S2Kε(Rg), it follows from Lemma 2.4.16 that db(ExDg(h),ExDg(g)) ≤ 8Kε. Moreover, since every
persistence pair in ExDg(g) ∩ offKε(∆) is removed by S2Kε, it results that:

ExDg(h) ⊂
⋃

τ∈ExDg(g)\offKε(∆)
B∞(τ, 8Kε) ⊂

⋃
τ∈ExDg(f)

B∞(τ, 9Kε).

61

Now we can bound dFD(Rg,Rg′). Recall that, given an arbitrary Reeb graph Rh, with critical values
Crit(h) = {c1, ..., cp}, if C is a connected component of h−1(I), where I is an open interval such that
I ⊆ (ci, ci+1) for some i, then C must be a topological arc, i.e. homeomorphic to an open interval.

Proposition 3.2.3. Under the same assumptions as above, one has dFD(Rg,Rg′) < 22Kε.

Proof. Let Rh = S2Kε(Rg). The triangle inequality asserts that

dFD(Rg′ ,Rg) ≤ dFD(Rg′ ,Rh) + dFD(Rh,Rg).

It suffices therefore to bound both dFD(Rg′ ,Rh) and dFD(Rh,Rg). By Lemma 2.4.16, we have dFD(Rh,Rg) <
4Kε. Now, recall from (3.3) that the points of the extended persistence diagram of Rh are included in⋃
τ∈ExDg(f)B∞(τ, 9Kε). Moreover, since Rg′ = Merge9Kε(Rh), Rg′ and Rh are composed of the same

number of arcs in each [ai+9Kε, ai+1−9Kε]. Hence, we can define explicit continuous maps φ : Rh → Rg′

and ψ : Rg′ → Rh as depicted in Figure 3.8. More precisely, since Rh and Rg′ are composed of the same
number of arcs in each [ai + 9Kε, ai+1 − 9Kε], we only need to specify φ and ψ inside each interval
(ai − 9Kε, ai + 9Kε). Since the critical values of Rh are within distance less that 9Kε of the critical
values of f , there exist two levels ai − 9Kε < αi ≤ βi < ai + 9Kε such that Rh is only composed
of arcs in (ai − 9Kε,αi] and [βi, ai + 9Kε) for each i (dashed lines in Figure 3.8). For any connected
component C of h−1((ai − 9Kε, ai + 9Kε)), the map φ sends all points of C ∩ h−1([αi, βi]) to the corre-
sponding critical point yC created by the Merge in Rg′ , and it maps the arcs of C ∩ h−1((ai − 9Kε,αi])
and C ∩ h−1([βi, ai + 9Kε)) to the corresponding arcs in Rg′ . In return, the map ψ sends the critical
point yC to an arbitrary point of C. Then, since the Merge operation preserves connected components,
for each arc A′ of (g′)−1((ai− 9Kε, ai + 9Kε)) connected to yC , there is at least one corresponding path
A in Rh whose endpoint in h−1(ai − 9Kε) or h−1(ai + 9Kε) matches with the one of A′ (see the colors
in the second row of Figure 3.8). Hence ψ sends A′ to A.
Let us bound the three terms in the max{· · · } in (2.12) with this choice of maps φ, ψ:

• We first bound ‖h − g′ ◦ φ‖∞. Let x ∈ Rh. Either h(x) ∈ ⋃i∈{1,...,n−1}[ai + 9Kε, ai+1 − 9Kε],

and in this case we have h(x) = g′(φ(x)) by definition of φ; or, there is i0 ∈ {1, ..., n} such
that h(x) ∈ (ai0 − 9Kε, ai0 + 9Kε) and then g′(φ(x)) ∈ (ai0 − 9Kε, ai0 + 9Kε). In both cases
|h(x)− g′ ◦ φ(x)| < 18Kε. Hence, ‖h− g′ ◦ φ‖∞ < 18Kε.

• Since the previous proof is symmetric in h and g′, one also has ‖g′ − h ◦ ψ‖∞ < 18Kε.

• We now bound D(φ, ψ). Let (x, φ(x)), (ψ(y), y) ∈ C(φ, ψ) (the cases (x, φ(x)), (x′, φ(x′)) and
(ψ(y), y), (ψ(y′), y′) are similar). Let πg′ : [0, 1]→ Rg′ be a continuous path from φ(x) to y which
achieves dg′(φ(x), y).

– Assume h(x) ∈ ⋃i∈{1,...,n−1}[ai + 9Kε, ai+1 − 9Kε]. Then one has ψ ◦ φ(x) = x. Hence,

πh = ψ ◦πg′ is a valid path from x to ψ(y). Moreover, since ‖g′−h◦ψ‖∞ < 18Kε, it follows
that

max im(h ◦ πh) < max im(g′ ◦ πg′) + 18Kε,

min im(h ◦ πh) > min im(g′ ◦ πg′)− 18Kε.
(3.4)

Hence, one has

dh(x, ψ(y)) ≤ max im(h ◦ πh)−min im(h ◦ πh) < dg′(φ(x), y) + 36Kε,
−dh(x, ψ(y)) ≥ min im(h ◦ πh)−max im(h ◦ πh) > −dg′(φ(x), y)− 36Kε.

This shows that |dh(x, ψ(y))− dg′(φ(x), y)| < 36Kε.

– Assume that there is i0 ∈ {1, ..., n} such that h(x) ∈ (ai0 − 9Kε, ai0 + 9Kε). Then, by
definition of φ, ψ, we have g′(φ(x)) ∈ (ai0 − 9Kε, ai0 + 9Kε), and there is a path π′h :
[0, 1] → Rh from x to ψ ◦ φ(x) within the interval (ai0 − 9Kε, ai0 + 9Kε), which itself is
included in the interior of the offset off18Kε(im(g′ ◦ πg′)). Let now πh be the concatenation
of π′h with ψ ◦ πg′ , which goes from x to ψ(y). Since ‖g′ − h ◦ ψ‖ < 18Kε, it follows that
im(h ◦ψ ◦πg′) ⊆ int off18Kε(im(g′ ◦πg′)), and since im(h ◦πh) = im(h ◦π′h)∪ im(h ◦ψ ◦πg′)
by concatenation, one finally has

im(h ◦ πh) ⊆ int off18Kε(im(g′ ◦ πg′)).
Hence, the inequalities of (3.4) hold, implying that |dh(x, ψ(y))− dg′(φ(x), y)| < 36Kε.

62

φ : Rh → Rg′

ψ : Rg′ → Rh

9Kε

9Kε

ai

ai

αi
αi

βi

Rh Rg′ Rh Rg′

Rh Rg′ Rh Rg′

Figure 3.8: The effects of φ and ψ around a specific critical value ai of f . Segments are matched
according to their colors (up to reparameterization).

63

Since these inequalities hold for any (x, φ(x)) and (ψ(y), y), we deduce that D(φ, ψ) ≤ 36Kε.

Thus, dFD(Rh,Rg) < 4Kε and dFD(Rh,Rg′) ≤ 18Kε, so dFD(Rg′ ,Rg) < 22Kε as desired.

To complete the proof, we now show that Rg′ is isomorphic to Rf .

Proposition 3.2.4. Under the same assumptions as above, one has dFD(Rf ,Rg′) = 0.

Proof. First, recall from (3.3) that the points of the extended persistence diagram of Rh are included in⋃
τ∈ExDg(f)B∞(τ, 9Kε). Since Rg′ = Merge9Kε(Rh), it follows from Lemma 3.1.6 that Crit(g′) ⊆ Crit(f).

Hence, both Rg′ and Rf are composed of arcs in each (ai, ai+1).
Now, we show that, for each i, the number of arcs of (g′)−1((ai, ai+1)) and f−1((ai, ai+1)) are the

same. By the triangle inequality and Proposition 3.2.3, we have:

dFD(Rf ,Rg′) ≤ dFD(Rf ,Rg) + dFD(Rg,Rg′) < (1 + 22K)ε. (3.5)

Let φ : Rf → Rg′ and ψ : Rg′ → Rf be optimal continuous maps that achieve dFD(Rf ,Rg′). Let
i ∈ {1, ..., n − 1}. Assume that there are more arcs of f−1((ai, ai+1)) than arcs of (g′)−1((ai, ai+1)).
For every arc A of f−1((ai, ai+1)), let xA ∈ A such that f(xA) = ā = 1

2 (ai + ai+1). First, note that
φ(xA) must belong to an arc of (g′)−1((ai, ai+1)). Indeed, since ‖f − g′ ◦ φ‖∞ < (1 + 22Kε), one has
g′(φ(xA)) ∈ (ā− (1 + 22K)ε, ā+ (1 + 22K)ε) ⊆ (ai, ai+1). Then, according to the pigeonhole principle,
there exist xA, xA′ such that φ(xA) and φ(xA′) belong to the same arc of (g′)−1((ai, ai+1)).

• Since xA and xA′ do not belong to the same arc, we have

df (xA, xA′) > af/2.

• Now, since ‖f−g′◦φ‖∞ < (1+22K)ε and φ(xA), φ(xA′) belong to the same arc of (g′)−1((ai, ai+1)),
we also have (see Figure 3.9 for an illustration):

dg′(φ(xA), φ(xA′)) < 2(1 + 22K)ε.

φ(xA′)

ai+1

ai

xA′

Rf Rg′

2(1 + 22K)ε

φ(xA)

ai+1

ai

xA

f(xA) = f(xA′) = ā

Figure 3.9: Any path between xA and xA′ must contain the red segments, and the blue segment is a
particular path between φ(xA) and φ(xA′).

Hence, D(φ, ψ) ≥ |df (xA, xA′)−dg′(φ(xA), φ(xA′))| > af/2−2(1+22K)ε, which is greater than 2(1+
22K)ε because ε < af/(8(1 + 22K)). Thus, dFD(Rf ,Rg′) > (1 + 22K)ε, which leads to a contradiction
with (3.5). This means that there cannot be more arcs in f−1((ai, ai+1)) than in (g′)−1((ai, ai+1)). Since
the proof is symmetric in f and g′, the numbers of arcs in (g′)−1((ai, ai+1)) and in f−1((ai, ai+1)) are
actually the same.

Finally, we show that the attaching maps of these arcs are also the same. In this particular graph
setting, this is equivalent to showing that corresponding arcs in Rf and Rg′ have the same endpoints.
Let ai be a critical value. Let A−f,i and A+

f,i (resp. A−g′,i and A+
g′,i) be the sets of arcs in f−1((ai−1, ai))

and f−1((ai, ai+1)) (resp. (g′)−1((ai−1, ai)) and (g′)−1((ai, ai+1))). Morevover, we let ζif and ξif (resp.

ζig′ and ξig′) be the corresponding attaching maps that send arcs to their endpoints in f−1(ai) (resp.

64

(g′)−1(ai)). Let A,B ∈ A−f,i. We define an equivalence relation ∼f,i between A and B by: A ∼f,i B
if and only if ζif (A) = ζif (B), i.e. the endpoints of the arcs in the critical slice f−1(ai) are the same.

Similarly, C,D ∈ A+
f,i are equivalent if and only if ξif (C) = ξif (D). One can define ∼g′,i in the same way.

To show that the attaching maps of Rf and Rg′ are the same, we need to find a bijection b between the
arcs of Rf and Rg′ such that A ∼f,i B ⇔ b(A) ∼g′,i b(B) for each i.

We will now define b then check that it satisfies the condition. Recall from (3.5) that dFD(Rf ,Rg′) <
(1 + 22K)ε. Hence there exists a continuous map φ : Rf → Rg′ such that ‖f − g′ ◦ φ‖∞ < (1 + 22K)ε.
This map induces a bijection b between the arcs of Rf and Rg′ . Indeed, given an arc A ∈ A−f,i, let x ∈ A
such that f(x) = ā = 1

2 (ai−1 + ai). We define b(A) as the arc of A−g,i that contains φ(x). The map b is
well-defined since g′ ◦φ(x) ∈ [ā− (1 + 22K)ε, ā+ (1 + 22K)ε] ⊆ (ai−1, ai), hence φ(x) must belong to an
arc of (g′)−1((ai−1, ai)). Let us show that b(A) ∼g′,i b(B)⇒ A ∼f,i B. Assume there exist A,B ∈ A−f,i
(the treatment of A,B ∈ A+

f,i is similar) such that A 6∼f,i B and b(A) ∼g′,i b(B). Let x = ζif (A) and

y = ζif (B). Then we have df (x, y) ≥ af while dg′(φ(x), φ(y)) < 2(1 + 22K)ε (see Figure 3.10). Hence
|df (x, y)−dg′(φ(x), φ(y))| > af −2(1+22K)ε > 2(1+22K)ε, so dFD(Rf ,Rg′) > (1+22K)ε, which leads
to a contradiction with (3.5). The same argument applies to show that A ∼f,i B ⇒ b(A) ∼g′,i b(B).

ai x y

φ(x)

φ(y)

2(1+22K)ε

Rf Rg′

Figure 3.10: Any path from x to y must go through an entire arc, hence df (x, y) ≥ af . On the contrary,
there exists a direct path (displayed in red) between φ(x) and φ(y), hence dg′(φ(x), φ(y)) < 2(1+22K)ε.

Hence, db and dFD are locally equivalent, and so are db and dfGH thanks to Theorem 2.4.9.

3.3 Induced Metrics

A desired property for dissimilarity measures is to be intrinsic, i.e. realized as the lengths of shortest
continuous paths in the space of Reeb graphs [22]. This is particularly useful when one actually needs to
interpolate between data, and not just discriminate between them, which happens in applications such
as image or 3D shape morphing, skeletonization, and matching [74, 101, 104, 135]. Unfortunately, all the
metrics proposed so far for Reeb graphs fail according to this criterion. Defining intrinsic metrics would
not only open the door to the use of Reeb graphs in the aforementioned applications, but it would also
provide a better understanding of the intrinsic structure of the space of Reeb graphs, and give a deeper
meaning to the distance values.

In this section, we leverage the local equivalence given by Theorem 3.0.1 to derive a global equivalence
between the intrinsic metrics d̂b and d̂FD induced by db and dFD. Note that we already know d̂FD to be
equivalent to d̂fGH since dFD is equivalent to dfGH.

Notation. Let Reeb denote the space of Reeb graphs coming from Morse-type functions. In the
following, whatever the metric d : Reeb×Reeb→ R+ under consideration, we define the class of admissible
paths in Reeb to be those maps γ : [0, 1] → Reeb that are continuous in dFD. This makes sense when d
is either dFD itself or dfGH, which is equivalent to dFD and therefore admits the same continuous maps
γ : [0, 1] → Reeb. In the case d = db our convention means restricting the class of admissible paths to
a strict subset of the maps γ : [0, 1] → Reeb that are continuous in db (by Theorem 2.4.13), which is
required by some of our following claims.

Definition 3.3.1. Let d : Reeb × Reeb → R+ be a metric on Reeb. Let Rf ,Rg ∈ Reeb, and γ :
[0, 1] → Reeb be an admissible path such that γ(0) = Rf and γ(1) = Rg. The length of γ induced by

d is defined as Ld(γ) = supn,Σ
∑n−1
i=0 d(γ(ti), γ(ti+1)) where n ranges over N and Σ ranges over all

65

partitions 0 = t0 ≤ t1 ≤ ... ≤ tn = 1 of [0, 1]. The intrinsic metric induced by d, denoted d̂, is defined by

d̂(Rf ,Rg) = infγ Ld(γ) where γ ranges over all admissible paths γ : [0, 1] → Reeb such that γ(0) = Rf

and γ(1) = Rg.

Strong equivalence of induced metrics. The following result is, in our view, the starting
point for the study of intrinsic metrics over the space of Reeb graphs. It comes as a consequence of the
(local or global) equivalences between db and dFD stated in Theorems 2.4.13 and 3.0.1. The intuition is
that integrating two locally equivalent metrics along the same path using sufficiently small integration
steps yields the same total length up to a constant factor, hence the global equivalence between the
induced intrinsic metrics1.

Theorem 3.3.2. d̂b and d̂FD are globally equivalent. Specifically, for any Rf ,Rg ∈ Reeb,

d̂FD(Rf ,Rg)/22 ≤ d̂b(Rf ,Rg) ≤ 2 d̂FD(Rf ,Rg). (3.6)

Proof. We first show that d̂b(Rf ,Rg) ≤ 2 d̂FD(Rf ,Rg). Let γ be an admissible path and let Σ =
{t0, ..., tn} be a partition of [0, 1]. Then, by Theorem 2.4.13,

n−1∑
i=0

dFD(γ(ti), γ(ti+1)) ≥ 1

2

n−1∑
i=0

db(γ(ti), γ(ti+1)).

Since this is true for any partition Σ of any finite size n, it follows that

LdFD
(γ) ≥ 1

2
Ldb

(γ) ≥ 1

2
d̂b(Rf ,Rg).

Again, this inequality holds for any admissible path γ, so d̂b(Rf ,Rg) ≤ 2d̂FD(Rf ,Rg).

We now show that d̂FD(Rf ,Rg)/22 ≤ d̂b(Rf ,Rg). Let γ be an admissible path and Σ = {t0, ..., tn} a
partition of [0, 1]. We claim that there is a refinement of Σ (i.e. a partition Σ′ = {t′0, ..., t′m} ⊇ Σ for
some m ≥ n) such that dFD(γ(t′j), γ(t′j+1)) < max{at′j , at′j+1

}/16 for all j ∈ {0, ...,m− 1}, where at > 0

denotes the minimal distance between consecutive critical values of γ(t). Indeed, since γ is continuous
in dFD, for any t ∈ [0, 1] there exists δt > 0 such that dFD(γ(t), γ(t′)) < at/16 for all t′ ∈ [0, 1] with
|t − t′| < δt. Consider the open cover {(max{0, t − δt/2},min{1, t + δt/2})}t∈[0,1] of [0, 1]. Since [0, 1]
is compact, there exists a finite subcover containing all the intervals (ti − δti/2, ti + δti/2) for ti ∈ Σ.
Assume without loss of generality that this subcover is minimal (if it is not, then reduce the δti as
much as needed). Let then Σ′ = {t′0, ..., t′m} ⊇ Σ be the partition of [0, 1] given by the midpoints
of the intervals in this subcover, sorted by increasing order. Since the subcover is minimal, we have
t′j+1 − t′j < (δt′j + δt′j+1

)/2 < max{δt′j , δt′j+1
} hence dFD(γ(t′j), γ(t′j+1)) < max{at′j , at′j+1

}/16 for each

j ∈ {0,m− 1}. It follows that

n−1∑
i=0

dFD(γ(ti), γ(ti+1)) ≤
m−1∑
j=0

dFD(γ(t′j), γ(t′j+1)) by the triangle inequality since Σ′ ⊇ Σ

≤ 22

m−1∑
j=0

db(γ(t′j), γ(t′j+1)) by Theorem 3.0.1 with K = 1/22

≤ 22Ldb
(γ).

Since this is true for any partition Σ of any finite size n, it follows that

d̂FD(Rf ,Rg) ≤ LdFD
(γ) ≤ 22Ldb

(γ).

Again, this inequality is true for any admissible path γ, so d̂FD(Rf ,Rg) ≤ 22 d̂b(Rf ,Rg).

1Provided the induced metrics are defined using the same class of admissible paths, hence our con-
vention.

66

Consequences of the strong equivalence. Theorem 3.3.2 implies in particular that d̂b is a
true metric on Reeb graphs, as opposed to db which is only a pseudometric. Moreover, the simplification
operator defined in Section 3.2 makes it possible to continuously deform any Reeb graph into a trivial
segment-shaped graph then into the empty graph. This shows that Reeb is path-connected in dFD. Since
the length of such continuous deformations is finite if the Reeb graph is finite, d̂FD and d̂b are finite
metrics. Finally, the global equivalence of d̂FD and d̂b yields the following:

Corollary 3.3.3. The metrics d̂FD and d̂b induce the same topology on Reeb, which is a refinement of
the ones induced by dFD or db.

Note that the first inequality in (3.6) and, consequently, Corollary 3.3.3, are wrong if one defines the

admissible paths for d̂b to be the whole class of maps [0, 1] → Reeb that are continuous in db—hence
our convention. For instance, let us consider the two Reeb graphs Rf and Rg of Figure 2.14 such that
ExDg(f) = ExDg(g), and let us define γ : [0, 1] → Reeb by γ(t) = Rf if t ∈ [0, 1/2) and γ(t) = Rg if
t ∈ [1/2, 1]. Then γ is continuous in db while it is not in dFD at 1/2 since dFD(Rf ,Rg) > 0. In this case,

d̂b(Rf ,Rg) ≤ Ldb
(γ) = 0 < d̂FD(Rf ,Rg).

3.4 Conclusion

In this chapter, we proved that the bottleneck distance, even though it is only a pseudometric on
Reeb graphs, can actually discriminate a Reeb graph from the other Reeb graphs in a small enough
neighborhood, as efficiently as the other metrics do. This theoretical result legitimates the use of the
bottleneck distance to discriminate between Reeb graphs in applications. It also motivates the study of
intrinsic metrics, which can potentially shed new light on the structure of the space of Reeb graphs and
open the door to new applications where interpolation plays a key part.

Among the future perspectives of this work are the following questions:

• Can the lower bound be improved? We believe that ε/22 is not optimal. Specifically, a more
careful analysis of the simplification operator should allow one to derive a tighter upper bound
than the one in Lemma 2.4.16, and to improve the current lower bound on db.

• Do shortest paths exist in Reeb? The existence of shortest paths achieving d̂b is an important
question since a positive answer would enable one to define and study the intrinsic curvature of
Reeb. Moreover, characterizing and computing these shortest paths would be useful for interpolat-
ing between Reeb graphs in applications. The existence of shortest paths is guaranteed e.g. when
the space is complete and locally compact. Unfortunately, Reeb is not complete, as shown by the
counter-example of Figure 3.11. A workaround would be to restrict the focus to the subspace of
Reeb graphs having at most N features with height at most H, for fixed but arbitrary N,H > 0.
We believe this subspace should be complete and locally compact, like its counterpart in the space
of persistence diagrams [17].

1

1/2

1/4
1/8

0

1/16

· · ·

R1 R2 R3 R4

Figure 3.11: A sequence of Reeb graphs that is Cauchy but that does not converge in Reeb because the
number of critical values goes to +∞. Indeed, each Rn has n+ 2 critical values.

67

• Is Reeb an Alexandrov space? Provided shortest paths exist in Reeb (or in some subspace
thereof), one can investigate whether the intrinsic curvature is bounded, either from above or
from below. This is interesting because barycenters in metric spaces with bounded curvature
enjoy many useful properties [111], and they can be approximated effectively in practice [110].

• Can the local equivalence be extended to general metric spaces? We have reasons to
believe that our local equivalence result can be used to prove similar results for more general
classes of metric spaces than Reeb graphs. If true, this would shed new light on inverse problems
in persistence theory.

68

CHAPTER 4

STRUCTURE AND STABILITY OF THE MAPPER

In Chapter 3, we have seen how distances between Reeb graphs can be related to each other. In this
chapter, we turn the focus on studying the structure and defining stable distances between Mappers,
which are pixelized versions of Reeb graphs.

Indeed, somewhat surprisingly, despite its success in applications, very little is known to date about
the structure of the Mapper and its stability with respect to perturbations of the data or of the cover.
Intuitively, as a pixelized version of the Reeb graph, the Mapper should capture some of its topological
features (branches, holes) and miss others, depending on how its cover is positioned. The stability of the
structure of the Mapper, and thus the corresponding distance used to compare them, should also depend
on this positioning.

The main result of this chapter is to formalize this intuition. We show in Theorem 4.3.3 that the
topological structure of the Mapper can be read off from the one of the Reeb graph through a simple
procedure. We build on this procedure to show Theorem 4.4.2, which states that Mappers are actually
stable when compared with an appropriate distance. More precisely, we show that:

• ExDg(Mf (X, I)) = ExDg(Rf (X)) \QI is a bag-of-features signature of the topological structure
of the Mapper, and can be computed solely by removing points of ExDg(Rf (X)) that belong to
a specific area QI of the plane, which only depends on the cover I (Theorem 4.3.3),

• this signature is stable: dI(ExDg(Mf (X, I)),ExDg(Mg(X, I))) ≤ ‖f−g‖∞, where dI is a distance
depending only on QI (Theorem 4.4.2).

The area QI is a direct measure of the approximation quality of the Mapper: if I contains large
intervals, then many points of ExDg(Rf (X)) will be included in QI , and thus the Mapper is going to be
a very rough approximation of the Reeb graph. This is formalized in Corollary 4.3.6.

We end the chapter by showing that any Mapper is actually isomorphic to a specific Reeb graph,
whose connection to the one that the Mapper is approximating can be controlled in both the bottleneck
(Theorem 4.6.12) and functional distortion distance (Theorem 4.6.10).

To prove all of these results, we use an intermediate construction called the MultiNerve Mapper,
which is a slight, and somehow natural, extension of the usual Mapper.

Plan of the Chapter. We first give properties of Mappers computed with scalar-valued functions
in Section 4.1. We then detail a variant therof, the MultiNerve Mapper, in Section 4.2. Next, we show how
the topological structure of the (MultiNerve) Mapper can actually be derived from the one of the Reeb
graph in Section 4.3. This allows us to define an adequate and computable pseudometric to compare the
(MultiNerve) Mappers and provide stability results in Sections 4.4 and 4.5. Finally, we use the telescope
operators of Section 3.1 to provide a convergence result of the (MultiNerve) Mapper to the Reeb graph
in the functional distortion distance in Section 4.6.

69

4.1 Mappers for scalar-valued functions

We begin the chapter with some remarks on Mappers computed with scalar-valued functions. In partic-
ular, we show that, for specifics covers of the real line called gomics, these 1-dimensional Mappers have
multigraph structures.

Interval cover. Let Z be a subset of R, equipped with the subspace topology. A subset U ⊆ Z is an
interval of Z if there is an interval I of R such that U = I ∩Z. Note that U is open in Z if and only if I
can be chosen open in R. A cover I of Z is an interval cover if all its elements are intervals. In this case,
End(I) denotes the set of all of the interval endpoints. Finally, the granularity of I is the supremum of
the lengths of its elements, i.e. it is the quantity supI∈I |I| where |I| = sup(I)− inf(I) ∈ R ∪ {+∞}.

Lemma 4.1.1. No more than two elements of an open minimal interval cover can intersect at a time.

Proof. Assume for a contradiction that there are k ≥ 3 elements of I: U1, · · · , Uk, that have a non-empty
common intersection. For every i, fix an open interval Ii of R such that Ui = Ii ∩Z. Up to a reordering
of the indices, we can assume without loss of generality that I1 has the smallest lower bound and I2 has
the largest upper bound. Since I1 ∩ I2 ⊇ U1 ∩ U2 6= ∅, the remaining intervals satisfy Ii ⊆ I1 ∪ I2. In
particular, we have U3 = I3 ∩ Z ⊆ (I1 ∪ I2) ∩ Z = (I1 ∩ Z) ∪ (I2 ∩ Z) = U1 ∪ U2, so the cover I is not
minimal.

Lemma 4.1.2. If Z is R or a compact subset thereof, any cover I of Z has a minimal subcover.

Proof. When Z is compact, there exists a subcover J of I that has finitely many elements. Any subcover
of J with the minimum number of elements is then a minimal cover of Z.

When Z = R, the same argument applies to any subset of the form [−n, n], n ∈ N. Then, a simple
induction on n allows us to build a minimal subcover of I.

Gomics. From now on, unless otherwise stated, all covers of Z ⊆ R will be generic, open, minimal,
interval covers (gomics for short). Given such a cover I, the proper subset Ĩ (as defined in Section 2.5)
of any interval I ∈ I is itself an interval of Z since I is generic, therefore we call it the proper subinterval
of I. Moreover, Lemma 4.1.1 yields a total order on the intervals of I, so each one of them partitions
into subintervals as follows:

I = I−∩ t Ĩ t I+
∩ , (4.1)

where I−∩ is the intersection of I with the element right below it in the cover (I−∩ = ∅ if that element
does not exist), and where I+

∩ is the intersection of I with the element right above it (I+
∩ = ∅ if that

element does not exist).

Mappers computed with gomics. Let X be a topological space and f : X → R be a Morse-
type function, whose image is covered by the cover I. If I is a gomic, then the Mapper Mf (X, I)
has a natural 1-dimensional stratification since no more than two intervals can intersect at a time by
Lemma 4.1.1. Hence, in this case, it has the structure of a (possibly infinite) combinatorial graph and
therefore has trivial homology in dimension 2 and above.

4.2 MultiNerve Mapper

In this section, we define a slight modification of the Mapper called the MultiNerve Mapper, which can
be easily related to the Mapper—see Corollary 4.2.5, and whose analysis is more natural to handle.

Simplicial Posets. The MultiNerve Mapper construction is based on multinerves, which are spe-
cific simplicial posets.

Definition 4.2.1 ([56]). A simplicial poset is a partially ordered set (P,�), whose elements are called
simplices, such that:

70

a

b

c

e

d

f
g

edfg

c b a

0

h

h

Figure 4.1: Left: A simplicial poset that is not a simplicial complex. Indeed, edges f and g have the
same vertices (b and c). Right: The corresponding Hasse diagram showing the partial order on the
simplices. Note that f, g cannot be part of the same 2-cell.

(i) P has a least element called 0 such that ∀p ∈ P , 0 � p;

(ii) ∀p ∈ P , ∃d ∈ N such that the lower segment [0, p] = {q ∈ P : q � p} is isomorphic to the set
of simplices of the standard d-simplex with the inclusion as partial order, where an isomorphism
between posets is a bijective and order-preserving function.

Simplicial posets are extensions of simplicial complexes: while every simplicial complex is also a
simplicial poset (with inclusion as partial order and ∅ as least element), the converse is not always true
as different simplices may have the same set of vertices. However, these simplices cannot be faces of
the same higher-dimensional simplex, otherwise (ii) would be false. See Figure 4.1 for an example of a
simplicial poset that is not a simplicial complex.

Multinerve. Given a cover U of X, the nerve is extended to a simplicial poset as follows:

Definition 4.2.2. Let U = {Uα}α∈A be a cover of a topological space X. The multinerve M(U) is the
simplicial poset defined by:

M(U) =

{
({α0, · · · , αk}, C) :

k⋂
i=0

Uαi 6= ∅ and C is a connected component of

k⋂
i=0

Uαi

}
.

The proof that this set, together with the least element (∅,⋃α∈A Uα) and the partial order (F,C) �
(F ′, C ′) ⇔ F ⊆ F ′ and C ′ ⊆ C, is a simplicial poset, can be found in [56]. Given a simplex (F,C) in
the multinerve of a cover, its dimension is card(F) − 1. The dimension of the multinerve of a cover is
the maximal dimension of its simplices. Given two simplices (F,C), (F ′, C ′), the pair (F,C) is a face of
(F ′, C ′) if (F,C) � (F ′, C ′).

MultiNerve Mapper. Given a connected pullback cover V, we extend the Mapper by using the
multinerve M(V) instead of N (V). This variant will be referred to as the MultiNerve Mapper in the
following.

Definition 4.2.3. Let X,Z be topological spaces, f : X → Z be a continuous function, U be a cover of
im(f) and V be the associated connected pullback cover.

Then, the MultiNerve Mapper of X is Mf (X,U) =M(V).

See Figure 2.16 for an illustration. For the same reasons as Mapper, when Z = R and I is a gomic of
im(f), the MultiNerve Mapper Mf (X, I) is a (possibly infinite) combinatorial multigraph having trivial
homology in dimension 2 and above. Contrarily to the Mapper, the MultiNerve Mapper also takes the
connected components of the intersections into account in its construction. As we shall see in Section 4.3,
it is able to capture the same features as the Mapper but with coarser gomics, and it is more naturally
related to the Reeb graph.

71

Mf(B
2,U) Mf(B

2,U)

Figure 4.2: The domain is the disk B2, and we consider the identity function f , as well as a generic
open minimal cover U with five elements. The MultiNerve Mapper is homeomorphic to the disk B2 and
the Mapper is homeomorphic to the sphere S2. Then, H2(Mf (B2,U)) 6= 0 while H2(Mf (B2,U)) = 0.

Connection to Mapper The connection between the Mapper and the MultiNerve Mapper is
induced by the following connection between nerves and multinerves:

Lemma 4.2.4 ([56]). Let X be a topological space and U be a cover of X. Let π1 : (F,C) 7→ F be the
projection of the simplices of M(U) onto the first coordinate. Then, π1(M(U)) = N (U).

Corollary 4.2.5. Let X,Z be topological spaces and let f : X → Z be a continuous function. Let U be
a cover of im(f). Then, Mf (X,U) = π1(Mf (X,U)).

Thus, when Z = R and I is a gomic, the Mapper Mf (X, I) is the simple graph obtained by gluing
the edges that have the same endpoints in the MultiNerve Mapper. In this special case, it is even possible
to embed Mf (X, I) as a subcomplex of Mf (X, I). Indeed, both objects are multigraphs over the same
set of nodes since they are built from the same connected pullback cover. Then, it is enough to map
each edge of Mf (X, I) to one of its copies in Mf (X, I), chosen arbitrarily, to get a subcomplex. This
mapping serves as a simplicial section for the projection π1, therefore:

Lemma 4.2.6. When Z = R and I is a gomic, the projection π1 defined in Lemma 4.2.4 induces a
surjective homomorphism in homology.

Note that this is not true in general when Z has a higher dimension—see Figure 4.2.

4.3 Structure of the MultiNerve Mapper

In this section, we study and characterize the topological structure of the (MultiNerve) Mapper computed
on a non discrete topological space. More precisely, we show that this topological structure can be read
off from the extended persistence diagram of the Reeb graph. To prove this, we show that the MultiNerve
Mapper Mf (X, I) is actually isomorphic (as a combinatorial multigraph) to a specific Reeb graph, whose

extended persistence diagram is related to the extended persistence diagram ExDg(f̃) of Rf (X).

Notation. In the following, the combinatorial version of the Reeb graph (where each critical point is
turned into a node and where the functional and metric information is forgotten) is denoted by CRf (X).

4.3.1 Topological structure of the MultiNerve Mapper

In order to show that the MultiNerve Mapper is a specific Reeb graph, we first show that (MultiNerve)
Mappers can be equipped with functions.

72

Definition 4.3.1. Let I = {Iα}α∈A be a gomic of im(f) and V = {V iα}1≤i≤c(α),α∈A be the associated

connected pullback cover. Then we define m̄I : Mf (X, I) → R as the piecewise-linear extension of the

function defined on the nodes of Mf (X, I) by V iα 7→ mid(Ĩα), where mid(Ĩα) is the midpoint of the proper

subinterval Ĩα of Iα. The definition of mI : Mf (X, I)→ R is similar.

Hence, Reeb graphs can be computed from Mf (X, I) and Mf (X, I), once they are equipped with m̄I
and mI respectively. Let us call them Rm̄I (Mf (X, I)) and RmI (Mf (X, I)), with corresponding induced
maps ˜̄mI : Rm̄I (Mf (X, I))→ R and m̃I : RmI (Mf (X, I))→ R. The following lemma, which states that
(MultiNerve) Mappers are isomorphic to their Reeb graphs, is a simple consequence of Remark 2.4.2.

Lemma 4.3.2. Let X be a topological space and f : X → R be a Morse-type function. Let I be a gomic
of im(f). Then Mf (X, I) and CRm̄I (Mf (X, I)) are isomorphic as combinatorial multigraphs. The same
is true for Mf (X, I) and CRmI (Mf (X, I)).

Hence, by a slight abuse of notation, we rename m̃I and ˜̄mI into mI and m̄I for convenience.
We now state the main result of this section, which ensures that the extended persistence diagram

ExDg(m̄I), i.e. the bag-of-features signature of Rm̄I (Mf (X, I)) and Mf (X, I), is nothing but a simpli-

fication of ExDg(f̃), i.e. the bag-of-features signature of Rf (X).

Theorem 4.3.3. Let X be a topological space and f : X → R be a Morse-type function. Let Rf (X) be

the corresponding Reeb graph and f̃ : Rf (X)→ R be the induced map. Let I be a gomic of im(f). There
are bijections between:

(i) Ord0(m̄I) and Ord0(f̃) \QIO (iii) Ext−1 (m̄I) and Ext−1 (f̃) \QIE−
(ii) Rel1(m̄I) and Rel1(f̃) \QIR (iv) Ext+

0 (m̄I) and Ext+
0 (f̃)

where QIO =
⋃
I∈I Q

+

Ĩ∪I+
∩

, QIR =
⋃
I∈I Q

−
Ĩ∪I−∩

, and QIE− =
⋃
I∈I Q

−
I , and where, for any interval I with

endpoints a ≤ b, we let Q+
I = {(x, y) ∈ R2 : a ≤ x ≤ y ≤ b} be the corresponding half-square above the

diagonal, and Q−I = {(x, y) ∈ R2 : a ≤ y < x ≤ b} be the half-square strictly below the diagonal. See
Figure 4.3 for an illustration.

QIO

QIR QIE−
QIE

Figure 4.3: Left: Staircases of ordinary (light grey) and relative (dark grey) types. Right: Staircases of
extended types—QIE− is in dark grey while QIE is the union of QIE− with the light grey area.

The remaining of Section 4.3.1 is devoted to the proof of Theorem 4.3.3. In order to state the proof,
we first introduce cover zigzag persistence modules.

Definition 4.3.4. Let X be a topological space and f : X → R be a Morse-type function. Let I =
{Iα}1≤α≤m be a gomic of im(f), sorted by the natural order defined in Section 4.1.

Let Crit(f) = {−∞ = a0, a1, ..., an, an+1 = +∞}. For any open interval I with left endpoint a, we
define the integers l(I), r(I) by l(I) = max{i : ai ≤ a} and r(I) = max{l(I),max{i : ai ∈ I}}. Then,
we define the cover zigzag persistence module CZZ(f, I) by

CZZ(f, I) = H∗
(
X
r(I1)
l(I1) ←↩ X

r(I1∩I2)
l(I1∩I2) ↪→ X

r(I2)
l(I2) ←↩ X

r(I2∩I3)
l(I2∩I3) ↪→ · · · ←↩ X

r(Im−1∩Im)
l(Im−1∩Im) ↪→ X

r(Im)
l(Im)

)
,

where the Xj
i spaces are as in Definition 2.3.5. We also let CBc(f, I) denote the barcode of this module.

73

Note that cover zigzag persistence modules can be isometrically embedded (with the bottleneck and
Wasserstein distances) into the south face of the Mayer-Vietoris half-pyramid. Indeed, each node of
CZZ(f, I) belongs to this south face. The only difficulty is that CZZ(f, I) may include the same node
several times consecutively when there is a sequence of consecutive intervals in the gomic that are all
included between two consecutive critical values of f , i.e. for which l(I) = r(I). However, in that case,
the corresponding arrows in the module are isomorphisms. Thus, composing these arrows leaves the
resulting barcode unchanged.

Lemma 4.3.5. Let X be a topological space and f : X → R be a Morse-type function. Let I be a gomic
of im(f). Then, there is a bijection between ExDg(m̄I) and CBc0(f, I).

Proof. Recall from Corollary 2.3.8 that it suffices to show that LZZ0(m̄I) and CZZ0(f, I) are isomorphic
as zigzag persistence modules. Assume without loss of generality that I has m elements, with m ∈ N∗.
First, note that card(Crit(m̄I)) is equal to m. Hence, both LZZ(m̄I) and CZZ(f, I) have exactly 2m+ 1
nodes. Moreover, since the MultiNerve Mapper tracks the connected components of the interval and
intersection preimages of f , each element of LZZ0(m̄I) is of the form H0(f−1(I)), I ∈ I, or H0(f−1(I ∩
J)), I, J consecutive in I.

Let I ∈ I. Since f is Morse-type, X
r(I)
l(I) and XI = f−1(I) have the same homotopy type. Indeed,

recall from Definition 2.3.5 that there exist sl(I) and sr(I) such that X
r(I)
l(I) = f−1

([
sl(I), sr(I)

])
and sl(I)

(resp. sr(I)) and the left (resp. right) endpoint of I are located between the same consecutive critical

values of f . In particular, X
r(I)
l(I) and XI have the same number of connected components, meaning that

H0(XI) and H0(X
r(I)
l(I)) are isomorphic groups. The same is also true for any I ∩ J , I, J ∈ I.

Hence, we define a canonical pointwise isomorphism Ψ in dimension 0 as follows: for each node, send
each connected component of one preimage, or equivalently each generator of one homology group, to
the connected component of the other preimage which intersects it (there is only one since the preimages
have the same number of connected components). By definition of the MultiNerve Mapper, Ψ commutes
with the canonical inclusion. Hence, LZZ0(m̄I) and CZZ0(f, I) are isomorphic.

Finally, we relate the cover zigzag persistence barcode to the extended persistence diagram of the
Reeb graph. Namely, we show that a specific simplification of this extended persistence diagram encodes
the same information as the cover zigzag persistence barcode.

Proof of Theorem 4.3.3. Again, recall from Corollary 2.3.8 that ExDg(f̃) encodes the same information
as LBc0(f̃). Hence, since ExDg(m̄I) and CBc0(f, I) are equivalent from Lemma 4.3.5, we focus on
the relation between LBc0(f̃) and CBc0(f, I). As mentioned after Definition 4.3.4, the cover zigzag
persistence module CZZ(f, I) can be isometrically embedded in the south face of the Mayer-Vietoris
half-pyramid. Hence, we can assume without loss of generality that the set of nodes of CZZ(f, I) is a
subset of the nodes of a monotone zigzag module CZZ(f, I) that can be drawn along the south face
of the Mayer-Vietoris half-pyramid by interpolating the elements of CZZ(f, I). Thus, it suffices by
Theorem 2.3.7 to study which intervals disappear when going from LBc0(f̃) to CBc0(f, I) and then to
CBc0(f, I) using the pyramid rules recalled in Figure 4.4.

We first give analogues of staircases for zigzag persistence. For any I = I−∩ t Ĩ t I+
∩ ∈ I, we define:

• suppO(I) as the set of nodes of LZZ(f) that are located strictly between X
l(Ĩ∪I+

∩)

l(Ĩ∪I+
∩)

and X
r(Ĩ∪I+

∩)

r(Ĩ∪I+
∩)−1

,

• suppR(I) as the set of nodes of LZZ(f) that are located strictly between X
l(I−∩ ∪Ĩ)+1

l(I−∩ ∪Ĩ)
and X

r(I−∩ ∪Ĩ)
r(I−∩ ∪Ĩ)

,

• suppE−(I) as the set of nodes of LZZ(f) that are located strictly between X
l(I)+1
l(I) and X

r(I)
r(I)−1.

There are two possible ways for an interval of LBc0(f) to disappear in CBc0(f, I): either its homo-
logical dimension is shifted by 1, or its intersection with the set of nodes of CZZ(f, I) is empty after
being projected onto CBc0(f, I)—see Figure 4.5. According to the pyramid rules, we have that:

• Projections of type III intervals of LBc0(f) onto CBc0(f, I) always intersect with the nodes of
CZZ(f, I) and their homological dimensions cannot be shifted. Hence, none of them disappears.
This proves (iv).

74

+1

Figure 4.4: (From [28]) We show the axis of travel of birth and death endpoints of intervals of LZZ(f)
to the up-down zigzag persistence module bounding the south face of the Mayer-Vietoris half-pyramid
for interval modules that correspond to type I intervals (upper-left, red), type II intervals (upper-right,
green), type III intervals (down-left, blue), and type IV intervals (down-right, orange) in LBc(f). The
+1 in the down-right figure means that the homological dimension is increased by one.

• Projections of type IV intervals of LBc0(f) onto CBc0(f, I) always intersect with the nodes of
CZZ(f, I). However, their homological dimensions can be shifted by 1. This happens when the
endpoints collide in the south face of the Mayer-Vietoris half-pyramid. Hence, only those intervals
whose support is included in suppE−(I) for some I ∈ I go through such a shift before getting to
CBc0(f, I). This proves (iii).

• Homological dimensions of type I intervals in LBc0(f) cannot be shifted, but their projections
onto CBc0(f, I) may not always intersect with the nodes of CZZ(f, I). This happens for those
intervals whose support is included in suppO(I) for some I ∈ I, thus proving (i).

• Homological dimensions of type II intervals in LBc0(f) cannot be shifted, but their projections
onto CBc0(f, I) may not always intersect with the nodes of CZZ(f, I). This happens for those
intervals whose support is included in suppR(I) for some I ∈ I, thus proving (ii).

4.3.2 A signature for MultiNerve Mapper

Theorem 4.3.3 means that the dictionary introduced in Section 2.4.1 can be used to describe the structure
of the MultiNerve Mapper from the extended persistence diagram of the induced function f̃ . Indeed, the
topological features of Mf (X, I) are in bijection with the points of ExDg(f̃) minus the ones that fall into

the various staircases (QIO, QIE− , QIR) corresponding to their type. Moreover, by Theorem 2.4.4, ExDg(f̃)
itself is obtained from ExDg0(f) and ExDg1(f) by removing the points of Ext+

1 (f) and Ord1(f). Hence,
we use the off-staircase part of ExDg(f̃) as a signature for the structure of the MultiNerve Mapper1:

ExDg(Mf (X, I)) = (Ord(f̃) \QIO) ∪ (Ext(f̃) \QIE−) ∪ (Rel(f̃) \QIR)

= (Ord0(f) \QIO) ∪ ((Ext+
0 (f) ∪ Ext−1 (f)) \QIE−) ∪ (Rel1(f) \QIR).

(4.2)

1Recall that Ext−0 (f) = Rel0(f) = ∅.

75

+1

+1

+1

suppE−(I1) suppE−(I2) suppE−(I3)

suppO(I1) suppO(I2) suppO(I3) = ∅ suppR(I1) suppR(I2) suppR(I3)

X
r(I1)
l(I1) X

r(I3)
l(I3)

X
r(I2)
l(I2)

X
r(I1∩I2)
l(I1∩I2)

X
r(I2∩I3)
l(I2∩I3)X

r(I1)
l(I1) X

r(I3)
l(I3)

X
r(I2)
l(I2)

X
r(I1∩I2)
l(I1∩I2)

X
r(I2∩I3)
l(I2∩I3)

X
r(I1)
l(I1) X

r(I3)
l(I3)

X
r(I2)
l(I2)

X
r(I1∩I2)
l(I1∩I2)

X
r(I2∩I3)
l(I2∩I3)

Figure 4.5: The black path in the south face of the Mayer-Vietoris half-pyramid represents the monotone
zigzag persistence module CZZ(f, I) for a gomic I with three intervals. The white disks on this path are
the nodes that do not intersect the set of nodes of the cover zigzag persistence module CZZ(f, I), which
are colored according to the interval of I they represent (and are colored orange if they represent an
intersection). The boxes outline the support of the intervals of LBc0(f) that disappear in the MultiNerve
Mapper depending on their types (upper-left for type I intervals, upper-right for type II intervals and
down-left for type IV intervals). We also show (down-right) the analogue, drawn in grey color, of QIR on
the south face of the Mayer-Vietoris half-pyramid.

We call this signature the extended persistence diagram of the MultiNerve Mapper. Note that this
signature is not computed by applying persistence to some function defined on the multinerve, but it
is rather a pruned version of the extended persistence diagram of f̃ . As for Reeb graphs, it serves as a
bag-of-features type signature of the structure of Mf (X, I). Moreover, the fact that ExDg(Mf (X, I)) ⊆
ExDg(f̃) formalizes the intuition that the MultiNerve Mapper should be viewed as a pixelized version of
the Reeb graph, in which some of the features disappear due to the staircases (prescribed by the cover).
For instance, in Figure 4.6 we show a double torus equipped with the height function, together with
its associated Reeb graph, MultiNerve Mapper, and Mapper. We also show the corresponding extended
persistence diagrams. In each case, the points in the diagram represent the features of the object: the
extended points represent the holes (dimension 1 and above) and the trunks (dimension 0) while the
ordinary and relative points represent the branches.

Convergence of the signature. The following convergence result (which is in fact non-asymptotic)
is a direct consequence of our previous results:

Corollary 4.3.6. Suppose the granularity of the gomic I is at most ε. Then,

ExDg(f̃) \ {(x, y) : |y − x| ≤ ε} ⊆ ExDg(Mf (X, I)) ⊆ ExDg(f̃).

Thus, the features (branches, holes) of the Reeb graph that are missing in the MultiNerve Mapper have
spans at most ε. In particular, we have db(ExDg(Mf (X, I)),ExDg(f̃)) ≤ ε/2. Moreover, the two
signatures become equal when ε becomes smaller than the smallest vertical distance of the points of
ExDg(f̃) to the diagonal. Finally, Mf (X, I) and Rf (X) themselves become isomorphic as combinatorial
graphs up to one-step vertex splits and edge subdivisions (which are topologically trivial modifications)
when ε becomes smaller than the smallest absolute difference between distinct critical values of f .

76

Figure 4.6: From left to right: a 2-manifold equipped with the height function; the corresponding Reeb
graph, MultiNerve Mapper, and Mapper. For each object, we display the extended persistence diagrams
of dimension 0 (green points), 1 (orange points) and 2 (purple points). Extended points are squares while
ordinary and relative points are disks (above and below the diagonal respectively). The staircases are
represented with dashed (QIO), dotted (QIE−), dash-dotted (QIR), and dash-dot-dotted (QIE) lines. One
can see how to go from the extended persistence diagram of the height function to the one of the induced
map (remove the points in dimension 2 and the points in dimension 1 above the diagonal), then to the
one of the MultiNerve Mapper (remove the points inside the staircases corresponding to their type), and
finally, to the one of the Mapper (remove the extended points in QIE).

We show a similar convergence result in the functional distortion distance in Section 4.6. Note that
building the signature ExDg(Mf (X, I)) requires computing the critical values of f exactly, which may
not always be possible. However, as for Reeb graphs, the signature can be approximated efficiently and
with theoretical guarantees under mild sampling conditions using existing work on scalar fields analysis,
as we will see in Chapter 5.

4.3.3 Induced signature for Mapper

Recall from Lemma 4.2.6 that the projection π1 : Mf (X, I)→ Mf (X, I) induces a surjective homomor-
phism in homology. Thus, the Mapper has a simpler structure than the MultiNerve Mapper. To be more
specific, π1 identifies all the edges connecting the same pair of vertices. This eliminates the correspond-
ing holes in Mf (X, I). Since the two vertices lie in successive intervals of the cover, the corresponding
diagram points lie in the following extended staircase (see the staircase QIE displayed on the right in
Figure 4.3):

QIE =
⋃

I∪J such that I∩J 6=∅
Q−I∪J .

The other staircases remain unchanged. Hence the following signature:

ExDg(Mf (X, I)) = (Ord(f̃) \QIO) ∪ (Ext(f̃) \QIE) ∪ (Rel(f̃) \QIR)

= (Ord0(f) \QIO) ∪ ((Ext+
0 (f) ∪ Ext−1 (f)) \QIE) ∪ (Rel1(f) \QIR).

(4.3)

77

The interpretation of this signature in terms of the structure of the Mapper follows the same rules as for
the MultiNerve Mapper and Reeb graph—see again Figure 4.6. Moreover, the convergence result stated
in Corollary 4.3.6 holds for the Mapper as well.

4.4 Stability in the bottleneck distance

Intuitively, for a point in the signature ExDg(Mf (X, I)), the `∞-distance to its corresponding staircase2

measures the amount by which the function f or the cover I must be perturbed in order to eliminate
the corresponding feature (branch, hole) in the MultiNerve Mapper. Conversely, for a point in the
Reeb graph’s signature ExDg(f̃) that is not in the MultiNerve Mapper’s signature (i.e. that lies inside
its corresponding staircase), the `∞-distance to the boundary of the staircase measures the amount by
which f or I must be perturbed in order to create a corresponding feature in the MultiNerve Mapper.
Our goal here is to formalize this intuition. For this we adapt the bottleneck distance so that it takes
the staircases into account. Our results are stated for the MultiNerve Mapper, they hold the same for
the Mapper with the staircase QIE− replaced by its extension QIE .

An extension of the bottleneck distance. Let Θ be a subset of R2. Given a partial
matching Γ between two extended persistence diagrams ExDg,ExDg′, the Θ-cost of Γ is:

costΘ(Γ) = max

{
max

p∈ExDg
δExDg(p), max

p′∈ExDg′
δExDg′(p

′)

}
,

where:

δExDg(p) = ‖p− p′‖∞ if ∃p′ ∈ ExDg′ such that (p, p′) ∈ Γ and d∞(p,Θ) otherwise,

δExDg′(p
′) = ‖p− p′‖∞ if ∃p ∈ ExDg such that (p, p′) ∈ Γ and d∞(p′,Θ) otherwise.

The bottleneck distance becomes:

db,Θ(ExDg,ExDg′) = inf
Γ

costΘ(Γ),

where Γ ranges over all partial matchings between ExDg and ExDg′. This is again a pseudometric and
not a metric. Note that the usual bottleneck distance is obtained by taking Θ to be the diagonal ∆.
Given a gomic I, we choose different sets Θ depending on the types of the points in the two diagrams.
More precisely, we define the distance between signatures as follows:

Definition 4.4.1. Given a gomic I, we define the distance dI between extended persistence diagrams
ExDg,ExDg′ as:

dI(ExDg,ExDg′) = max
{
db,QIO

(Ord,Ord′), db,QI
E−

(Ext,Ext′), db,QIR
(Rel,Rel′)

}
. (4.4)

The distance dI stabilizes the (MultiNerve) Mappers, as stated in the following theorem:

Theorem 4.4.2. Given a topological space X, Morse-type functions f, g : X → R and a gomic I of
granularity at most ε > 0, the following stability inequality holds:

dI(ExDg(Mf (X, I)),ExDg(Mg(X, I))) ≤ dI(ExDg(Mf (X, I)),ExDg(Mg(X, I))) ≤ ‖f − g‖∞. (4.5)

Moreover, dI and db are related as follows:

db(ExDg(Mf (X, I)),ExDg(Mg(X, I))) ≤ ε

2
+ dI(ExDg(Mf (X, I)),ExDg(Mg(X, I))). (4.6)

db(ExDg(Mf (X, I)),ExDg(Mg(X, I))) ≤ ε+ dI(ExDg(Mf (X, I)),ExDg(Mg(X, I))). (4.7)

Note that Theorem 4.4.2 can be readily extended to Morse-type functions with different domains
using results in [37]. In that case, the upper bound depends on the Gromov-Hausdorff distance between
the domains.

The proof of Theorem 4.4.2 relies on the following monotonicity property, which is immediate:

2QIO, QIE− or QIR, depending on the type of the point.

78

a

b

c

d

δ

Mf (T, I) Mg(T, I)

δ

a

b

c

d

δ

Figure 4.7: We compute the MultiNerve Mapper of the height function f on the torus T, given a gomic
I with two intervals. We also compute the MultiNerve Mapper of a perturbed function g such that
‖f − g‖∞ ≤ δ. We plot the extended persistence diagrams of f̃ (dark green) and g̃ (purple). Note that
the signature of Mg(T, I) is obtained by removing the purple point beneath the diagonal since it belongs

to a staircase, while the signature of Mf (T, I) is equal to ExDg(f̃). If we used the bottleneck distance
to compare the two signatures, their distance would be equal to the distance to the diagonal of the dark
green point beneath ∆ (green segment), which can be arbitrarily large, while, using dI , their distance
becomes the distance of the same point to the staircase (tiny pink segment), which is bounded by δ.

Lemma 4.4.3. Let Θ ⊆ R2 be in the closure of Θ′ ⊆ R2. Then,

dΘ′(ExDg,ExDg′) ≤ dΘ(ExDg,ExDg′) ≤ dΘ′(ExDg,ExDg′) + dH(Θ,Θ′),

where dH denotes the Hausdorff distance in the `∞-norm.

Proof of Theorem 4.4.2. Equation (4.6) and (4.7) are direct applications of Lemma 4.4.3. Equation (4.5)
is proven by the following sequence of (in)equalities:

dI(ExDg(Mf (X, I)),ExDg(Mg(X, I))) = dI(ExDg(f̃),ExDg(g̃))

≤ db,∆(ExDg(f̃),ExDg(g̃)) = db(ExDg(f̃),ExDg(g̃))

≤ db(ExDg(f),ExDg(g))

≤ ‖f − g‖∞.

The first equality comes from the observation that the points of ExDg(f̃)tExDg(g̃) that lie inside their
corresponding staircase can be left unmatched and have a zero cost in the matching, so removing them
as in (4.2) does not change the bottleneck cost. The first inequality follows from Lemma 4.4.3 since
the diagonal ∆ is included in the closure of each of the staircases. The second inequality follows from
Theorem 2.4.4 and the fact that the matchings only match points of the same type (ordinary, extended,
relative) and of the same homological dimension. The last inequality comes from Theorem 2.3.1.

Interpretation of the stability. Note that the bottleneck distance db is unstable in this
context—see Figure 4.7. The theorem allows us to make some interesting claims. For instance, de-
noting by QIp the staircase corresponding to the type of a diagram point p, the quantity

dI(ExDg, ∅) = max
p∈ExDg

d∞(p,QIp)

measures the amount by which the diagram ExDg must be perturbed in the metric dI in order to bring
all its points to the staircase. Hence, by Theorem 4.4.2, given a pair (X, f), the quantity

dI(ExDg(Mf (X, I)), ∅) = max
p∈ExDg(Mf (X,I))

d∞(p,QIp)

is a lower bound on the amount by which f must be perturbed in the supremum norm in order to remove
all the features (branches and holes) from the MultiNerve Mapper. Conversely,

min
p∈ExDg(Mf (X,I))

d∞(p,QIp)

79

is a lower bound on the maximum amount of perturbation allowed for f if one wants to preserve all
the features in the MultiNerve Mapper no matter what. Note that this does not prevent other features
from appearing. The quantity that controls those is related to the points of ExDg(f̃) (including diagonal
points) that lie in the staircases. More precisely, the quantity

min
p∈ExDg(f̃)∪∆

d∞(p, ∂QIp \∆)

is a lower bound on the maximum amount by which f can be perturbed if one wants to preserve the
structure (set of features) of the MultiNerve Mapper no matter what. Note that this lower bound is in
fact zero since ∂QIO \∆ and ∂QIR \∆ come arbitrarily close to the diagonal ∆ (recall Figure 4.3). This
means that, as small as the perturbation of f may be, it can always make new branches appear in the
MultiNerve Mapper. However, it will not impact the set of holes if its amplitude is less than

min
p∈Ext(f̃)∪∆

d∞(p, ∂QIE− \∆).

From this discussion we derive the following rule of thumb: having small overlaps between the intervals
of the gomic helps capture more features (branches and holes) of the Reeb graph in the (MultiNerve)
Mapper; conversely, having large overlaps helps prevent new holes from appearing in the (MultiNerve)
Mapper under small perturbations of the function. This is an important trade-off to consider in appli-
cations.

4.5 Stability with respect to perturbations of the

cover

Let us now fix the pair (X, f) and consider varying gomics. For each choice of gomic, Eqs. (4.2)-(4.3)
tell which points of the diagram ExDg(f) end up in the diagram of the (MultiNerve) Mapper and thus
participate in its structure. We aim for a quantification of the extent to which this structure may change
as the gomic is perturbed. For this we adopt the dual point of view: for any two choices of gomics, we
want to use the points of the diagram ExDg(f) to assess the degree by which the gomics differ. This is a
reversed situation compared to Section 4.4, where the gomic was fixed and was used to assess the degree
by which the persistence diagrams of two functions differed.

A distance between gomics. The diagram points that discriminate between the two gomics
are the ones located in the symmetric difference of the staircases, since they witness that the symmetric
difference is non-empty. Moreover, their `∞-distances to the staircase of the other gomic provide a lower
bound on the Hausdorff distance between the two staircases and thus quantify the extent to which the
two covers differ. We formalize this intuition as follows: given a persistence diagram ExDg and two
gomics I,J , we consider the quantity:

dExDg(I,J) = max
∗∈{O,E−,R}

{
sup

p∈ExDg∗∩(QI∗4QJ∗)

max
{
d∞(p,QI∗), d∞(p,QJ∗)

}}
, (4.8)

where 4 denotes the symmetric difference, where ExDg∗ stands for the subdiagram of ExDg of the right
type (Ord, Ext or Rel), and where we adopt the convention that supp∈∅ ... is zero instead of infinite.
Note that there is always one of the two terms in (4.8) that is zero since the supremum is taken over all
points that lie in the symmetric difference of the staircases. Deriving an upper bound on dExDg(I,J) in
terms of the Hausdorff distances between the staircases is straightforward, since the supremum in (4.8)
is taken over points that lie in the symmetric difference between the staircases:

dExDg(I,J) ≤ max
∗∈{O,E−,R}

dH(QI∗ , Q
J
∗),

where dH stands for the Hausdorff distance in the `∞-norm. The connection to the MultiNerve Mapper
appears when we take ExDg to be the persistence diagram of the induced map f̃ defined on the Reeb
graph Rf (X). Indeed, we have

Ord(f̃) ∩ (QIO4Q
J
O) = (Ord(f̃) ∩QIO)4(Ord(f̃) ∩QJO) = Ord(Mf (X, I))4Ord(Mf (X,J)),

80

where the second equality follows from the definition of the signature of the MultiNerve Mapper given
in (4.2). Similar equalities can be derived with Ext and Rel. Thus, dExDg(f̃)(I,J) quantifies the proximity

of each signature to the other staircase. In particular, having dExDg(f̃)(I,J) = 0 means that there are no
diagram points in the symmetric difference, so the two gomics are equivalent from the viewpoint of the
structure of the MultiNerve Mapper. Differently, having dExDg(f̃)(I,J) > 0 means that the structures

of the two MultiNerve Mappers differ, and the value of dExDg(f̃)(I,J) quantifies by how much the covers
should be perturbed to make the two multigraphs isomorphic. Furthermore, we have the following upper
bound on this quantity:

Theorem 4.5.1. Given a Morse-type function f : X → R, for any gomics I,J ,

dExDg(f̃)(I,J) ≤ max
∗∈{O,E−,R}

dH(QI∗ , Q
J
∗),

where f̃ is the induced map defined on the Reeb graph Rf (X).

Tightness. It is easy to build examples where the upper bound is tight, for instance by placing a
diagram point at a corner of one of the staircases3. On the other hand, there are obvious cases where
the bound is not tight, for instance we have dExDg(f̃)(I,J) = 0 as soon as there are no diagram points
in the symmetric difference, whereas the symmetric difference itself may not be empty. What the upper
bound measures depends on the subdiagram. For instance, for ∗ = E−, we defined QIE− to be the set⋃

(a,b)∈I{(x, y) ∈ R2 : a ≤ y < x ≤ b}, so dH(QIE− , Q
J
E−) measures the supremum of the differences

between the intervals in one cover to their closest interval in the other cover:

dH(QIE− , Q
J
E−) = max

{
sup

(a,b)∈I
inf

(c,d)∈J
max{|a− c|, |b− d|}, sup

(c,d)∈J
inf

(a,b)∈I
max{|a− c|, |b− d|}

}
.

Similar formulas can be derived for the other subdiagrams.

4.6 Convergence in the functional distortion distance

Since db is merely a pseudometric, the relationship between the (MultiNerve) Mapper and the Reeb
graph is only partially explained by Theorem 4.3.3. In this section, we bound the functional distortion
distance dFD between the (MultiNerve) Mapper and the Reeb graph, and we provide an alternative proof
of Theorem 4.3.3 as a byproduct. To this end, we connect the (MultiNerve) Mapper and the Reeb graph
through the operators of Section 3.1, with which we can control the functional distortion distance.

4.6.1 Operators on MultiNerve Mapper

We first provide invariance results for MultiNerve Mappers computed on telescopes as defined in Sec-
tion 3.1. The result is stated in a way that is adapted to its use in the following sections. The conclusion
would still hold under somewhat weaker assumptions.

Proposition 4.6.1. Let T be a telescope, π2 be the projection onto the second coordinate, and I be a
gomic of im(π2). Let End(I) denote the set of endpoints of intervals of I, sorted in ascending order. All
isomorphisms mentioned in the following items are in the category of combinatorial multigraphs.

(i) Let a ≤ b such that there exists an interval I ∈ I for which a, b belong to either I−∩ , Ĩ or I+
∩ .

Then, Mπ2
(Mergea,b(T), I) is isomorphic to Mπ2

(T, I).

(ii) Let ai ∈ Crit(T) \End(I), and a < ai < b with a, b consecutive in End(I). If ai−1 < a < b < ai+1

and 0 < ε < min{ai − a, b− ai}, then Mπ2
(Splitε,ai(T), I) is isomorphic to Mπ2

(T, I).

(iii) Let ai ∈ Crit(T) \ End(I), and b < ai < c < d with b, c, d consecutive in End(I). If ai is an up-
fork, (b, c) = I∩J is an intersection, and c−ai < ε < min{d, ai+1}−ai, then Mπ2

(Shiftε,ai(T), I)
is isomorphic to Mπ2

(T, I).

3Which is easily done by choosing suitable critical values as coordinates for this point.

81

(iv) Let ai ∈ Crit(T) \ End(I), and a < b < ai < c with a, b, c consecutive in End(I). If ai is a down-
fork, (b, c) = I∩J is an intersection, and max{a, ai−1}−ai < ε < b−ai, then Mπ2(Shiftε,ai(T), I)
is isomorphic to Mπ2(T, I).

Proof. Under the assumptions given by each item, the connected components in every intersection I ∩J ,
I, J ∈ I and in every element I ∈ I remain the same after each operation. Given any intersection
K = I ∩ J , I, J ∈ I, or interval K = I ∈ I, we recall that TK denotes π1 ◦ π−1

2 (K). Then, we have:

(i) - (ii) TK deform retracts onto (Mergea,b(T))K and (Splitε,ai(T))K deform retracts onto TK ;

(iii) - (iv) The Shifts move the up-fork to the upper proper subinterval, and the down-fork to the lower
proper subinterval, which preserves the connected components in each of the two intervals as well
as in their intersection.

Thus, the MultiNerve Mapper is not changed by any of the aforementioned operations.

4.6.2 Connection between the (MultiNerve) Mapper and the
Reeb graph.

In this section, we describe a sequence of metric spaces linking the MultiNerve Mapper and the Reeb
graph. Let f : X → R be of Morse type, and let I be a gomic of im(f). Let T (X, f) be the corresponding
telescope. The idea is to move all critical values out of the intersection preimages f−1(I ∩J), so that the
MultiNerve Mapper and the Reeb graph become isomorphic. For any interval I ∈ I, we let aĨ < bĨ be

the endpoints of its proper subinterval Ĩ, so we have Ĩ = [aĨ , bĨ]. For any non-empty intersection I ∩ J ,
we fix a subinterval [aI∩J , bI∩J] ⊂ I ∩ J such that every critical value within I ∩ J falls into [aI∩J , bI∩J]
(which is possible because f is of Morse type hence has finitely many critical values). We then define
three different operations individually as follows:

• MergeI is the composition of all the MergeaĨ ,bĨ , I ∈ I, and of all the MergeaI∩J ,bI∩J , I, J ∈ I and

I ∩ J 6= ∅. All these functions commute, so their composition is well-defined. The same holds for
the following compositions.

• SplitI is the composition of all the Splitε,ā with ā a critical value after MergeI (therefore not an
interval endpoint) and ε > 0 such that the assumptions of Proposition 4.6.1 (ii) are satisfied.

• ShiftI is the composition of all the Shiftε,ā+ with ā+ an up-fork critical value after the SplitI and
ε > 0 such that the assumptions of Proposition 4.6.1 (iii) are satisfied, and of all the Shiftε,ā−
with ā− a down-fork critical value after the SplitI and ε < 0 such that the assumptions of
Proposition 4.6.1 (iv) are satisfied. After ShiftI there are no more critical values located in the
intersections of consecutive intervals of I.

• Merge′I is the composition of all the MergeaĨ ,bĨ , I ∈ I.

We can now define our sequence of intermediate spaces:

Definition 4.6.2. Let X be a topological space, f : X → R be a Morse-type function, and I be a gomic
of im(f). Let T (X, f) be the telescope associated to f . We define the telescope T̄I with:

T̄I(X, f) = Merge′I ◦ ShiftI ◦ SplitI ◦MergeI(T (X, f)).

We also let f̄I denote the projection of T̄I onto the second factor.

See Figure 4.8 for an illustration of this sequence of transformations. When often write T̄I instead of
T̄I(X, f) when the pair (X, f) is clear from the context. In the following, we identify the pair (T, π2) with

(X, f) since they are isomorphic in the category of R-constructible spaces. We also let ˜̄fI : Rf̄I (T̄I)→ R
denote the induced map defined on the Reeb graph of T̄I .

Thanks to Proposition 4.6.1 and the choice of the aĨ , bĨ , aI∩J , bI∩J , ε in the definitions of MergeI ,
SplitI ,ShiftI and Merge′I , we provide Lemma 4.6.3 below, which states that the MultiNerve Mapper is
not affected by this sequence of transformations.

82

1

3

2

4

5

Figure 4.8: Illustration of the sequence of transformations in (4.6.2) on the features located in an
interval intersection. For each figure, we display the original space (middle), its Reeb graph (left) and
its MultiNerve Mapper (right).

Lemma 4.6.3. For (T̄I , f̄I) defined as in Definition 4.6.2, Mf̄I (T̄I , I) and Mf (X, I) are isomorphic as
combinatorial multigraphs.

This allows us to prove the following result, which states that the MultiNerve Mapper Mf (X, I) is
actually the same object than the perturbed Reeb graph Rf̄I (T̄I).

Theorem 4.6.4. For (T̄I , f̄I) defined as in Definition 4.6.2, Mf (X, I) and CRf̄I (T̄I) are isomorphic as
combinatorial multigraphs.

We know from Lemma 4.6.3 that Mf (X, I) and Mf̄I (T̄I , I) are isomorphic as combinatorial multi-
graphs. Theorem 4.6.4 is then a consequence of the following result, whose hypothesis is satisfied by
the T̄I of Definition 4.6.2:

Lemma 4.6.5. Let T be a telescope and let π2 : T → R be the projection onto the second factor.
Suppose that every proper subinterval Ĩ in the cover I contains exactly one critical value of π2, and that

83

the intersections I ∩ J contain none. Then, Mπ2
(T, I) and CRπ2

(T) are isomorphic as combinatorial
multigraphs.

Proof. The nodes of CRπ2
(T) represent the connected components of the preimages of all critical values

of π2, while the nodes of Mπ2
(T, I) represent the connected components of the preimages of all I ∈ I.

The hypothesis of the lemma implies that there is exactly one critical value per interval I ∈ I, hence
the nodes of Mπ2(T, I) and of CRπ2(T) are in bijection. Meanwhile, the edges of CRπ2(T) are given by
the connected components of the Yi × [ai, ai+1]. Since the proper subintervals contain one critical value
each and the I ∩ J contain none, the pullbacks of all intersections of consecutive intervals also span the
Yi × [ai, ai+1]. Hence, the edges of Mπ2

(T, I) are in bijection with the ones of CRπ2
(T). Moreover, their

endpoints are defined in both cases by the φi and ψi. Hence the multigraph isomorphism.

In passing, it is interesting to study the behavior of the MultiNerve Mapper as the hypothesis of the
lemma is weakened. For instance:

Lemma 4.6.6. Let T be a telescope and let π2 : T → R be the projection onto the second factor. Suppose
that every interval I in the cover I contains at most one critical value of π2. Then, Mπ2

(T, I) is obtained
from CRπ2

(T) by splitting some vertices into two and by subdividing some edges once.

Thus, the MultiNerve Mapper may non longer be ‘exactly’ isomorphic to the combinatorial Reeb
graph (counter-examples are easy to build, by making some of the critical values fall into intersections
of intervals in the cover), however it is still isomorphic to it up to vertex splits and edge subdivisions,
which are topologically trivial modifications.

Proof of Lemma 4.6.6. The proof is constructive and it proceeds in 3 steps:
1. For every interval I ∈ I that does not contain a critical value, add a dummy critical value (with
identities as connecting maps) in the proper subinterval Ĩ. The effect on the Mapper is null, while the
effect on the Reeb graph is to subdivide once each edge crossing the dummy critical value. At this
stage, every interval of I contains exactly one critical value. For simplicity we identify T with the new
telescope.
2. For every interval I ∈ I whose corresponding critical value does not lie in the proper subinterval Ĩ
but rather in some intersection I ∩ J (defined uniquely since I is a gomic), merge I and J into a single
interval I ∪ J . The coarser cover J thus obtained is still a gomic and it has the extra property that
every proper subinterval contains exactly one critical value and every intersection contains none. Then,
by Lemma 4.6.5, the MultiNerve Mapper Mπ2

(T,J) is isomorphic to the combinatorial Reeb graph
CRπ2

(T).
3. There remains to study the differences between Mπ2(T, I) and Mπ2(T,J). The only difference between
the two covers is that some isolated pairs of intervals (I, J) have been merged because their intersection
I ∩ J contained a critical value ai. For every such pair, there are as many connected components in the
preimage π−1

2 (I) as in π−1
2 (J) as in π−1

2 (I ∩ J) as in π−1
2 (I ∪ J) because I ∪ J contains no critical value

other than ai. Hence, every vertex of Mπ2
(T,J) corresponding to a connected component of π−1

2 (I ∪ J)
is split into two in Mπ2(T, I). Moreover, the two copies are connected by a single edge, given by the
corresponding connected component of π−1

2 (I ∩ J). Now, assuming without loss of generality that J lies
above I, we have (I ∪ J)+

∩ = J+
∩ , which by assumption contains no critical value, so the connections

between the vertex copy corresponding to π−1
2 (J) and the vertices lying above it in Mπ2

(T, I) are the same
as the connections between the original vertex and the vertices lying above it in Mπ2

(T,J). Similarly,
(I ∪ J)−∩ = I−∩ contains no critical value by assumption, so the connections between the vertex copy
corresponding to π−1

2 (I) and the vertices lying below it in Mπ2(T, I) are the same as the connections
between the original vertex and the vertices lying below it in Mπ2(T,J).

Extension to the Mapper. Due to the simple relation between the Mapper and the MultiNerve
Mapper given by Corollary 4.2.5, Theorem 4.6.4 can be extended for Mappers.

Definition 4.6.7. Let X be a topological space, and f : X → R be a Morse-type function. Let (T̄I , f̄I)
be defined as in Definition 4.6.2. Let Cyl(T̄I) be the set of the connected components of the cylinders of

84

T̄I . We define the equivalence relation ∼ between elements of Cyl(T̄I) as:

C ∼ C ′ ⇔

 C,C ′ are connected components of the same cylinder
φi(C × {ai}) and φi(C

′ × {ai}) belong to the same connected component
ψi(C × {ai+1}) and ψi(C

′ × {ai+1}) belong to the same connected component

Then, we define TI as T̄I/ ∼, equipped with the projection onto the second factor that we call fI .

Intuitively, we glue the pairs C,C ′ of connected components of the same cylinder whose images
under the attaching maps are in the same connected component of the critical slice, i.e. those that
induce edges with the same endpoints in the multinerve. Hence, we obtain the following corollary using
Corollary 4.2.5:

Corollary 4.6.8. CRfI (TI) and Mf (X, I) are isomorphic as combinatorial multigraphs.

4.6.3 Convergence results.

Recall that the dFD compares metric graphs, whereas the (MultiNerve) Mappers are combinatorial
graphs. However, since Mf (X, I) and Rf̄I (T̄I) are essentially the same according to Theorem 4.6.4, we

can use Rf̄I (T̄I) as a metric graph representation of Mf (X, I), when computing the functional distortion

distance. Note that we could also use Rm̄I (Mf (X, I)) since it is isomorphic to Mf (X, I) as well according
to Lemma 4.3.2, but its connection to Rf (X) is unclear. On the opposite, even though dFD is most of
the time untractable, its computation is possible with Rf̄I (T̄I) thanks to the sequence of transformations

of Definition 4.6.2. We will see at the end of the section that m̄I and ˜̄fI actually coincide on Mf (X, I).
Theorem 4.6.10 below shows that Rm̄I (Mf (X, I)) is close to Rf (X) if I has a small granularity. To

prove it, we use the following lemma, whose proof is just a simple extension of the one of Proposition 3.2.3:

Lemma 4.6.9. Let S be a set of pairwise disjoint bounded open intervals, and let MergeS be defined as
the composition of all Mergea,b, (a, b) ∈ S. Let Rg be a Reeb graph such that Crit(g̃) ⊂ ⋃I∈S I and let
Rg′ be the Reeb graph of the telescope MergeS(Rg). Then dFD(Rg,Rg′) ≤ sup{length(I) : I ∈ S}.

Given a gomic I, we let ε1(I) = sup{length(Ĩ) : I ∈ I} and ε2(I) = sup{length(I ∩ J) : I, J ∈ I}.
Note that ε1(I) and ε2(I) can be thought of as different types of granularity measures of I. They are
both bounded from above by the granularity of I as defined in Section 2.5.

Theorem 4.6.10. Suppose the granularity of the gomic I is at most ε. For (T̄I , f̄I) defined as in
Definition 4.6.2, we have dFD(Rf̄I (T̄I),Rf (X)) ≤ ε1(I) + ε2(I) + max{ε1(I), ε2(I)} ≤ 3ε.

Moreover, for (TI , fI) defined as in Definition 4.6.7, we have dFD(RfI (TI),Rf (X)) ≤ 7ε/2.

Proof. We start with the MultiNerve Mapper. By the triangle inequality, it suffices to bound the func-
tional distortion distance for each of the four operations MergeI , ShiftI , SplitI and Merge′I individually.
Let R1 be the Reeb graph of the telescope MergeI(Rf (X)). Similarly, let R2 be the Reeb graph of
SplitI(R1), R3 be the Reeb graph of ShiftI(R2) and R4 = Rf̄I (T̄I) be the Reeb graph of Merge′I(R3).
Examples of such Reeb graphs can be seen in the left parts of Figure 4.8.

Then we have dFD(Rf̄I (T̄I),Rf (X)) ≤ dFD(Rf (X),R1) + dFD(R1,R2) + dFD(R2,R3) + dFD(R3,R4).

• By Lemma 4.6.9, we have dFD(Rf (X),R1) ≤ max{ε1(I), ε2(I)} and dFD(R3,R4) ≤ ε1(I).

• Assume without loss of generality that SplitI is the composition of all Splitα,ā, where ā is a
critical value of R1. Since R1 is obtained from R2 by taking the composition of all Mergeā−α,ā+α,
it follows from Lemma 4.6.9 that dFD(R1,R2) ≤ 2α.

• Since the assumptions of Prop. 4.6.1 (iii) and Prop. 4.6.1 (iv) are satisfied by ShiftI , it follows that
R2 and R3 are isomorphic, because the number, the types and the ordering of the critical values
of R2 are preserved when transformed into R3. It is then straightforward that the functional
distortion distance between R2 and R3 is the maximal amplitude of the Shift operations involved.
According to the assumptions of Proposition 4.6.1 (iii) and Proposition 4.6.1 (iv), these amplitudes
are all bounded by ε2(I).

85

The result follows by letting α→ 0.
Concerning the Mapper, the result is obtained by adding an extra ε/2 to the previous upper bound,

which corresponds to the functional distortion distance cost of gluing edges with the same endpoints.

Note that a similar result can be obtained directly by using the convergence result of the so-called
interleaving distance—see Theorem 4.1 in [105], and the strong equivalence between the functional dis-
tortion distance and this interleaving distance—see Theorem 14 in [10]. However, the upper bound gets
larger (7ε) and there is no clear intuition on the Reeb graph used to represent the Mapper (also called
geometric Mapper) in [105].

Finally, Theorems 4.6.10 and 2.4.10 allow us to derive the following result with the triangle inequality:

Corollary 4.6.11. Let X be a topological space, and let f, g : X → R be two Morse-type functions with
continuous sections. Let (T̄I(X, f), f̄I) (resp. (T̄I(X, g), ḡI)) denote the pair computed with function f
(resp. g) as in Definition 4.6.2. Finally, let I be a gomic of granularity at most ε. Then:

dFD(Rf̄I (T̄I(X, f)),RḡI (T̄I(X, g))) ≤ ‖f − g‖∞ + 6ε.

Moreover, for (TI(X, f), fI) and (TI(X, g), gI) computed as in Definition 4.6.7, we have:

dFD(RfI (TI(X, f)),RgI (TI(X, g))) ≤ ‖f − g‖∞ + 7ε.

4.6.4 An alternative proof of Theorem 4.3.3

I

J

Ĩ

J̃

I+∩ = J−∩

Figure 4.9: The left panel displays the trajectories of points in Ord (disks above the diagonal) and
Rel (disks below the diagonal) while the right panel displays the trajectories of points in Ext. For both
diagrams, the original point is red, the final point is purple, and intersections and proper subintervals
are colored in green and light blue respectively.

We can prove Theorem 4.3.3 again by studying the effect of the transformation defined in Defini-
tion 4.6.2 on the extended persistence diagram of f . These effect is illustrated in Figure 4.9. There are
two grids in this figure: the one with solid lines is defined by the interval endpoints, while the one with
dotted lines is defined by midpoints of proper subintervals and intersections. In the following, we use
the term cell to designate a rectangle of the first grid. Cells are closed if they correspond to proper
subintervals for both coordinates, they are open if they correspond to intersections for both coordinates,
and they are neither closed nor open otherwise. Blue and green cells in Figure 4.9 correspond to squares
associated to a proper subinterval (blue) or intersection (green). We can now interpret the effects of the
transformations in (4.6.2) on the persistence diagram visually:

• MergeI snaps all the points to the second grid by Lemma 3.1.6.

86

• SplitI moves the points to one of the four possible quarters inside their cell, depending on the
point’s type by Lemma 3.1.12. More precisely, ordinary points are moved to the down-left quarter,
extended points are moved to the up-left quarter, and relative points are moved to the up-right
quarter.

• Then, ShiftI moves the points to a neighboring cell by Lemma 3.1.14. This neighboring cell is
given by the point’s type (as in the case of SplitI) and by the coordinates of the point. For
instance, an extended point (x, y) lying in the row of a green cell and in the column of another
green cell, has coordinates that both belong to interval intersections. Then, this point is moved
to the upper-left neighboring cell. Differently, an extended point whose abscissa (resp. ordinate)
is in an intersection and whose ordinate (resp. abscissa) is not, is only moved to the left (resp.
upper) cell. The same can be said for ordinary (resp. relative) points by changing up-left to
down-left (resp. up-right). Points whose coordinates both belong to proper subintervals are not
moved by ShiftI , regardless of their type.

• Finally, Merge′I re-snaps the points to the second grid by Lemma 3.1.6.

Thus, each point of ExDg(f) can be tracked through the successive operations of (4.6.2), and this tracking
leads to the following elementary observations:

1. The points of Ord(f) or Rel(f) that end their course on the diagonal after the sequence of op-
erations of Definition 4.6.2 disappear in ExDg(f̄I). This is because ordinary and relative points
cannot be located on the diagonal. The rest of the points of Ord(f) or Rel(f) are preserved with
the same type in ExDg(f̄I).

2. Differently, all the points of Ext(f) are preserved with the same type (Ext) in ExDg(f̄I). However,
some of the points of Ext−(f) may end their course on or across the diagonal after the sequence
of operations (4.6.2), thus switching from Ext−(f) to Ext+(f̄I).

3. All the points lie in the rows and columns of blue cells after ShiftI . Therefore, the points that
end their course on the diagonal after the sequence of operations of Definition 4.6.2 are the ones
located in blue cells after ShiftI .

4. Since transfers between cells occur only during ShiftI , a point p that is not in a blue or green cell
initially ends up in a blue cell B after ShiftI if and only if:

• p is extended and it is in the down, right, or down-right neighboring cell of B (grey cells in
the right diagram of Figure 4.9), or

• p is ordinary and it is in the up neighboring cell of B (grey cells above the diagonal in the
left diagram of Figure 4.9), or

• p is relative and it is in the down neighboring cell of B (grey cells below the diagonal in the
left diagram of Figure 4.9).

5. Points that belong to a blue or green cell initially are snapped to the diagonal by MergeI . Among
them, those that belong to a blue cell stay there until the end, whereas those that belong to
a green cell eventually leave it—they end up in a blue cell after ShiftI if they are ordinary or
relative, while they end up in a white cell above the diagonal if they are extended.

The outcome of these observations is the following one. Observations 1, 3, 4, 5 imply that the points of
Ord(f) that disappear in ExDg(f̄I) are the ones located initially in the staircase made of the blue, green
and grey areas above the diagonal in the left panel of Figure 4.9, which is nothing but QIO. Similarly, the
points of Rel(f) that disappear in ExDg(f̄I) are the ones located initially in the staircase made of the
blue, green and grey areas below the diagonal in the left panel of Figure 4.9, which is nothing but QIR.
Finally, observations 2, 3, 4, 5 imply that the points of Ext−(f) that switch to Ext+(f̄I) are the ones
located initially in the staircase made of the blue, green and grey areas below the diagonal in the right
panel of Figure 4.9, which is nothing but QIE− . The rest of the points of ExDg(f) are preserved (albeit
shifted) with the same type (Ord, Rel, Ext+, Ext−) in ExDg(f̄I). Hence, there is a perfect matching
between:

(i) Ord(f̄I) and Ord(f) \QIO (iii) Ext−(f̄I) and Ext−(f) \QIE−
(ii) Rel(f̄I) and Rel(f) \QIR (iv) Ext+(f̄I) and Ext+(f) ∪ (Ext−(f) ∩QIE−)

87

This, combined with Theorem 2.4.4, is equivalent to Theorem 4.3.3. This matching also shows that
the critical points of f̄I and fI are located at the midpoints of proper subintervals of the gomic’s elements.

Hence, ˜̄fI and f̃I actually coincide with m̄I and mI , which allows us to state this final result:

Theorem 4.6.12. Let X be a topological space and f : X → R be a Morse-type function. Let I be a
gomic with granularity at most ε. Let m̄I and mI be as in Definition 4.3.1. Then:

db(ExDg(m̄I),ExDg(f̃)) ≤ ε/2, (4.9)

db(ExDg(mI),ExDg(f̃)) ≤ ε. (4.10)

Moreover, in both cases, the matching achieving the distance is actually a bijection preserving types.

4.7 Conclusion

In this chapter, we showed that the topological structure of the (MultiNerve) Mapper can be simply read
off from the one of the Reeb graph, via an appropriate simplification of its extended persistence diagram.
This simplification, namely the removal of points belonging to specific staircases, allowed us to define
a natural distance between (MultiNerve) Mappers by using appropriate signatures ExDg(Mf (X, I))
and ExDg(Mf (X, I)), to show that (MultiNerve) Mappers converge to their corresponding Reeb graphs
(Corollary 4.3.6) and that they are stable (Theorem 4.4.2) with respect to this distance. Moreover, we
also showed that (MultiNerve) Mappers actually converge to their corresponding Reeb graphs in the
functional distortion distance, by using computable functions m̄I and mI (Theorem 4.6.10).

Among the future perspectives of this work are the following questions:

• Does the local equivalence hold for Mapper? In Chapter 3, we showed that db is locally a
true metric for Reeb graphs. Extending this result to Mappers would require to find an equivalent
of dFD that depends on the gomic I.

• Can our analysis be extended to multivariate function? The main limitation of this work
is to be restricted to scalar-valued functions, even though this is very common in applications.
The question whether our analysis can extend to multivariate functions f : X → RD, with
D > 1, remains open, and would require to extend the space’s stratifications induced by Morse-
type functions. A possible way to proceed is to study the so-called Jacobi sets of multivariate
functions [41, 68, 70, 133], and to use recent results about decomposition of multidimensional
persistence modules [18, 53].

88

CHAPTER 5

STATISTICAL ANALYSIS AND PARAMETER SELECTION

In Chapters 3 and 4, we have seen how Reeb graphs and Mappers can be compared with adequate
metrics, when they are computed on non discrete topological spaces. In this chapter, we focus on
Mappers computed on discrete and finite topological spaces, i.e. point clouds. In particular, we provide
approximation results (Theorems 5.1.9 and 5.1.10) controlling the distance between Mappers computed
on discrete and non discrete topological spaces. Moreover, we show that interval- and intersection-
crossing edges are the principal responsibles of discretization artifacts (Lemma 5.1.7 and 5.1.8). This
observation allows us to study the rate of convergence of the Mapper to the Reeb graph when the
cardinality of the point cloud grows to +∞.

Our main result is Proposition 5.3.3, which states that the rate of convergence of the Mapper, when
computed on a point cloud Xn drawn from a specific probability distribution whose support is a compact
Riemannian manifold embedded in RD, is of the order (log(n)/n)1/d:

E [db(Mf (Xn, In),Rf (X))] . Cω

((
log(n)

n

) 1
d

)
,

where n is the cardinality of the point cloud, C is a constant, ω is a measure of the regularity of f (for
instance ω(x) = cx when f is Lipschitz with constant c), and In is a specific cover that depends only
on Xn. We show that this rate is minimax optimal, meaning that no other estimator of the Reeb graph
can converge faster.

We finally use the specific cover In as a heuristic to automatically tune Mapper parameters, and
we build on the convergence result to compute confidence regions for the topological features of the
Mapper, hence providing statistical guarantees for all applications of Topological Data Analysis relying
on Mapper, such as clustering [97, 108] and feature selection [109, 122].

Plan of the Chapter. In Section 5.1, we recall how Reeb graphs and Mappers are computed
on point clouds. Then, we give an approximation inequality (Theorem 5.2.1) for the Reeb graph in
Section 5.2. From this approximation result, we derive rates of convergences as well as candidate pa-
rameters in Section 5.3, and we show how to get confidence regions in Section 5.4. Section 5.5 illustrates
the validity of our parameter tuning and confidence regions with numerical experiments on smooth and
noisy data.

5.1 Approximations of (MultiNerve) Mappers and

Reeb graphs

In this section, we discuss the approximation of the Reeb graph, the (MultiNerve) Mapper and their
signatures when the pair (X, f) is known only through a finite set of sample points equipped with function
values.

89

Convention. From now on, we assume that the underlying space X is a compact Riemannian
manifold of RD, f : X → R is a Morse-type function and Xn = {x1, · · · , xn} ⊂ X is a point cloud in X
of cardinality n ∈ N. Moreover, we let ‖ · ‖ denote the usual Euclidean norm in RD. We often call f a
filter function, as in the literature on applications of Reeb graph and Mappers.

5.1.1 Approximation tools

Rips complex. All constructions take a neighborhood graph as input, such as for instance the
1-skeleton graph of the Rips complex, defined as follows:

Definition 5.1.1. Let δ ≥ 0 be a scale parameter. The Rips complex of Xn of parameter δ is the
simplicial complex Ripsδ(Xn) defined by:

{xi0 , ..., xik} ∈ Ripsδ(Xn)⇔ ‖xip − xiq‖ ≤ δ for any 0 ≤ p, q ≤ k, .

Its 1-skeleton graph is called the Rips graph of parameter δ and denoted by Rips1
δ(Xn).

Moreover, given a geometric realization |Ripsδ(Xn)|, we let fPL : |Ripsδ(Xn)| → R denote the
piecewise-linear interpolation of f along the simplices of Ripsδ(Xn), and we let RfPL(|Ripsδ(Xn)|) denote

its Reeb graph, with induced function f̃PL.

Geometric quantities. Two geometric quantities that assess the smoothness of topological spaces
will be used in the hypotheses of the results in this chapter—see Theorem 5.1.5 and Theorem 5.2.1.

• Reach. The medial axis of X ⊂ RD is the set of points in RD with at least two nearest neighbors
in X:

med(X) = {y ∈ RD : card{x ∈ X : ‖y − x‖ = ‖y,X‖} ≥ 2},
where ‖y,X‖ = inf{‖y − x‖ : x ∈ X}. The reach of X, denoted by rch(X), is the distance of X
to its medial axis:

rch(X) = inf{‖x−m‖ : x ∈ X,m ∈ med(X)}.

• Convexity radius. A set Y ⊆ X is said to be convex whenever every geodesic path in X between
two points of Y stays in Y . The convexity radius of X is the smallest radius ρ for which every
geodesic ball in X of radius less than ρ is convex.

Regularity of the filter function. Intuitively, approximating a Reeb graph computed with
a filter function f that has large variations is more difficult than for a smooth filter function, for some
notion of regularity that we now specify. Our result is given in a general setting by considering the
modulus of continuity of f .

Definition 5.1.2. Let f : X → R be a Morse-type function. The modulus of continuity ωf of f is:

ωf :

{
R+ → R+

δ 7→ sup{|f(x)− f(x′)| : x, x′ ∈ X, ‖x− x′‖ ≤ δ}

It follows from the Definition 5.1.2 that ωf satisfies :

1. ωf (δ)→ ω(0) = 0 as δ → 0 ;

2. ωf is nonnegative and non-decreasing on R+ ;

3. ωf is subadditive: ωf (δ1 + δ2) ≤ ωf (δ1) + ωf (δ2) for any δ1, δ2 > 0;

4. ωf is continous on R+.

Modulus of continuity. More generally, we say that a function ω defined on R+ is a modulus of
continuity if it satisfies the four properties above, and we say that it is a modulus of continuity for f if,
in addition, we have ω ≥ ωf .

90

5.1.2 Discrete approximations

Reeb graph

The following theorem states that the Rips complex of a point cloud can be used as a proxy for the
original space X. Hence, it is possible to approximate the Reeb graph of X, in the bottleneck distance,
by computing the Reeb graph of the Rips complex built on top of the point cloud.

Theorem 5.1.3 (Theorem 4.6 and Remark 2 in [64]). Assume X has reach rch > 0 and convexity radius
ρ > 0. Let δ ≥ 0 be a scale parameter, and let ω be a modulus of continuity for f .

If 4dH(X,Xn) ≤ δ ≤ min
{

1
4 rch, 1

4ρ
}

, then:

db(Ext−1 (f̃),Ext−1 (f̃PL)) ≤ 2ω(δ).

Note that the original version of this theorem is only proven for Lipschitz functions in [64], but it
extends at no cost, i.e. with the same proof, to functions with modulus of continuity.

Theorem 5.1.4 (Theorem 2 in [50]). Assume X has convexity radius ρ > 0. Let δ > 0 be a scale
parameter, and let ω be a modulus of continuity for f .

If 4dH(X,Xn) ≤ δ ≤ ρ, then:

max{db(Ord0(f̃),Ord0(f̃PL)), db(Ext+
0 (f̃),Ext+

0 (f̃PL)), db(Rel1(f̃),Rel1(f̃PL))} ≤ ω(δ).

Again, the original version of this theorem is only proven for Lipschitz functions in [50], but it
extends at no cost to functions with modulus of continuity. Moreover, three more remarks need to be
made. Firstly, this theorem is originally stated only for the ordinary part of the persistence diagrams
but its proof extends to the full extended filtrations at no extra cost. Secondly, it is stated for a nested
pair of Rips complexes, however, as pointed out in Section 4.3 in [50], in 0-dimensional homology a single
Rips graph is sufficient for the theorem to hold. Thirdly, its approximation function is piecewise-constant
and not piecewise-linear as in this article. However, the filtrations induced by the sublevel sets and the
superlevel sets of the piecewise-constant function are actually lower- and upper-star filtrations, and it is
known in that case that piecewise-linear and piecewise-constant functions induce the same persistence
diagram. See Section 2.5 of [103] for a proof of this statement.

Combining the two theorems gives the following complete approximation result:

Theorem 5.1.5. Under the assumptions of Theorem 5.1.3, we have db(ExDg(f̃),ExDg(f̃PL)) ≤ 2ω(δ).

(MultiNerve) Mapper

We report three possible constructions for the (MultiNerve) Mapper from the pair (Xn, f): the first is
from the original Mapper paper [129], the second is inspired from the graph-induced complex paper [63],
and the third is simply the Rips complex approximation. Given a choice of neighborhood parameter δ and
the corresponding Rips graph, the construction from [129] uses the vertices as witnesses for the connected
components of the pullback cover on Rips1

δ(Xn) and for their pairwise intersections. Differently, the
construction from [63] uses the edges as witnesses for the pairwise intersections. Thus, both constructions
have the same vertex set but potentially different edge sets.

Vertex-based connectivity. Given an arbitrary interval I in R, the preimage of I in Xn is
defined to be Xn ∩ f−1(I), and its connected components are defined to be the connected components
of the induced subgraph Rips1

δ(Xn ∩ f−1(I)). Then, the vertices in the (MultiNerve) Mapper are the
connected components of the preimages of the intervals I ∈ I. Given two intersecting intervals I, J of I,
given a connected component CI in the preimage of I and a connected component CJ in the preimage of
J , the corresponding vertices are connected by an edge in the Mapper if there is a connected component
in the preimage of I ∩ J that is contained in both CI and CJ ; in the MultiNerve Mapper, there are as
many copies of this edge as there are connected components in the preimage of I ∩ J that are contained
in CI ∩CJ . We denote these two constructions by M•f (Rips1

δ(Xn), I) and M
•
f (Rips1

δ(Xn), I) respectively.
Moreover, functions m•I and m̄•I can be defined on these constructions exactly like in Definition 4.3.1.

91

Edge-based connectivity. The vertex set of the (MultiNerve) Mapper is the same as in the
previous construction. Now, for any intersecting intervals I, J of I, we redefine the preimage of the
intersection I ∩ J to be the subset of Rips1

δ(Xn) spanned not only by the points of Xn ∩ f−1(I ∩ J) and
the graph edges connecting them, but also by the relative interiors of the edges of Rips1

δ(Xn) that have
one vertex in Xn ∩ f−1(I) and the other in Xn ∩ f−1(J). Then, given a connected component CI in
the preimage of I and a connected component CJ in the preimage of J , we connect the corresponding
vertices by an edge in the Mapper if there is a connected component of the redefined preimage of I ∩ J
that connects1 CI and CJ in Rips1

δ(Xn); in the MultiNerve Mapper, we add as many copies of this edge
as there are connected components in the redefined preimage of I∩J that connect CI and CJ . We denote

these two constructions by M4f (Rips1
δ(Xn), I) and M

4
f (Rips1

δ(Xn), I) respectively. Again, we also define

functions m4I and m̄4I on these constructions.

Rips complex. As for Reeb graphs, one can compute (MultiNerve) Mappers MfPL(|Ripsδ(Xn)|, I)
and MfPL(|Ripsδ(Xn)|, I) from a geometric realization of a Rips complex built on top of Xn with pa-
rameter δ, using the piecewise-linear extension fPL. Seeing |Ripsδ(Xn)| as a topological space, let also
T̄I(|Ripsδ(Xn)|, fPL) and TI(|Ripsδ(Xn)|, fPL) denote the telescopes obtained with Definition 4.6.2 and
Definition 4.6.7, with corresponding projections onto the second factor f̄PL

I and fPL
I . We recall that

CRf̄PL
I

(T̄I(|Ripsδ(Xn)|, fPL)) and CRfPL
I

(TI(|Ripsδ(Xn)|, fPL)) are isomorphic to MfPL(|Ripsδ(Xn)|, I)

and MfPL(|Ripsδ(Xn)|, I) respectively, according to Theorem 4.6.4 and Corollary 4.6.8. Moreover, the

induced maps ˜̄fPL
I = m̄PL

I and f̃PL
I = mPL

I are related to f̃PL according to Theorem 4.6.12. See Figure 5.1
for an illustration of all functions defined on Mappers considered here.

5.1.3 Relationships between the constructions

In each of the three constructions detailed above, the Mapper is included in the MultiNerve Mapper
by definition. Moreover, the preimages of the intersections in the second construction are supersets of
the preimages in the first construction, and two different connected components in the same preimage
in the first construction cannot be connected in the second construction, therefore the (MultiNerve)
Mapper from the first construction is included in its counterpart from the second construction. Hence
the following diagram of inclusions:

M•f (Rips1
δ(Xn), I) //

��

M
•
f (Rips1

δ(Xn), I)

��

M4f (Rips1
δ(Xn), I) // M

4
f (Rips1

δ(Xn), I)

(5.1)

The vertical inclusions become equalities when there are no intersection-crossing edges in the Rips graph,
defined as follows:

Definition 5.1.6. An edge [u, v] of the Rips graph is interval-crossing if there is an interval I ∈ I such
that I ⊆ (min{f(u), f(v)}, max{f(u), f(v)}). It is intersection-crossing if there is a pair of intervals
I, J ∈ I such that ∅ 6= I ∩ J ⊆ (min{f(u), f(v)}, max{f(u), f(v)}).

Indeed, in the absence of intersection-crossing edges, each connected component in the preimage of
an interval intersection in the second construction contains a vertex and therefore deform retracts onto
the corresponding connected component in the first construction. Hence:

Lemma 5.1.7. If there are no intersection-crossing edges in Rips1
δ(Xn), then M•f (Rips1

δ(Xn), I) is iso-

morphic to M4f (Rips1
δ(Xn), I) as combinatorial multigraphs. The same is true for M

•
f (Rips1

δ(Xn), I)

and M
4
f (Rips1

δ(Xn), I).

1By which we mean that the closure of the connected component in Rips1
δ(Xn) contains points from

CI and from CJ .

92

f f̃

fPL f̃PL
mPL
I

mI

m•I

Figure 5.1: Examples of the function defined on the original space (left column), its induced function
defined on the Reeb graph (middle column) and the function defined on the Mapper (right column).
Note that the Mapper computed from the geometric realization of the Rips complex (middle row, right)
is not isomorphic to the standard Mapper (last row), since there are two intersection-crossing edges in
the Rips complex (outlined in orange).

93

Concerning the relation between the first two constructions and the third one, we have:

Lemma 5.1.8. If there are no interval-crossing edges in Rips1
δ(Xn), then MfPL(|Ripsδ(Xn)|, I) is iso-

morphic to M4f (Rips1
δ(Xn), I) as combinatorial multigraphs. The same is true for MfPL(|Ripsδ(Xn)|, I)

and M
4
f (Rips1

δ(Xn), I).

Proof. Note that MfPL(|Ripsδ(Xn)|, I) and MfPL(|Ripsδ(Xn)|, I) are the same as MfPL(|Rips1
δ(Xn)|, I)

and MfPL(|Rips1
δ(Xn)|, I) respectively, since only the connected component of the preimages of intervals

are involved in the construction of the (MultiNerve) Mapper. Hence, for the rest of the proof we set
the domain of fPL to be |Rips1

δ(Xn)|. Every connected component in the preimage through fPL of
an interval of I must contain a vertex, therefore it deform retracts onto the corresponding preimage
through f . Hence the vertex sets of the aforementioned simplicial posets are the same. Every connected
component in the preimage through fPL of an interval intersection I∩J either contains a vertex, in which
case it deform retracts onto the corresponding preimage through f in the vertex-based connectivity, or
it does not contain any vertex, in which case the edge of the Rips graph that contains the connected
component creates an edge in the (MultiNerve) Mapper in the edge-based connectivity.

See Figure 5.2 for an example showing the importance of the hypothesis in the lemma.

5.1.4 Relationships between the signatures

Relationships between the (MultiNerve) Mapper constructions. The following
diagram summarizes the relationships between the various (MultiNerve) Mapper constructions:

(X, f)
OO

��

(|Ripsδ(Xn)|), fPL)
OO

��
(Rf (X), f̃)

OO

��

oo // (RfPL(|Ripsδ(Xn)|), f̃PL)
OO

��
Mf (X, I)

OO

��

MfPL(|Ripsδ(Xn)|, I)
OO

��

oo // M
4
f (Rips1

δ(Xn), I) oo //
OO

��

M
•
f (Rips1

δ(Xn), I)
OO

��
Mf (X, I) MfPL(|Ripsδ(Xn)|, I) oo // M4f (Rips1

δ(Xn), I) oo // M•f (Rips1
δ(Xn), I)

(5.2)
The vertical arrows between the first and second rows are provided by Theorem 2.4.4. The ones between
the second, third and fourth rows are given by Eqs. (4.2) and (4.3). The dotted horizontal arrows are
provided by Lemmas 5.1.7 and 5.1.8. Finally, the dashed horizontal arrow is given by Theorem 5.1.5.

Approximation of the (MultiNerve) Mapper. We then derive from (5.2) the following
approximation guarantee:

Theorem 5.1.9. Under the assumptions of Theorem 5.1.3, and given a gomic I, we have:

dI
(
ExDg(Mf (X, I)), ExDg(MfPL(|Ripsδ(Xn)|, I))

)
≤ 2ω(δ).

If furthermore there are no interval-crossing edges, then MfPL(|Ripsδ(Xn)|, I) and M
4
f (Rips1

δ(Xn), I)
are isomorphic as combinatorial multigraphs. If there are no intersection-crossing edges either, then
MfPL(|Ripsδ(Xn)|, I) and M

•
f (Rips1

δ(Xn), I) are also isomorphic as combinatorial multigraphs.

The same result holds for MfPL(|Ripsδ(Xn)|, I), M4f (Rips1
δ(Xn), I) and M•f (Rips1

δ(Xn), I), provided

dI is replaced by the bottleneck distance with the appropriate extended staircase QIE . Thus, we can
construct discrete (MultiNerve) Mappers whose signatures approximate the ones of the corresponding
continuous structures Mf (X, I) and Mf (X, I).

94

Mf̂ (|Ripsδ(Xn)|, I) M
4
f (Rips1δ(Xn), I) M

•
f (Rips

1
δ(Xn), I)

Figure 5.2: We study a Rips complex Ripsδ(Xn) built on top of a point cloud Xn with ten points.
This complex has two connected components. We also compute (MultiNerve) Mappers with the height
function, whose image is covered by three intervals. We display the preimages of the intervals and their

intersections for MfPL(|Ripsδ(Xn)|, I), M
4
f (Rips1

δ(Xn), I) and M
•
f (Rips1

δ(Xn), I). The edges of the right

connected component are intersection-crossing but not interval-crossing, so M
4
f (Rips1

δ(Xn), I) recovers

it correctly while M
•
f (Rips1

δ(Xn), I) fails to. The edges of the left connected component are interval-

crossing, so both M
•
f (Rips1

δ(Xn), I) and M
4
f (Rips1

δ(Xn), I) fail to recover the connected component.

Approximation of the (MultiNerve) Mapper signature. In some situations, one is
merely interested in approximating the signatures of Mf (X, I) and Mf (X, I) without actually building
corresponding discrete (MultiNerve) Mappers. In such cases, one can simply apply the scalar fields
analysis approach of [42] to approximate ExDg(f), then remove the points from (Ext+

1 (f)∪Ord1(f)) as
well as the points lying in their corresponding staircases, to get an approximation of the signatures:

Theorem 5.1.10. Under the assumptions of Theorem 5.1.3, and given a gomic I, let ExDg denote the
extended persistence diagram computed by the algorithm of [50], and then pruned by removing the points
of the Ext+

1 and Ord1 subdiagrams as well as the points located in the staircase corresponding to their
type. Then this diagram approximates the signature of Mf (X, I) as follows:

dI
(
ExDg(Mf (X, I)), ExDg

)
≤ 2ω(δ).

The same bound applies for the approximation of ExDg(Mf (X, I)), provided the staircase QIE− is replaced
by its extended version QIE in the definitions of dI and ExDg.

95

Note that this result holds much more generally than Theorem 5.1.9, however there may be no
discrete (MultiNerve) Mapper construction associated with the approximate diagram ExDg.

5.2 Approximation of a Reeb graph with Mapper

In this section, we state and prove Theorem 5.2.1. This result states that the vertex-based Mapper
M•f (Rips1

δ(Xn), I), which is the one that is used by most practitioners, is an approximation of the Reeb
graph in the bottleneck distance db. However, two remarks have to be made at this stage.

• First, all Mappers in this chapter are computed on a point cloud Xn, whereas they are computed
on the support X ⊃ Xn in Chapter 4. In particular, the signature (4.3) is not well-defined, so we
rather use ExDg(m•I) as a signature when computing the bottleneck distance.

• Second, we cannot use our previous approximation results (Theorems 5.1.9 and 5.1.10), since they
are stated with dI . Indeed, even though dI is a natural distance stabilizing Mappers, it is not
suited for Reeb graphs since they do not depend on gomics.

Convention. We use gomics I of im(f) whose elements have constant length r > 0 (apart from the
first and last one, which can have any positive length) and constant overlap percentage g ∈

(
0, 1

2

)
, i.e.

length(I ∩ J) = gr, for any consecutive intervals I, J in I. The parameter r is called the resolution of I,
and the parameter g is called its gain. We often write (r, g) instead of I.

Theorem 5.2.1. Assume X has reach rch > 0 and convexity radius ρ > 0. Assume that the filter
function f is Morse-type on X. Let ω be a modulus of continuity for f . If the three following conditions
on parameter δ hold:

δ ≤ min

{
1

4
rch,

1

4
ρ

}
, (5.3)

max{|f(x)− f(x′)| : x, x′ ∈ Xn, ‖x− x′‖ ≤ δ} < gr, (5.4)

4dH(X,Xn) ≤ δ, (5.5)

then the Mapper Mn = M•f (Rips1
δ(Xn), (r, g)) is such that:

db (Rf (X),Mn) ≤ r + 2ω(δ). (5.6)

Remark 5.2.2. Using the edge-based version M4f (Rips1
δ(Xn), I) allows to weaken Assumption (5.4)

since gr can be replaced by r in the corresponding equation. In addition, using the MultiNerve Mapper
instead of the Mapper allows to replace r by r/2 in Equation (5.6).

Proof of Theorem 5.2.1. The following inequalities lead to the result:

db(Rf (X),Mn) = db

(
ExDg(f̃),ExDg(m•I)

)
= db

(
ExDg(f̃),ExDg(mPL

I)
)

(5.7)

≤ db

(
ExDg(f̃),ExDg(f̃PL)

)
+ db

(
ExDg(f̃PL),ExDg(mPL

I)
)

(5.8)

≤ 2ω(δ) + r. (5.9)

Let us prove every (in)equality.

Equality (5.7). The first equality is the definition of the bottleneck distance for graphs.
To prove the second equality, we have to show that Mn and MfPL(|Ripsδ(Xn)|, (r, g)) are isomorphic.

Let x1, x2 ∈ Xn such that (x1, x2) is an edge of Rips1
δ(Xn) i.e. ‖x1 − x2‖ ≤ δ. Then, according

to (5.4): |f(x1) − f(x2)| ≤ gr. Hence, there is no α ∈ {1, . . . , card(I) − 1} such that Iα ∩ Iα+1 ⊆
(min{f(x1), f(x2)},max{f(x1), f(x2)}). It follows that there are no intersection-crossing and interval-
crossing edges in Rips1

δ(Xn). Then, according to Lemma 5.1.7 and Lemma 5.1.8, there is a graph
isomorphism i : Mn = M•f (Rips1

δ(Xn), (r, g)) → MfPL(|Ripsδ(Xn)|, (r, g)). Since m•I = mPL
I ◦ i by

definition of m•I and mPL
I , the equality follows.

96

Inequality (5.8). This inequality is just an application of the triangle inequality.

Inequality (5.9). According to (5.3), we have δ ≤ min{ 1
4 rch, 1

4ρ}. According to (5.5), we also have
δ ≥ 4dH(X,Xn). Hence, we have

db(ExDg(f̃),ExDg(f̃PL)) ≤ 2ω(δ),

according to Theorem 5.1.5. Moreover, we have

db(ExDg(f̃PL),ExDg(mPL
I)) ≤ r,

according to Theorem 4.6.12.

Analysis of the hypotheses. On the one hand, the scale parameter of the Rips complex could
not be smaller than the approximation error corresponding to the Hausdorff distance between the sample
Xn and the underlying space X (Assumption (5.5)). On the other hand, it must be smaller than
the reach and convexity radius to provide a correct estimation of the geometry and topology of X
(Assumption (5.3)). The quantity gr corresponds to the minimum scale at which the filter’s codomain
is analyzed. This minimum resolution has to be compared with the regularity of the filter at scale δ
(Assumption (5.4)). Indeed the pre-images of a filter with strong variations will be more difficult to
analyze than when the filter varies little.

Analysis of the upper bound. The upper bound given in (5.6) makes sense in that the
approximation error is controlled by the resolution level in the codomain and by the regularity of the
filter. If one uses a filter with strong variations, or if the grid in the codomain has a too rough resolution,
then the approximation will be poor. On the other hand, a sufficiently dense sampling is required in
order to take r small, as prescribed in the assumptions.

Lipschitz filters. A large class of filters used for Mapper are actually Lipschitz functions and of
course, in this case, one can take ω(δ) = cδ for some positive constant c. In particular, c = 1 for linear
projections (PCA, SVD, Laplacian or coordinate filter for instance). The distance to a measure (DTM)
is also a 1-Lipschitz function, see [44]. On the other hand, the modulus of continuity of filter functions
defined from estimators, e.g. density estimators, is less obvious although still well-defined.

Filter approximation. In some situations, the filter function f̂ used to compute the Mapper is
only an approximation of the filter function f with which the Reeb graph is computed. In this context,
the pair (Xn, f̂) appears as an approximation of the pair (X, f). The following result is directly derived
from Theorem 5.2.1 and Theorem 4.4.2.

Corollary 5.2.3. Let f̂ : X → R be a Morse-type filter function approximating f . Suppose that As-
sumptions (5.3) to (5.5) of Theorem 5.2.1 are satisfied by both f and f̂ . Then, the Mapper M̂n =

M•
f̂
(Rips1

δ(Xn), (r, g)) built on Xn with filter function f̂ , satisfies:

db(Rf (X), M̂n) ≤ 2r + 2ω(δ) + max{|f(xi)− f̂(xi)| : 1 ≤ i ≤ n}.

Proof. Let f̂PL be the piecewise-linear interpolation of f̂ on the simplices of Rips1
δ(Xn). As before, since

|Ripsδ(Xn)| and |Ripsδ(Xn)| are metric spaces, we also consider their Mappers MfPL(|Ripsδ(Xn)|, (r, g))
and Mf̂PL(|Ripsδ(Xn)|, (r, g)). Then, the following inequalities lead to the result:

db(Rf (X), M̂n) ≤ db(Rf (X),Mn) + db(Mn, M̂n) by the triangle inequality

= db(Rf (X),Mn) + db(MfPL(|Ripsδ(Xn)|, (r, g)),Mf̂PL(|Ripsδ(Xn)|, (r, g))) (5.10)

≤ r + 2ω(δ) + db(MfPL(|Ripsδ(Xn)|, (r, g)),Mf̂PL(|Ripsδ(Xn)|, (r, g))) by Theorem 5.2.1

≤ r + 2ω(δ) + r + ‖fPL − f̂PL‖∞ by Theorem 4.4.2

= 2r + 2ω(δ) + max{|f(x)− f̂(x)| : x ∈ Xn}

97

Let us prove Equality (5.10). Since f and f̂ satisfy Assumption (5.4), there are no intersection-

crossing edges for both f and f̂ . According to Lemma 5.1.7 and Lemma 5.1.8, MfPL(|Ripsδ(Xn)|, (r, g))

and Mn are isomorphic and similarly for Mf̂PL(|Ripsδ(Xn)|, (r, g)) and M̂n. See also the proof of Equal-

ity (5.7).

5.3 Statistical Analysis of the Mapper

In this section, we study the rates of convergence of the discrete Mapper M•f (Rips1
δ(Xn), (r, g)). We first

show that the Mapper is a measurable construction (Proposition 5.3.1).

Convention. From now on, the set of observations Xn is assumed to be composed of n independent
points x1, ..., xn sampled from a probability distribution P in RD (endowed with its Borel algebra).
We assume that each point xi comes with a filter function value which is represented by a random
variable yi = f(xi). Contrarily to the xi’s, the filter values yi’s are not necessarily independent. We use
Mr,g,δ(Xn, Yn) as a shorthand for M•f (Rips1

δ(Xn), (r, g)) to emphasize the separation between random
variables and Mapper parameters.

Measurability of the Mapper. We first provide the following proposition, which states that
computing probabilities on the Mapper makes sense:

Proposition 5.3.1. For any fixed choice of parameters r, g, δ and for any fixed n ∈ N, the function

Φ :

{
(RD)n × Rn → Reeb

(Xn, Yn) 7→ Mr,g,δ(Xn, Yn)

is measurable.

We recall that Mr,g,δ(Xn, Yn) ∈ Reeb according to Definition 4.6.2 and Theorem 4.6.4.

Proof. We check that not only the topological signature of the Mapper but also the Mapper itself is a
measurable object and thus can be seen as an estimator of a target Reeb graph. This problem is more
complicated than for the statistical framework of persistence diagram inference, for which the existing
stability results give for free that persistence estimators are measurable for adequate sigma algebras.

Let R̄ = R ∪ {+∞} denote the extended real line. Given a fixed integer n ≥ 1, let C[n] be the set of

abstract simplicial complexes over a fixed set of n vertices. We see C[n] as a subset of the power set 22[n]

,

where [n] = {1, · · · , n}, and we implicitly identify 2[n] with the set [2n] via the map assigning to each

subset {i1, · · · , ik} the integer 1 +
∑k
j=1 2ij−1. Given a fixed parameter δ > 0, we define the application

Φ1 :

{
(RD)n × Rn → C[n] × R̄2[n]

(Xn, Yn) 7→ (K, fK)

where K is the abstract Rips complex of parameter δ over the n labeled points in RD, minus the
intersection-crossing edges and their cofaces, and where fK is a function defined by:

fK :

2[n] → R̄

σ 7→
{

maxi∈σ Yi if σ ∈ K
+∞ otherwise.

The space (RD)n × Rn is equipped with the standard topology, denoted by T1, inherited from R(D+1)n.

The space C[n] × R̄2[n]

is equipped with the product, denoted by T2 hereafter, of the discrete topol-
ogy on C[n] and the topology induced by the extended distance d(f, g) = max{|f(σ) − g(σ)| : σ ∈
2[n], f(σ) or g(σ) 6= +∞} on R̄2[n]

. In particular, K 6= K ′ ⇒ d(fK , fK′) = +∞.

98

Note that the map (Xn, Yn) 7→ K is piecewise-constant, with jumps located at the hypersurfaces
defined by ‖xi − xj‖2 = δ2 (for combinatorial changes in the Rips complex) or yi = cst ∈ End((r, g))
(for changes in the set of intersection-crossing edges) in (RD)n × Rn, where End((r, g)) denotes the set
of endpoints of elements of the gomic (r, g). We can then define a finite measurable partition (C`)`∈L
of (RD)n × Rn whose boundaries are included in these hypersurfaces, and such that (Xn, Yn) 7→ K is
constant over each set C`. As a byproduct, we have that (Xn, Yn) 7→ f is continuous over each set C`.

We now define the operator

Φ2 :

{
C[n] × R̄2[n] → A

(K, f) 7→ (|K|, fPL)

where A denotes the class of topological spaces filtered by Morse-type functions, and where fPL is the
piecewise-linear interpolation of f on the geometric realization |K| of K. For a fixed simplicial complex
K, the extended persistence diagram of the lower-star filtration induced by f and of the sublevel sets
of fPL are identical—see e.g. [103], therefore the map Φ2 is distance-preserving (hence continuous) in
the pseudometrics db on the domain and codomain. Since the topology T2 on C[n]× R̄2n is a refinement2

of the topology induced by db, the map Φ2 is also continuous when C[n] × R̄2[n]

is equipped with T2.
Let now Φ3 : A → Reeb map each Morse-type pair (X, f) to its Mapper Mf (X, I) using Def-

inition 4.6.2, where I = (r, g) is the gomic induced by r and g. Note that, similarly to Φ1, the
map Φ3 is piecewise-constant, since combinatorial changes in Mf (X, I) are located at the regions
Crit(f) ∩ End(I) 6= ∅. Hence, Φ3 is measurable in the pseudometric db. Moreover, MfPL(|K|, I) is
isomorphic to Mr,g,δ(Xn, Yn) by Lemma 5.1.7 and Lemma 5.1.8. since all intersection-crossing edges
were removed in the construction of K. Hence, the map Φ defined by Φ = Φ3 ◦ Φ2 ◦ Φ1 is a measurable
map that sends (Xn, Yn) to Mr,g,δ(Xn, Yn).

5.3.1 Statistical Model for the Mapper

Generative model. We now introduce the generative model for our data. Recall that the set of
observations Xn is composed of n independent points x1, ..., xn sampled from a probability distribution
P in RD. The support of P is denoted XP and is assumed to be a compact Riemannian manifold of
RD with positive reach and convexity radius, as in the setting of Theorem 5.2.1. We also assume that
the diameter of XP is bounded by some constant L > 0, i.e. we have 0 < diam(XP) ≤ L. Next, the
probability distribution P is assumed to be (a, b)-standard for some constants a > 0 and b ≥ d:

Definition 5.3.2. Let a, b > 0. A probability distribution P is said to be (a, b)-standard if for any
Euclidean ball B(x, t) centered on x ∈ X with radius t :

P(B(x, t)) ≥ min(1, atb).

This assumption is popular in the literature about set estimation—see for instance [58, 59]. It is also
widely used in the literature on persistence diagram estimation [47, 49, 71]. For instance, when b = D,
this assumption is satisfied when the distribution is absolutely continuous with respect to the Hausdorff
measure on XP. We introduce the set Pa,b = Pa,b,κ,ρ,L which is composed of all the (a, b)-standard
probability distributions P for which the support XP is a compact Riemannian manifold of RD with
reach at least κ, convexity radius at least ρ and diameter at most L.

Filter functions in the statistical setting. The filter function f : XP → R for the Reeb
graph is assumed as before to be a Morse-type function. Two different settings have to be considered
regarding how the filter function is defined. In the first setting, the same filter function is used to define
the Reeb graph and the Mapper. The Mapper can be defined by taking the exact values of the filter
function at the observation points f(x1), . . . , f(xn). Note that this does not mean that the function f
is completely known since, in our framework, knowing f would imply to know its domain and thus XP
would be known which is of course not the case in practice. This first setting is studied in Section 5.3.2,
and referred to as the exact filter setting in the following. It corresponds to the situations where the

2This is because singletons are open balls in the discrete topology, and also because of Theorem 2.3.1.

99

Mapper algorithm is used with coordinate functions for instance. In this setting, we distinguish two
different cases corresponding to whether the parameters of the generative model are known or not. In
the second setting, detailed in Section 5.3.3, the filter function used for the Mapper is not available and
an estimation of this filter function has to be computed from the data. This second setting is referred
to as the estimated filter setting in the following. It corresponds to PCA or Laplacian eigenfunctions,
distance functions (such as the DTM), or regression and density estimators.

Risk of the Mapper. We study, in various settings, the problem of inferring a Reeb graph using
Mappers and we use the metric db to assess the performance of the Mapper, seen as an estimator of the
Reeb graph:

E [db (Mn,Rf (XP))] ,

where Mn is computed with either the exact filter f or with the inferred filter f̂ , depending on the
context.

5.3.2 Reeb graph inference with exact filter

Known generative model

We first consider the exact filter setting in the simplest situation where the parameters a and b of
the generative model are known. In this setting, given Rips parameter δ, gain g and resolution r, the
Mapper Mn = Mr,g,δ(Xn, Yn) is computed with Yn = f(Xn). We now tune the triple of parameters
(r, g, δ) depending on the parameters a and b. Let

Vn(δn) = max{|f(x)− f(x′)| : x, x′ ∈ Xn, ‖x− x′‖ ≤ δn}. (5.11)

We choose for g a fixed value in
(

1
3 ,

1
2

)
and we take:

δn = 8

(
2log(n)

an

) 1
b

and rn =
Vn(δn)+

g
, (5.12)

where Vn(δn)+ denotes a value that is strictly larger but arbitrarily close to Vn(δn). We give below
a general upper bound on the risk of Mn with these parameters, which depends on the regularity of the
filter function and on the parameters of the generative model. We show a uniform convergence over a
class of possible filter functions. This class of filters necessarily depends on the support of P, so we define
the class of filters for each probability measure in Pa,b. For any P ∈ Pa,b, we let F(P, ω) denote the set
of filter functions f : XP → R such that f is Morse-type on XP with ωf ≤ ω.

Proposition 5.3.3. Let ω be a modulus of continuity such that ω(x)/x is a non-increasing function on
R+. For n large enough, the Mapper computed with parameters (rn, g, δn) as defined above satisfies:

sup
P∈Pa,b

E

[
sup

f∈F(P,ω)

db (Rf (XP),Mn)

]
≤ C ω

(
2 · 8b
a

log(n)

n

) 1
b

where the constant C only depends on a, b, and on the geometric parameters of the model.

Proof. We fix some parameters a > 0 and b ≥ 1. First note that Assumption (5.4) is always satisfied by
definition of rn. Next, there exists n0 ∈ N such that for any n ≥ n0, Assumption (5.3) is satisfied because
δn → 0 and ω(δn)→ 0 as n→ +∞. Moreover, n0 can be taken the same for all f ∈ ⋃P∈P(a,b) F(P, ω).

Let εn = dH(X,Xn). Under the (a, b)-standard assumption, it is well known that (see for instance
[49, 59]):

P (εn ≥ u) ≤ min

{
1,

4b

aub
e−a(

u
2)
b
n

}
,∀u > 0. (5.13)

In particular, regarding the complementary of (5.5) we have:

P
(
εn >

δn
4

)
≤ min

{
1,

2b

2log(n)n

}
. (5.14)

100

Recall that diam(XP) ≤ L. Let C̄ = ω(L) be a constant that only depends on the parameters of the
model. Then, for any P ∈ P(a, b), we have:

sup
f∈F(P,ω)

db (Rf (XP),Mn) ≤ C̄. (5.15)

For n ≥ n0, we have :

sup
f∈F(P,ω)

db (Rf (XP),Mn) = sup
f∈F(P,ω)

db (Rf (XP),Mn) Iεn>δn/4 + sup
f∈F(P,ω)

db (Rf (XP),Mn) Iεn≤δn/4

and thus

E

[
sup

f∈F(P,ω)

db (Rf (XP),Mn)

]
≤ C̄P

(
εn >

δn
4

)
+ rn + 2ω(δn)

≤ C̄ min

{
1,

2b

2log(n)n

}
+

(
1 + 2g

g

)
ω(δn) (5.16)

where we have used (5.15), Theorem 5.2.1 and the fact that Vn(δn)+ can be chosen less or equal to ω(δn).
For n large enough, the first term in (5.16) is of the order of δbn, which can be upper bounded by δn and
thus by ω(δn) (up to a constant) since ω(δ)/δ is non-increasing. Since 1+2g

g < 6 because 1
3 < g < 1

2 , we

get that the risk is bounded by ω(δn) for n ≥ n0 up to a constant that only depends on the parameters
of the model. The same inequality is of course valid for any n by taking a larger constant, because n0

itself only depends on the parameters of the model.

Comments on Proposition 5.3.3. Assuming that ω(x)/x is nonincreasing is not a very strong
assumption. This property is satisfied in particular when ω is concave, as in the case of concave majorant
(see for instance Section 6 in [62]). As expected, we see that the rate of convergence of the Mapper to
the Reeb graph directly depends on the regularity of the filter function and on the parameter b which
roughly represents the intrinsic dimension of the data. For Lipschitz filter functions, the rate is similar
to the one for persistence diagram inference [49], namely it corresponds to the one of support estimation
for the Hausdorff metric (see for instance [59] and [75]). In the other cases where the filters only admit
a concave modulus of continuity, we see that the “distortion” created by the filter function slows down
the convergence of the Mapper to the Reeb graph.

A lower bound. We now give a lower bound that almost matches with the upper bound of Propo-
sition 5.3.3. To prove it, we use Le Cam’s Lemma. The version of Le Cam’s Lemma given below is from
[139]—see also [76]. Recall that the total variation distance between two distributions P0 and P1 on a
measured space (X,B) is defined by

TV(P0,P1) = sup
B∈B
|P0(B)− P1(B)|.

Moreover, if P0 and P1 have densities p0 and p1 with respect to the same measure λ on X, then

TV(P0,P1) =

∫
X

|p0 − p1|dλ.

Lemma 5.3.4 (Le Cam). Let P be a set of distributions. For P ∈ P, let θ(P) take values in a pseudo-
metric space (X, ρ). Let P0 and P1 in P be any pair of distributions. Let x1, . . . , xn be drawn i.i.d. from

some P ∈ P. Let θ̂ = θ̂(x1, . . . , xn) be any estimator of θ(P), then

sup
P∈P

EPn
[
ρ(θ, θ̂)

]
≥ 1

8
ρ (θ(P0), θ(P1)) [1− TV(P0,P1)]

2n
.

Proposition 5.3.5. Let ω be a modulus of continuity of f . Then, for any estimator R̂n of Rf (XP), we
have

sup
P∈Pa,b

E

[
sup

f∈F(P,ω)

db

(
Rf (XP), R̂n

)]
≥ C ω

(
1

an

) 1
b

,

where the constant C only depends on a, b, and on the geometric parameters of the model.

101

Proof. The proof follows closely Section B.2 in [48]. Let X0 = [0, a−1/b] ⊂ RD. Obviously, X0 is a
compact submanifold of RD. Let U(X0) be the uniform measure on X0. Let Pa,b,X0 denote the set of
(a, b)-standard measures whose support is included in X0. Let x0 = 0 ∈ X0 and {xn}n∈N∗ ∈ XN

0 such
that ‖xn − x0‖ = (an)−1/b. Now, let

f0 :

{
X0 → R
x 7→ ω(‖x− x0‖)

By definition, we have f0 ∈ F(U(X0), ω) because ExDg(f0) = Ext+
0 (f0) = {(0, ω(a−1/b))} since f0 is

increasing by definition of ω. Finally, given any measure P ∈ Pa,b,X0 , we let θ0(P) = Rf0|XP
(XP). Then,

we have:

sup
P∈Pa,b

E

[
sup

f∈F(P,ω)

db

(
Rf (XP), R̂n

)]

≥ sup
P∈Pa,b,X0

E

[
sup

f∈F(P,ω)

db

(
Rf (XP), R̂n

)]
≥ sup

P∈Pa,b,X0

E
[
db

(
Rf0|XP

(XP), R̂n

)]
= sup

P∈Pa,b,X0

E
[
ρ
(
θ0(P), R̂n

)]
,

where ρ = db. For any n ∈ N∗, we let P0,n = δx0
be the Dirac measure on x0 and P1,n = (1− 1

n)P0,n +
1
nU([x0, xn]). As a Dirac measure, P0,n is obviously in Pa,b,X0

. We now check that P1,n ∈ Pa,b,X0
. Let

B(x, r) denote the Euclidean ball centered on x with radius r > 0.

• Let us study P1,n(B(x0, r)).

Assume r ≤ (an)−1/b. Then

P1,n(B(x0, r)) = 1− 1

n
+

1

n

r

(an)−1/b
≥
(

1− 1

n
+

1

n

)(
r

(an)−1/b

)b
≥
(

1

2
+

1

n

)
anrb ≥ arb.

Assume r > (an)−1/b. Then

P1,n(B(x0, r)) = 1 ≥ min{arb}.

• Let us study P1,n(B(xn, r)). Assume r ≤ (an)−1/b. Then

P1,n(B(xn, r)) =
1

n

r

(an)−1/b
≥ 1

n

(
r

(an)−1/b

)b
= arb.

Assume r > (an)−1/b. Then

P1,n(B(xn, r)) = 1 ≥ min{arb}.

• Let us study P1,n(B(x, r)), where x ∈ (x0, xn). Assume r ≤ x. Then

P1,n(B(x, r)) ≥ 1

n

r

(ab)−1/b
≥ arb (see previous case).

Assume r > x. Then P1,n(B(x, r)) = 1− 1
n + 1

n

(x+min{r, (an)−1/b−x})
(an)−1/b . If min{r, (an)−1/b−x} = r,

then we have

P1,n(B(x, r)) ≥ 1− 1

n
+

1

n

r

(ab)−1/b
≥ arb (see previous case).

Otherwise, we have
P1,n(B(x, r)) = 1 ≥ min{arb}.

102

Thus P1,n is in Pa,b,X0
as well. Hence, we apply Lemma 5.3.4 to get:

sup
P∈Pa,b,X0

E
[
ρ
(
θ0(P), R̂n

)]
≥ 1

8
ρ(θ0(P0,n), θ0(P1,n)) [1− TV(P0,n,P1,n)]

2n
.

By definition, we have:

ρ(θ0(P0,n), θ0(P1,n)) = db

(
Rf0|{x0}

({x0}),Rf0|[x0,xn]
(U [x0, xn])

)
.

Since ExDg
(

Rf0|{x0}
({x0})

)
= {(0, 0)} and ExDg

(
Rf0|[x0,xn]

(U [x0, xn])
)

= {(f(x0), f(xn))} because f0

is increasing by definition of ω, it follows that

ρ(θ0(P0,n), θ0(P1,n)) =
1

2
|f(xn)− f(x0)| = 1

2
ω
(

(an)−1/b
)
.

It remains to compute TV(P0,n,P1,n) =
∣∣1− (1− 1

n

)∣∣+ 1
n (an)−1/b = 1

n + o
(

1
n

)
. The proposition follows

then from the fact that [1− TV(P0,n,P1,n)]
2n → e−2.

Minimax Optimality. Propositions 5.3.3 and 5.3.5 together show that, with the choice of pa-
rameters given before, Mn is minimax optimal up to a logarithmic factor log(n) inside the modulus of
continuity. Note that the lower bound is also valid whether or not the coefficients a and b and the filter
function f and its modulus of continuity are given.

Unknown generative model

We still assume that the exact values Yn = f(Xn) of the filter on the point could can be computed
and that at least an upper bound on the modulus of continuity of the filter is known. However, the
parameters a and b are not assumed to be known anymore. We adapt a subsampling approach proposed
by [71]. As before, for given Rips parameter δ, gain g and resolution r, the Mapper Mn = Mr,g,δ(Xn, Yn)
is computed with Yn = f(Xn).

We introduce the sequence sn = n
(logn)1+β for some fixed value β > 0. Let Xsn

n be an arbitrary

subset of Xn that contains sn points. We tune the triple of parameters (r, g, δ) as follows: we choose for
g a fixed value in

(
1
3 ,

1
2

)
and we take:

δn = dH(Xsn
n , Xn) and rn =

Vn(δn)+

g
, (5.17)

where Vn is defined as in Equation (5.11) and dH denotes the Hausdorff distance in the Euclidean norm.

Proposition 5.3.6. Let ω be a modulus of continuity such that x 7→ ω(x)/x is a nonincreasing function.
Then, using the same notations as in the previous section, the Mapper Mn computed with parameters
(rn, g, δn) defined before satisfies

sup
P∈Pa,b

E

[
sup

f∈F(P,ω)

db (Rf (XP),Mn)

]
≤ C ω

(
C ′log(n)2+β

n

) 1
b

,

where the constants C,C ′ only depends on a, b, and on the geometric parameters of the model.

Proof. Using the same notation as in the previous section, we have

P (δn ≥ u) ≤ P
(
dH(Xn, XP) ≥ u

2

)
+ P

(
dH(Xsn

n , XP) ≥ u

2

)
≤ P

(
εn ≥

u

2

)
+ P

(
εsn ≥

u

2

)
. (5.18)

Note that for any f ∈ F(P, ω), according to (5.6) and (5.15)

db (Rf (XP),Mn) ≤ (r + 2ω(δ)) IΩn + C̄ IΩcn (5.19)

103

where Ωn is the event defined by

Ωn = {4δn ≤ min{κ, ρ}} ∩ {4εn ≤ δn}.
This gives

E

[
sup

f∈F(P,ω)

db (Mn,Rf (X))

]
≤
∫ C̄

0

P
(
ω(δn) ≥ g

1 + 2g
α

)
dα︸ ︷︷ ︸

(A)

+ C̄P
(
εn ≥

δn
4

)
︸ ︷︷ ︸

(B)

+ C̄P
(
δn ≥ min

{κ
4
,
ρ

4

})
︸ ︷︷ ︸

(C)

.

Let us bound the three terms (A), (B) and (C).

• Term (C). It can be bounded using (5.18) then (5.13).

• Term (B). Let tn = 2
(

2log(n)
an

)1/b

and An = {εn < tn}. We first prove that δn ≥ 4εn on the

event An, for n large enough. We follow the lines of the proof of Theorem 3 in Section 6 in [71].

Let qn be the tn-packing number of XP, i.e. the maximal number of Euclidean balls B(x, tn)∩XP,
where x ∈ XP, that can be packed into XP without overlap. It is known (see for instance Lemma 17
in [71]) that qn = Θ(t−dn), where d is the (intrinsic) dimension of XP. Let Packn = {c1, · · · , cqn}
be a corresponding packing set, i.e. the set of centers of a family of balls of radius tn whose
cardinality achieves the packing number qn. Note that dH(Packn, XP) ≤ 2tn. Indeed, for any
x ∈ XP, there must exist c ∈ Packn such that ‖x−c‖ ≤ 2tn, otherwise x could be added to Packn,
contradicting the fact that Packn is maximal. By contradiction, assume εn < tn and δn ≤ 4εn.
Then:

dH(Xsn
n ,Packn) ≤ dH(Xsn

n , Xn) + dH(Xn, XP) + dH(XP,Packn)

≤ 5dH(Xn, XP) + 2tn ≤ 7tn.

Now, one has sn
qn

= Θ
(

n1−b/d

log(n)1−b/d+β

)
. Since b ≥ D ≥ d by definition, it follows that sn = o(qn). In

particular, this means that dH(Xsn
n ,Packn) > 7tn for n large enough, which yields a contradiction.

Hence, one has δn ≥ 4εn on the event An. Then:

P
(
εn ≥

δn
4

)
≤ P

(
εn ≥

δn
4
| An

)
︸ ︷︷ ︸

=0

P (An) + P (Acn) = P (Acn) .

Finally, the probability of Acn is bounded with (5.13):

P (Acn) ≤ 2b

2log(n)n
.

• Term (A). This is the dominating term. First, note that since ω is increasing, one has for all
u > 0:

P (ω(δn) ≥ u) = P
(
δn ≥ ω−1(u)

)
. (5.20)

Then, using (5.18) and (5.20), we have:

(A) ≤
∫ C̄

0

P
(
εn ≥

1

2
ω−1

(
gα

1 + 2g

))
dα+

∫ C̄

0

P
(
εsn ≥

1

2
ω−1

(
gα

1 + 2g

))
dα.

We only bound the first integral, but the analysis extends verbatim to the second integral when
replacing n by sn. Let

αn =
1 + 2g

g
ω

[(
4blog(n)

an

)1/b
]
.

104

Since x 7→ ω(x)
x is non-increasing, it follows that x 7→ ω−1(x)

x is non-decreasing, and

ω−1(x) ≥ x

y
ω−1(y), ∀x ≥ y > 0. (5.21)

Taking inspiration from Section B.2 in [48] and using (5.13), we derive the following inequalities:∫ C̄

0

P
(
εn ≥

1

2
ω−1

(
gα

1 + 2g

))
dα ≤ αn +

8b

a

∫ C̄

αn

1

ω−1
(

gα
1+2g

)b exp

[
−an

4b
ω−1

(
gα

1 + 2g

)b]
dα

≤ αn +
8b

a

∫ C̄

αn

αbn[
αω−1

(
gαn
1+2g

)]b exp

[
− anαb

(4αn)b
ω−1

(
gαn

1 + 2g

)b]
dα

≤ αn + αn
2b4n1−1/b

ba1/bω−1
(
gαn
1+2g

) ∫
u≥ an

4b
ω−1(gαn1+2g)

b
u1/b−2e−udu

= αn + αn
2bn

blog(n)1/b

∫
u≥log(n)

u1/b−2e−udu ≤
(

1 +
2b

b log(n)2

)
αn since b ≥ 1

≤ C(b)αn,

where we used (5.21) with x = gα
1+2g and y = gαn

1+2g for the second inequality. The constant C(b)
only depends on b.

Hence, since 1+2g
g < 6, there exist constants K,K ′ > 0 that depend only of the geometric

parameters of the model such that:

(A) ≤ Kω
(
K ′log(sn)

sn

) 1
b

.

Final bound. Since sn = nlog(n)−(1+β), by gathering all four terms, there exist constants C,C ′ > 0
such that:

E

[
sup

f∈F(P,ω)

db (Rf (XP),Mn)

]
≤ Cω

(
C ′log(n)2+β

n

) 1
b

.

Minimax Optimality. Up to logarithmic factors inside the modulus of continuity, we find that
this Mapper is still minimax optimal over the class Pa,b by Proposition 5.3.5.

5.3.3 Reeb graph inference with estimated filter

In this section, we assume that the true filter f is unknown but can be estimated from the data using
an estimator f̂ . Without loss of generality we assume that both f and f̂ are defined over RD. As
before, parameters a and b are not assumed to be known and we have to tune the triple of parameters
(rn, g, δn). In this context, the quantity Vn cannot be computed as before because there is no direct

access to the values of f : we only know an estimation f̂ of it. However, in many cases, an upper bound
ω1 on the modulus of continuity of f is known, which makes possible the tuning of the parameters. For
instance, PCA (and kernel) projectors, eccentricity functions, DTM functions (see [44]) are all 1-Lipschitz
functions, and Corollary 5.3.7 below can be applied.

Let
V̂n(δn) = max{|f̂(x)− f̂(x′)| : x, x′ ∈ Xn, ‖x− x′‖ ≤ δn}, (5.22)

and let ω1 be a modulus of continuity for f . Let

rn =
max{ω1(δn), V̂n(δn)}+

g
. (5.23)

Following the lines of the proof of Proposition 5.3.6 and applying Corollary 5.2.3, we obtain:

105

Corollary 5.3.7. Let f : RD → R be a Morse-type filter function and let f̂ : RD → R be a Morse-type
estimator of f . Let ω1 (resp. ω2) be a modulus of continuity for f (resp. f̂). Let ω = max{ω1, ω2} such

that x 7→ ω(x)/x is a nonincreasing function. Let also M̂n = Mrn,g,δn(Xn, f̂(Xn)) be the Mapper built

on Xn with function f̂ and parameters g, δn as in Equation (5.17), and rn as in Equation (5.23). Then,
M̂n satisfies

E
[
db

(
Rf (XP), M̂n

)]
≤ Cω

(
C ′log(n)2+β

n

) 1
b

+ E
[

max
1≤i≤n

|f(xi)− f̂(xi)|
]
,

where the constants C,C ′ only depends on a, b, and the geometric parameters of the model.

Note that ω1 has to be known to compute M̂n in Corollary 5.3.7 since it appears in the definition of
rn in Equation (5.23). On the contrary, ω2—and thus ω—are not required to tune the parameters.

PCA eigenfunctions. Assume that the measure µ has a finite second moment. Following [13],
we define the covariance operator Γ(·) = E(〈X, ·〉X) and we let Πk denote the orthogonal projection onto
the space spanned by the k-th eigenvector of Γ. In practice, we consider the empirical version of the
covariance operator

Γ̂n(·) =
1

n

n∑
i=1

〈Xi, ·〉Xi

and the empirical projection Π̂k onto the space spanned by the k-th eigenvector of Γ̂n. According to
[13](see also [16, 128]), we have

E
[
‖Πk − Π̂k‖∞

]
= O

(
1√
n

)
.

This, together with Corollary 5.3.7 and the fact that both Πk and Π̂k are 1-Lipschitz, gives that the rate
of convergence of the Mapper of Π̂k(Xn) computed with parameters δn and g as in Equation (5.17), and
rn as in Equation (5.23), i.e. rn = g−1δ+

n , satisfies

E
[
db

(
RΠk(XP),Mrn,g,δn(Xn, Π̂k(Xn))

)]
.

(
log(n)2+β

n

)1/b

∨ 1√
n
.

Hence, the rate of convergence of the Mapper is not deteriorated by using Π̂k instead of Πk if the intrinsic
dimension b of the support of µ is at least 2.

The distance to measure. It is well known that topological methods may fail in the presence of
outliers. To address this issue, [44] introduced an alternative distance function which is robust to noise,
the distance-to-a-measure (DTM). A similar analysis as with the PCA filter can be carried out with the
DTM filter using the rates of convergence proven in [51].

5.4 Confidence sets for the signatures

In practice, computing a Mapper Mn as an estimator of Rf (XP) is not sufficient: we need to know how
accurate these estimations are. In this section, we explain how to get confidence sets for the Mapper.

5.4.1 Confidence sets

For α ∈ (0, 1), we look for some value ηn,α such that

P (db(Mn,Rf (XP)) ≥ ηn,α) ≤ α

or at least such that
lim sup
n→∞

P (db(Mn,Rf (XP)) ≥ ηn,α) ≤ α.

106

Let
Mα = {R ∈ Reeb : db(Mn,R) ≤ α}

be the closed ball of radius α in the bottleneck distance and centered at the Mapper Mn in the space of
Reeb graphs Reeb. Following [71], we can visualize the signatures of the points belonging to this ball in
various ways. One first option is to center a box of side length 2α at each point of the extended persistence
diagram of Mn—see the right columns of Figure 5.3 and Figure 5.4 for instance. An alternative solution
is to visualize the confidence set by adding a band at (vertical) distance 2α from the diagonal ∆. The
points outside the band are then considered as significant topological features, see [71] for more details.

Related work. Several methods have been proposed in [71] and [46] to define confidence sets for
persistence diagrams. We now adapt these ideas to provide confidence sets for Mappers. Except for the
bottleneck bootstrap (see further), all the methods proposed in these two articles rely on the stability
results for persistence diagrams, which say that persistence diagrams equipped with the bottleneck
distance are stable under Hausdorff perturbations of the data—see Theorem 2.2.17. Confidence sets for
diagrams are then directly derived from confidence sets in the sample space. Here, we follow a similar
strategy using Theorem 5.2.1, as explained in the next section.

5.4.2 Confidence sets derived from Theorem 5.2.1

In this section, we always assume that an upper bound ω on the exact modulus of continuity ωf of the
filter function is known. We start with the following remark: if we can take δ of the order of dH(XP, Xn)
in Theorem 5.2.1 and if all the conditions of the theorem are satisfied, then db(Mn,Rf (XP)) can be
bounded in terms of ω(dH(XP, Xn)). This means that we can adapt the methods of [71] to Mappers.

Known generative model. Let us first consider the simplest situation where the parameters a
an b are also known. Following Section 5.3.2, we choose for g a fixed value in

(
1
3 ,

1
2

)
and we take

δn = 8

(
2log(n)

an

)1/b

and rn =
Vn(δn)+

g
,

where Vn is defined as in Equation (5.11). Let εn = dH(XP, Xn). As shown in the proof of Proposi-
tion 5.3.3, for n large enough, Assumption (5.3) and (5.4) are always satisfied and then

P (db(Mn,Rf (XP)) ≥ η) ≤ P
(
δn ≥ ω−1

(
η

2 + g−1

))
.

Consequently,

P (db(Mn,Rf (XP)) ≥ η) ≤ P (db(Mn,Rf (XP)) ≥ η ∩ εn ≤ 4δn) + P (εn > 4δn)

≤ Iω(δn)≥ g
1+2g η

+ min

{
1,

2b

2log(n)n

}
= Φn(η),

where Φn depends on the parameters of the model (or some bounds on these parameters) which are here
assumed to be known. Hence, given a probability level α, one has:

P
(
db(Mn,Rf (XP)) ≥ Φ−1

n (α)
)
≤ α.

Unknown generative model. We now assume that a and b are unknown. To compute con-
fidence sets for the Mapper in this context, we approximate the distribution of dH(XP, Xn) using the
distribution of dH(X̂sn

n , Xn) conditionally to Xn. There are N1 =
(
n
sn

)
subsets of size sn inside Xn, so

we let X1
sn , . . . , X

N1
sn denote all the possible configurations. Define

Ln(t) =
1

N1

N1∑
k=1

IdH(Xksn ,Xn)>t.

107

Let s be the function on N defined by s(n) = sn and let s2
n = s(s(n)). There are N2 =

(
n
s2n

)
subsets of

size s2
n inside Xn. Again, we let Xk

s2n
, 1 ≤ k ≤ N2, denote these configurations and we also introduce

Fn(t) =
1

N2

N2∑
k=1

I
dH

(
Xk
s2n
,Xsn

)
>t
.

Proposition 5.4.1. Let η > 0. Then, one has the following confidence set:

P (db(Rf (XP),Mn) ≥ η) ≤ Fn
(

1

4
ω−1

(
g

1 + 2g
η

))
+ Ln

(
1

4
ω−1

(
g

1 + 2g
η

))
+ o

(sn
n

)1/4

.

Proof. We have the following bound by using (5.19) in the proof of Proposition 5.3.6:

P (db(Rf (XP),Mn) ≥ η)

≤ P
(
ω(δn) ≥ g

1 + 2g
η

)
+ P

(
εn ≥

δn
4

)
+ P

(
δn ≥ min

{κ
4
,
ρ

4

})
≤ P

(
εn ≥

1

2
ω−1

(
g

1 + 2g
η

))
+ P

(
εsn ≥

1

2
ω−1

(
g

1 + 2g
η

))
+ o

(
1

nlog(n)

)
.

Following the lines of Section 6 in [71], subsampling approximations give

P
(
εn ≥

1

2
ω−1

(
g

1 + 2g
η

))
≤ Ln

(
1

4
ω−1

(
g

1 + 2g
η

))
+ o

(sn
n

)1/4

,

and

P
(
εsn ≥

1

2
ω−1

(
g

1 + 2g
η

))
≤ Fn

(
1

4
ω−1

(
g

1 + 2g
η

))
+ o

(
s2
n

sn

)1/4

.

The result follows by taking sn = nlog(n)−(1+β).

Both Fn and Ln can be computed in practice, or at least approximated using Monte Carlo procedures.
The upper bound on P (db(Rf (XP),Mn) ≥ η) then provides an asymptotic confidence region for the
persistence diagram of the Mapper Mn, which can be explicitly computed in practice. See the green
squares in the first row of Figure 5.3. The main drawback of this approach is that it requires to know
an upper bound on the modulus of continuity ω and, more importantly, the number of observations has
to be very large, which is not the case on our examples in Section 5.5.

Modulus of continuity of the filter function. As shown in Proposition 5.4.1, the modulus
of continuity of the filter function is a key quantity to describe the confidence regions. Inferring the
modulus of continuity of the filter from the data is a tricky problem. Fortunately, in practice, even in
the estimated filter setting, the modulus of continuity of the function is known in many situations. For
instance, projections such as PCA eigenfunctions and DTM functions are 1-Lipschitz.

5.4.3 Bottleneck Bootstrap

The two methods given above require an explicit upper bound on the modulus of continuity of the filter
function. Moreover, these methods both rely on the approximation result Theorem 5.2.1, which often
leads to conservative confidence sets. An alternative strategy is the bottleneck bootstrap introduced in
[46], and which we now apply to our framework.

Let Pn be the empirical measure defined from the sample (x1, y1), . . . , (xn, yn). Let (x∗1, y
∗
1) . . . , (x∗n, y

∗
n)

be an i.i.d. sample from Pn and let also M∗n be the random Mapper defined from this sample. We then
take for ηn,α the quantity η∗n,α defined by

P
(
db(M∗n,Mn) > η∗n,α |Xn

)
= α. (5.24)

Note that η∗n,α can be easily estimated with Monte Carlo procedures. It has been shown in [46] that the
bottleneck bootstrap is valid when computing the sublevel sets of a density estimator. The validity of the

108

bottleneck bootstrap has not been proven for the extended persistence diagram of any distance function.
For Mapper, it would require to write db(M∗n,Mn) in terms of the distance between the extrema of the
filter function and the ones of the interpolation of the filter function on the Rips graph. We leave this
problem open in this thesis.

Extension of the analysis. Our analysis can actually handle the MultiNerve edge-based version

M
4
r,g,δ(Xn, Yn) by replacing gr by r in Assumption (5.4) and r by r

2 in Equation (5.6) of Theorem 5.2.1—
see Remark 5.2.2, and changing constants accordingly in the proofs. In particular, this improves the
resolution rn in Equation (5.17) since g−1Vn(δn) becomes Vn(δn). Hence, we use this edge-based version
in Section 5.5, where this improvement on the resolution rn allows us to compensate for the low number
of observations in some datasets.

5.5 Numerical experiments

In this section, we provide few examples of parameter selections and confidence regions (which are union
of squares in the extended persistence diagrams) obtained with bottleneck bootstrap. The interpretation
of these regions is that squares that intersect the diagonal, which are drawn in pink color, represent
topological features in the Mappers that may be horizontal or artifacts due to the cover, and that may
not be present in the Reeb graph. We show in Figure 5.3 various Mappers (in each node of the Mappers,
the left number is the cluster ID and the right number is the number of observations in that cluster)
and 85 percent confidence regions computed on various datasets. All δ parameters and resolutions were
computed with Equation (5.17) (the δ parameters were also averaged over N = 100 subsamplings with
β = 0.001), and all gains were set to 40%. The code we used is available in the Gudhi C++ library [30].
The confidence regions were computed by bootstrapping data 100 times. Note that computing confidence
regions with Proposition 5.4.1 is possible, but the numbers of observations in all of our datasets were
too low, leading to conservative confidence regions that did not allow for interpretation. We provide
examples for data with and without the presence of noise in Sections 5.5.2 and 5.5.1 respectively.

5.5.1 Mappers and confidence regions

Synthetic example. We computed the Mapper of an embedding of the Klein bottle into R4 with
10,000 points with the height function. In order to illustrate the conservativity of confidence regions
computed with Proposition 5.4.1, we also plot these regions for an embedding with 10,000,000 points
using the fact that the height function is 1-Lipschitz. Corresponding squares are drawn in green color.
Their very large sizes show that Proposition 5.4.1 requires a very large number of observations in practice.
See the first row of Figure 5.3.

3D shapes. We computed the Mapper of an ant shape and a human shape from [52] embedded in
R3 (with 4,706 and 6,370 points respectively) Both Mappers were computed with the height function.
One can see that the confidence squares for the features that are almost horizontal (such as the small
branches in the Mapper of the ant) intersect indeed the diagonal. See the second and third rows of
Figure 5.3.

Miller-Reaven dataset. The first dataset comes from the Miller-Reaven diabetes study that
contains 145 observations of patients suffering or not from diabete. Observations were mapped into R5

by computing various medical features. Data can be obtained in the “locfit” R-package. In [118], the
authors identified two groups of diseases with the projection pursuit method, and in [129], the authors
applied Mapper with hand-crafted parameters to get back this result. Here, we normalized the data
to zero mean and unit variance, and we obtained the two flares in the Mapper computed with the
eccentricity function. Moreover, these flares are at least 85 percent sure since the confidence squares on
the corresponding points in the extended persistence diagrams do not intersect the diagonal. See the
first row of Figure 5.4.

109

0:294

1:349

2:375

3:396

4:438

5:464

6:497

7:598

8:761

9:673

10:279

11:270

13:240

12:235

14:234

15:221

17:234

16:212
19:201

18:253

20:218

21:204

22:204

23:209

24:207

25:224

27:221

26:212

28:185

29:231

30:221

31:223

33:231

32:243
34:237

35:236

37:232

36:239

39:264

38:275

40:323

41:311

42:746

43:621

44:480

45:440

46:388

47:386

48:343

49:295

50:317

−4 −2 0 2

−
2

0
2

4

birth

de
at

h

0:220

2:68

1:220
3:68

5:33

4:33
6:37

7:37

9:47

8:48

10:48

11:48

12:48

13:48

14:48

15:48

17:67

16:6718:62

19:62

20:98

21:98

22:111

23:111

24:74

25:74

26:73

27:73

28:137

29:96

30:96

31:86

34:78

32:14

35:78

33:13

36:75

37:100

38:91

39:89

40:181

42:51
41:51

44:205

45:4243:43

48:30

47:168

46:30

51:39

49:166

50:40

52:151

54:55 53:56

55:112

56:5357:53

60:70

58:7559:75

61:217

62:216

63:295

64:277

65:243
66:226

67:242
68:219

69:201
70:21371:20272:260

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

birth

de
at

h

0:30

1:29

2:28

3:32

4:31

8:30

5:19 9:30

6:167:27
15:26

12:26

13:25

10:16

14:31

11:36

16:88

19:26

21:30

17:32

18:30

20:115

22:30

26:28

25:24

23:119

24:29

31:28

28:123

27:28

29:23

30:29

36:29

32:146

33:29

34:31

35:30

38:140

39:30

41:25

37:28

40:28

46:29

43:145

45:30

42:27

44:25

47:24

48:200

51:24

49:32

50:24

56:28

52:161

55:25

54:26

53:24

59:163

57:26

61:29

58:26

60:33

64:31

66:23

62:192

63:38

65:38

67:165

69:33

70:27

71:32

68:24

75:165

76:25

72:31

73:28

74:29

83:36

80:35

82:37

79:195

81:37

77:36

84:70

78:32

85:133

89:160

90:25

88:32

91:35

92:34

87:239

86:3

93:28

94:197 96:33

98:155

97:25

100:42

99:42

95:42

102:207

103:48

101:560

105:713

106:48

104:28

108:680

107:3

109:687

110:528
111:56

112:575
113:48

114:546

116:137
115:15

−0.4 −0.2 0.0 0.2

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

0.
4

birth

de
at

h

Figure 5.3: Mappers computed with automatic tuning (middle) and 85 percent confidence regions for
their topological features (right) are provided for an embedding of the Klein Bottle into R4 (first row),
a 3D human shape (second row) and a 3D ant shape (third row).

110

0:103

1:97

2:17

4 5 6 7 8 9

4
5

6
7

8
9

birth

de
at

h

0:30

1:4

2:4

3:3

4:3

5:3

6:3

8:4

7:4

9:29

−20 −10 0 10 20

−
20

−
10

0
10

20

birth

de
at

h

Figure 5.4: Mappers computed with automatic tuning (middle) and 85 percent confidence regions for
their topological features (right) are provided for the Reaven-Miller dataset (first row) and the COIL
dataset (second row).

COIL dataset. The second dataset is an instance of the 16,384-dimensional COIL dataset [107]. It
contains 72 observations, each of which being a picture of a duck taken at a specific angle. Despite the
low number of observations and the large number of dimensions, we managed to retrieve the intrinsic
loop lying in the data using the first PCA eigenfunction. However, the low number of observations made
the bootstrap fail since the confidence squares computed around the points that represent this loop in
the extended persistence diagram intersect the diagonal. See the second row of Figure 5.4.

5.5.2 Noisy data

Denoising Mapper. An important drawback of the Mapper is its sensitivity to noise and outliers.
See the crater dataset in Figure 5.5, for instance. Several answers have been proposed for recovering the
correct persistence homology from noisy data. The idea is to use an alternative filtration of simplical
compexes instead of the Rips filtration. A first option is to consider the upper level sets of a density
estimator rather then the distance to the sample (see Section 4.4 in [71]). Another solution is to consider
the sublevel sets of the DTM and apply persistence homology inference in [46].

Crater dataset. To handle noise in our crater dataset, we simply smoothed the dataset by comput-
ing the empirical DTM with 10 neighbors on each point and removing all points with DTM less than 40
percent of the maximum DTM in the dataset. Then we computed the Mapper with the height function.
One can see that all topological features in the Mapper that are most likely artifacts due to noise (like
the small loops and connected components) have corresponding confidence squares that intersect the
diagonal in the extended persistence diagram. See Figure 5.5.

111

0:60

3:48

4:3

1:45

2:80

6:39

7:9

5:67

8:58

9:21

10:22

11:22

15:2

17:1

14:2

12:4

16:87

13:5

19:197
18:7

21:335

20:2

22:412

23:405

24:326 25:138

26:118

28:113

27:133

29:133

30:161

32:163

33:166

31:8

34:74

35:196

36:147

37:119

39:159

38:127

40:62

43:158

41:165

42:5

44:167

45:166

46:196

47:189

48:496

49:568

50:573

51:557

52:487

54:324

53:2
55:2

56:103

60:1

61:3

57:1

63:3

58:4

59:22

64:59

62:12

65:42

67:97

66:70

68:48

69:95

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

12

birth

de
at

h

Figure 5.5: Mappers computed with automatic tuning (middle) and 85 percent confidence regions for
their topological features (right) are provided for a a noisy crater in the Euclidean plane.

5.6 Conclusion

In this chapter, we studied Mappers computed on point clouds. More precisely, we derived approximation
results in the deterministic case, where there is no assumptions on the point cloud generation, and
we provided a statistical analysis of the Mapper when the point cloud is drawn from a probability
distribution. Namely, we first proved the fact that the Mapper is a measurable construction and then
we used the approximation results to show that the Mapper is a minimax optimal estimator of the Reeb
graph in various contexts (Propositions 5.3.3, 5.3.5 and 5.3.6) and that corresponding confidence regions
can be computed. Along the way, we derived rules of thumb to automatically tune the parameters of
the Mapper with Equation (5.17), and showed their efficiency in a few examples of application of our
methods on various datasets.

Among the future perspectives of this work are the following questions:

• Can results from [46] be adapted to prove the validity of bootstrap methods? We only
used bootstrap methods empirically in this thesis. As mentioned in Section 5.4.3, proving the
validity of bootstrap in the context for the Mapper would require to write db(M∗n,Mn) in terms
of the distance between the extrema of the filter function and the ones of the interpolation of the
filter function on the Rips graph.

• Is it possible to weight the Rips graph? Using weighted Rips complexes [21] instead of the
usual Rips complexes might improve the quality of the confidence regions on the Mapper features,
and would probably be a better way to deal with noise than our current solution.

• Is there applications in feature selection? It would be interesting to check whether our
statistical setting can be adapted to the question of selecting variables, which is one of the main
applications of the Mapper in practice.

112

CHAPTER 6

KERNEL METHODS FOR PERSISTENCE DIAGRAMS

We have seen in Chapter 4 that the Mappers are stable constructions, and we presented a way in
Chapter 5 to tune the parameters and build confidence sets. This is useful when the Mapper is used as
a clustering method. However, Mappers can also be seen as descriptors of the data. In the context of
Machine Learning, one may ask for a way to plug these descriptors in standard algorithms so as to be
able to use the topological information encoded in Mappers to improve e.g. supervised learning tasks.
We showed in Chapter 3 that the functional distortion distance and the bottleneck distance are locally
equivalent. Hence, it makes sense to restrict the focus on the signatures, i.e. the persistence diagrams,
instead of the Mappers themselves.

We recall that deriving ways to use persistence diagrams in Machine Learning is an interesting
problem in its own right since their use in learning tasks is not straightforward. Indeed, a large class of
learning methods, such as SVM or PCA, requires a Hilbert structure on the descriptor space, which is
not the case for the space of persistence diagrams. For instance, many simple operators of RD, such as
addition, average or scalar product, have no analogues in that space. Mapping persistence diagrams to
vectors in RD or in some infinite-dimensional Hilbert space is one possible approach to facilitate their
use in discriminative settings, and is often referred to as kernel methods, such a mapping being called a
kernel.

The main contribution of this chapter is to provide two ways to embed persistence diagrams into
Hilbert spaces. More precisely, we define two different kernels for persistence diagrams.

The first one, called the Sliced Wasserstein kernel kSW, is very similar to the usual Gaussian kernel,
and is based on a relaxation of the 1-Wasserstein distance dw,1 between persistence diagrams called the
Sliced Wasserstein distance SW. An important result about SW is that it is equivalent to dw,1:

C(N)dw,1(Dg,Dg′) ≤ SW(Dg,Dg′) ≤ 2
√

2dw,1(Dg,Dg′),

where C(N) is a constant depending on the number of points N in Dg and Dg′, and such that
C(N)→ 0 as N → +∞. We prove this result in Theorem 6.2.11.

The second one, called the topological vector Φ sends the persistence diagrams to a finite dimensional
Euclidean space in a stable way: we show in Theorem 6.3.2 that

‖Φ(Dg)− Φ(Dg′)‖∞ ≤ 2db(Dg,Dg′).

Plan of the Chapter. In Section 6.1, we review the basics of supervised Machine Learning and
kernel methods. We then present our Gaussian-like Sliced Wasserstein kernel in Section 6.2. Finally, we
present our finite dimensional embedding in Section 6.3.

Notation. We let Df be the space of finite persistence diagrams, Db
f be the space of finite and

bounded persistence diagrams, and Db
N be the space of bounded persistence diagrams with less than

N points. We also assume to work with usual persistence diagrams, even though all definitions in this
chapter hold for extended persistence diagrams by treating points type by type.

113

6.1 Supervised Machine Learning

In this section, we briefly recall the basics of supervised Machine Learning and kernel methods. We refer
the interested reader to [72] and [127] for further details.

In the context of supervised Machine Learning, you are given n observations (x1, y1), · · · , (xn, yn) ∈
X × Y , where X is the space of data and Y is the space of targets—generally, targets are discrete labels
in classification, and continuous variables in regression for instance. The goal is to produce a predictor
fn : X → Y , which is built only from the observations: fn = fn((x1, y1), · · · , (xn, yn)) and as accurate
as possible. Accuracy is usually measured with loss functions, that we now detail.

6.1.1 Empirical Risk Minimization

Predictors in supervised Machine Learning are computed as the minima of the following general equation:

f∗ = argminf∈F ERn(f) = argminf∈F
1

n

n∑
i=1

L(yi, f(xi)) + Ω(f), (6.1)

where F is a class of predictors, L : Y × Y → R is a loss function measuring the error made by f
on the training observations, Ω(f) is a regularization term used to avoid overfitting and too complicated
predictors, and ERn(f) is called the empirical risk of f .

Loss functions. Several different loss functions exist in the literature, each corresponding to a
specific Machine Learning algorithm. Assuming Y ⊆ R, examples of such losses include:

• L(yi, f(xi)) = δyi=f(xi), known as the zero-one loss. Due to its non smoothness, minimizing the
empirical risk with this loss may become NP-hard, even for simple classes of predictors.

• L(yi, f(xi)) = max{0, 1− yif(xi)}, known as the hinge loss. It is used in Support Vector Machine
prediction. Even though it is not smooth, the empirical risk can be minimized efficiently with it.

• L(yi, f(xi)) = log(1 + exp(−yif(xi))), known as the log loss. It is used in Logistic regression.

• L(yi, f(xi)) = exp(−yif(xi)), known as the exponential loss. It is used in Adaboost prediction.

• L(yi, f(xi)) = (yi − f(xi))
2, known as the squared loss. It is used in least square regression.

Regularization term. Regularization terms are often used when the class F is parametrized by
vectors of Euclidean space F = {fw : w ∈ RD}. In this case, the most common regularizes are:

• Ω(fw) = 〈w,w〉 = ‖w‖22, known as `2 regularization. It is strictly convex and differentiable, hence
the empirical risk can be optimized efficiently. However, the solution w∗ may be dense, i.e. with
many nonzero coordinates.

• Ω(fw) = ‖w‖1, known as `1 regularization. It is convex and not differentiable at 0, but the solution
w∗ is in general sparse, i.e. with just a few nonzero coordinates.

• Ω(fw) = α‖w‖1 + (1− α)‖w‖22, where 0 ≤ α < 1, known as elastic net regularization.

• Ω(fw) = ‖w‖p, where 0 < p ≤ 1, known as `p regularization.

The difficulty of minimizing the empirical risk also depends a lot on the class of predictors F . It is
greatly simplified when F is a reproducing kernel Hilbert space (RKHS).

114

6.1.2 Reproducing Kernel Hilbert Space

RKHSs are Hilbert spaces of functions for which function evaluation at a specific point x can be computed
with scalar products.

Definition 6.1.1. A set H ⊂ RX forming a Hilbert space, with scalar product 〈·, ·〉H, is a reproducing
kernel Hilbert space if there exists a function k : X ×X → R, called a kernel, such that:

(i) {kx : x ∈ X} ⊂ H, where kx : x 7→ k(x, ·), and

(ii) f(x) = 〈f, kx〉H, for any x ∈ X and f ∈ H.

An equivalent definition is to require that the evaluation function Fx : H → R defined by Fx(f) =
f(x) is continuous for any x ∈ X.

Proposition 6.1.2. The kernel of a RKHS is unique and, conversely, a function k can be the kernel of
at most one RKHS. Hence, one can talk of the kernel of a RKHS.

There is a useful characterization of kernels with positive semi-definite functions.

Theorem 6.1.3 (Moore-Aronszajn [4]). A function k : X×X → R is a kernel if and only if it is positive
semi-definite, i.e.

∑
i,j aiajk(xi, xj) ≥ 0 for any a1, · · · , an ∈ R and x1, · · · , xn ∈ X.

When X = RD, D ∈ N∗, examples of such positive semi-definite functions include:

• the linear kernel: k(x, y) = 〈x, y〉,

• the polynomial kernel: k(x, y) = (α〈x, y〉+ 1)β , α, β ∈ R,

• the Gaussian kernel: k(x, y) = exp
(
−‖x−y‖

2
2

2σ2

)
, σ > 0.

Minimizing the empirical risk when F is a RKHS H turns out to be easy, even when H is infinite
dimensional, as is the case for many kernels.

Theorem 6.1.4 (Representer Theorem [126]). Let (x1, y1), · · · , (xn, yn) ∈ X×Y be n observations, and
let k : X ×X → R be a kernel, i.e. a positive semi-definite function, with corresponding RKHS H. Let
Ω : R+ → R be a strictly monotonically increasing function, and L : Y × Y → R be an arbitrary loss
function. Then, any function f∗ ∈ H minimizing

1

n

n∑
i=1

L(yi, f(xi)) + Ω(‖f‖H)

is of the form f∗(·) =
∑n
i=1 αik(xi, ·), where α1, · · · , αn ∈ R.

In particular, computing f∗ does not require to know the RKHS H; only the evaluations of the kernel
at the observations k(xi, xj) are necessary.

The kernel trick. A direct consequence of the previous results is the following theorem:

Corollary 6.1.5. For any kernel k : X ×X → R, there exists a essentially unique Hilbert space H and
an embedding Φ : X → H such that:

k(x, y) = 〈Φ(x),Φ(y)〉H.

Hence, any set X can be seen as a subset of a Hilbert space, as soon as there is a positive semi-definite
function, or kernel, at hand. This is attractive since observations in this Hilbert space may be linearly
separable, even if the observations themselves are not. This is known as the kernel trick. See Figure 6.1.

115

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

svm classifier

-1 (training)
+1 (training)
Support Vectors
misclassified

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

polynomial

4

3

2

1

0

feature space

-3

-2

-1

0

1

2

3

3

0.5

1

1.5

3.5

2.5

2

-1 (training)
+1 (training)
Support Vectors
misclassified

Figure 6.1: In R2, red points cannot be separated from blue ones with a line without producing mis-
classified points (first row). However, embedding these points into R3, for instance with a polynomial
kernel, can make them separable. It then suffices to push back the separating hyperplane in R3 to get a
non linear separation in R2 (second row).

Gaussian kernels. A standard way to derive a kernel is to exponentiate the negative of a squared
Euclidean distance. This is due to the following result of Berg et al:

Theorem 6.1.6 (Theorem 3.2.2 of [11]). Let σ > 0. The Gaussian function

kσ(x, y) = exp

(
−f(x, y)

2σ2

)
,

for an arbitrary function f , is positive semi-definite for all σ > 0 if and only if f is a conditionally
negative semi-definite function, i.e.

∑
i,j aiajf(xi, xj) ≤ 0 for any n ∈ N∗, x1, · · · , xn ∈ X, and

a1, · · · , an ∈ R such that
∑
i ai = 0.

Concerning persistence diagrams, it has been observed in Appendix A of [119] that, unfortunately,
the metrics db or dw,1 are not conditionally negative semi-definite (it suffices to randomly sample a family
of point clouds to observe experimentally that more often than not the inequality of negative definiteness
will be violated for particular weights a1, · · · , an). In the following section, we present an approximation
of dw,1 with the Sliced Wasserstein distance, which is provably conditionally negative semi-definite, and
we use it to define a Gaussian kernel that can be easily tuned thanks to its bandwidth parameter σ.

6.2 A Gaussian Kernel for Persistence Diagrams

Several infinite dimensional kernels have been derived for persistence diagrams within the last few years.
For instance, in [120], the authors use solutions of the heat differential equation in the plane, with
initial heat sources located at the persistence diagram points, and compare them with the usual L2(R2)
scalar product. Differently, in [90], the authors treat a persistence diagram as a discrete measure on the

116

plane, and follow by using kernel mean embeddings with Gaussian kernels—see Section 6.2.5 for precise
definitions. Both kernels are provably stable, in the sense that the metric they induce in their respective
RKHS is bounded above by the distance between persistence diagrams. Although these kernels are
injective, there is no evidence that their induced RKHS distances are discriminative, and thus follow the
geometry of the bottleneck or Wasserstein distances for persistence diagrams. In this section, we present
the Sliced Wasserstein kernel for persistence diagrams, which is both stable and discriminative if the
diagrams have bounded cardinalities. The kernel is based on a modification of the Wasserstein distance
between probability measures, that we first define.

6.2.1 Wasserstein distance for unnormalized measures on R
We first recall the basics on measures and integration. We refer the interested reader to [6] for further
details.

Definition 6.2.1. Let X be a set. A σ-algebra on X is a collection E of subsets of X such that, for any
E ∈ E and countable family {En}n∈N in E:

(i) ∅ ∈ E, (ii) (X \ E) ∈ E, (iii)
⋃
n∈NEn ∈ E.

The pair (X, E) is called a measurable space.

Given an arbitrary family S of subsets of X, the σ-algebra generated by S is the smallest σ-algebra
containing every element of S. If X is a topological space, the σ-algebra generated by the open sets of
X is called the Borel algebra.

Definition 6.2.2. A measure on a measurable space (X, E) is a function µ : E → R ∪ {+∞} such that,
for any E ∈ E and countable family of pairwise disjoint sets {En}n∈N in E:

(i) µ(E) ≥ 0, (ii) µ(∅) = 0, (iii) µ
(⋃

n∈NEn
)

=
∑
n∈N µ(En).

A probability measure, sometimes called normalized measure, is a measure that also satisfies µ(E) ∈
[0, 1] for any E ∈ E and µ(X) = 1.

Definition 6.2.3. Let (X, E) be a measurable space. Let f : X → R+ be a measurable function, i.e.
f−1([t,+∞)) ∈ E for any t ∈ R. Let µ be a measure on (X, E).

We define the integral of f in several steps:

• If f = 1E where E ∈ E, then
∫
X
fdµ = µ(E). The function f is called an indicator function.

• If f =
∑
i ai1Ei , where ai > 0 and Ei ∈ E, then

∫
X
fdµ =

∑
i ai
∫
X

1Eidµ =
∑
i aiµ(Ei). The

function f is called simple.

• In general, we define the integral of f as
∫
X
fdµ = sup{

∫
X
sdµ : s is simple and s ≤ f}.

The 1-Wasserstein distanceW [137, §6] is a distance between probability measures. For reasons that
will become clear in the next section, we focus here on a variant of that distance: the 1-Wasserstein
distance for nonnecessarily normalized measures on the real line [124, §2].

Definition 6.2.4. Let µ and ν be two measures on the real line such that µ(R) = ν(R) = r > 0. The
1-Wasserstein distance between µ and ν is:

W(µ, ν) = inf
ξ∈Π(µ,ν)

∫∫
R×R
|x− y|dξ(x, y), (6.2)

where R2 is equipped with the Borel algebra and ξ ∈ Π(µ, ν) is a measure on R2 with marginals µ and ν,
i.e. ξ(·,R) = µ and ξ(R, ·) = ν.

This distance enjoys two good properties: it is conditionally negative semi-definite and additive. To
show this, let us define the two following distances:

117

Qr(µ, ν) = r

∫
[0,1]

|M−1(x)−N−1(x)|dx (6.3)

L(µ, ν) = inf
f∈1-Lipschitz

∫
R
f(x)[µ(dx)− ν(dx)], (6.4)

where M−1 and N−1 are the quantile functions of the probability measures 1
rµ and 1

rν respectively,
i.e. M(x) = 1

rµ((−∞, x]) and N(x) = 1
rν((−∞, x]).

Proposition 6.2.5. We have W = Qr = L. Additionally:
(i) Qr is conditionally negative semi-definite on the space of measures of mass r;
(ii) for any positive measures µ, ν, γ such that µ(R) = ν(R), we have L(µ+ γ, ν + γ) = L(µ, ν).

Proof. The equality between (6.2) and (6.3) is known for probability measures on the real line—see
Proposition 2.17 in [124] for instance, and can be trivially generalized to unnormalized measures. The
equality between (6.2) and (6.4) is due to the well known Kantorovich duality for a distance cost [137,
Particular case 5.4] which can also be trivially generalized to unnormalized measures, which proves the
main statement of the proposition.

The definition of Qr shows that the Wasserstein distance is the l1 norm of rM−1 − rN−1, and is
therefore conditionally negative semi-definite (as the l1 distance between two direct representations of µ
and ν as functions rM−1 and rN−1), proving point (i). The second statement is immediate.

We conclude this section with an important practical remark that concerns empirical measures.

Definition 6.2.6. Let (X, E) be a measurable space. A measure µ is said to be empirical if there exists
a finite set of points P ⊂ X such that µ(E) = card(E ∩ P) for any E ∈ E. In that case, we write
µ =

∑
p∈P δp. Each δp is called a Dirac measure on p.

Remark 6.2.7. For two unnormalized empirical measures on the real line µ =
∑n
i=1 δxi and ν =∑n

i=1 δyi of same total mass, with ordered x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn, one has:

W(µ, ν) =

n∑
i=1

|xi − yi| = ‖X − Y ‖1,

where X = (x1, · · · , xn) ∈ Rn and Y = (y1, · · · , yn) ∈ Rn.

6.2.2 The Sliced Wasserstein Kernel

Sliced Wasserstein distance. Any persistence diagram Dg can be seen as an empirical measure
on the plane µ =

∑
p∈Dg δp. Hence, W can be computed on persistence diagrams. Since W is condi-

tionally negative semi-definite when the measures are defined on the real line (Proposition 6.2.5 and
Remark 6.2.7), the idea of the Sliced Wasserstein distance of [116] is to slice the plane with lines passing
through the origin, to project the measures onto these lines where W is computed, and to integrate the
distances between the projected measures over all possible lines.

Definition 6.2.8. Given θ ∈ R2 with ‖θ‖2 = 1, let L(θ) denote the line {λθ : λ ∈ R}, and let πθ :
R2 → L(θ) be the orthogonal projection onto L(θ). Let Dg1,Dg2 be two persistence diagrams, and let
µθ1 =

∑
p∈Dg1

δπθ(p) and µθ1∆ =
∑
p∈Dg1

δπθ◦π∆(p), and similarly for µθ2, where π∆ is the orthogonal
projection onto the diagonal ∆. Then, the Sliced Wasserstein distance is defined as:

SW(Dg1,Dg2) =
1

2π

∫
S1

W(µθ1 + µθ2∆, µ
θ
2 + µθ1∆)dθ.

We added the projections µθ1∆ and µθ2∆ because Dg1 and Dg2 may have different number of points,
Moreover, ∆ counts for nothing in db and dw,1.

Note that, by symmetry, one can restrict on the half-circle [−π2 , π2] and normalize by π instead of
2π. Since W is conditionally negative semi-definite, we can deduce that this is also true for SW itself.

118

Lemma 6.2.9. SW is conditionally negative semi-definite on Db
f .

Proof. Let n ∈ N∗, a1, ..., an ∈ R such that
∑
i ai = 0 and Dg1, ...,Dgn ∈ Db

f . Given 1 ≤ i ≤ n, we let
µ̃θi = µθi +

∑
q∈Dgk,k 6=i δπθ◦π∆(q), µ̃

θ
ij∆ =

∑
p∈Dgk,k 6=i,j δπθ◦π∆(p) and d =

∑
i card(Dgi). Then:∑

i,j

aiajW(µθi + µθj∆, µ
θ
j + µθi∆) =

∑
i,j

aiajL(µθi + µθj∆, µ
θ
j + µθi∆)

=
∑
i,j

aiajL(µθi + µθj∆ + µθij∆, µ
θ
j + µθi∆ + µθij∆)

=
∑
i,j

aiajL(µ̃θi , µ̃
θ
j) =

∑
i,j

aiajQd(µ̃θi , µ̃θj) ≤ 0

The result follows by linearity of integration.

Hence, Theorem 6.1.6 allows us to define a valid kernel on Db
f with:

kSW(Dg1,Dg2) = exp

(
−SW(Dg1,Dg2)

2σ2

)
. (6.5)

6.2.3 Metric Preservation

We now give the main theoretical result concerning the Sliced Wasserstein distance, which states that
kSW, in addition to be stable and injective, preserves the metric between persistence diagrams, which
should intuitively lead to an improvement of the classification power. This has to be compared with [120]
and [90], which only prove stability and injectivity. This intuition is illustrated in Section 6.2.5 and
Figure 6.6, where we show an improvement of classification accuracies on several benchmark applications.

Stability. We first give an upper bound on the Sliced Wasserstein distance.

Theorem 6.2.10. SW is stable with respect to dw,1 on Db
f , i.e. for any Dg1,Dg2 ∈ Db

f , one has:

SW(Dg1,Dg2) ≤ 2
√

2dw,1(Dg1,Dg2).

Proof. Let θ ∈ R2 be such that ‖θ‖2 = 1. Let Dg1,Dg2 ∈ Db
f , and let Dgθ1 = {πθ(p) : p ∈ Dg1} ∪ {πθ ◦

π∆(q) : q ∈ Dg2} and Dgθ2 = {πθ(q) : q ∈ Dg2} ∪ {πθ ◦ π∆(p) : p ∈ Dg1}. Let γ∗ be the one-to-one
bijection between Dgθ1 and Dgθ2 induced by W(µθ1 +µθ2∆, µ

θ
2 +µθ1∆), and let γ be the one-to-one bijection

between Dg1 ∪ π∆(Dg2) and Dg2 ∪ π∆(Dg1) induced by the partial bijection achieving dw,1(Dg1,Dg2).

Then γ naturally induces a one-to-one matching γθ between Dgθ1 and Dgθ2 with:

γθ = {(πθ(p), πθ(q)) : (p, q) ∈ γ} ∪ {(πθ ◦ π∆(p), πθ ◦ π∆(q)) : (p, q) ∈ γ, p, q 6∈ im(π∆)}.
Now, one has the following inequalities:

W(µθ1 + µθ2∆, µ
θ
2 + µθ1∆) =

∑
(x,y)∈γ∗

|x− y|

≤
∑

(πθ(p),πθ(q))∈γθ
|〈p, θ〉 − 〈q, θ〉| since γθ is not the optimal matching between Dgθ1 and Dgθ2

≤
∑

(πθ(p),πθ(q))∈γθ
‖p− q‖2 by the Cauchy-Schwarz inequality since ‖θ‖2 = 1

≤
√

2
∑

(πθ(p),πθ(q))∈γθ
‖p− q‖∞ since ‖ · ‖2 ≤

√
2‖ · ‖∞

≤ 2
√

2
∑

(p,q)∈γ
‖p− q‖∞ since ‖π∆(p)− π∆(q)‖∞ ≤ ‖p− q‖∞

= 2
√

2dw,1(Dg1,Dg2)

Hence, we have SW(Dg1,Dg2) ≤ 2
√

2dw,1(Dg1,Dg2).

119

1

−π
2

π
2

0

y = |cos(x)|

αp

θk+1 − θk

y = 1− 2x
π

Figure 6.2: The integral of |cos(·)| has a lower bound that depends on the length of the integral support.

In particular, when θk+1−θk ≤ π, this integral is more than (θk+1−θk)2

2π by the Cauchy-Schwarz inequality.

Discriminativity. We now prove the discriminativity of SW. For this, we need a stronger assump-
tion on the persistence diagrams, namely that their cardinalities have to be not only finite, but also
uniformly bounded by some N ∈ N∗.

Theorem 6.2.11. SW is discriminative with respect to dw,1 on Db
N , i.e. for any Dg1,Dg2 ∈ Db

N , one
has:

1

2M
dw,1(Dg1,Dg2) ≤ SW(Dg1,Dg2),

where M = 1 + 2N(2N − 1).

Proof. Let Dg1,Dg2 ∈ Db
N . Let S+

1 ⊆ S1 be the subset of the circle delimited by the angles
[
−π2 , π2

]
.

Let us consider the following set:

Θ1 =
{
θ ∈ S+

1 : ∃p1, p2 ∈ Dg1 : 〈θ, p2 − p1〉 = 0
}
,

and similarly:
Θ2 =

{
θ ∈ S+

1 : ∃q1, q2 ∈ Dg2 : 〈θ, q2 − q1〉 = 0
}
.

Now, we let Θ = Θ1 ∪Θ2 ∪
{
−π2 , π2

}
be the union of these sets, and sort Θ in decreasing order. One has

card(Θ) ≤ 2N(2N − 1) + 2 = M + 1 since a vector θ that is orthogonal to a line defined by a specific
pair of points (p1, p2) appears exactly once in S+

1 .
For any θ that is between two consecutive θk, θk+1 ∈ Θ, the order of the projections onto L(θ)

of the points of both Dg1 and Dg2 remains the same. Given any point p ∈ Dg1 ∪ π∆(Dg2), we let
γ(p) ∈ Dg2 ∪π∆(Dg1) be its matching point according to the matching given by W(µθ1 +µθ2∆, µ

θ
2 +µθ1∆).

Then, one has the following equalities:

∫ θk+1

θk

W(µθ1 + µθ2∆, µ
θ
2 + µθ1∆) dθ

=

∫ θk+1

θk

∑
p∈Dg1∪π∆(Dg2)

|〈p− γ(p), θ〉| dθ

=
∑

p∈Dg1∪π∆(Dg2)

‖p− γ(p)‖2
∫ θk+1−θk

0

|cos (αp + β) | dβ where αp = ∠(p− γ(p), θk)

We need to lower bound
∫ θk+1−θk

0
|cos (αp + β) |dβ. Since θk+1 − θk ≤ π, one can show that this

integral cannot be less than (θk+1−θk)2

2π using cosine concavity—see Figure 6.2. Hence, we now have the
following lower bound:

120

∫ θk+1

θk

W(µθ1 + µθ2∆, µ
θ
2 + µθ1∆) dθ ≥ (θk+1 − θk)

2

2π

∑
p∈Dg1∪π∆(Dg2)

‖p− γ(p)‖2

≥ (θk+1 − θk)
2

2π

∑
p∈Dg1∪π∆(Dg2)

‖p− γ(p)‖∞ ≥
(θk+1 − θk)

2

2π

∑
p/∈π∆(Dg2)

or γ(p)/∈π∆(Dg1)

‖p− γ(p)‖∞

≥ (θk+1 − θk)
2

2π
dw,1(Dg1,Dg2).

Let Θ =
{
θ1 = −π2 , θ2, ..., θ|Θ| = π

2

}
. Then, one has:

SW(Dg1,Dg2) =
1

π

∫ π
2

−π2
W(µθ1 + µθ2∆, µ

θ
2 + µθ1∆) dθ

=
1

π

card(Θ)∑
k=2

∫ θk

θk−1

W(µθ1 + µθ2∆, µ
θ
2 + µθ1∆) dθ

≥

card(Θ)∑
k=2

(θk − θk−1)
2

 dw,1(Dg1,Dg2)

2π2

≥ π2

card(Θ)− 1

dw,1(Dg1,Dg2)

2π2
by the Cauchy-Schwarz inequality

≥ dw,1(Dg1,Dg2)

2M

Hence, SW is discriminative.

Theorems 6.2.10 and 6.2.11 allow us to show that dkSW , the distance induced by kSW in its RKHS, is
also equivalent to dw,1 in a broader sense: there exist continuous, positive and nondecreasing functions
g, h such that g(0) = h(0) = 0 and h ◦ dw,1 ≤ dkSW

≤ g ◦ dw,1.

A weaker assumption. The condition on the cardinalities of the persistence diagrams can be re-
laxed. Indeed, one can prove that the feature map ΦkSW induced by kSW is injective when the persistence
diagrams are only assumed to be finite and bounded:

Proposition 6.2.12. The feature map ΦkSW is continuous and injective with respect to dw,1 on Db
f .

Proof. Note that if the persistence diagrams have bounded cardinalities, Proposition 6.2.12 is an im-
mediate consequence of Theorem 6.2.11. One has that ΦkSW

is continous since dkSW
is stable (cf Theo-

rem 6.2.10). Now, let Dg1,Dg2 ∈ Db
f . such that dkSW

(Dg1,Dg2) = ‖ΦkSW
(Dg1)− ΦkSW

(Dg2)‖ = 0. We
necessarily have SW(Dg1,Dg2) = 0. Assume that dw,1(Dg1,Dg2) > 0. Then, there must be a point p
in Dg1 that is not in Dg2. The Sliced Wasserstein distance being 0, there must be, for every θ ∈ S1, a
point qθ in Dg2 that has the same projection onto L(θ) as p: πθ(qθ) = πθ(p), i.e. qθ ∈ (πθ(p), p), the
line defined by the pair πθ(p), p. All these lines (πθ(p), p) intersect at p 6= qθ. Thus, qθ1 6= qθ2 for any
θ1 6= θ2, hence Dg2 includes an infinite number of points, which is impossible since Dg2 ∈ Db

f . Thus,
dw,1(Dg1,Dg2) = 0 and ΦkSW is injective.

In particular, kSW can be turned into a universal kernel by considering exp(kSW) (cf Theorem 1
in [92]). This can be useful in a variety of tasks, including tests on distributions of persistence diagrams.

121

6.2.4 Computation

Approximate computation. In practice, kSW can be approximated in O(N log(N)) time using
Algorithm 2. This algorithm first samples M directions in the half-circle S+

1 ; it then computes, for each
sample θi and for each persistence diagram Dg, the scalar products between the points of Dg and θi,
and then sorts them in a vector Vθi(Dg). Finally, the `1-norm between the vectors is averaged over the

sampled directions: SWM (Dg1,Dg2) = 1
M

∑M
i=1 ‖Vθi(Dg1)−Vθi(Dg2)‖1. Note that one can easily adapt

the proof of Lemma 6.2.9 to show that SWM is conditionally negative semi-definite by using the linearity
of the sum. Hence, this approximation remains a kernel. If the two persistence diagrams have cardinalities
bounded by N , then the running time of this procedure is O(MN log(N)). This approximation of kSW is
useful since, as shown in Section 6.2.5, we can observe empirically that just a few directions are sufficient
to get good classification accuracies.

Algorithm 2: Approximate computation of SW

Input: Dg1 = {p1
1, · · · , p1

N1
}, Dg2 = {p2

1, · · · , p2
N2
},M .

Add π∆(Dg1) to Dg2 and vice-versa.
Let SW = 0; θ = −π/2; s = π/M ;
for i = 1, · · · ,M do

Store the products 〈p1
k, θ〉 in an array V1;

Store the products 〈p2
k, θ〉 in an array V2;

Sort V1 and V2 in ascending order;
SW = SW + s‖V1 − V2‖1;
θ = θ + s;

end for
Output: (1/π)SW;

Exact computation. A persistence diagram is said to be in general position if it has no triple
of aligned points. If the persistence diagrams have cardinalities bounded by N , then the exact kernel
computation for persistence diagrams in general position can be done in O(N2log(N)) time with Algo-
rithm 3. In practice, given Dg1 and Dg2, we slightly modify them with infinitesimally small random
perturbations, so that the resulting persistence diagrams D̃g1 and D̃g2 are in general position. We then
approximate kSW(Dg1,Dg2) arbitrarily well with kSW(D̃g1, D̃g2).

6.2.5 Experiments

In this section, we compare kSW to kPSS and kPWG on several benchmark applications for which persis-
tence diagrams have been proven useful. We compare these kernels in terms of classification accuracies
and computational cost. We review first our experimental setting, and review these tasks one by one.

Experimental setting. We implemented and used C++ code to compute kernel values in the
Gudhi C++ library [31]. These values are then handled with the LIBSVM [40] implementation of C-
SVM, and results are averaged over 10 runs on a 2.4GHz Intel Xeon E5530 Quad Core. The cost factor
C is cross-validated in the following grid: {0.001, 0.01, 0.1, 1, 10, 100, 1000}. Table 6.1 summarizes the
properties of the datasets we consider, namely number of labels, as well as training and test instances
for each task. Figure 6.3 and 6.4 illustrate how we use persistence diagrams to represent complex data.
We first describe the two baselines we considered, along with their parameterization, followed by our
proposal.

PSS. The Persistence Scale Space kernel kPSS [120] is defined as the scalar product of the two solutions
of the heat diffusion equation with initial Dirac sources located at the points of the persistence diagram.

122

Algorithm 3: Exact computation of SW

Input: Dg1 = {p1
1, · · · , p1

N1
} with |Dg1| = N1, Dg2 = {p2

1, · · · , p2
N2
} with

|Dg2| = N2

1 Let Θ1 = [],Θ2 = [], V1 = [], V2 = [], B1 = [[] ... []], B2 = [[] ... []], SW = 0;
2 for i = 1, · · · , N1 do
3 Add p2

N2+i = π∆(p1
i) to Dg2;

4 for i = 1, · · · , N2 do
5 Add p1

N1+i = π∆(p2
i) to Dg1;

6 for i = 1, 2 do
7 for j = 1, · · · , N1 +N2 − 1 do
8 for k = j + 1, · · · , N1 +N2 do

9 Add ∠
[
pij − pik

]⊥ ∈ [−π
2
, π

2

]
to Θi;

10 Sort Ai in ascending order;
11 for j = 1, · · · , N1 +N2 do
12 Add 〈pij, [0,−1]〉 to Vi;

13 Sort Vi in ascending order;

14 Let fi : pij 7→ position of
(
pij,−π

2

)
in Vi;

15 for j = 1, · · · , (N1 +N2)(N1 +N2 − 1)/2 do

16 Let k1, k2 such that Θi[j] = ∠
[
pik1 − pik2

]⊥
;

17 Add
(
pik1 ,Θ

i[j]
)

to Bi

[
fi(p

i
k1

)
]
; Add

(
pik2 ,Θ

i[j]
)

to Bi

[
fi(p

i
k2

)
]
;

18 Swap fi(p
i
k1

) and fi(p
i
k2

);

19 for j = 1, · · · , N1 +N2 do
20 Add

(
pij,

π
2

)
to Bi

[
fi(p

i
j)
]

;

21 for i = 1, · · · , N1 +N2 do
22 Let k1 = 0, k2 = 0;
23 Let θm = −π

2
and θM = min{B1[i][k1]2, B2[i][k2]2};

24 while θm 6= π
2

do
25 SW = SW + ‖B1[i][k1]1 −

B2[i][k2]1‖2

∫ θM−θm
0

cos(∠ (B1[i][k1]1 −B2[i][k2]1, θm) + θ)dθ;
26 θm = θM ;
27 if θM == B1[i][k1]2 then k1 = k1 + 1; else k2 = k2 + 1;
28 θM = min{B1[i][k1]2, B2[i][k2]2};
29 return 1

π
SW;

123

Task Training Test Labels

Orbit 175 75 5
Texture 240 240 24
Human 415 1618 8
Airplane 300 980 4
Ant 364 1141 5
Bird 257 832 4
FourLeg 438 1097 6
Octopus 334 1447 2
Fish 304 905 3

Table 6.1: Number of instances in the training set, the test set and number of labels.

Task kPSS (10−3) kPWG (1000) kSW (6)

Orbit 63.6± 1.2 77.7± 1.2 83.7± 0.5
Texture 98.8± 0.0 95.8± 0.0 96.1± 0.4

Task kPSS kPWG kSW

Human 68.5± 2.0 64.2± 1.2 74.0± 0.2
Airplane 65.4± 2.4 61.3± 2.9 72.6± 0.2
Ant 86.3± 1.0 87.4± 0.5 92.3± 0.2
Bird 67.7± 1.8 72.0± 1.2 67.0± 0.5
FourLeg 67.0± 2.5 64.0± 0.6 73.0± 0.4
Octopus 77.6± 1.0 78.6± 1.3 85.2± 0.5
Fish 76.1± 1.6 79.8± 0.5 75.0± 0.4

Table 6.2: Classification accuracies (%) for the benchmark applications.

It has the following closed form expression:

kPSS(Dg1,Dg2) =
1

8πt

∑
p∈Dg1

∑
q∈Dg2

exp

(
−‖p− q‖

2

8t

)
− exp

(
−‖p− q̄‖

2

8t

)
,

where q̄ = (y, x) is the symmetric of q = (x, y) along the diagonal. Since there is no clear heuristic
on how to tune t, this parameter is chosen in the applications by ten-fold cross-validation with random
50%-50% training-test splits and with the following set of NPSS = 13 values: 0.001, 0.005, 0.01, 0.05,
0.1, 0.5, 1, 5, 10, 50, 100, 500 and 1000.

PWG. LetK, p > 0 and Dg1 and Dg2 be two persistence diagrams. Let kρ be the Gaussian kernel with
parameter ρ > 0. Let Hρ be the RKHS associated to kρ. Let µ1 =

∑
x∈D1

arctan(Kpers(x)p)kρ(·, x) ∈
Hρ be the kernel mean embedding of Dg1 weigthed by the diagonal distances. Let µ2 be defined similarly.
Let τ > 0. The Persistence Weighted Gaussian kernel kPWG [90, 91] is defined as the Gaussian kernel
with parameter τ on Hρ:

kPWG(Dg1,Dg2) = exp

(
−‖µ1 − µ2‖Hρ

2τ2

)
.

The authors in [90] provide heuristics to compute K, ρ and τ and give a rule of thumb to tune p. Hence,
in the applications we select p according to the rule of thumb, and we use ten-fold cross-validation with
random 50%-50% training-test splits to chose K, ρ and τ . The ranges of possible values is obtained by
multiplying the values computed with the heuristics with the following range of 5 factors: 0.01, 0.1, 1,
10 and 100, leading to NPWG = 5× 5× 5 = 125 different sets of parameters.

124

Task kPSS (10−3) kPWG (1000) kSW (6)

Orbit N(124± 8.4) N(144± 14) 415± 7.9 +NC
Texture N(165± 27) N(101± 9.6) 482± 68 +NC

Task kPSS kPWG kSW kSW (10)

Human N(29± 0.3) N(318± 22) 2270± 336 +NC 107± 14 +NC
Airplane N(0.8± 0.03) N(5.6± 0.02) 44± 5.4 +NC 10± 1.6 +NC
Ant N(1.7± 0.01) N(12± 0.5) 92± 2.8 +NC 16± 0.4 +NC
Bird N(0.5± 0.01) N(3.6± 0.02) 27± 1.6 +NC 6.6± 0.8 +NC
FourLeg N(10± 0.07) N(113± 13) 604± 25 +NC 52± 3.2 +NC
Octopus N(1.4± 0.01) N(11± 0.8) 75± 1.4 +NC 14± 2.1 +NC
Fish N(1.2± 0.004) N(9.6± 0.03) 72± 4.8 +NC 12± 1.1 +NC

Table 6.3: Gram matrices computation time (s) for the benchmark applications. As explained in the text,
N represents the size of the set of possible parameters, and we have N = 13 for kPSS, N = 5×5×5 = 125
for kPWG and N = 3 × 5 = 15 for kSW. C is a constant that depends only on the training size. In all
our applications, it is less than 0.1s.

Label = 2

Label = 1 Label = 5

Label = 4
Label = 3

Training Test

Label = ?

Figure 6.3: Sketch of the orbit recognition task. Each parameter r in the 5 possible choices leads to a
specific behavior of the orbit. The goal is to recover parameters from the persistent homology of orbits
in the test set.

Parameters for kSW. The kernel we propose has only one parameter, the bandwidth σ in Eq. 6.5,
which we choose using ten-fold cross-validation with random 50%-50% training-test splits. The range of
possible values is obtained by computing the squareroot of the median, the first and the last deciles of
all SW(Dgi,Dgj) in the training set, then by multiplying these values by the following range of 5 factors:
0.01, 0.1, 1, 10 and 100, leading to NSW = 5× 3 = 15 possible values.

Parameter Tuning. The bandwidth of kSW is, in practice, easier to tune than the parameters of
its two competitors when using grid search. Indeed, as is the case for all infinitely divisible kernels, the
Gram matrix does not need to be recomputed for each choice of σ, since it only suffices to compute all
the Sliced Wasserstein distances between persistence diagrams in the training set once. On the contrary,
neither kPSS nor kPWG share this property, and require recomputations for each hyperparameter choice.
Note however that this improvement may no longer hold if one uses other methods to tune parameters.
For instance, using kPWG without cross-validation is possible with the heuristics given by the authors
in [90], and leads to smaller training times, but also to worse accuracies.

3D shape segmentation. Our first task is the same as in Section 6.3.3, namely we produce point
classifiers for 3D shapes.

Data. We use some categories of the mesh segmentation benchmark of Chen et al. [52], which
contains 3D shapes classified in several categories (“airplane”, “human”, “ant”...). For each category, our
goal is to design a classifier that can assign, to each point in the shape, a label that describes the relative

125

Label = Canvas Label = Carpet

Label = Foot

Label = Head

Label = Head

Label = Hand

Figure 6.4: Examples of persistence diagrams computed on texture images from the OUTEX00000
dataset and persistence diagrams computed from points on 3D shapes. One can see that corresponding
points in different shapes have similar persistence diagrams.

location of that point in the shape. For instance, possible labels are, for the human category, “head”,
“torso”, “arm”... To train classifiers, we compute a persistence diagram per point using the geodesic
distance function to this point—we give more details on this persistence diagram in Section 6.3.3. For
each category, the training set contains one hundredth of the points of the first five 3D shapes, and the test
set contains one hundredth of the points of the remaining shapes in that category. Points in training and
test sets are evenly sampled. See Figure 6.4. Here, we focus on comparison between persistence diagrams,
and not on achieving state-of-the-art results. We show in Section 6.3.3 that persistence diagrams bring
complementary information to classical descriptors in this task, hence reinforcing their discriminative
power with appropriate kernels is of great interest. Finally, since data points are in R3, we set the p
parameter of kPWG to 5.

Results. Classification accuracies are given in Table 6.2. For most categories, kSW outperforms
competing kernels by a significant margin. The variance of the results over the run is also less than that
of its competitors. However, training times are not better in general. Hence, we also provide the results
for an approximation of kSW with 10 directions. As one can see from Table 6.2 and from Figure 6.5, this
approximation leaves the accuracies almost unchanged, while the training times become comparable with
the ones of the other competitors. Moreover, according to Figure 6.5, using even less directions would
slightly decrease the accuracies, but still outperform the competitors performances, while decreasing even
more the training times.

Orbit recognition. In our second experiment, we use synthetized data. The goal is to retrieve
parameters of dynamical system orbits, following an experiment proposed in [1].

Data. We study the linked twist map, a discrete dynamical system modeling fluid flow. It was used
in [82] to model flows in DNA microarrays. Its orbits can be computed given a parameter r > 0 and
initial positions (x0, y0) ∈ [0, 1]× [0, 1] as follows:{

xn+1 = xn + ryn(1− yn) mod 1
yn+1 = yn + rxn+1(1− xn+1) mod 1

Depending on the values of r, the orbits may exhibit very different behaviors. For instance, as one
can see in Figure 6.3, when r is 3.5, there seems to be no interesting topological features in the orbit, while
voids form for r parameters around 4.3. Following [1], we use 5 different parameters r = 2.5, 3.5, 4, 4.1, 4.3,
that act as labels. For each parameter, we generate 100 orbits with 1000 points and random initial
positions. We then compute the persistence diagrams of the distance functions to the point clouds with
the Gudhi C++ library [99] and we use them (in all homological dimensions) to produce an orbit classifier
that predicts the parameter values, by training over a 70%-30% training-test split of the data. Since
data points are in R2, we set the p parameter of kPWG to 4.

Results. Since the persistence diagrams contain thousands of points, we use kernel approximations
to speed up the computation of the Gram matrices. In order for the approximation error to be bounded
by 10−3, we use an approximation of kSW with 6 directions (as one can see from Figure 6.5, this has a

126

1 2 3 4 5 6 7 8 9 10 11 12100

Number of directions

0

0.5

1

1.5

2

lo
g

(
S

W
 a

p
p

ro
x
 /

 S
W

 e
x
a

c
t

)

1 2 3 4 5 6 7 8 9 10 11 12100

Number of directions

-1.5

-1

-0.5

0

0.5

lo
g

(
S

W
 a

p
p

ro
x
 /

 S
W

 e
x
a

c
t

)

Figure 6.5: The first column corresponds to the orbit recognition and the texture classification while
the second column corresponds to 3D shape segmentation. On each column, the first row shows the
dependence of the accuracy on the number of directions, the second row shows the dependence of a
single Gram matrix computation time, and the third row shows the dependence of the ratio of the
approximation of SW and the exact SW. Since the box plot of the ratio for orbit recognition is very
similar to that of 3D shape segmentation, we only give the box plot of texture classification in the first
column.

127

0.2 0.4 0.6 0.8 1 1.2 1.4

First Diagram Distance

-1

-0.5

0

0.5

1

1.5

2

2.5

D
is

ta
n
c
e
 i
n
 R

K
H

S

PSS

PWG

SW

exp(-d1)

Figure 6.6: Distortion of the metric dw,1. Each point represents a pair of persistence diagrams and its
abscissae is the distance dw,1 between them. Depending on the point color, its ordinate is the logarithm
of the distance in the RKHS induced by either kPSS (blue points), kPWG (green points), kSW (red points)
and a Gaussian kernel on dw,1 (black points).

small impact on the accuracy), we approximate kPWG with 1000 random Fourier features [117], and we
approximate kPSS using Fast Gauss Transform [102] with a normalized error of 10−10. One can see from
Table 6.2 that the accuracy is increased a lot with kSW. Concerning training times, there is also a large
improvement since we tune the parameters with grid search. Indeed, each Gram matrix needs not be
recomputed for each parameter when using kSW.

Texture classification. Our last experiment is inspired from [120] and [94]. We use the OU-
TEX00000 data base [112] for texture classification.

Data. Persistence diagrams are obtained for each texture image by computing first the sign compo-
nent of CLBP descriptors [79] with radius R = 1 and P = 8 neighbors for each image, and then compute
the persistent homology of this descriptor using the Gudhi C++ library [67]. See Figure 6.4. Note that,
contrary to the experiment of [120], we do not downsample the images to 32× 32 images, but keep the
original 128 × 128 images. Following [120], we restrict the focus to 0-dimensional persistent homology.
We also use the first 50%-50% training-test split given in the database to produce classifiers. Since data
points are in R2, we set the p parameter of kPWG to 4.

Results. We use the same approximation procedure as in the previous experiment. According to
Figure 6.5, even though the approximation of SW is rough, this has again a small impact on the accuracy,
while reducing the training time by a significant margin. As one can see from Table 6.2, using kPSS leads
to almost state-of-the-art results [112, 79], closely followed by the accuracies of kSW and kPWG. The best
timing is given by kSW, again because we use grid search. Hence, kSW almost achieves the best result,
and its training time is better than the ones of its competitors, due to the grid search parameter tuning.

Metric Distortion. To illustrate the equivalence theorem, we also show in Figure 6.6 a scatter
plot where each point represents the comparison of two persistence diagrams taken from the Airplane
segmentation data set. Similar plots can be obtained with the other datasets considered here. For all
points, the x-axis quantifies the 1-Wasserstein distance dw,1 for that pair, while the y-axis is the logarithm
of the RKHS distance induced by either kSW, kPSS, kPWG or a Gaussian kernel directly applied to dw,1, to
obtain comparable quantities. We use the parameters given by the cross-validation procedure described
above. One can see that the distances induced by kSW are less spread than the others, suggesting that the
metric induced by kSW is more discriminative. Moreover the distances given by kSW and the Gaussian
kernel on dw,1 exhibit the same behavior, suggesting that kSW is the best natural equivalent of a Gaussian
kernel for persistence diagrams.

128

6.3 Vectorization of Persistence Diagrams

We now turn the focus on finding a stable embedding into a finite dimensional Euclidean space, which
may be required in a variety of tasks, such as visualization. As for infinite dimensional embeddings,
a series of recent contributions have proposed vectorization methods for persistence diagrams. One
can, for instance, compute and sample functions extracted from persistence diagrams [1, 20, 121], or
treat the points in the persistence diagrams as roots of a complex polynomial, whose coefficients are
concatenated [65].

In this section, we propose a third possibility, by sorting the entries of the distance matrices of the
persistence diagrams. We first present this method and prove its stability.

6.3.1 Mapping Persistence Diagrams to Euclidean vectors

Persistence diagrams as metric spaces. To map the persistence diagrams to RD, we treat
the diagrams themselves as finite metric spaces, and consider their distance matrices. To be oblivious to
the row and column orders, we look at the distribution of the pairwise distances between the points in
each diagram. For stability purposes, we also compare these pairwise distances with distance-to-diagonal
terms and sort the final values. Formally:

Definition 6.3.1. Let Dg ∈ Df , and let S = {min{‖p − q‖∞, d∞(p,∆), d∞(q,∆)} : p, q ∈ Dg}. The
topological map Φ : Df → `∞ maps Dg to the sequence of finite support whose first card(S) values are
the elements of S sorted by decreasing order. If there is only one point in Dg, then we arbitrary set
Φ(Dg) = 0`∞ .

See Figure 6.7 for an illustration of Φ.

x1

x2
x3 x4

‖x1 − x3‖∞
‖x2 − x3‖∞
‖x1 − x2‖∞
d∞(x4,∆)

d∞(x4,∆)

d∞(x4,∆)

0

0

0
...

Φ

Figure 6.7: Mapping of a persistence diagram to a sequence with finite support.

Distances to the diagonal. Another solution is to keep only the sorted distances to the diagonal.
Indeed, this also leads to a stable vectorization that has a significant meaning since points in persistence
diagrams represent topological features—see Section 2.4.1 and 6.3.3. However, this vector alone lacks
discriminative power as shown in Figure 6.8. Hence, we concatenate the two vectors in practice.

Truncation. In practice, we want to deal with finite-dimensional vectors of prescribed lengths, so
we have to truncate the sequences. Since the size of the support of Φ(Dg) can be quadratic in the number
of points in Dg, we often get rid of the last nonzero values, which are also the lowest ones. Note that this
is equivalent to getting rid of pairwise terms which include either a point very close to the diagonal or
two points which are very close to each other. Thus, by truncation, we either get rid of topological noise
or get rid of too small distances. In the second case, it does not mean that we do not consider anymore
the two points as only their mutual distance is removed while their distances to the other points are
kept. In practice, we truncate the sequences according to some estimated upper bound on the number
of relevant topological features in the dataset—see Section 6.3.3 for instance.

129

d2

d1

d2

d1

Figure 6.8: Clearly, keeping only the sorted distances to the diagonal would not discriminate the two
persistence diagrams whereas looking at the distribution of the distances would allow to successfully
distinguish them.

6.3.2 Stability of the topological vectors.

In this section, we prove the following stability result:

Theorem 6.3.2. Let Dg1,Dg2 ∈ Df be two finite persistence diagrams. Let N1 = card(Dg1) > 0,

N2 = card(Dg2) > 0 and N = max{N1, N2}. Let D = N(N−1)
2 . Then:

C(N)‖Φ(Dg1)− Φ(Dg2)‖2 ≤ ‖Φ(Dg1)− Φ(Dg2)‖∞ ≤ 2db(Dg1,Dg2),

where C(N) = D−
1
2 and Φ(Dg1),Φ(Dg2) ∈ RD.

Proof. Let ε = db(Dg1,Dg2). As the problem is symmetric in Dg1 and Dg2, assume without loss of
generality that N1 < N2. We consider one of the matchings γ∗ realizing the bottleneck distance between
Dg1 and Dg2—such matchings exist since N1, N2 < +∞. We also call N1,γ and N1,∆ the number of
points of Dg1 which are mapped by γ∗ to an element of Dg2 and to the diagonal respectively. We have
N1,γ +N1,∆ = N1. Moreover, N1,γ points of Dg2 are mapped to points of Dg1, N1,∆ points are mapped
to the diagonal, and the N2 − N1 other points of Dg2 are also mapped to the diagonal. We introduce
a bijective mapping ψ : Dg1 → Dg2 which coincides with γ∗ on the N1,γ points of Dg1 which are not
mapped to the diagonal and which arbitrarily associates the remaining N1,∆ elements of Dg1 to N1,∆

remaining points of Dg2.
Let V1 = Φ(Dg1) and V2 = Φ(Dg2). By definition, we have V1[i] ≥ V1[i+ 1], ∀1 ≤ i ≤ N1(N1 − 1)/2

and V1[i] = 0, ∀i > N1(N1−1)/2, where V1[i] denotes the ith coordinate of V1. Now, let V̂2 be the sorted
vector of all min {‖ψ(pi)−ψ(pj)‖∞, d∞(ψ(pi),∆), d∞(ψ(pj),∆)}, where 1 ≤ i, j ≤ N1. We also add the

remaining pairwise terms of Dg2 in V̂2 so that V̂2 has dimension N2(N2 − 1)/2.

We now show that ‖V1 − V̂2‖∞ ≤ 2ε. Fix a coordinate i. Either i > N1(N1 − 1)/2, and then
V1[i] = 0 and V̂2[i] = min{‖yi,1 − yi,2‖∞, d∞(yi,1,∆), d∞(yi,2,∆)}, for some yi,1, yi,2 ∈ Dg2, or i ≤
N1(N1−1)/2, and then V1[i] = min{‖xi,1−xi,2‖∞, d∞(xi,1,∆), d∞(xi,2,∆)}, and V̂2[i] = min{‖ψ(xi,1)−
ψ(xi,2)‖∞, d∞(ψ(xi,1),∆), d∞(ψ(xi,2),∆)}, for some xi,1, xi,2 ∈ Dg1. We have three different cases to
treat here:

• (a) i ≤ N1(N1−1)
2 and the two pairs of points are matched by γ∗,

• (b) i ≤ N1(N1−1)
2 and at least one point of each pair is matched to ∆,

• (c) i > N1(N1−1)
2 , and then V1[i] = 0.

Case (c). In this case, at least one of the points of the pairwise term in V̂2[i], say yi,1, is matched to
the diagonal. Thus, we have

|V1[i]− V̂2[i]| = |V̂2[i]| ≤ |d∞(yi,1,∆)| ≤ ε ≤ 2ε.

Case (b). In this case, at least one point of the pairwise term in V1[i], say xi,1, and one of the

pairwise term in V̂2[i], say yi,1, are mapped to the diagonal, the other two terms being either mapped

130

together or to the diagonal. Then

|V1[i]− V̂2[i]| ≤ |d∞(xi,1,∆)|+ |d∞(yi,1,∆)| ≤ 2ε.

Case (a). In this case, we have γ∗(xi,1) = yi,1 and γ∗(xi,2) = yi,2. Three different subcases come
out:

• (i) The minimum is in both cases the distance between the points. Then we have

|V1[i]− V̂2[i]| = |‖xi,1 − xi,2‖∞ − ‖yi,1 − yi,2‖∞| ≤ 2ε.

• (ii) The minimum is in both cases the distance of a point to the diagonal. Then either

|V1[i]− V̂2[i]| = |d∞(xi,1,∆)− d∞(yi,1,∆)|,

in which case the bound is immediate as the points are mapped by γ∗, or

|V1[i]− V̂2[i]| = |d∞(xi,1,∆)− d∞(yi,2,∆)|,

in which case we have the following inequalities:

– ηx = d∞(xi,2,∆)− d∞(xi,1,∆) ≥ 0,

– ηy = d∞(yi,1,∆)− d∞(yi,2,∆) ≥ 0,

– d∞(yi,1,∆) = d∞(xi,1,∆) + α1 with |α1| ≤ ε and

– d∞(yi,2,∆) = d∞(xi,2,∆) + α2 with |α2| ≤ ε.

Thus ε ≥ α1 = ηx + ηy + α2 ≥ α2 + ηx ≥ −ε+ ηx ≥ −ε and

|V1[i]− V̂2[i]| = |d∞(xi,1,∆)− d∞(yi,2,∆)| = |ηx + α2| ≤ ε ≤ 2ε.

• (iii) The minimum is the distance of a point to the diagonal for one term and the distance between
the points for the other, say

‖xi,1 − xi,2‖∞ ≤ min{d∞(xi,1,∆), d∞(xi,2,∆)}

d∞(yi,1,∆) ≤ min{‖yi,1 − yi,2‖∞, d∞(yi,2,∆)}

Then |V1[i]− V̂2[i]| = |‖xi,1 − xi,2‖∞ − d∞(yi,1,∆)|. As d∞(yi,1,∆) ≥ d∞(xi,1,∆)− ε, we have

‖xi,1 − xi,2‖∞ − d∞(yi,1,∆) ≤ ε+ (‖xi,1 − xi,2‖∞ − d∞(xi,1,∆)) ≤ ε ≤ 2ε

We also have

d∞(yi,1,∆) ≤ ‖yi,1 − yi,2‖∞ ≤ ‖xi,1 − xi,2‖∞ + 2ε,

and thus

|V1[i]− V̂2[i]| ≤ 2ε.

Finally, ‖V1 − V̂2‖∞ ≤ 2ε. Now we prove and use the following lemma to conclude:

Lemma 6.3.3. Let D ∈ N and U, V̂ ∈ RD. Assume that U is non-increasing: ∀i, j ∈ {1 ... n − 1},
i ≤ j ⇒ U [i] ≥ U [j]. Let V ∈ RD be the image of V̂ by a coordinate permutation σ which makes it
non-increasing: ∀i, j ∈ {1, · · · , n− 1}, V [σ(i)] = V̂ [i] and i ≤ j ⇒ V [i] ≥ V [i+ 1]. Then:

‖U − V ‖∞ ≤ ‖U − V̂ ‖∞.

131

Proof. Let α = ‖U − V̂ ‖∞. Let i ∈ {1, · · · , n} and v̂i = V̂ [i] = U [i] + xi, where −α ≤ xi ≤ α. Let σ be
the coordinate permutation between V and V̂ , i.e. v̂i = V [σ(i)]. Let m(i),M(i) ∈ N be defined as:

M(i) = min {t : U [t] + α < v̂i}

(or M(i) = n+ 1 if the set is empty) and

m(i) = max {t : U [t]− α > v̂i}

(or m(i) = 0 if the set is empty). Note that m(i) < i < M(i) by definition. Since t ≤ m(i)⇒ V̂ [t] > V̂ [i]
and t ≥ M(i) ⇒ V̂ [t] < V̂ [i], there are at least m(i) terms in V̂ that are strictly larger than v̂i, and
D −M(i) + 1 that are strictly smaller. Since V is non-increasing, it follows that:

m(i) + 1 ≤ σ(i) ≤M(i)− 1.

Using the definition of m(i), the fact that U is non-increasing and the equality v̂i = U [i]+xi, we have
U [σ(i)]−U [i] ≤ U [m(i)+1]−U [i] ≤ α+xi. Since U [σ(i)]−V [σ(i)] = U [σ(i)]− V̂ [i] = U [σ(i)]−U [i]−xi,
it follows that

U [σ(i)]− V [σ(i)] ≤ α.
Similarly, we have U [σ(i)]− U [i] ≥ U [M(i)− 1]− U [i] ≥ xi − α, and thus

U [σ(i)]− V [σ(i)] ≥ −α.

Finally, we have |U [σ(i)] − V [σ(i)]| ≤ α. This inequality being true for all i, it is also true for the
vectors in the infinite norm and the proof is complete.

We can finally conclude : ‖V1 − V2‖∞ ≤ ‖V1 − V̂2‖∞ ≤ 2ε.

Analysis of the stability bound. The dependence on N can lead to very small constants C(N)
in the worst case, which is not desireable as in practice. However, two remarks are worth considering at
this point. Firstly, this constant disappears using the infinity norm, which is useful when using e.g. kNN
classifiers. Secondly, this constant can be reduced by truncating the vectors, as stability is preserved
whatever the number of components kept. In return, the vectors are less discriminative, so a trade-off
has to be made in practice.

6.3.3 Application to 3D shape processing

In this section, we detail an application of persistence diagrams and corresponding topological vectors in
3D shape processing, in which descriptors are required to be Euclidean vectors. More precisely, we use
persistence diagrams as point descriptors for 3D shape segmentation.

Notation. We use shape as a shorthand for a compact smooth surface in R3.

Persistence diagrams as point descriptors. In order to provide a multiscale description
of the structure of a shape X from the point of view of a single point x ∈ X, we consider the filtration
induced by growing a geodesic ball centered at x, with radius r going from 0 to +∞, i.e. the filtration
induced by the sublevel sets of the distance function fx(·) = d(x, ·)—see Figures 6.9 and 6.10. We then
encode the evolution of the ball’s homology in the corresponding persistence diagram. Since we are
dealing with surfaces, the 0-dimensional persistent homology is always trivial, whereas the 2-dimensional
persistent homology has limited information (there is just one enclosed void, namely the surface itself).
Hence, in practice, we compute the 1-dimensional persistence diagram and we add an extra point rep-
resenting the unique 2-dimensional homological feature of the shape. This extra point has an infinite
ordinate and an abscissa equal to the eccentricity of the source point. In particular, this allows distance-
to-diagonal terms to naturally appear in the topological vector—see Definition 6.3.1. Finally, we also
add the distance to the diagonal of this extra point in the topological vector since this does not affect
its stability.

132

Figure 6.9: Geodesic balls centered at the black point are displayed in red. The persistence diagram
corresponding to this family is shown in the far right. Note that each point can be easily associated with
a shape part. The pink, blue, light blue, black and green points correspond to the middle, index, ring,
pinky and thumb respectively. As the center point is close to the tip of the middle finger, one can see
that its point in the persistence diagram is much closer to the diagonal than the other fingers. Note that
for this shape, there are no essential holes.

Figure 6.10: Same process as Figure 6.9 but with a different center point. Note the difference in the
persistence diagram (far right). The colors in the diagram correspond to the same parts of the hand as
in Figure 6.9. There is, however a new point in red, which corresponds to the hand base (palm), which
was not present in the persistence diagram of the previous shape.

Distance to the diagonal. We also recall that the distance to the diagonal has a specific meaning.
Indeed, if a point is very close to or is on the diagonal, it means that the corresponding hole was filled in
quickly after being born in the growing process. In the case of 3D shape processing, this can be interpreted
as a bump of small topographic prominence for instance, which can be considered as topological noise.
The vertical distance of a point to the diagonal is exactly the prominence of the corresponding bump.
On the contrary, the more salient a bump, the longer its prominence and thus the further away from the
diagonal its point.

Example. We illustrate two such trackings for two different black center points in Figures 6.9 and
6.10. The growing process is shown from left to right with geodesic balls colored in red. If we consider
Figure 6.9, we can see that in the first (left-most) image, the geodesic ball has no non-contractible cycles
(holes) as it is simply connected. In the second image, the geodesic ball contains one inessential hole (at
the tip of the middle finger). In the third one, there are no non-contractible holes again as the previous
one is now filled in. In the fourth image, there are three inessential holes (the three other fingers). In the
fifth one, there are no holes (notice that the thumb created a hole that was born and filled in between
the fourth and fifth images). In the last image, the geodesic ball contains the entire shape, which has
spherical topology and, as such, contains no essential holes. Therefore, the persistence diagram contains
no points at infinity. Note that since the black base point is close to the tip of the middle finger, one of
the points in the persistence diagram is both born and dead significantly earlier than the other ones.

Truncation level. The truncation level (or equivalently the dimension of the topological vectors)
is driven by the prominent holes of each category (for instance this number would be 5 for a human

133

shape—two legs, two arms and the head—thus we would only keep around 5(5-1)/2=10 components in
the vectors). In order to make the vectors independent of the scale, we consider the diagrams in log-scale
(meaning that we apply the function log(1 + ·) on every birth and death value).

MDS and kNN. As an illustration, Figure 6.11 shows the topological vectors of all the points of
a specific shape, plotted as points in R3 after a MultiDimensional Scaling (or MDS) on their distance
matrix. The color of each vector is given by a ground truth segmentation provided with the input data
set. Two remarks are in order at this stage: first, note that there is some continuity between vectors with
identical labels, which suggests that the topological vectors vary continuously along the shape; second,
and consequently, there is no natural grouping of the vectors into clusters, so unsupervised segmentation
using traditional clustering algorithms such as k-means is likely to be ineffective. These observations
suggest rather to use supervised learning algorithms in segmentation applications. We also show how
such a kNN segmentation allows to achieve reasonable performance in Figure 6.12, even though the use
of more elaborate algorithms like SVM leads to better results.

Figure 6.11: Example of MDS. One can easily observe the continuity between vectors of different labels.
The color of each point refers to the same label as the colors displayed on the hand shape.

Stability. The main advantage of considering the persistence diagrams is that they enjoy stability
properties, meaning that the difference between two diagrams cannot be too large if the they are com-
puted from nearby points or on nearby shapes. This stability is a key feature in applications. It is stated
formally in [37].

As an illustration of this stability property, we display components of topological vectors on shapes
in various poses in Figure 6.13. Theorem 6.3.2 ensure that corresponding points have similar vectors.
Note that the components of the topological vectors characterize parts of the shape that are difficult to
relate to the other classical descriptors in the literature—apart from the first component, which roughly
corresponds to the eccentricity—see the second paragraph of this section.

Computation. Unfortunately, 1-dimensional persistence is costly to compute in general. Indeed,
if the shape is given by a triangle mesh with O(m) edges and faces, the worst-case running time is of
the order of O(m3) [103]. Note that this running time is the same for every center point. To overcome
this difficulty in the case of 2D surfaces, we use Theorem 2.3.2, which states the equivalence between the
inessential holes of the family of balls, i.e. points in Ord1(fx) and the inessential connected components
(0-dimensional persistence) of the family of complements of these balls, i.e. points in Ord0(−fx). This
means that, within every geodesic ball, every hole is associated to a connected component of the ball’s
complement. As connected components are much easier to track than holes (the complexity of computing
0-dimensional persistence diagrams is nearly linear), it is preferable to use them instead. Notice that,
as we study the family of complements, the birth values are now bigger than the death ones (as the

134

Figure 6.12: We compute the most common label for each face in a set of 100 nearest neighbors
computed from a training set. No smoothing is applied but the segmentations on this pair of shapes
are still reasonable (around 80 percent accuracy). However, this accuracy can decrease to 60 percent in
other categories, thus we need a more elaborate algorithm for segmentation.

Figure 6.13: Topological vectors are computed on nearly isometric shapes. The first component is shown
on the human shape, the second component is shown on the planes and the third one is shown on the
centaurs. One can see that it respects the correspondence due to its stability.

radius is decreasing), leading to points under the diagonal. As an illustration, consider the family of the
complements in Figure 6.9 (displayed in blue). Connected components of the blue sets are related to
the holes of the red ones. However, note that Theorem 2.3.2 for essential holes, i.e. points in Ext1(fx),
only associates them with essential holes of the complements, i.e. points in Ext1(−fx). The essential
connected components of the family of complements of balls, i.e. points in Ext0(fx), are associated with
the essential enclosed voids (2-dimensional topology) of the family of balls, i.e. points in Ext2(−fx),
(see Figure 6.14). Thus, we cannot get access to the essential holes (the global loops or handles on
the shape) with 0-dimensional persistence. This means that, although we gain a significant speedup in
computational complexity, we lose some information when using duality, and in particular we do not
track essential holes of 1-dimensional persistence.

135

Figure 6.14: Left: base point shown in black. Middle: the 0, 1 and 2-dimensional persistence diagrams
of the family of complements (0-dimensional) and the family of geodesic balls (1-dimensional and 2-
dimensional). The symmetry theorem establishes the correspondence between the inessential points of
the 0-dimensional and 1-dimensional persistence diagrams. They also match the essential point of the
left-most persistence diagram (in red) with the essential point of the right-most persistence diagram. On
this example, the 1-dimensional persistence diagram has no essential point, but if it had one, we would
not be able to capture it in the 0-dimensional persistence diagram.

3D shape segmentation. In this paragraph, we use the topological vectors for supervised 3D
shape segmentation and labeling. We use the Princeton benchmark [52] for both training and test shapes.
This benchmark contains several different ground truth segmentations for each shape. On each shape
that we use in the training set, we use the same ground truth segmentation as Kalogerakis et al. [87].
To show the improvement obtained when using our vector, we first consider the segmentation produced
by using the method with 5 training shapes per category and the subset of features used in [87]. Table
6.4 (second column) shows an error percentage (computed with the Rand Index, which measures the
segmentation quality as defined in [52], lower is better) obtained without using the topological vectors.
In the same table (third column, S5+PDs) we report the error obtained by using the same pipeline,
but augmented with the topological vectors, which on average has 15-20 dimensions. We recall—see the
paragraph on symmetry—that the topological vectors cannot get access to essential hole (handles). This
explains why the improvement is low in categories for which the segmentation characterizes handles (e.g.
Cups). Other algorithms can be used to compute the full 1-dimensional homology [103] but they are
more costly. We also believe that the bad result in the Glasses category is due to the fact that there are
no prominent bumps on the Glasses shapes leading to nearly equal topological vectors almost everywhere
that fool the classifier in the training process. Apart from that, note that in 18 out of 19 categories, we
obtain an often significant improvement in the results. We also compare these results with the method
of [87], which uses 6 and 19 training shapes (S6 and S19, respectively fourth and fifth columns of Table
6.4). Note that in 12 out of 19 categories our results are better than S6 and in 4 out of 19 categories
better than S19, even though we used fewer training shapes, fewer features in each training shape, and
no expensive penalty matrix optimization. Overall, this table shows that we can get close to the optimal
results (where all-but-one shapes are used for training, leading to a huge amount of running time) with
less data and features and demonstrate that topological vectors provides complementary information to
the existing descriptors, and can potentially be useful in shape segmentation and labeling scenarios.

3D shape correspondence. We also use the topological vectors for shape matching. Since these
vectors can be seen as a multivariate field defined on shapes, we decide to use the framework of functional
map [114], and in particular the supervised learning approach. The exact procedure is fully described
in [57]. We use 4 training shapes for several categories of the shape matching benchmark TOSCA [19]
and compute optimal descriptor weights following the procedure described in [57]. We then use these
weights to compute the optimal functional map on test shape pairs, by using 300 eigenvalues of the
Laplace-Beltrami operator. We run this procedure two times to end up with two functional maps: one
computed with the original set of classical probe functions (which includes all of the classical descriptors
described in [87] plus more recent ones like HKS and WKS) and the other computed with the same set
plus the topological vectors. We obtain large positive weights for the vectors, which indicates that it
strongly influences the induced optimal functional map. Once the map is computed, it is also interesting
to look at the induced correspondence. Figure 6.15 displays three error curves for every category. These

136

S5 S5+PDs S6 S19
Human 21.3 11.3 14.3 11.9

Cup 10.6 10.1 10.0 9.9
Glasses 21.8 25.0 14.1 13.7

Airplane 18.7 9.3 8.0 7.9
Ant 9.7 1.5 2.3 1.9

Chair 15.1 7.3 6.1 5.4
Octopus 5.5 3.4 2.2 1.8

Table 7.4 2.5 6.4 6.2
Teddy 6.0 3.5 5.3 3.1
Hand 21.1 12.0 13.9 10.4
Plier 12.3 9.2 10.0 5.4
Fish 20.9 7.7 14.2 12.9
Bird 24.8 13.5 14.8 10.4

Armadillo 18.4 8.3 8.4 8.0
Bust 35.4 22.0 33.4 21.4
Mech 22.7 17.0 12.7 10.0

Bearing 25.0 11.2 21.7 9.7
Vase 26.4 17.8 19.9 16.0

FourLeg 25.6 15.8 14.7 13.7

Table 6.4: Rand Indices computed over the segmentation benchmark. Results obtained with 5 training
shapes without topological vectors (S5), and with them (S5+PDs), compared to results of Kalogerakis
et al. [87] using significantly larger training sets (see text for details).

plots represent, given an unnormalized radius r, the percentage y of the points that are mapped by the
correspondence at a distance at most r from their ground-truth image. One can see how the topological
vectors strongly improve these error rates in all categories. We also show in Figure 6.16 the shape parts
on which points get closer to their ground-truth image after adding the vectors. One can see that they
correspond to flat, ‘feature-less’ parts of the shape, that are very difficult to characterize with classical
descriptors whereas the multiscale definition of the topological vectors allows the corresponding probe
functions to be much more discriminative.

6.4 Conclusion

In this chapter, we introduced the Sliced Wasserstein kernel and the topological vectors, which are
two possible kernels for persistence diagrams that are provably stable with respect to dw,1, the Sliced
Wasserstein kernel being even equivalent to it for persistence diagrams with bounded cardinalities. We
provided algorithms for computation, and we showed on several datasets substantial improvements in
accuracy and training times (when tuning parameters is done with grid search) over competing kernels.

Metric properties of embeddings. Even though the Sliced Wasserstein kernel is provably
equivalent to dw,1, the lower bound depends on the number of diagram points, and converges to zero
when the number of points increases. Our intuition is that this is the case for any mapping of persistence
diagrams, i.e. either the upper or the lower bound depends on the number of points, and either converges
to +∞ (for the upper bound) or 0 (for the lower bound) when the number of points increases. Hence, we
believe that a study about quantifying the metric distortion of a general mapping of persistence diagrams
into a (possibly infinite dimensional) Hilbert space is possible and worth considering.

137

Figure 6.15: The blue curve represents the correspondence induced by the ground-truth functional
map. The yellow one represents the correspondence induced by the optimal functional map without the
topological vectors and the red one represents the correspondence induced by the optimal functional map
with the vectors. The categories are, from left to right and top to bottom: horse, wolf, dog, cat, human
and centaur.

Figure 6.16: Yellow parts are the ones which are the most improved with the topological vectors. Dark
blue means no improvement. For every shape, it is clear: firstly that there is a positive improvement
almost everywhere and secondly that the best improvements are obtained on the flat parts of the shapes.

138

CHAPTER 7

CONCLUSION

In this thesis, we presented several metric and statistical properties of topological descriptors. We
showed that Reeb graphs can be compared efficiently with a pseudometric that is locally a true distance
(Chapter 3), then, using this pseudometric, we proposed a way to metrize the space of Mappers in a
stable way (Chapter 4), and we showed that the Mapper is an optimal estimator, for which we can
compute confidence regions and automatic parameters (Chapter 5). Finally, we presented two methods
to use the Mapper signatures, the persistence diagrams, in supervised Machine Learning (Chapter 6).
In each chapter, we ended with some open questions raised by the chapter results.

More generally, the next long-term step for this work is to fit to current trends, both in Topological
Data Analysis and in Machine Learning. Concerning topology, a lot of efforts is now devoted in the
community to the extension of persistence theory to multivariate modules, i.e. vector spaces indexed by
Euclidean vectors instead of the real line [23, 29, 53, 80]. In some cases, decomposition results exist, but
stability is still unclear in general. Similarly, Reeb graphs and Mappers can be defined for multivariate
functions, but our analysis in Chapters 3, 4 and 5 is anchored to functions that are real-valued.

Concerning supervised Machine Learning, the current hot topic is deep learning [77], whose gradient
descent based algorithms optimize predictor functions depending on the architecture of a network of
parameters. This field of Machine Learning achieved astounding results, i.e. in image classification and
speech recognition, even though its theory is not well understood. Some works already did a first step
towards the integration of topological descriptors into this field [25, 85, 95], but a comprehensive study
on how this integration should be done is still lacking.

139

140

APPENDIX A

PROOF OF LEMMA 3.4.5

In this proof, we use the notations of Definition 2.3.3. Let

0 < ε <
1

2
min

k=1,...,n
min{sk − ak, ak − sk−1}.

The idea of the proof is to replace the right inverse of the projection π : X → Rf (X) by a continuous
map σ : Rf (X)→ X such that the composition π ◦ σ is homotopic to the identity of Rf (X). In order to
make our new σ compatible with the function f , we need to perturb f to some other function g whose
preimages of intervals [si, sj], i ≤ j, are equal to the ones of f .

Let g : X → R be defined by:

∀x ∈ X, g(x) =

{
f(x) if min

k=1,...,n
|f(x)− ak| > 2ε

ai otherwise, where i = argmink|f(x)− ak|

As g is constant on equivalence classes of ∼f , there is an induced map g̃ : Rf (X) → R. Moreover,

for any i ≤ j, we have g−1([si, sj]) = f−1([si, sj]) by definition of g and ε. The same holds for f̃ and g̃.
Now we want to define a continuous map σ : Rf (X)→ X such that the composition with the projec-

tion π◦σ is homotopic to idRf (X). For any node vi, if Yi−1 has ki connected components Y 1
i−1, ..., Y

ki
i−1 and

Yi has li connected components Y 1
i , ..., Y

li
i , we let {(p̃ki−1, p

k
i−1) | k = 1, ..., ki} and {(qli, q̃li) | l = 1, ..., li}

denote points in Rf (X) located at levelsets ai−2ε, ai−ε, ai+ε, ai+2ε. See Figure A.1. For any i = 1, ..., n
and any l = 1, ..., li, we select an arbitrary point yli ∈ Y li and we let sli = φi(y

l
i, ai) and s̄li+1 = ψi(y

l
i, ai+1).

For any critical value ai and any vertex vi of Rf (X) at that level, we let σ(vi) be an arbitrary point

in π−1(vi), σ(qli) = sli, and σ(pki−1) = s̄ki . Moreover, as there exists a path γi,−k : [ai − ε, ai] → X from

s̄ki to σ(vi), σ sends the arc [pki−1, vi] to this path γi,−k . Similarly, it sends the arc [vi, q
l
i] to a path

γi,+l : [ai, ai + ε]→ X from σ(vi) to sli. Finally, σ also monotonically reparametrizes the arcs [p̃ki , p
k
i] and

[qli, q̃
l
i]. Let param+

i : [ai + ε, ai + 2ε]→ [ai, ai + 2ε], and param−i : [ai− 2ε, ai− ε]→ [ai− 2ε, ai] be these
reparametrizations. Again, see Figure A.1. More formally, let x ∈ X and assume that ai ≤ f(x) ≤ ai+1

and that π(x) belongs to the l-th edge of the Reeb graph between these two critical values. Then:

• σ ◦ π(x) = µi(y
l
i, f(x)) if ai + 2ε ≤ f(x) ≤ ai+1 − 2ε;

• σ ◦ π(x) = µi(y
l
i,param+

i ◦ f(x)) if ai + ε ≤ f(x) ≤ ai + 2ε;

• σ ◦ π(x) = µi(y
l
i,param−i+1 ◦ f(x)) if ai+1 − 2ε ≤ f(x) ≤ ai+1 − ε;

• σ ◦ π(x) = γi,+l (f(x)) if ai ≤ f(x) ≤ ai + ε;

• σ ◦ π(x) = γi+1,−
l (f(x)) if ai+1 − ε ≤ f(x) ≤ ai+1.

141

vi ai

ai − 2ε

ai − ε

ai + ε

ai + 2ε

p1i−1
p2i−1

p̃1i−1
p̃2i−1

q1i

q̃1i

σ(vi)

s1i−1
s2i−1

s̄2is̄1i

s1i

σ(vi−1)

ai−1

ai−1+ε

ai−1 + 2ε

q1i−1 q2i−1

q̃1i−1
q̃2i−1

σ

Figure A.1: The left panel displays the Reeb graph and the right panel displays the space X itself. σ
sends an arc of the Reeb graph to the path with the same color in X.

By construction we have g ◦ σ = g̃ and g̃ ◦ π = g (note that this is not true for f).
Let i ≤ j and I = [si, sj]. Then we have π(g−1(I)) ⊆ g̃−1(I). Hence, π induces a morphism between

H0(g−1(I)) and H0(g̃−1(I)). Let us show that this morphism is an isomorphism. Since π is surjective,
this boils down to showing that x, y are connected in g−1(I) if and only if π(x), π(y) are connected in
g̃−1(I).

• If x, y are connected in g−1(I), then so are π(x), π(y) in g̃−1(I), by continuity of π and the fact
that g̃ ◦ π = g.

• If π(x), π(y) are connected in g̃−1(I), then choose a path γ connecting π(x) and π(y). Now by
definition of σ, there exists a path γx connecting x and σ ◦ π(x) in g−1(I). Indeed, σ can send
π(x) to five different locations in g−1(I) according to the value of f(x), as seen above. Assume
f(x) /∈ Crit(f). Since there is a path γ̃ between x and µi(y

l
i, f(x)), one can always find a path γx

between x and σ◦π(x) in g−1(I) with an appropriate combination of γ̃, µi(y
l
i, ·) and γ

(i,+)/(i+1,−)
l .

Now, assume f(x) ∈ Crit(f), and let vi = π(x). Then σ(vi) and x both belong to π−1(vi), so they
belong to the same connected component of the g−1(g(x)) and one can find a path between them
in g−1(I). Similarly, there exists a path γy connecting σ◦π(y) and y in g−1(I). Then γy ◦σ(γ)◦γx
is a path between x and y in g−1(I) by continuity of σ and the fact that g ◦ σ = g̃. So x, y are
connected in g−1(I).

Since g−1(I) = f−1(I) and g̃−1(I) = f̃−1(I), we have that π∗ is an isomorphism between H0(f−1(I))
and H0(f̃−1(I)), and the proof is complete.

142

BIBLIOGRAPHY

[1] Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,
Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence Images: A
Stable Vector Representation of Persistent Homology. Journal of Machine Learning Research,
18(8):1–35, 2017.

[2] Pankaj Agarwal, Kyle Fox, Abhinandan Nath, Anastasios Sidiropoulos, and Yusu Wang. Com-
puting the Gromov-Hausdorff Distance for Metric Trees. In Proceedings of the 26th International
Symposium on Algorithms and Computation, 2015.

[3] Muthu Alagappan. From 5 to 13: Redefining the Positions in Basketball. MIT Sloan Sports
Analytics Conference, 2012.

[4] Nachman Aronszajn. Theory of Reproducing Kernels. Transactions of the American Mathematical
Society, 68:337–404, 1950.

[5] Vincent Barra and Silvia Biasotti. 3D Shape Retrieval and Classification using Multiple Kernel
Learning on Extended Reeb graphs. The Visual Computer, 30(11):1247–1259, 2014.

[6] Heinz Bauer. Measure and integration theory, volume 26 of de Gruyter Studies in Mathematics.
Walter de Gruyter & Co., 2001.

[7] Ulrich Bauer, Barbara Di Fabio, and Claudia Landi. An Edit Distance for Reeb Graphs. In
Proceedings of the Eurographics 2016 Workshop on 3D Object Retrieval, pages 27–34, 2016.

[8] Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring Distance Between Reeb Graphs. In Pro-
ceedings of the 30th Symposium on Computational Geometry, pages 464–473, 2014.

[9] Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring Distance between Reeb Graphs (v2). CoRR,
abs/1307.2839v2, 2016.

[10] Ulrich Bauer, Elizabeth Munch, and Yusu Wang. Strong Equivalence of the Interleaving and Func-
tional Distortion Metrics for Reeb Graphs. In Proceedings of the 31st Symposium on Computational
Geometry, 2015.

[11] Christian Berg, Jens Christensen, and Paul Ressel. Harmonic Analysis on Semigroups: Theory of
Positive Definite and Related Functions. Springer, 1984.

[12] Silvia Biasotti, Daniela Giorgi, Michela Spagnuolo, and Bianca Falcidieno. Reeb Graphs for Shape
Analysis and Applications. Theoretical Computer Science, 392:5–22, 2008.

[13] Gérard Biau and André Mas. PCA-Kernel estimation. Statistics and Risk Modeling with Applica-
tions in Finance and Insurance, 29(1):19–46, 2012.

[14] Eckart Bindewald and Bruce Shapiro. Rna secondary structure prediction from sequence align-
ments using a network of k-nearest neighbor classifiers. RNA, 12(3):342–352, 2006.

143

[15] H̊avard Bjerkevik. Stability of higher-dimensional interval decomposable persistence modules.
CoRR, abs/1609.02086, 2016.

[16] Gilles Blanchard, Olivier Bousquet, and Laurent Zwald. Statistical properties of kernel principal
component analysis. Machine Learning, 66(2-3):259–294, 2007.

[17] Andrew Blumberg, Itamar Gall, Michael Mandell, and Matthew Pancia. Robust Statistics, Hy-
pothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces.
Foundations of Computational Mathematics, 14:745–789, 2014.

[18] Magnus Botnan and Michael Lesnick. Algebraic Stability of Zigzag Persistence Modules. CoRR,
abs/1604.00655, 2016.

[19] Alexander Bronstein, Michael Bronstein, and Ron Kimmel. Numerical Geometry of Non-Rigid
Shapes. Springer, 2008.

[20] Peter Bubenik. Statistical Topological Data Analysis using Persistence Landscapes. Journal of
Machine Learning Research, 16:77–102, 2015.

[21] Mickaël Buchet, Frédéric Chazal, Steve Oudot, and Donald Sheehy. Efficient and Robust Persistent
Homology for Measures. In Proceedings of the 26th Symposium on Discrete Algorithms, pages 168–
180, 2015.

[22] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A Course in Metric Geometry. American Math-
ematical Society, 2001.

[23] Francesca Cagliari and Claudia Landi. Finiteness of rank invariants of multidimensional persistent
homology groups. Applied Mathematics Letters, 24(4):516 – 518, 2011.

[24] Pablo Camara, Arnold Levine, and Raul Rabadan. Inference of Ancestral Recombination Graphs
through Topological Data Analysis. PLoS Computational Biology, 12(8):1–25, 2016.

[25] Zixuan Cang and Guo-Wei Wei. TopologyNet: Topology Based Deep Convolutional and Multi-
Task Neural Networks for Biomolecular Property Predictions. PLoS Computational Biology, 13(7),
2017.

[26] Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46:255–308,
2009.

[27] Gunnar Carlsson and Vin de Silva. Zigzag persistence. Foundations of Computational Mathematics,
10(4):367–405, 2010.

[28] Gunnar Carlsson, Vin de Silva, and Dmitriy Morozov. Zigzag Persistent Homology and Real-valued
Functions. In Proceedings of the 25th Symposium on Computational Geometry, pages 247–256,
2009.

[29] Gunnar Carlsson and Afra Zomorodian. The Theory of Multidimensional Persistence. Discrete
and Computational Geometry, 42(1):71–93, 2009.

[30] Mathieu Carrière. Cover complexes. In GUDHI User and Reference Manual. GUDHI Editorial
Board, 2017.

[31] Mathieu Carrière. Kernels for persistence diagrams. In GUDHI User and Reference Manual.
GUDHI Editorial Board, 2017.

[32] Mathieu Carrière, Marco Cuturi, and Steve Oudot. Sliced Wasserstein Kernel for Persistence
Diagrams. In Proceedings of the 34th International Conference on Machine Learning, 2017.

[33] Mathieu Carrière, Bertrand Michel, and Steve Oudot. Statistical Analysis and Parameter Selection
for Mapper. CoRR, abs/1706.00204, 2017.

[34] Mathieu Carrière and Steve Oudot. Structure and Stability of the 1-Dimensional Mapper. CoRR,
abs/1511.05823, 2015.

[35] Mathieu Carrière and Steve Oudot. Structure and Stability of the 1-Dimensional Mapper. In
Proceedings of the 32nd Symposium on Computational Geometry, volume 51, pages 25:1–25:16,
2016.

144

[36] Mathieu Carrière and Steve Oudot. Local Equivalence and Induced Metrics for Reeb Graphs. In
Proceedings of the 33rd Symposium on Computational Geometry, 2017.

[37] Mathieu Carrière, Steve Oudot, and Maks Ovsjanikov. Local Signatures using Persistence Dia-
grams. HAL preprint, 2015.

[38] Mathieu Carrière, Steve Oudot, and Maks Ovsjanikov. Stable Topological Signatures for Points
on 3D Shapes. Computer Graphics Forum, 34, 2015.

[39] Joseph Chan, Gunnar Carlsson, and Raul Rabadan. Topology of viral evolution. Proceedings of
the National Academy of Science, 110(46):18556–18571, 2013.

[40] C. Chang and C. Lin. LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:1–27, 2011. Software available at http://www.csie.ntu.

edu.tw/~cjlin/libsvm.

[41] Amit Chattopadhyay, Hamish Carr, David Duke, Zhao Geng, and Osamu Saeki. Multivariate
Topology Simplification. Computational Geometry, 58:1–24, 2016.

[42] Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas Guibas, and Steve Oudot. Proximity
of Persistence Modules and their Diagrams. In Proceedings of the 25th Symposium on Computa-
tional Geometry, pages 237–246, 2009.

[43] Frédéric Chazal, David Cohen-Steiner, Leonidas Guibas, Facundo Mémoli, and Steve Oudot.
Gromov-Hausdorff Stable Signatures for Shapes using Persistence. Computer Graphics Forum,
pages 1393–1403, 2009.

[44] Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric Inference for Probability
Measures. Foundations of Computational Mathematics, 11(6):733–751, 2011.

[45] Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The Structure and Stability of
Persistence Modules. Springer, 2016.

[46] Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and Larry
Wasserman. Robust topological inference: distance to a measure and kernel distance. CoRR,
abs/1412.7197, 2014. Accepted for publication in Journal of Machine Learning Research.

[47] Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and Larry
Wasserman. Subsampling Methods for Persistent Homology. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, pages 2143–2151, 2015.

[48] Frédéric Chazal, Marc Glisse, Catherine Labruère, and Bertrand Michel. Optimal rates of conver-
gence for persistence diagrams in Topological Data Analysis. CoRR, abs/1305.6239, 2013.

[49] Frédéric Chazal, Marc Glisse, Catherine Labruère, and Bertrand Michel. Convergence rates for
persistence diagram estimation in topological data analysis. Journal of Machine Learning Research,
16:3603–3635, 2015.

[50] Frédéric Chazal, Leonidas Guibas, Steve Oudot, and Primoz Skraba. Analysis of scalar fields over
point cloud data. In Proceedings of the 20th Symposium on Discrete Algorithm, pages 1021–1030,
2009.

[51] Frédéric Chazal, Pascal Massart, and Bertrand Michel. Rates of convergence for robust geometric
inference. Electronic Journal of Statistics, 10(2):2243–2286, 2016.

[52] Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser. A Benchmark for 3D Mesh Segmen-
tation. ACM Transactions on Graphics, 28(3):1–12, 2009.

[53] Jérémy Cochoy and Steve Oudot. Decomposition of exact pfd persistence bimodules. CoRR,
abs/1605.09726, 2016.

[54] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of Persistence Diagrams.
Discrete and Computational Geometry, 37(1):103–120, 2007.

[55] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using Poincaré
and Lefschetz duality. Foundation of Computational Mathematics, 9(1):79–103, 2009.

145

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[56] Éric Colin de Verdière, Grégory Ginot, and Xavier Goaoc. Multinerves and Helly numbers of acyclic
families. In Proceedings of the 28th Symposium on Computational Geometry, pages 209–218, 2012.

[57] Étienne Corman, Maks Ovsjanikov, and Antonin Chambolle. Supervised Descriptor Learning for
Non-Rigid Shape Matching. In Proceedings of the 6th Workshop on Non-Rigid Shape Analysis and
Deformable Image Alignment, 2014.

[58] Antonio Cuevas. Set estimation: another bridge between statistics and geometry. Bolet́ın de
Estad́ıstica e Investigación Operativa, 25(2):71–85, 2009.

[59] Antonio Cuevas and Alberto Rodŕıguez-Casal. On boundary estimation. Advances in Applied
Probability, pages 340–354, 2004.

[60] Navneet Dalal and Bill Triggs. Histograms of Oriented Gradients for Human Detection. In Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 886–893, 2005.

[61] Vin de Silva, Elizabeth Munch, and Amit Patel. Categorified Reeb Graphs. Discrete and Compu-
tational Geometry, 55:854–906, 2016.

[62] Ronald DeVore and George Lorentz. Constructive approximation, volume 303. Springer Science &
Business Media, 1993.

[63] Tamal Dey, Fengtao Fan, and Yusu Wang. Graph Induced Complex on Point Data. In Proceedings
of the 29th Symposium on Computational Geometry, pages 107–116, 2013.

[64] Tamal Dey and Yusu Wang. Reeb Graphs: Approximation and Persistence. Discrete and Compu-
tational Geometry, 49(1):46–73, 2013.

[65] Barbara di Fabio and Massimo Ferri. Comparing persistence diagrams through complex vectors.
CoRR, abs/1505.01335, 2015.

[66] Barbara di Fabio and Claudia Landi. The Edit Distance for Reeb Graphs of Surfaces. Discrete
and Computational Geometry, 55(2):423–461, 2016.

[67] Pawel Dlotko. Cubical complex. In GUDHI User and Reference Manual. GUDHI Editorial Board,
2015.

[68] Herbert Edelsbrunner and John Harer. Jacobi sets of multiple Morse functions. Foundations of
Computational Mathematics, pages 37–57, 2002.

[69] Herbert Edelsbrunner and John Harer. Computational Topology: an introduction. AMS Bookstore,
2010.

[70] Herbert Edelsbrunner, John Harer, and Amit Patel. Reeb Spaces of Piecewise Linear Mappings.
In Proceedings of the 24th Symposium on Computational Geometry, pages 242–250, 2008.

[71] Brittany Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan,
and Aarti Singh. Confidence Sets for Persistence Diagrams. The Annals of Statistics, 42(6):2301–
2339, 2014.

[72] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of Statistical Learning.
Springer series in statistics Springer, 2001.

[73] Marcio Gameiro, Yasuaki Hiraoka, and Ippei Obayashi. Continuation of Point Clouds via Persis-
tence Diagrams. Physica D: Nonlinear Phenomena, 334:118–132, 2016.

[74] Xiaoyin Ge, Issam Safa, Mikhail Belkin, and Yusu Wang. Data Skeletonization via Reeb Graphs.
In Advances in Neural Information Processing Systems 24, pages 837–845, 2011.

[75] Christopher Genovese, Marco Perone-Pacifico, Isabella Verdinelli, and Larry Wasserman. Manifold
estimation and singular deconvolution under Hausdorff loss. The Annals of Statistics, 40:941–963,
2012.

[76] Christopher Genovese, Marco Perone-Pacifico, Isabella Verdinelli, and Larry Wasserman. Minimax
Manifold Estimation. Journal of Machine Learning Research, 13:1263–1291, 2012.

146

[77] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[78] Sara Goodwin, John McPherson, and Richard McCombie. Coming of age: ten years of next-
generation sequencing technologies. Nature Review Genetics, 17(6):333–351, 2016.

[79] Zhenhua Guo, Lei Zhang, and David Zhang. A completed modeling of local binary pattern operator
for texture classification. IEEE Transaction on Image Processing, pages 1657–1663, 2010.

[80] Heather Harrington, Nina Otter, Hal Schenck, and Ulrike Tillmann. Stratifying multiparameter
persistent homology. CoRR, abs/1708.07390, 2017.

[81] William Harvey, Yusu Wang, and Rephael Wenger. A randomized O(m log m) time algorithm for
computing Reeb graphs of arbitrary simplicial complexes. In Proceedings of the 26th Symposium
on Computational Geometry, pages 267–276, 2010.

[82] Jan-Martin Hertzsch, Rob Sturman, and Stephen Wiggins. DNA microarrays: design principles
for maximizing ergodic, chaotic mixing. In Small, volume 3, pages 202–218, 2007.

[83] TS. Hinks, X. Zhou, KJ. Staples, BD. Dimitrov, A. Manta, T. Petrossian, P. Lum, CG. Smith,
JA. Ward, PH Howarth, AF. Walls, SD. Gadola, and R. Djukanovic. Innate and adaptive t cells
in asthmatic patients: Relationship to severity and disease mechanisms. Journal of Allergy and
Clinical Immunology, 136(2):323–333, 2015.

[84] Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson Escolar, Kaname Matsue, and
Yasumasa Nishiura. Hierarchical structures of amorphous solids characterized by persistent ho-
mology. In Proceedings of the National Academy of Science, volume 26, 2016.

[85] Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep Learning with Topo-
logical Signatures. CoRR, abs/1707.04041, 2017. Accepted to Advances in Neural Information
Processing Systems 30.

[86] Andrew Johnson and Martial Hebert. Using spin images for efficient object recognition in cluttered
3d scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5):433–449, 1999.

[87] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. Learning 3D Mesh Segmentation and
Labeling. ACM Transactions on Graphics, 29(4):102, 2010.

[88] Min-su Kim, Benjamin Hur, and Sun Kim. Rddpred: a condition-specific rna-editing prediction
model from rna-seq data. BMC Genomics, 17(1), 2016.

[89] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

[90] Genki Kusano, Kenji Fukumizu, and Yasuaki Hiraoka. Persistence Weighted Gaussian Kernel
for Topological Data Analysis. In Proceedings of the 33rd International Conference on Machine
Learning, pages 2004–2013, 2016.

[91] Genki Kusano, Kenji Fukumizu, and Yasuaki Hiraoka. Kernel method for persistence diagrams
via kernel embedding and weight factor. CoRR, abs/1706.03472, 2017.

[92] Roland Kwitt, Stefan Huber, Marc Niethammer, Weili Lin, and Ulrich Bauer. Statistical Topolog-
ical Data Analysis - A Kernel Perspective. In Advances in Neural Information Processing Systems
28, pages 3070–3078, 2015.

[93] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.

[94] Chunyuan Li, Maks Ovsjanikov, and Frédéric Chazal. Persistence-Based Structural Recognition.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 2003–2010, 2014.

[95] Jen-Yu Liu, Shyh-Kang Jeng, and Yi-Hsuan Yang. Applying Topological Persistence in Convolu-
tional Neural Network for Music Audio Signals. CoRR, abs/1608.07373, 2016.

[96] David Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

147

[97] P. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan, J. Carlsson,
and G. Carlsson. Extracting insights from the shape of complex data using topology. Scientific
Reports, 3, 2013.

[98] Stéphane Mallat. A Wavelet Tour of Signal Processing. Academic Press, 2008.

[99] Clément Maria. Persistent cohomology. In GUDHI User and Reference Manual. GUDHI Editorial
Board, 2015.

[100] Michael Metzker. Sequencing technologies - the next generation. Nature Review Genetics, 11(1):31–
46, 2010.

[101] Waleed Mohamed and A. Ben Hamza. Reeb graph path dissimilarity for 3d object matching and
retrieval. The Visual Computer, 28(3):305–318, 2012.

[102] Vlad Morariu, Balaji Srinivasan, Vikas Raykar, Ramani Duraiswami, and Larry Davis. Automatic
online tuning for fast Gaussian summation. In Advances in Neural Information Processing Systems
21, pages 1113–1120, 2009.

[103] Dmitriy Morozov. Homological Illusions of Persistence and Stability. Ph.D. dissertation, Depart-
ment of Computer Science, Duke University, 2008.

[104] Tomoyuki Mukasa, Shohei Nobuhara, Atsuto Maki, and Takashi Matsuyama. Finding articulated
body in time-series volume data. In Proceedings of the 4th International Conference on Articulated
Motion and Deformable Objects, pages 395–404, 2006.

[105] Elizabeth Munch and Bei Wang. Convergence between Categorical Representations of Reeb Space
and Mapper. In Proceedings of the 32nd Symposium on Computational Geometry, volume 51, pages
53:1–53:16, 2016.

[106] James Munkres. Elements of Algebraic Topology. Addison-Wesley, 1993.

[107] Sameer Nene, Shree Nayar, and Hiroshi Murase. Columbia Object Image Library (COIL-100).
Technical Report CUCS-006-96, 1996.

[108] Monica Nicolau, Arnold Levine, and Gunnar Carlsson. Topology based data analysis identifies a
subgroup of breast cancers with a unique mutational profile and excellent survival. Proceedings of
the National Academy of Science, 108(17):7265–7270, 2011.

[109] Jessica Nielson, Jesse Paquette, Aiwen Liu, Cristian Guandique, Amy Tovar, Tomoo Inoue, Karen-
Amanda Irvine, John Gensel, Jennifer Kloke, Tanya Petrossian, Pek Lum, Gunnar Carlsson, Geof-
frey Manley, Wise Young, Michael Beattie, Jacqueline Bresnahan, and Adam Ferguson. Topologi-
cal data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nature
Communications, 6, 2015.

[110] Shin-Ichi Ohta. Gradient flows on Wasserstein spaces over compact Alexandrov spaces. American
Journal Mathematics, 131(2):475–516, 2009.

[111] Shin-Ichi Ohta. Barycenters in Alexandrov spaces of curvature bounded below. Advances in
Geometry, 12:571–587, 2012.

[112] Timo Ojala, Topi Mäenpää, Matti Pietikäinen, Jaakko Viertola, Juha Kyllönen, and Sami Huovi-
nen. Outex - new framework for empirical evaluation of texture analysis algorithms. In Proceedings
of the 16th International Conference on Pattern Recognition, pages 701–706, 2002.

[113] Steve Oudot. Persistence Theory: From Quiver Representations to Data Analysis. Number 209 in
Mathematical Surveys and Monographs. American Mathematical Society, 2015.

[114] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. Func-
tional maps: a flexible representation of maps between shapes. ACM Transactions on Graphics,
31(4):30, 2012.

[115] Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, and Ajith Mascarenhas. Robust On-line
Computation of Reeb Graphs: Simplicity and Speed. In Proceedings of ACM SIGGRAPH 2007,
2007.

148

[116] Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its appli-
cation to texture mixing. In International Conference on Scale Space and Variational Methods in
Computer Vision, pages 435–446, 2011.

[117] Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines. In Advances
in Neural Information Processing Systems 20, pages 1177–1184, 2008.

[118] Gerald Reaven and Rupert Miller. An attempt to define the nature of chemical diabetes using a
multidimensional analysis. Diabetologia, 16(1):17–24, 1979.

[119] Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A Stable Multi-Scale Kernel for
Topological Machine Learning. CoRR, abs/1412.6821, 2014.

[120] Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A Stable Multi-Scale Kernel for
Topological Machine Learning. In IEEE Conference on Computer Vision and Pattern Recognition,
2015.

[121] Vanessa Robins and Katharine Turner. Principal Component Analysis of Persistent Homology
Rank Functions with case studies of Spatial Point Patterns, Sphere Packing and Colloids. Physica
D: Nonlinear Phenomena, 334:1–186, 2016.

[122] Matteo Rucco, Emanuela Merelli, Damir Herman, Devi Ramanan, Tanya Petrossian, Lorenzo
Falsetti, Cinzia Nitti, and Aldo Salvi. Using topological data analysis for diagnosis pulmonary
embolism. Journal of Theoretical and Applied Computer Science, 9(1):41–55, 2015.

[123] Bryan Russell, Antonio Torralba, Kevin Murphy, and William Freeman. LabelMe: A Database and
Web-Based Tool for Image Annotation. International Journal of Computer Vision, 77(1-3):157–
173, 2008.

[124] Filippo Santambrogio. Optimal transport for applied mathematicians. Springer, 2015.

[125] G. Sarikonda, J. Pettus, S. Phatak, S. Sachithanantham, JF. Miller, JD. Wesley, E. Cadag, J. Chae,
L. Ganesan, R. Mallios, S. Edelman, B. Peters, and M. von Herrath. Cd8 t-cell reactivity to islet
antigens is unique to type 1 while cd4 t-cell reactivity exists in both type 1 and type 2 diabetes.
Journal of Autoimmunity, 50:77–82, 2014.

[126] Bernhard Schölkopf, Ralf Herbrich, and Alex Smola. A Generalized Representer Theorem. In
Proceedings of the 14th Annual Conference on Computational Learning Theory, pages 416–426,
2001.

[127] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge Uni-
versity Press, 2004.

[128] John Shawe-Taylor, Christopher Williams, Nello Cristianini, and Jaz Kandola. On the eigenspec-
trum of the Gram matrix and the generalization error of kernel-PCA. IEEE Transactions on
Information Theory, 51(7):2510–2522, 2005.

[129] Gurjeet Singh, Facundo Mémoli, and Gunnar Carlsson. Topological Methods for the Analysis of
High Dimensional Data Sets and 3D Object Recognition. In Symposium on Point Based Graphics,
pages 91–100, 2007.

[130] George Soumya and Joseph Shibily. Text Classification by Augmenting Bag of Words (BOW)
Representation with Co-occurrence Feature. IOSR Journal of Computer Engineering, 16:34–38,
2014.

[131] Wilson Sutherland. Introduction to Metric and Topological Spaces. Oxford University Press, 2009.

[132] Joshua Tenenbaum, Vin de Silva, and John Langford. A Global Geometric Framework for Nonlinear
Dimensionality Reduction. Science, 290(5500), 2000.

[133] Julien Tierny and Hamish Carr. Jacobi Fiber Surfaces for Bivariate Reeb Space Computation.
IEEE Transactions on Visualization and Computer Graphics, 23(1):960–969, 2017.

[134] Julien Tierny, David Guenther, and Valerio Pascucci. Optimal General Simplification of Scalar
Fields on Surfaces. In Topological and Statistical Methods for Complex Data. 2015.

149

[135] Julien Tierny, Jean-Philippe Vandeborre, and Mohamed Daoudi. Invariant High Level Reeb Graphs
of 3D Polygonal Meshes. International Symposium on 3D Data Processing Visualization and
Transmission, pages 105–112, 2006.

[136] Katharine Turner, Yuriy Mileyko, Sayan Mukherjee, and John Harer. Fréchet Means for Distribu-
tions of Persistence Diagrams. Discrete and Computational Geometry, 52(1):44–70, 2014.

[137] Cédric Villani. Optimal transport : old and new. Springer, 2009.

[138] Yuan Yao, Jian Sun, Xuhui Huang, Greg Bowman, Gurjeet Singh, Michael Lesnick, Leonidas
Guibas, Vijay Pande, and Gunnar Carlsson. Topological methods for exploring low-density states
in biomolecular folding pathways. Journal of Chemical Physics, 130(14), 2009.

[139] Bin Yu. Assouad, Fano, and Le Cam. In Festschrift for Lucien Le Cam, pages 423–435. Springer,
1997.

150

Titre : On metric and statistical properties of topological descriptors for
geometric data

Mots clefs : Analyse de données topologiques, Statistique, Apprentissage automatique, Méthodes à
noyaux

Résumé : Dans le cadre de l’apprentissage au-
tomatique, l’utilisation de représentations alter-
natives, ou descripteurs, pour les données est un
problème fondamental permettant d’améliorer sen-
siblement les résultats des algorithmes. Parmi eux,
les descripteurs topologiques calculent et encodent
l’information de nature topologique contenue dans
les données géométriques. Ils ont pour avantage de
bénéficier de nombreuses bonnes propriétés issues
de la topologie, et désirables en pratique, comme
par exemple leur invariance aux déformations con-
tinues des données. En revanche, la structure et les
opérations nécessaires à de nombreuses méthodes
d’apprentissage, comme les moyennes ou les pro-
duits scalaires, sont souvent absents de l’espace de

ces descripteurs. Dans cette thèse, nous étudions
en détail les propriétés métriques et statistiques
des descripteurs topologiques les plus fréquents,
à savoir les diagrammes de persistance et Map-
per. En particulier, nous montrons que le Map-
per, qui est empiriquement un descripteur instable,
peut être stabilisé avec une métrique appropriée,
que l’on utilise ensuite pour calculer des régions
de confiance et pour régler automatiquement ses
paramètres. En ce qui concerne les diagrammes
de persistance, nous montrons que des produits
scalaires peuvent être utilisés via des méthodes à
noyaux, en définissant deux noyaux, ou plonge-
ments, dans des espaces de Hilbert en dimension
finie et infinie.

Title : On Metric and Statistical Properties of Topological Descriptors for
Geometric Data

Keywords : Topological Data Analysis, Statistics, Unsupervised Machine Learning, Kernel Methods

Abstract : In the context of supervised Machine
Learning, finding alternate representations, or de-
scriptors, for data is of primary interest since it
can greatly enhance the performance of algorithms.
Among them, topological descriptors focus on and
encode the topological information contained in ge-
ometric data. One advantage of using these de-
scriptors is that they enjoy many good and de-
sirable properties, due to their topological nature.
For instance, they are invariant to continuous de-
formations of data. However, the main drawback
of these descriptors is that they often lack the
structure and operations required by most Machine

Learning algorithms, such as a means or scalar
products. In this thesis, we study the metric and
statistical properties of the most common topolog-
ical descriptors, the persistence diagrams and the
Mappers. In particular, we show that the Mapper,
which is empirically instable, can be stabilized with
an appropriate metric, that we use later on to com-
pute confidence regions and automatic tuning of
its parameters. Concerning persistence diagrams,
we show that scalar products can be defined with
kernel methods by defining two kernels, or embed-
dings, into finite and infinite dimensional Hilbert
spaces.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Introduction
	Introduction en français
	Analyse de donnée et apprentissage automatique
	Descripteurs topologiques
	Principales limitations
	Contributions

	Introduction in english
	Data Analysis and Machine Learning
	Topological Descriptors
	Main bottlenecks
	Contributions

	Background on Topology
	Homology Theory
	Simplices and Simplicial Complexes
	Simplicial Homology
	Singular Homology
	Relative Homology

	Persistence Theory
	Filtrations
	Persistence Modules
	Persistence Diagram
	Stability Properties of Persistence Diagrams

	Extended and Levelset Zigzag Persistence
	Extended persistence
	Levelset zigzag persistence

	Reeb graphs
	Persistence-based bag-of-features signature
	Metrics between Reeb graphs
	Simplification techniques
	Computation

	Mapper

	Telescopes and Reeb graphs
	Telescopes and Operators
	A lower bound on db
	Induced Metrics
	Conclusion

	Structure and Stability of the Mapper
	Mappers for scalar-valued functions
	MultiNerve Mapper
	Structure of the MultiNerve Mapper
	Topological structure of the MultiNerve Mapper
	A signature for MultiNerve Mapper
	Induced signature for Mapper

	Stability in the bottleneck distance
	Stability with respect to perturbations of the cover
	Convergence in the functional distortion distance
	Operators on MultiNerve Mapper
	Connection between the (MultiNerve) Mapper and the Reeb graph.
	Convergence results.
	An alternative proof of Theorem 4.3.3

	Conclusion

	Statistical Analysis and Parameter Selection
	Approximations of (MultiNerve) Mappers and Reeb graphs
	Approximation tools
	Discrete approximations
	Relationships between the constructions
	Relationships between the signatures

	Approximation of a Reeb graph with Mapper
	Statistical Analysis of the Mapper
	Statistical Model for the Mapper
	Reeb graph inference with exact filter
	Reeb graph inference with estimated filter

	Confidence sets for the signatures
	Confidence sets
	Confidence sets derived from Theorem 5.2.1
	Bottleneck Bootstrap

	Numerical experiments
	Mappers and confidence regions
	Noisy data

	Conclusion

	Kernel Methods for Persistence Diagrams
	Supervised Machine Learning
	Empirical Risk Minimization
	Reproducing Kernel Hilbert Space

	A Gaussian Kernel for Persistence Diagrams
	Wasserstein distance for unnormalized measures on R
	The Sliced Wasserstein Kernel
	Metric Preservation
	Computation
	Experiments

	Vectorization of Persistence Diagrams
	Mapping Persistence Diagrams to Euclidean vectors
	Stability of the topological vectors.
	Application to 3D shape processing

	Conclusion

	Conclusion
	Proof of Lemma 3.4.5

