
HAL Id: tel-01658922
https://hal.science/tel-01658922

Submitted on 8 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting Modern Hardware for High-Dimensional
Nearest Neighbor Search

Fabien André

To cite this version:
Fabien André. Exploiting Modern Hardware for High-Dimensional Nearest Neighbor Search. Com-
puter Science [cs]. INSA Rennes, 2016. English. �NNT : �. �tel-01658922�

https://hal.science/tel-01658922
https://hal.archives-ouvertes.fr


Exploiting Modern Hardware for
High-Dimensional Nearest Neighbor Search

Fabien André

PhD thesis defended on
November 25, 2016

at INSA Rennes

Thesis Advisors
Anne-Marie Kermarrec

Research Director, Inria

Nicolas Le Scouarnec
Senior Scientist, Technicolor

Thesis Committee
Achour Mostefaoui

President
Professor, University of Nantes

Gaël Thomas
Referee

Professor, Telecom SudParis

Peter Triantafillou
Referee

Professor, University of Glasgow





This work is distributed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). For more information, see

https://creativecommons.org/licenses/by/4.0/.

Sources are available at https://github.com/Xion345/phd-thesis.

Some of the techniques presented in this thesis may be covered by patents owned by
Technicolor R&D France, Thomson Licensing and/or other parties. No rights to

any party’s patents are implied by the distribution of this thesis.

This document was compiled on October 30, 2017 by XƎTEX version 0.99996 using
LATEX 2ε version 2017/01/01 and PGF version 3.0.1a.

https://creativecommons.org/licenses/by/4.0/
https://github.com/Xion345/phd-thesis




Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisors,
Anne-Marie Kermarrec and Nicolas Le Scouarnec, for their outstanding guidance. I
would like to particularly thank them for their assistance through the process of
defining my thesis topic, their original ideas, their technical help, and their precious
advice on scientific writing. I have a feeling that I have discovered a new world during
this thesis – the one of research – and I owe this discovery to Nicolas and Anne-Marie.
On a more personal level, I would also like to thank them for their human qualities.
The completion of a PhD thesis inevitably involves moments of doubt and hesitation
and I was fortunate to be able to could count on their support during these moments.

I also thank all other members of the jury, Achour Mostefaoui, Peter Triantafillou
and Gaël Thomas. I am especially grateful to Peter Triantafillou and Gaël Thomas
for reviewing the manuscript and providing feedback.

This thesis would not have been possible without the support of Technicolor which
gave me the opportunity to fully devote myself to my research activities during these
three years. I also thank Inria for providing access to computing resources without
which many experiments of this thesis could not have been done. More specifically, I
was fortunate to have access to Grid’5000, a highly flexible large-scale platform which
enables complex experiments. I cannot stress enough how important these platforms
are for the research in computer science, and especially for systems research.

I also have a thought for my colleagues and fellow PhD students at Inria and Tech-
nicolor without whom these three years would not have been the same. Thank you
for creating an intellectually stimulating environment, thank you for your friendship,
and thank you for the crazy discussions at the coffee break – I will not forget them.
I owe a special thank you to Clémentine, my fellow PhD student at Technicolor, for
sharing with me the difficulties of doing a PhD.

Lastly, these acknowledgements would not be complete without a word of thanks
for my family who gave me much-needed emotional support over these three years.
They offered a sympathetic ear when I needed, and I am convinced I could not have
come this far without their continuous support.





La présente thèse comporte un résumé de onze pages rédigé
en français (« Résumé en Français ») dont les pages sont
numérotées en chiffres romains. Le reste de la thèse est rédigé
en anglais, et les pages sont numérotées en chiffres arabes. Le
résumé en Français ne contient aucune information qui n’est pas
également présente dans le reste de la thèse.

The present thesis comprises a summary of eleven pages writ-
ten in French (« Résumé en Français ») the pages of which are
numbered with Roman numerals. The remainder of the thesis
is written in English, and the pages are numbered with Arabic
numerals. The summary in French contains no information that
is not also present in the remainder of the thesis.





Contents

Contents 7

List of Figures 10

List of Tables 12

Résumé en Français i
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Quantification Produit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Analyse de Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
PQ Fast Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Quick ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Derived Quantizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Conclusion et Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1
1.1 The Big Data Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Applications of Nearest Neighbor Search . . . . . . . . . . . . . . . . . 3
1.3 Classification of Nearest Neighbor Search Problems . . . . . . . . . . . 5
1.4 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Product Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 State of the Art 11
2.1 Space and Data Partitioning Trees . . . . . . . . . . . . . . . . . . . . 12

2.1.1 KD-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Bag of Features and Vocabulary Trees . . . . . . . . . . . . . . 13
2.1.3 FLANN Library . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Locality Sensitive Hashing (LSH) . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Euclidean Distance LSH (E2LSH) . . . . . . . . . . . . . . . . 16
2.2.2 Virtual Rehashing Schemes . . . . . . . . . . . . . . . . . . . . 18

2.3 Product Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Vector Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Inverted Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 ANN Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Product Quantization Derivatives . . . . . . . . . . . . . . . . . 27

3 Performance Analysis 31
3.1 Impact of Memory Accesses . . . . . . . . . . . . . . . . . . . . . . . . 31

7



Contents

3.2 Issues with SIMD Implementation . . . . . . . . . . . . . . . . . . . . 35
3.3 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 PQ Fast Scan 39
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Code Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Minimum Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.4 Quantization of Distances . . . . . . . . . . . . . . . . . . . . . 45
4.2.5 Lookups in Small tables . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2 Distribution of Response Times . . . . . . . . . . . . . . . . . . 48
4.3.3 Performance Counters . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.4 Impact of init and r Parameters . . . . . . . . . . . . . . . . . . 49
4.3.5 Impact of Distance Quantization . . . . . . . . . . . . . . . . . 50
4.3.6 Impact of the Size of Inverted Lists . . . . . . . . . . . . . . . . 51
4.3.7 Large Scale Experiment . . . . . . . . . . . . . . . . . . . . . . 52
4.3.8 Impact of CPU Architecture . . . . . . . . . . . . . . . . . . . 52

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 Compatibility with Inverted Indexes . . . . . . . . . . . . . . . 53
4.4.2 Applicability to Product Quantization Derivatives . . . . . . . 54

5 Quick ADC 57
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 SIMD Distance Computations . . . . . . . . . . . . . . . . . . . 59

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.2 Exhaustive Search in SIFT1M . . . . . . . . . . . . . . . . . . 62
5.3.3 Non-exhaustive Search in SIFT1M . . . . . . . . . . . . . . . . 64
5.3.4 Non-exhaustive Search in GIST1M . . . . . . . . . . . . . . . . 65
5.3.5 Non-exhaustive Search in Deep1M . . . . . . . . . . . . . . . . 66
5.3.6 Non-exhaustive Search in SIFT1B . . . . . . . . . . . . . . . . 67

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.1 Compatibility with Inverted Indexes . . . . . . . . . . . . . . . 68
5.4.2 Applicability to Product Quantization Derivatives . . . . . . . 68

6 Derived Quantizers 69
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.2 Training Derived Quantizers . . . . . . . . . . . . . . . . . . . . 71
6.2.3 ANN Search with Derived Quantizers . . . . . . . . . . . . . . 73

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.2 Small Datasets, 64-bit Codes . . . . . . . . . . . . . . . . . . . 76
6.3.3 Small Dataset, 32-bit Codes . . . . . . . . . . . . . . . . . . . . 79

8



Contents

6.3.4 Large Dataset, 64-bit Codes . . . . . . . . . . . . . . . . . . . . 80
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4.2 Comparison with Other Quantization Approaches . . . . . . . 82
6.4.3 Comparison with ADC+R . . . . . . . . . . . . . . . . . . . . . 82

7 Conclusion and Perspectives 85
7.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.1 Application to Product Quantization Derivatives . . . . . . . . 87
7.2.2 Exploitation of Future Hardware . . . . . . . . . . . . . . . . . 89
7.2.3 Generalization to Other Algorithms . . . . . . . . . . . . . . . 90

Bibliography 93

9



List of Figures

1 Comparaison de ADC Scan et PQ Fast Scan (25M vectors) . . . . . . . . vi
2 Impact de la taille des listes inversées sur PQ Fast Scan . . . . . . . . . . vii
3 Recall et temps de réponse (SIFT1M, codes 64 bits) . . . . . . . . . . . . x

1.1 Overview of Content Based Image Retrieval (CBIR) systems . . . . . . . 2

2.1 ANN search system based on an inverted index . . . . . . . . . . . . . . . 14
2.2 ANN search in KD-trees and Vocabulary trees . . . . . . . . . . . . . . . 15
2.3 Geometrical interpretation of LSH functions . . . . . . . . . . . . . . . . . 16
2.4 Asymmetric Distance Computation (ADC) . . . . . . . . . . . . . . . . . 26

3.1 Scan times (25M vectors) and Intructions Per Cycle (IPC) . . . . . . . . . 34
3.2 Scan performance counters (per scanned code) . . . . . . . . . . . . . . . 35
3.3 SIMD vertical add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 SIMD gather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Standard layout and transposed layout . . . . . . . . . . . . . . . . . . . . 36

4.1 Overview of PQ Fast Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 SIMD in-register shuffle (pshufb) . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Small tables building process . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Portions of the first distance table . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Code grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Centroid indexes assignement . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 Minimum tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8 Selection of quantization bounds . . . . . . . . . . . . . . . . . . . . . . . 46
4.9 Use of small tables to compute lower bounds . . . . . . . . . . . . . . . . 46
4.10 Distribution of response times, performance counters and IPC . . . . . . . 49
4.11 Impact of init Parameter (all inverted lists) . . . . . . . . . . . . . . . . . 50
4.12 Impact of r Parameter (all inverted lists, init=0.5%) . . . . . . . . . . . . 50
4.13 Pruning power using quantization only (all inverted lists) . . . . . . . . . 51
4.14 Impact of inverted list size (init=0.5%, r=100) . . . . . . . . . . . . . . . 51
4.15 Experiments on other CPU architectures (see Table 4.4) . . . . . . . . . . 53

5.1 Transposed block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 SIMD Lookup-add (j = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 SIMD 4-bit Right Shift (j = 0) . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 ADC and QADC response time and recall (PQ, SIFT1M, Exhaustive search) 62
5.5 ADC and QADC response time and recall (OPQ, SIFT1M, Exhaustive

search) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

10



List of Figures

6.1 Derived quantizer training process . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Capped buckets data structure . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Impact of r2 on recall and response time (SIFT1M, 64-bit codes) . . . . 76
6.4 Recall and response time (SIFT1M, 64-bit codes) . . . . . . . . . . . . . . 77
6.5 Impact of r2 on recall and response time (SIFT1M, 32-bit codes) . . . . 78
6.6 Recall and response time (SIFT1M, 32-bit codes) . . . . . . . . . . . . . . 79
6.7 Impact of r2 on recall and response time (SIFT100M, 64-bit codes) . . . 80
6.8 Recall and response time (SIFT100M, 64-bit codes) . . . . . . . . . . . . 81

11



List of Tables

1 Temps de réponse et précision (codes 64 bits, SIFT1M) . . . . . . . . . . iii
2 Comparaison ADC - Quick ADC (SIFT1M, 64 bit) . . . . . . . . . . . . . viii
3 Comparaison ADC - Quick ADC (SIFT1B, 64 bit) . . . . . . . . . . . . . ix

2.1 Memory use of different LSH approaches (SIFT1M) . . . . . . . . . . . . 19

3.1 Properties of different types of memory (Nehalem-Haswell) . . . . . . . . 32
3.2 ANN search speed and accuracy (SIFT1M) . . . . . . . . . . . . . . . . . 33

4.1 Properties of table lookup techniques . . . . . . . . . . . . . . . . . . . . . 41
4.2 Size of inverted lists used for experiments . . . . . . . . . . . . . . . . . . 47
4.3 Response time distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Non-exhaustive search, SIFT1M, 64 bit . . . . . . . . . . . . . . . . . . . 64
5.4 Non-exhaustive search, GIST1M, 128 bit . . . . . . . . . . . . . . . . . . . 65
5.5 Non-exhaustive search, Deep1M, 64 bit . . . . . . . . . . . . . . . . . . . 66
5.6 Non-exhaustive search, Deep1M, 128 bit . . . . . . . . . . . . . . . . . . . 66
5.7 Non-exhaustive search, SIFT1B, 64 bit . . . . . . . . . . . . . . . . . . . . 67
5.8 Non-exhaustive search, SIFT1B, 128 bits . . . . . . . . . . . . . . . . . . 67

12



Résumé en Français

Introduction

Cette thèse s’intéresse à la recherche de plus proche voisin en haute dimensionnalité
et à large échelle. Ce problème revêt une importance particulière dans le contexte
actuel d’utilisation massive de réseaux sociaux en ligne. L’utilisation de ces réseaux
sociaux par des millions d’utilisateurs a permis l’accumulation de jeux de données
très volumineux, une tendance connue sous le nom de big data. Ces jeux de données
comprennent non seulement des données textuelles (messages, discussions) mais aussi
multimédia (images, sons, vidéos).

La recherche de plus proche voisin dans les espaces de haute dimensionnalité est un
problème clé dans le domaine des bases de données multimédia. Les objets multimédia
(images, sons, vidéos) peuvent être représentés par des vecteurs caractéristiques en
haute dimensionnalité. Rechercher deux objets multimédias similaires revient alors
à rechercher deux objets multimédia ayant des vecteurs caractéristiques similaires.
Cependant, la recherche de plus proche voisin est un problème difficile, en particulier
à large échelle. En haute dimensionnalité, la tristement célèbre « malédiction de la
dimensionnalité » rend impossible la recherche de solutions exactes. Les travaux de
recherche actuels s’attachent donc à trouver des solutions approchées à la recherche
de plus proche voisin.

La product quantization est une des solutions approchées de recherche de plus
proche voisin les plus efficaces. Son principal avantage est qu’elle permet de stocker
des bases de données volumineuses entièrement en RAM, grâce à une technique de
compression des vecteurs de haute dimensionnalité en codes compacts. Ceci permet
alors de répondre à des requêtes de recherche de plus proche voisin sans accéder
à un disque dur ou à un SSD. Ainsi, la product quantization offre des temps de
réponse faibles. Dans cette thèse, nous proposons différentes solutions pour réduire
davantage les temps de réponse offerts par la product quantization en exploitant les
fonctionnalités des processeurs modernes.

Quantification Produit

Quantifieur vectoriel Pour compresser les vecteurs de haute dimensionnalité en
codes compacts, la quantification produit s’appuie sur des quantifieurs vectoriels. Un
quantifieur vectoriel est une fonction q qui associe un vecteur x ∈ Rd a un vecteur
ci ∈ Rd appartenant à un ensemble prédéfini de vecteurs C = {c0, . . . , ck−1}. Les
vecteurs ci sont appelés centroides, l’ensemble de centroides C est le dictionnaire.

i



Résumé en Français

Un quantifieur optimal associe un vecteur x à son centroide le plus proche : q(x) =
arg minci∈C ||x− ci||.

Quantification produit La quantification produit, ou Product Quantization (PQ),
divise un vecteur x ∈ Rd en m sous-vecteurs x = (x0, . . . ,xm−1). Chaque sous-vecteur
xj est ensuite quantifié en utilisant un quantifieur qj distinct. Chaque quantifieur qj
dispose d’un dictionnaire Cj distinct. Un quantifieur produit pq quantifie un vecteur
x comme suit :

pq(x) =
(
q0(x0), . . . , qm−1(xm−1)

)
= (C0[i0], . . . , Cm−1[im−1]).

Un quantifieur produit peut être utilisé pour encoder un vecteur x en un code com-
pact défini par la concaténation des indices des m centroides retournés par les m
quantifieurs qj : code(x) = (i0, . . . , im−1). Un code compact code(x) utilise m·b bits
de mémoire, avec b = log2(k) où k est le nombre de centroides de chaque quantifieur
qj. Un code compact code(x) utilise beaucoup moins de mémoire qu’un vecteur de
haute dimensionnalité x. Ainsi, un vecteur en 128 dimensions peut être représenté
par un code de 64 bits (m = 8, b = 8, m×b = 64), alors qu’il occupe d · 32 = 4096
bits stocké sous forme d’un tableau de flottants.

Recherche de plus proche voisin Lorsque la quantification produit est utilisée,
les vecteurs de haute-dimensionalité de la base de données sont compressés en codes
compacts. Le codes compacts sont ensuite stockés dans un tableau contigu en RAM.
Pour trouver le plus proche voisin d’un vecteur requête y, il est nécessaire de calculer
la distance entre le vecteur y et chacun des codes stockés en RAM. Pour ce faire,
la quantification produit s’appuie sur une procédure nommée Asymmetric Distance
Computation (ADC), ou calcul de distance asymmétrique, qui permet de calculer la
distance entre un vecteur de haute dimensionnalité y et n’importe quel code c de la
base de données. Plus précisément, la recherche de plus proche voisin se déroule en
deux étapes, nommées Tables et Scan :

• Tables. Le vecteur y est divisé en m sous-vecteurs y = (y0, . . . , ym−1). On
construit ensuite m tables de correspondance {D0, . . . ,Dm−1}. Chaque table
de correspondance Dj contient la distance entre le sous-vecteur yj et chaque
centroide du dictionnaire Cj

• Scan. Ensuite, on calcule la distance entre le vecteur y et chaque code c de la
base de données grace à la procédure ADC, comme suit :

adc(y, c) =
m−1∑
j=0

Dj [c[j]] (1)

Cette thèse s’attache a améliorer les performances de la procédure ADC, et en par-
ticulier de l’étape Scan, car celle-ci consomme la majorité des cycles CPU.

Index inversés La quantification produit est généralement associée à des systèmes
d’index inversés. Ces systèmes divisent la base de données en un ensemble de listes
inversées. Pour répondre à une requête, les listes inversées les plus appropriées sont
sélectionnées. Ces listes sont ensuite scannées en utilisant la procédure ADC. Les

ii



Analyse de Performance

Tab. 1 : Temps de réponse et précision (codes 64 bits, SIFT1M)

m×b Tables size Cache Recall@100 Tables time Scan time
16×4 1 KiB L1 83.1% 0.001 ms 6 ms
8×8 8 KiB L1 92.2% 0.011 ms 2.6 ms
4×16 1 MiB L3 96.5% 0.82 ms 7.9 ms

index inversés permettent de réduire les temps de réponse en évitant de scanner la
totalité de la base de données. Ils permettent également d’augmenter la précision de
la recherche de plus proche voisin, grâce à un système connu sous le nom d’encodage
de résidus.

Quantification produit optimisée La quantification produit divise un vecteur
x en sous-vecteurs xj et encode chaque sous-vecteur en un indice de b bits, indé-
pendamment de la quantité d’information contenue dans chaque sous-vecteur. Ce
procédé donne des résultats sous-optimaux lorsque les sous-vecteurs ne contiennent
pas la même quantité d’information ou que certaines dimensions sont corrélées avec
d’autres. La quantification produit optimisée, ou Optimized Product Quantization
(OPQ), remédie a ce problème en multipliant les vecteurs x par une matrice ortho-
normale R ∈ Rd×d. Cette matrice permet un rotation et une permutation arbitraire
des composantes du vecteur x, et est apprise de façon à minimiser l’erreur de quan-
tification. Un quantifieur produit optimisé opq quantifie un vecteur x comme suit
:

opq(x) = pq(Rx), tel que RTR = I,

où pq est quantifieur produit. Un quantifieur produit optimisé peut encoder des
vecteurs en codes compacts de la même manière qu’un quantifieur produit.

Analyse de Performance

Analyse des opérations Afin d’améliorer la performance de la procédure ADC, et
en particulier de l’étape Scan, on commence par identifier les goulots d’étranglement
qui la limitent. Lors de l’étape Scan, chaque calcul de distance asymétrique nécessite :

• m accès mémoire pour charger les indices des centroides c[j] (mem1)

• m accès mémoire pour charger les valeurs Dj [.] depuis les tables de correspon-
dance (mem2)

• m additions (
∑m−1

j=0 )

Parmi ces opérations, les accès mémoires sont les plus coûteuses. En effet, un accès
mémoire prend entre 4 et 40 cycles CPU en fonction du niveau de cache atteint, alors
qu’une addition ne prend qu’un seul cycle. Ainsi, la performance de PQ Fast Scan
est principalement limitée par le grand nombre d’accès cache qu’elle effectue.

Accès mémoire Les accès mémoire mem1 atteignent toujours le cache le plus ra-
pide (cache L1), grâce aux hardware prefetchers inclus dans les processeurs modernes.
On accède aux codes c séquentiellement: premier code, puis second code etc. ce qui

iii



Résumé en Français

permet aux hardware prefetchers de précharger les codes c dans le cache L1. En re-
vanche, le niveau de cache atteint par les accès mem2 dépend du paramètre b du
quantifieur produit utilisé. Un quantifieur produit est complètement défini par deux
paramètres m, le nombre de quantifieurs, et b le nombre de bits par quantifieur (qui
détermine le nombre k = 2b de centroides par quantifier).

Compromis précision-vitesse La précision d’un quantifieur produit dépend prin-
cipalement du produit m·b. Ce produit définit l’occupation mémoire de chaque code,
et donc l’occupation mémoire de la base de données. Ainsi un quantifieur produisant
des codes de 128 bits (m·b = 128) sera plus précis qu’un quantifieur produisant des
codes de 64 bits (m·b = 64). Le quantifieur produisant des codes de 128 bits engen-
drera cependant un doublement de la taille de la base de données, puisque chaque
code occupera 128 bits au lieu de 64 bits. Pour limiter l’occupation mémoire, le pro-
duit m×b est souvent fixé à 64. Pour un produit m·b fixé (par exemple m·b = 64),
les paramètres m et b peuvent varier. Plus b est grand (et donc plus m est petit),
meilleure est la précision du quantifieur, et donc meilleure est la précision de la re-
cherche de plus proche voisin. Ainsi, un quantifieur produit 4×16 (m = 4, b = 16) et
un quantifieur produit 8×8 (m = 8, b = 8) produisent tous deux des codes de 64 bits,
mais le quantifieur 4×16 offre une meilleure précision. Pour mesurer la précision des
techniques de recherche de plus proche voisin approchées, on utilise le Recall@R. Le
Recall@R est défini comme la proportion de requêtes pour lesquelles le plus proche
voisin exact du vecteur requête se trouve parmi les R plus proches voisins renvoyés
par la technique de recherche approchée. En général, on paramètre les techniques de
recherche approchées pour qu’elles retournent R=100 voisins, donc on utilise le Re-
call@100 comme mesure de précision (Table 1). On constate alors qu’un quantifieur
produit 4×16 (b = 16) offre un meilleur Recall@100 qu’un quantifieur 8×8 (b = 8).
Cependant, plus b est grand, plus les tables de correspondance Dj sont volumineuses,
et doivent alors être stockés dans des niveaux de cache plus lents. Pour b = 16, les
tables doivent être stockées dans le cache L3 (latence de 40 cycles), au lieu du cache
L1 (latence de 4-5 cycles). Ceci se traduit par un triplement du temps de réponse
(Table 1). Pour b = 8 et b = 4, les tables sont stockées dans le cache L1. Le paramètre
b = 8 offre alors un meilleur de temps de réponse car il nécessite moins d’opérations
(m = 8 contre m = 16). Le paramétrage m×b = 8×8 offre un bon compromis entre
précision et temps de réponse, raison pour laquelle il est utilisé dans la quasi-totalité
de la littérature sur la quantification produit. Cependant, même lorsqu’ils atteignent
le cache L1 (niveau de cache le plus rapide), les accès mémoire restent un facteur
limitant la performance de la procédure ADC.

SIMD Les instructions Single Instruction Multiple Data (SIMD) sont couramment
utilisées pour améliorer la performance des algorithmes, en particulier lorsqu’ils réa-
lisent un grand nombre d’opérations arithmétiques. Les instructions SIMD appliquent
la même opération (par exemple une addition) à plusieurs données simultanément,
pour produire plusieurs résultats simultanément. Pour se faire, les instructions SIMD
opèrent sur des registres larges, en général 128 bits. Ces registres sont divisés en
plusieurs voies, par exemple 4 voies flottantes (4 voies de 32 bits, soit 128 bits).
Les instructions SIMD sont donc susceptibles d’être utilisées pour réduire le nombre
de cycles CPUs dédiés aux m additions nécessaires pour chaque calcul de distance.
Cependant, la structure de la procédure ADC empêche une utilisation efficace des
instructions SIMD. En effet, les valeurs Dj [c[j]] chargées depuis les tables de corres-

iv



PQ Fast Scan

pondance Dj ne sont pas contiguës en mémoire, ce qui rend impossible le chargement
d’un registre SIMD de 128 bits en un seul accès mémoire. Au contraire, les valeurs
doivent être insérées une à une dans chacune des voies des registres SIMD, ce qui
nécessite un grand nombre d’instructions. Au final, ceci annule le gain offert par
l’utilisation d’additions SIMD.

En définitive, nous pouvons tirer trois conclusions de cette analyse de performance :

• Les accès mémoire sont le principal facteur limitant la performance de la pro-
cédure ADC, bien qu’ils atteignent le cache L1 (niveau de cache le plus rapide)
dans la majorité des cas.

• Les quantifieurs produit utilisant des quantifieurs 16 bits (b = 16) offrent une
meilleure précision que les quantifieurs produit utilisant des quantifieurs 8 bits
(b = 8) mais ils engendrent un triplement du temps de réponse lors de la
recherche de plus proche voisin. Ceci est du au fait que les quantifieurs 16 bits
nécessitent de stocker les tables de correspondance utilisées par la procédure
ADC dans le cache L3, alors que ces tables peuvent être stockées dans le cache
L1 lorsque des quantifieurs 8 bits sont utilisés.

• La structure de la procédure ADC empêche l’utilisation efficace des instructions
SIMD. En effet, la procédure ADC récupère des valeurs dans le cache avant des
les insérer une à une dans les registres SIMD. Ces opérations sont coûteuses et
annulent le gain offert par les instructions SIMD.

PQ Fast Scan

Grâce au stockage des bases de données en RAM, la quantification produit permet
de scanner un grand nombre de codes en peu de temps. Cependant, la procédure
ADC reste consommatrice de temps CPU. En particulier, nous avons montré que la
performance de la procédure ADC est principalement limitée par le grand nombre
d’accès cache qu’elle occasionne. De plus, la structure de cette procédure empêche
une utilisation efficace des instructions SIMD pour augmenter sa performance. Ces
limitations appellent donc une modification de la procédure ADC.

Pour ces raisons, nous avons conçu PQ Fast Scan, une procédure de scan de listes
de codes compacts novatrice. PQ Fast Scan offre une performance 4 à 6 fois supé-
rieure à la procédure ADC conventionnelle, tout en retournant exactement les mêmes
résultats. PQ Fast Scan est exclusivement compatible avec les quantifieurs produits
8×8. Il ne s’agit pas en pratique d’une limitation forte, étant donné que ce type de
quantifieur est utilisé dans presque la totalité des cas. L’idée maîtresse de PQ Fast
Scan consiste à remplacer les accès au cache L1 par des permutation SIMD (ins-
truction pshufb). Cette modification permet également une utilisation efficace des
additions SIMD. Utiliser des permutations SIMD nécessite de stocker les tables de
correspondance dans les registres SIMD. Le principal défi que nous avons eu à ré-
soudre pour la conception de PQ Fast Scan est que les tables de correspondances Dj

sont beaucoup plus volumineuses (1 KiB chacune) que les registres SIMD (128 bits
chacun).

v



Résumé en Français

time
0

20

40

60

80 73.8

12.9

Te
m

ps
de

sc
an

(m
s)

cyclesinstructionscache
0

10

20

30

11

34

9

1.93.6
1.3

C
om

pt
eu

rs
ADC Scan PQ Fast Scan

Fig. 1 : Comparaison de ADC Scan et PQ Fast Scan (25M vectors)

PQ Fast Scan dépasse cette difficulté en utilisant des petites tables dimensionnées
pour tenir dans les registres SIMD à la place des tables de correspondance stockées
en cache. Ces petites tables sont utilisées pour calculer des bornes basses sur les
distances, sans accéder au cache L1. Par conséquent les calculs de bornes basses sont
rapides. De plus, ils sont implémentés en utilisant des additions SIMD, ce qui améliore
encore la performance. Nous utilisons les calculs de bornes basses pour élaguer les
calculs de distances, qui nécessitent des accès au cache L1 et ne peuvent pas tirer
profit des instructions SIMD. Ainsi, pour chaque code c dans la liste à scanner, on
calcule la borne basse sur sa distance au vecteur requête y. Si la borne basse est
supérieure à la distance entre le vecteur y et le plus proche voisin actuel, alors le
code c est écarté et on passe au code suivant. Si la borne basse est inférieure ou
égale à la distance entre le vecteur y et le plus proche voisin, on calcule la distance
entre le code c et y pour déterminer si c peut devenir le plus proche voisin courant.
Nos résultats expérimentaux sur des vecteurs SIFT montrent que les calculs de borne
basses permettent d’élaguer plus de 95% des calculs de distance.

Chaque petite table Sj est calculée à partir de la table Dj correspondante, j ∈
{0, . . . , 7}. Pour constuire les petites tables, nous combinons trois techniques : (1) le
groupage des codes, (2) le calcul de tables de minimums et (3) la quantification des
distances flottantes en entiers 8 bits. Les deux premières techniques, le groupage des
codes et le calcul de tables de minimums, sont utilisées pour transformer les tables Dj

de 256 flottants en tables de 16 flottants (256×32 bits → 16×32 bits). La troisième
technique, la quantification des distance flottantes en entier 8 bits, est utilise pour
réduire chaque élément de 32 à 8 bits (16×32 bits → 16×8 bits).

Pour valider notre approche, on mesure la performance de PQ Fast Scan et de la
procédure ADC Scan conventionnelle sur une liste de 25 millions de codes (Figure 1).
PQ Fast Scan atteint un temps de scan de 5.72 fois plus faible qu’ADC Scan à 12.9 ms
contre 73.8 ms. Grace au remplacement des accès cache par des permutations SIMD,
PQ Fast Scan ne nécessite que 1.3 accès cache par code scanné contre 9 pour ADC
Scan. Le nombre d’instructions nécessaires pour scanner un code passe de 34 pour
ADC Scan à 3.6 pour PQ Fast Scan, à la fois grace à l’utilisation de permutations
SIMD et d’additions SIMD. Au global, ceci se traduit par une baisse du nombre de
cycles CPU par code scanné de 11 pour ADC Scan à 1.9 pour PQ Fast Scan.

vi



Quick ADC

25M 23M 11M 11M 11M 11M 4M 3.4M

500

1,000

1,500

2,000

Inverted List

V
ite

ss
e

de
sc

an
(M

co
de

s/
s)

ADC Scan PQ Fast Scan

Fig. 2 : Impact de la taille des listes inversées sur PQ Fast Scan

PQ Fast Scan utilise trois techniques pour obtenir des petites tables qui tiennent
dans les registres SIMD : (1) le groupage des codes, (2) le calcul de tables de minimums
et (3) la quantification des distances flottantes en entiers 8 bits. Parmi ces trois
techniques, le groupage des codes implique une réogarnisation des listes de codes, et
impose une taille minimale sur ces listes de codes. En effet, les codes sont répartis dans
un nombre fixe de groupes, et la taille moyenne d’un groupe ne doit pas descendre
en dessous d’un certain seuil, au risque d’impacter la performance. On peut observer
cet effet en mesurant la vitesse de PQ Fast Scan sur 8 listes dont les tailles varient
de 3.4 million de codes à 25 millions de codes (Figure 2). La taille de chaque liste est
indiquée en abscisse. PQ Fast Scan a une vitesse constante pour les listes de 11 à 25
million de vecteurs. Cepedant, la vitesse diminue fortement avec la taille de la liste à
partir de 4 millions de vecteurs (Figure 2). Ainsi, PQ Fast Scan n’est intéressant que
pour les listes dont la taille dépasse 2 à 3 millions de vecteurs. Ceci rend PQ Fast
Scan incompatible avec les configurations d’index inversés les plus performantes qui
divisent la base de données en un grand nombre de listes inversées de petite taille
(10000 vecteurs ou moins). En pratique, il est donc difficile de combiner l’accélération
offerte par PQ Fast Scan et celle offerte par les index inversés.

Quick ADC

Nous avons montré que le principal inconvénient de PQ Fast Scan est qu’il n’est pas
compatible avec les index inversés les plus performants. Pour cette raison, nous pro-
posons Quick ADC, un autre procédure de scan rapide, mais pouvant être combinée
avec n’importe quel type d’index inversé, y compris les plus performants. Comme PQ
Fast Scan, Quick ADC, offre des performances 4 à 6 fois supérieures à la procédure
ADC conventionnelle. Quick ADC s’appuie également sur un remplacement des accès
cache par des permutations SIMD, et utilise des additions SIMD. Cependant, Quick
ADC utilise des techniques différentes de PQ Fast Scan pour obtenir les petites tables
stockées registres SIMD. Quick ADC s’appuie sur : (1) l’utilisation de quantifieurs
4 bits et (2) la quantification des distances flottantes en entiers 8 bits. L’utilisation
de quantifieurs 4 bits permet d’obtenir des tables des correspondance Dj de 24 = 16
flottants (16×32 bits). En quantifiant les flottants en entiers 8 bits, on obtient des
tables de 16 entiers 8 bits (16×8 bits) pouvant être stockées dans les registres SIMD.

vii



Résumé en Français

Tab. 2 : Comparaison ADC - Quick ADC (SIFT1M, 64 bit)

PQ 1 ADC 2 Recall@100 Index Tables Scan Total
Sans index inversé

PQ ADC 0.916 - 0.005 2.8 2.8
QADC 0.826 - 0.001 0.38 0.38

-9.8% -80% -86% -86%
Avec index inversé (K=256, ma=24)

PQ ADC 0.949 0.008 0.18 0.3 0.48
QADC 0.907 0.008 0.055 0.072 0.14

-4.4% -69% -76% -72%
OPQ ADC 0.963 0.008 0.21 0.29 0.52

QADC 0.949 0.008 0.089 0.073 0.17
-1.5% -59% -75% -67%

1 PQ : Quantification Produit, OPQ : Quantification Produit
Optimisée

2 ADC : ADC (8×8), QADC : Quick ADC (16×4)

Le principal inconvénient des quantifieurs 4 bits est qu’ils entraînent une perte
de précision en comparaison aux quantifieurs 8 bits. Nous montrons cependant que
cette perte de précision est faible, voire négligeable, surtout lorsque Quick ADC est
combiné avec des index inversés et la quantification produit optimisée. La quantifica-
tion produit optimisée est un dérivé de la quantification produit offrant une meilleure
précision et de plus en plus utilisé dans les publications récentes sur la recherche de
plus proche voisin. Sur le jeu de données SIFT1M (1 million de vecteurs SIFT), Quick
ADC est plus de 7 fois plus rapide (-86% sur le temps de réponse) que la procédure
ADC conventionnelle (Table 2). Quick ADC entraine cependant une baisse faible,
mais non-négligeable de 9.8% du rappel. En combinant Quick ADC avec un index
inversé, cette baisse est ramenée à 4.4%. On constate par ailleurs qu’utiliser un index
inversé offre à la fois un meilleur temps de réponse (0.48 ms contre 2.8 ms) et un
meilleur rappel (0.949 contre 0.916), avec ou sans Quick ADC. Pour cette raison, les
index inversés sont utilisés dans la majorité des cas. Enfin, en combinant Quick ADC
avec un index inversé et la quantification produit optimisée, la baisse de rappel de-
vient négligeable (-1.5%). Quick ADC offre alors un gain de temps de réponse de 67%.
Nous obtenons des résultats similaires sur d’autres types de vecteurs (vecteurs GIST
etc.) lorsque l’on utilise OPQ. Sur les jeux de données volumineux, par exemple le
jeu de données SIFT1B (1 milliard de vecteurs SIFT), Quick ADC offre également un
gain en temps de réponse proche de 70% (Table 3). La perte de recall est cependant
un peu plus importante, -7.3% sur le jeu de données SIFT1B. Quick ADC propose
donc de troquer une perte de recall faible ou négligeable (-1.5% à -7.3%), pour un
fort gain en temps de réponse (proche de 70%).

Derived Quantizers

Pour la plupart des cas d’utilisation actuels de la recherche de plus proche voisin,
la quantification produit avec des quantifieurs 8 bits offre une précision suffisante.

viii



Derived Quantizers

Tab. 3 : Comparaison ADC - Quick ADC (SIFT1B, 64 bit)

PQ 1 ADC 2 Recall@100 Index Tables Scan Total
Avec index inversé (K=65536, ma=64)

OPQ ADC 0.806 0.52 0.51 4.2 5.2
QADC 0.747 0.53 0.22 0.92 1.7

-7.3% -57% -78% -68%
1 OPQ : Quantification Produit Optimisée
2 ADC : ADC (8×8), QADC : Quick ADC (16×4)

À travers notre solution Quick ADC, nous avons montré qu’il était même possible
d’utiliser des quantifieurs 4 bits. Pour améliorer la performance dans ces cas d’utili-
sation, nous avons proposé deux procédures de scan hautement optimisées, PQ Fast
Scan et Quick ADC. Cependant, de nouveaux cas d’utilisations émergents nécessitent
une meilleure précision. Par exemple, les descripteurs générés par des réseaux de neu-
rones profonds sont de plus en plus populaires dans les applications multimédia. Ces
vecteurs comprennent plusieurs milliers de dimensions, et sont donc plus difficiles à
quantifier. Pour ces cas d’utilisation, il est intéressant d’utiliser des quantifieurs pro-
duits utilisant de quantifieurs 16 bits, étant donné qu’ils offrent une meilleur précision
que les quantifieurs produit utilisant des quantifieurs 8 bits. Par ailleurs, l’utilisation
de codes de 32 bits, à la place des codes de 64 bits usuels, soulève un intérêt grandis-
sant. Les codes de 32 bits rendent l’utilisation de quantifieurs de 16 bits nécessaire
parce que les quantifieurs 8 bits offrent une précision trop basse dans ce cas. Les
quantifieurs 16 bits souffrent cependant d’un inconvénient majeur : ils entraînent
un triplement du temps de réponse (Table 1), si bien qu’ils ne sont pas utilisés en
pratique.

Pour résoudre ce problème, nous proposons une approche novatrice, les quantifieurs
dérivés. Les quantifieurs dérivés rendent les quantifieurs 16 bits aussi rapides que les
quantifieurs 8 bits, tout en conservant leur précision. L’idée principale de notre ap-
proche consiste à associer un quantifieur dérivé de 8 bits avec chaque quantifieur 16
bits utilisé dans le quantifieur produit. Les quantifieurs dérivés (8 bits) sont utilisés
pour calculer des tables de correspondance compactes, stockées dans le cache L1. Ces
tables de distances compactes sont utilisées pour calculer des distances approchées
entre le vecteur requête et les codes de la liste à scanner. Ces calculs de distance
approchés servent à sélectionner les r2 codes les plus proches du vecteur requête
et construire ainsi un ensemble de candidats. Un calcul de distance précis est en-
suite effectué pour chacun des r2 codes de l’ensemble de candidats. Cette évaluation
précise de distance s’appuie sur des tables de correspondance calculées à partir des
quantifieurs 16 bits. Étant donné qu’elles ont été calculées à partir de quantifieurs
16 bits, ces tables de distances sont volumineuses, et donc stockées dans le cache L3.
En conséquence, les évaluation de distance précises sont lentes, car elles nécessitent
d’accéder au cache L3. Cependant, ces évaluations précises de distances sont réalisées
uniquement pour les r2 codes de l’ensemble de candidats précédemment généré. Au
global, ceci permet d’obtenir des temps de réponse bas, très proches du temps de
réponse obtenu avec des quantifieurs 8 bits.

ix



Résumé en Français

10 20 50 100 200 500 1K
0.6

0.8

1

r

R
ec

al
l

10 20 50 100 200 500 1K

4

6

8

r

Te
m

ps
pa

r
re

qu
êt

e
(m

s)

PQ 8×8 PQ 4×16 PQ 4×8, 16
OPQ 8×8 OPQ 4×16 OPQ 4×8, 16

Fig. 3 : Recall et temps de réponse (SIFT1M, codes 64 bits)

Une solution naïve pour obtenir des quantifieurs 8 bits et des quantifieurs 16 bits
consisterait à apprendre indépendamment ces deux types de quantifieurs. Chaque
vecteur serait alors compressé en code compact deux fois : une première fois en uti-
lisant les quantifieurs 8 bits, et une seconde fois en utilisant les quantifieurs 16 bits.
Nous obtiendrions alors deux codes par vecteur, ce qui doublerait l’utilisation mé-
moire de la base de données. Un tel inconvénient serait rédhibitoire : au lieu d’utiliser
des quantifieurs 16 bits pour améliorer la précision, on pourrait simplement utiliser
des codes deux fois plus grands avec des quantifieurs 8 bits. Au lieu d’apprendre
indépendamment les quantifieurs 8 bits et les quantifieurs 16 bits, on dérive le dic-
tionnaire des quantifieurs 8 bits à partir du dictionnaire des quantifieurs 16 bits de
tel sorte qu’ils puissent partager un même code. Les quantifieurs 16 bits sont utilisés
pour encoder les vecteurs en code compacts et les quantifieurs 8 bits dérivés sont
utilisés uniquement pour la recherche de plus proche voisin.

On évalue les quantifieurs dérivés sur le jeu de données SIFT1M (Figure 3). On
observe que les quantifieurs 16 bits (4×16) offrent un meilleur recall que les quan-
tifieurs 8 bits, que ce soit avec la quantification produit (PQ) ou la quantification
produit optimisée (OPQ). Cependant les quantifieurs 16 bits engendrent un triple-
ment du temps de réponse en comparaison aux quantifieurs 8 bits. Notre solution, les
quantifieurs dérivés, permet de bénéficier du meilleur des deux mondes. En effet, les
quantifieurs dérivés (notés 4×8, 16) offrent le même recall que les quantifieurs 16 bits,
tout en offrant un temps de réponse très proche des quantifieurs 8 bits (Figure 3).

Conclusion et Perspectives

Dans ce résumé, nous avons présenté quatre contributions sur le problème de la
recherche de plus proche voisin dans les espaces de haute dimensionnalité, et à large
échelle. L’exploitation des bases de données multimédia repose largement sur la re-
cherche de plus proche voisin. Ainsi, ce problème revêt une importance particulière
dans le contexte actuel de collecte massive de données multimédia. Les contributions
de cette thèse s’appuient sur la quantification produit, une des solutions actuelles de
recherche de plus proche voisin les plus efficaces. La quantification produit compresse

x



Conclusion et Perspectives

les vecteurs de haute dimensionnalité en codes compacts, ce qui permet de stocker
des bases de données volumineuses en RAM. Pour trouver le plus proche voisin d’un
vecteur requête, la quantification produit calcule la distance entre ce vecteur requête
et les codes compacts stockés en RAM. Pour ce faire, la quantification produit s’ap-
puie sur une procédure de scan nommée Asymmetric Distance Computation (ADC),
ou calcul de distance asymmétrique. Cette procédure utilise des tables de corres-
pondances stockées en cache pour les calculs de distances. Elle consomme un grand
nombre de cycles CPU, et est le goulot d’étranglement des systèmes de recherche de
plus proche voisin utilisant la quantification produit.

Cette thèse s’intéresse à l’amélioration de la performance de la procédure ADC.
Notre première contribution consiste en une analyse des facteurs limitant la perfor-
mance de la procédure ADC. Nous montrons que la performance de la procédure
ADC est principalement limitée par le grand nombre d’accès cache qu’elle effectue.
De plus, la structure de la procédure ADC empêche une implémentation efficace uti-
lisant les instructions SIMD, couramment utilisées pour améliorer les performances.
Suite à cette analyse, nous proposons deux procédures de scan optimisées : PQ Fast
Scan et Quick ADC. Ces deux procédures s’appuient sur un remplacement des accès
caches par des permutations SIMD. PQ Fast Scan n’entraine aucune perte de préci-
sion, mais n’est pas compatible avec les index inversés, un méthode d’accélération de
la quantification produit largement répandue. Quick ADC entraine une faible perte
de précision, mais est compatible avec les index inversés. Enfin, notre dernière contri-
bution, nommée quantifieurs dérivés améliore la performance de la procédure ADC
dans le cas ou une très haute précision est nécessaire.

Ces contributions ouvrent des perspectives de recherche, à la fois à court terme,
et à plus long terme. À court terme, on trouve l’adaptation de PQ Fast Scan et
Quick ADC au jeu d’instructions SIMD AVX-512 qui sera introduit dans la prochaine
génération de processeurs Intel Xeon (Skylake Purley, sortie prévue en 2017). Le
jeu d’instructions AVX-512 offrira des instructions pour effectuer des permutations
SIMD sur des tables de 512 bits (contre 128 bits actuellement). Ceci permettra à PQ
Fast Scan d’offrir une meilleure compatibilité avec les index inversés, et à Quick ADC
d’offrir une meilleure précision. En outre, AVX-512 permettra de traiter plus données
par instruction, offrant ainsi des gains de performance. Parmi les perspectives à plus
long terme, les techniques utilisées dans PQ Fast Scan pour réduire les tables de
correspondance afin qu’elles tiennent dans des registres SIMD peuvent être adaptés
pour accélérer d’autre algorithmes utilisant des tables de correspondances, ou certains
algorithmes de base de données (requêtes topk etc.).

xi





1 Introduction

Contents

1.1 The Big Data Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Applications of Nearest Neighbor Search . . . . . . . . . . . . . . . . . 3
1.3 Classification of Nearest Neighbor Search Problems . . . . . . . . . . . 5
1.4 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Product Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 The Big Data Trend

It is indisputable that humanity is producing an increasingly important amount of
digital data, which is collected, stored and processed by computer systems in large
data centers. A combination of factors arguably explain this surge in the amount of
data we produce. First, the wide availability and popularity of capture devices such
as digital cameras and smartphones have enabled mass acquisition of digital data.
Second, the development of fast internet access and online social networks has allowed
corporations to collect the data produced by massive amounts of users. Thus, over
1.6 billion users communicate via the Facebook social network every month [18], over
80 million photos are uploaded every day to the Instagram social network [31] and
over 400 hours of videos are uploaded every minute to the Youtube [59] streaming
service. This trend of pervasive data production and collection, often referred to as
big data, impacts many aspects of society: economy, marketing, politics etc. The
term ”big data” is no longer a jargon word: between June 2015 and June 2016, the
newspaper The New York Times published 83 articles including this term. Science is
no exception to this trend with the advent of data-intensive science [28]. For instance,
the LHC particle accelerator generates about 30 petabytes of data each year [14].

These large datasets collected by corporations are highly valuable assets, that gen-
erate a lot of revenue. Amazon uses the purchase history of its millions of users
to automatically generate product recommendations, which allowed it to increase
its sales by 29% [19]. In the same vein, Youtube massive video database attracts
millions of users, which in turn generates advertising revenue. Generating value re-
quires such data to be processed, analyzed or searched. Thus, Amazon uses machine
learning algorithms on the purchase history of its users to learn a product recommen-
dation model. Similarly, Youtube indexes its videos by title and keywords so that

1



1. Introduction

Database of Pictures

(0.568, 0.967, 0.188, . . . , 0.988)
(0.081, 0.691, 0.695, . . . , 0.778)
(0.465, 0.381, 0.640, . . . , 0.991)

(0.423, 0.374, 0.431, . . . , 0.053)
(0.026, 0.845, 0.800, . . . , 0.760)
(0.868, 0.211, 0.013, . . . , 0.475)

(0.137, 0.576, 0.369, . . . , 0.886)
(0.489, 0.741, 0.504, . . . , 0.599)
(0.656, 0.335, 0.512, . . . , 0.942)

Database of Descriptors

(0.362, 0.259, 0.249, . . . , 0.187)
(0.223, 0.279, 0.460, . . . , 0.324)
(0.604, 0.194, 0.548, . . . , 0.558)

Nearest Neighbor
Search

Query Picture Query Vector(s)

Photo Credits: (Top to bottom)
– ”Farnborough Air Show - A380” by davidgsteadman, public domain
– ”Arc de Triomphe de l’Étoile” by Joe deSousa, public domain
– ”Eiffel Tower” by Joe deSousa, public domain
– ”The Eiffel Tower, Paris” by Joe deSousa, public domain
Photos downloaded from Flickr

Figure 1.1: Overview of Content Based Image Retrieval (CBIR) systems

its database can be searched. Processing and extracting information from these large
datasets is a challenging task, not only because of the high volume of data and the
high velocity of acquisition, but also because of the variety of data types. Modern
distributed processing frameworks such Hadoop MapReduce [3, 17] or Spark [4, 60]
allow handling large volumes of data, potentially generated at a high velocity by
taking advantage of computer clusters. This thesis focuses on the variety aspect of
big data. Current datasets contain not only text data (web pages, messages, chats
etc.), but also other types of data (images, videos, music, purchase histories etc.), for
which conventional text processing approaches do not apply.

2



1.2. Applications of Nearest Neighbor Search

1.2 Applications of Nearest Neighbor Search

This thesis deals with high-dimensional data, a specific type of data that is found
in many applications. In a scalar dataset, each record is a single integer or floating-
point number. For instance, datasets of temperature records, power records, or any
scalar physical quantity are scalar datasets. Datasets can also be composed of 2-
dimensional or 3-dimensional points. For instance, in a dataset of post office positions
or train station positions, each record would be a 2-dimensional point. More generally,
a dataset can be seen as a collection of d-dimensional points, or vectors. Thus,
a scalar dataset can be seen as a dataset of 1-dimensional vectors. By contrast,
a high-dimensional dataset comprise high-dimensional vectors, i.e., d-dimensional
vectors with a high dimensionality d. We consider that vectors with more than 100
dimensions, i.e., d > 100, are high-dimensional.

High-dimensional datasets span many different domains: genetics, recommender
systems, multimedia data processing etc. In genetics, DNA microarrays are used to
measure the expression of genes in different individuals. A DNA microarray is able
to measure the expression of thousands of genes, resulting in a vector with thousands
of dimensions. Gene expression measurements are used to study the impact of drugs
and diseases on multiple individuals, producing a dataset of multiple high-dimensional
vectors. A recommender system recommends items e.g., books, movies or products,
based on how a given user rated other items. In a recommender system, the profile
of a user consists of the ratings she gave to the items she bought. This profile is
represented by a high-dimensional vector, where each dimension corresponds to an
item in the recommender system. Typical recommender systems obviously include
the profile of multiple users, thus resulting in a large dataset of high-dimensional
vectors. Multimedia objects (such as pictures or movies), can be represented by high-
dimensional feature vectors, that capture their contents. Therefore, a multimedia
dataset, including multiple pictures or movies, can be represented as a datasets of
high-dimensional vectors.

In this thesis, we focus on nearest neighbor search in high-dimensional datasets.
Simply put, this problem consists in finding the closest vector to a query vector
among a database of high-dimensional vectors. Despite its apparent simplicity, near-
est neighbor search has many applications in machine learning and multimedia data
processing. In machine learning, nearest neighbor search can be used as a standalone
algorithm, but it is also at the basis of many algorithms. Examples of such algorithms
include collaborative filtering algorithms, used in recommender systems. A classifier
is a machine learning system which determines the category a new observation be-
longs to based on a training set of prior observations, the categories of which are
known. A nearest neighbor classifier determines the category of a new observation
by finding its nearest neighbor in the training set, and returning the category of the
found nearest neighbor.

Above all, nearest neighbor search is of particular importance for multimedia in-
formation retrieval problems. Content Based Image Retrieval (CBIR), consists in
finding the images in a database that are the most similar to a query image provided
by the user. As the user essentially provides an example image of what he wants
to retrieve, content-based image retrieval is also known as query by example. CBIR

3



1. Introduction

systems rely heavily on nearest neighbor search in high-dimensional spaces, and are
the guiding theme of this thesis. In particular, the nearest neighbor search systems
presented in this thesis were evaluated in the context of CBIR systems, but may
be used for other purposes. In the remainder of this section, we give an overview
of how CBIR systems work. CBIR systems rely on the extraction of feature vec-
tors, or descriptors, that capture the visual contents of pictures. Finding two similar
pictures then comes down finding two pictures that have a similar set of descriptors.
CBIR systems typically operate in two distinct phases: an offline phase and an online
phase. During the offline phase, descriptors are extracted from every image in the
dataset, therefore creating a database of high-dimensional descriptors. During the
online phase, an user submits a query image to the system. High-dimensional query
descriptors are extracted from the query image. The nearest neighbors of the query
descriptors are searched in the database of high-dimensional descriptors created dur-
ing the offline phase, which in turn allows to identify the most similar images to the
query image (Figure 1.1). Because nearest neighbor search is used during the online
phase, it is essential to use fast nearest neighbor search solutions in order to answer
queries in a timely manner.

As the nearest neighbor search systems presented in this thesis have been tested on
databases of high-dimensional descriptors extracted from pictures, we present these
descriptors into more detail. The dimensionality of currently used descriptors ranges
from a hundred dimensions to a few thousand dimensions. We distinguish between
global descriptors and local descriptors, depending on the number of descriptors
extracted per picture. Global descriptors describe a complete image, therefore an
image can be described by a single global descriptor. On the contrary, local de-
scriptors describe a small region of the picture, named patch. Therefore, an image
can be described by a set of local descriptors. The number of local descriptors re-
quired to describe an image usually ranges from a hundred to a thousand. One of
the most popular global descriptor is the GIST descriptor [47] the dimensionality of
which ranges 384 and 960 dimensions. The most popular local descriptor is arguably
the Scale Invariant Feature Transform (SIFT) descriptor [43], with 128 dimensions.
An alternative to the SIFT descriptor with similar properties is the SURF descrip-
tor [11], implemented in the open-source library OpenCV. Descriptors like SIFT and
SURF descriptors were designed manually to have a strong descriptive power while
being resistant to image variations. It has recently been proposed to use deep neural
networks to learn robust descriptors with strong descriptive power without human
intervention. These deep feature vectors tend to very high-dimensional (usually 4096
dimensions), but have been found to have a higher descriptive power than other
descriptors, which is why they are gaining in popularity.

For CBIR, local descriptors generally offer a better accuracy than their global
counterparts. In addition, local descriptors enable object detection, i.e., identifying
objets inside pictures, which is not possible with global descriptors. For these reasons,
local descriptors are often preferred to global descriptors. The drawback of local
descriptors is that they lead to the creation of very large high-dimensional databases,
as a single image is described by hundreds of local descriptors instead of a single
global descriptor. This in turn increases the pressure on the nearest neighbor search
system, which has to deal with a database hundreds of times larger.

4



1.3. Classification of Nearest Neighbor Search Problems

1.3 Classification of Nearest Neighbor Search Problems

Most practical applications of nearest neighbor search require a set of near neigh-
bors of the query vectors instead of the nearest neighbor. For instance a CBIR system
returns multiple images similar to the query image, and not a single one. Similarly,
recommender systems recommend items to an user based on the preferences of a
set its nearest neighbors. We generally distinguish between two different nearest
neighbor search problems: k-nearest neighbor search (k-NN) and ϵ-nearest neighbor
search (ϵ-NN). Given a dataset X of n d-dimensional vectors, X = {x0, . . . ,xn−1}
and d-dimensional query vector q, these two problem are defined as follows:

k-NN The k-NN set of q is the set of k vectors of X that are the closest to q.

ϵ-NN The ϵ-NN set of q is the set of vectors of X whose distance to q is less than ϵ.
As ϵ-NN search returns all neighbors in the hypersphere centered on q of radius
ϵ, it is also known as radius search.

For many applications, it is generally more intuitive to pick a number k of nearest
neighbors than a threshold ϵ, which is harder to determine. For instance, it is easier
to determine that a CBIR system should return k = 100 similar images, rather than
to determine a similarity threshold ϵ. Therefore, k-NN is often preferred to ϵ-NN. In
this thesis, we focus on the k-NN problem. An important observation is that these
two problems are related, the ϵ-NN set of q is the same as the k-NN set of q if the
radius ϵ is the distance between q and its kth nearest neighbor. Therefore, methods
designed to solve the ϵ-NN problem can be adapted to solve the k-NN problem.

The notion of nearest neighbor implies a similary measure or distance metric.
Depending on applications, different distance metric are used: l1 norm, l2 norm or
even cosine similarity. In this thesis, we focus on the l2 norm, as it is one of the most
widely used distance metric. More specifically, it is used in CBIR systems as well as
many machine learning algorithms.

1.4 The Curse of Dimensionality

The naive approach to solve the k-NN problem is to compute the distance between
the query vector q and each vector of the dataset X . This solution, known as linear
scan or bruteforce scan, is obviously not tractable for large datasets. A dataset of n =
109 of SIFT descriptors (d = 128 dimensions) stored as a contiguous array of floats
(4 bytes/float) uses S = n · d · 4 bytes = 512 GB of memory. If this dataset is stored
on an SSD with a read throughput of 512 MB/s, scanning the whole dataset would
require 1000 seconds, or 17 minutes. Thus, answering a single k-NN query would
require 17 minutes, assuming that there are no other bottlenecks. This is of course
not practical for an interactive CBIR system. Offline machine learning algorithms,
such as recommender systems, often require to compute thousands to millions k-NN
sets so linear scan is also not tractable for many non-interactive applications.

In computer science, divide-and-conquer is a common approach that often al-
lows solving problems with a better efficiency than bruteforce algorithms. In a 1-
dimensional space i.e., when the dataset X contains scalar values, nearest neighbor
search admits a simple divide-and-conquer solution, binary search. The dataset X

5



1. Introduction

should first be stored in an array and sorted in ascending order. The binary search
algorithm then compares the scalar q to the middle element of X . If the q is less than
the middle element, then its nearest neighbor is in the first half of X . Conversely, if q
is greater than the middle, its nearest neighbor is in the second half. This procedure
is recursively repeated until the nearest neighbor of q is found. Binary search has a
logarithmic time complexity, while a bruteforce scan has a linear complexity.

For spaces with 2 or more dimensions, the dataset X obviously cannot be sorted,
but divider-and-conquer approaches based on space partitioning can still be designed.
A popular structure for nearest neighbor search in d-dimensional spaces is the KD-
tree [13, 20]. Each non-terminal node of KD-tree consists of one high-dimensional
vector and an hyperplane orthogonal to one dimension of the hyper-space. Each
terminal node only consists of one high-dimensional vector. The hyperplane of the
root of the KD-tree is positioned at the median of the dimension where the data
exhibits the greatest variance, thus halving the dataset. To build the other nodes, the
dataset is recursively split in the same way until partitions contain only a single point.
These single points from the terminal nodes of the tree. Thus, each node of a KD-tree
defines a cell in the high-dimensional space. To answer a nearest neighbor query, a
tree descent is performed by determining on which side of the hyperplanes the query
vector q lies. This yields a first nearest neighbor candidate. This candidate is not
necessarily the true nearest neighbor of q. Cells intersecting with the ball whose radius
is the distance between q and the first candidate can contain a closer neighbor than
this first candidate. These cells are therefore searched for better candidates. Nearest
neighbor search stops when there are no cells intersecting with the hypersphere whose
radius is the distance of q to the best candidate found so far.

Unfortunately, it has been shown that the number of cells that must be explored
to be sure to find the true nearest neighbor of q grows exponentially with the di-
mensionality d [20]. Thus, nearest neighbor search with a KD-tree degrades to linear
scan as the dimensionality increases. Worse, in [57], the authors show that it is not
possible to design a space partitioning method that does not degrade to linear scan as
the dimensionality increases. This phenomenon is known as the curse of dimension-
ality. As exact nearest neighbor search is inherently hard, the research community
has focused on approximate nearest neighbor search. Approximate Nearest Neighbor
(ANN) search aims at returning close enough neighbors instead of the exact clos-
est ones. The key idea is to trade exactness for efficiency. Moreover, approximate
nearest neighbors are sufficient in many applications, including CBIR systems. An
obvious tradeoff in the case of KD-trees is to stop exploring cells after a fixed number
have been explored. This reduces search time, but does not guarantee that the exact
nearest neighbor will be found. More sophisticated approaches have been designed;
we review the most prominent ones in the state of the art section.

1.5 Product Quantization

Product Quantization is a widespread ANN search solution that compresses high-
dimensional vectors into short codes. In most cases, high-dimensional vectors can be
represented by codes of 8 bytes to 16 bytes (64 bits to 128 bits). This allows very large
datasets to be stored in RAM, therefore enabling nearest neighbor queries without
accessing the SSD of HDD. RAM typically has a throughput in excess of 40GB/s

6



1.6. Thesis Outline

and a latency of around 100ns, while the highest-performing SSDs have a throughput
of 2-3GB/s and a latency of 100µs. Because it entirely relies on RAM, product
quantization allows answering nearest neighbor queries faster than approaches that
rely on SSDs. To compress a high-dimensional vector into a short code, product
quantization splits it into m sub-vectors and encodes each sub-vector using a distinct
sub-quantizer. Each sub-quantizer has a codebook of 2b entries, and produces a sub-
code of b bits. For fixed memory budget of m × b bits per short code, a large b
(and therefore a small m) offers a better accuracy, but makes nearest neighbor search
slower.

In practice, product quantization in used in combination with a form of inverted
index. Different types of inverted indexes have been proposed, but they all split
the database into multiple inverted lists so that only a fraction of the database has
to be scanned at query time. However, because of the curse of dimensionality, it is
difficult to build efficient indexes. Thus, it is still necessary to scan a large part of the
database to answer queries (typically 1-20%). Generally, database preparation takes
two steps. First, the database is split into several parts using the index. Second, the
high-dimensional vectors composing each part are compressed into short codes using
product quantization, as described in the previous paragraph. Both the index and
the short codes are stored in RAM, to enable fast answers to ANN queries.

One of the unique features of product quantization is that it is able to compute the
distance between an uncompressed high-dimensional query vector y and compressed
database vectors. Therefore, it is not necessary to decompress the database to answer
ANN queries. To answer an ANN query, the relevant partition is first selected using
the index, and then scanned for nearest neighbors. Scanning the partition consists
in computing the distance between the query vector y and all short codes of the
partition. To do so, a set of m lookup tables, derived from the quantizer codebooks,
are computed. Then, the distance between the query vector y and any short code can
be computed using a technique named Asymmetric Distance Computation (ADC).
ADC consists in (1) performing m lookups in the previously computed tables (2)
adding the looked up values, thus performing m − 1 additions. To date much work
has been dedicated to improving the indexes used with product quantization. On
the contrary, this thesis focuses on improving the performance of ADC, by making it
more hardware friendly.

1.6 Thesis Outline

In the next chapter of this thesis, we review the state of the art of ANN search in
high-dimensional spaces. Each contribution (Performance Analysis, PQ Fast Scan,
Quick ADC, Derived Quantizers) is then detailed in a dedicated chapter. The last
chapter draws conclusions from the contributions presented in this thesis, and elab-
orates on some perspectives that they open.

State of the Art We present three families of nearest neighbor search approaches:
(1) Space and data partitioning trees, (2) Locality Sensitive Hashing (LSH) and (3)
Product Quantization. We show that partitioning trees and LSH use large amounts of
memory when dealing with large databases. This makes it necessary to use the SSDs
or HDDs, causing high response times. We then present product quantization and

7



1. Introduction

show that it can store large databases entirely in RAM, which allows low response
times. All our contributions build on product quantization, therefore the last section
of the State of the Art chapter is also the background of our work.

Performance Analysis Using hardware performance counters, a mechanism in-
cluded in CPUs that allows monitoring the operations they perform, we analyze the
performance of ADC. We show that the table lookups performed by ADC account
for the majority of CPU time, even if these lookup tables are cache resident. We
show that number b of bits per sub-quantizer strongly impacts response time, be-
cause its impacts the cache level in which lookup tables are stored. In almost all
publications on product quantization, 8-bit sub-quantizers (b = 8) are used because
it has been experimentally observed that they offer a good tradeoff between speed
and accuracy. Our analysis explains why, but also suggests means of improving this
tradeoff. Lastly we introduce SIMD instructions (Single Instruction Multiple Data)
and show that they are a candidate for accelerating the additions performed by ADC.
We however demonstrate that ADC cannot be easily implemented in SIMD, which
prevents obtaining a large speedup. All systems presented in this thesis (PQ Fast
Scan, Quick ADC, Derived Quantizers) stem from the conclusions of our performance
analysis.

PQ Fast Scan PQ Fast Scan achieves a 4-6 times speedup over the conventional
ADC algorithm. This is achieved by replacing cache accesses to lookup tables by
SIMD in-register shuffles. SIMD in-register shuffles are much faster that cache ac-
cesses, but they require lookup tables to be stored in SIMD registers, which are much
smaller than cache. PQ Fast Scan shrink lookup tables by (1) reorganizing short
codes, (2) computing tables of minimums and (3) quantizing floating-point distances
to 8-bit integers. PQ Fast Scan uses 8-bit sub-quantizers, as it is common practice
in the literature, and provides the exact same results as the conventional ADC algo-
rithm. The drawback of PQ Fast Scan is that because it re-organizes short codes, it
requires the database to be split in relatively coarse parts. Therefore, it is not com-
patible with the most efficient types of inverted indexes usually used with product
quantization.

Quick ADC. Like PQ Fast Scan achieves a 4-6 times speedup over the conventional
ADC algorithm using SIMD in-register shuffles. However, Quick ADC uses a different
approach to shrink lookup tables. Quick ADC shrinks lookup tables by (1) using 4-
bit sub-quantizers instead of the common 8-bit sub-quantizers and (2) quantizing
floating point distances to 8-bit integers. Using 4-bit sub-quantizers instead of 8-
bit sub-quantizers decreases accuracy but contrary to PQ Fast Scan, Quick ADC
imposes no constraints on inverted lists, and may be combined with any type of
inverted index. Moreover, we show that by using optimized product quantization,
a derivative of product quantization, the loss of accuracy caused by the use of 4-bit
sub-quantizers can be made negligible in most cases.

Derived Quantizers. While PQ Fast Scan and Quick ADC aim at slashing re-
sponse time without impacting accuracy, derived quantizers aim at increasing accu-
racy without increasing response time. To increase accuracy, it is possible to use
16-bit sub-quantizer instead of the 8-bit sub-quantizer used in most publications.
However, this strategy causes a threefold increase in response time, because lookup

8



1.6. Thesis Outline

tables have to be stored in slower cache levels. Derived quantizers allow combining
the accuracy of 16-bit sub-quantizers with the speed of 8-bit sub-quantizers. This
is achieved by deriving 8-bit sub-quantizers from 16-bit sub-quantizers, so that they
generate the same short codes. At query time, 8-bit (fast) sub-quantizers are used
to build a small candidate set, which is then reranked using the 16-bit (precise)
sub-quantizers.

Conclusion and Perspectives We conclude by reviewing the key features of our
contributions, and we discuss the research opportunities that stem from them. More
specifically, we discuss how our contributions can be adapted to recent derivatives of
product quantization that offer a higher accuracy. We also show that our contribu-
tions can be implemented on other CPUs than Intel CPUs (and in particular ARM
CPUs). Lastly, we discuss the applicability of the techniques we developed in the
context of product quantization to other algorithms that rely on lookup tables.

9





2 State of the Art

Contents

2.1 Space and Data Partitioning Trees . . . . . . . . . . . . . . . . . . . . 12
2.1.1 KD-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Bag of Features and Vocabulary Trees . . . . . . . . . . . . . . 13
2.1.3 FLANN Library . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Locality Sensitive Hashing (LSH) . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Euclidean Distance LSH (E2LSH) . . . . . . . . . . . . . . . . 16
2.2.2 Virtual Rehashing Schemes . . . . . . . . . . . . . . . . . . . . 18

2.3 Product Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Vector Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Inverted Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 ANN Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Product Quantization Derivatives . . . . . . . . . . . . . . . . . 27

In this chapter, we present three families of ANN search approaches: (1) Space
and data partitioning trees, (2) Locality Sensitive Hashing (LSH) and (3) Product
Quantization (PQ). We first present Space and data partitioning trees and LSH. We
show that these two families of approaches use large amounts of memory, mandating
the use of SSDs or HDDs to store large databases. We then present product quan-
tization, an approach that compresses high-dimensional into short codes, making it
possible to store large databases in RAM. Because RAM is much faster than SSDs or
HDDs, product quantization offers low response times, especially for large databases.
We explain how product quantization can be combined with inverted indexes to fur-
ther decrease response times. Some of the inverted indexes used in combination with
product quantization were inspired by the space and data partitioning trees presented
in the beginning of this chapter.

All the contributions of this thesis are based on product quantization, thus the last
section of this chapter (Section 2.3) also describes the background of our work.

11



2. State of the Art

2.1 Space and Data Partitioning Trees

The first data structures proposed for efficient nearest neighbor search are space
and data partitioning trees. Space-partitioning trees (KD-trees) divide the high-
dimensional space along predetermined lines. On the other hand, data partitioning
trees (Vocabulary trees, k-means trees) divide the high-dimensional space according
to data clusters.

2.1.1 KD-trees
Tree structure KD-trees [13, 20] can be seen as a generalization of binary search
trees. At each non-terminal node of a KD-tree, the dataset is divided into two
halves, by a hyperplane orthogonal to a chosen dimension at a threshold value. In
the literature, the chosen dimension is sometimes known as the discriminator and the
threshold is known as the partition value. Generally, the dimension where the data
exhibits the greatest variance, or the greatest spread, is chosen as the discriminator.
The median of the values in the chosen dimension is chosen as the partition value.
Each non-terminal node of a KD-tree contains two pointers to two sons, or successors
nodes. These two successor nodes start two sub-tree. The left sub-tree contains the
high-dimensional vectors for which the value in the dimension chosen as discriminator
is less than the partition value. Correspondingly, the right sub-tree contains the high-
dimensional vectors for which the value in the dimension chosen as discriminator is
greater or equal to the partition value. Each terminal node generally contains a single
high-dimensional vector of the dataset, although in some implementations, terminal
nodes may contain more than one vector. Each node in a KD-tree defines a cell in
Rd. Moreover, The cells defined by terminal nodes are mutually exclusive, and thus
form a partition of Rd.

Build process KD-trees are built in a top-down fashion, following a simple recur-
sive process. At the root, the whole dataset is split by a hyperplane at the median of
the dimension where the data has the greatest variance. The resulting two halves of
the data are then recursively split until the tree is fully built. The resulting height
of the tree is O(log2(n)), where n is the number of points in the dataset. Figure 2.2
shows a KD-tree with 3 levels. The hyperplane of the root is shown by a solid
line, the hyperplanes of the second level nodes are shown by dashed lines, while the
hyperplanes of the third level nodes are shown by dotted lines.

Nearest Neighbor Search To answer a nearest neighbor query, a tree descent
is first performed. This tree descent consists in determining to which side of the
hyperplane the query vector falls at each node of the tree. The descent involves
log2(n) comparisons and yields a terminal node, and thus a cell in Rd. The vectors
located in this cell are examined to find a first nearest neighbor candidate. However
this first candidate may not be the nearest neighbor of the query vector. For instance,
if the query vector is close to a boundary of the cell the tree descent landed in, the
first candidate will be a vector in this cell. There may however be a closest neighbor
in a adjacent cell, close to the boundary. In the remainder of this section, we denote
Bquery, the ball centered at the query vector with a radius equal to the distance
between the query vector and the current nearest neighbor. To find the exact nearest
neighbor, it is therefore necessary to explore all cells the boundaries of which overlap
the ball Bquery (Figure 2.2). In [57], the authors show that the number of cells

12



2.1. Space and Data Partitioning Trees

that need to be explored grows rapidly with the dimensionality, to the point where
almost the whole dataset needs to be explored when the dimensionality exceeds 15.
This phenomenon is a consequence of the curse of dimensionality. This issue can be
overcome by stopping search when a fixed number nmax of cells have been explored.
However, the guarantee of finding the exact nearest neighbors is lost, and this is
therefore an approximate solution.

Priority Search In the original search algorithm, the cells to explore are deter-
mined by backtracking in the tree, and checking if hyperplanes overlap with the ball
centered at the query vector. The order in which cells are explored thus depends on
the structure of the tree, and not on the position of the cells relative to the query
vector. However, cells that are close to the query vectors are more likely to contain
good neighbors than cells that are far away. Therefore, an intuitive idea to find bet-
ter approximate neighbors is to explore cells based on their proximity with the query
vector. This can be achieved by maintaining a priority queue during the initial tree
descent. At each node, the position in the tree, and the distance of the query vector
to the unexplored cell (i.e., the cell at the other side of the hyperplane) are stored
in the priority queue. When backtracking, the top entry of the priority queue is re-
moved, and the search continues by exploring the corresponding cell. This approach
is known as Best Bin First (BBF) [12] or priority search.

KD-forests Exploring more cells to improve the quality of approximate neighbors
leads to diminishing returns [51]: the more cells have been explored, the less the
benefit of exploring an additional cell is. This is because searches in different cells are
not independent: the more explored cells, the further away the cells are from the query
point. In [51], the authors propose building l KD-trees with a different structure, such
that they allow independent searches. In total, nmax cells are explored, so nmax/l
cells are searched in each tree. Three techniques are proposed to build forests of
independent trees: NKD-trees, RKD-trees, and PKD-trees. To build an NKD-tree,
vectors are randomly rotated before building the tree. To build an RKD-tree, instead
of using the one dimension with the greatest variance to position the hyperplane, a
random dimension among the few with the greatest variance is chosen. Lastly, PKD-
trees rely on Principal Component Analysis and random rotations. The authors show
that NKD-trees and RKD-trees perform equally. PKD-trees perform slightly better
but are much more costly to build.

2.1.2 Bag of Features and Vocabulary Trees
Bag of features The Bag of Features (BoF) approach [52] was not original pre-
sented as generic nearest neighbor search system, but as a Content Based Image
Retrieval (CBIR) system. However, it was one of the first image retrieval system
that scaled well, and can be adapted into a generic nearest neighbor search system,
which is why we present it. We first present the original approach, and then show how
to generalize it into a generic nearest neighbor search system. In a CBIR systems, an
image is described by a set of high-dimensional feature vectors, or descriptors, where
each descriptor captures the contents of a patch of the image (Section 1.2). The key
idea of the BoF approach is to partition the vector space into K mutually exclusive
Voronoi cells using the k-means algorithm. A subset of the descriptors extracted from
the database of images is used to learn the partition. This partition is used to build

13



2. State of the Art

0

1

2

3
...
7

v5 v9 v13

v4 v7

v0 v3 v12 v14

v1

v8 v11

Inverted index
(partition IDs) Inverted lists (vector IDs)

0

1 2
3

45

6

7

v14

Figure 2.1: ANN search system based on an inverted index

and inverted index. The inverted index takes the form of an array of K elements,
where each element corresponds to one Voronoi cell of the partition. Each element
contains a pointer to a list of image IDs. When an image is added to the database,
its descriptors are extracted. Then the cell in which each descriptor falls is deter-
mined, and the image ID is added to the corresponding lists of the inverted index.
For instance, if an image has descriptors that fall in cells 5, 768 and 1023, the ID of
this image is added to the lists 5, 768 and 1023 of the inverted index. To retrieve
the most similar image to a query image, the descriptors of the query image are first
extracted. The cells in which they fall are determined, and the corresponding lists of
image IDs are retrieved from the inverted index. A voting scheme is then applied to
determine the most similar image. The simplest voting scheme consists in finding the
image with the most frequent image ID among the retrieved lists, but more elaborate
schemes have been proposed [52]. As this system was inspired by text search engines,
where documents are indexed based on the words they contain, the Voronoi cells are
sometimes named visual words.

The idea of using an inverted index, based on a Voronoi partition of the vector
space, can be adapted to build a generic nearest neighbor search system. Instead of
storing images IDs in the lists of the inverted index, high-dimensional vectors can
be stored. Adding a vector to the database then consists in determining in each cell
it falls, and adding it to the corresponding inverted list (Figure 2.1). To answer a
nearest neighbor query, the cell in which the query vector falls is first determined.
The corresponding list is retrieved, and the distance of the query vector to all vectors
in the retrieved list is computed to determine the nearest neighbor. To improve the
accuracy, the ma inverted lists corresponding to the ma closest cells to the query
vector can be scanned.

Vocabulary trees The main issue with the bag of features approach, especially
when used as an image retrieval system, is that the size of the visual vocabulary, i.e.,
the number K of Voronoi cells, is limited. Dividing the space into more than K = 216

using k-means is not tractable. However, using a large vocabulary is desirable, as
it better discriminates between similar images patches, and thus provides a better
accuracy. The vocabulary tree [45] allows using a larger visual vocabulary (i.e.,
millions of visual words), while maintaining an acceptable computational cost. In [45],

14



2.1. Space and Data Partitioning Trees

v1
v2

q

(a) KD-tree

v1
v2

q

(b) Vocabulary tree

Figure 2.2: ANN search in KD-trees and Vocabulary trees

vocabulary trees store image IDs, like in the bag of features approach described in [52].
The vocabulary tree is built by the means of a hierarchical k-means clustering. Like
in the bag of features approach, the vector space is first partitioned into k cells using
the k-means algorithm. This partitioning is used to build the root of the vocabulary
tree: the root node has k child nodes, each one corresponding to a cell. Each cell is
then divided into k cells using the k-means algorithm to build the second level of the
tree. This process is recursively applied to build the other levels of the tree, until the
tree reaches a depth l. The resulting vocabulary has a branching factor of k, and a
depth of l, therefore the number of terminal nodes and the total number of cells is kl.
Figure 2.2 shows a vocabulary tree with a branching factor k = 4 and a depth l = 2.
The root divides the space in k = 4 cells (solid lines). At the second level of the tree,
each cell is again divided into k = 4 cells (dotted lines). A similar idea (hierarchical
k-means tree) had been proposed in [21].

2.1.3 FLANN Library
FLANN [44] (Fast Library for Approximate Nearest Neighbors) is an open-source

ANN search library, included in the widely used computer vision framework OpenCV.
Both FLANN and OpenCV are distributed under the BSD license. Because it is open-
source, and because it is one of the only production ready ANN search libraries that
can be used by non-specialists, FLANN is highly popular and used in many computer
vision projects. FLANN mainly relies on (1) forests of randomized KD-trees (RKD-
trees, Section 2.1.1) and (2) the priority search k-means tree. The k-means trees used
in FLANN are similar to the vocabulary trees used in [45], except that they store
high-dimensional vectors, instead of image IDs. Therefore, high-dimensional vectors
of the database are added to the tree by perform a tree descent. The vectors are
then stored in the obtained terminal nodes. To search these trees, the authors of [44]
propose using the same priority search method as the one used to search KD-trees.
Thus, to answer a nearest neighbor search query, a first tree descent is performed ot
generate a first candidate. It is followed by a backtracking process where the cells
that overlap Bquery (ball centered at the query vector with a radius equal to the
distance between the query vector and the current nearest neighbor) are explored
(Figure 2.2). The key advantage of FLANN is that it chooses the best algorithm,
and determines the optimum parameters automatically. This selection is based on

15



2. State of the Art

v

a

w

bw

Figure 2.3: Geometrical interpretation of LSH functions

the type of high-dimensional vectors, and user-specified constraints: desired accuracy,
search time, maximum memory overhead, maximum tree build time. This feature
makes the FLANN library easy to use for non-specialists.

2.2 Locality Sensitive Hashing (LSH)

Locality Senstive Hashing (LSH) is another prominent nearest neighbor search
approach. The key difference between LSH and other approaches mentioned in this
thesis is that LSH offers theoretical guarantees on the quality of the returned nearest
neighbors. LSH tackles a variant of ANN search , the c-approximate nearest neighbor
search problem. Formally, a vector v is a c-approximate neighbor nearest neighbor
of a query vector q if the distance between v and q is at most c times the distance
between q and its exact nearest neighbor v∗, i.e., ∥v− q∥ ≤ c · ∥v∗− q∥. Accordingly,
the c-approximate k nearest neighbors problem consists in finding k vectors that are
respectively the c-approximation of the exact k nearest neighbors of q.

2.2.1 Euclidean Distance LSH (E2LSH)
LSH was originally proposed for the Hamming space (l1 norm) [25], and later

adapted to Euclidean spaces (l2 norm), with the E2LSH method [16]. As this thesis
focuses on nearest neighbor search methods for the l2 norm, we only describe the
E2LSH method, and not the original Hamming space LSH method.

E2LSH does not solve the c-approximate nearest neighbor problem directly but
rather focuses on the (R, c)-approximate nearest neighbor problem, a decision version
of the c-approximate nearest neighbor problem. In the remainder of this section, we
denote B(q, r), the ball centered at the query vector q with the radius r. With this
notation, the (R, c)-approximate nearest neighbor problem is defined as follows:

1. If there is at least one vector in B(q,R), a vector in B(q, cR) is returned.

2. If there is no vector in B(q, cR), nothing is returned

The (R, c)-approximate nearest neighbor problem is sometimes known as ”ball-cover”
search in the literature.

16



2.2. Locality Sensitive Hashing (LSH)

E2LSH uses (R, cR, p1, p2)-sensitive LSH functions to solve the (R, c)-approximate
nearest neighbor problem. A (R, cR, p1, p2)-sensitive LSH function h has the following
properties, for any v ∈ Rd:

1. If v ∈ B(q,R), then Pr[h(v) = h(q)] ≥ p1

2. If v /∈ B(q, cR), then Pr[h(v) = h(q)] ≤ p2

The LSH functions used in E2LSH have the following form:

h(v) =
⌊
a · v + bw

w

⌋
(2.1)

In these functions, a is a vector a ∈ Rd, where each dimension has been drawn from
a normal distribution (mean 0, variance 1). The parameter w is a scalar constant,
and b is a real number uniformly drawn from [0, 1). These LSH functions can be
interpreted geometrically: the vector v is first projected onto a line, the direction of
which is given by the vector a (Figure 2.3). The projection of v is then shifted by
the constant bw. The line is divided into intervals of size w, and the hash of v is the
number of the interval in which its shifted projection falls. It has been shown [16] that
the probability Pr[h(v) = h(q)] that two vectors q and v collide under h decreases
when r = ∥q − v∥ increases, but increases when w increases. Intuitively, we see that
two far away points may still fall in the same interval, for instance, if they are far
away in a direction orthogonal to a. To increase the discriminating power, E2LSH
therefore uses compound hash functions G, which consist in the concatenation of m
LSH functions h: G(v) = (h1(v), . . . , hm(v)). E2LSH uses L distinct compound hash
functions, G1, . . . , GL to build L hash tables, T1, . . . ,Tm. Each database vector v is
hashed using the L compound hash functions and stored in the corresponding bucket
of each of the L hash tables. To answer nearest neighbor queries, E2LSH hashes the
query vector q with the L compound hash functions G1(v), . . . , Gm(v) and retrieves
the vectors stored in the corresponding buckets of T1, . . . ,Tm. The number of vectors
retrieved is limited to 3L to avoid checking a too large number of candidates. For
each one of the 3L retrieved vectors, E2LSH checks if it is in B(q, cR). As soon as a
vectors in B(q, cR) is found, it is returned and search stops. If no vector in B(q, cR)
can be found, E2LSH returns nothing. The m and L parameters are chosen such
that the two following properties hold with a constant probability: (1) if there is a
database vector v in v ∈ B(q, cR), then Gj(v) = Gj(q) must be true for at least one
compound hash function, and (2) the total number of vectors v that collide with q
under one Gj and which are not in B(q, cR) is less than 3L.

The scheme described so far solves the (R, c)-approximate nearest neighbor prob-
lem. The c-approximate nearest neighbor problem can be solved by issuing several
(R, c) nearest neighbor queries with an increasing radius R = {1, c, c2, c3, . . . }. As the
m and w parameters used in compound hash functions G1(v), . . . , GL(v) depend on
the radius R, different compound hash functions must be used for different radius R.
Therefore, a set of L hash tables has to be built for each radius R = {1, c, c2, c3, . . . }.
This approach is known as rigorous-LSH, and offers theoretical guarantees on the
quality of nearest neighbors. However, the duplication of hash tables leads to a very
high memory use, and makes rigorous-LSH intractable for anything but very small
datasets (up to a few tens of thousands of vectors). Another approach was proposed,
adhoc-LSH, which consists in building hash tables for a single ”magic” radius rm. This

17



2. State of the Art

greatly reduces the memory cost, but theoretical guarantees are lost. Furthermore,
it has been shown that this approach offers poor empirical performance.

2.2.2 Virtual Rehashing Schemes
The main challenge in designing an efficient LSH scheme is to offer theoretical guar-

antees or good empirical performance while maintaining an acceptable memory use.
Modern LSH schemes rely on a form a virtual rehashing, although the details vary
widely. The key idea of virtual rehashing is to allows queries with different radii, with-
out physically building a set of hash tables for each radius R = {1, c, c2, c3, . . . }. We
present three LSH schemes that rely on virtual rehashing: LSB-forest [54], Collision-
counting LSH (C2LSH) [22], and Sorting-Keys LSH (SK-LSH) [41]. Both LSB-forest
and C2LSH offer theoretical guarantees while SK-LSH does not. However, SK-LSH
has been shown to offer better empirical performance than LSB-forest or C2LSH.

LSB-forest [54] Like E2LSH, LSB-forest hashes database vectors v using com-
pound hash functions Gj(v). The m-dimensional hash values Gj(v) are converted to
Z-order values zj(v). Z-order values are bit strings, obtained by grid partitioning the
m-dimensional hash value space. An LSB-tree is then created by building a conven-
tional B-tree over the Z-order values. Lastly, an LSB-forest is created by building
L LSB-trees using L distinct compound hash functions G1, . . . , GL (converted to Z-
order values z1(v), . . . , zL(v)). To answer a nearest neighbor search query, the L
LSB-trees are explored. To explore an LSB-tree, the Z-order value of the query vec-
tor q is computed zj(q). The entries in LSB-trees are explored by decreasing Length
of the Longest Common Prefix (LLCP) with zj(q). Exploring Z-order values zj(v)
in decreasing order of their LLCP with zj(q) simulates the process of issuing several
(R, c) nearest neighbor queries with an increasing radius.

Collision-counting LSH (C2LSH) [22] Unlike E2LSH or LSB-forest, C2LSH
does not use predetermined compound hash functions Gj. Instead, C2LSH builds
m hash tables T1, . . . , Tm using m (1, c, p1, p2)-sensitive LSH functions (R = 1)
h1, . . . , hm, and stores database vectors into these hash tables. To answer a near-
est neighbor search query, C2LSH hashes the query vector q with all hash functions
h1, . . . , hm, and retrieves the vectors in the corresponding buckets. The list of re-
trieved vectors is likely to contain duplicates, as it is likely that some databases
vector collide with q under multiple hash functions. C2LSH builds candidate set C
of database vectors that collide with q under l or more hash functions, i.e., that are
duplicated at least l times in the list of retrieved vectors. This collision counting
procedure can be seen as can be seen as the dynamic creation of compound hash
functions, tailored to the query vector. This allows C2LSH to answer (R, c) near-
est neighbor queries for R = 1. In [22], the authors show that if a function h(·) is
(1, c, p1, p2)-sensitive, then the function HR(·) = h(·)/R is (R, cR, p1, p2)-sensitive. If
R is an integer, the T1, . . . , Tm hash tables can therefore be used to answer (R, c)
nearest neighbor queries for R > 1 but retrieving R contiguous buckets.

Sorting-Keys LSH (SK-LSH) [41] Like E2LSH and LSB-forest, SK-LSH uses
compound hash functions Gj. In [41], the authors build a linear order on the m-
dimensional hash keys generated by compound hash functions. This linear order
allows building B-trees on compound hash keys. Database vectors are hashed using a

18



2.3. Product Quantization

Table 2.1: Memory use of different LSH approaches (SIFT1M)

Approach LSB C2LSH SK-LSH
Memory use 81 GB 1.1 GB 384 MB

small number L (usually L = 3) of compound hash functions G1, . . . , GL, and stored
in corresponding B-trees T1, . . . , TL. To answer nearest neighbor search queries,
the query vector is hashed using compound hash functions, and a tree descents are
performed. Entries are explored by increasing distance with the compound hash key
of the query vector, until a fixed number of entries has been explored.

While E2LSH is only suitable for very small datasets (up to a few tens of thousands
of vectors), the recent improvements presented in this section make LSH suitable for
small and medium datasets (up to a few million vectors). Table 2.1 summarizes the
memory consumption of the LSH schemes presented in this section for a medium
dataset of 1 million 128-dimensional SIFT vectors (SIFT1M). The size of the data
structures used by recent LSH approaches makes it possible to store the database in
RAM. However, the memory use of these approaches remains high. The size of the
SIFT1M dataset is 128MB. Therefore, even SK-LSH causes a threefold increase in
memory use. FLANN (Section 2.1.3) typically uses less than 250MB of RAM for this
dataset. For large datasets (e.g., 1 billion vectors), LSH requires storing the dataset
on an SSD or HDD, which causes high response times.

2.3 Product Quantization

So far, we presented two families of ANN search approaches : (1) Space and data
partitioning trees, and (2) LSH approaches. As these approaches do not compress the
database, large databases do not fit in RAM and must stored in SSDs or HDDs. Un-
like the previously presented approaches, product quantization allows large databases
to be stored in RAM, by compressing high-dimensional vectors into short codes. To
answer a query, short codes are scanned for nearest neighbors, without decompress-
ing the database. Thus, for the medium SIFT1M dataset (1 million 128-dimensional
SIFT vectors), product quantization only uses 8 to 20 MB of RAM. For a large
database of 1 billion SIFT vectors, product quantization uses only 8 GB to 20 GB
or RAM. Such as database would be impossible to store in RAM with partitioning
trees or LSH.

Moreover, product quantization can be combined with inverted indexes to decrease
response times. Inverted index makes it possible to answer nearest neighbor queries
by only scanning a part of the database, while product quantization makes it possible
to store the database in RAM. Some inverted indexes used with product quantization
were inspired by the space partitioning trees presented in Section 2.1. Because RAM
has much higher performance than SSDs, combining product quantization with in-
verted indexes allows for shorter response times than approaches that solely rely on
inverted indexes.

In this section, we first describe how product quantization encodes high-dimensional
vectors into short codes. We then present the different types of inverted indexes that

19



2. State of the Art

can be combined with product quantization. We show how a database of short codes
can be searched for nearest neighbors, without decompressing it. In particular, we
introduce the Asymmetric Distance Computation (ADC) procedure, which is the fo-
cus of this thesis. Lastly, we review some derivatives of product quantization, that
also compress high-dimensional vectors into short codes. These recently introduced
derivatives achieve a lower quantization error but sometimes involve a more costly
search process. We fully discuss their advantages and drawbacks.

2.3.1 Vector Encoding
Vector Quantizer To compress high dimensional vectors as short codes, product
quantization builds on vector quantizers [27]. A vector quantizer, or quantizer, is a
function q which maps a vector x ∈ Rd, to a vector ci ∈ Rd belonging to a predefined
set of vectors C = {c0, . . . , ck−1}. Vectors ci are called centroids, and the set of
centroids C, of cardinality k, is the codebook. For a given codebook C, a quantizer
which minimizes the quantization error must satisfy Lloyd’s condition [42]. The Lloyd
condition requires that the vector x is mapped to its closest centroid ci:

q(x) = arg min
ci∈C

||x− ci||.

At the implementation level, the set of centroids C = {c0, . . . , ck−1}, or codebook,
is stored as an array of vectors. Therefore, C[0] denotes the first centroid, C[1] the
second centroid etc. Storing the codebook C as an array amounts to ordering it, but
the ordering is arbitrary. Thus, any two centroids C[i], C[j], i ̸= j may be swapped
without affecting the properties of the quantizer. The index of each centroid i.e., its
position in the array, is used as a unique identifier for this centroid.

From a vector quantizer q, it is possible to define an encoder, a function which
encodes a vector x ∈ Rd as a short code i ∈ {0, . . . , k− 1}. For given quantizer q, the
corresponding encoder enc maps a vector x ∈ Rd to the index of its closest centroid,
as follows:

enc(x) = i, such that q(x) = C[i].
The short code i is an integer using b = ⌈log2(k)⌉ bits, which is typically much
less than the d · 32 bits used to store a vector x ∈ Rd as an array of floats. For
instance, using a quantizer with 28 centroids, a 16-dimensional vector can be encoded
into a 8 bits (1 byte) short code. Stored as an array of floats, a 16-dimensional
vector would use 16 · 32 = 512 bits (64 bytes) of memory. Vector quantizers are not
specific to high-dimensional nearest neighbor search and are used in many fields of
computer science, especially in telecommunications systems and data compression.
However, encoding high-dimensional vectors (> 100 dimensions) while maintaining
the quantization error low requires quantizers with a very large number of centroids
e.g., 264 or 2128 centroids. Training such quantizers is obviously intractable: storing
the codebook of a quantizer with 264 centroids would require more memory than the
aggregated HDD or SSD capacity of all computers on earth.

Product Quantizer Product quantizers [39] overcome this issue by dividing a
vector x ∈ Rd into m sub-vectors (x0, . . . ,xm−1), assuming that d is a multiple of m:

x = (x0, . . . ,xd/m−1︸ ︷︷ ︸
x0

, . . . ,xd−d/m, . . . ,xd−1︸ ︷︷ ︸
xm−1

).

20



2.3. Product Quantization

Each sub-vector xj ∈ Rd/m is quantized using a distinct sub-quantizer qj. Each sub-
quantizer qj has a distinct codebook Cj = {cj0, . . . , cjk−1} of cardinality k. Overall, a
product quantizer pq maps a vector x ∈ Rd as follows:

pq(x) =
(
q0(x0), . . . , qm−1(xm−1)

)
= (C0[i0], . . . , Cm−1[im−1]).

By definition, a product quantizer has an implicit codebook C which is the Cartesian
product of the sub-quantizers codebooks i.e., C = C0×· · ·×Cm−1. The codebook C of
the product quantizer has a cardinality of km, but it is never stored explicitly. Here
lies the key feature of product quantizers: they are able to mimic a quantizer with
km centroids, while only requiring to train and store m codebooks of k centroids.
For instance, a product quantizer with 8 sub-quantizers of 256 centroids each has an
implicit codebook of 2568 = 264 centroids, while only requiring to store 8 codebooks
of 256 centroids.

Like simple vector quantizers, product quantizers can be used to encode vectors
as short codes. For a given product quantizer pq, the corresponding encoder enc
maps a vector x ∈ Rd to the concatenation of indexes of the closest centroids of the
sub-vectors xj in each sub-quantizer codebook:

enc(x) = (i0, . . . , im−1), such that q(x) = (C0[i0], . . . , Cm−1[im−1])

The short code (i0, . . . , im−1) is the concatenation of m integers of b = ⌈log(k)⌉ bits
each, for a total size of m · b bits. A common practice is to use product quantizers
with 8 sub-quantizers of 256 centroids each to encode 128-dimensional SIFT vectors
into short codes. In this case, 128-dimensional vectors use 128 · 32 = 4096 bits (512
bytes) while their short code is composed of 8 integers of 8 bits each, or 64 bits (8
bytes) in total. Storing the database as short codes therefore achieves a 64 times
decrease in memory use.

Product Quantizer Parameters When a product quantizer is used for approxi-
mate nearest neighbor search, its parameters m, number of sub-quantizers, k, number
of centroids per sub-quantizer impact: (1) the memory use of the database, (2) the
accuracy of nearest neighbor search and (3) the speed of ANN search. We only con-
sider sub-quantizers whose number of centroids is a power of 2 i.e., k = 2b. We name
b-bit sub-quantizer a sub-quantizer with k = 2b centroids. We denote PQm×b a
product quantizers with m b-bit sub-quantizers (k = 2b centroids per sub-quantizer).
An m×b product quantizer has total number of 2m·b centroids, produces short codes
of m · b bits. The total number of centroids of a product quantizer is the parameter
that has the most impact on quantization error and search accuracy [39]. This cre-
ates a trade-off between accuracy and memory use: a high m · b product increases
both accuracy and memory use. In practice, product quantizers such that m · b = 64
or m · b = 128 are selected, depending on vector type. For a fixed m · b product
(e.g., m · b = 64), the relative values of m and b create a trade-off between accuracy
and speed. For a fixed m · b product, it has been observed that the higher the b,
the higher the accuracy but also the slower the search speed [39]. If search speed
generally decreases when b increases, this decrease is not continuous; we fully discuss
and explain the impact of b on search speed in Chapter 3.

21



2. State of the Art

2.3.2 Inverted Indexes
Exhaustive search Product quantization encodes high-dimensional vectors into
short codes, and is able to compute the distance between a high-dimensional query
vector and any short code. The simplest search strategy is to encode all database
vectors into short codes, and store the short codes in a contiguous array in RAM.
Answering a nearest neighbor query then comes down to computing the distance
between the query vector and all short codes in the array, i.e., scanning the whole
database. This strategy, known as exhaustive search [39] is suitable for databases
up to a few million vectors. Even if product quantization offers an efficient way to
compute distances between a high-dimensional query vector and short codes, scanning
the whole database becomes too costly as its size increases.

Inverted index, non-exhaustive search To overcome this issue, inverted in-
dexes, also known as inverted files are combined with product quantization. The
database is first partitioned into several parts. Each part is then stored as an in-
verted list, a contiguous array of short codes. The inverted index structure holds
pointers to all inverted lists, and provides a fast access to any one of them. At query
time, the most relevant inverted lists to the query are scanned for nearest neighbors.
Inverted indexes allow scanning only a fraction of the database to answer a query;
this strategy is known as non-exhaustive search.

In general, making small inverted lists i.e., finely partitioning the database and
scanning several inverted lists at query time gives better results than making large
inverted lists and scanning only one. Therefore, in practice, multiple inverted lists
are scanned to answer a query. This method is known as multiple assignement. There
are two variants of this approach: either (1) a fixed number (ma) of inverted lists
are scanned or (2) inverted lists are scanned until the total number of short codes
scanned reaches a given threshold. Note that multiple assignement is for queries only,
database vectors are always stored in a single inverted list.

Different indexing techniques have been proposed to partition the database and
retrieve the relevant inverted lists at query time. We detail the two most popular
indexing approaches (IVFADC [39], Multi-D-ADC [9]), and quickly review less pop-
ular approaches. Because they avoid scanning the whole database, inverted indexes
combined with product quantization offer shorter response times than product quan-
tization alone. More surprisingly, some indexing techniques (in particular IVFADC
and Multi-D-ADC) offer better accuracy than product quantization alone, despite
the fact that only a fraction of the database is scanned. For theses reasons, these
techniques are often preferred to exhaustive search in practical scenarios.

Simple inverted index (IVFADC) [39] Vector quantizers can be used to encode
vectors as short codes, but they can also be used to partition the database. IVFADC
(Inverted File with Asymmetric Distance Computation) uses a vector quantizer with
K centroids to partition the vector space into K Voronoi cells. Each centroid and its
corresponding Voronoi cell are assigned an integer identifier between 0 and K − 1.
This approach is similar to the Bag of Features presented in Section 2.1, except that
instead of storing high-dimensional vectors in inverted lists, short codes produced by
a product quantizer are stored. The partitioning quantizer is named index quantizer,

22



2.3. Product Quantization

and denoted qi. Before they are encoded into short codes, the residual r(x) of each
database vector x is computed:

r(x) = x− qi(x)

The residual r(x) of an high-dimensional vector can therefore be interpreted at is
relative position to its closest centroid in the index quantizer qi. Each residual r(x)
is then encoded into a short code using a product quantizer pq, and added to the
proper inverted list. In this manner, if vector x lies in the Voronoi cell the identifier
of which is 3, its residual will be encoded and added to the inverted list the identifier
of which is 3. IVFADC uses two quantizers for two different purposes: (1) a vector
quantizer to partition the database and (2) a product quantizer to encode high-
dimensional vectors as short codes. Residuals r(x) typically have a lower entropy
than the original vectors x. Therefore, encoding residuals instead of the original
vectors leads to a lower quantization error, which in turn increases accuracy. To
answer a query, the ma closest centroids to the query vector are searched in the index
quantizer qi codebook, and the corresponding inverted lists are scanned. For a dataset
of 1 billion SIFT vectors, two typical configurations are: (1) using an index quantizer
qi with K = 213 centroids, and scanning ma = 64 inverted lists at query time and (2)
using an index quantizer qi with K = 213 centroids, and scanning ma = 64 inverted
lists at query time. In configuration 1, about 1/128th of the database is scanned to
answer a query while in configuration 2, 1/1024th of the database is scanned. Both
configurations offer similar accuracy, but configuration 2 is faster as less short codes
are scanned. In general, finer inverted indexes allow scanning a smaller fraction
of the dataset while retaining the same accuracy, and thus allow faster response
times. However, retrieving the ma most relevant inverted lists requires computing
the distance of the query vector to each of the K centroids of the index quantizer
in order to find the ma closest ones. This operations becomes costly as K increases.
Above K = 216 centroids, the increased cost of matching the query vector against
the index quantizer codebook starts to outweigh the benefit of scanning less short
codes.

Multi-index (Multi-D-ADC) [9] Multi-D-ADC overcomes this issue. More specif-
ically, Multi-D-ADC makes it possible to build fine indexes, e.g., with more than
K = 216 inverted lists, without making the retrieval of inverted lists costly during
query processing. Multi-D-ADC therefore offers faster response times than IVFADC
by scanning an even smaller fraction of the dataset. Like IVFADC, Multi-D-ADC
uses two quantizers: one for the inverted index, and one to encode vectors as short
codes. However, instead of using a vector quantizer qi for the index, Multi-D-ADC
uses a product quantizer for the index. Multi-D-ADC thus uses two product quan-
tizers: (1) an index product quantizer pqi to partition the database, (2) a product
quantizer pq to encode high-dimensional vector as short codes. These two prod-
uct quantizers typically have different parameters. The product quantizer pq used
for vector encoding typically has m = 4 to m = 16 sub-quantizers (with k = 2b

centroids each, b = 4 to b = 16). By contrast, in [9], the authors show that the
index product quantizer should have only m = 2 sub-quantizers (K ≈ 214 centroids
each). The m = 2 sub-quantizers, q1 and q2, of the index product quantizer have
two distinct codebooks C1 = {c1i }Ki=0 and C2 = {c2i }Ki=0. The index product quan-
tizer pqi partitions the vector space in K2 cells (e.g., K2 = 228 cells for K = 214).
Each cell is defined by the concatenation of two centroids (c1i ,c2j ) i ∈ {0, . . . , k − 1},

23



2. State of the Art

j ∈ {0, . . . , k − 1}, and the corresponding inverted list is identified by the (i, j) tu-
ple. Like IVFADC, Multi-D-ADC allows encoding the residuals of high-dimensional
vectors instead of the original vectors, as follows: r(x) = x− (c1i , c2j ). Computing the
distance between the query vector and all (c1i ,c2j ) i ∈ {0, . . . ,K−1}, j ∈ {0, . . . ,K−1}
to retrieve the most relevant inverted lists would require K2 distance computations.
Multi-D-ADC would therefore bring no benefit over IVFADC and using more than
K2 = 216 centroids would still be impractical. Instead, the multi-sequence algorithm,
introduced in [9] takes advantage of the properties of the index product quantizer
pqi to retrieve relevant inverted lists while requiring 2K distance computations only.
The multi-sequence algorithm first computes the distance of the first half of the query
vector y, denoted y1 to all centroids of C1 and the distance of the query vector y2

to all centroids of C2. The codebooks C1 copied and sorted by increasing distance
from y1 and y2 respectively. The multi-sequence iterates over the two codebooks by
increasing d(y1, c1i ) + d(y2, c2j ) distance, where d(y1, c1i ) is the distance from y1 to
the i-th centroid of C2 (respectively for d(y2, c2j )). The inverted lists (i, j) are then
marked for scanning, until enough vectors have been gathered.

Using a Multi-D-ADC with K = 214 (thus K = 228 cells in total) and scan-
ning 1/50000th of the database gives the same accuracy as using an IVFADC with
K = 216 cells and scanning 1/1024th of the database. Even if the multi-sequence al-
gorithm is more efficient than computing the distance to all (c1i ,c2j ) i ∈ {0, . . . , k−1},
j ∈ {0, . . . , k − 1}, its cost is not negligible. Consequently, if Multi-D-ADC offers a
decrease in response time over IVFADC, this decrease is not proportional to the de-
crease in code scanned i.e., Multi-D-ADC is not 50 times faster in the aforementioned
case even if 50 times less short codes are scanned.

Other approaches Other approaches have been proposed to partition the database
into inverted lists. In [9], the authors explore the idea of using KD-trees to partition
the database. They however show that Multi-D-ADC offers better performance in
all cases. The use of a variant of LSH to build the inverted index has also been
considered [58]. The major flaw of this approach is that it causes a four times increase
in memory use, partially offsetting the benefit of product quantization. For this
reason, this approach is not very popular.

2.3.3 ANN Search
ANN search in a database of vectors encoded as short codes takes three steps: In-

dex, which involves retrieving the most relevant inverted lists from the index; Tables,
which involves computing lookup tables used for fast distance computation and Scan,
which involves computing the distance between the query vector and short using the
previously computed lookup tables. Obviously, the step Index is only required for
non-exhaustive search, and is skipped in the case of exhaustive search (Algorithm 1).
We detail these three steps in the following paragraphs.

Index In this step, the most relevant lists to the query vector are retrieved from
the inverted index. The exact procedure depends on the type of inverted index used;
we presented the most common ones in Section 2.3.2. Therefore the implementation
of the index_get_list function depends on the type of inverted index used (Al-
gorithm 1). If needed, the residual r(y) of the query vector y is also computed. In

24



2.3. Product Quantization

Algorithm 1 ANN Search
1: function nns({Cj}mj=0, database, y)
2: list, y′ ←index_get_list(database, y) ▷ Index Step
3: {Dj}mj=0 ← compute_tables(y′, {Cj}mj=0) ▷ Tables Step
4: return scan(list, {Dj}mj=0) ▷ Scan Step
5: function scan(list, {Dj}mj=0)
6: neighbors← binheap(r) ▷ binary heap of size r
7: for i← 0 to |list| − 1 do
8: c← list[i] ▷ ith code
9: d← adc(p, {Dj}mj=0)

10: neighbors. add((i, d))
11: return neighbors
12: function adc(c, {Dj}m−1

j=0 )
13: d← 0
14: for j ← 0 to m do
15: index← c[j]
16: d← d+Dj [index]

17: return d

practice, multiple inverted lists are retrieved from the inverted index. However, for
the sake of simplicity, this section describes the search process for a single inverted
list. For ma inverted lists, each operation should be repeated ma times: ma inverted
lists are retrieved from the inverted index, ma residuals are computed, and ma in-
verted lists are scanned. In the remainder of this section, y′ = r(y) if an inverted
index is used. Otherwise, y′ = y.

Tables In this step, a set of m lookup tables are computed {Dj}mj=0, where m is
the number of sub-quantizers of the product quantizer. The jth lookup table Dj is
composed of the distances between the jth sub-vector of y′ and all centroids of the
jth sub-quantizer:

Dj =

(∥∥∥y′j − Cj [0]∥∥∥2 , . . . ,
∥∥∥y′j − Cj [k − 1]

∥∥∥2) (2.2)

We do not detail the compute_tables function in Algorithm 1, but it would cor-
respond to an implementation of Equation 2.2.

Scan In this step, the inverted list retrieved from the inverted index is scanned
for nearest neighbors (scan function, Algorithm 1). This requires computing the
distance between the query vector y′ and all short codes in the inverted list (Algo-
rithm 1, line 7). Squared Euclidean distances are used for ANN search instead of
Euclidean distances because Squared Euclidean distances avoid a costly square root
computation and preserve the order. Asymmetric Distance Computation (ADC) uses
the lookup tables generated in the previous step to compute the distance between
the query vector y′ and a short code c, as follows:

adc(y′, c) =
m−1∑
j=0

Dj [c[j]] (2.3)

25



2. State of the Art

Database

0 2 0 4 0 0 f f 0 0 0 2 0 4 0 3
3 f 1 1 2 1 0 0 0 1 f 2 1 2 1 1
0 4 0 c 0 e 1 a f 1 0 f a 9 1 7
f 6 f f f 6 f 0 2 3 0 b b 6 2 f
3 7 1 a 2 1 0 0 3 2 8 b e 9 0 3
f 5 f c f f f 1 4 6 3 3 c f 2 c
f 4 f f f b f b 5 2 e f 4 2 b d

...

Lookup Tables

0 9 5 2 1 · · · 5

1 7 4 8 1 · · · 4

5 8 5 2 3 · · · 3

2 3 9 1 7 · · · 2

3 1 4 2 1 · · · 9

2 7 6 3 1 · · · 6

4 8 5 2 3 · · · 2

1 3 9 1 7 · · · 1

00 04 ff
D0

D7

0 7

Figure 2.4: Asymmetric Distance Computation (ADC)

The adc function is a implementation of Equation 2.3. Figure 2.4 also illustrates
ADC procedure for short codes codes generated by a 8×8 product quantizer (m = 8,
b = 8). Each centroids index c[j] constituting the short code c (02, 04, etc.) is used
to look up a value in the jth lookup table (D0, D1, etc.). All looked up values (in
red) are then summed to obtain the asymmetric distance.

Substituting Equation 2.2 into Equation 2.3, we have:

adc(y′, c) =
m−1∑
j=0

∥∥∥y′j − Cj [c[j]]∥∥∥2 (2.4)

In Equation 2.4,
∥∥∥y′j − Cj [c[j]]∥∥∥2 is the squared distance between the jth sub-vector

of y′ and the jth centroid referenced by code c. ADC therefore sums the distances
of the sub-vectors of y′ to the centroids referenced by the short code c in the m
sub-spaces of the product quantizer. Because it splits high-dimensional vectors into
m sub-vectors, a product quantizer generates m orthogonal sub-spaces. This makes
it possible to compute partial distances in each sub-space and to sum them. When
the number of codes in cells is large compared to k, the number of centroids of sub-
quantizers, using lookup tables avoids computing ∥y′j−Cj [i]∥2 for the same i multiple
times. Lookup tables therefore provide a significant speedup.

During the scan of an inverted list, nearest neighbors are stored in a binary heap
of size r (Algorithm 1, line 6), where r is the number of requested nearest neighbors.
Nearest neighbors are stored in the binary heap as (i, d) pairs, where i in the index
of the short code and d is the distance to the query vector. The binary heap holds
the r pairs with the lowest d. If a new pair is added (Algorithm 1, line 10) and the
binary heap is not full, the pair is added. If a new pair is added and the binary heap
is full, the pair is added only if its distance d is lower than the distance of the pair
with the highest distance in the binary heap. The pair with the largest distance is
removed from the heap, and the new pair is added. Adding a pair to the binary heap
takes O(log r) operations. Checking if a pair has a lower distance than the pair with
the highest distance takes O(1) operations.

26



2.3. Product Quantization

2.3.4 Product Quantization Derivatives
Optimized Product Quantization (OPQ) [24] 1 A product quantizer quan-
tizes a d-dimensional vector by splitting it into m sub-vectors, and quantizing each
sub-vector independently (Section 2.3.1). The ith sub-vector comprises the dimen-
sions i · d/m to (i + 1) · d/m. In this manner, a product quantizer partitions the
d-dimensional vector spaces into m orthogonal sub-spaces, each sub-space compris-
ing a subset of the dimensions the original vector space. Intuitively, we see that this
sub-space decomposition may not be optimal, for instance if vectors have different
variances across their dimensions. Some sub-spaces may then carry more informa-
tion than others. Moreover, this sub-space decomposition prevents taking advantage
of correlations between dimensions that are not in the same sub-space to decrease
quantization error.

Optimized product quantization overcomes these issues by multiplying a vector
x ∈ Rd by an orthogonal matrix R ∈ Rd×d before quantizing them with a product
quantizer. An optimized product quantizer opq thus maps a vector x ∈ Rd as follows:

opq(x) = pq(Rx),
such that RTR = I and pq is a product quantizer.

An orthogonal matrix R can represent any permutation of dimensions. Thus, the
matrix R determines the decompositions of the d-dimensional space in m sub-spaces of
equal dimensionality. The matrix R is learned jointly with the codebooks {Cj}m−1

j=0 to
minimize quantization error. In [24], the authors train R and {Cj}m−1

j=0 by alternating
between two steps (A) and (B) to achieve a locally optimal solution. Step (A) involves
fixing R and optimizing {Cj}m−1

j=0 , by running a single k-means step in each sub-space.
Step (B), involves fixing {Cj}m−1

j=0 and optimizing R. For fixed codebooks {Cj}m−1
j=0 ,

R has a closed-form optimal solution obtained through Singular Value Decomposition
(SVD). In most cases, the algorithm converges after less than 100 iterations, where
one iteration involves running Step (A) followed by Step (B).

Optimized product quantizers can be used to encode vectors as short codes, exactly
like product quantizers (Section 2.3.1). Like product quantizers, optimized product
quantizers divide the vector space in sub-spaces that are orthogonal. Therefore, ADC
(Section 2.3.3) can be used to compute the distance between an high-dimensional
vector y and short codes generated by an optimized product quantizer. If short codes
were generated by an optimized product quantizer, it is necessary to multiply y by the
matrix R before computing tables. Distances to short codes can then be computed by
performing m table lookups. Like product quantizers, optimized product quantizers
can be combined with inverted indexes. Like IVFADC (Section 2.3.2), IVFOADC [9]
uses a vector quantizer qi to build an inverted index, but uses an optimized product
quantizer en encode vectors instead of a product quantizer. Multi-D-ADC uses two
product quantizers, one to build the inverted and the other to encode vectors as short
codes. OMulti-D-O-ADC replaces both product quantizers by optimized product
quantizers [9].

1. Two research teams concurrently discovered a similar generalization of product quantization.
One team named this generalization ”Optimized Product Quantization” [23], while the other used
the term ”Cartesian K-Means” [46], and both terms are commonly used in the literature. Both
papers were originally published at CVPR’13. In this thesis, we refer to this generalization of
product quantization as optimized product quantization.

27



2. State of the Art

Additive Quantization (AQ) [8] Both product quantization and optimized prod-
uct quantization represent a d-dimensional vector x as a concatenation of d/m-
dimensional centroids i.e., pq(x) = (C0[i0], . . . , Cm−1[im−1]). On the contrary, ad-
ditive quantization represents a d-dimensional vector x as a sum of d-dimensional
centroids:

aq(x) = C0[i0] + . . .+ Cm−1[im−1]

Like product quantization, additive quantization can be used to encode vectors as
short codes of m · log2(k) bits by concatenating centroids indexes, i.e., enc(x) =
(i0, . . . , im). Additive quantization therefore uses more information than product
quantization to represent a high-dimensional vector: m d-dimensional centroids for
additive quantization versus m d/m-dimensional centroids for product quantization.
This allows additive quantization to offer a better accuracy for nearest neighbor
search than product quantization. However, additive quantization suffers from two
major disadvantages. First, finding the best combination of centroids to sum from
the codebooks {C}m−1

j=0 in order to encode a vector x is a hard problem. In [8], the
authors propose an approximate algorithm based on Beam search but this solution re-
mains multiple orders of magnitude more costly than the encoding process of product
quantization. Additive quantization is therefore intractable for billion-size datasets.
Second, computing the distance of the query vector to a short code c requires m2/2
table lookups and m2/2 additions, while a distance computation requires m tables
lookups and m additions with product quantization. In most cases, nearest neighbor
search is more than 3 times slower with additive quantization than with product
quantization.

Tree Quantization (TQ) [10] Tree quantization is similar to additive quanti-
zation in the sense that it represents a high-dimensional vector x by a sum of m
d-dimensional centroids, tq(x) = C0[i0] + . . . + Cm−1[im−1]. However, it imposes
a special tree structure on the codebooks. This tree structure makes the encoding
process faster, making tree quantization tractable for larger datasets. Tree quanti-
zation encoding however remains much slower than product quantization encoding.
In addition, with tree quantization, computing the distance of the query vector to a
short code c requires 2m table lookups and 2m additions. Nearest neigbor search is
about 2-2.5 times slower with tree quantization than with product quantization. Tree
quantization offers a similar accuracy to additive quantization for nearest neighbor
search, and therefore a higher accuracy than product quantization.

Composite Quantization (CQ) [61] Like additive quantization and tree quan-
tization, composite quantization represents a high-dimensional vector x by a sum of
m d-dimensional centroids, cq(x) = C0[i0] + . . .+ Cm−1[im−1]. Additive quantization
and tree quantization do not enforce any orthogonality constraint on the centroids
of the codebooks i.e., Cj′ [ij′ ] · Cj [ij ] can be any value ∀j′ ∈ {0, . . . ,m − 1},∀j ∈
{0, . . . ,m−1}, j′ ̸= j,∀ij ∈ {0, . . . , k−1}. Product quantization and optimized prod-
uct quantization represent a vector x by a concatenation of m centroids, which im-
plies that centroids in different codebooks are orthogonal, Cj′ [ij′ ] · Cj [ij ] = 0 if j′ ̸= j.
The distinctive feature of composite quantization is that it allows some degree of
non-orthogonality between centroids, but it enforces that the sum of the pairwise dot
products of centroids is a constant for any code c, i.e.,

∑m−1
j′=0

∑m−1
j=0 Cj

′
[ij′ ] ·Cj [ij ] = ϵ

for j′ ̸= j,∀c = (i0, . . . , im−1). Since the sum of pairwise centroid dot products is
constant for all codes, it can be be omitted at search time. Therefore computing

28



2.3. Product Quantization

the distance of the query to a short code requires m table lookups and m additions.
Nearest neighbor search with composite quantization is as fast as with product quan-
tization, and therefore much faster than with additive quantization or tree quantiza-
tion. Composite quantization has be shown to offer a better accuracy than product
quantization, but its accuracy has not been compared to additive quantization or
tree quantization.

29





3 Performance Analysis

Contents

3.1 Impact of Memory Accesses . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Issues with SIMD Implementation . . . . . . . . . . . . . . . . . . . . 35
3.3 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

All the contributions of this thesis focus on increasing the speed of the Scan step of
ANN search (Section 2.3.3). This step consists in computing the asymmetric distance
between the query vector y and all short codes in the previously selected inverted
list(s). Among the different steps of ANN search (Index, Tables, Scan), the Scan step
generally takes the most time. ANN search is trivial to parallelize at the query level by
executing different ANN queries on the different cores of a multi-core CPU. The Scan
step itself is also trivial to parallelize by scanning a different chunk of the inverted
list on each core. Therefore, we focus on the more challenging task of improving the
single-core performance of the Scan step. In this section, we analyze the factors that
limit the performance of the Scan step, and we show that memory accesses are the
primary bottlenecks. We also show that the structure of the algorithm prevents an
efficient SIMD implementation.

3.1 Impact of Memory Accesses

Breakdown of operations From Algorithm 1 (Section 2.3.3) we observe that each
Asymmetric Distance Computation (ADC) requires the following operations:

• m memory accesses to load centroid indexes c[j] (Algorithm 1, line 15) [mem1]

• m memory accesses to load Dj [index] values from lookup tables (Algorithm 1,
line 16) [mem2]

• m additions (Algorithm 1, line 16)

These operations are the only instructions executed by the CPU to perform an ADC.
Since the parameter m is a small constant (typical m = 4 − 32) known at compile
time, compilers are able to unroll the loop (Algorithm 1, line 14). The CPU therefore
does not have to maintain the loop index and execute jump instructions at runtime.
It is crucial for performance that this loop is unrolled: in our experiments, when the
loop is not unrolled, the scan is 3 times slower (for typical parameters: m = 8, b = 8).
In addition, as the function adc is small and called repeatedly (Algorithm 1, line 9),

31



3. Performance Analysis

Table 3.1: Properties of different types of memory (Nehalem-Haswell)

Mem. Type Size Latency (CPU cycles)
L1 cache 32 KiB 4-5
L2 cache 256 KiB 11-13
L3 cache 2-3 MiB ×core_count 25-40
RAM 4-512 GiB 100-300

so compilers are able to inline the function call. Therefore, there is no function
call overhead at runtime. In this thesis, we take this implementation (Algorithm 1)
with compiler optimizations enabled (i.e., loop unrolling, function call inlining) as a
baseline and seek to improve its performance.

Cost of memory accesses When evaluating the complexity of an algorithm, mem-
ory accesses are often overlooked. In the original paper on product quantization [39],
the authors report that ”only m additions are required per distance calculation”, for-
getting about memory accesses. However, memory accesses are costly operations on
a CPU. While an additions does not take more than 1 CPU cycle, memory accesses
take 4 CPU cycles in the best case. Table 3.1 details the latency of memory accesses
depending on the cache level, as well as the sizes of the different caches. These figures
are valid for Intel CPU architectures from Nehalem (released in 2008) to Haswell (re-
leased in 2013). In the list of operations of the previous paragraph, we distinguished
between to classes of memory accesses: mem1 and mem2, as they may hit different
cache levels. Mem1 accesses always hit the L1 cache thanks to the hardware prefetch-
ers included in CPUs. Hardware prefetchers are able to detect sequential memory
accesses, and prefetch data to the L1 cache. We access c[j] values sequentially. We
first access c[0], where c is the first code in the database, then c[1] until c[m − 1].
Next we perform the same accesses on the second code in the database, until we have
iterated on all codes in the inverted list. On the contrary, mem2 accesses may hit
the L1 or L3 depending on the b parameter of the product quantizer.

Impact of m and b parameters In Section 2.3.1, we mentioned that the m and
b parameters of a product quantizer impact: (1) the memory use of the database,
(2) the accuracy of nearest neighbor search and (3) the speed of nearest neighbor
search. An m×b product quantizer has a total of 2m×b centroids, and encodes each
high-dimensional vector into a code of m×b bits. The higher the m×b product, the
higher the number of centroids of the product quantizer, and therefore the higher the
accuracy of nearest neighbor search. In Table 3.2, we use Recall@100 as accuracy
measure. However, the higher the m×b product, the larger the codes, and therefore
the higher the memory use of the database. In practice, codes of m×b = 64 bits
(264 centroids) or m×b = 128 bits (2128 centroids) are used. There has been a recent
interest for codes of m×b = 32 bits to achieve extreme compression ratios, although
they offer a somewhat lower accuracy (Table 3.2). For a database of 1 million of
128-dimensional SIFT vectors (SIFT1M), 64-bit codes offer a satisfactory accuracy
(Table 3.2), but 128-bit codes are necessary for larger databases or vectors of higher
dimensionality.

32



3.1. Impact of Memory Accesses

Table 3.2: ANN search speed and accuracy (SIFT1M)

m×b Tables size Cache Recall@100 Tables time Scan time
32-bit codes

4×8 4 KiB L1 59.0% 0.004 ms 1.3 ms
2×16 512 KiB L3 79.0% 0.58 ms 2.7 ms

64-bit codes
16×4 1 KiB L1 83.1% 0.001 ms 6 ms
8×8 8 KiB L1 92.2% 0.011 ms 2.6 ms
4×16 1 MiB L3 96.5% 0.82 ms 7.9 ms

128-bit codes
32×4 2 KiB L1 96.5% 0.002 ms 12 ms
16×8 16 KiB L1 99.8% 0.009 ms 5.4 ms
8×16 2 MiB L3 99.8% 1.5 ms 17 ms

For a fixed code size, and thus a fixed m×b product (e.g., m×b = 64), the parame-
ters m and b impact the accuracy and speed of nearest neighbor search. We observe
that a large b and therefore a small m, increases accuracy, but also increases scan
time (Table 3.2). Thus, a 4×16 product quantizer offers a better accuracy than 8×8
product quantizer, but also incurs a higher scan time. This seems counter-intuitive:
as small m means less operations per distance computation, and should therefore
result in lower scan time. Each distance computation requires m mem1 accesses, m
mem2 accesses and m additions. A 4×16 product quantizer (m = 4) requires less
operations per distance computation than a 8×8 product quantizer (m = 8), but still
results in a higher scan time. This is because a 4×16 product quantizer leads to larger
{Dj}m−1

j=0 lookup tables. The size of the lookup tables is m ·2b · sizeof(float) = m·2b·4
bytes (m lookup tables of 2b floating-point values each). Larger lookup tables need
to be stored in slower cache levels, which increases the cost of mem2 accesses. For
a 4×16 product quantizer, lookup tables have to be stored in the L3 cache (slowest
cache) while they fit the L1 cache (fastest cache) for a 8×8 product quantizer. Over-
all, the increase in the cost of mem2 access outweighs the decrease in the number
of operations. This results in a threefold increase in scan time for 4×16 product
quantizers compared to 8×8 product quantizers.

Table 3.2 reports the properties of different product quantizers only for a few values
of b, namely b = 4, b = 8 and b = 16. First, training sub-quantizers (Section 2.3.1)
with more than 216 centroids is not tractable, thus b > 16 is not achievable. The-
oretically, any b ≤ 16 would be possible, e.g., a 5×13 product quantizer (b = 13,
65-bit codes), c[j] centroid indexes need to be accessed individually (Algorithm 1,
line 15). CPUs can natively address values of 8, 16, 32 or 64 bits in memory. Access-
ing integers of other sizes, e.g., 13-bit integers, requires additional bit shifting and bit
masking operations, which increase scan time. Therefore, b values other than b = 8
or b = 16 are not suitable. We however added the properties of product quantizers
for b = 4, to illustrate that scan time does not continuously decreases with b. Once
lookup tables are small enough to fit the L1 cache, it is not useful to further shrink
them. This does not make mem2 accesses less costly, but results in a higher number

33



3. Performance Analysis

time
0

50

100

74 77
69

99
(m

s)

IPC
0

1

2

3 2.7
3
2.6

0.6

baseline libpq avx gather

Figure 3.1: Scan times (25M vectors) and Intructions Per Cycle (IPC)

m of operations.

In practice, 8-bit sub-quantizers (b = 8) are used in almost all publications on
product quantization as they offer a good tradeoff between speed and accuracy. As
64-bit codes, and 8-bit sub-quantizers are very common, we focus exclusively on 8×8
product quantizers (m = 8, b = 8, 64-bit codes) in the remainder of this section.

Libpq scan implementation We use hardware performance counters to study
the performance of different scan procedure implementations experimentally (Fig-
ure 3.1, Figure 3.2). For all implementations, the number of cycles with pending
load operations (cycles w/ load) is almost equal to the number of cycles, which con-
firms the scan procedure is a memory-intensive. We also measured the number of L1
cache misses (not shown on Figure 3.2). L1 cache misses represent less than 1% of
memory accesses for all implementations, which confirms that both mem1 and mem2
accesses hit the L1 cache. The baseline implementation of the scan procedure (Algo-
rithm 1) performs 16 L1 loads per scanned vector: m = 8 mem1 accesses and m = 8
mem2 accesses. The authors of [39] distribute the libpq library1, which includes an
optimized implementation of the ADC Scan procedure. We obtained a copy of libpq
under a commercial licence. Rather than loading m = 8 centroid indexes of b = 8
bits each (mem1 accesses), the libpq implementation of the scan procedure loads a
64-bit word into a register, and performs 8-bit shifts to access individual centroid
indexes. This allows reducing the number of mem1 accesses from 8 to 1. Therefore,
the libpq implementation performs 9 L1 loads per scanned vector: 1 mem1 access
and 8 mem2 accesses. However, overall, the libpq implementation is slightly slower
than the baseline implementation on our Haswell processor. Indeed, the increase in
the number of instructions offsets the increase in IPC (Instructions Per Cycle) and
the decrease in L1 loads. It is however likely that this optimization was useful on
older processors. Before, the Sandy Bridge architecture, Intel CPUs had a single
memory read port, while newer CPUs have two read ports. This means that current
CPUs can perform two concurrent cache reads, while older CPUs can only perform
one. Therefore, reducing the number of memory reads may bring a higher benefit on
older CPUs.

1. http://people.rennes.inria.fr/Herve.Jegou/projects/ann.html

34

http://people.rennes.inria.fr/Herve.Jegou/projects/ann.html


3.2. Issues with SIMD Implementation

cycles cycles w/ load instructions L1 loads µops

20

40

11 11

29

16

36

11 11

34

9

40

9 9

25

16

28

13 13

8 9

41baseline
libpq
avx

gather

Figure 3.2: Scan performance counters (per scanned code)

3.2 Issues with SIMD Implementation

Introduction to SIMD In addition to memory accesses, each distance compu-
tation requires m additions. SIMD instructions are commonly used to increase the
performance of algorithms performing arithmetic computations. Therefore, we eval-
uate the applicability of SIMD instructions to reduce the number of instructions
and CPU cycles devoted to additions. SIMD instructions perform the same opera-
tion, e.g., additions, on multiple data elements in one instruction. To do so, SIMD
instructions operate on wide registers. SSE SIMD instructions operate on 128-bit
registers, while more recently introduced AVX SIMD instructions operate on 256-bit
registers [36]. SSE instructions can operate on 4 floating-point ways (4×32 bits, 128
bits) while AVX instructions can operate on 8 floating-point ways (8×32 bits, 256
bits). In our case, AVX instructions offer only slightly higher performance than SSE
instructions. As both instruction sets yield similar results, we only report results
for the AVX implementation. We show that the structure of the scan procedure
(Algorithm 1) prevents an efficient use of SIMD instructions.

Implementation details To enable the use of fast vertical SIMD additions, we
compute the asymmetric distance between the query vector and 8 database vectors
at a time, designated by the letters a to h. We still issue 8 addition instructions,
but each instruction involves 8 different vectors, as shown on Figure 3.3. Overall,

D0[a[0]] D0[b[0]] D0[c[0]] D0[d[0]] ... D0[h[0]]

+ + + + +

(way 0) (way 7)

D1[a[1]] D1[b[1]] D1[c[1]] D1[d[1]] ... D1[h[1]]

+ + + + +
...

...
...

...
...

D7[a[7]] D7[b[7]] D7[c[7]] D7[d[7]] ... D7[h[7]]

Figure 3.3: SIMD vertical add

35



3. Performance Analysis

a[0] b[0] c[0] d[0] . . . h[0]

simd_gather

D0[a[0]] D0[b[0]] D0[c[0]] D0[d[0]] ... D0[h[0]]

D0 table (memory)

indexes

Figure 3.4: SIMD gather

the number of instructions devoted to additions is divided by 8. However, the gain
in cycles brought by the use of SIMD additions is offset by the need to set the ways
of SIMD registers one by one. SIMD processing works best when all values in all
ways are contiguous in memory and can be loaded in one instruction. Because they
were looked up in a table, D0[a[0]],D0[b[0]], · · · ,D0[h[0]] values are not contiguous in
memory. We therefore need to insert D0[a[0]] in the first way of the SIMD register,
then D0[b[0]] in the second way etc. In addition to memory accesses, doing so requires
many SIMD instructions, some of which have high latencies. Overall, this offsets the
benefit provided by SIMD additions. This explains why algorithms relying on lookup
tables, such as ADC Scan, hardly benefit from SIMD processing. Figure 3.1 and
Figure 3.1 show that the AVX implementation of ADC Scan requires slightly less
instructions than the naive implementation, and is only marginally faster.

SIMD gather To tackle this issue, Intel introduced a gather SIMD instruction
(AVX2 instruction set) in its latest architecture, Haswell [36, 37]. Given an SIMD
register containing 8 indexes and a table stored in memory, gather looks up the
8 corresponding elements from the table and stores them in a register, in just one
instruction. This avoids having to use many SIMD instructions to set the 8 ways
of SIMD registers. Figure 3.4 shows how gather can be used to look up 8 values
in the first distance table (D0). To efficiently use gather, we need a[0], · · · ,h[0]
to be stored contiguously in memory, so that they can be loaded in one instruc-
tion. To do so, we transpose the memory layout of the inverted list. We divide
each inverted list in blocks of 8 codes (a, . . . ,h), and transpose each block inde-
pendently. In a transposed block (Figure 3.5), we store the first components of 8
vectors contiguously (a[0], · · · ,h[0]), followed by the second components of the same
8 vectors (a[1], · · · ,h[1]) etc., instead of storing all components of the first vector
(a[0], · · · , a[7]), followed by the components of the second vector (b[0], · · · , b[7]). This
also allows to reduce the number of mem1 accesses from 8 to 1, similarly to the libpq

a[0] a[1] . . . a[7]

b[0] b[1] . . . b[7]

c[0] c[1] . . . c[7]

. . . . . . . . . . . .

h[0] h[1] . . . h[7]

a

b

c

h

(a) Standard layout

a[0] b[0] c[0] . . . h[0]

a[1] b[1] c[1] . . . h[1]

. . . . . . . . . . . . . . .

a[7] b[7] c[7] . . . h[7]

a b c h

(b) Transposed layout

Figure 3.5: Standard layout and transposed layout

36



3.3. Lessons Learned

implementation. This transposition is performed online, and does not increase re-
sponse time. Moreover, this transposition is cheap and does not notable increase the
database creation time.

However, the gather implementation of ADC Scan is slower than the naive version
(Figure 3.2), which can be explained by several factors. First, even if it consists of
only one instruction, gather performs 1 memory access for each element it loads,
which implies suffering memory latencies. Second, at the hardware level, gather
executes 34 µops2 where most instructions execute only 1 µop. Figure 3.2 shows that
the gather implementation has a low instructions count but a high µops count. For
other implementations, the number of µops is only slightly higher than the number
of instructions. It also has a high latency of 18 cycles and a throughput of 10 cycles,
which means it is necessary to wait 10 cycles to pipeline a new gather instruction
after one has been issued. This translates into poor pipeline utilization, as shown by
the very low IPC of the gather implementation (Figure 3.2). In its documentation,
Intel acknowledges that gather instructions may only bring performance benefits in
specific cases [35] and other authors reported similar results [29].

3.3 Lessons Learned

We can draw three conclusions from the experiments conducted in this chapter:

• Accesses to cache resident lookup tables are the primary bottleneck limiting
the performance of the ADC Scan procedure.

• Using 16-bit sub-quantizers offers a better accuracy than 8-bit sub-quantizers
(for a fixed code size), but causes a threefold increase in response time. This
is because using 16-bit sub-quantizers causes lookup tables to be stored in the
L3 cache, instead of the L1 cache for 8-bit sub-quantizers.

• The structure of the ADC Scan algorithm prevents an efficient use of SIMD
instructions, which are yet commonly used to increase performance. The main
issue is that ADC Scan needs to look up values in the cache and insert them
one by one in SIMD registers, which is costly.

In the remainder of this thesis, we build on these conclusions to design more efficient
scan procedures.

2. Micro-operations (µops) are the basic operations executed by the processor. Instructions are
sequences of µops.

37





4 PQ Fast Scan

Contents

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Code Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Minimum Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.4 Quantization of Distances . . . . . . . . . . . . . . . . . . . . . 45
4.2.5 Lookups in Small tables . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2 Distribution of Response Times . . . . . . . . . . . . . . . . . . 48
4.3.3 Performance Counters . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.4 Impact of init and r Parameters . . . . . . . . . . . . . . . . . . 49
4.3.5 Impact of Distance Quantization . . . . . . . . . . . . . . . . . 50
4.3.6 Impact of the Size of Inverted Lists . . . . . . . . . . . . . . . . 51
4.3.7 Large Scale Experiment . . . . . . . . . . . . . . . . . . . . . . 52
4.3.8 Impact of CPU Architecture . . . . . . . . . . . . . . . . . . . 52

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 Compatibility with Inverted Indexes . . . . . . . . . . . . . . . 53
4.4.2 Applicability to Product Quantization Derivatives . . . . . . . 54

4.1 Motivation

As it stores large databases in main memory, product quantization makes it possi-
ble to scan a large number of nearest neighbor candidates in a small amount of time.
However, the ADC Scan procedure remains CPU intensive. In particular, we have
shown that the performance of this scan procedure is limited by the large number
of accesses to cache-resident lookup tables. Moreover, the structure of this proce-
dure prevents an efficient use of SIMD instructions to boost performance. These
limitations call for a modification of ADC Scan.

In this chapter, we introduce PQ Fast Scan, a novel scan procedure that achieves 4-6
times better performance than the conventional ADC Scan procedure, while returning
the exact same results. PQ Fast Scan focuses exclusively on codes generated by 8×8
product quantizers but this is not a strong limitation, as this type of codes is used

39



4. PQ Fast Scan

in the vast majority of cases. The key idea behind PQ Fast Scan is to replace cache
accesses by SIMD in-register shuffles. This change allows PQ Fast Scan to perform
less than 2 caches accesses per distance computation, and enables an efficient SIMD
implementation of additions. The main design challenge of PQ Fast Scan is that
lookup tables used for distance computations are much larger (1 KiB each) than
SIMD registers (128 bits). PQ Fast Scan overcomes this challenge by building small
tables that fit SIMD registers. These small tables are used to compute lower bounds
on distances, and prune unneeded cache accesses. More specifically, this chapter
addresses the following points:

• We present the design of PQ Fast Scan. We describe the three techniques
we use to build small tables: (1) code grouping, (2) minimum tables and (3)
quantization of floating-point distances to 8-bit integers.

• We implement PQ Fast Scan on Intel CPUs and evaluate its performance on
large datasets of high-dimensional vectors. We determine the parameters that
impact its performance, and experimentally show that it achieves a 4-6 times
speedup over the conventional scan procedure.

• We discuss the compatibility of PQ Fast Scan with different configurations of
inverted indexes. We also review its applicability to other product quantizer
configurations than 8×8 as well as its applicability to derivatives of product
quantization.

4.2 Presentation

4.2.1 Overview
The key idea behind PQ Fast Scan is to use small tables, sized to fit SIMD registers

instead of the cache-resident distance tables. These small tables are used to compute
lower bounds on distances, without accessing the L1 cache. Therefore, lower bounds
computations are fast. In addition, they are implemented using SIMD additions,
further improving performance. We use lower bound computations to prune slow
distance computations, which access the L1 cache and cannot benefit from SIMD
additions. Figure 4.1 shows the processing steps applied to every database vector c.
The ⊗ symbol means we discard the vector c and move to the next database vector.
The min value is the distance of the query vector to the current nearest neighbor.
Our experimental results on SIFT data show that PQ Fast Scan is able to prune
more than 95% of distance computations.

Lower bound computations rely on SIMD in-register shuffles (pshufb instruction),
which are key to PQ Fast Scan performance. Like cache accesses (mov), or SIMD
gather operations (gather), SIMD in-registers shuffles can be used to lookup values
in tables. SIMD in-register shuffles however offer much better performance (Ta-
ble 4.1). Using cache accesses allow performing 1 lookup at once, with a latency of
4-5 cycles (lookup tables in L1 cache). SIMD gather has a higher level of parallelism
(8 lookups at once), but has a much higher latency (18 cycles). In addition, it has a
throughput of 10 cycles, meaning the CPU has to wait 10 cycles before issuing an-
other gather instruction. This makes it difficult to pipeline instructions efficiently,
reducing performance. On the other hand, SIMD in-register shuffles offer both a high
level of parallelism (16 lookups at once) and a low latency (1 cycle). This comes at

40



4.2. Presentation

c
Compute lower bound

(Small tables, SIMD additions)

lower bound < min⊗

yes

no

Compute distance
(L1 cache accesses, Scalar additions)

distance < min⊗

yes

no

c is the new
nearest neighbor

Figure 4.1: Overview of PQ Fast Scan

the price of strong constraints on lookup tables. When using caches accesses or SIMD
gather, lookup tables are stored in memory. Therefore, this is virtually no limit on
their size, although it should not exceed the size of the L1 cache for best performance.
Moreover, they allow looking up 32-bit floating point values. By contrast, when us-
ing SIMD in-register shuffles, lookup tables must be stored in SIMD registers, which
limit their size to 128 bits. There are different variants of SIMD in-register shuffles
allowing either lookups in tables of 4 element of 32 bits (pshufd) or lookups in tables
of 16 elements 8 bits (pshufb). In our case, we need tables with the most possible
elements, thus we focus exclusively on pshufb (Figure 4.2).

To compute asymmetric distances, the conventional ADC Scan algorithm (with a
PQ 8×8 quantizer) uses 8 distance tables Dj , 0 ≤ j < 8, and each distance table

Table 4.1: Properties of table lookup techniques

Lookup technique Par. 1 Lat. 2 Throu. 3 µops Table Elements
Count Size

Cache accesses (mov) 1 4-5 0.5 1 No limit 32 bit
SIMD gather (gather) 8 18 10 34 No limit 32 bit
SIMD shuffle (pshufb) 16 1 0.5 1 16 8 bit
1 Par.: Parallelism. Number of lookups performed by one instruction of this type.
2 Lat.: Latency. Number of cycles to execute one instruction of this type.
3 Throu.: Throughput. Number of cycles to wait before issuing another instruction of this

type.

41



4. PQ Fast Scan

a[0] b[0] c[0] d[0] . . . p[0]

S0[0] S0[1] S0[2] S0[3] . . . S0[15]

simd_shuffle

S0[a[0]] S0[b[0]] S0[c[0]] S0[d[0]] . . . S0[p[0]]

indexes

table

Figure 4.2: SIMD in-register shuffle (pshufb)

comprises 256 elements of 32 bits. Hence, one distance table (256×32 bits) does
not fit into an SIMD register, which is why we need to build small tables. Just like
there are 8 distance tables Dj , 0 ≤ j < 8, we build 8 small tables Sj , 0 ≤ j < 8.
Each small table Sj is stored in a distinct SIMD register and is built by applying
transformations to the corresponding Dj table. To build 8 small tables suitable to
compute lower bound on distances, we combine three techniques: (1) code grouping,
(2) computation of minimum tables and (3) quantization of distances. The first two
techniques, vector grouping and computation of minimum tables, are used to build
tables of 16 elements (16×32 bits). The third technique, quantization of distances,
is used to shrink each element to 8 bits (16×32 bits → 16×8 bits). We group vectors
and quantize distances to build the first four small tables, S0, . . . ,S3. We compute
minimum tables and quantize distances to build the last four small tables, S4, . . . ,S7.
Figure 4.3 summarizes this process.

Dj

0 ≤ j < 4 Vector grouping Quantization Sj

0 ≤ j < 4

256×32 bits 16×32 bits 16×8 bits

Dj

4 ≤ j < 8 Minimum tables Quantization Sj

4 ≤ j < 8

256×32 bits 16×32 bits 16×8 bits

Figure 4.3: Small tables building process

4.2.2 Code Grouping
Database vectors are stored as short codes, which consist of 8 components of 8

bits (Figure 4.5a). When computing between a code and the query vector, each
component is used as an index in the corresponding distance table, e.g., the 1st
component is used as an index in the 1st distance table (Algorithm 1, Section 2.3.3).
The key idea behind code grouping is to group vectors such that all codes belonging
to a group hit the same portion of 16 elements of a distance table.

We focus on the first distance table, D0. We group vectors on their first component
and divide the D0 table into 16 portions, of 16 elements each (Figure 4.4). All
database vectors c having a first component c[0] between 00 and 0f (0 to 15) will
trigger lookups in portion 0 of D0 when computing the distance. These vectors form

42



4.2. Presentation

7 2 · · · 1 8 3 · · · 5 · · · 6 9 · · · 5D0

00 0f 10 1f f0 ff

portion 0 portion 1 portion 15

Figure 4.4: Portions of the first distance table

group 0. All vectors having a first component between 10 and 1f (16 to 31) will
trigger lookups in portion 1 of D0. These vectors form the group 1. We define 16
groups in this way. Each group is identified by an integer i, and contains database
vectors c such that:

16(i− 1) ≤ c[0] < 16i

and only requires the portion i of the first distance table, D0. We apply the same
grouping procedure on the 2nd, 3rd and 4th components. Eventually, each group is
identified by four integers (i0, i1, i2, i3), each belonging to [0; 16[ and contains vectors
such that:

16(i0 − 1) ≤ c[0] < 16i0 ∧ 16(i1 − 1) ≤ c[1] < 16i1 ∧
16(i2 − 1) ≤ c[2] < 16i2 ∧ 16(i3 − 1) ≤ c[3] < 16i3

Figure 4.5b shows a database where all vectors have been grouped. We can see that
all vectors in the group (3, 1, 2, 0) have a first component between 30 and 3f, a second
component between 10 and 1f, etc. To compute the distance of the query vector to
any vector of a group (i0, i1, i2, i3), we only need a portion of D0, D1, D2 and D3.
Before scanning a group, we load the relevant portions of D0, · · · ,D3 into 4 SIMD
registers to use them as the small tables S0, · · · ,S3. This process is shown by solid
arrows on Figure 4.9.

0 1 0 3 0 2 0 5 0 6 0 9 0 4 0 8
3 f 1 1 2 1 0 0 0 1 f 2 1 2 1 1
f 6 f f f 6 f 0 2 3 0 b b 6 2 f
f 5 f c f f f 1 4 6 3 3 c f 2 c
0 8 0 a 0 b 0 1 3 d b c 8 2 d 6
0 e 0 6 0 2 1 9 b 0 8 e c 9 1 3
0 1 0 2 0 8 0 4 a 1 9 7 6 d a f
3 4 1 6 2 5 0 6 2 3 9 2 b c d 1

...

(a) Unordered vectors

0 0 0 0
0 1 0 3 0 2 0 5 0 6 0 9 0 4 0 8
0 8 0 a 0 b 0 1 3 d b c 8 2 d 6

......
3 1 2 0
3 f 1 1 2 1 0 0 0 1 f 2 1 2 1 1
3 4 1 6 2 5 0 6 2 3 9 2 b c d 1

......
f f f f
f 5 f c f f f 1 4 6 3 3 c f 2 c
f 6 f f f 6 f 0 2 3 0 b b 6 2 f

...
(b) Grouped vectors

Figure 4.5: Code grouping

43



4. PQ Fast Scan

23

3100

03

10

33
30

02

22

11
13

21

32

12

20

01

(a) Arbitrary assignment

02

0100

03

31

33
10

12

13

11
32

21

23

22

20

30

(b) Optimized assignment

Figure 4.6: Centroid indexes assignement

We applying grouping on g = 4 components as it is a good tradeoff between pruning
power and constraints on inverted list sizes. Grouping on g = 4 components allows
pruning 95-99% distance computations, and thus offers a large speedup. Grouping
on less that 4 components, e.g., 3 components, strongly impacts the tightness of
lower bounds, and therefore strongly decreases pruning efficiency. This prevents PQ
Fast Scan from offering a significant speedup, as it is not able to prune enough slow
distance computations. On the other hand, grouping on more than 4 components,
e.g., 5 components, does not substantially increases pruning power, while it imposes
more constraints on the size of inverted lists. The number of groups created by code
grouping is given by P g, where P is the number portions in a lookup table (P = 16
in our case), and g is the number of components used for grouping. Therefore, the
average size of a group is given by s = n/P g. For best performance, s should exceed
smin = 50 codes. Before scanning a group, we load portions of lookup tables in
SIMD registers, which is quite costly. If the group comprises less than 50 vectors, a
large part of the CPU time is spent loading distance tables. This is detrimental to
performance, as shown by our experimental results (Section 4.3.6). The minimum
inverted list size nmin(g) to be able to group vectors on g components is therefore
given by nmin(g) = smin · P g, and increases exponentially with the number of com-
ponents used for grouping. For g = 4, the minimum inverted list size is 3 million
vector (smin = 50,P = 16).

Grouping vectors also allows decreasing the amount of memory consumed by the
database by approximatively 25%. In a group, the 1st component of all vectors has
the same 4 most significant bits. As we apply grouping on the 4 first components,
their 2nd, 3rd and 4th components also have the same most significant bits. We
can therefore avoid storing the 4 most significant bits of the 4 first components each
database vector. This saves 4 × 4 bits = 16 bits on the 8 × 8 bits = 64 bits of each
vector, which leads to a 25% reduction in memory consumption. Thus, on Figure
4.5b, the grayed out hexadecimal digits (which represent 4 bits) may not be stored.

4.2.3 Minimum Tables
We grouped vectors to build the first four small tables S0, · · · ,S3. To build the last

four small tables, S4, · · · ,S7 we compute minimum tables. This involves dividing the
original distance tables, D4, · · · ,D7, into 16 portions of 16 elements each. We then

44



4.2. Presentation

Distance Tables

2 5 . . .1 4 6 . . . 8 . . . . . . 6 1 . . .1
4 6 . . .3 8 7 . . .3 . . . . . . 7 8 . . .7
1 1 . . . 4 1 3 . . . 2 . . . . . . 0 2 . . . 6

7 5 . . .2 5 2 . . . 4 . . . . . . 2 6 . . .0

Minimum Tables

1 4 . . . 1

3 3 . . . 7

1 1 . . . 0

2 2 . . . 0

00 10 f0 0 f
D4

D7

=⇒

Figure 4.7: Minimum tables

keep the minimum of each portion to obtain a table of 16 elements. This process
is shown on Figure 4.7. Using the minimum tables techniques alone results in small
tables containing low values, which is detrimental to PQ Fast Scan performance. If
these values are too low, the computed lower bound is not tight, i.e., far from the
actual distance. This limits the ability of PQ Fast Scan to prune costly distance
computations.

To obtain small tables with higher values, we introduce an optimized assignment of
sub-quantizer centroids indexes. Each value Dj [i] in a distance table is the distance
between the jth sub-vector of the query vector and the centroid with index i of the
jth sub-quantizer (Section 2.3.3). When a sub-quantizer is learned, centroids indexes
are assigned arbitrarily. Therefore, there is no specific relation between centroids
having indexes corresponding to a portion of a distance table (e.g., centroids having
indexes between 00 and 0f). On the contrary, our optimized assignment ensures that
all indexes corresponding to a given portion (e.g., 00 to 0f) are assigned to centroids
close to each other, as shown on Figure 4.6. Centroids corresponding to the same
portion have the same background color. For the sake of clarity, Figure 4.6 shows
4 portions of 4 indexes, but in practice we have 16 portions of 16 indexes. This
optimized assignment is beneficial because it is likely that a query sub-vector close
to a given centroid will also be close to nearby centroids. Therefore, all values in
a given portion of a distance table will be close. This allows computing minimum
tables with higher values, and thus tighter lower bounds. To obtain this optimized
assignment, we group centroids into 16 clusters of 16 elements each using a variant
of k-means that forces groups of same sizes [50]. Centroids in the same cluster are
given consecutive indexes, corresponding to one portion of a distance table. This
optimized assignment of centroid indexes replaces the arbitrary assignement applied
while learning sub-quantizers.

4.2.4 Quantization of Distances
The vector grouping and minimum tables techniques are used to build tables of 16

elements of 32 bits each, from the original Dj distance tables (256 × 32 bits). So that
these tables can be used as small tables, we also need to shrink each element to 8 bits.
To do so, we quantize floating-point distances to 8-bit integers. As there is no SIMD
instruction to compare unsigned 8-bit integers, we quantize distances to signed 8-bit
integers, only utilizing their positive range, i.e., 0-127. We quantize floating-point
distances between a qmin and a qmax bound into n = 127 bins. The size of each bin

45



4. PQ Fast Scan

is (qmax− qmin)/n and the bin number (0-126) is used as a representation value for
the quantized float. All distances above qmax are quantized to 127 (Figure 4.8).

qmin0 qmax
∑

j maxDj

0 1 . . . 126 127

Figure 4.8: Selection of quantization bounds

We set qmin to the minimum value across all distance tables, which is the smallest
distance we need to represent. Setting qmax to the maximum possible distance,
i.e., the sum of the maximums of all distance tables, results in a high quantization
error. Therefore, to determine qmax, we find a temporary nearest neighbor of the
query vector among the init% first vectors of the database (usually, init ≈ 1%)
using the conventional ADC Scan procedure. We then use the distance between the
query vector and this temporary nearest neighbor as qmax bound. We do not need
to represent distances higher than this distance because all future nearest neighbor
candidates will be closer to the query vector than this temporary nearest neighbor.
This choice of qmin and qmax bounds allows us to represent a small but relevant range
of distances (Figure 4.8). Quantization error is therefore minimal, as confirmed by
our experimental results (Section 4.3.5). Lastly, to avoid integer overflow issues, we
use saturated SIMD additions.

4.2.5 Lookups in Small tables
For the sake of clarity, we do not fully describe the SIMD implementation of PQ

Fast Scan. Instead, we focus on describing which small tables are used, and how
they are indexed to compute lower bounds. The first four small tables, S0, . . . ,S3

correspond to quantized portions of D0, . . . ,D3. We load these quantized portions
into SIMD registers before scanning each group, as shown by the solid arrows on
Figure 4.9. Thus, two different groups use different small tables S0, . . . ,S3. On the
contrary, the last four small tables, S4 . . . ,S7, built by computing minimum tables
do not change and are used to scan the whole database. They are loaded into SIMD
registers at the beginning of the scan process.

As small tables contain 16 values, they are indexed by 4 bits. Given a database
vector p, we use the 4 least significant bits of c[0], . . . , c[3] to index values in S0, . . . ,S3

and the 4 most significant bits of c[4], . . . , c[7] to index values in S4, . . . ,S7. Indexes

Database

3 1 2 0

3 f 1 1 2 1 0 0 0 1 f 2 1 2 1 1

3 4 1 6 2 5 0 6 2 3 9 2 b c d 1

3 7 1 a 2 1 0 0 3 2 8 b e 9 0 3

...

S0 . . . S3 (Code Grouping)

9 0 . . . 5 6 7 . . . 4 7 4 . . . 7 6 4 . . . 6 . . . . . . . . .

6 7 . . . 0 8 8 . . . 1 8 5 . . . 8 1 6 . . . 6 . . . . . . . . .

3 6 . . . 4 4 4 . . . 5 4 1 . . . 5 1 7 . . . 5 . . . . . . . . .

4 7 . . . 1 4 5 . . . 7 1 6 . . . 5 2 5 . . . 4 . . . . . . . . .

S4 . . . S7 (Minimum Tables)

1 4 2 . . . 0

3 3 1 . . . 5

1 1 7 . . . 3

2 2 1 . . . 2

00 10 20 30 40 ff 0 f

D0

D3

S4

S7

Figure 4.9: Use of small tables to compute lower bounds

46



4.3. Evaluation

are circled on Figure 4.9 (the 4 most significant bits correspond to the first hexadeci-
mal digit, and the 4 least significant bits to the second hexadecimal digit) and lookups
in small tables are depicted by dotted arrows. Lookups depicted by dotted arrows are
performed using SIMD in-register shuffles. To efficiently use SIMD in-register shuf-
fles, we need to transpose the vectors in each group, as in the gather implementation
of ADC Scan (Section 3.2). However we do not show this transposition on Figure
4.9 for the sake of clarity. To compute the lower bound, we add the 8 looked up
values. To decide on pruning distance computations, the lower bound is compared
to the quantized value of min, the distance between the query vector and the current
nearest neighbor.

4.3 Evaluation

The aim of this section is twofold: evaluating the performance of PQ Fast Scan and
analyzing the parameters that influence it. We show that PQ Fast Scan outperforms
ADC Scan by a factor 4-6 in common usage scenarios.

4.3.1 Experimental Setup
We implemented PQ Fast Scan in C++ using intrinsics, which allow accessing

SIMD instructions from C or C++, without writing assembly code [33, 32]. Our
implementation uses 128-bit SIMD instructions from the SSSE3, SSE3 and SSE2
instruction sets. We compared our implementation of PQ Fast Scan with the libpq
implementation of the ADC Scan procedure, introduced in Section 3.1. On all our
test platforms, we used the gcc and g++ compilers version 4.9.2, with the follow-
ing compilation options: -O3 -m64 -march=native -ffast-math. We released our
source code1 under the Clear BSD license.

Table 4.2: Size of inverted lists used for experiments

Inverted list ID 0 1 2 3 4 5 6 7
# vectors 25M 3.4M 11M 11M 11M 11M 4M 23M
# queries 2595 307 1184 1032 1139 1036 390 2317

We evaluate PQ Fast Scan on the largest public dataset of high-dimensional vec-
tors, ANN_SIFT1B2. It consists of 3 parts: a learning set of 100 million vectors,
a base set of 1 billion vectors and a query set of 10000 vectors. We restricted the
learning set for the product quantizer to 10 million vectors. Vectors of this dataset
are SIFT descriptors of dimensionality 128. We use two subsets of ANN_SIFT1B for
experiments:

• ANN_SIFT100M1, a subset of 100 million vectors of the base set. We build
an index with 8 inverted lists; each query is directed to the most relevant
inverted list which is then scanned with PQ Fast Scan and ADC Scan. Table
4.2 summarizes the sizes of the different inverted lists.

1. https://github.com/technicolor-research/pq-fast-scan
2. http://corpus-texmex.irisa.fr/

47

https://github.com/technicolor-research/pq-fast-scan
http://corpus-texmex.irisa.fr/


4. PQ Fast Scan

Table 4.3: Response time distribution

Mean 25% Median 75% 95%
ADC Scan (libpq) 73.9 73.6 73.8 74.0 74.5
PQ Fast Scan 13.7 12.3 12.9 14.1 18.0
Speedup 5.4 6.0 5.7 5.2 4.1

• ANN_SIFT1B, the full base set of 1 billion vectors to test our algorithm on a
larger scale.

We study the following parameters impacting the performance of PQ Fast Scan:

• init, the percentage of vectors kept at the beginning of the database (Section
4.2.4). Even when using PQ Fast Scan, these vectors are scanned using the
conventional ADC Scan procedure to find a temporary nearest neighbor. The
distance of the query vector to the temporary nearest neighbor is then used as
the qmax value for quantization of distance tables.

• r, the number of nearest neighbors returned by the search process. For the sake
of simplicity, we described ADC Scan and PQ Fast Scan as if they returned
a single nearest neighbor. In practice, they return multiple nearest neighbors
e.g., r = 100 for information retrieval in multimedia databases.

• inverted list size, the number of vectors in the scanned inverted list size.

We compare the performance of PQ Fast Scan, and the libpq implementation of
ADC Scan. We compare their respective scan speed, expressed in millions of codes
scanned per second (M codes/s). Scan speed is obtained by dividing response times
by the size of inverted lists. We do not evaluate PQ Fast Scan accuracy, recall or
precision because PQ Fast Scan returns the exact same results as ADC Scan and
PQ accuracy has already been extensively studied [39]. In addition to theoretical
guarantees, we checked that PQ Fast Scan returned the same results as the libpq
implementation of ADC Scan for every experiment. Lastly, we run PQ Fast Scan
across a variety of different platforms (Table 4.4) and demonstrate it consistently
outperforms ADC Scan by a factor of 4-6. All experiments were run on a single
processor core. Unless otherwise noted, experiments were run on laptop (A) (Table
4.4).

4.3.2 Distribution of Response Times
We study the distribution of PQ Fast Scan response times. Contrary to ADC

Scan, PQ Fast Scan response time varies with the query vector. Indeed, PQ Fast
Scan performance depends on the amount of asymmetric distance computations that
can be pruned, which depends on the query vector. Figure 4.10 shows the distribution
of response times of 2595 nearest neighbor queries executed on the inverted list 0. As
expected, ADC Scan response time is almost constant across different query vectors.
PQ Fast Scan response time is more dispersed, but it responds to the bulk of queries 4-
6 times faster than ADC Scan, as shown in Table 4.3. In the remainder of this section,
when studying the impact of different parameters on PQ Fast Scan performance, we

48



4.3. Evaluation

20 40 60 80
0

0.2

0.4

0.6

Response time (ms)
cycles instructions L1 loads

0

10

20

30

11

34

9

1.9 3.6
1.3

IPC
0

1

2

3
3.1

2

ADC Scan (libpq) PQ Fast Scan

Figure 4.10: Distribution of response times, performance counters and IPC

plot median response times or median scan speeds. We use the 1st quartile (25th
percentile) and 3rd quartile (75th percentile) to draw error bars. Because it directly
impacts performance, we also plot the percentage of pruned distance computations.

4.3.3 Performance Counters
We use performance counters to measure the usage of CPU resources of PQ Fast

Scan and ADC Scan when scanning the inverted list 0 (Figure 4.10). Thanks to the
use of register-resident small tables, PQ Fast Scan only performs 1.3 L1 loads per
scanned vector, where the libpq implementation of ADC Scan requires 9 L1 loads.
PQ Fast Scan requires 89% less instructions than ADC Scan thanks to the use of
SIMD instructions instead of scalar ones (respectively 3.7 and 34 instructions per
scanned vector). PQ Fast Scan uses 83% less cycles than ADC Scan (respectively 1.9
and 11 cycles per vector). The decrease in cycles is slightly less than the decrease in
instructions because PQ Fast Scan has a lower IPC than ADC Scan. This is because
SIMD instructions can be less easily pipelined than scalar instructions.

4.3.4 Impact of init and r Parameters
Both init and r impact the amount of pruned distance computations, and thus

PQ Fast Scan performance. For information retrieval in multimedia databases, r
is often set between 100 and 1000. Therefore, we start by studying the impact of
init for r = 100 and r = 1000. The init parameter impacts the tightness of the
qmax bound used for quantization. A higher init value means more vectors are
scanned using the conventional ADC Scan procedure to find a temporary nearest
neighbor (Section 4.2.4). This makes the qmax bound tighter and decreases the
distance quantization error. Figure 4.11 shows that the pruning power increases with
init; however this increase is moderate. For r = 1000, the pruning power is lower
than for r = 100 and more sensitive to init. PQ Fast Scan can prune a distance
computation if the lower bound of the currently scanned vector is higher than the
distance between the query vector and the current rth nearest neighbor. A higher r
value implies a higher distance between the query vector and the rth nearest neighbor.
Therefore, less distance computations can be pruned.

49



4. PQ Fast Scan

10−2 10−1 100 101

96

98

100

init (%)

Pr
un

ed
(%

)

10−2 10−1 100 101

500

1,000

1,500

2,000

init (%)

Sc
an

sp
ee

d
(M

co
de

s/
s)

PQ Fast Scan (r=100) PQ Fast Scan (r=1000)
ADC Scan (libpq r=100) ADC Scan (libpq r=1000)

Figure 4.11: Impact of init Parameter (all inverted lists)

The scan speed increases slightly with init as more distance computations get
pruned, up to a threshold where it starts to collapse. After this threshold, the increase
in pruned distance computations provided by the tighter qmax bound is outweighed
by the increased time spent scanning the first init% vectors using the slow ADC Scan
procedure. Overall, PQ Fast Scan is not very sensitive to init, and a decent qmax
bound is found quickly. Any init value between 0.1% and 1% is suitable. We set
init = 0.5% for the remainder of experiments. Lastly, we evaluate PQ Fast Scan
performance for more r values. Figure 4.12 confirms that PQ Fast Scan performance
decreases with r.

4.3.5 Impact of Distance Quantization
PQ Fast Scan uses three techniques to build small tables: (1) vector grouping, (2)

minimum tables and (3) quantization of distances. Among these three techniques,
minimum tables and quantization of distances impact the tightness of lower bounds,

102 103
97

98

99

100

r

Pr
un

ed
(%

)

102 103

1,000

2,000

r

Sc
an

sp
ee

d
(M

co
de

s/
s)

ADC Scan (libpq) PQ Fast Scan

Figure 4.12: Impact of r Parameter (all inverted lists, init=0.5%)

50



4.3. Evaluation

10−2 10−1 100
99.7

99.8

99.9

100

init (%)

Pr
un

ed
(%

)

r=100 r=1000

Figure 4.13: Pruning power using quantization only (all inverted lists)

and therefore pruning power. To assess the respective impact on pruning power of
these two techniques, we implement a quantization-only version of PQ Fast Scan
which relies only on quantization of distances (Figure 4.13). This version uses tables
of 256 8-bit integers, while the full version of PQ Fast Scan uses tables of 16 8-bit
integers. Therefore, the quantization-only version cannot use SIMD and offers no
speedup. Hence, Figure 4.13 shows only the pruning power and does not show the
scan speed. The quantization-only version of PQ Fast Scan achieves 99.9% to 99.97%
pruning power. This is higher than the pruning power of the full version of PQ Fast
Scan (i.e., using the three techniques) which is 98% to 99.7% (Figure 4.11). This
demonstrates that our quantization scheme is highly efficient and that most of the
loss of pruning power comes from minimum tables.

4.3.6 Impact of the Size of Inverted Lists
The size of inverted lists impacts scan speed without impacting pruning power

(Figure 4.14). Inverted lists 0, 7, 2, 4, 5 and 3 have sizes comprised between 10 million
vectors and 25 million vectors, and PQ Fast Scan speed is almost constant across all

0 7 2 4 5 3 6 1
90

95

100

Inverted list ID

Pr
un

ed
(%

)

0 7 2 4 5 3 6 1

500

1,000

1,500

2,000

Inverted list ID

Sc
an

sp
ee

d
(M

co
de

s/
s)

ADC Scan (libpq) PQ Fast Scan

Figure 4.14: Impact of inverted list size (init=0.5%, r=100)

51



4. PQ Fast Scan

Table 4.4: Systems

laptop (A) workstation (B) server (C) server (D)
CPU Model Core Xeon Xeon Xeon

i7-4810MQ E5-2609v2 E5-2640 X5570
CPU Arch. Haswell Ivy Bridge Sandy Bridge Nehalem
CPU Freq. 2.8-3.8 Ghz 2.5-2.5 Ghz 2.5-3.0 Ghz 2.9-3.33 Ghz
Mem. 8 GB 16 GB 64 GB 24 GB

(2× 4 GB) (4× 4 GB) (4× 16 GB) (6× 4 GB)
Mem. Type DDR3 DDR3 DDR3 DDR3
Mem. Freq. 1600 Mhz 1333 Mhz 1333 Mhz 1066 Mhz

theses inverted lists. Smaller inverted lists, e.g., inverted lists 6 and 1, exhibit lower
scan speeds. PQ Fast Scan groups vectors on 4 components for inverted lists exceeding
3 million vectors, (Section 4.2.2). As inverted lists sizes approaches this threshold,
the scan speed decreases. This is because the inverted list size s approaches the
minimum inverted list size of smin = 50 codes. Small tables are loaded too frequently
in comparison with the number of codes scanned, which impacts performance.

4.3.7 Large Scale Experiment

We test PQ Fast Scan on the full database of 1 billion vectors (ANN_SIFT1B).
For this database, we build an index which divides the database into 128 inverted
lists. Inverted lists therefore have an average size of about 8 million vectors. We
run 10000 NN queries. The most appropriate inverted list for each query is selected
using the index, and scanned to find nearest neighbors. We scan inverted lists using
both ADC Scan and PQ Fast Scan, and we compare mean response times to queries
(Figure 4.15, SIFT1B). In addition to its lower response time, PQ Fast Scan also
allows decreasing the amount of memory consumed by the database thanks to vector
grouping (Section 4.2.2). Unlike previous experiments, this experiment was run on
workstation (B) instead of laptop (A) (Table 4.4). The parameters init = 1%, r = 100
were chosen.

4.3.8 Impact of CPU Architecture

To conclude our evaluation section, we compare PQ Fast Scan and ADC Scan
over a wide range of using processors released between 2009 and 2014 (Table 4.4).
On all these systems, PQ Fast Scan median speed exceeds ADC Scan median speed
by a factor of 4-6, thus validating our performance analysis and design hypotheses
(Figure 4.15, Scan speed). In addition, PQ Fast Scan performance is not sensitive to
processor architecture. PQ Fast Scan loads 6 bytes from memory for each lower bound
computation. Thus, a scan speed of 2000 M codes/s correspond to a bandwidth use
of 16 GB/s. The memory bandwidth of Intel server processors ranges from 40 GB/s
to 70 GB/s. When answering 8 queries concurrently on an 8-core server processor,
PQ Fast Scan is bound by the memory bandwidth, thus demonstrating its highly
efficient use of CPU resources.

52



4.4. Discussion

(B)
0

2

4

6

8

M
em

or
y

us
e

(G
iB

)

(B)
0

20

40

M
ea

n
re

sp
on

se
tim

e
(m

s)

(A) (B) (C) (D)
0

1,000

2,000

Sc
an

sp
ee

d
(M

co
de

s/
s)

ADC Scan (libpq) PQ Fast Scan

Figure 4.15: Experiments on other CPU architectures (see Table 4.4)

4.4 Discussion

4.4.1 Compatibility with Inverted Indexes
The main limitation of PQ Fast Scan is that it is not compatible with the most

advantageous configurations of inverted indexes. Inverted indexes are commonly
combined with product quantization to decrease response time and increase accuracy.
It has been shown that using an inverted index that partitions the database into
a large number of small inverted lists (fine partitioning) offers better results than
an inverted index that partitions the database into a small number of inverted lists
(Section 2.3.2). For large datasets (e.g., 1 billion vectors), it is common to use inverted
indexes that partitions the database into K = 8192 − 65536 inverted lists. Inverted
lists therefore have a size of s = 15000− 200000 codes. On the other hand, PQ Fast
Scan requires inverted lists of at least 3 million vectors (Section 4.2.2), and works
better with larger inverted lists (Section 4.3.6). In practice, this makes it difficult to
combine the speedup provided by fine inverted indexes and the speedup provided by
PQ Fast Scan. In our experiments on a 1 billion vector dataset (Section 4.3.7), we
used an inverted index with only K = 128 inverted lists. The mean size of inverted
lists is therefore of 8 million codes, ideal for PQ Fast Scan. Combining a finer inverted
index (e.g.,, with K = 8192 − 65536 inverted lists) with PQ Fast Scan would have
offered an even better speedup, but this is currently not possible.

Two factors mitigate this issue. First, in very large databases i.e., exceeding hun-
dreds of billions of vectors, inverted lists may exceed 3 million codes, even if a fine
inverted index is used. Second, the upcoming AVX-512 SIMD instruction set will
allow PQ Fast Scan to work with smaller inverted lists. The constraints on inverted
lists sizes imposed by PQ Fast Scan come from code grouping (Section 4.2.2). We
showed that the minimum inverted list size is given by nmin(g) = smin·P g, where
smin is the minimum number of codes per group (in our case smin = 50), and P is
the number of portions in lookup tables. The current version of PQ Fast Scan relies
on 128-bit in-register shuffles, which allows for small tables of 16 elements (16×8
bits). Lookup tables therefore have to be divided into P = 256/16 = 16 portions,
which leads to a minimum inverted list size nmin(4) = 50 · 164 of 3 million codes.
The AVX-512 version of PQ Fast Scan would use 512-bit in-register shuffles, and

53



4. PQ Fast Scan

allow for small tables of 64 elements (64×8 bits). Lookup tables would therefore be
divided in P = 256/64 = 4 portions, which would lead to a minimum inverted list
size nmin(4) = 50 ·44 of 12000 codes. Moreover, using minimum tables of 64 elements
instead of 16 would allow grouping on 3 components instead of 4 components without
impacting pruning power too strongly. The minimum inverted list size nmin(3) of
the AVX-512 version of PQ Fast Scan may be as low as 3000 codes. Therefore, the
AVX-512 version of PQ Fast Scan would be compatible with almost all configurations
of inverted indexes.

4.4.2 Applicability to Product Quantization Derivatives
As currently designed, PQ Fast Scan is only compatible with m×b = 8×8 product

quantizers (64-bit codes). Minor adjustments may however make it compatible with
other m×8 product quantizers, e.g., 16×8 product quantizers (128-bit codes). In all
cases, it is only possible to use code grouping for g = 4 components (Section 4.2.2).
For 16×8 product quantizers, this means that we would need to use the minimum
tables technique on m − g = 16 − 4 = 12 tables. Experiments would be required to
determine if PQ Fast Scan still has a high enough pruning power to offer a significant
speedup in this scenario. Making PQ Fast Scan compatible with m×8 product quan-
tizers with m < 8, e.g., 4×8 product quantizers (32-bit codes) would be easy. These
cases are indeed less challenging than 8×8 product quantizers. Code grouping can
still be used to build g = 4 (or less) small tables. This means that minimum tables
have to be computed for only m − g < 4 tables and therefore guarantees that PQ
Fast Scan will have a high enough pruning power. However, this type of codes is still
rarely used. Making PQ Fast Scan compatible with b parameters other than b = 8
would not make much sense, as it would require changing the whole algorithm. PQ
Fast Scan has been designed to work with lookup tables of 256 floating-point values,
resulting from the use of 8-bit sub-quantizers.

In Section 2.3.4, we presented derivatives of product quantization, that have been
recently introduced: Optimized Product Quantization (OPQ), Additive Quantiza-
tion (AQ), Tree quantization (TQ) or composite quantization (CQ). Like product
quantization, these approaches represent high-dimensional vectors by a combination
of m centroids taken from m codebooks of 2b centroids each. All these approaches
offer a lower quantization error than product quantization. These approaches use (1)
a different process to learn quantizer codebooks, and (2) a different ADC procedure
from the one of product quantization. We discuss the applicability of PQ Fast Scan
to these derivatives of product quantization.

The codebook learning process of OPQ, AQ, TQ and CQ has only been tested
with 8-bit sub-quantizers (m×8 codes). PQ Fast Scan also relies on the use of 8-bit
sub-quantizers, thus it requires no changes to the codebook learning process of these
product quantization derivatives. Besides, OPQ and CQ use the same ADC procedure
as product quantization. Therefore, the adaptation of PQ Fast Scan to OPQ or CQ
is straightforward. The case of AQ and TQ is more challenging. The ADC process
of AQ requires about m+m2/2 table lookups and additions, while the ADC process
of TQ requires about 2·m tables lookups and additions. In all cases, PQ Fast Scan
groups codes on g = 4 components and computes minimum tables for the remaining
tables. For AQ, this means that g + g2/2 small tables would be built using code

54



4.4. Discussion

grouping, and (m− g)+ (m− g)2/2 small tables would be built computing minimum
tables. Likewise, for TQ, 2g tables would be built using code grouping and 2(m− g)
small tables would be built computing minimum tables. In both cases, experiments
are required to determine if this combination of code grouping and minimum tables
provides a high enough pruning power. If this is the case, PQ Fast Scan would be
able to provide a higher speedup for AQ and TQ than for PQ. As these derivatives
require more additions (m +m2/2 and 2m) than product quantization, they would
benefit more of the speedup offered by SIMD additions.

55





5 Quick ADC

Contents

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 SIMD Distance Computations . . . . . . . . . . . . . . . . . . . 59

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.2 Exhaustive Search in SIFT1M . . . . . . . . . . . . . . . . . . 62
5.3.3 Non-exhaustive Search in SIFT1M . . . . . . . . . . . . . . . . 64
5.3.4 Non-exhaustive Search in GIST1M . . . . . . . . . . . . . . . . 65
5.3.5 Non-exhaustive Search in Deep1M . . . . . . . . . . . . . . . . 66
5.3.6 Non-exhaustive Search in SIFT1B . . . . . . . . . . . . . . . . 67

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.1 Compatibility with Inverted Indexes . . . . . . . . . . . . . . . 68
5.4.2 Applicability to Product Quantization Derivatives . . . . . . . 68

5.1 Motivation

Even if product quantization is among the fastest nearest neighbor search ap-
proaches, we have shown that the procedure used to scan inverted lists of short codes
has a low computational efficiency. We have proposed PQ Fast Scan, a highly efficient
scan procedure that replaces slow cache accesses by fast SIMD in-register shuffles.
Replacing cache accesses by SIMD in-register shuffles requires building small tables
that fit SIMD registers. PQ Fast Scan achieves this result by (1) grouping codes, (2)
computing minimum tables and (3) quantizing floating-point distances to 8-bit inte-
gers. We have shown that grouping codes imposes a minimum size on inverted lists.
This makes it impossible to combine PQ Fast Scan with inverted indexes, another
widespread search acceleration technique.

In this chapter, we introduce Quick ADC, a fast scan procedure that can be com-
bined with inverted indexes. Like PQ Fast Scan, Quick ADC offers a 4-6 speedup
over the conventional scan procedure. Quick ADC also builds on the idea of replac-
ing costly cache accesses by cheap SIMD in-register shuffles. Unlike PQ Fast Scan,
Quick ADC achieves this results by (1) using 4-bit sub-quantizers and (2) quantizing
floating-point distances to 8-bit integers. Using 4-bit sub-quantizers makes it possible

57



5. Quick ADC

to build small tables that fit SIMD registers, without imposing size constraints on
inverted lists. On the flip side, using 4-bit sub-quantizers (m×4 codes) instead if the
commonly used 8-bit sub-quantizers (m×8 codes) causes a slight decrease in recall.
We however show that this decreases is generally small to negligible and unlikely
to have a practical impact. More specifically, this chapter addresses the following
points:

• We briefly present the key points of the design of Quick ADC. We show that
using 4-bit sub-quantizers allows fast distance computations relying on SIMD
in-register shuffles.

• We evaluate Quick ADC in a wide range range of scenarios. We evaluate the
recall of Quick ADC not only on SIFT descriptors (128 dimensions), but also on
more challenging types of vectors such as deep neural codes (256 dimensions)
or GIST descriptors (960 dimensions). We show that Quick ADC only causes
a slight decrease in recall, especially when combined with inverted indexes and
optimized product quantization. In all cases, Quick ADC yields 4-6 times better
performance than the conventional scan procedure.

• We discuss the differences between PQ Fast Scan and Quick ADC. We review
the applicability of Quick ADC to derivatives of product quantization.

5.2 Presentation

5.2.1 Overview
4-bit sub-quantizers Quick ADC relies on SIMD in-register shuffles for distance
computations. We have demonstrated that SIMD in-register shuffles offer much better
performance than cache accesses or SIMD gather operations. Thus, SIMD in-register
shuffles perform 16 table lookups in 1 cycle while caches accesses only perform 1
tables lookup in 1 cycle. However, SIMD in-register shuffles require lookup tables
to be stored in SIMD registers, and limit their size to 16 elements of 8 bit each
(Section 4.2.1). Quick ADC achieves this result by (1) imposing the use of 4-bit
sub-quantizers and (2) quantizing floating point distances to 32-bit integers. Using
4-bit sub-quantizers inherently lead to lookup tables of 16 elements, without any
additional modifications. An m×b product quantizer generates m lookup tables of
2b elements each. An m×8 product quantizer (product quantizer with 8-bit sub-
quantizers) generates lookup tables of 28 = 256 floating-point values. As PQ Fast
Scan uses 8-bit sub-quantizers, it has to perform additional modifications to shrink
lookup tables of 256 values to 16 values (grouping codes, and computing tables of
minimums). By contrast, an m×4 product quantizer (product quantizer with 4-bit
sub-quantizers) generates lookup tables of 24 = 16 floating-point values. Therefore,
Quick ADC does not need to perform additional modifications to obtain lookup tables
of 16 elements.

Floating-point quantization Although product quantizers that use 4-bit sub-
quantizers inherently generate lookup tables of 16 elements, these elements are 32-bit
floating-point distances. SIMD in-register shuffles require lookup tables of 16 elements
of 8-bit each (16×8 bit). Therefore, like in PQ Fast Scan we quantize floating-
point distances to 8-bit integers (Section 4.2.4). As there is no SIMD instruction

58



5.2. Presentation

Algorithm 2 ANN Search with Quick ADC
1: function lookup_add(comps,Dj , acc) ▷ Fig. 5.2
2: r128 masked ← simd_and(comps, 0x0f)
3: r128 partial ← simd_shuffle(comps,Dj)
4: return simd_add_saturated(acc, partial)
5: function quick_adc_block(blk, {Dj}m−1

j=0 )
6: r128 acc← {0}
7: for j ← 0 to m/2− 1 do
8: r128 comps← simd_load(blk + j · 16)
9: acc← lookup_add(comps,D2j , acc)

10: comps← simd_right_shift(comps, 4) ▷ Fig. 5.3
11: acc← lookup_add(comps,D2j+1, acc)

return acc
12: function quick_adc_scan(tlist, {Dj}m−1

j=0 ,R)
13: neighbors← binheap(R)
14: for blk in tlist do
15: r128 acc← quick_adc_block(blk, {Dj}m−1

j=0 )
16: extract_matches(acc, neighbors)
17: return neighbors

to compare 8-bit unsigned integers, we quantize distances to 8-bit integers, only
using their positive range. Like in PQ Fast Scan, we quantize dsitances between a
qmin and qmax bound intro n = 127 bins (0-126) uniformly. Values above qmax are
quantized to 127. We compute qmin and qmax as in PQ Fast Scan. Thus, qmin is
the minimum value across all lookup tables. To determine qmax we scan init vectors
to find a temporary nearest neighbor. We use the distance of the query vector to this
temporary nearest neighbor as the qmax bound.

5.2.2 SIMD Distance Computations
As the Quick ADC algorithm is simpler than PQ Fast Scan, we are able to detail

how we utilize SIMD instructions to implement it. In the evaluation section, we
use a 256-bit version of Quick ADC implemented with the new AVX 256-bit SIMD
instruction set. Yet, for the sake of simplicity, we describe a 128-bit version of Quick
ADC, and show how to generalize it to 256-bit SIMD at the end of the section.
The 128-bit version of Quick ADC has also the advantage of being compatible with
older Intel CPUs and ARM CPUs. The two versions are similar, as 256-bit SIMD
in-register shuffles do not perform full-length shuffles on 256-bit (32×8 bit) lookup
tables. Instead, 256-bit SIMD in-registers perform shuffles in two independent 128-bit
tables, stored in two independent 128-bit lanes. The speedup provided by the 256-bit

a1 a0 b1 b0 c1 c0 . . . p1 p0

. . . . . . . . . . . . . . .

am−1 am−2 bm−1 bm−2 cm−1 cm−2 . . . pm−1 pm−2

a b c p

Figure 5.1: Transposed block

59



5. Quick ADC

a1 a0 b1 b0 c1 c0 d1, d0 . . . p1 p0

simd_and (0x0f)

a0 b0 c0 d0 . . . p0

comps

masked

D0[0] D0[1] D0[2] D0[3] . . . D0[15]

simd_shuffle

D0[a0] D0[b0] D0[c0] D0[d0] . . . D0[p0]partial

simd_add_saturated

acc[0] +
D0[a0]

acc[1] +
D0[b0]

acc[2] +
D0[c0]

acc[3] +
D0[d0]

. . . acc[15] +
D0[p0]

acc

acc

Figure 5.2: SIMD Lookup-add (j = 0)

version in comparison with the 128-bit is small: it is generally comprised between
10% and 15%.

Quick ADC operates on a block-transposed inverted list of codes, like PQ Fast
Scan (Section 4.2.5) or the SIMD gather implementation of the conventional ADC
Scan algorithm (Section 3.2). This is required as SIMD instructions operate on 16
codes at once. SIMD in-register shuffles are able to perform 16 tables lookups at
once, but in the same lookup table. Therefore, to perform the first SIMD shuffle, we
need to load the first component of 16 codes (a0, . . . , p0) in an SIMD register. This
can be done efficiently only if these 16 components are contiguous in memory, which
is why we need to block-transpose the inverted list. To block-transpose the inverted
list, we first divide it into blocks of 16 codes (a, . . . , p). We then transpose each block
independently. In a transposed block (Figure 3.5), we store the first components of
16 codes contiguously (a0, · · · , p0), followed by the second components of the same 8
code (a1, · · · , p1) etc., instead of storing all components of the first vector (a0, · · · , a7),
followed by the components of the second vector (b0, · · · , b7) etc.

The quick_adc_scan function (Algorithm 2, line 12) scans a block-transposed
inverted list tlist using m quantized lookup tables {Dj}m−1

j=0 , where m is the number
of sub-quantizers of the product quantizer. Each lookup table is stored in a distinct
SIMD register. In Algortihm 2, SIMD instructions are denoted by the prefix simd_.
SIMD instructions use 128-bit variables, denoted by r128. The function named
quick_adc_scan iterates over blocks blk of 16 codes (Algorithm 2, line 14). The
quick_adc_block function computes the distance between the query vector and
the 16 codes (a, . . . , p) of the block blk.

Each block comprises m/2 rows of 16 bytes (128 bits). Each row stores the jth and
(j + 1)th components of 16 codes (Figure 5.1). The quick_adc_block function
iterates over each row (Alorithm 2, line 7), and loads it in the comps register sequen-
tially (Algorithm 2, line 8). Two lookup-add operations are performed on each row

60



5.3. Evaluation

a1 a0 b1 b0 c1 c0 d1, d0 . . . p1 p0

simd_right_shift (4 bits)

a1 a0 b1 b0 c1 c0, d1 . . . o0 p1comps

comps

Figure 5.3: SIMD 4-bit Right Shift (j = 0)

(Algorithm 2, line 9 and line 11): one for the (2j)th components, and one for (2j+1)th
components of the codes. Figure 5.2 describes the succession of operations performed
by the lookup_add function for the first row (j = 0). As each byte of the first
row stores two components, e.g., the first byte of the first row stores a1 and a0 (Fig-
ure 5.2), we start by masking the lower 4 bits of each byte (and with 0x0f), to obtain
the first components (a0, . . . , p0) only. The remainder of the function looks up values
in the D0 table and accumulates distances in acc variable. Before the lookup_add
function can be used to process the second components (a1, . . . , p1), it is necessary
that (a1, . . . , p1) are in the lowest 4 bits of each byte of the register. We therefore
right shift the comps register by 4 bits (Figure 5.3) before calling lookup_add (Al-
gorithm 2, line 10). The extract_matches function (Algorithm 2, line 16), the
implementation of which is not shown, extracts distances from the acc register and
inserts them in the binary heap neighbors.

Among 256-bit SIMD instructions (AVX and AVX2 instruction sets) supported on
recent CPUs, some, like in-register shuffles, operate concurrently on two independent
128-bit lanes. This prevents use of 256-bit lookup tables (32 8-bit integers) but allows
an easy generalization of the 128-bit version of Quick ADC. While the 128-bit version
of Quick ADC iterates on block rows one by one (Algorithm 2, line 7), the 256-bit
version processes two rows at once: one row in each 128-bit lane. The number of
iterations is thus reduced from m/2 to m/4. Lastly, instead of storing each Dj table
in a distinct 128-bit register, the tables Dj and D2j , j ∈ {0, . . . ,m/2− 1}, are stored
in each of the two lanes of a 256-bit register.

5.3 Evaluation

5.3.1 Experimental Setup
We implemented Quick ADC in C++, using intrinsics to access SIMD instruc-

tions [33, 32]. While PQ Fast Scan is implemented using 128-bit SIMD (Section 4.3.1),
we implemented Quick using 256-bit SIMD, which allows and additional performance
boost of 10%-15%. Our implementation therefore uses the AVX and AVX2 instruc-
tion sets. We used the g++ compiler version 5.3, with the options -03 -ffast-math
-m64 -march=native. Exhaustive search and non-exhaustive search (inverted in-
dexes, IVF) were implemented as described in [39]. We use the yael library and the
ATLAS library version 3.10.2. We compiled an optimized version of ATLAS on our
system. To learn product quantizers and optimized product quantizers, we used the
implementation 1 of the authors of [10, 8].

1. https://github.com/arbabenko/Quantizations

61

https://github.com/arbabenko/Quantizations


5. Quick ADC

Table 5.1: Systems

CPU RAM
workstation Xeon E5-1650v3 16GB DDR4 2133Mhz
server Xeon E5-2630v3 128GB DDR4 1866Mhz

Table 5.2: Datasets

Base set Learning set Query set Dim.
SIFT1M 1M 100K 10K 128
SIFT1B 1000M 100M (2M) 10K 128
GIST1M 1M 500K 1K 960
Deep1M 1M 300K 1K 256

Unless otherwise noted, experiments were performed on our workstation (Table
5.1). To get accurate timings, we processed queries sequentially on a single core.
We evaluate our approach on two publicly available2 datasets of SIFT descriptors,
one dataset of GIST descriptors, and one dataset of deep features3 (Table 5.2). The
Deep1M dataset consists of deep neural codes that were L2-normalized and PCA-
compressed to 256 dimensions [10]. For SIFT1B, the learning set is needlessly large
to train product quantizers, so we used the first 2 million vectors. We used the first
1000 queries from the query sets of SIFT1M and SIFT1B.

5.3.2 Exhaustive Search in SIFT1M
Using 16×4 Quick ADC (QADC) instead of 8×8 ADC causes a decrease in recall

which is due to two factors: (1) use of 16×4 quantizers instead of 8×8 quantizers and
(2) use of quantized lookup tables (Section 5.2.1). We evaluate the global decrease

2. http://corpus-texmex.irisa.fr/
3. http://sites.skoltech.ru/compvision/projects/aqtq/

1 2 5 10 20 50 100 200 500 1K

0.2

0.4

0.6

0.8

1

r

R
ec

al
l@

r

2 4 6

2.6

5.9

0.43

Total query time (ms)

PQ 8×8 ADC PQ 16×4 ADC PQ 16×4 QADC

Figure 5.4: ADC and QADC response time and recall (PQ, SIFT1M, Exhaustive
search)

62

http://corpus-texmex.irisa.fr/
http://sites.skoltech.ru/compvision/projects/aqtq/


5.3. Evaluation

1 2 5 10 20 50 100 200 500 1K
0.2

0.4

0.6

0.8

1

r

R
ec

al
l@

r

2 4 6

2.6

5.9

0.43

Total query time (ms)

OPQ 8×8 ADC OPQ 16×4 ADC OPQ 16×4 QADC

Figure 5.5: ADC and QADC response time and recall (OPQ, SIFT1M, Exhaustive
search)

in recall caused by the use of 16×4 QADC instead of 8×8 ADC, but also the relative
impact of factors (1) and (2). To do so, we use the SIFT1M dataset and follow
an exhaustive search strategy. Because we do not use an inverted index, we encode
the original vectors into short codes, and not residuals. This maximizes quantization
error and thus represents a worst-case scenario for QADC. We scan init = 200 vectors
to set the qmax bound for quantization of lookup tables (Section 5.2.1).

Using 16×4 ADC causes a small decrease in recall (Figure 5.4). However, 16×4
QADC, which uses quantized lookup tables, does not further decrease recall in com-
parison with 16×4 ADC. Interestingly, the recall of 16×4 QADC is even higher than
the recall of 16×4 ADC for some points e.g., the Recall@50 of 16×4 QADC is 0.738
against 0.727 for 16×4 ADC. This is because ADC already approximates real dis-
tances, as ADC computes distances between the query vector and quantized database
vectors. QADC adds another layer of approximation, which can either compensate
or worsen the error introduced by PQ and ADC. OPQ yiels better results than PQ
in all cases (Figure 5.5), which is consistent with [46, 24]. Moreover, the difference
in recall between 8×8 ADC and 16×4 QADC is lower in the case of OPQ than in
the case of PQ. OPQ optimizes the decomposition of the input vector space into m
sub-spaces, which are used by the optimized product quantizer (Section 2.3.4). For
m = 16, OPQ has more degrees of freedom than for m = 8 and is therefore able to
bring a greater level of optimization.

For an exhaustive search in 1 million vectors, 16×4 QADC is ∼14 times faster than
16×4 ADC and 6 times faster than 8×8 ADC (Figure 5.4, Figure 5.5) (85% decrease
in response time). Response times for PQ and OPQ are similar (Figure 5.5). In
practice, 8×8 ADC is much more common than 16×4 ADC [8, 10, 9, 46, 61], thus we
only compare 16×4 QADC with 8×8 ADC in the remainder of this section. Overall,
QADC therefore proposes trading a small decrease in recall, and almost negligible in
the case of OPQ, for a large improvement in response time.

Non-exhaustive search offers both lower response time and higher recall than ex-
haustive search (Section 2.3.2) and is often preferred in practice. Therefore, in the

63



5. Quick ADC

Table 5.3: Non-exhaustive search, SIFT1M, 64 bit

PQ ADC * R@100 Index Tables Scan Total
SIFT1M, IVF, K=1024, ma=48

PQ ADC 0.951 0.023 0.35 0.2 0.57
QADC 0.917 0.024 0.1 0.067 0.19

-3.6% -70% -66% -66%
OPQ ADC 0.977 0.023 0.39 0.19 0.6

QADC 0.956 0.023 0.18 0.068 0.28
-2.1% -53% -65% -54%

SIFT1M, IVF, K=256, ma=24
PQ ADC 0.949 0.008 0.18 0.3 0.48

QADC 0.907 0.008 0.055 0.072 0.14
-4.4% -69% -76% -72%

OPQ ADC 0.963 0.008 0.21 0.29 0.52
QADC 0.949 0.008 0.089 0.073 0.17

-1.5% -59% -75% -67%
* ADC: 8×8 ADC, QADC: 16×4 QADC

remainder of this section, we evaluate QADC in the context of non-exhaustive search,
for a wide range of scenarios: SIFT and GIST descriptors, PQ and OPQ, 64 and 128
bit codes, and varying index parameters. We show that in most cases, when combined
with OPQ and inverted indexes, QADC offers a speedup of 3.3-4 (70-75% decrease
in reponse time) for a small or negligible loss in recall.

5.3.3 Non-exhaustive Search in SIFT1M
Some approaches like PQ Fast Scan [2] or the inverted multi-index [9] have only

been evaluated on large datasets. To show the versatility of QADC, we evaluate it on
both large and small datasets, such as SIFT1M. Table 5.3 compares ADC and QADC
in terms of Recall@100 (R@100), total ANN search time (Total), and the time spent
in each of the search steps (Index, Tables, and Scan) detailed in Section 2.3.3. All
times are in milliseconds (ms). OPQ requires a rotation of the input vector before
computing lookup tables (Section 2.3.4). We include the time to perform this rotation
in the Tables column.

When using inverted indexes, the parameters K, the total number of cells of the
inverted index, and ma, the number of cells scanned to answer a query, impact
response time and recall (Section 2.3.3). To answer a query S · ma/K vectors are
scanned on average, where S is the size of the database, and ma tables are computed
(Section 2.3.3). Recall increases with ma/K but so does response time. For a constant
ma/K, a higher K provides better recall. We use an inverted index with K = 1024
cells, as in [39], and ma = 48. In this case, QADC offers a 66% decrease in scan time
(Table 5.3), which less than the 85% decrease for exhaustive search (Figure 5.4c).
This is because when using inverted indexes, scanned codes are scattered across ma
cells of relatively small size (on average, cells comprise S/K ≈ 976 vectors). A

64



5.3. Evaluation

Table 5.4: Non-exhaustive search, GIST1M, 128 bit

PQ ADC * R@100 Index Tables Scan Total
GIST1M, IVF, K=256, ma=24

PQ ADC 0.675 0.038 0.77 0.71 1.5
QADC 0.515 0.038 0.26 0.15 0.45

-24% -67% -79% -71%
OPQ ADC 0.918 0.039 1.7 0.73 2.5

QADC 0.872 0.038 1.2 0.16 1.4
-5% -32% -78% -45%

* ADC: 16×8 ADC, QADC: 32×4 QADC

significant amount of time is therefore spent switching cells. Using larger cells solves
this issue: for K = 256, ma = 24, QADC offers a 75% decrease in scan time. The scan
time is not significantly increased (0.072ms versus 0.067ms) for K = 256, ma = 24
despite twice more vectors are scanned compared to K = 1024, ma = 48. However,
for ma = 24, two times less lookup tables are computed, which significantly decreases
response time. Therefore, in the context of QADC, the configuration K = 256,
ma = 24 is more interesting.

Thanks to the use of 4-bit quantizers, which results in smaller and faster to compute
lookup tables, QADC offers a 50-70% decrease in tables computation time. This
decrease is lower with OPQ due to the time spent rotating the query vector. The
loss in recall is significantly lower with OPQ (-1.5% to 2.1%) than with PQ (-3.6%
to 4.4%). In most cases, QADC offers a close to 70% decrease in total response time.

5.3.4 Non-exhaustive Search in GIST1M

Due to their higher dimensionality GIST descriptors (960 dimensions) suffer a
higher quantization error than SIFT descriptors (128 dimensions). To mitigate this
issue, 128-bit codes can be used instead of 64-bit codes [46, 9]. Thus, here, we compare
16×8 ADC and 32×4 QADC. As for SIFT1M, we keep the parameters K = 256,
ma = 24. Like for 64-bit codes, QADC provides a 75-80% decrease in scan time with
128-bit codes (Table 5.4). However, the decrease in recall when using QADC with
PQ is higher for GIST descriptors (-24%) than for SIFT descriptors (-3.5% to 4.5%).
However, using OPQ settles this issue and reduces the recall loss to 5%. OPQ should
therefore be preferred for GIST descriptors. The decrease in reponse time is however
less important for OPQ (-45%). This is because a large part of response time is spent
computing tables in the case of OPQ. OPQ requires rotating the query vector before
computing tables, the computational cost of which depends on the dimensionality
of the query vector. For 960-dimensional GIST descriptors this cost is much higher
than for 128-dimensional SIFT descriptors. Even in the less favourable case of GIST
descriptors, Quick ADC still achieves a close to 50% decrease in response time.

65



5. Quick ADC

Table 5.5: Non-exhaustive search, Deep1M, 64 bit

PQ ADC * R@100 Index Tables Scan Total
Deep1M, IVF, K=256, ma=24

PQ ADC 0.772 0.015 0.24 0.33 0.58
QADC 0.669 0.013 0.082 0.076 0.17

-13% -66% -77% -71%
OPQ ADC 0.922 0.013 0.34 0.32 0.67

QADC 0.902 0.013 0.16 0.08 0.25
-2.2% -53% -75% -62%

* ADC: 8×8 ADC, QADC: 16×4 QADC

Table 5.6: Non-exhaustive search, Deep1M, 128 bit

PQ ADC * R@100 Index Tables Scan Total
Deep1M, IVF, K=256, ma=24

PQ ADC 0.922 0.015 0.33 0.58 0.93
QADC 0.859 0.013 0.13 0.14 0.28

-6.8% -62% -77% -70%
OPQ ADC 0.988 0.013 0.39 0.58 0.99

QADC 0.984 0.013 0.24 0.14 0.39
-0.4% -39% -76% -60%

* ADC: 16×8 ADC, QADC: 32×4 QADC

5.3.5 Non-exhaustive Search in Deep1M

For the vectors of Deep1M, we evaluate QADC with 64-bit codes (Table 5.5) and
128-bit codes (Table 5.6). We keep the parameters K = 256 and ma = 24 used for
SIFT1M and GIST1M. With 64-bit codes, QADC suffers higher loss of recall (13%)
with deep features than with SIFT descriptors (3.6%). The increase in quantiza-
tion error caused by the use of 4-bit quantizers (QADC) instead of 8-bit quantizers
(ADC) is stronger for the PCA-compressed deep features than for SIFT descriptors.
This is due to the higher dimensionality of the PCA-compressed deep features (256
dimensions, versurs 128 dimensions for SIFT descriptors). As for GIST descriptors,
using OPQ instead of PQ mitigates this issue. With OPQ, QADC incurs a 2.2% loss
in recall, compared to a 13% loss with OPQ (Table 5.5). With OPQ, the decrease
in response time offered by QADC is a slightly lower for the PCA-compressed deep
features than for SIFT descriptors (-62% versus -67%). This is because the rotation
matrix for PCA-compressed deep features is larger that the rotation matrix for SIFT
descriptor. Thus, the time spent to compute lookup tables is increased. With 64-bit
codes and OPQ, QADC offers a 60% decrease in response time for a 2.2% decrease in
recall (Table 5.5). With 128-bit codes, the loss of recall caused by the use of QADC
is lower than for than 64-bit codes, even for PQ (-6.8% versus -13%). For 128-bit
codes and OPQ, QADC also offers a 60% decrease in response time. The loss of recall
becomes negligible at 0.4%.

66



5.3. Evaluation

Table 5.7: Non-exhaustive search, SIFT1B, 64 bit

PQ ADC * R@100 Index Tables Scan Total
SIFT1B, IVF, K=8192, ma=64

PQ ADC 0.746 0.09 0.42 23 23
QADC 0.635 0.088 0.13 5 5.2

-15% -69% -78% -78%
OPQ ADC 0.792 0.09 0.53 23 24

QADC 0.712 0.087 0.22 4.9 5.2
-10% -58% -79% -78%

SIFT1B, IVF, K=65536, ma=64
OPQ ADC 0.806 0.52 0.51 4.2 5.2

QADC 0.747 0.53 0.22 0.92 1.7
-7.3% -57% -78% -68%

* ADC: 8×8 ADC, QADC: 16×4 QADC

Table 5.8: Non-exhaustive search, SIFT1B, 128 bits

PQ ADC * R@100 Index Tables Scan Total
SIFT1B, IVF, K=65536, ma=64

OPQ ADC 0.95 0.73 1.1 10 12
QADC 0.94 0.72 0.49 2.2 3.4

-1.1% -57% -78% -72%
* ADC: 16×8 ADC, QADC: 32×4 QADC

5.3.6 Non-exhaustive Search in SIFT1B
For non-exhaustive search in 1 billion SIFT vectors, we test two inverted indexes

configurations K = 8192, like in [55] and K = 65536, like in [9]. For this larger
dataset, we scan init = 1000 vectors before quantizing lookup tables (Section 5.2.1).
In all cases, QADC offers a close to 78-79% decrease in scan time (Table 5.7). For
K = 8192, QADC also offers a 78% decrease in total query time but the loss in recall
is relatively high (-15% for PQ, and -10% for OPQ). As in all other experiments, OPQ
offers a much higher recall for a small to negligible increase in response time. Thus,
from now on, we only report figures for OPQ only. The configuration K = 65536
is more interesting than K = 8192 as it allows both a lower response time and a
higher recall, both for ADC and QADC. For K = 65536 and OPQ, QADC achieves
a recall 0.747 in 1.7ms (68% decrease in response time). In comparison, in [9], the
state-of-the-art OMulti-D-OADC system achieves the same recall in 2 ms.

With 64-bit codes (Table 5.7), the recall of ANN search in 1 billion vectors is
relatively low, even for ADC. To offer better recall, it is possible to use 128-bit codes
(Table 5.8). With 128-bit codes, the database uses 20GB of RAM, which exceeds
the RAM capacity of our workstation. We therefore ran this experiment on a server
(Table 5.1). This configuration allows QADC to achieve a recall of 0.94 in 3.4 ms.

67



5. Quick ADC

In comparison, in [9], the OMulti-D-OADC system achieves a recall of 0.901 in 5 ms
and a recall of 0.969 in 16 ms.

5.4 Discussion

5.4.1 Compatibility with Inverted Indexes
Contrary to PQ Fast Scan, Quick ADC imposes no constraints on the size of

inverted lists. Quick ADC is therefore compatible with any type of inverted index.
It is not only compatible with fine inverted indexes, but also with multi-indexes
(Section 2.3.2). Besides, Quick ADC is compatible with m×4 product quantizers, for
any value of m. In this regard, in Section 5.3, we tested PQ Fast Scan with 16×4 (64-
bit codes) product quantizers and 32×4 (128-bit codes) product quantizers. Clearly,
Quick ADC is not compatible with b parameters other than b = 4, as using 4-bit
sub-quantizers is one of the key ideas of Quick ADC.

5.4.2 Applicability to Product Quantization Derivatives
We evaluated Quick ADC with Product Quantization (PQ) and Optimized Product

Quantization (OPQ), but we did not evaluate it in the context of other product quan-
tization derivatives presented in Section 2.3.4, namely Additive Quantization (AQ),
Tree Quantization (TQ) and Composite Quantization (CQ). These approaches offer
a higher accuracy than PQ or OPQ. They however use (1) a different process to
learn quantizer codebooks, and (2) a different ADC procedure. We discuss the com-
patibility of Quick ADC with these approaches. Using 4-bit sub-quantizers instead
of 8-bit sub-quantizers (b = 4 instead of b = 8) requires doubling the m parameter
(i.e., m′ = 2m) to maintain a similar accuracy (accuracy mainly depends on the
m×b product, Section 2.3.1). AQ, TQ and CQ codebook learning processes have
complexities in m · 2b or m2 · 22b. Therefore, doubling m is unlikely to cause issues
for practical values (m ∈ 8, 16, m′ ∈ 16, 32). Still, experiments are required to deter-
mine if the codebook learning process remains tractable, especially for 128-bit codes
(m′ = 32). CQ uses the same ADC procedure as PQ or OPQ. Therefore, Quick ADC
is fully compatible with CQ. The ADC procedure of AQ and TQ have complexities
in m +m2/2 and 2m. For these two approaches, doubling m strongly increases the
number of operations per distance computation. Even if Quick ADC makes table
lookups and additions fast thanks to SIMD, such an increase in the number of opera-
tions would lessen its benefit. In conclusion, combining Quick ADC with CQ is more
interesting than combining Quick ADC with TQ or AQ. The main drawback of Quick
ADC is that it incurs a small decrease in accuracy. As CQ offers a better accuracy
than OPQ, it would contribute to eliminate this drawback. The resulting solution
would therefore be very competitive, as it would offer both superior performance,
thanks to Quick ADC, and a high accuracy, thanks to CQ.

68



6 Derived Quantizers

Contents

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.2 Training Derived Quantizers . . . . . . . . . . . . . . . . . . . . 71
6.2.3 ANN Search with Derived Quantizers . . . . . . . . . . . . . . 73

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.2 Small Datasets, 64-bit Codes . . . . . . . . . . . . . . . . . . . 76
6.3.3 Small Dataset, 32-bit Codes . . . . . . . . . . . . . . . . . . . . 79
6.3.4 Large Dataset, 64-bit Codes . . . . . . . . . . . . . . . . . . . . 80

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4.2 Comparison with Other Quantization Approaches . . . . . . . 82
6.4.3 Comparison with ADC+R . . . . . . . . . . . . . . . . . . . . . 82

6.1 Motivation

For most current ANN search use cases, product quantization with 8-bit sub-
quantizers offers a sufficient accuracy. With Quick ADC, we have shown that even
4-bit sub-quantizers can be used. We have proposed two highly efficient scan proce-
dures for these use cases, PQ Fast Scan and Quick ADC. However, some emerging
uses cases require a higher accuracy. Thus, descriptors generated by deep neural net-
works are increasingly popular for multimedia similarity search. When they are not
PCA-compressed, such descriptors have several thousand dimensions (usually 4096).
For these very high-dimensional vectors, a higher quantization accuracy is required.
Therefore, 16-bit quantizers are used to increase product quantization accuracy. In
addition, there has been a recent interest in using 32-bit codes instead of the usual
64-bit codes [8]. For 32-bit codes, 16-bit quantizers are required as 8-bit quantizers
have a too low accuracy. However, using 16-bit quantizer causes a threefold increase
in search time, which often outweighs their accuracy advantage. We have shown
that this threefold increase in response time is caused by the fact that lookup ta-
bles used for distance computations are stored in the L3 cache when using 16-bit
sub-quantizers. On the contrary, when using 8-bit sub-quantizers, lookup tables are
stored in the much faster L1 cache (Section 3.1).

69



6. Derived Quantizers

In this chapter, we introduce a novel approach, derived quantizers, that makes 16-
bit quantizers as fast as 8-bit quantizers, while retaining their accuracy. The key idea
behind our approach is to derive 8-bit quantizers, named derived quantizers, from the
16-bit quantizers so that they share the same short codes. Therefore, our approach
does not incur any increase in memory usage. The codebook of derived quantizers
can be seen as an approximate version of the codebook of the high-resolution 16-bit
quantizers. This allows us to design a two-pass nearest neighbor search procedure
that provides both a low response time and a high-accuracy. More specifically, this
chapter addresses the following points:

• We present in detail the algorithm we designed to derive fast 8-bit quantizers
from high-resolution 16-bit quantizers. We also describe how our two-pass
nearest neighbor search procedure exploits derived quantizers to offer both a
low response time and a high accuracy.

• We evaluate derived quantizers in the context of product quantization and
optimized product quantization. We show that our approach achieves close
response time to 8-bit quantizers, while having the same accuracy as 16-bit
quantizers.

• We discuss the differences between our approach and other approaches that
provide a high accuracy, e.g., additive quantization or tree quantization. We
show that because it provides a large increase in accuracy, without significantly
impacting response time, our approach compares favorably to the state of the
art.

6.2 Presentation

6.2.1 Overview
The key idea behind our approach is to use product quantizers with 16-bit sub-

quantizers, and associate an 8-bit derived quantizer with each 16-bit sub-quantizer.
Derived quantizers are used to compute compact lookup tables, which fit the L1 cache.
Compact lookup tables are used to compute approximate distances between the query
vectors and short codes. A candidate set of the r2 closest vectors is built using the
computed approximate distances. A precise distance evaluation is then performed
for all vectors of the candidate set. This precise distance evaluation relies on large
lookup tables, stored in the L3 cache and computed from the codebooks of the 16-
bit sub-quantizers. Performing a precise distance evaluation is slow, as it requires
accessing the L3 cache. However, as precise distance evaluation is only performed for
the vectors of the candidate set, the overall ANN search speed is high.

We denote PQm×b, b a product quantizer using m sub-quantizers of b bits each,
associated with m derived quantizers of b bits each. We denote OPQm×b, b an
optimized product quantizer with the similar properties. In this paper, we focus
on PQm×8, 16 and OPQm×8, 16, i.e., product quantizers and optimized product
quantizers with 16-bit sub-quantizers and 8-bit derived quantizers.

A naive way of training the 8-bit quantizers would be to trains the codebooks
Cj , j ∈ {0, . . . ,m − 1} of 8-bit quantizers in the same way that the codebooks Cj of

70



6.2. Presentation

(a) Temp. codebook Ct
j

(0)

(0) (0)

(0) (1)

(1)(1)

(1)

(2)

(2)

(2)

(2)

(3)

(3)(3)

(3)

(b) Partition P of Ct
j

0

4 8

12 1

59

13

2

6

10

14

3

711

15

(c) Final quantizer (Cj)

0 1

23

(d) Derived quantizer (Cj)

Figure 6.1: Derived quantizer training process

sub-quantizers are trained (Section 2.3.1). We would therefore need to encode high-
dimensional vectors twice: once with the 16-bit sub-quantizers, and once with the
8-bit sub-quantizers. We would therefore obtain two codes per vector. This would
double the memory use of the database, which would outweigh the benefit of our
solution. Instead we derive the codebook of the 8-bit quantizers from the codebook
of the 16-bit quantizers so that they share the same codes. Sub-quantizers are used
to encode vectors and during ANN search, while the derived 8-bit quantizers are used
exclusively for ANN search.

6.2.2 Training Derived Quantizers
A product quantizer uses m sub-quantizers, each having a different codebook Cj , j ∈
{0, . . . ,m−1}. We derive the codebook of each derived quantizer Cj , j ∈ {0, . . . ,m−1}
from the codebook of the corresponding sub-quantizer. Thus, C0 is derived from C0
etc.

The training process of the codebook of the jth sub-quantizer, with k = 2b cen-
troids, and of the codebook of the jth derived quantizer, with k = 2b centroids is
described in Algorithm 3. The kmeans function is a standard implementation of
the k-means algorithm. It takes a training set Vt and a parameter k, the number of
clusters desired. It returns a codebook C and a partition P of the training set into k

71



6. Derived Quantizers

Algorithm 3 Training derived quantizers
1: function build_quantizers(Vt,  k, k)
2: Ctj ,P ← kmeans(Vt, k) ▷ Step 1
3: Cj ,P ← kmeans_same_size(Ctj , k) ▷ Step 2
4: Cj ← build_final_codebook(P , b) ▷ Step 3
5: return Cj , C′j
6: function build_final_codebook(P , k)
7: b = log2(k)
8: for l← 0 to k do
9: G← P [i]

10: for i← 0 to |G| − 1 do
11: Cj [i≪ b | l] = G[i] ▷ | is binary or

▷ ≪ is bitwise left shift

12: return Cj

clusters. We denote P [i] the ith cluster of P . The kmeans_same_size function is a
k-means variant which produces clusters G of identical sizes, i.e., ∀Gl ∈ P , |Gl| = |G0|
[50]. For the sake of simplicity, Figure 6.1 illustrates the training process for k = 16
and k = 4, although we use k = 216 and k = 28 in practice. The training process
takes three steps, described in the three following paragraphs.

Step 1. Train a temporary codebook Ctj using the kmeans function. Figure 6.1a
shows the result of this step. Each point represents a centroid of Ctj . Vectors of the
training set Vt are not shown. Implicitly, centroids of Ctj have an index associated
with them, which is their position in the list Ctj , i.e., the index of Ctj [i] is i. As the
indexes of centroids are not used in the remainder of the training process, they are
not shown.

Step 2. Partition Ctj into k clusters using the kmeans_same_ size function. To
do so, Ctj is used as the training set argument for kmeans_same_size. Figure 6.1b
shows the partition P = (Gl), l  ∈ {0, . . . , k − 1} of Ctj . The number in paren-
theses above each centroid in the index of the cluster it has been assigned to i.e.,
the number l such that the centroid belongs to Gl. The codebook Cj returned by
kmeans_same_size is the codebook of the derived quantizer, shown on Figure 6.1d.
Each centroids Cj [l] of the derived quantizer is the centroid of the cluster Gl. We ob-
tain ”centroids of centroids” because we used as codebook of centroids as the training
set.

Step 3. Build the final codebook Cj by reordering the centroids of the temporary
codebook Ctj . This reordering, or re-assignement of centroids indexes, is what allows
sub-quantizers and derived quantizers to share the same code. The order of centroids
in Cj must be such that the lowest b bits of the index assigned to each centroid of Cj
corresponds to the cluster Gl it has been assigned to in step 2. If we denote lowb(i),
the lower b bits of the index i, the order of centroids must obey the property:

∀i ∈ {0..k − 1},∀l ∈ {0..k − 1},
lowb(i) = l⇔ Cj [i] ∈ Gl (P1)

72



6.2. Presentation

The build_final_codebook function produces an assignment of centroid indexes
which obeys property P1 (Algorithm 3, line 11). Figure 6.1c shows the final assign-
ment of centroid indexes. In this example, k = 16 and k = 4 (b = 4 and b = 2).
The centroids belonging to cluster 1 (01 in binary) have been assigned the indexes 9
(1001), 13 (1101), 1 (0001), and 5 (0101). The lowest b = 2 bits of 9,13,1 and 5 are
01, which matches the partition number (1, or 01). This property similarly holds for
all partitions and all centroids.

This joint training process allows the derived quantizer Cj to be used as an approx-
imate version of Cj during the NN search process. To encode a vector x ∈ Rd into
a short code, the codebooks Cj are used. The code c resulting from the encoding of
vector x is such that for all j ∈ {0, . . . ,m − 1}, Cj [c[j]] is the closest centroid of xj

in Cj . Our training process ensures that the centroid Cj [lowb(c[j])] is close to xj . In
other words, the centroid index assigned by the quantizer Cj remains meaningful in
the derived quantizer Cj .

6.2.3 ANN Search with Derived Quantizers
ANN Search with derived quantizers takes two passes. The first pass builds a

candidate set of r2 vectors, while the second pass reranks the candidate set to produce
a final result set of r vectors. The first pass takes three steps: first, lookup tables
are computed (Step 1.1) and quantized (Step 1.2). The full database is then scanned
to build the candidate set (Step 1.3). The second pass takes a single step (Step
2.), which consists in performing a precise distance evaluation for all vectors of the
candidate set, using the quantizers {Cj}m−1

j=0 . Each step is detailed in the following
paragraphs

Step 1.1 Compute a set a of m short lookup tables, {Dj}mj=0 from the derived
quantizers {Cj}mj=0. Compact loookup tables are computed using the same com-
pute_tables function used in the conventional ANN search procedure (Section 2.3.3,
Algorithm 1). The compact lookup table Dj consists of the distances between the
sub-vectors yj and all centroids of the codebook Cj .

Step 1.2 Quantize floating-point distances in compact lookup tables {Dj}m−1
j=0 to

8-bit integers in order to build quantized lookup tables {Qj}m−1
j=0 . This quantization

step is necessary because our scan procedure (Step 1.3) uses a data structure opti-
mized for fast insertion, capped_buckets, which requires distances to be quantized to
8-bit integers. We follow a quantization procedure similar to the one used in [2]. We
quantize floating-point distances uniformly into 255 (0-254) bins between a qmin and
qmax bound. All distances above qmax are quantized to 255. We use the minimum
distance across all lookup tables as the qmin bound. To determine qmax, we compute
the distance between the query vector and the r2 first vectors of the database. The
greatest distance is used as the qmax bound. Once qmin and qmax have been set,
quantized lookup tables are computed as follows:

∀j ∈ {0, . . . ,m− 1},∀i ∈ {0, . . . , k − 1},

Qj [i] =

⌊
Dj [i]− qmin
qmax− qmin

⌋
· 255

73



6. Derived Quantizers

Algorithm 4 ANN Search with derived quantizers
1: function nns_derived({Cj}mj=0, {Cj}mj=0, db, y, r, r2)
2: {Dj}mj=0 ← compute_tables(y, {Cj}mj=0) ▷ Step 1.1
3: {Qj}mj=0 ← quantize({Dj}mj=0, db, r2) ▷ Step 1.2
4: cand← scan(db, {Qj}mj=0, r2) ▷ Step 1.3
5: return rerank(db, cand, {Cj}mj=0, y, r, r2) ▷ Step 2
6: function scan(db, {Qj}mj=0, r2)
7: cand← capped_buckets(r2)
8: for i← 0 to |db| − 1 do
9: c← db[i] ▷ ith short code

10: d← adc_low_bits(c, {Qj}mj=0)
11: cand. put(d, i)
12: return cand
13: function adc_low_bits(c, {Qj}mj=0)
14: d← 0
15: for j ← 0 to m− 1 do
16: d← d+Qj [lowb(c[j])]

17: return d
18: function rerank(db, cand, {Cj}mj=0, y, r, r2)
19: ibucket ← 0
20: count← 0
21: neighbors← binheap(r)
22: {Dj}m−1

j=0 ← {{−1}}
23: while count < r2 do
24: bucket← cand. get_bucket(ibucket)
25: for all i ∈ bucket do
26: d← adc_rerank(db[i], {Dj}m−1

j=0 , {Cj}mj=0)
27: neighbors. add((i, d))
28: count← count + bucket.size
29: ibucket ← ibucket + 1

30: function adc_rerank(c, {Dj}m−1
j=0 , {Cj}m−1

j=0 )
31: d← 0
32: for j ← 0 to m− 1 do
33: if Dj [c[j]] = −1 then
34: Dj [c[j]]←

∥∥yj − Cj [c[j]]∥∥2
35: d← d+Dj [c[j]]

return d

Step 1.3 Scan the full database to build a candidate set of r2 vectors using the
quantized lookup tables (Algorithm 4, line 6). Our scan procedure is similar to the
scan procedure of the conventional ANN search algorithm (Algorithm 1), apart from
two differences. The first difference is that the adc_low_bits function is used
to compute distances in place of the adc function. The adc_low_bits function
masks the lowest b bits of centroids indexes c[j] to perform lookups in quantized
tables (Algorithm 4, line 16), instead of using the full centroids indexes to access
the full lookup tables. The second difference is that candidates are stored in a data

74



6.2. Presentation

0

1
...

254

869 7809 1632 2050 …

1088 8215 …

6755 6287 9845 …

Bucket IDs
(distances) Bucket contents (vector IDs)

Figure 6.2: Capped buckets data structure

structure optimized for fast insertion, capped buckets (Algorithm 4, line 7), instead
of a binary heap. Capped buckets consists of an array of buckets, one for each
possible distance (0-254). Each bucket is a list of vector IDs. The put operation
(Algorithm 4, line 11) involves retrieving the bucket d, and appending the vector ID
i to the list. Because adding a vector to a capped buckets data structure requires
much less operations than adding a vector to a binary heap, it is much faster. It
however requires distances to be quantized to 8-bit integers, which are used as bucket
IDs. This not an issue, as quantizing distances to 8-bit integers has been shown
not to impact recall significantly [2]. On the contrary, a fast insertion is highly
beneficial because the candidate set is relatively large (typical r2=10K-200K) in
comparison with the final result set (typical r=10-100). Therefore, many insertions
are performed in the candidate set. To avoid the capped_buckets structure to grow
indefinitely, we maintain an upper bound on distances (i.e., bucket IDs). Vectors
having distances higher than the upper bound are discarded instead of being inserted
in the capped_bucket. We used the distance (i.e., bucket ID) of the r2-th farthest
vector in the capped_buckets as upper bound.

Step 2. Extract r2 vectors from the capped buckets, and perform a precise distance
evaluation using the full quantizers {Cj}m−1

j=0 . This precise distance evaluation is
used to build the result set of nearest neighbors, named neighbors (Algorithm 4,
line 21). We iterate over capped buckets by increasing bucket ID ibucket (Algorithm 4,
line 24 and line 29). We process bucket 0, bucket 1, etc. until r2 vectors have been
processed. When processing a bucket, we iterate over all vectors IDs stored in this
bucket (Algorithm 4, line 25), and compute precise distances using the adc_rerank
function. This function is similar to the adc function used in the conventional search
process (Algorithm 1). However, here, we do not pre-compute the full lookup tables
{Dj}m−1

j=0 but rely on a dynamic programming technique. We fill all tables with the
value -1 (Algorithm 4, line 22), and compute table elements on demand. Whenever,
the value -1 is encountered during a distance computation (Algorithm 4, line 33), it
means that this table element has not yet be computed. The appropriate centroid
to sub-vector distance is therefore computed and stored in the appropriate lookup
table (Algorithm 4, line 34). This strategy is beneficial because it avoids computing
the full {Dj}m−1

j=0 tables, which is costly (Table 3.2). In the case of PQm×8, 16, a
full lookup table Dj comprises a large number of elements k = 216 = 65536, but
only a small number are accessed (usually 5%-20%). This is because vectors of the
candidate set are relatively close to the query vector, and thus their short codes tend
to have similar indexes.

75



6. Derived Quantizers

2K 5K 10K 20K 50K
0.92

0.94

0.96

r2

R
ec

al
l

(a) Recall (r=100)

PQ 4×8, 16
OPQ 4×8, 16

2K 5K 10K 20K 50K
0

2

4

6

r2

T
im

e
pe

r
qu

er
y

(m
s)

(b) Response time

Total
Rerank

2K 5K 10K 20K 50K
0.92

0.94

0.96

0.98

1

r2

R
ec

al
l

(c) Candidate set recall

PQ 4×8, 16
OPQ 4×8, 16

Figure 6.3: Impact of r2 on recall and response time (SIFT1M, 64-bit codes)

6.3 Evaluation

6.3.1 Experimental Setup
All ANN search methods evaluated in this section were implemented in C++.

We use gcc version 5.3, with the options -O3 -ffast-math -m64 -march=native.
For linear algebra primitives, we use the ATLAS library version 3.10.2, of which we
compiled an optimized version for our system. We trained the full codebooks Cj of
product quantizers and optimized product quantizers using the implementation1 of
the authors of [8, 10]. We use two datasets2: a small dataset of 1 million vectors
(SIFT1M), and a large dataset of 100 million vectors (SIFT100M), consisting of the
first 100 million vectors of the BIGANN dataset. We experiment with 32-bit codes
and 64-bit codes. All experiments were run on workstation equipped with an Intel
Xeon E5-1650v3 CPU and 16 GiB of RAM (DDR4 2133Mhz).

6.3.2 Small Datasets, 64-bit Codes
Our ANN search procedure utilizing derived quantizers takes place in two passes:

(1) a candidate set of r2 vectors is built by scanning the full database, and (2) a

1. https://github.com/arbabenko/Quantizations
2. http://corpus-texmex.irisa.fr/

76

https://github.com/arbabenko/Quantizations
http://corpus-texmex.irisa.fr/


6.3. Evaluation

10 20 50 100 200 500 1K
0.6

0.8

1

r

R
ec

al
l

10 20 50 100 200 500 1K

4

6

8

r

T
im

e
pe

r
qu

er
y

(m
s)

PQ 8×8 PQ 4×16 PQ 4×8, 16
OPQ 8×8 OPQ 4×16 OPQ 4×8, 16

Figure 6.4: Recall and response time (SIFT1M, 64-bit codes)

final result set of r nearest neighbors is built by reranking the candidate set using
high-accuracy quantizers. Both the parameters r and r2 impact response time and
recall. By contrast, the conventional ANN search procedure depends on a single pa-
rameter: r, the number of nearest neighbors in the final result set. In the remainder
of this section we denote our approach (16-bit quantizers with derived 8-bit quantiz-
ers) PQm×8, 16 for product quantization, and OPQm×8, 16 for optimized product
quantization.

Impact of r2 We first study the impact of r2 on recall and accuracy. To do so, we
set r = 100 and vary r2 between 2K and 50K. The recall increases with r2, until a
point where it stabilizes (Figure 6.3a). The total response time is also very sensitive
to r2; it suffers a threefold increase between r2 =2K and r2=50K (Figure 6.3b). This
increase in response time comes from two factors: (1) an increased time spent build-
ing the candidate set (first pass) and (2) an increased time spent reranking vectors of
the candidate set (second pass). Reranking the vectors of the candidate set requires
performing lookups in the full lookup tables Dj , which is costly as they are stored in
slow cache levels (Section 6.2.3). Moreover, as the elements of the tables Dj are com-
puted on dynamically, a large candidate set means more costly centroid-to-subvector
distances will need to be computed. Thus, the reranking time strongly increases with
r2 (Figure 6.3b) and plays a major role in the increase of the response time. The
other cause of the increase in response time is the increased time spent building the
candidate set (first pass). The number of distance computations performed in the
first pass is independent of r2 (Algortihm 4). However, the time spent in the first
pass still increases with r2 because a large r2 means a large candidate set. Thus,
more insertions in the candidate set are performed, which increases response time.

Due to its significant impact on both response time and recall, it is essential to
fine-tune r2 to obtain both a a high recall and low response time. To determine r2,
we measure the recall of the first pass of our ANN search procedure depending on
r2 (Figure 6.3c). We only execute the first pass of our ANN search procedure i.e.,
we build the candidate set but we do not rerank it. We use this candidate set as
result set, and measure the recall. From Figure 6.3a and Figure 6.3c, it may seem
that the first pass of our ANN search procedure (Figure 6.3c) achieves a higher recall

77



6. Derived Quantizers

2K 5K 10K 20K 50K

0.7

0.75

0.8

r2

R
ec

al
l

(a) Recall (r=100)

PQ 2×8, 16
OPQ 2×8, 16

2K 5K 10K 20K 50K
0

2

4

r2

T
im

e
pe

r
qu

er
y

(m
s)

(b) Response time

Total
Rerank

2K 5K 10K 20K 50K
0.7

0.8

0.9

1

r2

R
ec

al
l

(c) Candidate set recall

PQ 2×8, 16
OPQ 2×8, 16

Figure 6.5: Impact of r2 on recall and response time (SIFT1M, 32-bit codes)

than the full procedure (Figure 6.3). However, this is not the case. In the case of the
full procedure (Figure 6.3a), the result set comprises r = 100 vectors, while in the
case of the first pass (Figure 6.3c), the candidate set is used as result set, and thus
comprises r2 =2K-50K vectors. Our goal is to select r2 values as small as possible
but which preserve the recall of PQ4×16. For a given r value, we set r2 such that the
recall of the the first pass (Figure 6.3c) is 5-10% higher than the recall@r of PQ4×16
(Figure 6.4). For r ≤ 100, PQ4×16 achieves a recall@r ≤ 0.9. Therefore, we set
r2 = 9000 (recall of first step is 0.98) for r ≤ 100. For r > 100, PQ4×16 achieves
very high recalls. Thus, for these cases we set r2 = 120000 (recall of first step is
0.99).

Comparison with (O)PQ4×16 and (O)PQ8×8 PQ4×8, 16 and OPQ4×8, 16
offer the same recall as PQ4×16 and OPQ4×16 (Figure 6.4), while maintaining a
response time close to PQ8×8 and OPQ8×8 (Figure 6.4), thus demonstrating the
effectiveness of derived quantizers. Compared to (O)PQ4×8, 16, (O)PQ4×16 is 2.5
times faster, while offering the same recall. At r = 50, PQ4×16 offers a 7% increase
in recall for a 196% increase in response time, compared to PQ8×8. By contrast,
PQ4×8, 16 also offers a 7% increase in recall at r = 50, but the increase in response
time is limited to 13%. The response time of (O)PQ4×8, 16 increases at r = 200
because we increased r2 from 9000 to 12000 at this point. This increase is necessary
for (O)PQ4×8, 16 to offer the same recall as (O)PQ4×16 beyond r = 200 (Section

78



6.3. Evaluation

10 20 50 100 200 500 1K
0.2

0.4

0.6

0.8

1

r

R
ec

al
l

10 20 50 100 200 500 1K

2

3

r

T
im

e
pe

r
qu

er
y

(m
s)

PQ 4×8 PQ 2×16 PQ 2×8, 16
OPQ 4×8 OPQ 2×16 OPQ 2×8, 16

Figure 6.6: Recall and response time (SIFT1M, 32-bit codes)

6.3.2). Lastly, we observe that OPQ8×8 offers a higher recall than PQ4×16, but
OPQ4×16 does not offer a higher recall than PQ4×16 (Figure 6.4). This because
OPQ optimizes the distribution of information between the m sub-spaces of a product
quantizers. The greater the number m of sub-spaces, the larger is the gain provided
by OPQ. For PQ8×8 (m=8 sub-spaces), OPQ is able to provide a noticeable gain,
but for PQ4×16 (m=8 sub-spaces), the gain is too small to be visible.

6.3.3 Small Dataset, 32-bit Codes
Like with 64-bit codes, both recall and response time increase with r2 (Figure 6.5a

and Figure 6.5b). However, the second pass (reranking pass) represents a greater
part of the total time for 32-bit codes than for 64-bit codes (Figure 6.5b). This is
because the first pass (building the candidate set) is faster for 32-bit than for 64-bit
codes, while the second pass has the same cost for the two code sizes. The first pass
is faster for 32-bit codes (PQ2×8, 16) because each distance computation requires
m = 2 memory accesses instead of the m = 4 cache accesses required for 64-bit
codes (PQ4×8, 16). Even with the conventional search process, PQ2×16 (Figure 6.6)
is faster than PQ4×16 (Figure 6.4). This is partly due the lower number of cache
accesses, but also to the fact that for PQ2×16, lookup tables fit the L2 cache, which
is faster than the L3 cache used by PQ4×16 (Table 3.2, Section 3.1). Overall, the
higher cost of the reranking step and the relatively low cost of PQ2×16 make the
difference in response time between PQ2×16 and PQ4×16 lower. We determine r2
values using the rule describe in Section 6.3.2. We set r2 = 10000 for r ≤ 100,
r2 = 15000 for r = 200, r2 = 17000 for r = 500 and r2 = 20000 for r = 1000.

Like for 64-bit codes, (O)PQ2×8, 16 offers the same recall as (O)PQ2×16 (Fig-
ure 6.6). However, the relative difference in response time is higher for (O)PQ2×8, 16
than for (O)PQ2×8, 16 (Figure 6.6). At r = 50, PQ2×16 offers a 52% increase in
recall for a 123% increase in response time, compared to PQ4×8. PQ2×8, 16 also
offers a 50% increase in recall at r = 50, for a 53% increase in response time. If our
approach leads to a higher increase in response time for 32-bit codes than for 64-bit
codes (50% versus 13%), it also leads to a higher increase in recall (50% versurs 7%).
This is because 32-bit codes lead to a higher quantization error than 64-bit codes.

79



6. Derived Quantizers

20K 50K100K 500K1M

0.78

0.8

0.82

0.84

r2

R
ec

al
l

(a) Recall (r=100)

PQ 4×8, 16
OPQ 4×8, 16

20K 50K100K 500K1M
0

100

200

r2

T
im

e
pe

r
qu

er
y

(m
s)

(b) Response time

Total
Rerank

20K 50K100K 500K1M

0.85

0.9

0.95

1

r2

R
ec

al
l

(c) Candidate set recall

PQ 4×8, 16
OPQ 4×8, 16

Figure 6.7: Impact of r2 on recall and response time (SIFT100M, 64-bit codes)

Thus, any technique to reduce the quantization error has more impact on 32-bit codes
than on 64-bit codes.

6.3.4 Large Dataset, 64-bit Codes

To conclude our evaluation section, we evaluate our approach on a large dataset
of 100 million vectors. Like for the small dataset, recall and response time increase
with r2 (Figure 6.7a and Figure 6.7b). However, contrary to the small dataset, the
reranking time (second pass) only represents a small fraction of the response time
in this case. Building the candidate set (first pass) requires performing a distance
evaluation for all codes stored in the database. As the large is 100 times larger than
the small database, the cost of this step in multiplied by 100. By constrast, the size of
the candidate set is only multiplied by 10 (r2 =20K-10M for the large dataset versus
r2 =2K-50K). As a consequence, the second pass has less impact on response time
for the large dataset than for the small dataset. In addition, response time increases
more slowly with r2 for the large dataset than for the small dataset. For the small
dataset, the response time is multiplied by 3.4 between r2 =2K and r2 =50K, while
for the large dataset, the response time is multiplied by 1.8 between r2 =20K and
r2 =1M. Thus, it is less necessary to fine-tune r2. We set r2=300K for all r values.

80



6.4. Discussion

20 50 100 200 500 1K
0.4

0.6

0.8

1

r

R
ec

al
l

20 50 100 200 500 1K

200

400

600

800

1,000

r

T
im

e
pe

r
qu

er
y

(m
s)

PQ 8×8 PQ 4×16 PQ 4×8, 16
OPQ 8×8 OPQ 4×16 OPQ 4×8, 16

Figure 6.8: Recall and response time (SIFT100M, 64-bit codes)

Like for the small dataset, (O)PQ4×8, 16 provides the same recall as (O)PQ4×16
(Figure 6.8). However, the response time of (O)PQ4×8, 16 is lower than the response
time of (O)PQ8×8 instead of being slightly higher (Figure 6.8). At r = 50, PQ4×16
offers a 25% increase in recall for a 270% increase in response time. PQ4×8, 16 offers
a 25% increase in recall and a 42% decrease in response time. With PQ4×8, 16, the
first pass of our ANN search procedure consists in performing distance computations
between the query vector and 4×8 codes. Therefore, the first pass of our ANN search
procedure is about two times faster than the conventional search procedure with 8×8
codes. For the small dataset, the time gain is outweighed by the large amount of time
spent in the second pass. For the large dataset, the second pass only represents a
fraction of the total response time (Figure 6.7b). The overall response in thus lower
than the response time of the conventional ANN search procedure in the case of larger
datasets.

6.4 Discussion

In this section, we discuss the strengths and weaknesses of our approach and com-
pare it with the state of the art.

6.4.1 Limitations
As shown in Section 6.3, the use of 8-bit derived quantizers combined with 16-bit

quantizers does not significantly increase response time while providing a substantial
increase in recall, especially on large datasets. However, our approach still requires
encoding vectors with 16-bit quantizers, and training 16-bit quantizers. This impacts
both the vector encoding time and the codebook training time. For instance, on
our workstation, encoding 1 million vectors with a 4×16 product quantizer takes
150 seconds (0.15 ms/vector), while encoding 1 million vectors with 8×8 product
quantizer takes 0.91 seconds (0.00091 ms/vector). Similarly, training the codebooks
of a 4×16 product quantizer takes 4 minutes (50 k-means iterations, 100K SIFT
descriptors), while training the codebooks of a 8×8 product quantizer takes 5 seconds.
Nonetheless, it is unlikely that any of this disadvantages would have a practical
impact. Codebooks are trained once and for all, therefore training time does not

81



6. Derived Quantizers

have much impact, as long as it remains tractable. As regards encoding time, even
with 4×16 product quantizers, encoding a vectors into its short code takes much
less time than an ANN query (0.15ms versus 2-200ms). Moreover, many real-world
workloads are read-mostly: ANN queries are performed more often than vectors are
added to the database.

6.4.2 Comparison with Other Quantization Approaches
In this chapter, we combined derived quantizers with Product Quantization (PQ)

and Optimized Product Quantization (OPQ). In Section 2.3.4, we presented deriva-
tives of product quantization that have been recently introduced: Optimized Prod-
uct Quantization (OPQ), Additive Quantization (AQ), Tree Quantization (TQ) or
Composite Quantization (CQ). Like derived quantizers, these approaches decrease
quantization error to offer a higher ANN search accuracy.

Our approach compares favorably to these new quantization approaches as it does
not significantly increase response time and only moderately increases encoding time.
On the contrary, AQ and TQ result in a more than twofold increase in ANN search
time [10]. Moreover, AQ and TQ increase vector encoding time by multiple orders of
magnitude. Thus encoding a vector into a 64-bit code takes more than 200ms (1333
times more than our approach) for AQ, and 6ms for TQ (40 times more than our
approach) [9]. Even if encoding time is not as important as query response time,
such an increase makes AQ and TQ hardly tractable for large datasets. Thus, AQ
and TQ have not been evaluated on datasets of more than 1 million vectors [8, 10].
More importantly, our approach is essentially orthogonal to the approach taken by
AQ, TQ or CQ. Therefore, derived quantizers may be combined with AQ, TQ or CQ,
but only if the codebook learning processes remain tractable.

The codebooks learning process of AQ has a time complexity in m2 · 22b, thus this
process is likely to be intractable for 16-bit quantizers (b = 16). For TQ, the codebook
learning process has a complexity in m·2b and is thus likely to be tractable, but this
needs to be confirmed by experiments. For its part, CQ requires data structures
with a size in m2 · 22b. However, these data structures are mainly used to speed
up computations, so it is possible to eliminate these data structures at the expense
of a moderate increase in computation time. Adapting CQ to 16-bit quantizers is
therefore a possible research direction. Combining the ADC process of AQ, TQ or
CQ with derived quantizers is likely to be feasible. Using 16-bit quantizers enables
halving the m parameter (m′ = m/2) for a constant code size. This makes it easy to
adapt the ADC procedures, even if they have complexities in m+m2/2 or 2m.

6.4.3 Comparison with ADC+R
The idea of building a relatively large candidate set and then reranking it to obtain

a final result set was inspired by the ADC+R approach [55]. The first major difference
between our approach and ADC+R is that ADC+R uses 8-bit sub-quantizers, while
our approach uses 16-bit sub-quantizers combined with 8-bit derived quantizers. This
allows our approach to offer a significantly higher accuracy. ADC+R mainly aims at
making ANN search with 8-bit sub-quantizers faster. On the contrary, derived quan-
tizers aim at providing a higher accuracy (16-bit sub-quantizers), while maintaining
a constant speed (8-bit derived quantizers). Besides, ADC+R has been superseded

82



6.4. Discussion

by other approaches such as multi-indexes (Section 2.3.2). The second major differ-
ence between our approach is that the techniques they use to build the candidate
set and rerank it are completely unrelated. The key idea of ADC+R is to use two
product quantizers: a first product quantizer pq1 to encode vectors into short codes,
and a second product quantizer pq2 to encode the error vector r(x) = x − pq1(x)
resulting from the quantization by pq1. A vector x is encoded into two codes. To
maintain memory use constant, ADC+R uses m/2 sub-quantizers for pq1 and pq2
Thus, a vector x ∈ Rd is encoded into two 4×8 codes, instead of a single 8×8 code.
The candidate set is built using the conventional ANN search (Section 2.3.3) algo-
rithm and the codes produced by pq1. To rerank the candidate set, approximations
x̂ = pq1(x) + pq2(r(x)) of the input vectors x need to be rebuilt. The distance be-
tween the query vector y and approximations x̂ are then computed in Rd. These
two operations are costly, therefore making reranking slow. Therefore, reranking a
candidate set of 20000 vectors takes about 40ms with ADC+R. On the contrary,
our approach encodes the vectors with a single product quantizer pq, which is built
in such a way that codes can be either scanned with 16-bit sub-quantizers, or 8-bit
sub-quantizers. This allows our approach to rerank a candidate set of 20000 vectors
in less than 1.5ms.

83





7 Conclusion and Perspectives

Contents

7.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.1 Application to Product Quantization Derivatives . . . . . . . . 87
7.2.2 Exploitation of Future Hardware . . . . . . . . . . . . . . . . . 89
7.2.3 Generalization to Other Algorithms . . . . . . . . . . . . . . . 90

7.1 Summary of the Thesis

7.1.1 Context
In this thesis, we have proposed several contributions on the topic of nearest neigh-

bor search in high dimensionality and at large scale. This problem is of particular
importance in the current context of mass use of online services. The recent develop-
ment of mass internet access, online social networks, and smartphone applications has
enabled corporations to collect data produced by millions or even billions of users.
This trend of large scale data collection, known as big data is often characterized
by three adjectives: volume, velocity and variety. Distributed computing plaforms
like Hadoop and Spark, have been recently introduced to address the high volume of
datasets and the high velocity at which new data is produced. This thesis focuses on
the variety aspect of big data: users not only upload textual data (messages, chats,
blog posts) but also multimedia data (image and video files).

High-dimensional nearest neighbor search is of particular importance in multime-
dia databases. Multimedia objects (images, videos, audio files) can be represented as
high-dimensional feature vectors that capture their contents. Finding similar mul-
timedia objects then comes down to finding multimedia objects that have similar
feature vectors. Many other applications, such as recommender systems or scientific
data processing require efficient high-dimensional nearest neighbor search techniques.
However, nearest neighbor search remains a challenging problem, especially at large
scale and in high-dimensional spaces. Thus, the notorious curse of dimensionality
makes exact nearest neighbor search intractable. The current research focus is there-
fore on approximate nearest neighbor search solutions.

85



7. Conclusion and Perspectives

Product quantization is one the most efficient approximate nearest neighbor search
approaches, and is at the basis of all contributions of this thesis. The key advantage of
product quantization is that it compresses high-dimensional vectors into short codes,
which enables large databases to be stored entirely in RAM. Product Quantization
can therefore answer nearest neighbor queries without accessing the SSD or HDD,
unlike other approaches such as LSH. This approach makes it possible to achieve
low response times, because RAM typically has a 100-1000 times lower latency than
SSDs. The contributions of this thesis bet on exploiting the capabilities of modern
CPUs to further decrease response times offered by product quantization.

7.1.2 Contributions
Product quantization compresses high-dimensional vectors into short codes, and

stores the entire database in RAM in the form of lists of short codes. To answer
nearest neighbor queries, product quantization scans these lists for nearest neighbors.
Product quantization therefore computes the distance between the query vector and
every code in the lists. This process, named Asymmetric Distance Computation
(ADC), remains CPU intensive, and does not exploit the capabilities of modern
CPUs. On a single-core, ADC is able to scan lists of short codes at 2-3 GB/s while
the theoretical single-core memory bandwidth is 12-16 GB/s. This demonstrates that
ADC is strongly CPU bound. In this thesis, we first analyzed the factors that limit the
performance of ADC (Performance Analysis). Based on this analysis, we subsequently
proposed three contributions (PQ Fast Scan, Quick ADC, Derived Quantizers) that
increase the performance of ADC in different scenarios.

Performance Analysis To compute distances, ADC relies on a set of cache-
resident lookup tables. Each distance computation requires a small number of table
lookups and additions. In the first part of our analysis, we have shown that even
when lookup tables fit the fastest cache levels, cache accesses limit the performance
of ADC. Moreover, our study demonstrates that the performance of ADC strongly
depends on the cache level in which lookup tables are stored. The product quantiza-
tion parameter b, the number of bits per quantizer (typical b = 8 − 16 bits), affects
both the accuracy of nearest neighbor search and the cache level in which lookup
tables are stored. For instance, we show that using b = 16 bits per quantizer yields
a higher accuracy than using b = 8 bits per quantizer, but also causes lookup tables
to be stored in the L3 cache instead of the L1 cache. This in turn translates into a
threefold increase in response time. In the second part of our analysis, we show that
ADC cannot be efficiently implemented in SIMD, including using gather instructions
introduced in recent Intel Haswell CPUs. Our study concludes that both the large
number of cache accesses it performs, and the impossibility of an SIMD implemen-
tation limit the performance of ADC. These limitations call for a modification of the
ADC procedure to increase performance.

PQ Fast Scan The first solution we proposed to overcome the limitations of the
conventional ADC algorithm is PQ Fast Scan. PQ Fast Scan achieves a 4-6 times
speedup over ADC, while returning the exact same results. The key idea behind PQ
Fast Scan is to replace costly cache accesses by much faster SIMD in-register shuffles.
Using SIMD in-register shuffles requires lookup tables to be stored in SIMD registers,
which are much smaller than cache. PQ Fast Scan therefore builds small tables that

86



7.2. Perspectives

fit SIMD registers. These small tables are used to compute lower bounds on distances.
Lower bounds are then used to prune unneeded distance computations, thus limiting
the number of cache accesses. To build small tables, PQ Fast Scan modifies the layout
of the database in memory. This makes it incompatible with inverted indexes, a search
acceleration technique commonly used in combination with product quantization.

Quick ADC The second solution we proposed is Quick ADC. Like PQ Fast Scan,
Quick ADC achieves a 4-6 times speedup over the conventional ADC algorithm.
Quick ADC also builds on the idea of replacing cache accesses by SIMD in-register
shuffles. However, contrary to PQ Fast Scan, Quick ADC is compatible with inverted
indexes. Instead of building small tables that can be used to compute lower bounds,
Quick ADC uses 4-bit quantizers (b = 4). Using 4-bit quantizers (b = 4) instead
of the commonly used 8-bit quantizers makes it easy to build lookup tables that fit
SIMD registers, but causes a slight decrease in recall. While this decrease is generally
small, it may still have a practical impact in very large databases. To eliminate this
issue, we combine Quick ADC with optimized product quantization, a derivative of
product quantization that yields a better accuracy. We show that when combined
with optimized product quantization, the decrease of accuracy caused by Quick ADC
is always small, including in the case of very large databases.

Derived Quantizers For most current use cases of nearest neighbor search, prod-
uct quantization with 8-bit quantizers, or even 4-bit quantizers, offers a sufficient
accuracy. Newer use cases may however require 16-bit quantizers. For instance, there
has been a recent interest in using 32-bit codes, instead of 64-bit codes, to achieve
higher compression ratios. In this case, the accuracy offered by 8-bit quantizers is too
low and 16-bit quantizers become necessary. The main drawback of this approach is
that 16-bit incur a threefold increase in response time. To tackle this issue, we have
proposed derived quantizers. Derived quantizers make 16-bit quantizers as fast as
8-bit quantizers, while retaining their accuracy. The key idea behind our approach
is to compute 8-bit derived quantizers that approximate the 16-bit high-resolution
quantizers. To answer nearest neighbor queries, a small candidate set is built by
scanning the database using the fast 8-bit derived quantizers. This candidate set is
then reranked using the high-resolution 16-bit quantizers.

7.2 Perspectives

The contributions presented in this thesis open both short term and more long-
term perspectives. Among short-term perspectives is the application of the fast scan
techniques we developed to derivatives of product quantization, such as additive
quantization or composite quantization. After evaluating the applicability of our
techniques to these recent derivatives of product quantization, we discuss two long-
term perspectives. We first review how our techniques could be adapted to exploit
future hardware. We then examine how they can be generalized to other algorithms
that rely heavily on lookup tables or other database algorithms.

7.2.1 Application to Product Quantization Derivatives
In this thesis, we proposed three contributions (PQ Fast Scan, Quick ADC, Derived

Quantizers) that increase the speed of the ADC procedure in different scenarios. We

87



7. Conclusion and Perspectives

tested these solutions in the context of product quantization and optimized prod-
uct quantization. Product Quantization (PQ) and Optimized Product Quantization
(OPQ) use the same ADC procedure: m table lookups and m additions. Recently,
compositional quantization models inspired by product quantization have been intro-
duced by the research community. Additive Quantization (AQ), Tree Quantization
(TQ) and Composite Quantization (CQ) are among the most promising approaches
(Section 2.3.4). All these approaches offer a lower quantization error than product
quantization or optimized product quantization. They however sometimes use a dif-
ferent ADC procedure. For instance, AQ requires about m+m2/2 table lookups and
additions, and TQ requires 2·m table lookups and additions. Moreover, all these new
approaches use a different process to learn quantizer codebooks from the one of PQ.
So far, these approaches have only been tested with 8-bit quantizers (b = 8). Some of
our solutions use 4-bit quantizers (Quick ADC), or 16-bit quantizers (Derived Quan-
tizers). Adapting the codebook learning processes of these new approaches to other
quantizer sizes may therefore open challenges. In this section, we recap the research
opportunities opened by the application of our solutions to these new compositional
quantization models.

PQ Fast Scan PQ Fast Scan relies on the use of 8-bit sub-quantizers, and all
these new quantization approaches have also been tested with 8-bit sub-quantizers.
Therefore, there is no need to adapt the codebook learning process of AQ, TQ or CQ.
In addition, CQ uses a similar ADC procedure to the one of PQ and OPQ. Therefore,
adapting PQ Fast Scan to CQ is straightforward. We have shown that the case of
TQ or AQ is more challenging (Section 4.4.2). The ADC procedure of TQ and AQ
requires more table lookups (m+m2/2 or 2·m), than the ADC procedure of PQ or
OPQ. This means that a different combination of code grouping and minimum tables
has to be used. Determining if PQ Fast Scan has a high enough pruning power under
these conditions is therefore a possible research direction. If this is the case, PQ
Fast Scan would offer a high speedup for AQ and TQ. The SIMD implementation of
additions allowed by PQ Fast Scan would highly benefit AQ and TQ, as they require
a high number of additions (m+m2/2 or 2·m).

Quick ADC Quick ADC uses 4-bit sub-quantizers while the recently introduced
compositional quantization approaches have been tested with 8-bit sub-quantizers
only. This means that it is necessary to adjust the codebook learning process of
AQ, TQ or CQ. Using 4-bit sub-quantizers instead of 8-bit sub-quantizers requires
doubling the m parameter to maintain a comparable accuracy. This impacts the
complexity of the codebook learning process of AQ, TQ and CQ. We have shown
that this process should however remain tractable (Section 5.4.2), but experiments
are required to determine if it is the case in practice. We have also shown that Quick
ADC is unlikely to strongly benefit the ADC procedure of AQ and TQ. For these
two quantization approaches, doubling the m parameter causes a large increase in
the number of additions (m + m2/2 or 2·m), lessening the benefit of Quick ADC
(Section 5.4.2). In conclusion, the most interesting research opportunity consists in
combining Quick ADC and CQ, as its ADC procedure requires only m additions.
The resulting solution would offer both superior performance, thanks to Quick ADC,
and a high accuracy, thanks to CQ.

88



7.2. Perspectives

Derived Quantizers The key idea of derived quantizers is to use 16-bit quantiz-
ers instead of the common 8-bit quantizers to increase accuracy. Therefore, derived
quantizers have the same goal as AQ, TQ or CQ. Because they increase accuracy
without impacting response time, derived quantizers compare favorably to these ap-
proaches. More importantly, the approach of derived quantizers is orthogonal to
these other approaches. Derived quantizers may therefore be combined with AQ,
TQ or CQ, but only if the codebook learning processes remain tractable for 16-bit
sub-quantizers. We have shown that the codebook learning process of TQ and CQ is
likely to remain tractable, while the codebook learning process of AQ is likely to be
intractable (Section 6.4.2). Therefore, the most interesting research opportunity is
to combine derived quantizers with TQ or CQ. Lastly, using 16-bit quantizers makes
it possible to divide the m parameter by 2 (m′ = m/2), while maintaining a greater
accuracy. Thus the ADC procedures can be easily adapted, as they have complexities
in m+m2/2 or 2m.

7.2.2 Exploitation of Future Hardware
Future SIMD instruction sets The upcoming Intel Xeon Skylake Purley, ex-
pected in 2017, will include support for the new AVX-512 SIMD instruction set [34,
38]. The AVX-512 instruction set will provide twice as wide SIMD registers (512 bits)
as the current AVX2 SIMD instruction set (256 bits). In addition, AVX-512 will offer
new SIMD instructions that do not exist yet in AVX2. For instance, AVX-512 will of-
fer a full-width SIMD in-register shuffle allowing 512-bit small tables (64×8 bits). In
comparison, the current AVX2 instruction set only offers half-width SIMD in-register
shuffles, allowing lookups in 256-bit small tables (16×8 bits). AVX-512 will increase
the applicability of PQ Fast Scan, and the accuracy of Quick ADC. PQ Fast Scan
requires inverted lists of at least 3 million codes to be efficient, hindering the compat-
ibility with inverted indexes (Section 4.2.2). This size constraint stems from the use
of code grouping. More specifically, we have shown that the minimum size of inverted
lists depends on the size of small tables stored in SIMD registers (Section 4.4.1). For
128-bit small tables (16×8), the minimum size is 3 million codes, while for 512-bit
small tables (64×8), the minimum size would be 3000-12000 codes. Thus, AVX-512
would make PQ Fast Scan compatible with most inverted indexes configurations.
Quick ADC causes a slight drop in accuracy because it uses 4-bit quantizers (b = 4)
instead of the more common and more accurate 8-bit quantizers (b = 8). Relying
on 512-bit small tables would allow Quick ADC to use 6-bit quantizers (b = 6), thus
reducing the drop in accuracy. In addition to improving applicability or accuracy,
AVX-512 (512-bit SIMD) will allow process two times more data per cycles than
AVX2 (256-bit SIMD), or four times more data per cycles than SSE (128-bit SIMD).
The benefit of AVX-512 is therefore twofold: increase in accuracy or applicability
and improvement in performance.

Other Architectures So far, we have implemented and evaluated PQ Fast Scan
on current Intel CPUs. However, other architectures, such as ARM CPUs are used
on a massive scale in consumer devices such as smartphones or tablets [5]. ARM
CPUs might also gain traction in the datacenter market in the future. PQ Fast Scan
and Quick ADC require support for SIMD in-register shuffles, and SIMD saturated
adds. In addition, they require an SIMD width of at least 128 bit. The ARM NEON
instruction set is a 128-bit SIMD instruction set included in ARM Cortex-A CPUs,
ARM’s range of CPUs for smartphones and tablets [6, 7]. ARM NEON supports

89



7. Conclusion and Perspectives

in-register shuffles (VTBL and VTBX instructions) as well as saturated adds (VQADD
instruction). Therefore, implementing PQ Fast Scan and Quick ADC with ARM
NEON instructions is a possible research direction. Moreover, experiments would
allows assessing the speedup obtained on ARM processors. In August 2016, ARM
has announced its intent to provide very wide SIMD engines (up to 2048 bits) in its
future generation of CPUs via the Scalable Vector Extensions (SVE) instruction set
[15]. By allowing larger small tables, SVE would bring similar benefits as AVX-512
to ARM CPUs.

In 2013, IBM announced its intent to offer the POWER technology for licensing,
and to allow third-parties to include POWER CPUs in their products [56]. So far,
POWER CPUs were almost exclusively used in mainframes manufactured by IBM
itself. This has triggered a surge of interest for the POWER architecture, and the
OpenPOWER Foundation [48] was created to coordinate the efforts of all parties
interested in POWER CPUs. The OpenPOWER Foundation now includes major
players such as Google or NVIDIA, and the first POWER servers manufactured
by third-parties are appearing. POWER servers might therefore enter the market
in the near future. Like ARM, the POWER architecture offers 128-bit SIMD. In
particular, SIMD in-register shuffles (vperm) and 8-bit saturated additions (vaddubs)
are supported [30]. PQ Fast Scan and Quick ADC may therefore be implemented on
POWER CPUs.

7.2.3 Generalization to Other Algorithms
When designing PQ Fast Scan and Quick ADC, we developed different techniques

that exploit SIMD to accelerate nearest neighbor search. As a medium to long-term
research perspective, these techniques may be used beyond the context of nearest
neighbor search. More specifically, these techniques can be useful to algorithms that
rely on lookup tables, or database workloads that process large amounts of data. In
this section, we discuss how the techniques we developed in the context of PQ Fast
Scan and Quick ADC can be generalized to other workloads.

SIMD in-registers shuffles The main idea behind PQ Fast Scan and Quick ADC
is to store lookup tables in SIMD registers, while storing them in the L1 cache is
generally considered as best practice for efficiency. Therefore, any algorithm relying
on lookup tables is a candidate for applying this idea. Among practical uses of
lookup tables is query execution in compressed databases. Compression schemes,
either generic [49, 26, 1, 53] or specific (e.g., SAX for time series [40]), have been
widely adopted in database systems. In the case of dictionary-based compression
(or quantization), the database stores short codes. A dictionary (or codebook) holds
the actual values corresponding to the short codes. Query execution then relies on
lookup tables, derived from the dictionary. In this case, storing lookup tables in SIMD
registers allows for better performance. If lookup tables are small enough (16 entries),
they may be stored directly in SIMD registers, after quantization of their elements
to 8-bit integers. Otherwise, it possible to build small tables for different types of
queries. For top-k queries, it is possible to build small tables enabling computation
of lower or upper bounds. Like in PQ Fast Scan, lower bounds can then be used to
limit L1-cache accesses. To compute upper bounds instead of lower bounds, maximum
tables can be used instead of minimum tables. For approximate aggregate queries

90



7.2. Perspectives

(e.g., approximate mean), tables of aggregates (e.g., tables of means) can be used
instead of minimum tables.

Saturated Integer Arithmetic Another idea behind PQ Fast Scan is to use 8-bit
saturated arithmetic. This idea can be applied for queries which do not use lookup
tables, such as queries executed on uncompressed data. Top-k queries require exact
score evaluation for a small number of items, so 8-bit arithmetic can be used to discard
candidates. Similarly, 8-bit arithmetic may provide enough precision for approximate
queries. In the context of SIMD processing, 8-bit arithmetic allows processing 4 times
more data per instruction than 32-bit floating-point arithmetic and thus provides a
significant speedup.

91





Bibliography

[1] D. J. Abadi, S. R. Madden, and M. C. Ferreira. Integrating Compression and
Execution in Column-Oriented Database Systems. In SIGMOD, 2006.

[2] F. André, A.-M. Kermarrec, and N. Le Scouarnec. Cache locality is not enough:
High-Performance Nearest Neighbor Search with Product Quantization Fast
Scan. PVLDB, 9(4), 2015.

[3] Apache Software Foundation. Apache Hadoop. https://hadoop.apache.org/,
2016. Accessed 30 June 2016.

[4] Apache Software Foundation. Apache Spark. https://spark.apache.org/,
2016. Accessed 30 June 2016.

[5] ARM. ARM Processors. https://www.arm.com/products/processors. Ac-
cessed 02 October 2016.

[6] ARM. NEON. http://www.arm.com/products/processors/technologies/
neon.php. Accessed 02 October 2016.

[7] ARM. NEON Instructions. http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.dui0489e/CJAJIIGG.html. Accessed 02 October 2016.

[8] A. Babenko and V. Lempitsky. Additive Quantization for Extreme Vector Com-
pression. In CVPR, 2014.

[9] A. Babenko and V. Lempitsky. The Inverted Multi-Index. TPAMI, 37(6), 2015.

[10] A. Babenko and V. Lempitsky. Tree quantization for large-scale similarity search
and classification. In CVPR, 2015.

[11] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded Up Robust Features.
In ECCV, 2006.

[12] J. S. Beis and D. G. Lowe. Shape indexing using approximate nearest-neighbour
search in high-dimensional spaces. In CVPR, 1997.

[13] J. L. Bentley. Multidimensional Binary Search Trees Used for Associative Search-
ing. CACM, 18(9), 1975.

[14] CERN. Computing. https://home.cern/about/computing. Accessed 27 June
2016.

[15] I. Cutress. ARM Announces ARM v8-A with Scalable Vector Extensions: Aim-
ing for HPC and Data Center. Anandtech, August 2016.

93

https://hadoop.apache.org/
https://spark.apache.org/
https://www.arm.com/products/processors
http://www.arm.com/products/processors/technologies/neon.php
http://www.arm.com/products/processors/technologies/neon.php
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489e/CJAJIIGG.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0489e/CJAJIIGG.html
https://home.cern/about/computing


Bibliography

[16] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. SCG, 2004.

[17] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. In OSDI, 2004.

[18] Facebook. Facebook Q1 2016 Results. https://investor.fb.com/
financials/?section=annualreports, 2016. Accessed 27 June 2016.

[19] Fortune. Amazon’s recommendation secret. http://fortune.com/2012/07/
30/amazons-recommendation-secret/, 2016. Accessed 27 June 2016.

[20] Friedman, Jerome H. and Bentley, Jon Louis and Finkel, Raphael Ari. An
Algorithm for Finding Best Matches in Logarithmic Expected Time. TOMS,
3(3), 1977.

[21] K. Fukunaga and P. M. Narendra. A Branch and Bound Algorithm for Com-
puting k-Nearest Neighbors. TC, C-24(7), 1975.

[22] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive Hashing Scheme Based
on Dynamic Collision Counting. In SIGMOD, 2012.

[23] T. Ge, K. He, Q. Ke, and J. Sun. Optimized Product Quantization for Approx-
imate Nearest Neighbor Search. In CVPR, 2013.

[24] T. Ge, K. He, Q. Ke, and J. Sun. Optimized Product Quantization. TPAMI,
36(4), 2014.

[25] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High Dimensions via
Hashing. In VLDB, 1999.

[26] G. Graefe and L. D. Shapiro. Data Compression and Database Performance. In
SAC, 1991.

[27] R. Gray. Vector Quantization. IEEE ASSP Magazine, 1(2), 1984.

[28] T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm: Data-Intensive
Scientific Discovery. Microsoft Research, 2009.

[29] J. Hofmann, J. Treibig, G. Hager, and G. Wellein. Comparing the Performance
of Different x86 SIMD Instruction Sets for a Medical Imaging Application on
Modern Multi- and Manycore Chips. In WPMVP, 2014.

[30] IBM. Power ISA Version 2.07, May 2013.

[31] Instagram Blog. Celebrating a Community of 400 Million. http://blog.
instagram.com/post/129662501137/150922-400million, 2015. Accessed 27
June 2016.

[32] Intel. Intel Intrinsics Guide. https://software.intel.com/sites/
landingpage/IntrinsicsGuide/.

[33] Intel. User and Reference Guide for the Intel C++ Compiler 15.0.

[34] Intel. Intel AVX-512 instructions. https://software.intel.com/en-us/
blogs/2013/avx-512-instructions, 2013. Accessed 02 October 2016.

94

https://investor.fb.com/financials/?section=annualreports
https://investor.fb.com/financials/?section=annualreports
http://fortune.com/2012/07/30/amazons-recommendation-secret/
http://fortune.com/2012/07/30/amazons-recommendation-secret/
http://blog.instagram.com/post/129662501137/150922-400million
http://blog.instagram.com/post/129662501137/150922-400million
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://software.intel.com/en-us/blogs/2013/avx-512-instructions


Bibliography

[35] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual, June
2016.

[36] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture, September 2016.

[37] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 2
(2A, 2B, 2C & 2D): Instruction Set Reference, A-Z, September 2016.

[38] Intel. Intel Architecture Instruction Set Extensions Programming Reference,
September 2016.

[39] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. TPAMI, 33(1), 2011.

[40] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a novel symbolic
representation of time series. Data Mining and Knowledge Discovery, 15(2),
2007.

[41] Y. Liu, J. Cui, Z. Huang, H. Li, and H. Shen. SK-LSH: An Efficient Index
Structure for Approximate Nearest Neighbor Search. PVLDB, 7(9), 2014.

[42] S. Lloyd. Least squares quantization in PCM. Transactions on Information
Theory, 28(2), 1982.

[43] D. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999.

[44] M. Muja and D. G. Lowe. Scalable Nearest Neighbour Algorithms for High
Dimensional Data. TPAMI, 36(X), 2014.

[45] D. Nister, H. Stewenius, D. Nist, and H. Stew. Scalable Recognition with a
Vocabulary Tree. In CVPR, 2006.

[46] M. Norouzi and D. J. Fleet. Cartesian K-Means. In CVPR, 2013.

[47] A. Oliva and A. Torralba. Modeling the Shape of the Scene: A Holistic Repre-
sentation of the Spatial Envelope. IJCV, 42(3), 2001.

[48] OpenPOWER Foundation. http://openpowerfoundation.org/.

[49] M. A. Roth and S. J. Van Horn. Database compression. ACM SGIMOD Record,
22(3), 1993.

[50] E. Schubert. Same-size k-means variation, 2012. http://elki.dbs.ifi.lmu.
de/wiki/Tutorial/SameSizeKMeans.

[51] C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast image descriptor
matching. In CVPR, 2008.

[52] J. Sivic and A. Zisserman. Video Google: a text retrieval approach to object
matching in videos. In ICCV, 2003.

[53] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. O’Neil, et al. C-store: a column-oriented DBMS.
In VLDB, 2005.

95

http://openpowerfoundation.org/
http://elki.dbs.ifi.lmu.de/wiki/Tutorial/SameSizeKMeans
http://elki.dbs.ifi.lmu.de/wiki/Tutorial/SameSizeKMeans


Bibliography

[54] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and Efficiency in High Dimen-
sional Nearest Neighbor Search. In SIGMOD, 2009.

[55] R. Tavenard, H. Jegou, M. Douze, and L. Amsaleg. Searching in one billion
vectors: Re-rank with source coding. In ICASSP, 2011.

[56] J. Walton. IBM Offers POWER Technology for Licensing, Forms OpenPOWER
Consortium. Anandtech, August 2013.

[57] R. Weber, H.-J. Schek, and S. Blott. A Quantitative Analysis and Performance
Study for Similarity-Search Methods in High-Dimensional Spaces. In VLDB,
1998.

[58] Y. Xia, K. He, F. Wen, and J. Sun. Joint Inverted Indexing. In ICCV, 2013.

[59] YoutTube Engineering and Developers Blog. Machine learning for
video transcoding. https://youtube-eng.blogspot.fr/2016/05/
machine-learning-for-video-transcoding.html, 2016. Accessed 27
June 2016.

[60] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-
tolerant Abstraction for In-memory Cluster Computing. In NSDI, 2012.

[61] T. Zhang, C. Du, and J. Wang. Composite Quantization for Approximate Near-
est Neighbor Search. In ICML, 2014.

96

https://youtube-eng.blogspot.fr/2016/05/machine-learning-for-video-transcoding.html
https://youtube-eng.blogspot.fr/2016/05/machine-learning-for-video-transcoding.html



	Contents
	List of Figures
	List of Tables
	Résumé en Français
	Introduction
	Quantification Produit
	Analyse de Performance
	PQ Fast Scan
	Quick ADC
	Derived Quantizers
	Conclusion et Perspectives

	Introduction
	The Big Data Trend
	Applications of Nearest Neighbor Search
	Classification of Nearest Neighbor Search Problems
	The Curse of Dimensionality
	Product Quantization
	Thesis Outline

	State of the Art
	Space and Data Partitioning Trees
	KD-trees
	Bag of Features and Vocabulary Trees
	FLANN Library

	Locality Sensitive Hashing (LSH)
	Euclidean Distance LSH (E2LSH)
	Virtual Rehashing Schemes

	Product Quantization
	Vector Encoding
	Inverted Indexes
	ANN Search
	Product Quantization Derivatives


	Performance Analysis
	Impact of Memory Accesses
	Issues with SIMD Implementation
	Lessons Learned

	PQ Fast Scan
	Motivation
	Presentation
	Overview
	Code Grouping
	Minimum Tables
	Quantization of Distances
	Lookups in Small tables

	Evaluation
	Experimental Setup
	Distribution of Response Times
	Performance Counters
	Impact of init and r Parameters
	Impact of Distance Quantization
	Impact of the Size of Inverted Lists
	Large Scale Experiment
	Impact of CPU Architecture

	Discussion
	Compatibility with Inverted Indexes
	Applicability to Product Quantization Derivatives


	Quick ADC
	Motivation
	Presentation
	Overview
	SIMD Distance Computations

	Evaluation
	Experimental Setup
	Exhaustive Search in SIFT1M
	Non-exhaustive Search in SIFT1M
	Non-exhaustive Search in GIST1M
	Non-exhaustive Search in Deep1M
	Non-exhaustive Search in SIFT1B

	Discussion
	Compatibility with Inverted Indexes
	Applicability to Product Quantization Derivatives


	Derived Quantizers
	Motivation
	Presentation
	Overview
	Training Derived Quantizers
	ANN Search with Derived Quantizers

	Evaluation
	Experimental Setup
	Small Datasets, 64-bit Codes
	Small Dataset, 32-bit Codes
	Large Dataset, 64-bit Codes

	Discussion
	Limitations
	Comparison with Other Quantization Approaches
	Comparison with ADC+R


	Conclusion and Perspectives
	Summary of the Thesis
	Context
	Contributions

	Perspectives
	Application to Product Quantization Derivatives
	Exploitation of Future Hardware
	Generalization to Other Algorithms


	Bibliography

