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Abstract

In many areas of statistics, including signal and image processing, high-dimensional estimation is an
important task to recover an object of interest. However, in the overwhelming majority of cases, the
recovery problem is ill-posed. Fortunately, even if the ambient dimension of the object to be restored
(signal, image, video) is very large, its intrinsic “complexity” is generally small. The introduction of
this prior information can be done through two approaches: (i) penalization (very popular) and (ii)
aggregation by exponential weighting (EWA). The penalized approach aims at finding an estimator
that minimizes a data loss function penalized by a term promoting objects of low (simple) complexity.
The EWA combines a family of pre-estimators, each associated with a weight exponentially promoting
the same objects of low complexity.

This manuscript consists of two parts: a theoretical part and an algorithmic part. In the theoretical
part, we first propose the EWA with a new family of priors promoting analysis-group sparse signals
whose performance is guaranteed by oracle inequalities. Next, we will analysis the penalized estimator
and EWA, with a general prior promoting simple objects, in a unified framework for establishing some
theoretical guarantees. Two types of guarantees will be established: (i) prediction oracle inequalities,
and (ii) estimation bounds. We will exemplify them for particular cases some of which studied in
the literature. In the algorithmic part, we will propose an implementation of these estimators by
combining Monte-Carlo simulation (Langevin diffusion process) and proximal splitting algorithms, and
show their guarantees of convergence. Several numerical experiments will be considered for illustrating
our theoretical guarantees and our algorithms.

Keywords: High-dimensional estimation, low-complexity prior, exponential weighted aggregation,
penalized estimation, oracle inequality, Langevin diffusion, forward-backward algorithm, consistency.

Résumé

Dans plusieurs domaines des statistiques, y compris le traitement du signal et des images, l’estimation
en grande dimension est une tâche importante pour recouvrer un objet d’intérêt. Toutefois, dans la
grande majorité de situations, ce problème est mal-posé. Cependant, bien que la dimension ambiante
de l’objet à restaurer (signal, image, vidéo) est très grande, sa “complexité” intrinsèque est généralement
petite. La prise en compte de cette information a priori peut se faire au travers de deux approches: (i) la
pénalisation (très populaire) et (ii) l’agrégation à poids exponentiels (EWA). L’approche penalisée vise
à chercher un estimateur qui minimise une attache aux données pénalisée par un terme promouvant des
objets de faible complexité (simples). L’EWA combine une famille des pré-estimateurs, chacun associé
à un poids favorisant exponentiellement des pré-estimateurs, lesquels privilègent les mêmes objets de
faible complexité.

Ce manuscrit se divise en deux grandes parties: une partie théorique et une partie algorithmique.
Dans la partie théorique, on propose l’EWA avec une nouvelle famille d’a priori favorisant les signaux
parcimonieux à l’analyse par group dont la performance est garantie par des inégalités oracle. En-
suite, on analysera l’estimateur pénalisé et EWA, avec des a prioris généraux favorisant des objets
simples, dans un cardre unifié pour établir des garanties théoriques. Deux types de garanties seront
montrés: (i) inégalités oracle en prédiction, et (ii) bornes en estimation. On les déclinera ensuite pour
des cas particuliers dont certains ont été étudiés dans littérature. Quant à la partie algorithmique, on
y proposera une implémentation de ces estimateurs en alliant simulation Monte-Carlo (processus de
diffusion de Langevin) et algorithmes d’éclatement proximaux, et montrera leurs garanties de conver-
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gence. Plusieurs expériences numériques seront décrites pour illustrer nos garanties théoriques et nos
algorithmes.

Mots-clés: Estimation en grande dimension, a priori de faible complexité, agrégation à poids expo-
nentiels, estimation pénalisée, inégalité d’oracle, diffusion de Langevin, algorithme explicite-implicite,
consistence.
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1.1 Overview

1.1.1 Problem statement

1.1.1.1 Regression problem

This manuscript focuses on the fundamental problem of high-dimensional estimation in statistics. We
are given a sample (xi, yi) ∈ (X ,Y ⊆ R), i = 1, . . . , n generated from two random variables (X,Y )

defined on the probability space (Ω,A,P). X and Y are respectively called design and response. We
aim to exploit the link between them. This link is expressed via the regression function

f : X → R, x 7→ f(x) = E [Y | X = x] . (1.1)

For any function g : X → R, let us define g def
= (g(x1), . . . , g(xn))>, and

∥∥g∥∥
n

def
=

√√√√ 1

n

n∑
i=1

g2(xi). (1.2)

.
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Chapter 1 1.1. Overview

1.1.1.2 Aggregation approach

The approach of aggregation has been introduced in machine learning to combine different techniques
(see [154, 96]) with some procedures such as bagging [17], boosting [71, 129] and random forests
[2, 18, 13, 12, 74, 11]. It assumes that there exists a dictionary H = {fj : X → R, j ∈ {1, . . . , p}} such
that f is well approximated by a linear combination of elements in H. Here, the fj are known and
may be either fixed atoms in a basis or pre-estimators. More precisely, let

fθ
def
=

p∑
j=1

θjfj , ∀θ ∈ Rp.

We approximate f by fθ0 , with θ0 = (θ0,1, . . . ,θ0,p)
> ∈ Rp is a reference vector defined as any solution

to the following minimization problem

θ0 ∈ Argmin
θ∈Rp

E [F (fθ,y)] , (1.3)

where y = (y1, . . . , yn)> ∈ Rn and F : Rn × Rn → R is a loss function that assigns to each θ ∈ Rp a
cost F (fθ,y).

Let X ∈ Rn×p, [X]i,j
def
= fj(xi) be the design matrix. A usual instance of this statistical setting is

the standard linear regression model, i.e.

y = f + ξ, with f = Xθ∗, (1.4)

whereX ∈ Rn×p called design matrix, θ∗ ∈ Rp called regression vector, and ξ ∈ Rn are i.i.d. zero-mean
random errors. Then, with

F (u,y) =
1

2

∥∥y − u∥∥2

2
,

θ0 coincides with θ∗, hence fθ0 coincides with f . The loss F defined above is called quadratic loss.

1.1.1.3 Low-complexity

Our goal is to provide estimators of θ0 in a high-dimensional context whose performance is certified
by theoretical guarantees. Namely, the estimation (c.f. from (1.4)) is ill-posed. To circumvent this
difficulty, we will exploit the prior that θ0 has some low-complexity structure which is manifested
through the fact that θ0 belongs to a low-dimensional model subset. That is, even if the ambient
dimension p of θ0 is very large, the intrinsic dimension of the model subset is much smaller than the
sample size n. This makes it possible to build estimates θ̂ with good provable performance guarantees
under appropriate conditions.

There has been a flurry of research on the use of low-complexity regularization in ill-posed recovery
problems in various areas including statistics and machine learning. Among which sparsity and low-
rank are the most popular.
(i) Sparsity prior states that the non-zero components of θ0 is much smaller that n.

(ii) Low-rank prior considers θ0 as a matrix whose rank is much smaller that n.
The sparsity prior can be generalized in several ways:
(i) Analysis sparsity: let q ≥ p and D> ∈ Rq×p be a linear analysis operator. The analysis sparsity

means that
∥∥D>θ∥∥

0
� n. A typical example is total variation [128] where the operator D>

corresponds to “finite differences” (i.e. (D>θ)1 = θ1, (D>θ)j = θj − θj−1, ∀j ≥ 2). Another
example is the fused Lasso [128] where D> is a positive combination of the identity and finite
differences.

(ii) Group sparsity: that corresponds to saying that the aggregator θ is group sparse. Group sparsity
is at the heart of the group Lasso and related methods [161, 81, 89, 106, 117, 105]. In the EWA
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Chapter 1 1.1. Overview

context, the group sparsity prior is considered in [123] as an application of the aggregation of
orthogonal projectors.

(iii) Analysis-group sparsity: that combines (i) and (ii). Some popular applications are: estimation
of 2-D piecewise constant images with the isotropic total variation (see [128]), and estimation of
signals with group-sparsity where the groups are overlapping (see [113, 39]).

In the manuscript, we will illustrate our results on the sparsity prior and its generalized versions and
also give some analogous results under low-rank prior.

1.1.2 Oracle inequalities

This type of guarantees dates back, for instance, to the work [60, 57, 61] on orthogonal wavelet
thresholding estimators. Oracle inequalities (according to the terminology introduced in e.g. [57]),
which are at the heart of many of our theoretical guarantees, quantify the quality of an estimator
compared to the best possible one among a collection of candidates. Formally, when the dictionary is
deterministic (resp. random), the performance of a candidate is measured by a function R(·,f) (resp.
E [R(·,f)]) whose definition depends on the estimation guarantee that one is targeting. Generally,
there are three main guarantees:
(i) Correct model selection: The goal is to ensure that the estimated vector identifies the same

low-dimensional model subset as that of θ0.

(ii) Estimation guarantee: The goal is to assess the performance of estimating θ0 directly, e.g.
R(fθ,f) =

∥∥θ − θ0

∥∥2

2
.

(iii) Prediction guarantee: The goal is to assess the performance of estimating f , e.g. R(fθ,f) =∥∥fθ − f∥∥2

2
.

In the manuscript, we consider the oracle inequalities for deterministic dictionaries. Let Θ be the
set of candidates. A candidate f θ̄ is called oracle if it has the best performance in Θ, i.e.

f θ̄ = Arginf
fθ∈
{
fθ′ : θ′∈Θ

}R(fθ,f).

Since f is unknown, θ̄ is not accessible. However, one can find an estimator f̂ that mimics as much as
possible the performance of the best model of aggregation in a given class Θ. This idea is expressed in
the following type of inequalities:

E
[
R(f̂ ,f)

]
≤ C inf

θ∈Θ
R(fθ,f) + ∆n,p(Θ), (1.5)

or
R(f̂ ,f) ≤ C inf

θ∈Θ
R(fθ,f) + ∆n,p(Θ) with a high probability, (1.6)

where C ≥ 1 and the remainder term ∆n,p(Θ) depends on the performance of the estimator, the
complexity of Θ, the dimension p and the sample size n. Inequality (1.5) (resp. (1.6)) is called oracle
inequality in expectation (resp. probability). Namely, in some context, we prefer to measure the quality
of estimators by the fluctuations in R(f̂ ,f) under a large probability instead of summarizing it by the
expectation E

[
R(f̂ ,f)

]
. In general, the oracle inequality in probability is harder to achieve than its

counterpart in expectation.
An estimator with good oracle properties would correspond to C close to 1 (ideally, C = 1, in which

case the inequality is coined “sharp”), ∆n,p(Θ) should be small even if n� p and decreases rapidly to
0 as n→ +∞. When C = 1, the results are more interesting as f̂ mimics exactly the performance of
the oracle.

Besides, the choice of Θ is crucial: on the one hand, a non suitable choice can lead to a large bias.
On the other hand, if Θ is too complex, the remainder term becomes large. Then, a suitable choice
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Chapter 1 1.1. Overview

for Θ must achieve a good bias-complexity trade-off. The works in [141] and [119] have proven the
optimal rate of the remainder term for several choices of Θ.

In this manuscript, we consider the more general version of oracle inequalities (1.5) and (1.6) which
are defined as

E
[
R(f̂ ,f)

]
≤ C inf

θ∈Θ′
{R(fθ,f) + ∆n,p(θ)} , (1.7)

R(f̂ ,f) ≤ C inf
θ∈Θ′
{R(fθ,f) + ∆n,p(θ)} with a high probability. (1.8)

Indeed, when Θ ⊆ Θ′, (1.7) (resp. (1.8)) implies directly (1.5) (resp. (1.6)). Such type of inequalities
are for instance well adapted under the sparsity scenario. Namely, the complexity of θ in the remainder
term is characterized by the sparsity parameters (like the number of its non-zero components), in which
case these inequalities are called sparse oracle inequalities (SOI).

1.1.3 Variational/Penalized approach

Regularization is now a central theme in many fields including statistics, machine learning and inverse
problems. It allows one to impose on the set of candidate solutions some prior structure on the
object to be estimated. This regularization ranges from squared Euclidean or Hilbertian norms to
non-Hilbertian norms (e.g. `1 norm for sparse objects, or nuclear norm for low-rank matrices) that
have sparked considerable interest in the recent years. In this manuscript, we consider the class of
estimators obtained by solving the convex optimization problem1

θ̂
PEN

n ∈ Argmin
θ∈Rp

{Vn(θ)
def
=

1

n
F (Xθ,y) + Jλn(θ)}, (1.9)

where the regularizing penalty Jλn is a proper closed convex function that promotes some specific
notion of simplicity/low-complexity, and λn is the vector of parameters.

The `0 penalty has been studied as a regularizer for sparse recovery (see [132, 20, 57, 61]). This
type of penalties yields the optimal oracle inequalities in several problems with no assumption on the
dictionary. However, its numerical computation is an NP-hard problem which becomes impossible in
a high-dimensional context.

To deal with this issue, several works consist on convexifying the optimization problem which be-
comes computable by convex programming solvers, see [55] for a comprehensive review. A prominent
member is the Lasso [38, 137, 110, 56, 22, 14, 19, 87] and its variants such the analysis/fused Lasso
[128, 138], SLOPE [15, 134] or group Lasso [5, 161, 4, 156].

Besides, for low rank matrix recovery, the nuclear norm minimization is motivated by various ap-
plications including robust PCA, phase retrieval, control and computer vision [118, 31, 70, 33]. See
[108, 19, 149, 146] for generalizations and comprehensive reviews.

An interesting result was introduced in [9] which generalizes the works in [49, 95] based on ag-
gregation of pre-estimators by exponential weighting. Using a penalized procedure inspired from Q-
aggregation (see [43, 120]), the authors relaxed the conditions of affine pre-estimators and established
oracle inequalities (in probability) of model selection with an optimal remainder term for linear regres-
sion with i.i.d. Gaussian and sub-Gaussian noises.

1.1.4 Exponential Weighted Aggregation (EWA)

Let (Θ,A) be a space equipped with a σ-algebra and

FΘ = {fθ : X → R : θ ∈ Θ}
1To avoid trivialities, the set of minimizers is assumed non-empty.
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Chapter 1 1.1. Overview

be a given dictionary where θ → fθ(x) is measurable ∀x ∈ X . The functions fθ may be deterministic
or random. To distinguish from the initial dictionary H (see Section 1.1.1.2), we call FΘ as EWA-
dictionary. The aggregators depend on the nature of fθ if the latter is random. Otherwise, the
aggregators are defined via the probability measure

µ̂n(dθ) =
exp (−F (fθ,y)/β)π(dθ)∫

Θ exp (−F (fω,y)/β)π(dω)
=

exp (−F (Xθ,y)/β)π(dθ)∫
Θ exp (−F (Xω,y)/β)π(dω)

, (1.10)

where β > 0 called temperature parameter and π called prior which is a probability measure on Θ.
The choice of β weights the contribution of the data loss/prior. When β is small (resp. large), the
data loss risk (resp. prior) dominates. Remind that, in the standard linear regression, we can set
F (Xθ,y) = 1

2

∥∥y −Xθ∥∥2

2
. Next, we define the aggregate by

f̂n = f
θ̂

EWA
n

, with θ̂
EWA

n =

∫
Θ
θµ̂n(dθ). (1.11)

This idea was initially proposed in [154, 96, 85] with a uniform prior on a finite set Θ.
The references below consider EWA in the standard linear regression (1.4) with EWA-dictionaries

are either deterministic or random.
In the individual sparsity context, the works in [50, 45, 44, 52] consider deterministic EWA-dictionaries.

These papers proposed several PAC-Bayesian type of oracle inequalities under different assumptions.
Especially, the assumptions in [52] depend only on the noise and turns out to be fulfilled for a large
class of noises. This serves to construct, for a suitable prior and dictionary, a SOI with a remainder
term of order O

(∥∥θ∥∥
0

log(p)/n
)
, which scales linearly with the sparsity level and increases in p only

logarithmically.
The random EWA-dictionary case is tackled in [109]. The initial idea is to obtain two independent

samples from the initial sample by randomization or sample splitting (see [159, 121, 92]). The first
sample is used to construct the pre-estimators, and the aggregation is performed on the second sample
conditionally on the first one. However this idea does not work when the observations are not i.i.d..
Several authors have proposed exponentially aggregating linear pre-estimators without splitting, and
with discrete priors on the weights. Typical cases of linear pre-estimators are orthogonal projectors
on all possible linear subspaces that are in the model set (e.g. in the sparsity context, linear subspaces
spanned by the standard basis restricted to supports of increasing size). This was introduced in [95]
and generalized to the high-dimensional context in [122] (with Exponential Screening) where F is the
Stein’s unbiased risk estimate (SURE) and the noise is Gaussian. More recent works such as [49]
generalizes the idea where the pre-estimators are affine and the priors are continuous. Moreover, the
work in [107] enlarges the family of noise where ξ is a sub-Gaussian and its components are non i.i.d.
using a penalized version of the SURE.

A shortcoming of EWA is the suboptimality in deviation. The work in [43, Section 2] show that the
EWA lead a suboptimal remainder term for oracle inequalities in probability. To deal with that, the
authors in [47] consider a modified version of EWA where

f̂n = f
θ̂

EWA
n

, with θ̂
EWA

n =

∫
Θ
θµ̂n(dθ), (1.12)

where

µ̂n(dθ) =
exp (−Vn(θ)/β) dθ∫

Θ exp (−Vn(ω)/β) dω
, β > 0.

We remind that Vn(θ)
def
= 1

nF (Xθ,y) +Jλn(θ). Compared to (1.10), the difference in (1.12) is that we
use the same scale for risk term and prior term. When β is close to 0, the candidate minimizing Vn
dominates, the EWA becomes a penalized/regularization procedure. With the interpretation (1.12),
θ̂

EWA

n can also be interpreted as the posterior conditional mean in the Bayesian sense if F/(nβ) is the
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Chapter 1 1.1. Overview

negative-loglikelihood associated to the noise ξ with the prior density π(θ) ∝ exp (−Jλn(θ)/β). The
authors in [47] have established oracle inequalities in probability with the optimal remainder term for
EWA with `1 and the nuclear norm penalties.

1.1.5 Numerical implementation of EWA

When the components in the EWA-dictionary are orthogonal projectors on all possible linear subspaces,
the work in [122] proposed an algorithm of type Metropolis-Hastings for the Exponential Screening
estimator where the transition kernel is symmetric which simplifies the calculation of acceptance rate.
This algorithm avoids the computation of 2R−1 least square estimators, where R is the rank of the
design matrix.

In the manuscript, we focus on the computation of EWA when the prior is continuous. That corre-
sponds to an integration problem which becomes very involved to solve analytically or even numerically
in high dimension. A classical alternative is to approximate θ̂

EWA

n via a Markov chain Monte-Carlo
(MCMC) method which consists in sampling from µ̂n by constructing an appropriate Markov chain
whose stationary distribution is µ̂n, and to compute sample path averages based on the output of the
Markov chain. The theory of MCMC methods is based on that of Markov chains on continuous state
space. As in [52], we here use the Langevin diffusion process; see [124].

1.1.5.1 Langevin diffusion

Continuous dynamics A Langevin diffusion L in Rp, p ≥ 1 is a homogeneous Markov process
defined by the stochastic differential equation (SDE)

dL(t) =
1

2
ρ(L(t))dt+ dW (t), t > 0, L(0) = l0, (1.13)

where ρ = ∇ logµ, µ is everywhere non-zero and suitably smooth target density function on Rp, W
is a p-dimensional Brownian process and l0 ∈ Rp is the initial value. Under mild assumptions, the
SDE (1.13) has a unique strong solution and, L(t) has a stationary distribution with density precisely
µ [124, Theorem 2.1]. L(t) is therefore interesting for sampling from µ. In particular, this opens the
door to approximating integrals ∫

Rp
θµ(θ)dθ

by the average value of a Langevin diffusion, i.e.

1

T

∫ T

0
L(t)dt

for a large enough T . Under additional assumptions on µ, the expected squared error of the approxi-
mation can be controlled [158].

Forward Euler discretization In practice, in simulating the diffusion sample path, we cannot
follow exactly the dynamic defined by the SDE (1.13). Instead, we must discretize it. A popular
discretization is given by the forward (Euler) scheme, which reads

Lk+1 = Lk +
δ

2
ρ(Lk) +

√
δZk, t > 0, L0 = l0,

where δ > 0 is a sufficiently small constant discretization step-size and {Zk}k are i.i.d. ∼ N (0, Ip).
The average value 1

T

∫ T
0 L(t)dt can then be naturally approximated via the Riemann sum

δ

T

∑bT/δc−1
k=0 Lk, (1.14)

where bT/δc denotes the interger part of T/δ. It is then natural to approximate θ̂
EWA

n by applying this
discretization strategy to the Langevin diffusion with µ̂n as the target density. However, quantitative
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consistency guarantees of this discretization require µ (hence ρ) to be sufficiently smooth. A more
comprehensive account on Langevin diffusion can be found in [82, 158, 86].

1.2 Contributions

1.2.1 Chapter 3: PAC-Bayesian Risk Bounds for Analysis-group Sparse Regres-
sion by EWA

Consider an additive non-parametric regression model, i.e.

y = f + ξ,

with ξ is a zero-mean Gaussian noise or any bounded symmetric noise. Suppose that F (u,y) =
1
2

∥∥u− y∥∥2

2
, we impose an analysis-group sparsity prior (see also Section 1.1.1.3) where

(i) vectors are group-sparse in the domain of a transform D>, where D is a frame, hence surjective
but not invertible;

(ii) the groups {b1, . . . , bL} have the same size, denoted by K, and satisfy b1 ⊕ · · · ⊕ bL = {1, . . . , q}.
For any x ∈ Rq and I ⊆ {1, . . . , q}, denote xI is the subvector whose entries are those of x restricted
to the indices in I. We establish an EWA by procedure (1.11) with the prior π(dθ) as the form

π(dθ) ∝
∏L
l=1 exp

(
−αa

∥∥[D>θ]bl

∥∥a
2

)
g
(∥∥[D>θ]bl

∥∥
2

)
IΘ(θ)dθ, α ≥ 0, a ∈ (0, 1], (1.15)

where IΘ is the characteristic function of the set Θ (= 1 in Θ and 0 otherwise), and g : R+ →
R+ satisfies some assumptions which allow us establishing a general analysis-group SOI where the
remainder term depends on the number of active groups.

For an appropriate choice of g and Θ, this remainder term scales as (see Corollary 3.4.6).

O


∑L

l=1 I
{
u∈RK :

∥∥u∥∥
2
6=0
}(θbl) log(L)

n

 . (1.16)

This rate coincides with the classical one O
(∥∥θ∥∥

0
log(p)/n

)
under the sparsity scenario, i.e. D = Ip

and K = 1.
Moreover, we implement our EWA with the forward-backward proximal Langevin Monte-Carlo

(LMC) algorithms proposed in Chapter 6, and illustrate the performance of our estimator on some
numerical examples in Chapter 7.

Relation to previous work Our results is a non trivial generalization of the work in [52] to the
analysis-group sparsity context. In fact, we consider the class of prior (1.15) with some wise assumptions
on the function g well suited to the analysis-group context, and then we exhibit an analysis-group SOI.
In the sparsity context, the prior in [52] coincides with (1.15) for the special choice

g(x) =
1

(τ2 + x2)2
, x ∈ R+.

However, with effects of groups, this prior does not satisfy our assumptions anymore. In this case, we
propose another prior, with

g(x) =
1

(τ b + xb)c
, x ∈ R+, b ∈]0, 1], c ∈]2 +K/b,+∞[

which is more feasible hence adaptive in analysis-group context. Its performance is guaranteed by the
analysis-group SOI with the remainder term of order (1.16). We also emphasize the fact that, in our
results, D is a frame and thus is not necessarily invertible unlike the previous work [123].
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1.2.2 Chapter 4: Sharp Oracle Inequalities for Low-complexity Priors

Consider a general regression problem (1.1). By the aggregation approach, the regression function f
is approximated by fθ0 (see Section 1.1.1) with

θ0 ∈ Argmin
θ∈Rp

E [F (Xθ,y)] . (1.17)

Here, the loss function F is supposed to be smooth and convex.
This chapter provides a unified analysis where we capture the essential ingredients behind the low-

complexity priors promoted by Jλn in (1.12) and (1.9), relying on sophisticated arguments from convex
analysis and previous work [67, 145, 147, 144, 146]. Our main contributions are summarized as follows.

(i) We show in Theorem 4.3.1 and Theorem 4.3.3 that the EWA θ̂
EWA

n in (1.12) and the vari-
ational/penalized estimator θ̂

PEN

n in (1.9) satisfy (deterministic) sharp oracle inequalities for
prediction with optimal remainder term, for general data losses F beyond the usual quadratic
one, and Jλn is a proper finite-valued sublinear function (i.e. Jλn is finite-valued convex and
positively homogeneous). For both estimators, the remainder contains a term that encodes the
complexity of the model promoted by Jλn . For EWA, there is an additional overhead term, pβ,
which captures the influence of temperature parameter.

(ii) When the observations are random, we prove oracle inequalities in probability (see Section 4.3.3).
The theory is non-asymptotic in nature, as it yields explicit bounds that hold with high proba-
bility for finite sample sizes, and reveals the dependence on the dimension and other structural
parameters of the model.

(iii) For the standard linear model with Gaussian or sub-Gaussian noise, and a quadratic loss, we
deliver refined versions of these oracle inequalities in probability (see Section 4.4). We underscore
the role of the Gaussian width, a concept that captures important geometric characteristics of
sets in Rn.

(iv) These results yield naturally a large number of corollaries when specialized to penalties routinely
used in the literature, among which the Lasso, the group Lasso, their analysis-type counterparts
(fused (group) Lasso), the `∞ and the nuclear norms. Some of these corollaries are known and
others novel.

(v) We finally discuss minimax optimality and provide lower-bounds, showing that our estimator are
indeed nearly minimax over low-complexity model subsets.

Relation to previous work Our oracle inequality for θ̂
EWA

n extends the work of [47] with an
unprecedented level of generality, far beyond the Lasso and the nuclear norm. Our prediction sharp
oracle inequality for θ̂

PEN

n specializes to that of [135] in the case of the Lasso (see also the discussion
in [48] and references therein) and that of [88] for the case of the nuclear norm. Our work also goes
much beyond that in [149] on weakly decomposable priors, where we show in particular that there is
no need to impose decomposability on the regularizer, since it is rather an intrinsic property of it.

1.2.3 Chapter 5: Estimation Bounds with Low-concave Priors

The context in Chapter 5 is similar to Chapter 4 where we consider the general regression problem
with f is approximated by fθ0 , θ0 defined in (1.17). Howerver, in this chapter, our primary interest
lies in consistently estimating θ0 itself (inverse problem) and studying the corresponding loss function∥∥∥θ̂ − θ0

∥∥∥
2
, for θ̂ either θ̂

EWA

n in (1.12) and θ̂
PEN

n in (1.9). We will thus assess how the estimation loss
function decays as a function of the noise level.

We thus provide a unified analysis and deliver bounds on the estimation loss for the parameter
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estimates for both θ̂
EWA

n and θ̂
PEN

n , where the penalty J is any finite-valued convex function. More
precisely, we develop bounds guaranteeing that both θ̂

EWA

n and θ̂
PEN

n stably estimate θ0 from the
noisy measurements y, and quantify the rate of convergence. Our framework allows to handle more
general data losses beyond the usual strongly convex one. In the case of a Gaussian design, we provide
sample complexity bounds that guarantee that our consistency bounds hold with high probability. We
exemplify our bounds on several penalties routinely used in the literature, among which the Lasso, the
group Lasso, their analysis-type counterparts (fused (group) Lasso), the `∞ and the nuclear norms.
We also discuss extension beyond Gaussian designs.

Relation to previous work While bounds on the estimation loss function
∥∥θ̂PEN

n −θ0

∥∥
2
have been

well studied in the literature in a more or less general setting, we are not aware of any work in this
direction for the EWA estimator. Even for the penalized estimator, our bounds are new as they handle
more general data losses beyond the usual strongly convex one. Our review hereafter is only partial
and we refer the reader to e.g. [146] for a comprehensive treatment.

A large body of literature from the inverse problems community has been devoted to study how∥∥θ̂PEN

n − θ0

∥∥
2
in the regression setting with a quadratic data loss and different penalties, see [131, 97,

77, 76].

In the compressed sensing literature, bounds on
∥∥θ̂PEN

n −θ0

∥∥
2
with the Lasso, analysis Lasso, group

Lasso or nuclear norm were shown under the restricted isometry property (RIP) and its variants; see
e.g. [24, 32, 34, 26, 118, 30, 14].

RIP-based guarantees are uniform. Non-uniform bounds with RIP-less arguments were derived
for θ̂

PEN

n with a quadratic data loss (actually a constrained version of it) in [35, 28, 78, 37, 29, 139].

1.2.4 Chapter 6: EWA for Non-smooth Priors through Langevin Diffusion and
Proximal Splitting

We aim to enlarge the family of µ covered by [52, 111, 62, 63] by relaxing some underlying conditions.
Especially, in our study, µ is structured as µ̂n in (1.12), and it is not necessarily differentiable nor
log-concave. From the Langevin diffusion smoothed by Moreau-Yosida regularization, we propose two
algorithms based on forward-backward proximal splitting for which we prove theoretical consistency
guarantees. They are named Forward-Backward Langevin Monte-Carlo (FBLMC) and Semi-Forward-
Backward Langevin Monte-Carlo (semi-FBLMC). These algorithms are established from the Langevin
diffusions defined by the SDE of type (1.13) with the Moreau-regularized version of ρ. Under mild
assumptions, we prove that:
(i) Each SDE has a unique solution which is strongly Markovian, non explosive and admits an

(unique) invariant measure whose density converges to µ̂n in total variation.

(ii) The Moreau-regularized terms are continuously differentiable and their gradients can be expressed
through the proximal mappings which are computable.

(iii) The algorithms are introduced by discretizing these SDE by the forward Euler scheme. We also
prove the consistency of each discretized SDE (see Theorem 6.2.4).

Besides, these algorithms are applied to compute EWA with several popular penalties in the litera-
ture, and illustrated on some numerical problems in Chapter 7.

Relation to previous work For a comprehensive review of sampling by Langevin diffusion from
smooth and log-concave densities, we refer the reader to e.g. [46]. To cope with non-smooth densities,
several works have proposed to replace logµ with a smoothed version (typically involving the Moreau-
Yosida regularization/envelope) [52, 111, 62, 63]. In [111, 63] for instance, the authors proposed
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proximal-type algorithms to sample from possibly non-smooth log-concave densities µ using the forward
Euler discretization and the Moreau-Yosida regularization. In [111]2, − logµ is replaced with its
Moreau envelope, while in [63], it is assumed that − logµ = L+H, L is convex Lipschitz continuously
differentiable, and H is a proper closed convex function replaced by its Moreau envelope. In both these
works, convexity plays a crucial role to get quantitative convergence guarantees. Proximal steps within
MCMC methods have been recently proposed for some simple (convex) signal processing problems [36],
though without any guarantees.

1.3 Reading guide

The manuscript consists of 8 chapters. The chapters containing the contributions of this work are
collected into 2 parts: theoretical guarantees part (Chapters 3-5) and algorithmic part (Chapters 6-7).
• Chapter 2 provides some pre-requisites on the main mathematical tools on which this manuscript

relies.

• In Chapter 3, we remind the PAC-Bayesian type oracle inequalities proposed in [52] which are a
classical starting point in the literature for EWA in the deterministic case. From that, we define
our family of EWA in analysis-group sparsity context which yields a general analysis-group SOI.
For an appropriate choice of the prior, its remainder term is of order (1.16) that guarantees the
performance of the estimator.

• Chapter 4 provides a unified analysis for EWA (1.12) and the penalized estimator (1.9). For a
large class of data losses and penalties, we establish a general (deterministic) oracle inequality for
prediction with optimal remainder terms which yields the oracle inequalities in probability when
the observations are random. These inequalities are refined in the standard linear regression with
Gaussian or sub-Gaussian noise and specialized to several penalties. We also discuss minimax
optimality.

• Chapter 5 considers the same framework as in Chapter 4. However, it consists in establishing
bounds guaranteeing the quality of estimators for estimating θ0. These bounds are instantiated
in the case of Gaussian design and exemplified on several penalties. We also discuss extension
beyond Gaussian designs.

• Chapter 6 proposes two algorithms of type forward-backward proximal splitting for sampling
from a distribution whose density is not smooth nor log-concave with consistency guarantees.
They are applied to compute numerically EWA estimator.

• Chapter 7 collects the numerical experiments of EWA computed by the algorithms proposed in
Chapter 6 on three problems: Compressed Sensing, Deconvolution and Inpainting.

• The conclusions and perspectives are drawn in Chapter 8.

2The author however applied it to problems where − logµ = L +H. But the gradient of the Moreau envelope of a
sum, which amounts to computing the proximity operator of − logµ does not have an easily implementable expression
even if those of L and H do.

– 10 –



Chapter 2

Mathematical Background

Contents
2.1 Basics of analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Continuity and differentiability . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Lebesgue’s convergence theorems . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Convex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Convex sets and functions . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Dualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Geometrical decomposability . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Decomposability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Variational analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Proximal mapping and Moreau envelope . . . . . . . . . . . . . . . . . . 24

2.5.3 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.4 Prox-regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Some useful integration formulas . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Inequalities from probability theory . . . . . . . . . . . . . . . . . . . . 27

In this chapter, we collect the necessary mathematical material used in the manuscript. Denote R the
set of real numbers, R+ = [0,+∞[ the set of non-negative real numbers, Rd the d-dimensional real
Euclidean space, Rd×r the set of d× r real matrices and R = R ∪ {+∞} the extended real line. For a
function f , its effective domain is dom(f) =

{
x ∈ Rd : f(x) < +∞

}
. We denote 〈·, ·〉 the Euclidean

scalar inner product and
∥∥ · ∥∥

2
the associated norm.



Chapter 2 2.1. Basics of analysis

2.1 Basics of analysis

For any x ∈ R, we define sgn(x) the sign operator, x+
def
= max(x, 0) its positive part, and bxc its stands

for the integer part. Define

Γ : x ∈]0,+∞[7→
∫ +∞

0
ux−1 exp(−u)du

the Gamma function.
For C a non-empty set, denote |C| its cardinality, Cc its complement, and bd(C) its boundary.

Moreover, we denote PC the orthogonal projector on C, ιC its indicator function, i.e.

ιC(x) = 0 if x ∈ C and ιC(x) = +∞ otherwise,

and IC its characteristic function, i.e.

IC(x) = 1 if x ∈ C and IC(x) = 0 otherwise.

2.1.1 Mappings

Definition 2.1.1 (Proper functions). A function f : Rd → R∪{−∞,+∞} is proper if f(x) > −∞
for any x ∈ C, and dom(f) 6= ∅.

Definition 2.1.2 (Coercive functions). A function f : Rd → R is coercive if

lim∥∥x∥∥
2
→+∞

f(x) = +∞.

Definition 2.1.3 (Positively homogeneous functions). A function f : Rd → R is positively
homogeneous if 0 ∈ dom(f) and

f(λx) = λf(x), ∀x ∈ dom(f), ∀λ > 0.

Definition 2.1.4 (Sublinear functions). A function f : Rd → R is sublinear if it is positively
homogeneous and subadditive, i.e.

f(x+ x′) ≤ f(x) + f(x′), ∀x, x′ ∈ dom(f).

A convex and positively homogeneous function is sublinear.

Definition 2.1.5 (Set-valued mappings). Let Z and C be two non-empty sets. An operator S :

Z ⇒ C is called a set-valued mapping if S maps every x ∈ Z to a set S(x) ⊆ C. The graph of S is
defined by gph(S) =

{
(x,v) ∈ Z × C : v ∈ S(x)

}
.

2.1.2 Continuity and differentiability

Definition 2.1.6 (Lower semi-continuity). A function f : Rd → R is lower semi-continuous (lsc)
at x ∈ Rd if

lim inf
x→x

f(x) ≥ f(x),

and f is lsc if that holds for any x ∈ dom(f).

Definition 2.1.7 (Lipschitz continuity and local Lipschitz continuity). Let f : Z ⊆ Rd → Rr,
f is Lipschitz continuous on a set C ⊆ Z if∥∥f(x)− f(x′)

∥∥
2
≤ K

∥∥x− x′∥∥
2
, ∀x,x′ ∈ C, for some K ∈ [0,+∞[.

(i) A function f : Z ⊆ Rd → Rr is Lipschitz continuous if f is Lipschitz continuous on Z.
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(ii) A function f : Z ⊆ Rd → Rr is locally Lipschitz continuous if for any x ∈ Z, there exists a ε > 0

such that f is Lipschitz continuous on B(x, ε)
def
=
{
x ∈ Rd :

∥∥x− x∥∥
2
≤ ε
}
.

Lemma 2.1.8. Assume that f : Rd → Rd is Lipschitz continuous, then there exists K > 0 such that

〈f(x),x〉 ≤ K(1 +
∥∥x∥∥2

2
), ∀x ∈ Rd.

Proof. Let x∗ ∈ C, a bounded subset of Rd. Using Young and Jensen inequalities as well as K̃-
Lipschitz continuity of f , we obtain

〈f(x),x〉 ≤ ‖f(x)‖22 /2 + ‖x‖22 /2
≤ ‖f(x)− f(x∗)‖22 + ‖f(x∗)‖22 + ‖x‖22 /2
≤ K̃ ‖x− x∗‖22 + ‖f(x∗)‖22 + ‖x‖22 /2

≤
(

2K̃ + 1/2
)
‖x‖22 +

(
2K̃ ‖x∗‖22 + ‖f(x∗)‖22

)
≤ K(1 + ‖x‖22),

with K ≥ max
{

2K̃ + 1/2, 2K̃ ‖x∗‖22 + ‖f(x∗)‖22
}
. Recalling that f is bounded on bounded sets

concludes the proof.

Denote Ck(Rd) the class of functions f : Rd → R such that its first k derivatives all exist and are
continuous (with k a non-negative integer), and C∞(Rd) if that holds for any non-negative integer k.
For a function f ∈ C1(Rd), ∇f denotes its (Euclidean) gradient. For a bivariate function g : Rd×Rd →
R such that g(·,x) ∈ C1(Rd) for any x ∈ Rd, ∇g denotes the gradient of g w.r.t. the first variable.

2.1.3 Lebesgue’s convergence theorems

Theorem 2.1.9 (Lebesgue’s monotone convergence theorem). Let fn : Rd → [0,+∞] be a
monotone increasing sequence of measurable functions such that fn → f pointwise almost everywhere
as n→ +∞. Then fn and f are measurable, and

lim
n→+∞

∫
Rd
fndµ =

∫
Rd
fdµ.

Theorem 2.1.10 (Lebesgue’s dominated convergence theorem). Let fn : Rd → R∪{−∞,+∞}
are measurable functions such that
(i) fn → f pointwise almost everywhere as n→ +∞,

(ii) there exists an integrable function g : Rd → [0,+∞] with |fn| ≤ g for any n.
Then f and fn are integrable, and

lim
n→+∞

∫
Rd
fndµ =

∫
Rd
fdµ.

Theorem 2.1.11 (Scheffé’s lemma (see [130, 90])). Let fn : Rd → R ∪ {−∞,+∞} are integrable
functions such that fn converges almost everywhere to an integrable function f as n→ +∞, then∫

Rd
|fn − f | dµ →

n→+∞
0,

if and only if ∫
Rd
|fn| dµ →

n→+∞

∫
Rd
|f | dµ.

Theorem 2.1.12 (Leibniz’s rule). Let C = [x0, x1]× [y0, y1] ⊂ R2. Suppose that f(x, y) and ∂f
∂y (x, y)

are continuous on C. Then
d

dy

(∫ x1

x0

f(x, y)dx

)
=

∫ x1

x0

∂f

∂y
(x, y)dx.

– 13 –



Chapter 2 2.2. Linear algebra

2.2 Linear algebra

In this manuscript, we denote bold uppercase letters and bold lowercase letters respectively for matrices
and vectors in Euclidean space. The identity matrix on Rd is denoted by Id.

For a matrix M ∈ Rd×r. Denote M> the transpose of M . For a linear operator A, A∗ is its
adjoint. We denote M I (resp. M I,J), with I ⊆ {1, . . . , r} and J ⊆ {1, . . . , d}, the submatrix whose
columns (resp. columns and rows) are those ofM indexed by the index set I (resp. I and J). We define
MT

def
= M PT , where PT is the orthogonal projector onto the linear subspace T. Denote vec(M) the

vectorization opertator, i.e. the operator which stacks the columns of its arguments. We also denote
σ(M) = (σ1(M), . . . ,σr(M))> ∈ Rr the vector of singular values of M in non-increasing order, and
σmin(M)

def
= σr(M) the smallest singular value.

For a square matrix M ∈ Rd×d, denote tr(M) and det(M) respectively the trace and the determi-
nant of M . The Frobenius scalar product is defined by 〈A,B〉F

def
= tr(A>B) for any A, B ∈ Rd×d.

For a vector x ∈ Rd. Denote xI , with I ⊆ {1, . . . , d}, the subvector whose entries are those of x
indexed by a index set I. With T a subspace, xT denotes the orthogonal projection of a vector x on
T . We denote supp(x) the support of x, i.e. supp(x) =

{
i ∈ {1, . . . , d} : xi 6= 0

}
. diag(x) denotes

the diagonal matrix whose diagonal entries are the components of x.
For a linear subspace T . Denote dim(T ) the dimension of T , and T⊥ its orthogonal subspace.

2.2.1 Norms

2.2.1.1 `p-norms

Definition 2.2.1 (`p-norms). For any p ≥ 1 and x ∈ Rd, the `p norm is defined by

∥∥x∥∥
p

def
=

 d∑
j=1

|xj |p
1/p

,

with the adaptation
∥∥x∥∥∞ = maxj∈{1,...,d} |xj |.

With p ∈]0, 1[,
∥∥x∥∥

p
is a quasi-norm.

∥∥x∥∥
0
is the `0 pseudo-norm which counts the number of

non-zero elements in x.

2.2.1.2 `p,2-group norms

We partition the index set {1, . . . , d} into L groups/blocks of indices {bl}1≤l≤L such that bl ⊆ {1, . . . , d}.

Definition 2.2.2 (`p,2-group norms). For any p ≥ 1 and x ∈ Rd, the `p,2- group norm is defined by

∥∥x∥∥
p,2

=

(
L∑
l=1

∥∥xbl∥∥p2
)1/p

,

with the adaption
∥∥x∥∥∞,2 = maxl∈{1,...,L}

∥∥xbl∥∥2
.

With p ∈]0, 1[,
∥∥x∥∥

p,2
is a quasi-norm.

∥∥x∥∥
0,2

is a pseudo-norm which counts the number of active
(i.e. non-zero) groups in x.

2.2.1.3 Schatten p-norms

Definition 2.2.3 (Schatten p-norms). For any p ≥ 1 and M ∈ Rd×d, the Schatten p-norm is
defined as

‖M‖Sp
def
=
∥∥σ(M)

∥∥
p
.
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Let us detail some special cases of Schatten p-norm
(i) Nuclear norm (p = 1) ∥∥M∥∥

∗
def
= ‖M‖S1

= tr
(√

M>M
)
, ∀M ∈ Rd×r.

(ii) Frobenius norm (p = 2)∥∥M∥∥
F

def
= ‖M‖S2

=
√

tr
(
M>M

)
, ∀M ∈ Rd×r.

(iii) Operator (Spectral) norm (p =∞)∥∥M∥∥
2→2

def
= ‖M‖S∞ = σ1(M), ∀M ∈ Rd×r.

2.2.1.4 Inner products and norms in a metric

Definition 2.2.4 (Inner products and norms in a metric). Let M ∈ Rd×d symmetric positive
definite be a metric matrix. The inner product on Rd in the metric M is defined by

〈·, ·〉M
def
= 〈·,M ·〉,

and
∥∥ · ∥∥

M
its associated norm.

For anyM ∈ Rd×d symmetric positive definite, we obviously have the equivalence between the norm∥∥.∥∥
M

and the `2-norm via the inequality

σmin(M)
∥∥x∥∥

2
≤
∥∥x∥∥

M
≤
∥∥M∥∥

2→2

∥∥x∥∥
2
, ∀x ∈ Rd.

2.2.2 Frame

Definition 2.2.5 (Frame). A matrixM ∈ Rd×r is a frame if there exist two constants ν and µ with
ν ≥ µ > 0, called frame bounds, such that the generalized Parseval relation is satisfied, i.e.

µ
∥∥x∥∥2

2
≤
∥∥M>x

∥∥2

2
≤ ν

∥∥x∥∥2

2
, ∀x ∈ Rd.

By the Courant-Fischer theorem, Definition 2.2.5 is equivalent to the fact that µ (resp. ν) is a lower
(resp. upper) bound of the eigenvalues of MM>. Moreover, since µ > 0, we have that MM> is
bijective andM is surjective. The frame is said tight when µ = ν. Typical examples of (tight) frames
that have been used in statistics are translation invariant wavelets [41], ridgelets [25] and curvelets
[21] (example of groups and what they represent for wavelets/ridgelets/curvelets in applications are
discussed in [40]). Let M̃ ∈ Rd×r be the canonical dual frame associated to M , i.e.

M̃ = (MM>)−1M .

We know that
M̃M> = Id (2.1)

and
1

µ
≥ σ1

(
M̃
>
M̃
)
≥ · · · ≥ σd

(
M̃
>
M̃
)
≥ 1

ν
. (2.2)

Note that we focus on the canonical dual frame for the sake of simplicity. In fact, our exposition
remains unchanged if any other dual frame is used instead of the canonical one.

2.3 Convex analysis

2.3.1 Convex sets and functions

Let C be a non-empty convex set in Rd. The smallest linear manifold containing C is denoted by
Span(C). The smallest affine subspace that contains C is denoted by aff(C) which is also called the
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affine hull of C, and par(C) denotes the subspace parallel to aff(C). We denote ri(C) its relative interior
to its affine hull. The convex hull of C is conv (C) and its closure is conv (C).

Definition 2.3.1 (Convex sets and functions).
(i) A set C ⊆ Rd is convex if

(1− τ)x+ τx′ ∈ C, ∀x, x′ ∈ C, ∀τ ∈]0, 1[.

(ii) A function f : Rd → R is convex if dom(f) is convex, and

f
(
(1− τ)x+ τx′

)
≤ (1− τ)f(x) + τf(x′), ∀x, x′ ∈ dom(f), ∀τ ∈]0, 1[.

Definition 2.3.2 ((Fenchel) Subdifferential). Let f : Rd → R. Given a point x ∈ dom(f), the
Fenchel subdifferential of f at x is defined as

∂f(x) =
{
v ∈ Rd : f(y) ≥ f(x) + 〈v,y − x〉, ∀y ∈ Rd

}
.

If the convex function f is differentiable at x, then its only subgradient is its gradient, i.e. ∂f(x) =

{∇f(x)}.

Definition 2.3.3 (Bregman divergence). The Bregman divergence associated to a convex function
f at x with respect to η ∈ ∂f(x) 6= ∅ is

Dηf (x,x) = f(x)− f(x)− 〈η,x− x〉.

The Bregman divergence is in general nonsymmetric. It is also non-negative by convexity. When
f is differentiable at x, we simply write Df (x,x) (which is, in this case, also known as the Taylor
distance).

2.3.2 Gauges

Definition 2.3.4 (Gauges). Let C ⊆ Rd be a non-empty closed convex set containing the origin. The
gauge of C is the function γC defined on Rd by

γC(x) = inf
{
λ > 0 : x ∈ λC

}
.

As usual, γC(x) = +∞ if the minimum is not attained.

Lemma 2.3.5 hereafter recaps the main properties of a gauge that we need. In particular, (ii) is a
fundamental result of convex analysis that states that there is a one-to-one correspondence between
gauge functions and closed convex sets containing the origin. This allows to identify sets from their
gauges, and vice versa.

Lemma 2.3.5.

(i) γC is a non-negative, lsc and sublinear function.

(ii) C is the unique closed convex set containing the origin such that

C =
{
x ∈ Rd : γC(x) ≤ 1

}
.

(iii) γC is finite-valued if, and only if, 0 ∈ int(C), in which case γC is Lipschitz continuous.

(iv) γC is finite-valued and coercive if, and only if, C is compact and 0 ∈ int(C).

See [145] for the proof.
Observe that thanks to sublinearity, local Lipschitz continuity valid for any finite-valued convex

function is streghthned to global Lipschitz continuity for gauges. Moreover, γC is a norm, having C as
its unit ball, if and only if C is bounded with non-empty interior and symmetric.
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2.3.3 Dualization

2.3.3.1 Legendre-Fenchel conjugate and support functions

Definition 2.3.6 (Legendre-Fenchel conjugate). The Legendre-Fenchel conjugate of f is

f∗(z) = sup
x∈Rd

〈z,x〉 − f(x).

For any f , f∗ is always a lsc convex function.

Theorem 2.3.7 (Fenchel-Moreau theorem). Let f be proper. Then f is lsc and convex if and only
if f∗∗ = f , in which case f∗ is also proper.

For f proper, the functions (f, f∗) obey the Fenchel-Young inequality

f(x) + f∗(z) ≥ 〈z,x〉, ∀(x, z). (2.3)

It is actually the best pair for which this inequality cannot be tightened.
For a function g on R+, the function g+ : a ∈ R+ 7→ g+(a) = supt≥0 at− g(t) is called the monotone

conjugate of g. The pair (g, g+) obviously obeys (2.3) on R+ × R+.
We collect some properties of the monotone conjugate, some of which are new, in the following

lemma.

Lemma 2.3.8 (Monotone conjugate). Let g be a non-decreasing function on R+ that vanishes at
0. Then the following hold:
(i) g+ is a proper closed convex and non-decreasing function on R+ that vanishes at 0.

(ii) If g is also closed and convex, then g++ = g.

(iii) Let f : t ∈ R 7→ g(|t|) such that f is differentiable on R, where g is finite-valued, strictly convex
and strongly coercive. Then g+ is likewise finite-valued, strictly convex, strongly coercive, and
f∗ = g+ ◦ | · | is differentiable on R. In particular, both g and g+ are strictly increasing on R+.

Proof.
(i) By [7, Proposition 13.11], g+ is a closed convex function. We have inft≥0 g(t) = − supt≥0 t · 0−

g(t) = −g+(0). Since g is non-decreasing and g(0) = 0, then g+(0) = − inft≥0 g(t) = −g(0) = 0.
In addition, by (2.3), we have g+(a) ≥ a · 0 − g(0) = 0, ∀a ∈ R+. This shows that g+ is
non-negative and dom(g+) 6= ∅, and in turn, it is also proper.
Let a, b in R+ such that a < b. Then

g+(a)− g+(b) = (sup
t≥0

ta− g(t))− (sup
t′≥0

t′b− g(t′)) ≤ sup
t≥0

(ta− g(t)− tb+ g(t)) = sup
t≥0

t(a− b) = 0.

That is, g+ is non-decreasing on R+.

(ii) This follows from [125, Theorem 12.4].

(iii) By definition of f , f is a finite-valued function on R, strictly convex, differentiable and strognly
coercive. It then follows from [80, Corollary X.4.1.4] that f∗ enjoys the same properties. In turn,
using the fact that both f and f∗ are even, we have g+ is strongly coercive, and strict convexity
of f (resp. f∗) is equivalent to that of g (resp. g+). Altogether, this shows the first claim. We
now prove that g vanishes only at 0 (and similary for g+). As g is non-decreasing and strictly
convex, we have, for any ρ ∈]0, 1[ and a, b in R+ such that a < b,

g(a) ≤ g(ρa+ (1− ρ)b) < ρg(a) + (1− ρ)g(b) ≤ ρg(b) + (1− ρ)g(b) = g(b).
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Definition 2.3.9 (Support functions). The support function of C ⊂ Rd is

σC(ω) = sup
x∈C
〈ω,x〉 = ι∗C(v).

We recall the following properties whose proofs can be found in e.g. [125, 80].

Lemma 2.3.10. Let C be a non-empty set.
(i) σC is proper lsc and sublinear.

(ii) σC is finite-valued if and only if C is bounded.

(iii) If 0 ∈ C, then σC is non-negative.

(iv) If C is convex and compact with 0 ∈ int(C), then σC is finite-valued and coercive.

2.3.3.2 Polar sets and polar gauges

Definition 2.3.11 (Polar set). Let C be a non-empty convex set. The set C◦ given by

C◦ =
{
η ∈ Rd : 〈η,x〉 ≤ 1, ∀x ∈ C

}
is called the polar of C.

The set C◦ is closed convex and contains the origin. When C is also closed and contains the origin,
then it coincides with its bipolar, i.e. C◦◦ = C.

We now define the polar gauge.

Definition 2.3.12 (Polar Gauge). The polar of a gauge γC is the function γ◦C defined by

γ◦C(ω) = inf
{
µ ≥ 0 : 〈x,ω〉 ≤ µγC(x), ∀x

}
.

An immediate consequence is that gauges polar to each other have the property

〈x,u〉 ≤ γC(x)γ◦C(u) ∀(x,u) ∈ dom(γC)× dom(γ◦C), (2.4)

just as dual norms satisfy a duality inequality. In fact, polar pairs of gauges correspond to the best
inequalities of this type.

Lemma 2.3.13. Let C ⊆ Rd be a closed convex set containing the origin. Then,
(ii) γ◦C is a gauge function and γ◦◦C = γC.

(iii) γ◦C = γC◦, or equivalently
C◦ =

{
x ∈ Rd : γ◦C(x) ≤ 1

}
.

(iv) The gauge of C and the support function of C are mutually polar, i.e.

γC = σC◦ and γC◦ = σC .

See [125, 80, 145] for the proof.

2.3.3.3 Subdifferential gauge and its polar

Definition 2.3.14 (Subdifferential gauge and its polar). Let J be proper lsc and convex. Let
fx ∈ ri(∂J(x)). The subdifferential gauge associated to fx is the gauge J◦fx = γ∂J(x)−fx . Its polar
gauge is Jfx , which is also the support function of ∂J(x)− fx.

The following lemma gathers the main properties of these gauges that we will need in the sequel.

Lemma 2.3.15. Let J proper lsc convex. Let fx ∈ ri(∂J(x)). Then,
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(i) dom(J◦fx) = Sx.

(ii) J◦fx is coercive on Sx.

(iii) Jfx(u) = 0 if, and only if, u ∈ Tx.
(iv) Jfx(u) is finite everywhere, and coercive on Sx.

Proof. (i)-(ii) [145, Proposition 2]. (iii)-(iv) [145, Proposition 3]

We denote Γ0(Rd) the class of proper lsc convex functions, and G(Rd) the class of finite-valued
gauges γC , i.e. C is a non-empty convex compact set containing the origin as an interior point.

2.4 Geometrical decomposability

2.4.1 Decomposability

We start by defining some essential geometrical objects that were introduced in [145].

Definition 2.4.1 (Model Subspace). Assume that J ∈ Γ0(Rd). Let x ∈ Rd. We denote by ex as

ex = Paff(∂J(x))(0).

We denote
Sx = par(∂J(x)) and Tx = S⊥x .

Tx is coined the model subspace of x associated to J .

It can be shown, see [145, Proposition 5], that x ∈ Tx when J is a gauge, hence the name model
subspace. When J is differentiable at x, we have ex = ∇J(x) and Tx = Rd. When J is the `1-norm
(Lasso), the vector ex is nothing but the sign of xI , where I = supp(x). ex will be detailed for many
examples later. Observe also that ex = PTx(∂J(x)), and thus ex ∈ Tx ∩ aff(∂J(x)). However, in
general, ex 6∈ ∂J(x).

We also provide a fundamental equivalent description of the subdifferential of a function J ∈ Γ0(Rd)
at x in terms of ex, Tx, Sx and the gauge J◦fx .

Theorem 2.4.2. Assume that J ∈ Γ0(Rd). Let fx ∈ ri(∂J(x)).
(i) The subdifferential of J at x reads

∂J(x) =
{
η ∈ Rd : ηTx = ex and J◦fx(PSx(η − fx)) ≤ 1

}
.

Moreover, η ∈ ri(∂J(x)) if, and only if, J◦fx(PSx(η − fx)) < 1.

(ii) For any ω ∈ Rd, ∃η ∈ ∂J(x) such that

Jfx(ωSx) =
〈
ηSx − PSx fx,ωSx

〉
.

Proof.
(i) This follows from [145, Theorem 1].

(ii) By definition, Jfx is the gauge polar to J◦fx whose domain is Sx by Lemma 2.3.15. It is also the
support function of ∂J(x)− fx =

{
η : J◦fx(η) ≤ 1

}
⊂ Sx, i.e.

Jfx(ω) = max
J◦fx (η)≤1

〈η,ω〉 = max
J◦fx (η)≤1

〈η,ωSx〉 = Jfx(ωSx).

Thus there exists a supporting point v ∈ Sx ∩ bd
({
η : J◦fx(η) ≤ 1

})
with normal vector ω [7,

Corollary 7.6(iii)], i.e.

∃v ∈ Sx such that J◦fx(v) ≤ 1 and Jfx(ωSx) = 〈v,ωSx〉.

Taking η = v + fx ∈ ∂J(x) concludes the proof.
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When J is a finite gauge, we obtain the following corollary.

Corollary 2.4.3. Let J ∈ G(Rd). Let x ∈ Rd and fx ∈ ri(∂J(x)).
(i) The subdifferential of J at x reads

∂J(x) = aff(∂J(x)) ∩ C◦

=
{
η ∈ Rd : ηTx = ex and inf

τ≥0
max

(
J◦
(
τex + ηSx + (τ − 1) PSx fx

)
, τ
)
≤ 1
}
.

(ii) For any ω ∈ Rd, ∃η ∈ ∂J(x) such that

J(ωSx) =
〈
ηSx ,ωSx

〉
.

Proof.
(i) This follows by piecing together [145, Theorem 1, Proposition 4 and Proposition 5(iii)].

(ii) From [145, Proposition 5(iv)], we have

σ∂J(x)−fx(ω) = J(ωSx)− 〈PSx fx,ωSx〉.

Thus there exists a supporting point v ∈ ∂J(x) − fx ⊂ Sx with normal vector ω [7, Corol-
lary 7.6(iii)], i.e.

σ∂J(x)−fx(ω) = 〈v,ωSx〉.

Taking η = v + fx concludes the proof.

Remark 2.4.4. The coercivity assumption in the class G(Rd) is not needed for Corollary 2.4.3 to hold.

The decomposability of described in Theorem 2.4.2(i) depends on the particular choice of the map-
ping x 7→ fx ∈ ri(∂J(x)). An interesting situation is encountered when ex ∈ ri(J(x)), so that one can
choose fx = ex. Strong gauges, see [145, Definition 6], are precisely a class of gauges for which this
situation occurs, and in this case, Corollary 2.4.3(i) and Theorem 2.4.2(i) has the simpler form

∂J(x) = aff(∂J(x)) ∩ C◦ =
{
η ∈ Rd : ηTx = ex and J◦(ηSx) ≤ 1

}
. (2.5)

The Lasso, group Lasso and nuclear norms are typical examples of (symmetric) strong gauges.
However, analysis sparsity penalties (e.g. the fused Lasso) or the `∞-penalty are not strong gauges,
though they are obviously in G(Rd) and Γ0(Rd).

2.4.2 Stability

The gauges in G(Rd) form a robust class enjoying important calculus rules. In particular it is closed
under the sum and composition with an injective linear operator as we now prove.

Lemma 2.4.5. The set of functions in G(Rd) is closed under addition1 and pre-composition by an
injective linear operator. More precisely, the following holds:
(i) Let J and G be two gauges in G(Rd). Then H def

= J +G is also in G(Rd). Moreover,
(a) THx = T Jx ∩TGx and eHx = PTHx (eJx+ eGx ), where T Jx and eJx (resp. TGx and eGx ) are the model

subspace and vector at x associated to J (resp. G);

(b) H◦(ω) = maxρ∈[0,1] conv (inf (ρJ◦(ω), (1− ρ)G◦(ω))).

(ii) Let J ∈ G(Rd), and D : Rr → Rd be surjective. Then H def
= J ◦D> is also in G(Rd). Moreover,

1It is obvious that the same holds with any positive linear combination.
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(a) THx = Ker(D>SJu
) and eHx = PTHx De

J
u, where T Ju and eJu are the model subspace and vector

at u def
= D>x associated to J ;

(b) H◦(ω) = J◦(D+ω), where D+ = D>
(
DD>

)−1.

The outcome of Lemma 2.4.5 is naturally expected. For instance, assertion (i) states that combining
several penalties/priors will promote objects living on the intersection of the respective low-complexity
models. Similarly, for (ii), one promotes low-complexity in the image of the analysis operator D>. It
then follows that one has not to deploy an ad hoc analysis when linearly pre-composing or combining
(or both) several penalties (e.g. `1+nuclear norms for recovering sparse and low-rank matrices).

Proof.
(i) Convexity, positive homogeneity, coercivity and finite-valuedness are straightforward.

(a) This is [145, Proposition 8(i)-(ii)].

(b) We have from Lemma 2.3.13 and calculus rules on support functions,

H◦(ω) = σJ(x)+G(x)≤1(ω) = sup
J(x)+G(x)≤1

〈ω,x〉 = max
ρ∈[0,1]

sup
J(x)≤ρ,G(x)≤1−ρ

〈ω,x〉

([80, Theorem V.3.3.3]) = max
ρ∈[0,1]

conv
(
inf
(
σJ(x)≤ρ(ω), σG(x)≤1−ρ(ω)

))
(Positive homogeneity) = max

ρ∈[0,1]
conv

(
inf
(
ρσJ(x)≤1(ω), (1− ρ)σG(x)≤1(ω)

))
(Lemma 2.3.13) = max

ρ∈[0,1]
conv (inf (ρJ◦(ω), (1− ρ)G◦(ω))).

(ii) Again, Convexity, positive homogeneity and finite-valuedness are immediate. Coercivity holds
by injectivity of D>.
(a) This is [145, Proposition 10(i)-(ii)].

(b) Denote J = γC . We have

H◦(ω) = sup
D>x∈C

〈ω,x〉

(D> is injective) = sup
D>x∈C

〈
D+ω,D>x

〉
= sup
u∈C∩Span(D>)

〈
D+ω,u

〉
([80, Theorem V.3.3.3] and Lemma 2.3.13) = conv

(
inf
(
J◦(D+ω), ιKer(D)(D

+ω)
))

= J◦(D+ω).

where in the last equality, we used the fact that D+ω ∈ Span
(
D>

)
= Ker(D)⊥, and thus

ιKer(D)(D
+ω) = +∞ unless ω = 0, and J◦ is continuous and convex (as J◦ ∈ G(Rd)) and

Lemma 2.3.13.

2.4.3 Examples

2.4.3.1 Lasso

The Lasso regularization is used to promote the sparsity of the minimizers, see [19] for a comphensive
review. It corresponds to choosing J as the `1-norm

J(x) =
∥∥x∥∥

1
=

p∑
i=1

|xi| . (2.6)
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It is also referred to as `1-synthesis in the signal processing community, in contrast to the more general
`1-analysis sparsity penalty detailed below.

We denote (ai)1≤i≤p the canonical basis of Rp and supp(x)
def
=
{
i ∈ {1, . . . , p} : xi 6= 0

}
. Then,

Tx = Span{(ai)i∈supp(x)}, (ex)i =

{
sgn(xi) if i ∈ supp(x)

0 otherwise
and J◦ =

∥∥ · ∥∥∞. (2.7)

2.4.3.2 Group Lasso

The group Lasso has been advocated to promote sparsity by groups, i.e. it drives all the coefficients
in one group to zero together hence leading to group selection, see [5, 161, 4, 156] to cite a few. The
group Lasso penalty with L groups reads

J(x) =
∥∥x∥∥

1,2

def
=

L∑
i=1

∥∥xbi∥∥2
. (2.8)

where
⋃L
i=1 bi = {1, . . . , p}, bi, bj ⊂ {1, . . . , p}, and bi ∩ bj = ∅ whenever i 6= j. Define the group

support as suppB(x)
def
=
{
i ∈ {1, . . . , L} : xbi 6= 0

}
. Thus, one has

Tx = Span{(aj){j : ∃i∈suppB(x),j∈bi
}}, (ex)bi =


xbi
‖xbi‖2

if i ∈ suppB(x)

0 otherwise
, and J◦(ω) = max

i∈{1,...,L}
‖ωbi‖2 .

(2.9)

2.4.3.3 Analysis (group) Lasso

One can push the structured sparsity idea one step further by promoting group/block sparsity through
a linear operator, i.e. analysis-type sparsity. Given a linear operator D : Rq → Rp (seen as a matrix),
the analysis-group sparsity penalty is

J(x) =
∥∥D>x∥∥

1,2
. (2.10)

This encompasses the 2-D isotropic total variation [128]. For when all groups of cardinality one, we
have the analysis-`1 penalty (a.k.a. general Lasso), which encapsulates several important penalties
including that of the 1-D total variation [128], and the fused Lasso [138]. The overlapping group Lasso
[83] is also a special case of (2.8) by taking D> to be an operator that exactract the blocks [112, 39]
(in which case D has even orthogonal rows).

Let Λx =
⋃
i∈suppB(D>x) bi and Λcx its complement. From Lemma 2.4.5(ii) and (2.9), we get

Tx = Ker(D>Λcx), ex = PTxDe
‖‖1,2
D>x

, where
(
e
‖‖1,2
D>x

)
bi

=


(D>x)

bi∥∥∥(D>x)
bi

∥∥∥
2

if i ∈ suppB(D>x)

0 otherwise.
(2.11)

If, in addition, D is surjective, then by virtue of Lemma 2.4.5(ii) we also have

J◦(ω) =
∥∥D+ω

∥∥
∞,2

def
= max

i∈{1,...,L}

∥∥(D+ω)bi
∥∥

2
. (2.12)

2.4.3.4 Anti-sparsity

If the vector to be estimated is expected to be flat (anti-sparse), this can be captured using the `∞
norm (a.k.a. Tchebychev norm) as prior

J(x) =
∥∥x∥∥∞ = max

i∈{1,...,p}
|xi| . (2.13)
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The `∞ regularization has found applications in several fields [84, 102, 133]. Suppose that x 6= 0,
and define the saturation support of x as Isat

x
def
=
{
i ∈ {1, . . . , p} : |xi| = ‖x‖∞

}
6= ∅. From [145,

Proposition 14], we have

Tx =
{
θ̄ ∈ Rp : θ̄Isat

x
∈ R sgn(xIsat

x
)
}
, (ex)i =

{
sgn(xi)/|Isat

x | if i ∈ Isat
x

0 otherwise
and J◦ = ‖·‖1 .

(2.14)

2.4.3.5 Nuclear norm

The natural extension of low-complexity priors to matrices x ∈ Rp1×p2 is to penalize the singular values
of the matrix. Let rank(x) = r, and x = U diag(σ(x))V > be a reduced rank-r SVD decomposition,
where U ∈ Rp1×r and V ∈ Rp2×r have orthonormal columns, and σ(x) ∈ (R+ \ {0})r is the vector of
singular values (σ1(x), · · · ,σr(x))> in non-increasing order. The nuclear norm of x is

J(x) =
∥∥x∥∥∗ =

∥∥σ(x)
∥∥

1
. (2.15)

This penalty is the best convex surrogate to enforce a low-rank prior. It has been widely used for
various applications [118, 31, 27, 70, 33].

Following e.g. [144, Example 21], we have

Tx =
{
UA> +BV > : A ∈ Rp2×r,B ∈ Rp1×r}, ex = UV > and J◦(ω) =

∥∥ω∥∥
2→2

=
∥∥σ(ω)

∥∥
∞.

(2.16)

2.5 Variational analysis

Denote J (Rd) the class of functions which are proper, lsc and bounded from below.

2.5.1 Differentiability

Definition 2.5.1 ((Limiting) Subdifferential). Given a point x ∈ Rd where a function f : Rd → R
is finite, the subdifferential of f at x is defined as

∂f(x) =
{
v ∈ Rd : ∃xk → x, f(xk)→ f(x),v ← vk ∈ ∂F f(xk)

}
,

where the Fréchet subdifferential ∂F f(x) of f at x, is the set of vectors v such that

f(w) ≥ f(x) + 〈v,w − x〉+ o
(∥∥w − x∥∥

2

)
, ∀w ∈ Rd.

We say that f is subdifferentially regular at x if and only if f is locally lsc there with ∂f(x) = ∂F f(x).

Let us note that ∂f(x) and ∂F f(x) are closed, with ∂F f(x) convex and ∂F f(x) ⊂ ∂f(x) [126,
Theorem 8.6]. In particular, if f is a proper lsc convex function, ∂F f(x) = ∂f(x) and ∂f is actually
the Fenchel subdifferential (see Definition 2.3.2). This is why in the rest of the manuscript, we will
call the limiting subdifferential simply the subdifferential.

Theorem 2.5.2 (Fermat’s rule). If a proper function f : Rd → R has a local minimum at x, then

0 ∈ ∂J(x).

If f is convex, then the above inclusion is also sufficient for x to be a global minimizer.
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2.5.2 Proximal mapping and Moreau envelope

Definition 2.5.3 (Proximal mapping and Moreau envelope). LetM ∈ Rd×d symmetric positive
definite. For a proper lsc function f and γ > 0, the proximal mapping and Moreau envelope in the
metric M are defined respectively by

proxMγf (x)
def
= Argmin

w∈Rd

{
1

2γ

∥∥w − x∥∥2

M
+ f(w)

}
,

M ,γf(x)
def
= inf
w∈Rd

{
1

2γ

∥∥w − x∥∥2

M
+ f(w)

}
,

proxMγf here is a set-valued operator since the minimizer, if it exists, is not necessarily unique. When
M = Ip, we simply write proxγf and γf .

Some key properties of the Moreau envelope and proximal mapping are detailed below.

Lemma 2.5.4. Let M ∈ Rd×d depending on γ ∈]0, γ0[ with γ0 > 0, we denote it Mγ, such that Mγ

is symmetric positive definite for any γ ∈]0, γ0[, and γ 7→
∥∥θ∥∥

Mγ
, ∀θ ∈ Rd, is a decreasing mapping

on ]0, γ0[. Assume that f ∈ J (Rd).
(i) prox

Mγ

γf (x) are non-empty compact sets for any x, and

x ∈ Argmin(f)⇒ x ∈ prox
Mγ

γf (x).

(ii) Mγ ,γf(θ) is finite and depends continuously on (x, γ) ∈ Rd×]0, γ0[, and
(
Mγ ,γf(x)

)
γ∈]0,γ0[

is a
decreasing net. More precisely,

Mγ ,γf(x)↗ f(x) for all x as γ ↘ 0.

Proof.
(i) Since f ∈ J (Rd), f is prox-bounded by [126, Exercise 1.24] for any γ ∈]0, γ0[, and then for any

x, 1
2γ

∥∥x−·∥∥2

Mγ
+f is proper lsc and level-bounded uniformly in (x, γ) ∈ Rd×]0, γ0[. This entails

that the set of minimizers of this function, i.e. prox
Mγ

γf (x), is a non-empty compact set. For the

last claim, suppose that x ∈ Argmin(f) 6= ∅ and bounded but x /∈ prox
Mγ

γf (x). Thus, for any

p ∈ prox
Mγ

γf (x), we have p 6= x and

f(p) <
1

2γ

∥∥p− x∥∥2

Mγ
+ f(p) ≤ f(x),

leading to a contradiction with x is a minimizer of f .

(ii) Since f ∈ J (Rd), the continuity and finiteness properties follow from [126, Theorem 1.17(c)] (see
also [126, Theorem 1.25]). For the second claim, we have ∀x ∈ Rd

−∞ < inf f ≤ Mγ ,γf(x) ≤ f(x).

Moreover, let p ∈ prox
Mγ

γf (x). Then, ∀δ > γ,

Mδ,δf(x) = inf
w∈Rd

1

2δ

∥∥w − x∥∥2

Mδ
+ f(w)

≤ 1

2δ

∥∥p− x∥∥2

Mδ
+ f(p)

≤ 1

2γ

∥∥p− x∥∥2

Mγ
+ f(p)

= Mγ ,γf(x).

This together with continuity concludes the proof of Assertion (ii).
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The fixed points of this proximal mapping include minimizers of f . They are not equal however in
general, unless for instance f is convex.

Lemma 2.5.5. Let Mγ ∈ Rd×d symmetric positive definite, assume that f ∈ J (Rd), and prox
Mγ

γf is

single-valued. Then prox
Mγ

γf is continuous on (x, γ) ∈ Rd×]0, γ0[, and Mγ ,γf ∈ C1(Rd) with gradient

∇Mγ ,γf = γ−1Mγ

(
Id − prox

Mγ

γf

)
.

In plain words, Lemma 2.5.5 tells us that under mild and fairly general conditions, the Moreau
envelope is a smooth function, hence the name Moreau-Yosida regularization. Moreover, the action of
the operator prox

Mγ

γf is equivalent to a gradient descent on the Moreau envelope of f in the metric
Mγ with step-size γ.

Proof. By virtue of Lemma 2.5.4-(i) and the single-valuedness, prox
Mγ

γf is clearly non-empty and
single-valued. The continuity property follows from [126, Theorem 1.17(b)] (see also [126, Theo-
rem 1.25]) and single-valuedness. By Lemma 2.5.4-(ii), Mγ ,γf(θ) is finite. Since f ∈ J (Rd), f is
prox-bounded with threshold +∞ by [126, Exercise 1.24]. Invoking [126, Example 10.32], we get that
−Mγ ,γf is locally Lipschitz continuous, subdifferentially regular and

∂
(
−Mγ ,γf

)
(θ) =

{
γ−1Mγ

(
prox

Mγ

γf (θ)− θ
)}

, ∀θ ∈ Rp.

Combining this with [126, Theorem 9.18] applied to −Mγ ,γf , we obtain that Mγ ,γf is differentiable
and its gradient is precisely as given.

Remark 2.5.6. When the metric matrix does not depend on γ, Lemmas 2.5.4 and 2.5.5 hold with
γ0 = +∞.

2.5.3 Monotonicity

Definition 2.5.7 (Hypomonotone and monotone operators). A set-valued operator S : Rd ⇒ Rd

is hypomonotone of modulus r > 0 if〈
x′ − x,v′ − v

〉
≥ −r

∥∥x′ − x∥∥2

2
, ∀(x,v) ∈ gph(S), (x′,v′) ∈ gph(S).

It is monotone if the inequality holds with r = 0, and strongly monotone with r > 0. Moreover, it is
maximal monotone if there is no enlargement of its graph without destroying monotonicity.

The subdifferential of a function in Γ0(Rd) is a typical example of a maximal monotone operator.

2.5.4 Prox-regularity

Roughly speaking, a lsc function f is prox-regular at x ∈ dom(f) if it has a “local quadratic support” at
x for all (x,v) ∈ gph(∂f) close enough to (x,v) ∈ gph(∂f) with f(x) nearby f(x). This is formalized
in the following definition.

Definition 2.5.8 (Prox-regularity). Let f : Rd → R, given a point x ∈ dom(f). f is prox-regular
at x for v, with v ∈ ∂f(x) if f is locally lsc at x, there exist ε > 0 and r > 0 such that

f(x′) > f(x) + (x′ − x)>v − 1

2r

∥∥x′ − x∥∥2

2
,

when
∥∥x′ − x∥∥

2
< ε and

∥∥x− x∥∥
2
< ε with x′ 6= x and

∥∥f(x)− f(x)
∥∥

2
< ε while

∥∥v − v∥∥
2
< ε with

v ∈ ∂f(x). When this holds for all v ∈ ∂f(x), f is said prox-regular at x. When f is prox-regular at
every x ∈ dom(f), f is said prox-regular.
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Example 2.5.9. The class of prox-regular functions is large enough to include many of those used
in statistics. For instance, here examples where prox-regularity is fullfilled (see [126, Chapter 13,
Section F] and [115]):
(i) Proper lsc convex functions.

(ii) Proper lsc lower-C2 (or semi-convex) functions, i.e. f is such that f + 1
2r

∥∥ · ∥∥2

2
is convex, r > 0.

(iii) Strongly amenable functions, i.e. f = g ◦R, R : Rd → Rd ∈ C2(Rd) and g : Rd → R proper lsc
convex.

(iv) A closed set C ⊂ Rd is prox-regular if, and only if, ιC is a prox-regular function. This is also
equivalent to: for any x ∈ Rd and for any γ > 0,

PC(x) = Argmin
v∈Rd

{
1

γ

∥∥x− v∥∥2

2
+ ιC(v)

}
= proxγιC(x)

is single-valued and continuous, or equivalently, to

d2
C = min

v∈Rd

{
1

γ

∥∥ · −v∥∥2

2
+ ιC(v)

}
= γιC ∈ C1,+(Rd).

The following lemma summarizes a fundamental property of prox-regular functions.

Lemma 2.5.10 ([114, Theorem 3.2]). When f : Rd → R is locally lsc at x ∈ Rd, the following are
equivalent
(i) f is prox-regular at x for v ∈ ∂f(x).

(ii) v is a proximal subgradient to f at x, i.e. there exist r > 0 and ε > 0 such that

f(x) ≥ f(x) + 〈v,x− x〉 − r

2
‖x− x‖22 , ∀x such that

∥∥x− x∥∥
2
< ε.

Moreover, there exist r > 0 and an f -attentive ε-localization (with ε > 0) of ∂f around (x,v)

defined by

Tf
ε,x,v(x) =

{{
v ∈ ∂f(x) : ‖v − v‖2 < ε

}
if ‖x− x‖2 < ε and ‖f(x)− f(x)‖2 < ε,

∅ otherwise,

such that Tf
ε,x,v + rId is monotone.

2.6 Some useful integration formulas

Lemma 2.6.1 ([75, 3.251.11]). Let p, γ, ν, η > 0. If γ/ν < η + 1 we have∫ +∞

0

xγ−1

(p+ xν)η+1
dx =

1

νpη+1−γ/ν
Γ (γ/ν) Γ (1 + η − γ/ν)

Γ(1 + η)
, (2.17)

otherwise this integral is not definite.

Lemma 2.6.2 (Cartesian to spherical coordinates [69]). Let d ≥ 1 and a mapping h : R+ → R
such that u→ h(

∥∥u∥∥
2
) is measurable in Rd. We obtain∫

Rd
h(
∥∥u∥∥

2
)du = Cd

∫ +∞

0
xd−1h(x)dx, (2.18)

where Cd = 2πd/2/Γ(d/2) is the surface area of a d-dimensional ball of radius 1.

Lemma 2.6.3 (Change of variables in the case of frame). Let C ⊆ Rd be a measurable set.
Suppose that M ∈ Rd×r is a frame, let u : Rr → R such that the mapping x 7→ u(M>x) is measurable
on C. We have ∫

C
u(M>x)dx =

1√
det(MM>)

∫
M>C

u(v)dv (2.19)

provided either u is non-negative valued or the integral on the left converges.
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Though quite natural, proving Lemma 2.6.3 rigorously requires nontrivial arguments from geometric
measure theory.

Proof. Consider the linear mapping M> : x ∈ Rd 7→ M>x ∈ Rr, r ≥ d. The Jacobian matrix of
this mapping is obviously M> for any x ∈ Rd. Since M is a frame, M> is injective, hence so-called
d-regular (see [103, Section 1.5]). In particular, det(MM>) > 0. Thus combining [103, Theorems 1.12
and 3.4] and the Cauchy-Binet formula [103, Theorem 3.3]), we have the change of variables formula∫
C
u(M>x)dx =

∫
Rr
∑
x∈C∩

{
ω : M>ω=v

}u(M>x)dv√
det(MM>)

=

∫
Span(M>)

∑
x∈C∩

{
ω : M>ω=v

}u(M>x)dv√
det(MM>)

.

(2.20)
Using once again that M> is injective, i.e. it is bijective on its image Span(M>), the result follows.
This concludes the proof.

2.7 Inequalities from probability theory

Our work strongly relies on several important deviation inequalities from probability and concentration
of measure. In particular, we will repeatedly use classical inequalities (Hoeffding, Bernstein), Gaussian
concentration of Lipschitz functions, and its implications on e.g. concentration of the extreme singular
values of a matrix, deviation inequalities for quadratic forms, and suprema of empirical processes.

For the sake of conciseness in this manuscript, we will not state them here. Rather we refer to e.g.
[16, 94] for a comprehensive treatment.
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Chapter 3

PAC-Bayesian Risk Bounds for
Analysis-group Sparse Regression by
EWA

Main contributions of this chapter

I Propose an EWA of type (1.11) (see Section 3.3), with a deterministic dictionary, under
an analysis-group sparsity prior where the analysis operator is associated to a frame D.
The performance of our estimator is guaranteed by an analysis-group SOI.

I Exhibit, for an appropriate choice of prior, an analysis-group SOI whose remainder term
scales as O

(∥∥D>θ∥∥
0,2

log(L)/n
)
, where

∥∥D>θ∥∥
0,2

is the number of active groups in

D>θ, and L is the total number of groups (see Corollary 3.4.5). This rate coincides
with the classical one O (‖θ‖0 log(p)/n) under the individual sparsity context.

The results in this chapter can be found in [64].
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3.1 Introduction

In this chapter, we consider a high-dimensional non-parametric regression model with fixed design and
random errors. We propose a powerful estimator by exponential weighted aggregation (EWA) with
an analysis-group sparsity promoting prior on the weights. We prove that our estimator satisfies a
sharp analysis-group sparse oracle inequality with a small remainder term ensuring its good theoretical
performances.

3.1.1 Problem statement

Let us briefly recall our statistical context. Assume that the given data (xi, yi), i = 1, . . . , n, is
generated according to the high-dimensional non-parametric regression model

yi = f(xi) + ξi, i ∈ {1, . . . , n}, (3.1)

where x1, . . . , xn are deterministic in an arbitrary set X , f : X → R is the unknown regression function
and (ξ1, . . . , ξn) are random errors. (3.1) is equivalently written in vector form

y = f + ξ.

Let F (u,y) = 1
2 ‖u− y‖

2
2 for any u ∈ Rn. By the aggregation approach, we approximate f by fθ0

(see Section 1.1.1) where
θ0 ∈ Argmin

θ∈Rp
E [F (Xθ,y)] .

Assume that θ0 is analysis-group sparse. This chapter consists in estimating θ0 by a class of EWA
(1.11) whose performance is guaranteed by proven oracle inequalities.

3.1.2 Chapter organization

Section 3.2 reminds the PAC-Bayesian type oracle inequalities proposed in [52] which are a classical
starting point in the literature for EWA in the deterministic case. In Section 3.3, we describe our
EWA procedure after specifying the aggregation dictionary and our prior family. In Section 3.4, we
establish our main results, namely analysis-group SOI. The proof of our general analysis-group SOI
(c.f. Theorem 3.4.1) is reported in Section 3.5.
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3.2 PAC-Bayesian type oracle inequalities

This section recalls a PAC-Bayesian type oracle inequality which holds for the EWA (1.11) with
any deterministic aggregation dictionary, any prior and a large class of noises. Such type of oracle
inequalities was introduced in [52] for i.i.d. noise. We adapt it to the non i.i.d. case. Indeed, let us
start with the two following assumptions.
(P.1) The noise vector ξ = (ξ1, . . . , ξn)> has zero mean.

(P.2) For any γ > 0 small enough, there exist a probability space and two random variables ξ′ and ζ
defined on this probability space satisfying the three following points:
(a) ξ′ has the same distribution as ξ.

(b) ξ′ + ζ has the same distribution as (1 + γ)ξ′ and the conditional expectation satisfies
E
[
ζ|ξ′

]
= 0.

(c) There exist t0 ∈]0,+∞] and a bounded Borel function v : Rn → R+ such that

lim sup
γ→0

sup
(t,a)∈Rp×Rp:(

∥∥t∥∥
2
,a)∈[−t0,t0]×supp(ξ′)

logE
[
exp

(
t>ζ

)
|ξ′ = a

]∥∥t∥∥2

2
γv(a)

≤ 1.

Assumption (P.2) is based on [52, Assumption N], and can be shown to be fulfilled for a large class
of noises.

Proposition 3.2.1. Assume that ξ has zero mean. Assumption (P.2) is fulfilled when:
(i) ξ is a Gaussian noise having covariance matrix Σ, with t0 = +∞ and v(a) ≡

∥∥Σ∥∥
2→2

,

(ii) ξ is a Laplace noise having covariance matrix Σ, with t0 <
√

2/
∥∥Σ∥∥

2→2
and v(a) ≡

∥∥Σ
∥∥

2→2

1−t20
∥∥Σ
∥∥

2→2

2
/2
,

(iii) ξ is a bounded symmetric noise, i.e. P [|ξi| ≤ Bi] for some B ∈ Rn, with t0 = +∞ and v(a) =∥∥a∥∥
2
≤
∥∥B∥∥

2
.

Proof.
(i) Gaussian noise: Let ξ ∼ N (0,Σ), we set

ζ ∼ N (0, (2γ + γ2)Σ),

the conditions (a) and (b) in Assumption (P.2) are then verified. We check now the condition

(c). Let t ∈
{
x ∈ Rn :

∥∥x∥∥
2
∈ [−∞,+∞]

}
, u =

(
t>
√

2γ + γ2Σ1/2
)>

and ε ∼ N (0, In), we
get that

E
[
et
>ζ
]

= E
[
eu
>ε
]

=

n∏
j=1

E [eujεj ] = e

∥∥u∥∥2

2
2 ≤ e

1
2

∥∥√2γ+γ2Σ1/2t
∥∥2

2 ≤ e

(
γ+ γ2

2

)∥∥Σ
∥∥

2→2

∥∥t∥∥2

2 .

Thus, let a ∈ Rn and v(a) ≡
∥∥Σ∥∥

2→2
, we get

logE
[
et
>ζ |ξ = a

]
∥∥t∥∥2

2
γv(a)

≤ 1 +
γ

2
→
γ→0

1 ≤ 1.

(ii) Laplace noise: Let ξ ∼ L(0,Σ), i.e. its associated characteristic function is ϕξ(t) = 1
1+t>Σt/2

,
we choose ζ according to the distribution associated to the characteristic function

ϕζ(t) =
1

(1 + γ)2

(
1 +

2γ + γ2

1 + (1 + γ)2t>Σt/2

)
.

For any t ∈ Rn, we get that

ϕξ+ζ(t) = ϕξ(t)ϕζ(t) =
1

1 + (1 + γ)2t>Σt/2
= ϕ(1+γ)ξ(t). (3.2)
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Thus, ζ + ξ has the same distribution as (1 + γ)ξ. We also obtain

E [ζ|ξ] = E [ζ] = (−i)∇ϕζ(0) = 0.

It suffices to check the condition (3) of Assumption (P.2). We know that

E
[
et
>ζ |ξ

]
= E

[
et
>ζ
]

= ϕζ(−it) =
1

(1 + γ)2

(
1 +

2γ + γ2

1− (1 + γ)2t>Σt/2

)
.

Using Taylor’s formula, we have

log
(
E
[
etζ |ξ

])
=

γt>Σt

1− t>Σt/2
+O(γ2).

Thus, let t ∈
{
x ∈ Rn :

∥∥x∥∥
2
∈ [−t0, t0]

}
, a ∈ Rn and v(a) ≡

∥∥Σ
∥∥

2→2

1−t20
∥∥Σ
∥∥

2→2

2
/2
, we get

logE
[
et
>ζ |ξ = a

]
∥∥t∥∥>

2
γv(a)

→
γ→0

t>Σt/(1− t>Σt/2)∥∥t∥∥2

2

∥∥Σ∥∥
2→2

/(1− t20
∥∥Σ∥∥

2→2
/2)
≤

1− t20
∥∥Σ∥∥

2→2
/2

1− t>Σt/2

≤
1− t20

∥∥Σ∥∥
2→2

/2

1−
∥∥t∥∥2

2

∥∥Σ∥∥
2→2

/2
≤ 1.

We get two last inequalities under the condition 1−t20
∥∥Σ∥∥

2→2
/2 > 0 equivalent t0 <

√
2/
∥∥Σ∥∥

2→2
.

(iii) Bounded symmetric noise: Let ξ are symmetric and P [|ξi| ≤ Bi] = 1 for some B ∈ Rn, we
set ζ = (ζ1, . . . , ζn)> such that

ζi = (1 + γ) |ξi| sgn(sgn(ξi)− (1 + γ)Ui)− ξi, Ui ∼ U([−1, 1]), ∀i ∈ {1, . . . , n}.

Using [52, Equation (22)], for any t ∈ Rn and a ∈
{
x ∈ Rn : xi ∈ [−Bi, Bi], ∀i ∈ {1, . . . , n}

}
,

we get that

E
[
et
>ζ |ξ = a

]
=

n∏
j=1

E
[
etiζi |ξi = ai

]
= e−t

>a

(
e(1+γ)t>a 2 + γ

2 + 2γ
+ e−(1+γ)t>a γ

2 + 2γ

)
. (3.3)

From (3.3) and the symmetry of ξ, we obtain

E
[
et
>(ζ+ξ)

]
= E

[
E
[
et
>(ζ+ξ)|ξ

]]
= E

[
e(1+γ)t>ξ 2 + γ

2 + 2γ
+ e−(1+γ)t>ξ γ

2 + 2γ

]
= E

[
e(1+γ)t>ξ

]
.

Thus, ζ + ξ has the same distribution as (1 + γ)ξ. Since E [ζ|ξ = a] equals to the gradient of
E
[
et
>ζ |ξ = a

]
at t = 0, from (3.3) we have then E [ζ|ξ = a] = 0, ∀a ∈ [−B,B]. It suffices to

check the condition (c) of Assumption (P.2). Owing to [45, Lemma 3] and [52, Equation (22)], we
get that log

(
E
[
etiζi |ξi = ai

])
≤ (tiai)

2γ(1 + γ). Thus, let t ∈
{
x ∈ Rn :

∥∥x∥∥
2
∈ [−∞,+∞]

}
and v(a) =

∥∥a∥∥2

2
, we get that

logE
[
et
>ζ |ξ = a

]
∥∥t∥∥2

2
γv(a)

=

∑n
i=1 logE

[
etiζi |ξi = ai

]∥∥t∥∥2

2
γ
∥∥a∥∥2

2

≤
∑n

i=1 t
2
ia

2
i γ(1 + γ)∥∥t∥∥2

2
γ
∥∥a∥∥2

2

≤ 1 + γ →
γ→0

1 ≤ 1.

Besides, let H ∈]0,+∞] such that

sup
(θ,θ′)∈Θ2

∥∥fθ − fθ′∥∥2
≤ H. (3.4)

Note that (3.4) is always satisfied since H is allowed to be infinite. However, for the sake of sharpness
in our theoretical results, we wish to choose H as small as possible.
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Remind the definition of
∥∥ · ∥∥

n
in (1.2), and define∥∥v∥∥∞ = sup

x∈Rn
|v(x)|,

for any function on Rn. We are now ready to state the PAC-Bayesian type oracle inequalities.

Theorem 3.2.2. Let Assumptions (P.1) and (P.2) be satisfied with some function v and let (3.4)
holds. Then for any prior π, any probability measure p on Θ and any β ≥ max(4

∥∥v∥∥∞, 2H/t0) or
β ≥ 4

∥∥v∥∥∞ when H = +∞, t0 = +∞, we have

E
[∥∥f̂n − f∥∥2

n

]
≤
∫

Θ

∥∥f − fθ∥∥2

n
p(dθ) +

βKL(p, π)

n
, (3.5)

where f̂n is the aggregate defined in (1.11) and KL(p, π) =
∫

Θ log (p(dθ)/π(dθ)) p(dθ) is the Kullback-
Leibler divergence.

The proof of Theorem 3.2.2 is a mild adaptation of the original one in [52, Section 2], where we used
directly Assumption (P.2)-(c) in the vector ζ instead of splitting it into ζi,i∈{1,...,n} (that are no longer
i.i.d.).

Related work The work of [45] proposed three types of oracle inequalities which are similar to (3.5)
under different assumptions. The first type (see [45, Theorem 1]) holds under a restrictive condition
on the noise. The second (see [45, Theorem 2]) involves conditions depending on the noise and also
on the dictionary. The last (see [45, Theorem 4]) works for all symmetric noises without conditions on
the dictionary. However, an additional term appears in the remainder term which has a low rate for
some types of noise. Therefore, Theorem 3.2.2 (with Assumption (P.2)) is a good trade-off between
these types of oracle inequalities.

Moreover, there exist some related forms of (3.5) in different frameworks. For example, when
ξi ∼ N (0, σ2

i ), i = 1, . . . , n, the following aggregate was proposed in [49]:

f̂ =

∫
Θ
f̂θp(dθ), p(dθ) =

exp
(
−n
β r̂θ

)
π(dθ)∫

Θ exp
(
−n
β r̂ω

)
π(dω)

,

where f̂θ, θ ∈ Θ are affine estimators satisfying some conditions imposed in [49, Theorem 1] which
yield the definition of r̂θ, θ ∈ Θ. This aggregate satisfies oracle inequalities defined therein which are
the counterparts of (3.5) for the aggregation of estimators. In addition, in the case of random design
(i.e. x1, . . . , xn are random and i.i.d.), the work in [51] constructed a mirror averaging aggregate to
obtain a generalized type of oracle inequalities where the performance is measured by any loss instead
of the averaged square loss.

3.3 EWA

3.3.1 Analysis-group sparsity

We now describe formally what is intended by analysis-group sparsity, which measures group sparsity
of the image of a vector with an analysis linear sparsifying transform. Let q ≥ p. We partition the
index set {1, . . . , q} into L non-overlapping groups/blocks of indices {bl}1≤l≤L such that

L⋃
l=1

bl = {1, . . . , q} and bl ∩ bk = ∅, ∀l 6= k.

For the sake of simplicity, and without loss of generality, the groups are assumed to have the same size
|bl| = K ≥ 1 and the total number of blocks L is supposed to be an integer. With these notations, the
analysis-group sparsity assumption is formalized as follows.
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(H.1) There exists D ∈ Rp×q such that
∥∥D>θ0

∥∥
0,2
� n.

In plain words, Assumption (H.1) says that the number of active groups ofD>θ0 is much smaller than
the sample size. Note that this is a strict notion of analysis-group sparsity, and a weaker one could be
also considered where most

(
D>θ0

)
bl
are nearly zero. We also impose the following assumption on D.

(H.2) D is a frame (see Definition 2.2.5).
Let us now introduce some applications in the literature in which our sparsity context is applicable.

Example 3.3.1 (2-D piecewise constant image). Let θ0 ∈ R
√
p×√p be a 2-D piecewise constant

image. In this framework, a popular regularization is the isotropic total variation associated to analysis
operator denoted DTV (see [128]). Namely, let Dc : R

√
p×√p → R

√
p×√p and Dr : R

√
p×√p → R

√
p×√p

the finite difference operators along, respectively, the columns and rows of an image. We define DTV

as

DTV : θ ∈ R
√
p×√p 7→ vec

(
(vec(Dr(θ)), vec(Dc(θ)))>

)>
∈ R2p.

By vectorizing θ0, D> would correspond to DTV. Here, D> = [DLIN
l
>
DLIN
c
>

]> where DLIN
l ∈ Rp×p

(resp. DLIN
c ∈ Rp×p) is the linearized counterpart of Dr (resp. Dc). With Neumann boundary

conditions, DLIN
l and DLIN

c are bijective implying injectivity of D>. Thus, D is a frame in view of
Courant-Fisher theorem.

Example 3.3.2 (Signal with overlapping groups). Consider θ0 ∈ Rp generated from L groups
which overlap. The analysis operator acts as a group extractor (see [113, 39]). In this framework,
DD> =

∑L
l=1B

>
l Bl where Bl ∈ Rql×p, for l ∈ {1, . . . , L}, is a countable collection of localization

operators, and then q =
∑L
l=1ql. In which case, DD> is a block diagonal matrix, each block is

invertible. Hence, DD> is invertible. Thus D is a frame in view of Courant-Fisher theorem.

To design an aggregation by exponential weighting, two ingredients are essential: the aggregation
dictionary and the prior which promotes analysis-group sparsity. We specify them below.

3.3.2 Choice of dictionary

We impose the following standard normalization assumption on X.
(H.3) X is normalized such that all the diagonal entries of X>X/n are 1.

Now, let us introduce our dictionary of aggregation:

FΘ =
{
fθ = `

(∑p
j=1θjfj

)
: θ ∈ Θ =

{
θ ∈ Rp :

∥∥D>θ∥∥a
a,2
≤ R

}}
, (3.6)

where a ∈]0, 1], R ∈]0,+∞] and ` : R → R is twice continuously differentiable and known depending
on the regression problem (for example: `(x) = ex for the exponential regression, `(x) = ex/(ex + 1)

for the logistic regression and `(x) = x for the linear regression). This dictionary of aggregation is
similar to the one proposed in [52, 51, 50]. However, the set of indices is modified to adapt to the
analysis-group sparsity and the exponent a is varied in ]0, 1] instead of a fixed a = 1. The bound H in
(3.4) for FΘ in (3.6) is established in the following result.

Proposition 3.3.3. Let FΘ = {fθ : θ ∈ Θ} defined in (3.6) with some R > 0, a ∈]0, 1] and ` : R→ R
twice continuously differentiable. Let Assumption (H.2) hold for some µ > 0. We get that

sup
(θ,θ′)∈Θ2

∥∥fθ − fθ′∥∥2
≤ 2 max

x∈B

∥∥L(x)
∥∥

2
,

where B =
{
x ∈ Rn :

∥∥x∥∥
2
≤
∥∥X∥∥

2→2
R1/a

√
µ

}
and L : x ∈ Rn → (`(x1), . . . , `(xn)).

– 36 –



Chapter 3 3.3. EWA

From Proposition 3.3.3, one can choose H = 2 maxx∈B
∥∥L(x)

∥∥
2
.

Proof. Let θ ∈ Θ and i ∈ {1, . . . , n}. Setting uθi =
∑p

j=1 θjfj(xi) and uθ = (uθ1 , . . . ,u
θ
n)>, and by

virtue of (2.1), (2.2), (3.6) and the fact that a ∈]0, 1], we have∥∥uθ∥∥
2

=
∥∥Xθ∥∥

2
≤
∥∥X∥∥

2→2

∥∥D̃∥∥
2→2

∥∥D>θ∥∥
2
≤

∥∥X∥∥
2→2

∥∥D>θ∥∥
a,2√

µ
≤
∥∥X∥∥

2→2
R1/a

√
µ

.

Which in turn implies uθ ∈ B. Therefore, for any
(
θ,θ′

)
∈ Θ2,∥∥fθ − fθ′∥∥2

=
∥∥L(uθ)−L(uθ′)∥∥

2
≤ 2 max

x∈B

∥∥L(x)
∥∥

2
.

Remark 3.3.4. By choosing H = 2 maxx∈B
∥∥L(x)

∥∥
2
with B =

{
x ∈ Rn :

∥∥x∥∥
2
≤
∥∥X∥∥

2→2
R1/a

√
µ

}
, H

depends on X and then on n under Assumption (H.3). So β ≥ max(4
∥∥v∥∥∞, 2H/t0) also depends on

n. For this isssue, ξ must satisfy Assumption (P.2) with t0 = +∞. In view of Proposition 3.2.1, we
can consider ξ as a Gaussian or a bounded symmetric noise.

3.3.3 Choice of prior

We choose a general prior of the form

π(dθ) =
1

Cα,g,R

∏L
l=1 exp

(
−αa

∥∥∥[D>θ]bl

∥∥∥a
2

)
g
(∥∥∥[D>θ]bl

∥∥∥
2

)
IΘ(θ)dθ, (3.7)

where α ≥ 0 and g satisfies the following requirements:
(G.1) g : R+ → R+ is a bounded function such that g 6≡ 0, θ 7→ g

(∥∥[D>θ]bl
∥∥

2

)
is measurable on Rp,

for any l ∈ {1, . . . , L}.
(G.2) The integrability condition: ∫

Rp

∏L
l=1g

(∥∥[D>u]bl
∥∥

2

)
du < +∞.

(G.3) The moment condition:∫
Rp

∥∥[D>u]bl
∥∥2

2

∏L
k=1g

(∥∥[D>u]bk
∥∥

2

)
du < +∞, ∀l ∈ {1, . . . , L}.

(G.4) There exist λ ≥ 0 and h : R+ → R+ such that

g
(∥∥t− t∗∥∥

2

)
g
(∥∥t∥∥

2

) ≤ h
(∥∥t∗∥∥

2

)λ
, ∀(t, t∗) ∈ RK × RK .

.
Assumptions (G.2) and (G.3) lead the following remark that is a core part for the construction of

the general analysis-group SOI in Theorem 3.4.1.

Remark 3.3.5. Let K ≥ 1 and D ∈ Rp×q satisfying Assumption (H.2). For any function g satisfying
Assumptions (G.1), (G.2) and (G.3), and any a ∈]0, 1], there exists KD

a,g ∈]0,+∞[ such that∫
Rp
∥∥[D>u]bl

∥∥2a

2

∏L
k=1g

(∥∥[D>u]bk
∥∥

2

)
du∫

Rp
∏L
k=1g

(∥∥[D>v]bk
∥∥

2

)
dv

≤ KD
a,g, ∀l ∈ {1, . . . , L}. (3.8)

Proof. Remark 3.3.5 is briefly proved as follows. From Assumption (G.3) and the fact that g 6≡ 0,
one can show that (3.8) holds for a = 1. Moreover, since g 6≡ 0 and g satisfies Assumption (G.2), we
have

u→
∏L
l=1g

(∥∥[D>u]bl
∥∥

2

)
du∫

Rp
∏L
k=1g

(∥∥[D>v]bk
∥∥

2

)
dv
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is a probability measure. Therefore, (3.8) holds for any a in ]0, 1] by Hölder’s inequality.

At first glance, Assumptions (G.2) and (G.3) may seem cumbersome. However the following lemma
gives a simple condition on g that implies them.

Lemma 3.3.6. Let K ≥ 1 and D ∈ Rp×q satisfying Assumption (H.2). Suppose that g satisfies
Assumption (G.1) and ∫ +∞

0
zK+1g(z)dz < +∞. (3.9)

Then Assumptions (G.2) and (G.3) are fulfilled.

Proof. Let us first check the integrability condition (G.2). By Lemmas 2.6.3 and 2.6.2, we obtain∫
Rp

L∏
l=1

g
(∥∥[D>u]bl

∥∥
2

)
du =

∫
Span(D>)

∏L
l=1 g

(∥∥vbl∥∥2

)
dv√

det
(
DD>

) ≤
∫
Rq
∏L
l=1 g

(∥∥vbl∥∥2

)
dv√

det
(
DD>

)
=

(∫
RK g

(∥∥u∥∥
2

)
du
)L√

det
(
DD>

)
=
CLK

(∫ +∞
0 zK−1g(z)dz

)L
√

det
(
DD>

) .

Since K ≥ 1 and g : R+ → R+, by (3.9), we get

∫
Rp

L∏
l=1

g
(∥∥[D>u]bl

∥∥
2

)
du ≤

CLK

(∫ 1
0 z

K−1g(z)dz +
∫ +∞

1 wK−1g(w)dw
)L

√
det
(
DD>

)
≤
CLK

(
supz∈[0,1] g(z) +

∫ +∞
1 wK+1g(w)dw

)L
√

det
(
DD>

) < +∞. (3.10)

Therefore, g satisfies Assumption (G.2). Now, we check the moment condition (G.3). Using similar
arguments to the bound (3.10), we have∫

Rp

∥∥[D>u]bl
∥∥2

2

L∏
k=1

g
(∥∥[D>u]bk

∥∥
2

)
du ≤

∫
Rq
∥∥vbl∥∥2

2

∏L
k=1 g

(∥∥vbk∥∥2

)
dv√

det
(
DD>

)
=

(∫
RK
∥∥u∥∥2

2
g
(∥∥u∥∥

2

)
du
) (∫

RK g
(∥∥v∥∥

2

)
dv
)L−1√

det
(
DD>

)
=
CLK

∫ +∞
0 zK+1g(z)dz

(∫ +∞
0 wK−1g(w)dw

)L−1

√
det
(
DD>

) < +∞,

(3.11)

whence we conclude that g satisfies Assumption (G.3).

In the two following remarks, we consider the case where D is invertible. Remark 3.3.7 provides a
simple and explicit form for KD

a,g and Remark 3.3.8 shows that condition (3.9) is necessary for g to
obey Assumption (G.3).
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Remark 3.3.7. Let K ≥ 1 and D ∈ Rp×p be invertible. For any function g satisfying Assump-
tions (G.1), (G.2) and (G.3), and for any a ∈]0, 1], one can choose KD

a,g in (3.8) as

KD
a,g =

∫ +∞
0 xK−1+2ag(x)dx∫ +∞

0 zK−1g(z)dz
. (3.12)

Proof. The proof follows by combining Lemmas 2.6.3 and 2.6.2, i.e.∫
Rp
∥∥[D>u]bl

∥∥2a

2

∏L
k=1g

(∥∥[D>u]bk
∥∥

2

)
du∫

Rp
∏L
k=1g

(∥∥[D>v]bk
∥∥

2

)
dv

=

∫
RK
∥∥u∥∥2a

2
g
(∥∥u∥∥

2

)
du
(∫

RK g
(∥∥v∥∥

2

)
dv
)L−1(∫

RK g
(∥∥w∥∥

2

)
dw
)L

=

∫
RK
∥∥u∥∥2a

2
g
(∥∥u∥∥

2

)
du∫

RK g
(∥∥v∥∥

2

)
dv

=

∫ +∞
0 xK−1+2ag(x)dx∫ +∞

0 zK−1g(z)dz
.

Remark 3.3.8. WhenD is invertible, if g does not satisfy (3.9) then g cannot fulfill Assumption (G.3).
Consequently, Assumption (G.3) and condition (3.9) are equivalent in the invertible case.

Proof. By Lemmas 2.6.3 and 2.6.2, we get∫
Rp

∥∥[D>u]bl
∥∥2

2

∏L
k=1g

(∥∥[D>u]bk
∥∥

2

)
du =

CLK
∫ +∞

0 zK+1g(z)dz√
det
(
DD>

) (∫ +∞

0
wK−1g(w)dw

)L−1

.

Let us now discuss some choices of g. Recall that the goal is to find a prior leading an oracle
inequality with a small remainder term while promoting analysis-group sparsity.

Example 3.3.9. Consider g : R+ → R+ defined by

g(x) =
1

(τ2 + x2)2
, τ > 0.

This choice of g yields a prior that specializes to the one in [52] for the individual sparsity scenario,
i.e. with D = Ip, K = 1 and a = 1.

Example 3.3.10. Consider g : R+ → R+ defined by

g(x) =
1

(τ b + xb)c
,

where τ > 0, b ∈]0, 1] and c > (2+K)/b. The choice of c guarantees the validity of Assumptions (G.2)
and (G.3). Thanks to the parameters b and c, this choice of g offers more flexibility than the one in
the previous example. This allows for example to optimize the performance of EWA by tuning these
parameters for the particular dataset at hand.

3.4 Analysis-group sparse oracle inequality

Once a suitable dictionary and prior are chosen according to the above, our goal now is to provide a
theoretical guarantee for the aggregates by constructing an analysis-group SOI. First of all, based on
PAC-Bayesian type oracle inequalities in Section 3.2, we establish our first main result: an analysis-
group SOI for the dictionary (3.6) and the prior (3.7) with a function g obeying Assumptions (G.1),
(G.2), (G.3) and (G.4).

– 39 –



Chapter 3 3.4. Analysis-group sparse oracle inequality

Theorem 3.4.1 (General analysis-group sparse oracle inequality). Let K ≥ 1, X satisfying
Assumption (H.3), and D satisfying Assumption (H.2) with µ > 0. Let Assumptions (P.1) and (P.2)
be satisfied with some function v, (3.4) holds and β ≥ max

(
4
∥∥v∥∥∞, 2H/t0). For some a ∈]0, 1], take

the dictionary (3.6) and the prior (3.7) with g satisfying Assumptions (G.1), (G.2), (G.3) and (G.4).
Let KD

a,g, as defined in (3.8), and assume that R > 3
√
KD
a,gL. Then the following analysis-group SOI

holds
E
[∥∥f̂n − f∥∥2

n

]
≤ inf

ΘD
µ̂n,L,R

(∥∥fθ − f∥∥2

n
+ ΦDµ̂n,n,L(θ) + ΩDµ̂n,n,L,λ(θ)

)
+ ΨDµ̂n,L,p, (3.13)

with
ΘDµ̂n,L,R =

{
θ ∈ Rp :

∥∥D>θ∥∥a
a,2
≤ R− 3

√
KD
a,gL

}
,

ΦDµ̂n,n,L(θ) =
β

n

(
1 + 3

√
KD
a,gLα

a + αa
∥∥D>θ∥∥a

a,2

)
,

ΩDµ̂n,n,L,λ(θ) =
λβ

n

L∑
l=1

log h

(∥∥ [D>θ]
bl

∥∥
2

)
,

ΨDµ̂n,L,p =
2KD

1,g exp
(

3
√
KD
a,gLα

a
)
pCf,`

µ
,

and Cf,` = ‖`′‖2∞ + ‖`′′‖∞ (‖`‖∞ + ‖f‖∞).

Remark 3.4.2. The analysis-group SOI (3.13) is sharp. It depends on several parameters discussed
below.

1. The parameter R appears in the dictionary. Namely, f̂n mimics the best aggregate fθ for all
possible weights belonging to

{
θ ∈ Rp :

∥∥D>θ∥∥a
a,2
≤ R− 3

√
KD
a,gL

}
. Then R must be suffi-

ciently large to cover the “good” model fθ0 in Assumption (H.1). Moreover, since R > 3
√
KD
a,gL,

R ∼
√
KD
a,gL is the smallest rate we can choose to reduce the rate of ΦDµ̂n,n,L(θ) as

∥∥D>θ∥∥a
a,2
≤ R.

2. The parameter α is used to cancel the effect of L
√
KD
a,g in the remainder terms. By choosing

α ≤ (3K
√
KD
a,g)
−1/a, we get that

ΦDµ̂n,n,L(θ) ≤ β

n

(
1 + 3

√
KD
a,gα

a + αaR
)
∼ 1

n
and ΨDµ̂n,L,p ≤

2eCf,`
µ

KD
1,gp.

3. The parameter KD
a,g and the function h depend on the choice of g. They also control the rate of

ΩDµ̂n,n,L,λ(θ) and ΨDµ̂n,L,p.

In what follows, let us state the consequences of Theorem 3.4.1 with the choices of g in Example 3.3.9
and 3.3.10. Especially, we will discuss the rate of ΩDµ̂n,n,L,λ(θ) and ΨDµ̂n,L,p.

We first consider the prior (3.7) in Example 3.3.9, under the individual sparsity scenario (D = Ip,
K = 1) and the choice a = 1 (i.e. Θ = {θ ∈ Rp :

∥∥θ∥∥
1
≤ R}). This is the setting considered in [52].

We obtain the following SOI as a corollary of our main result.

Corollary 3.4.3. Let X satisfying Assumption (H.3), D = Ip and fix K = 1. Suppose that Assump-
tions (P.1) and (P.2) hold with some function v, (3.4) holds and β ≥ max

(
4
∥∥v∥∥∞, 2H/t0). Fix a = 1,

take the dictionary (3.6) and the prior (3.7) with g defined in Example 3.3.9 and α ≤ 1/(3pτ). Assume
that R > 3pτ . Choosing τ2 ∼ 1/(pn) and R ∼ pτ , SOI (3.13) holds with ΘDµ̂n,L,R =

{
θ ∈ Rp :

∥∥θ∥∥
1
≤

R− 3pτ
}
,

ΩDµ̂n,n,L,λ(θ) ∼
∥∥θ∥∥

0
log(p)

n
and ΨDµ̂n,L,p ∼

1

n
.
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Proof. Let γ = 3, ν = 2 and η = 1. We have γ/ν < η + 1 so that Lemma 2.6.1 applies. We thus
obtain ∫ +∞

0
zK+1g(z)dz =

∫ +∞

0

z2

(z2 + τ2)2
dz < +∞.

From Lemma 3.3.6, g satisfies Assumptions (G.2) and (G.3). Moreover, taking h(t) = 1 + t/τ and
λ = 4, for all (t, t∗) ∈ R2, we have by Young’s inequality

g(|t− t∗|)
g(|t|)

=

[
τ2 + t2

τ2 + (t− t∗)2

]2

=

[
1 +

2τ(t− t∗)t∗/τ + t∗2

τ2 + (t− t∗)2

]2

≤
[
1 +
|t∗|
τ

+
t∗2

τ2

]2

≤ h(|t∗|)λ.

Therefore, g satisfies Assumptions (G.1), (G.2), (G.3) and (G.4) for K = 1. Owing to Remark 3.3.7
and Lemma 2.6.1, we obtain

KD
1,g =

∫ +∞
0

x2

(τ2+x2)2dx∫ +∞
0

1
(τ2+y2)2dy

= τ2.

We are now in position to apply Theorem 3.4.1 with D = Ip (then q = p), K = 1 (then L = q), a = 1

and α ≤ 1/(3pτ) to conclude. Namely, since τ2 ∼ 1
pn and R ∼ pτ , we get that

ΨDµ̂n,L,p ≤ 2eCf,`τ
2p ∼ 1

n
,

and

ΩDµ̂n,n,L,λ(θ) =
4β

n

p∑
j=1

log

(
1 +
|θj |
τ

)
≤ 4β

n

∥∥θ∥∥
0

log

(
1 +

R

τ

)
∼
∥∥θ∥∥

0
log(p)

n
.

This completes the proof.

The order of ΩDµ̂n,n,L,λ(θ) is the classical rate under the sparsity scenario. This scaling is similar to
the one in [52] with the same prior. However, the following remark shows that this prior is not adapted
in the analysis-group case for any group size strictly larger than 1.

Remark 3.4.4. Suppose that K ≥ 2, and let γ = K + 2, ν = 2 and η = 1. We have γ/ν ≥ η+ 1, and
thus Lemma 2.6.1 yields

∫ +∞
0

xK+1

(τ2+x2)2dx is not definite. Consequently, condition (3.9) is not fulfilled
with g defined in Example 3.3.9 when K ≥ 2.

According to Remark 3.3.8, Remark 3.4.4 implies that Assumption (G.3) is not fulfilled for g in
Example 3.3.9 when the group size K ≥ 2 and D invertible. Thus one cannot construct an analysis-
group SOI from Theorem 3.4.1 to guarantee the quality of the corresponding estimator. Overcoming
this limitation was yet another motivation behind the choice of g in Example 3.3.10, which turns
out to work well under the analysis-group sparsity scenario. In a nutshell, an aggregate with g in
Example 3.3.10 exhibits the analysis-group SOI defined in the following corollary with any K ≥ 1, any
D ∈ Rp×q satisfying Assumption (H.2) and any a ∈]0, 1].

Corollary 3.4.5. Let X satisfying Assumption (H.3), K ≥ 1 and D satisfying Assumption (H.2)
with µ > 0. Let Assumptions (P.1) and (P.2) be satisfied with some function v, (3.4) holds and
β ≥ max

(
4
∥∥v∥∥∞, 2H/t0). Take the dictionary (3.6) and the prior (3.7) with a ∈]0, 1], α ≥ 0 and g

defined in Example 3.3.10. We get that g satisfies Assumptions (G.1), (G.2), (G.3) and (G.4). Then,
let KD

a,g as defined in (3.8), and assume that R > 3
√
KD
a,gL. Then the analysis-group SOI (3.13) holds,

with λ = c and h(x) = 1 + (x/τ)b.

Proof. Let γ = 2 + K, ν = b and η = c − 1. We have γ/ν < η + 1 and thus Lemma 2.6.1 applies,
whence we obtain ∫ +∞

0
xK+1g(x)dx =

∫ +∞

0

xK+1

(τ b + xb)c
dx < +∞.
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From Lemma 3.3.6, g satisfies Assumptions (G.2) and (G.3). Recall that b ∈]0, 1]. Taking h(x) =

1 + (x/τ)b and λ = c, for all (t, t∗) ∈ RK × RK , we have

g(
∥∥t− t∗∥∥

2
)

g(
∥∥t∥∥

2
)

=

[
τ b +

∥∥t∥∥b
2

τ b +
∥∥t− t∗∥∥b

2

]c
≤

[
τ b +

∥∥t− t∗∥∥b
2

+
∥∥t∗∥∥b

2

τ b +
∥∥t− t∗∥∥b

2

]c
≤

[
1 +

∥∥t∗∥∥b
2

τ b +
∥∥t− t∗∥∥b

2

]c
≤ h(

∥∥t∗∥∥
2
)λ.

Therefore, g satisfies Assumptions (G.1), (G.2), (G.3) and (G.4) with any K ≥ 1. Applying Theo-
rem 3.4.1, we conclude the proof.

To get an explicit control of the remainder term, it is instructive to have a closed-form of KD
a,g. This

can be done for instance when D is invertible, see (3.12). The obtained analysis-group SOI is stated
as follows.

Corollary 3.4.6. Consider the same framework as Corollary 3.4.5 with D invertible. For a ∈]0, 1], let

K̃D
a,g = Γ((2a+K)/b)Γ(c−(2a+K)/b)

Γ(K/b)Γ(c−K/b) , and set α ≤ 1/

(
3τa
√
K̃D
a,gL

)1/a

. Choosing τ2 ∼ 1/(pn) and R ∼

Lτa, the analysis-group SOI (3.13) holds with ΘDµ̂n,L,R =
{
θ ∈ Rp :

∥∥D>θ∥∥a
a,2
≤ R− 3τa

√
K̃D
a,gL

}
,

ΩDµ̂n,n,L,λ(θ) ∼

∥∥D>θ∥∥
0,2

log(L)

n
and ΨDµ̂n,L,p ∼

1

n
.

Proof. Since g satisfies Assumptions (G.2), (G.3) andD is invertible, by Remark 3.3.7 and Lemma 2.6.1,
we get

KD
a,g =

∫ +∞
0

rK−1+2a

(τb+rb)
cdr∫ +∞

0
qK−1

(τb+qb)
cdq

= τ2aΓ
(

2a+K
b

)
Γ
(
c− 2a+K

b

)
Γ
(
K
b

)
Γ
(
c− K

b

) = K̃D
a,gτ

2a.

Since τ2 ∼ 1
pn and R ∼ Lτa, we get that

ΨDµ̂n,L,p ≤
2Cf,`K̃

D
1,ge

µ
pτ2 ∼ 1

n
,

and

ΩDµ̂n,n,L,λ(θ) =
cβ

n

L∑
l=1

log

1 +

[∥∥[D>θ]bl
∥∥

2

τ

]b ≤ cβ

n

∥∥D>θ∥∥
0,2

log

1 +

[
R1/a

τ

]b ∼ ∥∥D>θ∥∥0,2
log(L)

n
.

This ends the proof.

By Assumption (H.1),
∥∥D>θ∥∥

0,2
is small when θ = θ0 (with R must be sufficiently large to

cover θ0). Thus,
∥∥D>θ0

∥∥
0,2

log(L) is small compared to n. Under the sparsity scenario, the order
of ΩDµ̂n,n,L,λ(θ) becomes O

(∥∥θ∥∥
0

log(p)/n
)
which is the same rate as the aggregate with g in Exam-

ple 3.3.9.

3.5 Proof of SOI results

3.5.1 Proof of Theorem 3.4.1

Proof. Remind the prior π(dθ) from (3.7), where Θ =
{
θ ∈ Rp :

∥∥D>θ∥∥a
a,2
≤ R

}
. Let rL =

3
√
KD
a,gL, Θp0

D =
{
θ ∈ Rp :

∥∥D>θ −D>θ∗∥∥a
a,2
≤ rL

}
and

θ∗ ∈
{
θ ∈ Rp :

∥∥D>θ∥∥a
a,2
≤ R− 3

√
KD
a,gL = R− rL

}
. (3.14)
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We define the probability measure

p0
D(dθ) =

1

CL

(
dπ

dθ
(θ − θ∗)

)
IΘ

p0
D

(θ)dθ,

where CL > 0 is the normalization factor for p0
D. Since rL < R, θ ∈ Θp0

D implies that θ − θ∗ ∈ Θ.
Therefore,

p0
D(dθ) =

1

CL

∏L
l=1 exp

(
−αa

∥∥∥[D>θ −D>θ∗]bl∥∥∥a2) g (∥∥∥[D>θ −D>θ∗]bl∥∥∥2

)
IΘ(θ − θ∗)IΘ

p0
D

(θ)dθ

=
1

CL

∏L
l=1 exp

(
−αa

∥∥∥[D>θ −D>θ∗]bl∥∥∥a2) g (∥∥∥[D>θ −D>θ∗]bl∥∥∥2

)
IΘ

p0
D

(θ)dθ.

For any i ∈ {1, . . . , n}, withXi = (f1(xi), . . . , fp(xi))
>, one can write fθ(xi) = `

(∑p
j=1 θjfj(xi)

)
=

`
(
X>i θ

)
. Taylor-Lagrange formula then gives us

(fθ(xi)− f(xi))
2 ≤ (fθ∗(xi)− f(xi))

2+Cf,`

[
X>i (θ − θ∗)

]2
+2 (fθ∗(xi)− f(xi)) `

′
(
X>i θ

∗
)
X>i (θ−θ∗),

(3.15)
where Cf,` = ‖`′‖2∞ + ‖`′′‖∞ (‖`‖∞ + ‖f‖∞). By summing over i from 1 to n, normalizing by 1/n,
taking the integral in Θ w.r.t. p0

D, inequality (3.15) becomes∫
Θ

∥∥fθ − f∥∥2

n
p0
D(dθ) ≤

∥∥fθ∗ − f∥∥2

n
+ Cf,`

∫
Rp

1

n

n∑
i=1

[
X>i (θ − θ∗)

]2
p0
D(dθ)

+
2

n

n∑
i=1

(fθ∗(xi)− f(xi)) `
′
(
X>i θ

∗
)
X>i

∫
Θ

(θ − θ∗)p0
D(dθ). (3.16)

Note that, the right term of inequality (3.16) corresponds to a sum of three components. In the
following, we keep the first component and treat the other two.

Let us first show that the last component vanishes. Indeed, let θ ∈ Θp0
D , from (3.14) and the fact

that a ∈]0, 1], we have∥∥D>θ∥∥a
a,2

=
L∑
l=1

∥∥[D>θ]bl
∥∥a

2
≤

L∑
l=1

(∥∥[D>θ −D>θ∗]bl
∥∥

2
+
∥∥[D>θ∗]bl

∥∥
2

)a
≤
∥∥D>θ −D>θ∗∥∥a

a,2
+
∥∥D>θ∗∥∥a

a,2

≤ rL +
∥∥D>θ∗∥∥a

a,2
≤ R.

Then θ ∈
{
θ ∈ Rp :

∥∥D>θ∥∥a
a,2
≤ R

}
= Θ. Therefore, we have the embedding

Θp0
D ⊆ Θ. (3.17)

In what follows, we denote Baa,B(x) =
{
z ∈ Rq :

∥∥z∥∥a
a,2
≤ x

}
, ∀x > 0 for brevity. By (3.17), property

(2.1), Lemma 2.6.3 and symmetry of Baa,B(rL) ∩ Span(D>), we obtain∫
Θ

(θ − θ∗)p0
D(dθ)

∝
∫

Θ∩Θ
p0
D

(θ − θ∗)
∏L
l=1 exp

(
−αa

∥∥∥[D>θ −D>θ∗]bl∥∥∥a2) g (∥∥∥[D>θ −D>θ∗]bl∥∥∥2

)
dθ

=

∫
Θ
p0
D

(θ − θ∗)
∏L
l=1 exp

(
−αa

∥∥∥[D>θ −D>θ∗]bl∥∥∥a2) g (∥∥∥[D>θ −D>θ∗]bl∥∥∥2

)
dθ

=
D̃√

det
(
DD>

) ∫
Baa,B(rL)∩Span(D>)

z
∏L
l=1 exp

(
−αa ‖zbl‖

a
2

)
g
(
‖zbl‖2

)
dz = 0, (3.18)

which is the desired claim.
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We now bound the second term in the right hand side of (3.16). Define

p0(du) =
1

CL

√
det
(
DD>

)∏L
l=1 exp

(
−αa ‖ubl‖

a
2

)
g
(
‖ubl‖2

)
ISpan(D>)∩Baa,B(rL)(u)du. (3.19)

One can see that p0 coincides with the probability measure p0
D on Rp via a change of variables of

type (2.19). So, p0 is a probability measure on Rq. For any i, j ∈ {1, . . . , L}, i 6= j, by a change of
variables, we get

∫
Rq ubiu

>
bj
p0(du) = −

∫
Rq ubiu

>
bj
p0(du), so∫

Rq
ubiu

>
bj
p0(du) = 0. (3.20)

For any j ∈ {1, . . . , L}, as all groups have the same size, we have∫
Rq
ubju

>
bj
p0(du) =

∫
Rq
ub1u

>
b1p0(du). (3.21)

We obtain ∫
Rp

1

n

n∑
i=1

[
X>i (θ − θ∗)

]2
p0
D(dθ)

((2.1) and Lemma 2.6.3) =
1

n

∫
Rq

[
XD̃u

]>
XD̃up0(du)

=
1

n

∫
Rq

tr
(
u>D̃

>
X>XD̃u

)
p0(du)

=
1

n
tr

((
XD̃

)>
XD̃

∫
Rq
uu>p0(du)

)
((3.20) and (3.21)) =

1

n

L∑
l=1

tr

([(
XD̃

)>
XD̃

]
bl,bl

∫
Rq
ub1u

>
b1p0(du)

)

(Von Neumann’s trace inequality) ≤ 1

n

L∑
l=1

K∑
j=1

σj

([(
XD̃

)>
XD̃

]
bl,bl

)
σj

(∫
Rq
ub1u

>
b1p0(du)

)

≤ 1

n

∫
Rq

∥∥ub1∥∥2

2
p0(du)

L∑
l=1

tr

([(
XD̃

)>
XD̃

]
bl,bl

)

=
1

n
tr

((
XD̃

)>
XD̃

)∫
Rq

∥∥ub1∥∥2

2
p0(du). (3.22)

Moreover, by inequality (2.2), Assumption (H.3) and Von Neumann’s trace inequality, we obtain

tr

((
XD̃

)>
XD̃

)
n

≤
p∑
j=1

σj

(
X>X

n

)
σj

(
D̃D̃

>)
≤ σ1

(
D̃D̃

>) p∑
j=1

σj

(
X>X

n

)
≤ p

µ
. (3.23)

Putting together (3.22) and (3.23), we get the bound

Cf,`

∫
Rp

1

n

n∑
i=1

[
X>i (θ − θ∗)

]2
p0
D(dθ) ≤ Cf,`

p

µ

∫
Rq

∥∥ub1∥∥2

2
p0(du). (3.24)

Thanks to (3.18) and (3.24), inequality (3.16) becomes∫
Θ

∥∥fθ − f∥∥2

n
p0
D(dθ) ≤

∥∥fθ∗ − f∥∥2

n
+ Cf,`

p

µ

∫
Rq

∥∥ub1∥∥2

2
p0(du). (3.25)

Now, inserting (3.25) into Theorem 3.2.2 (with p = p0
D), we arrive at

E
[∥∥f̂n − f∥∥2

n

]
≤
∥∥fθ∗ − f∥∥2

n
+ Cf,`

p

µ

∫
Rq

∥∥ub1∥∥2

2
p0(du) +

βKL(p0
D, π)

n
. (3.26)
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To complete the proof, it remains to bound the last two terms in the right hand side of (3.26). This
is the goal of the following lemma.

Lemma 3.5.1. Consider the same framework as the one in Theorem 3.4.1, we have∫
Rq

∥∥ub1∥∥2

2
p0(du) ≤ 2KD

1,ge
rLα

a
, (3.27)

and

KL(p0
D, π) ≤ 1 + rLα

a + λ
L∑
l=1

log

{
h

(∥∥ [D>θ∗]
bl

∥∥
2

)}
+ αa

∥∥D>θ∗∥∥a
a,2
. (3.28)

With rL = 3
√
KD
a,gL, it follows from (3.26) and Lemma 3.5.1 that

E
[∥∥f̂n − f∥∥2

n

]
≤
∥∥fθ∗ − f∥∥2

n
+
β

n

(
1 + 3

√
KD
a,gLα

a + αa
∥∥D>θ∗∥∥a

a,2

)
+
λβ

n

L∑
l=1

log

{
h

(∥∥ [D>θ∗]
bl

∥∥
2

)}
+

2KD
1,ge

3
√
KDa,gLα

a
pCf,`

µ
.

According to (3.14), this completes the proof of Theorem 3.4.1.

3.5.2 Proof of Lemma 3.5.1

To prove Lemma 3.5.1, we need an intermediate result.

Lemma 3.5.2. Let s > L
√
KD
a,g. The following inequality holds

1

T

∫{
u∈Rp :

∥∥D>u∥∥a
a,2
>s
} L∏
l=1

g
(∥∥[D>u]bl

∥∥
2

)
du ≤

L2KD
a,g(

s− L
√
KD
a,g

)2 ,

where T =
∫
Rp
∏L
l=1 g

(∥∥[D>u]bl
∥∥

2

)
du.

Proof. Let U be a random vector in Rp with density u 7→ 1
T

∏L
l=1 g

(∥∥[D>u]bl
∥∥

2

)
, where T < +∞

by Assumption (G.2). By Chebyshev inequality, we have

1

T

∫{
u∈Rp :

∥∥D>u∥∥a
a,2
>s
} L∏
l=1

g
(∥∥[D>u]bl

∥∥
2

)
du

= P

[
L∑
l=1

∥∥[D>U ]bl
∥∥a

2
> s

]

= P

[
L∑
l=1

∥∥[D>U ]bl
∥∥a

2
− E

[∥∥[D>U ]bl
∥∥a

2

]
> s−

L∑
l=1

E
[∥∥[D>U ]bl

∥∥a
2

]]

≤
E
[[∑L

l=1

∥∥[D>U ]bl
∥∥a

2
− E

[∥∥[D>U ]bl
∥∥a

2

]]2
]

(s−
∑L

l=1 E
[∥∥[D>U ]bl

∥∥a
2

]
)2

=
var
(∑L

l=1

∥∥[D>U ]bl
∥∥a

2

)
(s−

∑L
l=1 E

[∥∥[D>U ]bl
∥∥a

2

]
)2

≤
E
[(∑L

l=1

∥∥[D>U ]bl
∥∥a

2

)2
]

(s−
∑L

l=1 E
[∥∥[D>U ]bl

∥∥a
2

]
)2
. (3.29)
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Next, by Cauchy-Schwartz inequality and Remark 3.3.5, we obtain

E

( L∑
l=1

∥∥[D>U ]bl
∥∥a

2

)2
 ≤ E

[
L

L∑
l=1

∥∥[D>U ]bl
∥∥2a

2

]
≤ L2KD

a,g (3.30)

and by Jensen inequality

s−
L∑
l=1

E
[∥∥[D>U ]bl

∥∥a
2

]
≥ s−

L∑
l=1

√
E
[∥∥[D>U ]bl

∥∥2a

2

]
≥ s− L

√
KD
a,g > 0. (3.31)

Thus, combining (3.29), (3.30) and (3.31), we get

1

T

∫{
u∈Rp :

∥∥D>u∥∥a
a,2
>s
} L∏
l=1

g
(∥∥[D>u]bl

∥∥
2

)
du ≤

L2KD
a,g(

s− L
√
KD
a,g

)2 .

We now turn to the proof of Lemma 3.5.1

Proof. Let us begin by the proof of inequality (3.27). We have∫
Rq

∥∥ub1∥∥2

2
p0(du) =

1

CL

√
det
(
DD>

) ∫
Baa,B(rL)∩Span(D>)

∥∥ub1∥∥2

2

∏L
l=1e

−αa‖ubl‖
a

2g
(
‖ubl‖2

)
du

≤ 1

CL

√
det
(
DD>

) ∫
Baa,B(rL)∩Span(D>)

∥∥ub1∥∥2

2

∏L
l=1g

(
‖ubl‖2

)
du. (3.32)

In the following, we show inequality (3.27) by bounding the right term of inequality (3.32). By
Lemma 2.6.3 and Remark 3.3.5, we get∫

Baa,B(rL)∩Span(D>)

∥∥ub1∥∥2

2

∏L
l=1 g

(∥∥ubl∥∥2

)
du√

det
(
DD>

) ∫
Rp
∏L
l=1 g

(∥∥[D>u]bl
∥∥

2

)
du

≤

∫
Span(D>)

∥∥ub1∥∥2

2

∏L
l=1 g

(∥∥ubl∥∥2

)
du√

det
(
DD>

) ∫
Rp
∏L
l=1 g

(∥∥[D>u]bl
∥∥

2

)
du

=

∫
Rp
∥∥[D>u]b1

∥∥2

2

∏L
l=1 g

(∥∥[D>u]bl
∥∥

2

)
du∫

Rp
∏L
l=1 g

(∥∥[D>u]bl
∥∥

2

)
du

≤ KD
1,g.

Then

1√
det
(
DD>

) ∫
Baa,B(rL)∩Span(D>)

∥∥ub1∥∥2

2

L∏
l=1

g
(∥∥ubl∥∥2

)
du ≤ KD

1,gT. (3.33)

We now bound CL−1. By a change of variables, we obtain

CL
−1 =

∫
Θ
pD0

∏L
l=1e

−αa
∥∥∥[D>θ−D>θ∗]bl∥∥∥a2g (∥∥∥[D>θ −D>θ∗]bl∥∥∥2

)
dθ

−1

=

(∫{
u∈Rp :

∥∥D>u∥∥a
a,2
≤rL
} e−αa∥∥D>u∥∥aa,2 L∏

l=1

g
(∥∥[D>u]bl

∥∥
2

)
du

)−1

≤ erLαa
(∫{

u∈Rp :
∥∥D>u∥∥a

a,2
≤rL
} L∏
l=1

g
(∥∥[D>u]bl

∥∥
2

)
du

)−1

.
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Since rL = 3
√
KD
a,gL >

√
KD
a,gL, Lemma 3.5.2 gives us

CL
−1 ≤ erLαa

[
T

(
1− 1

T

∫{
u∈Rp :

∥∥D>u∥∥a
a,2
>rL

} L∏
l=1

g
(∥∥[D>u]bl

∥∥
2

)
du

)]−1

≤ erLαaT−1

1−
L2KD

a,g

(rL − L
√
KD
a,g)

2

−1

= erLα
a
T−1

(
1− 1

4

)−1

≤ 2erLα
a
T−1. (3.34)

Combining (3.33) and (3.34), (3.32) becomes
∫
Rq
∥∥ub1∥∥2

2
p0(du) ≤ 2KD

1,ge
rLα

a . That concludes the
proof of inequality (3.27) in Lemma 3.5.1.

Next, we prove inequality (3.28). Remind that supp(π) = Θ, supp(p0
D) = Θp0

D . By (3.17), we get
Θp0

D ⊆ Θ implying that p0
D is absolutely continuous w.r.t. π. So KL(p0

D, π) < +∞ which can be
bounded. The bound in (3.28) can be proved as follows. By Lemma 2.6.3, we have

KL(p0
D, π) =

∫
Rp

log

(
p0
D(dθ)

π(dθ)

)
p0
D(dθ)

=

∫
Rp

log

Cα,g,R
CL

∏L
l=1e

−αa
∥∥∥[D>θ−D>θ∗]bl∥∥∥a2g (∥∥∥[D>θ −D>θ∗]bl∥∥∥2

)
∏L
l=1e

−αa
∥∥∥[D>θ]bl

∥∥∥a
2g
(∥∥∥[D>θ]bl

∥∥∥
2

)
 p0

D(dθ)

=

∫
Rq

log

Cα,g,R
CL

L∏
l=1

e
αa
∥∥tbl∥∥a2g (∥∥tbl − t∗bl∥∥2

)
e
αa
∥∥tbl−t∗bl∥∥a2g (∥∥tbl∥∥2

)
 p0(dt)

= log

(
Cα,g,R
CL

)
+ αa

L∑
l=1

∫
Rq

[∥∥tbl∥∥a2 − ∥∥tbl − t∗bl∥∥a2] p0(dt)

+
L∑
l=1

∫
Rq

log

g
(∥∥tbl − t∗bl∥∥2

)
g
(∥∥tbl∥∥2

)
 p0(dt),

where p0 is a probability measure in Rq defined in (3.19). We know that t∗ = D>θ∗, according to the
fact that

∥∥tbl∥∥a2 − ∥∥tbl − t∗bl∥∥a2 ≤ ∥∥t∗bl∥∥a2 and Assumption (G.4), we get

KL(p0
D, π) ≤ log

(
Cα,g,R
CL

)
+ αa

∥∥D>θ∗∥∥a
a,2

+ λ
L∑
l=1

log

{
h

(∥∥ [D>θ∗]
bl

∥∥
2

)}
. (3.35)

Now, it remains to bound log(Cα,g,R/CL). Remind that Cα,g,R is the normalization factor of π, and
thus

Cα,g,R =

∫
Θ

∏L
l=1 exp

(
−αa

∥∥∥[D>θ]bl

∥∥∥a
2

)
g
(∥∥∥[D>θ]bl

∥∥∥
2

)
dθ ≤

∫
Rp

∏L
l=1g

(∥∥∥[D>θ]bl

∥∥∥
2

)
dθ = T.

Combining this with the bound of CL−1 in (3.34), we obtain

log

(
Cα,g,R
CL

)
≤ rLαa + log(2) ≤ 1 + rLα

a. (3.36)

Inserting (3.36) into (3.35), we get inequality (3.28). This completes the proof.

– 47 –





Chapter 4

Sharp Oracle Inequalities for
Low-complexity Priors

Main contributions of this chapter

I Show in Theorem 4.3.1 and Theorem 4.3.3 that the EWA in (1.12) and the varia-
tional/penalized estimator in (1.9) satisfy (deterministic) sharp oracle inequalities for
prediction with optimal remainder terms, for a general class of data losses and penalties.

I Etablish oracle inequalities in probability (see Section 4.3.3) for random observations.

I Refine these results for the standard linear regression with Gaussian or sub-Gaussian
noise, and a quadratic loss, and specialize them to the popular penalties in the literature
(see Section 4.4).

I Discuss minimax optimality of the obtained bounds.

The results in this chapter can be found in [101].
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4.1 Introduction

In this chapter, we consider a high-dimensional statistical estimation problem in which the the number
of parameters is comparable or larger than the sample size. We present a unified analysis of the perfor-
mance guarantees of exponential weighted aggregation and penalized estimators with a general class of
data losses and priors which encourage objects which conform to some notion of simplicity/complexity.
More precisely, we show that these two estimators satisfy sharp oracle inequalities for prediction en-
suring their good theoretical performances. We also highlight the differences between them. When the
noise is random, we provide oracle inequalities in probability using concentration inequalities. These
results are then applied to several instances including the Lasso, the group Lasso, their analysis-type
counterparts, the `∞ and the nuclear norm penalties.

4.1.1 Problem statement

Let y = (y1, . . . ,yn)> ∈ Rn i.i.d. observations drawn from a general regression problem in high
dimension. By the aggregation approach, the regression function f is approximated by fθ0 (see Section
1.1.1) with

θ0 ∈ Argmin
θ∈Rp

E [F (Xθ,y)] .

The loss function F is supposed to be smooth and convex. Our goal is to provide general oracle
inequalities in prediction for two estimators of θ0: the penalized estimator (1.9) and exponential
weighted aggregation (1.12) in which Jλn = λnJ with λn > 0 is the regularization parameter, and J is
a proper closed convex function that promotes some specific notion of simplicity/low-complexity.

4.1.2 Chapter organization

Section 4.2 states our main assumptions on the data loss and the prior penalty. In Section 4.3, we
prove our main oracle inequalities, and their versions in probability. We then tackle the case of linear
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regression with quadratic data loss in Section 4.4. A key intermediate result in the proof of our main
results is established in Section 4.5 with an elegant argument relying on Moreau-Yosida regularization.

4.2 Estimation with low-complexity penalties

The estimators θ̂
PEN

n and θ̂
EWA

n in (1.9) and (1.12) require two essential ingredients: the data loss
term F and the prior penalty J . We here specify the class of such functions covered in our work, and
provide illustrating examples.

4.2.1 Data loss

The class of loss functions F that we consider obey the following assumptions:
(H.1) F (·,y) : Rn → R is C1(Rn) and uniformly convex for all y of modulus ϕ, i.e.

F (v,y) ≥ F (u,y) + 〈∇F (u,y),v − u〉+ ϕ(‖v − u‖2),

where ϕ : R+ → R+ is a convex non-decreasing function that vanishes only at 0.

(H.2) For any θ ∈ Rp and y ∈ Rn,∫
Rp

exp (−F (Xθ,y)/(nβ))
∣∣〈∇F (Xθ,y),X(θ − θ)

〉∣∣ dθ < +∞.

Recall that by Lemma 2.3.8, the monotone conjugate ϕ+ of ϕ is a proper, closed, convex, strongly
coercive and non-decreasing function on R+ that vanishes at 0. Moreover, ϕ++ = ϕ. ϕ+ is finite-valued
on R+ if ϕ is strongly coercive, and it vanishes only at 0 under e.g. Lemma 2.3.8(iii).

The class of data loss functions in (H.1) is fairly general. It is reminiscent of the negative log-
likelihood in the regular exponential family. For the moment assumption (H.2) to be satisfied, it is
suffient that∫

Rp
exp

(
−ϕ

(∥∥Xθ∥∥
2

)
/(nβ)

) ∥∥∇F ((Xθ + u?),y)
∥∥

2

∥∥Xθ + (u? −Xθ)
∥∥

2
dθ < +∞,

where u? is a minimizer of F (·,y), which is unique by uniform convexity. We here provide an example.

Example 4.2.1. Consider the case where1

ϕ(t) = tq/q, q ∈]1,+∞[,

or equivalently
ϕ+(t) = tq∗/q∗, where 1/q + 1/q∗ = 1.

For q = q∗ = 2, (H.1) amounts to saying that F (·,y) is strongly convex for all y. In particular, [7,
Proposition 10.13] shows that F (u,y) =

∥∥u−y∥∥q
2
/q is uniformly convex for q ∈ [2,+∞[ with modulus

ϕ(t) = Cqt
q/q, where Cq > 0 is a constant that depends solely on q.

For (H.2) to be verified, it is suffient that∫
Rp

exp
(
−
∥∥Xθ∥∥q

2
/(qnβ)

) ∥∥∇F ((Xθ + u?),y)
∥∥

2

∥∥(Xθ + u?)−Xθ
∥∥

2
dθ < +∞.

In particular, taking F (u,y) =
∥∥u − y∥∥q

2
/q, q ∈ [2,+∞[, we have

∥∥∇F (u,y)
∥∥

2
=
∥∥u − y∥∥q−1

2
, and

thus (H.2) holds since∫
Rp

exp
(
−
∥∥Xθ∥∥q

2
/(qnβ)

) ∥∥y − (Xθ + u?)
∥∥q−1

2

∥∥Xθ − (Xθ + u?)
∥∥

2
dθ < +∞.

1We consider a scaled version of ϕ for simplicity, but the same conclusions remain valid if we take ϕ(t) = Ctq/q, with
C > 0.
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4.2.2 Prior penalty

Recall the main definitions and results from convex analysis that are collected in Section 2.3. Our
main assumption on J is the following.

(H.3) J : Rp → R is the gauge of a non-empty convex compact set containing the origin as an interior
point.

By Lemma 2.3.5, this assumption is equivalent to saying that J def
= γC is proper, convex, positively

homogeneous, finite-valued and coercive. In turn, J is locally Lipschitz continuous on Rp. Observe
also that by virtue of Lemma 2.3.13 and Lemma 2.3.10, the polar gauge J◦ def

= γC◦ enjoys the same
properties as J in (H.3).

4.3 Oracle inequalities for a general loss

Before delving into the details, in the sequel, we will need a bit of notations.
We recall Tθ and eθ the model subspace and vector associated to θ (see Definition 2.4.1). Denote

Sθ = T⊥θ . Given two coercive finite-valued gauges J1 = γC1 and J2 = γC2 , and a linear operator A, we
define

∥∥A∥∥
J1→J2

the operator bound as∥∥A∥∥
J1→J2

= sup
θ∈C1

J2(Aθ).

Note that
∥∥A∥∥

J1→J2
is bounded (this follows from Lemma 2.3.5(v)). Furthermore, we have from

Lemma 2.3.13 that∥∥A∥∥
J1→J2

= sup
θ∈C1

sup
ω∈C◦2

〈
A>ω,θ

〉
= sup
ω∈C◦2

sup
θ∈C1

〈
A>ω,θ

〉
= sup
ω∈C◦2

J◦1 (A>ω) =
∥∥∥A>∥∥∥

J◦2→J◦1
.

In the following, whenever it is clear from the context, to lighten notation when Ji is a norm, we write
the subscript of the norm instead of Ji (e.g. p for the `p norm, ∗ for the nuclear norm, etc.).

Our main result will involve a measure of well-conditionedness of the design matrixX when restricted
to some subspace T . More precisely, for c > 0, we introduce the coefficient

Υ (T, c) = inf{
ω∈Rp : J(ωS)<cJ(ωT )

} ∥∥PT
∥∥

2→J
∥∥Xω∥∥

2

n1/2 (J(ωT )− J(ωS)/c)
. (4.1)

This generalizes the compatibility factor introduced in [150] for the Lasso (and used in [47]). The
experienced reader may have recognized that this factor is reminescent of the null space property and
restricted injectivity that play a central role in the analysis of the performance guarantees of varia-
tional/penalized estimators (1.9); see [67, 145, 147, 144, 146] (see also Chapter 5). One can see in
particular that Υ (T, c) is larger than the smallest singular value of XT .

The oracle inequalites will provided in terms of the loss

Rn
(
θ,θ0

)
=

1

n
DF (Xθ,Xθ0) .

where we recall that DF is the Bregman distance associated to F at Xθ0.

4.3.1 Oracle inequality for θ̂
EWA

n

We are now ready to establish our first main result: an oracle inequality for the EWA in (1.12).

Theorem 4.3.1. Consider the EWA θ̂
EWA

n in (1.12), where F and J satisfy Assumptions (H.1)-(H.2)
and (H.3). Then, for any τ > 1 such that

λn ≥
τJ◦

(
−X>∇F (Xθ0,y)

)
n

,
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the following holds,

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf
θ∈Rp

Rn(θ,θ0

)
+

1

n
ϕ+

λn√n(τJ◦(eθ) + 1
)∥∥PTθ

∥∥
2→J

τΥ
(
Tθ,

τJ◦(eθ)+1
τ−1

)
+ pβ. (4.2)

Remark 4.3.2.

1. It should be emphasized that Theorem 4.3.1 is actually a deterministic statement for a fixed
choice of λn. Probabilistic analysis will be required when the result is applied to particular
statistical models as we will see later. For this, we will use concentration inequalities in order to
provide bounds that hold with high probability over the data.

2. The oracle inequality is sharp. The remainder in it has two terms. The first one encodes the
complexity of the model promoted by J . The second one, pβ, captures the influence of the
temperature parameter. In particular, taking β sufficiently small of the order O

(
(pn)−1

)
, this

term becomes O(n−1).

3. When ϕ(t) = νt2/2, i.e. F (·,y) is ν-strongly convex, then ϕ+(t) = t2/(2ν), and the reminder
term becomes

λ2
n

(
τJ◦(eθ) + 1

)2∥∥PTθ
∥∥2

2→J

2τ2νΥ
(
Tθ,

τJ◦(eθ)+1
τ−1

)2 . (4.3)

If, moreover, ∇F is also κ-Lipschitz continuous, then it can be shown that Rn
(
θ,θ0

)
is equivalent

to a quadratic loss. This means that the oracle inequality in Theorem 4.3.1 can be stated in terms
of the quadratic prediction error. However, the inequality is not anymore sharp in this case as a
constant factor equal to the condition number κ/ν ≥ 1 naturally multiplies the right-hand side.

4. If J is such that eθ ∈ ∂J(θ) ⊂ C◦ (typically for a strong gauge by (2.5)), then J◦(eθ) ≤ 1 (in
fact an equality if θ 6= 0). Thus the term J◦(eθ) can be omitted in (4.2).

5. A close inspection of the proof of Theorem 4.3.1 reveals that the term pβ can be improved to
the smaller bound

pβ +
(
Vn(θ̂

EWA

n )− Eµ̂n [Vn(θ)]
)
,

where the upper-bound is a consequence of Jensen inequality.

Proof. By convexity of J and Assumption (H.1), we have for any η ∈ ∂Vn(θ) and any θ ∈ Rp,

DηVn
(
θ,θ

)
≥ 1

n
ϕ
(∥∥Xθ −Xθ∥∥

2

)
.

Since ϕ is non-decreasing and convex, ϕ◦‖·‖2 is a convex function. Thus, taking the expectation w.r.t.
to µ̂n on both sides and using Jensen inequality, we get

Vn(θ) ≥ Eµ̂n [Vn(θ)] + Eµ̂n
[〈
η,θ − θ

〉]
+

1

n
Eµ̂n

[
ϕ
(∥∥Xθ −Xθ∥∥

2

)]
≥ Vn(θ̂

EWA

n ) + Eµ̂n
[〈
η,θ − θ

〉]
+

1

n
ϕ
(∥∥Xθ −Xθ̂EWA

n

∥∥
2

)
.

This holds for any η ∈ ∂Vn(θ), and in particular at the minimal selection
(
∂Vn(θ)

)0 (see Section 4.5
for details). It then follows from the pillar result in Proposition 4.5.22 that

Eµ̂n
[〈(

∂Vn(θ)
)0
,θ − θ

〉]
= −pβ.

We thus deduce the inequality

Vn(θ̂
EWA

n )− Vn(θ) ≤ pβ − 1

n
ϕ
(∥∥Xθ̂EWA

n −Xθ
∥∥

2

)
, ∀θ ∈ Rp. (4.4)

2In the appendix, we provide a self-contained proof based on a novel Moreau-Yosida regularization argument. In [47,
Corollary 1 and 2], an alternative proof is given using an absolute continuity argument since µ̂n is locally Lipschitz,
hence a Sobolev function.
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By definition of the Bregman divergence, we have

Rn
(
θ̂

EWA

n ,θ0

)
−Rn

(
θ,θ0

)
=

1

n

(
F (Xθ̂

EWA

n ,y)− F (Xθ,y) +
〈
−X>∇F (Xθ0,y), θ̂

EWA

n − θ
〉)

=
(
Vn(θ̂

EWA

n )− Vn(θ)
)

+
1

n

〈
−X>∇F (Xθ0,y), θ̂

EWA

n − θ
〉

− λn
(
J(θ̂

EWA

n )− J(θ)
)
.

By virtue of the duality inequality (2.4), we have

Rn
(
θ̂

EWA

n ,θ0

)
−Rn

(
θ,θ0

)
≤
(
Vn(θ̂

EWA

n )− Vn(θ)
)

+
1

n
J◦
(
−X>∇F (Xθ0,y)

)
J(θ̂

EWA

n − θ)

− λn
(
J(θ̂

EWA

n )− J(θ)
)

≤
(
Vn(θ̂

EWA

n )− Vn(θ)
)

+
λn
τ

(
J(θ̂

EWA

n − θ)− τ
(
J(θ̂

EWA

n )− J(θ)
))
.

Denote ω = θ̂
EWA

n − θ. By virtue of (H.3), Corollary 2.4.3 and (2.4), we obtain

J(ω)− τ
(
J(θ̂

EWA

n )− J(θ)
)
≤ J(ωTθ) + J(ωSθ)− τ〈eθ,ωTθ〉 − τJ(ωSθ)

≤ J(ωTθ) + J(ωSθ) + τJ◦(eθ)J(ωTθ)− τJ(ωSθ)

=
(
τJ◦(eθ) + 1

)
J(ωTθ)− (τ − 1)J(ωSθ)

≤
(
τJ◦(eθ) + 1

)(
J(ωTθ)− τ − 1

τJ◦(eθ) + 1
J(ωSθ)

)
.

This inequality together with (4.4) (applied with θ = θ) and (4.1) yield

Rn
(
θ̂

EWA

n ,θ0

)
−Rn

(
θ,θ0

)
≤ pβ − 1

n
ϕ
(∥∥Xω∥∥

2

)
+
λn
(
τJ◦(eθ) + 1

)∥∥PTθ
∥∥

2→J
∥∥Xω∥∥

2

n1/2τΥ
(
Tθ,

τJ◦(eθ)+1
τ−1

)
≤ pβ +

1

n
ϕ+

λn√n(τJ◦(eθ) + 1
)∥∥PTθ

∥∥
2→J

τΥ
(
Tθ,

τJ◦(eθ)+1
τ−1

)
 ,

where we applied Fenchel-Young inequality (2.3) to get the last bound. Taking the infimum over
θ ∈ Rp yields the desired result.

Stratifiable functions Theorem 4.3.1 has a nice instanciation when Rp can be partitioned into a
collection of subsets {Mi}i that form a stratification of Rp. That is, Rp is a finite disjoint union ∪iMi

such that the partitioning setsMi (called strata) fit nicely together and the stratification is endowed
with a partial ordering for the closure operation. For example, it is known that a polyhedral function
has a polyhedral stratification, and more generally, semialgebraic functions induce stratifications into
finite disjoint unions of manifolds; see, e.g., [42]. Another example is that of partly smooth convex
functions thoroughly studied in [145, 147, 144, 146] for various statistical and inverse problems. These
functions induce a stratification into strata that are C2-smooth submanifolds of Rp. In turns out that
all popular penalty functions discussed in this chapter are partly smooth (see [144, 146]). Let’s denote
M the set of strata associated to J . With this notation at hand, the oracle inequality (4.2) now reads

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf
M∈M
θ∈M

Rn(θ,θ0

)
+

1

n
ϕ+

λn√n(τJ◦(eθ) + 1
)∥∥PTθ

∥∥
2→J

τΥ
(
Tθ,

τJ◦(eθ)+1
τ−1

)
+ pβ. (4.5)

4.3.2 Oracle inequality for θ̂
PEN

n

The next result establishes that θ̂
PEN

n satisfies a sharp prediction oracle inequality that we will compare
to (4.2).
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Theorem 4.3.3. Consider the penalized estimator θ̂
PEN

n in (1.9), where F and J satisfy Assump-
tions (H.1) and (H.3). Then, for any τ > 1 such that

λn ≥
τJ◦

(
−X>∇F (Xθ0,y)

)
n

,

the following holds,

Rn
(
θ̂

PEN

n ,θ0

)
≤ inf
θ∈Rp

Rn(θ,θ0

)
+

1

n
ϕ+

λn√n(τJ◦(eθ) + 1
)∥∥PTθ

∥∥
2→J

τΥ
(
Tθ,

τJ◦(eθ)+1
τ−1

)
 . (4.6)

Proof. The proof follows the same lines as that of Theorem 4.3.1 except that we use the fact that
θ̂

PEN

n is a global minimizer of Vn, i.e. 0 ∈ ∂Vn(θ̂
PEN

n ). Indeed, we have for any θ ∈ Rp

Vn(θ) ≥ Vn(θ̂
PEN

n ) +
1

n
ϕ
(∥∥Xθ −Xθ̂PEN

n

∥∥
2

)
. (4.7)

Continuing exactly as just after (4.4), replacing θ̂
EWA

n with θ̂
PEN

n and invoking (4.7) instead of (4.4),
we arrive at the claimed result.

Remark 4.3.4.

1. Observe that the penalized estimator θ̂
PEN

n does not require the moment assumption (H.2) for
(4.6) to hold. The convexity assumption on ϕ in (H.1), which was important to apply Jensen’s
inequality in the proof of (4.2), is not needed either to get (4.6).

2. As we remarked for Theorem 4.3.1, Theorem 4.3.3 is also a deterministic statement for a fixed
choice of λn that holds for any minimizer θ̂

PEN

n , which is not unique in general. The condition
on λn is similar to the one in [108] where authors established different guarantees for θ̂

PEN

n .

One clearly sees that the difference between the prediction performance of θ̂
EWA

n and θ̂
PEN

n lies in
the term pβ (or rather its lower-bound in Remark 4.3.2-5). Thus letting β → 0 in (4.2), one recovers
the oracle inequality (4.6) of penalized estimators. In particular, for β = O

(
(pn)−1

)
, this is on the

order O(n−1).

4.3.3 Oracle inequalities in probability

It remains to check when the event E = {λn ≥ τJ◦
(
−X>∇F (Xθ0,y)

)
/n} holds with high probability

when y is random. We will use concentration inequalities in order to provide bounds that hold with
high probability over the data. Toward this goal, we will need the following assumption.

(H.4) y = (y1,y2, · · · ,yn) are independent and identically distributed observations, and

F (u,y) =

n∑
i=1

fi(ui,yi), fi : R× R→ R.

Moreover,
(i) E [|fi((Xθ0)i,yi)|] < +∞, ∀i ∈ {1, . . . , n} ;
(ii) |f ′i((Xθ0)i, t)| ≤ g(t), where E [g(yi)] < +∞, ∀i ∈ {1, . . . , n};
(iii) Bernstein moment condition: ∀1 ≤ i ≤ n and all integers m ≥ 2,

E
[∣∣f ′i((Xθ0)i,yi)

∣∣m] ≤ m!κm−2σ2
i /2

for some constants κ > 0, σi > 0 independent of n.
Observe that under (H.4), and by virtue of Lemma 2.3.13(iv) and [80, Proposition V.3.3.4], we have

J◦
(
−X>∇F (Xθ0,y)

)
= σC

(
−X>∇F (Xθ0,y)

)
= sup
z∈X(C)

−
n∑
i=1

f ′i((Xθ0)i,yi)zi. (4.8)
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Thus, checking the event E amounts to establishing a deviation inequality for the supremum of an
empirical process3 above its mean under the weak Bernstein moment condition (H.4)(iii), which
essentially requires that the f ′i((Xθ0)i,yi) have sub-exponential tails. We will first tackle the case
where C is the convex hull of a finite set (i.e. C is a polytope).

4.3.3.1 Polyhedral penalty

We here suppose that J is a finite-valued gauge of C = conv (V), where V is finite, i.e. C is a polytope
with vertices [125, Corollary 19.1.1]. Our first oracle inequality in probability is the following.

Proposition 4.3.5. Consider the estimators θ̂
EWA

n and θ̂
PEN

n , where F and J def
= γC satisfy Assump-

tions (H.1), (H.2), (H.3) and (H.4), and C is a polytope with vertices V. Suppose that rank(X) = n

and maxv∈V
∥∥Xv∥∥∞ ≤ 1, and take

λn ≥ τσ
√

2δ log(|V|)
n

(
1 +
√

2κ/σ

√
δ log(|V|)

n

)
,

for some τ > 1 and δ > 1. Then (4.2) and (4.6) hold with probability at least 1− 2|V|1−δ.

Proof. In view of Assumptions (H.1) and (H.4), one can differentiate under the expectation sign
(Leibniz rule) to conclude that E [F (X·,y)] is C1 at θ0 and ∇E [F (Xθ0,y)] = X>E [∇F (Xθ0,y)].
As θ0 minimizes the population risk, one has ∇E [F (Xθ0,y)] = 0. Using the rank assumption on X,
we deduce that

E
[
f ′i((Xθ0)i,yi)

]
= 0, ∀1 ≤ i ≤ n.

Moreover, (4.8) specializes to

J◦
(
−X>∇F (Xθ0,y)

)
= sup
z∈X(V)

−
n∑
i=1

f ′i((Xθ0)i,yi)zi.

Let t = λnn/τ . By the union bound and (4.8), we have

P
[
J◦
(
−X>∇F (Xθ0,y)

)
≥ t
]
≤ P

[
max
z∈X(V)

−
n∑
i=1

f ′i((Xθ0)i,yi)zi ≥ t

]

≤ |V| max
z∈X(V)

P

[∣∣∣∣∣
n∑
i=1

f ′i((Xθ0)i,yi)zi

∣∣∣∣∣ ≥ t
]
.

The random variables
(
f ′i((Xθ0)i,yi)zi

)
i
are zero-mean independent, and ∀i and m ≥ 2

E
[∣∣f ′i((Xθ0)i,yi)zi

∣∣m] ≤ |zi|mm!κm−2σ2
i /2 ≤ max

v∈V
‖Xv‖m∞m!κm−2σ2

i /2 ≤ m!κm−2σ2
i /2.

We are then in position to apply the Bernstein inequality to get

P
[
J◦
(
−X>∇F (Xθ0,y)

)
≥ t
]
≤ 2|V| exp

(
− t2

2(κt+ nσ2)

)
,

where σ2 = max1≤i≤n σ
2
i . Every t such that

t ≥
√
δ log(|V|)

(
κ
√
δ log(|V|) +

√
κ2δ log(|V|) + 2nσ2

)
,

satisfies t2 ≥ 2δ log(|V|)(κt + nσ2). Applying the trivial inequality
√
a+ b ≤

√
a +
√
b to the bound

on t, we conclude.
3As X(C) is compact, it has a dense countable subset.
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Remark 4.3.6. In the monograph [19, Lemma 14.12], the authors derived an exponential deviation
inequality for the supremum of an empirical process with finite V and possibly unbounded empirical
processes under a Bernstein moment condition similar to ours (in fact ours implies theirs). The very
last part of our proof can be obtained by applying their result. We detailed it here for the sake of
completeness.

Lasso To lighten the notation, let Iθ = supp(θ). From (2.7), it is easy to see that∥∥PTθ
∥∥

2→1
=
√
|Iθ| and J◦(eθ) = ‖sgn(θIθ)‖∞ ≤ 1,

where last bound holds as an equality whenever θ 6= 0. Further the `1 norm is the gauge of the cross-
polytope (i.e. the unit `1 ball). Its vertex set V is the set of unit-norm one-sparse vectors (±ai)1≤i≤p,
where we recall (ai)1≤i≤p the canonical basis. Thus

|V| = 2p and max
v∈V
‖Xv‖2 = max

1≤i≤p
‖Xi‖2 .

Inserting this into Proposition 4.3.5, we obtain the following corollary.

Corollary 4.3.7. Consider the estimators θ̂
EWA

n and θ̂
PEN

n , where where J is the Lasso penalty and
F satisfies Assumptions (H.1), (H.2) and (H.4). Suppose that rank(X) = n and maxi ‖Xi‖∞ ≤ 1,
and take

λn ≥ τσ
√

2δ log(2p)

n

(
1 +
√

2κ/σ

√
δ log(2p)

n

)
,

for some τ > 1 and δ > 1. Then, with probability at least 1− 2(2p)1−δ, the following holds

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf

I⊂{1,...,p}
θ: supp(θ)=I

Rn(θ,θ0

)
+

1

n
ϕ+

 λn
√
n (τ + 1)

√
|I|

τΥ
(

Span{ai}i∈I , τ+1
τ−1

)
+ pβ, (4.9)

and

Rn
(
θ̂

PEN

n ,θ0

)
≤ inf

I⊂{1,...,p}
θ: supp(θ)=I

Rn(θ,θ0

)
+

1

n
ϕ+

 λn
√
n (τ + 1)

√
|I|

τΥ
(

Span{ai}i∈I , τ+1
τ−1

)
 . (4.10)

For θ̂
PEN

n , we recover a similar scaling for λn and the oracle inequality as in [148], though in the
latter the oracle inequality is not sharp unlike ours. Note that the above oracle inequality extends
readily to the case of analysis/fused Lasso

∥∥D> · ∥∥
1
where D is surjective. We leave the details to the

interested reader (see also the analysis-group Lasso example in Section 4.4).

Anti-sparsity From Section 2.4.3.4, recall the saturation support Isat
θ of θ. From (2.14), we get∥∥PTθ

∥∥
2→∞ = 1 and J◦(eθ) =

∥∥ sgn(θIsat
θ

)
∥∥

1
/|Isat

θ | ≤ 1,

with equality whenever θ 6= 0. In addition, the `∞ norm is the gauge of the hypercube whose vertex
set is V = {±1}p. Thus

|V| = 2p.

We have the following oracle inequalities.

Corollary 4.3.8. Consider the estimators θ̂
EWA

n and θ̂
PEN

n , where where J is anti-sparsity penalty
(2.13), and F satisfies Assumptions (H.1), (H.2) and (H.4). Suppose that rank(X) = n and
maxi,j |Xi,j | ≤ 1/p, and take

λn ≥ τσ
√

2δ log(2)

√
p

n

(
1 + 2κ/σ

√
δ log(2)

√
p

n

)
,

– 57 –



Chapter 4 4.4. Oracle inequalities for low-complexity linear regression

for some τ > 1 and δ > 1. Then, with probability at least 1− 2−p(δ−1)+1, the following holds

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf
I⊂{1,...,p}
θ: Isat

θ =I

Rn(θ,θ0

)
+

1

n
ϕ+

 λn
√
n (τ + 1)

τΥ
({
θ : θI ∈ R sgn(θI)

}
, τ+1
τ−1

)
+ pβ, (4.11)

and

Rn
(
θ̂

PEN

n ,θ0

)
≤ inf
I⊂{1,...,p}
θ: Isat

θ =I

Rn(θ,θ0

)
+

1

n
ϕ+

 λn
√
n (τ + 1)

τΥ
({
θ : θI ∈ R sgn(θI)

}
, τ+1
τ−1

)
 . (4.12)

We are not aware of any result of this kind in the literature. The bound imposed on X is similar to
what is generally assumed in the vector quantization literature [102, 133].

4.3.3.2 General penalty

Extending the above reasoning to a general penalty requires a deviation inequality for the supremum
of an empirical process in (4.8) under the Bernstein moment condition (H.4)(iii), but without the need
of uniform boundedness. This can be achieved via generic chaining along a tree using entropy with
bracketing; see [151, Theorem 8]. The resulting deviation bound will thus depend on the entropies
with bracketing. These quantities capture the complexity of the set X(C) but are intricate to compute
in general. This subject deserves further investigation that we leave to a future work.

Remark 4.3.9 (Group Lasso). Using the union bound, we have

P
[

max
i∈{1,...,L}

∥∥X>biξ∥∥2
≥ λnn/τ

]
≤

L∑
i=1

P
[∥∥X>biξ∥∥2

≥ λnn/τ
]
.

This requires a concentration inequality for quadratic forms of independent random variables satisfying
the Bernstein moment assumption above. We are not aware of any such a result. But if our moment
condition is strengthened to

E
[∣∣f ′i((Xθ0)i,yi)

∣∣2m] ≤ m!κ2(m−1)σ2
i /2, ∀1 ≤ i ≤ n,∀m ≥ 1,

then one can use [8, Theorem 3]. Indeed, assume the nroamlization maxi
∥∥X>biXbi

∥∥
2→2
≤ n, which

entails
E
[∥∥X>bi∇F (Xθ0,y)

∥∥
2

]
≤ E

[∥∥X>bi∇F (Xθ0,y)
∥∥2

2

]1/2
≤ σ

√
Kn/2.

It then follows that taking

λn ≥ τ
σ
√
K + 16κ

√
δ log(L)

n
, δ > 1,

the oracle inequalities (4.17) and (4.18) hold for the group Lasso with probability at least 1 − L1−δ.
A similar result can be proved for the analysis-group Lasso just as well with a proper normalization
assumption on X (see Section 4.4.3.3).

4.4 Oracle inequalities for low-complexity linear regression

In this section, we consider the classical linear regression problem where the n response-covariate pairs
(yi,Xi) are linked as

y = Xθ0 + ξ, (4.13)

where ξ is a noise vector. The data loss will be set to F (u,y) = 1
2

∥∥y − u∥∥2

2
. This in turn entails that

ϕ = ϕ+ = 1
2 (·)2 on R+ and Rn

(
θ,θ0

)
= 1

2n

∥∥Xθ −Xθ0

∥∥2

2
.
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In this section, we assume that the noise ξ is a zero-mean sub-Gaussian vector in Rn with parameter
σ. That is, its one-dimensional marginals 〈ξ, z〉 are sub-Gaussian random variables ∀z ∈ Rn, i.e. they
satisfy

P [|〈ξ, z〉| ≥ t] ≤ 2e
−t2/(2

∥∥z∥∥2

2
σ2)
, ∀z ∈ Rn. (4.14)

In this case, the bounds of Section 4.3.3 can be improved.

4.4.1 General penalty

As we will shortly show, the event E will depend on the Gaussian width, a summary geometric quantity
which, informally speaking, measures the size of the bulk of a set in Rn.

Definition 4.4.1. The Gaussian width of a subset S ⊂ Rn is defined as

w(S)
def
= E [σS(g)] , where g ∼ N (0, In).

The concept of Gaussian width has appeared in the literature in different contexts. In particular,
it has been used to establish sample complexity bounds to ensure exact recovery (noiseless case) and
mean-square estimation stability (noisy case) for low-complexity penalized estimators from Gaussian
measurements; see e.g. [127, 37, 139, 152, 146].

The Gaussian width has deep connections to convex geometry and it enjoys many useful properties.
It is well-known that it is positively homogeneous, monotonic w.r.t. inclusion, and invariant under
orthogonal transformations. Moreover, w(conv (S)) = w(S). From Lemma 2.3.10(ii)-(iii), w(S) is a
non-negative finite quantity whenever the set S is bounded and contains the origin.

We are now ready to state our oracle inequality in probability with sub-Gaussian noise.

Proposition 4.4.2. Let the data generated by (4.13) where ξ is a zero-mean sub-Gaussian random
vector with parameter σ. Consider the estimators θ̂

EWA

n and θ̂
PEN

n , where F and J
def
= γC satisfy

Assumptions (H.1)-(H.2) and (H.3). Suppose that

λn ≥
τσc1

√
2 log(c2/δ)w (X(C))

n
,

for some τ > 1 and 0 < δ < min(c2, 1), where c1 and c2 are positive absolute constants. Then with
probability at least 1− δ, (4.2) and (4.6) hold with the remainder term given by (4.3) with ν = 1.

The proof requires sophisticated ideas from the theory of generic chaining [136], but we only apply
these results. The constants c1 and c2 can be traced back to the proof of these results as detailed
in [136].

Proof. First, from (4.14), we have the bound

P
[∣∣〈ξ, z − z′〉∣∣ ≥ t] ≤ 2e−t

2/(2‖z−z′‖22σ2), ∀z, z′ ∈ Rn,

i.e. the increment condition [136, (0.4)] is verified. Thus combining (4.8) with the probability bound
in [136, page 11], the generic chaining theorem [136, Theorem 1.2.6] and the majorizing measure
theorem [136, Theorem 2.1.1], we have

P
[
J◦(X>ξ) ≥ λnn/τ

]
≤ P

[
sup

z∈X(C)
〈ξ, z〉 ≥ σc1

√
2 log(c2/δ)w (X(C))

]

≤ c2 exp

(
−σ

22 log(c2/δ)

2σ2

)
= δ.
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If the noise is Gaussian, an enhanced version can be proved by invoking Gaussian concentration of
Lipschitz functions [93].

Proposition 4.4.3. Let the data generated by (4.13) with noise ξ ∼ N (0, σ2In). Consider the esti-
mators θ̂

EWA

n and θ̂
PEN

n , where F and J def
= γC satisfy Assumptions (H.1)-(H.2) and (H.3). Suppose

that
λn ≥

(1 + δ)τσw (X(C))
n

,

for some τ > 1 and δ > 0. Then with probability at least 1− exp

(
− δ2w(X(C))2

2
∥∥X∥∥2

J→2

)
, (4.2) and (4.6) hold

with the remainder term given by (4.3) with ν = 1.

Proof. Thanks to sublinearity (see Lemma 2.3.5(i) and Lemma 2.3.13), the function ξ 7→ J◦(X>ξ)

is Lipschitz continuous with Lipschitz constant
∥∥X>∥∥

2→J◦ =
∥∥X∥∥

J→2
. From (4.8), we also have

E
[
J◦
(
X>ξ

)]
= σw (X(C)) .

Observe that X(C) is a convex compact set containing the origin. Setting ε = λnn/τ − σw (X(C)) ≥
δσw (X(C)), it follows from (4.8) and the Gaussian concentration of Lipschitz functions [93] that

P
[
J◦(X>ξ) ≥ λnn/τ

]
≤ P

[
J◦(X>ξ)− E

[
J◦(X>ξ)

]
≥ ε
]

≤ P
[
J◦(X>ξ/σ)− w (X(C)) ≥ δw (X(C))

]
≤ exp

(
−δ

2w (X(C))2

2
∥∥X∥∥2

J→2

)
.

Estimating theoretically the Gaussian width of a set4 is a non-trivial problem that has been ex-
tensively studied in the areas of probability in Banach spaces and stochastic processes. There are
classical bounds on the Gaussian width (Sudakov’s and Dudley’s inequalities), but they are difficult
to estimate in most cases and neither of these bounds is tight for all sets. When the set is a convex
cone (intersected with a sphere), tractable estimates based on polarity arguments were proposed in,
e.g., [37].

4.4.2 Polyhedral penalty

When C and is polytope, enhanced oracle inequalities can be obtained by invoking a simple union
bound argument.

Proposition 4.4.4. Let the data generated by (4.13) where ξ is a zero-mean sub-Gaussian random
vector with parameter σ. Consider the estimators θ̂

EWA

n and θ̂
PEN

n , where F and J
def
= γC satisfy

Assumptions (H.1)-(H.2) and (H.3), and moreover C is a polytope with vertices V. Suppose that

λn ≥
τσ
(

maxv∈V ‖Xv‖2
)√

2δ log(|V|)
n

,

for some τ > 1 and δ > 1. Then with probability at least 1 − 2|V|1−δ, (4.2) and (4.6) hold with the
remainder term given by (4.3) with ν = 1.

In particular, if maxv∈V ‖Xv‖2 ≤
√
n, then one can take

λn ≥ τσ
√

2δ log(|V|)
n

.

4Not to mention its image with a linear operator as for X(C).
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Proof. From (4.8) we have

J◦
(
X>ξ

)
= max

v∈C
〈Xv, ξ〉 = max

v∈V
〈Xv, ξ〉,

where in the last inequality, we used the fact that a convex function attains its maximum on C at an
extreme point V. Let ε = σ

(
maxv∈V ‖Xv‖2

)√
2δ log(|V|). By the union bound, (4.14) and (4.8), we

have

P
[
J◦
(
X>ξ

)
≥ λnn/τ

]
≤ P

[
max
v∈V

〈Xv, ξ〉 ≥ ε
]

≤ |V|max
v∈V

P [〈Xv, ξ〉 ≥ ε]

≤ |V|max
v∈V

P [|〈Xv, ξ〉| ≥ ε]

≤ 2|V| exp
(
− ε2/

(
2σ2 max

v∈V
‖Xv‖22

))
≤ 2|V|1−δ.

4.4.3 Applications

In this section, we exemplify our oracle inequalities for the penalties described in Section 2.4.3.

4.4.3.1 Lasso

Recall the derivations for the Lasso in Section 4.3.3.1. We obtain the following corollary of Proposi-
tion 4.4.4.

Corollary 4.4.5. Let the data generated by (4.13) where ξ is a zero-mean sub-Gaussian random vector
with parameter σ. Assume that X is such that maxi ‖Xi‖2 ≤

√
n. Consider the estimators θ̂

EWA

n and

θ̂
PEN

n , where J is the Lasso penalty (2.6) and F satisfies Assumptions (H.1)-(H.2). Suppose that

λn ≥ τσ
√

2δ log(2p)

n
,

for some τ > 1 and δ > 1. Then, with probability at least 1− 2(2p)1−δ, the following holds

1

n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤ inf

I⊂{1,...,p}
θ: supp(θ)=I

 1

n

∥∥Xθ −Xθ0

∥∥2

2
+

λ2
n (τ + 1)2 |I|

τ2Υ
(

Span{ai}i∈I , τ+1
τ−1

)2

+ pβ, (4.15)

and

1

n

∥∥Xθ̂PEN

n −Xθ0

∥∥2

2
≤ inf

I⊂{1,...,p}
θ: supp(θ)=I

 1

n

∥∥Xθ −Xθ0

∥∥2

2
+

λ2
n (τ + 1)2 |I|

τ2Υ
(

Span{ai}i∈I , τ+1
τ−1

)2

 . (4.16)

The remainder term grows as |I| log(p)
n . The oracle inequality (4.16) recovers [47, Theorem 1] in

the exactly sparse case, and (4.16) the one in [135, Theorem 4] (see also [88, Theorem 11] and [48,
Theorem 2]). It is worth mentioning, however, that [47, Theorem 1] handles the inexactly sparse case
while we do not.

4.4.3.2 Group Lasso

Recall the notations in Section 2.4.3.2, and denote Iθ = suppB(θ) the set indexing active blocks in θ.
From (2.9), we have ∥∥PTθ

∥∥
2→J =

√
|Iθ| and J◦(eθ) = ‖eθ‖∞,2 ≤ 1,
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where the last bound holds as an equality whenever θ 6= 0.
We have the following oracle inequalities as corollaries of Proposition 4.4.2 and Proposition 4.4.3.

Corollary 4.4.6. Let the data generated by (4.13). Consider the estimators θ̂
EWA

n and θ̂
PEN

n , where
F satisfies Assumptions (H.1)-(H.2), and J is the group Lasso (2.8) with L non-overlapping blocks
of equal size K. Assume that X is such that maxi

∥∥X>biXbi

∥∥
2→2
≤ n.

(i) ξ is a zero-mean sub-Gaussian random vector with parameter σ: suppose that

λn ≥ 3τσc1

√
2 log(c2/δ)

(√
K +

√
2 log(L)

)
√
n

,

for some τ > 1 and 0 < δ < min(c2, 1), where c1 and c2 are the positive absolute constants in
Proposition 4.4.2. Then, with probability at least 1− δ, the following holds

1

n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤ inf

I⊂{1,...,L}
θ: suppB(θ)=I

 1

n

∥∥Xθ −Xθ0

∥∥2

2
+

λ2
n (τ + 1)2 |I|

τ2Υ
(

Span{aj}j∈bi,i∈I , τ+1
τ−1

)2

+ pβ,

(4.17)

and

1

n

∥∥Xθ̂PEN

n −Xθ0

∥∥2

2
≤ inf

I⊂{1,...,L}
θ: suppB(θ)=I

 1

n

∥∥Xθ −Xθ0

∥∥2

2
+

λ2
n (τ + 1)2 |I|

τ2Υ
(

Span{aj}j∈bi,i∈I , τ+1
τ−1

)2

 .

(4.18)

(ii) ξ ∼ N (0, σ2In): suppose that

λn ≥ τσ
√
K +

√
2δ log(L)√
n

,

for some τ > 1 and δ > 1. Then, with probability at least 1− L1−δ, (4.17) and (4.18) hold.

The first remainder term is on the order
|I|
(√

K+
√

2 log(L)
)2

n . This is similar to the scaling that has
been provided in the literature for EWA with other group sparsity priors and noises [123] and Chapter
3. Similar rates were given for θ̂

PEN

n with the group Lasso in [108, 99, 149].

Proof.

(i) This is a consequence of Proposition 4.4.2, for which we need to bound

w(X(C)) = E
[

max
i∈{1,...,L}

∥∥X>big∥∥2

]
.

We first have, for any block bi

E
[∥∥X>big∥∥2

]
≤ E

[∥∥X>big∥∥2

2

]1/2
≤
√
Kn.

Furthermore,
∥∥X>bi · ∥∥2

is Lipschitz continuous with Lipschitz constant
∥∥Xbi

∥∥
2→2
≤
√
n. Thus

the union bound and Gaussian concentration of Lipschitz functions [93] yield, for any t > 0,

P
[

max
i∈{1,...,L}

∥∥X>big∥∥2
≥
√
Kn+ t

]
≤

L∑
i=1

P
[∥∥X>biξ∥∥2

− E
[∥∥X>biξ∥∥2

]
≥ t
]
≤ L exp

(
− t

2

2n

)
.
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Let κ =
√
Kn+

√
2n log(L). w(X(C)) can be expressed as

w(X(C)) =

∫ +∞

0
P
[

max
i∈{1,...,L}

∥∥X>big∥∥2
≥ s
]
ds ≤

∫ κ

0
ds+

∫ +∞

κ
e−

(s−
√
Kn)2−2n log(L)

2n ds

= κ+
√
n

∫ +∞

κ/
√
n
e−

(s−
√
K)2−2 log(L)

2 ds

≤ κ+
√
n

∫ +∞

κ/
√
n
e−

s−κ/
√
n

2 ds = κ+ 2
√
n ≤ 3κ.

(ii) The proof follows the lines of Proposition 4.4.3 where we additionally use the union bound.
Indeed,

P
[

max
i∈{1,...,L}

∥∥X>biξ∥∥2
≥ λnn/τ

]
≤

L∑
i=1

P
[∥∥X>biξ∥∥2

− E
[∥∥X>biξ∥∥2

]
≥ λnn/τ − E

[∥∥X>biξ∥∥2

]]
≤

L∑
i=1

P
[∥∥X>biξ∥∥2

− E
[∥∥X>biξ∥∥2

]
≥ λnn/τ − σ

√
Kn
]

≤
L∑
i=1

P
[∥∥X>biξ∥∥2

− E
[∥∥X>biξ∥∥2

]
≥ σ

√
2δn log(L)

]
≤ L exp (−δ log(L)) = L1−δ,

where used the Gaussian concentration of Lipschitz functions [93] in the last inequality.

Remark 4.4.7. We observe in passing that another way to prove the oracle inequalities in the sub-
Gaussian is to use Dudley’s inequality on the sphere in RK after applying a union bound on the L

blocks. In addition, in the Gaussian case, the (similar) bound λn ≥ 3δτσ
√
K+
√

2 log(L)√
n

can be obtained

by combining Proposition 4.4.3 and the estimate w(X(C)) ≤ 3(
√
Kn +

√
2n log(L)) in the proof of

(i). The corresponding probability of success would be at least 1− L−9(δ−1)2 .

4.4.3.3 Analysis-group Lasso

We now turn to the prior penalty (2.10). Recall the notations in Section 2.4.3.3, and remind Λθ =⋃
i∈suppB(D>θ) bi. We assume that D is a frame of Rp, hence surjective, meaning that there exist

c, d > 0 such that for any ω ∈ Rp

d ‖ω‖22 ≤
∥∥D>ω∥∥2

2
≤ c ‖ω‖22 .

This together with (2.11)-(2.12) and Cauchy-Schwarz inequality entail∥∥PTθ
∥∥

2→J = sup
‖ωTθ‖2

≤1

∥∥D>ωTθ∥∥1,2
≤
√
c sup
‖D>ωTθ‖2

≤1

∥∥D>ωTθ∥∥1,2

=
√
c sup∥∥∥D>ΛθωTθ∥∥∥2

≤1

∥∥D>ΛθωTθ∥∥1,2

=
√
c
√
| supp
B

(D>θ)|.

Note, however, that from (2.11), we do not have in general
∥∥∥∥D+ PKer(D>

Λc
θ

)De
‖‖1,2
D>θ

∥∥∥∥
∞,2
≤ 1.

With exactly the same arguments to those for proving Corollary 4.4.6, replacing X by XD, we
arrive at the following oracle inequalities.
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Corollary 4.4.8. Let the data generated by (4.13). Consider the estimators θ̂
EWA

n and θ̂
PEN

n , where
F satisfies Assumptions (H.1)-(H.2), and J is the analysis-group Lasso (2.10) with L blocks of equal
size K. Assume that D is a frame, and X is such that maxi

∥∥D>biX>XDbi

∥∥
2→2
≤ n.

(i) ξ is a zero-mean sub-Gaussian random vector with parameter σ: suppose that

λn ≥ 3τσc1

√
log(c2/δ)

(√
K +

√
2 log(L)

)
√
n

,

for some τ > 1 and 0 < δ < min(c2, 1), where c1 and c2 are the positive absolute constants in
Proposition 4.4.2. Then, with probability at least 1− δ, the following holds

1

n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤ inf

I⊂{1,...,L}
θ: suppB(D>θ)=I

 1

n

∥∥Xθ −Xθ0

∥∥2

2

+

cλ2
n

(
τ
∥∥D+ PKer(D>

Λc
θ

)De
‖‖1,2
D>θ

∥∥
∞,2 + 1

)2|I|
τ2Υ

(
Ker(D>Λcθ

),

τ
∥∥D+ P

Ker(D>
Λc
θ

)
De
‖‖1,2
D>θ

∥∥
∞,2

+1

τ−1

)2

+ pβ, (4.19)

and

1

n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤ inf

I⊂{1,...,L}
θ: suppB(D>θ)=I

 1

n

∥∥Xθ −Xθ0

∥∥2

2

+

cλ2
n

(
τ
∥∥D+ PKer(D>

Λc
θ

)De
‖‖1,2
D>θ

∥∥
∞,2 + 1

)2|I|
τ2Υ

(
Ker(D>Λcθ

),

τ
∥∥D+ P

Ker(D>
Λc
θ

)
De
‖‖1,2
D>θ

∥∥
∞,2

+1

τ−1

)2

. (4.20)

(ii) ξ ∼ N (0, σ2In): suppose that

λn ≥ τσ
√
K +

√
2δ log(L)√
n

,

for some τ > 1 and δ > 1. Then, with probability at least 1− L1−δ, (4.19) and (4.20) hold.

To the best of our knowledge, this result is new to the literature. The scaling of the remainder
term is the same as in Chapter 3 (though with a different prior) and [123] with analysis sparsity priors
different from ours (the authors in the latter also assume that D is invertible).

4.4.3.4 Anti-sparsity

Recall the derivations for the `∞ norm example in Section 4.3.3.1. We have the following oracle
inequalities from Proposition 4.4.4.

Corollary 4.4.9. Let the data generated by (4.13) where ξ is a zero-mean sub-Gaussian random vector
with parameter σ. Assume that X is such that maxi,j |Xi,j | ≤ 1/p. Consider the estimators θ̂

EWA

n and

θ̂
PEN

n , where F satisfies Assumptions (H.1)-(H.2), and J is the anti-sparsity penalty (2.13). Suppose
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that

λn ≥ τσ
√

2δ log(2)

√
p

n
,

for some τ > 1 and δ > 1. Then, with probability at least 1− 2−p(δ−1)+1, the following holds

1

n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤ inf
I⊂{1,...,p}
θ: Isat

θ =I

 1

n

∥∥Xθ −Xθ0

∥∥2

2
+

λ2
n (τ + 1)2

τ2Υ
({
θ : θI ∈ R sgn(θI)

}
, τ+1
τ−1

)2

+ pβ,

(4.21)

and

1

n

∥∥Xθ̂PEN

n −Xθ0

∥∥2

2
≤ inf
I⊂{1,...,p}
θ: Isat

θ =I

 1

n

∥∥Xθ −Xθ0

∥∥2

2
+

λ2
n (τ + 1)2

τ2Υ
({
θ : θI ∈ R sgn(θI)

}
, τ+1
τ−1

)2

 . (4.22)

The first remainder term scales as p
n which reflects that anti-sparsity regularization requires an

overdetermined regime to ensure good stability performance. This is in agreement with [145, Theo-
rem 7]. This phenomenon was also observed by [58] who studied sample complexity thresholds for
noiseless recovery from random projections of the hypercube.

4.4.3.5 Nuclear norm

We now turn to the nuclear norm case. Recall the notations of Section 2.4.3.5. For matrices θ ∈ Rp1×p2 ,
a measurement map X takes the form of a linear operator whose ith component is given by the
Frobenius scalar product

X(θ)i = tr((Xi)>θ) =
〈
Xi,θ

〉
F
,

where Xi is a matrix in Rp1×p2 . We denote ‖·‖F the associated norm. From (2.16), it is immediate to
see that whenever θ 6= 0,

J◦(eθ) =
∥∥∥UV >∥∥∥

2→2
= 1.

Moreover, from (2.16), we have∥∥PTθ
∥∥

F→∗ = sup
θ′∈Tθ

∥∥θ′∥∥∗∥∥θ′∥∥
F

= sup
θ′∈Tθ

∥∥σ(θ′)
∥∥

1∥∥σ(θ′)
∥∥

2

≤ sup
θ′∈Tθ

√
rank(θ′) ≤

√
min(r, p1) + min(r, p2) ≤

√
2r.

To apply Proposition 4.4.2 and Proposition 4.4.3, we need to bound w(X(C)) (C is the nuclear ball),
or equivalently, to bound

E
[∥∥X∗(g)

∥∥
2→2

]
= E

[∥∥ n∑
i=1

Xigi
∥∥

2→2

]
, g ∼ N (0, σ2In),

which is the expectation of the operator norm of a random series with matrix coefficients. Thus using
[140, Theorem 4.1.1(4.1.5)] to get this bound, and inserting it into Proposition 4.4.2 and Proposi-
tion 4.4.3, we get the following oracle inequalities for the nuclear norm. Define

v(X) = max

(∥∥ n∑
i=1

Xi(Xi)>
∥∥

2→2
,
∥∥ n∑
i=1

(Xi)>Xi
∥∥

2→2

)
.

Corollary 4.4.10. Let the data generated by (4.13) with a linear operator X : Rp1×p2 → Rn. Assume
that v(X) ≤ n. Consider the estimators θ̂

EWA

n and θ̂
PEN

n , where F satisfies Assumptions (H.1)-(H.2),
and J is the nuclear norm (2.15).
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(i) ξ is a zero-mean sub-Gaussian random vector with parameter σ: suppose that

λn ≥ 2τσc1

√
log(c2/δ) log(p1 + p2)

n
,

for some τ > 1 and 0 < δ < min(c2, 1), where c1 and c2 are the positive absolute constants in
Proposition 4.4.2. Then, with probability at least 1− δ, the following holds

1

n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤ inf
r∈{1,...,min(p1,p2)}
θ: rank(θ)=r

 1

n

∥∥Xθ −Xθ0

∥∥2

2
+

2λ2
n (τ + 1)2 r

τ2Υ
(
Tθ,

τ+1
τ−1

)2

+ p1p2β,

(4.23)

and

1

n

∥∥Xθ̂PEN

n −Xθ0

∥∥2

2
≤ inf
r∈{1,...,min(p1,p2)}
θ: rank(θ)=r

 1

n

∥∥Xθ −Xθ0

∥∥2

2
+

2λ2
n (τ + 1)2 r

τ2Υ
(
Tθ,

τ+1
τ−1

)2

 . (4.24)

(ii) ξ ∼ N (0, σ2In): suppose that

λn ≥ (1 + δ)τσ

√
2 log(p1 + p2)

n
,

for some τ > 1 and δ > 0. Then, with probability at least 1 − (p1 + p2)−δ
2, (4.23) and (4.24)

hold.

The set over which the infimum is taken just reminds us that the nuclear norm is partly smooth
(see above) relative to the constant rank manifold (which is a Riemannian submanifold of Rp1×p2) [53,
Theorem 3.19]. The first remainder term now scales as r log(p1+p2)

n . In the i.i.d. Gaussian case, we

recover the same rate as in [47, Theorem 3] for θ̂
EWA

n and in [88, Theorem 2] for θ̂
PEN

n .

4.4.4 Discussion of minimax optimality

In this section, we discuss the optimality of the estimators θ̂
EWA

n and θ̂
PEN

n (we remind the reader that
the design X is fixed). Recall the discussion on stratification at the end of Section 4.3.1. LetM0 ∈M

be the stratum active at θ0 ∈ M0. In this setting, with β = O(1/(pn)), (4.5) and Proposition 4.4.3
ensure that

1

n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤ (1 + δ)2σ2w (X(C))2

n2

 sup
θ∈M0

‖PTθ‖
2
2→J

(
τJ◦(eθ) + 1

)2
Υ
(
Tθ,

τJ◦(eθ)+1
τ−1

)2

+O

(
1

n

)
,

and

1

n

∥∥Xθ̂PEN

n −Xθ0

∥∥2

2
≤ (1 + δ)2σ2w (X(C))2

n2

 sup
θ∈M0

‖PTθ‖
2
2→J

(
τJ◦(eθ) + 1

)2
Υ
(
Tθ,

τJ◦(eθ)+1
τ−1

)2

 ,

with high probability. In particular, for a polyhedral gauge penalty, in which caseM0 = Tθ0 (see [145]),
and under the normalization maxvV ‖Xv‖2 ≤

√
n, Proposition 4.4.4 entails

1

n

∥∥Xθ̂EWA

n −Xθ0

∥∥2

2
≤ C

2δσ2 ‖PM0‖
2
2→J log(|V|)
n

 sup
θ∈M0

(
τJ◦(eθ) + 1

)2
Υ
(
M0,

τJ◦(eθ)+1
τ−1

)2

 ,
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and

1

n

∥∥Xθ̂PEN

n −Xθ0

∥∥2

2
≤

2δσ2 ‖PM0‖
2
2→J log(|V|)
n

 sup
θ∈M0

(
τJ◦(eθ) + 1

)2
Υ
(
M0,

τJ◦(eθ)+1
τ−1

)2

 ,

with high probability. Thus the risk bounds only depend on M0. A natural question that arises is
whether the above bounds are optimal, i.e. whether an estimator can achieve a significantly better
prediction risk than θ̂

EWA

n and θ̂
PEN

n uniformly onM0. A classical way to answer this question is the
minimax point of view. This amounts to finding a lower bound on the minimax probabilities of the
form

inf
θ̂

sup
θ∈M0

P
(

1

n

∥∥Xθ̂ −Xθ∥∥2

2
≥ ψn

)
,

where ψn is the rate, which ideally, should be comparable to the risk bounds above. A standard path
to derive such a lower bound is to exhibit a subset ofM0 of well-separated points while controlling its
diameter, see [142, Chapter 2] or [104, Section 4.3]. This however must be worked out on a case-by-case
basis.

Example 4.4.11. For the Lasso case,M0 = Tθ0 is the subspace of vectors whose support is contained
in that of θ0. Let I = supp(θ0) and s = ‖θ0‖0. Define the set

B0 =
{
θ ∈ Rp : θI ∈ {0, 1}s and θIc = 0

}
.

We have B0 ⊂M0 and
∥∥θ − θ′∥∥

0
≤ 2s for all (θ,θ′) ∈ B0. Define F0

def
=
{
rXθ : θ ∈ B0

}
, for r > 0 to

be specified later. Due to the Varshamov-Gilbert lemma [104, Lemma 4.7], given a ∈]0, 1[, there exists
a subset B ⊂ B0 with cardinality |B| ≥ 2ρs/2 such that for two distinct elements Xθ and Xθ′ in F0∥∥X(θ − θ′)

∥∥2

2
≥ κr2

∥∥θ − θ′∥∥2

2
≥ 2(1− a)κr2s,∥∥X(θ − θ′)

∥∥2

2
≤ κr2

∥∥θ − θ′∥∥2

2
≤ 4κr2s),

where

κ = inf
θ∈M0

‖Xθ‖22
‖θ‖22

≤ κ = sup
θ∈M0

‖Xθ‖22
‖θ‖22

.

Standard results from random matrix theory ensure that κ > 0 for a Gaussian design with high
probability as long as n ≥ s+ C

√
s [139] for some positive absolute constant C.

Then choosing r2 = cρσ2

4κ , where c ∈]0, 1/8[ and ρ = (1 + a) log(1 + a) + (1 − a) log(1 − a), we get
the bounds ∥∥X(θ − θ′)

∥∥2

2
≥ σ2c(1− a)ρκ

2κ
s,∥∥X(θ − θ′)

∥∥2

2
≤ 2σ2c log(|B|).

We are now in position to apply [142, Theorem 2.5] to conclude that there exists η ∈]0, 1[ (that depends
on a) such that

inf
θ̂

sup
θ∈M0

P
(

1

n

∥∥Xθ̂ −Xθ∥∥2

2
≥ σ2c(1− a)ρκ

4κ

s

n

)
≥ η.

This lower bound together with Corollary 4.4.5 show that θ̂
EWA

n (with β = O(1/(pn))) and θ̂
PEN

n are
nearly minimax (up to a logarithmic factor) overM0.

One can generalize this reasoning to get a minimax lower bound over the larger class of s-sparse
vectors, i.e. ⋃{

V = Span{(aj)1≤j≤p} : dim(V ) = s
}
,

which is a finite union of subspaces that contains M0. Let (a, b) ∈]0, 1[2 such that 1 ≤ s ≤ abp and
a(−1 + b − log(b)) ≥ log(2) 5, c ∈]0, 1/8[. Then combining [142, Theorem 2.5] and [104, Lemma 4.6

5E.g. take b = 1/(1 + e a
√
2).
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and Lemma 4.10], we have for η def
= 1

1+(ab)ρs/2

(
1− 2c−

√
2c

−ρ log(ab)

)
∈]0, 1[

inf
θ̂

sup
θ∈M0

P
(

1

n

∥∥Xθ̂ −Xθ∥∥2

2
≥ σ2cρ(1− a)κ

2κ

s log(p/s)

n

)
≥ η,

where ρ = −a(−1 + b− log(b))/ log(ab), and κ and κ are now the restricted isometry constants of X
of degree 2s, i.e.

κ = inf
‖θ‖0≤2s

‖Xθ‖22
‖θ‖22

≤ κ = sup
‖θ‖0≤2s

‖Xθ‖22
‖θ‖22

.

For this lower bound to be meaningful, κ should be positive. From the compressed sensing literature,
many random designs are known to verify this condition for n large enough compared to s, e.g. sub-
Gaussian designs with n & s log(p).

One can see that the difference between this lower bound and the one on M0 lies in the log(p/s)

factor, which basically derives from the control over the union of subspaces. The minimax prediction
risk (in expectation) over the `0-ball were studied in [122, 116, 153, 160, 155], where similar lower
bounds were obtained.

Example 4.4.12. For the group Lasso with L groups of equal size K, M0 is the subspace group
sparse vectors whose group support is included in that of θ0. Let s be the number of non-zero (active)
groups in θ0. Following exactly the same reasoning as for the Lasso, one can show that the risk lower
bound in probability scales as Cσ2sK/n, which together with Corollary 4.4.6, shows that θ̂

EWA

n and
θ̂

PEN

n are nearly minimax (up again to a logarithmic factor) overM0. One can also derive the lower
bound Cσ2s(K + log(L/s))/n over the set of s-block sparse vectors. Such minimax lower bound is
comparable to the one in [99].

Example 4.4.13. Let us consider the `∞-penalty. Denote the saturation support of θ0 as Isat and
recall the subspace Tθ0 form (2.14). Thus, M0 = Tθ0 is the subspace of vectors which are collinear
to sgn(θ0) on Isat and free on its complement. Observe that dim(M0) = p − s + 1, where s = |Isat|.
Define the set

B0 =
{
θ ∈ Rp : θIsat = sgn(θIsat) and θ(Isat)c ∈ {0, 1}p−s)

}
.

By construction, B0 ⊂ M0, and
∥∥θ − θ′∥∥

0
≤ 2(p − s) for all (θ,θ′) ∈ B0. Thus following the same

arguments as for the Lasso example (using again Varshamov-Gilbert lemma and [142, Theorem 2.5]),
we conclude that there exists η ∈]0, 1[ (that depends on a) such that

inf
θ̂

sup
θ∈M0

P
(

1

n

∥∥Xθ̂ −Xθ∥∥2

2
≥ σ2c(1− a)ρκ

4κ

p− s
n

)
≥ η,

where the restricted isometry constants are defined similarly to the Lasso but with respect to the model
subspace M0 of the `∞ norm. Again, for a Gaussian design, κ > 0 with high probability as long as
n ≥ (p− s+ 1) + C

√
p− s+ 1 [139].

The obtained minimax lower bound is consistent with the sample complexity thresholds derived
in [58] for noiseless recovery from random projections of the hypercube. For a saturation support size
small compared to p, the bound of Corollary 4.4.9 comes close to the minimax lower bound.

Example 4.4.14. Let r = rank(θ0), where θ0 ∈ Rp1×p2 , and p = max(p1, p2). For the nuclear norm,
M0 is the manifold of rank-r matrices. Thus arguing as in [88, Theorem 5] (who use the Varshamov-
Gilbert lemma [104] to find the covering set), one can show that the minimax risk lower bound over
M0 is Cσ2r/n. In view of Corollary 4.4.10, we deduce that θ̂

EWA

n and θ̂
PEN

n are nearly minimax over
the constant rank manifolds.
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4.5 Expectation of the inner product

We start with some definitions and notations that will be used in the proof. For a non-empty closed
convex set C ∈ Rp, we denote

(
C
)0 its minimal selection, i.e. the element of minimal norm in C. This

element is of course unique. For a proper lsc and convex function f and γ > 0, its Moreau envelope
(or Moreau-Yosida regularization) is defined by

γf(θ)
def
= min
θ∈Rp

1

2γ

∥∥θ − θ∥∥2

2
+ f(θ).

The Moreau envelope enjoys several important properties that we collect in the following lemma.

Lemma 4.5.1. Let f be a finite-valued and convex function. Then
(i) (γf(θ))γ>0 is a decreasing net, and ∀θ ∈ Rp, γf(θ)↗ f(θ) as γ ↘ 0.

(ii) γf ∈ C1(Rp) with γ−1-Lipschitz continuous gradient.

(iii) ∀θ ∈ Rp, ∇ γf(θ)→
(
∂f(θ)

)0 and
∥∥∇ γf(θ)

∥∥
2
↗
∥∥(∂f(θ)

)0∥∥
2
as γ ↘ 0.

Proof. (i) [7, Proposition 12.32]. (ii) [7, Proposition 12.29]. (iii) by assumption, f is subdifferentiable
everywhere and its subdifferential is a maximal monotone operator with domain Rp, and the result
follows from [7, Corollary 23.46(i)].

We are now equipped to prove the following important result6.

Proposition 4.5.2. Let the density µ̂n in (1.12), where
(a) F satisfies Assumptions (H.1)-(H.2);

(b) J is a finite-valued lower-bounded convex function, and ∃R > 0 and ρ ≥ 0, such that ∀θ ∈ Rp,∥∥(∂J(θ)
)0∥∥

2
≤ R ‖θ‖ρ2;

(c) and Vn is coercive.
Then, ∀θ ∈ Rp,

Eµ̂n
[〈(

∂Vn(θ)
)0
,θ − θ

〉]
= −pβ.

This result covers of course the situation where J fulfills (H.3). In this case, since ∂J(θ) ⊂ C◦
by Corollary 2.4.3(i), we have ρ = 0 and R = diam(C◦), the diameter of the convex compact set C◦
containing the origin. It can be shown that, when F (·,y) is strongly coercive, the coercivity assumption
(c) can be equivalently stated as J∞(θ) > 0, ∀θ ∈ ker(X) \ {0}, where J∞ is the recession/asymptotic
function of J ; see e.g. [126].

Proof. Let
V γ
n (θ)

def
=

1

n
F (Xθ,y) + λn

γJ(θ)

and define
µγn(θ)

def
= exp (−V γ

n (θ)/β) /Z,

where 0 < Z < +∞ is the normalizing constant of the density µ̂n. Assumption (H.1) and Lemma 4.5.1(ii)-
(iii) tell us that V γ

n ∈ C1(Rp) and ∇V γ
n (θ)→

(
∂Vn(θ)

)0 as γ → 0. Thus

Eµ̂n
[〈(

∂Vn(θ)
)0
,θ − θ

〉]
=

∫
Rp

lim
γ→0

〈
µγn(θ)∇V γ

n (θ),θ − θ
〉
dθ.

6The result will be proved using Moreau-Yosida regularization. Yet another alternative proof could be based on
mollifiers for approximating subdifferentials.
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We now check that
〈
µγn(θ)∇V γ

n (θ),θ − θ
〉
is dominated by an integrable function. From the definition

of the Moreau envelope, we have

V γ
n (θ) = min

θ∈Rp

1

n
F (Xθ,y) + λn

(
J(θ − θ) +

1

2γ

∥∥θ∥∥2

2

)
.

From coercivity of Vn, the objective in the min is also coercive in (θ,θ) by [126, Exercise 3.29(b)]. It
then follows from [126, Theorem 3.31] that V γ

n is also coercive. In turn, [126, Theorem 11.8(c) and
3.26(a)] allow to assert that for some a ∈]0,+∞[, ∃b ∈]−∞,+∞[ such that for all γ > 0 and θ ∈ Rp

µγn(θ) ≤ exp (−a ‖θ‖2 − b) /Z. (4.25)

Lemma 4.5.1 (iii) and Assumption (b) on J entail that for any θ ∈ Rp,∥∥∇ γJ(θ)
∥∥

2
≤
∥∥(∂J(θ)

)0∥∥
2
≤ R ‖θ‖ρ2 .

Altogether, we have∣∣〈µγn(θ)∇V γ
n (θ),θ − θ

〉∣∣ ≤ µγn(θ)

(∣∣∣∣〈X> 1

n
∇F (Xθ,y),θ − θ

〉∣∣∣∣+ λn
∥∥∇ γJ(θ)

∥∥
2

∥∥θ − θ∥∥
2

)
≤ CZ−1 exp (−F (Xθ,y)/(nβ))

∣∣∣∣〈 1

n
∇F (Xθ,y),X(θ − θ)

〉∣∣∣∣
+ (Z exp b)−1λnR exp (−a ‖θ‖2)

∥∥θ∥∥ρ
2

∥∥θ − θ∥∥
2
,

where the constant C > 0 reflects the lower-boudedness of J . It is easy to see that the function in this
upper-bound is integrable, where we also use (H.2). Hence, we can apply the dominated convergence
theorem to get

Eµ̂n
[〈(

∂Vn(θ)
)0
,θ − θ

〉]
= lim

γ→0

∫
Rp

〈
µγn(θ)∇V γ

n (θ),θ − θ
〉
dθ.

Now, by simple differential calculus (chain and product rules), we have〈
µγn(θ)∇V γ

n (θ),θ − θ
〉

= −β
〈
∇µγn(θ),θ − θ

〉
= −β

p∑
i=1

∂

∂θi

(
µγn(θ)(θi − θi)

)
− pβµγn(θ).

Integrating the first term, we get by Fubini theorem and the Newton-Leibniz formula∫
Rp−1

(∫
R

∂

∂θi

(
µγn(θ)(θi − θi)

)
dθi

)
dθ1 · · · dθi−1dθi+1 · · · dθp

=

∫
Rp−1

[
µγn(θ)(θi − θi)

]
R dθ1 · · · dθi−1dθi+1 · · · dθp = 0,

where we used coercivity of V γ
n (see (4.25)) to conclude that lim|θi|→+∞ µ

γ
n(θ)(θi − θi) = 0. For the

second term, we have from Lemma 4.5.1(i) that µγn → µ̂n as γ → 0. Thus, arguing again as in (4.25),
we can apply the dominated convergence theorem to conclude that

lim
γ→0

∫
Rp
µγn(θ)dθ =

∫
Rp
µ̂n(θ)dθ = 1.

This concludes the proof.
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Chapter 5

Estimation Bounds with Low-complexity
Priors

Main contributions of this chapter

I Develop bounds guaranteeing that both θ̂
EWA

n in (1.12) and θ̂
PEN

n in (1.9) stably estimate
θ0 from the noisy measurements y (see Theorem 5.3.6).

I Provide sample complexity bounds (see Section 5.4.2) that guarantee that our consis-
tency bounds hold with high probability in the case of Gaussian design.

I Exemplify our bounds on several penalties routinely used in the literature (see Sec-
tion 5.4.3).
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5.1 Introduction

In this chapter, we again consider a high-dimensional statistical estimation problem in which the
number of parameters is comparable or larger than the sample size. We provide a unified framework
for establishing consistency bounds the parameter estimates for exponential weighted aggregation and
penalized estimators with a general class of data losses and log-concave priors. In the case of high-
dimensional regression with a Gaussian design, we provide sample complexity bounds that guarantee
that our consistency bounds hold with high probability. These results are applied to several instances
including the Lasso, the group Lasso, their analysis-type counterparts, the `∞ and the nuclear norm
penalties. We also discuss extension beyond Gaussian design.

5.1.1 Problem statement

Let y = (y1, . . . , yn)> ∈ Rn be i.i.d. observations drawn from a general regression problem in high
dimension. By the aggregation approach, the regression function f is approximated by fθ0 (see Section
1.1.1) with

θ0 ∈ Argmin
θ∈Rp

E [F (Xθ,y)] .

The loss function F is supposed to be smooth and convex. Our goal is to provide bounds guaran-
teeing that both the penalized estimator (1.9) and exponential weighted aggregation (1.12) stably
estimate θ0 from the noisy measurements y. Here, we consider Jλn = λnJ where λn > 0 is the reg-
ularization parameter and J is a proper closed convex function that promotes some specific notion of
simplicity/low-complexity.

5.1.2 Chapter organization

In Section 5.2, we state our main assumptions on the data loss and the prior penalty, discuss key
properties and some examples which are popular in the literature. In Section 5.3, we prove our
estimation bounds. We will apply them to the penalty examples for the Gaussian design in Section 5.4.
We also discuss extension beyond Gaussian designs.
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5.2 Estimation with log-concave priors

The estimator θ̂
EWA

n in (1.12) require two essential ingredients: the data loss term F and the prior
penalty J . We here specify the class of such functions covered in our work, and provide illustrating
examples.

5.2.1 Data loss

The class of loss functions F that we consider obey the following assumptions (which are the same as
in Chapter 4):

(H.1) F (·,y) : Rn → R is C1(Rn) and uniformly convex for all y, i.e.

F (v,y) ≥ F (u,y) + 〈∇F (u,y),v − u〉+ ϕ(
∥∥v − u∥∥

2
),

where ϕ : R+ → R+ is a convex non-decreasing function that vanishes only at 0.

(H.2) For any θ ∈ Rp and y ∈ Rn,∫
Rp

exp (−F (Xθ,y)/(nβ))
∣∣〈∇F (Xθ,y),X(θ − θ)

〉∣∣ dθ < +∞.

See Section 4.2.1 for a further discussion on this class of data loss

5.2.2 Prior penalty

Throughout, we assume the following on J .
(H.3) J : Rp → R is a lower-bounded convex function.
This assumption implies that J is finite-valued, locally Lipschitz continuous on dom(J) = Rp, and for
any point θ ∈ Rp, ∂J(θ) a non-empty compact set. The class of penalties J we consider in this chapter
is then much larger than the one of gauges in Chapter 4.

Closure properties The set of functions satisfying (H.3) is closed under addition1, smooth pertur-
bation and pre-composition by a linear operator. Consequently, more intricate regularizers can be built
starting from simple penalties. Moreover, all the geometrical objects defined in for these regularizers
can be deduced from those of the simple building penalties; see [145, Proposition 8, Proposition 10
and Corollary 2]. In turn, our unified analysis in Section 5.3 will apply to them just as well.

5.3 Main results

In the rest of the chapter, denote Tθ and eθ respectively the model subspace and vector associated to
θ, and let Sθ = T>θ . Let fθ ∈ ri(∂J(θ)), J◦fθ and Jfθ as given in Definition 2.3.14.

Definition 5.3.1. For a vector θ ∈ Rp, the set of dual certificates for a vector θ ∈ Rp is defined as

Dθ = Span(X>) ∩ ∂J(θ). (5.1)

The so-called source or range condition is verified if and only if Dθ 6= ∅. The set of non-degenerate
dual certificates is

D̆θ = Span(X>) ∩ ri(∂J(θ)). (5.2)

Observe that D̆θ = ri(Dθ) whenever the source condition is verified.

In the following, we will used the shorthand notation ζ def
= ∇F (Xθ0,y).

1It is obvious that the same holds with any positive linear combination.
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5.3.1 Prediction and Bregman divergence bounds

We start by providing some preliminary key bounds.

Lemma 5.3.2. Assume that (H.1), (H.2) and (H.3) hold. Suppose that Dθ0 6= ∅. Consider θ̂
PEN

n

and θ̂
EWA

n with λn = c
∥∥ζ∥∥

2
/n for some positive constant c. Then,

D
η0
J

(
θ̂

EWA

n ,θ0

)
≤
npβ + 2ϕ+

(∥∥ζ∥∥
2
(1 + c

∥∥α0

∥∥
2
)/2
)

c
∥∥ζ∥∥

2

,

ϕ
( ∥∥∥Xθ̂EWA

n −Xθ0

∥∥∥
2

)
≤ npβ + ϕ+

(∥∥ζ∥∥
2
(1 + c

∥∥α0

∥∥
2
)
)
,

D
η0
J

(
θ̂

PEN

n ,θ0

)
≤ 2

c
∥∥ζ∥∥

2

ϕ+
(∥∥ζ∥∥

2
(1 + c

∥∥α0

∥∥
2
)/2
)
,

ϕ
( ∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2

)
≤ ϕ+

(∥∥ζ∥∥
2
(1 + c

∥∥α0

∥∥
2
)
)
.

where α0 is such that η0 = X>α0 ∈ Dθ0. In particular, taking β = C
npϕ

+
(∥∥ζ∥∥

2
/2
)
for some positive

constant C, we have

D
η0
J

(
θ̂

EWA

n ,θ0

)
≤ C + 2

c
∥∥ζ∥∥

2

ϕ+
(∥∥ζ∥∥

2
(1 + c

∥∥α0

∥∥
2
)/2
)
,

ϕ
( ∥∥∥Xθ̂EWA

n −Xθ0

∥∥∥
2

)
≤ (C + 1)ϕ+

(∥∥ζ∥∥
2
(1 + c

∥∥α0

∥∥
2
)
)
.

Proof. Combining the fact that θ̂
PEN

n is a global minimizer of Vn with Assumption (H.1), we have

1

n
ϕ
( ∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2

)
+

1

n

〈
∇F (Xθ0,y),Xθ̂

PEN

n −Xθ0

〉
≤ 1

n
F (Xθ̂

PEN

n ,y)− 1

n
F (Xθ0,y)

≤ −λn(J(θ̂
PEN

n )− J(θ0))− 1

n
ϕ
( ∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2

)
= −λnDη0

J

(
θ̂

PEN

n ,θ0

)
− λn

〈
α0,Xθ̂

PEN

n −Xθ0

〉
− 1

n
ϕ
( ∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2

)
. (5.3)

We then deduce from Cauchy-Schwarz and Fenchel-Young inequalities that

λnD
η0
J

(
θ̂

PEN

n ,θ0

)
≤ −

〈
1

n
ζ + λnα0,Xθ̂

PEN

n −Xθ0

〉
− 2

n
ϕ
( ∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2

)
≤ (

1

n

∥∥ζ∥∥
2

+ λn
∥∥α0

∥∥
2
)
∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2
− 2

n
ϕ
( ∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2

)
≤ λn(1/c+

∥∥α0

∥∥
2
)
∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2
− 2

n
ϕ
( ∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2

)
≤ 2

n
ϕ+
(
nλn(1/c+

∥∥α0

∥∥
2
)/2
)
.

Departing again from (5.3) and using non-negativity of the Bregman divergence, we obtain

1

n
ϕ
( ∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2

)
≤ (1/c+

∥∥α0

∥∥
2
)
∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2
λn −

1

n
ϕ
( ∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2

)
≤ 1

n
ϕ+
(
nλn(1/c+

∥∥α0

∥∥
2
)
)
.

Let us now turn to θ̂
EWA

n . From the proof of the inequality (4.4), we have

Vn(θ̂
EWA

n )− V (θ0) ≤ pβ − 1

n
ϕ
( ∥∥∥Xθ̂EWA

n −Xθ0

∥∥∥
2

)
.
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We thus infer, using again Assumption (H.1), that
1

n
ϕ
( ∥∥∥Xθ̂EWA

n −Xθ0

∥∥∥
2

)
≤ pβ − λnDη0

J

(
θ̂

EWA

n ,θ0

)
−
〈

1

n
ζ + λnα0,Xθ̂

EWA

n −Xθ0

〉
− 1

n
ϕ
( ∥∥∥Xθ̂EWA

n −Xθ0

∥∥∥
2

)
.

The Cauchy-Schwarz and Fenchel-Young inequalities then yield

λnD
η0
J

(
θ̂

EWA

n ,θ0

)
≤ pβ −

〈
1

n
ζ + λnα0,Xθ̂

EWA

n −Xθ0

〉
− 2

n
ϕ
( ∥∥∥Xθ̂EWA

n −Xθ0

∥∥∥
2

)
≤ pβ +

2

n
ϕ+
(
nλn(1/c+

∥∥α0

∥∥
2
)/2
)

=
1

n

(
Cϕ+

(
nλn/(2c)

)
+ 2ϕ+

(
nλn(1/c+

∥∥α0

∥∥
2
)/2
))

≤ 1

n
(C + 2)ϕ+

(
nλn(1/c+

∥∥α0

∥∥
2
)/2
)

where, in the last inequality, we used that ϕ+ is non-decreasing on R+. On the other hand,
1

n
ϕ
( ∥∥∥Xθ̂EWA

n −Xθ0

∥∥∥
2

)
≤ pβ −

〈
1

n
ζ + λnα0,Xθ̂

EWA

n −Xθ0

〉
− 1

n
ϕ
( ∥∥∥Xθ̂EWA

n −Xθ0

∥∥∥
2

)
≤ pβ +

1

n
ϕ+
(
nλn(1/c+

∥∥α0

∥∥
2
)
)

=
1

n

(
Cϕ+

(
nλn/(2c)

)
+ ϕ+

(
nλn(1/c+

∥∥α0

∥∥
2
)
))

≤ 1

n
(C + 1)ϕ+

(
nλn(1/c+

∥∥α0

∥∥
2
)
)
.

With the prescribed choice of β, the bounds for θ̂
PEN

n and θ̂
EWA

n are of the same order.

Remark 5.3.3. For the penalized estimator, the obtained bounds are generalizations beyond the
strongly convex case of those in [67, 143, 146].

Example 5.3.4. Consider the case where ϕ : t ∈ R+ 7→ tq/q, q ∈]1,+∞[, in which case ϕ+(t) =

tq∗/q∗ where 1/q + 1/q∗ = 1. With the choice β = C2
q

1−q (‖ζ‖2)
q
q−1

np , and straightforward algebraic
manipulations, the bounds of Lemma 5.3.2 specialize to

D
η0
J

(
θ̂

EWA

n ,θ0

)
≤ q − 1

cq
(C + 2)2

q
1−q (1 + c

∥∥α0

∥∥
2
)

q
q−1
∥∥ζ∥∥ 1

q−1

2 ,∥∥∥Xθ̂EWA

n −Xθ0

∥∥∥
2
≤ (q − 1)1/q (C + 1)1/q2

1
1−q (1 + c

∥∥α0

∥∥
2
)

1
q−1
∥∥ζ∥∥ 1

q−1

2 ,

D
η0
J

(
θ̂

PEN

n ,θ0

)
≤ q − 1

cq
2

1
1−q (1 + c

∥∥α0

∥∥
2
)

q
q−1
∥∥ζ∥∥ 1

q−1

2 ,∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2
≤ (q − 1)1/q 2

1
(1−q) (1 + c

∥∥α0

∥∥
2
)

1
q−1
∥∥ζ∥∥ 1

q−1

2 .

In particular, for q ≥ 2, as is the case when F (u,y) = ‖u− y‖q2 /q (see Example 4.2.1), we have the
normalized estimates

n−1/2D
η0
J

(
θ̂

EWA

n ,θ0

)
≤ q − 1

cq
(C + 2)2

q
1−q (1 + c

∥∥α0

∥∥
2
)

q
q−1

∥∥∥n−1/2ζ
∥∥∥ 1
q−1

2
n
− q−2

2(q−1) ,

n−1/2
∥∥∥Xθ̂EWA

n −Xθ0

∥∥∥
2
≤ (q − 1)1/q (C + 1)1/q2

1
1−q (1 + c

∥∥α0

∥∥
2
)

1
q−1

∥∥∥n−1/2ζ
∥∥∥ 1
q−1

2
n
− q−2

2(q−1) ,

n−1/2D
η0
J

(
θ̂

PEN

n ,θ0

)
≤ q − 1

cq
2

1
1−q (1 + c

∥∥α0

∥∥
2
)

q
q−1

∥∥∥n−1/2ζ
∥∥∥ 1
q−1

2
n
− q−2

2(q−1) ,

n−1/2
∥∥∥Xθ̂PEN

n −Xθ0

∥∥∥
2
≤ (q − 1)1/q 2

1
(1−q) (1 + c

∥∥α0

∥∥
2
)

1
q−1

∥∥∥n−1/2ζ
∥∥∥ 1
q−1

2
n
− q−2

2(q−1) .
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with the choice β = C2
q

1−q

∥∥n−1/2ζ
∥∥ q
q−1

2

n
q−2

2(q−1) p
.

The following lemma is a key towards establishing our estimation bound.

Lemma 5.3.5. Assume that (H.3) holds. Then, for any η0 ∈ ri(∂J(θ0)) and θ ∈ Rp∥∥∥PSθ0
(θ − θ0)

∥∥∥
2
≤
∥∥PSθ0

∥∥
Jfθ0

→2

D
η0
J (θ,θ0)

1− J◦fθ0

(
PSθ0

(η0 − fθ0)
) .

Proof. Let η ∈ ∂J(θ0) at which Theorem 2.4.2(ii) holds for ω = θ − θ0. Thus

D
η0
J (θ,θ0) ≥ Dη0

J (θ,θ0)−DηJ (θ,θ0)

= 〈η − η0,θ − θ0〉

=
〈

PSθ0
(η − fθ0)− PSθ0

(η0 − fθ0),θ − θ0

〉
(Theorem 2.4.2(ii)) = Jfθ0

(PSθ0
(θ − θ0))−

〈
PSθ0

(η0 − fθ0),PSθ0
(θ − θ0)

〉
≥ Jfθ0

(PSθ0
(θ − θ0))

(
1− J◦fθ0

(ηSθ0
− PSθ0

fθ0)
)
,

where in the last inequality, we used the duality inequality (2.4) on dom(J◦fθ0
)× dom(Jfθ0

), where, by
Lemma 2.3.15, dom(J◦fθ0

) = Sθ0 and PSθ0
(θ−θ0) ∈ dom(Jfθ0

). In view of the definition of η0 and the
last assertion of Theorem 2.4.2(i), the denominator never vanishes. Moreover, since Jfθ0

is positively
homogeneous and coercive on Sθ0 , it follows that for all θ ∈ Rp∥∥∥PSθ0

(θ − θ0

∥∥∥
2
≤
∥∥PSθ0

∥∥
Jfθ0

→2
Jfθ0

(PSθ0
(θ − θ0)).

This concludes the proof.

5.3.2 Bounds on the parameter estimates

We are now ready to state our main estimation bounds.

Theorem 5.3.6. Assume that (H.1), (H.2) and (H.3) hold, with ϕ strictly increasing. Suppose that

D̆θ0 6= ∅ and ker(X) ∩ Tθ0 = {0}. (5.4)

Let η0 = X>α0 ∈ D̆θ0. Consider θ̂
PEN

n and θ̂
EWA

n with λn = c
∥∥ζ∥∥

2
/n and β = C

npϕ
+
(∥∥ζ∥∥

2
/2
)
for

some positive constants c and C. Then,∥∥∥θ̂EWA

n − θ0

∥∥∥
2
≤
∥∥X+

Tθ0

∥∥
2→2

ϕ−1
(
(C + 1)ϕ+

(∥∥ζ∥∥
2
(1 + c

∥∥α0

∥∥
2
)
))

+

(C + 2)
(∥∥PSθ0

∥∥
Jfθ0

→2
+
∥∥X+

Tθ0

∥∥
2→2

∥∥XSθ0

∥∥
Jfθ0

→2

)
c
∥∥ζ∥∥

2

(
1− J◦fθ0

(
PSθ0

(η0 − fθ0)
)) ϕ+

(∥∥ζ∥∥
2
(1 + c

∥∥α0

∥∥
2
)/2
)
,∥∥∥θ̂PEN

n − θ0

∥∥∥
2
≤
∥∥X+

Tθ0

∥∥
2→2

ϕ−1
(
ϕ+
(∥∥ζ∥∥

2
(1 + c

∥∥α0

∥∥
2
)
))

+

2
(∥∥PSθ0

∥∥
Jfθ0

→2
+
∥∥X+

Tθ0

∥∥
2→2

∥∥XSθ0

∥∥
Jfθ0

→2

)
c
∥∥ζ∥∥

2

(
1− J◦fθ0

(
PSθ0

(η0 − fθ0)
)) ϕ+

(∥∥ζ∥∥
2
(1 + c

∥∥α0

∥∥
2
)/2
)
.

Proof. We give the proof for θ̂
PEN

n , that of θ̂
EWA

n follows exactly the same lines. In view of (5.4), we
have X+

Tθ0
= (X∗Tθ0

XTθ0
)+X∗Tθ0

. Thus, by the triangle inequality, Lemma 5.3.2 and Lemma 5.3.5,
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we get∥∥∥θ̂PEN

n − θ0

∥∥∥
2

≤
∥∥∥PTθ0

(θ̂
PEN

n − θ0)
∥∥∥

2
+
∥∥∥PSθ0

(θ̂
PEN

n − θ0)
∥∥∥

2

=
∥∥∥X+

Tθ0
XTθ0

(θ̂
PEN

n − θ0)
∥∥∥

2
+
∥∥∥PSθ0

(θ̂
PEN

n − θ0)
∥∥∥

2

≤
∥∥X+

Tθ0

∥∥
2→2

∥∥∥XTθ0
(θ̂

PEN

n − θ0)
∥∥∥

2
+
∥∥PSθ0

∥∥
Jfθ0

→2
Jfθ0

(
PSθ0

(θ̂
PEN

n − θ0)
)

≤
∥∥X+

Tθ0

∥∥
2→2

∥∥∥X(θ̂
PEN

n − θ0)
∥∥∥

2
+
(∥∥PSθ0

∥∥
Jfθ0

→2
+
∥∥X+

Tθ0

∥∥
2→2

∥∥XSθ0

∥∥
Jfθ0

→2

)
Jfθ0

(
PSθ0

(θ̂
PEN

n − θ0)
)

≤
∥∥X+

Tθ0

∥∥
2→2

ϕ−1
(
ϕ+
(∥∥ζ∥∥

2
(1 + c

∥∥α0

∥∥
2
)
))

+

2
(∥∥PSθ0

∥∥
Jfθ0

→2
+
∥∥X+

Tθ0

∥∥
2→2

∥∥XSθ0

∥∥
Jfθ0

→2

)
c
∥∥ζ∥∥

2

(
1− J◦fθ0

(
PSθ0

(η0 − fθ0)
)) ϕ+

(∥∥ζ∥∥
2
(1 + c

∥∥α0

∥∥
2
)/2
)
.

Example 5.3.7. Consider again the case where ϕ : t ∈ R+ 7→ tq/q, q ∈]1,+∞[. Then β =

C2
q

1−q

(∥∥ζ∥∥
2

) q
q−1

np , and the bounds of Theorem 5.3.6 read∥∥∥θ̂EWA

n − θ0

∥∥∥
2
≤

[∥∥X+
Tθ0

∥∥
2→2

(q − 1)1/q (C + 1)1/q2
1

(1−q) (1 + c
∥∥α0

∥∥
2
)

1
q−1

+

q−1
cq (C + 2)

q
1−q
(∥∥PSθ0

∥∥
Jfθ0

→2
+
∥∥X+

Tθ0

∥∥
2→2

∥∥XSθ0

∥∥
Jfθ0

→2

)
(1 + c

∥∥α0

∥∥
2
)

q
q−1(

1− J◦fθ0

(
PSθ0

(η0 − fθ0)
)) ]∥∥ζ∥∥ 1

q−1

2 ,

∥∥∥θ̂PEN

n − θ0

∥∥∥
2
≤

[∥∥X+
Tθ0

∥∥
2→2

(q − 1)1/q 2
1

(1−q) (1 + c
∥∥α0

∥∥
2
)

1
q−1

+

q−1
cq 2

1
1−q
(∥∥PSθ0

∥∥
Jfθ0

→2
+
∥∥X+

Tθ0

∥∥
2→2

∥∥XSθ0

∥∥
Jfθ0

→2

)
(1 + c

∥∥α0

∥∥
2
)

q
q−1(

1− J◦fθ0

(
PSθ0

(η0 − fθ0)
)) ]∥∥ζ∥∥ 1

q−1

2 .

In particular, for F (u,y) = 1
q ‖y − u‖

q
2 /q, q ∈ [2,+∞[, Assumptions (H.1)-(H.2) are fulfilled with

ϕ(t) = Cqt
q/q, Cq > 0; see Example 4.2.1. In addition, we have ‖∇F (Xθ0,y)‖2 = ‖ξ‖q−1

2 , ξ =

y −Xθ0, and the above bounds now read∥∥∥θ̂EWA

n − θ0

∥∥∥
2
≤

[∥∥X+
Tθ0

∥∥
2→2

(q − 1)1/q (C + 1)1/q2
1

(1−q) (1 + c
∥∥α0

∥∥
2
)

1
q−1

+

q−1
cq (C + 2)

q
1−q
(∥∥PSθ0

∥∥
Jfθ0

→2
+
∥∥X+

Tθ0

∥∥
2→2

∥∥XSθ0

∥∥
Jfθ0

→2

)
(1 + c

∥∥α0

∥∥
2
)

q
q−1(

1− J◦fθ0

(
PSθ0

(η0 − fθ0)
)) ]

‖ξ‖2 ,

∥∥∥θ̂PEN

n − θ0

∥∥∥
2
≤

[∥∥X+
Tθ0

∥∥
2→2

(q − 1)1/q 2
1

(1−q) (1 + c
∥∥α0

∥∥
2
)

1
q−1

+

q−1
cq 2

1
1−q
(∥∥PSθ0

∥∥
Jfθ0

→2
+
∥∥X+

Tθ0

∥∥
2→2

∥∥XSθ0

∥∥
Jfθ0

→2

)
(1 + c

∥∥α0

∥∥
2
)

q
q−1(

1− J◦fθ0

(
PSθ0

(η0 − fθ0)
)) ]

‖ξ‖2 .

with the choice λn = c

∥∥ξ∥∥q−1

2
n and β = C2

q
1−q

∥∥ξ∥∥q
2

np . In plain words, this bound tells us that the

distance of θ0 to θ̂
EWA

n or to any minimizer θ̂
PEN

n is within a factor of the noise level. This justi-
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fies the terminology “linear convergence rate” widely used in the inverse problem literature; see the
monograph [131].

5.4 Bounds with a random design

The non-degenerate source condition (first part of (5.4)) is an abstract condition, which is not trivial
to check in practice. In fact, exhibiting a valid non-degenerate certificate is not obvious for a general
design X. Our aim now is to answer this question when the design is drawn from the standard
Gaussian ensemble, i.e. Xi,j ∼

i.i.d.
N (0, 1)2. This will allow us to derive sample complexity bounds, i.e.

lower bounds on the number of observations n, which will ensure that (5.4) holds with overwhelming
probability on the design.

Throughout this section, to lighten the notation, we drop the dependence on θ0 of T , S, e and f,
i.e. we denote T def

= Tθ0 and similarly for the other quantities. We will also denote d def
= dim(T ).

5.4.1 Minimal norm certificate

Definition 5.4.1 (Linearized pre-certificate). Assume that

ker(X) ∩ T = {0}.

The “linearized pre-certificate” at θ0 is

ηF
def
= X> Argmin

X>α∈aff(∂J(θ0))

∥∥α∥∥
2
.

The subscript “F” is a tribute to J.-J. Fuchs who first introduced this certificate in the context of
stable support recovery in linear regression by solving the classical Lasso problem [72]. It can be easily
shown, by definition of the model subspace T , that that ηF can be equivalently expressed in closed
form as

ηF = X>X+,>
T e,

whence the name “linearized pre-certificate”.

Remark 5.4.2. It can be shown, see e.g. [147, Proposition 1], that if ηF ∈ D̆θ0 , then ηF is actually
the minimal `2-norm dual certificate, i.e.

ηF = X> Argmin
X>α∈∂J(θ0)

∥∥α∥∥
2
.

This certificate plays a pivotal role in the compressed sensing literature.

5.4.2 Bounds on the number of measurements

We now investigate under which condition we can ensure that ηF ∈ D̆θ0 with high probability, or
equivalently, from Theorem 2.4.2(i), that

J◦f
(

PS(ηF − f)
)
< 1.

Our approach is inspired by that of [23]. The key ingredient is the fact that, owing to the isotropy
of the Gaussian ensemble, αF

def
= X+,>

T e and X>S are independent, no matter what T is. Thus, for
some τ > 0 and ν ∈]0, 1]

P
(
J◦f
(

PS(ηF − f)
)
≥ ν

)
≤ P

(
J◦f
(

PS(ηF − f)
)
≥ ν

∣∣∣∥∥αF

∥∥
2
≤ τ

)
+ P

(∥∥αF

∥∥
2
≥ τ

)
. (5.5)

2Another normalization most used in the the compressive sensing literature is to take the entries with variance 1/n.
This normalization implies that the columns of X are unit-normed with high probability. Our results can be adapted
easily for such a normalization.
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The first term in this inequality will be bounded on a case-by-case basis, and uses the fact that
conditionally on αF, the entries of ηF = X>αF are i.i.d. N (0,

∥∥αF

∥∥2

2
). For the second term, observe

that as long as n ≥ d, XT is injective. Thus∥∥αF

∥∥2

2
=
〈
e,
(
X>TXT

)−1
e
〉
.(

X>TXT

)−1 is an inverse Wishart matrix with n degrees of freedom. To estimate the deviation of
this quadratic form, we use classical results on inverse χ2 random variables with n− d+ 1 degrees of
freedom and we get the tail bound

P
(∥∥αF

∥∥
2
≥ τ

)
≤ e−

t2

4(n−d+1) (5.6)

for τ =

∥∥e∥∥
2√

n−d+1−t and t > 0.
We now turn to bounding the first term in (5.5) on a case-by-case basis.

5.4.2.1 Finite gauge of a polytope

We here suppose that J is a finite gauge of a polytope C. We use the shorthand notation VS for the
vertices of PS(C). We can assert the following.

Proposition 5.4.3. Assume that f is chosen such that κ def
= ν + infv∈VS 〈v, f〉 > 0. Let a def

=

κ−2
∥∥e∥∥2

2
maxv∈VS

∥∥v∥∥2

2
. If X is drawn from the standard Gaussian ensemble with

n ≥ 2δa log(|VS |/2) + d, for some δ > 1,

then
J◦f
(

PS(ηF − f)
)
< ν ∈]0, 1],

with probability at least 1− 2|VS |/2
−
(√

δ
2a

+δ−1−
√

δ
2a

)2

.

In turn, with high probability, (5.4) and the parameter estimation bounds of Theorem 5.3.6 hold
with α0 = αF and η0 = ηF ∈ D̆θ0 .

Proof. From [145, Proposition 5(iii)], and the fact that a gauge is non-negative, we have,

J◦f (ηS) = inf
τ≥0

max(J◦(τf + ηS), τ) ≤ J◦(ηS) = σC(ηS) = max
v∈C
〈ηS ,v〉 = max

v∈VS
〈η,v〉.

Thus, using a union bound and classical tail bounds of the Gaussian distribution, we get

P
(
J◦f (PS(ηF − f)) ≥ ν

∣∣∣∥∥αF

∥∥
2
≤ τ

)
≤ P

(
max
v∈VS

〈ηF,v〉 ≥ κ
∣∣∣∥∥αF

∥∥
2
≤ τ

)
≤ |VS |max

v∈VS
P
(
〈ηF,v〉 ≥ κ

∣∣∣∥∥αF

∥∥
2
≤ τ

)
≤ |VS |/2 max

v∈VS
e

− κ2

2τ2

∥∥v∥∥2

2

≤ |VS |/2e
− κ2

2τ2 maxv∈VS

∥∥v∥∥2

2 .

Set q = n − d + 1, which satisfies q ≥ 1 under the restricted injectivity assumption. With the choice
of τ devised above, we get

P
(
J◦f (PS(ηF − f)) ≥ 1

∣∣∣∥∥αF

∥∥
2
≤ τ

)
≤ |VS |/2e−

q−t
2a . (5.7)

Equating the arguments of the exponentials in (5.6)-(5.7), and solving

t2

4q
+

t

2a
−
(
q

2a
− log

(
|VS |

2

))
= 0
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for t to get equal probabilities, we obtain

t =
q

a


√√√√√1 + 2a

1−
2a log

(
|VS |

2

)
q

− 1

 .

Setting
δ =

q

2a log
(
|VS |

2

) ,

we get under the bound on n that δ > 1, and

t = 2δ log

(
|VS |

2

)(√
1 + 2a

δ − 1

δ
− 1

)
.

Inserting t in one of the probability terms, and after basic algebraic rearrangements, we get the claimed
probability of success.

Let us now exemplify Proposition 5.4.3.

Example 5.4.4 (Lasso). Denote I = supp(θ0). From (2.7), we have PS f = 0 hence κ = ν,
∥∥e∥∥2

2
=

|I| = s. Moreover, V is the set of unit-norm one-sparse vectors. Thus

|VS | = 2(p− s) ≤ 2p, d = s and max
v∈VS

∥∥v∥∥
2

= 1.

Taking
n ≥ 2δν−2s log(p) + s, for some δ > 1,

we have
‖(ηF)Ic‖∞ < ν

with probability at least 1 − 2p
−
(√

δν2

2s
+δ−1−

√
δν2

2s

)2

. The bound on n coincides with that of [23,
Theorem 1.1].

Example 5.4.5 (Anti-sparsity). Recall the discussion of Section 2.4.3.4. Denote Isat the saturation
of θ0 and set s = |Isat|. We assume s ≥ 2 since s = 1 is trivial. The `∞ norm is the gauge of the
hypercube whose vertices are V = {±1}p. Thus

|V| = 2p.

Moreover,
S = Span ((bi)i∈Isat) , dim(S) = s− 1 and d = p− s+ 1,

where the j-th entry of bi is 
1− sgn((θ0)j)/s if j = i,

− sgn((θ0)j)/s if i 6= j ∈ Isat,

0 if j /∈ Isat.

The projection of the hypercube on S is a (s − 1)-dimensional zonotope with at most s generators
collinear to (bi)i∈Isat . A classical exact upper bound on the number of vertices of a zonotope gives, see
e.g. [65],

|VS | ≤ 2

s−2∑
i=0

(
s− 1

i

)
= 2

(
s−1∑
i=0

(
s− 1

i

)
− 1

)
= 2(2s−1 − 1) ≤ 2s,

where we used the binomial theorem.
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On the other hand, we have PS f = 0 hence κ = ν, and
∥∥e∥∥2

2
= 1/s. Moreover, a (crude) bound

yields
max
v∈VS

∥∥v∥∥
2
≤ √p.

Thus, taking
n ≥ (1 + 2δν−2 log(2))p− s+ 1, for some δ > 1,

(5.4) holds with probability at least 1 − 2 2
−(s−1)

(√
δν2s
2p

+δ−1−
√
δν2s
2p

)2

. This is similar to the sample
bound in [145, Theorem 7], and that by [58] who studied sample complexity thresholds for noiseless
recovery from random projections of the hypercube. Though the proof argument of the former was
tied to the structure of the subdifferential gauge J◦f associated to the `∞ norm.

5.4.2.2 Analysis-group Lasso

Consider the analysis-group Lasso penalty, see Section 2.4.3.3, with L blocks of equal size K. Let
I = suppB(D>θ0), s = |I| the number of active blocks in D>θ0, and Λ =

⋃
i∈I bi, and Λc its

complement. We have
S = Span(DΛc).

Moreover, [145, Proposition 10(iii)] tells us that

f = De

∥∥∥∥
1,2

D>θ0
and

J◦f (ηS) = inf
ω∈Ker(DΛc )

max
i∈Ic

∥∥(D+
ΛcηS + ω)bi

∥∥
2
≤ max

i∈Ic

∥∥(D+
ΛcηS)bi

∥∥
2

= max
i∈Ic

∥∥(D+
Λcη)bi

∥∥
2
,

where we used properties of the Moore-Penrose pseudo-inverse that yield

D+
Λc PS = D+

Λc .

DenoteAi def
= D+,∗

Λc PbiD
+
Λc , which is a symmetric semidefinite positive matrix, and r def

= maxi∈Ic rank(Ai).

Proposition 5.4.6. Assume that f is such that κ def
= ν −maxi∈Ic

∥∥f∥∥
Ai
> 0. If X is drawn from the

standard Gaussian ensemble with

n ≥ (1 + δ)

∥∥D∥∥2

2→2

∥∥D+
Λc

∥∥2

2→2

κ2
s

(
K + 4 max

(
1,

√
r

4 log(L)

)
log(L)

)
+ dim(Ker(D>Λc)),

for some δ > 0, then
J◦f
(

PS(ηF − f)
)
< ν ∈]0, 1],

with probability at least

1−

L−δ/2 + L
−
δ2‖D‖22→2‖D+

Λc‖
2

2→2
κ2(4δ+4)

 .

Thus, with high probability, (5.4) and the parameter estimation bounds of Theorem 5.3.6 hold with
α0 = αF and η0 = ηF ∈ D̆θ0 .

Proof. With a union bound, we have

P
(
J◦f (PS(ηF − f)) ≥ ν

∣∣∣∥∥αF

∥∥
2
≤ τ

)
≤ P

(
max
i∈Ic

∥∥(D+
Λc(η − f))bi

∥∥
2
≥ ν

∣∣∣∥∥αF

∥∥
2
≤ τ

)
≤ Lmax

i∈Ic
P
(∥∥η∥∥

Ai
≥ κ

∣∣∣∥∥αF

∥∥
2
≤ τ

)
≤ Lmax

i∈Ic
P
(∥∥Z∥∥

Ai
≥ κ/τ

)
,
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where Z is a centered standard Gaussian vector. We then need to bound the quadratic form
∥∥Z∥∥

Ai
,

i.e. a Gaussian chaos of order 2. From [16, Example 2.12], we get

P
(∥∥Z∥∥2

Ai
− E

[∥∥Z∥∥2

Ai

]
≥ κ2/τ2 − E

[∥∥Z∥∥2

Ai

])
≤ exp

−min


(
κ2/τ2 − E

[∥∥Z∥∥2

Ai

])2

4
∥∥Ai

∥∥2

F

,
κ2/τ2 − E

[∥∥Z∥∥2

Ai

]
4
∥∥Ai

∥∥
2→2




with the proviso that κ2/τ2 ≥ E
[∥∥Z∥∥2

Ai

]
. By the Von Neumann’s trace inequality, we have

E
[∥∥Z∥∥2

Ai

]
= tr(Ai) = tr(PbiD

+
ΛcD

+,∗
Λc ) ≤ K

∥∥D+
Λc

∥∥2

2→2
.

Furthermore ∥∥Ai
∥∥

2→2
≤
∥∥D+

Λc

∥∥2

2→2
and

∥∥Ai
∥∥2

F
≤ r
∥∥Ai

∥∥2

2→2
≤ r
∥∥D+

Λc

∥∥4

2→2
.

Altogether, this leads to

P
(∥∥Z∥∥

Ai
≥ κ/τ

)
≤ exp

(
−1

4
min

(
r−1

(
κ2(τ

∥∥D+
Λc

∥∥
2→2

)−2 −K
)2
, κ2(τ

∥∥D+
Λc

∥∥
2→2

)−2 −K
))

provided that κ2/τ2 ≥ K
∥∥D+

Λc

∥∥2

2→2
. This is true with

τ =

√
1

n− d+ 1− t
‖e‖2 ≤

√
s

n− d+ 1− t
∥∥D∥∥

2→2
,

the choice made for n and

t =
δ

2

∥∥D∥∥2

2→2

∥∥D+
Λc

∥∥2

2→2

κ2
s

(
K + 4 max

(
1,

√
r

4 log(L)

)
log(L)

)
.

Substituting appropriately, we arrive at

P
(
J◦f (PS(ηF − f)) ≥ ν

∣∣∣∥∥αF

∥∥
2
≤ τ

)
≤ L exp

(
−min

(
r−1

(
2(1 + δ/2) max

(
1,

√
r

4 log(L)

)
log(L)

)2

, (1 + δ/2) max

(
1,

√
r

4 log(L)

)
log(L)

))
≤ L exp

(
−min

(
(1 + δ/2)2 log(L), (1 + δ/2) log(L)

))
≤ L exp (−(1 + δ/2) log(L)) ≤ L−δ/2,

and

P
(∥∥αF

∥∥
2
≥ τ

)
≤ e−

t2

4(n−d+1)

≤ exp

−δ
2 ‖D‖22→2

∥∥D+
Λc

∥∥2

2→2
s

(
K + 4 max

(
1,
√

r
4 log(L)

)
log(L)

)
κ2(16δ + 16)


≤ exp

(
−
δ2 ‖D‖22→2

∥∥D+
Λc

∥∥2

2→2
log(L)

κ2(4δ + 4)

)

= L
−
δ2‖D‖22→2‖D+

Λc‖
2

2→2
κ2(4δ+4) .

Summing these the last two bounds gives the desired probability.

When D = Id, i.e. the group Lasso, we have the following corollary.
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Corollary 5.4.7. If X is drawn from the standard Gaussian ensemble with

n ≥ (1 + δ)ν−2s
(√

K + 2
√

log(L)
)2

+ sK,

for some δ > 0, then
max
i∈Ic
‖(ηF)bi‖2 < ν

with probability at least

1−
(
L−δ/2 + L

− δ2

ν2(4δ+4)

)
.

We recover a sample bound similar to [23, Theorem 3.1].

Proof. First, observe that for the group Lasso, it can be straightforwardly checked that

dim(Ker(D>Λc) = |Λ| = sK,
∥∥D∥∥

2→2
=
∥∥D+

Λc

∥∥
2→2

= 1, κ = ν and r = K.

Under the sample lower-bound on n of the corollary, that of Proposition 5.4.6 is in force. We conclude
applying the latter.

5.4.2.3 Nuclear norm

We now turn to the case where J is the nuclear norm. Recall the notations of Section 2.4.3.5. For
matrices θ ∈ Rp1×p2 , a Gaussian measurement map X takes the form of a linear operator whose i-th
component is given by the Frobenius scalar product

X(θ)i = tr((Xi)>θ) =
〈
Xi,θ

〉
F
,

where each matrix Xi ∈ Rp1×p2 is drawn from the standard Gaussian ensemble. For the nuclear norm,
we have

PS(θ) = U⊥θV ⊥, PS(f) = 0, and J◦f
(

PS(η − f)
)
(η) =

∥∥∥U⊥ηV ⊥∥∥∥
2→2

,

where θ0 = U diag(σ(θ0))V > is a reduced rank-r SVD decomposition of θ0, U⊥ = Id − UU>,
V ⊥ = Id − V V >, and Id is the identity operator on the space of p1 × p2 matrices (should not be
confused with the identity matrix).

We get the following results, whose proof is a slight modification of that of [23, Theorem 1.2].

Proposition 5.4.8. Let θ0 ∈ Rp1×p2 be a rank-r matrix. If the Gaussian measurement map X is
drawn with

n ≥ δr((1 + 2ν−2)(p1 + p2)− (1 + 4ν−2)r), for some δ > 1,

then with probability at least 1− 2e−ν
2(δ−1) max(p1,p2)/8∥∥U⊥ηFV ⊥∥∥2→2

< ν.

Observe that the sample bound ensures n ≥ d = r(p1 + p2 − r).

5.4.3 Bounds on the parameter estimates

Here, we are interested in how the bounds of Theorem 5.3.6 scale for each of the examples studied in
the previous section.

In the above section, we have shown that for ν ∈]0, 1],
1

1− J◦f
(

PS(ηF − f)
) ≤ 1

1− ν

with high probability. To complete our analysis, we need to bound
∥∥X+

T

∥∥
2→2

,
∥∥PS

∥∥
Jf→2

, and∥∥XS

∥∥
Jf→2

. This will again be treated for each case separately.
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5.4.3.1 Lasso

Denote I = supp(θ0) and s = |I|. From (2.7), we have PS f = 0,
∥∥e∥∥2

2
= |I| = s, and Jf = ‖·‖1. Thus∥∥PS

∥∥
1→2

= sup
θ

∥∥θIc∥∥2∥∥θIc∥∥1

= 1.

In addition, we have for any θ ∈ Rp∥∥∑
i∈IcXiθi

∥∥
2∥∥θIc∥∥1

≤ max
i∈Ic

∥∥Xi

∥∥
2

∑
i∈Ic |θi|∥∥θIc∥∥1

= max
i∈Ic

∥∥Xi

∥∥
2
,

whence we get the upper bound ∥∥XIc
∥∥

1→2
≤ max

i∈Ic

∥∥Xi

∥∥
2
.

By a union bound and Gaussian concentration of Lipschitz functions, it is immediate to show that

max
i∈Ic

∥∥Xi

∥∥
2
≤
√
n+

√
2t log(p), for some t > 1,

with probability at least 1− p1−t.
Let us turn to bounding

∥∥X+
I

∥∥
2→2

. Assume that p ≥ 2. Arguing as in the Davidson-Szarek
concentration inequality for the extreme singular values for Gaussian random matrices [54] (see also
[139, Proposition 3.3]), we have for any ε > 0,

P
(∥∥X+

I

∥∥
2→2
≤ 1/ε

)
= P (σmin(XI) ≥ ε) ≥ 1− e−(

√
n−
√
s−ε)2/2

provided that n > (
√
d+ ε)2. This condition is in force for n obeying the bound in Example 5.4.4 and

ε =
√
n−

√
2s log(p) > 0. We thus deduce that

∥∥X+
I

∥∥
2→2
≤ n−1/2

1−
√

2s log(p)
n

≤ 1

1− δ−1/2
n−1/2

and ∥∥αF

∥∥
2
≤
∥∥X+

I

∥∥
2→2

∥∥ sgn((θ0)I)
∥∥

2
≤ 1

1− δ−1/2

√
s

n

with probability exceeding 1 − e−(
√

2 log(p)−1)2/2. Thus, choosing t = δ, with probability at least
1− (p1−δ + e−(

√
2 log(p)−1)2/2) the following holds

∥∥X+
I

∥∥
2→2

∥∥XIc
∥∥

1→2
≤ 1

1− δ−1/2

(
1 +

√
2δ log(p)

n

)
≤ 1

1− δ−1/2
(1 + s−1/2) ≤ 2

1− δ−1/2
.

To sum up, we have proved the following.

Proposition 5.4.9. Consider θ̂
EWA

n and θ̂
PEN

n with the Lasso penalty under the conditions of Theo-
rem 5.3.6. If X is drawn from the standard Gaussian ensemble with

n ≥ 2δν−2s log(p) + s, for some δ > 1 and ν ∈]0, 1],

then with probability at least

1−

2p
−
(√

δν2

2s
+δ−1−

√
δν2

2s

)2

+ p1−δ + e−(
√

2 log(p)−1)2/2


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the following holds:∥∥∥θ̂EWA

n − θ0

∥∥∥
2
≤ 1

1− δ−1/2
n−1/2ϕ−1

(
(C + 1)ϕ+

(∥∥ζ∥∥
2

(
1 + c

1

1− δ−1/2

√
s

n

)))

+
(C + 2)

(
1 + 2

1−δ−1/2

)
c
∥∥ζ∥∥

2
(1− ν)

ϕ+

(∥∥ζ∥∥
2

(
1 + c

1

1− δ−1/2

√
s

n

)
/2

)
,

∥∥∥θ̂PEN

n − θ0

∥∥∥
2
≤ 1

1− δ−1/2
n−1/2ϕ−1

(
ϕ+

(∥∥ζ∥∥
2

(
1 + c

1

1− δ−1/2

√
s

n

)))

+
2
(

1 + 2
1−δ−1/2

)
c
∥∥ζ∥∥

2
(1− ν)

ϕ+

(∥∥ζ∥∥
2

(
1 + c

1

1− δ−1/2

√
s

n

)
/2

)
.

In the setting of Example 5.3.7, these bounds read∥∥∥θ̂EWA

n − θ0

∥∥∥
2
≤

[
1

1− δ−1/2
n−1/2 (q − 1)1/q (C + 1)1/q2

1
(1−q)

+

q−1
cq (C + 2)

q
1−q
(

1 + 2
1−δ−1/2

)(
1 + c 1

1−δ−1/2

√
s
n

)
1− ν

]((
1 + c

1

1− δ−1/2

√
s

n

)∥∥ζ∥∥
2

) 1
q−1

,

∥∥∥θ̂PEN

n − θ0

∥∥∥
2
≤

[
1

1− δ−1/2
n−1/2 (q − 1)1/q 2

1
(1−q)

+

q−1
cq 2

q
1−q
(

1 + 2
1−δ−1/2

)(
1 + c 1

1−δ−1/2

√
s
n

)
1− ν

]((
1 + c

1

1− δ−1/2

√
s

n

)∥∥ζ∥∥
2

) 1
q−1

.

For q = 2, this scaling is consistent with what is encountered in the compressed sensing literature.

5.4.3.2 Anti-sparsity

Let Isat be the saturation of θ0 and s = |Isat|. Recall that (e)Isat = sgn((θ0)sat
I )/s and 0 otherwise.

Since PS f = 0, Jf =
∥∥ · ∥∥∞ on S; see [145, Proposition 5(iv)]. Moreover, S is contained in the linear

subspace of vectors supported on Isat. In turn∥∥PS
∥∥
∞→2

= sup
θ∈S

∥∥θ∥∥
2∥∥θ∥∥∞ ≤ sup

θ

∥∥θIsat

∥∥
2∥∥θIsat

∥∥
∞

=
√
s.

Similarly, we have∥∥XS

∥∥
Jf→2

= sup
θ

∥∥XIsatθS
∥∥

2∥∥θS∥∥∞ ≤
∥∥XIsat

∥∥
2→2

∥∥PS
∥∥
∞→2

≤
√
s
∥∥XIsat

∥∥
2→2

.

In view of the bound on n in Example 5.4.5, we then apply the concentration inequality for the largest
singular value of the Gaussian matrix XIsat to show that∥∥XIsat

∥∥
2→2
≤ δ(
√
n+
√
s), δ > 1,

with probability at least 1− p1−δ. Following the same steps as for the Lasso (see previous section), we
also have ∥∥X+

T

∥∥
2→2
≤ Cδn−1/2

and ∥∥αF

∥∥
2
≤
∥∥X+

T

∥∥
2→2

s−1/2 ≤ Cδ

√
1

sn

with high probability for some constant Cδ that depends on δ. We then have∥∥X+
T

∥∥
2→2

∥∥XS

∥∥
Jf→2

≤ Cδδ
(

1 +

√
s

n

)√
s
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with large probability. Altogether, we have the following estimation bounds.

Proposition 5.4.10. Consider θ̂
EWA

n and θ̂
PEN

n with the `∞ penalty under the conditions of Theo-
rem 5.3.6. If X is drawn from the standard Gaussian ensemble with

n ≥ (1 + 2δν−2 log(2))p− s+ 1, for some δ > 1 and ν ∈]0, 1],

then with large probability the following holds:∥∥∥θ̂EWA

n − θ0

∥∥∥
2
≤ Cδn−1/2ϕ−1

(
(C + 1)ϕ+

(∥∥ζ∥∥
2

(
1 + cCδ

√
1

sn

)))

+
√
s

2(C + 2)
(
1 + δCδ

(
1 +

√
s
n

))
c
∥∥ζ∥∥

2
(1− ν)

ϕ+

(∥∥ζ∥∥
2

(
1 + cCδ

√
1

sn

)
/2

)
,

∥∥∥θ̂PEN

n − θ0

∥∥∥
2
≤ Cδn−1/2ϕ−1

(
ϕ+

(∥∥ζ∥∥
2

(
1 + cCδ

√
1

sn

)))

+
√
s

4
(
1 + δCδ

(
1 +

√
s
n

))
c
∥∥ζ∥∥

2
(1− ν)

ϕ+

(∥∥ζ∥∥
2

(
1 + cCδ

√
1

sn

)
/2

)
.

In the context of Example 5.3.7, these bounds specialize to∥∥∥θ̂EWA

n − θ0

∥∥∥
2
≤

[
Cδn

−1/2 (q − 1)1/q (C + 1)1/q2
1

(1−q)

+
√
s

q−1
cq (C + 2)

q
1−q 2(C + 2)

(
1 + δCδ

(
1 +

√
s
n

)) (
1 + cCδ

√
1
sn

)
1− ν

]
((

1 + cCδ

√
1

sn

)∥∥ζ∥∥
2

) 1
q−1

,

∥∥∥θ̂PEN

n − θ0

∥∥∥
2
≤

[
Cδn

−1/2 (q − 1)1/q 2
1

(1−q)

+
√
s

q−1
cq (C + 2)

q
1−q 4

(
1 + δCδ

(
1 +

√
s
n

)) (
1 + cCδ

√
1
sn

)
1− ν

]((
1 + cCδ

√
1

sn

)∥∥ζ∥∥
2

) 1
q−1

.

The dominant term is the one that scales at least as O(
√
s), which is also consistent with the bounds

we got for the prediction oracle inequalities in the previous chapter. This reflects the anticipated
intuitive idea that the larger the saturation support, the more difficult the estimation.

5.4.3.3 Group Lasso

We here discuss the group Lasso for the sake of simplicity, but a similar bound can be derived for the
analysis version. Recall the group Lasso penalty (Section 2.4.3.2) with L blocks of equal size K. Let
I = suppB(θ0), s = |I| the number of active blocks in θ0, and Λ =

⋃
i∈I bi, and Λc its complement.

By the triangle inequality, we can upper-bound∥∥θΛc
∥∥

2∥∥θΛc
∥∥

1,2

≤
∑

i∈Ic
∥∥θbi∥∥2∑

i∈Ic
∥∥θbi∥∥2

= 1,

and thus ∥∥PS
∥∥

(1,2)→2
= sup

θ

∥∥θΛc
∥∥

2∥∥θΛc
∥∥

1,2

= 1.
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Moreover, for any θ ∈ Rp∥∥∑
i∈IcXbiθbi

∥∥
2∑

i∈Ic
∥∥θbi∥∥2

≤
∑

i∈Ic
∥∥Xbi

∥∥
2→2

θbi∑
i∈Ic

∥∥θbi∥∥2

≤ max
i∈Ic

∥∥Xbi

∥∥
2→2

.

This yields ∥∥XΛc
∥∥

(1,2)→2
≤ max

i∈Ic

∥∥Xbi

∥∥
2→2

.

Under the sample bound on n in Corollary 5.4.7, we can invoke the concentration of the largest singular
value of

∥∥Xbi

∥∥
2→2

and a union bound to get

max
i∈Ic

∥∥Xbi

∥∥
2→2
≤
√
n+
√
K +

√
2t log(L), for some t > 1,

with probability at least 1− L1−t.
To bound

∥∥X+
Λ

∥∥
2→2

, we use now concentration of the smallest singular value of XΛ, and we obtain

∥∥X+
Λ

∥∥
2→2
≤ 1
√
n−
√
sK − 2

√
s log(L)

≤ n−1/2

1− (1 + δ)−1/2

with probability larger than 1 − L−2, where we used the sample bound of Corollary 5.4.7 in the last
inequality. It then follows that

∥∥αF

∥∥
2
≤
∥∥X+

Λ

∥∥
2→2

√
s ≤ 1

1− (1 + δ)−1/2

√
s

n
.

Choosing t =
√

1 + δ, δ > 0, and using again the sample bound of Corollary 5.4.7, we have∥∥X+
Λ

∥∥
2→2

∥∥XΛc
∥∥

(1,2)→2
≤ 2

1− (1 + δ)−1/2

with probability exceeding 1 − (L1−
√

1+δ + L−2). Combining this discussion with Theorem 5.3.6 and
Corollary 5.4.7, we have proved the following.

Proposition 5.4.11. Consider θ̂
EWA

n and θ̂
PEN

n with the group Lasso penalty under the conditions of
Theorem 5.3.6. If X is drawn from the standard Gaussian ensemble with

n ≥ (1 + δ)ν−2s
(√

K + 2
√

log(L)
)2

+ sK, for some δ > 0,

then with probability at least

1−
(
L−δ/2 + L

− δ2

ν2(4δ+4) + L1−
√

1+δ + L−2

)
the following holds:∥∥∥θ̂EWA

n − θ0

∥∥∥
2
≤ 1

1− (1 + δ)−1/2
n−1/2ϕ−1

(
(C + 1)ϕ+

(∥∥ζ∥∥
2

(
1 + c

1

1− (1 + δ)−1/2

√
s

n

)))

+
(C + 2)

(
1 + 2

1−(1+δ)−1/2

)
c
∥∥ζ∥∥

2
(1− ν)

ϕ+

(∥∥ζ∥∥
2

(
1 + c

1

1− (1 + δ)−1/2

√
s

n

)
/2

)
,

∥∥∥θ̂PEN

n − θ0

∥∥∥
2
≤ 1

1− (1 + δ)−1/2
n−1/2ϕ−1

(
ϕ+

(∥∥ζ∥∥
2

(
1 + c

1

1− (1 + δ)−1/2

√
s

n

)))

+
2
(

1 + 2
1−(1+δ)−1/2

)
c
∥∥ζ∥∥

2
(1− ν)

ϕ+

(∥∥ζ∥∥
2

(
1 + c

1

1− (1 + δ)−1/2

√
s

n

)
/2

)
.
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For the data loss of Example 5.3.7, these bounds become∥∥∥θ̂EWA

n − θ0

∥∥∥
2
≤

[
1

1− (1 + δ)−1/2
n−1/2 (q − 1)1/q (C + 1)1/q2

1
(1−q)

+

q−1
cq (C + 2)

q
1−q
(

1 + 2
1−(1+δ)−1/2

)(
1 + c 1

1−(1+δ)−1/2

√
s
n

)
1− ν

]
((

1 + c
1

1− (1 + δ)−1/2

√
s

n

)∥∥ζ∥∥
2

) 1
q−1

,

∥∥∥θ̂PEN

n − θ0

∥∥∥
2
≤

[
1

1− (1 + δ)−1/2
n−1/2 (q − 1)1/q 2

1
(1−q)

+

q−1
cq 2

q
1−q
(

1 + 2
1−(1+δ)−1/2

)(
1 + c 1

1−(1+δ)−1/2

√
s
n

)
1− ν

]
((

1 + c
1

1− (1 + δ)−1/2

√
s

n

)∥∥ζ∥∥
2

) 1
q−1

.

5.4.3.4 Nuclear norm

We follow the notation of Section 5.4.2.3. We have∥∥PS
∥∥
∗→F = sup

θ∈S

∥∥θ∥∥
F∥∥θ∥∥∗ = sup

θ∈S

∥∥σ(θ)
∥∥

2∥∥σ(θ)
∥∥

1

= 1.

Moreover, ∥∥X PS
∥∥
∗→2

=
∥∥PSX

∗∥∥
2→S∞ = sup

u∈Rn

∥∥∑n
i=1 ui PS(Xi)

∥∥
2→2∥∥u∥∥

2

.

We now argue that PS(Xi) = U⊥XiV ⊥, and the Xi’s are independent p1 × p2 random matrix with
i.i.d. standard Gaussian entries. It follows that Z def

=
∑n

i=1 ui PS(Xi) is identically distributed to a
rotation of an (p1−r)×(p2−r) Gaussian random matrix whose entries are i.i.d. N (0, n

∥∥u∥∥2

2
). Applying

the concentration inequality for the largest singular value of Z, we get∥∥∑n
i=1 ui PS(Xi)

∥∥
2→2∥∥u∥∥

2

≤ ε
√
n

with probability larger than 1 − e−
(ε−
√
p1−r−

√
p2−r)

2

2 . Set ε = 2t
√
p− r for some t > 1, where p =

max(p1, p2). Since
√
a+
√
b ≤

√
2(a+ b), and owing to the sample bound of Proposition 5.4.8, we can

ensure that ∥∥X PS
∥∥
∗→2
≤ 2t

√
n(p− r),

with high probability. One could define a basis for T and write XT as an n× d dimensional standard
Gaussian matrix. Consequently, and using exactly the same argument as for the previous penalties,
one can show that ∥∥X+

T

∥∥
F→F ≤ Cδn

−1/2,

and ∥∥αF

∥∥
F
≤ Cδ

√
r

n
,

with large probability, where Cδ is a positive constant that depends on δ > 1 in Proposition 5.4.8.
Consequently, taking t = δ, we get∥∥X+

T

∥∥
F→F

∥∥X PS
∥∥
∗→2
≤ 2Cδδ

√
p− r.
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Putting together the above bounds, we have the following claim.

Proposition 5.4.12. Let θ0 ∈ Rp1×p2 be a rank-r matrix. If the Gaussian measurement map X is
drawn with

n ≥ δr((1 + 2ν−2)(p1 + p2)− (1 + 4ν−2)r), for some δ > 1,

then with large probability, the following holds:∥∥∥θ̂EWA

n − θ0

∥∥∥
F
≤ Cδn−1/2ϕ−1

(
(C + 1)ϕ+

(∥∥ζ∥∥
2

(
1 + cCδ

√
r

n

)))
+

(C + 2) (1 + 2Cδδ
√
p− r)

c
∥∥ζ∥∥

2
(1− ν)

ϕ+

(∥∥ζ∥∥
2

(
1 + cCδ

√
r

n

)
/2

)
,

∥∥∥θ̂PEN

n − θ0

∥∥∥
F
≤ Cδn−1/2ϕ−1

(
ϕ+

(∥∥ζ∥∥
2

(
1 + cCδ

√
r

n

)))
+

2 (1 + 2Cδδ
√
p− r)

c
∥∥ζ∥∥

2
(1− ν)

ϕ+

(∥∥ζ∥∥
2

(
1 + cCδ

√
r

n

)
/2

)
.

Revisiting Example 5.3.7 with these bounds, we obtain∥∥∥θ̂EWA

n − θ0

∥∥∥
2
≤

[
Cδn

−1/2 (q − 1)1/q (C + 1)1/q2
1

(1−q)

+

q−1
cq (C + 2)

q
1−q (1 + 2cCδδ

√
p− r)

(
1 + cCδ

√
r
n

)
1− ν

]((
1 + cCδ

√
r

n

)∥∥ζ∥∥
2

) 1
q−1

,

∥∥∥θ̂PEN

n − θ0

∥∥∥
2
≤

[
Cδn

−1/2 (q − 1)1/q 2
1

(1−q)

+

q−1
cq 2

q
1−q (1 + 2cCδδ

√
p− r)

(
1 + cCδ

√
r
n

)
1− ν

]((
1 + cCδ

√
r

n

)∥∥ζ∥∥
2

) 1
q−1

.

5.4.4 Beyond Gaussian design

One may wonder whether the above results can be extended beyond Gaussian designs. For instance,
adapting the arguments of [23], the results for polyhedral regularization and the (analysis) group Lasso
can be extended to matrices whose entries are i.i.d. sub-Gaussian (see [23]). The situation is however
much more intricate for the nuclear norm.

Another approach, which still to be investigated, is to go beyond the dual certificate ηF. The
reasoning chain we are thinking of, which is inspired by [143] (see also [146]), is to investigate the
connections between existence of a dual certificate satisfying (5.4), and injectivity of X on the so-
called descent cone of J at θ0. As advocated in [37], the latter property can be characterized very
sharply via the Gaussian width of the descent cone of J (restricted to a sphere). The Gaussian width is
closely related to another geometric quantity called the statistical dimension in conic integral geometry,
which has been investigated in the context of recovery from Gaussian measurements in [1], and later
extended in [139] for sub-Gaussian designs and even beyond.
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Chapter 6

EWA for Non-smooth Priors through
Langevin Diffusion and Proximal Splitting

Main contributions of this chapter

I Propose two algorithms based on forward-backward proximal splitting to sample from
non-smooth distributions which are not necessarily differentiable nor log-concave. Their
perfomances are verified by theoretical consistency guarantees.

I Apply these algorithms to compute the EWA with several popular penalties in the
literature.

The results in this chapter can be found in [100].
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6.1 Introduction

In this chapter, we propose proximal splitting-type algorithms for sampling from distributions whose
densities are not necessarily smooth nor log-concave. Our approach brings together tools from, on
the one hand, variational analysis and non-smooth optimization, and on the other hand, stochastic
differential equations (SDE), and in particular the Langevin diffusion. We establish in particular con-
sistency guarantees of our algorithms seen as discretization schemes in this context. These algorithms
are then applied to compute the exponentially weighted aggregates for regression problems involving
non-smooth priors encouraging some notion of simplicity/complexity.

6.1.1 Problem statement

We consider the EWA (1.12) with Θ = Rp and Jλn = 1
nJλ where Jλ : Rp → R is the regularizing

penalty promoting some specific notion of simplicity/low-complexity which depends on a vector of
parameters λ. Hence, the aggregators are defined via the probability density function

µ̂n(θ) =
exp (−V (θ)/(nβ))∫

Rp exp (−V (ω)/(nβ)) dω
,

where V (θ)
def
= F (Xθ,y) + Jλ(θ). Without loss of generality, we consider nβ as β.

In this chapter, we focus on the computation of EWA using the Langevin diffusion (see Section
1.1.5) with a large family of priors µ̂n which are not necessarily differentiable nor log-concave.

6.1.2 Chapter organization

Consider the SDE (1.13) with Moreau-Yosida regularized version of µ under mild assumptions of the
latter. Well-posedness of this SDE and consistency guarantees for its discrete approximations are
proven in Section 6.2. Section 6.3 provides a large class of functions, namely prox-regular functions,
for which the previous theoretical analysis applies. From this analysis, two algorithms are derived in
Section 6.4 and applied in Section 6.5 to compute the EWA with several penalties.
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6.2 Langevin diffusion with Moreau-Yosida regularization

We aim to enlarge the family of µ covered by [52, 111, 62, 63] by relaxing some underlying conditions.
Especially, µ is not necessarily differentiable nor log-concave. Namely, denote C̃1,+(Rd) the class of
differentiable functions f : Rd → R whose gradient is locally Lipschitz continuous and there exists
K > 0 such that

〈x,∇f(x)〉 ≤ K(1 +
∥∥x∥∥2

2
), ∀x ∈ Rd,

our target distributions µ is defined as

µ(θ) ∝ exp
(
−
(
L(θ) +H ◦D>(θ)

))
, (6.1)

where D ∈ Rp×q, H : Rq → R and L ∈ C̃1,+(Rp). To avoid trivialities, from now on, we assume that
Argmin(H) 6= ∅. In our framework, let M be a symmetric definite positive matrix, we impose the
following assumptions on H.

(H.1) H ∈ J (Rq).

(H.2) proxMγH is single-valued.

(H.3) proxMγH is locally Lipschitz continuous.

(H.4) There exists C > 0 such that〈
D>θ,proxMγH(D>θ)

〉
M
≤ C(1 +

∥∥θ∥∥2

2
), ∀θ ∈ Rp.

Let us define the following SDE with the Moreau-Yosida regularized version of H

dL(t) = ψ(L(t))dt+ dW (t), t > 0,

where ψ : θ ∈ Rp 7→ −1

2
∇
(
L+ (M ,γH) ◦D>

)
(θ),

(6.2)

ψ is the drift coefficient.
Recall that Assumptions (H.1) and (H.2) are mild assumptions required to establish key properties

of Moreau-Yosida regularization stated in Lemmas 2.5.5 and 2.5.4. Lemma 2.5.5 allows us to compute
∇M ,γH by exploiting its the relation between ∇M ,γH and proxMγH .

To guarantee well-posedness (existence and uniqueness) and discretization consistency of the SDE (6.2),
we will also need Assumptions (H.3) and (H.4).

6.2.1 Well-posedness

We start with the following characterization of the drift ψ.

Proposition 6.2.1. Assume that Assumptions (H.1), (H.2), (H.3) and (H.4) hold. Then,

〈ψ(θ),θ〉 ≤ K(1 +
∥∥θ∥∥2

2
), for some K > 0, (6.3)

and

ψ is locally Lipschitz continuous. (6.4)

Proof. In view of Lemma 2.5.5, the drift term reads

ψ(θ) = −1

2
∇(L+ (M ,γH) ◦D>)(θ) = −1

2
∇L(θ)− 1

2γ
DMD>θ +

1

2γ
DMproxMγH(D>θ).
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Since L ∈ C̃1,+(Rp) and Assumption (H.4) holds, there exist K1 > 0 and K2 > 0 such that

〈ψ(θ),θ〉 = −1

2
〈∇L(θ),θ〉 − 1

2γ

∥∥∥D>θ∥∥∥2

M
+

1

2

〈
proxMγH(D>θ),D>θ

〉
M

≤ K1(1 +
∥∥θ∥∥2

2
) +
‖D‖2→2

2‖M‖2→2

∥∥θ∥∥2

2

2γ
+K2(1 +

∥∥θ∥∥2

2
)

≤ K(1 +
∥∥θ∥∥2

2
),

where K ≥ K1 + K2 +
‖D‖2→2

2‖M‖2→2
2γ . Moreover, under Assumption (H.3), (M ,γH) ◦D> is locally

Lipschitz continuous by virtue of Lemma 2.5.5, which applies thanks to Assumptions (H.1) and (H.2).
Clearly (M ,γH) ◦D> ∈ C̃1,+(Rp). Since C̃1,+(Rp) is closed under addition, we conclude the proof.

The following proposition guarantees the well-posedness of the SDE (6.2).

Proposition 6.2.2. Assume that (6.3) and (6.4) hold. Then, for every initial point L(0) such that
E
[∥∥L(0)

∥∥2

2

]
< +∞,

(i) there exists a unique solution to the SDE (6.2) which is strongly Markovian, and the diffusion is
non-explosive, i.e. E

[∥∥L(t)
∥∥2

2

]
< +∞ for all t > 0,

(ii) L admits an (unique) invariant measure having the density µγ defined as

µγ(θ) =
exp

(
−
(
L(θ) + (M ,γH) ◦D>(θ)

))
Zγ

, (6.5)

where

Zγ =

∫
Rp

exp
(
−
(
L(θ′) + (M ,γH) ◦D>(θ′)

))
dθ′.

Proof. Claim (i) follows by combining Proposition 6.2.1 and [158, Theorem 3.6, Chapter II]. Claim (ii)
is a consequence of Proposition 6.2.1 and [124, Theorem 2.1].

The following proposition answers the natural question on the behaviour of µγ − µ as a function of
γ.

Proposition 6.2.3. Assume that Assumption (H.1) holds. Then, µγ converges to µ in total variation
as γ → 0.

Proof. With some abuse of notation, we denote with the same symbol the measure and its density
with respect to the Lebesgue measure. Thus∥∥µγ − µ∥∥TV

=

∫
RM
|µγ(θ)− µ(θ)| dθ,

where
µγ(θ) = exp

(
−
(
L(θ) + (M ,γH) ◦D>(θ)

))
/Zγ ,

µ(θ) = exp
(
−
(
L(θ) +H ◦D>(θ)

))
/Z,

and

Z =

∫
RM

exp
(
−(L(θ′) +H ◦D>(θ′))

)
dθ′.

In view of Lemma 2.5.4(ii), applying the monotone convergence theorem (c.f. Theorem 2.1.9), we
conclude that Zγ → Z when γ → 0. This together with Lemma 2.5.4(ii) again yield that µγ converges
to µ pointwise. We conclude using Scheffé(-Riesz) theorem (c.f. Theorem 2.1.11).
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6.2.2 Discretization

6.2.2.1 Approach 1

Inserting the identities of Lemma 2.5.5 into (6.2), we get the SDE

dL(t) = −1

2

(
∇L+ γ−1DM

(
Iq − proxMγH

)
◦D>

)
(L(t))dt+ dW (t), L(0) = l0, t > 0. (6.6)

Consider now the forward Euler discretization of (6.6) with step-size δ > 0, which can be rearranged
as

Lk+1 = Lk −
δ

2
∇L(Lk)−

δ

2γ
DM

(
D>Lk − proxMγH(D>Lk)

)
+
√
δZk, t > 0, L0 = l0. (6.7)

Note that by Lemma 2.5.5, and without the stochastic term
√
δZk, (6.7) amounts to a relaxed form

of gradient descent on L and the Moreau envelope of H in the metric M with step-size δ.
From (6.7), an Euler approximate solution is defined as

Lδ(t)
def
= L0 −

1

2

∫ t

0

(
∇L(L(s))− γ−1DM

(
D>L(s)− proxMγH(D>L(s))

))
ds+

∫ t

0
dW (s),

where L(t) = Lk for t ∈ [kδ, (k + 1)δ[. Observe that Lδ(kδ) = L(kδ) = Lk, hence Lδ(t) and L(t) are
continuous-time extensions to the discrete-time chain {Lk}k.

Mean square convergence of the pathwise approximation (6.7) and of its first-order moment can be
established as follows.

Theorem 6.2.4. Assume that (6.3) and (6.4) hold and E
[∥∥L(0)

∥∥r
2

]
< +∞ for any r ≥ 2. Then

∥∥E[Lδ(T )
]
− E [L(T )]

∥∥
2
≤ E

[
sup

0≤t≤T

∥∥Lδ(t)−L(t)
∥∥

2

]
−→
δ→0

0. (6.8)

The convergence rate is of order δ1/2 when proxMγH is globally Lipschitz continuous.

Proof. Owing to Proposition 6.2.1 and [158, Theorem 4.1, Chapter II], we get that the r-th moments of
L(t) are bounded for any r ≥ 2 and t ≥ 0. A similar reasoning also entails that the r-th moments of the
continuous-time extension Lδ are also bounded. Moreover, according to Proposition 6.2.1, the drift ψ
is locally Lipschitz continuous. The claim then follows from [79, Theorem 2.2] and Jensen’s inequality.
In the globally Lipschitz continuous case, we get the claimed rate by putting together Lemma 2.1.8,
Jensen’s inequality and [158, Theorem 7.3, Chapter II] or [86, Theorem 10.2.2 and Remark 10.2.3].

6.2.2.2 Approach 2

Assume now that the metric also depends on γ ∈]0, γ0[ with γ0 > 0, and we emphasize this by denoting
it Mγ such that
(i) Mγ is symmetric positive definite for any γ ∈]0, γ0[,

(ii) for any θ ∈ Rq, γ → ‖θ‖Mγ
is a decreasing mapping on ]0, γ0[,

(iii) Mγ →
γ→0

Iq (such a choice is motivated by the scheme described in Section 6.4.1).

One can consider an alternative version of the SDE (6.2), i.e.

dL(t) = −1

2
∇
((
L+ (Mγ ,γH) ◦D>

)
◦Mγ

−1/2
)

(L(t))dt+Mγ
1/2dW (t), t > 0. (6.9)

Denote the drift coefficient of (6.9) by φ, we get that

〈φ(θ),θ〉 = 〈ψ(u),u〉,
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where u = Mγ
−1/2θ. Therefore, it is easily seen that φ also satisfies (6.3) and (6.4) under Assumptions

(H.1), (H.2), (H.3) and (H.4). In turn, Proposition 6.2.2 applies to (6.9) the diffusion L is unique,
non explosive and admits an unique invariant measure µγ having density

θ 7→ exp
(
−
(
L+ (Mγ ,γH) ◦D>

)
◦Mγ

−1/2(θ)
)
/Zγ

where
Zγ =

√
det(Mγ)

∫
Rp

exp
(
−
(
L+ (Mγ ,γH) ◦D>

)
(u)
)
du.

Since det(Mγ) →
γ→0

1, applying the reasoning in the proof of Proposition 6.2.3, we also deduce that µγ
converges to µ in total variation as γ → 0.

By the change of variable U(t) = Mγ
−1/2L(t), we get the following SDE

dU(t) = −1

2
Mγ

−1∇
(
L+ (Mγ ,γH) ◦D>

)
(U(t))dt+ dW (t), t > 0. (6.10)

In an analogous way to (6.7), the forward Euler discretization of (6.10) has a deterministic part which
is a relaxed gradient descent in the metric Mγ

−1. In turn, mean square convergence of the Euler
discretizations of both (6.9) and (6.10) and of their first-order moments can be established exactly in
the same way as in Theorem 6.2.4. We omit the details here for the sake of brevity.

6.3 Prox-regular penalties

Let us consider a prox-regular function (see Section 2.5.4) satisfying Assumption (H.1). Owing to the
following lemma, such type of functions also fullfills Assumptions (H.2) and (H.3).

Lemma 6.3.1. Let M ∈ Rp×p symmetric positive definite and γ small enough, assume that H : Rp →
R is prox-regular and satisfies Assumption (H.1). Then proxMγH is single-valued and locally Lipschitz
continuous.

Proof. The proof of Lemma 6.3.1 is based on the one of [126, Proposition 13.37] and generalizes to
the proximal mapping in metric M for any M ∈ Rp×p symmetric positive definite.

Without loss of generality, we prove the claim on a neighbourhood of x where H is lsc. Let x ∈ Rp,
v ∈ ∂H(x), since H is prox-regular at x for v and H is prox-bounded, owing to [10, Lemma 4.1], there
exist ε > 0 and λ0 > 0 such that

H(x′) > H(x) +
〈
v,x′ − x

〉
− 1

2λ0

∥∥x′ − x∥∥2

2

> H(x) +
〈
v,x′ − x

〉
− 1

2λ0σmin(M)

∥∥x′ − x∥∥2

M
, (6.11)

for any x′ 6= x and (x,v) ∈ gph TH
ε,x,v. Let γ0 = λ0σmin(M), γ ∈]0, γ0[ and u = x + γM−1v, (6.11)

becomes
H(x′) +

1

2γ

∥∥x′ − u∥∥2

M
> H(x) +

1

2γ

∥∥x− u∥∥2

M
.

Therefore, proxMγH(u) = x where (x,v) ∈ gph TH
ε,x,v. That yields

proxMγH(x+ γM−1v) = x.

Since H is lsc, proper and prox-bounded, from [126, Theorem 1.17(c)] (see also [126, Theorem 1.25]),
we have

x ∈ proxMγH(u),u→ x+ γM−1v =⇒

{
x→ proxMγH(x+ γM−1v) = x,

H(x) = M ,γH(u)− 1
2γ

∥∥x− u∥∥2

2
→ H(x).

(6.12)
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For any x ∈ proxMγH(u), by Fermat rules we get

v =
M

γ
(u− x) ∈ ∂H(x). (6.13)

For any γ ∈]0, γ0[, owing to (6.12) and (6.13), there exists Nγ,x,v a neighbourhood of x + γM−1v

such that for any u ∈ Nγ,x,v,
∥∥x− x∥∥

2
≤ ε,

∥∥H(x)−H(x)
∥∥

2
≤ ε and

∥∥v − v∥∥
2
≤ ε. We get then

proxMγH(u) = x =⇒ v =
M

γ
(u− x) ∈ TH

ε,x,v(x).

So that
proxMγH = (M + γTH

ε,x,v)−1 ◦M = (M + δ−1S)−1 ◦ (γδ)−1M ,

where δ = 1/γ − 1/γ0,

S = TH
ε,x,v +

M

γ0
.

From (6.11), S is maximal monotone, the latter operator is well defined as a single-valued operator
(see [6, Proposition 3.22 (ii)(d)]). Let p = proxMγH(x) and p′ = proxMγH(x′). It then follows that

Mx− γδMp ∈ γS(p) and Mx′ − γδMp′ ∈ γS(p′),

and monotonicity of S yields〈
p′ − p,M(x′ − x)

〉
≥ γδ

∥∥p′ − p∥∥2

M
≥ γδσmin(M)

∥∥p′ − p∥∥2

2
.

Using Cauchy-Schwarz’s inequality, we obtain∥∥p′ − p∥∥
2
≤ K

∥∥x′ − x∥∥
2
,

where

K−1 =
γδσmin(M)

‖M‖2→2

=

(
1− γ/γ0

)
σmin(M)

‖M‖2→2

.

Let us note that when γ decreases, inequality (6.11) can hold for a larger ε, which enlarges Nγ,x,v,
and thus, x+ γM−1v concentrates around x for any v. Thus, when γ is small enough, there exists a
neighbourhood of x that is included in Nγ,x,v for any v ∈ ∂H(x). This concludes the proof.

Lower-C2 (or semi-convex) functions, see Example 2.5.9-(ii), satisfy the global counterpart of
Lemma 2.5.10-(ii). For a lower-C2 penalty H satisfying Assumption (H.1), the following lemma shows
that proxMγH is globally Lipschitz continuous with a proper choice of γ which in turn implies directly
Assumption (H.4) according to Lemma 2.1.8.

Lemma 6.3.2. Assume that H is lower-C2 (with constant r) satisfying Assumption (H.1) and γ ∈
]0, rσmin(M)[, proxMγH is single-valued and Lipschitz continuous with constant ‖M‖2→2

σmin(M)

(
1− γ

rσmin(M)

)−1
.

Proof. From [126, Example 12.28(b)], ∂H is hypomonotone of modulus 1
r . In turn

S = ∂H +
1

γ0
M = ∂

(
H +

1

2γ0
‖·‖2M

)
is monotone with γ0 = rσmin(M), or equivalently that H+ 1

2γ0
‖·‖2M is convex [126, Example 12.28(b)].

Let δ = 1
γ −

1
γ0

and

W (w,θ) = H(w) +
r′

2
‖w − θ‖2M .

Thus
H(w) +

1

2γ
‖w − θ‖2M = W (w,θ) +

δ

2
‖w − θ‖2M .
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W (·,θ) is a convex function on Rp and δ > 0 as γ < γ0. Altogether, this entails that W (·,θ) +
δ
2 ‖· − θ‖

2
M is strongly convex uniformly in θ and γ complying with γ < γ0. It then follows that

proxMγH is single-valued. We have

M + γ∂H = γ (δM + S) = γδ
(
M + δ−1S

)
.

By Fermat’s rule, we then get

proxMγH = (M + γ∂H)−1 ◦M =
(
M + δ−1S

)−1 ◦ (γδ)−1M ,

and the latter operator is well-defined as a single-valued operator since S is maximal monotone; see
[6, Proposition 3.22 (ii)(d)]. Let p = proxMγH(θ) and p′ = proxMγH(θ′). It then follows that

Mθ − γδMp ∈ γS(p) and Mθ′ − γδMp′ ∈ γS(p′),

and monotonicity of S yields〈
p′ − p,M(θ′ − θ)

〉
≥ γδ

∥∥p′ − p∥∥2

M
≥ γδσmin(M)

∥∥p′ − p∥∥2

2
.

Using Cauchy-Schwartz inequality, we then obtain∥∥p′ − p∥∥
2
≤ κ

∥∥θ′ − θ∥∥
2
,

where

κ−1 =
γδσmin(M)

‖M‖2→2

=
σmin(M)

‖M‖2→2

(
1− γ

γ0

)
=
σmin(M)

‖M‖2→2

(
1− γ

rσmin(M)

)
.

That concludes the proof of Lemma 6.3.2.

Remark 6.3.3. As a consequence of the these results, when proxMγH is globally Lipschitz continuous,
the optimal convergence rate in (6.8) is of order δ1/2 in view of Theorem 6.2.4.

6.4 Forward-Backward type LMC algorithms

Let us now deal with our main goal: computing the EWA in (1.12) by sampling from µ̂n. Remind that

µ̂n(θ) ∝ exp

(
−F (Xθ,y) + Jλ(θ)

β

)
,

where F : Rn × Rn → R is a general loss and Jλ : Rp → R is the penalty. Assume that F (X·,y) ∈
C̃1,+(Rp) and the penalty takes the form Jλ = Wλ ◦D>. Let us impose the following assumptions on
Wλ.

(H.1’) Wλ ∈ J (Rq).

(H.2’) proxγWλ is single-valued.

(H.3’) proxγWλ is locally Lipschitz continuous.

To lighten notation, we will write Fβ
def
= F (X·,y)/β. This section aims to describe our Forward-

Backward type Langevin Monte-Carlo (LMC) algorithms to implement (1.12). These algorithms are
based on wise specializations of the results reported in Section 6.2.

6.4.1 Forward-backward LMC (FBLMC)

In (6.1), we set D = Ip (hence Jλ = Wλ), L ≡ 0, and H = Fβ +Jλ/β, where F is a quadratic loss, i.e.
Fβ(θ) = ‖y −Xθ‖22 /β. Observe that H satisfies Assumption (H.1) by Assumption (H.1’). To check
Assumptions (H.2), (H.3) and (H.4), we need to design a metric in which proxMγH is expressed as a
function of proxγJλ/β . This idea is formalized in the following lemma.
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Lemma 6.4.1. Assume that 0 < γ < β/(2‖X‖2→2
2) and Assumption (H.1’) holds. Define Mγ

def
=

Ip − (2γ/β)X>X, which is symmetric positive definite. Then

prox
Mγ

γH = proxγJλ/β ◦ (Ip − γ∇Fβ) . (6.14)

Proof. We have

prox
Mγ

γH (θ) = Argmin
w∈Rp

1

2γ
‖w − θ‖2Mγ

+H(w)

= Argmin
w∈Rp

1

2
‖w − θ‖22 −

γ

β
‖X(w − θ)‖22 +

γ

β
‖y −Xw‖22 +

γ

β
Jλ(w).

By the Pythagoras relation, we then get

prox
Mγ

γH (θ) = Argmin
w∈Rp

1

2
‖w − θ‖22 +

γ

β

(
1

2
‖y −Xθ‖22 − 〈X(θ −w),Xθ − y〉

)
+
γ

β
Jλ(w)

= Argmin
w∈Rp

1

2
‖w − θ‖22 −

γ

β

〈
w − θ,X> (y −Xθ)

〉
+
γ

β
Jλ(w)

= Argmin
w∈Rp

1

2

∥∥∥∥w − (θ − 2γ

β
X>

(
Xθ − y

))∥∥∥∥2

2

+
γ

β
Jλ(w)

= proxγJλ/β (θ − γ∇F (θ)) .

We conclude the proof of Lemma 6.4.1.

In view of Lemma 6.14, Assumptions (H.2’) and (H.3’), it is immediate to check that Assumptions
(H.2) and (H.3) are satisfied.

It remains now to verify Assumption (H.4) which is fulfilled by imposing the following assumption
on Wλ (or Jλ).
(H.4’-FB) There exists C ′FB > 0 such that〈

proxγWλ/β ◦ (Ip − γ∇Fβ) (θ),θ
〉
Mγ

≤ C ′FB(1 +
∥∥θ∥∥2

2
), ∀θ ∈ Rp.

By Lemma 2.1.8, a sufficient condition for Assumption (H.4’-FB) to hold is that the proximal mapping
of Wλ is Lipschitz continuous.

From Lemmas 2.5.5 and 6.4.1, we get

∇Mγ ,γH = γ−1Mγ

(
Ip − prox

Mγ

γH

)
= γ−1Mγ

(
Ip − proxγJλ/β(Ip − γ∇Fβ)

)
.

With this expression at hand, the forward Euler discretization of the SDE (6.2), specialized to the
current case, reads

Lk+1 = Lk −
δ

2γ
Mγ

(
Lk − proxγJλ/β(Lk − γ∇Fβ(Lk))

)
+
√
δZk, t > 0, L0 = l0. (6.15)

Similarly, the forward Euler discretization of the SDE (6.10) is given by

Uk+1 = (1− δ

2γ
)Uk +

δ

2γ
proxγJλ/β(Uk − γ∇Fβ(Uk)) +

√
δZk, t > 0, U0 = l0. (6.16)

The familiar reader may have recognized that the deterministic part of (6.16) is nothing but the relaxed
form of the so-called Forward-Backward proximal splitting algorithm [7]. This terminology reflects that
there is a forward Euler discretization on Fβ and a Euler backward discretization on Jλ.

6.4.2 Semi-Forward-Backward LMC (Semi-FBLMC)

The main limitation of (6.15) is that the proximal mapping of Jλ must be easy to compute. This may
not be true even if the proximal mapping of Wλ is accessible as, for for example, when D is not a tight
frame [7]. Our goal is to circumvent this difficulty.
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Toward this goal, in (6.1), consider now L = Fβ , H = Wλ/β and M = Iq. Owing to Assumptions
(H.1’), (H.2’) and (H.3’), one can check that Assumptions (H.1), (H.2) and (H.3) are fulfilled.
Assumption (H.4) is verified by imposing the following on Wλ.
(H.4’-SFB) There exists C ′SFB > 0 such that〈

proxγWλ/β(u),u
〉
≤ C ′SFB(1 +

∥∥u∥∥2

2
), ∀u ∈ Rq.

From Lemma 2.5.5, we obtain

∇
(

(γH) ◦D>
)

(θ) = γ−1D(D>θ − proxγWλ/β(D>θ)).

Thus, the forward Euler discretization of SDE (6.2) now reads

Lk+1 = Lk −
δ

2
∇Fβ(Lk)−

δ

2γ
D
(
D>Lk − proxγWλ/β(D>Lk)

)
+
√
δZk, t > 0, L0 = l0. (6.17)

In the case where D = Ip, Fβ and Wλ are convex, we recover the scheme studied in [63].

6.5 Applications to penalties in statistics

In this section, we exemplify our LMC sampling algorithms for some penalties, some of which cover
those studied in the previous chapters. Our goal is by no means to be exhaustive, but rather to be
illustrative and show the versatility of our framework. For each penalty, we aim at checking that
Assumptions (H.1’), (H.2’), (H.3’), (H.4’-FB) and (H.4’-SFB) hold, and to compute proxγWλ/β .
In turn, this allows to apply our algorithms (6.16) and (6.17) to compute EWA with such penalties.

6.5.1 Analysis-group-separable penalties

We first focus on a class of penalties where Jλ is analysis-group-separable, i.e.

Jλ(θ) = Wλ(D>θ), where Wλ(u) =
∑L

l=1wλ
(∥∥ubl∥∥2

)
, (6.18)

for wλ : R+ → R, and some uniform partition (bl)l∈{1,...,L} of {1, . . . , q}, i.e. ∪Ll=1bl = {1, . . . , q} and
bl ∩ bl′ , ∀l 6= l′.

Remark 6.5.1. It is worth mentioning that separability of Wλ does not entail that of Jλ. In fact,
overlapping groups can be easily taken intro account as any overlapping-group penalty can be written
as the composition of Wλ with a linear operator, say B, such that B>B is diagonal, and B acts as a
group extractor, see [113, 39] (see also Example 3.3.2) .

A first consequence of separability is that proxγWλ/β is also separable under the following mild
assumptions on wλ.

(W.1) wλ is bounded from below on ]0,+∞[.

(W.2) wλ is non-decreasing on ]0,+∞[.

Lemma 6.5.2. Assume that Assumptions (W.1) and (W.2) hold, and wλ is continuous on ]0,+∞[.
For any u ∈ Rq and γ > 0, we have

proxγWλ/β(u) =


proxγwλ/β

(∥∥ub1∥∥2

) ub1∥∥ub1∥∥2
...

proxγwλ/β
(∥∥ubL∥∥2

) ubL∥∥ubL∥∥2

 .
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Proof. This is a probably known result, for which we provide a simple proof. Since Wλ is separable
and wλ is continuous and lower-bounded, we have

min
w∈Rq

1

2

∥∥w − u∥∥2

2
+
γ

β
Wλ(w) =

L∑
l=1

min
v∈RK

1

2

∥∥v − ubl∥∥2

2
+
γ

β
wλ
(∥∥v∥∥

2

)
,

and thus, ∀l ∈ {1, . . . , L},[
proxγWλ/β(u)

]
bl

= Argmin
v∈RK

1

2

∥∥v − ubl∥∥2

2
+
γ

β
wλ
(∥∥v∥∥

2

)
. (6.19)

If ubl = 0, then as wλ is an increasing function,
[
proxγWλ/β(u)

]
bl

= 0. For ubl 6= 0, by isotropy of

problem (6.19), we can write

min
v∈RK

1

2

∥∥v − ubl∥∥2

2
+
γ

β
wλ
(∥∥v∥∥

2

)
= min

t≥0

γ

β
wλ (t) +

 min∥∥v∥∥
2
=t

1

2

∥∥v − ubl∥∥2

2

 . (6.20)

The inner minimization problem amounts to solving for the orthogonal projector on the `2 sphere in
RK of radius t, which is obviously v = t

ubl∥∥ubl∥∥2

since ubl 6= 0. Inserting this into (6.20) and rearranging

the terms, (6.19) becomes[
proxγWλ/β(u)

]
bl

=
ubl∥∥ubl∥∥2

Argmin
t≥0

1

2

(
t−

∥∥ubl∥∥2

)2
+
γ

β
wλ(t) =

ubl∥∥ubl∥∥2

proxγwλ/β(
∥∥ubl∥∥2

),

where we used even-symmetry of wλ.

Our aim is now to design a family of penalties that will allow to establish Assumptions (H.1’),
(H.2’), (H.3’), (H.4’-FB) and (H.4’-SFB), while involving a form of shrinkage which is ubiquitous
in low-complexity regularization. Inspired by the work of [3], we make the following assumptions on
wλ.

(W.3) wλ is continuously differentiable on ]0,+∞[ and the problem

min
t∈[0,+∞[

{t+
γ

β
wλ
′(t)}

has a unique solution at 0 for a given γ.
Under these assumptions, proxγwλ/β has a indeed convenient shrinkage-type form.

Lemma 6.5.3 ([3, Theorem 1]). Assume that Assumptions (W.2) and (W.3) hold for some γ > 0.
Then, proxγwλ/β are the single-valued continuous mappings, and satisfy, for t ∈ [0,+∞[,

proxγwλ/β(t) =

0 if t ≤ γ
βwλ

′(0+),

t− γ
βwλ

′
(

proxγwλ/β(t)
)

if t > γ
βwλ

′(0+).
(6.21)

Let us turn to check our Assumptions. Assumptions (H.1’), (H.2’) and (H.3’) are fulfilled thanks
to Assumptions (W.1), (W.2) and (W.3). It remains to check Assumptions (H.4’-FB) and (H.4’-
SFB). This is the subject of the following lemma.

Lemma 6.5.4. Assume that Assumptions (W.2) and (W.3) hold for some γ > 0, then Assumptions
(H.4’-FB) and (H.4’-SFB) also hold.

Proof. Before proceeding, let us discuss about the term proxγwλ/β . In view of Assumption (W.2),
wλ
′/β is positive on ]0,+∞[. According to Lemma 6.5.3 we get that, for any t ≥ 0, proxγwλ/β(t) = 0

if t ≤ γ
βwλ

′(0) and proxγwλ/β(t) = t− γ
βwλ

′(proxγwλ/β(t)) ≤ t otherwise. Hence for any t ≥ 0,

0 ≤ proxγwλ/β(t) ≤ t, ∀t ≥ 0. (6.22)
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Set u = D>θ, from Lemma 6.5.2 and (6.22), we get that〈
proxγWλ/β(u),u

〉
=
∑L

l=1

〈
[proxγWλ/β(u)]bl ,ubl

〉
=
∑L

l=1

proxγwλ/β
(∥∥ubl∥∥2

)∥∥ubl∥∥2

∥∥ubl∥∥2

2
≤
∥∥u∥∥2

2
.

According to the fact that
∥∥u∥∥2

2
=
∥∥D>θ∥∥2

2
≤ ‖D‖2→2

2
∥∥θ∥∥2

2
, Assumption (H.4’-SFB) holds.

Set v = 2γX>y/β and tθ = θ − γ∇Fβ(θ) = Mγθ + v, by Young’s inequality, we obtain that〈
proxγWλ/β(tθ),θ

〉
Mγ

=
〈
MγproxγWλ/β(tθ),θ

〉
≤ 1

2
‖Mγ‖2→2

2
∥∥proxγWλ/β(tθ)

∥∥2

2
+

1

2

∥∥θ∥∥2

2
.

Moreover, owing to Lemma 6.5.2 and (6.22), we get that∥∥proxγWλ/β(tθ)
∥∥2

2
=
∥∥∑L

l=1

proxγWλ/β(
∥∥[tθ]bl

∥∥
2
)∥∥[tθ]bl

∥∥
2

[tθ]bl
∥∥2

2
≤
(∑L

l=1

∣∣∣proxγWλ/β(
∥∥[tθ]bl

∥∥
2
)
∣∣∣)2

≤
(∑L

l=1

∥∥[tθ]bl
∥∥

2

)2

≤ L
∥∥tθ∥∥2

2

≤ 2L
(
‖Mγ‖2→2

2
∥∥θ∥∥2

2
+
∥∥v∥∥2

2

)
.

Thus, Assumption (H.4’-FB) holds and we conclude the proof of Lemma 6.5.4.

We now discuss some popular penalties wλ that satisfy Assumptions (W.1), (W.2) and (W.3) for
some γ > 0.

6.5.2 Examples

`1 penalty Take wλ : t ∈ R+ 7→ λt. This entails the analysis-group Lasso penalty

Jλ(θ) = λ
∑L

l=1

∥∥∥[D>θ]bl

∥∥∥
2
.

Clearly, wλ is a continuous positive convex function which verifies Assumptions (W.1), (W.2) and
(W.3) for any γ > 0, and its proximal mapping corresponds to soft-thresholding, i.e.

proxγwλ/β(t) = (t− γλ/β)+, ∀t ≥ 0.

FIRM penalty The FIRM penalty is given by [73]

wλ(t) =

λ
(
t− t2

2µ

)
if 0 ≤ t ≤ µ,

λµ
2 if t > µ.

(6.23)

which entails the corresponding analysis-group FIRM penalty Jλ. Since wλ′(t) = λ
(
1− t

µ

)
+
≥ 0, wλ

is non-decreasing and bounded from below by wλ(0) = 0 on ]0,+∞[. Thus, wλ satisfies Assumptions
(W.1) and (W.2). Assumption (W.3) also holds for any γ < βµ/λ. The operator proxγwλ/β can be
constructed from [157, Definition II.3]. Its formula is defined as

proxγwλ/β(t) =


0 if 0 ≤ t ≤ α,
µ

µ−α(t− α) if α < t ≤ µ,
t if t > µ,

(6.24)

where α = γλ/β. The formula (6.24) can also be found using Lemma 6.5.3. Observe that the
FIRM shrinkage (6.24) interpolates between hard- (see [157, Definition II.2]) and soft-thresholding.
In particular, (6.24) coincides with soft-thresholding when µ→ +∞.
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SCAD penalty The SCAD penalty, proposed in [68] is parameterized by λ = (λ, a) ∈ ]0,+∞[×]2,+∞[

as

wλ(t) =


λt if 0 ≤ t ≤ λ,
− t2−2aλt+λ2

2(a−1) if λ < t ≤ aλ,
(a+1)λ2

2 if t > aλ,

(6.25)

The following lemma establishes the validity of wλ and computes proxγwλ/β .

Lemma 6.5.5. Let wλ defined in (6.25), and κ = γ/β. For any γ < (a− 1)β,
(i) wλ satisfies Assumptions (W.1), (W.2) and (W.3),

(ii) The proximal mapping of the SCAD penalty is given by the shrinkage

proxγwλ/β(t) =


(t− κλ)+ if 0 ≤ t ≤ (κ+ 1)λ,
(a−1)t−kaλ
a−1−κ if (κ+ 1)λ < t ≤ aλ,

t if t > aλ.

(6.26)

Proof.
(i) Observe that wλ is continuously differentiable on ]0,+∞[ with

wλ
′(t) = κλ

(
I(t ≤ λ) +

(aλ− t)+

(a− 1)λ
I(t > λ)

)
≥ 0,

wλ is then non decreasing and bounded from below by wλ(0) = 0 on ]0,+∞[. Thus, wλ satisfies
Assumptions (W.1) and (W.2). Let us check Assumption (W.3). Let u(t) = t + κwλ

′(t), we
obtain that
• u(0) = κλ,

• if 0 < t ≤ λ, u(t) = t+ κλ > κλ,

• if λ < t ≤ aλ, since a− 1 > κ > 0, u(t) = t+ κ(aλ−t)
a−1 = κλ+ a−1−κ

a−1 t+ κλ
a−1 > κλ,

• if t > aλ, since a− 1 > κ, u(t) = t > aλ > κλ.
Thus, t = 0 is the unique mimimum in [0,+∞[ of t + p′λ(t). In other words, wλ satisfies
Assumption (W.3).

(ii) For the sake of simplified notation, we denote p = proxγwλ/β(t). Owing to Lemma 6.5.3, we
obtain that

p =

0 if t ≤ κλ,
t− κλ

(
I(p ≤ λ) + (aλ−p)+

(a−1)λ I(p > λ)
)

otherwise.
(6.27)

From (6.27), we get the following assertions when t > κλ,
• if p ≤ λ, p = t− κλ, and t = p+ κλ ≤ (κ+ 1)λ,

• if λ < p ≤ aλ, p = t − κ(aλ − p)/(a − 1) implies that p = (a−1)t−κaλ
a−1−κ . Since λ < p ≤ aλ,

κ < a− 1 and a > 2, we also get that

(1 + κ)λ < t =
a− 1− κ
a− 1

p+
κaλ

a− 1
≤ aλ,

• if p > aλ, p = t, and t > aλ.
That concludes the proof of (ii), Lemma 6.5.5.

Since a > 2, one can set κ = 1. In this case, (6.26) specializes to [68, Equation (2.8)].
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`∞ penalty The `∞ norm penalty is convex and continuous but is not separable, unlike the previous
ones. It is a suitable prior to promote flat vectors, and has found applications in several fields [84, 102,
133]. It entails the following penalty Wλ:

Jλ(θ) = Wλ(D>θ) where Wλ(u) = λ max
l∈{1,...,L}

{
‖[u]bl‖2

}
, (6.28)

where λ = λ > 0. SinceWλ is not separable, Lemma 6.5.2 is not applicable. Nevertheless, the proximal
mapping of Wλ can still be obtained easily from the projector on the `1 unit ball, i.e.

proxγWλ/β(u) = u− P{
x :

∑
l

∥∥xbl∥∥2
≤ β
λγ

}(u). (6.29)

This projector can be obtained from [66, Proposition 2] (see also references therein). One can see that
Assumptions (H.1’), (H.2’) and (H.3’) hold. We report the verification of Assumptions (H.4’-FB)
and (H.4’-SFB) in the proof of the following lemma.

Lemma 6.5.6. Let Wλ in (6.28). Then Assumptions (H.4’-FB) and (H.4’-SFB) hold.

Proof. Set u = D>θ, α = γλ/β and pu = P{
x : α

∑
l

∥∥xbl∥∥2
≤1
}(u). Owing to (6.29) and Young’s

inequality, we obtain that〈
u, proxγWλ/β(u)

〉
= 〈u,u− pu〉 ≤

∥∥u∥∥2

2
+
∥∥u∥∥

2

∥∥pu∥∥2
≤ 3

2

∥∥u∥∥2

2
+

1

2

∥∥pu∥∥2

2
≤ 3

2

∥∥u∥∥2

2
+

1

2α2
.

According to the fact that
∥∥u∥∥2

2
=
∥∥D>θ∥∥2

2
≤ ‖D‖2→2

2
∥∥θ∥∥2

2
, Assumption (H.4’-SFB) holds.

Set v = 2γX>y/β, tθ = θ − γ∇Fβ(θ) = Mγθ + v and ptθ = P{
x : α

∑
l

∥∥xbl∥∥2
≤1
}(tθ). By Young’s

inequality, we obtain that〈
proxγWλ/β(tθ),θ

〉
Mγ

=
〈
MγproxγWλ/β(tθ),θ

〉
≤ 1

2
‖Mγ‖2→2

2
∥∥proxγWλ/β(tθ)

∥∥2

2
+

1

2

∥∥θ∥∥2

2
.

Moreover, owing to (6.29), we get that∥∥proxγWλ/β(tθ)
∥∥2

2
=
∥∥tθ − ptθ∥∥2

2
≤ 2
∥∥tθ∥∥2

2
+ 2
∥∥ptθ∥∥2

2
≤ 4‖Mγ‖2→2

2
∥∥θ∥∥2

2
+

(
4
∥∥v∥∥2

2
+

2

α2

)
.

Thus, Assumption (H.4’-FB) holds and we conclude the proof of Lemma 6.5.6.

The proposed prior in Chapter 3 Consider the prior π in (3.7) with g is given in Example 3.3.10
and H = +∞. Then,

Jλ(θ) = Wλ(D>θ), where Wλ(u) =

L∑
l=1

wλ(u),

with
wλ(x) = β

(
αaxa + c log(τ b + xb)

)
, (6.30)

wλ is parameterized by λ = (a, b, c, α, τ) ∈]0, 1]×]0, 1]×]2+K
b ,+∞[×R+ × R+,∗. Set a = 1 and b = 1,

the following lemma checks the validity of Assumptions (W.1), (W.2) and (W.3).

Lemma 6.5.7. Let wλ given by (6.30). On ]0,+∞[, the function wλ is bounded from below, non-
decreasing and continuously differentiable. Fix a = 1 and b = 1, the problem mint∈[0,+∞[{t+ γ

βwλ
′(t)}

has a unique solution at 0 for a given 0 < γ ≤ τ2/c.

Proof. wλ is clearly nondecreasing, bounded from below by wλ(0), and continously differentiable (in
fact even C∞) on ]0,+∞[. Let us set a = 1 and b = 1, and

u(x) = x+
γ

β
wλ
′(x) = x+

γc

τ + x
+ γα.

One can see that u admits a local maximum at x0 = −√γc − τ /∈ [0,+∞[ and a local minimum at
x1 =

√
γc− τ . Thus, the problem mint∈[0,+∞[ u(t) has a unique solution at 0 when x1 ≤ 0 equivalent

to γ ≤ τ2/c.

– 106 –



Chapter 6 6.5. Applications to penalties in statistics

In view of Lemma 6.5.4, the EWA with the prior (3.7) is computable by FBLMC and Semi-FBLMC
algorithms the proximal mapping proxγWλ/β is computed through Lemmas 6.5.2 and 6.5.3.
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Chapter 7

Numerical Results

Main contributions of this chapter

I Collect the numerical experiments to illustrate and validate
– the performance of the EWA proposed in Chapter 3,

– the algorithms proposed in Chapter 6.

The results in this chapter can be found in [100] and [64].
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7.1 Introduction

7.1.1 Problem statement

We consider a linear regression problem

y = Xθ0 + ξ, (7.1)

where ξ ∼ N (0, σ2In). The noise level σ is chosen according to the simulated θ0 through the signal-
to-noise ratio SNR, i.e. σ = n−1/2 ‖Xθ0‖2 /10SNR/10. In our experiments, we take SNR = 5.

The goal is estimating θ0 by computing the EWA via the priors proposed in Section 6.5. Three
types of problems are considered: compressed sensing, inpainting and deconvolution whose regression
function described in what follows.

Compressed sensing In this case X is drawn from a random ensemble. In our experiments, X
is drawn uniformly at random from the Rademacher ensemble, i.e. its entries are i.i.d. Rademacher
random variables. We also set n = 9p/16.

Inpainting In this case, X acts as a masking operator. Let M ⊂ {1, . . . , p} be the set indexing
masked pixels. Thus

X vec(θ0) =
(
vec(θ)j∈{1,...,p}\M

)
.

In our numerical experiments, we mask out 20% of the pixels, and thus n = p−b20%pc where bpc the
stands of integer part of p. The masked positions are chosen randomly from the uniform distribution.

Deconvolution In this case X is the convolution operator with a Gaussian kernel with periodic
boundary conditions, such that X is diagonalized in the discrete Fourier basis. In this experiment, the
standard deviation of the kernel is set to 1.

Two types of processing experiments are considered.

Image processing experiments Let θ0 is a 2-D image which is a matrix in R128×128. The model
(7.1) becomes

y = X vec(θ0) + ξ. (7.2)

Note that p = 1282.
Assuming that the targeted image is piecewise smooth, a popular prior is the so-called isotropic total

variation [128]. To cas this into our framework, define Dc : R
√
p×√p → R

√
p×√p and Dr : R

√
p×√p →
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R
√
p×√p the finite difference operators along, respectively, the columns and rows of an image, with

Neumann boundary conditions. We define DTV as

DTV : θ ∈ R
√
p×√p 7→ vec

(
(vec(Dr(θ)), vec(Dc(θ)))>

)>
∈ R2p.

With this notation, our prior penalty Jλ reads

Jλ(θ) =

p∑
l=1

wλ

(√
vec(Dr(θ))2

l + vec(Dc(θ))2
l

)
= Wλ(DTVθ), (7.3)

which clearly has the form (6.18) with p blocks of equal size 2.
For image processing experiments, the EWA will be computed by Semi-FBLMC Algorithm.

Signal processing experiments Here we consider reconstructing a 1D signal, with p = 128, from
compressed sensing measurements using the EWA with `∞ penalty and the one proposed in Chapter 3.
(i) For EWA-`∞ estimator: The signal is piecewise flat whose coordinates are valued in {−1, 1}.

Here, X is drawn from a Rademacher ensemble with n > p 1.

(ii) For EWA proposed in Chapter 3: The signal is either individual sparse or group sparse. The
non-zero entries of θ0 are equal to 1.

Here, we consider D = Ip.
For signal processing experiments, the EWA will be computed by FBLMC Algorithm.

7.1.2 Chapter organization

The performance of the EWA proposed in Chapter 3 is illustrated by the numerical experiments in
Section 7.2. The forward-backward LMC type algorithms are validated in Section 7.3 for EWA with
`1, SCAD, FIRM, `∞ penalties.

7.2 Numerical results on EWA for analysis-group sparsity

7.2.1 Signal processing experiments

We setD = Ip, which corresponds to the classical group sparsity. The design matrix is drawn uniformly
at random from the Rademacher ensemble, i.e. its entries are i.i.d. variates valued in {−1, 1} with
equal probabilities. The non-zero entries of θ0 are equal to 1 and we denote s = ‖θ0‖0 the sparsity
level of θ0. Two types of sparsity behavior are considered: individual sparsity where Kθ0 = 1; group
structured sparsity with Kθ0 = 4. Besides, the positions of the non-zero/active entries (for Kθ0 = 1)
or groups (for Kθ0 = 4) are chosen randomly uniformly on {1, . . . , p}.

The experiments are performed by fixing p = 128, and taking s = 4, 8, . . . , p, n = 8, 16, . . . , p, step-
size δ = 4σ2/(np) and integration time T = 3500. The parameters in the prior are chosen to minimize
the remainder term in the oracle inequality (3.13). For each (s, n), and each value of Kθ0 , Nrep = 20

instances of the problem suite (X,θ0,Y ) are generated, and EWA is applied with a chosen K and the
other parameters as detailed above. The estimation quality/success is then assessed by

πs,n =
1

Nrep

∑Nrep

j=1 I
(∥∥∥θ̂(j,s,n)

n − θ(j,s,n)
0

∥∥∥
n
≤ ε
)
, (7.4)

where ε > 0 (we choose ε = 0.4) and θ̂
(j,s,n)

n (resp. θ(j,s,n)
0 ) corresponds to θ̂n (resp. θ0) in the j-th

replication of (s, n).
s/p and n/p are respectively normalized measures of sparsity and problem indeterminacy. We get

a two-dimensional phase space (s/p, n/p) ∈ [0, 1]2 describing the difficulty of a problem instance, i.e.
1The overdetermined regime is known to yield good performance for the `∞ penalty [145].

– 111 –



Chapter 7 7.2. Numerical results on EWA for analysis-group sparsity

problems are easier as one moves up (more measurements) and to the left (sparser θ0). Phase diagrams
plotting πs,n in (7.4) as a function (s/p, n/p) were widely advocated by Donoho and co-authors for
`1 minimization [59]. Such diagrams often have an interesting two-phase structure (as displayed in
Figures 7.1(a)-(d), brighter color indicate better success), with phases separated by a specific curve,
called phase transition curve. Thus, a good estimator is intended to have a large bright area which
indicates its good performance at a wider range of (s, n).

Figure 7.1(a) (resp. (b)) shows the phase diagrams whenKθ0 = 1 andK = 1 (resp. K = 4) in EWA.
In this case, the phase transition curve for K = 1, the correct group size, is slightly better that with
K = 4. The situation reverses for Figures 7.1(c)-(d) where Kθ0 = 4, and one observes that the success
area is significantly better usingK = 4 thanK = 1. This is expected as it reveals better performance of
EWA when used with the choiceK = Kθ0 . This is also confirmed by visual inspection of Figures 7.1(c’)-

(d’), where we plotted instances of recovered vectors θ̂
(j,s,n)

n when (s,Kθ0) ∈ {4, 8} × {1, 4} and
n/p = 1/2. EWA was again applied with K = 1 and K = 4 in each case. Large spurious entries
appear outside the true support when the group size is not correctly chosen, though the impact is less
important for K = 1.

It is worth observing that s/p = ‖θ0‖0,2Kθ0/p. As far as the expected phase transition curve is
concerned, one has from Corollary 3.4.6 that it is expected to occur for

n/p = Cε ‖θ0‖0,2Kθ0/p (log(p/Kθ0)/Kθ0) = Cεs/p (log(p/Kθ0)/Kθ0)

for some constant Cε > 0 depending on ε. That is, the phase transition curve is linear (p and Kθ0

are fixed for each diagram), which is confirmed by visual inspection of Figures 7.1(a)-(d), where the
overlayed blue line is the fitted linear phase transition curve.

Figure 7.1: (a)-(d): Phase diagrams of EWA for D = Ip, the color bar ranges from dark (πs,n = 0)
to bright (πs,n = 1). The blue line is the fitted phase transition curve. (a’)-(d’): Examples of vectors

θ̂
(j,s,n)

n recovered by EWA with n/p = 1/2, two sparsity levels s = 4 and s = 8 and two group sizes
Kθ0 = 1 and Kθ0 = 4.

– 112 –



Chapter 7 7.3. Numerical results on Forward-Backward LMC type algorithms

7.2.2 Image processing experiments

In the second numerical experiment, θ0 is a 2-D image which is a matrix in R160×160 (a close-up of the
known Shepp-Logan phantom, see Figure 7.2(a)). Thus vec(θ0) is vector in Rp with p = 1602. Our
goal is to recover θ0 in the compressed sensing problem.

(a) Original image (b) EWA estimated image

20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3
(c) Row profiles

Original
EWA

Figure 7.2: (a): Original close-up of Shepp-Logan phantom image. (b): Image recovered by EWA with
δ = 2 · 10−8 and T = 104. (c) Profiles of a row extracted from each image.

The results are depicted in Figure 7.2. In this experiment, the number of observations is n =

9p/16 = 14400, and we have ‖DTV(θ0)‖0,2 = 1376 � n. A notable property of the EWA estimate is
that it does not suffer from the stair-casing effect, unlike total variation minimization.

7.3 Numerical results on Forward-Backward LMC type algorithms

7.3.1 Image processing experiments

Let θ0 is a 2-D image which is a matrix in R128×128. Thus vec(θ0) is vector in Rp with p = 1282.
The goal is estimating θ0 by computing the EWA with wλ as the `1, SCAD and FIRM penalties.
Three types of problems are considered: compressed sensing, inpainting and deconvolution. The
corresponding estimators are denoted respectively EWA-`1, EWA-SCAD and EWA-FIRM. Because of
the presence of the analysis operatorDTV, which is not unitary, we applied Semi-FBLMC scheme (6.17)
to compute EWA with β = 1/(pn) (see Remark 4.3.2) , γ = β, and δ =

{
5β/103, 5β/102, 5β/106

}
respectively associated to inpainting, deconvolution and compressed sensing problems. The results are
depicted in Figure 7.4.

– 113 –



Chapter 7 7.4. Reproducible research

7.3.2 Signal processing experiments

Here we consider reconstructing a piecewise flat 1D signal from compressed sensing measurements
using EWA whose coordinates are valued in {−1, 1}. We set F (Xθ,y) =

∥∥y−Xθ∥∥2

2
, Jλ(θ) =

∥∥θ∥∥∞,
i.e. D = Ip and the size of groups is 1. We can then use the FBLMC scheme (6.16), where we choose
β = 1/(pn) (see Remark 4.3.2), γ = β, and δ = 5/102. The results are shown in Figure 7.3.

Figure 7.3: Compressed sensing with EWA using the `∞ penalty. ′∗′ is the original signal and ′◦′ is
the the estimated one.

7.4 Reproducible research

Following the philosophy of reproducible research, all the code implementing our EWA algorithms and
reproducing the experiments of this manuscript are made publicly available for download on:
(i) For experiments in Section 7.2: https://github.com/luuduytung/GroupAnalyseEWAToolbox

(ii) For experiments in Section 7.3: https://github.com/luuduytung/LMCToolbox
analysis-group
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Figure 7.4: (a): Original image. (b,c) Observed masked and blurry images. (d, e, f): EWA-`1
estimated images from masked image, compressed sensing measurements, and blurry image. (g, h,
i): EWA-FIRM estimated images from masked image, compressed sensing measurements, and blurry
image. (j, k, l): EWA-SCAD estimated images from masked image, compressed sensing measurements,
and blurry image.
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Conclusions and Perspectives

This manuscript provides new results on penalized estimators and EWA around two main themes: theo-
retical performance guarantees, namely prediction oracle inequalities (Chapter 3 and 4) and estimation
bounds which are the heart of Chapter 5; new MC algorithms to sample from structured non-necessarily
smooth nor log-concave densities based on Langevin diffusion and proximal splitting, together with
their consistency guarantees (Chapter 6). Our results were also supported by several numerical exper-
iments (Chapter 7).

Many of our results are unifying with an unprecedented level of generality, by highlighting the role of
geometrical quantities tied to the involved low-complexity regularizing penalties. Consequently, they
cover many popular priors in the literature as corollaries. Our algorithmic results provide an insightful
and theoretically-grounded support to proximal splitting-based sampling algorithms that were recently
applied in the literature by some authors, but whose justification and guarantees were until now open
problems. This is in particular true for the FBLMC algorithm.

From this work, many conclusions and take-away messages can be drawn.

Take away messages:
(i) Our family of priors proposed in Chapter 3 offers flexibility thanks to the tuning parameters.

This allows us to generalize the results in [52] to the analysis-group sparsity. This also optimizes
the performance of EWA by tuning these parameters for the particular dataset at hand.

(ii) From the unified analysis for EWA and the penalized estimator, we constructed their theoretical
guaranties for a general family of loss functions (beyond the quadratic loss) and penalties, and
developed them in a random context. Namely, we established the prediction oracle inequalities
(resp. estimation bounds) in probability when the observations (resp. the design matrix) are
random. Moreover, we refined them by assuming that the random part is drawn from a sub-
Gaussian or Gaussian distribution, and specialized them to several instances in the literature
including the Lasso, the group Lasso, their analysis type counterparts, the `∞ and the nuclear
norm penalties.

(iii) Two algorithms were proposed: FBLMC and Semi-FBLMC. These algorithms exploit the com-
posite structure of the distribution and do not require smoothness nor log-concavity. However,
in sone situations, the computation of the implicit step in FBLMC may become expensive, in
which case, the Semi-FBLMC is clearly a preferable option.

(iv) The numerical experiments illustrated the performance of the EWA with several instances of
priors, and in several numerical problems. In particular, by the phase diagram, we validated the
oracle inequality guaranteeing the performance of the EWA proposed in Chapter 3. An important
remark is that, in the image processing experiments with TV prior, the EWA estimate does not
suffer from the stair-casing effect, unlike total variation minimization.
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Perspectives The research program investigated in this work has many open questions that are yet
to be answered.
(i) Oracle inequalities under milder assumptions: In Chapter 4, we considered a finite valued

and positively homogeneous penalty J . In the random context, the observations y were assumed
to be i.i.d. and the loss function F : Rn × Rn → R is decomposed into a n-independent sum of
functions fi : R× R→ R. Then, it would be interesting to generalize those results to J beyond
the 1-homogeneous case, and y and F beyond independency.

(ii) Estimation bounds under milder assumptions: In Chapter 5, we considered the case
where the design matrix has components drawn from the standard Gaussian. The extension for
structured design matrices (e.g. partial Fourier) is a direction for further research.

(iii) Unified analysis of minimax lower-bounds: Our sharp prediction oracle inequalities were
shown to be close to the minimax lower-bounds. Minimax lower-bounds for estimation clearly
need to be worked out in a general setting.

(iv) Model selection properties for EWA: In their work on total variation denoising (i.e. X =

In), the authors in [98] has shown that EWA does not suffer the stair-casing effect. Investigating
this for arbitrary design and beyond TV regularization is clearly an important perspective.

(v) Convergence rate guarantees for FBLMC and variants in the non-convex case: In
Chapter 6, we proved the consistency of the FBLMC and Semi-FBLMC algorithms. However,
convergence rates to the stationary distribution is still an open problem. In the convex case, we
can show exponential convergence for (Semi-)FBLMC with a weighted average by capitalizing
on the results of [63, 91]. However, exploring the convergence rate for our algorithms in the
non-convex case requires new arguments that are still to be developed. We believe that this is
an important direction for further research.
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List of Notations

Sets

R: Set of real numbers.
R+: Set of non-negative real numbers.
R: R ∪ {+∞}.
Rd: d-dimensional real Euclidean space.

Rd×r: Set of d× r real matrices.
{a, . . . , b}: Set of integers x such that a ≤ x ≤ b.

H: Dictionary of aggregation.
FΘ: EWA dictionary.

Functions

dom(f): Effective domain of a function f .
fθ: Linear combination of elements in the dictionary H with the weights in θ.
f∗: Legendre-Fenchel conjugate of a function f .
f+: Monotone conjugate of a function f .
f◦: Polar of a function f .
γf : Moreau envelope of a function f of order γ > 0.

M ,γf : Moreau envelope of a function f of order γ > 0 in the metric M .
σC: Support function of a set C.
γC: Gauge (Minkowski functional) of a set C.
J◦fx: Subdifferential gauge associated to fx ∈ ri(∂J(x)).
∇f : Gradient of a function f .
∇g: Gradient w.r.t. the first variable of a bivariate function g.
∂F f : Fréchet subdifferential of a function f .
∂f : Subdifferential of a function f .

Dηf (·,x): Bregman divergence associated to a convex function f at x w.r.t. η ∈ ∂f(x).
Tf
ε,x,v(·): f -attentive ε-localization (with ε > 0) of ∂f around (x,v).
Ck(Rd): Class of functions f : Rd → R such that its first k derivatives are all exist and

are continuous (with k is a non-negative integer).
C∞(Rd): Class of functions f : Rd → R such that its k-th derivative exists and continu-

ous for any non-negative integer numbers k.
C̃1,+(Rd): Class of differentiable functions f : Rd → R whose gradient is locally Lipschitz

continuous and there exists K > 0, 〈x,∇f(x)〉 ≤ K(1 +
∥∥x∥∥2

2
), ∀x ∈ Rd.

J (Rd): Class of functions which are proper, lsc and bounded from below.
G(Rd): Class of finite-valued gauges.

Γ0(Rd): Class of proper lsc convex functions.

Operators

gph(S): Graph of an operator S.
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sgn: Sign operators.
(·)+: Positive part of a real number.
b·c: Stands of integer part.
Γ: Gamma function.

proxγf : Moreau proximal mapping of a function f .
proxMγf : Moreau proximal mapping of a function f in the metric M .

PC: Orthogonal projector on a set C.
Id: Identity operator on the space of p1×p2 matrices (should not be confused with

the identity matrix).

Operations on sets

|C|: Cardinality of a set C.
Cc: Complement of a set C.
C◦: Polar of a set C.
ιC: Indicator operator of a set C.
IC: Characteristic operator of a set C.

bd(C): Boundary of a set C.
Span(C): Smallest linear manifold containing the set C.
conv (C): Convex hull of a set C.
conv (C): Closure of the convex hull of a set C.

aff(C): Affine hull of a set C.
par(C): Parallel subspace of a set C.

ri(C): Relative interior of a set C.

Notations in linear algebra

Bold uppercase letters: Matrices in an Euclidean space.
Bold lowercase letters: Vectors in an Euclidean space.

Id: Identity matrix on Rd.
ker(M): Kernel of a matrix M .

Span(M): Image of a matrix M .
rank(M): Rank of a matrix M .

tr(M): Trace of a square matrix M .
det(M): Determinant of a square matrix M .
σ(M): Vector of singular values of a matrix M in non-increasing order.

σmin(M): The smallest singular values of a matrix M .
M>: Transpose of a matrix M .

vec(M): Vectorization opertator of a matrix M .
supp(x): Support of a vector x.

xI : Subvector whose entries are those of the vector x indexed by a index set I.
M I : Submatrix whose columns are those of the matrix M indexed by a index set

I.
M I,J : Submatrix whose columns and rows are those of the matrix M indexed by

index sets I and J .
M̃ : Canonical dual frame associated to a frame M .
M+: Moore-Penrose pseudo inverse of a matrix M .
X: Design matrix.

diag(x): Diagonal matrix whose diagonal entries are the components of x.
〈x,y〉: Scalar product of two vectors x,y ∈ Rd.
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〈x,y〉M : Scalar product of two vectors x, y ∈ Rd associated to the metric M .
〈A,B〉F : Frobenius scalar product of two matrices A, B ∈ Rd×d.
‖x‖M : norm of a vector x associated to the metric M .
‖x‖p: `p norm (or pseudo-norm or semi-norm) of a vector x for p ∈ [0,+∞].
‖x‖p,2: `p,2-group norms (or pseudo-norm or semi-norm) of a vector x for p ∈ [0,+∞].
‖M‖Sp: Schatten p-norm (or pseudo-norm or semi-norm) of a matrix M for p ∈

[0,+∞].
‖M‖J1→J2

: Operator bound of a matrix M for J1, J2 ∈ G(Rd).
‖M‖∗: Nuclear norm of a matrix M .
‖M‖F : Frobenius norm of a matrix M .
‖M‖2→2: Operator (Spectral) norm of a matrix M .

dim(T ): Dimension of a subspace T .
T⊥: Orthogonal subspace of a subspace T .
xT : Orthogonal projection of a vector x on the subspace T .
MT : M PT for a matrix M and subspace T .
A∗: Adjoint of a linear operator A.

Geometrical decomposability

eJx : Paff(∂J(x))(0) for J ∈ Γ0(Rd).
SJx : par(∂J(x)) for J ∈ Γ0(Rd).
T Jx : SJx

⊥ for J ∈ Γ0(Rd) (Model subspace of a vector x associated to the function
J ∈ G(Rd)).

Regression problem

X : Design space.
Y: Observation space.

{xi}i∈{1,...,n}: Designs.
{yi}i∈{1,...,n}: Observations.
{ξi}i∈{1,...,n}: Noises.

x: Design vector.
y: Observation vector.
ξ: Noise vector.
f : Regression function.
g: (g(x1), . . . , g(xn))> for a function g : X → R.

‖g‖n:
√∑n

i=1 g
2(xi)/n for a function g : X → R.
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List of Acronyms

EWA: Exponential Weighted Aggregation.
PEN: Penalization.

SURE: Stein’s Unbiased Risk Estimate
SOI: Sparse Oracle Inequality.
lsc: Lower Semicontinuous.

i.i.d.: Independent and identically distributed.
SDE: Stochastic Differential Equation.
LMC: Langevin Monte-Carlo.

FBLMC: Forward-backward Langevin Monte-Carlo.
Semi-FBLMC: Semi-Forward-backward Langevin Monte-Carlo.

LASSO: Least Absolute Shrinkage and Selection Operator.
SCAD: Smoothly Clipped Absolute Deviation.

TV: Total Variation.
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