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les plus compliqués. Malgré mes doutes, tu as sû, par tes mots, ta présence ou simplement ton
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Alexandre, Lydie, Cédric, Léo, et Gabriel pour les moments passés ensembles, ils m’ont été d’une
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Chapitre 0

Introduction

La crise des subprimes de 2007 aux Etats-Unis a occasionné un bouleversement dans le
fonctionnement des marchés financiers. Cette crise a souligné l’importance de réguler l’ensemble
des marchés de gré à gré pour maintenir un équilibre financier mondial. En effet, bien que les
dérivés OTC ne soient pas à l’origine de cette crise, leur utilisation massive a permis cette derière
de se propager à travers les différents acteurs.

En parallèle, les membres des chambres de compensation ont été moins impactés. C’est pour
cette raison qu’en Septembre 2009 le G20 a conclu que l’ensemble des dérivés OTC devaient, à
l’avenir, être traités à travers les chambres de compensation afin de limiter l’ensemble des risques
(opérationnel, de contrepartie, de liquidité, et évidemment systémique). C’est à travers la loi
Dodd-Frank (Dodd–Frank Wall Street Reform and Consumer Protection Act) aux Etats-Unis et
du texte EMIR (European Market Infrastructure Regulation) en Europe que ces réglementations
virent le jour à partir de 2010.

Les chambres de compensation (CCPs) sont des institutions financières qui, lors d’une tran-
saction, se placent entre l’acheteur et le vendeur. Elles deviennent la contrepartie “acheteur”
pour chaque vendeur et “vendeur” pour chaque acheteur.

Aujourd’hui, plusieurs problèmes se posent. Les CCPs diminuent le risque de contrepartie
en devenant l’intermédiaire de chaque acteur (appelé membre ou clearing member) lors d’une
transaction. Mais le réseau devenant totalement centralisé, le risque le devient également. S’il
est mal géré, une bulle systémique peut alors se créer. Pour empêcher la formation de cette
dernière, la CCP impose à chacun de ses membres un niveau de collatéral suffisant pour couvrir
l’intégralité des pertes de leur défaut potentiel ainsi qu’un fonds de garantie mutualisé entre les
membres.

Cette thèse traite de diverses problématiques ayant trait à la gestion du collatéral dans le
contexte du trading centralisé au travers des chambres de compensation : coûts comparés pour
une banque de trader de manière bilatérale ou au travers d’une chambre de compensation et
méthodologies de calcul des marges initiales et du fonds de garantie.

Un travail préliminaire consiste en une réflexion sur les notions de coûts de capital et coût
de financement pour une banque, en les replaçant dans un cadre Black–Scholes élémentaire où
le payoff d’un call standard tient lieu d’exposition au défaut d’une contrepartie. Cependant,
on suppose que la banque ne couvre qu’imparfaitement ce call et doit faire face à un coût de
financement supérieur au taux sans risque, d’où des corrections de pricing de type FVA (funding
valuation adjustment) et KVA (capital valuation adjustment) par rapport au prix Black–Scholes.
Ces corrections sont obtenues comme solutions d’EDP qui, dans le cas où le spread de crédit de
la banque et l’erreur de couverture tendent vers zéro, convergent vers zéro. Ce cadre simplifié
nous permet également d’étudier le risque de modèle, un enjeu important s’agissant des coûts
XVA, que nous appréhendons dans des formalismes de modèle à volatilité incertaine puis de
transport martingale optimal.

Nous nous intéressons ensuite aux coûts auxquels une banque doit faire face lorsqu’elle négocie
à travers une CCP. À cette fin, nous transposons au trading centralisé le cadre d’analyse XVA
du trading bilatéral. Sur la base d’une analyse dynamique des flux financiers échangés, le coût
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total pour un membre de trader au travers d’une CCP est ainsi décomposé en une CVA cor-
respondant au coût pour le membre de renflouer sa contribution au fonds de garantie en cas de
pertes consécutives du fait de défauts d’autres membres, une MVA correspondant au coût de
financement de sa marge initiale et une KVA correspondant au coût du capital mis à risque par
le membre sous la forme de sa contribution au fonds de garantie. Ces différents coûts peuvent
alors être comparés avec les coûts analogues dans le cadre du trading bilatéral, ce que nous
illustrons par une étude numérique.

L’analyse de coûts précédente est menée sur la base des spécifications réglementaires actuelles
concernant le calcul des marges initiales et des contributions au fonds de garantie des membres.
Nous remettons alors en cause ces hypothèses, nous intéressant à des alternatives dans lesquelles
les membres auraient recours pour leur marge initiale à une tierce partie, qui posterait le collatéral
à la place du membre en échange d’une rémunération. Nous considérons également un mode de
calcul du fonds de garantie et de son allocation qui prendraient en compte le risque de la chambre
au sens des fluctuations de son profit-and-loss (P&L) sur l’année suivante, tel qu’il résulte de la
combinaison des risques de marché mais aussi des risques de défaut des membres (par opposition
aux modes de calculs actuels de type Cover 2, purement basés sur le risque de marché des
membres).

Enfin, nous proposons l’application de méthodologies de type mesures de risque multivariées
pour le calcul des marges et/ou du fonds de garantie des membres. Nous introduisons une
notion de mesures de risque systémiques au sens où elles présentent une sensibilité non seule-
ment aux risques marginaux des composantes d’un système financier (par exemple, mais non
nécessairement, les positions des membres d’une CCP), mais aussi à leur dépendance. Plus
spécifiquement, nous étendons à un cadre multivarié la notion de shortfall risk. Dans une suite
empirique nous mettons en œuvre de telles mesures de risque sur la base de données réelles de
chambre de compensation fournies par LCH.

En appendice, nous reprenons certains des textes réglementaires inscrits dans EMIR, relatifs
aux CCPs. Le lecteur pourra ainsi se référer à ces articles concernant les calculs de marges ini-
tiales, de fonds de garantie, de calibration des paramètres ou encore des procédures de back-tests
et stress-tests.

Dans la suite de cette introduction, nous présentons les principaux résultats exposés dans
chaque chapitre.

0.1 Les équations de Black–Scholes en marchés incomplets
Le Chapitre 1 de cette thèse consiste à introduire les notions de coût de financement (FVA) et

coût du capital économique (KVA) pour une banque dans le modèle de Black–Scholes. Ce cadre,
bien que simpliste, nous permet d’appréhender les problèmes relatifs aux coûts additionnels des
banques.

Dans les marchés incomplets, les équations de Black–Scholes ne suffisent plus pour valori-
ser des portefeuilles composés de dérivés européens. Le modèle doit alors être complété par la
valorisation des imperfections. Nous nous intéressons à un portefeuille composé de calls, tenant
lieu d’exposition au défaut (pour la suite de nos travaux). Afin d’introduire l’imperfection du
marché, nous supposons que la banque ne se couvre que partiellement.

Ce faisant, la valorisation du portefeuille fait intervenir son prix Black–Scholes ainsi que deux
coûts additionnels : un coût de financement et un coût de capital économique. Le premier est
un coût semi-linéaire dû au financement du portefeuille au-delà du taux sans risque, tandis que
le second correspond à la rémunération des actionnaires (à un certain taux de dividende h) du
risque résiduel (couverture imparfaite).

On se place sur un espace probabilisé (Ω,G,Q) où Q désigne une probabilité risque neutre.
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On considère un portefeuille composé de n différents calls de caractéristiques (ωi, Ti,Ki) où Ti
(resp. Ki) représente la maturité (resp. le strike) de l’option i sur un même sous-jacent S et ωi
la position de la banque sur l’option i. Du fait des imperfections de couverture, un montant de
capital économique EC = ECt(%) doit être réservé par la banque et calculé comme une mesure de
risque conditionnelle de la perte potentielle %. En suivant les arguments de Albanese and Crépey
(2017, Section 5.3), le coût du capital économique (KVA) pour rémunérer les actionnaires à un
taux constant h doit être formulé de la manière suivante :

KVAt(%) = hEQ
t

(∫ T

t

e
−
∫ s
t

(ru+h) du ECs(%) ds
)

(0.1.1)

où EQ
t désigne l’espérance conditionnelle sous Q sachant Gt et le processus r représente le taux

d’intérêt sans risque.
On suppose également que la banque peut investir au taux r mais qu’elle emprunte au taux

(r + λ) > r.
On définit par Θ la valeur de marché du portefeuille de la banque incluant la FVA et nous

explicitons la dynamique du processus de perte % :

d%t = −dΘt −
n∑
i=1

ωi (STi −Ki)+
δTi( dt)

+
(
λt (Θt − ECt(%))+ + rtΘt

)
dt+ ηt dMt

(0.1.2)

où η représente le vecteur prévisible de positions sur les instruments de couverture M, sachant
que la couverture peut être imparfaite. On découple cette équation de celle de la KVA qui est
calculé dans un second temps. En supposant l’hypothèse d’absence d’opportunité d’arbitrage,
% est une Q-martingale locale et le processus de prix Θ est solution de l’EDSR suivante pour
t ∈ [0, T ] (et en notant βt = e

−
∫ t

0
rs ds) :

Θt = EQ
t

(∑
t<Ti

β−1
t βTiωi(STi −Ki)+

)
︸ ︷︷ ︸

Θ0
t

− EQ
t

(∫ T

t

β−1
t βsλs (Θs − ECs(%))+ ds

)
︸ ︷︷ ︸

FVAt

(0.1.3)

On se place alors dans le modèle Black–Scholes dans lequel le sous-jacent S possède un drift
constant r, un taux de dividendes constant q et une volatilité constante σ. Notons que dans ce
cadre dMt = dSt− (r−q)St dt = Stσ dWt. Nous spécifions également un cadre markovien pour
le capital économique modélisé par :

ECt(%) = f ×
√

d〈%〉t
dt = fσSt

∣∣∂Su(t, St)− η(t, St)
∣∣ (0.1.4)

dans le cas où Θt := u(t, St), η := η(t, St) et f est un coefficient multiplicatif représentant un
certain niveau de quantile. En spécifiant ensuite η(t, St) := (1− α) ∂Su(t, St), avec α ∈ [0, 1]
un paramètre d’erreur sur la couverture, nous obtenons que la solution u est définie par une
suite de fonctions (ui)1≤i≤n sur chaque intervalle ]Ti−1, Ti]×R+

∗ . Ces dernières sont elles-mêmes
uniques solutions des EDP en cascades suivantes, pour i décroissant de n vers 1 (en spécifiant
que un+1 = 0 et T0 = 0) :{

ui(Ti, S) = ui+1(Ti, S) + ωi(S −Ki)+ sur R+
∗

∂tui +AbsS ui − λ
(
ui − αfσS|∂Sui|

)+ − rui = 0 sur [Ti−1, Ti[×R+
∗

(0.1.5)



6 Chapitre 0. Introduction

avec AbsS = (r − q)S∂S + σ2

2 S
2∂2
S2 le générateur Black–Scholes risque neutre. Les processus de

FVA := Θ0 −Θ et de KVA sont alors définis par les équations suivantes :

FVAt = EQ
t

(∫ T

t

e−r(s−t)λ(s, Ss)
(
u(s, Ss)− αfσSs|∂Su(s, Ss)|

)+ ds
)

= v(t, St) = ubs(t, St)− u(t, St)
(0.1.6)

KVAt = hEQ
t

(∫ T

t

e−(r+h)(s−t) αfσSs|∂Su(s, Ss)|ds
)

= w(t, St) (0.1.7)

où ubs est la valeur Black–Scholes du portefeuille. Les fonctions v et w sont définies comme
solutions de : 

v(T, S) = w(T, S) = 0 sur R+
∗ et sur [0, T [×R+

∗ :
∂tv +AbsS v + λ (ubs − v − αfσS|∆bs − ∂Sv|)+ − rv = 0
∂tw +AbsS w + hαfσS|∆bs − ∂Sv| − (r + h)w = 0

(0.1.8)

avec ∆bs = ∂Subs.
Dans un second temps, nous présentons les résultats obtenus en introduisant le modèle à vo-

latilité incertaine de Avellaneda, Levy, and Parás (1995). On suppose alors que dMt = Stσt dWt

avec σt ∈ [σ, σ] pour tout t. On montre dès-lors que u définie initialement par (0.1.5) devient la
solution des EDP suivantes :ui(Ti, S) = ui+1(Ti, S) + ωi(S −Ki)+ sur R+

∗ et sur [Ti−1, Ti[×R+
∗ :

∂tui + inf
σ∈[σ,σ]

[
AbsS ui − λ

(
ui − αfσS|∂Sui|

)+]− rui = 0 (0.1.9)

tandis que la KVA définie par w devient la solution de :w(T, S) = 0 sur R+
∗ et sur [Ti−1, Ti[×R+

∗ :
∂tw + sup

σ∈[σ,σ]

[
AbsS w + αhfσS|∂Su|

]
− (r + h)w = 0 (0.1.10)

Cependant, puisque les calls sont des produits liquides, leurs prix EQ[βTi (STi −K)+] ne
doivent pas être pris en compte dans le risque de modèle, mais calibrés au marché. Au-delà du
modèle de volatilité incertaine, nous souhaitons ajouter les contraintes de distribution terminale
sur notre sous-jacent. On considère la KVA (supposant que λ = 0) correspondant à un unique call
de paramètres (T,K). On utilise alors les résultats de Tan and Touzi (2013) sur les problèmes
de transport martingale optimal : on cherche à maximiser KVA0 dans le modèle à volatilité
incertaine sous contrainte de distribution terminale µT . On définit alors la KVA à la date 0
comme :

KVA0 := h sup
Q∈Q(µ0,µT )

EQ

(∫ T

0
e−(r+h)tfασtSt|∂Su(t, St)|dt

)
(0.1.11)

avec Q l’ensemble des probabilités associées aux processus de volatilité incertaine, Q(µ0) ={
Q ∈ Q : Q ◦ S−1

0 = µ0
}

et Q(µ0, µT ) =
{
Q ∈ Q(µ0) : Q ◦ S−1

T = µT
}

.
Les résultats numériques montrent qu’à moins que la couverture soit très bonne, la KVA

domine la FVA. Ce résultat est logique sachant que le capital économique n’impacte qu’indi-
rectement la FVA alors qu’elle est le cœur même de la KVA. Par ailleurs, ils montrent que
dans le cadre du modèle à volatilité incertaine, la FVA ne change que peu alors que u et la
KVA sont énormément impactées par cette incertitude. Enfin, dans le cadre de transport mar-
tingale optimal, le risque de modèle de la KVA n’est pas grandement impacté par la contrainte
de distribution terminale. Celà est dû à l’utilisation de u définie par (0.1.9) faute de théorie
pour l’évaluation de u à des dates futures dans le modèle à volatilité incertaine contraint par la
distribution terminale de ST .
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0.2 Analyse XVA en trading centralisé
Dans le chapitre 2, nous nous intéressons à la valorisation des portefeuilles des membres

de chambres de compensation. Nous transposons le cadre XVA du monde bilatéral au monde
centralisé. Comparativement aux premiers travaux dans ce domaine initiés par Arnsdorf (2012)
et Ghamami (2015), notre “CCVA” (Central Clearing Valuatation Adjustment) prend en compte
non seulement la CVA correspondant aux pertes que les membres subissent suite aux défauts
des autres membres via la chambre, mais aussi une MVA correspondant au coût de financement
des marges ainsi que la KVA, coût du capital implicitement requis à travers leur contribution
au fonds de garantie.

Dans l’ensemble de ce chapitre, nous supposons que la CCP est composée de n+ 1 différents
membres, dénotés par i ∈ {0, . . . , n}.

On se place sur un espace probabilisé filtré (Ω,G,Q) avec G = (Gt)t∈R+ , tel que tous les
processus définis sont G adaptés et que tous les temps aléatoires utilisés sont des G-temps
d’arrêts. On rappelle que EQ

t désigne l’espérance conditionnelle sous Q sachant Gt. Enfin, on
rappelle que le processus de taux sans risque est noté r et on définit le facteur d’actualisation β
défini par βt = e

−
∫ t

0
rs ds.

Pour chaque membre i, on dénote par P it la valeur de marché de son portefeuille ignorant le
risque de contrepartie et le coût de financement, i.e.

βtP
i
t = EQ

t

(∫ T̄

t

βs dDi
s

)
, t ∈ [0, T̄ ] (0.2.1)

où D est le processus de dividendes promis, et T̄ est la maturité finale du portefeuille de la CCP.

Le but principal d’une chambre de compensation étant de diminuer le risque systémique, du
collatéral est demandé à chaque membre afin de couvrir son défaut potentiel. En effet, lors d’un
défaut, la CCP se substitue au membre défaillant en récupérant son portefeuille et le collatéral
correspondant durant la période de liquidation (typiquement 5 jours). Durant cet intervalle, le
risque de marché du portefeuille est porté par la chambre avant que le portefeuille ne soit liquidé
auprès des membres survivants.

La cascade (waterfall) de collatéral est la suivante.
En premier lieu, la CCP exige que les membres échangent la marge de variation, notée VM,

correspondant à la valeur de marché du portefeuille. On a donc VMi
lh = P ilh−, avec h l’intervalle

de temps entre deux appels de marge et l ∈ N. Ce premier niveau de collatéral permet de réduire
le risque du portefeuille accumulé sur l’intervalle [0, lh].

Lors d’un défaut à la date τ , le risque de marché sur la période de liquidation [τ, τ + δ]
n’est pas couvert par ce premier niveau de collatéral. C’est pourquoi la chambre exige un second
niveau de collatéral : la marge initiale. Notée IM, elle est définie comme étant une mesure de
risque sur la perte potentielle du portefeuille Lt,t+δ durant la période de liquidation. On a donc
IMi

lh = ρlh(Llh,lh+δ), avec ρ une mesure de risque univariée évaluée à la date lh.
La réglementation européenne en place (EMIR) demande également un troisième niveau de

collatéral, appelé fonds de défaillance ou fonds de garantie. Celui-ci doit :
“Permettre au moins aux contreparties centrales de résister, dans des conditions de
marché extrêmes mais plausibles, soit à la défaillance du membre compensateur vis-
à-vis duquel elles présentent la plus forte exposition, soit à la défaillance du deuxième
et du troisième membres compensateurs vis-à-vis desquels elles présentent les plus
fortes expositions, si la somme de ces expositions est supérieure”.

La contribution au fonds de garantie de chaque membre, notée DFC, est donc basée sur une
mesure de risque multivariée % sur l’ensemble des portefeuilles des membres. La fréquence de mise
à jour T de son niveau est plus faible que pour les marges de variations et initiales (typiquement
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tous les mois). De plus, contrairement aux autres niveaux de collatéral, la contribution au fonds
de garantie est mutualisée : elle peut être utilisée en dernier recours pour couvrir les pertes liées
aux défauts des autres membres. Elle doit par conséquent être considérée comme du capital à
risque pour les membres. On note alors DFCilT = %ilT

((
L1
lT+δ − IM1

lT , · · · , LnlT+δ − IMn
lT

))
, l ∈

N.
Afin d’inclure le risque systémique dans notre modélisation, nous autorisons les membres

à faire défaut simultanément. Dès lors, nous montrons que la “brèche” B subie par la CCP à
chaque date de liquidation τZ + δ vaut :

BτZ+δ =
∑
i∈Z

(1−Ri)
(
P iτi+δ +

∫
[τi,τi+δ]

e

∫ τi+δ
s

ru du dDi
s − Ciτ̂i

)+

︸ ︷︷ ︸
εi

(0.2.2)

où τZ désigne la date de défaut joint des membres i ∈ Z, la somme étant sur l’ensemble Z ⊆
{0, . . . , n} tel que i ∈ Z si et seulement si τi = τZ , en notant τ̂i la dernière date d’appel de marge
avant le défaut du membre i, en supposant qu’un recouvrement au taux Ri puisse être attendu
par la chambre pour tous les membres i ∈ {0, . . . , n} et enfin en notant C = VM + IM + DFC
l’ensemble du collatéral posté par le membre.

À chaque date de liquidation, si la brèche B est positive, la perte au-delà du collatéral du
membre est d’abord absorbée par le “skin-in-the-game” E. Ce collatéral, fourni cette fois par la
CCP, est typiquement mis à jour une fois par an. Ainsi, à chaque date τZ + δ, le skin-in-the
game E varie de :

∆EτZ+δ = − (BτZ+δ ∧ EτZ+δ−) (0.2.3)

Dès-lors, la perte résiduelle ε non couverte par ce dernier niveau de collatéral est absorbée
par l’ensemble des membres survivants et allouée via une clé de répartition, typiquement basée
sur leur contribution au fonds de garantie :

εiτZ+δ =
(
BτZ+δ − EτZ+δ−

)+ J iτZ+δ DFCiτZ+δ∑
0≤j≤n J

j
τZ+δ DFCjτZ+δ

(0.2.4)

avec J i = 1[0,τi) le processus d’indicatrice de survie.

Dès-lors, plaçons nous du point de vue du membre 0. Par souci de simplifications de lecture,
nous retirons l’indice 0 de nos notations.

Consistants avec notre méthodologie de non-arbitrabilité via la mesure risque neutre Q, nous
supposons que le vecteur de gains unitaires M sur les actifs de couverture est une (G,Q)-
martingale. Nous supposons également que le membre réalise une stratégie de couverture (−ζ)
de son portefeuille, i.e. un vecteur de processus prévisibles correspondant aux positions prises
sur les actifs de couverture.

Notons que l’ensemble du collatéral requis pour traiter via la CCP doit être financé. Nous
assumons que la marge de variation VMt = P

t̂− consiste en du cash ré-hypothécable rémunéré au
taux sans risque, tandis que les marges initiales sont considérées être des actifs liquides évoluant
au taux sans risque. De plus, nous faisons l’hypothèse que les marges initiales et les contributions
au fonds de garantie sont sujettes à des frais de la CCP au taux c (aux alentours de 30 bps).
Nous supposons enfin que le membre peuvent investir à un taux (r+ λ) et emprunter à un taux
(r + λ̄).

En écrivant la dynamique du P&L du portefeuille du membre (en supposant qu’un taux de
recouvrement R̄ est attendu par le membre envers son financeur), on déduit que la valeur du
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portefeuille Π vérifie l’EDSR suivante :

Πτ̄δ = 1τ<T̄

[
−1ε=0

(
Pτ+δ +

∫
[τ,τ+δ]

e

∫ τ+δ

s
ru du dDs

)
− 1ε>0

(
C
τ̂

+Rε
)]

et, pour t ≤ τ̄ δ,

dΠt = rtΠt dt+ 1τ<T̄ (1− R̄)
(

Πt− + C?
t̂

)+
dJt

+ Jt

 dDt +
∑
Z⊆N

ετδ
Z
δτδ
Z

( dt) + gt(Πt) dt

+ dνt,

(0.2.5)

avec ν une martingale locale, en utilisant la notation τ̄ δ = 1τ<T̄ τ
δ + 1τ≥T̄ T̄ et en notant, pour

tout π ∈ R,
gt (π) = ct

(
Ct − Pt̂−

)
+ λ̄t (π + C?t )+ − λt (π + C?t )− (0.2.6)

où C?t = VMt + IMt. On définit alors la CCVA comme le processus Θ défini par

Θ := −
(
P +

∫
[τ,·]

e

∫ ·
s
ru du dDs + Π

)
(0.2.7)

et on montre alors que :

βtΘt = EQ
t

[ ∑
t<τδ

Z
<τ̄

βτδ
Z
ετδ
Z
− 1τ<T̄

(
βτδξ + βτ

(
1− R̄

) (
Pτ− − Cτ̂ + Θτ−

)−
Jt

)

+
∫ τ̄

t

βs

(
gs
(
− Ps −Θs

))
ds
]
, t ∈ [0, τ̄ δ]

(0.2.8)

Par ailleurs, au-delà de Θ, on se doit d’ajouter la KVA corrspondant au coût du capital requis
par le membre afin de rémunérer ses actionnaires à un certain taux k. À ce titre, le capital mis
à disposition par le membre est K = DFC + Kcm où Kcm représente le capital réglementaire
exigé par la réglementation. La KVA, ajustement à prendre en compte au-delà de Θ est alors :

KVAt = kEQ
t

(∫ τ̄

t

e
−
∫ s
t

(ru+k) du
Ks ds

)
, t ∈ [0, τ̄ ] (0.2.9)

La CCVA définie comme étant Θ + KVA peut alors être comparée à la valeur d’ajustement du
portefeuille du membre en trading bilatéral. Cette comparaison est réalisée avec des simulations
numériques où les quantités sont calculées par méthodes de Monte-Carlo sur des portefeuilles
constitués de swaps.

Nous concluons que les différences de coûts entre trading bilatéral et centralisé sont princi-
palement dûs au “netting” des positions en trading centralisé. En effet, la CCP se trouvant au
centre du système dans lequel évoluent les membres, le risque qu’elle porte concerne uniquement
les positions aggrégées des membres contrairement à la somme des risques contrepartie-par-
contrepartie en trading bilatéral.

0.3 Optimisation de marges pour le trading centralisé
L’objectif du chapitre 3 est de présenter de nouvelles méthodologies concernant, dans un

premier temps, le calcul du fonds de garantie et son allocation ; puis de l’emprunt de la marge
initiale pour les membres.
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En effet, la taille du fonds de garantie est principalement basée sur la méthodologie Co-
ver 2 présentée ci-avant. Cette méthode est basée sur des considérations de mouvements de
marché stressé. À l’instar du trading bilatéral en marché incomplet, nous introduisons le capital
économique (EC) de la CCP (initialement introduit par Ghamami (2015) et Albanese (2015))
et proposons d’utiliser cette valeur pour le fonds de garantie. Dès lors, nous pouvons également
définir le coût du capital (KVA) de la CCP.

Nous nous plaçons dans le même espace probabilisé filtré introduit précédemment et utilisons
les mêmes notations que la section précédente. Néanmoins, contrairement au chapitre 2, nous
supposons que le collatéral est capitalisé entre le défaut du membre et la liquidation de son
portefeuille. Ainsi la perte du portefeuille du ième membre est :

Liτi+δ =
(
P iτi+δ +

∫
[τi,τi+δ]

e

∫ τi+δ
s

ru du dDi
s − β−1

τi+δβτi
(
VMi

τi + IMi
τi + DFCiτi

))+

(0.3.1)

Dans l’optique du calcul du fonds de garantie, notons Li,DFC=0
τi+δ la valeur de la perte du membre

i sans sa contribution au fonds de garantie. Nous supposons que la CCP ne peut faire défaut
dans notre modèle. C’est pourquoi nous supposons qu’elle peut emprunter et prêter au taux OIS
r, réduisant ainsi les XVAs de la CCP à sa CVA :

CVAccp
t = EQ

t

 ∑
t<τi+δ<T̄

β−1
t βτi+δL

i,DFC=0
τi+δ

 (0.3.2)

Le processus de pertes correspondant s’écrit :
Lccp0 = zccp, la perte initiale de la CCP
βt dLccpt = βt ( dCVAccp

t − rtCVAccp
t dt)

+
∑
i

(
βτi+δL

i,DFC=0
τi+δ

)
δτi+δ( dt)

(0.3.3)

Nous définissons ensuite le capital économique (EC) permettant de couvrir les pertes exception-
nelles de la CCP comme l’expected shortfall des pertes sur l’année à venir :

ECt = ESQt
(∫ t+1

t

β−1
t βs dLccps

)
=: DFt (0.3.4)

où ESt représente l’expected shortfall conditionnelle. La KVA de la CCP est donnée par :

KVAccp
t = hEQ

t

(∫ T̄

t

e
−
∫ s
t

(ru+h) du DFs ds
)

(0.3.5)

Concernant l’allocation du fonds de garantie à travers les membres, nous pouvons également
comparer l’allocation “classique” utilisant comme clé de répartition la marge initiale

µi = IMi∑
j IMj

(0.3.6)

à une allocation de type “X-incrémentale” au sens suivant (cf. Albanese (2015)) :

µi = ∆iEC(−i)∑
j ∆jEC(−j) , ou µi = ∆iKVA(−i)∑

j ∆jKVA(−j) (0.3.7)

où X(−i) représente la valeur X sans le ième membre et en notant ∆iX
(−i) := X −X(−i).
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Dans un second temps, nous proposons de comparer le coût de financement de la marge
initiale, déjà présenté dans le chapitre 2 avec le schéma de financement suggéré par Albanese
(2015), selon lequel le collatéral de chaque membre est posté par une tierce partie en échange
d’un certain coût. En notant λ = γ(1 − R) le spread CDS du membre 0 avec γ son processus
d’intensité de défaut, sa MVAub

0 (ub pour unsecured borrowing), i.e. le coût de financement de
sa marge initiale à la date 0, est :

MVAub
0 = EQ

(∫ τ̄

0
βsλsIMs ds

)
. (0.3.8)

Supposons qu’il existe une institution financière sans risque de défaut, appelée prêteur spécialisé.
En contrepartie d’une certaine rémunération, ce prêteur se substitue au membre vis-à-vis de la
CCP concernant les appels de marge initiale. De plus, en cas de défaut du membre, on suppose
que ce prêteur récupère la partie de la marge initiale non utilisée pour l’absorption des pertes.
L’exposition de ce prêteur spécialisé vis-à-vis du membre est donc :(

G+
τ+δ ∧ β

−1
τ+δβτ IMτ

)
(0.3.9)

où Gt représente la différence du portefeuille entre le défaut et sa date de liquidation :

Gt = Pt +
∫

[t,t+δ]
e

∫ t+δ
s

ru du dDi
s − β−1

t βt−δVMt−δ (0.3.10)

Le coût de financement de la marge initiale dans ce nouveau schéma de financement à la date 0
est MVAsl

0 (sl pour specialist lender) :

MVAsl
0 = EQ [βτ+δ1τ<T̄

((
G+
τ+δ ∧ β

−1
τ+δβτ IMτ

))]
= EQ

(∫ τ̄

0
βsγsξs ds

) (0.3.11)

avec ξ un processus prévisible tel que EQ
τ−
(
βτ+δG

+
τ+δ ∧ βτ IMτ

)
= βτξτ .

Par identification avec le schéma classique, ce nouveau schéma de financement correspond à
un coût implicite λ̄ = 1

1−R
ξ

IMλ. La marge initiale étant calculée sur une mesure de risque de G,
avec la supposition de taux de recouvrement R compris entre 20% et 40%, on a généralement
λ̄� λ et ensuite MVAsl

0 significativement inférieur à MVAub
0 .

En dernier lieu, ces deux optimisations sont illustrées numériquement sur les mêmes por-
tefeuilles du chapitre précédent après avoir dérivé l’ensemble des formules (semi-fermées) pour
calculer les quantités nécessaires.

0.4 Mesures de risques multivariées et allocation de fonds
de défaut

Dans le chapitre 4, nous étendons la définition de shortfall risk introduite par Föllmer and
Schied (2002), ou optimized certainty equivalent présentée par Ben-Tal and Teboulle (2007), au
cadre multidimensionnel. Cette nouvelle mesure évalue les risques de composants dépendants
et peut être utilisée pour l’optimisation de portefeuille, ou, dans le cadre de cette thèse, à la
valorisation du fonds de garantie de la CCP.

Nous nous plaçons sur Rd, et notons ≤ son ordre partiel. Ainsi, ∀x,y ∈ Rd,x ≤ y si et
seulement si pour tout k tel que 1 ≤ k ≤ d on a xk ≤ yk. Par ailleurs, on se place dans un
espace probabilisé (Ω,A,P) et notons L0(Rd) l’espace des vecteurs aléatoires de dimension d,
A-mesurables. Nous représentons un vecteur de pertes par la notation X ∈ L0(Rd).

Dans un premier temps, nous définissons des fonctions appelées fonctions de perte. Une
fonction ` : Rd → (−∞,∞] est une fonction de perte si elle est croissante, convexe, semi-continue
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inférieurement avec inf ` < 0, et enfin sur-linéaire. Ces fonctions permettent l’aggrégation des
pertes des différents composants.

Pour des raisons d’intégrabilité, nous restreignons notre analyse au sous-espace des vecteurs
aléatoires suivant :

Mθ :=
{
X ∈ L0 tel que E (θ(λX)) <∞ pour tout λ ∈ R+} (0.4.1)

avec la notation θ(x) := `(|x|), x ∈ Rd.
Nous définissons qu’une position (−X) est acceptable si elle vérifie E (`(X)) ≤ 0. L’ensemble

des allocations monétaires acceptables est défini par

A(X) :=
{
m ∈ Rd : E (` (X −m)) ≤ 0

}
(0.4.2)

Nous définissons le multivariate shortfall risk R(X), pour X ∈Mθ, par :

R(X) = inf
{∑

k

mk : m ∈ A(X)
}

= inf
{∑

k

mk : E (` (X −m)) ≤ 0
}
. (0.4.3)

Nous démontrons que cette mesure de risque est une mesure de risque monotone, convexe, inva-
riante par translation, continue et sous-différentiable. De plus, si ` est positivement homogène,
R l’est également. Enfin, R admet une représentation duale de la forme

R(X) = max
Q∈Qθ∗

{
EQ (X)− α (Q)

}
(0.4.4)

où Qθ∗ est défini par

Qθ
∗

:=
{

dQ
dP := (Z1, . . . , Zd) : Z ∈ Lθ

∗
,Z > 0 tel que E [Zk] = 1 pour tout k

}
(0.4.5)

avec Lθ∗ le dual de Mθ tandis que la fonction de pénalité α est définie par

α(Q) = inf
λ>0

E
[
λ`∗

(
dQ
λ dP

)]
, Q ∈ Qθ

∗
. (0.4.6)

Au-delà de son niveau global, l’allocation de cette mesure de risque entre les différentes com-
posantes du système est un point essentiel. Nous étudions les questions d’existence d’une alloca-
tion, de son unicité et sa sensibilité par rapport à la dépendance entre les pertes Xi, 1 ≤ i ≤ d.
Nous montrons que si une fonction de perte est invariante par permutation de ces coordonnées,
alors l’allocation optimale est uniquement caractérisée par les conditions du premier ordre sui-
vantes :

1 ∈ λ∗E (∇` (X −m∗)) et E (` (X −m∗)) = 0 (0.4.7)

où λ∗ est un multiplicateur de Lagrange. Nous montrons également que l’allocation est invariante
par translation et positivement homogène si ` l’est.

Dans une dernière optique, nous nous intéressons à la sensibilité de notre mesure de risque
par rapport à un choc extérieur. Nous définissons la contribution marginale en risque de Y ∈Mθ

par rapport à X ∈Mθ par la quantité

R(X;Y ) := lim sup
t↘0

R(X + tY )−R(X)
t

(0.4.8)

Si ` est invariante par permutation de ces coordonnées alors nous démontrons que

R(X;Y ) = min
m∈B(X)

max
λ∈C(X)

λE [∇` (X −m) · Y ] (0.4.9)
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où B(X) × C(X) est l’ensemble des points selles de la fonction (m, λ,X) 7→ L(m, λ,X) =∑
kmk + λE[`(X −m)].
Nous réalisons ensuite une étude comparant différents schémas numériques de calculs de

notre mesure de risque et d’allocation lorsque X est un vecteur gaussien de dimension variable.
Nous analysons les temps de calcul de R(X) et RA(X) lorsque les espérances sont calculées
par méthodes de Fourier, Monte-Carlo, et lorsque nous interpolons les fonctions de perte par la
méthode de Chebychev.

Nous terminons enfin notre analyse sur des données réelles fournies par la chambre de compen-
sation LCH. Nous comparons l’allocation du fonds de garantie proportionnellement aux marges
initiales avec l’allocation proportionnelle aux m∗ (en ajoutant la contrainte des allocations mar-
ginales positives).
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Chapitre 1

The sustainable Black-Scholes
equations

This chapter is based on Armenti, Crépey, and Zhou (2016).

1.1 Introduction
In incomplete markets, a basic Black–Scholes perspective has to be complemented by the

valuation of market imperfections. Otherwise this results in Black–Scholes Ponzi schemes, such
as the ones at the core of the last global financial crisis, where always more derivatives need to
be issued for remunerating the capital attracted by the already opened positions. In this chapter
we consider the sustainable Black–Scholes equations that arise for a portfolio of options if one
adds to their trade additive Black–Scholes price, on top of a nonlinear funding cost, the cost of
remunerating at a hurdle rate the residual risk left by imperfect hedging. We assess the impact
of model uncertainty in this setup.

Section 1.2 revisits the pricing of a book of options accounting for cost of capital and cost of
funding, which are material in incomplete markets. Section 1.3 specializes the pricing equations
to a Markovian Black–Scholes setup. Section 1.4 assesses the impact of model risk in an UVM
(uncertain volatility model) setup. Section 1.5 refines the model risk add-ons by accounting for
calibrability constraints.

We consider a portfolio of options made of ωi vanilla call options of maturity Ti and strike
Ki on a stock S, with 0 < T1 < . . . < Tn = T . Note that, if a corporate holds a bank payable,
it typically has an appetite to close it, receive cash, and restructure the hedge otherwise with a
par contract (the bank would agree to close the deal as a market maker, charging fees for the
new trade). Because of this natural selection, a bank is mostly in the receivables (i.e. “ωi ≥ 0”)
in its derivative business with corporates.

We write x± = max(±x, 0).

1.2 Cost of Capital and Cost of Funding
1.2.1 Cost of Capital

Let rt denote a risk-free OIS short term interest rate and βt = e
−
∫ t

0
rs ds be the corresponding

risk-neutral discount factor.
In presence of hedging imperfections resulting in a nonvanishing loss (and profit) process % of

the bank, a conditional risk measure EC = ECt(%) must be dynamically computed and reserved
by the bank as economic capital.

It is established in Albanese and Crépey (2017, Section 5.3) that the capital valuation ad-
justment (KVA) needed by the bank in order to remunerate its shareholders for their capital at
risk at some average hurdle rate h (e.g. 10%) at any point in time in the future is :

KVA = KVAt(%) = hEt

(∫ T

t

e
−
∫ s
t

(ru+hu) du ECs(%) ds
)

(1.2.1)
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where Et stands for the conditional expectation with respect to some probability measure Q and
model filtration.

In principle, the probability measure used in capital and cost of capital calculations should
be the historical probability measure. But, in the present context of optimization of a portfolio
of derivatives, the historical probability measure is hard to estimate in a relevant way, especially
for long maturities. As a consequence, we do all our price and risk computations under a risk-
neutral measure Q calibrated to the market (or a family of pricing measures, in the context of
model uncertainty later below), assuming no arbitrage.

1.2.2 Cost of Funding

We assume that the bank can invest at the risk-free rate r but can only obtain unsecured
funding at a shifted rate r + λ > r. This entails funding costs over OIS and a related funding
valuation adjustment (FVA) for the bank. Given our focus on capital and funding in this chapter,
we ignore counterparty risk for simplicity, so that λ is interpreted as a pure funding liquidity
basis.

In order to exclude arbitrages in the primary market of hedging instruments, we assume
that the vector gain process M of unit positions held in the hedging assets is a risk-neutral
martingale. The bank “marks to the model” its derivative portfolio, assumed bought from the
client at time 0, by means of an FVA-deducted value process Θ. The bank may also set up a
(possibly imperfect) hedge (−η) in the hedging assets, for some predictable row-vector process
η of the same dimension asM. We assume that the depreciation of Θ, the funding expenditures
and the loss η dM on the hedge, minus the option payoffs as they mature, are instantaneously
realized into the loss(-and-profit) process % of the bank. In particular, at any time t, the amount
on the funding account of the bank is Θt. Moreover, we assume that the economic capital can be
used by the trader for her funding purposes provided she pays to the shareholders the OIS rate
on EC that they would make otherwise by depositing it (assuming it all cash for simplicity).

Note that the value process Θ of the trade already includes the FVA as a deduction, but
ignores the KVA, which is considered as a risk adjustment computed in a second step (in other
words, we assume that the trader’s account and the KVA account are kept separate from each
other). Rephrasing in mathematical terms the above description, the loss equation of the trader
is written, for t ∈ (0, T ], as (starting from %0 = y, the accrued loss of the portfolio) :

d%t =−
∑
i

ωi (STi −Ki)+
δTi( dt)︸ ︷︷ ︸

Call payoffs
+ rtECt(%) dt︸ ︷︷ ︸

Payment of internal lending of the EC funding source at OIS rate

+
(

(rt + λt)
(
Θt − ECt(%)

)+ − rt(Θt − ECt(%)
)−) dt︸ ︷︷ ︸

Portfolio funding costs / benefits

(1.2.2)

+ (−dΘt)︸ ︷︷ ︸
Depreciation of Θ

+ ηt dMt︸ ︷︷ ︸
Loss on the hedge

=− dΘt −
∑
i

ωi (STi −Ki)+
δTi( dt) +

(
λt
(
Θt − ECt(%)

)+ + rtΘt

)
dt+ ηt dMt

Hence, a no-arbitrage condition that the loss process % of the bank should follow a risk-
neutral martingale (assuming integrability) and the terminal condition ΘT = 0 lead to the
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following FVA-deducted risk-neutral valuation BSDE :

Θt = Et

[∑
t<Ti

β−1
t βTiωi (STi −Ki)+

]
︸ ︷︷ ︸

Θ0
t

−Et

[∫ T

t

β−1
t βsλs

(
Θs − ECs(%)

)+ ds
]

︸ ︷︷ ︸
FVAt

, t ∈ [0, T ]

(1.2.3)
(since we consider a portfolio of options with several maturities, we treat option payoffs as cash-
flows at their maturity times rather than a terminal condition in the equations, in particular
ΘT = 0).

The funding source provided by economic capital creates a feedback loop from EC into FVA,
which makes the FVA smaller.

Note that, in the usual case of a risk measure EC only affected by the time fluctuations of %,
the equations (1.2.3) and in turn (1.2.1) are independent of the accrued loss y, which eventually
does not affect Θ nor the KVA.

If λ = 0, then, whatever the hedge η, Θ reduces to Θ0, which corresponds to the usual trade
additive (linear) no-arbitrage pricing formula for a portfolio of options, with zero FVA, but with
a KVA given by (1.2.1), depending on the hedge η.

If λ 6= 0, and if there exists a replicating hedge η such that the corresponding % is constant
in (1.2.2), i.e. η dM coincides with the martingale part of Θ, then the resulting %, EC and KVA
vanish (since we assumed EC(0) = 0), and the ensuing FVA-deducted value process is given the
following process Θ? :

Θ?
t = Et

[∑
t<Ti

β−1
t βTiωi (STi −Ki)+ −

∫ T

t

β−1
t βsλs (Θ?

s)
+ ds

]
, t ∈ [0, T ] (1.2.4)

This is a monotone driver BSDE, admitting as such a unique square integrable solution Θ? (see
e.g. Kruse and Popier (2016, Section 4)), provided λ is bounded from below and Θ0 is square
integrable.

Example 1.2.1 (Single option positions) If n = 1 and ω1 = 1 (one long call position), then,
by application of the comparison theorem for BSDEs with a monotonic generator (see Kruse and
Popier (2016, Section 4)), we have Θ? ≥ 0, hence

Θ?
t = Et

[
β̃−1
t β̃T1 (ST1 −K1)+

]
(1.2.5)

where β̃t = e
−
∫ t

0
(rs+λs) ds. With respect to Θ0, the value Θ? corresponds to an FVA rebate on

the buying price by the bank (since we assumed a positive liquidity basis λ).
If n = ω1 = −1 (one short call position), then we deduce likewise that Θ? ≤ 0, hence

Θ? = Θ0.

But, apart from the above special cases where λ = 0 or η = η?, the BSDE (1.2.3) for Θ is
nonstandard due to the term EC = ECt(%) in the FVA.

1.3 Markovian Black–Scholes Setup
In this section we assume a constant risk-free rate r and a stock price S following a geometric

Brownian motion with volatility σ and constant dividend yield q. The risk-neutral martingaleM
is then taken as the gain process of a continuously rolled unit position on the stock S, assumed
funded at the risk-free rate via a repo market, i.e. dMt = dSt − (r − q)St dt. We denote by
AbsS = (r − q)S∂S + 1

2σ
2S2∂2

S2 the corresponding risk-neutral Black–Scholes generator.
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Doing our modeling exercise in the context of the Black–Scholes model, where perfect replica-
tion, hence no KVA, is possible, may seem rather artificial. However, doing all the computations
in a stylized Black–Scholes setup with a single risk factor S yields useful practical insights. In
addition, this conveys the message that, in real-life incomplete markets, a basic Black–Scholes
perspective has to be complemented by the valuation of market imperfections, otherwise this
unavoidably results in Black–Scholes Ponzi schemes, such as the ones that have been involved
in the global financial crisis, where always more derivatives are issued to remunerate the capital
required by the already opened positions (if priced and risk-managed in a basic Black–Scholes
way ignoring the cost of capital).

In the Black–Scholes setup and assuming a stylized Markovian specification

ECt(%) = f

√
d〈%〉t

dt (1.3.1)

(the stylized Value-at-Risk which is proportional to the instantaneous volatility of the loss process
% modulo a suitable “quantile level” f) as well as λt = λ(t, St), ηt = η(t, St), then the above
FVA and KVA equations can be reduced to the “sustainable Black–Scholes PDEs” (1.3.7), as
follows (resulting in an FVA- and KVA-deducted price that would be sustainable for the bank
even in the limit case of a portfolio held on a run-off basis, with no new trades ever entered in
the future).

First, observe that given a tentative FVA-deducted price process of the form Θt = u(t, St)
for some to-be-determined function u = u(t, S), we have, assuming (1.3.1) :√

d〈%〉t
dt = σSt

∣∣∂Su(t, St)− η(t, St)
∣∣ (1.3.2)

Accordingly, let the function u be defined by ui(t, S) on each strip (Ti−1, Ti]× (0,∞), where
(ui)1≤i≤n is the unique sequence of viscosity solutions, which can then shown to be classical
solutions, to the following PDE cascade, for i decreasing from n to 1 (closing the system by
setting un+1 = 0 and T0 = 0) :{

ui(Ti, S) = ui+1(Ti, S) + ωi(S −Ki)+ on (0,∞)
∂tui +AbsS ui − λ

(
ui − fσS|∂Sui − η|

)+ − rui = 0 on [Ti−1, Ti)× (0,∞)
(1.3.3)

Itô’s calculus shows that the process (Θt)t = (u(t, St))t solves the Markovian, monotonic
driver (assuming λ bounded from below) BSDE

u(t, St) = Et
[ ∑
t<Ti

β−1
t βTiωi (STi −Ki)+

−
∫ T

t

β−1
t βsλs

(
u(s, Ss)− fσSs

∣∣∂Su(s, Ss)− η(s, Ss)
∣∣)+ ds

]
, t ∈ [0, T ]

(1.3.4)

which in view of (1.3.1)-(1.3.2) is precisely (1.2.3).
The ensuing FVA = Θ(0) −Θ and KVA processes are given as (cf. (1.2.3) and (1.2.1)) :

FVAt(%) = Et

∫ T

t

e−r(s−t)λs

(
u(s, Ss)− f

√
d〈%〉s

ds

)+

ds


KVAt(%) = hEt

[∫ T

t

e−(r+h)(s−t)f

√
d〈%〉s

ds ds
] (1.3.5)

where
√

d〈%〉t
dt is given by (1.3.2). We set η = (1− α)∂Su, where α ∈ [0, 100%] is the mis-hedge

parameter (noting that, for α = 0, the BSDE (1.3.4) reduces to the replication BSDE (1.2.4)),
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then the latter reduces to ασSt|∂Su(t, St)| and we have

FVAt(%) = Et

[∫ T

t

e−r(s−t)λs
(
u(s, Ss)− αfσSs|∂Su(s, Ss)|

)+ ds
]

= v(t, St) = ubs(t, St)− u(t, St),

KVAt(%) = hEt

[∫ T

t

e−(r+h)(s−t)αfσSs|∂Su(s, Ss)|ds
]

= w(t, St)

(1.3.6)

where ubs is the trade additive Black–Scholes portfolio value and where the FVA and KVA
pricing functions v and w satisfy

v(T, S) = w(T, S) = 0 on (0,∞)
∂tv +AbsS v + λ (ubs − v − αfσS|∆bs − ∂Sv|)+ − rv = 0 on [0, T )× (0,∞)
∂tw +AbsS w + αhfσS|∆bs − ∂Sv| − (r + h)w = 0 on [0, T )× (0,∞)

(1.3.7)

in which ∆bs = ∂Subs.
These “sustainable Black–Scholes PDEs” (1.3.7) allow computing an FVA and KVA deducted

price
u− w = ubs − v − w (1.3.8)

that would be sustainable for the bank even in the limit case of a portfolio held on a run-off
basis, with no new trades ever entered in the future.

1.4 With Volatility Uncertainty

An important and topical issue, referred to by the regulation as AVA (additional valuation
adjustment), is the magnifying impact of model risk on the different XVA metrics.

In this section, we assess model risk from the angle of Avellaneda, Levy, and Parás (1995)’s
uncertain volatility model (UVM). Namely, we only assume bounds σ and σ but we do not assume
any specific dynamic on the stock volatility process σ. Therefore, there is a model uncertainty
about it. That is, we only consider dMt := σtSt dWt = dSt − (r− q)St dt, where σt ∈ [σ, σ] for
every t.

We call C the space of continuous paths on R+, C the canonical process on the space C, F =
(Ft)0≤t≤T the canonical filtration generated by C and Q the set of F local martingale probability
measures for C. We recall from Soner, Touzi, and Zhang (2012) and Soner, Touzi, Zhang, et al.
(2013) that, for any probability measure Q ∈ Q, the process C satisfies dCt = a

1/2
t dWQ

t , for
some Q Brownian motion WQ, where at is the Lebesgue density of the aggregated quadratic
variation of C. In the following, we restrict attention to the probability measures Q such that
a

1/2
t ∈ [σ, σ] holds dt×Q almost surely, still denoting by Q the (restricted) set of measures, and

we model dMt = dSt − (r − q)St dt as St dCt.
Under each Q, similarly to (1.2.2), the loss equation of the trader is written, for t ∈ (0, T ],

as :

d%Qt = −dΘQ
t −

∑
i

ωi (STi −Ki)+
δTi( dt)

+
(
λt
(
ΘQ
t − ECQ

t (%Q)
)+ + rtΘQ

t

)
dt+ ηt dMt

(1.4.1)
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where ECQ is some conditional risk measure under Q. The ensuing equation for the Q FVA-
deducted value ΘQ appears as

ΘQ
t = EQ

t

[∑
t<Ti

β−1
t βTiωi (STi −Ki)+ −

∫ T

t

β−1
t βsλs

(
ΘQ
s − ECQ

s

(
%Q
))+

ds
]
, t ∈ [0, T ] (1.4.2)

For all Q ∈ Q, the trader should value the derivative portfolio ΘQ
0 at time 0 (or ΘQ

t at time
t). However, due to the model uncertainty, the trader values it Θ0 = inf

Q∈Q
ΘQ

0 (or at time t,

Θt = ess inf
Q∈Q

ΘQ
t ), which is a non-arbitrage price.

At time t, ECQ
t (%Q) may depend on the whole future of the process (%Qs ), s ≥ t. This makes

(1.4.2) a so-called anticipated BSDE under Q (ABSDE in the sense of Peng, Yang, et al. (2009)),
with generator λt

(
ΘQ
t − ECQ

t (%Q)
)+, where ΘQ corresponds to the “Y -component” and ( d%Qs −

ηsSs dBs) to the “Z-component” of the solution. However, in the Markovian setting of Section
1.3, ECQ

t (%Q) only depends on (%Qt ) at time t, so that the ABSDE (1.4.2) reduces to a BSDE.
In order to take model risk into consideration (i.e. the impact of several Q), we need the

notion of second order BSDE. Wellposedness results regarding second order anticipated BSDEs
are not yet available in the literature. Hence, we only give heuristic formulations in this regard.
Namely, by analogy with the second order BSDEs theory introduced by Soner, Touzi, and Zhang
(2012) we should have the following representation, where F+ =

(
F+
t

)
0≤t≤T the right limit of

F, i.e. F+
t = ∩s>tFs for all t ∈ [0, T ) and F+

T = FT :
There exists a process % such that, for each Q ∈ Q, % is a Q-local martingale and

it Q− a.s. holds that

d%t = −dΘt −
∑
i

ωi (STi −Ki)+
δTi( dt)

+
(
λt
(
Θt − ECQ

t (%)
)+ + rtΘt

)
dt

+ ηtSt dBt + dAQ
t

(1.4.3)

where ECQ is some conditional risk measure and the family AQ of non-decreasing
processes satisfies the minimality condition

AQ
t = ess infQ

Q′∈Q(t,Q,F+)
EQ′

[
AQ′
T

∣∣FQ+
t

]
, 0 ≤ t ≤ T, Q− a.s., ∀Q ∈ Q (1.4.4)

where Q(t,Q,F+) :=
{
Q′ ∈ Q s.t. Q′ = Q on F+

t

}
.

The corresponding equation for the FVA-deducted value Θ would appear as

Θt = ess inf
Q′∈Q(t,Q,F+)

EQ′
t

[ ∑
t<Ti

β−1
t βTiωi (STi −Ki)+

−
∫ T

t

β−1
t βsλs

(
Θs − ECQ′

s (%)
)+

ds
]
, t ∈ [0, T ],Q− a.s.

(1.4.5)

Equations in the Markovian Setting
By contrast, in the Markovian setting of Section 1.3 with VaR-like specification of economic

capital, we can make rigorous statements. According to the second order BSDE theory introduced
in Soner, Touzi, and Zhang (2012), the PDE (1.3.3) becomes :ui(Ti, S) = ui+1(Ti, S) + ωi(S −Ki)+ on (0,∞)

∂tui + inf
σ∈[σ,σ]

[
AbsS ui − λ

(
ui − fσS|∂Sui − η|

)+]− rui = 0 on [Ti−1, Ti)× (0,∞) (1.4.6)
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Let u be defined by ui(t, S) on each strip (Ti−1, Ti]×(0,∞). The FVA can be defined as Θλ=0−Θ
and the ensuing KVA process is given as (cf. (1.2.3) and (1.2.1)) :

KVAt(%) = h ess sup
Q′∈Q(t,Q,F+)

EQ′
t

[ ∫ T

t

e−(r+h)(s−t)f

√
d〈%〉s

ds ds
]
, t ∈ [0, T ],Q− a.s. (1.4.7)

where
√

d〈%〉t
dt = a

1/2
t St

∣∣∂Su(t, St)− η(t, St)
∣∣. In the case where η = (1− α)∂Su, we obtain

KVAt(%) = w(t, St)

where w(T, S) = 0 on (0,∞)
∂tw + sup

σ∈[σ,σ]

[
AbsS w + αhfσS|∂Su|

]
− (r + h)w = 0 on [0, T )× (0,∞) (1.4.8)

in which (cf. (1.4.6)) :ui(Ti, S) = ui+1(Ti, S) + ωi(S −Ki)+ on (0,∞)
∂tui + inf

σ∈[σ,σ]

[
AbsS ui − λ

(
ui − αfσS|∂Sui|

)+]− rui = 0 on [Ti−1, Ti)× (0,∞) (1.4.9)

1.5 Optimal Transportation Approach
Since vanilla call options are liquidly traded, their time 0 price components

E
[
βTi(STi −Ki)+]

should not be seen as subject to model risk, but calibrated to the market. Hence, we need to
refine our preliminary UVM assessment of model risk in order to account for these calibration
constraints. For simplicity we consider a single call option (T,K) and we set λ = 0, focusing on
KVA in this section. Hence, the system (1.4.6) reduces to a single PDE with λ = 0, with solution
denoted by u.

Tan and Touzi (2013) consider the optimal transportation problem consisting of minimizing
a cost among all continuous semimartingales given initial and terminal distributions. They show
an extension of the Kantorovitch duality to this context and suggest a finite-difference scheme
combined with the gradient projection algorithm to approximate the dual value. Their results
can be applied to our setup as follows.

Let µ0 = δS0 denote the Dirac measure on the initial value of S0 and let µT denote the
marginal distribution of ST , inferred by calibration to the market prices of all European call
options with maturity T (assuming quotations available for all strikes). Let

Q(µ0) =
{
Q ∈ Q : Q ◦ S−1

0 = µ0
}

and
Q(µ0, µT ) =

{
Q ∈ Q(µ0) : Q ◦ S−1

T = µT
}

the last not being empty in our setting given the arguments of Tan and Touzi (2013, Remark
2.3).

The time-0 KVA with model uncertainty and terminal marginal constraint is defined as
follows :

KVA0(%) = h sup
Q∈Q(µ0,µT )

EQ
[ ∫ T

0
e−(r+h)sf

√
d〈%〉s

ds ds
]
, (1.5.1)

where % represents the portfolio loss in this setting, that is, the loss and profit of the bank
in a world with uncertain volatility subject to the law of ST . However, it is not clear how to
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extrapolate the theory of Tan and Touzi (2013) to valuation at future time points when only the
unconditional law of ST is known. Hence for the sake of tractability we conservatively assume
that % in (1.5.1) is the UVM one and we only apply the constraint to the outer expectation in
(1.5.1) (as opposed to the conditional expectations that are hidden in %).

With this understanding of (1.5.1), given any measure ν, we define

ν(φ) =
∫
R
φ(x)ν( dx)

on the set Cb(Rd) of all bounded continuous functions φ on Rd. We can readily check that
Tan and Touzi (2013, Assumptions 3.1-3.3) are satisfied. Hence, by an application of their main
duality result, we can rewrite the KV A0 as

KVA0(%) = inf
φ∈Cb(Rd)

{
µ0(Φ0)− e−(r+h)TµT (φ)

}
(1.5.2)

where the “pseudo-payoff function” φ corresponds to a Lagrangian for the constrained optimi-
zation problem (1.5.1) and where

Φ0(x) = sup
Q∈Q(δx)

EQ
[
e−(r+h)Tφ(ST ) +

∫ T

0
e−(r+h)shf

√
d〈%〉s

ds ds
]

(1.5.3)

Hence, the KVA in an optimal transportation (OT) setting can be represented as an infimum of
KVAs in modified UVM setting.

1.5.1 Equations in the Markovian Setting
In the Markovian setting of Section 1.3, we consider the probability measures Q on the

canonical space (Ω,FT ), under which the canonical process C is a local martingale on [t, T ].
Define Qt as the collection of all such martingale probability measures Q such that a1/2

s ∈ [σ, σ]
dQ × ds -a.e. on Ω × [t, T ]. Denote Qt,x :=

{
Q ∈ Qt s.t. Q (Ss = x, 0 ≤ s ≤ t) = 1

}
. For any

φ ∈ Cb(Rd), let

Φ(t, x) = sup
Q∈Qt,x

EQ
[
e−(r+h)(T−t)φ(ST ) +

∫ T

t

e−(r+h)(s−t)hf

√
d〈%〉s

ds ds
]

(1.5.4)

where
√

d〈%〉t
dt = a

1/2
t St

∣∣∂Su(t, St)− η(t, St)
∣∣, in which u is the solution to (1.4.6) with λ = 0.

Then, in the case where η = (1−α)∂Su, Φ is a viscosity solution to the dynamic programming
equationΦ(T, S) = φ(S) on (0,∞)

∂tΦ + sup
σ∈[σ,σ]

[
AbsS Φ + αhfσS|∂Su|

]
− (r + h)Φ = 0 on [0, T )× (0,∞) (1.5.5)

In view of (1.5.2), in the present OT setup, KVA0 is obtained as the minimum of

Φ(0, S0)− e−(r+h)T
∫
R
φ(x)µT ( dx) (1.5.6)

over φ ∈ Cb(Rd). This minimization is numerically achieved by the Nelder-Mead simplex algo-
rithm.

As a sanity check, observe that, if µT is the log-normal probability density function and
σ = σ = σ then (1.5.6) is exactly the time 0 KVA of Section 1.3, independent of φ.
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1.6 Numerical Results
Figure 1.1 shows the results obtained by solving the related PDEs (and minimizing (1.5.6) in

the OT setup) without model uncertainty as of Section 1.3 (top panel), with UVM uncertainty
as of Section 1.4 (middle panel) and with OT uncertainty as of Section 1.5 (bottom panel), for
a level of the mis-hedge parameter α increasing from 0 to 100%.

The main observation from the top panel is that, unless the hedge is very good (of the order
of 25% of mis-hedge or less), the KVA dominates the FVA, and becomes about ten times greater
than the FVA in the absence of hedge (α = 1). This is logical given that economic capital (EC)
has only an indirect reduction effect on the FVA, whereas it directly sizes the KVA.

Going to the middle panel, the FVA changes little, but both u and the KVA (unless the hedge
is almost perfect) are tremendously impacted by the uncertainty on the volatility. Regarding the
KVA, this is in line with the fact that it is the cost of a risk measure, which nonlinearly amplifies
the impact of perturbations to its input data.

In reality the time 0 price of a vanilla option such as the one considered in our numerics
is given by the market, so there is no model risk on it, but only on the KVA. This is what is
reflected by the OT bottom panel. The model risk on the KVA component however is essentially
the same as in the UVM case, because it is conservatively assessed by using the UVM u in
(1.5.5), fault of a developed theory of valuation at future time points under uncertain volatility
subject to the unconditional law of ST .

XVA desks, KVA in particular, are the first consulted desks in all major trades today. Our
results in a toy model where all the quantities of interest can be computed exactly (modulo the
numerical error on the PDE solutions) emphasize that, accounting for model risk, the relative
importance of the KVA should become even larger. Moreover one can easily imagine how to
transpose these results to the setup of Albanese and Crépey (2017) where each option payoff
(STi −Ki)+ is replaced by the CVA exposure of the bank to the default at time of its counter-
party i, at the (random) time Ti, with corresponding position of the bank ωiSTi and margins
received by the bank ωiKi. However in this case a relevant risk measure really needs to be com-
puted at a one-year horizon (as opposed to instantaneous in (1.3.1)), in order to leave time to
credit events to develop. This points out to developments of a slightly different nature, which
would be interesting to develop.
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Figure 1.1 – XVAs and FTP as a function of the mis-hedge parameter α. Top : Without
model uncertainty. Middle : With UVM uncertainty (σ = 15%, σ = 60%). Bottom : With OT
uncertainty (σ = 15%, σ = 60%, σ = 30%).



Chapitre 2

Central Clearing Valuation
Adjustment

This chapter is based on Armenti and Crépey (2017a).

2.1 Introduction
To cope with counterparty risk, the current trend in regulation is to push dealers to clear

their trades via CCPs, i.e. central counterparties (also known as clearing houses). Progressively,
central clearing is even becoming mandatory for vanilla products. Centrally cleared trading
mitigates counterparty risk through an extensive netting of all transactions. Moreover, on top
of the variation and initial margins that are used in the context of bilateral transactions, a CCP
imposes its members to mutualize losses through an additional layer of protection, called the
default or guarantee fund, which is pooled between the clearing members.

In this paper we develop the vision of a clearing house effectively eliminating counterparty
risk (we do not incorporate the default of the clearing house in our setup), but at a certain
cost for the members that we analyze. For this purpose, we develop an XVA (costs) analysis
of centrally cleared trading, parallel to the one that has been developed in the last years for
bilateral transactions.

2.1.1 Review of the CCP Literature

Duffie (2010) and Cont, Santos, and Moussa (2013) dwell upon the danger of creating “too
big to fail” financial institutions, including, potentially, clearing houses.

Collateralization, whether in the context of centrally cleared trading or of bilateral trading
under “standard CSA” (credit support annex), which is the emerging bilateral trading alternative
to centrally cleared trading, requires a huge amount of cash or liquid assets. This puts a high
pressure on liquidity, an issue addressed in Aitken and Singh (2009), Singh (2010), Levels and
Capel (2012) and Duffie, Scheicher, and Vuillemey (2015). Relying on metrics à la Eisenberg
and Noe (2001), Amini, Filipović, and Minca (2015) assess the systemic risk and incentivization
properties of a CCP design where, in order to spare the clearing members from liquidation costs,
in situations of financial distress, the clearing members could temporarily withdraw from their
default fund contributions to post variation margin.

Avellaneda and Cont (2013) consider the optimal liquidation of the portfolio of a defaulted
member by the clearing house.

Clearing is typically organized by asset classes, so that service closure of the CCP on one asset
class does not harm its activity on other markets—and also because otherwise, in case of the
default of a member, holders of less liquid assets (e.g. CDS contracts) are penalized with respect
to holders of more liquid assets (e.g. interest rate swaps). As a consequence, the multilateral
netting benefit of CCPs comes at the expense of a loss of bilateral netting across asset classes
(see Duffie and Zhu (2011)). Cont and Kokholm (2014) claim that the former effect typically
dominates the latter.
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But Ghamami and Glasserman (2017) show that, accounting for bilateral cross-asset netting,
the higher regulatory capital and margin requirements adopted for bilateral contracts do not
necessarily create the intended cost incentive in favor of central clearing.

Cont, Mondescu, and Yu (2011) and Pallavicini and Brigo (2013) analyze the pricing impli-
cations of the differences between the margining procedures involved in bilateral and centrally
cleared transactions.

Until recently, the cost analysis of CCPs, our focus in this paper, was only considered in
an old business finance literature reviewed in Knott and Mills (2002), notably Fenn and Kupiec
(1993). In the last years, new papers have appeared in this direction. Under stylized assumptions,
Arnsdorf (2012) derives an explicit approximation to a CCVA (using the terminology of the
present paper), including effects such as wrong way risk (meant as procyclicality of the margins),
credit dependence between members and left tailed distributions of their P&Ls. Ghamami (2015)
proposes a static one-period model where a CCVA can be priced by Monte-Carlo. Brigo and
Pallavicini (2014) extend the bilateral counterparty risk dynamic setup of their previous papers
to centrally cleared trading. However, they ignore the default fund and the credit risk dependence
issues that are inherent to the position of a clearing member.

2.1.2 Contributions and Outline
This paper develops an XVA (costs) analysis of centrally cleared trading, parallel to the one

that has been developed in the last years for bilateral transactions (see e.g. Crépey, Bielecki, and
Brigo (2014, Parts II and III) or Brigo, Morini, and Pallavicini (2013)). A dynamic framework
incorporates the sequence of cash flows involved in the waterfall of resources of the clearing
house. As compared with Arnsdorf (2012) and Ghamami (2015), our CCVA accounts not only
for the central clearing analog of the CVA, which is the cost for a member of its losses on the
default fund in case of other members’ defaults, but also for the cost of funding its margins
(MVA) and for the cost of the capital (KVA) that is implicitly required from members through
their default fund contributions (and for completeness and reference we also compute a DVA
term).

The framework of this paper can be used by a clearing house to find the right balance bet-
ween initial margins and default fund in order to minimize the CCVA (subject to the regulatory
constraints), hence optimize its costs to the members for a given level of resilience. A clearing
house can also use it to analyze the benefit for a dealer to trade centrally as a member rather
than on a bilateral basis, or to help its members manage their CCVA (regarding the question
for instance of how much of these costs they could consider passing to their clients).

The paper is organized as follows. Section 2.2 presents our clearing house setup. The waterfall
of resources of the CCP is described in Section 2.3. The CCVA analysis is conducted in Section
2.4. Section 2.5 introduces the common shock model that is used for the default times of the
members of the clearing house. Section 2.6 provides an executive summary of the centrally
cleared XVA analysis of this paper and recalls for comparison purposes the bilateral CSA XVA
methodology of Crépey and Song (2016). Section 2.7 designs an experimental framework used in
the numerics of Section 2.8. Section 2.9 concludes. Regulatory formulas are recalled in Section
2.10.1. Proofs of all lemmas are deferred to Section 2.10.4.

2.1.3 Basic Notation and Terminology∫ b
a

=
∫

(a,b] ; x± = max(±x, 0) ; δa represents a Dirac measure at a point a ; λ denotes the
Lebesgue measure on R+. Unless otherwise stated, a filtration satisfies the usual conditions ; a
price process is a special semi-martingale in a càdlàg version ; all inequalities between random
quantities are meant almost surely or almost everywhere, as suitable ; all the cash flows are
assumed to be integrable whenever required ; by “martingale” we mean local martingale unless
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otherwise stated, but true martingale is assumed whenever necessary. This means that we only
derive local martingale properties. Usually in applications one needs true martingales, but this is
not a real issue in our case, where even square integrability follows from additional assumptions
postulated when dealing with BSDEs, which are our main pricing tool in this paper.

2.2 Clearing house Setup
We model a service of a clearing house dedicated to trading between its members, labeled by

i ∈ N = {0, . . . , n}.

2.2.1 From Bilateral to Centrally Cleared Trading

In a centrally cleared setup, the clearing house interposes itself in all transactions, becoming
“the buyer to every seller and the seller to every buyer”. All the transactions between the clearing
house and a given member are netted together. See Figure 2.1 for an example, where the circled
numbers in the left (respectively right) diagram show the gross positions of n = 3 counterparties
in a CSA setup (respectively their net positions with the CCP after the introduction of the latter
in the middle).

In addition to interfacing all trades, the clearing house asks for several layers of guarantee
to be posted by the members against counterparty risk, including a default fund that is pooled
between the clearing members.

The benefits of centrally cleared trading are multilateral netting benefit and mutualization
of risk. The drawbacks are an increase of systemic risk, where “too big to fail” CCPs might be
created, liquidity risk, due to the margin requirements, and a loss of bilateral netting across asset
classes (cf. Duffie (2010) and Cont, Santos, and Moussa (2013)).
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5030
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20
30
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50
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Figure 2.1 – From bilateral to centrally cleared trading.

2.2.2 Liquidation Procedure

The mandate of a CCP is to liquidate over a few days the portfolio of a defaulted member.
During the liquidation period, the CCP bears the risk of the portfolio. The trades with a defaulted
member are typically reallocated by means of auctions among the surviving members and/or by
a gradual liquidation of its assets in the market.

For ease of analysis in this paper, we assume the existence of a risk-free “buffer” that is used
by the clearing house for replacing defaulted members in their transactions with others at the
end of a liquidation period of length δ (the defaulted transactions already involving the buffer
as one counterparty are simply terminated). We assume that during the liquidation period, the
promised contractual cash flows and the hedge of a defaulted member are taken over by the
CCP.
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2.2.3 Pricing Framework

Let (Ω,G,Q) represent a stochastic pricing basis, with G = (Gt)t∈R+ , such that all our
processes are G adapted and all the random times of interest are G stopping times. Expectation
under Q and (Gt,Q) conditional expectation are denoted by E and Et. We denote by r a G

progressive OIS rate process and by βt = e
−
∫ t

0
rs ds the corresponding discount factor. An OIS

(overnight index swap) rate is together the best market proxy for a risk-free rate and the reference
rate for the remuneration of the collateral.

For each member i, we denote by Di
t the process of the cumulative contractual cash flows

of its portfolio with the CCP (“promised dividend” process ignoring counterparty and funding
risk), assumed of finite variation. We denote by P it the mark-to-market of its portfolio ignoring
counterparty and funding risk, i.e.

βtP
i
t = Et

(∫ T̄

t

βs dDi
s

)
, t ∈ [0, T̄ ] (2.2.1)

where T̄ is the final maturity of the CCP service portfolio, assumed held on a run-off basis (as is
standard in any pricing or risk model). All cash flows and values are considered from the point
of view of the clearing house, e.g. P it = 1 means that the member i is short of a mark-to-market
value equal to one (disregarding margins) toward the clearing house at time t. Since all trades
are between the members, we have

∑
i∈N P

i = 0.

2.3 Margin Waterfall Analysis

The mark-to-market pricing formula (2.2.1) ignores the counterparty risk of the member i,
with default time τi and survival indicator process J i = 1[0,τi). As a first counterparty risk
mitigation tool, the members are required to exchange variation margins that track the mark-
to-market of their portfolios. A clearing house can call for variation margins at every time of a
margin grid of step h, e.g. twice a day.

However, various frictions and delays, notably the liquidation period δ, imply gap risk, which
is the risk of a gap between the variation margin and the debt of a defaulted member at the
time of liquidation of its portfolio. This is a special concern for certain classes of assets, such as
credit derivatives, that may have quite unpredictable cash flows (see Crépey and Song (2016)).

This is why another layer of collateralization, called initial margins, is maintained in cen-
trally cleared transactions as well as in bilateral transactions under standard CSA (the emerging
bilateral trading alternative to centrally cleared trading). Initial margins are also dynamically
updated, based on some risk measure of the variation-margined P&L of each member computed
over the time horizon δ′ = δ + h of the so called margin period of risk (maximal time h elap-
sed since the last margin call before the default plus liquidation period δ between default and
liquidation).

Gap risk is magnified by wrong-way risk, which is the risk of adverse dependence between
the positions and the credit risks of the members. One may also face credit contagion effects
between members (wrong-way and contagion risk are of special concern regarding credit de-
rivatives). Clearing houses deal with such extreme and systemic risk through a default fund
mutualized between the clearing members. The default fund contribution of each member is pri-
marily intended to reimburse the losses triggered by its own default, but, if rendered necessary
by exhaustion of the previous layers of the waterfall, it can also be used for reimbursing the
losses due to the defaults of other members.
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2.3.1 Margins
Let lh, with l ≥ 0, represent the times of the variation and initial margin calls, and let lT ,

with T a multiple of h (e.g. h = one day and T = one month), represent the times of update of
the default fund contributions.

Consistent with our sign convention that all cash flows and values are seen from the pers-
pective of the clearing house, we count a margin positively when it is posted by a member and
we define the variation margin VMi, initial margin IMi and default fund contribution DFCi
of the member i as the piecewise constant process reset at the respective grid times following,
respectively (while the member i is alive) :

VMi
lh = P ilh−, IMi

lh = ρilh, DFCilT = %ilT (2.3.1)

where ρi and %i refer to suitable risk measures as explained below. Note that (2.3.1) defines the
level of reset of the respective cumulative amounts. Starting from VMi

0 = P i0−, IM
i
0 = ρi0 and

DFCi0 = %i0, the corresponding updates at grid times are (P ilh− − P i(lh−h)−), (ρilh − ρilh−h) and
(%ilT − %ilT−T ).

Remark 2.3.1 In practice, the variation margin only tracks the mark-to-market of the portfolio
up to some thresholds, or free credit lines of the members, and up to minimal transfer amounts
devoted to avoiding useless updates. These features, which can be important in the case of
bilateral transactions, are omitted here as negligible in the case of centrally cleared transactions.

Let
Lit,t+δ′ = P it+δ′ +

∫
[t,t+δ′]

e

∫ t+δ′
s

ru du dDi
s − P it−. (2.3.2)

represents the loss process of the CCP between t and t+ δ′. In particular, at margin call times
t = lh, we have, in view of the specification of the variation margin by the first identity in
(2.3.1) :

Lilh,lh+δ′ = P ilh+δ′ +
∫

[lh,lh+δ′]
e

∫ lh+δ′

s
ru du dDi

s −VMi
lh (2.3.3)

which is the variation-margined loss-and-profit of the member i at the time horizon δ′ = δ + h
of the margin period of risk (cumulative loss-and-profit also accounting for all the contractual
cash flows capitalized at the risk-free rate during the margin period of risk [t, t + δ′]). The risk
measure used for fixing the initial margins is a univariate risk measure computed at the level of
each member individually, which we write as

ρilh = ρ
(
Lilh,lh+δ′

)
(2.3.4)

where ρ can be value at risk, expected shortfall, etc. . The dependence between the portfolios
of the members is only reflected in the initial margins through the structural constraint that∑
i∈N P

i = 0.

Remark 2.3.2 Historically, for computing initial margins, CCPs have been mostly using the
SPAN methodology, introduced by the Chicago Mercantile Exchange in the 80s. This metho-
dology is based, for each member, on the consideration of the most unfavorable among sixteen
reference scenarios (see Kupiec and White (1996)). Nowadays, value at risk methodologies tend
to become the standard.

Unless defaults happen, margins do not imply any transfer of ownership and can be seen
in this sense as a loan by the posting member. By contrast, default fund contributions can be
consumed in case of other members’ defaults, hence they should really be viewed as capital put at
the disposal of the CCP by the clearing members. The “Cover two” EMIR rule prescribes to size
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the default fund as, at least, the maximum of its largest exposure and of the sum of its second
and third largest exposures to the clearing members (see Section 2.10.2). This is only a regulatory
minimum and sometimes more conservative rules are used, such as a default fund set as the sum
of the two largest exposures. It is then allocated between the clearing members by some rule, e.g.
proportionally to their initial margins. At a more theoretical level, the mutualization rationale
of the default fund calls for the use of multivariate risk measures, which we write in an abstract
fashion as

%ilT = %i

((
LjlT,lT+δ′ − IMj

lT

)
j;Jj

lT
=1

)
(2.3.5)

(or an analog formula involving not only the LjlT,lT+δ′ , but also intermediary Lj·,·+δ′ between
(l − 1)T and lT to refrain members from temporarily closing their positions right before lT in
order to avoid to contribute to the default fund).

Regarding the distributions that are used for members loss-and-profits in all these risk mea-
sure computations, since the crisis, the focus has shifted from the cores of the distributions,
dominated by volatility effects, to their queues, dominated by scenarios of crisis and default
events. For the determination of the initial margins, Gaussian VaR models are generally banned
since the crisis and CCPs typically focus on either Pareto laws or on historical VaR. Stressed
scenarios and parameters are used for the determination of the default fund.

Note that margin schemes as above, even, in the case of the default fund contributions, possi-
bly based on multivariate risk measures (cf. (2.3.5)), only account for asset dependence between
the portfolios of the members, ignoring credit risk and contagion effects between members. This
is in line with the mandate of a clearing house to mitigate (i.e. put a cap on) its exposure to the
members by means of the margins, in case a default would happen, where a defaults is viewed
as a totally unpredictable event. On top of the margins, add-ons are sometimes required from
members with particularly high credit or concentration risk.

We refer the reader to Ghamami (2015), Lopez, Harris, Hurlin, and Pérignon (2017), Menk-
veld (2014) or Chapter 4 for alternative margin schemes and default fund specifications. Good
margining schemes should guarantee the required level of resilience to the clearing house at
a bearable cost for the members. Two points of concern are procyclicality, in particular with
haircuts that increase with the distress of a member, and liquidity, given the generalization of
central clearing and collateralization. Capponi and Cheng (2016) construct a model which endo-
genizes collateral, making it part of an optimization problem where the CCP maximizes profit
by controlling collateral and fee levels.

2.3.2 Breaches
The default time of the member i is modeled as a stopping time τi with an intensity process

γi. In particular, any event {τi = t}, for a fixed time t, has zero probability and can be ignored
in the analysis. For every time t ≥ 0, let

t̄ = t ∧ T̄ , tδ = t+ δ, t̄δ = 1t<T̄ t
δ + 1t≥T̄ T̄ (2.3.6)

and let t̂ denote the greatest margin call time lh ≤ t. We denote by

Ci = VMi + IMi + DFCi (2.3.7)

the overall collateral process of the member i. We assume that collateral posted is remunerated
OIS and that the CCP substitutes itself to a defaulted member during its liquidation period,
including regarding these collateral OIS remuneration cash flows. In our model, collateral earns
OIS but collateral OIS earnings are transferred as a remuneration to the posting member, they
do not stay in the collateral accounts. Hence, the amount of available collateral for the liquidation
of a defaulted member does not accrue at the OIS rate but stays constant during the liquidation
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period. As a consequence, we have Cit = Ci
t̂

for t ≤ τi and the process C is stopped at time τ̂i.
For each member i, we write

∆i
t =

∫
[τi,t]

e

∫ t
s
ru du dDi

s, Qit = P it + ∆i
t, εi =

(
Qiτδ

i
− Ci

τ̂i

)+
,

χi = −1εi=0Q
i
τδ
i
− 1εi>0

(
Ci
τ̂i

+Riεi

)
,

ξi = Qiτδ
i

+ χi = 1εi>0

(
Qiτδ

i
− Ci

τ̂i
−Riεi

)
= (1−Ri)εi

(2.3.8)

where ∆i
t represents the cumulative contractual dividends capitalized at the risk-free rate that

fail to be paid by member i from time τi onwards. These dividends are promised but unpaid
due to the default of the member i at τi. Hence, they also belong to the exposure of the CCP to
the default of the member i. More precisely, as will be understood in more detail from the proof
of Lemma 2.3.1, χi corresponds to a terminal cash flow closing the position of the defaulted
member i, paid by the CCP to the estate of the defaulted member at time τ δi ; εi corresponds
to the raw exposure of the CCP to the default of the member i ; ξi is the exposure accounting
for an assumed recovery rate Ri of the member i.

In fact, in the context of centrally cleared trading, by liquidation of a defaulted member,
we simply mean the liquidation of its CCP portfolio, as opposed to the legal liquidation, by
a mandatory liquidator, that can take several years (the New York branch of Lehman was
legally liquidated in December 2013, more than five years after Lehman’s default). In particular,
there is typically no recovery to expect on a defaulted member, i.e. Ri = 0. Moreover, in our
context, we suppose that losses are defined as pure “market losses” only. The reason why we
introduce recovery coefficients is for the discussion regarding DVA and DVA2 in Section 2.4 and
for comparison with the bilateral trading setup of Section 2.6.

Note that we do not exclude joint defaults in our setup. In fact, joint defaults, which can be
viewed as a form of “instantaneous contagion”, is the way we will introduce credit dependence
between members in Section 2.5. For Z ⊆ N = {0, . . . , n}, we denote by τZ ∈ R+ ∪ {∞} the
time of joint default of names in the subset Z and only in Z. At this stage we consider all the
costs from the perspective of the CCP and the community of the surviving members altogether.
The allocation of these costs between the CCP and the surviving members will be considered in
Section 2.3.3. We call realized breach of a (possibly joint) default event the residual loss to the
CCP after all the collateral of the defaulted member(s) has been consumed.

Lemma 2.3.1 At each liquidation time τ δZ = τZ +δ with τZ < T̄ , the realized breach of the CCP
is given by

Bτδ
Z

=
∑
i∈Z

ξi (2.3.9)

2.3.3 Equity and Default Fund Replenishment Principle
We proceed with the description of the next layers of the waterfall of resources of the clearing

house, namely the equity and the default fund.
If the default of a member entails a positive breach, then the first payer (although to a

typically quite limited extent) is the clearing house itself (before the surviving members), via its
equity E.

Remark 2.3.3 The regulation (e.g. EMIR) does not necessarily require that the CCP be the
first payer in case of a realized breach. However, CCPs typically take the equity tranche of this
risk, as a good management incentive. See for example Capponi, Cheng, and Sethuraman (2017)
where the authors provide an economic explanation for this management incentive.
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Specifically, at times lY , l ≥ 0, where Y is a multiple of T (e.g. one year whereas T is one
month), the equity process E is reset by the clearing house at some target level E?lY , the “skin-
in-the-game” of the clearing house for the time period [lY, (l + 1)Y ]. In the meantime, the equity
is used as first resource for covering the realized breaches, i.e., at each t = τ δZ with τZ < T̄ , we
have

∆Et = − (Bt ∧ Et−) (2.3.10)

The part of the realized breach left uncovered by the equity, (Bt − Et−)+, is covered by the
surviving members through the default fund, which they refill instantaneously by the following
rule, at each t = τ δZ with τZ < T̄ (see Figure 2.2) :

εit =
(
Bt − Et−

)+ J it DFCit∑
j∈N J

j
t DFCjt

(2.3.11)

proportionally to their current default fund contributions DFCit (or other keys of repartition
such as their initial margins, the notionals of their positions, or for example the multivariate
shortfall risk allocation presented in Chapter 4).

In sum, the margins and the default fund contributions VMi
lh, IMi

lh and DFCilT are reset at
their respective grid times by the surviving members according to (2.3.1) ; the equity is reset at
the times lY by the clearing house and is used for covering the first levels of realized breaches at
liquidation times according to (2.3.10) ; the losses in case of realized breaches above the residual
equity are covered at liquidation times by the surviving members according to (2.3.11) (see
Figure 2.2).

t×
τZ

×
s = τ δZ

(Bs − Es−)+ =
∑

i;Jis=1
εis

Figure 2.2 – Margin cash flows : resets at margin call grid times and refill of the default fund
at liquidation times.

Remark 2.3.4 The total size of the default fund is
∑
j∈N J

jDFCj , a quantity also referred to
as the funded default fund. The unfunded default fund refers to the additional amounts members
may have to pay via the above default fund replenishment principle in case of defaults of other
members.

More precisely,

uilT =

 ∑
lT−T<τδ

Z
<lT

εiτδ
Z
−DFCilT−T

+

(2.3.12)

represents the unfunded default fund contribution of the member i for the period (lT − T, lT ).
The service closure, i.e. the closure of the activity of the clearing house on a given market or

service, is usually specified in terms of events such as the unfunded default fund
∑
j∈N J

j
lTu

j
lT

reaching a cap given as, e.g., 2
∑
j∈N J

j
lT−TDFCjlT−T , i.e. twice the funded default fund. Given

the high levels of initial margins that are used in practice, this is a very extreme tail event.
Moreover, in case of service closure, the risk of a member is bounded above by the sum between
its margins, three times its default fund contribution (assuming the above specification of service
closure) and the cost of the liquidation of the service for this member. This cost is itself bounded
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by the notional of the member position, which would only be the actual cost in a scenario where
all the assets of the CCP would jump to zero, also a very unlikely situation. In conclusion,
the service closure event does not really matter regarding our present purpose of the XVA cost
analysis of CCP membership. The default of the CCP as a whole (i.e. the closure of all its
services) is an even more unlikely event, especially because a central bank would hardly allow it
to occur in view of its systemic consequences. Hence we may and do ignore the service closure
and the default of the clearing house in the context of this paper. See Armakola and Laurent
(2015) about CCP resilience and see Duffie (2014) about alternative approaches to the design of
insolvency and failure resolution regimes for CCPs.

2.4 Central Clearing Valuation Adjustment
We refer to the (generic) member 0 as “the member” henceforth, the other members being

collectively referred to as “the clearing house”. For notational simplicity, we remove the index 0
referring to the reference member.

We call value of the CCP portfolio of the member its value inclusive of counterparty and
funding risk (as opposed to the mark-to-market of the portfolio).

We assume that the member enters its portfolio at time 0, against an upfront payment of a
certain amount Π0, where the semi-martingale Π is a tentative value process of the CCP portfolio
of the member.

We also assume that profit-and-losses are marked to the model value process Π and realized
in continuous time.

In this section, we derive a representation of the (no arbitrage) value Π of the CCP portfolio
of a member as the difference (cf. the remark 2.4.2 below) between the mark-to-market of the
portfolio and a correction Θ. We call Θ the central clearing valuation adjustment (CCVA).

The KVA-inclusive CCVA is obtained in a second step by adding to Θ a capital valuation
adjustment (KVA) meant as the cost that it would require for remunerating the member at some
hurdle rate for its CCP capital at risk (including its default fund contribution).

2.4.1 DVA and DVA2 Issues
From the perspective of the member, the effective time horizon of interest is τ̄ δ (cf. (2.3.6)).

The position of the member is closed at τ δ (if τ < T̄ ), with a terminal cash flow from the
member’s perspective given, in view of (2.3.8) and of the analysis developed in the proof of
Lemma 2.3.1 (for i = 0 here), by

χ = −1ε=0Qτδ − 1ε>0
(
C
τ̂

+Rε
)

(2.4.1)

In particular, if ε > 0, i.e. Qτδ > Cτ̂ , then the member receives

−C
τ̂
−Rε = −C

τ̂
−R

(
Qτδ − Cτ̂

)
= (−Qτδ) + (1−R)

(
Qτδ − Cτ̂

)
However, for this amount to benefit to the member’s shareholders, it needs to be hedged so that
they can monetize it before τ (otherwise it is only a profit to the member’s bondholders). But,
in order to hedge this amount, the member would basically need to sell credit protection on
itself, which is barely possible in practice. Consequently, from an entry (i.e. transaction) price
perspective, the member should ignore such a windfall benefit at own default and the ensuing
debt valuation adjustment (DVA).

This means formally setting R = 1, which results in χ = −Qτδ in (2.4.1) and ξ = 0 later in
(2.4.9).

Then R becomes disconnected from what the clearing house would actually recover (if any-
thing) from the member in case it defaults, but this is immaterial for analyzing the costs of this
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member itself, it only matters for the others. In sum, it is possible and convenient to analyze
the no DVA case for the reference member just by formally setting R = 1.

If, however, some DVA is accounted for (i.e. if R < 1), then one may want to reckon likewise
a funding benefit of the member at its own default, a windfall benefit called DVA2 in the
terminology of Hull and White (2012), corresponding to an additional cash flow to the member
of the form (

1− R̄
) (

Πτ− + C?
τ̂

)+
(2.4.2)

at time τ (if < T̄ ).
Here C? = VM+IM and R̄ is a recovery rate of the member to its funder, so that the amount(

Πτ− + C?
τ̂

)+
in (2.4.2) represents the funding debt of the member at its default (having assumed

profit-and-losses marked-to-model and realized in real time, see the proof of Lemma 2.4.1 below
for more detail).

The funder of the member corresponds to a third party, possibly composed in practice of seve-
ral entities or devices and assumed default-free for simplicity, playing the role of lender/borrower
of last resort after exhaustion of the internal sources of funding provided to the member through
its collateral and its hedge.

More generally, even if one considers that the “true” recovery rate of the member is simply
zero, playing with formal recovery coefficients R and R̄ somewhere between 0 and 1 allows
reaching any desired level of interpolation between the entry price point of view R = R̄ = 1 and
the reference exit price point of view R = R̄ = 0. On the DVA and DVA2 issues, see Hull and
White (2012), Burgard and Kjaer (2012), Albanese and Andersen (2015), Albanese, Andersen,
and Iabichino (2015), Andersen, Duffie, and Song (2017) and Albanese and Crépey (2017).

2.4.2 Gain Process
The member can hedge its collateralized portfolio and needs to fund its whole position (port-

folio, margins and hedge). Regarding hedging, we restrict ourselves to the situation of a fully
securely funded hedge, entirely implemented by means of swaps, short sales and repurchase
agreements (all traded outside the clearing house, given our assumption of a constant CCP port-
folio of the member), at no upfront payment. As explained in Crépey, Bielecki, and Brigo (2014,
Section 4.2.1 page 87) 1, this assumption encompasses the vast majority of hedges that are used
in practice.

Consistent with arbitrage requirements and our terminology of a risk-neutral measure Q, we
assume that the vector-valued gain process M of unit positions in the hedging assets is a Q
martingale (see Crépey, Bielecki, and Brigo (2014, Remark 4.4.2 pages 96-97) 2 or Bielecki and
Rutkowski (2015, Proposition 3.3)). We assume that the member sets up a related hedge (−ζ),
i.e. a predictable row-vector process with components yielding the (negative of) positions in the
hedging assets. The “short” negative notation in front of ζ is used for consistency with the idea,
just to fix the mindset, that the portfolio is “bought” by the member, which therefore “sells”
the corresponding hedge.

Regarding funding, we assume that variation margins VMt = P
t̂− consist of cash re-hypothecable

and remunerated at OIS rates, while initial margins consist of segregated liquid assets accruing
at OIS rates. Initial margins and default fund contributions are supposed to be subject to CCP
fees ct, e.g. 30 basis points. We postulate that the member can invest excess-cash at a rate
(rt + λt) and obtain unsecured funding at a rate (rt + λ̄t).

Let e denote the gain process (or profit-and-loss, hedging error, etc.) of the member’s position,
held by the member itself before τ̄ and then, if τ < T̄ , by the clearing house (as liquidator of
the member’s position) on [τ̄ , τ̄ δ].

1. Or Crépey (2015, Part I, Section 2.1) in journal version.
2. Or Crépey (2015, Part I, Remark 4.1) in journal version.
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Lemma 2.4.1 We have e0 = 0 and, for 0 < t ≤ τ̄ δ,

det = dΠt − rtΠt dt− Jt

 dDt +
∑
Z⊆N

ετδ
Z
δτδ
Z

( dt) + gt (Πt) dt


− 1τ<T̄

(
1− R̄

) (
Πt− + C?

t̂

)+
dJt − ζt dMt,

(2.4.3)

where, for any π ∈ R,

gt (π) = ct

(
Ct − Pt̂−

)
+ λ̄t (π + C?t )+ − λt (π + C?t )− (2.4.4)

Remark 2.4.1 The self-financing equation (2.4.3) holds for any funding coefficient gt = gt(π)
there, not necessarily given by (2.4.4), as soon as (rtΠt + gt (Πt)) dt represents the dt-funding
cost of the member (whilst the member is alive, and net of the funding cost of its hedge that is
already comprised in the local martingale ζt dMt).

2.4.3 Pricing BSDE
Definition 2.4.1 We call Π a (no arbitrage) value process for the member’s portfolio if Πτ̄δ =
1τ<T̄χ and the ensuing gain process e (cf. (2.4.3)) is a risk-neutral local martingale.

Proposition 2.4.1 A semi-martingale Π is a value process for the member’s portfolio if and
only if it satisfies the following valuation BSDE on [0, τ̄ δ] :

Πτ̄δ = 1τ<T̄χ and, for t ≤ τ̄ δ,
dΠt = rtΠt dt+ 1τ<T̄ (1− R̄)(Πt− + C?

t̂
)+ dJt

+ Jt

 dDt +
∑
Z⊆N

ετδ
Z
δτδ
Z

( dt) + gt(Πt) dt

+ dνt,
(2.4.5)

for some local martingale ν.

Proof: In view of (2.4.3), (2.4.5) is equivalent to det = dνt − ζt dMt. Since ζt dMt defines a
local martingale, therefore e and ν are jointly local martingales or not, which establishes the
proposition. �

Note that, assuming ν a true martingale, equivalently to the differential formulation (2.4.5),
we can write (absorbing the rtΠt dt term from (2.4.5) into the risk-neutral discount factor β in
(2.4.6)) :

βtΠt = Et

[
1τ<T̄

(
βτδχ+ βτ

(
1− R̄

) (
Πτ− + C?

τ̂

)+
Jt

)

−
∑

t<τδ
Z
<τ̄

βτδ
Z
ετδ
Z
−
∫ τ̄

t

βsJs
(

dDs + gs(Πs) ds
)]
, 0 ≤ t ≤ τ̄ δ

(2.4.6)

2.4.4 CCVA Representation
In this section we define the central counterparty valuation adjustment (CCVA) and derive

the corresponding BSDE.

Definition 2.4.2 Given a value Π for the member, the corresponding CCVA is the process
defined on [0, τ̄ δ] as Θ = − (Q+ Π).
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Remark 2.4.2 Recall from (2.3.8) that Q = P +∆, with all values viewed from the perspective
of the clearing house. Consistent with the usual definition of a valuation adjustment (see Brigo,
Morini, and Pallavicini (2013) or Crépey, Bielecki, and Brigo (2014)), we have Θ = (−Q) − Π,
where (−Q) corresponds to the perspective of the member.

Let
ξ̄t = Et

(
β−1
t βτδξ

)
(2.4.7)

where ξ = (1−R)
(
Qτδ − Cτ̂

)+ as before (cf. (2.3.8)). Let ξ̂ be a G predictable process, which
exists by Corollary 3.23 2) in He and Yan (1992), such that

ξ̂τ = Eτ−
(
β−1
τ βτδξ

)
= Eτ−

(
ξ̄τ
)

(2.4.8)

In particular, in the no-DVA case with R = 1, then ξ = ξ̄ = ξ̂ = 0.

Proposition 2.4.2 Let there be given semi-martingales Π and Θ such that Θ = − (Q+ Π) on
[0, τ̄ δ]. The process Π is a value process for the member’s portfolio if and only if the process Θ
satisfies the following BSDE :

βtΘt = Et

[ ∑
t<τδ

Z
<τ̄

βτδ
Z
ετδ
Z
− 1τ<T̄

(
βτδξ + βτ

(
1− R̄

) (
Pτ− − Cτ̂ + Θτ−

)−
Jt

)

+
∫ τ̄

t

βs (gs(−Ps −Θs)) ds
]
, t ∈ [0, τ̄ δ]

(2.4.9)

Proof: Assuming Θ defined as − (Q+ Π) for some value process Π on [0, τ̄ δ], then the terminal
condition Θτ̄δ = −1τ<T̄ ξ that is implicit in (2.4.9) results from (2.3.8) and the terminal condition
for Π in (2.4.5). Moreover, we have, for t ∈ [0, τ̄ δ],

− βtΘt = βtQt + βtΠt = βtPt +
∫ t

0
βs dDs +

(
βtΠt −

∫ t

0
βsJs dDs

)
(2.4.10)

hence

− βtΘt −
∫ t

0
βsJs

∑
Z⊆N

ετδ
Z
δτδ
Z

( ds) + gs(−Ps −Θs) ds


− 1τ<T̄

∫ t

0

(
1− R̄

) (
−Ps− −Θs− + C?

ŝ

)+
dJs

=
(
βtPt +

∫ t

0
βs dDs

)
+
∫ t

0
βs dνs

by the pricing BSDE (2.4.5) satisfied by Π. In view also of (2.2.1) (used for i = 0 here), this is a
(local) martingale, hence it coincides with the conditional expectation of its terminal condition
(assuming it is a true martingale), which establishes (2.4.9). The converse implication is proven
similarly. �

Remark 2.4.3 As an alternative argument equivalent to the above, one can substitute the
right-hand side in (2.4.6) for βtΠt in (2.4.10), which, after an application of the tower rule,
yields (2.4.9). One can proceed similarly to show (2.4.6) if (2.4.9) is assumed.
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Let, for ϑ ∈ R,

f̂t(ϑ) = gt(−Pt − ϑ)− γtξ̂t − (1− R̄)γt(Pt − C?t + ϑ)−

= −γtξ̂t︸ ︷︷ ︸
dvat

+
(
ct(Ct − Pt̂−) + λ̃t (Pt − C?t + ϑ)− − λt (Pt − C?t + ϑ)+

)
︸ ︷︷ ︸

fvat(ϑ)

(2.4.11)

by definition (2.4.4) of g, where λ̃ = λ̄ − (1 − R̄)γ (recall γ = γ0 is the assumed intensity
of τ). From the perspective of the member, the two terms in the decomposition (2.4.11) of
the coefficient f̂t(ϑ) can respectively be interpreted as a beneficial debt valuation adjustment
coefficient (dvat that can be ignored by setting R = 1) and a funding valuation adjustment
coefficient (fvat(ϑ) in which the DVA2 component can be ignored by setting R̄ = 1).

Proposition 2.4.3 The “full CCVA BSDE” (2.4.9) for a semi-martingale Θ on [0, τ̄ δ] is equi-
valent to the following “reduced CCVA BSDE” for a semi-martingale Θ̂ on [0, τ̄ ] :

βtΘ̂t = Et

 ∑
t<τδ

Z
<τ̄

βτδ
Z
ετδ
Z

+
∫ τ̄

t

βsf̂s(Θ̂s) ds

 , t ∈ [0, τ̄ ] (2.4.12)

equivalent in the sense that if Θ solves (2.4.9), then Θ̂ = JΘ solves (2.4.12), whilst if Θ̂ solves
(2.4.12), then Θ = JΘ̂− (1− J)1τ<T̄ ξ̄ solves (2.4.9).

Proof: The full CCVA BSDE (2.4.9) is obviously equivalent to Θ = −1τ<T̄ ξ̄ on [τ̄ , τ̄ δ] and

βtΘt = Et
[ ∑
t<τδ

Z
<τ̄

βτδ
Z
ετδ
Z
− 1τ<T̄βτ

(
ξ̄τ +

(
1− R̄

) (
Pτ− − C?τ̂ + Θτ−

)−)

+
∫ τ̄

t

βsgs(−Ps −Θs) ds
]

on [0, τ̄), which is in turn equivalent to

Θ = −1τ<T̄ ξ̄ on [τ̄ , τ̄ δ] and, on [0, τ̄),

βtΘt = Et

 ∑
t<τδ

Z
≤τ̄

βτδ
Z
ετδ
Z

+
∫ τ̄

t

βsf̂s(Θs) ds

 (2.4.13)

because on [0, τ̄) :

Et
[
1τ<T̄βτ

(
ξ̄τ +

(
1− R̄

) (
Pτ− − C?τ̂ + Θτ−

)−)]
= Et

[
1t<τ<T̄βτ

(
ξ̂τ +

(
1− R̄

) (
Pτ− − C?τ̂ + Θτ−

)−)]
= Et

[
−
∫ T̄

t

βs

(
ξ̂s +

(
1− R̄

) (
Ps− − C?ŝ + Θs−

)−)
dJs

]

= Et

[∫ T̄

t

βsγs

(
ξ̂s +

(
1− R̄

) (
Ps− − C?ŝ + Θs−

)−)
ds
]

Here the last identity holds by consideration of the (local, assumed true) martingale

βt

(
ξ̂t +

(
1− R̄

) (
Pt− − C?t− + Θt−

)−)(dJt + γt dt
)
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One readily checks that if Θ solves (2.4.13), then Θ̂ = JΘ solves (2.4.12), whilst if Θ̂ solves
(2.4.12), then Θ = JΘ̂− (1− J)1τ<T̄ ξ̄ solves (2.4.13). �

Note that, provided r and λ̃ are bounded from below, the reduced BSDE coefficient f̂t(ϑ) in
(2.4.11) satisfies the monotonicity assumption(

f̂t(ϑ)− f̂t(ϑ′)
)

(ϑ− ϑ′) ≤ C × (ϑ− ϑ′)2

for some constant C. Then, under mild integrability conditions, the reduced CCVA BSDE
(2.4.12) is well-posed in the space of square integrable solutions (see e.g. Kruse and Popier
(2016, Sect. 5)). By virtue of Proposition 2.4.3, so is in turn the full CCVA BSDE (2.4.9).

Remark 2.4.4 In the terminology of Crépey and Nguyen (2016), (2.4.12) is the “partially re-
duced” CCVA BSDE (cf. also Lemma 2.3 in Crépey and Song (2015)), while the “fully reduced”
BSDE (simply called “reduced” in Crépey and Song (2016)) is the BSDE on the time interval
[0, T ] obtained from (2.4.12) by projection on a smaller filtration (the market or reference filtra-
tion myopic to the defaults of the two parties). In this paper we only work with the partially
reduced BSDE in order to avoid the enlargement of filtration technicalities.

2.4.5 Cost of Capital
The capital at risk of the member is composed of its default fund contribution DFCt, which

represents implicit capital at risk, and of its regulatory CCP capital Kcm
t as of (2.10.3). Along

the lines of Albanese and Crépey (2017), we define the capital valuation adjustment (KVA) of
the member as the cost of remunerating its capital at risk Kt = DFCt + Kcm

t at some hurdle
rate k throughout the whole life of the portfolio (or until the member defaults). Such a KVA is
given by the following formula (cf. Albanese and Crépey (2017)) :

KVAt = kEt
∫ τ̄

t

e
−
∫ s
t

(ru+k) du
Ks ds, t ∈ [0, τ̄ ] (2.4.14)

The KVA-inclusive CCVA is then defined as the sum between our previous CCVA Θ and this
KVA.

2.5 Common Shock Model of Default Times
We use a dynamic Marshall-Olkin (DMO) copula model of the default times τi (see Crépey,

Bielecki, and Brigo (2014, Chapt. 8–10) 3 and Crépey and Song (2016)). As demonstrated in
Crépey, Bielecki, and Brigo (2014, Sect. 8.4) 4, such a model can be efficiently calibrated to
marginal and portfolio credit data, e.g. CDS and CDO data (or proxies) on the members. The
joint defaults feature of the DMO model is also interesting in regard of the EMIR “cover two”
default fund sizing rule (cf. Section 2.10.2).

Let there be given a family Y of “shocks”, i.e. subsets Y of members, typically the singletons
{0}, {1}, . . . , {n} and a small number of “common shocks” representing simultaneous defaults.
For Y ∈ Y, we define

ηY = inf
{
t > 0;

∫ t

0
γY (s) ds > EY

}
, JY = 1[0,ηY )

for a shock intensity function γY (t) and an independent standard exponential random variable
EY . We then set

τi = min
{Y ∈Y;i∈Y }

ηY , i ∈ N

3. Or Bielecki et al. (2014b,2014a) for the journal versions.
4. Or Bielecki, Cousin, Crépey, and Herbertsson (2014a, Part II) in journal version.
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Example 2.5.1 Figure 2.3 shows one possible default path in a common shock model with
n = 5 and

Y =
{
{0} , {1} , {2} , {3} , {4} , {3, 4} , {1, 2, 3} , {0, 1}

}
The inner ovals show which shocks happen and cause the observed defaults at successive default
times. First, the default of name 1 occurs as the consequence of the shock {1}. Second, names
3 and 4 default simultaneously as a consequence of the shock {3, 4}. Third, the shock {1, 2, 3}
triggers the default of name 2 alone (as name 1 and 3 have already defaulted). Fourth, the default
of name 0 alone occurs as the consequence of shock {0, 1}.
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Figure 2.3 – One possible default path in a model with n = 4 and Y ={
{0} , {1} , {2} , {3} , {4} , {3, 4} , {1, 2, 3} , {0, 1}

}
.

Again, in the case of the reference member (labeled 0), we omit the superscript 0 in the
notation. In particular, we have J = 1[0,τ) =

∏
Y ∈Y• J

Y , where Y• = {Y ∈ Y; 0 ∈ Y }, hence the
intensity γ of τ is given as

γ = J−γ•, where γ• =
∑
Y ∈Y•

γY (2.5.1)

We assume that all the market risk factors are gathered in a vector process X without jump
at τ and that the processes X and X = (X,J), where J = (JY )Y ∈Y , are Markov in the full
model filtration G given as the filtration of X progressively enlarged by the random times
ηY , Y ∈ Y (in Section 2.7-2.8, X is simply a Black–Scholes stock S, augmented by additional
factors in order to cope with the potential path dependence of dividends and collateral). Setting
∆̂t =

∫ t
0 e

∫ t
s
ru du dDs so that βt∆t = βt∆̂t − βτ ∆̂τ− for t ≥ τ , we assume, consistent with the

interpretation of each respective quantity, that

εt = ε(t,Xt) for t = τ δZ , Z ⊆ N

Pt = P (t,Xt), ∆̂t = ∆̂(t,Xt), Ct = C(t,Xt), t ∈ [0, τ̄ ]

(having augmented X by ∆̂ and/or C if need be), for continuous functions ε(t, x), P (t,x), ∆̂(t,x)
and C(t, x). In particular, it holds that

∆τ = ∆̂τ − ∆̂τ− = ∆̂(τ,Xτ )− ∆̂(τ,Xτ−) = 0

by continuity of X at τ (as opposed to ∆τ 6= 0 in the gap risk model of Crépey and Song (2016)).
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Lemma 2.5.1 We have

dvat = dva(t,Xt) = −Jtξ̄ (t,Xt) γ•, Q× λ a.e.

for a function ξ̄(t, x) such that ξ̄τ = ξ̄(τ,Xτ−).

2.6 XVA Engines
In this section, we summarize in algorithmic terms the central clearing XVA methodology

of this paper, as well as a bilateral trading XVA methodology recalled for comparison purposes
from Crépey and Song (2016). In both cases we use the common shock model of Section 2.5 for
modeling the default times involved.

2.6.1 CCVA Engine

In spite of the nonlinearity inherent to the funding component of the CCVA, standard Monte
Carlo loops can be used for estimating a linearized first order CCVA obtained replacing fvas(Θs)
by fvas(0) in (2.4.11), i.e. f̂s(Θ̂s) by f̂s(0) in (2.4.12). A nonlinear correction can be estimated
based on the Monte Carlo expansion of Fujii and Takahashi (2012a,2012b) (further studied in
Gobet and Pagliarani (2015)) in vanilla cases, with explicit formulas for Pt, or by the branching
particles scheme of Henry-Labordère (2012) in more exotic situations. In the bilateral trading
setup of Crépey and Song (2016) (see also Crépey and Nguyen (2016)), the nonlinear correction
is consistently found less than 5% to 10% of the linear part. Hence, in this paper, we just use the
linear part. We obtain by first order linear approximation in the reduced CCVA BSDE (2.4.12) :

Θ0 = Θ̂0 ≈ E

 ∑
0<τδ

Z
<τ̄

βτδ
Z
ετδ
Z

+
∫ τ̄

0
βsf̂s(0) ds


= E

∑
0<τδ

Z
<τ̄

βτδ
Z
ετδ
Z︸ ︷︷ ︸

CVA

+E
∫ τ̄

0
βsdvas ds︸ ︷︷ ︸
DVA

+ E
∫ τ̄

0
βs

(
λ̃s (C?s − Ps)

+ − λs (C?s − Ps)
−
)

ds︸ ︷︷ ︸
MVA

+ E
∫ τ̄

0
βscs

(
Cs − Pŝ−

)
ds︸ ︷︷ ︸

MLA

(2.6.1)

where βt = e
−
∫ t

0
rs ds, λ̃ = λ̄− (1− R̄)γ•, C? = VM + IM and, for each t = τ δZ < τ̄ ,

εt = (Bt − Et−)+ DFCt∑
j∈N J

j
t DFCjt

in which Bt =
∑
i∈Z

(
P it + ∆i

t − Cit
)+

with, for each member i, Ci = VMi + IMi + DFCi (cf. (2.3.11) and (2.3.7)-(2.3.9)). In addition,
dva = −γξ̂, where ξ̂ is a predictable process such that ξ̂τ = Eτ−

(
β−1
τ βτδξ

)
(cf. (2.4.8)), with

ξ = (1−R) (Pτδ + ∆τδ − Cτ )+.
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The ε terms in (2.6.1) give rise to a CVA paid by the member through its contributions to
the refill of realized breaches. The terms dubbed MVA and MLA in (2.6.1), where

C?s − Ps = P
ŝ− + IMs − Ps ≈ IMs

and
Cs − Pŝ− = IMs + DFCs

are interpreted as a margin valuation adjustment (cost to the member of funding its initial
margins, essentially) and a margin liquidity adjustment (cost to the member of the CCP margin
fees). The positive (respectively negative) terms in (2.6.1) can be considered as deal adverse
(respectively deal friendly) as they increase (respectively decrease) the CCVA Θ. The DVA and
the DVA2 can be ignored in Θ by setting R = 1 and R̄ = 1, respectively.

For numerical purposes, we use the following randomized version of (2.6.1) :

E

 ∑
0<τδ

Z
<τ̄

βτδ
Z
ετδ
Z

+ 1ζ<τ̄
eµζ

µ
βζ f̂ζ(0)

 (2.6.2)

where ζ denotes an independent exponential time of parameter µ. Moreover, to deal with the
dvaζ term in f̂ζ(0), we use the following result.

Lemma 2.6.1 For any predictable process h and independent atomless random variable ζ, we
have :

E [1ζ<τ̄hζβζdva(ζ,Xζ)] = −E
[
1ζ<τ̄hζβζ+δ(1−R)γ•(ζ)

(
Qζδ − C?ζ

)+] (2.6.3)

Plugging hζ = eµζ

µ in (2.6.3) to deal with the dvaζ term in f̂ζ(0), (2.6.2) is rewritten as

Θ̂0 ≈ E

{ ∑
0<τδ

Z
<τ̄

βτδ
Z
ετδ
Z

+ 1ζ<τ̄
eµζ

µ
×

[
− βζδγ•(ζ)(1−R)

(
Qζδ − Cζ

)+
+ βζ

(
λ̃ζ
(
C?ζ − Pζ

)+ − λζ (C?ζ − Pζ)−) ]
} (2.6.4)

The KVA-inclusive CCVA is then defined as the sum between (2.6.4) and a KVA as of (2.4.14),
valued at time t = 0 by simulation and randomization of the time integral there.

2.6.2 BVA Engine
Here we provide an executive summary of a bilateral CSA trading setup recalled for compa-

rison purposes from Crépey and Song (2016) (cf. also Brigo and Pallavicini (2014) or Bichuch,
Capponi, and Sturm (2017) for related bilateral counterparty risk analyses with asymmetric
funding costs).

Remark 2.6.1 In Crépey and Song (2016), the cash flows are viewed from the perspective of
the bank, which will be taken as the reference member here, whereas we view them in this paper
from the perspective of the clearing house, i.e. opposite to the one of the member. Hence, the
sign conventions are opposite, i.e. P,∆, Q, etc. in this paper correspond to their opposites in
Crépey and Song (2016), which is why we see ·∓ here whenever we have ·± there.
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In the context of bilateral trading between a bank, taken as the reference member labeled
by 0 in the previous CCP setup, and a counterparty taken as another member i 6= 0, let VM
denote the variation margin, where VM ≥ 0 (resp. ≤ 0) means collateral posted by the bank
and received by the counterparty (resp. posted by the counterparty and received by the bank).
Let Ib ≥ 0 and Ic ≤ 0 represent the initial margin posted by the bank and the negative of the
initial margin posted by the counterparty. Hence,

Cb = VM + Ib and Cc = VM + Ic (2.6.5)

are the total collateral guarantee for the counterparty and the negative of the total collateral
guarantee for the bank. Assuming the variation margins re-hypothecable and the initial margins
segregated (as typically so in practice), the collateral funded by the bank is C = VM + Ib.
For consistency with our CCP setup, VMt will be taken as P

t̂−. So, in the spirit of a standard
CSA, we are considering full collateralization, and even over-collateralization through the initial
margins. We assume that VM and Ib are remunerated at the OIS rate r. Following Crépey and
Song (2016), at time 0, the difference Θ0 between the mark-to-market of the portfolio and its
value inclusive of counterparty and funding risk (both from the perspective of the bank, cf. the
remark 2.4.2), difference dubbed BVA for bilateral valuation adjustment, can be linearized as
follows :

Θ0 = Θ̄0 ≈ E
[∫ τ̄

0
βsf̄s(0) ds

]
= E

∫ τ̄

0
βscdvas ds︸ ︷︷ ︸

CDVA

+ E
∫ τ̄

0
βs

(
λ̃s (Cs − Ps)+ − λs (Cs − Ps)−

)
︸ ︷︷ ︸

MVA

(2.6.6)

Here :

• P means the mark-to-market of the position of the member with the counterparty (viewed
from the perspective of the latter),

• the meaning of β, λ̃ and λ is as in the CCP setup,
• τ = τb ∧ τc is the first-to-default time of the bank and the counterparty,
• cdva = γξ̂, where ξ̂ is a predictable process such that ξ̂τ = Eτ−

(
β−1
τ βτδξ

)
, with

ξ = 1τc≤τδb
(1−Rc)

(
Pτδ + ∆τδ − Ccτ

)− − 1τb≤τδc (1−Rb)
(
Pτδ + ∆τδ − Cbτ

)+
in which the recovery rates Rc of the counterparty to the bank and Rb of the bank to the
counterparty are usually taken in a bilateral trading setup as 40%.

For numerical purposes, we use the following randomized version of (2.6.6) :

E
[
1ζ<τ̄

eµζ

µ
βζ f̄ζ(0)

]
(2.6.7)

where ζ denotes an independent exponential time of parameter µ. The cdvaζ term in f̄ζ(0)
is treated by the following bilateral analog of Lemma 2.6.1. We write Yb = {Y ∈ Y; 0 ∈ Y },
Yc = {Y ∈ Y; i ∈ Y } and we recall that X = (X,J) denotes the market risk and common shock
factor process introduced in Section 2.5, assumed without jump at τ . Similar to Lemma 2.5.1,
it holds that cdvat = cdva(t,Xt). In addition (see Lemma 8.2 and its proof in Crépey and Song
(2016, hal version 2), in a slightly more general setup where X may jump at τ) :
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Lemma 2.6.2 For any predictable process h and independent atomless random variable ζ, we
have :

E [1ζ<τ̄hζβζcdva(ζ,Xζ)]

= E

[
1ζ<τ̄hζβζδ ×

(( ∑
Y ∈Yc

γY (ζ) + 1τc≤ζδ
∑

Y ∈Yb\Yc

γY (ζ)
)

(1−Rc)
(
Qζδ − Cζ

)−
−
( ∑
Y ∈Yb

γY (ζ) + 1τb≤ζδ
∑

Y ∈Yc\Yb

γY (ζ)
)

(1−Rb)
(
Qζδ − Cbζ

)+)] (2.6.8)

Plugging hζ = eµζ

µ in (2.6.8) to deal with the cdvaζ term in f̄ζ(0), (2.6.7) is rewritten as
(compare (2.6.4)) :

Θ̄0 ≈ E

{
1ζ<τ̄

eµζ

µ
βζδ×(( ∑

Y ∈Yc

γY (ζ) + 1τc≤ζδ
∑

Y ∈Yb\Yc

γY (ζ)
)

(1−Rc)
(
Qζδ − Cζ

)−
−
( ∑
Y ∈Yb

γY (ζ) + 1τb≤ζδ
∑

Y ∈Yc\Yb

γY (ζ)
)

(1−Rb)
(
Qζδ − Cbζ

)+)

+ βζ

(
λ̃ζ (Pζ − Cζ)− − λζ (Pζ − Cζ)+

)}
(2.6.9)

Such adjustments are then computed counterparty by counterparty and added over i = 1, . . . , n
to obtain the BVA of the bank.

Remark 2.6.2 In practice, netting sets typically merge into a unique funding set, meaning that
one should solve for a single MVA at the level of the whole portfolio of the bank. However, in
the present frictionless variation-margining case (cf. the remark 2.3.1),

Cζ − Pζ = P
ζ̂− + IMζ − Pζ

≈ IMζ ≥ 0

holds counterparty by counterparty, so that a unique funding set or funding by netting sets
makes a negligible difference in practice.

Similar as in the CCP setup, the KVA-inclusive BVA is obtained by adding to (2.6.9) a
KVA in the sense of the formula (2.4.14) (valued at t = 0), except that K is now the bilateral
regulatory capital given by the formulas of Section 2.10.3.

2.7 Experimental Framework
In this section we design an experimental framework that is used for the XVA comparative

numerical analysis of Section 2.8.

2.7.1 Driving Asset
Given an interest rate process S, we consider a stylized swap of strike S̄ with cash flows

hl(S̄ − STl−1) at increasing times Tl, l = 1, . . . , d, where hl = Tl − Tl−1. We suppose a stylized
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Black–Scholes dynamics with risk-neutral drift κ and volatility σ for the interest rate process S.
Denoting by Tlt the smallest Tl > t, the mark-to-market of the swap for the party receiving the
above cash flows is given, for T0 = 0 ≤ t ≤ Td = T̄ , by Pt = β−1

t βTlthl
(
S̄ − STlt−1

)
+ P ?t , where

P ?t = β−1
t S̄

d∑
l=lt+1

βTlhl − β
−1
t St

d∑
l=lt+1

βTlhle
κ(Tl−1−t) = P?(t, St) (2.7.1)

We choose the notional Nom of the swap and its strike S̄ in such a way that each leg of the
swap has a mark-to-market equal to one at time 0.

Figure 2.4 – Mark-to-market process of the swap viewed from the point of view of a party
receiving floating and paying fix in the swap (party with a long unit position in the swap)
expressed in bps. The mean and quantiles as a function of time are computed by Monte Carlo
simulation of the process (−Pt) based on the formula (2.7.1) for P?, used alongm = 104 simulated
trajectories of S.

The following numerical values are used :

r = 2%, S0 = 100, κ = 12%, σ = 20 hl = 3 months, T̄ = 5 years

resulting in the mark-to-market process displayed in Figure 2.4 from the point of view of a party
receiving floating and paying fix, which we call a long unit position in the swap. Figure 2.4
exhibits the typical profile of an interest rate swap in an increasing term structure of interest
rates, where expectations of increasing rates make the swap in the money on average (i.e. the
average curve is in the positive in Figure 2.4). This yields to the product the XVA flavor that
would be absent in a flat interest rates environment where the mark-to-market process of the
swap would be zero and not give rise to any adjustments. The present Black–Scholes setup and
values of the parameters for the process S allow us to obtain this stylized pattern without having
to introduce a full flesh interest rate model, which would add useless complexity with respect to
our goal in this paper.

2.7.2 Structure of the Clearing house
We consider a clearing house with (n+1) members chosen among the 125 names of the CDX

index as of 17 December 2007, a particular day toward the beginning of the global financial
crisis. The default times of the 125 names are modeled by a common shock model with piecewise
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constant intensities γY constant on the time intervals [0, 3] and [3, 5] years, calibrated to the
corresponding 3 and 5 year CDS and 5 year CDO data. With five nested common shocks Y on
top of an idiosyncratic shock Y = {i} for each of the 125 names, a nearly perfect calibration
can be achieved, as developed in Crépey, Bielecki, and Brigo (2014, Sect. 8.4.3) 5 We consider a
subset of nine representative members of the index, with increasing CDS spreads shown in the
first row of Table 2.1.

Σi 45 52 56 61 73 108 176 367 1053
αi (0.46) 0.09 0.23 (0.05) 0.34 (0.04) 0.69 (0.44) (0.36)

Table 2.1 – (Top) Average 3 and 5 year CDS spreads Σi, in basis points (bp), for a representative
subset of nine members of the CDX index as of 17 December 2007. (Bottom) Coefficients αi
summing up to 0 used for determining the swap positions of the nine members.

The coefficients αi in the second row, where parentheses mean negative numbers, will be used
in a way explained below for determining the positions in the swap of the nine members in the
simulations. These coefficients were obtained as the difference between a vector of nine uniform
numbers and its cyclic shift, so that

∑
i∈N αi = 0.

2.7.3 Member Portfolios
We represent in an antisymmetric matrix form

$ =



0 1 2 3 · · · n
0 0 $0,1 $0,2 $0,3 · · · $0,n
1 · 0 $1,2 $1,3 · · · $1,n
2 · · 0 $2,3 · · · $2,n
3 · · · 0 · · · $3,n
...

...
...

...
...

. . .
...

n · · · · · · · 0


where each “·” represents the negative of the symmetric entry in the matrix, the positions of
each member i with respect to each member j (or short positions of j with respect to i) in
the swap. Note that the data of the CCVA BSDE related to the member 0, or of the lineari-
zed time-0 CCVA formula (2.6.4), only depend on the matrix $ through the sums of each of
its rows, corresponding to the vector of the short positions of the different clearing members
against the CCP. By contrast, the data of the BVA BSDE related to the member 0, or of the
linearized time-0 BVA formula (2.6.9), only depend on the matrix $ through its first row (vector
of the short positions of the different counterparties i = 1, . . . , n against the reference member
0). Hence, we can forget about the detail of the above matrix, focusing on the ωcsai := $0,i and
ωccpi :=

∑
l 6=i$l,i, i 6= 0, for comparing two trading setups :

• A CSA setup as of Section 2.6.2, where each member i 6= 0 trades a short ωcsai ∈ R position
in the swap with the member 0, whichever other trades members i 6= 0 may have between
each others.

— For instance, but non necessarily, each member i 6= 0 has a short ωcsai ∈ R position
with the member 0 and there are no other trades between members (at least after
netting at the level of each pair of members), which corresponds to the situation where
only the first row and column are nonzero in the matrix $.

5. Or Bielecki, Cousin, Crépey, and Herbertsson (2014a, Part II) in journal version.
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— In any case, the netted long position of the member 0 is
∑
i6=0 ω

csa
i . However, net-

ting does not apply across different counterparties in the CSA setup. We call com-
pression factor ν0 the gross position of the reference member 0, i.e. the number
ν0 =

∑
i 6=0 |ωcsai | of trades the member 0 is engaged into in the CSA setup.

• A CCP setup as of Section 2.6.1, where each member i 6= 0 trades a short ωccpi ∈ R position
in the swap through the CCP (ωccpi ≤ 0 effectively means a long position of member i),
whichever way this position may be distributed among other members.

— For instance, but non necessarily, each member i 6= 0 has a short ωccpi ∈ R position
with the member 0 and there are no other trades between members, which again
corresponds to the situation where only the first row and column are nonzero in $.

— In any case, since members trade between themselves, the member has a
∑
i6=0 ω

ccp
i

position in the driving asset after netting through the CCP, instead of a non netted
position of size ν0 before clearing through the CCP.

Moreover, in order to obtain diverse while comparable setups, we will alternately consider
as reference member 0 each of the nine members in Table 2.1, for positions in the driving asset
determined by the coefficients αi (summing up to zero) in the second row of Table 2.1 through
the following rule : ωi = − αi

α0
, i 6= 1 (where ω = ωcsa or ωccp, as suitable). Since the coefficients

αi add up to 0, this specification ensures
∑
i 6=0 ωi = 1, i.e. a netted position of the member 0

(whoever it is), always equal to 1 in the CCP setup. We also define ω0 = −α0
α0

= −1, consistent
with the member 0 being long a +1, i.e. short a −1, net position in the swap in the CCP setup
(in the CSA setup this value of ω0 is purely conventional).

Note that

ν0 =
∑
i 6=0
|ωi| =

∑
i6=0

|αi|
|α0|

=
∑
i∈N |αi|
|α0|

− 1

so the smaller |α0|, the larger the compression factor ν0 (gross position of the reference member
when trading bilaterally, whereas its net, centrally cleared position is equal to one).

Example 2.7.1 Table 2.2 shows the resulting values of the ωi of the different members i 6= 0
when the name with CDS spread 61 bp (name with the second smallest |αi| in Table 2.1, with
corresponding entries emphasized in bold in Table 2.2) is taken as reference member 0 (prototype
of a name with a large gross position). Hence, the ωi in Table 2.2 are proportional to the αi in
Table 2.1, modulo a scaling factor so that the ωi of this particular name (then labeled as 0) is
−1. In this case ν0 =

∑
i6=0 |ωi| = 53.00.

Σ 45 52 56 61 73 108 176 367 1053
ω (9.20) 1.80 4.60 (1.00) 6.80 (0.80) 13.80 (8.80) (7.20)

Table 2.2 – Positions ωi in the swap of the nine members with CDS spreads Σi, in the respective
ωi = ωcsai or ωccpi meaning, when the reference member 0 is the name with CDS spread 61 bp
and the second smallest |αi| in Table 2.1.

Example 2.7.2 Table 2.3 is the analog of Table 2.2 when the member with spread 367 bp
(name with the second largest credit spread in Table 2.1, with corresponding entries emphasized
in bold in Table 2.2) is taken as reference member 0 (prototype of a risky name). In this case
ν0 =

∑
i 6=0 |ωi| = 5.14.
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Σi 45 52 56 61 73 108 176 367 1053
ωi (1.05) 0.20 0.52 (0.11) 0.77 (0.09) 1.57 (1.00) (0.82)

Table 2.3 – Analog of Table 2.2 when the reference member 0 is the name with CDS spread
367 bp (name with the second largest credit spread Σi) in Table 2.1.

2.7.4 Margins
CCP setup The initial margin IMi posted by each member i ∈ N is set through (2.3.4), using
as risk measure ρ the “risk-neutral” value at risk (that is, computed under Q) of some level a
“close to 1”. Since the pricing function P? in (2.7.1) is decreasing in S, therefore IMi can be
proxied, at each simulated time ζ in (2.6.4) or (2.6.9), by

IMi
ζ = Nom× |ωi| ×

{
P?(ζ, Sζ)− P?(ζ, Sζeσ

√
δ′Φ−1(a)+(κ−σ2

2 )δ′), ωi ≥ 0
P?(ζ, Sζeσ

√
δ′Φ−1(1−a)+(κ−σ2

2 )δ′)− P?(ζ, Sζ), ωi ≤ 0
(2.7.2)

where Φ is the standard normal cdf and where we recall that δ′ = δ+h is the margin period of risk.

For instance, the reference member 0, with ωccp0 = −1, is long one unit in the swap with
mark-to-market profile shown in Figure 2.4, hence the exposure of the CCP to member
0 is the opposite profile. Accordingly (recalling that Figure 2.4 shows (−Pt)), the CCP
asks initial margins to the member 0 based on P?(ζ, Sζeσ

√
δ′Φ−1(1−a)+(µ−σ2

2 )δ′)−P?(ζ, Sζ),
consistent with the second line in (2.7.2) in case ω0 ≤ 0.

Consistently with a “cover two” EMIR rule (see Section 2.10.2), the default fund contributions
are set as the sum of the two largest exposures of the clearing members (exposures in the sense
of their EADs as explained in Section 2.7.5), allocated between them proportionally to their
initial margins.

CSA setup The initial margin −Ic ≥ 0 required by the member 0 from the member i 6= 0
(cf. (2.6.5)) is given by the right-hand side formula in (2.7.2) valued at some quantile level a
(possibly different from the one used in the CCP setup).

For instance, if ωcsai = +2, meaning that the member 0 has a “double Figure 2.4 expo-
sure” with regard to counterparty i, then the member 0 asks the counterparty i to post
initial margins based on P?(ζ, Sζ)−P?(ζ, Sζeσ

√
δ′Φ−1(a)+(κ−σ2

2 )δ′) (recall again that Figure
2.4 shows (−Pt)), consistent with the use of the first branch in (2.7.2) in the case where
ωcsai ≥ 0 (for i 6= 0).

Symmetrically, the formula for the initial margin Ib ≥ 0 required by the member i from the
member 0 reads

Ibζ = −Nom× ωi ×
{
P?(ζ, Sζ)− P?(ζ, Sζeσ

√
δ′Φ−1(a)+(κ−σ2

2 )δ′), ωi ≤ 0
P?(ζ, Sζ)− P?(ζ, Sζeσ

√
δ′Φ−1(1−a)+(κ−σ2

2 )δ′), ωi ≥ 0

2.7.5 Exposure-at-defaults
The prime motivation for the Black–Scholes model used for S and for our risk-neutral value-

at-risk for the IMs is that these give rise to an explicit formula for the exposure-at-defaults
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(EAD), which are the basic primitive of all the regulatory capital formulas. This avoids the
computational burden of nested Monte Carlo simulations (see the introductory paragraph to
Section 2.10.1). We also use EADs as a proxy of the exposures of the members in the context of
our EMIR “cover two” default fund computations (cf. Section 2.10.2).

In fact, for any grid time v = t+ εp involved in EAD computations (cf. (2.10.2), (2.3.2) and
(2.7.1), with ε taken as one month in the numerics), we have in our model :

Et

(Pv+δ′ +
∫

[v,v+δ′]
e

∫ v+δ′

s
ru du dDs − Pv− − IMv

)+


= Et
[(
P? (v + δ′, Sv+δ′)− P? (v, Sv)− VaRt

(
P? (v + δ′, Sv+δ′)− P? (v, Sv)

))+]
= EtEv

[(
P? (v + δ′, Sv+δ′)− P? (v, Sv)− VaRt

(
P? (v + δ′, Sv+δ′)− P? (v, Sv)

))+]
where VaR represents the risk-neutral value-at-risk of level a. Denoting by ES the corresponding
expected shortfall, the conditional version of the identity E

(
X1X≥VaR(X)

)
= (1−a)ES(X) yields

Ev
[(
P? (v + δ′, Sv+δ′)− P? (v, Sv)− VaRt

(
P? (v + δ′, Sv+δ′)− P? (v, Sv)

))+]
= (1− a)

(
ESv

(
P? (v + δ′, Sv+δ′)− P? (v, Sv)

)
− VaRv

(
P? (v + δ′, Sv+δ′)− P? (v, Sv)

))
= (1− a)

(
eσ
√
δ′Φ−1(a) − eσ

√
δ′
φ(Φ−1(a))

1−a

)
β−1
v+δ′ e

−κv−σ2
2 δ
′
Sv

d∑
l=lv+δ′

βTlhle
κTl−1

where Φ and φ are the standard normal cdf and density. Hence,

Et

(Pv+δ′ +
∫

[v,v+δ′]
e

∫ v+δ′

s
ru du dDs − Pv− − IMv

)+
 = fa,δ

′

v × (1− a)e−κtSt (2.7.3)

where

fa,δ
′

v =
(
eσ
√
δ′Φ−1(a) − eσ

√
δ′
φ(Φ−1(a))

1−a

)
β−1
v+δ′e

−σ2
2 δ
′

d∑
l=lv+δ′

βTlhle
κTl−1 (2.7.4)

Likewise, we have

Et

(Pv+δ′ +
∫

[v,v+δ′]
e

∫ v+δ′

s
ru du dDs − Pv− − IMv

)− = ga,δ
′

v × (1− a)e−κtSt (2.7.5)

where

ga,δ
′

v = −
(
e−σ
√
δ′Φ−1(a) − e−σ

√
δ′
φ(Φ−1(a))

1−a

)
β−1
v+δ′e

−σ2
2 δ
′

d∑
l=lv+δ′

βTlhle
κTl−1 (2.7.6)

Based on (2.7.3) through (2.7.4), explicit formulas for the EADs follow. Figure 2.5 shows the
time-0 EADs of the nine CCP members for their positions in the swap corresponding to the
choice of the name of examples 2.7.1 or 2.7.2 as reference member.

2.7.6 XVA Data
The following numerical values are used in the sequel :

R̄ = 1, λ̄ = 1
2Σ0, λ = 0, k = 10%, h = 1 day, µ = 2

T̄
, m = 104 (2.7.7)
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Figure 2.5 – Time-0 EADs in basis points (IM quantile level a = 70%, liquidation period
δ = 5 days). The two largest EADs, in red, size the default fund. The reference member EAD
is in green. The corresponding positions ωi of the member are displayed at the bottom. Left :
Reference member with Σ0 = 61 bps and ν0 = 53.00. Right : Reference member with Σ0 = 367
bps and ν0 = 5.14.

where m is the number of simulations used for estimating the expectations in (2.6.4) and (2.6.9).
The level of 10% used for k is consistent with reference orders of magnitude for a hurdle rate.

Moreover, in a CCP setup, unless otherwise stated, we set

R = 0, δ = 5 days, a = 70%,
T = 1 month, Y = 1 year,
E? = 25%Kccp, c = 30 bps

(2.7.8)

where Kccp is defined in (2.10.4). The low quantile level used to set the initial margins is meant
to compensate the excessive simplicity of the Black–Scholes setup without wrong-way risk used
for S (it also leads to moderate standard errors with a relatively small number m = 104 of
simulations). Margin fees of c = 30 bp are consistent with current CCP practices. These margin
fees are distinct from the commission fees, not included in our setup, that a CCP is also charging
to its members. In practice, commission fees are of the order of a few basis points of the size
of the positions, i.e. a few basis points in the case of a unit position in our swap with each leg
equal to one at time 0.

In a CSA setup, alternatively to (2.7.8), unless otherwise stated, we set

Rb = Rc = 40%, δ = 15 days, a = 80%

The value a = 80% used in the bilateral case is higher than the value a = 70% used in the CCP
setup, where the protection offered by the default fund allows requiring less initial margins.

2.8 Numerical Results
All our XVA numbers are stated in basis points (recall that both legs of the swap are worth

one at time 0). For comparability purposes, common random inputs are used in all our Monte
Carlo estimates, i.e. we use the same sampled trajectories of S and sampled sets of default times
τi in all cases, it is only the way these m = 104 random input sets are used which changes.
The computation times are proportional to the number of members n and model trajectories m,
e.g. about 5 minutes on a standard laptop to compute a full set of XVAs in Table 2.4 (four or
five XVA components and their sum), where n = 8 and m = 104, using pre-simulated values for
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all the random inputs. Negative (e.g. DVA) numbers are displayed in parentheses. Regarding the
aggregated XVA numbers in the tables, i.e. BVA in the CSA setup, CCVA in the CCP setup and
TVA sometimes used as a common acronym for covering both cases, they are all KVA-inclusive,
but they do not include the corresponding DVA numbers, which are only showed for reference.
In other words, all the displayed TVA numbers correspond to entry price TVAs. The CCP MLA
number are consistently found one order of magnitude smaller than the other XVA numbers,
which is a sanity check that the CCP margin fees do not drive the comparison between the CCP
and the CSA setup.

Note that, for simplicity, we are comparing a situation where all the trading is centrally
cleared with a situation where all the trading is bilateral. In practice, vanilla products (hedges)
tend to be cleared and exotics tend to be bilaterally traded. Therefore, in a more realistic setup,
the multilateral netting benefit that CCPs provide is balanced by a loss of bilateral netting across
asset classes (see Duffie and Zhu (2011) and Cont, Santos, and Moussa (2013)). To correct this
bias, we will also show bilateral XVA figures scaled by the compression factor ν0 of the reference
name.

2.8.1 Multilateral Netting Benefit

Table 2.4 shows the XVA numbers obtained by considering alternately each of the nine
members in Table 2.1 as reference member, using the αi coefficients for setting the positions
of the members in each case as explained in Section 2.7.3 (cf. the examples 2.7.1 and 2.7.2).
The different cases in Table 2.4 are ordered by increasing values of the compression factor
ν0, i.e. by decreasing |α0|. We can see from Table 2.4 that the MVA and the KVA are the
main contributors in the respective CSA and CCP setup. Moreover, the CSA XVA numbers
vary roughly proportionally to the compression factor ν0, whereas the CCP XVA numbers are
essentially not impacted by ν0. This illustrates the multilateral netting benefit provided by the
CCP, especially for members with a large compression factor ν0.

ν0 2.91 4.87 5.14 6.50 6.94 10.74 29 53 66.50
α0 0.69 (0.46) (0.44) (0.36) 0.34 0.23 0.09 (0.05) (0.04)
Σ0 176 45 367 1053 73 56 52 61 108

CVA 11.07 25.06 19.34 14.06 28.37 42.69 111.38 238.22 299.37
DVA (8.76) (4.49) (30.85) (90.10) (8.08) (13.59) (28.77) (52.70) (111.33)
MVA 30.38 13.63 110.50 339.69 31.41 39.34 98.46 204.72 449.68
KVA 11.17 21.16 19.40 21.14 29.26 46.28 122.20 221.63 275.87
BVA 52.62 59.85 149.24 374.90 89.04 128.31 332.05 664.57 1024.92
CVA 7.88 11.33 6.54 3.57 10.85 11.73 11.91 11.60 9.23
DVA (2.57) (0.69) (5.43) (13.03) (1.07) (0.89) (0.81) (0.90) (1.57)
MVA 5.19 1.39 10.33 24.24 2.22 1.76 1.61 1.86 3.23
MLA 1.17 1.22 1.09 0.89 1.22 1.22 1.22 1.22 1.20
KVA 10.79 11.59 10.00 7.97 11.44 11.52 11.54 11.58 11.21

CCVA 25.03 25.54 27.95 36.67 25.73 26.23 26.27 26.26 24.87

Table 2.4 – XVA numbers obtained by considering alternately each of the nine members in
Table 2.1 as reference member 0, using the αi for setting the positions of the members in each
case as explained in Section 2.7.3. (Up) Credit spread Σ0, coefficient α0 and compression factor
ν0 of the reference member in each case (ordered by increasing ν0, i.e. decreasing |α0|). (Middle)
CSA XVA numbers. (Bottom) CCP XVA numbers.

Table 2.5 shows the percentage standard errors corresponding to the Monte Carlo estimates
of Table 2.4. As we can see from the table, the standard errors are typically no more than a few
percents in relative terms. Standard errors of Monte Carlo estimates are no longer shown in the
sequel.
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ν0 2.91 4.87 5.14 6.50 6.94 10.74 29 53 66.50
α0 0.69 (0.46) (0.44) (0.36) 0.34 0.23 0.09 (0.05) (0.04)
Σ0 176 45 367 1053 73 56 52 61 108

CVA 3.40 2.87 3.40 4.97 3.22 3.22 3.22 2.90 2.89
DVA 5.66 10.38 4.08 2.58 8.92 9.21 9.49 9.28 7.05
MVA 0.79 0.78 0.75 0.96 0.77 0.64 0.63 0.84 0.80
KVA 0.58 0.54 0.64 0.81 0.54 0.54 0.54 0.54 0.55
CVA 2.55 2.93 3.13 4.49 2.69 2.71 2.70 2.91 2.66
DVA 3.11 3.02 3.05 3.42 3.15 2.92 2.94 3.27 3.21
MVA 0.86 0.78 0.77 0.96 0.91 0.67 0.69 0.95 0.93
MLA 0.65 0.60 0.71 0.88 0.61 0.61 0.60 0.60 0.62
KVA 0.58 0.58 0.65 0.84 0.57 0.59 0.59 0.59 0.58

Table 2.5 – Percentage standard errors corresponding to the Monte Carlo estimates of Table
2.4.

2.8.2 Impact of the Credit Spread of the Reference Member
The CCP multilateral netting benefit dominates the comparison between our CSA and CCP

XVA numbers. However, in our stylized setup, we cannot see the netting benefit across assets
of bilateral trading. In order to compensate for this bias and obtain comparative results net of
the first order CCP multilateral netting benefit, Table 2.6 shows the same results as Table 2.4,
but with all the CSA XVA numbers scaled by the corresponding compression factor ν0 (we will
present in this way all the CSA XVA results in the sequel) and ordered by increasing credit
spread Σ0 of the reference name, instead of increasing ν0 in Table 2.4.

From Table 2.6 we can see that, if we get rid of the CCP multilateral netting benefit through
this scaling, then the CSA and CCP XVA numbers become of a similar order of magnitude.
The aggregated TVA numbers even become in favor of the CSA setup, except for the reference
name with the largest (actually huge) credit spread of 1053 bps. These results can be put in
perspective with the ones in Ghamami and Glasserman (2017) (see Section 2.1.1).

Regarding the comparison between the nine different cases within the CCP setup, as also
within the CSA setup after scaling by the compression factor, Table 2.6 shows that the main ex-
planatory factor of the results is the credit spread of the reference member, risky members being
heavily penalized in terms of MVA, especially in the CSA setup. In both cases, the dominant
patterns are a logarithmic decrease of the CVA numbers and a linear increase of the |DVA| and
MVA numbers with respect to the credit spread of the reference name.

2.8.3 Impact of the Liquidation Period
Focusing on the reference members of the examples 2.7.1 and 2.7.2, respectively dubbed “safe

member” and “risky member” henceforth (with respective credit spread of Σ0 = 61 and 367 bp),
Table 2.7 shows the impact of changing the length δ of the liquidation period from 5 days to
15 days in the CSA setup and vice versa in the CCP setup. The CSA 15 day and CCP 5 day
numbers in Table 2.7 are simply retrieved from Table 2.6, for comparison purposes with the
additional CSA 5 day and CCP 15 day numbers. The results are consistent with a

√
δ pattern

in line with the distributional properties of the Black–Scholes model used for S.

2.8.4 Margin Optimization
Table 2.8 shows the impact of using higher quantile levels a for the initial margins, which

were only 80% and 70% in the respective CSA and CCP setup so far (with the motivation
exposed in Section 2.7.6). The left column in each of the two main panels, retrieved from Table
2.6, corresponds to our base case where a = 70% and a = 80%. When higher values are used for
the quantile levels, i.e. going from left to right in each panel, we observe the same qualitative
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ν0 4.87 29 10.74 53 6.94 66.5 2.91 5.14 6.5
α0 (0.46) 0.09 0.23 (0.05) 0.34 (0.04) 0.69 (0.44) (0.36)
Σ0 45 52 56 61 73 108 176 367 1053

CVA /ν0 5.15 3.84 3.97 4.49 4.09 4.50 3.80 3.76 2.16
DVA /ν0 (0.92) (0.99) (1.27) (0.99) (1.16) (1.67) (3.01) (6.00) (13.86)
MVA /ν0 2.80 3.40 3.66 3.86 4.53 6.76 10.44 21.50 52.26
KVA /ν0 4.34 4.21 4.31 4.18 4.22 4.15 3.84 3.77 3.25
BVA /ν0 12.29 11.45 11.95 12.54 12.83 15.41 18.08 29.03 57.68

CVA 11.33 11.91 11.73 11.60 10.85 9.23 7.88 6.54 3.57
DVA (0.69) (0.81) (0.89) (0.90) (1.07) (1.57) (2.57) (5.43) (13.03)
MVA 1.39 1.61 1.76 1.86 2.22 3.23 5.19 10.33 24.24
MLA 1.22 1.22 1.22 1.22 1.22 1.20 1.17 1.09 0.89
KVA 11.59 11.54 11.52 11.58 11.44 11.21 10.79 10.00 7.97

CCVA 25.54 26.27 26.23 26.26 25.73 24.87 25.03 27.95 36.67

Table 2.6 – XVA numbers obtained by considering alternately each of the nine members in
Table 2.1 as reference member 0, using the αi for setting the positions of the members in each
case as explained in Section 2.7.3. (Up) Credit spread Σ0, coefficient α0 and compression factor
ν0 of the reference member in each case (ordered by increasing Σ0). (Middle) CSA XVA numbers
scaled by the compression factors ν0. (Bottom) CCP XVA numbers.

Member 61 bps, ν0 = 53.00 367 bps, ν0 = 5.14
δ 5 d 15 d 5 d 15 d

CVA / ν0 2.17 4.49 1.82 3.76
DVA / ν0 (0.50) (0.99) (2.90) (6.00)
MVA / ν0 2.34 3.86 13.14 21.50
KVA / ν0 2.43 4.18 2.18 3.77
BVA / ν0 6.94 12.54 17.15 29.03

CVA 11.60 19.54 6.54 10.78
DVA (0.90) (1.41) (5.43) (8.91)
MVA 1.86 3.40 10.33 18.96
MLA 1.22 2.25 1.09 2.00
KVA 11.58 21.60 10.00 18.59

CCVA 26.26 46.79 27.95 50.34

Table 2.7 – Impact of the liquidation period. (Left) Safe reference member. (Right) Risky
reference member. (Top) CSA XVA numbers scaled by ν0. (Bottom) CCP XVA numbers.
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patterns as before in terms of the comparison between the CSA and the CCP setup. Considering
now the impact of higher quantile levels inside each CSA or CCP setup, we can see a shift from
CVA(/DVA) and KVA into MVA.

Ultimately, for very high quantiles, the CVA(/DVA) and KVA would reach zero whereas
the MVA would keep increasing, since excessive margins become useless and a pure cost to the
system, in the CSA as in the CCP setup.

Figure 2.6 illustrates this further by showing the aggregated TVA numbers and the relative
weight of their CVA, FVA and KVA contributions when the quantile level a used for setting
the IM goes from 55% to 100%, where FVA means MVA in the CSA setup (left graphs) and
MVA + MLA in the CCP setup (right graphs). In each of the four cases considered in the upper
panels (left CSA vs. right CCP curve and blue safe vs. green risky reference member curve),
the numerical values of the TVA exhibit a convex dependence with respect to a (although,
mathematically speaking, this depends on the values of the numerical parameters that are used,
see for instance the CVA curve in the left graph of Figure 2.7, which shows a more detailed XVA
decomposition of the safe reference member CCVA curve in the upper right graph of Figure 2.6).
In the case of the risky reference member in the CSA setup, the level of initial margins is too
high already with a 55% quantile level : The risky reference member (green) BVA curve in the
upper left graph of Figure 2.6 keeps increasing when a increases from 55% to 100%. In each of
the other three cases, the TVA has a minimum at some value a < 1. For both reference names,
the optimal quantile level is larger in the CCP than in the CSA setup. This is because, in the
CCP setup, the member is happy to post more initial margins, which “cost” her λ̄ = 1

2Σ0, in
order to reduce her default fund contribution, which “costs” her a greater k = 10% (cf. (2.7.7)).
In each of the four considered cases, the FVA becomes preponderant and even hegemonic (as it
tends to infinity) when a goes to 100%.

Capponi and Cheng (2016) construct a model which endogenizes collateral, making it part of
an optimization problem where the CCP maximizes profit by controlling collateral and fee levels.
They conclude that the collateral level should decrease with funding costs, on top of increasing
with market volatility. The above numerical results are quite in line with such statements.

Member Σ0 = 61 bp, ν0 = 53.00 Σ0 = 367 bp, ν0 = 5.14
a 80% 90% 99% 80% 90% 99%

CVA / ν0 4.49 2.64 0.74 3.76 2.23 0.62
DVA / ν0 (0.99) (0.56) (0.15) (6.00) (3.51) (1.02)
MVA / ν0 3.86 5.87 10.66 21.50 32.99 60.18
KVA / ν0 4.18 1.78 0.13 3.77 1.61 0.12
BVA / ν0 12.54 10.29 11.53 29.03 36.83 60.92

a 70% 80% 95% 70% 80% 95%
CVA 11.60 9.15 4.64 6.54 5.17 2.62
DVA (0.90) (0.66) (0.22) (5.43) (4.02) (1.43)
MVA 1.86 2.83 5.32 10.33 15.71 29.53
MLA 1.22 1.54 2.56 1.09 1.38 2.31
KVA 11.58 6.55 1.19 10.00 5.66 1.03

CCVA 26.26 20.07 13.72 27.95 27.91 35.49

Table 2.8 – Impact of the level of the quantile level a that is used for setting the initial margins.
(Left) Safe reference member. (Right) Risky reference member. (Top) CSA setup with all XVA
numbers scaled by ν0. (Bottom) CCP setup.

2.8.5 Impact of the Number of Members
Another interesting question is what happens when we vary the number of members of the

CCP. Obviously, more members means more mutualization of risk. However, the main effects
in a CCP are already visible with nine members as above : with more members, things would
mainly happen as in the projection of the system onto the ten (or so) greatest members anyway.
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Figure 2.6 – Varying the initial margins quantile level a. Left : CSA setup. Right : CCP setup.
Top : BVA/ ν0 vs. CCVA. Bottom : XVA relative contributions in the case of the safe reference
member. Middle : XVA relative contributions in the case of the risky reference member.
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Figure 2.7 illustrates that, if there are now not enough members, a regulatory “cover two” default
fund specification sized to the two largest exposures of the clearing members may result in very
heavy default fund contributions and KVA for the small members in the common situation of
heterogeneous members’ exposure.

Figure 2.7 – CCP XVA results for the reference member with Σ0 = 61 bps and ν0 = 53.00.
Left : Results in our previous CCP with nine members. Right : Results in a CCP restricted to
three members : the reference member and two other members. The reference member, with
ωi = −1 by definition, corresponds to the member with time-0 EAD displayed in green in the
left panel of Figure 2.5. The two other members are the members of the original CCP with
the greatest time-0 EADs, i.e. the members with the time-0 EADs displayed in red in the left
panel of Figure 2.5. Moreover, we modified the positions of these two members as ωi = −9 and
10, instead of −9.2 and 13.8 in the left panel of Figure 2.5, for being in line with the clearing
condition

∑
i∈N P

i = 0.

2.9 Conclusions

In this chapter we study the cost of the clearance framework for a member of a clearing
house. The overall cost, dubbed CCVA for central clearing valuation adjustment, is decomposed
into CVA, MVA and KVA components. The CVA is the cost for a member of its losses on
the default fund due to the defaults of other members, the MVA is the cost of funding initial
margins and the KVA is the cost of its capital at risk, including its default fund contribution
in the CCP setup. The numerical experiments show the multilateral netting benefit of central
clearing. Multilateral netting has actually been, together with transparency and mutualization,
one of the main motivation for the incentivisation of CCPs by regulators. But this multilateral
netting comes at the expense of a loss of netting across asset classes. If we compensate the first
order multilateral netting effect by a suitable scaling factor accounting for the loss of netting
across asset classes, then the bilateral and centrally cleared XVA numbers become comparable.
The second more explanatory factor of the numerical results is the credit risk of the members
and the ensuing MVA, especially in the CSA setup where even more initial margins are required.
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2.10 Appendix
2.10.1 Regulatory Capital and Default Fund Formulas

A primitive of all the regulatory capital formulas are the so-called exposure-at-defaults given,
for i ∈ N = 0, 1, . . . , n and t ∈ [0, T̄ ], as

EADi
t = 1.4 ε

∑
εp<1∧(T−t)

EEEit(tp), (2.10.1)

where (see Basel Committee et al. (2005b, formulas (1)-(2)-(3) pages 26-27)) :
• the factor 1.4 is a wrong-way risk multiplier,
• ε is a time-integration step (e.g. one month),
• tp = t+ εp,
• the effective expected exposures EEEit(tp) are defined through the following iteration :
EEEit(t−1) = 0 and, for p ≥ 0,

EEEit(tp) = max
(
EEEit(tp−1),Et

[(
Litp,tp+δ′ − IMi

tp

)+
])

(2.10.2)

where Litp,tp+δ′ has been defined in (2.3.2).
In our case, we also use EADs as a proxy of the exposure of the CCP to the members in the
context of EMIR “cover two” default fund computations (see Section 2.10.2). For our default
fund and KVA computations, such EADs must then be computed at any randomization time
t = ζ used in (2.6.4) or for simulating the time integral in (2.4.14). Unless an explicit formula is
available for the conditional expectations in the right-hand side of (2.10.2), such EAD exposures
can only be done by means of nested Monte Carlo simulations.

Note that in both our centrally cleared and bilateral trading setups, we neglect capital for
market risk in the paper, as if the reference member (or bank) was perfectly hedged in terms of
market risk. Otherwise one more capital term is required for market risk.

2.10.2 CCP Setup
Under centrally cleared trading, the “cover two” EMIR rule prescribes to size the default

fund as, at least, the maximum of the greatest and of the sum of the second and third greatest
exposures “under extreme but plausible market conditions” (see European Parliament (2012b,
article 42, paragraph 3, page 37)). This total amount is then allocated between the clearing
members according to some repartition key, e.g. proportional to their initial margins.

As explained in the paper, default fund contributions are “implicit capital” that the clearing
members put at the disposal of the CCP. In addition, to cover their residual risk beyond the
guarantee provided by the different margin layers of the CCP, the regulatory capital K = Kcm

of a generic reference member is defined, following BCBS (2012, page 11), as :

Kcm = max
(
Kccp × DFC

E +
∑
i∈N J

iDFCi
, 8%× 2%×DFC

)
, (2.10.3)

where DFC is the default fund contribution of the reference member and where
Kccp = RW × CapRatio ×

∑
i∈N

J iEADi (2.10.4)

with RW = 20% and CapRatio = 8%.
Remark 2.10.1 Accordingly, Ghamami (2015) argues that the CCP regulatory capital Kcm of
a member should rather be based on its expected future unfunded default fund contributions
(see the remark 2.3.4), which represent the losses of the member beyond the level already funded
via its default fund contribution.
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2.10.3 CSA Setup
In the bilateral setup, the capital at risk K of the bank reduces to its regulatory capital

(there is no bilateral trading analog of the default fund), which comprises a first contribution
for counterparty default losses and a second one for the volatility of the CVA (the market risk
of the bank being supposed to be hedged out). Since we focus on the reference member 0 with
n counterparties i ∈ N? = {1, 2, . . . , n}, the capital formulas below all need to be summed over
i ∈ N?.

Kccr The Basel II regulatory capital specified for counterparty risk is defined as

Kccr = CapRatio
∑
i∈N?

RWAi

where
RWAi = 12.5× wi × 1.4× EADi

Here CapRatio ≥ 8% (which is the value that we use in the numerics) is a chosen capital ratio
that the bank must hold. The capital weight wi is given by the internal ratings-based formula

wi = (1−Ri)
(

Φ
(

Φ−1 (DPi)√
1− corri

+
√

corri
1− corri

Φ−1(0.999)
)
−DPi

)
1 + (T̂ i − 2.5)b(DPi)

1− 1.5b(DPi)

(see Basel Committee et al. (2005a, page 7)), where :

• Ri is the recovery rate of the counterparty i,
• Φ is the standard normal cdf,
• DP i is the one year default probability of the counterparty i, historical in principle, proxied

in our numerics by the risk-neutral default probability extracted from the corresponding
CDS spread,

• corri is the asset–counterparty i correlation in the sense of

corri = 0.121− e−50DPi

1− e−50 + 0.241− (1− e−50DPi)
1− e−50

• T̂ i is the effective time to maturity of the netting set i, i.e. the time to maturity of the
swap in our numerical case study where a single derivative is considered,

• b(p) = [0.11852− 0.05478 ln(p)]2

Kcva The standardized CVA risk capital charge in Basel Committee et al. (2010, §104) reads
as

Kcva = 2.33
√
Y

(0.5
∑
i∈N?

wiT̂
i ˜EAD

i

)2

+ 0.75
∑
i∈N?

(
wiT̂

i ˜EAD
i
)2
 1

2

which we approximate as in Green, Kenyon, and Dennis (2014) by

2.33
2
√
Y
∑
i∈N?

wiT̂
i ˜EAD

i

where :
• Y is the one year risk horizon, i.e. Y = 1,
• T̂ i is defined above,
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• ˜EAD
i = 1−e0.05T̂ i

0.05T̂ i
EADi,

• wi is a weight based on the external rating extracted from the one year default probability
DPi as of the following table, where the left part comes from Moody’s and the right part
is taken from Basel Committee et al. (2010, §104) :

Default Prob Rating Weight
0.00% AAA 0.7%
0.02% AA 0.7%
0.06% A 0.8%
0.17% BBB 1.0%
1.06% BB 2.0%
3.71% B 3.0%
12.81% CCC 10.0%

2.10.4 Proofs of Auxiliary Results
Proof of Lemma 2.3.1 Under our stylized model of the liquidation procedure, during the
liquidation period [τZ , τ δZ ], where τZ = τi if and only if i ∈ Z, the clearing house substitutes
itself to the defaulting members, taking care of all their dividend cash flows, which represent a
cumulative cost of

∑
i∈Z ∆i

τδ
i

(including a funding cost at the risk-free rate comprised in the ∆i
τδ
i

).
At the liquidation time τ δZ , the clearing house substitutes the buffer to itself as counterparties
in all the concerned contracts (or simply puts an end to the contracts that were already with
the buffer), which represents a supplementary cost

∑
i∈Z P

i
τδ
i

. In addition, for any i ∈ Z :

• If εi = 0, meaning that Qi
τδ
i

≤ Ci
τ̂i

, then either Qi
τδ
i

≤ 0 and an amount (−Qi
τδ
i

) is paid by
the clearing house to the member i (who keeps ownership of all its collateral), or Qi

τδ
i

≥ 0
and the ownership of an amount Qi

τδ
i

of collateral is transferred to the clearing house. In
both cases, the clearing house gets Qi

τδ
i

;

• Else, i.e. if εi > 0, meaning that the overall collateral Ci of a member i ∈ Z does not
cover the totality of its debt to the clearing house, then, at time τ δi , the ownership of Ci is
transferred in totality to the clearing house. If Ri > 0 then the clearing house also gets a
recovery Riεi.

In conclusion, the realized breach of the CCP is the sum over i ∈ Z of the

P iτδ
i

+ ∆i
τδ
i
− 1εi>0

(
Ci
τ̂i

+Riεi

)
− 1εi=0Q

i
τδ
i

= Qiτδ
i
− 1εi=0Q

i
τδ
i
− 1εi>0

(
Ci
τ̂i

+Riεi

)
= 1εi>0

(
Qiτδ

i
− Ci

τ̂i
−Riεi

)
= (1−Ri) εi
= ξi

which is the desired result.

Proof of Lemma 2.4.1 To formulate in mathematical terms the above-described margining,
hedging and funding policy of the member, we introduce three funding assets B0, Bf and B̄f
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evolving on [0, τ̄ δ] as

dB0
t = rtB

0
t dt

dBft = (rt + λt)Bft dt

dB̄ft =
(
rt + λ̄t

)
B̄ft dt+

(
1− R̄

)
B̄ft− dJt

(2.10.5)

These represent the risk-free OIS deposit asset and the assets used by the bank for its respec-
tive investing and unsecured funding purposes. Under our continuous-time mark-to-model and
realization assumption on profit-and-losses, the amount on the funding accounts of the bank is

−Πt = − (Πt + C?t ) + C?t

where C? = VM + IM is the amount of margins that need to be funded by the member (its
default fund contribution is assumed to be taken on its uninvested equity, hence does not need
to be funded), so that the terms in the parenthesis represent the amount invested or borrowed
unsecured (depending on its sign) by the bank, and where we recall that collateral is remunerated
OIS by the receiving party. Defining

ηft = (Πt + C?t )−

Bft
, η̄ft = − (Πt + C?t )+

B̄ft
, η0

t = C
?
t

B0
t

, η̄0
t = − (Πt + C?t )

B0
t

(2.10.6)

we can write
−Πt = Jtη

f
t B

f
t + Jtη̄

f
t B̄

f
t + η0

tB
0
t + (1− Jt) η̄0

tB
0
t (2.10.7)

where, by self-financing condition,

d
(
Jtη

f
t B

f
t + Jtη̄

f
t B̄

f
t + η0

tB
0
t + (1− Jt) η̄0

tB
0
t

)
= Jtη

f
t dBft + Jt−η̄

f
t− dB̄ft + η0

t dB0
t + (1− Jt) η̄0

t dB0
t

(2.10.8)

A left-limit in time is required in Jt−η̄
f
t− because B̄ft in (2.10.5) jumps at time τ , so that the

process η̄f , which is defined through (2.10.6), is not predictable.
In view of (2.10.7)-(2.10.8) and of the additional cash flows that affect the member (contrac-

tual cash flows, margin fees, realized breaches refills and hedging cash flows), the gain process
e associated with the member’s valuation-and-hedge policy (Π, ζ) satisfies the following forward
SDE : e0 = 0 and, for 0 < t ≤ τ̄ δ,

det = dΠt︸︷︷︸
Gain on the portfolio

− Jt dDt︸ ︷︷ ︸
Contractual dividends

− Jtct
(
Ct − Pt̂−

)
dt︸ ︷︷ ︸

Margin fees

− Jt
∑
Z⊆N

ετδ
Z
δτδ
Z

( dt)︸ ︷︷ ︸
Refill of realized breaches

− ζt dMt︸ ︷︷ ︸
Loss on the hedge

+ Jtη
f
t dBft + Jt−η̄

f
t− dB̄ft + η0

t dB0
t + (1− Jt) η̄0

t dB0
t

Substituting (2.10.5) into the above yields

det = dΠt − rtΠt dt− ζt dMt − 1τ<T̄
(
1− R̄

) (
Πt + C?

t̂

)+
dJt

− Jt
(

dDt +
∑
Z⊆N

ετδ
Z
δτδ
Z

( dt)

+
(
ct

(
Ct − Pt̂−

)
+ λ̄t (Πt + C?t )+ − λt (Πt + C?t )−

)
dt
)

which is (2.4.3), by definition (2.4.4) of g.
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Proof of Lemma 2.5.1 Since ξ = (1−R)
(
Qτδ − Cτ̂

)+ (cf. (2.3.8)), where

C
τ̂

= Cτ− = C (τ,Xτ−) and
Qτδ = Pτδ + ∆τδ

= P
(
τ δ,Xτδ

)
+ ∆̂

(
τ δ,Xτδ

)
− e
∫ τδ
τ

r(u,Xu) du∆̂ (τ,Xτ )

we have by definition (2.4.7) of ξ̄ :

ξ̄τ = (1−R)Eτ

[
e
−
∫ τδ
τ

r(u,Xu) du×

(
P
(
τ δ,Xτδ

)
+ ∆̂

(
τ δ,Xτδ

)
− e
∫ τδ
τ

r(u,Xu) du∆̂ (τ,Xτ )− C (τ,Xτ−)
)+ ] (2.10.9)

Therefore, the Markov property of X and the continuity of X at time τ imply that ξ̄τ can be
represented in functional form as ξ̄(τ,Xτ−). Hence (cf. Crépey and Song (2016, Lemma 5.1)), it
holds that

γtξ̂t = γtξ̄ (t,Xt) , Q× λ− a.e.,

where (2.5.1) yields γ = J−γ•. This gives the result since dva = −γξ̂.

Proof of Lemma 2.6.1 We denote by Tδ the transition function of the homogeneous Markov
process (t,Xt, βt) over the time horizon δ, i.e.

Tδ :
(
ϕ, (t,x, b)

)
→ Tδ[ϕ] (t,x, b) = E

[
ϕ
(
tδ,Xtδ , βtδ

) ∣∣Xt = x, βt = b
]

= Et
[
ϕ
(
tδ,Xtδ , βtδ

)]
Recalling (2.10.9) and using the fact that X does not jump at time τ , we have

ξ̄τ = Tδ
[
ξ?

(
·, ·, ·, βτ , C?τ−, ∆̂τ−

)] (
τ,Xτ , βτ

)
= Tδ

[
ξ?

(
·, ·, ·, βτ , C?τ−, ∆̂τ−

)] (
τ,Xτ−, βτ

) (2.10.10)

where we set

ξ?

(
t,x, b, βτ , C?τ−, ∆̂τ−

)
= (1−R)β−1

τ b
(
P (t,x) + ∆̂ (t,x)− βτ b−1∆̂τ− − C?τ−

)+
(2.10.11)

in which βτ , C?τ− and ∆̂τ− are considered as Gτ− measurable parameters. In view of (2.10.10),
we have (cf. Crépey and Song (2016, Lemma 5.1))

−dvat = γtξ̂t

= Jt−γtTδ
[
ξ?

(
·, ·, ·, βt, C?t , ∆̂t−

)] (
t,Xt−, βt

)
Q× λ a.e.

(2.10.12)
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As a consequence, given an independent random variable ζ with density p, we can write, using
(2.10.12), the definition of Tδ and (2.5.1) to pass to the second, third and fourth line, respectively :

−E
[
hζ1ζ≤τ̄βζdva (ζ,Xζ)

]
= −

∫ T

0
E
[
htβt1t<τ̄dva (t,Xt)

]
p(t) dt

=
∫ T

0
E
[
htβt1t≤τγtTδ

[
ξ?

(
·, ·, ·, βt, C?t , ∆̂t

)] (
t,Xt, βt

)]
p(t) dt

=
∫ T

0
E
[
htβt1t≤τγtEt

[
ξ?

(
tδ,Xtδ , βtδ , βt, C?t , ∆̂t

)] ]
p(t) dt

=
∫ T

0
E
[
htβt1t≤τγ•(t)ξ?

(
tδ,Xtδ , βtδ , βt, C?t , ∆̂t

) ]
p(t) dt

= E
[
1ζ≤Thζβζ1ζ≤τγ•(ζ)ξ?

(
ζδ,Xζδ , βζδ , βζ , C?ζ , ∆̂ζ

) ]
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Chapitre 3

XVA Metrics for CCP
Optimization

This chapter is based on Armenti and Crépey (2017b).

3.1 Introduction

In the aftermath of the financial crisis, the banking regulators undertook a number of ini-
tiatives to cope with counterparty risk. One major evolution is the generalization of central
counterparties (CCPs), also known as clearing houses. A clearing house serves as an interme-
diary during the completion of the transactions between its clearing members. It organizes the
collateralization of their transactions and takes care of the liquidation of the CCP portfolio of
defaulted members. Non-members can have access to the services of a CCP through external
accounts by the clearing members.

In order to mitigate counterparty risk, the CCP asks its clearing members to meet several
collateralization requirements. Apart from the variation and initial margin (VM and IM) that are
also required in bilateral trading (as gradually implemented since September 2016, regarding the
IM), the clearing members contribute to a mutualized default fund (DF) set against extreme and
systemic risk. See Khwaja (2016) for a review of margin and default schemes used by different
CCPs on different asset classes.

In the light of the literature, pros and cons of CCPs can be summarized as follows :

Counterparty credit risk and systemic risk : Counterparty risk of the CCP itself low and
default contagion effects between members reduced, but concentration risk if a major CCP
were to default, with 30 major CCPs today and only a few prominent ones. CCPs also pose
joint membership and feedback liquidity issues. On these and related issues see Capponi,
Cheng, and Rajan (2015), Glasserman, Moallemi, and Yuan (2015) and Barker, Dickinson,
Lipton, and Virmani (2016).

Netting : Multilateral netting benefit versus loss of bilateral netting across asset classes. See
Duffie and Zhu (2011), Cont and Kokholm (2014), Armenti and Crépey (2017a) and Gha-
mami and Glasserman (2017).

Transparency : Portfolio wide information of the CCP and easier access to the data for the
regulator, versus opacity of the default fund for the clearing members and joint membership
issues again. On related (and other) CCP issues, see Gregory (2014).

Efficiency : Default resolution cheaper. Bilateral trading means an arbitrary network of tran-
sactions. An orderly default procedure cannot be done manually ; it requires an IT network,
whether it is CCP, blockchain, SIMM reconciliation appliance, or whatever. However, the
way CCPs are designed today entails two major inefficiencies for the clearing members,
one related to the fact that default fund contributions are capital at risk not remunerated
at a hurdle rate and another one related to the cost of borrowing their IM. See Albanese
(2015) and Ghamami (2015).
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Contents of this chapter
The margins and the default fund mitigate counterparty risk, but they generate substantial

costs. Chapter 2 studies the cost of the clearance framework for a member of a CCP, under stan-
dard regulatory assumptions on its default fund contribution and assuming unsecurely funded
initial margin. Following up on the last item in the above list, the present work challenges these
assumptions in two directions.

First, we confront the current default fund Cover 2 EMIR sizing rule with a broader risk based
approach, advocated in Ghamami (2015) and Albanese (2015), relying on a suitable notion of
economic capital (ECccp) of a CCP. Regarding the allocation of the default fund between the
clearing members, we compare a classical IM based allocation with the one based on member
incremental ECccp.

Second, we assess the efficiency of an initial margin funding scheme, suggested in Albanese
(2015), whereby a third party provides the IM in exchange of some service fee, as opposed to
the standard procedure where clearing members unsecurely borrow their IM.

Note that such ideas, which may look rather orthogonal to current market practice, are ac-
tually not complete aliens to the industry. A default fund approach in the direction of the one of
this work (calibrated to the Cover 2 EMIR regulatory prescription as we also suggest could be
done in Section 3.3.1 is actually used by the Swiss CCP SIX X-Clear Ltd : see https://www.six-
securities-services.com/dam/downloads/clearing/clearing-notices/2017/clr-170420-
clearing-notice-margin-en.pdf. Likewise, the specialist lending business already exists at the
early stages : in practice specialist lenders are private equity funds. See also Albanese, Brigo, and
Oertel (2013) for similar ideas regarding VM. However, such funding schemes are much more
difficult to implement for VM because VM is far larger and more volatile than IM.

The chapter is outlined as follows. Section 3.2 applies the XVA principles of Albanese, Cae-
nazzo, and Crépey (2017b) to the assessment of the cost of the clearance framework for a clearing
member of a CCP. The critical cost centers are the cost of funding their initial margin (MVA)
and the cost of the capital (KVA) that they have to put at risk as their default fund contribution.
Section 3.3 studies ways of compressing the related market inefficiencies. Section 3.4 presents a
CCP toy model, where the above is illustrated numerically in Section 3.5, based on the analytics
of Section 3.6.1.

3.2 Clearing Member XVA Analysis
In this section, we apply the XVA principles of Albanese and Crépey (2017) to a bank trading

as a member of a clearing house with n other clearing members.
A clearing house eliminates the direct impact of the defaults of other clearing members on the

surviving ones (as detailed in Remark 3.2.2, the default of the clearing house itself is essentially
irrelevant to XVA analysis). But this comes at a certain cost for the clearing members. In this
section we analyse the cost of the clearance framework on a reference clearing member bank. For
other XVA frameworks, see, for instance :
• Brigo and Pallavicini (2014), Bichuch, Capponi, and Sturm (2017) (without KVA) ;
• Or, with a KVA meant as an additional contra-asset like the CVA and the FVA (as opposed

to a risk premium in our case) : Green (2015), Green, Kenyon, and Dennis (2014), or
Elouerkhaoui (2016).

The first reference in each bullet point includes a treatment of CCPs. However, in the first case,
the default fund is ignored (the network of the clearing members is not introduced explicitly),
whereas, in the second case, the emphasis is on regulatory capital, instead of economic capital
in this work.

In practice banks tend to “clear the delta” of their (corporate) client derivative portfolio with
CCPs. The CCP portfolio of the bank thus provides a fully collateralized, back-to-back hedge to

https://www.six-securities-services.com/dam/downloads/clearing/clearing-notices/2017/clr-170420-clearing-notice-margin-en.pdf
https://www.six-securities-services.com/dam/downloads/clearing/clearing-notices/2017/clr-170420-clearing-notice-margin-en.pdf
https://www.six-securities-services.com/dam/downloads/clearing/clearing-notices/2017/clr-170420-clearing-notice-margin-en.pdf
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its client portfolio. This comes at the cost of the clearance framework for the bank, which then
passes these costs to its clients.

Moreover, in reality, a bank is involved with many different clients, in centrally cleared vanilla
trades and bilateral exotic ones, and CCPs (or CCP services), which are typically siloed by asset
classes (see Figures 3.1 and 3.2). However, it is enough to understand the extreme cases of
purely bilateral XVA analysis and of the XVA analysis of a bank performing all its trading as
member of a single CCP. More complex situations (cf. e.g. Sherif (2017)) can then be tackled by
combination of these two extreme cases. The XVA analysis of bilateral portfolios is detailed in
Albanese, Caenazzo, and Crépey (2017a). In this chapter we focus on the “orthogonal” case of
a bank clearing its delta with a single CCP.

Note that, assuming the client portfolio of the bank entirely cleared, it is not necessary to
introduce the latter explicitly : it is enough to know that the contractually promised cash flows
between the bank and the CCP are exactly compensated by mirroring cash flows between the
bank and its clients.

3.2.1 Cash Flows
We consider a pricing stochastic basis (Ω,G,Q), with model filtration G = (Gt)t∈R+ and

risk-neutral pricing measure Q, such that all the processes of interest are G adapted and all the
random times of interest are G stopping times. The corresponding expectation and conditional
expectation are denoted by E and Et. We also introduce the value at risk and expected shortfall
of level a, VaRa and ESa, and their conditional versions VaRat and ESat .

We denote by r a G progressive OIS (overnight indexed swap) rate process, which is together
the best market proxy for a risk-free rate and the reference rate for the remuneration of the
collateral. We write β = e

−
∫ ·

0
rs ds for the corresponding risk-neutral discount factor.

By mark-to-market of a derivative portfolio, we mean the trade additive risk-neutral condi-
tional expectation of its future discounted promised cash flows, ignoring counterparty risk and
its capital and funding implications, i.e. without any XVAs. We consider a CCP with (n + 1)
risky members, labelled by i = 0, 1, 2, . . . , n. We denote by :
• T : an upper bound on the maturity of all claims in the CCP portfolio, also accounting for

the time δ > 0 (assumed constant for simplicity) of liquidating the position between the
bank and any of its counterparties in case of default ;

• t̄ = t ∧ T, tδ = t+ δ, for every t ≥ 0 ;
• τi : The default time of the member i, with non-default indicator process J i = 1[0,τi) ;
• Di

t : The cumulative contractual cash flow process of the CCP portfolio of the member i,
cash flows being counted positively when they flow from the clearing member to the CCP ;

• MtMi
t = Et

[∫ T
t
β−1
t βs dDi

s

]
: The mark-to-market of the CCP portfolio of the member i ;

• ∆i
t =

∫
[t−δ,t] β

−1
t βs dDi

s : The cumulative contractual cash flows of the member i, accrued
at the OIS rate, over a past period of length δ ;

• VMi
t, IMi

t ≥ 0,DFCit ≥ 0 : VM, IM, and DFC posted by the member i at time t.
We do not exclude simultaneous defaults, but we suppose that all the default times are positive
and endowed with an intensity (in particular, defaults at any constant or G predictable time
have zero probability). Regarding the liquidation procedures, for ease of analysis, we assume the
existence of a risk-free (hence, non IM or DFC posting) “buffer” replacing defaulted members
in their transactions with the surviving members, after a liquidation period of length δ. In the
interim, the positions of the defaulted members are carried by the clearing house. Accounting
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Repo markets

Market hedge of
bilateral trades

Client 0 Client m

Bilateral trading
netted by client

Bank 0 Bank n

CCP 0 CCP p

Back to back hedged
centrally cleared trading
netted by asset classes

Figure 3.1 – Financial network of clients, banks, and CCPs. Solid edges represent cash flows
between the related entities. Bilateral trades correspond to the upper part of the picture (banks
and above) and centrally cleared trades to the lower part (banks and below). We assume that
centrally cleared client trades are back-to-back hedged for the banks, in terms of market risk, by
offsetting CCP trades, whereas bilateral client trades are hedged by banks through repo markets.
Figure 3.2 provides a focus on the red part of the graph with more detail.
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Client 0

XVA desks of bank 0

Clean desks of bank 0

CCP 0

Repo markets

(MtM0,b + MtM0,c)
FTP0

MtM0,c

MtM0,b

MtMi,c for i ≥ 1

Figure 3.2 – Zoom on a reference bank, labelled by 0, focusing on its transactions with client
0 and CCP 0, corresponding to the red part in Figure 3.1. The XVA desks of the bank filter
out counterparty risk and its capital and funding implications from client trades, so that the
other (“clean”) trading desks of the bank can focus on the market risk of their business lines,
as if there was no counterparty risk. This is at least the picture for bilateral transactions (see
Albanese, Caenazzo, and Crépey (2017b, Section 2.2)), labelled by ·,b in the picture. In the case
of centrally cleared transactions, labelled by ·,c, the task of the bank reduces to its interaction
with the CCP through its XVA desks, whereas the CCP itself provides fully collateralized deals
to its clearing members. The arrows represent the direction of deal entry payments between the
bank, the client and the CCP, under the convention that the reference clearing member bank 0
“buys” assets from its clients, at an FTP (all-inclusive XVA rebate) deducted price with respect
to their “clean valuation” ignoring counterparty risk. Clean valuation is denoted by MtM0,b (for
bilateral trades) or MtM0,c (for centrally cleared cleared). Repo traded hedges of its bilateral
transactions are assumed entered at no upfront payment by the bank. The trading of the CCP 0
with the other clearing members is suggested by the arrows MtMi,c, for i = 1, . . . , n. The trading
of the CCP clears, i.e.

∑n
i=0 MtMi,c = 0.
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for the OIS accrued value ∆i
τδ
i

of the cash flows contractually due by the member i to the other
clearing members from time τi onward (cash flows unpaid due to the default of the member i at
τi), the loss triggered by the liquidation of the member i at time τ δi is(

MtMi
τδ
i

+ ∆i
τδ
i
− β−1

τδ
i

βτi
(
VMi

τi + IMi
τi + DFCiτi

))+
(3.2.1)

(assuming that margin and DFC accounts accrue at rate r). Note that, contrary to the bilateral
case, there is no recovery stemming from the liquidation of the CCP portfolio of a defaulted
member.

Remark 3.2.1 The expression (3.2.1) for the loss of the CCP given the default of the member i
is a stylized formulation ignoring the possibility of CCP close-out losses in relation to illiquidity
of OTC markets in the aftermath of a major default in addition to the “gap risk of slippage”
over the length δ of the liquidation period. Accordingly, we will use for the embedded IMi a basic
specification in the form of a value-at-risk of the δ = one week increment of MtMi (VMi

τi being
taken as MtMi

τi). In reality, OTC markets are sensitive to the potential illiquidity experienced
by a CCP in macro-hedging and then auctioning a potentially large and illiquid OTC portfolio
in the aftermath of a major default. CCPs are of course aware of this and account for it by means
of suitable initial margin liquidity add-ons. All in one, at the conceptual level of this work, it is
simpler to stay with the basic formulation (3.2.1), playing with the quantile levels that are used
for setting the IM (and also the DFC as we will see) in order to emulate more or less conservative
CCP setups.

Remark 3.2.2 The actual size of the default fund is sometimes referred to as the funded default
fund, as opposed to the unfunded default fund, which refers to the additional amounts members
may have to pay via the above default fund replenishment principle in case of defaults of other
members. The service closure, i.e. the closure of the activity of the clearing house on a given
market or service, is usually specified in terms of a cap on the unfunded default fund, such as the
unfunded default fund reaching twice the initial level of the funded default fund. Given the high
levels of initial margins that are used in practice, this is a very extreme tail event. Moreover,
in case of service closure, the risk of a member is bounded by the sum between its margins,
three times its default fund contribution (assuming the above specification of service closure)
and the cost of the liquidation of the service for this member. This cost is itself bounded by the
notional of the member position, which would only be the actual cost in a scenario where all the
assets of the CCP would jump to zero, also a very unlikely situation. In conclusion, including
the service closure event through a finite cap on member refill would only negligibly affect the
XVA amounts. The default of the CCP as a whole (i.e. the closure of all its services) is an even
more unlikely event, especially because a central bank would hardly allow it to occur in view of
its systemic consequences. Hence we may and do ignore the service closure and the default of
the clearing house in the context of XVA analysis.

In the sequel the bank corresponds to the reference member 0. For notational simplicity we
remove any index 0 referring to it and we write τ̄ = τ ∧ T = τ0 ∧ T . The CCP is simply an
interface between the clearing members. Hence the overall CCP portfolio clears, i.e.

MtM = MtM0 = −
∑
i 6=0

MtMi (3.2.2)

and we assume likewise
VM = VM0 = −

∑
i 6=0

VMi

Recall that we do not exclude simultaneous defaults. For any Z ⊆ {1, 2, . . . , n}, let τZ denote
the time when members in Z and only in Z default (or +∞ if this never happens). At each
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t = τ δZ < τ̄ , the loss of the bank, assumed instantaneously realized as refill to its default fund
contribution, is (also accounting for the unwinding of the corresponding client trades)

ετδ
Z

= wτδ
Z

∑
i∈Z

(
MtMi

τδ
Z

+ ∆i
τδ
Z
− β−1

τδ
Z

βτZ
(
VMτZ + IMi

τZ + DFCiτZ
))+

(3.2.3)

for some refill allocation key wt. A typical specification is proportional to the default fund
contributions of the surviving members, i.e.

wt = DFCt
DFCt +

∑
i 6=0 J

i
tDFCit

(3.2.4)

Note that (3.2.3) conservatively ignore the impact of netting in the context of the joint liquidation
of several defaulted members (and we ignore the equity or “skin-in-the-game” of the CCP, which
is typically small and therefore negligible from a loss-absorbing point of view).

We assume that the bank can invest cash in excess of its funding requirements at the OIS
rate r, borrow collateral to post as VM at its unsecured funding spread λ over r, and borrow
collateral to post as IM at a possibly blended spread (see Section 3.3.2) λ̄.

3.2.2 Contra-Assets Valuation

Contra-assets are the liability triggered by the derivative portfolio of the bank, given in
particular the impossibility for the bank to hedge its own jump-to-default exposure (see Albanese,
Caenazzo, and Crépey (2017b, Section 5.1)). As contra-assets are marked to the model, their
value process, denoted by CA, is part of the trading loss(-and-profit) of the bank. Moreover,
before resorting to unsecured borrowing for raising collateral, the bank can first use the amount
CA charged to the client of the deals and deposited on the so-called reserve capital account of
the bank.

We denote by δt the Dirac measure at time t.

Lemma 3.2.1 In the case of a centrally cleared portfolio of trades between a reference clearing
member bank and n other clearing members i = 1, . . . , n, given a putative CA process, the trading
loss (and profit) process L of the bank satisfies the following forward SDE :

L0 = z (the initial trading loss of the bank) and, for t ∈ (0, τ̄ ],

dLt = dCAt − rtCAt dt+ Jt
∑
Z

ετδ
Z
δτδ
Z

( dt)

+
(
λt (VMt −MtMt − CAt)+ + λ̄tIMt

)
dt

(3.2.5)

(and L is constant from time τ̄ onward).
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Proof: Collecting all the trading cash flows of the reference clearing member bank, we obtain :

L0 = z and, for t ∈ (0, τ̄ ],

dLt = Jt
∑
Z

ετδ
Z
δτδ
Z

( dt)︸ ︷︷ ︸
Counterparty default losses of the bank

+
(

(rt + λt) (VMt −MtMt − CAt)+ − rt (VMt −MtMt − CAt)−
)

dt︸ ︷︷ ︸
Bank costs/benefits of funding the VM posted on its CCP portfolio,
net of MtM received as VM on its client portfolio and of the reserve
capital amount CAt also available as a funding source for the bank

+
(
rt + λ̄t

)
IMt dt︸ ︷︷ ︸

Bank IM funding costs
− rt (VMt −MtMt + IMt) dt︸ ︷︷ ︸

Posted VM is remunerated OIS by the receiving party and IM
accrues at the OIS rate

− rtCAt dt︸ ︷︷ ︸
Risk-free funding of the bank position taken over by the CCP
during the bank liquidation period

− (−dCAt)︸ ︷︷ ︸
Depreciation of the liability CA of the bank

which gives (3.2.5) �

In the spirit of a bank shareholder no-arbitrage condition, we assume that the trading loss
process L must be a risk-neutral local martingale. Moreover, assuming all the assets of the bank
wiped out at time τ (cf. Albanese, Caenazzo, and Crépey (2017b, Section 8)), the CA process
satisfies the terminal condition CAτ̄ = 0. Therefore :

Proposition 3.2.1 (i) The contra-asset value process CA of the bank satisfies the following
backward SDE on [0, τ̄ ] :

CAτ̄ = 0 and, for t ∈ (0, τ̄ ],

dCAt = −Jt
∑
Z

wτδ
Z
ετδ
Z
δτδ
Z

( dt) + rtCAt dt+ dLt

−
(
λt (VMt −MtMt − CAt)+ + λ̄tIMt

)
dt

(3.2.6)

for some risk-neutral local martingale L corresponding to the trading loss process of the bank.
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(ii) Assuming integrability, it holds that

CAt = Et

 ∑
t<τδ

Z
<τ̄

β−1
t βτδ

Z
wτδ

Z

∑
i∈Z

(
MtMi

τδ
Z

+ ∆i
τδ
Z
− β−1

τδ
Z

βτZ

(
VMi

τδ
Z

+ IMi
τδ
Z

+ DFCiτδ
Z

))+


︸ ︷︷ ︸
CVAt (credit valuation adjustment)

+ Et
[∫ τ̄

t

β−1
t βsλs (VMs −MtMs − CAs)+ ds

]
︸ ︷︷ ︸

FVAt (funding valuation adjustment)

+ Et
[∫ τ̄

t

β−1
t βsλ̄sIMs ds

]
︸ ︷︷ ︸

MVAt (margin valuation adjustment)

, 0 ≤ t ≤ τ δ

(3.2.7)

Proof: Accounting for the risk-neutral martingale condition on L and the terminal condition
CAτ̄ = 0, the SDE (3.2.5) in Lemma 3.2.1 implies (i), hence (assuming integrability) (ii). �

Remark 3.2.3 The initial (actually unknown) condition L0 = z in (3.2.5) is immaterial.

3.2.3 Capital Valuation Adjustment
On top of no arbitrage in the sense of risk-neutral CA valuation, bank shareholders need to

be remunerated at some hurdle rate h for their capital at risk. As default fund contributions
are loss-absorbing and survivor-pay (beyond the level of losses covered by the margins and the
DFC of the defaulted members), they are capital at risk of the clearing members. In fact, the
capital at risk of a bank operating as clearing member of a CCP takes the form of its default
fund contribution.

Remark 3.2.4 Regulatory capital is also required from the bank for dealing with potential
losses beyond its margin and default fund contribution. But, given the regulatory incentivization
of central clearing, such regulatory capital is negligible in practice (see Chapter 2 for numerical
illustration).

As a result, in a centrally cleared trading setup, the KVA formula (65) in Albanese, Caenazzo,
and Crépey (2017b), corresponding to a remuneration of bank shareholder capital at risk at a
constant hurdle rate h, needs be amended as

KVAt = hEt
(∫ τ̄

t

e
−
∫ s
t

(ru+h) du DFCs ds
)

t ∈ [0, τ̄ ] (3.2.8)

(assuming all the assets of the bank wiped out at time τ , see Albanese, Caenazzo, and Crépey
(2017b, Section 8)). The formula (3.2.8) can be seen as a continuous-time analogous to the
risk margin formula in the Solvency II eurozone insurance regulation (itself adapted from Swiss
Solvency Test (2017)), where h is set as 6%.

This perspective opens the door to an organization of a clearance framework, whereby a CCP
could remunerate the clearing members for their default fund contributions. This would make
the clearing members less reluctant to put capital at risk in the default fund. In fact, if it was
remunerated at some hurdle rate, the default fund of a CCP could even become attractive and
be open to external investors (if that could be done without prejudice to the other key role of
the default fund, which is to give the clearing members incentive to bid in the auctions setup by
the CCP to liquidate the CCP portfolios of defaulted members).
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Capital and cost of capital calculations are supposed to be performed under the historical
probability measure P. But P is hardly estimable for the purpose of cost of capital calculations,
which involve projections over decades in the future. As a consequence, we do all our price and
risk computations under a risk-neutral measure Q calibrated to the market. In other words, we
work under the modelling assumption that P = Q, leaving the residual uncertainty about P to
model risk.

Remark 3.2.5 As soon as quantitative methodologies are used regarding the default fund
and/or initial margins, an important topic is the related model risk, which is of course high
as soon as risk measures (hence the tail of the distribution of the P&L of the member banks)
are involved. This topic is left for future research.

3.2.4 Funds Transfer Price
In the context of XVA computations, derivative portfolios are typically modelled on a run-

off basis, i.e. assuming that no new trades will enter the portfolio in the future. Otherwise the
bank could be led into snowball Ponzi schemes, where always more deals are entered for the sole
purpose of funding previously entered ones. Moreover the trade-flow of a price-maker bank does
not have a stationarity property that could allow the bank forecasting future trades.

Of course in reality a bank deals with incremental portfolios, where trades are added or
removed as time goes on. Accordingly, incremental XVAs are computed at every new trade, as
the differences between the portfolio XVAs with and without the new trade, the portfolio being
assumed held on a run-off basis in both cases.

The incremental all-inclusive XVA of a new deal, called funds transfer price (FTP), corres-
ponds for the bank to the “fabrication cost” of the deal, computed on an incremental run-off
basis given the endowment (legacy portfolio) of the bank. Summing up the above, in case of a
new deal through the CCP, the FTP of the reference clearing member bank is given by (cf. (3.2.7)
and (3.2.8)) :

FTP = ∆CA + ∆KVA = ∆CVA + ∆FVA + ∆MVA + ∆KVA (3.2.9)

computed on an incremental run-off basis relatively to the portfolios with and without the new
deal.

Given the high level of collateralization that applies in the context of centrally cleared trading,
the credit valuation adjustment (CVA) of a clearing member, i.e. its expected loss due to other
members’ defaults, is typically quite small. Moreover, for daily (or even more frequent) re-
margining on the derivative portfolio, the variation margins of a clearing member on its derivative
portfolio and on its back-to-back hedge tend to match each other. Hence the funding variation
adjustment (FVA) of a member (cf. (3.2.7)) is also quite small and much smaller than its MVA.
As a consequence, in a centrally cleared setup, the prominent XVA numbers of a clearing member
are its MVA and its KVA.

3.3 Default Fund Contributions and Initial Margin Fun-
ding Schemes

As of today :
• Posted IM is typically borrowed unsecured by the bank, resulting in λ̄ = λ in (3.2.5) ;
• The default fund of a (European) CCP is sized according to the EMIR Cover 2 rule, i.e.

enough to cover the joint default of the two clearing members with the greatest CCP
exposures ;

• The typical allocation of the total amount between the clearing members is proportional
to their initial margins or to a suitable notion of losses over IM.
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Proportionality to initial margins makes the default fund contributions in the same direction
as the initial margins, which is felt as unfair by the clearing members. Proportionality to losses
over IM makes the evolution of the default fund contributions completely unpredictable to them,
which they like even less. In the sequel, we use the IM proportional rule as a benchmark.

In any case, both the size and the allocation of the default fund are purely based on market
risk, irrespective of the credit risk of the clearing members. The latter is only accounted for
marginally and in a second step, by means of specific add-ons to the IM of the riskiest members
(cf. Remark 3.2.1).

However, whatever the prevailing regulation and market practice in terms of capital and fun-
ding policies, for XVA computations that entail projections of these over decades, an economical
specification is more appropriate than the ad-hoc and ever-changing regulatory specifications
supposed to approximate it. Two important considerations in this regard are the specification of
the default fund and of the funding policy for initial margins.

3.3.1 Economic Capital Based Default Fund
As explained in Section 3.2.3, through their default fund contributions, the clearing members

provide capital at risk to the CCP (ignoring the skin-in-the-game of the CCP, which is negligible
from a loss-absorbing point of view). The economical capital and KVA methodology of Albanese,
Caenazzo, and Crépey (2017b) can be used for designing an economically sound and sustainable
specification of the default fund and of its allocation between the clearing members. Beyond the
theoretical interest and message to the regulator, this approach can yield valuable specifications,
even under the current regulatory environment, for the default fund and its allocation that
intervene as data in the CA equation (3.2.6) and KVA formula (3.2.8). In this perspective, an
economical specification can also be calibrated at time 0 to the actual regulatory capital amounts
of the bank.

In view of the losses (3.2.3) summed over all members, we define an aggregated loss process
of a CCP that would be in charge of dealing with member counterparty default losses through
a CVAccp account (earning OIS) and capital at risk at the aggregated CCP level as (cf. (3.2.5))

Lccp0 = zccp (the initial loss of the CCP) and, for t ∈ (0, T ],

βt dLccpt =
∑
i

(
βτδ

i

(
MtMi

τδ
i

+ ∆i
τδ
i

)
− βτi

(
VMi

τi + IMi
τi

))+
δτδ
i
( dt)

+ βt ( dCVAccp
t − rtCVAccp

t ) dt

(3.3.1)

(and L constant from time T onward), where the CVA of the CCP is given as

CVAccp
t = Et

 ∑
t<τδ

i
<T

β−1
t

(
βτδ

i

(
MtMi

τδ
i

+ ∆i
τδ
i

)
− βτi

(
VMi

τi + IMi
τi

))+
 , 0 ≤ t ≤ T (3.3.2)

The ensuing economic capital process of the CCP

ECccpt = ESadft
(∫ t+1

t

β−1
t βs dLccps

)
(3.3.3)

where, in view of (3.3.1),∫ t+1

t

βs dLccps =
∑

t<τδ
i
≤t+1

(
βτδ

i

(
MtMi

τδ
i

+ ∆i
τδ
i

)
− βτi

(
VMi

τi + IMi
τi

))+

−
(
βtCVAccp

t − βt+1CVAccp
t+1
) (3.3.4)
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yields the size of an overall risk based default fund at the confidence quantile level adf . The
current regulatory Cover 2 EMIR rule purely relies on market risk. By contrast, the sizing rule
(3.3.3) reflects a broader notion of risk of the CCP, in the form of a risk measure of its one-year
ahead loss-and-profit if there was no default fund, as it results from the combination of the credit
risk of the clearing members and of the market risk of their portfolios.

The KVA of the CCP estimates how much it would cost the CCP to remunerate all clearing
members at some hurdle rate h for their capital at risk in the default fund, namely, for t ≤ T
(cf. (3.2.8)) :

KVAccp
t = hEt

(∫ T

t

e−(r+h)sDFs ds
)

(3.3.5)

A member incremental ECccp or KVAccp allocation of the default fund between the (n + 1)
clearing members could be used as an alternative to the usual IM proportional allocation.

3.3.2 Specialist Lending of Initial Margin
Let λ = γ(1−R) denote the instantaneous CDS spread of the bank, where γ is its risk-neutral

default intensity and R its recovery rate as implicit in its CDS spread quotations.
The time-0 margin valuation adjustment (MVA) of the bank when its IM is funded through

unsecured borrowing is given by (cf. 3.2.7)

MVAub
0 = E

(∫ τ̄

0
βsλsIMs ds

)
(3.3.6)

However, instead of assuming its IM borrowed by the bank on an unsecured basis, we can
consider an alternative scheme whereby IM is provided by a liquidity supplier, dubbed “specialist
lender”, lending IM in exchange of some fee. Under the terms of a legal agreement concluded
between the CCP and the specialist lender, in case of default of the bank, the specialist lender
would receive back from the CCP the portion of IM unused to cover losses. Hence, as opposed
to unsecured borrowing, where, in case of default of the bank, IM unused to cover losses just
increases the recovery rate of the bank creditors, by contrast, with specialist lending of initial
margin, IM unused to cover losses stays with the shareholders of the specialist lender. As a
result, specialist lending compresses the MVA wealth transfer from bank shareholders to creditors
triggered by the derivative portfolio of the bank (see Albanese, Caenazzo, and Crépey (2017b,
Section 5.1)).

More precisely, assuming as standard that IM is subordinated to own DFC, i.e. that the first
levels of losses are absorbed by IM, the exposure of the specialist lender to the default of the
bank is (

G+
τδ
∧ β−1

τδ
βτ IMτ

)
for a time-t gap Gt given as

Gt = MtMt + ∆t − β−1
t βt−δVMt−δ (3.3.7)

The time-0 MVA of the bank under such a third party arrangement follows as

MVAsl
0 = E

[
βτδ1τ<T

(
G+
τδ
∧ β−1

τδ
βτ IMτ

)]
= E

(∫ τ̄

0
βsγsξs ds

)
(3.3.8)

where ξ is a G predictable process, which exists by Corollary 3.23 2) in He and Yan (1992), such
that Eτ−

(
βτδG

+
τδ
∧ βτ IMτ

)
= βτξτ . The process γξ ds corresponds to the fees to be paid by the
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bank to the specialist lender. By identification with the generic expression λ̄sIMs in (3.2.5), the
formula (3.3.8) corresponds to a blended IM funding spread

λ̄ = γξ

IM = 1
(1−R)

ξ

IMλ

Under a common specification where βsIMs is set as a high quantile (value-at-risk) of βsδGsδ
(cf. (3.4.3) below, assuming there for simplicity continuous-time variation margining VMt =
MtMt until time τ in (3.3.7)), for a bank with an unsecured recovery rate R commonly estimated
in a range between 20% and 40%, the blending factor

1
(1−R)

ξ

IM

is typically significantly less than one. Hence λ̄ is significantly less than λ and MVAsl
0 significantly

less than MVAub
0 .

Remark 3.3.1 The initial margin determined by a CCP replies on historical data which is
unconditional in the sense that very few days reflect market conditions in the aftermath of
a bank default. Since initial margin is only ever required in default scenarios, the confidence
levels used for computation may be misleading and losses above initial margin may easily be
understated. This is why the regulation imposes very high quantile levels aim in the value-at-
risk used for setting the IM, e.g. aim ≥ 99% under EMIR requirements. Moreover, it it not
uncommon that CCPs use even higher quantile levels, e.g. 99.7% at LCH SA. In addition, most
CCPs charge, on top of the corresponding value-at-risk, various IM add-ons meant to account
for liquidity, credit risk, etc. (cf. Remark 3.2.1). In conclusion, even if it is theoretically possible
to consider situations in which bespoke initial margin funding may actually be more expensive
than traditional unsecured funding (contradicting (3.3.2)), such a scenario is quite unlikely to
occur in practice.

Note that such an IM funding policy is not a violation of pari passu rules. It just compresses
the MVA wealth transfer from bank shareholders to creditors triggered by the derivative portfolio
of the bank. Subordinating own DFC to IM would result in less IM consumption upon defaults,
hence even more efficient specialist lender IM funding schemes.

The remaining of the chapter is a case study of our approach in the CCP toy model of
Armenti and Crépey (2017a, Section 7). The actual number of members in CCP services varies
from four or five in starting services to several hundreds on certain asset classes. However, most
CCP services are driven by no more than a dozen of major players, with typically two or three
prominent ones (see e.g. Armenti, Crepey, Drapeau, and Papapantoleon (2016, Sections 6.1 and
C)). Hence we want to consider a family of members, not necessarily large, but well diversified
in terms of market and credit risk, which are the two main features of interest for the points we
want to illustrate in this chapter. The resulting XVA numbers should be considered not so much
in absolute terms than in terms of comparison between the clearing members and of sensitivities
with respect to the market and credit risks of the latter.

Note that running a similar exercise on a real CCP dataset would necessitate to implement
the totality of the CCP pricers and to dynamically compute the economic capital of a real CCP
at all the nodes of a computational tree with final maturity T of all claims in the CCP portfolio.
Such an implementation effort would be out of reach in the context of an academic paper.

3.4 CCP Toy Model
In this section we briefly recap the CCP setup of Section 2.7, to which we refer the reader

for more details. In particular, CVAccp is analytic in this model (see Section 3.6.1), which avoids
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the numerical burden of nested Monte Carlo that is required otherwise for simulating the loss
and profit processes involved in capital computations.

3.4.1 Market Model
As common asset driving all our clearing member portfolios, we consider a stylized swap with

strike rate S̄ and maturity T on an underlying interest rate process S. At discrete time points
Tl such that 0 < T1 < T2 < · · · < Td = T , the swap pays an amount hl

(
STl−1 − S̄

)
, where

hl = Tl − Tl−1. The underlying rate process S is supposed to follow a standard Black-Scholes
dynamics with risk-neutral drift κ and volatility σ, so that the process Ŝt = e−κtSt is a Black
martingale with volatility σ. For t ∈ [T0 = 0, Td = T ], we denote by l the index such that
Tlt−1 ≤ t < Tlt . The following numerical parameters are used :

r = 2%, S0 = 100, κ = 12%, σ = 20%, hl = 3 months, T = 5 years.

The nominal (Nom) of the swap is set so that each leg has a time-0 mark-to-market of one
(i.e. 104 basis points). Figure 3.3 shows the resulting mark-to-market (process MtM? in (3.6.1)
below) viewed from the perspective of a party long one unit position, i.e. receiving floating, in
the swap.

Figure 3.3 – Mean and 2.5% and 97.5% quantiles, in basis points as a function of time, of
the process MtM? in (3.6.1), calculated by Monte Carlo simulation of 5000 Euler paths of the
process S.

3.4.2 Credit Model
For the default times τi of the clearing members, we use the “common shock” or dynamic

Marshall-Olkin copula (DMO) model of Crépey, Bielecki, and Brigo (2014, Chapters 8–10) and
Crépey and Song (2016) (see also Elouerkhaoui (2007) and Elouerkhaoui (2017)). In this model
defaults can happen simultaneously with positive probabilities. The model is made dynamic, as
required for XVA computations, by the introduction of the filtration of the indicator processes
of the τi.

First we define shocks as pre-specified subsets of the clearing members, i.e. the singletons
{0} , {1} , {2} , . . . , {n}, for single defaults, and a small number of groups representing members
susceptible to default simultaneously.
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Example 3.4.1 A shock {1, 2, 4, 5} represents the event that all the (non-defaulted names
among the) members 1, 2, 4, and 5 default at that time.

As demonstrated numerically in Crépey, Bielecki, and Brigo (2014, Section 8.4), a few com-
mon shocks are typically enough to ensure a good calibration of the model to market data
regarding the credit risk of the clearing members and their default dependence (or to expert
views about these).

Given a family Y of shocks, the times ηY of the shocks Y ∈ Y are modelled as independent
time-inhomogeneous exponential random variables with intensity functions γY . For each clearing
member i = 0, . . . , n, we then set

τi = min
{Y ∈Y; i∈Y }

ηY (3.4.1)

(we recall that the default time τ of the reference clearing member bank corresponds to τ0). The
specification (3.4.1) means that the default time of the member i is the first time of a shock Y
that contains i. As a consequence, the (pre-default) intensity γi of τi is the constant

γi =
∑

{Y ∈Y; i∈Y }

γY

with associated CDS spread λi = (1−Ri) γi, where Ri = 40% is taken as recovery rate implicit
in CDS spread market quotations.

Example 3.4.2 Consider a family of shocks

Y = {{0} , {1} , {2} , {3} , {4} , {5} , {1, 3} , {2, 3} , {0, 1, 2, 4, 5}}

(with n = 5). The following illustrates a possible default path in the model.

t = 0.9 : {3} 0 1 2 3© 4 5 τ3 = 0.9
t = 1.4 : {5} 0 1 2 3 4 5© τ5 = 1.4
t = 2.6 : {1, 3} 0 1© 2 3 4 5 τ1 = 2.6
t = 5.5 : {0, 1, 2, 4, 5} 0© 1 2© 3 4© 5 τ0 = τ2 = τ4 = 5.5

At time t = 0.9, shock {3} occurs. This is the first time that a shock involving member 3 appears,
hence the default time of member 3 is 0.9. At t = 1.4, member 5 defaults as the consequence of
the shock {5}. At time 2.6, the shock {1, 3} triggers the default of member 1 alone as member 3
has already defaulted. Finally, only members 0, 2 and 4 default simultaneously at t = 5.5 since
members 1, 3 and 5 have already defaulted before.

In the sequel we consider a CCP with n + 1 = 9 members, chosen among the 125 names of
the CDX index on 17 December 2007, in the turn of the sub-prime crisis. The default times of
the 125 names of the index are modelled by a DMO model with 5 common shocks, with 1 shock
intensities γY calibrated to the CDS and CDO market data of that day (see Crépey, Bielecki,
and Brigo (2014, Sect. 8.4.3)). Table 3.1 shows the (market) credit spread Σi and the (fictitious)
swap position ωi of each of our nine clearing members. Hence

MtMi = (−ωi)×MtM? (3.4.2)

(recalling that the CCP member portfolio mark-to-market processes MtMi are considered from
the point of view of the CCP). We write Nomi = Nom× |ωi|.

1. Piecewise-constant 0–3y and 3y–5y.
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ωi 9.20 (1.80) (4.60) 1.00 (6.80) 0.80 (13.80) 8.80 7.20
Σi 45 52 56 61 73 108 176 367 1053

Table 3.1 – (Top) Swap position ωi of each member, where parentheses mean negative numbers
(i.e. short positions). (Bottom) Average 3 and 5 year CDS spread Σi of each member at time 0
(17 December 2017), in basis points.

3.4.3 Margin Schemes
We assume that the margins and default fund contribution of each clearing member are

updated in continuous time 2 while the member has not defaulted and are then stopped at its
default time, until the liquidation of its portfolio occurs after a period of length δ = one week.
Hence we set

VMi
t = MtMi

t and
βtIMi

t = VaRaimt
(
βtδ
(
MtMi

tδ + ∆i
tδ

)
− βtMtMi

t

) (3.4.3)

for t ≤ τi ∧ T and some IM quantile level aim.

3.5 Numerical Results
In the CCP toy model, we have semi-explicit formulas for all the quantities that we need (see

Section 3.6.1), except for (a term structure of) the economical capital process of the CCP, which
is obtained by Monte Carlo simulation.

3.5.1 Economic Capital of the CCP
In this section we consider a default fund that would be set, for fact or in the context of XVA

computations, as the economic capital of the CCP, in the sense of a conditional expected shortfall
of its one-year ahead loss (and profit) as per (3.3.3). However, for numerical tractability, we use
ESadf0 instead of ESadft in (3.3.3). In other terms we compute a default fund term structure as
opposed to a whole process. The ensuing KVA of the CCP follows by numerical time integration
based on (3.3.5). Instead, computing a full-flesh conditional expected shortfall process would
require nested Monte Carlo simulation (and even doubly nested Monte Carlo in more complex
models where CVAccp is not known analytically), at not much difference modulo some second
order convexity adjustment (see Abbas-Turki, Crépey, and Diallo (2017)).

We use m = 105 simulated paths of S and default scenarios. All the reported numbers are in
basis points (bps). We recall that the nominal “Nom” of the swap was fixed so that each leg equals
1 = 104 bps at time 0. Unless stated otherwise we use aim = 85% and adf = 99%. The solid blue
curves in Figure 3.4 show the resulting default fund term structures for adf = 85%, 95.5% and
99% (top to bottom). The respective dotted red and dashed green curves represent the analogous
results using value at risk instead of expected shortfall in (3.3.3), respectively ignoring the CVA
terms (the second line) in (3.3.4).

The broadly decreasing feature of all curves reflects the run-off feature of the modelling setup.
The comparison between the solid blue and the dotted red curves shows that for too low DF
quantile levels adf , the corresponding value-at-risk misses the right tail of the distribution of the
losses : the 85% value at risk curve in the upper panel is visually indistinguishable from 0, so
that the corresponding expected shortfall reduces to an expectation of the positive part of the
losses. The comparison between the solid blue and the dashed green curves in Figure 3.4 reveals
that when the DF quantile level adf increases, the impact of the CVA terms in (3.3.3) decreases.

2. Instead of daily and monthly under typical market practice.
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Figure 3.4 – Solid blue curves : Economic capital based default fund of the CCP, as a function
of time, for adf = 85%, 95.5% and 99% (aim = 85%). Dotted red curves : Analogous results using
value at risk instead of expected shortfall in (3.3.3). Dashed green curves : Analogous results
ignoring the CVA terms (the second line) in (3.3.4).
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It shows that the right tail of the distribution of the losses is driven by the counterparty default
losses rather than by the volatile swings of CVAccp. This could be expected given the intensity
model that we use for the default times. 3 Extreme swings of CVAccp could only arise in more
structural “distance to default” credit models, 4 where defaults are announced by volatile swings
of CDS spreads.

This analysis is confirmed by Figure 3.5, which shows, for each of the (overlapping) time
intervals (0, 1), (0.5, 1.5), . . . , (4.5, 5.5), the proportion of defaults per simulated path (upper
panel) and the expectation and standard deviation of the corresponding losses (bottom panel).
For instance, a proportion of 30% in the upper panel means that, over the 105 simulated paths,
30%× 105 = 3× 104 defaults happened on the corresponding time interval. The run-off feature
of the setup (see after (3.2.9)) means that the clearing member portfolios purely amortize as
time passes, but it also implies that defaulted clearing members are not replaced by new ones
in the CCP. Hence, as time passes, there are less and less defaults on average (the mean and
standard deviation of the losses take much more time to amortize, as the bottom panel of Figure
3.5 illustrates). Since the right tail of the losses is driven by the defaults, the EC based default
fund exhibits the decreasing term structure shown by the solid blue curves in Figure 3.4.

Figure 3.5 – Top : Proportion of defaults per simulated path. Bottom : Expectation and
standard deviation of the losses.

Figure 3.6 represents, as a function of the IM quantile level aim, the time-0 DF quantile
level adf calibrated to the objective of a total default fund equal to 10% (solid blue curve), 15%

3. Even if embedding credit dependence between the clearing members through the joint defaults.
4. But then the challenge is the default dependence modelling.
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(dashed green curve) or 30% (dotted red curve) of the total IM of all the clearing members—a
range of values commonly encountered in the case of a CCP clearing interest rate derivatives.
With m = 105 scenarios as we take, the adf quantile level corresponding to a default fund equal
to 50% or more of the total IM of the CCP, an order of magnitude not uncommon in the case
of a CCP clearing CDS contracts, would be visually indistinguishable from 100% on the whole
range of values used for aim in Figure 3.6.

Figure 3.6 – Time-0 DF quantile level adf resulting in a default fund equal to 10% (solid blue
curve), 15% (dashed green curve) or 30% (dotted red curve) of the total IM of the CCP, plotted
as a function of the IM quantile level aim of the clearing members.

Figure 3.7 shows the KVAccp term structures corresponding to Formula (3.3.5) for a default
fund sized by the EC (solid blue) curves of Figure 3.4, for a hurdle rate h = 10%.

3.5.2 Default Fund Contributions
Let ECccp(−j) denote the economic capital of the CCP deprived from its jth member, i.e. with

the jth member replaced by the risk-free “buffer” in all its CCP transactions. Namely, at time t
(cf. (3.3.3)-(3.3.4)) :

ECccp(−j)t = ESadft

( ∑
t<τδ

i
≤t+1,i6=j

(
βτδ

i

(
MtMi

τδ
i

+ ∆i
τδ
i

)
− βτi

(
MtMi

τi + IMi
τi

))+

−
(
βtCVAccp(−j)

t − βt+1CVAccp(−j)
t+1

))

where CVAccp(−j)
t corresponds to the CVA of the CCP (cf. (3.3.2)) deprived from its jth member.

In the line of Section 3.5.1, we can consider an allocation of the default fund between the
clearing members proportional to the incremental change in ECccp attributable to each of them.
Namely, as long as all the clearing members are non-default (at time 0, in particular), we have

µec,it = ∆iECccpt∑
j ∆jECccpt

, where ∆jECccpt = ECccpt − ECccp(−j)t

A variant would be to allocate the default fund proportionally to the member incremental
KVAccp. Let KVAccp(−j)

t = hEt
(∫ T

t
e−(r+h)s ECccp(−j)s ds

)
denote the value of the KVA of the
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Figure 3.7 – KVAccp term structures corresponding to the ECccp (solid blue) curves of Figure
3.4 (h = 10%).

CCP deprived from its jth member. The corresponding allocation is written as

µkva,it = ∆iKVAccp
t∑

j ∆jKVAccp
t

, where ∆jKVAccp
t = KVAccp

t −KVAccp(−j)
t

Figure 3.8 shows the time-0 default fund allocations based on member initial margin, member
incremental ECccp and member incremental KVAccp, respectively represented by blue, red and
green bars. In the upper panel the clearing members in the x-axis are ordered by increasing
position |ωi|, whereas in the lower panel they are ordered by increasing credit spread Σi (cf. Table
3.1). In the present setup where all portfolios are driven by a single Black–Scholes underlying,
the initial margins, hence the blue bars in Figure 3.8, are simply proportional to the size |ωi| (or
nominal Nomi) of the member positions. By contrast, the member incremental ECccp or KVAccp

allocations (green and red bars) also take the credit risk of the members into account.
Figure 3.9 shows the term structures of the ECccp and KVAccp based allocation weights

for each of the clearing members. We clearly see the impact of market but also credit risk on
these term structures. At the beginning of the time period (and in particular at time 0), where
defaults are, on average, still to come, with probabilities reflected by the time-0 credit spreads of
the clearing members, the impact of credit risk is even predominant on the allocation weights.

3.5.3 Funding Strategies for Initial Margins
Figure 3.10 shows the time-0 MVAs of the nine clearing members for unsecurely borrowed

(top) vs. specialist lender (bottom) initial margin funding policies, for aim = 70% (blue), 80%
(green), 90% (red) and 97.5% (purple). For each of the clearing members, its specialist lender
MVA appears several times cheaper than its unsecured borrowing MVA (note the different scale
of the y-axis between the top and the lower panel in Figure 3.10).

As explained in Section 3.2.4, in a centrally cleared setup with daily re-margining, the most
important XVA numbers of a clearing member are its MVA and its KVA. Figure 3.11 compares
the MVA and the KVA of each of the nine clearing members in our case study, under alternative
specifications : unsecurely borrowed vs. specialist lender initial margin regarding the MVA,
member incremental ECccp vs. member incremental KVAccp allocation of an ECccp based default
fund regarding the KVA. The credit risk of the clearing members appears to be a more important
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Figure 3.8 – Time-0 default fund allocation based on member initial margin, member incre-
mental ECccp and member incremental KVAccp. Top : Members ordered by increasing position
|ωi|. Bottom : Members ordered by increasing credit spread Σi.
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Figure 3.9 – Default fund allocation weights term structures based on member incremental
ECccp (in blue) or KVAccp (in green) for each member, ordered from left to right and top to
bottom per increasing credit spread, as a function of time t = 0, . . . , 4.5.
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Figure 3.10 – MVAs of the nine clearing members for unsecurely borrowed (top) vs. specialist
lender (bottom) initial margin funding policies, for aim = 70% (blue), 80% (green), 90% (red)
and 97.5% (purple).



86 Chapitre 3. XVA Metrics for CCP Optimization

driver of their MVA and KVA than their market risk : the bars of each given colour are roughly
ordered in the bottom panel, where they are ranked by increasing credit spread of the clearing
members. By contrast, no particular ordering emerges in the upper panel, where they are ranked
by increasing position of the clearing members.

Figure 3.11 – MVA and KVA for each of the clearing members ordered along the x axis by
increasing position (top) or increasing credit spread (bottom).

3.6 Appendix

3.6.1 Analytics in the CCP Toy Model

We denote by Φ and φ the standard normal cumulative distribution and density functions.
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Mark-to-Market and Initial Margin

The mark-to-market of a long position in the swap of Section 3.4.1 is given by

MtMt = Nom× Et

(
β−1
t βTlthlt

(
STlt−1 − S̄

)
+

d∑
l=lt+1

β−1
t βTlhl

(
STl−1 − S̄

))

= Nom×
(
β−1
t βTlthlt

(
STlt−1 − S̄

)
+ β−1

t

d∑
l=lt+1

βTlhl

(
eκTl−1 Ŝt − S̄

))
(3.6.1)

by the martingale property of the process Ŝ. By (3.6.1) and (3.4.2)

βtδ
(
MtMi

tδ + ∆i
tδ

)
− βtMtMi

t = Nom× ωi × f(t)×
(
Ŝt − Ŝtδ

)
(3.6.2)

with f(t) =
∑d
l=l

tδ
+1 βTlhle

κTl−1 .

Remark 3.6.1 At least (3.6.2) holds whenever there is no coupon date between t and tδ

(cf. Andersen, Pykhtin, and Sokol (2017)). Otherwise, i.e. whenever ltδ = lt + 1, the term
βTlthlt(STlt−1 − S̄) in (3.6.1) induces a small and centered difference

Nom× ωi × hl
tδ
βTl

tδ

(
eκTlt Ŝt − STlt

)
(3.6.3)

between the left hand side and the right hand side in (3.6.2). As δ ≈ a few days, a coupon
between t and tδ is the exception rather than the rule. Moreover the resulting error (3.6.3) is
not only “rare”, but also small and centered. As all XVA numbers are time and space averages
over future scenarios, we can and do neglect this feature in the chapter.

Lemma 3.6.1 For t ≤ τi ∧ T , we have βtIMi
t = Nomi ×Bi(t)× Ŝt where

Bi(t) = f(t)×
{
eσ
√
δΦ−1(aim)−σ2

2 δ − 1, ωi ≤ 0
1− eσ

√
δΦ−1(1−aim)−σ2

2 δ, ωi > 0

Proof: This follows from (3.4.3) and (3.6.2) in view of the Black model used for Ŝ. �

3.6.2 CVA of the CCP
Lemma 3.6.2 We have, for s ≤ T :

Es
[(
βsδ
(
MtMi

sδ + ∆i
sδ

)
− βs

(
MtMi

s + IMi
s

) )+
]

= Nomi ×Ai(s)× Ŝs

where

Ai(t) = (1− aim)× f(t)× e−σ
2δ
2

eσ
√
δ
φ(Φ−1(aim))

1−aim − eσ
√
δΦ−1(aim), ωi ≤ 0

eσ
√
δΦ−1(1−aim) − e−σ

√
δ
φ(Φ−1(aim))

1−aim , ωi > 0

Proof: In view of (3.4.3) and (3.6.2), the conditional version of the identity

E[X1X≥VaRa(X)] = (1− a)ESa(X)
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yields

Es
[(
βsδ
(
MtMi

sδ + ∆i
sδ

)
− βs

(
MtMi

s + IMi
s

))+]
= Nom× (1− aim)× f(s)

[
ESaims

(
ωi

(
Ŝt − Ŝtδ

))
− VaRaims

(
ωi

(
Ŝt − Ŝtδ

)) ]
The result follows in view of the Black model used for Ŝ. �

Proposition 3.6.1 We have, for s ≤ T :

βtCVAccp
t =

∑
i

Nomi×(
1t<τi Ŝt

∫ T

t

Ai(s)γi(s)e−
∫ s
t
γi(u) du ds + 1τi<t<τδi

Ei(τi, Ŝτi , t, Ŝt)
)

where, setting yi± = ln(Ŝt/Ŝτi )
σ
√
τδ
i
−t
± 1

2σ
√
τ δi − t,

Ei

(
τi, Ŝτi , t, Ŝt

)
= f(τi)×

{
ŜtΦ(yi+)− ŜτiΦ(yi−), ωi ≤ 0
ŜτiΦ(−yi−)− ŜtΦ(−yi+), ωi > 0

Proof: We have

βtCVAccp
t

=
∑
i

1t<τδ
i
Et
[(
βτδ

i

(
MtMi

τδ
i

+ ∆i
τδ
i

)
− βτi

(
MtMi

τi + IMi
τi

))+
]

=
∑
i

1t<τiEt
[
Eτi−

((
βτδ

i

(
MtMi

τδ
i

+ ∆i
τδ
i

)
− βτi

(
MtMi

τi + IMi
τi

))+
)]

+
∑
i

1τi<t<τδi
Et
[(
βτδ

i

(
MtMi

τδ
i

+ ∆i
τδ
i

)
− βτi

(
MtMi

τi + IMi
τi

))+
]

=
∑
i

1t<τiEt
∫ T

t

Es
[(
βsδ
(
MtMi

sδ + ∆i
sδ

)
− βs

(
MtMi

s + IMi
s

))+]
γi(s)e−

∫ s
t
γi(u) du ds

+ Nom
∑
i

1τi<t<τδi
f(τi)Et

[(
ωi

(
Ŝτi − Ŝτδi

))+
]

(3.6.4)

by virtue of (3.6.2) and of the conditional distribution properties of the DMO model exposed
in Crépey, Bielecki, and Brigo (2014, Section 8.2.1). We conclude the proof by an application of
Lemma 3.6.2 to the first line in (3.6.4) and of the Black formula to the second line. �

3.6.3 Unsecured Borrowing vs. Specialist Lender MVAs
In the setup of our case study, the generic expressions (3.3.6) and (3.3.8) for the unsecured

borrowing vs. specialist lender MVAs can be computed by deterministic time integration based
on the following formulas.

Proposition 3.6.2 The unsecured borrowing MVA of member i is given, at time 0, by

MVAub,i
0 = Nomi S0

∫ T

0
Bi(s)λi(s)e−

∫ s
0
γi(u) du ds



3.6. Appendix 89

Proof: By virtue of (3.3.6) and of the distributional properties of the DMO model, we have

MVAub,i
0 = E

∫ T∧τi

0
βsλi(s)IMi

s ds = E
∫ T

0
βsλi(s) e−

∫ s
0
γi(u) du IMi

s ds

Hence the result follows from Lemma 3.6.1. �

Lemma 3.6.3 We have, for s ≤ τi ∧ T ,

Es
[(
βsδ
(
MtMi

sδ + ∆i
sδ

)
− βsMtMi

s

)+] = Nomi C(s) Ŝs (3.6.5)

where

C(s) = f(s)
[

Φ
(
σ
√
δ

2

)
− Φ

(
−σ
√
δ

2

)]
(3.6.6)

Proof: In view of (3.6.2), it comes :

(
βsδ
(
MtMi

sδ + ∆i
sδ

)
− βsMtMi

s

)+ = Nom× f(s)
(
ωi(Ŝs − Ŝsδ)

)+

Hence the result follows from the Black formula. �

Proposition 3.6.3 The specialist lender MVA of member i is given, at time 0, by

MVAsl,i
0 = Nomi S0

∫ T

0

(
C(s)−Ai(s)

)
γi(s) e−

∫ s
0
γi(u) du ds

Proof: Let, for s ≤ τi ∧ T ,

ξis = Es
[(
βsδ(MtMi

sδ + ∆i
sδ)− βsMtMi

s

)+ ∧ βsIMi
s

]
= Es

[(
βsδ(MtMi

sδ + ∆i
sδ)− βsMtMi

s

)+]
− Es

[(
βsδ(MtMi

sδ + ∆i
sδ)− βs(MtMi

s + IMi
s)
)+]

= Nomi Ŝs
(
C(s)−Ai(s)

)
by Lemmas 3.6.3 and 3.6.2. Note this is a predictable process. Hence (cf. (3.3.8))

MVAsl,i
0 = E

[
1τi<T

((
βτδ

i
(MtMi

τδ
i

+ ∆i
τδ
i
)− βτiMtMi

τi

)+ ∧ βτ IMi
τi

)]
= E

[
1τi<TEτi

((
βτδ

i
(MtMi

τδ
i

+ ∆i
τδ
i
)− βτiMtMi

τi

)+ ∧ βτ IMi
τi

)]
= E

[
1τi<T ξ

i
τi

]
= E

[∫ T

0
γi(s) e−

∫ s
0
γi(u) du

ξis ds
]

where the conditional distribution properties of the DMO model were used in the last equality
(see Crépey, Bielecki, and Brigo (2014, Section 8.2.1)). �
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Chapitre 4

Multivariate Shortfall Risk
Allocation

This chapter is based on Armenti, Crepey, Drapeau, and Papapantoleon (2016).

4.1 Introduction
The ongoing concern about systemic risk since the onset of the global financial crisis has

prompted intensive research on the design and properties of multivariate risk measures. In this
paper, we study the risk assessment for financial systems with interconnected risky components,
focusing on two major aspects, namely :
• The quantification of a monetary risk measure corresponding to an overall reserve of liqui-

dity such that the whole system can overcome unexpected stress or default scenarios ;
• The allocation of this overall amount between the different risk components in a way that

reflects the systemic risk of each one.
Our goal is fourfold. First, we introduce a theoretically sound and numerically tractable class
of systemic risk measures. Second, we study the impact of the intrinsic dependence on the risk
allocation and its sensitivity. Third, we address the computational aspects and challenges of
systemic risk allocation. Finally, we present empirical results, based on real data provided by
LCH S.A., on the risk allocation of the default fund of a CCP.

Review of the Literature : Monetary risk measures have been the subject of intensive re-
search since the seminal paper Artzner, Delbaen, Eber, and Heath (1999), which was further
extended by Föllmer and Schied (2002) and Frittelli and Gianin (2002), among others. The
corresponding risk measures, including conditional value-at-risk in Artzner, Delbaen, Eber, and
Heath (1999), shortfall risk measures in Föllmer and Schied (2002) or optimized certainty equi-
valents by Ben-Tal and Teboulle (2007), can be applied in a multivariate framework that models
the dependence of several financial risk components. Multivariate market data-based risk mea-
sures include the marginal expected shortfall of Acharya, Pedersen, Philippon, and Richardson
(2017), law invariant convex risk measures for portfolio vectors of Rüschendorf (2006), the sys-
temic risk measure of Acharya, Engle, and Richardson (2012) and Brownlees and Engle (2012),
the delta conditional value-at-risk of Adrian and Brunnermeier (2016) or the contagion index of
Cont, Santos, and Moussa (2013). In parallel, theoretical economical and mathematical conside-
rations have led to multivalued and set-valued risk measures, in static or even dynamic setup ;
see for instance Molchanov and Cascos (2016), Hamel, Heyde, and Rudloff (2011) and Jouini,
Meddeb, and Touzi (2004).

Recently, the risk management of financial institutions raised concerns about the allocation
of the overall risk among the different components of a financial system. A bank, for instance,
for real time monitoring purposes, wants to channel to each trading desk a cost reflecting its
responsibility in the overall capital requirement of the bank. A central clearing counterparty
— CCP for short, also known as a clearing house — is interested in quantifying the size of
the so-called default fund and allocating it in a meaningful way among the different clearing
members, see Cont (2015), Armenti and Crépey (2017a) or Ghamami and Glasserman (2017).
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On a macroeconomic level, regulators are considering to require from financial institutions an
amount of capital reflecting their systemic relevance. The aforementioned approaches can only
address the allocation problem indirectly, through the sensitivity of the risk measure with respect
to the different risk components. For instance, the so-called Euler rule allocates the total amount
of risk according to the marginal impact of each risk factor. However, a practical limitation of
the Euler rule is that it is based on Gâteaux derivatives which in general is difficult to compute
beyond simple cases. Also the Euler rule considers the marginal risk of one element with respect
to the full system rather than the marginal risk with respect to each individual component. In
addition, the Euler risk allocation does not add up to the total risk, unless the univariate risk
measure that is used in the first place is sub-additive, see Tasche and Resti (2008). In other
words, the Euler rule does not automatically fulfill the so-called full allocation property. The
work by Brunnermeier and Cheridito (2014) addresses systematically the question of allocation
of systemic risk with regard to certain economic properties :
• Full allocation : the sum of the components of the risk allocation is equal to the overall

risk measure ;
• Riskless allocation : if a risk factor is riskless, the corresponding component of the risk

allocation is equal to it ;
• Causal responsibility : any system component bears the entire additional costs of any

additional risk that it takes.
More specifically, Brunnermeier and Cheridito (2014) propose a framework where an overall
capital requirement is first determined by utility indifference principles and then allocated ac-
cording to a rule such that the above three properties are fulfilled, at least at a first order level of
approximation. In fact, as far as dependence is concerned, whether the last two properties should
hold is debatable. One may argue that each component in the system is not only responsible
for its own risk taking but also for its relative exposure to other components. This is also what
comes out from the present study, see Section 4.4.3. In a general framework, Kromer, Overbeck,
and Zilch (2016) characterized systemic risk out of axioms allowing for a decomposition between
and aggregation function and a univariate risk measure. In the spirit of this aggregation function,
in two recent papers, Feinstein, Rudloff, and Weber (2017) and Biagini, Fouque, Frittelli, and
Meyer-Brandis (2015) proposed a general approach similar in spirit to ours. We make precise
thereafter and later in the paper the relationship to these references and in which sense our
approach differs.

Contribution and Outline of the Paper : Our approach addresses simultaneously the de-
sign of an overall risk measure regarding a financial system of interconnected components and
the allocation of this risk measure among the different risk components ; the emphasis lies on
the allocation and its sensitivities. In contrast to Brunnermeier and Cheridito (2014) or Chen,
Iyengar, and Moallemi (2013), we first allocate the monetary risk among the different risk compo-
nents and then aggregate and minimize the risk allocations in order to obtain the overall capital
requirement. As previously mentioned, Kromer, Overbeck, and Zilch (2016), Feinstein, Rudloff,
and Weber (2017) and Biagini, Fouque, Frittelli, and Meyer-Brandis (2015) develop approaches
in a similar spirit, covering allocation first followed by aggregation, in general frameworks with
different aggregation procedures. They focus on the resulting risk measure, conducting systema-
tic studies of their properties in terms of set valued functions, diversification and monotonicity,
among others. The multivariate shortfall risk measure of this paper can be viewed as a special
case of their definition, in a way made precise in Remark 4.2.2. Sharing with these references the
“allocate first, then aggregate” perspective, our approach is restricted to a systemic extension
of shortfall risk measures, see Föllmer and Schied (2002), based on multivariate loss functions.
However, in contrast to the aforementioned references, we focus on the resulting risk allocation
in terms of existence, uniqueness, sensitivities and numerical applications. In our framework,
the systemic risk is the risk that stems specifically from the intrinsic dependence structure of



4.1. Introduction 93

an interconnected system of risk components. In this perspective, the risk allocation and its
properties provide a “cartography” of the systemic risk, see Section 4.5 on the numerical aspects
of risk allocation and the empirical study in Section 4.6 on real data for an illustration thereof.
It turns out that special care has to be given to the specifications of the loss function in order
to stress the systemic risk. In Biagini, Fouque, Frittelli, and Meyer-Brandis (2015), by allowing
random allocations, the impact of the interdependence structure can be observed in the future.
Such random allocations may be interesting in view of a posterior management of defaults. By
contrast, our deterministic allocation is sensitive to the dependence of the system already at the
moment of the quantification, see Section 4.4 and see a contrario Proposition 4.3.1. We study the
sensitivity of the risk allocation with respect to external shocks as well as internal dependence
structure. We show in particular that a causal responsibility can be derived in marginal terms,
see Proposition 4.4.1. In addition, we discuss computational aspects of risk allocation and finally,
we provide an empirical study on the risk allocation of a default fund of a CCP based on real
data provided by LCH S.A.

The univariate shortfall risk measure as a law invariant risk measure holds additional pro-
perties as an operator on probability distributions. Indeed, as shown by Weber (2006) and
Krätschmer, Schied, and Zähle (2014), it has some continuity properties with respect to the
ψ-weak topology on distributions. It has been furthermore characterised in Weber (2006) as the
only law invariant convex risk measure on the level of distributions and therefore the unique
one having elicitability properties, a wishful statistical property, see Osband (1985) or Bellini
and Bignozzi (2015). Extensions of these results, such as elicitability characterization in multi-
dimensional case as proposed by Ziegel (2016) and Fissler, Ziegel, et al. (2016), as well as the
axiomatic characterization along the lines of Weber (2006), are highly non trivial and therefore
let for further study. A set-valued multivariate shortfall risk measure has been introduced by
Ararat, Hamel, and Rudloff (2017). However, allocation is not the focus of their work and the
loss function that they then consider is decoupled in the sense of (C2), which from our viewpoint
is too restrictive in view of Proposition 4.3.1.

The paper is organized as follows : Section 4.2 introduces the class of systemic loss functions,
acceptance sets and risk measures that we use in the paper. Section 4.3 establishes the existence
and uniqueness of a risk allocation. Section 4.4 focuses on sensitivities with respect to external
shocks, dependence structure, nature of the loss function as well as the properties of full allo-
cation, causal responsibility and riskless allocation mentioned beforehand. Section 4.5 discusses
the computational aspects and challenges of risk allocation. Section 4.6, applies our approach
to the concrete allocation of the default fund of a CCP. Appendices 4.7.1 and 4.7.2 gather clas-
sical facts from convex optimization and results on multivariate Orlicz spaces. Appendix 4.7.3
provides additional insight on the data of the empirical study.

4.1.1 Basic Notation
Let xk denote the generic coordinate of a vector x ∈ Rd, and ek the k-th unit vector. By >

we denote the lattice order on Rd, that is, x > y if and only if xk ≥ yk for every 1 ≤ k ≤ d. We
denote by ‖·‖ the Euclidean norm and by ±,∧,∨, |·| the lattice operations on Rd. For x,y ∈ Rd,
we write x > y for xk > yk component-wise, x · y =

∑
k xkyk, xy = (x1y1, . . . , xdyd) and

x/y = (x1/y1, . . . , xd/yd). We denote by f∗(y) = supx{x · y − f(x)} the convex conjugate of a
function f : Rd → [−∞,∞], and for C ⊆ Rd, we denote by δ(·|C) the indicator function of C
defined as δ(x, C) = 0 for x in C and ∞ otherwise.

Let (Ω,F ,P) be a probability space, and denote by L0(Rd) the space of F-measurable d-
variate random variables on this space identified in the P-almost sure sense. The space L0(Rd)
inherits the lattice structure of Rd, hence we can use the above notation in a P-almost sure
sense. For instance, for X and Y in L0(Rd), we say that X > Y or X > Y if P[X > Y ] = 1
or P[X > Y ] = 1, respectively. Since we mainly deal with multivariate functions or random
variables, to simplify notation we drop the reference to Rd in L0(Rd), writing simply L0 unless
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necessary.

4.2 Multivariate Shortfall Risk
Let X = (X1, . . . , Xd) ∈ L0 be a random vector of financial losses, that is, negative values

of Xk represent actual profits. We want to determine an overall monetary measure R(X) of the
risk of X as well as a sound risk allocation RAk(X), k = 1, . . . , d, of R(X) among the d risk
components. We consider a flexible class of risk measures defined by means of loss functions and
sets of acceptable monetary allocations. This class allows us to discuss in detail the properties
of the resulting risk allocation as an indicator of systemic risk. Inspired by the shortfall risk
measure introduced in Föllmer and Schied (2002) in the univariate case, we start with a loss
function ` defined on Rd, used to measure the expected loss E[`(X)] of the financial loss vector
X.

Definition 4.2.1 A function ` : Rd → (−∞,∞] is called a loss function if
(A1) ` is increasing, that is, `(x) ≥ `(y) if x > y ;
(A2) ` is convex, lower semi-continuous with inf ` < 0 ;
(A3) `(x) ≥

∑
k xk − c for some constant c.

A loss function ` is permutation invariant if `(x) = `(π(x)) for every permutation π of its
components.

A risk neutral assessment of the losses corresponds to E[
∑
Xk] =

∑
E[Xk]. Thus, (A3) expresses

a form of risk aversion, whereby the loss function puts more weight on high losses than a risk
neutral evaluation. As for (A1) and (A2), they express the respective normative facts about risk
that “the more losses, the riskier” and “diversification should not increase risk” ; see Drapeau
and Kupper (2013) for related discussions.

Remark 4.2.1 The choice of the terminology “loss function” stems from Föllmer and Schied
(2002) for which this paper is a multivariate extension. Our notion of a loss function coin-
cides with the one of “aggregation function” in Feinstein, Rudloff, and Weber (2017) or Biagini,
Fouque, Frittelli, and Meyer-Brandis (2015), in the sense that it aggregates several loss profiles
into a univariate random variable for which it can be decided whether or not it is acceptable,
see Remark 4.2.2. Due to the obvious extension from the shortfall risk measure, throughout this
paper we stick to the terminology “loss function”.

As for the permutation invariance, the considered risk components are often of the same type
— banks, members of a clearing house or trading desks within a trading floor. In that case, the
loss function should not discriminate a particular component against another.

Example 4.2.1 Let h : R→ R be a one-dimensional loss function, that is, a function satisfying
conditions (A1), (A2) and (A3) in one dimension, such as for instance

h(x) = βx+ − αx−, 0 < α < 1 < β, h(x) = x+ (x+)2

2 or h(x) = ex − 1

Using these as building blocks, we obtain the following classes of multivariate loss functions, 1

which will be used for illustrative purposes in the discussion of systemic risk, see Sections 4.3
and 4.4.

(C1) `(x) = h(
∑
k xk) ;

(C2) `(x) =
∑
k h(xk) ;

(C3) `(x) = αh(
∑
k xk) + (1− α)

∑
k h(xk) for every 0 ≤ α ≤ 1.

1. A simple check shows that the following examples satisfy condition (A1), (A2) and (A3) in d-dimensions.
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Note that each of these loss functions are permutation invariant.

For integrability reasons we consider loss vectors in the following multivariate Orlicz heart : 2

Mθ =
{
X ∈ L0 : E [θ (λX)] <∞ for all λ ∈ R+

}
,

where θ(x) = `(|x|),x ∈ Rd ; see Appendix 4.7.2.

Definition 4.2.2 A monetary allocation m ∈ Rd is acceptable for X if

E [` (X −m)] ≤ 0

We denote by
A(X) :=

{
m ∈ Rd : E [` (X −m)] ≤ 0

}
(4.2.1)

the corresponding set of acceptable monetary allocations.

Example 4.2.2 In a centrally cleared trading setup, each clearing member k is required to post
a default fund contribution mk in order to make the risk of the clearing house acceptable with
respect to a risk measure accounting for extreme and systemic risk. The default fund is a pooled
resource of the clearing house, in the sense that the default fund contribution of a given member
can be used by the clearing house not only in case the liquidation of this member requires it, but
also in case the liquidation of another member requires it. For the determination of the default
fund contributions, the methodology of this paper can be applied to the vector X defined as
the vector of stressed losses-and-profits over initial margins of the clearing members. According
to the findings of Section 4.3 and 4.4, a “systemic” loss function such as (A3) with α > 0
would be consistent with the purpose of a default fund. Note however that our setup applied
to clearing houses takes the view of a closed system, so an internal assessment. In principle
we ignore additional systemic risk such as a competition between clearing houses with common
membership, or the external risk to which these members may be subject to, as addressed for
instance in Glasserman, Moallemi, and Yuan (2015). However, our method could also assess such
a systemic risk by taking X as the overall vector of positions of each member in each clearing
house.

The next proposition gathers the main properties of the sets of acceptable monetary al-
locations. The convexity property in (i) means that a diversification between two acceptable
monetary allocations remains acceptable. If a monetary allocation is acceptable, then any grea-
ter amount of money should also be acceptable, which is the monotonicity property in (i). As
for (ii), it says that, if the losses X are less than Y almost surely, then any monetary allocation
that is acceptable for Y is also for X. Next, (iii) means that a convex combination of acceptable
allocations in two markets is still acceptable in the diversified market. In particular, the accepta-
bility concept pushes towards greater diversification among the different risk components. From
the viewpoint of a clearing house for instance, a diversified position of its members is preferable
to a concentrated one and therefore may enforce default fund allocations that incite its members
towards this goal. Also, from a trading floor supervision, an overall diversified position of the
traders is preferable, an incentive which is a current practice, see example 4.5.2. Finally, (iv)
means that acceptable positions translate with cash in the sense of scalar monetary risk mea-
sures à la Artzner, Delbaen, Eber, and Heath (1999), Föllmer and Schied (2002) or Frittelli and
Gianin (2002). As an immediate consequence of these properties, X 7→ A(X) defines a monetary
set-valued risk measure in the sense of Hamel, Heyde, and Rudloff (2011), that is, a set-valued
map A from Mθ into the set of monotone, closed and convex subsets of Rd.

2. Orlicz spaces are natural spaces in this context. The theory of Orlicz spaces has been used for long in the
theory of risk measures, see Delbaen (2002), Biagini, Frittelli, et al. (2008), Cheridito and Li (2009) and Biagini
and Frittelli (2009).
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Proposition 4.2.1 For X,Y in Mθ, it holds :
(i) A(X) is convex, monotone and closed ;

(ii) A(X) ⊇ A(Y ) whenever X 6 Y ;
(iii) A(αX + (1− α)Y ) ⊇ αA(X) + (1− α)A(Y ), for any α ∈ (0, 1) ;
(iv) A(X +m) = A(X) +m, for any m ∈ Rd ;
(v) ∅ 6= A(X) 6= Rd.

If furthermore
(vi) ` is positive homogeneous, then A(λX) = λA(X) for every λ > 0 ;

(vii) ` is permutation invariant, then A(π(X)) = π(A(X)) for every permutation π ;

Proof: Since ` is convex, increasing and lower semi-continuous, it follows that (m,X) 7→
E[`(X −m)] is convex and lower semi-continuous, decreasing in m and increasing in X. This
implies the properties (i) through (iii) by Definition 4.2.2 of A(X). Regarding (iv), a change of
variables yields

A(X +m) =
{
n ∈ Rd : E [` (X +m− n) ≤ 0]

}
=
{
n+m ∈ Rd : E [` (X − n)] ≤ 0

}
= A(X) +m.

As for (v), on the one hand, `(X −m) ↘ `(−∞) < 0 as m → +∞ component-wise. Since
X ∈Mθ it follows that `(X) ∈ L1, thus monotone convergence yields E[`(X−m)]↘ `(−∞) < 0
and in turns the existence of m ∈ Rd such that E[`(X − m)] ≤ 0, showing that A(X) 6=
∅. On the other hand, ` being increasing and such that `(x) ≥

∑
k xk − c, it implies that

`(X − m) ≥
∑
kXk −

∑
kmk − c ↗ +∞ as m → −∞, component-wise. Hence, mono-

tone convergence yields E[`(X −m)] ↗ +∞ > 0, therefore there exists m ∈ Rd such that
E[`(X −m)] > 0, that is, m 6∈ A(X). As for (vi), if ` is positive homogeneous, for any λ > 0 it
holds E[`(λX −m)] = λE[`(X − 1

λm)]. Hence m is in A(λX) if and only if 1
λm is in A(X) if

and only if m is in λA(X). Finally, if ` is permutation invariant, for any permutation π it holds
E[`(π(X) −m)] = E[`(π(X − π−1(m))] = E[`(X − π−1(m))]. Hence m is in A(π(X)) if and
only if π−1(m) is in A(X), if and only if m is in π(A(X)) showing (vii). �

Figure 4.1 shows sets of acceptable monetary allocations for a bivariate normal distribu-
tion with varying correlation coefficient. The location and shape of these sets change with the
correlation : the higher the correlation, the more costly the acceptable monetary allocations, as
expected in terms of systemic risk. As discussed in Sections 4.3 and 4.4, this feature is not always
immediate and depends on the specification of the loss function.

Given an acceptable monetary allocation m ∈ A(X), its aggregated liquidity cost is
∑
kmk.

The smaller the cost, the better, which motivates the following definition.

Definition 4.2.3 The multivariate shortfall risk of X ∈Mθ is

R(X) := inf
{∑

k

mk : m ∈ A(X)
}

= inf
{∑

k

mk : E [` (X −m)] ≤ 0
} (4.2.2)

Example 4.2.3 Following up on the central clearing house Example 4.2.2, any acceptable al-
location m ∈ A(X) yields a corresponding value for the default fund. Clearing houses are in
competition with each other, hence they are looking for the cheapest acceptable allocation to
require from their members.
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Figure 4.1 – Acceptance sets A(X) corresponding to the case study of Section 4.3.3 for different
correlations.

Remark 4.2.2 When d = 1, the above definition corresponds exactly to the shortfall risk
measure in Föllmer and Schied (2002), of which this paper is a multivariate extension.

The set valued risk measure X 7→ A(X) introduced in (4.2.1) can be seen as an example of
the set valued systemic risk measures presented in Feinstein, Rudloff, and Weber (2017), which
in their notation translates as follows

A(X) = R(Y ,k) =
{
m ∈ Rd : Yk+m ∈ A

}
where the aggregation is given by Yk+m = Λ(X−k−m) for Λ(x) = `(x) and the acceptance set
is A := {X : E[X] ≤ 0}. Their setting considers more general random fields Yk associated with
capital allocations denoted by k accommodating for instance the modelling of financial networks,
among others. The case we consider can be embedded into Feinstein, Rudloff, and Weber (2017,
Case (ii), Page 5). Even if set valued risk measure is not the primary focus of Biagini, Fouque,
Frittelli, and Meyer-Brandis (2015), it is included in the definition of the acceptance family
which, in their notation, is given as follows

Am = AY = {X : E [`(X −m)] ≤ 0} , Y ∈ C

where C = Rd and Y = Rd. The resulting systemic risk measure can also be translated in their
notation and denomination in terms of an aggregating function Λ(x) = `(x), acceptance set
A = {X : E[X] ≤ 0} and a measure of risk π(m) =

∑
kmk, resulting into

R(X) = inf {π(m) : Λ(X −m) ∈ A}

Therefore the case we consider can be embedded into the class presented in Biagini, Fouque,
Frittelli, and Meyer-Brandis (2015, Section 1.3).

Our next result, which uses the concepts and notation of Appendix 4.7.2, shows that all
the classical properties of the shortfall risk measure, including its dual representation, can be
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extended to the multivariate case. We denote by

Qθ
∗

:=
{

dQ
dP := (Z1, . . . , Zd) : Z ∈ Lθ

∗
, Zk ≥ 0 and E [Zk] = 1 for every k

}
the set of d-dimensional measure densities in Lθ

∗ , dual space of Mθ according to 4.7.2. For the
sake of simplicity, we use the notation EQ[X] := E[ dQ

dP ·X] for dQ
dP ∈ Q

θ∗ and X ∈Mθ.

Theorem 4.2.1 The function

R(X) = inf
{∑

k

mk : m ∈ A(X)
}
, X ∈Mθ,

is real valued, convex, monotone and translation invariant. 3 In particular, it is continuous and
sub-differentiable. If ` is positive homogeneous, then so is R. Moreover, it admits the dual
representation

R(X) = max
Q∈Qθ∗

{
EQ [X]− α(Q)

}
, X ∈Mθ (4.2.3)

where the penalty function is given by

α(Q) = inf
λ>0

E
[
λ`∗

(
1
λ

dQ
dP

)]
, Q ∈ Qθ

∗
(4.2.4)

Remark 4.2.3 This robust representation can also be inferred from the general results of Far-
kas, Koch-Medina, and Munari (2015). However, for the sake of completeness and since the
multivariate shortfall risk measure is closely related to a multidimensional version of the opti-
mized certainty equivalent, we give a self contained proof tailored to our context.

The argumentation follows the original one by Föllmer and Schied (2002), which however
cannot be directly applied on the product space Ω × {1, . . . , d} since the optimization is done
here according to multidimensional allocations m ∈ Rd rather than one dimensional allocations
m ∈ R. Moreover, in the course of our derivation of the dual representation we extend to the
multidimensional setting the following relationship between the optimized certainty equivalent
and the shortfall risk provided in Ben-Tal and Teboulle (2007, Section 5.2)

R(X) = inf
m∈R
{m : E [`(X −m)] ≤ 0} = sup

λ>0
S(λ,X),

where

S(λ,X) := inf
m∈R
{m+ λE [`(X −m)]}

= sup
Q�P

{
EQ[X]− E

[
λ`∗

(
1
λ

dQ
dP

)]}
is the optimized certainty equivalent of X. 4

Proof: By Proposition 4.2.1 (v), we have A(X) 6= ∅ and in turn R(X) < ∞. If R(X) = −∞
for some X ∈ Mθ, then there exists a sequence (mn) ⊆ A(X) such that

∑
km

n
k → −∞,

in contradiction with 0 ≥ E[`(X − mn)] ≥ E[
∑
kXk] −

∑
km

n
k − c. Hence, R(X) > −∞.

Monotonicity, convexity and translation invariance readily follow from Proposition 4.2.1 (ii),
(iii) and (iv), respectively. In particular, R is a convex, real-valued and increasing functional
on the Banach lattice Mθ. Hence, by Cheridito and Li (2009, Theorem 4.1), R is continuous

3. In the sense that R(X +m) = R(X) +
∑

k
mk.

4. Here ` is a one dimensional loss function and X a one dimensional random variable.
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and sub-differentiable. Therefore, the results recalled in Appendix 4.7.2 and the Fenchel-Moreau
theorem imply

R(X) = sup
Y ∈Lθ∗

{
E [X · Y ]−R∗(Y )

}
= max

Y ∈Lθ∗

{
E [X · Y ]−R∗(Y )

} (4.2.5)

where
R∗(Y ) = sup

X∈Mθ

{
E[X · Y ]−R(X)

}
, Y ∈ Lθ

∗

By the bipolar theorem, for Y 6> 0, there exists K ∈ Mθ, K > 0 with E[Y ·K] < −ε < 0 for
some ε > 0. By monotonicity of R, it follows that R(−λK) ≤ R(0) <∞ for every λ > 0. Hence

R∗(Y ) = sup
X∈Mθ

{E [Y ·X]−R(X)}

≥ sup
λ>0
{−λE[Y ·K]−R(−λK)}

≥ sup
λ
λε−R(0) = +∞

Furthermore, by translation invariance, setting X = (0, . . . , r, . . . , 0) for r ∈ R at the k-th
component, it follows that

R∗(Y ) ≥ rE [Yk]−R(0)− r = r (E [Yk]− 1)−R(0)

where the right hand side can be made arbitrarily large whenever E [Yk] 6= 1. It shows that the
supremum and maximum in (4.2.5) can be restricted to the set of those Y ∈ Lθ

∗ such that
Yk ≥ 0 and E[Yk] = 1 for every k. Hence, it can be identified to Qθ∗ . In order to obtain a more
explicit expression of the penalty function α(Q) := R∗

( dQ
dP
)

= R∗(Y ), we set

L(m,λ,X) =
∑
k

mk + λE [` (X −m)]

S(λ,X) = inf
m∈Rd

L(m, λ,X)

= inf
m∈Rd

{∑
k

mk + λE [` (X −m)]
}

The functional X 7→ S(λ,X) is a multivariate version of the so called optimized certainty
equivalent, see Ben-Tal and Teboulle (2007). Clearly,

R(X) = inf
m∈Rd

sup
λ>0

L(m, λ,X) ≥ sup
λ>0

inf
m∈Rd

L(m, λ,X) = sup
λ>0

S(λ,X)

Since A(X) is non-empty and monotone, there existsm ∈ Int(A(X)) and so the Slater condition
is fulfilled. As a consequence of Rockafellar (1970, Theorem 28.2), there is no duality gap. Namely,
R(X) = supλ>0 S(λ,X). Via the first part of the proof, an easy multivariate adaptation of Ben-
Tal and Teboulle (2007, Section 4) and Drapeau, Kupper, and Papapantoleon (2014, Section 2)
yields

S(λ,X) = sup
Q∈Qθ∗

{
EQ [X]− E

[
(`λ)∗

(
dQ
dP

)]}
where `λ(m) = λ`(m), hence `∗λ(m∗) = λ`∗( 1

λm
∗). Combining this withR(X) = supλ>0 S(λ,X),

the dual representation (4.2.4) follows. �
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Example 4.2.4 We consider the following two positive homogeneous loss functions that will be
used later in the empirical study :

`1(x) = β
∑
k

x+
k − α

∑
k

x−k (4.2.6)

`2(x) = β
∑
k

x+
k − α

∑
k

x−k + β
∑
k<j

(xk + xj)+ − α
∑
k<j

(xk + xj)− (4.2.7)

for 0 < α < 1 < β. A simple computation yields that `∗i = δ(·|Ci) where 5

C1 = {x : α ≤ xk ≤ β for all k}

C2 =

x =
∑

1≤j≤d
x0jek +

∑
1≤k<j≤d

xkj(ek + ej) : α ≤ xkj ≤ β for all 0 ≤ k < j ≤ d


Note that [α, β] = C1 ⊆ C2 ⊆ [α, dβ] where α and β are identified with their vector of equal
components. Furthermore, dβ is an extreme point of C2. It follows in particular that R1 ≤ R2.
By positive homogeneity, α∗i only takes values 0 or ∞. It follows that α∗i (Q) = 0 if and only if
there exits λ > 0 such that dQ

dP ∈ λCi almost surely. Since 1 has to be in λCi, for this to happen,
we can constrain 1

β ≤ λ ≤
1
α in the case of C1 and 1

dβ ≤ λ ≤
1
α in the case of C2. Thus

R1(X) = sup
{
EQ [X] : dQk

dP ∈ λC1 for some 1
β
≤ λ ≤ 1

α

}
R2(X) = sup

{
EQ [X] : dQ

dP ∈ λC2 for some 1
dβ
≤ λ ≤ 1

α

}

4.3 Risk Allocation
We have established in Theorem 4.2.1 that the infimum over all allocations m ∈ Rd used

for defining R(X) is real valued and has the desired properties of a risk measure. Beyond the
question of the overall liquidity reserve, the allocation of this amount between the different risk
components is key for systemic risk purposes. We therefore address in this section the following
questions :
• The existence of a risk allocation ;
• The uniqueness of a risk allocation ;
• The impact of the interdependence structure,

The first question is important in some applications such as the default fund contribution of each
member of a clearing house or the allocation of the capital among the different business lines of
a bank. As for the second question, non-uniqueness can become an issue when this allocation is
a regulatory cost for the different members or desks. If no additional clear rule is provided, the
members would then face arbitrariness as for their contributions for the same overall risk. As for
the last question, systemic risk should reflect the level of dependence of the system. For instance,
highly correlated losses, while having the same marginal risk, should result into a higher systemic
risk and different optimal allocations.

Definition 4.3.1 A risk allocation is an acceptable monetary allocation m ∈ A(X) such that
R(X) =

∑
kmk. When a risk allocation is uniquely determined, we denote it by RA(X).

Remark 4.3.1 By definition, if a risk allocation exists, then the full allocation property auto-
matically holds ; see also Section 4.4.3.

5. In particular, since 1 ∈ Ci for i = 1, 2, it follows that `i satisfies condition (A3) of a loss function.
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In contrast to the univariate case, where the unique risk allocation is given by m = R(X),
existence and uniqueness are no longer straightforward in the multivariate case. The following
example shows that existence may fail.

Example 4.3.1 Consider the loss function

`(x, y) =
{
x+ y + (x+y)+

1−y − 1 if y < 1
∞ otherwise

It follows that

A(0) =
{
m ∈ R2 : m2 > −1 and 1 ≥ −m1 −m2 + (−m1 −m2)+

1 +m2

}
Computations yield

R(0) = inf
m2>−1

{
m2 −

m2
2 + 3m2 + 1
m2 + 2

}
= −1

However, the infimum is not attained.

Note that the loss function used in Example 4.3.1 is not permutation invariant. Our next
result introduces conditions towards the existence and uniqueness of a risk allocation. We denote
by Z = {u ∈ Rd :

∑
k uk = 0} the set of zero-sum allocations.

Theorem 4.3.1 If ` is a permutation invariant loss function, then, for every X ∈ Mθ, risk
allocations m∗ exist. They are characterized by the first order conditions

1 ∈ λ∗E [∇` (X −m∗)] and E [` (X −m∗)] = 0, (4.3.1)

where λ∗ is a Lagrange multiplier. In particular, when ` has no zero-sum direction of recession 6

except 0, the set of the solutions (m∗, λ∗) to the first order conditions (4.3.1) is bounded.
If `(x+ ·) is strictly convex along zero-sums allocations for every x with `(x) ≥ 0, then the

risk allocation is unique.

Proof: Let m in A(X), according to Theorem 4.7.1, it holds

0+A(X) =
{
u ∈ Rd : E [` (X −m− ru)] ≤ 0, for all r > 0

}
=
{
u ∈ Rd : sup

r>0
E
[
`(X −m− ru)− `(X −m)

r

]
≤ 0
}

=
{
u ∈ Rd : E

[
sup
r>0

`(X −m− ru)− `(X −m)
r

]
≤ 0
}

= −0+`

Further, we define f(m) =
∑
kmk + δ(m|A(X)). It follows that f is increasing, convex, lower

semi-continuous, proper and such that R(X) = inf f . Let B = {m : f(m) ≤ γ} be non-empty
for some γ large enough and b ∈ B. By Theorem 4.7.1 and the definition, u ∈ 0+B = 0+f if
and only if

R(X) ≤
∑
k

bk + r
∑
k

uk ≤ γ and b+ ru ∈ A(X) for all r > 0

However, −∞ < R(X) ≤ γ <∞ showing that 0+f = Z ∩ 0+A(X) = −Z ∩ 0+`. By Rockafellar
(1970, Theorem 27.1 (b)), the existence of a risk allocation follows from f being constant along its

6. We refer the reader to Appendix 4.7.1 regarding the notions and properties of recession cones and functions.
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directions of recession 0+f , which according to Theorem 4.7.1, is equivalent to u ∈ 0+f implies
(−u) ∈ 0+f . However, since ` is permutation invariant it follows that 0+` = −0+` and therefore
u ∈ 0+f implies that −u ∈ 0+f . Thus the existence of a risk allocation. 7 In particular, if
0+` = 0, then by Rockafellar (1970, Theorem 27.1, (d)), the set of risk allocations is non-
empty and bounded. Furthermore, since E[`(X −m)] < 0 for some m large enough, the Slater
condition for the convex optimization problem R(X) = infm f(m) is fulfilled. Hence, according
to Rockafellar (1970, Theorems 28.1, 28.2 and 28.3), optimal solutions m∗ are characterized by
(4.3.1).

Finally, let m 6= n be two risk allocations. It follows that αm+ (1−α)n is a risk allocation
as well for every α ∈ [0, 1]. Furthermore, (m − n) is a zero sum allocation. By convexity, it
follows that 0 = E[`(X − αm − (1 − α)n)] ≤ αE[`(X −m)] + (1 − α)E[`(X − n)] = 0 for
every 0 ≤ α ≤ 1, which shows that α`(X −m) + (1 − α)`(X − n) = `(X − αm − (1 − α)n)
P-almost surely for every 0 ≤ α ≤ 1. By assumption, `(x + ·) is strictly convex on Z for every
x such that `(x) ≥ 0. From m − n ∈ Z, it holds that X − αm + (1 − α)n + Z entails the
segment [X −m,X − n]. From α`(X −m) + (1 − α)`(X − n) = `(X − αm − (1 − α)n),
z 7→ `(X − αm − (1 − α)n + z) is almost surely constant on this segment and therefore not
strictly convex. Hence P[`(X − αm − (1 − α)n) < 0] = 1 for every 0 ≤ α ≤ 1, showing in
particular that E[`(X −m)] < 0, a contradiction. �

Corollary 4.3.1 Let ` be a permutation invariant loss function, such that `(x + ·) is strictly
convex along zero-sum allocations for every x with `(x) ≥ 0. It holds

RA(X + r) = RA(X) + r, for every X ∈Mθ and r ∈ Rd.

If ` is additionally positive homogeneous, it holds

RA (λX) = λRA(X), for every X ∈Mθ and λ > 0

Proof: From Theorem 4.3.1, the assumptions on ` ensure the existence and uniqueness of a risk
allocation uniquely characterized, together with the Lagrange multiplier, by the first order condi-
tions. Let m = RA(X + r), for which there exists a unique λ such that λE [∇` (X + r −m)] =
1 and E[`(X + r − m)] = 0. Hence, n = m − r and λ satisfy the first order conditions
λE[∇`(X − n)] = 1 and E[`(X − n)] = 0, which by uniqueness shows that n = RA(X) =
m−r = RA(X+r)−r. As for the second assertion, it follows from A(λX) = λA(X) for every
λ > 0 according to Proposition 4.2.1. �

Remark 4.3.2 In general, the positivity of the risk allocation is not required. However, if po-
sitivity or any other convex constraint is imposed, for instance by regulators, it can easily be
embedded in our setup. In case of positivity, this would modify the definition of R(X) into

R(X) = inf
{∑

k

mk : E [`(X −m)] ≤ 0 and mk ≥ 0 for every k
}
,

with accordingly modified first order conditions.

As already mentioned, the following example illustrates the importance of the uniqueness.

Example 4.3.2 Any loss function of class (C1), that is, `(x) = h(
∑
k xk), is permutation

invariant. Thus, a risk allocationm∗ ∈ A(X) exists by means of Theorem 4.3.1. However, for any
zero-sum allocation u, we have R(X) =

∑
k(m∗k+uk) =

∑
km
∗
k and E[h(

∑
kXk−(m∗k+uk))] =

7. Note that this computation shows that the condition Z ∩ 0+` = −Z ∩ 0+` is sufficient to get the existence
of a risk allocation.
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E[h(
∑
Xk −m∗k)] ≤ 0, so that m∗ + u is another risk allocation. In terms of regulatory costs,

this is a problematic situation. Indeed, consider two banks and require from them 110Me and
500Me , respectively, as capital allocation. In such a case, one could equally well require 610Me ,
from the first bank and nothing from the second. Such arbitrariness is unlikely to be accepted
in that case.

Example 4.3.2 shows that loss functions of the class (C1) lack the uniqueness of a risk
allocation. By contrast, for loss functions of class (C2), that is, `(x) =

∑
k h(xk), the following

proposition shows that, while there exists a unique risk allocation under very mild conditions, the
risk allocation only depends on the marginal distributions of the loss vector X = (X1, . . . , Xd).
In other words, the risk measure and the risk allocation do not reflect the dependence structure
of the system.

Proposition 4.3.1 Let `(x) :=
∑
k h(xk) for some strictly convex univariate loss function h :

R → R. For every X ∈ Mθ, there exists a unique optimal risk allocation RA(X) and we
have RA(X) = RA(Y ), for every Y ∈ Mθ such that Yk has the same distribution as Xk for
k = 1, . . . , d.

Proof: The loss function is permutation invariant and strictly convex. According to Theorem
4.3.1, there exists a unique risk allocation for every X ∈ Mθ. The first order conditions (4.3.1)
are written as

1 ∈ λE [∂h(Xk −mk)] , for k = 1, . . . , d, and
∑
k

E [h (Xk −mk)] = 0

which only depend on the marginal distributions of X. �
Following Rüschendorf (2004), we can characterise in terms of supermodular, directionally convex
and upper orthant stochastic ordering the risk of positive dependence in terms of `. For a function
f : Rd → R we define

∆k,yf(x) = f(x0, · · · , xk + yk, · · · , xd)− f(x), x,y ∈ Rd, k ∈ {1, . . . , d}

We say that a continuous function f : Rd → R is
• super-modular, if ∆k,y∆l,yf(x) ≥ 0 for every 1 ≤ k < l ≤ d ;
• directionally convex, if ∆k,y∆l,yf(x) ≥ 0 for every 1 ≤ k ≤ l ≤ d ;
• ∆-monotone, if ∆i1,y . . .∆in,yf(x) ≥ 0 for every {i1, . . . , in} ⊆ {1, . . . , d} ;

for every x and y in Rd with y > 0. We denote by <sm, <dc and <uo the integral orders given
by the respective class of functions. We refer to Rüschendorf (2004) for a discussion of these
orders in terms of dependence risk. Note that X <uo Y if and only if P[X > x] ≥ P[Y > x] for
every x ∈ Rd.

Proposition 4.3.2 The shortfall risk measure R is monotone with respect with <sm, <dc or
<uo whenever ` is super-modular, directionally convex, or ∆-monotone, respectively.

Proof: The assertion follows immediately from the fact that if ` is one of super-modular, direc-
tionally convex, or ∆-monotone function, so is `(· −m) for every m. Therefore if X <x Y with
x either sm, dc, or uo according to `, it follows that E[`(X −m)] ≥ E[`(Y −m)] showing that
A(Y ) ⊆ A(X). �

Remark 4.3.3 Any loss function of the form (C1), (C2) and (C3) are directionally convex
and therefore super-modular. They are ∆-monotone if d = 2. As for the specific loss functions
used in this paper in several places for illustration∑

k

(x+
k )2

2 + α
∑
k<j

x+
k x

+
j − 1 and

∑
k

x+
k + α

∑
k<j

(xj + xj)+ − 1,
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they are both directionally convex and ∆-monotone. However, if α = 0 they are degenerated in
terms of these monotonicity since ∆k,y∆j,y`(x) = 0 for every k 6= j. As soon as α > 0, these
loss functions are strictly monotone on Rd+.

Remark 4.3.4 A loss function can be chosen in view of an a-priori list of wished properties
in terms of risk measurement and allocation as the Proposition above mentioned. However, loss
functions may also arise in systemic risk problems as an intrinsic property of the system as
presented by Eisenberg and Noe (2001) or recently by Weber and Weske (2017).

Example 4.3.3 The following simple example shows the impact of the dependence in a simple
case for a loss function 8

`(x1, x2) = 1
1 + α

[
1
2e

2x1 + 1
2e

2x2 + αex1ex2

]
− 1, (4.3.2)

that is ∆-monotone and bivariate normal vectorX = (X1, X2) ∼ N (0,Σ) with Σ =
[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
.

Solving the first order conditions yield

RAi(X) = σ2
i + 1

2SRC(ρ, σ1, σ2, α) R(X) = σ2
1 + σ2

2 + SRC(ρ, σ1, σ2, α),

showing that the risk allocations are disentangled into the respective individual contributions
σ2
i , i = 1, 2, and a systemic risk contribution

SRC = ln
(

1 + αeρσ1σ2− 1
2 (σ2

1+σ2
2)
)

(4.3.3)

which depends on the correlation parameter ρ and on the systemic weight α of the loss function.
Figure 4.2 shows the value of this systemic risk contribution as a function of ρ and σ1. Computing

Figure 4.2 – SRC (4.3.3) as a function of σ1 for different values of the correlation ρ in the case
where α = 1.

the partial derivatives with respect to σi and ρ yields

∂SRC

∂σ1
= α (ρσ2 − σ1)

2
eρσ1σ2− 1

2 (σ2
1+σ2

2)

1 + αeρσ1σ2− 1
2 (σ2

1+σ2
2) ,

∂SRC

∂ρ
= ασ1σ2

2
eρσ1σ2− 1

2 (σ2
1+σ2

2)

1 + αeρσ1σ2− 1
2 (σ2

1+σ2
2) .

8. A simple check shows that it is indeed a loss function satisfying (A1), (A2) and (A3).
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showing that the systemic risk contribution is
• increasing with respect to the correlation ρ ;
• decreasing with respect to σ1 if the correlation is negative ;
• increasing up to ρσ2 and then decreasing with respect to σ1 if the correlation is positive

as the individual risk of X1 dominates the risk of the system.

4.4 Systemic Sensitivity of Shortfall Risk and its Alloca-
tion

The previous results emphasize the importance of using a loss function that adequately
captures the systemic risk inherent to the system. This motivates the study of the sensitivity of
shortfall risk and its allocation so as to identify the systemic features of a loss function.

Definition 4.4.1 The marginal risk contribution of Y ∈ Mθ to X ∈ Mθ is defined as the
sensitivity of the risk of X with respect to the impact of Y , that is

R(X;Y ) := lim sup
t↘0

R(X + tY )−R(X)
t

In the case where R(X + tY ) admits a unique risk allocation RA(X + tY ) for every t, the risk
allocation marginals of the risk of X with respect to the impact of Y are given by

RAk(X;Y ) = lim sup
t↘0

RAk(X + tY )−RAk(X)
t

, k = 1, . . . , d

Theorem 4.2.1 and its proof show that the determination of the risk measure R(X) reduces to
the saddle point problem

R(X) = min
m

max
λ>0

L(m, λ,X) = max
λ>0

min
m

L(m, λ,X)

Using Rockafellar (1970), the “argminmax” set of saddle points (m∗, λ∗) is a product set that
we denote by B(X)× C(X).

Theorem 4.4.1 Assuming that ` is permutation invariant, then

R(X;Y ) = min
m∈B(X)

max
λ∈C(X)

λE [∇` (X −m) · Y ]

Supposing further that ` is twice differentiable and that (m, λ) ∈ B(X)× C(X) is such that

M =
[
λE
[
∇2`(X −m)

]
− 1
λ1

1 0

]
is non-singular, then
• there exists t0 > 0 such that B(X + tY )×C(X + tY ) is a singleton, for every 0 ≤ t ≤ t0 ;
• the corresponding unique saddle point (mt, λt) = (RA(X + tY ), λt) is differentiable as a

function of t and we have [
RA(X;Y )
λ(X;Y )

]
= M−1V,

where λ(X;Y ) = lim supt↘0
λt−λ0
t and

V =
[
λE
[
∇2`(X −m)Y

]
R(X;Y )

]
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Proof: Let L(m, λ, t) =
∑
kmk + λE[`(X + tY −m)]. Theorem 4.2.1 yields

R(X + tY ) = min
m

max
λ

L(m, λ, t) = max
λ

min
m

L(m, λ, t) = L(mt, λt, t),

for every selection (mt, λt) ∈ B(X + tY ) × C(t + tY ). Regarding the first assertion of the
theorem, since ` has no zero-sum direction of recession other than 0, it follows from Theorem
4.3.1 that B(X) × C(X) is non empty and bounded. Hence, the assumptions of Golshtein’s
Theorem on the perturbation of saddle values, see Rockafellar and Wets (2009, Theorem 11.52),
are satisfied and the first assertion follows. As for the second assertion, the assumptions of Fiacco
and McCormick (1990, Theorem 6, pp. 34–45) are fulfilled. The Jacobian of the vector[

∇mL(m, λ, 0)
λE [` (X −m)]

]
that is used to specify the first order conditions is given by the matrix M . Hence, the second
assertion follows from Fiacco and McCormick (1990, Theorem 6, pp. 34–35). �

Theorem 4.4.1 allows to explicitly derive the impact of an independent exogenous shock as
stated in the following proposition.

Proposition 4.4.1 Under the assumptions of Theorem 4.4.1 ensuring the uniqueness of a
saddle point, suppose that Y is independent of X. Then

R(X;Y ) =
∑
k

E [Yk] and RA(X;Y ) = E[Y ]

Proof: Since Y is independent of X, denoting by m = RA(X;Y ), it follows from the first
order conditions that

R(X;Y ) = λE [∇`(X −m) · Y ] = λE [∇`(X −m)] · E[Y ] = 1 · E[Y ] =
∑
k

E[Yk]

Furthermore, we have

M =
[
λA −B
C 0

]
and V =

[
λE
[
∇2`(X −m)Y

]
R(X;Y )

]
=
[
λAE[Y ]
CE[Y ]

]

where A = E[∇2`(X−m)] B =
[ 1
λ · · · 1

λ

]ᵀ, and C =
[
1 · · · 1

]
. Using the classical formula

of block matrix inversion, we obtain

RA(X;Y ) =
[
A−1

λ
− A−1BCA−1

λCA−1B

A−1B

CA−1B

] [
λAE[Y ]
CE[Y ]

]
= E [Y ]− A−1BCE [Y ]

CA−1B
+ A−1BCE [Y ]

CA−1B
= E [Y ]

�
According to the discussion about causal responsibility in Section 4.4.3, it follows that each
member is marginally paying for the additional risk is takes provided this one is independent of
the system. In particular, if the risk factor k is affected by a shock Yk independent of the system,
it follows that R(X;Y ) = E[Yk] = RAk(X;Y ), showing that the member k pays for the full
risks it takes.
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4.4.1 Impact of an Exogenous Shock
The following Section illustrates the case when the exogenous shock may depend on X. We

consider a bivariate situation where X = (X1, X2), and exogenous factor Y = (Y1, 0) impacting
only the first component. We consider the loss function

`(x1, x2) = (x+
1 )2 + (x+

2 )2

2 + αx+
1 x

+
2 − 1, 0 ≤ α ≤ 1

which gives rise to a unique risk allocation by virtue of Theorem 4.3.1. Note that ` is ∆-monotone,
and strictly ∆-monotone on R2

+ if α > 0. For ease of notation, we assume that X1 ∼ X2, which,
since ` is permutation invariant, implies that m = RA1(X) = RA2(X). Let p := P[X1 ≥ m] =
P[X2 ≥ m] and r = P[X1 ≥ m;X2 ≥ m]. According to Theorem 4.4.1, and the first order
condition (4.3.1), we have

R(X;Y ) = E [Y1(X1 −m1)+] + αpE [Y1(X2 −m2)+|X1 ≥ m1]
E [(X1 −m1)+] + αpE [(X2 −m2)+|X2 ≥ m2]

As for the allocation of this marginal risk contribution, in the notation of Theorem 4.4.1, we
have :

M =

 λp λαr −1
λ

λαr λp −1
λ

1 1 0

 and V =

 λpE [Y1|X1 ≥ m1]
λαrE [Y1|X1 ≥ m1;X2 ≥ m2]

R(X;Y )


which by inverting M yields

RA1(X;Y ) = R(X;Y )
2 + 1

2
E
[
Y11{X1≥m1}

]
− αE

[
Y11{X1≥m1;X2≥m2}

]
p− αr

RA2(X;Y ) = R(X;Y )
2 − 1

2
E
[
Y11{X1≥m1}

]
− αE

[
Y11{X1≥m1;X2≥m2}

]
p− αr

Beyond the fact that according to Proposition 4.4.1, if Y is independent of X then R(X;Y ) =
RA1(X;Y ) and RA2(X;Y ) = 0, observe in general that :
• The two risk components marginally share first equally the additional cost of the exogenous

impact in terms of 1
2R(X;Y ) each.

• The asymmetry of the shock that concerns only X1 is reflected in the correction with
respect to the second term which is added to the first one and subtracted to the second.
Furthermore, 1{X1≥m1} ≥ α1{X1≥m1;X2≥m2} for every 0 ≤ α ≤ 1. It implies that the
additional risk taken by the first risk factor is always positively proportional to Y1 while
the second one is negatively proportional to Y1.

• If α = 0, then the marginal change impact the risk factors according to ±E[Y1]−E[Y1|X1≥m]
2 .

• If α = 1 and X1 and X2 are strongly anti-correlated, then 1{X1≥m;X2≥m} is likely very
small and therefore the effect is similar to the case where α = 0. On the other hand,
if X1 and X2 are strongly correlated, then 1{X1≥m} ≈ 1{X1≥m;X2≥m} and in that case
RA1(X;Y ) ≈ RA2(X;Y ) ≈ 1

2R(X;Y ) showing that the full dependence with α = 1
yields an equal share of the marginal risk changes.

4.4.2 Sensitivity to Dependence
Following the previous section where the loss function depends on α that impacts the risk

allocation with respect to the degree of dependence between risk factors, we apply the techniques
of Theorem 4.4.1 to study the sensitivity with respect to α. To this end we consider a loss function
of the following form

`(x) =
∑
k

g(xk) + αh(x),
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where g is a one dimensional loss function and h a multidimensional function such that ` is a
loss function for all α ≥ 0 close enough to 0. 9 For instance a loss function of the class (C3).
We also suppose that g is twice differentiable. Using the same strategy as in the proof of the
Theorem 4.4.1, we can provide the marginal risk contribution and allocation as a function of α
around 0, stressing the dependence part of the loss function. Computations yield

∂αR(X) = λE [h(X −m)] and ∂α

[
R(X)
λ′

]
= M−1

[
λE [∇h(X −m)]

∂αR(X)

]
where M is given by M =

[
λA −B
C 0

]
and A = diag(g′′(Xk−mk)) and B and C as in the proof

of Proposition 4.4.1. In the case where

`(x) = 1
2

3∑
k=1

(x+
k )2 + α

∑
1≤k<j≤3

x+
k x

+
j − 1

and X = (X1, X2, X3) with X1 ∼ X2 ∼ X3, (X1, X2) ∼ (X2, X1) and X3 independent of
(X1, X2), it follows that m = RAk(X) for every k = 1, 2, 3. Defining Z = (X1 − m)+ ∼
(X2 −m)+ ∼ (X3 −m)+, computations yields

∂αR(X) = E[Z]
(

2 + E[(X1 −m)+(X2 −m)+]
E[Z]2

)
Hence, with increasing correlation between X1 and X2 the marginal risk increases. As for the
impact on the risk allocation, since E[(X1 −m)+|X2 ≥ m] = E[(X2 −m)+|X1 ≥ m] it simplifies
to

∂αRA1 or 2(X) = E[Z]
3

(
1 + E[(X2 −m)+|X1 ≥ m]

E[Z] + E[(X1 −m)+(X2 −m)+]
E[Z]2

)
∂αRA3(X) = E[Z]

3

(
4− 2E[(X2 −m)+|X1 ≥ m]

E[Z] + E[(X1 −m)+(X2 −m)+]
E[Z]2

)
Due to the asymmetric dependence of the system :
• One the one hand, if X1 and X2 are highly anti-correlated, then

∂αRA1 or 2(X) ≈ E[Z]
3 and ∂αRA3(X) ≈ 4E[Z]

3
The systemic risk factor is advantaging those who are anti-correlated, with respect to the
others.

• On the other hand, if X1 and X2 are highly correlated, then for p = P[X1 ≥ m],

∂αRA1 or 2(X) ≈ E[Z]
3

(
p+ 1
p

+ E[Z2]
E[Z]2

)
while

∂αRA3(X) ≈ E[Z]
3

(
2p− 1

p
+ E[Z2]
E[Z]2

)
Since p ≤ 1, the systemic risk factor penalizes those who are highly correlated and reduces
the costs for the one who is independent with respect to the previous case.

Figure 4.3 illustrate this fact for different correlation values in the case of a 3-variate normal
distribution

X ∼ N

0,

1 ρ 0
ρ 1 0
0 0 1


9. For instance when h is positive.
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Figure 4.3 – Systemic factor marginal change of the risk allocation and total risk for different
correlations ρ.

4.4.3 Riskless Allocation, Causal Responsibility and Additivity

We conclude this section regarding risk allocation and its sensitivity by a discussion of their
properties in light of the following economic features of risk allocations introduced in Brunner-
meier and Cheridito (2014).

(FA) Full Allocation :
∑
k RAk(X) = R(X) ;

(RA) Riskless Allocation : RAk(X) = Xk if Xk is deterministic ;

(CR) Causal Responsibility : R(X + ∆Xk) − R(X) = RAk(X + ∆Xk) − RAk(X), where
∆Xk is a loss increment of the k-th risk component ;

As mentioned before, per design, shortfall risk allocations always satisfy the full allocation
property (FA). As visible from the above case studies, riskless allocation (RA) and causal
responsibility (CR) are not satisfied in general. In fact, from a systemic risk point of view, we
think that (RA) and (CR) are not desirable properties. Indeed, both imply that risk taking,
or non-taking, should only impact the concerned risk component. However, the risk components
are interdependent and any move in one of them bears consequences to the rest of the system.
The search for an optimal allocation is a non-cooperative game between the different system
components, each of them respectively looking for its own minimal risk allocation while impacting
the others by doing so. In other words, everyone is responsible for its own risk but also for its
relative exposure with respect to the others. The sensitivity analysis of this section however
shows that external shocks are primarily born by the risk component that is hit at least in a
first order. In the case where this shock is independent of the system, by Proposition 4.4.1 it
is then a full causal responsibility. Otherwise, a correction appears and a fraction of the shock
is offloaded to the other risk components according to their relative exposure to the concerned
component and dependence with the shock.
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4.5 Computational Aspects of Risk Allocation
In this section we present computational results based on the loss function 10

`(x) =
d∑
k=1

xk + 1
2

d∑
k=1

(x+
k )2 + α

∑
1≤j<k≤d

x+
j x

+
k − 1, (4.5.1)

for α = 0 or 1. In that case, the constrained problem (4.2.2) becomes :

R(X) := inf
{∑

k

mk :
d∑
k=1

E [Xk −mk] + 1
2

d∑
k=1

E
[
(Xk −mk)+

]2
+ α

∑
1≤j<k≤d

E
[
(Xj −mj)+ (Xk −mk)+

]
≤ 1
} (4.5.2)

According to Theorem 4.3.1, the risk allocation is determined by the first order conditions (4.3.1),
which read in this case :

λE

(Xk −mk)+ + α

d∑
j=1,j 6=k

(Xj −mj)+1{Xk≥mk}

 = 1− λ, for k = 1, . . . , d;

E

 d∑
k=1

(Xk −mk)] + 1
2((Xk −mk)+)2 + α

∑
1≤j<k≤d

(Xk −mk)+(Xj −mj)+

 = 1

(4.5.3)

We use Gaussian distributions with mean vector µ and variance-covariance matrix Σ for the loss
vector X. In the bi- and tri-variate cases the variance-covariance matrix is parameterized by a
single correlation factor ρ and the variances σ2

k of Xk for all k. In other words, Σij = ρσiσj for
i 6= j. We write CT for computational time. The implementation was done on standard desktop
computers in the Python programming language. To solve the constrained problem (4.2.2), we
use the root finding scheme Sequential Least SQuares Programming (SLSQP) algorithm, in
combination with Monte Carlo, Fourier or Chebychev interpolation schemes, briefly described
below, for the computation of the expectations in (4.5.3).

Fourier methods Assuming that the moment generating functions of the considered distri-
butions are available, Fourier methods allow us to compute the different expectations in (4.5.3),
based on methods presented, among others, in Eberlein, Glau, and Papapantoleon (2010) and
Drapeau, Kupper, and Papapantoleon (2014). The main advantage of this method is that it is
theoretically possible to compute the value of the integrals at any level of precision, while the
basic computational time is roughly doubled for every additional digit of accuracy. However,
as seen in the subsequent computations this method suffers from the large number of double
integrals to be computed, for which the computational time can become prohibitively long.

Monte Carlo Methods We can also use Monte Carlo simulations for the estimation of the
many integrals in (4.5.3). An important observation here is that we can generate and store all
realizations in advance, and then use them for the estimation of the functions for different m in
every step of the root-finding procedure. The main advantage of Monte Carlo relative to Fourier
methods is that a wider variety of models can be considered ; think, for example, of models with
copulas or of random variables with Pareto type distributions as considered in the empirical
study in Section 4.6. The main disadvantage is the slow statistical convergence of the scheme,
yet, in our context, it is fast enough. In addition, the time to generate the samples once and for
all, independently of the value of m, as well as to compute the Monte Carlo averages is very
fast.

10. A direct check shows that this function satisfies (A1), (A2) and (A3).
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Chebychev interpolation A numerical scheme well-suited to approximate the large numbers
of functions in the context of optimization routines is the Chebyshev interpolation method. This
method, recently applied to option pricing by Gaß, Glau, Mahlstedt, and Mair (2015), can be
summarized as follows : Suppose you want to evaluate quickly a function F (m), of one or several
variables, for a large number of m’s. The first step of the Chebyshev method is to evaluate the
function F (m) on a given set of nodes mi, 1 ≤ i ≤ N . These evaluations can be computed
by Fourier or Monte Carlo schemes, are independent of each other and can thus be realized in
parallel. The next step, in order to compute F (m) for an m outside the nodes mi, is to perform
a polynomial interpolation of the F (mi)’s using the Chebyshev coefficients. In other words, the
Chebyshev method provides a polynomial approximation F̂ (m) of F (m).

Discussion : Whether it is advantageous to use the Chebyshev interpolation or not, is a matter
of two competing factors that affect the computational time : On the one hand, the number of
iterations I(d) needed to find the root of the system and, on the other hand, the size of the grid
N2 used in the Chebyshev interpolation. Our findings reveals that the Monte Carlo schemes are
better than the Fourier schemes in the range of our accuracy requirements, since they require
the least amount of work during each step of the root-finding procedure or for the pre-processing
computations in the Chebyshev method. Only when the dimension is low, less than three or
α = 0 can the Fourier methods be faster. Next, the choice between Chebyshev or not is a matter
of comparison between I(d) and N2. In high dimensions, when I(d) dominates N2, with I(d)
being in principle of order d and N usually between 10 and 20, then the Chebyshev method is
less costly. Furthermore, the Chebyshev method can intensively benefit from parallel computing
as the pre-processing step is not sequential.

Remark 4.5.1 The numerical methods outlined above can be further improved by conside-
ring variance reduction techniques for the Monte Carlo simulations. Sparse grids and analogous
numerical techniques can be developed to reduce the computational work for the Fourier and
Chebyshev schemes. Another avenue to be explored is the application of stochastic approxima-
tion schemes, instead of deterministic root-finding methods, for the computation of multivariate
risk measures. In the one dimensional case, a stochastic gradient algorithm has been proposed
for the computation of shortfall risk measure by Dunkel and Weber (2010) or Hu and Dali
(2016). With respect to deterministic optimization or root finding schemes, stochastic gradient
algorithm present the advantage of being incremental, less sensitive to the dimension, and offer
a flexible framework that can be conveniently combined with other features such as importance
sampling (see Glasserman (2013), Asmussen and Glynn (2007) and Dunkel and Weber (2010)),
model uncertainty, or the quest of, not only the risk measure itself, but also its sensitivities to
model parameters. This is all left for future research.

4.5.1 Bivariate case
We suppose that d = 2 and consider a bivariate Gaussian distribution with zero mean,

σ1 = σ2 = 1 and correlation

ρ ∈ {−0.9,−0.5,−0.2, 0, 0.2, 0.5, 0.9}

When setting α = 0, that is without systemic risk weight, the result m∗ does not depend on
the correlation value. Since σ1 = σ2 = 1 the allocation is symmetric and we find m∗1 ≈ −0.173.
Explicit formulas for the involved expectations are available in this case and this yields of course
the fastest computation. Fourier methods are quite fast (CT ≈ 3× explicit formula) as we only
need to compute 1-dimensional integrals. In order to get a high approximation in the Chebychev
approximation, one must use 20 nodes for each integral. Since the number of iterations in the
optimizations is low, the Chebychev method coupled with Fourier transforms is slower than
Fourier without it. Finally, Monte Carlo is about 20 to 40 times slower than Fourier, becoming the
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slowest method in that case. When setting α = 1, the values of the risk allocation are increasing
with respect to ρ, as expected, see Table 4.1. The Monte Carlo method becomes the fastest one.
Indeed, we now need to compute bi-variate integrals in (4.5.3). Even if Fourier methods are fast,
from 30 seconds to almost 3 minutes, they are still approximately 10 to 50 slower than Monte
Carlo. Moreover, using even as little as 10 nodes in the Chebychev interpolation, which is not
very accurate, increases the total computational time because of the number of 2-dimensional
integrals to compute in the preprocessing step.

Fourier Fourier + Chebychev 10 nodes Monte Carlo 2 Mio
ρ m∗1 CT m∗1 CT m∗1 CT

−0.9 -0.167 61520 ms -0.150 45 m 18 s -0.167 3257 ms
−0.5 -0.143 37100 ms -0.132 30 m 27 s -0.143 3357 ms
−0.2 -0.120 45200 ms -0.113 25 m 21 s -0.120 3414 ms

0 -0.103 51800 ms -0.098 24 m 52 s -0.103 3302 ms
0.2 -0.085 75700 ms -0.082 27 m 55 s -0.085 3417 ms
0.5 -0.057 158000 ms -0.055 32 m 10 s -0.056 3250 ms
0.9 -0.013 88900 ms -0.012 55 m 04 s -0.012 3387 ms

Table 4.1 – Bivariate case with systemic weight, that is, for α = 1.

4.5.2 Trivariate Case
In this section, we illustrate the systemic contribution of the loss function with three risk

components and study the impact of the interdependence of two components with respect to the
third one. We start with a Gaussian vector with the variance-covariance matrix

Σ =

 0.5 0.5ρ 0
0.5ρ 0.5 0

0 0 0.6

 ,
for different correlations ρ ∈ {−0.9,−0.5,−0.2, 0, 0.2, 0.5, 0.9}. Here the third risk component
has a higher marginal risk than the first two so that, in the absence of systemic weight, it should
contribute most to the overall risk. When α = 0, this is indeed the case. The result is independent
of the correlation and is typically overall lower, charging the risk component with the highest
variance more – m∗3 ≈ −0.12 – than the other two – m∗1 = m∗3 ≈ −0.166. However, with systemic
risk weight, the contribution of the first two overcomes the third one for high correlation, as
emphasised in red in Table 4.2. These results illustrate that the systemic risk weights correct the
risk allocation as the correlation between the first two risk components increases. The Monte
Carlo scheme in this trivariate case is radically faster than Fourier – Chebychev interpolation
was not found useful in this case either – from 30 times up to 60 times more efficient.

4.5.3 Higher Dimensions
Figure 4.4 shows the variance-covariance matrix and the resulting risk allocation in a 30-

variate case using Monte Carlo, coupled with 15 node Chebychev interpolation when α = 1.
Indeed, the dimension being large, the preprocessing time with Monte Carlo to compute the
Chebychev coefficients together with the computational time resulting from the root-finding for
the resulting interpolation function is lower than the raw Monte Carlo root finding. The plot
shows that the risk allocation depends not only on the variance of the different risk components,
but also, in the case where α = 1, on the corresponding dependence structure. For instance,
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Fourier Method Monte Carlo 2 Mio
ρ m∗1 = m∗2 m∗3 R(X) TCP m∗1 = m∗2 m∗3 R(X) TCP

−0.9 -0.189 ≤ 0.096 -0.258 2 m 55 s -0.190 ≤ 0.095 -0.283 3159 ms
−0.5 -0.135 ≤ 0.016 -0.253 1 m 39 s -0.134 ≤ 0.017 -0.252 2799 ms
−0.2 -0.099 ≤ -0.030 -0.229 1 m 32 s -0.098 ≤ -0.030 -0.228 2760 ms

0 -0.076 ≤ -0.059 -0.212 2 m 22 s -0.077 ≤ -0.058 -0.212 3188 ms
0.2 -0.053 ≤ -0.086 -0.194 1 m 37 s -0.055 ≤ -0.086 -0.195 2741 ms
0.5 -0.020 ≥ -0.125 -0.165 1 m 47 s -0.020 ≥ -0.124 -0.164 3358 ms
0.9 0.025 ≥ -0.173 -0.121 2 m 07 s 0.026 ≥ -0.171 -0.119 2722 ms

Table 4.2 – Trivariate case with systemic weight, that is α = 1. Computed by Fourier.

compare components 28 and 29 in the 30-variate case in Figure 4.4. In the first case we observe
that when α = 0, component 28 contributes more than 29, and conversely when α = 1. The
reason is that even if component 28 has a slightly higher variance, it is relatively less correlated
than 29 to the components 2, 3, 6, 20 and 30 that have the highest variance, and thus are the
most ‘dangerous’ from the systemic point of view. Hence, component 29 is more exposed than
28 in case of a systemic event.

4.6 Empirical Study : Default Fund Allocation
In the sequel we consider loss functions of the type

`1(x) =
∑
k

x+
k −

1
2
∑
k

x−k (4.6.1)

`2(x) =
∑
k

x+
k −

1
2
∑
k

x−k +
∑
k 6=j

(xk + xj)+ − 1
2
∑
k 6=j

(xk + xj)− (4.6.2)

studied in Example 4.2.4. The first loss function means that a position is acceptable if on average,
the losses are compensated by gains twice as large. 11 In this case, the risk assessment of the
losses is marginal or component-wise. The second one is similar, however, it also aggregates
pairwise losses and gains among the different components. Here the risk assessment considers
additionally the pairwise dependence between the losses. Note that each of these loss function is
positive homogeneous (hence so is R) and permutation invariant.

The default fund of a CCP is a protection against extreme and systemic risk. As of today,
it is sized according to the Cover 2 rule, see European Parliament (2012b, article 42, §3, p. 37).
In a rough way, this corresponds to the maximal joint loss of two members over their posted
collateral (initial margin) in a stressed situation over the last 60 days. The relative contribution
of each member to the default fund is proportional to their respective initial margin – that is, the
value at risk at a given level of confidence of their loss and profit over a three-day time horizon.
Hence, denoting by DF the total size of the default fund and by IMk(Xk) the initial margin of
member k, the contribution of member k is given by

IMk(Xk)∑
j IMj(Xj)

DF (4.6.3)

As an alternative, we propose to define the contribution of member k to the default fund as
follows. According to Theorem 4.3.1 there exists a unique optimal capital allocation RA(X)

11. The coefficient 1/2 is naturally subject to consensus and can be taken as any real number between 0 and 1.
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Figure 4.4 – Plot showing the variance-covariance matrix together with the respective allocation
in the 30-variate case for α = 0, 1.

for a given loss vector X. We define therefore the relative risk contribution of each financial
component as

RCk := RCk(X) = RAk(X)∑
j RAj(X) = RAk(X)

R(X) (4.6.4)

The value at risk for the initial margins IMk, the overall risk measure R as well as the optimal
capital allocation are all positive homogeneous. It follows that RCk(λX) = RCk(X) for every
λ > 0, that is, the relative risk contribution is scaling invariant as for instance the Sharpe
ratio, Minmax ratio or Gini ratio among others, see Cheridito and Kromer (2013). The scaling
invariance property allows one to consider the allocation independently of the total size of the
default fund. The contribution of member k is then given as

RCk ×DF (4.6.5)

The current practice based on the ratio of initial margins (4.6.3) provides an allocation that only
depends on the marginal risk of each member profit and loss Xk, and does not take their joint
dependence into account, that is, the systemic risk component. By contrast, the approach (4.6.5)
allows one to take this systemic risk component into account in the allocation of the default fund
in the sense of the following proposition already discussed in Section 4.4.
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4.6.1 Data
In this section we compare a standard IM based allocation of the default fund of a CCP

with the multivariate shortfall risk allocation resulting from the use of the loss functions `1
and `2. This empirical study is based on an LCH real dataset corresponding to the clearing of
74 portfolios of equity derivatives bearing on 90 underlyings. The clearing members have been
anonymized and are referenced in the sequel by labels starting by PB plus number (e.g. PB7),
whereas the underlying assets are identified by their real tickers, such as FCE for CAC40 index
future and AEX for Amsterdam exchange index, which can all be retrieved online. The Jupyter
notebook corresponding to this empirical study, including all the data and numerical codes, is
publically available at https://github.com/yarmenti/MSRA. In order to avoid the repricing
of the options, all the derivative positions have been linearized and reformulated in equivalent
Delta positions in their underlyings. We denote by P the 74× 90 matrix of the positions of the
74 clearing members in the 90 underlyings. As the CCP clears, each column of P sums up to
zero. The vector of the clearing member losses at a three day (3d) horizon is given by

X = −P × (S3d − S0) (4.6.6)

where S is the vector of the underlying price processes. The vector S0 is observed and the vector
S3d is simulated in a Student’s t model estimated by maximum-likelihood on the underlying
return time series, i.e.

Si3d − Si0 ∼ κi × T
νi
i × S

i
0, (4.6.7)

where T νii is a Student’s t random variable with νi degrees of freedom and where κi a calibration
fudge coefficient. The dependence between the underlyings is modelled by a Student’s t copula
with correlation matrix ρ and ν degrees of freedom, that is

Cρ,ν(u1, . . . , un) = F νρ

(
F−1
ν (u1), . . . , F−1

ν (un)
)

Here F νρ is the cumulative distribution function of the multivariate Student’s t distribution with
correlation matrix ρ and ν degrees of freedom, and Fν is the Student’s t cdf with ν degrees of
freedom.

4.6.2 Simulations
The correlation matrix ρ is estimated empirically on the return time series and the dependence

copula parameter is set to ν = 6. Each of m = 105 realizations of S3d, hence of the loss vector
X, is simulated as follows :

1. Simulate a Gaussian random vector G of size 90 with zero-mean and correlation ρ

2. Generate a χ2 random variable ξ with parameter ν
3. Obtain the Student’s t vector R =

√
νξ−1G

4. Transform R into uniform coordinates by Ui = Fν
(
Ri
)

and compute T νii = F−1
νi

(
Ui
)

5. Compute S3d by (4.6.7) and X by (4.6.6)

The resulting inputs to the allocation optimization problem are analysed in Appendix 4.7.3.
Figure 4.5 shows the correlation matrices of the underlying assets and of the loss vector X of
the clearing members, in a heatmap representation. In the left panel, which is directly estimated
from the data, we see that the underlying assets are all positively correlated, as commonly found
in the case of equity derivatives. However, due to positions in opposite directions taken by the
clearing members, some of their losses exhibit significant negative correlations, as shown by the
blue cells in the right panel.

https://github.com/yarmenti/MSRA


116 Chapitre 4. Multivariate Shortfall Risk Allocation

Figure 4.5 – Left : Correlation matrix of the underlying assets (ranked by alphabetical order
of asset ticker ; one ticker out of ten is displayed along the coordinate axes). Right : Correlation
matrix of the loss vector X of the clearing members (ranked by alphabetical order of member
label ; one label out of ten is displayed along the coordinate axes).

4.6.3 Allocation Results

The total size of the default fund as of a standard Cover 2 methodology are shown in Table
4.3, for three values of the dependence copula parameter ν and for 99% vs. 99.7% initial margins
(IM). Since a Cover 2 default fund is a cushion over IM, its size is directly responsive to the level
of the quantile which is used for setting the IM (compare the two lines in Table 4.3). In relative
terms the size of the default fund is quite stable with respect to ν. However we emphasize that
these are monetary amounts, so that the difference between for instance 6.16 108 and 6.72 108

corresponds to 0.56 108, i.e. more than half a billion of the corresponding currency.

ν = 2 ν = 6 ν = 50
99 % IM 6.16 108 6.72 108 6.27 108

99.7 % IM 4.96 108 5.48 108 5.00 108

Table 4.3 – Size of a Cover 2 default fund for different levels of initial margins and different
values of the dependence copula parameter ν.

In the sequel we set ν = 6, which corresponds to an intermediate level of tail dependence,
and we use 99% IM, which corresponds to the EMIR regulatory floor on initial margins.

Figure 4.6 compares the allocation weights implied by the loss function `1 with the ones
implied by 99% IM. The allocations are very similar, as confirmed by the examination of the
percentage relative differences displayed in the upper panels of Figure 4.6. By contrast, the lower
panels of Figure 4.7 show that the allocation weights implied by the loss function `1 and the
dependence sensitive loss function `2 differ significantly in relative terms, including for the names
with the greatest contributions to the default fund. These results illustrate the impact of the use
of a “systemic” loss function on the allocation of the default fund.
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Figure 4.6 – Left : Decreasing log-allocation weights implied by the loss function `1 (top) and
99% IM (bottom). Right : Twelve highest allocation weights implied by the loss function `1 (top)
and by 99% IM (bottom), with the corresponding member labels.

4.7 Appendix
4.7.1 Some Classical Facts in Convex Optimization

For an extended real valued function f on a locally convex topological vector space X, its
convex conjugate is defined as

f∗(x∗) = sup
x∈X

{
x∗ · x− f(x)

}
, x∗ ∈ X∗

where X∗ is the topological dual of X. The Fenchel–Moreau theorem states that if f is lower
semi-continuous, convex and proper, then so is f∗, and it holds

f(x) = f∗∗(x) = sup
x∗∈X∗

{
x∗ · x− f∗(x∗)

}
, x ∈ X

Following Rockafellar (1970), for any non-empty set C ⊆ Rd, we define its recession cone

0+C :=
{
y ∈ Rd : x+ λy ∈ C for every x ∈ C and λ ∈ R+

}
By Rockafellar (1970, Theorem 8.3), if C is non-empty, closed and convex, then

0+C =
{
y ∈ Rd : there exists x ∈ C such that x+ λy ∈ C for every λ ∈ R+

}
(4.7.1)

By Rockafellar (1970, Theorem 8.4), a non-empty, closed and convex set C is compact if and
only if 0+C = {0}.

Given a proper, convex and lower semi-continuous function f on Rd, we call y ∈ Rd a direction
of recession of f if there exists x ∈ dom(f) such that the map λ 7→ f(x+ λy) is decreasing on
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R+. We denote by f0+ the recession function of f , that is, the function with epigraph given as
the recession cone of the epigraph of f , and we call

0+f :=
{
y ∈ Rd : (f0+)(y) ≤ 0

}
the recession cone of f . The following theorem gathers results from Rockafellar (1970, Theorems
8.5, 8.6, 8.7 and Corollaries pp. 66–70).

Theorem 4.7.1 Let f be a proper, closed and convex function on Rd.
1. Given x,y in Rd, if lim infλ→∞ f(x+ λy) <∞, then λ 7→ f(x+ λy) is decreasing.
2. All the non-empty level sets B := {x ∈ Rd : f(x) ≤ γ} 6= ∅ of f have the same recession

cone, namely the recession cone of f . That is :

0+f = 0+B, for every γ ∈ R such that B 6= ∅

3. f0+ is a positively homogeneous, proper, closed and convex function, such that

(f0+)(y) = sup
λ>0

f(x+ λy)− f(x)
λ

= lim
λ→∞

f(x+ λy)− f(x)
λ

, y ∈ Rd

for every x ∈ dom(f).
4. There exists x ∈ dom(f) such that the map λ 7→ f(x+λy) is decreasing on R+, that is, y

is a direction of recession of f , if and only if this map is decreasing for every x ∈ dom(f),
which in turn is equivalent to (f0+)(y) ≤ 0.

5. The map λ 7→ f(x+λy) is constant on R+ for every x ∈ dom(f) if and only if (f0+)(y) ≤ 0
and (f0+)(−y) ≤ 0.

4.7.2 Multivariate Orlicz Spaces
In this appendix we briefly sketch how the classical theory of univariate Orlicz spaces carries

over to the d-variate case without any significant change. We follow the lecture notes by Léonard
Léonard (2007), only providing the proofs that differ structurally from the univariate case.

A function θ : Rd → [0,∞] is called a Young function if it is
• convex and lower semi-continuous ;
• such that θ(x) = θ(|x|) and θ(0) = 0 ;
• non trivial, that is, dom(θ) contains a neighborhood of 0 and θ(x) ≥ a ‖x‖ − b for some
a > 0.

In particular, θ achieves its minimum at 0 and is increasing on Rd+. It is said to be finite if
dom(θ) = Rd and strict if limx→∞

θ(x)
‖x‖ =∞.

Lemma 4.7.1 The function θ is Young if and only if θ∗ is Young. Furthermore, θ is strict if
and only if θ∗ is strict if and only if θ and θ∗ are both finite.

Proof: This follows by application of the Fenchel-Moreau theorem and from the relation x · y ≤
θ(x) + θ∗(y). �

For X ∈ L0, the Luxembourg norm of X is given as

‖X‖θ = inf
{
λ ∈ R : λ > 0 and E

[
θ

(
1
λ
X

)]
≤ 1
}
,
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where inf ∅ =∞. The Orlicz space and heart are respectively defined as

Lθ :=
{
X ∈ L0 : ‖X‖θ <∞

}
=
{
X ∈ L0 : E

[
θ

(
1
λ
X

)]
<∞ for some λ ∈ R, λ > 0

}
Mθ :=

{
X ∈ L0 : E

[
θ

(
1
λ
X

)]
<∞ for all λ ∈ R, λ > 0

}

Lemma 4.7.2
1. We have ‖X‖θ = 0 if and only if X = 0.
2. If 0 < ‖X‖θ < ∞, then E[θ( 1

‖X‖θ
X)] ≤ 1. In particular, B := {X : ‖X‖θ ≤ 1} =

{X : E[θ(X)] ≤ 1}.
3. The gauge ‖·‖θ is a norm both on the Orlicz space Lθ and on the Orlicz heart Mθ.
4. The following Hölder Inequality holds :

E [|X · Y |] ≤ ‖X‖θ ‖Y ‖θ∗

5. Lθ is continuously embedded into L1, the space of integrable random variables on Ω ×
{1, · · · , d} for the product measure P⊗Unif{1,··· ,d}. 12

6. The normed spaces (Lθ, ‖·‖θ) and (Mθ, ‖·‖θ) are Banach spaces.

Proof: These results can be established along the same lines as in the univariate case, see
Léonard (2007, Lemmas 1.8 and 1.10 and Propositions 1.11, 1.14, 1.15 and 1.18), using the
Fenchel-Moreau Theorem in Rd+. �

Theorem 4.7.2 If θ is finite, then the topological dual of Mθ is Lθ∗ .

Proof: Again, the proof follows the univariate case, see Léonard (2007, Proposition 1.20, Theo-
rem 2.2 and Lemmas 2.4 and 2.5). �

4.7.3 Data Analysis
Figure 4.8 shows the gross positions (sum of the absolute values of the positions in the un-

derlying asset) per clearing member. Four members concentrate particularly high positions in
the CCP. Figure 4.9 shows the gross positions of the CCP per underlying asset (top) and the
corresponding underlying asset values (bottom). The largest investment by far of the clearing
members is in the asset with ticker FCE (CAC40 index future, with spot value 4463), by a factor
about three to the second one AEX (Amsterdam exchange index, with spot value 443.83). The
investments of the clearing members in the other assets are comparatively much smaller.

Figure 4.10 shows the signed positions in the underlying assets of the twelve clearing mem-
bers with the largest gross positions (left) and the signed positions of the clearing members in
the nine most traded underlying assets (right), in a heatmap representation. In particular, we
observe from the left panel that the biggest players in the CCP, namely the members labeled
PB7, PB56, PB59 and PB50, have opposite sign positions in the main asset (the one with ticker
FCE). The right panel shows that the dominant asset position in the CCP, i.e. the one in FCE,
is shared (with opposite signs) between a significant number of clearing members.

12. The case where Lθ = L1 corresponds to θ(x) =
∑

k
|xk|.
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Figure 4.11 shows the annualized volatilities κi×
√

νi
νi−2 ×

√
250
3 of the underlying assets (cf.

(4.6.7)). Most of these volatilities are comprised between 15% and 40%, with two assets, KBC
and TMS, spiking over 60% volatility. However, the clearing members are only very marginally
invested in these two assets (their tickers do not even appear in the right panel of Figure 4.9).

Figure 4.12 shows the monetary risks (3d volatilities × absolute monetary positions) in the
underlying assets of the ten clearing members with the largest gross positions. From the right
panel we see that the FCE and AEX assets (CAC40 index future FCE and Amsterdam exchange
index AEX, two major indices) concentrate most of the risk of the clearing members. The com-
parison with Figure 4.11 shows that this is not an effect of the volatility of these assets, but of
very large monetary positions of the clearing members.
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research team of LCH in Paris : Quentin Archer, Julien Dosseur, Pierre Mouy and Mohamed
Selmi. In particular we are grateful to Pierre Mouy for the preparation of the real dataset used
for the empirical study of Section 4.6.
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Figure 4.7 – Left : Percentage relative differences between the allocation weights implied by
the loss function `1 and 99%IM (top), the loss function `2 and 99% IM (middle), and the loss
functions `1 and `2 (bottom), ranked by decreasing values of the allocation weights implied by
the loss function `1. Right : Zoom on the left parts of the graphs, with member labels.

Figure 4.8 – Left : Gross positions per clearing member, ranked decreasing. Right : Zoom on
the left part of the graph with member labels.
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Figure 4.9 – Top : Gross positions per underlying, ranked decreasing (left) and zoom on the
left part of the graph with tickers (right). Bottom : Spot values of the underlying assets, ranked
as above (left) and zoom on the left part of the graph with tickers (right).

Figure 4.10 – Left : Positions in the underlying assets (one ticker out of ten displayed along
the y axis) of the ten clearing members with the largest gross positions, ranked by decreasing
gross positions. Right : Positions of the clearing members (one label out of ten displayed along
the x axis) in the three most invested-in underlying assets, ranked by asset gross positions of
the CCP.
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Figure 4.11 – Left : Underlying asset volatilities (ranked by decreasing order). Right : Zoom
on the left part of the graph with tickers.

Figure 4.12 – Left : Log monetary risks in the underlying assets, ranked by decreasing risk
order, of the ten clearing members with the largest gross positions. Right : Monetary risks in
the five most invested-in underlying assets of the ten clearing members with the largest gross
positions.
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Annexe A

EMIR Regulation

In this appendix, we provide some references taken from the EMIR regulation concerning the
CCPs margin calculation and related liquidation period, sizing of the default fund or calibration
of the different parameters.

A.1 Initial Margins
From European Parliament (2012b, Article 41 §1 to §5) :

Article 41 - Margin Requirements

1. “A CCP shall impose, call and collect margins to limit its credit exposures
from its clearing members and, where relevant, from CCPs with which it has
interoperability arrangements. Such margins shall be sufficient to cover potential
exposures that the CCP estimates will occur until the liquidation of the relevant
positions. They shall also be sufficient to cover losses that result from at least
99% of the exposures movements over an appropriate time horizon and they
shall ensure that a CCP fully collateralises its exposures with all its clearing
members, and, where relevant, with CCPs with which it has interoperability
arrangements, at least on a daily basis. A CCP shall regularly monitor and,
if necessary, revise the level of its margins to reflect current market conditions
taking into account any potentially procyclical effects of such revisions.

2. A CCP shall adopt models and parameters in setting its margin requirements
that capture the risk characteristics of the products cleared and take into ac-
count the interval between margin collections, market liquidity and the possibi-
lity of changes over the duration of the transaction. The models and parameters
shall be validated by the competent authority and subject to an opinion in
accordance with Article 19.

3. A CCP shall call and collect margins on an intraday basis, at least when pre-
defined thresholds are exceeded.

4. A CCP shall call and collect margins that are adequate to cover the risk stem-
ming from the positions registered in each account kept in accordance with
Article 39 with respect to specific financial instruments. A CCP may calculate
margins with respect to a portfolio of financial instruments provided that the
methodology used is prudent and robust.

5. In order to ensure consistent application of this Article, ESMA shall, after
consulting EBA and the ESCB, develop draft regulatory technical standards
specifying the appropriate percentage and time horizons for the liquidation per-
iod and the calculation of historical volatility, as referred to in paragraph 1,
to be considered for the different classes of financial instruments, taking into
account the objective to limit procyclicality, and the conditions under which
portfolio margining practices referred to in paragraph 4 can be implemented.”
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More precisely, in European Parliament (2012a, Article 24 §1 to §4) :

Article 24 - Percentage

1. “A CCP shall calculate the initial margins to cover the exposures arising from
market movements for each financial instrument that is collateralised on a pro-
duct basis, over the time period defined in Article 25 and assuming a time
horizon for the liquidation of the position as defined in Article 26. For the cal-
culation of initial margins the CCP shall at least respect the following confidence
intervals :
(a) for OTC derivatives, 99,5 % ;
(b) for financial instruments other than OTC derivatives, 99 %.

2. For the determination of the adequate confidence interval for each class of finan-
cial instruments it clears, a CCP shall in addition consider at least the following
factors :
(a) the complexities and level of pricing uncertainties of the class of financial

instruments which may limit the validation of the calculation of initial and
variation margin ;

(b) the risk characteristics of the class of financial instruments, which can in-
clude, but are not limited to, volatility, duration, liquidity, non-linear price
characteristics, jump to default risk and wrong way risk ;

(c) the degree to which other risk controls do not adequately limit credit expo-
sures ;

(d) the inherent leverage of the class of financial instruments, including whether
the class of financial instrument is significantly volatile, is highly concen-
trated among a few market players or may be difficult to close out.

3. The CCP shall inform its competent authority and its clearing members on the
criteria considered to determine the percentage applied to the calculation of the
margins for each class of financial instruments.

4. Where a CCP clears OTC derivatives that have the same risk characteristics
as derivatives executed on regulated markets or an equivalent third country
market, on the basis of an assessment of the risk factors set out in paragraph 2,
the CCP may use an alternative confidence interval of at least 99 % for those
contracts if the risks of OTC derivatives contracts it clears are appropriately
mitigated using such confidence interval and the conditions in paragraph 2 are
respected.”

Then continuing with the calibration of the volatility in European Parliament (2012a, Article
25 §1 to §3) :

Article 25 - Time horizon for the calculation of historical volatility

1. “A CCP shall ensure that according to its model methodology and its validation
process established in accordance with Chapter XII, initial margins cover at least
with the confidence interval defined in Article 24 and for the liquidation period
defined in Article 26 the exposures resulting from historical volatility calculated
based on data covering at least the latest 12 months.
A CCP shall ensure that the data used for calculating historical volatility cap-
ture a full range of market conditions, including periods of stress.
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2. A CCP may use any other time horizon for the calculation of historical volatility
provided that the use of such time horizon results in margin requirements at
least as high as those obtained with the time period defined in paragraph 1.

3. Margin parameters for financial instruments without a historical observation
period shall be based on conservative assumptions. A CCP shall promptly adapt
the calculation of the required margins based on the analysis of the price history
of the new financial instruments.”

The liquidation period is also specified in European Parliament (2012a, Article 26 §1 to §4) :

Article 26 - Time horizons for the liquidation period

1. “A CCP shall define the time horizons for the liquidation period taking into
account the characteristics of the financial instrument cleared, the market where
it is traded, and the period for the calculation and collection of the margins.
These liquidation periods shall be at least :
(a) five business days for OTC derivatives ;
(b) two business days for financial instruments other than OTC derivatives.

2. In all cases, for the determination of the adequate liquidation period, the CCP
shall evaluate and sum at least the following :
(a) the longest possible period that may elapse from the last collection of mar-

gins up to the declaration of default by the CCP or activation of the default
management process by the CCP ;

(b) the estimated period needed to design and execute the strategy for the
management of the default of a clearing member according to the particu-
larities of each class of financial instrument, including its level of liquidity
and the size and concentration of the positions, and the markets the CCP
will use to close-out or hedge completely a clearing member position ;

(c) where relevant, the period needed to cover the counterparty risk to which
the CCP is exposed.

3. In evaluating the periods defined in paragraph 2, the CCP shall consider at least
the factors indicated in Article 24(2) and the time period for the calculation of
the historical volatility as defined in Article 25.

4. Where a CCP clears OTC derivatives that have the same risk characteristics
as derivatives executed on regulated markets or an equivalent third country
market, it may use a time horizon for the liquidation period different from the
one specified in paragraph 1, provided that it can demonstrate to its competent
authority that :
(a) such time horizon would be more appropriate than that specified in para-

graph 1 in view of the specific features of the relevant OTC derivatives ;
(b) such time horizon is at least two business days.”
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The netting of the portfolio is also specified as not reducing the risk higher than 80% of the
individual risks taken individually, as stated in European Parliament (2012a, Article 27) :

Article 27 - Portfolio margining

1. “A CCP may allow offsets or reductions in the required margin across the fi-
nancial instruments that it clears if the price risk of one financial instrument or
a set of financial instruments is significantly and reliably correlated, or based
on equivalent statistical parameter of dependence, with the price risk of other
financial instruments.

2. The CCP shall document its approach on portfolio margining and it shall at
least provide that the correlation, or an equivalent statistical parameter of de-
pendence, between two or more financial instruments cleared is shown to be
reliable over the lookback period calculated in accordance with Article 25 and
demonstrates resilience during stressed historical or hypothetical scenarios. The
CCP shall demonstrate the existence of an economic rationale for the price
relation.

3. All financial instruments to which portfolio margining is applied shall be covered
by the same default fund. By way of derogation, if a CCP can demonstrate in
advance to its competent authority and to its clearing members how potential
losses would be allocated among different default funds and has set out the
necessary provisions in its rules, portfolio margining may be applied to financial
instruments covered by different default funds.

4. Where portfolio margining covers multiple instruments, the amount of margin
reductions shall be no greater than 80 % of the difference between the sum of
the margins for each product calculated on an individual basis and the margin
calculated based on a combined estimation of the exposure for the combined
portfolio. Where the CCP is not exposed to any potential risk from the margin
reduction, it may apply a reduction of up to 100 % of that difference.

5. The margin reductions related to portfolio margining shall be subject to a sound
stress test programme in accordance with Chapter XII.”

We finally conclude that section concerning Initial Margins by highlighting the management
of the margins procyclicality in European Parliament (2012a, Article 28 §1 to §2) :

Article 28 - Procyclicality

1. “A CCP shall ensure that its policy for selecting and revising the confidence in-
terval, the liquidation period and the lookback period deliver forward looking,
stable and prudent margin requirements that limit procyclicality to the extent
that the soundness and financial security of the CCP is not negatively affec-
ted. This shall include avoiding when possible disruptive or big step changes in
margin requirements and establishing transparent and predictable procedures
for adjusting margin requirements in response to changing market conditions.
In doing so, the CCP shall employ at least one of the following options :
(a) applying a margin buffer at least equal to 25 % of the calculated margins

which it allows to be temporarily exhausted in periods where calculated
margin requirements are rising significantly ;
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(b) assigning at least 25 % weight to stressed observations in the lookback
period calculated in accordance with Article 26 ;

(c) ensuring that its margin requirements are not lower than those that would
be calculated using volatility estimated over a 10 year historical lookback
period.

2. When a CCP revises the parameters of the margin model in order to better
reflect current market conditions, it shall take into account any potential pro-
cyclical effects of such revision.”

A.2 Default Fund
As in the previous section, we first introduce the general concept of Default Fund defined in

European Parliament (2012b, Article 42 §1 to §5) :

Article 42 - Default Fund

1. “To limit its credit exposures to its clearing members further, a CCP shall
maintain a pre-funded default fund to cover losses that exceed the losses to
be covered by margin requirements laid down in Article 41, arising from the
default, including the opening of an insolvency procedure, of one or more clearing
members. The CCP shall establish a minimum amount below which the size of
the default fund is not to fall under any circumstances.

2. A CCP shall establish the minimum size of contributions to the default fund and
the criteria to calculate the contributions of the single clearing members. The
contributions shall be proportional to the exposures of each clearing member.

3. The default fund shall at least enable the CCP to withstand, under extreme
but plausible market conditions, the default of the clearing member to which it
has the largest exposures or of the second and third largest clearing members, if
the sum of their exposures is larger. A CCP shall develop scenarios of extreme
but plausible market conditions. The scenarios shall include the most volatile
periods that have been experienced by the markets for which the CCP provides
its services and a range of potential future scenarios. They shall take into account
sudden sales of financial resources and rapid reductions in market liquidity.

4. A CCP may establish more than one default fund for the different classes of
instrument that it clears.

5. In order to ensure consistent application of this Article, ESMA shall, in close
cooperation with the ESCB and after consulting EBA, develop draft regulatory
technical standards specifying the framework for defining extreme but plausible
market conditions referred to in paragraph 3, that should be used when defining
the size of the default fund and the other financial resources referred to in
Article 43. ESMA shall submit those draft regulatory technical standards to
the Commission by 30 September 2012. Power is delegated to the Commission
to adopt the regulatory technical standards referred to in the first subparagraph
in accordance with Articles 10 to 14 of Regulation (EU) No 1095/2010.”

The Default Fund specifications are completed in European Parliament (2012a, Article 30 §1
to §3) :

Article 30 - Identifying extreme but plausible market conditions
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1. “The framework described in Article 29 shall reflect the risk profile of the CCP,
taking account of cross-border and cross-currency exposures where relevant. It
shall identify all the market risks to which a CCP would be exposed following
the default of one or more clearing member, including unfavourable movements
in the market prices of cleared instruments, reduced market liquidity for these
instruments, and declines in the liquidation value of collateral. The framework
shall also reflect additional risks to the CCP arising from the simultaneous
failure of entities in the group of the defaulting clearing member.

2. The framework shall individually identify all the markets to which a CCP is
exposed in a clearing member default scenario. For each identified market the
CCP shall specify extreme but plausible conditions based at least on :
(a) a range of historical scenarios, including periods of extreme market move-

ments observed over the past 30 years, or as long as reliable data have been
available, that would have exposed the CCP to greatest financial risk. If a
CCP decides that recurrence of a historical instance of large price move-
ments is not plausible, it shall justify its omission from the framework to
the competent authority ;

(b) a range of potential future scenarios, founded on consistent assumptions re-
garding market volatility and price correlation across markets and financial
instruments, drawing on both quantitative and qualitative assessments of
potential market conditions.

3. The framework shall also consider, quantitatively and qualitatively, the extent
to which extreme price movements could occur in multiple identified markets
simultaneously. The framework shall recognise that historical price correlations
may breakdown in extreme but plausible market conditions.”

A.3 Skin-In-The-Game
To introduce the so-called skin-in-the-game, we first refer to the default waterfall process as

defined in European Parliament (2012b, Article 45 §1 to §5) :

Article 45 - Default waterfall

1. “A CCP shall use the margins posted by a defaulting clearing member prior to
other financial resources in covering losses.

2. Where the margins posted by the defaulting clearing member are not sufficient
to cover the losses incurred by the CCP, the CCP shall use the default fund
contribution of the defaulting member to cover those losses.

3. A CCP shall use contributions to the default fund of the non-defaulting clearing
members and any other financial resources referred to in Article 43(1) only after
having exhausted the contributions of the defaulting clearing member.

4. A CCP shall use dedicated own resources before using the default fund contri-
butions of non-defaulting clearing members. A CCP shall not use the margins
posted by non-defaulting clearing members to cover the losses resulting from
the default of another clearing member.

5. In order to ensure consistent application of this Article, ESMA, shall, after
consulting the relevant competent authorities and the members of the ESCB,
develop draft regulatory technical standards specifying the methodology for
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calculation and maintenance of the amount of the CCP’s own resources to be
used in accordance with paragraph 4.
ESMA shall submit those draft regulatory technical standards to the Commis-
sion by 30 September 2012.
Power is delegated to the Commission to adopt the regulatory technical stan-
dards referred to in the first subparagraph in accordance with Articles 10 to 14
of Regulation (EU) No 1095/2010.

The following article illustrates the calculation of this amount of collateral provided by the
CCP, European Parliament (2012a, Article 35 §1 to §4) :

Article 35 - Calculation of the amount of the CCP’s own resources to be used in the default
waterfall

1. “A CCP shall keep, and indicate separately in its balance sheet, an amount of
dedicated own resources for the purpose set out in Article 45(4) of Regulation
(EU) No 648/2012.

2. A CCP shall calculate the minimum amount referred to in paragraph 1 by
multiplying the minimum capital, including retained earnings and reserves, held
in accordance with Article 16 of Regulation (EU) No 648/2012 and Commission
Delegated Regulation (EU) No 152/2013 (1) by 25 %.
The CCP shall revise that minimum amount on a yearly basis.

3. Where the CCP has established more than one default fund for the different
classes of financial instruments it clears, the total dedicated own resources cal-
culated under paragraph 1 shall be allocated to each of the default funds in
proportion to the size of each default fund, to be separately indicated in its
balance sheet and used for defaults arising in the different market segments to
which the default funds refer to.

4. No resources other than capital, including retained earnings and reserves, as
referred to in Article 16 of Regulation (EU) No 648/2012 shall be used to comply
with the requirement under paragraph 1.”

A.4 Back and Stress Testing
The following articles describe the procedures of back test and stress tests of the margining

framework. In European Parliament (2012b, Article 49 §1 to §4) :

Article 49 - Review of models, stress testing and back testing

1. “A CCP shall regularly review the models and parameters adopted to calcu-
late its margin requirements, default fund contributions, collateral requirements
and other risk control mechanisms. It shall subject the models to rigorous and
frequent stress tests to assess their resilience in extreme but plausible market
conditions and shall perform back tests to assess the reliability of the metho-
dology adopted. The CCP shall obtain independent validation, shall inform its
competent authority and ESMA of the results of the tests performed and shall
obtain their validation before adopting any significant change to the models and
parameters.
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The adopted models and parameters, including any significant change thereto,
shall be subject to an opinion of the college pursuant to Article 19.
ESMA shall ensure that information on the results of the stress tests is passed
on to the ESAs to enable them to assess the exposure of financial undertakings
to the default of CCPs.

2. A CCP shall regularly test the key aspects of its default procedures and take
all reasonable steps to ensure that all clearing members understand them and
have appropriate arrangements in place to respond to a default event.

3. A CCP shall publicly disclose key information on its risk- management model
and assumptions adopted to perform the stress tests referred to in paragraph 1.

4. In order to ensure consistent application of this Article, ESMA shall, after
consulting EBA, other relevant competent authorities and the members of the
ESCB, develop draft regulatory technical standards specifying :
(a) the type of tests to be undertaken for different classes of financial instru-

ments and portfolios ;
(b) the involvement of clearing members or other parties in the tests ;
(c) the frequency of the tests ;
(d) the time horizons of the tests ;
(e) the key information referred to in paragraph 3.
ESMA shall submit those draft regulatory technical standards to the Commis-
sion by 30 September 2012.
Power is delegated to the Commission to adopt the regulatory technical stan-
dards referred to in the first subparagraph in accordance with Articles 10 to 14
of Regulation (EU) No 1095/2010.”

The backtesting procedure is finally specified in European Parliament (2012a, Article 49 §1
to §6) :

Article 49 - Back testing procedure

1. “A CCP shall assess its margin coverage by performing an ex-post comparison
of observed outcomes with expected outcomes derived from the use of margin
models. Such back testing analysis shall be performed each day in order to eva-
luate whether there are any testing exceptions to margin coverage. Coverage
shall be evaluated on current positions for financial instruments, clearing mem-
bers and take into account possible effects from portfolio margining and, where
appropriate, interoperable CCPs.

2. A CCP shall consider the appropriate historical time horizons for its back testing
programme to ensure that the observation window used is sufficient enough to
mitigate any detrimental effect on the statistical significance.

3. A CCP shall consider in its back testing programme, at least, clear statistical
tests, and performance criteria to be defined by CCPs for the assessment of back
testing results.

4. A CCP shall periodically report its back testing results and analysis in a form
that does not breach confidentiality to the risk committee in order to seek their
advice in the review of its margin model.
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5. Back testing results and analysis shall be made available to all clearing mem-
bers and, where known to the CCP, clients. For all other clients back testing
results and analysis shall be made available by the relevant clearing members
on request. Such information shall be aggregated in a form that does not breach
confidentiality and clearing members and clients shall only have access to de-
tailed back testing results and analysis for their own portfolios.

6. A CCP shall define the procedures to detail the actions it could take given the
results of back testing analysis.”

The all stress testing framework is also defined in European Parliament (2012a, Articles 51
to 53) :

Article 51 - Stress testing procedure

1. “A CCP’s stress tests shall apply stressed parameters, assumptions, and scena-
rios to the models used for the estimation of risk exposures to make sure its
financial resources are sufficient to cover those exposures under extreme but
plausible market conditions.

2. A CCP’s stress testing programme shall require the CCP to conduct a range
of stress tests on a regular basis that shall consider the CCP’s product mix
and all elements of its models and their methodologies and its liquidity risk
management framework.

3. A CCP’s stress testing programme shall prescribe that stress tests are per-
formed, using defined stress testing scenarios, on both past and hypothetical
extreme but plausible market conditions in accordance with Chapter VII. Past
conditions to be used shall be reviewed and adjusted, where appropriate. A CCP
shall also consider other forms of appropriate stress testing scenarios including,
but not limited to, the technical or financial failure of its settlement banks,
nostro agents, custodian banks, liquidity providers, or interoperable CCPs.

4. A CCP shall have the capacity to adapt its stress tests quickly to incorporate
new or emerging risks.

5. A CCP shall consider the potential losses arising from the default of a client,
where known, which clears through multiple clearing members.

6. A CCP shall periodically report its stress testing results and analysis in a form
that does not breach confidentiality to the risk committee in order to seek
its advice in the review of its models, its methodologies and its liquidity risk
management framework.

7. Stress testing results and analysis shall be made available to all clearing mem-
bers and, where known to the CCP, clients. For all other clients, back testing
results and analysis shall be made available by the relevant clearing members
on request. Such information shall be aggregated in a form that does not breach
confidentiality and clearing members and clients shall only have access to de-
tailed stress testing results and analysis for their own portfolios.

8. A CCP shall define the procedures to detail the actions it could take given the
results of stress testing analysis.”
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Article 52 - Risk factors to stress test

1. “A CCP shall identify, and have an appropriate method for measuring, relevant
risk factors specific to the contracts it clears that could affect its losses. A CCP’s
stress tests shall, at least, take into account risk factors specified for the following
type of financial instruments, where applicable :

(a) interest rate related contracts : risk factors corresponding to interest rates
in each currency in which the CCP clears financial instruments. The yield
curve modelling shall be divided into various maturity segments in order to
capture variation in the volatility of rates along the yield curve. The number
of related risk factors shall depend on the complexity of the interest rate
contracts cleared by the CCP. Basis risk, arising from less than perfectly
correlated movements between government and other fixed-income interest
rates, shall be captured separately ;

(b) exchange rate related contracts : risk factors corresponding to each foreign
currency in which the CCP clears financial instruments and to the exchange
rate between the currency in which margin calls are made and the currency
in which the CCP clears financial instruments ;

(c) equity related contracts : risk factors corresponding to the volatility of indi-
vidual equity issues for each of the markets cleared by the CCP and to the
volatility of various sectors of the overall equity market. The sophistication
and nature of the modelling technique for a given market shall correspond
to the CCP’s exposure to the overall market as well as its concentration in
individual equity issues in that market ;

(d) commodity contracts : risk factors that take into account the different ca-
tegories and sub-categories of commodity contracts and related derivatives
cleared by the CCP, including, where appropriate, variations in the conve-
nience yield between derivatives positions and cash positions in the com-
modity ;

(e) credit related contracts : risk factors that consider jump to default risk,
including the cumulative risk arising from multiple defaults, basis risk and
recovery rate volatility.

2. In its stress tests, a CCP shall also give appropriate consideration at least to
the following :
(a) correlations, including those between identified risk factors and similar

contracts cleared by the CCP ;
(b) factors corresponding to the implied and historical volatility of the contract

being cleared ;
(c) specific characteristics of any new contracts to be cleared by the CCP ;
(d) concentration risk, including to a clearing member, and group entities of

clearing members ;
(e) interdependencies and multiple relationships ;
(f) relevant risks including foreign exchange risk ;
(g) set exposure limits ;
(h) wrong-way risk.”
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Article 53 - Stress testing total financial resources

1. “A CCP’s stress-testing programme shall ensure that its combination of margin,
default fund contributions and other financial resources are sufficient to cover the
default of at least the two clearing members to which it has the largest exposures
under extreme but plausible market conditions. The stress testing programme
shall also examine potential losses resulting from the default of entities in the
same group as the two clearing members to which it has the largest exposures
under extreme but plausible market conditions.

2. A CCP’s stress-testing programme shall ensure that its margins and default
fund are sufficient to cover at least the default of the clearing member to which
it has the largest exposures or of the second and third largest clearing members,
if the sum of their exposures is larger in accordance with Article 42 of Regulation
(EU) No 648/2012.

3. The CCP shall conduct a thorough analysis of the potential losses it could suffer
and shall evaluate the potential losses in clearing member positions, including
the risk that liquidating such positions could have an impact on the market and
the CCP’s level of margin coverage.

4. A CCP shall, where applicable, consider in its stress tests, the effects of the
default of a clearing member that issues financial instruments cleared by the
CCP or the underlying of derivatives cleared by the CCP. Where applicable, the
effects of a client’s default that issues financial instruments cleared by the CCP
or the underlying of derivatives cleared by the CCP shall also be considered.

5. A CCP’s stress tests shall consider the liquidation period as provided for in
Article 26.”
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Armenti, Y., S. Crépey, and C. Zhou (2016). The sustainable Black-Scholes equations. In In-

ternational Congress on Acturial Science and Quantitative Finance, pp. 155–167. Springer.
Arnsdorf, M. (2012). Quantification of central counterparty risk. Journal of Risk Management

in Financial Institutions 5 (3), 273–287.
Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath (1999). Coherent measures of risk. Mathe-

matical finance 9 (3), 203–228.
Asmussen, S. and P. W. Glynn (2007). Stochastic simulation : algorithms and analysis, Vo-

lume 57. Springer Science & Business Media.
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Résumé : Cette thèse traite de diverses problématiques ayant trait à la gestion du collatéral dans le contexte
du trading centralisé au travers des chambres de compensation. Préliminairement, nous présentons les notions de
coûts de capital et coût de financement pour une banque, en les replaçant dans un cadre Black–Scholes élémentaire
où le payoff d’un call standard tient lieu d’exposition au défaut d’une contrepartie. On suppose que la banque ne
couvre qu’imparfaitement ce call et doit faire face à un coût de financement supérieur au taux sans risque, d’où des
corrections de pricing de type FVA et KVA par rapport au prix Black–Scholes. Nous nous intéressons ensuite aux
coûts auxquels une banque doit faire face lorsqu’elle trade dans le cadre d’une CCP. À cette fin, nous transposons au
trading centralisé le cadre d’analyse XVA du trading bilatéral. Le coût total pour un membre de trader au travers
d’une CCP est ainsi décomposé en une CVA correspondant au coût pour le membre de renflouer sa contribution
au fonds de garantie en cas de pertes consécutives aux défauts d’autres membres, une MVA correspondant au coût
de financement de sa marge initiale et une KVA correspondant au coût du capital mis à risque par le membre sous
la forme de sa contribution au fonds de garantie. Nous remettons ensuite en cause les hypothèses réglementaires
précédemment utilisées, nous intéressant à des alternatives dans lesquelles les membres auraient recours pour leur
marge initiale à une tierce partie, qui posterait la marge à la place du membre en échange d’une rémunération.
Nous considérons également un mode de calcul du fonds de garantie et de son allocation qui prennent en compte le
risque de la chambre au sens des fluctuations de son P&L sur l’année suivante, tel qu’il résulte de la combinaison
des risque de marché et des risques de défaut des membres. Enfin, nous proposons l’application de méthodologies
de type mesures de risque multivariées pour le calcul des marges et/ou du fonds de garantie des membres. Nous
introduisons une notion de mesures de risque systémiques au sens où elles présentent une sensibilité non seulement
aux risques marginaux des composantes d’un système financier (par exemple, mais non nécessairement, les positions
des membres d’une CCP), mais aussi à leur dépendance.

Title : XVA Analysis, Risk Measures and Applications to Centrally Cleared Trading

Keywords : Central Clearing Houses (CCP), Counterparty Credit Risk, Collateral, XVA Analysis

Abstract : This thesis deals with various issues related to collateral management in the context of centralized
trading through central clearing houses. In the first place, we present the notions of cost of capital and funding
cost for a bank, placing them in an elementary Black–Scholes framework where the payoff of a standard call is
used as the exposure at default of a counterparty. It is assumed that the bank can’t perfectly hedge this call and
must face with a funding cost higher than the risk free rate, hence pricing corrections of the FVA and KVA type
appear in top of the Black–Scholes price. Then, we look at the different costs that a bank has to face when trading
in the CCP context. To this end, we transpose the well-known XVA analysis framework from the bilateral trading
world to the central clearing one. The total cost for a member trading through a CCP is thus decomposed into a
CVA corresponding to the cost for the member to reimburse its contribution to the guarantee fund in the event of
losses due to the defaults of other members, a MVA which is the cost of financing its initial margin and a KVA
corresponding to the cost of capital put at risk by the member in the form of its contribution to the guarantee fund.
Afterwards, we question the previously used regulatory assumptions, focusing on alternatives in which members
would borrow their initial margin to a third party who would post the margin instead of the member himself, and
this, in exchange for remuneration. We also consider a method of computing the guarantee fund and its allocation
taking into account the risk of the CCP in the sense of fluctuations of its P&L over the following year, as it results
from the market risk and the counterparty risk of the members. Finally, we propose the application of multivariate
risk measure methodologies for the computation of margins and/or the CCP guarantee fund. We introduce a notion
of systemic risk measures in the sense that they are sensitive not only to the marginal risks of the components
of a financial system (for example, but not necessarily the positions of the members of a CCP) but also to the
dependence of their components.
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