If you go back a few hundred years, what we take for granted today would seem like magic: being able to talk to people over great distances, to transmit images, flying, accessing vast amounts of data like an oracle. These are all things that would have been considered magic a few hundred years ago.

-Elon Musk

General introduction

Moore's law has been the lifeblood of semiconductor manufacturing strategies for the last 40 years. The self-fulfilling prophecy made by the co-founder of Intel in 1965, stating that the number of components per integrated circuit would double every two years, made transistors density the main driver for competitiveness in the semiconductor industry for almost half a century. However, as fundamental limits to components miniaturization are getting closer and closer (we are now reaching gate sizes of 5 nm, around 10 atoms long), many actors are turning to a different competitive strategy, advancing along the "More than Moore" axis. The More than Moore paradigm [START_REF] Zhang | The paradigm of 'More than Moore[END_REF] consists in switching from single architectures that can be used to perform any task to manufacturing specialized architectures with higher performances for specific applications, and is driven by the special needs of smartwatches, autonomous cars and more globally the rise of the "internet of things". As this trend is focused on more diversified products in lower quantities, it changes the rules of the game and sets delivery precision and short delivery times as a new "sinews of war".

It is however inherently difficult to reduce delivery times (referred to as cycle times in the industry) and increase delivery precision in the particular manufacturing environment (of High Mix Low Volume manufacturing systems) required to manufacture many different products in parallel in (relatively) small quantities. The main reason to that is referred to as "variability": "variability" translates the inevitable fluctuations in the manufacturing flows which create uncontrolled and unpredictable "traffic-jams". Even though most companies and academics agree on the negative consequences of variability, little is known about the essence of variability, the mechanisms involved, and how to effectively cope with it in order to be more competitive. This manuscript will address this issue of variability in complex manufacturing environment. The research that we will present was conducted through a CIFRE PhD (an industrial PhD) between the G-SCOP laboratory (Grenoble laboratory of Science for Conception, Optimization and Production) and STMicroelectronics, a High Mix Low Volume semiconductor manufacturer with two key manufacturing facilities (Crolles 200 and Crolles 300 fabs) located in Crolles, France.

The manuscript is divided in three main parts. The first part aims at explaining in depth what "variability" really stands for, and is composed of chapters 1, 2, and 3. Chapter 1 gives an overview of variability and shows that, even though the work is based on semiconductor manufacturing, it covers a much larger spectrum as managing variability is a key ingredient in the development of Industry 4.0, a growing standard for industries of the future. Chapter 2 then zeros-in on the main topic by introducing the central notion of "workflow variability" and covering the more-than-meets-the-eye question of measuring workflow variability in manufacturing systems. Chapter 3 then focuses on the root causes of variability through an extended literature review, examples, and our experience in a real world manufacturing system.

The second part of this manuscript is organized around the integration of variability in production management tools, or in layman's term: how to deal with workflow variability. To that extent, we first show in chapter 4 how the projection/planification process of a company suffering high variability can be improved by integrating the consequences of workflow variability on cycle time, thus increasing the control on the system and countering the effects of workflow variability. We then discuss in chapter 5 how the current lack of proper measurement of the performances of process-clusters* (or toolsets*) is holding back the development of tools and models to integrate further variability. To address this issue, we introduce a new concept: the Concurrent WIP, along with associated tools and measures which allow a proper measurement of process-clusters performances even in the presence of many complex sources of variability. Chapter 6, our last chapter dedicated to the integration of variability, addresses underlying mechanisms that create workflow variability. We show, based on industrial data, how dependencies in the different events that occur in a manufacturing environment is a key to understanding workflow variability.

Finally, part Three of this manuscript addresses perspectives of variability reduction. We show in chapter 7 how we believe simulation tools fueled by real data can be used to identify actual levers to reduce workflow variability, and we structure around this the several steps to start reducing workflow variability on the short-term. The last chapter, chapter 8, organizes perspectives of variability reduction on a much larger time scale. We show the potential of addressing global aspects of workflow variability, and propose a flagship around which we articulate a framework (for both research and company structure) to incrementally reduce workflow variability in a manufacturing environment over the next 10 years.

As this manuscript summarizes the work of a CIFRE PhD, it relies on both academic and industrial work. As such, all the work in this manuscript was either published or oriented towards an industrial application. The work from chapter 4 was implemented and industrialized to improve the WIP projections at both STMicroelectronics Crolles fabs. Chapter 3 was presented at the 2016 Winter Simulation Conference (WSC) [START_REF] Dequeant | A literature review on variability in semiconductor manufacturing: the next forward leap to Industry 4.0[END_REF], chapter 5 shows work presented at the 2016 International Conference on Modeling, Optimization & Simulation (MOSIM) [START_REF] Dequeant | Le WIP Concurrent : une proposition de file d'attente du point de vue du produit pour caracteriser le temps de cycle[END_REF] and submitted to the journal of IEEE Transactions on Automation, Science and Engineering (TASE), and chapter 6 covers works presented at the 2017 International Conference on Industrial Engineering and Systems Management (IESM).

Part One I What is "variability"? "Variability" is a disturbing notion. In the context of manufacturing workflows*, it refers to a phenomenon that affects the workflow and results in time loss and reduced delivery accuracy, but is far from being properly understood. This first part of this manuscript explains in depth what "variability" really is. We first explain (chapter 1) what phenomenon "variability" translates and how this generates the negative consequences one should be concerned about when it comes to manufacturing activities. Chapter 1 also explains what type of manufacturing structure the research applies to and gives the specificities of the semiconductor industry in which the research was conducted.

Chapter 2 then zeros-in on the main topic by introducing the notion of "workflow variability": by understanding that the variability is about the workflow, one can then focus on the proper way to measure it. We explain in chapter 2 the difficulty of measuring workflow variability, the traps not to fall into while trying to do so, and a proposed approach to allow this quantification of workflow variability. We then explain how a local approach on studying workflow variability requires dividing the manufacturing system into process-clusters and how we can rigorously split the system into what we call "highly connected process-clusters".

The last chapter of this part (chapter 3) focuses on the root causes of variability. Through an extended literature review, examples and our experience in a real world manufacturing system, we give an extensive list of the sources of variability which we classify into four categories (equipment specific, product-induced, operational and structural). This work, which was published in the WSC conference [START_REF] Dequeant | A literature review on variability in semiconductor manufacturing: the next forward leap to Industry 4.0[END_REF] and cited in a worldwide semiconductor Newsletter [START_REF] Robinson | Sources of variability in wafer fabs[END_REF], also allows a better understanding of why High Mix Low Volume (HMLV*) production is so prone to workflow variability compared to traditional production lines.

Chapter 1

The impact of variability on manufacturing activities

The term "variability" is used in the industry to refer to the phenomenon behind the congestions that affect the Work-In-Progress (WIP*). More specifically, people put behind this word the notion that they do not control these congestions as they seem to happen unexpectedly. This unpredictability is agreed to have major consequences on the production as it makes companies lose time, money and delivery accuracy. It seems, though, that not every manufacturing facility is affected the same way: High Mix Low Volume production plants are reportedly much more affected by this "variability" and its negative consequences.

This first chapter of this manuscript starts by giving an overview of this notion of "variability", to provide the reader with a basic understanding of what "variability" means in the context of workflow management. We show the impact this variability has on flows in general and in the context of manufacturing activities in particular. We explain the basic mechanism which makes variability create more congestions and increase the cycle times, and why these cycle times matter when it comes to manufacturing activities. We then transition to the more specific type of manufacturing [High Mix Low Volume] where variability plays an even more central role as it is both present to a higher degree and has a stronger impact on the ability to control the manufacturing system.

As this PhD was conducted in collaboration with STMicroelectronics (a High Mix Low Volume semiconductor manufacturing company), this manuscript is centered on the semiconductor industry and uses many examples with industrial data from the Crolles fab* of STMicroelectronics. Therefore, the second part of this first chapter covers the specificities of High Mix Low Volume semiconductor manufacturing all the while explaining why the research conducted here is applicable to any type of manufacturing system and why we believe it is particularly crucial for the future of manufacturing.

1.A. Different acceptations of variability 1.A.1. Traffic jams and the problem of non-uniform flows

Traffic jams are (almost) everyone's nightmare. Except if you are the CEO of a multinational travelling by helicopter, or if you are lucky enough not to need a car in your life, you certainly experienced traffic jams and the frustration that comes with the time loss it creates. If not in a car, you certainly experienced queuing in a supermarket, waiting at a calling-center, or lining for security check at the airport… Though the context is different, the underlying phenomenon is the same in all cases, formally known as "queuing". The basic reason clients (cars, people, products…) queue is scarcity of resource: for a given period of time, the resource available (road, cashier, call-center operator, security guard…) is lower than what is needed to treat immediately all the clients that arrive in this period of time. This situation is formally known as a "bottleneck" situation (as the same phenomenon explains why it takes some time for a bottle tipped upside-down to empty) or an over-saturation.

The type of traffic jam (and therefore queuing or bottleneck) that is of interest here respects the condition that on average (i.e. on the long term) the available resource is greater than the demand for the resource (think of the previous cases: the road is empty at night, there are no more customers when the supermarket closes, and security lines are empty at night, therefore on the long term the available resource is greater than the demand). Necessarily, this implies that something is not constant in time (otherwise the resource would always be greater than the demand). It is this inconsistency, either in the clients' arrivals or in the availability of the resources that generates the queuing. For instance, morning, evening, or holiday traffic jams occur because at these periods of time, there are more cars fighting for the same resource (the road). One (hypothetical) solution would be to oversize the resources to always have more resource than demand. Obviously, in most cases, we choose not to do so as resources cost a lot.

One could then choose to adjust the capacity to the demand. In supermarkets for instance, we know that more cashiers are needed when people leave work as well as on Saturdays. However, on top of these predictable variations comes a part of uncertainty and unpredictability in when and how long these variations and non-uniformities might occur, and it seems that, as we are not able to predict them, we are doomed to suffer their consequences, i.e. queue and wait…. This "variability" is the heart of the problem that we study through this manuscript.

Manufacturing facilities are no exception to the rule: as the "traffic" of unfinished goods (that is, the WIP) has to travel from and to different process-units*, non-uniformities in the flows of products and the resources make some products request the same process-unit resource concurrently, which inevitably results in unwanted waiting time. One consequence of this phenomenon is that it takes longer for each product to travel through the entire manufacturing line (as each product has to do all its processing steps and often wait behind others).

As this problematic is a major source of inefficiency, it has drawn attention and has been studied for more than a century. A major approach to the problem comes from mathematics, as the science of describing the interactions between servers and clients in a stochastic environment, and known as queuing theory.

1.A.2. Queuing theory: early works on understanding variability

Erlang [START_REF] Erlang | The theory of probabilities and telephone conversations[END_REF] was the first (1909) to mathematically describe the stochasticity in clients/servers systems in what is now called "queueing theory". The first model assumed markovian arrivals and markovian services (or process-times*) and a unique server, and is formally known as an M/M/1 queue (in Kendall's notation [START_REF] Kendall | Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain[END_REF]). In 1930, Pollaczek [START_REF] Pollaczek | Über eine aufgabe der wahrscheinlichkeitstheorie. I[END_REF] extended the model to general service laws (including for instance normal distributions) to address M/G/1 queues. This formula is however restricted to a unique server. Since then, many new queuing models have been proposed. The work of Whitt ([8]- [START_REF] Whitt | Approximations for the GI/G/m queue[END_REF]) being for instance famous for proposing G/G/m models (general arrivals and processes with multiple servers) and therefore allowing to study more general systems.

The increasing use of queuing theory in the industry is partly due to the work of Hopp & Spearman, who, with the publication of their book "Factory Physics" in 1996 [START_REF] Hopp | Factory physics: foundations of factory management[END_REF], have helped bringing the models from theory to practice. In "Factory Physics", Hopp and Spearman also brought together the idea that different levels of "variability" translate into different levels of queuing time. The said variability coming for instance from inconsistencies in the processes or failures of the tools*. Equation (1) was proposed by Hopp and Spearman to model the average queuing time 𝐶𝑇 𝑞 in a workstation.

𝐶𝑇 𝑞 = ( 𝐶 𝑎 2 + 𝐶 𝑒 2 2 ) × ( 𝑢 √2(𝑚+1) -1 𝑚(1 -𝑢) ) × 𝑡 𝑒 (1) 
Where:

𝐶 𝑎 = coefficient of variation (ratio between the standard deviation and the mean) of inter-arrival times 𝐶 𝑒 = coefficient of variation of effective process-times 𝑢 = utilization rate of the workstation 𝑚 = number of machines in the workstation 𝑡 𝑒 = effective process-time of the machines

The impact of variability

Equation ( 1) is a very basic model in the sense that it is built with respect to many assumptions (which for most cases, are close enough from the reality). This equation is nonetheless extremely useful, as it helps understand the fundamental impact of variability: the generation of queuing time. The three terms of Equation [START_REF] Zhang | The paradigm of 'More than Moore[END_REF] show well how queuing theory tries to incorporate the effects that create queuing: by itself, a product will experience only its process-time 𝑡 𝑒 . However, products are rarely by themselves, as companies generally want to get a return on investment on the tools they bought: the middle term translates that other manufacturing lots* might fight for the same resource. The more lots fighting over the same resource, the higher the probability of waiting behind other lots. This effect is translated through the utilization rate 𝑢. The last term, the left parenthesis, tries to address the level of nonuniformity and uncertainty. Basically, the more uniform things are (e.g. an arrival every hour exactly and fixed process-times), the less queuing occurs. Turning this the other way around, it means that the more the situation is irregular and uncertain, i.e. the more variability there is, the more cycle time is generated. In this sense, the coefficients of variation (𝐶 𝑎 and 𝐶 𝑒 ) are metrics proposed by queuing theory to try and measure the amount of variability in the system.

The different models proposed by queuing theory are, by definition, models that are only valid under specific assumptions. It is essential to keep in mind that variability, and more importantly its consequences, exist regardless of the presence of a model. As useful as these models are to understand how unexpected disruptions from uniformity can affect the system, it is important to bear in mind that they might only partially describe how "variability" is generated, what it actually is, and what consequences it has on entire systems.

1.A.3. Manufacturing systems: where cycle times matter

In simple, mono-product assembly lines, increased cycle times may not seem to be a huge problem. Indeed, for this type of production, the essential aspect seems to be the ability to meet the throughput rate, whether the cycle times are short or long: if we need to deliver 100 products a week to our clients, do we really care how long each product takes to finish, as long as we deliver 100 products a week? Yes. Yes we do care. Little's law [START_REF] Little | A proof for the queuing formula: L=$lambda$W[END_REF] tells us that increased cycle times necessarily come with increased Work-In-Progress (the unfinished goods that require further processes to be delivered). This means that, for any manufacturing facility, increased cycle times directly and proportionally translate into increased inventory of unfinished goods, i.e. more immobilization of assets and more cash required to run the business (each unfinished good required money to produce it, but has not yet brought money back as it has not been sold yet). Higher cycle times also translate into more latency in the detection of problems and non-conformities: if quality inspection is performed on finished products, a higher cycle time means that more products can undergo a defective process before the detection of the first out-of-spec product and therefore more products are at risk of being scraped (thrown away). The impact and cost of cycle time is the reason reducing cycle times and keeping low WIP inventory is one of the central objectives of Lean Manufacturing [START_REF] Shah | Lean manufacturing: Context, practice bundles, and performance[END_REF].

As variability is the main driver of queuing time (and therefore cycle time), keeping a low variability in the system is a fundamental key to successful manufacturing companies.

1.A.4. High Mix Low Volume: the European model

Survival of the fittest

Modern manufacturing is commonly agreed to have started with Ford and the production line of the first mass-produced car: the Ford Model T. The standardization of the production and the partial automatization of the assembly line allowed for economies of scale: the inverse relationship between the number of units produced and the cost of each unit. In layman's term, the more you make, the less it costs. For instance, economies of scale is the reason Tesla is building its Giga-Factories: Tesla wishes to drastically reduce the cost of its batteries and cars by pushing the concept to an unprecedented level; mutualizing the resources, tools, machinery, and engineering to the limit. What economies of scale actually translate is that, like everything, manufacturing obeys the simple law of evolution: survival of the fittest. Survival of the fittest means adapting the best to the environment (a concept more formally known as "Porter's diamond" [START_REF] Porter | The competitive advantage of nations[END_REF] in economics, see Figure 1). Economies of scale is a good strategy to adapt. However, the equally important word in "adapting to the environment" is "environment". The economic environment, as the natural environment, greatly differs from one region to another. Europe, for instance, does not have the same volumes of domestic demand as the US and Asia. These internal markets are essential for the initial phase of a company as they allow small shipping costs, good knowledge of the regulations, quite often local government helps… which all help to a rapid production ramp-up and a relatively short payback period on massive investments. The volumes of most European manufacturing companies are therefore bounded by their environment, which also includes more strict regulations (meaning less flexibility for the companies) and older existing infrastructures which need to be built upon (instead of starting from scratch).

Europe's environment is different than US and Asia environment, and in this setting, Europe cannot compete in the Low Mix High Volume league (producing few products in very large volumes). However, Europe's environment is different in other ways, which can bring competitive advantages from other axis. One main aspect of Europe is that the population is extremely heterogeneous: there are many different countries, cultures, traditions, backgrounds, religions, etc. This diversity means that there is a high demand in Europe for different products: the demand is not in slight modifications such as the color or an extra option, but in different products from the core. Contrary to customization, these differences are too big to allow different products to follow the same assembly line: the order and nature of the processing steps are different. In this environment, the fittest companies, the best suited for survival, are the ones that are able to achieve economies of scale by simultaneously producing many different products: this is the realm of High Mix Low Volume production. [START_REF] Porter | The competitive advantage of nations[END_REF], the environment of a company Europe's manufacturing has been at the back of the pack the last couple of decades. The reason is not that US and Asia manufacturing are better suited, it is that they were better suited to their environment than Europe's manufacturing was to its environment. Indeed, producing in High Mix Low Volume adds a lot of complexity to the manufacturing process. Up to recently, the information management and technology required to tell each machine and each worker what manufacturing step to process on what product at what time was too much to handle efficiently, and the product-mix* and volumes had to stay relatively small to manage such systems. However, today, the rise of "Industry 4.0" -a growing standard of communication and information management in complex automatized manufacturing environments, see Figure 2 and [START_REF] Brettel | How virtualization, decentralization and network building change the manufacturing landscape: an Industry 4.0 perspective[END_REF]-is the mutation required in the European industry to evolve into the most fitted type to its environment: High Mix Low Volume production. This type of production allows competing relatively well along the cost side (with economies of scale), all the while taking leadership in product diversification. The potential of such industries in the coming decades is huge, as the pace of change in the demand is increasing more rapidly than ever with the democratization of internet and new trends such as the "internet of things". 

1.A.5. Importance of variability in complex manufacturing

The complexity of High Mix Low Volume production

The differences in the products made in a High Mix Low Volume manufacturing facility are greater than just "options" and "customizations". All the products in a HMLV fab might be of the same type and share many common characteristics, but do not follow the same processing steps. As so, the manufacturing system cannot be organized in a classic production line (where the products follow a linear path through the system, entering from one end and exiting from the other), but is rather (generally) organized in process clusters where each cluster performs a specific process type. Each product in such a manufacturing facility follows its own route, its personal sequence of steps to be performed one after another. This extra condition makes managing a HMLV fab the equivalent of managing hundreds of production lines, all at the same time, all competing for the same resources. As so, HMLV fabs are part of complex manufacturing systems, where the levels of interaction between the products and the resources is so high that managing the production is too complicated to be done with simple tools and techniques, and requires a lot of optimization, forecasting, communication, etc. Industry 4.0 is one tool that will allow such industries to grow. However, with complexity also comes variability…

The increased level of variability

As any manufacturing system, HMLV manufacturing systems are affected by variability: the inconsistencies in the flow of products and the resources create queues that generate unwanted queuing times. However, HMLV fabs are far (far) more subject to variability than traditional production lines, firstly because of the different routes of the products: as all the products have very different routes, many products can arrive at the same time at a given process cluster, even if they were started at different times. The difference is the same as the difference between a highway and the roads in a big city. On a highway, all the flow moves along the same axis, at relatively the same speed: some congestions happen, but the highway is generally the fastest road one can take, and travelling a certain distance on a highway takes a relatively short cycle time. In a big city, on the contrary, a huge number of cars want to travel using the same roads, but with each car having its own route. The result is much bigger congestions in cities than in highways. When it comes to variability and congestions, HMLV manufacturing systems are to product flows what huge cities are to traffic flows. Variability therefore has a central impact on HMLV manufacturing systems firstly because there is much more of it. But this is not the only reason.

The central impact of variability

The impact variability has on classical production lines remains true on HMLV manufacturing systems: as variability affects the flow of products through the inconsistencies in the resources, the cycle times are increased. Another reason why variability is much more important in HMLV systems than in classical production lines is that cycle time itself is a much more critical aspect. We previously mentioned the impact of cycle time on increased WIP (i.e. immobilized assets) and yield* (the proportion of products started that make it to the selling point, the rest being thrown away). On top of this, cycle time plays a huge role in HMLV production because of competitiveness. Indeed, as the volumes for each product are low and the markets fast changing, delivery time is a key performance that allows gaining new markets. The smaller the delivery times are, the more diverse and small the markets addressed can be.

Cycle time is such a central aspect in many manufacturing areas that practitioners regularly use special graphs describing the relation between cycle time and utilization: so-called "operating curves" [START_REF] Aurand | The operating curve : a method to measure and benchmark manufacturing line productivity[END_REF] (or "cycle time throughput curves"). These curves play a central aspect in understanding variability, as they are used in a large number of papers (e.g., see [START_REF] Brown | Queueing model improves IBM's semiconductor capacity and lead-time management[END_REF]- [START_REF] Zisgen | A queueing network based system to model capacity and cycle time for semiconductor fabrication[END_REF]) to describe the impact of variability. These curves, as shown in Figure 3.A, represent the normalized cycle time (also called Xfactor* [START_REF] Delp | A dynamic system regulation measure for increasing effective capacity: the X-factor theory[END_REF], i.e. the ratio between the cycle time and the raw-processing-time) versus the utilization rate of the tools for a given toolset.

Figure 3: operating curves showing different levels of variability (A) and the link to capacity loss (B)

Understandably, the tools cannot be used more than 100% of the time, which bounds the maximum utilization rate to 100%. Over 100%, lots would "infinitely" accumulate, thus creating "infinite" cycle times. Therefore, for any toolset (i.e. queuing system), the queuing time starts at 0 (corresponding to an Xfactor of 1) at a utilization rate of 0, and increases to infinity when approaching 100%. The operating curves are the description of what happens in the middle, which actually translates the level of variability at this toolset. In accordance with our previous description of the impact of variability, Figure 3.A shows different curves for different levels of variability, and shows that an increase in variability generates an increase in cycle time. The operating curves always show cycle time in relative manners using the Xfactor ratio. Indeed, in real-world situations, what is important is not how long it takes to manufacture products but rather if this time translates a good performance. For instance, if it takes two different products respectively 50 days and 65 days of cycle time to be manufactured, can it be said that one product translated better performances than the other? This question cannot be answered without knowing the raw-processing-time. If we know, however, that the two previous products require respectively 10 days and 13 days of raw-processing-time, we can then compute an Xfactor of 5 for both products, and see that they actually had equal performances in terms of cycle time.

On top of the cycle time, another less obvious impact of variability is the capacity loss it generates. We usually think of capacity loss as tools inefficiencies. Variability creates another kind of capacity loss which is actually a strategic capacity loss. The link between capacity loss and variability arises from the desire of companies to both maximize the utilization of their assets (in order to minimize the costs) and keep an acceptable cycle time (to have fast delivery times and access more markets). As Figure 3.B shows, the constraint on cycle time generally translates in a maximum allowed Xfactor. Because of the link between cycle time and utilization depicted by the operating curves, setting a maximum allowed Xfactor actually translates in setting a maximum allowed capacity utilization. However, setting a maximum utilization rate means choosing not to fully use the tools. In practice, this choice translates by not accepting all orders of clients as to not load the system passed the critical utilization level. Note that, as Figure 3.A indicates, for a given Xfactor, a lower variability equals a higher utilization rate. Therefore, lowering variability in a manufacturing system that has a constraint on cycle time (such as HMLV) can significantly increase the resources effectively available and therefore increase the capacity of the entire system without adding any resource. In a competitive world where margins are of only a few percent, managing variability is a lever with a huge potential.

In addition to cycle time and capacity loss, another impact of variability arises when it comes to HMLV production: tractability. Tractability is the ability to control the system and to be able to make accurate forecasts about the future of the system (in particular about the flows of products in the system). Tractability is of upmost importance in HMLV, because, again, of the markets addressed. Indeed, not all products take the same time to be manufactured (as not all products have the same number of steps or follow the same routes). Concurrently, different clients have different expectations in terms of cycle times and delivery dates. In such setting, it is essential to know how long each product will take to finish in the current manufacturing setting, and to be able to act on the system to speed up some of the products and slow down some other ones to maximize the utilization of the resources while respecting all the commitments to the clients. As variability creates unexpected and uncontrolled queuing times at the different process clusters of the manufacturing systems, variability decreases the tractability of HMLV manufacturing systems. Managing variability in HMLV manufacturing systems is therefore an extremely central aspect of managing the system, as it is both much higher than in traditional systems and much more (negatively) impactful.

1.A.6. The confusing aspects of variability

A manufacturing system is a global system. It comprises of different resources, operators, flows, etc. Matters of cycle time, capacity loss, and decrease in tractability also take their importance when we consider the entire manufacturing system. However, we first described variability through queuing equations, which are models describing process clusters, not manufacturing systems. Therefore, we can already see that there are different aspects to variability, different scales at which variability appears. To this first mind-boggling aspect adds the problem of the definition of "variability". As we mentioned the term "variability" several times already and it is the central aspect of this manuscript, careful readers would have noticed that we have not yet given any definition of the word. Through our description, we mainly used the word variability in accordance to the definition of Oxford dictionaries: the "Lack of consistency or fixed pattern; liability to vary or change". However, the word usually describes another quantity, phenomenon or unit: we can talk about "a great deal of variability in quality", "seasonal variability in water levels", etc. When it comes to manufacturing systems and workflows, the literature is generally unclear on what variability qualifies. So far, we have seen that variability is a "lack of consistency or fixed pattern; a liability to vary or change" that affects the flows of products, and is also connected to the resources that treat these products. However, up to this part of the manuscript, the question "variability of what?" does not have a clear answer. Before clarifying the above points in the next chapter, we will now introduce the case study around which the work of this PhD was conducted. Indeed, this PhD had the particularity to be a collaboration between a research laboratory (G-SCOP) and a company (STMicroelectronics) through a type of contract known as a CIFRE thesis. In this setting, the work was conducted with a general scope, however using examples, data and vocabulary specific to the semiconductor industry.

1.B. STMicroelectronics: a case study on semiconductor manufacturing 1.B.1. An industrial PhD at STMicroelectronics

STMicroelectronics

STMicroelectronics is a company that develops, produces and commercializes microchips for electronic systems. The company generated a revenue of 7 billion euros in 2016 and is settled in a dozen countries in the world with 12 production sites and 39 conception sites. ST (the short name for STMicroelectronics) was created in 1987 from the fusion of SGS Microeletronica and Thomson Semiconducteurs and produces microchips for a wide range of applications that address 5 main markets that are Microcontrollers, Automotive, MEMS & Sensors, Application Processors & Digital Consumer, and Smart Power (Figure 4).

Figure 4: the main markets of STMicroelectronics

Semiconductor manufacturing is generally separated into two main steps which are referred to as the front-end and the back-end activities. The front-end takes raw silicon substrate (wafers*) and manufactures the transistors and the connections to create on the wafers the core elements of the microchips. The back-end then receives these processed wafers, performs functional tests on the microchips that are engraved in the wafers, and then cuts the microchips from the wafers and packages them into single microchips that can be used on a motherboard or as part of an integrated product (Figure 5 shows microchips on wafers and after being packages). The front-end activity is by far the most complicated and most expensive part of the process and is where most of the added-value is generated. 

Crolles manufacturing site, France

The site of Crolles was built in 1992 not long after the creation of the company. It is now a strategic site that employs more than 4000 people and contributes to about a quarter of the company's revenue. The site of Crolles is composed of two fabs, a 200mm and a 300mm fab (referring to the diameter of the wafers). The 300mm fab being the most recent one, it supports technologies that can engrave down to 10nm. At such small scales, the presence of dust or particles is extremely problematic, as it would create (comparatively) huge misalignments it the different layers of materials that are deposited on the wafers. The entire process therefore takes place in a clean room with cleanliness requirements one thousand times greater than that of an operating room. This requires the entire architecture of the building to be thought for this specific purpose. Several floors of filtering and air treatment therefore surround the clean room and keep the air clean by injecting a laminar flow of air as to continuously expel in the floor any particle created inside the room (Figure 6). The transportation of the lots in the 300mm fab is fully automatized and run by the Automated Material Handling System (AMHS), which is primarily composed of suspended robots travelling 35 km/h. As so, transportation times are generally negligible compared to queueing and process-times inside the fab.

Objectives

As STMicroelectronics Crolles is a HMLV fab, it is subject to the issues we explained earlier: ST wants to improve the tractability of its manufacturing system in order to enhance the delivery precision for both a better clients' satisfaction and an optimization of the resource utilizations. As the growing segments of semiconductor markets are along "internet of things" and custom-made microchips, it is also important for the company to further improve its cycle time as to secure the future markets and become a leader early on. As this PhD is an "industrial PhD" (with a CIFRE contract), the research will be targeted in directions that will allow the company to achieve its objectives in the near future. As this PhD is focused on variability, the objectives of the research are to allow a better tractability of the system through better knowledge on variability, a better integration of variability in the production management tools of the company, as well as building up structured knowledge on variability in a way that will allow the company to reduce the variability and thus the negative impacts it has on the manufacturing system. As several attempts to reduce variability have had questionable results, it is important to first take a step back and ask the important question of what variability really is, with all the ramifications this rather large question implies. This will help us understand what can be done straight away, what needs complimentary knowledge and information to advance in the right direction, and what this direction should be.

1.B.2. Characteristics of a High Mix Low Volume semiconductor manufacturing facility

Traditional production or assembly lines are usually organized to build products starting from raw materials or components, progressively transforming or assembling them in order to deliver "end products" or "finished goods". Such factories manage a linear flow of products going all in one direction from the beginning of the line to the end of the line. Regardless of whether process steps are performed by operators or machines, process-times are subject to inconsistencies, machines are subject to breakdowns, and operators and secondary resources are sometimes unavailable.

Semiconductor fabs are, like other industries, subject to the above mentioned "disturbances". Their main characteristic however, justifying the label of "complex environment", is the reentrancy* of their process flows. Microchips are produced by stacking tens of different layers of metals, insulators and semiconductor materials on silicon substrates (called wafers). The similarities of layers, added to the extreme machine costs, lead the same groups of machines (toolsets) to process different layers. Hence products are processed several times by the same machines over the course of their hundreds of process steps. Dedicating machines to steps is only (partially) possible in very large facilities (such as memory fabs) where thousands of tools are generally producing one or two different products; these factories operate in what is generally referred to as HVLM: High Volume Low Mix manufacturing.

The second characteristic of semiconductor manufacturing is that it involves different types of physical processes that require different types of machines (see [START_REF] Mönch | A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations[END_REF]). Batching machines, such as deposition or diffusion furnaces for example, will process products in batches of different minimum and maximum sizes according to the specific recipe* and process step. Other machines, such as cluster tools, consist of process chambers or modules sharing the same robotics. Depending on the products being processed at the same time, resource conflicts may appear within the tool, rendering process-times even more inconsistent. Many other characteristics may also be cited here as semiconductor manufacturing is above all a matter of technology and then only a matter of efficiency. A very good example is that most semiconductor vendors still propose "lots of 25 wafers" as manufacturing units, whereas the move to larger wafer sizes should already have challenged this paradigm.

A third characteristic of semiconductor fabs is the business model they use. While High Volume Low Mix units usually produce in the range of 3 to 4 different products at the same time over one or two different technology generations, High Mix fabs propose a wide variety of products to their customers over several technology nodes. A difficulty in this case is that specific process steps may only be required by very few products. Therefore, only 1 or 2 tools may be used to process a given group of steps and toolsets in general need to be highly flexible (In the sense that each tool can have a unique but changeable set of steps it is qualified on). Moreover, qualifying a "technology level" on a tool requires time (as functional tests can only be performed on finished products) and money (as "testing wafers" cannot be sold). Therefore, not all tools of a given toolset will be qualified on all the operations associated to this toolset, thus adding heterogeneity of tools to the heterogeneity of products. High Mix fabs, as they address a wide range of customers and products, generally follow a make-to-order policy. Given the range of products, stocks cannot satisfy demands and lots are therefore started on demand with different requirements in terms of delivery times. Production control techniques and rules are then introduced to manage different levels of priorities* necessary to achieve the individual required speeds.

1.B.3. A targeted study for a generic application

Microelectronic manufacturing is a $300 billion state-of-the-art industry. The huge amount of money involved in this industry, alongside the standardization that happened in the early 2000's with the development of the 300mm fabs and the continuous growth and pressure for innovations and improvements created a perfect environment for research. In the few decades of existence, the research field of semiconductor manufacturing has developed a common language and common standards for the description of the different elements that compose a semiconductor manufacturing system. Moreover, as the volumes are so enormous, there has been and will continue to be a continuous flow of research in this field. Therefore, this PhD mostly restricted the research to semiconductor manufacturing.

Semiconductor manufacturing has one of the most complex environment in the world. Indeed, as the making of a microchip involves an extreme wide range of physics (electronics, optical, materials, signal processing, chemistry, dealing with gases and extreme temperatures…), the machines, processes, and "machine logistics" in a semiconductor fab are extremely heterogeneous. However, other industries, such as photonics [START_REF] Frazee | Conwip versus POLCA: A comparative analysis in a high-mix, low-volume (HMLV) manufacturing environment with batch processing[END_REF] or more "traditional" industries [START_REF] Brettel | How virtualization, decentralization and network building change the manufacturing landscape: an Industry 4.0 perspective[END_REF] are also subject to high levels of complexity and variability and face the same challenges as the semiconductor industry. Moreover, as "he who can do more can do less", the solutions to managing variability in HMLV semiconductor fabs will be applicable, if not to all, to most other HMLV industries.

Chapter 2

The anatomy of variability:

what, where and how much?

Chapter 1 introduced the notion of variability affecting workflow in manufacturing environments through general examples and existing work in queuing theory. However, this notion of "variability" remained fuzzy: if the consequences and importance are rather clear, the question of what variability is has not been answered yet.

The objective of chapter 2 is therefore to provide the knowledge and the tools to get a deep understanding of what variability really is and how it can be measured in a manufacturing system. First, we will focus on the description of variability, providing definitions for the "intrinsic variability of a manufacturing system" and most importantly for the central notion of "workflow variability". The notion of workflow variability will be the central aspect of this chapter as it allows putting all the pieces of the puzzle together. We will explain in section 2.B how we can separate a manufacturing system into different process-clusters in order to allow a measure of workflow variability. Most importantly, we will discuss on how to make the measure: we will cover different possibilities that would seem intuitive and good options at first sight but would actually fail to provide a correct measure because of the complexity of the manufacturing environment. We will then propose a method that overpasses these challenges and that allows measuring where and how much workflow variability there is in any given manufacturing system.

2.A. Definitions of variability in the context of production flows

The link between variability (as described in chapter 1) and cycle time makes no doubt and is understood by all practitioners in the field. However, the word variability itself makes most authors uncomfortable as what lies behind remains fuzzy. At the toolset level, several authors have attempted to attach variability to something: Hopp & Spearman [START_REF] Hopp | Factory physics: foundations of factory management[END_REF] talked about the "variability of effective processtime" and the "variability of inter-arrival times" and were followed by many other authors ( [START_REF] Etman | Aggregate modeling of semiconductor equipment using effective process times[END_REF], [START_REF] Jacobs | Quantifying variability of batching equipment using effective process times[END_REF]- [START_REF] Wu | The determination and indetermination of service times in manufacturing systems[END_REF]). However, these same authors also use the word variability on itself for instance when explaining that "semiconductor industry should aim at reducing variability to provide low cycle times" [START_REF] Jacobs | Characterization of operational time variability using effective process times[END_REF]. Moreover, many authors make it clear that they do not talk about "arrivals variability" nor "effective process-time variability" as they affect the word variability to the manufacturing system, such as [START_REF] Schoemig | On the corrupting influence of variability in Semiconductor Manufacturing[END_REF] who explain that "reducing the inherent variability of a manufacturing system improves the overall system performance". Even at the toolset level, Schoemig [START_REF] Schoemig | On the corrupting influence of variability in Semiconductor Manufacturing[END_REF] talks about "the variability introduced into a queuing system" as something different than "arrivals variability" and "effective process-time variability".

In order to structure our research on variability, we need solid bases to build upon. For this purpose, we will clarify in this section what carries variability. This will have important implications for the understanding of the problem, the way we can measure it, and throughout this manuscript, how we can deal will it.

2.A.1. Workflow variability: the proper name for the proper consequences

Something carries variability. Something has a "Lack of consistency or fixed pattern, a liability to vary or change", and the fact that this something has variability is directly linked to increased cycle times, decreased tractability, and capacity loss (as explained in chapter 1). From queuing theory and the literature, we know that both the arrivals variability and the effective process-time variability participate (under specific conditions) to the increase in the variability of this something. We also know that increased variability of this something increases the variability of the manufacturing system.

If we visualize a manufacturing system as a river (or a sea), where the level of the water at each position represents the amount of WIP at each toolset of the manufacturing system, a manufacturing system with a low variability will be a calm stream (or a calm sea), with only small fluctuation then and now. On the other hand, a manufacturing system with a high variability would be a mountain river during a rainstorm (or a sea in rough weather), creating at all time huge variations in the level of the water. From this example, we can understand that it is actually on the difference of levels of WIP in time (the variations in the levels of water) that variability manifests itself. Therefore, in a manufacturing system, the something is the workflow.

Thus, the variability that practitioners, operators, and academics are referring to, the one we are concerned about is actually the workflow variability. At the toolset level, the incoming workflow can already be variable because of the combined actions of all of the upstream toolsets, but the toolset can modify the workflow variability either increasing it when suffering high capacity variations (which is usually the case), or decreasing it (locally) if it is able to synchronize with the incoming waves of workflow variability. In front of the toolset, the workflow variability locally manifests through varying levels of WIP. Downstream, the toolset sends the workflow to one or many other toolsets, which receive WIP also from one or many other toolsets. The workflow variability is the result of all these interactions. In a complex manufacturing system with high reentrancy, WIP waves can leave simultaneously from different toolsets and concurrently arrive at a given toolset, smashing at once on the capacity of that toolset and locally creating huge WIP levels.

More formally, we can define workflow variability as the liability of workflow to vary or change and to lack consistency or fixed pattern. On the smallest possible level, these variations occur when some lots are waiting, i.e. when there are no resource (e.g. no tool) available to perform the required task on the lots (i.e. when there is over-saturation). Workflow variability therefore translates the tendency to generate these over-saturations, and as earlier works have shown, variability in the arriving flow as well as variability in the capacity of the toolset both participate to workflow variability as they both participate in a wider range of saturations and therefore in more over-saturations. For ease of use, we will sometimes refer about workflow variability simply as "variability" such as when mentioning that there is "low variability" or "high variability", but we should always keep in mind that from now on, variability refers to workflow variability.

2.A.2. The intrinsic variability of a manufacturing system

Workflow variability is what happens locally in a system, it is the ripples on a pond, the waves in the ocean. Many authors however talk about the variability "of a manufacturing system". By doing so, they are translating the overall behavior of the system: if the variability of the manufacturing system is high, it has high overall cycle times and degraded performances. In our previous analogy, this would translate the state of the river: whether it is calm, rough, or wild.

In accordance with this, we can define the intrinsic variability of a manufacturing system as its corrupting tendency to generate uncontrolled unevenness both in its flows and in the capacities of its manufacturing resources, resulting in efficiency losses, i.e. non-productive waiting times. In other words, the intrinsic variability of a manufacturing system is its tendency to generate workflow variability.

2.B. About measuring workflow variability

2.B.1. The difficulty of measuring workflow variability

Workflow variability as we defined it is a phenomenon, not a measure. As so, it has the advantage to stay general and to keep the focus on the implications (increased cycle time, decreased tractability, and capacity loss). The downside is that the definition remains scientifically and mathematically vague. Actually, directly measuring workflow variability would be extremely difficult because of the complexity it would involve. First, the notion of variability does not have a defined mathematical description. Some measures exist, such as the standard deviation, the inter-quartile range, etc. but these have definitions of their own and, even though they measure some aspects of variability, they do not define it. Second, a workflow is a movement of products. As so, there are at least three quantities describing a workflow: an amount (of products, lots, wafers…), a distance (or notions close to a distance such as going from step A to step B), and a time (e.g. time required to go from step A to step B). Directly measuring workflow variability would mean measuring the variability of these three dimensions. In a complex system, the different possible combinations of distances and time intervals required to give a full description of workflow variability are enormous and would therefore require extremely complex mathematics. Therefore, even though workflow variability might be possible to describe mathematically, we will keep workflow variability as a phenomenon, as the seemingly stochastic nature of the workflow creating variations in the levels of WIP and increasing both uncertainty and non-productive waiting time in a manufacturing system. By "seemingly", we mean that the variations we are referring to are unwanted and uncontrolled, but are not necessarily random and intractable.

2.B.2. The objective of measuring workflow variability

The objective behind measuring workflow variability is to provide a diagnostic on the intrinsic variability of a manufacturing system. Before taking any action of any kind, it is important to know how much workflow variability the system has and where it is located. However, in HMLV production especially, the utilization rate and workflow variability at the different toolsets are not fixed and not easy to predict. Indeed, the orders are fast changing and variable, and so are the quantities manufactured by the entire system and by each of its toolsets. Moreover, the complexity of the processes induces an extreme heterogeneity in the tools, which adds up to the complexity of knowing where and how much workflow variability there is. For this reason, we rely on direct measures to establish a diagnostic of the manufacturing system.

2.B.3. Measuring workflow variability at the toolset level

Before answering "how" we can measure workflow variability, we need to know "where" to measure it. As one of the objective is to identify the areas of the system where the workflow variability is the highest, we need to look at subdivisions of the manufacturing system. The toolset level seems the most adequate, as different toolsets can be studied separately, but different tools of the same toolset can rarely be studied separately when considering workflow variability (as the grouping into toolsets from queuing theory suggests). Moreover, it is already the aggregation level that most authors already use, hence the "variability introduced into a queuing system" (i.e. a toolset) mentioned by [START_REF] Schoemig | On the corrupting influence of variability in Semiconductor Manufacturing[END_REF]. We will therefore use the toolset aggregation to measure workflow variability, even though, as we will see in section 2.E, we will later refine this aggregation level.

2.C. How NOT to measure workflow variability in complex systems

As previously mentioned, workflow variability is a phenomenon, and not a measure. Moreover, as workflow variability is a really complex phenomenon, it is almost impossible to provide a method that directly measures it. We can however provide intelligent measures on some other quantities that translate the level of workflow variability. That being said, it is fundamental to keep in mind that what we wish to indirectly measure is the workflow variability, and we need to be careful when providing indirect measures that these measures do not translate other phenomenon. One main difference between simple systems and complex systems is that a complex system has many different aspects, characteristics, behaviors… that usually make it fall outside of the "general simple case". We will show two measures that could work in a simple system and explain what the limitations are and why they do not work in a complex manufacturing environment.

2.C.1. The measurement problem part 1: why not take cycle time variability

One main consequence of workflow variability is to create higher, more uncertain, cycle times. We could therefore be tempted to measure cycle time variability, for instance by measuring the standard deviation of cycle times at a toolset. Such a measure would indeed be able to identify the higher and more variable cycle times created by workflow variability. In a regular system, with no flexibility* (i.e. where all tools are qualified on all the steps processed by the toolsets) and clearly identified FIFO queues, cycle time variability could be a good indication of workflow variability. Figure 7 shows for instance two histograms for the cycle time of lots in two simulations runs: both simulations comprised of the same single-tool single-recipe toolset run at the same utilization rate. The only difference was the workflow variability generated: in the first case (Figure 7.A) the workflow variability was kept low by having regular arrivals and fairly smooth process-times. In the second (Figure 7.B) the workflow variability was increased by having irregular arrivals and irregular process-times. Both histograms of Figure 7 have the same number of points but different scales for the y-axis. When measuring the standard deviations (SD) of both populations, we get values of respectively 354 seconds and 1993 seconds. Thus, in this simple system, the cycle time variability (measured here by the standard deviation) accurately measures the increase in workflow variability.

Figure 7: cycle times from two simulations with same tool, same utilization rate, but different workflow variability

However, in HMLV production, many other phenomena can affect cycle times… For instance, we mentioned in section 1.B.2 that lots can have different priorities. These priorities are introduced into the system to better control the flow of different products (both to better meet delivery dates [START_REF] Mhiri | Finite capacity planning algorithm for semiconductor industry considering lots priority[END_REF] and better manage operational constraints like time constraints [START_REF] Lima | A decision support system for managing line stops of time constraint tunnels[END_REF]). The priorities act as an ordering system in the queues, allowing the higher priority lots to overtake the lower priority lots. As the objective of these priorities is to have lower cycle times on some lots and higher cycle times on other lots, the prioritymix* creates a huge variability in the cycle times. However, this is a very different phenomenon than workflow variability, and the consequences of priority-mix on cycle time is actually an intended output as priorities are used to accelerate some lots and slow down others. With priority-mix and product-mix being extremely high in HMLV production, cycle time variability is inherently high and not necessarily bad, and can therefore not be used as an indicator of workflow variability. We can rule out at the same time measuring the average cycle time first because other phenomena (such as holds*, inventory*, etc.) can also increase average cycle times and second because it does not necessarily measure the uncertainty in cycle time that workflow variability creates.

One way we could try to prevent phenomena such as priority-mix to influence the cycle time based measure would be, instead of measuring cycle time variability, to measure the variability of average (or central) cycle time. For instance, we could follow the weekly cycle time, and measure the variability of the weekly cycle time. Figure 8 gives an example of such a measure on two distinct toolsets. It also shows the number of lots taken to compute this median (processed during the week). From Figure 8.A, it seems that the measure of variation of weekly cycle time could be appropriate as this toolset experiences a high variability in the median weekly cycle time. However, this measure can easily be tricked as shows Figure 8.B: on week 16, the weekly cycle time was very high, but was computed on only 7 lots (compared to around 100 lots on average). In this case, we can see that this measure does not translate well the workflow variability because it is too sensitive to a different special cause, namely here an unusually small amount of lots. Indeed, in the case of Figure 8.B, 7 lots out of 1800 managed to trigger the indicator. In terms of workflow variability, it is hard to believe that 7 lots out of 1800 spending 20 hours at a step instead of 5 hours usually would translate a significant difference in the workflow variability at this toolset. This can actually be the sign of the opposite: the 7 lots might have waited 20 hours because maintenances were done the week where fewer lots arrived, thus reducing workflow variability on the other weeks. Again, in a simple system where the number of lots arriving (and being processed) each week remained rather constant, this measure might have been applicable. In a complex system comprised of many different aspects, which constantly vary, it is not the case.

The reason cycle time seems so appealing at first is that high and variable cycle times is the consequence of workflow variability that we want to reduce and it just seems natural to measure this consequence. However, it is extremely difficult to measure this consequence of workflow variability as many other factors also impact it (and not always in a bad way as for priority-mix).

2.C.2. The measurement problem part 2: why not to take WIP level variability

Cycle time variability is not a direct consequence of workflow variability: it is a secondary consequence. We can convince ourselves of this by asking ourselves why workflow variability creates high and variable cycle times. As we explained earlier, workflow variability locally takes form through varying levels of WIP (or workload). It is these accumulations that are responsible for the high and variable cycle times: if there is no accumulation, there is no workflow variability and no cycle time variability… Therefore, should we measure the variability of WIP levels?

In simple systems, again, measuring the variability of WIP level (in terms of the number of lots or wafers waiting) would certainly do a good job. However… there are other subtleties when it comes to complex manufacturing systems. To make it short: not all WIP levels are equal. Indeed, as different recipes can be qualified on the same toolset, the process-time of these different recipes can be extremely different. Figure 9 illustrates this point by showing the distributions of historical process-times for different recipes on a given toolset. On this example, the process-time for each recipe is barely variable at all, but different recipes have significantly different process-times.

Figure 9: violin plot of historical process-times for several recipes of a given toolset

The consequence of different recipes with different process-times is that, for a same WIP level in front of a tool, the potential waiting time (and therefore cycle time) is extremely different: a queue of 10 lots each requiring 1 hour of process-time is extremely different from a queue of 10 lots each requiring 10 minutes of process-times. Therefore, the accumulation of WIP in terms of a number of lots queuing is not exactly what makes workflow variability translate into variable cycle times.

We can understand from this section that measuring workflow variability may sound easy at first, as some consequences such as increased cycle time variability seem rather natural and relatively easy to measure, and could actually work on simple system. However, this is not the case is complex systems. In complex systems, such as HMLV manufacturing systems, there may be many other elements impacting measures such as cycle time variability. It is therefore especially important when dealing with complex systems to distinguish the phenomenon we try to quantify from the measure we try to provide.

2.D. Proposed measures of local workflow variability

In the previous section (2.C), we explained why measures related to cycle time, cycle time variability, or variability of WIP level (in terms of number of physical entities queueing) were not suitable in complex systems to measure workflow variability. Covering these allowed a better understanding of what makes complex manufacturing systems so tricky and therefore brought us closer to finding a correct method to measure workflow variability. In this section, we will explain the notion of workload, and show how workload accumulations translate workflow variability. We will then propose a method, which measures and normalizes the variability of the workload accumulation. The aim of this method is to properly measure workflow variability in terms of both the extra cycle time it generates as well as the uncertainty it brings to flows in the manufacturing system.

2.D.1. Measuring workload variability

From sections 1.A and 2.C, we understood that workflow variability creates high and variable cycle times because some lots have to wait. The important question here is: wait…for what? Obviously, the lots wait for other something to be processed. As we just showed (2.C.2), this something is not a quantity of WIP in terms of number of physical entities queueing. Instead, it is "what makes wait longer". It may seem that we are circling around here, when, on the contrary, we are zeroing-in on the correct answer by asking the correct question. Put in a simple context, we all already know the answer: imagine two different queues at a cash registry of a supermarket (each queue having a single cashier treating it), where there are 5 people on each queue. One queue is composed of people with trolleys filled up to the top, and the other one is only composed of people with less than 10 items. Which queue do you pick? Obviously, you pick the second. We all know in our everyday lives that "what makes wait longer" is not the number of lots (or people) queuing, but the total workload of the queue. Thus, workflow variability actually materializes locally by varying levels of workload. These high and variable workloads then create high and variable cycle times (which is the negative consequence we want to reduce). By measuring the middleman, we will therefore be able to detect the source of our problems (workflow variability) in order to change the final consequence (cycle time). We therefore propose the workload variability as a measure of the workflow variability.

A workload being "an expected amount of work to be done", the workload that should be considered at a toolset should correspond to the lots currently waiting and therefore only take into account the unprocessed workload. What unit to take for a workload is an important question and will actually be answered in more detail in chapter 5. For now, we will simply consider the workload as the actual process-time (i.e. for each lot, the workload of the lot corresponds to the process-time it actually took, this measure being possible on historical data). The basic idea to measure workload variability is to first draw the evolution of the waiting workload in time, discretize this signal, and then treat this discretization as a statistical population on which we can measure the standard deviation. Figure 10 shows these basic steps based on the same example as in Figure 8.A.

Figure 10: evolution of the workload at a toolset (A) and the histogram of the discretized signal (B)

Figure 10.A shows the evolution of the workload for the same toolset as the Figure 8.A and over the same period of time. Figure 10.B shows the histogram of the discretization of that signal. We can see on Figure 10.A three "pikes" of workload that correspond to the same 3 pikes of workload as seen in Figure 8.A. However, this signal being continuous, the information is much more dense, which helps to the interpretation: on three different occasions, there was an accumulation of workload in front of the toolset, leading to lots having to wait for this workload to be processed and therefore leading to lots experiencing higher cycle times. The histogram of Figure 10.B is drawn sideways in order to help the understanding of what it represents: the "frequency" of each workload interval is the relative amount of time this amount of workload has been seen waiting at the toolset.

Qualitatively, we can understand through the example of Figure 10 how the population of Figure 10.B is able to translate the workflow variability: workflow variability is only impactful if it creates higher cycle times, which sit can do through unexpected accumulations of workload. The first important aspect of this accumulation is "how much", i.e. the quantity of workload accumulated (a.k.a. the y-axis of Figure 10.A). The second important aspect however is time: indeed, if a high workload accumulates just for a few seconds, it is non-impactful, and the longer it accumulates, the more impactful it becomes. This second dimension is captured in the discretization of the signal: if a given amount of workload happens longer, there are more time intervals with this amount of workload and the frequency at this workload in Figure 10.B will be higher. From there, we can understand how the spread of the discretized workload in Figure 10.B translates the "pikes" of workload in time. This "spreadness" can then be measured with standard statistics such as the standard deviation.

Note that the workload variability we talk about here is different than the workload variability addressed by [START_REF] Rowshannahad | Qualification management to reduce workload variability in semiconductor manufacturing[END_REF]. They addressed differences in total workload processed by different tools within a toolset, whereas we address the differences in time of the workload waiting to be processed at a toolset.

2.D.2. Normalized measures of workload variability

The need for normalization

The general idea being defined by the previous section (2.D.1), it is now important to choose the proper units for the value to calculate. Indeed, the raw workload unit (time of process to be done) allows measuring workflow variability at a given toolset and changes in that variability. It also allows comparing workflow variability between two different toolsets that are identical in their structure. However, the comparison is impossible with the raw units when toolsets are different. To understand this, let us take another example: imagine you are in Disneyland Paris and have to choose between Pirates of the Caribbean and Peter Pan for the next attraction. As you are physically at neither of them, you cannot see the instantaneous queues and need to make a decision based on the analysis of historical data (which you "magically" have). You want to use your knowledge in workflow variability to pick the ride with the least workflow variability. The measure of section 2.D.1 applied to the historical queues of both rides tells you that there is a workload standard deviation of 1000 minutes-of-ride at Pirates of the Caribbean and 200 minutes-of-ride at Peter Pan (the raw units here, minutes-of-ride, are analogous to minutes-of-process). The question here is: can you decide which attraction to choose only with this information? As both attractions have different capacities and different riding-times (process-times), you cannot compare the values between both attractions, as there is not enough information to make a decision. In order to decide which attraction to choose, you need to normalize these values (i.e. add information) based on what you actually want. From an industrial standpoint, the problem is similar: different toolsets have different characteristics and these differences make the raw values of "workload variability" meaningless when it comes to comparing toolsets. We therefore need to normalize the values of workload variability in order for it to translate workflow variability. This example is not a direct analogy to what happens in reality, but serves to illustrate how workload variability can be compared between two distinct toolsets.

In the rest of this section, we will keep the Disneyland example to introduce two normalizations that allow translating actual workflow variability. These two normalizations, described by Equation (2) and Equation (3), will then be applied on industrial data from two toolsets from STMicroelectronics in order to understand their importance in an industrial context.

WaitTime Workload

One main consequence of workflow variability is the uncertainty it generates in the flow and therefore the decreased tractability of the system. What makes this uncertainty impactful is that some lots may wait unexpectedly much longer than usual. In this sense, from a tractability point-of-view, what is important in workflow variability is the variations in absolute cycle time it generates. When comparing two toolsets between them, this aspect should therefore be compared. For instance, if there are two operations with uncertain waiting times, one with times ranging from 30min to 1h, the other ranging from 12h to 24h, the second operation will create much more uncertainty in the flow. If we had to choose one operation to reduce workflow variability, from the uncertainty point-of-view, we would choose the second one. In order to measure this consequence of workflow variability, we therefore need to translate the variations of workload into variations in time. As the "time" consequence of workload is "queuing time", the first normalization we propose is to transform workload into "WaitTime Workload" (WTWL). Equation [START_REF] Dequeant | A literature review on variability in semiconductor manufacturing: the next forward leap to Industry 4.0[END_REF] shows the transformation needed to normalize the Workload unit into a WaitTime Workload.

𝑊𝑇𝑊𝐿 = 𝑊𝐿 𝑊𝐿 ̅̅̅̅̅ × 𝑊𝑇 ̅̅̅̅̅ (2) 
Fundamentally, the normalization is just dividing the workload (𝑊𝐿) by the average workload 𝑊𝐿 ̅̅̅̅̅ on the period, and then re-multiplying by the average Waiting-Time on the period (𝑊𝑇 ̅̅̅̅̅ ).

Let us use the context of the Disneyland example to illustrate this. Imagine that you need to order a taxi for after the ride: you can order the taxi for whatever time, but you do not want to have to wait for the taxi too long and the taxi will not wait long for you either. So the more certain you are (in absolute terms) of the total time the ride will take, the better. Obviously, you are not allowed to directly look at historical cycle time variations as, as explained in section 2.C.1, we cannot do so in complex systems. You therefore need to normalize the workload variations we previously gave (i.e standard deviation of 1000 minutes-of-ride at Pirates of the Caribbean and 200 minutes-of-ride at Peter Pan) into a waitingtime dimension. To do so, we need to divide the workload standard deviation values by the average workload, and then multiply by the average waiting-time (Equation ( 2)). The average workloads at both attractions (the average queue-length expressed not in number of people but in riding-time) are 8000 minutes-of-ride for Pirates of the Caribbean and 600 minutes-of-ride for Peter Pan, and the average waiting-times at both attractions are respectively of 32 and 27 minutes. By applying Equation (2), we get values of ( 1000 8000 ) × 32 = 4 minutes for Pirates of the Caribbean and of ( 200 600 ) × 27 = 9 minutes for Peter Pan. Therefore, because of workflow variability, workload variability occurs, which gives a "standard uncertainty" in the queuing time of 4 minutes for Pirates of the Caribbean and 9 minutes for Peter Pan. In this context, we can conclude that the Peter Pan attraction has more workflow variability in terms on uncertainty in the flow, and you should therefore choose to ride Pirates of the Caribbean to have higher chances of catching your taxi.

XFactor Workload

The other main impact of workflow variability is that it creates more time that is non-productive. As we explained in chapter 1 (1.A.5), we define non-productive time in manufacturing activities in terms of Xfactor (i.e. the ratio of cycle-time to process-time). Therefore, in order to measure workflow variability in terms of non-productive time, we need our measure to be expressed as an Xfactor. The second normalization we propose is therefore to transform workload into "XFactor Workload" (XFWL). Equation [START_REF] Dequeant | Le WIP Concurrent : une proposition de file d'attente du point de vue du produit pour caracteriser le temps de cycle[END_REF] shows the transformation needed to normalize the Workload unit into an Xfactor Workload.

𝑋𝐹𝑊𝐿 =

𝑊𝐿 𝑊𝐿 ̅̅̅̅̅ × (𝑋𝐹 ̅̅̅̅ -1) + 1

In order to transform the scale from a workload (WL) to an Xfactor Workload (XFWL), we need to divide the workload (WL) by the average workload on the period (𝑊𝐿 ̅̅̅̅̅ ), multiply it by the average Xfactor on the period to which we previously removed 1, and finally add 1. The reason we remove 1 to the Xfactor and then add 1 to the workload is that the workload is only responsible for the waiting-time part of the Xfactor. Let us illustrate this with an example: imagine that a given toolset has an average workload of 2 hours-of-process and an average Xfactor of 3. At one point in time, we measure a queueing workload of 10 hours-of-process: how does this translate in terms of Xfactor? In other words, if a lot has to wait behind a workload of 10 hours-of-process at this toolset, what is his expected Xfactor? Even though it experiences 5 times the average workload, it does not have an Xfactor 5 times greater. The average Xfactor of 3 means that, on average, the sum of waiting-time and process-time equals to 3 times the process-time ( To illustrate the usefulness of this second normalization, let us go back to the Disneyland example. This time, you want your day to be worth the money. You therefore follow efficiency, which you measure by how much time of ride you get out of each minute at the attraction: your Xfactor translates into the cycle-time per minute-of-ride ratio. From this perspective, getting a bad Xfactor ratio on your next ride would really ruin your day. Therefore, you want to lower this risk and to choose the attraction with the lowest deviations of Xfactor. Once again, even though in a simple system, we could answer this question by looking directly at the Xfactor of individuals, we forbid this here as other parameters affect cycle time in complex systems (see 2.C). We therefore need to rely on the workload variations and normalize the workload variations relative to the Xfactor by following Equation (3): we will first divide the workload standard deviation values (that we previously obtained) by the average workload, and then transform to an Xfactor. The average workload at both attractions are 8000 minutes-of-ride for Pirates of the Caribbean and 600 minutes-of-ride for Peter Pan, the average ride-time is 8 minutes for Pirates of the Caribbean and 3 minutes for Peter Pan, and the average cycle times are respectively 40 minutes and 30 minutes. This later information means that Pirates of the Caribbean has an average Xfactor of 5, and Peter Pan an average Xfactor of 10. Dividing both workload standard deviations by the average workload and transforming them back into an Xfactor gives us equivalent standard deviations of ( ) × (10 -1) = 3 for Peter Pan (Note that we did not add 1 at the end of the normalization here as we here normalized the standard deviation and not the scale). Therefore, because of workflow variability, the workload variability that occurs gives a "standard uncertainty" in the Xfactor of 0.5 for Pirates of the Caribbean and 3 for Peter Pan. We can now understand that, in terms of unpredictable cycle time loss, Peter Pan is far worse than Pirates of the Caribbean, and therefore start our ride on the Black Pearl... By applying Equation (3) on the standard deviation of workload, we effectively track the variations of Xfactor. Tracking variations of Xfactor could seem odd, as one may argue that we should aim at lowering the average Xfactor, not the deviations of Xfactor. Again, what we are really after is identifying where and how much workflow variability there is. In complex systems, it turns out not all the waitingtime translates workflow variability… As we explain in further detail in chapter 7 (section 7.B.2), the capacity in complex systems can be non-linear, which can lead to a positive amount of WIP queuing and therefore waiting, even in the absence of workflow variability. By measuring the standard deviation of workload and not the average workload (translated into Xfactor), we allow measuring the extra cycle time that only comes from workflow variability.

Application to industrial data

Following the method of section 2.D.1, we recorded the workload variability from two distinct toolsets from the Crolles 300 fab (toolsets T1 and T2). . Figure 11 and Figure 12 show the workload profile at these two toolsets for a period of a little over a month. We also applied the two previous normalizations (WTWL and XFWL) as to allow comparing the workflow variability of both toolsets. The objective here is to establish which toolset has the most workflow variability. Figure 11.A and Figure 12.A come with two y-axis units, corresponding to the two normalization we applied (left y-axis for Xfactor Workload and right y-axis for WaitTime Workload). We also show on these figures the average Xfactor and average Waiting-Time on the period. Note that the two normalizations give different values for 0 workload: 0 workload corresponds to 0 WaitTime workload, however it corresponds to an Xfactor Workload of 1. Indeed, by construction (𝑋𝐹 = 𝑊𝑇+𝑃𝑇 𝑃𝑇 ), when there is no waiting-time, the Xfactor is equal to 1. When looking at the workload profiles of both toolsets, it could seem that T1 has more workflow variability as the relative variations are more intense. However, as previously mentioned, only the normalization can allow us to compare both toolsets. When we look at the Xfactor Workload unit, we see that toolset T2 has a much higher average Xfactor than toolset T1 (15.2 vs 1.86): this leads to a standard deviation of the discretized signal (B) much higher for toolset T2 than toolset T1 (sd=5.16 vs sd=1.01). With this measure, we provide a method for measuring the embodiment of workflow variability: we measure "how much" the workload at different toolset varies, with the understanding that this variability comes along with a decreased efficiency. From this point-of-view, the workflow variability at toolset T2 is more impactful than at toolset T1.

The WaitTime Workload normalization from Figure 11 and Figure 12 tells a complementary story. The average waiting-time is closer between the two toolsets than was the average Xfactor (Average waiting-times of 3.07h for T1 and 7.2h for T2). The two toolsets are closer in terms of average waitingtimes than they were in terms of Xfactor because they do not have the same capacities nor process-times. Because the average waiting-times are closer, the variations of WaitTime Workload are actually more important for toolset T1 than toolset T2 as the standard deviations in this unit are of 3.57 hours for toolset T1 compared to 2.5 hours for toolset T2. From an operational point-of-view, this means that because of the variations in the workload in front of the toolset (due to workflow variability), we can predict the waiting-time at toolset T1 with an error of around 3.5 hours, and we can predict the waitingtime at toolset T2 with an error of around 2.5 hours. Therefore, from a tractability point-of-view, the workflow variability at toolset T1 is more impactful than at toolset T2.

From the example of Figure 11 and Figure 12, we concluded that depending on the normalization we apply, different toolsets come out as more problematic in terms of workflow variability. Should all calculations not lead to the same conclusion? In section 2.A.1, we insisted on the fact that workflow variability is a complex phenomenon, and that the definition does not provide a measure. Indeed, any measure is only a projection of the reality, a partial truth to the problem. The same way a cylinder can be projected as a circle or a rectangle depending on the point-of-view, measuring where there is the most workflow variability depends on the point-of-view. For instance, if a company is unhappy with the overall Xfactor and wants to address the issue by reducing workflow variability, the Xfactor Workload measure would be the good way to go. Indeed, this measure would point at the toolsets with the biggest "outbursts" in terms of Xfactor, which would be cut down if the workflow variability was reduced. Besides, a company might struggle with the tractability of its manufacturing system, failing to respect precision in delivery dates and having little control and knowledge on the way the flow of products will evolve in the near future. In this case, the WaitTime Workload would bring useful information on where to start reducing workflow variability.

2.E. Decomposing a manufacturing system into local process-clusters

In the previous sections of chapter 2, we established that we should (and could) measure workflow variability at the toolset level. However, we did not provide a definition for a toolset. This might seem like a trivial problem, as toolset are commonly agreed to simply be groups of tools treating the same products. In complex systems however, this definition has grey areas as flexibility* and tool dedication* make unclear what "same" really means. We will show in this section that the notion of "toolset" is problematic and does not allow properly splitting a manufacturing system to study its characteristics. We will then propose a new notion, called process-clusters, which allows a rigorous grouping of processunits (whether it is tools, machines, servers…) in any manufacturing system or queuing system, based on the connections between the process-units through the flow of products. As we will show that not all connections between process-units are equal, we will go one-step further by defining "highly connected process-clusters", i.e. a grouping of process-units based on the flow treated that translates the ability of tools to rely on each other, a grouping which can be calculated on any manufacturing system.

2.E.1. Defining process-clusters

Transitioning to generic terms

Our objective in this section is to make groups of processing entities in a manufacturing system, which, as we will show, cannot rely on the simple notion of "tools treating the same queue" in complex systems. As this grouping problem is very generic and can arise in any system with queue-like structures, we will define the notions with generic terms. Therefore, we will define process-units as the entities performing tasks (whether it is tools, chambers, operators, robots, cashiers…), jobs* as the entities on which the tasks are performed (whether it is lots, products, clients, cars…) and job-families* as jobs with same characteristics from the process-units point-of-view (that can be defined as a recipe, a product-type*, a client-type…). The explanations in this section are based on an example of tools processing lots from different recipes, but is applicable to any groups of process-units treating jobs of different job-families.

The problem with fixed toolsets

The first step to measure local workload variability of a system is to find the proper local aggregation of process-units (tools, chambers, operators, robots, cashiers…). This grouping seems fairly obvious at first, as the notion of toolsets (that arises when regarding questions of capacity, cycle time, and throughput) seems pretty clear: the process-units that treat the same jobs (whether it is lots, products, clients, cars…), or from a queuing theory point-of-view, the process-units that treat the same queue of jobs. In our everyday life examples, this definition seems satisfying: if cashiers treat individual queues, the "toolsets" are individual cashiers, if several cashiers treat a single queue (as in IKEA), the "toolset" is all the cashiers that treat the same queue of customers. In complex manufacturing systems however, this concept of individual queues can faint out rather quickly, because of what is called "flexibility". Flexibility, as described by Gurumurthi and Benjaafar [START_REF] Gurumurthi | Modeling and analysis of flexible queueing systems[END_REF], is the possibility for different job-families (jobs with same characteristics from the process-units point-of-view), to be processed by more than one process-unit and the possibility for process-units to process more than one job-family. Figure 13 and Figure 14 illustrate the fact that flexibility can remove individual queues and complicates the notion of toolset. Figure 13 shows 16 tools (T1 to T16) treating lots from 20 different recipes (A1, A2, A3, A4, A5, B1, B2 ,B3, B4, B5, C1, C2, C3, C4, C5, D1, D2, D3, D4 and D5). Beside each tool of Figure 13, we represent the qualifications of this tool, i.e. the recipes this tool is able to process. In this example, the tools have a complete qualification scheme, in the sense that if two tools are qualified on a similar recipe, then they are qualified on exactly the same recipes. These strict qualifications create separate, well-identified queues: Tools T1 to T4 treat lots from recipes A1 to A5. Tools T5 to T8 treat lots from recipes B1 to B5. Tools T9 to T11 treat lots from recipes C1 to C5. Tools T12 and T13 treat lots from recipes D1 to D3. T14 and T15 treat lots from recipe D4. Finally tool T16 treats lots from recipe D5. In this example, the strict qualifications create 6 well identified queues and therefore 6 toolsets.

Figure 14 shows the exact same tools treating the exact same recipes, but with much more flexibility in the qualifications of the tools. Because of this flexibility, it is much more complicated to define the separate toolsets, as the queues as we usually think of do not exist. To illustrate this point, let us try to identify in which queue the lots of recipe B1 would go in, knowing that a queue is a group of lots behind which an arriving lot will have to queue (and wait) before getting processed. Let us imagine that a new lot B1 arrives, behind which lots will it have to wait? As tool T16 is qualified on B1 and D3, one could think that D3 is in the same queue as B1. However, tool T8 is also qualified on B1 but not on D3. If a new B1 lot arrives, it can therefore go on T8 without having to wait behind any D3 lots. The flexibility in the qualifications creates a situation where the queues cannot be identified on arrival, some lots do wait behind other lots, but it is a dynamic situation, which depends on the dynamic state of the queue and the dynamic state of the process-units.

As each tool in a semiconductor fab is qualified on dozens (or even hundreds) of recipes, the actual queue-like structures in real complex environments get really hard to identify or handle. However, in order to manage the production (and to measure workflow variability), we need to split the manufacturing system into local groups of tools… This problematic does not only apply to semiconductor manufacturing tools and lots. Any manufacturing system made of process-units capable of performing required activities on incoming flows of jobs with some degree of flexibility will face the same problems.

In the Crolles300 and Crolles200 fabs, the lack of proper tool grouping was problematic for the production management activities. Local toolsets were already defined in order to perform capacity analysis and other industrial engineering activities, however these groupings were made manually, usually based on the experience and the knowledge of the different teams. This manual grouping has several downsides. First, the toolsets are generally defined once, for a long period, whereas the productmix and qualifications may change over time and make the grouping obsolete. Second, the groupings do not always follow the same rules, which can cause problems when trying to perform analysis on the toolsets.

Notion of process-clusters

The important aspect of the notion of queue and toolsets treating an identical queue is that the tools in the same toolset can compensate for each other. For instance, if a tool has a failure, the other tools in the toolset can compensate by treating the lots that would normally go on that tool. With flexible qualifications, this compensation mechanism is still possible. Indeed, if two tools are qualified on the same recipe and one fails, the other can take more of that recipe (and compensate for the first tool's failure). With flexible qualifications, the tools can actually "cascade down" the WIP to compensate for each other. For instance, in our previous example (Figure 14), tools T3 and T12 are qualified on A1, and if T3 fails, T12 can take more lots from recipe A1 to compensate for T3. Moreover, if because of this T12 has too much work to do, it can "focus" on lots A1 and "cascade down" to tool T5 some of the lots D4 that it would normally do (as T12 and T5 are both qualified on D4). We can therefore see that, at least, T3, T12, and T5 in our example are part of a same group as they can influence each other through the incoming workload. By following this concept, we can define a first type of group, process-clusters, as process-units that can influence each other through the flow of incoming jobs. Process-clusters are analogous to toolsets treating individual queues (as in Figure 13) as, by definition, process-units from different process-clusters cannot influence each other through the incoming WIP, and can therefore be studied separately.

By applying a more rigorous definition (as in [START_REF] Gurumurthi | Modeling and analysis of flexible queueing systems[END_REF]) to the principle of connectivity that we just explained, we can define an individual process-cluster as a set of process-units connected between them by their job-families qualifications. The term "connected" here refers to connections as in graph-theory. Indeed, we can represent process-units and job-qualifications as nodes, and each process-unit qualification as an edge going from a process-unit to a job-qualification. Two process-units are therefore connected (and part of the same process-cluster) if there is a path in this graph that goes from one of these process-units to the other. By applying this definition to the previous example (Figure 14), we can connect all the tools to the recipes they are qualified on, and find the process-clusters that exist in this example. Figure 15 therefore shows all the connections between the tools and the recipes from the same example as in Figure 14, and the process-clusters that form from this definition. Figure 15 shows the exact same tools and tools qualifications as in Figure 14. In the middle, we represented each of the recipes that have at least one qualification on a tool. If a tool is qualified on a recipe, a line is drawn connecting the tool to the recipe. The lines are then colored by a connectivity principle: all lines that connect a same tool have the same color, and all lines that connect a same recipe have the same color. In this example, connecting all tools to their qualified recipe created two distinct process-cluster (P1 and P2) whose connections are drawn in blue and orange. This connectivity principle also means that, through the connections drawn in Figure 15, we can access any tool belonging to process-cluster P1 from any other tool belonging to process-cluster P1 (and only from tools belonging to this process-cluster). For instance, if we want to go from tool T1 to tool T13, we can go through recipe A3. Some connections however are more difficult to find: can we really go from T1 to T10? To go from T1 to T10, we actually need to take an indirect path: we can go from T1 to T16 through B1, and then from T16 to T10 through D3.

Mathematical description

Even though we have a definition for process-clusters, the way we built the process-clusters in Figure 15 feels rather clumsy. Moreover, the connections between the tools are hard to visualize and interpret, and the direct connections (like T1/T13) are not easily distinguishable from the indirect connection (like T1/T10). In order to rigorously draw process-clusters and show the direct and indirect connections, we can actually use a mathematical description of process-clusters, based on what is called the qualification matrix. A qualification matrix is a description of process-units qualifications with the process-units describing rows and the job-families describing columns. If a process-unit i is qualified on a job-family j, than the value of item 𝑥 𝑖,𝑗 is 1, otherwise the value is 0. Figure 16 shows the qualification matrix (𝑀 𝑞 ) from the tools of Figure 14 and Figure 15. This specific matrix shows tools in rows and recipes in columns. The qualification matrix 𝑀 𝑞 directly links to the previous example (Figure 15): as we can see on the matrix 𝑀 𝑞 , tools T1 and T13 have two identical qualifications (A3 and B5), which correspond to two different paths that directly link T1 and T13 in Figure 15. Mathematically, we can use the matrix of process-units qualifications to compute the processclusters. To compute the connections, we need to multiply the qualification matrix (e.g. 𝑀 𝑞 ) by its transposed matrix to get a "process-unit connection matrix". To illustrate this, we multiplied the qualification matrix 𝑀 𝑞 by its transposed self to get the connection matrix 𝑀 𝑐 in Figure 17. As Figure 17 shows, multiplying the matrix of process-units qualifications by its transposed matrix leads to a symmetrical connection matrix that has process-units both in rows and in columns (tools in our example). Indeed, when we do the multiplication, we multiply rows of the qualification matrix between them (as the columns ofs the transposed matrix are the rows of the qualification matrix). The items of the resulting connection matrix actually answer the question: how many qualifications do process-units i and j have in common? In the diagonal, the answer is trivial and is just the total number of qualifications of the process-unit (in our example tool T1 has 3 qualifications, tool T8 has 2 qualifications…). The other items are more interesting as they give the number of common job-family qualifications: for instance, tools T1 and T13 have 2 qualifications in common (on A3 and B5). As the connection matrix is symmetrical, only a triangle of values is required to identify all the direct connections between process-units. Now that we have all the direct connections between the tools in the matrix 𝑀 𝑐 , we can easily draw them to show the process-clusters without having to draw the recipes. We draw in Figure 18 all the connections defined by the connection matrix 𝑀 𝑐 of Figure 17: if an item i,j from the matrix of Figure 17 has a positive value, then tools Ti and Tj are connected in Figure 18. In this example, there are 26 connections between tools from the 112 possible. By drawing the connections, we brought up to clear light the two process-clusters (P1 and P2) of our example that we had identified in Figure 15. This time however, the connections are clear, and the distinction between direct and indirect connections is obvious. For instance, tools T1 and T13 have a direct connection, whereas tools T1 and T10 only have indirect connections. In this case, we can actually see that there are many different paths to go from T1 to T10. From the graph of Figure 18, we also understand how the tools of an identical process-cluster are able to cascade down the workload to compensate for each other.

Figure 18: direct connections between tools, showing two process-clusters

Different qualifications for different types of process-clusters

Process-units qualifications have been defined rather quickly in our previous examples. However, there is more to qualifications than meets the eye. Indeed, qualifications can mean "the set of jobfamilies that a process-unit can be able to process", "the set of job-families that a process-unit can immediately process", "the set of job-families that a process-unit effectively processes"… Depending on what we understand by "qualification", we will get different types of process-clusters.

As previously mentioned, tool-groups in the Crolles fab were problematic as they did not rely on rigorous definitions (and computations). Based on the work done with process-clusters, two types of tool-groups were introduced and are currently in use for the capacity planning activities in the Crolles fabs. These two tool-groups correspond to the definition of process-clusters, but have different types of "qualifications". "Balancing-Groups" is the name given at ST Crolles for process-clusters based on the possible qualifications of tools, and "Balanced-Groups" is the name given to the process-clusters based on the qualifications suggested by a balancing algorithm [START_REF] Rowshannahad | Qualification management to reduce workload variability in semiconductor manufacturing[END_REF]. The main advantage of creating the groups based on the definition of process-clusters is that the groups define the boundaries for the balancing algorithm: knowing these boundaries, the problem can be split beforehand to reduce complexity and allow parallel computation (making the algorithm run faster).

Both tool-groups mentioned above rely on predicted scenarios, predicted flows, and theoretical qualifications. These groups are therefore made for activities looking at the future. Other activities however need to look in the past. For instance, in order to make groups to measure workflow variability, we need the groups to correspond to the past flows of products. To measure workflow variability, we need to look at the "historical effective qualifications". That is, we should look all processes done by all process-units on a given horizon in the past, and record which process-unit effectively processed which job-family, and was therefore effectively qualified on it. By doing so, we can split the manufacturing system into process-groups that were completely independent during the time window considered.

2.E.2. Highly connected process-clusters: the toolsets of complex systems

Different levels of communication between tools

At first sight, process-clusters based on the "historical effective qualifications" seem to be sufficient to split a manufacturing system into groups of tools to study locally the workflow variability. However, the workload balancing that we previously described (through "cascading") can encounter limits that are not well described by process-clusters. For instance, let us take the process-clusters from the previous example. Figure 19 shows an example of "historical processes" that all tools from our previous example did during a (fictive) given period in the past.

Figure 19: an example of workload processed by different tools, showing process-cluster P2 (top) and process-cluster P1 (bottom) made of two groups of tools only communicating through a small amount of workload

For each tool, we represented a bar chart with the amount of WIP of different recipes treated by the tool. As only the relative amounts are important, we normalized the amounts of WIP on a scale from 1 to 10. One would notice that the tools are not arranged according to their number. Their arrangement in the graph is made to better understand the example. The top tools correspond to the process-cluster P2 previously defined, and the bottom tools to the process-cluster P1. As with the previous example, the two process-clusters treat different recipes. However, we can see based on the WIP processed that process-cluster P1 is actually made of two subgroups of well-connected tools: the 7 tools on the bottomleft (T4, T6, T1, T16, T8, T9, T13) are well connected between them as each tool shares a big amount of WIP with its neighbors. This shared WIP means that they can compensate well for each other: if any tool lost 50% of its capacity, the other tools would be able to absorb the extra workload by cascading it between them. For instance, if T8 had a capacity loss, T1 and T16 could take over some of the B1 workload. While doing so, T1 it could pass over some of its A3 workload to T6 and T13, which could balance with T4 and T9 (with T6 cascading C4 workload and T13 cascading B5 workload), etc. The same goes for the 5 tools on the bottom-right side (T11, T2, T7, T14, and T10). However, the 7 tools on the bottom-left and the 5 tools on the bottom-right have very little "communication capability" between them. Indeed, they are only connected by recipes C1 and D3 (highlighted in red in Figure 19), which have very small volumes treated. Therefore, only a very small amount of WIP can cascade over from the tools {T4, T6, T1, T16, T8, T9, T13} to the tools {T11, T2, T7, T14, T10}. Another way of seeing this is that, by only removing or reallocating a small amount of WIP (recipes C1 and D3), we could have two separate process-clusters. The definition of process-cluster does not allow to see these differences and group closer together tools that have bigger "communication channels". We therefore need a way to integrate this aspect when grouping tools together.

Building highly connected process-clusters

When creating the process-clusters in Figure 18, we only considered the existence of a connection between two tools in the connection matrix to draw a link between these tools, but we did not focus at all on the weight of the edges in the graph (i.e. the value in the connection matrix). When we start with a classic qualification matrix, the value of the edges tell the number of different recipes connecting two tools. This is obtained from a qualification matrix with only 1s and 0s in it, for the existence or not of a qualification. Instead of filling the qualification matrix with 1s and 0s, we can actually give the amounts of volume treated by each tool on each recipe. By doing so, the values obtained in the result matrix actually correspond to volumes that can pass from one tool to another through a given recipe. In layman's term, we get the size of the pipe that connects the two tools. By applying this to our example, i.e. starting with a qualification matrix that has values given by the volumes treated as shown in Figure 19, we get values in the connection matrix which allow building a weighted graph as shown in Figure 20. For instance, as T1 and T16 are only connected through B1 with B1 volumes-treated respectively of 2 and 6, their connection's weight is 2 × 6 = 12. As T7 and T14 both processed products A4 and D1 with volume 2 each time, their connection weight is 2 × 2 + 2 × 2 = 8.

Figure 20: connections between tools taking volumes processed into account

We get in Figure 20 almost the same connections as in Figure 18. The only missing connection is the connection T2/T14 as, as Figure 19 shows, tool T14 did not process any lot of recipe B2 and therefore did not have an "effective qualification" on B2. The main difference between Figure 20 and Figure 18 is that we now have weights on the edges of the graph, which represent the level of connection between the tools. Based on this example, we can get a feeling of what a highly connected process-cluster should be by doing a simple thought experiment. Let us imagine that the tools are entities attracted to each other with a force given by the weight of their connections. The thought experiment is to try to break apart the process-cluster by applying a field force (like a magnetic force) on a subgroup of the process-cluster (We use the notion of "field-force" here to favor grouping tools together: a single tool will be harder to break apart from its counterparts than a group of tools.). The question becomes: are there strong structures in the process-cluster, entities that are harder to break apart from each other than others are? Alternatively, is there a weak-point in the process-cluster? Is there a group of tools that can detach relatively easily? This thought experiment applied on the process-clusters of Figure 20 would qualitatively give a weak points to the process-cluster P1: separating the five bottom tools from the top ones would take the smallest "field-force", whereas trying to break apart {T16, T9, T13} from the other tools would take a huge force.

Creating highly connected process-clusters using graph theory

Once again, the highly connected process-clusters that we identified in our previous example do not have a rigorous definition, as they are so far "visual". From our though experiment tough, we can understand what a mathematical description should aim at. We can therefore translate this though experiment mathematically using graph-theory. Graph clustering is the branch of graph theory that aims at making clusters of vertices from a single connected graph, with the general idea of clusters being "dense subgraphs such that a dense subgraph contains more well connected internal edges connecting the vertices in the subgraph than cutting edges connecting the vertices across subgraphs" [START_REF] Chen | Graph-based clustering for computational linguistics: A survey[END_REF], which is qualitatively the real-world problem we face. There are many different measures aimed at evaluating the quality of a cluster such as intra/inter-cut density, ratio cut, performance, conductance, modularity, expansion… [START_REF] Chen | Graph-based clustering for computational linguistics: A survey[END_REF]. These measures are sometimes applied to real-world problems, but are often the starting point to research aiming at finding the proper algorithms to minimize these measures.

The measure that applies best to our case (finding highly connected process-clusters) would be the measure of expansion [START_REF] Flake | Graph clustering and minimum cut trees[END_REF]. In graph theory, the expansion of a cut (a cut being a split of a graph into two groups of vertices) is the sum of the weights of the edges that are cut divided by the cardinality of the smallest subgroup created. The expansion problem has several formulations, which can for instance be finding the minimum expansion of a graph, or making clusters that have minimal expansion above a given value. This last formulation is interesting but arbitrary, as the given value represents something absolute, not relative. To our knowledge, no graph formulation (and measure) that address fully the problem that we face exist… An alternative model that we propose is, instead of putting a condition on the minimum expansion of a graph, to put a condition on the ratio between the minimum expansion and the maximum expansion of a graph, which we will call the min-max expansion ratio. In other words, we want to define if a group of process-units is a highly connected process cluster based on the ratio between the minimum expansion and the maximum expansion of its graph. Dividing by the maximum expansion of the graph serves as a normalization for the minimum expansion. This normalization allows comparing the min-max expansion ratio with a single value, which does not depend on any graph or subgraph, but can be set as a baseline. We will therefore formulate our clustering problem as follow: from a given graph, keep only subgraphs with a min-max expansion ratio higher than a given value r. Finding the minimum expansion of a graph being a NP-hard problem [START_REF] Chen | Graph-based clustering for computational linguistics: A survey[END_REF], this problem is also at least an NP-hard problem. As there is a vast literature on minimum expansion, our problem could be solved by adapting classic algorithms that find separately the minimum expansion and the maximum expansion of a graph.

The highly connected process-clusters would simply be the real world images of the subgraphs that have min-max expansion ratios higher than a desired r-value. For real-world applications, the value we put on the ratio r is necessarily somewhat arbitrary. It needs to be set depending on the specific requirement of the clustering, knowing that the higher the ratio, the higher the connectivity requirement. From our tests, a ratio of 0.05 gives good results for clustering the tools of the C300 and C200 fab. This ratio of 0.05 could serve as a baseline for highly connected process-clusters of other applications.

In our previous example (Figure 20), the maximum expansion in process-cluster P1 corresponds to cutting tool T1, with an expansion value of 58/1 = 58 (the sum of the weights with this cut equals 58, and the smallest sub-group created by this cut is of cardinality 1) . The minimum expansion corresponds to cutting off {T2, T7, T10, T11, T14}, with an expansion value of 5/5 = 1 (the sum of the weights with this cut equals 5, and the smallest sub-group created by this cut is of cardinality 5). The min-max expansion ratio of this graph is therefore 1/58 = 0.017. Therefore, P1 does not correspond to a highly connected process-cluster of r ratio 0.05 as the min-max expansion ratio of P1 is lower than 0.05. Given an r ratio of 0.05, we would get three highly connected process-clusters from our previous example: {T2, T7, T10, T11, T14}, {T1, T4, T6, T8, T9, T13, T16}, and {T3, T5, T12, T15}.

Perspectives to highly connected process-clusters

With this work on highly connected process-clusters, we provided the baselines to create groups of process-units based on their ability to work together on a given flow of products. The implementation of the algorithms required to make highly connected process-clusters as we defined them being beyond the scope of this PhD, and the size of our instances being rather small (maximum 20 process-units), we generated highly connected process-clusters from tools of the C300 and C200 fabs using simple heuristics (which consists in finding a min (or max) bound to the min (or max) expansion, and grouping together nodes which cannot be in different highly connected process-clusters to reduce the search space) . However, an interesting aspect for research would be to find algorithm to optimize the search for the min-max expansion ratio. From an application point-of-view, we also need to validate the methodology with the shop-floor to make sure it indeed meets the expectations. When using historical data to make highly connected process-clusters based on the flow processed, we also need to consider the effect of different horizons. Some highly connected process-clusters might form when considering a long horizon but stop existing with a shorter one... Moreover, because of shifts in product-mix, the highly connected process-clusters might change rather rapidly, thus making it more difficult to study workflow variability over time. Nonetheless, when it comes to studying workflow variability on historical data, highly connected process-clusters take us a step further than the previously existing grouping methods, i.e. either the simple notions of toolsets based on queues, or toolsets defined manually for specific reasons not necessarily concurrent to ours.

2.F. Workflow variability: a starting point for improving production management 2.F.1. A symptom based approach allowing rational decisions

In this chapter, we first clarified what "variability" (in the sense commonly agreed in the semiconductor environment) means. We were finally able to put a noun in front of variability, introducing the notion of workflow variability. This little change actually makes a big difference as it was never clear before what practitioners and academics were talking about when referring to "the variability" as a noun. Workflow variability however is a phenomenon, a "sickness condition", and not a measure in itself. In that sense, we cannot directly measure workflow variability. We can however track its effects, its symptoms, on a manufacturing system. This starts by carefully dissecting the system to find its main clusters, or organs, which we do by analyzing the flow of products to derive highly connected process-clusters using a new notion of "min-max expansion ratio" related to graph theory.

Measuring the symptoms of workflow variability on the different process-clusters of a manufacturing system is not an easy task: intuitive measures such as tracking cycle time variability are affected by other causes than workflow variability (such as priority mix) and are therefore not the symptoms of workflow variability. Cautious reasoning, and understanding of workflow variability however allowed us to find a measure that solely translates workflow variability: workload variability. By tracking normalized measures of workload variability on separate process-clusters, we are able to monitor the workflow variability of the different parts of the system. This can bring deep insights to practitioners who, by using a Pareto approach for instance, will be able to target their actions and track the improvements brought to the system.

2.F.2. The need to find the sources of workflow variability

The tools and methods presented in this chapter allow creating a starting point from which we can monitor the variability of the system and track the changes over time. However, it does not bring any levers or recommendations on which parameters of the system to act on in order to control or reduce workflow variability. In order to allow such recommendations, we first need a fundamental understanding of what creates workflow variability. Tracking down and analyzing the sources of variability, i.e. getting a better understanding of the anatomy of variability, will be the first step on which we will be able to build up tools and theories to control workflow variability.

Chapter 3

The origin of workflow variability:

a literature review Chapter 2 introduced the new notion of workflow variability, putting a name and a definition on the previously fuzzy notion of variability used by practitioners and academics to describe a phenomenon affecting the workflow. Chapter 2 also provided a set of tools and methods to measure workflow variability affecting any manufacturing system.

Before taking actions of any kind to address variability, we need to be able to identify what is responsible for workflow variability. Chapter 3 will therefore provide an extended literature review on the sources of workflow variability. By analyzing the existing literature related to workflow variability, we will provide in section 3.A.1 a list of 25 sources of variability, which we will group into 4 categories: equipment-specific, product-induced, structural, and operational. We will explain in section 3.A.2 the differences between these categories and the specificities of each source of variability, and will provide references for further studying each of them. Most importantly, this literature review will serve as a solid bedrock to build up knowledge on workflow variability: section 3.B will provide insights on how to account for workflow variability and will focus on some aspects that generate variability and shouldn't be overlooked.

The work in this chapter was presented at the 2016 Conference on Modeling and Analysis of Semiconductor Manufacturing (MASM), and subsequently published in the proceedings of the 2016 Winter Simulation Conference [START_REF] Dequeant | A literature review on variability in semiconductor manufacturing: the next forward leap to Industry 4.0[END_REF]. It was cited and partly analyzed in the FabTime Cycle Time Management Newsletter of April 2017 [START_REF] Robinson | Sources of variability in wafer fabs[END_REF], a major semiconductor manufacturing newsletter with near 3000 subscribers across all major semiconductor companies and related universities.

3.A. Scanning the literature of workflow variability

3.A.1. An overview of the sources of workflow variability

Defining sources of variability

A first objective in studying workflow variability is to identify what creates this variability. This of course is aimed at making further work and research more constructive and ordered by allowing clustered research on the main root causes of variability. We define these root causes, which we call the sources of variability, as the primary factors that create, amplify, and propagate workflow variability in a manufacturing system. We emphasize the fact that, given this definition, sources of variability do not need to be variable themselves. Indeed, completely regular downtime* events could disrupt the flow of product and create workflow variability, even though these downtime events are not variable at all.

In order to identify the main sources of variability, we decided to scan the literature and gather the existing knowledge of the scientific community. However, as explained in chapter 1, the notion of workflow variability had, at least prior to the writing of this manuscript, no agreed specific name or definition. Because of this, different authors talked about the same mechanisms and referred to the same consequences but using different vocabulary. A first strong decision we made was therefore to focus the review on workflow variability in semiconductor manufacturing. Indeed, semiconductor manufacturing has a strong research community doing intensive work on workflow management and modelling due to the size of the industry and the cost of cycle time and workflow variability, and this community shares a common vocabulary for the sources of variability (as the semiconductor industry is very standardized). Due to the lack of a common term for workflow variability, we considered that authors identified a factor as a source of variability if they either mentioned it directly as a source of variability, mentioned that this factor increases the cycle time, mentioned that this factor increases the complexity of the system, mentioned it as a capacity loss factor, or included it in a formula in a way that makes this factor increase cycle time. Finally, we grouped similar sources by what seemed to be the most relevant and distinctive names. Our review was made significantly easier by the work of Robinson et al. [START_REF] Robinson | Capacity loss factors in semiconductor manufacturing[END_REF], who, with their working paper titled "Capacity Loss Factors in Semiconductor Manufacturing", provided a solid starting point for our research.

A quick overview of the literature review

Table 1 shows an overview of our literature review. It shows the 25 sources of variability that came out to be worth mentioning from our literature review. For each source of variability in Table 1, we cross-referenced which articles in our review mentioned which factor as a source of variability. We then ordered the factors in Table 1 from most cited to less cited in the literature: the lack of tool redundancy*, process-time variability*, downtimes*, product-mix*, batching*, setups*, rework*/yield*/scrap*, operator (un)availability*, dispatching policy*, reentrant flows*, tool dedication*, lots priorities*, holds*, heterogeneous toolsets*, lot sizes*, WIP control strategies*, maintenance strategies*, sequence specific processes*, operators cross trainings*, order releases*, time constraints*, end-of-shift effects*, inspections*, factory shutdowns*, and problems with secondary resources*. 

Sources of variability

• • • • • • • • • • • • • • • • • • • • • • [47] Karabuk (2003) • [28] Wu (2005) • • • • • • • • • • • [19] Delp et al. (2006) • • • • • • • • • [33] Jacobs et al. (2006) • • • • • • • • [48] Morrison et Martin (2006) • • • • • [49] Hanschke (2006) • • • • [50] Morrison et Martin (2007) • • • • • • • • • • [26] Shantikumar et al. (2007) • • • • • • • • • • • • • • • [51] Hirade et al. (2007) • • • • • • • • • • • • • • • • • • • • [52] Hopp et al. (2007) • • • • • • • • • • • • [29] Zisgen et al. (2008) • • • • • • • • • • • [36] Wu et Hui (2008) • • • • • • • [53] Chang et al. (2008) • • • • [54] Akhavan-T. et al (2009) • • • • • • • • • • • [55] Ignizio (2009) • • • • • • • • • • • [18] Brown et al. (2010) • • • • • • • • • • • • [20] Etman et al. (2011) • • • • • • • • • • [56] Schelasin (2011) • • • • • • [21] Ignizio (2011) • • • • • • • [57] Leachman (2012) • • • • • • • • • [27] Tirkel (2013) • • • • • [58] Kalir (2013) • • • • [59] Godinho F. et Uzsoy (2013) • • • • • [35] Schelasin (2013) • • • • [40] Rowshannahad et al. (2014) • • • • • • • • [22] Kim et al. (2014) • • • • [60] Senderovich et al. ( 2015 
)
• •

Table 1: sources of variability identified by authors related to the variability of semiconductor manufacturing. The sources of variability are ordered by the number of times identified in the literature.

Equipment specific Product-induced Operational Structural

The first 3 most cited sources of variability (lack of tool redundancy, process-time variability and downtimes) are also the 3 factors that are commonly find in queuing equations such as in Factory Physics [START_REF] Hopp | Factory physics: foundations of factory management[END_REF], and there are therefore not a surprise. A very interesting aspect however is that the 3 next most cited factors, namely product-mix, batches and setups are actually rarely studied, even though they are agreed to have a big impact on the workflow variability. As a general rule, many factors are pointed out as being impactful, yet the research is focused on a (very) small portion of them. In the next section, we will first describe the different categories of sources of variability before narrowing down on each of the individual factors.

3.A.2. Describing the different categories of sources of variability

From our analysis of the literature and our own experiences, we found useful to divide the sources of variability into 4 categories: equipment-specific, product-induced, structural, and operational.

The instinctive response to identifying sources of variability is to focus on equipment-specific factors as they appear to be simple and straightforward: having variable process-times will increase cycle time, having downtimes will also increase cycle time. This can be understood on simple singletool examples and is the reason these factors have been integrated for a long time into models as mathematical models can easily include these.

Product-induced factors (which are factors that exist only because of special characteristics of the products) bring another level of complexity: their impact can partly be understood on local, single-tool examples but generally require the existence of equipment-specific factors. Indeed, having a high product-mix becomes really problematic when tools can batch identical products and setups occur between different products. As scheduling becomes impactful on the result in this situation, productinduced factors are more complex to integrate into different models. Product-induced factors also bring forward that variability is not only local: for instance, time constraints between steps link different toolsets and their impact is therefore even more complicated to understand. By defining "structural factors" we infer that the arrangement of the resources (e.g. the tools) can also contribute to the variability. We can understand the notion of "structural factors" as the "ground rules" for how resources are allowed to communicate between them through the workflow: the better they can communicate, the lower the workflow variability. For instance, increasing the number of tools within a toolset allows more connections (i.e.

better communication channels) between tools and decreases cycle time (by actually decreasing workflow variability through compensation mechanisms).

There are several factors that define how the tools are allowed to "communicate" between them, and this can be both local (within a toolset) and global (the arrangement of toolsets in a manufacturing system).

As structural factors are the ground rules for communication between resources, "operational factors" can be understood as "how well" resources are able to communicate given these ground rules. Within a toolset for instance, if the tools are able to correctly balance and optimize their workload, they actually generate less workflow variability. Operational factors include all the levers available given that the structure of the system, the properties of the tools and resources, and the products treated are fixed. Given complex tools, products, and structure, operational factors can actually have a huge impact on the overall workflow variability in a manufacturing system. This is for instance the reason why semiconductor companies spend several millions each year to implement scheduling algorithms in all areas of their fabs (and not only the bottleneck areas).

3.A.3. Detailed explanation of the different factors

From our list of factors, we wish to understand how impactful each factor actually is according to the findings of the different authors we reviewed. In this subsection, we will therefore review all the factors listed in Table 1, grouped by the previously established categories, describe how they impact workflow variability and most of all assess how impactful each factor is supposed to be based on the combined knowledge of the community reviewed.

Equipment specific factors

Natural process-time, also referred to as raw process-time or theoretical process-time, is, in a simplified manner, the time spent processing each lot on a tool. In the semiconductor environment, the definition becomes much more subtle (see [START_REF] Wu | The determination and indetermination of service times in manufacturing systems[END_REF] for more details). A majority of authors explicitly cite natural process-time variability as a source of variability. Surprisingly though, it is generally found to be a small source of variability. Both Kalir [START_REF] Kalir | Segregating preventive maintenance work for cycle time optimization[END_REF] and Morrison and Martin [START_REF] Morrison | Practical extensions to cycle time approximations for the G/G/m-Queue with applications[END_REF] computed small values of the coefficient of variation of natural process-time and Tirkel [START_REF] Tirkel | The effectiveness of variability reduction in decreasing wafer cycle time[END_REF] also pointed that "the service time variability is not necessarily high since the process-time is usually automated and its variability is generated due to causes such as wafer lot size". One reason this factor is cited so much even though it is suspected to have such little impact could be that it was one of the first factor to appear in queuing theory formulas, as it is a factor seemingly easy to represent statistically (through the coefficient of variation of process-times) and easily controllable in simulated environment. As we will show later in this manuscript however (in sections 3.B.2 and 6.C), another reason to this misalignment between number of times cited and theorized impact might be that there is more to process-time variability than meets the eye… Machine downtimes, if not cited the most, is unarguably the source of variability the most discussed by authors. Authors who speak about variability reduction always recommend doing so through reducing variability from downtimes. Tirkel [START_REF] Tirkel | The effectiveness of variability reduction in decreasing wafer cycle time[END_REF] and Delp et al. [START_REF] Delp | The development of the complete X-Factor contribution measurement for improving cycle time and cycle time variability[END_REF] for instance recommend increasing the frequency of preventive maintenances and therefore lowering the mean downtime to reduce variability. Brown et al. [START_REF] Brown | Queueing model improves IBM's semiconductor capacity and lead-time management[END_REF] also discussed "how reduced variability in downtime durations […] could translate into shorter queues". Filho and Uzsoy [START_REF] Filho | The impact of simultaneous continuous improvement in setup time and repair time on manufacturing cycle times under uncertain conditions[END_REF] show by means of simulation that many small improvements in downtime variability has a greater impact on cycle time reduction than few major improvements. Moreover, Rozen [START_REF] Rozen | Using simulation to improve semiconductor factory cycle time by segregation of preventive maintenance activities[END_REF] shows through different simulations how modifying the downtime patterns of only a few tools can have a big impact on the overall workflow variability.

Batching is another equipment-specific characteristic. Most authors recognize the cycle time increase due to batching, and specific queuing equations for batch processes are actually proposed by Huang et al. [START_REF] Huang | Analytic approximations for multiserver batchservice workstations with multiple process recipes in semiconductor wafer fabrication[END_REF], Hanschke [START_REF] Hanschke | Approximations for the mean queue length of the GIX/G(b,b)/c queue[END_REF], Brown et al. [START_REF] Brown | Queueing model improves IBM's semiconductor capacity and lead-time management[END_REF] and Leachman [START_REF] Leachman | The Engineering Management of Speed[END_REF]. Batches add variability to their toolset, but may add even more variability to other toolsets: as batch tools send batches of lots downstream, they greatly contribute to the unevenness of the downstream flows.

Setup, defined by Leachman [START_REF] Leachman | The Engineering Management of Speed[END_REF] as "[the time needed to] recondition, readjust or reconnect the machine when changing from performing one class of product steps to another", also have a great impact on workflow variability. Even though setup times may sometimes be as long as the process-times (in ion implantation for example), little research has focused on the time caused by setups. One reason may be that the consequences (additional waiting-time, capacity loss and added variability) also depend on the setup rules and are thus fab specific. Shanthikumar et al. [START_REF] Shanthikumar | Queueing theory for semiconductor manufacturing systems : a survey and open problems[END_REF] give extra references for approximations of cycle time under different setup rules.

Operator availability and sequence specific processes have been far less mentioned and studied by the community. Operator availability refers to the fact that operators as well are sometimes unavailable (for instance because of the wide physical spread of the tools an operator can be responsible of) and this unavailability is similar in the consequences to a machine downtime. With the continuous automation of semiconductor fabs, operator availability is a factor that gathered less attention in the recent years. Sequence specific processes refer to complex processes inside tools where the wafers have to move through several processing chambers in a specific order (such as in lithography). This type of process can see an increased process-time for a same recipe depending on the product-mix the machine is subjected to, which in turn reduces the tool capacity and creates more workflow variability.

Structural factors

Tool redundancy is the simplest of structural factors, as it is found in many manufacturing systems and is measurable: the number of parallel tools that process a given process step. Increasing the redundancy smoothens the capacity of the toolset as the tools breakdowns happen more evenly. The redundancy therefore increases the compensation capability between the tools of a toolset and therefore decreases the workflow variability of the system. Tool dedication, defined by Shanthikumar et al. [START_REF] Shanthikumar | Queueing theory for semiconductor manufacturing systems : a survey and open problems[END_REF] as "the specific relationship where certain tools in a toolset process only part of products or operation steps", disrupts the smoothing introduced by tool redundancy by reducing the communication channels between tools. In the same way, if characteristics or the performances of the tools in the toolset are uneven (heterogeneous toolset), the global performance of the toolset (i.e the global capacity) might vary greatly according to which tool in the toolset performs which process. Although such factors as tool dedication, heterogeneous toolsets or operator crosstraining (which can be understood as operator dedication) have been identified as sources of variability, little study has yet focused on their effects. Figure 21 illustrates the effects of poor redundancy and high tool dedication toolsets in HMLV fabs: It shows the lots processed by 3 tools of the same toolset, and more importantly which tools processed which products over the entire period. As one can see on Figure 21, some tools are qualified on many products (TOOL1 processes all products) whereas others are qualified on a limited quantity of products (TOOL3 only processes products a, b, and c). Some tools also see their qualification or dedication changing over time (TOOL2 only treats product i and j in the last third of the horizon).

Figure 21: product-mix processed by different tools of a toolset over time

Reentrancy is another, more global, structural factor. As resources interact locally through their redundancy, dedication and heterogeneity, they interact globally in the flows of products. As a part of the manufacturing system's workflow variability can spread through the production line, the reentrancy allows this spread to be much more extensive than in a linear production line: The effects of a single event can be seen by products completing their manufacturing process as well as by products just starting it. Moreover, in a reentrant system, so called "WIP bubbles" or "WIP waves" [START_REF] Hassoun | Identification and cost estimation of WIP bubbles in a fab[END_REF] that originated independently can arrive at the same toolset at the same time, such as two waves joining to create a local splash. Hence reentrancy can create bottlenecks (and therefore queues) much larger than would be found in traditional (linear) production lines. Reentrancy also forces tools to process different recipes (different product levels) creating high inefficiencies in the batches since the probability of forming a batch of identical recipes decreases. The same also goes for the setups, whose inefficiencies increase the more recipes are to be processed on the same tools, since this leads to more "switches" between recipes. Little study has been done on the added variability caused by the reentrancy of a system, even though Ignizio [START_REF] Ignizio | Optimizing factory performance[END_REF] introduced the notions of degree of reentrancy and nesting when considering reentrancy.

Product-induced factors

The impact of product-mix can be understood straightforwardly now that we have discussed batches, setups and reentrancy. More products mean more recipes on identical tools. Just as reentrancy adds more product levels to toolsets, higher product-mix adds more product levels to toolsets. Therefore, an increased product-mix directly results in reduced efficiency of batches and setups. Ignizio [START_REF] Ignizio | Cycle time reduction via machine-to-operation qualification[END_REF] performed simulations with low product-mix and high product-mix, and reports an increase in average total cycle time of 10 to 16 percent. Huang et al. [START_REF] Huang | Analytic approximations for multiserver batchservice workstations with multiple process recipes in semiconductor wafer fabrication[END_REF] included the number of recipes in their queuing approximations for batch servers and showed a significant increase in the queue length from 2 to 3 recipes. As seen in Figure 22, which represents the evolution of product-mix over 20 weeks, a typical product-mix in High Mix Low Volume fabs is high and variable. As High Mix fabs operate in a maketo-order policy, the product-mix is thus a very important source of variability as it is continually changing to follow the fluctuations of the demand.

Figure 22: evolution of product-mix on a toolset of Crolles 300

Priorities, induced by engineering lots, product prototypes lots or key customer orders, force inefficiencies in batches or setups by processing individual "hot lots" when batches or sequences could have been formed. Ignizio [START_REF] Ignizio | Cycle time reduction via machine-to-operation qualification[END_REF] shows with his simulation results that 5 percent of priority lots can increase the average cycle time of lots by approximately 15 percent. Chang et al. [START_REF] Chang | Priority-mix planning for cycle time-differentiated semiconductor manufacturing services[END_REF] also show the impact of different priority mix on cycle times. Product-mix and priorities therefore both have a great impact on the cycle times observed at the different toolsets, but other product-induced factors can also add to the workflow variability: "reworked" lots (where the same process has to be done again because of out-of-specs) and "scrapped" lots (lots that could not be reworked and had to be thrown away) for instance add extra workload without increasing the output. Different lot-sizes can also increase workflow variability: incomplete lots for instance can create incomplete batches in wafer-batching processes (such as furnaces), affecting the capacity and the workflow variability. Finally, time-constraints (a maximum time to not exceed between two given processing steps to prevent degradation in the deposited materials properties, see e.g. [START_REF] Lima | A decision support system for managing line stops of time constraint tunnels[END_REF]) can force some lots to accumulate in strategic "safe points", thus disrupting the flow and increasing workflow variability.

Operational factors

The other factors identified in the literature can then be classified as "operational". These factors (which include dispatching policies, WIP control strategies, maintenance policy, end-of-shift effects, holds, factory shutdowns and inspection) describe the way the manufacturing system is operated. Hence there is no number or parameter that can translate their effects which makes them extremely hard to integrate. It is however clear that they have a significant impact: A dispatching policy based on an optimization algorithm can effectively impact cycle time in setup intensive areas. A maintenance policy that includes arrival forecasts can effectively prevent the combination of negative effects. Factory shutdowns force lots to gather in "safe points" and therefore disrupt the flow and increase variability. Holds (the status which corresponds to a lot intentionally stopped and temporarily pulled-out of the production for inspections or non-standard activity) can also increase workflow variability as many lots can be released from "hold" at the same time and the same place and increase locally the workload on some toolsets. Inspections (manufacturing steps that do not add any added value but check for the quality of previous processing steps) can also disrupt the flow as the percentage of lots going through inspection can vary depending on the quality of the processes and the detection of outliers, with inspection "processing times" being also extremely variable. Teams "shifts" (in systems operated in 3×8h shifts for instance) also come with their share of responsibility: as each team has individual targets, each team tries to improve its own indicators. With a main indicator in semiconductor being "moves" (i.e. number of operations started), a "good" strategy to follow the indicator (or at least, a Nash-stable one) is to start all the long processes just before the end of the shift… decreasing by the same time the scheduling efficiency and sending batches of similar products downstream.

WIP control strategies correspond to an especially important operational factor. As some authors have reported, tool downtimes and product arrivals may not be independent because of specific WIP control strategies where production teams slow down some WIP to not saturate too much some toolsets. Moreover, by controlling lot priorities, one can try to "pull" WIP in order to try to always "feed" toolsets and effectively reduce simultaneous arrivals. To our knowledge though, no specific studies have been done on the effects of WIP control strategies.

3.B. Beyond the literature: insights on accounting for variability

3.B.1. The link to the arrivals heterogeneity

At the toolset level, the heterogeneity of the arrivals plays a major role in the workflow variability, and generally explains more than half the workflow variability at the toolset. As one would have noticed, the heterogeneity of the arrivals is not included in our sources of variability. The reason to this is that we actually consider this as a consequence, and not a source. The distinction lies in the fact that a source of variability can be modified, adjusted or suppressed: lowering workflow variability being one of the long term objectives of better modelling them, this distinction is required.

At the local (toolset) level, workflow variability is an output that depends partly on the heterogeneity of the incoming workflow (which is a resultant of all the sources of variability from the upstream toolsets) and partly on the behavior of that toolset. In that sense, the heterogeneity of the arrivals is the expression of the outside sources of variability.

3.B.2. Variability of factors vs sources of (workflow) variability

As mentioned earlier, sources of variability do not need to be variable themselves as we are actually interested in the workflow variability. Therefore, special care should be taken in order to account for the different factors. From earlier works involving mathematical models and simulation models, a clear link exists between the variability of some factors and the workflow variability. For instance, the more variable process-time and downtimes are, the more workflow variability (and ultimately cycle time) is created (as a general rule, even though exceptions might exist). This does not mean however that all their contribution to the workflow variability comes from their variability (as measured in the sense of the spread of the data points that represent these phenomenon).

A special example arising from the close collaboration with Crolles300 production teams brings a good illustration to this point: in the early stages of our work on workflow variability, we had measured the coefficient of variation of process-times (the ratio between the standard deviation and the mean) on a specific toolset of the Crolles300 fab. The coefficient of variation indicating a relatively low processtime variability, we had concluded that the contribution of process-time variability to the workflow variability was low.

The production team however had the strong feeling that these conclusions were wrong and that process-time variability was a major contributor to high cycle times. The justification brought up is illustrated by Figure 23.

Figure 23: a histogram showing the effects of chambers on lot process-times

Figure 23 shows the histogram of process-times from this specific toolset. As the histogram shows, the spread of the recorded data of process-times is relatively low, with a standard deviation of 0.37h for a mean process-time of 0.94h, resulting in a coefficient of variation C0 of 0.39 (which, from the computation of queuing formulas and the results in literature such as Kalir [START_REF] Kalir | Segregating preventive maintenance work for cycle time optimization[END_REF] and Morrison and Martin [START_REF] Morrison | Practical extensions to cycle time approximations for the G/G/m-Queue with applications[END_REF], seems to indicate low process-time variability).

However, several modes are visible on the histogram, corresponding to the number of available chambers when processing lots: When a chamber is down, lots are still processed, but by one less chamber, resulting in longer process-times. The consequence is actually that the process-times resulting follow a time-dependent (autocorrelated) sequence: 10 lots in a row might be processed with a degraded process-time, followed by 10 lots with a normal process-time, etc. This behavior temporarily changes the toolset capacity making it shift from an average capacity to alternating periods of lower and then higher capacities. This, in turn, creates alternating periods of over-saturations and under-saturation (instead of having a constant average saturation) and generates workflow variability and higher cycle times. This extra variability created by the dependency of the process-times cannot be captured by measuring variability of the process-times as the spread of the data: if we were to simulate this toolset with process-times described only by a statistical distribution, we would fail to incorporate this specific root cause of variability as we would not recreate these alternating periods of longer and shorter cycle times. The important aspect here is that sources of variability participate to workflow variability in intricate manners, and, especially in complex manufacturing, special attention should be devoted to identify what creates workflow variability in the real world.

3.B.3. Concluding our literature review of the sources of variability

With our above discussion, we made clear that sources of variability are sources of workflow variability. This idea should always be the main driver when studying the impact of different sources of variability: it is not the source that should be measured, but its consequences. Any measure that we make on a source of variability should be intended to this purpose.

The coefficient of variation of an event linked to a specific source of variability (for instance coefficient of variation of process-times) can be a way to explain the contribution of this source to the workflow variability, it may however be insufficient. As a general rule, the assumptions that build a reasoning should be stated out loud and investigated as complex manufacturing systems tend, as we will see in chapter 6, to not play by the simple rules.

From this literature review, we also understand that it is often the combination of factors that result in high workflow variability. In semiconductor manufacturing, all of the mentioned sources of variability are part of the everyday life production. We gave in sections 1.A.5 and 1.B.2 short explanations of why semiconductor manufacturing and especially High Mix Low Volume semiconductor manufacturing is subject to more workflow variability. With the explanation of this chapter, we now understand that semiconductor fabs are subject to all of the sources of variability that we have previously listed, allowing them the title of complex manufacturing. Moreover, as HMLV fabs have a broader range of products, the product-induced sources of variability are expressed far more, giving rise to more workflow variability. On top of that, as HMLV have lower volumes for each product, the structure needs to be adjusted to this kind of production: fewer redundancy per product-level and therefore higher degree of reentrancy and more complication qualification schemes (with resulting tool dedications allowing smaller "communication channels" between tools). Another direct consequence of having more product-levels per tool is that the equipment-specific factors have bigger impacts: more setups, more incomplete batches, tools subject to more changes and stress from switching between different recipes and therefore more downtimes and process-time variability… Finally, with higher reentrancy and more different products in lower volumes, the operational factors get harder to handle: the smaller volumes per product mean less engineering time per product and therefore more holds, the numerous different flows and higher reentrancy make it harder to predict the future and therefore harder to implement maintenance and WIP control strategies, and the dispatching algorithms have to deal with many more parameters which increases the complexity of their problems.

The work in this chapter and in part One of this manuscript allowed us a better understanding and an overall picture of what workflow variability is, how it manifests, and what the main root causes are. With that in mind, the next step is to adjust the production management tools to this new level of understanding of workflow variability in order to deal as well as possible with the existing level of workflow variability in manufacturing environments.

Part Two II Integrating variability (in production management tools) Part One of this manuscript was devoted to understanding in-depth what "variability" is, or as we clarified it in part One, what workflow variability is. We therefore covered this central notion of workflow variability in all of its aspects: the consequences, the manifestation of workflow variability, the quantification of it and the identification of its main root causes.

Part Two is aimed at dealing with workflow variability by integrating it in different production management tools. In order to do so, we will first present in chapter 4 a solution to integrate the "background consequences" of workflow variability in the projection tool of a manufacturing system. This solution, developed and implemented at ST Crolles for both fabs under the name Maestro, effectively allows making projections that are closer from the natural behavior of the system, thus increasing the accuracy of the projection tool and the efficiency of the downstream actions, resulting in a better tractability of the manufacturing system.

Integrating variability also means creating models that incorporate all the sources of variability identified in chapter 3. The first step to do so is to accurately measure the actual performances of process-clusters, which standard analytical tools such as the OEE [START_REF] Pomorski | Managing overall equipment effectiveness [OEE] to optimize factory performance[END_REF] are unable to fully do because of the complex interactions between the numerous sources of variability. Chapter 5 will address this issue by introducing a new notion: the Concurrent WIP. Along with associated measures, we will propose in chapter 5 a way to analyze the aggregated response of process-clusters to incoming flows in order to incorporate the effects of all sources of variability and get a better picture of the performance of processclusters.

The second step to better incorporate variability into different models is to better understand the underlying mechanisms which create workflow variability, one of which we believe is effects of dependencies. We will therefore investigate in chapter 6 the effects of dependencies on downtimes, process-times and arrivals. We will propose a method to do so by running simulations using actual shop floor data, and will show through our results that dependencies can actually be responsible for a far bigger amount of workflow variability than previously expected, and that developing tools in this direction could greatly improve the integration and reduction of workflow variability. 

Maestro: integrating background variability

Workflow variability has consequences in terms of added cycle time and tractability, as we have explained in chapter 1. However, as a part of the sources of variability is stable (such as equipmentspecific or structural factors, see chapter 3), a part of the consequences is predictable. More precisely, the time spent by lots to cross different sections of the manufacturing system is not totally unpredictable, it is the result of many interactions between all the different sources of variability, it is in other words the background consequence of workflow variability.

Chapter 4 presents the different aspects, tools and methods, which allow integrating this background variability into the projection tool. We first discuss (4.A) the specificities of making WIP projections based on cycle time models (which is the type of projection used at ST Microelectronics), and show how the quality of a cycle time model greatly impacts the projection as well as the actions based upon these projections. We then show how historical data can be used to build a cycle time model, using a multi-layer model to overpass a "scale dilemma" we point out, which would make simple bottom-up approaches unfit. As HMLV manufacturing systems undergo changes in product-mix and loading, one might think that using historical data would be of little use to make projections. We however show that the structure of HMLV manufacturing systems actually make the background variability shift rather than break, and that using the correct algorithms can allow to greatly improve cycle time models for short and mid-term projections.

The problem that is presented in this chapter comes from a real-world situation faced by the Industrial Engineering team at ST Microelectronics Crolles. The projection software, Opera, previously used to project the WIP based on a cycle time model that did not take into account the effects of workflow variability on cycle time and the actions that depend on this projection (all matters of resource allocation, delivery targets, and production objectives) suffered from this inaccuracy. The results presented in this chapter were implemented and industrialized in a software, Maestro, which now computes the cycle time models for the entire WIP of the two C200 and C300 fabs, thus giving to Opera the tempo to follow for its WIP projections.

4.A. Projection tools using cycle time models 4.A.1. WIP projection, a central activity for production management

WIP projection is a central activity in managing a manufacturing system: it allows anticipation of production deliveries, capacity planning, setting targets to production teams… and is the core concept around which MRPs (Manufacturing Resource Planning) and ERPs (Enterprise Resource planning) were built. It is especially a critical activity in HMLV where the production is on demand and each product has a specific due date for delivery. The fundamental difference between simulation and WIP projection is that a simulation takes the resources as an input and gives the workflow movement as an output; whereas in WIP projection we give the wanted workflow movement as an input and get requirements on the resources as an output. In layman's terms, we want the products to move a specific way, and we ask the projection what is needed to achieve this.

The way we describe a movement here is simply by defining a speed on a specific section of the road, i.e. a change of location in a specific time. The locations are fixed and described by the "route" of each product: the sequence of operations each product needs to follow. The key element to define is therefore the time needed to go from one operation to another: the cycle time. Thus, a building block of WIP projection tools is the underlying cycle time model: the description of how much time we want each product to spend on each operation.

4.A.2. Cycle Time Model: a critical element for WIP projection

The tollgate example

This cycle time model is critical, as it also needs to represent a feasible WIP movement. Take this simple analogy: imagine that we manage a highway between Lyon and Paris. The road is 440 km long and a critical tollgate is 50 km outside of Paris. We want to allocate resources to that critical tollgate in order to avoid congestions at that tollgate and allow a cycle time of 4h even in heavy traffic. Our limiting resource is the tollgate operators: at peak period, we need to double the "capacity" of the operators to avoid congestion. Luckily, we have the possibility to overlap two shifts to double toll operators for a period of 1 hour. We decided that the most important time for this overlap to happen would be when the WIP bubble (the departure of many cars at the same time) that starts at 8 o'clock in the morning in Lyon would arrive at the tollgate after 390 km. In order to know when this will happen, and therefore when we should schedule the shift overlap, we need to make a WIP projection (of the cars) and we therefore need the cycle time model of the road. Let us now show why the cycle time model is so critical. If we take a linear cycle time model, we infer a constant speed of 110km/h on the 440 km of the road. In this case, we infer that the WIP bubble that starts at 8 o'clock in the morning in Lyon would arrive at the tollgate outside of Paris (390km away) at 11h33 after 3 hours and 33 min. However, we know that a constant speed between Lyon and Paris is a wrong assumption: In reality, the first 390km are a highway, where the speed is 130 km/h and the last 50 km are in the Parisian suburbs, where the speed limit is 50 km/h. With this updated cycle time model, we forecast that the WIP bubble would reach the tollgate at 11 o'clock after exactly 3 hours. Had we used the linear cycle time model, we would have planned the shift overlap to start at 11h33 instead of 11h, resulting in 33min of oversaturation of the tollgate and in a massive traffic jam, ultimately resulting in a cycle time greater than the wanted 4 hours and therefore creating delays and customer dissatisfaction.

Setting achievable objectives

A WIP projection tool aims at taking decisions and actions to make the WIP move as we want it to move. However, as we just showed through the simple tollgate example, setting objectives too far from the natural behavior of the system leads to a failure to act on it. This is the reason why the cycle time model is a critical piece of a WIP projection tool: the cycle time model should represent both an objective and an (easily) achievable future. This translates a complex interaction between the WIP projection tool (and the actions we take based on it) and the actual behavior of the system: The output of the WIP projection gives us some requirements on critical parts of the system on which we can take actions, however this implies that the system will behave as we said on the parts that we do nott fully control. Take our Lyon to Paris road example: We can act on the tollgate, and by doing so at the right time, we can "force" the speed and total time to be as we wanted. However we can only do this if we describe properly the speed on sections we do not control (the speed on the highway prior to the tollgate). If we fail this, we lose the lever we had on the tollgate.

Cycle time models and WIP projections in HMLV manufacturing work in a very similar way as in our tollgate analogy: the cycle time model is the target we wish to achieve, and the WIP projection defines all the actions and all the objectives we need to follow in order to achieve our target. However, our target needs to be achievable through the levers we can take action on; and in order to be so, our target needs to be as close as possible as the natural "stable" behavior of the system. This also means that we do not want the model to represent only a "long term average", but we want it to represent the flow of the majority of products. The distinction between the average and the majority is essential to build the correct cycle time model: in our previous example, if 1 car out of 100 takes 5 days to go from Lyon to Paris and the other 99 take 4 hours, we do not want the model to represent the average (i.e. at total cycle time of 5.16 hours) but the majority (i.e. a total cycle time of 4 hours). This is because the cycle time model is aimed at an action, and the success of this action (increasing capacity at the tollgate for instance) depends on it having consequences on the biggest amount of WIP (or cars) possible, i.e. the majority of the WIP. The example of a car taking 5 days to go from Lyon to Paris might seem absurd, but we are faced in manufacturing to such differences in data everyday: either because of a hold on a lot on a given section of its road, a lot in inventory for a large amount of time, an error in the data…

Visualizing cycle time models

Visualizing a cycle time model is essential as it gives a global picture of the target WIP movement we set. To visualize the cycle time model, we represent the time to reach each section versus each section. Figure 24 shows the two cycle time models we used in our previous tollgate example: it represents the expected cycle time needed to reach each portion (km) of the road from Lyon to Paris for both the linear and the speed-adjusted model. Figure 24 shows that even though the total cycle time of both models is the same (at 4 hours), there is a 33 min difference to reach the tollgate before Paris, which, as we showed previously, has a significant impact on the WIP projection and the forecasted resource utilizations. From Figure 24, we can see that the slope of the curves of a cycle time represents the speed: the more horizontal the curve is, the greater the speed. At first sight, the previously used cycle time model makes sense, as it basically corresponds to our tollgate example where the speed depended on the road. High Mix Low Volume manufacturing however has little in common with traditional manufacturing lines and the analogy to this perfect highway. To this road from Lyon to Paris, we need to add a few elements of complexity (and more importantly, of variability) to understand HMLV environment: first, the cars have very variable speeds as they sometimes accelerate to 250 km/h, sometimes slow down to 10 km/h (priority mix). The road is also very heterogeneous (heterogeneous toolsets): there are many roadworks both on the highway section and on the inner-city section with different amounts of roadworks on different sections of the road that have varying consequences on the speed of the cars. There are also accidents on the road that cause traffic jams, and different parts of the road are more likely to create accidents than others (lack of tool redundancy associated to tool downtimes and process-time variability). Moreover, the cars are unreliable: they all experience a few problems while one the road, requiring them to stop completely (hold events) with their stopping times or "hold" times being very variable (from a few minutes to a few hours). These stopping times do not happen totally at random: the road has a strong influence on them, with humid parts of the road creating more failures in the cars (hold times linked to time constraints). This new, extremely variable road is a better analogy to the complexity we face in HMVL production.

From this example, and the explanations on workflow variability that we gave in part One, we see that the type of the road (the process-time) has only a small influence on the actual cycle times: in our road analogy, we can easily find a inner-city portion of road with a speed higher that a highway portion of road… The workflow variability affects the system too much for this simple cycle time model to work.

4.B.2. The background consequence of variability

Consequences of variability: an order in chaos

Being able to build a cycle time model and therefore make WIP projections in this environment may seem counterintuitive as one consequence of variability, as our road analogy pointed out, is the uncertainty it adds to the flow of the products. Indeed, it is almost impossible in a HMLV context to forecast with precision the movement of any lot on a small scale: the combined effects of variability add so much randomness that we are actually certain that we cannot predict exactly the movement of any lot.

However, we classified in chapter 3 different sources of variability and defined some as "structural" and others as "equipment specific". These sources of variability have a strong inertia: it takes time to add tools or to qualify new tools, batch tools will keep making batches in the future, the sequence of operations (and therefore of machines) basically stay the same… What this means is that even though the variability is high and the flow is partly unpredictable, a part of the sources of variability stays the same and therefore a part of the consequences as well. This is what we call the "background consequences" of variability: even though everything is extremely variable, the consequences are variable around a certain value. In our previous analogy, updating the road to the new description, there will still be a given time most cars take to travel from Lyon to Paris… Moreover, there would also be distinctive speeds on the different portions of the road: some portions would be slower, some portions would be faster, and some portions would be in the average… A good cycle time model therefore needs to incorporate these relative differences in speed in order to be as close as possible to the "natural behavior" of the system.

Using historical data to build the cycle time model

Different solutions could be investigated to integrate this effect of workflow variability (the background macro consequence on the relative speed of lots). One solution would be to use queueing theory to estimate cycle time at the different steps of the roads. However, as we explained in chapter 1, queuing theory only integrates few sources of variability under specific conditions. When we compare this to the extended list of sources of variability presented in chapter 3, and all the possible interactions between these responsible for workflow variability, we can doubt beforehand of the results that would be obtained should we go in this direction.

The solution that we propose to this problem is "simply" to use historical data to build our cycle time model. Indeed, as the strong inertia of the structural and equipment-specific sources of variability create a somewhat stable background response, this consequence is in theory measurable, and the near future should in theory be close to the near past.

4.B.3. Local vs global: a scale dilemma

We wish to build a cycle time model that, as we said previously, needs to be as close as possible from the "natural" flow of the majority of products. We therefore need to capture the background consequences of variability by using historical data as we do not have the deep knowledge of the system that would allow us to tell where the roadworks are, where the road is humid, etc. The main measure we have to build our cycle time model is actually the track time of lots at different operations (similar to recording the time each car crosses each km section of the road). The standard approach to build a cycle time model would be to measure cycle time at each operation (each km section in our previous analogy) and build the model in a bottom/up approach: if it takes most cars 1 min to cross each km section of the first 10 km, it seems intuitive that most cars would take 10 min to travel the first 10km. Surprisingly though, this is not true in HMLV environment, the reason being what we call a scale dilemma.

A simplified example: 10 lots recorded over 100 operations

What we call the scale dilemma represents the fact that some events have a different impact on the global scale than on the local scale. We were faced with this dilemma while treating the data for the Crolles 200 and Crolles 300 fabs of STMicroelectronics. Through a simplified example, we will show what this dilemma is and how it makes simple bottom/up approaches unfit to build a cycle time model. The simplified example is as follows: imagine a route with 100 operations, where the first 50 operations have a standard cycle time of 1 hour and the last 50 operations have a standard cycle time of 2 hours. In this example, the lots can encounter extra hold times of 10 hours on any operation with a probability of 1/10. On top of this, the lots can encounter an extreme hold time of 200 hours with a probability of 1/1000. Imagine that we recorded 10 lots going through this route, following the operations cycle times that we just defined. The cycle time data table somewhat looks like shown in Table 2. Table 2 shows in blue part of the recorded cycle times for the 10 lots on the 100 operations. To these values, we added a few calculations for further discussions. If we take a random operation, we now see a majority of lots with a cycle time of 1 hour for the first 50 operations and 2 hours for the last 50 operations. However on each operation we may see a few outliers (the hold times), and on one operation (operation 65) we can see an extreme outlier (of 202h, the extreme hold time). A first consequence being that, even though it takes most lots 1 hour to cross each of the first 50 operations and 2 hours to cross each of the last 50 operation, it takes most lots 250 hours (and not 150 hours) to cross the entire route. We can see this better by looking at the histogram of the total cycle times of these 10 lots showed in Figure 25.

Table 2: operation cycle times for the simplified example of 10 lots over 100 operations

Figure 25: histogram of total cycle times for the simplified example of 10 lots over 100 operations

To get a sense of what a cycle time model for our example should look like, we can actually represent the "life" of each lot on a graph with the same axis as the graph used in Figure 24 to represent the cycle time model. We did so on the 10 lots of Table 2 to obtain the graph of Figure 26. We can see on Figure 26 that the majority of lots follow a similar evolution through their operations, with a speed increasing from operation 50 (but not quite doubling). We can also clearly see that one lots does not behave at all like the others and suffers extreme cycle time. Let's go one step further and try to actually build a cycle time model for this example, using the historical data we have about our example. Out of the cycle time data from the 10 lots of our experiment setting, we now need to make a cycle time model using some statistical methods, which leads us to a choice we need to make when considering the "statistical outliers" that the hold times represent: should we filter these values? More specifically: how can we chose which ones we need to filter out and which ones we need to keep in? In order to locally represent the movement of the majority, we should filter the outliers (since most lots have a cycle time of 1h in the first 50 operations and of 2h in the last 50 operations). However if we do so, we become terrible at predicting the flow of the majority of products on the macroscopic scale: As Figure 25 and Figure 26 show, the majority of lots take 250 hours to complete their route, and by filtering locally, we would make a model that has a total cycle time of 150 hours (as we can see in the "average with filter" row of Table 2). If we do not filter anything however (and make an average cycle time for each operation), we would locally have a pretty bad model (since, for instance, we would put 3 hours at operation 2, a value that does not represent the movement of anyone) and also have an inaccurate global cycle time model (As shown in Table 2, we would get a total cycle time value of 269 hours, when most lots actually take around 250 hours).

This problem, which we presented here in a simplified manner, is what we call the scale dilemma: it seems impossible to compute from the data a model that represents the movement of the majority of products both on the local and on the global scale. The reason we can actually not make a good cycle time model using only local information computed in a partitioned way (i.e. measuring statistics on each operation separately) is that the hold events from our example have different consequences on different scales. Locally, all hold events are outliers, as on the scale of operations, they do not represent the behavior of the majority. Globally however, some hold events actually affect all lots in a similar way and they then do represent the behavior of the majority, as we can understand by looking at the flow movement in Figure 26.

Figure 25 also shows why we would get a bad global model by computing the average operation cycle time with no filter: one lot has a cycle time far different than the rest, because it was affected by an extreme hold that does not represent the majority on the global scale. What we start understanding here is that each scale needs to tell us which information needs to be kept for its own level. Think of it this way: for each operation, the high cycle times coming from holds (+10 hours) or from the extreme holds (+200 hours) are both outliers, and there is absolutely no way of telling which should be considered or not for the model if we only stick to these local measures. The only way to tell that some are not outliers for what we measure is by looking at the global picture because it is at this scale that we define what is normal or not. This is the heart of what we call the scale dilemma. We get contradictive information from different scales (e.g. the answer to the question "are hold events outliers?") but we still wish to make a single model representative of all scales.

Bonus problem: sample size

For our use of the cycle time model, we want it to be accurate on the global scale, so we obviously need it to be slightly off locally. However, we still want to reduce this offset as much as we can. This is where another problem of scale comes: the sampling size. Indeed, even if we remove the global outliers (the extreme hold event), the estimator of the mean has a huge uncertainty for a sampling size of 10: if we take the average per operation, we would get stricktly different times for operations that we know are actually the same (the last 50 operations for instance). However, this problem of sampling size is the reality we face in High Mix Low Volume production: the amount of data per aggregation level is scarce.

In order to solve this sampling size problem, let us first build a cycle time model for our example based on the statistical parameters, which we can do in this case since we already know the statistical parameters and do not actually need to estimate them. As we explained previously, the outlier here is defined by the impact on the global scale and only the extreme hold here is considered as an outlier. Once we removed the extreme hold value, we are left for each operation with standard cycle times as well as holds that occur with a probability of 1/10. Therefore, the mean cycle time for each operation is the standard cycle time of the operation + 1h (10h with probability 1/10). Our cycle time model based on the statistical parameters is therefore 2 hours for each of the first 50 operations, and 3 hours for each of the last 50 operations (for a total cycle time of 250 hours). We would reach these values if we had an "infinite" amount of points and no sampling size problem. We now need a method that allows us to come close to this result by only using the data of our 10 lots.

4.B.4. A multi-layer model solution

The solution we propose to the problem of scale and sampling size is to measure information on each of the important scale, and to recombine them to have a homogeneous shift from one scale to another, in what we call a multi-layer model. For instance, if we only care about the local cycle time and the total cycle time (but no timescale in between), we could do a double-layer model. We first measure all local cycle times by filtering all local outliers, we then measure the total cycle times and filter all global outliers, and we finally stretch all local values by applying a homothety, so that the sum of local cycle times adds to the total cycle time we decided. With this double layer model on our example, we would have cycle times of 1.66 h for the first 50 operations, and 3.33 for the last 50 operations (by starting at 1h for the first 50 operations and 2h for the last 50 operations, and apply the homothety to stretch these values until the sum equals 250h). It would seem that we have an acceptable model. Indeed, with these values, we get cycle times that are twice as long on the last 50 operations than the first 50 operations (which corresponds to the ratio of standard cycle time as we can see in Table 2) and we have a total cycle time that adds up to 250 hours, which indeed corresponds to the majority of lots. However, by using a double layer model, we are off on the medium scale: the true time it takes most lots to complete the first 50 operations is around 100 hours (as we can see from the corresponding column in Table 2, as well as from Figure 26), when the double-layer model would give a time of 83 hours… As is, this cycle time model would therefore fail to accurately describe the flow of products on the medium scale. We can however increase the precision by adding another layer to make a triple-layer model: we divide the road into several sections, and measure the cycle time for each section (removing outliers on this timescale if we found some). We then proceed as before with two homothety as we show in Figure 27.

Figure 27: applying a double homothety to get a triple layer cycle time model

We see in Figure 27 that in the case of a triple layer, the bottom layer values (at the operation level for our example) are multiplied twice to get their final values. They get a first multiplication for their sum to add to the middle layer values, and a second for the middle values to add to the top layer value. In our case, the top layer corresponds to the total cycle times, the middle layer correspond to the sections we divide the road in, and the bottom layer corresponds to the operations.

For our previous example, we can divide the road into two sections (the first 50 operations and the last 50 operations). For each section, we measure cycle time with the median. The bottom layer therefore starts with values at 1h for the first 50 operations and 2h for the last 50 operations, the second layers with values of 100h for the first section and 150h for the second (the median values of columns "SUM 1->50" and "SUM 51->100" in Table 2) and the top layer (i.e. the total cycle time) is fixed at 250h. By applying the first homethety, we get values of 2 hours for each of the first 50 operations and of 3 hours for each of the last 50 operations (as we stretch each 1h value equally until the sum equals 100h, and stretch each 2h value until the sum reaches 150h) . In this specific case, the middle layer values (100h and 150h) already added up to the top layer value, so the second homothety does not change any value. We therefore get a cycle time model of 2 hours for each of the first 50 operations and of 3 hours for each of the last 50 operations. This model keeps fundamental characteristics from each level: at the operation level, similar operations are affected similar times in the model (e.g. the first 50 operations all have the same model time of 2h). We also find differences in cycle time according to the type of operation: the last 50 operations, which have standard cycle times higher than the first 50 ones, end up with higher model times). On the intermediate and macro scale, we also get a coherent model: we have a constant speed in our model from operation 1 to operation 50, which takes 100h to reach, and then a constant speed from operation 51 to operation 100, which takes 250h to reach. Figure 28 shows the different cycle time models that we would get by applying different measures on our example.

Figure 28: comparing different cycle time models for the simplified example of 10 lots over 100 operations

We can see on Figure 28 that by just measuring at the operation level, we cannot get a good model: either we filter no values and just apply an average on each operation (Local average, red curve) and we are sensitive to extreme outliers, or we filter at the operation level by simply applying a median at each operation (Local medians, green curve) and are far off on medium and large scale. If we are able to filter out the true outliers (i.e. here the extreme hold), we can build a model (by applying local averages after having removed the extreme hold value) but which is sensitive because of the sample size (Local average global filter, brown curve). Indeed, we can see that the brown curve suffers many fluctuations, and a different sample would give a different model. By applying a double-layer homothety (Double layer, blue curve), we have a good model on a very local timescale and add up to the good total value, but we do not quite capture the medium scale effects of the holds that add time evenly across the road and not proportionally. We manage to capture these effects with the triple-layer homothety (Triple layer, purple curve): the total time is coherent, the time to go from operation 1 to 50 is coherent, and the time to go from operation 51 to 100 is coherent. Moreover, we captured the fact that the first 50 operations (and separately the last 50 operations) have the same cycle time and that the first half of the route is faster than the second half.

As not all the information can be accurately represented with a single model, the number of layers and the choice of the sections in the layers (splitting the first 50 operations and the last 50 operations in our previous example) strongly depends on the use of the model and the nature of the route.

Results on industrial case study:

On our industrial cases, i.e. the Crolles 300 and Crolles 200 fabs, we decided to apply a triple-layer homothety and to split the routes (that have roughly 1000 operations) into 5 sections that we called Milestones. The first layer being the total cycle time, the middle-layer being the Milestones, and the bottom layer being the operations. The split was decided to be ISO-process-time: each Milestone has approximately the same process-time. This allows to compare the cycle time of Milestones against each other (the sections with higher cycle times have more time loss and therefore more variability or saturation). The number of milestones was decided for a combination of making it easier for human interpretation (as it is hard to remember more than 5 items at a time) and more importantly for the timescale they represent (a route having a total cycle time of approximately 65 days, a Milestone represents a timescale of around 2 weeks). Figure 29 shows a few examples of cycle time models we built on the C300 fab. The total cycle times were normalized for this graph. As Figure 29 shows, there are a few common points to the different products of the fab: First, we can see that the first halves of the routes are always slower than the second halves. This is due to a few combined reasons: first, there are more time constraints in the later operations of manufacturing semiconductors, so the tool redundancy and the saturations are adjusted in order to manage the time constraints. Second, the nature of the processes are quite different in the front-end and back-end: there are more furnaces (and therefore more batches) used in the front-end processes, which may induce more variability in the flow of products meaning more cycle time on average. Another common feature is the many regular "hiccups" we can see in the second halves of the curves. This actually shows the reentrancy of the flows: as the products go through the same cycles of operations in the back-end in order to build the different metal layers of semiconductors, they pass on the same toolsets and experience the same sequences of cycle time. We also see the same "bump" a few operations before the end of the routes of all products: all routes pass on the same final operations with the parametric tests experiencing many high saturations and high levels of variability. As we previously explained, a part of variability in the fab is structural and this is the reason why we can use empirical data to build a cycle time model. However, as we showed in chapter 3, a significant part of the variability is "product-induced" (the product-mix and the priority mix for instance impact the batch and setup efficiencies and therefore impact the levels of variability). This is especially problematic in High Mix Low Volume context as the product-mix keeps changing because of the shifts of the market demands. In order to build the cycle time model from empirical data, we actually made the implicit assumption that the background variability stays the same over time, which, because of the shifts of product-mix, is slightly incorrect… Indeed, we constantly see some product-types newly entering the production and others lowering their volumes. As the different products have different impacts on different machines in terms of workflow variability, this workflow variability does not really stay constant over time…

4.C.2. Shifts rather than breaks

However, the background variability does not undergo brutal changes but rather "shifts" over time: firstly because the markets themselves shift rather smoothly as typical product life cycles are "introduction", "growth", "maturity" and "decline". Secondly, because of the reentrancy in the High Mix Low Volume productions, shifts occur naturally at the toolsets level both for the product-mix and for the saturations. Indeed, take the example of an initially empty fab that brutally starts the flow of products and starts 100 lots per week. Imagine a toolset T with a reentrancy of 10 (the products come back at this toolset 10 times) where it takes one week for the products to come back to this toolset. The first week, 100 lots (the ones we just started) will go through toolset T. The second week, 100 newly started lots will go through T, as well as the first 100 lots that would reenter for the first time on T. Therefore, the second week, 200 lots in total will go through the toolset T. This shift will increase linearly until reaching stability after 10 weeks at 1000 lots per week going through T. For the same reasons, the same shift applies to the product-mix. We can therefore make the reasonable assumption that the background variability changes over time, but changes somewhat smoothly with a change rate of several weeks corresponding to the reentrancy period. This assumption is strengthened by the industrial data, an example being shown by Figure 30.

Figure 30: evolution of lot cycle times for a given product and a given Milestone of the C200 fab

Figure 30 shows the Milestone cycle time for a specific product type in the C200 fab. It displays for each lot the cycle time it took to cross this Milestone against the date it exited the Milestone. This illustrates the shift of background variability: over a period of 6 months, the cycle time to cross this section for this product gradually increased from 11 days to 14 days.

The consequence of this shift is that we cannot simply use an average or a median on the past to measure cycle times for each aggregation level of our cycle time model (as we did in the previous simple example). We can, however, use the information from the past to forecast, for each aggregation level, the cycle time the most likely to happen in the near future. Simply put, we need a way to incorporate the shift of variability in our cycle time model.

4.C.3. Holt-Winter smoothing: Measuring background variability changes

We want to apply our triple-layer model in a way that allows integrating the shift of variability. Therefore, for each aggregation level of our triple-layer model, we do not want to compute a simple median on the past but actually make a prediction for the future. Furthermore, since all products interact with each other (in any HMLV production), the shift of variability is time-based (i.e. it does not depend on the number of points but on the time): we therefore need a method that capture changes over time without being influenced too much by the number of points. Indeed, the different products have very different volumes and the number of points per product varies enormously. This means first transforming the raw industrial data into a homogeneous time-series. To do so, we can simply aggregate (for each aggregation level of our triple-layer model) the data of each week by measuring the median for each period.

Once we have a homogeneous time-series, there are many existing methods in the literature to forecast the next point of the time series. We chose to apply a double exponential smoothing algorithm, also known as Holt-Winters (HW) algorithm, as it is a popular technique to provide short-term forecasts for time series (e.g., [START_REF] Padonou | Robust monitoring of an industrial IT system in the presence of structural change[END_REF]). HW algorithm is an iterative algorithm that uses linear combinations of the previously forecasted value and new observed value to build the new forecasted value. Its strength is to capture both the trend and the slope in order to make a prediction. For illustration, let us apply the HW algorithm to the time series we discussed previously (the medians per period). Let us call 𝑀𝑒𝑑𝑖𝑎𝑛 𝑇 the median we measured for period T. As HW algorithm is an iterative algorithm, let 𝐶𝑇 ̂𝑇|𝑇-1 be the forecasted cycle time value for period T that was computed at period T-1. The idea of HW algorithm is that the forecasted value for period T+1 (𝐶𝑇 ̂𝑇+1|𝑇 ) is the sum of two time series at period T. These two time series are the trend 𝛼 ̂𝑇 and the slope 𝛽 ̂𝑇, and are themselves iteratively estimated by an average of the last observation 𝑀𝑒𝑑𝑖𝑎𝑛 𝑇 and the last predictions, weighted by two parameters λ 1 and λ 2 as shown by equations ( 4) to [START_REF] Kendall | Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain[END_REF].

𝛼 ̂𝑇 = λ 1 × 𝑀𝑒𝑑𝑖𝑎𝑛𝑇 + (1 -λ 1 ) × 𝐶𝑇 ̂𝑇|𝑇-1 (4) 
𝛽 ̂𝑇 = λ 2 × (𝛼 ̂𝑇 -𝛼 ̂𝑇-1 ) + (1 -λ 2 ) × 𝛽 ̂𝑇-1 (5) 
𝐶𝑇 ̂𝑇+1|𝑇 = 𝛼 ̂𝑇 + 𝛽 ̂𝑇 (6) 
The values of the two parameters λ 1 and λ 2 can either be estimated by minimizing a criterion (the forecast error for example), or by tuning them to represent a given timescale. In our industrial case, we chose to set the values in order for the series to represent a timescale: it was decided that the events that happened more than 3 months ago should not influence the value of the cycle time model. Mathematically, we translated that by "starting from 0, it takes 3 months to reach 99% of the actual value in the case where the time series is a constant". Since each point of the time series represents 1 week, we set the constants λ 1 and λ 2 so that after 12 iterations, 𝐶𝑇 ̂𝑇+1 reaches 99% of 𝑀𝑒𝑑𝑖𝑎𝑛𝑇 when 𝑀𝑒𝑑𝑖𝑎𝑛𝑇 follows a constant. This therefore led us to set the constants to λ 1 = λ 2 =0.24.

As this is an iterative method, there needs to be a starting point or an initialization phase. Several initialization methods exist in the literature [START_REF] Ledolter | Some comments on the initialization of exponential smoothing[END_REF], one of them being to simply take a median or an average for 𝛼 ̂𝑇 and 𝑀𝑒𝑑𝑖𝑎𝑛𝑇 and take an initial slope 𝛽 ̂𝑇 equal to 0. If the available historical data is big enough (meaning more than 12 historical medians), this method is sufficient. The performance will however start degrading if less data is available, which can actually be the case for newly started products for instance, which do not have any tracks recorded. For these products, we would want our model to give best performances as soon as possible.

In order to reduce the amount of data needed for a satisfactory initialization, we applied a "backforecast initialization" [START_REF] Ledolter | Some comments on the initialization of exponential smoothing[END_REF]. This consists of two phases: we first apply a normal initialization as we previously explained (computing a median on all data-points for 𝛼 ̂𝑇 and 𝑀𝑒𝑑𝑖𝑎𝑛𝑇, and setting the slope 𝛽 ̂𝑇 to 0); we then apply our entire algorithm (computing medians and HW algorithm) on the reverse data: instead of reading the time-series left-to-right, we read the time series right-to-left. When the last week of the backforecast phase is reached, the values we get is a "forecast" of the three time series (𝛼 ̂𝑇, 𝛽 ̂𝑇, and 𝐶𝑇 ̂𝑇) read right-to-left, which we can call 𝛼 ̂0, 𝛽 ̂0, and 𝐶𝑇 ̂0. The central values 𝛼 ̂0 and 𝐶𝑇 ̂0 are now set as the "best guesses" our HW algorithm was able to make. 𝛽 ̂0 is however the slope when reading the data points from right-to-left, which is the opposite when reading the data left-to-right (a positive slope going left-to-right will be a negative slope going right-to-left). We therefore just need to set the initial slope to -𝛽 ̂0 to finish our initialization. With this backforecast initialization, we actually need only half the points than with the simple method to reach the same accuracy.

By applying HW algorithm to the weekly median cycle times, we are therefore able to capture the shift of background variability and forecast cycle time for each aggregation level of our cycle time model.

4.C.4. Coping with ugly industrial data

Coping with ugly industrial data: sample size variability

The method we explained above works fine in theory, where all the sample points follow the same tendency and where the amount of data is sufficient. However, this is not always the case with industrial data. Figure 31 illustrates the problems that arise when using industrial data.

Figure 31: weekly median cycle times built from lot cycle times

Figure 31 shows the Milestone cycle time for a specific product type in the C200 fab. It represents for each lot the cycle time it took to cross this Milestone against the date it exited the Milestone and is the same graph as in Figure 30 on a different aggregation level, but on top of which was added the weekly median cycle time (blue crosses). We can see that even though the cycle time seems rather stable and predictable overall, the weekly cycle time measures are variable. This comes from a combination of two factors: sample size variability and "special cause" outliers.

Sample size variability means that since the arrivals of lots are stochastic, the number of lots we measure in each period varies. An underlying objective of measuring an aggregated value per period (as the median) is to reduce the noise that comes with the randomness of each point: the median of 20 points will be less variable than the median of 10 points, which will be less variable than the median of 5 points… However, because of this random sample size, we sometimes apply a median on a small sample size, therefore measuring more variability. In Figure 31, we can see that the number of points per week is quite often less than 10 and this causes a certain variability to the measured weekly medians. The reason this is problematic is that we want the cycle time model to be as stable as possible in time in order to make coherent WIP projections from one week to another (and therefore have a strong confidence in the decisions that arise from these projections).

In order to reduce the noise from variable sample size, we introduced a minimum sampling size of 10 points; the points from the incomplete weeks being kept for the computation of the following week. For instance, if two consecutive weeks have only 5 points, the computation will be made on the second week on the points of both weeks. Figure 32 shows what happens to the weekly median computation on the points of Figure 31 where we apply this minimum sampling size with points' accumulation from one week to another.

Figure 32: median cycle times built from lot cycle times, on periods subject to minimum sample size

We can see that the medians of Figure 32 are more stable than the medians of Figure 31 (in the sense that they follow more nicely their trend), which is essential as, as mentioned previously, the cycle time model we are building should shift according to the background shift of variability but should carry as little variability as possible to keep coherent outputs of the WIP projection from one week to another. Effectively, our cycle time model will be refreshed at most once per week (on the levels where we have enough data each week) but will partly be refreshed at a rate lower than this (once every two weeks for instance on the aggregation levels where there are on average 5 lots per week).

Coping with ugly industrial data: "special cause outliers"

Figure 32 also illustrate the last problem we face, which we can call "special cause" outliers. We can see on Figure 32 that the last median computed in December (on 18 points) is far off the distribution of points along the trend. These outliers correspond to physical changes that occurred in the fab on a given period and that affected the production. Indeed, we can see end of December that an abnormal amount of points are way out the central distribution (and in this case can correspond to "hot lots" with a really high priority). Leaving these points in the inputs of the HW algorithm would generate misalignments in the cycle time model, which could have harmful consequences on the decisions. The "classic" filtering method of mean ± 3 standard deviations does not apply to these datasets as the assumption of independent and identically distributed does not apply to these points (the entire objective of this part being to capture the trend of the population, the existence of a trend is incompatible with an i.i.d. assumption). However, as [START_REF] Padonou | Robust monitoring of an industrial IT system in the presence of structural change[END_REF] points out, the errors made by the HW algorithm are close to following an i.i.d. Gaussian distribution. We can therefore apply a filter on the population of points given by the following equation:

𝐸𝑟𝑟𝑜𝑟 𝑇 = 𝐶𝑇 ̂𝑇|𝑇-1 -𝑀𝑒𝑑𝑖𝑎𝑛𝑇 (7) 
That is to say, each time we measure a new median on an aggregation level, we compare the value of this median with the prediction we previously made. We then compare the error of the estimation with the population of errors we had computed in the past. The choice of the filter is here also important: as there can be many outliers in our data, we need a robust filtering method. The standard mean ± 3 standard deviations method is clearly not suited for this task as it has a breakdown point of 0%... which means that any outlier contained in the population used to build the filter would influence the limits of the filter. We chose MADe [START_REF] Leys | Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median[END_REF] (which is equivalent to mean ± 3 standard deviations but using medians instead of averages) as the filtering method as it has a breakdown point of 50% (we can introduce up to 50% of outliers before the limits get influenced by these outliers). We decided to keep 26 points for the population of errors required to build the filters: enough points for the filter to work properly, however sticking to recent data (less than 6 months) as the assumption of i.i.d. for the 𝐸𝑟𝑟𝑜𝑟 𝑇 population is only valid on short-term periods (long term changes in the sources of variability might change how spread the cycle times are on a given aggregation level). The initial population of points (for filtering the first values of our model) being the errors computed in the "backforecast initialization" phase.

Maximum error data correction: insuring data filtering and rapid convergence

Filtering out points is however not enough for an industrial application. Despite all the arguments for cycle time "shifts" rather than breaks and historical figures proving this point, cycle time breaks might happen in some extreme rare cases (the most probable being a human change in the definition of the aggregation levels). For this industrial application, the method needs to insure medium term convergence in whatever situation. Indeed, imagine a break in cycle time on a given aggregation level moving from a central cycle time of 10 days to a central cycle time of 20 days overnight. Using the model as of now, all new weekly points would be declared outliers and filtered out, until the limits from the MADe method extend far enough to include 20 days within the limits: With a population of errors being 26 points and a breakdown point of 50%, it would take at least 13 new points (i.e. 3 months) for the model to start not detecting the new points as outliers. It would then take a few extra weeks for the HW algorithm to converge towards the new cycle time value of 20 days. This response time of minimum 3 months is far too big to be acceptable. One solution is to generate an alert when more than X points in a row are given as outliers and to wait for a manual setting of a part of the model. This solution however was ruled out early on, as a fully automated solution was required by the company.

The solution we proposed is what we call a "maximum error data correction" method. The upper and lower limits of the MADe control method translate into maximum and minimum deviations allowed for the new median compared to the forecasted value. In turn, this means that we allow the new 𝑀𝑒𝑑𝑖𝑎𝑛𝑇 value to lie inside a certain interval around the forecasted value 𝐶𝑇 ̂𝑇|𝑇-1 . With a classic filtering method, if an outlier is detected, the data point is simply removed or ignored. Instead of removing the new 𝑀𝑒𝑑𝑖𝑎𝑛𝑇 if it lies outside of the interval, our "maximum error data correction" method corrects the 𝑀𝑒𝑑𝑖𝑎𝑛𝑇 to its maximum (or minimum) allowed value. This has a double effect on the model: in case of a real outlier, it lowers the outlier to an acceptable value, effectively dampening outliers in an acceptable range. In case of a real break in the cycle time value however, it allows the 𝑀𝑒𝑑𝑖𝑎𝑛𝑇 and the forecasted value 𝐶𝑇 ̂𝑇|𝑇-1 to increase gradually (Each corrected 𝑀𝑒𝑑𝑖𝑎𝑛𝑇 value being allowed to be greater than its 𝐶𝑇 ̂𝑇|𝑇-1 value, 𝐶𝑇 ̂𝑇+1|𝑇 will be greater and therefore 𝑀𝑒𝑑𝑖𝑎𝑛𝑇 + 1 will be allowed to be even greater etc.). Figure 33 shows the effects the "maximum error data correction" method has on a population with outliers (A) and a population with a break (B) compared to a forecast based on the same HW algorithm but without forecast.

Figure 33: comparing the ability of different methods to be both robust to outliers and able to manage breaks

Figure 33 shows two scenarios (A and B) that represent the two opposed cases that make filtering difficult: Figure 33.A shows a median cycle time with a positive trend and an outlier at week number 5. Figure 33.B shows a median cycle time around 1 the first 10 weeks, and around 3 from week 11, translating a break in the median cycle time. By applying the HW algorithm to both scenarios without data filtering, we can see that, in the case of an outlier, the forecast is greatly impacted, and it takes several weeks for the forecast value to realign. In the case of a break however, the no data-filtering algorithm converges rather quickly. Figure 33.A shows that the "maximum error correction" method deals with outliers almost as would a regular "binary" filtering method (where only two choices are possible, keeping the value of discarding the value): the HW forecast follows the general trend of the median cycle times almost as if the outlier had never appeared. In the case of a break however, the "maximum error correction" method immediately starts converging towards the new trend. The difference with a no-filtering method being that the slope at which it catches up is smaller. The main difference between the "maximum error correction" method and a classic filtering method being that it took 9 weeks for the "maximum error correction" method to reach the new trend whereas with a classic filter, it would have taken 13 weeks just to start accepting new points.

Coping with ugly industrial data: incomplete cycle time model

The last problem we faced with industrial data is the small volumes cases. Indeed, as some products have small production volumes, their history might not be enough to build a cycle time model for them. Passed a certain threshold, the linear cycle time model might be better than the historical cycle time model. For our industrial application, it was decided that at least 3 median values computed in the last 3 months were necessary in order to use the information for a historical cycle time model. If the amount of data was less than that on one or more aggregation level, the cycle time model could still be built, with the missing information being replace by the previously existing linear cycle time model.

4.D. Integrating background variability: conclusion 4.D.1. Maestro: full implementation

The different steps of building a cycle time model that integrates background variability and the shift of background variability are summarized in Figure 34.

Figure 34: the different steps of applying an iterative cycle time model

The method is recursive and requires an initialization phase as described in part 4.C. Once initialization is done, each new computation is triggered by the start of a new period (a new week in our case). At the beginning of each period, we first compute the central cycle time for each aggregation level of the cycle time model using for instance a median (step 1). We then control these values using the errors of past predictions and modify the values if needed using our "maximum error data correction" method (step 2). With the use of these updated values and of the previously computed time series that are the trend, the slope and the latest forecast, we build the next forecast value for each aggregation level using the Holt-Winters algorithm (step 3). If some aggregation levels of our cycle time model have insufficient data to provide a forecasted value, a static secondary model (e.g. a linear cycle time model) fills the gaps (step 4). Finally, for each product type, we use the forecasted cycle time values of each aggregation level to apply a multi-layer cycle time model (e.g. a triple-layer model using total cycle time, Milestone cycle time, and operation cycle time as the three levels) and get the cycle time model we can use for the WIP projections of this period (step 5). The combination of all these steps allows a fully automated history fueled cycle time model for all the existing product types, therefore allowing a WIP projection adjusted for background variability. This entire methodology was developed, implemented and industrialized on all product types of the two Crolles 200 and Crolles 300 fabs. The final software, Maestro, provides to Opera (the projection software) the cycle time models for all product types of both Crolles fabs. Overall, cycle time forecasts using Holt-Winter algorithm are made weekly on more than 16000 aggregation levels (Milestones and Operations for each product-type), building around 80 different cycle time models (some of which are shown in Figure 29, page 72). Maestro refreshes the cycle time models weekly by running as a programmed task on a network computer, and allows Opera to generate the WIP projection that defines all the objectives of the fabs in terms of activities to achieve, resources to allocate, required Overall Equipment Efficiencies… By better integrating the background consequences of variability, we effectively improve the tractability of the manufacturing system and therefore help reduce one of the consequences of variability.

4.D.2. Analyzing the results

A generally good idea when it comes to implementing new works or algorithms is to test for the improvements provided. The improvements provided by our new tool was of course a priority for the implementation of the solution. Yet, measuring the results provided by a new cycle time model is not all that simple. One could think that since the Holt-Winter algorithm aims at predicting future cycle times, a natural possibility would be to compare the difference (or Mean Squared Error) of the cycle time values provided to the actual cycle time values. However, applying this measure would translate a misunderstanding in the objective of a cycle time model… Indeed, as we mentioned in the beginning of this chapter, the objective of a cycle time model is to provide a flow movement that allows a WIP planification as close as possible to the natural behavior of the system, so as to minimize the number of actions to take on the system to achieve the flow movement that was planned. Through this objective, we understand that what we try to achieve with WIP projections and cycle time models is what is called a "self-fulfilling prophecy". In this context, we indeed want the future to be as close as possible as what the cycle time model provided, but the difference between the two actually translates a mix of successful actions on the system to respect the planification and of correct predictions.

Evaluating the quality of a cycle time model is therefore far more complicated that one could think at first sight. For our industrial application, the evaluation was done through a close collaboration with the engineers of the Industrial Engineering team responsible for the WIP projection. For several months, WIP projections were made using both the old and the new cycle time models, and the ability of production teams to achieve the objectives provided by the WIP projections based on both models was compared. The official industrialization of Maestro was decided after consistent validation from the Industrial Engineering team that the cycle time models from Maestro resulted in more coherent and achievable targets.

Chapter 5

The concurrent WIP: a solution to analyze complex systems

Chapter 4 presented a solution to integrate the background consequences of workflow variability to the projection tool of a manufacturing system. By increasing the quality of the projection/planification, the work in chapter 4 allows taking more suitable actions on the manufacturing system to increase its tractability.

As explained in chapter 1 and chapter 2, workflow variability materializes locally at the processcluster (toolset) level, as the result of the interaction between the incoming workflow and the processcluster. The ability of process-clusters to efficiently treat incoming workflow is therefore a major aspect in workflow variability. However, as we explained in chapter 3, all the different sources of variability add up and affect the performance of these process-clusters. In order to efficiently integrate the consequences of variability, it is therefore important to integrate all of these effects in the various models developed. This starts by measuring the actual performances of process-clusters, which standard analytical tools such as the OEE [START_REF] Pomorski | Managing overall equipment effectiveness [OEE] to optimize factory performance[END_REF] are unable to fully measure because of the complex interactions between the numerous sources of variability. Chapter 5 aims at improving such measures.

We introduce in chapter 5 a new notion: the Concurrent WIP. This notion translates a shift from looking at a process-cluster from the tools point-of-view to the products point-of-view, and effectively allows us to measure the aggregated response of a process-cluster to incoming flow. By applying a workload interpretation of Little's law on each jobs' time window, and studying the process-clusters' aggregated response through several formulas and graphs, we show how the Concurrent WIP method is able to precisely capture the capacity response of the system. We show through a case study from the semiconductor industry that we can measure not only the average capacity of a process-cluster, but also any capacity dependency to the workload as well as the variability of the clusters' capacity. Finally, we discuss further applications of our new approach to allow a better modelling and better tractability of complex systems.

The work presented in this chapter was partly presented at the 2016 International Conference on Modeling, Optimization & Simulation (MOSIM) [START_REF] Dequeant | Le WIP Concurrent : une proposition de file d'attente du point de vue du produit pour caracteriser le temps de cycle[END_REF] and further improved before being submitted to the journal of IEEE Transactions on Automation, Science and Engineering (TASE).

5.A. The problem with simple models applied to complex (variable) systems

5.A.1. Simple bottom/up models

The fundamental purpose of production management tools is to take or allow taking actions on physical systems in order to improve these ones. The tools however do not base their "reasoning" on the physical systems but on virtual representations of these systems, which are called models. As the models drive the tools, the effectiveness of the actions taken by the tools can only be as good as the accuracy of the models that describe the physical systems.

Most models used in current production management tools are built to deal with regular systems that can be described using various information about them in a bottom/up approach. Queueing theory for instance can accurately model simple systems with just a handful of parameters about these systems. Most queuing theory models however have a few underlying assumptions such as serial processes with no overlapping (in layman's term: "each process on a tool starts right after the end of the previous process"), independence in the arrivals, identical tools, independent downtimes and process-times… These assumptions help the simplicity of the models and in most cases, work pretty well.

When it comes to HMLV production, or more generally complex manufacturing systems, these assumptions reach their limit of validity. Indeed, all the sources of variability that we listed in chapter 3 have a significant impact on the system, but are either poorly or not at all taken into account in most bottom/up models. The reason however, is not simply outdated models, but has to do with the way these models are built and what we can call a limit of information…

5.A.2. The limit of information

Regular models, those made to describe simple systems, are built with a bottom/up approach. This means that they aim at describing the output of the system by adding up separate information about the system and modelling how these inputs combine to produce the output. For instance, a standard practice to study toolsets in semiconductor manufacturing, as shown by Martin [START_REF] Martin | Capacity and cycle time -throughput understanding system (CAC-TUS) an analysis tool to determine the components of capacity and cycle time in a semiconductor manufacturing Line[END_REF], is to build a capacity model from the theoretical capacity of all tools (e.g. 8 jobs per hour), to then individually measure all inefficiencies such as downtimes, idle-times, setup-times… (e.g. 3 jobs per hour) and to remove these inefficiencies to get an estimation of the overall capacity (e.g. 8-3=5 jobs per jour). This is a reasonable approach used broadly that works perfectly for regular systems.

The problem however arises when we try to apply this approach to complex systems. A complex system, if we take the definition literally, is a system where the amount of information to properly describe it is extremely high. Potentially, all this information is important as a small change on the inputs can have big impact on the outputs. As the simple bottom/up approaches are necessarily composed of many assumptions in order to simplify the model, lots of important information can be lost when applied to complex systems and have negative impacts on the quality of the model. For instance, imagine a toolset of 4 tools treating lots in parallel. In a normal system, the lots and the tools would be almost similar. In this case, only 2 parameters are required to calculate the throughput of the toolset under regular assumptions: the average process-time of a tool (PT) and the number of tools M (throughput=M/PT). If we simply add a bit of complexity by having 4 different product-types and flexible qualifications, we now need to know at least the tools qualifications on each product-type and the process-time of each product-type, i.e. we need at least an extra 4 × 4 = 20 parameters to calculate the throughput. Obviously, this is still an extreme over-simplification as all the sources of variability that we listed in chapter 3 interact and affect the output: There are many different parameters that have significant impact on the output of the system and the simplifying assumptions that are made to describe simple systems with a bottom/up approach do not hold in the case of complex systems.

5.A.3. The existence of a measurable output

However, the same principle we applied to the background consequences of variability can be applied in the analysis of local systems: even though the way all parameters interact with each other to produce an output is too complicated to handle, the output may not be too complicated to understand. For instance, we know gravity comes from insanely complicated quantum mechanics interactions: The sources of fluctuations and the interactions between all these sources is so complex that no bottom/up model is able (as of 2017) to describe how the quantum mechanics system that is our universe is able to produce the macroscopic effects that form the planets and the galaxies. However, by measuring some of the outputs of these effects (like the gravitational constant), we are able to develop simplified models (Newton's law of universal gravitation) that accurately describe the system on the scale we are interested in. As variability is the quantum mechanics of complex manufacturing systems, we need our gravitational constant to allow us deriving simplified models. In other words, in order to better analyze complex systems subject to high levels of variability, we need tools to directly analyze the outputs of the systems, and not rely on a bottom/up approach.

The first part of the solution is done naturally for almost all models: split the problem into smaller problems, i.e. group process-units together. This is generally done by creating toolsets (treating identical queues of products). We showed in section 2.E that toolsets could be inaccurate, and proposed to make groups (process-clusters and highly connected process-clusters) based on the ability of process-units to work together to treat an identical flow of products. With this first step in mind, we need a method to better analyze these process-clusters…

5.B. A novel approach: the Concurrent WIP

5.B.1. Definition of the concurrent WIP

As we have set rigorously the bounds of our problem with the notion of process-clusters, we are left with smaller, but still unsolved, problems: how can we accurately analyze the real system in a way that allows encapsulating the combined effects of the different sources of variability? Classical measures of cycle time, throughput, WIP levels… are starting points, but they fail at really measuring the system, i.e. the behavior of the process-cluster, since they all directly depend on other parameters: cycle time and WIP levels are affected by saturations, throughput is dependent on the arrival-rate…

Changing reference frame: the products point-of-view

The novel approach we propose, and that we call the Concurrent WIP (CWIP), actually starts by changing the reference frame: instead of classically studying the system from the process-clusters pointof-view in a bottom/up approach, we propose to study it from the jobs' point-of-view, allowing local measures of the output of the system as seen by each job. The CWIP is a notion defined for every job. Hence, we place ourselves at an individual process-cluster and consider a given job p. The reference frame of job p is the time interval between its arrival at the process-cluster and its actual process start; which we call its Effective Waiting-Time (𝐸𝑊𝑇 𝑝 ). For every other job i, we call 𝑊𝐿 𝑖 its Workload (several acceptations are possible; see details in next section 5.B.2) and we then define the concurrent WIP of a job p (𝐶𝑊𝐼𝑃 𝑝 ) as:

𝐶𝑊𝐼𝑃 𝑝 = ∑ 𝑊𝐿 𝑖 × 𝑥 𝑖,𝑝 ∀𝑖 (8) 
Where 𝑊𝐿 𝑖 = WorkLoad associated to the job i (detailed in next section). 𝐸𝑊𝑇 𝑝 = Effective Waiting-Time of job p. 𝑥 𝑖,𝑝 = fraction of the workload of job i theoretically processed in the time window defined by 𝐸𝑊𝑇 𝑝 .

The theoretical process of each job i that we consider here starts at job i process-start-time and lasts for a duration of 𝑊𝐿 𝑖 . Figure 35 illustrates the CWIP of a job p and shows the 6 different cases of theoretical process that other jobs can be categorized into as to define the fractions 𝑥 𝑖,𝑝 .

Figure 35: the concurrent WIP of a job p as the sum of the workloads of other jobs theoretically processed in job p Effective Waiting-Time window on the same process-cluster

In effect, 𝐶𝑊𝐼𝑃 𝑝 is the exact queue of job p, as it is the exact workload job p had to wait to be processed before starting its own process. The theoretical process used for this definition ensures the consistency between what is waiting to be processed and what has been processed. Note that in the simple First-In-First-Out single-job-family case, 𝐶𝑊𝐼𝑃 𝑝 corresponds to the unprocessed workload at the time of arrival. We purposely speak of Effective Waiting-Time as it is not necessarily composed of only Waiting-Time. In practice, it can be composed of transportation time, loading time, and other nonwaiting but non-process-times. However, from a logistical point-of-view, it can be seen as effective waiting-time on the same reasoning as in [START_REF] Etman | Aggregate modeling of semiconductor equipment using effective process times[END_REF].

A simple CWIP example

The CWIP can be understood through a simple example: imagine being in-line at the automatic cash register of a local supermarket. There are 2 cash-only machines, 2 card-only machines, all 4 with customers currently on them, and there are 10 people waiting in front of you in the line. The question we are asking is: "what is your true queuing line?" 10 people seems to be the obvious answer. However, if you pay by card, and most people in front of you pay by cash, you may skip a part of the line and only effectively wait, for instance, behind 5 people. Moreover, you actually partly wait behind the 4 customers that were on the machines when you arrived. However, these 4 customers do not have the same weight as the other ones as they have partly finished processing their workload… The CWIP, computed a posteriori, will rigorously answer this question.

5.B.2. Workload measures

It is essential to define 𝐶𝑊𝐼𝑃 𝑝 in terms of workload, and not in terms of number of jobs because different job-families can have different expected process-time. The workload is therefore a measure of the expected occupancy weight that a job has on the process-cluster. Furthermore, a workload view allows to accurately take into account partial jobs as is shown in Figure 35.

As the process-units can be heterogeneous, different workload measures can be given, depending on the underlying need. We define here 3 different workload measures, namely the Minimum Process-Time (MPT), the Average Process-Time (APT), and the Optimal Process-Time (OPT). The MPT is the sustainable theoretical Minimum Process-Time over all process-units qualified to process the given jobfamily. The APT is the observed Average Process-Time for the given job-family at the process-cluster. The OPT is the average Process-Time a process-cluster will achieve on the job-family when it achieves Optimal performances; OPT is a theoretical time that can be computed using balancing algorithms or linear models to achieve best overall capacity or cycle time using the same logic as Ignizio [START_REF] Ignizio | Estimating the sustainable capacity of semiconductor fab workstations[END_REF]. In simple systems these workload units are equivalent, however in complex system they have important differences. For instance, comparing APT with OPT provides a good measure of the loss of capacity caused by execution problems as it allows comparing what actually happened to what could have happened (whereas the MPT is not always achievable since different tools can have different processtimes). In the previous supermarket example, the workload of the customers can be linked to the number of items they have in their shopping kart. For each number of items in the shopping kart, you expect a different process-time. For instance, customers with only 1 article may expect an average process-time of 1 minute, when customers with 10 articles may expect an average process-time of 3 minutes. In order to define your true queuing line, it makes more sense to speak in terms of workload and say "my queuing line was 15 minutes of expected process-time" rather than "my queuing line was 10 customers". Firstly because the information is more precise, and secondly because all the variations in the time it took "15 minutes of expected process-time" to be actually processed will give us information about the processcluster (here the automatic cash register)…

5.B.3. Capacity estimations using the Concurrent WIP

The limit of models hypotheses

Measuring or estimating the capacity of a system is useful for many fields of application with capacity planning being the main one. For simple systems, the capacity can be estimated by making hypothesis on the system to apply a formula suited for the theoretical model. For instance, classic hypotheses are: single job-family, identical process-units, sequenced processes with no overlapping and no time between a process-end and the next process-start. With such hypotheses, the capacity of the process-cluster is the sum of the service-rates namely 𝑀 𝑃𝑇 with M the number of process-units and PT the mean process-time. For instance, having 10 process-units with 2 hours process-times, the process-cluster capacity is 5 jobs/hour. When these hypotheses do not hold, one can empirically estimate the capacity by the departure-rate of the process-cluster. However, departure-rates show two major limitations: first, they are irrelevant measures of capacity if the queue ever becomes empty during the measurement, hence the need for carefully chosen time-windows; second, they are expressed as a number of jobs, which is not meaningful for complex system with heterogeneous job-families.

In many real-life situations, estimating the capacity is done empirically by identifying and measuring individual sources of inefficiencies and removing them to the theoretical capacity to get an estimation of the actual capacity. However, as stated before, applying this method to complex process-clusters can results in high inaccuracies since not all the information about the system is known.

Local interpretation of Little's law

Little's Law, recently refined by himself [START_REF] Little | Little's law as viewed on its 50th anniversary[END_REF], allows to measure the throughput of a system (TH) on a given time-window by counting the average number of jobs in the system (WIP) and the average Cycle Time (CT): TH = WIP/CT. For process-clusters, this throughput is equal to the arrival-rate if no jobs are waiting at the end of the measuring period, and is equal to the capacity of the system during this period if there was always at least one job waiting to be processed during this time-window. Therefore, using Little's Law to measure the capacity of a process cluster is in theory possible, giving that the time windows chosen satisfies the aforementioned condition. However, the unit of WIP (number of items) in Little's Law makes two separate measures incoherent if the mix of job-families changes (since the average process-time changes) and therefore seems impractical to apply to complex systems. The concurrent WIP passes these two challenges, firstly because by definition a CWIP is always associated to a job that was waiting; secondly because the unit of CWIP being a workload, the measure is independent of the mix. Therefore, we can derive a CWIP adaptation of Little's Law as shown by Equation ( 9):

𝐶 𝑝 = 𝐶𝑊𝐼𝑃 𝑝 𝐸𝑊𝑇 𝑝 (9) 
Where: 𝐶 𝑝 = The capacity seen by job p during its Effective Waiting-Time. 𝐶𝑊𝐼𝑃 𝑝 = The concurrent WIP of job p. 𝐸𝑊𝑇 𝑝 = The Effective Waiting-Time of job p.

Note that we directly wrote a capacity term in equation ( 9) and not a throughput, since a CWIP always measures the throughput when this one is equal to the capacity of the process-cluster. For each job, using the CWIP, we can therefore measure a snapshot of the capacity of the process-cluster as seen by this job. Applied to the supermarket example, equation ( 9) tells us that by measuring your CWIP (e.g. 15 minutes of expected process-time) and the time you waited in-line (e.g. 5 minutes), you can tell which capacity the cash registry process-cluster had during your time window (e.g. 3 minutes of expected-process-time per minute, which is the capacity of the entire cash registry).

Aggregating separate capacity measures

As equation ( 9) measures a capacity for each job (seen by each job), we can measure many capacity realizations of the process-cluster (one by job), and use these realizations to aggregate useful measures of capacity. We therefore propose the following formula to compute from historical data the average weighted capacity of a process-cluster seen by all jobs i during a given period of time:

𝐶 ̅ = ∑ (𝐶𝑊𝐼𝑃 𝑖 × 𝐶 𝑖 ) 𝑖 ∑ 𝐶𝑊𝐼𝑃 𝑖 𝑖 (10) 
Equation [START_REF] Fendick | Measurements and approximations to describe the offered traffic and predict the average workload in a single-server queue[END_REF] gives the average capacity seen by all jobs weighted by their concurrent WIP. This weight is important as it gives a proportionally higher importance to jobs that witnessed the systems' capacity over a larger amount of jobs (workload to be exact). Applied to the supermarket example, we could be able to tell the capacity of the cash register by applying these equations to the empirical data, without needing to know any previous information about the cash registers, and without having to deal with periods of time where there are no customers such as night times or slack periods during the day: the result is simple and straightforward. Indeed, the CWIP by definition does not measure the throughput on these slack periods, where the equation would measure the throughput, but not the capacity.

5.C. Use case example: capacity analysis of semiconductor toolsets

5.C.1. Average capacity computation

Our first use case is a capacity analysis of a complex toolset in semiconductor manufacturing. The toolset is a Thermal Treatment toolset composed of 4 tools treating more than 20 recipes with a relatively low flexibility. The tools have a batching capacity of 2 lots per batch (inducing a theoretical maximum capacity of 8 hours-of-process/hour) but are prone to failures. The service policy is a manual schedule, with operators asked to follow priority-based rules that add weights to full batches but with a degree of freedom in their decisions to take into account downstream events. Lots priorities and human decisions can therefore degrade the toolsets' capacity by affecting the batch efficiency (which is not necessarily bad since global performances can be improved by these decisions). Other local inefficiencies include variable effective loading / unloading times due to operators' unavailability, transportation system delays, natural loading/unloading times… This use case is a good example of a complex process-cluster with a high degree of unknown information. Conducting a CWIP analysis on this toolset on historical data of 80 days, we had a distribution of over 4000 data points (lots), each associated to a CWIP, an Effective Waiting-Time, and therefore an observed capacity. The MPT, APT and OPT workload units are here equivalent since thermal treatment processes are defined as an amount of time to apply heat to the lots and do not vary within a recipe (job-family). Using formula 3, we computed an average capacity for the given period of 3.18 hours-of-process/hour. This is a huge difference compared to the theoretical capacity of 8 hours-of-process/hour (4 tools with batch capacity of size 2).

5.C.2. Capacity workload curves

We can however push the analysis further: we can represent the capacities against the concurrent WIP as in Figure 36. Each point of Figure 36 represents the capacity seen by an individual lot (computed with ( 9)), versus the CWIP this lot experienced. To these 4000 raw data points, we fitted a 95th percentile curve (red), and a mean curve (blue) with a LOESS fitting function (a LOcal regrESSion method which is a generalization of LOWESS, see [START_REF] Cleveland | Locally weighted regression: An approach to regression analysis by local fitting[END_REF]) as well as a one standard deviation area (blue hatched area) around the mean with the same LOESS fitting. These curves show the aggregated response of the toolset to incoming workload. A black curve in the background plots the cumulative amount of workload: it shows that the information is spread within the entire graph, with information density dropping at CWIP higher that 19 days-of-process. Figure 36 shows a wide spread of capacity for small CWIP, narrowing down as the CWIP increases: this just translates that the performance of the toolset is more stable on larger time windows (as it can be expected). Note that the maximum capacity recorded (the point on Figure 36 with highest y-coordinate) was at 6.7 hours_of_process/hour (for a theoretical maximum of 8 hours_of_process/hour). The fact that some points on Figure 36 have a capacity of 0 (a y-coordinate of 0) means that some jobs waited even though they had no CWIP. The blue curve shows that the average capacity of this toolset actually increases with the CWIP; in practice this is due to better batching possibilities with higher workload. Next section will show a practical use of this average capacity curve. These curves show that there is no such thing as "the" capacity of the system; instead, a workloaddependent capacity must be considered. However, if a single value must be provided, the average capacity of 3.18 (as measured above with equation ( 10)) appears to be a good estimate. The 95th percentile curve (𝐶 95 ) shows the capacity limit, i.e. the maximum achievable capacity. This capacity limit can also be workload dependent, even though it seems to be more stable in our example. The capacity limit enables to derive a Minimum Absorption Time (MAT) by capacity equation ( 9): the minimum time it took to treat a workload amount of WL was 𝑊𝐿 𝐶 95 ⁄ (𝑊𝐿). Next section shows a practical use of the MAT.

5.C.3. Application to infinite capacity projection

Average and capacity limit curves (which are depicted in Figure 36) can be useful in infinite capacity projections analysis (well described by [START_REF] Mhiri | A step toward capacity planning at finite capacity in semiconductor manufacturing[END_REF]). In infinite capacity projections, projections of WIP are first made considering a given fixed cycle time per operation (with each operation associated to a process-cluster), without considering capacity limits. Capacity analysis is then done independently after the projection: by comparing (for each process-cluster on a given period) the projected workload with the capacity of the process-cluster, it shows where major bottlenecks will occur (if the projected workload is bigger that the capacity, it is an indication of a major bottleneck to occur). However, estimating capacity in complex process-clusters is a real challenge as mentioned earlier and capacity analysis often suffer from wrong estimates of the capacities, resulting in unanticipated bottlenecks and firefighting activities.

CWIP capacity curves can offer a significant improvement to these industrial engineering activities. Assume, for instance, that infinite capacity projection has forecasted a workload of 15 days_of_process for the next 4 days on the toolset of Figure 36. Based on concurrent WIP, Figure 36 tells that, for such a workload, the capacity limit is 4.3 days_of_process/day and the average capacity is 3.7 days_of_process/day. This means that the fastest this toolset has ever absorbed 15 days_of_process is in 15/4.3= 3.5 days (the Minimum Absorption Time MAT) and that, on average, the process cluster takes 15/3.7= 4.1 days to absorb this amount of WIP. Therefore, in this case, since the projection period is 4 days, a bottleneck is likely to occur since it takes on average more than 4 days (4.1 days) to absorb that much WIP. Nevertheless, if some measures are taken to achieve a high performance at this toolset during this period (delaying preventive maintenance for instance), the bottleneck can be avoided since toolset can absorb this amount of WIP in less than 4 days (MAT of 3.5 days).

5.C.4. Application to clearing functions

The non-linear relationship between the capacities of the process-clusters and the workload is a known effect in the literature. The derivation of Clearing Functions (CFs), which provide a relationship between throughput and WIP levels, is a relatively recent field of study intending to use non-linear capacity models based on WIP quantities in production planning models. The use of CFs has proven significant improvements in production planning tools and is considered a key element for future production systems. Albey, Bilge, and Uzsoy [START_REF] Albey | An exploratory study of disaggregated clearing functions for production systems with multiple products[END_REF] include an overview of recent research on Clearing Functions.

One challenge CFs face however is the ability to derive functions that accurately describe the reality when applied to complex environments. Indeed, the first reason is that measuring the true capacity of a system is a more than challenging task. Secondly, CFs functions are generally represented as throughput vs WIP level (in terms of number of jobs to process). As we explained in part 5.B.2, the choice of the correct workload is crucial to measure correctly the capacity of a process-cluster. Both the units of throughput (number of jobs processed per time unit) and of WIP levels (number of jobs to process) may fail to capture the true capacity of a process-cluster in a complex environment. Indeed, let us take the example of two measures of throughput on the same process-cluster but on two different time windows. Let us assume that the WIP levels are the same for both measures and that the process-cluster has the exact same capacity on both time windows (e.g. 100% up-time, 100% batch-rate, no inefficiencies whatsoever…). If the mix of job-families is not the same on both periods, the workload on both periods will be different (even though the WIP levels are identical). When measuring the time it takes to absorb the WIP level in both cases, we will therefore get different times (because we have different workload) and we will therefore measure different throughputs (if we base our approach on WIP levels). However, as we mentioned before, the process-cluster has an identical capacity and behavior on both time windows… In turn this means that measuring throughput vs WIP levels has high risk of giving inconsistent results even when the behavior of the process-cluster stays rigorously the same, and can only be applied for estimates in the future for identical job-families mix, as a different product-mix would make the Clearing Function unfit.

Another application of the Concurrent WIP could therefore be the derivation of Clearing Functions adjusted to the units of the capacity workload graphs. The Concurrent WIP would allow measuring the performance of the past, and the change of units in the Clearing Functions would allow applying these performances to future projections with a higher precision. The LOESS mean curve of Figure 36 measuring the historical clearing function, the parameters of the mathematical clearing function could be fitted to minimize the distance to this curve in order to represent the average behavior of a real process-cluster.

5.C.5. Measure of variability

As we covered the different aspects of workflow variability in part I of this manuscript, we have explained that workflow variability, from a practitioner's point-of-view, is the tendency to create high workloads unexpectedly. Moreover, we established that both the inflow of the products and the process-clusters are responsible for a part of this variability. A process-cluster will create more workflow variability if it suffers more capacity losses in the presence of workload (thus creating unexpected accumulations of workload). As a tool that allows analyzing both workload and capacity, the Concurrent WIP can provide a measure of this tendency to suffer capacity loss in the presence of workload. The presence of workload is essential, as capacity loss (i.e. process-units unavailability or degraded performances) is only problematic if it disturbs the flow of jobs. Assuming independency between arrivals and the process-units behaviors is a way to not consider this dimension, but we cannot assume this for complex process-clusters since this represents a massive loss of possibly important information. Moreover, from a practitioner's point-of-view, dependent behaviors are the rule, not the exception (at least in semiconductor manufacturing).

To measure the tendency of a process-cluster to suffer capacity loss in the presence of workload, we can look at the weighted variability of the capacity of the process-cluster. A visual way of measuring this variability is simply the area of one standard deviation around the mean as is shown on Figure 36. More rigorously, equation [START_REF] Whitt | Approximations for the GI/G/m queue[END_REF] gives a practical measure for the impactful variability of the capacity of a process-cluster seen by all jobs i:

𝑉 𝑐 = ∑ 𝛿 𝑖 × (𝐶 ̅ -𝐶 𝑖 ) × 𝐶𝑊𝐼𝑃 𝑖 𝑖 𝐶 ̅ × ∑ 𝛿 𝑖 × 𝐶𝑊𝐼𝑃 𝑖 𝑖 ( 11 
)
Where 𝐶𝑊𝐼𝑃 𝑖 is the concurrent WIP of job i 𝐶 ̅ is the average capacity seen by jobs as calculated in [START_REF] Dequeant | Le WIP Concurrent : une proposition de file d'attente du point de vue du produit pour caracteriser le temps de cycle[END_REF].

𝛿 𝑖 = 0 if 𝐶 ̅ -𝐶 𝑖 < 0, 𝛿 𝑖 = 1 otherwise.
Note that only capacities below the measured average 𝐶 ̅ are taken into account: this is intended for a practical use of the data as, as mentioned before, only capacity losses impact negatively the processcluster. Therefore, we do not want variability reduction to happen by cutting very good performances, but only by reducing the bad ones. Moreover, the observed capacities are weighted by their associated CWIP: indeed, a job observing a capacity loss impacting a high workload is proportionally more important than a job observing a capacity loss impacting a small workload, as the capacity to generate a queue is directly linked to the workload affected. With equation [START_REF] Whitt | Approximations for the GI/G/m queue[END_REF], we therefore compute the average weighted deviation of capacity to the mean, restricted to capacities lower than the mean. Including 𝐶 ̅ (the average capacity from equation ( 10)) in the denominator standardizes this deviation relative to the mean.

Applied to the data of Figure 36, we calculated 𝑉 𝑐 =0.22, which means that on (weighted) average, the capacity below the mean is distant by 22% from the mean. From our formula, we infer that two distinct effects participate in the variability: first, local capacity losses affecting high workload participate the most to variability (points with high x and low y values on our capacity graph Figure 36). Second, the fact that the average capacity varies over workload (that the blue curve is not a horizontal line) participates to the variability as it means more points are necessarily further away from the mean. This impact can be well understood with a thought experiment: Let us imagine the initially empty process-cluster represented by Figure 36 and start the inflow of jobs; let us assume an arrival rate of 3.5 hours_of_process/hour. As the queuing workload is initially empty, the capacity of the system is initially smaller than the arrival rate (at around 2.5). The queuing workload will therefore start increasing. This, in turn, will increase the capacity of the process-cluster up to the point where its capacity equals the arrival rate. This workload will be a stable point: the system will tend to bring the workload to this amount. We can therefore assume, by the mere interpretation of these capacity curves, that the particular system of Figure 36 will create high amount of queuing times by the simple fact that its capacity depends on the workload. This tendency is however captured by the capacity variability factor of equation [START_REF] Whitt | Approximations for the GI/G/m queue[END_REF].

5.D. Perspectives for the use of Concurrent WIP

5.D.1. Queuing time estimates based on concurrent WIP capacity curves

An interesting perspective for the use of the concurrent WIP can be the development of queuing theory formulas based on the capacity curves and measurements provided by the concurrent WIP. Indeed, we can provide measures for the capacity, the dependency to workload, and the variability of the overall capacity. Provided that measures of the variability of the inflow can be computed, we believe that the concurrent WIP could open the door to a brand new way of deriving queuing time estimates for complex process-clusters and reduce the gap between theoretical and real complex systems.

The first step for this approach would be to make aggregate measures of the variability of the inflow of jobs. The current measure queuing theory provides (the coefficient of variation of inter-arrival times) is not suitable for complex process-clusters as it does not take into account the multi job-family parameter nor the dependency in the arrivals. We believe that an aggregate measure of the variability of the inflow should consider workload with the same units considered in the concurrent WIP approach.

The second step should validate the potential of the concurrent WIP metrics to quantify the overall performances of the process-cluster. One could do so by quantifying how simple known effects change concurrent WIP parameters (for instance increasing the number of parallel process-units in simple systems should decrease the capacity variability factor).

Moreover, dependent behaviors being common in complex environment, it would be essential to derive methods to estimate the impact of the dependency between the arriving flow and the processcluster to adjust the impact of the variability of both the inflow and the capacity of the process-cluster.

5.D.2. Situational comparison

As the concurrent WIP allows to capture efficiently the aggregated response of any process-cluster to incoming flows, we believe it can be a powerful tool for situational comparison. For instance, one can compare a simulation model with the real system the simulation tries to model. Indeed, developing a simulation model for a complex process-cluster requires big investments in terms of development, data gathering and treatment, and simplifying assumptions are often made to reduce development cost. By running a concurrent WIP analysis both on historical data and on the results of the simulation model fed with the same inflow of jobs, and comparing both capacity curves, one could quickly tell the differences between the real process-cluster and its simulation twin, along with useful information on where the difference stands.

One could also use the concurrent WIP to compare the performances of the same process-cluster over time by running a concurrent WIP analysis on the same process-cluster but on different time windows. This can be especially useful for production managers who set goals to their production teams. For instance, one can follow the performances of a process-cluster over time to track any performance issues. One might want to follow the performances over time to improve a given process-cluster, for instance focusing on variability reduction using the capacity variability factor 𝑉 𝑐 that we provided in equation [START_REF] Whitt | Approximations for the GI/G/m queue[END_REF].

5.D.3. Concluding on the Concurrent WIP and the integration of variability

As discussed earlier, high levels of variability in complex systems mean that many parameters and many sources of variability interact with each other in a way that is too complex to properly model. However, we are able in simple models to explain how the main components act: an extra tool will add capacity, more downtimes and more downtime variability will increase cycle time, higher product-mix in the presence of batches and setups will increase the average WIP levels and therefore cycle times.

In order to combine these main components in models that can accurately describe the complex reality, we need to fit these models based on precise measures from the real systems, in the same way physicists fitted Newton's law of gravitation by measuring the gravitational constant. The Concurrent WIP offers such perspectives, as the analysis of the Concurrent WIP data such as the capacity-workload graphs (and curves) and the CWIP equations measuring average capacity and variability give detailed information about the system studied while removing the noise from product-mix that classic throughput-WIP analysis were suffering from.

It is essential that approaches such as the Concurrent WIP get developed further as a gap currently exists between theoretical models and real complex systems, with little to no way of communication between them. These approaches should allow future models to incorporate different variability components factor to their parameters. The objective of such models being to decrease this factor over time as more and more sources of variability get quantified and added as parameters into the models. Chapter 6 6. Dependency effects: improving the knowledge on the sources of variability Chapter 5 showed the importance of accurately measuring the true performances of process-clusters (toolsets) in order to further integrate workflow variability into the different tools. Indeed, as the different models in use in a manufacturing environment are intended to predict the behaviors and response of the different process-clusters, it is essential to start off with the correct information. However, if we want the models to correctly integrate the important aspects of workflow variability (and its impact on cycle time and tractability), we need to have a proper understanding of how the different sources of variability create this workflow variability.

One mechanism which we believe creates workflow variability is what we call "dependency effects". Contrary to the common assumption that independent and identically distributed variables can accurately describe the phenomenon involved in workflow variability, we believe that the sequences of events play a major role in workflow variability. We therefore investigate in this chapter the effects of dependencies on three major elements of workflow variability: downtimes, process-times and arrivals. We propose a method to do so by running simulations using actual shop floor data, and show through our results that dependencies can actually be responsible for a far bigger amount of workflow variability than previously suspected, and that developing tools in this direction could greatly improve the integration and reduction of workflow variability. We also build a reasoning from these results which suggests that a key ingredient in workflow variability is the correlation between arrivals at the different process-clusters and the behavior of these process-clusters.

The work and results in chapter 6 were partly presented at the 2017 International Conference on Industrial Engineering and Systems Management (IESM). Complementary work was conducted after this submission and extra results which were not included in the IESM paper were included in this chapter as to give a full picture on the complex behaviors of real-world process-clusters.

6.A. The need to understand the mechanisms of variability 6.A.1. A technological maturity to model complex effects

From the previous chapters of this manuscript, we can understand that workflow variability (especially in complex manufacturing systems) presents itself as an extremely complex information that is not yet understood and well taken into account. For instance, workflow variability is so complex that it has different consequences on different scales that cannot be accounted for in a bottom/up approach (as we discussed in chapter 4). Workflow variability can be so complex that simple characteristics such as the capacity of a system cannot be accurately derived using classic methods because of the crushing amount of parameters and information that come to play to build them (which led us to derive a new tool, the concurrent WIP, in chapter 5). Workflow variability can be extremely complex, however we try to model it with very simple tools and models. Early models, developed in the first half of the 19th century, had to be derived mathematically as there was basically no other way to approach the problem. As so, it was reasonable to approach the problem by making assumptions on how the systems worked, how the different sources of variability behaved, and how the different parts interacted with each other. Such approaches led to brilliant queuing equations such as those presented in Factory Physics, which do a great job modelling simple systems, but have a clear limit when it comes to variability in complex systems. One century later, we now have both the technology and the data to investigate how complex systems behave, we do not need to rely on assumptions anymore, but can conduct simulation experiments and work on real data.

In order to integrate variability further, we therefore need to get a deeper knowledge of the root mechanisms that make sources of variability act on the system and generate higher cycle times and higher uncertainties in the real world. The idea behind being that, even though the real interactions might be too complicated to grasp, some general rules on which we can build future simple models might just lie in the data: some complicated behaviors that have an impact on cycle time can be understood, quantified, and fitted into future models.

6.A.2. Suspicions of dependency effects

Sources of variability have been intensely investigated in both the literature and the industry, and tool downtimes, arrivals variability as well as process-time variability are recognized as major sources of variability in the sense that they create higher cycle times (see chapter 3 for a review and discussion). As a consequence, these factors are widely integrated into queuing formulas and simulation models with the objective to better model the complex reality of manufacturing facilities. One commonly accepted assumption in the development of these models is that the variables that describe these events (MTBF, MTTR, process-times, time between arrivals, etc.) are independent and identically distributed (i.i.d.) random variables. However, many authors ( [START_REF] Fendick | Measurements and approximations to describe the offered traffic and predict the average workload in a single-server queue[END_REF], [START_REF] Shanthikumar | Queueing theory for semiconductor manufacturing systems : a survey and open problems[END_REF], [START_REF] Akhavan-Tabatabaei | A markov chain framework for cycle time approximation of toolsets[END_REF], [START_REF] Akhavan-Tabatabaei | A method for cycle time estimation of semiconductor manufacturing toolsets with correlations[END_REF], [START_REF] Albey | An exploratory study of disaggregated clearing functions for production systems with multiple products[END_REF]) have discussed this point in the limitations of classical models, and a few elements from industrial data also question the viability of this assumption. For instance, we have shown in section 3.B.2 an example of dependent process-times which might increase the overall workflow variability. Another example is shown in Figure 37: Figure 37.A shows the number of arrivals per week at a toolset from STMicroelectronics Crolles300 fab, while Figure 37.B shows arrivals per week generated using the same inter-arrival distribution as in Figure 37.A, but assuming independence of arrivals.

Figure 37: number of arrivals per week from real data (A) and generated by removing dependencies (B)

A clear "visual" difference seems to exist between the two graphs: the number of arrivals per week appears to be much more variable in reality than with the i.i.d. assumption. However, we only show here the difference in the "weekly" arrival variability on a single draw of an i.i.d. sequence. This visual difference may be a simple coincidence, and even if this difference exists, this does not mean that it is significant in terms of workflow variability generated (and therefore cycle time generated).

From the (variability) modeling point-of-view, the i.i.d assumption means that all the information of many individual similar events (e.g., downtimes) is contained within their distribution, and that the actual sequence of the events does not carry any additional information or, here, variability potential. That is why i.i.d. events (i.e. events that can be fully described by i.i.d. variables) can be described by standard statistics such as the mean and the variance (these statistics can completely define the statistical distribution). The objective here is therefore to investigate the impact that the i.i.d assumption may have on the quality of cycle time models and simulations. As increased cycle-time is one of the main reasons workflow variability is studied (both by the scientific community and practitioners), we intentionally concentrate on cycle times: the variability we want to account for should be understood as the potential to create higher cycle times. This choice is made for the sake of clarity, but the methodology we propose and the discussion we lead can be applied to any other measurable indicator.

We therefore propose in the next section an experiment framework for testing the variability potential of dependencies and show the results we obtained on industrial data.

6.B. An experiment framework for testing the variability potential of dependencies 6.B.1. Objective: testing individual sources of variability for "dependency variability potential"

The objective we have is to define whether or not some information contained in the sequence of data recorded might contribute to the workflow variability. We therefore wish to investigate if there is any significant variability potential stored in the sequences of industrial data. Indeed, from our perspective, if the distributions are not i.i.d but the result in terms of cycle time generated is the same, it can be considered that there is no useful information contained in the sequence and that the assumption is acceptable. For instance, one question one could ask is: "taking the arrivals of Figure 37.A, are the cycle times generated with these arrivals different than cycle times generated with i.i.d. arrivals such as in Figure 37.B?". If the answer is yes, this means that there are some phenomenon that we do not fully understand, but are stored in the sequence, that add extra cycle time. We could therefore say that the historical sequence has more "variability potential" than an i.i.d. sequence. What we understand by the "variability potential" of a source of variability is its tendency to generate more workflow variability, i.e. to generate higher cycle times. For instance, queuing theory proposes coefficients of variations (the ratio between the standard deviation and the mean) for measuring the variability potential of arrivals (applied on inter-arrival times) and process-times. What we therefore propose is a framework to test if a specific sequence of data points carries a different variability potential than an i.i.d. sequence from the same data points. We propose to do so by combining simulations and statistical tests on the cycle time outputs of the simulations. We will illustrate this approach by running a simulation model that integrates tool downtimes, as they are the main source of variability in semiconductor manufacturing. Figure 38 shows a sequence of Down-Times and Up-Times of a specific tool from the Crolles 300 semiconductor fab recorded for a period of 1 year.

Figure 38: historical Down-Time/ Up-Time from a specific Crolles 300 tool over a year

We call 𝑆 0 this particular (real) sequence of events. Our fundamental question is whether the cycle time induced by the specific sequence 𝑆 0 is significantly different than that of an i.i.d. sequence from the same distribution (as for the arrivals of Figure 37), i.e. we wonder if the fact that the tool followed this specific sequence of downtimes generated higher cycle times as if it had followed an i.i.d. sequence. To answer this question, we propose an experiment framework that measures through simulations whether the effect of 𝑆 0 is statistically significantly different to that of i.i.d. sequences from the same distribution. The following subsections detail the different components of the proposed framework.

6.B.2. Setting the simulation

The framework we propose is quite generic and could be applied to many situations: the simulation model could be any system, as long as one can control its inputs and measure its ouputs according to the hypothesis one wants to test.

In our case, we want to challenge the i.i.d. hypothesis, and try its effects out on cycle-times. We therefore settle for a minimalistic simulation model, so as to disregard all potential sources of variability other than the independence (or not) of the downtimes. We therefore consider the following system: agents queue in an infinite FIFO queue, waiting to be processed by a single tool with constant processtimes that treats each agent one after another with no inefficiency whatsoever except for the downtime events. These downtime events are set to follow specific sequences, being on the one hand the reference (real) sequence 𝑆 0 , and on the other hand (as a basis for comparison) many other i.i.d. sequences. This simulation model is there to generate the data. Indeed, the first part of our answer to the question of creating higher cycle times or not is to have a system run with both the historical sequence and many other i.i.d. sequences. Once the data are created, we can measure the differences in cycle times generated. Note that, as the simulation is a simple, controlled system, we allow ourselves to use cycle time as a measure of workflow variability.

6.B.3. Measuring the effect of 𝑺 𝟎

In our case, the effect of a sequence of downtimes is measured as the average cycle-time of the agents in a simulation. In theory, this should be evaluated on an infinite horizon, that is until the measure is stable enough, but it is in practice impossible since 𝑆 0 is finite (as it represents real, empirical data). As an alternative, to prevent any bias from a particular arrival sequence, we simply evaluate the long term average cycle-time by running many simulations on different scenarios, that is on different arrival sequences (following i.i.d. exponentially-distributed inter-arrival times). Let 𝐶𝑇 𝑖,𝑗 be the mean cycle time of agents from the simulation run on sequence i of downtimes and scenario j of arrivals; the effect of 𝑆 0 is then 𝐶𝑇 ̅̅̅̅ 0 , the mean of mean cycle times from simulations that used 𝑆 0 as an input.

6.B.4. Measuring the effect of i.i.d. sequences

To measure the effect of i.i.d. sequences, we generate many such sequences from the same distribution; those sequences of downtimes (𝑆 𝑖,𝑖≠0 ) are generated as random uniform permutations of 𝑆 0 .

Using the same procedure as for 𝑆 0 , we compute for each sequence 𝑆 𝑖,𝑖≠0 its effect: 𝐶𝑇 ̅̅̅̅ 𝑖,𝑖≠0 . Note that we use the exact same scenarios of arrivals as for 𝑆 0 , this extra requirement insuring that any significant difference between the population 𝐶𝑇 ̅̅̅̅ 𝑖,𝑖≠0 and the value 𝐶𝑇 ̅̅̅̅ 0 comes strictly from the difference between 𝑆 𝑖,𝑖≠0 and 𝑆 0 .

The effect of a particular i.i.d. sequence is of virtually no interest as we want to measure the effect of any i.i.d. sequence. This could be measured as the mean value of the 𝐶𝑇 ̅̅̅̅ 𝑖,𝑖≠0 . However, measuring a difference between 𝐶𝑇 ̅̅̅̅ 0 and 𝐶𝑇 ̅̅̅̅ 𝑖,𝑖≠0 (between simulations using 𝑆 0 or i.i.d. sequences) is not enough. Indeed, statistical fluctuations are always to be expected. What we need to know is: is the difference really more different than usual? To answer this question rigorously, we prefer measuring the effect of i.i.d. sequences as a 95% confidence interval 𝐼 95 . We compute 𝐼 95 as 𝜇 ∓ 2𝜎 where 𝜇 and 𝜎 are respectively the mean and the standard deviation of 𝐶𝑇 ̅̅̅̅ 𝑖,𝑖≠0 . Doing such calculation, we assume that the 𝐶𝑇 ̅̅̅̅ 𝑖,𝑖≠0 points follow a Gaussian distribution: this is justified by the central limit theorem as each point of our sample population is a mean, and by the fact that the underlying population 𝐶𝑇 𝑖≠0,𝑗 most likely follows a Gaussian distribution since the cycle time of each simulation comes from the accumulation of many independent random effects. Moreover, this assumption is then verified on the actual data generated.

As for the computation of 𝐶𝑇 ̅̅̅̅ 0 , the right number of sequences and of scenarios must be carefully chosen so as to get good estimates within reasonable running times. This is discussed in subsection 6.B.8.

6.B.5. Comparing the effects

Once 𝐶𝑇 ̅̅̅̅ 0 and 𝐼 95 have been computed accurately, they must/can be compared using a standard procedure for a statistical test: if 𝐶𝑇 ̅̅̅̅ 0 falls within 𝐼 95 , then it cannot be said that 𝑆 0 has an effect significantly different than that of an i.i.d. sequence; in the alternative, it can be assumed that 𝑆 0 has a different effect on cycle-time than an i.i.d. sequence. Figure 39 illustrates the three possible outcomes of the test. If 𝐶𝑇 ̅̅̅̅ 0 is on the left side of 𝐼 95 (Figure 39.A), 𝑆 0 carries a negative variability potential; If 𝐶𝑇 ̅̅̅̅ 0 is within 𝐼 95 (Figure 39.B), it cannot be said that 𝑆 0 carries any significant potential; if 𝐶𝑇 ̅̅̅̅ 0 is on the right side of 𝐼 95 (Figure 39.C), 𝑆 0 carries a positive variability potential. Setting a 95% confidence interval (or a p-value of 0.05) actually means, from a skeptic point-of-view, that there is a 5% chance for any sequence tested that the results will turn out to be positive by pure randomness. It is therefore essential to test different 𝑆 0 sequences, and to compare the number of positives with the probability of getting such results by "luck". For instance, if we test 20 sequences, there is a 33% chance of having at least 2 false-positives out of the 20.

6.B.6. Handling uncertainties on 𝑪𝑻 ̅̅̅̅ 𝟎 and 𝑰 𝟗𝟓

As 𝐶𝑇 ̅̅̅̅ 0 and 𝐼 95 come from a finite population we created through simulation, the values we measure are actually estimates of the true values (that we would get if we had an infinite population) and therefore carry uncertainty (this means that if we repeat the same measures on different generated points, we would get slightly different numbers). The actual value of 𝐶𝑇 ̅̅̅̅ 0 is contained in a confidence interval around 𝐶𝑇 ̅̅̅̅ 0 , which we call [𝐶𝑇 ̅̅̅̅ 0 ]. The same applies to 𝐼 95 : as we had to estimate 𝐼 95 , we are not certain of the two limits of this interval, however 𝐼 95 is most likely contained within inner/outer limits which we call 𝐼 95 -and 𝐼 95 + . Figure 40 illustrates this point. We can see on Figure 40 the interval [𝐶𝑇 ̅̅̅̅ 0 ] as well as two grey areas ( 𝐼 95 + -𝐼 95 -). If 𝐶𝑇 ̅̅̅̅ 0 is far away enough from 𝐼 95 as for [𝐶𝑇 ̅̅̅̅ 0 ] and ( 𝐼 95 + -𝐼 95 -) not to touch, there is no problem as whatever value 𝐶𝑇 ̅̅̅̅ 0 takes within [𝐶𝑇 ̅̅̅̅ 0 ], and whatever value 𝐼 95 takes within ( 𝐼 95 + -𝐼 95 -), the answer to a significant difference or not stays the same (In layman's terms, 𝐶𝑇 ̅̅̅̅ 0 and 𝐼 95 can wobble as much as they want in their respective intervals, being in one of the cases of Figure 40 will mean staying in this case). The problem arises when the uncertainty areas of [𝐶𝑇 ̅̅̅̅ 0 ] and 𝐼 95 overlap: depending on what true value 𝐶𝑇 ̅̅̅̅ 0 and 𝐼 95 take inside their intervals, the answer can be different, and we can therefore not be sure of the answer.

In order to get definitive answers, these uncertainty areas around 𝐶𝑇 ̅̅̅̅ 0 and 𝐼 95 need to be reduced to a point where they do not overlap anymore: if such case happens, we need to increase the number of simulation runs as to decrease either [𝐶𝑇 ̅̅̅̅ 0 ] or the gap between 𝐼 95 + and 𝐼 95 -. Section 6.B.8 gives more details on the computation of these values and the way to minimize the number of simulations in order to get out of an overlap situation. There however needs to be a minimum amount of simulations in order to start computing the uncertainty intervals. To test one 𝑆 0 sequence, we decided to run simulations on at least 20 i.i.d. sequences and 20 arrivals scenarios. Therefore, one simulation set is composed of at least 400 simulations, and more if required by the uncertainty overlaps (up to a maximum that we arbitrarily set to 10000 simulations).

As a complementary measure, we check, for each arrival scenario j, whether the mean of the population 𝐶𝑇 ̅̅̅̅ 𝑖≠0,𝑗 is statistically different than 𝐶𝑇 ̅̅̅̅ 0,𝑗 . For each scenario j, we can answer this question using a t-test and then count the number of times a scenario j gave 𝐶𝑇 ̅̅̅̅ 0,𝑗 respectively statistically smaller, non-statistically different and statistically higher than the mean of the population 𝐶𝑇 ̅̅̅̅ 𝑖≠0,𝑗 . As the population 𝐶𝑇 ̅̅̅̅ 𝑖≠0,𝑗 represents average cycle times from identical simulation sets and parameters, only with randomness coming from different draws of the parameters, we can assume that they follow a normal distribution and can apply the t-test. These numbers are referred to as the "t-test triplets" in the results section 6.C and are computed as a secondary test, keeping the previously explained methodology as the main measure.

6.B.7. Ending simulations

Each simulation needs to be run over the period of time defined by the sequence 𝑆 0 that is tested. However, at the end of this period of time, some agents may have accumulated in the simulation. Cutting the simulation abruptly can either lead to the loss of the cycle time of these agents or an underestimation of their cycle time depending on how the information is recorded in the simulation.

In order to prevent from such effects, we decided to stop the arrivals after the time duration defined by 𝑆 0 , and continue the simulation until all lots have exited the simulation. We also chose to leave the tool up after the end of the given up/down sequence. This was first motivated by the fact that any other decision could introduce biases to the results; secondly, by having a similar end to all simulations, we actually slightly underestimated the difference between the historical sequence and its i.i.d. counterparts: this only strengthens any significant difference.

6.B.8. Optimizing the number of simulation runs

As we previously mentioned, the uncertainties on 𝐶𝑇 ̅̅̅̅ 0 and 𝐼 95 might be too high to properly answer the question of statistically significant difference, and in turn, force to run more simulations until the uncertainties are low enough. One way to be sure that these uncertainties are not biasing the results would be to run an extremely high amount of simulations, for instance generating 100 down sequences and 100 arrival scenarios. The previous example would however require to run 10000 simulations. With simulations that last a few seconds, running 10000 simulations can take more than an entire day. Testing many different sequences could therefore take months. It is therefore essential to optimize the simulation runs as to minimize the number of computation runs required to have no overlaps between the uncertainty areas.

The first step is therefore to define rigorously [𝐶𝑇 ̅̅̅̅ 0 ], 𝐼 95 + and 𝐼 95 -in order to compute them after each set of simulation following a new draw of an i.i.d. sequence of a new arrival scenario, thus allowing to stop running simulations as soon as the uncertainty areas stop overlapping.

As the uncertainties on 𝐶𝑇 ̅̅̅̅ 0 and 𝐼 95 come from the estimators, both uncertainty areas can be computed straightforwardly: the standard deviation of the estimator for both the mean 𝜇 and the standard deviation 𝜎 being respectively

𝜎 √𝑛 and σ √2(𝑛-1)
where 𝜎 is the value of the estimator of the standard deviation [START_REF] Ahn | Standard errors of mean, variance, and standard deviation estimators[END_REF] and n is the sample size, we can define

[𝐶𝑇 ̅̅̅̅ 0 ] as 𝐶𝑇 ̅̅̅̅ 0 ∓ 2𝜎 0 √𝑚 , 𝐼 95 -as μ ∓ (2σ - σ √𝑛 - 2σ √2(𝑛-1)
) and 𝐼 95 + as μ ∓ (2σ

+ σ √𝑛 + 2σ √2(𝑛-1)
) where 𝜎 0 and σ are respectively the standard deviation of 𝐶𝑇 ̅̅̅̅ 0,𝑗 and 𝐶𝑇 ̅̅̅̅ 𝑖,𝑖≠0 ; n and m are respectively the number of different i.i.d. sequences and of arrival scenarios; and μ is the mean of all 𝐶𝑇 ̅̅̅̅ 𝑖,𝑖≠0 . To derive the formulas on 𝐼 95 -and 𝐼 95 + , we start with the estimation of 𝐼 95 (μ ∓ 2σ), and we subtract (𝐼 95 -) or add (𝐼 95 + ) a standard-error for μ ( ).

Comparing the areas after each set of simulation is however not sufficient: indeed, after the initial 400 simulations, the condition to either increase the number of sequences 𝑆 𝑖 or the number of arrivals scenarios is the same: an overlap between the red area and either of the grey areas of Figure 40. In order to minimize the number of simulations, one option is to aim at the the biggest reduction in uncertainty area per new simulation. Drawing another arrival sequence will reduce [𝐶𝑇 ̅̅̅̅ 0 ] whereas drawing another 𝑆 𝑖 sequence will reduce the gap between 𝐼 95 -and 𝐼 95 + . We therefore need to compute the decrease in the uncertainty area per simulation for either case of making a new draw of arrivals or of downtime, knowing that any new draw of arrivals needs to be run on all existing 𝑆 𝑖 sequences and vice-versa. With 𝜎 0 and σ being respectively the standard deviation of 𝐶𝑇 ̅̅̅̅ 0,𝑗 and 𝐶𝑇 ̅̅̅̅ 𝑖,𝑖≠0 ; n and m being respectively the number of different i.i.d. sequences and of arrival scenarios, by drawing a new arrival and running it on all existing 𝑆 𝑖 sequences, the gap reduction per simulation is:

4𝜎 0 ( 1 √𝑚 - 1 √𝑚 + 1 )

𝑛

By drawing a new 𝑆 𝑖 sequence and running this new sequence on all existing arrivals, the gap reduction per simulation is:

2𝜎 ( 1 √𝑛 + 2 √2(𝑛 + 1) - 1 √𝑛 + 1 - 2 √2𝑛
)

𝑚

To get these numbers, we simply take the size [𝐶𝑇 ̅̅̅̅ 0 ] with m arrival scenarios, and subtract to it the size of [𝐶𝑇 ̅̅̅̅ 0 ] with m+1 simulations, which we divide by the n i.i.d. sequence we need to run the simulation on (and do the same for the arrivals). Therefore, in order to know which set of simulations to run after any set of simulations, one must compare these two values and run simulations on a new arrival sequence if the first number is bigger, or run simulations on a new i.i.d permutation of 𝑆 0 if the opposite is true.

6.C. Testing downtimes, arrivals, and process-times for variability induced by dependencies on industrial data

6.C.1. The three main sources of variability

From the literature review we presented in part 3, we pointed out that downtime events, arrivals "variability", and process-time "variability" are three of the most commonly discussed and pointed out elements in the literature. It is also these three that are quantified as "variability factors" in widely spread queuing equations such as found in Factory Physics. We therefore first focused our efforts on these three factors to follow a "Pareto mindset": as we are trying to dissect variability in order to explain it, we might as well start with what generates the most variability. As discussed earlier in this manuscript, arrivals "variability" is not really a source of variability, but is the result of many interactions between sources of variability, and basically acts as a "super source of variability" at the process-cluster level.

6.C.2. Downtimes of C300 tools

Using the method described in section 6.B, we tested 19 tools from the C300 fab. For each of the tools, we extracted the empirical sequence of Up-Times/Down-Times over a year. As the method explains in section 6.B, for each empirical sequence, we drew many i.i.d. "sister" sequences and combined these sequences in a simulation set with many different scenarios of arrivals. Each scenario of arrivals being run with each of the Up-Time/Down-Time sequence. One implicit parameter for all simulations of a single experiment was that the utilization rate of the tool was the same across all simulations (as the utilization rate influences the cycle time). This also implies that the utilization rate needs to be fixed beforehand. As utilization rate increases cycle time, there is more chance the difference between 𝑆 0 and its i.i.d. counterparts will be visible at higher utilization rates. Therefore, we decided to evaluate the significance of the result at a utilization rate of 80% as it is a high utilization rate but is still a realistic one. Table 3 summarizes the results of our experiments. The results are normalized so that the average cycle time for the sample i.i.d. sequences (𝜇) is equal to 100. Therefore, the values of 𝐶𝑇 ̅̅̅̅ 0 can be compared straightforwardly between them and relative to the central cycle time for i.i.d. sequences 𝜇. We also provide the confidence interval [𝐶𝑇 ̅̅̅̅ 0 ] and the 𝐼 95 * value, which correspond to 𝐼 95 + if 𝐶𝑇 ̅̅̅̅ 0 is outside

𝐼 95 + , 𝐼 95 -if 𝐶𝑇 ̅̅̅̅ 0 is inside 𝐼 95 -
, or the corresponding conflicting confidence interval if there is an overlap of the confidence intervals. The column "s" shows the result of our test: YES if there is a significant different, NO if there is no significant different, and NA if we were not able to get a definitive answer. We also add the "t-triplets" described in section 6.B.6. Tools with same letters are from the same tool type.

Table 3 : results of the experiment framework tested on 19 tools down/up sequences from STMicroelectronics

As Table 3 shows, out of the 19 historical sequences we tested, 3 did not show any significant difference in the variability potential they carried compared to their i.i.d. counterparts, 13 showed an increase, 2 showed a decrease, and 1 could not draw a definitive answer after 10000 simulation runs (H10). In the case of tool H10, 𝐼 95 * corresponds to the uncertainty area around 𝐼 95 + , and as we can see, even after 10000 simulation runs, this uncertainty area still overlaps with the uncertainty area [𝐶𝑇 ̅̅̅̅ 0 ]. The t-test triplets confirm the results and bring additional information on the impact of the arrival scenarios, but are not enough to assert a significant difference (e.g. see tools E6 and L18).

The differences between 𝐶𝑇 ̅̅̅̅ 0 and 𝜇 in Table 3 first show that most of the empirical sequences of downtimes we tested are statistically different than i.i.d sequences in terms of variability potential. Secondly, it should be noticed that the historical sequences added non negligible cycle time: the average increase in cycle time when the variability potential is positive is +174%, the median increase being +65%. This means that, for the majority of cases we tested, more than one third of the cycle time came from the actual sequence of downtime, and not from the statistical distribution.

An interesting result is that the sequence of downtimes can actually carry negative variability potential (meaning that using historical sequences, we generated less cycle time than i.i.d. sequences). The probability of false-positive is here ruled out by the fact that both tools that showed a sequence of downtime with a negative variability potential are from the same tool type (A1 and A2). We can interpret this as being the result of "regular" down events amongst "irregular" down events. Indeed, these tools are CMP machines, or Chemical-Mechanical Planarization machines, and require scrubbing pads to be changed frequently (and regularly). These pad changes create regular important downtime events. However, even though the time between these special events are somewhat constant, there are many other downtime events that happen more or less randomly. Therefore the regularity of these events is lost in the statistics, and when running a simulation with i.i.d. downtime events, this regularity is broken, which might explain the generation of more variability and higher cycle times.

The results from Table 3 were obtained at a utilization rate of 80%. However, it can be interesting to run distinct experiments for the same sequences, but at different utilization rates. For each empirical sequence, we actually ran experiments on 9 different utilization rates ranging from 10% to 90% for a total number of 180 experiments, each requiring a minimum of 400 simulations. 

Figure 41 : operating curve showing 𝑪𝑻 ̅̅̅̅ 𝟎 statistically higher than μ (A), non-statistically different (B) and statistically lower than μ (C)

The blue curves of Figure 41 are the average cycle times for the sample populations 𝐶𝑇 ̅̅̅̅ 𝑖,𝑖≠0 along with the 95% confidence interval. They represent the outputs of the simulations run on the i.i.d downtime sequences. The red curves represent the values 𝐶𝑇 ̅̅̅̅ 0 , i.e. the average cycle times generated by the simulation runs that used the historical downtime sequences. We can see with these curves the exponential character of cycle time when it comes to utilization rates. The cycle times added (or removed) by the dependencies seem to be proportional to the original cycle times.

6.C.3. Inter arrival times of C300 toolsets

In order to test variability potential from dependent arrival sequences, we applied the same logic as for the testing of the downtime events such as described in section 6.B. For 7 different toolsets with different characteristics (the toolsets of the tools from Table 3), we recorded the arrivals for a period of 1 year. For each of them, we translated the historical arrival times into a sequence of inter-arrival times. For each historical inter-arrival sequence, we generated i.i.d. inter-arrival sequences from the same data by doing a random permutation on the inter-arrival times.

As the arrivals are close to exponential, even the i.i.d. sequences carry a high variability potential and the cycle times are high even without other sources of variability. It is therefore not required to add scenarios of other sources of variability into the simulations (like adding downtimes, or variable processtimes), which tremendously decreases the number of simulation runs required. Indeed, for these results, a minimum of 20 simulations was set for a maximum of 100 (compared to the 400 to 10000 set for the testing of downtimes).

Effectively, we only use one simulation to get 𝐶𝑇 ̅̅̅̅ 0 and one simulation for each of the 𝐶𝑇 ̅̅̅̅ 𝑖,𝑖≠0 . No extra simulation is required since there is no other source of variability to generate uncertainty. The utilization rate in these simulations was set to 80% by adjusting the process-times (which were fixed in each simulation). Table 4 shows the results of these simulations with the same format previously used on the downtime sequences.

Table 4 : results of the experiment framework tested on 6 toolsets arrivals sequences from STMicroelectronics

As previously done, the results here are normalized to 100 by using the average of the sample populations as the reference (for each toolset, the average cycle time using i.i.d. sequences is set to 100). Almost all historical arrivals sequences carry a significantly different variability potential than their i.i.d. counterparts. Only one arrival sequence out of 7 was found to be non-statistically significant. As for the downtimes, the probability of having 5 out of 6 false-positives is practically zero. As we did not add other sources of variability than the arrivals and ran only one simulation to get 𝐶𝑇 ̅̅̅̅ 0 , there is no uncertainty on the value of 𝐶𝑇 ̅̅̅̅ 0 , thus [𝐶𝑇 ̅̅̅̅ 0 ] is simply the point 𝐶𝑇 ̅̅̅̅ 0 . Moreover, as we only have one scenario, we only have one value in the t-test triplets.

The astonishing part of these results is that the difference between historical sequences and i.i.d. sequences is huge: 5 out of 7 historical sequences tested generated over 200% more cycle time than their i.i.d. counterparts. This implies that, in our specific case, most of the information of the arrivals actually comes from the sequence when considering horizons of one year.

The reason for such a big impact of the sequences of inter-arrival times may be in the non-regularity of the products started, which translates in the non-existence of a stable state: as different products corresponding to different orders keep arriving, the statistics that the inter-arrival times follow keep changing. This change being non-negligible on a period of time of one year as our results tend to show.

There are however many other elements that likely play a role in the increased variability potential of real-world arrivals: one source of non i.i.d. arrivals would be the flow of so-called WIP bubble, i.e. big amounts of WIP moving together. Some WIP bubbles could form randomly (and therefore be i.i.d), however it is most likely that they come from irregularities in the performances of upstream toolsets. When a toolset suffers degraded performances over a long-enough period of time, WIP accumulates in front of it, being released as the toolset catches back performances. Another explanation can simply be batches: batches can be of sizes higher than 2, which means that more than 2 lots arrive together regularly on toolsets. However, generating i.i.d. sequences, we actually lose this information about batches and generate random batches from the inter-arrivals times set to 0. There are many other more complex explanations to this phenomenon, that include product-mix and setups that affect the capacity of upstream toolsets, self-feedback loops caused by reentrancy… One way one could test the origin of the extra variability in the arrivals would be by generating fullfab simulations that incorporate different explanations and compare the dependency variability potential of arrivals from these simulations versus from the reality. One could also generate the same tests as we just did, however on shorter sequences of arrivals: this could quantify the amount of variability that comes from uneven products starts and might allow using the i.i.d. assumption on shorter time intervals.

6.C.4. Process-times of C300 tools

The same procedure as the one used for testing downtimes was used to test process-times: for each of the tools (the same tools for which downtime sequences were tested), we extracted the empirical sequence of process-times over a year. For each empirical sequence, we drew many i.i.d. "sister" sequences and combined these sequences in a simulation set with many different scenarios of arrivals. Each scenario of arrivals being run with each of the process-time sequence. As for the downtimes and the arrivals, the utilization rates used for generating the results hereafter were set to 80% (by adjusting the inter-arrival times). Table 5 summarizes the results of the experiments run on process-times.

Table 5 : results of the experiment framework tested on 19 tools process-time sequences from STMicroelectronics

As previously done, the results here are normalized to 100 by using the average of the sample populations as the reference. The results shown by Table 5 are similar to those shown for downtimes and arrivals: in the great majority of cases, the historical sequences of process-times carry significantly more variability potential than their i.i.d. counterparts. The effects seem however to be lower than those of the downtimes and the arrivals as the median increase in cycle time is 20% and the average increase is 50%. This is in part explained by the fact that process-time variability is generally a smaller contributor to variability when compared to arrivals or downtimes. However, it is to be pointed out that the median 20% increase in cycle time is relative to the overall cycle time (which includes the effects of the arrivals). These increases are therefore also more than significant for a practical point-of-view.

We can also notice from these results that the type of tool seems to play a significant role in the variability potential stored in the sequence of process-times. Indeed, all tools from family K show very similar results (even though one out of the 5 tools shows no statistically significant difference). We however do not have enough results to fully assert this, but this could be a perspective for future studies.

One explanation to the origin of the dependent process-times might be common to the explanation for the arrivals: the mix of products started shifts considerably over a year, and this shift in product-mix changes the average process-times that the tools do. This cause can explain several of the big differences in cycle times, but certainly does not explain everything. Indeed, the tools A1 and A2 have almost no product-mix so their average process-time stayed constant over the period considered, however they also show an increase dependency variability potential. For these tools, the health of the tools might be the main contributors to the variability potential of their process-times. Indeed, as we had explained in part 3.B.2 of this manuscript, some tools run on multiple chambers in parallel, and the failure of one chamber does not necessarily trigger the failure of the mainframe, but if the mainframe continues running, it processes lots with a degraded process-time. One way one could test further from where this dependency variability potential comes from could be to have the process-times being random within a recipe type, but having recipe types follow the sequence dictated by the historical sequence.

6.D. Conclusion and perspectives

6.D.1. Summary of the results

Accurate modelling of sources of variability (i.e. root causes for the generation of queuing time inefficiencies) is a key element of the manufacturing strategies put forward with industry 4.0 and High Mix Low Volume production. Previous works had questioned the viability of the assumption of independent and identically distributed random variables when it comes to the modelling of sources of variability such as tool downtimes, arrivals, process-times… In this section, we first proposed an experiment framework based on the repetition of many simulation runs that allows testing on historical sequences of data if this assumption has any implication in the modelling of variability. The experiment framework was built around the specific scenario of testing downtimes, but can be applied to any sequence of data as long as a simulation is able to incorporate the source of variability that is tested.

We then tested 19 different industrial downtime sequences of 1 year taken from tools from the Crolles 300 semiconductor fab, as well as process-time sequences over one year of the same tools and arrivals sequences on 7 different toolsets. The results show that not only do the historical sequences carry significant variability potential, they actually contain most of the variability potential. We also showed that, quite interestingly, the sequences of downtimes can actually carry negative variability potential and generate less cycle time than if they were sequences of independent and identically distributed variables, an information that might come useful for running variability reduction programs.

6.D.2. A necessary correlation

The results we show indicate that most of the cycle time generated by downtime events and arrivals from historical data is unaccounted for in most queuing theories and simulations. However, the difference in cycle times between most current models (using queuing theory or simulation) and reality is not in the order of magnitude that we pointed out. How can it be that we see a significant difference that does not happen in reality?

We believe this difference comes from another dependency phenomenon that is still mostly unaccounted for: the dependency between the arrivals and the tool behaviors. Indeed, in the complex reality of manufacturing, decisions are made dynamically based on the flow of products. For instance, maintenances might be pushed back in the case of temporary over-saturations, more maintenance staff is also affected to tools that are forecasted to be highly used in the near future, etc… There is therefore strong clues that there is a correlation between arrivals and tools downtimes that is not yet accounted. This correlation might be a key both to modelling and to improving performances of real-life manufacturing systems: indeed, if it can be measured, followed and encouraged, this correlation can become a strong lever to decrease workflow variability. In this sense, we should first increase the research in the ability of WIP forecasts to predict significant variations in the arrivals which we just showed is not random (such as the prediction of WIP bubbles or differences in medium run saturations). We should then be able to measure this correlation, i.e. measure the synchronization between the performances of the toolsets and the arrivals at these toolsets, the objective being to have best performances when these are required. We should then push for preventive actions aiming at increasing this correlation (for instance managing maintenances or engineering activities in order for them to happen when the capacity of the toolsets are the least required).

6.D.3. Closing the gap between academics and industrials: a new era for modelling

Entering the new era of Industry 4.0 where the data is fully accessible and the computation capacities allow powerful simulations, we cannot keep the same modelling techniques as a century ago. Complex manufacturing systems such as High Mix Low Volume production facilities have an unprecedented level of complexity, translated in the high levels of workflow variability and the density of information that the sources of variability carry. This new complexity can be dealt with. It however requires a meticulous dissection of the different components that create it (the sources of variability), to understand how they act on the system and how they add variability separately and when combined. As each system is different and the amount of combinations is unconceivable, we need to understand the different aspects of each source of variability and to model the different impacts based on complex measures such as through simulations. Indeed, models built with a bottom/up approach are unlikely to integrate all the specificities and the complexities of the system. However, measuring some aggregated aspects, such as the dependency variability potential, or the effects of product-mix in a given flexibility configuration, and incorporating those measures into upper-level models could produce good results.

In order to achieve such levels of close relations between the physical systems and the models, there needs to be closer relations between the model providers and the "system providers", i.e. between the academics and the practitioners. Closing the gap between the academics and the industrials is one of the key aspects of Industry 4.0, which will allow industries to better model their variability and push up their productivity as they move towards High Mix Low Volume production, allowing a new era of manufacturing in Europe.

Part Three

III Towards variability reduction

Part One of this manuscript explained in-depth what workflow variability is, why it is important, and gave tools and methods to accurately measure it. Part Two then focused on integrating variability in production management tools. First through a direct integration of the cycle time consequences in WIP projection tools, effectively allowing a better tractability of the manufacturing system. Secondly through better measures of the actual performances of process-clusters (toolsets) using newly introduced tools and notions, therefore allowing the derivation of models that integrate more aspects of workflow variability. Finally, we explained that integrating variability also goes through a better understanding of what creates workflow variability in real life, and focused our attention on dependency effects which we showed plays a great role in the generation of workflow variability.

The most challenging objective however, the saint grail of manufacturing, is to achieve sustainable and continuous variability reduction. Reducing workflow variability would indeed mean shifting from curative firefighting strategies to sustainable preventive actions, allowing to drastically decrease cycle times (and therefore gain effective capacity) and increase the systems tractability. Part Three of this manuscript explores the required steps to achieve such variability reduction. We first discuss (chapter 7) the potential of simulation tools to increase our knowledge on the mechanisms of workflow variability and to pinpoint where actions need to be taken to reduce workflow variability. We indeed show the perspectives we see in improving simulation models using feedback from real data to identify the root causes effectively responsible for workflow variability.

We then focus on more global perspectives in chapter 8: we explain the potential that we see in studying the global aspects of workflow variability through full-fab simulations, and explain the different steps that we believe need to be checklisted to achieve that. We then, in the second part of chapter 8, unroll our vision, based on the literature and our experience, for a plan to achieve variability reduction in a complex manufacturing environment with works and results expected from a 1 year horizon to a 10 year horizon. . Chapter 7

7. A plan to identify variability reduction levers (using simulation)

The first two parts of this manuscript focused on the identification, measure, and integration of variability, which leads to a better tractability of the system by integrating this knowledge into the different production management tools. The saint grail however is to be able to reduce workflow variability, as this reduction automatically leads to both an enhanced tractability of the system and improved cycle times. Thus, the aim of Chapter 7 is to propose a structured framework that will allow identifying key levers on which actions can be taken in order to reduce workflow variability.

The first aspect of the plan is to find where the workflow variability is, using the measurement tools proposed in chapter 2. The next milestone is to replicate, using a simulation model, the exact same workload profile (see chapter 2) that happened in reality on the targeted process-clusters. The objective then being to tweak the simulation model as to find what could have been done differently in the past to reduce workflow variability.

We focus in this chapter on the elements that we believe are necessary to unroll such a plan: first, the better we understand how each individual source of variability works, the better our overall understanding (and ability to find levers) gets; so the continuous improvement on the knowledge of individual sources of variability is compulsory. Similarly, as we have only scratched the surface on the correlations and influential effects between different sources of variability and as there is strong evidence that these play a major role in the generation of workflow variability, further studying these combined effects is another no-brainer. We therefore start by describing the essential elements we believe should be further studied when it comes to studying individual sources of variability and dependency phenomenon. Moreover, replicating historical workload profiles is inherently difficult for complex systems as there are many un-modelled small sources of variability which end up having big consequences in real life: we will therefore propose an innovative approach that allows improving the modelling of past events using feedbacks from the reality as to establish the best simulation model from the available information. Finally, we show, through a test-case study of a process-cluster of the C300 fab, how we believe, once the previous milestones are reached, our framework can be articulated to "zero in" on the main sources of variability and key levers. .

7.A. Master plan: study the past to change the future

Using the different tools and knowledge presented in this manuscript, the objective of this chapter is to show how reducing workflow variability is possible on the short term, and which aspects need to by studied or further improved to do so.

In order to effectively reduce workflow variability, we propose to first act where there is the most workflow variability through a Pareto approach. In order to do so, one would need to divide the manufacturing system into process-clusters (and ideally, into highly connected process-cluster, see section 2.E.2), measure the amount of workflow variability at each of those using the measures proposed in section 2.D, and act on the workflow variability one process-cluster after another in a continuous improvement logic, starting with the most problematic process-clusters.

Once a process-cluster has been identified as a candidate for reducing its workflow variability, we will want, somehow, to know which levers can be used to reduce the workflow variability at this processcluster. The general idea is to found out which levers could have been acted on in the past to reduce the workflow variability in the past. By doing so, we infer that the sources of variability from the past will keep acting in the future. In order to find out the possible levers of past events, we propose developing simulation models that are able to reproduce the exact same workload profile (see chapter 2) as happened on the real-life process-cluster. If the replication is achieved with a sufficient precision, this means that the simulation model contains all the information needed to understand what created the workflow variability (in this specific period from the past). From there, we can tweak the simulation model (operate slight changes in the model inputs) and study the impact different changes would have had on the past as to narrow down on which inputs are the most impactful (which are effectively the main sources of variability) and which changes can bring down the workflow variability. This aforementioned framework is the general concept which we would like to unroll as to allow effectively starting variability reduction. This framework however requires a few essential elements as to unroll properly: first, as our objective is to simulate changes in the past events, we can only change sources of variability and action mechanisms that we have properly understood. In order to have a wide range of possible levers, we therefore need a wide range of controlled inputs, which means we need to further understand how each source of variability acts on the system to create workflow variability. For instance, as we have showed the impact of dependencies on workflow variability, the more we understand about the dependencies and the more we are able to replicate them, the more levers we will have access to. Parts 7.B and 7.C discuss the improvements that can be made to model the mechanisms of variability.

Moreover, creating a simulation model which recreates the exact same workload profiles as in the past seems complicated as modelling each and every source of variability and each interaction is almost impossible and would consume tremendous resources. What we propose is therefore to build simulation models using a feedback loop on the reality to fit a "residual function". By doing so, we can incorporate the main workload fluctuations in the primary sources of variability that are individually modelled, and incorporate all other otherwise unaccounted sources of variability and interactions in the residual function. The idea behind doing this is that the main components, the ones individually modelled, should be responsible for the main variations, whereas the other components on the other hand should have a rather stable aggregated impact. Part 7.D shows exploratory work in this direction, and finally part 7.E shows an example of root cause analysis on the fitted simulation, along with analysis which guide us on main levers to act on.

7.B. Improving knowledge on individual sources of variability 7.B.1. The necessity of a full understanding

The actions we take on a real system can only be as good as our understanding of this system. In order to address variability, it is therefore compulsory to understand, with the highest precision, not only what creates variability, but also how each component acts and increases this variability. As we have listed in the first part of this manuscript the twenty sources of variability that are commonly agreed to be the most impactful, we believe each source of variability should be addressed in-depth as to understand the mechanisms that make this source of variability impactful. As explained is chapter 3, a lot of work has focused on tool redundancy, downtimes, and process-time. However, these sources of variability are far from being sufficient to model complex process-clusters such as find in typical HMLV fabs. In order to accurately model variability and identify the major levers, the models need to incorporate other impactful sources such as tool dedication, product-mix, batches, setups, dispatching policies… To do so, it is also compulsory to understand how each of these acts, what are the characteristics that act on the system in theory AND in reality. This section (7.B) highlights the factors that we believe should be studied first and the mechanisms we should be able to model.

7.B.2. The non-linear capacity of complex process-clusters

Setups and batches: complexifying capacity

As explained previously (see e.g. chapter 5), the capacity of the system is a parameter found in many models, which seems pretty obvious as the capacity is unarguably the most important characteristic of a process-cluster. However, defining the capacity infers that the capacity is a constant parameter in a system, a fixed element. As previously mentioned, complex processes, such as those find in microelectronics, do not obey this fixed capacity rule. Setups, for instance, describe an additional fixed time needed to switch from one job-family (or recipe) to another; and this extra source of inefficiency is not a constant: if there is more WIP in front of the process-units, there is on average more of the same job-family in that WIP (waiting to be processed), and there is therefore a higher chance of processing more of the same job-family in a row before having to switch to another job-family (and perform a setup). As the setups only occurs when switching from one job-family to another, a higher WIP level will decrease the number of setups and thus result in a higher capacity. The reasoning is the same for batches: the higher the WIP, the higher the likelihood of performing full batches, and the higher the capacity. This non-linear relation has a surprising effect that we can describe as a "positive stable WIP level", i.e. in the absence of variability, a stable system with a non-linear capacity will constantly have some WIP waiting to be processed, whereas a stable fixed capacity system will have no WIP waiting in the absence of variability. To be exact, this phenomenon will happen at any process-cluster with nonlinear capacity for which the arrival rate is higher than the minimum capacity but lower than the maximum capacity. Indeed, for such process-clusters, if the WIP level is low, the capacity (and therefore the throughput) will be smaller than the arrival rate, and the WIP will therefore increase. However, as this WIP increases, so does the capacity. Therefore, once this WIP level is high enough, the throughput will be greater than the arrival rate, and the WIP level will stabilize. This will then result in a stable workload level around which the workload will fluctuate. We can see this effect quite straightforwardly on real industrial data. Figure 42, for instance, shows the evolution of the workload in front of a toolset of the C300 fab: this workload varies, but generally stabilizes around a workload of 3 hours of waiting time. 

The impact of product-mix

The setups and incomplete batches are sources of variability by themselves, but they are also the result of other sources, that can effectively increase the number of setups and of incomplete batches. One such source, as explained earlier, is product-mix. Indeed, the higher the product-mix, the smaller the amount of identical job-families are in a queue of a given length, and therefore, the more inefficiencies (setups or incomplete batches) are produced. Figure 43 illustrates this problem.

Figure 43: the effect of increased product-mix on process-clusters with setups or batches

Figure 43 shows the non-linear relation between the throughput (capacity) of a process-cluster and the workload at this process-cluster. For any product-mix, the throughput increases as the workload queuing increases (as we explained in the previous paragraph). Figure 43 also shows that, for any product-mix, a process-cluster with a non-linear capacity (e.g. setups) will experience a stable WIP level (shown as well by Figure 42). However, the higher the product-mix is, the fewer identical products can be found for a given WIP level, and therefore the more switching between different job-families is required, i.e. the more setups are required, which means a decreased throughput. This is what the different curves of Figure 43 explain: the higher the product-mix, the lower the throughput curve.

The impactful consequence of this is that the higher the product-mix is, the higher the stable WIP level becomes. This has consequences on all aspects of workflow variability: first, the cycle times are higher since the queues are longer, but a higher mean also means a higher variance, i.e. absolute uncertainty in the level of workload (which overall means increased workflow variability).

7.B.3. The impact of operational factors

As discussed in chapter 2, operational factors are the factors related to decisions and actions we take on the system. As so, these factors are the ones with the highest short term potential as their changes require no physical investment and can therefore be implemented at low cost and in a rapid manner. For instance, the scheduling policies and algorithms used have a great influence on the impact the productmix has on setups and incomplete batches, and thus on variability. As these are the most direct levers available to decrease variability, it is essential to fundamentally understand how these factors affects the variability and to be able to quantify the effects in different settings.

7.B.4. Understanding fundamental properties through simulation

In order to integrate the aforementioned phenomenon in simulation models to a point where they can be used as levers, it is necessary to gather knowledge on each of these sources of variability. Simulation is a promising tool for this: as we can control the varying parameters, we can, through simulation, run many experiments which will be targeted (for instance) at the following questions: how big of an impact does the product-mix have on variability? Can we estimate the "variability potential" of a specific product-mix? How big of an impact do the operational factors have on different configurations?

These simulations, as they will help the general understanding of variability, can also be organized in a way that brings straight answers to current problems. For instance, testing different scheduling algorithms or batch rules through simulation will not only bring useful insights on the variability this operational factor brings, it will also allow to choose methodologically which rule or schedule policy should be used in specific conditions.

7.C. Modelling of dependencies

7.C.1. Modelling dependencies for individual sources

The importance of dependencies

As we have shown in chapter 6 dependencies can play an extremely important role in the workflow variability that process-clusters experience. In the semiconductor HMLV fab of Crolles 300, dependent behaviors have a huge "variability potential": we indeed showed for several sources of variability that using the historical (dependent) sequence of events in a simulation instead of an independent sequence resulted in much higher cycle times. For instance, downtimes for the tools we tested in chapter 5 follow dependent sequences, with a resulting cycle time significantly different than if they were independent. It is therefore necessary to increase the knowledge we have about these behaviors as to understand what in these behaviors has potential to increase or decrease workflow variability, what elements are responsible for these dependencies and how we can have more tractability on it. A first step towards a deeper understanding would be to be able to model them, i.e. to have the ability to generate sequences of events that have the same characteristics and more importantly the same consequences. This section therefore sets the different perspectives we see in the modelling of dependencies, and the way we would further study these elements.

Possible options for modelling dependencies

The most obvious way to generate dependent sequences of data with a level of dependency that corresponds to the one observed in reality would be through the understanding and quantification of this dependency. One fundamental aspect of this understanding would go through looking at the sequences of data at different scales: indeed, some dependencies might be very local (e.g. downtimes can be likely to come by close pairs) while others can be very global (e.g. some sequences of data can have monthly variations in their downtimes). Whatever the procedure, it is fundamental to keep in mind that the consequence is what we are interested in. For instance, if a mathematical test indicates that the level of dependency in two sequences are identical, but the average cycle time generated with these sequences through simulation are significantly different, then this test is not appropriate for our purpose.

Another way we can imagine generating dependent sequences that "mimic" the real-world dependencies is by using a neural network whose mission would be to create sequences of data that yield the same "variability potential" as the input sequence. LSTM networks [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF] (Long Term Short Term neural networks) are recognized as powerful tools for data generation with dependencies such as text generation that resembles a given language [START_REF] Wen | Semantically conditioned LSTM-based natural language generation for spoken dialogue systems[END_REF]. Such neural network could be trained using input/output data from simulations as we used in chapter 5. As we repeat the exact same simulation, only with different input parameters, resulting in different output values, we could use the output cycle time, the secondary inputs, as well as an i.i.d. sequence of the sequence that was tested in the simulation as inputs of the neural network; and use the actual sequence of our simulation as the output of our neural network for the training phase. The key element would be our ability to generate enough dependent sequences as to train sufficiently well the neural network. This however could be achieved by applying transformations to the historical sequences of data, as for the new sequences to be different than the historical ones, but keep many of their characteristics as some of the dependencies.

7.C.2. Modelling interactions between different factors

Interactions between different sources of variability: the missing link

One of the conclusions of chapter 6 was the evidence supporting a strong level of interaction between the different factors: for instance the behavior of the process-cluster (especially the downtimes) seem to be strongly linked to the arrivals at the process-cluster. Following the objective of this chapter, which is finding levers to decrease workflow variability, understanding these interactions (the origins, the effects, etc.) would straightforwardly lead to more levers and better chances of achieving this objective.

Dependencies between process-units

As the different process-units in a process-cluster work together to treat an incoming flow of products, it is common practice in real fabs to try and sync the different process-units as to not get all process-units down at the same time. For instance, the preventive maintenances are (if possible) never done on all tools at once, but are generally evenly spread. This introduces strong dependencies between the downtimes of the different process-units of a process-cluster. As the goal is generally to reduce cycle time, it is fair to assume that this dependency (which is introduced by strategic decision) also has a significant impact on workflow variability and cycle time.

There are different ways we could approach dependencies between process-units: we could first focus on quantifying the potential effect of this type of dependency, for instance by running simulations with and without these dependencies and by analyzing the potential effect on cycle time and workflow variability. If these dependencies are found to be significant on the workflow variability, it would also be necessary to be able to generate such a level of dependency between the process-units within the simulations. We could also study the historical data to evaluate if this dependency exists and has a significant impact in the real world.

Process-cluster dependency to the arrival workflow

We believe that these dependent behaviors of the process-cluster to the arrivals are so impactful on real-life complex systems that the modelling of such systems cannot be done accurately without taking this aspect into account. As for previous aspects, the first steps to model these inter-factor dependencies is to be able to measure it, which could be achievable through simulation by running similar experiments as we did in chapter 6. Again, this should be followed by a focus on how to reproduce similar behaviors in simulations.

Another way to measure this type of dependency (with a more operational objective) would be through the measuring of downtime weighted by the workload. Indeed, from a really practical point-ofview, the lesser WIP waiting at the process-cluster, the less impactful a downtime is. If downtimes are strongly dependent on arrivals (in a way that reduces variability), this will mean fewer downtimes in the presence of high waiting workload. This measure could first be compared to a baseline (generated for instance through simulation) as to determine if there is or not a dependency, but could also be used straightforwardly for variability reduction as it is already an overall measure that is the consequence of both arrivals and the process-cluster behavior.

7.D. Improving the modelling of process-clusters with feedback loops

7.D.1. General idea of the feedback loop

Our objective in this chapter being to be able to reproduce historical workload profiles of targeted process-clusters to then tweak the simulation and find what changes could have positive impacts, the modelling of the process-cluster is a fundamental milestone. Indeed, the reproducibility of the workload profiles is the necessary condition to further steps. However, as we previously explained through this manuscript, the sources of variability that exist in real systems are numerous and potentially extremely complex. On the one hand, it is necessary to continue improving the modelling of each of these sources of variability as parts 6.D and 7.B explain. On the other hand, it is almost certain that we will never be able to fully model a complex process-cluster in a bottom-up approach. We therefore detail in this section the perspective we believe can significantly help improve the modelling of complex processclusters.

We believe the modelling of a process-cluster should be a hybrid approach. On the one side, each source of variability should be modelled as accurately as possible and in the most complex way. On the other hand, we need to somehow incorporate the combined effects of all the elements we were not able to individually model. We propose to do this through a feedback loop: from the individual sources that we modelled, we should build a first model that represents the real world process-cluster; this model should be run on the same arrivals and parameters as happened in reality and the key characteristics of both the real system and the simulation should be extracted. After comparing these characteristics, we should feed the differences between the model and the reality back into the model by adding for instance a "residual" module, whose role is to compensate for the difference. In other words, we need to aggregate the combined effects of the sources of variability that we were not able to explain individually and add them to our model as a residual element (as we would do when fitting a function to a set of data points). Aggregate measures such as the concurrent WIP proposed in chapter 5 will be extremely useful in closely analyzing the differences and finding which residuals should be added. The entire purpose of the approach is to get the most out of the information we have about the system by establishing a complex "fitting" of the simulation model.

7.D.2. The problem with one way simulations

Historical workload profile

To illustrate the approach we propose, we developed a framework on a real process-cluster of the C300 fab as a "proof of concept". This process-cluster is composed of 4 tools with batches of maximum 2. The product-mix arriving at this process-cluster is relatively high, with the tools having a medium flexibility (not all tools are qualified to process all products), and the priority-mix is high with the batching policy being a combination of the batch-size, the combined priority of a batch, and the time each lot has been waiting at the process-cluster. All tools undergo significant downtimes, and there are unknown delay times between the unloading and the reloading of the tools because of varying factors that can involve the transportation system, the operators, problems in the load ports, etc. In chapter 2, we introduced workload profile curves as a starting point to measure the variability at a toolset. As the idea here is to replicate the historical variability of a toolset, the accuracy of the simulation needs to be measured by comparing the workload profiles from reality vs from the simulation (as we will show in the following graphs). For this test-case, we recorded the workload profile at the aforementioned toolset for a period a little longer than 1 month. Figure 44 shows the historical workload profile at this specific process-cluster for the month of October 2016.

Figure 44: historical workload for a period of 1 month

We can see on Figure 44 that the workload profile is characterized by several "pikes" where workload accumulated abruptly before going back to a lower level in a few days (we can see for instance 7 main "pikes" around the dates of October 6,[START_REF] Hopp | Factory physics: foundations of factory management[END_REF][START_REF] Porter | The competitive advantage of nations[END_REF][START_REF] Delp | The development of the complete X-Factor contribution measurement for improving cycle time and cycle time variability[END_REF][START_REF] Kim | Measuring cycle time through the use of the queuing theory formula (G/G/M)[END_REF][START_REF] Mönch | A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations[END_REF]and November 3). We also see quite interestingly that the workload almost never reaches zero: the stable point is around 6 hours_of_process (which is about 4 lots since the average process-time is around 1.5 hours). The pikes and the stable workload level are basically what characterizes the workload profile of this process-cluster over this period. Thus, the simulation model that we make of this process-cluster should be able to imitate those as closely as possible.

Raw simulation model

We created a first simulation model for this toolset by identifying all the main sources of variability and integrating them in the simulation: the simulation model includes the downtimes, batches, tools qualifications, product-mix, priority-mix and the batch policy. As the objective is to replicate the workload profile over a period of one month, we fed the simulation with the exact same arrivals as in the reality and set the tools to undergo the same downtimes as in reality. The simulation gave as an output the arrival-time and process-start-time of each lot, which we then used to build the workload profile of the simulated toolset. Figure 45 shows the workload profile we obtained through this simulation compared to the historical workload profile (in the background). Having both curves in the same graph allows a careful comparison of the outputs of the simulation vs the reality. As we can observe on Figure 45, the two characteristics from our previous workload profile could be improved: apart from the pike around October 6, the other workload pikes are far from being modelled correctly in our simulation model as they are barely noticeable in the simulation. Moreover, we can see in Figure 45 that the stable workload of our simulation is almost at zero, when it was around 6 hours-of-process in reality.

7.D.3. The feedback loop: a "residual function" to fit the simulation

The impact from secondary sources of variability

As we explained through this manuscript, the reality is extremely complex and is made of many (many) different sources of variability that all interact with each other in order to create the output which we can measure as the workload profile. Therefore, even though we included all the major sources of variability of the process-cluster in the model, we end-up having a simulation that is not representative of the reality. The reason being that the small sources of variability have a combined effect that is nonnegligible. However, we can see on Figure 45 that the main variations seem to be correctly modelled: all the pikes from the historical curve (grey) seem to exist in the simulation model (black), just being often much fainter. We can therefore assume (with the same reasoning logic as we had in chapter 4 when we built the cycle time model) that the impact of the "other" sources of variability (the ones we have not been able to include in our model) does not create major variations but acts more as a background noise, i.e. a background impact on the capacity of the system. The idea is the same as fitting a regression model on a system where there are 30 actual variables but with only the 4 or 5 main ones with available data: the residual of the regression will contain the combined effects of the other 25 variables, and is generally different than 0. From the explanations in 7.B.2, we can also assume that more inefficiencies should increase the stable WIP to get something closer from the reality.

By analyzing the characteristics of both systems, and specifically aggregated characteristics, we should be able to measure the "residual" between the reality and our simulation, and feed this residual back into the simulation by adding a "residual inefficiency module" to our simulation. Note that this "residual" does not need to be a constant: we have for instance explained at many occasions during this manuscript that the capacity of the system depends on the workload for many reasons. We have included a few of these in our simulation (through the historical downtimes and the batches combined with product-mix), but we have not included all possible factors. It is likely that other sources of variability can generate capacity-workload dependencies that we have not modelled. For instance, loading and unloading partly depend on manual intervention, and as production teams have to deal with different process-clusters at once (which can be far apart from one another in the manufacturing system), they usually focus their attention on the highly loaded process-clusters, thus creating less inefficiencies on highly loaded process-clusters.

Measuring the quality of the simulation and the direction of improvement

We cannot fit the residual as easily an in a regression since a simulation model is not a simple equation where the numbers can move from one side of the equation to another. However the fundamentals stay true: if the simulation has a workload inferior to that of the reality (as it is the case in our example), we can reason that the average capacity of the simulation is higher than in reality and should be decreased. In order to be more precise though, a few components are required: first, we need to have a mathematical measure of the quality of the simulation as to be able to tell which simulation is closest from the reality. Secondly, we need to be able to measure the direction of the difference, as to know how the simulation should be changed as to improve it.

The measure we chose to evaluate the quality of the simulation is the relative difference in the workload curves. This measure is done by first taking the area of the absolute difference in the workload profiles of both curves (the real one and the simulated one), and dividing this area by the area under the curve of the real workload profile: this gives us the percentage of the real workload profile that we were unable to replicate in the simulation. The smaller the relative difference, the higher the quality of the simulation model (for our specific purpose of reproducing what happened in reality). When applying this measure to the raw simulation model of Figure 45, we get a value of 48%. This value means that the absolute area between the real and the simulation workload is equal to 48% the area of the real workload curve. When fitting the simulation model, our objective is to decrease this difference as much as possible.

The residual fitting function

As our test case is mainly intended as a "proof-of-concept", we chose a rather simple "residual inefficiency module": the module simply artificially increases the process-time of all lots following a "residual function". In this test-case, the residual function is also rather simple: it is a fixed time that has a given value E1 under a workload threshold W1, and a second value E2 over this threshold. This means that the processes in our simulation will see an E1 increase in their process-time if the current waiting workload in the simulation is less than the threshold workload W1, and an increase of E2 if the current waiting workload in the simulation is greater than W1. The "regression" of the values E1, E2 and W1 was done iteratively by analyzing the differences between the workloads of the successive simulations to the reality: if at a workload lower than W1 the average workload in the simulation is lower than that of the reality, E1 needs to be increased (or decreased otherwise). E2 can be fitted the same way, and W1 can be fitted by local search. We could have also added inefficiencies by simulating extra downtimes or adding a blocking element in front of the toolset, we however chose to act on the process-times to follow the reasoning of "Effective Process-Times" proposed by [START_REF] Hopp | Factory physics: foundations of factory management[END_REF] and further studied by [START_REF] Etman | Aggregate modeling of semiconductor equipment using effective process times[END_REF].

A significant improvement in the simulation

Figure 46 shows the workload profile of the simulation with this feedback loop compared to the historical profile. As we can see in Figure 46, most historical workload pikes are well modelled by the simulation.

Figure 46 : workload profile from the fitted simulation compared to the historical profile

Moreover, we have non-zero stable workload, though not quite as obvious as in the reality. When applying our previous measure (the relative difference between both curves), we now measure a difference of 36% between both curves. Compared to the original difference of 48% (Figure 45), we managed to increase the quality of our simulation model by 25% [ /48] by adding a very simple fitting function. There is still however a 36% difference between the simulation and the reality, which could be reduced by either adding more explanatory variables or improving our fitting method. One explanatory variable that we did not consider here and might actually impact our workload curves are "hold" events. Indeed, lots can be put in "hold" for long periods of time, arbitrarily retaining workload and potentially affecting the modelling. We emphasize that a 36% difference between two curves actually translates a rather good fit in our case. Indeed, with our metric, the difference can get higher that 100% (with asynchronous curves for instance).

7.D.4. Optimizing the feedback process

Although the previously described method allowed us to achieve a simulation that resembles reality to a satisfactory point (the two curves in Figure 46), we believe many improvements can be brought to the feedback loop process in order to get the best possible simulation model out of the available data with relatively small resource investments. For instance, the residual function we chose for our simulation model is extremely basic and was chosen for its ease of implementation. The choice of this function, which can be continuous or by step as we did (but with a greater number of steps) as well as the optimization method to find the best parameters can become a central aspect in the modelling of complex process-clusters. Indeed, if it is done correctly, this process could significantly reduce the development required to accurately model a process-cluster by making best (automatic) use of the available information about the system. We strongly believe that aggregate performance measures (such as those the concurrent WIP can provide) can be a key in finding the best residual function and parameters for developing accurate models.

Another improvement to this feedback process can be the measure of "closeliness" that we used. We chose to measure the absolute difference between two curves, as we believe this measure comes with a meaning that is easily understandable. However, we could have also chosen to minimize the square of the differences to get a measure closer from the ones used to fit regression functions.

7.D.5. Perspectives for simulations used in projections

We developed simulations with feedback loops in order to be able to reproduce past events with retrospective simulations, in the perspective of running root cause analysis on the historical workflow variability. As this example is used as means of illustrating perspectives, we strongly believe that this process has the potential to develop accurate simulation models to be used for root cause analysis at a low engineering cost.

However, this type of simulation fitting could also be used for simulations used in the case of projections. In this later case, one requirement to verify would be that the residual function that was optimized on a given time period holds effective on the next time periods (in other words, are the combined effects of other sources of variability relatively constant in time?). This could be done by training and testing the system the same way a neural network is trained: we would split the past horizon (on which we have recorded all the data) into sections, fit the residual function on one section and test it on the following sections. The objective in this case would be to get a type of residual function that is robust in time, which is a slightly different objective than the one we had in our example.

7.E. Root cause analysis through simulation 7.E.1. General idea: changing inputs to understand their impact

Once we have successfully simulated a process-cluster as to get the same workload profile from the simulation as from the reality (or close enough), we know that the simulation model contains all the important factors which created the workload variations on the period of interest. Therefore, we know that we have all the basic information to explain the workflow variability from that period. In other words, we can now work outside of the reality, in our simulation environment. However, we do not know which factors are the most important ones, and how the factors are linked one to another as to create the workload profiles. The idea from there is therefore to change the simulation inputs, one parameter at a time, and obverse and measure the differences created in the outputs, as to understand which events are responsible for which parts of the workload profiles. For our proof-of-concept, we will do exactly this on the simulation model we developed with the help of a feedback loop. Throughout this section, we can now compare any tweaked simulation to the simulation that was fitted to the reality (which we will call the original simulation). The objective of this section being to provide a proof-of-concept for our idea of root cause analysis through simulations on historical data, we will draw qualitative interpretations of the different simulations we will run, showing the potential for deeper works.

Impact of downtimes and arrivals

As the commonly agreed most impactful factor on workflow variability is downtime events, one first tweaked simulation that we can run is a simulation where the arrivals and all parameters are the same, except for the downtimes. One option would be to keep all tools up through the entire simulation, however this would change the downtime rate and therefore major other parameters such as the utilization rate of the system. As what we wish to test here are the effects of the heterogeneity of the downtimes (and only that), we cannot just simply put all tools "up": we need to remove the variability from downtime events without changing the long-run capacity of the system (i.e. the utilization rate). One way of doing this is by reducing downtimes to totally regular microscopic down events: we can set the tools to fall down for extremely short periods of time, evenly spread through the entire horizon. The notion of "extremely short" is obviously relative, and actually depends on the order of magnitude of the other events. We can therefore define "extremely short" here as being one order of magnitude smaller than the other influential events. In our case, as the average process-time is around 1.5 hours and the inter-arrival time is around 1 hour, downtimes of a few minutes can be considered "extremely short". We therefore set our downtimes to last 1 minute and to be separated by a fixed time (set as to have the same overall downtime). We also set the simulation to have preemptive downtimes where the process can continue after interruption, resulting in the downtimes effectively just increasing process-times, with the variability of the downtime events being however totally erased. As the downtimes are the most commonly agreed source of variability in our literature review, we expect the removal of downtime variability in our simulation to significantly decrease the workload variability. By applying this procedure to the previous example, we obtained the workload profile of Figure 47.

Figure 47 : workload profile from a simulation with historical arrivals, but no downtime variability

We can see from Figure 47 that, quite surprisingly, the removal of the downtime variability did not have the expected results on the simulation: as the generally agreed main contributor to variability, we would expect the workload variability to decrease once we removed downtime variability; however what we see is that the workflow variability actually increased once we removed the downtime variability (compared to the original simulation). We will show how complementary simulations can provide a good explanation for the results of this simulation run.

The other explanatory variables being arrivals variability, product-mix and priority-mix associated to batches, we can assume than some of these variables are responsible for the workflow variability of the toolset that we see in the original simulation. To understand better what is happening, we ran another simulation, this time turning back on the historical downtime events, however now removing completely the arrivals variability (which we do by having a fixed inter-arrival time, set as for the number of arrivals on the period to be identical to the original simulation). Note that the product-mix and priority-mix are kept, as the order of arrivals and the information on each lot was kept. Figure 48 shows the workload profile of this simulation. Note also that the y-axis of Figure 48 changed compared to those of the previous workload profiles as this simulation generated a peak of workload much higher than on the previous figures.

Figure 48 : workload profile from a simulation with historical downtimes, but no arrivals variability

What we can see on Figure 48 is that, again, removing the arrivals variability did not decrease the workload variability on this simulation, but significantly increased it, especially by creating a massive workload accumulation on the first week of the simulation. From Figure 48 by itself, we can understand that the arrivals play a huge role in the workflow variability at this toolset. Indeed, the difference between the original simulation and the simulation with modified arrivals is quite remarkable. Not only did a workload accumulation 4 times as big as regular pikes appeared, we can see that the other workload pikes do not match anymore between the original simulation and the tweaked simulation.

The first observation we can make from both Figure 47 and Figure 48 is that the workflow variability is lower when there is both downtimes variability and arrivals variability than where there is only downtimes variability or only arrivals variability. This strongly suggests that the arrivals and the downtimes on this toolset (and on this specific period) are closely linked: a large amount of the downtime events seems to happen in compensation of arrivals variability. More precisely, the huge workload pike in the first week from Figure 48 shows that the tools had a lower overall capacity during the first week than on average (as the arrival rate in constant in Figure 48). However, the fact that the original simulation gave a much lower pike in the first week (grey curve of Figure 48) indicates that these higher downtimes happened concurrently to fewer arrivals during the first week. On the rest of the horizon, Figure 47 shows lower pikes when the downtimes are turned on than when they are turned off, which shows that the downtimes on the rest of the horizon actually helped to synchronize the capacity with the arrivals. From these two tweaked simulations, we can therefore already understand that the incoming flow seem to be the root-cause of most workload pikes, and that the downtime events actually help reduce the effects of this incoming flow.

Impact of product-mix and priorities

From the previous simulations, it is clear that a big part of variability comes from the incoming flow of products. However this still combines the times of arrival, the product-mix and the priority-mix. Product-mix might play a great role as potentially many products with long recipes could arrive in a row and "clog" the capacity of the tools. In order to quantify this impact, we ran a simulation where all parameters were kept equal, except for the product-mix: we set all lots to have the same recipe, with a process-time associated to this "fake" recipe to be the average process-time. By doing so, we removed the lots priorities by ricochet: a high priority lot can now batch with any other lot waiting to be processed… The result of this simulation is shown in Figure 49. To our surprise, the effects of productmix and priority-mix in this instance are relatively small. Indeed, the difference between the original simulation and the simulation with no product-mix are marginal: removing the product-mix decreased the workload evenly over the horizon but by only roughly 5%. Therefore, we can conclude than the product and priority-mix are no major sources of variability in this instance. 

An impact of product-mix dampened by the downtime events

As explained earlier, product-mix and priority-mix associated to batches are theoretically responsible for a high background WIP and a part of the variability. The results of Figure 49 are therefore surprising as they challenge this idea. In order to understand why the impacts are so low in reality, we conducted an extra simulation, were, contrary to the previous one, the only source of variability kept would be the product-mix and the priority-mix. We therefore set the inter-arrival times to be constant and the downtimes to have no variability (as we respectively did in Figure 48 and Figure 47), and kept the lots recipes and lots priorities. Figure 50 shows the results of this simulation.

Figure 50 : workload profile from a simulation with no arrivals variability and no downtime variability

The results of Figure 50 are consistent with our first intuition: the workload increases at the beginning of the simulation (which is explained by a capacity smaller than the arrival rate because of incomplete batches) but then stabilizes around a specific workload. Slight variations also occur around this workload level due to the heterogeneity in the recipes and priority-mix. The surprising fact is that the average workload in this simulation with no arrivals variability and no downtime variability is actually higher than in the simulation with all sources of variability (the original simulation). We can interpret this by the fact that there is such a strong correlation between the arrivals and the downtimes that during the time periods where there are many lots to be processed, the capacity of the system is significantly higher than average, which makes the impact of product-mix (which is relatively constant over time) proportionally smaller.

7.E.2. Recommendations from the test-case

From all the different simulations, we draw one main conclusion on our test-case: most of the workflow variability experienced in the month recorded originated because of inconsistent arrivals, but was however partly dampened by the downtime events which were strongly correlated to the arrivals. Moreover, this correlation also seems to dampen the effects of product-mix and priority-mix. From our test-case, we would therefore recommend taking the following actions: first, identify what creates the arrivals heterogeneities and see if it can be reduced. We have earlier shown that inter-arrival times do not necessarily follow i.i.d. distribution: if this is not the case on this toolset (which we can test using the procedures of chapter 6), this means that there are certainly root-causes to the patterns in the arrivals. For instance, this can be due to WIP control strategies or variability in the downtime of upstream toolsets. If these root-causes can be identified, it might be possible to reduce the workflow variability this toolset experiences at the root.

On the other hand, as we have shown the existence of a correlation between the downtimes and the arrivals that help reducing the workflow variability, we would recommend using this correlation as an active lever: by setting measures, tools and policies that will allow increasing the level of correlation, we should be able to increase the efficiency of a currently informal control strategy, and therefore reduce the workload variability at this toolset. In order to do so, we could for instance follow the "downtime weighted by the workload": indeed, downtime is only impactful if it has an impact on waiting workload. By weighting the downtime by the workload, we would encourage freeing the capacity for when it is useful, and encourage activities that generate downtime to occur during non-impactful time windows.

With this approach, we do not know yet how much the system can be improved with these actions. The potential for improvement would be a very valuable information as it can justify (or not) an investment of resources. Future research can therefore investigate the potential that correlated downtimes can have on reducing workflow variability. A natural lower bound would be the variability achieved when the tools are up 100 percent of the time: if the real situation is already close from the lower bound, there is anyways not much improvement to do; otherwise, it is interesting to know how much improvement we can reasonably expect.

7.F. Conclusion, perspectives and further research 7.F.1. A plan to reduce variability

The objective of this chapter was to show a path to variability reduction that uses simulations to identify real-world levers to decrease workflow variability. We explored the different steps we identified as crucial to do so and provided a test-case example to assert our reasoning.

The general idea of this "Master plan" is to model the past workflow variability in a simulation model to then change various input parameters to identify the ones that can be used as levers to reduce workflow variability, as well as identifying how these levers can be activated.

The first step of this plan being to be able to accurately model past workflow variability, accurate modelling is necessary. In order to do so, we propose to incorporate individually the sources of variability that are suspected to be main factors, while "fitting" the simulation to best describe reality using feedback loops from the reality. We provided an exploratory example for such fitting as well as a measure to evaluate the difference between the workload profiles of a simulation versus the reality. In order to further enhance the power of these simulations to identify levers, we also believe that the different sources of variability identified in chapter 3 should be studied in much higher detail than it is currently the case as to understand exactly how these increase workflow variability in real-world systems. In particular, we suspect that dependency effects such as those presented in chapter 6 play a major role and that we should be able to correctly model those in order to incorporate them in the list of available levers for variability reduction.

Once accurate modelling of past workflow variability is possible (and main factors are well modelled), we believe sets of simulations with slight changes in the inputs can be used to identify main levers for variability reduction. We provided a test-case on a toolset from the C300 fab of STMicroelectronics and showed that it is possible, through simulation, to pinpoint the root causes of workflow variability at a given process-cluster, with a clear direction to what actions should be taken in order to reduce workflow variability. In our example, we have for instance put forward that the arrivals were the main cause of workflow variability, and suggested investigating further the reason these arrivals carried such variability potential. Furthermore, we pinpointed in this test-case that the correlation (or synchronization) of downtimes was a major lever which is currently unofficially in use and suggested pushing this approach by transforming it into a formal, measurable objective. Chapter 8

Further perspectives for variability reduction

Chapter 7 covered the perspectives we see in using simulations to identify levers to reduce locally workflow variability. Through a structures framework; we showed the different steps required to start the process of variability reduction.

This chapter shows further perspectives for variability reduction. More precisely, we focus now on a much larger time scale, allowing us to think about more ambitious and global approaches. We therefore first show what we mean by a "global approach" to study variability, putting forward that local actions can have global consequences as workflow variability can spread through a manufacturing system. We show different works from the literature which investigate this global aspect of variability and emphasize the potential we see in full scale simulations to fully address matters of workflow variability.

Finally, based on all the work presented in this manuscript, we put forward our vision for managing workflow variability in a complex manufacturing environment on a very large time scale. Indeed, we believe it is necessary to set a long term framework, as only paving progressively the different milestones in the same direction will allow us to sustainably move forward. This is however only realistic if each step also brings with it short-term results. We therefore show the different important steps to progressively and continuously model and reduce workflow variability in manufacturing systems on a horizon up to 10 years, from unrolling local variability reduction, to progressively improving the modelling of the different sources of variability, to transitioning to more global simulation models allowing more impactful actions. In order to do so in a sustainable manner, we also discuss the different elements in a company we believe are essential to structure in parallel to the research: the creation of a dedicated central team, the development of central and operational Key Performance Indicators (KPIs*), and the involvement of the different teams in the company for a common objective of improving the productivity and tractability of the entire manufacturing system.

8.A. Investigating variability on a global scale 8.A.1. The global nature of variability

Arrivals at process-clusters: the meeting point from other process-clusters

Through this manuscript, we generously discussed about the arriving workflow, and how the heterogeneity in the inter-arrival times contribute greatly to workflow variability. Our results from chapter 6 and chapter 7 actually suggest that most the workflow variability we measure at a processcluster originates from this incoming flow. Even though, as we have shown in chapter 7, levers can be activated to reduce the effects of the arriving workflow, the next step is to understand how this arriving workflow gathered so much variability potential in the first place, to then act on these root causes. As the arriving workflow at a process-cluster is the combination of several upstream flows coming from different upstream process-clusters, studying this arriving workflow means considering more than one process-cluster at a time, i.e. a first step to a global approach. Moreover, it is not necessarily where there is the most workflow variability that there is the more potential to reduce the workflow variability. Indeed, as we showed for instance in chapter 7 that we can use a better correlation of downtimes to arrivals in order to reduce the workflow variability, there might be some process-clusters with a much higher potential to use this lever than others, even though their workflow variability might be slightly lower. What this means is that, on the long term, it might be interesting to consider the return on investment of different actions to take, and therefore to consider several process-clusters in parallel in a more global approach.

Finally, the same way an arriving workflow at a process-cluster is a combination of different flows from different process-cluster, an individual process-cluster actually downstreams workflow to many different process-clusters. A complementary (and much more long term) approach to the one proposed in chapter 7 is therefore to consider the sum of the effects specific actions (on a single process-cluster) can have. These can include studying process-clusters with high reentrancy which might influence their own arrivals through the reentrancy, but also studying process-clusters that have fewer arrival streams (i.e. who receive jobs from fewer process-clusters) which may be more sensitive to upstream processcluster capacity losses than process-clusters with many arrival streams. We can also think about studying the process-clusters that perform the early-stage processes, which might have bigger global impacts as the flow that passes through these process-clusters can ripple through the entire manufacturing system more easily…

Global reasoning: a long term objective

The local continuous improvement reasoning that we presented in chapter 7 is a necessary first step to act on workflow variability, which is implementable on a short temporal horizon. In parallel to doing so, it is equally important to think about the best way to deal with workflow variability. With the global consequences that local actions can have, it is rather clear that the "optimal" approach is one that takes into account the global consequences of actions. The long-term planning to dealing with workflow variability should therefore converge towards a global approach. In the second section of this chapter, we show how we believe the different elements of research and structures in a company can be arranged as to lead to a global picture when considering workflow variability.

8.A.2. Literature on global approaches to workflow variability

Several authors have directly or indirectly proposed ideas to approach globally workflow variability. For instance, Wu [START_REF] Wu | An examination of variability and its basic properties for a factory[END_REF] gives a formula for measuring the variability of a fab at a specific utilization rate, based on the G/G/1 queuing formula. He also gives several formulas that link the variability of the fab to characteristics of process-clusters of that fab, deriving several interesting conclusions: for instance, he concludes that increasing the utilization rate of the fabs bottleneck decreases variability. Moreover, he derives that increasing the capacity of non-bottleneck process-clusters decreases variability and therefore allows a higher fab utilization rate under cycle time constraints, which goes against the basic principles of the Theory of Constraint (TOC). Finally, he explains that the variability of the fab is lowerbounded by the variability of the bottleneck process-cluster, which would suggest an interest in keeping the variability of the bottleneck process-cluster under control, and not only focusing on raw capacity.

With a different approach, Rozen [START_REF] Rozen | Using simulation to improve semiconductor factory cycle time by segregation of preventive maintenance activities[END_REF] proposed studying through simulation the impact of Preventive Maintenance (PM) segregations on the global variability. As Figure 51 illustrates, the basic idea is that splitting preventive maintenances reduces the heterogeneity of the downtimes and therefore reduces the workflow variability at the process-cluster, even in the case where the utilization rate is slightly increased. His first results, the study of local cycle time in the simulation, gives a precision on the tradeoff between the decrease of variability and the increase of utilization: at high utilization, splitting PMs increases cycle time; however at medium and low utilization, splitting PMs significantly reduces cycle time even if the resulting utilization rate is higher.

Rozen's research on global variability however brings a new level of understanding of workflow variability. Figure 52 indeed shows the fab cycle time (in a simulation) before and after a split of preventive maintenance on a single tool, with different bars corresponding to different type of tools. As Figure 52 shows, performing PM segregations on a single process-cluster can decrease the fab cycle time by almost 2% if this process-cluster has few process-units or is qualified on many operations. These results are obviously bounded by the simulation model that was used, but they give nonetheless a huge incentive in further implementing this kind of reasoning. Indeed, decreasing cycle time by 2% roughly means that the fabs throughput can be increase by 1% at an equal cycle time (which we can understand by looking at the operating curves in chapter 1, Figure 3). As a fab requires several billions worth of tools to run, a 2% decrease in cycle time is actually worth several millions of dollars… 

8.A.3. Full fab simulation: an ambitious but useful framework

Optimization vs projection: the difficulty of fab simulation

The idea that it is possible to perform full fab simulations seems to go against what has been discussed in this manuscript. Indeed, we have discussed the many aspects of complexity that affect the flow of products in a High-Mix Low-Volume semiconductor fab. This complexity, as we previously mentioned (see chapter 4) can never be fully modelled, and, as small effects can have big consequences, loss of information can really degrade the accuracy of the model. As this is true on the toolset level, it is even truer on the fab level, which requires the modelling of hundreds of toolsets.

However, as we showed in chapter 7, we do not need to individually model each source of variability in order to incorporate all impactful sources of variability: the small numerous sources of variability have an impact that can be modelled as an aggregated "background noise". By carefully fitting a "residual function" to the models of each toolset, we should be able to build models that mimic well the main variations (as the main sources of variability are individually modelled) and model well the main flow movements (thanks to the fitting). With this kind of approach, we should therefore be able to build full fab simulations that recreate the same overall WIP movements and respond in the same way to main changes on the system (on the main sources of variability that have been individually modelled). The idea being to use as much we can the information we have to specifically model what is possible, all the while completing the lack of information with aggregate modelling (with techniques using for instance the concurrent WIP presented in chapter 6) and fitting the resulting model with feedback loops as presented earlier (chapter 7).

Even though in theory, we should be able to generate accurate projections with the above type of modeling, in practice it is still far away from being implementable. However, the required accuracy of the projection provided by the simulation model highly depends on the intended use of the simulation model. In order to use the simulation as a WIP projection tool (and base capacity analysis and activity targets on it), the projection accuracy needs to be high. This is not strictly the case if we intend to use the simulation as an optimization tool: even if fab cycle times differ by 10 days between the reality and the simulation, adding a tool on a highly saturated toolset is likely to have the same consequence in the reality as in the simulation (namely here, reducing fab cycle time). Therefore, in order to guide actions for variability reduction, we do not need a full accuracy of the simulation model, we do need however the simulation to respond to changes in the same way as the real fab would.

Answering questions of incremental complexity

A full fab simulation is a tool capable of answering questions extremely difficult to answer such as "where should we add an extra tool?" or "were should we reduce variability as to have the best global return on investment?". The questions we can ask, and therefore the answers we get, can only correspond to a level of complexity that we were able to model in the simulation model. Therefore, with a "simple" simulation model, we would be able to answer "simple" yet very useful questions.

The idea of developing a simulation model to answer variability reduction related questions is to simultaneously build up the complexity of the model and the complexity of the questions. At first, we should be able to answer "general" questions such as "what type of toolsets should we focus on for variability reduction?" (note that it is the type of question answered by Rozen [START_REF] Rozen | Using simulation to improve semiconductor factory cycle time by segregation of preventive maintenance activities[END_REF]).

The general idea is then to concurrently increase the complexity of the simulation model and the specificity of the questions that can be answered. The (hopefully) positive feedbacks from the first problems answered by the simulation model would give credits and incentives to continuously and incrementally develop the full fab simulation model. Eventually, we wish to answer with a full fab simulation specific questions such as "where should we add a tool?", "where should we focus maintenance efforts?", "which toolset has the highest impact on the overall fab variability?", "what is the best strategy to reduce the variability generated by a specific toolset?", "what action has the best return on investment?". In order to achieve this, the simulation model needs to be continuously updated as the knowledge and modelling of each source of variability improves. This later point is extremely important as it emphasizes that "global" simulation requires the understanding of many small effects and shows that our efforts should go along two diagonal directions: overall macro modelling on the one hand, and pinpointed micro modelling on the other.

Towards fab projections

Using simulation for projection purposes in a High Mix Low Volume semiconductor environment requires an advanced development of the simulation model (because of many sources of variability and complexity mentioned before). However, we do not necessarily need to use the simulation model, from the start, for long term projections. We may be able to obtain useful accurate information on parts of the fab, parts of the WIP and/or parts of the projection horizon.

As we intend to incrementally develop the fab simulation model for optimization purposes, it is in our best interest to continuously monitor the capability of the simulation model to give accurate projections or predictions of the future. For this purpose, it would be in our interest to develop from the start of the project a framework for how to use the simulation model for projection/prediction purposes. Some use cases can be: to predict short term WIP movement and adjust capacity; to improve the quality of scheduling algorithms; to predict the short-term/mid-term movement of priority lots.

In order to evaluate the quality of the simulation for a projection/prediction use, we could also need to develop indicators on the quality of "any" projection as to be able to compare the output of the simulation model with the output of other tools currently in use or developed in the future.

8.B. Implementing variability reduction in a company

8.B.1. Installing a workflow variability reduction and control team

The tools, methods and knowledge built up in this manuscript should allow to start taking operational actions to reduce workflow variability. However, without the proper surrounding structure, there is little chance for such a project to survive past the initiator and the projects sponsor if those choose to change direction. It is therefore important to rapidly pass over the project phase to make this a deep rooted strategy. This strategy therefore requires a name, a team, and a physical existence rather than be a proportion of different actor's responsibilities.

Moreover, as we explained in chapters 7 and 8, workflow variability is global, and managing workflow variability goes through the synchronization of many actors. This synchronization is only possible if there is a strong incentive for each and every player to follow the guidelines, and therefore there needs to be a feeling amongst all departments that workflow variability reduction and control is not just a brief project but a central direction aimed at by the company.

Last, but not the least, reducing and controlling workflow variability in a complex semiconductor manufacturing environment will be an extremely complex task. Even though the overall objective will remain the same, the direction we take to fulfill this objective will necessarily change as we pass from a local to a global approach, as we change indicators over time (because our knowledge will have evolved), and as we change the tools that we use. It is therefore extremely important that the people in charge of this strategy have the authority to implement these changes over time and have the will (as well as the power) to follow not the indicators but the overall consequences.

8.B.2. Translating reduction of workflow variability into moves

Semiconductor fabs (such as ST) already have strategies and indicators deeply implemented in their managing structures. One of the most followed indicator is the number of "moves" (the number of operations performed). On the global scale of the fab (and on a timescale large enough), moves are definitively a must-have indicator as moves translate the activity that is generated in the fab. An increase in the number of moves can either translate faster cycle times of the same quantity of products or more products being processed at the same speed. Whichever side it is, on the long run the number of moves is directly linked to the number of products (wafers) manufactured and sold. Another interesting aspect of moves for managerial purposes is that the number of moves strictly adds up along the manufacturing structure: tools generate moves, which add up at the toolset level, which add up at the area level, which add up at the manufacturing center level, which add up at the company level. So far, so good.

The problem with moves comes when the global KPI is broken down into local KPIs: it makes sense to try to increase the number of moves overall, but the problem comes when we ask each sub-element to increase its number of moves. Indeed, over a large enough period of time, asking each entity (say process-cluster) to increase its number of moves makes absolutely no sense if this entity is not a long term bottleneck. The demonstration is rather simple: if a process-cluster is not bottleneck, it has a utilization level lower than 1, and therefore if will process all the products than arrive during the period. Increasing the number of moves is then impossible as it cannot process more lots than it received. This indicator can even be counter-productive if minimum number of moves per periods are set as it gives the incentive to managers to "set aside" lots in periods of high activity to re-use them in periods of low activity…

The impact of reducing workflow variability on the global number of moves is actually really straightforward: as we previously established, by reducing workflow variability at a process-cluster, we reduce the average cycle time at this toolset. This means that the same number of products reached downstream process-clusters earlier (as they spent less time on this process-cluster). This means that more lots reached the downstream process-clusters on a given period of time. This, finally, means that the downstream process-cluster will have more lots to process and will be able to do more moves. Similarly, the actions of other process-clusters will allow a given process-cluster to receive more lots in the same period of time and therefore to make more moves. The point here is that reducing cycle times at the process-cluster (by reducing workflow variability) generates indirect moves.

The number of moves being an indicator strongly rooted into the decisions of all the actors in a semiconductor fab, we believe it is essential to translate the gains made by workflow variability reduction into indirect moves as to not abruptly break the codes and the managerial structures in place. Moreover, it is a simple way of explaining the overall benefits of a complex strategy to all the actors of the company and by talking the same language as these actors.

8.B.3. Developing operational KPIs

Throughout this manuscript, we proposed several measures to quantify different aspects of workflow variability: in the second chapter, we introduced measures of the workload variability that target either the inefficiency of workflow variability (Xfactor Workload) or intractability (WaitTime Workload). In chapter 5, we introduced a measure of the effective capacity of a process-cluster based on the Concurrent WIP. These factors will provide solid foundations to measure where variability is and identify where the attention needs to be focused. However, they are not intended to be used as Key Performance Indicators. Indeed, they measure the overall result (which is workflow variability) and this result is greatly influenced by a factor that operators have little action on (utilization rate). As the objective of a KPI is to follow the performance of a specific activity (in accordance to the more global objective), it will be ill-advised to use the overall result to measure specific activity performances. To fit in an analogy, it would be like evaluating the performances of a president based on the Gross Domestic Product before and after his term (on the short-run, external factors affect GDP more than internal government actions).

We therefore need to develop operational KPIs that target specific activities which will help reduce workflow variability. These KPIs should be easy to understand and should be allowed from the start to evolve based on the best knowledge and methods available. For instance, as we have shown through chapters 6 and 7 that synchronizing the effective capacity of a process-cluster to the amount of WIP arriving was an effective method to reduce workflow variability (and currently unofficially in use), an interesting KPI to introduce would be "Down-Time weighted by workload". Indeed, the idea of "synchronizing" capacity is to have the tools "Up" when we need them to be "Up", i.e. when there is Workload to be processed. And the more workload waiting to be processed, the more important it is to process this workload. On the contrary, when there is little or no workload available for process, we have no reason to want the tools to be up (the only reason we think we need them Up is that it usually takes time to get a tool from Down to Up and we fear that when we will have workload to process the tools will still be Down). We should actually try as much as possible to fit all the non-productive activities of tools (like maintenances, R&D, Engineering…) in these periods when we have little or no workload to process, and adjust the KPI to this strategy. Current measures of downtime, such as daily or weekly downtime variability, were actually based on the independency hypothesis: if the downtimes are strictly independent from the arrivals and workload to process (meaning that we have no way at all to make them dependent), then and only then would reducing daily and weekly downtime variability be the best strategy when it comes to managing downtimes.

Overall, we need to think how we can track the good performances of different toolsets and activities by going beyond the OEE (Overall Equipment Efficiency, see [START_REF] Pomorski | Managing overall equipment effectiveness [OEE] to optimize factory performance[END_REF]) and queuing theory principles. The indicators that we have introduced in this manuscript (such as the measure of workload variability or the capacity variability factor) go in this direction. To go further, by using simulation tools and feedbacks from historical data, we can also track the efficiency of the scheduling, the usefulness of the qualifications, and over the longer period of time more global activities that would be linked to the global variability reduction activities.

8.B.4. Reaching out to other tools and projects

An HMLV manufacturing company (such as semiconductor manufacturing) is an organization that can be composed of thousands of different people organized in dozens of different groups all working on different topics and activities (generally) aiming at the same goal. As so, there are at STMicroelectronics many different ongoing projects which basically aim at reducing workflow variability. As there are many different sources of variability (see chapter 3), these projects generally have little in common and follow really specific objective functions. For instance, FlexQual is a tool that aims at providing the best possible qualifications at the team managers by considering the projected incoming WIP. The objective functions in the case of FlexQual aim at either maximizing capacity, balancing the workload as much as possible, providing the most flexibility to the toolset, and mainly a combinations of those. The schedulers on the other hand (in lithography, batch areas, etc..) follow a complex objective function with the overall aim of providing more capacity when needed by reducing the setups and inefficiency times due to different recipes. We can see here that both projects actually follow the same overall objective of locally reducing workflow variability. Indeed, in our discussion in chapter 6, we have put forward that the capacity is not a fixed element: in an environment with tool dedications, setups, batches… the capacity increases with the waiting WIP since at low WIP levels many inefficiencies occur (when performing a setup between two recipes for instance). Which is to say, at a high enough queuing WIP, the capacity of the toolsets would reach the same capacity as we have with lower WIP levels thanks to tools such as FlexQual and schedulers. These tools therefore do not increase the capacity of the toolsets, they help reduce the required WIP level at which these capacities are reached and they therefore actually help reduce cycle time by acting on the workflow variability.

It would therefore be of strategic interest for the variability reduction team to reach out to these different projects and integrate them in an overarching strategy. By doing so, all projects would also not live by themselves and would have better chances of "surviving" their sponsors and creators. Moreover, these projects can be integrated in a coherent environment where they would share a common language (which is really useful for implementing these projects with the help of the practitioners in the field) and could be benchmarked using the same tools. For instance, we can imagine integrating these functionalities in the simulation models we would develop for modelling variability and evaluate their efficiency on reducing workflow variability inside our simulation model.

8.B.5. A planning for variability reduction

The necessity of a long term vision

The topic of variability reduction and control has all the ingredients required to evolve from a simple project to a central aspect of how we deal with manufacturing activities in a company (for instance at ST): huge potential (hundreds of millions worth of capacity to free, leadership on dynamic markets, delivery accuracy…), relatively low costs (no big investment to make, mostly resources to allocate), short payback period (the benefits are almost immediate), and possibility of ramp-up actions (we can start taking actions now and gradually increase the scope of the actions we take). However, reducing and controlling workflow variability in a complex manufacturing environment is far from being an easy task and requires lots of continuous improvements. On the other hand, companies are really eager to develop short-term plans with short-term actions and results. For this reason, it is essential to have a company vision aiming in a specific long-term direction when it comes to variability and have a backbone on which we can build up smaller short-term actions chosen to be part of the long term vision.

Short-term (1-2 years horizon)

The first actions we can take, which we can start immediately and deploy progressively, corresponds to the plan proposed in chapter 7: follow a Pareto continuous improvement logic to identify the best levers to reduce workflow variability. We can however integrate this plan in a long-term strategy: using the tools we provided through this manuscript, we can start identifying the areas with the most longterm workflow variability (which have had a lot of workflow variability in the past and are likely to continue because of relatively high saturations predicted for the future). Then, using simulations as we did in chapter 6 to identify the main root causes and levers, we can take specific actions to reduce workflow variability on the most problematic process-clusters, given that the actions are coordinated through the different departments and actors. We can monitor the actions and their results using appropriate KPIs such as the "downtime weighted by workload" that we mentioned earlier, making sure that no derivation occurs after setting the appropriate measures (which, of course, need to be continuously applied to maintain low workflow variability). In a continuous improvement logic, once the main detractor has been taken care of and is under control, the procedure should be repeated to the next identified detractor.

All the while doing this, all best practices and gathered knowledge should be written down (in a structured document which we can call a Variability Diagnostic Kit) as to continuously improve our knowledge about the subject and improve our actions by applying similar procedures to similar problems. Moreover, it is in this phase that we need to reach out to other projects to both bring out their importance and guide them to specific actions.

It is only once these steps are taken and that local variability is fully understood, that we can build upon the gathered knowledge to address more complicated and more global interaction. Indeed, a fab simulation model that incorrectly models (for instance) the dependencies of downtimes at the processcluster level will struggle to model more global and complicated mechanisms.

Mid-term (2-5 years horizon)

As explained in section 8.A.1, workflow variability is materialized locally but a big part of it takes its origins in more global interactions. It is therefore also necessary to build the tools and methods to attack workflow variability through this global angle. This can go through developing a fab simulation model (as explained in part 8.A.3) and capitalizing on the knowledge gathered over time in the Variability Diagnostic Kit and the first local round of actions to deploy actions which focus on reducing global variability. This part, again, can be built up in a few incremental steps: we can start with the objective of identifying 4 or 5 process-clusters that have together a big impact of global workflow variability and find the mechanisms to reduce their impact through simulation. We can then move on to more complicated and more specific aspects such as adding qualifications on a given toolset to reduce global variability or estimate the global impact of deploying a new scheduler (or an improved version of an existing one). In parallel, we will still need to increase our understanding of workflow variability on the local scale if we want to increase the quality of the simulation model and incorporate as close as possible the different local actions and interactions that happen at the operational level. In this same direction, we believe the incremental improvements in the simulation models can only be made with a clear understanding of the actual interactions and actual resulting behaviors of the different processclusters. To do so, tools such as the concurrent WIP provided in chapter 5 will play a central role and also need to be further studied and improved.

Long-term (5-10 years horizon)

Eventually, as we explain in the previous chapter, the idea is to shift towards an optimization approach, where we would not conduct "what-if" analysis anymore, but give a set of possible levers to the central workflow optimization software, which would then search for the optimum scenario. This should be made possible by following the efforts of the Mid-term plan and gradually expanding the capability of the simulation model to use it for projection/prediction purposes. Once this point is reached, we can imagine modelling the stochastic behavior of the fab and finding the settings (tools qualifications, maintenances planning, WIP control through priorities) that yields the best overall results in the many different simulation scenarios. Reaching this level of modelling and tractability on the system would also mean freeing a lot of time for the engineers that are usually responsible for making all the what-if scenarios and allow them to focus more on the implementation of given solutions.

the Concurrent WIP, which allowed us to look at the response of process-clusters to incoming workflow by taking the products point-of-view. Doing so allows us to measure the aggregated performances of process-clusters in a way that was not possible before in complex systems where the numerous sources of variability had interactions too complex to model in classic bottom/up approaches. We then proposed to go deeper into the mechanisms that create workflow variability, questioning the status quo around classic queueing models applied to complex manufacturing systems such as found in microelectronics. As one aspect often referred to in models limitations but rarely studied is effects of dependencies, we proposed a framework that allowed testing such effects using real-world data. We applied our framework on downtime, arrival, and process-time data from the Crolles 300 fab from STMicroelectronics, and have found significant and impactful variability potential in the sequences of data analyzed, suggesting that effects of dependencies actually play a much larger role than previously thought. Interestingly, our results also suggest that the performances of real-world process-clusters might be much more linked to the arrivals than expected, also implying that this could be an interesting level to act on workflow variability. The two aspects discussed in this paragraph were strengthened by publications at the 2016 International Conference on Modeling, Optimization & Simulation (MOSIM), the 2017 International Conference on Industrial Engineering and Systems Management (IESM) and submitted in the journal of IEEE Transactions on Automation, Science and Engineering (TASE).

As workflow variability got our interest because of its consequences on the manufacturing system, the interest of the work around it lies in the ability to take actions to reduce workflow variability and its consequences. The last part of our manuscript was therefore focused on making this possible. We first proposed a framework to identify main levers to reduce workflow variability. This framework basically consists in modelling past workload profiles in a simulation environment to then change input parameters to zero-in on the main levers of workflow variability on a specific process-cluster and specific horizon in the past. This of course relies on the ability to model accurately the past workload accumulation profile on any process-cluster. We demonstrated the feasibility of both aspects on a testcase process-cluster from the Crolles 300 fab, relying on innovative approaches such as a simulation model fitting using a feedback loop from real data and a residual function inside the simulation.

Finally, based on all the work presented in this manuscript, we have put forward our vision for managing workflow variability in a complex manufacturing environment on a very large time scale. Indeed, we believe it is necessary to set a long term framework, as only paving progressively the different milestones in the same direction will allow us to sustainably move forward. This is however only realistic if each step also brings with it short-term results. We therefore showed the different important steps we believe are required to progressively and continuously model and reduce workflow variability in manufacturing systems on a horizon up to 10 years, from unrolling local variability reduction, to progressively improving the modelling of the different sources of variability, to transitioning to more global simulation models allowing more impactful actions. In order to do so in a sustainable manner, we also discussed the different elements in a company we believe are essential to structure in parallel to the research: the creation of a dedicated central team, the development of central and operational KPIs, and the involvement of the different teams in the company for a common objective of improving the productivity and tractability of the entire manufacturing system. 
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[START_REF] Sakasegawa | An approximation formula L q≃ α• ρ β/(1-ρ)[END_REF] 

Sakasegawa (1997) 

Dans un contexte où l'industrie du semi-conducteur explore de nouvelles voies avec la diversification des produits et le paradigme de « More than Moore », les délais de livraison et la précision de livraison sont des éléments clés pour la compétitivité d'entreprises de semi-conducteur et l'industrie 4.0 en général. Les systèmes de production sont cependant sujets à de la « variabilité », qui crée des embouteillages dans la production de manière incontrôlée et imprévisible. Cette thèse CIFRE (partenariat entre le laboratoire GSCOP et STMicroelectronics) s'attaque à ce problème de la variabilité dans la fabrication en environnement complexe. La première partie de cette thèse offre une étude approfondie de la variabilité : nous mettons d'abord en avant les conséquences de la variabilité pour mieux la définir, puis nous clarifions que la variabilité concerne les flux de production en introduisant la notion de variabilité des flux de production et en apportant des éléments de mesure associés, et nous clôturons cette première partie par l'étude des sources de variabilité à travers une étude bibliographique et des exemples industriels. La seconde partie est dédiée à l'intégration de la variabilité dans les outils de gestion de production: nous montrons comment une partie des conséquences peut être mesurée et intégrée aux projections d'encours pour améliorer le contrôle et la prévisibilité de la production, proposons un nouvel outil (le WIP concurrent) pour mesurer plus précisément les performances des systèmes en environnement complexe, et mettons en avant des effets de dépendances prépondérants sur la variabilité des flux de production et pourtant jamais pris en compte dans les modèles. La troisième et dernière partie de la thèse couvre les perspectives de réduction de la variabilité : en se basant sur les éléments présentés dans la thèse, nous proposons un plan pour réduire la variabilité des flux de production sur le court terme, et une direction pour la recherche à moyen et long terme.
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There is obviously lots of work to be done in this direction, as new results bring new questions. As the example here was illustrative, we did not push the test-case further and relied a lot on interpretation from the simulation curves. Further research in this direction should however provide a more quantitative analysis and more direct conclusions. Nevertheless, we believe the guidelines we provided in this section can be used as an engineering environment to start a sustainable process of variability reduction.

7.F.2. Perspectives for research

As we pointed out the correlation of downtimes to arrivals as a main lever to reduce variability in the test-case we provided, an interesting question arises: does knowing information about the future arrivals significantly improves the potential of this lever? Indeed, knowing future arrivals can help us to push backwards maintenances, do early maintenances, or move in time engineering actions on the toolsets. In this context, it can be interesting to know how valuable the information from future arrivals is: for instance, if we know exactly what will arrive in the future, how much can we reduce workflow variability by acting on downtimes? We could answer this question by running numerous simulations with the exact same arrivals with the objective of minimizing workflow variability by acting on the sequence of downtimes. This would show the maximum potential one could expect from this lever.

On the other side of the spectrum, one could also ask how much information about the future is required to implement strategies based on forecasts. Indeed, we will never know in practice the exact arrivals from the future. However, can knowing approximately how many arrivals will occur on a given horizon in the future be used to implement some strategies? If yes, how much information is needed? And with a given amount of information about the future, how much variability reduction can we expect by acting on the sequence of downtimes? We believe answering these questions would help direct companies towards personalized mid-term and long-term research trajectories towards the objective of reducing workflow variability.

General conclusion

Products flow (or workflow) is the blood of manufacturing systems, which health depends on the proper circulation of workflow between its main organs (the process-clusters). As for living organisms, some manufacturing systems are more complex than others: manufacturing systems evolved from single-product single-line to high mix systems where hundreds of different types of products follow different flow paths through the manufacturing system, passing several times through the same processclusters during their lifetime in the system. All this complexity makes the workflow less of a calm stream and more of a wild river. This workflow variability affects the health of the system, clotting the system in some areas, depraving it from its blood in others, slowing down the system overall and making it harder to manage. The real-world consequences that are increased delivery times and decreased delivery precision are ludicrously more damageable to the type of manufacturing system that suffers the most workflow variability as High Mix Low Volume manufacturing systems rely on short delivery times and delivery precisions to be competitive on their markets.

In this manuscript, we addressed this problem of workflow variability in complex manufacturing environment. We first clarified the problem by introducing the notions of workflow variability. Indeed, even though "variability" had been identified by authors and practitioners as a main detractor of delivery times and tractability, it was unclear what exactly this variability was referring to. Although variability in the arrivals, process-times and downtimes were often referred to, these didn't quite match with what authors were referring to as "sources of variability". As this notion of workflow variability filled the gap, it allowed us to propose a way to measure the problem, through the measure of workload variability at the different highly connected process-clusters of a manufacturing system (our extension of the common notion of toolsets in complex systems with flexibility and tools dedication). Finally, we wrapped the first part of the manuscript, dedicated to the understanding of what variability is, with a literature review on the sources of variability as to get a clear picture of the different elements that come at play when considering workflow variability. This literature review allowed us to understand how structural, operational, product-induced and equipement-specific factors combine to makes High Mix Low Volume systems inherently more prone to workflow variability.

The better understanding of workflow variability then allowed us to pave the first elements to integrate variability in the production management tools. To do so, we first started with the visible part of the iceberg, the background consequences of variability. Indeed, as the structural sources of variability have a strong inertia, a part of the consequences of workflow variability (on cycle time) is rather stable, provided that we step back enough to look at a large timescale. That is to say, even though the workflow is highly unpredictable, some areas of the system are more clogged than others, and some are more fluid than others. We showed how this information can be retrieved from historical data to improve projection tools used for resource planning, and explained how doing so improves operational actions and therefore partly counteracts the consequences of workflow variability. The work, implemented under the name Maestro at STMicroelectronics Crolles fabs, is also the result of two years of close coordination and teamwork with the Industrial Engineering team and the Advanced Manufacturing Method team of ST.

In order to deal with the submerged part of the iceberg of workflow variability, we need to get a grip at the actual consequences and the actual mechanisms involved. We therefore first proposed a new notion,

Glossary

Batching: the fact of processing lots (or jobs) simultaneously on the same resource.

Concurrent WIP: notion introduced in this manuscript, corresponding to the specific queue of each lot at a process-cluster. See chapter 5.

Dispatching policy: the rules, algorithms or software used to place lots (or jobs) to specific tools (or process-unit) to perform the process. Downtime: time during which a tool (or process-unit) is unavailable for process. Can correspond to a failure, a scheduled maintenance, an engineering activity… End-of-shift effects: disruptions in the manufacturing flows which arise from having team shifts (for instance because of teams following team indicators rather than overall indicators).

Fab: short for semiconductor manufacturing system. E.g. STMicroelectronics C300 fab.

Factory shutdown: temporary closure of the factory.

Flexibility: in a process-cluster, the ability for job-families (e.g. recipe) to be processed by more than one process-unit (e.g. tool) and the possibility for process-units to process more than one jobfamily.

Heterogeneous toolset: the unevenness in the characteristics or the performances of the tools in a toolset.

Highly connected process-clusters: Notion introduced in this manuscript, understood as a wellbalanced group of process-units treating an identical workflow. For further details, see section 2.E.2, page 44.

HMLV: High Mix Low Volume manufacturing systems are manufacturing environments where the products manufactured vary greatly in applications, lot sizes, and production processes. The system is organized to not be specialized for any product in particular and can rapidly shift between different product-mix.

Hold: a temporary removal of a lot (or job) from the manufacturing system for non-standard activities such as inspection, verification… Industry 4.0: a trend of automation and computerization in manufacturing technologies which promotes and aims at allowing a strong customization of products in highly flexible mass-production systems.

Inspections: manufacturing steps that do not add any added value but check for the quality of previous processing steps.

Inventory: the state of lots that are removed from production for an undefined amount of time (for various reasons such as problems in their production processes, building intermediate stocks, etc.) Job: an entity on which the tasks are performed. A generalized version of notions such as lot, client, product.

Job-family: the set of jobs seen as identical by a process-unit. A generalized version of notions such as product-type, recipe, client-type.

KPI: Key performance indicator. A measurable value that aims at monitoring the performance in terms of meeting strategic or operational goals.

Lot: the entities in a semiconductor manufacturing system on which the added-value activities are performed. In practice, a lot is the group of wafers that travel together from one tool to another.

Lot size: the number of wafers that compose a lot.

Maintenance strategy: the policy regarding the maintenances of tools in the manufacturing system.

Operator availability: the quality of operators to be available to perform tasks when requested.

Operator cross-training: the set of operator qualifications over several different activities. A higher operator cross-training allowing more flexibility in the allocation of operators to different toolsets and activities.

Order release: the introduction of lots into the manufacturing system to satisfy clients' orders. Can be problematic if lots are introduced by batch.

Priority: the importance of a lot (or job), translated into a number, and used for scheduling lots (or jobs) on tools (or process-units).

Priority-mix: the variety of different priorities in a set of lots, generally when queuing at the same toolset (or process-cluster).

Process-units: the entities performing the main tasks in a system. Process-units refer to tools, machines, servers, cashiers, etc.

Process-time: time during which a tool (or process-unit) is performing a manufacturing activity on a lot (or a job).

Process-time variability: the unevenness in the process-times. Often measured in the literature with the coefficient of variation of process-times.

Product-mix: the variety of different product-types in a set of lots, generally when queuing at the same toolset (or process-cluster).

Product-type: a set of products seen as identical by a process-unit. Is used analogously to job-family when referring to products instead of jobs.

Process-cluster: notion introduced in this manuscript, understood as a group of process-units treating an identical section of the workflow. For further details, see section 2.E.1, page 38.

Recipe: in semiconductor manufacturing, corresponds to a specific manufacturing process. Tools process lots by running specific recipes.

Reentrant-flow: the characteristic of manufacturing flows to pass several times on the same toolsets during their manufacturing process.

Rework: the re-processing of a lot (or job) on a step because of manufacturing problem on the previously performed process.

Secondary resources: resources required for the primary resources (tools) to work. E.g. gases, masks, resins… Sequence specific process: a process where the lots (or jobs) have to follow specific sequences of sub-processes inside the tool (or process-unit), which can generate conflicts between the lots (or jobs) for the capacity of the sub-elements of the tool (or process-unit) and create process-time variability.

Setup: the time needed to recondition, readjust or reconnect the tool when changing from processing one product-type to another.

Scrap: the name given to lots that have started their manufacturing process but are thrown away because of non-conformities and impossibility to be reworked. Time constraints: maximum time between the end of one manufacturing step and the start of another manufacturing time to not exceed as to not suffer yield loss because of oxidation or other time related degradations.

Tool redundancy: the fact of having several tools able to process the same arriving lots.

Tool dedication: the specific relationship where certain tools in a toolset process only part of products or operation steps.

Tools: the processing entities in a semiconductor manufacturing system, in the sense of the main resources to perform the processes on the workflow. Analogous to machines, servers, or process-units.

Toolset: a group of tools treating an identical section of the workflow. For further details, see section 2.E.1, page 38.

Variability: in the literature and in chapter 1, a fuzzy concept hard to define. In chapters 2 to 8, sometimes used as short for "workflow variability" (see definition of "workflow variability").

Wafer: a thin slice of semiconductor material, such as a crystalline silicon, used in electronics for the fabrication of integrated circuits. For manufacturing activities, wafers are grouped together to form lots.

WIP: Work-In-Progress. The unfinished goods (e.g. lots) in the manufacturing system. WIP control strategy: the strategies used to control the flow of WIP, generally intended to improve the efficiency of the manufacturing system.

Workflow: the movement of lots (or jobs) along their value stream, the blood of manufacturing systems. Also refers to the lots (or jobs) that experience this movement.

Workflow variability: the central notion of this manuscript. See section 2.A.1, page 26, for a proper definition, and chapters 1, 2, 3, 4, 5, 6, 7, 8 for a full understanding.

Workload: an amount of work to be done. See sections 2.D.1 and 5.B.2 for further details.

Yield: the percentage of lots or microchips started that successfully complete their manufacturing.

Summary

In the context of Industry 4.0 and the More than Moore's paradigm, delivery precision and short cycle times are essential to the competitiveness of High Mix Low Volume semiconductor manufacturing and future industries in general. So called "variability" however creates uncontrolled and unpredictable "traffic-jams" in manufacturing systems, increasing cycle times and decreasing the systems' tractability. This research, a CIFRE PhD between the GSCOP laboratory and STMicroelectronics, addresses this issue of variability in complex manufacturing environment. We first conducted, in the first part of the manuscript, an in-depth study of "variability": we approached the notion through its consequences in manufacturing systems, clarified that the variability was about the workflow, introducing the notion of workflow variability and measures that come with it, and identified the main sources of variability through a literature review and real-world examples. We focused in the second part of this manuscript on the integration of workflow variability in production management tools: we showed how integrating the stable consequences of workflow variability can improve WIP projections in complex systems and increase the control on such systems, proposed a new tool (the concurrent WIP) to better measure the performances of systems subject to high workflow variability, and showed that complex "dependency" mechanisms play a key role in workflow variability yet are not integrated in any model. Finally, the third and last part of the manuscript organized perspectives for variability reduction: based on the work of this manuscript, we showed a framework for variability reduction on the short term, and proposed a direction for medium and long term research.