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The inverse scattering problem for finding the optimal design of printed 
antenna arrays is particularly interesting for reflectarrays antennas and planar 
antenna arrays, which contain various types of printed elements. However, 
the design and optimization procedure require severe and efficient inverse 
and synthesis methods to meet the imposed constraints. 
 
In this thesis, starting from Rumsey reaction concept, we describe an 
electromagnetic solver based on an integral formulation of the EM problem 
(SR3D code) for finding the forward electromagnetic solution. From this code, 
we have developed several inversion gradient-based algorithms to optimize 
planner antenna arrays. Especially, we give a new sense to the shape 
gradient versus an edge deformation (or transformation) in 3D for metallic 
layers with limited surfaces. The derived numerical model allows studying 
planar structures with the notion of metallic layer with a 2D outward normal 
direction. 
 
In order to implement optimization procedure, we use level set method. The 
difficulty of the algorithm relies on finding the corresponding shape 
deformation velocities in the normal direction of contour, which we compute by 
the shape gradients (or shape sensitivity) versus radiation pattern modification 
taking into account the modeling of the antenna (Finite Element mesh). 
 
In order to investigate the performance of the inverse algorithm and 
optimization procedure, different configurations are studied and shown in this 
thesis. 

 
Figure1.1 Radiation Pattern radiated by antenna arrays 
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1.1 Antenna analysis and design 

Antenna or antenna array structural design is a procedure to improve or 
enhance the performance of an existing structure by changing its parameters. 
The engineering design of the structural antenna in the simulation-based 
design process consists of antenna structure modeling, antenna design 
parameterization, antenna structure analysis, antenna geometry sensitivity 
analysis, and design optimization procedure. 
 
The goal of antenna analysis is to determine the radiation characteristics, 
such as the radiation pattern and input impedance for a given antenna 
structure. The calculation of radiation pattern and input impedance requires 
solving Maxwell equations subject to certain boundary conditions, which are 
determined by antenna configurations. Unfortunately, we can only obtain 
analytical solution directly for a very few idealized and classical antenna 
geometries. However, for complex antenna structures, full-wave solutions to 
Maxwell equations are required to obtain reliable and accurate analysis. 
 
Typically, the antenna design is based on numerical methods for solving 
Maxwell equations such as the Method of Moments (MoM), Finite Element 
Method (FEM), Finite Difference Time-Domain method (FDTD) and 
Transmission Line Matrix (TLM). Each numerical method has advantages and 
weak points concerning the computational cost, the level of accuracy, and the 
material modeling. 
 
Antenna parametric studies are then performed to optimize the size of the 
structure under different constraints such as the return loss (S11 parameter), 
directivity, radiation pattern, polarization (linear, circular), or inter-element 
coupling. The quality of an optimized design is dependent on the 
parameterization of the optimization domain and the number of variables 
used. The use of a large number of variables leads to a large number of 
possible solutions and increases the complexity of the inverse problem. 

1.2 Antenna optimization algorithms 

Staring from an initial guess for the design variables of an existing geometry, 
optimization algorithms help to seek a solution of a formulated optimization 
problem by generating a sequence of updated design variables. In order to 
minimize the value of cost functional, at each step of optimization procedure, 
optimization algorithms are used to update the design variables by using the 
available information.  
 
The multi-object optimization with the optimization of meta-heuristics (iterative 
stochastic algorithms) including evolutionary algorithms, such as the genetic 
algorithms (GA: Genetic Algorithms) [9-13], the simulated annealing (SA: 
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Simulated Annealing) algorithms, the particle swarm optimization (PSO: 
Particle Swarm Optimization) [14], ant colonies (ACO: Ant Colony 
Optimization) [15] or algorithms based on bad invasive weeds (IWO: invasive 
Weed Optimization) [16] or several hybrid stochastic algorithms [17], have 
been and are still widely used to optimize various electromagnetic devices. All 
evolutionary algorithms mentioned have shown their ability to find a global 
solution (in the sense of the global minimum of the objective or cost function 
to be minimized) of many optimization problems and synthesis of antennas 
and antenna arrays. However, the week number of parameters or information 
contained in the objective or cost function to minimize, combined with the 
random strategy of evolutionary algorithms, is ineffective and thus optimizes 
complex structures with a large number of variables. 
 
Gradient-based optimization algorithms have been used to solve inverse 
scattering electromagnetic problems and antenna optimization. Gradient-
based optimization algorithms can converge faster towards the minimum, but 
on the other hand, the global convergence cannot be guaranteed. However, 
we can still use some techniques, able to improve the convergence 
performance of gradient type optimization algorithms. Using a priori or extra 
information or fixing some constraints, to the optimization procedure or by 
modifying the cost functional using regularization for example, may enhance 
the global convergence. We can use extra information with a frequency 
hopping technique, where the optimization is performed with respect to 
several frequencies and defining the final cost functional combing the results 
derived from each frequency. We can also use a multi-frequency technique by 
gathering all the information derived from a sequence of frequencies at each 
iteration. In addition, we can also control the size of the optimal time step in 
when using level set method. A large time-step speeds up the inherently slow 
curve evolution process, but the question is: how large value of Δt can we 
use? It was observed that, for small values of the time-step, though the 
convergence was slow, curve evolution results were satisfactory. When large 
time-steps were used to speed up the evolution process, we often got 
garbage outputs. Clearly there is a stability issue that depends on the value of 
the time-step Δt employed. We can also use the value of the CFL (Courant-
Friedrichs-Lewy) [29] coefficient. All these techniques are able to modify the 
convergence of the cost functional. 

 

1.3 Topological Gradient and Level Set method 

When solving a problem of topology optimization, the number of variables can 
easily reach to thousands or even millions for 2D and 3D cases. The 
optimization techniques of gradient type are generally preferred to solve 
problems with a large number of variables. The main reason is that the 
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gradient of the objective function or cost function contains a lot of important 
information. The shape gradient based on an adjoint formulation [1-8] is only 
valid for a 3D regular closed surface where the outward-pointing normal is 
defined everywhere, which is not the case for planar or patch antennas. The 
numerical models to study metal planar structures typically use the concept of 
perfect conducting layer in a plane domain bounded by a closed curve. Then 
in the case of open structures, or in the case of structures with edges, the 
definition of adjoint problem can be problematic or very complex 
mathematically. Therefore, it is particularly interesting to carry out sensitivity 
analysis from the objective or cost function to determine the most sensitive 
parameters to optimize. The precise calculation of the shape gradient for the 
miniaturization of antennas is an imperative one for topology optimization with 
gradient type methods. 
 
Level Set method is extremely suitable for reflectarray antenna and planar 
antenna array optimization, since it is able to compute geometric quantities, 
and handle topology changes easily. The shape of elements can be merged 
and separated, because the Hamilton-Jacobi equation is working on a higher 
dimension, it means that it is not only able to optimize the shape of element, 
and also the element number. 
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2.1 General Questions 

In general, for electromagnetic problems, there are two main problems to 
solve: the forward and inverse problem. For the forward problem, when the 
incident sources, geometry of the structures, and their electromagnetic 
properties are completely defined, we need to find the solution of their 
interaction. While for the electromagnetic inverse problem, when the 
interaction of the electromagnetic field is known in a certain domain, we need 
to determine the all properties of the illumined structures, including the 
geometry information, electromagnetic properties, provided the incident 
sources are known. 
 
An important point for solving the electromagnetic inverse problem is that the 
inversion algorithm must be based on a solution of the forward modelling that 
correctly solves the electromagnetic responses or interaction. 
 
In this work, we are going to use an electromagnetic solver named SR3D 
("Structures Rayonnantes 3D" meaning "3D Radiating Structures") based on a 
method of moment, for solving the electromagnetic forward problem. In this 
chapter, starting from Maxwell equations, we introduce the theoretical basis of 
SR3D solver, with the reaction concept and the variational formulation. 
 

2.2 Maxwell Equations 

Maxwell equations describe the property of electromagnetic waves and fields. 
Consider a homogeneous, isotropic domain Ω with boundary Γ defined by 
electric permittivity ε, magnetic permeability µ and conductivity σ. The 

electromagnetic wave is described by E
!"

andH
!"!

, which corresponds to electric 

and magnetic fields, respectively. The Maxwell equations are defined here 

with a time-dependence i te ω− : 

 

∇× E
!"
= iωB
!"
−M
! "!

∇×H
!"!
= −iωD

!"
+ J
!"

∇⋅D
!"
= ρe

∇⋅B
!"
= ρm

%

&

'
'

(

'
'

 (2.1) 

 
with:  
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ω  angular frequency

J
!"

 electric current density

M
! "!

 magnetic current density

D
!"

 electric induction

B
!"

 magnetic induction
ρe  electric charge density 

ρm  magnetic charge density

 

 
The Maxwell equations are first-order linear coupled differential equations 
relating the vector field quantities to each other. In addition to these four 
Maxwell equations, there are four medium-dependent equations, which are 
related with the constitutive relations: 

 

m

D E

J E

B H

M H

ε

σ

µ

σ

=

=

=

=

uv uv
uv uv
uv uuv
uuv uuv

 (2.2) 

with:   0

0

   r

r

ε ε ε

µ µ µ

=

=
 

The magnetic and electric charge densities are defined as: 

 
∇⋅ J
!"
− iωρe = 0

∇⋅M
! "!
− iωρm = 0

 (2.3) 

 

2.3 Boundary Conditions 

The material medium in which EM field exists is usually characterized by its 
constitutive parameters: the electric permittivity ε, the magnetic permeability µ 
and the conductivity σ. Consider the situation in which one medium, 
characterized by ε1 and µ1 and σ1, shares an interface with another medium, 
characterized by ε2, µ2 and σ2. In order to solve for EM problems, at the 
interface, the tangential and normal fields must satisfy the boundary 
conditions: 
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n
^

× (H
!"!
2 -H
!"!
1) = J
!"
s

n
^

× (E
!"
2 - E
!"
1) = −M

! "!
s

n
^

⋅ (D
!"
2 -D
!"
1) = ρes

n
^

⋅ (B
!"
2 - B
!"
1) = ρms

 (2.4) 

where 
^
n  is a unit normal vector directed from medium 2 to medium 1. 

 

 
Figure 2.1: Boundary Conditions 

 
In the case of a PEC boundary, we can write them as: 

 

n
^

×H
!"!
2 = J
!"
s

n
^

× E
!"
2 = −M
! "!

s

n
^

⋅E
!"
2 = ρes ε2

n
^

⋅H
!"!
2 = 0

 (2.5) 

2.4 Wave Equations  

Maxwell equations are first-order coupled differential equations, difficult to 
solve as boundary-value problem. We can obtain a second-order differential 
equation (Helmholtz equation) that may be useful for solving electromagnetic 
problems. 

We apply the operator ( ) ( ) ( )Δ =∇∇⋅ −∇×∇ on the two first equations and 

obtain: 

 

Δ+ k 2( )E
!"
= −

i
ωε

∇
!"
∇
!"
⋅ J
!"
+ k 2 J
!"

( )+∇×M
! "!

Δ+ k 2( )H
!"!
= −

i
ωµ

∇
!"
∇
!"
⋅M
! "!
+ k 2M
! "!

( )−∇× J
!"  (2.6) 
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with  k wavenumber 

k ω εµ=  

 
The wave equation or Helmholtz equation can be written as: 

 
Δ+ k 2( )E

!"
= 0

Δ+ k 2( )H
!"!
= 0

 (2.7) 

2.5 Surface Equivalence Theorem: Huygens Principle 

To solve radiation and scattering problems, it is often useful to formulate the 
problem in terms of an equivalent one which may be more convenient to 
solve. In the analysis of electromagnetic problems, it is possible to replace the 
real sources defined in the investigation domain with superficial sources on a 
closed surface. According to the Huygens’ principle, we can substitute the 
general inhomogeneous volume problem with an ensemble of homogeneous 
and superficial problems, so that the problems of electric and magnetic fields 
can be replaced by the problems of surface currents, which can be defined as 
follows: 

 

J
!"
s = n̂×H

!"!
s

M
! "!

s = −n̂× E
!"
s

ρes = εn̂ ⋅E
!"
s

ρms = µn̂ ⋅H
!"!

s

 (2.8) 

We can replace the problem (a) with problem (b) by using the superficial 
currents. In the special case (c), the material in V1 is an electric conductor, the 
magnetic currents on the surface is zero, while in the case (d), the material in 
V1 is magnetic conductor, the electric currents on the surface is zero. [47] 
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Figure 2.2: Huygens’ equivalent Principle 

2.6 Radiation Condition 

The electromagnetic field must satisfy the next two conditions, which are the 
radiation conditions and finite energy conditions respectively: 

lim
n→∞

n̂×∇
!"
× E
!"
− jkE
!"

( ) = o 1r
&

'
(
)

*
+

lim
n→∞

n̂×∇
!"
×H
!"!
− jkH
!"!

( ) = o 1r
&

'
(
)

*
+

 

E
!" 2

Ω

∫ dΩ <∞

H
!"! 2

Ω

∫ dΩ <∞
 

They indicate that the energy, in the local closed domain Ω, is finite.  
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2.7 Green’s Function 

The Green’s function is solution of the equation: 

 

( ) ( ) ( )

( )

2 , ,

1      if  x=y=0
with:     ,

0     else

k G x y x y

x y

δ

δ

Δ + = −

⎧
= ⎨
⎩

 (2.9) 

In ℜ!, we have the general solution: 

 
( ),

4
with:      

ikReG x y
R

R xy
π

±

=

=

 (2.10) 

The radiation condition shows that the scattered wave is only an outgoing 
wave. The Green’s function of the free space is then: 

 ( ) ( ),
4

ikReG x y G R
Rπ

= =  (2.11) 

We can apply this equation to (2.6): 
 

We then obtain: 

 

E
!"
r
"
( ) = i

ωε
∇
!"
∇
!"
⋅+k 2( ) J

!"
r
" '#
$
%
&
'
(×G
!"
r
"
,r
" '#

$
%

&
'
(

#

$
%

&

'
(−∇× M

! "!
r
" '#
$
%
&
'
(×G
!"
r
"
,r
" '#

$
%

&
'
(

#

$
%

&

'
(

H
!"!
r
"
( ) = i

ωµ
∇
!"
∇
!"
⋅+k 2( ) M

! "!
r
" '#
$
%
&
'
(⋅G
!"
r
"
,r
" '#

$
%

&
'
(

#

$
%

&

'
(+∇
!"
× J
!"
r
" '#
$
%
&
'
(×G
!"
r
"
,r
" '#

$
%

&
'
(

#

$
%

&

'
(

 (2.12) 

2.8 EFIE and MFIE Equations Definition 

If we apply the Huygens principle to the inhomogeneous radiation and 
scattering problems, we can thereafter describe this problem as an equivalent 
surface electromagnetic problem. It also means that scattering problems can 
be considered as radiation problems where the local radiating currents are 
generated by other currents or fields.  
 
We can firstly write the total field as: 

 

E
!"
r
"
( ) = E

!" inc
r
"
( )+ E

!" sca
r
"
( )

H
!"!
r
"
( ) = H

!"! inc
r
"
( )+H

!"! sca
r
"
( )

 (2.13) 
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Using the Green’s function, we can integrate over a closed surface domain Γ , 
where we have equivalent surface currents. Then, we can obtain the 
scattered field, and the total field: 

 

E
!"
r
"
( ) = E

!" inc
r
"
( )+ jωµ G

Γ
#∫ r
"
,r '
!"

( ) J
!"
r '
!"
( )dΓ

            + j
ωε

∇
!"
r '
!"G

Γ
#∫ r

"
,r '
!"

( )∇
!"

Γ ⋅ J
!"
r '
!"
( )dΓ−∇

!"
× G

Γ
#∫ r
"
,r '
!"

( )M
! "!
r '
!"
( )dΓ

 (2.14) 

 

H
!"!
r
"
( ) = H

!"! inc
r
"
( )+ jωε G

Γ
#∫ r
"
,r '
!"

( )M
! "!
r '
!"
( )dΓ

            + j
ωµ

∇
!"
r '
!"
G

Γ
#∫ r

"
,r '
!"

( )∇
!"

Γ ⋅M
! "!
r '
!"
( )dΓ−∇

!"
× G

Γ
#∫ r
"
,r '
!"

( ) J
!"
r '
!"
( )dΓ

 (2.15) 

The unknown local currents J and M are created by an external but known 

incident field E
!" inc

 and H
!"! inc

, the field E and H can be solved by an integral 
equation. 

   
E
!" inc

r
"
( ) = jωµ G

Γ
#∫ r
"
,r '
!"

( ) J
!"
a r '
!"
( )dΓ

            + j
ωε

∇
!"
r '
!"G

Γ
#∫ r

"
,r '
!"

( )∇
!"

Γ ⋅ J
!"
a r '
!"
( )dΓ−∇

!"
× G

Γ
#∫ r
"
,r '
!"

( )M
! "!

a r '
!"
( )dΓ

 (2.16) 

   
H
!"! inc

r
"
( ) = jωε G

Γ
#∫ r
"
,r '
!"

( )M
! "!

a r '
!"
( )dΓ

            + j
ωµ

∇
!"
r '
!"
G

Γ
#∫ r

"
,r '
!"

( )∇
!"

Γ ⋅M
! "!

a r '
!"
( )dΓ−∇

!"
× G

Γ
#∫ r
"
,r '
!"

( ) J
!"
a r '
!"
( )dΓ

 (2.17) 

We have to enforce the boundary conditions on the tangential electric and 
magnetic fields: 

 
n
^

(r)× E
!" sca

r
"
( ) = −n

^

(r)× E
!" inc

r
"
( )

n
^

(r)×H
!"! sca

r
"
( )+ n

^

(r)×H
!"! inc

r
"
( ) = J

!"
r
"
( )

 (2.18) 

where 
^
(r)n  is the outward surface normal.  
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This allows us to write the above in terms of the known incident electric field 

E
!" inc

r
!
( )  and magnetic field H

!"! inc
r
!
( )  as:  

 

n̂× E
!" inc

r
"
( ) = −n̂× jωµ G

Γ
#∫ r
"
,r '
!"

( ) J
!"
r '
!"
( )dΓ%

&
'

                    + j
ωε

∇
!"
r '
!"G

Γ
#∫ r

"
,r '
!"

( )∇
!"

Γ ⋅ J
!"
r '
!"
( )dΓ

                   − M
! "!
r '
!"
( )

Γ
#∫ ∇

!"
r '
!"G r
"
,r '
!"

( )dΓ− 1
2
n̂×M
! "!
r '
!"
( )*+

,

 (2.19) 

 

n̂×H
!"! inc

r
"
( ) = −n̂× jωε G

Γ
#∫ r
"
,r '
!"

( )M
! "!
r '
!"
( )dΓ%

&
'

                    + j
ωε

∇
!"
r '
!"
G

Γ
#∫ r

"
,r '
!"

( )∇
!"

Γ ⋅M
! "!
r '
!"
( )dΓ

                   + J
!"
r '
!"
( )

Γ
#∫ ×∇

!"
r '
!"
G r
"
,r '
!"

( )dΓ+ 1
2
n̂× J
!"
r '
!"
( )*+

,

 (2.20) 

These two equations are called as the Electric Field Equation (EFIE) and the 
Magnetic Field Equation (MFIE).  
 

2.9 Reaction Concept 

The variational formulation can be obtained using the Rumsey reaction 
concept. Given an homogeneous domain Ω, with boundary surface Γ, sources 

J
!"
,M
! "!

{ }  and test sources J
!" test
,M
! "! test{ }  defined along the tangent direction of 

surface Γ and with boundary condition defined, then the reaction of sources 
on the test sources in Ω is defined as a following bilinear form: 

 R
Ω
J
!"
,M
! "!

{ }, J
!" test
,M
! "! test{ }"

#
$

%

&
'= E

!"
⋅ J
!" test

− M
! "! test

⋅H
!"!"

#
$

%
&
'

"

#
$

%

&
'

Γ
#∫ dΓtest  (2.21) 

Where the electromagnetic field E
!"
,H
!"!

{ }  is generated by the surface currents 

J
!"
,M
! "!

{ }  defined inside Ω. We can also apply this concept to the incident 

electromagnetic field E
!" inc
,H
!"! inc{ } generated by the surface currents J

!"
a ,M
! "!

a{ }

inside Ω, the bilinear form for the incident waves can be written as: 
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 R
Ω
J
!"
a ,M
! "!

a{ }, J
!" test
,M
! "! test{ }"

#
$

%

&
'= E

!" inc
⋅ J
!" test

− M
! "! test

⋅H
!"! inc"

#
$

%
&
'

"

#
$

%

&
'

Γ
#∫ dΓtest  (2.22) 

Both bilinear forms (C2.20) and (C2.21) have a symmetric property. So we 
can write the reciprocity principle: 

 R
Ω
J
!"
,M
! "!

{ }, J
!" test
,M
! "! test{ }"

#
$

%

&
'= RΩ J

!"
a ,M
! "!

a{ }, J
!" test
,M
! "! test{ }"

#
$

%

&
'  (2.23) 

 

2.10 Variational Formulation 

If we use the equation (C2.16) and equations shown in (C2.20) and (C2.21), 
and apply the boundary conditions, we obtain: 

 R
Ω
J
!"
,M
! "!

{ }, J
!" test
,M
! "! test{ }"

#
$

%

&
'− RΩ J

!"
a ,M
! "!

a{ }, J
!" test
,M
! "! test{ }"

#
$

%

&
'= 0  (2.24) 

We also define E
!"
= jωµ0e

"
, M
! "!
= jωµ0 p

!"
and J
!"
= j
"

, develop equation (C2.20). 

After few mathematical transformations, we can obtain: 

 

−S E
!" inc

,H
!"! inc

, j
" test

, p
!" test"

#
$

%
&
'= µR1 j

"
, j
" test"

#
$

%
&
'+
k 2

µr
R1 p
!"

, p
!" test"

#
$

%
&
'

                                        + R2 j
"
, p
!" test"

#
$

%
&
'+ R2 p

!"
, j
" test"

#
$

%
&
'

 (2.25) 

The kernel terms can be defined as follows: 

 

R1 a
!
,a
! test!

"
#

$
%
&= G( ) a

!
⋅a
! test!

"
#

$
%
&"∫"∫ dΓdΓtest − 1

k 2
G( ) ∇
#!
⋅a
!
∇
#!
⋅a
! test!

"
#

$
%
&"∫"∫ dΓdΓtest

R2 a
!
,b
! test!

"
#

$
%
&= ∇

r
!'

# !##
G×a
!

( ) ⋅b
! test!

"
#

$
%
&"∫"∫ dΓdΓtest

 (2.26) 

If we apply the Huygens principle for a homogenous domain Ω, the domain 
can be divided in several sub-domains Ωi , by considering the boundaries Γi 
generated by the subdomains Ωi,. Therefore, we can define the Rumsey 
concept on different Nd  subdomains: 
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 R
Ωi

J
!"
,M
! "!

{ }, J
!"
i
test
,M
! "!

i
test{ }"

#
$

%

&
'− RΩi J

!"
a ,M
! "!

a{ }, J
!"
i
test
,M
! "!

i
test{ }"

#
$

%

&
'

i=1

Nd

∑ = 0  (2.27) 

 

− S E
!" inc

,H
!"! inc

, j
" test

, p
!" test"

#
$

%
&
'

i=1

Nd

∑ = µR1i j
"
, j
" test"

#
$

%
&
'+
k 2

µr
R1i p
!"

, p
!" test"

#
$

%
&
'

)

*
+

i=1

Nd

∑

                                              +R2i j
"
, p
!" test"

#
$

%
&
'+ R2i p

!"
, j
" test"

#
$

%
&
'
,

-.

 (2.28) 

.28) 

 
  



Erreur ! Style non défini. 

17 
 

 
 
 
 
 
 
 
 
 

CHAPTER 3: SR3D 

 
 
 
 
 
 
 
 

 
  



Erreur ! Style non défini. 

18 
 

In this chapter, we start from the Rumsey reaction equation written in chapter 
2, then define the MoM linear system, and finally describe every term of the 
linear system, including the reaction matrix and source vector.  
 

 3.1 Linear System 

We can write the Rumsey reaction form related to a single couple of triangles 
TK and TL: 

 

−S E
!" inc

,H
!"! inc

, j
" K

, p
!"K"

#
$

%
&
'= µR1

KL j
! L

, j
! K"

#
$

%
&
'+
k 2

µr
R1
KL p
!"L

, p
!"K"

#
$

%
&
'

                                     + R2
KL j
" L

, p
!"K"

#
$

%
&
'+ R2

KL p
!"L

, j
" K"

#
$

%
&
'

 (3.1) 

 
Figure 3.1: Coupling reaction between triangles 

 
The terms R and S, which denote the coupling terms and source vector 
respectively, are defined by the following equation: 

 

R1 a
! L

,a
! K!

"
#

$
%
&= G x

!
, y
"!

( ) a
! L
y
"!
( ) ⋅a
! K
x
!
( )!

"
#

$
%
&

TL
!∫

TK
!∫ dydx

                    −
4HKHL

k 2
G x
"
, y
#"

( )
TL
!∫

TK
!∫ dydx

R2 a
" L

,b
"K!

"
#

$
%
&= ∇

#"
y
#"G x
"
, y
#"

( )×a
! L
y
"!
( )!

"
#

$
%
&⋅b
!K
x
!
( )

TL
!∫

TK
!∫ dydx

S E
"# inc

,H
"#" inc

, j
# K

, p
"#K!

"
#

$
%
&= E

"# inc
⋅ j
# K

−H
"#" inc

⋅ p
"#K!

"
#

$
%
&dx

TK

∫

 (3.2) 
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1where:    ,  is the surface of triangle T
2T T

T

H = Λ
Λ

 

 
Then we can define the sub-linear system related to the triangles TK and TL 
as: 

 
K KL LS Z⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Φ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (3.3) 

The electric JL and magnetic ML density surface currents contained in ΦL are 
the solutions of the sub-system. The numerical modeling of the antennas is 
based on surface discretization, using triangular finite element cells. The 
matrix ZKL depends on the structure geometry of the ensemble of triangles TK 

and TL of the mesh, in which the different triangles summits are K
iC  and L

iC  

(i=1,2,3). S is the second member, associated with the incident fields. 
 

If we consider the global antenna structure, which contains all the discretized 
triangles, by considering all the coupling reactions and the second member, 
the whole linear system of MoM, can be finally defined as follow: 

 [ ] [ ][ ]S Z= Φ  (3.4) 

Then we can write the whole linear system as below: 

 

S1
!
Sn−1
Sn

"

#

$
$
$
$
$

%

&

'
'
'
'
'

=

Z1,1 " Z1,n−1 Z1,n
! # ! !
Zn−1,1 " Zn−1,n−1 Zn−1,n
Zn,1 " Zn,n Zn,n

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

J1
!
Jn−1
Jn

"

#

$
$
$
$
$

%

&

'
'
'
'
'

 (3.5) 

[ ]Z  is an n*n symmetrical matrix, where n is the number of degrees of 

freedom of the antenna structure. For each degree of freedom, we compute 
the coupling reaction between others and itself, and the second member.  
 

3.2 Reaction Matrix Z 

If we consider the sub-linear system related to triangles TK and TL as written 

in equation (3.3), the combination of matrix elements KLZ⎡ ⎤⎣ ⎦  is a 6*6 

symmetrical one, and composed by 6 degrees of freedom, given by triangle 
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TK and TL respectively. The elements of KLZ⎡ ⎤⎣ ⎦  are placed at different location 

within the global matrix, as the matrix element is ranged according to the 

arrangement of fluxes. The sub-matrix KL
eeZ⎡ ⎤⎣ ⎦  denotes the coupling reaction 

given by electric-electric currents, KL
emZ⎡ ⎤⎣ ⎦  by electric-magnetic currents, KL

meZ⎡ ⎤⎣ ⎦  

by magnetic- electric currents, and KL
mmZ⎡ ⎤⎣ ⎦  by magnetic-magnetic currents. We 

hav 

 

KL KL
ee emC S C SKL

C S KL KL
me mmC S C S

Z Z
Z

Z Z
× ×

×

× ×

⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

 (3.6) 

where C denotes the number of Cartesian coordinates, S the number of 
triangle vertices, e is the electric reaction, m the magnetic reaction. In our 
system, C and S are equal to 3.  

 
Figure 3.2: Coupling reaction between triangles K and L 

 
We first define all the geometric variables related to triangles TK and TL in 
equation (3.7). In Figure 3.2, we describe the geometric relationship between 
triangles TK and TL, and x and y are the points defined in the triangle TK and 
TL respectively. 
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r
!
= y − x
" !""""
( ),       r = y − x

! "!!!!
       x
"
, y
!"
∈ TK ,TL ∈ℜ3

x
"
= x1,x2 ,x3
$% &',     y

!"
= y1, y2 , y3
$% &'

C
!"
s
T
=Ccs

T = C1s
T ,C2s

T ,C3s
T$

%
&
'∈ ℜ3,      c,s =1,2,3

where: 
c is the Cartesian coordinate index
s is the vertex index number

 (3.7) 

 
Then, we define the matrix by terms of electric and magnetic properties as 
follows: 

 

2

cs

cs

cs

cs

KL KL
ee ee seC S C S

KL KL
em em seC S C S

KL KL
me me smC S C S

KL KL
mm mm smC S C S

Z R I

Z R I

Z R I

kZ R I

µ

µ

× ×

× ×

× ×

× ×

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

 (3.8) 

where µ denotes the magnetic permeability, k the wavenumber of the 
electromagnetic radiation and I terms is the coupling terms (-1 or +1), related 
to the degrees of freedom, needed to represent the global reaction matrix. 
Thereby, using this reference we can explicit these terms as follows: 

R1aa
KL → Ree

KL ,Rmm
KL     

represented by the same kind of electric or magnetic currents, ee or mm

R2ab
KL → Rem

KL ,Rme
KL     

represented by the different kind of electric or magnetic currents, em or me

(3.9) 

For sake of completeness, we can define the A, D, T, F operator expressions: 

 

AKL G( ) = G x
!
, y
"!

( ) a
! L
y
"!
( ) ⋅a
! K
x
!
( )!

"
#

$
%
&

TL
#∫ dydx

TK
#∫

DKL G( ) = HKHL G x
!
, y
"!

( )
TL
#∫ dydx

TK
#∫

T KL G( ) = ∇
"!
y
"!G x
!
, y
"!

( )×a
! L
y
"!
( )!

"
#

$
%
&⋅b
!K
x
!
( )

TL
#∫ dydx

TK
#∫

where:     G =
e jkr

r
  ,    r = y − x

" !""""

 (3.10) 
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We can define the extended form of basis function with α
!"

 and β
!"

 for the 

triangle TK and TL: 

 

ΘK x
!
( )!

"#
$
%&=α
!"K

= β
!"K

= HK C3x
! "!!
( ) HK C1x

! "!!
( ) HK C2x

! "!!
( )!

"#
$
%&

ΘL y
!"
( )!

"#
$
%&=α
!"L

= β
!"L

= HL C3y
! "!!
( ) HL C1y

! "!!
( ) HL C2 y

! "!!
( )!

"#
$
%&

ΔKL x
!
, y
"!

( )!
"#

$
%&= ∇

!"
y
!"G x
"
, y
!"

( )×a
! L
y
"!
( )!

"
#

$
%
&⋅b
!K
x
!
( )!

"#
$

%&

   where:   HT =
1

2ΛT

 , ΛT  is the surface of triangle T  

 (3.11) 

If we suppose:  
 

 

ΘK x
!
( )!

"#
$
%&= HK C3x

! "!!
( ) C1x

! "!!
( ) C2x

! "!!
( )!

"#
$
%&
= HK B

K x
!
( )!

"#
$
%&

ΘL y
!"
( )!

"#
$
%&= HL C3y

! "!!
( ) C1y

! "!!
( ) C2 y

! "!!
( )!

"#
$
%&
= HL B

L y
!"
( )!

"#
$
%&

   where:   
BK x
!
( ) = C3x

! "!!
( ) C1x

! "!!
( ) C2x

! "!!
( )!

"#
$
%&

BL y
!"
( ) = C3y

! "!!
( ) C1y

! "!!
( ) C2 y

! "!!
( )!

"#
$
%&

 

                         φ r( ) =G r( ) = e
jkr

r

                  ψ r( ) =
∂φ r( )
∂r

= jkr −1( ) e
jkr

r3

                     ∇
!"
G r( ) =∇

!"
φ r( ) =ψ r( ) ⋅ r

 (3.12) 

2) 

 
We obtain: 
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ΔKL x
!
, y
!"

( )"
#$

%
&'cs
=ψ r( ) ⋅ r

!
×HL B

L y
!"
( )"

#$
%
&'s
⋅HK B

K x
!
( )"

#$
%
&'c

                    =ψ r( ) HK B
K x
!
( )"

#$
%
&'c
×HL B

L y
!"
( )"

#$
%
&'s{ }⋅ r
!

                     =HKHLψ r( ) ΩKL x
!
, y
!"

( )"
#$

%
&'cs

ΩKL x
!
, y
!"

( )"
#$

%
&'cs
= det cols B

L y
!"
( )"

#$
%
&' | colc B

K x
!
( )"

#$
%
&' | y − x
! "!!!!
"
#

%
&( )

           where:   BT w
!"
( )"

#$
%
&'i
= coli B

T w
!"
( )"

#$
%
&'

 (3.13) 

 
We can define a simpler formula for A, D, T operators as follows: 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

,

,

, ,

, 1,2,3
where:      Cartesian coordinates index

s = triangle v

K L

K L

K L

KL K L
K Lcs c s

T T

KL
K Lcs

T T

KL KL
K Lcs cs

T T

A H H x y B x B y dydx

D H H x y dydx

T H H x y x y dydx

c s
c

φ φ

φ φ

ψ ψ

⎡ ⎤ ⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ =⎣ ⎦

⎡ ⎤⎡ ⎤ = Ω⎣ ⎦ ⎣ ⎦

=

=

∫ ∫

∫ ∫

∫ ∫

v uv v uv

v uv

v uv v uv

——

——

——

ertex index

 (3.14) 

 
Until now, we have defined the kernel of the coupling reactions between two 
triangles TK and TL, we can express the formulas using the operators A, D, T: 

 

( ) ( )

( ) ( ){ }
( )

( )

( ) ( )

2

2

2

2

4

              4

4

cs

cs

cs

cs

KL KL KL
ee seC S cs cs

KL KL
secs cs

KL KL
em seC S cs

KL KL
me smC S cs

KL KL KL
mm sC S cs cs

Z A D I
k

A D k I

Z T I

Z T I

kZ A D I
k

µ φ φ

µ φ φ

ψ

ψ

φ φ
µ

×

−

×

×

×

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

⎡ ⎤⎡ ⎤= + −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

( ) ( ){ }21              4

cs

cs

m

KL KL
smcscs

A k D Iφ φ
µ

⎡ ⎤ ⎡ ⎤= − ⎣ ⎦⎣ ⎦

 (3.15) 

By defining the four kernel expressions, 
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( ) 3

2
2

,     = 1 ,

4 ,    =

jkr jkr

jkr jkr

e ejkr
r r

e ek
r rk

φ ψ

χ

= −

Γ = −

 (3.16) 

We finally obtain the discrete expressions for the KL
xxZ⎡ ⎤⎣ ⎦  

 

( ) ( ){ }
( )

( )

( ) ( ){ }1 4

cs

cs

cs

cs

KL KL KL
ee seC S cs cs

KL KL
em seC S cs

KL KL
me smC S cs

KL KL KL
mm smC S cs cs

Z A D I

Z T I

Z T I

Z A D I

µ φ

ψ

ψ

χ φ
µ

×

×

×

×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + Γ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.17) 

3.3 Source Vector Definition 

We first define an electric dipole as a source for the scattering computation. 
The source vector of the linear system takes into account the sources defined 
inside the analysis domain. The reaction between the source and the discrete 
triangle (metallic or dielectric) is considered. We then obtain a vector SK. 
 

 
Figure 3.3: Source Vector 

 
Source vector Dipole: The source vector is considered as the reaction 
between an incident dipole DK in free space and a single triangle TK of a 
metallic or dielectric mesh of a discretized structure. We can write the 
coupling reaction vector as: 
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2 1

2 1

2 1

K
e CK

C K
m C

S
S

S
×

×

×

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎡ ⎤⎣ ⎦⎣ ⎦
 (3.18) 

where:    

C = 3,  number of the cartesian coordinates
K =  triangle index
e =  electric reaction
m =  magnetic reaction

 

Suppose we have N discrete triangles in the whole domain, the source vector 
S should have 6*N rows in total. It can be represented as: 

 S!" #$=

S1!
"

#
$6
!
S K!
"

#
$6
!
S N!
"

#
$6

!

"

%
%
%
%
%
%
%
%

#

$

&
&
&
&
&
&
&
&

 (3.19) 

We define all the geometry variables for triangle TK and dipole DK: 

 

r
!
= x − yD
! "!!!!!
( ),       r = x − yD

! "!!!!!
       x
"
∈ TK ∈ℜ3, y

!"D
∈ TK ∈ℜ3

x
!
= x1,x2 ,x3
!" #$,     y

!"D
= y1

D , y2
D , y3

D!
"

#
$

C
!"
s
K
=Ccs

K = C1s
K ,C2s

K ,C3s
K!

"
#
$∈ ℜ3,      c,s =1,2,3

where: 
c is the Cartesian coordinate index
s is the vertex index number

 (3.20) 

The terms of vector SK can be defined as follows: 

 

Se
K m
!"D

, y
!"D!

"
#

$
%
&

'

()
*

+,c
= −µ φ x

!
, y
!"D!

"
#

$
%
&

TK
!∫ ΘK x

!
( )'

()
*
+,c
m
!"
t
D
x
!
, y
!"D!

"
#

$
%
&

0
1
2

                            + 1

k x − yD
! "!!!!! j − 1

k x − yD
! "!!!!!

!

"

#
#
#

$

%

&
&
&

2 ΘK x
!
( )'

()
*
+,c
m
!"D!

"
#

                           −3 ΘK x
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We can reduce the term Kε  as: 

 ε K x
!
, y
"!D!

"
#

$
%
&

'

()
*

+,c
= det colc Θ

L y
!"
( )!

"#
$
%&m
!"D
r
"!

"
#

$

%
&= HK ϒ K x

!
, y
"!D!

"
#

$
%
&

'

()
*

+,c
 (3.22) 

with:     ϒ K x
!
, y
"!D"

#
$

%
&
'

(

)*
+

,-c
= det colc B

K x
!
( )(

)*
+
,-m
!"D
r
""

#
$

%

&
'   

 
The reduced form of the source vector can be written as: 
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3.4 Reaction Matrix Discretization 

From a computational point of view, we need to discretize A, D, T operators, 

and KL
xxZ⎡ ⎤⎣ ⎦  term. We use a seven-point Gauss discretization method to 

discretize all the terms. 
 
We define the normalized Gauss method weights γT for a genetic 
discretization point defined inside the triangle T: 
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2
where:     is non-normalized Gauss weight for the w point

w
w w T

T

w

H
α

γ α

α

= Λ =
 (3.24) 

 
Figure 3.4: Reaction Matrix discretization 

 
In figure 3.4, we apply a seven-Gauss method to the triangle TK and TL. 
Thereafter, we can write the discretized form of a generic Green’s function 
kernel as: 

 G !x, !y( ) = γKγ LG
!xK ,
!yL( )

L
∑

K
∑ =

1
4HKHL

γKγ LG
!xK ,
!yL( )

L
∑

K
∑  (3.25) 

According to the equation (3.14), the A, D, T operators and KL
xxZ⎡ ⎤⎣ ⎦  terms can 

be discretized as follows: 



Erreur ! Style non défini. 

28 
 

 

AKL g1( )!
"

#
$cs
= HKHL

1
4HKHL

αkαl g1 x
!
k , y
!"
l( ) BK x

!
k( )!

"#
$
%&

l
∑

c

t

k
∑ BL y

!"
l( )!

"#
$
%&s

DKL g2( )!
"

#
$cs
= HKHL

1
4HKHL

αkαl g2 x
!
k , y
!"
l( )

l
∑

k
∑

T KL g3( )!
"

#
$cs
= HKHL

1
4HKHL

αkαl g3 x
!
k , y
!"
l( )

l
∑

k
∑ ΩKL x

!
k , y
!"
l( )!

"#
$
%&cs

where:  
g1 x
!
k , y
!"
l( ) =

φ x
!
k , y
!"
l( )

χ x
!
k , y
!"
l( )

!

"
#

$
#

  , along with  g2 x
!
k , y
!"
l( ) =

Γ x
!
k , y
!"
l( )

φ x
!
k , y
!"
l( )

!

"
#

$
#

g3 x
!
k , y
!"
l( ) = Ψ x

!
k , y
!"
l( ){

 (3.26) 

 
The reduced form can be written as:  
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The discretized form for the term KL
xxZ⎡ ⎤⎣ ⎦  can be written as: 
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 (3.28)) 

3.5 Source Vector Discretization 

For the source vector, in order to implement numerical computation, we need 
also to discretize the source vector. The method of discretization is based on 
the same seven-point Gauss discretization method. (Shown in Figure 3.5) 
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Figure 3.5: Source vector discretization 

 
By applying the discretization method, we can obtain the reduced form for the 
source vector terms: 
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CHAPTER 4: OPTIMIZATION TECHNIQUES 

 
 
 
 
  



Erreur ! Style non défini. 

31 
 

Global and local optimization algorithms are broadly divided into deterministic 
and stochastic. In this chapter, starting from the concept of global and local 
optimization, we introduce several deterministic and stochastic optimization 
methods, and discuss the advantages and weak points of each one. 
 

4.1 Global and Local Optimization 

Normally, most of optimization techniques focus on search and optimization 

problems associated with minimizing a cost function ( )F F= Ω . We can define 

the solution set for an optimization problem: 

 

 ( ) ( ) ( ){ }argmin :  for all 
x X

X F x x X F x F x x X∗ ∗ ∗

∈
= = ∈ ≤ ∈  (4.1) 

Where x is a p-dimensional vector of parameters that being adjusted and pX ⊆ ° is the 

domain for x, which represents constraints on allowable values for x. The statement 

( )argmin
x X
F x

∈
 illustrates that X ∗ is the set of values x x∗= (x the “argument” in “arg min”) 

that minimizes ( )F x subject to x∗  satisfying the constraints represented in the set X . [49] 

 
Figure 4.1 illustrates a simple distinction of local and global minima for a one-

dimensional optimization problem. When the optimal value equals to localx , the 

value of cost function is ( )localF x , however, it is not the lowest of cost function 

from the global viewpoint, comparing with a global optimal point x∗ , where the 

value of cost function is ( )F x∗ . 
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Figure 4.1: Local and global minima 

 
The difference between global and local optimization is one of the major 
distinction in optimization techniques. When considering all other factors in 
the optimization problems equally, one would always hope to find a globally 
optimal solution, which can provide a lowest value of cost function, and 
normally a better similarity comparing with the goal. While in practice, 
especially for nonlinear problems, the cost function always has a large 
number of local minima. Finding an arbitrary local optimum is relatively 
straightforward by using classical local optimization methods, and finding the 
global minimum of a function is far more difficult. In this situation, a global 
solution may not be always available and sometimes a local minimum is 
better than any in its vicinity, but can be an acceptable result. 
 
When we consider the concept of local optimization, it means that the 
optimization procedure attempts to find a local minimum, and obtaining the 
global minimum cannot be guaranteed. Local optimization algorithms 
generally depend on derivatives of the cost function and constraints to aid in 
the search procedure. Thus, there are strict requirements for the input 
information. 
 

4.2 Stochastic Method 

Stochastic methods normally can locate a global optimum faster than 
deterministic ones and only offer a guarantee in probability. In additional, 
stochastic methods can adapt better to unknown formulations and extremely 
ill-behaved functions, whereas deterministic methods usually rely on some 
analytical assumptions about the problem formulation and its analytical 
properties. However, in general search and optimization, it is very difficult to 
develop automated methods for indicating when the algorithm is close enough 
to the solution that it can be stopped, and it cost a considerable computation 
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for finding optimal solutions. We introduce some popular stochastic methods 
below. 
 

4.2.1 Genetic Algorithms 

The genetic algorithm was first introduced by Holland (1975) [52], and has 
become a popular method for solving large optimization problems with 
multiple local optima. In a genetic algorithm, a population of candidate 
solutions to an optimization problem is evolved toward better generations. 
Each candidate solution has a set of properties, which are represented in 
binary, and considered as 0s and 1s. The evolution usually starts from a 
population of randomly generated individuals, and then for each generation or 
iteration, the fitness of every individual in the population is evaluated 
stochastically by selecting the multiple individuals from the current population. 
When a solution is found that satisfies minimum criteria for the population, the 
algorithm terminates and we can obtain optimal solution.  
 
However, in order to find the optimal solution for complex high-dimensional 
and multimodal problems, very expensive cost function evaluations are often 
required. When we solve the practical problems such as structural 
optimization problems, typical optimization methods may not be able to deal 
with it. Moreover, a genetic algorithm needs a considerable number of 
computations and iterations before finding the convergence towards the 
optimum.  
 

4.2.2 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population based stochastic 
optimization technique developed by Eberhart and Kennedy in 1995 [53]. It is 
a computational method that optimizes a problem by iteratively trying to 
improve a candidate solution with regards to a given measure of quality. 
 
PSO shares many similarities with evolutionary computation techniques such 
as Genetic Algorithms. The optimization system is randomly initialized with a 
population of solutions and searches for optima by updating generations. PSO 
optimizes a problem by moving the potential solutions, which are called the 
particles, around in the search-space according to simple mathematical 
formulae over the particle's position and velocity.  
 
PSO is a metaheuristic method, which makes few or no assumption about the 
problem being optimized and can search very large spaces of candidate 
solutions. However, it cannot guarantee an optimal solution is ever found, and 
is easily trapped into a local minimum.  
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4.2.3 Simulated Annealing 

Simulated annealing (SA) is also a generic probabilistic metaheuristic method 
proposed by Kirkpatrick, Gelett and Vecci (1983) [54] and Cerny (1985) [55]. It 
is for the global optimization problem of locating a good approximation to the 
global optimum of a given cost function in a large search space, which is often 
discrete.  
 
The principle of simulated annealing is typically described in terms of 
thermodynamics. Simulated annealing is a process where the temperature is 
reduced slowly. Starting from a random search at high temperature 
eventually, it becomes pure greedy descent as it approaches zero 
temperature. The randomness should tend to jump out of local minima and 
find regions that have a low heuristic value. Simulated annealing maintains a 
current assignment of values to variables. At each step, it picks a variable at 
random, and then picks a value at random.  
 
As a kind of probabilistic metaheuristic method, simulated annealing algorithm 
also needs a huge number of computations and iterations for finding the 
convergence towards the optimum. 
 

4.2.4 Ant Colony Optimization 

Ant colony optimization algorithm (ACO) is a probabilistic technique for 
solving computational problems, proposed by Marco Dorigo in 1992 [56]. It is 
an algorithm for finding optimal paths that is based on the behaviour of ants 
searching for food. At first, the ants wander randomly. When an ant finds a 
source of food, it walks back to the colony leaving pheromones that show the 
path has food. When other ants come across the pheromones, they follow the 
path with a certain probability. As more ants find the path, it gets stronger until 
there are a couple streams of ants traveling to various food sources near the 
colony. 
 
Because the ant-colony works on a very dynamic system, the ant colony 
algorithm works very well in graphs with changing topologies, but also needs 
a considerable number of computations for finding the optimum.  
 

4.3 Deterministic Method 

Normally deterministic methods provide a theoretical guarantee of locating the 
global minimum, or at least a local one, and assume that perfect information, 
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which is used to determine the search direction in a deterministic manner at 
every step of the algorithm, is available for the cost function. However, in 
many practical problems, there are also some constrains for deterministic 
methods. For example, the information used to determine the search 
directions is not always available. 
 

4.3.1 Shape Gradients Calculation 

When we consider a smooth velocity field V and the family of transformations 
of the initial domain under the velocity field V:   

( ) ( ) ( )( ) ( ) ( )'
0 00 ,    ,    ,    s 0sx x x s V x s T x x s= ∈Ω = = ≥

 
and we also denote 

( )0 0s sTΩ Ω =Ωa  
Then, by calculating the differential of the cost functional, we can define that 

the shape derivative of  ( )F Ω  at 0Ω  with respect to the shape Ω  is the limit 

of formula  

 ( )
( ) ( )0

0 0
; lim s

s

F F
dF V

s→

Ω − Ω
Ω =  (4.2) 

 (if this limit exists.) 
 

In order to reduce the value of the cost functional, we evolve the boundary of 
Ω  along a direction (gradient line), then the shape gradient can be defined as:  

 ( )
0

0 ; ,dF V F V
∂Ω

Ω = ∇  (4.3) 

where F∇  is called the shape gradient.  

 

4.3.2 Shape Optimization Using Shape Gradients 

By computing of the derivatives of cost function with respect to the design 
parameters (if can be defined), shape optimization can be faced using 
standard optimization methods. For example, the gradient descent method 
can be used for the optimization procedure for finding especially the local 
minimum. As an improved method of gradient descent method, conjugate 
gradient method use conjugate direction instead of the local gradient for going 
downhill. And the minimum can be reached in far fewer steps than using 
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gradient descent method. By means of the velocity of Halmilton-Jacobi 
function [57], which is computed using the shape gradient, the level set 
method can also be implemented for the shape optimization procedure. 
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The inverse scattering procedure for optimizing the geometry from imposed 
radiation patterns or for reconstructing the geometry from measurements, is 
based on finding a solution (if such a solution exists) that minimizes the cost 
functional defined as follows: 

 
F (Ω) =

!
Es,q
meas −

!
Es,q
comp (Ω)

q=1

Q

∑
s=1

S

∑
2

!
Es,q
meas

q=1

Q

∑
s=1

S

∑
2  (5.1) 

Where 
!
Ecomp (Ω)  is the computed scattered field or radiation pattern for a 

certain geometry Ω and 
!
Emeas (Ω)  is the imposed or measured scattered field or 

radiation patterns. 
 
In order to minimize the cost functional, we need to compute the differential 
of the cost functional versus global geometry Ω that requires to determine 

the differential of the scattered field δE
!"comp

: 

 
δF =

−2 Re
!
Es,q

meas

−
!
Es,q

comp

Ω( )( ) ⋅δ
!
Es,q

comp

Ω( )$
%&

'
()q=1

Q

∑
s=1

S

∑

!
Es,q

meas

q=1

Q

∑
s=1

S

∑
2  (5.2) 

We can see that, in order to calculate the derivative of the cost functional, we 
have to know the derivative of the scattered field versus the geometry. 
 
For the computation of this derivative, five kinds of numerical methods are 
developed: a discrete form of the gradient, a formulation based on the adjoint 
method, an analytical expression, nodal point mesh derivation method, and 
topological shape gradient method. 
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Figure 5.1: Flow chart of optimization procedure 

 

5.1 Discrete Method 

The derivative of the scattered field with respect to the geometry can be 
computed using the central finite difference: 

 

∂
!
Es,q

comp

Ω( )
∂Ω

=

!
Es,q

comp

Ω+ΔΩ( )−
!
Es,q

comp

Ω−ΔΩ( )
ΔΩ×2

 (5.3) 
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One can see that the derivative is defined with respect to a given geometry 
difference ΔΩ, in order to compute the derivative, first the difference of the 
computed scattered field on geometry Ω+ΔΩ and Ω-ΔΩ is computed, then by 
dividing two times the geometry difference ΔΩ, we can get the derivative of 
the scattered field with respect to the geometry Ω. 
 

5.2 Adjoint Method 

We exchange the incident field locations with the measurement point 
locations, and compute the adjoint current density. 

 

δ
!
Es,q

comp

Ω( ) = j
ωµ

∇
!"
⋅ Js
!"!

( )Ω∫ ∇
!"
⋅ Jq

'
!"!

( ) δS
!"
⋅n
"

( )dΩ
− jωµ Js

!"!

Ω∫ Jq
'
!"!

δS
!"
⋅n
"

( )dΩ
 (5.4) 

This formulation is valid when the deformation is along the normal direction !n . 
 

5.3 Analytical Method 

Considering an arbitrary antenna shape, which is meshed by triangles, if we 
move a point P on the contour to P’, the fluxes connected to the triangle T1, 
T2, T3 would be changed, as well as the terms of the coupling matrix related to 
these triangles. If we can determine the sensitivity of the scattered field when 
moving the points on the contour, we can obtain the value of the shape 
gradient. 
 

 
Figure 5.2: Geometry modification when moving point P 
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If we write a simple expression of computed scattered field as: 

 [ ][ ]
,s comp

E G= Φ
ur

 (5.5) 

 

where [ ]G  denotes Green's matrix, and [ ]Φ  the current density vector. 

 
We can compute the derivative of the scattered field with respect to the 
geometry Ω by computing the derivative of Green's matrix and current density 
vector with respect to the geometry Ω: 
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#
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&
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( Φ#$ &'+
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#
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&

'
( G#$ &'  (5.6) 

) 

We can find the derivative of current density vector Φ  with respect to the 

triangle apexes Ci
K  : 

 1
K K K
i i i

S ZZ
C C C

−
⎡ ⎤⎛ ⎞∂Φ ∂ ∂

= − Φ⎢ ⎥⎜ ⎟
∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 (5.7) 

This equation shows that, when moving an apex of triangle on edge, in order 
to compute the derivative of the current density with respect to the mesh, we 
need to compute the derivative of the reaction matrix and second member 
with respect to the apex of triangle TK, respectively. 
 
Given a triangle-meshed surface Ω, for ith apex on the triangle K, the reaction 
matrix derivative with respect to this triangle apex can be expressed as:  

 

11 1

1

...

... ... ...

...

K K
i i n

K
i M N

K K
i im mn

Z Z
C C

Z
C

Z Z
C C

×

⎡ ⎤∂ ∂
⎢ ⎥
∂ ∂⎢ ⎥

⎡ ⎤∂ ⎢ ⎥=⎢ ⎥ ⎢ ⎥∂⎣ ⎦ ⎢ ⎥∂ ∂
⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

 (5.8) 

Where K
iC indicates the ith apex on the triangle K, m and n denote the derived 

element matrix indices. M N× is the size of reaction matrix. 
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Similarly, the derivative of the source vector can be expressed as:  
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 (5.9) 

Considering the sub-linear system, which is related to the single couple of 
triangles of TK and TL, we write it as: 

 

 KL L KZ S⎡ ⎤ ⎡ ⎤ ⎡ ⎤Φ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (5.10) 

 
We can derive the reaction matrix of the sub-linear system according to the 
electric and magnetic reactions, which can be written as: 

 

KL KL
ee emKL

KL KL
me mm

Z Z
Z

Z Z
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 (5.11) 

For the expression of the derivative of the sub-matrix with respect to the 
coordinates and the triangle summit, we have: 
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L LKL
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L KL KL
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L L
uv uvC S C S

Z Z
C CZ

C Z Z
C C
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× ×
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∂ ∂⎢ ⎥⎣ ⎦

 (5.12) 

) 

where : C,S=3 
C = number of Cartesian coordinates 

S = number of triangle summits 
e = electric reaction 

m = magnetic reaction 
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The matrix contains four parts of reaction: electric-to-electric, electric-to-
magnetic, magnetic-to-electric, magnetic-to-magnetic; u and v are referring to 
the Cartesian components, and triangle summits of triangle, therefore, the 

sub-matrix 
KL

L
uv C S

Z
C
αβ

×

⎡ ⎤∂ ⎣ ⎦
∂

is a 3×3 one. 

 
The gradient of the SR3D reaction matrix for a metallic structure is obtained 
through the reaction matrix derivative with respect to each summit of the 
related triangle and direction. 
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We apply the R terms from the Rumsey reaction to the reaction matrix 
derivative with respect to a single couple of triangles T and L. The ZKL 
derivative can be defined term by term as follows: 

 

2

cs

cs

cs

cs

KL KL
ee ee

seL L
uv uvC S C S

KL KL
em em

seL L
uv uvC S C S

KL KL
me me

smL L
uv uvC S C S

KL KL
mm me

smL L
uv uvC S C S

Z R
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C C

Z R
I

C C

Z R
I

C C

Z Rk I
C C

µ

µ

× ×

× ×

× ×

× ×

⎡ ⎤ ⎡ ⎤∂ ∂⎣ ⎦ ⎣ ⎦=
∂ ∂

⎡ ⎤ ⎡ ⎤∂ ∂⎣ ⎦ ⎣ ⎦=
∂ ∂

⎡ ⎤ ⎡ ⎤∂ ∂⎣ ⎦ ⎣ ⎦=
∂ ∂

⎡ ⎤ ⎡ ⎤∂ ∂⎣ ⎦ ⎣ ⎦=
∂ ∂

 (5.14) 

We apply SR3D A, D, T operators, and evolve the formula above: 
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 (5.15) 

 
Let’s now write the derivative of the above-mentioned terms using the new 
notation: 
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Similarly, we also have the expression of the derivative of the second member 
with respect to the summits of triangles. 
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5.4 Shape Gradient-Based on Topological Deformation  

For the shape optimization of reflectarrays or planar antenna arrays, we 
usually consider 2D metallic antenna structures to obtain approximate 
solutions instead of 3D realistic structures. In fact, when we consider the 
shape deformation of antennas in a two-dimensional plane, it is difficult to find 
the outward-pointing normal. In order to solve this problem, we give a new 
sense to the shape gradient versus an edge deformation (or transformation) in 
3D for metallic layers with limited surfaces. We can use this derived numerical 
model to study planar structures with the notion of metallic layer with a 2D 
outward normal direction.  
 
The shape gradient is computed using two different methods: one based on 
nodal point mesh derivation with an infinitesimal modification of the triangular 
elements on the contour along the outward normal direction and the other on 
topological gradient when adding a small triangular element to an edge. 
 

5.4.1 Contour Definition of Shape Geometry  

For an arbitrary 2D triangular discretized geometry Ω. Let Ω be a domain of
2° , Γ a polyline on the contour of Ω. On the polyline of Γ, we suppose there 

are n triangular apexes and n edges on the contour of geometry Ω. 
 

We define the set of all the triangular apexes in the domain Ω: { }
1

M

i
i=

ΡU ,

{ }1,2, ,i M∈ L .  

For the whole triangular domain Ω, we suppose we have N triangles, which 

can be defined as: 2

1
: ,   
N

k
k=

Ω Τ Ω∈U ° , '
',k kk k

φΤ Τ = ≠I , with 1,2, ,k N= L . We 

also define the set of all the apexes by all the triangles in the domain

   1,2,3;    1,2, ,kS k Nσ σ∈Ρ = =
:

L , whereσ denotes the index of apexes in one 

triangle. 
 

Therefore, we can define the set of Ρ
:
 as: { } { }1 2 3

1 1
: , ,
M N

k k k
i

i k
S S S

= =
Ρ Ρ =
:
U U  
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{ } { } { }1,2, , ,    1,2,3 ,   ! 1,2, ,k N i Mσ∀ ∈ ∀ ∈ ∃ ∈L L , which can satisfy k
iP Sσ= .

 
 
Let I be the function 

{ } { } { }:    1,2, , 1,2,3 1,2, ,I N M× →L L  

( ) ( ) ( ),:    , , : k
I kI k I k S Pσ σσ σ→ =  

 
For the triangular apexes which are on the contour Γ, we define the set

pX ∈Ρ
:

, { } { }1,2, ,n ,   ! 1,2, ,p j M∀ ∈ ∃ ∈L L , which satisfy p
jX P=  

 

Let { } { }:    1,2, , 1,2, ,J n MΓ →L L , ( ) ( )
:    : p

J p
J p J p X P Γ
Γ Γ→ =  

 

Let { } { }( ):   1,2, , 1,2,3TS NσΠ →L  be the set of subsets of 

{ } { }1,2, , 1,2,3N →L . 

We define for iP ∈Ρ
:

, we have ( )1
TSI i− ∈Π  

 

At each point p, { }1,2, ,np∈ L , we can associate ( )ˆ
S TSpΤ ∈Π ,

( ) ( )( )1ˆ
S p I J p− ΓΤ = , where we have ( ) ( )ˆ, Sk pσ ∈Τ  and ( ) ( ),I k J pσ Γ= . It 

means that if ( ) ( )ˆ, Sk pσ ∈Τ , then pX  is the apex kSσ  of TK (σ =1 or 2 or 3), 

and if ( ) ( )ˆ, Sk pσ ∈Τ , and ( ) ( )' ˆ, Sk pσ ∈Τ , then we have 'σ σ=  

 

Therefore, we can define the subset ( )ˆ pΤ  of { }1,2, ,NL , for ( )ˆk p∈Τ ,

{ } ( ) ( )ˆ1,2,3    , Sk pσ σ∃ ∈ ∈Τ , where ( )ˆ pΤ  is the set of the index of the 

triangles, which have pX  as an apex. 
 

Let ( )Tn p
∧

 be the number of triangles, which have pX  as an apex, we can 

define at last: 

{ } ( )ˆ:    1,2, ,       P
ik N p
∧

→ ΤL  

which indexes the elements of ( )ˆ pΤ . 
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We can construct that 
 

P
ik
:

, 1, 2, ,P M= L , ( )1,2, ,max Ti n p
∧⎛ ⎞= ⎜ ⎟

⎝ ⎠
L  

with ( )

( )

0,    if  

,    if  

P
i T

P P
i i T

k i n p

k k i n p

∧

∧ ∧

= >

= ≤

:

:
 

5.4.2 Shape Gradient Method Using Nodal Point Mesh Derivation 

Suppose P is a nodal point on the contour of the geometry Ω. For this nodal 
point a certain number of triangles (e.g. T1, T2 and T3 for Pi as shown in 

Figure 2) are connected to point P. As we have defined before, ( )Tn p
∧

 is the 

number of triangles have P as an apex. ( )ˆ pΤ  is the set of the index of the 

triangles which have P as an apex. 

 
Figure 5.3: Nodal point mesh derivation 

When moving this nodal point iP  along the normal direction of the contour to

'
iP , we obtain a modified geometryΩ + ΔΩ , given by the shape deformation of 

( )ˆ pΤ . As illustrate in figure 2, the triangles (T1, T2, and T3) are changed into 

(T'1, T'2, and T’3).  
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Comparing with the initial shape geometry Ω , the difference is the triangles 

connected to the point iP  and '
iP . With the new triangular mesh, we compute 

again the new coupling matrix [ ]ZΩ+ΔΩ , then solve the new linear system:  

 [ ] [ ] [ ].Z SΩ+ΔΩ Ω+ΔΩ Ω+ΔΩΦ =  (5.21) 

With the new fluxes [ ]Ω+ΔΩΦ , we can obtain the new electric field 

!
Ecomp (Ω+ΔΩ)  directly. Using finite difference method, we can compute the 

differential of the field with respect to the moving point iP  along the normal 

direction 

 ( ) ( )comp comp compE E Eδ = Ω + ΔΩ − Ω
r r r

 (5.22) 

 

5.4.3 Topological Gradient method 

For an arbitrary 2D triangular discretized geometry Ω, we assume there are 
n triangular edges on the contour Γ. 
 

Let { }1

n

i
i
L

=
U  be the set of triangular edges on the contour, we also define the 

set of all the triangular edges by all the triangles in the domain

   1,2,3;    1,2, ,kU k Nρ ρ∈Ρ = =
:

L , where ρ denotes the index of flux in one 

triangle. 
 

Let the linear system [ ] [ ] [ ].Z SΦ =  be associated with an initial geometry Ω. 

We modify the initial geometry Ω to a new geometry Ω +ΔΩ  by adding a 
triangle T' with small height hδ  (with hδ λ<< , where λ is the wavelength) to 
a triangle T on the edge of the contour (Fig. 2.3). The flux through the edge 
of the contour is null in the initial geometry but there is now a new unknown 

flux ϕ  to determine on the common edge between T and T'. The fluxes on 

the two other edges of triangle T' are null as they belong to the new contour. 
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Figure 5.4: Topological modification 
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Where '
'

kk
σσµ  is the basic finite element function with triangle '

i i

k kT T∪  
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 (5.24) 

 

( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )
( ) ( )

' ' ' '

'

' '' ' ' '
'

'

' '' '
'

, , , ,

, , , ,

, ,

,

+ ,

+ ,

i j
i j

i i j jk i i k i i l j j l i j
c c c ci j

k l

i j
i j

i i j jk i i k i i l j j l i j
c c c ci j

k l

i
i j

i ik i i k i i
c ci j

k l

k k l l
ij k k k k l l l l

T T

k k l l

k k k k l l l l
T T

k k

k k k k
T T

M I x x y I y dxdy

I x x y I y dxdy

I x x y

α β

σ σ σ σ

α β

σ σ σ σ

α β

σ σ

= Θ Φ Θ

Θ Φ Θ

Θ Φ

∫ ∫

∫ ∫

∫ ∫ ( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
( )

' '

' '

' ' ' '' ' ' '
' '

, ,

, , , ,
+ ,

j

j jl j j l i j
c c

i j
i j

i i j jk i i k i i l j j l i j
c c c ci j

k l

l l

l l l l

k k l l

k k k k l l l l
T T

I y dxdy

I x x y I y dxdy

σ σ

α β

σ σ σ σ

Θ

Θ Φ Θ∫ ∫

 (5.25) 

 

{ }Where   , , ,    e,m represent the electric and magnetic currenti j e mα β ∈  

We define i be a degree of freedom, if ( ), 'i q k k=  and 
( ), '

0k
c

k
k k

I
σ

> , we have

( ) ( )1 , 'q i k k− =   
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q−1 : 1,2,!,N J{ }→ 1,2,!,N{ }× 1,2,!,N{ }  

If ( ) ( )1 , 'q i k k− = , we can define ( )1
1q i k− =  and ( )1

2 'q i k− =  

We define !σ 1 i( ) =σ c
q1
−1 i( ) q1−1 i( )( )  and !σ 2 i( ) =σ c

q2
−1 i( ) q2−1 i( )( )  

So we have 

 

Mij =
αiα j Z

!σ 1 i( ) !σ 1 j( )
q1
−1 i( )q1−1 j( ) −

αiα j Z
!σ 1 i( ) !σ 2 j( )
q1
−1 i( )q2−1 j( ) −

αiα j Z
!σ 2 i( ) !σ 1 j( )
q2
−1 i( )q1−1 j( ) +

αiα j Z
!σ 2 i( ) !σ 2 j( )
q2
−1 i( )q2−1 j( )

Mii =
αiαi Z

!σ 1 i( ) !σ 1 i( )
q1
−1 i( )q1−1 i( ) − αiαi Z

!σ 1 i( ) !σ 2 i( )
q1
−1 i( )q2−1 i( ) −

αiα j Z
!σ 2 i( ) !σ 1 i( )
q2
−1 i( )q1−1 i( ) +

αiα j Z
!σ 2 i( ) !σ 2 i( )
q2
−1 i( )q2−1 i( )

αiαi Z
!σ 1 i( ) !σ 2 i( )
q1
−1 i( )q2−1 i( ) =

αiα j Z
!σ 2 i( ) !σ 1 i( )
q2
−1 i( )q1−1 i( )

 (5.26) 

  (5.26) 

We obtain:  

 Mii =
αiαi Z

!σ 1 i( ) !σ 1 i( )
q1
−1 i( )q1−1 i( ) − 2αiαi Z

!σ 1 i( ) !σ 2 i( )
q1
−1 i( )q2−1 i( ) +

αiα j Z
!σ 2 i( ) !σ 2 i( )
q2
−1 i( )q2−1 i( )

 (5.27) 

Let the initial structure have m number of degrees of freedom, for the new 
flux, the index is m+1. We can compute the new coupling between the old 
degrees of freedom with the new one, it can be written as: 

[ ] [ ]1 2 1, , , T
m m mmM M M M += L , and we suppose 1 1m mBτ + +=  is the new coupling 

between flux m+1 and itself. 

 

The linear system associated with the modified geometry Ω +ΔΩ  can be 
written as 

 
[ ] [ ]
[ ]

[ ] [ ]'
T

Z M S
M ϕ ϑτ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤Φ
⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 (5.28) 

Where [ ] [ ]1' ' , , ' T
mΦ = Φ ΦL  denotes the modified value of flux vector 

corresponding to initial geometry Ω  when adding element T', ϑ  the 

excitation term on T', and [ ]TM  the transpose matrix of [ ]M , respectively. 
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Introducing vector[ ] [ ] [ ]'D = Φ − Φ , we have: 

 [ ][ ] [ ]Z D Mϕ= −  (5.29) 

 
[ ] [ ]

[ ] [ ] [ ]1

T

T

M

M Z M

ϑ
ϕ

τ
−

− ⋅ Φ
=

− ⋅ ⋅
 (5.30) 

The determination of the differential field δE
!"comp

 using the formula above can 
be easily computed as the matrix A has been already factorized for 

computing the vector [ ]Φ  for the initial geometry. 

 
By controlling different heights hδ  of the external triangle T', and using finite 
differential method, we can obtain the derivative of field related to the shape 
deformation: 

 
2 1

2 1

h h

comp compcomp E EE
h h

δ δδ δ

δ δ

−∂
=

∂Ω −

uv uvuv
 (5.31) 
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CHAPTER 6: LEVEL SET METHOD 
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6.1 General Description 

Antenna array optimization in general, and for reflectarray application in 
particular, must include not only the miniaturization of the different elements, 
but also the reduction of the number of elements, by finding at same time, the 
optimum shape/size and the of antenna elements for a certain goal or under 
certain constraints such as the radiation pattern, return loss, etc. leading to a 
global reduction size, if of course such a solution exists. 
 
In the last chapter, we have discussed the calculation of the shape gradient 
on the contour. The shape gradient or sensitivity indicates the shape 
deformation during iterations, meanwhile, it shows the decrease of the cost 
functional. By means of the implicit shape representation using the Level Set 
method, we can deform the object contour along the normal direction with a 
certain velocity, with an opposite sign to the shape gradient vector. 
 
A classic shape representation is the Lagrangian formulation, which considers 
a parameterized form of the velocity V(x). Every point of the contour is 
defined. Since there are generally an infinite number of points on the front 
(except, in one spatial dimension), this means discretizing the boundary in a 
relatively dense and uniform manner to represent and trace the boundary 
accurately. The Lagrangian formulation is a very intuitive and direct method. It 
represents every point on the boundary versus time, and traces the motion of 
each one. However, the algorithm to determine the connectivity is difficult to 
design, especially when a topological change occurs, for example, when the 
boundary begins to be merged or splitted. 
 
Level Set method is based on an implicit representation of the contours, which 
defines a one-higher dimension function, and the boundary is represented as 
the zero iso-contour of this function. This method was first introduced by 
Osher and Sethian in 1988. [29] One of the most important properties of level 
set method is that the shape of elements can merge and/or break. The Level 
Set Method is therefore an excellent method and quite suitable for not only 
optimizing the shape of a single patch antenna but also to optimize the 
number of elements, by finding the optimum size as well as the optimum 
number of elements. 
 

6.2 Level Set Function 

The original idea of level set methods is that the subsequent motion of the 

boundary is analyzed under a velocity field V
!"

, which can depend on position, 

time , geometry of interface, and some optimization constrains (e.g., it can be 
related to the cost function). Mathematically, the key idea of level set is the 
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Hamilton-Jacobi approach to numerical solutions of a time-dependent 
equation for moving an implicit surface, [57] which is the level set function. 
Given an interface, which is bounded with an open region Ω, the level set 
function ϕ has the following properties:  

 

( )
( )
( )

, 0

, 0

, 0

x t if x

x t if x

x t if x

φ

φ

φ

< ∈Ω⎧
⎪

= ∈Γ⎨
⎪ > ∉Ω⎩

 (6.1) 

By the definition of the level set function, the interface is represented for all 
later times. The motion is analyzed by converting the levels with the velocity 

field V
!"

, and the evolution of the level set function is defined by a Hamilton-

Jacobi equation of the form: 

 0V
t
φ

φ
∂

+ ⋅∇ =
∂

uv
 (6.2) 

With initial value given by: 

 ( ) 0,0φ φ⋅ =
 (6.3) 

 
Figure: 6.1: Level Set function 

 
Figure 6.1 illustrates an example of the shape deformation using the Level Set 
method. In the XOY plane, the former shape Ω (blue line) evolves to the 
shape Ω+ΔΩ (red line). It is difficult to describe and evolve the shape Ω to 
Ω+ΔΩ only by defining the contour of the shape and transforming it 
numerically. Using Level Set method, one can define a level set function 
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which works on a higher dimension space than the geometric shape, by 
computing and analysing the update of the level set functional, which works in 
an implicit way, the shape can evolve easily rather than evolving the boundary 
of the object in the initial dimension directly. 
 

6.3 Normal Velocity 

When we consider a boundary, in order to characterize the evolution of the 
level set function, a speed function V can be defined such as: 

 ( ) ( )    xV x x
t
∂

= ∈Γ
∂

 (6.4) 

This velocity function can depend on many factors, and be derived from the 
independent external physical field, global properties of the front, and the local 
geometric information such as curvature and normal directional velocity. 
Generally, when we consider the inverse electromagnetic problems, we only 
consider the local geometric information. [29] 
 
In this case, the normal unit outward vector can be written as: 

 n φ
φ

∇
=
∇

v
 (6.5) 

And, the curvature is: 

 K φ
φ

⎛ ⎞∇
=∇⋅⎜ ⎟⎜ ⎟∇⎝ ⎠

 (6.6) 

Suppose the normal component of the velocity in the normal direction N
uuv

is NV , 

of the velocity V
uv

. We can obtain: 

 ( ) ( )N N N N NV V V n V Vφ
φ φ φ φ φ

φ
∇

⋅∇ = ⋅∇ = ⋅ ⋅∇ = ⋅∇ = ⋅ ∇
∇

uv uv v
 (6.7) 

By considering this normal deformation velocity, we can use for the level set 
function, the Hamilton-Jacobi equation: 
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0N

N

V
t

V
t

φ
φ

φ
φ

∂
+ ⋅ ∇ =

∂
∂

= − ⋅ ∇
∂

 (6.8) 

From this Hamilton-Jacobi equation, we can see that the left part of the partial 
equation is the derivative of level set function versus time, and the right part 

φ∇  denotes the spatial derivative of φ  at the grid point. Once we obtain the 

spatial derivative of φ  and the normal velocity, then we can apply finite 

difference approximation to evolve the level set function. Suppose the current 
evolution is m, and the next one is m+1, we have different level set function 

for time tm+1 and tm, which are 1mφ + and mφ respectively, and 1m mt t t+Δ = −

represents the time step . [29] We can obtain the level set function at tm+1 
using the first order forward Euler method: 

 

1m m

NVt
φ φ

φ
+ −

= − ⋅ ∇
Δ

 (6.9) 

We use a uniform grid for all the set of data points where the implicit function 

φ  is defined, and initially we use a signed distance function to define different 

level set function, it can be written as: 

 ( )
( )

( )

min

,0            0             

min  

x x if x

x if x

x x if x

φ

Γ

Γ

⎧− − ∈Ω
⎪⎪

= ∈Γ⎨
⎪

− ∉Ω⎪⎩

v v

v v
 (6.10) 

With the signed distance function, which is an implicit function, we can find the 
contour by computing the different distance values of all the pixels, and 
distinguish the region in and out of the object from negative and positive 

signs. In addition, ( )min x xΓ−
v v

 is an Euclidean distance function with gradient

1φ∇ = , is monotonic across the surface and can be differentiated there with 

significantly higher confidence. [29] 
 
We have: 
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 N N x y zV V u v wφ φ φ φ φ⋅∇ = ⋅ ∇ = + +
uv

 (6.11) 

For the one-dimensional case, and considering a specific grid point xi, we can 
write: 

 ( )
1m m

mmi i
i x i
u

t
φ φ

φ
+

−
= −

Δ
 (6.12) 

If ui > 0, the values of ϕ are moving from the left to right, and the method of 
characteristics tells us to look to the left of xi to determine what value of ϕ will 
land on the point xi at the end of a time step. Similarly, if ui < 0, the values of ϕ 
are moving from the right to left, and the method of characteristics implies that 
we should look to the left of xi to determine what value of ϕ will land on the 
point xi at the end of a time step. [29] 
 
When ui > 0, we should use a first-order accurate backward difference to 

approximate xφ  

 1i i
xD

x x
φ φφ

φ− +−∂
= ≈
∂ Δ

 (6.13) 

When ui < 0, we should use a first-order accurate forward difference to 

approximate xφ  

 1i i
xD

x x
φ φφ

φ+ + −∂
= ≈
∂ Δ

 (6.14) 

This method of choosing an approximation to the spatial derivatives based on 

the sign of u is known as upwind differencing, the errors are ( )O xΔ  [29]. 

 

6.4 Narrow Band Method 

When we apply an implicit representation to describe the motion of objects, 
actually we define not only the objects with a distance function, but also all the 
spatial maps. However, in our case, when we evolve the shape of antenna 
elements, in fact, only the conditions on the contour of antenna elements are 
changed. In other words, when we use the Level Set method to optimize 
antenna elements, we need only to consider the motion of the object contour, 
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and it is not efficient to evolve the entire surface. Thereafter, we need to find a 
method to evolve only the level set function, which are close to the boundary 
[50]. 
  
Therefore, we need to apply the narrow band method in the processing of 
evolution of the Level Set method. The idea of the narrow band method is to 
solve the level set equation in a narrow band with γ pixels wide around the 
interface. All the value s outside this band are set to a value of +γ or –γ, and 
not to be evolved until they are close enough to the narrow band [50]. Then 
the narrow band can be represented by: 

 ( )
( )

( ) ( )
( )

      

 

       

if d x

x d x if d x

if d x

γ γ

φ γ

γ γ

− <⎧
⎪⎪

= ≤⎨
⎪

>⎪⎩

 (6.15) 

6.5 Re-Initialization 

As the interface evolves, the level set function ϕ will generally drift away from 

its initialized value as signed distance, the evolution of 0t Vφ φ+ ⋅∇ =  often 

distorts the level set function after several iterations. It happens in the sense 
that the slope is too flat or too steep around the interface. A small perturbation 
of the level function may lead a big change of interface location, and the level 
function may lose enough regularity near the interface. Thus it is necessary to 
apply a kind of techniques periodically in order to keep ϕ approximately equal 
to the signed distance. We can apply the distance function to the interface to 
replace the level set function in order to keep the regularity near the interface 
[50]. 
 
The re-initialization is done by solving the Eikonal equation : 

 ( )( )1Sign
t
φ

φ φ
∂

= − ∇
∂

 (6.16) 

where Sign is the sign function defined as  

 ( )
1        0
0        0

1     0

if
Sign if

if

φ

φ φ

φ

>⎧
⎪

= =⎨
⎪− <⎩

 (6.17) 

By using this Eikonal equation, we can eliminate many numerical issues and 
preserve the interface. 
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In order to apply the re-initialization step in a certain range to the level set 
function, we need to define a band, which can be written as: 

 ( )
( )

( ) ( )
( )

'

' ' '

'

      

+  

       

if d x x

x x d x x if d x x

if d x x

γ γ

φ γ

γ γ

⎧− + <
⎪
⎪

= + + ≤⎨
⎪

+ >⎪⎩

 (6.18) 

where 'x x< Δ , xΔ is the size of the level set pixel. 

 

6.6 An Upper Limit to the Size of Δt 

The Courant-Friedrichs-Lewy (CFL) stability condition indicates that the 
numerical wave speed of /x tΔ Δ must be at least as fast as the physical wave 

speed u , i.e., /x t uΔ Δ >  [29]. This requires to have an upper bound on Δt. 

When the shape deforms in the normal direction, we only choose the largest 

value of u  on the interface, With this value, we can guarantee that all the 

discretized pixels satisfy the CFL time step restriction: 

 
{ }max u

t
x

α
⎛ ⎞

Δ =⎜ ⎟⎜ ⎟Δ⎝ ⎠
 (6.19) 

Where: 0<α<1. 
 
A multidimensional CFL condition can be written as: 

 max
u v w

t
x y z

α
⎧ ⎫

Δ + + =⎨ ⎬
Δ Δ Δ⎩ ⎭

 (6.20) 

Where Δx, Δy, Δz denotes the discretized spatial step in x,y,z direction [29]. 
 
The time step Δt is an important configuration for reaching a stable solution, 
and also related to the shape deform velocity. 
 
Unfortunately, the simple central differencing is unstable with forward Euler 
time discretization and the usual CFL conditions with Δt~Δx. Stability can be 
achieved by using a much more restrictive CFL condition with Δt is equivalent 
to higher order of Δx. 
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In addition, the upper limit of the time Δt can be used to control the motion of 
level set function. For the aim of satisfying CFL condition, α should be less 
than zero, while in some situations of optimization procedure, for example, 
when the optimal object is close to the goal, we need to slow down the motion 
of the boundary. There are some ways to manage this boundary motion, for 
instance, we can use a smaller grid to discretize the level set map, decrease 
the evolving times number to limit the iteration steps at every time iteration, 
and also decrease the coefficient α, as we discussed above, which means if 
we use smaller value of α, we can control the change of level set function to 
use a small step to approach the goal object slowly. 
 

6.7 Apply Shape Gradient to Level Set Method 

The differential of the cost functional is given by:  

 δF =
−2 Re

!
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−
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!
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∑
2  (6.21) 

Thus we can write the shape gradient as: 
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where ( ) ( )
comp comp

, ,s q s qE Eδ
δ

∂ Ω Ω
=

∂Ω Ω

r r

 
 
By considering the CFL condition, we take into account the coefficient α, 
which we discussed in the last section. Then the velocity can be written as: 
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The sign of the normal velocity is different from the shape gradient. It means 
that if we evolve the antenna boundary along its normal direction, and take 
the negative value of shape gradient, the cost functional will be decreased. 
When the cost functional reaches a small enough value, we hope to obtain an 
optimized antenna or antenna array shape. 
 

6.8 Procedure of Level Set Optimization 

Once we obtained the shape gradient for antenna geometry, we can apply it 
as the normal velocity to the Hamilton-Jacobi equation. At nth iteration, we 

define the surface nφ as the zero-level iso-surface of a function.  

Thus at nth iteration, the optimization procedure contains:  
1. Computation of the shape gradient;  
2. Extension of the shape gradient to the deformation velocity VN to every 
pixel of the narrow band;  
3. Evolve the level set function, and obtain a new value of level set;  
4. Determine the new narrow band;  

5. Chain the pixels of level zero, obtain a new shape 1nφ + , and apply the 

forward scattering algorithm;  
6. Compute the cost functional for the new shape. 
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CHAPTER 7: NUMERICAL VALIDATIONS 

 

 

 

 

 

 

 

  



Erreur ! Style non défini. 

64 
 

In the last chapters, we have described all the optimization procure, and 
explained in details the numerical method used to solve forward and inverse 
problem. In this chapter, we present some numerical validations to 
investigate the performances of different shape gradient methods in different 
situations. The main work contains: 
 
1. Study of the scattered fields of a cylinder antenna 
2. Validation of the adjoint formula for a cylinder antenna 
3. Validation of the adjoint formula for a 2D patch antenna 
4. Validation of the adjoint formula for a 3D patch antenna 
5. Shape gradient computation by different shape deformations 
 

7.1 Study of the Scattered Field of a Cylinder Antenna 

We are using three different antenna shapes (shown in Figure 7.1 as object A, 
B and C) to study the differences between their scattered fields. Object A is a 
cylinder shape antenna with top, B a circular shape antenna, and C a cylinder 
shape antenna without top. In fact, from the structure of the antenna shape, 
Object A is composed with B and C. There are 6 dipoles surrounding the 
object and illuminating the object (shown in Table 7.1), and working at 3 GHz. 
The scattered fields are measured on a plane parallel to the xOy plane 
(z=0.05 m). We sum up the scattered field radiated by objects B and C, and 
compare with the scattered field radiated by object A for different cases given 
by different sizes of antennas. The radius of cylinder and circle R is equal to 
0.6λ, 0.7λ, 0.8λ, 0.9λ, 1.0 λ, respectively. The mesh size is λ/10. 
 

Dipole N# Dipole 
Moment x [m] y [m] z [m] 

1 (0,1,1) 2 0 0.05 

2 (-0.866, 
0.5,1) 1 1.732 0.05 

3 (-0.866,-
0.5,1) -1 1.732 0.05 

4 (0,-1,1) -2 0 0.05 

5 (0.866,-
0.5,1) -1 -1.732 0.05 

6 (0.866, 
0.5,1) 1 -1.732 0.05 

Table 7.1: Position and moment of dipoles 
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Figure 7.1a: Object A 

 
 

 
Figure 7.1b: Object B 

 

 
Figure 7.1c: Object C 
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Figure 7.2a: Scattered field R=0.6λ 

 

 
Figure 7.2b: Scattered field R=0.7λ 

 

 
Figure 7.2c: Scattered field R=0.8λ 

 

 
Figure 7.2d: Scattered field R=0.9λ 
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Figure 7.2e: Scattered field R=1.0λ 

 
The results illustrated in Figure 7.2 show that when we compute the scattered 
field of a cylinder antenna, the field scattered by the side of cylinder more is 
important, and by comparing the field of object A and B, we find that there are 
no large differences. By summing up the scattered field radiated by object B 
and C, we find a higher value than the field radiated by objects B and C.  
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7.2 Validation of the Adjoint Formula for a Cylinder Antenna 

In this study, we validate the shape gradient of a cylinder antenna by using 
adjoint and discrete method. Figure 8.3 shows the antenna structure of the 
cylinder antenna, the mesh of the antenna is λ/20. We use six incident dipoles 
illumining at different positions (shown in Table 7.2), working at 3 GHz, and 
measured at the same positions as the incident dipoles. 
 

Dipole N# Dipole 
Moment x[m] y[m] z[m] 

1 (0,0,1) 2 0 0.1 
2 (0,0,1) 1 1.732 0.1 
3 (0,0,1) -1 1.732 0.1 
4 (0,0,1) -2 0 0.1 
5 (0,0,1) -1 -1.732 0.1 
6 (0,0,1) 1 -1.732 0.1 

 
Table 7.2: Position and moment of dipoles 

 
We compare the shape gradient of different antenna sizes by changing the 
radius of the cylinder. (Shown in Table 7.3) 

Working 
Frequency Dimension Mesh 

3.0GHz 
R= 

(0.665λ~0.720λ) 
Step: 0.005λ 

λ/20 

Table 7.3: Information of the cylinder antenna 
 

 
Figure 7.3: Cylinder Antenna 
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Figure 7.4: Antenna shape gradient 

 
The results shown in Figure 7.4 indicate that when we enlarger the radius of 
the cylinder, we can get almost the same results of the shape gradient by 
using discrete and adjoint method. 
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7.3 Validation of the Adjoint Formula for a 2D Patch Antenna 

In this experiment, we compute the shape gradients of a 2D patch rectangular 
antenna located in the xOy plane moving along z direction by using discrete, 
analytical, and adjoint methods, respectively. The size of the rectangular 
antenna is about 0.6 m*0.3 m shown in Figure 7.5. By changing the height of 
incident dipole (shown in Figure 7.6), we can change relatively the location of 
the goal along z direction.  

 
Figure 7.5: Antenna structure 

 
 

 
Figure 7.6: One incident dipole moving along z direction 
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We use one incident dipole working at 3GHz to illumine the patch antenna 
(shown in Table 7.4, and z0 is the initial location of the incident dipole), and 
measured at the same position as the incident dipoles. The initial position of 
the incident dipole is at 6 m height. 
 

Dipole N# Dipole 
Moment x[m] y[m] z[m] 

1 (1,0,0) 0 0 

zi=z0+Δz*i 
Δz=0.001m 
z0=6 m 

i=(0,1,2,3…20) 
Table 7.4: Incident dipoles 

 

 
Figure 7.7a: Antenna shape gradient  
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Figure 7.7b: Antenna shape gradient  

 
From the results shown in Figure 7.7, we can see that for both the goal at 
6.01m and 6.6 m, the results of analytical, adjoint, and discrete method are 
relatively close. However, the analytical method can give a more accurate 
result by comparing the results of discrete method as a criterion. In the Figure 
7.7b, we can see as we increase the height of incident dipole, the adjoint 
method gives more different values from the discrete and analytical method. 
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7.4 Validation of the Adjoint Formula for a 3D Patch Antenna 

In this experiment, we compute the shape gradient of a 3D patch rectangular 
antenna enlarging along the normal direction on the surface by using discrete, 
and adjoint method, respectively.  
 

7.4.1 Thin 3D Patch Antenna Enlarged Along All Normal Directions 

We first compute the shape gradient for a thin patch 3D antenna. The size of 
the rectangular antenna is around 10 cm*5 cm*0.2 cm as shown in Figure 7.8, 
and the mesh size is λ/20. We use one incident dipole working at 3 GHz to 
illuminate and one measurement point to measure in the same location as 
shown in Table 7.5. By changing the moments of the incident dipole as 
illustrated in Figure 7.10, we compute the shape gradient of moving the 3D 
antenna shape along its normal direction (shown in Figure 7.9).  

 
Figure 7.8: Antenna structure 

 

 
Figure 7.9: Antenna shape deformation 
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Dipole & 
Measurement 

point N# 

Dipole 
Moment 
(x,y,z) 

x[m] y[m] z[m] 

1 

(1,1,0) 
(1,1,0.5) 
(1,1,1) 
(1,1,2) 
(1,1,3) 
(1,1,5) 
(0,0,1) 

0.25*lambda 0.125*lambda 5.0*lambda 

Table 7.5: Incident dipole and measurement point 
 

 
 

Figure 7.10: Moment of incident dipole 
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Figure 7.11a: Shape gradient 

 
Figure 7.11b: Shape gradient 
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Figure 7.11c: Shape gradient 

 
Figure 7.11d: Shape gradient 
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Figure 7.11e: Shape gradient 

 
Figure 7.11f: Shape gradient 
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Figure 7.11g: Shape gradient 

 
Figure 7.11 shows the shape gradients of enlarging the 3D antenna along the 
normal direction computed by using both adjoint and discrete method. From 
the results, we can see that there is a relationship between the moment of the 
incident wave and shape gradients. When the moment of incident dipole is 
turning close to +z direction, the shape gradient is becoming more and 
inaccurate when comparing the results given by the discrete method as the 
criterion, since the currents are more important on the thin edges of the 
antenna structure. When the moment of incident dipole is (0,0,1), the results 
of shape sensitivity given by discrete method and adjoint method are very 
different, as we consider the discrete method as the more accurate result.  
 

 
Figure 7.12 Comparison of adjoint and discrete methods 
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Figure 7.12 shows clear results of the differences on the shape gradients 
between the moments of dipole (MoD). When the MoD is (1,1,0), the currents 
on the edge side of the antenna are very weak, while the currents on the top 
and bottom sides contribute more to the scattered fields and surface area of 
the antenna, so that we can obtain more accurate shape gradient when we 
are enlarging the antenna size along the normal direction of the surface, the 
highest value of the difference between the adjoint and discrete methods is 
about 8%. When the MoD is (1,1,3), we have more currents distributed on the 
thin edge sides, in this case, the highest difference is about 17%. When the 
MoD is (1,1,5), the currents on the top and bottom sides are becoming 
weaker, while the shape deformation of the antenna on the top and bottom 
sides does not change, we can see that the highest difference is about 32%. 
Finally, when we move the incident dipole vertical to the xOz plane, where the 
MoD is (0,0,1), there is almost no currents distributed on the top and bottom 
of the antenna, in this case, we can see that the difference between the 
adjoint and discrete method is really high, about 61%.  
 

7.4.2 Thin 3D Patch Antenna Enlarged Along +x Direction 

Now, we change antenna moment to (1,1,1), and the location of the incident 
dipole is shown in Table 7.6. In this situation, we compute the forward current 
density and adjoint current density. In addition, for the shape deformation of 
the antenna structure, we only enlarge the antenna along x direction. While by 
considering the dipole moment, the currents on the edge in green color shown 
in Figure 7.13 are considerable. 
 

 
Figure 7.13: Antenna Shape deformations along x direction 

 
 

Dipole & 
Measurement 

point N# 

Dipole 
Moment x [m] y [m] z [m] 

1 (1,1,1) 0.25*lambda 0.125*lambda 5.0*lambda 

Table 7.6: Incident dipole and measurement point 
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Figure 7.14: Shape gradient   

 
The results in Figure 7.14 show that there are large differences of the shape 
gradient computed by adjoint and discrete method, the value of the shape 
gradients computed by the adjoint method are almost two times higher than 
the discrete method. However, the accurate current density on a very thin 
edge is hard to compute accurately due to thin edge effect and curse mesh. 
 

7.4.3 Thick 3D Antenna Enlarged Along +x Direction 

In order to avoid the effect of thin edge and curse mesh, we increase the 
height of antenna from λ/50 to λ/4, so that the current density on the edge can 
be computed more accurately, and then we do the same experiments as 
before. The new antenna structure is shown Figure 7.15, and the shape 
deformation in Figure 7.16 
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Figure 7.15: Antenna structure 

 

 
Figure 7.16: Antenna shape deformation 

 

 
Figure 7.17: Shape derivative  
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From the results shown in Figure 7.17, we can also see large differences of 
shape gradient computed between the adjoint and discrete methods. 
Comparing the result of thin edge patch antenna, we can find that for both thin 
and thick 3D rectangular antenna structure, when we use the adjoint formula 
to compute the shape gradient of moving along a unique direction, we cannot 
obtain accurate values. 
 
 
 
 
 
 
 

7.5 Shape Gradient Computation by Different Shape Deformations 

In this study, we aim to investigate and validate the topological gradient 
method by comparing with the results using a geometrical modification 
method. We compute the shape gradient on a triangle on the edge of a 
circular antenna. The initial shape is a 10 cm radius circular antenna as 
shown in Figure 7.18, and the goal is a 5 cm radius circular antenna as 
shown in Figure 7.19.  
 
We use one incident dipole illuminating from the far field, working at 3 GHz, 
and 72 measurements points to measure the scattered field. The moment of 
the incident dipole is (0,1,0). 
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Figure 7.18: 10 cm radius circular antenna 

 

 
Figure 7.19: 5 cm radius circular antenna  

 
We select the triangle #1 on the boundary to deform the shape of the initial 
guess as shown in Figures 7.20 and 7.21. The modification of the antenna 
geometry along the normal direction is associated with the length of segment 
on the boundary. For this case, we use h=m*L to represent the maximum 
increase of h along the normal direction, m is a coefficient ranging from 0.05 
to 0.5, with a step equal to 0.05, and L is 0.009814 m, the length of segment 
on the boundary. It means that the maximum of h is equal to half of the 
length of the segment on the boundary. The coordinates of the triangle 
summits are shown in Table 7.7. 
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Summit N# x [m] y [m] z [m] 
1 0.08467 -0.03389 0 
2 0.09239 -0.03827 0 
3 0.09569 -0.02903 0 

Table 7.7: Summit Coordinates 
 

 
Figure 7.20: Geometry modification 

 

 
Figure 7.21 Topological modification 
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Figure 7.22 Cost functional versus Geometric and Topological Modification 

 
The results in Figure 7.22 show when using geometric and topological 
modification, we have different values of the cost functional. In this case, the 
value of cost functional given by topological modification is always higher 
than the geometric one. However, as the shape gradient is related to the 
derivative of the cost functional, from the slop of the curve, we can find the 
shape gradients given by the topological and geometric are similar. 
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CHAPTER 8: NUMERICAL EXPERIMENTS 
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In this chapter, we present some numerical experiments of antenna 
optimization for different antenna configurations. The antennas and antenna 
arrays in these examples are illumined by several dipoles from different 
locations with different incident moments, and measured at different points 
in the far or near-fields.  
 
In the first optimization example, we use conjugate gradient method to 
optimize the antenna array location, and the location gradients for each 
element are computed by the analytical gradient method. Then, in order to 
perform the optimization capability, we optimize some shapes of single patch 
antenna and antenna arrays by using nodal point mesh derivation and 
topological gradient method. The optimization work contains: 

 
1. Antenna array location optimization using conjugate gradient and 

analytical gradient method. 

2. Shape Optimization of a single square patch antenna using nodal point 
mesh derivation. 

3. Shape optimization of a single patch antenna. 

4. Shape optimization of two rectangular patch antenna arrays using 
topological gradient. 

5. Shape optimization of two circular patch antenna arrays. 

6. Shape optimization of a single U-shape reflectarray element using 
topological gradient. 

 
We also use multi-frequency and frequency-hopping techniques to 
implement different optimization strategies. In some examples, in order to 
test the robustness and accuracy of the optimization procedure, the 
algorithms are investigated with noise-corrupted data. 
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8.1 Antenna Array Location Optimization Using Conjugate Gradient and 
Analytical Gradient Methods 

In this experiment, we optimize the location of 5*5 antenna arrays, and each 
patch element is defined with a λ/4 side. The original geometry is shown 
below in Figure 8.1. 

 
Figure 8.1: Goal Geometry 

 

For the incident field, we use five electric dipoles with different moments 
defined in the Cartesian coordinates to illuminate the antenna array. 
 

Dipole N# Dipole 
Moment x [m] y [m] z [m] 

1 (0,1,0) 0.1625 0.1625 10 
2 (0,1.732,1) 0.1625 -4.8375 8.66 

3 (0,1,1.732) 0.1625 -8.4975 5 
4 (0,1.732,-1) 0.1625 5.1625 8.66 
5 (0,1,-1.732) 0.1625 8.8225 5 

Table 8.1 Incident dipoles 
 

In order to obtain uniform current densities over all the patches of the planar 
array, the dipoles are located in the far field. This experiment is aimed to 
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show the ability of the algorithm to optimize the location of antenna arrays. 
Meanwhile, we compare the differences between the single-frequency-
single-incident wave and multi-frequency-multi-incident waves. 
 

8.1.1 Illumination of Single-Frequency-Single-Incident Wave 

First, we use five incident dipoles illuminating together, so that we obtain a 
single incident wave. The frequency of the incident is 3 GHz and we use a 
single frequency. 
 
In order to define an initial guess, the patches have been moved away as 
shown in Figure 8.2, the initial guess is represented in red color, and the 
final geometry in blue color. The central element of the array is fixed during 
the optimization procedure. 

 
Figure 8.2: Initial and Final Geometry 

 
The results illustrated in Figure 8.3 show that after 85 iterations, the value of 
the cost functional decreases to around 5.2x10-3. However, from the final 
optimal geometry, the location of the initial guess cannot be fully optimized 
as the goal geometry, especially the element in the right corner is far from 
the goal. 
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Figure 8.3a: Cost Functional vs. iteration number 

 
Figure 8.3b: Cost Functional vs. iteration number after 50 iterations 

 

8.1.2 Illumination of Multi-Frequency-Multi-Incident Wave 

For the second example, we utilize multi-frequency-multi-incident technique, 
and do not change the location and the moment of incident dipoles, but only 
the order, it means that the five incident dipoles illuminate separately, so that 
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we can obtain five different radiated patterns. Meanwhile, in this example, 
we also use five different incident frequencies as shown in Table 8.2 for 
different incident dipoles. 
 

Dipole N# Working Frequency (GHz) 
1 3.0 
2 2.8 
3 2.6 
4 3.2 
5 3.4 

Table 8.2 Working frequencies 
 
From the final geometry given by Figure 8.4, we can find that the final 
geometry is very close to the goal geometry. 

 
Figure 8.4: Initial and Final Geometry 
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Figure 8.5a: Cost Functional vs. iteration number 

 
Figure 8.5b: Cost Functional vs. iteration number (after 20 iterations) 

 
The results of convergence criterion in Figure 8.5 show that the criterion 
converges very fast. At the 32th iteration, the cost functional decreases to 
around 0.2x10-5, which is more than 2500 times smaller than the value of 
cost functional at the 86th iteration using single-frequency-single-incident 
technique. 
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Figure 8.6a: Radiation Pattern 

 
Figure 8.6b: Radiation pattern 

The radiation pattern of the first incident dipole at 3 GHz in Figure 8.6 also 
shows that the scattered fields radiated by the final geometry and the goal 
are very close. 
 
It can be concluded that when we optimize antenna or antenna arrays, multi-
incident-multi-frequency is an important technique for accurate and fast 
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convergence optimization, because it contains more information and location 
sensitivity than a single-incident-single-frequency. 

8.2 Shape Optimization of a Single Square Patch Antenna Using Nodal 
Point Mesh Derivation 

In this study, we optimize a single 10 cm*10 cm square patch shown in 
Figure.8.7 from an initial guess. The shape gradient is computed by using 
nodal point mesh derivation. 

 
Figure 8.7: Goal Geometry 

 

8.2.1 Shape Optimization from an Initial Guess in the Center 

The initial guess is shown in Figure 8.8 with green mesh and the goal with 
blue line. The antenna is illumined with 4 incident dipoles together, and 
optimized using a frequency hopping technique with two frequencies (1.5 
and 3 GHz). With this illumination, the current on the antenna is more 
distributed close to the edge of antenna. 16 measurement points are 
selected to measure the electromagnetic field at the same distance from the 
origin of coordinate. 
 
The results in Figures 8.9, and 8.10 show the performance of the algorithm. 
The optimization finally converges after 18 iteration steps at 3 GHz. 
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Figure 8.8: Initial guess vs. goal 

Dipole N# Dipole 
Moment x [m] y [m] z [m] 

1 (0,1,0) 0.25 0 0.25 

2 (-1,0,0) 0 0.25 0.25 

3 (0,-1,0) -0.25 0 0.25 

4 (1,0,0) 0 -0.25 0.25 
Table 8.3: Incident dipoles 
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Figure 8.9: Shape evolutions using nodal point mesh derivation 
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Figure 8.10: Cost Functional vs. iteration number 

 

8.2.2 Shape Optimization from an Initial Guess in the Corner 

Now, we move the initial guess from the center to the left corner of the goal 
(shown in Figure 8.13). We keep other information equivalently, while we 
change the first frequency to 750 MHz, and use other two frequencies (1.5 
GHz and 3 GHz) with the frequency-hopping technique. 
 
We can see from Figure 8.12 that after 26 iteration steps using frequency 
hopping technique with three frequencies (750 MHz, 1.5 and 3 GHz), the 
initial guess moves toward the center, and we can find the final shape very 
close to the goal geometry. After 15 iterations, the value of cost functional 
decreases to 0.26x10-2.  
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Figure 8.11: Initial Guess vs. Goal 
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Figure 8.12: Shape evolution using nodal point mesh derivation 
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Figure 8.13a: Cost functional vs. iteration 

 

 
Figure 8.13b: Cost functional vs. iteration (from step 15) 

 
The results of convergence criterion in Figure 8.13 show that the criterion 
converges finally. At the 15th iteration, the cost functional decreases to 
0.47x10-2. 
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8.3 Shape Optimization of a Single Patch Antenna 

In this study, we optimize a single patch antenna shown in Figure.8.14. The 
antenna is illuminated by two incident dipoles as shown in Table 8.4, and the 
scatted fields are measured in the far field. The shape gradient is computed 
by using both nodal point mesh derivation and topological gradient method. 

 
Figure 8.14: Goal Geometry 

 

Dipole N# Dipole 
Moment x [m] y [m] z [m] 

1 (0,1,0) 0 0 10 

2 (1,0,0) 0 0 10 
Table 8.4: Incident dipoles 

 

 
Figure 8.15: Initial Guess vs. Goal 
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The initial guess is a circular antenna shown with 12 cm diameter as shown 
with green mesh in Figure 8.15, and the goal is represented by a blue line. 
 

8.3.1 Shape Optimization Using Nodal Point Mesh Derivation  

We first use nodal point mesh derivation to compute the shape gradient. The 
results in Figures 8.16, and 8.17, show the performance of the algorithm for 
optimizing the shape of a single patch antenna of about 12 cm wide starting 
from the initial guess circle to the final result (after 11 iteration steps) using 
frequency hopping (1.5 GHz and 3 GHz). 

 
Figure 8.16: Shape evolution using nodal point mesh derivation 
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Figure 8.17a: Cost functional vs. iteration 

 
Figure 8.17b: Cost functional vs. iteration (from step 3) 

 
The results of convergence criterion in Figure 8.17 show that the criterion 
converges very fast. At the 15th iteration, the cost functional decreases to 
0.39x10-3. At the 7th iteration, the value of cost functional increases as the 
frequency shifts from 1.5 GHz to 3 GHz. 
 
 



Erreur ! Style non défini. 

104 
 

8.3.2 Shape Optimization Using Topological Gradient without Noise 

Now, we change our strategy to use the topological gradient method to 
compute the shape gradient. The results illustrated in Figures 8.18, and 
8.19, show the performance of the algorithm for optimizing the shape of a 
single patch antenna of about 10 cm wide starting from the initial guess 
circle to the final result (after 18 iteration steps) using frequency hopping 
technique with two frequencies (1.5 and 3 GHz). Comparing the results by 
using nodal point mesh derivation, we can obtain almost the same optimal 
geometry.  

 
Figure 8.18: Shape evolution using topological shape gradient 
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Figure 8.19a: Cost functional vs. iteration 

 

 
Figure 8.19b: Cost functional vs. iteration (from step 4) 

 
The results of convergence criterion illustrated in Figure 8.19 show that the 
criterion converges very fast. At the 14th iteration, the cost functional 
decreases to 0.33x10-3. At the 7th iteration, the value of cost functional 
increases as the frequency shifts from 1.5 GHz to 3 GHz. 
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Figure 8.20a: Normalized radiation pattern of E-Plane 

 
Figure 8.20b: Normalized radiation pattern of H-Plane 

 
The radiation pattern of the first incident dipole at 1.5GHz in Figure 8.20 
shows that the scattered fields radiated by the final geometry and goal are 
close. 
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Figure 8.21a: Normalized radiation patter of E-Plane 

 
Figure 8.21b: Normalized radiation pattern of H-Plane 

 
Figure 8.21 shows the scattered fields of the first incident dipole at 3 GHz 
radiated by the initial guess, final and goal geometry. After several iterations, 
the radiation pattern radiated by the goal can be found. 
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8.3.3 Shape Optimization Using Topological Gradient with 20 dB Noise 

For the third example, we keep the same strategy for the optimization 
procedure, and start from the same initial guess, but 20 dB noise is added to 
the radiation of goal for a test of robustness. A frequency-hopping technique 
is used for the optimization procedure at 1.5 GHz and 3 GHz. 

 
Figure 8.22: Shape evolution using topological shape gradient 

 
From the figure 8.22, we can see that after 15 iterations, the patch antenna 
evolves to the final shape, and shows a good match comparing with the goal 
in blue line.  
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Figure 8.23a: Cost functional vs. iteration 

 

 
Figure 8.23b: Cost functional vs. iteration (from step 4) 

 
The results of convergence criterion illustrated in Figure 8.23 show that the 
criterion converges very fast. At the 15th iteration, the cost functional 
decreases to 0.11x10-1. 
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Figure 8.24a: Normalized radiation pattern of E-Plane 

 
Figure 8.24b: Normalized radiation pattern of E-Plane 

 
The radiation pattern of the first incident dipole at 1.5GHz in Figure 8.24 
shows that the scattered fields radiated by the final geometry and goal are 
closed. 
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Figure 8.25a: Normalized radiation pattern of E-Plane 

 
Figure 8.25b: Normalized radiation pattern of E-Plane 

 
Figure 8.25 show the scattered fields of the first incident dipole at 3 GHz 
radiated by the initial guess, final and goal geometry. After several iterations, 
the radiation pattern radiated by the goal can be found finally. However, form 
Figure 8.25a, we can see some difference between the radiation pattern of 
the goal and final geometry.   
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8.3.4 Shape Optimization Using Topological Gradient with 10 dB Noise 

Now, comparing with the last experiment, we keep the same strategy for the 
optimization procedure, and start from the same initial guess, but this time 
we add 10 dB to the radiation of goal for the robustness test. Frequency-
hopping technique is also used for the optimization procedure at 1.5 GHz 
and 3 GHz. 
 

 
Figure 8.26: Shape evolution using topological shape gradient 
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Figure 8.27a: Cost functional vs. iteration 

 

 
Figure 8.27b: Cost functional vs. iteration (from step 4) 

 
The results of convergence criterion shown in Figure 8.27 illustrate that the 
criterion converges at 16th iteration, but the cost functional does not reach to 
a low value, but around 0.119. 
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Figure 8.28a: Normalized radiation pattern of E-Plane 

 
Figure 8.28b: Normalized radiation pattern of H-Plane 

 
The radiation pattern of the first incident dipole at 1.5 GHz illustrated in 
Figure 8.28 shows that the scattered fields radiated by the final geometry 
and goal are close. 
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Figure 8.29a: Normalized radiation pattern of E-Plane 

 
Figure 8.29b: Normalized radiation pattern of H-Plane 

 
Figure 8.29 shows the scattered fields of the first incident dipole at 3 GHz 
radiated by the initial guess, final geometry and goal. After several iterations, 
the radiation pattern radiated by the goal and the final geometry shows some 
similarity, but they are not fully matching. 
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8.4 Shape Optimization of Two Rectangular Patch Antennas Using 
Topological Gradient 

In this study, we optimize two rectangular patch antennas shown in Figure 
8.30. The shape gradient is computed by using topological gradient method. 
The two antennas are illuminated by two incident dipoles working at a single 
frequency 3 GHz as shown in Table 8.4, and the scattered fields are 
measured in the far field.  
 

Dipole N# Dipole 
Moment x [m] y [m] z [m] 

1 (0,1,0) 0 0 10 

2 (1,0,0) 0 0 10 
Table 8.4: Incident dipoles 

 
The initial guess is two circular antennas with 14 cm diameter and 40 cm far 
from each other as shown in Figure 8.31, and the goal is represented by 
blue line. The size of a single rectangular antenna is 5 cm*10 cm.  

 
Figure 8.30: Goal Geometry 

 
Figure 8.31: Initial Guess vs. Goal 
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Figure 8.32: Shape evolution using Topological Gradient 

 
The results illustrated in Figures 8.32 and 8.33 show the performance of the 
algorithm using topological gradient derivation for the optimization. We can 
see that after 46 iteration steps using just one single frequency at 3 GHz, the 
initial guess evolves from two circular antennas toward two rectangular 
antennas, and we can find the final optimized shape is similar to the goal 
geometry. 
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Figure 8.33: Cost functional vs. iteration 

 
The results of convergence criterion illustrated in Figure 8.23 show that the 
criterion converges very fast. At the 46th iteration, the cost functional 
decreases to 0.42x10-2. 
 

 
Figure 8.34a: Normalized radiation pattern of E-Plane 
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Figure 8.34b: Normalized radiation pattern of H-Plane 

 
Figure 8.34 shows the scattered fields of the first incident dipole at 3 GHz 
radiated by the initial guess, final and goal geometry. After several iterations, 
the radiation pattern radiated by the goal can be found. 
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8.5 Shape Optimization of Two Circular Patch Antennas 

In this study, we optimize two circle patch antennas (5 cm radius) shown in 
Figure 8.35. The initial guess starts from a rectangular patch in Figure 8.36 
represented by the green mesh. We first use Frequency-hopping technique 
for the optimization procedure, and we compare the results with the multi-
frequency technique. The two antennas are illuminated by two incident 
dipoles working at different frequencies as shown in Table 8.5, and the 
scatted fields are measured in the far field. 

 
Figure 8.35: Goal Geometry 

 
Figure 8.36: Initial Guess vs. Goal 
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Dipole N# Dipole 
Moment x [m] y [m] z [m] 

1 (1,1,0) 0 0 10 

2 (-1,1,0) 0 0 10 

3 (0,1,0) 0 0 10 
Table 8.5: Incident dipoles 

 

8.5.1 Shape Optimization Using Frequency-Hopping Technique 

a. Optimization Starting from 1 GHz Using Frequency-Hopping 

We first optimize starting from 1 GHz. The figures 8.37 and 8.38 show that 
the two antennas cannot be optimized after 5 iterations as at the 5th iteration, 
the value of cost functional is around 0.73, and greater than the previous 
one. 

 
Figure 8.37: Shape evolution at 1 GHz 
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Figure 8.38: Cost functional vs. iteration 

 

b. Optimization Starting from 500MHz Using Frequency-hopping 

In order to avoid local minima, we decrease the first frequency to 500 MHz. 
From the figure 8.39 and 8.40, we can see that the antenna arrays cannot 
be optimized as the value of the cost functional increases significantly after 4 
iterations, the lowest value of cost functional is around 0.72. 
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Figure 8.39: Shape evolution at 500 MHz 

 

 
Figure 8.40: Cost functional vs. iteration 
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8.5.2 Shape Optimization using Multi-frequency Technique 

Now, we use multi-frequency technique for the optimization strategy. Five 
working frequencies (shown in Table 8.6) and we use the same 3 incident 
dipoles as the previous study for the illumination. 

Frequency # Working frequency (GHz) 
1 1.0 
2 2.0 
3 3.0 
4 4.0 
5 5.0 

Table 8.6: Incident dipoles 
 

a. Optimization with First Coefficients of Level Set 

For the coefficients of the algorithm, the size of the level set pixels is 4 mm, 
the maximum of CFL coefficient α is 0.7, and the maximum number of 
evolutions is 3 at each iteration step. Therefore, the maximum distance for a 
point on the contour can move is 8.4 mm. 
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Figure 8.41: Shape evolution using multi-frequency technique 
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Figure 8.42: Cost functional vs. iteration 

 
We can see from the Figures 8.41 and 8.42 that for these optimization 
coefficients, the criterion cannot converge. After the 8th iteration, the value of 
cost functional increases to higher values around 0.2. 
 

b. Optimization with Second Coefficients of Level Set 

Now, we keep the same coefficient for the strategy for the first 7 iterations. 
However, at the 8th iteration, we change the number of evolutions to 6, and 
the CFL coefficient α to 0.7. It means that the maximum of distance for a 
point on the contour can move is 16.8 mm. We can see the results from 
Figures 8.43 and 8.44 that the criterion converges finally after 15 iterations, 
and at 8th iteration, the antenna shape is splitted. At the 15th iteration, we 
can obtain the optimized shape. 
 
Comparing with the last experiment we have done, the distance we move at 
the 8th iteration is an important factor, which can allows the optimization to 
go over a local minimum. 
 



Erreur ! Style non défini. 

127 
 

 
Figure 8.43: Shape evolution using multi-frequency technique 
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Figure 8.44: Cost functional vs. iteration 

 
The results of convergence criterion illustrated in Figure 8.44 show that the 
criterion converges very fast. At the15th iteration, the cost functional 
decreases to 0.41x10-3. 

 

 
Figure 8.45a: Normalized radiation pattern of E-Plane 
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Figure 8.45b: Normalized radiation pattern of H-Plane 

 
Figure 8.45 shows the scattered fields of the first incident dipole at 3 GHz 
radiated by the initial guess, final geometry and goal. After several iterations, 
the radiation pattern radiated by the goal can be found. 
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8.6 Shape Optimization of a Single U-shape Reflectarray Element Using 
Topological Gradient 

In this study, we optimize a single U-shape reflectarray element shown in 
Figure 8.46 of about 10 cm outer diameter and 6 cm internal diameter. The 
shape gradient is computed by using the topological shape gradient method. 
We use different optimization techniques to implement the optimization 
procedure. The reflectarray element is illuminated by two incident dipoles 
working at different frequencies as shown in Table 8.7, and the scattered 
fields are measured in the far field. 

 
Figure 8.46: Goal 

 

8.6.1 Optimization From an Initial Guess of a Larger Size Element 

We first use the frequency-hopping technique for the optimization strategy. 
For each single frequency, we use 2 incident dipoles to illuminate 
independently. 

 
Figure 8.47: Initial Guess vs. Goal 
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Dipole N# Dipole 
Moment x [m] y [m] z [m] 

1 (1,1,0) 0 0 10 

2 (-1,1,0) 0 0 10 
Table 8.7: Incident dipoles 

 
We start from 3.5 GHz, and obtain an optimal shape at the 3rd iteration, and 
then we increase the frequency to 6 GHz, and finally obtain the result at the 
6th iteration. In Figure 8.48, we can see that the size of the initial guess is 
decreased at each iteration step thanks to the optimization algorithm. The 
convergence criterion illustrated in Figure 8.49 shows that the value of the 
cost functional decreases to about 0.48. 
 

 
Figure 8.48: Shape evolution using frequency-hopping technique 
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Figure 8.49: Cost functional vs. iteration 

 

 
Figure 8.50a: Normalized radiation pattern of E-Plane at 3.5 GHz 
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Figure 8.50b: Normalized radiation pattern of H-Plane at 3.5 GHz 

 

 
Figure 8.51a: Normalized radiation pattern of E-Plane at 6.0 GHz 
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Figure 8.51b: Normalized radiation pattern of H-Plane at 6.0 GHz 

 
Figure 8.50 and 8.51 show the scattered fields of the first incident dipole at 
3.5 GHz and 6.0 GHz radiated by the initial guess, final geometry and goal. 
After several iterations, the radiation pattern radiated by the goal can be 
found finally. 
 

8.6.2 Optimization From an Initial Guess of a Smaller Size Element 

 
Figure 8.52: Initial Guess vs. Goal 
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a. Shape Optimization Using Frequency-Hopping Technique 

Now, we keep the same coefficients of optimization procedure and 
frequency-hopping strategy as for the last experiment to optimize the 
antenna element. The starting frequency is 3.5 GHz. From Figures 8.53 and 
8.54, we can find that the reflectarray element shape cannot be optimized, 
and the criterion cannot converge. At the 7th iteration, the smallest value of 
cost function is about 0.34, and after the value is increasing. It means that 
we need to change the optimization strategy with this initial shape. 

 

 
Figure 8.54: Shape evolution using frequency-hopping technique 
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Figure 8.53: Cost functional vs. iteration 

 

b. Shape Optimization Using Multi-Frequency Technique Without 
Velocity Limitation  

Now, we use a multi-frequency technique for the optimization strategy. 
Three frequencies and four incident dipoles as shown in Table 8.8 and 8.9 
are used for the simulation. 
 

Dipole N# Dipole 
Moment x [m] y [m] z [m] 

1 (1,1,0) 0 0 10 

2 (-1,1,0) 0 0 10 

3 (0,1,0) 0 0 10 

4 (-1,1,0) 0 0 10 
Table 8.8: Incident dipoles 

 
Frequency # Working Frequency (GHz) 

1 3.5 
2 4.8 
3 6.0 

Table 8.9: Working frequencies 
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Figures 8.55 and 8.56 show the velocity obtained by the topological gradient 
at 3.5 GHz, and with the multi-frequency, respectively. Comparing these two 
figures, we can find the difference at the topside part of the antenna element 
(indicated with a red line) that the velocity given by 3.5 GHz is stronger than 
with the multi-frequency, and we hope this velocity can be small enough for 
the optimization. It means that we obtain more information when using multi-
frequency than with a single frequency and the local minimum shown in the 
figure 8.54 can be avoided. 

 
Figure 8.55: Velocity at 3.5 GHz 

 
Figure 8.56: Velocity with multi-frequency 
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However, there are still some technical constraints for this example. The 
results illustrated in Figure 8.57 show that using a multi-frequency 
technique, after 11 iterations, we can obtain a better shape than using a 
frequency-hopping technique. However, from the final shape at the 11th 
iteration, we can see that the final geometry does not totally match with the 
goal, especially for the external part of the element. The Figure 8.56 for the 
convergence criterion also shows that it cannot converge at the final 
iteration. We need to find another solution. 
 

 
Figure 8.57: Shape evolution using multi-frequency technique 
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Figure 8.58: Cost functional vs. iteration 

 

c. Shape Optimization Using Multi-Frequency Technique With Velocity 
Limitation  

Now, we keep the same multi-frequency technique, but we need to find a 
better optimization technique for this problem. The main idea is that for the 
first several iterations, we will only evolve the antenna shape where we have 
the higher gradient values. At each iteration step, we have to find the highest 
gradient values, and then by comparing with this value, we determine the 
values to evolve. From the initial guess to the 2nd iteration, we only consider 
the values that are greater than 60% of the highest gradient, and for 3rd 
iteration to the 5th iteration, 40% of the highest gradient. From 6th iteration, 
we consider the entire shape gradients we have obtained. 
 
From the Figure 8.59, we can find that by controlling the evolving velocity, 
we can achieve smoother and more regular shapes rather than keeping all 
the velocities. At 11th iteration, we can almost obtain an optimal shape 
compared to the goal geometry. 
 
For the convergence criterion shown in Figure 8.60, we can see that the 
optimization procedure finally converges at the 11th iteration. 
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Figure 8.59: Shape evolution using multi-frequency technique 
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Figure 8.60: Cost functional vs. iteration 
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Figure 8.61a: Normalized radiation pattern of E-Plane at 3.5GHz 

 
Figure 8.61b: Normalized radiation pattern of H-Plane at 3.5GHz 

 
Figure 8.61 shows the scattered fields of the first incident dipole at 3.5 GHz 
radiated by the initial guess, final and goal geometry. We can see that after 
several iterations, the radiation pattern radiated by the goal can be found 
finally. 
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GENERAL CONCLUSION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Erreur ! Style non défini. 

144 
 

 
In this work, an inverse scattering method based on an integral formulation of 
the electromagnetic problem has been proposed and developed. The aim of 
this work is to find the optimal shape of planar antennas and planar array 
elements from given or imposed radiation patterns.  
 
As shown with the results in Chapter 8, we have successfully developed an 
efficient and accurate optimization algorithm. The optimization framework can 
be applied to general planar antennas and arrays. 
 
The inversion shape optimization algorithm is based on a level set method. In 
order to obtain the velocity for the level set evolution, we have found the 
corresponding shape gradient (or shape deformation) versus radiation pattern 
modification taking into account the modeling of the antenna (for the finite 
element mesh). In this thesis, some new methods have been proposed and 
developed: 
 
- First, an analytical shape gradient method has been proposed. The main 
idea focuses on the computation of the derivation of the coupling matrix and 
currents versus geometry. With this method, we have directly access to the 
sensitivity of the cost function versus parameters. Meanwhile, based on the 
derivation we have obtained, a conjugate gradient method for the optimizing 
the location of antenna array elements. 
 
- Second, we have also developed a classic adjoint method to compute the 
shape gradient. This method mainly aims for computing the adjoint current on 
the antenna boundary, and can be used especially for 3D object optimization. 
However, the adjoint formula is not valid for 2D shape planar antennas or 
antenna arrays where the outward-pointing normal cannot be continuously 
defined everywhere. In Chapter 7, we have shown some demonstrations of 
constraints of the adjoint formula by comparing it with the discrete and 
analytical method for both 2D and 3D antenna shapes. 
 
- Third, in order to compute the shape gradient efficiently, we have given a 
new sense to the shape gradient versus an edge deformation (or 
transformation) in 3D for metallic layers with limited surfaces. The shape 
gradient is computed by means of a topological deformation method, which is 
solved by adding a small triangular element to an edge on the contour, and 
obtaining a new flux, based on a linear system transformation. We can use 
this derived numerical model to study planar structures with the notion of 
metallic layer with a 2D outward normal direction. Moreover, a finite 
differential method based on nodal point mesh derivation with an infinitesimal 
modification of the triangular elements on the contour along the outward 
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normal direction has been proposed as a technical criterion, and we can still 
use it to optimize the shape of antennas as it is an accurate method.  
 
Finally, a narrow band level set method has also been developed to 
implement the optimization algorithm. By using level set method and combing 
some shape gradient computation methods we discussed above, some 
demonstrations for the shape optimization of planar antennas have been 
carried out. Frequency hopping and multi-frequency techniques have been 
used to different antenna configurations for optimizing the shape within a 
frequency band. Different cases have been studied for investigating the 
performance of the inverse algorithm and optimization procedure. 
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Annex 1 - Spherical Coordinate System 

A Cartesian coordinate system can be defined by an original point O and 
three orthogonal axes (Ox, Oy, Oz) as shown in Figure A1.1. The unit vectors 

of the axes are: e! x ,e! y ,e! z . For example, a point M in the space can be 

represented by the three components of vector r
!
: 

 r
!
x, y, z( ) = xe! x + ye! y + ze! z  (Α1.1) 

And M’ is the projection of M on the plane xOy, and M’’ is the projection of M 
on z axis. 
 

 
Figure A1.1 Cartesian coordinate system 

 
In a spherical coordinates system, a point M in the space is considered as a 
point on a sphere that has a center as the original point O. 
 
We can define also the Cartesian coordinate by using the spherical coordinate 
system: 

 

sin cos
sin sin
cos

x r
y r
z r

θ φ

θ φ

θ

=

=

=

 (Α1.2) 
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Figure A1.2 Spherical coordinate system 

 

For a spherical system, a vector E
!"
M( )  for a point M r

!
( )  is represented by 

three components ( ), ,rE E Eθ φ
, and can be written as: 

 E
!"
M( ) = Ere! r + Eθ e!θ + Eφ e!φ  (Α1.3) 

The transformation from Cartesian coordinate system to spherical coordinate 
system can be written as: 

 

e! r
e!θ
e!φ

!

"

#
#
#
#

$

%

&
&
&
&

=

sinθ cosφ sinθ sinφ cosθ
cosθ cosφ cosθ sinφ −sinθ
−sinφ cosφ 0

!

"

#
#
#
#

$

%

&
&
&
&

e! x
e! y

e! z

!

"

#
#
#
#

$

%

&
&
&
&

 (Α1.4) 

For a scattering problem, let assume the polarization of the incident electric 
field is along y axis, and the antenna is located at the original point O in xOy 

plane. We can define the zOy plane ( 90φ = o) as the E-plane, then we can 

simplify the transformation as:  
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e! r
e!θ
e!φ

!

"

#
#
#
#

$

%

&
&
&
&

=
0 sinθ cosθ
0 cosθ −sinθ
−1 0 0

!

"

#
#
#

$

%

&
&
&

e! x
e! y

e! z

!

"

#
#
#
#

$

%

&
&
&
&

 (Α1.5) 

If the zOx plane ( 0φ = o) is the H-Plane, the transformation system can be 

defined as: 

 

e! r
e!θ
e!φ

!

"

#
#
#
#

$

%

&
&
&
&

=
sinθ 0 cosθ
cosθ 0 −sinθ
0 1 0

!

"

#
#
#

$

%

&
&
&

e! x
e! y

e! z

!

"

#
#
#
#

$

%

&
&
&
&

 (Α1.6) 
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Annex 2 - Calculation of Scattering Field 

Let S be an aperture (in Figure A2.1), illumined by a plane wave such as: 

 

E
!"
i = E
!"
i ⋅
!ex

H
!"!
i = H
!"!
i ⋅
!ey

E
!"
i =η H

!"!
i

η =120π

 (Α2.1) 

We want to calculate the field at point M radiated by S, with r = OM
! "!!!

 the 

distance from the original point to the measured point.

 
Figure A2.1 Radiating aperture 

 

Let assume as shown in Figure A2.2, that we have an electric current J
!"

 

inside a volume V, 
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Figure A2.2 Radiation of a current J inside a volume V 

 
Then, we can write the scattered field at the point M as: 

 

E
!"
=

1
4π jεµ

3+3 jkr ' − k 2r '2( ) ⋅ Ju
!"!
− 1+ jkr ' − k 2r '2( ) ⋅ J

!"
#
$

%
&

V
∫ e− jkr

'

r '3
dV

H
!"!
=
1
4π

1+ jkr '( ) ⋅ J
!"
^ u
"

( ) e
− jkr '

r '2
#

$
(
(

%

&
)
)V

∫ dV  (Α2.2) 

In the far-field region, and by considering: 

 
k 2

ωε
= kη,    J

!"
^ u
"

( ) ^ u
"
= Ju
!"!
− J
!"

 (Α2.3) 

The formula A2.2 can be written as: 

 

E
!"
=
jk
4π

η J
!"
^ u
"

( ) ^ u
!!

"#
$
%&

V
∫ e− jkr

'

r '
dV

H
"!"
=
jk
4π

J
!"
^ u
"

( ) e
− jkr '

r '
dV

V
∫

 (Α2.4) 

We can simplify again the formula A2.4 by choosing an original point O in the 
antenna region as shown in Figure A2.3. 
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Figure A2.3 Modified scattering system 

 
M’ is a point in the volume V. We have the relationship of vector: 

 

r ' = r −u
!
⋅OM '
! "!!!

e− jkr '

r '
! e

− jkr

r
e
jk u
!
⋅OM '
! "!!!!

( )  (Α2.5) 

Then we can write the formula A2.4 as: 

 

E
!"
= 30 jk e

− jkr

r
J
!"
^ u
!

( ) ^ u
!"

#$
%
&'

V
∫ e

jk u
!
⋅OM '
! "!!!!

( )dV

H
!"!
= 30 jk e

− jkr

r

J
!"
^ u
!

( )
η

e
jk u
!
⋅OM '
! "!!!!

( ) dV
V
∫

 (Α2.6) 

In order to obtain a general formula, by considering the magnetic currents, we 
can write the formula as: 

 

E
!"
= 30 jk e

− jkr

r
J
!"
^ u
!

( ) ^ u
!
−
M
! "!
^ u
!

η

"

#
$
$

%

&
'
'V

∫ e
jk u
!
⋅OM '
! "!!!!

( )dV

H
!"!
= 30 jk e

− jkr

r
J
!"
^ u
!

η
+ M
! "!
^ u
!

( ) ^ u
!"

#
$
$

%

&
'
'
e
jk u
!
⋅OM '
! "!!!!

( ) dV
V
∫

 (Α2.7) 
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Figure A2.4 Scattering system and incident fields 

 
By using the Kirchhoff approximation and Huygens principle, we have:  

 
J
!"
= −Hi

! "!
^ n
"

M
! "!
= Ei
!"!
^ n
"  (Α2.8) 

Then we obtain: 

 

J
!"
= −Hiey

!"!
^ n
"
= −Hiex

!"!

M
! "!
=ηHiex

!"!
^ n
"
= −ηHiey

!"!

where   Hi = Hi

! "!
 (Α2.9) 

We can write the scattered electric field as: 

 E
!"
= 30 jk e

− jkr

r
Hi ey

!"!
− ex
!"!
^ u
"

( )
S
∫ e

jk u
!
⋅OM '
! "!!!!

( )dx 'dy '  (Α2.10) 

If we use spherical coordinate system, we have: 

 E
!"
= 30 jk e

− jkr

r
Hi 1+ cosθ( ) cosφeθ

!"!
− sinφeφ

!"!
( ) e

jk u
!
⋅OM '
! "!!!!

( ) dx 'dy '
S
∫  (Α2.11) 
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Now, we consider a scattering system radiated by a rectangular planar 
antenna, as shown in Figure A2.5 

 
Figure A2.5 Scattering system of a rectangular antenna 

 
We can write the kernel expression of formula A2.11 as: 

 

e
jk u
!
⋅OM '
! "!!!!

( ) dx 'dy '
S
∫ = e

jku
!
x 'ex
!"!
+y 'ey
!"!

( ) dx 'dy '
y=−b

y=+b

∫
x=−a

x=+a

∫

                          = e jkx 'sinθ cosφ dx '
x=−a

x=+a

∫ e jky 'sinθ sinφ dx 'dy '
y=−b

y=+b

∫

                          =4ab
sin kasinθ cosφ( )
kasinθ cosφ

⋅
sin kasinθ sinφ( )
kasinθ sinφ

 (Α2.12) 

 

with:   sinθ cosφ = x
r

   sinθ sinφ = y
r

 

 
For a typical circular antenna, we need to consider the scattering system, as 
shown in Figure A2.6 
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Figure A2.6 Scattering system of a circular antenna 

 
Let:  

 
'

'

'cos '
'sin '

M

M

x r
y r

φ

φ

=

=
 (Α2.13) 

Then we have: 

 
u
!
⋅OM '
! "!!!

= sinθ cosφr 'cosφ '+ sinθ sinφr 'sinφ '

           = r 'sinθ cosφ cosφ '+ sinφ sinφ '( )
 (Α2.14) 

The kernel expression of formula A2.11 can be obtained as: 

 
( ) ( )

2
' 'sin cos '

' 0 ' 0

' 'r' '
a

jk u OM jk r

S r

e dS e d dr
π

θ φ φ

φ

φ
⋅ ⋅

= =

=∫ ∫ ∫
v uuuuuv uv

 (Α2.15) 

We can define: 

 ( )
2

cos
0

0

1
2

jzJ z e d
φ

φ φ
π

= ∫  (Α2.16) 

Then we get the final expression: 

 
( ) ( ) ( )' 12

0
0

sin
' 2 'sin ' ' 2

sin

a
jk u OM

S

J ka
e dS J kr r dr a

ka
θ

π θ π
θ

⋅
= =∫ ∫

v uuuuuv

 (Α2.17) 
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Annex 3 - Signal-to-noise ratio for Robustness test 

The signal-to-noise ratio is a measure used in science and engineering that 
compares the level of a desired signal to the level of background noise. It is 
defined as the ratio of signal power to the noise power: 

 1010log s

n

PSNR
P

=  (Α3.1) 

sP and nP  are the power of signal and noise respectively. 

The signal power can be defined as: 

 ( )
2

0

1lim
2

T

s TT
P s t dt

T
+

−→
= ⎡ ⎤⎣ ⎦∫  (Α3.2) 

For a sinusoidal signal we can write it as: 

 ( ) ( )0 0 0cos cos cos sin sins t S t S t S tω φ φ ω φ ω= + = −  (Α3.3) 

We can represent the noise by: 

 
( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( ) ( )
0

0 0

cos

        = cos cos sin sin

n t N t t t

N t t t N t t t

ω φ ϕ

φ ϕ ω φ ϕ ω

= + +

+ − +
 (Α3.4) 

If we write it in an exponential form, we have: 

 
( ) ( )( )

( ) ( )( ) ( ) ( )( )      = cos sin

j t
cN N t e

N t t jN t t

φ ϕ

φ ϕ φ ϕ

+=

+ + +
 (Α3.5) 

   

And we obtain: 

 
( ) [ ] ( ) ( )( )
( ) [ ] ( ) ( )( )

Re cos

Im sin
c

c

r t N N t t

i t N N t t

φ ϕ

φ ϕ

= = +

= = +
 (Α3.6) 

  (A3. 

We have: 
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  (A3. 

 ( ) ( ) ( )0 0cos sinn t r t t i t tω ω= −  (Α3.7) 

Then the power of the noise can be represented by: 

 ( ) ( )
2

21lim
2

T

n TT
P n t dt n t

T
+

−→∞
⎡ ⎤= =⎣ ⎦∫  (Α3.8) 

n(t) is a random signal in time domain, we can also consider it as a density 
function for a fixed time. If the process is ergodic, then the average of the 
signal in time domain will be the statistical average, and the process will be 
stationary.  

 

( ) ( )

( ) ( )( )

( )

2 2

2
0 0

2 2 2 2
0 0 0 0

    = cos sin

    = cos 2 cos sin sin

n

ri

ri

P n t E n t

r t t i t t f drdi

r t ri t t i t f drdi

ω ω

ω ω ω ω

+∞ +∞

−∞ −∞

+∞ +∞

−∞ −∞

⎡ ⎤= = ⎣ ⎦

−

− +

∫ ∫

∫ ∫

 (Α3.9) 

Suppose r and i are independent: 

 ri r if f f= ⋅  (Α3.10) 

Then we have: 

 

2 2 2 2
0 0

0 0

cos sin

    = 2cos sin

n r i

r i

P t r f dr i f di

t t rf dr if di

ω ω

ω ω

+∞ +∞

−∞ −∞

+∞ +∞

−∞ −∞

= +

− ⋅

∫ ∫

∫ ∫
 (Α3.11) 

We suppose: 

 r if f=  (Α3.12) 

Then the formula in A3.11 can be written as: 

 

2

2
0sin 2n r iP r f dr t i f diω

+∞ +∞

−∞ −∞

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
∫ ∫  (Α3.13) 
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The statistical average of ( )n t  is given by: 

 

( ) ( )

( )

0 0

0 0

 = cos sin

               = cos sin

r i

r

E n t r t i t f f drdi

t t rf dr

ω ω
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∫ ∫
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 (Α3.14) 

And we have, 

 ( ) [ ] [ ]0 if  0rE n t E r rf dr E i
+∞

−∞

= = = =⎡ ⎤⎣ ⎦ ∫  (Α3.15) 

Then the variance of the noise can be written as: 

 2 2 2
n r r iP r f dr σ σ

+∞

−∞

= = =∫  (Α3.16) 

The signal-to-noise ratio is given by: 

 

2

10 210log
2
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r

S
SNR

σ
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Abstract 

 

Abstract 

The objective of this thesis work is to find the optimal shape of planar antenna 
elements and arrays from imposed constraints (e.g. desired or imposed 
radiation patterns, gain or directivity) or to reconstruct the shape from 
experimental measurements. 
 
The optimization algorithm is based on the gradient-type method and an 
active contour reconstruction by means of the Level Set method. The forward 
problem is solved using an integral formulation of the EM problem with finite 
element discretization. The shape gradient is computed using two different 
methods: one is finite differential method based on nodal point mesh 
derivation with an infinitesimal modification of the triangular elements on the 
contour along the outward normal direction, another the topological shape 
gradient, which is computed based on a topological deformation on a contour. 
A narrow band level set method has been developed to evolve the contour of 
antennas and arrays using the deformation velocity computed from the shape 
gradient. 
 
Different configurations of antennas and antenna arrays are studied for 
investigating the performance of the optimization algorithm. Frequency 
hopping and multi-frequency techniques have been used for optimizing the 
shape within a frequency band. 
 
Shape optimization for planar antenna miniaturization has a large number of 
applications, particularly, for reflectarrays. 
 
Keywords: 
Shape Optimization 
Method of Moments 
Topological Gradient 
Planar Antennas 
Planar Antenna Arrays 
Level Set Method 



Résumé 

 

Résumé 

L'objectif de cette thèse est de trouver la forme optimale d'une antenne 
planaire ou d'un réseau d'antennes planaires à partir de contraintes imposées 
(diagramme de rayonnement, gain ou directivité) ou de reconstruire la forme à 
partir de mesures expérimentales. 

 
L'algorithme d'optimisation développé est basé sur une méthode de type 
gradient et la reconstruction des contours par une méthode d'ensembles de 
niveaux (Level Sets) ou "contours actifs". Le problème direct est résolu en 
utilisant une formulation intégrale du problème électromagnétique et une 
méthode d'éléments finis pour la discrétisation. Le gradient de forme est 
calculé en utilisant deux méthodes différentes. Tout d'abord, une méthode par 
différences finies basée sur la dérivée à un nœud du maillage, pour une 
modification infinitésimale des éléments triangulaires du contour, suivant la 
direction de la normale extérieure. La deuxième méthode est basée sur le 
gradient topologique pour le calcul de la déformation des contours. Une 
méthode d'ensembles de niveaux avec bande étroite a été développée pour 
faire évoluer le contour des antennes utilisant la vitesse de déformation 
calculée à partir du gradient de forme. 
 
Différentes configurations d'antennes et réseaux d'antennes planaires ont été 
utilisées pour étudier les performances de l'algorithme d'optimisation. Des 
techniques de type saut de fréquence et multifréquence ont été utilisées pour 
optimiser la forme dans une bande de fréquence. 
 
L'optimisation de forme pour la miniaturisation d'antennes planaires concerne 
de nombreuses applications, en particulier, pour les réseaux réflecteurs. 
 
Mots clé: 
Optimisation de forme 
Méthodes des moments 
Gradient topologique 
Antennes planaires 
Réseaux d'antennes planaires 
Méthode d'ensembles de niveaux 
Level Sets 
 


