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Abstract 1

The active object concept is a powerful computational model for defining distrib-

uted and concurrent systems. This model has recently gained prominence, largely

thanks to its simplicity and its abstraction level. Thanks to this characteristics,

the Active object model help the programmer to implement large scale systems,

with an higher degree of parallelism and better performance.

The literature presents many models based on active objects and each one is

characterised by a different level of transparency for the programmer.

In this work we study an Active object model with no explicit future type and

with wait-by-necessity synchronisations, a lightweight technique that synchronises

invocations when the corresponding values are strictly needed. Implicit future type

and wait-by-necessity synchronisations entails the highest level of transparency

that an Active object model can provide. Although high concurrency combined

with a high level of transparency leads to good performances, they also make the

system more prone to problems such as deadlocks.This is the reason that led us

to study deadlock analysis in this active objects model.

The development of our deadlock analysis is divided in two main works, which

are presented in an incremental order of complexity. Each of these works faces

a different difficulty of the proposed active object language. In the first work we

focus on the implicit synchronisation on the availability of some value (where the

producer of the value might be decided at runtime), whereas previous work allowed

only explicit synchronisation on the termination of a well-identified request. This

way we are able to analyse the data-flow synchronisation inherent to languages

that feature wait-by-necessity.

In the second work we present a static analysis technique based on effects and

behavioural types for deriving synchronisation patterns of stateful active objects

and verifying the absence of deadlocks in this context. This is challenging because

active objects use futures to refer to results of pending asynchronous invocations

and because these futures can be stored in object fields, passed as method para-

meters, or returned by invocations. Our effect system traces the access to object

1This work was partly funded by the French Government (National Research Agency, ANR)
through the ”Investments for the Future” Program reference ANR-11-LABX-0031-01.
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fields, thus allowing us to compute behavioural types that express synchronisation

patterns in a precise way.

For both analysis we provide a type-system and a solver inferring the type of

a program so that deadlocks can be identified statically. As a consequence we can

automatically verify the absence of deadlocks in active object based programs with

wait-by-necessity synchronisations and stateful active objects.



v

Résumé 2

Le concept d’objet actif est un modèle de calcul puissant utilisé pour définir des

systèmes distribués et concurrents. Ce modèle a récemment gagné en importance,

en grande partie grâce à sa simplicité et à son niveau d’abstraction. Grâce à ces

caractéristiques, le modèle d’objet actif aide le programmeur à implémenter des

grands systèmes, avec un haut degré de parallélisme et de meilleures performances.

La littérature présente de nombreux modèles basés sur des objets actifs et

chacun est caractérisé par un différent niveau de transparence pour le program-

meur.

Dans ce travail, nous étudions un modèle d’objet actif sans type futur explicite

et avec ’attente par nécessité’, une technique qui déclenche uns synchronisation sur

la valeur retournée par une invocation lorsque celle ci est strictement nécessaires.

Les futurs implicites et l’attente par nécessité impliquent le plus haut niveau de

transparence qu’un modèle d’objet actif peut fournir. Bien que la concurrence

élevée combinée à un haut niveau de transparence conduise à de bonnes perform-

ances, elles rendent le système plus propice à des problèmes comme les deadlocks.

C’est la raison qui nous a conduit à étudier l’analyse de deadlocks dans ce modèle

d’objets actifs.

Le développement de notre analyse de les deadloks est divisé en deux travaux

principaux, qui sont présentés dans un ordre de complexité croissant. Chacun

de ces travaux est confronté à une difficulté différente de la langue d’objet active

proposée.

Dans le premier travail, nous nous concentrons sur la synchronisation implicite

sur la disponibilité d’une certaine valeur (où le producteur de la valeur pourrait être

décidé au moment de l’exécution), alors que les travaux précédents n’autorisaient

que la synchronisation explicite lors de la fin d’une requête bien identifiée. De cette

façon, nous pouvons analyser la synchronisation des flux de données inhérente aux

langues qui permettent une attente par nécessité.

Dans le deuxième travail, nous présentons une technique d’analyse statique

basée sur des effets et des types comportementaux pour dériver des modèles de

2This work was partly funded by the French Government (National Research Agency, ANR)
through the ”Investments for the Future” Program reference ANR-11-LABX-0031-01.
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synchronisation d’objets actifs et confirmant l’absence de deadlock dans ce con-

texte. Cela est difficile parce que les objets actifs utilisent des futurs pour référencer

les résultats d’invocations asynchrones en attente et que ces futurs peuvent être

stockés dans des champs d’objet, passées comme paramètre de méthode ou re-

tournés par des méthodes. Notre système d’effets trace l’accès aux champs d’objet,

ce qui nous permet de calculer des types comportementaux qui expriment des

modèles de synchronisation de manière précise.

Pour les deux analyses, nous fournissons un système de type et un solveur dont

ils déduisent le type du programme afin que les deadlocks puissent être identifiés

de manière statique. En conséquence, nous pouvons vérifier automatiquement

l’absence de blocages dans des programmes basés sur des objets actifs avec des

synchronisations d’attente par nécessité et des objets actifs dotés d’un état in-

terne.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Document contents . . . . . . . . . . . . . . . . . . . . . 6

1.1 Motivation

The evolution of the Internet infrastructure, the development of technologies that

have enormously increased connection bandwidth, and the exponential increase

of the number of mobile devices has opened the doors to new technologies and

paradigms. Nowadays computations are less and less centralised and increasingly

distributed.

Two paradigms are becoming increasingly prominent, having a strong impact

on the industry and on research, they are: cloud computing Mell and Grance

[2011] and Internet of Things paradigm (IoT) Al-Fuqaha et al. [2015]. Nowadays

industry rush to launch new cloud or IoT based products while research lab and

university try to develop technique that could make the implementation of these

complex distributed systems easier and scalable.

1



2 CHAPTER 1. INTRODUCTION

One of the open question that the research tries to solve is to find a computa-

tional model that best suits the requirements of those distributed systems. Thanks

to its features, more and more often, the Active object model has been chosen as

computational model for distributed system.

The Active object model provides an alternative to the conventional concur-

rency model that relies on synchronisation of shared mutable state using locks. The

approach proposed by the Active object model, which is based on non-blocking

interactions via asynchronous method calls, perfectly fits the requests in the pro-

gramming of complex distributed platforms.

For instance, by design IoT systems involves a large amount of devices that

by interacting with each other and executing minimal tasks change their internal

state, within the constraints of cost and power. In the same way, the Active object

model with its lightweight design is able to scale really well without consuming

too many computing resources, by breaking down business logic into minimal tasks

executed by each active objects.

Another element that relates active objects and IoT is that, during the develop-

ment of complex distributed systems, it is almost impossible collect a huge number

of devices to run the system, simulation are used to test these system. In fact,

the Active object model is very suitable to develop simulation of huge distributed

systems thanks to the fact that each active object has the possibility to create new

active objects with a programmable supervision strategies. Spawning new active

object makes this model also very suitable for simulating device managers and

hierarchical groups of devices.

Additionally, the features provided by the Active object model make it a good

choice also for cloud applications. The property of scalability guaranteed by the

Active object model is precisely one of the main reason that has prompted Mi-

crosoft to base its framework Orleans on it. In fact, as stated by Microsoft, Orleans

has as main goal the building of distributed and high-scale computing applications,

without the need to learn and apply complex concurrency or other scaling patterns.

There are also other many reasons that make the Active object model suitable

for implementing complex distributed system, such as the loose-coupling and the

strict isolation of the active objects, stemming from the fact that each task ex-

ecuted by an active object can only modify the state of the active object that is
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running it.

Though simplifying the development of complex distributed system is a notable

problem, verifying that these systems do not present well-known concurrency bugs

is also very important. Indeed problems such as deadlocks, race conditions, and

data races are not rare in distributed programs.

The Active object model allows formalisation and verification thanks to the

fact that the communication pattern is well-defined as well as the accesses to

objects and variables. The characteristics of the Active object model facilitates

the development of tools for static analysis and validation of programs, that can

be used by programmers to avoid and detect concurrency bugs.

The possibility to develop efficient analysis with the other features already

mentioned before, brought the Active object model to be used in some important

europeans project, such as the Envisage1 project, in the area of cloud computing.

For all these reasons, the active object approach can be considered a very good

model to develop complex distributed systems due to the the loose-coupling, the

strict isolation, the absence of shared memory, and the liability to formalisation

and verification.

Therefore a lot of different models and languages based on active objects have

been developed during the years. These models and languages generally differ in

how futures (special objects returned by an asynchronous invocations, which are

used to handle synchronisations) are treated and how synchronisation patterns can

be built.

Another important aspect that differentiates these models is how much they

can hide to the programmer all the aspects that concern concurrency and distri-

bution. The transparency plays an important rules in the definition of an Active

object model, especially because the active objects want to be a well-integrated

abstraction for concurrency and distribution that leaves the programmers focused

on the functional requirements. However, the majority of the Active object models

provide explicit future definition and special operations to handle synchronisations,

which allows the programmer to check whether the method has finished and at the

same time retrieves the method result. The information provided by the program-

mers facilitate the development of verification tools, that can also demonstrate a

1EU project FP7-ICT-610582 ENVISAGE: Engineering Virtualized Services.
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good level of accuracy in the analysis of synchronisation patterns. However, with

this approach, programmers must know how to deal with synchronisations, and

may be tempted to add too much synchronisation points to simplify the reasoning

on the program.

1.2 Objectives

We have seen that the development of good verification tools for the analysis of

synchronisation patterns is important as much as the transparency of the model,

especially because in distributed systems problems like deadlocks, data races, and

race condition represent insidious and recurring threats.

With this thesis we want to help the programmers that use Active object model

to implement distributed systems, by providing a software analysis technique that

is able analyse synchronisation patterns in order to detect the presence of dead-

locks and to analyse effects. Furthermore, wanting to help more the programmer,

with our analysis we want to target an Active object model with a very high

level of transparency. The active model we want to target is a model in which

futures are not explicitly identified, then programmers do not have to make dis-

tinction between values and future, and where also synchronisations are implicit

and performed only on the availability of the result of a method invocation.

Many different static and dynamic analysis techniques have been used to ana-

lyse deadlocks and more generally synchronisation patterns, such as: abstract

interpretation, model checking, symbolic execution, data-flow analysis. Unfortu-

nately, as we will see in Section 2.8, most of these technique lack in the analysis

of deadlock for systems with mutual recursion and dynamic resource creation.

Moreover, a strong commitment from the programmer is required to annotate

programs in order to process those analysis.

In this thesis we also want to provide an analysis that can to be performed

with very little human interaction, or better in a fully automatic way, which does

not have impact on the performance of the system, and can easily scale.

Another important feature that a program analysis should have is the possibil-

ity to be easily extended, improved, and even adapted to analyse different models.

Io order to provide a good adaptability and maintainability of the analysis, we want
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to develop an approach that is modular and that also allows several techniques to

be combined.

Finally, by taking into account all the difficulties that we can face during the

development of such analysis, we† close the thesis with a reflection on the essential

features and the best synchronisation strategies that an Active object model should

have, in order to identify the good mix between transparency and verification

aspects that an active object should have.

1.3 Contributions

The global contribution of this thesis is provide a static analysis technique for

the verification of the absence of deadlocks and an analysis of effects in active

object programs with transparent futures. The development of this static analysis

technique gives us also the possibility to better understand how different synchron-

isation approaches can impact the static verification. The main contribution of

this thesis can be summarised in three main points described below. More details

on the content of the chapters are available in Section 1.4.

Deadlock analysis technique for Active object model. The first contribu-

tion propose a static analysis technique based on behavioural types in which

we removed the possibility of having stateful active object, in order to focus

on how to handle the two main characteristics of the model: the absence of

explicit future types and implicit synchronisations. As we will see in more de-

tails in Chapter 4, the combination of these two characteristics of the model

can bring to the necessity of producing a set of dependencies between active

objects that can be unbounded in case of recursive methods. We provide:

- a behavioural type system that associates behavioural types to pro-

gram methods;

- a behavioural type analysis that is able to translate behavioural

types into a potential unbounded graph of ”waiting for” dependencies;

- an adaptation of the analysis of circularities proposed by Kobay-

ashi and Laneve [2017], that, taking as input the behavioural type sys-
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tem and the behavioural type analysis, is able to detect deadlocks;

- the proof of the correctness of the deadlock analysis proposed.

Effect analysis for active-object programs. The second main contribution of

this thesis is an effect analysis technique based on behavioural type systems

that is able to detect the presence of race conditions that can introduce

nondeterminism in the execution of an active-object program. Also in this

case the proof of the correctness of the effect system has been provided.

Deadlock analysis technique handling stateful active object The third main

contribution of this thesis is the extension of the static analysis technique

proposed in Chapter 4, which takes into account the information provided

by the effect analysis and is able to detect deadlocks in an active-object

program with stateful active objects. In this contribution we provided: a

behavioural type system, a behavioural type analysis, adaptation

of the analysis of circularities, and the proofs of the correctness of

the deadlock analysis proposed.

1.4 Document contents

The presented thesis is structured in five chapters summarised below.

Chapter 2 introduces the context in which the thesis. It is structured in two

parts: the first one focus on the Active object model, while the second part focus

on program analysis. In the first sections of this chapter we present an overview

of the main aspects of the Active object model, a detailed classification of the

active object language, and a presentation of the most important active object

frameworks. The part related to the Active object model ends with a section

dedicated to the use of futures in the Active object model that shows how futures

are defined and the approach used to synchronise of them. The second part of this

chapter presents the problem that comes out implementing a distributed system

and describes the principle program analysis techniques used to detect or face

these problems. The chapter ends with the definition of the problems tackled and

the objectives of this thesis and a whole section which describes related works.
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Chapter 3 present ground-ASP (gASP), the language analysed in this thesis

through a brief and informal introduction of the characteristics of the language,

and then with a section that formalise the semantics of the language and in which

will be stated a definition of deadlock for gASP. The explanation of all the key

points in this chapter are correlated by simple example that want to guide the

reader in the comprehension.

Chapter 4 introduces the first contribution of this thesis [Giachino et al.,

2016]. In this chapter we present a deadlock detection technique for gASP pro-

grams. The technique proposed faces the problems that arise from analysing an

Active object model language with implicit future types and wait-by-necessity

synchronisation. The deadlock analysis proposed is based on abstract descriptions

called behavioural types, which are associated to programs by a type system. The

purpose of the type system is to collect dependencies between actors and between

futures and actors. The technique also provides a solver that, taking in input

the behavioural type of a gASP program, is able to identify circular dependencies

between active objects that indicate the possible presence of deadlocks. In this

chapter the proof of the correctness of the analysis proposed is also provided.

Chapter 5 introduces the second contribution of this thesis [Henrio et al.,

2017]. This chapter extends the analysis presented in the previous one to handle

stateful active object. The presence of stateful active object requires us to analyse

synchronisation patterns where the synchronisation of a method can occur in a

different context from whence the method has been invoked. For that purpose the

type system has been extended with the analysis of method effects. Our effect

system traces the access to object fields (e.g. read and write access), and the

storage of futures inside those fields, allowing us to compute behavioural types

that express synchronisation patterns in a precise way. As in the previous chapter

the behavioural types are thereafter analysed by a solver, also extended to treat

stateful active object, which discovers potential deadlocks.

Chapter 6 closes the thesis summarising the main points of our work and

presenting how restrictions can be removed, the possible extensions of this work,

and how it can be applied for different purposes.
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This chapter presents the technical background this work is based on. We

start by an overview of the Active object model, continuing then with an invest-

igation of the different existing Active object models and languages. During this

investigation are pointed out their different features and semantic aspects. After a

short summary of the most relevant problems related with the implementation of

concurrent and distributed programs, we will move to an overview of the program

analysis technique used to prevent or detect the discussed problems. Then we will

end the chapter with a brief explanation of our technique and an investigation of

similar works.

2.1 Active Object Programming Model

The active object programming model integrates the basic Actor model [Hewitt

et al., 1973] [Agha, 1986] with object oriented concepts, whereas the keyword

active object was introduced by Lavender and Schmidt [1996], whereas the idea

was already introduced in ABCL [Yonezawa et al., 1986].

The actor model is based on concurrent entities (actors) which interact only

via asynchronous message passing and react to message reception. An actor is

composed by a single thread that processes its messages sequentially and a mailbox

in which the messages are collected, although the message delivery is guaranteed,

messages can arrive in any order. The state of an actor can be affected only by

itself during the processing of a message, which implies that actors can not have

side effects on other actors’ state. We call this property state encapsulation. State

encapsulation combined with the absence of multi-threading ensures the absence

of data races.

The term data race indicates a critical race condition caused by concurrent

reads and writes of a shared memory location that leads to an undefined behaviour.

Though Actor model prevents any form of direct data-race, race-condition still

exists, typically upon message handling or communication.

Actors execute concurrently and communicate asynchronously without transfer

of control, which implies that when a message is sent to an actor the sender
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continues its execution concurrently, without knowing when the message will be

processed. Whenever a computation depends on the result of a message, the

programmer must specify a callback mechanism where the invoker sends its identity

and the invoked actor sends a result message to the invoker.

All the features mentioned above bring us to the consideration that Actor model

enforces decoupling which makes this model one of the best choices for parallel and

distributed programming. However, callbacks introduce an inversion of control

that makes the reasoning on the program difficult. The results of invocations are

received at a later stage, when the actor might be in a different state, which makes

harder to assess program correctness.

The problem of inversion of control that the callback mechanism introduces is

not present in the Active Objects model. This model combines the Actor model

with the object-oriented paradigm unifying the notion of Actor and object by

giving to each actor an object type and replacing message passing by asynchronous

method invocations. Contrarily to the messages of actors, the method invocations

of active objects return a result. For each asynchronous method invocation a

place-holder is created, in order to store the incoming result, permitting then

at the invoker to continue its execution. This place-holder is named future. A

complete disquisition about future will be presented in Section 2.3.

As we have seen for actors, active objects have a thread associated to them as

well. An activity contains one active object, several encapsulated objects named

passive objects and a queue that collets all the requests that are going to be served

by the activity.

A method invocation on an active object is named request. It is created and

added to the request queue of the callee, meanwhile the caller continues its ex-

ecution. The majority of the active object languages implements asynchronous

communication between active objects with a First In First Out (FIFO) point-

to-point strategy. Other languages enforce the causal order of the messages to

preserve the semantics of two sequential method calls. Although these policies

could make this models less general, they ensure more determinism yielding active

objects to be less prone to race conditions than actors.

There is not a strict separation between Actors and Active objects, they share

the same objectives and mostly the same structure, as discussed by Boer et al.
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[2017]. For instance, Scala and Akka mix the characteristics of the two models:

Scala use method invocations to send messages and Akka allows actors to syn-

chronise on futures.

We can conclude saying that Actors and Active objects enforce decoupling

stemming from the fact that each processes running on an activity can have only

direct access to the object that are part of that activity. Strict isolation of concur-

rent entities makes them desirable to implement distributed systems, that is why

Active objects have been playing a significant role in service-oriented programming

and mobile computing [Crespo et al., 2013] [Göransson, 2014].

2.2 Classification of Active Object Languages

Numerous adaptations of the original Active object model have been proposed

in the literature. The difference between these models is mostly based on: how

this models associate objects to threads; how requests are served; and, as will be

presented later, how futures are defined and the approach used to synchronise on

them.

In this section, we present a classification of the principal models and languages

derived from Active objects, which is based on the first two points.

2.2.1 Objects in Active objects models

One of the principal characteristics that differentiates the various Active object

models is the relation between the concept of active object and the classical concept

of object in object oriented programming. The existing active object languages

can be divided in three different categories.

Uniform Object Model

In this model all objects are active objects which communicate through requests.

The fact that there are only active objects implies that all the objects have their

own execution thread and request queue. The characteristics of the uniform object

model makes it very convenient when the aims of the model are a good formal-

isation and an easier reasoning. That is the main reason that led Creol [Johnsen
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et al., 2003, 2006] [Johnsen and Owe, 2007] to use this model, allowing it to have

a compositional proof theory [de Boer et al., 2007].

On the contrary the uniform object model lacks in scalability when put into

practice, the performance of the application becomes quickly poor when executed

on commodity computers.

One of the ways to mitigate the lack of scalability is to implement the model

by associating each object to a virtual thread. Virtual threads are threads that

can be manipulated at the application level, but that might not exist at the op-

erating system level. Although this solution could solve the lack in scalability,

virtual thread are sometimes difficult to implement and the management of all the

additional data structure attached to each active object can also be problematic.

Despite the scalability issue the uniform object model still remains one of the best

model if the target is the facility to formalise and reason on it.

Non Uniform Object Model

In the non uniform object model, objects may be either active or passive, and

are organised into activity. Activities contain one active object and several passive

objects. Passive objects are part of the state of the active object, which is accessible

only locally and cannot be the target by asynchronous method invocations.

The calculus ASP, introduced by Caromel et al. [2004], is an example of a non

uniform object model, which limits the accessibility of a passive object to a single

active object preventing concurrent state modification. This model, compared

to the previous one, decreases the number of active objects, solving the lack of

scalability (in terms of the number of threads) of the uniform object model. As we

could expect this feature of the language makes the model become more complex

than the previous one, making this model tougher to formalise and reason about.

Object Group Model

The object group model, where ABS [Johnsen et al., 2011b] is one of the main

representatives, is a model inspired from the notion of group membership [Birman

and Joseph, 1987] in which groups are assigned only once. Activities, which in

ABS are called Concurrent Object Groups (COGs), have the same structure of
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the non uniform object model, but in this case methods can be directly invoked on

the object of the group from outside the activity. As we can expect this model is

in the middle between the previous two. Conserving the facility to be formalised,

object group model is able to reach a better scalability than the uniform model,

but not as high as the scalability of the non uniform object model because of the

structure necessary to make all objects accessible (this is only true in a distributed

setting).

2.2.2 Scheduling Models

After the analysis of how Active-object model deals with objects, in this subsection

we want to show how these models treat another important concept: the threads.

More precisely we are going to present a small classification about how requests

interleaving is handled by the scheduler in the various Active object models.

Mono-threaded Scheduling

The mono-threaded scheduling is the approach proposed in the original Actor and

Active object models, and in ASP. It specifies that an activity contains only a

single thread that serves all the request without possible interleaving. This model

does not present any feature that can stop the execution of a method, before

its completion. The absence of interleaving gives to this model two fundamental

properties: the absence of data races (race condition can still be possible); and

local determinism. It should be noted that only local determinism is guaranteed.

The order in which the requests are served is still unpredictable, then the global

behaviour of a system is still nondeterministic. The absence of interleaving makes

the model more prone to deadlocks. However, local determinism is a good property

in order to develop a more precise static analysis technique, and it was one of key

reasons that leads us to face the problem of deadlock detection of the ASP model.

Cooperative Scheduling

The cooperative scheduling model, introduced by Creol, takes its inspiration from

coroutines, which have been presented the first time by Conway [1963] and then
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implemented in Simula 67 [Dahl et al., 1968]. As coroutines can have multiple entry

points for suspending and resuming execution. Cooperative scheduling, contrarily

to mono-threaded scheduling, is based on the idea that a request should not lock

the thread of an active object until its termination, leaving the possibility to

suspend and resume request execution.

Therefore cooperative scheduling represents a solution to the need for a con-

trolled preemption of requests, providing the possibility to release the thread of

an active object during the execution of a method invocation. With this approach

interleaving between request executions can be handled implicitly or explicitly.

Languages and models like Creol and AmbientTalk, interrupt the execution of the

current thread while waiting for the result of another method invocation.

Other models like ABS, Encore, and JCobox provide explicit mechanism to

release a running request before completion, in order to let another request pro-

gress. The release of a request may be done either based on specific conditions

or in an unconditional way. Though requests might interleave and activities have

only a single thread running at a time, data races are avoided. Letting the pro-

grammer place release points, if associated with a high expertise can decrease

the possibility of generating deadlocks, otherwise it can lead to a system imple-

mentation with unpredictable behaviours caused by the large number of data race

conditions. This depends on the fact that, as we have said for mono-threaded

scheduling, the interleaving of request execution has impact on the determinism

of the system behaviour. Cooperative scheduling does not guarantee neither local

nor global determinism, making program analysis tougher and less precise.

Multi-thread Scheduling

Multi-threaded scheduling model supports the parallel execution of several threads

inside an active object. This approach can be divided in two categories: single

request parallelism and multi request execution. Languages as Encore belong to

the first category, where data-level parallelism is allowed inside a request. Requests

may not execute in parallel, but a single request processing can be parallelised and

splitted in several threads. The second category, which includes programming

languages like MultiASP [Henrio and Kammüller, 2015], allows the contemporary
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execution of multiple requests.

Unlike the previous two scheduling models, in multi-threaded scheduling data

races can occur if the requests manipulate concurrently the same active object field.

The first category leads to data races only within a single request, the second one

allows data races only within a single activity, because activities are still isolated

from each other.

2.3 Futures in Active object model

Describing Active objects is not possible without mentioning the relevant role

played by futures. How futures are defined and the approach used to synchronise

on them has a significant impact on the features of the model. In the following we

discuss the concept of future and how it has evolved during the years; the role of

futures in Active object models and how the various models differ in the accessing

of future and synchronisation patterns.

Future concept

In programming languages, a future is an entity representing the result of a parallel

computation. A future is thus a place-holder for a value being computed, and we

generally say that a future is resolved when the associated value is computed. In

some languages, a distinction is made between the future resolution and its update,

i.e. the replacement of a reference to a future by the computed value. A future

is a programming abstraction that has been introduced by Baker Jr. and Hewitt

[1977]. It has then been used in programming language like MultiLisp [Halstead,

1985]. A future is not only a place-holder, but also it provides naturally some

form of synchronisation that allows some instructions to be executed when a given

result is computed. The synchronisation mechanism provided by futures is closely

related with the flow of data in the programs.

In MultiLisp, the future construct creates a thread and returns a future. The

created future can be manipulated by operations like assignment, which do not

need a real value, whereas the program would automatically block when trying to

use a future for an operation that would require the future value (e.g. an arithmetic
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expression). In MultiLisp, futures are implicit in the sense that they do not have a

specific type and that there is no specific instruction for accessing a future, however

they are created explicitely. The program only blocks when the value computed by

another thread is necessary. Typed futures appeared with ABCL/f [Taura et al.,

1994] in order to represent the result of asynchronous method invocations, i.e.

methods invocations that are performed in parallel with the code that triggered

the method.

To our knowledge, the first work on formalisation by semantic rules of Futures

was presented by Flanagan and Felleisen [1999, 1995] and was intended at program

optimisation. This work focuses on the futures of MultiLisp, which are explicitly

created. The authors “compile” a program with futures into a low-level program

that does explicit touch operations for resolving the future, and then optimise the

number of necessary touch operations.

In a similar vein, λ(fut) is a concurrent lambda calculus with futures with cells

and handles. Niehren, Schwinghammer, and Smolka [2006] defined a semantics for

this calculus, and two type systems. Futures in λ(fut) are explicitly created, simil-

arly to Multilisp. Alice ML, developed by Niehren et al. [2007], can be considered

as an implementation of λ(fut).

Futures for actors and active objects

ABCL/f paved the way for the appearance of active object languages like Eiffel//,

which then inspired ProActive, and in parallel, Creol.

ProActive is a Java library; in ProActive [Caromel et al., 2006] futures are

implicit like in MultiLisp, in the Java library they are implemented with proxies

that hide the future and provide an object interface similar to a standard object

except that any access requiring the object’s value (e.g. a method invocation)

may trigger a blocking synchronisation. The ASP calculus [Caromel et al., 2004]

formalises the Java library, and in particular allowed the proof of results of partial

confluence.

Creol is an active object language with a non-blocking wait on future: the

only way to access a future is the await statement that enables cooperative multi-

threading based on future availability: the execution of the current method is
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interrupted when reaching the await statement, and only continued when the

future is resolved. After that the current method has been unscheduled other

request can be served. The await statement creates interleaving between requests

that avoids blocking the execute of the current actor.

de Boer, Clarke, and Johnsen [2007] provided the first richer version of future

manipulation through cooperative scheduling and a compositional proof theory

for the language. The future manipulation primitives of this language will be

then used, almost unchanged, in JCobox [Schäfer and Poetzsch-Heffter, 2010],

ABS [Johnsen et al., 2011a], and Encore [Brandauer et al., 2015] three more recent

active object languages. In those different works, futures are now explicitly typed

with a parametric type of the form fut<T> and they can be accessed in various

ways, which will be discussed below.

At the same time, AmbientTalk was developed by Dedecker et al. [2006]. It

features a quite different semantics for future access. AmbientTalk is based on the

E Programming Language [Miller et al., 2005] which implements a communicating

event-loop actor model. Futures in AmbientTalk are fully asynchronous: calls

on futures trigger an asynchronous invocation that will be executed when the

future is available. A special construct when-becomes-catch is used to define the

continuations to be executed when the future is resolved.

In a more industrial settings, futures were introduced in Java in 2004 and used

in one of the standard library for concurrent programming. A parametric type is

used for future variables which are explicitly retrieved by a get primitive [Goetz

et al., 2006]. Somehow, these simple futures are explicitly created and have a lock-

ing access. Akka [Haller and Odersky, 2009, Wyatt, 2013] is a scalable library for

implementing actors on top of Java and Scala. In Akka, futures are massively used,

either in actor messages that return a value or systematically in the messages of the

typed actors1. Akka also use a parametric type for representing futures. Futures

can also be created explicitly, a bit similarly to the MultiLisp future construct that

creates a new thread.

In the last year also Microsoft has appeared on the scene of active object

with Orleans [Bykov et al., 2011, Bernstein and Bykov, 2016]. Orleans is an actor

framework developed at Microsoft research and used in several Microsoft products,

1Akka’s typed actors are some kind of active objects.
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including online games relying on a cloud infrastructure. Its strength is the runtime

support for creation, execution, and state management of actors. Orleans relies

on a non-uniform Active object model with copies of transmitted passive objects,

like ASP. The semantics of futures is based on continuations and relies on an await

statement similar to that of ABS and Encore, however, there is no primitive for

cooperative scheduling. Consequently, the programmer has to take care of possible

modifications of the object state between the await and the future access. This

semantics for future access is similar to the way futures are handled in general in

Akka.

The different forms of future access

Originally, futures were designed as synchronisation entities, the first way to use

futures is to block a thread trying to use a future. When future are created

transparently for the programmer and the synchronisation occurs only when the

future value is strictly needed, this is called wait-by-necessity. In this setting

futures can be transmitted between entities/functions without synchronisation.

Futures that can be manipulated as any standard object of the languages are

sometimes called first-class futures. In MultiLisp and ASP, future synchronisation

is transparent and automatic.

Other languages provide future manipulation primitives, starting from touch/peek

in ABCL/f, the advent of typed futures allowed the definition of richer and better

checked future manipulation libraries.

In some languages like Creol or AmbientTalk, futures can only be accessed

asynchronously, i.e. the constructs for manipulating a future only allows the pro-

grammer to register some piece of code that will be executed when the future is

resolved. In Creol, the principle is to interrupt the execution of the current thread

while waiting for the future. In AmbientTalk, such asynchronous continuation can

also be expressed in-line but additionally future access can trigger an asynchronous

method invocation that will be scheduled asynchronously after the current method

is finished.

More recently, languages feature at the same time different future access prim-

itives. JCobox, Encore, and ABS allows the programmer to choose between a
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cooperative scheduling access using await like in Creol, or a strict synchronisation

preventing thread interleaving, using a get primitive. Interestingly, Encore also

provides a way to trigger asynchronous method invocation on future resolution

called future chaining, similarly to AmbientTalk.

Akka has a distinguished policy concerning future access. While blocking future

access is possible in Akka (using Await.result or Await.ready, not to be confused

with the await of ABS!), Akka advocates not to use blocking access. Instead,

asynchronous future accesses should be preferred according to the documentation,

like in AmbientTalk, by triggering a method invocation upon future availability.

Akka future manipulation comes with several advance features such as ordering

of asynchronous future accesses, failure handling (a future can be determined as a

success or a failure, i.e. an exception), response timeout, etc.

Complex synchronisation patterns with futures

It is worth mentioning that futures are also used to implement some more com-

plex synchronisation patterns. For example, Encore can use futures to coordinate

parallel computations [Fernandez-Reyes et al., 2016] featuring operators to gather

futures or perform computation pipelining. In ASP and ProActive, group of fu-

tures can be created to represent results of group communications enabling SPMD

computation with active objects [Baduel et al., 2005]. Akka also provides methods

for pipelining, iterating, and folding several future computations.

2.4 Active object languages and frameworks

In the following section are presented some of the most popular active object pro-

gramming languages. For each of them we show the main features, the ecosystem

(i.e., related tools or backends), and the reasons why they have become so relevant.

2.4.1 ABS

The Abstract Behavioral Specification language (ABS), introduced by Johnsen

et al. [2011b], is an object-oriented modelling language based on active objects
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that has been created with the purpose of modelling and verifying distributed ap-

plications. ABS is inspired by Creol and JCobox from where it took some of its

main features. The object group model of ABS, which derives from JCobox, is

based on the notion of Concurrent Object Group (cog). The objects of an ap-

plication are allocated into several cogs. A cog is composed by a request queue

and a set of threads. These threads have been created as a result of asynchronous

method calls to any of the objects that the cog owns. In ABS both asynchronous

method calls and futures are explicit. Futures are explicitly typed with a paramet-

ric type of the form Fut<T>. Despite the contemporary presence of more than one

thread in a single cog, only one thread is executing (active) at a time. ABS also

provide a cooperative scheduling like Creol and JCobox. ABS features an await

language construct, that releases the thread if the specified future is unresolved

or a defined condition does not hold and a get construct, that blocks the thread

execution until the specified future is resolved, but the thread is still held by the

process. There is also the construct suspend that unconditionally unschedules the

thread.

Since ABS main purpose is the verification of distributed applications it is

accompanied by a significant number of verification tools2. Below are presented

the most relevant tool divided by the analysed problem:

Deadlock analysis: two tools are available to statically study deadlock freedom

of ABS program: DSA and SACO. DSA is a deadlock analyser, designed

by Giachino et al. [2015], which is based on two modules: an behavioural

inference system and an algorithm capable to identify circularities in an un-

bounded dependency graph. SACO, introduced by Milanova et al. [2005],

performs a points-to-point analysis which identifies the set of objects and

tasks created along any execution and construct a dependency graph. A

precise may-happen-in-parallel (MHP) has been presented by Albert et al.

[2012], and is also used to reduce the number of false positive in the identi-

fication of deadlocks.

Resource analysis: two other tools are available for resource analysis of ABS

programs. SRA computes upper bounds of virtual machine usages in a dia-

2ABS related tools can be found at: http://abs-models.org/

http://abs-models.org/
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lect of ABS, called vml, with explicit acquire and release operations of virtual

machines. This tool is based on a type system associating programs with

behavioural types that record relevant information for resource usage (cre-

ations, releases, and concurrent operations) and a translation function that

takes behavioural types and return cost equations. It is integrated with the

solver CoFloCo that, given the cost equations, produces the result.

The second tool, SACO, as in the case of deadlock, performs a points-to and

a may-happen-in-parallel analysis to compute an upper bounds of virtual

machine usages in an ABS program. In this approach, computer resources are

abstracted away through a model with quantifiable measures. This analysis

has also been generalised for concurrent object-based programs [Albert et al.,

2014].

Program verifier: KeY-ABS [Din et al., 2015a,b], based on the KeY reasoning

framework Beckert et al. [2007], allows the specification and verification of

general, user-defined properties on ABS programs.

ABS backends for Java, Haskell [Bezirgiannis and Boer, 2016], and ProActive

are available. To improve the performance of the previous Java backend based

on Java 6 a new backend based on Java 8 [Serbanescu et al., 2016] is currently

under development. The implementation of this new backend has to face a relevant

problem: in fact, unlike Haskel, the JVM 8 does not support thread continuation,

then it is not able to fully preserve the semantic of ABS. There is also a ProActive

backend for ABS that specially targets distributed High Performance Computing

(HPC). This backend is fully implemented and, moreover, the correctness of the

translation is formally proven [Boer et al., 2017].

2.4.2 ASP and ProActive

ASP [Caromel et al., 2004] is a programming language based on the Active ob-

ject model. ASP has proven properties of determinism, and particularly fits the

formalisation of object mobility, groups, and componentised objects [Caromel and

Henrio, 2005]. ASP follows a non uniform Active object model with high trans-

parency: active and passive objects are almost always manipulated in the program
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through the same syntactic constructs. Contrarily to Creol, JCobox, and ABS,

ASP does not provide a cooperative scheduling model. In ASP once a request

starts to be executed, it runs up to completion without ever releasing the thread.

Unlike ABS, in ASP future are not explicitly typed, being therefore completely

transparent to the programmer. In practice, futures are dynamically created upon

asynchronous remote method calls.

Synchronisation is also handled automatically. ASP features implicit synchron-

isation of futures (called wait-by-necessity). With wait-by-necessity the program

execution is only blocked when a value to be returned by a method is needed to

evaluate a term. ASP has first class futures, which means that futures can be

sent as arguments of method invocations, returned by methods, or stored in ob-

ject fields without being synchronised. Indeed, as futures are transparent, they

are also transparently passed between activities. When the future is resolved, its

value is automatically updated for all activities it has been passed to. Several fu-

ture update strategies have been explored in ProActive for this purpose by Henrio,

Khan, Ranaldo, and Zimeo [2011].

ProActive [Baduel et al., 2006] is the implementation of ASP in Java. The Act-

ive object model [Lavender and Schmidt, 1996] and the distributed object model of

Java (Java Remote Method Invocation (RMI)) [Wollrath et al., 1996] were released

the same year. ProActive has combined those two models and has implemented

the semantics of ASP in a Java library that offers full support for distributed

execution. As the Active object model of ASP is transparent, ProActive active

objects are bounded as much as possible with the same syntactic constructs as

regular Java objects.

One aspect of ProActive is also dedicated to components [Baude et al., 2015].

ProActive active objects form a programming model that is suitable for component-

based composition of distributed applications through the Grid Component Model

(GCM). The Vercors platform, developed by Henrio, Kulankhina, and Madelaine

[2016], enables the design, specification and verification of ProActive components

through an Eclipse plugin, similarly to the verification abilities of ABS.

ProActive is intended for distribution, it forms a complete middleware that sup-

ports application deployment on distributed infrastructures such as clusters, grids,

and clouds. The ProActive middleware has proven to be scalable and suitable for
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distributed HPC [Amedro et al., 2010]. ProActive also implements MultiASP, the

active object programming language that extends ASP with the support of mul-

tiactive objects. Unlike ASP, MultiASP feature a multi-thread scheduling models

(Section 2.2.2).

2.4.3 Encore

Encore [Brandauer et al., 2015] is an active object-based parallel language inspired

from Joëlle [Clarke et al., 2008]. Encore is a programming language, that relies on

the Active object model mixed with other parallel patterns, as Single Instruction

Multiple Data (SIMD), based on a non uniform object model as ASP and a co-

operative scheduling model as ABS. Encore presents a syntax similar to ABS, to

distinguish between synchronous and asynchronous calls, but as in ASP, method

calls on active object are asynchronous and method calls on passive object are syn-

chronous. More precisely in Encore we speak about active and passive classes, such

that an object belonging to an active class is an active object and one belonging to

a passive class is a passive object. Additionally futures are typed dynamically, but

contrarily to ASP their value must be explicitly retrieved via a get construct. One

of the main differences with the programming languages presented before is that

Encore provides two forms of asynchronous computation: asynchronous method

calls and asynchronous parallel constructs inside a request. Internal parallelism

can be explicit through async blocks, or it can be implicit through parallel com-

binators, an abstraction that spawns SIMD tasks and joins them automatically. It

is relevant to mention that in Encore all parallel constructs are unified with the

use of futures for handling asynchrony. In Encore, active objects encapsulate pass-

ive objects, in terms of ownership, but unlike ProActive, passive objects can be

shared by reference across the activity boundaries. In order to prevent data race

caused by concurrent modifications on passive object, Encore provide a capability

system [Castegren and Wrigstad, 2016]. The programmer can assign to a passive

object a capability type. Capability types define both the accessible interface of

the object and the level of accessibility of this interface.

Encore extends the cooperative scheduling model of ABS with providing a

chaining operator, that adds a callback to a future, in order to execute it when
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the future is resolved.

An Encore program is compiled through a source-to-source compiler, written

in Haskell, that produces C code complying to the C11 standard, which gives to

the programmer the possibility to apply to a compiled Encore program all the

existing tools for C programs.

2.4.4 Scala and Akka actors

Scala Actors [Haller and Odersky, 2009] was one of the first object oriented lan-

guages not originally based on actor, which at a later time provided a library

implementing the actor model. We can say that Scala Actors is one of the reasons

why actor model is so pervasive in distributed settings, as much in education as

in industry [Haller, 2012]. Starting with Scala 2.11.0, the Scala Actors library

is deprecated, leaving room to Akka Inc. [2017]. Akka is a platform developed

in Scala and Java for building scalable event-driven fault-tolerant systems on the

Java Virtual Machine (JVM). Akka improves the performance of distributed act-

ors on the JVM due to a better implementation of serialisation. Akka actors are

implemented on top of dispatchers, which makes the deployment more transpar-

ent to the user obtaining better performance and scalability. Dispatchers manage

thread pools backed by a blocking queue and implement lightweight event-driven

threads that can scale up to millions, even on commodity hardware.

Both Scala and Akka actors support the use of futures for the convenience of

the programmer, although this makes a significant difference with respect to the

original actor model. The rich type system of Scala, the powerful object syntax,

and the composability of higher-order functions make actor definitions and lifecycle

management expressive yet succinct.

Akka actors communicate by asynchronous message passing. Scala’s infix op-

erator notation, type inference capabilities, and pattern matching on algebraic

data types help build nice abstractions, as finite state machines, based on message

processing.

As we mention in Section 2.1, callback-oriented event-based programming is

not very intuitive because of nonlinear control flow in the programming model.

However Scala supports delimited continuations, a powerful control flow abstrac-
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tion that lets developers program in a direct style even with inversion of control.

Delimited continuation are supported by Scala as a compiler plugin, which is used

by Akka to implement expressive APIs for data-flow concurrency.

Akka also features Typed Actors, which are the Akka implementation of the

Active Objects pattern. Exactly as considered in the Active object pattern, in

Typed Actors in Akka method invocations are asynchronous instead of synchron-

ous that has been the default way since Smalltalk came out.

Typed Actors consist of a public interface and an implementation. As with

normal Actors you have a public interface instance that will delegate method calls

asynchronously to a private instance of the implementation. The advantage of

Typed Actors is that they provide a static contract, and it is not needed to define

the messages. Unfortunately, in Akka, Typed Actors do not provide the same

features provided by the normal Actors (i.e become/unbecome).

In addition Akka also has a number of other components that make concurrent

and distributed computing simpler, such as: remote actors, that can be transpar-

ently distributed across multiple JVMs; agent-based computing, similar to Clo-

jure [Hickey]; an integrated implementation of software transactional memory [Les-

ani and Lain, 2013]; a transparent and adaptive load-balancing, cluster rebalancing

and a fault-tolerant platform.

The possibility to implement complex distributed system, allowed by the Scala

expressiveness, combined with a strong interoperability with Java, makes Akka

very suitable for the implementation of huge distributed industrial system.

2.5 Deadlocks and Data race condition

Parallel and distributed programs are difficult to write and a high expertise is

needed to deal with the thread synchronisation. Wrong synchronisation or the

incorrect placement of release points can lead to nondeterministic behaviour, data

races, race condition or deadlocks, as can be seen from the works of Savage et al.

[1997], Netzer and Miller [1991], Flanagan and Freund [2009], and Havender [1968].

Trying to detect or predict these two problems is not trivial, since they may

not occur during every execution, though they may have catastrophic effects for

the overall functionality of the system. In 1994, a deadlock flaw in the Automated
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Baggage System of airport of Denver was one of the causes of losses for more than

100 million dollars, and data race even leaded to the loss of human lives, as reported

by Leveson and Turner [1993], and also caused massive material losses [Ass].

2.5.1 Deadlocks

Deadlock is a common problem in multiprocessing systems, parallel computing,

and distributed systems. A deadlock occurs when there is a circular dependency

between the threads. Every thread that holds at least one resource is waiting for

the release of some resources held by another thread. The term resource can be

used for devices, processors, storage media, programs, and data.

A deadlock situation can arise if and only if the following four conditions, which

are known as Coffman conditions [Coffman et al., 1971], hold simultaneously in a

system:

– at any given instant of time a resource can be held by only one task (mutual

exclusion condition);

– tasks hold at least one resource while waiting for additional resources (waiting

for condition);

– resources can not be removed from the task that is holding them, they can

only be released voluntarily by the task (no preemption condition);

– there exist chain of tasks such that each process must be waiting for at least

one resource which is being held by the next task in the chain (circular

wait condition).

In the Active object field the resources that may contribute to a possible dead-

lock are the threads that are contained inside an activity, while the tasks are not

the activities but the method invocations that each activity have to serve. The

occurrence of a deadlock might depend on a variety of conditions which differ

depending on the characteristics of the language that we are considering. The

circumstances that may lead the system in a deadlock can vary considerably, de-

pending of the scheduling model or the kind of future and future synchronisation

approach the chosen language provides.

Figure 2.1 and Figure 2.2 illustrate how deadlock can be reached in an Active

object model with uniform object and mono-threaded scheduling, like ASP. The
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  x = this.m( ); 
  …
  …
  …
  waiting for x
   
  
  

Add a request to the queue
Waiting for the result of a request 

Figure 2.1 – Deadlock involving one active object.

  x = A1.foo( this ); 
  …
  …
  …
  waiting value of x
   
  
  

  
foo( A0 ) { 
  y = A0.bar( ); 
  …
  …
  …
  waiting value of y }

   
  
  

waiting the result 
of foo( )

waiting the result
of bar( )

A0 A1
invoke foo( ) on A1

invoke bar( ) on A0

Figure 2.2 – Deadlock involving two active objects.

first example represents a self deadlock. In this example we can see the running

thread invoking a method foo on the same active object. Then, the request

related to the method invocation is added to the request queue. Going ahead

in the execution the current process wants to use the result of the invocation

of foo previously done. As we are considering an Active object model without

interleaving of request execution, we have that the current process stops until the

future related to the method invocation of foo is resolved. It is trivial to notice

that because foo was invoked on the same active object it will never be executed.

To execute foo the current process should end and it can not until foo is not

computed.

A similar case involving two active objects is shown in the second example. In

this case we have an active object A0, which performs a method invocation (foo)

on the active object A1, and then it stops the execution waiting for the result of

the invocation just done. The method foo, processed in A1, starts and it does

a method call (bar) on the active object A0. This method call is inserted in the
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request queue of A0 that is still executing the original request. Also in this case,

we can easily notice that the execution of the program leads to a deadlock because

the method running in the active object A0 is waiting for the result of the method

foo, and foo is waiting for the result of the method bar, and we know that bar

can not be executed until A0 completes the execution of the running request.

2.5.2 Data race and race condition

A race condition occurs when a program doesn’t work as it is supposed to be-

cause of an unexpected ordering of events that produces contention over the same

resource. A data race occurs when two or more threads access a shared memory

location, at least one of the two accesses is a write, and the relative ordering of this

accesses is not enforced by a synchronisation pattern. As we have said many times

data races and race conditions are some of the worst concurrency bugs, because

programs can lead to a nondeterministic behaviour. In a small system unpredict-

able behaviours may not be relevant, but if we move to critical systems the impact

that data races may have could be tragic.

As we have seen before, the majority of the models presented still admit race

condition, but most of them prevent data race. Eliminating all data races or race

condition in an industrial systems, result to be not possible or inconvenient because

of the associated costs or the performance drop.

As reported by Kasikci et al. [2012], Microsoft left purposely unfixed 23 data

races in Internet Explorer and Windows Vista due to performance implications [Naray-

anasamy et al., 2007] and similarly, several races have been left unfixed in the Win-

dows kernel, due to fixing those races did not justify the associated costs [Erickson

et al., 2010].

For Kasikci et al. [2012] another very relevant reason due to data races have

been left unfixed is that 76%–90% data races do not affect program correct-

ness [Narayanasamy et al., 2007, Erickson et al., 2010, Engler and Ashcraft, 2003,

Voung et al., 2007].

The nondeterminism introduced by race condition and data races, having im-

pact on the behaviour of a system, makes static analysis more complex. In case

of static deadlock analysis, race condition and data race hinder a precise iden-
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tification of the synchronisation patters. The huge number of all the possible

synchronisation patterns generated by nondeterminism increase significantly the

execution time of the analysis. This time can be reduced by heuristics or by mod-

elling the analysis taking into account some specific characteristics of the studied

language or of the implementation of its backend.

2.6 Program analysis

When complex software systems, are designed, the time and effort spent on testing

and verification is larger then the time spent on construction. Many different

techniques are used to reduce and ease the verification efforts while increasing the

coverage. Program analysis is a process which automatically analyses programs

behaviour to ensure or detect specific property such as correctness, safety and

liveness. Program analysis focuses on two major areas: program optimisation and

program correctness, while the former focuses on improving the performance of

programs reducing the resource usage, the latter focuses on ensuring that the

program works as intended.

Program analysis can be performed in two main ways: without executing the

program (static program analysis) or at runtime (dynamic program analysis).

There are as well hybrid techniques that combine static and dynamic program

analysis.

Dynamic program analysis

Dynamic analysis is the analysis of computer programs that is performed by ex-

ecuting programs on a real or virtual environment. As dynamic analysis cannot

guarantee the full coverage of the source code, to be really effective the target

program must be executed with sufficient test inputs, being sure to produce an

adequate number of possible behaviours. The usage of software testing measures,

such as code coverage, ensures that an adequate portion of the possible beha-

viours has been tested. Minimising the effect that instrumentation and temporal

properties may have on the execution is a non trivial aspect of this technique.

An exhaustive dynamic program analysis, which might run during the exe-
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cution of the application, may negatively impact the performance of the system,

though an inadequate testing can lead to catastrophic failures similar to the maiden

flight of the Ariane 5 rocket launcher, where run time errors resulted in the de-

struction of the vehicle, as reported by Dowson [1997].

Static program analysis

The term static analysis generally identifies automatic verification, whereas not

fully automatic static analysis are usually referred in the literature as program

understanding, program comprehension, or code review. It is usually performed

on the source code or on some form of the intermediate code generated by the

compilers.

Unlike dynamic program analysis the static approach, ideally, aims at guaran-

tees about what the programs may do for all possible inputs, and these guarantees

have to be provided automatically. This possibility to reason about the whole

set of possible inputs ensures, theoretically, a certain degree of quality before the

deployment stage.

Aiming to analyse all the possible program execution, static analysis may take

a considerable amount of time or may lead to an exponential problem even for

not very big programs. Unlike dynamic analysis the static one takes place during

compilation time, making this technique not as time sensitive as the dynamic,

however some level of abstraction allows to scale the entire set of possible program

executions into a smaller and better analysable model. A really precise technique

which is not able to analyse real programs is useless as well as a technique that

analyse all the possible programs with a low accuracy, to have a good static analysis

a trade-off between precision and abstraction is needed.

Anyway, static analysis is not a technique that is able to say yes every time

programs have some property and say no every time they do not. Indeed static

analysis is computationally undecidable. Below we present a simple proof that

explains why static analysis is undecidable and a solution to this problem.

Undecidability of static analysis. Rice’s theorem [Rice, 1953] informally states

that all interesting questions about the behaviour of programs (written in Turing-

complete programming languages) are undecidable.
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We present below and adaptation of the proof proposed by Møller and Schwartzbach.

Let us assume that for all programs P and for all of its possible inputs XP

there is an analyser A(P,XP ) which checks if P is ’safe’, in the meaning that for

example has no bug, such that:

A(P,XP ) = true ⇐⇒ P (XP ) is safe.

Suppose we have a function not safe() which creates an unsafe program, we could

use A to decide the halting problem by using as input the following program where

TM(j) simulates the j’th Turing machine on empty input:

Test() { if(TM(j)) not_safe(); }

We can see that the program is ’safe’ only if the j’th Turing machine does not halt

on empty input. If the hypothetical analyser A exists, then we have a decision

procedure for the halting problem, which is known to be impossible.

The undecidability of the static analysis seems to be a discouraging result that

could not be solved, but the solution is to produce approximative answers that

are still precise enough to fulfil our goal. Most often, such approximations are

conservative (or safe), meaning that all errors lean to the same side, which is

determined by our intended application.

Consider again the problem of determining if a program is ’safe’, the analyser

A may answer true if the program is definitely ’safe’ and must answer ’maybe’ if

the program may be ’not safe’. The trivial solution is of course to answer maybe

all the time, so we are facing the challenge of answering true as often as possible

while obtaining a reasonable analysis performance.

2.6.1 Static analysis techniques

Static analysis approach can be based on one formal technique or on a combination

of them. In the following we briefly summarise some of the most used formal

methodologies for static program verification.
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Abstract interpretation

Abstract interpretation is a program analysis technique formalised by Patrick and

Radhia Cousot [1977, 1979]. Abstract interpretation introduces two main con-

cepts:concrete semantics and abstract semantics of a program. The concrete se-

mantics is a mathematical model which formalises the set of all its possible execu-

tions in all possible execution environments, while abstract semantics is a superset

of the concrete semantics which covers all possible concrete cases. Abstract inter-

pretation is a technique that considering an abstract semantics, requires to prove

that if the abstract semantics verifies some properties then also the concrete se-

mantics verifies the same properties.

Model checking

Model checking is a verification technique that, given a system model, is able

to explore all possible scenarios in a systematic manner showing that the model

satisfies a certain property. The limitation of this technique is that it is able to

verify only systems that are finite state or have finite state abstractions. The main

challenge is to examine the largest possible amount of states. As it is pointed out

by Baier and Katoen [2008], model checkers can currently handle state spaces (the

set of the possible states in which the system can be) of about 108 to 109 states

with explicit state-space enumeration, while for specific problems, the dimension of

state spaces can be incremented by clever algorithms and tailored data structures

handling a number of spaces which goes from 1020 up to even 10476 as shown

by Staunstrup et al. [2000]. Model checking is, potentially, able to discover even

the most subtle errors that often remain undetected using emulation, simulation

and testing. Techniques based on model checking have been also used in the Active

object model environment. In particular, Sirjani [2007] uses the characteristics

of actor languages to limit, by partial order reduction, modular verification and

abstraction techniques, the state space of the model to check.

Ameur-Boulifa et al. [2017] provide an parametrised model of an active object

application that is abstracted into a finite model afterwards.
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Symbolic execution

Symbolic execution that could be considered as a specific case of abstract inter-

pretation is a technique which tries to fill the gap between static and dynamic

analysis [King, 1976]. This approach analyses programs using a symbolic inter-

preter to determine what inputs cause each part of a program to execute. The

symbolic interpreter follows the execution of the program taking as inputs sym-

bolic values rather than actual values as in normal execution. The drawback of

this technique is that symbolically executing all the possible program paths does

not scale to large programs. The number of feasible program paths grows ex-

ponentially with the program size and can even be infinite in case of programs

with unbounded iterations. Solutions to the path explosion problem generally use

path-finding heuristics to increase the code coverage [Ma et al., 2011], reduce ex-

ecution time by parallelising independent paths [Staats and Pǎsǎreanu, 2010], or

by merging similar paths [Kuznetsov et al., 2012].

As we have already evidenced, one of the strengths of symbolic execution is

that this approach analyses programs reasoning path-by-path rather than reason-

ing input-by-input like dynamic analysis and other testing paradigms. However,

in case of programs for which few inputs take the same path the advantage with

testing each input separately is not so marked. Symbolic execution is also leaking

when programs interact with their environment by performing system calls, receiv-

ing signals, etc. In fact, consistency problems may arise when execution reaches

components that are not under control of the symbolic execution tool (e.g., kernel

or libraries).

Deductive verification

Deductive verification is another program analysis approach, which consists of gen-

erating from the program and its specifications a collection of proof obligations,

for which the truth has to be demonstrate by either interactive theorem provers,

such as HOL, Isabelle or Coq, automatic theorem provers, or satisfiability mod-

ulo theories solvers. The approach of integrating theorem proving with program

analysis requires theorem provers in the form of satisfiability checkers for various

theories and combination of theories. This approach has two main disadvantage:
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the former is that, to facilitate the generation of proof obligation, both the pro-

gram and its specifications have to be annotated with assertions such as invariants.

Some deductive verification tools, like KeY [Ahrendt et al., 2016], use other pro-

gram analysis technique, such as symbolic execution, to generate more assertions.

The later, and probably the biggest, problem of this technique is that it typically

requires the user to understand in detail why the system works correctly, and to

convey this information to the verification system, either in the form of a sequence

of theorems to be proven or in the form of specifications of system components.

Data-flow analysis

Data-flow analysis is a fixpoint based program verification technique, presented

the first time by Kildall [1973], which is widely used by compilers to optimise

program code. In this approach Control Flow Graphs (CFG) [Allen, 1970] are

used. CFG are the representation, using graph notation, of all paths that might

be traversed during a program execution. A simple way to perform data-flow

analysis of programs is to set up data-flow equations for each node of the CFG

and solve them by repeatedly calculating the output from the input locally at each

node until the whole system reaches a fixpoint. When finally the whole system

has reached a stable state, the verification is performed on each node of the CFG.

Behavioural type systems

Static analysis based on behavioural types systems [Ancona et al., 2016] provide

a strong mechanism for reasoning on the possible executions of a program. The

behavioural type system usually extend standard types by adding dynamic in-

formation that are strictly related to the features of the program targeted by the

analysis. As this technique has been chosen to tackle static analysis of deadlock

and data race condition in this manuscript, it will be presented more precisely in

the section below.

2.6.2 Behavioural type analysis

The analysis based on a behavioural type is a modular technique that can be

considered to be composed by four modules. The first module consist of a tra-
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ditional static checker. This checker is responsible for verifying if the program is

syntactically correct and has no obvious semantic errors.

The second and one of the most relevant module consists of a behavioural type

system. The main goal of the behavioural type system is to obtain what we call

a behavioural type program. The behavioural type program is a representation

of the program that is more suitable for the upcoming verification processes and

in which all the necessary and most relevant information, strictly related to the

analysed problem, are underlined. The success or the failure of the typing process

has no meaning related to the targeted problem, a failure during the typing process

only implies the impossibility to perform the verification analysis (i.e because of the

violation of some restriction). In a program each method can be typed individually,

the typing process of a method has no impact on the behavioural types of the other

methods. It is possible to consider that once a behaviour is associated to a method

it never changes and it will be reused during the analysis of each program in which

that method is used.

The third module of a behavioural type system analysis. Taking into account

the whole behavioural type program, it derives an abstract representation of the

program. The abstract representation is strongly related with the problem targeted

by the analysis, for instance this representation can be an object dependency graph

in case the targeted problem is the analysis of deadlock, or a set of cost equations

in case we want to perform a resource analysis. Unlike the previous module, this

one have to be applied each time the program is modified (i.e a method is replaced,

or the main function has been modified).

The last module verifies the property that we are considering over the abstrac-

ted representation of the program. The verification process is only tied to the

abstract program representation easing the use of third-party, and possibly more

general, analysers.

One of the big advantage of this approach is clearly the modularity. Where

the type system is generally strictly related with the language that is considered,

the verification process depends on the abstract representation of the program.

This property allow us to tackle the analysis of different programming languages

by developing new behavioural type systems that produce the same abstract rep-

resentation, allowing us to do not develop new verification modules.



2.7. PROBLEMS TACKLED, OBJECTIVES, AND CONTRIBUTIONS 37

The modularity of this technique is not limited to the ease of handle in a simple

way different problems and languages, but it extends to the possibility of proving

the correctness separately for each module.

The correctness of the typing process and its abstract representation is totally

not related with the correctness of the analysis verification, and is usually proven

by means of a subject reduction technique [Curry and Feys, 1958]. The correctness

of the analysis strongly depend on the analysis technique and in case of tird-party

analyser are used the correctness proofs may be already provided.

2.7 Problems tackled, objectives, and contribu-

tions

This work presents the theoretical foundations of a static analysis technique based

on behavioural type systems. The targeted is the analysis of synchronisation pat-

terns in Active object models.

One of the main goals of this thesis is to present the strength of the behavioural

type system based approach for the static analysis of concurrent and distributed

programs.

We chose to apply our technique to an Active object model language because

of the notable role that this model is having in the concurrent and distributed

environment and of the fact that in our opinion this role is going to be more

prominent in the next years.

To accomplish our objective, we focus on the detection of deadlocks that, as we

have seen before, is a problem with high relevance and application in the newest

developments distributed systems environment.

The development of our deadlock analysis is divided in two main works, which

are presented in an incremental order of complexity. Each of these works face

different features of the proposed active object language. The first work analyses

how to trace synchronisation patterns in a language in which futures can be passed

around as parameters or returned from methods. The second work analyses syn-

chronisation patterns in stateful objects. As we will see in the continuation the

latter deadlock analysis requires an additional effect analysis.
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In both of the discussed works are presented:

a behavioural type systems which is able to associate behavioural types from

the program code;

a behavioural type analysis which is able to translate a behavioural type pro-

gram into an abstract representation of the program more suitable for the

upcoming verification processes (dependency graph);

an analysis of circularity which is the analysis that takes in input a depend-

ency graph and is able to detect circular dependencies that lead to a possible

deadlock;

the proof of correctness of the behavioural type systems and the analysis, to

demonstrate the correctness of the behavioural type systems in character-

ising the underlying programs and producing correct program abstractions

without losing relevant information for the analysis.

Even if the contribution of this work is mainly the static analysis of deadlocks

in active object language, the orchestration of these type systems as well as the

proof of correctness behind them are also a remarkable part of the results obtained

in this work. The design of these solutions takes into account the typical problems

of static analysis of concurrent and distributed programs. The strategy used for

solving these problems is also a relevant contributions of this work and could be

generalised to other kind of static analyses.

2.8 Related works on behavioural types and dead-

lock analysis

The behavioural type model has been introduced by Giachino and Laneve [2013,

2014] for detecting deadlocks in a concurrent object-oriented language; the decision

algorithm for the circularity of behavioural types has been also defined by Giachino

et al. [2014]. This technique improves the previous deadlock-freedom analysis

of Kobayashi [2006] in a significative way, as demonstrated in by Giachino et al.

[2014] and Kobayashi and Laneve [2017].

In the literature there exists a wide range of works that statically analyse
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deadlock based on types or directly on behavioural types. Abadi et al. [2006],

Boyapati et al. [2002], Flanagan and Qadeer [2003] and Vasconcelos et al. [2009],

in their works, define a type system that computes a partial order of the locks in

a program and a type checker verifies that threads acquire locks in the descending

order. In our case, no order is predefined and the absence of circularities in the

process synchronisations is obtained in a post-typing phase.

Likewise, it has been done by Visser et al. [2003], the tool Java PathFinder for

every method is computed a tree of lock orders, then it searches for mismatches

between such orderings. Instead, our technique results to be more flexible because,

during the inference of the behavioural types, any ordering of locks is computed.

A computation that may acquire two locks in different order at different moments

results to be not correct with other technique, contrary to ours.

Other proposals, like the one of Flanagan et al. [2002], require that the program

is annotated specifying loop invariants, pre and post conditions, in order to be able

to detect deadlocks. As the annotations are explicitly provided by the programmer,

these techniques are called partially automatic. On the contrary our technique,

that is fully automatic, directly infers behavioural types from the code without

any additional information.

A well-known deadlock analyser for pi-calculus developed by Igarashi and

Kobayashi [2001] [1998, 2006, 2007] is TyPiCal. TyPiCal uses a technique that,

without the limitation of imposing pre-defined order of channel names, is able to

derive inter-channel dependency information. This technique is also able to deal

with recursive behaviours and new channels creation. However, since TyPiCal

is totally based on an inference system, recursive behaviours are not completely

handled, in fact the analysis returns false positives when a networks with arbitrary

numbers of nodes is recursively created.

Type-based deadlock analysis has also been studied by Puntigam and Peter

[2001]. In this contribution, types define the states of objects and can express

acceptability of messages. The exchange of messages modifies the state of the ob-

jects. In this context, a deadlock is avoided by setting an ordering on types. Unlike

our approach, the one of Puntigam and Peter [2001] uses a deadlock prevention

technique, rather than detection, and no inference system for types is provided.

Another approach for deadlock prevention is defined by West et al. [2010]. This
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technique is applied to SCOOP, a concurrent language based on Eiffel developed

by Morandi, Bauer, and Meyer [2010]. In the work of West et al. [2010], as for

the one of Flanagan et al. [2002], the programmer has to annotate methods with

preconditions that identify the used processors3 and the order in which processors

have to take locks, while in our approach this information is automatically inferred.

Other different analysis technique are used to tackle the deadlock detection, for

instance, model checking is often used to verify stateful distributed systems. Sirjani

[2007] presents an actor language, Rebeca, which uses the inherent characteristics

of actor model to introduce compositional verification, symmetry, abstraction, and

partial order reduction techniques in order to limit the model to check. Ameur-

Boulifa et al. [2017] provide a parametrised model of an active object application

that is abstracted into a finite model afterwards. Contrarily to us, these results are

restricted to a finite abstraction of the state of the system. An alternative model

checking technique is proposed by Bouajjani and Emmi [2012] for multi-threaded

asynchronous communication languages with futures (as ABS). This technique

addresses infinite-state programs that admit thread creation but still they do not

allow dynamic resource creation.

The impossibility to handle infinite thread creation or dynamic resource cre-

ation is common also to other techniques. Gkolfi et al. translate active objects into

Petri-nets and model-check the generated net, in case of infinite state, they would

still need an infinite set of colours for the tokens. For Carlsson and Millroth [1997]

circular dependencies among processes are detected as erroneous configurations,

but dynamic creation of names is not treated.

The problem of verifying deadlocks in infinite state models has been studied

in other contributions. For example, de Boer et al. [2013] compare a number of

unfolding algorithms for Petri Nets with techniques for safely cutting potentially

infinite unfolding. Also in this work, dynamic resource creation is not addressed

and it is not clear how to scale the technique.

A design pattern methodology which allows the development of data race-free

and deadlock-free programs in CoJava has been presented by Kerfoot et al. [2009].

CoJava is a subset of Java for which in well typed programs are eliminated data race

and data-based deadlock by a type-based techniques. For Kerfoot et al. [2009] the

3A processors is SCOOP is the analogue of activity in ASP or cogs in ABS
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sharing of mutable data between threads is prevented by a typechecker, while and

the use of ownership, which imposes a hierarchy on active objects, and promises

to prevent deadlock from arising. Active objects unrelated through ownership

must communicate through the use of promise objects that act as receptacles

for return values. The active object waiting for a response may wait for a time

period, if no result comes within this period a timeout event occurs. Instead,

active objects related by ownership need not use the promise object approach. An

owner may safely block waiting for responses from the objects it owns. Also in

this case, contrary to our technique, the analysis is not fully automatic and needs

additional information to be performed, these information must be provided by

the programmer. In the work of Kerfoot et al. [2009] the correctness of the type-

based approaches in removing data races have been demonstrated, no guarantee

of deadlock freedom is provided by the system.

The approach that is the closest to our works is the one of Albert, Flores-

Montoya, and Genaim [2012]. In this work the authors generate a finite graph of

program points by integrating an effect and point-to analysis for computing aliases

with an analysis returning points that may run in parallel. In the model presented

by Albert et al. [2012], futures are passed (by-value) between methods only as

parameters or return values, the possibility of storing futures in object field is

treated as a possible extension and not formalised. Furthermore this aspect is not

considered combined to the possibility of having infinite recursion. However, the

work of Albert et al. [2012], as most of the works previously investigated, analyses

finite abstraction of the computational models of the language. In our case, the

behavioural type model associated to the program handles unbounded states.

Non static technique have also been used. In these techniques the main ap-

proach is to analyse only real scenarios. For instance, the analysis of deadlock

proposed by Bensalem and Havelund [2006] tags the locked objects with the la-

bel identifying the threads acquiring the locks, allowing to deal with re-entrance

problems in a very simple way. One of the main difference with our work is in

the detection of the parallel execution. While our technique, detecting the par-

allel states at static time, obviously introduces some over-approximation, the one

presented by Bensalem and Havelund [2006], beeing an runtime analysis, can tag

each segment of the program, that is reached by the execution flow, specifying
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exactly the order of lock acquisitions. It is worth to mention that Bensalem and

Havelund [2006] also use an hybrid strategy which detects deadlocks that might

occur in case of different scheduler choices. The drawback of the technique pro-

posed by Bensalem and Havelund [2006], as for all the non static techniques, is that

it is able to analyse exhaustively only programs that have a finite set of relevant

inputs.

As Chapter 5 uses a dedicated effect analysis for active objects, we also analyse

contributions that study effects or that integrate effects in the analysis of deadlocks.

Regarding effect systems, up-to our knowledge, the first paper proposing effect

systems for analysing data races of concurrent systems dates back to the late

80’s [Lucassen and Gifford, 1988]. In the work of Lucassen and Gifford [1988] is

presented a technique that uses a type and an effect system to statically infer types

and effects of each expression in programs written in FX-87 [Hammel and Gifford,

1988]. The effect system permits concurrency analysis in the presence of first-class

function values, and it is also able to mask effects on first-class, user-defined, heap-

allocated data structures. Our approach of annotating the types to express further

intentional properties of the semantics of the program is very similar to that of

Lucassen and Gifford.

Pun [2013], in her PhD. thesis, proposes an analysis which captures the lock

interaction of processes using a behavioural type and effect system for a concurrent

extension of ML. Similarly to our work, the the technique proposed by Pun [2013]

is mostly divided in two steps: a type and effect inference algorithm, followed by an

analysis to verify deadlock freedom. However, this analysis approximates infinite

state space it imposes to define an upper bound on the number of locks, and a limit

on the recursion depth for non-tail-recursive function calls. Thanks to these two

restrictions the behaviour is over-approximated by arbitrary chaotic behaviour that

can be exhaustively checked for deadlocks. However, this analysis approximates

infinite behaviours with a chaotic behaviour that nondeterministically acquires and

releases locks, thus becoming imprecise. The second approach statically analyses

programs by reducing the problem of deadlock checking to data race checking.

This analysis, as the previous one, is based on a type and effect system which

formalises the data-flow of lock usages, over-approximating how often different

locks are being held. In this approach additional variables are used to signal a
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race at control points that potentially are involved in a deadlock. The limitations

of the work of Pun [2013] come out from the fact that races, despite deadlocks,

are binary global concurrency error, is solved by adding additional locks. These

locks prevent that parts of the program, already considered in a deadlock cycle,

give raise to a race, indicating falsely or prematurely a deadlock by a race.
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In this chapter we present ground-ASP (gASP) a simple Active object model,

that we target by our analysis. As gASP is a core language for ASP [Caromel et al.,

2004] it presents some limitations compared to ASP, these limitations and more

generally the differences between gASP and the full language ASP are discussed

in Section 3.1. This chapter is composed by other four main section: Section 3.2

presents the syntax of the language and informally introduces the semantics; Sec-

tion 3.3 analyses in detail the features of gASP through a comparison with ABS;

Section 3.4 presents the operational semantics of gASP which is explained thanks

45
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to a small example in Section 3.5. The chapter ends with a summary of what has

been seen

3.1 A brief introduction of ground ASP (gASP)

In this section we present the features of gASP, detailing how the language asso-

ciates objects to threads, the scheduling mechanism, how futures are defined, and

the the approach used to synchronise on futures.

In gASP state encapsulation is guaranteed: an active object can only access to

the state of its own fields during the processing of a method. Active objects can

not have side effects on other active object fields. Contrary to ASP, gASP uses a

uniform object model. All the objects created are consider as active, then each

of them has an associated execution thread. Active objects communicate only

through asynchronous method invocation. Unlike ASP where direct invocation

on the same object are considered as synchronous method invocation, in gASP

invocations on the same active object can only be asynchronous. The way to do

asynchronous call on the same object, in ASP, is via a method invocation done on

its own remote reference (which has been received somehow).

When, a method is called on a gASP object, a request is added on the set of

requests of that object. We want underline that we are speaking about a set and

not about a queue, because unlike ASP or most of the active object languages,

requests are not served in any specific order. When an active object serves a new

request, it picks any of the requests in the request set. We decided to stick to a more

liberal organisation for ready processes, because FIFOs seem too constraining in a

distributed system setting, where the dispatch of invocations is nondeterministic.

Furthermore, in this way we are able to develop an analysis without restriction

related to the scheduling order, indeed if our technique asserts that a program

is deadlock free then it will also be deadlock free when a different policy will be

applied to ready processes.

gASP uses a mono-threaded scheduling approach: as we have seen in Sec-

tion 2.2.2 it specifies that an activity contains only a single thread that serves

all the request without possible interleaving. The absence of interleaving makes

gASP free from data races and it guarantees local determinism. As in ASP, global
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determinism is not guaranteed and race condition can still be possible; while in

ASP the non-determinism is restricted to the communication ordering, in gASP

also request service is non deterministic.

Another relevant point to analyse is how gASP handles futures, especially future

creation and synchronisation. The model gASP provides first-class futures : futures

can be sent as parameter of method calls, returned from method invocations and

stored in object fields without be necessarily synchronised.

In gASP everything related with futures tends to be as much transparent as

possible. Futures are not explicitly typed, this allows the programmer not to make

a distinction between futures and values. The absence of an explicit future type

allows us to make totally transparent another aspect related with futures: the

synchronisation. Unlike ABS, Akka, Encore, and other active object languages

that provide explicit construct for synchronising future (i.e get), synchronisation

in gASP is fully transparent. We call the synchronisation mechanism wait-by-

necessity. With wait-by-necessity the execution is only blocked when a value

to be returned by a method is needed to evaluate a term. This programming

abstraction allows the programmer not to worry about placing synchronisation

points: the synchronisation will always occur as late as possible.

Wait-by-necessity is not the only consequence of not having explicit future

types, the other relevant consequences will be analysed in the next section through

a comparison with an Active object model which provides explicit future types.

3.2 The gASP language

For simplicity, programs in gASP have a single class, called Act. Extending this

work to several classes is not problematic. Types T may be either integers Int or

active object Act. We use x, y, z, · · · to range over variable names. The notation

T x denotes any finite sequence of variable declarations T x, separated by commas.

A gASP program is a sequence of variable declarations T x (fields) and method

definitions T m(T y) { s }, plus a main body { s′ }. The syntax of gASP is defined

in Figure 3.1. While the statement in gASP are standard it is worth to mention that

the semicolon is used as statement separator and not as statement termination.

Expressions with side effects include asynchronous method call v.m(v), where v is
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P ::= C { s } program
C ::= D M class
M ::= T m (T y) { s } method definition
D ::= T x | D ; D variable declaration
T ::= Act | Int type
s ::= skip | x = z | if e { s } else { s } | s ; s | return v statement
z ::= e | v.m(v) | new Act(v) expression with side effects
e ::= v | v ⊕ v expression
v ::= x | integer-values atom

Figure 3.1 – The language gASP.

the invoked object and v are the arguments of the invocation. Operations taking

place on different active objects occur in parallel, while operations in the same

active object are sequential. Expression with side effects z also include new Act(v)

that creates a new active object whose fields contain the values related to v. A

(pure) expression e may be an atom v (i.e., a variable or a value) or an arithmetic or

relational expression; the symbol ⊕ range over standard arithmetic and relational

operators. Without loss of generality, we assume that fields and local variables

have distinct names.

Some of the key concepts of gASP, introduced in Section 3.1, comes out ana-

lysing the syntax. For instance the transparency of the future is found in the fact

that variables can be typed only as Int or Act. It is also possible to see that every

time an object is created, using new Act, an active object is created. The possib-

ility to create only active objects and the fact that there is only one way to invoke

methods implies that active objects can only communicate by asynchronous call.

In gASP when a method is called (x = v.m(v)) a new future is created and stored

in the variable targeted by the assignment, the corresponding request is added to

the queue of pending requests of the active object on which the method is invoked.

More consideration comes out from the fact that in the syntax there is no

statement related to future synchronisation. In fact gASP uses the wait-by-necessity

mechanism and does not need a specific statements to synchronise on futures. The

future synchronisation is hidden inside the evaluation of the expressions, this is
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the reason why the evaluation of an expression can stop the execution of the

method until all futures in the expression are resolved. In gASP when a method

is finished the method result is associated to the future, indeed the method result

can also be a future. At any moment if the result of the method call is available

it can be replaced with the method result in all the variable that store this future.

The update can be done at any moment since when the result of the method

call is available to the moment in which it is needed to evaluate an expression.

However a future is considered as resolved only when a value (an integer or an

active object) is associated to the future, for this reason waiting until a future is

resolved is not equivalent to waiting for the completion of the method associated

to that future. As we will see in the following two sections the update mechanism

strongly characterises the semantic of gASP.

3.3 Explicit future type and wait-by-necessity

In this section the main features of gASP will be explained more in detailed through

a comparison with another active object language. We chose ABS as flagship for

language with explicit future type and explicit synchronisation, for different reas-

ons: it is a simple language with the aims of modelling and verification; it carries

a strong formalisation; and ABS has been targeted by several analysis based on

behavioural types. ABS, which has been presented in detail in Section 2.4.1, is an

Active object model based on an object group model and cooperative scheduling,

with explicit future type with of the form Fut<T> and an explicit synchronisation

construct (get).

The feature of gASP on which we want to focus are: (i) implicit future type

and (ii) wait-by-necessity synchronisation.

Let us start the comparison analysing the first of the two point. The implicit

future type of gASP will be compared with the explicit parametric types of ABS.

Explicit and implicit future type

The typing approach is strongly related with expressiveness. For example the

absence of explicit future types gives in the possibility to write recursive functions
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a) gASP

1 Int fact(Int n, Int r){

2 if (n == 1) return r;

3 else { x = new Act();

4 r = r*n;

5 y = x.fact(n-1,r);

6 return y }}

7

8 //MAIN

9 { x = new Act();

10 y = x.fact (3,1);

11 z = y + 1 }

b) ABS

1 Int fact_nc(Int n){

2 Fut <Int > x ;

3 Int m ; Act z ;

4 if (n==1) { return 1 ; }

5 else { z = new cog Act();

6 x = z!fact_nc(n-1);

7 m = x.get;

8 return n*m; }}

9

10 //MAIN

11 { x = new cog Act();

12 y = x!fact (3);

13 z = y.get;

14 k = z + 1;

15 }

Figure 3.2 – Factorial in gASP and ABS.

which return futures.

To illustrate this point let us try to implement a method which is able to

compute the factorial of n in both languages: gASP and ABS.

The implementations presented in Figure 3.2 are quite similar. In both cases for

each invocation of the method fact a new active object is created and the factorial

of n− 1 is invoked on it. However, while in gASP the method directly returns the

future of the invocation of fact(n-1), the ABS program has to return an integer.

There are two reasons why the program written in ABS could not return directly

the future contrarily to the gASP implementation: a problem of consistency of

types for the two branches of the if, and a problem of type definition. Let us start

discussing the first and simpler one. The gASP type system allows the programmer

to write a program, as the one proposed in Figure 3.2.a, which returns a value in

the branch true of the if (line 2, return 1) and a future of an integer in the branch

false (line 6, return y, where y stores the future of the invocation done in line 5).

The program written in this way can be typed because integer values and futures

of integer are both typed as Int, which is the type defined in the signature of

the method fact. On the contrary, a language with explicit future type, as ABS,
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types an integer value as Int and a future of an integer as Fut<Int>, the two types

would not fit the type defined in the signature.

The second problem is related to the question ”which should be the type of a

recursive call that returns a future in ABS?” To think about how to answer to this

question, we should remember that, with explicit future types, a variable which

stores the result of a method invocation has type Fut<Int> if the method returns

an integer, and it has type Fut<Fut<Int> if the method returns a Fut<Int>. Con-

sidering this, we have that, to write the type of a recursive method that returns the

future of the recursive invocation we have to know, a priori, the number of recurs-

ive calls done during the execution. For instance, in x = fact(1), the variable x

should have type Fut<Int>; in x = fact(2), x should have type Fut<Fut<int>>;

in x = fact(3), x should have type Fact<Fact<Fact<Int>>> and so on. It is

clear that if we want to compute the factorial of n, without knowing n a priori, it

would not be possible define the type of the method.

Though, at first glance, this difference between the two languages may appear

not so important, in the setting of distributed systems the behavioural differences

between the two program presented in Figure 3.2 are significant. To understand

better the behavioural differences we drive the discussion through the proposed

example.

We should focus on lines 5 and 6 of the gASP program, and the lines 6-8 of the

ABS program. As the gASP program, after invoking fact(n-1), directly returns

the result of the invocation, without performing any kind of synchronisation, there

is no guarantee that the value has been actually computed. Then, when line 6 is

executed, what is really returned is not the result of the invocation, but the future

related to this result invocation. After the return statement, the method ends and

the thread of the active object becomes available to serve other requests. In the

gASP version, the only process which performs synchronisation is the one executing

the main function, which is waiting for the result of all the recursive invocations

of the method factorial.

The behaviour of the ABS program is totally different. As we can see at line 6

the method performs a synchronisation, then what is returned is the actual value

of the method invocation just done. This synchronisation is mandatory, for the

reasons explained above. The presence of this synchronisation implies that, in
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a) gASP

1 Int fact(Int n, Int r){

2 if (n == 1) return r;

3 else { r = r*n;

4 n = n-1;

5 y = this.fact(n,r);

6 return y; }}

7

8 //MAIN

9 { x = new Act();

10 y = x.fact (3,1);

11 z = y + 1 }

b) ABS

1 Int fact_nc(Int n){

2 Fut <Int > x ;

3 Int m ; Act z ;

4 if (n==1) { return 1 ; }

5 else { x = this!fact_nc(n-1);

6 m = x.get;

7 return n*m; }}

8

9 //MAIN

10 { x = new cog Act();

11 y = x!fact (3);

12 z = y.get;

13 k = z + 1;

14 }

Figure 3.3 – Factorial with one active object in gASP and ABS.

our example, the active object computing fact(3) have to wait for the result of

fact(2), and similarly fact(2) waits for the result of fact(1). Then, unlike the

gASP version, the thread computing fact(m), lock the active object thread until

fact(m-1) has been computed.

As we have just seen the gASP program keeps the lock of only one active object

until the result of fact(n) has been computed, while the ABS program keeps the

lock of n active objects that will be released in order from fact(1) to fact(n).

The fact that many active objects are waiting for a result may increase considerably

the chance that a deadlock occurs.

We present in Figure 3.3 a program similar to the one of Figure 3.2. This

time, instead of creating a new active object at each recursive call and invoke

fact(n-1) on it, all the recursive invocation are invoked on the same object (in

line 5 of both programs, the method is invoked on this). In gASP this modification

has no significant impact, because, as we have already said, the recursive execution

of the method factorial do not lock the active object execution thread, then all

the recursive calls can be served, and the factorial can be computed. However, the

ABS version of the program leads to a deadlock. As the invocation of fact(n)

locks the active thread until fact(n-1) is computed, fact(n-1) will never be
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a) gASP

1 Int bar(Int x, Int y){

2 return x * y; }

3

4 Int foo(Int n, Int m){

5 x = this.bar(n,m);

6 return x; }

7

8 //MAIN

9 { x = new Act();

10 y = x.foo(3,1);

11 z = y + 1 }

b) ABS

1 Int bar(Int x, Int y){

2 return x * y; }

3

4 Fut <Int > foo(Int n, Int m){

5 Act x = this.bar(n,m);

6 return x; }

7

8 //MAIN

9 { Act x = new Act();

10 Fut <Fut <Int >> y = x.foo(3,1);

11 Fut <Int > w = y.get;

12 Int z = w.get;

13 k = z + 1; }

Figure 3.4 – Synchronisation example for gASP and ABS

computed, because it needs the execution thread locked by its caller. To be able

to implement in ABS a not deadlocked factorial, which use only one active object,

the programmer has to use cooperative scheduling and the possibility to explicitly

unschedule the running process (the programmer have to use an await before the

get of line 6).

We can easily conclude that, although with explicit future type and explicit

synchronisation, it is still possible to write program with a behaviour similar to

the one of gASP, the possibility to easily return future decreases the possibility to

lead in a deadlock without requiring a strong expertise to the programmer.

Wait-by-necessity and explicit synchronisation

The second main difference between gASP and languages as ABS is the synchron-

isation on future. The wait-by-necessity approach used in gASP does not differ

from the explicit approach only because it carries an high level of transparency,

but it also leads to a totally different synchronisation semantic.

Let us discuss this difference through an example shown in Figure 3.4. In

this example we implement two methods: foo and bar. The method bar takes

two parameters as input and returns the product. The method foo only calls the
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method bar and returns the result without synchronising on it. The main function

creates an active object, then the method foo is invoked passing two integers, and

then the method adds 1 to the result of foo. The main differences between the

two programs are the type of the method foo and the type of the variable y, which

have been explained before, and how the two languages handle the synchronisation

on the result of foo. The gASP program at line 11 needs the value of y to evaluate

the expression. As the method foo returns a future instead of a value (at line 6

the invocation of bar is returned without being synchronised), the execution of the

main function is stoped at line 11 waiting the end of both methods foo and bar.

The ABS program, instead, needs two instructions to get the value computed by

bar. As we can see on line 11 of the ABS program, the first get instruction returns

a future, this future is related to the invocation of bar returned by foo. Then the

execution of the main program is stopped at line 11 until only the method foo

ends. The second synchronisation, at line 12, which returns the value computed

by bar, stops the execution of the main function until the method bar is finished.

Only at this point the expression at line 13 can be computed. The difference of

transparency that there exists between the two approaches is evident, but it also

true that the transparency decrease the control that the programmer has defining

synchronisation patterns. In gASP, as we have seen, the synchronisation is hidden

in the evaluation of an expression and the synchronisation of the two methods

foo and bar could not be done in two different steps like in ABS. Even though

it is true that with explicit synchronisation the programmer has a greater control

on the behaviour of the program, it is also true that if it does not come with a

strong expertise, it could introduce several problems. In fact the possibility to add

instructions between two get (i.e we can have some instruction between the line 11

and 12 of the ABS programs), like method invocation, could be really dangerous

if it is not done very carefully.

The drawback of the transparent approach compared to the explicit one, is

that it is more difficult to analyse statically. The difficulty lies in the fact that

it is not trivial to keep track of all the methods that have to be synchronised

when a variable is evaluated. While, in languages as ABS, each get expresses a

single waiting condition with only one active object thread, a synchronisation in

gASP stops the execution of the program until the evaluation of different methods,
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cn ::= f(w) | f(⊥) | α(a, p, q) | cn cn configurations
w ::= α | f | v values and names

p, q ::= {` | s} processes
a, ` ::= x 7→ w memories

Figure 3.5 – Runtime syntax of gASP.

probably running in different active objects, are finished (as in the example shown,

where the main function was waiting for both foo and bar). The complexity in

keeping track of the list of the methods to synchronise can be even higher in case

of recursive functions, like the factorial presented in Figure 3.2, in which this list

may be infinite. Chapter 4 will illustrate how to design a static analysis that is

able to face this problem.

Now that the syntax of gASP has been defined and the main features have

been explained informally, in the next section the formal semantics of gASP will

be introduced.

3.4 Syntax and semantics of gASP

The semantics of gASP is defined in the following sections. The definition of dead-

locked program according to the operational semantics will be defined in Sec-

tion 3.4.2. The chapter will end with an example which will show the execution

of a gASP program in terms of transitions between configurations.

3.4.1 Semantics of gASP

The semantics of gASP uses two sets of names: active object names, ranged over by

α, β, . . . , and future names, ranged over by f , f ′, g, g′, . . . . The runtime syntax

of gASP is shown in Figure 3.5.

Configurations, denoted cn, are non empty sets of active objects and futures.

The elements of a configuration are denoted by the juxtaposition cn cn’ – therefore

we identify configurations that are equal up-to associativity and commutativity.

Active objects α(a, p, q) contain a name α, a memory a recording fields, a running

process p, and the set of processes waiting to be scheduled q. The element f(·)
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w is not a variable

[[w]]` = w

x ∈ dom(`)

[[x]]` = `(x)

[[v]]` = k [[v′]]` = k′

k, k′ integer-values k′′ = k ⊕ k′

[[v ⊕ v′]]` = k′′

Figure 3.6 – The evaluation function

represents a future which may be an actual value (called future value) or ⊥ if the

future has not yet been computed. A name, either active object or future, is fresh

in a configuration if it does not occur in the configuration. Memories a and `

(where ` stores local variables) map variables into values or names. The following

auxiliary functions are used in the operational semantics:

– dom(`) return the domain of `;

– fields(Act) is the list of fields of Act;

– `[x 7→ v] is the standard map update;

– the memory a+ ` is defined as (a+ `)(x) =

{
`(x) if x ∈ dom(`)

a(x) if x ∈ dom(a)

we also let (a + `)[x 7→ w] = a′ + `′ be such that a′ = a and l′ = `[x 7→ w],

if x ∈ dom(`) or x /∈ dom(l) ∪ dom(a), or a′ = a[x 7→ w] and `′ = `, if

x ∈ dom(a);

– [[e]]a+` returns the value of e by computing the expression and retrieving the

value of the identifiers that is stored in a+ `;

– [[e]]a+` returns the tuple of values of e.

– bind(α,m,w, f), where the method m is defined by T m(T x) { s }, returns

the following process { [ destiny 7→ f, this 7→ α, x 7→ w ] | s }. We observe

that the special field destiny in the local memory ` records the name of the

future corresponding to the method invocation.

The operational semantics of gASP is defined by a transition relation between

configurations and it is shown in Figure 3.7. Most of the rules are standard and

the most relevant are described in detail below.

Serve : it schedules a new process to be executed. As it has been already stated

in gASP the processes ready to be executed are organised into a set and

Serve picks a ready process.
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Serve

α(a,∅, q ∪ {p})→ α(a, p, q)

Context

cn→ cn′

cn cn′′ → cn′ cn′′

Return

[[v]]a+` = w `(destiny) = f

α(a, {` | return v}, q) f(⊥)
→ α(a,∅, q) f(w)

Update

(a+ `)(x) = f (a+ `)[x 7→ w] = a′ + `′

α(a, {` | s}, q) f(w)
→ α(a′, {`′ | s}, q) f(w)

Assign

[[e]]a+` = w
(a+ `)[x 7→ w] = a′ + `′

α(a, {` | x = e ; s}, q)
→ α(a′, {`′ | s}, q)

New

[[v]]a+` = w β fresh y = fields(Act)

α(a, {` | x = new Act(v) ; s}, q)
→ α(a, {` | x = β ; s}, q) β([y 7→ w],∅,∅)

Invk

[[v]]a+` = β [[v]]a+` = w β 6= α
f fresh bind(β,m,w, f) = p′

α(a, {` | x = v.m(v) ; s}, q) β(a′, p, q′)
→ α(a, {` | x=f;s}, q) β(a′, p, q′ ∪ {p′}) f(⊥)

Invk-Self

[[v]]a+` = α [[v]]a+` = w
f fresh bind(α,m,w, f) = p′

α(a, {` | x = v.m(v) ; s}, q)
→ α(a, {` | x = f ; s}, q ∪ {p′}) f(⊥)

If-True

[[e]]a+` 6= 0

α(a, {` | if e { s1 } else { s2 } ; s}, q)
→ α(a, {` | s1 ; s}, q)

If-False

[[e]]a+` = 0

α(a, {` | if e { s1 } else { s2 } ; s}}, q)
→ α(a, {` | s2 ; s}}, q)

Figure 3.7 – Operational semantics of gASP.

Update : it performs the update of a future when the corresponding value has

been computed. The future value w may be an integer, an active object, or

a future name. It is important to notice that this rule is not triggered by a

specific statement, then it can be applied in any moment when the future

value of f has been computed.

Assign : this rule shows the gASP semantic for the assignment of a value or a name

(active object or future name) to a local variable or a field (cf. definition of

a+ `). The relevant point here is the evaluation function [[e]]a+` = w because

it may require synchronisations. In fact, according to the definition of [[e]]a+`
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in Figure 3.6, if e contains arithmetic operations, then the operands must

be evaluated to integers. Therefore, if an operand is a future, the rule can

only be applied after this future has been evaluated and updated. However, if

e is a future name f or a variable which stores a future name, this future is

assigned without any synchronisation. Then an alias has been created.

New : this rule presents the creation of a new active object. The created object

has a fresh name as identifier, an empty set of process to be executed and

there is no process running on it. The relevant point here is that the eval-

uation function [[v]]a+` = w never implies a synchronisation. In case one of

the parameter is a future, it is passed as it is and it is not synchronised. It

also important to notice that all the field of the object created have to be

initialised through parameters: v and y have the same cardinality.

Invk : it shows the asynchronous method call done on a different active object.

(w = [[v]]a+`). We can notice that two main actions are performed during the

application of this rule. The former is the creation of a future element f(⊥)

which is added to the configuration. The future name f is fresh and the

future value of f is not defined because obviously the method is not already

computed. The latter is the addition of the process p′, which is obtained

by the function bind(β,m,w, f), to the set of processes to be executed of

the active object targeted by the method invocation. It is important to

notice that the evaluation of [[v]]a+` must return an object name. If, instead,

it returns a future then the rule cannot be applied and a synchronisation

occurs. On the contrary, the evaluation function [[v]]a+` = w never implies a

synchronisation, then future can be passed as parameter.

The rule Invk-Self is a particular case of Invk in which the caller and the

callee turn out to be the same active object. Then, the two rules are similar

except that the process p′ is added to the set of waiting processes of the

active object that is performing the method call.

If-True / If-False : this rules present the semantic of gASP for the if state-

ment. Though the rules are trivial, we want to underline that the evaluation

of the condition ([[e]]a+`) must result in a integer which may trigger a syn-

chronisation.

Note that this semantics naturally ensures the strong encapsulation featured by
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active objects: an active object can only assign its own field and cannot access the

fields of other active objects directly. The initial configuration of a gASP program

with main body {s} is:

main( [x 7→ 0 ], { [ destiny 7→ fmain , this 7→ main ] | s },∅)

where main is a special active object, x = fields(Act), and fmain is a future name.

As usual, →∗ is the reflexive and transitive closure of →.

3.4.2 Deadlocks and queues with deterministic effects

As we have previously seen, in gASP, when computing an expression, if one of the

operand is a future then the current active object waits until the future has been

updated. If the waiting relation is circular then no progress is possible. In this

case all the active objects in the circular dependency are deadlocked. We formalise

the notion of deadlock below. Let contexts C[ ] be the following terms

C[ ] ::= x = [ ]⊕ v ; s | x = v ⊕ [ ] ; s | if [ ] { s′ } else { s′′ } ; s
| if [ ]⊕ v { s′ } else { s′′ } ; s | if v ⊕ [ ] { s′ } else { s′′ } ; s

As usual, C[e] is the context where the hole [ ] of C[ ] is replaced by e.

Let f ∈ destinies(q) if there is {`|s} ∈ q such that `(destiny) = f .

Definition 1 (Deadlocked configuration). Let cn be a configuration containing

α0(a0, p0, q0), · · · , αn−1(an−1, pn−1, qn−1). If, for every 0 ≤ i < n,

1. pi = {`i | C[v]} where [[v]]ai+`i = fi and

2. fi ∈ destinies(pi+1, qi+1), where + is computed modulo n

then cn is deadlocked.

Definition 2 (Deadlock-free program). A program is deadlock-free if, denoting cn

its initial configuration, for every cn′ s.t. cn→∗ cn′, cn′ is deadlock free.

Definition 1 is about runtime entities that have no static counterpart. Therefore

we consider a notion weaker than deadlocked configuration. This last notion will

be used to demonstrate the correctness of the type system.

Definition 3. A configuration cn has
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i) a dependency (α, β) if:

– α(a, {` | C[f ]}, q) β(a′, p′, q′) ∈ cn
– f ∈ destinies(p′, q′).

ii) a dependency (α, α) if

– α(a, {` | C[f ]}, q) ∈ cn
– f ∈ destinies(q).

Given a set D of dependencies, let D+ be the transitive closure of D. A config-

uration cn contains a circularity if the transitive closure of its set of dependencies

has a pair (α, α).

Proposition 3.4.1. If a configuration is deadlocked then it has a circularity. The

converse is false.

Since gASP is stateful, it is possible to store futures in object fields and to

pass them around during invocations. Therefore, computing the value of a field

is difficult and, sometimes, not possible because of the nondeterminism caused by

the concurrent behaviours. Below we formalise the notion of programs with queue

with non deterministic effects, which are programs where concurrent methods have

no conflicting access to same fields, i.e. if one method writes a field of an object,

any method that can execute in parallel cannot access to the same field. This

constraint is defined below.

We start denoting xw ∈ {` | s} whenever x occurs as a left-hand side variable

in an assignment of s; and xr ∈ {` | s} whenever x occurs as an atom in s.

Definition 4 (Queue with deterministic effects). An active object α(a, p, {q1,

· · · , qn}) has a queue with deterministic effects if, for every x ∈ dom(a), there are

no i 6= j such that either ( i) xw ∈ qi and xw ∈ qj or ( ii) xr ∈ qi and xw ∈ qj.

Definition 5. A configuration cn has deterministic effects if every active object

of this configuration has a queue with deterministic effects.

Definition 6. A gASP program has deterministic effects if cn →∗ cn′, cn′ has

deterministic effects, where cn is the initial configuration for this program.
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3.5 A complete example: dining philosophers in

gASP

In this section we present a complete example detailing the execution of a pro-

gram and showing how a deadlocked configuration can be reached. The program

presented in Listing 3.1 and 3.2 implements the dining philosophers problem. For

the sake of simplicity we present a version with only two philosophers in order to

better focus on the key steps.

To make the example easier to follow, it is better to have a clear idea about

which active objects refer to forks and which refer to philosophers. We have

implemented, then, the diner philosophers problem in a version of gASP which

allows the definition of more than one class. As we said previously, extending the

language in order to have several classes is not problematic.

1 class Philosopher{

2 Int behave(Fork fR , Fork fL)

3 { fut = fR.grab(fL);

4 aux = fut + 0;

5 c = this.behave(fR, fL) }

6 }

7

8 class Fork{

9 Int grab(Fork fL)

10 { fut = fL.grab_second ();

11 aux = fut + 0;

12 return aux }

13

14 Int grab_second () { return 0 }

15 }

Listing 3.1 – Dining philosophers in gASP - Philosopher and Fork

16 // MAIN //

17 { fork1 = new Fork() ;

18 fork2 = new Fork() ;

19 p1 = new Philosopher ();

20 p2 = new Philosopher ();

21 fut1 = p1.behave(fork1 , fork2);
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22 fut2 = p2.behave(fork2 , fork1) }

Listing 3.2 – Dining philosophers in gASP - Main function

In the following we detail the key steps of the evaluation of the program.
Considering that the initial configuration is:

main(∅, { [destiny 7→ fmain , this 7→ main ] | fork1 = newFork() ; fork2 = newFork() ; · · · },∅)

let us start detailing the execution of the lines of code between 17 and 20

17 fork1 = new Fork() ;

18 fork2 = new Fork() ;

19 p1 = new Philosopher ();

20 p2 = new Philosopher ();

The execution of this code requires the application of the rules New and As-

sign four times. Applying these rules, four active objects are created: the active

objects γ and δ represent the two philosophers, whereas α and β represent the two

forks. The configuration becomes:

main(∅, { [ destiny 7→ fmain , this 7→ main, fork1 7→ α, fork2 7→ β, p1 7→ γ,

p2 7→ δ ] | · · · },∅)

α(∅,∅,∅) β(∅,∅,∅) γ(∅,∅,∅) δ(∅,∅,∅)

In lines 21 and 22 the method behave is invoked twice.

21 fut1 = p1.behave(fork1 , fork2);

22 fut2 = p2.behave(fork2 , fork1);

This method encodes the behaviour of a philosopher that wants to grab the

two forks and then start eating. The two invocations of behave is performed

respectively on γ and δ. Each method invocation requires the application of the

rule Invk. As defined in Figure 3.7 every time the rule Invk is applied a new future

created. The future elements f0(⊥) and f1(⊥) are added to the configuration.

Through the application of the rule Assign, f0 and f1 are stored in fut1 and fut2

respectively. The two method invocations are immediately served (rule Serve),

this is possible because both active objects γ and δ have no running process. The

main function can terminate, but the because the two invocations of behave are

running the program is not considered as ended.
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main(∅,∅,∅)

γ(∅, { [destiny 7→ f0, this 7→ γ, fR 7→ α, fL 7→ β ] | body− of− behave },∅)

δ(∅, { [destiny 7→ f1, this 7→ δ, fR 7→ β, fL 7→ α ] | body− of− behave },∅)

α(∅,∅,∅) β(∅,∅,∅) f0(⊥) f1(⊥)

The execution of the two invocations of behave can run in parallel in the two

active objects γ and δ.

2 Int behave(Fork fR , Fork fL)

3 { fut = fR.grab(fL);

4 aux = fut + 0;

5 c = this.behave(fR, fL) }

This method defines how the two philosophers grab the fork on their right1.

The fork represented by the active object α has been grabbed by the philosopher

represented by γ and the fork β has been grabbed by δ. As before, the requests

related to the two methods grab can immediately be served because the active

objects α and β have no running process. The expression presented in line 4,

which is a way to enforce synchronisation, can not be computed in both active

object because the its evaluation requires the result of the method grab. The

process running in active object γ and δ are locked until future f2 and f3 are

resolved. Applying the rules Invk, Assign, and Serve for both active objects,

we reach the following configuration:

γ(∅, { [destiny 7→ f0, this 7→ γ, fR 7→ α, fL 7→ β, fut 7→ f2 ] | aux = fut + 0 ; · · · },∅) f0(⊥)

δ(∅, { [destiny 7→ f1, this 7→ δ, fR 7→ β, fL 7→ α, fut 7→ f3 ] | aux = fut + 0 ; · · · },∅) f1(⊥)

α(∅, { [ destiny 7→ f2, this 7→ α, fL 7→ β ] | body− of− grab },∅) f2(⊥)

β(∅, { [ destiny 7→ f3, this 7→ β, fL 7→ α ] | body− of− grab },∅) f3(⊥)

As we can see in the lines of code from 9 to 12, the method grab defines how

philosophers grab the fork on their left.

9 Int grab(Fork fL)

10 { fut = fL.grab_second ();

11 aux = fut + 0;

12 return aux }

1We detail here the execution that leads to a deadlock, of course another scheduling is also
possible.
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At this point the active object α invokes the method grab second on β and β

does the same on α. Both requests are put in the queue of the corresponding active

object, but cannot be served because both active objects α and β have already a

running process. We reach then the following deadlocked configuration:

γ(∅, { [destiny 7→ f0, this 7→ γ, fR 7→ α, fL 7→ β, fut 7→ f2 ] | aux = fut + 0 ; · · · },∅) f0(⊥)

δ(∅, { [destiny 7→ f1, this 7→ δ, fR 7→ β, fL 7→ α, fut 7→ f3 ] | aux = fut + 0 ; · · · },∅) f1(⊥)

α(∅, { [ destiny 7→ f2, this 7→ α, fL 7→ β, fut 7→ f4 ] | aux = fut + 0 ; · · · }, { [destiny 7→ f5] |

body− of− grab second}) f2(⊥) f5(⊥)

β(∅, { [ destiny 7→ f3, this 7→ β, fL 7→ α, fut 7→ f5 ] | aux = fut + 0 ; · · · }, { [destiny 7→ f4] |

body− of− grab second}) f3(⊥) f4(⊥)

It is trivial to see that no other rule can be applied, the computation is dead-

locked because the active objects γ and δ wait until f2 and f3, respectively, are

not resolved. The circular dependency that cause the deadlock concerns α and

β. The active object α and β are locked until the future f4 and f5, respectively,

are resolved, but for resolving these two futures we need the termination of the

process in α and β. As we can notice this last configuration reached reflect exactly

the definition of deadlocked configuration that we state before (see Definition 1).

The execution presented is only one of the possible execution of the system,

in which we show how the deadlock can be reached with the minimum number of

steps. There are also other possible executions that allow the philosophers to eat

an think an unpredictable amount of times, before leading to a deadlock. This

unpredictable number of safe interleaving between the two philosophers can be so

high that the deadlock could never be reached. This is the reason why dynamic

analysis may classify programs as deadlock free though they still can potentially

lead to deadlocked configurations.

3.6 Conclusions

In this chapter we presented an Active object model called ground-ASP, which is

a core language for ASP [Caromel et al., 2004]. As stated in Section 3.1, gASP

is based on uniform object model and uses a mono-thread scheduling approach.

Section 3.3 points out the main features of gASP, which are: the absence of explicit
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type for futures and the synchronisation mechanism called wait-by-necessity . This

section also brings out the problems related to the static analysis of a model with

those features. Those problems can be summarised in 3 main points:

Unbounded set of dependencies. The possibility of returning future mixed

with the absence of an explicit future type brings to a possible unbounded

nesting of futures. As we have seen in the example of the factorial function,

presented in Figure 3.2, the main function was the only responsible for the

synchronisation of all the recursive calls. Then the unique synchronisation

performed by the main function should be associated not to a single waiting

dependencies, but to a set of waiting dependencies, in order to state that

active object executing the main is waiting for the result of all the recursive

function that running in different active objects. As will be presented more

in detail in the next chapter, the problem of generating statically this set is

that we do not know a priori the number of the dependencies that we have

to generate (i.e. for the factorial problem, this number depends on a para-

meter) and in case of unbounded recursive calls the number of dependencies

can be unbounded.

Tracing of future. Even though gASP does not have explicit future types, it still

creates a future when a method in invoked. These futures can be passed

as parameters and stored in object field. The tracing of these futures is a

relevant aspect in the analysis of synchronisation patterns.

Nondeterminism. Since gASP is stateful, it is possible to store futures in object

fields and pass these objects around during invocations. Therefore, comput-

ing the value of a field is difficult and, sometimes, not possible because of

the nondeterminism caused by the concurrent behaviours.

In this chapter we have also formally defined some important concepts, which

will be used in the rest of the thesis, such as: deadlocked configuration for gASP,

deadlock-freedom programs, and the concepts of queue and program with determ-

inistic effects.

In the next chapter we will present a static analysis technique that is able to

consider all the possible executions of a program, and to identify as potentially

deadlocked all the programs that have, at least, one possible execution that leads
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to a deadlocked configuration.
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In this chapter we present a static analysis of synchronisation patterns for an

Active object model with wait-by-necessity and implicit future type. The chapter

presents our first work, in which we focus on how to trace synchronisation patterns

in a language in which futures can be transparently passed around as parameters

or returned from methods. In the analysis proposed in this chapter, we also want

to solve the first of the three main problems discussed in Section 3.6, which refers

to the identification of the set of dependencies, potentially unbounded, that can

be triggered by a single synchronisation.
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In order to focus on these aspects we restrict the analysis only on programs in

which active objects are not stateful. The discussion about the analysis of gASP

programs with stateful active object will be delayed to Chapter 5 that will present

our second main work.

To make the type system and the behavioural type analysis not too heavy,

other small limitations have been imposed to gASP programs. These restrictions

are presented in section 4.1.

The deadlock detection technique we are going to present uses abstract de-

scriptions, called behavioural types. The behavioural type, their syntax and the

the rest of the notations that will be used are presented in Section 4.2. Those

behavioural types are associated to programs by a type system, which has been

defined in Section 4.3. The purpose of the type system is to collect dependencies

between active objects and between futures and active objects. At each point of

the program, the behavioural type gathers information on local synchronisations

and on active objects potentially running in parallel. We perform such an analysis

for each method body, gathering the behavioural information at each point of the

program.

The chapter continues with the presentation of the behavioural type analysis,

Section 4.4, which takes in input the behavioural type of a program and identifies

the presence of deadlocks.

To help the the reader, typing process and the behavioural type analysis will

come with a small example that shows these two processes applied to the program

of Figure 3.2.a.

To guarantee the soundness of our behavioural type system, in Section 4.5 we

informally explain how the soundness of the type system is proven, while the full

proof is delayed to Appendix A.1.

This chapter will mostly focus on the behavioural type system and the behavi-

oural type analysis that are our main contribution. However, the behavioural type

analysis presented may not terminate because of the recursive nature of the behavi-

oural types. Then to make our analysis complete, we need a fixed-point technique

that is able to find circularities in a finite time. In Section 4.6 will be briefly present

an adaptation of the fixpoint analysis that was designed by Giachino, Kobayashi,

and Laneve [2014].
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The chapter ends with an example in which the entire analysis is applied to the

dining philosophers problem, already presented in section 3.5, and a final section

that summarise what has been presented in the chapter and explaining how some

of the limitations imposed can be removed.

4.1 Restriction

We focus here on a sublanguage of gASP differing from the full language in the

following aspects: fields only contain synchronised integers, i.e., (i) neither futures

(ii) nor active objects; and (iii) all futures created in a method must be either

returned or synchronised.

Regarding (i) and (ii), they allow us to avoid any analysis of the content of

fields and keep the types for active objects simpler.

Regarding item (iii), this enforces that, once the future for a method has been

synchronised, all the futures directly or indirectly created by that method are syn-

chronised too. Notice that if a future is returned by the current method, then it

will be synchronised by whomever will synchronise on the current method result.

This prevents from having computation running in parallel without any mean to

synchronise on it.

These restrictions simplify the presentation of the analysis and allow us to

focus on the original aspects related to transparent futures and to the type system

itself. They are enforced by the type system of Section 4.3. We discuss how to

relax these restrictions in Section 4.9.

4.2 Notations

A behavioural type program is a pair
(
L,Θ � L

)
, where L is a finite set of method

behaviours m(α,x, X) = (ν ϕ)(Θm � Lm), with α,x, X being the formal parameters

of m, Θm the future environment of m, Lm the behavioural type of the body of m,

and Θ and L are the main future environment and the main behavioural type,

respectively. The binder (νϕ) binds the occurrences of ϕ in Θm and Lm, with ϕ

ranging over future or active object names.
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r ::= @ | α basic type

x ::= r | rf extended type

κ ::= ? | α | X synchronisers

L ::= 0 | (κ, α) | fκ | L + L | L N L behavioural type

λX.m(α,x, X)[X] ::= λX.m(α,x, X) | λX.m(α,x, X)X future behavior
| λX.m(α,x, X)→

Figure 4.1 – Syntax of behavioural types.

A future environment Θ maps future names to future behaviours (without

synchronisation information) λX.m(α,x, X). In the method behaviour, the formal

parameter α corresponds to the identity of the object on which the method is called

(the this), while X, called handle, is a place-holder for the active object that will

synchronise with the method. In practice several active objects can synchronise

with the same future, but only one at a time; X will thus be instantiated by a

single active object at each point of the analysis. x are the types of the method

parameters.

The syntax of behavioural types L is defined in Figure 4.1. The basic types r

are used for values: they may be either @, to model integers, or any active object

name α. The extended type x is the type of variables, and it may be a value type r

or a not-yet-synchronised type rf (in order to retrieve the value r it is necessary to

synchronise the future f). The behavioural type 0 enforces no dependency, (κ, α)

enforces the dependency between κ and α meaning that, if κ is instantiated by an

active object β, then β will need α to be available in order to proceed its execution.

The term fκ may represent different behaviours depending on the value of κ: f?

represents an unsynchronised future f , which is a pointer in the future environment

to the corresponding method invocation; fα represents the synchronisation of the

active object α with the future f ; fX represents the return of a future f by the

method associated to the handler X. The type L N L′ is the parallel composition

of L and of L′: it is the behaviour of two methods running in parallel and not

necessarily synchronised. The sum L + L′ composes the dependencies of L and L′
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independently: it is the composition of two behaviours that cannot occur at the

same time, either because one occurs before the other or because they are exclusive.

The behaviour of a future (stored in the environment) is tagged X if the future

is synchronised and → if the future is returned by the return statement; else it

has no tag. Whenever parentheses are omitted, the operation “N” has precedence

over “+”. We will shorten L1 N · · ·N Ln into
˘

i∈{1..n} Li. In the syntax of L, the

operations “N” and “+” are associative, commutative with 0 being the identity

on N, and behavioural types are equal up-to alpha renaming of bound names.

The judgments of the type system have a typing context Γ mapping variables to

extended types x, future names to future behaviour λX.m(α,x, X)[X], and method

names to their signatures of the form (α,x, X)→ r, where α,x, X are the formal

parameters of the method behaviour and r is the type of the returned value,

respectively. Judgments have the following form:

– Γ ` m : (α,x)→ r for instantiating the method signature of m.

– Γ ` v : x for typing variables and values.

– Γ `S z : x, L . Γ′ for typing expressions with side effects, where S is

the set of parameters of the body of the method currently typed, L is the

behavioural type of the expression, and Γ′ is the environment obtained by

updating Γ to reflect possible future creations.

– Γ `S s : L . Γ′ for typing statements, where S and L are as before, and Γ′

is obtained by updating Γ to reflect possible variable assignment.

Since Γ is a function, we use the standard predicates x ∈ dom(Γ) or x 6∈
dom(Γ). We define some additional auxiliary functions on Γ in Figure 4.2 and 4.3.

Equation 4.1 defines the update of the typing environment Γ, modifying the

type associated to the variable x. The equation 4.2 updates Γ so that every variable

that was previously mapped to x is now mapped to x
′.

The following functions on Γ are also used: Γ(f)X (Eq. 4.3) corresponds to Γ(f)

check-marked; Γ(f)→ is defined similarly to Γ(f)X; Γ(f)× (Eq. 4.4) corresponds

to Γ(f) such that any kind of marks has been removed; the restriction of Γ to a

set S of names (Eq. 4.5) is noted Γ|S; and the difference operation is defined in

equation 4.6.

The definition of the sum and the merge of two environments are defined in the

equation 4.7 and 4.8. The former equation simply returns an environment with is
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Γ[x 7→ z](y) =

{
z if y = x

Γ(y) otherwise
(4.1)

Γ[x 7→ x
′]Γ(x)=x

def
= Γ[x1 7→ x] · · · [xn 7→ x] if {y |Γ(y) = x} = {x1, · · · , xn}

(4.2)

Γ(f)X =

{
λX.m(α,x, X)X if Γ(f) = λX.m(α,x, X)[X]

undefined if f 6∈ dom(Γ)
(4.3)

Γ(f)× =

{
λX.m(α,x, X) if Γ(f) = λX.m(α,x, X)[X]

undefined if f 6∈ dom(Γ)
(4.4)

Γ|S(x) =

{
Γ(x) if x ∈ S
undefined otherwise

(4.5)

(Γ \ x)(y) =

{
Γ(y) if x 6= y

undefined if x = y
(4.6)

(Γ + Γ′)(x) =

{
Γ(x) if x ∈ dom(Γ)

Γ′(x) if x ∈ dom(Γ′)
(4.7)

Note: Γ + Γ′ is defined only if ∀x ∈ dom(Γ) ∩ dom(Γ′).Γ(x) = Γ′(x)

Merge(Γ1,Γ2)(x) =


rf if Γi(x) = rf ∧ Γj(x) = r,

i, j ∈ {1, 2}
x if Γ1(x) = Γ2(x) = x

undefined otherwise

(4.8)

Figure 4.2 – Auxiliary definitions
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Fut(Γ)
def
= {f | f ∈ dom(Γ)} (4.9)

AFut(Γ)
def
= {f ∈ Fut(Γ) | Γ(f) = Γ(f)×} (4.10)

unsync(Γ)
def
=

¯
f∈AFut(Γ)

f?, (4.11)

Figure 4.3 – Auxiliary definitions

the union of the two environment, but this operation is defined if and only if all

the element that the two environment have in common (∀x ∈ dom(Γ) ∩ dom(Γ′))

are mapped to the same element (Γ(x) = Γ(x′)). The later equation, defining

the merge, returns an environment in which all the variable mapped by the two

environment on the exactly same type are still mapped on that type; the variables

mapped to the same type that are synchronised in one environment and not in the

other are considered as not synchronised; and all the other cases are not defined.

Figure 4.3 presents the auxiliary functions: Fut(Γ) collects all the futures stored

in Γ, AFut(Γ) collects all the futures that are not tagged with a X or →, i.e.

not-yet-synchronised futures, and unsync(Γ) performs the parallel composition of

the behavioural types of not-yet-synchronised method invocations, it collects the

unsynchronised future of all the methods running in parallel.

4.3 Typing Rules

The typing rules are presented in Figure 4.4, 4.5, and 4.6. The most significant

ones are discussed below. In general, a statement has a behaviour that is a sum

of behaviours. Each term of the sum is a parallel composition of synchronisation

dependencies and unsynchronised behaviours. We propagate this way the set of

methods running in parallel as a set of not-yet-synchronised futures all along the

type analysis (see the role played by unsync(Γ′) in rules (T-Sync), (T-Invk), (T-

Return)). The statements that create no synchronisation at all (i.e. that do not

access a future, nor call a method, nor return from a method) have behaviour 0 and

their unsynchronised behaviour is the same as the one of the previous statement.
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expressions and addresses
- judgements used: Γ ` v : x and Γ ` m : (α,x, X)→ r

(T-Var)

Γ(x) = x

Γ ` x : x

(T-Val)

v integer-value or null

Γ ` v : @

(T-Method-Sign)

Γ(m) = (α,x, X)→ r σ renaming
σ(@) = @ r 6∈ {@, α,x} =⇒ σ(r) fresh

Γ ` m : (σ(α), σ(x), σ(X))→ σ(r)

expressions with side effects
- judgement used: Γ `S e : x, L . Γ′

(T-Sync)

Γ ` v : rf Γ(this) = α

Γ′ = (Γ[y 7→ r]Γ(y)=rf )[f 7→ Γ(f)X]

Γ `S v : r, fα N unsync(Γ′) . Γ′

(T-Sync-Val)

Γ ` v : r

Γ `S v : r, 0 . Γ

(T-Expression)

Γ `S e : @, L1 . Γ′

Γ′ `S e′ : @, L2 . Γ′′

Γ `S e⊕ e′ : @, L1 + L2 . Γ′′

(T-New)

α fresh Γ ` v : @

Γ `S new Act(v) : α, 0 . Γ

(T-Invk)

Γ `S v : α, L . Γ′ Γ′ ` v : z Γ′ ` m : (α,x, X)→ r

f fresh Γ′′ = Γ′[f 7→ λX.m(α, z, X)]

Γ `S v.m(v) : rf , L + f? N unsync(Γ′) . Γ′′

Figure 4.4 – Typing rules for expressions, addresses and expressions with side-
effects.

We omit the unsynchronised part in this case as no deadlock can be created at

those steps.

Figure 4.4 presents the typing rules for expressions, addresses and expres-

sions with side effects. While (TR-Var) and (TR-Val) are trivial, the rule

(T-Method-Sign) deserves some explanations. The rule (T-Method-Sign)

instantiates a method signature according to the invocation parameters, what is

important to notice is that if the returned type is neither an integer, nor the object



4.3. TYPING RULES 75

executing the method, nor an object passed as parameter, then the object returned

has a fresh name.

Rule (T-Sync) types the synchronisation of a not-yet-synchronised value v,

namely when v has type rf . The rule dereferences the future f by assigning to v

the type r. The corresponding behavioural type is fα N unsync(Γ′), where α is the

synchronising active object, and the not-yet-synchronised method invocations are

added in parallel. The environment Γ is updated in order to record the synchron-

isation in the possible aliases of v (Γ[y 7→ r]Γ(y)=rf ) and to record that f has been

computed, by adding the the tag X to the type of f (f 7→ Γ(f)X). Notice that in

case v is already associated to a value type, namely r, no synchronisation and no

environment update is performed, as defined in rule (T-Sync-Val).

Rule (T-Invk) types a method invocation. It creates a new future and stores

it in Γ. The receiving active object v must have a type α, meaning that the value

cannot be an unresolved future, while the parameters v may have future types.

The resulting behavioural type is the sum of the behavioural types resulting from

the possible synchronisation on v and the not-yet-synchronised method invocations

– i.e., the new one coputing f and those that are running in parallel, represented

by unsync(Γ′).

Rule (T-Expression) types the arithmetic expressions, the behavioural type

assigned is the sum of the behavioural type of the sub expressions. This rule is

applied until the sub expressions are terms v that will be typed using the rules

(T-Synch) and (T-Synch-Val). The typing of the creation of a new active

object is handled by rule (T-New). A fresh name is created and assigned to this

new active object. The rule also checks that all the fields of this new object are

synchronised integers as required by the restriction (ii) presented in Section 4.1.

Figure 4.5 presents the typing rules for statements. Rules (T-Assign-Field),

(T-Assign-Val), and (T-Assign-Exp) type the assignment. The first one con-

strains fields to be assigned to (already synchronised) integers; the second one

types the assignment of values to local variables, without performing any syn-

chronisation, thus supporting the aliasing of future variables; the third rule types

the assignment of an expression e ⊕ e′ a method invocation or an active object

creation to a local variable. In the last case, a synchronisation might be required.

Rule (T-Seq), given the types L1 and L2 of the two subsequent statements,
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statements
- judgements used: Γ `S s : L . Γ′

(T-Assign-Field)

x ∈ fields(Act) Γ ` v : @

Γ `S x = v : 0 . Γ

(T-Assign-Val)

x 6∈ fields(Act) Γ ` v : x

Γ `S x = v : 0 . Γ[x 7→ x]

(T-Assign-Exp)

x 6∈ fields(Act)
z is not a value v Γ `S z : x, L . Γ′

Γ `S x = z : L . Γ′[x 7→ x]

(T-Seq)

Γ `S s1 : L1 . Γ1

Γ1 `S s2 : L2 . Γ2

Γ `S s1; s2 : L1 + L2 . Γ2

(T-Return)

Γ(destiny) = r Γ(future) = X Γ ` v : r′f ′
r
′ ∈ S ∨ r ∈ S =⇒ r = r

′ Γ′ = Γ[f ′ 7→ Γ(f ′)→]

Γ `S return v : f ′X N unsync(Γ′) . Γ′

(T-Return-Val)

Γ(destiny) = r Γ ` v : r′

r
′ ∈ S ∨ r ∈ S =⇒ r = r

′

Γ `S return v : 0 . Γ

(T-Skip)

Γ `S skip : 0 . Γ

(T-If)

Γ `S e : @, L . Γ′ Γ′ `S s1 : L1 . Γ1 Γ′ `S s2 : L2 . Γ2

(AFut(Γ1) ∪ AFut(Γ2)) \ AFut(Γ′) = ∅
Γ′′ = Merge(Γ1,Γ2) ∪ Γ1|Fut(Γ1)\Fut(Γ′) ∪ Γ2|Fut(Γ2)\Fut(Γ′)

Γ `S if e { s1 } else { s2 } : L + L1 + L2 . Γ′′

Figure 4.5 – Typing rules for statements.

correctly associates a new composite type to the sequential composition of the

statements. In rule (T-Return) we check that the return type value corresponds

to the value type of destiny unless it is a fresh name (not belonging to the formal

parameters of the method). In Γ, future contains the handler variable X. The

corresponding future is tagged with a → in the resulting environment (because it

is returned to the caller). In case v is already associated to a value type, namely

r, no synchronisation and no environment update is performed as defined in rule

(T-Return-Val).

In rule (T-If) the behavioural type of a conditional statement is the sum of

the behavioural type resulting from the typing of the expression e and the be-

havioural types of the two branches. The rule can be applied provided that the

futures created in the branches are either returned (by a return statement) or syn-
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(T-Method)

Γ(m) = (α,x, X)→ r y = fields(Act)
Γ + this : α + y : @ + x : x + destiny : r + future : X `{α,x} s : L . Γ′

AFut(Γ′) = ∅ ϕ = var(L) \ {α,x}
Θm = [f 7→ Γ′(f)×]f∈Fut(Γ′) Lm = L N(X,α)

Γ ` m (T x){s} : m(α,x, X) = (ν ϕ)(Θm � Lm)

(T-Program) (
Γ ` m (T x){s} : L(m)

)(m (T x){s})∈M

Γ + this : main `∅ s : L . Γ′ Θ = [f 7→ Γ′(f)×]f∈Fut(Γ′)

Γ ` {Int x,M} {s} : (L,Θ � L)

Figure 4.6 – Typing rules for methods and programs.

chronised (constraint on line 2), variables are mapped to the same futures in both

branches (line 3). The environment is updated with the changes that occur in the

two branches, when they are equal, and the futures created in one of the branches,

when they are synchronised or returned (Γ1|Fut(Γ1)\Fut(Γ′) ∪ Γ2|Fut(Γ2)\Fut(Γ′)). Vari-

ables that are modified in different ways by the two branches are restricted to be

almost the same behavioural type. The only allowed difference is if one future is

synchronised in one of the branch and not in the other; in this case the merge

retains the unsynchronised behaviour.

Finally Figure 4.6 presents the typing rules for methods and program. In

rule (T-Method), the behavioural type of the method body is extended with

a parallel pair (X,α) which will be instantiated by the active object performing

a synchronisation on this method. This rule also checks if restriction (iii) of

section 4.1 is respected, the rule constrains method bodies to synchronise all the

futures created in the body or return them (AFut(Γ′) = ∅). The environment

Θm is defined by comprehension, collecting all the futures created in the method

without synchronisation information (Θm = [f 7→ Γ′(f)×]f∈Fut(Γ′)).

Example 4.3.1. Let us discuss the typing of the factorial method shown in Fig-

ure 3.2.a in Section 3.1.

We begin by typing of the main body.
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The typing environment at the beginning only maps method names to method sig-

natures. Having only the fact method, the typing environment result to be:

Γ = [ fact 7→ (αfact, @ffact , @gfact , X )→ @ ].

To apply the rule (T-Program) we need to verify that the typing environment Γ

extended with this : main types the body of the main function with the behavioural

type L:

Γ + this : main `∅ x = newAct() ; y = x.fact(3, 1) ; z = y + 1 : L . Γ′′.

The rule (T-Seq) state that the behavioural type of a sequence of statements is

the sum of the behavioural of each statement, that can be individually typed.

To type the statement x = new Act() with the typing environment Γ + this :

main we apply the rules (T-Assign-Exp) and (T-New), obtaining that:

Γ + this : main `∅ x = new Act() : 0 . Γ + this : main + x : α.

We can see that the type of a new statement is an empty behaviour, and that the

application of these two rules only has impact on the typing environment that has

been extended relating the variable x with the type of the object just created.

To type statement y = x.fact(3,1);, that is a method invocation, we have to

apply the rules (T-Assign-Exp) and (T-Invk), and we have that:

Γ + this : main + x : α `∅ y = x.fact(3,1) : f ′′? . Γ′

where Γ′ = Γ + this : main + x : α + y : @f ′′ + f ′ : λX.fact(α, @, @, X).

Finally to type the arithmetic expression we have to use the rules (T-Assign-

Exp),(T-Expression), and then to type 0 we will use the rule (T-Val), while

to type y, because in y is stored the future f ′′ (Γ(y) = @f ′′) we use the rule (T-

Synch), and we get:

Γ′ `∅ z = y + 0; : f ′′main . Γ′′
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where Γ′′ = Γ + this : main + x : α+ y : @f ′′ + z : @ + f ′′ : λX.fact(α, @, @, X)X.

Now that we have the type of the body of the main function, by rule (T-

Program) we can state that this function has behavioural type (L ·Θ) where:

L = f ′′? + f ′′main

Θ = { f ′′ 7→ λX.fact(α, @, @, X) }.

At this point we want to type the method fact. To accomplish this goal we need to

apply the rule (T-Method). This rule requires that we type the body of method

fact, (we abbreviate the body of fact with sfact). To type sfact we use the typing

environment Γ extended as follow:

Γ′ = Γ + this : α + n : @ffact + r : @gfact + destiny : @ + future : X.

The typing of sfact will be done similarly to the body of the main function, obtaining

as final result that:

Γ′ `{α,@ffact ,@gfact} sfact : Lfact . Γ′′

where
Θfact = { f ′ 7→ λX. fact(β, @, @, X) }
Lfact = ( fα + gX + gα + f ′? + f ′X ) N (X,α)

The type Lfact is a sum of five types (we omit the terms that are 0). The first

term fα refers to the synchronisation of the parameter n. The second term gX

is the type of the return of a potential future in the true branch of the if(r is a

parameter, then a potential future, which has not been synchronised before being

returned, then at that point it is still considered as a potential future). The term

gα represents the synchronisation of the parameter r of a possible future that can

be performed during the evaluation of the expression at line 4. The fourth term f ′?

is the type associated to the method invocation done at line 5; in this behavioural

type we can see that the future f ′ created by this method invocation is related to

the method invocation (Θfact(f
′) = λX. fact(β, @, @, X)). Finally we have that

the term f ′X is the behavioural type associated to the return of the future f ′ that is

done at line 6. The sum of these five terms is in conjunction with the pair (X,α)
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which represents the possible synchronisation made by a synchroniser X that want

to synchronise an invocation of the method fact.

Now that we have both the behavioural type of the main function and the one

of the method fact we can state that the behavioural type of the program is:

(
fact(α, @f , @g, X) = (ν β, f ′)(Θfact � Lfact), Θ � L

)
.

4.4 Behavioural type Analysis

The behavioural types presented above are actually terms of a recursive model

that expresses dependencies and features recursion and dynamic name creation.

This model turns out to be an extension of the so called deadLock Analysis Model

(LAM), defined by Giachino et al. [2014], and in this section we correspondingly

extend the theory.

The operational semantics of a behavioural type program
(
L,Θ � L

)
is a trans-

ition system where states are pairs of a future environment Θ (mapping future

names to method invocation instances) and a behavioural type. The definition of

transitions requires some notation. Contexts, noted C[ ], are defined by the syntax

C[ ] ::= [ ] | L N C[ ] | L + C[ ]

As usual, C[L] is the type where the hole of C[ ] is replaced by L. The envir-

onment update of futures (with f ′ 6∈ dom(Θ)) and extended type substitution are

respectively defined as follows:

(Θ[f
′
/f ])(g)

def
=

{
Θ(f) if g = f ′

Θ(g) if g 6= f
L[r/r′f ] = L[0/fκ]

The last substitution replaces all occurrences of a future synchronisation by a

null behaviour. It is used when a (synchronised) value r, i.e. a value that is

not a future, is passed to a method. Indeed, to have the most generic signature,

in method behaviours (stored in Θ), all formal parameters are assumed to be

potentially a non synchronised future r
′
f .

The transition relation is the least one satisfying the rule
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BT-red

Θ(f) = λX.m(α,x, X)

m(α′,x′, X) = (ν ϕ)(Θm � Lm) ∈ L κ 6= X ϕ′ fresh

L′ = Lm[ϕ
′
/ϕ][α,x, κ/α′,x′, X] Θ′ = Θ ∪Θm[ϕ

′
/ϕ][α,x/α′,x′]

Θ � C[ fκ ]→ Θ′ � C[ L′ ]

The initial state of (L,Θ � L) is Θ � L. We write→∗ for the reflexive and transitive

closure of →.

A behavioural type L is evaluated by successively replacing each future derefer-

ence with the corresponding type instance. Name creation is handled by replacing

bound names of method bodies with fresh names. Notice that when κ = X the

rule does not apply meaning that the behaviour of the return of a future (fX) is

not evaluated until that future is synchronised by some active object (fβ).

Example 4.4.1. Let us consider the behavioural type program of Figure 3.2.a in

section 3.1:

(fact(α, @f , @g, X) = (ν β, f ′)(Θfact � Lfact),Θ � L)

where
Θfact = {f ′ 7→ λX. fact(β, @, @, X)}
Lfact =

((
fα + gX + gα + f ′? + f ′X

)
N (X,α)

)
Θ = {f ′′ 7→ λX.fact(α, @, @, X)}
L = f ′′? + f ′′main

Starting from the behavioural type of the main function Θ � f ′′? + f ′′main , by rule

(BT-Red) we reduce the term f ′′? obtaining that:

Θ � L → Θ′ �
(
(g′? + g′?) N (?, α)

)
+ f ′′main

then we continue with the reduction of the therm f ′′main

Θ � L → Θ′ �
(
(g′? + g′?) N (?, α)

)
+ f ′′main

→ Θ′′ �
(
(g′? + g′?) N (?, α)

)
+
(
(g′′main + g′′main) N (main, α)

)
→ · · ·
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and so on, where

Θ′ = Θ ∪ {g′ 7→ λX. fact(β′, @, @, X)}
Θ′′ = Θ′ ∪ {g′′ 7→ λX. fact(β′′, @, @, X)}.

The term g′′main will be replaced by the instantiated behavioural type of the

method, producing the pair (main, β′′), reflecting the fact that the active object

main is synchronising also the nested recursive calls.

Notice that reduction of the behavioural types of the program never ends: the

type grows in the number of “+”-terms, which in turn become larger and larger

as the evaluation progresses. In principle, we do not know whether the former

will produce a deadlock at some further evaluation step. Since the computation

is infinite, we do not know when to stop looking for a deadlock. The fixpoint

technique of Section 4.6 offers us a finite way to discriminate between deadlocked

and deadlock-free programs.

4.5 Type soundness

The correctness of the type system in Section 4.3 is demonstrated by means of

a subject reduction theorem expressing that if a runtime configuration cn is well

typed and cn → cn ′ then cn ′ is well typed as well. While the theorem is almost

standard, in our case we cannot demonstrate a statement guaranteeing standard

type-preservation (the equality of types of cn and cn′) because our types are be-

havioural. However, it is critical for the correctness of the analysis that there is

a relation between the type of cn, let it be Θ � L, and the type of cn′, let it be

Θ′ � L′. Therefore, a subject reduction for the type system of Section 4.3 requires

the extension of the typing to configurations; and the definition of a later-stage

relation between behavioural types.

Runtime type system

In order to state the subject reduction theorem, we first have to extend the type

syntax of Figure 4.1 to be able to type the runtime configurations. To this aim we
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r ::= @ | α basic type

x ::= rF | r extended type

F ::= f | f s future type

κ ::= ? | α | X synchronisers

L ::= 0 | (κ, α) | Fκ | L + L | L N L behavioural type

K ::= (ν ϕ)(Θ � L) | K N K behavioural type for configuration

Figure 4.7 – Syntax of behavioural types at runtime.

extend the syntax of behavioural type in Figure 4.7 introducing extended futures

F and behavioural type for configuration K.

As regards F , they are introduced for distinguishing two kinds of future names:

i) f that has been used in the type system as a static time representation of a

future, but it is now used as its runtime representation; ii) f s now replacing f in

its role of static time future (it is typically used to reference a future that is not

created yet).

The typing judgments are identical to the corresponding ones used in the type

system, except for some minor differences:

1) the typing environment, now maps method names to a pair of elements (i.e

∆(m) = ((α,x, X) → r,K)) that are respectively the method signature and

its behavioural type at runtime. It is called ∆;

2) the rt unsync(·) function on environments ∆ is similar to unsync(·) in Sec-

tion 4.3, except that it now grabs all f s and all futures f that were created

by the current thread f . More precisely we define FutR(∆), AFutR(∆), and

rt unsync(∆) as in Figure 4.8.

FutR(Γ) collects all the (static and runtime) futures stored in ∆, AFutR(∆)

collects all the (static and runtime) futures that are not tagged with a X or →,

and rt unsync(∆) performs the parallel composition of the behavioural types of

such not-yet-synchronised method invocations.

The typing rules for the runtime configuration are given in Figures 4.9, 4.10

and 4.11. Except for a few rules (in particular, those in Figures 4.9 which type



84 CHAPTER 4. BEHAVIOURAL TYPE ANALYSIS

FutR(∆)
def
= {F | F ∈ dom(∆)} (4.12)

AFutR(∆)
def
= {F ∈ FutR(∆) | ∆(F ) = ∆(F )×} (4.13)

rt unsync(∆)
def
=

¯
F∈AFutR(∆)

F? (4.14)

Figure 4.8 – Auxiliary definitions

the runtime element of a configuration), all the typing rules have a corresponding

one in the type system defined in Section 4.3.

In the type system at runtime, the rule (TR-Parallel) types an entire

configuration with the parallel composition of the runtime behavioural type, in

which each term corresponds to one element of the configuration. The rule (TR-

ActObj) types an active object with the parallel composition of the runtime

behavioural type of running process and behavioural types of all the process in the

queue of pending processes. Rule (TR-Process) results to be very similar to the

rule (T-Method) presented in Figure 4.6. As we have already said most of the

rule are similar to the one of the static type system, and only differ for the fact

that they handle both static and runtime future, while the rule (TR-Invk) needs

some more details. Rule (TR-Invk) creates a static fresh future, at this point we

are sure that this future can only be a static future whatever it is moment in which

this statement is typed the method invocation has not been performed, then the

runtime future has not been created. As it is possible to see in the proof of the

subject reduction for the case of Invk while the typing environment that types cn

contains a static future, the environment that types cn′ (in cn′ we have that the

method has been invoked) has to contain the corresponding runtime version of the

static future created typing cn.
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(TR-Parallel)

∆ ` cn1 : K1 ∆ ` cn2 : K2

∆ ` cn1 cn2 : K1 N K2

(TR-Future)

−
∆ ` f(w) : 0

(TR-ActObj)

∆ `α p : K1 ∆ `α q :
n
N
i=2

Ki

∆ ` α(a, p, q) :
n
N
i=1

Ki

(TR-Process)

∆ ` m : (α,x, X)→ r ∆(f) = λX.m(α,x, X)
∆ + x : x + destiny : r + future : X `α{α,x} s : L . ∆′

AFutR(∆′) = ∅ ϕ = var(L) \ {α,x}
Θm = [f 7→ ∆′(f)×]f∈FutR(∆′) Lm = L N(X,α)

∆ `α {destiny 7→ f, x 7→ v | s} : (ν ϕ)(Θm � Lm)

Figure 4.9 – Typing rules for runtime configurations.

Later-stage

The later-stage relation �∆ is a syntactic relationship between behavioural types.

Formally, the later-stage relation is the least congruence with respect to runtime

behavioural type that contains the rules in Figure 4.12. We can simplify the basic

laws of the later-stage relation saying that a method invocation is larger than the

instantiation of its method behaviour (LS-Invk), and a sum type is larger than

each element of the sum.

We are now ready to state the Subject Reduction theorem.

Theorem 4.5.1 (Subject Reduction). Let ∆ `R cn : K and cn→ cn′. Then there

exist ∆′, K′, and an injective renaming of active object names i such that

– ∆′ `R cn′ : K′ and

– i(K) �∆ K′

The proof is a case analysis on the reduction rule used in cn → cn′, and can

be found in Appendix A.1. To better understanding the proofs it is worth to

notice that the theorem 4.5.1 states that the runtime environment ∆′ exists, then

to type cn′ we have to define the runtime typing environment that contains all

the information needed to type cn′. As it will be possible to see in the proofs,

the runtime typing environment that we use to type the target configuration (cn′)
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expressions and addresses
- judgments used: ∆ ` w : x and ∆ ` m : (α,x, X)→ r

(TR-Var)

∆(x) = x

∆ `α x : x

(TR-Val)

v integer-value or null

∆ `α v : r

(TR-Act)

−
∆ `α β : β

(TR-Fut)

∆(f) = λX.m(β, z, X)
∆ ` m : (β,x, X)→ r

∆ `α f : rf

(TR-Method-Sign)

∆(m) = (ν ϕ)(Θm � Lm)
σ renaming σ(@) = @ r 6∈ {@, α,x} =⇒ σ(r) fresh

∆ ` m : (σ(α), σ(x), X)→ σ(r)

expressions with side effects
judgement used - ∆ `αR e : x , L . ∆′

(TR-Sync)

∆ ` v : rF ∆(this) = α

∆′ = (∆[y 7→ r]∆(y)=rF )[F 7→ ∆(F )X]

∆ `αR v : r , Fα N rt unsync(∆′) . ∆′

(TR-Sync-Val)

∆ `α v : r

∆ `αR v : r , 0 . ∆

(TR-Expression)

∆ `αR e : @ , L1 . ∆′

∆′ `αR e′ : @ , L2 . ∆′′

∆ `αR e⊕ e′ : @ , L1 + L2 . ∆′′

(TR-New)

α fresh ∆ ` v : @

∆ `αR new Act(v) : α , 0 . ∆

(TR-Invk)

∆ `αR v : α , L . ∆′ ∆′ ` v : z ∆′ ` m : (α,x, X)→ r

f s fresh ∆′′ = ∆′[f s 7→ λX.m(α, z, X)]

∆ `αR v.m(v) : rfs , L + f s? N rt unsync(∆′) . ∆′′

Figure 4.10 – Runtime typing rules for expressions, addresses and expressions with
side-effects.
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statements
- judgement used: ∆ `αR s : L . ∆′

(TR-Assign-Field)

x ∈ fields(Act) \ dom(∆)
∆ `α v : @

∆ `αR x = v : 0 . ∆

(TR-Assign-Val)

x 6∈ fields(Act) \ dom(∆)
∆ `α w : x

∆ `αR x = w : 0 . ∆[x 7→ x]

(TR-Assign-Exp)

x 6∈ fields(Act) \ dom(∆)
z is not a value v

∆ `αR z : x , L . ∆′

∆ `αR x = z : L . ∆′[x 7→ x]

(TR-Seq)

∆ `αR s1 : L1 . ∆1

∆1 `αR s2 : L2 . ∆2

∆ `αR s1; s2 : L1 + L2 . ∆2

(TR-Return)

∆(destiny) = r ∆(future) = X ∆ ` v : r′F ′
r
′ ∈ R ∨ r ∈ R =⇒ r = r

′ ∆′ = ∆[F ′ 7→ ∆(F ′)→]

∆ `αR return v : F ′X N rt unsync(∆′) . ∆′

(TR-Return-Val)

∆(destiny) = r ∆ ` v : r′

r ∈ R =⇒ r = r
′

∆ `αR return v : 0 . ∆

(TR-Skip)

∆ `αR skip : 0 . ∆

(T-If)

∆ `αR e : @ , L . ∆′ ∆′ `αR s1 : L1 . ∆1 ∆′ `αR s2 : L2 . ∆2

(AFut(∆1) ∪ AFut(∆2)) \ AFut(∆′) = ∅
∆′′ = Merge(∆1,∆2) ∪∆1|Fut(∆1)\Fut(∆) ∪ ∆2|Fut(∆2)\Fut(∆)

∆ `αR if e { s1 } else { s2 } : L + L1 + L2 . ∆′′

Figure 4.11 – Runtime typing rules for statements.

is the ∆′ resulting from the application of the rule (TR-Process) to the source

configuration (cn).

4.6 Analysis of circularities

In Section 4.4 we have seen that the behavioural type analysis mostly performs the

unfolding of the behavioural types of method invocations. Because of the inherent

recursive nature of the behavioural type, and the fact that method calls can create

fresh names, we have that the behavioural type analysis may create infinite states.

In this section we present the analysis of the circularity proposed by Giachino,
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(LS-RuntimeEmpty)

K �∆ 0

(LS-Global)

K1 �∆ K′1
K1 N K �∆ K′1 N K

(LS-Behavior)

K = (ν ϕ)(Θ � L) K′ = (ν ϕ′)(Θ � L′)
L �∆ L′

K �∆ K′

(LS-Empty)

L �∆ 0

(LS-Plus)

L1 + L2 �∆ Li

(LS-Parallel)

L1 � L′1
L1 N L �∆ L′1 N L

(LS-Invk)

∆(f) = λX.m(α′, z′, X)
∆(m) =

(
(α,x, X)→ r,Km

)
∆ ` m : (α′,x′, X)→ r

′

α = fn(K) \ fn(α,x, r) α′ ∪ fn(α′,x′, r′) = ∅

(ν ϕ)(Θ � (fκ N L) + Ls) �∆ (ν ϕ)(Θ � Ls) N Km[α
′
/α][α

′,x′, r′/α,x, r]

Figure 4.12 – The later-stage relation.

Kobayashi, and Laneve [2014] slightly adapted to our current model. Below we

introduce some preliminary notion that will be used later in the definition of the

analysis, then the analysis of circularities will be defined.

Preliminaries.

Let R be a set whose elements are either pairs (κ, β), where κ ranges over active

object, future names, and variables X or terms fκ. We observe that, if the set of

names is finite, then every set R built with such names is finite as well. In addition,

the collection of all sets R is also finite. We use R,R′, · · · to range over sets of

relations {R1, · · · , Rm}.
Let

– R+ be the transitive closure of R (namely R+ is the least relation such that

R ⊆ R+ and such that (κ, α), (α, β) ∈ R+ implies (κ, β) ∈ R+).

– {R1, · · · , Rm} b {R′1, · · · , R′n} if and only if, for all Ri, there is R′j such that

Ri ⊆ R′j
+.

– (α0, α1), · · · , (αn−1, αn) ∈∈ {R1, · · · , Rm} if and only if there is Ri such that
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(α0, α1), · · · , (αn−1, αn) ∈ Ri.

– {R1, · · · , Rm}N {R′1, · · · , R′n}
def
= {Ri ∪ R′j | 1 ≤ i ≤ m and 1 ≤ j ≤ n}.

Definition 7. A set R has a circularity if (α, α) ∈ R+ for some α. A set of

elements R, noted R, has a circularity if there is R ∈ R that has a circularity.

For instance,
{
{(α, β), (β, γ)}, {(γ, β), (δ, β), (β, γ)}, {(η, δ)}

}
has a circular-

ity because of the second element of the set.

Behavioural types define sets R. This is displayed by the following function.

Let L be a set of method definitions and let I(·), called flattening, be a function

either on future environments and behavioural types or on method names that

(i) maps a method name m defined in L to elements R and (ii) is defined on

behavioural types as follows

I(Θ � 0) = {∅}
I(Θ � (κ, β)) = {{(κ, β)}}
I(Θ � fκ) = I(m)[α,x, κ/α′,x′, X] if Θ(f) = λX.m(α,x, X)

and m(α′,x′, X) is defined in L
I(Θ � fκ) = {{fκ}} if f 6∈ dom(Θ)

I(Θ � L N L′) = I(Θ � L) N I(Θ � L′)

I(Θ � L + L′) = I(Θ � L) ∪ I(Θ � L′)

Note that I(Θ � L) is unique up to a renaming of names that do not occur free in

L. Let I⊥ be the map such that, for every m, I⊥(m) = {∅}.
For example, let L define m(α, β, γ,X) and n(α, β,X) and let

I(m) = {{(α, β), (X, γ)}} I(n) = {{(β, α)}}
Θ = {f 7→ λX.m(α, β, γ,X), f ′ 7→ λX.n(β, γ,X), f ′′ 7→ λX.m(δ, β, γ,X)}
L = f? N f ′′? + (α, β) N f ′X N f ′′α + (η, δ).

Then

I(Θ � L) =
{
{(α, β), (?, γ), (δ, β), (?, γ)}, {(α, β), (γ, β), (δ, β), (α, γ)}, {(η, δ)}

}
I⊥(Θ � L) =

{
∅, {(α, β)}, {(η, δ)}

}
.
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Definition 8. A state Θ � L has a circularity if I⊥(Θ � L) has a circularity. A

behavioural type program
(
L,Θ � L

)
has a circularity if there exist Θ′ and L′ such

that Θ � L→∗ Θ′ � L′ and Θ′ � L′ has a circularity.

Analysis of circularities.

This analysis of circularities is performed by means of a standard fixpoint technique

that is detailed below.

Let
(
L,Θ � L

)
be a program such that pairwise different method definitions in

L have disjoint formal parameters. Let A be the set of (i) formal parameters of

definitions in L, of (ii) free names in Θ � L and (iii) which also contains a special

fresh name κ. Since A is finite, then every set RA built with names in A is finite

and similarly for RA. In particular, the sets RA are ordered by the ⊆ relation and

form a finite lattice [Davey and Priestley, 2002].

Definition 9. Let L = {mi(αi,xi, Xi) = (ν ϕi)(Θi � Li) | i ∈ {1..k}}. The family

of flattening functions I(k) is defined as follows

I(0)(mi) = {∅}
I(k+1)(mi) = { projαi,xi,Xi(R

+) | R ∈ I(k)(Θi � Li)}

where

projα,x,X(R)
def
= {(β, γ) | (β, γ) ∈ R and β, γ ∈ α,x, X}

⋃
{(κ,κ) | (δ, δ) ∈ R and δ /∈ α,x, X}.

We notice that I(0) is the function I⊥ presented above. Since, for every k,

I(k)(mi) ranges over a finite lattice, by the fixpoint theory [Davey and Priestley,

2002], there exists m such that I(m) is a fixpoint, namely I(m) ≈ I(m+1) where ≈
is the equivalence relation induced by b. In the following, we let I, called the

interpretation function (of a behavioural type), be the least fixpoint I(m).

We can summarise the analyse of circularities as reported below. Starting with

a behavioural type program
(
L,Θ � L

)
, and k = 0, proceed with the following

steps:

1) compute I(k+1)(Θ � L): for every mi in L compute I(k+1)(mi) as follow:
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1.a) replace bound names with fresh names;

1.b) replace fκ with I(k)(m)[α,x, κ/α′,x′, X] where Θ(f) = λX.m(α,x, X)

and m(α′,x′, X) is defined in L;

1.c) let I(k+1)(mi) be the transitive closure of the behavioural type resulting

from (1.b) in which fresh names are projected out;

2) if I(k+1)(Θ � L) 6= I(k)(Θ � L) then k = k + 1 and go to (1), else exit.

Soundness of the analysis of circularities.

The following theorem states the correctness and completeness of the analysis of

circularities. Similarly to the work of Giachino et al. [2014], there is a relation

between the circularities of the set I(k)(Θ � L) and, whenever Θ � L → Θ′ � L′,

between the circularities of I(k)(Θ � L) and of I(k)(Θ′ � L′).

Theorem 4.6.1. Let
(
L,Θ � L

)
be the behavioural type of a gASP program. Then

IL(L) has a circularity if and only if IL(Θ � L) has a circularity.

The proof can be found in Appendix A.2.

4.7 Properties of deadlock

With our analysis we want guarantee that, if the deadlock-freedom of a behavioural

type program associated to a gASP program is assessed, then also the corresponding

gASP program is guaranteed to be deadlock-free. In other words we want to prove

that if the analysis shows that no deadlock is present in the behavioural type of

the original program, then none of its executions can lead to a deadlock. To this

end, we prove that if there is no circularity in the type of a runtime configuration

then this configuration exhibits no deadlock, and that if a configuration reduces

to a configuration with a circularity then the original configuration already had a

circularity. This ensures that if no circularity is found in the behavioural type of

a gASP program then there is no deadlock in the original program.

Theorem 4.7.1. Let P be a gASP program and cn be a configuration of its oper-

ational semantics, with behavioural type Θ � L.
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1. If Θ � L has no circularity then cn is deadlock-free;

2. if cn → cn′ and the behavioural type Θ′ � L′ of cn′ has a circularity, then a

circularity is already present in Θ � L, the behavioural type of cn;

The theorem is proven by relying on Theorem 4.5.1 (subject reduction) and on

a crucial property of the later stage relation:

Theorem 4.7.2. If Θ � L � Θ′ � L′, then IL(Θ′ � L′) b IL(Θ � L).

The proof of Theorem 4.7.2, as well as the proofs of the foregoing theorems, is

very similar to the corresponding one of Giachino et al. [2014].

4.8 Deadlock analysis for dining philosophers

In this section will be presented an example in which our analysis is applied to

a non trivial problem. To this aim we chose to target the dining philosophers

problem, which is presented in Listing 3.1.

Describing the application of our deadlock analysis on the dining philosopher

problem, first the program will be typed by our behavioural type system, then

we show the behavioural type analysis applied to the behavioural types obtained

by the typing phase, and finally we present how the analysis of circularities is

performed.

Behavioural typing

We start by showing the behavioural typing process. As we have said before the

method of our program are typed one by one, we start typing the method behave.

2 Int behave(Fork fR , Fork fL) behave(γ, αb, βb′ , X) = (ν g, g′)
(
Θbehave �

3 { fut = fR.grab(fL); bγ + g? with Θbehave(g) = λX.grab(α, βb′ , X)

4 aux = fut + 0; + gγ

5 c = this.behave(fR, fL) } + g′? with Θbehave(g
′) = λX.behave(γ, α, βb′ , X)

N (X, γ)
)
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The behavioural type associated to the method behave is the following one:

behave(γ, αb, βb′ , X) = (ν g, g′)(Θbehave � (bγ + g? + gγ + g′?) N (X, γ))

in which

Θbehave = {g 7→ λX.grab(α, βb′ , X), g′ 7→ λX.behave(γ, α, βb′ , X)}.

The behavioural type of a method is composed of two parts, the type of the

method signature and the type of the body. The part that refers to the signature

in this case is behave(γ, αb, βb′ , X), in which we can see that to the current active

object is given the name γ and the two forks fR and fL are typed as αb and βb′

respectively. The type of the body is the sum of four terms in conjunction with the

pair (X, γ) which represents the potential synchronisation made by a synchroniser

X on the current method. By applying the rule (T-Invk) we get the first two

terms bγ + g?. The first term indicates that we are synchronising the variable

fR, because we need to know its value to be able to invoke the method grab on

this active object. It is relevant to notice that this is a possible synchronisation,

because at runtime that parameter can be instantiated with either a future or a

value, we consider the case in which it is a future and we synchronise on it on the

first access. During the analysis of circularities, when we know the instantiation of

the parameters for our program, in case the this parameter is instantiated with a

value the term, bγ will be replaced by 0 and no synchronisation will be performed.

The second term g? corresponds to the invocation of the method grab, in fact g is

a fresh future name created for this method invocation (see that g is bounded by

(ν g, g′)) that in Θ is assigned to the behavioural type of the invocation of grab

Θ(g) = λX.grab(α, βb′ , X). Looking at the behavioural type of the invocation of

line 3 we can infer that this method will be called on the active object α, which is

the active object stored in fR, and the parameter fL will be passed without any

previous synchronisation (see that the type of fL is g′).

The third term of the behavioural type of the body, gγ, refers to line 4. This

behaviour expresses that the synchronisation of the method invocation related to

the future g will be performed by the active object γ which is the current active
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object. The last term refers to the method invocation of behave of the current

active object, that as usual creates a new future name g′ assigned in Θ to a

behaviour of the method invocation Θ(g′) = λX.behave(γ, α, βb′ , X).

Now that we have obtained the type of the method behave, we move to type

the method grab.

9 Int grab(Fork fL) grab(α, βd′ , X) = (ν d)
(
Θgrab �

10 { fut = fL.grab_second (); d′α + d? with Θgrab(d) = λX.grab second(β,X)

11 aux = fut + 0; + dα

12 return aux } + 0

N (X,α)
)

In the same way the method grab is typed obtaining that:

grab(α, βd′ , X) = (ν d)( Θgrab �
(
d′α + d? + dα) N (X,α)

)
in which

Θgrab = { d 7→ λX.grab second(β,X) }.

In this case the first two terms of the behavioural type d′α + d? refer to the

method invocation in line 10. The first term is the possible synchronisation of

fL while the second is the invocation of grab second for which the fresh future

name d is created and associated to the behaviour of the invocation (Θgrab(d) =

λX.grab second(β,X)). The last term dα is the type of the synchronisation of

the invocation just done (line 11).

The typing process of the method grab second, reported below, is trivial be-

cause this method only returns a value.

17 Int grab_second () { return 0 }

The behavioural type of grab second turns out to be the following one:

grab second(α,X) =
(
∅ � (X,α)

)
Now that we have defined the type of both the methods behave, grab and

grab second we want also to identify the behavioural type of the main functions.
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17 // MAIN //

18 { fork1 = new Fork() ; 0

19 fork2 = new Fork() ; + 0

20 p1 = new Philosopher (); + 0

21 p2 = new Philosopher (); + 0

22 fut1 = p1.behave(fork1 , fork2); + f?

23 fut2 = p2.behave(fork2 , fork1) } + f ′? N f?

The main function is typed by the rule (T-Program) obtaining the following

behavioural type:

Θ � f? + f ′? N f?

in which

Θ = {f 7→ λX.behave(γ, α, β,X), f 7→ λX.behave(δ, β, α,X)}

While the statements in the lines between 18 to 21 are typed with an empty

behaviour by the rule (T-New), the statements of line 22 and 23 are typed by the

rule (T-Invk). It is relevant to notice that the behaviour of the second invocation

is the parallel composition of two terms f ′? and f?. While the first term refers to the

second invocation of behave of line 23, the second term is the result of unsync(Γ)

in the rule (T-Invk). This behaviour tells us that the invocation related to the

future f ′ is potentially running in parallel with the method invocation related to

f , which implies that all the active dependencies between active objects created

by one method invocation can contribute to generate a circular dependency with

the dependencies of the other method invocation.

Behavioural type analysis

Figure 4.13 shows the reduction of the behavioural type resulting from the ap-

plication of the rule BT-red presented in section 4.4. Starting from the beha-

vioural type of the main function Θ � L, at each reduction step, applying BT-

red, we replace one term of the behavioural type that refers to the invocation

of a method by the behavioural type of the body of that method adequately
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Θ � (f? + f ′? N f? )

→ Θ1 � (· · ·+ (g? + gγ + g′?) N(?, γ) N f ′? + · · · )
→ Θ2 � (· · ·+ (g? + gγ + g′?) N(?, γ) N (g′′? + g′′δ + g′′′? ) N(?, δ) + · · · )
→ Θ3 � (· · ·+(g?+(d?+dα) N (γ, α)+g′?) N (?, γ) N (g′′?+ g′′δ +g′′′? ) N (?, δ)+· · · )
→ Θ4 � (· · ·+ (g? + (d? + dα ) N (γ, α) + g′?) N (?, γ) N (g′′? + (d′? + d′β) N(δ, β) +
g′′′? ) N(?, δ) + · · · )
→ Θ4 � (· · ·+ (g? + (d? + (α, β)) N (γ, α) + g′?) N (?, γ) N (g′′? + (d′? + d′β )

N (δ, β) + g′′′? ) N (?, δ) + · · · )
→ Θ4 � (· · ·+(g?+(d?+ (α, β) ) N (γ, α)+g′?) N (?, γ) N (g′′? +(d′?+ (β, α) ) N
(δ, β) + g′′′? ) N(?, δ) + · · · )
→ · · ·

Θ = {f 7→ λX.behave(γ, α, β,X), f ′ 7→ λX.behave(δ, β, α,X)}
Θ1 = Θ ∪ {g 7→ λX.grab(α, β,X), g′ 7→ λX.behave(γ, α, β,X)}
Θ2 = Θ1 ∪ {g′′ 7→ λX.grab(β, α,X), g′′′ 7→ λX.behave(δ, β, α,X)}
Θ3 = Θ2 ∪ {d 7→ λX.grab second(β,X)}
Θ4 = Θ3 ∪ {d′ 7→ λX.grab second(α,X)}

Figure 4.13 – Behavioural type analysis.

instantiated. Knowing that Θ(f) = λX.behave(γ, α, β,X) and the behavioural

type of the method behave is behave(γ, αb, βb, X) = (ν g, g′)(Θbehave � Lbehave),

the first reduction replaces fmain with Lbehave on which we replace the formal

parameters with the actual parameters with Lbehave[γ, α, β,main/γ, αb, βb′ , X] =

(g? + gγ + g′?) N(main, γ). Similarly, we compute the other steps of reduction.

In Figure 4.13 we do not show the complete reduction of the behavioural type,

that can be infinite; instead we guide the reduction through some steps that are

relevant to reach the significant state shown in the last line. After simplifica-

tion, we obtain a type in which one term has the following shape Θ4 � (· · · +
(α, β) N(γ, α) N(main, γ) N(β, α) N(δ, β) N(?, δ) + · · · ) in which we can identify a

circularity caused by the presence of the pairs (α, β) and (β, α).
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Analysis of circularities

As we mentioned before, because the behavioural types are recursive, the behavi-

oural type analysis may not terminate. For this reason we need to use a fixpoint

technique that is able to detect circular dependencies in a finite time. Knowing

the behavioural type of our program we can evaluate the flattening function for

each method by Definition 9.

I(0)(grab second) = {∅},
I(1)(grab second) = {{(X,α)}}

I(0)(grab) = {∅}
I(1)(grab) = {{(X,α)}}
I(2)(grab) = {{d′α, (X,α)}, {(?, β), (X,α)}}, {(α, β), (X,α)},

I(0)(behave) = {∅}
I(1)(behave) = {{(X, γ)}}
I(2)(behave) = {{bγ, (X, γ)}, {(?, α), (X, γ)}, {(γ, α), (X, γ)}, {(?, γ)}
I(3)(behave) = {{bγ, (X, γ)}, {(?, α), (X, γ)}, {(γ, α), (X, γ)}, {(?, γ)}

{(α, β), (X, γ)}, {b′β, (γ, α), (X, γ)},
{(γ, α), (X, γ)}, {(α, β), (γ, α), (X, γ)}}

Finally we compute I(Θ � L). We show below only a small relevant fragment of

the result.

I(Θ � L) = { · · · , (?, γ), (?, δ), (γ, α), (δ, β), (α, β), (β, α), · · · }

In the state proposed we can see the the most relevant dependencies generated

by the dining philosopher program. The pairs (?, γ) and (?, δ) refer to the two

invocations of behave done by the main program, respectively on the active object

γ and δ. The presence of ? in these dependencies states that the two invocations

of behave have not been synchronised by the main function. The dependencies

(γ, α) and (δ, β) are related to the invocations of grab performed by the active

object γ on the active object α and by δ on β. We can notice that these two

method invocations have been synchronised, then we have that the active object

γ is waiting a result from the active object α and δ is waiting a result from β. The

last two dependencies (α, β) and (β, α) refer to the invocations of grab second
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done by the two forks α and β. We notice here that each fork is waiting a result

from the other fork, in fact α is waiting a result from β and β does the same with

α. The circularity identified by the presence of these last two pairs shows that a

deadlock can occur in our program.

4.9 Conclusion

In this chapter we have studied deadlock detection for gASP with two comple-

mentary techniques: a type system for extracting behavioural descriptions out of

programs and a fixpoint technique for computing dependency models of behavi-

oural descriptions. The work builds on and extends previous work where a similar

technique has been used to detect deadlocks in pi-calculus [Giachino et al., 2014,

Kobayashi and Laneve, 2017] and in an object-oriented language [Giachino and

Laneve, 2013, 2014, Giachino et al., 2015].

The work presented in this chapter highlights the differences between explicit

and implicit futures: while explicit futures enable the synchronisation upon the

end of the execution of a method, implicit futures trigger synchronisation upon

access to some data. The data-flow implicit synchronisation makes programming

easier and execution more efficient as the program is only blocked if data is really

needed and in an automatic way. However reasoning and finding deadlocks on

a program with data-flow synchronisation is difficult for automatic tools. This

chapter shows that the analysis of such data-flow synchronisation is possible and

that the programming model can be at the same time easier and more efficient to

program, while enabling automatic detection of deadlocks.

In particular, the technical contribution of presented in this chapter addresses

in main problems. The first problem is directly related with the absence of explicit

type for future variable. This characteristic of gASP do not allow us to know, at

static point, if a parameter of the method that we are typing is a value or a future.

To solve this problem, in the typing process of a method we have considered all

the parameters as potential futures. As we have seen in Section 4.3, for each

parameter we create a future that does not refer to any method invocation. We

have delayed the identification about the nature of the parameter (future or value)

and the binding of the future name to the method invocation to the behavioural
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analysis defined in Section 4.4.

The second problem (discussed in Section 3.6) faced in this chapter, is related

to the possible unbounded nesting of futures, which is a direct consequence of the

possibility of returning future mixed with the absence of an explicit future type.

This nesting of futures, in case of just a single synchronisation, may produce an

unbounded set of dependency pairs. To solve this problem, that can not be solved

during the typing phase, we moved the generation of the pair of dependencies to the

behavioural type analysis. To make this possible we provide the behavioural type

of each method with the special pair (X,α), where X is a place holder for the name

of the active object that will synchronise the method, while α is the name of the

active object running the current method. We also identify both method call and

method synchronisation with the name of the future related to the method that we

are invoking or synchronising. To this future name is associated a subscript that

can be ? in case a of method invocation, or the name of the current active object in

case of a method synchronisation. The subscript associated to the method name,

will allow us to instantiate the place holder X during the behavioural type analysis.

In this way, the dependency pairs will be added only in case of synchronisation,

while for method invocation the behavioural type analysis generates pairs as (?, α).

The behavioural type analysis is a transition system that can generate an infin-

ite number of states; Section 4.6 showed how the fixpoint analysis of circularities

presented by Giachino et al. [2014] can be adapted to our current model.

In order to simplify our arguments, in this chapter, we focussed on a sublan-

guage where (i) fields do not contain futures, (ii) nor active objects, and (iii)

futures are either returned or synchronised within a method body.

For allowing futures to be stored in fields, and relaxing restriction (i), we would

need to track the identities of those futures, since they could be synchronised by

any active object who has (direct or indirect) access to them. Thus, the type of an

active object must be extended to a tuple containing also the types of all its field.

In this case we have to resort to record types (as done by Giachino et al. [2015]).

This would allow us to safely analyse immutable fields of any type. For enabling

also the field update we would need to track also the effect of each method on the

fields of the active objects taken as parameter. Parallel modification of the same

field would result in a conflict that we must detect.
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All these points will be examined in the next chapter in which we present our

deadlock analysis extended to handle stateful active objects.

To relax the restriction (ii), the tuple is not sufficient anymore, because each

of the field can contain in turn an active object with fields whose content have to

be tracked. The management of recursive types is not handled in this thesis. The

discussion about possible solutions for this problem is delayed to Chapter 6.

To remove restriction (iii) and allow pending unsynchronised futures at the

end of a method execution, the type system would need a minor modification

in the method typing rule, in order to collect also the unsynchronised behaviour

corresponding to those unsynchronised futures. Then, dealing with the new type

system will affect mostly the complexity of the analysis, as already solved in in

the work of Giachino et al. [2015].
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In this chapter the gASP language is extended with the possibility of having

stateful active objects. The possibility of storing futures in object fields makes the

analysis of synchronisation patterns more challenging because the context where

synchronisation, i.e. future access, occurs can be different from the context where

the future is created. For example, the synchronisation of a future stored in a field

happens when the value stored in the field is necessary; at this point, the execution

101
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1 Int n

2

3 addToStore(Int x){

4 count = n + 1;

5 n = this.store(x,count);

6 return count }

7

8 store(Int x, Int y){

9 /* storing x */

10 return y }

11 //MAIN

12 { Store = new Act(0);

13 x = Store.addToStore (1);

14 x = x + 1; // needed to

avoid conflicts

15 k = Store.addToStore (4) }

Figure 5.1 – gASP program with stateful active object

of the corresponding method must finish before the value of the future can be

accessed. This chapter extends the static analysis technique described in Chapter 4

with the handling of stateful objects, by tracing the effects of methods on fields,

including the storage of futures inside object fields. The strengths of this analysis

are: the precise management of object states and their update, the tracking of

futures passed by method invocations or stored in fields, and the support for

infinite states.

To illustrate synchronisation in active objects, consider the example in Fig-

ure 5.1. This program creates an active object (line 12) and calls the addToStore

method asynchronously twice (lines 13 and 15). To prevent non-deterministic res-

ults, and to ensure the order of execution of requests, we synchronise on the result

of the first invocation (line 14) before triggering the second one. Synchronisation is

expressed by any operation accessing the method result, a specific synchronisation

operation is not necessary in gASP even if it could be added. The addToStore

method triggers an invocation to the store method and counts the number of

stored elements. Our analysis is able to detect that a deadlock is possible if the

second invocation to addToStore is executed before the method store. The ana-

lysis reveals by a circular dependency where the single thread of the active object

is waiting for the value of n inside addToStore, the effect analysis reveals that

n contains the result of the store method, and thus store must be executed to

resolve the dependency. The analysis also discovers that if line 14 is omitted then

the two concurrent addToStore requests lead to a non-deterministic object state

(one of the states being undesired).
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The typing technique is based on an effect system that traces the accesses

to fields (e.g. read and write access to n in the example), and a behavioural

system that discovers the synchronisation patterns of active objects. The effect

type records if a field is read or write, and which parameters are used by each

method. It is used to identify conflicting field accesses, e.g. one invocation reading

a field and a another one writing a new future in the same field. The effect

type records the usage of parameters because they correspond to synchronisations

that create a dependency between tasks. Also we mark an accessed future as

“already synchronised” to avoid synchronising it multiple times. Because futures

are implicit and pervasive we use a novel technique where “everything is a future”,

this enables precise tracking of futures and prevent multiple synchronisation of the

same future hold by several variables. The analysis detects and excludes programs

with non-deterministic effects. These non-deterministic programs could also be

analysed by associating multiple values to each variable, merging the different

environments when non-determinacy is detected. This is not studied here, it would

make the analysis less precise and the formalisation more complex.

As already discussed in the previous chapter, to deal with method returning

futures, we use a place-holder that represents the object that will access a future.

Actually, the type system that will be presented below extends the one of Chapter 4

with so-called delegations that represent side-effects of methods on argument fields.

If a method stores a future f in the field of an argument, then the next access to

the field should occur after the end of the method (to prevent read/write conflicts)

and should be bound to the future. As the future f is generally not known when

typing, we create a delegation which represents this future. We introduce the

notation method object . field name for delegations.

The analysis of the behavioural type is performed by the solver defined by Giachino

et al. [2016], which detects circularities in the graph of dependencies, highlighting

potential deadlock caused by an erroneous synchronisation pattern. The behavi-

oural type system specifies a set of pairwise dependencies between futures, some

of them being delegations; the analysis unfolds this set of dependencies to find the

potential circularities in the program execution. We prove that our analysis finds

all the potential deadlocks of a program.

This chapter will present first how we restrict gASP in order to focus on the main
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aspects and make the presentation of the analysis more readable. The chapter

will continue by presenting, in Section 5.2, the syntax of the behavioural type,

the typing environments, the typing judgments, the effects functions and all the

auxiliary functions that will be used in the type system, which will be presented

immediately afterwards in Section 5.3. In Section 5.4 the behavioural type analysis

will described first formally and then though a small example, then Section 5.5

shows how we prove the correctness of our analysis and finally in Section 5.6

we present how to adapt the analysis of circularities of Section 4.6 to handle

delegations.

5.1 Restriction

In order to simplify the technical details, we only consider gASP programs that

verify the following restrictions:

(i) object fields and method returned values are of type Int (at runtime they

can be either futures or integer values);

(ii) the futures created in a method must be either returned or synchronised or

stored in a field of a parameter (or this).

The constraint (i) can be checked by a standard type checker, and (ii) can be veri-

fied by a simple static analyser. In particular,(i) does not allow to have recursive

data structures, and (ii) prevents computations running in parallel without any

mean to synchronise on them. As already mentioned in Chapter 4, admitting fu-

tures that are never synchronised requires to collect the corresponding behaviours

and add them to any possible continuation, like it has been done by Giachino et al.

[2015]. How to remove (i) will be discussed in Section D.5.1.

5.2 Notations

We use a set of future names, ranged over by f , g, · · · . Types are either basic

types, future types, or behavioural types. They are defined as follows:

r ::= @ | α[x : f ] basic type

f ::= r | λX.m(f, g,X,Γ, E) | f g.x future type

κ ::= ? | α | X synchronizers

L ::= 0 | (κ, α) | fκ | L + L | L N L behavioral type
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Basic types r are used for values or parameters; they may be either primitive type,

i.e. integer, @ or an object type α[a : f ]. Future types f include basic types, invoc-

ation results, and delegations. The invocation result λX.m(f, g,X,Γ, E) represents

the value computed by a method invocation, where: f, g are the arguments of the

invocation (f is the future of the called object), X, called handle, is a place-holder

for the object that will synchronize with the invocation, the environment Γ and

the effects E record the state changes performed by the method, they are discussed

in the following. The delegation f g.x represents a method side effect, namely

the value that is written by the method corresponding to f in the field x of the

argument g. In the type system we also use “checkmarked” future types, noted

f
X, to represent a future value that has been already synchronized. We use f

[X] to

range over both future types and “checkmarked” future types.

Behavioral types include 0, the empty dependency, and (κ, α) that means: if κ

is instantiated by an object β, then β will need α to be available in order to proceed

its execution. Behavioral types also include synchronisation commitments fκ. The

precise meaning of fκ depends on the value of κ: f? means that the invocation

related to f is potentially running in parallel; fα means that the active object α

is waiting for the result of the invocation corresponding to f ; fX represents the

return of a future f , where the handle X will be replaced with the name of the

object that will synchronize on the result of f . The types L N L′ is the behaviour

of two statements of types L and L′ running in parallel; L + L′ is the behaviour of

two statements (of types L and L′) running in sequence (regardless of the order).

We will shorten L1 N · · ·N Ln into Ni∈{1..n} Li and L1 + · · · + Ln into
∑

i∈{1..n} Li.

The operations “N” and “+” on behavioural types are associative, commutative

with 0 being the identity for N and +. Behavioural types are equal up-to alpha

renaming of bound names. Whenever parentheses are omitted, the operator “N”

has precedence over “+”.

Environments

Environments, noted Γ, Γ′, · · · , are mappings from variables to future names

(x 7→ f) and from future names to future types, checkmarked or not (f 7→ f
[X]).

Environments also map method names to their signatures.
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We use the standard notations im(Γ) for denoting the image. We also use a

few additional operations on mappings: the restriction operation is denoted Γ|S;

the difference operation Γ \ x is defined as Γ|dom(Γ)\x. The following functions on

Γ will also be used:

– names(Γ) = dom(Γ) ∪ {α | α[x : f ][X] ∈ im(Γ)};

– obj (f ) and int(f ′) are subsets of f such that for each f ′ ∈ obj (f ) or f ′ ∈
int(f ) we have Γ(f ′) = α[· · · ] or Γ(f ′) 6= α[· · · ] for some α respectively;

– Fut(Γ) is the set of future names in dom(Γ); AFut(Γ) and sFut(Γ) are the

subset of Fut(Γ) that contain future names f such that Γ(f) is not “check-

marked” or checkmarked respectively;

– unsync(Γ) = Nf∈AFut(Γ) f? is the performs the parallel composition of thebeha-

vioral types of not-yet-synchronized method invocations, it collects the un-

synchronized future of all the methods running in parallel;

– Γ[fX] returns the environment Γ[f 7→ f
X] when Γ(f) is either f or f

X;

– Γ(f.x) =

{
g if Γ(f) = α[· · · , x : g, · · · ]
undefined otherwise

– Γ[f.x 7→ g] returns the environment such that Γ(f.x) = g, assuming that

f ∈ dom(Γ) and x ∈ fields(Act); Γ[f.x 7→ g] is defined like Γ elsewhere;

– Γ1 =unsync Γ2 whenever Γ1(f) = Γ2(f) for every f in AFut(Γ1) ∪ AFut(Γ2).

– We define a flattening function on environments:

flat(f, f ′,Γ) =


[α, f, g ] :: flat(f ′,Γ) if Γ(f) = α[x : g]

[ f ] :: flat(f ′,Γ) if Γ(f) 6= α[x : g]

undefined otherwise

Effects

Effects are functions, noted E, E ′, A, A′, · · · , that map future names to a set of

field names labelled either with r (read) or with w (write). For example, consider

m a method with effect E, and f one of its arguments, E(f) = {xw, yr} means

that m writes on the field x of the object that is the value of f and reads on the

∗ We notice that Γ(f) is not checkmarked
∗∗ It is compatible to either read several times or to write once.
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E[f.x 7→t h](f.x) =


h t h′ if E(f.x) = h′

h if x /∈ E(f) and x ∈ fields(Act)

undefined otherwise

(1)

(E t E ′)(f.x) =


E(f.x) t E ′(f.x) if x ∈ E(f) and x ∈ E ′(f)

E(f.x) if x ∈ E(f) and x 6∈ E ′(f)

E ′(f.x) if x 6∈ E(f) and x ∈ E ′(f)

(2)

Effects(Γ) =
⊔
{E | Γ(f) = λX.m(g,X,Γm, E)} (3∗)

xh # yh
′

=

{
true if x 6= y or (x = y and h′ = r = h)

false otherwise
(4)

{xh11 , · · · , xhnn } # {yh
′
1

1 , · · · , yh
′
m
m } =

∧
i∈1..n,j∈1..m

xhii # y
h′j
j (5∗∗)

instanceof(E, σ)(f) =


⊔

g∈σ−1(f)

E(g) if ∀f1, f2∈σ−1(f).f1 6=f2

⇒ E(f1) #E(f2)

undefined otherwise

(6)

Figure 5.2 – Auxiliary functions for effects.

field y. Let h range over {r, w}; if xh ∈ E(f), we use the notation E(f.x) = h.

With an abuse of notation, we also write x ∈ E(f) if E(f) = {xh11 , · · · , xhnn } and

x ∈ {x1, · · · , xn} (therefore x /∈ E(f) also when E(f) is undefined).

The set {r, w} with the ordering r < w is a lattice, therefore we use the operation

t for least-upper bound. We also use few auxiliary operations that are shown in

Figure 5.2: (1) update operation with upper bound ; (2) merge of effects;(3) effects

of unsynchronised methods; (4-5) compatibility; (6) effect instantiation taking into

account effect compatibility.
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Judgements. The judgements used in the type system are:

– Γ `: m(f, g,Γm, X)→ (E,A) for instantiating the method signature of m,

where f, g,X are the formal parameters, Γm is the part of environment ac-

cessible from the method parameters which are objects: Γm = (Γ|f∪obj (g)),

where Γ is the environment at invocation point. E,A are two environments

that store two kinds of effects of m: E stores the effects that happen before

m is synchronized, A stores the effects of the methods invoked by m and not

synchronized in its body;

– Γ, E ` x : f . E ′ for typing the accesses to values and variables that do

not require any synchronisation; values and variables are typed with future

names, and E ′ is the update of E;

– Γ ` f : f for typing future names with future types;

– Γ, E ⊕`S e : L . Γ′, E ′ for typing expressions that must be synchronised,

where S is the set of arguments of the method, L is the behavioural type,

and Γ′ and E ′ are the updates of Γ and E respectively;

– Γ, E,A `S z : f, L . Γ′, E ′, A′ for typing expressions with side effects z;

– Γ, E,A `S s : L . Γ′, E ′, A′ for typing statements s.

5.3 Behavioural type system

In the type system the environments Γ are always defined on future names @ and

this , such that Γ(@) = @X and Γ(this) = α[· · · ] where α is the active object running

the current method. The typing rules are presented below and the most significant

ones are discussed.

The rules for values, variables and method names are listed on top of Figure 5.4.

Rule (T-Field) models the reading of a field (of the this actor). The preconditions

verify that the access is compatible with the effects of not yet synchronised invoc-

ations in Γ and those in A (that will not be synchronised). We notice that there is

no compatibility check with effects in E and E is updated with the new access (per-

forming the upper bound with the old value). Rule (T-Method-Sign) instanti-

ates a method signature according to the invocation parameters. In particular, the

rule also covers the case when actual parameters are not linear and deals with them

through the use of the instanceof function. In the signature, each parameter has a
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values, variables and method names
- judgments used: Γ ` m : (f,X,Γ′)→ (E,A), Γ ` v : r, and Γ ` f : f

(T-Val)

v integer-value or null

Γ, E ` v : @ . E

(T-Var)

Γ(x) = f

Γ, E ` x : f . E

(T-Fut)

Γ(f) = f
[X]

Γ ` f : f [X]

(T-Field)

Γ(this .x) = f
E ′ = E[this .x 7→t r]

Γ, E ` x : f . E ′

(T-Method-Sign)

Γ(m) = (f,X,Γ′)→ (E,A) σ renaming
Γ′′ = σ(Γ′) E ′ = instanceof(E, σ) A′ = instanceof(A, σ)

Γ `: m(σ(f), σ(X),Γ′′)→ (E ′, A′)

synchronisations: Γ, E ⊕`S v : L . Γ′, E ′

(T-Synchronised)

Γ, E ` v : f . E ′ Γ ` f : fX

Γ, E ⊕`S v : 0 . Γ, E ′

(T-Sync-Field)

Γ ` this : α[· · · ]X Γ, E ` x : f . E ′

Γ ` f : g this .x Γ′ = Γ[fX]

Γ, E ⊕`S x : fα N unsync(Γ′) . Γ′, E ′

(T-Sync-Invk)

Γ ` this : α[· · · ]X Γ, E ` x : f . E ′

Γ ` f : λX.m(f ′, X,Γm, Em) Γ′ = Γ[fX][hX]h∈dom(Em)

Γ′′ = Γ′([g.y 7→ g′][g′ 7→ f g.y])y
w∈Em(g), g′ fresh

Γ, E ⊕`S x : fα N unsync(Γ′′) . Γ′′, E ′ t Em|S

(T-Sync-Param)

Γ ` this : α[· · · ]X Γ, E ` x : f . E ′

Γ ` f : f f ∈ S Γ′ = Γ[fX]

Γ, E ⊕`S x : fα N unsync(Γ′) . Γ′, E ′ + [f 7→ ∅]

Figure 5.3 – Typing rules for names and synchronisations

fresh name, but upon invocation, new conflicts might be created by the fact that

two different parameters are actually the same object. In this case, we prevent the

instantiation of the invocation if a conflict might occur. For example, if the sig-

nature of a method m is such that Γ(m) = (f, f ′, X,Γ′) → ([f 7→ {xr}, f ′ 7→ {xw}]
or Γ(m) = (f, f ′, X,Γ′) → ([f 7→ {xw}, f ′ 7→ {xw}], the type system is not able to

instantiate the method invocation λX.m(g, g,X,Γ′′, Em) because of potential con-
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expressions with side effects
- judgement used: Γ, E,A `S z : f, L . Γ′, E ′, A′

(T-Atom)

Γ, E ` v : f . E ′

Γ, E,A `S v : f, 0 . Γ, E ′, A

(T-Expression)

Γ, E ⊕`S v : L . Γ′, E ′

Γ′, E ′ ⊕`S v′ : L′ . Γ′′, E ′′

Γ, E,A `S v ⊕ v′ : @, L + L′ . Γ′, E ′′, A

(T-New)

Γ, E ` v : g . E ′ β, f fresh
x = fields(Act) Γ′ = Γ[f 7→ β[x : g]X]

Γ, E,A `S new Act(v) : f, 0 . Γ′, E ′, A

(T-Invk)

Γ, E ` v : f . E Γ ` f : β[· · · ]X Γ, E ` v : f ′ . E ′ h = f ∪ obj (f ′)

Γ ` m : (f, f ′, X,Γ|h)→ (Em, Am)

g fresh g′ = f ′[@/int(sFut(Γ ))] Γm = (Γ|h)[@/int(sFut(Γ ))]

Γ′ = Γ[g 7→ λX.m(f, g′, X,Γm, Em)]
(
Effects(Γ′)(h′) # y(EmtA)(h′.y)

)h′∈dom(Em]A) ∧ y∈fields(Act)

Γ, E,A `S v.m(v) : g, g? N unsync(Γ) . Γ′, E ′, A t Am|S

Figure 5.4 – Typing rules for expressions and expressions with side-effects.

flicts: two operations of write on the same object appeared due to the aliasing

created between parameters.

The rules for typing synchronisations are defined at the bottom of Figure 5.4.

In gASP, synchronisations are due to the evaluation of expressions e that are not

variables. We use the notation ⊕` for these judgments. Overall, we parse the

expression and the leaves have two cases: either the future is synchronised (check-

marked) or not. In this last case, there are three sub-cases, according to the future

corresponds to an invocation – rule (T-Sync-Invk) –, or to a field – rule (T-

Sync-Field) –, or to a method’s argument – rule (T-Sync-Param). We discuss

(T-Sync-Invk), the other ones are similar. In this case, the future f bound

to x is synchronised – henceforth its result is check-marked in the environment.

Correspondingly, the futures that are synchronised by f , namely those that are

recorded in the effect Em, are synchronised as well. Finally, the rule records in the

environment the updates of arguments’ fields. Technically this is done using the
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statements
- judgement used: Γ, E,A `S s : L . Γ′, E ′, A

(T-Assign-Var-Exp)

x /∈ fields(Act)
Γ, E,A `S z : f, L . Γ′, E ′, A′

Γ, E,A `S x = z : L . Γ′[x 7→ f ], E ′, A′

(T-Assign-Field-Exp)

x ∈ fields(Act) Γ, E,A `S z : f, L . Γ′, E ′, A′

Effects(Γ′)(this) # xw A′(this) # xw

Γ, E,A `S x = z : L . Γ′[this .x 7→ f ], E ′[this .x 7→t w], A′

(T-Skip)

Γ, E,A `S skip : 0 . Γ, E,A

(T-Seq)

Γ, E,A `S s1 : L1 . Γ1, E1, A1

Γ1, E1, A1 `S s2 : L2 . Γ2, E2, A2

Γ, E,A `S s1; s2 : L1 + L2 . Γ2, E2, A2

(T-Return-Fut)

Γ, E ` v : f . E ′ Γ ` f : f Γ(future) = X

Γ, E,A `S return v : fX N unsync(Γ \ f) . Γ, E ′, A

(T-Return-Val)

Γ, E ` v : f . E ′ Γ ` f : fX

Γ, E,A `S return v : 0 . Γ, E ′, A

(T-If)

Γ, E,A `S e : @, L . Γ′, E ′, A′ Γ′, E ′, A′ `S s1 : L1 . Γ1, E1, A1

Γ′, E ′, A′ `S s2 : L2 . Γ2, E2, A2 Γ1 =unsync Γ2

Γ, E,A `S if e { s1 } else { s2 } : L + L1 + L2 . Γ1 + Γ2, E1 t E2, A1 t A2

Figure 5.5 – Typing rules for expressions, expressions with side-effects and state-
ments.

delegation future type. The behavioural type collects the futures of methods that

are running in parallel and f , which is annotated with the synchronising actor

name α. This type will let us compute the dependencies of the parallel methods

during the analysis.

Figure 5.5 shows the rules for expressions with side effects. The rule (T-Invk)

creates a new future g corresponding to the invocation and stores it in Γ, after
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methods and programs
- judgements used: Γ ` m (T x){s} : (x′, X)→ (ν κ)( Γ′ � Γ′′ � L ) and

Γ ` Int x,M {s} : (L, Γ′ � L)

(T-Method)

Γ(m) = (this , f ,X,Γm)→ (E,A)

g = int(f ∪ names(Γm)) Γ′ = Γ + Γm + x : f + g : @ + future : X
Γ′, [this 7→ ∅],∅ `{this,f} s : L . Γ′′, E,A′

w = flat(this , f ,Γm) κ = names(Γ′′) \ names(Γ′)

A = A′ t
⊔

h∈dom(Γ′′)

{(
Em′ |{this,f}

)
|Γ′′(h) = λY.m′(f, Y,Γm′ , Em′)

}
Γ ` m (T x){s} : (w,X)→ (ν κ)(Γ′′|κ � Γ′′|obj (f )

� L N(X,α))

(T-Program)(
Γ ` m (T x){s} : L(m)

)(m (T x){s})∈M
Γ + this : main[x : @]X,∅,∅ `∅ s : L . Γ′, E,A

Γ ` Int x, M {s} : (L,Γ′|Fut(Γ′) � L)

Figure 5.6 – Typing rules methods and programs.

having computed the instance of the method signature. The last premise verifies

the compatibility between the effects of the invoked method and those of the

other running methods (the current one and the not-yet synchronised ones). The

behavioural type collects futures of methods that are running in parallel, including

g, which is created by the rule. The future g is not annotated with any actor

name because this information is not known here. The substitution on second line

replaces synchronised futures by @ to prevent additional synchronisations on these

futures.

The rules for statements are collected in Figure 5.5. The behavioural type

of statements is a sum of types that are parallel composition of synchronisation

dependencies and unsynchronised behaviours. The rules are almost standard. We

discuss the rule for returning a future – rule (T-Return-Fut). In this case, the

returned value is an unsynchronised future f , therefore the synchronisation of f

is bound to the synchronisation of the method under analysis. For this reason,

the behavioural type is fX , where X is the place-holder for the active object

synchronising the method currently analysed. The rest of the behavioural type
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collects the unsynchronised behaviour.

The rules in Figure 5.6 type methods and programs. In (T-Method), the

premises verify the consistency of the typing of m in the environment with the

typing of its body. In particular, the asynchronous effects of m must be the sum of

the asynchronous ones in its body, i.e. A′, plus the effects of the invocations that

have not been synchronised. We notice that the behavioural type of the method

has arguments that are structureless: object are removed and replaced by their

flattened version, where the fields are removed and the corresponding values are

lifted as arguments, this operation is fulfilled by the function flat . We also notice

that the behavioural type of the body s is extended with a dependency (X,α).

This dependency will be instantiated by the synchronising object when it is known.

The behavioural type of a method has the shape (Γ � Γ′ � L). The environment Γ

defines fresh names created in the body of the method, it maps future names

to either future results λX.m(g,X,Γ′′, E) or delegations f g.x or object types

α[a : f ]. The environment Γ′ records the updates to the arguments f performed

by the method, and L is the behavioural type of the body of the method. To make

the rule TR-Method easier to read we let Γ and Γ′ contain more information

than we require in the behavioural type analysis, this is the reason why we use a

simplified form of this environment. Instead of Γ will be used Θ which is defined

as Γ, but does not map future names to object types and future results do not

present information about effects (λX.m(g,X,Γ′′)). The environment Γ′ will be

also renamed as Φ.

Finally, a behavioural type program is defined as
(
L, Θ � L

)
, where L maps

method names m to method behaviours (w,X) → (ν κ)(Θ′ � Φ � L′), w,X are the

formal parameters of m, Θ′, Φ and L are the same as above. The last two elements,

namely Θ and L, are the environment and the type of the main body. The fact that

Γ ` {Int x,M}{s} implies that any configuration reached evaluating the program

has deterministic effects.

Example 5.3.1. Let us discuss the typing of the program in Figure 5.1. The

behavioural type of this program is of the form:

( L,Θ � f? + fmain + f ′? )
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where:

Θ = [ f 7→ λX.addToStore(g, @, X, [ g 7→ α[n : @]X ], [ g 7→ [nw] ] ), g′ 7→ f g.n,

f ′ 7→ λX.addToStore(g, @, X, [ g 7→ α[n : g′]X ], [ g 7→ [nw] ] ) ].

We observe that the behavioural type of the main function performs two invocations

of addToStore, which are represented by the terms f? and f ′? respectively. The first

invocation, in line 13, is typed by by the rule (T-Invk) in the behavioural type f?

such that:

Θ(f) = λX.addToStore(g, @, X, [ g 7→ α[n : @]X ], [ g 7→ [nw] ] ).

As we can see from its behaviour, this method invocation is performed on the object

α where the field n stores a value (g 7→ α[n : @]X), indeed at that point n = 0.

The second invocation, in line 15, (f ′?) is performed on the same object but n

stores the value written by the first invocation:

Θ(f ′) = f ′ 7→ λX.addToStore(g, @, X, [ g 7→ α[n : g′]X ], [ g 7→ [nw] ] )

Θ(g′) = f g.n,

in Θ we have the delegation g′ 7→ f g.n and in the second method invocation the

object field n maps to g′. We can also notice that the first invocation has been

synchronised (line 14 and behavioural type term fmain), indeed the presence of the

delegation in the environment indicates that the rule (T-Synch-Invk) has been

applied. Both invocations of the addToStore method write on the field n of the

object g, and the effect of both invocations is [ g 7→ [nw] ].

As stated above, L stores the behavioural type for each method of the program,

then we have an entry for addToStore and store.

L(addToStore) = (β, this , g, f,X)→ (ν f ′)(Θadd � Φadd � Ladd)

where

Ladd = ( gα + f ′? + f ′X ) N(X, β) Φadd = [ this 7→ β[n : f ′] ]

Θadd = [ f ′ 7→ λX.store(this , f, @, X, [ this 7→ β[n : g]X ],∅) ]
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The behavioural type shows that the method addToStore performs three main ac-

tions. The first action is the possible synchronisation of the parameter g, expressed

by gα. The second action is the invocation of the method store corresponding to

future f ′, which is expressed by the term f ′?. The third action, which is the return

of the result of the invocation of store, is expressed by the term f ′X stating that

the f ′ is returned.

For the sake of simplicity, we suppose that the method store does not perform

any relevant operation. The behavioural type of store is the following one:

L(store) = (γ, this , f, g,X)→ (∅ � ∅ � (X, γ)).

5.4 Behavioural type Analysis

As already stated in Chapter 4, the behavioural types are terms of a recursive

model that expresses dependencies and features recursion and dynamic name cre-

ation.

The operational semantics of a behavioural type program
(
L,Θ � L

)
is a trans-

ition system where states are pairs of a future environment Θ (mapping future

names to method invocation instances) and a behavioural type L. We focus here

on the way we address delegation types that are new relatively to the previous

chapter. The evaluation of a behavioural types is defined by a transition relation

between types Θ � L that follows the rules in Figure 5.7 and includes a specific

rule for delegation types. We use type contexts :

C[ ] ::= [ ] | L N C[ ] | C[ ] N L | L + C[ ] | C[ ] + L

Overall, BT-fun and BT-field indicate that the behavioural type semantics

is simply the unfolding of function invocations and the evaluation of delegations.

More precisely, rule BT-fun replaces a future with the the body of the corres-

ponding invocation. The environment Θ is augmented with the names defined in

this body. Note that Θ′′ is well-defined because (flat(f,Γ) ∪ w) ∩ κ′ = ∅ and

dom(Θ)∩ dom(Θ′[κ′/κ][flat(f,Γ)/w]) = ∅. The behavioural type L′ is defined by

a classical substitution. The substitution [flat(f,Γ)/w] replaces active object and
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BT-fun

Θ(f) = λX.m(f,X,Γ) L(m) = (w, Y )→ (ν κ)(Θ′ � Φ � L)
κ is either ? or an object name

κ′ fresh Θ′′ = Θ + Θ′[κ′/κ][flat(f,Γ)/w] L′ = L[κ′/κ][κ/Y ][flat(f,Γ)/w]

Θ � C[ fκ ]→ Θ′′ � C[ L′ ]

BT-field

Θ(f) = f ′ g.x Θ(f ′) = λX.m(f,X,Γ)
L(m) = (w, Y )→ (ν κ)(Θ′ � Φ � L)

Φ′ = Φ[κ′/κ][flat(f,Γ)/w] Φ′(g.x) = h

Θ � C[ fκ ]→ Θ � C[hκ ]

Figure 5.7 – Behavioural type reduction rules

future names in w. This substitution can generate terms of the form @α, those

terms can safely be replaced by 0. Rule BT-field computes futures f bound to

delegations f ′ g.x, i.e. when the invocation corresponding to f ′ has updated the

field x of the argument g; it retrieves the instance of Φ in the method of f ′ and

infers h, the future written in the accessed field.

Example 5.4.1. We show how a circularity appears when we apply the reduction

rule for the program in Figure 5.1. The behavioural type of the program is the one

shown in Section 5.3:

the main function has type ( L,Θ � f? + fmain + f ′? ) where:

Θ = [ f 7→ λX.addToStore(g, @, X, [ g 7→ α[n : @]X ], [ g 7→ [nw] ] ), g′ 7→ f g.n,

f ′ 7→ λX.addToStore(g, @, X, [ g 7→ α[n : g′]X ], [ g 7→ [nw] ] ) ].

addToStore has behavioural type

L(addToStore) = (β, this , g, f,X)→ (ν f ′)(Θadd � Φadd � Ladd)

where

Ladd = ( gα + f ′? + f ′X ) N(X, β) Φadd = [ this 7→ β[n : f ′] ]

Θadd = [ f ′ 7→ λX.store(this , f, @, X, [ this 7→ β[n : g]X ],∅) ]
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store has behavioural type

L(store) = (Γ, this , g, f,X)→ (∅ � ∅ � (X, γ))

We start from the behavioural type of the main function and describe the main

reduction steps.

We focus on the third term (f ′?) that refers to the second method invocation of

addToStore in line 15. The rule BT-Fun replaces the behavioural type of method

invocation f ′? with the body of addToStore properly instantiated and adds to the

current future environment all the method invocation performed by addToStore

properly instantiated. To perform BT-Fun, first, we have to instantiate the beha-

vioural type Ladd accordingly to the method invocation related to f′, which is:

Θ(f ′) = λX.addToStore(g, @, X, [ g 7→ α[n : g′]X ], [ g 7→ [nw] ] ),

then we have to build the substitution

Ladd[h/f ′][?/X][α, g, g
′, @/β, this , g, f ]

that instantiates Ladd replacing the formal parameters with the actual parameter

defined Θ(f ′), and we obtain the behaviour:

(g′α + h? + hX ) N(?, α).

Now that the behavioural type that should replace f ′ has been obtained we have to

add to Θ the method invocation performed by addToStore instantiated accordingly

to the invocation Θ(f ′). We have that

Θ′ = Θ + Θ′add

where Θ′add is obtained from Θadd applying the same substitution applied to Ladd.

Finally we can apply BT-Fun and obtain the reduction:

Θ � (f? + fmain + f ′?)→ Θ′ � (f? + fmain + (g′α + h? + hX ) N(?, α)).
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We then focus on the term g′α that refers to the synchronisation of the field n

(line 4) during the execution of the second invocation of addToStore. The type

associated to g′ (Θ′(g′) = f g.n) denotes that, when typing, we don’t know the

method invocation related to the future stored in n, we only know that the method

invocation related to f has stored a future inside n. To solve this delegation and

then discover the name of the future stored in the that field we apply the rule

Bt-Field. This reduction only replaces g′α with h′α where h′ = Φ′add(g.n) and

Φ′add corresponds to the instantiation of Φadd accordingly to the invocation related

to f (the future stated in the delegation Θ′(g′) = f g.n), with the substitution

[h/f ′][α, g, @, @/β, this , g, f ] and we obtain:

Θ′ � (· · ·+ (g′α + h? + hX ) N(?, α))→ Θ′ � (· · ·+ (h′α + h? + hX ) N(?, α)).

Now we focus on the term h′α and, as in the first step, we can apply the rule BT-

Fun we replace h′α with the behavioural type of store adequately instantiated and

obtain:

Θ′ � (· · ·+ (h′α + h? + hX ) N(?, α))→ Θ′ � (· · ·+ ((α, α) + h? + hX ) N(?, α))

as the behavioural type of store is reduced to a pair.

The circularity (α, α) highlights a potential deadlock in our program. Indeed

the method store is called on α and then the result of this invocation is awaited

in the method addToStore in α, as no further order is ensured on the execution

of these requests, this circularity indeed reveals a potential deadlock.

5.5 Type soundness

To demonstrate the correctness of the type system and the analysis we decided to

separated the part of the type system concerning to the deadlock analysis, that

will be discussed in below, and the part related to the effect analysis, which is

discussed in Section 5.5.2.
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5.5.1 Deadlock type soundness

In the following we will focus only on the deadlock analysis aspect starting from

the hypothesis that the analysed program has only deterministic effects (see Defin-

ition 4). The correctness of our system guarantees that, if the analysis accesses

the deadlock-freedom of a behavioural type program associated to a gASP program

with deterministic effects, then the gASP program is guaranteed to be deadlock-

free. The soundness of the type system is demonstrated by a subject reduction

theorem expressing that if a runtime configuration cn is well typed and cn → cn ′

then cn ′ is well typed as well. While the theorem is almost standard, we cannot

guarantee type-preservation, instead we exhibit a relation between the type Θ � L

of cn and the type Θ′ � L′ of cn′. Informally, we are proving that if the analysis

shows that no deadlock is present in the behavioural type of the original program,

then none of its executions can lead to a deadlock. To this end, we prove that if

there is no circularity in the type of a runtime configuration then this configuration

exhibits no deadlock, and that if a configuration reduces to a configuration with a

circularity then the original configuration already had a circularity. Therefore, a

subject reduction for the type system of Section 5.3 requires the extension of the

typing to configurations; and a later-stage relation between behavioural types.

Runtime type system

In order to infer the behavioural types for runtime configuration we define a

runtime type system. To this aim we extend the syntax of behavioural types

and define extended futures F and behavioural type for configuration K as follows:

r ::= @ | f | α[x : f ] basic type

f ::= r | λX.m(f, g,X,Γ, E) | f g.x future type

F ::= f | sf extended futures

κ ::= ? | α | X synchronisers

L ::= 0 | (κ, α) | fκ | L + L | LN L behavioral type

K ::= L | (ν κ)(Θ � L) | KNK behavioural type for configuration
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configuration and processes
- judgements used: ∆ ` cn : L and ∆ ` p : (ν κ)(Θ � L)

(TR-Future-Undef)

∆ ` f : λX.m(g,X,∆m, Em)

∆ ` f(⊥) : 0

(TR-Future-Eval)

∆ ` f : λX.m(g,X,∆m, Em)
X ∆ ` w : f

∆ ` f(w) : 0

(TR-Actor)

∆(α) = α[y : f ] ∆ ` v : f ∆′ = ∆ + this : α[y : f ]
∆′ ` p : K0 ∀i ∈ 1..n.∆′ ` qi : Ki

∆ ` α({y 7→ v}, p, {q1, · · · , qn}) :
n
N
i=0

Ki

(TR-Parallel)

∆ ` cn1 : K1 ∆ ` cn2 : K2

∆ ` cn1 cn2 : K1 N K2

(TR-Process)

∆ ` f : λX.m(this , g,X,∆m, Em)
∆ ` v : g ∆′ = ∆ + ∆m + destiny : f + x : g + future : X
∆′,∅ `{this,g} s : L . ∆′′, E ′ κ = names(∆′′) \ names(∆′)

∆ ` {destiny 7→ f, x 7→ v | s} : (ν κ)(∆′′|FutR(∆′′) � L)

Figure 5.8 – Runtime typing rules for configuration

The main novelty of this type syntax it the extended futures F . They are

introduced for distinguishing two kinds of future names: i) f that has been used

in the type system as a static time representation of a future, but it is now used

as its runtime representation; ii) sf now replaces f in its role of static time future

(it is typically used to reference a future that is not created yet).

Later-stage

The later-stage relation �∆ is a syntactic relationship between behavioural types.

Formally, the later-stage relation is the least congruence with respect to runtime

behavioural type that contains the rules in Figure 5.9. We can simplify the basic

laws of the later-stage relation saying that a method invocation is larger than the

instantiation of its method behaviour (LS-Invk), and a sum type is larger than

each element of the sum.
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(LS-RuntimeEmpty)

K �∆ 0

(LS-Global)

K1 �∆ K′1
K1 N K �∆ K′1 N K

(LS-Behavior)

K = (ν ϕ)(Θ � L) K′ = (ν ϕ′)(Θ � L′)
L �∆ L′

K �∆ K′

(LS-Empty)

L �∆ 0

(LS-Plus)

L1 + L2 �∆ Li

(LS-Parallel)

L1 � L′1
L1 N L �∆ L′1 N L

(LS-Invk)

∆(f) = λX.m(α′, z′, X)
∆(m) =

(
(α,x, X)→ r,Km

)
∆ ` m : (α′,x′, X)→ r

′

α = fn(K) \ fn(α,x, r) α′ ∪ fn(α′,x′, r′) = ∅

(ν ϕ)(Θ � (fκ N L) + Ls) �∆ (ν ϕ)(Θ � Ls) N Km[α
′
/α][α

′,x′, r′/α,x, r]

Figure 5.9 – The later-stage relation.

Deadlock type soundness

Since we have defined both type system for runtime configuration and later stage

relation, we can formally state the main theorem that guarantees the soundness

of the behavioural type system.

Theorem 5.5.1. Let P be a gASP program with deterministic effects (see Defin-

ition 4) and cn be a configuration of its operational semantics, with behavioural

type K.

1. If K has no circularity then cn is deadlock-free;

2. if cn → cn′ and the behavioural type K′ of cn′ has a circularity, then a

circularity is already present in K, the behavioural type of cn;

The proof of this theorem is done proving (1) through the Lemma 5.5.2 and

proving (2) through the proof of Theorem 5.5.3.

Lemma 5.5.2. Let suppose ∆ ` cn : K and let D be the set of dependencies of

cn. Then, we have D ⊂ IL(K).
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Proof. By Definition 3, if cn has a dependency (α, β), then there exist cn′ =

α(a, {` | C[f ]}, q) β(a′, p′, q′) ∈ cn such that f ∈ destinies(p′, q′). By runtime typ-

ing rules TR-Actor, TR-Process, TR-Seq and TR-Synch-* (Appendix B.1),

the behavioural type of cn′ is (ν κ)
(
Θ � (fα + Ls) N(X,α)

)
N (

n
N
i=1

Ki).

Having that:

– by rule TR-Invk Θ(f) = λX.m(g, g′, X,∆m, Em);

– ∆m(g) = β[· · · ]X;

– ∆(m) = (ν κ)
(
Θ � L N(X, β)

)
;

we can infer that during the computation of IL(K) the rule BT-Red will replace

fα with the behavioural type of the body of m where the X will be instantiated

with α ( ∆(m)[α/X] ). This substitution will generate the pair (α, β)

Theorem 5.5.3 (Subject Reduction). Let ∆ `R cn : K and cn→ cn′. Then there

exist ∆′, K′, and an injective renaming of actor and future names ı such that

– ∆′ `R cn′ : K′ and

– ı(K) �∆ K′

The proof is a case analysis on the reduction rule used in cn→ cn′ and can be

found in Appendix B.1.4.

5.5.2 Effect type soundness

In this section we want prove the correctness of our effect analysis, which is

stated by the following theorem.

Theorem 5.5.4. Let P be a gASP program, if Γ ` P then P has deterministic

effects.

In order to prove this theorem we need to extend our type system to runtime

configurations that is presented in Figure 5.10 - 5.11 and Figure 5.12.
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configuration and processes: ∆ ` cn . E and ∆, E,A ` p . E,A

(TR-Future-Undef)

∆ `: fλX.m(g,∆m, Em)

∆ ` f(⊥)

(TR-Future-Eval)

∆ `: fλX.m(g,∆m, Em)
∆ `: wf

∆ ` f(w)

(TR-Parallel)

∆ ` cn1 ∆ ` cn2

∆ ` cn1 cn2

(TR-Actor)

∆(α) = α[y : f ] ∆ ` v : f ∆′ = ∆ + this : α[y : f ]
∆′,∅,∅ ` p . E0, A0

∀i ∈ 1..n.∆′, [this 7→ ∅],∅ ` qi . Ei, Ai (Ek#Ej)
k,j∈[1,n]∧k 6=j

∆ ` α({y 7→ v}, p, {q1, · · · , qn})

(TR-Process)

∆ ` f : λX.m(this , g,∆m, Em) ∆ ` v : g g′ = int(g)
∆ + ∆m + x : g, E,A `{this,g} s : L . ∆′, E ′, A′

A′′ = A′ t
⊔

h∈dom(Γ′)

{(
Em′|{this,g}

)
|∆′(h) = Em′

}
∆, E,A `{this,g} {destiny 7→ f, x 7→ v | s} . E ′, A′′

Figure 5.10 – Typing rules for runtime configurations.

Runtime Type System for Effect analysis (typing rules)

In order to analyse effect for runtime configuration we define a runtime type sys-

tem. This type system is a simpler version of the one given in section 5.3 where

we are focusing only on the effect analysis leaving out all the aspects related with

deadlock. This is the reason why the behavioural type syntax and also the typing

judgments are simpler then the corresponding shown in Section 5.2.

r ::= @ | f | α[x : f ] basic type

f ::= r | λX.m(f, g,Γ, E) future type

F ::= f | sf extended futures

The main differences with the type system presented in Section 5.3 are:

– future types does not present delegation and future results do not contain

the place holder X;

– we define extended futures F which are introduced for distinguishing two

kinds of future names: i) f that has been used in the type system as a
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values and method names: ∆ ` x : r, Γ ` f : f and ∆ ` m : (f,∆′)→ (E,A)

(TR-Val-Int)

v integer-value or null

∆, E,A ` v : @ . E

(TR-Var)

∆(x) = f

∆, E,A ` x : f . E

(TR-Field)

∆(this) = α[x : f, · · · ]
E ′ = E[α.x 7→t r]

∆, E ` x : f . E ′

(TR-Var)

∆(f) = f

∆ ` f : f

(TR-Method-Sign)

∆(m) = (f,∆m)→ (E,A) σ renaming
E ′ = instanceof(E, σ) A′ = instanceof(A, σ)

∆ ` m : (σ(f),∆m ◦ σ)→ (E ′, A′)

synchronizations: ∆, E,A ⊕`S v . ∆′, E ′, A′

(TR-Sync-Invk)

∆, E,A ` x : f . E ′

∆ ` f : λX.m(f, g,∆m, Em)

∆, E ⊕`S x . ∆, E ′ t Em|S

(TR-Synchronized)

∆, E ` v : f . E ′ ∆ ` f : f
f 6= λX.m(f, g,∆m, Em)

∆, E ⊕`S v . ∆, E ′

Figure 5.11 – Runtime typing rules for expressions, addresses and synchronisations.

static time representation of a future, but it is now used as its runtime

representation; ii) sf now replaces f in its role of static time future (it is

typically used to reference a future that is not created yet).

– now judgments only associate types to atoms and expressions and anymore

behavioural type to statements.

expressions with side effects: ∆, E,A ` S : z . f∆′, E ′, A′

The proof of the Theorem 5.5.4 can be split in two steps. The former involves

in the proof that given a program P and a configuration cn, reached during the

execution of P , our type system can type cn only if cn has has non deterministic

effects, as we formally state in the following lemma.

Lemma 5.5.5. Let P be a gASP, cn be a runtime configuration, and let ∆ be such

that ∆ ` cn; then cn has a queue with deterministic effects.

By Definition 4 we know that a configuration cn has deterministic effects

if every active object of this configuration has a queue with deterministic ef-

fects, then to prove lemma 5.5.5 we need to prove that given an active object
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(TR-Future)

f ∈ dom(∆)

∆, E `S f : f . ∆, E

(TR-Actor-Name)

∆ ` F : α[· · · ]X

∆, E `S α : F, 0 . ∆, E

(TR-Atom)

∆, E,A ` v : F . E ′

∆, E,A `S v : F . ∆, E ′, A

(TR-Expression)

∆, E ⊕` v . ∆′, E ′

∆′, E ′ ⊕` v′ . ∆′′, E ′′

∆, E,A `S v ⊕ v′ : @ . ∆′′, E ′′, A

(TR-New)

∆, E,A ` v : G . E ′ F, β fresh

∆, E,A `S new Act(v) : F . ∆[f 7→ β[x : G]], E ′, A

(TR-Invk)

∆, E,A ` v : F . E
∆, E,A ` v : F ′ . E ′ ∆ ` m : (F, F ′,∆m)→ (Em, Am)

sg fresh ∆′ = ∆[sg 7→ λX.m(F, F ′,∆m, Em)](
Effects(∆′)(β) # y(EmtA)(β.y)

)β∈dom(Em]A) ∧ y∈fields(Act)

∆, E,A `S v.m(v) : g . ∆′, E ′, A t Am|S

statements: Γ, E,A `S s . Γ′, E ′, A

(TR-Assign-Var-Exp)

x /∈ fields(Act)
∆, E,A ` z : F . ∆′, E ′, A′

∆, E,A `S x = z . ∆′[x 7→ F ], E ′, A′

(TR-Assign-Field-Exp)

x ∈ fields(Act) ∆ ` this : α[· · · ]
∆, E,A ` z : F . ∆′, E ′, A′

Effects(∆′)(α) # xw A′(α) # xw

∆, E,A `S x = z . ∆′[this .x 7→ F ], E ′[α.x 7→t w], A′

(TR-Skip)

∆, E,A `S skip : 0 . ∆, E,A

(TR-Seq)

∆, E,A ` s1 . ∆1, E1, A1

∆1, E1, A1 ` s2 . ∆2, E2, A2

∆, E,A `S s1; s2 . ∆2, E2, A2

(TR-Return)

∆, E,A ` v : F . E ′

∆(destiny) = f ′ ∆ ` f ′ : λX.m(g,X,Γm, Em)

∆, E,A `S return v . ∆, E ′, A

(TR-If)

∆, E,A ` e : f . ∆′, E ′, A′

∆′, E ′, A′ ` s1 . ∆1, E1, A1 ∆′, E ′, A′ ` s2 . ∆2, E2, A2

∆1 =unsync ∆2

∆, E,A `S if e { s1 } else { s2 } . ∆1 + ∆2, E1 t E2, A1 t A2

Figure 5.12 – Runtime typing rules for expressions with side-effects and statements.
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α(a, p, {q1, · · · , qn}) if ∆ exists such that ∆ ` α(a, p, {q1, · · · , qn}) then α(a, p, {q1, · · · , qn})
has a queue with deterministic effects.

Proof. Let α(a, p, {q1, · · · , qn}) be an active object with non deterministic effects,

this implies, by Definition 4, that one of the following predicates holds:

1. xw ∈ qi ∧ xw ∈ qj where x ∈ dom(a) and i, j ∈ [1, n] with i 6= j

2. xw ∈ qi ∧ xr ∈ qj where x ∈ dom(a) and i, j ∈ [1, n] with i 6= j

Let us also suppose that there exists ∆ such that ∆ ` α(a, p, {q1, · · · , qn}).

Case 1: xw ∈ qi ∧ xw ∈ qj.

For each pair of i, j ∈ [1, n] with i 6= j, by rule TR-Actor and TR-Process

we gain that there exist ∆′i and ∆′j that extend ∆ such that ∆′i,∅,∅ `Si
qi . Ei, Ai and ∆′j,∅,∅ `Sj qj . Ej, Aj, and also the rule TR-Actor

checks if the effects of qi and the effects of qj are compatible (Ei#Ej).

By (1) we have that there exist x ∈ dom(a) (which is equal to say that

x ∈ fields(Act)) such that xw ∈ qi and xw ∈ qj that by definition means that

there exist a statement si in qi and a statement sj in qj such that x = z for

some z. To type the statement x = z in qi and qj we have to apply the rule

TR-Assign-Field which implies that Ei(α.x) = w and Ej(α.x) = w that

makes the condition Ei#Ej false.

Case 2: xw ∈ qi ∧ xr ∈ qj.

For each pair of i, j ∈ [1, n] with i 6= j, by rule TR-Actor and TR-Process

we gain that there exist ∆′i and ∆′j that extend ∆ such that ∆′i,∅,∅ `Si
qi . Ei, Ai and ∆′j,∅,∅ `Sj qj . Ej, Aj, and also the rule TR-Actor

checks if the effects of qi and the effects of qj are compatible (Ei#Ej).

By (2) we have that there exist x ∈ dom(a) such that xw ∈ qi and xr ∈ qj
that by definition means that there exist a statement si in qi such that x = z

for some z and a statement sj in qj such that x appear in the left side of

an assignment or in the guard of an if statement. To type the statement

x = z in qi we have to apply the rule TR-Assign-Field which implies that

Ei(α.x) = w, whereas to type sj we are going to apply the rule TR-Field

which implies that Ej(α.x) = r. that makes the condition Ei#Ej false.
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I(Θ � 0) = {∅}
I(Θ � (κ, β)) = {{(κ, β)}}
I(Θ � fκ) = I(m)[flat(f,Γ), κ/w,X] if Θ(f) = λX.m(f,X,Γ)

and L(m) = (w,X)→ (ν κ)(Θm � Φm � Lm)

I(Θ � fκ) = I(m′)[flat(g′,Γ′), κ/w,X] if Θ(f) = f ′ g.x ∧ Θ(f ′) = λX.m(f,X,Γ)
and L(m) = (w,X)→ (ν κ)(Θm � Φm � Lm)

and Φm[flat(f,Γ)/w](g.x) = h ∧ Θ(h) = λX.m′(g′, Y,Γ′)
and L(m′) = (w′, X ′)→ (ν κ′)(Θm′ � Φm′ � Lm′)

I(Θ � fκ) = {{fκ}} if f 6∈ dom(Θ)
I(Θ � LN L′) = I(Θ � L) N I(Θ � L′)
I(Θ � L + L′) = I(Θ � L) ∪ I(Θ � L′)

Figure 5.13 – Definition of flattening function.

As we have seen it is not possible that our type system is able to type a configur-

ation if it presents an active object with a queue with non deterministic effects.

The later step to prove Theorem 5.5.4 consist in proving that if we type a

configuration cn and cn → cn′, than there exist an environment ∆′ such that ∆′

types cn′, as formalised in the following lemma.

Lemma 5.5.6. Let ∆ ` cn and cn→ cn′. Then there exist ∆′ such that ∆′ ` cn′.

The proof of this lemma is a case analysis on the reduction rule used in cn→ cn′

and it is presented in Appendix C.1.2

5.6 Analysis of circularities

The analysis of circularities in this case is an adaptation of the one presented in

Chapter 4. Let L be a set of method definitions and let I(·), called flattening,

be a function either on future environments and behavioural types or on method

names that (i) maps a method name m defined in L to elements R(1) and (ii) is

defined on behavioural types as follows in Figure 5.13.

The definition of Chapter 4 is extended with the case in which a future refers to

a delegation. This case as the one in which the future refers to a method invocation

1R is defined in the Preliminaries of Section 4.6
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is defined as I(Θ � fκ) = I(m′)[flat(g′,Γ′), κ/w,X]. In case of method invocation

we know directly from Θ(f) the name of the method invoked and the parameter

with which this method has been invoked. In case f refers to a delegation we need

first to discover for which future this delegation stand for. Paying attention to

the condition related to this case we can notice that to infer which is the method

invocation represented by the delegation we apply the same steps defined in the

rule (BT-Field).

5.7 Conclusion

In this chapter we have defined a technique based on behavioural type systems for

analysing the absence of deadlocks in a program with stateful active objects. As

we have already seen in this chapter, stateful active objects bring with them two

main problems: nondeterminism in the typing of the expression when the program

has queues with nondeterministic effects; and the difficulty to relate futures with

their method invocations, when futures created in a different context are passed

to the current method as parameters. To face these two problem we extended the

type system presented in Chapter 4. This extension tracks the effects that each

method can have on the fields of an object received as parameters, and introduces

delegations.

Solving the problem of nondeterminism without loosing in precision requires

an extension of the behavioural type associated to the methods. We have extended

the behavioural type of a method adding a function that collects the effect of the

method. This function maps the future names of the parameters accessed during

the execution of the method to the a set of field names. These field names are

labelled either with r or w to indicate an access in reading or writing respectively.

Thanks to this additional information, we are able to type only the programs with

deterministic effects. To guarantee the correctness of this effect analysis we also

proved that: if our type system is able to define the type of a program, then this

program has no active object that has a queue with nondeterministic effects in any

of its possible executions.

The impossibility of having queue with nondeterministic effects guarantees that

if a method stores a future in the field of an argument, then the next access to
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the field should occur after the end of that method. The information about effect,

provided by the effect analysis, allows us to infer if the method we are synchronising

has stored a future in the field of an argument. However, it is still not possible

to determinate the name of the future stored and the method invocation related

to this future outside the context in which this future has been created. In the

solution proposed in this chapter, every time we synchronise a method that has

writing effects on a field of an argument, we type the field of that object with a

fresh future and we associate this future to a delegation. The delegation, which

has the form g o. x , indicates that the method related to the future g has stored

a future in the field x of the object o. Delegations allow us to move to the analysis

of the behaviour, in which we have more global information, the identification of

the method invocation that we did not know at static time.

We also present how the behavioural types that are obtained by the type system

are analysed, and how to extend the analysis of circularities to identify potential

deadlocks in case of stateful active objects.

In this chapter we also presented a novel paradigm in which all variables and

values are typed as a futures, and these futures are in turn typed to future types.

Future types can be check-marked if they refer to values or synchronised method,

and not check-marked if they refer to a potential unsynchronised method invoca-

tion. Compared to the approach used in the previous chapter, this one allows us

to better deal with implicit futures. For instance, aliasing is handled more easily

because all the aliases point on the same future, then in case of a future is syn-

chronised we have to the update the type of the future only once, and not for each

alias that store that future.
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6.1 Summary

In the era in which software are not anymore centralised, and cloud computing

and IoT paradigms are leading in the industry and research environment, Actor

and Active object model are becoming increasingly prominent.

Despite these two models facilitate the development of complex distributed

systems, the implementation of these systems still remains a non trivial task.

This is due to the fact that well-known concurrency bugs such as deadlocks, race

conditions, and data races are not rare in distributed systems.

With this thesis we help programmers that use the Active object model to im-

plement complex distributed systems, by providing a software analysis technique

to analyse synchronisation patterns. The analysis proposed is able, without requir-
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ing human interaction, to detect the absence of deadlocks and to analyse effects.

Our aim was to provide a program analysis that is modular and combines several

different techniques.

The first contribution presented in this thesis proposes a static analysis tech-

nique based on behavioural types. The static analysis we developed is composed

by: a behavioural type system that associates behavioural types to program meth-

ods; a behavioural type analysis that translates behavioural types into a potential

unbounded graph of ”waiting” dependences; and an analysis of circularities that

takes as input the behavioural type program and detects deadlocks in finite time.

The development of this analysis is focused on how to handle the implicit future

types and wait-by-necessity synchronisations. In fact, the combination of these two

features may require to define an unbounded set of dependencies between active

objects, if we are synchronising a recursive methods that returns a future.

The first problem is to identify which parameters are futures or values. It has

been solved by typing every parameter as a potential future not associated to any

method invocation. Then, we have delayed the identification about the nature of

the parameter (future or value) and the binding of the future name to the method

invocation to the behavioural analysis.

The second problem, related to the nesting of futures that may produce an

unbounded set of dependency pairs, has been solved by moving the generation of

the dependencies to the behavioural type analysis. We provide the behavioural

type of each method with the special pair (X,α), where X is a place holder for

the name of the active object that will synchronise the method, while α is the

name of the active object running the current method. The place holder X will be

instantiated, during the behavioural type analysis, only in case of synchronisations

and not for method invocations.

The second contribution of this thesis is the development of an effect analysis,

based on behavioural type systems, to detect the presence of race conditions that

may introduce nondeterminism in the execution of an active-object program. The

behavioural type system associates to each method a function that traces effects.

This function maps the future names of the parameters accessed during the exe-

cution of the method, to a set of field names. These field names are labelled either

with r or w, indicating respectively an access in reading or writing. Thanks to this
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additional information we are able to type only the programs with deterministic

effects. The impossibility of having queues with nondeterministic effects guaran-

tees that: if a method stores a future in the field of an argument, then the next

access to the field should occur after the end of that method.

The third main contribution of this thesis is an extension of the first contribu-

tion in order to analyse active-object program with stateful active objects. This

analysis takes into account the information provided by the effect analysis and

identifies the absence of deadlocks. The static analysis we developed, as the previ-

ous one, is composed by: a behavioural type system; a behavioural type analysis;

and an adaptation of the analysis of circularities. The main problem tackled by

this analysis is the tracking of futures stored in object fields. In fact, the informa-

tion provided by the effect analysis only allows us to know when a method already

synchronised has stored a future inside a field of an argument. How to know the

identity of this future and the method invocation related to it outside the context

that invoked this method, was still an open problem. This problem has been solved

introducing delegations. The delegations that has the form g o. x , indicates that

the method related to the future g has stored a future in the field x of the object

o. Delegations allow us to move the the identification of the method invocation,

for a future stored in a field, to the analysis of the behaviour, in which we have

more global information.

Overall, we build a proven and thorough analysis for synchronisation patterns

for programs implemented using the Active object model. We developed two

analysis: a deadlock analysis technique based on behavioural types in which we

developed a behavioural type system, a behavioural type analysis, and we have

extended the analysis of circularities presented by Giachino et al. [2014], Kobay-

ashi and Laneve [2017] to handle our behavioural types; and an effect analysis

also based on behavioural types. We tackle in this thesis the problems related

to analyse an Actor model with implicit future types, wait-by-necessity synchron-

isation and stateful active objects. Implicit future types and wait-by-necessity

synchronisation require the creation of unbounded sets of dependency pairs in

case of synchronisations, and also the identification of futures and synchronisation

points. The management of stateful active object requires to handled or to detect

nondeterminism caused by the nondeterministic order of accesses on fields, and
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also it requires the tracking of future names and method invocations which are

synchronised in a context different from the one in which they are created.

6.2 Perspectives

The results we presented in this thesis are promising for the Active object model

and its verification. The work we have done is a suitable starting point of several

research topics, that we will discuss in the next subsections.

6.2.1 Improvement of the analysis

When it comes to future works we immediately think about possible improvements

to our analysis. The first way to improve our analysis is certainly related to the

removal of some restrictions. Most of the restriction imposed to gASP and stated in

Section 4.1 and Section 5.1 have been imposed in order to simplify the behavioural

type system. How to remove those restrictions is well know for us and it has been

discussed in Section 4.9. The only restriction that is present in both of our works,

and which has not been investigated in this thesis, is the impossibility of having

recursive data types. In fact, in both Section 4.1 and Section 5.1 it is stated that

the field of an object have to be of type Int, then they can be only integer or a

future of an integer. How to manage recursive data type is a non trivial task, in

fact it requires to extend our analysis in order to make it able to handle unbounded

object records.

Thanks to the modularity of our analysis, we think that the management of

unbounded object records can be done by a separated analysis. Such analysis

should be able to flatten the structure of the objects, in order to give to our

analysis object types in the form of a record, as it is now. The precise technique

that can be used to flatten unbounded data structures as not been invested.

The improvement of our analysis can be also investigated outside the field

of restrictions. Our analysis, losing a bit in generality, can gain in precision if

a precise scheduling algorithm is fixed. Taking into account a precise scheduling

approach (i.e FIFO scheduling), gives us much more information related to the real

interleaving of processes. As we have seen in this thesis the amount of information
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a) Deadlock

1 Int foo( ) { return 1 }

2

3 Int bar(Int k)

4 { k = k + 1;

5 return k }

6

7 // MAIN //

8 { x = this.foo();

9 y = this.bar(x) }

b) Effect

1 Int k

2

3 Int foo( )

4 { k = this.m();

5 return 1 }

6

7 Int bar( )

8 { z = k + 1;

9 return k }

10

11 // MAIN //

12 { x = this.foo();

13 y = this.bar() }

Figure 6.1 – False positive in deadlock and effect analysis for FIFO scheduling

that the analysis is able to extract from the program is directly proportional to

its precision. In fact, on the current state, both deadlock and effect analysis take

into account that two method invocations, even if performed by the same method,

can be scheduled in any order. In Figure 6.1 have been presented two example in

which our deadlock analysis (Figure 6.1.a) and our effect analysis (Figure 6.1.b)

give as result a false positive in case of FIFO scheduling.

Let us to start with the program of Figure 6.1.a. In this program we have a

main function that invokes the methods foo and bar. While foo only returns 1,

the method bar synchronises the future related to the invocation of foo, which

has been received as parameter. During the execution of this program we have

that if the execution of request bar precedes the execution of request of request

foo, a deadlock occurs. This happens because bar stops its execution until the

value of x is available, but this value can not be computed because to execute foo

the method bar must terminate.

The analysis proposed correctly identifies this program as potentially dead-

locked, while if we consider a precise scheduling algorithm, like FIFO, this result

will be a false positive, because bar is never executed before foo.

The program of Figure 6.1.b shows a program in which the method foo writes

a future on the field k and bar reads the value of k. With our analysis, because
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the scheduling is nondeterministic, this program is identified as a program with

nondeterministic effects, because we can not statically identify the value stored

inside the field k that depends on the scheduling order. Also in this case, if

we consider a scheduling algorithm as FIFO, the result of our analysis is a false

positive.

The false positive results come from the fact that, because of the nondetermin-

istic scheduling, the behavioural type of the main functions considers the invoca-

tion of foo in parallel with the invocation of bar, that in case of FIFO scheduling

should be considered as in sequence. However, it is important to underline that

possible method invocations nested inside foo have to be considered as in parallel

with the invocation of bar. The order in which this request will be served is not

guaranteed even if we consider FIFO scheduling.

Considering FIFO scheduling in our analysis only requires minor modifications

in the method typing rule. In fact we have to split the behavioural type of each

method in two parts. The first part should be related with the behaviour of

the body of that method, while the second part should collect the the method

invocation performed by the method. This solution allows us to define a more

precise parallel composition of the behaviours of the method invocations, especially

in case multiple invocations done by a method on the same object.

6.2.2 New paradigm for futures design

The development of an analysis for synchronisation patterns points out the impact

that the design and the implementation of futures has on the ease of use for

programmers and on the complexity and precision of the analysis.

On one side, explicit futures give more control to the programmer; allow com-

plex operations on futures (i.e. cooperative multithreading or future chaining);

and also allow more precise identification of the synchronisation points. On the

other side, implicit futures keep the programmer unaware of whether the control

flow is operating on regular values or on futures; block the program only when

a future is really needed; permit a better code reuse (methods are written in the

same way independently of which variables contain a future or a value); and also

admit the returning of future for recursive method invocations.
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We can summarise saying that, while implicit futures enforce data-flow syn-

chronisation, explicit futures implement control flow synchronisation through a

statement that fills the future.

While we were facing all the problems related to the development of such

analysis, we were also trying to understand if is possible to mix the two approaches

in order to gain the advantages from both of them.

In fact, one of the possible future work will be the definition a new paradigm

for the design and implementation of futures.

In the following we will present the features that this new model should have

and how this characteristics will give use the advantage of both control-flow and

data-flow synchronisation approach.

The first characteristic for this model is the use of explicit future types.

Explicit futures of this model should be not intended as the future of active object

language as ABS, in which future type are defined as parametric types. Futures

should be explicitly typed, but this type only indicates that we are referring to a

possible future (a variable typed as future can still store a value), but no distinction

is made between a future of an integer and a future or a future of an integer.

Typing the future in this way, we have that: the programmer has more control

on the point of synchronisation and is exposed to the points of synchronisation

that occur in his program; and it is easier statically track futures. That are the

two main advantage of an approach with explicit future types. Furthermore, this

new definition of explicit future types also permits a better code reuse and allows

recursive methods that return futures.

The second feature of this new model should be an explicit data-flow syn-

chronisation approach, in which a simple synchronisation operation is defined, as

in control-flow synchronisation approach, but with an data-flow orientation. This

synchronisation operation resolves a future returning a value, even in the case of

nested futures (i.e factorial function), exactly as wait-by-necessity synchronisation

does. Having an explicit synchronisation operation defined in this way gives more

control to the programmer and allows the definition of a single synchronisation

recursive functions.
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6.2.3 Annotations checker for MultiASP

Multiactive objects model [Henrio and Kammüller, 2015] is a multi-threaded ex-

tension of the active object programming model. The main principle behind this

model is to enable the parallel execution of several requests, where, as we have seen

in this thesis, the Active object model only allows the processing of one request at

a time. Contrary to the standard Active object model, the Multiactive model, by

having shared-memory between threads, can be affected by data races.

To avoid data races, requests that execute in parallel must be acknowledged

by the programmer: the programmer must state which requests are compatible

regarding data race freedom.

The compatibility of two requests is statically declared (when writing a class),

but may depend on dynamic parameters.

ProActive [Baduel et al., 2006] language, that has been presented in Sec-

tion 2.4.2, implements the multiactive object programming model. ProActive of-

fers to the programmer the possibility to declare compatibility of requests, and thus

to have multiactive objects. ProActive allows the programmer to define request

compatibility in the following way:

@Group defines a set of requests that have the same compatibility requirements.

Methods belonging to the same group are considered as compatible;

@MemberOf can be defined on top of method definitions, and defines that a

method belongs to a group.

@Compatible is used to specify the groups that are compatible.

We present below an example of compatibility annotation in ProActive.

1 @DefineGroups ({

2 @Group(name="group1"),

3 @Group(name="group2")

4 @Group(name="group3")

5 })

6

7 @DefineRules ({

8 @Compatible ({"group1", "group3"})

9 })

Listing 6.1 – Annotation for ProActive
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In Listing 6.1 we create three groups and we specify that the methods that

belong to the group1 can run in parallel with the method belonging to group3, and

that methods that belong to group2 are not compatible with any other methods.

Considering the compatibility groups and the compatibility rules defined in

Listing 6.1, we can annotate the program presented in Figure 6.1.b as follow.

1 Int k

2

3 @MemberOf: group1

4 Int foo( )

5 { k = this.m(); return 1 }

6

7 @MemberOf: group2

8 Int bar( )

9 { z = k + 1; return k }

10

11 @MemberOf: group3

12 Int m( ) { return 1 }

13

14 // MAIN //

15 { x = this.foo(); y = this.bar() }

Listing 6.2 – Program of Figure 6.1.b with compatibility annotation

If we consider this program as a Multiactive object program, we have that

despite the methods foo, bar and m are invoked on the same active object, these

method invocations can be executed in parallel. As methods foo and bar perform

concurrent access on the field k, this program is affected by data races. We want

to underline that, considering the Multiactive object model, this program does not

simply lead to a race condition, as for the case of the standard Active object model,

but to it leads to a data race. It is important to understand this difference because:

while in case of the standard Active object model we are sure that method bar is

returning a value (k has been synchronised in the evaluation of the expression z =

k + 1), if we consider the Multiactive object model we do not know if bar returns

a value or the future related to the method invocation of m stored inside k by foo.

To avoid data races in this program, we have annotated it as shown in Listing 6.2.

In this way we are stating that method bar can not run in parallel with any other
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methods, while foo and m being compatible can be executed at the same time.

In Multiactive objects, the execution safety is partially entrusted to the pro-

grammer that has to define compatibility annotations. To ease the responsibility of

the programmer a tool which implements the effect system proposed in Chapter 5

can be developed to check if the specified annotation are sufficient to avoid data

races in ProActive programs. As the effect analysis proposed has been developed

for a nondeterministic scheduling approach, it already considers method running

on the same object as running in parallel. For this reason, such analysis do not

require significant improvements to check compatibility annotations. One of the

minor improvement needed is taking into account the FIFO scheduling (used by

ProActive) that, as shown in Section D.5.1, has a significant impact on the analysis

of effects.
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Proofs of Chapter 4

A.1 Subject reduction

Lemma A.1.1. ∆ `R e : x , L . ∆′ and [[e]]` = w for some `, imply that

∆′ `R w : x′ , 0 . ∆′ where x
′ = x or x = rf and x

′ = r.

Proof. We can prove it by cases.

Base Cases:

Case b.1: e can be an integer value, an active object name or a variable containing

an integer value or an active object name (e = v and [[e]]` = α or [[e]]` is

an integer value).

By rules TR-Sync-Val and TR-Val we obtain ∆ `R e : r , 0 . ∆ and

again by applying the rules TR-Sync-Val and TR-Val we conclude

that ∆ `R [[e]]` : r , 0 . ∆.

Case b.2: e is a future variable x where ∆(x) = rF .

By applying the rules TR-Sync and TR-Var we obtain that ∆ types

e such that ∆ `{α,x} e : r , Fα N rt unsync(∆′) . ∆′ where ∆′ is

the update of ∆ such that ∆′ = (∆[y 7→ r]∆(y)=rF )[F 7→ ∆(F )X]. We

conclude that using ∆′ we type the evaluation of e applying the rules

TR-Sync-Val and TR-Val such that ∆′ ` [[e]]` : r , 0 . ∆′.

Induction step: e1 and e2 are two expressions such that [[e1]]` = k1 and [[e2]]` = k2

where k1 and k2 are integer values. By induction hypothesis and the rule TR-

Expression we have ∆ `R e1 : @ , L1 . ∆′ implies ∆′ `R [[e1]]` : @ , 0 . ∆′

141
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and ∆′ `R e2 : @ , L2 . ∆′′ implies ∆′′ `R [[e2]]` : @ , 0 . ∆′′.

By rules TR-Expression and TR-Val we can infer ∆ `R e1⊕ e2 : @ , L1 +

L2 . ∆′′ and this implies ∆′′ `R k1 ⊕ k2 : @ , 0 + 0 . ∆′′.

Theorem 4.5.1. (Subject Reduction) Let ∆ `R cn : K and cn → cn′. Then

there exist ∆′, K′, and an injective renaming of active object names i such that

– ∆′ `R cn′ : K′ and

– i(K) � K′

Proof. The proof is a case analysis on the reduction rule used in cn→ cn′ and we

assume that the evaluation of an expression [[w]] always terminates.

Case Serve.

Serve

α(a,∅, q ∪ {p})→ α(a, p, q)

Bt hypothesis ∆ ` α(a,∅, q ∪ {p}) : K applying the rule TR-ActObj there

exist K1, · · · ,Kn and Kp such that K = (
n
N
i=1

Ki) N Kp. With the same ∆ we can

type α(a, p, q) obtaining that ∆ ` α(a, p, q) : Kp N (
n
N
i=1

Ki). By commutativity

of N we can easily prove that (
n
N
i=1

Ki) N Kp � Kp N (
n
N
i=1

Ki).

Case Update.

Update

(a+ `)(x) = f (a+ `)[x 7→ w] = a′ + `′

α(a, {` | s}, q) f(w)→ α(a′, {`′ | s}, q) f(w)

Ex hypothesis we know that ∆ ` α(a, {`|s}, q) f(w) : K, by TR-Parallel,

TR-ActObj and TR-Process there exist K1, · · · ,Kn, L, ϕ and Θ such that

K = (ν ϕ)(Θ � L) N (
n
N
i=1

Ki) N 0. Accordingly with the restrictions described

for our type system we have that x ∈ ` then a′ = a and `′ = `[x 7→ w].

As ∆ ` w : x, we can choose ∆′ = ∆[x 7→ x] to type α(a, {`′|s}, q) f(w).

By rules TR-Parallel, TR-ActObj and TR-Process we obtain that

∆′ ` α(a, {`[x 7→ w]|s}, q) f(w) : K. It’s trivial to see that K � K.
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Case New.

New

w = [[v]]a+` β fresh z = fields(Act)

α(a, {` | x = new Act(v); s}, q)
→ α(a, {` | x = β; s}, q) β([z 7→ w],∅,∅)

Ex hypothesis we know that ∆ ` α(a, {`|x = new Act(v); s}, q) : K.

By TR-ActObj, TR-Process, TR-Seq, TR-New and TR-Val there

exist K1, · · · ,Kn, L, ϕ and Θ such that K = (ν ϕ, β)(Θ � 0 + L) N (
n
N
i=1

Ki).

With the same ∆, applying the rules TR-Process, TR-ActObj, TR-

Process, TR-Seq, TR-Assign-Val and TR-Act, we type the config-

uration α(a, {`|x = β; s}, q) β([z 7→ w],∅,∅) such that: ∆ ` α(a, {`|x =

β; s}, q) β([z 7→ w],∅,∅) : K N 0N 0. It’s trivial to see that K � K N 0N 0.

Case Return.

Return

w = [[v]]a+` `(destiny) = f

α(a, {` | return v; }, q) f(⊥)→ α(a,∅, q) f(w)

By hypothesis we know that ∆ ` α(a, {` | return v; }, q) f(⊥) : K. Applying

TR-Parallel, TR-ActObj and TR-Process there exist L, K1, · · · ,Kn,

ϕ, X and Θ such that K = (ν ϕ)(Θ � L N(X,α)) N (
n
N
i=1

Ki) N 0 we can distin-

guish two cases:

Case 1: ∆(v) = r, by rule TR-Return-Val we have L = 0

Case 2: ∆(v) = rf by rule TR-Return we have L = fX N rt unsync(∆\f)

In both cases, with the same ∆ by rules TR-Parallel, TR-ActObj and

TR-Process we type ∆ ` α(a,∅, q) f(w) : 0N (
n
N
i=1

Ki) N 0.

It’s trivial to see that (ν ϕ)(Θ � 0N(X,α)) N (
n
N
i=1

Ki) N 0 � 0N (
n
N
i=1

Ki) N 0 or

(ν ϕ)(Θ � fX N rt unsync((∆ \ f)) N(X,α)) N (
n
N
i=1

Ki) N 0 � 0N (
n
N
i=1

Ki) N 0.
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Case IF-True.

If-True

[[e]]a+` 6= 0

α(a, {` | if e { s1 } else { s2 } ; s}, q)
→ α(a, {` | s1 ; s}, q)

Ex hypothesis we know that ∆ ` α(a, {` | if v { s1 } else { s2 } ; s}, q) : K.

By TR-Parallel, TR-ActObj, TR-Process and TR-Seq there exist L,

Ls K1, · · · ,Kn, ϕ, X and Θ such that K = (ν ϕ)
(
Θ � (L + Ls) N(X,α)

)
N (

n
N
i=1

Ki).

Let ∆S = x : x + destiny : r + future : X by role TR-IF we have that:

∆ + ∆S `αR e : Le . ∆′ + ∆S,

∆′ + ∆S `αR s1 : L1 . ∆1 + ∆S,

∆1 + ∆S `αR s2 : L2 . ∆2 + ∆S and

∆ + ∆S `αR if e { s1 } else { s2 } : Le + L1 + L2 . ∆′′ + ∆S where ∆′′ =

Merge(∆1,∆2) ∪∆1|Fut(∆1)\Fut(∆) ∪ ∆2|Fut(∆2)\Fut(∆), then L = Le + L1 + L2.

Thanks to the Lemma A.1.1 we can say that ∆ + ∆S ` e : x , Le . ∆′+ ∆S

implies that ∆′ + ∆S ` w : @ , 0 . ∆′ + ∆S where w = [[e]]`.

Now we can use ∆′ and the rules TR-Parallel, TR-ActObj, TR-Process

and TR-Seq to say that ∆′ ` α(a, {`|s1; s}, q) : (ν ϕ)
(
Θ � (L1 + Ls) N(X,α)

)
N (

n
N
i=1

Ki).

It’s trivial to prove by the rules LS-RBehavior and LS-Plus that

(ν ϕ)
(
Θ � (Le + L1 + L2 + Ls) N(X,α)

)
N (

n
N
i=1

Ki) �

(ν ϕ)
(
Θ � (L1 + Ls) N(X,α)

)
N (

n
N
i=1

Ki).

Case Invk.

Invk

[[v]]a+` = β [[v]]a+` = w β 6= α

f fresh bind(β,m,w, f) = p′′

α(a, {` | x = v.m(v); s}, q) β(a′, p′, q′)

→ α(a, {` | x = f ; s}, q) β(a′, p′, q′ ∪ {p′′}) f(⊥)

By hypothesis we know that ∆ ` α(a, {`|x = v.m(v); s}, q) β(a′, p′, q′) : K,
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applying TR-Parallel, TR-ActObj, TR-Process and TR-Seq there

exist Ls, K1, · · · ,Kn, K′p and K′1, · · · ,K′m, f , ϕ, X and Θ such that K =

(ν ϕ, f)
(
Θ � (L + Ls) N(X,α)

)
N (

n
N
i=1

Ki) N K′p N (
m
N
i=1

K′i).

Let ∆S = x : x+ destiny : r+ future : X by role TR-Sync we have that

∆ + ∆S `αR v : β , L′ . ∆′ + ∆S and by role TR-Invk we have

∆ + ∆S `αR v.m(v) : rfs , L′ + f s? N rt unsync(∆′) . ∆′′ + ∆S than L =

L′ + f s? N rt unsync(∆′). Using ∆′′ by rules TR-Parallel, TR-ActObj,

TR-Process, TR-Seq and TR-Fut we finally obtain that ∆′′ ` α(a, {` |
x = f ; s}, q) β(a′, p′, q′ ∪ {p′′}) f(⊥) : K′ where K′ = (ν ϕ, f)

(
Θ � (0 +

Ls) N(X,α)
)
N (

n
N
i=1

Ki) N K′p N (
n
N
i=1

K′i) N Kp′′ , where Kp′′ = (ν ϕ′)(Θm � Lm) is

the behavioral type of the method m instantiated with β and x.

Case Assign.

Assign

x ∈ dom(a+ `) w = [[e]]a+`

(a+ `)[x 7→ w] = a′ + `′

α(a, {` | x = e; s}, q)→ α(a′, {`′ | s}, q)

Ex hypothesis we know that applying TR-ActObj, TR-Process, TR-

Seq and TR-Assign-Exp we have that there exist Le, Ls, K1, · · · ,Kn, ϕ, X

and Θ such that

∆ ` α(a, {` | x = e; s}, q) : (ν ϕ)
(
Θ � (Le + Ls) N(X,α)

)
N (

n
N
i=1

Ki).

Let ∆S = x : x+ destiny : r+ future : X, by hypothesis we can also know

that ∆ + ∆S ` e : x , Le . ∆′ + ∆S.

Now thanks to the Lemma A.1.1 we know that ∆+∆S ` e : x , Le . ∆′+∆S

implies ∆′ + ∆S ` w : @ , 0 . ∆′ + ∆S where w = [[e]]`, and we can finally

conclude that by rules TR-ActObj and TR-Process ∆′ ` α(a, {`′ | s}, q) :

(ν ϕ)
(
Θ � Ls N(X,α)

)
N (

n
N
i=1

Ki).

It’s trivial prove that by rules LS-Global and LS-Plus

(ν ϕ)
(
Θ � (Le+ Ls) N(X,α)

)
N (

n
N
i=1

Ki) later (ν ϕ)
(
Θ � Ls N(X,α)

)
N (

n
N
i=1

Ki).
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A.2 Analysis of circularities

Proposition A.2.1. Let m(α,x, X) = (ν ϕ)(Θ � Lm) ∈ L.

(i) for every k, I(k)(m) is an element in the lattice of RA.

(ii) for every k, I(k)(m) b I(k+1)(m).

Proof. (i) is immediate by definition. To see (ii) , observe that I(Θ � L) is mono-

tonic on I (i.e., I(m) b I ′(m) for every m implies I(Θ � L) b I ′(Θ � L)), which

follows by a straightforward structural induction on L. Then, a standard induction

on k gives I(k)(m) b I(k+1)(m).

Since, for every k, I(k)(mi) ranges over a finite lattice, by the fixpoint the-

ory Davey and Priestley [2002], there exists m such that I(m) is a fixpoint, namely

I(m) ≈ I(m+1) where ≈ is the equivalence relation induced by b. In the following,

we let I, called the interpretation function (of a behavioural type), be the least

fixpoint I(m).

The following three lemmas are preparatory to the theorem of correctness and

completeness of our algorithm Theorem 5.5.1. They establish a relation between

the circularities of the approximants I(k)(Θ � L) - Lemma A.2.3 and, whenever

Θ � L→ Θ � L′, between circularities of I(Θ � L) and I(Θ � L′) - Lemma A.2.4.

Lemma A.2.2. Let C be a context, Θ be a future environment, L be a behavioural

type and I(·) be a flattening. Then we have:

1) I(Θ � C[ L ]) has a circularity if and only if C[ R ] has a circularity, for some

R ∈ I(Θ � L).

2) Let R be a binary relation on names and a be the names in both C and R.

Then I(Θ � C[ L ]) has a circularity if and only if I(Θ � C[ proja(R+) ]) has

a circularity.

Proof. Both the properties follow almost immediately from the definitions. To see

1, note that it follows by a straightforward induction on C that R ∈ I(Θ � C[ L ]) if

and only if R ∈ I(Θ � C[ R ]) for some R ∈ I(Θ � L).

Lemma A.2.3. Let

(
m1(α1,x1, X1) = (ν ϕ1)(Θ1 � L1), · · · , mn(αn,xn, Xn) = (ν ϕn)(Θn � Ln), L

)
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be a behavioural type program and let Θ � C[ f i1κ1 ] · · · [f imκm ]→m Θ′ � C[ L′i1 ] · · · [L′im ]

where C[ · ] · · · [·] is a multiple context without function invocations, Θ(f ij) = λX ′j.mij(α
′
j,x

′
j, X

′
j),

Θ′ =
m⋃
j=1

Θj[ϕ
′
j/ϕij ][

α′j,x
′
j, κj/αij ,xij , Xij

] ∪ Θ and L′ij = Lij [ϕ
′
j/ϕij ][

α′j,x
′
j, κj/αij ,xij , Xij

].

Then, the following two properties are equivalent:

(1) I(k+1)(Θ � C[ f i1κ1 ] · · · [f imκm ]) has a circularity,

(2) I(k)(Θ′ � C[ L′i1 ] · · · [L′im ]) has a circularity.

Proof. To show the implication 1 ⇒ 2, suppose that

I(k+1)(Θ � C[ f i1κ1 ] · · · [f imκm ])

has a circularity. By repeated applications of Lemma A.2.2(1), there exists Rj ∈
I(k+1)(Θ � f

ij
κj) with 1 ≤ j ≤ m such that I(k+1)(Θ � C[ R1 ] · · · [Rm]) has a

circularity. By the definition of I(k+1)(Θ � f
ij
κj) and I(k+1)(mi), where Θ(f) =

λX.mi(α,x, X)

Rj = proja(R
+)[α

′
j,x

′
j, κj/αij ,xij , Xij

]

with R′j ∈ I(k)(Lij). This implies that

I(k+1)(C[ proja′1((R
′
1[α
′
1,x

′
1, κ1/α1,x1, X1

])+) ] · · · [proja′m((R′m[α
′
m,x

′
m, κm/αm,xm, Xm

])+)])

also has a circularity. By repeated applications of Lemma A.2.2(2),

I(k+1)(C[ R′1[α
′
1,x

′
1, κ1/α1,x1, X1

] ] · · · [R′m[α
′
m,x

′
m, κm/αm,xm, Xm

]])

has also a circularity. Since L contains no function invocations,

I(k)(C[ R′1[α
′
1,x

′
1, κ1/α1,x1, X1

] ] · · · [R′m[α
′
m,x

′
m, κm/αm,xm, Xm

]])

has a circularity, and by repeated applications of Lemma A.2.2(1), I(k)(Θ′ � C[ L′i1 ] · · · [L′im ])

also has a circularity.

The convert is similar.
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Lemma A.2.4. Let (L, L) be a behavioural type program and Θ � C[ fκ ] →
Θ′ � C[ L′ ], where Θ(f) = λX.m(α′,x′, X), L′ = Lm[ϕ

′
/ϕ][α

′,x′, κ/α,x, X] and

Θ′ = Θ ∪Θm[ϕ
′
/ϕ][α

′,x′, κ/α,x, X].

The following two properties are equivalent:

(1) I(Θ � C[ fκ ]) has a circularity,

(2) I(Θ′ � C[ L′ ]) has a circularity.

Proof. To show the implication 1⇒ 2, suppose that I(Θ � C[ fκ ]) has a circularity.

Then by Lemma A.2.2(1), there exists R ∈ I(Θ � fκ) such that I(Θ � C[ R ]) has a

circolarity. By definition of I, there exist k such that R ∈ I(k+1)(Θ � fκ). Thus,

by a reasoning similar to the one in Lemma A.2.3, there exists

R′ ∈ I(k)(Θ � L′) b I(Θ � L′)

such that I(R′) has a circularity. by Lemma A.2.2(1), therefore, I(Θ � L′) has a

circularity.

The converse is similar.

The following theorem states the correctness and completeness of our algorithm.

Similarly to Giachino et al. [2014], there is a relation between the circularities of

the set I(k)(Θ � L) and, whenever Θ � L → Θ′ � L′, between the circularities of

I(k)(Θ � L) and of I(k)(Θ′ � L′). Proofs are omitted because they are similar to

those of Giachino et al. [2014].

Theorem 4.6.1. A behavioural type program
(
L,Θ � L

)
has a circularity if and

only if IL(Θ � L) has a circularity.

Proof. (If direction) By definition, (L, L) has a circularity if there is Θ � L →∗

Θ′ � L′ such that I⊥(Θ′ � L′) has a circularity. By induction on the length of

L→∗ L′. When the length is 0 then I⊥(Θ′ � L′) has a circularity implies I(Θ′ � L′)

has a circularity (by I⊥(Θ′ � L′) = I(0)(Θ′ � L′) and Lemma A.2.1(2)). Assume

Θ � L →∗ Θ′ � L′ be equal to Θ � L → Θ′′ � L′′ →∗ Θ′ � L′. By inductive

hypothesis, we assume that the theorem holds on the computation Θ′′ � L′′ →∗
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Θ′ � L′. Then, by Lemma A.2.4, if I(Θ′′ � L′′) has a circularity then I(Θ � L) has

a circularity. Therefore the theorem.

(Only-if direction) We demonstrate that, if I(Θ � L) has a circularity then

there is Θ � L →∗ Θ′ � L′ such that I⊥(Θ′ � L′) has a circularity. Let m be

the least natural number such that I = I(m). Let L = C[ f i1κ1 ] · · · [f inκn ] where

Θ(f ij) = mij(αj,xj, Xj), such that C[ ] · · · [ ] does not contain function invocations.

Then

Θ � L→n Θ � C[ Li1 ] · · · [Lin ] = Θ′′ � L′′

Additionally, by Lemma A.2.3, I(m−1)(Θ′′ � L′′) has a circularity because I(m)(Θ′ � L′)

has a circularity. Now, we reapply the same argument to Θ′′ � L′′ since I(m−1)(Θ′′ � L′′)

has a circularity. After m steps we get Θ′ � L′ such that I(0)(Θ′ � L′) = I⊥(Θ′ � L′)

has a circularity.
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Appendix B

Proofs of Chapter 5 - Deadlock

B.1 Proofs of Theorem 5.5.1

To demonstrate the correctness of the type system and the analysis we split the

part of the type system concerning to the deadlock analysis (Appendix B) and the

part related to the effect analysis (Appendix C). In this section we will focus only

on the deadlock analysis aspect. We suppose that the analysed program has only

deterministic effects (see Definition 4). The correctness of our system guarantees

that, if the deadlock-freedom is accessed for a behavioural type program associ-

ated to a gASP program with deterministic effects, then also the corresponding

gASP program is guaranteed to be deadlock-free. In other words we are proving

that if the analysis shows that no deadlocks are present in the behavioural type

of the original program, then none of its executions can lead to a deadlock. To

this end, we prove that: (i) if there is no circularity in the type of a runtime

configuration then this configuration exhibits no deadlock, and (ii) if a configur-

ation reduces to a configuration with a circularity then the original configuration

already had a circularity. These two points ensure that if no circularity is found in

the behavioural type of a gASP program then there is no deadlock in the original

program. We state again the Theorem 5.5.1 as follow.

Theorem B.1.1. Let P be a gASP program with deterministic effects (see Defin-

ition 4) and cn be a configuration of its operational semantics, with behavioural

type Θ � L.

151
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1. If Θ � L has no circularity then cn is deadlock-free;

2. if cn → cn′ and the behavioral type Θ′ � L′ of cn′ has a circularity, then a

circularity is already present in Θ � L, the behavioral type of cn;

In order to prove the points 1 and 2 of Theorem 5.5.1 we need an extension of

the type system to type runtime configurations (Section B.1.1). Additionally, to

prove the point 2 we also need to define a later-stage relation between behavioural

types (Section B.1.3).

B.1.1 Runtime Type System for Deadlock detection

In order to infer the behavioural types for runtime configuration, we define a

runtime type system. To this aim we extend the syntax of behavioural types by

defining extended futures F and behavioural type for configuration K as follows:

r ::= @ | f | α[x : f ] basic type

f ::= r | λX.m(f, g,X,Γ, E) | f g.x future type

F ::= f | sf extended futures

κ ::= ? | α | X synchronisers

L ::= 0 | (κ, α) | fκ | L + L | LN L behavioural type

K ::= L | (ν κ)(Θ � L) | KNK behavioural type for configuration

F F has been introduced for distinguishing between two kinds of future names:

i) f that has been used in the type system as a static time representation of a

future, but that it is now used for its runtime representation; ii) sf now replaces

f in its role of static time future (it is typically used to reference a future that is

not created yet).

This type system is a simpler version of the one given in Section 5.3 where

we are focusing only on the deadlock analysis aspects, and we leaves out what is

related with the effect analysis. The typing judgements are also simpler than the

judgements of Section 5.2, the principle differences are:

1) In the future type λX.m(f, g,X,Γm, E) we have that E now is a set used

to collect two kind of information: the future names of the parameters syn-

chronised by the method m (this set of future names is a subset of the domain

of Γm) and the fields of the arguments modified by m, represented by elements
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configuration and processes
- judgements used: ∆ ` cn : L and ∆ ` p : (ν κ)(Θ � L)

(TR-Future-Undef)

∆ ` f : λX.m(g,X,∆m, Em)

∆ ` f(⊥) : 0

(TR-Future-Eval)

∆ ` f : λX.m(g,X,∆m, Em)
X ∆ ` w : f

∆ ` f(w) : 0

(TR-Actor)

∆(α) = α[y : f ] ∆ ` v : f ∆′ = ∆ + this : α[y : f ]
∆′ ` p : K0 ∀i ∈ 1..n.∆′ ` qi : Ki

∆ ` α({y 7→ v}, p, {q1, · · · , qn}) :
n
N
i=0

Ki

(TR-Parallel)

∆ ` cn1 : K1 ∆ ` cn2 : K2

∆ ` cn1 cn2 : K1 N K2

(TR-Process)

∆ ` f : λX.m(this , g,X,∆m, Em)
∆ ` v : g ∆′ = ∆ + ∆m + destiny : f + x : g + future : X
∆′,∅ `{this,g} s : L . ∆′′, E ′ κ = names(∆′′) \ names(∆′)

∆ ` {destiny 7→ f, x 7→ v | s} : (ν κ)(∆′′|FutR(∆′′) � L)

Figure B.1 – Typing rules for runtime configurations.

like g.x (g is the argument and x is the field of g in which m has stored a

future).

2) the rt unsync(·) function on environments ∆ is similar to rt unsync(·) in

Section 5.2, except that it now grabs all sf and all futures f . More precisely

we define FutR(∆), AFutR(∆), and

rtunsync∆ to be the functions

FutR(∆)
def
= {F | F ∈ dom(∆)}

AFutR(∆)
def
= {F ∈ FutR(∆) | ∆(F ) = ∆(F )×}

rt unsync(∆)
def
=

˘
F∈AFutR(∆) F?,

where FutR(Γ) collects all the (static and runtime) futures names in dom(∆),

AFutR(∆) is the subset of FutR(Γ) that contains future names F (static

and runtime) such that ∆(F ) is not ”checkmarked” (i.e. the set of not-yet-

synchronised futures); and rt unsync(∆) performs the parallel composition

of the behavioural types of the not-yet-synchronised method invocations.
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values, variables and method names
- judgements used: ∆ ` x : r and Γ ` m : (f,X,Γ′)→ (E,A)

(TR-Val)

v integer-value or null

∆ `: v@

(TR-Var)

∆(x) = F

∆ `: xF

(TR-Fut)

∆(F ) = f
[X]

∆ `: F f [X]

(TR-Field)

∆(this .x) = F

∆ `: xF

(TR-Method-Sign)

∆(m) = (F ,X,Γ)→ (E) σ renaming

Γ ` m : (σ(F ), σ(g), σ(X),Γ ◦ σ)→ (E ◦ σ)

synchronisations
- judgement used: Γ, E ⊕`S v : L . Γ′, E ′

(TR-Synchronized)

∆, E ` v : F ∆ ` F : fX

∆, E ⊕`S v : 0 . ∆, E

(TR-Sync-Invk)

∆ ` this : α[· · · ]X ∆ ` x : F

∆ ` F : λX.m(F ′, X,Γm, Em) ∆′ = ∆[FX][HX]H∈dom(Em)

∆′′ = ∆′([G.y 7→ G′][G′ 7→ F G.y])G.y∈Em, g′ fresh

∆, E ⊕`S x : Fα N rt unsync(∆′′) . ∆′′, E ∪ Em|S

(TR-Sync-Field)

∆ ` this : α[· · · ] ∆ ` x : F
∆ ` F : G this .x ∆′ = ∆[FX]

∆, E ⊕`S x : Fα N rt unsync(∆′) . ∆′, E

(TR-Sync-Param)

∆ ` this : α[· · · ] ∆ ` x : F
∆ ` F : f F ∈ S ∆′ = ∆[FX]

∆, E ⊕`S x : Fα N rt unsync(∆′) . ∆′, E ∪ {F}

Figure B.2 – Runtime typing rules for values, variables, method names and syn-
chronisations
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expressions with side effects
- judgement used: ∆, E `S z : f, L . ∆′, E ′

(TR-Future)

f ∈ dom(∆)

∆, E `S f : f, 0 . ∆, E

(TR-Actor-Name)

∆ ` F : α[· · · ]X

∆, E `S α : F, 0 . ∆, E

(TR-Atom)

∆ ` v : F

∆, E `S v : F, 0 . ∆, E

(TR-Expression)

∆, E ⊕`S v : L . ∆′, E ′

∆′, E ′ ⊕`S v′ : L′ . ∆′′, E ′′

∆, E `S v ⊕ v′ :[s] @, L + L′ . ∆′′, E ′′

(TR-New)

∆ ` v : G β, F fresh x = fields(Act)

∆, E `S new Act(v) : F, 0 . ∆[f 7→ β[x : G]X], E

(TR-Invk)

∆ ` v : F ∆ ` F : β[· · · ]X ∆ ` v : F ′ h = f ∪ obj (f ′)
Γ ` m : (F, F ′, X,∆|h)→ (Em)

sg fresh G′ = F ′[@/int(sFut(Γ ))] ∆m = (∆|h)[@/int(sFut(Γ ))]

∆′ = ∆[sg 7→ λX.m(F,G′, X,∆m, Em)]

∆, E `S v.m(v) :s g, sg? N rt unsync(∆) . ∆′, E

Figure B.3 – Runtime typing rules expressions with side effects

B.1.2 Proof of Theorem 5.5.1.1

Since we have a type system for configurations we can now prove the first statement

of the Theorem 5.5.1.

Lemma B.1.2. Let suppose ∆ ` cn : K and let D be the set of dependencies of

cn. Then, we have D ⊂ IL(K).

Proof. By Definition 3, if cn has a dependency (α, β), then there exist cn′ =

α(a, {` | C[f ]}, q) β(a′, p′, q′) ∈ cn such that f ∈ destinies(p′, q′). By runtime typ-

ing rules TR-Actor, TR-Process, TR-Seq and TR-Synch-*, the behavioural

type of cn′ is (ν κ)
(
Θ � (fα + Ls) N(X,α)

)
N (

n
N
i=1

Ki).

Having that:

– by rule TR-Invk Θ(f) = λX.m(g, g′, X,∆m, Em);

– ∆m(g) = β[· · · ]X;

– ∆(m) = (ν κ)
(
Θ � L N(X, β)

)
;
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statements
- judgement used: ∆, E `S s : L . ∆′, E ′

(TR-Assign-Var-Exp)

x 6∈ fields(Act)
∆, E `S z : F, L . ∆′, E ′

∆, E `S x = z : L . ∆[x 7→ F ], E ′

(TR-Assign-Field-Exp)

x ∈ fields(Act)
∆, E `S z : F, L . ∆′, E ′

∆, E `S x = z : L . ∆[this .x 7→ F ], E ′ ∪ {this .x}

(TR-Assign-Var-Fut)

x 6∈ fields(Act) ∆ ` x : F

∆, E `S x = f : 0 . ∆[x 7→ f ], E

(TR-Assign-Field-Fut)

x ∈ fields(Act) ∆ ` x : F

∆, E `S x = f : 0 . ∆[this .x 7→ f ], E

(TR-Skip)

∆, E `S skip : 0 . ∆, E

(TR-Seq)

∆, E `S s1 : L1 . ∆1, E1 ∆1, E1 `S s2 : L2 . ∆2, E2

∆, E `S s1; s2 : L1 + L2 . ∆2, E2

(TR-Return-Fut)

∆ ` v : F ∆ ` F : f ∆(future) = X
∆(destiny) = f ′ ∆ ` f ′ : λX.m(g,X,Γm, Em)

∆, E `S return v : FX N rt unsync(∆ \ F ) . ∆, E

(TR-Return-Val)

∆ ` v : F ∆ ` F : fX

∆(destiny) = f ′ ∆ ` f ′ : λX.m(g,X,Γm, Em)

∆ `S return v : 0 . ∆

(TR-If)

∆, E `S e :[s] @, L . ∆′, E ′

∆′, E ′ `S s1 : L1 . ∆1, E1 ∆′, E ′ `S s2 : L2 . ∆2, E2

∆1 =unsync ∆2

∆, E `S if e { s1 } else { s2 } : L + L1 + L2 . ∆1 + ∆2, E1 ∪ E2

Figure B.4 – Runtime typing rules for statements

we can infer that during the computation of IL(K) the rule BT-Red will replace

fα with the behavioural type of the body of m where the X will be instantiated

with α ( ∆(m)[α/X] ). This substitution will generate the pair (α, β)
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(LS-RuntimeEmpty)

K �∆ 0

(LS-Global)

K1 �∆ K′1
K1 N K �∆ K′1 N K

(LS-Behavior)

K = (ν ϕ)(Θ � L) K′ = (ν ϕ′)(Θ � L′)
L �∆ L′

K �∆ K′

(LS-Empty)

L �∆ 0

(LS-Plus)

L1 + L2 �∆ Li

(LS-Parallel)

L1 � L′1
L1 N L �∆ L′1 N L

(LS-Invk)

∆(f) = λX.m(α′, z′, X)
∆(m) =

(
(α,x, X)→ r,Km

)
∆ ` m : (α′,x′, X)→ r

′

α = fn(K) \ fn(α,x, r) α′ ∪ fn(α′,x′, r′) = ∅

(ν ϕ)(Θ � (fκ N L) + Ls) �∆ (ν ϕ)(Θ � Ls) N Km[α
′
/α][α

′,x′, r′/α,x, r]

Figure B.5 – The later-stage relation.

B.1.3 Later stage relation

As we said before, we need to define a later-stage relation between behavioural

types (denoted �∆), which is a syntactic relationship between behavioural types.

We can simplify the basic laws of the later-stage relation saying that a method

invocation is larger than the instantiation of its method behaviour, and a sum

type is larger than each element of the sum. The later-stage relation is the least

congruence with respect to runtime behavioural type that contains the rules in

Figure B.5.

B.1.4 Subject Reduction

Since we have defined both type system for runtime configuration and later stage

relation, we can state the Subject Reduction theorem. The subject reduction

theorem expresses that if a runtime configuration cn is well typed and cn → cn ′

then cn ′ is well typed. We cannot demonstrate a statement guaranteeing the

equality of types of cn and cn′, because our types are behavioural. the type of cn

(Θ � L), and the type of cn′, (Θ′ � L′).
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Theorem B.1.3 (Subject Reduction). Let ∆ `R cn : K and cn→ cn′. Then there

exist ∆′, K′, and an injective renaming of actor and future names ı such that

– ∆′ `R cn′ : K′ and

– ı(K) �∆ K′

Proof of Theorem 5.5.3 (Subject Reduction)

The proof is a case analysis on the reduction rules used in cn→ cn′.

Case: Serve
Serve

α(a,∅, q ∪ {p})→ α(a, p, q)

Proof. Let ∆, Kp, K1 · · ·Kn exist, by rule TR-Actor we obtain that ∆ ` α(a,∅, q∪
{p}) : Kp N(

n
N
i=1

Ki).

With the same ∆ we can type the configuration α(a, p, q) by applying the rule

TR-Actor and we gain that ∆ ` α(a, p, q) : Kp N(
n
N
i=1

Ki).

It is trivial to demonstrate that the relation Kp N(
n
N
i=1

Ki) � ∆Kp N(
n
N
i=1

Ki) holds.

Case: Return
Return

[[v]]a+` = w `(destiny) = f

α(a, {` | return v}, q) f(⊥)

→ α(a,∅, q) f(w)

Let ∆ and K exists, such that ∆ ` α(a, {` | return v; }, q) f(⊥) : K, then there

exist ∆′ such that ∆′ ` α(a,∅, q) f(w) : K′ and K �∆ K′

Proof. We can distinguish two cases:

1) v is a value or a synchronized future (∆(v) = f ∧∆(f) = f
X).

By rules TR-Actor andTR-Process we obtain that

– there exists ∆′′ that extends ∆ (like in the application of TR-Actor

and TR-Process) such that ∆′′(v) = f and ∆′′(f) = f
X;
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– there exists a set of future names S, as in the application of TR-

Process, such that S ⊆ dom(∆′′);

– there exists a set collecting effects E;

– and by applying TR-Return-Val we infere that ∆′′, E `S return v :

0 . ∆′′, E.

It follows from the hypothesis and rules TR-Parallel, TR-Actor, TR-

Process and TR-Future-Undef that there exist κ, Θ, K1, · · · ,Kn such

that:

∆ ` α(a, {` | return v; }, q) f(⊥) : (ν κ)
(
Θ � 0

)
N (

n
N
i=1

Ki).

Let us choose ∆′ = ∆[fX][w 7→ ∆(f)X], by applying the rules TR-Parallel,

TR-Actor and TR-Future-Eval we gain that ∆′ ` α(a,∅, q) f(w) :

(
n
N
i=1

Ki).

Therefore by the rules LS-Empty and LS-Delte it is trivial to prove that

the following relation holds (ν κ)
(
Θ � 0

)
N (

n
N
i=1

Ki) �∆ (
n
N
i=1

Ki).

2) v is an unsynchronized future (∆(v) = f ∧∆(f) = f).

By rules TR-Actor and TR-Process we gain that

– there exists ∆′′ that extends ∆ with ∆′′(v) = f and ∆′′(f) = f;

– there exist a set of future names S such that S ⊆ dom(∆′′);

– there exists a set collecting effects E;

– and finally by TR-Return-Fut we infere ∆′′ `S return v : fX N unsync(∆′′\
f) . ∆′′.

Considering the previous hypothesis and by the rules TR-Parallel, TR-

Actor and TR-Future-Undef we can state that there exist κ, Θ, K1, · · · ,Kn

such that:

∆ ` α(a, {` | return v; }, q) f(⊥) : (ν κ)
(
Θ � fX N rt unsync(∆′′\f)

)
N (

n
N
i=1

Ki).

Let us choose ∆′ = ∆[fX][w 7→ ∆(f)X], by applying the rules TR-Parallel,

TR-Actor and TR-Future-Eval we can infere that: ∆′ ` α(a,∅, q) f(w) :

(
n
N
i=1

Ki).

Therefore by the rules LS-Behavior, LS-Empty, and LS-Delete we can

prove that the relation (ν κ)
(
Θ � fX N unsync(∆′′ \f)

)
N (

n
N
i=1

Ki) �∆ (
n
N
i=1

Ki)

holds.
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Case: Update

Update

(a+ `)(x) = f

(a+ `)[x 7→ w] = a′ + `′

α(a, {` | s}, q) f(w)

→ α(a′, {`′ | s}, q) f(w)

Let ∆ and K exist, such that ∆ ` α(a, {` | s}, q) f(w) : K, then there exist ∆′ such

that ∆′ ` α(a′, {`′ | s}, q) f(w) : K′ and K �∆ K′

Proof. By rules TR-Actor, TR-Process and TR-Future-Eval we have that

there exists ∆′′ that extends ∆ like in the application of TR-Actor and TR-

Process and the following hypothesis hold:

– ∆(f) = λX.m(g,X,∆m, Em)
X and ∆(w) = f ;

– there exist a set of future names S such that S = {g};

– there exists a set collecting effects E;

– ∆′′, E `S s : L . ∆′′′, E ′.

It follows from the hypothesis and by TR-Parallel, TR-Actor, TR-Process

and TR-Future-Eval that there exist κ, Θ, L, K1, · · · ,Kn such that: ∆ `
α(a, {` | s}, q) f(w) : (ν κ)

(
Θ � L

)
N (

n
N
i=1

Ki).

Let ∆′ = ∆[x 7→ ∆(w)] we have that ∆′ ` (a′ + `′)(x) : ∆′(x), now applying the

rules TR-Parallel, TR-Actor, TR-Process and TR-Future-Eval we can

conclude that ∆′ ` α(a′, {`′ | s}, q) f(w) : (ν κ)
(
Θ � L

)
N (

n
N
i=1

Ki).

It is trivial to proof that (ν κ)
(
Θ � L

)
N (

n
N
i=1

Ki) �∆ (ν κ)
(
Θ � L

)
N (

n
N
i=1

Ki).

Case: Assign

Assign

[[e]]a+` = w (a+ `)[x 7→ w] = a′ + `′

α(a, {` | x = e ; s}, q)→ α(a′, {`′ | s}, q)
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Let ∆ and K exist where ∆ ` α(a, {` | x = e; s}, q) : K, then there exist ∆′ such

that ∆′ ` α(a′, {`′ | s}, q) : K′ and K �∆ K′

Proof. We can distinguish two cases:

1) x is a local variable (x 6∈ fields(Act))

By rules TR-Actor and TR-Process

– there exists ∆2 that extend ∆ as in the application of TR-Actor and

TR-Process;

– there exist a set of future names S such that S ⊆ dom(∆′′) like defined

in TR-Process;

– there exists a set collecting effects E;

– by rule TR-Assign-Var-Exp we gain ∆2, E `S x = e : Le . ∆4, E
′

and ∆4 = ∆3[x 7→ f ] ( Le, ∆3, E ′ and f came from the typing of

the expression e. The possible shape of e generates two subcases, ones

in which e is a a value or a variable and another in which e is an

arithmetic expression. We can say that by rule TR-Atom or TR-

Expression, which are the rules that are applied for the first and

second case respectively, we have that ∆2, E `S e : f, Le . ∆3, E
′. We

do not handle in the detail this two cases because this has no relevant

impact in the proof, and we let f , Le, ∆3 and E ′ be the be the future

name, the behavioural type, the update of ∆2 and the update of E that

come from the application of the proper rule.)

– TR-Seq we obtain ∆2, E `S x = e ; s : Le + Ls . ∆′2, E
′ with ∆′2 be

the update of ∆4 that is obtained from typing s.

Considering the previous hypothesis and by the rules TR-Parallel, TR-

Actor, TR-Process and TR-Seq we can state that there exist κ, Θ,

K1, · · · ,Kn such that:

∆ ` α(a, {` | x = e; s}, q) : (ν κ)
(
Θ � Le + Ls

)
N (

n
N
i=1

Ki).

Let us chose ∆′ = ∆4 by rules TR-Parallel, TR-Actor and TR-Process

we obtain that:

∆′ ` α(a, {` | x = e; s}, q) : (ν κ)
(
Θ � Ls

)
N (

n
N
i=1

Ki).
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Now we can demonstrate that by LS-Plus, we have Le + Ls �∆ Ls which

allows us to say that (ν κ)
(
Θ � Le+Ls

)
N (

n
N
i=1

Ki) �∆ (ν κ)
(
Θ � Ls

)
N (

n
N
i=1

Ki).

2) x is a field (x ∈ fields(Act))

By rules TR-Actor and TR-Process

– there exists ∆2 that extend ∆ (like in the application of TR-Actor

and TR-Process);

– there exist a set of future names S such that S ⊆ dom(∆′′) as in the

application of TR-Process;

– there exists a set collecting effects E;

– by TR-Assign-Field-Exp we obtain ∆2, E `S x = e : Le . ∆4, E
′′

with ∆4 = ∆3[x 7→ f ] and and E ′′ = E ′ ∪ {this .x} ( Le, ∆3, f and E ′

are as in the previous case.)

– by TR-Seqwe gain ∆2, E `S x = e; s : Le + Ls . ∆′2, E
′′ with ∆′2 be

the update of ∆4 that comes from typing s.

As in the previous case, let us chose ∆′ = ∆4 by rules TR-Parallel, TR-

Actor and TR-Process we obtain that:

∆′ ` α(a, {` | x = e; s}, q) : (ν κ)
(
Θ � Ls

)
N (

n
N
i=1

Ki).

Now we can demonstrate that by LS-Plus, we have Le + Ls �∆ Ls which

allows us to say that (ν κ)
(
Θ � Le+Ls

)
N (

n
N
i=1

Ki) �∆ (ν κ)
(
Θ � Ls

)
N (

n
N
i=1

Ki).

Case: New
New

[[v]]a+` = w β fresh y = fields(Act)

α(a, {` | x = new Act(v) ; s}, q)
→ α(a, {` | x = β ; s}, q) β([y 7→ w],∅,∅)

Let ∆ and K such that ∆ ` α(a, {` | x = new Act(v); s}, q) : K, then there exist

∆′ such that ∆′ ` α(a, {` | x = β; s}, q) β([y 7→ w],∅,∅) : K′ and K �∆ K′

Because of the restriction of the language we have that x could not be a field.

Proof. By rules TR-Actor, TR-Process and TR-assign-Var-Exp
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– there exists ∆′′ that extends ∆ as defined in the application of TR-Actor

and TR-Process;

– there exist a set of future names S such that S ⊆ dom(∆′′) like in the

application of TR-Process;

– there exists a set collecting effects E;

– by rule TR-New we gain ∆′′, E `S new Act(v) : f, 0 . ∆′′[f 7→ β[a : g]X], E

with f fresh.

Considering the previous hypothesis and by the rules TR-Parallel, TR-Actor,

TR-Process, TR-Seq and TR-Assign-Var-Exp we can state that there exist

κ, Θ, K1, · · · ,Kn such that:

∆ ` α(a, {`|x = v.m(v); s}, q) : (ν κ)
(
Θ � (0 + Ls) N(X,α)

)
N (

n
N
i=1

Ki)

Let ∆′ = ∆[x 7→ h][h 7→ γ[y : g]X] and ı(h) = f , ı(β) = γ, where ı is an injective

function on future names and actor names, by TR-Parallel, TR-Actor, TR-

Process, TR-assign-Var-Exp and TR-Actor-Name we have that:

∆′ ` α(a, {` | x = β; s}, q) β([y 7→ w],∅,∅) : (ν κ)
(
Θ � (0+Ls) N(X,α)

)
N (

n
N
i=1

Ki) N 0.

It is trivial to verify that:

(ν κ)
(
Θ � (0+Ls) N(X,α)

)
N (

n
N
i=1

Ki) �∆ (ν κ)
(
Θ � (0 + Ls) N(X,α)

)
N (

n
N
i=1

Ki) N 0.

Case: Invk
Invk

[[v]]a+` = β [[v]]a+` = w β 6= α

f fresh bind(β,m,w, f) = p′

α(a, {` | x = v.m(v) ; s}, q) β(a′, p, q′)

→ α(a, {` | x = f ; s}, q) β(a′, p, q′ ∪ {p′}) f(⊥)

Let ∆ and K exist where ∆ ` α(a, {` | x = v.m(v); s}, q) β(a′, p, q′) : K, then there

exist ∆′ such that ∆′ ` α(a, {` | x = f ; s}, q) β(a′, p, q′ ∪ {p′}) f(⊥) : K′ and

K �∆ K′.

Because of the restriction of the language we have that v can not be the result

of a method invocation then the access of v could not perform a synchronization.
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Proof. By applying the rules TR-Parallel, TR-Actor, TR-Process andTR-

Seq we have:

– there exist ∆′′ that extend ∆ (like in the application of TR-Actor and

TR-Process) such that ∆′′(v) = g

– there exist a set of future names S such that S ⊆ dom(∆′′) as defined in rule

TR-Process;

– there exists a set collecting effects E;

– by TR-Invk we can infere that ∆′′, E `S v.m(v) :s f , sf? N rt unsync(∆′′) .

∆′′′, E such that ∆′′′ = ∆′′[f 7→ λX ′.m(g, g′, X ′,∆m, Em)] where sf is fresh.

Considering the previous hypothesis and by the rules TR-Parallel, TR-Actor,

TR-Process, TR-Seq and TR-Invk it follows that exist Θ, κ, Ls, X and

K1, · · · ,Kn such that

∆ ` α(a, {`|x = v.m(v); s}, q) : (ν κ,sf)
(
Θ � (sf? N rt unsync(∆′′)+Ls) N(X,α)

)
N (

n
N
i=1

Ki).

By applying the rule TR-Actor there also exist K′1, · · ·K′n such that ∆ ` β(a′, p′, q′) :

K′p N (
n
N
i=1

K′i). It is trivial to notice that by TR-Parallel ∆ types α(a, {` | x =

v.m(v); s}, q) β(a′, p, q′) in the parallel composition of the types of the two config-

urations.

Let us chose ∆′ such that ∆′ = ∆[f 7→ λX ′.m(g, g′, X ′,∆m, Em)] such that and

ı(sf) = f where ı is an injective function on future names, by rules TR-Parallel,

TR-Actor, TR-Process, TR-Seq and TR-Fut we finally obtain that:

– ∆′ ` α(a, {` | x = f ; s}, q) : (ν ϕ, f)
(
Θ � (0 + Ls) N(X,α)

)
N (

n
N
i=1

Ki)

– ∆′ ` β(a′, p′, q′∪{p′′}) f(⊥) : K′p N (
n
N
i=1

K′i) N Kp′′ where Kp′′ is the behavioral

type of the method m instantiated with g, g′, X ′,∆m.

Also in this case it is trivial to see that ∆′ types α(a, {` | x = f ; s}, q) β(a′, p′, q′ ∪
{p′′}) f(⊥) in the parallel composition of the types associated to the two element

of the configuration.

Moreover, by LS-Invk we can conclude that (ν κ, f)
(
Θ � (f s? N rt unsync(∆′′)+

Ls) N(X,α)
)
�∆ (ν ϕ, f)

(
Θ � (0 + Ls) N(X,α)

)
N Kp′′ .



Appendix C

Proofs of Chapter 5 - Effects

C.1 Proof of Section 5.5

The aim of this section is to prove the correctness of our effect analysis, which

mostly means prove the following theorem.

Theorem C.1.1. Let P be a gASP program, if Γ ` P then P has deterministic

effects.

In order to prove this theorem we need to extend our type system to runtime

configurations. This extension is presented in the next section.

C.1.1 Runtime Type System for Effect analysis (typing

rules)

In order to study the effect for runtime configuration we define a runtime type

system. This type system is a simpler version of the one given in section 5.3 where

we are focusing only on the effect analysis leaving out all the aspects related with

deadlock. This is the reason why the behavioural type syntax and also the typing

judgments are simpler then the corresponding shown in Section 5.2.

r ::= @ | f | α[x : f ] basic type

f ::= r | λX.m(f, g,Γ, E) future type

F ::= f | sf extended futures

165
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configuration and processes:
- judgements used: ∆ ` cn . E and ∆, E,A ` p . E,A

(TR-Future-Undef)

∆ `: fλX.m(g,∆m, Em)

∆ ` f(⊥)

(TR-Future-Eval)

∆ `: fλX.m(g,∆m, Em) ∆ `: wf

∆ ` f(w)

(TR-Actor)

∆(α) = α[y : f ] ∆ ` v : f ∆′ = ∆ + this : α[y : f ]
∆′,∅,∅ ` p . E0, A0

∀i ∈ 1..n.∆′, [this 7→ ∅],∅ ` qi . Ei, Ai (Ek#Ej)
k,j∈[1,n]∧k 6=j

∆ ` α({y 7→ v}, p, {q1, · · · , qn})

(TR-Parallel)

∆ ` cn1 ∆ ` cn2

∆ ` cn1 cn2

(TR-Process)

∆ `: fλX.m(this , g,∆m, Em) ∆ ` v : g g′ = int(g)
∆ + ∆m + x : g, E,A ` {this , g} : s . L∆′, E ′, A′

A′′ = A′ t
⊔

h∈dom(Γ′)

{(
Em′|{this,g}

)
|∆′(h) = Em′

}
∆, E,A `{this,g} {destiny 7→ f, x 7→ v | s} . E ′, A′′

Figure C.1 – Runtime typing rules for configurations

The main differences with the type system presented in Section 5.3 are:

– future types does not present delegation and future results do not contain

the place holder X;

– we define extended futures F which are introduced for distinguishing two

kinds of future names: i) f that has been used in the type system as a

static time representation of a future, but it is now used as its runtime

representation; ii) sf now replaces f in its role of static time future (it is

typically used to reference a future that is not created yet).

– now judgments only associate types to atoms and expressions and anymore

behavioural type to statements.

C.1.2 Proof of Theorem 5.5.4

The proof of the Theorem 5.5.4 can be split in two steps. The former involves

in the proof that given a program P and a configuration cn, reached during the
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values and method names
- judgements used: ∆ ` x : r, Γ ` f : f and ∆ ` m : (f,∆′)→ (E,A)

(TR-Val-Int)

v integer-value or null

∆, E,A ` v : @ . E

(TR-Var)

∆(x) = f

∆, E,A ` x : f . E

(TR-Field)

∆(this) = α[x : f, · · · ]
E ′ = E[α.x 7→t r]

∆, E ` x : f . E ′

(TR-Var)

∆(f) = f

∆ ` f : f

(TR-Method-Sign)

∆(m) = (f,∆m)→ (E,A) σ renaming
E ′ = instanceof(E, σ) A′ = instanceof(A, σ)

∆ ` m : (σ(f),∆m ◦ σ)→ (E ′, A′)

synchronisations: ∆, E,A ⊕`S v . ∆′, E ′, A′

(TR-Sync-Invk)

∆, E,A ` x : f . E ′

∆ ` f : λX.m(f, g,∆m, Em)

∆, E ⊕`S x . ∆, E ′ t Em|S

(TR-Synchronized)

∆, E ` v : f . E ′ ∆ ` f : f
f 6= λX.m(f, g,∆m, Em)

∆, E ⊕`S v . ∆, E ′

expressions with side effects
- judgement used: ∆, E,A `S z : f . ∆′, E ′, A′

(TR-Future)

f ∈ dom(∆)

∆, E `S f : f . ∆, E

(TR-Actor-Name)

∆ ` F : α[· · · ]X

∆, E `S α : F, 0 . ∆, E

(TR-Atom)

∆, E,A ` v : F . E ′

∆, E,A `S v : F . ∆, E ′, A

(TR-Expression)

∆, E ⊕` v . ∆′, E ′

∆′, E ′ ⊕` v′ . ∆′′, E ′′

∆, E,A `S v ⊕ v′ : @ . ∆′′, E ′′, A

(TR-New)

∆, E,A ` v : G . E ′ F, β fresh

∆, E,A `S new Act(v) : F . ∆[f 7→ β[x : G]], E ′, A

(TR-Invk)

∆, E,A ` v : F . E
∆, E,A ` v : F ′ . E ′ ∆ ` m : (F, F ′,∆m)→ (Em, Am)

sg fresh ∆′ = ∆[sg 7→ λX.m(F, F ′,∆m, Em)](
Effects(∆′)(β) # y(EmtA)(β.y)

)β∈dom(Em]A) ∧ y∈fields(Act)

∆, E,A `S v.m(v) : g . ∆′, E ′, A t Am|S

Figure C.2 – Runtime typing rules for values, variables, method names, synchron-
isations and expressions with side effects
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statements
- judgement used: Γ, E,A `S s . Γ′, E ′, A

(TR-Assign-Var-Exp)

x /∈ fields(Act)
∆, E,A ` z : F . ∆′, E ′, A′

∆, E,A `S x = z . ∆′[x 7→ F ], E ′, A′

(TR-Assign-Field-Exp)

x ∈ fields(Act) ∆ ` this : α[· · · ]
∆, E,A ` z : F . ∆′, E ′, A′

Effects(∆′)(α) # xw A′(α) # xw

∆, E,A `S x = z . ∆′[this .x 7→ F ], E ′[α.x 7→t w], A′

(TR-Skip)

∆, E,A `S skip : 0 . ∆, E,A

(TR-Seq)

∆, E,A ` s1 . ∆1, E1, A1

∆1, E1, A1 ` s2 . ∆2, E2, A2

∆, E,A `S s1; s2 . ∆2, E2, A2

(TR-Return)

∆, E,A ` v : F . E ′

∆(destiny) = f ′ ∆ ` f ′ : λX.m(g,X,Γm, Em)

∆, E,A `S return v . ∆, E ′, A

(TR-If)

∆, E,A ` e : f . ∆′, E ′, A′

∆′, E ′, A′ ` s1 . ∆1, E1, A1 ∆′, E ′, A′ ` s2 . ∆2, E2, A2

∆1 =unsync ∆2

∆, E,A `S if e { s1 } else { s2 } . ∆1 + ∆2, E1 t E2, A1 t A2

Figure C.3 – Runtime typing rules for statements.

execution of P , our type system can type cn only if cn has has non deterministic

effects, as we formally state in the following lemma.

Lemma C.1.2. Let P be a gASP, cn be a runtime configuration, and let ∆ be such

that ∆ ` cn; then cn has a queue with deterministic effects.

By Definition 4 we know that a configuration cn has deterministic effects

if every active object of this configuration has a queue with deterministic ef-

fects, then to prove lemma 5.5.5 we need to prove that given an active object

α(a, p, {q1, · · · , qn}) if ∆ exists such that ∆ ` α(a, p, {q1, · · · , qn}) then α(a, p, {q1, · · · , qn})
has a queue with deterministic effects.

Proof. Let α(a, p, {q1, · · · , qn}) be an active object with non deterministic effects,
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this implies, by Definition 4, that one of the following predicates holds:

1. xw ∈ qi ∧ xw ∈ qj where x ∈ dom(a) and i, j ∈ [1, n] with i 6= j

2. xw ∈ qi ∧ xr ∈ qj where x ∈ dom(a) and i, j ∈ [1, n] with i 6= j

Let us also suppose that there exists ∆ such that ∆ ` α(a, p, {q1, · · · , qn}).

Case 1: xw ∈ qi ∧ xw ∈ qj.

For each pair of i, j ∈ [1, n] with i 6= j, by rule TR-Actor and TR-Process

we gain that there exist ∆′i and ∆′j that extend ∆ such that ∆′i,∅,∅ `Si
qi . Ei, Ai and ∆′j,∅,∅ `Sj qj . Ej, Aj, and also the rule TR-Actor

checks if the effects of qi and the effects of qj are compatible (Ei#Ej).

By (1) we have that there exist x ∈ dom(a) (which is equal to say that

x ∈ fields(Act)) such that xw ∈ qi and xw ∈ qj that by definition means that

there exist a statement si in qi and a statement sj in qj such that x = z for

some z. To type the statement x = z in qi and qj we have to apply the rule

TR-Assign-Field which implies that Ei(α.x) = w and Ej(α.x) = w that

makes the condition Ei#Ej false.

Case 2: xw ∈ qi ∧ xr ∈ qj.

For each pair of i, j ∈ [1, n] with i 6= j, by rule TR-Actor and TR-Process

we gain that there exist ∆′i and ∆′j that extend ∆ such that ∆′i,∅,∅ `Si
qi . Ei, Ai and ∆′j,∅,∅ `Sj qj . Ej, Aj, and also the rule TR-Actor

checks if the effects of qi and the effects of qj are compatible (Ei#Ej).

By (2) we have that there exist x ∈ dom(a) such that xw ∈ qi and xr ∈ qj
that by definition means that there exist a statement si in qi such that x = z

for some z and a statement sj in qj such that x appear in the left side of

an assignment or in the guard of an if statement. To type the statement

x = z in qi we have to apply the rule TR-Assign-Field which implies that

Ei(α.x) = w, whereas to type sj we are going to apply the rule TR-Field

which implies that Ej(α.x) = r. that makes the condition Ei#Ej false.

As we have seen it is not possible that our type system is able to type a configur-

ation if it presents an active object with a queue with non deterministic effects.

The second step to prove Theorem 5.5.4 is to prove that if we type a config-
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uration cn and cn → cn′, than there exist an environment ∆′ such that ∆′ types

cn′, as formalised in the follow.

Lemma C.1.3. Let ∆ ` cn and cn→ cn′. Then there exist ∆′ such that ∆′ ` cn′.

Proof. The proof of this lemma is a case analysis on the reduction rule used in

cn→ cn′.

Case: Invk
Invk

[[v]]a+` = β [[v]]a+` = w β 6= α

f fresh bind(β,m,w, f) = p′

α(a, {` | x = v.m(v) ; s}, q) β(a′, p, q′)

→ α(a, {` | x = f ; s}, q) β(a′, p′, q′ ∪ {p′}) f(⊥)

By hypothesis we know that there exists ∆ such that ∆ ` α(a, {` | x =

v.m(v) ; s}, q) β(a′, p, q′) which implies that both q and q′ have deterministic

effects. We want to show that there exist ∆′ such that ∆′ ` α(a, {` | x =

f ; s}, q) β(a′, p′, q′ ∪ {p′}) f(⊥) which implies that after one execution step

the queues of the two active objects still have deterministic effects. Whereas the

queue of the actor α does not change, it is trivial to guarantee that the queue still

has deterministic effects. The following proof will demonstrate that the queue of

active object β that becames q′ ∪ {p′} preserves the properties.

Proof. To assert ∆ ` α(a, {` | x = v.m(v) ; s}, q) β(a′, p, q′) we need to apply the

rules TR-Parallel, TR-Actor and TR-Process, then we have that:

– there exist ∆1 that extends ∆ as in the application of the rules TR-Actor

and TR-Process

– there exist a set of future names S such that S ⊆ dom(∆1) as in the applic-

ation of TR-Process;

– there exist Ep and Ap such that ∆ ` {` | x = v.m(v) ; s} . Ep, Ap

– there exist E1, · · · , En and A1, · · · , An such that ∆ ` qi . Ei, Ai where

i ∈ [1, n]

– there exist Ep′ and Ap′ such that ∆ ` p . Ep′ , Ap′
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– there exist E ′1, · · · , E ′m and A′1, · · · , A′m such that ∆ ` q′i . Eq′i , Aq′i where

i ∈ [1,m].

Applying the rule TR-Invk we gain that ∆,∅,∅ ` S : v.m(v) . sf∆′, E ′, Am|S
where ∆′ = ∆[sf 7→ λX.m(g, g′,∆m, Em)] and E ′ = [β.v′ 7→t r]v

′∈v.

We want to notice that we can type the process {` | x = v.m(v) ; s} as if

x = v.m(v) were the first instruction of the method. We can do this because each

instruction can be preceded by two kind of statements:

– statements where there are operations of reading or writing on a field

– method invocations.

The operations of reading and writing on fields, done by the running process,

has not impact in the definition of queue with non deterministic effects, then this

effects can be not considered, this is the reason why the environment which collect

effects at start is empty. Whereas, the method invocations done previously can

influence the definition of queue with non deterministic effects. All the statement

that there are before x = v.m(v) have already been executed. We know that for

each method invocation we create a future and the environment ∆ is updated

adding an entry that maps this future with the corresponding method result (i.e

f 7→ λX.m(g, g′,∆m, Em)). The method result contains the effects of the method

just invoked, then we can conclude then that all the information related to the

effects of the method invocations done before the current instruction are stored in

∆′.

By hypothesis we know that ∆ `: `q′(destiny)fi such that ∆ `: fiλX.mi(gi,∆mi , Eq′i);

then the last premise of the rule TR-invk checks if the effects of m are compat-

ible with all the effect of all the methods stored in ∆ that are not yet terminated

(
∧

i∈[1,m]

Em # Eq′i).

Let us chose ∆′ = ∆[f 7→ λX.m(F, F ′,∆m, Em)] where f = ı(sf), we want to

type the target configuration. By applying the rules TR-Parallel, TR-Actor

and TR-Process we have that ∆′ can type beta(a′, p′, q′ ∪ {p′}) only if the last

promise of the rule TR-Actor holds. This promise checks if the effects of all

the processes in the current active object are compatible, more precisely checks if

(Eq′k#Eq′j)
k,j∈[1,m]∧k 6=j and if (

∧
i∈[1,m]

Em # Eq′i). Whereas the first condition holds by

hypothesis (q′ was already correctly typed) we can state that the second condition
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holds because it corresponds to the condition that we have checked typing the

source configuration. Then since the source configuration was correctly typed we

have that the condition holds.

Case: Return
Return

[[v]]a+` = w `(destiny) = f

α(a, {` | return v}, q) f(⊥)

→ α(a,∅, q) f(w)

The absence of non deterministic affects in the target configuration is guaranteed

by the hypothesis because the queue does not change during the reduction. In the

follow we will show how to chose ∆′ such that ∆′ ` α(a′, {`′ | s}, q) f(w).

Proof. By rules TR-Actor, TR-Process and TR-Return there exist ∆1 that

extend ∆ like in the application of TR-Process such that ∆1, [this 7→ ∅],∅ `
return v . ∆1, E1,∅, where E1 = [this 7→ ∅] t [α.v 7→t r] if v ∈ fields(Act) or

E1 = [this 7→ ∅] if v 6∈ fields(Act).

Let us chose ∆′ = ∆1[f 7→ ∆1(f)X][w 7→ ∆1(f)] by applying the rule TR-

Parallel, TR-Actor, TR-Process and TR-Future-Eval we can type the

target configuration and we gain that ∆′ ` α(a,∅, q) f(w).

Case: Update

Update

(a+ `)(x) = f

(a+ `)[x 7→ w] = a′ + `′

α(a, {` | s}, q) f(w)

→ α(a′, {`′ | s}, q) f(w)

The absence of non deterministic affects in the target configuration is guaranteed

by the hypothesis because the queue does not change during the reduction. In the

follow we will show how to chose ∆′ such that ∆′ ` α(a′, {`′ | s}, q) f(w).
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Proof. Let ∆ exists, such that ∆ ` α(a, {` | s}, q) f(w), then we can chose ∆′ =

∆[x 7→ ∆(w)] to type the target configuration applying the rules TR-Actor, TR-

Process and TR-Future-Eval and in particular we have that ∆′ ` (a′+`′)(x) :

∆′(x).

Case: Assign

Assign

[[e]]a+` = w (a+ `)[x 7→ w] = a′ + `′

α(a, {` | x = e ; s}, q)→ α(a′, {`′ | s}, q)
By hypothesis we know that there exists ∆ such that ∆ ` α(a, {` | x = e ; s}, q)
which implies that the queue of the active object α has deterministic effects. We

want to show that there exist ∆′ such that ∆′ ` α(a′, {`′ | s}, q), which implies

that after an operation of assignment the queues of of α still have deterministic

effects.

Proof. The absence of non deterministic affects in the target configuration is guar-

anteed by the hypothesis because the queue does not change during the reduction.

In the follow we will show how to chose ∆′ such that ∆′ ` α(a′, {`′ | s}, q).

We can distinguish two cases:

1) x is a local variable (x 6∈ fields(Act))

By applying the rules TR-Actor, TR-Process, TR-Expression and

TR-Assign-Var-Exp we have that there exist ∆1 and S like in the applic-

ation of TR-Process, such that ∆1,∅,∅ `S x = e . ∆3, E1,∅, where:

– ∆3 = ∆2[x 7→ f ], where f is the type of the evaluation of the expression

e and ∆2 is the update of ∆1, which are obtained by applying TR-

Expression to type e (∆1,∅,∅ `S e : f . ∆2, E1,∅);

– E1 is the environment storing effects that we obtain by typing e.

Let us chose ∆′ = ∆3 we can type the target configuration, in particular we

have ∆′ ` `′(x) : ∆′(x). We can type the target configuration applying the

rules TR-Actor and TR-Process and we gain that ∆′ ` α(a, {`′ | s}, q).
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2) x is a field (x ∈ fields(Act))

This case is similar to the previous one, but instead of apply the rule TR-

Assign-Var-Exp we apply the rule TR-Assign-Field-Exp that we give

us ∆3 = ∆2[this .x 7→ f ] and E1[α.x 7→t w].

Let us chose ∆′ = ∆3 we can type the target configuration, in particular we

have ∆′ ` a′(x) : ∆′(x). We can type the target configuration applying the

rules TR-Actor and TR-Process and we gain that ∆′ ` α(a, {`′ | s}, q).

Case: New
New

[[v]]a+` = w β fresh y = fields(Act)

α(a, {` | x = new Act(v) ; s}, q)
→ α(a, {` | x = β ; s}, q) β([y 7→ w],∅,∅)

By hypothesis we know that there exists ∆ such that ∆ ` α(a, {` | x = new Act(v) ; s}, q)
which implies that the queue of process to be executed of the active object α has

deterministic effects. We want to show that there exist ∆′ such that ∆′ ` α(a, {` |
x = β ; s}, q) β([y 7→ w],∅,∅) which implies that after one execution step the

queues of the two active objects still have deterministic effects.

Proof. The absence of non deterministic affects in the target configuration is guar-

anteed by the hypothesis because the queue of α does not change during the

reduction and the queue of β is empty. In the follow we will show how to chose

∆′ such that ∆′ ` α(a, {` | x = β ; s}, q) β([y 7→ w],∅,∅).

By rules TR-Actor, TR-Process and TR-New there exist ∆1 and S that

are, like in the application of TR-Process, the extension of ∆ and the set con-

taining the future name of the parameters respectively, such that ∆1,∅,∅ `S
new Act(v) : f . ∆2, E1,∅, where ∆2 = ∆1[f 7→ β[a : g]X] and E1 = [α.v 7→t r]v∈v.

Finally by applying the rules TR-Assign-Var-Exp and TR-Seq we obtain that

∆2, E1,∅ `S x = new Act(v) ; s . ∆3, E2, A where ∆3 and E2 are the updates

of ∆2 and E1 that we gain typing s. We want to underline that by construction

E2 = E1 tEs where we call Es the set of effects that are added to E1 obtained by

typing s (∆2[x 7→ f ], E1,∅ `S s . ∆3, E1 t Es, A).
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Let us chose ∆′ = ∆3[β 7→ ∆3(f)] we can type the target configuration, in

particular we have ∆′ ` w : ∆′(f.y).
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Appendix D

Extended Abstract in French

D.1 Motivation

L’évolution de l’infrastructure Internet, le développement de technologies qui ont

énormément augmenté la bande passante de connexion et l’augmentation exponen-

tielle du nombre d’appareils mobiles ont ouvert la voie à de nouvelles technologies

et de nouveaux paradigmes. De nos jours, les calculs sont de moins en moins

centralisés et de plus en plus distribués.

Deux paradigmes deviennent de plus en plus importants, ayant un fort impact

sur l’industrie et sur la recherche, ils sont: le cloud computing [Mell and Grance,

2011] et l’Internet of Things paradigm (IoT) [Al-Fuqaha et al., 2015]. De nos jours,

l’industrie se précipite pour lancer de nouveaux produits basés sur le cloud ou

l’IoT, tandis que le laboratoire de recherche et l’université tentent de développer

une technique qui pourrait rendre l’implémentation de ces systèmes distribués

complexes plus facile et plus évolutive.

Une des questions ouvertes que la recherche tente de résoudre est de trouver un

modèle de calcul qui convient le mieux aux exigences de ces systèmes distribués.

Grâce à ses caractéristiques, de plus en plus souvent, le modèle d’objet actif a été

choisi comme modèle de calcul pour le système distribué.

Le modèle d’objet Active fournit une alternative au modèle de concurrence

classique qui repose sur la synchronisation de l’état mutable partagé à l’aide de ver-

rous. L’approche proposée par le modèle objet actif, qui repose sur des interactions
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non bloquantes via des appels de méthode asynchrones, correspond parfaitement

aux requêtes dans la programmation de plateformes distribuées complexes.

Par exemple, de par leur conception, les systèmes IoT impliquent une grande

quantité de dispositifs qui, en interagissant les uns avec les autres et en exécutant

des tâches minimales, changent leur état interne, dans les limites du coût et de la

puissance. De la même manière, le modèle d’objet actif avec sa conception légère

est capable de bien évoluer sans consommer trop de ressources informatiques, en

décomposant la logique métier en tâches minimales exécutées par chaque objet

actif.

Un autre élément qui relie les objets actifs et IoT est que, lors du développement

de systèmes distribués complexes, il est presque impossible de collecter un grand

nombre de périphériques pour faire fonctionner le système, des simulations sont

utilisées pour tester ces systèmes. En fait, le modèle d’objet actif est très ap-

proprié pour développer la simulation d’énormes systèmes distribués grâce au fait

que chaque objet actif a la possibilité de créer de nouveaux objets actifs avec

des stratégies de supervision programmables. La génération d’un nouvel objet

actif rend ce modèle également très approprié pour simuler des gestionnaires de

périphériques et des groupes hiérarchiques de périphériques.

De plus, les fonctionnalités fournies par le modèle d’objet Active en font un bon

choix également pour les applications cloud. La propriété d’évolutivité garantie par

le modèle d’objet Active est précisément l’une des raisons principales qui a poussé

Microsoft à baser son framework sur elle. En fait, comme l’a déclaré Microsoft,

Orléans a comme objectif principal la construction d’applications informatiques

distribuées et à grande échelle, sans avoir besoin d’apprendre et d’appliquer des

modèles complexes de concurrence ou d’autres modèles de mise à l’échelle.

Il y a aussi de nombreuses autres raisons qui rendent le modèle d’objet actif

approprié pour implémenter un système distribué complexe, tel que le couplage

libre et l’isolation stricte des objets actifs, du fait que chaque tâche exécutée par

un objet actif ne peut que modifier le état de l’objet actif qui l’exécute.

Bien que la simplification du développement d’un système distribué complexe

soit un problème notable, il est également très important de vérifier que ces

systèmes ne présentent pas de bogues de concurrence connus. En effet, les problèmes

tels que les interblocages, les conditions de course et les courses de données ne sont
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pas rares dans les programmes distribués.

Le modèle d’objet actif permet la formalisation et la vérification grâce au fait

que le schéma de communication est bien défini ainsi que les accès aux objets et aux

variables. Les caractéristiques du modèle d’objet actif facilitent le développement

d’outils pour l’analyse statique et la validation des programmes, qui peuvent être

utilisés par les programmeurs pour éviter et détecter les bogues de concurrence.

La possibilité de développer une analyse efficace avec les autres fonctionnalités

déjà mentionnées, a amené le modèle d’objet actif à être utilisé dans certains

projets européens importants, tels que le projet Envisage, dans le domaine du

cloud computing.

Pour toutes ces raisons, l’approche objet actif peut être considérée comme un

très bon modèle pour développer des systèmes distribués complexes en raison du

couplage lâche, de l’isolation stricte, de l’absence de mémoire partagée et de la

responsabilité de formalisation et de vérification.

Par conséquent, de nombreux modèles et langages basés sur des objets actifs

ont été développés au cours des années. Ces modèles et ces langages diffèrent

généralement en ce qui concerne la façon dont les futurs (objets spéciaux re-

tournés par des invocations asynchrones, utilisés pour gérer les synchronisations)

sont traités et comment les modèles de synchronisation peuvent être construits.

Un autre aspect important qui différencie ces modèles est de savoir combien

ils peuvent cacher au programmeur tous les aspects qui concernent la concurrence

et la distribution. La transparence joue des règles importantes dans la définition

d’un modèle d’objet actif, notamment parce que les objets actifs veulent être une

abstraction bien intégrée pour la concurrence et la distribution qui laisse les pro-

grammeurs concentrés sur les exigences fonctionnelles. Cependant, la plupart des

modèles d’objets Active fournissent une définition future explicite et des opérations

spéciales pour gérer les synchronisations, ce qui permet au programmeur de vérifier

si la méthode est terminée et en même temps d’extraire le résultat de la méthode.

Les informations fournies par les programmeurs facilitent le développement d’outils

de vérification, qui peuvent également démontrer un bon niveau de précision dans

l’analyse des modèles de synchronisation. Cependant, avec cette approche, les

programmeurs doivent savoir comment gérer les synchronisations, et peuvent être

tentés d’ajouter trop de points de synchronisation pour simplifier le raisonnement
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sur le programme.

D.2 Objectifs

Nous avons vu que le développement de bons outils de vérification pour l’analyse

des modèles de synchronisation est important autant que la transparence du modèle,

notamment parce que dans les systèmes distribués, les problèmes comme les in-

terblocages, les courses de données et les conditions de course représentent des

menaces insidieuses et récurrentes.

Avec cette thèse, nous voulons aider les programmeurs qui utilisent le modèle

objet actif à implémenter des systèmes distribués, en fournissant une technique

d’analyse de logiciel capable d’analyser les modèles de synchronisation afin de

détecter la présence de blocages et d’analyser les effets. En outre, voulant aider

davantage le programmeur, avec notre analyse nous voulons cibler un modèle

d’objet actif avec un très haut niveau de transparence. Le modèle actif que nous

voulons cibler est un modèle dans lequel les futurs ne sont pas explicitement iden-

tifiés, alors les programmeurs ne doivent pas faire de distinction entre les valeurs

et le futur, et où les synchronisations sont implicites et effectuées uniquement sur

la disponibilité du résultat d’une invocation de méthode .

De nombreuses techniques d’analyse statique et dynamique différentes ont été

utilisées pour analyser les blocages et plus généralement les modèles de synchron-

isation, tels que: l’interprétation abstraite, la vérification de modèle, l’exécution

symbolique, l’analyse de flux de données. Malheureusement, comme nous le ver-

rons dans la Section 2.8, la plupart de ces techniques manquent dans l’analyse des

interblocages pour les systèmes de récurrence mutuelle et de création dynamique

de ressources. De plus, un engagement fort du programmeur est nécessaire pour

annoter les programmes afin de traiter ces analyses.

Dans cette thèse, nous voulons également fournir une analyse qui peut être

réalisée avec très peu d’interaction humaine, ou mieux de manière entièrement

automatique, qui n’a pas d’impact sur la performance du système, et qui peut

facilement évoluer.

Une autre caractéristique importante qu’une analyse de programme devrait

avoir est la possibilité d’être facilement étendu, amélioré et même adapté pour
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analyser différents modèles. Afin d’assurer une bonne adaptabilité et maintenab-

ilité de l’analyse, nous souhaitons développer une approche modulaire qui permette

également de combiner plusieurs techniques.

Enfin, en prenant en compte toutes les difficultés que nous pouvons rencontrer

lors du développement d’une telle analyse, nous terminons la thèse par une réflexion

sur les caractéristiques essentielles et les meilleures stratégies de synchronisation

qu’un modèle d’objet actif devrait avoir, afin d’identifier les bon mélange entre

transparence et aspects de vérification qu’un objet actif devrait avoir.

D.3 Contributions

La contribution globale de cette thèse est de fournir une technique d’analyse

statique pour la vérification de l’absence de blocages et une analyse des effets dans

les programmes d’objets actifs avec des futurs transparents. Le développement de

cette technique d’analyse statique nous donne aussi la possibilité de mieux com-

prendre comment différentes approches de synchronisation peuvent impacter la

vérification statique. La contribution principale de cette thèse peut être résumée

en trois points principaux décrits ci-dessous. Plus de détails sur le contenu des

chapitres sont disponibles dans la Section 1.4.

D.3.1 Technique d’analyse d’interblocage pour le modèle

d’objet actif.

La première contribution propose une technique d’analyse statique basée sur des

types comportementaux dans laquelle on a supprimé la possibilité d’avoir un ob-

jet actif avec état, afin de se concentrer sur les deux principales caractéristiques

du modèle: l’absence de types futurs explicite et de synchronisations implicites.

Comme nous le verrons plus en détail dans le Chapitre 4, la combinaison de ces

deux caractéristiques du modèle peut amener à la nécessité de produire un en-

semble de dépendances entre objets actifs pouvant être illimités en cas de méthodes

récursives. Nous fournissons:
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- un système de type comportementaux associant des types comporte-

mentaux aux méthodes de programme;

- une analyse de type comportementaux capable de traduire des types

comportementaux en un graphe potentiellement illimité de dépendances ”en

attente de”;

- une adaptation de l’analyse des circularités proposée dans [Kobayashi

and Laneve, 2017, Giachino and Laneve, 2014], qui, en prenant comme entrée

le système de type comportementaux et l’analyse de type comportementaux,

est capable de détecter les blocages;

- la preuve de l’exactitude de l’analyse de l’impasse proposée.

D.3.2 Analyse d’effet pour les programmes d’objets actifs.

La deuxième contribution principale de cette thèse est une technique d’analyse

d’effets basée sur des systèmes de type comportementaux capables de détecter la

présence de conditions de course pouvant introduire un non-déterminisme dans

l’exécution d’un programme d’objets-actifs. Dans ce cas également, la preuve de

l’exactitude du système d’effets a été fournie.

D.3.3 Technique d’analyse d’interblocage gérant un objet

actif avec état.

La troisième contribution principale de cette thèse est l’extension de la technique

d’analyse statique proposée au Chapitre 4, qui prend en compte les informations

fournies par l’analyse des effets et permet de détecter les blocages dans un pro-

gramme d’objets actifs avec des objets actifs avec état.... Dans cette contribution,

nous avons fourni: un système de type comportementaux, une analyse de

type comportementaux, l’adaptation de l’analyse des circularités, et les

preuves de la justesse de l’analyse de l’impasse proposée.
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D.4 Conclusion

À l’heure où les logiciels ne sont plus centralisés et où les paradigmes de l’informatique

en nuage et de l’Internet des objets dominent dans l’environnement de l’industrie et

de la recherche, les modèles Actor et Active deviennent de plus en plus importants.

Malgré le fait que ces deux modèles facilitent le développement de systèmes

distribués complexes, la mise en œuvre de ces systèmes reste une tâche non triviale.

Cela est dû au fait que les bogues de concurrence connus tels que les interblocages,

les conditions de concurrence et les courses de données ne sont pas rares dans les

systèmes distribués.

Avec cette thèse, nous aidons les programmeurs qui utilisent le modèle d’objet

actif à implémenter des systèmes distribués complexes, en fournissant une tech-

nique d’analyse de logiciel pour analyser les modèles de synchronisation. L’analyse

proposée permet, sans nécessiter d’interaction humaine, de détecter l’absence

d’interblocages et d’analyser les effets. Notre objectif était de fournir une analyse

de programme modulaire et combinant plusieurs techniques différentes.

La première contribution présentée dans cette thèse propose une technique

d’analyse statique basée sur des types comportementaux. L’analyse statique que

nous avons développée est composée de: un système de type comportemental qui

associe les types comportementaux aux méthodes du programme; une analyse de

type comportemental qui traduit les types comportementaux en un graphique po-

tentiellement illimité des dépendances �en attenteg; et une analyse des circularités

qui prend en entrée le programme de type comportemental et détecte les blocages

en temps fini.

Le développement de cette analyse est axé sur la façon de gérer les futurs

types implicites et les synchronisations wbn. En fait, la combinaison de ces deux

fonctions peut nécessiter de définir un ensemble illimité de dépendances entre les

objets actifs, si nous synchronisons une méthode récursive qui renvoie un futur.

Le premier problème est d’identifier quels paramètres sont des futures ou des

valeurs. Il a été résolu en tapant chaque paramètre comme un futur potentiel non

associé à une invocation de méthode. Ensuite, nous avons retardé l’identification

de la nature du paramètre (futur ou valeur) et la liaison du nom futur à l’invocation

de la méthode à l’analyse comportementale.
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Le deuxième problème, lié à l’imbrication de futurs qui peuvent produire un

ensemble illimité de paires de dépendances, a été résolu en déplaçant la génération

des dépendances vers l’analyse de type comportemental. Nous fournissons le type

comportemental de chaque méthode avec la paire spéciale (X,α), où X est un

espace réservé pour le nom de l’objet actif qui va synchroniser la méthode, alors

que α est le nom de l’objet actif exécutant la méthode en cours. L’espace réservé

X sera instancié, lors de l’analyse de type comportemental, uniquement dans le

cas de synchronisations et non pour des invocations de méthodes.

La deuxième contribution de cette thèse est le développement d’une analyse

d’effets, basée sur des systèmes de types comportementaux, pour détecter la présence

de conditions de course susceptibles d’introduire un non-déterminisme dans l’exécution

d’un programme d’objets-actifs. Le système de type comportemental associe à

chaque méthode une fonction qui trace les effets. Cette fonction mappe les fu-

turs noms des paramètres consultés lors de l’exécution de la méthode sur un en-

semble de noms de champs. Ces noms de champs sont étiquetés avec r ou w, indi-

quant respectivement un accès en lecture ou en écriture. Merci à cette information

supplémentaire, nous sommes en mesure de taper uniquement les programmes avec

des effets déterministes. L’impossibilité d’avoir des files d’attente avec des effets

non déterministes garantit que: si une méthode stocke un futur dans le champ

d’un argument, alors l’accès suivant au champ devrait avoir lieu après la fin de

cette méthode.

La troisième contribution principale de cette thèse est une extension de la

première contribution afin d’analyser le programme d’objets actifs avec des ob-

jets actifs avec état. Cette analyse prend en compte les informations fournies par

l’analyse des effets et identifie l’absence d’impasses. L’analyse statique que nous

avons développée, comme la précédente, est composée de: un système de type com-

portemental; une analyse de type comportemental; et une adaptation de l’analyse

des circularités. Le principal problème abordé par cette analyse est le suivi des con-

trats à terme stockés dans des champs d’objets. En effet, les informations fournies

par l’analyse des effets nous permettent seulement de savoir quand une méthode

déjà synchronisée a stocké un futur dans un champ d’argument. Comment savoir

l’identité de ce futur et l’invocation de la méthode qui lui est associée en dehors

du contexte qui a invoqué cette méthode, était toujours un problème ouvert. Ce
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problème a été résolu en présentant les délégations. Les délégations qui ont la

forme g o. x , indiquent que la méthode liée au futur g a stocké un futur dans le

champ x de l’objet o. Les délégations nous permettent de déplacer l’identification

de l’invocation de la méthode, pour un futur stocké dans un champ, à l’analyse du

comportement, dans lequel nous avons des informations plus globales.

Dans l’ensemble, nous construisons une analyse éprouvée et complète des modèles

de synchronisation pour les programmes implémentés à l’aide du modèle d’objet

Active. Nous avons développé deux analyses: une technique d’analyse de bloc-

age basée sur des types comportementaux dans laquelle nous avons développé

un système de type comportemental, une analyse de type comportemental, et

nous avons étendu l’analyse des circulaires présentées dans [Giachino et al., 2014,

Kobayashi and Laneve, 2017]; et une analyse des effets également basée sur les

types de comportement. Nous abordons dans cette thèse les problèmes liés à

l’analyse d’un modèle Actor avec les types futurs implicites, la synchronisation

wait-by-necessity et les objets actifs avec état. Les futurs types implicites et la

synchronisation wait-by-necessity nécessitent la création d’ensembles non bornés

de paires de dépendances dans le cas de synchronisations, ainsi que l’identification

de futurs et de points de synchronisation. La gestion d’objets actifs avec état

requiert de manipuler ou de détecter le non-déterminisme causé par l’ordre non-

déterministe des accès sur les champs, et nécessite le suivi des futurs noms et

invocations de méthodes synchronisés dans un contexte différent de celui dans

lequel ils sont créés.

D.5 Perspectives

Les résultats présentés dans cette thèse sont prometteurs pour le modèle d’objet

actif et sa vérification. Le travail que nous avons fait est un bon point de départ

pour plusieurs sujets de recherche, que nous aborderons dans les prochaines sous-

sections.
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D.5.1 Amélioration de l’analyse

En ce qui concerne les travaux futurs, nous pensons immédiatement aux améliorations

possibles de notre analyse. La première façon d’améliorer notre analyse est cer-

tainement liée à la suppression de certaines restrictions. La majeure partie de la

restriction imposée à gASP et énoncée dans la Section 4.1 et la section 5.1 ont

été imposées afin de simplifier le système de type comportemental. Comment

supprimer ces restrictions est bien connu pour nous et il a été discuté dans la

Section 4.9. La seule restriction présente dans nos deux travaux, et qui n’a pas été

étudiée dans cette thèse, est l’impossibilité d’avoir des types de données récursifs.

En fait, dans la Section 4.1 et la Section 5.1, il est dit que le champ d’un objet

doit être de type Int, alors ils peut être seulement un entier ou un futur d’un

entier. Comment gérer le type de données récursif est une tâche non triviale,

en fait cela nécessite d’étendre notre analyse pour la rendre capable de gérer des

enregistrements d’objets illimités.

Grâce à la modularité de notre analyse, nous pensons que la gestion des enre-

gistrements d’objets non bornés peut être réalisée par une analyse séparée. Une

telle analyse devrait être capable d’aplatir la structure des objets, afin de donner

à notre analyse des types d’objets sous la forme d’un enregistrement, comme c’est

le cas actuellement. La technique précise qui peut être utilisée pour aplatir les

structures de données non bornées n’a pas été investie.

L’amélioration de notre analyse peut également être étudiée en dehors du

champ des restrictions. Notre analyse, perdant un peu en général, peut gag-

ner en précision si un algorithme d’ordonnancement précis est fixé. Prendre en

compte une approche d’ordonnancement précise (c’est-à-dire l’ordonnancement

FIFO), nous donne beaucoup plus d’informations liées à l’entrelacement réel des

processus. Comme nous l’avons vu dans cette thèse, la quantité d’informations que

l’analyse est capable d’extraire du programme est directement proportionnelle à sa

précision. En fait, dans l’état actuel, l’analyse des interblocages et des effets tient

compte du fait que deux invocations de méthodes, même si elles sont effectuées

par la même méthode, peuvent être planifiées dans n’importe quel ordre.

Considérer la programmation FIFO dans notre analyse ne nécessite que des

modifications mineures dans la règle de typage de la méthode. En fait, nous devons
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diviser le type comportemental de chaque méthode en deux parties. La première

partie doit être liée au comportement du corps de cette méthode, tandis que la

seconde partie doit collecter l’invocation de méthode effectuée par la méthode.

Cette solution nous permet de définir une composition parallèle plus précise des

comportements des invocations de méthode, notamment dans le cas de plusieurs

invocations effectuées par une méthode sur le même objet.

D.5.2 Nouveau paradigme pour la conception de futurs

Le développement d’une analyse pour les modèles de synchronisation souligne

l’impact que la conception et la mise en œuvre des futurs a sur la facilité d’utilisation

pour les programmeurs et sur la complexité et la précision de l’analyse.

D’un côté, les futurs explicites donnent plus de contrôle au programmeur; per-

mettre des opérations complexes sur des contrats à terme (c’est-à-dire le multith-

reading coopératif ou le châınage futur); et permettent également une identification

plus précise des points de synchronisation. D’un autre côté, les contrats à terme

implicites empêchent le programmeur de savoir si le flux de contrôle fonctionne sur

des valeurs normales ou sur des contrats à terme; bloquer le programme seulement

quand un futur est vraiment nécessaire; permettre une meilleure réutilisation du

code (les méthodes sont écrites de la même manière indépendamment des variables

qui contiennent un futur ou une valeur); et admet également le retour du futur

pour les invocations de méthodes récursives.

Nous pouvons résumer en disant que, bien que les contrats à terme implicites

imposent la synchronisation des flux de données, les contrats à terme explicites

implémentent la synchronisation des flux de contrôle à travers une déclaration qui

remplit le futur.

Alors que nous étions confrontés à tous les problèmes liés au développement

d’une telle analyse, nous essayions également de comprendre s’il est possible de

mélanger les deux approches afin d’obtenir les avantages des deux.

En fait, l’un des futurs travaux possibles sera la définition d’un nouveau paradigme

pour la conception et la mise en œuvre de futurs.

Dans la suite, nous présenterons les caractéristiques que ce nouveau modèle

devrait avoir et comment ces caractéristiques donneront l’avantage à la fois de
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l’approche du flux de contrôle et de la synchronisation des flux de données.

La première caractéristique de ce modèle est l’utilisation de types futurs ex-

plicites. Les futurs à terme explicites de ce modèle ne doivent pas être considérés

comme l’avenir du langage objet actif en tant qu’ABS, dans lequel les types fu-

turs sont définis en tant que types paramétriques. Les contrats à terme doivent

être explicitement dactylographiés, mais ce type indique seulement que nous nous

référons à un futur possible (une variable typée comme future peut encore stocker

une valeur), mais aucune distinction n’est faite entre un futur d’un entier et un

futur ou un futur de un nombre entier. Taper le futur de cette façon, nous avons

cela: le programmeur a plus de contrôle sur le point de synchronisation et est

exposé aux points de synchronisation qui se produisent dans son programme; et il

est plus facile de suivre les contrats à terme statiques. Ce sont les deux principaux

avantages d’une approche avec des types futurs explicites. De plus, cette nouvelle

définition des futurs types explicites permet également une meilleure réutilisation

du code et permet des méthodes récursives qui retournent les futures.

La deuxième caractéristique de ce nouveau modèle devrait être une approche

synchronisation de flux de données explicite, dans laquelle une opération de

synchronisation simple est définie, comme dans l’approche de synchronisation de

flux de contrôle, mais avec une orientation de flux de données. Cette opération

de synchronisation résout un futur retournant une valeur, même dans le cas de

futurs imbriqués (c’est-à-dire la fonction factorielle), exactement comme le fait la

synchronisation wait-by-necessity . Avoir une opération de synchronisation expli-

cite définie de cette manière donne plus de contrôle au programmeur et permet la

définition d’une seule fonction récursive de synchronisation.
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