
HAL Id: tel-01651097
https://hal.science/tel-01651097v1

Submitted on 28 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact Algorithms With Worst-case Guarantee For
Scheduling: From Theory to Practice

Lei Shang

To cite this version:
Lei Shang. Exact Algorithms With Worst-case Guarantee For Scheduling: From Theory to Practice.
Computational Complexity [cs.CC]. Université François Rableais deTours, 2017. English. �NNT : �.
�tel-01651097�

https://hal.science/tel-01651097v1
https://hal.archives-ouvertes.fr

1

UNIVERSITÉ FRANÇOIS RABELAIS DE TOURS

ÉCOLE DOCTORALE MIPTIS

Laboratoire d’Informatique (EA 6300)

THÈSE présentée par :

Lei SHANG

soutenue le : 30/11/2017

pour obtenir le grade de : Docteur de l’Université François-Rabelais de Tours

Discipline/ Spécialité : INFORMATIQUE

Exact Algorithms With Worst-case Guarantee For
Scheduling: From Theory to Practice

Thèse dirigée par :

T’KINDT Vincent Professeur des Universités, Université François Rabelais de Tours

RAPPORTEURS :
ARTIGUES Christian Directeur de Recherche, LAAS-CNRS, Toulouse
PASCHOS Vangelis Professeur des Universités, Université Paris-Dauphine

JURY :
ARTIGUES Christian Directeur de Recherche, LAAS-CNRS, Toulouse
DELLA CROCE Federico Professeur, Politechnico di Torino, Italie
LENTE Christophe Maître de Conférences, HDR, Université François Rabelais de

Tours
LIEDLOFF Mathieu Maître de Conférences, HDR, Université d’Orléans
PASCHOS Vangelis Professeur des Universités, Université Paris-Dauphine
PINSON Eric Professeur des Universités, Institut de Mathématiques Ap-

pliquées (UCO)
T’KINDT Vincent Professeur des Universités, Université François Rabelais de

Tours

Acknowledgment

I really enjoy the writing of this “chapter”, which provides me an opportunity to review
my work and my life during the PhD study. The first person that appears in my mind,
to whom I feel really thankful, is my advisor Vincent T’Kindt. It has been an excellent
experience to work with him. He always has many ideas and it was not always easy for me
to follow his thoughts during meetings. His ideas, which do not always work (of course!),
always inspire. He has always been available when I need guidance. Moreover, he trusts me
and allows me to have much freedom during the PhD, without which I would not enjoyed
these three years so much. I am not qualified to evaluate other aspects but he is at least
an excellent supervisor. Merci Vincent.

I also want to thank all my co-authors, namely Christophe Lenté, Mathieu Liedloff,
Federico Della Croce and Michele Garraffa, without whom all my work would not have
been possible. Special thanks go to Michele, with whom I worked everyday during several
months, struggling to search for a beautiful structure in a tree. We often spent several
hours in a meeting room without being aware. It is a very nice souvenir.

Now let me get out of the professional context. My wife Ting sacrificed her career in
Beijing in order to come and stay with me during my PhD. We met each other in 2004
and she is half of my life, if not all. I cannot imagine what could I do without her support.
My parents have had strong insistence on the importance of my education. I would not
be here without their encouragement and support. They are always proud of me and I
am also proud of being their son and proud of the fact that they are proud of me. I also
want to thank my grandmother, great Buddhist philosopher of the family, who has been
leading me since my young age and has helped me to establish my view of life, of world
and of values. She taught me to seek happiness not from outside but from inside. By well
maintaining his inner peace, one can always stay happy in whatever environment. Though
I am not (yet) wise enough to be well enlightened, I’ve already benefited a lot from her
words. I am so lucky to born in such family environment!

Now let’s talk about Polytech! The beginning of my adventure in France started at
2011. I thank the Mundus program which “imported” me from China. I still remember the
day of interview in Beijing, with Jean-Louis Bouquard and Marjolaine Martin. Later plus
Audrey Perez-Prada, we’ve had many nice moments together. The teachers of Mundus
department helped me to learn French and the teachers of DI helped me to become a good
engineer on Computer Science, which enabled the possibility of my PhD study.

The PhD study lasts only three years but is a long way, sometimes really exciting but
sometime pretty despairing. I am so glad to have many PhD friends around me, with

3

ACKNOWLEDGMENT

whom I had many interesting discussions, many happy breaks and many rounds of baby
foot. I am often curious to know where will we be 10 years later. I hope we can always
keep contact even though the world changes fast.

I thought of making a name list of people who helped me a lot, but honestly that will
be too long and incomplete. Therefore, I stop here, being aware that I’ve never been alone.

Thank you all.

4

Résumé

Cette thèse synthétise les travaux de recherches réalisés pendant les études doctorales
de l’auteur. L’objectif de ces travaux est de proposer des algorithmes exacts qui ont
une meilleure complexité, temporelle ou spatiale, dans le pire des cas pour des problèmes
d’ordonnancement qui sont NP-difficiles. En plus, on s’intéresse aussi à évaluer leurs
performances en pratique.

Trois contributions principales sont rapportées. La première concerne un algorithme
du type Dynamic Programming qui résout le problème F3||Cmax en O∗(3n) en temps et
en espace. L’algorithme est généralisé facilement à d’autres problèmes du type Flowshop,
y compris les problèmes F2||f et F3||f , et aux problèmes d’ordonnancement à une seule
machine tels que les problèmes 1|ri|f , avec f ∈ {fmax, fi}.

La seconde contribution porte sur l’élaboration d’une méthode arborescente appelée
Branch & Merge pour résoudre le problème 1||∑Ti en O∗((2 + ε)n) en temps avec ε > 0
arbitrairement petit et en espace polynomial. Le travail se base sur l’observation que de
nombreux sous-problèmes identiques apparaissent répétitivement pendant la résolution du
problème global. A partir de ça, une opération appelée merge est proposée, qui fusionne
les sous-problèmes (les noeuds dans l’arbre de recherche) identiques autant que possible.
Cette méthode doit pouvoir être généralisée à d’autres problèmes.

Le but de la troisième contribution est d’améliorer les performances en pratique des al-
gorithmes exacts procédant par parcours d’un arbre de recherche. D’abord nous avons
aperçu qu’une meilleure façon d’implémenter l’idée de Branch & Merge est d’utiliser
une technique appelée Memorization. Avec la découverte d’un nouveau paradoxe et la
mis en place d’une stratégie de nettoyage de mémoire, notre algorithme a résolu les in-
stances qui ont 300 tâches de plus par rapport à l’algorithme de référence pour le prob-
lème 1||∑Ti. Avec ce succès, nous avons testé Memorization sur trois autres problèmes
d’ordonnancement notés 1|ri|

∑
Ci, 1|d̃i|

∑
wiCi et F2||∑Ci, précédemment traités par

T’kindt et al. (2004). Les résultats finaux des quatre problèmes ont montré la puissance de
Memorization appliquée aux problèmes d’ordonnancement. Nous nommons ce paradigme
Branch & Memorize afin de promouvoir la considération systématique de l’intégration
de Memorization dans les algorithmes de branchement comme Branch & Bound, en tant
qu’un composant essentiel. La méthode peut aussi être généralisée pour résoudre d’autres
problèmes qui ne sont pas forcément des problèmes d’ordonnancement.

5

RÉSUMÉ

6

Abstract

This thesis summarizes the author’s PhD research works on the design of exact al-
gorithms that provide a worst-case (time or space) guarantee for NP-hard scheduling
problems. Both theoretical and practical aspects are considered with three main results
reported.

The first one is about a Dynamic Programming algorithm which solves the F3||Cmax
problem in O∗(3n) time and space. The algorithm is easily generalized to other flowshop
problems including F2||f and F3||f , and single machine scheduling problems like 1|ri|f ,
with f ∈ {fmax, fi}.

The second contribution is about a search tree method called Branch & Merge which
solves the 1||∑Ti problem with the time complexity converging to O∗(2n) and in polyno-
mial space. The work is based on the observation that many identical subproblems appear
during the solution of the input problem. An operation called merge is then derived, which
merges all identical nodes to one whenever possible and hence yields a better complexity.

Our third contributionaims to improve the practical efficiency of exact search tree algo-
rithms solving scheduling problems. First we realized that a better way to implement the
idea of Branch & Merge is to use a technique called Memorization. By the finding of a new
algorithmic paradox and the implementation of a memory cleaning strategy, the method
succeeded to solve instances with 300 more jobs with respect to the state-of-the-art algo-
rithm for the 1||∑Ti problem. Then the treatment is extended to another three problems
1|ri|

∑
Ci, 1|d̃i|

∑
wiCi and F2||∑Ci previously addressed by T’kindt et al. (2004). The

results of the four problems all together show the power of the Memorization paradigm
when applied on sequencing problems. We name it Branch & Memorize to promote a
systematic consideration of Memorization as an essential building block in branching algo-
rithms like Branch & Bound. The method can surely also be used to solve other problems,
which are not necessarily scheduling problems.

7

ABSTRACT

8

Contents

1 Fundamentals of Scheduling and Exact Exponential Algorithms 21

1.1 Scheduling Theory . 21
1.1.1 History . 22
1.1.2 Applications . 23
1.1.3 Classification and Notation . 24

1.1.3.1 Job Data . 25
1.1.3.2 Field α - Machine Environment 25
1.1.3.3 Field β - Job Characteristic 26
1.1.3.4 Field γ - Optimality Criteria 27
1.1.3.5 Example of notation . 27

1.2 Exact Exponential Algorithms (EEA) . 27
1.2.1 Motivations . 28
1.2.2 Common Algorithmic Frameworks 29

1.2.2.1 Branching . 29
1.2.2.2 Dynamic Programming . 33
1.2.2.3 Sort & Search . 34
1.2.2.4 Divide & Conquer . 35
1.2.2.5 Memorization . 36
1.2.2.6 Inclusion & Exclusion . 37
1.2.2.7 Exponential Time Hypothesis (ETH) 38
1.2.2.8 Other techniques . 38

1.2.3 Notes on Parameterized Algorithms 39
1.3 Existing EEA for Scheduling . 39

2 Dynamic Programming for Flowshop Scheduling Problems 43

2.1 Introduction . 43
2.2 The F3||Cmax problem . 43
2.3 A Dynamic Programming for the F3||Cmax problem 44

9

CONTENTS

2.3.1 Complexity Analysis . 48
2.3.2 Computational results . 48

2.4 Generalizations to other flowshop problems 49
2.4.1 The F3‖fmax problem . 49
2.4.2 The F3‖∑ fi problem . 53

2.5 A general framework and its applications . 53
2.5.1 Pareto Dynamic Programming . 54
2.5.2 Complexity analysis . 55
2.5.3 Illustration for the 1|ri|

∑
fi(Ci) and 1|ri|max(fi(Ci)) problems . . . 56

2.6 Auxiliary Result: complexity lower bound of F3||Cmax based on ETH . . . 57
2.6.0.1 From 3SAT to F3||Cmax 58
2.6.0.2 3SAT→SubsetSum . 59
2.6.0.3 SubsetSum →F3||Cmax 60

2.7 Chapter Summary . 61

3 Branch & Merge on the Single Machine Total Tardiness Problem 63
3.1 Introduction . 63
3.2 A Branch & Reduce approach . 64

3.2.1 A first Branch & Reduce algorithm 65
3.2.2 A second Branch & Reduce algorithm 67

3.3 A Branch & Merge Algorithm . 68
3.3.1 Merging left-side branches . 70

3.3.1.1 A working example for Left Merge 77
3.3.2 Merging right-side branches . 82

3.3.2.1 A working example for Right Merge 91
3.3.3 Complete algorithm and analysis . 95

3.4 Experimental results . 99
3.5 Additional Results . 101

3.5.1 The complexity of the algorithm of Szwarc et al. (2001) 101
3.5.2 Algorithm TTBM-L . 102

3.6 Chapter summary . 103

4 The Memorization Paradigm: Branch & Memorize Algorithms for the
Efficient Solution of Sequencing Problems 107
4.1 Introduction . 107
4.2 A general framework for Memorization in search trees 109

4.2.1 Branching schemes . 109
4.2.2 Search strategies . 110

10

CONTENTS

4.2.3 Memorization schemes . 110
4.2.3.1 Solution memorization . 111
4.2.3.2 Passive node memorization 112
4.2.3.3 Predictive node memorization 114

4.2.4 Decision guidelines . 115
4.2.4.1 Forward branching and depth first search strategy 115
4.2.4.2 Forward branching and best first search strategy 116
4.2.4.3 Forward branching and breadth first search strategy 116
4.2.4.4 Decomposition branching and depth first search strategy . 117
4.2.4.5 Decomposition branching and best first search strategy . . 117
4.2.4.6 Decomposition branching and breadth first search strategy 118

4.3 Implementation guidelines . 118
4.4 Application to the 1|ri|

∑
Ci, 1|d̃i|

∑
wiCi and F2||∑Ci problems 121

4.4.1 Application to the 1|ri|
∑
Ci problem 122

4.4.1.1 Application of the memorization framework and improved
results . 123

4.4.2 Application to the 1|d̃i|
∑
wiCi problem 125

4.4.2.1 Application of the memorization framework and improved
results . 126

4.4.3 Application to the F2||∑Ci problem 128
4.4.3.1 Application of the memorization framework and improved

results . 129
4.5 Application to the 1||∑Ti problem . 131

4.5.1 Preliminaries . 132
4.5.2 Application of the memorization framework and improved results . . 134

4.6 Chapter summary . 137

11

CONTENTS

12

List of Tables

1.1 Synthesis of the best known worst-case complexities 41

2.1 Preliminary results of dynamic programming 49
2.2 Application of PDP on sequencing problems 61

3.1 A sample instance . 77
3.2 A sample instance . 92
3.3 The time complexity of TTBM for values of k from 3 to 20 99
3.4 Results for instances of size 40 . 100
3.5 Results for instances of size 300 . 100

4.1 Results of new algorithms on the 1|ri|
∑
Ci problem 125

4.2 Results of the new algoritihms on the 1|d̃i|
∑
wiCi problem 128

4.3 Results of new algorithms on the F2||∑Ci problem 131
4.4 Results for the 1||∑Ti problem . 136
4.5 Conclusions on the tested problems . 137
4.6 Summary of publications . 142

13

LIST OF TABLES

14

List of Figures

2.1 Illustration of Theorem 1 . 45
2.2 Partial solutions and Pareto Front of a given jobset in criteria space 45
2.3 Example of critical paths . 46
2.4 Recursive procedure of the Dynamic Programming algorithm. 47
2.5 Example of a critical path through 3 machines 50
2.6 An example for Lemma 3 . 51
2.7 An example for Lemma 4 . 52
2.8 An example for Lemma 4, case 2 . 52
2.9 Example for Lemma 6 (k=5) . 57
2.10 Scheduling overview of the F3||Cmax instance reduced from SubsetSum . . 60

3.1 The situation when the longest job ` is put in position h 65
3.2 Branching scheme of TTBR1 . 66
3.3 The branching scheme of TTBR1 at the root node 69
3.4 Left-side branches merging at the root node 71
3.5 An example (P1,9,2,8) for Proposition 3 and Corollary 1 73
3.6 Merging for an arbitrary left-side branch . 74
3.7 A sample instance solved by TTBR1 with left-merging integrated 81
3.8 An failed attempt on merging right-side branches 82
3.9 An example of right-side branches merging for k = 3 83
3.10 Generic right-side merging at the root node 84
3.11 An example (P1,9,2,8) for Proposition 5 . 85
3.12 The right branches of Pn were modified by the right-merging from P 86
3.13 A sample instance solved by TTBR1 with right-merging integrated 94
3.14 Reduction obtained by merging . 96

4.1 Solution Memorization . 111
4.2 Passive node memorization) . 113
4.3 Predictive node memorization . 114

15

LIST OF FIGURES

4.4 Decision tree for choosing the memorization scheme 115
4.5 Number of solutions and useful solutions in memory for an instance of

1||∑Ti with 800 jobs . 120

16

Introduction

This thesis summarizes some research works on the design of exact algorithms that
provide a worst-case (time or space) guarantee forNP-hard scheduling problems. By exact,
we mean algorithms that search for optimal solutions of a given optimization problem. By
worst-case guarantee, we aim to minimize the time or space complexity of algorithms in
worst-case scenarios. Finally, by scheduling, we restrict our target problems to scheduling
problems, especially sequencing/permutation problems.

Even though it is always difficult to clearly separate research domains due to the exis-
tence of intersections, we regard this work as a connection of two fields: Scheduling Theory
and Exact Exponential Algorithms (EEA for short).

“Scheduling is a decision-making process that is used on a regular basis in many manu-
facturing and services industries. It deals with the allocation of resources to tasks over given
time periods and its goal is to optimize one or more objectives.”(Pinedo, 2008). Scheduling
theory can be traced back to early 20’s, before it really started to form a standalone field
since the 60’s. Now it is a well established area within operational research and it plays an
essential role in industries.

On the other side, we regard EEA as a field which groups research efforts on design-
ing exact algorithms with worst-case complexity guarantee for solving NP-hard problems.
The research is not limited to a specific type of problems (like scheduling), but guided by
the ambition to explore the intrinsic hardness of NP-hard problems. Traced back to 1956,
this ambition was expressed in the famous letter of Gödel to Von Neumann as the follow-
ing question: “...It would be interesting to know, ...how strongly in general the number of
steps in finite combinatorial problems can be reduced with respect to simple exhaustive
search.”(Sipser, 1992). Such research can provide an idea on the relative hardness of prob-
lems: all NP-hard problems do not seem to have the same hardness. In fact, since the early
stage of computer science, some of these problems appeared to be solvable with a lower
exponential complexity than others belonging to the same complexity class. For instance,
the MIS (Maximum Independent Set) problem, which asks to find from a given undirected
graph, a largest subset of non-adjacent vertices, can be solved inO(2n) time by enumerating
all subsets. A series of improvements have been proposed in the literature, which allow to
solve the problems in O(1.26n) (Tarjan and Trojanowski, 1977), O(1.2346n) (Jian, 1986),
O(1.2278n) (or O(1.2109n) with exponential space) (Robson, 1986), O(1.2202n) (Fomin
et al., 2006), O(1.2132n) (Kneis et al., 2009), O(1.2114n) (Bourgeois et al., 2010) and most
recently O(1.1996n) (Xiao and Nagamochi, 2017) time. In contrast, the famous TSP (Trav-
eling Salesman Problem) requires O(n!) time to be solved in a brute-force way, when the

17

INTRODUCTION

size n is chosen as the number of cities. But it can be solved in O(n2n) time by Dynamic
Programming (Bellman, 1962), which is a considerable improvement. However, since then,
during more than 50 years, no faster algorithm has been proposed. The question is, can
other problems be solved faster than enumeration, if yes, to what extent? If no, are we
in front of the unbreakable wall of the intrinsic hardness of the problem? For a survey on
the most effective techniques in designing EEAs, readers are kindly referred to the paper
of Woeginger (2003) and to the book by Fomin and Kratsch (2010).

The initiation of this research is motivated by the following observations. First, EEA
has been well developed during recent decades. For a number of NP-hard problems, new
algorithms have been proposed consecutively, each time improving little by little the worst-
case complexity of the considered problem. As a result, the community now possesses a
powerful “toolbox” containing a number of problem solving techniques that can provide
much guidance on solving a given problem and analyzing their worst-case complexity. In
contrast, Scheduling as a major field within Operation Research, has not benefited much
from the development of EEA. In fact, many scheduling problems have been proved as NP-
hard, and then most considerations are oriented to the practical efficiency instead of the
theoretical worst-case guarantee of algorithms. For example, we can find a large number
of state-of-the-art algorithms that are Branch & Bound algorithms with many problem-
dependent properties incorporated, tested on random generated instances to prove their
computational efficiency but without their worst-case complexity discussed. This may
partially because of the lack of techniques and computation power at that time, which
made EEAs inefficient in practice. Today, with the active development on EEA, it becomes
natural, even essential to revisit NP-hard scheduling problems on searching a worst-case
guarantee for scheduling problems. Some work have been done by Lenté et al. (2013), who
introduced the so-called class of multiple constraint problems and showed that all problems
fitting into that class could be tackled by means of the Sort & Search technique. Further,
they showed that several known scheduling problems are part of that class. However, all
these problems require assignment decisions only and none of them require the solution of
a pure sequencing problem.

Positioning of the Thesis

The thesis is positioned on the connection of NP-hard Scheduling Problems and Exact
Exponential Algorithms, aiming at proposing EEAs with better time/space complexity for
solving NP-hard Scheduling Problems. We put special focus on the following points.

• The tackled scheduling problems are sequencing/permutation problems, that is, a
solution is represented by an ordering of operations.

• Besides of the search of a better theoretical complexity, we are also interested in the
practical efficiency of the proposed algorithms.

• The proposed algorithms are expected to be generalizable.

18

INTRODUCTION

Outline

As already presented, the results on EEAs for NP-hard scheduling problems are pretty
limited. In this thesis we add several results on this subject. Several classic scheduling
(sequencing) problems are treated, notably the three machine flowshop problem (denoted
by F3||Cmax) and the single machine total tardiness problem (denoted by 1||∑Ti). On
the treated problems, our algorithms yield the currently best complexity guarantee; on the
techniques used, our techniques, which could be generalized to other problems, provide
new hints on the design of exact algorithms solving scheduling problems.

Chapter 1 presents the fundamentals of EEA and scheduling theory. The historical
evolution of the scheduling theory is reviewed, with the main development in each decade
summarized, based on the interesting review of Potts and Strusevich (2009). Some well
known techniques for constructing EEAs are presented including some results on scheduling
problems. Basic concepts that will be used later are introduced. We also add some notes
on Parameterized Algorithms, even though it is not considered during the thesis.

Chapter 2 presents our first contribution: a Dynamic Programming algorithm which
solves the F3||Cmax problem to minimize the makespan, with a running time guarantee.
The algorithm can be easily generalized to some other flowshop scheduling problems includ-
ing the F2||f and F3||f problems, with f ∈ {fmax,

∑
fi}, and also some single machine

scheduling problems with release date (1|ri|f). The framework is named as Pareto Dynamic
Programming. We also discuss the practical efficiency of the algorithm and the complexity
lower bound of the F3||Cmax problem based on ETH (Exponential Time Hypothesis).

Chapter 3 reports our second contribution: a new method which solves the 1||∑Ti
problem with a worst-case complexity improving existing ones. By analyzing the search tree
of a basic Branch & Reduce algorithm, constructed based on some well known properties, we
observed that many nodes (i.e. subproblems) are identical. By avoiding repetitive solution
of identical nodes, a new method called Branch & Merge is conceived. Identical nodes are
merged to one. By carefully designing the structure of merging, we are able to analyze and
prove the complexity of the resulting algorithm. The method runs in polynomial space and
can be generalized to other problems that verify certain properties.

Chapter 4 extends the work of Chapter 3 by considering the practical efficiency of al-
gorithms. During the study, another powerful technique called Memorization drew our
interest. We discuss the link between Branch & Merge and Memorization. We also found
some new computational properties of the 1||∑Ti problem, which finally allows to solve
instances with 300 more jobs than the state-of-the-art algorithm. Then the same treat-
ment is performed on another three problems 1|ri|

∑
Ci, F2||∑Ci and 1|d̃i|

∑
wiCi. The

computational results are provided, compared and analyzed.
Finally, in the conclusion chapter, we discuss the inner link between the involved tech-

niques and provide our perspectives.

19

INTRODUCTION

20

Chapter 1

Fundamentals of Scheduling and
Exact Exponential Algorithms

1.1 Scheduling Theory

“Scheduling is a decision-making process that is used on a regular basis in
many manufacturing and services industries. It deals with the allocation of
resources to tasks over given time periods and its goal is to optimize one or
more objectives.” —Pinedo (2008)

Scheduling plays an essential role in industries. It is undoubted that in any industrial
process, some kinds of scheduling decisions must be made to well organize the process of
different tasks. The decision can be an assignment of resources to tasks, an ordering of
tasks to be processed or the exact time intervals of tasks during which these tasks are
processed, etc. In this sense, scheduling covers a really large variety of problems. Some
of these problems could be uncritical or just enough simple (the size of the problem is so
small that the optimal solution is obvious), while others are extremely difficult and need
much research effort to break through. As an example, consider a problem denoted as
1|ri|

∑
Ci: a set of tasks need to be processed sequentially on one machine, each job has

a release date and a processing time, the objective is to find an ordering of tasks which
minimizes the sum of completion time of each job. The problem description being simple,
this problem is strongly NP-hard.

Today, scheduling has become a major field within operational research and it also
benefits contributions from other angles such as Mathematics, Computer Science and Eco-
nomics. When and how did all this start? What are the applications of scheduling? How
are different scheduling problems classified? What are the common techniques to deal with
them? In this chapter we try to make a brief review on scheduling theory and clarify these
points.

21

1.1. SCHEDULING THEORY

1.1.1 History

Arguably, scheduling as a research field can be traced back to the early twenties when
Gantt, as a management consultant, discusses the organization of work to maximize profit
in his book “Work, wages and profit”(Gantt, 1916). He proposed to give the foreman each
day a list of jobs to be done and to well coordinate the jobs so that there is no (or least)
interference between jobs. 1 However, it is about forty years later, when a collection of
millstone papers, among which the seminal paper by Johnson (1954), are published that
scheduling started to be considered as an independent research area within operational
research. Since then, it has been attracting more and more research attention.

Potts and Strusevich (2009) reviewed the milestones of scheduling over fifty years.
In an elegant way, the paper provides the reader a snapshot for each decade. Starting
from mid fifties, the first decade witnessed the research contributions on combinatorial
analysis of scheduling problems. Various problem dependant properties are incorporated
into algorithms to restrict the search space. The most typical property would be the
priority or precedence relation between jobs which generally states something like “at least
one optimal schedule exist such that job A precedes job B”. The most common technique
to achieve that is some deduction based on Pairwise Interchange. It is interesting to
notice that most well-known algorithms proposed during this period are polynomial-time
algorithms, even though concepts on computational complexity were not yet clear at that
time. The edited collection of Muth and Thompson (1963) and the research monograph
by Conway et al. (1967) helped on the expansion of the scheduling community.

Works on combinatorial analysis continued during the second decade but the resulting
properties are more complex, for example a precedence relation may only be valid under
certain conditions. Not being directly useful to solve the problem, those properties induce
dominance conditions and serve particularly to build Branch & Bound algorithms. Prob-
lems that are typically treated by Branch & Bound during this period include flowshop
scheduling and single machine total weighted tardiness problem. A new book by Baker
(1974) stepped onto the stage and replaced the one of Conway et al. (1967) as the main
scheduling textbook.

Two topics were highlighted during the third decade: computational complexity and
classification scheme. Since the seminal paper of Edmonds (1965), polynomial algorithms
have been generally considered as “good” algorithms and therefore became the search target
of schedulers. However, it seems impossible to design this kind of algorithm for certain
problems, due to their “inherent hardness”. This feeling was justified by Cook (1971) which
stated the existence of “hard” problems for which polynomial algorithms are unlikely to
exist. Karp (1972) followed up by formulating this discovery in a more formal way and
by adding the first list of NP-complete problems. Further, the monograph of Garey and
Johnson (1979) demonstrated various techniques for proving NP-hardness and discussed
the complexity issue of 300 problems from 12 areas including scheduling. The book remains
a classical text on the topic. About the classification scheme, the most important work
was done by Graham et al. (1979), in which the well-known three-field notation α|β|γ is
proposed. Field α describes the machine environment (single machine, parallel machine,

1The scenario that Gantt considered is now called jobshop

22

1.1. SCHEDULING THEORY

etc); field β specifies problem-dependent parameters (release time, due dates, etc) and field
γ is the objective functions to minimize. More details on this can be found in section 1.1.3.

During the fourth decade, the complexity status of many classic scheduling problems
are known. Besides of a more frequent appearance of Column Generation, it was still lack of
weapons to attack NP-hardness in an exact way. More efforts were put on approximation
and heuristic algorithms. Apart from specific algorithms depending on problem properties,
various approaches were well discussed. Local Search, a method to improve solution quality
by searching the neighborhood space, which can be traced back to late 50’s (Croes, 1958),
starts to attract the attention of schedulers (Nicholson, 1967). The early publications on
Simulated Annealing (Kirkpatrick et al., 1983; Černỳ, 1985) made Local Search a charming
research area, after which a number of new developments start to pop up. Without being
exhaustive, Tabu Search is introduced by Glover (Glover, 1986, 1989, 1990). At the same
period, Genetic Algorithms (Goldberg, 1989) also started to gain attention. Ant Colony
Optimization was introduced in early 90’s by Dorigo et al. (1991); Dorigo (1992); Dorigo
et al. (1996), and a survey on this metaheuristic is provided by Dorigo and Blum (2005).
A recent survey on main metaheuristics is provided by Boussaïd et al. (2013).

The development of scheduling afterwards (the 00’s) was veritably diverse. Classic
scheduling models were largely extended by adding new constraints coming from realistic
industrial environments. Enhanced models include, for instance, Online Scheduling (Pruhs
et al., 2004) in which jobs to schedule arrive over time; Scheduling With Batching (Potts and
Van Wassenhove, 1992; Potts and Kovalyov, 2000) in which a set of jobs can be processed
as a batch; Scheduling With Machine Availability Constraints (Lee, 1996; Sanlaville and
Schmidt, 1998; Schmidt, 2000; Lee, 2004), in which the machines may not be available
during some intervals of time due to the need of reparation or maintenance. Multicriteria
Scheduling (T’kindt and Billaut, 2006), Robust Scheduling and Scheduling with Variable
Processing Time, etc, are also attracting research efforts.

Today (August 2017), searching the term “scheduling problem” in Google Scholar for
publications published since 2010 gives more than 530000 results, which affirms that
Scheduling is now a well established domain. More and more new results and solving
tools are being added to this field, while the challenges in front of us remain numerous.

1.1.2 Applications

It is not exaggerated to say that scheduling is involved in all industrial activities and it
has a critical role in the decision making process. Indeed, in any well established industry,
it is much natural to have decisions to make, on the allocation of resources, schedule of
activities, etc. According to the application areas, we may encounter scheduling problems
from manufacturing production, project management, computer systems, transportation
and distribution and those from service industries, without being exhaustive.

Some application examples are introduced by Pinedo (2008), such as Airport Gate
Assignment Problem, can be considered as in service industry, in which planes must be
assigned to boarding gates according to their arrival and departure time to minimize de-
lays suject to a number of known constraints (e.x. some gates are only accessible for small
planes) and also uncertainties (weather, technical problems); CPU Task Scheduling Prob-

23

1.1. SCHEDULING THEORY

lems, which are encountered during the evolution of computers and is about scheduling
task execution on CPU to maximize system performance and user experience. Other ap-
plications include Nurse Rostering Problems in hospitals, University Timetabling, Vehicule
Routing Problems, Aircraft Scheduling Problems and Crew Scheduling Problems, Bus and
Train Driver Scheduling, Sports Scheduling Problems, etc (Leung, 2004). Also, Harjunkoski
et al. (2014) have done an excellent review on the industrial aspect of scheduling: they
present briefly the approaches that are adopted by industries, discuss their strength and
weakness and also the gap between academic research models and real industrial problem
environments.

1.1.3 Classification and Notation

Scheduling problems can be classified according to different characteristics. For in-
stances a given scheduling problem can be:

• deterministic or stochastic: a scheduling problem is deterministic if all the data (pro-
cessing times, release dates, etc) of the problems are well defined and it is stochastic
in contrary if some of these characteristic values are not known precisely but are
known to follow some probability laws.

• static or dynamic: a scheduling problem is static if all the data are known and will
not change during the solution, while it is dynamic if the data may change during the
solution and the schedule has to be adjusted in real time. The data changes could
be, for instances, new jobs arrive during the solution or the actual processing time
of jobs are different than what was expected, etc.

• unitary or repetitive: a scheduling problem is repetitive if its operations appear to
be cyclical and it is unitary if each operation corresponds to one unique product.

A more common way to classify scheduling problems is based on the machine environ-
ment and job characteristics. This is well adopted especially in the context of machine
and processor scheduling problems. In the following, we present this classification scheme
together with the notation, knowing that we focus on machine scheduling problems in the
scope of this thesis, hence specific classifications or notations are not provided on some
other scheduling areas like Resource-Constrained Project Scheduling Problem (RCPSP),
even though the notation presented below can be extended to this problem (Brucker et al.,
1999).

As already mentioned in the previous section, the most important work on the classifi-
cation, especially the notation, of scheduling problems was done by Graham et al. (1979) in
which a three-field notation (α|β|γ) was proposed. This notation has become a well-known
language of schedulers, called “Scheduleese” by E.L. Lawler according to Lenstra (1998).
The adoption of this notation makes the formulation, representation and comparison of
scheduling problems very clear and concise.

The detail of this notation can be found directly in the original paper of Graham et
al. or in some classic scheduling textbooks like the one of Brucker (2007). However, for

24

1.1. SCHEDULING THEORY

the completeness of the content of thesis, we present this classification scheme through the
sections below for reference purpose.

The generic sequencing problem can be viewed as to process n jobs Ji, i = 1, ..., n over
m machines Mj , j = 1, ...,m. A schedule determines for each job, the time intervals and
machines for its execution. We normally suppose that each machine can only execute one
job at a time and one job can only be processed by one machine at a time. For instance,
the 1|d̃i|

∑
wiCi problem asks to schedule jobs on one machine in order to minimize the

sum of weighted completion time of jobs, subject to the deadlines of jobs. Note that the
solution is often expressed as an ordering of jobs, because jobs are often supposed to start
as early as possible in most situations, hence the time intervals of jobs are determined
automatically. This is the case for all problems treated in this thesis.

1.1.3.1 Job Data

A given job Ji may consist of multiple operations which are noted as Oij (the j-th
operation of Ji). µij ⊂ {M1, ...,Mm} defines the set of candidate machines that can
process Oij . The most common data associated to Ji are the following:

• pij , the processing time of Oij . We simply note pi if Ji implies only one operation,

• ri, the release date of Ji, before which Ji cannot be processed,

• di, the due date of Ji job. Ji is then expected to be expected before this date,
otherwise some penalty is induced depending on the problem,

• wi, a weight associated with Ji. This is may be used to define the contribution to
the cost function of Ji,

• fi(t), the cost function which measure the cost induced by Ji when it is completed
at time t.

Other data may be present according to the problem under consideration.

1.1.3.2 Field α - Machine Environment

The field α may contain two parameters : α = α1α2, with α1 defining the machine
environment and α2 indicating the number of machines. α2 can be an integer value or m
which means an arbitrary fixed number or empty which means an arbitrary number. We
have α1 ∈ {1, P,Q,R,G,X,O, J, F} with the following meaning:

• if α1 = 1, then all jobs must be processed on one single machine, hence α2 = ∅,

• if α1 ∈ {P,Q,R}, then each job has a single operation

– if α1 = P , then we have identical parallel machines, i.e. the processing time of
Ji on Mj is pij = pi, ∀j = 1..m,

– if α1 = Q, then we have uniform parallel machines, i.e. pij = pi/sj with sj the
processing speed of Mj , ∀j = 1..m,

25

1.1. SCHEDULING THEORY

– if α1 = R, then we have unrelated parallel machines, i.e. pij = pi/sij with sij
the speed of Mj for processing Ji, ∀j = 1..m,

• if α1 ∈ {G,X,O, J, F}, then each job Ji is made up of multiple operationsOi1, ..., Oini ,
each operation being processed by a single dedicated machine. There may also have
precedence relations between operations of the same job. This model in general is
called General Shop by setting α1 = G

– if α1 = J , then we have a jobshop problem, in which we have precedence
relations of the form of Oi1 → Oi2 → ... → Oini . Also, we often assume
that consecutive operations are not processed on the same machine.

– if α1 = F , then we have a flowshop problem, which is a special jobshop in which
ni = m and µij = Mj , ∀j = 1..m.

– if α1 = O, then we have an openshop problem, which is a flowshop without
precedence relations between operations of the same job,

– if α1 = X, then we have a mixed shop problem which combines jobshop and
openshop.

1.1.3.3 Field β - Job Characteristic

The field β defines job characteristics or extra problem parameters. Most common
values are listed below, and note that multiple values can appear together.

• Preemption. If pmtn appears in β, preemption is allowed, i.e. a job being processed
may be interrupted and resumed later,

• Precedence. If prec appears, there are precedence relations between jobs that can be
represented as a directed acyclic graph G = (V,A) with V the job set and A the arc
set whose direction indicate the precedence relation. Replace prec by other keywords
to provide more precise indication : intree(outtree) if G is a tree and the maximum
outdegree(indegree) of vertices less or equal to one; sp− graph if G is series parallel.

• Release date. If ri appears, there is a release date for each job Ji, otherwise ri = 0
for all i,

• Restriction on processing times. For example pi = p indicates that jobs have equal
processing times.

• Due date. If di appears, a due date is set for each job Ji, such that Ji is expected to
finish at that time, otherwise some cost may arise depending on the problem.

• Deadline. If d̃i appears, a deadline is set for each job Ji so that Ji must be finished
before it.

• Batching. In some problems jobs can be batched for processing. A setup time is
needed to prepare a batch, and the processing time of the batch can be the maximum
(or sum of) processing time of jobs in the batch, indicated by p− batch (s− batch).

26

1.2. EXACT EXPONENTIAL ALGORITHMS (EEA)

1.1.3.4 Field γ - Optimality Criteria

The criteria to optimize usually depends on the completion time of jobs. We denote
the completion time of Ji by Ci and associate a cost function fi(Ci) to each job. Two
bottleneck objectives functions can be met:

fmax = max
i
fi(Ci)

and sum objectives ∑
f =

∑

i

fi(Ci).

Various job cost functions are considered in the literature, such as:

• Earliness, denoted by Ei = max(0, di − Ci),

• Tardiness, denoted by Ti = max(0, Ci − di),

• Lateness, denoted by Li = Ci − di,

• Unit penalty, denoted by Ui. With Ui = 0 if Ci < di otherwise Ui = 1,

• Lateness, denoted by Li = Ci − di,

• Absolute deviation, denoted by Di = |Ci − di|,

• Squared deviation, denoted by Si = (Ci − di)2.

Job weights wi are often considered in fi. Therefore, some widely considered objective
functions are Cmax, Lmax,

∑
Ti,

∑
wiTi,

∑
Ui,

∑
wiUi,

∑
Di,

∑
wiDi,

∑
Si,

∑
wiSi,∑

Ei,
∑
wiEi. Note that more than one functions can appear in this field in case of Mul-

ticriteria Scheduling Problems, in which case the notation is accordingly adapted (T’kindt
and Billaut, 2006).

1.1.3.5 Example of notation

As an example, the F3||Cmax problem asks to schedule jobs in a Flowshop environment
with three machines to minimize the global completion time. The 1||∑Ti problem asks
to schedule jobs on one machine to minimize the sum of tardiness of jobs, with respect to
the due date of each job.

1.2 Exact Exponential Algorithms (EEA)

When considered as an independent research area, EEA is at the intersection of sev-
eral well established domains such as Combinatorial Optimization, Operations Research,
Computer Science, and Complexity Theory, in which we are faced with a hard decision or
optimization problem for which we search for an exact algorithm. In the context of Com-
plexity Theory, we consider a problem as easy if it can be solved in polynomial time, the

27

1.2. EXACT EXPONENTIAL ALGORITHMS (EEA)

algorithms we search for here are hence super-polynomial and most of the time exponential
in the input size. If we note the complexity of these algorithms as O∗(cn) with c a constant,
then the general objective in EEA field is to propose algorithms with c as small as possi-
ble. Note that we use extensively the complexity notation O∗(·) to suppress polynomial
multiplicative factors for simplification. That is, f(x) = O∗(g(x))⇔ f(x) = O(p(x)g(x)),
with p(x) a polynomial of x. Recall that, f(x) = O(g(x)) if and only if there exists
c > 0, n0 > 0, such that ∀x > n0, 0 ≤ f(x) ≤ cg(x). Other conventional complexity no-
tations like Ω(·) and o(·) are also adopted. f(x) = Ω(g(x)) if and only if g(x) = O(f(x)).
f(x) = o(g(x)) if and only if ∀c > 0, ∃n0 > 0, such that ∀x > n0, 0 ≤ f(x) < cg(x). More
details can be found in the classic book of Cormen et al. (2009), chapter 3.1.

Why would these exponential algorithms be interesting for us ? What are the algorithm
design techniques used in this domain? We discuss these points through the following
subsections.

1.2.1 Motivations

The motivation for the search of exact algorithms does not need justification: given
an optimization problem, we are supposed to find an optimal solution. The question
is why exponential ? Note that except explicit statement, in the context of this thesis
the complexity of an algorithm refers to the worst-case complexity (time complexity by
default). This is a common practice (Cormen et al., 2009) since the worst-case complexity
provides an upper bound on the running time of the algorithm, and hence ensures that
the performance will not be worse. On the other hand, worst-case occurs pretty often in
practice for some problems such as searching an entry that does not exist in a database.

Edmonds (1965) argued on the meaning of a good algorithm and he claimed that a
good algorithm should have its performance algebraically related to the input size of the
problem, i.e. the complexity of the algorithm should be polynomial on the input size. At
the same period, the complexity class P started to be considered (Cobham, 1965). Since
then, it is well accepted by the community that the search of polynomial time algorithm is
the primary objective when solving any problem. Unfortunately, under the well believed
P 6= NP conjecture, polynomial algorithms do not exist for some hard problems, which
are often classified as NP-complete or NP-hard problems. EEA are proposed for these
problems.

Therefore, first of all we hope it clear that we are searching for Fast Exact Algorithms,
however the intrinsic difficulty of target problems implies the exponentiality of resulting
algorithms. That is, if we want to find the optimal solution of a hard optimization problem
with a worst-case guarantee, we are necessarily on the road of searching an EEA, with no
other choices. This is the first motivation.

Consider polynomial algorithms as fast and exponential algorithms as slow is fully
justified from an asymptotic view, where the input size is necessarily large. However, it
is not the case in practice where the input size is often bounded. It is easy to see that
n3 > 1.0941n · n for n ≤ 100. It is therefore worthy to consider exponential algorithms
and is particularly interesting to derive moderately exponential algorithms. As a canonical
example, the MIS (Maximum Independent Set) problem which asks to find a largest subset

28

1.2. EXACT EXPONENTIAL ALGORITHMS (EEA)

of pairwise non-adjacent vertices from a given undirected graph, has been benefiting from
a series of algorithmic improvements. To the authors’ knowledge, the currently fastest
algorithm runs in O∗(1.1996n) (Xiao and Nagamochi, 2017), which can be thought as
moderately exponential. Therefore, the performance of an exponential algorithm in practice
is not necessarily bad. This is the second motivation.

As stated before, the high complexity of algorithms comes from the intrinsic difficulty
of problems. On the contrary, the research on faster EEA helps understand better the
origin of that difficulty and the possibility to tackle it. Another important observation
is that all NP-hard problems are not equally hard. Some problems have been shown to
have algorithms running much faster than the brute-force (e.g. MIS), while for others (e.g.
Satisfiability) the enumeration of all possible solutions stays the best choice. Therefore
an enhanced research on EEA for these problems will also lead to a finer complexity
classification of them. These theoretical interests are the third motivation.

Finally, for a problem that can be solved in O(cn) with c a constant, improving the
complexity to O(c − ε)n allows to enlarge the size of solvable instances within a given
amount of time by a multiplicative factor, while running the O(cn) algorithm on a faster
computer will only increase this size by an addictive factor. Therefore research efforts are
worth to be paid to minimize “c”.

1.2.2 Common Algorithmic Frameworks

The ambition to conquer NP-hard problems by designing fast exact algorithms have
been existing for a long time. However, it is during recent years that EEA has been attract-
ing more and more research intelligence than ever. Fomin and Kratsch in their monograph
Exact Exponential Algorithms (Fomin and Kratsch, 2010) attributes the source of this pros-
perity to the survey of Woeginger (2003), in which several techniques are summarized and
several open problems are proposed, intriguing a number of researchers to enter this area.
The monograph of Fomin and Kratsch (2010) is a standard textbook on this topic. Most
common algorithmic frameworks are well discussed in the book, making it a handy man-
ual when tackling hard problems. In this section, we review some of the most important
algorithmic frameworks that are to be considered when facing with an NP-hard problem
and we kindly refer the reader to the book (Fomin and Kratsch, 2010) for more details.

1.2.2.1 Branching

Branching is perhaps the most natural solving approach when dealing with an opti-
mization problem, because it is based on the simple enumeration idea. All combinatorial
problems can be solved in finite time by enumerating the whole solution space. A candidate
solution can be represented as a set of variables and the optimal solution has its variables’
values inducing the optimal objective function value. A naive branching algorithm, at each
branching, simply chooses a variable and fix its value - we say that we branch on this
variable - to create a new branch, which corresponds to a subproblem with one less vari-
able to consider. The algorithm continues in this way and get a candidate solution when
all variables are fixed. And the algorithm stops when all possible values of all variables
have been tested. The optimal variable assignment is returned, representing the optimal

29

1.2. EXACT EXPONENTIAL ALGORITHMS (EEA)

solution of the problem. Based on this initial structure, the algorithm can be enhanced in
different ways to avoid enumerating the whole solution space, by making use of problem
dependent or independent properties.

As an example, consider the MIS (Maximum Independant Set) problem. Given an
undirected graph G = (V,E), it asks to find S ⊆ V with the maximum cardinality, such
that ∀u, v ∈ S, (u, v) /∈ E. A trivial brute-force algorithm or a naive branching algorithm
would just try all 2|V | subsets of vertices, verify the constraint of non-adjacency and return
the maximum subset found. However, a simple utilization of the non-adjacency property
allows to drastically reduce the search space. Consider branching on a vertex v for two pos-
sibilities (hence implying a boolean variable): either v belongs to a maximum independent
set S or not. Two observations follow:

1. v ∈ S: according to the non-adjacency property, all neighbors of v, denoted by N [v],
must be excluded from S.

2. v /∈ S: then at least two neighbors of v are inside S. Otherwise by forcing v into S
and remove N [v] from S, we have a not-smaller independent set.

The above observations can be embeded into the branching procedure: whenever we
make decision on one vertex v, we are also making decisions or partial decisions on some
other vertices. This boosts the branching algorithm since it is much faster than the pure
enumeration on all vertices. Similar but more complex observations on this problem can
further enhance the branching.

The above branching algorithm is referred to as Branch & Reduce by Fomin and Kratsch
(2010). Note that several different names are used in the literature such as search tree algo-
rithm, backtracking algorithm, Davis-Putnam type algorithm, etc. Branching algorithms
can be usually represented over a search tree, in which each node represents a subproblem
to be solved, which is explored by the algorithm. Various problem dependent or indepen-
dent techniques can be applied to prune the tree, that is to reduce the search space and
hence accelerate the solution. Depending on the pruning scheme, we face various names
of branching algorithms like Branch & Bound , which is commonly used to solve NP-hard
problems. Considering a minimization problem, at each node, the algorithm evaluates a LB
(Lower Bound) on the objective function value that we can expect if branch on this node.
If the LB is greater than the global UB (Upper Bound) given by a candidate solution, then
the current node should be cut since it will not provide a better result. Note that even
though Branch & Bound is widely used in practice, it is not commonly considered in the
context of EEA. This is due to the difficulty to analyze tightly its worst-case complexity,
which is usually determined by the chosen branching scheme. In fact, the practical average
efficiency of Branch & Bound algorithms largely depends on the quality of the LB com-
puted at each node. On the theoretical side, proving that this pruning scheme removes an
exponential number of nodes, in the worst-case scenario, is a hard task. Other techniques
that can be categorized as branching algorithms include Branch & Cut , Branch & Price
etc. Integer Programming and Constraint Programming can also be seen as a problem
solving approach using internal branching algorithm. Again, we insist on the fact that in
the context of EEA, we are only interested in branching algorithms that can provide a
worst-case running time guarantee better than that of brute-force algorithms.

30

1.2. EXACT EXPONENTIAL ALGORITHMS (EEA)

Complexity Analysis

The complexity analysis of branching algorithms is worthy to be introduced here. Since
branching algorithms are usually represented as a tree and each single branching operation
is usually done in polynomial time, the time complexity of branching algorithms depends
on the total number of nodes or the number of leave nodes in the tree. Let T (n) be the
maximum number of leaves in a branching tree of input size n. A recurrence relation can
be established between a node and all its subnodes if the branching rule is systematic. Let
us show this on the above presented MIS problem, without considering the observation 2.
Let deg(v) = |N [v]| − 1 be the degree of v in G and deg(G) = maxv∈V deg(v). At each
branching, we need to decide whether a vertex v belongs to a maximum independent set
S or not. If yes, a subnode is created which corresponds to a problem of size (n− |N [v]|),
with N [v] denoting the set of neighbours of v (including v), according to observation 1;
otherwise if v is excluded from S, a subnode is created corresponding to a subproblem
with v deleted from the graph, therefore of size (n − 1). The following relation is then
established:

T (n) ≤ T (n− |N [v]|) + T (n− 1)

If we decide to choose v as the vertex with maximum degree, then deg(v) ≥ 3 because if
deg(v) ≤ 2 we can solve it in polynomial time without need to branch (Fomin and Kratsch,
2010). Hence, the recurrence becomes

T (n) ≤ T (n− 4) + T (n− 1)

This kind of linear recurrences are known to have the solution of the form T (n) = cn,
with c the largest root of the equation

xn = xn−4 + xn−1

.
More generally, we may associate to this recurrence a branching vector, which is defined

as the vector of the size reduced in each branching case, hence here 〈4, 1〉. Given a branching
algorithm, we analyze its induced branching vector in worst-case, then solved the related
equation of the above form to obtain the complexity. The equation can be solved easily by
some mathematical solvers, (the one used here is WolframAlpha2) and the returned result
is T (n) = O(1.3803n). Notice that this complexity is in fact an upper bound on the worst-
case time complexity of the branching algorithm. Recurrence solving is well discussed in
textbooks on discrete mathematics (Graham et al., 1994; Rosen, 2012).

Measure & Conquer
The above complexity analysis supposes that every vertex has the same weight (which is 1)
in the problem size measurement. This explains the branching vector 〈4, 1〉. Nevertheless,
the analysis is not necessarily tight in the sense that the vertex v may have deg(v) much
greater than 3, but this cannot be considered in the recurrence function. More concretely,

2https://www.wolframalpha.com/

31

https://www.wolframalpha.com/

1.2. EXACT EXPONENTIAL ALGORITHMS (EEA)

branching on a vertex v with deg(v) = 3 versus branching on vertex u with deg(u) =
100 makes a huge difference on the running of the algorithm, though both vertices are
considered having the same weight (which is 1) in the previous analysis. Also, as stated
above, a vertex v with deg(v) ≤ 2 do not need to be branched, hence, it has a little impact
on the running time, but they are also holding the same weight (which is 1) as others.

With all these observations in mind, a tighter complexity analysis method is proposed
as Measure & Conquer. The key is to choose the problem measure in a clever way. Three
conditions need to be satisfied:

1. The measure of a subproblem obtained by a branching must be smaller than the
measure of the father problem.

2. The measure of an instance is non-negative.

3. The measure of the input should be upper bounded by some functions of natural
parameters of the input. The “natural parameter” here means the classic measure
choices such as the number of vertices in a graph. This consideration allows to
compare the complexity result obtained by Measure & Conquer to classical results.

Consider the following algorithm :

1. If ∃v ∈ V , deg(v) ≤ 1, count v into the maximum independent set S

2. If deg(G) = 2, solve the problem in polynomial time.

3. If deg(G) ≥ 3, branch on v with deg(v) = deg(G).

By the classical analysis, the branching vector is 〈1, 4〉, and the result is T (n) =
O(1.3803n) as presented above. Now consider a new weight attribution:

1. ∀v with deg(v) ≤ 1, weight(v) = 0, since these vertices do not need to be branched
and they are treated in polynomial time.

2. ∀v with deg(v) = 2, weight(v) = 0.5

3. ∀v with deg(v) ≥ 3, weight(v) = 1

Now we analyze the situation when branching on v. As a starting point, consider
deg(v) = deg(G) = 3, if v is selected into S, then the total weight of instance decreases
by 1 for the removal of v. The neighbors of v, i.e. N(v) should also be removed and their
initial degree is at least 0.5, therefore the total weight reduction is 1 + 0.5 ∗ 3 = 2.5. If
v is not selected in S and removed from V , then the degree of u, u ∈ N(v), passes from
1 to 0.5 or from 0.5 to 0, therefore the total weight reduction is 1 + 0.5 ∗ 3 = 2.5. The
branching vector becomes 〈2.5, 2.5〉, inducing T (n) = O∗(1.3196n). What about the case
where deg(G) ≥ 4? Selecting or discarding v implies the removal of v which decreases the
weight by 1. The weight decrease on the neighbours of v depends on their initial weight.
Therefore let x = |{u : u ∈ N(v)

∧
d(u) = 2}|, y = |{u : u ∈ N(v)

∧
d(u) = 3}| and

z = |{u : u ∈ N(v)
∧
d(u) ≥ 4}|. Now the following relations hold:

32

1.2. EXACT EXPONENTIAL ALGORITHMS (EEA)

x+ y + z = d(v)

dis = 1 + 0.5x+ 0.5y

sel = 1 + 0.5x+ y + z

According to Lemma 2.3 in the book of Fomin and Kratsch (2010), the branching
factor is smaller when it is more balanced, i.e. 〈k, k〉 ≤ 〈i, j〉 if i + j = 2k. Hence
〈dis, sel〉 ≤ 〈1, dis+ sel − 1〉 = 〈1, 1 + x+ 1.5y + z〉 ≤ 〈1, 1 + d(v)〉 ≤ 〈1, 5〉.

That is, the branching vector is at least 〈1, 5〉, inducing T (n) = O∗(1.3248n). Con-
sequently, without modifying a single part of the algorithm, we have proved that the
complexity is bounded by O∗(1.3248n) instead of O∗(1.3803n).

For more details on Measure & Conquer, we refer the reader to the works of Fomin
et al. (2005a, 2006, 2009).

1.2.2.2 Dynamic Programming

Since its early appearance in the 50’s (see for instance Bellman (1952, 1957)) with the
term coined by Richard Bellman (Dreyfus, 2002), Dynamic Programming (DP) has become
rapidly one of the most important algorithmic tool for solving complex optimization prob-
lems; especially for problems whose solution can be expressed as a sequence of decisions.
The elementary principle behind DP is often referred to as Principle of optimality which
can be briefly stated as follows:

The partial solutions of an optimal solution are themselves optimal for the cor-
responding subproblems.

Though it seems not complex to be understood today, this principle directly induces
DP as a powerful methodology. For instance, until now the DP is still the algorithm having
the best time complexity (O∗(2n)) for the Travelling Salesman Problem (TSP) since the
60’s. The corresponding recursive equation, also called Bellman equation, of the DP for
the TSP is of the following form (Bellman, 1962; Held and Karp, 1962):

Opt(S, i) = min{Opt(S − {i}, j) + d(j, i) : j ∈ S − {i}} (1.1)

where S = {2, . . . , n}, Opt(S, i) denotes the length of the shortest path from city 1 to
i passing all cities in S, with Opt({i}, i) initiated to d(1, i), the distance between cities 1
and i. The same idea can be easily extended to general sequencing problems with regular
non-decreasing cost functions, as stated by Held and Karp (1962); Woeginger (2003). In
fact, when seeking a worst-case guarantee, Dynamic Programming seems the most suitable
choice for NP-hard scheduling problems and it yields the best worst-case complexity for a
lot of them, even though it has the drawback of having an exponential space complexity.
The reader will see later that our first contribution is also about a Dynamic Programming
algorithm.

33

1.2. EXACT EXPONENTIAL ALGORITHMS (EEA)

1.2.2.3 Sort & Search

The brute-force approach on NP-hard optimization problems often requires an enor-
mous time because of the complete traverse of the whole solution space. Faster algorithms
are able to eliminate part of the solution space during the search without missing the/an
optimal solution.

The idea of Sort & Search is to rearrange the solution space by some preprocessing on
the input data so that the search for an optimal solution is better guided. More concretely,
it first sorts partial candidate solutions into some order, then later when constructing a
complete global solution by several partial solutions, the construction can be done quickly
by means of efficient search.

We illustrate this technique on the Subset Sum problem. In this problem we are given
a set of positive integers a1, a2, ..., an and A, and the aim is to find a a subset I ⊆ {a1, ..., an}
such that

∑
i∈I i = A.

The trivial enumeration algorithm traverses all subsets of {a1, ..., an} and tests for each
one whether its sum gives A. The induced worst-case time complexity is therefore O∗(2n).
Now consider the following treatment.

1. Partition integers {a1, ..., an} into two equal-sized sets S1 and S2 in an arbitrary way.
Assume n is even without loss of generality.

2. Generate all subsets of S1 and S2 respectively. Let us note SS1 = {I|I ⊆ S1} and
SS2 = {I|I ⊆ S2}. Hence, |SS1| = |SS2| = 2n/2. Note that if ∃I ⊆ {a1, ..., an} such
that

∑
i∈I i = A, then ∃I1 ⊆ SS1, I2 ⊆ SS2 such that I1 ∪ I2 = I.

3. Sort elements of SS2 according to their sum value. (Sort Phase)

4. Enumerate elements of SS1, for each I1 ⊆ SS1, search in SS2 an element I2 such
that sum(I2) = A− sum(I1). (Search Phase)

The correctness of the algorithm is evident. What is its complexity? The best complex-
ity of comparative sorting is O(N logN) for N elements, therefore the sorting here requires
O(2n/2 log 2n/2) = O(n2n/2). The searching on the sorted set SS2 for each I1 ⊆ SS1 re-
quires log 2n/2. Therefore the global time complexity isO(n2n/2)+2n/2 log 2n/2 = O(n2n/2)
which is faster than O(2n).

Note that the space complexity is O(2n/2), induced by the storage of SS1 and SS2.
Similarly, Sort & Search can be applied on Knapsack and Exact Satifiability

(Fomin and Kratsch, 2010; Horowitz and Sahni, 1974; Schroeppel and Shamir, 1981). Lenté
et al. (2013) proposed an extension of this method to a general class of problems calledMul-
tiple Constraint Problems and use the method to derive faster exponential-time algorithms
for several machine scheduling problems.

Sort & Search accelerates the solution by making use of preprocessed information (sort-
ing) at the price of more space requirement. The relation between time and space com-
plexity of algorithms is further discussed in section 1.2.2.4 and section 1.2.2.5.

34

1.2. EXACT EXPONENTIAL ALGORITHMS (EEA)

1.2.2.4 Divide & Conquer

Divide & Conquer is one of the most common algorithm design paradigm. It can be
applied on problems whose global optimal solution can be constructed from several optimal
subsolutions of subproblems. At this point, it reminds us about Dynamic Programming
and as what will be shown later, these two techniques do have strong inner connections.

In Divide & Conquer , a problem is solved recursively with three steps applied on each
level of recursion (Cormen et al., 2009):

1. Divide the problem into a number of subproblems which are instances of the same
problem but with smaller size.

2. Conquer each subproblem in recursive way and when the size of subproblem is
small enough, corresponding to the elementary case, solve it in a straightforward
way without recursion.

3. Combine the obtained solution of each subproblems to form the optimal solution of
the initial problem.

A very natural Divide & Conquer example as given by Cormen et al. (2009) is theMerge
Sort algorithm. Given an unsorted array of numbers, merge sort first divide the array in
the middle, sort each half array in a recursive way then combine the two sorted sequence
into a global sorted one. The elementary case arises when the array to sort contains one
element only.

The Divide operation for sorting is pretty straightforward, nonetheless it is not always
the case depending on the problem. Here we present an interesting application of Divide
& Conquer on Hamiltonian Path problem, initially proposed by Gurevich and Shelah
(1987). Given an undirected graph G = (V,E), and two vertices s, t ∈ V , |V | = n, the
problem asks whether there exists a path P from s to t of length (n − 1), which pass by
each vertex exactly once.

Here is the Divide & Conquer thinking: if a Hamiltonian path P = (s, v1, v2, ..., vn−2, t)
exists, it can be seen as the concatenation of two half-paths P1 = (s, v1, ..., v(n−2)/2) and
P2 = (v(n−2)/2, ..., vn−2, t). Furthermore, P1 (P2) is a Hamiltonian path of a subproblem
where the graph is induced by the vertices V1 (V2) from the path. This naturally suggests a
Divide & Conquer approach. However, unlike the sorting problem, here we cannot divide V
arbitrarily into V1 and V2, since not all divisions can lead to an correct answer. Therefore,
we need to try all possible divisions.

Let HP (V r {s, t}, s, t) = true if there exists a hamitonian path from s to t passing by
all v ∈ V r{s, t}. We first choose the middle vertex v(n−2)/2 then try all possible partitions
of V1 and V2, finally combine P1 and P2. The following recurrence relation holds:

HP (V r {s, t}, s, t) =
∨

V1⊂{V r{t}
⋃
{s}},V2⊂{V r{s}

⋃
{t}},

|V1|=|V2|=(|V |−3)/2+1,
V1

⋂
V2={vmid}

(
HP (V1, s, vmid)

∧
HP (V2, vmid, t)

)

35

1.2. EXACT EXPONENTIAL ALGORITHMS (EEA)

The time complexity induced by the above recurrence is

T (n) ≤ (n− 2)2n−32T ((n− 3)/2)

≤ n2n2T (n/2)

= 2n(1+1/2+1/4+...)nlognT (1)

= O∗(4nnlogn)

Since the algorithm is recursive, it required only polynomial space. We can apply Divide &
Conquer on other problems as shown by Björklund and Husfeldt (2008); Bodlaender et al.
(2006).

Time, space and Dynamic Programming
The Hamiltonian Path problem can be solved by Dynamic Programming in O∗(2n) time
and space. Nevertheless, it can be unified with Divide & Conquer on this problem and
other sequencing problems with a similar structure. Indeed, reconsider the above Divide
& Conquer algorithm, instead of selecting the intermediate vertex for the middle position
and trying all 2-partitions of the remaining vertices, we can choose the position of the
intermediate vertex arbitrarily. When the intermediate vertex is on the last position, we
got a Dynamic Programming algorithm.

This suggests us to consider the compromise between time and space requirement of
our algorithm. Actually it is proved that for every i ∈ {0, ..., log2 n}, the problem TSP
on n cities is solvable in time O∗(2n(2−1/2i)ni) and space O∗(2n/2i) (Fomin and Kratsch,
2010). The idea is to first apply Divide & Conquer until reaching subproblems of limited
size, which is chosen depending on i, then call Dynamic Programming to solve it.

We suggest to always consider these two techniques as a bundle whenever solving a
given problem, so as to achieve a better time-space compromise.

1.2.2.5 Memorization

We have already seen the possibility to achieve a time-space compromise by combin-
ing Dynamic Programming and Divide & Conquer (section 1.2.2.4). Another technique
allowing to achieve this is Memorization. As its names suggests, memory space is used to
store useful information which could accelerate the solution. More concretely, it is applied
upon a base algorithm, most usually a branching algorithm, during the execution of which,
identical subproblems may be encountered many times. With Memorization enabled, each
time when a subproblem is solved, the corresponding subsolution is “memorized”, that is,
stored into a hashtable, a database or any arbitrary data structure allowing a fast query.
When the same subproblem is encountered again, instead of solving it again, it can be just
retrieved from the “memory”.

As an example, consider the branching algorithm for the MIS problem introduced
in section 1.2.2.1. For a given graph of n vertices the algorithm generates O(1.3803n)
subproblems. For any size 1 ≤ p ≤ n, a subproblem of size p can be solved in O(1.3803p)
time, hence the number of subproblems of size p solved during the solution of an instance
of size n, denoted by Np(n), is at most T (n)

T (p) = O(1.3803n−p). With Memorization, each

36

1.2. EXACT EXPONENTIAL ALGORITHMS (EEA)

subproblem is solved only once, therefore Np(n) ≤
(
n
p

)
. This leads to

Np(n) = O(min(1.3803n−p,

(
n

p

)
))

with Np(n) reaches its maximum when the two inner terms are balanced. The equation

1.3803n−p =

(
n

p

)

yields p = 0.0865n. Therefore the number of subproblems of size 0.0865n is bounded
by 1.3803n−p = 1.3424n and the total number of subproblems of all sizes is bounded by
n1.3424n = O∗(1.3424n) which is the running time of the algorithm with memorization.
The space complexity is also O∗(1.3424n) since the solution of all subproblems are mem-
orized when these problems are solved at the first time. More details on this analysis can
be found in the work of Fomin and Kratsch (2010); Robson (1986).

Note that even though some algorithms also use memory space to store information
for faster solving, such as Sort & Search, Memorization refers particularly to the use of
memory for directly storing solutions of subproblems.

1.2.2.6 Inclusion & Exclusion

The above mentioned techniques share a common property: they do better than the
brute-force search by avoiding exploring the whole solution space, making use of some prob-
lem dependent/independent properties. There exists some algebraic techniques that tackle
problems from other angles. One representative technique is called Inclusion & Exclusion.
For a given NP-complete problem, instead of searching directly for a certificate, it counts
the number of certificates and if this number is greater than zero, the corresponding deci-
sion problem gets a YES answer. Counterintuitively, counting the number of certificates
is sometimes easier than verifying their existence.

Karp seems the first person illustrating the use of Inclusion & Exclusion on solving hard
problems. He stated in his paper (Karp, 1982) that many problems of sequencing, packing
and assignment can be approached by Inclusion & Exclusion. As an example, he showed
how to apply it to solve Hamiltonian Path, a generic scheduling problem with release
date and deadline and Bin Packing. We summarize here the solution of Hamiltonian
Path by Inclusion & Exclusion.

Let G = (V,E) be a digraph with V = {s, t}⋃{1, ..., n}. Hamiltonian Path asks
to determine whether there is a Hamitonian path of length (n + 1) from s to t, passing
each vertex {1, ..., n} exactly once. Let X be the number of the hamitonian paths. For
S ⊆ {1, ..., n}, let N(S) be the number of paths of length (n+1) from s to t that containing
no vertex from S. Then, according to the principle of Inclusion & Exclusion, the following
relation holds.

X =
∑

S⊆{1,...,n}

(−1)|S|N(S)

37

1.2. EXACT EXPONENTIAL ALGORITHMS (EEA)

For fixed S, N(S) can be computed by adjacency matrix multiplication Fomin and
Kratsch (2010). Let A be the adjacency matrix of the induced graph containing vertices in
V r S, the entry at row i and column j of the matrix An+1 corresponds to the number of
paths of length (n+ 1) from i to j. Note that a vertex can appear repetitively in the path.
Since matrix multiplication can be performed in polynomial time, N(S) can therefore be
computed in polynomial time. There are 2n different values of S, thus the time complexity
of the Inclusion & Exclusion algorithm is O∗(2n). Moreover, the space requirement is
polynomial. Note that N(S) can also be computed via Dynamic Programming (Karp,
1982).

1.2.2.7 Exponential Time Hypothesis (ETH)

Unlike the above presented techniques used to design fast exact exponential algorithms,
Exponential Time Hypothesis (ETH) is a powerful tool attacking problems from another
direction: it is used to prove complexity lower bounds. The conjecture P 6= NP implies
that NP-hard problems cannot be solved in polynomial time. However, no more precision
is given on the complexity of NP-hard problems except that they are super-polynomial.
People have realized that this simple binary classification of decision problems to easy or
hard is perhaps too coarse-grained. This encourages to analyze the complexity of problems
in a finer way. On this direction, Exponential Time Hypothesis, proposed by Impagliazzo
and Paturi (2001), states that 3SAT cannot be solved in sub-exponential time (O(2o(n))).
Based on this assumption, complexity lower bounds have been deduced for many problems
such as k-Colorability, k-Set Cover, Independent Set, Clique, and Vertex Cover.
The existence of sub-exponential algorithms for any of them implies the same for the others.
Moreover, a Strong Exponential Time Hypothesis (SETH) has also been proposed, which
assumes that k-CNF-SAT requires O(2n) time in the worst-case when k grows to infinity.
This allows to derive even tighter bounds such as shown by Cygan et al. (2016): for every
ε < 1 an O(2εn) algorithm for Hitting Set, Set Splitting or NAE-SAT would violate
SETH.

Therefore, when it seems difficult to derive EEAs with a better complexity, it may
because that the complexity lower bound of the problem is reached. It is hence interesting
to prove that by using ETH.

1.2.2.8 Other techniques

Besides Inclusion & Exclusion, other interesting algebraic techniques exist, among
which there is Fast Subset Convolution. We kindly refer the reader to the work of Fomin
and Kratsch (2010); Björklund et al. (2007) for further details. The use of algebraic meth-
ods to decrease space complexity is discussed by Lokshtanov and Nederlof (2010).

Some other techniques that are discussed in the book of Fomin and Kratsch (2010)
include algorithms based on Treewidth, Local Search, etc. We kindly refer the reader to
this book for further details.

38

1.3. EXISTING EEA FOR SCHEDULING

1.2.3 Notes on Parameterized Algorithms

Parameterized Algorithms are algorithms whose complexity depends not only on the
input size of instances but also on some extra parameters. This is a fairly new field of
complexity theory, which is strongly related to Exact Exponential Algorithms. The latter
can be seen as parameterized algorithms which uses the input size as parameter. Therefore,
it is necessary to add some notes on Parameterized Algorithms, even though no specific
research efforts are paid on this during the PhD study.

Parameterized complexity theory is created as a framework which allows to measure
the complexity of algorithms more finely. Conventional complexity theory measures the
complexity only in terms of the input size, hence ignores the structural information about
the input instances. Consequently, the resulting complexity may make the problem appear
harder than it really is. With Parameterized Algorithms, the complexity depends both on
the input size and another well chosen parameter, which is expected to be “small”.

Analogously to the classic P-NP complexity framework, a complexity hierarchy has
been established to classify problems according to their hardness. The “easiest” problems
in this hierarchy are fixed-parameter tractable (FPT) problems, which are problems that
can be solved by algorithms having a complexity of f(k)p(n), where n is the input size, k
is the chosen parameter and p(·) is a polynomial function. Since the complexity depends
only polynomially on the input size, the running time is hence expected to be small when
k is well chosen as a parameter with small value in most instances.

In fact, algorithms have always been analyzed in terms of different parameters, so
parameterized algorithms do exist before this well defined framework is established. Nev-
ertheless, the framework is also very important in the other direction, which is to prove the
intractability of problems. In the above mentioned parameterized complexity hierarchy,
FPT problems are easiest ones, analogously to class P in the P-NP system, and class W[P]
is an analogue of NP. But unlike the P-NP system, many natural problems are neither in
FPT nor W[P]-complete. To classify these problems, a hierarchy of classes within W[P] is
established, called W-hierarchy. It is usually presented as

FPT ⊆W [1] ⊆W [2]... ⊆W [P].

Parameterized complexity theory was developed by Downey and Fellows in early 90’s.
Their monograph (Downey and Fellows, 1999) provided a picture on the foundation of this
theory and it has been updated in 2013 (Downey and Fellows, 2013). Another referential
book in the area is the one of Flum and Grohe (2006). More literature references can be
found through these books.

1.3 Existing EEA for Scheduling

Concerning NP-hard scheduling problems, some of the techniques presented in section
1.2.2 have been used to construct exact algorithms with worst-case guarantee.

The most widely applicable technique on scheduling problems is Dynamic Program-
ming , which is applied very naturally on sequencing problems (Held and Karp, 1962) since
its early occurrence. Its classical application is on TSP which can also be considered as

39

1.3. EXISTING EEA FOR SCHEDULING

a scheduling/sequencing problem. Held and Karp (1962) discussed the application of Dy-
namic Programming on general sequencing problems with arbitrary cost function. In the
remarkable survey of Woeginger (2003), a single machine scheduling problem under prece-
dence constraints minimizing total completion time is discussed. For all problems discussed
in the above two references, the induced time complexity is O∗(2n) which is a common re-
sult whenever the Dynamic Programming is applied in the conventional way, that is, across
all subsets. For the latter problem, an algorithm running in O((2 − ε)n) is reported by
Cygan et al. (2014), based on the fact that the Dynamic Programming does not need to
traverse all subsets: an amount of subsets are infeasible due to the precedence constraints.
When applied on more complex problems, the structure and the complexity of the resulting
Dynamic Programming depends largely on the problem’s properties. The job shop schedul-
ing problem can be solved by Dynamic Programming in O(p2n

max(m+1)n) (Gromicho et al.,
2012), which is exponentially faster than the brute-force which runs in O((n!)m). Jansen
et al. (2013b) investigates the lower bounds of complexities of some scheduling and pack-
ing problems, based on ETH (Exponential Time Hypothesis, see Impagliazzo and Paturi
(2001); Fomin and Kratsch (2010)). They showed that problems including Subset Sum,
Knapsack, Bin Packing, P2||Cmax and P2||wjCj have a lower bound of 2o(n) · ‖I‖O(1),
with ‖I‖ the input length. They also developed a Dynamic Programming framework that
is able to solve a number of scheduling and packing problems in 2O(n) · ‖I‖ time. Flowshop
problems can also be treated by a generalized Dynamic Programming , as will be discussed
in Chapter 2. The resulting time complexity is O∗(cn) with c > 2 a constant. Noteworthy,
for all problems that can be treated by Dynamic Programming in the conventional way,
Divide & Conquer can usually also be applied which in consequence increases the time
complexity but requires less space.

Dynamic Programming being broadly applicable on scheduling problems, it is often
considered as not practical due to its exponential space complexity. As reported in Section
1.1.1, the most commonly considered algorithms for solving scheduling problems in practice
are Branching algorithms, especially Branch & Bound . By well choosing the branching
scheme and bounding procedures, Branch & Bound can often be efficient on solving ran-
domly generated instances. However, when considering the worst case complexity, it is
extremely difficult to analyze a Branch & Bound algorithm because the effectiveness of the
lower bounding procedure depends largely on the actual instance. In other words, it seems
very hard to prove the non-existence of a worst-case instance on which all lower bound-
ing procedures are unuseful hence the Branch & Bound reduces to a simple enumerative
branching algorithm.

The application of Sort & Search on scheduling problems is well explored by Lenté
et al. (2013). They propose an extension of this method to a general class of problems
called Multiple Constraint Problems and use the method to derive faster exponential-time
algorithms for several machine scheduling problems including P ||Cmax, P |di|wiUi and
F2||Ckmax with a worst-case complexity O∗(mn

2) where m is the number of machines. It is
important to notice that the scheduling problems that are tackled by Sort & Search always
imply solving an assignment problem. However, whether Sort & Search can be applied on
pure sequencing problems remains unclear.

Inclusion & Exclusion can also be applied to solve some scheduling problems, as initially
reported by Karp (1982).

40

1.3. EXISTING EEA FOR SCHEDULING

The best known worst-case complexity results are synthesized in Table 1.1.

Problem Enumeration EEA Reference
1|dec|fmax O∗(n!) O∗(2n) Fomin and Kratsch (2010)
1|dec|∑ fi O∗(n!) O∗(2n) Fomin and Kratsch (2010)

1|prec|∑Ci O∗(n!) O∗((2− 10−10)n) Cygan et al. (2014)
1|prec|∑wiCi O∗(n!) O∗(2n) Woeginger (2003)
1|di|

∑
wiUi O∗(n!) O∗(

√
2
n
) Lenté et al. (2013, 2014)

1|di|
∑
Ti O∗(n!) O∗(2n) Woeginger (2003)

1|ri, prec|
∑
wiCi O∗(n!) O∗(3n) Woeginger (2003)

IntSched O∗(2n logm)

O∗(1.2132nm)
O∗(2n)

O∗(2(m+1) log2 n)

Lenté et al. (2014)

P |dec|fmax O∗(mnn!) O∗(3n) Lenté et al. (2014)
P |dec|∑ fi O∗(mnn!) O∗(3n) Lenté et al. (2014)
P ||Cmax O∗(mn) O∗(√mn

(n2)m+1) Lenté et al. (2013)
P2||Cmax O∗(2n) O∗(

√
2
n
) Lenté et al. (2013, 2014)

P3||Cmax O∗(3n)
√

3
n Lenté et al. (2013)

P4||Cmax O∗(4n) O∗((1 +
√

2)n) Lenté et al. (2014)
P |di|

∑
wiUi O∗((m+ 1)n) O∗(

√
m+ 1

n
(n2)m+2) Lenté et al. (2013)

P2|di|
∑
wiUi O∗(3n)

√
3
n Lenté et al. (2013)

F2||Ckmax O∗(2n) O∗(
√

2
n
) Lenté et al. (2013, 2014)

J ||Cmax O∗(n!) O∗(P 2n
max(m+ 1)n) Gromicho et al. (2012)

Table 1.1: Synthesis of the best known worst-case complexities

Recent years, more and more Parameterized Complexity results on scheduling problems
are appearing, even though among them the majority of results are negative. Without be-
ing exhaustive, Bodlaender and Fellows (1995) showed that k-processor scheduling with
precedence constraints is W[2]-hard. Fellows and McCartin (2003) state that scheduling
unit-length jobs with deadlines and precedence constraints is W[1]-hard when parameter-
ized by the number of tardy jobs. The results of Jansen et al. (2013a) imply that makespan
minimization on k parallel machines with jobs of polynomially bounded processing times
is W[1]-hard. On the positive side, Mnich and Wiese (2015) propose FPT algorithms for
some classic scheduling problems including makespan minimization, scheduling with job-
dependent cost functions and with job rejection, by identifying several crucial parameters
such as the number of distinct processing times, the number of distinct weights and the
maximum number of rejected jobs. They also remark that some scheduling problems can
be addressed by choosing as parameter the “number of numbers”, introduced by Fellows
et al. (2012). Very recently, Van Bevern (2017) reported new parameterized complexity
results of scheduling problems with release time and deadlines (Van Bevern et al., 2017),
precedence constraints (Van Bevern et al., 2016) and sequence-dependent batch setup times
or routing (Van Bevern and Pyatkin, 2016). An up-to-date list of publications on the inter-
section of Parameterized Complexity and Scheduling can be found in the community wiki:
http://fpt.wikidot.com/operations-research.

41

http://fpt.wikidot.com/operations-research

1.3. EXISTING EEA FOR SCHEDULING

42

Chapter 2

Dynamic Programming for Flowshop
Scheduling Problems

2.1 Introduction

In this chapter, we present our work on a Dynamic Programming algorithm that solves
the F3||Cmax problem. Dynamic Programming is a useful tool to tackle permutation prob-
lems and it can be applied pretty naturally to solve decomposable permutation problems
(T’kindt et al., 2004), in which the optimal solution of the problem can be composed
by optimal solutions of subproblems. The corresponding Dynamic Programming scheme is
sometimes referred to as Dynamic Programming across the subsets (see Woeginger (2003)).
Unfortunately, the F3||Cmax problem is not decomposable since an optimal solution may
need to be based on a non-optimal partial solution of a subproblem. This is why we are
interested on the study of the application of Dynamic Programming to these problems. Our
algorithm is easily generalized to some other flowshop problems, among which we provide
dedicated complexity analysis on F3‖fmax and F3‖∑ fi problems. After that, we also
formulate a generalized framework as Pareto Dynamic Programming, which can be applied
to other problems (e.g. 1|ri|f , F2||f , etc) verifying some specific dominance conditions
over the Pareto Front. This is notably the case of 1|ri|f and F2||f problems.

2.2 The F3||Cmax problem

The problem tackled in this section and denoted by F3||Cmax, is described as follows.
Consider n jobs to be scheduled, each of which must be processed first on machine one,
then on machine two and finally on machine three in this order. Each machine can only
have one job being processed at a time. We note Oij , i ∈ {1, ..., n}, j ∈ {1, 2, 3}, the
operation of job i on machine j, with pij a non-negative integer representing the corre-
sponding processing time. The objective is to find an optimal job sequence that minimizes
the makespan, which is defined as the completion time of the last job on the last machine
in a schedule. Even though there exists a polynomial time algorithm when the number of
machines is two, the problem with m ≥ 3 machine has been proved to be NP-hard (Garey

43

2.3. A DYNAMIC PROGRAMMING FOR THE F3||CMAX PROBLEM

et al., 1976). When m = 2 or m = 3, there always exists a permutation schedule which is
optimal (Brucker, 2007). A solution is a permutation schedule if jobs are executed in the
same order on all machines. Extensive researches have been done on the design of heuristic
and metaheuristic algorithms (see Ruiz and Maroto (2005); Framinan et al. (2004)), ap-
proximation algorithms (see Smutnicki (1998); Sviridenko (2004)) and also exact methods
(see Ladhari and Haouari (2005) and earlier results by Ignall and Schrage (1965); Lom-
nicki (1965); Brown and Lomnicki (1966); McMahon and Burton (1967); Ashour (1970);
Lageweg et al. (1978); Potts (1980); Carlier and Rebaï (1996); Cheng et al. (1997)). For
a global view on different approaches on this problem and its numerious variants, we refer
the reader to the review of Reza Hejazi and Saghafian (2005).

We focus on the search for an optimal permutation schedule of the problem, with a
provable worst-case running time. We provide a theoretical study which aims at establish-
ing upper bounds on the worst-case complexity. Clearly, the problem can be solved trivially
by enumerating all possible job permutations, which yields a O∗(n!) worst-case time algo-
rithm. The current fastest exact algorithms in practice is the Branch & Bound algorithm
provided by Ladhari and Haouari (2005), which solves randomly generated instances with
up to 2000 jobs. However, when considering worst-case scenarios, this branching algo-
rithm can hardly be proved to be faster than the brute-force. An algorithmic framework
which solves a number of scheduling problems in time 2O(n) × ‖I‖O(1), with ‖I‖ being
the input length, is proposed by Jansen et al. (2013b). A dynamic programming algo-
rithm by Gromicho et al. (2012) also exists, solving the job-shop scheduling problem in
O((pmax)2n(m+ 1)n).

The aim of this work is to design a moderately exponential algorithm, that is, an
algorithm running in O∗(cn) time with the constant c as small as possible, improving the
currently best complexity result of 2O(n) × ‖I‖O(1) (Jansen et al., 2013b). In the next
section we introduce a dynamic programming algorithm to solve the F3||Cmax problem,
together with its worst-case complexity analysis.

2.3 A Dynamic Programming for the F3||Cmax problem

Given a job permutation π, let CMj (π) be the completion time of π on machine j,
j ∈ {1, 2, 3}. We omit π whenever it does not create ambiguity. We also define a binary
operator “.” which concatenates two permutations of jobs.

The proposed Dynamic Programming algorithm is based on Theorem 1.

Theorem 1. Let S be a set of n jobs to be scheduled, and S′ ⊂ S a subset of S. Given π
and π′ as two permutations of jobs from S′, σ as a permutation of jobs from S r S′, then
we have:

If

{
CM2 (π) ≤ CM2 (π′)

CM3 (π) ≤ CM3 (π′)
then

{
CM2 (π.σ) ≤ CM2 (π′.σ)

CM3 (π.σ) ≤ CM3 (π′.σ)

that is, the partial permutation π dominates π′. Every schedule starting by π′ is dominated
by a schedule starting by π.

Proof. The proof of Theorem 1 is straightforward and is illustrated in Figure 2.1. First,

44

2.3. A DYNAMIC PROGRAMMING FOR THE F3||CMAX PROBLEM

note that CM1 (π) = CM1 (π′) always holds since π and π′ contain the same jobs and there is
no idle time between jobs on machine 1. On the second and third machines, π completes
earlier (or equal) than π′ so σ is always preferred to be put after π instead of π′ in order
to minimize the makespan CMmax. As shown in Figure 2.1, the schedule containing π is at
least as good as the schedule containing π′.

Figure 2.1: Illustration of Theorem 1

The idea of Dynamic Programming is the following. When trying to construct an
optimal solution from partial solutions, only the partial solutions that are not dominated
need to be considered. This can be seen by switching to the criteria space 〈CM2 , CM3 〉 for
representation. For a fixed jobset, we plot all its partial permutations as points in the
criteria space 〈CM2 , CM3 〉. Then the non-dominated permutations form the Pareto Front of
points (Figure 2.2).

Figure 2.2: Partial solutions and Pareto Front of a given jobset in criteria space

Now we formulate the algorithm, starting with some definitions.

Definition 1. Given a set of permutations of a jobset S, Pareto Permutations define the
subset of permutations whose associated criteria vector 〈CM2 , CM3 〉 is not dominated by the

45

2.3. A DYNAMIC PROGRAMMING FOR THE F3||CMAX PROBLEM

criteria vector of any other permutation from this set. In case that several dominating
permutations have the same criteria vector, only one of them is retained, arbitrarily. Let
MinPerm be a function which takes a set of job permutations as input and returns its
Pareto Permutations set. OptPerm(S) is the Pareto Permutations of all jobs from the
jobset S and OptPerml(S), l ∈ {1, ..., |OptPerm(S)|} is the l-th permutation (the numer-
ation is arbitrary).

Definition 2. For a given job schedule in which all operations are executed as early as
possible, its Critical Path (see for instance Brucker (2007); Kelley Jr and Walker (1959))1

CP j, j ∈ {1, 2, 3}, is defined as the sequence of operations on the first j machines, that
are executed consecutively without any idle time and the total processing time of these
operations determines CMj . More specifically, for any two consecutive operations in CP j,
denoted by Oi′j′ → Oi′′j′′ , i′, i′′ ∈ {1, ..., n}, j′, j′′ ∈ {1, ..., j}, we must have j′ = j′′ or
otherwise i′ = i′′ and j′′ = j′ + 1. In the latter case, job i′ is defined as a critical job. For
remaining jobs, let CP jq , q ∈ {1, ..., j}, be the set of jobs whose operations on machine q
appear in CP j, excluding critical jobs.

As an example, in Figure 2.3, CP 2 consists of the sequence (O11, O21, O31, O32, O42),
with job 3 as the critical job. CP 2

1 = {1, 2} and CP 2
2 = {4}. It should be noticed that for

a given j, CP j may not be unique, in that case we choose it arbitrarily.

Figure 2.3: Example of critical paths

Lemma 1. For a jobset S′ with |S′| = t, the number of its Pareto Permutations |OptPerm(S′)|
is at most O∗(2t).

Proof. Each permutation in OptPerm(S′) has a corresponding criteria vector 〈CM2 , CM3 〉.
The number of Pareto Permutations corresponds to the number of non-dominated vectors,
which is bounded by the number of possible values of CM2 . The next observation is that
the CM2 value of a given permutation is related to the critical path of job operations on
the first two machines (Definition 2). Hence the problem reduces to count the number of
possible critical paths. To do this, we first decide the critical job, for which we have t
choices. Each of the remaining jobs has to belong to either CP 2

1 or CP 2
2 . This yields 2t−1

choices. Hence |OptPerm(S′)| ≤ t2t−1 = O∗(2t).

We now state in Lemma 2 another upper bound on |OptPerm(S′)|.
1Instead of defining Critical Path in the context of digraph, here we adapt the definition to make it

more intuitive

46

2.3. A DYNAMIC PROGRAMMING FOR THE F3||CMAX PROBLEM

Lemma 2. If there exists a constant M such that ∀i, j, pij ≤M , then for a given jobset S′

of t jobs, the number of non-dominated criteria vectors 〈CM2 , CM3 〉, in Pareto Permutations,
is at most (t+ 1)M = O∗(M).

Proof. Lemma 2 is based on the consideration that the maximum value of CM2 will not
exceed (t + 1)M . Since CM2 is an integer, the number of possible values of CM2 is also
bounded by (t+ 1)M .

The recurrence function of our dynamic programming algorithm is stated in Theorem 2.

Theorem 2. OptPerm(S) can be computed by Dynamic Programming as follows:

OptPerm(S) = MinPerm
{
OptPerml(S r {k}).{k}

: k ∈ S, l ∈ {1, ..., |OptPerm(S r {k})|}
}

Theorem 2 is the recursive formula used by the Dynamic Programming algorithm. It
is directly based on Theorem 1. When constructing an optimal solution starting with
partial permutations, only Pareto Permutations are kept. Consider that we already have
OptPerm(S r {k}), ∀k ∈ S. In order to construct OptPerm(S), we append job k after
each permutation from OptPerm(S r {k}) to get a new set of permutations for jobset S.
Over all of these newly constructed permutations, we apply the operation MinPerm to
remove dominated ones and return OptPerm(S). A more intuitive representation is given
in Figure 2.4 where |S| = t.

Figure 2.4: Recursive procedure of the Dynamic Programming algorithm.

47

2.3. A DYNAMIC PROGRAMMING FOR THE F3||CMAX PROBLEM

2.3.1 Complexity Analysis

Consider implementing the algorithm in a recursive way according to Theorem 2. We
keep in memory already computed OptPerm(S), for all S, for fast access later. As initial-
ization, when S = {j}, we set OptPerm(S) = {j}. From that point, every OptPerm(S)
for |S| > 1 can be computed byMinPerm from OptPerm(Sr{k}), ∀k ∈ S. The function
MinPerm uses an existing algorithm (Kung et al., 1975) for finding, given a set of N
vectors 〈CM2 , CM3 〉, non-dominated vectors, with a complexity of O(N logN). According
to the proof of Lemma 1, N is bounded by t(t− 1)2t−2 = O(t22t) where the extra factor
t is the number of possible values of k. Therefore, computing OptPerm(S) from solved
subproblems yields a complexity of

O(t22t log(t22t)) = O(t32t) = O∗(2t)

The algorithm traverses across all problems defined by all subsets of jobs. Thus, the
overall time complexity for calculating OptPerm(S) is

n∑

t=1

(
n

t

)
O(t32t) = n3

n∑

t=1

(
n

t

)
O(2t)1n−t

= O(n3(2 + 1)n) (Binomial theorem)
= O∗(3n)

Alternatively, based on Lemma 2, the time complexity can also be expressed as

n∑

t=1

(
n

t

)
O∗(M) = O∗(M2n)

The minimum value of CMmax can be retrieved from OptPerm(S) with an additive cost
of O∗(2n) (or O∗(M)) time, which does not change the established complexity. The space
complexity is also O∗(3n) (or O∗(M2n)) considering the storage of all necessary Pareto
Permutations. Therefore, we proved that at the cost of exponential memory usage the
F3||Cmax problem can be solved in O∗(3n) time. This improves the complexity result
2O(n) × ‖I‖O(1) of Jansen et al. (2013b).

2.3.2 Computational results

The practical efficiency of exact exponential algorithms is also an interesting subject
that we want to explore in this thesis. These algorithms may not seem efficient in practice in
general, because specific treatment is performed dedicated to obtain a theoretic guarantee
on worst-case instances. However, despite this possible behavior of the proposed DP algo-
rithm, we wanted to evaluate it in practice on randomly generated instances.Unfortunately,
despite the superiority of our algorithm in worst-case scenarios with respect to existing ex-
act algorithms, preliminary experimentation (Morin, 2014-2015) shows that the algorithm
only managed to solve random instances with up to 20 jobs due to its space complexity.

48

2.4. GENERALIZATIONS TO OTHER FLOWSHOP PROBLEMS

N 5 10 15 20
Min time (s) 0 0 0.8 42.4
Max time (s) 0 0 2.8 82.5
Mean time (s) 0 0 1.2 54.1

Table 2.1: Preliminary results of dynamic programming

The results are reported in Table 2.1. The processing time of operations are generated
uniformly from the range [1, 100]. For each problem size, 20 instances are generated. Small
instances with 5 and 10 jobs are solved instantly. Instances with 15 and 20 jobs are also
solved within an acceptable time, but the exponential growth of solution time over the
size of instances can already be observed. On instances with 25 jobs, the program encoun-
tered “out of memory” problems on certain instances, knowing that the tests have been
performed on a computer having 4G RAM and a 1.70GHz CPU.

This is far less than that can be solved by the Branch & Bound algorithm of Ladhari
and Haouari (2005). However, it is of theoretical interest to have an algorithm with a
proved running time upper bound faster than the brute force approach.

2.4 Generalizations to other flowshop problems

The Dynamic Programming algorithm can be generalized to other three-machine flow-
shop problems in a similar manner. In this section we present such generalizations on the
F3‖fmax and the F3‖∑ fi problems, with a dedicated complexity analysis provided.

2.4.1 The F3‖fmax problem

The Dynamic Programming algorithm can be applied to a more general problem re-
ferred to as F3‖fmax. This problem is similar to the F3||Cmax problem but with a more
general objective function fmax to be minimized. For job i ∈ {1, . . . , n}, let Ci be the
completion time of job i on machine 3 and let fi(Ci) be the cost associated to job i. We
consider the fi’s as non-decreasing functions. The objective is defined as

fmax = max{fi(Ci)|i = 1, . . . , n}

If fi = fj ∀i 6= j, then the Dynamic Programming algorithm can be applied without
adaptation, and therefore with the same O∗(3n) worst-case complexity. The F3||Cmax
problem can be considered as a particular case of this setting where f(Ci) = Ci.

If the definition of the function fi depends on i, for instance fi = wiCi with wi the
weight of job i, then the dominance status of a given permutation is not only dependent
on 〈CM2 , CM3 〉, but also on the corresponding fmax value of the permutation. In other
words, given two different permutations π and π′ for a same subset of jobs, the condition
CM2 (π) < CM2 (π′) and CM3 (π) < CM3 (π′), is not sufficient to discard π′ since it is possible
that fmax(π′) < fmax(π) which means that π′ may lead to an optimal solution. Therefore,
we add fmax as a third criterion into the criteria vector. The Dynamic Programming

49

2.4. GENERALIZATIONS TO OTHER FLOWSHOP PROBLEMS

acts in a similar way as the one for F3||Cmax but on a three-dimension criteria space
〈CM2 , CM3 , fmax〉.

Theorem 3. Let S be a set of n jobs to be scheduled, and S′ ⊂ S a subset of S. Given π
and π′ as two permutations of jobs from S′, σ as a permutation of jobs from S r S′, then
we have:

If

CM2 (π) ≤ CM2 (π′)

CM3 (π) ≤ CM3 (π′)

fmax(π) ≤ fmax(π′)

then

CM2 (π.σ) ≤ CM2 (π′.σ)

CM3 (π.σ) ≤ CM3 (π′.σ)

fmax(π.σ) ≤ fmax(π′.σ)

that is, the partial permutation π dominates π′. Every schedule starting by π′ is dominated
by a schedule starting by π.

Proof. The proof of Theorem 3 is straightforward.

The same running time analysis can be performed as before, where the critical part is
to count the number of possible non-dominated vectors. This number is bounded by the
number of different 〈CM2 , CM3 〉 values. Similarly to what has been done in Lemma 1 to
establish an upper bound on the number of values of CM2 , we can notice that there also
exists a critical path (but through three machines, see Figure 2.5) which leads to each value
of CM3 and therefore the number of possible values of CM3 is upper bounded by O∗(3n).
If we consider the number of possible 〈CM2 , CM3 〉 vectors as the number of combinations
of CM2 values and CM3 values, then we have 2n × 3n = 6n non-dominated criteria vectors
〈CM2 , CM3 〉. However it can be proved that this upper bound is far from being tight, by
exploiting links between CP 2 and CP 3.

Figure 2.5: Example of a critical path through 3 machines

Lemma 3. On machine 1, it is sufficient to consider critical paths such that CP 3
1 ⊆ CP 2

1 .

Proof. Firstly it is obvious that on machine 1, either CP 3
1 ⊆ CP 2

1 or CP 2
1 ⊆ CP 3

1 , since
either they are empty sets or they must contain the first several operations on machine 1.
Consider the situation where we have CP 2

1 (CP 3
1 , CP 3

2 (CP 2
2 holds since CP 2

2 contains
all jobs of N r CP 2

1 except the critical job. Now by setting CP 3
1 = CP 2

1 and adjust CP 3
2

accordingly, CP 3 remains a critical path and CP 3
1 ⊆ CP 2

1 . An example is illustrated in
Figure 2.6.

Lemma 4. On machine 2, only two cases need to be considered:

50

2.4. GENERALIZATIONS TO OTHER FLOWSHOP PROBLEMS

CP 2

CP 3

(a) CP 2
1 (CP 3

1

CP 2

CP 3

(b) Change the choice of CP 3

Figure 2.6: An example for Lemma 3. CP 2 (resp. CP 3) is indicated by a solid (resp.
dashed) line.

1. CP 3
1 = CP 2

1 and CP 3
2 ⊆ CP 2

2 .

2. CP 3
1 (CP 2

1 and CP 3
2 ∩ CP 2

2 = ∅.

Proof. Both cases are easy to verify with a similar consideration as in Lemma 3. The
first case is obvious, since CP 3

1 = CP 2
1 and CP 2

2 contains all jobs of N r CP 2
1 except the

critical job, which is also the critical job of CP 3, so CP 3
2 ⊆ CP 2

2 holds. In the second case
CP 3

1 (CP 2
1 , if CP 3

2 ∩ CP 2
2 6= ∅, let job o ∈ CP 3

2 ∩ CP 2
2 . This means that both critical

paths CP 2 and CP 3 contain the operation Oo2, and the operation sequences preceding
Oo2 are different in CP 2 and CP 3. Then similarly to Lemma 3, CP 2 or CP 3 can then be
rearranged by adopting the same operation sequences preceding Oo2 to reduce to the first
case of Lemma 4. See Figure 2.7 and Figure 2.8 for an example. Note that we are only
interested in the values of CM2 and CM3 , the actual critical paths are not our concern.

Lemma 5. For a jobset S′ with |S′| = t, the number of possible pairs 〈CM2 , CM3 〉 is bounded
by O∗(4t).

Proof. In order to count this number, we first need to choose the critical jobs for CP 2 and
CP 3, as similar to the proof of Lemma 3. This yields a factor of t(t−1) = O(t2) such jobs.

According to Lemma 4, we then choose i jobs that form CP 2
1 (CP 2

2 is then implicitly
decided). Then, for CP 3:

• Consider Lemma 4 case 1: the i jobs are also in CP 3
1 , the remaining (t− i) jobs can

be put in CP 3
2 or CP 3

3 , which yields 2t−i choices.

51

2.4. GENERALIZATIONS TO OTHER FLOWSHOP PROBLEMS

CP 2

CP 3

(a) CP 3
1 (CP 2

1 and CP 3
2 ∩ CP 2

2 6= ∅
CP 2

CP 3

(b) Change the choice of CP 2

Figure 2.7: An example for Lemma 4. CP 2 (resp. CP 3) is indicated by a solid (resp.
dashed) line.

• Consider Lemma 4 case 2 (see Figure 2.8): these i jobs can be put either in CP 3
1 ,

CP 3
2 or CP 3

3 . The remaining t−i jobs can only be put in CP 3
3 , since CP 3

2 ∩CP 2
2 = ∅.

In total this yields 3i choices.

t(t− 1)

t∑

i=1

(
t

i

)
O(3i + 2t−i) = O(t2(4t + 3t))

= O(t24t)

= O∗(4t)

CP 2

CP 3

Figure 2.8: An example for Lemma 4, case 2. CP 2 (resp. CP 3) is indicated by a solid
(resp. dashed) line.

52

2.5. A GENERAL FRAMEWORK AND ITS APPLICATIONS

Finally, with a same analysis as for the F3||Cmax problem, the complexity of our
algorithm for the F3‖fmax problem is:

n∑

t=1

(
n

t

)
O(t · t24t log(t · t24t)) = O(t44n) = O∗(5n)

As in Lemma 2, we can also adopt a parameter M such that pij ≤M into the analysis.
In this case the number of possible pairs 〈CM2 , CM3 〉 is bounded by (n+ 1)M · (n+ 2)M =
O∗(M2), and the final complexity is

n∑

t=1

(
n

t

)
M2 = O∗(M22n)

2.4.2 The F3‖∑ fi problem

Another problem that our Dynamic Programming can be applied to is F3‖∑ fi, in
which the objective is to minimize the

∑
fi(Ci) problem. When we consider fi as a non-

decreasing function, this problem can be solved by Dynamic Programming in a similar way
to the F3‖fmax problem. Hence, based on a similar dominance condition between partial
permutations, the criteria vector is defined as 〈CM2 , CM3 , F 〉 with F =

∑
fi(Ci) for a given

sequence.

Theorem 4. Let S be a set of n jobs to be scheduled, and S′ ⊂ S a subset of S. Given π
and π′ as two permutations of jobs from S′, σ as a permutation of jobs from S r S′, then
we have:

If

CM2 (π) ≤ CM2 (π′)

CM3 (π) ≤ CM3 (π′)

F (π) ≤ F (π′)

then

CM2 (π.σ) ≤ CM2 (π′.σ)

CM3 (π.σ) ≤ CM3 (π′.σ)

F (π.σ) ≤ F (π′.σ)

that is, the partial permutation π dominates π′, and there exists a permutation schedule
starting by π at least as good for the

∑
fi as another starting by π′.

Proof. The proof of Theorem 4 is straightforward.

Therefore with the same analysis as for the F3‖fmax problem, the total complexity is
also O∗(5n) (or O∗(M22n)) in time and space.

2.5 A general framework and its applications

From the applications of Dynamic Programming on the above flowshop problems, it
can be observed that the algorithm is not limited to flowshop problems, but can be applied
on any other problems verifying similar dominance conditions over Pareto Front. For this
reason, we further formulate the idea as a general framework, then apply it onto several
other scheduling problems.

We call conventional DP the classic algorithmic pattern of Dynamic Programming when
applied to sequencing problems including TSP in 1960’s (Bellman, 1962; Held and Karp,

53

2.5. A GENERAL FRAMEWORK AND ITS APPLICATIONS

1962). This pattern is also referred to as Dynamic Programming across the subsets ac-
cording to Woeginger (2003). In fact the generalization of the conventional DP has been
studied in the literature (Carraway and Morin, 1988; Mitten, 1974). Briefly speaking, the
idea of generalized DP (GDP) is still to construct optimal solutions by optimal solutions
of subproblems. It eliminates partial solutions that are not promising to be extended to
an optimal global solution. Nevertheless, instead of using directly the global cost function
to define the local dominance condition, as done in the conventional DP, GDP defines the
dominance condition by problem-specific local preference relations. Preference is given to
the decision(s) that can lead to a better global solution by considering all possible subse-
quent decisions. GDP has been widely discussed on multi-criteria optimization problems or
problems with multi-attribute objective functions (see for instance Carraway et al. (1990);
Villarreal and Karwan (1981); Evans et al. (1982); Bard et al. (1988)). The local preference
rule in GDP is often based on the relation of criteria or attribute vectors associated to each
partial solution and this vector is often explicit for the aforementioned problems.

Here we propose another formulation of generalized DP (named PDP, Pareto Dynamic
Programming) which shares the same high-level principle as GDP but its formulation has a
special focus on single criterion optimisation problems with implicit dominance vectors and
on minimizing the computational complexity of the algorithm in worst-case scenarios. The
general idea is to identify a vector of criteria which affect the objective function value so
that partial decision sequences whose criteria vector is not in the corresponding Pareto sets
can be removed during the process of DP. Generating Pareto sets in DP has already been
mentioned in the literature (Henig, 1983; Rosenman and Gero, 1983) and it is sometimes
considered as impractical due to the size of Pareto sets stored during the process. However,
in the context of the design of Exact Exponential Algorithms for NP-hard problems, PDP
may provide a good performance guarantee in worst-case scenarios.

We first formulate PDP and discuss the complexity analysis of PDP in a general way.
Then we apply it on some single machine scheduling problems with dynamic arrivals, for
which the instantiation of PDP yields the best time complexity so far. Finally, we provide
perspectives for its applications.

2.5.1 Pareto Dynamic Programming

Now let us formulate PDP in a general way, considering a general optimization problem
where we need to find the optimal order of decisions to make. Let ~x ∈ Rp be a criteria
vector referring to the current state of solution, i.e. the consequence of decisions that have
already been made. The state is initiated as a all-zero vector ~x0 when no decision has been
made. Let ~y ∈ Rq be the vector representing the next decision to make. Making the next
decision can be represented by a binary operator of concatenation � defined as follows:

~x� ~y = ~x′, ~x′ ∈ Rp

In addition, for A ⊂ Rp, ~y ∈ Rq,

A� ~y = {~x� ~y|~x ∈ A}

That is, A� ~y is the set of solution states obtained by concatenating the decision ~y at the
end of each decision state from A.

54

2.5. A GENERAL FRAMEWORK AND ITS APPLICATIONS

For ~x, ~x′ ∈ Rp, the local preference between ~x and ~x′ is defined as

~x 4 ~x′ ⇒ (~x� ~y) ≤ (~x′ � ~y),∀~y ∈ Rq

The relation 4 is read as “is preferred with respect to”, considering a minimization problem.
Ties are broken arbitrarily.

Define S = {~y1, . . . , ~yn} ⊂ Rq the candidate decisions at the input for a problem of size
n. Opt(S) is the set of final solution states containing the optimal ones, PDP can then be
expressed by the following equation:

Opt(S) =Min

(
∪
~y∈S

Opt(S r ~y)� ~y
)

(2.1)

withMin(·) returning all non-dominated vectors from the input ones.
The correctness of equation 2.1 is obvious since the quality of a solution state can be

judged directly on its associate state vector ~x ∈ Rp by definition. The final optimal solution
can be retrieved easily from Opt(S) by evaluating the global objective function.

The definition of the criteria vector ~x ∈ Rp is problem dependent and it plays a key
role in order to apply PDP on a specific problem. For each decision permutation π, its
associated criteria vector V(π) = 〈g1(π), . . . , gp(π)〉 should be defined in a way such that
for any permutation π′ of the same set of decisions as π, π 4 π′ iff V(π) ≤ V(π′). By
finding (or defining) appropriate criterion gi, we transfer our focus from decision sequences
to a specific criteria space. In this context,Min is implemented to find the permutations
whose associated criteria vector is minimum and Opt(S) contains these permutations.

The problems that are treatable by the conventional DP (the one solving TSP, for
instance) can be seen as a special case of PDP where V = 〈f〉, i.e. the global criterion is
the only one that needs to be considered for the local dominance. In this case p = 1 so
that the cardinality of Opt(S) is always 1.

2.5.2 Complexity analysis

In terms of the time complexity of PDP, it is easy to see that the main operation in the
algorithm is the functionMin. For |S| = t, the number of input ofMin in equation (2.1)
is upper-bounded by t × |Opt(S r ~y)|. Therefore, it is important to bound the maximum
cardinality of Opt(S) for a given decision set S. According to the authors’ experience, the
upper-bound analysis of Opt(S) is usually problem dependent and it is the place where we
can exploit largely the properties of the problem. In section 2.5.3, we show the application
of PDP on several problems together with detailed problem-dependent complexity analysis.

Suppose for |S| = t the cardinality of Opt(S) can be bounded by B(t) which is a
problem dependent function. The running time of function Min depends on p, which is
the number of criteria in V. According to Kung et al. (1975), Min runs in O(N logN)
for p = 2, 3 and in O(N(logN)p−2) for p ≥ 4, with N the number of input of Min, i.e.
tB(t−1). Also considering the algorithm runs across all the subsets of different cardinality
t, the total running time can then be computed as:

55

2.5. A GENERAL FRAMEWORK AND ITS APPLICATIONS

T (n) =

n∑

t=1

(
n

t

)
t ·B(t− 1) =

n∑

t=1

(
n

t

)
t ≤ 2n p = 1 (2.2)

n∑

t=1

(
n

t

)
t ·B(t− 1) log(B(t− 1)) p = 2, 3 (2.3)

n∑

t=1

(
n

t

)
t ·B(t− 1)(log(B(t− 1)))p−2 p ≥ 4 (2.4)

Notice that for the case of equation (2.2), B(t) = 1, which explains the frequent occur-
rence of the complexity O(n2n) of DP algorithms for many problems.

2.5.3 Illustration for the 1|ri|
∑

fi(Ci) and 1|ri|max(fi(Ci)) problems

Consider a single machine scheduling problem with dynamic arrivals. Let {1, . . . , n}
be the jobs to schedule, and each job i is defined by its processing time pi and a release
date ri. For a given schedule, i.e. a sequence of the n jobs with every job starting as
early as possible after its release date, Ci is defined as the completion time of job i. Let
fi be a non-decreasing function of Ci, and the problem (denoted to as 1|ri|

∑
fi(Ci)) asks

to find an optimal schedule of jobs which minimizes
∑
fi(Ci). This problem is NP-hard

even when fi = Ci. Note that the conventional DP cannot be applied directly since the
objective function

∑
fi(Ci) alone is not sufficient to decide the dominance between two

partial solutions composed by same jobs.
To apply PDP on the 1|ri|

∑
fi(Ci) problem, we define p = 2 with g1(π) the completion

time of a partial schedule π and g2(π) =
∑

i∈π fi(Ci) its associated cost function. This
is sufficient since if V(π) ≤ V(π′), whatever is the job sequence after, the global solution
starting with π always dominates π′. On the other hand, the vector ~yi ∈ Rq associated
to decision i (job i, in our case) is pretty straightforward: ~yi = 〈pi, ri〉. That is, a job
sequence π = (2, 1, 3) can be seen as the consequence of making three decisions by doing
~x0 � ~y2 � ~y1 � ~y3, with ~x0 ∈ Rp the initial state vector containing only 0’s. Moreover,
V(π)� ~yi = 〈max(g1(π), ri) + pi, g2(π) + fi(max(g1(π), ri) + pi)〉. Equation 2.1 can now be
applied directly.

We now provide the complexity analysis of PDP on the 1|ri|
∑
fi(Ci) problem. The

question to answer first is, for a given jobset S, |S| = t, what is the value of B(t), i.e.
the maximum cardinality of {V(π)|(π, π′ are permutations of S) ∧ (@π′, V(π′) < V(π))}.
A simple observation is that B(t) is upper-bounded by the number of possible values of
g1(π), which is bounded by the number of completion times of π. In order to compute this,
we introduce Lemma 6.

Lemma 6. Assume ri ≥ 0, ∀i = 1, .., t. Let π = (j1, j2, . . . , jt) be a permutation of t jobs.
Then, ∃k ∈ {1, . . . , t} such that g1(π) = rk +

∑t
h=k ph.

Proof. Starting from the end of π, find the longest sub-sequence of jobs which do not have
idle time in-between. Let k be the first job of this sub-sequence. If k is the first job in π, it

56

2.6. AUXILIARY RESULT: COMPLEXITY LOWER BOUND OF F3||CMAX

BASED ON ETH

must start at time rk since all jobs start as early as possible. Otherwise if k is not the first
in π, we know it still starts at time rk since there is some idle time between job jk−1 and
jk by the construction of the sub-sequence. An exemple of π is given in Figure 2.9.

Figure 2.9: Example for Lemma 6 (k=5)

Lemma 7. B(t) = O(t2t−1) = O∗(2t).

Proof. By Lemma6, possible values of g1(π) can be computed as follows. First choose k, for
which there are t choices; then choose the jobs that are put after jk, which yields O(2t−1)
possibilities.

Theorem 5. Problem 1|ri|
∑
fi(Ci) can be solved in O∗(3n) time and space.

Proof. The result can be derived directly from equation 2.3 and Lemma7:

T (n) =
n∑

t=1

(
n

t

)
t · O∗(2t) log(O∗(2t)) = O∗(n2

n∑

t=1

(
n

t

)
2t · 1n−t)) = O∗(3n)

The reasoning and the result is the same for the 1|ri|max(fi(Ci)) problem.

2.6 Auxiliary Result: complexity lower bound of F3||Cmax

based on ETH

The conjecture P 6= NP implies that NP-hard problems cannot be solved in polyno-
mial time. However, no more precision is given on the complexity of NP-hard problems
except that they are super-polynomial. People have realized that this simple binary classi-
fication of decision problems to easy or hard is perhaps too coarse-grained. This encourages
to analyze the complexity of problems in a finer way. On this direction, Impagliazzo and
Paturi (2001) proposed the Exponential Time Hypothesis (ETH) which states that 3SAT
cannot be solved in sub-exponential time (O(2o(n))). Based on this assumption, complexity
lower bounds have been deduced for many problems such as k-Colorability, k-Set Cover,
Independent Set, Clique, and Vertex Cover. The existence of sub-exponential al-
gorithms for any of them implies the same for the others. Moreover, a Strong Exponential
Time Hypothesis (SETH) has also been proposed, which assumes that k-CNF-SAT requires
O(2n) time in the worst-case when k grows to infinity. This allows to derive even tighter
bounds such as shown by Cygan et al. (2016): for every ε < 1 an O(2εn) algorithm for
Hitting Set, Set Splitting or NAE-SAT would violate SETH.

57

2.6. AUXILIARY RESULT: COMPLEXITY LOWER BOUND OF F3||CMAX

BASED ON ETH

Being not able to propose an algorithm with a smaller upper bound on the worst-case
time complexity than the proposed dynamic programming, we prove by ETH an asymptotic
lower bound, by a reduction from 3SAT to SubsetSum and then to F3||Cmax. We show
that F3||Cmax cannot be solved in sub-exponential time, unless ETH fails. This immedi-
ately implies that the Fm‖Cmax problem, ∀m > 3, cannot be solved in sub-exponential
time either.

When establishing this result, we were not aware that a similar result reported by
Jansen et al. (2013b), stated that for f ∈ {Cmax,

∑
wjCj}, the problems O3||f , J3||f ,

F3||f and P2||f cannot be solved asymptotically faster than (2O(n) · ‖I‖) unless ETH
fails. The used reduction chain 3SAT → SubsetSum→ Partition → F3||Cmax, which
is different from ours.

2.6.0.1 From 3SAT to F3||Cmax

As stated by Impagliazzo and Paturi (2001), proving lower bounds based on ETH
implies designing problem reductions that preserve sub-exponential time property. For
this, it is critical that resulting problem size of the reduction does not grow more than
linearly. However, the time needed by the reduction is less important: it is not necessarily
polynomial but should be at most sub-exponential.

Definition 3. Consider a reduction ∝ from problem P1 with complexity parameter m1 to
P2 with complexity parameter m2. Reduction ∝ is sub-exponential time preserving if

1. ∝ runs in sub-exponential time, i.e. for any ε > 0, ∝ runs in O(2εn) and

2. m2(∝ (x)) = O(m1(x)), i.e. the size of the output problem is linearly related to the
size of the input problem.

In fact, if P2 can be solved in sub-exponential time, so can P1, since for any given
instance of P1 we can construct in sub-exponential time an instance of P2 that can be
solved in sub-exponential time.

Many existing standard problem reductions are naturally sub-exponential preserving.
It is pretty straightforward to verify this since standard reductions are in polynomial time
and we only need to check whether “m2(∝ (x)) = O(m1(x))”. In the case of the F3||Cmax
problem, it was proved as NP-complete by Garey et al. (1976) by a reduction from 3-
Partition (3PAR). The latter was proved to be NP-complete by a series of reductions :
3SAT→ 3-Dimentional Matchining (3DM)→ 3PAR (Garey and Johnson, 1975). The
classic reference of Garey and Johnson (1979) also described the reduction 3SAT → 3DM
→ 4PAR → 3PAR.

Unfortunately, the described reduction chain from 3SAT to F3||Cmax does not pre-
serve sub-exponential time, since the reduction to 3DM outputs an instance of size Ω(n2),
i.e. asymptotically lower bounded by n2. In this section, we describe a new reduction
chain from 3SAT to F3||Cmax which is proved to be sub-exponential time preserving and
which in result allows to prove lower bounds for F3||Cmax based on ETH. This chain is
3SAT →SubsetSum →F3||Cmax.

58

2.6. AUXILIARY RESULT: COMPLEXITY LOWER BOUND OF F3||CMAX

BASED ON ETH

2.6.0.2 3SAT→SubsetSum

For this step, the standard NP-completeness reduction can be adopted directly (see for
instance Cormen et al. (2009)). However, in order to prove that the resulting instance has
its size linear in that of the input instance, we need to apply here the Sparsification
Lemma of Impagliazzo and Paturi (2001). For the sake of clarity we start by a brief
description of the reduction (R1). The desired input and output of R1 are described as
follows:

Input problem (3SAT): Given a boolean formula F in 3-CNF form containing n
variables and m clauses and each clause having exactly 3 literals, the question is whether
there exists an assignment of variables that makes F = true.

Output problem (SubsetSum): Given S as a set of n integers, t an integer parameter,
the question is whether there exists a subset S′ ⊂ S, s.t. ∑i∈S′ i = t.

R1 constructs the target SubsetSum as follows. Each element in S is represented by
a (m + n)-digit base-7 number. The first n digits correspond to variables and the last m
digits are labeled by clauses. We note C(i) = {c : (c is a clause in F)∧ (vi ∈ c)}. Without
loss of generality, we assume that each variable must appear in at least one clause and no
clause contains a variable and its negation.

1. The target value t is a (m+n)-digit base-7 number which has 1 on all variable digits
and 4 on all clause digits.

2. For each variable vi in F , we add 2 numbers into S: si and s′i with the vi-digit set
to 1. ∀c ∈ C(i), the c-digit of si (resp. s′i) is set to 1 if c is satisfied when vi = true
(resp. false). The other digits are set to 0.

3. For each clause ci in F , we add 2 numbers ai and a′i into S. ai (resp. a
′
i) is created

by setting the ci-digit to 1 (resp. 2), and by setting the other digits to 0. Note that
these are slack numbers which will help us to add to 4 in the target digit.

Clearly, in the digits of t, the vi−digit is 1 if and only if when si or s′i is chosen, which
corresponds to a true or false assignment to vi. The ci − digit is 4 only when at least
one variable assignment satisfies ci since otherwise we would have at most 3 by adding up
ai and a′i. Also note that by encoding the numbers in base 7, no carries can occur. The
correctness of the reduction is therefore straightforward.

The resulting SubsetSum instance has 2(m+n) numbers, each has (m+n) digits, the
whole construction can be done in polynomial time (even when considering m = n3). The
size of the resulting instance is 2(m + n), but according to Definition 3, we should have
O(n). This is the place where the Sparsification Lemma applies.

Lemma 8. Sparsification Lemma(Impagliazzo and Paturi, 2001)
∀ε > 0, k ≥ 2, a k-SAT formula F with n variables and m clauses can be transformed into
a k-SAT formula F ′ which is the disjunction of at most 2εn sub-formulas, each with O(n)
clauses. The transformation runs in O(poly(n)2εn) time. Alternatively speaking, k-SAT
has a 2o(n) algorithm if and only if it has a 2o(m) algorithm.

59

2.6. AUXILIARY RESULT: COMPLEXITY LOWER BOUND OF F3||CMAX

BASED ON ETH

Figure 2.10: Scheduling overview of the F3||Cmax instance reduced from SubsetSum

This allows the reduction R1 to produce for each sub-formula with n′ variables and m′

clauses, a SubsetSum instance of size 2(m′+n′) = O(n′). Therefore R1 is sub-exponential
time preserving since if SubsetSum can be solved in sub-exponential time then for any
instance of 3SAT and any ε > 0, we can solve it in sub-exponential time by first applying the
Sparsification Lemma then applying R1 and solve one by one the resulting SubsetSum
sub-instances.

2.6.0.3 SubsetSum →F3||Cmax

Now we focus on the reduction (R2) from SubsetSum to F3||Cmax. The desired input
and output of R2 are described as follows:

Input problem (SubsetSum): Given S as a set of n integers, t an integer parameter,
the question is whether there exists a subset S′ ⊂ S, s.t. ∑i∈S′ i = t.

Output problem (F3||Cmax): Given n′ jobs to be processed on 3 machines, each job
must be processed on machine 1, 2, 3 in this order without overlapped processing. The
processing time of job j on the 3 machines is denoted as pj = 〈pj1, pj2, pj3〉. Each machine
can only handle one job at one time. We ask whether there exists an ordering of jobs such
that the whole processing can finish before time instant T .

We note s as the sum of all integers in S. The reduction (R2) constructs the set of jobs
J as follows.

1. Add to J job jn+1: 〈t, t, s− t〉

2. For each element ai ∈ S, add job i : 〈0, ai, 0〉

3. Let T = s+ t

Since the execution of jn+1 requires already s + t time, as shown in Figure 2.10, the
remaining n jobs must be perfectly filled into the line-shaded area without leaving any idle
time in order to not excede T on machine 2. Since that area is cut into two parts of size
t and (s − t) respectively, a perfect fill-in of the first part implies the existence of S′ ⊂ S
such that

∑
S′ = t.

Lemma 9. Assuming ETH, @ algorithm such that for any ε > 0, it solves F3||Cmax in
O(2εn) time. In other words, the F3||Cmax problem cannot be solved in sub-exponential
time unless ETH fails.

60

2.7. CHAPTER SUMMARY

Proof. It is easy to check that R2 runs in linear time and the resulting F3||Cmax instance
has size n + 2 which is nearly the same as the input instance. As a consequence, R2 is
sub-exponential time preserving. Combining with R1, the lemma is proved.

2.7 Chapter Summary

In this work we focus on the design of exact algorithms for several sequencing problems
considering worst-case scenarios. The first problem that is tackled is the F3||Cmax problem
for which we propose a Dynamic Programming algorithm, improving the best-known time
complexity in the literature from 2O(n) × ‖I‖O(1) (which can be proved to be O∗(cn),
c > 3, when applied to this problem) to O∗(3n). The generalizations of the algorithm on
the F3‖fmax and F3‖∑ fi problems are then presented with worst-case time and space
complexities in O∗(5n) or O∗(M22n). Since the idea is based on the consideration of
dominance conditions for non-decreasing cost functions and on the consideration of Pareto
Front of corresponding criteria vectors, it can be easily generalized to other problems that
have similar structures. We formulate the generalized algorithm as a framework named
Pareto Dynamic Programming, and then apply it to the 1|ri|

∑
fi(Ci) and 1|ri|max(fi(Ci))

problems. More generally, for all problems that possess a dominance condition based on
multiple criteria, our Dynamic Programming is likely to be applicable. Table 2.2 summaries
the complexity results of PDP when applied to several problems. Recall that B(n) is the
upper bound of the number of optimal solutions returned after solving an instance of size
n.

Problem (α|β|f)
β 6= pmtn

f ∈ {fmax,
∑
fi}

Criteria Vector B(n) Complexity

1||f 〈f〉 1 O∗(2n)

1|ri|f 〈Cmax, f〉 O∗(2n) O∗(3n)

F2‖f 〈Cmax, f〉 O∗(2n) O∗(3n)

F3‖f 〈CM2 , Cmax, f〉 O∗(4n) O∗(5n)

Table 2.2: Application of PDP on sequencing problems

The main work in this chapter has been performed together with Christophe Lenté,
Mathieu Liedloff and Vincent T’Kindt. The results on the F3||Cmax, F3‖fmax and F3‖∑ fi
problems have been published in Journal of Scheduling (Shang et al., 2017c), MISTA 2015
conference (Shang et al., 2015) and ROADEF 2016 conference (Shang et al., 2016b).

61

2.7. CHAPTER SUMMARY

62

Chapter 3

Branch & Merge on the Single
Machine Total Tardiness Problem

3.1 Introduction

In this chapter, we report new results on exact exponential algorithms solving a pure se-
quencing problem, the single machine total tardiness problem, denoted by 1||∑Ti. In this
problem, a job set N = {1, 2, . . . , n} of n jobs must be scheduled on a single machine. For
each job i, a processing time pi and a due date di are given. The problem asks for arranging
the job set into a sequence σ so as to minimize T (N, σ) =

∑n
i=1 Ti =

∑n
i=1 max{Ci−di, 0},

where Ci is the completion time of job j in sequence σ. The 1||∑Ti problem is NP-hard in
the ordinary sense (Du and Leung, 1990). It has been extensively studied in the literature
and many exact procedures (Lawler, 1977; Potts and Van Wassenhove, 1982; Della Croce
et al., 1998; Szwarc et al., 2001) have been proposed. The current state-of-the-art exact
method of Szwarc et al. (2001) dates back to 2001 and solves to optimality instances with up
to 500 jobs. All these procedures are search tree approaches, but dynamic programming
algorithms were also considered. On the one hand, Lawler (1977) proposed a pseudo-
polynomial dynamic programming algorithm running with complexity O(n4

∑
pi). On the

other hand, the standard technique of doing dynamic programming across the subsets (see,
for instance, Fomin and Kratsch (2010)) applies and runs with complexity O(n22n) both
in time and space. Latest theoretical developments for the problem, including both exact
and heuristic approaches can be found in the survey of Koulamas (2010).

We keep the use of the O∗(·) notation for measuring worst-case complexities. T (n) is
still defined as the time required in the worst-case to exactly solve a problem of size n.
To the best of our knowledge, no available exact algorithm for this problem running in
O∗(cn) (c being a constant) time and polynomial space has been reported in the literature.
Actually, the complexity of the state-of-the-art algorithm of Szwarc et al. (2001) was not
discussed by the authors, but our analysis shows that it runs in O∗(2.4143n) time and
polynomial space (see section 3.5.1). One could also possibly apply a divide-and-conquer
approach as described by Gurevich and Shelah (1987) and Bodlaender et al. (2012). The
idea is to determine the half of jobs that should be processed first by enumerating all the
2-partitions of the input jobset. Then, for each 2-partition, solve the two corresponding

63

3.2. A BRANCH & REDUCE APPROACH

subproblems recursively and finally combine the obtained solutions of subproblems to get
the optimal solution. This would lead to anO∗(4n) complexity in time requiring polynomial
space. The aim of this work is to present an improved exact algorithm exploiting known
decomposition properties of the problem. Different versions of the proposed approach are
described in section 3.2. A final version making use of a new technique called Branch &
Merge that avoids the solution of several equivalent subproblems in the branching tree is
presented in section 3.3. Finally we present some additional results in section 3.5.

First, let use recall some known properties on the 1||∑Tj problem.
Given the job set N = {1, 2, . . . , n}, let (1, 2, . . . , n) be a LPT (Longest Processing

Time first) sequence, where i < j whenever pi > pj (or pi = pj and di ≤ dj). Let also
([1], [2], . . . , [n]) be an EDD (Earliest Due Date first) sequence, where i < j whenever d[i] <
d[j] (or d[i] = d[j] and p[i] ≤ p[j]). As the cost function is a regular performance measure, we
know that in an optimal solution, the jobs are processed with no interruption starting from
time zero. Let Bi and Ai be the sets of jobs that precede and follow job i in an optimal
sequence. Consequently, in this optimal sequence being constructed, Ci =

∑
`∈Bi

p` + pi.
Similarly, if job j is assigned to position k, we denote by Ci(k) the corresponding completion
time of i and by Bi(k) and Ai(k) the sets of predecessors and successors of i, respectively.

The main known theoretical properties are the following.

Property 1. (Emmons, 1969) Consider two jobs i and j with pi < pj. Then, i precedes
j in an optimal schedule if di ≤ max{dj , Cj}. Else j precedes i in an optimal schedule if
di + pi > Cj.

Property 2. (Lawler, 1977) Let job 1 in LPT order correspond to job [k] in EDD order.
Then, job 1 can be set only in positions h ≥ k and the jobs preceding and following job 1
are uniquely determined as B1(h) = {[1], [2], . . . , [k − 1], [k + 1], . . . , [!ht]} and A1(h) =
{[h+ 1], . . . , [n]}.
Property 3. (Lawler, 1977; Potts and Van Wassenhove, 1982; Szwarc, 1993) Consider
C1(h), for h ≥ k. Job 1 cannot be set in positions h ≥ k if:

(a) C1(h) ≥ d[h+1], ∀h < n;

(b) C1(h) < d[r] + p[r], for some r = k + 1, . . . , h.

Property 4. (Szwarc and Mukhopadhyay, 1996) For any pair of adjacent positions (i, i+1)
that can be assigned to job 1, at least one of them is eliminated by Property 3.

In terms of complexity analysis, we recall (see, for instance, Eppstein (2001)) that,
if it is possible to bound above T (n) by a recurrence expression of the type T (n) ≤∑h

i=1 T (n − ri) + O(p(n)), then we have
∑h

i=1 T (n − ri) + O(p(n)) = O∗(α(r1, . . . , rh)n)

where α(r1, . . . , rh) is the largest root of the function f(x) = 1−∑h
i=1 x

−ri . This observa-
tion will be useful later on to analyze worst-case complexities.

3.2 A Branch & Reduce approach

We first focus on two direct Branch & Reduce algorithms based on the structural
properties stated in the previous section. Branch & Reduce algorithms, as introduced

64

3.2. A BRANCH & REDUCE APPROACH

Figure 3.1: The situation when the longest job ` is put in position h

in section 1.2.2.1, are search tree based algorithms which are elaborated upon two main
components: a branching strategy and a reduction rule. The later relies on a mathematical
condition which enables to take optimal decisions in the worst-case scenario whenever some
other decisions have been taken by the branching. For instance, it can be a rule which
states that even in the worst-case, if we branch on a job j there always exists another job
i which can be scheduled without branching on it.

3.2.1 A first Branch & Reduce algorithm

A basic Branch & Reduce algorithm TTBR1 (Total Tardiness Branch & Reduce version
1) can be designed by exploiting Property 2, which enables to decompose the problem into
two smaller subproblems when the position of the longest job ` is given (see Figure 3.1).

The basic idea is to iteratively branch by assigning job ` to every eligible branching
position and correspondingly decomposing the problem. Each time job ` is assigned to
a certain position i, two different subproblems are generated, corresponding to schedule
the jobs before ` (inducing subproblem B`(i)) or after ` (inducing subproblem A`(i)),
respectively. The algorithm operates by applying to any given job set S starting at time
t function TTBR1(S, t) that computes the corresponding optimal solution. With this
notation, the original problem is indicated by N = {1, ..., n} and the optimal solution is
reached when function TTBR1(N, 0) is computed.

The algorithm proceeds by solving the subproblems along the branching tree according
to a depth-first strategy and runs until all the leaves of the search tree have been reached.
Finally, it provides the best solution found as an output. Algorithm 1 summarizes the
structure of this approach, while Proposition 1 states its worst-case complexity. Figure 3.2
illustrates the branching operation of the algorithm.

Proposition 1. Algorithm TTBR1 runs in O∗(3n) time and polynomial space in the worst
case.

Proof. According to Property 2, the worst-case scenario arises when the ordering LPT is
the same as EDD, in which case all positions are eligible for branching on the longest job.
Whenever the longest job 1 is assigned to the first and the last position of the sequence, two
subproblems of size (n− 1) are generated. For each 2 ≤ i ≤ n− 1, two subproblems with
size (i− 1) and (n− i) are generated. Hence, the total number of generated subproblems
is (2n− 2) and the time cost related to computing the best solution of size n starting from
these subproblems is O(p(n)). This induces the following recurrence for the running time

65

3.2. A BRANCH & REDUCE APPROACH

Algorithm 1 Total Tardiness Branch & Reduce version 1 (TTBR1)

Input: N = {1, ..., n} is the problem to be solved
1: function TTBR1(S, t)
2: seqOpt← the EDD sequence of jobs S
3: `← the longest job in S
4: for any eligible position i (Property 2) do
5: Branch by assigning job ` in position i
6: seqLeft← TTBR1(B`(i), t)
7: seqRight← TTBR1(A`(i), t+

∑
k∈B`(i)

pk + p`)
8: seqCurrent← concatenation of seqLeft, ` and seqRight
9: seqOpt← best solution between seqOpt and seqCurrent

10: end for
11: return seqOpt
12: end function

Figure 3.2: Branching scheme of TTBR1

66

3.2. A BRANCH & REDUCE APPROACH

T (n) required by TTBR1:

T (n) = 2T (n− 1) + 2T (n− 2) + ...+ 2T (2) + 2T (1) +O(p(n)) (3.1)

By replacing n with (n− 1), the following expression is derived:

T (n− 1) = 2T (n− 2) + ...+ 2T (2) + 2T (1) +O(p(n− 1)) (3.2)

Expression 3.2 can be used to simplify the right hand side of expression 3.1 leading to:

T (n) = 3T (n− 1) +O(p(n)). (3.3)

By solving the corresponding equation xn = 3xn−1 and take its root as the exponential
base, this recurrence yields the result T (n) = O∗(3n). The space requirement is polynomial
since the search tree is explored according to a depth-first strategy.

3.2.2 A second Branch & Reduce algorithm

An improved version of the algorithm TTBR1 is defined by taking into account Prop-
erty 3 and Property 4, which state that for each pair of adjacent positions (i, i+1), at least
one of them can be discarded. The worst case occurs when the largest possible subproblems
are kept when branching, since otherwise the complexity can be easily proved as smaller.
This corresponds to solving problems with size (n − 1), (n − 3), (n − 5), . . ., that arise by
branching in positions i and (n − i + 1) with i odd. The resulting algorithm is referred
to as TTBR2 (Total Tardiness Branch and Reduce version 2). Its structure is similar to
the one of TTBR1 depicted in Algorithm 1, but lines 5-9 are executed only when ` can be
set in position i according to Property 3. The complexity of the algorithm is discussed in
Proposition 2.

Proposition 2. Algorithm TTBR2 runs in O∗((1 +
√

2)n) = O∗(2.4143n) time and poly-
nomial space in the worst case.

Proof. The proof is close to that of Proposition 1. We refer to problems where n is odd,
but the analysis for n even is substantially the same. The algorithm induces a recursion of
the type:

T (n) = 2T (n− 1) + 2T (n− 3) + ...+ 2T (4) + 2T (2) +O(p(n)) (3.4)

as the worst case occurs when we keep the branches that induce the largest possible sub-
problems. Analogously to Proposition 1, we replace n by (n−2) in the previous recurrence
and we obtain:

T (n− 2) = 2T (n− 3) + 2T (n− 5) + ...+ 2T (4) + 2T (2) +O(p(n− 2)). (3.5)

Again, we plug the latter expression into the former one and obtain the recurrence:

67

3.3. A BRANCH & MERGE ALGORITHM

T (n) = 2T (n− 1) + T (n− 2) +O(p(n)). (3.6)

By solving the corresponding equation xn = 2xn−1 +xn−2 and take its largest positive root
as the exponential base, the recurrence induces T (n) = O∗((1+

√
2)n) = O∗(2.4143n). The

space complexity remains polynomial as for TTBR1.

3.3 A Branch & Merge Algorithm

In this section, we describe how to get an algorithm running with complexity arbitrarily
close to O∗(2n) in time and polynomial space by integrating a node-merging procedure into
TTBR1. The idea of such a procedure comes from the observation that in the search tree
created by the branching scheme (Property 2), a lot of identical subproblems are explored
for nothing.

We recall that in TTBR1 the branching scheme is defined by assigning the longest
unscheduled job to each available position and accordingly divide the problem into two
subproblems. To facilitate the description of the algorithm, we focus on the scenario where
the LPT sequence (1, ..., n) coincides with the EDD sequence ([1], ..., [n]), for convenience
we write LPT = EDD.

We provide the algorithmic details of the node-merging procedure on this scenario
to facilitate its understanding. The resulting branch-and-merge algorithm has its time
complexity tend to O∗(2n). We prove by Lemma 15 that the case where LPT = EDD
is the worst-case scenario, hence, it follows that the problem 1||∑Ti can be solved in
time complexity tending to O∗(2n). We leave to the reader the generalization of the node-
merging procedure to the general case.

Figure 3.3 shows how an input problem {1, ..., n} is decomposed by the branching
scheme of TTBR1. Each node is labelled by the corresponding subproblem Pj (P denotes
the input problem). Notice that from now on Pj1,j2,...,jk , 1 ≤ k ≤ n, denotes the problem
(corresponding to a node in the search tree) induced by the branching scheme of TTBR1
when the largest processing time job 1 is in position j1, the second largest processing time
job 2 is in position j2 and so on till the k-th largest processing time job k being placed in
position jk. Notice that Pj1,j2,...,jk results from a series of branching operations according
to Property 2, and may contain more than one subproblems to be solved. Consider the
problem P3 illustrated in Figure 3.3: both jobsets {2, 3} and {4, .., n} are to be sched-
uled and can be considered as two independents subproblems. Nevertheless, the notation
Pj1,j2,...,jk can largely simplify the presentation of our algorithm and the fact that a node
may contain more than one subproblems should not cause ambiguity to our belief. Surely,
this is considered when analyzing the complexity of the algorithms.

To roughly illustrate the guiding idea of the merging technique introduced in this
section, consider Figure 3.3. Noteworthy, nodes P2 and P1,2 are identical except for the
initial subsequence (21 vs 12). This fact implies, in this particular case, that the problem
of scheduling job set {3, ..., n} at time p1 + p2 is solved twice. This kind of redundancy
can however be eliminated by merging node P2 with node P1,2 and creating a single node

68

3.3. A BRANCH & MERGE ALGORITHM

P1 :1{2, ..., n}
P2 :21{3, ..., n}

P : {1, ..., n}

Pn

P3 :{2, 3}1{4, ..., n}
Pn :{2, ..., n}1

P3P2

P1

P1,n

. . .

P1,4P1,3P1,2

. . .

P1,2 :12{3, ..., n}
P1,3 :132{4, ..., n}
P1,4 :1{3, 4}2{5, ..., n}
P1,n :1{3, ..., n}2

Figure 3.3: The branching scheme of TTBR1 at the root node

in which the best sequence among 21 and 12 is scheduled at the beginning and the job
set {3, ..., n}, starting at time p1 + p2, remains to be branched on. Furthermore, the best
subsequence (starting at time t = 0) between 21 and 12 can be computed in constant time.
Hence, the node created after the merging operation involves a constant time preprocessing
step plus the search for the optimal solution of job set {3, ..., n} to be processed starting
at time p1 + p2. We remark that, in the branching scheme of TTBR1, for any constant
k ≥ 3, the branches corresponding to Pi and Pn−i+1, with i = 2, ..., k, are decomposed
into two problems where one subproblem has size (n − i) and the other problem has size
(i − 1) ≤ k. Correspondingly, the merging technique presented on problems P2 and P1,2

can be generalized to all branches inducing subproblems of size less than k. Notice that, by
means of algorithm TTBR2, any problem of size less than k requires at most O∗(2.4143k)
time to be solved (which is constant time when k is fixed). This is the central idea of the
merging procedure: for a given value of k as an input of the algorithm, merge nodes which
involve the same subproblems of size less than k. As k is a constant, the merging can be
done in constant time.

In the remainder of the paper, for any constant k ≤ n
2 , we denote by left-side branches

the search tree branches corresponding to problems P1, ..., Pk and by right-side branches
the ones corresponding to problems Pn−k+1, ..., Pn.

In the following subsections, we show how the node-merging procedure can be sys-
tematically performed to improve the time complexity of TTBR1. Basically, two different
recurrent structures hold respectively for left-side and right-side branches and allow to
generate less subproblems at each level of the search tree. The node-merging mechanism
is described by means of two distinct procedures, called LEFT_MERGE (applied to left-side
branches) and RIGHT_MERGE (applied to right-side branches), which are discussed in sec-
tions 3.3.1 and 3.3.2, respectively. The final Branch & Merge algorithm is described in
section 3.3.3 and embeds both procedures into the structure of TTBR1.

69

3.3. A BRANCH & MERGE ALGORITHM

3.3.1 Merging left-side branches

We first illustrate the merging operations on the root node. The following proposition
highlights two properties of problems Pj and P1,j with 2 ≤ j ≤ k.

Lemma 10. For a pair of problems Pj and P1,j with 2 ≤ j ≤ k, the following conditions
hold:

1. The solution of problems Pj and P1,j involves the solution of a common subproblem
which consists in scheduling job set {j + 1, ..., n} starting at time t =

∑j
i=1 pi.

2. Both in Pj and P1,j, at most k jobs have to be scheduled before job set {j + 1, ..., n}.

Proof. As problems Pj and P1,j are respectively defined by {2, ..., j}1{j + 1, ..., n} and
1{3, ..., j}2{j + 1, ..., n}, the first part of the property is straightforward.
The second part can be simply established by counting the number of jobs to be scheduled
before job set {j + 1, ..., n} when j is maximal, i.e. when j = k. In this case, job set
{k+ 1, ..., n} has (n−k) jobs which implies that k jobs remain to be scheduled before that
job set.

Each pair of problems indicated in Proposition 10 can be merged as long as they share
the same subproblem to be solved. More precisely, (k − 1) problems Pj (with 2 ≤ j ≤ k)
can be merged with the corresponding problems P1,j .

Figure 3.4 illustrates the merging operations performed at the root node on its left-
side branches, by showing the branch tree before and after (Figure 3.4a and Figure 3.4b)
such merging operations. For any given 2 ≤ j ≤ k, problems Pj and P1,j share the same
subproblem {j + 1, ..., n} starting at time t =

∑j
i=1 pi. Hence, by merging the left part of

both problems which is constituted by job set {1, ..., j} having size j ≤ k, we can delete
node Pj and replace node P1,j in the search tree by the node Pσ1,j which is defined as
follows (Figure 3.4b):

• {j + 1, ..., n} is the set of jobs on which it remains to branch.

• Let σ1,j be the sequence of branching positions on which the j longest jobs 1, ..., j are
branched, that leads to the best jobs permutation between {2, ..., j}1 and 1{3, ..., j}2.
More concretely, the subproblem involving {2, ..., j} from {2, ..., j}1 and the subprob-
lem involving {3, ..., j} from 1{3, ..., j}2 must be solved (by calling TTBR2, for in-
stance) first in order to obtain the optimal permutation of {2, ..., j}1 and 1{3, ..., j}2.
This involves the solution of two problems of size at most (k − 1) (in O∗(2.4143k)
time by TTBR2) and the comparison of the total tardiness value of the two sequences
obtained.

In the following, we describe how to apply analogous merging operations on any node
of the tree. With respect to the root node, the only additional consideration is that the
children nodes of an arbitrary node may have already been affected by a previous merging.
In Figure 3.4b, this is for instance the case for P 1,3

σ which can be merged with Pσ1,2,3, a
child node of P 1,2

σ (if k ≥ 3).

70

3.3. A BRANCH & MERGE ALGORITHM

P1 :1{2, ..., n}
P2 :21{3, ..., n}

P : {1, ..., n}

Pn

Pk :{2, ..., k}1{k + 1, ..., n}

PkP2

P1

P1,n

. . .

P1,kP1,2

. . .

P1,2 :12{3, ..., n}
P1,3 :132{4, ..., n}
P1,k :1{3, ..., k}2{k + 1, ..., n}

. . .

. . .

Pn :{2, ..., n}1

P1,n :1{3, ..., n}2

(a) Left-side branches of P before performing the merging operations

P : {1, ..., n}

PnPkP2

P1

P1,n

. . .

Pσ1,kPσ1,2

. . .

Pσ1,2 :BEST(12, 21){3, ..., n}
Pσ1,k :BEST({2, ..., k}1, 1{3, ..., k}2){k + 1, ..., n}

. . .

. . .

(b) Left-side branches of P after performing the merging operations.
BEST(α, β) returns the best sequence among α and β.

Figure 3.4: Left-side branches merging at the root node

In order to define the branching scheme used with the LEFT_MERGE procedure, a data
structure Lσ is associated to a problem Pσ. It represents a list of (k− 1) subproblems that
result from a previous merging and are now the first (k−1) children nodes of Pσ. When Pσ
is created by branching, Lσ = ∅. When a merging operation sets the first (k − 1) children
nodes of Pσ to Pσ1 , ..., Pσk−1 , we set Lσ = {Pσ1 , ..., Pσk−1}. This list if used to memorize
the fact that the first (k − 1) child nodes of Pσ will not have to be built by a branching
operation. As a conclusion, the following branching scheme for an arbitrary node of the
tree holds.

Definition 4. The branching scheme for an arbitrary node Pσ is defined as follows:

• If Lσ = ∅, use the branching scheme of TTBR1;

71

3.3. A BRANCH & MERGE ALGORITHM

• If Lσ 6= ∅, extract problems from Lσ as the first (k − 1) branches, then branch on
the longest job in Pσ in the available positions from the k-th to the last according to
Property 2.

This branching scheme, whenever necessary, will be referred to as improved branching.
Note that this will be extended later when “merging right-side nodes” is introduced.

Before describing how merging operations can be applied on an arbitrary node Pσ, we
highlight its structural properties by means of Proposition 3.

Proposition 3. Let Pσ be a problem to branch on, and σ be the permutation of posi-
tions assigned to jobs 1, . . . , |σ|, with σ empty if no positions are assigned. The following
properties hold:

1. j∗ = |σ|+ 1 is the job to branch on,

2. j∗ can occupy in the branching process, positions {`b, `b + 1, . . . , `e}, where

`b =

{
|σ|+ 1 if σ is a permutation of {1, . . . , |σ} or σ is empty
ρ1 + 1 otherwise

with ρ1 = max{i : i > 0, positions 1, . . . , i are in σ} and

`e =

{
n if σ is a permutation of {1, . . . , |σ|} or σ is empty
ρ2 − 1 otherwise

with ρ2 = min{i : i > ρ1, i ∈ σ}

Proof. According to the definition of the notation Pσ, σ is a sequence of positions that
are assigned to the longest |σ| jobs. Since we always branch on the longest unscheduled
job, the first part of the proposition is straightforward. The second part aims at specifying
the range of positions that job j∗ can occupy. Two cases are considered depending on the
content of σ:

• If σ is a permutation of {1, . . . , |σ|}, it means that the longest |σ| jobs are set on
the first |σ| positions, which implies that the job j∗ should be branched in positions
|σ|+ 1 to n

• If σ is not a permutation of {1, . . . , |σ|}, it means that the longest |σ| jobs are not
set on consecutive positions. As a result, the current unassigned positions may be
split into several ranges. As a consequence of the decomposition property and the
assumption LPT=EDD, the longest job j∗ should necessarily be branched on the first
range of free positions, that goes from lb to le. Let us consider as an example P1,9,2,8

(see Figure 3.5), whose structure is 13{5, . . . , 9}42{10, . . . , n} and the job to branch
on is 5. In this case, we have: σ = (1, 9, 2, 8), `b = 3, `e = 7. It is easy to verify that
5 can only be branched in positions {3, . . . , 7} as a direct result of Property 2.

72

3.3. A BRANCH & MERGE ALGORITHM

Figure 3.5: An example (P1,9,2,8) for Proposition 3 and Corollary 1

Corollary 1 emphasises the fact that even though a node may contain several ranges of
free positions, only the first range is the current focus since we only branch on the longest
job in eligible positions.

Corollary 1. Problem Pσ has the following structure:

π{j∗, . . . , j∗ + `e − `b}Ω

with π the subsequence of jobs on the first (`b−1) positions in σ and Ω the remaining subset
of jobs to be scheduled after position `e (some of them can have been already scheduled). The
merging procedure is applied on job set {j∗, . . . , j∗ + `e − `b} starting at time tπ =

∑
i∈Π pi

where Π is the job set of π.

The validity of merging on a general node still holds as indicated in Proposition 4,
which extends the result stated in Proposition 10.

Proposition 4. Let Pσ be an arbitrary problem and let π, j∗, `b, `e,Ω be computed relatively
to Pσ according to Corollary 1. If Lσ=∅ the j-th child node Pσj is Pσ,`b+j−1 for 1≤j≤k.
Otherwise, the j-th child node Pσj is extracted from Lσ for 1≤j≤k−1, while it is created as
Pσ,`b+k−1 for j=k. For any pair of problems Pσj and Pσ1,`b+j−1 (the (j−1)-th child node
of Pσ1) with 2≤j≤k, the following conditions hold:

1. Problems Pσj and Pσ1,`b+j−1 with 2≤j≤k have the following structure:

• Pσj :

πj{j∗+j, . . . , j∗+`e−`b}Ω 1≤j≤k−1 and Lσ 6=∅

π{j∗+1, . . . , j∗+j−1}j∗{j∗+j, . . . , j∗+`e−`b}Ω
(1≤j≤k−1;Lσ=
∅)
or j=k

• Pσ1,`b+j−1:
π1{j∗+2, . . . , j∗+j−1}(j∗+1){j∗+j, . . . , j∗+`e−`b}Ω

73

3.3. A BRANCH & MERGE ALGORITHM

2. By solving all the problems of size less than k, that consist in scheduling the job set
{j∗+1, . . . , j∗+j−1} between π and j∗ and in scheduling {j∗+2, . . . , j∗+j−1} between
π1 and j∗+1, both Pσj and Pσ1,`b+j−1 consist in scheduling {j∗+j, ..., j∗+`e−`b}Ω
starting at time tπj=

∑
i∈Πj pi where Πj is the job set of πj.

Proof. The first part of the statement follows directly from Definition 4 and simply defines
the structure of the children nodes of Pσ. The problem Pσj is the result of a merging
operation between a sibling node of Pσ and the problem Pσ,`b+j−1 and it could possibly
coincide with Pσ,`b+j−1, being the result of merging, for each j=1, ..., k−1. Furthermore,
Pσj is exactly Pσ,`b+j−1 for j=k. The structure of Pσ,`b+j−1 is π{j∗+1, . . . , j∗+j−1}j∗{j∗+
j, . . . , j∗+`e−`b}Ω, and the merging operations preserve the job set to schedule after j∗.
Thus, we have Πj=Π∪{j∗, ..., j∗+j−1} for each j=1, ..., k−1, and this proves the first
statement. Analogously, the structure of Pσ1,`b+j−1 is π1{j∗+2, . . . , j∗+j−1}(j∗+1){j∗+
j, . . . , j∗+`e−`b}Ω. Once the subproblem before (j∗+1) of size less than k has been solved,
Pσ1,`b+j−1 consists in scheduling the job set {j∗+j, ..., j∗+`e−`b} at time tπj=

∑
i∈Πj pi.

In fact, we have that Πj=Π1∪{j∗+2, . . . , j∗+j−1}∪{j∗+1}=Π∪{j∗, . . . , j∗+j−1}. There-
fore, both Pσj and Pσ1,`b+j−1 consist in scheduling {j∗+j, ..., j∗+`e−`b}Ω starting at time
tπj=

∑
i∈Πj pi.

Pσ

PσkPσ2

Pσ1 . . .

Pσ1,`b+k����Pσ1,`b+1

. . .

. . .

�����
Pσ1,`b+k−1

. . .

Pσ1,j∗+1 Pσ1,j∗+k−1

Figure 3.6: Merging for an arbitrary left-side branch

Analogously to the root node, each pair of problems indicated in Proposition 4 can
be merged. Again, (k − 1) problems Pσj (with 2 ≤ j ≤ k) can be merged with the
corresponding problems Pσ1,`b+j−1. Pσj is deleted and Pσ1,`b+j−1 is replaced by Pσ1,j∗+j−1

(Figure 3.6), defined as follows:

• {j∗ + j, ..., j∗ + `e − `b}Ω is the set of jobs on which it remains to branch on.

• Let σ1,j∗+j−1 be the sequence of positions on which the (j∗ + j − 1) longest jobs
{1, ..., j∗ + j − 1} are branched, that leads to the best jobs permutation between πj

74

3.3. A BRANCH & MERGE ALGORITHM

and π1{j∗+2, . . . , j∗+j−1}(j∗+1), for 2 ≤ j ≤ k−1, and between π{j∗+1, . . . , j∗+
j − 1}j∗ and π1{j∗ + 2, . . . , j∗ + j − 1}(j∗ + 1), for j = k. This involves the solution
of one or two problems of size at most (k− 1) (in O∗(2.4143k) time by TTBR2) and
the finding of the sequence that has the smallest total tardiness value knowing that
both sequences start at time 0.

The LEFT_MERGE procedure is presented in Algorithm 2. Notice that, from a technical
point of view, this algorithm takes as input one problem and produces as an output its
first child node to branch on, which replaces all its k left-side children nodes.

Algorithm 2 LEFT_MERGE Procedure
Input: Pσ an input problem of size n, with `b, j∗ accordingly computed
Output: Q: a list of problems to branch on after merging
1: function LEFT_MERGE(Pσ)
2: Q←∅
3: for j=1 to k do
4: Create Pσj (j-th child of Pσ) by the improved branching with the subproblem

induced by the job set {j∗+1, . . . , j∗+j−1} solved if Lσ=∅ or j=k
5: end for
6: for j=1 to k−1 do
7: Create Pσ1j (j-th child of Pσ1) by the improved branching with the subproblem

induced by the job set {j∗+2, . . . , j∗+j−1} solved if Lσ1=∅ or j=k
8: end for
9: Lσ1←∅

10: for j=1 to k−1 do
11: Lσ1←Lσ1∪BEST(Pσj+1 , Pσ1j)
12: end for
13: Q←Q∪Pσ1

14: return Q
15: end function

Lemma 11. The LEFT_MERGE procedure returns one node to branch on in O(n) time and
polynomial space. The corresponding problem is of size (n− 1).

Proof. The creation of problems Pσ1,`b+j−1, ∀j = 2, . . . , k, can be done in O(n) time. The
call of TTBR2 costs constant time. The BEST function called at line 8 consists in computing
then comparing the total tardiness value of two known sequences of jobs starting at the
same time instant: it runs in O(n) time. The overall time complexity of LEFT_MERGE
procedure is then bounded by O(n) time as k is a constant. Finally, as only node Pσ1 is
returned, its size is clearly (n− 1) when Pσ has size n.

In the final part of this section, we discuss the extension of the algorithm in the case
where LPT 6= EDD. In this case, Property 2 allows to discard subproblems associated
to branching in some positions. Notice that if a problem P can be discarded according to
this property, then we say that P does not exist and its associated node is empty.

75

3.3. A BRANCH & MERGE ALGORITHM

Lemma 12. When left merging is incorporated into the branching scheme of TTBR, in-
stances such that LPT = EDD correspond to worst-case instances.

Proof. We prove the result by showing that the time reduction obtained from left merging
and Property 2 in the case LPT=EDD is not greater than that of any other cases. Let us
consider the improved branching scheme. The following exhaustive cases hold:

1. 1 = [1] and 2 = [2];

2. 1 = [j] with j ≥ 2;

3. 1 = [1] and 2 = [j] with j ≥ 3.

We first sketch the idea of the proof. For each of the 3 cases above, we analyse the time
reduction that can be obtained on one single branching and merging and we show that
the reduction corresponding to case 1, which covers the case LPT=EDD, is the smallest
among all the 3 cases. In fact, for case 2 and case 3, some nodes are not created due to
Property 2, and the resulting time reduction is not less than that of case 1.

Let T (n) be the time needed to solve an instance of size n in general. From Lemma
2, we can deduce that T (n) > 2T (n − 1) because for instances with LPT = EDD, on
each branching, a node of size (n− 1) is returned by left merging and another node of size
(n − 1) exists due to the last child node of Pσ. This statement is also valid in the worst
case if no merging is done, due to the branching scheme. The inequality T (n) > 2T (n− 1)
induces that T (n) = ω(2n), which will be used below to prove the lemma.

In order to be general, consider the current node as Pσ, as shown in Figure 3.6. The
time reduction of the 3 cases are denoted respectively by TR1, TR2 and TR3. We also
note TRLPT=EDD the time reduction corresponding to the case LPT = EDD.

In case 1, no nodes are eliminated by Property 2, hence, the merging can be done
as described for the case LPT=EDD (Figure 3.6). Therefore, TR1 = TRLPT=EDD =
T (n− 2) +T (n− 3) + ..+T (n− k) according to Lemma 11 when LEFT_MERGE is executed.

In case 2, the subproblem of Pσ corresponding to branching the longest job on the first
position, is eliminated directly by Property 2. Therefore, TR2 ≥ T (n− 1).

In case 3, let `b be the first free position in Pσ, as defined in Proposition 3. Some child
nodes of Pσ1 , as in Figure 3.6, corresponding to branch job 2 on positions {`b + 1, .., `b +
j − 1}, are eliminated due to Property 2. For these nodes, the time reduction that could
have been achieved by merging is already ensured, while the nodes that are not eliminated,
notably those corresponding to branch job 2 in positions {`b + j, .., `b + k − 1} can still
be merged pairwise with nodes {Pσj+1 , .., Pσk}. More reduction can be gained if j > k.
Therefore, TR3 ≥ T (n− 2) + T (n− 3) + ..+ T (n− k).

Since TR1 ≤ TR3, this brings us to compare TR1 and TR2. Suppose TR1 > TR2,
i.e., T (n− 1) < T (n− 2) + T (n− 3) + ..+ T (n− k), then we have T (n− 1) < T (n− 2) +
T (n − 3) + .. + T (1). By solving this recurrence relation we get T (n) = o(2n) which is in
contradiction with the fact that T (n) = ω(2n), as proved above. Therefore, TR1 < TR2,
i.e., on each recursion of the algorithm, the time reduction obtained in case 1 is not greater
than any other cases. Since TR1 = TRLPT=EDD, this proves that LPT = EDD is the

76

3.3. A BRANCH & MERGE ALGORITHM

worst-case scenario, in which the LEFT_MERGE procedure returns one node of size n− 1 to
branch on.

3.3.1.1 A working example for Left Merge

In order to better illustrate the merging operations on left-side branches, a detailed
example is provided in this section. The input data is in Table 3.1 and the value of k is
chosen as 2.

i 1 2 3 4
pi 7 4 2 1
di 2 4 6 8

Table 3.1: A sample instance

The solution of the instance is depicted in Figures 3.7a, 3.7b,3.7c,3.7d,3.7e. On each
node, the jobs to schedule are surrounded by accolades and the indicated partial total
tardiness value (tt =

∑
Tj) is computed on the jobs that are fixed before the unscheduled

jobs. The applied algorithm is TTBR1 but with LEFT_MERGE integrated. The algorithm
runs in depth-first. LEFT_MERGE is firstly called on the root node P . Lines 1-8 in Algorithm
2 results the situation in Figure 3.7a. This firstly (lines 3-5) involves the generation of the
first k child nodes of P which are P1 and P2, with L = {P1}, and the computation of total
tardiness of the fixed job sequences. For instance, the sequence (2, 1) in P2 has a total
tardiness of 9. Similarly, by lines 6-8, the first (k − 1) child nodes of P1 are generated
and the total tardiness of partially fixed jobs is also computed. The sequence (1, 2) in P1,2

has a total tardiness of 12. Then, by comparing the total tardiness of the fixed parts of
P2 and P1,2, line 11 merges node P2 to the position of P1,2 by setting the child list of P1

L1 = {P2}, since 9 < 11 (see Figure 3.7b). The result of merging is P2 which is renamed
as Pσ1,2 according to our notation. Line 14 returns the next node to open, which is P1.
This completes the first call of LEFT_MERGE.

Then the algorithm continues in the same way by applying LEFT_MERGE on the node
P1. In a similar way, the node P1,3 and the first child node of Pσ1,2 are generated and their
partial total tardiness values are computed. By comparing the partial total tardiness of
these two nodes, P1,3 is cut since 17 > 16 (Figure 3.7c). This also explains why we decide
to merge two nodes instead of just cutting the dominated one. Actually, by putting the
merged node in a specific position, the node can further participate in subsequent merging
operations. More concretely, if P2 was not moved to the position of P1,2, the merging in
Figure 3.7c would not happen.

The algorithm continues its exploration in depth-first order, each time a leaf node is
reached, the algorithm updates the current best solution. Another merging is done between
P4,2 and P4,1,2, leading to prune P4,2 (Figure 3.7d). Then, the algorithm goes on until all
leaf nodes are explored and it returns the optimal solution given by P4,1,2,3, corresponding
to the sequence of (2, 3, 4, 1) (Figure 3.7e).

Notice that some nodes involved in merging have only one job to schedule, like P4,2, but
we still consider them as a non-solved subproblems in the exemple in order to illustrate the

77

3.3. A BRANCH & MERGE ALGORITHM

merging. Also notice that the LEFT_MERGE procedure should only be called on subproblems
of enough size (greater than k). All the three nodes P , P1 and P4 have more than 2 jobs
to schedule.

78

3.3. A BRANCH & MERGE ALGORITHM

P1 :1{2, 3, 4}

P : {1, 2, 3, 4}

P2 : 21{3, 4}
tt = 9

P1,2 : 12{3, 4}
tt = 12

(a)

P1 :1{2, 3, 4}

P : {1, 2, 3, 4}

merge

Pσ1,2 : 21{3, 4}
tt = 9

(b)

79

3.3. A BRANCH & MERGE ALGORITHM

P1 :1{2, 3, 4}

P : {1, 2, 3, 4}

P1,3 : 132{4}
tt = 17

P2,1,3 : 213{4}
tt = 16

Pσ1,2 : 21{3, 4}
tt = 9

merge

(c)

P1 :1{2, 3, 4}

P : {1, 2, 3, 4}

P3 : {2, 3}14 P4 : {2, 3, 4}1

1{3, 4}2

P2,1,4,3 : 2143
tt = 21

Pσ1,2 : 21{3, 4}
tt = 9

P1,4,2,3 : 1342
tt = 20

P1,4,3,2 : 1432
tt = 19

P1,4,2,3

tt = 18

P1,4,3,2
tt = 20

{3, 4}212{3, 4}1 P4,2 : 32{4}1
tt = 2

P4,1,2 : 23{4}1
tt = 0

P4,1,3 : 2431
tt = 13

P2,1,3,4 : 2134
tt = 22

Pσ1,3 : 213{4}
tt = 16

merge

(d)

80

3.3. A BRANCH & MERGE ALGORITHM

P1 :1{2, 3, 4}

P : {1, 2, 3, 4}

P3 : {2, 3}14 P4 : {2, 3, 4}1

1{3, 4}2

P2,1,4,3 : 2143
tt = 21

Pσ1,2 : 21{3, 4}
tt = 9

P1,4,2,3 : 1342
tt = 20

P1,4,3,2 : 1432
tt = 19

P1,4,2,3

tt = 18

P1,4,3,2
tt = 20

{3, 4}212{3, 4}1

P4,1,2 : 23{4}1
tt = 0

P4,1,3 : 2431
tt = 13

P4,3,1,2 : 3421

tt = 15 tt = 15

P4,3,2,1 : 4321

P2,1,3,4 : 2134
tt = 22

Pσ1,3 : 213{4}
tt = 16

P4,1,2,3 : 2341
tt = 12

(e)

Figure 3.7: A sample instance solved by TTBR1 with left-merging integrated

81

3.3. A BRANCH & MERGE ALGORITHM

3.3.2 Merging right-side branches

Due to the branching scheme, the merging of right-side branches involves a more compli-
cated procedure than the merging of left-side branches. In the merging of left-side branches,
it is possible to merge some nodes associated to problems P` with children nodes of P1,
while for the right-side branches, it is not possible to merge some nodes P` with children
nodes of Pn. To see this, consider the situation depicted in Figure 3.8. If the merging can
be applied in a symmetric way as on left-size branches, then the node Pn−1 and the node
Pn,n−1 should be concerned by a merging operation. However, due to Property 2, these
two nodes do not share any common subproblem. Therefore, they can not be merged.

. . .

· · ·

P

Pn−2 Pn−1 Pn

Pn,n−2

{2, . . . , n− 2}1{n− 1, n}

k = 3

{2, . . . , n− 1}1{n}

{3, . . . , n}21{3, . . . , n− 1}2{n}1
Pn,n−1

Figure 3.8: An failed attempt on merging right-side branches

However, another structure of merging exist: the children nodes of P` can be merged
with the children nodes of Pn. Let us more formally introduce the right merging procedure
and, again, let k ≤ n

2 be the same constant parameter as used in the left merging.
Figure 3.9 shows an example on the structure of merging for the k right-side branches

with k = 3. The root problem P consists in scheduling job set {1, . . . , n}. Unlike left-side
merging, the right-side merging is done horizontally for each level. Nodes that are involved
in merging are colored. For instance, the black square nodes at level 1 can be merged
together. This concerns three nodes: Pn−2,n−3, Pn−1,n−3, Pn,n−3. As indicated in the
figure, all these three nodes contain an identical subproblem which consists in scheduling
jobs {3, .., n− 2} from time 0. Also notice that apart from this subproblem, the number of
remaining jobs to schedule is less than k. Therefore, these small number of jobs are fixed
first, which then enables the merging of all the three nodes. The result of the merging
should take the position of the right most node, which is Pn,n−3. Similarly, the black circle
nodes at level 1 can be merged, the grey square nodes at level 2 can be merged and the
grey circle nodes at level 2 can be merged. Notice that each right-side branch of P is
expanded to a different depth which depends on the branching decision: for the purpose
of right merging, a branch is no more expanded whenever the largest subproblem of the
first child node is of size (n− k − 1). For example, in Figure 3.9, consider node Pn−2 and
its first child node Pn−2,1 which defines the subproblem 2{3, .., n − 2}1{n − 1, n}. The
largest subproblem in Pn−2,1 conerns jobs {3, .., n − 2} which has (n − 4) = (n − k − 1)
jobs. Then, the expansion of the branch rooted by Pn−2,1 is stopped. Notice that in the

82

3.3. A BRANCH & MERGE ALGORITHM

implementation of the right merge, it is not mandatory to have the whole expansion of the
search tree as indicated in Figure 3.9. But, this expansion eases the presentation of the
mechanism and the analysis of the final complexity.

. . .

· · · · · · · · ·

· · · · · ·

· · ·

P

Pn−2 Pn−1 Pn

Pn−2,1

Pn−1,1,2

Pn−2,n−3 Pn−1,n−2

Pn−1,1,n−2

Pn,n−2

Pn,n−1

Pn,1,n−1
Pn,1,n−2

Pn,1,2,3

size:n−k−1

size:n−k−1

size:n−k−1

Level 0

Level 1

Level 3

Level 2

...

{3, . . . , n− 2}21{n− 1, n}
{3, . . . , n− 2}2{n− 1}1{n}
{3, . . . , n− 2}2{n− 1, n}1

2{4, . . . , n− 2}3{n− 1}1{n}
2{4, . . . , n− 2}3{n− 1, n}1

Figure 3.9: An example of right-side branches merging for k = 3

More generally, Figure 3.10 shows the right-side search tree and the content of the
nodes involved in the merging for an arbitrary value of k.

The rest of this section intends to describe the merging by following the same lines as
for left merging. We first extend the notation Pσ in the sense that σ may now contain
placeholders. The i-th element of σ is either the position assigned to job i if i is fixed,
or • if job i is not yet fixed. The • sign is used as placeholder, with its cardinality below
indicating the number of consecutive •. As an example, the problem {2, . . . , n− 1}1n can
now be denoted by Pn−1, •

n−2
,n. The cardinality of • may be omitted whenever it is not

important for the presentation or it can be easily deduced as in the above example. Note
that this adapted notation eases the presentation of right merge while it has no impact on
the validity of the results stated in the previous section.

Proposition 5. Let Pσ be a problem to branch on. Let j∗, `b, `e, ρ1 and ρ2 be defined as
in Proposition 3. Extending Corollary 1, problem Pσ has the following structure:

π{j∗, . . . , j∗ + `e − `b}γΩ′

where π is defined as in Corollary 1 and γ is the sequence of jobs in positions ρ2, . . . , ρ3

with ρ3 = max{i : i ≥ ρ2, positions ρ2, . . . , i are in σ} and Ω′ the remaining subset of
jobs to be scheduled after position ρ3 (some of them can have been already scheduled). The
merging procedure is applied on job set {j∗, . . . , j∗+ `e− `b} preceded by a sequence of jobs
π and followed by γΩ′.

83

3.3. A BRANCH & MERGE ALGORITHM

. . .

· · · · · ·

P

Pn−k+1
Pq Pn

Pq,1,...,`,j

Pn−k+1,n−k

· · · · · ·

· · ·

...

· · · · · ·

...

· · ·

������Pn,1,...,`,j

· · · · · ·

...

· · · · · · · · ·

...

Level 0

Level 1

Level `

Level `− 1

...

Pq,1,...,`,j : (2, . . . , `+1){`+3, ..., j+1}(`+2){j+2, ..., q}1{q+1, ..., n}
Pσ1,`+2,•,j+2,n

Pσ1,`+2,•,j+2,n : (2, . . . , `+1){`+3, ..., j+1} BEST
max{j+1,n−k+`+1}≤q≤n

((`+2){j+2, ..., q}1{q+1, ..., n})

Pq,q−1

Pq,n−k Pn,n−k Pn,q−1

︸︷︷︸ ︸︷︷︸

Figure 3.10: Generic right-side merging at the root node

Proof. The problem structure stated in Corollary 1 is refined on the part of Ω. Ω is split
into two parts: γ and Ω′ (see Figure 3.11). The motivation is that γ will be involved in
the right merging, just like the role of π in left merging.

Proposition 6 shed lights on how to merge the right side branches originated from the
root node. We first introduce Definition 5 which will be used to identify a set of nodes to
merge.

Definition 5. Let S`,j be a set of nodes, defined as

S`,j =

Pσ :

|σ| = `+ 2,
max{j + 1, n − k + ` + 1} ≤
σ1 ≤ n,
σi = i−1, ∀i ∈ {2, . . . , `+1},
σ`+2 = j

1

with 0 ≤ ` ≤ k − 1, n− k ≤ j ≤ n− 1, and with σi referring to the position of job i in
σ.

To understand the proposition intuitively, the reader can always refer to Figure 3.9 and
Figure 3.10. Each set S`,j represents a set of nodes with the same color and shape in Figure

1Placeholders do not count in the cardinality of σ

84

3.3. A BRANCH & MERGE ALGORITHM

Figure 3.11: An example (P1,9,2,8) for Proposition 5

3.9, that is, they can be merged together. The subscript ` in S`,j indicates the level of
nodes, more precisely the number of jobs branched on in π, and the subscript j determines
the “shape” of nodes at that level, more precisely the position of the first job in γ. As an
example, all black squares in Figure 3.9 are in S0,n−3 = {Pn,n−3, Pn−1,n−3, Pn−2,n−3}.

We now introduce Proposition 6.

Proposition 6. For each problem in the set S`,j, we have the two following properties:

1. The solution of problems in S`,j involves the solution of a common subproblem which
consists in scheduling job set {`+3, ..., j+1} starting at time t`=

∑`+1
i=2 pi.

2. For any problem in S`,j, at most k+1 jobs have to be scheduled after job set {`+
3, ..., j+1}.

Proof. As each problem Pσ∈S`,j is defined by (2, . . . , `+1){`+3, ..., j+1}(`+2){j+2, ..., σ1}1{σ1+
1, ..., n}, the first part of the proposition is straightforward.
Besides, the second part can be simply established by counting the number of jobs to be
scheduled after job set {`+3, ..., j+1} when j is minimal, i.e. when j=n−k. In this case,
(`+2){j+2, ..., σ1}1{σ1+1, ..., n} contains k+1 jobs.

The above proposition highlights the fact that some nodes can be merged as soon as
they share the same initial subproblem to be solved. More precisely, at most (k − ` − 1)
nodes associated to problems Pq,1..`,j , max{j+1, n−k+`+1} ≤ q ≤ (n−1), can be merged
with the node associated to problem Pn,1..`,j , ∀j = (n− k), ..., (n− 1). The node Pn,1..`,j is
replaced in the search tree by the node Pσ1,`+2,•,j+2,n defined as follows (Figure 3.10):

• {`+ 3, ..., j + 1} is the set of jobs on which it remains to branch.

• Let σ1,`+2,•,j+2,n be the sequence containing positions of jobs {1, . . . , `+2, j+2, . . . , n}
and placeholders for the other jobs, that leads to the best jobs permutation among
(`+ 2){j + 2, ..., q}1{q + 1, ..., n}, max{j + 1, n− k + `+ 1} ≤ q ≤ n. This involves
the solution of at most k problems of size at most k + 1 (in O∗(k × 2.4143k+1) time
by TTBR2) and the determination of the best of the computed sequences knowing

85

3.3. A BRANCH & MERGE ALGORITHM

that all of them start at time t, namely the sum of the jobs processing times in
(2, . . . , `+ 1){`+ 3, ..., j + 1}.

The merging process described above is applied at the root node, while an analogous
merging can be applied at any node of the tree. With respect to the root node, the only
additional consideration is that the right-side branches of a general node may have already
been modified by previous merging operations. As an example, let us consider Figure 3.12.
It shows that, due to the merging operations performed from P , the right-side branches
of Pn may not be the subproblems induced by the branching scheme. However, it can be
shown in a similar way as for left-merge, that the merging can still be applied.

P

Pn−1 Pn

Pn−1,n−2
����Pn,n−2 Pn,n−1

· · ·

· · · · · ·

· · ·· · ·
Pn,n−1,n−3

Pn−1,n−2

Pn−1,n−2,n−3

Figure 3.12: The right branches of Pn were modified by the right-merging from P

In order to define the branching scheme used with the RIGHT_MERGE procedure, a data
structure Rσ is associated to a problem Pσ. It represents a list of subproblems that result
from a previous merging and are now the k right-side children nodes of Pσ. When a
merging operation sets the k right-side children nodes of Pσ to Pσn−k+1 , ..., Pσn , we set
Rσ = {Pσn−k+1 , ..., Pσn}, otherwise we have Rσ = ∅. As a conclusion, the following
branching scheme for an arbitrary node of the tree is defined. It is an extension of the
branching scheme introduced in Definition 4 for the left merging.

Definition 6. The branching scheme for an arbitrary node Pσ is defined as follows:

• If Rσ = ∅, use the branching scheme defined in Definition 4;

• If Lσ = ∅ and Rσ 6= ∅, branch on the longest job in the available positions from the
1st to the (n− k)-th, then extract problems from Rσ as the last k branches.

• If Lσ 6= ∅ and Rσ 6= ∅, extract problems from Lσ as the first (k − 1) branches, then
branch on the longest job in the available positions from the k-th to the n − k-th,
finally extract problems from Rσ as the last k branches.

This branching scheme generalizes and replaces, the one introduced in Definition 4 and it
will be referred to as improved branching from now on.

86

3.3. A BRANCH & MERGE ALGORITHM

Proposition 7 states the validity of merging a general node, which extends the result in
Proposition 6.

Proposition 7. Let Pσ be an arbitrary problem and let π, j∗, `b, `e, γ,Ω′ be computed rel-
atively to Pσ according to Proposition 5. If Rσ=∅, the right merging on Pσ can be easily
performed by considering Pσ as a new root problem. Suppose Rσ 6=∅, the q-th child node
Pσq is extracted from Rσ, ∀n′−k+1≤q≤n′, where n′=`e−`b+1 is the number of children
nodes of Pσ. The structure of Pσq is π{j∗+1, ..., j∗+q−1}γqΩ′.

For 0≤`≤k−1 and n′−k≤j≤n′−1, the following conditions hold:

1. Problems in Sσ`,j have the following structure:
π(j∗+1, . . . , j∗+`){j∗+`+2, ..., j∗+j}(j∗+`+1){j∗+j+1, ..., j∗+q−1}γqΩ′ with q varies
from max{j+1, n−k+`+1} to n′.

2. The solution of all problems in Sσ`,j involves the scheduling of a job set {j∗+j+
1, ..., j∗+q−1}, max{j+1, n−k+`+1}≤q≤n′, which is of size less than k. Besides,
for all problems in Sσ`,j it is required to solve a common subproblem made of job
set {j∗+`+2, ..., j∗+j} starting after π(j∗+1, . . . , j∗+`) and before (j∗+`+1){j∗+j+
1, ..., j∗+q−1}γqΩ′.

Proof. The proof is similar to the one of Proposition 4. The first part of the statement
follows directly from Definition 6 and simply defines the structure of the children nodes of
Pσ. For the second part, it is necessary to prove that {j∗+j+1, ..., j∗+q−1}γq consists of
the same jobs for any valid value of q. Actually, since right-merging only merges nodes that
have common jobs fixed after the unscheduled jobs, the jobs present in {j∗+j+1, ..., j∗+q−
1}γq and the jobs present in {j∗+j+1, ..., j∗+q−1}j∗{j∗+q, ..., j∗+n′−1}γ, max{j+1, n−
k+`+1}≤q≤n′, must be the same, which proves the statement.

Analogously to the scenario at the root node, given the values of ` and j, all the
problems in Sσ`,j can be merged. More precisely, we rewrite σ as α•

n′
β where α is the

sequence of positions assigned to jobs {1, . . . , j∗−1}, •
n′

refers to the job set to branch

on and β contains the positions assigned to the rest of jobs. At most (k−`−1) nodes
associated to problems Pα,`b+q−1,`b..`b+`−1,`b+j−1,•,β , with max{j+1, n′−k+`+1}≤q≤n′−1,
can be merged with the node associated to problem Pα,`e,`b..`b+`−1,`b+j−1,•,β .

Node Pα,`e,`b..`b+`−1,`b+j−1,•,β is replaced in the search tree by node Pα,σ`,`b,j ,•,β defined
as follows:

• {j∗+`+2, ..., j∗+j} is the set of jobs on which it remains to branch.

• Let σ`,`b,j be the sequence of positions among

{(`b+q−1, `b..`b+`−1, `b+j−1) : max{j+1, n′−k+`+1}≤q≤n′−1}

associated to the best permutation of jobs in (j∗+`+1){j∗+j+1, ..., j∗+q−1}γq,
∀max{j+1, n′−k+`+1}≤q≤n′. This involves the solution of k problems of size at
most k+1 (in O∗(k×2.4143k+1) time by TTBR2) and the determination of the best

87

3.3. A BRANCH & MERGE ALGORITHM

of the computed sequences knowing that all of them start at time t, i.e. the sum of
the jobs processing times in π(j∗+1, . . . , j∗+`){j∗+`+2, ..., j∗+j}.

The RIGHT_MERGE procedure is presented in Algorithm 3. Notice that, similarly to the
LEFT_MERGE procedure, this algorithm takes as input one problem Pσ and provides as an
output a set of nodes to branch on, which replaces all its k right-side children nodes of Pσ.
It is important to notice that the LEFT_MERGE procedure is also integrated.

A procedure MERGE_RIGHT_NODES (Algorithm 4) is invoked to perform the right merging
for each level ` = 0, ..., k − 1 in a recursive way. The initial inputs of this procedure (line
13 in RIGHT_MERGE) are the problem Pσ and the list of its k right-side children nodes,
denoted by rnodes. They are created according to the improved branching (lines 4-12 of
Algorithm 3). Besides, the output is a list Q containing the problems to branch on after
merging. In the first call to MERGE_RIGHT_NODES, the left merge is applied to the first
element of rnodes (line 2), all the children nodes of nodes in rnodes not involved in right
nor left merging, are added to Q (lines 3-7). This is also the case for the result of the
right merging operations at the current level (lines 8-11). In Algorithm 4, the value of r
indicates the current size of rnodes. It is reduced by one at each recursive call and the
value (k − r) identifies the current level with respect to Pσ. As a consequence, each right
merging operation consists in finding the problem with the best total tardiness value on
its fixed part, among the ones in set Sσk−r,j . This is performed by the BEST function (line
10 of MERGE_RIGHT_NODES) which extends the one called in Algorithm 2 by taking at most
k subproblems as input and returning the dominating one.

The MERGE_RIGHT_NODES procedure is then called recursively on the list containing the
first child node of the 2nd to r-th node in rnodes (lines 13-17). Note that the procedure
LEFT_MERGE is applied to every node in rnodes except the last one. In fact, for any specific
level, the last node in rnodes belongs to the last branch of Pσ, which is Pσ,lb+n−1,•,β . Since
Pσ,lb+n−1,•,β is put into Q at line 14 of RIGHT_MERGE, it means that this node will be re-
processed later and LEFT_MERGE will be called on it at that moment. Since the recursive
call of MERGE_RIGHT_NODES (line 18) will merge some nodes to the right-side children nodes
of Pα,`b, •

nr−1
,βr , the latter one must be added to the list L of Pα, •

nr
,βr (line 19). In addition,

since we defined L as a list of size either 0 or (k − 1), lines 20-24 add the other (k − 2)
nodes to Lα, •

nr
,βr .

It is also important to notice the fact that a node may have its L or R structures
non-empty, if and only if it is the first or last child node of its parent node. A direct result
is that only one node among those involved in a merging may have its L or R non-empty.
In this case, these structures need to be associated to the resulting node. The reader can
always refer to Figure 3.9 for a more intuitive representation.

Lemma 13. The RIGHT_MERGE procedure returns a list of O(n) nodes in polynomial time
and space.
The solution of the problems associated to these nodes involves the solution of 1 subproblem
of size (n − 1), of (k − 1) subproblems of size (n − k − 1), and subproblems of size i and
(nq − (k− r)− i− 1), ∀r = 2, ..., k; q = 1, ..., (r− 1); i = k, ..., (n− 2k+ r− 2), where nq is
defined in Algorithm 4 (MERGE_RIGHT_NODES).

88

3.3. A BRANCH & MERGE ALGORITHM

Algorithm 3 RIGHT_MERGE Procedure
Input: Pσ = Pα,•

n
,β a problem of size n, with `b, j∗ computed according to Proposition 3

Output: Q : a list of problems to branch on after merging
1: function RIGHT_MERGE(Pσ)
2: Q← ∅
3: nodes← ∅
4: if Rσ = ∅ then
5: for q = n−k+1 to n do
6: Create Pα,`b+q−1,•,β by branching
7: δ ← the sequence of positions of jobs {j∗+q, . . . , j∗+n−1} fixed by TTBR2
8: nodes← nodes∪Pα,`b+q−1,•,δ,β
9: end for

10: else
11: nodes← Rσ
12: end if
13: Q← Q∪MERGE_RIGHT_NODES(nodes, Pσ)
14: Q← Q∪nodes[k] . The last node will be re-processed
15: return Q
16: end function

Proof. The first part of the result follows directly from Algorithm 3. The only lines where
nodes are added to Q in RIGHT_MERGE are lines 13-14. In line 14, only one problem is
added to Q, thus it needs to be proved that the call on MERGE_RIGHT_NODES (line 13)
returns O(n) nodes. This can be computed by analysing the lines 2-7 of Algorithm 4.
Considering all recursive calls, the total number of nodes returned by MERGE_RIGHT_NODES
is (
∑k−1

i=1 (k− i)(n−2k− i))+k−1 which yields O(n). The number of all nodes considered
in right merging is bounded by a linear function on n. Furthermore, all the operations
associated to the nodes (merging, creation, etc) have a polynomial cost. As a consequence,
Algorithm 3 runs in polynomial time and space.

Regarding the sizes of the subproblems returned by RIGHT_MERGE, the node added in
line 14 of Algorithm 3 contains one subproblem of size (n−1), corresponding to branching
the longest job on the last available position. Note that even though the subtree of this
node has been modified by merging operations, its solution time is still bounded by the
time for solving a subproblem of size (n− 1).

Then, the problems added by the call to MERGE_RIGHT_NODES are added to Q. In
line 2 of Algorithm 4, the size of the problem returned by LEFT_MERGE is reduced by
one unit when compared to the input problem which is of size (n − k − (k − r)). Note
that (k − r) is the current level with respect to the node tackled by Algorithm 4. As
a consequence, the size of the resulting subproblem is (n − k − (k − r) − 1). Note that
this line is executed (k − 1) times, ∀r = k, . . . , 2, corresponding to the number of calls to
MERGE_RIGHT_NODES. In line 5 of Algorithm 4, the list of nodes which are not involved in
any merging operation are added to Q. This corresponds to pairs of problems of size i and
(nq− (k− r)− i−1), ∀i = k, ..., (n−k−1) and this proves the last part of the lemma.

89

3.3. A BRANCH & MERGE ALGORITHM

Algorithm 4 MERGE_RIGHT_NODES Procedure
Input: rnodes = [Pα, •

n1
,β1 , . . . , Pα, •

nr
,βr], ordered list of r last children nodes with `b defined

on any node in rnodes. |α|+ 1 is the job to branch on and nr = n1 + r − 1.
Output: Q, a list of problems to branch on after merging
1: function MERGE_RIGHT_NODES(rnodes, Pσ)
2: Q← LEFT_MERGE(Pα, •

n1
,β1)

3: for q = 1 to r − 1 do
4: for j = `b + min(k, bn/2c) to `b + n1 − 1 do
5: Q← Q ∪ Pα,j, •

nq−1
,βq

6: end for
7: end for
8: for j = `b + n1 to `b + nr do
9: Solve all the subproblems of size less than k in Sσk−r,j

10: Rα, •
nr
,βr ← Rα, •

nr
,βr ∪ BEST(Sσk−r,j)

11: end for
12: if r > 2 then
13: newnodes← ∅
14: for q = 2 to r − 1 do
15: newnodes← newnodes ∪ LEFT_MERGE(Pα, •

nq
,βq)

16: end for
17: newnodes← newnodes ∪ Pα,`b, •

nr−1
,βr

18: Q← Q ∪ MERGE_RIGHT_NODES(newnodes, Pσ)
19: Lα, •

nr
,βr ← Pα,`b, •

nr−1
,βr

20: for q = 2 to k − 1 do
21: Create Pα,`b+q−1, •

nr−1
,βr by branching

22: δ ← the sequence of positions of jobs {|α|+ 2, . . . , |α|+ q} fixed by TTBR2
23: Lα, •

nr
,βr ← Lα, •

nr
,βr ∪ Pα,`b+q−1,δ, •

nr−1
,βr

24: end for
25: end if
26: return Q
27: end function

90

3.3. A BRANCH & MERGE ALGORITHM

Lemma 14 considers non-worst-case scenarios.

Lemma 14. When right merging is incorporated into the branching scheme of TTBR,
instances such that LPT = EDD correspond to worst-case instances.

Proof. The proof follows a similar reasoning to the proof of Lemma 12. We analyze the
time reduction obtained from the last k subtrees of the current node. The following cases
are considered:

1. 1 = [j], j ≤ (n− k + 1) and 2 = [j′], j′ ≤ (n− k);

2. 1 = [j], j ≤ (n− k + 1) and 2 = [j′], j′ > (n− k);

3. 1 = [j], j > (n− k + 1).

We refer the reader to Figure 3.10 for a better understanding of the proof. Since the
structure of right merging is the same at different levels (except level 0) of the tree, it is
sufficient to consider the time reduction from level 0 and level 1. We denote the resulting
time reduction by TR1, TR2 and TR3 for each of the three cases, respectively. We also
note TRLPT=EDD the time reduction corresponding to the case LPT = EDD.

In case 1, all black nodes at level 1 of Figure 3.10 are created and merged to one.
Therefore, the corresponding time reduction TR1 ≥ TRLPT=EDD =

∑k−1
i=1 iT (n− i− 2).

In case 2, some black nodes at level 1 of Figure 3.10 are not created due to Property
2, while the black nodes that remain can still be merged to the last subtree. Therefore,
TR2 ≥ TR1.

In case 3, the subtrees rooted by {P1, ..., Pj−1} are not created due to Property 2. This
is obviously a stronger reduction than only merging some nodes from inside these subtrees.
In addition, for subtrees that remain except the last one, i.e., those rooted by {Pj , ..., Pn},
time reduction is still guaranteed by, either right merging or the non-creation of some nodes
due to Property 2, depending on the position of job 2 in EDD ordering.

In other words, if LPT 6= EDD then the number of nodes in Sσ`,j (defined in Propo-
sition 7) can be less, since some nodes may not be created due to Property 2. However,
all the nodes inside Sσ`,j can still be merged to one except when Sσ`,j is empty. In either
case, we can achieve at least the same reduction as the case of LPT = EDD. This rea-
soning obviously holds when extending the consideration to all levels of the tree and to all
recursions. Therefore, LPT = EDD is the worst-case scenario.

3.3.2.1 A working example for Right Merge

In order to better illustrate the merging operation on right-side branches, an example
is provided in this section. The input data (n = 6) is given in Table 3.2 and the value of
k is chosen as 3.

The solution of the instance is depicted in Figure 3.13. The indicated partial total
tardiness value (tt =

∑
Tj) is computed on the jobs that are fixed before and after the

unscheduled jobs. The applied algorithm is TTBR1 with RIGHT_MERGE integrated. At the
beginning, the root node P is the current node, and RIGHT_MERGE is called on it. Line

91

3.3. A BRANCH & MERGE ALGORITHM

i 1 2 3 4 5 6
pi 11 10 7 4 2 1
di 10 12 14 16 18 19

Table 3.2: A sample instance

1-12 in Algorithm 3 creates child nodes in order to prepare the merging, as shown in 3.13a.
Notice that the small subproblem involving jobs {5, 6} inside P4 is solved directly to obtain
the optimal sequence which is (6, 5). Line 13 calls the MERGE_RIGHT_NODES procedure with
arguments (P4, P5, P6).

In MERGE_RIGHT_NODES procedure (Algorithm 4), line 2 means to apply LEFT_MERGE on
P4. This is not performed in our exemple since P4 only have 3 jobs to schedule and k is
supposed to verify 2 ≤ k ≤ n/2. Therefore, we add directly P4,1 to Q. Line 3-7 means to
add all “middle” nodes that are not involved by merging hence should be opened later as
independent subproblems. This includes P4,2 only. Notice that `b = 1 at line 4. Lines 8-11
do the merging. As shown in Figure 3.7b, nodes P4,3, P5,3 are merged with P6,3 and the
node P5,4 is merged with P6,4. The dominant nodes are P6,3 and P6,3, hence nodes nodes
P4,3, P5,3 and P5,4 are cut. After this, at line 15, LEFT_MERGE is applied on P5 (Figure
3.13c) then the MERGE_RIGHT_NODES procedure is called in a recursive manner on nodes
P5,1 and P6,1. The nodes P5,1,3 and P5,1,4 are finally cut due to merging (Figure 3.13d).

Then the algorithm continues in a recursive way. In depth-first order, the node P1 is
the next to open.

P3

P : {1, 2, 3, 4, 5}

P2 P6 : {2, .., 6}1P1 P4 : {2, 3, 4}165

P4,1 P4,2 P4,3 P5,1 P5,2 P5,3 P5,4

P5 : {2, .., 5}16

P6,1 P6,2 P6,3 P6,4 P6,5

(a)

92

3.3. A BRANCH & MERGE ALGORITHM

P3

P : {1, 2, 3, 4, 5}

P2 P6 : {2, .., 6}1P1 P4 : {2, 3, 4}165

{3, 4}2165

P4,1 P4,2 P4,3 P5,1 P5,2 P5,3 P5,4

P5 : {2, .., 5}16

P6,1 P6,2 P6,3 P6,4 P6,5

tt = 62
{3, 4}2516
tt = 54

{3, 4, 5}216
tt = 51

{3, 4}2651
tt = 43

{3, 4, 5}261
tt = 41

(b)

P3

P : {1, 2, 3, 4, 5}

P2 P6 : {2, .., 6}1P1 P4 : {2, 3, 4}165

P4,1 P4,2 P4,3 P5,1 P5,2 P5,3 P5,4

P5 : {2, .., 5}16

P6,1 P6,2 P6,3 P6,4 P6,5

32{4, 5}16
tt = 45

P5,1,2
23{4, 5}16
tt = 43

merge

(c)

93

3.3. A BRANCH & MERGE ALGORITHM

P3

P : {1, 2, 3, 4, 5}

P2 P6 : {2, .., 6}1P1 P4 : {2, 3, 4}165

P4,1 P4,2 P4,3 P5,1 P5,2 P5,3 P5,4

P5 : {2, .., 5}16

P6,1 P6,2 P6,3 P6,4 P6,5

32{4, 5}16
tt = 45

P5,1,2
23{4, 5}16
tt = 43 P6,1,2

merge

P5,1,3

2{4, 5}316
tt = 49

P5,1,4

P6,1,3

2{4, 5}361
tt = 39

P6,1,4 P6,1,5

2{4}3516
tt = 52

2{4}3561
tt = 42

(d)

Figure 3.13: A sample instance solved by TTBR1 with right-merging integrated

94

3.3. A BRANCH & MERGE ALGORITHM

3.3.3 Complete algorithm and analysis

We are now ready to define the main procedure TTBM (Total Tardiness Branch &
Merge), stated in Algorithm 5 which is called on the initial input problem P : {1, ..., n}. The
algorithm has a similar recursive structure as TTBR1. However, each time a node is opened,
the sub-branches required for the merging operations are generated, the subproblems of size
less than k are solved and the procedures LEFT_MERGE and RIGHT_MERGE are called. Then,
the algorithm proceeds recursively by extracting the next node from Q with a depth-first
strategy and terminates when Q is empty.

Algorithm 5 Total Tardiness Branch and Merge (TTBM)

Input: P : {1, ..., n}: input problem of size n
n
2 ≥ k ≥ 2: an integer constant

Output: seqOpt: an optimal sequence of jobs
1: function TTBM(P ,k)
2: Q← P
3: seqOpt← the EDD sequence of jobs
4: while Q 6= ∅ do
5: P ∗ ← extract next problem from Q (depth-first order)
6: if the size of P ∗ < 2k then
7: Solve P ∗ by calling TTBR2
8: end if
9: if all jobs {1, ..., n} are fixed in P ∗ then

10: seqCurrent← the solution defined by P ∗

11: seqOpt← best solution between seqOpt and seqCurrent
12: else
13: Q← Q ∪ LEFT_MERGE(P ∗) . Left-side nodes
14: for i = k + 1, ..., n− k do
15: Create the i-th child node Pi by branching scheme of TTBR1
16: Q← Q ∪ Pi
17: end for
18: Q← RIGHT_MERGE(P ∗) . Right-side nodes
19: end if
20: end while
21: return seqOpt
22: end function

The complexity of the algorithm depends on the value k. The higher it is, the more
subproblems can be merged and the better is the worst-case time complexity of the algo-
rithm. Figure 3.14 demonstrates the reduction that can be obtained by TTBM on each
recursive call. It can help complexity analysis of the algorithm. Proposition 8 provides
details about the time complexity of the proposed algorithm.

95

3.3. A BRANCH & MERGE ALGORITHM

. . .

· · · · · · · · ·

· · · · · ·

· · ·

P

Pn−2 Pn−1 Pn

k = 3

< 5(k − 1)T (n− k − 1)
︸ ︷︷ ︸ ︸ ︷︷ ︸

T (n− 1)

PkP2P1

. . .

︸ ︷︷ ︸
T (n− 1)

︸ ︷︷ ︸
< 4T (n− k − 1)

Figure 3.14: Reduction obtained by merging

Proposition 8. Algorithm TTBM runs in O∗((2 + ε)n) time and polynomial space, where
ε→ 0 when k →∞.

Proof. The proof is based on the analysis of the number and the size of the subproblems
put in Q when a single problem P ∗ is expanded. As a consequence of Lemma 12 and
Lemma 14, TTBM induces the following recursion:

T (n) =2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+

k∑

r=2

r−1∑

q=1

n1−(k−r)−2∑

i=k

(T (i) + T (nq − (k − r)− i− 1))

+ (k − 1)T (n1 − 1) +O(p(n))

First, a simple lower bound on the complexity of the algorithm can be derived by the fact
that the procedures RIGHT_MERGE and LEFT_MERGE provide (among others) two subproblems
of size (n− 1), based on which the following inequality holds:

T (n) > 2T (n− 1) (3.7)

By solving the recurrence, we obtain that T (n) = ω(2n). Here the ω() notation is adopted
to express an asymptotic lower bound of the complexity. f(x) = ω(g(x)) if and only if for
any positive constant c, ∃n′ such that ∀x > n′, f(x) > cg(x) ≥ 0. As a consequence, the
following inequality holds:

T (n) > T (n− 1) + . . .+ T (1) (3.8)

In fact, if it does not hold, we have a contradiction on the fact T (n) = ω(2n). Now, we
consider the summation

∑n1−(k−r)−2
i=k (T (nq − (k − r)− i− 1)). Since nq = n1 + q − 1, we

96

3.3. A BRANCH & MERGE ALGORITHM

can simply expand the summation as follows:

n1−(k−r)−2∑

i=k

(T (nq − (k − r)− i− 1)) = T (q) + ...+ T (n1 − (k − r) + q − k − 2)

. We know that k ≥ q, then q − k ≤ 0 and the following inequality holds:

T (q) + ...+ T (n1 − (k − r) + q − k − 2) ≤
n1−(k−r)−2∑

i=q

T (i)

.
As a consequence, we can bound above T (n) as follows:

T (n) =2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+
k∑

r=2

r−1∑

q=1

n1−(k−r)−2∑

i=k

(T (i) + T (nq − (k − r)− i− 1))

≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+
k∑

r=2

r−1∑

q=1

n1−(k−r)−2∑

i=q

2T (i) + (k − 1)T (n1 − 1) +O(p(n))

≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+
k∑

r=2

r−1∑

q=1

n1−(k−r)−2∑

i=1

2T (i) + (k − 1)T (n1 − 1) +O(p(n))

By using Equation 3.8, we obtain the following:

T (n) ≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+

k∑

r=2

r−1∑

q=1

n1−(k−r)−2∑

i=1

2T (i) + (k − 1)T (n1 − 1) +O(p(n))

≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+
k∑

r=2

r−1∑

q=1

2T (n1 − (k − r)− 1) + (k − 1)T (n1 − 1) +O(p(n))

Finally, we apply some algebraic steps and we use the equality n1 = n − k to derive the

97

3.3. A BRANCH & MERGE ALGORITHM

following upper limitation of T (n):

T (n) ≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+

k∑

r=2

(r − 1)2T (n1 − (k − r)− 1) + (k − 1)T (n1 − 1) +O(p(n))

≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k) + 2(k − 1)T (n1 − 1)

+

k−1∑

r=2

(r − 1)2T (n1 − (k − r)− 1) + (k − 1)T (n1 − 1) +O(p(n))

≤ 2T (n− 1) + 2T (n− k − 1) + ...+ 2T (k)

+ (k − 1)4T (n1 − 1) + (k − 1)T (n1 − 1) +O(p(n))

≤ 2T (n− 1) + 4T (n− k − 1) + 5(k − 1)T (n− k − 1) +O(p(n))

= 2T (n− 1) + (5k − 1)T (n− k − 1) +O(p(n))

Note that O(p(n)) includes the cost for creating all nodes for each level and the cost of
all the merging operations, performed in constant time.

The recursion T (n) = 2T (n−1)+(5k−1)T (n−k−1)+O(p(n)) is an upper limitation
on the running time of TTBM. Recall that its solution is T (n) = O∗(cn) where c is the
largest root of the function:

fk(x) = 1− 2

x
− 5k − 1

xk+1
(3.9)

.
As k increases, the function fk(x) converges to 1 − 2

x , which induces a complexity of
O∗(2n). Table 3.3 shows the time complexity of TTBM obtained by solving Equation 3.9
for all the values of k from 3 to 20.2 The base of the exponential is computed by solving
Equation 3.9 by means of a mathematical solver and rounding up the fourth digit of the
solution. The table shows that the time complexity is O∗(2.0001n) for k ≥ 20.

Lemma 15. The problem 1||∑Ti can be solved in O∗((2+ε)n) time and polynomial space,
where ε > 0 can be arbitrarily small.

Proof. Lemma 12 and lemma 14 proved that LPT = EDD is the worst-case scenario
for left merging and right merging. Since k ≤ n

2 , the time reduction obtained from left
merging and right merging, when both are incorporated into TTBM, can be combined.
Thus, lemma 12 and lemma 14 together prove that instances with LPT = EDD are
the worst-case instances for TTBM. Therefore, the current lemma is proved according to
Proposition 8.

2SageMath (http://www.sagemath.org) is used for the computation.

98

http://www.sagemath.org

3.4. EXPERIMENTAL RESULTS

k T (n)

3 O∗(2.5814n)
4 O∗(2.4302n)
5 O∗(2.3065n)
6 O∗(2.2129n)
7 O∗(2.1441n)
8 O∗(2.0945n)
9 O∗(2.0600n)
10 O∗(2.0367n)
11 O∗(2.0217n)
12 O∗(2.0125n)
13 O∗(2.0070n)
14 O∗(2.0039n)
15 O∗(2.0022n)
16 O∗(2.0012n)
17 O∗(2.0007n)
18 O∗(2.0004n)
19 O∗(2.0002n)
20 O∗(2.0001n)

Table 3.3: The time complexity of TTBM for values of k from 3 to 20

3.4 Experimental results

The whole mechanism of Branch & Merge has been implemented and tested on instances
generated in the same way as in Szwarc et al. (2001). 200 instances are generated randomly
for each problem size using the same generation scheme as in the paper of Szwarc et al.
(2001). Processing times are integers generated from an uniform distribution in the range
[1, 100] and due dates di are integers from a uniform distribution in the range [piu, piv]
where u = 1 − T − R/2 and v = 1 − T + R/2. Each due date is set to zero whenever
its generated value is negative. Twenty combinations (R, T) are considered where R ∈
{0.2, 0.4, 0.6, 0.8, 1}, and T ∈ {0.2, 0.4, 0.6, 0.8}. Ten instances are generated for each
combination and the combination (R = 0.2, T = 0.6) yields the hardest instances as
reported in the literature (see Szwarc et al. (1999)) and confirmed by our experiments.
The tests are performed on a HP Z400 work station with 3.07GHz CPU and 8GB RAM.

Before comparing Branch & Merge to the state-of-the-art algorithm in Szwarc et al.
(2001), we first describe the latter one more clearly. That algorithm, named BR-SPM, is
based on the branching structure of BR, with the following three extra features integrated.

1. Split, which decomposes a problem according to precedence relations;

2. PosElim, which eliminates non-promising branching positions before each branching;

3. Memorization, which avoids solving a subproblem more than once by saving its so-
lution to a database (the “memory”) and retrieve it whenever the same subproblem
appears again.

99

3.4. EXPERIMENTAL RESULTS

We implemented BR-SPM in the following way: on a given problem P , BR-SPM first
tries to find the solution in the memory ; if failed, it applies Split to decompose P into
subproblems then solve them recursively; if Split does not decompose, PosElim is called
which returns the list of positions on which the longest job can be branched on. The
branching then occurs and the resulting subproblems are then solved recursively. Each
time we solve a subproblem by branching, the solution sequence is saved to the memory
for further query. Our implementation of BR-SPM successfully solves instances with up
to 900 jobs in size, knowing that the original program was limited to instances with up to
500 jobs due to memory size limit.

We now provide our experimental results. In order to verify the concept of merging
without extra features, we first compare Branch & Reduce with Branch & Merge on the
hardest subset of instances of each size. Table 3.4, depicting (minimum, average and
maximum) CPU time, average number of merging hits and total number of explored nodes,
shows that the merge mechanism strongly accelerates the solution. However Branch &
Merge is still limited to 50 jobs in size only.

TMin TAvg TMax #Merge #Nodes
BR 52.0 1039.0 3127.0 0 1094033204
BM 3.0 67.6 319.0 11277311 47143367

Table 3.4: Results for instances of size 40

To improve the performances, we enable Split and PosElim. The resulting algorithms
are called BR-SP and BM-SP. Now both algorithms can handle instances with up to 300
jobs (see Table 3.5). Surprisingly, however, even with a considerable number of merged
nodes, BM-SP turns out to be slower than BR-SP.

TMin TAvg TMax #Merge #Nodes
BR-SP 504.0 3000.8 7580.0 0 634569859
BM-SP 521.0 3097.9 7730.0 608986 508710322

Table 3.5: Results for instances of size 300

Auxiliary tests show that Split and PosElim negatively affect the merge mechanism.
Solving a small problem by Split, which sometimes finds directly the solution sequence
according to precedence relations, may be faster than merging two nodes. PosElim is also
powerful as the average number of branching positions at each node after its application is
approximately 2, i.e. most positions are already eliminated before merging. This implies
that the search tree explored by BR-SP may be even smaller than a binary tree, as there
are also many nodes that are not counted: they only have a single child node. These
observations show that it is not straightforward to combine directly the current merge
scheme with existing solving techniques. The theoretical effectiveness and running time
guarantee of merging stays valid, however we need to find a new way to apply it in practice.
This is more developed in chapter 4.

100

3.5. ADDITIONAL RESULTS

3.5 Additional Results

In this section, two additional results are described. The first one is the complexity
analysis of the algorithm of Szwarc et al. (2001). The second one is TTBM with right-merge
removed, but with Property 4 considered.

3.5.1 The complexity of the algorithm of Szwarc et al. (2001)

The current state-of-the-art algorithm described by Szwarc et al. (2001), noted hereafter
as BB2001, is a branch and bound algorithm having a similar structure as that of TTBR1.
The main difference is that in BB2001, in addition to the decomposition rule given in
Property 2 (as in TTBR1), another decomposition rule, based on Property 5, is applied
simultaneously when branching on a node. We provide in Proposition 9 the time complexity
analysis of BB2001.

Property 5. (Della Croce et al., 1998) Let job k in LPT sequence correspond to job [1]
in EDD sequence. Then, job k can be set only in positions h ≤ (n − k + 1) and the jobs
preceding job k are uniquely determined as Bk(h), where Bk(h) ⊆ {k+ 1, k+ 2, . . . , n} and
∀i ∈ Bk(h), j ∈ {n, n− 1, . . . , k + 1}rBk(h), di ≤ dj

Proposition 9. Algorithm BB2001 runs in O∗(2.4143n) time and polynomial space in the
worst case.

Proof. Before branching on a node, BB2001 first computes the possible positions for the
longest job and the job with smallest due date. Then a new branch is created by assigning
a pair of compatible positions to these two jobs. We consider two cases as follows.

Firstly, consider the case where job 1 = [n]. The two decomposition rules become
identical and if this condition is also verified in all subproblems, then the time complexity
is O∗(2.4143n) as proved in Proposition 2.

In the case where 1 6= [n], the worst case occurs when 1 = [2] and [n] = 2, since in this
case we have a maximum number of available branching positions: job [n] can be branched
in position i ∈ {1, ..., n−1} and job 1 can be branched in position j ∈ {2, ..., n}, with i < j
for each branching. Moreover, we recall that Property 4 remains valid.

Three subproblems (left, middle and right) are created on each double branching (zero-
sized problems are counted). For the sake of simplicity, we note T (l,m, r) = T (l)+T (m)+
T (r). The following recurrence holds.

101

3.5. ADDITIONAL RESULTS

T (n) =

n−1∑

i=1
i is odd

n∑

j=i+1
j is even

(T (i− 1, j − i− 1, n− j)) +O(p(n)) (3.10)

= T (0, 0, n− 2) + T (0, 2, n− 4) + T (0, 4, n− 6) + ...+ T (0, n− 2, 0)+ (3.11)
T (2, 0, n− 4) + T (2, 2, n− 6) + ...+ T (2, n− 4, 0)+ (3.12)

... (3.13)
T (n− 4, 0, 2) + T (n− 4, 2, 0)+ (3.14)

T (n− 2, 0, 0)+ (3.15)
O(p(n)) (3.16)

= 3 ∗ (T (n− 2) + 2T (n− 4) + 4T (n− 6) + ...+
n

2
T (0)) +O(p(n)) (3.17)

(3.18)

By applying a similar process of simplification as in the proof of Proposition 2, the following
result is finally derived:

T (n) = 5T (n− 2)− T (n− 4). (3.19)

Correspondingly, we have T (n) = O∗(
√

5+
√

21
2

n

) = O∗(2.1890n). Therefore the worst case
occurs when the two decomposition rules overlap, and the resulting time complexity is the
same as TTBR2, namely O∗(2.4143n). The space complexity of BB2001 is also polynomial
since depth-first exploration is adopted.

3.5.2 Algorithm TTBM-L

An intermediate algorithm has been derived based on TTBR1, with Left-Merge enabled,
Right-Merge disabled, and Property 4 included. The algorithm is named as TTBM-L and
it is stated in Algorithm 6. This is basically the algorithm applied on the example problem
in section 3.3.1.1 without considering Properties 3 and 4.

Each time a node is opened, the sub-branches required for left-merging operations are
generated, the subproblems of size less than k are solved and the procedure LEFT_MERGE is
called. Then, the algorithm proceeds recursively by extracting the next node from Q with
a depth-first strategy and terminates when Q is empty.

Proposition 10. Algorithm TTBM-L runs in O∗((2.247+ε)n) time and polynomial space,
where ε→ 0 when k →∞.

Proof. Starting from Algorithm 6, we can derive that for a given problem P of size n, the
(k − 1) first children nodes P2 to Pk are merged with children nodes of P1. Consequently,
among these nodes, only node P1 remains as a child node of P . For the other (n − k)
children nodes, Property 3 is applied eliminating by the way one node over two. The
worst-case is achieved when n is odd and k is even and we have the following recurrence:

T (n) = T (n− 1) + (T (n− k − 1) + T (k)) + (T (n− k − 3) + T (k + 2)) + ...

102

3.6. CHAPTER SUMMARY

Algorithm 6 Total Tardiness Branch and Merge (Left Only) (TTBM-L)
Input: P : {1, ..., n}: input problem of size n

k ≥ 2: an integer constant
Output: seqOpt: an optimal sequence of jobs
1: function TTBM-L(P ,k)
2: Q← P
3: seqOpt← a random sequence of jobs
4: while Q 6= ∅ do
5: P ∗ ← extract next problem from Q (depth-first order)
6: if (the size of P ∗ < k) then Solve P ∗ by calling TTBR1
7: end if
8: if all jobs {1, ..., n} are fixed in P ∗ then
9: seqCurrent← the solution defined by P ∗

10: seqOpt← best solution between seqOpt and seqCurrent
11: else
12: Q← Q ∪ LEFT_MERGE(P ∗)
13: for i = k + 1, ..., n do
14: Create child node Pi like in TTBR1
15: if Pi is not eliminated by Property 3 then Q← Q ∪ Pi

16: end if
17: end for
18: end if
19: end while
20: return seqOpt
21: end function

+(T (2) + T (n− 3)) + T (n− 1) +O(p(n))

which can be reformulated as

T (n) = 2T (n− 1) + T (n− 3) + ...+ T (n− k + 1) + 2T (n− k − 1) + ...+ 2T (2) +O(p(n))

Following the same approach used in the proof of Proposition 2, we plug T (n− 2) into the
formula and we have

T (n) = 2T (n− 1) + T (n− 2)− T (n− 3) + T (n− k − 1) +O(p(n))−O(p(n− 2))

The solution of this recurrence is T (n) = O∗(cn) with c the largest root of

1 =
2

x
+

1

x2
− 1

x3
+

1

xk+1

When k is large enough, the last term in the equation can be ignored, leading to a value
of c which tends towards 2.247 as k increases.

3.6 Chapter summary

This chapter focuses on the design of exact branching algorithms for the single machine
total tardiness problem. By exploiting some inherent properties of the problem, we first
proposed two Branch & Reduce algorithms: TTBR1 and TTBR2. The former runs in
O∗(3n) time, while the latter achieves a better time complexity in O∗(2.4143n). The

103

3.6. CHAPTER SUMMARY

space requirement is polynomial in both cases. Furthermore, a technique called merging,
is presented and applied onto TTBR1 in order to improve its performance. The final
achievement is a new algorithm (TTBM) with time complexity converging towards O∗(2n)
and requiring polynomial space. The same technique can be tediously to improve the
performance of TTBR2, but the resulting algorithm achieves the same asymptotic time
complexity as TTBM, and thus it was omitted. To the best of authors’ knowledge, TTBM
is the polynomial space algorithm that has the best worst-case time complexity for solving
the 1||∑Tj problem.

Beyond the new established complexity results, the main contribution of the paper is
the Branch & Merge algorithm. The basic idea is very simple, and it consists of speeding up
branching algorithms by avoiding to solve identical problems. The same goal is traditionally
pursued by means of Memorization (Fomin and Kratsch, 2010), where the solution of
already solved subproblems are stored and then queried when an identical subproblem
appears. This is at the cost of an exponential space requirement. In contrast, Branch &
Merge also discards identical subproblems but by appropriately merging, in polynomial
time and space, nodes involving the solution of common subproblems. When applied
systematically in the search tree, this technique enables to achieve a good worst-case time
bound. On the computational side, it should be noticed that the merging operation can
be relaxed to obtain more efficiency in practice. Instead of comparing nodes at specific
positions and solving in O∗(2.4143k) subproblems at merged nodes, as described in Branch
& Merge, we may just compare active nodes with already branched nodes and cut the
dominated ones, keeping a polynomial space usage. This can also be seen as memorization
but with a fixed size memory used to store already explored nodes. This leads to a weaker
worst-case time bound but early works of T’kindt et al. (2004) have shown that this can
lead to substantially good practical results, at least on some scheduling problems.

As a further development of this work, our aim is twofold. First, we aim at applying
the Branch & Merge algorithm to other combinatorial optimization problems in order to
establish its potential generalization to other problems. Second, we want to explore further
the practical efficiency of this algorithm on the single machine total tardiness problem, with
a different implementation, in a similar way as done by Szwarc et al. (2001) and T’kindt
et al. (2004). The first aim has not yet been achieved at this point (the end of this thesis)
because a direct application of the Branch & Merge algorithm requires the target problem
to verify certain properties like Property 2. However, much work has been performed on
the second direction, which is about the practical efficiency of the algorithm. The Chapter
4 is dedicated to this topic.

The main work in this chapter has been performed together with Michele Garraffa, Fed-
erico Della Croce from Politechnico di Torino (Italy) and Vincent T’Kindt. The Branch
& Reduce algorithms TTBR1 and TTBR2 have been reported in the MISTA 2015 confer-
ence (Della Croce et al., 2015b) and an Italian conference AIRO 2015 (Della Croce et al.,
2015a). The main results on Branch & Merge have been reported at the international
conference on Project Management and Scheduling (PMS 2016) (Shang et al., 2016a) and
the French conference ROADEF 2017 (Shang et al., 2017b). The additional results have
been reported at the International Symposium on Parameterized and Exact Computation
(IPEC 2017) (Shang et al., 2017a). A journal paper submitted to Theoretical Computer
Science is currently under review and the paper can be accessed on HAL (Garraffa et al.,

104

3.6. CHAPTER SUMMARY

2017).

105

3.6. CHAPTER SUMMARY

106

Chapter 4

The Memorization Paradigm:
Branch & Memorize Algorithms for
the Efficient Solution of Sequencing
Problems

4.1 Introduction

The algorithm Branch & Merge presented in chapter 3 is proved to be not efficient
enough in practice. We therefore turned our interest to another technique called Memo-
rization, which was adopted by Szwarc et al. (2001) to efficiently solve the 1||∑Ti problem.
It was also used, though not in a typical way, by T’kindt et al. (2004) to solve three se-
quencing problems, notably the 1|ri|

∑
Ci, the 1|d̃i|

∑
wiCi and the F2||∑Ci problems.

In this chapter we study, experiment, compare and analyze the efficiency of this method
on the four above mentioned problems.

Memorization as an algorithm design technique, allows to speed up algorithms at the
price of more space usage. Typically in branching algorithms, on lower branching levels,
isomorphic subproblems may appear exponentially many times and the idea of Memo-
rization is to avoid repetitive solutions as they correspond to identical subproblems. The
method was first applied on the Maximum Independent Set problem by Robson (1986).
By exploiting graph theoretic properties and by applying Memorization to avoid solving
identical subproblems, Robson proposed an algorithm with a worst-case time complexity
in O(1.2109n). It has remained the exact exponential algorithm with the smallest worst-
case time complexity until 2013, when it was improved by the O(1.1996n) algorithm of
Xiao and Nagamochi (2017). Memorization is sometimes used to speed up branching al-
gorithms (Chandran and Grandoni, 2005; Fomin et al., 2005b; Fomin and Kratsch, 2010)
in the context of EEA (Exact Exponential Algorithms), where the objective is to conceive
exact algorithms that can provide a best possible worst-case running time guarantee.

Despite of the fact that a typical Memorization algorithm memorizes solutions of sub-
problems that appear repeatedly, we prefer to interpret the idea in a more general way.

107

4.1. INTRODUCTION

What we call the Memorization Paradigm can be formulated as “Memorize and learn from
what have been done so far, to improve the next decisions”. In the literature, various al-
gorithms can be classified as procedures embedding memorization techniques, though the
implementation could be quite different depending on the problem structure and the infor-
mation to store. For instance, Tabu Search (Glover, 1989, 1990) is a metaheuristic, which
memorizes recently visited solutions in order to avoid returning back to these solutions
again during the search. SAT solvers deduce and then memorize conflict clauses during
the tree search in order to perform non-chronological backtracking (Conflict Driven Clause
Learning) (Biere et al., 2009; Zhang et al., 2001). Similar ideas also appear in Artificial
Intelligence area as Intelligent Backtracking or Intelligent Back-jumping.

From a theoretical point of view, the drawback relies on the memory consumption of
Memorization which can be exponential. This drawback turns out to limit the quantity of
memorized information like in Tabu Search or SAT solvers. In this chapter we instantiate
the Memorization Paradigm in a way similar to what is done in the field of EEA, i.e. we
set up a Memorization framework for search tree based exact algorithms but with a control
on the memory usage. We had the intuition that a Memorization with limited memory
could already dramatically accelerate the solution in practice. By embedding a simple
Memorization technique into their Branch & Bound algorithm, Szwarc et al. (2001) solve
the single machine total tardiness problem on instances with up to 500 jobs in size. Other
works presenting standard memorization techniques applied to sequencing problems have
been published by T’kindt et al. (2004) where the benefit of such technique is well shown.

As introduced in section 1.2.2.1, branching algorithms are based on the idea of enumer-
ating all possibilities via a search tree created by a branching mechanism. For each decision
variable, the algorithm branches on all possible values, each time creating a new subprob-
lem (a node in the search tree) of a reduced size. The algorithm continues recursively and
returns the global optimal solution. The basic structure being simple, the critical question
is how to prune the search tree so as to avoid exploring unpromising nodes. Dominance
conditions are commonly used to cut nodes: at a node, if it is proved that a more promising
node exists or can be easily found, then the current one can be abandoned. This is also
the case for Branch & Bound , in which at each node, the bounding procedure provides an
optimistic estimation of the solution quality of that node. If the estimation value is not
better than the currently best solution found, in other words, the current node is domi-
nated by the incumbent solution, then the node is cut without being further developed.
Just like the bounding procedure in Branch & Bound, Memorization can be seen as another
procedure which can help in pruning the search tree. In branching algorithms, especially
on lower branching levels, isomorphic subproblems may appear exponentially many times
and Memorization can be used to avoid solving identical problems multiple times.

Memorization, apparently, has not yet been systematically considered when designing
search tree based algorithms, as the bounding procedure in Branch & Bound. It is at least
rare in sequencing problems, to the authors’ knowledge. The aim of this work is to promote
a systematic integration of Memorization into search tree based algorithms in order to
better prune the search tree. In the following sections, we first describe a general framework
of Memorization (section 4.2), followed by some guidelines on the implementation (section
4.3). Then, we apply the framework to four scheduling problems including 1|ri|

∑
Ci

(section 4.4.1), 1|d̃i|
∑
wiCi (section 4.4.2), F2||∑Ci (section 4.4.3) and 1||∑Ti (section

108

4.2. A GENERAL FRAMEWORK FOR MEMORIZATION IN SEARCH TREES

4.5). Finally, we conclude this work in section 4.6.

4.2 A general framework for Memorization in search trees

For a given minimization problem, the application of Memorization depends on several
components of the search tree based algorithm such as the branching scheme, the search
strategies and also the characteristics of the problem. In this section, we consider possible
scenarios that may appear for sequencing problems. Then, we present the possible schemes
of Memorization and how to choose the right scheme depending on the scenario.

Even though the general idea of Memorization can be generalized and applied to any
combinatorial optimization problems, we focus on sequencing problems in the context of
the thesis. Consider a generic sequencing problem where n jobs J = {1, ..., n} are to be
scheduled. Each job i is defined by a set of features like a processing time pi, a due date di,
etc, which depends on the problem under consideration. Some resources are available for
the execution of jobs and an ordering of jobs must be found to minimize some cost function,
usually depending on the jobs completion times. We adopt an intuitive way to represent
the content of a node or a subproblem: as an example 123{4, ..., n} represents a subproblem
in which jobs {1, 2, 3} are already fixed by branching, to the first three positions of the
sequence, while the jobs to be scheduled after are {4, ..., n}.

No matter the branching scheme, at any iteration of the algorithm, by active nodes we
denote the nodes that are created but not yet developed, and by explored nodes the nodes
that have already been branched on (children nodes have been created). We also adopt
the notion of decomposable problems defined by T’kindt et al. (2004). Typically for single
machine scheduling problems, this often implies that the completion time of the prefixed
job sequence of a node is constant no matter of the order of jobs inside (it is defined as the
sum of processing times of the jobs in that sequence).

Definition 7. Let {1, ..., i}{i+1, ..., n} be a problem to be solved. It is decomposable if and
only if the optimal solution of the subproblem {1, ..., i} (resp. {i+1, ..., n}) can be computed
independently from {i+1, ..., n} (resp. {1, ..., i}), i.e. without knowing the optimal sequence
of {i+ 1, ..., n} (resp. {1, ..., i}).

4.2.1 Branching schemes

In common search tree based algorithms for scheduling (sequencing) problems, the
branching operation consists in assigning a job to a specific position in the sequence.
A Branching Scheme defines, at a node, how to choose this job and the positions to
occupy. We consider three classic branching schemes, namely forward branching, backward
branching and decomposition branching.

When applying forward branching at a given node, each eligible free job is assigned to
the first free position. For example, the nodes at the first level of the search tree correspond
to the following subproblems: 1{2, ..., n}, 2{1, 3, ..., n}, ..., n{1, ..., n− 1}.

When applying backward branching at a given node, each eligible free job is assigned to
the last free position. For example the nodes at the first level of the search tree correspond

109

4.2. A GENERAL FRAMEWORK FOR MEMORIZATION IN SEARCH TREES

to the following subproblems: {2, ..., n}1, {1, 3, ..., n}2, ..., {1, ..., n − 1}n. This scheme is
symmetric with forward branching, hence for the sake of simplicity we only discuss forward
branching and add extra remarks on backward branching whenever necessary.

When applying decomposition branching at a given node, the job that is being consid-
ered to branch is called a decomposition job. When a decomposition job is assigned to a
position, two subproblems are generated implied by the free positions before and after the
decomposition job. Certainly one may determine the jobs that should be scheduled before
and after this position by enumerating all 2-partitions of jobs as the Divide & Conquer
technique introduced by Fomin and Kratsch (2010), but here we restrict our study to the
situation where the two subproblems can be uniquely determined in polynomial time mak-
ing use of some specific problem properties. As an example, the nodes at the first level
of the search tree could contain {2, 3, 4}1{5, ..., n}, if job 1 is the decomposition job which
is assigned to position 4 and generates two subproblems corresponding to jobsets {2, 3, 4}
and {5, ..., n}, respectively. This situation occurs, for instance, to the 1||∑Ti problem as
already introduced in chapter 3.

4.2.2 Search strategies

During the execution of search tree based algorithms, when two or more nodes are
active, a strategy is needed to determine the next node to branch on. The classic search
strategies are depth first, best first and breadth first.

Depth first is the most common strategy: the node to explore is an arbitrary active
node at the lowest search tree level. The advantage of this strategy is that it only requires
polynomial space.

Breadth first selects an active node with the highest search tree level. This leads to an
exponential space usage since the search tree is explored level by level.

Best first chooses the node to explore according to its lower bound. The space usage
in the worst case is therefore also super-polynomial like in breadth first.

It seems conventional that when constructing a search tree based algorithm, the depth
first is adopted. However, this choice is strongly questionable according to T’kindt et al.
(2004).

4.2.3 Memorization schemes

The memorization presented by Robson (1986) stores the optimal solution of each sub-
problem of a predetermined limited size and reuses that solution whenever such subproblem
appears again during the tree search. However different memorization approaches can be
used. The differences rely on the choice of the information to store and the way in which
the stored information is used. We discuss below three different memorization schemes
that are helpful to efficiently solve some sequencing problems.

Taking account of the branching schemes introduced in section 4.2.1, any node of the
search tree can be defined by σ1S1σ2S2...σkSk, the σj ′s being partial sequences of jobs and
the Sj ′s being subproblems which remain to be scheduled. For the sake of simplicity, we
explain the Memorization schemes in the case of forward branching, i.e. k = 1, and a node

110

4.2. A GENERAL FRAMEWORK FOR MEMORIZATION IN SEARCH TREES

corresponds to a problem σS.

4.2.3.1 Solution memorization

A : σ′S C : σ′′S

B : σS

Explored nodes Future nodes

D E F

Figure 4.1: Solution Memorization

Consider the situation illustrated in Figure 4.1, where active nodes are colored in black.
NodeB is the current node, while σ, σ′ and σ′′ are different permutations of the same jobset.
In other words, nodes A, B and C may contain the same subproblem to solve, implied by
S. In that case, if A has already been solved (consider for instance a depth-first search)
and the optimal sequence of S has been memorized, then it can be used directly to solve
nodes B and C and it is no longer necessary to branch on these nodes. Note that, in order
to successfully perform memorization, we must guarantee that the solution of S memorized
at node A is optimal. Depending on the branching algorithm implementation, this may
not be obvious: for instance in Branch & Bound algorithms, the leaf node corresponding
to the optimal solution of node A may be missed if one of its ascendant node is cut due
to a dominance condition. Looking at Figure 4.1, assume that node D should have led to
the optimal solution of problem S but has been cut by a dominance condition. Applying
solution memorization may then lead to memorize another solution β to S, which is not
optimal with respect to S. Troubles may appear if the global optimal solution to the
original problem (associated to the root node) is, for instance, given by node E. Solution

111

4.2. A GENERAL FRAMEWORK FOR MEMORIZATION IN SEARCH TREES

memorization may imply not exploring node B and directly replacing S by the “best”
solution found from node A. As a consequence, the global optimal solution is missed. This
situation occurs whenever the dominance condition which has pruned node D would not
have pruned node E: in the remainder, this kind of conditions are refined to as context
dependent dominance conditions since they depend on the context of each node (typically,
the initial partial sequence σ, σ′ and σ′′). By opposition, a context independent dominance
condition would have pruned node D, E and F . A direct way to fix this is to disable
dominance conditions whenever solution memorization is applied.

However, if these context dependent conditions are playing a very important role in
the algorithm then this may slow down the algorithm even if solution memorization works.
Another approach to manage context dependent dominance conditions is to extend the
memorization from “solutions” to “lower bounds” when the branching algorithm involves
a bounding mechanism. In that version of Memorization, we assume that all dominance
conditions are kept in the algorithm. When node A is created, a lower bound is computed,
which represents the best solution value we may expect from the subtree of A. This lower
bound is based on the cost function value of the sequence σ′ which is already fixed, and an
evaluation on the unsolved part S. When branching down the subtree of A, jobs in S are
fixed gradually, hence the evaluation on the remaining unscheduled jobs also becomes more
and more precise. When all leaf nodes of the subtree of A are explored, this value finally
becomes tighter (higher) than the initial value computed at node A. Since the objective
function value of σ′ is known, we can then deduce the lower bound value corresponding
to S when scheduled after σ′, and memorize it. Now when node B is opened, instead of
computing its lower bound, we can get it by finding the lower bound of S directly from the
memory and then add the objective function value of σ. In this way, the lower bound we get
is tighter, and node B is more likely to be cut. Moreover, the lower bound computation
at node B, which may be time costly, is saved. Notice that, for nodes cut by context
dependent dominance conditions, their lower bound values still need to be computed and
considered (hence introduces an extra cost). Lower bound memorization can be a good
alternative to solution memorization with context dependent dominance conditions turned
off as long as these conditions are efficient in pruning the search tree.

Note that the memorization of lower bounds is compatible with the memorization of
optimal solutions: whenever in a subtree no nodes are cut by context dependent dominance
conditions and the global upper bound is updated by some nodes from this subtree, the
optimal solution of this subtree is memorized. Otherwise, the lower bound is memorized.
We denote the described memorization technique including the memorization of optimal
solutions and the memorization of lower bounds as solution memorization since both are
related to the memorization of the “best solution” of the problem associated to a node.

4.2.3.2 Passive node memorization

At any node σS, another information that can be memorized is the partial sequence
σ. Unlike solution memorization where the memorized sequences can be used to solve a
node, passive node memorization is only used to cut nodes.

Consider the branching situation depicted by Figure 4.2. Again active nodes are black-
colored and B is the current node. Assume a node A exists among explored node, with

112

4.2. A GENERAL FRAMEWORK FOR MEMORIZATION IN SEARCH TREES

A : σ′S C : σ′′S

B : σS

Explored nodes

Future nodes

Figure 4.2: Passive node memorization)

σ′ being a different permutation of the same jobset used in σ. If the partial sequence σ′

has been memorized then two situations may occur. If σ′ dominates σ then B can be cut
since it cannot lead to a solution better than A. If no such σ′ dominating σ is available,
then σ can be memorized in order to possibly prune a future node like C. Note that
solution memorization and passive node memorization may possibly intersect. Consider
the previous example and nodes A, B and C. If the optimal solution of subproblem S
has been obtained from the exploration of node A, then at node B and C both solution
memorization and passive node memorization imply not to branch on these nodes if σ′

dominates σ and σ′′.
The dominance test between sequences can be implemented as a function check(σ, σ′)

which returns 1 if σ′ dominates σ, as introduced by T’kindt et al. (2004). The check
must be done on two different sequences of the same jobset, having the same starting time
and its implementation is problem dependent. Since the memorized sequence results from
branching decisions, we call it passive node memorization.

Any node, ready to be branched on, must be compared to explored and/or to active
nodes depending on the search strategy. Additionally, it may be necessary to perform the
check twice: first once the node is created, then at the time of branching. Memorizing the
partial sequence, when the node is created, ensures that the best sequence is kept before
any exploration of nodes. Then, rechecking the dominance when branching on a node
enables that node to be cut if a dominant partial sequence has been found meanwhile.

In the following, we introduce Property 6 which relates the lower bounding mechanism
of search tree based algorithms to the check function. When this property is answered, the
current node only needs to be compared to explored nodes instead of all nodes when best
first is chosen as the search strategy, as detailed in Section 4.2.4.

Property 6. (Concordance property) Let LB(A) be the lower bound value computed at

113

4.2. A GENERAL FRAMEWORK FOR MEMORIZATION IN SEARCH TREES

node A. The search tree based algorithm satisfies the concordance property if and only if,
for any node A = σS and B = πS, LB(A) < LB(B)⇔ check(π, σ) = 1.

4.2.3.3 Predictive node memorization

Predictive node memorization relies on the same idea as passive node memorization, but
with additional operations. As illustrated in Figure 4.3, at a given node B = σS, we first
check, like in passive node memorization, if the current node can be cut by σ′ memorized
at node A. If not, instead of directly memorizing σ, we search for an improving sequence
π. Notice that, by the way, the improving sequence necessarily belongs to a part of the
search tree not yet explored when dealing with the node σS. There may be many ways to
compute π. For instance, we may perform some local search on σ, searching for a neighbor
sequence π that dominates σ. Alternatively, we may focus on a short subsequence of σ and
solve it to optimality (in a brute-force way, for instance). The latter idea appears in the
work of Jouglet et al. (2004) as Dominance Rules Relying on Scheduled Jobs. We may also
make use of an exact algorithm to optimize a part of σ to get σ′, as far as this algorithm
is fast. Notice that this idea is strongly related to the merging mechanism introduced in
chapter 3 (see also Garraffa et al. (2017)), which is designed to provide good worst-case
time complexities. If such a sequence π can be built, then the current node σS is cut and
node πS is memorized. Note that node πS has not yet been encountered in the search tree

A : σ′S C : σ′′S

B : σS

Explored nodes

Future nodes

πS

Figure 4.3: Predictive node memorization

when dealing with node σS (consider, π = σ′′). So, it is important when applying predictive
node memorization to remember that πS still needs to be branched on. Also, the extra
cost of generating π must be limited in order to avoid excessive CPU time consumption.

114

4.2. A GENERAL FRAMEWORK FOR MEMORIZATION IN SEARCH TREES

depth first

search strategy?

D

best first breadth first

A:the problem is decomposable
B:no context dependent dominance conditions
C:concordance property verified
D:solution memorzation
E:passive/predictive node memorization
F:passive node memorization
G:check() applied on active nodes only
H: check() applied on explored nodes only
HH: suggested scheme when none is dominant

forward/backward dec decforward/backward

branching strategy? branching strategy? branching strategy?

A and B?

yes no yes no

C?

E EH E

E FG F

forward/backward dec

D

Figure 4.4: Decision tree for choosing the memorization scheme

4.2.4 Decision guidelines

In this section we provide some guidelines on how to choose the appropriate memoriza-
tion scheme according to the branching scheme and the search strategy. The main results
are summarized in the decision tree in Figure 4.4.

4.2.4.1 Forward branching and depth first search strategy

In forward branching, any node of the search tree can be defined as σS. When depth
first is used as the search strategy we can state the following property.

Property 7. With forward branching and depth first, if the problem is decomposable and
solution memorization memorizes optimal solutions, then solution memorization dominates
both passive node memorization and predictive node memorization.

Proof. Any node deletion that can be achieved by passive node memorization and predictive
node memorization can also be achieved by solution memorization, but not conversely.
Consider nodes A = σS and B = πS with σ and π two permutations of the same jobset.
As the problem is decomposable, solving subproblem S at node A is equivalent to solving
it at node B. Without loss of generality, we assume that A appears before B during the
solution. In passive node memorization if check(π, σ) = 1, i.e. sequence σ dominates π,
then B can be pruned. However, also in solution memorization, node B can be pruned
since the optimal solution of jobset S has already been memorized from node A.

Now consider the case where check(σ, π) = 1, i.e. sequence π dominates σ. This implies
that with passive node memorization, node B will not be pruned. However, as explained
above, with solution memorization, node B is pruned. With predictive node memorization,

115

4.2. A GENERAL FRAMEWORK FOR MEMORIZATION IN SEARCH TREES

the conclusion is the same since we have no guarantee that starting from node πS another
node αS dominating πS can be generated. Besides, even if such αS is generated and πS
is pruned, the same issue occurs to node αS when it is generated.

If the problem is not decomposable, or context dependent dominance conditions are
used in the algorithm, then solution memorization memorizes lower bounds, and then
which memorization scheme is dominant can not be determined. However, in practice,
passive node memorization may be preferred to solution memorization. Notably, as the
problem is not decomposable, then it may be necessary to solve the subproblem consisting
of jobset S both at nodes A and B. However, with passive node memorization, node B
may be pruned whenever π is dominated by σ.

4.2.4.2 Forward branching and best first search strategy

We can state the following property.

Property 8. With forward branching and best first strategy, solution memorization does
not apply. Passive node memorization or predictive node memorization can be applied only
to explored nodes if the concordance property (Property 4.6) is answered.

Proof. To apply solution memorization at a given node, the subproblem concerning S must
be solved first in order to memorize its optimal solution. This is not compatible with best
first search strategy. In fact, if best first reaches a leaf node, then also the optimal solution
is reached and no sequence has been stored before.

When passive node memorization and predictive node memorization are applied, the
search, at a given node, of a dominant subsequence needs only to be done in the set of
explored nodes whenever the concordance property holds. As the best first search strategy
always consider for branching the node with the lowest lower bound value, the concordance
property implies that no active node can dominate it.

When the concordance property does not hold, then node memorization techniques are
required to consider both explored and active nodes for node pruning.

Besides, no dominance can be deduced a priori between predictive node memorization
and passive node memorization. It depends on how the search for an improving subsequence
is applied in predictive node memorization. Generally speaking, both memorization schemes
should be considered and compared to find the best one.

4.2.4.3 Forward branching and breadth first search strategy

With forward branching and breadth first we can state the following property.

Property 9. With forward branching and breadth first strategy, solution memorization
does not apply. Passive node memorization should be chosen and should be applied to
active nodes.

116

4.2. A GENERAL FRAMEWORK FOR MEMORIZATION IN SEARCH TREES

Proof. Under this configuration, solution memorization is useless since leaf nodes are
reached only at the end of the search tree. Passive node memorization can be applied
to active nodes only. An active node A is selected for branching when all the nodes at the
same level have been created, hence all other active nodes dominated by A are discarded. If
in turn A it is dominated by another node, then it is pruned. There is no need to consider
explored nodes since explored nodes on higher levels have less fixed jobs, therefore they
are not comparable with the current node. Also, predictive node memorization can not do
better than passive node memorization since passive node memorization already keeps the
best node at each level.

4.2.4.4 Decomposition branching and depth first search strategy

With decomposition branching, at each level of the search tree a decomposition job can
be put on any free position by the branching operation.

Under this configuration, no dominance can be deduced among the memorization
schemes. In fact, we can imagine situations where either solution memorization or pas-
sive node memorization or predictive node memorization is dominant. Consider nodes
A = σS1j1S2 and B = πS1j2S3 with A being explored before B. In both nodes, the
current subproblem concerns scheduling jobset S1 after σ or π. Suppose σ and π contain
different jobs but have the same completion time, which means that the subproblem de-
fined by S1 is identical in A and B. Then, the optimal sequence for S1 found when solving
A can be reused on B by solution memorization, while passive node memorization cannot
handle this case since σ and π contain different jobs hence, are incomparable. Predictive
node memorization may or may not cut B depending whether a dominant prefix can be
generated or not.

On the other hand, we may also imagine the case where A = σS1j1S2 and B = πS3j2S4.
Suppose σ and π are different permutations of the same jobset. If check(π, σ) = 1, then
node B can be cut by passive node memorization or predictive node memorization, while
this is not the case for solution memorization because subproblems S1 and S3 do not consist
of the same jobs.

In practice, even though every memorization scheme could be dominant in some cases,
the memory limitation does not allow to apply all of them and our experience suggests to
prefer solution memorization. This is due to the special structure of nodes σ1S1...σkSk,
which makes the prefixed jobs much spread out (they are separated by Si), and prevents
the application of successful passive node memorization and predictive node memorization.
Moreover, the case with nodes σ1Sσ2 and π1Sπ2, where σ1 and π1 have the same completion
time but contain different jobs, may occur pretty often for large instances if the jobs
processing times do not present a large variance.

4.2.4.5 Decomposition branching and best first search strategy

Property 10. With decomposition branching and best first strategy, solution memorization
does not apply. Passive node memorization and predictive node memorization must only be
applied to explored nodes whenever the concordance property holds and the check function
comparing two nodes σ1S1...σkSk and σ′1S1

′...σk′
′Sk′

′ only works on σ1 and σ1
′. Otherwise,

117

4.3. IMPLEMENTATION GUIDELINES

passive node memorization and predictive node memorization must be applied to explored
and active nodes.

Proof. Similar to that of Property 8.

4.2.4.6 Decomposition branching and breadth first search strategy

Property 11. With decomposition branching and breadth first strategy, solution memo-
rization does not apply. Whether node memorization should be applied to active nodes only
depends on the definition of the check function.

Proof. This configuration discourages solution memorization for the same reason as in
Property 9. If the check function is defined in a way such that the explored nodes are not
comparable to active nodes, then passive node memorization and predictive node memo-
rization should be applied to active nodes only, otherwise they should be applied to all
nodes.

4.3 Implementation guidelines

In this section we discuss efficient implementations of the memorization schemes, pro-
viding, when necessary, choices specific to the sequencing problems tackled in the remain-
der. The key point is to have a fast access to memorized partial solutions. Henceforth,
we implement a database as a hashtable which contains all the memorized solutions. By
well choosing the hash function, a hashtable supports querying in O(1) time to find the
corresponding elements given a hash key.

For solution memorization, at a given node, the database is queried with 〈t0, S〉, where
t0 is the starting time of the subproblem and S is the related jobset. The returned result
should be 〈π, opt(π|t0)〉 which is the optimal sequence associated to S when starting at time
t0, and its corresponding objective function value. So, 〈π, opt(π|t0)〉 defines the elements
which are memorized in the database. We define the hash key h as a combination of t0
and |S|: seeing h as a set of bits, t0 occupies the higher bits in h while |S| occupies the
lower bits. The aim is to have a unique hash key for each given pair 〈t0, S〉, even if this is
not necessarily bijective: i.e., two elements in the database with the same hash key may
correspond to different pairs 〈t0, S〉. As a consequence, when a list of elements is returned
for a pair 〈t0, S〉, it is also necessary to verify that the returned sequence is a sequence of
jobset S. This takes O(|S|) operations for each returned sequence. We may also include
the sum of job id’s of S into h in order to have a more exact key, but this correspondingly
increases the time needed to construct the key, without preventing from checking whether
a returned sequence π is a permutation of jobset S or not.

For passive and predictive node memorization, implementation decisions are more de-
pendent on the problem and on the check function used to compare two partial sequences

118

4.3. IMPLEMENTATION GUIDELINES

σ and π of the same jobset. For any such σ and π, a general definition of check() could be:

check(π, σ) =

{
1, if Cmax(σ) ≤ max(Cmax(π);Emin(π)) and opt(σ|t0) ≤ opt(π|t0)

0, otherwise

(4.1)
with Cmax referring to the makespan of a partial sequence, and Emin(π) referring to

the earliest starting time of the jobs scheduled after π. It is not difficult to see that if
check(π, σ) = 1 then node σS dominates node πS. Indeed, for any regular objective
function to minimize, with respect to the fixed jobs, opt(σ|t0) ≤ opt(π|t0) ensures that
σ yields a smaller cost than π. Moreover, Cmax(σ) ≤ max(Cmax(π);Emin(π)) guarantees
that the starting time of jobset S at node σS is not higher than in node πS. Therefore,
σS dominates πS.

Consequently, a database element is a tuple 〈σ,Cmax(σ), Emin(σ), opt(σ|t0), ExpAct〉
with ExpAct being a flag indicating whether this element corresponds to an explored or
an active node. Notice that t0 is not included since it appears in the hash key used for
querying. Also, when the problem is decomposable, the check function reduces to:

check(π, σ) =

{
1, if opt(σ|t0) ≤ opt(π|t0)

0, otherwise

where only 〈σ, opt(σ|t0), ExpAct〉 need to be stored. For node memorization techniques the
hash key, at a given node, is computed in a way similar to solution memorization. Consider,
for example, forward branching : let σ1S1 be the current node. As the dominance of another
node is checked on σ1, the database is queried with 〈0, Sσ1〉 with Sσ1 referring to the set
of jobs in σ1. Then, only Sσ1 needs to be binary encoded into the hash value.

With respect to the database management, notice that when an element is added, in
node memorization techniques, then the elements dominated by the added one are removed.
Besides, due to memory limitation on the computer used for testing, we may need to clean
the database when it is full on some instances. More precisely, in our experiments, the
RAM is of 8Gb and hence the database size is also limited to 8Gb.

A cleaning strategy is needed to remove unpromising elements, i.e. those that are
expected not to be used for pruning the search tree. As it is not clear which elements are
unpromising, several strategies have been tested. We have implemented the following ones
during our experimentations.

FIFO: First In First Out
This is one of the most common database cleaning strategy: when the memory is full, we
first remove the first added elements. An extra structure is needed to record the order of
elements according to the time when they are added. When the database if full and a long
sequence is waiting to be inserted, it may be necessary to remove more than one elements
in order to free enough space.

BEFO: Biggest Entry First Out
This cleaning strategy suggests to remove from the database the biggest elements (longest

119

4.3. IMPLEMENTATION GUIDELINES

sequences) in order to free enough continuous memory for storing new elements. For
solution memorization it means removing nodes at higher levels in the search tree. An
intuition of the impact of this cleaning strategy on solution memorization can be sketched
from Figure 4.5 which presents the number of sequences memorized per size for an instance
of the 1||∑Ti scheduling problem with 800 jobs. It can be seen that sequences with “large
number of jobs” (let’s say more than 500 jobs) are not often used to prune nodes, and even
if some large nodes could have been useful for node pruning, we may still expect that the
solution of its subproblems generated by one or several branching can be found from the
memory.

Nb_Seq: number of sequences of a given size, stored in the memory.
Nb_Queried_Seq: number of sequences of a given size, that are used to avoid solving twice identical
problems.

Figure 4.5: Number of solutions and useful solutions in memory for an instance of 1||∑Ti
with 800 jobs

However, for passive and predictive node memorization, the strategy means removing
nodes at lower levels of the search tree. These nodes refer to subproblems with many
jobs already fixed (and memorized) and few jobs to schedule. It may be possible that
the extra cost of memorizing a long fixed partial sequence is not inferior to solving the
corresponding small subproblem directly without memorization. Since this is not obvious
from a theoretic point of view, some preliminary experiments were performed in order to
investigate whether it is better also to remove nodes at higher levels of the search tree
in node memorization. Computational testing confirms that removing longest elements is
always preferred, at least on problems 1|ri|

∑
Ci, 1|d̃i|

∑
wiCi and F2||∑Ci.

At each cleaning, we also tend to clean up a large amount of space in order to decrease
the time cost induced by frequent cleaning operations.

LUFO: Least Used First Out
Figure 4.5 also suggests another cleaning strategy since a lot of sequences are never used

120

4.4. APPLICATION TO THE 1|RI |
∑
CI , 1|D̃I |

∑
WICI AND F2||∑CI

PROBLEMS

to prune nodes in the search tree. These sequences can be removed from the database
to save space. To implement the LUFO cleaning strategy we keep an usage counter for
each database element. The counter is incremented by 1 each time the element is queried
and used to prune a node in the search tree, and it is decremented by 1 when a cleaning
operation is performed. Elements whose counter is zero are removed by the cleaning
operation. Note that in node memorization, when a database element is replaced by a new
one, the latter should inherit the counter value of the old one. This is because that the
counter value reflects the usefulness of a solution and the counter value of a newly added
solution should not be smaller than the counter values of solutions that are dominated by
the new one.

Preliminary results, not reported here, show that FIFO strategy is not efficient for the
considered scheduling problems. BEFO strategy works better than FIFO, but its efficiency
is not high enough to make a difference in the computational results. LUFO strategy is
proved to be surprisingly efficient.

4.4 Application to the 1|ri|
∑

Ci, 1|d̃i|
∑

wiCi and F2||∑Ci

problems

In order to experiment the effectiveness of Memorization on scheduling problems, we
first test it on three problems that were considered by T’kindt et al. (2004). In that
work the authors used memory to apply the so-called DP property over nodes in order to
prune the search tree. According to the memorization framework as defined in this chap-
ter, what they have done is passive node memorization with a database cleaning strategy
which replaces the shortest stored sequence by the new one when the database is full. The
aim of that paper was also on choosing the most suitable search strategy when trying to
solve these problems efficiently. In this section, for each of these three problems we apply
the previously defined framework of Memorization with various considerations and discuss
the obtained results. For each problem, we compare several Branch & Bound algorithms
which are named according to their features: Depth-, Best- and Breadth- refer to Branch
& Bound algorithms with the corresponding search strategies and no memorization in-
cluded. Depth_X, Best_X and Breadth_X refer to a Branch & Bound algorithm with
corresponding search strategies and memorization X used, with X = S representing so-
lution memorization, X = Pa representing passive node memorization and X = Pr the
predictive node memorization. For predictive node memorization, we use k-perm heuristic
to search for new sequences, as described in section 4.2.3.3.

k-perm heuristic also refers to a “dominance condition relying on scheduled jobs” as
introduced by Jouglet et al. (2004). At a given node σS, assume that σ = σ0σk with σk

the subsequence of the k last jobs in σ, k being an input parameter. The k-perm heuristic
consists in enumerating all permutations of jobs in σk to obtain sequence σ`. Then, the
first found sequence σ0σ` dominating σ0σk, if it exists, is used to prune node σS. The
dominating sequence can be memorized. The notion of dominance between sequences is
the one used to define the check function in node memorization. Preliminary tests suggest
us to choose k = 5 in our implementations in order to have the most efficient predictive
node memorization scheme.

121

4.4. APPLICATION TO THE 1|RI |
∑
CI , 1|D̃I |

∑
WICI AND F2||∑CI

PROBLEMS

Notice that k-perm search is not performed when breadth first strategy is used, since
the memorization applied on active nodes already covers the effect of k-perm.

The algorithms proposed by T’kindt et al. (2004) in 2004 are also tested on the same
dataset and they are named as Depth_Pa_04, Best_Pa_04 and Breadth_Pa_04, re-
spectively. Compared to our algorithms Depth_Pa, Best_Pa and Breadth_Pa, the main
differences are that the RAM usage is limited to 450M for Depth_Pa_04, Best_Pa_04
and Breadth_Pa_04, in order to obtain similar results to that reported in 2004. Also, in
our algorithms LUFO is chosen as the database cleaning strategy.

The test results on instances of certain sizes are marked as OOT (out of time) if
any of the instances is not solved after 5 hours. Analogously, with the application of
Memorization, memory problems may occur and the limit on RAM usage may be reached,
reported as OOM (out of memory). Note that according to our experiments, even when
memory cleaning strategies are applied, OOM may still occur due to the fragmentation of
the memory after a number of cleanings. Also note that LUFO is chosen as the cleaning
strategy according to preliminary experimentations.

All tests have been done on a HP Z400 work station with 3.07GHz CPU and 8GB RAM.
The datasets of all tests are open for public access from http://www.vincent-tkindt.net/
index.php/resources.

4.4.1 Application to the 1|ri|
∑

Ci problem

The 1|ri|
∑
Ci problem asks to schedule n jobs on one machine to minimize the sum

of completion times. Each job i has a processing time pi and a release date ri before
which the job cannot be processed. The problem is NP-hard in the strong sense and it has
been widely studied in the literature with both exact and heuristic algorithms considered.
The referential computational results so far are done by T’kindt et al. (2004), in which
with forward branching and best first and the application of a so-called DP Property the
algorithm is able to solve instances with up to 130 jobs. A mixed integer programming
approach is also reported by Kooli and Serairi (2014), which enables to solve instances with
up to 140 jobs. However only 5 instances are generated in their experiments for each set
of parameters. This makes their result less convincing due to the fact that the hardness of
instances varies a lot even when generated with the same parameters, as observed during
our study. Consequently, we consider in this section that the Branch & Bound algorithm
provided by T’kindt et al. (2004) is at least as efficient as the approach used by Kooli and
Serairi (2014). In contrast, 30 instances are generated by T’kindt et al. (2004) for each set
of parameters , which leads to 300 instances for each size.

The work of T’kindt et al. (2004) uses the Branch & Bound algorithm of Chu (1992)
as a basis, and so forward branching is adopted as the branching strategy. With respect
to search strategies, depth first, best first and breadth first were all tested by T’kindt et al.
(2004), aiming to explore the impact of different search strategies on the efficiency of the
algorithm. The lower bounds and dominance conditions of Chu (1992) are kept. A so
called DP Property, added as a new feature in the algorithm of T’kindt et al. (2004), is
actually equivalent to passive node memorization in our terminology. The check() function
is based on a dominance condition given by Chu (1992) and it was defined by T’kindt et al.

122

http://www.vincent-tkindt.net/index.php/resources
http://www.vincent-tkindt.net/index.php/resources

4.4. APPLICATION TO THE 1|RI |
∑
CI , 1|D̃I |

∑
WICI AND F2||∑CI

PROBLEMS

(2004) as follows:

check(π, σ) =

1, if opt(σ|0) ≤ opt(π|0) and

opt(σ|0) + |Ω| ∗ Emin(σ) ≤ opt(π|0) + |Ω| ∗ Emin(π)

0, otherwise

(4.2)

with Ω the jobs that remain to be scheduled after sequence σ and π. We also have
Emin(σ) = max(C(σ),minr∈Ω ri), with C(σ) the completion time of σ. The item stored
into memory is a tuple 〈σ,C(σ), opt(σ|0), ExpAct〉 and Emin(σ) can be computed when
needed. Note that this definition of check is an adaption of the general Equation 4.1 and
if the check in Equation 4.1 return 1 then this check also returns 1.

4.4.1.1 Application of the memorization framework and improved results

The problem is not decomposable due to the existence of release dates. Therefore,
with the choice of forward branching, node memorization should be chosen according to
the decision tree in Figure 4.4. The lower bound used in the algorithm is based on the
SRPT (Shortest Remaining Processing Time) rule. Together with the check() function
defined in Equation 4.2, it is not clear whether the concordance property is answered.
Hence, when passive node memorization is applied upon best first, all nodes need to be
considered for the comparisons, while when it is applied with breadth first, only active
nodes need to be considered. Therefore the choices made by T’kindt et al. (2004) with
respect to memorization are kept. The check() function also remains the same, as defined
in Equation 4.2.

Here we refresh the computational results of T’kindt et al. (2004) on new randomly
generated input and also add results for predictive node memorization and solution mem-
orization. The input is generated following the way described by Chu (1992), i.e. the
processing times are generated uniformly from [1, 100] and release dates are generated be-
tween 0 and 50.5 · n · r with r belonging to {0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.50, 1.75, 2.0, 3.0}.
30 instances are generated for each value of r, hence leading to 300 instances for each size
n from 70 to 140.

We first ran the algorithms of T’kindt et al. (2004) (Depth_Pa_04, Best_Pa_04 and
Breadth_Pa_04) on these newly generated instances. All these three algorithms are able
to solve instances with up to 110 jobs. On the running time, Best_Pa_04 is the fastest
one, with a maximum running time of 27 seconds for instances with 110 jobs. This value
becomes 40 seconds for Depth_Pa_04 and 1082 seconds for Breadth_Pa_04. It was
reported by T’kindt et al. (2004) that the algorithms with best first and breadth first can
solve respectively instances with 130 jobs and 120 jobs which is different from what we
obtain. This reveals that the newly generated instances are harder than that of T’kindt
et al. (2004), knowing that the computational power of our test environment is much better
than in 2004. Moreover, we also observed that for Depth_Pa_04, the hardest instance
of 110 jobs is solved in 40 seconds but the hardest instance of 90 jobs is solved in 1691
seconds. This is why we think that the hardness of instances vary a lot when generated
randomly.

123

4.4. APPLICATION TO THE 1|RI |
∑
CI , 1|D̃I |

∑
WICI AND F2||∑CI

PROBLEMS

Results related to node memorization are put in Table 4.1. For all the three search
strategies, passive node memorization enables to solve much larger instances with respect
to the versions without memorization. This is sufficient to prove the power of memorization
on this problem.

Depth_Pa, Best_Pa and Breadth_Pa are all more powerful than their counterparts
of 2004, i.e. Depth_Pa_04, Best_Pa_04 and Breadth_Pa_04. This is especially visible
on depth first, where Depth_Pa_04 solves instances with up to 110 jobs while Depth_Pa
solves instances with up to 130 jobs. This makes Depth_Pa the global best algorithm
and shows that when more physical memory is available and a larger database with an
appropriate cleaning strategy is set, the memorization can be further boosted and the gain
can be important.

The impact of k-perm search on this problem is very limited: predictive node memoriza-
tion basically leads to the same result as passive node memorization. In addition, we also
tested solution memorization on this problem since no theoretical dominance between the
memorization schemes can be established for this problem. Since context dependent dom-
inance conditions are enabled in the algorithm, we first disabled them in order to obtain
the optimal solution of each node. But this turned out to be very inefficient. Therefore,
we also implemented the memorization of lower bounds, as described in section 4.2.3.1.
However, the resulting algorithm can only solve instances with up to 80 jobs, hence not
competitive compared to node memorization, as predicted according to the decision tree
in Figure 4.4.

It is also worth to be mentioned that the database cleaning strategy LUFO enables a
faster solution of large instances. As an example, we found an instance with 140 jobs is
solved in 1.6 hours by Depth_Pa with LUFO, while it needs 14 hours to be solved when
the cleaning strategy of T’kindt et al. (2004) is kept instead. However, due to the hardness
of another instance with 140 jobs, the algorithm Depth_Pa is finally out of time.

124

4.4. APPLICATION TO THE 1|RI |
∑
CI , 1|D̃I |

∑
WICI AND F2||∑CI

PROBLEMS

n 70 80 90 100 110 120 130 140

Depth-

Navg 141247.8 1778751.2 OOT
Nmax 17491232 276190737
Tavg 1.8 22.4
Tmax 217 3238

Depth_Pa

Navg 2583.4 5756.2 18639.9 26827.4 48502.9 174545.5 192409.4 OOT
Nmax 147229 314707 2253897 644151 1281097 16575522 7742714
Tavg 0.0 0.0 0.3 0.7 1.3 7.1 9.1
Tmax 2 7 64 27 41 754 295

Depth_Pr

Navg 1771.1 4455.1 12625.7 19621.7 30380.4 117865.6 128277.5 OOT
Nmax 82765 267416 1455743 588429 1096520 11126694 5132228
Tavg 0.0 0.0 0.3 0.5 0.9 4.7 6.6
Tmax 1 7 46 28 39 488 252

Best- OOT

Best_Pa

Navg 1230.5 3299.4 5235.1 9494.8 13658.5 38574.5 43986.9 OOT
Nmax 36826 256534 292929 216293 228848 2675337 1449900
Tavg 0.0 0.2 0.2 0.4 0.6 15.3 11.8
Tmax 0 46 38 27 25 3595 1630

Best_Pr

Navg 1229.6 3298.2 5229.0 9490.7 13545.7 38560.1 43989.8 OOT
Nmax 36826 256529 292927 216037 228832 2674776 1449872

. Tavg 0.0 0.2 0.2 0.4 0.7 15.4 11.9
Tmax 1 47 39 28 25 3579 1636

Breadth- OOT

Breadth_Pa

Navg 1947.7 6745.0 9893.8 21308.5 27383.1 OOT
Nmax 90494 709607 733980 575430 1209481
Tavg 0.0 4.6 3.4 5.3 5.7
Tmax 9 1319 897 483 935

Table 4.1: Results of new algorithms on the 1|ri|
∑
Ci problem

4.4.2 Application to the 1|d̃i|
∑

wiCi problem

The 1|d̃i|
∑
wiCi problem asks to schedule n jobs on a single machine. Each job i has a

processing time pi, a weight wi and a deadline d̃i which has to be answered. The objective
is to minimize the total weighted completion time

∑
wiCi. The problem is NP-hard in

the strong sense and has been solved by Branch & Bound algorithms (Posner, 1985; Potts
and Van Wassenhove, 1983), with the algorithm of Posner (1985) being slightly superior.
The basic algorithm described by T’kindt et al. (2004) is a combination of algorithms of
Posner (1985); Potts and Van Wassenhove (1983) by incorporating the lower bound and
the dominance condition of Posner (1985) into the Branch & Bound algorithm of Potts
and Van Wassenhove (1983). With respect to search strategies, all the three strategies,
i.e. depth first, best first and breadth first were considered by T’kindt et al. (2004) and
backward branching is adopted as the branching scheme as in the algorithms of Posner
(1985); Potts and Van Wassenhove (1983). Similarly to what is done on the 1|ri|

∑
Ci

problem, the DP Property is also considered by T’kindt et al. (2004), which is actually
passive node memorization. The check() function is defined as follows, where Ω is the set
of jobs to be scheduled before σ and π.

check(π, σ) =

{
1, if opt(σ|∑i∈Ω pi) ≤ opt(π|

∑
i∈Ω pi)

0, otherwise
(4.3)

125

4.4. APPLICATION TO THE 1|RI |
∑
CI , 1|D̃I |

∑
WICI AND F2||∑CI

PROBLEMS

The items stored in the database are 〈σ, opt(σ|∑i∈Ω pi), ExpAct〉. In 2003, Pan (2003)
proposed another Branch & Bound algorithm with reported experiments showing that it
can solve to optimality all instances with up to 90 jobs in size. As the testing protocol
is identical to the one used in 2004 by T’kindt et al. (2004), we can conclude that the
algorithm of Pan is outperformed by the best one proposed by T’kindt et al. (2004) (which
is reported as being able to solve instances with up to 130 jobs in size).

4.4.2.1 Application of the memorization framework and improved results

This problem is decomposable according to Definition 7. From the decision tree in Figure
4.4 we can derive that with the depth first search strategy, solution memorization should
be considered, even though its superiority over node memorization depends on the presence
of context dependent dominance conditions in the algorithm. In the paper of T’kindt et al.
(2004), node memorization was implemented with that strategy. Consequently, in this
section we compare four Branch & Bound algorithms: the three versions of T’kindt et al.
(2004), i.e. node memorization applied to the three search strategies and a version based
on depth first with solution memorization.

The concordance property is answered (see Proposition 11) and hence the passive node
memorization only considers explored node when the search strategy is best first, and only
active nodes need to be considered in breadth first. For solution memorization, the items
stored into the memory are 〈π, opt(π|0)〉. For node memorization, the check() function and
the items stored remain the same as in the work of T’kindt et al. (2004), as described in
the previous section.

About solution memorization, context dependent dominance conditions are enabled in
the algorithm. Their removal has been experimentally proved to lead to an inefficient
algorithm. Therefore, lower bounds are memorized during the solution memorization, as
described in section 4.2.3.1.

Proposition 11. With the check() function defined in Equation 4.3, our algorithms verify
the concordance property (Property 6).

Proof. Consider two nodes Sσ and Sπ. First notice that the subproblem to solve in
both nodes are the same, which consists in scheduling jobs from S starting from time
0. The lower bound used in the algorithm (see Posner (1985); Potts and Van Wassenhove
(1983)) returned on the subproblems on S are the same for the two nodes. Therefore, if
check(π, σ) = 1, which means opt(σ|∑i∈Ω pi) ≤ opt(π|

∑
i∈Ω pi), then LB(Sσ) ≤ LB(Sπ).

With the same reasoning, if LB(Sσ) ≤ LB(Sπ), it can be deduced that the relation
opt(σ|∑i∈Ω pi) ≤ opt(π|

∑
i∈Ω pi) must hold, and hence check(π, σ) = 1.

Following the test plan described by Potts and Van Wassenhove (1983), for each job
i, its processing time pi is an integer generated randomly from the uniform distribution
[1, 100] and its weight wi is generated uniformly from [1, 10]. The total processing time
P =

∑n
i=1 pi is then computed and for each job i an integer deadline di is generated from

the uniform distribution [P (L − R/2), P (L + R/2)], with L increase from 0.6 to 1.0 in
steps of 0.1 and R increases from 0.2 to 1.6 in steps of 0.2. In order to avoid generating

126

4.4. APPLICATION TO THE 1|RI |
∑
CI , 1|D̃I |

∑
WICI AND F2||∑CI

PROBLEMS

infeasible instances, a (L,R) pair is only used when L+R/2 > 1, hence only 20 (L,R) pairs
are actually used, for each of which 10 feasible instances are generated, yielding a total of
200 instances for each value of n from 40 to 140. We first present the results of passive
node memorization algorithms (Depth_Pa_04, Best_Pa_04 and Breadth_Pa_04) from
T’kindt et al. (2004). Both Depth_Pa_04 and Best_Pa_04 are stated by T’kindt et al.
(2004) to solve instances with up to 110 jobs. However, they are only capable of solving
instances with 70 jobs on the newly generated instances, with a maximum solution time 11
seconds and 285 seconds, respectively. Breadth_Pa_04 was reported to be able to solve
instances with up to 130 jobs in 2004 but this falls down to 100 jobs in our tests with a
maximum solution time of 36 seconds. This difference is not negligible and it reveals the
fact that the newly generated instances seem much harder than those generated by T’kindt
et al. (2004).

The results of the new algorithms are presented in Table 4.2. On depth first, without
memorization the program is “out of time” on instances with 50 jobs, while both solu-
tion memorization and passive node memorization enable to solve instances with up to
100 jobs, with passive node memorization running faster. With the activation of k-perm
search, Depth_Pr enables to solve 30 more jobs than Depth_Pa. This strongly proves the
power of all the three memorization schemes. It also worth to be noticed that Depth_Pa
solves instances with 30 more jobs with respect to Depth_Pa_04, knowing that the only
differences between these two algorithm are that the database size in Depth_Pa is larger
and the database cleaning strategy is different.

For best first, the same phenomenon can be observed, that is, Best_Pr is more efficient
than Best_Pa, which is better than Best- and Best_Pa_04. Best_Pr can also solve
instances with up to 130, and faster than Depth_Pr.

Breadth_Pa is the most powerful algorithm among all. It is surprising to see that
without memorization Breadth- cannot even solve all instances of 40 jobs, while with
passive node memorization instances of 130 jobs are all solved in an average solution time
of 27 seconds. Again, as for the 1|ri|

∑
Ci problem, LUFO allows to accelerate the solution

but it did not enable to solve larger instances.

127

4.4. APPLICATION TO THE 1|RI |
∑
CI , 1|D̃I |

∑
WICI AND F2||∑CI

PROBLEMS

n 40 50 60 70 80 90 100 110 120 130 140

Depth-

Navg 116827.7 OOT
Nmax 14536979
Tavg 1
Tmax 74

Depth_S

Navg 772.0 2718.0 6706.0 28463.0 114970.0 139382.0 563209.0 OOT
Nmax 17699 60462 137207 1660593 6180097 2803714 12335703
Tavg 0.4 0.5.0 1.0 3.0 15.0 12.0 113.0
Tmax 1 2 6 275 1544 474 5346

Depth_Pa

Navg 559.1 2091.3 5240.1 20068.3 75727.4 139429.8 376206.9 OOT
Nmax 11963 83075 94189 1004546 1960891 4321070 5549747
Tavg 0.4 0.4 0.5 0.9 2.9 5.5 17.0
Tmax 1 1 2 39 157 312 515

Depth_Pr

Navg 326.4 901.7 2184.1 6825.3 20429.0 32531.0 90375.3 266689.8 574824.4 1397463.6 OOT
Nmax 3431 17447 28677 187425 665376 768802 1781123 14713483 11236833 103699138
Tavg 0.4 0.4 0.4 0.6 1.0 1.0 3.8 14.4 37.9 108.2
Tmax 0 1 1 5 30 21 51 901 1255 8732

Best- OOT

Best_Pa

Navg 334.6 879.3 1859.0 7159.9 16581.8 27259.5 60349.0 OOT
Nmax 3800 20889 25574 440623 547165 1252600 798372
Tavg 0.4 0.4 0.4 0.7 1.3 1.8 4.3
Tmax 0 1 1 30 73 130 91

Best_Pr

Navg 292.0 708.9 1486.9 4312.7 10301.7 14642.9 31891.2 145203.1 239837.4 330474.1 OOT
Nmax 2435 11762 18051 120259 319068 276507 332022 10659343 7578570 6712266
Tavg 0.4 0.4 0.4 0.5 0.8 1.0 1.9 45.6 20.0 26.7
Tmax 0 1 1 4 23 13 25 5008 1137 716

Breadth- OOM

Breadth_Pa

Navg 348.6 940.9 1833.1 6533.4 14964.4 23725.0 53309.2 102633.5 239512.5 329902.3 OOT
Nmax 4701 16952 24559 437697 453506 868876 789310 5975094 7577492 6702080
Tavg 0.0 0.0 0.0 0.2 0.4 0.8 2.0 10.1 20.0 26.7
Tmax 0 0 0 9 15 31 36 1353 1135 718

Table 4.2: Results of the new algoritihms on the 1|d̃i|
∑
wiCi problem

4.4.3 Application to the F2||∑Ci problem

The F2||∑Ci problem asks to schedule n jobs are to be scheduled on two machinesM1

and M2. Each job i needs first to be processed on M1 for p1,i time units then be processed
on M2 for p2,i time. The objective is to minimize the sum of completion times of jobs. We
restrict to the set of permutation schedules in which there always exist an optimal solution.
A permutation schedule is a schedule in which the jobs sequences on the two machines are
the same. The problem is NP-hard in the strong sense. Up to 2016, the best exact algorithm
was the Branch & Bound algorithm proposed by T’kindt et al. (2004) and based on the
Branch & Bound algorithm of Della Croce et al. (2002). Recently, Detienne et al. (2016)
proposed a new and very efficient Branch & Bound algorithm capable of solving instances
with up to 100 jobs in size. This is definitely the state-of-the-art exact method for solving
the F2||∑Ci problem. However, in order to evaluate the impact of using Memorization
in a Branch & Bound algorithm we make use of the algorithms described by T’kindt et al.
(2004) since their code was directly available to us.

The adopted branching scheme in this algorithm is forward branching and all the three
search strategies were considered. The DP Property is also considered by T’kindt et al.
(2004), which is actually passive node memorization. The check() function is based on a
result reported by Della Croce et al. (2002) and is defined as follows:

128

4.4. APPLICATION TO THE 1|RI |
∑
CI , 1|D̃I |

∑
WICI AND F2||∑CI

PROBLEMS

check(π, σ) =

{
1, if opt(σ|0) ≤ opt(π|0) and |Ω| ∗ (C2(σ)− C2(π)) ≤ opt(π)− opt(σ)

0, otherwise

(4.4)
where Ω is the set of jobs to be scheduled after σ and π, C2(·) is the completion

time of a given sequence on the second machine. The items stored into the database are
〈σ,C2(σ), opt(σ|0), ExpAct〉.

4.4.3.1 Application of the memorization framework and improved results

This problem is not decomposable since given a partial solution of the form σS with
σ a fixed sequence, the optimal solution of subproblem S depends on the order of jobs
in σ. From the decision tree in Figure 4.4 we can derive that with the depth first search
strategy, solution memorization should be considered, even though its superiority over node
memorization depends on the presence of context dependent dominance conditions. Node
memorization was implemented with that strategy by T’kindt et al. (2004). Consequently,
in this section we compare four Branch & Bound algorithms: the three versions of T’kindt
et al. (2004), i.e. node memorization applied to the three search strategies and a version
based on depth first with solution memorization.

With the check() function defined in Equation 4.4 and the lower bound (a Lagrangian
Relaxation based lower bound) used in the algorithm, the concordance property is not
answered. We performed experiments to look for the case where for two nodes σS and
πS, check(π, σ) = 1 but LB(π) < LB(σ) and we found it. Therefore, the concordance
property is not verified and both active and explored nodes need to be considered for best
first strategy. For breadth first strategy, only active nodes need to be considered.

For solution memorization, since context dependent dominance conditions are enabled
in the algorithm, and they are important for a fast solution of the problem, lower bounds
are memorized during the solution memorization, as described in section 4.2.3.1. The items
stored into the memory are 〈π, t1, t2, C2(π), opt(π|(t1, t2))〉 where t1 is the actual starting
time of π on the first machine and t2 is the actual starting time of π on the second machine.
Besides, opt(π|(t1, t2)) is the sum of completion times of jobs in π, when π starts at time
t1 on the first machine and time t2 on the second machine. For node memorization, the
check() function and the stored item remain the same as in the work of T’kindt et al.
(2004), as described in the previous section.

30 instances are generated for each size n from 10 to 40, with the processing times
generated randomly from an uniform distribution in [1, 100]. Again, we ran the algorithms
of T’kindt et al. (2004) on these newly generated instances. Depth_Pa_04 is able to solve
instances of 40 jobs which is 5 jobs more than reported by T’kindt et al. (2004), with a
maximum solution time about 3.4 hours. Both Best_Pa_04 and Breadth_Pa_04 solve
instances with up to 35 jobs, as reported by T’kindt et al. (2004), with maximum solution
times of 43 seconds and 806 seconds, respectively.

Other results are given in Table 4.3. Depth- is able to solve instances with 35 jobs.
Best- is able to solve instances with 30 jobs and Breadth- can only solve up to 25 jobs.
With passive node memorization enabled, Depth_Pa solves instances with 5 more jobs than

129

4.4. APPLICATION TO THE 1|RI |
∑
CI , 1|D̃I |

∑
WICI AND F2||∑CI

PROBLEMS

Depth-. Best_Pa and Breadth_Pa solve instances with 10 more jobs than the versions
without Memorization. With respect to algorithms X_Pa_04, algorithms X_Pa use a
larger database, more precisely, the maximum number of solutions that can be stored is set
to 6000000 instead of 350000. This enables Best_Pa to solve 5 more jobs than Best_Pa_04.
However, Depth_Pa and Breadth_Pa are not able to solve larger instances with respect
to Depth_Pa_04 and Breadth_Pa_04, even though they solve instances faster. Notice
that the F2||∑Ci problem is a really hard problem, certainly more difficult than the two
other problems previously tackled.

Also, the LUFO strategy is adopted for database cleaning but it did not enable to solve
larger instances without having an “Out of Time” problem.

Predictive node memorization is not more efficient than passive node memorization: in
fact no nodes are cut by undertaking a k-perm search. The result is hence even slightly
slower due to the time consumed by the call to the k-perm heuristic. Depth_S solve
instances with less nodes generated compared to Depth-. However, its efficiency is even
less than Depth-, due to the processing of lower bound memorization.

From a global point of view, the power of memorization is also illustrated on this
problem, since we always have benefits in using it. As a perspective for this problem it
could be interesting to evaluate the contribution of Memorization when embedded into the
state-of-the-art algorithm of Detienne et al. (2016).

130

4.5. APPLICATION TO THE 1||∑TI PROBLEM

n 10 15 20 25 30 35 40 45

Depth-

Navg 23.7 255.6 4137.7 21460.4 317102.0 3615780.0 OOT
Nmax 84 2367 83863 311742 3097479 53187978
Tavg 0.0 0.0 0.1 0.8 26.0 423.0
Tmax 0 0 2 17 248 6128

Depth_S

Navg 24.0 228.0 3561.0 19733.0 294355.0 3425633.0 OOT
Nmax 84 1735 68070 273146 2712580 49360565
Tavg 0.0 0.0 0.1 1.0 29.0 497.0
Tmax 0 0 2 15 248 6933

Depth_Pa

Navg 22.8 187.2 1573.0 8205.0 61337.0 337194.0 1894037.2 OOT
Nmax 80 1083 17114 48459 291750 1568506 15472612
Tavg 0.0 0.0 0.0 0.1 4.1 35.0 328.3
Tmax 0 0 0 2 21 163 3627

Depth_Pr

Navg 22.8 187.2 1573.0 8205.0 61361.3 337194.0 1894037.0 OOT
Nmax 80 1083 17114 48459 291016 1568506 15472612
Tavg 0.0 0.0 0.0 0.1 4.1 32.8 332.8
Tmax 0 0 0 2 23 173 3664

Best- Navg 23.7 249.3 3993.1 21717.7 291131.9 OOM
Nmax 84 2253 83863 311742 2451152
Tavg 0.0 0.0 0.1 0.7 19.1
Tmax 0 0 2 17 197

Best_Pa

Navg 20.9 139.5 957.3 4780.7 28957.0 112229.8 495186.5 OOM
Nmax 72 624 6646 21022 152797 426641 3617824
Tavg 0.0 0.0 0.0 0.0 1.2 7.8 80.6
Tmax 0 0 0 1 4 43 1253

Best_Pr

Navg 20.9 139.5 957.3 4780.7 28957.0 112229.8 495186.5 OOM
Nmax 72 624 6646 21022 152797 426641 3617824
Tavg 0.0 0.0 0.0 0.0 1.4 8.3 83.1
Tmax 0 0 0 1 5 45 1283

Breadth- Navg 23.9 266.1 5181.8 39303.6 OOT
Nmax 84 2360 83863 311742
Tavg 0.0 0.0 0.1 1.6
Tmax 0 0 2 17

Breadth_Pa

Navg 21.0 148.8 1369.5 8889.1 115219.2 345109.6 OOT
Nmax 72 692 9927 63485 2242263 2357023
Tavg 0.0 0.0 0.0 0.2 26.1 54.2
Tmax 0 0 0 3 711 665

Table 4.3: Results of new algorithms on the F2||∑Ci problem

4.5 Application to the 1||∑Ti problem

In this section, we report the results of the application of Memorization on solving
the 1||∑Ti problem, already tackled in chapter 3 by Branch & Merge on the theoretical
aspect. We first recall some main properties of the problem, then determine parameters
for Memorization and finally report the computational results.

131

4.5. APPLICATION TO THE 1||∑TI PROBLEM

4.5.1 Preliminaries

The 1||∑Ti problem asks to schedule a set of n jobs N = {1, 2, . . . , n} on a single
machine to minimize the sum of tardiness. The current state-of-the-art exact method in
practice is a Branch & Bound algorithm (named as BB2001 in this chapter) which solves to
optimality problems with up to 500 jobs in size (Szwarc et al., 2001). The main properties
of the problem have already been introduced in section 3.1. Some of them are reminded
below for the ease of reference.

Let (1, 2, . . . , n) be a LPT (Longest Processing Time first) sequence and ([1], [2], . . . , [n])
be an EDD (Earliest Due Date first) sequence of all jobs.

We first introduce two important decomposition properties, which are the same as
Property 1 and Property 2, respectively, from chapter 3.

Decomposition 1. (Lawler, 1977) (Lawler’s decomposition) Let job 1 in LPT sequence
correspond to job [k] in EDD sequence. Then, job 1 can be set only in positions h ≥ k and
the jobs preceding and following job 1 are uniquely determined as B1(h) = {[1], [2], . . . , [k−
1], [k + 1], . . . , [h]} and A1(h) = {[h+ 1], . . . , [n]}.

Decomposition 2. (Szwarc et al., 1999) Let job k in LPT sequence correspond to job [1]
in EDD sequence. Then, job k can be set only in positions h ≤ (n − k + 1) and the jobs
preceding job k are uniquely determined as Bk(h), where Bk(h) ⊆ {k+ 1, k+ 2, . . . , n} and
∀i ∈ Bk(h), j ∈ {n, n− 1, . . . , k + 1}rBk(h), di ≤ dj

The two above decomposition rules can be applied simultaneously to derive a decom-
posing branching scheme called Double Decomposition (Szwarc et al., 2001). At any node,
let Si be a set of jobs to schedule. Note that some other jobs may have already been
fixed on positions before or after Si, implying a structure like σ1S1σ2S2...σiSi...σkSk over
all positions, but a node only focuses on the solution of one subproblem, induced by one
subset of jobs (Si here). With depth first, which is the search strategy retained in the
Branch & Bound BB2001, the Double Decomposition is always applied on S1. This works
as follows. First find the longest job ` and the earliest due date job e in S1. Then apply
Decomposition 1 (resp. Decomposition 2) to get the lists L` (resp. Le) of positions, on
which ` (resp. e) can be branched on. As an example, suppose Le = {1, 2} and L` = {5, 6}.
Then, a double branching can be done by fixing job e on position 1 and fixing job ` on
position 5, decomposing the jobset Si to three subsets (subproblems): the jobs before jobs
job e, which is ∅; the jobs between e and `; and finally the jobs after `. In the same way,
the other 3 branching can be performed by fixing jobs e and ` in all compatible position
pairs: (1, 6), (2, 5) and (2, 6).

When branching from a node, another particular decomposition may occur as described
in Property 12. Assume that a given subset of jobs S is decomposed into two disjoint subsets
B and A, with B ∪ A = S and all jobs of B are scheduled before that of A in an optimal
schedule of S: (B,A) is then called an optimal block sequence and Property 12 states when
does such decomposition occur. In that case Decomposition 1 and Decomposition 2 are
not applied but two child nodes are rather created each one corresponding to one block of
jobs (A or B), following Property 12 (also called the split property).

Let Ej and Lj be the earliest and latest completion times of job j, that is if Bj (resp.

132

4.5. APPLICATION TO THE 1||∑TI PROBLEM

Aj) is the currently known jobset that precedes (resp. follow) job j, then Ej = p(Bj) + pj ,
and Lj = p(N rAj).

Property 12. (Szwarc et al., 1999) (Split)
(B,A) is an optimal block sequence if maxi∈B Li ≤ minj∈AEj.

The value of Ei and Li of each job i can be obtained by applying Emmons’ conditions
(Emmons, 1969) following the O(n2) procedure provided by Szwarc et al. (1999).

An initial version of solution memorization has been already implemented in BB2001,
even though it was called Intelligent Backtracking by the authors. Remarkably, lower
bounds are not used in this Branch & Bound algorithms due to the “Algorithmic Paradox”
(Paradox 1) found by Szwarc et al. (2001). This one shows that the power of Memorization
largely surpasses the power of the lower bounding procedures in the algorithm.

Paradox 1. “...deleting a lower bound drastically improves the performance of the algo-
rithm...”

Paradox 1 is simply due to the fact that a lot of identical subproblems occur during
the exploration of the search tree. The computation time required by lower bounding
procedures to cut these identical problems are much higher than simply solving that sub-
problems once, memorizing the solution and reusing it whenever the subproblem appears
again. Besides, pruning nodes by the lower bound may negatively affect memorization
since the nodes that are cut cannot be memorized.

The BB2001 algorithm uses a depth first strategy and for each node to branch on, the
following procedure is applied:

1. Search the solution of the current problem, defined by a set of jobs and a starting
time of the schedule, in “memory”, and return the solution if found; otherwise go to
2.

2. Use Property 12 to split the problem and solve each new subproblem recursively
starting from step 1. If no split can be done, go to step 3.

3. Combine Decompositions 1 and 2 to branch on the longest job and the smallest-due-
date job to every candidate positions. For each branching case, solve subproblems
recursively, then store in memory the best solution among all branching cases and
return it.

The complexity of this algorithm has been analyzed in section 3.5.1 as an additional
result. Note that due to Paradox 1, all lower bounding procedures are removed, which
makes the Branch & Bound algorithm a simple branching algorithm. Notice that solution
memorization can be implemented in BB2001 as suggested in section 4.3. In BB2001, when
the database of stored solutions is full, no cleaning strategy is used and no more partial
solutions can be stored. The memory limit of this database in BB2001 is not mentioned
by Szwarc et al. (2001).

133

4.5. APPLICATION TO THE 1||∑TI PROBLEM

4.5.2 Application of the memorization framework and improved results

We take the reference algorithm BB2001 as a basis, in which decomposition branching
and solution memorization are already chosen. The decomposition branching has been
proved to be very powerful, and there is no evidence that other branching schemes like
forward branching or backward branching can lead to a better algorithm (see Szwarc et al.
(2001)). The problem is decomposable according to Definition 7. The main discussion relies
on the relevancy of considering node memorization instead of solution memorization. As
already mentioned in section 4.2.4.4, it is not obvious to implement node memorization, for
a decomposing branching scheme, which could outperform the solution memorization. Here
a node is structured as σ1S1...σkSk with the σi′s being the partial sequences to memorize
in node memorization. Assume we have two nodes σ1S1...σkSk and π1S

′
1...π`S

′
`, it is not

apparent to find σi and πj , i ∈ {1, .., k}, j ∈ {1, .., `}, such that σi and πj are of same
jobs and have the same starting time. Moreover it seems complicated to design an efficient
check() function deciding which of these two nodes is dominating the other. We found no
way to implement node memorization which could hopefully lead to better results than
those obtained with solution memorization. Consequently, solution memorization only is
considered and, as sketched in sections 4.2.4.5 and 4.2.4.6, there is no interest in considering
best first or breadth first search strategies.

Henceforth, the choices done by Szwarc et al. (2001) with respect to memorization were
good choices. In the remainder we investigate limitations of the memorization technique
as implemented by Szwarc et al. (2001) and propose improvements which significantly
augment the efficiency of the algorithm.

Our algorithm is based on BB2001, with two main changes.
Since the memory usage was declared as a bottleneck of BB2001, we firstly retest

BB2001 on our machine: a HP Z400 work station with 3.07GHz CPU and 8GB RAM. 200
instances are generated randomly for each problem size using the same generation scheme as
in the paper of Potts and Van Wassenhove (1982). Processing times are integers generated
from an uniform distribution in the range [1, 100] and due dates di are integers from a
uniform distribution in the range [piu, piv] where u = 1−T−R/2 and v = 1−T+R/2. Each
due date is set to zero whenever its generated value is negative. Twenty combinations (R, T)
are considered where R ∈ {0.2, 0.4, 0.6, 0.8, 1}, and T ∈ {0.2, 0.4, 0.6, 0.8}. Ten instances
are generated for each combination and the combination (R = 0.2, T = 0.6) yields the
hardest instances as reported in the literature (see Szwarc et al. (1999)) and confirmed by
our experiments. Again, all data can be found from http://www.vincent-tkindt.net/
index.php/resources.

Table 4.4 presents the results we obtain when comparing different algorithms. For each
version we compute the average and maximum CPU time Tavg and Tmax in seconds for
each problem size. The average and maximum number of explored nodes Navg and Nmax

are also computed. The time limit for the solution of each instance is set to 4 hours, and
the program is considered as OOT (Out of Time) if it reaches the time limit. Also, when
memorization is enabled without a database cleaning strategy, the physical memory may
be saturated by the program, in which case the program is indicated as OOM (Out of
Memory).

134

http://www.vincent-tkindt.net/index.php/resources
http://www.vincent-tkindt.net/index.php/resources

4.5. APPLICATION TO THE 1||∑TI PROBLEM

Our implementation of BB2001 solves instances with up to 900 jobs in size as reported
in Table 4.4, with an average solution time of 764s and a maximum solution time of 9403s
for 900-job instances, knowing that the original program, as tested in 2001 was limited to
instances with up to 500 jobs due to memory size limit. Their tests were done on a Sun
Ultra-Enterprise Station with a reduced CPU frequency (<450MHz) and a RAM size not
stated. It is anyway interesting to see that with just the computer hardware evolution,
Memorization is augmented to solve instances with 400 jobs more.

BB2001 is out of time (>4h) for instances with 1000 jobs, and the memory size seems
no longer to be the bottleneck. The first improvement we propose presume on the vein of
Paradox 1.

Paradox 2. Removing Split procedure (Property 12) from BB2001 drastically accelerate
the solution.

The effect of Paradox 2 is astonishing. The resulting algorithm NoSplit solves instances
with 700 jobs with an average solution time 20 times faster: from 192 seconds to 9 seconds
(see Table 4.4). In fact, Split is performed based on precedence relations between jobs,
induced by the computation of the Ej ′s and Lj ′s. The computation of these precedence
relations is time consuming in practice. Moreover, as already claimed, many identical
problems appear in the search tree and the Split procedure in BB2001 is run each time.
When Split is removed, identical problems are solved needing more time when first met,
but then never solved twice thanks to solution memorization. However, the disadvantage
is also clear: more solutions are added to the database and hence the database is filled
faster than when Split is enabled. This is why NoSplit encounters memory problems on
instances with 800 jobs. This was not considered by Szwarc et al. (2001) because Split
is a very strong component of the algorithm and the computer memory at that time also
discourages this tentative. Si, SDD2

At this point, we have a better understanding of the power of solution memorization on
this problem and we become curious on the effectiveness of memorized solutions. In other
words, what are the stored solutions that are effectively used? To answer this question,
we test cleaning strategies as defined in section 4.3, to remove useless solutions when the
database memory is “full”. The most efficient strategy is proved to be LUFO by preliminary
experiments not reported here. Embedding such a memory cleaning strategy is our second
contribution to BB2001 algorithm.

In Table 4.4, the final implementation of the memorization mechanism within the
Branch & Bound algorithm for the 1||∑Ti problem is referred to as NoSplit_LUFO.
All 200 instances with 1200 jobs are solved, with an average solution time of 192 seconds,
while BB2001 is limited to instances with 900 jobs.

The experiments presented so far have shown that correctly tuning the memorization
mechanism, notably by considering a cleaning strategy and studying interference with other
components of the algorithm may lead to serious changes of its efficiency. However, the
striking point of these experiments relates on the comparison between the version of BB2001
without the memorization mechanism (algorithm Depth-) and NoSplit_LUFO. Table 4.4
highlights the major contribution of memorization: Depth- being limited to instances with

135

4.5. APPLICATION TO THE 1||∑TI PROBLEM

n 300 400 500 600 700 800 900 1000 1100 1200 1300

Depth-

Navg 46046201 OOT
Nmax 2249342615
Tavg 155
Tmax 6499

BB2001

Navg 61501 136452 290205 560389 880268 1534960 2053522 OOT
Nmax 663268 1884993 3585456 5784871 9802077 18199764 19352429
Tavg 2 9 31 85 192 469 763
Tmax 33 193 580 1263 2963 6817 9403

NoSplit

Navg 202970 457918 985235 1934818 3053648 OOM
Nmax 2156144 6027604 13028651 20285112 33977553
Tavg 0 0 2 4 9
Tmax 4 13 34 59 114

NoSplit_LUFO

Navg 202970 457918 985235 1934818 3086620 5408511 7697810 12578211 19100285 28223766 OOT
Nmax 2156144 6027604 13028651 20285112 36853477 60151076 88909109 139698961 332937242 420974965
Tavg 0 0 2 5 9 20 31 61 112 192
Tmax 4 13 34 61 136 275 429 832 2504 3763

Table 4.4: Results for the 1||∑Ti problem

up to 300 jobs while NoSplit_LUFO is capable of solving all instances with 1200 jobs. It
is evident that memorization is a very powerful mechanism.

136

4.6. CHAPTER SUMMARY

4.6 Chapter summary

In this chapter we focus on the application of Memorization within branching algo-
rithms for the efficient solution of sequencing problems. A framework of Memorization is
established with several memorization schemes defined. Advices are provided to choose the
best memorization approach according to the branching scheme and the search strategy
of the algorithm. Some details on the efficient implementation of Memorization are also
discussed.

The application of the framework has been done on four scheduling problems. Even if
the impact of Memorization depends on the problem, for all the tackled problems it was
beneficial to use it. Table 4.5 provides a summary of the conclusions obtained.

Problem Largest instances solved Features of the best algorithm
with memorization

Best in
literature?Without

memorization
With

memorization

1|ri|
∑
Ci 80 jobs 130 jobs depth first+

predictive node memorization yes

1|d̃i|
∑
wiCi 40 jobs 130 jobs breadth first+

passive node memorization yes

F2||∑Ci 30 jobs 40 jobs best first+
passive node memorization no

1||∑Ti 300 jobs 1200 jobs depth first+
solution memorization yes

Table 4.5: Conclusions on the tested problems

Fundamentally, what we call the Memorization Paradigm relies on a simple but poten-
tially very efficient idea: avoid solving multiple times the same subproblems by memorizing
what has already been done or what can be done in the rest of the solution process. The
contribution of this paradigm strongly relies on the branching scheme which may induce
more or less redundancy in the exploration of the solution space. Noteworthy, the four
scheduling problems dealt with in this chapter mainly serve as applications illustrating
how memorization can be done in an efficient way. But, it is also clear that it can be
applied to other hard combinatorial optimization problems, by the way making this contri-
bution interesting beyond scheduling theory. To our opinion, the memorization paradigm
should be embedded into any branching algorithm, so creating a new class of branching
algorithms called Branch & Memorize algorithms. They may have a theoretical interest by
offering the possibility of reducing the worst-case time complexity with respect to Branch
& Bound algorithms. And they also have an interest from an experimental viewpoint, as
illustrated in this chapter.

The main work in this chapter has been performed together with Vincent T’Kindt and
Federico Della Croce (Politechnico di Torino, Italy). The computational results on the
1||∑Ti problem have been reported at the international conference on Industrial Engi-
neering and Systems Management (IESM 2017) (Shang et al., 2017e), being selected as
the first prize of the Best Student Paper Award. It has also been communicated in the

137

4.6. CHAPTER SUMMARY

ROADEF 2017 conference (Shang et al., 2017b) and the joint working days (26th/27th,
September 2017) of the french GOThA and Bermudes groups. The complete results have
been submitted to the European Journal of Operational Research and it can be found on
HAL (Shang et al., 2017d).

138

Conclusion

Three main contributions are worked out during this thesis. The first one, presented in
chapter 2, is about a Dynamic Programming algorithm which solves the F3||Cmax problem
in O∗(3n) time and space. The algorithm is based on a local dominance condition, consist-
ing of two inequalities of the completion time on the second and the third machine. For any
two partial solution sequences satisfying the condition, the dominated one is eliminated,
therefore no longer considered during the later construction of the optimal global solution.
The algorithm can be seen as a generalization of the conventional DP solving TSP-like
problems, with the difference that in conventional DP the partial solutions of an optimal
solution is optimal with respect to their corresponding subproblems, while this is not the
case for flowshop problems. The practical efficiency of the algorithm has been evaluated.
Without much surprise, the algorithm is proved to be impractical due to its exponential
space complexity. This is a common drawback of Dynamic Programming algorithms over
all subsets. Its running time on randomly generated instances is also far from competi-
tive compared to state-of-the-art Branch & Bound algorithms. Actually, the algorithm is
too much designed for the worst-case scenario that it is not powerful on solving common
instances. The algorithm is easily generalized to solve other flowshop problems including
F2||f and F3||f , and single machine problems like 1|ri|f , with f ∈ {fmax, fi}. Since it
seems pretty difficult to derive even faster EEAs for F3||Cmax, we prove a complexity lower
bound of this problem, based on ETH, as an additional result. It shows that unless ETH
fails, the F3||Cmax problem cannot be solved in subexponential time. Despite our extra
research effort, we do not have much perspective on the search of a faster EEA for the
F3||Cmax problem. Perhaps a wise choice is to walk out a little from the context of tradi-
tional complexity theory and try to include extra parameters into the complexity measure
of algorithms, that is, try to derive parameterized algorithms.

The second contribution, presented in chapter 3, is a search tree method called Branch &
Merge which solves the 1||∑Ti problem with the time complexity converging toO∗(2n) and
in polynomial space. The work started by proposing a Branch & Reduce algorithm based
on the well known Lawler’s property, which decomposes the problem to two subproblems
each time the job with the longest processing time is fixed to a position. This yields
a structure with some similarity to Divide & Conquer, which can be represented as a
search tree. We then analyzed the search tree carefully over the worst-case instance and
found that many identical subproblems appear in different part of the tree, that is, they
are generated repetitively due to Lawler’s property. After a careful analysis, an operation
called merging is derived. The idea is to merge all identical nodes to one whenever possible.
More concretely, at each branching, a part of the search tree is developed, keeping the space

139

CONCLUSION

usage polynomial, and all identical nodes are identified and merged to one. Notice that
we are not just cutting dominated nodes but also put the resulting node of merging in a
specific position in the tree, so that subsequent mergings become possible. The algorithm
goes in depth-first hence uses only polynomial space. By a careful analysis of the running
time, we show that its time complexity converges to O∗(2n), depending on a constant
parameter k which controls the extent of merging.

The algorithm Branch & Merge is implemented and tested on randomly generated in-
stances. The effectiveness of merging is proved since Branch & Merge runs faster than
Branch & Reduce. However, surprisingly, when we add other well known problem prop-
erties, notably another rule that decomposes the problem and some rules eliminating the
positions to consider when branching on the longest job, Branch & Merge does not show
any superiority over the state-of-the-art Branch & Bound algorithm. Further analysis and
preliminary experimentation revealed that the added properties have a negative effect on
the efficiency of merging. In fact, for non-worst-case instances, most branching positions
are already eliminated by some rules and only very few identical nodes can still be identi-
fied and merged. The corresponding gain is not larger than the extra cost caused by the
merging operation itself. Nevertheless, the Branch & Merge framework provides an algo-
rithmic complexity view of the solution of the 1||∑Ti problem and it is generalizable to
other problems benefiting similar decomposition properties, even though it seems difficult
to find another scheduling problem having such property. On the improvement of practical
efficiency, the work continued and finally led to the results in chapter 4.

Chapter 4 presents our third contribution, which is an extended work of chapter 3.
When trying to improve the practical efficiency of Branch & Merge, we realized that a
better way to implement the idea is to use Memorization, that is, instead of merging nodes
in a structural way, we simply memorize the optimal solution of subproblems when they are
solved at the first time, and reuse that solution whenever the same problem appears again.
This is actually what has been done in the state-of-the-art Branch & Bound algorithm
of Szwarc et al. (2001). When the memory is suitably implemented, the method is more
efficient than Branch & Merge even though more memory needs to be used. Memorization
has been implemented and tested on the 1||∑Ti problem. By the finding of a new paradox
and the implementation of a memory cleaning strategy, the method succeeded to solve
instances with 300 more jobs with respect to the state-of-the-art algorithm. Then the same
treatment is extended to another three problems (1|ri|

∑
Ci, 1|d̃i|

∑
wiCi and F2||∑Ci)

addressed by T’kindt et al. (2004). The four problems all together show the power of
the Memorization paradigm when applied on sequencing problems. We call it Branch &
Memorize to promote a systematic consideration of Memorization as an essential building
block in branching algorithm like Branch & Bound. The method can certainly be used on
other problems as well.

The memory cleaning strategy implemented in our Memorization has a surprising effect
on the algorithm’s efficiency. In fact, the most items contained in the memory are not
useful at all. By cleaning these items out, the memory is used much more efficiently, which
leads to an augmentation of the performance. However, it is not always easy to decide
which solutions should be kept in the memory and which ones should be eliminated. As a
perspective, we consider to use some Machine Learning techniques to make this decision.
This is a so-called classification problem. Each item, corresponding to a subproblem and

140

CONCLUSION

its optimal solution, is a feature that should be suitably represented to allow possible
characteristic extraction. An AI system can then be trained to judge whether a given item
is worth being memorized or whether an already memorized item should be removed. Since
lots of different instances are needed for a good training, each feature should also encode
its corresponding instance, since an item that is useful for one instance is not necessarily
equally valuable for other instances.

Another important point that we would have realized is to consider the fact that the
memory used for solving one instance may be very useful for solving other instances. At
the end of the solution of an instance, the memory contains a large number of already
solved small problems. These results remains valid for later instances. In other words,
without Memorization, there might be some subproblems that are solved repetitively over
different instances.

At the end of this research, it is interesting and also important to review all these
three results and to explore the inner link between the techniques: Dynamic Programming,
Branch & Merge and Memorization(or Branch & Memorize). First of all, it worth being
noticed that the conventional Dynamic Programming (of TSP) across all subsets can also
be expressed as a search tree. Consider the search tree of the brute-force algorithm, in
which the level ` of the tree is composed of all partial solutions of length `. The number of
nodes at level ` is hence

(
n
`

)
!. Among all these partial solutions, many consist of the same

jobs (or operations, to be generic) but with a different ordering. For all partial solutions
that are different orderings of the same jobs, Dynamic Programming allows to keep only
the dominant one. This is very similar to the merging operation in Branch & Merge that
solves the 1||∑Ti problem. Note that the 1||∑Ti problem can also be solved by Dynamic
Programming, but by exploiting specific properties, Branch & Merge can perform the job
better and only in polynomial space.

The Dynamic Programming algorithm can often be implemented in two ways: top-
down or bottom-up along the search tree. The top-down way is a recursive implementation
and the bottom-up way is actually Memorization. Therefore, Dynamic Programming and
Memorization are also tightly related. Note that the ideas behind these two techniques
are not identical: Dynamic Programming lays on the fact that partial solutions of an
optimal solution are themselves optimal for the implied subproblems, while the idea of
Memorization is to avoid solving a subproblem more than once, though sometimes these
two ideas may coincide on a concrete problem. The link between Branch & Merge and
Memorization (or Branch & Memorize) is pretty clear, since the latter is finally adopted
in practice as a more efficient way to implement the idea of Branch & Merge.

All the three techniques, are superior with respect to the brute-force algorithm. This has
been achieved, very reasonably, by avoiding solving identical subproblems or by eliminating
dominated partial solutions. However, as introduced in section 1.2.2, there exists other
algebraic techniques, such as Inclusion & Exclusion and Subset Convolution which work
differently. Using these techniques to tackle scheduling problems is an interesting direction
to explore, though some attempt of the author has been fruitless.

141

CONCLUSION

In the end, we would like to insist that Scheduling problems are central problems
in Operation Research. It is essential to gain more knowledge about the hardness and
the complexity of these problems. We hope that our works during this thesis have some
positive influence on this (the publications of our works are summarized in Table 4.6). On
the practical side, we also believe that EEAs have the potential to become practical, at
least for moderate input size. It seems that more and more results are popping up, on the
design of algorithms with better complexity for scheduling problems. This is more visible
from a point of view of Parameterized Complexity Theory. We believe that such research
will bring a new angle for solving scheduling problems and more new interesting techniques
and theories will appear as a result.

Chapter Publications

2
J. of Scheduling(Shang et al., 2017c)

MISTA’15a(Shang et al., 2015)
ROADEF’16(Shang et al., 2016b)

3

TCS (under review (Garraffa et al., 2017))
IPEC’17(Shang et al., 2017a)
PMS’16(Shang et al., 2016a)

MISTA’15b(Della Croce et al., 2015b)
ROADEF’17(Shang et al., 2017b)
AIRO’15(Della Croce et al., 2015a)

4
EJOR (under review (Shang et al., 2017d))

IESM’17(Shang et al., 2017e) (Best Student Paper Award, 1st place)
ROADEF’17(Shang et al., 2017b)

Table 4.6: Summary of publications

142

Bibliography

S. Ashour. A branch-and-bound algorithm for the flow shop problem scheduling problem.
AIIE Transactions, 2:172–176, 1970.

K. R. Baker. Introduction to sequencing and scheduling. John Wiley & Sons, 1974.

J. F. Bard, F. Szidarovszky, M. E. Gershon, and L. Duckstein. Techniques for Multiobjec-
tive Decision Making in Systems Management, 1988.

R. Bellman. On the theory of dynamic programming. Proceedings of the National Academy
of Sciences, 38(8):716–719, 1952.

R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1
edition, 1957.

R. Bellman. Dynamic programming treatment of the travelling salesman problem. Journal
of the ACM (JACM), 9(1):61–63, 1962.

A. Biere, M. Heule, H. Van Maaren, and T. Walsh. Conflict-driven clause learning SAT
solvers. Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications,
pages 131–153, 2009.

A. Björklund and T. Husfeldt. Exact algorithms for exact satisfiability and number of
perfect matchings. Algorithmica, 52(2):226–249, 2008.

A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: fast subset
convolution. In Proceedings of the thirty-ninth annual ACM symposium on Theory of
computing, pages 67–74. ACM, 2007.

H. L. Bodlaender and M. R. Fellows. W[2]-hardness of precedence constrained k-processor
scheduling. Operations Research Letters, 18(2):93–97, 1995.

H. L. Bodlaender, F. V. Fomin, A. M. Koster, D. Kratsch, and D. M. Thilikos. On
exact algorithms for treewidth. In European Symposium on Algorithms, pages 672–683.
Springer, 2006.

H. L. Bodlaender, F. V. Fomin, A. M. Koster, D. Kratsch, and D. M. Thilikos. On exact
algorithms for treewidth. ACM Transactions on Algorithms (TALG), 9(1):12, 2012.

N. Bourgeois, B. Escoffier, V. T. Paschos, and J. M. Van Rooij. A bottom-up method and
fast algorithms for max independent set. In SWAT, volume 6139, pages 62–73. Springer,
2010.

143

BIBLIOGRAPHY

I. Boussaïd, J. Lepagnot, and P. Siarry. A survey on optimization metaheuristics. Infor-
mation Sciences, 237:82 – 117, 2013.

A. Brown and Z. Lomnicki. Some applications of the “branch-and-bound” algorithm to
the machine scheduling problem. Journal of the Operational Research Society, 17(2):
173–186, 1966.

P. Brucker. Scheduling Algorithms. Springer-Verlag Berlin Heidelberg, 5th edition, 2007.

P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch. Resource-constrained
project scheduling: Notation, classification, models, and methods. European Journal of
Operational Research, 112(1):3–41, 1999.

J. Carlier and I. Rebaï. Two branch and bound algorithms for the permutation flow shop
problem. European Journal of Operational Research, 90(2):238–251, 1996.

R. Carraway and T. Morin. Theory and applications of generalized dynamic programming:
An overview. Computers & Mathematics with Applications, 16(10–11):779 – 788, 1988.
ISSN 0898-1221.

R. L. Carraway, T. L. Morin, and H. Moskowitz. Generalized dynamic programming for
multicriteria optimization. European Journal of Operational Research, 44(1):95–104,
1990.

V. Černỳ. Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. Journal of Optimization Theory and Applications, 45(1):41–51,
1985.

L. S. Chandran and F. Grandoni. Refined memorization for vertex cover. Information
Processing Letters, 93(3):125–131, 2005.

J. Cheng, H. Kise, and H. Matsumoto. A branch-and-bound algorithm with fuzzy infer-
ence for a permutation flowshop scheduling problem. European Journal of Operational
Research, 96(3):578–590, 1997.

C. Chu. A branch-and-bound algorithm to minimize total flow time with unequal release
dates. Naval Research Logistics (NRL), 39(6):859–875, 1992.

A. Cobham. The intrinsic computational difficulty of functions. In Logic, methodology
and philosophy of science, Proceedings of the 1964 International Congress, page 24–30.
North-Holland Publishing Company, 1965.

R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of scheduling. Addison-Wesley
Educational Publishers, 1967.

S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third
annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
MIT press Cambridge, 3 edition, 2009.

144

BIBLIOGRAPHY

G. A. Croes. A method for solving traveling-salesman problems. Operations Research, 6
(6):791–812, 1958.

M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. Scheduling partially ordered
jobs faster than 2n. Algorithmica, 68(3):692–714, 2014.

M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi,
S. Saurabh, and M. Wahlström. On problems as hard as CNF-SAT. ACM Transac-
tions on Algorithms (TALG), 12(3):41, 2016.

F. Della Croce, R. Tadei, P. Baracco, and A. Grosso. A new decomposition approach
for the single machine total tardiness scheduling problem. Journal of the Operational
Research Society, pages 1101–1106, 1998.

F. Della Croce, M. Ghirardi, and R. Tadei. An improved branch-and-bound algorithm
for the two machine total completion time flow shop problem. European Journal of
Operational Research, 139(2):293–301, 2002.

F. Della Croce, M. Garraffa, L. Shang, and V. T’Kindt. A branch-and-reduce exact algo-
rithm for the single machine total tardiness problem. 45ème Conférence de la Société
Italienne de Recherche Opérationnelle (AIRO 2015), Pise (Italie), septembre 2015, 2015a.

F. Della Croce, M. Garraffa, L. Shang, and V. T’kindt. A branch-and-reduce exact algo-
rithm for the single machine total tardiness problem. In 7th Multidisciplinary Interna-
tional Conference on Scheduling : Theory and Applications (MISTA 2015), MISTA 2015
proceedings, pages 879–881, Prague, Czech Republic, 2015b.

B. Detienne, R. Sadykov, and S. Tanaka. The two-machine flowshop total completion time
problem: branch-and-bound algorithms based on network-flow formulation. European
Journal of Operational Research, 252(3):750–760, 2016.

M. Dorigo. Optimization, learning and natural algorithms. PhD Thesis, Politecnico di
Milano, Italy, 1992.

M. Dorigo and C. Blum. Ant colony optimization theory: A survey. Theoretical computer
science, 344(2-3):243–278, 2005.

M. Dorigo, V. Maniezzo, A. Colorni, and V. Maniezzo. Positive feedback as a search
strategy. Technical report, Technical Report No. 91-016, Politechnico di Milano, 1991.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a colony of cooperat-
ing agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
26(1):29–41, 1996.

R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer, 1999.

R. G. Downey and M. R. Fellows. Fundamentals of parameterized complexity, volume 4.
Springer, 2013.

145

BIBLIOGRAPHY

S. Dreyfus. Richard Bellman on the birth of dynamic programming. Operations Research,
50(1):48–51, 2002.

J. Du and J. Y.-T. Leung. Minimizing total tardiness on one machine is NP-hard. Mathe-
matics of Operations Research, 15(3):483–495, 1990.

J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17(3):449–467,
1965.

H. Emmons. One-machine sequencing to minimize certain functions of job tardiness. Op-
erations Research, 17(4):701–715, 1969.

D. Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfac-
tion. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
pages 329–337. Society for Industrial and Applied Mathematics, 2001.

G. W. Evans, T. L. Morin, and H. Moskowitz. Multiobjective energy generation planning
under uncertainty. IIE Transactions, 14(3):183–192, 1982.

M. R. Fellows and C. McCartin. On the parametric complexity of schedules to minimize
tardy tasks. Theoretical computer science, 298(2):317–324, 2003.

M. R. Fellows, S. Gaspers, and F. A. Rosamond. Parameterizing by the number of numbers.
Theory of Computing Systems, 50(4):675–693, 2012.

J. Flum and M. Grohe. Parameterized complexity theory. Springer Science & Business
Media, 2006.

F. V. Fomin and D. Kratsch. Exact exponential algorithms. Springer Science & Business
Media, 2010.

F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and Conquer: domination–a case
study. In International Colloquium on Automata, Languages, and Programming, pages
191–203. Springer, 2005a.

F. V. Fomin, F. Grandoni, and D. Kratsch. Some new techniques in design and analysis
of exact (exponential) algorithms. Bulletin of the EATCS, 87(47-77):0–288, 2005b.

F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and Conquer: a simple O(20.288n) inde-
pendent set algorithm. In Proceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm, pages 18–25. Society for Industrial and Applied Mathematics,
2006.

F. V. Fomin, F. Grandoni, and D. Kratsch. A Measure & Conquer approach for the analysis
of exact algorithms. Journal of the ACM (JACM), 56(5):25, 2009.

J. M. Framinan, J. N. Gupta, and R. Leisten. A review and classification of heuristics for
permutation flow-shop scheduling with makespan objective. Journal of the Operational
Research Society, 55(12):1243–1255, 2004.

H. L. Gantt. Work, wages, and profits. Engineering Magazine Co., 1916.

146

BIBLIOGRAPHY

M. R. Garey and D. S. Johnson. Complexity results for multiprocessor scheduling under
resource constraints. SIAM Journal on Computing, 4(4):397–411, 1975.

M. R. Garey and D. S. Johnson. Computers and intractability. W.H. Freeman New York,
1979.

M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research, 1(2):117–129, 1976.

M. Garraffa, L. Shang, F. Della Croce, and V. T’Kindt. An Exact Exponential Branch-and-
Merge Algorithm for the Single Machine Total Tardiness Problem. https://hal.archives-
ouvertes.fr/hal-01477835, Feb 2017.

F. Glover. Future paths for integer programming and links to artificial intelligence. Com-
puters & Operations Research, 13(5):533–549, 1986.

F. Glover. Tabu search—part I. ORSA Journal on Computing, 1(3):190–206, 1989.

F. Glover. Tabu search—part II. ORSA Journal on Computing, 2(1):4–32, 1990.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan. Optimization and approximation
in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics,
5:287–326, 1979.

R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for
Computer Science. Addison Wesley, 2 edition, 1994.

J. A. Gromicho, J. J. V. Hoorn, F. S. da Gama, and G. T. Timmer. Solving the job-
shop scheduling problem optimally by Dynamic Programming. Computers & Operations
Research, 39(12):2968–2977, 2012.

Y. Gurevich and S. Shelah. Expected computation time for Hamiltonian path problem.
SIAM Journal on Computing, 16(3):486–502, 1987.

I. Harjunkoski, C. Maravelias, P. Bongers, P. Castro, S. Engell, I. Grossmann, J. Hooker,
C. Méndez, G. Sand, and J. Wassick. Scope for industrial applications of production
scheduling models and solution methods. Computers & Chemical Engineering, 62:161 –
193, 2014.

M. Held and R. M. Karp. A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial & Applied Mathematics, 10(1):196–210, 1962.

M. I. Henig. Vector-valued dynamic programming. SIAM Journal on Control and Opti-
mization, 21(3):490–499, 1983.

E. Horowitz and S. Sahni. Computing partitions with applications to the knapsack problem.
Journal of the ACM (JACM), 21(2):277–292, 1974.

147

BIBLIOGRAPHY

E. Ignall and L. Schrage. Application of the branch and bound technique to some flow-shop
scheduling problems. Operations Research, 13(3):400–412, 1965.

R. Impagliazzo and R. Paturi. On the Complexity of k-SAT. Journal of Computer and
System Sciences, 62(2):367 – 375, 2001.

K. Jansen, S. Kratsch, D. Marx, and I. Schlotter. Bin packing with fixed number of bins
revisited. Journal of Computer and System Sciences, 79(1):39–49, 2013a.

K. Jansen, F. Land, and K. Land. Bounding the Running Time of Algorithms for Schedul-
ing and Packing Problems. In F. Dehne, R. Solis-Oba, and J.-R. Sack, editors, Algorithms
and Data Structures, volume 8037 of Lecture Notes in Computer Science, pages 439–450.
Springer Berlin Heidelberg, 2013b.

T. Jian. An o(20.304n) algorithm for solving maximum independent set problem. IEEE
Transactions on Computers, 100(9):847–851, 1986.

S. Johnson. Optimal two-and three-stage production schedules with setup times included.
Naval Research Logistics (NRL), 1(1):61–68, 1954.

A. Jouglet, P. Baptiste, and J. Carlier. Branch-and-Bound Algorithms for TotalWeighted
Tardiness. In Handbook of scheduling: Algorithms, models, and performance analysis.
Chapman and Hall/CRC, 2004.

R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972.

R. M. Karp. Dynamic programming meets the principle of inclusion and exclusion. Oper-
ations Research Letters, 1(2):49–51, 1982.

J. E. Kelley Jr and M. R. Walker. Critical-path planning and scheduling. In Papers
presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference,
pages 160–173. ACM, 1959.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing.
Science, 220(4598):671–680, 1983.

J. Kneis, A. Langer, and P. Rossmanith. A fine-grained analysis of a simple independent
set algorithm. In LIPIcs-Leibniz International Proceedings in Informatics, volume 4.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2009.

A. Kooli and M. Serairi. A mixed integer programming approach for the single machine
problem with unequal release dates. Computers & Operations Research, 51:323–330,
2014.

C. Koulamas. The single-machine total tardiness scheduling problem: review and exten-
sions. European Journal of Operational Research, 202(1):1–7, 2010.

H.-T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors.
Journal of the ACM (JACM), 22(4):469–476, 1975.

148

BIBLIOGRAPHY

T. Ladhari and M. Haouari. A computational study of the permutation flow shop problem
based on a tight lower bound. Computers & Operations Research, 32(7):1831–1847, 2005.

B. Lageweg, J. Lenstra, and A. Rinnooy Kan. A general bounding scheme for the permu-
tation flow-shop problem. Operations Research, 26(1):53–67, 1978.

E. L. Lawler. A “pseudopolynomial” algorithm for sequencing jobs to minimize total tar-
diness. Annals of Discrete Mathematics, 1:331–342, 1977.

C.-Y. Lee. Machine scheduling with an availability constraint. Journal of Global Optimiza-
tion, 9(3-4):395–416, 1996.

C.-Y. Lee. Machine scheduling with availability constraints. In L. JY-T, editor, Handbook
of Scheduling: Algorithms, Models and Performance Analysis, chapter 22, pages 22.1–
22.13. Chapman & Hall/CRC, Boca Raton, FL, 2004.

J. J. K. Lenstra. The mystical power of twoness: in memoriam Eugene L. Lawler. Journal
of Scheduling, 1(1):3, 1998.

C. Lenté, M. Liedloff, A. Soukhal, and V. T’Kindt. On an extension of the Sort & Search
method with application to scheduling theory. Theoretical Computer Science, 511:13–22,
2013.

C. Lenté, M. Liedloff, A. Soukhal, and V. T’Kindt. Exponential Algorithms for Scheduling
Problems. HAL, 2014. URL https://hal.archives-ouvertes.fr/hal-00944382.

J. Y. Leung. Handbook of scheduling: algorithms, models, and performance analysis. CRC
Press, 2004.

D. Lokshtanov and J. Nederlof. Saving space by algebraization. In Proceedings of the
forty-second ACM symposium on Theory of computing, pages 321–330. ACM, 2010.

Z. Lomnicki. A “branch-and-bound” algorithm for the exact solution of the three-machine
scheduling problem. Journal of the Operational Research Society, 16(1):89–100, 1965.

G. McMahon and P. Burton. Flow-shop scheduling with the branch-and-bound method.
Operations Research, 15(3):473–481, 1967.

L. G. Mitten. Preference order dynamic programming. Management Science, 21(1):43–46,
1974.

M. Mnich and A. Wiese. Scheduling and fixed-parameter tractability. Mathematical Pro-
gramming, 154(1-2):533–562, 2015.

P.-A. Morin. Algorithmes exponentiels en ordonnancement. Projet recherche & développe-
ment, Ecole Polytechnique de l’Université François Rabelais de Tours, Tours, France,
2014-2015.

J. F. Muth and G. L. Thompson. Industrial scheduling. Prentice-Hall, 1963.

149

https://hal.archives-ouvertes.fr/hal-00944382

BIBLIOGRAPHY

T. Nicholson. A sequential method for discrete optimization problems and its application
to the assignment, travelling salesman, and three machine scheduling problems. IMA
Journal of Applied Mathematics, 3(4):362–375, 1967.

Y. Pan. An improved branch and bound algorithm for single machine scheduling with
deadlines to minimize total weighted completion time. Operations Research Letters, 31
(6):492–496, 2003.

M. Pinedo. Scheduling (Third Edition). Springer, 2008.

M. E. Posner. Minimizing weighted completion times with deadlines. Operations Research,
33(3):562–574, 1985.

C. Potts. An adaptive branching rule for the permutation flow-shop problem. European
Journal of Operational Research, 5(1):19–25, 1980.

C. Potts and L. Van Wassenhove. A decomposition algorithm for the single machine total
tardiness problem. Operations Research Letters, 1(5):177–181, 1982.

C. Potts and L. Van Wassenhove. Integrating scheduling with batching and lot-sizing: a
review of algorithms and complexity. Journal of the Operational Research Society, pages
395–406, 1992.

C. N. Potts and M. Y. Kovalyov. Scheduling with batching: A review. European Journal
of Operational Research, 120(2):228–249, 2000.

C. N. Potts and V. A. Strusevich. Fifty years of scheduling: a survey of milestones. Journal
of the Operational Research Society, 60(1):S41–S68, 2009.

C. N. Potts and L. N. Van Wassenhove. An algorithm for single machine sequencing with
deadlines to minimize total weighted completion time. European Journal of Operational
Research, 12(4):379–387, 1983.

K. Pruhs, J. Sgall, and E. Torng. Online scheduling. In L. JY-T, editor, Handbook of
Scheduling: Algorithms, Models and Performance Analysis, chapter 15, pages 15.1–15.43.
Chapman & Hall/CRC, Boca Raton, FL, 2004.

S. Reza Hejazi and S. Saghafian. Flowshop-scheduling problems with makespan criterion:
a review. International Journal of Production Research, 43(14):2895–2929, 2005.

J. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms, 7(3):
425–440, 1986.

K. H. Rosen. Discrete mathematics and its applications. McGraw-Hill, 7 edition, 2012.

M. Rosenman and J. S. Gero. Pareto optimal serial dynamic programming. Engineering
Optimization, 6(4):177–183, 1983.

R. Ruiz and C. Maroto. A comprehensive review and evaluation of permutation flowshop
heuristics. European Journal of Operational Research, 165(2):479 – 494, 2005. Project
Management and Scheduling.

150

BIBLIOGRAPHY

E. Sanlaville and G. Schmidt. Machine scheduling with availability constraints. Acta
Informatica, 35(9):795–811, 1998.

G. Schmidt. Scheduling with limited machine availability. European Journal of Operational
Research, 121(1):1–15, 2000.

R. Schroeppel and A. Shamir. A T = O(2n/2), S = O(2n/4) algorithm for certain NP-
Complete Problems. SIAM journal on Computing, 10(3):456–464, 1981.

L. Shang, C. Lenté, M. Liedloff, and V. T’Kindt. An exponential dynamic programming
algorithm for the 3-machine flowshop scheduling problem to minimize the makespan. In
7th Multidisciplinary International Conference on Scheduling : Theory and Applications
(MISTA 2015), MISTA 2015 proceedings, pages 755–758, Prague, Czech Republic, Aug.
2015.

L. Shang, M. Garraffa, F. Della Croce, and V. T’Kindt. An Exact Exponential Branch-and-
Merge Algorithm for the Single Machine Total Tardiness Problem. In 16th International
Conference on Project Management and Scheduling (PMS 16), PMS 2016 proceedings,
pages 182–185, Valencia, Espagne, 2016a.

L. Shang, C. Lenté, M. Liedloff, and V. T’Kindt. Programmation dynamique exponentielle
pour des problèmes d’ordonnancement de type flowshop à 3 machines. 17ème congrés de
la Société Française de Recherche Opérationnelle et d’Aide à la Décision (ROADEF’16),
Compiègne, 10 au 12 février 2016, 2016b.

L. Shang, M. Garraffa, F. Della Croce, and V. T’Kindt. Merging nodes in search trees: an
exact exponential algorithm for the single machine total tardiness scheduling problem. In
12th International Symposium on Parameterized and Exact Computation (IPEC 2017),
volume 89 of LIPIcs, pages 28:1–28:12, Vienna, Austria, Aug 2017a. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik.

L. Shang, M. Garraffa, F. Della Croce, and V. T’Kindt. An Exact Node-Merging Algorithm
for the Single Machine Total Tardiness Problem : Experimental Considerations. 18ème
congrés de la Société Française de Recherche Opérationnelle et d’Aide à la Décision
(ROADEF’17), Metz, 22 au 24 février 2017, 2017b.

L. Shang, C. Lenté, M. Liedloff, and V. T’Kindt. Exact exponential algorithms for 3-
machine flowshop scheduling problems. Journal of Scheduling, pages 1–7, 2017c.

L. Shang, V. T ’kindt, and F. Della Croce. The Memorization Paradigm: Branch & Mem-
orize Algorithms for the Efficient Solution of Sequencing Problems. https://hal.archives-
ouvertes.fr/hal-01599835, Oct 2017d.

L. Shang, V. T’Kindt, and F. Della Croce. Exact Solution of the Single Machine To-
tal Tardiness Problem : the Power of Memorization. In 7th International Conference
on Industrial Engineering and System Management (IESM 2017), pages 268–272, Saar-
brucken, Germany, Oct 2017e. Best Student Paper Award.

151

BIBLIOGRAPHY

M. Sipser. The history and status of the p versus np question. In Proceedings of the
twenty-fourth annual ACM symposium on Theory of computing, pages 603–618. ACM,
1992.

C. Smutnicki. Some results of the worst-case analysis for flow shop scheduling. European
Journal of Operational Research, 109(1):66 – 87, 1998.

M. Sviridenko. A Note on Permutation Flow Shop Problem. Annals of Operations Research,
129(1):247–252, 2004.

W. Szwarc. Single machine total tardiness problem revisited. Creative and Innovative
Approaches to the Science of Management, Quorum Books, pages 407–419, 1993.

W. Szwarc and S. K. Mukhopadhyay. Decomposition of the single machine total tardiness
problem. Operations Research Letters, 19(5):243–250, 1996.

W. Szwarc, F. Della Croce, and A. Grosso. Solution of the single machine total tardiness
problem. Journal of Scheduling, 2(2):55–71, 1999.

W. Szwarc, A. Grosso, and F. D. Croce. Algorithmic paradoxes of the single-machine total
tardiness problem. Journal of Scheduling, 4(2):93–104, 2001.

R. E. Tarjan and A. E. Trojanowski. Finding a maximum independent set. SIAM Journal
on Computing, 6(3):537–546, 1977.

V. T’kindt and J.-C. Billaut. Multicriteria scheduling: theory, models and algorithms.
Springer Science & Business Media, 2006.

V. T’kindt, F. Della Croce, and C. Esswein. Revisiting branch and bound search strategies
for machine scheduling problems. Journal of Scheduling, 7(6):429–440, 2004.

R. Van Bevern. On the parameterized complexity of scheduling with side constraints:
Recent results and new challenges. In Proceedings of the 13th Workshop on Models and
Algorithms for Planning and Scheduling Problems, pages 119–121, 2017.

R. Van Bevern and A. V. Pyatkin. Completing partial schedules for open shop with
unit processing times and routing. In Computer Science – Theory and Applications:
11th International Computer Science Symposium in Russia, CSR 2016, St. Petersburg,
Russia, June 9-13, 2016, Proceedings, pages 73–87, Cham, 2016. Springer International
Publishing.

R. Van Bevern, R. Bredereck, L. Bulteau, C. Komusiewicz, N. Talmon, and G. J. Woegin-
ger. Precedence-constrained scheduling problems parameterized by partial order width.
In Proceedings of the 9th DOOR, volume 9869 of LNCS, pages 105–120. Springer Inter-
national Publishing, 2016.

R. Van Bevern, R. Niedermeier, and O. Suchỳ. A parameterized complexity view on non-
preemptively scheduling interval-constrained jobs: few machines, small looseness, and
small slack. Journal of Scheduling, 20(3):255–265, 2017.

152

BIBLIOGRAPHY

B. Villarreal and M. H. Karwan. An interactive dynamic programming approach to mul-
ticriteria discrete programming. Journal of Mathematical Analysis and Applications, 81
(2):524–544, 1981.

G. J. Woeginger. Exact Algorithms for NP-hard Problems: A Survey. In M. Jünger,
G. Reinelt, and G. Rinaldi, editors, Combinatorial Optimization — Eureka, You Shrink!,
volume 2570 of Lecture Notes in Computer Science, pages 185–207. Springer Berlin Hei-
delberg, 2003.

M. Xiao and H. Nagamochi. Exact algorithms for maximum independent set. Information
and Computation, 255(1):126–146, 2017.

L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven learning
in a boolean satisfiability solver. In Proceedings of the 2001 IEEE/ACM international
conference on Computer-aided design, pages 279–285. IEEE Press, 2001.

153

Résumé :

Cette thèse synthétise les travaux de recherches réalisés pendant les études doctorales
de l’auteur. L’objectif de ces travaux est de proposer des algorithmes exacts qui ont
une meilleure complexité, temporelle ou spatiale, dans le pire des cas pour des problèmes
d’ordonnancement qui sont NP-difficiles. En plus, on s’intéresse aussi à évaluer leurs
performances en pratique.

Trois contributions principales sont rapportées. La première concerne un algorithme
du type Dynamic Programming qui résout le problème F3||Cmax en O∗(3n) en temps et
en espace. L’algorithme est généralisé facilement à d’autres problèmes du type Flowshop,
y compris les problèmes F2||f et F3||f , et aux problèmes d’ordonnancement à une seule
machine tels que les problèmes 1|ri|f , avec f ∈ {fmax, fi}.

La seconde contribution porte sur l’élaboration d’une méthode arborescente appelée
Branch & Merge pour résoudre le problème 1||∑Ti en O∗((2 + ε)n) en temps avec ε > 0
arbitrairement petit et en espace polynomial. Le travail se base sur l’observation que de
nombreux sous-problèmes identiques apparaissent répétitivement pendant la résolution du
problème global. A partir de ça, une opération appelée merge est proposée, qui fusionne
les sous-problèmes (les noeuds dans l’arbre de recherche) identiques autant que possible.
Cette méthode doit pouvoir être généralisée à d’autres problèmes.

Le but de la troisième contribution est d’améliorer les performances en pratique des al-
gorithmes exacts procédant par parcours d’un arbre de recherche. D’abord nous avons
aperçu qu’une meilleure façon d’implémenter l’idée de Branch & Merge est d’utiliser
une technique appelée Memorization. Avec la découverte d’un nouveau paradoxe et la
mis en place d’une stratégie de nettoyage de mémoire, notre algorithme a résolu les in-
stances qui ont 300 tâches de plus par rapport à l’algorithme de référence pour le prob-
lème 1||∑Ti. Avec ce succès, nous avons testé Memorization sur trois autres problèmes
d’ordonnancement notés 1|ri|

∑
Ci, 1|d̃i|

∑
wiCi et F2||∑Ci, précédemment traités par

T’kindt et al. (2004). Les résultats finaux des quatre problèmes ont montré la puissance de
Memorization appliquée aux problèmes d’ordonnancement. Nous nommons ce paradigme
Branch & Memorize afin de promouvoir la considération systématique de l’intégration
de Memorization dans les algorithmes de branchement comme Branch & Bound, en tant
qu’un composant essentiel. La méthode peut aussi être généralisée pour résoudre d’autres
problèmes qui ne sont pas forcément des problèmes d’ordonnancement.

Mots clés :

Algorithmes exponentiels, ordonnancement, brancher et réduire, branch and merge,
mémorisation, branch and memorize, programmation dynamique, flowshop, somme de re-
tards

BIBLIOGRAPHY

Abstract :

This thesis summarizes the author’s PhD research works on the design of exact al-
gorithms that provide a worst-case (time or space) guarantee for NP-hard scheduling
problems. Both theoretical and practical aspects are considered with three main results
reported.

The first one is about a Dynamic Programming algorithm which solves the F3||Cmax
problem in O∗(3n) time and space. The algorithm is easily generalized to other flowshop
problems including F2||f and F3||f , and single machine scheduling problems like 1|ri|f ,
with f ∈ {fmax, fi}.

The second contribution is about a search tree method called Branch & Merge which
solves the 1||∑Ti problem with the time complexity converging to O∗(2n) and in polyno-
mial space. The work is based on the observation that many identical subproblems appear
during the solution of the input problem. An operation called merge is then derived, which
merges all identical nodes to one whenever possible and hence yields a better complexity.

Our third contributionaims to improve the practical efficiency of exact search tree algo-
rithms solving scheduling problems. First we realized that a better way to implement the
idea of Branch & Merge is to use a technique called Memorization. By the finding of a new
algorithmic paradox and the implementation of a memory cleaning strategy, the method
succeeded to solve instances with 300 more jobs with respect to the state-of-the-art algo-
rithm for the 1||∑Ti problem. Then the treatment is extended to another three problems
1|ri|

∑
Ci, 1|d̃i|

∑
wiCi and F2||∑Ci previously addressed by T’kindt et al. (2004). The

results of the four problems all together show the power of the Memorization paradigm
when applied on sequencing problems. We name it Branch & Memorize to promote a
systematic consideration of Memorization as an essential building block in branching algo-
rithms like Branch & Bound. The method can surely also be used to solve other problems,
which are not necessarily scheduling problems.

Keywords :

Exact exponential algorithms, scheduling, branch and reduce, branch and merge, mem-
orization, branch and memorize, dynamic programming, flowshop, total tardiness

156

	Fundamentals of Scheduling and Exact Exponential Algorithms
	Scheduling Theory
	History
	Applications
	Classification and Notation
	Job Data
	Field - Machine Environment
	Field - Job Characteristic
	Field - Optimality Criteria
	Example of notation

	Exact Exponential Algorithms (EEA)
	Motivations
	Common Algorithmic Frameworks
	Branching
	Dynamic Programming
	Sort & Search
	Divide & Conquer
	Memorization
	Inclusion & Exclusion
	Exponential Time Hypothesis (ETH)
	Other techniques

	Notes on Parameterized Algorithms

	Existing EEA for Scheduling

	Dynamic Programming for Flowshop Scheduling Problems
	Introduction
	The F3||Cmax problem
	A Dynamic Programming for the F3||Cmax problem
	Complexity Analysis
	Computational results

	Generalizations to other flowshop problems
	The F3"026B30D fmax problem
	The F3"026B30D fi problem

	A general framework and its applications
	Pareto Dynamic Programming
	Complexity analysis
	Illustration for the 1|ri|fi(Ci) and 1|ri|max(fi(Ci)) problems

	Auxiliary Result: complexity lower bound of F3||Cmax based on ETH
	From 3SAT to F3||Cmax
	3SATSubsetSum
	SubsetSum F3||Cmax

	Chapter Summary

	Branch & Merge on the Single Machine Total Tardiness Problem
	Introduction
	A Branch & Reduce approach
	A first Branch & Reduce algorithm
	A second Branch & Reduce algorithm

	A Branch & Merge Algorithm
	Merging left-side branches
	A working example for Left Merge

	Merging right-side branches
	A working example for Right Merge

	Complete algorithm and analysis

	Experimental results
	Additional Results
	The complexity of the algorithm of szwarc2001algorithmic
	Algorithm TTBM-L

	Chapter summary

	The Memorization Paradigm: Branch & Memorize Algorithms for the Efficient Solution of Sequencing Problems
	Introduction
	A general framework for Memorization in search trees
	Branching schemes
	Search strategies
	Memorization schemes
	Solution memorization
	Passive node memorization
	Predictive node memorization

	Decision guidelines
	Forward branching and depth first search strategy
	Forward branching and best first search strategy
	Forward branching and breadth first search strategy
	Decomposition branching and depth first search strategy
	Decomposition branching and best first search strategy
	Decomposition branching and breadth first search strategy

	Implementation guidelines
	Application to the 1|ri|Ci, 1||wiCi and F2||Ci problems
	Application to the 1|ri|Ci problem
	Application of the memorization framework and improved results

	Application to the 1||wiCi problem
	Application of the memorization framework and improved results

	Application to the F2||Ci problem
	Application of the memorization framework and improved results

	Application to the 1||Ti problem
	Preliminaries
	Application of the memorization framework and improved results

	Chapter summary

