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Between 2008 and 2010, my whole time was dedicated to prepare new courses and to organize the automatic control platform "AIDA". In 2010, I was thinking of a challenging system that combines automatic control and energy. After a discussion with Mazen Alamir, he reminded me of a presentation of Moritz Diehl 1 on the subject of Twin-kite and how it can ⇧ Simplicity: In my opinion, complex problems can be solved with simple solutions. To overcome the complexity, an iterative approach can be applied with an increasing levels of complexity at each iteration.

⇧ Failure is a great teacher: Any failure is an opportunity. At the same time, learning from failure is only e↵ective if its origin is fully understood. The iterative approach facilitates the problem diagnosis and alternatives can be proposed.

⇧ Freedom and trust: A researcher must have a free spirit

Chapter 1 Introduction 1 Some Personal History

From a young age, I wanted to become an electrical engineer. My dream was to find innovative solutions to the electricity shortage in Lebanon, my home country. Electricity cuts can reach more than 10 hours in some regions and I always remember studying under candle lights. In 2003, my last year at the faculty of engineering of the Lebanese University (UL), I get a scholarship to work on a final year project in France at "Heudyasic" laboratory of Compiègne. Although that I am English educated, I accepted without hesitation since I love to discover a new culture and because many of my best professors at the university have studied in France. In Compiègne, I discovered the interesting field of automatic control. I decided to continue my studies in this field. I joined a master degree at "Laboratoire d'automatique de Grenoble" (LAG) despite the refusal of my parents that wanted me to return to work in Lebanon as engineer. My first steps in the research started with a master thesis with Nicolas Marchand, a young fresh researcher, in the domain of bounded control for linear systems. The adventure continues with a PhD study on bounded control of unmanned aerial vehicles namely quadrotors. This PhD was supervised by the same Nicolas and o cially by Mazen Alamir, an inspiring researcher. The scholarship was financed by the Lebanese scientific research center (CNRSL) in order, again, to return and work in Lebanon as a researcher. The destiny decided another "trajectory" after the war on Lebanon in 2006 where I was told that there are no available positions in CNRSL and that I can help my home country without being obliged to return physically to it. After one year as temporary researcher at LIRMM laboratory -Montpellier where I worked on the control of robotic manipulators, I returned to Grenoble, my second city, as an associate professor at ENSE3 of Grenoble-inp in the field of automatic control for energy systems! Introduction 3. My Point View for the Scientific Research be "controlled" to produce "energy". This unconventional idea of using high altitude wind energy attracted me. In this field, now called Airborne wind energy systems (AWE), I worked with more than 17 students at all the levels (PhD, master, final year project, engineering projects) with several papers published and several concepts designed. In 2015, AWE subject has been integrated in the Innovation and management course of ENSE3. 300 engineering students have worked more than 30 hours to propose innovative concepts related to AWE. The work of the inventor Rogelio Lozano Jr. and the hard worker Mariam Ahmed in their PhD gave Gipsa-lab and me a worldwide visibility in the AWE field. More details on my work in AWE field are given in Chapter 3.

Another turning point in my research was the meeting with professor Seddik Bacha of the electrical engineering lab of Grenoble (G2elab). This remarkable personality at all the levels proposed to cooperate with his PhD student Harun Turker working on the impact of the massive integration of plug-in electrical vehicles into the grid. This was a great opportunity to work on a challenging subject that again combines automatic control and energy. The PhD of Harun is considered the first french PhD study that addresses the impacts of integration electrical vehicles to the grid. My contribution in this field of study continues with the "PARADISE" ANR project. In this project several partners work with the objective to study the optimal integration of renewable energy sources and electrical vehicles to the power grid. My work in this field with the exceptional Andres Ovalle and the hard learner Khaled Hajar and other students will be presented in Chapter 4.

In addition, I co-supervised Haiyang Ding in his PhD on theoretical development in the field of distributed cooperative control. The proposed control schemes are numerically applied on several energy systems. However these results will not be included in the present manuscript.

My Point View for the Scientific Research

The guidelines that I follow in my research can be summarized as follows:

⇧ Learn from others: A bibliographic study will be the first step each time I start working on a new subject. This important phase will give me some insight of the work of other researchers in order to avoid their mistakes, to improve their results, or to propose new ideas and methods. ⇧ Team work: Most of the results presented in this manuscript (theoretical and especially practical) are obtained in a team work. I work with my students as a team in order to find together solutions for the addressed problems. In addition,gipsa-labhas a skillful technical team in all the necessary practical domains. Without the e↵ort of this team, many results will stay theoretical in papers without seeing the light in real life. Here I have to mention the e↵orts of Daniel Rey, the ex-head of the technical team, and Jonathan Dumon, the skillful research engineer.

A Classification of My Research

My research work includes several fields:

⇧ Control theory including bounded control for linear systems, predictive control, and cooperative distributed control.

⇧ Robotics and more precisely the control of drones such as quadrotors.

⇧ Optimal integration and charging techniques for plug-in electrical electrical vehicles.

⇧ Control of airborne wind energy systems.

⇧ Control of energy systems in general.

The Organization of this Manuscript

This manuscript is composed of three chapters that can be read independently. These chapters details the application of control on "non-conventional" energy systems.

Chapter 2: In this chapter, my detailed Curriculum Vitae will be given.

Chapter 3: This chapter deals with a new wind energy concept called Airborne wind energy systems (AWE). AWE systems aim at replacing the blades of conventional wind by a controlled flying "wings" that captures the energy of the wind. This concept of producing more energy with less material (at least 90 % saving of used material) enters the current approach of Frugal innovation. Di↵erent aspects will be addressed in this chapter, from modeling, to control and practical indoor and outdoor validation. The integration of these systems to the grid is also presented.

Chapter 4 : This chapter deals with the integration of plug-in electrical vehicles (EV) to the grid. These systems represent several opportunities for modern electrical distribution systems. In fact, the presence of several chargers (power electronics converters) distributed throughout the electricity grid, represents technical challenges and opportunities for improving the quality and e ciency of future electricity grids. Besides, EVs energy storage capacities have a great potential in terms of benefits for electricity distribution systems: energy transportation, support for non-conventional energy sources, power quality services, etc. Nevertheless, in the most likely scenario, domestic EV load is expected to be drawn from the residential electrical distribution system infrastructure. Thus, without proper approaches for handling the charging of EVs, a high penetration rate supposes several negative impacts on stability, load balancing, voltage levels, etc. In Introduction

The Organization of this Manuscript

this chapter, optimal charging management schemes, taking into account EVs autonomy, and constraints of convenience from owners, are presented.

The manuscript ends with some conclusions and perspectives where a mid-term research project will be detailed.

Detailed Curriculum Vitae

Research Interests 2 Research Interests

During the last years, I have conducted several research studies on the control of aerial robotic systems. In parallel, I have proposed several control schemes for the control of energy systems, namely the integration of renewable energy systems and electric vehicles to the power grid. My research is related to the control of linear systems with bounded inputs, the control of interconnected systems, the modeling and control of airborne wind energy (AWE) systems, the control of di↵erent energy systems.

Bounded Control

Bounded control is inherent to practical stabilization problem: valves operate between closed and open, cars have limited steering angles, tanks have finite volumes, etc. Design of controllers for systems with bounds is an active area of research. For these systems, low gain control laws can be used [76, 111, 104, 85, etc.]. These consist of saturating a linear controller usually obtained by solving a Riccati equation. It is known that one can not achieve global stabilization by this mean for system of dimension n 3 [START_REF] Sussmann | On the stabilizability of multiple integrators by means of bounded feedback controls[END_REF] and to disguise this drawback, it is proposed to tune the Riccati equation with some parameter that can be adapted online [START_REF] Grognard | Improved performance of low-gain designs for bounded control of linear systems[END_REF]. This enables global stability and better performances in terms of convergence.

From 2005 until 2010, I have worked on a generalization of the nonlinear control law proposed by [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF]. The proposed extensions render nonlinear feedback very competitive compared to the other existing methods particularly for the simplicity of the feedback or the ability thanks to the Lyapunov theory to quantify the acceptable measurement or model errors. These results have been extended to the attitude stabilization of rigid bodies with an application on a quadrotor with some physical limits of its actuators. The bounded control of chained-form systems, first [START_REF] Marchand | Global stabilization with low computational cost of the discrete-time chain of integrators by means of bounded controls[END_REF]. and second order, has been also studied. Controlling this type of system is not easy because it Detailed Curriculum Vitae

Research Interests

does not meet the Brockett conditions [40]. These conditions are necessary for the existence of static state feedback control C 1 . Second order chained system di↵ers from first-order chained systems, initially proposed by [START_REF] Murray | Nonholonomic motion planning: Steering using sinusoids[END_REF] as it contains a drift component. Typical examples of this system include unicycle-type vehicles, car-like vehicles and planar underactuated manipulators. The V/STOL aircraft without gravity [START_REF] Hauser | Non linear control design for slightly nonminimum phase systems: Application to v/stol aircraft[END_REF] can also be transformed into a system that is equivalent to the second-order chained form using coordinate and feedback transformation [START_REF] Aneke | Homogeneous stabilization of the extended chained form system[END_REF]. I have proposed state feedback controller based on model predictive control (MPC) and handles the singular situations without any special treatment. The proposed scheme, real-time implementable, also respects arbitrary saturation constraints on the control inputs.

Here are some papers published on the subject: [START_REF] Hably | Bounded control of a general extended chained form systems[END_REF][START_REF] Hably | Constrained minimum-time-oriented stabilization of extended chained form systems[END_REF][START_REF] Marchand | Global stabilization with low computational cost of the discrete-time chain of integrators by means of bounded controls[END_REF][START_REF] Hably | Further results on global stabilization of the pvtol aircraft[END_REF][START_REF] Jf Guerrero-Castellanos | Bounded attitude control of rigid bodies: Real-time experimentation to a quadrotor mini-helicopter[END_REF][START_REF] Marchand | Global stabilization of multiple integrators with bounded controls[END_REF][START_REF] Guerrero Castellanos | Bounded attitude stabilization: Application on four-rotor helicopter[END_REF].

Cooperative Distributed Control

There are several approaches to control interconnected systems: centralized, decentralized, and distributed control. Centralized frameworks are often very expensive in terms of communication if not impossible to be settled. On the other hand, when the interactions between subsystems are strong, the fully decentralized control schemes show bad performance. To overcome these limits, and during the PhD of H. Ding, I have worked on the design of distributed control framework for interconnected systems. The main idea is that each subsystem of the network has to cooperate with its neighbors by sharing partial information in order to contribute to the global objective of the network (or to manage its own objective) while avoiding destabilizing the whole network. We have proposed a modular design framework, for both linear and nonlinear interconnected systems, in which network-related issues and solutions are added as an additional layer that does not question the old existing widely assessed local controllers. The information exchanged between subsystems preserves the details of the local decisions and set-ups from being totally exchanged and only aggregated quantities are blindly transmitted as far as this transmission helps preserving the stability of the overall network. Since in many networks, some subsystems are more critical than others we have introduced the concept of relative priority where the stability constraints sent by critical subsystems are considered with higher weights. This approach has been applied to the problem of load frequency control and the control of a cryogenic plant. In the PhD of K. Hajar, we are studying the control of inter-connected micro-grids in presence of renewable energy systems.

Here are some papers published on the subject: [START_REF] Hajar | An application of a centralized model predictive control on microgrids[END_REF][START_REF] Hajar | Optimal centralized control application on microgrids[END_REF][START_REF] Alamir | Heres : A novel distributed nmpc control structure for partially cooperative systems under limited information sharing[END_REF][START_REF] Ding | A distributed cooperative control scheme with optimal priority assignment and stability assessment[END_REF][START_REF] Ding | Distributed cooperative control framework of a cryogenic system[END_REF].

Airborne Wind Energy (AWE) Systems

Airborne Wind Energy (AWE) systems generate renewable energy from wind by exploiting tethered aircrafts, whose motion is stabilized by active control systems. This emerging field has experienced an ever-increasing development in the last decade. On a large scale, this type of system aims at providing an alternative to conventional wind on the market of electric power. In can be used in many areas where production of the maximum power is not a goal in itself and where autonomy is the main concern. One can cite traveling science missions, ships, events, etc. Furthermore, the system can a↵ord to carry a load in altitude for measurement, lighting, filming or communication, in addition to its main objective which is energy production.

During the PhD of R. Lozano, we have studied modeling, design, and control of several prototypes. Flexible and rigid wings have been used. These prototypes have been tested and validated in indoor and outdoor experiments in presence and in absence of wind.

In the PhD of M. Ahmed, we have studied the cycle optimization of these systems using MPC and virtual constraints. Grid integration of AWE systems has been also studied and validated in Hardware-In-the-Loop (HIL) simulator. Two cases have been considered: an infinite grid and an isolated microgrid. In the ongoing PhD of Y. Gupta, we are studying a Magnus-e↵ect- based AWE system. Magnus cylinders are used instead of classical wings. Its symmetry axis gives the system the advantage, among others, to be insensitive to the apparent wind direction, and thus more robust with respect to wind gusts. On the other hand, it also has a lift coe cient which is much higher than that of conventional wings. This allows the system to fly at much slower speeds for a given power and thus be less sensitive to the drag of the whole system. This type of system has been used by Omnidea in two dimensional flights. We propose to exploit these cylinders in crosswind trajectories to extract the maximum of available energy [START_REF] Argatov | Estimation of the mechanical energy output of the kite wind generator[END_REF]. Our first results on Magnus cylinders reinforce our belief that this type of wing o↵ers 

Teaching Activities

My teaching activities covers several fields of system theory, nonlinear control, and optimization for energy systems. I have developed complete courses. These courses will denoted by + in the following paragraphs. I have also participated in the development of several courses. These courses will be denoted by a ⇤. Most of these courses are taught in English language.

From 2008 until 2012, I was the scientific administrator of the automatic control technical platform (AIDA). More than 450 students use this plateform (average 4 hours per week per student). This platform is considered for me as the first real contact between engineering students and the practical automatic control. My job was to organize the planning of this platform, to propose, buy and validate new labs and practical sessions, to train new professors, etc. From 2012, I am the coordinator of the collective engineering projects (2nd year ENSE3, 150 students/year) and the integrator projects (ASI program, 3rd year, 50 students/year). In addition, I am the correspondent of the international relation for the ASI program. I am the responsible of the first ENSE3 Innovation Challenge that concerns all the second year students of ENSE3. In the following, a detailed description of the courses will be presented.

⇧ Optimization and numerical analysis ⇤ : Course (16 hours) and computer sessions (18 hours). This course covers the principal algorithms for linear, nonlinear, dynamic optimization and optimal control. Topics include the simplex method, optimality conditions for nonlinear optimization, Newton's method, heuristic methods, and dynamic programming and optimal control methods.

Public: Second year students of ENSE3 (50 students).

⇧ Modeling and control under state representation + : Course (14 hours), computer sessions (20 hours), and lab sessions (16 hours).

This course includes state-space methods of feedback control system design and design optimization for invariant continuous systems; pole positioning, observability, controllability, observer design, the linear quadratic optimal regulator problem, Lyapunov functions and stability theorems. Examples are be drawn from mechanical, electrical and hydraulic engineering applications. Matlab is used extensively during the course for the analysis, design and simulation.

Public: Second year students of ENSE3 and ENSIMAG (150 students). Master degree students of ENSE3 (20 students).

⇧ Linear systems ⇤ : Course (8 hours), computer sessions (32 hours), and lab sessions (16 hours).

The course addresses dynamic systems, i.e., systems that evolve with time and how the input a↵ects the output. In particular, we concentrate on systems that can be modeled by Ordinary Di↵erential Equations (ODEs) or transfer functions, and that satisfy certain linearity and time-invariance conditions. The response of these systems to inputs and initial conditions is analyzed and in particular interest systems obtained as interconnections of two or more other systems. Design of control systems that ensure desirable properties (like stability and performance) is also addressed.

Public: First year students of ENSE3 (50 students) and students of IUT (150 students). This course is devoted to industrial applications of optimization in the electricity production, transport and distribution. The tools for continuous optimization (linear programming and nonlinear) are applied to the problem of optimal power flow, while the unit commitment problem is submitted to the tools of combinatorial optimization (linear integer programming).

Public: Third year students of ENSE3 (about 40 students) and master degree students of ENSE3 (more than 20 students).

⇧ Innovation and management ⇤ : Course (10 hours) and projects (20 hours).

In this course students work in a project mode on the generation of an innovative concept and its development, both technically and in its ability to generate value. They implement creativity techniques starting from a given issue to bring out an innovative concept that will be the object of study. They identify and formalize the innovative concept technically and learn the main market segmentation techniques to apply the concept to identify target markets. They formalize the broad outlines of a business model: possible scenarios, revenue models, risks and profit opportunities.

Public: Third year students of ENSE3 (300 students that worked on new design of airborne wind energy (AWE)).

⇧ Mechatronics ⇤ : Course (10 hours) and computer sessions (18 hours).

This course gives an introduction on modeling mechatronic systems using Bond graph.

Public: Third year students of ENSE3 (30 students). Responsable of a workpackage and the gipsa-lab correspondent in this project.

Budget for gipsa-lab is around 108 ke.

Partners: G2ELAB, CEA/INES -L2S, LBMS, SOREA, SOCOMEC, AER, [START_REF] Ahmed | Kite generator system: Grid integration and validation[END_REF].

⇣ Project "Smart Energy" (2012-2014):

Coordinator of the "system" axis of a project financed by Grenoble-INP: 4 post-doc in the field of SMART Grids.

Four postdoctoral positions for one year.

Partners: G2Elab, G-SCOP and LIG.

⇣ ARC Energies Rhone-Alpes (2013-2017):

Project coordinator on the subject "Gestion coopérative de flotte de véhicules électriques en vue de son intégration optimale au réseau électrique SMARTGRID" financed by the Rhone-Alpes region.

A doctoral position for 3 years. 

PhD Students

During the last 8 years, I have participated in the supervision of 7 PhD students. One of them has abandoned her study due to health problems. Four PhD students have defended their thesis after a work duration less than 39 months. Supervising percentage : 50% co-supervisor : S. Bacha (G2Elab, 50%)

Present position : Postdoc at G2elab

Publications : 2 international journals [START_REF] Ovalle | Decentralized control of voltage source converters in microgrids based on the application of instantaneous power theory[END_REF][START_REF] Ovalle | An electric vehicle load management application of the mixed strategist dynamics and the maximum entropy principle[END_REF] and 6 international conference papers [START_REF] Ovalle | Optimal management and integration of electric vehicles to the grid: Dynamic programming and game theory approach[END_REF]37,[START_REF] Ovalle | On the most convenient Mixed Strategies in a Mixed Strategist Dynamics Approach for Load Management of Electric Vehicle Fleets[END_REF][START_REF] Ovalle | Voltage support by optimal integration of plug-in hybrid electric vehicles to a residential grid[END_REF][START_REF] Ovalle | Mixed strategist dynamics: Electrical vehicle distributed load scheduling[END_REF]39].

Detailed Curriculum Vitae 

Post-doctoral Students

I was the scientific supervisor with Anotneta Bratcu (gipsa-lab) of Julian Fernandez (2014, six months) who is now in a postdoctoral position in Université de Victoria. I have published with him one journal paper [START_REF] Julian | Real-time plug-in electric vehicle charging strategies for current and voltage unbalance minimization[END_REF] and two international conference papers [START_REF] Alberto | Assessing the economic profit of a vehicle-to-grid strategy for current unbalance minimization[END_REF][START_REF] Alberto | Plug-in electric vehicle collaborative charging for current unbalance minimization: Ant system optimization application[END_REF]. I have supervised Salam Hajjar (2014, six months). After a postdoctoral position at Universidade Federal do Rio de Janeiro, she is now and associate professor in Marshall University of West Virginia. I published with her one international conference paper [START_REF] Salam Hajjar | A day-ahead centralized unit commitment algorithm for a multi-agent smart grid[END_REF]. I have also worked with Kaustav Basu in his postdoc position at gipsa-lab(2016, three months). We published two international conference papers [37,39]. He is now data scientist at Quby, Netherlands.

Participation in PhD Defense

I participated as an examinator in the PhD defense of Harun Turker (G2Elab 20/12/2012).

6 Scientific production His work has been mentioned in "How Smart Microgrids Could Ease Lebanon's Electricity Woes" of the MIT Technology review [START_REF] Ovalle | Mixed strategist dynamics: Electrical vehicle distributed load scheduling[END_REF]. Conventional wind turbine converts the kinetic energy of wind into electrical energy using a rotor with three or several blades coupled with an electric generator. The turbine is connected to the network via an electrical power electronic interface. The turbine power is controlled by its rotational speed via the resistant torque and the pitch control of the blades. For these wind turbine, the conversion chain and the control units are placed in the nacelle on the top of the mast of the turbine. In 2010, ENERCON presented its E-126 wind turbine with rotor diameter reaches 126m, a mast height 135m, and a total mass of 6000 tons. The rated power of this turbine is 7.5 MW. The objective behind the increase of the turbines size is to reach higher Figure 3.1: The use of a airborne wind energy system would double the power generated with a saving in materials over 90 % [START_REF] Hably | Bounded control of a general extended chained form systems[END_REF].

Scientific Animation and Implication

altitudes where the wind is known to be stronger and more stable [START_REF] Archer | An introduction to meteorology for airborne wind energy[END_REF]. Indeed, the amount of wind energy available increases with the cube of the wind speed. The other objective is to

Airborne Wind Energy Systems

Introduction

increase the area swept by the blades with which the wind power available increases linearly.

Nevertheless, the size of the wind turbines will not grow as quickly as in the past [START_REF] Thresher | To capture the wind[END_REF]. Indeed, its manufacturing cost, which includes the construction of its foundations, grows as fast as its rated power [START_REF] Fagiano | Control of Tethered Airfoils for High Altitude Wind Energy Generation[END_REF].

To overcome the limitations of conventional wind turbines, the concept of airborne wind energy (in French eoliennes volantes) has emerged and is currently studied by many research groups and start-up (see Sect. 2 for an overview of the international landscape). Figure 3.2: The airborne wind energy community (from [START_REF] Nwesaty | Extremum seeking control techniques applied to photovoltaic systems with multimodal power curves[END_REF]).

5 Introduction to Meteorology 89 sphere in hydrostatic balance and with a constant adiabatic temperature lapse rate [6]. In the standard atmosphere, air density decreases almost linearly with height (Fig. 5.2, blue line) as follows:

(z) = p0 RT0 ✓ T0 z T0 ◆ ( g R 1)
, (5.15) where p0 and T0 are pressure and temperature measured at the surface (1013.25 mb or hPa and 288.15 K respectively, in the standard atmosphere), g is gravity (9.81 m s 2 ), and is the average lapse rate in the atmosphere (6.5 K km 1 ). Wind speed (m s -1 ) 30 60 90 Wind power density (W m -2 ) Fig. 5.2 Vertical profiles of: air density (kg m 3 , blue) in the standard atmosphere, wind speed (m s 1 ) derived using the power law (green solid) and the log law (green dashed), and wind power density (W m 2 ) obtained with both wind speed laws (black lines). At the typical heights of conventional wind turbines (80 m), wind speed is 4.3 m s 1 (green cross) and wind power density is 50 W m 2 (black cross), whereas at the typical heights of AWES (400 m) wind power density is almost double (93 W m 2 , black cross). Airborne wind energy systems are therefore designed to replace the blades of conventional wind by controlled flying system that captures the energy of the wind. This considerably simplifies the construction for removing the mast and its foundations, and one can reduce by 90 % the material requirements (Fig. 3.1). This allows to use o↵shore floating platforms, opening access to deeper areas such as the Mediterranean coasts currently inaccessible to the actual systems (Fig. 3.4). Finally, airborne wind energy systems can reach much higher altitudes, where the wind is stronger and more regular (Fig. 3.3). The expected ultimate cost for such systems would be of the order of 4ce/kWh [START_REF] Hably | Bounded control of a general extended chained form systems[END_REF], half of the conventional wind and below the nuclear evaluated in 2012 around 5ce/kWh [12]. 

Organization of the Chapter

Airborne wind energy is a challenging domain that needs several skills in di↵erent fields. For this, I co-supervised several internships (second year projects and final year projects), student collective projects, in addition of two PhD thesis. The first PhD is of Rogelio Lozano Jr. a motivated and skillful person who proposed a lot of solutions to several complicated technical and theoretical problems. The second PhD thesis is of Mariam Ahmed, a very serious hard worker with a lot of ideas and results despite the bad conditions that she had during her PhD1 . In addition, I have participated in the last two Airborne wind energy conferences, AWEC 2013 at Berlin and AWEC 2015 at Delft. I am member of the program committee of AWEC 2015 conference [11]). I also participated in the review of the airborne wind energy book [START_REF] Nwesaty | Extremum seeking control techniques applied to photovoltaic systems with multimodal power curves[END_REF]. My work in the field of airborne wind energy has focused on the following points:

⇧ Modeling (Sect.3) and control (Sect.4).

⇧ Prototypes and experiments (Sect.5)

⇧ Grid integration (Sect.6).

Airborne Wind Energy Systems

Modeling

⇧ The tether is inelastic and almost straight. This hypothesis is correct when the tether's length is less than 1000m and its inclination is less than 80 degrees.

⇧ Wind is uniform with a non-varying direction, because the wind speed at high altitudes is regular.

⇧ The geometry of the tether allows neglecting its lift force, and considering only the drag C dt .

⇧ A high e↵ective aerodynamic e ciency G e of the kite/wing and the tether. In this case, this factor is introduced in [START_REF] Houska | Optimal control of towing kites[END_REF] by:

G e = C L C D + Ac 4A C dt (3.1)
with A is the kite's surface and A c is the crosswind area of the tether.

⇧ Kite position and velocity as well as the traction force are known throughout the system functioning using observers or sensors.

⇧ The orientation mechanism is used to control the kite/wing by either controlling the roll angle and the traction force T .

System Dynamics

The kite dynamical model was originally introduced in [START_REF] Diehl | Real time optimization for Large Scale Nonlinear Processes[END_REF] and developed in [41]. As illustrated in Fig. 3.12, forces acting on the kite include the gravity force F grav , the aerodynamic force F aer and the tether traction force T . The dynamics can be expressed in the spherical coordinates e r , e ✓ , e as follows:

M = F grav + F aer + T (3.2)
where M is the kite mass, and is the kite acceleration expressed in Eq.3.3.

= 2 4 r ✓ + 2 ṙ ✓ r ˙ 2 sin ✓ cos ✓ r sin ✓ ¨ + 2 ˙ ( ṙ sin ✓ + r ✓ cos ✓) r r( ✓2 + ˙ 2 sin 2 ✓) 3 5 (3.3) 
The gravity force is expressed in Eq.3.4.

F grav = Mg 2 4 sin ✓ 0 cos ✓ 3 5 (3.4)
The aerodynamic force F aer is related directly to the e↵ective wind and v a , that is the di↵erence between the wind speed and the Kite's velocity. Assuming the wind speed v w is in the direction of x-axis, v a is given by Eq.3.5.

v a = 2 4 v a✓ v a v ar 3 5 = 2 4 v w cos ✓ cos ✓r v w sin ˙ r sin ✓ v w sin ✓ cos ṙ 3 5 (3.5)
The aerodynamic force has two components, a drag and a lift force. In order to express both, a kite related coordinates (x w , y w , z w ) is defined as follows:

Airborne Wind Energy Systems The gravity force is expressed in eq.II.5. The aerodynamic force F aer is related directly to the e↵ective wind W e , that is the di↵erence between the wind speed and the Kite's velocity. Assuming the wind speed V v is in the direction of x-axis, W e is given by eq.II.6.

W e = 2 4 W e✓ W e W er 3 5 = 2 4 V v cos ✓ cos ✓r V v sin ˙ r sin ✓ V v sin ✓ cos ṙ 3 5 (II.6)
The aerodynamic force has two components, a drag and a lift. In order to express both, a kite related coordinates ( x w , y w , z w ) are defined as follows:

• x w = We |We| is carried on the longitudinal axis of the kite

• y w is carried on the line connecting the kite's tips

• z w = x w ⇥ y w is perpendicular on the kite surface and directed upwards.

With these definitions, the drag and the lift components of F aer are:

F aer D = 1 2 ⇢ a AC D |W e | 2 x w F aer L = 1 2 ⇢ a AC L |W e | 2 z w (II.7)
The kite related coordinates ( x w , y w , z w ) are transferred to the spherical ones through ⇧ y w is carried on the line connecting the kite end tips.

⇧ z w = x w ⇥ y w is perpendicular on the kite surface and directed upwards.

With these definitions, the drag and the lift components of F aer are:

F aer D = 1 2 ⇢SC D |v a | 2 x w F aer L = 1 2 ⇢SC L |v a | 2 z w (3.6)
The coe cients C L , C D are functions of the angle of attack ↵ to be controlled. The kiterelated coordinates (x w , y w , z w ) can be expressed in the spherical coordinates e r , e ✓ , e , the drag and lift are written in Eq.3.7 and Eq.3.8,

F D = 1 2 ⇢SC D |v a |v a (3.7) 
F L = 1 2 ⇢SC L |v a | sin 2 4 v a v a✓ 0 3 5 + 1 2 ⇢SC L |v a | cos 2 4 var L [v a sin ⌘ v a✓ cos ⌘] var L [v a✓ sin ⌘ + v a cos ⌘] L cos ⌘ 3 5 (3.8)
with ⇢ is the air density.

A Two Dimensional Model

The model developed in this section is used to describe both the dynamics of an AWE system with a tethered rigid wing and the dynamics of AWE system with a light-weight rotating Magnus cylinder. The forces acting on flying part of the system, as shown in the Fig. Now that the kite-related coordinates ( x w , y w , z w ) are expressed in ( e r , e ✓ , e ), the drag and lift can be written in eq.II.12 and eq.II.13,

F aer D = 1 2 ⇢ a AC D |W e | W e
(II.12) 

F aer L = 1 2 ⇢ a AC L |W e | sin 2 4 W e W e✓ 0 3 5 + 1 2 ⇢ a AC L |W e | cos 2 4 W er L [W e sin ⌘ W e✓ cos ⌘] W er L [W e✓ sin ⌘ + W e cos ⌘] L cos ⌘ 3 5
(II.13) With F trac = f trac e r and by developing eq.II.3, the resulted system dynamics can be written as follows:

✓ = f 1 (✓, , r, ✓, ˙ , ṙ, ) ¨ = f 2 (✓, , r, ✓, ˙ , ṙ, ) r = f 3 (✓, , r, ✓, ˙ , ṙ, , f trac ) (II.14)
The coe cients C L , C D are functions of the attack angle ↵. So the later can be controlled to have a constant coe cients or to increase the system's e ciency.

II.2.b-ii Machine Applied Traction

The tether traction in the kite F trac is reduced when transferred to the ground machine. This is due to the tether's weight F t grav and aerodynamic force F t aer . The forces balance in the kite gives:

F trac = mr( ✓2 + ˙ 2 sin 2 ✓) mg cos ✓ + 1 2 ⇢ a A|W e | (C D W er + C L L cos cos ⌘) (II.15)
The forces acting on a segment dl of the tether are the gravity force and the aerodynamic force. Their projections on the tether direction e r are expressed in eq.II.16. e↵ect-based AWE system, and traction force T in the tether. Lift and drag forces can be expressed by:

L = 1 2 ⇢Sv 2 a C L , D = 1 2 ⇢Sv 2 a C D (3.9)
where ⇢ is the air density, S is the wing projected surface area, v a is the norm of the apparent wind velocity vector, C L and C D are respectively lift and drag coe cients. In the case of Magnus e↵ect-based AWE system, the buoyancy force can be calculated from Archimedes' principle:

B = (⇢ ⇢ g )V 0 g (3.10)
where V 0 is the volume of the Magnus cylinder, ⇢ g is the gas density, and g is the gravitational acceleration. The Magnus cylinder mass is:

M Mag = M + V o ⇢ g + M l r (3.11)
where M is the mass of the airborne structure and M l denotes the mass per tether length. The wind velocity v w is assumed exactly horizontal (i.e. parallel to ground plane). The apparent Airborne Wind Energy Systems
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wind velocity v a is defined by:

v a = v w v k (3.12)
where v k is the Magnus-e↵ect-based system. The apparent wind velocity forms an angle ↵ w with the horizontal. In this study, the movement of the Magnus cylinder is assumed to be in the vertical plane. It is also assumed that tether of length r is always in tension and a straight line. It has an elevation angle with respect to the horizon. F r and F ⌧ are respectively the radial and tangential force components according to the 2D polar coordinate as shown in Fig. 3.15. These forces can be expressed as follows:

F r = T + L sin( ↵ w ) + D cos( ↵ w ) P sin + B sin (3.13) F ⌧ = L cos( ↵ w ) D sin( ↵ w ) P cos + B cos (3.14)
where ↵ w is the angle that the apparent wind velocity forms with the horizontal. For Magnus-

B P v a v k v w T L D F r F ⌧ ↵ w w r Figure 3.15:
The forces acting on the Magnus cylinder airborne wind energy system. v k is the vector velocity of the Magnus cylinder. ! is the Magnus cylinder rotational velocity. v w is the airspeed with respect to the ground. ↵ w in the figure is of negative sign. e↵ect-based systems, aerodynamic lift coe cient C L and drag coe cient C D are functions of the spin ratio X and not of the angle of attack as specified for airfoils. The Magnus cylinder spin ratio is given by the following equation [START_REF] Seifert | A review of the magnus e↵ect in aeronautics[END_REF]:

X = !R v a (3.15)
where ! is the Magnus cylinder rotational velocity and R is its radius. The system dynamic model can be derived by imposing the mechanical equilibrium of a point mass model in 2D polar coordinates:

¨ = 1 r h 2 ˙ ṙ + F ⌧ M Mag i (3.16) r = 1 M Mag + M D h r ˙ 2 M Mag + F r i (3.17)
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where

M D = I R 2 d
with moment of inertia of the ground-based motor I and its radius R d . The traction force is measured by a torque sensor divided by the radius of the drum. One has:

Ṫ = T ⇣ u T T ⌘ (3.18)
Eq.(3.18) represents the first order dynamic response of actuators used in the experimental platform to control the traction force in the tether.

Control of AWE Systems

Several control schemes have been proposed for the control of AWE systems. In the following sections, several results will be presented.

Nonlinear Model Predicitive Control Design [28]

A nonlinear model predictive control have been designed for the three dimensional model proposed in Sect.3.1. The objective is to maximize the produced average power during one cycle. In order to do so, both the produced power and the closed orbit conditions are expressed as functions of a dimensionless variable ⌧ .

Orbit Optimization

The system average mechanical power over one period is:

PM = 1 Z 0 T V L (t)dt (3.19)
where V L is the tether radial velocity. According to [START_REF] Argatov | Energy conversion e ciency of the pumping kite wind generator[END_REF], by changing the integral time variable t 2 [0, ] to the dimensionless parameter ⌧ 2 [0, 2⇡], and making use of the substitution V L (t) = V v(⌧ ), Eq.3.19 can be expressed as follows:

PM (v) = 1 2 ⇢SC L G 2 e V 3 J 0 (v) (3.20)
where V is the wind speed amplitude and

J 0 (v) = R 2⇡ 0 (w || v)vh(⌧ )d⌧ R 2⇡ 0 h(⌧ ) w || v d⌧ (3.21)
with h(⌧ ) = p d✓ 2 + d 2 sin 2 (✓) and w || = sin(✓) cos( ). When the attack angle ↵ is constant, the e↵ective glide ratio G e , C L are constant and J 0 represents the normalized average power PM [START_REF] Argatov | Estimation of the mechanical energy output of the kite wind generator[END_REF], where the normalizing coe cient is : ⇢AC L G 2 e V 3 . Orbit optimization aims at having a high crosswind speed, which develops high traction force and thus higher power production. The crosswind speed is expressed by:

|v p a | = G e V (w || v) (3.22)
The velocity v(⌧ ) that maximizes the power produced presented earlier by the Eq.3.21, and satisfies the closed loop orbit condition R T 0 V L (t)dt = 0, which is expressed, by making the variable change V L = V v, by [START_REF] Argatov | Estimation of the mechanical energy output of the kite wind generator[END_REF]:

2⇡ Z 0 vh(⌧ ) w || v d⌧ = 0 (3.23)
Once found, v(⌧ ) is used to derive the traction force [START_REF] Argatov | Energy conversion e ciency of the pumping kite wind generator[END_REF] by:

T = 1 2 ⇢SC L G 2 e v 2 w (w || v) 2 (M + M l )g cos ✓ (3.24)

Orbit Period

Previous calculations and variables are functions of the dimensionless parameter ⌧ and have a period of 2⇡. The orbit time period and the relation between the time variable t 2 [0, ] and ⌧ need to be defined. The period equals the orbit length devised by the kite speed:

= I dl | ṙ| (3.25)
With dl is a di↵erential length along the orbit:

dl = dre r + rd✓e ✓ + r sin ✓d e = (r 0 e r + r✓ 0 e ✓ + r sin ✓ 0 e )d⌧ = ṙd⌧
The velocity vector ṙ at a certain point of the orbit is carried on its tangent:

t(⌧ ) = dl kdlk = r 0 e r + r✓ 0 e ✓ + r sin ✓ 0 e q r 02 + r 2 ✓ 02 + 02 sin 2 ✓
Due to the crosswind motion law |v p a | = G e (V || ṙ) one gets [START_REF] Argatov | Energy conversion e ciency of the pumping kite wind generator[END_REF]:

T = I r p ✓ 02 + sin ✓ 02 |ṙ ? | d⌧ (3.26)
The quantity Ge has a high value. Therefore, the mathematical model of wind energy generation can be further simplified as follows:

|ṙ ? | V = ! ? + q ! 2 ? + G 2 e (w || v) 2 |w ? | 2 = G e (w || v)
Hence the period can be finally expressed in the equation Eq.3.27.

= 2⇡ Z 0 r(⌧ )h(⌧ ) G e (w || (⌧ ) v(⌧ )) d⌧ (3.27)
and:

t = ⌧ Z 0 r( )h( ) G e (w || ( ) v( )) d (3.28)
Now that the optimal tether radial velocity and the period corresponding to a given eightfigured orbit are found, a nonlinear model predictive control (NMPC) is applied to achieve tracking the generated orbit while respecting the system constraints. This is done via control of the kite roll angle and the tether's traction force, in addition to the attack angle if the aerodynamic e ciency is optimized as well.

The resulted kite orbit is a three-dimensional orbit described in the spherical coordinates by r(t), ✓(t), (t). Tracking this orbit is divided into orienting the kite hence controlling its roll angle to follow the reference (x, ẋ) with x = (✓, ), and controlling the radial velocity by control of the on-ground electric machine rotation velocity (V L = ⌦ s /K). At each time step, ẍ that minimizes the cost function of Eq.3.29, that reflects the distance from the reference orbit, is calculated and controlled by the roll angle .

k(ẍ ref ẍ) + 1 (x ref x) + 2 ( ẋref ẋ)k 2 (3.29)
where 1 , 2 determine how fast the state converges to the reference orbit. Figure 3.16 summarizes the AWE proposed control strategy. It starts from the parametric initial orbit and generates a time-dependent orbit with an optimal radial velocity. The control is applied to find the roll angle that achieves tracking of (✓(t), (t)), while the radial velocity is controlled by controlling the ground machine rotation velocity.

                    Figure 3.16:
The Nonlinear Model predictive control strategy.

Numerical Application As mention above, choosing the primary orbit to be optimized is an essential step in determining the maximum possible extracted average power, and the ratio between the average and the maximum power, or what we choose to call "Performance". Table .3.1 shows the AWE parameters and the wind velocity is assumed to be constant and regular with a speed V = 4m/s. Figure 3.17 shows the test orbits. Test orbits 2 and 3 results from amplifying the reference test orbit 1, while orbits 4 and 5 results form rotating the reference orbit 30 and 90 degrees respectively. Table 3.2 shows the characteristics of the five chosen test orbits with ✓ 0 = 55 o and 0 = 0 o , as well as, the estimated corresponding mean power, performance, and the orbits period. In [START_REF] Argatov | Structural optimization of the pumping kite wind generator[END_REF], it is demonstrated that a larger trajectory correspond to greater average power, further more, a bigger rotation of the orbit leads to more average power which agrees with the results obtained and displayed in Table .3.2. As noticed, the mean generated power increases as the orbit size increases. The performance gets better as well, because a larger orbit allows the kite the center of the power region; hence, consumes less energy. The size, however, is a parameter to be optimized according to the system's location. The orbits optimization results in the normalized parametric radial velocity v which depends on the wind direction and the parametric orbit. The time dependent radial velocity profile is found after calculating the orbit period and time vector (eq.III.16,eq.III.17 optimization results in the normalized parametric radial velocity v which depends only on the wind direction and the parametric orbit. The time dependent radial velocity profile is found after calculating the orbit period and time vector (Eq.3.27-Eq.3.28). The resulted profiles in the case of orbits 1, 2 and 3 are shown in Fig. 3.18. Notice that the optimal velocity has double the calculated period hence during one orbit two traction and two recovery phases. This means doubling the resulted power profile and decreases its continuity. The top figure of Fig. 3.20 shows the AWE energy profile for the orbits 1, 2 and 3.

Figure 3.19 shows the radial velocity profiles for orbits 4 and 5 compared to the reference 1. Rotating the orbit results in more average generated power and increases the performance without the need to increase the orbit size or the system parameters. On the contrary with respect to the case of 0 o rotation, a 90 o rotated orbit preserve the orbit period which means only one traction and one recovery phase during the orbit. This can be also observed by the The NMPC controls the kite to follow the generated reference orbit while respecting the state and control constraints. Those are usually imposed by the area the system is flying in and the flight angle's limits. Assuming the kite flight is limited only by the ground and the tether length, the following constraints are applied: energy profiles shown on the lower plot of Fig. 3.20. As noticed, the AWE system will o↵er a very high adaptability, as its rated power can be modified by changing the kite orbit size and/or rotation. It can also be modified by changing the orbit inclination ✓ 0 , or the altitude at which the kite is flying for example. Figure 3.21 shows how the AWE system generated average power changes as a function of the kite surface S, the orbit rotation angle; and the orbit inclination ✓ 0 . Figure 3.22 shows the orbit tracking by applying the predictive control in the case of the first orbit. Here the radial velocity, hence the tether length, is assumed to be controlled by the ground machine. [24] In this section, the AWE system periodic target motion is ensured by a state feedback control law based on virtual constraints approach. The proposed motion planning strategy is a fast in-loop control method that is robust against disturbances, and it guarantees an exponential orbital stabilization. The application of the VC-based control method can be summarized by the following steps (see Fig. control in the case of the first orbit. Here the radial velocity, hence the tether length, is assumed to be controlled by the ground machine as will be shown in the next chapter. control in the case of the first orbit. Here the radial velocity, hence the tether length, is assumed to be controlled by the ground machine as will be shown in the next chapter. ⇧ Choice of a suitable virtual constraint.

✓ min = 30 o  ✓  ✓ max = 90 o min = 90 o   max = 90 o r min = 90 m  r  r max = 110 m ṙmin = 83.3 m/sec  ṙ  ṙmax = 83.3 m/sec min = 20 o   max = 20 o ˙ min = 4 o /sec  ˙  ˙ max = 4 o /sec

Virtual Constraint-based Controller (VC)

⇧ Application of a partial feedback linearization, where the remaining nonlinear part is integrable.

⇧ Construction of an auxiliary linear periodic control system of reduced order.

⇧ Control design for the auxiliary system.

⇧ A modification of the control developed in the previous item to be applied to the original nonlinear system. 

III.3 Virtual Constraints-based Controller

In this section, the KGS periodic target motion is ensured by a state feedback control law based on virtual constraints approach. The proposed motion planning strategy is a fast in-loop control method that is robust against disturbances and guarantees an exponential orbital stabilization. Virtual constraints (VC) are dynamically enforced relations between a mechanism's links in order to decrease its degrees of freedom. They coordinate the movement of all links by controlling a single variable.

Virtual constraints have emerged recently as a valuable tool to solve motion control problems. This notion has been useful to design controllers for biped robots, as well as, control of underactuated 3DOF helicopter movement [WMS10], pendubot [FRSJ08], and cartpendulum system [SPCdW05]. Fig.III.10 presents some control problems that were solved using VC.

For an under-actuated Euler-Lagrange system, VC are defined as relations among the sys- Starting from an arbitrary point (✓, r, ✓, ṙ) within the power region of the kite, the application of proposed virtual constraints-based control developed here gives the closed loop behavior of Fig. 3.24. One can clearly see the e↵ectiveness of the proposed feedback control. Several initial conditions have been tested and for all of them, the trajectories have stabilized on a periodic orbit in a short time. The speed of convergence depends on the gain of the feedback control v.

Observer-based Control

An observer-based control strategy has been proposed. The observer is used to estimate badly known aerodynamic parameters that need to be reconstructed. This control strategy allows us the same manner. Note that the equation (3.16) can be rewritten in the following condensed form:

¨ = + Qu (3.30)
where Q is given by

Q = ⇢Sv 2 r 2Mr sin( ↵ w )
and represents the relatively badly known term

= 2 ṙ ˙ r + L cos( ↵ w ) P cos ✓ rM ⇢Sv 2 r ( C 2 L ⇡e + C D 0 ) sin( ↵ w ) 2rM
This suggests that can be estimated using the following Luenberger estimator based on the sole measurement of :

ˆ = 0 0 1 X1 (3.31) Ẋ1 = (A 1 L 1 C 1 ) X1 + B 1 u + L 1 (3.32)
where the observer's state is X 1 = [ ˙ ] and

A 1 := 0 @ 0 1 0 0 0 1 0 0 0 1 A ; B 1 := 0 @ 0 Q 0 1 A ; C 1 := 1 0 0 (3.33)
while L 1 is the observer gain obtained for instance using LQE design. Q is a slow time-varying parameter. This gives the control law given by (3.31)-(3.32) together with:

u = 1 Q h ˆ + 1 ( ˙ ! ref ) + 2 ( ref ) i (3.34)
where ref and ! ref are respectively some desired angle and angular velocity while 1 and 

O 1 O 2 K 1 K 2 K 3 u a u ✓ u T r, ṙ ✓, ✓ T x x x x x FR ˆ V V r ref , ṙref ✓ ref , ✓ref T ref , Ṫref

Energy Control Strategy

In this section, the control strategy to be applied to the AWE system aims at stabilizing the mean output power produced during a given cycle (recovery phase then production phase). The tether traction force T and its speed ṙ are forced to track some reference signals related to a desired reference power P ref to be produced. For simplicity, P ref is assumed to be constant, however the control strategy can be adapted to varying P ref as shown later.

During the cycle, the AWE system moves from a minimum radial position r min to a maximum radial position r max at a reel-out speed ṙprod during production phase and from r max to r min at a negative reel-in speed ṙrec during the recovery phase. Since ṙprod and ṙrec are assumed to be constant, the proposed algorithm tracks P ref by controlling the traction force T . A given cycle is defined by the time period from the beginning of the recovery phase to the end of the production phase. The recovery phase starts at time t 0 and ends at time t 1 . Then the production phase starts at time t 1 and ends at time t 2 (see Fig. 3.26). Time t 1 can be calculated by

t 1 = t 0 + (r max r min ) ṙrec (3.35)
Time t 2 can be calculated by

t 2 = t 1 + (r max r min ) ṙprod (3.36)
In order to produce a net output power equals to P ref , the output energy to be produced where P g is the produced output power of the on-ground generator and P M is the power consumed by the Magnus motor. In order to satisfy E = E ref at the end of the cycle, the remaining energy to be produced E prod from time t to time t 2 has to satisfy:

E prod = E ref E (3.38)
Subsequently, the reference traction force has to satisfy for t 2 [t 0 , t 2 ]

T ref = 1 ṙ E prod (t 2 t) (3.39) As T cannot be negative, T ref is set to zero for t 2 [t 0 , t 1 ].
In order to implement the proposed control strategy, two other controllers K 1 and K 2 are used as shown in Fig. 3.27. The tether length is controlled by K 1 through the desired traction force u T of the on-ground generator. In order to track T ref obtained from controller K 3 , K 2 controls spin ratio X of the Magnus rotor. Controller K 3 is given in Eq. (3.39). Controllers K 1 Airborne Wind Energy Systems 5. Experimental Apporoach and K 2 are classical PID controllers in parallel form whose parameters are tuned empirically with the following constraints:

⇧ K 2 is set to have a fast response time to get T ref = T .
⇧ K 1 is set to have a faster response time than K 2 in order to have a decoupled control between the tether length r and the traction force T . 

r ref K 1 u T X T r, ṙ , ˙ K 2 r P g P M P ref K 3 Magnus rotor T T ref r min r max

Experimental Apporoach

In order to validate the theoretical studies on modeling and control of our airborne wind energy systems, a practical approach has been followed. The main directions have been followed will be listed.

Indoor Experiments

Several indoor prototypes have been build and tested in the context of the Rogelio Lozano PhD and several engineering final year projects. In total, more than thirteen prototypes (flexible and rigid) has been constructed and tested.

Wind Tunnel

A wind tunnel has been built. Its fan section is composed of nine brushless electrical motors equipped with two-blade fans of 0.355 m diameter, see Fig. 3.28 (top left). These motors, 800 W each, are distributed on a tunnel cross section area of 1.85 m 2 . The air flow first passes through a honeycomb then in a tunnel of 1.8 m length in order to stabilize it. A hot wire wind Airborne Wind Energy Systems 6. Grid Integration

Reverse Pumping Prototypes

Several prototypes have been tested by R. Lozano in order to validate the reverse pumping principle. Following the guidelines presented in the paper [START_REF] Lozano | Reverse pumping: theory and experimental validation on a multi-kites system[END_REF] and inspired from the twin kite system, R. Lozano has built a system that can only fly by turning symmetrically around a vertical axis (Fig. 3.32).

Chapter 4. Reverse pumping

3) For simplification, we will only control the inputs that are necessary to perform reverse pumping, i.e. the angle of attack and the rope's length. Many freedom axes will be locked as the wings will be fixed.

As a result of these guidelines, the three last experimental protocols were built, they corresponds to a simplified model of the twin kites [START_REF] Argatov | Estimation of the mechanical energy output of the kite wind generator[END_REF]. The main di↵erence is that the kites have much simpler movements (see Figure 4.7). The construction of the protocol makes that they can only fly turning symmetrically around a vertical axis, keeping a constant distance from each other. The two inputs are the pitch angle control U , which is the same for the two kites and the control of the main rope's length U r . R is the distance between the center of rotation and the tip of one wing, z is the height of the system. 

Inspiration

The kite system has been inspired by the Otto Lilienthal's 'Whirling arm', (see Figure 4.8). It was probably the first aerodynamic forces measurement machine [START_REF] Megretski | L2 BIBO output feedback stabilization with saturated control[END_REF].

Using the knowledge brought by this machine, Lilienthal built many di↵erent kinds of gliders that made successful short flights. He died in 1896, when a wind gust made him lose the control of his machine. He is now considered the father of Aeronautics. One hundred and twenty years later, Lilienthal's sense of simplification and his experimental techniques are still used for experimental aeronautical research and has led to major innovations (see chapter II). 

Outdoor Experiments

An outdoor experimental setup has been also built. It is composed of a ground station (Fig. 

Grid Integration

The kinetic energy, captured by the airborne wind energy systems, needs to be transformed into an electric power that can be injected in the electric grid or used to supply a certain load. Among the proposed power transformation systems associated to renewable energy grid integration, the one shown in Fig. 3.35 o↵ers a suitable solution for the studied system.

Hardware In the Loop (HIL)

The traction force of the AWE system is transformed into a torque applied to an on-ground permanent magnet synchronous machine (PMSM). This produces an alternative electrical energy with variable frequency. The machine is coupled with the grid, or with a certain load, via a power electronics interface that consists of two bidirectional AC/DC converters. An energy storage should be added in the case of a load or an isolated grid connection, in order to provide the necessary energy during the system recovery phase. It is installed on the DC-bus level relating both converters.

Figure 3.36: General control scheme of the AWE power transformation system. Two control tracks applied depending whether the system is grid connected or in a stand-alone operation.

formation system. As shown, the control scheme is divided into three levels: Low, intermediate and high. Each level operates in accordance with the system operation status: Grid-connected or stand-alone operation.

Validation

To validate the control scheme presented previously, a Power-Hardware-In-the-Loop (PHIL) of G2Elab is used. It is a real-time hybrid simulator that consists of three main parts: A direct current machine (DCM) coupled to a permanent magnets synchronous machine (PMSM), two converters (DC/AC, AC/DC), and a grid emulator. These hardware elements are interconnected and are supported and driven by real-time digital simulators: RT-lab and dSPACE. In this simulator, the tethered AWE system behavior and its associated drum and gearbox are emulated by a direct current machine (DCM), while the rest of the system is physically present. The hardware is interfaced with the real-time simulator on which the optimization and the control strategy in addition to the AWE model are implemented.

Employing the PHIL-simulator instead of building a prototype is justified because the tests carried on here, focuses on the grid integration aspect, and the produced power maximization via control of the power conversion chain, and not on the AWE orientation control. Furthermore, PHIL simulator requires less material and human investments, it can be modified in the kite torque, which shows how generated power is optimized from the machine point of view. Torque and velocity variations are represented by the machine currents whose frequency, amplitude and phase change accordingly. The frequency is related directly to the rotation speed f = ! 2⇡ = p⌦ 2⇡ , meanwhile the current amplitude expresses the torque variations, and the phase is inverted when the rotation velocity direction changes. Notice as well that the DC-bus voltage keeps a constant value despite the variations in the rotation velocity. For the grid-side converter electrical variables, Figure 3.41 shows the variations of the output current and the grid voltage following those of the rotation velocity. The current becomes zero before the rotation velocity reaches zero that is due to losses in the converters elements. This explains also why the current amplitude is higher when the velocity is negative (recovery phase) than when it is positive (generation phase). control strategy, a vertical trajectory is chosen. The feasibility regions for r min = 200 m and r max = 300 m have been determined. For a wind speed v w = 10 m/s, the tether speed during the production phase ṙprod and during the recovery one ṙrec are found numerically o✏ine. One gets ṙrec = 0.52v w and ṙprod = 0.33v w which is not the optimal value given by the main theory of simple kite [START_REF] Loyd | Crosswind kite power[END_REF]. This is because the colinearity condition of v k and T is not satisfied in vertical trajectories. By simulating this system at a wind speed v w = 10 m/s , we get the net output power produced during a full cycle as a function of X during the production phase (Fig. 3.43). X is then set to 0 during the recovery phase. The maximum net output power equals 59.23 kW for X = 4.3. The proposed control strategy will therefore use this nominal production cycle and vary the spin ratio X between 0 and 4.3 in order to stabilize the desired power produced.

For this nominal production cycle, the energetic performance is 1.48 kW/m 2 which is consistent with 1.25 kW/m 2 found in [START_REF] Milutinović | Operating cycle optimization for a magnus e↵ect-based airborne wind energy system[END_REF] where a similar sized system is used.

Note that we do not consider here the motor consumption that actuates the Magnus rotor. An estimation of this consumption can be computed as follows: Based on the C Mz Magnus parameter of [START_REF] Perković | Harvesting high altitude wind energy for power production: The concept based on magnus' e↵ect[END_REF] for Re = 10 6 , the torque exerted on the Magnus rotor is:

M z = 0.5⇢⇡R 2 L m v 2 a C Mz (3.40)
and the motor power consumption can be calculated by:

P M = !M z = v w X R M z = 0.5X⇢ ⇡ 2 Sv 3 w C Mz (3.41)
If one considers a spin ratio of X = 4.3 and v w = 10 m/s, one can estimate C Mz = 0.0055, and P M = 910 W for the production phase (61.2% of the time). The consumption of the motor is 556.7 W for the whole cycle which is 0.9% of the 59.23 kW produced.

Nominal Production Cycle

In this section, the results of the nominal production cycle are presented. In order to have a smooth movement of the Magnus rotor, the reference tether length r ref is filtered by 1/(⌧ R s+1) 2 with ⌧ R = 2s. The PID controller K 1 parameters are K p = 8250 N/m, K i = 1.32 N/(ms), K d = 45 ⇥ 10 3 Ns/m. We find that the apparent wind speed increases thanks to the temporal evolution of elevation angle (Fig. 3.44) which produces the cycle of Fig. 3.45 with a maximum of v a = 14.26 m/s in the production phase and v a = 14.79 m/s in the recovery phase. Following the simple kite theory, one can get an elevation angle = 0 for the recovery phase and = 52.6 deg for the production phase. This type of cycle is composed of the succession of transition phases between these two values of . In Fig. 3.46, we show the temporal evolution of the tether length, tether tension and angular speed of the Magnus rotor. One can find the maximum tension on the tether is T max = 42.4 kN, the maximum angular speed ! max = 49.02 rad/s. The production phase reel-out speed is 3.3 m/s with an overshoot measured at 8 m/s, the recovery phase speed is set to 5.2 m/s, without any observed overshoot.

Energy Control

In this section, the complete control strategy has been applied. To find the control parameters of the controller K 2 (PD controller), we have chosen the increasing line slope of Fig. 3.43 between X = 1 and X = 4.3. The control parameters are then K p = 6.4 ⇥ 10 3 N 1 and K d = 6.4 ⇥ 10 3 s/N. One can clearly see the performance of the proposed control strategy (Fig. 3.47). The produced power will follow the desired one even in the presence of noise on the wind speed. It is worth noting that if the output of PD is saturated, one can simply apply a very large reference to achieve the nominal production cycle, with X = 4.3 throughout the production phase. 

Energy Control with Real Wind Data

The energy control algorithm is also applied using real wind data taken on October 2015 at the Bard station of the Loire region in France3 . Only the wind magnitude is considered given that we are studying the movement in the vertical plane. The wind speed varies from 7 m/s to 20 m/s. Three power reference levels are considered (Fig. 3.49):

⇧ P ref = 20 kW: In this case, the system succeeds to track the desired power reference by limiting the energy produced even in the presence of wind turbulence. These variations in the wind speed generate a traction force that exceeds the on-ground generator saturation which causes an error on the control of r but does not a↵ect the power produced.

⇧ P ref = 50 kW: The system succeeds to track the desired power reference when the available wind speed is enough. A short-term storage system can be used to ensure that the system catches up with the remaining energy of the previous cycle and thus obtains the desired average power in the presence of such fast changes in the wind.

⇧ P ref = 90 kW: In this case, the wind speed is not high enough and the desired power reference is never attained. 

Numerical Application to a Future MW Scale System

In order to evaluate the feasibility and scaling behavior of this kind of system, numerical simulations for a MW scale system have been performed. Its parameters are listed in Table 3.6 and correspond to a factor 25 from the medium scale system of the previous section. For v w = 10 m/s, Reynolds number reaches Re = 8.6 ⇥ 10 6 . By scaling up, the volume of the Magnus rotor increases with the cube of the rotor dimension while the mass increases with the square, because it is related to the Magnus rotor surface. The gas used to fill the Magnus rotor can be more dense, keeping the whole system lighter-than-air without using pure Helium. As in the previous section, the cycle parameters are set in order to get a nominal production cycle with vertical trajectories. We have determined the feasibility regions for r min = 200 m and r max = 300 m. For a wind speed v w = 10 m/s, the tether speed in the production phase ṙprod and in the recovery phase ṙrec are found numerically o✏ine. One gets ṙprod = 0.31v w and ṙrec = 0.46v w which are slightly di↵erent form those found for the medium scale system. By simulating this system at a wind speed v w = 10 m/s, with the same method of the previous section, the net output power is found to be 1.37 MW for X = 4.3, which corresponds to an energetic performance of 1.37 kW/m 2 . This is consistent with the results of the medium scale system 1.48 kW/m 2 and 1.25 kW/m 2 found in [START_REF] Milutinović | Operating cycle optimization for a magnus e↵ect-based airborne wind energy system[END_REF].

PID controller K 1 parameters are K p = 5.16 ⇥ 10 5 N/m, K i = 82.5 N/ms, K d = 2.81 ⇥ 10 6 Ns/m. These control parameters are chosen empirically.

In N and the maximum angular speed ! max = 9.8 rad/s. The production phase reel-out speed is 3.1 m/s with an overshoot measured at 7.4 m/s, the recovery phase reel-in speed is set to 4.6 m/s, without any observed overshoot. In Fig. 3.51, one can see the vertical trajectory of the MW scale system. We also present a comparison with an equivalent conventional wind turbine. Even though the Magnus e↵ectbased system is less e cient to capture mechanical energy from wind, it produces the same amount of power as an 80 m diameter wind turbine (around 1.4 MW for 10 m/s wind speed) since it works on a larger area. In other words, an 80 m diameter wind turbine works on 5000 m 2 with a power coe cient c p = 0.45 where the Magnus e↵ect-based system works on 13940 m 2 with a power coe cient c p = 0.157. With the same method used in Sect. 7.1, the Magnus motor consumption can be estimated by P M = 22.7 kW for C M = 0.0055, X = 4.3 and v w = 10 m/s. Knowing that production phase is 59% of the time, the net output power of the Magnus motor over the whole cycle is 13.56 kW which is about 1% of the power produced. 8 What if There is No Wind?

Most airborne wind energy systems have a great drawback that classical wind turbines do not have: they cannot stay in the air if the wind is not strong enough. As a consequence, most of the AWE systems need to land when there is no wind, and to take-o↵ once the wind is strong enough. These maneuvers are quite risky because generally the wind gets weak and turbulent close to the ground's surface. Moreover, as the wind can be strong enough at high altitude and weak close to the ground, it might lead to losses in energy production. From a material point of view, classical landings and takeo↵s need a landing zone, ground handling or infrastructure (such as pylons) that reduces the advantages of AWE systems. Some ideas, such as embedded motors or Magnus rotors, might solve this problem, but they have their own drawbacks such as the weight of the motor, the autonomy of the embedded battery, the necessity of a conductive cable or the need to refill the balloons and finally the total price of the system. I have investigated, in the PhD study of R. Lozano Jr., the "Reverse Pumping" solution. It basically consists of providing kinetic energy to the kite by pulling the kite with a rope. This kinetic energy is then transformed into potential energy by gaining altitude. This technique allows to keep the kite airborne in total absence of wind. This solution of reverse pumping principle has been explored theoretically and experimentally (Fig. 3.52). 

Conclusions

In this chapter, di↵erent research actions have been presented in the field of airborne wind energy starting from modeling and design, proposing several control schemes, passing by experiments indoor and outdoor, and ending by validation using Hardware-in-the-loop setups.

Chapter 4

Electrical Vehicles Integration to the Grid This increase of penetration of EVs into the electric power system is a major challenge [START_REF] Su | A survey on the electrification of transportation in a smart grid environment[END_REF]. It requires to look for ways of managing the spatio-temporal demand inherent to these vehicles in order to adapt them to the technical and economic constraints of the grid.

Uncontrolled or uncoordinated charging of these EVs generates increased losses, consumption peaks, overloads, excessive voltage drops, congestion, stability and unbalanced problems, decreased life duration of transformers etc. The literature on this subject can be classified into two categories. The first category studies the impact of integration these vehicles on the grid [START_REF] Yilmaz | Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces[END_REF]. The second category represents the di↵erent load management methodologies aiming to reduce these impacts while providing multiple benefits to electricity distribution systems including energy transportation, support for non-conventional energy sources, power quality services, etc. [START_REF] Ahn | Optimal decentralized charging control algorithm for electrified vehicles connected to smart grid[END_REF].

Based on several studies, the majority of EV charging systems are conceived to be undertaken at home. EV batteries can be used to support the power grid and can serve as a reserve against unexpected outages. This concept is denoted by vehicle-to-grid (V2G) [START_REF] Liu | Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicleto-grid technologies[END_REF]. At home these batteries can be used to supply a portion of the domestic load. This concept is denoted by vehicle-to-home (V2H).

My work in this field is classified into two classes:

⇧ Modeling of di↵erent elements in the residential power grid namely the electrical vehicles.

⇧ Load management methodologies that minimize the impacts of integration of these vehicles into the residential power grid.

Electrical Vehicle Integration

Modeling

Starting from the disparity of the French fleet [START_REF] Harun | Application of housing peak shaving (HPS) algorithms with plug-in hybrid electric vehicles (PHEVs): Impacts on the aging rate of low voltage transformer[END_REF], the selection probability of the PHEVs category is set. In the same manner, the probability concerning the PHEVs type that correlates with the size of batteries is chosen. Probabilities were also set for the SOC selection on the arrival time. Then after the histograms of experiment, the probability of arriving time and departure time are also set.

Category selection Type selection

Compact The principle of the probabilistic algorithm is as follows: at each iteration, the algorithm selects initially a vehicle's category. The selection is random but based on probabilities. For example, there is 50% of chance that the algorithm selects the Compact Car (CC) category. The next step is dedicated to selecting the PHEVs type. As in the previous step, the choice is random but also based on probabilities. For example, if a CC PHEV has been selected previously, there is a 60% probability that the next vehicle's to be a PHEV20 (i.e. 20 miles in All Electric Mode -AEM). The third step is to select the vehicle's SOC. High probabilities are set for low SOC. For example, regardless the PHEV's category and type previously selected, there is a 50% probability that the SOC to be between 30% and 49%. In each block, the probability of selection is uniform. The fourth step defines the charging start time of vehicle. The time step for the arrival time is set at 10 minutes (initially 1 hour in [START_REF] Ahmed | Kite generator system periodic motion planning via virtual constraints[END_REF]). The last step defines the departure time of PHEVs. For this, we use the distribution of departure times for individual work-related travel. The time step for departure time is set at 10 minutes (initially 30 mins in Having known only as the DOD, we determine for each discharge rate characteristics of the number of cycles depending on DOD (Fig. 16). Correlated with target applications where the maximum discharge rate of batteries is about 1.5C, with a step of 0.1C we determine the values of A. Then, for each discharge rate In the alg V2H or V2 important ro will be faced or batteries i domestic lo distribution g of power ge aging, the m that can be a V2G. The cy batteries. Th will set a va the configur (number of discharge ra By selecting cycles that t VII). Know question, w previously solicitation. PHEV and favorable in may eventua energy come electricity co set the maxi ( ) 
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a. LV transformer DLPs

An algorithm that generates LV transformers DLPs is proposed taking into account costumers number, disparity between houses and apartments number, and disparity in the their size orithm that account the number of es size.

of housing [START_REF] Ding | A distributed cooperative control scheme with optimal priority assignment and stability assessment[END_REF] -30.59%

-27.55%

transformer, the generator randomly selects 6 DLPs from the database dedicated to three-room housing and performs the sum of these DLPs. The same calculation is executed for all houses size and all apartments size. The next step consists in adding all the DLPs obtained in the previous step. This produces a transformer DLP. Fig. 5 shows the synoptic of transformer DLPs. 

Mathematical Modeling approach

In this approach, the modeling of voltage levels of the components of residential electrical distribution system has been given using single-line radial topology model of Fig. 4.6. In order to have a simplified model, the resistive portion of lines impedance is assumed much larger than the reactive portion (R >> X), so the second one can be neglected. In addition, only unitary power factor loads has been considered, eliminating the reactive portion of loads as well. This assumption can be justified since low power factors are usually penalized with higher bill costs for electricity service customers.

For a grid node labeled with index n, with active power consumption l n k at time k, the load is approximately represented with a resistance R n k given by,

R n k := V 2 nom l n k , (2.1) 
where V nom is the nominal voltage value of the grid. On the other hand, in order to model the behavior of EVs modulating their charge/discharge rates, batteries are represented as current sources with variable currents. Given a power consumption/injection reference x n k for an EV connected to node n, the corresponding current value h n k for the model, at time k, is approximated as,

h n k := x n k V nom . (2.2) 
Finally, the transformer node is modeled as an ideal voltage source. The original single-line radial topology model becomes a linear circuit, as on Fig. 4. 6 The radial circuit topology is

Details on the voltage level modeling approach 9

Tr 0 1 1 + 1 given by,
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R n k := V 2 nom l n k , (1.9)
where V nom is the nominal voltage value of the grid. On the other hand, in order to model the behavior of PEVs modulating their charge/discharge rates, batteries are represented as current sources with variable currents. Given a power consumption/injection reference x n k for a PEV connected to node n, the corresponding current value h n k for the model, at time k, is approximated as,

h n k := x n k V nom . (1.10)
Finally, the transformer node is modeled as an ideal voltage source. After taking into then decomposed, on several cells defined by nodes. Fig. 4.7 shows a cell corresponding to the node n in the basic feeder. By Kirchho↵'s circuit laws, the currents on the node n define,

h n k = v in k ✓ 1 R n in ◆ v n k ✓ 1 R n in + 1 R n k + 1 R n o 1 + 1 R n o 2 + • • • + 1 R n o M ◆ + v o 1 k ✓ 1 R n o 1 ◆ + v o 2 k ✓ 1 R n o 2 ◆ + • • • + v o M k ✓ 1 R n o M ◆ . (2.3) Electrical Vehicle Integration 2. Modeling R n o1 R n o2 R n oM R n in R n k h n k v in k v oM k v o2 k v o1 k v n k
Cell for node n Organizing all the expressions for each node, as it was mentioned before, an expression with the following structure,

Ȧk v k = h k + ✓ 1 R 0 ◆ v 0 k (2.4)
can be constructed. Here, matrix Ȧk collects all the conductance coe cients multiplying voltage unknowns in linear eqs. (2.3), for each node at time k. Vector v k is the vector of unknown voltages organized as it was mentioned before,

v k = ⇥ v 1 k , v 2 k , • • • , v n k , • • • , v N k ⇤ T . (2.5)
On the other hand, vector h k gathers the current references of EVs at each node at time step k,

h k = ⇥ h 1 k , h 2 k , • • • , h n k , • • • , h N k ⇤ T . (2.6)
If there is no connected EV on the node n, its current entry is h n k = 0. Finally, vector v 0 k is a vector with the same dimensions of h k , whose first element is the transformer voltage at time k, and all the other elements are zero, i.e.,

v 0 k = ⇥ v 0 k , 0, • • • , 0 ⇤ T . (2.7)
The unknown voltage values can be found given information of forecasted residential load (on A k ), and reference voltage and power values from the transformer and EVs (on v 0 k , and x k ):

v k = ✓ 1 V nom ◆ A k x k + ✓ 1 R 0 ◆ A k v 0 k , (2.8) 
for all times k = {1, 2, • • • , K}. It is important to notice that the base voltage on each node, without including EVs, is given by the second term (1/R 0 ) A k v 0 k , while the first term ((1/V nom ) A k x k ) provides information on the voltage variations introduced by EVs consumption/injection of power.

Electrical Vehicle Integration

Load Management Strategies

Modeling both EV and residential load as a current sources

Instead of modeling residential loads by resistances R n k approximated by (2.1), they can be modeled as current sources as it was chosen for EV load. Similar to Eq. (2.2), for the residential load the current value is approximated by,

g n k := l n k V nom ., (2.9) 
where l n k is the active power consumption at the node n at time k. Then, the individual cell of a node becomes the one shown on Fig. 4.7, and the expression of the node becomes,

h n k + g n k = v in k ✓ 1 R n in ◆ v n k ✓ 1 R n in + 1 R n o 1 + 1 R n o 2 + • • • + 1 R n o M ◆ + v o 1 k ✓ 1 R n o 1 ◆ + v o 2 k ✓ 1 R n o 2 ◆ + • • • + v o M k ✓ 1 R n o M ◆ , (2.10) 
where all the possible variations on the topology can be considered as well. The unknown voltage values can then be found using the following equation:

v k = ✓ 1 V nom ◆ Ax k + ✓ 1 V nom ◆ Al k + ✓ 1 R 0 ◆ Av 0 k , (2.11) 
provides the values of voltage unknowns for all times k = {1, 2, • • • , K}, given information of forecasted residential load (on l k ), and reference voltage and power values from the transformer and EVs (on v 0 k , and x k ). It is important to notice that now, the base voltage on each node without including EVs, is given by the terms (1/R 0 ) Al k + (1/R 0 ) Av 0 k , while the first term ((1/V nom ) Ax k ) provides information on the voltage variations introduced by EVs consumption/injection of power. This alternative approximation is more flexible than the first one, especially when the amount of nodes and lines is large.

Load Management Strategies

Several load management strategies have been developed during my cooperation with H. Turker (in his PhD and his postdoctoral position at G2elab), my work with J. Fernandez (in his postdoctoral position at gipsa-lab ), and A. Ovalle (in his PhD). These strategies can be classified into: ⇧ Centralized approaches in the sense the decisions are taken at a global level.

⇧ Decentralized approaches where decisions are taken at a local level.

Centralized Approach

In centralized schemes, decision making and data are managed by electric vehicle aggregators. In the literature, several approaches have been proposed. Authors of [START_REF] Clement-Nyns | The impact of vehicle-to-grid on the distribution grid[END_REF] propose a centralized method where the objective is to minimize a linear function representing the cost of the energy consumed for charging the EVs. All the constraints concerning states of charge, power boundaries and voltages are formulated as linear constraints so linear programming techniques Electrical Vehicle Integration 3. Load Management Strategies can be applied. In [START_REF] Jin | Optimizing electric vehicle charging: A customer's perspective[END_REF], a centralized approach where the EV load scheduling problem is solved under static and dynamic conditions. Static conditions refer to deterministic scenarios where all the information from EVs (arrival and departure times, required energy, charger's power constraints, etc.) is known in advance. Under dynamic conditions, the information is unknown in advance. In this case, author consider that each time a EV arrives, its schedule is computed knowing that schedules from previously connected EVs have already been calculated. A centralized unidirectional EV load scheduling is presented in. The approach recognizes, in addition to EV, three instances for the load scheduling: charging service provider (CSP), distribution system operator (DSO), and retailer which participates in the electricity market. Based on historical information, CSP estimates the total amount of energy that will be consumed in order to charge EVs during the day. With this estimation, the retailer optimizes its participation in the market by defining a preferred EV load curve during the day. After receiving this preferred EV load curve from the retailer, CSP computes individual optimal power consumption profiles for each EV such that the final total EV load curve is as close as possible to the preferred load curve provided by the retailer. Authors of [START_REF] Van Linh Nguyen | Charging strategies to minimize the energy cost for an electric vehicle fleet[END_REF] propose a centralized EV load management approach where the objective is to minimize the cost of energy for charging EVs connected to a parking/charging station with photo-voltaic modules. Authors propose a binary integer programming and a linear programming approach in order to compute the consumption schedules of the connected EVs. Authors of [START_REF] Sarabi | The feasibility of the ancillary services for vehicle-to-grid technology[END_REF] propose a centralized strategy with a charging station. This approach considers bidirectional chargers assuming charge, discharge, and idle, as the states of the control variables. Under these conditions, authors propose an optimization model where first the controller optimizes the subscribed power of the charging station over a year given accurate past information and estimations. On a second step, authors optimize for each day a reference ideal load profile minimizing a cost function. With this reference load profile, authors apply a sequential optimization approach where each EV is attended in a queue. Schedules of each of the EVs are obtained by minimizing the distance between daily reference load profile and the actual load profile with EVs.

As it can be seen from the above discussion, di↵erent have been proposed in the literature. In the following sections, my contribution and results for the centralized approach are presented.

Rule-based Strategy [117]

Using the database developed in Sect.2.1, a rule-based algorithm applied to one house equipped with a single plug-in electrical vehicle is proposed (Fig. 4.8). It is assumed that the electrical vehicle leaves and arrives at home only one time per day. The objective is to have minimal constant-charging power level while allowing recharging EVs at any time and strictly prohibiting charging during peak hours. In this way, the vehicle battery can reach a desired state of charge at the departure time. To respect the values of houses subscription contracts, the charging grid-side current of the EV charger is determined as a function of the houses consumption at each time step. To prevent EVs from accentuating the households peak electricity consumption, a SOC SOF T criterion is introduced to prohibit EVs charging from 6 A.M. to 3 P.M. and from 5 P.M. to 10 P.M. which corresponds to peak hours for most regions in France. As a result, the minimal charging power levels which ensures statistically for the 10 000 cases that 99% of the EVs batteries have a final full SOC with the charging levels of 2460 W and 3400 W, respectively (Fig. Ps generated, it is necess, we again exploited our ilistic algorithm of PEV selects the arrival and deory, and the battery SOC om but based on predeand departure times, the me-to-work daily travels population) are used [39]. he fixed probabilities are the period 2015 to 2020 t is composed of three catedan car, and sport-utility battery sizes are defined Vs. Finally, for the selec--arrival time, high probad arbitrarily [38]. For all uniform inside each part. d the time step for selec-10 min. Table I lists departure times. Then, to assess the pragmatic solution, which consists in prohibiting charging of PEVs during peak hours, we have introduced an criterion which is a strong feature of the algorithm because charging is allowed if the SOC of batteries is below . The Rule-Based (RB) algorithm is used to determine the minimum charging power level of PEVs in residential areas when charging is authorized at any time and is strictly prohibited during peak hours. It is not an "active" algorithm which determines the constant charging power for each case. To respect the values of houses' subscription contracts, we determine the charging grid-side current of the PEV charger as a function of the houses' consumption at each time step. To prevent PEVs from accentuating the households' peak electricity consumption, we introduce a soft constraint to prohibit PEVs charging from 6 A.M. to 3 P.M. and from 5 P.M. to 10 P.M. (peak slots for most regions in France), unless their SOCs are below a preset value. Fig. 1 shows the block diagram of the RB algorithm for one day.

When the soft constraint on SOC is fixed at 0%, it strictly prohibits the charging of PEVs during the predefined times. When setting the soft constraint equal to 100%, the prohibition is cancelled. For other values of the soft constraints, at each time step, the RB algorithm allows recharging if and only f the soft constraint. To deum charging power level of ily limit the PEVs' charging and we assess (in perave an SOC equal to 100% at 1000 DLPs of each database he percentage of the number o 100% at the departure time ranging from 0 to 32 A f the PEV charging current, constraints, varying from 0% conduct this study, the data nd the battery model are used HPSA algorithm -With "SOC" constraint consideration of the two preceding constraints, the one related to maximum/minimum charging/discharging power of PHEVs and the second that corresponds to PHEVs' batteries maximum and minimum SOC. Therefore, the evolution of PHEV State-of-Charge for each example is shown in Fig. 8. Figs. 4 and5 show the results for the 10 000 case studies. The finding is consistent with regard to the remarks raised by the previous sections. The results differ little in comparison with study considering only the constraint corresponding to the batteries SOC. The results reported in previous sections confirm that the optimal solution to a problem is sometimes caused by the constraints imposed by the elements constituting the system. Therefore, for fixed time step, optimal results were determined. Nevertheless, the objective is to define the optimal average power under which the problem is satisfied as 756 

⌘V (%) = " 1 P N i=1 ( P M j=1 K ij ) N.M # ⇥ 100 (3.12) 
where

K ij = 0 if T ij < T and K ij = 1 if T ij > T .
T ij is the time when the instantaneous voltage V ij < V NF , M is number of houses, N is the simulation number, and V NF = 0.9 (Standard NF-EN-50160). The evolution of ⌘V is plotted in Fig. 4.11. This result infers that it is better to allow charging EV at any time instead of prohibiting charging during peak hours. It recommends as it is found to create a standard that limits charging power to 800W for home-charged EVs which ensures statistically that all EVs will have a full charged battery (SOC= 100%) for the next use. We have used a daily average ambient temperature profile from real data provided by EDF for Nîmes City in 2006. This allows to assess the average transformer aging rate for a daily average ambient temperature profile.

The transformer under study is installed in a "PSS"-type distribution station (insulated cabin). Therefore, we have added 10 C at the daily average ambient temperature profile for the initial assessment of the aging rate presented in the previous section. By incrementing the daily ambient temperature profile at different values (Fig. 8), we defined the multiplicand for the aging rate (Fig. 9). We have clearly found what we were waiting for (i.e., an exponential impact on the transformer aging rate). explained by an increase and an increase of losses ings. Although domestic e monics on residential ele in this paper because of Indeed, a great disparity similar electrical applianc the power and nature of p provides the current harm electrical devices. Referen between the impact on tr harmonic distortion of th batteries. Inclusion of an a of harmonics injected by tric vehicles is an interest On the other hand, we aging rate of a transforme tric grid without and the house charged at three sta management and then at RB algorithm with tively. The impact on the charged during peak hour charging at any time.

V. CONCLUS This paper aims at mi the integration of PEVs in

To this end, we first pr mines the minimum charg Chargers are assumed to be able to handle bidirectional power flow. Moreover, they have limited rates of power consumption/injection that must be taken into account in the load scheduling problem. For each EV, power consumption/injection is limited by,

p i  x i k  p i , 8k = {1, 2, • • • , K i }, 8i = {1, 2, • • • , J}, (3.15) 
where p i is the nominal power of the charger. If x i k is expressed as the di↵erence of two positive variables x i k = w i k s i k then constraint (3.15) can be separated in the following two constraints, 0

 w i k  p i , 0  s i k  p i , 8k = {1, 2, • • • , K i }, 8i = {1, 2, • • • , J}, (3.16) 
which are valid for all the connection time of each EV. The reached state of charge of EV battery at the end of time step k, is given by,

soc i k = soc i 0 + ⌧ k X =1 (w i  s i  ), 8k = {1, 2, • • • , K i }, 8i = {1, 2, • • • , J}. (3.17) 
In order to avoid aging issues on batteries due to deep cycles, partial states of charge must be constrained between certain boundaries,

soc i soc i k  soc i , 8k = {1, 2, • • • , K i }, 8i = {1, 2, • • • , J}, soc i soc i 0 + ⌧ k X =1 (w i  s i  )  soc i . (3.18) 
Electrical Vehicle Integration
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Here, soc i and soc i are the upper and lower constraints, respectively, imposed to all partial states of charge. On the other hand, the final state of charge has a more restrictive constraint. It has to be equal to a desired state of charge soc i d imposed by the EV owner. This constraint can be expressed as,

soc i 0 + ⌧ K i X k=1 (w i k s i k ) = soc i d , 8i = {1, 2, • • • , J}, (3.19) 
As it can be observed, states of charges are linear functions of the decision variables of the problem, i.e. the power consumption/injection variables

x i k = w i k s i k .
In order to include the e↵ect of instantaneous power consumption/injection of EVs over voltage levels, let us consider the following constraints,

v min  v n k  v max , 8k = {1, 2, • • • , K}, 8n = {1, 2, • • • , N}. (3.20) 
Here, v n k represents the voltage at the node n of a grid with N nodes, at time step k. This voltage is limited to be between a lower limit v min and an upper limit v max .

The proposed linear EV load scheduling strategy is illustrated on Fig. 4.13. This scheme centralizes the optimization of schedules in order to minimize costs of energy consumption. At a given time step k, a central controller (CC) is in charge of gathering all the information from recently arrived EVs. This information includes initial and desired states of charge, nominal power of the charger, node of the grid where the EV is connected, and estimated or desired time of departure. The CC is also in charge of collecting the information of load forecast at each of the nodes of the grid where residential load is served. Once it has collected all the information, the CC runs the linear optimization procedure and sends the power consumption/injection schedules for each of the served EVs. In the next step of time k it is likely to have new recently arrived EVs, so the procedure is repeated only with the newly arrived ones. Electrical Vehicle Integration
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Load Management Strategies

a. Illustrative Example with 8-node Grid Topology To test the centralized linear programming approach of Sect. 3.1.2, a test residential grid has been used. This residential grid has eight nodes, each one serving a residence. Three EVs are assumed to be connected to the grid during a charging period. They are connected on the nodes highlighted with a red circle of Fig. several case studies. The results of a case study with two tari↵s scenario (high tari↵ during 18h-22h, and a lower one during 22h-06h) will be presented. The power consumption profiles are shown on Fig. 4.15(a). Power consumption is redistributed during the whole charging period. However, EVs try to sell as much of their initial SOC as possible during the high tari↵ hours, in order to reduce the cost of recharging their batteries. It is possible to confirm this in the SOC profiles of Fig. 4.15(b). Although the first and second EVs charge their batteries at the beginning of the charging period, at the end of the high tari↵ hours the three EVs are fully discharged. They sell their initial energy and during the lower tari↵ hours, they fully recharge their batteries. As it is required, the voltage profiles corresponding to every node are kept within the desired limits, even during peak demand hours, as it is shown on Fig. 4.15(c).

Dynamic Programming Strategy

A dynamic programming technique has been employed for the problem of EV charging. The state of charge at the end of time step k can be chosen as the state variable of the system:

soc i k = soc i k 1 + ⌧ x i k ,
where the soc i k is the state of charge of vehicle i at the end of time step k, and x i k is the power consumption rate during the time step. As it can be inferred, the control variable here is the power consumption rate x i k , and the set of possible control decisions is defined by,

p i  x i k  p i , 8k 2 0, • • • , K i 1 .
The set of possible states of the state variable (for EV i at time k) is defined, in this case, depending on the limits that must be imposed to the state of charge at each time step k.

In principle, the boundaries are defined by the lower and upper constraints, soc i and soc i . Electrical Vehicle Integration

Load Management Strategies

producing future states of charge over the limit, i.e. soc k+1 > soc i . In this sense, and for the purpose of the forward DP algorithm adaptation, knowing the arrival state of charge soc i k , the feasible root states in k 1 leading to soc i k by applying feasible control decisions, are defined by,

soc i k 1  soc i k 1  soc i k 1
where soc i k 1 and soc i k 1 are functions similar to eqs. (3.21) and (3.22), but depending on soc i k as follows,

soc i k 1 = max soc i , soc i 0 (⌧ p i )(k 1), soc i k ⌧ p i soc i k 1 = min soc i , soc i 0 + (⌧ p i )(k 1), soc i k + ⌧ p i .
These limits are better illustrated on Fig. 4.16. Based on these inequalities, the subset 4.17 allows to have a wider view on the evolution of the FDP algorithm for one EV. In this figure, the whole procedure is illustrated, from the discretization of the state space, until obtaining the final optimal trajectory of the state variable. Once the state space has been discretized both in terms of time and energy, the constraints are considered, as it was explained with Fig. 4.16. The set of feasible trajectories of the state of charge variable are then defined, and the algorithm can start the construction of the optimal cost function. Forward DP algorithm starts at k=2, and explores all the possible paths from the initial state of charge soc i 0 , to all the possible states of charge at time step k =2 . The algorithm stores all the optimal paths for this stage, and their associated costs. Thus, once the algorithm starts the same procedure with all the possible states at k=3, the optimal paths for states in the preceding time step (k=2) will be already stored on memory. The algorithm continues with this procedure until the end of the horizon time k=K when the final optimal path is obtained. The main drawback of this strategy is that memory demand increases as the algorithm advances through the time horizon. In addition, if discretization steps (on both time and energy) are refined, then both computational time and memory demands will increase. Including more than one EV in the DP algorithm will exponentially increase the quantity of admissible states to visit at each step of time. For all these reasons, a Game Theory approach is considered in order to decentralize the optimization procedures, reduce the memory and computational time requirements, and avoid flexibility issues of fully centralized optimization approaches.

U i k (soc i k ) is defined by, soc i k soc i k 1 ⌧  x i k  soc i k soc i k 1 ⌧ Fig.

Decentralized Approach

In a decentralized scheme, decisions and flow of information are achieved in the decentralized manner at the level of EV. The advantage of such an approach is that the authority of control stays with the vehicle owner and not with another entity such as the aggregator. Results of [START_REF] He | Optimal scheduling for charging and discharging of electric vehicles[END_REF] show that separation in local sub-problems partially reduces the limitations of the centralized approach in terms of the dependence on collecting information for executing optimization routines. However, when the number of sub-controllers is increased, the performance is a↵ected. Authors of [START_REF] Richardson | Local versus centralized charging strategies for electric vehicles in low voltage distribution systems[END_REF] explore the advantages and disadvantages of a grid model based centralized approach compared to a decentralized linear approach where constraints on voltage and EV load e↵ects are considered. The proposed objectives seek to maximize the EVs charging rates, but leaving full final states of charge unguaranteed.

An interesting decentralized approach is proposed based on a communication channel analogy [START_REF] Rezaei | Packetized plug-in electric vehicle charge management[END_REF]. In this approach, each EV divides its charging requirements in several packets of short duration at the maximal charging rate considering the owner's projected time of connection. Permissions are asked for each packet to an aggregator, which grants permits or not, depending on the availability of consumption capacity. This approach has the important advantage of fairly providing EVs with access to the available power resources, while fulfilling grid constraints. Authors of [START_REF] Lin | Optimal scheduling with vehicle-to-grid regulation service[END_REF] propose a decentralized scheduling method, where EVs provide a regulation service by absorbing the uncertainties of generation and load, and smooth the power imbalance fluctuations. The proposed distributed algorithms are based on the gradient projection method to solve the optimization problems locally. A non-cooperative potential game has been presented in [START_REF] Khanh Nguyen | Optimal charging and discharging for multiple phevs with demand side management in vehicle-to-building[END_REF]. In this scenario, EVs are represented as players, and strategies they choose are represented by their power consumption profiles. Given fixed strategies from all the players, the profit of each one given its chosen strategy, and strategies from others, is defined by a function common to all the players. In [START_REF] Ma | Decentralized charging control of large populations of plug-in electric vehicles[END_REF], an interesting non-cooperative game approach where an economic cost function is "crafted" such that Nash equilibrium is achieved when strategies from players achieve valley filling. This cost function is defined based on the assumption that the amount of EVs tends to infinity and even in that case their demand is not as big as the base load demand. In the following section, a decentralized approach to manage the charging operation of multiple EVs. An N -person non-cooperative game approach is formulated. [START_REF] Ovalle | Optimal management and integration of electric vehicles to the grid: Dynamic programming and game theory approach[END_REF] In this approach, a number J of players is considered, where each EV is considered as a player. Each player is labeled with i = {1, 2, • • • , i, • • • , J}, and the set of possible strategies for player i is defined as the set of all possible charging profiles

Game Theory Approach

x i = [x i 1 , x i 2 , • • • , x i k , • • • , x i K i ].
On the other hand, for player i, the strategies chosen by the J 1 players left are grouped in the following expression,

x i = [x 1 , x 2 , • • • , x i 1 , x i+1 , • • • , x J ]
The payo↵ function for player i, depends on the strategy it chooses, and the strategies chosen by other players. This payo↵ functions is defined as the negative of the squared euclidean distance between the total load at each step of time and the average load,

G i (x i , x i ) = K X k=1 0 @ 0 @ x i k + N X j=1,j6 =i x j k + l k 1 A l avg 1 A 2 , (3.23) 
where, l k is the forecast of the grid's load (without EVs) at the transformer, and l avg is the average load during the whole charging period including grid's base load and EVs load. The best reply (BR) strategy x i⇤ for player i is given by,

x i⇤ 2 arg max

x i 2⇥ i G i (x i , x i ). (3.24)
where ⇥ i is a set defined by the constraints. This game is a best response potential game [123,[START_REF] Dragone | A class of best-response potential games[END_REF], with potential function G i (x i , x i ) given by (3.23). Given the strict concavity of utility functions for each player and the fact that sets ⇥ i are convex, closed and bounded, the game is a strictly concave N -person game where the Nash equilibrium exists and it is unique If players update their BR strategies in an asynchronous fashion, their payo↵s will either increase or remain the same. Since the distance to the average load is bounded below (in the best case it could be zero), then the algorithm will converge to the desired point or the Nash equilibrium [START_REF] Khanh Nguyen | Optimal charging and discharging for multiple phevs with demand side management in vehicle-to-building[END_REF].

a. Illustrative Example

In order to evaluate the performance of the charging management approach of this chapter, a test case is proposed with 10 EVs having the following characteristics. All of them have battery capacities of 20kWh, and their state of charge profiles are constrained to be between 30% and 80% of the capacity (6kWh to 16kWh). Chargers are considered to be bidirectional with charging rates of going from 3.2kW to +3.2kW (p i = 3.2kW). The period of charge is chosen between 18h in the evening and 06h in the morning. The initial states of charge for each EV are chosen randomly with a uniform probability distribution between 30% and 40%.

Given these initial strategies, the initial load curve including grid and EVs is shown on Fig. 4.19. As it can be observed, this initial profiles has the same shape of the grid's load forecast, with an o↵set that corresponds to the EVs load. The subsequent updates of each EV are also shown on this figure. It is important to notice that once the last EV updates its strategy, the final load curve does not change much since the Nash equilibrium is almost reached. Also, it is important to notice how the total load curve becomes flatter with the progress of the game. This occurs because the utility of each player is higher if the total load at each step of the changing period becomes closer to the average load. Equilibrium strategies (i.e. the final optimal power consumption schedules) are shown on Fig. 4.20. On the other hand, state of charge profiles are shown on Fig. 4.21. It is important to notice how each player respects the constraints of minimum state of charge (30%), final desired state of charge (80%), and power limits (±3.2kW).

Chapter 5

Prespectives 1 Introduction

Di↵erent approaches have been followed in the modeling and control AWE systems. These control strategies have been validated numerically and experimentally on indoor lab demonstrators. The integration of AWE systems to the grid has been tested in HIL experiments (see Chapter 3). For EV integration to the grid, di↵erent load management methodologies has been proposed aiming to minimize the impacts on the grid of this integration while respecting the owners objectives (see Chapter 4).

In this chapter, I will give some guidelines that can be followed in future research to address the new challenging problems in the AWE field, EV integration and load management in general, and the control of energetic systems. This can be considered my research project for the next five years.

Perspectives on Airborne Wind Energy Systems

Modeling and control of AWE are now relatively well-understood in the scientific community with several theoretical and experimental results that have been reported in the literature. However, there are several challenges to be addressed. The first challenge is taking-o↵ and landing of these systems which is not completely addressed. One answer to this open question is to use Magnus e↵ect-based AWE system (see Sect.3.2). These lighter than air systems can simplify the take-o↵ and landing procedures. A complementary promising solution is to use rotors as done recently by Twingteg [8]. A preliminary simulation study where a simplified model of Magnus e↵ect-based cylinder combined to a X4MaG shows a reduction of 60% of the thrust once the quadrirotors stabilized its circular path. A first prototype is also built in order to understand the technical di culties related to this problem (Fig. 5.1). The second challenge is to increase power performance of Magnus e↵ect-based AWE systems. In the frame of equilibrium motion theory, the power that can be generated with a tethered airfoil in crosswind conditions has been set by [START_REF] Loyd | Crosswind kite power[END_REF] and refined in [START_REF] Argatov | Estimation of the mechanical energy output of the kite wind generator[END_REF] to take into consideration the losses: is -1.9MW and maximum is 3.9MW. This results in a mean power of the full cycle of 1.47MW. Note that embedded motor consumption to rotate the Magnus cylinder has to be subtracted from this value in order to have the total net power produced. This has to be done a in future work. Simplified model under static assumptions is also shown and is close to the mean of P g dynamically simulated. The total mean power for simplified model P cycle = 1.67MW, which is only 14% more. One can note that in order to produce around 1.5 MW of nominal power for 10m/s wind and this set of parameters, the generator has to be able to produce 4e6 Nm torque and 6.6rad/s of rotation speed. This leads to a 26.6MW generator. A trade-o↵ has then probably to be found in order to use a reasonable size of generator for the on-ground station. As these 2 extreme values are not needed in the same time, a gear box can also be considered. A 3.9 MW generator is then needed instead. Finally, the maximum torque can also be more limited, but a degradation of tether length control will occur. After this discussion, my main objective is to develop, construct and operate a fully autonomous airborne wind energy system that can be used and installed in urban areas. A new system shown on Fig. 5.7 can be used. For this new mobile airborne wind energy system, one can advance the following applications:

P prod = 1 2 ⇢ 4 27 S cyl (v w cos( )) 3 C L ✓ C L C D ◆ 2 (2.1) r t ref K 1 u T X T c r i , ṙi ⇥, ⇥
1. With 100 % autonomous system, we can imagine a parachute drop in conflict or disaster zones followed then by automatic deployment.

To try to compare with conventional solutions currently operational, one can advance the following numbers, which will be confirmed and clarified throughout the project:

⇧ Since the proposed system aims to produce a power of 3kW, it can be contained in a volume of about 1 m 3 with a weight around 100kg, excluding batteries.

⇧ A wind turbine of equivalent power, weighs substantially more, would have a diameter of 3m and require the construction of a mast of at least 6m high. Being much closer to the ground, it would also produce less power and would be sensitive to the reliefs within a radius of at least 100 m.

Introduction

The problem of attitude control of a rigid body has attracted considerable amount of interest since the 1950s within the scientific communities of aeronautics, aerospace, control and robotics. Indeed many systems such as spacecrafts, satellites, helicopters, tactical missiles, coordinated robot manipulators, underwater vehicles, aerial vehicles and others can enter within the framework of rigid bodies with a need for attitude control. Several approaches were applied such as feedback linearizing control law (Fjellstad & Fossen, 1994 ). This list is of course far from being exhaustive. Within these mentioned approaches, a feedback linearization coupled with a proportional-derivative control is probably the most widely used method to solve the attitude control problem. This ensures stabilization with a simple implementation of the control law. Sometimes, the linearization step is even not applied. The major criticism of this approach is that for large attitude or angular velocity errors, a large control effort is required. Furthermore, the linearization step requires a relatively accurate model of the system.

In practice, the limitations on available energy impose bounded input signal. Moreover, it is common that the output of the system are bounded due to sensors limitation. Actually, the above cited attitude control approaches do not consider the problem which takes the input and/or output constraints into account. Few publications have dealt with this problem. In Tsiotras and Luo (2000), the stabilization of an underactuated rigid spacecraft subject to input constraints is studied. Although this approach uses an innovative attitude representation that allows the decomposition of general motion into two rotations, the proposed control law and its analysis are restricted only to the kinematic level. In Belta (2004), a control law that drives a rigid underwater vehicle between arbitrary initial and final region of the state space while satisfying bounds on control and state is proposed. The approach is based in a control of multi-affine systems. The authors in Boskovic, Li, and Mehra (1999) have studied the robust sliding mode stabilization of the spacecraft attitude dynamics in the presence of control input saturation based on the variable structure control (VSC) approach. Unfortunately, the stabilizing bounded control laws applied in these works are nonsmooth and this fact renders difficult their practical implementation. The application of optimal control of a rigid body's attitude has been the interest of many researches (see Scrivener & Thompson, 1994 and references therein). However, when the problem is subject to control constraints a difficulty 

I. INTRODUCTION

S EVERAL papers have evaluated the plug-in electric ve- hicles' (PEVs) impact, both electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), on residential electric grids [1], [2] and on distribution power grids [3]- [START_REF] Ovalle | Mixed strategist dynamics: Electrical vehicle distributed load scheduling[END_REF]. Many studies quantify the life duration losses of high-and low-voltage transformers [8]- [START_REF] Ding | Distributed cooperative control framework of a cryogenic system[END_REF] caused by the recharging of PEVs. We can consider that the impacts associated with the integration of PEVs are known. Currently, significant research work is carried out to minimize such impacts [START_REF] Hably | Bounded control of a general extended chained form systems[END_REF]- [START_REF] Nwesaty | Extremum seeking control techniques applied to photovoltaic systems with multimodal power curves[END_REF].

In parallel, "active" algorithms have been developed for smart charging of PEVs mainly in the residential areas. To this end, [23] proposes a "local" algorithm of energy management for housing with one PEV and photovoltaic installations to minimize CO2 emissions. Voltage profile control and loss minimization algorithms using PEVs are proposed in [24] and [START_REF] Ahmed | Kite generator system: Grid integration and validation[END_REF]. In [START_REF] Sh | Kite generator system modeling and grid integration. Sustainable Energy[END_REF], the authors have proposed an algorithm to smooth the load curve using vehicles and minimizing the user's energy bill. Although peak shaving enables preserving, on one hand, the operation of the electric grid (voltage plan, losses, etc.) and, on the other hand, life duration of grid elements (transformers and cables), this research topic is uncommon in the literature. This is enhanced in [START_REF] Ahmed | Grid-connected kite generator system: Electrical variables control with MPPT[END_REF]- [START_REF] Alamir | Heres : A novel distributed nmpc control structure for partially cooperative systems under limited information sharing[END_REF], where the authors have proposed algorithms that determine the available energy for charging PEVs connected to the electric grid while minimizing the transformer's aging. Generally, these "active" algorithms proposed in the literature relate the integration of PEVs to technoeconomic aspects [START_REF] Aneke | Homogeneous stabilization of the extended chained form system[END_REF]- [37]. Few studies evaluate the impact of these algorithms on the life duration of grid elements.

In this paper, a different approach is proposed in order to solve the integration of PEVs into the electric grid. The focus of the current study is to develop an RB algorithm that is applied to one house equipped with a single PEV. The study is conducted with the assumption that the PEV leaves and arrives at home once a day. The idea is to define a minimal constant-charging power level while allowing recharging PEVs at any time and strictly prohibiting charging during peak hours. In this way, it is guaranteed that the vehicle's battery reaches a desired state of charge (SOC) at the departure time. The RB algorithm is applied on 10 000 real case studies using daily loads profiles (DLPs) of houses and PEVs. Databases have resulted from real electricity consumption of domestic electrical devices, corroborated with the distribution of the vehicle's arrival and departure times, categories, and battery SOC. These distributions are obtained by applying a probabilistic algorithm of the PEV's connections.

Thus, for PEVs charged at home, we determine the charging power levels of 2460 W and 3400 W, respectively, when allowing recharging vehicles at any time and prohibiting charging during peak hours. These charging levels ensure statistically that 99% of the batteries of PEVs have an SOC equal to 100% for the next use.

After applying the charging power levels obtained from the RB algorithm, we show that the aging rate is minimized for an LV transformer that feeds a residential power grid where the number of houses is variable without any charging restriction of PEVs during peak hours. In general, this analysis answers the pragmatic requirement to prohibit charging during peak hours for home-charged PEVs.

The proposed methodology has a strong feature because it is not linked with any deployments related to smart grids. Indeed, the recommendation is applicable now for existing power grids without additional infrastructure. Abstract-An application of an evolutionary game dynamics called mixed strategist dynamics (MSD), for the decentralized load scheduling of plug-in electric vehicles (PEVs), is proposed in this paper. Following an analogy with the maximum entropy principle (MEP) for tuning parameters of discrete probability distributions, entropy of the total load distribution and the local load distributions are considered as objectives of the scheduling approach, and a tradeoff among them is defined by the electric vehicle owners' convenience. While entropy maximization for the local load distributions contributes to preserve the batteries' states of health, entropy maximization for the total load distribution reduces the undesirable peak effects over the transformer loading. The problem is formulated such that final states of charge are assured depending on time constraints defined by the owners. Furthermore, mixed strategies in the MSD are defined such that they represent the vertices of the convex set of feasible load profiles which results from the constraints imposed by owners and chargers. The synergy of several PEVs is modeled as an application of the MSD in a multipopulation scenario, where the interaction among populations follows another evolutionary game dynamics called best reply (BR) dynamics. The performance of the proposed approach is tested on real data measured on a distribution transformer from the SOREA utility grid company in the region of Savoie, France.

Index Terms-Distributed optimization, entropy maximization, evolutionary game theory, mixed strategist dynamics (MSD), plug-in electric vehicles (PEVs), smart charging.

I. INTRODUCTION

P LUG-IN electric vehicles (PEVs) represent part of the future of transportation systems, and even more, environmental, technical, and economic opportunities for future electricity grids [1]- [START_REF] Basu | Online forecasting of electrical load for distributed management of plug-in electric vehicles[END_REF]. PEV's energy storage potential availability for grid support represents several benefits for the electric distribution systems in terms of: intermittency reduction of nonconventional energy sources, power quality enhancement, energy transportation, etc. [1]- [START_REF] Ovalle | Mixed strategist dynamics: Electrical vehicle distributed load scheduling[END_REF]. Nevertheless without the existence of dedicated charging infrastructure, a high PEVs penetration rate may have a negative impact on voltage levels, load balancing, stability issues, etc. [START_REF] Ovalle | Mixed strategist dynamics: Electrical vehicle distributed load scheduling[END_REF]- [10]. In order to overcome these issues and take advantage of the potential benefits of PEVs, optimal management schemes for energy fluxes become a key element. In particular, given the importance of vehicle owner's autonomy, decentralized management schemes become desirable [11], [12].

Several approaches concerning this issue have been published during the last years. Centralized approaches generally aim to find optimal schedules for power consumption of PEVs, based on the forecasting of the inelastic base demand and a model of the grid. Some centralized approaches define linear economic costs of energy as objectives, given fixed tariffs, and apply linear programming tools [3], [START_REF] Ding | Distributed cooperative control framework of a cryogenic system[END_REF]. Some of these approaches use grid modeling in order to fix constraints aiming to reduce the impact of PEVs, on voltage levels for instance [START_REF] Hably | Bounded control of a general extended chained form systems[END_REF]. Other centralized approaches propose nonlinear cost functions. Authors of [START_REF] Ahmed | Kite generator system: Grid integration and validation[END_REF] propose power losses on the grid as a quadratic objective function to minimize. In [START_REF] Ovalle | Voltage support by optimal integration of plug-in hybrid electric vehicles to a residential grid[END_REF], authors propose as objective function, a third degree polynomial representing the economic cost of energy where the price is defined by the ratio of demanded power and available power. Even if centralized approaches are able to use modeling or power flow techniques to get interesting results on variables like voltage or power limits, the communication infrastructure and the amount of information required to execute those approaches make them impractical and inflexible [11], [12], [START_REF] Ding | A distributed cooperative control scheme with optimal priority assignment and stability assessment[END_REF].

More flexible solutions can be provided by decentralized approaches. Authors of [START_REF] Ding | A distributed cooperative control scheme with optimal priority assignment and stability assessment[END_REF] compare a model-based centralized approach with a decentralized linear approach where constraints of voltage and loading effects of PEVs are considered. These constraints are based on off-line computed sensitivities I. INTRODUCTION Airborne wind energy systems have attracted a lot of interest in the last few years. Due to the quality of higher altitude wind which is stronger and more persistent they are considered as a promising alternative to traditional wind turbines with limitations related to weight and size, and therefore the investment cost when the targeted power increases. There are many ways to capture the wind energy using aerodynamic surfaces with moving center of mass and orientation. The existing prototypes can be divided into two main classes:

• On-ground production using the lift mode as noted in [1]. A traction phase, in which the airfoil is pulled by the wind, unrolling the cable which turns a groundbased electrical machine; and a recovery phase, that begins when the cable reaches its predefined maximum length, and hence needs to be reeled-in, an operation that consumes energy. These systems are studied by [2], Kitegen [3], and Ampyx Power [4]. • On-board production using the drag mode. The generator is embedded and electric energy is produced in the sky and sent to the ground using conducting cables. This type of system is investigated for example by Makani Power [START_REF] Basu | Online forecasting of electrical load for distributed management of plug-in electric vehicles[END_REF]. Most of the aforementioned systems use either flexible kites or rigid wings. However, Omnidea Lda has proposed to use the Magnus effect in its HAWE project [START_REF] Ovalle | Mixed strategist dynamics: Electrical vehicle distributed load scheduling[END_REF]. The operation principle of their platform is based on the rotation of a buoyant cylinder attached to the ground by cables. The Magnus effect generates an aerodynamic lift force which depends on the apparent wind speed with relation to the cylinder and the cylinder rotational speed itself. Electrical energy is produced using the pumping mode. The Magnus cylinder is almost static and therefore the apparent wind speed remains close to the real wind speed [8]. This type of system using the Magnus effect must be explored. In addition, a key difference compared to the AWE systems using kites or wings whose lift and drag coefficients depend on the angle of attack, is that Magnus effect systems are independent of angle of attack. The control of the angle of attack is sometimes critical and depends on some parameters which are difficult to measure. The paper is organized as follows. Section II introduces the system modeling. The control strategy is presented in Sect.III. This control strategy is applied to the experimental platform described in Sect.IV. Both simulation and experimental results are shown in Sect.V. A numerical application of the proposed control strategy for Omnidea' s experimental platform is presented in Sect.VI. Section VII provides some conclusions and perspectives.

II. THE SYSTEM MODELING

The airborne wind energy system under study is composed of a ground-based motor that will supply a traction force to a tether connected to a light-weight rotating Magnus cylinder. In this study the movement of the Magnus cylinder is limited to the vertical plane. The system's dynamical model can be given by:

✓ = 1 r h 2 ✓ ṙ + F T M Mag i (1) r = 1 M Mag + M D h r ✓2 M Mag + F R T i (2) Ṫ = T ⇣ u T T ⌘ ( 3 
)
where r is the tether length from the Magnus cylinder to the motor on the ground, ✓ is the angle that the tether makes with respect to the horizon, M D = I R 2 d with I the inertia of the ground-based motor and R d its radius, T is the traction on the tether. The Magnus cylinder mass M Mag is the sum of cylinder mass M , the mass of the gas used to fill it, and M l : with ↵ w is the wind angle defined later in equation (11). Lift and drag forces can be expressed by:

M Mag = M + V o ⇢ gas + M l r (4 
L = 0.5⇢Sv 2 r C L , D = 0.5⇢Sv 2 r C D ( 7 
)
where ⇢ is the air density, S is the Magnus cylinder projected surface area, v r as we will see later is the norm of the apparent wind velocity vector (equation 12). The buoyancy force can be calculated from the Archmiedes's principle:

B = ⇢V o g (8) 
Vertical relative airspeed v v and horizontal relative airspeed v h depend on the motion of the rotating Magnus cylinder. One has:

v h = V + r ✓ sin ✓ ṙ cos ✓ (9) 
v v = (r ✓ cos ✓ + ṙ sin ✓) (10) with V is the airspeed with respect to the ground. Using these equations, one obtains, v r , the norm of the apparent wind velocity vector and the angle of this vector with respect to the ground ↵ w .

↵ w = arctan (r ✓ cos ✓ + ṙ sin ✓) V + r ✓ sin ✓ ṙ cos ✓ (11)

v r = q (r ✓ cos ✓ + ṙ sin ✓) 2 + (V + r ✓ sin ✓ ṙ cos ✓) 2 (12) 
For lifting devices using the Magnus effect, aerodynamic lift coefficient C L and drag coefficient C D are functions of the spin ratio X and not of the angle of attack as for airfoil wings. The Magnus cylinder spin ratio is given by the following equation [8]:

X = wR v r ( 13 
)
with w is the Magnus cylinder rotational velocity and R is its radius.

III. THE CONTROL STRATEGY

The control strategy to be applied on the Magnus-based system aims to control the amount of energy produced by forcing some variables, namely the tether traction force T and its length r, to track some "optimized" profile related to desired power. This system has two phases: a generation (traction) phase where the tether is pulled by the Magnus cylinder using the aerodynamic forces and then a consumption (recovery) phase where the Magnus cylinder is pulled by the tether to return to its initial departure point in order to start a new cycle. For simplicity, desired power P ref will be assumed constant, but the control strategy can be adapted to varying P ref as we will see in the results section. During the cycle, the Magnus cylinder moves from minimum position r min to a maximum position r max at a speed ṙprod and ṙrec respectively during production and recovery phases. The proposed algorithm is based on the following rules. A given cycle is defined by the beginning of the recovery phase (t 0 ) until the end of the production phase (t 1 ).

• The consumed energy is measured from t 0 to time t E rec (t) = Z t t0 P mes dt (14

)
P mes is the measured power defined by: P mes = P gen + P Mag [START_REF] Ahmed | Kite generator system: Grid integration and validation[END_REF] with P gen is the measured power produced or consumed by the generator on the ground and P Mag is the power consumed by the Magnus actuator. • At the end of the recovery cycle, the remaining energy to be produced E prod has to satisfy E(t 1 ) = P ref ⇥ (t 1 t 0 ) = E ref .

E prod (t) = E ref E rec (t) (16) 
• The traction force has to satisfy

T ref = 1 ṙprod E ref E rec (t) (t 1 t) (17) 
Three controllers have been used to implement this control strategy (2). Controller K 3 is used to find the desired tension T ref as a function of the desired power P ref (Eq. 17). This desired tension is controlled in its turn by a controller, denoted by K 2 , to get the Magnus cylinder spin ration X. The tether length is controlled by K 1 in order to obtain the traction controlu T . During the cycle, the Magnus cylinder moves from r min to r max at a speed ṙprod and ṙrec respectively during production and recovery phases. The parameters K 1 and K 2 are tuned empirically to separate the dynamics of the inner and outer loop and in order to have a fast response time to obtain maximum power for a given wind speed as we will see later in the results section.

IV. PLATFORM DESCRIPTION

In order to validate the proposed system and the control strategy, the Gipsa-lab experimental test bench is used. This experimental setup was built for our work using rigid wings [9], the same algorithm was also used in [10]. This indoor experimental setup gives us some flexibility and allows us to test our prototypes and the proposed control strategies sheltered from outside weather conditions. It is composed of a wind tunnel, the Magnus cylinder, and the ground station.

A. Wind Tunnel

The wind tunnel is composed of 9 brushless motors with 2-blade fans of 0.355m diameter. These motors, 800W each, are distributed on a surface of 1.85 m 2 . Turbulent air flow is produced at speeds up to 9 m/s. A hot wire wind speed sensor (1 measurement per second with a serial interface) is used to measure the airspeed. Controllers are implemented on the experimental setup using the xPC target real-time toolbox of Matlab (Fig. 3). 

B. The Magnus Cylinder

The Magnus cylinder used in our platform is a light-weight cylinder built with carbon rods, polystyrene and transparent plastic (Fig. 4). The rotation of the Magnus cylinder is provided by one mini DC motor mounted at one extremity of the Magnus cylinder. Its current control and speed sensing is done using a homemade driver. The parameters of the Magnus cylinder are given in Table I.

C. The Ground Station

The ground station is composed of dynamo-motor system Maxon 2260L DC 100W driven by a 4 quadrants amplifier Maxon ADS 50/10. Two incremental encoders provide measurement of the angle ✓ and the tether length r. Control references of DC motors are sent to drivers with a DAC PCI DA S1200 from Measurement Computing and a torque sensor provides an accurate measurement of tether tension. 

V. RESULTS

Before applying the control strategy presented previously, an important phase of characterizing the different elements of the experimental setup was needed.

A. Characterization

Firstly, the response time of the DC motor used to rotate the Magnus cylinder is characterized and its energy consumption is quantified for different wind speeds. The second step is to identify the lift and drag coefficients as a function of the spin ratio. The results are very near to the theoretical results [11] used in [12] where the drag and lift aerodynamic coefficients are calculated as a function of speed ratio X. The last step in the characterization phase is to find the limits of our platform. We have noticed that friction in the pulleys is significant. We have measured the tension in the tether as a function of the tether length r for different rotational speed w of the Magnus cylinder and the tether speed ṙ and we have found our platform can provide a limited difference of traction force that can be used to produce energy. This is shown in the difference between the upper and lower zones of Fig. 6 B. Simulation Results

In this section, the proposed control strategy is tested numerically. Our objective is to validate the control strategy and to have cycle with a positive production result. For this, the controller block K 3 is not active in these tests because of the identified friction in the setup. The following conditions are used.

• The minimum tether length r min = 0.1 m and its maximum is r max = 0.7 m. These limits are imposed by the wind window of the wind tunnel. • The tether speed in the traction phase ṙprod = 0.1 m/s and in the recovery one ṙrec = 0.1 m/s. • The response time of the actuators used to turn the Magnus cylinder is too long in order to maintain a constant value of X. In addition, one has fast variations of the relative wind speed related to oscillation on ✓.

For this and in order to validate our control strategy, we have chosen to control only w which gives a mean X value. A constant rotational Magnus cylinder speed is used in the traction phase w prod = 200 rd/s and and in the recovery phase w rec = 140 rd/s. This corresponds by approximating v r ⇡ V to have a spin ratio in the traction phase X prod = 1.5161 and X rec = 1.0613 in the recovery phase. 

C. Experimental Results

The same control strategy has been experimentally applied to the setup using the same conditions used in the previous section. Similar results have been obtained as shown in the Figs. 9-11. A movie that shows the experimental results can be found on our website [START_REF] Ding | Distributed cooperative control framework of a cryogenic system[END_REF]. slope of Fig. 12 between X = 1 and X = 4.3. The control parameters are then K p = 6.4 ⇥ 10 3 N 1 and K d = 6.4⇥10 3 s/N. One can clearly see the performance of the proposed control strategy (Fig. 15). The measure produced power will follow the desired one even in the presence of noise on the wind speed. The control variables are shown on Fig. 16. It is worth noting that if the output of PD is saturated, one can simply apply a very large reference to achieve the maximum power, with X = 4.3 throughout the production phase 

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented the control of airborne wind energy system based on a Magnus cylinder. The indoor small-scale experiments have enabled us to master different aspects of the system and to validate part of our approach. The Magnus model was validated for a spin ratio ranging from 1 to approximately 2.3. Our goal for future work is experiment with models capable of spin ratio greater than 5.5. The small size of our wind tunnel does not allow us to reach tethers speeds that would achieve the simulated performance 1.48 kW/m 2 , but faster dynamics of the actuators rotating the Magnus cylinder would allows us to achieve more vertical cycles thus experiencing the dynamic exploitation of the relative wind due to the increase of the flight angle ✓.
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  Fig.III.6 shows the radial velocity profiles for orbits 4 and 5 compared to the reference orbit 1. Rotating the orbit results in more average generated power and increases the performance without the need to increase the orbit size or changing the system parameters. Contrary to the case of 0 o rotation, a 90 o rotated orbit preserves the orbit period, which means only one traction and one recovery phase during the orbit. This can be also observed by the energy profiles shown on the lower plot of Fig.III.7.
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  .33) connected by tethers to either an OXY kite of 0.5 m 2 or UNO kitesurf of 2.5 m 2 (Fig.3.34). This setup has been used in several outdoor tests mainly performed by Jonathan Dumon, Rogelio Lozano, and many engineering students during their projects and internships. Several videos are posted online in the setup website[1].
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 345346 Figure 3.45: The production cycles of the medium scale system. Wind speed v w = 10 m/s. The direction of the arrows indicates the movement of the Magnus rotor: Green for the production phase and red for the recovery phase.
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 3 Figure 3.47: A noise is added to the wind speed to test the performance of the control strategy (top). The net output power produced as a function of the desired level of power reference with a change in wind speed (from 10 m/s to 11 m/s) for the medium scale system (bottom).
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  ; Wie, Weiss, & Arapostathis, 1989), feedback proportional-derivative control law (Egeland & Godhavn, 1994; Joshi, Kelkar, & Wen, 1995; Tsiotras, 1994; Wen & Kreutz-Delgado, 1991), predictive control (applied to a spacecraft in Wen, Seereeram, & Bayard, 1997 and a to micro-satellite in Hegrenas, Gravdahl, & Tondel, 2005), backstepping (quaternion based in Kristiansen & Nicklasson, 2005 and nonlinear adaptive in Singh & Yim, 2002), robust control applied to tactical missiles (Song, Kim, Kim, & Nam, 2005). Adaptive control technique is applied on a flexible launch vehicle (Oh, Bang, & Park, 2008
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  Massive deployment of plug-in electric vehicles (PEVs) in the coming years will create more challenges for the power system including the aging rate of transformers. It will be an essential requirement to propose solutions to minimize the impacts related to the integration of PEVs. Special attention must be given to the residential electric grid where charging will mostly take place. In this paper, first we propose a rule-based (RB) algorithm which determines the minimum charging power levels of home-charged PEVs with/without a charging ban during peak hours. Second, we evaluate the consequences of supplying an RB algorithm on life duration of a low-voltage transformer supplying a residential area. Index Terms-Aging rate, life duration, low-voltage (LV) transformer, plug-in electric vehicle, residential electric grid, rule-based algorithm.
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  The wind speed is 6.2 m/s. Reynolds number is 4 ⇥ 10 4 . The tether length follows perfectly the desired position as shown on Fig.7. As expected, the traction force increases as the rotational Magnus cylinder' speed increases. The application of this control strategy enables us to produce a positive result as shown on Fig.8.
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 7 Fig. 7. Tether length, tether tension and the Magnus rotational speed as function of time in the simulation of small scale system. The oscillation in the tether tension is due to the choice of controller parameters.
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 9 Fig. 9. Tether length, tether tension and the Magnus rotational speed as function of time in the experimentation on Gipsa-lab platform.
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	Figure II.9: Kite's attached coordinates.	

10, is the control input, the kite-related coordinate ( y w ) is written in the defined intermediate coordinates ( e r , e p , e o ) as follows:

  

	y w = sin . e r	W er . sin || W p e ||	. e p + sin 2	W er . cos || W p e ||	! 2	. e o	(II.10)
	Considering the notations: L = || W p e || = expressed as:	q W 2 e✓ + W 2 e , ⌘ = arcsin Wer tan L	, vecy w can be
	y w = sin . e r sin ⌘ cos . e p + cos ⌘ cos . e o			(II.11)
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	Symbol R ⌦ max max M S ⇢ C L C D T R ⌦ max m A ⇢ a C L C D T s	1: AWE system parameters RotorDiameter Name Maximum rotor rotation velocity Motor maximum torque Kite mass Kite area Air density Lift coe cient Drag coe cient 0.3 Rotor Diameter (m) 25 Maximum rotor rotation velocity (rd/sec) Value 0.3 m 25 rd/sec 22 N.m 2.5 kg 5 m 2 1.2 kg/m 3 1.5 0.15 2.5 Kite mass (kg) 5 Kite area (m 2 ) 1.2 Air density (kg/m 3 ) 1.5 Lift coe cient 0.15 Drag coe cient 0.1 Sampling time (sec)

s Sampling time 0.1 sec recovery phase to occur further from the center of the power region, hence consumes less energy. The size, however, is a parameter to be optimized according to the system location. The orbits 68 III. Kite Generator System: Supervision Table III.1: Kite generator system parameters max 22 Motor maximum torque (N.m)

Table 3 . 2

 32 

	III.2. Nonlinear Model Predictive Controller			69
	Orbit	1	2	3	4	5
	✓	10 o	20 o	20 o	10 o	10 o
		20 o	20 o	40 o	20 o	20 o
	Rot	0 o	0 o	0 o	30 o	90 o
	Period (sec)	35.4	59.0	78.4	35.4	35.0
	Mean power (W )	240	732	844	398	840
	Performance	0.058	0.094	0.108	0.058	0.100

: Testing orbits parameters and optimized orbits' period, mean mechanical power and performance

Table III .

 III 2: Testing orbits parameters and optimized orbits' period, mean mechanical power and performance

	Orbit	1	2	3	4	5
	✓	10 o	20 o	20 o	10 o	10 o
		20 o	20 o	40 o	20 o	20 o
	Rot	0 o	0 o	0 o	30 o	90 o
	Period (sec)	35.4	59.0	78.4	35.4	35.0
	Mean power (W )	240	732	844	398	840
	Performance	0.058 0.094 0.108 0.058 0.100

  Airborne Wind Energy Systems 4. Control of AWE Systems during a cycle E ref is given by P ref (t 2 t 0 ). During the cycle, the output energy produced

	Output power		
	P g P M		
	P ref		
			Time
		t	
	t 0	t 1	t 2
		Cycle 1	Cycle 2

Figure

3

.26: A sketch of the instantaneous output power as a function of time covering several pumping cycles. For a cycle, the red area E rec represents the energy consumed during the recovery phase between time t 0 and time t 1 and the green area E prod represents the energy produced during the production phase between time t 1 and time t 2 . The blue area represents the output energy at time t for the beginning of the cycle. Desired reference power P ref is assumed to be constant. from time t 0 to time t is calculated by E = t Z t 0 (P g P M )dt

(3.37) 

Table 3 .

 3 5: Parameters of the medium scale Magnus rotor.

	Symbol	Name

Table 3 .

 3 

			6: Parameters of the MW scale Magnus rotor	
	Symbol		Name				Value
	M M		Mass of airborne subsystem		1.133⇥10 4 kg
	R		Magnus rotor radius			6.25 m
	L m		Magnus rotor length			80 m
	⇢ g		Buoyant gas density			0.95 kg/m 3
	⇢ air		Air density				1.225 kg/m 3
	M l		Mass per tether length		5 kg/m
	M D		Magnus rotor mass			50000 kg
	u Tmax		Saturation on traction actuator		2⇥10 6 N
	v w		Wind speed				10 m/s
	Re		Reynolds number			8.6 ⇥ 10 6
	Tether Length [m]	200 200 250 300	220	240	260	280	300	320
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TABLE I PARAMETERS

 I OF THE MAGNUS CYLINDER

	Symbol	Name	Value
	M Mag	Magnus cylinder mass	0.11 Kg
	M l	Mass per tether length	0 Kg/m (neglected)
	R	Magnus cylinder radius	0.047 m
	Lm	Magnus cylinder length	0.45 m
	M IM ⇢	Rotor mass Air density	0.0481 Kg 1.225 Kg/m 3
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are some design parameters. Note that feedback law (3.34) only needs the estimation of , ˙ and and does not need any particular knowledge on the drag force expression. The complete system (observers, feedback control, and the tethered wing power system) is shown on figure

3.25. 

The measurement sampling period is five seconds.
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Results on the Energy Control of a Magnus Rotor

In this section, the proposed control strategy in Sect.4.4 is applied on Magnus rotor described in Sect.5.1.3. Our objective is to test the control strategy and to have a cycle with a positive net energy output.

Numerical Application to a Medium Scale System

The complete control strategy has been numerically applied to Omnidea's system. This Magnus rotor is filled with Helium. Its parameters are listed in Table 3.5. Note that for a wind speed v w = 10 m/s, Reynolds number is Re = 1.7 ⇥ 10 6 . In order to implement the proposed 

Conclusions

This chapter provides control strategies to compute optimal charging schedules of multiple EVs in a centralized and decentralized manner. Additionally, the proposed strategies employ the energy storage capacity of EVs in order to provide a service of load flattening. The proposed schemes are evaluated under multiple cases in order to test their capabilities. EV impact on the voltage plan and the aging rate of a low voltage transformer has been also addressed. 

VI. NUMERICAL APPLICATION TO OMNIDEA SYSTEM

The complete control strategy has been numerically applied for Omnidea's platform. We have taken the dimensions of the Magnus cylinder currently in service. Its parameters are listed in Table II. The Magnus lift and drag coefficients used for Reynolds number R e = 3.8 ⇥ 10 4 :

We want to have an optimal production cycle with vertical trajectories similar to those suggested in [12]. We have determined the feasibility regions for r min = 200 m and r max = 300 m. For a wind speed V = 10m/s, the tether speed in the traction phase ṙprod and in the recovery one ṙrec are found numerically offline. One gets ṙprod = 0.33⇥V and ṙrec = 0.52 ⇥ V . The choice of the spin ratio value of Omnidea's Magnus cylinder depends on the following objectives: 1) To maximize the lift-to-drag ratio L D , one has to take X = 2.4, and 2) To maximize the aerodynamic forces, i.e p C 2 L + C 2 D , the spin ratio must be equal to X = 5.4. For a vertical trajectory, the spin ratio will take a value between X = 5.4, which maximizes power without taking part of the relative wind, and X = 3.6, which maximizes the crosswind power if one reaches the theoretical relative speed vr = L D V . By simulating this system at a wind speed V = 10 m/s (see next section for details), we get the mean power produced during a full cycle as a function of X (Fig. 12). Note that we do not consider here the motor consumption that actuates the Magnus cylinder. The maximum power is P moy = 59.23 KW for X = 4.3 which is between 3.6 and 5.4 as expected. For this set of parameters, the energetic performance is 1.48 kW/m 2 which is consistent with 1.25 kW/m 2 found in [12].

A. Nominal production cycle

In this section, the results of the production cycle are presented. In order to have a smooth movement of the Magnus cylinder, the reference tether length r ref is filtered by 1 (⌧Rs+1) 2 with ⌧ R = 2s. The PID controller K 1 parameters are K p = 8250 N/m, K i = 1.32 N/(m.s), K d = 45 ⇥ 10 3 N.s/m. We find that the relative wind speed increases thanks to the evolution of flight angle ✓ which produces the vertical shape of the cycle (Fig. 13). with a maximum of v r = 14.26 m/s in the production phase and v r = 14.79 m/s in the recovery phase. On Fig. 14, we show the evolution of the control. One can find the maximum tension in the tether is T max = 42.4 kN, the maximum rotational speed w max = 49.02 rd/s. The production speed is 3.3 m/s with an overshoot measured at 8 m/s, the traction speed is set to 5.2 m/s, without any observed overshoot. Omnidea' current system cannot completely meet these values since the announced maximum force is 5 kN with a maximum rotational speed of 9.42 rd/s.

B. Energy control

A production cycle using the complete control strategy has been tested. To find the control parameters of the controller K 2 (PD controller), we have chosen the increasing line