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"Trouver quelque chose en mathématiques, c’est vaincre une inhibition et une tradition."
Laurent Schwartz

"Un temps, durant notre enfance,
nous nous voulûmes savant ;
Un temps, de notre science,
nous eûmes contentement.
Mais écoute, maintenant,
ami d’exactes mesures,
La somme de l’aventure :
de l’eau courante et du vent! "
Omar Khayyam
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General introduction in french

Ce mémoire développe deux thèmes principaux: en premier lieu, les problèmes inverses et de façon connectée
les problèmes directs, soit l’existence et l’unicité de solutions, pour différentes équations aux dérivées par-
tielles. Ces deux aspects seront liés dans l’ensemble des travaux présentés dans ce manuscrit à l’exception
des travaux de la Section 4.3.

Durant ces dernières décennies, les problèmes inverses ont connu un essor important. Ces problèmes
prennent des formes variées et sont liés à des applications multiples (imagerie médicale, environnement,
sismologie, finance...). Plus généralement, on remarque que ces problèmes apparaissent de façon récurrente
au quotidien, comme lorsqu’on se demande d’où vient tel son ou d’où vient telle lumière. Au delà des
applications multiples, du fait de leur caractère mal posé et non-linéaire, ces problèmes ont en tant que tel
un intérêt mathématique. Dans ce manuscrit, nous nous focaliserons sur les problèmes de détermination
d’un coefficient ou d’une source apparaissant dans des équations aux dérivées partielles (respectivement
d’un opérateur) à partir d’observations des solutions (respectivement d’informations partielles à propos des
données spectrales). Un exemple important de ce type de problèmes provient de la fameuse question de
Calderón liée à des méthodes d’imagerie comme l’Electrical Impedance Tomography (EIT). Cette question
peut être formulée de la façon suivante: Est il possible de déterminer la conductivité électrique d’un milieu à
partir de mesures d’intensité et de courant sur le bord de ce milieu? Mathématiquement parlant, ce problème
consiste à déterminer une conductivité apparaissant dans une équation elliptique à partir d’observations sur
le bord du domaine. Ce type de problèmes peuvent être considérés pour d’autres équations aux dérivées
partielles (hyperboliques, paraboliques, Schrödinger) avec différentes applications (problèmes de transmission
de son, de lumière, de chaleur...). À travers les différents travaux que nous présenterons dans ce manuscrit,
notre objectif sera d’étudier ce type de problèmes inverses sous des formes variées et pour différentes équations
aux dérivées partielles. Les travaux que nous présenterons ici constituent une part importante et significative
de mes travaux de recherches de ces six dernières années (soit depuis mon recrutement en qualité de maître
de conférences à l’Université d’Aix-Marseille). Ce manuscrit se décompose en quatre parties comprenant:
1) Les problèmes sur un domaine cylindrique non-borné; 2) La détermination de coefficients dépendant du
temps et de l’espace pour des équations aux dérivées partielles d’évolution; 3) Problèmes inverses spectraux;
4) Problèmes inverses et directs pour des équations de diffusion fractionnaire en temps. Un chapitre sera
dédié à chacun de ces aspects.

Dans le premier chapitre, nous nous intéresserons à la détermination de coefficients ou d’une source
pour différentes équations aux dérivées partielles dans un domaine cylindrique non-borné aussi appelé guide
d’ondes. Dans ce cadre, nous chercherons à déterminer un coefficient ou une source à partir de mesures
sur le bord du domaine. Ces résultats sont bien connus pour un domaine borné. Néanmoins, le passage
d’un domaine borné vers un domaine non-borné engendre tout une série de difficultés que nous détaillerons
dans le Chapitre 1. Pour contourner ces difficultés, nous proposons deux approches. La première approche
consiste à utiliser la géométrie particulière des domaines cylindriques pour étendre les résultats connus pour
un domaine borné. L’autre approche consiste à se restreindre à des coefficients périodiques le long de l’axe
du cylindre et à utiliser la décomposition de Floquet. Ce procédé, bien connu en théorie spectrale, permet
de ramener un problème énoncé sur un domaine non-borné à un problème sur un domaine borné avec des
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conditions de quasi-périodicité.
Dans le second chapitre, nous considérerons la détermination de coefficients, dépendant des variables

temporelles et spatiales, pour différentes équations d’évolution (hyperboliques, paraboliques, Schrödinger)
sur un domaine borné. Pour les équations hyperboliques, notre objectif consistera à déterminer de façon
globale une classe importante de coefficients dépendant du temps et de l’espace. Pour cela, nous rappelerons
les limites de ce type de résultats qui proviennent d’obstructions à l’unicité que nous détaillerons dans la Sous-
section 2.2.2. En tenant compte de ces limitations, nous établirons les données qui permettront de déterminer
de façon unique et stable ces coefficients sans faire d’hypothèses importantes sur la forme du domaine ou
la régularité des coefficients. Pour les équations paraboliques et de type Schrödinger, nous étudierons la
question de la stabilité. Enfin, dans le cas des équations paraboliques, nous montrerons comment ces résultats
peuvent être appliqués au problème consistant à déterminer un terme non linéaire à partir d’observations
des solutions.

Le troisième chapitre sera consacré aux problèmes inverses spectraux. Plus précisément, nous consid-
érerons des problèmes inverses spectraux de type Borg-Levinson dont le principe consiste à déterminer un
opérateur à partir d’informations partielles sur ses données spectrales. Nous commencerons par considérer
un opérateur de Schrödinger dans un domaine cylindrique non-borné avec un potentiel périodique le long
de l’axe du cylindre. Dans ce cas précis, nous chercherons à déterminer l’opérateur à partir d’informations
asymptotiques sur les données spectrales de Floquet de l’opérateur. Par la suite, nous considérerons la
détermination d’un opérateur de Schrödinger magnétique sur un domaine borné à partir d’une certaine con-
naissance asymptotique des valeurs propres et à partir d’informations concernant des vecteurs propres de
l’opérateur sur le bord du domaine. Nous finirons par présenter une application des résultats de contrôle
aux bords à ce type de problèmes.

Le dernier chapitre sera consacré aux équations de diffusion fractionnaire en temps. Nous commencerons
par considérer un problème inverse consistant à déterminer une classe importante de coefficients apparaissant
dans ces équations à partir d’observations sur le bord des solutions en un temps fixé. Puis nous établirons
des résultats liés au problème direct dans un contexte de régularité faible. Nous appliquerons ce dernier
résultat pour déterminer l’existence de solutions pour des équations fractionnaires en temps non linéaires.
Enfin, nous considérerons les équations de diffusion fractionnaire en temps dont l’ordre de la dérivation est
variable. Pour ce problème, nous commencerons par prouver l’existence et l’unicité des solutions. Puis
nous appliquerons ce résultat au problème inverse consistant à déterminer l’ordre de dérivation ainsi que des
coefficients apparaissant dans l’équation à partir d’observations sur le bord des solutions.



General introduction in english

The main aspects developed in the present manuscript concern inverse problems. The other aspects are
related to forward problems, namely existence and uniqueness of solutions for different partial differential
equations. These two aspects will be often connected, except in Section 4.3 where we consider only the
forward problem.

During these last decades, inverse problems have been growing in interest. These problems can be
formulated in different ways and they have many applications (medical imaging, seismology, finance...).
More generally, we often consider inverse problems in our real life, like when we wonder where a light or a
sound comes from. Beside these applications, due to their ill-posedness and nonlinearity, inverse problems
are also challenging from a pure mathematical point of view. In this manuscript, we focus our attention on
the inverse problems of determining sources or coefficients appearing in different partial differential equations
(respectively operators) from observations of solutions (respectively partial information about the spectral
data). An important example of such a problem comes from the so called question of Calderón related to
imaging methods like the Electrical Impedance Tomography (EIT). This question can be formulated in the
following way: is it possible to determine the electrical conductivity of a medium by making voltage and
current measurements on its boundary? From a mathematical point of view, this problem corresponds to the
determination of a conductivity appearing in an elliptic equation from observations on the boundary. Such
problems can be formulated with other partial differential equations (hyperbolic, parabolic, Schrödinger)
for various applications (transmission of light, sound, heat...). Through the contribution presented in this
manuscript, we have studied such problems in various context for different partial differential equations.
These works have been a significant part of my research for the past six years (since my nomination as
assistant professor in Aix-Marseille University). This manuscript is decomposed into four parts: 1) Inverse
problems in unbounded cylindrical domains; 2) Determination of coefficients depending on time and space
variables for various evolution partial differential equations; 3) Inverse spectral problems; 4) Forward and
inverse problems for fractional diffusion equations with time fractional derivative.

In the first chapter, we consider the determination of coefficients or sources for different partial dif-
ferential equations in an unbounded cylindrical domain also called waveguide. In this context, we study
the determination of such parameters from observations of solutions on the boundary of the domain. For
bounded domains these results are well known. Nevertheless, the extension to unbounded domains generates
some difficulties which will be described in Chapter 1. To overcome these difficulties, we use two strategies.
First, we use some geometrical properties of cylindrical domains in order to extend some arguments stated
for bounded domains to our case. Second, we consider coefficients periodic along the axis of the cylindrical
domain and we use Floquet decomposition in order to transform our problem into a problem in a bounded
domain with quasiperiodic boundary conditions.

The second chapter is devoted to the determination of coefficients depending on time and space variables
for various evolution partial differential equations (hyperbolic, parabolic, Schrödinger) on a bounded domain.
For hyperbolic equations, our goal is to consider the minimal data that allow to recover globally a general
class of coefficients depending on time and space variables. For this purpose, we start by recalling some
obstructions to our problem (see Section 2.2.2). Then, taking into account these obstructions, we establish the

11
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set of data that allows to recover such coefficients without additional geometrical or smoothness assumptions.
For parabolic and Schrödinger equations we focus our attention on the stability issue. Finally, for parabolic
equations, we show how such results can be applied to the recovery of a nonlinear term.

In the third chapter, we study some inverse spectral problems. More precisely, we consider Borg-
Levinson type of inverse spectral problems which consist in determining Schrödinger operators from partial
knowledge of the spectral data. We consider these problems in different contexts. We start by considering
the case of Schrödinger operators on an unbounded cylindrical domain with a potential periodic along the
axis of the domain. In that case, we look for the recovery of the operator from some asymptotic knowledge
of the Floquet spectral data. Next, we study the recovery of magnetic Schrödinger operators from some
asymptotic knowledge of the eigenvalues and from observations on the boundary of eigenfunctions of the
operator. Finally, we consider an application of the boundary control method to such problems.

The last chapter is devoted to the study of time fractional diffusion equations. We start by considering
the inverse problem of determining a large class of coefficients appearing in these equations from observations
of the solutions on the boundary of the domain at one fixed time. Then, we consider a forward problem
for such equations stated with weak regularity of the data. We apply this last result to prove existence
and uniqueness of solutions for time fractional diffusion nonlinear equations. Finally, we study fractional
diffusion equations with variable time fractional order. For this problem, we start by considering the forward
problem. Then, we apply this result to the problem of determining the fractional order from observations of
the solutions at the boundary of the domain.
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Chapter 1

Inverse problems in unbounded
cylindrical domains

1.1 Introduction

Inverse coefficient or source problems for partial differential equations have attracted much attention over
the last decades. Both results of unique and stable recovery of coefficients or sources have been considered
for various partial differential equations (PDE in short) and with various measurements. We focus here
our attention on inverse boundary value problems which correspond to recovery of sources or coefficients
from boundary measurements of solutions. Such problems are usually stated in a bounded domain Ω of
Rn, n > 1, and the measurements are associated with observations of the solutions at the boundary ∂Ω
of the domain. In this context, the recovery of the parameter is considered both from many boundary
measurements given by the so called Dirichlet-to-Neumann (DN in short) map associated with the PDE
(e.g. [BeliKu92, BuUh, KeSjUh, RakSy, SyUh]) or from a single boundary measurement given by the
measure of the flux at ∂Ω of a suitable solution of the PDE (e.g. [BaPu02, BaPu07, BuKl, ImYa98]). In
most of approaches developed for these problems the fact that Ω is a bounded domain plays an important
role.

In contrast to the important development of inverse boundary value problems stated in a bounded
domain, only a small number of mathematical papers considered such results for unbounded domains. One
of them, [Ra93], examines the problem of determining a potential appearing in the wave equation in the half-
space. In [Nak], Nakamura extended the work of [Ra93] to more general coefficients. In [Ik] and [SalWa],
the authors examined the inverse problem of identifying an embedded object in an infinite slab. Unique
determination of compactly supported potentials appearing in the stationary Schrödinger equation in an
infinite slab from partial boundary measurements is established in [LiUh]. The same problem is addressed
by [KrLaUh] for the stationary magnetic Schrödinger equation, and by [Yan] for bi-harmonic operators with
perturbations of order zero or one. More recently, [CaMa] treated the stability issue associated with [LiUh].
The inverse problem of determining the twisting function of an infinite twisted closed waveguide by the DN
map, is addressed in [ChSo]. In [ChKiSo152], time-dependent potentials that are periodic in the translational
direction of the waveguide, are stably retrieved by the measurements of the Schrödinger equation.

Note that, beside [CaMa, ChKiSo152, ChSo], in all the above mentioned results the authors considered
the uniqueness issue stated in a domain corresponding to the half space or a slab. In this section we will
introduce the work [BeKiSo1, BeKiSo2, ChKiSo161, ChKiSo162, Ki141, KiPhSo1, KiPhSo2, KiSaSo] where
we studied the stability issue for inverse boundary value problems for various PDEs stated on an infinite
waveguide taking the form of a cylindrical domain Ω = ω × R (or Ω = R × ω in [ChKiSo161, ChKiSo162])
where ω is a bounded domain of Rn−1 for n > 3. The main purpose of [BeKiSo1, BeKiSo2, ChKiSo161,
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16 CHAPTER 1. INVERSE PROBLEMS IN UNBOUNDED CYLINDRICAL DOMAINS

ChKiSo162, Ki141, KiPhSo1, KiPhSo2, KiSaSo] was an extension of results stated in a bounded domain to an
infinite waveguide. For this purpose, we considered different approaches in order to overcome the difficulties
arising from the consideration of an unbounded domain. For some of these results an additional assumption
was required. For instance in [BeKiSo1, KiPhSo1, KiPhSo2], we proved that the Bukgheim-Klibanov strategy
stated in [BuKl] can be extended to our setting provided that the unknown coefficient becomes exponentially
close to some a priori known coefficient along the axis of the waveguide. In [ChKiSo161, ChKiSo162], we
have studied the so called Calderón problem in the specific case of coefficients periodic along the axis of the
waveguide. In [BeKiSo2], some restrictions on the class of magnetic potentials along the infinite direction
have been made. On the other hand, some of our results such as [Ki141, KiSaSo], correspond to the exact
statement of the result on bounded domains without any additional assumptions. We mention also that our
analysis in [BeKiSo1, BeKiSo2, ChKiSo161, ChKiSo162, Ki141, KiPhSo1, KiPhSo2, KiSaSo] is associated
with problems of transmission to long distance or transmission throw nanostructures and periodic structures
(see Subsection 1.2.2, 1.3.1 and 1.6.1).

This chapter is organized as follows. In Section 1.2, we describe the result of [Ki141] related to the
stable recovery of a time-independent coefficient appearing in a wave equation. Section 1.3 is devoted to
[BeKiSo1, KiPhSo1, KiPhSo2] where we have proved the stable recovery of a time-independent coefficient
appearing in a Schrödinger equation on a waveguide from a single boundary measurement. In Section 1.4,
we consider the stable recovery of an electromagnetic potential from boundary measurements of solutions
of a Schrödinger equation on a waveguide stated in [BeKiSo2]. In Section 1.5, we discuss about our results
[ChKiSo161, ChKiSo162] related to the Calderón problem stated on an infinite cylindrical domain for periodic
coefficients. Finally, in Section 1.6, we introduce our result [KiSaSo] of stable recovery of a time-independent
source term from a single measurement of a solution of an associated parabolic equation on an unbounded
waveguide.

1.2 Stable recovery of a time-independent potential for a wave
equation

This section is devoted to the work [Ki141] where a stable recovery of a time-independent potential appearing
in a wave equation on a closed infinite waveguide is stated.

1.2.1 Statement of the problem
In this section, we consider the waveguide Ω = ω × R, where ω is a C∞ bounded connected domain of R2.
We set Σ := (0, T ) × ∂Ω and Q := (0, T ) × Ω. We introduce the following initial-boundary value problem
(IBVP in short) for the wave equation ∂2

t u−∆u+ q(x)u = 0, in Q
u(0, ·) = 0, ∂tu(0, ·) = 0, in Ω,
u = f, on Σ.

(1.2.1.1)

In [Ki141], we study the inverse problem which consists in determining the coefficient of order zero q from
the DN map

Λq : f 7→ ∂νu|Σ

with u the solution of problem (1.2.1.1) in some appropriate space, ν the unit outward normal vector to ∂Ω
and ∂ν = ν · ∇ the normal derivative.

1.2.2 Physical motivation
Physically speaking, this inverse problem consists in determining properties such as density of an inhomoge-
neous medium by probing it with disturbances generated on the boundary. The data is the response of the
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medium to these disturbances, measured on the boundary, and the purpose is to recover the function which
measures the property of the medium.

Let us remark that equation (1.2.1.1) describes the propagation of waves, such as electromagnetic waves
or sound waves, along the axis of an infinite cylindrical waveguide under the influence of a coefficient of
order zero q. Such a model can be considered when a cylindrical waveguide is used for transmitting light,
signals, sound or energy to long distance. In these cases the cylindrical waveguide can be supposed infinite.
Moreover, the case considered in Theorem 1.2.3 is related to problems of transmission through a periodic
structure such as photonic crystal.

1.2.3 Stability estimates

Recall that ∂Ω = ∂ω×R. Since ∂Ω is not bounded, for all s > 0 we give the following definition of the space
Hs(∂Ω):

Hs(∂Ω) = Hs(Rx3
;L2(∂ω)) ∩ L2(Rx3

;Hs(∂ω)).

Then, for r > 0, we introduce the usual space

Hr,s((0, T )×X) = Hr(0, T ;L2(X)) ∩ L2(0, T ;Hs(X))

where X = Ω or X = ∂Ω. Set the space

L =

{
f ∈ H 3

2 ,
3
2 (Σ) : f|t=0 = 0, ∂tf, ∂τf, ∂x3f ∈ L2

(
Σ; dσ(x)

dt
t

)}
with ‖‖L defined by

‖f‖2L = ‖f‖2
H

3
2
, 3
2 (Σ)

+

∫
Σ

|∂tf |2 + |∂τf |2 + |∂x3
f |2

t
dσ(x)dt.

Here, we denote by ∂τ a tangential derivative with respect to ∂ω. We have considered first the well-posedness
of the IBVP (1.2.1.1) given by the following result.

Theorem 1.2.1 ([Ki141], Theorem 3)Let q ∈ L∞(Ω) and f ∈ L. Then problem (1.2.1.1) admits a unique
solution u ∈ C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)) such that ∂νu ∈ L2(Σ). Moreover, this solution u satisfies

‖u‖C([0,T ];H1(Ω)) + ‖u‖C1([0,T ];L2(Ω)) + ‖∂νu‖L2(Σ) 6 C ‖f‖L . (1.2.3.1)

We recall that for a bounded domain Ω, according to [LaLiTr, Theorem 2.1] (see also [BeChYa, Theorem
A. 2]), this result holds true for f ∈ H1(Σ). Since Ω = ω × R is an unbounded domain, we can not apply
the analysis of [LaLiTr]. Nevertheless, we prove in [Ki141] that (1.2.1.1) can be solved by a classical lifting
argument.

In view of Theorem 1.2.1, we can define the hyperbolic DN map

Λq : L → L2(Σ),

f 7→ ∂νuq

associated with (1.2.1.1).
For 0 < α < 1 and h ∈ C(Ω), we set

[h]α = sup

{
|h(x)− h(y)|
|x− y|α

: x, y ∈ Ω, x 6= y

}
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and we consider the space
Cαb (Ω) = {h ∈ C(Ω) ∩ L∞(Ω) : [h]α <∞}

with the norm
‖h‖Cαb (Ω) = ‖h‖L∞(Ω) + [h]α.

Our first main result can be stated as follows.

Theorem 1.2.2 ([Ki141], Theorem 1) Let M > 0, 0 < α < 1 and let BM be the ball centered at 0 and of
radius M of Cαb (Ω). Then, for T > Diam(ω) and q1, q2 ∈ BM , we have

‖q1 − q2‖L∞(Ω) 6 C ‖Λq1 − Λq2‖
d (1.2.3.2)

with d = min(2α,1)α
3(2α+2)(min(4α,2)+21) and C depending on M , T , α, Ω. Here ‖Λq1 − Λq2‖ is the norm of Λq1 − Λq2

with respect to B
(
L,L2(Σ)

)
.

Let us remark that in this result we consider the full DN map. Consequently, we determine the coefficient
q from measurements on the whole lateral boundary Σ which is an unbounded set. This is due to the fact
that we consider a large class of coefficients q without any restriction on their behavior outside a compact set
(we only assume that the coefficients are uniformly bounded and Hölderian). In order to extend this result
to the determination of q from measurements in a bounded subset of Σ, we need more information about q.
Namely, we need that the gap between two coefficients q1, q2 reach its maximum in a fixed bounded subset
of Ω. More precisely, let R > 0 and consider the spaces LR which consists in functions f ∈ L satisfying

f(t, x′, x3) = 0, t ∈ (0, T ), x′ ∈ ∂ω, |x3| > R.

Let us introduce the partial DN map defined by

ΛRq : LR → L2((0, T )× ∂ω × (−R,R)),

f 7→ ∂νuq |(0,T )×∂ω×(−R,R).

Our second result is the following.

Theorem 1.2.3 ([Ki141], Theorem 2)Let M > 0, 0 < α < 1 and let BM be the ball centered at 0 and of
radius M of Cαb (Ω). Let T > Diam(ω), q1, q2 ∈ BM and assume that there exists r > 0 such that

‖q1 − q2‖L∞(Ω) = ‖q1 − q2‖L∞(ω×(−r,r)) . (1.2.3.3)

Then, for all R > r we have
‖q1 − q2‖L∞(Ω) 6 C

∥∥ΛRq1 − ΛRq2
∥∥d (1.2.3.4)

with d = min(2α,1)α
3(2α+2)(min(4α,2)+21) and C depending onM , T , α, Ω, R. Here

∥∥ΛRq1 − ΛRq2
∥∥ is the norm of ΛRq1−ΛRq2

with respect to B
(
LR, L

2((0, T )× ∂ω × (−R,R))
)
.

Clearly condition (1.2.3.3) will be fulfilled if we assume that q1 = q2 outside ω × (−r, r). Let us remark
that this condition can also be fulfilled in more general cases. For instance, consider the condition

v(x′, x3 + 2r) = v(x′, x3), x′ ∈ ω, x3 ∈ R. (1.2.3.5)

Let g : R→ R be a non negative continuous even function which is decreasing in (0,+∞). Then, condition
(1.2.3.3) will be fulfilled if we assume that q1, q2 are lying in the set

Ag = {q : q(x′, x3) = g(x3)v(x′, x3), v ∈ C(Ω) ∩ L∞(Ω), v satisfies (1.2.3.5)}.

Note that the solution of (1.2.1.1) is defined in the unbounded domain Q = (0, T ) × Ω and condition
(1.2.3.3) is fulfilled by coefficients having different types of behavior outside ω× (−r, r). Therefore, it seems
to us that we can not prove Theorem 1.2.3 from results in bounded domain.
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1.2.4 Description of the result

The main ingredients in the proof of the stability estimates (1.2.3.2) and (1.2.3.4) are suitable solutions of
problem (1.2.1.1) called "geometric optics" (GO in short) solutions. This approach has been considered by
various authors for the recovery of time-independent coefficients in a bounded domain (e.g. [RakSy, BeChYa,
BeJeYa1, BeJeYa2, StUh98]) or in an unbounded domain for coefficients constant outside a compact set (e.
g. [Ra93, Nak]). In [Ki141], we take into account the cylindrical form of the infinite waveguide in order
to extend this approach to the stable recovery of time-independent coefficients in an unbounded domain.
For this purpose, we build GO solutions suitably designed for our problem by using a separation of variable
argument. More precisely, we present every variable x ∈ Ω in the form x = (x′, x3) with x′ = (x1, x2) ∈ ω
and x3 ∈ R. Using this representation we split the differential operator ∂2

t −∆ defined on Q into the sum of
two differential operators [∂2

t −∆x′ ]+[−∂2
x3

] defined on Q, with ∆x′ = ∂2
x1

+∂2
x2

the Laplacian in ω. Applying
this decomposition, we prove existence of GO solutions u± ∈ H2(Q) of the equation ∂2

t u−∆u+ qu = 0 on
Q which take the form

u±(t, x′, x3) = Φ(x′ + tθ)h(x3)e±iρ(x
′·θ+t) + Ψ±(t, x′, x3; ρ), t ∈ (0, T ), x′ ∈ ω, x3 ∈ R (1.2.4.1)

with h ∈ S(R), Φ ∈ C∞0 (R2), θ ∈ S1 = {y ∈ R2 : |y| = 1}, a large parameter ρ > 1 and a remainder term
Ψ± that satisfies the decay ∥∥Ψ±(.; ρ)

∥∥
L2(Q)

6
C

ρ

with respect to ρ. Combining some properties of X-ray transform of compactly supported functions (e.g.
[Nat]), we use the expression Φ and h to prove (1.2.3.2) and (1.2.3.4).

1.3 Stable recovery of an electric potential in a dynamical Schrödinger
equation from a single boundary measurement

In this section, we are concerned with [BeKiSo1, KiPhSo1, KiPhSo2] which are joint works with Mourad
Bellassoued, Quang Sang Phan and Eric Soccorsi. We introduce the infinite cylindrical domain Ω = ω × R,
where ω is a connected bounded open subset of Rn−1, n > 2, with C2-boundary ∂ω. Given T > 0 we
examine the following initial boundary value problem −i∂tu−∆u+ q(x)u = 0, in Q := (0, T )× Ω,

u(0, x) = u0(x), x ∈ Ω,
u(t, x) = g(t, x), (t, x) ∈ Σ := (0, T )× Γ.

(1.3.0.2)

Here u0 (resp., g) is the initial (resp., boundary) condition associated with (1.3.0.2) and q is a function of
x ∈ Ω only.

Since Γ is unbounded we make the boundary condition in the last line of (1.3.0.2) more precise. Writing
x := (x′, xn) with x′ := (x1, . . . , xn−1) ∈ ω for every x ∈ Ω we extend the mapping

C∞0 ((0, T )× R; H2(ω)) −→ L2((0, T )× R; H3/2(∂ω)))

v 7→ [(t, xn) ∈ (0, T )× R 7→ v(t, ·, xn)|∂ω], (1.3.0.3)

to a bounded operator from L2((0,T) × R; H2(ω)) into L2((0,T) × R; H3/2(∂ω)), denoted by γ0. Then for
every u ∈ C0([0, T ]; H2(Ω)) the above mentioned boundary condition reads γ0u = g.

The main purpose of [BeKiSo1, KiPhSo1, KiPhSo2] is to prove stability in the determination of the
scalar potential q from one boundary measurement of the normal derivative of the solution u to (1.3.0.2) on
some portion of Γ.
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1.3.1 Motivations
The problem (1.3.0.2) describe the quantum motion constrained by the waveguide Ω, of a charged particle (in
a “natural" system of units where the various physical constants such as the mass and the electric charge are
taken equal to one) under the influence of the “electric" potential q. Carbon nanotubes, who have a length-
to-diameter ratio up to 108/1, are commonly modelled by infinite cylindrical domains such as Ω = ω × R.
These nanostructures exhibit unusual physical properties, which are valuable for electronics, optics and other
fields of materials science and technology, but they can be affected by the inevitable presence of electrostatic
quantum disorder, see e. g. [ChLi, KaBaFi]. This motivates for a closer look into the inverse problem of
estimating the strength of the electric impurity potential p from the (partial) knowledge of the wave function
u on the boundary Γ of the infinite carbon nanotube Ω.

1.3.2 Forward problem
We recall that in [BeKiSo1, KiPhSo1, KiPhSo2] we use the so called Bukgheim-Klibanov approach initially
introduced in [BuKl] and extended to the Schrödinger equation by [BaPu02]. This approach requires suffi-
ciently smooth solutions of (1.3.0.2). In the context of [BeKiSo1, KiPhSo1, KiPhSo2] where the problem is
stated in an unbounded domain, such results need to be clearly stated. We start by recalling the results of
[BeKiSo1, KiPhSo1, KiPhSo2] related to existence of sufficiently smooth solutions of (1.3.0.2).

We choose
g := γ0G0, with G0(t, x) := u0(x) + it(∆− q0)u0(x), (t, x) ∈ Q, (1.3.2.1)

where q0 = q0(x) is a given scalar function we shall make precise below.
Our result related to the forward problem for [KiPhSo1, KiPhSo2] can be stated as follows.

Theorem 1.3.1 (Thorem 1.1, [KiPhSo2]) Let k > 2, assume that ∂ω is C2k, and pick

(q0, u0) ∈
(
W 2k,∞(Ω) ∩ C2(k−1)(Ω;R)

)
×H2(k+1)(Ω),

such that
(−∆ + q0)2+ju0 = 0 on ∂Ω for all j ∈ {0, 1, . . . , k − 2}. (1.3.2.2)

Then for each q ∈W 2k,∞(Ω) ∩ C2(k−1)(Ω) obeying the condition

∂mx q = ∂mx q0 on ∂Ω for all m := (mj)
n
j=1 ∈ Nn with |m| :=

n∑
j=1

mj 6 2(k − 2), (1.3.2.3)

there is a unique solution u ∈ ∩kj=0C
j([0, T ];H2(k−j)(Ω)) to the boundary value problem (1.3.0.2) with g

satisfying (1.3.2.1). Moreover, we have the estimate

k∑
j=0

‖u‖Cj([0,T ];H2(k−j)(Ω)) 6 C‖u0‖H2(k+1)(Ω), (1.3.2.4)

where C > 0 is a constant depending only on T , ω, k, and max(‖q0‖W 2k,∞(Ω), ‖q‖W 2k,∞(Ω)).

We now introduce the natural number

` ∈ N ∩ (n/4, n/4 + 1] . (1.3.2.5)

Then, applying Theorem 1.3.1 with k = ` + 1, we get that u ∈ C1([0, T ];H2`(Ω)) and the estimate
‖u‖C1([0,T ];H2`(Ω)) 6 C‖u0‖H2(`+2)(Ω). Since 2` > n/2 then H2`(Ω) is continuously embedded in L∞(Ω).
This immediately entails the:
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Corollary 1.3.1 Under the conditions of Theorem 1.3.1 for k = ` + 1, where ` is defined by (1.3.2.5), the
solution u to (1.3.0.2) with g given by (1.3.2.1) satisfies (1.3.2.4) and the estimate

‖u‖C1([0,T ],L∞(Ω)) 6 C‖u0‖H2(`+2)(Ω).

Here C > 0 is a constant depending only on T , ω and max(‖q0‖W 2(`+1),∞(Ω), ‖q‖W 2(`+1),∞(Ω)).

This completes the statement of the forward problem of [KiPhSo1, KiPhSo2].
In [BeKiSo1] we consider problem (1.3.0.2) with g = 0. In this context, the forward problem can be

stated in the following way.

Corollary 1.3.2 Assume that the conditions of Theorem 1.3.1 are satisfied with k = ` + 1, g = 0 and u0

satisfying
u0(x) = (−∆ + q0)u0(x) = 0, x ∈ Γ. (1.3.2.6)

Then there exists a positive constant C, depending only on ω, T and M , such that the solution u to (1.3.0.2)
satisfies the estimate:

‖u‖C1([0,T ],L∞(Ω)) 6 C‖u0‖H2(`+1)(Ω).

1.3.3 Stable recovery of the electric potential
In this subsection we introduce [BeKiSo1, KiPhSo1, KiPhSo2] and we briefly comment on them. We start
with [KiPhSo1]. From now on we fix ` given by (1.3.2.5) and

(q0, u0) ∈
(
W 2(`+1),∞(Ω) ∩ C2`(Ω;R)

)
×H2(`+2)(Ω)

satisfying (1.3.2.2) for k = `+1. We assume also that ∂ω is C2(`+1). For M > 0 and q ∈W 2(`+1),∞(Ω) fixed,
we define the set of “admissible scalar potentials" as

QM (q0) := {q ∈W 2(`+1),∞(Ω;R), ‖q‖W 2(`+1),∞(Ω) 6M and q satifies (1.3.2.3)}.

Moreover, for O a C2(`+1)-domain obeying ω × (−`, `) ⊂ O ⊂ ω × (−L,L), we consider Γ∗ satisfying
Γ∗ ⊃ {x ∈ ∂O, (x − x0) · νO(x) > 0} ∩ ∂ω × (−L,L), where νO is the outward unit normal to ∂O and x0

is arbitrary in Rn \ O. We fix also γ∗ ⊃ {x′ ∈ ∂ω, (x′ − x′0) · ν′(x′) > 0}, where x′0 is arbitrarily fixed in
Rn−1 \ ω.

In [KiPhSo1], we are concerned with the stability issue around any q1 ∈ QM (q0), i.e. we want to upper
bound the L2 norm of q1 − q2 by some increasing function of the difference u1 − u2. That is to say that
q2 ∈ QM (p) and the solution uj , for j = 1, 2, to (1.3.0.2), where qj is substituted for q, are known, while q1

is unknown.

Theorem 1.3.2 (Theorem 1.1, [KiPhSo1]) consider ∂ω, q0, u0 and g obeying the conditions of Theorem
1.3.1 for k = `+ 1, where ` is the same as in (1.3.2.5). Let u0 satisfy

u0(x) > α > 0, x ∈ ω × (−`, `), (1.3.3.1)

let qj ∈ QM (q0), j = 1, 2, fulfill

q1(x) = q2(x), x ∈ ω × (R \ (−`, `)), (1.3.3.2)

and let uj denote the C1([0, T ]; H2(Ω) ∩ H1
0(Ω)) ∩ C2([0, T ]; L2(Ω))-solution to (1.3.0.2) associated with u0,

g = γ0G and qj. Then for every L > `, there exist Γ∗ ⊂ ∂ω × (−L,L) and a constant C > 0 depending only
on L, T , M , ω and Γ∗, such that we have

‖q1 − q2‖L2(Ω) 6 C
(
‖∂ν(∂tu1 − ∂tu2)‖L2((0,T )×Γ∗) + ‖u1 − u2‖H1(0,T ;H1(ω×SL))

)
, (1.3.3.3)
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with SL := (−L,−`) ∪ (`, L).
Moreover there is a subboundary γ∗ ⊂ ∂ω, such that the estimate

‖q1 − q2‖L2(Ω) 6 C
′‖∂ν∂tu1 − ∂ν∂tu2‖L2((0,T )×γ∗×R), (1.3.3.4)

holds for some positive constant C ′ depending only on `, T , M , ω and γ∗.

Under the prescribed conditions (1.3.2.1), (1.3.3.1) and Theorem 1.3.1, the first statement (1.3.3.3) of
Theorem 1.3.2 claims Lipschitz stability in the determination of the scalar potential appearing in the dynamic
Schrödinger equation in Ω from two different observations of the solution u to (1.3.0.2). The first one is
a lateral measurement on some subboundary of ∂ω × (−L,L) of the normal derivative ∂νu|Σ. The second
observation is an internal measurement of u which is performed in each of the two “slices" S−L := ω×(−L,−`)
and S+

L := ω × (`, L) of Ω.
One way to get rid of both volume observations simultaneously is to use a global Carleman estimate

specifically designed for the unbounded quantum waveguide Ω, which is stated in [KiPhSo1, Proposition 3.3].
This yields (1.3.3.4), implying that the electrostatic quantum potential is now Lipschitz stably retrieved in
Ω from only one lateral measurement of the normal derivative ∂νu on some subboundary of Σ. This result
is similar to the one obtained in a bounded domain by Baudouin and Puel, see [BaPu02][Theorem 1]. It
should nevertheless be noticed that, contrarily to (1.3.3.3), and despite of the fact that the scalar potential
under identification is assumed to be known outside a compact set, the Neumann data required in the right
hand side of (1.3.3.2) is measured on an infinitely extended subboundary of Σ.

In [KiPhSo2] we have extended the result of [KiPhSo1] to the stable recovery of coefficients that are
not necessary compactly supported. Indeed, in [KiPhSo2] we aim to retrieve real-valued scalar potentials q
verifying

|q(x′, xn)− q0(x′, xn)| 6 ae−b〈xn〉
dε
, (x′, xn) ∈ Ω, (1.3.3.5)

where a > 0, b > 0, ε > 0 and dε ∈ (2(1 + ε)/3,+∞) are a priori fixed constants. Here and henceforth
the notation 〈t〉 stands for (1 + t2)1/2, t ∈ R. Notice that this condition is weaker than the compactness
assumption imposed in [KiPhSo1] on the support of q. Namely, we introduce the set of admissible potentials
as

Aε(q0) := {q ∈W 2(`+1),∞(Ω) ∩ C2`(Ω;R) verifying (1.3.2.3) for k = `+ 1 and (1.3.3.5)}.

The main result of [KiPhSo2] on the above mentioned inverse problem is as follows.

Theorem 1.3.3 (Theorem 1.4, [KiPhSo2]) Let ∂ω, q0, u0 and g obey the conditions of Theorem 1.3.1 for
k = ` + 1, where ` is the same as in (1.3.2.5). Assume moreover that there are two constants υ0 > 0 and
ε > 0 such that we have

|u0(x′, xn)| > υ0〈xn〉−(1+ε)/2, (x′, xn) ∈ Ω. (1.3.3.6)

For M > 0 fixed, we consider two potentials qj, j = 1, 2, in Aε(q0), such that ‖qj‖W 2(`+1),∞(Ω) 6 M , and
we note uj the solution to (1.3.0.2) where qj is substituted for q, given by Theorem 1.3.1. Then, for all
δ ∈ (0, b), where b is the same as in (1.3.3.5), there exists a subboundary γ∗ ⊂ ∂ω and a constant C > 0,
depending only on ω, T , M , ‖u0‖2(`+2),Ω, δ, ε, a, b and υ0, such that the estimate

‖q1 − q2‖L2(Ω) 6 C‖∂ν∂tu1 − ∂ν∂tu2‖θL2(Σ∗)
, (1.3.3.7)

holds for Σ∗ := (0, T )× γ∗ × R and θ := (b− δ)/(2b− δ).

It is evident that Theorem 1.3.3 yields uniqueness in the identification of the scalar potential in Aε(q0)
from the knowledge of partial Neumann data for the time-derivative of the solution to (1.3.0.2):

∀(q1, q2) ∈ Aε(q0)2, (∂νu
′
1(t, x) = ∂νu

′
2(t, x), (t, x) ∈ Σ∗) =⇒ (q1(x) = q2(x), x ∈ Ω) .
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Moreover we stress out that a whole class of potentials q0 and initial values u0 fulfilling the conditions of
Theorem 1.3.1 and 1.3.3 is exhibited in [KiPhSo2, Subsection 3.4]. To our best knowledge, this result is
the first result of stable recovery of a non-compactly supported time-independent coefficient appearing in
Schrödinger equation from a single boundary measurement.

In contrast to [KiPhSo1, KiPhSo2], the result of [BeKiSo1] is stated with measurement on a subset of ∂Ω
of the form S∗×R, where this time S∗ is an arbitrary relatively open subset of ∂ω. Like in [BeCh09], such a
result requires an extra information about the admissible potential q. Namely, we need to know the coefficient
q on an arbitrary neighborhood of the boundary Γ. This extra information is technically restrictive, but it
is acceptable from a strict practical viewpoint upon admitting that the electric potential can be measured
from outside the domain Ω in the vicinity of the boundary. We consider q0 ∈ W 2(`+1),∞(Ω;R) and pick an
open subset ω0 of ω, such that ∂ω ⊂ ω0. Given b > 0 and d > 0, we aim in [BeKiSo1] to retrieve all functions
q : Ω→ R satisfying

Nb,d(q − q0) := ‖eb〈xn〉
d

(q − q0)‖L∞(Ω) <∞ and q(x) = q0(x) for x ∈ Ω0 := ω0 × R.

Further, M being an a priori fixed non-negative constant, we define the set of admissible potentials as

A(q0, ω0) := {q ∈W 2(`+1),∞(Ω); q = q0 in Ω0, ‖q‖W 2(`+1),∞(Ω) 6M and Nb,d(q − q0) 6M}.

Last, we choose a relatively open subset S∗ of ∂ω, put Γ∗ := S∗ × R, and introduce the norm

‖∂νu‖∗ := ‖∂νu‖H1(0,T ;L2(Γ∗))
, u ∈ H2.

The main result of [BeKiSo1] is as follows.

Theorem 1.3.4 (Theorem 1.3, [BeKiSo1]) Let condition (1.3.2.6) and the conditions of Theorem 1.3.1 with
k = `+ 1, q = q0 and g = 0 be satisfied.

Assume moreover that u0 fulfills ‖u0‖H2(`+1)(Ω) 6M
′ for some constant M ′ > 0, and that

∃κ > 0, ∃d0 ∈ (0, 2d/3), |u0(x′, xn)| > κ〈xn〉−d0/2, (x′, xn) ∈ Ω\Ω0. (1.3.3.8)

For qj ∈ A(q0, ω0), j = 1, 2, we denote by uj the solution to (1.3.0.2), where qj is substituted for q. Then,
for any ε ∈ (0, `/2), there exists a constant C = C(ω, ω0, T,M,M ′, b, d, ε) > 0, such that we have

‖q1 − q2‖L2(Ω) 6 C

(
‖∂ν(u1 − u2)‖H1(0,T ;L2(Γ∗))

+
∣∣∣log ‖∂ν(u1 − u2)‖H1(0,T ;L2(Γ∗))

∣∣∣−1
)ε

. (1.3.3.9)

Let us remark that, we assume in (1.3.3.6) and (1.3.3.8) that |u(·, 0)| = |u0| > 0 in any subset of Ω where
the electric potential is retrieved. This is because the uniqueness of the potential is not known in general,
without this specific assumption, even in the case where the set {x ∈ Ω \ Ω0;u0(x) = 0} has zero Lebesgue
measure. This non-degeneracy condition is very restrictive but it is still an open question to know how it
can be weakened in the context of inverse coefficients problems with a finite number of data observations.

1.3.4 Idea of the proof
The occurrence of the internal measurement of u in (1.3.3.3) is due to the unbounded geometry of Ω.
More precisely this is a direct consequence of the technique used for the derivation of the stability inequality
(1.3.3.3), which is by means of a global Carleman estimate for the Schrödinger equation in a bounded domain
established by [BaPu02]. Indeed, this strategy requires a cut off function with first derivative supported in
(−L,−`) ∪ (`, L), which gives rise to the measurement of u in S±L . Notice that the use of a Carleman
estimate known to be valid in a bounded domain of Rn only, was made possible here since the difference
q1 − q2 is compactly supported in Rn. A fact that follows from assumption (1.3.3.3) expressing that the
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scalar potential to be retrieved is known outside some fixed bounded set. Since the unknown part of q
is compactly supported, it seems at first sight quite reasonable to guess that this question could well be
answered by adapting the above technique to some suitable truncation of u. Nevertheless we shall prove that
such a strategy necessarily adds unexpected “control" terms (i.e. “volume observations" of the solution) in
the right hand side of the corresponding stability inequality, and is therefore inaccurate. It turns out that
this inconvenience can be avoided upon substituting some specifically designed Carleman estimate for the
Schrödinger equation in an unbounded cylindrical domain to the one of [BaPu02][Proposition 3]. In order
to introduce this Carleman estimate, we start by considering the function β̃ defined on Ω by

β̃(x) = |x′ − x′0|2, x = (x′, xn) ∈ Ω, x′ ∈ ω, xn ∈ R.

Further, we put
β := β̃ +K, where K := r‖β̃‖∞ for some r > 1, (1.3.4.1)

and define the two following weight functions for λ > 0:

ϕ(t, x) :=
eλβ(x)

(T + t)(T − t)
and η(t, x) :=

e2λK − eλβ(x)

(T + t)(T − t)
, (t, x) ∈ (−T, T )× Ω. (1.3.4.2)

Finally, for all s > 0 we introduce the two following operators acting in (C∞0 )′((−T, T )× Ω):

M1 := i∂t + ∆ + s2|∇η|2 and M2 := isη′ + 2s∇x′η · ∇+ s(∆x′η). (1.3.4.3)

It is easily seen that M1 (resp. M2) is the adjoint (resp. skew-adjoint) part of the operator e−sη(i∂t−∆)esη.
Here ∆ := ∆x′ + ∂2

xn where ∆x′ := Σn−1
j=1 ∂

2
xj is the Laplacian in ω, where ∇x′ (resp. ∆x′) stands for the

gradient (resp. the Laplacian) operator w.r.t. x′ ∈ ω. Having said that we may now state the following
global Carleman estimate

Proposition 1.3.1 (Proposition 3.3, [KiPhSo1]) There are two constants s0 > 0 and C > 0, depending only
on T , ω and γ∗, such that the estimate

s‖e−sη∇x′v‖2L2(Q) + s3‖e−sηv‖2L2(Q) +
∑
j=1,2

‖Mje
−sηv‖2L2(Q)

6 C
(
s‖e−sηϕ1/2(∂νβ)1/2∂νv‖2L2((−T,T )×γ∗×R) + ‖e−sη(i∂t −∆)v‖2L2(Q)

)
, (1.3.4.4)

holds for all s > s0 and any function v ∈ L2(−T, T ; H1
0(Ω)) verifying (i∂t − ∆)v ∈ L2(Q) and ∂νv ∈

L2(−T, T ; L2(γ∗ × R)).

This new global Carleman estimate is the main novelty of [KiPhSo1] as it is the main tool for generalizing
the Lipschitz stability inequality of [BaPu02][Theorem 1] to the unbounded domain Ω under consideration.
The derivation of this Carleman estimate follows from the combination of the Carleman estimate of [BaPu02]
for the equation i∂t−∆x′ on the bounded domain (0, T )×ω and of some properties of the unitary transform
eit∂

2
xn on L2(Q). Roughly speaking, we apply the unitary operator eit∂

2
xn to transform equations of the form

i∂tv − ∆xv = F on Q to equations of the form i∂tw − ∆x′w = G(·, xn) on (0, T ) × ω for a.e. xn ∈ R.
Combining this with [BaPu02][Proposition 3], we derive Proposition 1.3.1.

In [KiPhSo2], we use the Carleman estimate, stated in Proposition 1.3.1, for proving Theorem 1.3.3.
In order to extend the result of [KiPhSo1] to the stable recovery of none compactly supported function q
we use the decay of the difference of the coefficient with respect to the a priori known coefficient q0 stated
in (1.3.3.5). This approach allows to extend the stable recovery of [KiPhSo1] to none compactly supported
potential, but Lipschitz stability (1.3.3.4) degenerated to the Hölder stability (1.3.3.7). Notice that in the
framework of the Bukhgeim-Klibanov method in a bounded spatial domain Ω, it is crucial that |u0| be
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bounded from below by a positive constant, uniformly in Ω. But since Ω is infinitely extended in [KiPhSo2],
such a statement is incompatible with the square integrability property satisfied by u0 in Ω. Therefore the
usual non-degeneracy condition imposed on the initial condition function has to be weakened into (1.3.3.6).
In the same spirit we point out that the derivation of a Carleman estimate in an unbounded domain such
as Ω is not straightforward and does not directly follows from the corresponding known results in bounded
domains.

In [BeKiSo2] we combine the approach developed in [KiPhSo2] with an extension of the approach of
[BeCh09] to unbounded cylindrical domain in order to relax the geometrical condition imposed to γ∗ and
derive estimate (1.3.3.9). For this purpose, we use the so called Fourier-Bros-Iagolnitzer (abbreviated as
FBI) transform in order to establish the connection between Schrödinger and parabolic equations. This
application of the FBI transform, already used by [Le92, LeRo, Ph, RaTa, Ro91, Ro95, RoZu] for sharp
unique continuation results, transform the solution to (1.3.0.2) to a solution of a parabolic equation in the
vicinity of the boundary Γ. Then, applying a parabolic Carleman estimate, where no geometric condition is
imposed on the control domain, to the FBI transform of the solution of (1.3.0.2) and applying the Carleman
estimate 1.3.1 we derive (1.3.3.9).

1.4 Recovery of an electromagnetic potential in a waveguide

1.4.1 Statement of the problem

This section is devoted to [BeKiSo2] which is a joint work with Mourad Bellassoued and Eric Soccorsi. We
consider Ω = ω×R ⊂ R3, where ω is a simply connected bounded open subset of R2 with C2-boundary ∂ω.
Then, we introduce the IBVP i∂tu+ ∆Au+ qu = 0, in Q := (0, T )× Ω,

u(0, ·) = 0, in Ω,
u = f, on Σ := (0, T )× Γ,

(1.4.1.1)

where ∆A is the Laplace operator associated with the magnetic potential A ∈W 1,∞(Ω)3,

∆A :=

3∑
j=1

(∂xj + iaj)
2 = ∆ + 2iA · ∇+ i(∇ ·A)− |A|2, (1.4.1.2)

and q ∈ L∞(Ω). We define the DN map associated with (1.4.1.1), as

ΛA,q(f) := (∂ν + iA · ν)u, f ∈ L2(Σ), (1.4.1.3)

where u is the solution to (1.4.1.1). In [BeKiSo2] we examine the uniqueness and stability issues in the
inverse problem of determining in some suitable sense the electric potential q and the gauge class of A, from
the knowledge of ΛA,q.

1.4.2 Direct problem

We start by examining the well-posedness of the IBVP (1.4.1.1) in the functional space C([0, T ], H1(Ω)) ∩
C1([0, T ], H−1(Ω)). Namely, we are aiming for sufficient conditions on the coefficients A, q and the non-
homogeneous Dirichlet data f , ensuring that (1.4.1.1) admits a unique solution in the transposition sense.
We say that u ∈ L∞(0, T ;H−1(Ω)) is a solution to (1.4.1.1) in the transposition sense, if the identity

〈u, F 〉L∞(0,T ;H−1(Ω)),L1(0,T ;H1
0 (Ω)) = 〈f, ∂νv〉L2(Σ),
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holds for any F ∈ L1(0, T ;H1
0 (Ω)). Here v denotes the unique C([0, T ], H1(Ω))-solution to the transposition

system  (i∂tv + ∆A + q)v = F, in Q,
v(T, ·) = 0, in Ω,
v = 0, on Σ.

Since ∂Ω is not bounded, we use the notation introduced in Subsection 1.2.3 and we define

H2,1
0 (Σ) := {f ∈ H2,1(Σ); f(0, ·) = ∂tf(0, ·) = 0}

and state the existence and uniqueness result of solutions to (1.4.1.1) in the transposition sense, as follows.

Theorem 1.4.1 (Theorem 1.1, [BeKiSo2]) For M > 0, let A ∈ W 1,∞(Ω,R)3 and q ∈ W 1,∞(Ω,R) satisfy
the condition

‖A‖W 1,∞(Ω)3 + ‖q‖W 1,∞(Ω) 6M. (1.4.2.1)

Then, for each f ∈ H2,1
0 (Σ), the IBVP (1.4.1.1) admits a unique solution in the transposition sense u ∈

H1(0, T ;H1(Ω)), and the estimate

‖u‖H1(0,T ;H1(Ω)) 6 C ‖f‖H2,1(Σ) , (1.4.2.2)

holds for some positive constant C depending only on T , ω and M . Moreover, the normal derivative ∂νu ∈
L2(Σ), and we have

‖∂νu‖L2(Σ) 6 C ‖f‖H2,1(Σ) . (1.4.2.3)

It is clear from the definition (1.4.1.3) and the continuity property (1.4.2.3), that the DN map ΛA,q belongs
to B(H2,1

0 (Σ), L2(Σ)), the set of linear bounded operators from H2,1
0 (Σ) into L2(Σ).

1.4.3 Obstructions to uniqueness

Two magnetic potentials Aj ∈ W 1,∞(Ω)3, j = 1, 2, are said gauge equivalent, if there exists Ψ ∈ W 2,∞(Ω)
obeying Ψ|Γ = 0, such that

A2 = A1 +∇Ψ. (1.4.3.1)

There is a natural obstruction to the identification of A by ΛA,q, arising from the invariance of the DN map
under gauge transformation. More precisely, if Ψ ∈ W 2,∞(Ω) verifies Ψ|Γ = 0, then we have uA+∇Ψ =
e−iΨuA, where uA (resp., uA+∇Ψ) denotes the solution to (1.4.1.1) associated with the magnetic potential
A (resp., A+∇Ψ), q ∈ L∞(Ω) and f ∈ H2,1

0 (Σ). Further, as

(∂ν + i(A+∇Ψ) · ν)uA+∇Ψ = e−iΨ(∂ν + iA · ν)uA = (∂ν + iA · ν)uA on Σ,

by direct calculation, we get that ΛA,q = ΛA+∇Ψ,q, despite of the fact that the two potentials A and A+∇Ψ
do not coincide in Ω (unless ψ is uniformly zero).

This shows that the best we can expect from the knowledge of the DN map is to identify (A, q) modulo
gauge transformation of A. Assuming that A is known on ∂Ω, this may be equivalently reformulated as to
whether the magnetic field defined by the 2-form

dA :=
1

2

3∑
i,j=1

(∂xjai − ∂xiaj)dxj ∧ dxi,

and the electric potential q, can be retrieved by ΛA,q. This is the inverse problem that we examine [BeKiSo2].
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1.4.4 Stable recovery of the electromagnetic potential
We define the set of admissible magnetic potentials as

A :=
{
A = (ai)16i63; a1, a2 ∈ L∞x3

(R, H2
0 (ω)) ∩W 2,∞(Ω) and a3 ∈ C3(Ω) satisfies (1.4.4.1)− (1.4.4.2)

}
,

where

sup
x∈Ω

 ∑
α∈N3,|α|63

〈x3〉d|∂αx a3(x)|

 <∞ for some d > 1, (1.4.4.1)

and
∂αx a3(x) = 0, x ∈ ∂Ω, α ∈ N3 such that |α| 6 2. (1.4.4.2)

Here H2
0 (ω) denotes the closure of C∞0 (ω) in the H2(ω)-topology, and 〈x3〉 := (1 + x2

3)1/2.
The first result of [BeKiSo2] claims stable determination of the magnetic field dA and unique identifica-

tion of electric potential q, from the knowledge of the full data, i.e. the DN map defined by (1.4.1.3), where
both the Dirichlet and Neumann measurements are performed on the whole boundary Σ.

Theorem 1.4.2 (Theorem 1.2, [BeKiSo2]) Fix A∗ := (ai,∗)16i63 ∈ W 2,∞(Ω;R)3, and for j = 1, 2, let
qj ∈W 1,∞(Ω;R), and Aj := (ai,j)16i63 ∈ A∗ +A, satisfy the condition:

2∑
i=1

∂xi (∂x3
(ai,1 − ai,2)− ∂xi(a3,1 − a3,2)) = 0, in Ω. (1.4.4.3)

Then, ΛA1,q1 = ΛA2,q2 yields (dA1, q1) = (dA2, q2).
Assume moreover that the estimate

2∑
j=1

(
‖Aj‖W 2,∞(Ω) + ‖qj‖W 1,∞(Ω) + ‖ej‖W 3,∞(Ω)

)
+ ‖A∗‖W 2,∞(Ω) 6M, (1.4.4.4)

holds for some M > 0, with

ej(x
′, x3) :=

∫ x3

−∞
(a3,j(x

′, y3)− a3,∗(x
′, y3))dy3, (x′, x3) ∈ Ω.

Then there exist two constants µ0 ∈ (0, 1) and C > 0, both of them depending only on T , ω and M , such
that we have

‖dA1 − dA2‖L∞x3
(R,L2(ω)) 6 C ‖ΛA1,q1 − ΛA2,q2‖

µ0 . (1.4.4.5)

In (1.4.4.5), ‖ · ‖ denotes the usual norm in B(H2,1
0 (Σ), L2(Σ)). Notice that in Theorem 1.4.2 we make use of

the full DN map, as the magnetic field dA and the electric potential q are recovered by observing the solution
to (1.4.1.1) on the entire lateral boundary Σ. In this case we may consider general unknown coefficients,
in the sense that the behavior of A and q with respect to the infinite variable is not prescribed (we only
assume that these coefficients and their derivatives are uniformly bounded in Ω). In order to achieve the
same result by measuring on a bounded subset of Σ only, we need some extra information on the behavior
of the unknown coefficients with respect to x3. Namely, we impose that the strength of the magnetic field
generated by A = (ai)16i63, reaches its maximum in the bounded subset (−r, r) × ω of Ω, for some fixed
r > 0, i.e.

‖∂xiaj − ∂xjai‖L∞x3
(R,L2(ω)) = ‖∂xiaj − ∂xjai‖L∞x3

(−r,r;L2(ω)), i, j = 1, 2, 3. (1.4.4.6)

Thus, with reference to (1.4.4.6), we set Γr := ∂ω × (−r, r), introduce the space

H2,1
0 ((0, T )× Γr) := {f ∈ H2,1(Σ); f(0, ·) = ∂tf(0, ·) = 0 and supp f ⊂ [0, T ]× ∂ω × [−r, r]},
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and define the partial DN map ΛA,q,r, by

ΛA,q,r(f) := (∂ν + iA · ν)u|(0,T )×Γr , f ∈ H
2,1
0 ((0, T )× Γr),

where u denotes the solution to (1.4.1.1). The following result states for each r > 0, that the magnetic field
induced by potentials belonging (up to an additive W 2,∞(Ω,R)3-term) to

Ar := {A = (ai)16i63 ∈ A satisfying (1.4.4.6)},

can be retrieved from the knowledge of the partial DN map ΛA,q,r′ , provided we have r′ > r.

Theorem 1.4.3 (Theorem 1.3, [BeKiSo2]) For j = 1, 2, let qj ∈ W 1,∞(Ω;R), and let Aj ∈ W 2,∞(Ω;R)3

satisfy A1−A2 ∈ Ar, for some r > 0. Suppose that there exists r′ > r, such that ΛA1,q1,r′ = ΛA2,q2,r′ . Then,
we have dA1 = dA2. Furthermore, if

‖q1 − q2‖L∞x3
(R,H−1(ω)) = ‖q1 − q2‖L∞x3

(−r,r;H−1(ω)) ,

we have in addition q1 = q2.
Assume moreover that (1.4.4.3)-(1.4.4.4) hold. Then, the estimate

‖dA1 − dA2‖L∞x3
(R,L2(ω))3 6 C ‖ΛA1,q1,r′ − ΛA2,q2,r′‖

µ1 , (1.4.4.7)

holds with two constants C > 0, and µ1 ∈ (0, 1), depending only on T , ω, M , r and r′.

We stress out that Theorem 1.4.3 applies not only to magnetic (resp., electric) potentials Aj (resp.,
qj), j = 1, 2, which coincide outside ω × (−r, r), but to a fairly more general class of magnetic potentials,
containing, e.g., 2r-periodic potentials with respect to x3. More generally, if g ∈ W 2,∞(R,R+) (resp.
g ∈W 1,∞(R,R+)) is an even and non-increasing function in R+, then it is easy to see that potentials of the
form g×Aj (resp., g× qj), where Aj (resp., qj) are suitable 2r-periodic magnetic (resp., electric) potentials
with respect to x3, fulfill the conditions of Theorem 1.4.3.

Notice that the absence of stability for the electric potential q, manifested in both Theorems 1.4.2 and
1.4.3, arises from the infinite extension of the spatial domain Ω in the x3 direction. Indeed, the usual deriva-
tion of a stability equality for q, from estimates such as (1.4.4.5) or (1.4.4.7), requires that the differential
operator d be invertible in Ω. Such a property is true in bounded domains (see e.g. [Tz]), but, to the best of
our knowledge, it is not known whether it can be extended to unbounded waveguides. One way to overcome
this technical difficulty is to impose certain gauge condition on the magnetic potentials, by prescribing their
divergence. In this case, we establish in Theorem 1.4.3, below, that the electric and magnetic potentials
can be simultaneously and stably determined by the DN map. We first introduce the set of divergence free
transverse magnetic potentials,

A0 := {A = (a1, a2, 0); a1, a2 ∈ L∞x3
(R, H2

0 (ω)) ∩W 2,∞(Ω), ∂x1
a1 + ∂x2

a2 = 0 in Ω},

in such a way that we have ∇ · A = ∇ · A∗ for any A ∈ A∗ + A0. Here A∗ ∈ W 2,∞(Ω)3 is an arbitrary
fixed magnetic potential. Since identifying A ∈ A∗ + A0 from the knowledge of the DN map, amounts to
determining the magnetic field dA, we have the following result.

Theorem 1.4.4 (Theorem 1.4, [BeKiSo2]) Let M > 0, and let A∗ ∈ W 2,∞(Ω,R)3. For j = 1, 2, let
qj ∈ W 1,∞(Ω,R), and let Aj ∈ A∗ + A0 satisfy (1.4.4.4). Then, there exist two constant µ2 ∈ (0, 1) and
C = C(T, ω,M) > 0, such that we have

‖A1 −A2‖L∞x3
(R,L2(ω))3 + ‖q1 − q2‖L∞x3

(R,H−1(ω)) 6 C ‖ΛA1,q1 − ΛA2,q2‖
µ2 . (1.4.4.8)
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Assume moreover that the two following conditions

‖A1 −A2‖L∞x3
(R,L2(ω))3 = ‖A1 −A2‖L∞x3

(−r,r;L2(ω))3 , (1.4.4.9)

and
‖q1 − q2‖L∞x3

(R,H−1(ω)) = ‖q1 − q2‖L∞x3
(−r,r;H−1(ω)) , (1.4.4.10)

hold simultaneously for some r > 0. Then, for each r′ > r, we have

‖A1 −A2‖L∞x3
(R,L2(ω)) + ‖q1 − q2‖L∞x3

(R,H−1(ω)) 6 C ‖ΛA1,q1,r′ − ΛA2,q2,r′‖
µ2 , (1.4.4.11)

where C is a positive constant depending only on T , ω, M , r and r′.

1.4.5 Comments
The key ingredient in the analysis of the inverse problem under examination is a suitable set of GO solutions
to the magnetic Schrödinger equation appearing in (1.4.1.1). These functions are specifically designed for
the waveguide geometry of Ω, in such a way that the unknown coefficients can be recovered by a separation
of variables argument. More precisely, we seek GO solutions that are functions of x = (x′, x3) ∈ Ω, but
where the transverse variable x′ ∈ ω and the translational variable x3 ∈ R are separated. This approach
was already used in [Ki141] (see Section 1.2), for determining zero order unknown coefficients of the wave
equation. Since we consider first order unknown coefficients in [BeKiSo2], the main issue here is to take into
account both the cylindrical shape of Ω and the presence of the magnetic potential, in the design of the GO
solutions.

When the domain Ω is bounded, we know from [BeCh10] that the magnetic field dA is determined by
the DN map associated with (1.4.1.1). The main achievement of [BeKiSo2] is to extend the above statement
to unbounded cylindrical domains. Actually, we also improve the results of [BeCh10] in two directions.
First, we prove simultaneous determination of the magnetic field dA and the electric potential q. Second,
the regularity condition imposed on admissible magnetic potentials entering the Schrödinger equation of
(1.4.1.1), is weakened from W 3,∞(Ω) to W 2,∞(Ω).

To our best knowledge, [BeKiSo2] is the first mathematical paper claiming identification by boundary
measurements, of non-compactly supported magnetic field and electric potential. Moreover, in contrast
to the other works [BeKiSo1, KiPhSo1, KiPhSo2] dealing with the stability issue of inverse problems for
the Schrödinger equation in an infinite cylindrical domain, available in the mathematics literature, here
we no longer require that the various unknown coefficients be periodic, or decay exponentially fast, in the
translational direction of the waveguide.

Finally, since the conditions (1.4.4.6) and (1.4.4.9)-(1.4.4.10) are imposed in ω × (−r, r) only, and since
the solution to (1.4.1.1) lives in the infinitely extended cylinder (0, T )× Ω, we point out that the results of
Theorems 1.4.3 and 1.4.4 cannot be derived from similar statements stated in a bounded domain.

1.5 The Calderón problem in an unbounded cylindrical domain for
periodic coefficients

1.5.1 Position of the problem
In this section we introduce the results of [ChKiSo161, ChKiSo162] which correspond to joint works with
Mourad Choulli and Eric Soccorsi. Let Ω := R× ω, where ω is a bounded domain of R2 which contains the
origin, with C2-boundary. Throughout the entire text we denote the generic point x ∈ Ω by x = (x1, x

′),
where x1 ∈ R and x′ := (x2, x3) ∈ ω. Given V ∈ L∞(Ω), real-valued and 1-periodic w.r.t. x1, i.e.

V (x1 + 1, x′) = V (x1, x
′), x′ ∈ ω, x1 ∈ R, (1.5.1.1)
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we consider the following boundary value problem (abbreviated as BVP ):{
(−∆ + V )v = 0, in Ω,

v = f, on Γ := ∂Ω.
(1.5.1.2)

Since Γ = R× ∂ω, the outward unit vector ν normal to Γ reads

ν(x1, x
′) = (0, ν′(x′)), x = (x1, x

′) ∈ Γ,

where ν′ is the outer unit normal vector of ∂ω. Therefore, for notational simplicity, we shall refer to ν for
both exterior unit vectors normal to ∂ω and to Γ. Next for ξ ∈ S1 := {y ∈ R2; |y| = 1} fixed, we introduce
the ξ-illuminated (resp., ξ-shadowed) face of ∂ω, as

∂ω−ξ := {x ∈ ∂ω; ξ · ν(x) 6 0} (resp., ∂ω+
ξ = {x ∈ ∂ω; ξ · ν(x) > 0}). (1.5.1.3)

Here and in the remaining part of this text, we denote by x · y :=
∑k
j=1 xjyj the Euclidian scalar product

of any two vectors x := (x1, . . . , xk) and y := (y1, . . . , yk) of Rk, for k ∈ N∗ := {1, 2, . . .}, and we put
|x| := (x · x)1/2.

Set G := R×G′, where G′ is an arbitrary closed neighborhood of ∂ω−ξ in ∂ω. In [ChKiSo161, ChKiSo162],
we seek stability in the determination of V from the knowledge of the partial DN map

ΛV : f 7→ ∂νv|G, (1.5.1.4)

where v is the solution of (1.5.1.2). Otherwise stated we aim for recovering the 1-periodic electric perturbation
V of the Dirichlet Laplacian in the waveguide Ω, by probing the system with voltage f at the boundary and
measuring the current ∂νu on the sub-part G of Γ. From a physics viewpoint, this amounts to estimating
the impurity potential perturbing the guided propagation in periodic media such as crystals.

1.5.2 State of the art
Since the seminal paper [Ca] by Calderón, the electrical impedance tomography problem, or Calderón prob-
lem, of retrieving the conductivity from the knowledge of the DN map on the boundary of a bounded domain,
has attracted many attention. If the conductivity coefficient is scalar, then the Liouville transform allows
us to rewrite the Calderón problem into the inverse problem of determining the electric potential in Laplace
operator, from boundary measurements. There is an extensive literature on the Calderón problem. For
isotropic conductivities, a great deal of work has been spent to weaken the regularity assumption on the
conductivity required by [SyUh], in the study of the uniqueness issue, see e.g. [AsPa, CaRo, HaTa]. In all
the above mentioned papers, the full DN map are needed, i.e. lateral observations are performed on the
whole boundary. The first uniqueness result from partial data for the Calderón problem, was obtained in
dimension 3 or greater, by Bukhgeim and Uhlmann in [BuUh]. Their result, which requires that Dirichlet
data be imposed on the whole boundary, and that Neumann data boundary be observed on slightly more
than half of the boundary, was improved by Kenig, Sjöstrand and Uhlmann in [KeSjUh], where both in-
put and ouput data are measured on subsets of the boundary. In the two-dimensional case, Imanuvilov,
Uhlmann and Yamamoto proved in [ImUhYa10, ImUhYa12] that the partial DN map uniquely determines
the conductivity. These last results were extended to Riemann surfaces by Guillarmou, Tzou in [GuTz11-1]
who considered also the recovery of a connection in [GuTz11-2]. We also mention that the special case of
the Calderón problem in a bounded cylindrical domain of R3, was treated in [ImYa132].

The stability issue for the Calderón problem was addressed by Alessandrini in [Al]. He proved a log-type
stability estimate with respect to the full DN map. Such a result, which is known to be optimal, see [Ma],
degenerates to log-log stability with partial Neumann data, see [HeWa]. In [CaDoRu14, CaDoRu16], Caro,
Dos Santos Ferreira and Ruiz proved stability results of log-log type, corresponding to the uniqueness results
of [KeSjUh] in dimension 3 or greater. We refer to [BaFaRu, San] for stability estimates associated with the
two-dimensional Calderón problem, and we point out that both the electric and the magnetic potentials are
stably determined by the partial DN map in [Tz, Pot1, Pot2].
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1.5.3 Notations and admissible potentials
In this subsection we introduce some basic notations used throughout the section and define the set of
admissible potentials under consideration in [ChKiSo161, ChKiSo162].

Let Y be either ω, ∂ω or G′. For r and s in R, we denote byHr,s(R×Y ) the set Hr(R;Hs(Y )). Evidently
we writeHr,s(Ω) (resp.,Hr,s(Γ),Hr,s(G)) instead ofHr,s(R×ω) (resp.,Hr,s(R×∂ω),Hr,s(R×G′)). Although
this notation is reminiscent of the one used by Lions and Magenes in [LiMa1] for anisotropic Sobolev spaces
Hr(R;L2(Y )) ∩ L2(R;Hs(Y )), it is worth noticing that they do not coincide with Hr,s(R × Y ), unless we
have r = s = 0. Next, it is easy to see for each r > 0 and s > 0 that H−r,−s(R× Y ) is canonically identified
with the space dual to Hr,s0 (R × Y ), with respect to the pivot space H0,0(R × Y ) = L2(R × Y ). Here we
have set Hr,s0 (R× Y ) := Hr(R;Hs

0(Y )), where Hs
0(Y ) denotes the closure of C∞0 (Y ) in the topology of the

Sobolev space Hs(Y ).
Further, X1 and X2 being two Hilbert spaces, we denote by B(X1, X2) the class of bounded operators

T : X1 → X2.
Let us now introduce the set of admissible unknown potentials. To this end we denote by Cω the Poincaré

constant associated with ω, i.e. the largest of those constants c > 0 such that the Poincaré inequality

‖∇′u‖L2(ω) > c‖u‖L2(ω), u ∈ H1
0 (ω), (1.5.3.1)

holds. Here ∇′ stands for the gradient with respect to x′ = (x2, x3). Otherwise stated, we have

Cω := sup{c > 0 satisfying (1.5.3.1)}. (1.5.3.2)

For M− ∈ (0, Cω) and M+ ∈ [M−,+∞), we define the set of admissible unknown potentials as

Vω(M±) := {V ∈ L∞(Ω;R) satisfying (1.5.1.1), ‖V ‖L∞(Ω) 6M+ and ‖max(0,−V )‖L∞(Ω) 6M−}.
(1.5.3.3)

Notice that the constraint ‖max(0,−V )‖L∞(Ω) 6 M−, imposed on admissible potentials V in Vω(M±),
guarantees that the perturbation by V of the Dirichlet Laplacian in Ω, is boundedly invertible in L2(Ω),
with norm not greater than (Cω−M−)−1. This condition could actually be weakened by only requiring that
the distance of the spectrum of this operator to zero, be positive. Nevertheless, since the above mentioned
condition on V is more explicit than this latter, we stick with the definition (1.5.3.3) in the remaining part
of this text.

1.5.4 Statement of the main results
We start with the result of [ChKiSo161]. Prior to stating the main results of this article we first examine in
Proposition 1.5.1 below, the well-posedness of the BVP (1.5.1.2) in the space H∆(Ω) := {u ∈ L2(Ω); ∆u ∈
L2(Ω)} endowed with the norm

‖u‖2H∆(Ω) := ‖u‖2L2(Ω) + ‖∆u‖2L2(Ω) ,

for suitable non-homogeneous Dirichlet boundary data f . Second, we rigorously define the DN map ΛV
expressed in (1.5.1.4) and describe its main properties.

As a preamble, we introduce the two following trace maps by adapting the derivation of [LiMa1, Section
2, Theorem 6.5]. Namely, since C∞0 (Ω) := {u|Ω, u ∈ C∞0 (R3)} is dense in H∆(Ω), by [ChKiSo161, Lemma
2.1], we extend the mapping

T0u := u|Γ (resp., T1u := ∂νu|Γ), u ∈ C∞0 (Ω),

into a continuous function T0 : H∆(Ω) → H−2,− 1
2 (Γ) (resp., T1 : H∆(Ω) → H−2,− 3

2 (Γ)). We refer to
[ChKiSo161, Lemma 2.2] and its proof, for more details.
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Next we consider the space

H (Γ) := T0H∆(Ω) = {T0u; u ∈ H∆(Ω)},

and notice from [ChKiSo161, Lemma 2.3] that T0 is bijective from B := {u ∈ L2(Ω); ∆u = 0} onto H (Γ).
Therefore, with reference to [BuUh, NaSt], we put

‖f‖H (Γ) :=
∥∥T −1

0 f
∥∥
H∆(Ω)

=
∥∥T −1

0 f
∥∥
L2(Ω)

, (1.5.4.1)

where T −1
0 denotes the operator inverse to T0 : B →H (Γ).

We have the following existence and uniqueness result for the BVP (1.5.1.2).

Proposition 1.5.1 (Proposition 1.1, [ChKiSo161]) Pick V ∈ Vω(M±), where M− ∈ (0, Cω) and M+ ∈
[M−,+∞) are fixed.
1) Then, for any f ∈H (Γ), there exists a unique solution v ∈ L2(Ω) to (1.5.1.2), such that the estimate

‖v‖L2(Ω) 6 C ‖f‖H (Γ) , (1.5.4.2)

holds for some constant C > 0 depending only on ω and M±.
2) The DN map ΛV : f 7→ T1v|G is a bounded operator from H (Γ) into H−2,− 3

2 (G).
3) Moreover, for each W ∈ Vω(M±), the operator ΛV − ΛW is bounded from H (Γ) into L2(G).

Put Ω̌ := (0, 1)× ω. In view of Proposition 1.5.1, we now state the main result of [ChKiSo161].

Theorem 1.5.1 (Theorem 1.2, [ChKiSo161]) Given M− ∈ (0, Cω) and M+ ∈ [M−,+∞), let Vj ∈ Vω(M±)
for j = 1, 2. Then, there exist two constants C > 0 and γ∗ ∈ (0, 1), both of them depending only on ω, M±
and G′, such that the estimate

‖V1 − V2‖H−1(Ω̌) 6 CΦ (‖ΛV1
− ΛV2

‖) , (1.5.4.3)

holds for

Φ(γ) :=

 γ if γ > γ∗,
(ln |ln γ|)−1 if γ ∈ (0, γ∗),

0 if γ = 0.
(1.5.4.4)

Here ‖ΛV1
− ΛV2

‖ denotes the norm of ΛV1
− ΛV2

in B(H (Γ), L2(G)).

In [ChKiSo162] we extend the result of Theorem 1.5.1 by considering additional restriction on the
support of the Dirichlet inputs. In order to introduce the result of [ChKiSo162], we fix F ′ an arbitrary closed
neighborhood of ∂ω+

ξ in ∂ω, F = R×F ′ and we consider Dirichlet data in H (Γ) which are supported in F ,
i.e. input functions belonging to

Hc(F ) := {f ∈H (Γ); suppf ⊂ F}.

To any f ∈Hc(F ), we associate the unique solution u ∈ H∆(Ω) to (1.5.1.2), given by Proposition 1.5.1, and
define the partial DN map associated with (1.5.1.2), as

Λ∗V : f ∈Hc(F ) 7→ T1u|G. (1.5.4.5)

We recall from Proposition 1.5.1 that

Λ∗V ∈ B(Hc(F ), H−2(R, H−
3
2 (G′))) and Λ∗V − Λ∗W ∈ B(Hc(F ), L2(G)), V, W ∈ Vω(M±). (1.5.4.6)

The main result of [ChKiSo162], which claims that unknown potentials of Vω(M±) are stably determined
in the elementary cell Ω̌ := (0, 1)× ω, by the partial DN map, is stated as follows.
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Theorem 1.5.2 (Theorem 1.1, [ChKiSo162]) Let Vj ∈ Vω(M±), j = 1, 2, where M+ ∈ [M−,+∞), M− ∈
(0, Cω), and Cω is defined by (1.5.3.2). Then, there exist two constants C > 0 and γ∗ > 0, both of them
depending only on ω, M±, F ′, and G′, such that the estimate

‖V1 − V2‖H−1(Ω̌) 6 CΦ
(∥∥Λ∗V1

− Λ∗V2

∥∥) , (1.5.4.7)

holds with Φ given by (1.5.4.4). Here ‖ · ‖ denotes the usual norm in B(Hc(F ), L2(G)).

The statement of Theorem 1.5.1 and 1.5.2 remain valid for any periodic potential V ∈ L∞(Ω), provided
0 is in the resolvent set of AV , the self-adjoint realization in L2(Ω) of the Dirichlet Laplacian −∆+V . In this
case, the multiplicative constants C and γ∗, appearing in (1.5.4.3)-(1.5.4.4) and (1.5.4.7), depend on (the
inverse of) the distance d > 0, between 0 and the spectrum of AV . In the particular case where V ∈ Vω(M±),
with M− ∈ (0, Cω), we have d > Cω −M−, and the implicit condition d > 0 imposed on V , can be replaced
by the explicit one on the negative part of the potential, i.e. ‖max(0,−V )‖L∞(Ω) 6M−.

1.5.5 Application to the Calderón Problem
The inverse problem addressed in Subsection 1.5.4 is closely related to the periodic Calderón problem in Ω,
i.e. the inverse problem of determining the conductivity coefficient a, obeying

a(x1 + 1, x′) = a(x1, x
′), x′ ∈ ω, x1 ∈ R, (1.5.5.1)

from partial boundary data of the BVP in the divergence form{
−div(a∇u) = 0, in Ω,

u = f, on Γ.
(1.5.5.2)

Let T0 denote the trace operator u 7→ u|Γ on H1(Ω). We equip the space K (Γ) := T0(H1(Ω)) with the norm

‖f‖K (Γ) := inf{‖u‖H1(Ω) ; T0u = f},

and recall for any a ∈ C1(Ω) satisfying the ellipticity condition

a(x) > a∗ > 0, x ∈ Ω, (1.5.5.3)

for some fixed positive constant a∗, that the BVP (1.5.5.2) admits a unique solution u ∈ H1(Ω) for each
f ∈ K (Γ). Moreover, the full DN map associated with (1.5.5.2), defined by f 7→ aT1u, where T1u := ∂νu|Γ,
is a bounded operator from K (Γ) to H−1(R;H−

1
2 (∂ω)). Here, we rather consider the partial DN map,

Σa : f ∈ K (Γ) ∩ a− 1
2 (Hc(F )) 7→ aT1u|G, (1.5.5.4)

where a−
1
2 (Hc(F )) := {a− 1

2 f ; f ∈Hc(F )}.
Further, since the BVP (1.5.5.2) is brought by the Liouville transform into the form (1.5.1.2), with

Va := a−
1
2 ∆a

1
2 , then, with reference to (1.5.3.3), we impose that Va be bounded in Ω and satisfies the

following conditions
‖Va‖L∞(Ω) 6M+ and ‖max(0,−Va)‖L∞(Ω) 6M−, (1.5.5.5)

where M− ∈ (0, Cω) and M+ ∈ [M−,+∞) are a priori arbitrarily fixed constants. Namely, we introduce the
set of admissible conductivities, as

Aω(a∗,M±) :=
{
a ∈ C1(Ω;R) satisfying ∆a ∈ L∞(Ω), ‖a‖W 1,∞(Ω) 6M+, (1.5.5.1), (1.5.5.3), and (1.5.5.5)

}
.

(1.5.5.6)
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We check by standard computations that the condition (1.5.5.5) is automatically verified, provided the
conductivity a ∈ Aω(a∗,M±) is taken so small that ‖a‖2W 1,∞(Ω) + 2a∗‖∆a‖L∞(Ω) 6 4M−a

2
∗, or even that

‖a‖W 2,∞(Ω) 6
4M−

(4M− + 1)
1
2 + 1

a∗,

in the particular case where a ∈W 2,∞(Ω).
The main result of this subsection claims stable determination of such admissible conductivities a, from

the knowledge of Σa. It is stated as follows.

Corollary 1.5.1 (Corollary 1.2, [ChKiSo162]) Fix a∗ > 0, and let M± be as in Theorem 1.5.2. Pick
aj ∈ Aω(a∗,M±), for j = 1, 2, obeying

a1(x) = a2(x), x ∈ ∂Ω (1.5.5.7)

and
∂νa1(x) = ∂νa2(x), x ∈ F ∩G. (1.5.5.8)

Then Σa1 − Σa2 is extendable to a bounded operator from a
− 1

2
1 (Hc(F )) into L2(G). Moreover, there exists

two constant C > 0 and γ∗ > 0, both of them depending only on ω, M±, a∗, F ′, and G′, such that we have

‖a1 − a2‖H1(Ω̌) 6 CΦ
(
a
− 1

2
∗ ‖Σa1 − Σa2‖

)
, (1.5.5.9)

where Φ is the same as in Theorem 1.5.1. Here ‖·‖ denotes the usual operator norm in B(a
− 1

2
1 (Hc(F )), L2(G)).

1.5.6 Floquet decomposition

In this subsection, we reformulate the inverse problem presented in Subsection 1.5.4 into a family of inverse
coefficients problems associated with the BVP

(−∆ + V )v = 0, in Ω̌ := (0, 1)× ω,
v = g, on Γ̌ := (0, 1)× ∂ω,

v(1, ·)− eiθv(0, ·) = 0, in ω,
∂x1v(1, ·)− eiθ∂x1v(0, ·) = 0, in ω,

(1.5.6.1)

for θ ∈ [0, 2π), and suitable Dirichlet data g. This is by means of the Floquet-Bloch-Gel’fand (FBG)
transform introduced in [ChKiSo161, Section 3.1]. We stick with the notations of [ChKiSo161, Section 3.1],
and, for Y being either ω of ∂ω, we denote by U the FBG transform from L2(R× Y ) onto

∫ ⊕
(0,2π)

L2((0, 1)×
Y ) dθ2π . That is to say, the FBG transform U maps L2(Ω) onto

∫ ⊕
(0,2π)

L2(Ω̌) dθ2π if Y = ω, and L2(Γ) onto∫ ⊕
(0,2π)

L2(Γ̌) dθ2π when Y = ∂ω. We recall that the operator U is unitary in both cases. We start by introducing
several functional spaces and trace operators that are needed by the analysis of the inverse problem associated
with (1.5.6.1).

Functional spaces and trace operators

Fix θ ∈ [0, 2π). With reference to [ChKiSo14, Section 6.1] or [ChKiSo161, Section 3.1], we set for each
n ∈ N ∪ {∞},

Cnθ ([0, 1]× ω) :=
{
u ∈ Cn ([0, 1]× ω) ; ∂jx1

u(1, ·)− eiθ∂jx1
u(0, ·) = 0 in ω, j 6 n

}
,
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and for Y being either ω or ∂ω, we put

Hsθ((0, 1)× Y ) :=

{
u ∈ Hs((0, 1)× Y ); ∂jx1

u(1, ·)− eiθ∂jx1
u(0, ·) = 0 in ω, j < s− 1

2

}
if s >

1

2
,

and
Hsθ((0, 1)× Y ) := Hs((0, 1)× Y ) if s ∈

[
0,

1

2

]
.

Moreover, if X is a Banach space for the norm ‖·‖X , we define Hs
θ (0, 1;X), for s ∈ R, as the set of functions

t ∈ (0, 1) 7→ ϕ(t) :=
∑
k∈Z

ϕke
i(θ+2πk)t associated with (ϕk)k ∈ XZ obeying

∑
k∈Z

(1 + k2)s ‖ϕk‖2X <∞.

Further, we recall from [ChKiSo161, Eq. (3.29)] that UH∆(Ω) =
∫ ⊕

(0,2π)
H∆,θ(Γ̌) dθ2π , where

H∆,θ(Ω̌) := {u ∈ L2(Ω̌); ∆u ∈ L2(Ω̌) and u(1, ·)− eiθu(0, ·) = ∂x1u(1, ·)− eiθ∂x1u(0, ·) = 0 in ω}.

Moreover, the space C∞θ ([0, 2π]× ω) is dense in H∆,θ(Ω̌), and we have UTjU−1 =
∫ ⊕

(0,2π)
Tj,θ dθ2π for j = 0, 1,

where the linear bounded operator

Tj,θ : H∆,θ(Ω̌)→ H−2
θ (0, 1;H−

2j+1
2 (∂ω)),

fulfills T0,θu = u|Γ̌ if j = 0, and T1,θu = ∂νu|Γ̌ if j = 1, provided u ∈ C∞θ ([0, 1]× ω). Therefore, putting

Hθ(Γ̌) := {T0,θu; u ∈ H∆,θ(Ω̌)}, and Hc,θ(F̌ ) := {f ∈Hθ(Γ̌), supp f ⊂ F̌},

we get that UH (Γ) =
∫ ⊕

(0,2π)
Hθ(Γ̌) dθ2π and UHc(F ) =

∫ ⊕
(0,2π)

Hc,θ(F̌ ) dθ2π . As in [ChKiSo161, Eq. (3.30)], the
space Hθ(Γ̌) is endowed with the norm ‖g‖Hθ(Γ̌) := ‖vg‖L2(Ω̌), where vg denotes the unique L2(Ω̌)-solution
to (1.5.6.1) with V = 0, given by Proposition 1.5.1.

Inverse fibered problems

Let V ∈ Vω(M±), whereM± are as in Theorem 1.5.1. Then, for any f be in Hc(F ), u is theH∆(Ω)-solution to
(1.5.1.2), if and only if, for almost every θ ∈ [0, 2π), (Uu)θ is the H∆(Ω̌)-solution to (1.5.6.1), associated with
g = (Uf)θ ∈ Hc,θ(F̌ ). The corresponding partial DN map, defined by ΛV,θ : g ∈ Hc,θ(F̌ ) 7→ T1,θv|Ǧ, where
v is the unique H∆(Ω̌)-solution to (1.5.6.1), is a bounded operator from Hc,θ(F̌ ) into H−2

θ (0, 1;H−
3
2 (G′)),

and we have

UΛV U−1 =

∫ ⊕
(0,2π)

ΛV,θ
dθ

2π
, (1.5.6.2)

according to [ChKiSo161, Proposition 7.1]. Further, if V1 and V2 are two potentials lying in Vω(M±), then
ΛV1,θ − ΛV2,θ ∈ B(Hc,θ(F̌ ), L2(Ǧ)), for each θ ∈ [0, 2π), by (1.5.4.6) and (1.5.6.2). Moreover, ΛV1

− ΛV2

being unitarily equivalent to the family of partial DN maps {ΛV1,θ − ΛV2,θ, θ ∈ [0, 2π)}, it holds true that

‖ΛV1 − ΛV2‖B(Hc(F );L2(G)) = sup
θ∈[0,2π)

‖ΛV1,θ − ΛV2,θ‖B(Hc,θ(F̌ ),L2(Ǧ)). (1.5.6.3)

Therefore, it is clear from (1.5.6.3) that Theorem 1.5.1 and 1.5.2 are a byproduct of the following statement.

Theorem 1.5.3 (Theorem 1.3, [ChKiSo162]) Let M± and Vj, j = 1, 2, be as in Theorem 1.5.2. Fix θ ∈
[0, 2π). Then, there exist two constants Cθ > 0 and γθ,∗ > 0, both of them depending only on ω, M±, F ′,
and G′, such that we have

‖V1 − V2‖H−1(Ω̌) 6 CθΦθ (‖ΛV1,θ − ΛV2,θ‖) . (1.5.6.4)

Here, Φθ is the function defined in Theorem 1.5.2 and ‖·‖ denotes the usual norm in B(Hc,θ(F̌ ), L2(Ǧ)).
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We notice that the constants Cθ and γθ,∗ of Theorem 1.5.3, may possibly depend on θ. Nevertheless, we
infer from (1.5.6.3) that this is no longer the case for C and γ, appearing in the stability estimate (1.5.4.7)
of Theorem 1.5.2, as we can choose C = Cθ and γ = γθ,∗ for any arbitrary θ ∈ [0, 2π). Therefore, we may
completely leave aside the question of how Cθ and γθ,∗ depend on θ. For this reason, we shall not specify
the possible dependence with respect to θ of the various constants appearing in the remaining part of this
text. Finally, we stress out that the function Φθ does actually depend on θ through the constant γθ, as it is
obtained by substituting γθ for θ in the definition (1.5.4.4).

1.5.7 Description of the result
The proofs of Theorem 1.5.1, 1.5.2, 1.5.3 rely on two different types of complex geometric optics (CGO)
solutions to the quasi-periodic Laplace equation in (0, 1) × ω. These functions are built by means of an
extension arguments by periodicity and by means of a suitable Carleman estimate. This technique is inspired
by [Ha, KeSjUh], but, in contrast to [CaDoRu14, CaDoRu16], due to the quasi-periodic boundary conditions
imposed on the CGO solutions, we cannot apply the Carleman estimate of [KeSjUh]. Instead we establish a
Carleman estimate with linear weight taking the form

Proposition 1.5.2 (Proposition 5.1, [ChKiSo161]) Let ξ ∈ S1 and pick a, b in R, with a < b, in such a way
that we have

ω ⊂ {x′ ∈ R2; ξ · x′ ∈ (a, b)}.

Put d := b− a. Then for all θ ∈ [0, 2π) and all τ > 0, the estimate

8τ2

d
‖e−τξ·x

′
u‖2

L2(Ω̌)
+ 2τ‖e−τξ·x

′
(ξ · ν)1/2∂νu‖2L2(Γ̌+

ξ )

6 ‖e−τξ·x
′
∆u‖2

L2(Ω̌)
+ 2τ‖e−τξ·x

′
|ξ · ν|1/2∂νu‖2L2(Γ̌−ξ )

, (1.5.7.1)

holds for every u ∈ C2
θ ([0, 1]× ω) satisfying u|Γ̌ = 0. Here we used the notations Γ̌±ξ := (0, 1)× ∂ω±ξ .

In [ChKiSo161], we build CGO solutions to the system (−∆ + V )u = 0, in Ω̌,
u(1, ·)− eiθu(0, ·) = 0, in ω,

∂x1
u(1, ·)− eiθ∂x1

u(0, ·) = 0, in ω,
(1.5.7.2)

associated with V ∈ L∞(Ω̌;R) and θ ∈ [0, 2π). Namely, given a sufficiently large τ > 0, we seek solutions of
the form

u(x) = (1 + w(x)) eζ·x, x ∈ Ω̌, (1.5.7.3)

to (1.5.7.2), where ζ ∈ i(θ+2πZ)×C2 is chosen in such a way that ∆eζ·x = 0 for every x ∈ Ω̌, and w ∈ H2
0(Ω̌)

satisfies the estimate
‖w‖Hs(Ω̌) 6 Cτ

s−1, s ∈ [0, 2], (1.5.7.4)

for some positive constant C, independent of τ . Then combining these solutions with the Carleman estimate
(1.5.7.1) and a result of stability of the unique continuation for analytic functions we complete in [ChKiSo161]
the proof of Theorem 1.5.1. In order to state the result of [ChKiSo161] with additional restriction on the
Dirichlet input, we build in [ChKiSo162] CGO solutions to the BVP

(−∆ + V )u = 0, in Ω̌,
u(1, ·) = eiθu(0, ·), on ω,

∂x1
u(1, ·) = eiθ∂x1

u(0, ·), on ω,
u = 0, on Γ̌+

ε
2 ,−ξ

(1.5.7.5)
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taking the form (1.5.7.3). Here for ε > 0, we set

∂ω+
ε,ξ := {x′ ∈ ∂ω; ξ · ν′(x′) > ε} and ∂ω−ε,ξ := {x′ ∈ ∂ω; ξ · ν′(x′) 6 ε}, (1.5.7.6)

and we write Γ̌±ε,ξ instead of (0, 1)× ∂ω±ε,ξ. We build the CGO solutions of (1.5.7.5) by using the Carleman
estimate (1.5.7.1) and by applying the Hahn-Banach theorem. This argument is inspired by [KeSjUh].
Nevertheless, in contrast to [KeSjUh], in our context we need to prove that our construction allows to
preserve at the same time the quasiperiodic condition at {0} × ω, {1} × ω, and the homogeneous Dirichlet
boundary condition on Γ̌+

ε
2 ,−ξ

. Actually, these is the main difficulty in the proof of Theorem 1.5.3 and, in some
sense, it makes an important difference with the usual application of this duality argument. To complete
the construction of the CGO solutions of (1.5.7.5), we start by using the Carleman estimate (1.5.7.1) and
arguments similar to [KeSjUh] in order to build CGO solutions satisfying only the homogeneous Dirichlet
boundary condition on Γ̌+

ε
2 ,−ξ

. Then, we prove that this solutions lies in some suitable space satisfying the
quasiperiodic condition on {0} × ω, {1} × ω. For this purpose, we use the expansion in Fourier series of
these solutions and we consider some duality arguments that allow to identify the quasiperiodic condition
on {0} × ω, {1} × ω.

1.6 Stable recovery of a source term for the heat equation

1.6.1 Statement and origin of the problem
In this section consider [KiSaSo] which corresponds to a joint work with Diomba Sambou and Eric Soccorsi.
Let ω ⊂ Rn−1, n > 2, be open and connected, with C4 boundary ∂ω. Set Ω := ω ×R and Γ := ∂ω ×R. For
T ∈ (0,+∞) fixed, we consider the parabolic initial boundary value problem (IBVP)

∂tu−∆u = F (t, x) in Q := (0, T )× Ω,

u(0, ·) = 0 in Ω,

u = 0 on Σ := (0, T )× Γ,

(1.6.1.1)

with source term F ∈ L2(Q). In [KiSaSo], we examine the inverse problem of determining F from a single
Neumann boundary measurement of the solution u to (1.6.1.1).

Let us first notice that there is a natural obstruction to uniqueness in this problem. This can be easily
understood from the identity ∂νu = 0 on Σ, verified by any u ∈ C∞0 (Q), despite of the fact that the function
F := (∂t −∆)u may well be non uniformly zero in Q. Otherwise stated, the observation of ∂νu on Σ may
be unchanged, whereas F is modified. To overcome this problem, different lines of research can be pursued.
One of them is to extend the set of data available in such a way that F is uniquely determined by these
observations. Another direction is the one of assuming that the source term F is a priori known to have the
structure

F (t, x) = σ(t)β(x), (t, x) ∈ Q, (1.6.1.2)

where t 7→ σ(t) is a known function, and then proving that ∂νu uniquely determines β. In [KiSaSo] we
investigate the second direction. Namely, we examine the stability issue in the identification of the time-
independent part β of the source, from partial observation on Σ of the flux ∂νu induced by the solution u to
(1.6.1.1).

Source terms of the form (1.6.1.2) are commonly associated with the reaction term in linear reaction
diffusion equations. These equations arise naturally in various fields of application, investigating systems
made of several interacting components, such as population dynamics [Mu], fluid dynamics [Bea], or heat
conduction [BeBlCl]. More precisely, when σ(t) := e−µt, where µ a positive constant, the system (1.6.1.1)-
(1.6.1.2) describes the diffusion in transmission lines or cooling pipes with significantly large length-to-
diameter ratio, of decay heat, that is the heat released as a result of radioactive decay. In this particular
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case, (1.6.1.2) models a heat source produced by the decay of a radioactive isotope, and β is the spatial
density of the isotope. From a practical viewpoint, the rate of decay µ of the isotope inducing the decay
heat diffusion process, is known, and therefore the same is true for the function σ, while the density function
β is generally unknown. This motivates for a closer look into the inverse problem under investigation in
[KiSaSo].

1.6.2 Existing papers: a short review

Inverse source problems have been extensively studied over the last decades. We refer to [Is90] for a more
general overview of this topic than the one presented in this subsection, where we solely focus on parabolic
inverse source problems consisting in determining a source term by boundary measurements of the solution
to a parabolic equation. Conditional stability for this problem was derived in [ChYa04, Ya93, Ya94]. In
[ImYa98], inspired by the Bukhgeim-Klibanov approach introduced in [BuKl], Imanuvilov and Yamamoto
proved Lipschitz stability of the source with respect to one Neumann boundary measurement of the solution
to a parabolic equation with non-degenerate initial data, and partial Dirichlet data supported on arbitrary
subregions of the boundary. In [ChYa06], Choulli and Yamamoto established a log-type stability estimate for
the time-independent source term β, appearing in (1.6.1.2), by a single Neumann observation of the solution
on an arbitrary sub-boundary.

All the above mentioned results are stated in a bounded spatial domain. But, to the best of our knowl-
edge, there is no result available in the mathematical literature, dealing with the recovery of a non-compactly
supported unknown source function, appearing in a parabolic equation, by boundary measurements of the
solution. This is the starting point of [KiSaSo], in the sense that we aim for extending the stability result of
[ChYa06], which is valid in bounded spatial domains only, to the framework of infinite cylindrical domains.

1.6.3 Well-posedness

Prior to describing the main achievement of [KiSaSo], we briefly investigate the well-posedness of the IBVP
(1.6.1.1). Actually, we start by examining the forward problem associated with the IBVP

∂tv −∆v = f in Q,
v(0, ·) = v0 in Ω,

v = 0 on Σ,

(1.6.3.1)

for suitable source term f and initial data v0. More precisely, we seek an existence, uniqueness and (improved)
regularity result for the solution to the above system, as well as a suitable energy estimate. Such results are
rather classical in the case of bounded spatial domains, but it turns out that they are not so well-documented
for unbounded domains such as Ω. Therefore, for the sake of completeness, we shall establish Theorem 1.6.1,
presented below.

Theorem 1.6.1 (Theorem 1.1, [KiSaSo]) Let v0 ∈ H1
0 (Ω) and f ∈ L2(0, T ;H1

0 (Ω)). Then, there exists a
unique solution v ∈ H1,2(Q) ∩ C([0, T ];H1

0 (Ω)) to the IBVP (1.6.3.1), such that

‖v(t)‖H1(Ω) 6 ‖v0‖H1(Ω) + T
1
2 ‖f‖L2(0,T ;H1(Ω)), t ∈ [0, T ]. (1.6.3.2)

Theorem 1.6.1 is a crucial step in the derivation of the observability inequality (1.6.5.3) stated below,
which is a cornerstone in the analysis of the inverse problem under investigation. But, just as important is
the following consequence of Theorem 1.6.1, which enables us to define properly the boundary data used by
the identification of the unknown function β in Theorem 1.6.2, below.
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Corollary 1.6.1 (Corollary 1.1, [KiSaSo]) Let F be defined by (1.6.1.2), where σ ∈ C1([0, T ]) and β ∈
H1

0 (Ω). Then, the IBVP (1.6.1.1) admits a unique solution u ∈ H1,2(Q). Moreover, we have ∂tu ∈ H1,2(Q)∩
C([0, T ];H1

0 (Ω)), and the following estimate holds:

‖∂tu(t)‖H1(Ω) 6 (1 + T )‖σ‖C1([0,T ])‖β‖H1(Ω), t ∈ [0, T ]. (1.6.3.3)

1.6.4 Stable recovery of the source
For M ∈ (0,+∞) fixed, we introduce the set of admissible unknown source functions, as

B(M) :=
{
ϕ ∈ H1

0 (Ω); ‖ϕ‖H1(Ω) 6M
}
. (1.6.4.1)

Then, the main result of [KiSaSo] can be stated as follows.

Theorem 1.6.2 (Theorem 1.2, [KiSaSo]) Put γ := γ′ × R, where γ′ is an arbitary closed subset of the
boundary ∂ω, with non empty interior, and let σ ∈ C1([0, T ]) satisfy σ(0) 6= 0. For M ∈ (0,+∞), pick
β ∈ B(M), and let u be the H1,2(Q)-solution to the IBVP (1.6.1.1), associated with

F (t, x) = σ(t)β(x), (t, x) ∈ Q,

which is given by Corollary 1.6.1. Then, there exists a constant C > 0, depending only on ω, σ, T , M and
γ′, such that the estimate

‖β‖L2(Ω) 6 CΦ
(
‖∂νu‖H1(0,T ;L2(γ))

)
, (1.6.4.2)

holds with

Φ(r) :=

{
r1/2 + | ln r|−1/2 if r ∈ (0,+∞)
0 if r = 0.

(1.6.4.3)

Notice that we have u ∈ H1(0, T ;H2(Ω)) from Corollary 1.6.1, which guarantees that the trace ∂νu
appearing in the right hand side of the stability estimate (1.6.4.2) is well-defined in H1(0, T ;L2(γ)).

To the best of our knowledge, Theorem 1.6.2 is the first stability result in the identification of the
non-compactly supported source term β, appearing in a parabolic equation, by a single partial boundary
observation of the solution. A similar statement was actually derived in [ChYa06, Theorem 2.2] (see also
[Ch09, Theorem 3.4]) when the domain Ω is bounded, so Theorem 1.6.2 extends this result to the case of
infinite cylindrical domains.

Notice that the statement of Theorem 1.6.2 is valid in absence of any assumption on the behavior of the
source term β outside a compact subset of the infinite cylindrical domain Ω = ω × R. Another remarkable
feature of the result of Theorem 1.6.2 is that the logarithmic dependency of the space-varying source term,
with respect to the boundary data, manifested in [Ch09, Theorem 2.2] for a bounded domain, is preserved by
the stability estimate (1.6.4.2). Otherwise stated, the stability of the reconstruction of β by a single boundary
observation of the solution, is not affected by the infinite extension of the support of the unknown coefficient.
This phenomenon is in sharp contrast with the one observed for the determination of the electric potential
appearing in the Schrödinger equation, by a finite number of Neuman data, where Lipschitz stability (see
[BaPu02, Theorem 1] and [BaPu07, Theorem 1]) degenerates to Hölder (see [KiPhSo2, Theorem 1.4]), as
the support of the unknown potential becomes infinite.

1.6.5 Information about the proof
The proof of Theorem 1.6.2 is by means of a Carleman inequality specifically designed for the heat operator
in the unbounded cylindrical domain Ω. The derivation of this estimate is inspired by the approach used
in this particular framework by [BeKiSo1, KiPhSo1, KiPhSo2] for the Schrödinger equation. In order to
present this Carleman estimate, we pick a function ψ0 ∈ C4(ω), such that
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(c.i) ψ0(x′) > 0 for all x′ ∈ ω;

(c.ii) ∃α0 > 0 such that |∇′ψ0(x′)| > α0 for all x′ ∈ ω;

(c.iii) ∂ν′ψ0(x′) ≤ 0 for all x′ ∈ ∂ω\γ′.

Here, ∇′ denotes the gradient with respect to x′ = (x1, . . . , xn−1) ∈ Rn−1, i.e. ∇′f := (∂x1f, . . . , ∂xn−1f),
and ∂ν′ is the normal derivative with respect to ∂ω, that is ∂ν′ := ν′ · ∇′, where ν′ stands for the outward
normal vector to ∂ω.

Thus, putting ψ(x) = ψ(x′, xn) := ψ0(x′) for all x = (x′, xn) ∈ Ω, it is apparent that the function
ψ ∈ C4(Ω) ∩W 4,∞(Ω) satisfies the three following conditions:

(C.i) inf
x∈Ω

ψ(x) > 0;

(C.ii) |∇ψ(x)| > α0 > 0 for all x ∈ Ω;

(C.iii) ∂νψ(x) 6 0 for all x ∈ Γ\γ.

Next, for each ρ ∈ (0,+∞), we introduce the following weight function

Φρ(t, x) = Φρ(t, x
′) := g(t)

(
eρψ(x′) − e2ρ‖ψ‖L∞(Ω)

)
with g(t) :=

1

t(T − t)
, (t, x) ∈ Q, (1.6.5.1)

Now, with reference to (1.6.1.1), we may state the Carleman estimate for the operator P = ∂t−∆, as follows.

Theorem 1.6.3 (Theorem 3.1, [KiSaSo]) Let u ∈ H1,2(Q) ∩ C([0, T ];H1
0 (Ω)) be real valued. Then, there

exists ρ0 ∈ (0,+∞), such that for all ρ ∈ [ρ0,+∞), there is λ0 = λ0(ρ) ∈ (0,+∞), depending only α0, ω,
γ′, T and ρ, such that the estimate∥∥eλΦρ(λg)−1/2∆u

∥∥
L2(Q)

+
∥∥eλΦρ(λg)−1/2∂tu

∥∥
L2(Q)

+
∥∥eλΦρ(λg)1/2|∇u|

∥∥
L2(Q)

+
∥∥eλΦρ(λg)

3
2u
∥∥
L2(Q)

≤ C
(∥∥eλΦρPu

∥∥
L2(Q)

+
∥∥eλΦρ(λg)1/2∂νu

∥∥
L2((0,T )×γ)

)
, (1.6.5.2)

holds for all λ ∈ [λ0,+∞) and some positive constant C, which depends only on α0, ω, γ′, T , ρ and λ0.

Applying this Carleman estimate we derive the observability inequality.

Proposition 1.6.1 (Proposition 4.1, [KiSaSo]) Let γ′ and γ be the same as in Theorem 1.6.2. For v0 ∈
H1

0 (Ω), let v be the H1,2(Q) ∩ C([0, T ], H1
0 (Ω))-solution given by Theorem 1.6.1, to the IBVP (1.6.3.1)

associated with f = 0. Then, there exists a constant C > 0, depending only on α0, ω, γ′, and T , such that
we have

‖v(T, ·)‖H1(Ω) 6 C ‖∂νv‖L2((0,T )×γ) . (1.6.5.3)

Combining this result with a decomposition in high and low frequency of the solution of (1.6.1.1) we
complete the proof of Theorem 1.6.2.



Chapter 2

Recovery of time-dependent coefficients
for evolution PDEs

2.1 Introduction

As mentioned in Section 1.1, the recovery of time-independent coefficients appearing in evolution PDEs has
been intensively studied over the last decades. Such results have been considered with both single and many
boundary measurements. Sometimes, the arguments used for these results can not be applied to the recovery
of time-dependent coefficients. There is even counter-examples (see for instance Subsection 2.2.2 below for
the obstruction to unique recovery of time-dependent coefficients from the hyperbolic DN map). This chapter
is devoted to some results related to this issue. That is the unique and stable recovery of time-dependent
coefficients appearing in different evolution PDEs (hyperbolic, parabolic and Schrödinger equations). Beside
their own mathematical and physical interests, these problems are related to the recovery of nonlinear terms
from boundary measurements. We discuss about this connection in Section 2.6.

We recall that, several authors considered the problem of determining time-dependent coefficients for
evolution PDEs. These results concern in many case hyperbolic equations. For instance, we can mention
[Stef89] dealing with the recovery of a time-dependent potential appearing in the wave equation from the
knowledge of scattering data, [RaSj, Sala] dealing with recovery of time-dependent coefficients from mea-
surements of forward solutions of wave equations on the infinite time-space cylindrical domain, [Es07, Es16]
treating the specific case of time-dependent coefficients analytic with respect to the time variable and
[BeBen, Ben15, RakRam] considering the recovery of some restriction of time-dependent coefficients. To our
best knowledge, [Is911, Theorem 4.2] is the first result of global unique recovery of general time-dependent
coefficients. Despite the general statement of [Is911, Theorem 4.2], this result requires important measure-
ments including information at the initial and the final time. In this context, the main goal of the paper
[Ki161, Ki162, Ki164, KiOk] was to preserve the general statement of [Is911, Theorem 4.2] but with less in-
formation. Namely, the main problem that we have considered in [Ki161, Ki162, Ki164, KiOk] concerns the
minimal data that allow the global recovery of general time-dependent coefficients. We have considered these
problems with different settings (bounded domain, Riemannian manifold), different coefficients (potential,
damping coefficient) with both results of uniqueness and stability.

Some authors considered also the recovery of time-dependent coefficients appearing in parabolic equa-
tions [CaEs862, Ch911, ChKi13] and Schrödinger equations [ChKiSo14, ChKiSo152, Es08]. In contrast to
hyperbolic equations, according to [Ch09, Es08], one can recover uniquely some time-dependent coefficients
from measurements restricted to the lateral boundary Σ of the time-space cylindrical domain Q. In this
context, we have considered in [ChKi16, KiSo] the stability issue for these problems.

This chapter is organized as follows. In Section 2.2 we introduce the work [Ki161, Ki162, Ki164] concern-
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ing the recovery of time-dependent coefficients for hyperbolic equations in a bounded domain. In Section 2.3,
we describe the extension of these results to hyperbolic equations in Riemannian manifolds stated in [KiOk].
In Section 2.4, we consider the stable recovery of electromagnetic potentials from boundary measurements of
solutions of Schrödinger equations. In Section 2.5, we consider the stable recovery of zero order coefficients
from full and partial boundary measurements for parabolic equations stated in [ChKi16]. Finally, in Section
2.6, we discuss about the application of the results introduced in Section 2.5 to the stable recovery of a
nonlinear term appearing in a parabolic equation.

2.2 Recovery of time-dependent coefficients for hyperbolic equa-
tions

2.2.1 Statement
This section is devoted to the work [Ki161, Ki162, Ki164]. Let Ω be a C2 bounded domain of Rn, n > 2, and
fix 0 < T <∞. We consider the wave equation

∂2
t u−∆u+ a(t, x)∂tu+ q(t, x)u = 0, (t, x) ∈ Q, (2.2.1.1)

where the damping coefficient a ∈ L∞(Q) and the potential q ∈ L∞(Q) are real valued. In [Ki161, Ki162,
Ki164], we seek uniqueness and stability in the determination of both a and q from observations of solutions
of (2.2.1.1) on ∂Q = Σ ∪ ({0} × Ω) ∪ ({T} × Ω).

2.2.2 Obstruction to uniqueness
Let � and La,q be the differential operators � := ∂2

t −∆, La,q := �+a∂t+q. It has been proved by [RakSy],
that for T > Diam(Ω) the data

Aa,q = {(u|Σ, ∂νu|Σ) : u ∈ H1(0, T ;L2(Ω)), �u+ a∂tu+ qu = 0, u|t=0 = ∂tu|t=0 = 0} (2.2.2.1)

determines uniquely a time-independent potential q when a = 0. The result of [RakSy] has been extended
to the recovery of a time-independent damping coefficient a by [Is912]. Contrary to time-independent
coefficients, due to domain of dependence arguments there is no hope to recover the restriction of a general
time-dependent coefficient to the set

D = {(t, x) ∈ Q : 0 < t < Diam(Ω)/2, dist(x, ∂Ω) > t}

from the data Aa,q. Indeed, assume that Ω = {x ∈ Rn : |x| < R}, T > R > 0. Now let u solve

∂2
t u−∆u = 0, u|Σ = f, u|t=0 = ∂tu|t=0 = 0

with f ∈ H1(Σ) satisfying f|t=0 = 0. Since u|t=0 = ∂tu|t=0 = 0, the finite speed of propagation implies that
u|D = 0. Therefore, for any a, q ∈ C∞0 (D), we have a∂tu+ qu = 0 and u solves

La,qu = 0, u|Σ = f, u|t=0 = ∂tu|t=0 = 0.

This last result implies that for any a, q ∈ C∞0 (D) we have Aa,q = A0,0 where A0,0 stands for Aa,q when
a = q = 0.

Facing this obstruction to uniqueness, it appears that four different approaches have been considered so
far to solve this problem when a = 0:
1) Considering the equation (2.2.1.1) for any time t ∈ R instead of 0 < t < T (e.g. [RaSj], [Sala]).
2) Recovering the restriction on a subset of Q of a time-dependent potential q from the data Aq (e.g.
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[RakRam]).
3) For a = 0, recovering a time-dependent potential q from the extended data Ca,q (e.g. [Is911]) given by

Ca,q = {(u|Σ, u|t=0, ∂tu|t=0, ∂νu|Σ, u|t=T , ∂tu|t=T ) : u ∈ L2(Q), La,qu = 0}. (2.2.2.2)

4) Recovering time-dependent coefficients that are analytic with respect to the t variable (e.g. [Es07]).

Therefore, it seems that the only results of unique global determination of a time-dependent potential q
proved so far (at finite time) involve strong smoothness assumptions such as analyticity with respect to the
t variable or the important set of data Ca,q. In [Ki161, Ki162, Ki164], we investigate some conditions that
guaranty unique determination of general time-dependent potentials without involving an important set of
data. More precisely, the goal of [Ki161, Ki162, Ki164] is to prove unique and stable global determination
of a general time-dependent damping coefficient a and the potential q from partial knowledge of the set of
data Ca,q.

2.2.3 Motivations
Physically speaking, our inverse problem can be stated as the determination of physical properties such as
the time evolving density of an inhomogeneous medium by probing it with disturbances generated on some
parts of the boundary and at initial time. The data is the response of the medium to these disturbances,
measured on some parts of the boundary and at the end of the experiment, and the purpose is to recover the
function q which measures the property of the medium. Note also that the determination of time-dependent
potentials can be associated with models where it is necessary to take into account the evolution in time of
the perturbation.

We also mention that time-dependent coefficients appear often due to mathematical reductions of non-
linear problems. For instance, in [Is93] Isakov applied results on inverse boundary value problems with
time-dependent coefficients in order to prove unique recovery of a general semilinear term appearing in
a nonlinear parabolic equation from traces of all the solutions to the equation. More recently, applying
their results of stable recovery of time-dependent coefficients from the parabolic Dirichlet-to-Neumann map,
[ChKi16] treated the stability issue for this problem (see Section 2.4 below). In the same spirit the inverse
problem of [Ki161, Ki162, Ki164] can be a tool for the problem of determining a semilinear term appearing
in a nonlinear wave equation from observations given by traces of the solutions. We point out that with this
application in mind, it is important to treat recovery of non-smooth coefficients.

2.2.4 Known results
The determination of coefficients for hyperbolic equations from boundary measurements has attracted many
attention in recent years. Many authors considered the recovery of time-independent potentials from obser-
vations given by the set Aa,q defined by (2.2.2.1) for a = 0. In [RakSy], the authors proved that, for a = 0,
Aa,q determines uniquely a time-independent potential q. The uniqueness by partial boundary observations
has been considered in [Es06]. We also mention that the stability issue for this problem has been studied by
[BelDo11, BeJeYa1, Mo, StUh98, StUh05].

Some authors treated the recovery of both time-independent damping coefficients and potentials from
boundary measurements. In [Is912], Isakov extended the result of [RakSy], to the recovery of both damping
coefficients and potentials from the data Aa,q. For n = 3, [IsSu] proved stable recovery of the restriction of
both time-independent damping coefficients and potentials on the intersection of the domain and a half-space
from measurements on the intersection of the boundary of the domain and the same half-space. Following
the strategy set by [BuKl], [BuChIsYa, LiTr111, LiTr112] proved uniqueness and stability in the recovery
of both damping coefficients and potentials from a single boundary measurements. In some recent work,
[AmCh] proved a log-type stability estimate in the recovery of time-independent damping coefficients and
potentials appearing in a dissipative wave equation from the initial boundary map.
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All the above mentioned results are concerned with time-independent coefficients. Several authors con-
sidered the problem of determining time-dependent coefficients for hyperbolic equations. In [Stef89], Stefanov
proved the recovery of a time-dependent potential appearing in the wave equation from the knowledge of
scattering data by using some properties of the light-ray transform. In [RaSj], Ramm and Sjöstrand consid-
ered the determination of a time-dependent potential q from the data (u|R×∂Ω, ∂νu|R×∂Ω) of forward solutions
of (2.2.1.1) with a = 0 on the infinite time-space cylindrical domain Rt × Ω instead of Q (t ∈ R instead of
0 < t < T <∞). Rakesh and Ramm [RakRam] treated this problem at finite time on Q, with T > Diam(Ω),
and they determined uniquely q restricted to some subset of Q from Aa,q with a = 0. Isakov established
in [Is911, Theorem 4.2] unique determination of general time-dependent potentials on the whole domain Q
from the extended data Ca,q given by (2.2.2.2) with a = 0. Using a result of unique continuation borrowed
from [Ta95], Eskin [Es08] proved unique recovery of time-dependent coefficients analytic with respect to the
time variable t from partial knowledge of the data Aa,q. Salazar [Sala] extended the result of [RaSj] to more
general coefficients. Moreover, [Wa] stated stability in the recovery of X-ray transforms of time-dependent
potentials on a manifold and [Ben15] proved log-type stability in the determination of time-dependent po-
tentials from the data considered by [Is911] and [RakRam]. We mention also the recent work of [BeBen]
where the authors have extended the results of [Ben15] to the recovery of both time-dependent damping
coefficients and potentials.

2.2.5 Unique and stable recovery of the coefficients
In order to state the main results of [Ki161, Ki162, Ki164], we first introduce some intermediate tools and
notations. For all ω ∈ Sn−1 := {y ∈ Rn : |y| = 1} we introduce the ω-shadowed and ω-illuminated faces

∂Ω+,ω = {x ∈ ∂Ω : ν(x) · ω > 0}, ∂Ω−,ω = {x ∈ ∂Ω : ν(x) · ω 6 0}

of ∂Ω. We consider also the parts of the lateral boundary Σ given by

Σ+,ω = {(t, x) ∈ Σ : ν(x) · ω > 0}, Σ−,ω = {(t, x) ∈ Σ : ν(x) · ω 6 0}.

From now on we fix ω0 ∈ Sn−1 and we consider F = [0, T ]× F ′ (resp G = (0, T )×G′) with F ′ (resp G′) an
open neighborhood of ∂Ω+,ω0

(resp ∂Ω−,ω0
) in ∂Ω.

We start by recalling the result of [Ki161] where we have treated the case a = 0. For this purpose, we
consider the set of data

C∗q = {(u|Σ, ∂tu|t=0, ∂νu|G, u|t=T ) : u ∈ L2(Q), �u+ qu = 0, u|t=0 = 0, suppu|Σ ⊂ F}

defined rigorously in [Ki161, Section 2]. The main result of [Ki161] can be stated as follows.

Theorem 2.2.1 (Theorem 1.1, [Ki161]) Let q1, q2 ∈ L∞(Q). Assume that C∗q1 = C∗q2 . Then q1 = q2.

Note that this uniqueness result is stated for bounded potentials with, roughly speaking, half of the
data (2.2.2.2) considered in [Is911, Theorem 4.2] which seems to be, with [Ben15], the only result of unique
global determination of general time-dependent coefficients for the wave equation, at finite time, in the
mathematical literature. More precisely, we consider u ∈ L2(Q) solutions of (∂2

t −∆ + q)u = 0, in Q, with
initial condition u|t=0 = 0 and Dirichlet boundary condition u|Σ supported on F (which, roughly speaking,
corresponds to half of the boundary). Moreover, we exclude the data ∂tu|t=T and we consider the Neumann
data ∂νu only on G (which, roughly speaking, corresponds to the other half of the boundary). We also
mention that in contrast to [Es08], we do not use results of unique continuation where the analyticity of the
coefficients with respect to t is required. To our best knowledge condition (2.2.1) is the weakest condition
that guaranties global uniqueness of general time-dependent potentials.

Let us also mention that, according to the obstruction to uniqueness given by domain of dependence
arguments (see Subsection 2.2.2), even for large values of T , there is no hope to remove all the information
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on {t = 0} and {t = T} for the global recovery of general time-dependent coefficients. Thus, for our problem
the data ∂tu|t=0 and u|t=T , of solutions u of (2.2.1.1), can not be removed.

In [Ki162], we have established a result of stability associated with the uniqueness result of Theorem
2.2.1. For this purpose, we consider the IBVP ∂2

t u−∆u+ q(t, x)u = 0, in Q,
u(0, ·) = v0, ∂tu(0, ·) = v1, in Ω,
u = g, on Σ,

(2.2.5.1)

and we examine the well-posedness of this IBVP. We introduce the space

J = {u ∈ L2(Q) : (∂2
t −∆)u = 0}

and topologize it as a closed subset of L2(Q). We work with the space

H�(Q) = {u ∈ L2(Q) : �u = (∂2
t −∆)u ∈ L2(Q)},

with the norm
‖u‖2H�(Q) = ‖u‖2L2(Q) +

∥∥(∂2
t −∆)u

∥∥2

L2(Q)
.

Repeating some arguments of [LiMa1, Chapter 2, Theorem 6.4] we prove in [Ki161, Theorem A.1] that
H�(Q) is embedded continuously into the closure of C∞(Q) in the space

K�(Q) = {u ∈ H−1(0, T ;L2(Ω)) : �u = (∂2
t −∆)u ∈ L2(Q)}

topologized by the norm

‖u‖2K�(Q) = ‖u‖2H−1(0,T ;L2(Ω)) +
∥∥(∂2

t −∆)u
∥∥2

L2(Q)
.

Then, following [LiMa1, Chapter 2, Theorem 6.5], we prove in [Ki161, Proposition A.1] that the maps

τ0w = (w|Σ, w|t=0, ∂tw|t=0), τ1w = (∂νw|Σ, w|t=T , ∂tw|t=T ), w ∈ C∞(Q),

can be extended continuously to τ0 : H�(Q) → H−3(0, T ;H−
1
2 (∂Ω)) × H−2(Ω) × H−4(Ω), τ1 : H�(Q) →

H−3(0, T ;H−
3
2 (∂Ω))×H−2(Ω)×H−4(Ω). Here for all w ∈ C∞(Q) we set

τ0w = (τ0,1w, τ0,2w, τ0,3w), τ1w = (τ1,1w, τ1,2w, τ1,3w),

where

τ0,1w = w|Σ, τ0,2w = w|t=0, τ0,3w = ∂tw|t=0, τ1,1w = ∂νw|Σ, τ1,2w = w|t=T , τ1,3w = ∂tw|t=T .

Therefore, we can introduce

H(∂Q) = {τ0u : u ∈ H�(Q)} ⊂ H−3(0, T ;H−
1
2 (∂Ω))×H−2(Ω)×H−4(Ω).

Following [BuUh] and [NaSt], in order to define an appropriate topology onH(∂Q) we consider the restriction
of τ0 to the space J .

Proposition 2.2.1 (Proposition 2.1, [Ki161]) The restriction of τ0 to J , that maps J onto H(∂Q), is one
to one and onto.
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From now on, we set P0 the inverse of τ0 : J → H(∂Q) and define the norm of H(∂Q) by

‖(g, v0, v1)‖H(∂Q) = ‖P0(g, v0, v1)‖L2(Q) , (g, v0, v1) ∈ H(∂Q).

In the same way, we introduce the space HF (∂Q) defined by

HF (∂Q) = {(τ0,1h, τ0,3h) : h ∈ H�(Q), τ0,2h = 0, supp(τ0,1h) ⊂ F}

with the associated norm given by

‖(g, v1)‖HF (∂Q) = ‖(g, 0, v1)‖H(∂Q) , (g, v1) ∈ HF (∂Q).

One can easily check that the space HF (∂Q) is embedded continuously into H(∂Q). We are now in position
to state existence and uniqueness of solutions of the IBVP (2.2.5.1) for (g, v1) ∈ HF (∂Q).

Proposition 2.2.2 (Proposition 2.2, [Ki161]) Let (g, v1) ∈ HF (∂Q) and q ∈ L∞(Q). Then, the IBVP
(2.2.5.1) admits a unique weak solution u ∈ L2(Q) satisfying

‖u‖L2(Q) 6 C ‖(g, v1)‖HF (∂Q)

and the boundary operator Bq : (g, v1) 7→ (τ1,1u|G, τ1,2u) is a bounded operator from HF (∂Q) to
H−3(0, T ;H−

3
2 (G′))×H−2(Ω).

We have established also a smoothing result for the difference of two boundary operators Bq given by.

Proposition 2.2.3 (Proposition 1, [Ki162])Let q1, q2 ∈ L∞(Q). Then, the operator Bq1 −Bq2 is a bounded
operator from HF (∂Q) to L2(G)×H1(Ω).

Using this smoothing property we can state the main result of [Ki162] in the following way.

Theorem 2.2.2 (Theorem 1, [Ki162]) Let p > n+ 1 and q1, q2 ∈W 1,p(Q). Assume that the conditions

q1(t, x) = q2(t, x), (t, x) ∈ Σ, (2.2.5.2)

‖q1‖W 1,p(Q) + ‖q2‖W 1,p(Q) 6M

are fulfilled. Then, there exists a constant C > 0 depending on n, p, M , T , Ω, F ′, G′, such that

‖q1 − q2‖H−1(Q) 6 C
(
‖Bq1 −Bq2‖+

∣∣ ln | ln (‖Bq1 −Bq2‖) |
∣∣−1
)
. (2.2.5.3)

Here ‖Bq1 −Bq2‖ stands for the norm of Bq1 −Bq2 as an element of B(HF (∂Q);L2(G)×H1(Ω)).

Let us observe that this stability estimate is the first that is stated with the data considered in [Ki161],
where uniqueness is proved with conditions that seems to be one of the weakest so far. Moreover, it appears
that with the paper of [Ben15], [Ki162] is the first where stability is stated for global determination of general
time-dependent potentials appearing in a wave equation from boundary measurements.

The result of [Ki161] has been extended in [Ki164] to the unique simultaneous recovery of the damping
coefficient a and the potential q appearing in (2.2.1.1) from the data

C∗a,q = {(u|Σ, u|t=0, ∂tu|t=0, ∂νu|F , u|t=T ) : u ∈ H1(0, T ;L2(Ω)), La,qu = 0}.

The main result of [Ki164] can be stated as follows.
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Theorem 2.2.3 (Theorem 1.1, [Ki164]) Let q1, q2 ∈ L∞(Q) and let a1, a2 ∈ W 1,p(Q) with p > n + 1.
Assume that

a1(t, x) = a2(t, x), (t, x) ∈ ∂Q. (2.2.5.4)

Then, the condition
C∗a1,q1 = C∗a2,q2 (2.2.5.5)

implies that a1 = a2 and q1 = q2.

To our best knowledge [Ki164] is the first paper treating uniqueness in the recovery of time-dependent
damping coefficients. Moreover, it seems that, with [Es08, Es16, Sala], [Ki164] is the first paper considering
recovery of time-dependent coefficients of order one and it appears that this work is the first treating this
problem for general coefficients at finite time ([Es08, Es16] proved recovery of coefficients analytic with
respect to the time variable t, [Sala] considered the problem for all time t ∈ R). We point out that Theorem
2.2.3 is stated for general coefficients with observations close to the one considered in Theorem 2.2.1. Indeed,
the only difference between Theorem 2.2.1 and Theorem 2.2.3 comes from the restriction on the Dirichlet
boundary condition and the initial value.

Note that condition (2.2.5.4) is meaningful for damping coefficients that actually depend on the time
variable t (∂taj 6= 0, j = 1, 2). Indeed, for time-independent damping coefficients a1, a2, (2.2.5.4) implies that
a1 = a2. However, by modifying the argumentation of [Ki164] in accordance with [Is911], for T > Diam(Ω)
we believe that we can restrict condition (2.2.5.4) to the knowledge of time-independent damping coefficients
on ∂Ω (a1 = a2 on ∂Ω instead of (2.2.5.4)).

We believe that, with some suitable modifications, the approach developed in [Ki164] can be used for
proving recovery of more general time-dependent coefficients of order one including a magnetic field associated
with a time-dependent magnetic potential.

2.2.6 Description of the results

The main tools in the analysis of [Ki161, Ki162, Ki164] are GO solutions and Carleman estimates. Following
an approach used for elliptic equations (e.g. [BuUh, ChKiSo151, KeSjUh, NaSt]) and for the determination
of time-independent potentials by [BeJeYa1], we construct two kind of GO solutions: exponentially growing
GO solutions and exponentially decaying GO solutions. Using these solutions and some Carleman estimates
with linear weight, we prove the recovery of the coefficient a and q stated in Theorem 2.2.1, 2.2.2 and 2.2.3.
Our GO solutions differ from the one of [Es08, Is912, RakSy, RaSj, Sala] and, combined with our Carleman
estimate, they make it possible to prove global recovery of time-dependent coefficients from partial knowledge
of the set Ca,q without using additional smoothness or geometrical assumptions.

In [Ki161] we consider exponentially decaying GO solutions lying in H1(Q) without condition on ∂Q
and exponentially growing GO solutions associated with (2.2.1.1) for a = 0 that vanish on parts of ∂Q.
With these solutions and some Carleman estimates with linear weight, we prove Theorem 2.2.1. Using some
properties of fundamental solutions for PDEs with constant coefficients stated in [Ch09, Ho1, Ho2], we build
exponentially decaying GO solutions u ∈ H1(Q) associated with the equation

∂2
t u−∆u+ q(t, x)u = 0 on Q. (2.2.6.1)

More precisely, for λ > 1 a large parameter and for ω ∈ Sn−1, ξ ∈ R1+n satisfying ξ ·(1,−ω) = 0, we consider
solutions of (2.2.1.1) with a = 0 of the form

u(t, x) = e−λ(t+x·ω)(e−iξ·(t,x) + w(t, x)), (t, x) ∈ Q. (2.2.6.2)

Here w ∈ H1(Q) fulfills

‖w‖L2(Q) 6
C

λ
,
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with C > 0 independent of λ. To obtain parts of the restriction on the set of data Ca,q stated in Theorem
2.2.1, we consider also exponentially growing GO solutions associated with (2.2.1.1) for a = 0 that vanish
on parts of ∂Q. The construction of such solutions requires the following Carleman estimates.

Theorem 2.2.4 (Theorem 4.1, [Ki161]) Let q ∈ L∞(Q) and u ∈ C2(Q). If u satisfies the condition u|Σ =
0, u|t=0 = ∂tu|t=0 = 0, then there exists λ1 > 1 depending only on Ω, T and M > ‖q‖L∞(Q) such that the
estimate

λ
∫

Ω
e−2λ(T+ω·x) |∂tu(T, x)|2 dx+ λ

∫
Σ+,ω

e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt+ λ2
∫
Q
e−2λ(t+ω·x) |u|2 dxdt

6 C
(∫

Q
e−2λ(t+ω·x)

∣∣(∂2
t −∆ + q)u

∣∣2 dxdt+ λ3
∫

Ω
e−2λ(T+ω·x) |u(T, x)|2 dx

)
+C

(
λ
∫

Ω
e−2λ(T+ω·x) |∇u(T, x)|2 dx+ λ

∫
Σ−,ω

e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt
)

(2.2.6.3)
holds true for λ > λ1 with C depending only on Ω, T and M > ‖q‖L∞(Q). If u satisfies the condition
u|Σ = 0, u|t=T = ∂tu|t=T = 0, then the estimate

λ
∫

Ω
e2λω·x

∣∣∂tu|t=0

∣∣2 dx+ λ
∫

Σ−,ω
e2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt+ λ2

∫
Q
e2λ(t+ω·x) |u|2 dxdt

6 C
(∫

Q
e2λ(t+ω·x)

∣∣(∂2
t −∆ + q)u

∣∣2 dxdt+ λ3
∫

Ω
e2λω·x |u(0, x)|2 dx+ λ

∫
Ω
e2λω·x |∇u(0, x)|2 dx

)
+Cλ

∫
Σ+,ω

e2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt

(2.2.6.4)
holds true for λ > λ1.

For all y ∈ Sn−1 and all r > 0, we set

∂Ω+,r,y = {x ∈ ∂Ω : ν(x) · y > r}, ∂Ω−,r,y = {x ∈ ∂Ω : ν(x) · y 6 r}

and Σ±,r,y = (0, T )×∂Ω±,r,y. Here and in the remaining of this text we always assume, without mentioning
it, that y and r are chosen in such way that ∂Ω±,r,±y contain a non-empty relatively open subset of ∂Ω.
Without lost of generality we assume that there exists 0 < ε < 1 such that for all ω ∈ {y ∈ Sn−1 : |y−ω0| 6 ε}
we have ∂Ω−,ε,−ω ⊂ F ′. Using the Carleman estimate (2.2.6.4), we build solutions u ∈ H�(Q) to (∂2

t −∆ + q(t, x))u = 0 in Q,
u|t=0 = 0,
u = 0, on Σ+,ε/2,−ω,

(2.2.6.5)

of the form
u(t, x) = eλ(t+ω·x) (1 + z(t, x)) , (t, x) ∈ Q.

Here ω ∈ {y ∈ Sn−1 : |y − ω0| 6 ε}, z ∈ e−λ(t+ω·x)H�(Q) fulfills: z(0, x) = −1, x ∈ Ω, z = −1 on Σ+,ε/2,−ω
and

‖z‖L2(Q) 6 Cλ
− 1

2

with C depending on F ′, Ω, T and any M > ‖q‖L∞(Q). Since Σ \ F ⊂ Σ \ Σ−,ε,−ω = Σ+,ε,−ω and since
Σ+,ε/2,−ω is a neighborhood of Σ+,ε,−ω in Σ, it is clear that condition (2.2.6.5) implies (τ0,1u, τ0,3u) ∈ HF (∂Q)

(recall that for v ∈ C∞(Q), τ0,1v = v|Σ, τ0,3v = ∂tv|t=0). Using these solutions and the Carleman estimate
(2.2.6.3), we prove in [Ki161] the unique recovery of q from the data C∗q by mean of the Fourier transform
of q.

The strategy for proving the stability estimate (2.2.5.3) is different and requires different assumptions
such as the knowledge of the potential on the lateral boundary Σ stated in (2.2.5.2). More precisely, in order
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to derive a stability result associated with the uniqueness stated in Theorem 2.2.1, for λ > 0, ω ∈ Sn−1,
ϕ ∈ C∞(Rn), we consider in [Ki162] GO solutions of the form

u = e±λ(t+x·ω)(χ(t, x) + w(t, x)),

where χ(t, x) = ϕ(x+ tω). Here, in contrast to [Ki161], we need exponentially decaying GO solutions lying
in H2(Q) and exponentially growing GO solutions satisfying (2.2.6.5). Indeed, in contrast to uniqueness
result, for the stability issue we need to consider traces of GO solutions on ∂Q lying in some suitable spaces
and we need estimates of these terms.

Let q = q1 − q2 be extended to R1+n by 0. We consider the light-ray transform of q (see [RaSj, Stef89])
given by

Rq(x, ω) =

∫
R
q(t, x+ tω)dt, x ∈ Rn, ω ∈ Sn−1.

Repeating some of the arguments already used in Theorem 2.2.1, with additional cares about the dependence
of the constant, we start by proving the stable recovery of the light-rayRq(·, ω) for ω on a small neighborhood
of ω0 in Sn−1. Then, combining this with a result of stability in the analytic continuation problem that follows
from [ApEs, Theorem 3] (see also [Ve]), we complete the proof of the stability estimate (2.2.5.3).

Now let us consider the result of [Ki164] stated in Theorem 2.2.3. This time we want to recover simulta-
neously the first order coefficient a and the zero order coefficient q appearing in (2.2.1.1). Even if the general
strategy of [Ki164] is inspired by [BeJeYa1, Ki161, Ki162] (see also [BuUh, KeSjUh] for the original idea
in the case of elliptic equations), due to the presence of a variable coefficient of order one in (2.2.1.1), our
approach in [Ki164] differs from [BeJeYa1, Ki161, Ki162] in many aspects. Indeed, to prove our Carleman
estimate we perturb the linear weight and we prove this estimate by using a convexity argument that allows
us to absorb the damping coefficient. Moreover, in contrast to [Ki161, Ki162] our GO are designed for the
recovery of the damping coefficient and we can not construct them by applying properties of solutions of
PDEs with constant coefficients. We remedy to this by considering Carleman estimates in Sobolev space
of negative order and by using these estimates to build our GO solutions. This construction is inspired
by the one used in [DoKeSjUh, KeSjUh] for the recovery of Schrödinger operators from partial boundary
measurements. The Carleman estimate of [Ki164] takes the following form.

Theorem 2.2.5 (Theorem 3.1, [Ki164]) Let ω ∈ Sn−1, a, q ∈ L∞(Q) and u ∈ C2(Q). If u satisfies the
condition

u|Σ = 0, u|t=0 = ∂tu|t=0 = 0,

then there exists λ1 > 1 depending only on Ω, T and M > ‖q‖L∞(Q) + ‖a‖L∞(Q) such that the estimate

λ
∫

Ω
e−2λ(T+ω·x)

∣∣∂tu|t=T ∣∣2 dx+ λ
∫

Σ+,ω
e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt+ λ2

∫
Q
e−2λ(t+ω·x) |u|2 dxdt

+
∫
Q
e−2λ(t+ω·x)(|∇u|2 + |∂tu|2)dxdt 6 C

(∫
Q
e−2λ(t+ω·x) |La,qu|2 dxdt+ λ3

∫
Ω
e−2λ(T+ω·x)

∣∣u|t=T ∣∣2 dx)
+C

(
λ
∫

Ω
e−2λ(T+ω·x)

∣∣∇u|t=T ∣∣2 dx+ λ
∫

Σ−,ω
e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt

)
(2.2.6.6)

holds true for λ > λ1 with C depending only on Ω, T and M > ‖q‖L∞(Q) + ‖a‖L∞(Q).

The main difference between the Carleman estimate (2.2.6.3) and (2.2.6.6), comes from the expression
involving ∂tu and ∇u. Due to the presence of a variable coefficient of order one this expressions are required
for the construction of our GO solutions. In order to establish this Carleman estimate, in a similar way
to [DoKeSjUh, KeSjUh], we need to perturb our linear weight in order to absorb the damping coefficient.
Namely, we introduce a new parameter s independent of λ, that will be precised later, and we consider, for
λ > s > 1, the perturbed weight

ϕ±λ,s(t, x) := ±λ(t+ ω · x)− st2

2
.
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Then, for a suitable value of s depending on the damping coefficient a and for λ > λ0(s) where λ0(s) depends
on s, we obtain (2.2.6.6) (with a constant depending on s). In order to construct our GO solutions we need
also an extension of our Carleman estimate to negative order Sobolev space. For this purpose, for all m ∈ R,
we introduce the space Hm

λ (R1+n) defined by

Hm
λ (R1+n) = {u ∈ S ′(R1+n) : (|(τ, ξ)|2 + λ2)

m
2 û ∈ L2(R1+n)},

with the norm

‖u‖2Hmλ (R1+n) =

∫
R

∫
Rn

(|(τ, ξ)|2 + λ2)m|û(τ, ξ)|2dξdτ.

Here for all tempered distribution u ∈ S ′(R1+n), we denote by û the Fourier transform of u which, for
u ∈ L1(R1+n), is defined by

û(τ, ξ) := Fu(τ, ξ) := (2π)−
n+1

2

∫
R1+n

e−itτ−ix·ξu(t, x)dtdx.

Then, in a similar way, combining the arguments used in Theorem 2.2.5 with properties of pseudodifferential
operator stated in [Ho3, Volume 18], for

Pa,ω,±λ := e∓λ(t+x·ω)(La,q − q)e±λ(t+x·ω),

we prove two Carleman estimate in negative Sobolev space taking the form

Lemma 2.2.1 (Lemma 5.1, [Ki164]) Let a ∈W 1,p(Q). Then, there exists λ′2 > λ1 such that

‖v‖L2(R1+n) 6 C ‖Pa,ω,λv‖H−1
λ (R1+n) , v ∈ C∞0 (Q), λ > λ′2, (2.2.6.7)

with C > 0 independent of v and λ.

Lemma 2.2.2 (Lemma 5.4, [Ki164]) Let a ∈ W 1,p(Q). Then, there exists λ′3 > 0 such that for λ > λ′3, we
have

‖v‖L2(R1+n) 6 C ‖P−a,ω,−λv‖H−1
λ (R1+n) , v ∈ C∞0 (Q), λ > λ′3, (2.2.6.8)

with C > 0 independent of v and λ.

Combining Carleman estimates (2.2.6.7)-(2.2.6.8), we construct by duality exponentially growing and
decaying solutions of the form

u1(t, x) = e−λ(t+x·ω)(b1,λ(t, x) + w1(t, x)), u2(t, x) = eλ(t+x·ω)(b2,λ(t, x) + w2(t, x)) (2.2.6.9)

with wj ∈ H1(Q), j = 1, 2, satisfying the decay

‖wj‖H1(Q) + λ ‖wj‖L2(Q) 6 Cλ
3−α

3 .

Here the expression b1,λ, b2,λ, are respectively a solution of a transport equation and they will be used for
the recovery of the damping coefficient. In order to relax the assumptions imposed on the set of admissible
coefficients, in a similar way to [Ki163, Salo04], we consider expressions b1,λ, b2,λ depending on some smooth
approximations of the damping coefficients instead of the damping coefficients themselves.
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2.3 Recovery of time-dependent coefficients on Riemannian mani-
fold for hyperbolic equations

2.3.1 Formulation of the problem

Let us observe that in [Ki161, Ki162, Ki164] we have considered the recovery of time-dependent potential q
in the flat case for operators whose principal part is characterized by constant coefficients. This allows us to
conclude through an argument using the Fourier transform of the potential q. The same problem stated on a
manifold with boundaries should be carry out differently. This section is devoted to the presentation of the
extension of [Ki161] to Riemannian manifold stated in [KiOk] which is a joint work with Lauri Oksanen. Let
(M, g) be a smooth Riemannian manifold with boundary of dimension n > 2 and let T > 0. We introduce
the Laplace and wave operators

∆gu = |g|−1/2
n∑

j,k=1

∂xj

(
gjk|g|1/2∂xku

)
, �g = ∂2

t −∆g, (2.3.1.1)

where |g| and gjk denote the absolute of value of the determinant and the inverse of g in local coordinates,
and consider the wave equation

�gu+ q(t, x)u = 0, (t, x) ∈ (0, T )×M, (2.3.1.2)

with q ∈ L∞((0, T )×M). Let ν be the outward unit normal vector to ∂M with respect to the metric g and
let ∂ν be the corresponding normal derivative. We define ∂ν = ∂ν on the lateral surface (0, T )×∂M , ∂ν = ∂t
on the top surface {T} ×M and ∂ν = −∂t on the bottom surface {0} ×M , and consider the Cauchy data
set on the boundary of the cylinder M = (0, T )×M ,

Cq = {(u|∂M , ∂νu|∂M ) : u ∈ L2(M), �gu+ qu = 0}. (2.3.1.3)

In [KiOk] we study the inverse boundary value problem to recover the time-dependent zeroth order term q
appearing in (2.3.1.2) from partial knowledge of the set Cq.

There are several previous results on this problem, however to our knowledge all of them assume either
that (M, g) is a domain in Rn with the Euclidean metric or that q is time-independent.

In the case of time-independent potential q it is enough to know the following lateral restriction of Cq,

CLat
q = {(u|(0,T )×∂M , ∂νu|(0,T )×∂M ) : u ∈ L2(M), �gu+ qu = 0, u|t=0 = ∂tu|t=0 = 0},

for sufficiently large T > 0, in order to determine q(x) for all x ∈M , see [BelDo11, KaKuLa04, Mo, RakSy].
However, if q depends on time, due to domain of dependence argument stated in Subsection 2.2.2, the data
CLat
q contains no information on the restriction of q on the set

{(t, x) ∈M : dist(x, ∂M) > t or dist(x, ∂M) > T − t}. (2.3.1.4)

Here dist(·, ·) is the distance function on (M, g). Indeed, the finite speed of propagation property for the
wave equation (2.3.1.2), see e.g. [KaKuLa01, Theorem 2.47], implies that u(t, x), satisfying the equations in
the definition of CLat

q , vanishes when dist(x, ∂M) > t, and therefore changing q in this cone does not affect
CLat
q . Moreover, again due to the finite speed of propagation, changing q in the cone dist(x, ∂M) > T − t

causes u to change only in the same cone, but this cone does not intersect the lateral boundary (0, T )×∂M .
Facing this obstruction to the uniqueness, all the results of [KiOk] assume some information on the top

{T}×M and bottom {0}×M surfaces. In particular, under the assumption that (M, g) is a simple manifold,
see Definition 2.3.1 below, we show that the full Cauchy data set Cq determines q uniquely.
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2.3.2 Physical and mathematical motivations

Note first that this problem has the same physical motivations as [Ki161, Ki162, Ki164]. Beside these
motivations, this problem has an additional mathematical motivation: the problem to determine q given Cq
can be seen as a hyperbolic analogy of the Calderón problem on a cylinder as stated in [DoKeSjUh]. Indeed,
denoting by dt2 − g the product Lorentzian metric on M , the wave operator �g coincides with the Laplace
operator on (M,dt2 − g). On the other hand, denoting by g = dt2 + g the Riemannian product metric on
M , and choosing a smooth domain Ω ⊂ M , we can formulate the the Calderón problem on a cylinder as
follows: given the elliptic Cauchy data set

CEll
q = {(u|∂Ω, ∂νu|∂Ω) : u ∈ L2(Ω), ∆gu+ qu = 0}

determine q (here ν is the outward unit normal vector to ∂Ω). In [DoKeSjUh] this problem was solved under
the assumption that (M, g) is a simple manifold.

One reason to study these problems is to gain some understanding of the fundamental problem to
determine, up to an isometry, a smooth Riemannian or Lorentzian manifold (Ω, g) with boundary given the
set of Cauchy data

C(g) = {(u|∂Ω, ∂νu|∂Ω); u ∈ L2(Ω), ∆gu = 0}.

Excluding results where full or partial real analyticity is assumed, this problem is open in dimensions three
or higher, in both the elliptic and hyperbolic cases. The relation to the present problem to determine q given
Cq is as follows. In the case when (Ω, g) is a subset of the conformal cylinder

M = (0, T )×M, g = c(dt2 + g), (2.3.2.1)

where only the positive conformal factor c ∈ C2(M) is assumed to be unknown, the problem to determine c
given C(g) can be reduced to the problem to determine q given CEll

q via a gauge transformation. Indeed, as
explained e.g. in [DoKuLaSa], the function v = c(n−1)/4u satisfies ∆gv + qcv = 0 if the function u satisfies
∆gu = 0, where d is the dimension of M and

qc = c−(n−1)/4∆gc
(n−1)/4.

This allows us to first determine CEll
qc given C(g), then to solve the inverse boundary value problem for qc,

and finally determine c given qc. The argument can be adapted also to the hyperbolic case.

2.3.3 Previous literature

The recovery of coefficients appearing in hyperbolic equations is a topic that has attracted considerable
attention. Several authors have treated the determination of time-independent coefficients from Cauchy data
analogous to CLat

q above. In this case, the Boundary Control method, originating from [Beli87], gives very
general uniqueness results when combined with the time-sharp unique continuation theorem [RoZu, Ta95].
We refer to [KuOkPa, LaOk141] for state-of-the-art results and to [KaKuLa01] for reviews. However, as
shown in [Al, AlBa], unique continuation analogous to [RoZu, Ta95] may fail in the presence of time-
dependent zeroth order terms, and the Boundary Control method generalizes only to the case where the
dependence on time is real analytic [Es08, Es16].

Let us now turn to the approach underpinning most of the results in the time-dependent case, including
the results in [KiOk], that is, the use of GO solutions. This approach is widely applied also to time-
independent case, and the data used then is typically the same as in the case of the Boundary Control
method, that is, CLat

q . Although the GO approach gives less sharp uniqueness results in terms of geometrical
assumptions than the Boundary Control method, the advantage of the former is that it yields stronger
stability results.
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Apart from [Es08, Es16], all the above results are concerned with time-independent coefficients. For
time-dependent coefficient we refer to the results mentioned in Subsection 2.2.4. All the results [Ben15,
Is911, Ki161, Ki162, Ki164, RakRam, RakSy, Sala, Ste], introduced in Subsection 2.2.4, assume that the
leading order coefficients in the wave equation are constant. The main contribution of [KiOk] is to consider
the recovery of a time-dependent potential in the case of non-constant leading order coefficients.

2.3.4 Unique recovery of q
We prove two results on unique determination of the potential q. In the first result we assume that the
Cauchy data set Cq is fully known on the lateral boundary (0, T )× ∂M and partly restricted on the top and
bottom. In the second result we restrict the data also on the lateral boundary. In both results we impose
geometric conditions on the manifold (M, g), the conditions being more stringent in the second case. In the
first case, we make the typical assumption that (M, g) is simple in the sense of the following definition.

Definition 2.3.1 A compact smooth Riemannian manifold with boundary (M, g) is simple if it is simply
connected, the boundary ∂M is strictly convex in the sense of the second fundamental form, and M has no
conjugate points.

We consider the restricted version of Cq,

C(q, 0) = {(u|∂M\({0}×M), ∂νu|∂M ); u ∈ L2(M), �gu+ qu = 0, u|t=0 = 0},

and formulate our first result.

Theorem 2.3.1 (Thorem 1.2, [KiOk]) Suppose that (M, g) is a simple manifold. Let T > 0 and let q1,
q2 ∈ L∞((0, T )×M). Then

C(q1, 0) = C(q2, 0) (2.3.4.1)

implies that q1 = q2.

Let us point out that an analogous result holds with the data restricted on the top {T}×M rather than
on the bottom {0} ×M , and also with the time derivative ∂tu|t=T vanishing instead of u|t=0. Moreover, we
prove also a variation of Theorem 2.3.1 using the data

C(q, 0, T ) = {(u|∂M\({0}×M), ∂νu|∂M\({T}×M)); u ∈ L
2(M), �gu+ qu = 0, u|t=0 = 0}.

Theorem 2.3.2 (Thorem 1.3, [KiOk]) Let (M, g) be simple. Let T > Diam(M) and let q1, q2 ∈ L∞((0, T )×
M). Then

C(q1, 0, T ) = C(q2, 0, T ) (2.3.4.2)

implies that q1 = q2.

In order to restrict the data also on the lateral part of the boundary, we make the assumption that (M, g)
is contained in a conformal cylinder of the form (2.3.2.1), that is, we assume that it satisfies the geometric
assumption introduced in [DoKeSaUh] in the context of the Calderón problem. Furthermore, we assume
that also the time direction is multiplied by the same conformal factor, which amounts to assuming, after
the gauge transformation discussed in Section 2.3.2, that the wave equation has two Euclidean directions,
one of them being the time direction.

More precisely, we assume that (M0, g
′) is a simple Riemannian manifold of dimension n − 1 > 2,

M ⊂ R × int(M0) is a compact domain with smooth boundary, and that g = a(e ⊕ g′) where e is the
euclidean metric on R and a ∈ C∞(M) is positive, and consider the wave operator

�a,g = a−1∂2
t −∆g. (2.3.4.3)
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Let us now describe the restriction of Cq considered in our second result. To every variable x ∈ M we
associate the coordinate x1 ∈ R and x′ ∈Mx1

= {x′ ∈M0 : (x1, x
′) ∈M} such that x = (x1, x

′). We define
ϕ(x) = x1,

∂M± = {x ∈ ∂M : ±∂νϕ(x) > 0},

and Σ± = (0, T )× int(∂M±). We consider U = [0, T ]×U ′ (resp V = (0, T )×V ′) with U ′ (resp V ′) a closed
neighborhood of ∂M+ (resp ∂M−) in ∂M , and define the following restriction of Cq,

Cq,∗ = {(u|U , ∂tu|t=0, ∂νu|V , u|t=T ) : u ∈ L2(M), (�a,g + q)u = 0, u|t=0 = 0, suppu|(0,T )×∂M ⊂ U}.

Our second result is stated as follows.

Theorem 2.3.3 (Theorem 1.4, [KiOk]) Suppose that the leading part of the wave operator is of the form
(2.3.4.3). Let T > 0 and let q1, q2 ∈ L∞((0, T )×M). Then Cq1,∗ = Cq2,∗ implies that q1 = q2.

2.3.5 Remarks about the proofs of the main results

As indicated above, the proofs of Theorems 2.3.1 and 2.3.2 are based on the use of GO solutions. In the case
of the former, we use the oscillating solutions of the form

u(t, x) =

k∑
j=1

aj(t, x)eiσψj(t,x) +Rσ(t, x), (t, x) ∈ (0, T )×M, (2.3.5.1)

with σ ∈ R a parameter, Rσ a term that admits a decay with respect to the parameter |σ| and ψj , j = 1, .., k,
real valued. Inspired by the elliptic result [DoKeSaUh], we use these solutions to prove that the hyperbolic
inverse boundary value problem reduces to the problem to invert a weighted geodesic ray transform on
(M, g). The assumption that (M, g) is simple guarantees that this transform is indeed invertible.

For our purposes it is enough to take k = 2 in (2.3.5.1), and in the case of full data Cq already k = 1
is enough. In the case of data sets C(q, 0) and C(q, 0, T ), the second term is needed in order to be able
to restrict the data while avoiding a "reflection". Similar construction is likely to work also on the lateral
boundary, and one may hope that this could be used to reduce the amount of lateral data. In fact, this type of
argument was used in the elliptic case in [KeSa]. There it was assumed that the part of the lateral boundary
lacking data, that is, the inaccessible part, satisfies a (conformal) flatness condition in one direction, and the
elliptic inverse boundary value problem was reduced to the invertibility of a broken geodesic ray transform.
The geodesics used in the transform break via the normal reflection when they hit the inaccessible part of
the boundary. However, barring some special cases, it is not known if such a transform is invertible, and
moreover, there are also counter-examples to invertibility in general. We refer to [Il] for a discussion of both
positive results and counter-examples. In [KiOk] we do not pursue a lateral reflection type argument.

We recall that the result of several authors, that treated our problem for wave equations with constant
leading order coefficients (e.g. [Ben15, RakRam, RaSj, Sala]), is based on the use of solutions of form
(2.3.5.1). There (M, g) is a domain with the Euclidean geometry, and the inverse boundary value problem
is reduced to the problem to invert the light-ray transform in the Minkowski space. An analogous reduction
is possible also in the case of more complicated geometry [Wa], however, the invertibility of the light-ray
transform on a Lorentzian manifold of the product form ((0, T )×M,dt2− g), where (M, g) is simple, was an
open question during the preparation of the paper [KiOk]. Therefore, in [KiOk], as having (restricted) data
on the top and bottom allows for a reduction to the well-understood problem to invert a weighted geodesic
ray transform, rather than the light-ray transform. More precisely, we start by extending M to a simple
manifoldM1. Then, for all x ∈ ∂M1 denoting by τ+(x, θ) the time of existence inM1 of the maximal geodesic
γx,θ satisfying γx,θ(0) = x and γ′x,θ(0) = θ, we introduce the attenuated geodesic ray transform Iµ on the
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inward pointing boundary of the unit sphere bundle ∂+SM1 = {(x, θ) ∈ SM1 : x ∈ ∂M1, 〈θ, ν(x)〉g < 0},
defined by

Iµf(x, θ) =

∫ τ+(x,θ)

0

f(γx,θ(r))e
−µrdr, (x, θ) ∈ ∂+SM1, f ∈ C∞(M1).

Here µ > 0 gives constant attenuation and we recall that SM1 = {(x, θ) ∈ TM : |θ|g(x) = 1}. The map Iµ
admits a unique continuous extension to the distributions on M1. We denote by Lµ the Laplace transform
with respect to t ∈ (0,+∞), that is,

Lµf =

∫ +∞

0

f(t)e−µtdt, f ∈ L1(0,+∞).

Using solutions of the form (2.3.5.1), we prove that for q = q1 − q2 extended by 0 to (0,+∞)×M1, we have
IµLµq = 0, µ > 0, in the sense of distributions on ∂+SM1. Combining this with some properties of weighted
geodesic transform stated in [FrStUh, DoKeSaUh] we complete the proof of Theorem 2.3.1 and 2.3.2. More
recently, after a remark of Yaroslav Kurylev, we realized that the injectivity of the light-ray transform on a
Lorentzian manifold of the product form (R×M,dt2−g) can be deduced from the injectivity of the geodesic
ray transform on M . Thus, the proof of Theorem 2.3.1 and 2.3.2 can be refactored to give invertibility of
the light ray transform in the product geometry case.

For Theorem 2.3.3, inspired by [Ki161, Ki162, Ki164], we replace the oscillating solutions (2.3.5.1) by
exponentially growing or decaying solutions of the form

u(t, x) = eσ(βt+ϕ(x))(aσ(t, x) +Rσ(t, x)), (t, x) ∈ (0, T )×M, (2.3.5.2)

with σ ∈ R a parameter, β ∈ [1/2, 1], Rσ a term that admits a decay with respect to the parameter |σ| and
ϕ a limiting Carleman weight for elliptic equations as defined in [DoKeSaUh]. In a similar way to [Ki161],
we use two different approaches for the construction of exponentially growing and decaying solutions of the
form (2.3.5.2). We start with a construction of exponentially decaying solutions u1 ∈ H1((0, T ) ×M) of
�a,gu1 + q1u1 = 0 taking the form

u1(t, x) = e−σ(βt+ϕ(x))(a1,σ(t, x) +R1(t, x)), (2.3.5.3)

where β ∈ [1/2, 1], σ > 0. For this purpose, we extend our manifold M into a cylindrical manifold and we
consider the restriction on (0, T ) ×M of exponentially decaying solutions on the extended domain.[1/2,1]
More precisely, using the reduction

(a−1∂2
t −∆g + q)

(
a−

n−2
4 v
)

= a−
n+2

4

(
∂2
t v −∆e⊕g′v + qav

)
, (2.3.5.4)

with qa = aq + a
n+2

4 ∆g

(
a−

n−2
4

)
, we consider q1,a = aq1 + a

n+2
4 ∆g

(
a−

n−2
4

)
and u1 = a−

n−2
4 v where v is a

solution of
∂2
t v −∆e⊕g′v + q1,a(t, x)v = 0 on (0, T )× (−R,R)×M1, (2.3.5.5)

with q1,a is extended by zero to a function lying in L∞((0, T )× (−R,R)×M0). Here, for σ > 1, β ∈ [1/2, 1],
v takes the form

v(t, x) = e−σ(βt+x1)(k(t, x) + w(t, x)), (t, x) ∈ (0, T )× (−R,R)×M1 (2.3.5.6)

with w ∈ H1((0, T )× (−R,R)×M1) satisfying

‖w‖L2((0,T )×(−R,R)×M1) 6
C

σ
.

Here the expression k is suitably chosen for the uniqueness result of Theorem 2.3.3. For the construction of
the remainder term w appearing in (2.3.5.6), we combine a seperation of variable argument with properties of
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fundamental solutions of PDEs with constant coefficients. We consider also exponentially growing solutions
u2 ∈ L2((0, T )×M) taking the form

u2(t, x) = eσ(βt+ϕ(x))(a2,σ(t, x) +R2(t, x)) (2.3.5.7)

and satisfying the additional condition

u2(t, x) = 0, (t, x) ∈ ({0} ×M) ∪ U1,

where U1 is a neighborhood of ((0, T )× ∂M) \U in (0, T )× ∂M . The construction of the solutions (2.3.5.7)
requires the following Carleman estimate.

Theorem 2.3.4 (Theorem 4.1, [KiOk]) Let q ∈ L∞((0, T )×M), β ∈ [1/2, 1] and u ∈ C2([0, T ]×M). We
use the following notation s− = 0, s+ = T , ψ(x, t) = βt + x1, ψ−(x1) = −βT − x1 and ψ+(x1) = x1. If u
satisfies the condition

u|(0,T )×∂M = 0, u|t=s± = ∂tu|t=s± = 0,

then there exist constants σ1 > 1 and C > 0 depending only on M , T and ‖q‖L∞((0,T )×M) such that the
estimate

σ
∫
M
e2σψ± |∂tu(s∓, x)|2 dVg(x)

+σ
∫

Σ∓
e±2σψ |∂νu|2 |∂νϕ| dσg(x)dt+ σ2

∫
(0,T )×M e±2σψ |u|2 dVg(x)dt

6 C
(∫

(0,T )×M e±2σψ |(�a,g + q)u|2 dxdt+ σ3
∫
M
e2σψ± |u(s∓, x)|2 dVg(x)

)
+C

(
σ
∫
M
e2σψ± |∇gu(s∓, x)|2g dVg(x) + σ

∫
Σ±

e±2σψ |∂νu|2 |∂νϕ| dσg(x)dt
)

holds true for σ > σ1.

In a similar way to [Ki161], using these Carleman estimates we construct solutions of the form (2.3.5.7).
Combining these two constructions with the Carleman estimates stated in Theorem 2.3.4, we complete the
proof of Theorem 2.3.3 by using the injectivity of geodesic ray transform on simple manifolds.

2.4 Stable determination of an electromagnetic potential appearing
in a Schrödinger equation

2.4.1 Statement of the problem
This section is devoted to the result [KiSo] which is a joint work with Eric Soccorsi. Let Ω be a bounded and
simply connected domain of Rn, n > 2, with C3 boundary ∂Ω. For T > 0, we consider the initial boundary
value problem (IBVP)  (i∂t + ∆A(t) + q(t))u = 0, in Q,

u(0, ·) = 0, in Ω,
u = g, on Σ,

(2.4.1.1)

where ∆A(t) is the Laplace operator associated with the magnetic potential A ∈W 2,∞(Q)n,

∆A(t) :=

n∑
j=1

(∂xj + iaj(t, x))2 = ∆ + 2iA(t, x) · ∇+ i(∇ ·A(t, x))− |A(t, x)|2,

and q ∈W 1,∞(Q). We associate with (2.4.1.1) the DN map

ΛA,q(g) := (∂ν + iA · ν)u. (2.4.1.2)

The goal of [KiSo], is to prove, in some suitable sense, the stable recovery of the coefficients (A, q) from the
DN map ΛA,q.
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2.4.2 Direct problem
We introduce the spaces H(Σ) defined by

g ∈ H(Σ) :=
{
g ∈ H 5

2 ,
5
2 (Σ); g(0, ·) = ∂tg(0, ·) = 0 on ∂Ω

}
Then, for all g ∈ H(Σ), we establish below, that there exists a unique solution ug ∈ H1,2(Q) to (2.4.1.1) and
that the mapping g 7→ ug is continuous.

Proposition 2.4.1 (Proposition 2.1, [KiSo]) Let A ∈W 2,∞(Q), q ∈W 1,∞(Q) and g ∈ H(Σ) such that

‖A‖W 2,∞(Q) + ‖q‖W 1,∞(Q) 6M.

Then, problem (2.4.1.1) admits a unique solution u ∈ H1,2(Q) satisfying

‖u‖H1,2(Q) 6 C‖g‖H(Σ).

with C depending on M , T and Ω. Therefore, the DN map ΛA,q is well defined and it is a bounded operator
from H(Σ) to L2(Σ).

Using this result we can prove that ΛA,q is a bounded operator from H(Σ) to L2(Σ).

2.4.3 Obstruction to the unique recovery
For j = 1, 2, let (Aj , qj) ∈ W 2,∞(Q)n ×W 1,∞(Q). We say that (A1, q1) and (A2, q2) are gauge equivalent
if there exists ϕ ∈ W 3,∞(Q) such that ϕ|(0,T )×∂Ω = 0, A2 = A1 + ∇ϕ and q2 = q1 − ∂tϕ. We recall that
the DN map (2.4.1.2) is invariant by this gauge transformation. Namely, let ϕ ∈ W 3,∞(Q) be such that
ϕ|(0,T )×∂Ω = 0, A2 = A1 +∇ϕ, q2 = q1 − ∂tϕ and, for j = 1, 2, let uj be the solution (2.4.1.1) with A = Aj ,
q = qj . Then, we have

(i∂t + ∆A1(t)u+ q1(t))eiϕu2 = eiϕ(i∂t + ∆A2(t)u+ q2(t))u2 = 0

and we deduce that eiϕu2 = u1 and

(∂ν + iA1ν)u1 = (∂ν + i(A1 +∇ϕ) · ν)u2 = (∂ν + iA2ν)u2.

This implies that ΛA1,q1 = ΛA2,q2 but (A1, q1) 6= (A2, q2) as soon as ϕ 6= 0. Taking into account this
obstruction to uniqueness, in [KiSo], we study the recovery of the time-dependent electromagnetic potential
(A, q) modulo gauge invariance from the DN map ΛA,q. This problem is equivalent to the determination of
(A, q), with divx(A) fixed, from the DN map ΛA,q. The goal of [KiSo] is to treat the stability issue for this
last problem.

2.4.4 Hölder stability estimate
Theorem 2.4.1 (Theorem 1, [KiSo]) Fix M ∈ (0,+∞) and for j = 1, 2, let Aj ∈W 5,∞(Q)n ∩H6(Q)n and
qj ∈W 4,∞(Q) satisfy the three following conditions:

∂αxA1(t, x) = ∂αxA2(t, x), (t, x) ∈ Σ, α ∈ Nn, |α| 6 5, (2.4.4.1)

divxA1(t, x) = divxA2(t, x), (t, x) ∈ Q (2.4.4.2)

and
2∑
j=1

(
‖Aj‖W 5,∞(Q)n + ‖Aj‖H6(Q)n + ‖qj‖W 4,∞(Q)

)
6M. (2.4.4.3)
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Then, there exist three positive constants, r and s, depending only on n, and C, depending only on n, T , Ω
and M , such that we have

‖A1 −A2‖L2(0,T ;H5(Ω)) 6 C ‖ΛA1,q1 − ΛA2,q2‖
r (2.4.4.4)

and
‖q1 − q2‖H−1(Q) 6 C ‖ΛA1,q1 − ΛA2,q2‖

s
. (2.4.4.5)

Here ‖ΛA1,q1 − ΛA2,q2‖ denotes the norm of ΛA1,q1 − ΛA2,q2 as an element of B(H(Σ), L2(Σ)).

2.4.5 Known results and comments

Only few authors considered the problem of determining time-dependent coefficients for Schrödinger equa-
tions. The recovery of time-dependent electromagnetic potentials has been considered by [Es08], who proved
uniqueness modulo gauge invariance from the DN map. The stability issue for this problem was treated
by [ChKiSo152] who established a log-type stability estimate in the recovery of a time-dependent electric
potential from boundary operator including the DN map and information at initial and final time of the
solutions. More recently [Ben17] extended the work of [ChKiSo152] to the stable recovery of electromagnetic
potential with a magnetic potential which is time-independent and sufficiently small. To our best knowl-
edge [Ben17, ChKiSo152] are the only papers dealing with stable recovery of time-dependent coefficients for
Schrödinger equations.

Let us observe that, to our best knowledge, this result is the first result of stability in the recovery of
general time-dependent electromagnetic potentials, with both electric and magnetic potential that dependent
on time and space variables, appearing in a Schrödinger equation from boundary measurements. Moreover,
not only the stability estimates (2.4.4.4)-(2.4.4.5) restrict the data considered by [Ben17, ChKiSo152], which
seem to be the only other results of stable recovery of time-dependent coefficients for Schrödinger equations,
but they also improve the log-type stability of [Ben17, ChKiSo152] to a Hölder stability. Actually, our result
seems to be the first result of Hölder stability for the recovery of general coefficients, depending on time
and space variables, for evolution PDEs (see the log-type stability estimate derived in [Ben15, ChKi16] for
hyperbolic and parabolic equations).

Like many results related to this problem (e.g. [Es08, BeCh10, BelDo10]) our result is based on con-
struction of suitable GO solutions associated with (2.4.1.1). In [KiSo], we purpose a new construction that
allows to reduce the regularity assumptions of [Es08] and derive Hölder stability estimate for time-dependent
coefficients. More precisely, we consider GO solutions of the form

u(t, x) = eiσ(−σt+x·ω)

(
N∑
k=1

bk(t, x)

σk−1

)
+Rσ, (2.4.5.1)

with ω ∈ Sn−1 and a reminder term Rσ satisfying

‖Rσ‖L2(0,T ;H1(Ω)) + σ ‖Rσ‖L2(Q) 6 Cσ
−1.

In [Es08], Eskin considered such solutions for large value of N for proving unique recovery of infinitely
smooth time-dependent electromagnetic coefficients. By using the scaling t↔ σt, [Bel17, BeCh10] considered
solutions of the form (2.4.5.1) with N = 1. In [KiSo], we use solutions of the form (2.4.5.1) for N = 2. This
approach allows us at the same time to reduce the strong regularity assumption of [Es08] and to derive in a
straightforward way the stability estimates (2.4.4.4)-(2.4.4.5). Note also that, by extending the asymptotic
expansion of the principal part of the GO solutions from order 1 to order 2, with respect to σ → +∞, we
manege to extend the stability estimate of [BeCh10] to time-dependent coefficients by "freezing" the time
variable in the expression b1, b2 appearing in (2.4.5.1) for N = 2.
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2.5 Stable recovery of time-dependent coefficients for parabolic equa-
tions

2.5.1 Statement
This section is devoted to the inverse parabolic problem of [ChKi16] which is a joint work with Mourad
Choulli. We fix Ω a C2 bounded domain. For X = Ω or X = ∂Ω and r, s > 0 we introduce the Sobolev
spaces

Hr,s((0, T )×X) = Hr(0, T ;L2(X)) ∩ L2(0, T ;Hs(X)).

Following [LiMa2, Section 8, Chapter 4], we define also the space H−r,−s((0, T ) ×X) to be the dual space
of the Hr,s((0, T )×X) closure of C∞0 ((0, T )×X). In particular, in view of [LiMa1, Theorem 11.1, Chapter
1], for r ∈ (0, 1

2 ), H−r,−s(Σ) is the dual space of Hr,s(Σ). We consider the IBVP ∂tu−∆u+ q(t, x)u = 0, in Q,
u(0, ·) = 0, in Ω,
u = g, on Σ.

(2.5.1.1)

We prove in [ChKi16, Proposition 2.3] that for q ∈ L∞(Q) and g ∈ H− 1
4 ,−

1
2 (Σ) this problem admits a unique

weak solution u ∈ L2(Q). Moreover, the DN map Λq : H−
1
4 ,−

1
2 (Σ) 3 g 7→ ∂νu ∈ H−

3
4 ,−

3
2 (Σ) is bounded.

In [ChKi16] we consider the problem of determining a time-dependent potential q from partial knowledge of
Λq. More precisely we look for a stability estimate associated with this inverse problem.

2.5.2 Motivations
The IBVP (2.5.1.1) is for instance a typical model of the propagation of the heat through a time-evolving
homogeneous body. The goal is to determine the coefficient q, who contains some properties of the body, by
applying a heat source on some part of the boundary of the body and measuring the temperature on another
part of the boundary of the body. Moreover, in many applications we are often lead to determine physical
quantities via parabolic IBVP’s including nonlinear terms from boundary measurements. For instance such
kind of problems appears in reservoir simulation, chemical kinetics and aerodynamics. Considering time-
dependent unknown coefficients in parabolic equations is very useful when treating the determination of the
nonlinear term appearing in a semilinear parabolic equation. We discuss this topic in Section 2.4.

2.5.3 Known results
There is a wide literature devoted to inverse parabolic problems and specifically the determination of time-
dependent coefficients. We just present briefly some typical results. Canon and Esteva [CaEs861] proved
a logarithmic stability estimate for the determination of the support of a source term in a one dimension
parabolic equation from a boundary measurement. This result was extended to three dimension heat equation
in [CaEs862]. The case of a non local measurement was considered by Canon and Lin in [CaLi88, CaLi90].
In [Ch911], Choulli proved existence, uniqueness and Lipschitz stability for the determination of a time-
dependent coefficient appearing in an abstract integro-differential equation, extending earlier results in
[Ch912]. Choulli and Yamamoto established in [ChYa06] a stability estimate for the inverse problem of
determining a source term appearing in a heat equation from Neumann boundary measurements. In [Is911],
Isakov extended the construction of CGO solutions, introduced in [SyUh], to various PDE’s including hy-
perbolic and parabolic equations to prove the density of products of solutions. One can get from the results
in [Is911] the unique determination of q from the measurements on the lateral boundary together with data
at the final time and all input at initial time. When the space domain is cylindrical, adopting the strat-
egy introduced in [BuKl], [GaKi] proved that the time-dependent zero order coefficient can be recovered
uniquely from a single boundary measurement. Based on properties of fundamental solutions of parabolic
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equations, [ChKi13] proved Lipschitz stability for the determination of the time-dependent part of a zero
order coefficient in a parabolic IBVP from a single boundary measurement.

2.5.4 Direct problem

In this subsection we introduce the result of [ChKi16] related to the well-posedness of (2.5.1.1) and definition
of the DN map Λq. For ε = ±, Ω+ = {0} × Ω, Ω− = {T} × Ω, we consider the IBVP (ε∂t −∆ + q(t, x))u = 0 in Q,

u|Ωε = 0,
u|Σ = g.

(2.5.4.1)

Our first result is given by the following.

Proposition 2.5.1 (Proposition 2.3, [ChKi16]) Form > 0, g ∈ H− 1
4 ,−

1
2 (Σ) and q ∈ L∞(Q), with ‖q‖L∞(Q) 6

m, the IBVP (2.5.4.1) admits a unique transposition solution uεq,g ∈ L2(Q) satisfying∥∥uεq,g∥∥L2(Q)
6 C ‖g‖

H−
1
4
,− 1

2 (Σ)
, (2.5.4.2)

where the constant C depends only on Q and m. Additionally the parabolic DN map

Λq : g 7→ ∂νu
+
q,g

defines a bounded operator from H−
1
4 ,−

1
2 (Σ) into H−

3
4 ,−

3
2 (Σ).

We prove an additional result of smoothing stated in

Proposition 2.5.2 (Proposition 2.4, [ChKi16]) Let q, q̃ ∈ L∞(Q). Then Λq−Λq̃ is a bounded operator from
H−

1
4 ,−

1
2 (Σ) into H

1
4 ,

1
2 (Σ) and

〈(Λq − Λq̃)g, h〉 =

∫
Q

(q − q̃)u+
q,gu

−
q̃,hdxdt, g, h ∈ H− 1

4 ,−
1
2 (Σ). (2.5.4.3)

2.5.5 Main results and comments

The unit ball of a Banach space X will be denoted in the sequel by BX . For 1
2(n+3) < s < 1

2(n+1) , set

Ψs(ρ) = ρ+ | ln ρ|−
1−2s(n+1)

8 , ρ > 0,

extended by continuity at ρ = 0 by setting Ψs(0) = 0.

Theorem 2.5.1 (Theorem 1.1, [ChKi16]) Fix m > 0 and 1
2(n+3) < s < 1

2(n+1) . There exists a constant
C > 0, that can depend only on m, Q and s, so that, for any q, q̃ ∈ L∞(Q) satisfying

max
(
‖q‖L∞(Q) , ‖q‖L∞(Q)

)
6 m,

we have
‖q1 − q2‖H−1(Q) 6 CΨs (‖Λq1 − Λq2‖) . (2.5.5.1)

Here ‖Λq1 − Λq2‖ stands for the norm of Λq1 − Λq2 in B(H−
1
4 ,−

1
2 (Σ);H

1
4 ,

1
2 (Σ)).
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In the case of the infinite cylindrical domain Q = (0,+∞) × Ω, Isakov [Is95] got a stability estimate
of determining q = q(x) from the full parabolic DN map by combining the decay in time of solutions of
parabolic equations and the stability estimate in [Al] concerning the problem of determining the zero order
coefficient in a elliptic BVP from a full DN map. For finite cylindrical domain Q, to our knowledge, even for
time-independent coefficients, there is no result in the literature dealing with the stability issue of recovering
q from measurements only on the lateral boundary Σ. All such results require also volume measurements at
some fix time t0 ∈ [0, T ].

For ω ∈ Sn−1, set
Γ±,ω = {x ∈ Γ; ±ν(x) · ω > 0}

and Σ±,ω = Γ±,ω × (0, T ). Fix ω0 ∈ Sn−1, U± a neighborhood of Γ±,ω0
in Γ and set V+ = U+ × [0, T ],

V− = U− × (0, T ). Define then the partial parabolic DN map

Λ̂q : H−
1
2 ,−

1
4 (Σ) ∩ E ′(V+)→ H−

3
2 ,−

3
4 (V−)

g 7→ ∂νuq,g |V− .

Note that Theorem 2.5.1 is obtained as by-product of the analysis we developed to derive a logarithmic
stability estimate for the problem of determining q from the partial parabolic DN map Λ̂q. This result is
stated in the following theorem, where

Φs(ρ) = ρ+ | ln | ln ρ||−s, ρ > 0, s > 0, (2.5.5.2)

extended by continuity at ρ = 0 by setting Φs(0) = 0.

Theorem 2.5.2 (Theorem 1.2, [ChKi16]) Let m > 0, there exist two constants C > 0 and s ∈ (0, 1/2), that
can depend only on m, Q and V±, so that, for any q, q̃ ∈ mBL∞(Q),

‖q1 − q2‖H−1(Q) 6 CΦs

(
‖Λ̂q − Λ̂q̃‖

)
. (2.5.5.3)

Here ‖Λ̂q − Λ̂q̃‖ denotes the norm of Λ̂q − Λ̂q̃ in B(H−
1
4 ,−

1
2 (Σ);H

1
4 ,

1
2 (V−)).

It is worth mentioning that the uniqueness holds for the problem of determining q from the partial DN
operator that maps the boundary condition g supported on γ0 × (0, T ) into ∂νuq,g restricted to γ0 × (0, T ),
where γ0 is an arbitrary nonempty open subsets of Γ. This result is stated in [Ch09, Theorem 3.27]. We
note that the stability estimate corresponding to this uniqueness result remains an open problem.

2.5.6 Idea of the proof
Like [Ki161, Ki162, Ki164], the main tool in the analysis of [ChKi16] are suitable solutions depending
explicitly on some Carleman weight for the parabolic equation and its adjoint equation. In contrast to the
application of such results for elliptic equations by [BuUh, KeSjUh], the main contribution of these solutions
is not so much the restriction of the data on the lateral boundary Σ but on the top and on the bottom of the
time-space cylindrical domain corresponding to {0}×Ω and {T}×Ω. In contrast to the result for hyperbolic
equations [Ki161, Ki162, Ki164], we actually manage to get rid of the data at {0} × Ω and {T} × Ω for the
stable recovery of a time-dependent coefficient. To our best knowledge this is the first result of stability of
this kind for general recovery of general time-dependent coefficients appearing in a parabolic equation.

We fix qj ∈ L∞(Q), j = 1, 2, and we construct in [ChKi16] two sets of exponentially growing and
decaying solutions u1 ∈ L2(Q) and u2 ∈ L2(Q) of the equations{

∂tu1 −∆u1 + q1(t, x)u1 = 0, in Q,
u1(0, ·) = 0, in Ω,
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and {
−∂tu2 −∆u2 + q2(t, x)u2 = 0, in Q,
u2(T, ·) = 0, in Ω.

In order to introduce the general form of these solutions we consider, for all y ∈ Sn−1 and all r > 0, the
parts of the boundary

∂Ω+,r,y = {x ∈ ∂Ω : ν(x) · y > r}, ∂Ω−,r,y = {x ∈ ∂Ω : ν(x) · y 6 r}

and Σ±,r,y = (0, T ) × ∂Ω±,r,y. Then, we fix ω ∈ Sn−1, ξ ∈ Rn with ξ · ω = 0, τ ∈ R and ρ > ρ1. We build
solutions u1 of the form

u1(t, x) = eρ
2t+ρω·x

[(
1− e−ρ

3
4 t

)
e−itτ−ix·ξ + w1(t, x)

]
and solutions u2 of the form

u2(t, x) = e−ρ
2t−ρω·x

[(
1− e−ρ

3
4 (T−t)

)
+ w2(t, x)

]
.

Here the function wj , j = 1, 2, are chosen in such a way that for some ε ∈ (0, 1) we have
w1 ∈ L2(Q),

‖w1‖L2(Q) 6 C(ρ−
1
4 + ρ−1 〈(τ, ξ)〉2),

w1(0, x) = 0, x ∈ Ω,

w1(t, x) = −
(

1− e−ρ
3
4 t
)
e−itτ−ix·ξ, (t, x) ∈ Σ+,ε/2,−ω,

(2.5.6.1)


w2 ∈ L2(Q),

‖w2‖L2(Q) 6 C(ρ−
1
4 + ρ−1 〈(τ, ξ)〉2),

w2(T, x) = 0, x ∈ Ω,

w2(t, x) = −
(

1− e−ρ
3
4 (T−t)

)
, (t, x) ∈ Σ+,ε/2,ω.

(2.5.6.2)

In all these estimates C is a constant depending on Ω, T , ε, M > ‖q1‖L∞(Q) + ‖q2‖L∞(Q). Moreover, 〈ξ〉,
〈(τ, ξ)〉 denote respectively the quantity

〈ξ〉 :=
√

1 + |ξ|2, 〈(τ, ξ)〉 :=
√

1 + |ξ|2 + τ2.

The main point in the construction of these solutions comes from the expression wj , j = 1, 2, satisfying
(2.5.6.1)-(2.5.6.2). The construction of this expression is by means of the following Carleman estimate.

Theorem 2.5.3 (Theorem 3.1, [ChKi16]) Let q ∈ L∞(Q) and u ∈ C2(Q). If u satisfies the condition

u|Σ = 0, u|t=0 = 0

then there exists ρ1 > 1 depending only on Ω, T and M > ‖q‖L∞(Q) such that the estimate∫
Ω
e−2(ρ2T+ρω·x) |u(T, x)|2 dx+ ρ

∫
Σ+,ω

e−2(ρ2t+ρω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt+ ρ2
∫
Q
e−2(ρ2t+ρω·x) |u|2 dxdt

6 C
(∫

Q
e−2(ρ2t+ρω·x) |(∂t −∆ + q)u|2 dxdt+ ρ

∫
Σ−,ω

e−2(ρ2t+ρω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt
)

holds true for ρ > ρ1 with C depending only on Ω, T and M > ‖q‖L∞(Q). If u satisfies the condition

u|Σ = 0, u|t=T = 0
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then the estimate∫
Ω
e2ρω·x |u(0, x)|2 dx+ ρ

∫
Σ−,ω

e2(ρ2t+ρω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt+ ρ2
∫
Q
e2(ρ2t+ρω·x) |u|2 dxdt

6 C
(∫

Q
e2(ρ2t+ρω·x) |(−∂t −∆ + q)u|2 dxdt+ ρ

∫
Σ+,ω

e2(ρ2t+ρω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt
)

holds true for ρ > ρ1.

Once the construction of our sets of solutions is completed we derive our stability result by recovering
the Fourier transform of our coefficients.

2.6 Application to the recovery of a nonlinear term
This section is devoted to the application of the result of stable recovery of a time-dependent coefficient for
a parabolic equation to the stable recovery of a nonlinear term. This result is stated in the last section of
[ChKi16] which is a joint work with Mourad Choulli. The objective is the derivation of a stability estimate
for the problem of determining the nonlinear term in a semilinear parabolic IBVP from the corresponding
“linearized” DN map. We will give the precise definition of the “linearized” DN map later in this section.
The results of this section are obtained as a consequence of Theorem 2.5.1. The linearization procedure, that
we use, requires existence, uniqueness and a priori estimate of solutions of IBVP’s under consideration. We
preferred to work in the Hölder space setting for which we have a precise literature devoted to these aspects
of solutions. However we are convinced that the same analysis can be achieved in the Sobolev space setting.
But in that case this analysis seems to be more delicate. We mention also that this linearization process
is inspired by the strategy set by Isakov in the papers [Is93, Is011, Is012] for results of uniqueness. In this
section Ω is of class C2+α for some 0 < α < 1. The parabolic boundary of Q is denoted by Σp = Σ∪({0}×Ω).
Consider the semilinear IBVP for the heat equation ∂tu−∆u+ a(t, x, u) = 0 in Q,

u = g on Σ,
u(0, x) = u0(x) x ∈ Ω.

(2.6.0.3)

We introduce some notations. We denote by A0 the set of functions from C1(Q × R) satisfying one of
the following conditions:

(i) There exist two non negative constants c0 and c1 so that

ua(x, t, u) ≥ −c0u2 − c1, (t, x, u) ∈ Q× R. (2.6.0.4)

(ii) There exist a non negative constant c2 and a non decreasing positive function Φ of τ ≥ 0 satisfying∫ ∞
0

dτ

Φ(τ)
=∞

such that
ua(x, t, u) ≥ −|u|Φ(|u|)− c2, (t, x, u) ∈ Q× R. (2.6.0.5)

Set X = C2+α,1+α/2(Q) and let X0 = {(G|Σ, G|t=0); for some G ∈ X}. If ‖ · ‖X denotes the natural
norm on X we equip X0 with the quotient norm

‖H‖X0 = inf{‖G‖X ; (G|Σ, G|t=0) = H}.

By [LaSoUr, Theorem 6.1, page 452], for any a ∈ A0 and G = (g, u0) ∈ X0, the IBVP (2.6.0.3) has a unique
solution ua,G ∈ X. Additionally, according to [LaSoUr, Theorem 2.9, page 23], there exists a constant C
that can depend only on Q, A0 and max

Σp

|G| such that

max
Q
|ua,G| ≤ C. (2.6.0.6)
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A quick inspection of [LaSoUr, inequalities (2.31) and (2.34), page 23] shows that

max
Σp

|G| → C = C(max
Σp

|G|)

is non decreasing. Define the parabolic DN map Na associated with a ∈ A0 by

Na : G ∈ X0 −→ ∂νua,G ∈ Y = C1+α,(1+α)/2(Σ).

Note that, contrary to Section 2.5, the DN map Na is no longer linear. The linearization procedure
consists then in computing the Fréchet derivative of Na. Let A be the subset of A0 of those functions a
satisfying ∂ua ∈ C2(Q× R). For a ∈ A and H ∈ X0, consider the IBVP{

(∂t −∆)v + ∂ua(x, t, ua,G(x, t))v = 0 in Q,
v = H on Σp.

In light of [LaSoUr, Theorem 5.4, page 322] this IBVP has a unique solution v = va,G,H ∈ X satisfying

‖va,G,H‖X ≤ c‖H‖X0

for some constant c depending only on Q, a and G. In particular H ∈ X0 → va,G,H ∈ X defines a bounded
operator. The Fréchet derivative of Na is given by the following.

Proposition 2.6.1 (Proposition 6.1, [ChKi16]) For each a ∈ A , Na is continuously Fréchet differentiable
and

N ′a(G)H = ∂νva,G,H ∈ Y, G,H ∈ X0.

In order to handle the inverse problem corresponding to the semi-linear IBVP (2.6.0.3), we need to
extend the operator Λq introduced in Section 2.5 by varying also the initial condition. To do that we start
by considering the IBVP  (∂t −∆ + q(t, x))u = 0 in Q,

u(0, x) = u0, x ∈ Ω
u|Σ = g.

(2.6.0.7)

Then, we prove in [ChKi16] that the extended parabolic DN map

Λeq : X+ ⊕H−
1
2 ,−

1
4 (Σ)→ H−

3
2 ,−

3
4 (Σ)

(u0, g) 7→ ∂νuq,u0,g

defines a bounded operator. Here X+ is a subspace of H−1(Ω) with a suitable topology (see [ChKi16, page
4] and [ChKi16, page 16]). For 1

2(n+3) < s < 1
2(n+1) , we define

Θs(ρ) = | ln ρ|−
1−2s(n+1)

n+3 + ρ, ρ > 0, (2.6.0.8)

extended by continuity at ρ = 0 by setting Θs(0) = 0.
Fix λ > 0. There exists a constant cλ > 0 so that

max
Q
|ua,G| ≤ cλ, a ∈ A0, max

Σp

|G| ≤ λ.

For fixed δ > 0, consider
Â = {a = a(x, u) ∈ A ; ‖∂ua‖C(Ω×[−cλ,cλ]) ≤ δ}.
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To a ∈ Â and g ∈ X0 we associate

pa,G(t, x) = ∂ua(x, ua,G(t, x)), (t, x) ∈ Q.
It is straightforward to check that

N ′a(G) = Λepa,G |X0
.

From now on N ′a(G) − N ′ã(G) is considered as a bounded operator from X0 endowed with norm of X+ ⊕
H−

1
2 ,−

1
4 (Σ) into H

1
2 ,

1
4 (Σ). Since ‖pa,G‖L∞(Q) ≤ δ for any a ∈ Â and G ∈ X0 so that maxΣp

|G| ≤ λ, we
get as a consequence of Proposition 2.6.1

sup{‖N ′a(G)−N ′ã(G)‖; a ∈ Â , G ∈ X0 and max
Σp

|G| ≤ λ} <∞.

Moreover,
‖N ′a(G)−N ′ã(G)‖ = ‖Λepa,G − Λepã,G‖. (2.6.0.9)

Pick a0 ∈ C1(Ω) and set
Â0 = {a ∈ Â ; a(·, 0) = a0}.

We note that when G ≡ s, |s| 6 λ, we have

pa,G(0, x) = ∂ua(x, ua,G(0, x)) = ∂ua(x, s), x ∈ Ω.

In light of this identity, combining Theorem 2.5.1 with Proposition 2.6.1, we prove the stable recovery of the
nonlinear term a from N ′a.

Theorem 2.6.1 (Theorem 6.2, [ChKi16]) Fix λ > 0 and 1
2(n+3) < s < 1

2(n+1) . There exists a constant

C > 0, that can depend only on δ, λ, s, Q and Â0, so that for any a, ã ∈ Â0,

‖a− ã‖C(Ω×[−λ,λ]) 6 CΘs

(
sup

g∈X0,λ

‖N ′a(g)−N ′ã(g)‖

)
.

Here X0,λ = {G ∈ X0; maxΣp
|G| ≤ λ} and ‖N ′a(G)−N ′ã(G)‖ stands for the norm of N ′a(G) − N ′ã(G) in

B(X+ ⊕H−
1
2 ,−

1
4 (Σ);H

1
2 ,

1
4 (Σ)).

Remark 2.6.1 From our approach, one can derive many other stability results. We just mention one of
them. To this end, let Â0 be defined as before with the only difference that we actually permit to functions
of Â0 to depend also on the time variable t. Let a, ã ∈ Â0 and pick (t0, x0, u0) ∈ Γ× (0, T )× [−λ, λ] so that

|(a− ã)(t0, x0, u0)| = 1

2
‖a− ã‖C([0,T ]×Γ×[−λ,λ]). (2.6.0.10)

Let ε = min(t0, T − t0) and G ∈ X0,λ so that G = s on [ε, T − ε]× Γ for some |s| ≤ λ. We proceed as in the
proof of Theorem 2.6.1 in order to derive

‖a− ã‖C([ε,T−ε]×Γ×[−λ,λ]) ≤ CΘs

(
sup

G∈X0,λ

‖N ′a(G)−N ′ã(G)‖

)
,

where the constant C depends only on λ, s, Q and Â0. In light of (2.6.0.10) this estimate yields

‖a− ã‖C([0,T ]×Γ×[−λ,λ]) ≤ CΘs

(
sup

G∈X0,λ

‖N ′a(G)−N ′ã(G)‖

)
.

Let us mention that uniqueness results for such kind of inverse semilinear parabolic problems was already
established by Isakov [Is93, Is011, Is012]. Stability estimates and uniqueness in the case of a single boundary
lateral measurement has been proved in [ChOuYa] for a restricted class of unknown nonlinearities. To our
best knowledge, this result is the first stability estimate for the recovery of general non-linear term. Even in
the context of uniqueness, Theorem 2.6.1 improves the work of [Is93] related to this problem.



66 CHAPTER 2. RECOVERY OF TIME-DEPENDENT COEFFICIENTS FOR EVOLUTION PDES



Chapter 3

Inverse spectral problems

3.1 Introduction

The study of inverse spectral problems, which were one of the first mathematical formulation of inverse prob-
lems, goes back to Ambarzumian [Am] who investigated in 1929 the inverse spectral problem of determining
the real potential V appearing in the Sturm-Liouville operator A = −∂xx +V , acting in L2(0, 2π) with Neu-
mann boundary condition, from partial spectral data of A. For the same operator acting on L2(0, π), but
endowed with homogeneous Dirichlet boundary conditions, Borg [Bo46] and Levinson [Le] established that
while the Dirichlet spectrum does not uniquely determine V , assuming that ϕ′k(0) = 1 for k > 1, additional
spectral data, namely {‖ϕk‖L2(0,π) ; k ∈ N∗} is needed, where {ϕk ; k ∈ N∗} is an L2(0, π)-orthogonal basis
of eigenfunctions of A. Gel’fand and Levitan [GeLe] proved that uniqueness is still valid upon substituting
ϕ′k(π) for ‖ϕk‖L2(0,π) in the one-dimensional Borg and Levinson theorem. In 1998, the case where Ω is a
bounded domain of Rn, n > 2, was treated by Nachman, Sylvester and Uhlmann [NaSyUh], and by Novikov
[Nov]. Inspired by [GeLe], these authors proved that the boundary spectral data {(λk, ∂νϕk|∂Ω) ; k ∈ N∗},
where (λk, ϕk) is the kth eigenpair of A, uniquely determines the Dirichlet realization of the operator A.
This result has been improved in several ways by various authors. For instance, Isozaki [Is] (see also Choulli
[Ch09]) extended the result of [NaSyUh] when finitely many eigenpairs remain unknown, and, recently,
Choulli and Stefanov [ChSt] proved uniqueness in the determination of V from the asymptotic behaviour of
(λk, ∂νϕk|∂Ω) as k → ∞. Moreover, Canuto and Kavian [CaKa01, CaKa04] proved that both the electric
potential V and the conductivity c are uniquely determined from the boundary spectral data of the operator
u 7→ −∇ · (c∇u) + V u endowed with either Dirichlet or Neumann boundary conditions. We mention also
the work of [Ou] related to these problems.

In this chapter, we will introduce our contributions to this field corresponding to the papers [KaKiSo,
Ki163, KiMoOk]. We have considered first a formulation in the context of a Schrödinger operator in an
infinite cylindrical domain with periodic coefficients. In this context the discrete spectrum is replaced by
absolutely continuous spectrum. Nevertheless, by mean of Floquet theory we have established in [KaKiSo]
a formulation of a Borg-Levinson type of result similar to [NaSyUh] for such operators. In our analysis, we
have not only extended the result of [NaSyUh] to a class of operators with absolute continuous spectrum
but we have also improved the result of [ChSt] by showing that a more precise asymptotic behavior of the
boundary spectral data determines the Schrödinger operator. In our other contribution, we have considered
the case of magnetic Schrödinger operators on a bounded domain. Namely, we have proved in [Ki163] that
an asymptotic behavior of the boundary spectral data, similar to [KaKiSo], determines uniquely a magnetic
Schrödinger operator modulo gauge invariance. Finally, in [KiMoOk] we have considered the problem of
determining a Schrödinger operator from boundary spectral data restricted to an arbitrary portion of the
boundary. For this last result, we apply the so called boundary control method introduced by Bellishev

67
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[Beli87] and improved in various way by [BeliKu92, KaKuLa01, KuOkPa, LaOk10, LaOk141]. The first
contribution of [KiMoOk] corresponds to an extension of such results to the case of non-smooth coefficients.
Moreover, by considering a convex domain instead of a general Riemannian manifold, we have tried in
[KiMoOk] to emphasize the main idea of the boundary control method.

3.2 Inverse spectral problem on an infinite waveguide
This section is devoted to our work [KaKiSo], which is a joint work with Otared Kavian and Eric Soccorsi
related to two inverse spectral problems in which a potential is identified through an incomplete boundary
spectral data.

Let ω ⊂ R2 be a bounded domain. On the one hand set Y := ω × (0, 2π) and Γ := ∂ω × [0, 2π]; on the
other hand consider an infinite waveguide Ω = ω × R, and ∂Ω = ∂ω × R. We may assume, without loss of
generality, that the cross section ω of the waveguide contains the origin 0R2 of R2. For simplicity we assume
that ω is C1,1 domain. For the sake of brevity of notations we write x = (x′, x3) with x′ = (x1, x2) ∈ ω for
every x = (x1, x2, x3) ∈ Ω.

The main problem we study, and whose solution is a consequence of a result presented a few lines below,
concerns an inverse spectral problem in a waveguide given by Ω = ω×R. We consider a real valued bounded
electric potential V ∈ L∞(Ω;R) which is 2π-periodic with respect to the infinite variable x3. Namely, we
assume that V ∈ L∞(Ω;R), satisfies

V (x′, x3 + 2π) = V (x′, x3), ∀x3 ∈ R, (3.2.0.1)

and then we define the self-adjoint operator (A,D(A)) acting in L2(Ω) by

Au := −∆u+ V u, for u ∈ D(A) (3.2.0.2)

with its domain
D(A) :=

{
u ∈ H1

0 (Ω) ; −∆u+ V u ∈ L2(Ω)
}
.

We are interested in the problem of determining V from the partial knowledge of the spectral data associated
with A. However, the operator (A,D(A)) being self-adjoint and its resolvent not being compact, it may have
a continuous spectrum contained in an interval of type [λ∗,+∞): thus in the first place one should state
precisely what is meant by an inverse spectral problem. To make this statement more precise we are going
to recall the definition of the (full) spectral data associated with the operator A, but before doing so we
state another result closely related to the above problem.

This result concerns the following inverse spectral problem: let Y be as above and consider a real valued
potential V ∈ L∞(Y ), and for a given fixed θ ∈ [0, 2π) let (λj(θ), ϕθ,j)j>1 be the eigenvalues and normal-
ized eigenfunctions of the realization of the operator −∆ + V with quasi-periodic and Dirichlet boundary
conditions, more precisely those eigenvalues and eigenfunctions given by

−∆ϕθ,j + V ϕθ,j = λj(θ)ϕθ,j in Y,
ϕθ,j(σ) = 0, σ ∈ Γ,

ϕθ,j(x
′, 2π) = eiθϕθ,j(x

′, 0), x′ ∈ ω,
∂3ϕθ,j(x

′, 2π) = eiθ∂3ϕθ,j(x
′, 0), x′ ∈ ω.

(3.2.0.3)

Then we show that if N > 1 is a given integer, knowledge of

λj(θ), ∂νϕθ,j |Γ for j > N + 1, with Γ := ∂ω × [0, 2π],

allows us to identify the potential V in Y = ω × (0, 2π). More precisely we show the following:
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Theorem 3.2.1 (Theorem 1.1, [KaKiSo]) Denote Γ := ∂ω × [0, 2π]. Let θ ∈ [0, 2π) and, for m = 1, 2, let
Vm ∈ L∞(Y ;R). We denote by (λm,k(θ), ϕm,θ,k)k>1 the eigenvalues and normalized eigenfunctions given by
the eigenvalue problem (3.2.0.3) where V := Vm, for m = 1 or m = 2. Let N > 1 be an integer such that the
following two conditions

∀ k > N + 1, λ1,θ,k(θ) = λ2,k(θ), (3.2.0.4)

and
∀ k > N + 1, ∂νϕ1,θ,k = ∂νϕ2,θ,k on Γ, (3.2.0.5)

hold simultaneously. Then we have V1 ≡ V2.

In order to explain and state our main result concerning waveguides in the next subsection we recall
what is meant by boundary spectral data for a waveguide.

3.2.1 The spectral data of the operator A

We recall (see [ReSi4, §XIII.16] for more details) that the operator A given by (3.2.0.2), admits the following
Floquet decomposition into the direct some

UAU−1 =

∫ ⊕
(0,2π)

Aθ
dθ

2π
. (3.2.1.1)

Here, U is the FBG transform already considered in Subsection 1.5.6. Moreover, for each fixed θ ∈ [0, 2π)
the operator Aθ acts in L2(Y ) as −∆ + V on its domain, composed of functions ψ ∈ H2(Y ) such that

∀σ′ ∈ ∂ω, ∀x3 ∈ (0, 2π), ψ(σ′, x3) = 0, (3.2.1.2)

and
ψ(·, 2π)− eiθψ(·, 0) = ∂3ψ(·, 2π)− eiθ∂3ψ(·, 0) = 0 in ω. (3.2.1.3)

Thus, the operator Aθ is defined by
Aθψ := −∆ψ + V ψ,

for ψ ∈ D(Aθ) defined to be

D(Aθ) :=
{
ψ ∈ H1(Y ) ; ∆ψ ∈ L2(Y ), ψ satisfies (3.2.1.2) and (3.2.1.3)

}
.

It is clear that for each θ ∈ [0, 2π) the operator Aθ is self-adjoint, and that the imbedding of D(Aθ)
(endowed with its graph norm) into L2(Y ) is compact: this means that Aθ has a compact resolvent and
thus its spectrum is composed of a sequence of real numbers {λk(θ) ; k ∈ N∗}, where these numbers are
assumed to be ordered in a non-decreasing order, and λk(θ) → +∞ as k → +∞. Actually the spectrum of
A is determined in terms of the spectrums of (Aθ)θ∈[0,2π), by the relation:

sp(A) =
⋃
k∈N∗

λk([0, 2π)). (3.2.1.4)

Moreover, the spectrum of A is purely absolutely continuous (cf. Filonov and Kachkovskii [FiKa, Theorem
2.1]), which amounts to saying that the so-called band functions θ 7→ λj(θ), j ∈ N∗, are non constant.

To go further and say a few words about the generalized eigenfunctions of A, we introduce a family
{ϕθ,k ; k ∈ N∗} of eigenfunctions of the operator Aθ, which satisfy

Aθϕθ,k = λk(θ)ϕθ,k in Y,
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and form an orthonormal basis of L2(Y ). For all k ∈ N∗ and θ ∈ [0, 2π), we set

Φθ,k(x′, x3 + 2nπ) := einθϕθ,k(x), for x = (x′, x3) ∈ Y, n ∈ Z, (3.2.1.5)

so that for any χ ∈ C∞c (R), the function x 7→ χ(x3) Φθ,k(x) belongs to the domain D(A). For any k ∈ N∗
and θ ∈ [0, 2π), it is easy to check that

(−∆ + V )Φθ,k = λk(θ)Φθ,k in Ω,

in the distributional sense. Therefore, for any given k ∈ N∗ and θ ∈ [0, 2π), each Φθ,k is a generalized eigen-
function ofA associated with the generalized eigenvalue λk(θ). Furthermore, the family {Φθ,k ; k ∈ N∗, θ ∈ [0, 2π)}
is a complete system of generalized eigenfunctions of A, in the sense that upon setting

uk(θ) :=

∫
Y

u(x′, x3)Φθ,k(x′, x3)dx′dx3,

for u ∈ L2(Ω), the mapping
u 7→ {uk(θ) ; k ∈ N∗, θ ∈ [0, 2π)} ,

defines a unitary operator from L2(Ω) onto
⊕

k∈N∗ L
2(0, 2π), that is for any u, v ∈ L2(Ω) we have:

(u|v)L2(Ω) =
∑
k>1

∫ 2π

0

uk(θ)vk(θ)
dθ

2π
.

Now, the (full) Floquet spectral data associated with the operator A is defined as the set

{(λk(θ), span(Φθ,k)) ; k ∈ N∗, θ ∈ [0, 2π)} .

Often, with two abuses of notations, we shall denote the above full Floquet spectral data set as

FSD(V ) := {(λk(θ), ϕθ,k) ; k ∈ N∗, θ ∈ [0, 2π)} . (3.2.1.6)

that is in the first place we use the eigenfunctions ϕθ,k defined on ω × (0, 2π) instead of Φθ,k: clearly this
does not create any ambiguity since Φθ,k is known in a unique manner through the definition (3.2.1.5).
The next abuse of notations is owed to the fact that we omit to say that what is indeed important is the
eigenspace span(Φθ,k), or span(ϕθ,k), rather than each eigenfunction Φθ,k or ϕθ,k, in particular when the
Floquet eigenvalue λk(θ) is a multiple eigenvalue.

Moreover, in accordance with Eskin, Ralston and Trubowitz [EsRaTr, §I.6], for any θ ∈ [0, 2π) fixed,
the set {(λj(θ),Φθ,j) ; j ∈ N∗} will be referred to as the Floquet spectral data (or equivalently, the Floquet
eigenpairs) associated with the operator A at θ ∈ [0, 2π).

3.2.2 Main results in an infinite waveguide
We consider two potentials Vm ∈ L∞(Ω;R), m = 1, 2, that are 2π-periodic with respect to x3,

Vm(x′, x3 + 2π) = Vm(x′, x3), x′ ∈ ω, x3 ∈ R, (3.2.2.1)

and we call Am (resp. Am(θ) for all θ ∈ [0, 2π)) the operator obtained by substituting Vm for V in the
definition of the operator A (resp. A(θ)), so that we have:

UAmU
−1 =

∫ ⊕
(0,2π)

Am(θ)
dθ

2π
, for m = 1, 2. (3.2.2.2)

Further, we note {(λm,k(θ), ϕm,θ,k) ; k ∈ N∗, θ ∈ [0, 2π)} the full spectral data associated with Am, for
m = 1, 2, as defined in (3.2.1.6). The main result of [KaKiSo] is the following uniqueness result.
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Theorem 3.2.2 (Theorem 1.2, [KaKiSo]) Denote Γ := ∂ω × [0, 2π]. For m = 1, 2 let Vm ∈ L∞(Ω;R) fulfill
(3.2.2.1). Assume that for some θ0 ∈ [0, 2π) and some integer N > 1 the following two conditions

∀ k > N + 1, λ1,k(θ0) = λ2,k(θ0), (3.2.2.3)

and

∀ k > N + 1, ∂νϕ1,θ0,k = ∂νϕ2,θ0,k on Γ, (3.2.2.4)

hold simultaneously. Then we have V1 ≡ V2.

Theorem 3.2.2 yields that the knowledge of the Floquet spectral data (with the possible exception of
finitely many generalized eigenpairs) at one arbitrary θ0 ∈ [0, 2π), uniquely determines the operator A. The
claim seems quite surprising at first sight, since the full spectral data of A is the collection of the Floquet data
at θ for θ evolving in [0, 2π). Nevertheless, we point out that this result is in accordance with Eskin, Ralston
and Trubowitz [EsRaTr, I,Theorem 6.2], where Floquet isospectrality at θ = 0 for Schrödinger operators
with analytic periodic potential in Rn, n > 2, implies Floquet isospectrality for all θ ∈ [0, 2π).

As a matter of fact, we show the stability result stated in Theorem 3.2.3 below, which yields a much
stronger uniqueness result. Indeed, notwithstanding the fact that the main interest of Theorem 3.2.2 lies in
its simplicity, notice that under the assumptions (3.2.2.3)-(3.2.2.4) one has also

∞∑
k=1

‖∂νϕ1,θ0,k − ∂νϕ2,θ0,k‖
2
L2(Γ) <∞. (3.2.2.5)

Actually, the above condition is sufficient to state a stability result in terms of the asymptotic distance
between the eigenvalues |λ1,k(θ0)− λ2,k(θ0)|, as stated in the following:

Theorem 3.2.3 (Theorem 1.3, [KaKiSo]) Let M > 0 be fixed and let Vm, m = 1, 2, be the same as in
Theorem 3.2.2 and let maxm=1,2 |Vm| 6 M . Suppose that (3.2.2.5) is fulfilled for some θ0 ∈ [0, 2π). Fix V
the function defined on R3 by V = V1−V2 and extended by 0 outside of Ω and let V̂ be the Fourier transform
of V defined by

V̂ (ξ′, j) := (2π)−
3
2

∫ 2π

0

∫
R2

V (x′, x3)e−i(ξ
′·x′+jx3)dx′dx3, ξ′ ∈ R2, j ∈ Z.

Then there exists a positive constant c depending only on ω and M such that the following stability estimate
holds ∣∣∣V̂ (ξ′, j)

∣∣∣ 6 c lim sup
k→+∞

|λ1,k(θ0)− λ2,k(θ0)|, (ξ′, j) ∈ R2 × Z. (3.2.2.6)

Since one can easily see that in general one has

|λ1,k(θ0)− λ2,k(θ0)| 6 ‖V1 − V2‖L∞(Ω) = ‖V ‖L∞(Ω)

the above stability estimate is, in some loose sense, optimal. Actually, from estimate (3.2.2.6) one can deduce
estimates of ‖V ‖H−1(Ω) with respect to δ. Also, with some additional assumption one can get estimates of
‖V ‖ in some suitable spaces (L2(Ω), L∞(Ω),...). Here, in order to preserve some generality, we do not consider
such application. We only introduce a stability estimate in a general setting with as little assumption as
possible.
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3.2.3 Inverse spectral theory in unbounded domain and results of stability

Note that all the results mentioned in Section 3.1 were obtained when Ω is a bounded domain and thus the
operator A has a purely discrete spectrum. Borg [Bo52] and Marchenko [Mar] independently examined the
uniqueness issue in the inverse problem of determining the electric potential of −∂xx + V in Ω = R∗+, with
Fourier flux boundary condition αψ(0)− ψ′(0) = 0 at x = 0. They proved that when there is no continuous
spectrum, two sets of discrete spectra associated with two distinct boundary conditions at x = 0 uniquely
determine the potential and the two boundary conditions. Gesztesy and Simon [GeSi96, GeSi97, GeSi00]
and Aktosun and Weder [AkWe] extended the Borg-Marchenko result in presence of a continuous spectrum,
where either the Krein’s spectral shift function, or an appropriate set containing the discrete eigenvalues
and the continuous part of the spectral measure, are used as the known data. To the best of our knowledge,
there is only one multi-dimensional Borg-Marcheko uniqueness result available in the mathematical literature,
that of Gesztesy and Simon [GeSi96, Theorem 2.6], where the special case of three-dimensional Schrödinger
operators with spherically symmetric potentials is studied.

Finally, let us mention for the sake of completeness that the stability issue in the context of inverse
spectral problems has been examined by Alessandrini and Sylvester [AlSy], Bellassoued, Choulli and Ya-
mamoto [BeChYa], Bellassoued and Dos Santos Ferreira [BelDo11], Choulli [Ch09], Choulli and Stefanov
[ChSt], that inverse spectral problems stated on Riemannian manifolds have been investigated in Bellas-
soued and Dos Santos Ferreira [BelDo11], and in Kurylev, Lassas and Weder [KuLaWe], and that isospectral
sets of Schrödinger operators with periodic potentials or Schrödinger operators defined on a torus, have been
characterized in Eskin [Es89], Eskin, Ralston and Trubowitz [EsRaTr], V. Guillemin [Gui].

We should point out that the problem under examination in [KaKiSo] is a three-dimensional Borg-
Levinson inverse problem, stated on the infinitely extended cylindrical domain Ω = ω × R, associated with
an operator A = −∆ +V of (as already mentioned in subsection 3.2.1) purely absolutely continuous spectral
type. As far as we know, Theorem 3.2.3 is the only multi-dimensional Borg-Levinson uniqueness result for
an operator with continuous spectrum.

3.2.4 Brief summary of the proof

The main point in the proof of Theorem 3.2.2, 3.2.3 is contained in the proof of Theorem 3.2.1. For this
reason, we will only give an idea of the proof of Theorem 3.2.1. We start with three intermediate results of
[KaKiSo]. We denote by 〈f, ψ〉 the duality between ψ ∈ H1/2(Γ) and f belonging to the dual of H1/2(Γ).
However, when in 〈f, ψ〉 both f and ψ belong to L2(Γ), to make things simpler 〈·, ·〉 can be interpreted as
the scalar product of L2(Γ), namely

〈f, ψ〉 =

∫
Γ

ψ(σ) f(σ) dσ.

Recall that the trace operator γ0 : C1(Y ) −→ C(∂Y ) defined by γ0(ϕ) := ϕ|∂Y can be extended to H1(Y ).
For θ ∈ [0, 2π) fixed, we denote by H1

θ (Y ) the closed subspace of those functions u ∈ H1(Y ) satisfying in
the sense of traces

u(x′, 2π) = eiθu(x′, 0) for x′ ∈ ω,

and we shall set
H

1/2
θ (∂Y ) := γ0(H1

θ (Y )).

The space H1
0,θ(Y ) denotes the closed subspace of those functions u ∈ H1

θ (Y ) satisfying in the sense of traces

u(σ′, x3) = 0 for (σ′, x3) ∈ Γ.
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We start by considering the following BVP
−∆u+ V u− λu = 0, in Y,

u(σ) = f(σ), σ ∈ Γ,
u(x′, 2π) = eiθu(x′, 0), x′ ∈ ω,

∂3u(x′, 2π) = eiθ∂3u(x′, 0), x′ ∈ ω.

(3.2.4.1)

Lemma 3.2.1 (Lemma 2.3, [KaKiSo]) For any f ∈ H1/2
θ (∂Y ) and λ ∈ C \ sp(Aθ), there exists a unique

solution u ∈ H2
θ (Y ) to the BVP (3.2.4.1) which can be written as

uλ := u =
∑
k>1

αk
λ− λk(θ)

ϕθ,k, (3.2.4.2)

where for convenience we set

ψk,θ := ∂νϕθ,k, and αk := αk(θ, f) := 〈ψk,θ, f〉.

Moreover

‖uλ‖2L2(Y ) =
∑
k>1

|αk|2

|λ− λk(θ)|2
→ 0 as λ→ −∞.

It is clear that the series (3.2.4.2) giving uλ in terms of αk, λk(θ) and ϕθ,k, converges only in L2(Y ) and
thus we cannot deduce an expression of the normal derivative ∂νuλ in terms of αk, λk(θ) and ψk. To avoid
this difficulty we have the following lemma:

Lemma 3.2.2 (Lemma 2.4, [KaKiSo]) Let f ∈ H1/2
θ (∂Y ) be fixed and for λ, µ ∈ C \ sp(Aθ) let uλ and uµ

be the solutions given by Lemma 3.2.1. If we set v := vλ,µ := uλ − uµ, then

∂νv =
∑
k

(µ− λ)αk
(λ− λk(θ))(µ− λk(θ))

ψk,θ , (3.2.4.3)

the convergence taking place in H1/2(Γ)

The next lemma states essentially that if for m = 1 or m = 2 we have two potentials Vm and um := um,µ
solves 

−∆um + Vmum − µum = 0, in Y,
um(σ) = f(σ), σ ∈ Γ,

um(x′, 2π) = eiθum(x′, 0), x′ ∈ ω,
∂3um(x′, 2π) = eiθ∂3um(x′, 0), x′ ∈ ω,

(3.2.4.4)

then u1,µ and u2,µ are close as µ→ −∞: in some sense the influence of the potentials Vm is dimmed when
µ→ −∞. More precisely, we have:

Lemma 3.2.3 (Lemma 2.5, [KaKiSo]) Let Vm ∈ L∞(Y,R) be given for m = 1 or m = 2, and denote by
Am(θ) the corresponding operator defined in the beginning of Subsection 3.2.2. For f ∈ H1/2

θ (∂Y ) and µ ∈ C
and µ /∈ sp(A1,θ) ∪ sp(A2,θ), let um,µ := um be the solution of (3.2.4.4). Then if zµ := u1,µ − u2,µ we have

‖zµ‖+ ‖∇zµ‖+ ‖∆zµ‖ → 0 as µ→ −∞.

In particular ∂νzµ → 0 in L2(Γ) as µ→ −∞.



74 CHAPTER 3. INVERSE SPECTRAL PROBLEMS

In order to prove Theorem 3.2.1, we will combine the properties stated in Lemma 3.2.1, 3.2.2 and
3.2.3 with a suitable representation formula. In his paper going back to 1991, Isozaki [Is], gives a simple
representation formula which, in some sense, allows to express the potential V in terms of the DN operator.
More precisely, adapting the argument to fit our aim in [KaKiSo], let λ /∈ sp(Aθ) and denote by Λθ,V−λ the
DN map defined by

f 7→ ∂νu on Γ,

where u is the solution of equation (3.2.4.1). For ζ = iξ + η ∈ C3, where ξ, η ∈ R3, we shall denote

ζ · ζ := −|ξ|2 + |η|2 + 2iξ · η,

where ξ · η denotes the usual scalar product of ξ and η in R3. Then, for p = 0 or p = 1 consider

ζp ∈ C3, ζp · ζp = −λ, eζ(x) := exp(ζ · x), e∗ζ(x) := exp(ζ · x). (3.2.4.5)

Definition 3.2.1 Assume that ζp ∈ C3 for p = 0, 1 satisfy (3.2.4.5) and are such that eζ0 ∈ H1
θ (Y ) and

e∗ζ1 ∈ H1
θ (Y ). Then, following Isozaki, we set

Sθ,V (λ, ζ0, ζ1) :=

∫
Γ

Λθ,V−λ(eζ0)(σ) eζ1(σ) dσ = 〈e∗ζ1 ,Λθ,V−λ(eζ0)〉.

Combining the result of [KaKiSo, Lemma 3.3, 3.4, 3.5, 3.6], for all ξ ∈ R2×Z and all t > 0, we define λ(t, ξ),
ζ0(t, ξ) and ζ1(t, ξ) such that the following property is fulfilled.

Theorem 3.2.4 (Theorem 3.7, [KaKiSo]) For all ξ ∈ R2 × Z, we have∫
Y

V (x) e−i ξ·x dx = lim
t→+∞

Sθ,V (λ(t, ξ), ζ0(t, ξ), ζ1(t, ξ)) +
|ξ|2

2

∫
Y

e−i ξ·x dx. (3.2.4.6)

For λ ∈ C and µ ∈ R, such that λ, µ /∈ sp(A1,θ)∪ sp(A2,θ), and f ∈ H1/2
θ (∂Y ) consider um,λ the solution

to the equation (3.2.4.1) where V := Vm, and also denote

ψm,k := ψm,θ,k := ∂νϕm,θ,k, αm,k := 〈ψm,θ,k, f〉.

We shall split N∗ into two subsets of integers k > 1, according to whether (λ1,θ,k, ∂νϕ1,θ,k) = (λ2,θ,k, ∂νϕ2,θ,k)
or not: more precisely we set

K1 := {k > 1 ; (λ1,θ,k, ∂νϕ1,θ,k) = (λ2,θ,k, ∂νϕ2,θ,k)} ,

and then
K0 := N∗ \K1.

Moreover, when k ∈ K1 we drop the index m = 1 or m = 2, that is we denote by λk(θ) and ψk, as well as
αk, the common value of these entities. We set

Fm(λ, µ, f) :=
∑
k∈K0

(µ− λ)αm,k
(λ− λm,k(θ))(µ− λm,k(θ))

ψm,k

and analogously set

G(λ, µ, f) :=
∑
k∈K1

(µ− λ)αk
(λ− λk(θ))(µ− λk(θ))

ψk.

We obtain
∂νvm,λ,µ = Fm(λ, µ, f) +G(λ, µ, f). (3.2.4.7)
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Recalling that in Lemma 3.2.3 we have set zµ = u1,µ − u2,µ, writing the above identity (3.2.4.7) for m = 1
and m = 2, and then subtracting the resulting equations, we end up with a new relation, namely

∂νu1,λ − ∂νu2,λ = ∂νzµ + F1(λ, µ, f)− F2(λ, µ, f). (3.2.4.8)

In view of Lemma 3.2.3, upon letting µ→ −∞, we prove in [KaKiSo, Lemma 4.3] that

∂νu1,λ − ∂νu2,λ = F∗1(λ, f)− F∗2(λ, f), (3.2.4.9)

where for convenience we have set

F∗m(λ, f) :=
∑
k∈K0

αm,k
λ− λm,k(θ)

ψm,k.

Now choose λ(t, ξ), ζ0(t, ξ), ζ1(t, ξ) as in Theorem 3.2.4, and f = eζ0 . Then, the identity given by (3.2.4.9)
and the Definition 3.2.1 yield

Sθ,V1
(λ(t, ξ), ζ0(t, ξ), ζ1(t, ξ))− Sθ,V2

(λ(t, ξ), ζ0(t, ξ), ζ1(t, ξ)) = 〈e∗ζ1 , F∗1(λ, eζ0)− F∗2(λ, eζ0)〉.

Moreover, we prove in [KaKiSo, Lemma 4.4, 4.5] that

lim
t→+∞

〈e∗ζ1(t, ξ), F∗1(λ(t, ξ), eζ0(t, ξ))− F∗2(λ(t, ξ), eζ0(t,ξ))〉 = 0.

Therefore, Theorem 3.2.4 shows that we have∫
Y

(V1(x)− V2(x)) eiξ·x dx = lim
t→∞

(Sθ,V1
(λ(t, ξ), ζ0(t, ξ), ζ1(t, ξ))− Sθ,V2

(λ(t, ξ), ζ0(t, ξ), ζ1(t, ξ))) = 0

and the proof of Theorem 3.2.1 is completed. Note that the strategy described above can be used for Theorem
3.2.3 where the incomplete Floquet boundary spectral data is replaced by the asymptotic properties given
by (3.2.2.5) and lim sup

k→+∞
|λ1,k(θ0)− λ2,k(θ0)|.

3.3 Borg-levinson theorem for magnetic Schrödinger operators

3.3.1 Our goal

This section is devoted to the result of [Ki163]. We consider Ω ⊂ Rn, n > 2, a C1,1 bounded and connected
domain such that Rn \ Ω is also connected. We set Γ = ∂Ω. Let A ∈ W 1,∞(Ω;R)n, V ∈ L∞(Ω;R) and
consider the magnetic Schrödinger operator H = −∆A+V , where ∆A denote the magnetic Laplacian already
defined in (1.4.1.2), acting on L2(Ω) with domain D(H) = {v ∈ H1

0 (Ω) : ∆Av ∈ L2(Ω)}.
It is well known that H is a selfadjoint operator. By the compactness of the embedding H1

0 (Ω) ↪→ L2(Ω),
the spectrum of H is purely discrete. We note {λk : k ∈ N∗} the non-decreasing sequence of eigenvalues
of H and {ϕk : k ∈ N∗} an associated Hilbertian basis of eigenfunctions. In [Ki163], we consider the
Borg-Levinson inverse spectral problem of determining uniquely H in some suitable sense.

3.3.2 Obstruction to uniqueness

Let us remark that there is an obstruction to our problem given by the gauge invariance of boundary spectral
data for magnetic Shrödinger operators. More precisely, for j = 1, 2, fix Aj ∈W 1,∞(Ω;R)n and assume that
there exists p ∈ C∞0 (Ω;R)\{0} such that A1 = ∇p+A2 6= A2, V1 = V2. Now, for j = 1, 2, fix Hj the Dirichlet
realization of −∆Aj + Vj and let {λ1,k : k ∈ N∗} be the non-decreasing sequence of eigenvalues of H1 with
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{ϕ1,k : k ∈ N∗} an associated Hilbertian basis of eigenfunctions. For all k ∈ N∗, we fix ϕ2,k = eipϕ1,k and
one can easily check that {ϕ2,k : k ∈ N∗} is an Hilbertian basis of L2(Ω). Moreover, we have

∆A2
ϕ2,k = eip(∆A2

ϕ1,k + 2i∇p · ∇ϕ1,k + (i∆p− 2A2 · ∇p− |∇p|2)ϕ1,k) = eip∆A1
ϕ1,k, k ∈ N∗.

It follows
H2ϕ2,k = λ1,kϕ2,k, k ∈ N∗

and, since {ϕ2,k : k ∈ N∗} is an Hilbertian basis of L2(Ω), we deduce that {λ1,k : k ∈ N∗} corresponds
to the non-decreasing sequence of eigenvalues of H2 with {ϕ2,k : k ∈ N∗} an associated Hilbertian basis of
eigenfunctions. In addition, we have

∂νϕ2,k|Γ = (i∂νp)ϕ2,k|Γ + eip∂νϕ1,k|Γ = ∂νϕ1,k|Γ.

Therefore, the boundary spectral data {(λ1,k, ∂νϕ1,k|∂Ω) : k > 1} of H1 coincides with the boundary spectral
data {(λ1,k, ∂νϕ2,k|∂Ω) : k > 1} of H2 but H1 6= H2.

Taking into account this obstruction to uniqueness we are restricted to the recovery of the magnetic
Schrödinger operator modulo the gauge invariance given by: H1 and H2 are gauge equivalent if there exists
p ∈W 2,∞(Ω,R)∩H1

0 (Ω) such that H2 = e−ipH1e
ip. Assuming A is known on Γ, the recovery of the operator

H modulo gauge invariance is equivalent to the recovery of V and of the 2-form dA of the vector valued
function A = (a1, . . . , an) defined by

dA =
1

2

n∑
i,j=1

(∂xjai − ∂xiaj)dxj ∧ dxi.

In [Ki163], we study this problem.

3.3.3 Unique recovery modulo gauge invariance
Let Aj ∈W 1,∞(Ω;R)n, Vj ∈ L∞(Ω;R) and consider the magnetic Schrödinger operators Hj = H for A = Aj
and V = Vj , j = 1, 2. Further, we note (λj,k, ϕj,k), k > 1, the kth eigenpair of Hj , for j = 1, 2. Our main
result can be stated as follows.

Theorem 3.3.1 (Theorem 1.1, [Ki163]) We fix Ω1 an arbitrary open neighborhood of Γ in Ω (Γ ⊂ Ω1 and
Ω1 ( Ω). For j = 1, 2, let Vj ∈ L∞(Ω;R) and let Aj ∈ C1(Ω;R)n fulfill

A1(x) = A2(x), x ∈ Ω1. (3.3.3.1)

Assume that the conditions

lim
k→+∞

|λ1,k − λ2,k| = 0,

+∞∑
k=1

‖∂νϕ1,k − ∂νϕ2,k‖2L2(Γ) <∞ (3.3.3.2)

hold simultaneously. Then, we have dA1 = dA2 and V1 = V2.

Note that condition (3.3.3.1) corresponds to the knowledge of the magnetic potential on a neighborhood of
the boundary.

Let us observe that, as mentioned by [ChSt, KaKiSo], Theorem 3.3.1 can be considered as a uniqueness
theorem under the assumption that the spectral data are asymptotically "very close". Conditions (3.3.3.2)
are similar to the one considered by [KaKiSo] and they are weaker than the requirement that

|λ1,k − λ2,k| 6 Ck−α, ‖∂νϕ1,k − ∂νϕ2,k‖L2(Γ) 6 Ck
−β
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for some α > 1 and β > 1 − 1
2n , considered in [ChSt, Theorem 2.1]. Note also that conditions (3.3.3.2) are

weaker than the knowledge of the boundary spectral data with a finite number of data missing considered
by [Is].

We stress out that this problem is a Borg-Levinson inverse problem for the magnetic Schrödinger operator
H = −∆A + V . To our best knowledge, there are only two multi-dimensional Borg-Levinson uniqueness
result for magnetic Schrödinger operators available in the mathematical literature, [KaKu98, Theorem B]
and [Ser, Theorem 3.2]. In [KaKu98], the authors considered general magnetic Schrödinger operators with
smooth coefficients on a smooth connected Riemannian manifold and they proved unique determination of
these operators modulo gauge invariance from the knowledge of the boundary spectral data with a missing
finite number of data. In [Ser], Serov treated this problem on a bounded domain of Rn, and he proved that,
for A ∈W 1,∞(Ω;R)n and V ∈ L∞(Ω;R), the full boundary spectral data {(λk, ∂νϕk|Γ) : k ∈ N∗} determines
uniquely dA and V . In contrast to [KaKu98, Ser], in [Ki163] we prove that the asymptotic knowledge of
the boundary spectral data, given by the conditions (3.3.3.2), is sufficient for the unique determination of
dA and V . To our best knowledge, conditions (3.3.3.2) are the weakest conditions on boundary spectral
data that guaranty uniqueness of magnetic Schrödinger operators modulo gauge transformation. Moreover,
our uniqueness result is stated with conditions similar to [KaKiSo, Theorem 1.4], which seems to be the
most precise Borg-Levinson uniqueness result so far for Schrödinger operators without magnetic potential
(A = 0).

3.3.4 Idea of the proof

An important ingredient in the analysis of [Ki163] is a suitable representation that allows to express the
magnetic potential A and the electric potential V in terms of the DN map associated with the equations
−∆Au + V u − λu = 0 for some λ ∈ C. In [Is], Isozaki applied a similar approach to the Schrödinger
operator −∆+V with Dirichlet boundary condition and [ChSt, KaKiSo] applied the representation formulas
of [Is]. Inspired by the construction of CGO solutions of [BeCh10, DoKeSjUh, Salo04, Su] we prove that
the approach of [ChSt, Is, KaKiSo] can be extended to magnetic Schrödinger operators. More precisely, we
derive two representation formulas that allow to recover both the magnetic field and the electric potential of
magnetic Schrödinger operators which means recovery of both coefficients of order one and zero in contrast
to [ChSt, Is, KaKiSo], where only determination of coefficients of order zero is considered. It seems that
[Ki163] is the first paper where the extension of the approach developed by [Is] to more general coefficients
than coefficients of order zero is considered. Note also that our approach makes it possible to prove this
extension without imposing important assumptions of regularity on the admissible coefficients.

For this representation, we set Aj ∈ C1(Ω;R)n, Vj ∈ L∞(Ω;R), j = 1, 2, and we assume that condition
(3.3.3.1) is fulfilled. For j = 1, 2 and λ ∈ C \ R, we associate with the problem{

−∆Ajuj + Vjuj − λuj = 0, in Ω,
uj(x) = f(x), x ∈ Γ

(3.3.4.1)

the DN map
Λj,λ : H

1
2 (∂Ω) 3 f 7→ (∂ν + iAj · ν)uj,λ|Γ,

where uj,λ solves (3.3.4.1). Then, we apply the DN maps Λj,λ to some suitable ansatzs associated with
(3.3.4.1) in order to get two representation formulas involving the magnetic potentials Aj and the electric
potentials Vj , j = 1, 2. The idea is to establish the link between the electric and magnetic potentials and
the boundary spectral data by mean of an expression involving the DN maps Λ1,λ, Λ2,λ. In contrast to
[ChSt, Is, KaKiSo], in [Ki163] we need to extend this strategy to Schrödinger operators with both magnetic
and electric potentials, which means an extension to Schrödinger operators with variable coefficients of order
zero and one. In addition, we need to consider ansatzs that allow to recover both the magnetic field and the
electric potential. Therefore, we fix a large parameter τ > 1 and two vectors ξ ∈ Rn, η ∈ Sn−1 satisfying
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ξ · η = 0. We define λ(τ) ∈ C \R depending on τ and η1(τ, η, ξ), η2(τ, η, ξ) ∈ Sn−1 depending on τ , ξ and η.
Then, we consider some ansatzs, associated with (3.3.4.1), of the form

Φ1,τ,η,ξ(x) = ei
√
λ(τ)η1(τ,η,ξ)·xg1(x), ,Φ2,τ,η,ξ(x) = e−i

√
λ(τ)η2(τ,η,ξ)·xg2(x), x ∈ Ω, j = 1, 2. (3.3.4.2)

For λ > 0, these ansatzs are the principal term of the standard GO solutions. In contrast to the CGO
solutions taking the form eζj ·xhj(x), j = 1, 2, where the entire vector ζj ∈ Cn is complex valued, here we
consider these ansatzs only with complex frequency. The expression g1 and g2 appearing in (3.3.4.2), are
respectively a solution of the transport equations

iη1 · ∇g1 − (η1 ·A1,])g1 = 0, iη2 · ∇g2 + (η2 ·A2,])g2 = 0, (3.3.4.3)

with Aj,] some smooth function close to the magnetic potential Aj , j = 1, 2. More precisely, we define
Aj,] ∈ C∞0 (Rn,R)n, j = 1, 2, some smooth approximations on Ω of Aj . Then, we consider solutions of the
transport equations (3.3.4.3) given by

g1(x) := eiψ1(x), g2(x) := b2(x)e−iψ2(x), ψj(x) := −
∫ 0

−∞
ηj ·Aj,](x+ sηj)ds, η2 · ∇b2(x) = 0, x ∈ Rn.

Therefore, we consider ansatzs associated with (3.3.4.1) taking the form

Φ1,τ,η,ξ(x) := ei
√
λη1·xeiψ1(x), Φ2,τ,η,ξ(x) := e−i

√
λη2·xb2(x)e−iψ2(x), x ∈ Ω. (3.3.4.4)

We assume in addition that b2 ∈W 2,∞(Rn) and we recall that ψj solves the equation

ηj · ∇ψj(x) = −ηj ·Aj,], j = 1, 2, x ∈ Rn.

In the construction of our ansatzs we consider some smooth approximations of the magnetic potentials
instead of the magnetic potentials to obtain sufficiently smooth functions Φj,τ,η,ξ, j = 1, 2. Using this ap-
proach, we can weaken the regularity assumption imposed on admissible magnetic potential from W 3,∞(Ω)n

to C1(Ω)n. Further, for j = 1, 2, we put

Sj(τ, η, ξ) =

∫
Γ

(Λj,λ(τ)Φ1,τ,η,ξ)Φ2,τ,η,ξ(x)dσ(x). (3.3.4.5)

In other words, we apply Λj,λ(τ), j = 1, 2, to ansatzs of the form (3.3.4.2) with g1 = eiψ1(x) and g2 =

b2(x)e−iψ2(x). From some asymptotic properties of S1(τ, η, ξ) − S2(τ, η, ξ) as τ → +∞ we derive the two
following conditions that guaranty the unique recovery of the magnetic field and the electric potential.

Lemma 3.3.1 (Lemma 4.1, [Ki163]) Assume that for all ξ ∈ Rn, η ∈ Sn−1 satisfying ξ ·η = 0, the condition

lim
τ→+∞

S1(τ, η, ξ)− S2(τ, η, ξ)√
λ(τ)

= 0 (3.3.4.6)

is fulfilled. Then, we have dA1 = dA2.

Lemma 3.3.2 (Lemma 4.2, [Ki163]) Let A1 = A2. Assume that for all ξ ∈ Rn, η ∈ Sn−1 satisfying ξ ·η = 0,
the condition

lim
τ→+∞

S1(τ, η, ξ)− S2(τ, η, ξ) = 0 (3.3.4.7)

is fulfilled. Then, we have V1 = V2.

The remaining part of [Ki163], consists in proving that conditions (3.3.3.1)-(3.3.3.2) imply (3.3.4.6)-
(3.3.4.7). We prove this implication by adapting to magnetic Schrödinger operators some arguments of
[KaKiSo].
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3.4 Borg-levinson theorem with measurements on an arbitrary por-
tion

3.4.1 Statement of the problem
This section is devoted to [KiMoOk] which is a joint work with Morgan Morancey and Lauri Oksanen. We
fix Ω a C2 bounded and connected domain of Rn, n > 2 and we set γ a non empty open set of Γ = ∂Ω.
We consider the Schrödinger operator Aq = −∆ + q acting on L2(Ω) with Dirichlet boundary condition
and q ∈ L∞(Ω) real valued. The spectrum of Aq consists in a non decreasing sequence of eigenvalues
{λk : k ∈ N∗} to which we associate the Hilbertian basis of eigenfunctions {ϕk : k ∈ N∗}. Then, we
introduce the boundary spectral data restricted to the portion γ given by

BSD(q, γ) :=
{

(λk, ∂νϕk|γ) : k ∈ N∗
}
.

The main goal of [KiMoOk] is to prove uniqueness in the recovery of q from the data BSD(q, γ).

3.4.2 Main results
For j = 1, 2, we fix qj ∈ L∞(Ω). To every operator Aqj we associate the non decreasing sequence of
eigenvalues {λj,k : k ∈ N∗} to which we associate the Hilbertian basis of eigenfunctions {ϕj,k : k ∈ N∗}.
Our main result is the following

Theorem 3.4.1 (Theorem 1.1, [KiMoOk]) Assume that Ω is convex and let qj ∈ L∞(Ω), j = 1, 2. Let the
conditions

λ1,k = λ2,k = λk, k > 1 (3.4.2.1)

∂νϕ1,k(x) = ∂νϕ2,k(x) = ψk(x), x ∈ γ, k > 1 (3.4.2.2)

be fulfilled. Then q1 = q2.

This result will be proved by applying the so called boundary control method that we adapt to the particular
setting of a convex domain. More precisely, we consider the IBVP ∂2

t u−∆u+ q(x)u = 0, in Q,
u(0, ·) = 0, ∂tu(0, ·) = 0, in Ω,
u = f, on Σ.

(3.4.2.3)

Then, we prove Theorem 3.4.1 by applying the connection between the boundary spectral data BSD(q, γ)
and the solution of (3.4.2.3) when supp(f) ⊂ (0, T ]×γ. According to [LaLiTr, Theorem 2.1], for f ∈ H1(Σ),
the problem (3.4.2.3) admits a unique solution u ∈ C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)) which satisfies ∂νu ∈
L2(Σ). Thus, we can define the partial hyperbolic DN map given by

Λq : C∞0 ((0, T ]× γ) 3 f 7→ ∂νu|(0,T )×γ .

Repeating the argumentation of Theorem 3.4.1, we can prove that Λq determines q. This result can be stated
in the following way.

Theorem 3.4.2 (Theorem 1.2, [KiMoOk]) Assume that Ω is convex, T > 2Diam(Ω) and let qj ∈ L∞(Ω),
j = 1, 2. Then the condition Λq1 = Λq2 implies that q1 = q2.

Let us mention that the boundary control method considered in the [KiMoOk] was initially introduced
by [Beli87] and extended by [BeliKu92] to the recovery of a Riemannian manifold up to an isometry from the
boundary spectral data BSD(q, ∂Ω). The result of [BeliKu92] has been extended by [KaKu98] who proved
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that this result is still true if one consider the data BSD(q, ∂Ω) with the exception of finitely many eigenpairs
and [KaKuLa01] proved that the uniqueness remains true if one consider the partial boundary spectral data
BSD(q, γ) with γ an arbitrary portion of the boundary. We mention also [KuOkPa, LaOk10, LaOk141] who
considered hyperbolic inverse problems based on the boundary control method and related to the present
Borg-Levinson inverse spectral problem.

Let us observe that results similar to Theorem 3.4.1 and 3.4.2 have been proved by [KaKuLa01], and an
improvement of Theorem 3.4.2 has been established by [LaOk10] in the specific case of smooth coefficients
on a smooth Riemannian manifolds. More precisely, in the context of Theorem 3.4.1 and 3.4.2, the result
of [KaKuLa01, LaOk10] are stated with Ω a C∞ domain and coefficient qj ∈ C∞(Ω), j = 1, 2. To our best
knowledge [KiMoOk] is the first one dealing with the recovery of a general bounded potential from boundary
spectral data or boundary measurements on an arbitrary portion of the boundary.

Let us remark that all the results of [KiMoOk] can be extended to the recovery of more general coefficients
on a general bounded and connected domain Ω by changing some intermediate tools and transforming the
last part of the proof into an iterative process described in [KuOkPa, Subsection 4.2]. The assumption of
convexity allows to simplify in various way the exposition in order to emphasize the main idea of the boundary
control method. Indeed, for convex domain we can consider Euclidean distance and replace general geodesic
by lines. Moreover, in contrast to [KaKuLa01, LaOk10] who considered this problem in a more general
setting, our result can be proved only in two steps. Note also that in [KiMoOk] we focus our attention on
the analytic rather than geometric aspects of the boundary control method. For these reasons [KiMoOk]
can also be considered as an introduction to the boundary control method.

3.4.3 Description of the proof
Let us first recall the definition of domain of influence at a time t = T0.

Definition 3.4.1 For every T0 > 0 and every open subset S of Γ we define the subset Ω(S, T0) of Ω given
by

Ω(S, T0) := {x ∈ Ω : dist(x, S) 6 T0}.
The set Ω(S, T0) is called the domain of influence of S at time t = T0.

The proof of Theorem 3.4.1 is divided into two steps. The local step and the global step. In the local
step we prove the following local recovery by mean of the boundary spectral data.

Theorem 3.4.3 (Theorem 3.1, [KiMoOk]) Let qj ∈ L∞(Ω), j = 1, 2, and let the conditions (3.4.2.1)-
(3.4.2.2) be fulfilled. Then there exists τ ∈ (0,+∞) and an open set γ′ of ∂Ω such that γ′ ⊂ γ and

q1(x) = q2(x), x ∈ Ω(γ′, τ), (3.4.3.1)

In the global step we apply (3.4.3.1), in order to replace the boundary data into internal data corresponding
to some source to solution map. Namely, we fix B a small ball contained into Ω(γ′, τ) and we consider the
following map

Lj,BF := vj,F |[0,2T ]×B , F ∈ C∞0 ((τ, 2T )×B)

with vj,F solving  ∂2
t vj −∆vj + qj(x)vj = F, in (0, 2T )× Ω,
vj(0, ·) = 0, ∂tvj(0, ·) = 0, in Ω,
vj = 0, on (0, 2T )× ∂Ω.

Then applying (3.4.3.1), we prove that L1,B = L2,B and we complete the proof of Theorem 3.4.1 by mean
of this internal measurements.

The main points in the proof of the local recovery stated in Theorem 3.4.3 are both the connection
between boundary spectral data and solutions of (3.4.2.3), and a result of density of solutions restricted to
a domain of influence at a fixed time often called approximate controllability. The link between boundary
spectral data and solutions of (3.4.2.3), is given by the following.
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Lemma 3.4.1 (Lemma 3.1, [KiMoOk]) Assume that conditions (3.4.2.1)-(3.4.2.2) are fulfilled. Let γ′ ⊂ γ

be an open set of ∂Ω and let f ∈ H1(Σ) satisfy f|t=0 = 0, supp(f) ⊂ [0, T ] × γ′ and, for j = 1, 2, let ufj be
the solution of (3.4.2.3) with q = qj. Then, we have〈

uf1 (t), ϕ1,k

〉
L2(Ω)

=
〈
uf2 (t), ϕ2,k

〉
L2(Ω)

= vfk (t) :=

∫ t

0

∫
γ′
f(t, x)sk(t− s)ψk(x)dσ(x), (3.4.3.2)

with sk(t) which is given by

sk(t) :=


sin(
√
λkt)√
λk

if λk > 0,

t if λk = 0,
sin(
√
|λk|t)√
|λk|

if λk < 0

The result of density that we need is given by

Theorem 3.4.4 (Corollary 2.1, [KiMoOk]) Let S ⊂ γ be an open set ∂Ω, T ′ ∈ (0, T ] and let qj ∈ L∞(Ω),
j = 1, 2. For j = 1, 2, let ufj be the solution of (3.4.2.3) with q = qj. Then, the set

{ufj (T ′, ·)|Ω(S,T ′) : f ∈ C∞0 ((0, T ′]× S)} (3.4.3.3)

is dense in L2(Ω(S, T ′)).

Theorem 3.4.4 follows from a global Holmgren-John unique continuation, derived from results of unique
continuation such as [RoZu, Ta95], and a duality argument.

Combining Lemma 3.4.1 and Theorem 3.4.4 with a suitable application of the Lebesgue differentiation
measure, we recover the restriction of products of solutions (3.4.2.3), for all input f supported on (0, T ]× γ,
to a neighborhood of γ′. Then, with suitable choice of the input f in (3.4.2.3) to one of the two solutions
appearing in the product, we derive the unique recovery of the restriction of products of solutions (3.4.2.3),
for all input f supported on (0, T ]× γ, to a neighborhood of γ′. Finally, we complete the proof of Theorem
3.4.3 by applying again the density result stated in Theorem 3.4.4.

The global step requires arguments similar to the local step but for internal measurements.
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Chapter 4

Inverse and direct problems for
fractional diffusion equations

4.1 Introduction
This chapter is devoted to our work stated in [KiOkSoYa, KiYa, KiSoYa] related to fractional diffusion
equations with time fractional derivatives. These equations take the form

ρ(x)∂αt u−
n∑

i,j=1

∂xi(ai,j(x)∂xju) + q(x)u = F (t, x) (4.1.0.1)

where α ∈ (0, 1) ∪ (1, 2) is not an integer and the fractional derivative ∂αt considered in the Caputo sense is
defined by

∂αt u(t, x) :=
1

Γ(m+ 1− α)

∫ t

0

(t− s)m−α∂m+1
s u(s, x)ds, (4.1.0.2)

with m the integer part of α. Here Γ is the usual Gamma function expressed as

Γ(z) :=

∫ +∞

0

e−ttz−1dt, z ∈ {ξ ∈ C : Reξ > 0}.

In [KiOkSoYa, KiYa, KiSoYa] we have studied both forward and inverse problems for these equations.
Recall that fractional diffusion equations with time fractional derivatives of the form (4.1.0.1) describe

several physical phenomena related to anomalous diffusion such as diffusion of substances in heterogeneous
media, diffusion of fluid flow in inhomogeneous anisotropic porous media, turbulent plasma, diffusion of
carriers in amorphous photoconductors, diffusion in a turbulent flow, a percolation model in porous media,
fractal media, various biological phenomena and finance problems (see [CaSaLuGa]). In particular, it is
known (e.g., [AdGe]) that the classical diffusion-advection equation does not often interpret field data of
diffusion of substances in the soil, and as one model equation, the fractional diffusion equation is used.
The diffusion equation with time fractional derivative is a corresponding macroscopic model equation to the
continuous-time random walk (CTRW in short) and is derived from the CTRW (e.g., [MetKl, RoAl]). Note
also that fractional diffusion equations with fractional variable power α, instead of a constant, is suitable
for some complex media where the presence of heterogeneous regions causes variations of the permeability
in different spatial positions.

The main purpose of [KiOkSoYa, KiYa, KiSoYa] was the study of these equations from different aspects.
In [KiOkSoYa], we have studied the inverse problem of determining different coefficients appearing in the

83
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equation (4.1.0.1) from measurements of the solutions on the boundary of the domain. In [KiYa] we have
been interested by the forward problem for (4.1.0.1) when α ∈ (1, 2). This corresponds to the super-diffusive
case where the equation is called fractional wave equation. For these equations, we have introduced a new
definition of weak solutions, by mean of their Laplace transform, that extended other known works to more
general conditions. In addition, in [KiYa] we have established some LpLq estimates, also called Strichartz
estimates, that we have used for proving existence and uniqueness of solutions for such equations with a
nonlinear term. In [KiSoYa], we have considered both the forward and inverse problem for equations of the
form (4.1.0.1) in the specific case where the fractional power α is a function of x. After proving existence
of solutions, with a definition of weak solutions that extends the one of [KiYa], with suitable properties of
analiticity, we have considered the inverse problem of recovering the power α as well as some coefficients
appearing in the equation.

4.2 An inverse problem for fractional diffusion equations

4.2.1 The inverse problem
This section is devoted to [KiOkSoYa] which is a joint work with Lauri Oksanen, Eric Soccorsi and Masahiro
Yamamoto. Let (M, g) be a compact connected Riemannian manifold of dimension n > 2, with boundary
∂M . For a positive function µ we consider the weighted Laplace-Beltrami operator

∆g,µ := µ−1divg µ∇g,

where divg (resp., ∇g) denotes the divergence (resp., gradient) operator on (M, g), and µ±1 stands for the
multiplier by the function µ±1. If µ is identically 1 inM then ∆g,µ coincides with the usual Laplace-Beltrami
operator on (M, g). In local coordinates, we have

∆g,µu =

n∑
i,j=1

µ−1|g|−1/2∂xi(µ|g|1/2gij∂xju), u ∈ C∞(M),

where g−1 := (gij)16i,j6n and |g| := det g. For α ∈ (0, 2) \ {1} we consider the IBVP ∂αt u−∆g,µu+ qu = 0, in (0, T )×M,
u = f, on (0, T )× ∂M,

∂kt u(0, ·) = 0, in M, k = 0, ...,m,
(4.2.1.1)

with non-homogeneous Dirichlet data f . Here m := [α] denotes the integer part of α and ∂αt is the Caputo
fractional derivative of order α with respect to t, defined by (4.1.0.2).

The system (4.2.1.1) models anomalous diffusion phenomena. In the sub-diffusive case α ∈ (0, 1), the
first line in (4.2.1.1) is usually named fractional diffusion equation, while in the super-diffusive case α ∈ (1, 2),
it is referred as fractional wave equation.

Given two non empty open subsets Sin and Sout of ∂M , T0 ∈ (0, T ) and α ∈ (0, 2) \ {1}, we introduce
the function space

Hin,α,T0
:= {f ∈ C [α]+1([0, T ], H

3
2 (∂M)); supp(f) ⊂ (0, T0)× Sin},

where we recall that [α] stands for the integer part of α. As established in [KiOkSoYa, Section 2], problem
(4.2.1.1) associated with f ∈ Hin,α,T0 is well posed and the partial DN map

ΛM,g,µ,q : Hin,α,T0 3 f 7→ ∂νu(T0, ·)|Sout , (4.2.1.2)

where u denotes the solution to (4.2.1.1) and ν is the outward unit normal vector with respect to g field
along the boundary ∂M , is linear bounded from Hin,α,T0 into L2(Sout).

In [KiOkSoYa], we examine the problem whether knowledge of ΛM,g,µ,q determines the Riemannian
manifold (M, g), and the functions µ and q, uniquely.
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4.2.2 Physical motivations
Recall that fractional diffusion equations with time fractional derivatives of the form (4.2.1.1) describe several
physical phenomena introduced in Section 4.1. In particular, in the case where we consider fractional diffusion
equations describing the diffusion of contaminants in a soil, we cannot a priori know governing parameters
in (4.2.1.1) such as reaction rate of pollutants. Thus, for prediction of contamination, we need to discuss
our inverse problem of determining these parameters from measurements of the flux on Sout at a fixed time
t = T0 associated with Dirichlet inputs at Sin.

4.2.3 State of the art
Fractional derivative, ordinary and partial, differential equations have attracted attention over the two last
decades. See [MiRo, SaKiMa, Pod] regarding fractional calculus, and [Ag, GoMa], and references therein, for
studies of partial differential equations with time fractional derivatives. More specifically, the well-posedness
of problem (4.2.1.1) with time-independent coefficients is examined in [BekYa, SaYa].

There is a wide mathematical literature for inverse coefficients problems associated with the system
(4.2.1.1) when α = 1 or 2. Without being exhaustive, we refer to [BuKl, CaKa01, Ch09, ChKi13, ChYa06,
KaKuLa04] for the parabolic case α = 1 and to [Beli87, BeliKu92, BeChYa, BelDo11, BeJeYa1, LaOk10,
LaOk141, LaOk142] for the hyperbolic case α = 2. In contrast to parabolic or hyperbolic inverse coefficient
problems, there is only a few mathematical papers dealing with inverse problems associated with (4.2.1.1)
when α ∈ (0, 1) ∪ (1, 2). In the one-dimensional case, [ChNaYaYa] proved unique determination of the
fractional order α and a time-independent coefficient, by Dirichlet boundary measurements. For n > 2, the
fractional order α is recovered in [HaNaWaYa] from pointwise measurements of the solution over the entire
time span. In [SaYa], the authors prove stable determination of the time-dependent prefactor of the source
term. In the particular case where n = 1 and α = 1/2, using a specifically designed Carleman estimate
for (4.2.1.1), [ChXaYa, YaZh] derive a stability estimate of a zero order time-independent coefficient, with
respect to partial internal observation of the solution. In [LiImYa], time-independent coefficients are uniquely
identified by the DN map obtained by probing the system with inhomogeneous Dirichlet boundary conditions
of the form λ(t)g(x), where λ is a fixed real-analytic positive function of the time variable. Recently, [FuKi]
proved unique determination of a time-dependent parameter appearing in the source term or in a zero order
coefficient, from pointwise measurements of the solution over the whole time interval.

4.2.4 Unique recovery of manifolds and coefficients
The paper [KiOkSoYa] contains two main results. Both of them are uniqueness results for inverse coefficients
problems associated with (4.2.1.1), but related to two different settings. In the first one, (M, g) is a known
compact subset of Rd, while in the second one, (M, g) is an unknown Riemannian manifold to be determined.
The first setting is not contained in the second one, however, in the second case, (M, g) and all the other
unknown coefficients are assumed to be smooth, while in the first case the regularity assumptions are relaxed
considerably.

We begin by considering the case of a connected bounded domain Ω in Rn, n > 2, with C1,1 boundary
∂Ω. Let ρ ∈ C(Ω), V ∈ L∞(Ω) and a ∈ C1(Ω) fulfill the condition

ρ(x) > c, a(x) > c, V (x) > 0, x ∈ Ω, (4.2.4.1)

for some positive constant c. For M := Ω, put

g := ρa−1In, µ := ρ1−n/2|a|1/2, and q := ρ−1V, (4.2.4.2)

in the first line of (4.2.1.1), where In denotes the identity matrix in Rn2

. Since (M, g) is a Riemannian
manifold with boundary such that µ|g|1/2 = ρ, gij = 0 if i 6= j, and gii = ρ−1a for i, j ∈ {1, . . . , n}, we have

∆g,µu = ρ−1div(a∇u), u ∈ C∞(Ω).
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Therefore, (4.2.1.1) can be equivalently rewritten as ρ∂αt u− div(a∇u) + V u = 0, in Q := (0, T )× Ω,
u = f, on Σ := (0, T )× ∂Ω,

∂kt u(0, ·) = 0, in Ω, k = 0, . . . ,m.
(4.2.4.3)

In [KiOkSoYa, Proposition 3.1], we prove that for any arbitrary α ∈ (0, 1)∪(1, 2) and T0 ∈ (0, T ), the partial
DN map

Λρ,a,V : Hin,α,T0
3 f 7→ a∂νu(T0, ·)|Sout , (4.2.4.4)

where u is the solution to (4.2.4.3), is bounded from Hin,α,T0
into L2(Sout). Our first result claims that

knowledge of Λρ,a,V uniquely determines two out of the three coefficients ρ, a, and V , which are referred as,
respectively, the density, the conductivity, and the (electric) potential.

Theorem 4.2.1 (Theorem 1.1, [KiOkSoYa]) Assume that Sin ∩ Sout 6= ∅ and that Sin ∪ Sout = ∂Ω. For
j = 1, 2, let ρj ∈ L∞(Ω), aj ∈ W 2,∞(Ω), and Vj ∈ L∞(Ω) satisfy (4.2.4.1) with ρ = ρj, a = aj, V = Vj.
Moreover, let either of the three following conditions be fulfilled:

(i) ρ1 = ρ2 and
∇a1(x) = ∇a2(x), x ∈ ∂Ω. (4.2.4.5)

(ii) a1 = a2 and
∃C > 0, |ρ1(x)− ρ2(x)| 6 Cdist(x, ∂Ω)2, x ∈ Ω. (4.2.4.6)

(iii) V1 = V2 and (4.2.4.5)-(4.2.4.6) hold simultaneously true.

Then, Λρ1,a1,V1
= Λρ2,a2,V2

yields (ρ1, a1, V1) = (ρ2, a2, V2).

The second result describes the identifiability properties of the Riemannian manifold (M, g) and the
functions µ ∈ C∞(M) and q ∈ C∞(M), appearing in the first line of the IBVP (4.2.1.1), that can be
inferred from ΛM,g,µ,q. It is well known that the DN map is invariant under isometries fixing the boundary.
Moreover, gauge equivalent coefficients (µ, q) cannot be distinguished by the DN map either. Here and
henceforth, (µ1, q1) and (µ2, q2) are said gauge equivalent if there exists a strictly positive valued function
κ ∈ C∞(M) satisfying

κ(x) = 1 and ∂νκ(x) = 0, x ∈ ∂M (4.2.4.7)

such that

µ2 = κ−2µ1, q2 = q1 − κ∆g,µ1κ
−1. (4.2.4.8)

The second result of [KiOkSoYa] can be stated as follows.

Theorem 4.2.2 (Theorem 1.2, [KiOkSoYa]) For j = 1, 2, let (Mj , gj) be two compact and smooth connected
Riemannian manifolds of dimension n > 2 with the same boundary, and let µj ∈ C∞(Mj) and qj ∈ C∞(Mk)
satisfy µj(x) > 0 and qj(x) ≥ 0 for all x ∈ Mj. Let Sin, Sout ⊂ ∂M1 be relatively open and suppose that
Sin ∩ Sout 6= ∅. Suppose, moreover, that g1 = g2, µ1 = µ2 = 1 and ∂νµ1 = ∂νµ2 = 0 on ∂M1. Then,
ΛM1,g1,µ1,q1 = ΛM2,g2,µ2,q2 yields that (M1, g1) and (M2, g2) are isometric and that (µ1, q1) and (µ2, q2) are
gauge equivalent.
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4.2.5 Obstruction to uniqueness
Notice that the absence of global uniqueness result manifested in Theorems 4.2.1 (in the sense that only
two among the three coefficients ρ, a, and V , are recovered) and 4.2.2 (where the metric g is determined
up to an isometry and (µ, q) are identified modulo gauge transformation) arises from one or several natural
obstructions to identification in the system under investigation, each of them being induced by an invariance
property satisfied by (4.2.1.1).

The first obstruction, concerns the recovery of the coefficients (ρ, a, q). Namely, fix (ρ1, a1, q1) be defined
in a similar way than in Theorems 4.2.1 and, for any positive function κ ∈ C2(Ω) \ {1} satisfying (4.2.4.7),
we assume that (ρ2, a2, q2) are given by

ρ2 = κ2ρ1, a2 = κ2a1, V2 = V1κ
2 − κdiv(a1∇κ).

Then, we have

(ρ1∂
α
t − div(a1∇·) + V1)κu = κρ1∂

α
t u− κ−1div(a1κ

2∇u) + (V1κ− div(a1∇κ))u

= κ−1 (ρ2∂
α
t u− div(a2∇u) + V2u)

.

Thus, for uj , j = 1, 2, the solution of (4.2.4.3) with ρ = ρj , a = aj and V = Vj , we have u1 = κu2. This, in
particular means that Λρ1,a1,V1 = Λρ2,a2,V2 but (ρ1, a1, V1) 6= (ρ2, a2, V2). Therefore, the DN map is invariant
under the group of gauge transformations

(ρ, a, V ) 7→ (κ2ρ, κ2a, V κ2 − κdiv(a∇κ))

parametrized by positive functions κ ∈ C∞(Ω) satisfying (4.2.4.7) for M = Ω.
A similar obstruction can be found in Theorem 4.2.2. This obstruction is due to the invariance of

(4.2.1.1) under the group of gauge transformations given by (4.2.4.8). Indeed, given a strictly positive
function κ ∈ C∞(M) satisfying (4.2.4.7), we observe for any (µ1, q1) and (µ2, q2) obeying (4.2.4.8), that

∆g,µ2(κw) = κ∆g,µ1w + δκw, w ∈ C∞(M),

where δ := κ−1∆g,µ1
κ − 2κ−2(∇gκ,∇gκ)g, and (·, ·)g denotes the inner product on (M, g). In particular,

taking w = κ−1 we get the simpler expression δ = −κ∆g,µ1
κ−1. Finally, taking w = u, where u is the

solution to (4.2.1.1) associated with µ = µ1 and q = q1, we find that

(∂αt −∆g,µ2 + q2)(κu) = κ(∂αt −∆g,µ1 + q1)u = 0.

Since our assumptions (4.2.4.7) on κ imply that ∂ν(κu) = ∂νu and κu = u on (0, T ) × ∂M , we find that
ΛM,g,µ1,q1 = ΛM,g,µ2,q2 . This proves that the DN map is invariant under the group of gauge transformations

(µ, q) 7→ (κ−2µ, q − κ∆g,µκ
−1)

parametrized by strictly positive functions κ ∈ C∞(M) satisfying (4.2.4.7).
The last obstruction arises from the fact that (4.2.1.1) is invariant with respect to changes of coordinates.

That is, if Φ : M → M is a diffeomorphism fixing the boundary ∂M then ΛM,g,µ,q = ΛM,Φ∗g,µ◦Φ,q◦Φ where
Φ∗g is the pullback of g by Φ.

4.2.6 Comments about our results
To our best knowledge, the results of [KiOkSoYa] are the most precise so far, about the recovery of coefficients
appearing in a time fractional diffusion equation from boundary measurements. We prove recovery of a wide
class of coefficients from partial boundary measurements that consist in an input on the part Sin of the
boundary and observation of the flux at the part Sout for one fixed time t = T0 ∈ (0, T ). Our results extend
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the ones contained in the previous works [ChNaYaYa, ChXaYa, LiImYa, YaZh] related to this problem.
Another benefit of our approach is its generality, which makes it possible to treat the case of a smooth
Riemannian manifold, and the one of a bounded domain with weak regularity assumptions on the coefficients.

Notice that (4.2.4.3) associated with α = 1 is the usual heat equation, in which case Theorem 4.2.1
is contained in [CaKa01, CaKa04]. We point out that the strategy used in [CaKa01, CaKa04] for the
derivation of Theorem 4.2.1 with α = 1, cannot be adapted to the framework of time fractional derivative
diffusion equations of order α ∈ (0, 1) ∪ (1, 2). This is due to the facts that a solution to a time fractional
derivative equation is not described by a semi-group, and that there is only limited smoothing property,
and no integration by parts formula or Leibniz rule, with respect to the time variable, in this context. As
a consequence, the analysis developed in this text is quite different from the one carried out by [CaKa01,
CaKa04].

Notice from Theorem 4.2.2 that the statement of Theorem 4.2.1 still holds true for smooth coefficients
in a smooth domain, under the weaker assumption Sin ∩ Sout 6= ∅. Nevertheless, in contrast to Theorem
4.2.2 where we focus on the recovery of the Riemanniann manifold and the metric, the main interest of
Theorem 4.2.1 lies in the weak regularity assumptions imposed on the unknown coefficients of the inverse
problem under consideration. In the same spirit, we point out with Theorem 4.2.4 below, that the result of
Theorem 4.2.2 remains valid when Sin ∩ Sout = ∅, in the special case where µ = 1 and q = 0, and assuming
a Hassell-Tao type inequality [HasTao].

4.2.7 Idea of the proof and extension

The key idea to our proof is the connection between the DN map associated with (4.2.1.1) and the boundary
spectral data of the corresponding elliptic Schrödinger operator. This ingredient has already been used by
several authors in the context of hyperbolic (see e.g. [KaKuLa01, KaKuLa04, LaOk10, LaOk141]), parabolic
(see e.g. [CaKa04, KaKuLa04]), and dynamical Schrödinger (see e.g. [KaKuLa04]) equations. Nevertheless,
to our best knowledge, there is no such approach for time fractional diffusion equations, available in the
mathematical literature.

Let us start by considering Theorem 4.2.1. Given a positive constant c, we assume that ρ ∈ L∞(Ω)
satisfies ρ(x) > c > 0 for a.e. x ∈ Ω, so the scalar product

〈u, v〉ρ :=

∫
Ω

ρ(x)u(x)v(x)dx, u, v ∈ L2(Ω),

is equivalent to the usual one in L2(Ω). We denote by L2
ρ(Ω) the Hilbertian space L2(Ω) endowed with 〈·, ·〉ρ.

Next, for a nonnegative V ∈ L∞(Ω), and for a ∈ C1(Ω) fulfilling a(x) > c > 0 for every x ∈ Ω, we
introduce the quadratic form

h[u] :=

∫
Ω

(
a(x)|∇u(x)|2 + V (x)|u(x)|2

)
dx, u ∈ Dom(h) := H1

0 (Ω),

and consider the operator H generated by h in L2
ρ(Ω). Since ∂Ω is C1,1, H is self-adjoint in L2

ρ(Ω) and acts
on its domain as

Hu := ρ−1 (div(a∇u) + V u) , u ∈ Dom(H) := H1
0 (Ω) ∩H2(Ω), (4.2.7.1)

according to [Gr, Theorem 2.2.2.3].
By the compactness of the embedding H1

0 (Ω) ↪→ L2
ρ(Ω), the spectrum σ(H) of the operator H is purely

discrete. Let {λk; k ∈ N∗} be the non-decreasing sequence of the eigenvalues of H. Furthermore, we
introduce a family {ϕk; k ∈ N∗} of eigenfunctions of the operator H, which satisfy

Hϕk = λkϕk, k ∈ N∗, (4.2.7.2)
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and form an orthonormal basis in L2
ρ(Ω). Notice that each ϕk is a solution to the following Dirichlet problem:
−div(a∇ϕk) + V ϕk = λkρϕk, in Ω,

ϕk = 0, on ∂Ω,∫
Ω
ρ(x) |ϕk(x)|2 dx = 1,

(4.2.7.3)

Put ψk := (a∂νϕk)|∂Ω for every k ∈ N∗. Following [CaKa01, KaKuLa01], we define the boundary spectral
data associated with (ρ, a, V ), as

BSD(ρ, a, V ) := {(λk, ψk); k > 1}.

We recall from [CaKa04, Corollaries 1.5, 1.6 and 1.7] the following Borg-Levinson type theorem.

Proposition 4.2.1 Under the conditions of Theorem 4.2.1, assume that either of the three assumptions (i),
(ii) or (iii) is verified. Then BSD(ρ1, a1, q1) = BSD(ρ2, a2, q2) entails that (ρ1, a1, q1) = (ρ2, a2, q2).

In view of the inverse spectral result stated in Proposition 4.2.1, we may derive the claim of Theorem
4.2.1 upon showing that two sets of admissible coefficients (ρj , aj , Vj), j = 1, 2, have same boundary spectral
data, provided their boundary operators Λρj ,aj ,Vj coincide. Otherwise stated, the proof of Theorem 4.2.1 is
a consequence of Proposition 4.2.1 combined with the coming result:

Theorem 4.2.3 (Theorem 2.2, [KiOkSoYa]) For j = 1, 2, let Vj ∈ L∞(Ω), ρj ∈ L∞(Ω) and aj ∈ C1(Ω)
satisfy (2.3.4.1) with ρ = ρj, a = aj, V = Vj. Then Λρ1,a1,V1

= Λρ2,a2,V2
implies BSD(ρ1, a1, V1) =

BSD(ρ2, a2, V2), up to an appropriate choice of the eigenfunctions of the operator H1 defined in (4.2.7.1) and
associated with (ρ, a, V ) = (ρ1, a1, V1).

Therefore, we are left with the task of proving Theorem 4.2.3. To do so, we establish a representation
of solutions of (4.2.4.3) involving the Mittag-Leffler functions, given by

Er,s(z) =

+∞∑
k=0

zk

Γ(rk + s)
, r, s > 0, z ∈ C,

and the boundary spectral data of the operator (4.2.7.1). Combining this representation with different
properties of solutions of (4.2.4.3), we derive (4.2.3).

For more general Riemannian manifold, Theorem 4.2.3 can be replaced by similar results related to the
boundary control method (e.g. [KaKuLa01]) where the condion Sin ∪ Sout = ∂M is not required. The
main task of Theorem 4.2.2 consisting of proving the recovery of the boundary spectral data restricted to an
arbitrary portion of the boundary in the specific case Sin ∩ Sout = ∅, Sin ∩ Sout 6= ∅. This can be done by
using some intermediate data and by applying some results of [LaOk10].

In the specific case when µ = 1, q = 0, we can even extend our result to the recovery of the manifold
(M, g) up to an isometry from the DN map ΛM,g,1,0 when Sin∩Sout = ∅. In order to introduce this result, we
fix (Mk, gk), k = 1, 2, two compact and smooth connected Riemannian manifolds of dimension n > 2 with the
same boundary. We associate with (Mk, gk), k = 1, 2, the sequence of increasing eigenvalues {λk,`; ` ∈ N∗}.
For each ` ∈ N∗, we denote by mk,` ∈ N∗ the algebraic multiplicity of the eigenvalue λk,` and we introduce
a family {ϕk,`,p; p = 1, . . . ,mk,`} of eigenfunctions of Hk, which satisfy

Hkϕk,`,p = λk,`ϕk,`,p,

and form an orthonormal basis in L2(Mk) of the algebraic eigenspace of Hk associated with λk,` (i.e. the
linear sub-space of L2(Mk) spanned by {ϕk,`,p, p = 1, . . . ,mj,`}). Then, we introduce the following spectral
inequality

λk,` ≤ C‖∂νϕk,`,p‖2L2(Sin), (4.2.7.4)
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where the constant C > 0 is independent of ` and p. We recall that Hassell and Tao [HasTao] showed that
all non-trapping Riemannian manifolds (Mk, gk) satisfy (4.2.7.4) when Sin is replaced by ∂Mk. Moreover,
(4.2.7.4) follows from (and is strictly weaker than) the geometric control condition by Bardos, Lebeau and
Rauch [BaLeRa92] (see [LaOk141]). Using the spectral condition (4.2.7.4), we prove the following extension
of our result to measurements on disjoint portions.

Theorem 4.2.4 (Theorem 5.3, [KiOkSoYa]) Let (Mk, gk), k = 1, 2, be two compact and smooth connected
Riemannian manifolds of dimension n > 2 with the same boundary. Let Sin, Sout ⊂ ∂M1 be relatively
open, and suppose that g1 = g2 on ∂M1. Suppose, moreover, that both (Mk, gk), k = 1, 2, satisfy the spectral
inequality (4.2.7.4). Then, the condition ΛM1,g1,1,0 = ΛM2,g2,1,0 implies that (Mk, gk), k = 1, 2, are isometric.

We prove this extension by considering first the recovery of a partial hyperbolic DN map associated with
the operators Hk, k = 1, 2. Then, we apply the result of [LaOk141]. We do not know if Theorem 4.2.4 holds
for operators with varying µ and q, see the discussion in [LaOk141, pp. 7-8].

4.3 Well posedness for semilinear fractional wave equations

4.3.1 Our objective

In this section we will introduce [KiYa] which is a joint work with Masahiro Yamamoto. Let Ω be a C2-
bounded domain of Rn with n = 2, 3. In what follows, we define A by the differential operator

Au(x) = −
n∑

i,j=1

∂xi
(
aij(x)∂xju

)
+ V (x)u(x), x ∈ Ω,

where aij = aji ∈ C1(Ω) and V ∈ Lκ(Ω), for some κ > n, satisfy

n∑
i,j=1

aij(x)ξiξj > c|ξ|2, x ∈ Ω, ξ = (ξ1, . . . , ξn) ∈ Rn

and V > 0 a.e. in Ω.
We consider the following IBVP for the fractional semilinear wave equation

∂αt u+Au = fb(u), (t, x) ∈ Q,
u(t, x) = 0, (t, x) ∈ Σ,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Ω,

(4.3.1.1)

where 1 < α < 2, ∂αt denotes the Caputo fractional derivative with respect to t,

∂αt u(t, x) :=
1

Γ(2− α)

∫ t

0

(t− s)1−α∂2
su(s, x)ds, (t, x) ∈ Q,

b > 1 and fb ∈ C1(R) satisfies fb(0) = 0 and

|f ′b(u)| 6 C |u|b−1
, u ∈ R.

The main purpose of [KiYa] is to give a suitable definition of solutions of (4.3.1.1) and to study the well-
posedeness of this problem.
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4.3.2 Physical motivations and known results
Recall that equation (4.3.1.1) is associated with anomalous diffusion phenomenon. More precisely, for 1 <
α < 2, the linear part of equation (4.3.1.1) is frequently used for super-diffusive model of anomalous diffusion
such as diffusion in heterogeneous media. In particular, in the linear case (i.e., fb ≡ 0), some physical
background is found in Sokolov, Klafter and Blumen [SoKlBl]. As for analytical results in the case of
1 < α < 2, we refer to Mainardi [Ma] as one early work, and also to §6.1 in Kilbas, Srivastava and
Trujillo [KilSrTr], §10.10 in Podlubny [Pod]. For 0 < α < 1, there are works in view of the theory of
partial differential equations (e.g., Beckers and Yamamoto [BekYa], Sakamoto and Yamamoto [SaYa]). Such
researches are rapidly developing and here we do not intend to give any comprehensive lists of references.

In contrast to the wave equation, even linear fractional wave equations are not well studied. In fact, few
authors treated the well-posedness of the linear IBVP associated with (4.3.1.1) and to our best knowledge
even the definition of weak solutions does not allow source term with low regularity. For a general study of
the linear fractional wave equation and the regularity of solutions we refer to [SaYa]. When we consider e.g.,
reaction effects in a super-diffusive model, we have to introduce a semilinear term.

To the best knowledge of the authors, there are no publications on fractional semilinear wave equations
by the Strichartz estimate which is a common technique for semilinear wave and Schrödinger equations. For
the wave equation (α = 2), the well-posedness of problem (4.3.1.1) has been studied by various authors.
In the case Ω = Rk with k > 3 and A = −∆, the global well-posedness has been proved both in the
subcritical case 1 < b < 1+ 4

k−2 by Ginibre and Velo [GiVe85], and in the critical case b = 1+ 4
k−2 by Shatah

and Struwe [ShSt]. For Ω = R2, Nakamura and Ozawa [NaOz991, Naoz992] proved global well-posedness
with exponentially growing nonlinearity. Without being exhaustive, for other results related to regularity of
solutions or existence of solutions for more general semilinear hyperbolic equations we refer to [Kap]. In the
case of Ω a smooth bounded domain of R3, [BuLePl] proved the global well-posedness in the critical case
b = 5. In addition, following the strategy set by [BuLePl], [IbJr] treated the case of Ω a smooth bounded
domain of R2 with exponentially growing nonlinearity.

4.3.3 Well-posedness and Strichartz estimates
In order to give a suitable definition of solutions of (4.3.1.1) we first need to consider the IBVP associated
with the linear fractional wave equation

∂αt u+Au = f(t, x), (t, x) ∈ Q,
u(t, x) = 0, (t, x) ∈ Σ,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Ω.

(4.3.3.1)

The paper [KiYa] contains three main results. Our two first main results are related to properties of solutions
of (4.3.3.1), while our last result concerns the nonlinear problem (4.3.1.1).

Let us first remark that in contrast to usual derivatives, there is no exact integration by parts formula
for fractional derivatives. Therefore, it is difficult to introduce the definition of weak solutions of (4.3.3.1)
in the sense of distributions. To overcome this gap we give the following definition of weak solutions of
(4.3.3.1). Let 1(0,T )(t) be the characteristic function of (0, T ).

Definition 4.3.1 Let u0 ∈ L2(Ω), u1 ∈ H−1(Ω) and f ∈ L1(0, T ;L2(Ω)). We say that problem (4.3.3.1)
admits a weak solution u if there exists v ∈ L∞loc(R+;L2(Ω)) such that:
1) v|Q = u and inf{ε > 0 : e−εtv ∈ L1(R+;L2(Ω))} = 0,
2) for all p > 0 the Laplace transform V (p) =

∫ +∞
0

e−ptv(t, .)dt with respect to t of v solves{
(A+ pα)V (p) = F (p) + pα−1u0 + pα−2u1, in Ω,

V (p) = 0, on ∂Ω,
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where F (p) = L[f(t, .)1(0,T )(t)](p) =
∫ T

0
e−ptf(t, .)dt.

Remark 4.3.1 Recall (e.g. formula (2.140) page 80 of [Pod]) that for h ∈ C2(R+) satisfying inf{ε > 0 :
e−εth(k) ∈ L1(R+), k = 0, 1, 2} = ε0 we have

L[∂αh](p) = pαH(p)− pα−1h(0)− pα−2h′(0), p > ε0,

where H(p) = L[h](p) =
∫ +∞

0
e−pth(t)dt. Therefore, for sufficiently smooth data u0, u1, f (e.g. [SaYa]) one

can check that problem (4.3.3.1) admits a unique strong solution which is also a weak solution of (4.3.3.1).

Consider the operator A acting on L2(Ω) with domain D(A) = {g ∈ H1
0 (Ω) : Ag ∈ L2(Ω)} defined by

Au = Au, u ∈ D(A). Recall that in view of the Sobolev embedding theorem (e.g. [Gr, Theorem 1.4.4.1]) the
multiplication operator u 7→ V u is bounded from H1(Ω) to L2(Ω). Thus, we have D(A) = H2(Ω) ∩H1

0 (Ω).
Moreover, by V ≥ 0 in Ω, the operator A is a positive selfadjoint operator with a compact resolvent.
Therefore, the spectrum of A consists in a non-decreasing sequence of positive eigenvalues (λk)k>1. Let us
also introduce an orthonormal basis in the Hilbert space L2(Ω) of eigenfunctions (ϕk)k>1 of A associated
with the non-decreasing sequence of eigenvalues (λk)k>1. From now on, by 〈·, ·〉, we denote the scalar product
of L2(Ω). For all s > 0, we denote by As the operator defined by

Ash =

+∞∑
k=1

〈h, ϕk〉λskϕk, h ∈ D(As) =

{
h ∈ L2(Ω) :

+∞∑
k=1

|〈h, ϕk〉|2 λ2s
k <∞

}

and consider on D(As) the norm

‖h‖D(As) =

(
+∞∑
k=1

|〈h, ϕk〉|2 λ2s
k

) 1
2

, h ∈ D(As).

By duality, we can also set D(A−s) = D(As)′ by identifying L2(Ω)′ = L2(Ω) which is a Hilbert space with
the norm

‖h‖D(A−s) =

( ∞∑
k=1

〈h, ϕk〉−2s λ
−2s
k

) 1
2

.

Here 〈·, ·〉−2s denotes the duality bracket between D(A−s) and D(As). Since D(A1/2) = H1
0 (Ω), we identify

H−1(Ω) with D(A−1/2).
Using eigenfunction expansions we show our first main result where we state existence and uniqueness

of weak solutions of (4.3.3.1).

Theorem 4.3.1 (Theorem 1.2, [KiYa]) Let u0 ∈ L2(Ω), u1 ∈ H−1(Ω) = D(A−
1
2 ), f ∈ L1(0, T ;L2(Ω)).

Then, problem (4.3.3.1) admits a unique weak solution u ∈ C([0, T ];L2(Ω)) satisfying

‖u‖C([0,T ];L2(Ω)) 6 C(‖u0‖L2(Ω) + ‖u1‖H−1(Ω) + ‖f‖L1(0,T ;L2(Ω))).

Moreover, assuming that there exists 0 < r < 1
4 such that u0 ∈ H2r(Ω), we have u ∈W 1,1(0, T ;L2(Ω)) and

‖u‖W 1,1(0,T ;L2(Ω)) 6 C(‖u0‖H2r(Ω) + ‖u1‖H−1(Ω) + ‖f‖L1(0,T ;L2(Ω))).

Recall that for γ, r, s > 0, 1 6 p, q, p̃, q̃ 6 ∞, Strichartz estimates for solutions u of (4.3.1.1) denotes
estimates of the form

‖u‖C([0,T ];H2r(Ω)) + ‖u‖Lp(0,T ;Lq(Ω)) 6 C(‖u0‖H2γ(Ω) + ‖u1‖H2s(Ω) + ‖f‖Lp̃(0,T ;Lq̃(Ω))).
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It is well known that these estimates, introduced by [Str70, Str77] and extended to the endpoints by [KeTa]
(as well as on manifolds with hyperbolic trapped geodesics by [BuGuHa]) for both wave and Schrödinger
equations, are important tools in the study of well-posedness of nonlinear equations (e.g. [Kap, BuLePl]).
In [KiYa], we prove these estimates for solutions of (4.3.3.1). For this purpose, we consider 1 6 p, q 6 ∞
and 0 < γ < 1 satisfying:

1) q =∞, for n
4 < γ < 1,

2) 2 < q <∞, for γ = n
4 ,

3) q = 2n
n−4γ , for 0 < γ < n

4 .
(4.3.3.2)

1) p < 1
1−α(1−γ) , for γ > 1− 1

α ,

2) p =∞, for γ 6 1− 1
α .

(4.3.3.3)

Then, our second main result can be stated as follows.

Theorem 4.3.2 (Theorem 1.3, [KiYa]) (Strichartz estimates) Assume that 1 6 p, q 6 ∞ and 0 < γ < 1
fulfill (4.3.3.2), (4.3.3.3) and set

s = max

(
0, γ − 1

α

)
, r = min

(
1− 1

α
, γ

)
.

Let u0 ∈ D(Aγ), u1 ∈ D(As), f ∈ L1(0, T ;L2(Ω)). Then, the unique weak solution u of problem (4.3.3.1) is
lying in Lp(0, T ;Lq(Ω)) ∩ C([0, T ];H2r(Ω)) and fulfills estimate

‖u‖C([0,T ];H2r(Ω)) + ‖u‖Lp(0,T ;Lq(Ω)) 6 C(‖u0‖H2γ(Ω) + ‖u1‖H2s(Ω) + ‖f‖L1(0,T ;L2(Ω))). (4.3.3.4)

Here the constant C takes the form
C = C0(1 + T )δ, (4.3.3.5)

where

δ =

{
max (α(1− γ)− 1, 1− α(γ − s), 1− α(r − s), α(1− r)− 1) , for p =∞,
max

(
1
p , 1− α(γ − s) + 1

p , 1− α(r − s), α(1− r)− 1, α(1− γ)− 1 + 1
p

)
, for p <∞ (4.3.3.6)

and C0 depends only on Ω, γ, n, α, p, A.

In the last section of [KiYa], we apply estimates (4.3.3.4) to prove the last result of this paper which
is related to the existence and uniqueness of local solutions of (4.3.1.1). For this purpose, we first need to
define local solutions of (4.3.1.1). In [KiYa, Section 2] (see also [SaYa]), using the eigenfunction expansions
we introduce the operators

S1(t)h =

∞∑
k=1

Eα,1(−λktα) 〈h, ϕk〉ϕn, h ∈ L2(Ω),

S2(t)h =

∞∑
k=1

tEα,2(−λktα) 〈h, ϕk〉ϕn, h ∈ L2(Ω),

S3(t)h =

∞∑
k=1

tα−1Eα,α(−λktα) 〈h, ϕk〉ϕk, h ∈ L2(Ω),

where for all α > 0, β ∈ R, Eα,β denotes the Mittag-Leffler function given by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
.
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It is well known (e.g. [BekYa, Pod, SaYa]) that for all t > 0 we have Sj(t) ∈ B(L2(Ω)), j = 1, 2, 3. Moreover,
according to [KiYa, Theorem 1.2], for u0, u1 ∈ L2(Ω) and f ∈ L1(0, T ;L2(Ω)), the unique weak solution of
(4.3.1.1) is given by

u(t) = S1(t)u0 + S2(t)u1 +

∫ t

0

S3(t− s)f(s)ds. (4.3.3.7)

For all T > 0, we introduce the space

XT = C([0, T ];L2(Ω)) ∩ Lb(0, T ;L2b(Ω))

with the norm
‖v‖XT = ‖v‖C([0,T ];L2(Ω)) + ‖v‖Lb(0,T ;L2b(Ω)) .

Recall that, by applying the Hölder inequality, one can check that for all u, v ∈ XT we have fb(u), fb(v) ∈
L1(0, T ;L2(Ω)) with

‖fb(u)‖L1(0,T ;L2(Ω)) 6 Cb ‖u‖
b
Lb(0,T ;L2b(Ω)) 6 Cb ‖u‖

b
XT

(4.3.3.8)

and
‖fb(u)− fb(v)‖L1(0,T ;L2(Ω)) 6 Cb ‖u− v‖XT (‖u‖b−1

XT
+ ‖v‖b−1

XT
), (4.3.3.9)

where the constant Cb > 0 depends only on b, fb. Therefore, in view of Theorem 4.3.1, the map Hb defined
by

Hbu(t) =

∫ t

0

S3(t− s)fb(u(s))ds, u ∈ XT

is locally Lipschitz from XT to C([0, T ];L2(Ω)).

Definition 4.3.2 Let u0, u1 ∈ L2(Ω) and T > 0. We say that (4.3.1.1) admits a weak solution on (0, T ) if
the map Gb : XT → C([0, T ];L2(Ω)) defined by

Gbu(t) = S1(t)u0 + S2(t)v2 +

∫ t

0

S3(t− s)fb(u(s))ds

admits a fixed point u ∈ XT . Such a fixed point u ∈ XT is called a weak solution to (4.3.1.1) on (0, T ). We
say that problem (4.3.1.1) admits a local weak solution if there exists T > 0, depending on u0, u1, such that
problem (4.3.1.1) admits a weak solution on (0, T ).

Now we can state our result of existence and uniqueness of local solutions for (4.3.1.1). We recall that
δ > 0 is given in (4.3.3.6).

Theorem 4.3.3 (Theorem 1.5, [KiYa]) Let b > 1 satisfy

nα

nα+ 4(1− α)
< b <

nα+ 4

nα+ 4(1− α)
(4.3.3.10)

and let

γ =
n(b− 1)

4b
, q = 2b, s = max(0, γ − 1

α
), r = min(1− 1

α
, γ), 1 6 ` <

1

2− α
. (4.3.3.11)

Then, we have b < 1
1−α(1−γ) and for any p ∈

(
b, 1

1−α(1−γ)

)
, u0 ∈ D(Aγ), u1 ∈ D(As), T0 > 0, there exists

T 6 T0 that takes the form

T = min

[(
C̃(‖u0‖H2γ(Ω) + ‖u1‖H2s(Ω))

)− p(b−1)
p−b

, T0

]
, (4.3.3.12)
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such that problem (4.3.1.1) admits a weak solution u on (0, T ) lying in Lp(0, T ;Lq(Ω)) ∩ C([0, T ];H2r(Ω)) ∩
W 1,`(0, T ;L2(Ω)). Note that in (4.3.3.12) the constant C̃ takes the form

C̃ = C̃0(1 + T0)
δ
b−1 , (4.3.3.13)

with C̃0 depending only on fb, Ω, α, b, p, n, A. Moreover, this local weak solution u is the unique weak
solution of (4.3.1.1) on (0, T ) lying in Lp(0, T ;Lq(Ω)) and u satisfies

‖u‖C([0,T ];H2r(Ω)) + ‖u‖Lp(0,T ;Lq(Ω)) + ‖u‖W 1,`(0,T ;L2(Ω)) 6 C(‖u0‖H2γ(Ω) + ‖u1‖H2s(Ω)). (4.3.3.14)

Here the constant C > 0 depends on n, Ω, fb, b, T0, p, α, A.

A direct consequence of Theorem 4.3.3 is the following.

Corollary 4.3.1 (Corollary 1.6, [KiYa]) Assume that conditions (4.3.3.10) and (4.3.3.11) are fulfilled. Let
u0 ∈ D(Aγ), u1 ∈ D(As) satisfy

[
C̃0(‖u0‖H2γ(Ω) + ‖u1‖H2s(Ω))

]− p(b−1)
p(1+δ)−b

> 1

for some b < p < 1
1−α(1−γ) , where the constant C̃0 is introduced in (4.3.3.13). Then, for any T > 0 satisfying

T <
[
C̃0(‖u0‖H2γ(Ω) + ‖u1‖H2s(Ω))

]− p(b−1)
p(1+δ)−b

,

problem (4.3.1.1) admits a unique weak solution u on (0, T ) lying in Lp(0, T ;Lq(Ω)) ∩ C([0, T ];H2r(Ω)) ∩
W 1,`(0, T ;L2(Ω)).

This last result means that for smaller initial data we obtain longer time of existence of weak solutions.
Let us remark that, [KiYa] seems to be the first paper where the Definition 4.3.1 of weak solutions of

(4.3.3.1) is considered. The main contribution of Definition 4.3.1 comes from the fact that it allows well-
posedness of (4.3.3.1) with weak conditions. Indeed, in contrast to other definitions of weak solutions for
(4.3.3.1) (e.g. [SaYa, Definition 2.1] used by [SaYa] to prove existence of weak solutions of (4.3.3.1) with
f ∈ L2(Q), u0 ∈ L2(Ω), u1 = 0 in [SaYa, Corollary 2.5, 2.6]), applying Definition 4.3.1 we can show
well-posedness of (4.3.3.1) with f ∈ L1(0, T ;L2(Ω)), u0 ∈ L2(Ω) and u1 ∈ H−1(Ω). The choice of Definition
4.3.1 is inspired both by the analysis of [Pod] and the connection between elliptic equations and fractional
diffusion equations used by [LiImYa]. Note also that Definition 4.3.1 plays an important role in the Definition
4.3.2 of weak solutions of (4.3.1.1).

Let us observe that in contrast to the wave equation the solution of (4.3.3.1) are not described by a
semigroup. Therefore, we can not apply many arguments that allow to improve the Strichartz estimates
(4.3.3.4) such as the TT ∗ method of [KeTa]. Nevertheless, we prove local existence of solution of (4.3.1.1)
with estimates (4.3.3.4). Note also that estimates (4.3.3.4) are derived from suitable estimates of Mittag-
Leffler functions.

To our best knowledge [KiYa] is the first work treating well-posedness for semilinear fractional wave
equations. Contrary to semilinear wave equations, it seems difficult to give a suitable definition of the energy
for (4.3.1.1). This is mainly due to the fact that, once again, there is no exact integration by parts formula for
fractional derivatives as well as properties of composition and conjugation of the fractional Caputo derivative
∂αt (e.g. [Pod, Section 2]). For this reason, it seems complicate to derive global well-posedness from local
well-posedness. However, using the explicit dependence with respect to T of the constant in (4.3.3.4) we can
establish an explicit dependence of the time of existence T of (4.3.1.1) with respect to the initial conditions
u0, u1. From this result, we prove long time of existence for small initial data (see Corollary 4.3.1).
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4.4 Fractional diffusion equations with variable order

4.4.1 Statement of the problem

This section is devoted to the work [KiSoYa], which is a joint work with Eric Soccorsi and Masahiro Ya-
mamoto. Let Ω be a bounded domain of Rn, n > 2, with Lipschitz continuous boundary ∂Ω, and let
(ai,j)16i,j6n ∈ L∞(Ω;Rn2

) be symmetric, i.e., fulfill ai,j = aj,i a.e. in Ω, for i, j = 1, . . . , n, and satisfy the
ellipticity condition

∃c > 0,

n∑
i,j=1

ai,j(x)ξiξj > c|ξ|2, x ∈ Ω, ξ = (ξ1, . . . , ξn) ∈ Rn. (4.4.1.1)

For κ ∈ (n,+∞] and q ∈ Lκ(Ω;R+), we introduce the formal differential operators

A0u(x) = −
n∑

i,j=1

∂xi
(
ai,j(x)∂xju(x)

)
and Aqu(x) := A0u(x) + q(x)u(x), x ∈ Ω.

Given T ∈ (0,+∞] and two functions α ∈ L∞(Ω) and ρ ∈ L∞(Ω), such that

0 < α0 6 α(x) 6 αM < 1 and 0 < ρ0 6 ρ(x) 6 ρM < +∞, x ∈ Ω, (4.4.1.2)

we consider the initial boundary value problem for space-dependent variable order fractional diffusion equa-
tions  (ρ(x)∂

α(x)
t +Aq)u(t, x) = f(t, x), (t, x) ∈ Q := (0, T )× Ω,

u(t, x) = 0, (t, x) ∈ Σ := (0, T )× ∂Ω,
u(0, x) = u0(x), x ∈ Ω.

(4.4.1.3)

Here and below, ∂α(x)
t denotes the Caputo fractional derivative of order α(x) with respect to t, defined by

∂
α(x)
t u(t, x) :=

1

Γ(1− α(x))

∫ t

0

(t− s)−α(x)∂su(s, x)ds, (t, x) ∈ Q,

where Γ is the usual Gamma function.
In [KiSoYa] we pursue two goals. The first one is to establish the well-posedness of the IBVP (4.4.1.3) for

suitable source terms f and initial data u0. The second one is to analyse the uniqueness issue in the inverse
problem of determining simultaneously the fractional order α, the density ρ, and the electric potential q,
entering the diffusion equation appearing in (4.4.1.3), by partial Neuman data.

4.4.2 Physical motivations

Anomalous diffusion in complex media is a rapidly growing field of academic research with multiple engineer-
ing applications in geophysics, environmental science and biology. The diffusion properties of homogeneous
porous media are currently modeled, see e.g. [AdGe, CaSaLuGa], by constant order time-fractional diffusion
processes (that is by (4.4.1.3) where the mapping x 7→ α(x) is maintained constant over Ω). But in complex
media, the presence of heterogeneous regions causes variations of the permeability in different spatial posi-
tions, and in this case, the variable order time-fractional model is more relevant for describing the diffusion
process, see [SuChCh]. This justifies for a closer look into the analysis of variable order time-fractional
diffusion equations.
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4.4.3 Existence of solutions and identification
The first result of [KiSoYa], which is stated in the framework of Lipschitz continuous bounded domains Ω, is
concerned with the forward problem associated with (4.4.1.3), that is with the existence, uniqueness and some
regularity properties of the weak solution to the Cauchy problem (4.4.1.3). Namely, Theorem 4.4.1 states for
all T ∈ (0,+∞], all bounded functions α and ρ fulfilling (4.4.1.2), and all non-negative potentials q ∈ Lκ(Ω)
with κ ∈ (d,+∞], that the IBVP (4.4.1.3) admits a unique solution within the class C((0, T ];L2(Ω)), provided
the initial data u0 is taken in L2(Ω) and the source terms f belonging to C((0, T ];L2(Ω)) and satisfying the
condition t 7→ (1 + t)−mf(t, ·) ∈ L∞((0, T );L2(Ω) for some m ∈ N. Here and in the remaining part of this
section, the interval (0, T ] should be understood as (0,+∞) in the particular case where T = +∞. In order
to introduce this first result, we start by considering a definition of weak solutions close to the one introduced
in the last section but extended to more general equations.

Let S ′(R;L2(Ω)) := B(S(R;L2(Ω));R) be the space dual to S(R;L2(Ω)). We denote by S ′(R+;L2(Ω)) :=
{v ∈ S ′(R;L2(Ω)) : supp (v) ⊂ [0,+∞)×Ω} the set of distributions in S ′(R;L2(Ω)), supported in [0,+∞)×
Ω. Otherwise stated, v ∈ S ′(R;L2(Ω)) lies in S ′(R+;L2(Ω)) if and only if 〈v, ϕ〉S′(R;L2(Ω)),S(R;L2(Ω)) = 0,
whenever ϕ ∈ S(R;L2(Ω)) vanishes in R+ × Ω. As a consequence, for a.e. x ∈ Ω, we have

〈v(·, x), ϕ〉S′(R),S(R) = 〈v(·, x), ψ〉S′(R),S(R), ϕ, ψ ∈ S(R), (4.4.3.1)

provided ϕ = ψ in R+. Further, we say that ϕ ∈ S(R+) if ϕ is the restriction to R+ of a function ϕ̃ ∈ S(R).
Then, we set

x 7→ 〈v(·, x), ϕ〉S′(R+),S(R+) := x 7→ 〈v(·, x), ϕ̃〉S′(R),S(R), v ∈ S ′(R+;L2(Ω)).

Notice from (4.4.3.1) that ϕ̃ may be any function in S(R) such that ϕ̃(t) = ϕ(t) for all t ∈ R+. For
p ∈ C+ := {z ∈ C : Rez > 0}, we put

ep(t) := exp(−pt), t ∈ R+.

Evidently, ep lies in S(R+). For v ∈ S ′(R+;L2(Ω)), we define the Laplace transform L[v] in t of v, by

L[v](p) := x 7→ 〈v(·, x), ep〉S′(R+),S(R+), p ∈ C+,

and notice that p 7→ L[v](p) ∈ C∞(C+;L2(Ω)). Having seen this, we define the weak solution to (4.4.1.3) as
follows.

Definition 4.4.1 Let u0 ∈ L2(Ω). For T < +∞, we assume that f ∈ L1(0, T ;L2(Ω)) and, for T = +∞,
we assume that there exists m ∈ N such that (1 + |t|)−mf ∈ L1(R+;L2(Ω). We say that u is a weak solution
to (4.4.1.3) if u is the restriction to Q of a distribution v ∈ S ′(R+;L2(Ω)), i.e. u = v|Q, whose Laplace
transform V := L[v] solves, for all p ∈ (0,+∞), the boundary value problem:{

AqV + ρ(x)pα(x)V = F (p) + ρ(x)pα(x)−1u0, x ∈ Ω,
V = 0, x ∈ ∂Ω,

(4.4.3.2)

Here F (p) := L[f(t, .)1(0,T )(t)](p) =
∫ T

0
e−ptf(t, .)dt.

For θ ∈ (π/2, π) and ε ∈ (0, 1), we introduce the contour

γ(ε, θ) := γ−(ε, θ) ∪ γ0(ε, θ) ∪ γ+(ε, θ), (4.4.3.3)

in the complex plane C, where

γ0(ε, θ) := {εeiβ ; β ∈ [−θ, θ]} and γ±(ε, θ) := {se±iθ; s ∈ [ε,+∞)}. (4.4.3.4)

Further, we denote by Aq the self-adjoint realization in L2(Ω), of the operator Aq with homogeneous
Dirichlet boundary conditions, and by (Aq + ρ(x)pα(x))−1, for p ∈ C \ R−, the resolvent operator of Aq +
ρ(x)pα(x).

Then, the existence and uniqueness result of a weak solution to the IBVP (4.4.1.3) is as follows.
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Theorem 4.4.1 (Theorem 1.1, [KiSoYa]) Suppose that (4.4.1.1) and (4.4.1.2) are fulfilled. Let u0 ∈
L2(Ω) and, depending on whether T ∈ (0,+∞) or T = +∞, assume either that f ∈ L∞(0, T ;L2(Ω)) ∩
C((0, T ];L2(Ω)) or that f ∈ C((0,+∞);L2(Ω)) satisfies (1 + |t|)−ζf ∈ L∞(R+;L2(Ω)) for some ζ ∈ R+.
Then, there exists a unique weak solution u ∈ C((0, T ];L2(Ω)) to (4.4.1.3), which is expressed by

u(t) = S0(t)u0 +

∫ t

0

S1(t− τ)f(τ)dτ + S2f(t), t ∈ (0, T ], (4.4.3.5)

where we have set for all ψ ∈ L2(Ω),

S0(t)ψ :=
1

2iπ

∫
γ(ε,θ)

etp(Aq + ρ(x)pα(x))−1ρ(x)pα(x)−1ψdp,

S1(t)ψ :=
1

2iπ

∫
γ(ε,θ)

etp(Aq + ρ(x)pα(x))−1ψdp,

and

S2ψ :=
1

2iπ

∫
γ(ε,θ)

p−1(Aq + ρ(x)pα(x))−1ψdp,

the three above integrals being independent of the choice of ε ∈ (0, 1) and θ ∈
(
π
2 , π

)
.

Moreover, in the particular case where f = 0, the mapping t 7→ u(t) is analytic in (0, T ).

Remark 4.4.1 (Remark 1, [KiSoYa]) We point out for all α0 ∈
(
0, 1

2

)
, that the operator S2 is identically

zero, provided we have αM ∈ (α0, 2α0). Therefore, (4.4.3.5) reduces to the ”classical" Duhamel formula in
this case:

u(t) = S0(t)u0 +

∫ t

0

S1(t− τ)f(τ)dτ, t ∈ (0, T ]. (4.4.3.6)

The second result of [KiSoYa] deals with the inverse problem of determining the unknown coefficients α,
ρ, q, entering the time fractional diffusion equation appearing in (4.4.1.3), by partial boundary measurements
of the solution. More precisely, assuming that ∂Ω is C1,1, ` ∈ N \ {0, 1}, we probe the following system (ρ(x)∂

α(x)
t −∆ + q(x))u(t, x) = 0, (t, x) ∈ (0,+∞)× Ω,

u(t, x) = t`g(x), (t, x) ∈ (0,+∞)× ∂Ω,
u(0, x) = 0, x ∈ Ω,

(4.4.3.7)

with suitable Dirichlet data g. Given two non empty subsets of ∂Ω, Sin and Sout, we then introduce for all
t ∈ (0,+∞), the following boundary operator

Nα,ρ,q(t) : Hin 3 g 7→ ∂νug(t, ·)|Sout , (4.4.3.8)

where Hin := {g ∈ H3/2(∂Ω) : supp (g) ⊂ Sin}. Here, ug denotes the unique C([0,+∞);H2(Ω))-solution to
(4.4.3.7), whose existence is guaranteed by Theorem 4.4.1, stated in Proposition 4.4.2 below.

We examine the uniqueness issue in the inverse problem of determining the coefficients (α, ρ, q) from the
knowledge of the boundary operators {Nα,ρ,q(tk), k ∈ N} associated with a time-sequence {tk, k ∈ N} ∈
(0,+∞)N, fulfilling

∃τ ∈ (0,+∞), τ is an accumulation point of {tk, k ∈ N}, (4.4.3.9)

and suitable observation regions Sin and Sout. Namely, we assume that the domain Ω and the input and
output regions satisfy the following conditions.
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(i) If n = 2, it is required that Ω be connected and that ∂Ω =
⋃N
k=1 γk be made of a finite number of

smooth closed contours γk, k = 1, . . . , N . In this case, we choose Sin = Sout := γ, where γ is any
arbitrary non-empty open subset of ∂Ω, and the set of admissible unknown coefficients reads

E2 :=
{

(α, ρ, q) : α ∈W 1,r(Ω) and ρ ∈W 1,r(Ω) fulfill (4.4.1.2), and

q ∈W 1,r(Ω;R+) with r ∈ (2,+∞)
}
.

(ii) If n > 3, we assume that the domain Ω is smooth and connected. We pick x0 ∈ Rn outside the convex
hull of Ω, impose that

{x ∈ ∂Ω : (x− x0) · ν > 0} ⊂ Sin and {x ∈ ∂Ω : (x− x0) · ν 6 0} ⊂ Sout,

and define the set of admissible unknown coefficients by

En := {(α, ρ, q); α ∈ L∞(Ω) and ρ ∈ L∞(Ω) fulfill (4.4.1.2), and q ∈ L∞(Ω;R+)} .

The uniqueness result for the above described inverse coefficients problem is as follows.

Theorem 4.4.2 (Theorem 1.2, [KiSoYa]) Let {tk, k ∈ N} ∈ (0,+∞)N fulfill (4.4.3.9) and assume that
either (i) or (ii) is satisfied, depending on whether d = 2 or d > 3. Pick (αj , ρj , qj) ∈ En, j = 1, 2, such that

Nα1,ρ1,q1(tk) = Nα2,ρ2,q2(tk), k ∈ N. (4.4.3.10)

Then, we have (α1, ρ1, q1) = (α2, ρ2, q2).

4.4.4 Comments and outline
As the Laplace transform of a solution to constant order time-fractional diffusion equations is expressed
in terms of Mittag-Leffler functions, most of its features are inherited from the well known properties of
these special functions. This is no longer the case when the fractional order of the time-fractional diffusion
equation depends on the space variable, which makes for a more challenging analysis of the well-posedness
of these systems. This new technical difficulty translates in particular into the definition of a weak solution
to variable order time-fractional diffusion equations, which extends the one of a weak solution to constant
order time-fractional diffusion equations.

4.4.5 Description of the proof
We start with Theorem 4.4.1. For this purpose, we remark that problem (4.4.3.2), admits a unique solution
if and only if the the operator Aq + ρpα(x) is invertible. Moreover, if Aq + ρpα(x) is invertible, the unique
solution of (4.4.3.2) is given by

V (p) = (Aq + ρpα(x))−1F (p) + (Aq + ρpα(x))−1ρ(x)pα(x)−1u0.

Combining this remark with properties of inversion of Laplace transform (e.g. [Ru, Theorem 19.2]), we need
to consider some properties of the family of operators (Aq +ρpα(x))−1 for a complex valued parameter p. We
remark that for p ∈ C\R the operator Aq+ρpα(x) is no longer selfadjoint and some specific treatment should
be used for the inversion of such operators. We prove the following properties of this family of operators.

Proposition 4.4.1 (Proposition 2.1, [KiSoYa]) For all p ∈ C\R−, the operator Aq +ρ(x)pα(x) is boundedly
invertible in L2(Ω) and (Aq + ρ(x)pα(x))−1 maps L2(Ω) into D(A0). Moreover, the following estimate holds
for all r ∈ (0,+∞), ∥∥∥(Aq + ρ(x)rα(x)eiβα(x))−1

∥∥∥
B(L2(Ω))

6 Cβ max
j=0,M

r−αj , β ∈ (−π, π),



100 CHAPTER 4. FRACTIONAL DIFFUSION EQUATIONS

with

Cβ :=

{
2ρ−1

0 , if |β| 6 θ∗(r) := α−1
M min

σ=±1
arctan

(
ρ0

3ρM
rσ(αM−α0)

)
ρ−1

0 maxj=0,M | sin(αjβ)|−1, otherwise.
(4.4.5.1)

Furthermore, the mapping p 7→ (Aq + ρ(x)pα(x))−1 is bounded holomorphic in C \ R−.

Using these properties we prove Theorem 4.4.1. In contrast to Theorem 4.4.1, Theorem 4.4.2 requires
additional regularity and some properties of analyticity of the DN map. In order to define the DN map we
consider first the following result.

Proposition 4.4.2 (Proposition 3.1, [KiSoYa]) Let α, ρ and q be the same as in Theorem 4.4.1. Then, for
all g ∈ H3/2(∂Ω), the IBVP (4.4.3.7) admits a unique weak solution in C([0,+∞);H2(Ω)).

Using the representation of the solution given in Proposition 4.4.2, we establish the analiticity of the
DN map associated with (4.4.3.7) as follows.

Lemma 4.4.1 (Lemme 3.2, [KiSoYa]) Let g ∈ H3/2(∂Ω) and let u be the C([0,+∞);H2(Ω))-solution to
the IBVP (4.4.3.7) associated with g, given by Proposition 4.4.2. Then the mapping t 7→ ∂νu(t, ·)|∂Ω lies
in A((0,+∞);L2(∂Ω)). Here A((0,+∞);L2(∂Ω)) denotes the space of function analytic on (0,+∞) taking
value in L2(∂Ω).

In view of this result, the condition (4.4.3.10) implies

Nα1,ρ1,q1(t) = Nα2,ρ2,q2(t), t ∈ (0,+∞).

Using this identity with some additional estimates, we can transform the inverse problem stated in Theorem
4.4.2 to the inverse problem of determining the coefficient (α, ρ, q) appearing in the family of elliptic boundary
value problems {

−∆U(p) + [ρ(x)pα(x) + q(x)]U(p) = 0, x ∈ Ω, p ∈ R+,
U(p)(x) = g(x), x ∈ ∂Ω

from the knowledge of the associated elliptic partial DN map given by

Λρpα+q : Hin 3 g 7→ ∂νU(p)|Sout .

Then, we complete the proof of Theorem 4.4.2 by applying [ImYa131, Theorem 7] (see also [ImYa12]) in the
particular case where n = 2, and from [KeSjUh, Theorem 1.2] when n > 3.
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