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General introduction in french

Ce mémoire développe deux thèmes principaux: en premier lieu, les problèmes inverses et de façon connectée les problèmes directs, soit l'existence et l'unicité de solutions, pour différentes équations aux dérivées partielles. Ces deux aspects seront liés dans l'ensemble des travaux présentés dans ce manuscrit à l'exception des travaux de la Section 4.3.

Durant ces dernières décennies, les problèmes inverses ont connu un essor important. Ces problèmes prennent des formes variées et sont liés à des applications multiples (imagerie médicale, environnement, sismologie, finance...). Plus généralement, on remarque que ces problèmes apparaissent de façon récurrente au quotidien, comme lorsqu'on se demande d'où vient tel son ou d'où vient telle lumière. Au delà des applications multiples, du fait de leur caractère mal posé et non-linéaire, ces problèmes ont en tant que tel un intérêt mathématique. Dans ce manuscrit, nous nous focaliserons sur les problèmes de détermination d'un coefficient ou d'une source apparaissant dans des équations aux dérivées partielles (respectivement d'un opérateur) à partir d'observations des solutions (respectivement d'informations partielles à propos des données spectrales). Un exemple important de ce type de problèmes provient de la fameuse question de Calderón liée à des méthodes d'imagerie comme l'Electrical Impedance Tomography (EIT). Cette question peut être formulée de la façon suivante: Est il possible de déterminer la conductivité électrique d'un milieu à partir de mesures d'intensité et de courant sur le bord de ce milieu? Mathématiquement parlant, ce problème consiste à déterminer une conductivité apparaissant dans une équation elliptique à partir d'observations sur le bord du domaine. Ce type de problèmes peuvent être considérés pour d'autres équations aux dérivées partielles (hyperboliques, paraboliques, Schrödinger) avec différentes applications (problèmes de transmission de son, de lumière, de chaleur...). À travers les différents travaux que nous présenterons dans ce manuscrit, notre objectif sera d'étudier ce type de problèmes inverses sous des formes variées et pour différentes équations aux dérivées partielles. Les travaux que nous présenterons ici constituent une part importante et significative de mes travaux de recherches de ces six dernières années (soit depuis mon recrutement en qualité de maître de conférences à l'Université d'Aix-Marseille). Ce manuscrit se décompose en quatre parties comprenant: 1) Les problèmes sur un domaine cylindrique non-borné; 2) La détermination de coefficients dépendant du temps et de l'espace pour des équations aux dérivées partielles d'évolution; 3) Problèmes inverses spectraux; 4) Problèmes inverses et directs pour des équations de diffusion fractionnaire en temps. Un chapitre sera dédié à chacun de ces aspects.

Dans le premier chapitre, nous nous intéresserons à la détermination de coefficients ou d'une source pour différentes équations aux dérivées partielles dans un domaine cylindrique non-borné aussi appelé guide d'ondes. Dans ce cadre, nous chercherons à déterminer un coefficient ou une source à partir de mesures sur le bord du domaine. Ces résultats sont bien connus pour un domaine borné. Néanmoins, le passage d'un domaine borné vers un domaine non-borné engendre tout une série de difficultés que nous détaillerons dans le Chapitre 1. Pour contourner ces difficultés, nous proposons deux approches. La première approche consiste à utiliser la géométrie particulière des domaines cylindriques pour étendre les résultats connus pour un domaine borné. L'autre approche consiste à se restreindre à des coefficients périodiques le long de l'axe du cylindre et à utiliser la décomposition de Floquet. Ce procédé, bien connu en théorie spectrale, permet de ramener un problème énoncé sur un domaine non-borné à un problème sur un domaine borné avec des 9 CONTENTS conditions de quasi-périodicité.

Dans le second chapitre, nous considérerons la détermination de coefficients, dépendant des variables temporelles et spatiales, pour différentes équations d'évolution (hyperboliques, paraboliques, Schrödinger) sur un domaine borné. Pour les équations hyperboliques, notre objectif consistera à déterminer de façon globale une classe importante de coefficients dépendant du temps et de l'espace. Pour cela, nous rappelerons les limites de ce type de résultats qui proviennent d'obstructions à l'unicité que nous détaillerons dans la Soussection 2.2.2. En tenant compte de ces limitations, nous établirons les données qui permettront de déterminer de façon unique et stable ces coefficients sans faire d'hypothèses importantes sur la forme du domaine ou la régularité des coefficients. Pour les équations paraboliques et de type Schrödinger, nous étudierons la question de la stabilité. Enfin, dans le cas des équations paraboliques, nous montrerons comment ces résultats peuvent être appliqués au problème consistant à déterminer un terme non linéaire à partir d'observations des solutions.

Le troisième chapitre sera consacré aux problèmes inverses spectraux. Plus précisément, nous considérerons des problèmes inverses spectraux de type Borg-Levinson dont le principe consiste à déterminer un opérateur à partir d'informations partielles sur ses données spectrales. Nous commencerons par considérer un opérateur de Schrödinger dans un domaine cylindrique non-borné avec un potentiel périodique le long de l'axe du cylindre. Dans ce cas précis, nous chercherons à déterminer l'opérateur à partir d'informations asymptotiques sur les données spectrales de Floquet de l'opérateur. Par la suite, nous considérerons la détermination d'un opérateur de Schrödinger magnétique sur un domaine borné à partir d'une certaine connaissance asymptotique des valeurs propres et à partir d'informations concernant des vecteurs propres de l'opérateur sur le bord du domaine. Nous finirons par présenter une application des résultats de contrôle aux bords à ce type de problèmes.

Le dernier chapitre sera consacré aux équations de diffusion fractionnaire en temps. Nous commencerons par considérer un problème inverse consistant à déterminer une classe importante de coefficients apparaissant dans ces équations à partir d'observations sur le bord des solutions en un temps fixé. Puis nous établirons des résultats liés au problème direct dans un contexte de régularité faible. Nous appliquerons ce dernier résultat pour déterminer l'existence de solutions pour des équations fractionnaires en temps non linéaires. Enfin, nous considérerons les équations de diffusion fractionnaire en temps dont l'ordre de la dérivation est variable. Pour ce problème, nous commencerons par prouver l'existence et l'unicité des solutions. Puis nous appliquerons ce résultat au problème inverse consistant à déterminer l'ordre de dérivation ainsi que des coefficients apparaissant dans l'équation à partir d'observations sur le bord des solutions.

General introduction in english

The main aspects developed in the present manuscript concern inverse problems. The other aspects are related to forward problems, namely existence and uniqueness of solutions for different partial differential equations. These two aspects will be often connected, except in Section 4.3 where we consider only the forward problem.

During these last decades, inverse problems have been growing in interest. These problems can be formulated in different ways and they have many applications (medical imaging, seismology, finance...). More generally, we often consider inverse problems in our real life, like when we wonder where a light or a sound comes from. Beside these applications, due to their ill-posedness and nonlinearity, inverse problems are also challenging from a pure mathematical point of view. In this manuscript, we focus our attention on the inverse problems of determining sources or coefficients appearing in different partial differential equations (respectively operators) from observations of solutions (respectively partial information about the spectral data). An important example of such a problem comes from the so called question of Calderón related to imaging methods like the Electrical Impedance Tomography (EIT). This question can be formulated in the following way: is it possible to determine the electrical conductivity of a medium by making voltage and current measurements on its boundary? From a mathematical point of view, this problem corresponds to the determination of a conductivity appearing in an elliptic equation from observations on the boundary. Such problems can be formulated with other partial differential equations (hyperbolic, parabolic, Schrödinger) for various applications (transmission of light, sound, heat...). Through the contribution presented in this manuscript, we have studied such problems in various context for different partial differential equations. These works have been a significant part of my research for the past six years (since my nomination as assistant professor in Aix-Marseille University). This manuscript is decomposed into four parts: 1) Inverse problems in unbounded cylindrical domains; 2) Determination of coefficients depending on time and space variables for various evolution partial differential equations; 3) Inverse spectral problems; 4) Forward and inverse problems for fractional diffusion equations with time fractional derivative.

In the first chapter, we consider the determination of coefficients or sources for different partial differential equations in an unbounded cylindrical domain also called waveguide. In this context, we study the determination of such parameters from observations of solutions on the boundary of the domain. For bounded domains these results are well known. Nevertheless, the extension to unbounded domains generates some difficulties which will be described in Chapter 1. To overcome these difficulties, we use two strategies. First, we use some geometrical properties of cylindrical domains in order to extend some arguments stated for bounded domains to our case. Second, we consider coefficients periodic along the axis of the cylindrical domain and we use Floquet decomposition in order to transform our problem into a problem in a bounded domain with quasiperiodic boundary conditions.

The second chapter is devoted to the determination of coefficients depending on time and space variables for various evolution partial differential equations (hyperbolic, parabolic, Schrödinger) on a bounded domain. For hyperbolic equations, our goal is to consider the minimal data that allow to recover globally a general class of coefficients depending on time and space variables. For this purpose, we start by recalling some obstructions to our problem (see Section 2.2.2). Then, taking into account these obstructions, we establish the 11 set of data that allows to recover such coefficients without additional geometrical or smoothness assumptions. For parabolic and Schrödinger equations we focus our attention on the stability issue. Finally, for parabolic equations, we show how such results can be applied to the recovery of a nonlinear term.

In the third chapter, we study some inverse spectral problems. More precisely, we consider Borg-Levinson type of inverse spectral problems which consist in determining Schrödinger operators from partial knowledge of the spectral data. We consider these problems in different contexts. We start by considering the case of Schrödinger operators on an unbounded cylindrical domain with a potential periodic along the axis of the domain. In that case, we look for the recovery of the operator from some asymptotic knowledge of the Floquet spectral data. Next, we study the recovery of magnetic Schrödinger operators from some asymptotic knowledge of the eigenvalues and from observations on the boundary of eigenfunctions of the operator. Finally, we consider an application of the boundary control method to such problems.

The last chapter is devoted to the study of time fractional diffusion equations. We start by considering the inverse problem of determining a large class of coefficients appearing in these equations from observations of the solutions on the boundary of the domain at one fixed time. Then, we consider a forward problem for such equations stated with weak regularity of the data. We apply this last result to prove existence and uniqueness of solutions for time fractional diffusion nonlinear equations. Finally, we study fractional diffusion equations with variable time fractional order. For this problem, we start by considering the forward problem. Then, we apply this result to the problem of determining the fractional order from observations of the solutions at the boundary of the domain.

Chapter 1

Inverse problems in unbounded cylindrical domains

Introduction

Inverse coefficient or source problems for partial differential equations have attracted much attention over the last decades. Both results of unique and stable recovery of coefficients or sources have been considered for various partial differential equations (PDE in short) and with various measurements. We focus here our attention on inverse boundary value problems which correspond to recovery of sources or coefficients from boundary measurements of solutions. Such problems are usually stated in a bounded domain Ω of R n , n 1, and the measurements are associated with observations of the solutions at the boundary ∂Ω of the domain. In this context, the recovery of the parameter is considered both from many boundary measurements given by the so called Dirichlet-to-Neumann (DN in short) map associated with the PDE (e.g. [START_REF] Belishev | To the reconstruction of a Riemannian manifold via its spectral data (BC-method)[END_REF][START_REF] Bukhgeim | Recovering a potential from partial Cauchy data[END_REF][START_REF] Kenig | The Calderon problem with partial data[END_REF][START_REF] Rakesh | Uniqueness for an inverse problem for the wave equation[END_REF][START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF]) or from a single boundary measurement given by the measure of the flux at ∂Ω of a suitable solution of the PDE (e.g. [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF][START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation: Corrigendum[END_REF][START_REF] Bukhgeim | Global uniqueness of a class of multidimensional inverse problem[END_REF][START_REF] Imanuvilov | Lipschitz stability in inverse parabolic problems by the Carleman estimate[END_REF]). In most of approaches developed for these problems the fact that Ω is a bounded domain plays an important role.

In contrast to the important development of inverse boundary value problems stated in a bounded domain, only a small number of mathematical papers considered such results for unbounded domains. One of them, [START_REF] Rakesh | An inverse problem for the wave equation in the half plane[END_REF], examines the problem of determining a potential appearing in the wave equation in the halfspace. In [Nak], Nakamura extended the work of [START_REF] Rakesh | An inverse problem for the wave equation in the half plane[END_REF] to more general coefficients. In [Ik] and [SalWa], the authors examined the inverse problem of identifying an embedded object in an infinite slab. Unique determination of compactly supported potentials appearing in the stationary Schrödinger equation in an infinite slab from partial boundary measurements is established in [LiUh]. The same problem is addressed by [KrLaUh] for the stationary magnetic Schrödinger equation, and by [Yan] for bi-harmonic operators with perturbations of order zero or one. More recently, [CaMa] treated the stability issue associated with [LiUh]. The inverse problem of determining the twisting function of an infinite twisted closed waveguide by the DN map, is addressed in [ChSo]. In [START_REF] Choulli | Determining the time dependent external potential from the DN map in a periodic quantum waveguide[END_REF], time-dependent potentials that are periodic in the translational direction of the waveguide, are stably retrieved by the measurements of the Schrödinger equation.

Note that, beside [START_REF] Caro | Stability of inverse problems in an infinite slab with partial data[END_REF][START_REF] Choulli | Determining the time dependent external potential from the DN map in a periodic quantum waveguide[END_REF][START_REF] Choulli | Recovering the twisting function in a twisted waveguide from the DN map[END_REF], in all the above mentioned results the authors considered the uniqueness issue stated in a domain corresponding to the half space or a slab. In this section we will introduce the work [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF][START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF][START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map[END_REF][START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF][START_REF] Kian | Stability of the determination of a coefficient for wave equations in an infinite waveguide[END_REF][START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF][START_REF] Kian | Logarithmic stability inequality in an inverse source problem for the heat equation on a waveguide[END_REF] where we studied the stability issue for inverse boundary value problems for various PDEs stated on an infinite waveguide taking the form of a cylindrical domain Ω = ω × R (or Ω = R × ω in [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map[END_REF][START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF]) where ω is a bounded domain of R n-1 for n 3. The main purpose of [BeKiSo1, BeKiSo2, ChKiSo161, ChKiSo162, Ki141, KiPhSo1, KiPhSo2, KiSaSo] was an extension of results stated in a bounded domain to an infinite waveguide. For this purpose, we considered different approaches in order to overcome the difficulties arising from the consideration of an unbounded domain. For some of these results an additional assumption was required. For instance in [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF][START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF], we proved that the Bukgheim-Klibanov strategy stated in [BuKl] can be extended to our setting provided that the unknown coefficient becomes exponentially close to some a priori known coefficient along the axis of the waveguide. In [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map[END_REF][START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF], we have studied the so called Calderón problem in the specific case of coefficients periodic along the axis of the waveguide. In [START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF], some restrictions on the class of magnetic potentials along the infinite direction have been made. On the other hand, some of our results such as [START_REF] Kian | Stability of the determination of a coefficient for wave equations in an infinite waveguide[END_REF][START_REF] Kian | Logarithmic stability inequality in an inverse source problem for the heat equation on a waveguide[END_REF], correspond to the exact statement of the result on bounded domains without any additional assumptions. We mention also that our analysis in [BeKiSo1, BeKiSo2, ChKiSo161, ChKiSo162, Ki141, KiPhSo1, KiPhSo2, KiSaSo] is associated with problems of transmission to long distance or transmission throw nanostructures and periodic structures (see Subsection 1.2.2, 1.3.1 and 1.6.1). This chapter is organized as follows. In Section 1.2, we describe the result of [START_REF] Kian | Stability of the determination of a coefficient for wave equations in an infinite waveguide[END_REF] related to the stable recovery of a time-independent coefficient appearing in a wave equation. Section 1.3 is devoted to [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF][START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] where we have proved the stable recovery of a time-independent coefficient appearing in a Schrödinger equation on a waveguide from a single boundary measurement. In Section 1.4, we consider the stable recovery of an electromagnetic potential from boundary measurements of solutions of a Schrödinger equation on a waveguide stated in [START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF]. In Section 1.5, we discuss about our results [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map[END_REF][START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF] related to the Calderón problem stated on an infinite cylindrical domain for periodic coefficients. Finally, in Section 1.6, we introduce our result [KiSaSo] of stable recovery of a time-independent source term from a single measurement of a solution of an associated parabolic equation on an unbounded waveguide.

Stable recovery of a time-independent potential for a wave equation

This section is devoted to the work [START_REF] Kian | Stability of the determination of a coefficient for wave equations in an infinite waveguide[END_REF] where a stable recovery of a time-independent potential appearing in a wave equation on a closed infinite waveguide is stated.

Statement of the problem

In this section, we consider the waveguide Ω = ω × R, where ω is a C ∞ bounded connected domain of R 2 . We set Σ := (0, T ) × ∂Ω and Q := (0, T ) × Ω. We introduce the following initial-boundary value problem (IBVP in short) for the wave equation

   ∂ 2 t u -∆u + q(x)u = 0, in Q u(0, •) = 0, ∂ t u(0, •) = 0,
in Ω, u = f, on Σ.

(1.2.1.1)

In [START_REF] Kian | Stability of the determination of a coefficient for wave equations in an infinite waveguide[END_REF], we study the inverse problem which consists in determining the coefficient of order zero q from the DN map

Λ q : f → ∂ ν u |Σ
with u the solution of problem (1.2.1.1) in some appropriate space, ν the unit outward normal vector to ∂Ω and ∂ ν = ν • ∇ the normal derivative.

Physical motivation

Physically speaking, this inverse problem consists in determining properties such as density of an inhomogeneous medium by probing it with disturbances generated on the boundary. The data is the response of the medium to these disturbances, measured on the boundary, and the purpose is to recover the function which measures the property of the medium. Let us remark that equation (1.2.1.1) describes the propagation of waves, such as electromagnetic waves or sound waves, along the axis of an infinite cylindrical waveguide under the influence of a coefficient of order zero q. Such a model can be considered when a cylindrical waveguide is used for transmitting light, signals, sound or energy to long distance. In these cases the cylindrical waveguide can be supposed infinite. Moreover, the case considered in Theorem 1.2.3 is related to problems of transmission through a periodic structure such as photonic crystal.

Stability estimates

Recall that ∂Ω = ∂ω × R. Since ∂Ω is not bounded, for all s > 0 we give the following definition of the space H s (∂Ω):

H s (∂Ω) = H s (R x3 ; L 2 (∂ω)) ∩ L 2 (R x3 ; H s (∂ω)).
Then, for r 0, we introduce the usual space

H r,s ((0, T ) × X) = H r (0, T ; L 2 (X)) ∩ L 2 (0, T ; H s (X))
where X = Ω or X = ∂Ω. Set the space

L = f ∈ H 3 2 , 3 2 (Σ) : f |t=0 = 0, ∂ t f, ∂ τ f, ∂ x3 f ∈ L 2 Σ; dσ(x) dt t
with L defined by

f 2 L = f 2 H 3 2 , 3 2 (Σ) + Σ |∂ t f | 2 + |∂ τ f | 2 + |∂ x3 f | 2 t dσ(x)dt.
Here, we denote by ∂ τ a tangential derivative with respect to ∂ω. We have considered first the well-posedness of the IBVP (1.2.1.1) given by the following result.

Theorem 1.2.1 ([Ki141], Theorem 3)Let q ∈ L ∞ (Ω) and f ∈ L. Then problem (1.2.1.1) admits a unique solution u ∈ C([0, T ]; H 1 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)) such that ∂ ν u ∈ L 2 (Σ). Moreover, this solution u satisfies u C([0,T ];H 1 (Ω)) + u C 1 ([0,T ];L 2 (Ω)) + ∂ ν u L 2 (Σ) C f L . (1.2.3.1)
We recall that for a bounded domain Ω, according to [LaLiTr, Theorem 2.1] (see also [START_REF] Bellassoued | Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem[END_REF]Theorem A. 2]), this result holds true for f ∈ H 1 (Σ). Since Ω = ω × R is an unbounded domain, we can not apply the analysis of [LaLiTr]. Nevertheless, we prove in [START_REF] Kian | Stability of the determination of a coefficient for wave equations in an infinite waveguide[END_REF] that (1.2.1.1) can be solved by a classical lifting argument.

In view of Theorem 1.2.1, we can define the hyperbolic DN map

Λ q : L → L 2 (Σ), f → ∂ ν u q associated with (1.2.1.1).
For 0 < α < 1 and h ∈ C(Ω), we set

[h] α = sup |h(x) -h(y)| |x -y| α : x, y ∈ Ω, x = y
and we consider the space

C α b (Ω) = {h ∈ C(Ω) ∩ L ∞ (Ω) : [h] α < ∞} with the norm h C α b (Ω) = h L ∞ (Ω) + [h] α .
Our first main result can be stated as follows.

Theorem 1.2.2 ([Ki141], Theorem 1) Let M > 0, 0 < α < 1 and let B M be the ball centered at 0 and of radius M of C α b (Ω). Then, for T > Diam(ω) and q 1 , q 2 ∈ B M , we have

q 1 -q 2 L ∞ (Ω) C Λ q1 -Λ q2 d (1.2.3.2) with d = min(2α,1)α 3(2α+2)(min(4α,2)+21) and C depending on M , T , α, Ω. Here Λ q1 -Λ q2 is the norm of Λ q1 -Λ q2 with respect to B L, L 2 (Σ) .
Let us remark that in this result we consider the full DN map. Consequently, we determine the coefficient q from measurements on the whole lateral boundary Σ which is an unbounded set. This is due to the fact that we consider a large class of coefficients q without any restriction on their behavior outside a compact set (we only assume that the coefficients are uniformly bounded and Hölderian). In order to extend this result to the determination of q from measurements in a bounded subset of Σ, we need more information about q. Namely, we need that the gap between two coefficients q 1 , q 2 reach its maximum in a fixed bounded subset of Ω. More precisely, let R > 0 and consider the spaces L R which consists in functions f ∈ L satisfying

f (t, x , x 3 ) = 0, t ∈ (0, T ), x ∈ ∂ω, |x 3 | R.
Let us introduce the partial DN map defined by

Λ R q : L R → L 2 ((0, T ) × ∂ω × (-R, R)), f → ∂ ν u q |(0,T )×∂ω×(-R,R) .
Our second result is the following.

Theorem 1.2.3 ([Ki141], Theorem 2)Let M > 0, 0 < α < 1 and let B M be the ball centered at 0 and of radius M of C α b (Ω). Let T > Diam(ω), q 1 , q 2 ∈ B M and assume that there exists r > 0 such that

q 1 -q 2 L ∞ (Ω) = q 1 -q 2 L ∞ (ω×(-r,r)) . (1.2.3.3)
Then, for all R > r we have

q 1 -q 2 L ∞ (Ω) C Λ R q1 -Λ R q2 d (1.2.3.4) with d = min(2α,1)α 3(2α+2)(min(4α,2)+21) and C depending on M , T , α, Ω, R. Here Λ R q1 -Λ R q2 is the norm of Λ R q1 -Λ R q2 with respect to B L R , L 2 ((0, T ) × ∂ω × (-R, R)) .
Clearly condition (1.2.3.3) will be fulfilled if we assume that q 1 = q 2 outside ω × (-r, r). Let us remark that this condition can also be fulfilled in more general cases. For instance, consider the condition

v(x , x 3 + 2r) = v(x , x 3 ), x ∈ ω, x 3 ∈ R.
(1.2.3.5)

Let g : R → R be a non negative continuous even function which is decreasing in (0, +∞). Then, condition (1.2.3.3) will be fulfilled if we assume that q 1 , q 2 are lying in the set

A g = {q : q(x , x 3 ) = g(x 3 )v(x , x 3 ), v ∈ C(Ω) ∩ L ∞ (Ω), v satisfies (1.2.3.5)}.
Note that the solution of (1.2.1.1) is defined in the unbounded domain Q = (0, T ) × Ω and condition (1.2.3.3) is fulfilled by coefficients having different types of behavior outside ω × (-r, r). Therefore, it seems to us that we can not prove Theorem 1.2.3 from results in bounded domain.

Description of the result

The main ingredients in the proof of the stability estimates (1.2.3.2) and (1.2.3.4) are suitable solutions of problem (1.2.1.1) called "geometric optics" (GO in short) solutions. This approach has been considered by various authors for the recovery of time-independent coefficients in a bounded domain (e.g. [START_REF] Rakesh | Uniqueness for an inverse problem for the wave equation[END_REF][START_REF] Bellassoued | Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem[END_REF][START_REF] Bellassoued | Lipschitz stability for a hyperbolic inverse problem by finite local boundary data[END_REF][START_REF] Bellassoued | Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map[END_REF][START_REF] Stefanov | Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media[END_REF]) or in an unbounded domain for coefficients constant outside a compact set (e. g. [START_REF] Rakesh | An inverse problem for the wave equation in the half plane[END_REF][START_REF] Nakamura | Uniqueness for an Inverse Problem for the Wave Equation in the Half Space[END_REF]). In [START_REF] Kian | Stability of the determination of a coefficient for wave equations in an infinite waveguide[END_REF], we take into account the cylindrical form of the infinite waveguide in order to extend this approach to the stable recovery of time-independent coefficients in an unbounded domain. For this purpose, we build GO solutions suitably designed for our problem by using a separation of variable argument. More precisely, we present every variable x ∈ Ω in the form x = (x , x 3 ) with x = (x 1 , x 2 ) ∈ ω and x 3 ∈ R. Using this representation we split the differential operator

∂ 2 t -∆ defined on Q into the sum of two differential operators [∂ 2 t -∆ x ]+[-∂ 2 x3 ] defined on Q, with ∆ x = ∂ 2 x1 +∂ 2 x2
the Laplacian in ω. Applying this decomposition, we prove existence of GO solutions

u ± ∈ H 2 (Q) of the equation ∂ 2 t u -∆u + qu = 0 on Q which take the form u ± (t, x , x 3 ) = Φ(x + tθ)h(x 3 )e ±iρ(x •θ+t) + Ψ ± (t, x , x 3 ; ρ), t ∈ (0, T ), x ∈ ω, x 3 ∈ R (1.2.4.1) with h ∈ S(R), Φ ∈ C ∞ 0 (R 2 ), θ ∈ S 1 = {y ∈ R 2 : |y| = 1}
, a large parameter ρ > 1 and a remainder term Ψ ± that satisfies the decay

Ψ ± (.; ρ) L 2 (Q) C ρ
with respect to ρ. Combining some properties of X-ray transform of compactly supported functions (e.g. [Nat]), we use the expression Φ and h to prove (1.2.3.2) and (1.2.3.4).

Stable recovery of an electric potential in a dynamical Schrödinger equation from a single boundary measurement

In this section, we are concerned with [BeKiSo1, [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] which are joint works with Mourad Bellassoued, Quang Sang Phan and Eric Soccorsi. We introduce the infinite cylindrical domain

Ω = ω × R,
where ω is a connected bounded open subset of R n-1 , n 2, with C 2 -boundary ∂ω. Given T > 0 we examine the following initial boundary value problem

   -i∂ t u -∆u + q(x)u = 0, in Q := (0, T ) × Ω, u(0, x) = u 0 (x), x ∈ Ω, u(t, x) = g(t, x), (t, x) ∈ Σ := (0, T ) × Γ. (1.3.0.2)
Here u 0 (resp., g) is the initial (resp., boundary) condition associated with (1.3.0.2) and q is a function of x ∈ Ω only.

Since Γ is unbounded we make the boundary condition in the last line of (1.3.0.2) more precise. Writing x := (x , x n ) with x := (x 1 , . . . , x n-1 ) ∈ ω for every x ∈ Ω we extend the mapping

C ∞ 0 ((0, T ) × R; H 2 (ω)) -→ L 2 ((0, T ) × R; H 3/2 (∂ω))) v → [(t, x n ) ∈ (0, T ) × R → v(t, •, x n ) |∂ω ], (1.3.0.3) to a bounded operator from L 2 ((0, T) × R; H 2 (ω)) into L 2 ((0, T) × R; H 3/2 (∂ω))
, denoted by γ 0 . Then for every u ∈ C 0 ([0, T ]; H 2 (Ω)) the above mentioned boundary condition reads γ 0 u = g. The main purpose of [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF][START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] is to prove stability in the determination of the scalar potential q from one boundary measurement of the normal derivative of the solution u to (1.3.0.2) on some portion of Γ.

Motivations

The problem (1.3.0.2) describe the quantum motion constrained by the waveguide Ω, of a charged particle (in a "natural" system of units where the various physical constants such as the mass and the electric charge are taken equal to one) under the influence of the "electric" potential q. Carbon nanotubes, who have a lengthto-diameter ratio up to 10 8 /1, are commonly modelled by infinite cylindrical domains such as Ω = ω × R. These nanostructures exhibit unusual physical properties, which are valuable for electronics, optics and other fields of materials science and technology, but they can be affected by the inevitable presence of electrostatic quantum disorder, see e. g. [ChLi, KaBaFi]. This motivates for a closer look into the inverse problem of estimating the strength of the electric impurity potential p from the (partial) knowledge of the wave function u on the boundary Γ of the infinite carbon nanotube Ω.

Forward problem

We recall that in [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF][START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] we use the so called Bukgheim-Klibanov approach initially introduced in [BuKl] and extended to the Schrödinger equation by [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF]. This approach requires sufficiently smooth solutions of (1.3.0.2). In the context of [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF][START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] where the problem is stated in an unbounded domain, such results need to be clearly stated. We start by recalling the results of [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF][START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] related to existence of sufficiently smooth solutions of (1.3.0.2).

We choose

g := γ 0 G 0 , with G 0 (t, x) := u 0 (x) + it(∆ -q 0 )u 0 (x), (t, x) ∈ Q, (1.3.2.1) 
where q 0 = q 0 (x) is a given scalar function we shall make precise below.

Our result related to the forward problem for [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] can be stated as follows.

Theorem 1.3.1 (Thorem 1.1, [START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF]) Let k 2, assume that ∂ω is C 2k , and pick

(q 0 , u 0 ) ∈ W 2k,∞ (Ω) ∩ C 2(k-1) (Ω; R) × H 2(k+1) (Ω),
such that (-∆ + q 0 ) 2+j u 0 = 0 on ∂Ω for all j ∈ {0, 1, . . . , k -2}.

(1.3.2.2)

Then for each q ∈ W 2k,∞ (Ω) ∩ C 2(k-1) (Ω) obeying the condition ∂ m x q = ∂ m x q 0 on ∂Ω for all m := (m j ) n j=1 ∈ N n with |m| := n j=1 m j 2(k -2), (1.3.2.3)
there is a unique solution u ∈ ∩ k j=0 C j ([0, T ]; H 2(k-j) (Ω)) to the boundary value problem (1.3.0.2) with g satisfying (1.3.2.1). Moreover, we have the estimate

k j=0 u C j ([0,T ];H 2(k-j) (Ω)) C u 0 H 2(k+1) (Ω) , (1.3.2.4)
where C > 0 is a constant depending only on T , ω, k, and max( q 0 W 2k,∞ (Ω) , q W 2k,∞ (Ω) ).

We now introduce the natural number

∈ N ∩ (n/4, n/4 + 1] . (1.3.2.5)
Then, applying Theorem 1.3.1 with k = + 1, we get that u ∈ C 1 ([0, T ]; H 2 (Ω)) and the estimate 

u C 1 ([0,T ];H 2 (Ω)) C u 0 H 2( +2) (Ω) . Since 2 > n/2 then H 2 (Ω) is continuously embedded in L ∞ (Ω).
u C 1 ([0,T ],L ∞ (Ω)) C u 0 H 2( +2) (Ω) .
Here C > 0 is a constant depending only on T , ω and max( q 0 W 2( +1),∞ (Ω) , q W 2( +1),∞ (Ω) ).

This completes the statement of the forward problem of [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF].

In [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF] we consider problem (1.3.0.2) with g = 0. In this context, the forward problem can be stated in the following way.

Corollary 1.3.2 Assume that the conditions of Theorem 1.3.1 are satisfied with k = + 1, g = 0 and u 0 satisfying

u 0 (x) = (-∆ + q 0 )u 0 (x) = 0, x ∈ Γ. (1.3.2.6)
Then there exists a positive constant C, depending only on ω, T and M , such that the solution u to (1.3.0.2) satisfies the estimate:

u C 1 ([0,T ],L ∞ (Ω)) C u 0 H 2( +1) (Ω) .

Stable recovery of the electric potential

In this subsection we introduce [BeKiSo1, KiPhSo1, KiPhSo2] and we briefly comment on them. We start with [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF]. From now on we fix given by (1.3.2.5) and

(q 0 , u 0 ) ∈ W 2( +1),∞ (Ω) ∩ C 2 (Ω; R) × H 2( +2) (Ω) satisfying (1.3.2.
2) for k = + 1. We assume also that ∂ω is C 2( +1) . For M > 0 and q ∈ W 2( +1),∞ (Ω) fixed, we define the set of "admissible scalar potentials" as

Q M (q 0 ) := {q ∈ W 2( +1),∞ (Ω; R), q W 2( +1),∞ (Ω) M and q satifies (1.3.2.3)}. Moreover, for O a C 2( +1) -domain obeying ω × (-, ) ⊂ O ⊂ ω × (-L, L), we consider Γ * satisfying Γ * ⊃ {x ∈ ∂O, (x -x 0 ) • ν O (x) 0} ∩ ∂ω × (-L, L)
, where ν O is the outward unit normal to ∂O and x 0 is arbitrary in R n \ O. We fix also γ * ⊃ {x ∈ ∂ω, (x -x 0 ) • ν (x ) 0}, where x 0 is arbitrarily fixed in R n-1 \ ω.

In [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF], we are concerned with the stability issue around any q 1 ∈ Q M (q 0 ), i.e. we want to upper bound the L 2 norm of q 1 -q 2 by some increasing function of the difference u 1 -u 2 . That is to say that q 2 ∈ Q M (p) and the solution u j , for j = 1, 2, to (1.3.0.2), where q j is substituted for q, are known, while q 1 is unknown.

Theorem 1.3.2 (Theorem 1.1, [ KiPhSo1 
]) consider ∂ω, q 0 , u 0 and g obeying the conditions of Theorem 1.3.1 for k = + 1, where is the same as in (1.3.2.5). Let u 0 satisfy

u 0 (x) α > 0, x ∈ ω × (-, ), (1.3.3.1) let q j ∈ Q M (q 0 ), j = 1, 2, fulfill q 1 (x) = q 2 (x), x ∈ ω × (R \ (-, )), (1.3.3.2)
and let u j denote the

C 1 ([0, T ]; H 2 (Ω) ∩ H 1 0 (Ω)) ∩ C 2 ([0, T ]; L 2 (Ω))-solution to (1.3.0.
2) associated with u 0 , g = γ 0 G and q j . Then for every L > , there exist Γ * ⊂ ∂ω × (-L, L) and a constant C > 0 depending only on L, T , M , ω and Γ * , such that we have

q 1 -q 2 L 2 (Ω) C ∂ ν (∂ t u 1 -∂ t u 2 ) L 2 ((0,T )×Γ * ) + u 1 -u 2 H 1 (0,T ;H 1 (ω×S L )) , (1.3.3.3) with S L := (-L, -) ∪ ( , L).
Moreover there is a subboundary γ * ⊂ ∂ω, such that the estimate This yields (1.3.3.4), implying that the electrostatic quantum potential is now Lipschitz stably retrieved in Ω from only one lateral measurement of the normal derivative ∂ ν u on some subboundary of Σ. This result is similar to the one obtained in a bounded domain by Baudouin and Puel, see [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF][ Theorem 1]. It should nevertheless be noticed that, contrarily to (1.3.3.3), and despite of the fact that the scalar potential under identification is assumed to be known outside a compact set, the Neumann data required in the right hand side of (1.3.3.2) is measured on an infinitely extended subboundary of Σ.

q 1 -q 2 L 2 (Ω) C ∂ ν ∂ t u 1 -∂ ν ∂ t u 2 L 2 ((0,T )×γ * ×R) , (1.3 
In [START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] we have extended the result of [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF] to the stable recovery of coefficients that are not necessary compactly supported. Indeed, in [START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] we aim to retrieve real-valued scalar potentials q

verifying |q(x , x n ) -q 0 (x , x n )| ae -b xn dε , (x , x n ) ∈ Ω, (1.3.3.5) 
where a > 0, b > 0, ε > 0 and d ε ∈ (2(1 + ε)/3, +∞) are a priori fixed constants. Here and henceforth the notation t stands for (1 + t 2 ) 1/2 , t ∈ R. Notice that this condition is weaker than the compactness assumption imposed in [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF] on the support of q. Namely, we introduce the set of admissible potentials as

A ε (q 0 ) := {q ∈ W 2( +1),∞ (Ω) ∩ C 2 (Ω; R) verifying (1.3.2.
3) for k = + 1 and (1.3.3.5)}.

The main result of [START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] on the above mentioned inverse problem is as follows.

Theorem 1.3.3 (Theorem 1.4, [START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF]) Let ∂ω, q 0 , u 0 and g obey the conditions of Theorem 1.3.1 for k = + 1, where is the same as in (1.3.2.5). Assume moreover that there are two constants υ 0 > 0 and ε > 0 such that we have

|u 0 (x , x n )| υ 0 x n -(1+ε)/2 , (x , x n ) ∈ Ω. (1.3.3.6)
For M > 0 fixed, we consider two potentials q j , j = 1, 2, in A ε (q 0 ), such that q j W 2( +1),∞ (Ω) M , and we note u j the solution to (1.3.0.2) where q j is substituted for q, given by Theorem 1.3.1. Then, for all δ ∈ (0, b), where b is the same as in (1.3.3.5), there exists a subboundary γ * ⊂ ∂ω and a constant C > 0, depending only on ω, T , M , u 0 2( +2),Ω , δ, ε, a, b and υ 0 , such that the estimate

q 1 -q 2 L 2 (Ω) C ∂ ν ∂ t u 1 -∂ ν ∂ t u 2 θ L 2 (Σ * ) , (1.3.3.7) holds for Σ * := (0, T ) × γ * × R and θ := (b -δ)/(2b -δ).
It is evident that Theorem 1.3.3 yields uniqueness in the identification of the scalar potential in A ε (q 0 ) from the knowledge of partial Neumann data for the time-derivative of the solution to (1.3.0.2):

∀(q 1 , q 2 ) ∈ A ε (q 0 ) 2 , (∂ ν u 1 (t, x) = ∂ ν u 2 (t, x), (t, x) ∈ Σ * ) =⇒ (q 1 (x) = q 2 (x), x ∈ Ω) .
Moreover we stress out that a whole class of potentials q 0 and initial values u 0 fulfilling the conditions of Theorem 1.3.1 and 1.3.3 is exhibited in [KiPhSo2, Subsection 3.4]. To our best knowledge, this result is the first result of stable recovery of a non-compactly supported time-independent coefficient appearing in Schrödinger equation from a single boundary measurement.

In contrast to [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF], the result of [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF] is stated with measurement on a subset of ∂Ω of the form S * × R, where this time S * is an arbitrary relatively open subset of ∂ω. Like in [START_REF] Bellassoued | Logarithmic stability in the dynamical inverse problem for the Schrödinger equation by arbitrary boundary observation[END_REF], such a result requires an extra information about the admissible potential q. Namely, we need to know the coefficient q on an arbitrary neighborhood of the boundary Γ. This extra information is technically restrictive, but it is acceptable from a strict practical viewpoint upon admitting that the electric potential can be measured from outside the domain Ω in the vicinity of the boundary. We consider q 0 ∈ W 2( +1),∞ (Ω; R) and pick an open subset ω 0 of ω, such that ∂ω ⊂ ω 0 . Given b > 0 and d > 0, we aim in [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF] to retrieve all functions q : Ω → R satisfying

N b,d (q -q 0 ) := e b xn d (q -q 0 ) L ∞ (Ω) < ∞ and q(x) = q 0 (x) for x ∈ Ω 0 := ω 0 × R.
Further, M being an a priori fixed non-negative constant, we define the set of admissible potentials as

A(q 0 , ω 0 ) := {q ∈ W 2( +1),∞ (Ω); q = q 0 in Ω 0 , q W 2( +1),∞ (Ω) M and N b,d (q -q 0 ) M }.
Last, we choose a relatively open subset S * of ∂ω, put Γ * := S * × R, and introduce the norm

∂ ν u * := ∂ ν u H 1 (0,T ;L 2 (Γ * )) , u ∈ H 2 .
The main result of [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF] is as follows.

Theorem 1.3.4 (Theorem 1.3, [BeKiSo1]) Let condition (1.3.2.6
) and the conditions of Theorem 1.3.1 with k = + 1, q = q 0 and g = 0 be satisfied. Assume moreover that u 0 fulfills u 0 H 2( +1) (Ω) M for some constant M > 0, and that

∃κ > 0, ∃d 0 ∈ (0, 2d/3), |u 0 (x , x n )| κ x n -d0/2 , (x , x n ) ∈ Ω\Ω 0 . (1.3.3.8)
For q j ∈ A(q 0 , ω 0 ), j = 1, 2, we denote by u j the solution to (1.3.0.2), where q j is substituted for q. Then, for any ε ∈ (0, /2), there exists a constant C = C(ω, ω 0 , T, M, M , b, d, ε) > 0, such that we have

q 1 -q 2 L 2 (Ω) C ∂ ν (u 1 -u 2 ) H 1 (0,T ;L 2 (Γ * )) + log ∂ ν (u 1 -u 2 ) H 1 (0,T ;L 2 (Γ * )) -1 ε . (1.3.3.9)
Let us remark that, we assume in (1.3.3.6) and (1.3.3.8) that |u(•, 0)| = |u 0 | > 0 in any subset of Ω where the electric potential is retrieved. This is because the uniqueness of the potential is not known in general, without this specific assumption, even in the case where the set {x ∈ Ω \ Ω 0 ; u 0 (x) = 0} has zero Lebesgue measure. This non-degeneracy condition is very restrictive but it is still an open question to know how it can be weakened in the context of inverse coefficients problems with a finite number of data observations.

Idea of the proof

The occurrence of the internal measurement of u in (1.3.3.3) is due to the unbounded geometry of Ω. More precisely this is a direct consequence of the technique used for the derivation of the stability inequality (1.3.3.3), which is by means of a global Carleman estimate for the Schrödinger equation in a bounded domain established by [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF]. Indeed, this strategy requires a cut off function with first derivative supported in (-L, -) ∪ ( , L), which gives rise to the measurement of u in S ± L . Notice that the use of a Carleman estimate known to be valid in a bounded domain of R n only, was made possible here since the difference q 1 -q 2 is compactly supported in R n . A fact that follows from assumption (1.3.3.3) expressing that the scalar potential to be retrieved is known outside some fixed bounded set. Since the unknown part of q is compactly supported, it seems at first sight quite reasonable to guess that this question could well be answered by adapting the above technique to some suitable truncation of u. Nevertheless we shall prove that such a strategy necessarily adds unexpected "control" terms (i.e. "volume observations" of the solution) in the right hand side of the corresponding stability inequality, and is therefore inaccurate. It turns out that this inconvenience can be avoided upon substituting some specifically designed Carleman estimate for the Schrödinger equation in an unbounded cylindrical domain to the one of [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF][ Proposition 3]. In order to introduce this Carleman estimate, we start by considering the function β defined on Ω by

β(x) = |x -x 0 | 2 , x = (x , x n ) ∈ Ω, x ∈ ω, x n ∈ R.
Further, we put

β := β + K, where K := r β ∞ for some r > 1, (1.3.4.1)
and define the two following weight functions for λ > 0:

ϕ(t, x) := e λβ(x) (T + t)(T -t)
and η(t, x) := e 2λK -e λβ(x)

(T + t)(T -t) , (t, x) ∈ (-T, T ) × Ω. (1.3.4.2)
Finally, for all s > 0 we introduce the two following operators acting in (C ∞ 0 ) ((-T, T ) × Ω):

M 1 := i∂ t + ∆ + s 2 |∇η| 2 and M 2 := isη + 2s∇ x η • ∇ + s(∆ x η). (1.3.4.3) 
It is easily seen that M 1 (resp. M 2 ) is the adjoint (resp. skew-adjoint) part of the operator e -sη (i∂ t -∆)e sη .

Here ∆ := ∆ x + ∂ 2 xn where ∆ x := Σ n-1 j=1 ∂ 2 xj is the Laplacian in ω, where ∇ x (resp. ∆ x ) stands for the gradient (resp. the Laplacian) operator w.r.t. x ∈ ω. Having said that we may now state the following global Carleman estimate Proposition 1.3.1 (Proposition 3.3, [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF]) There are two constants s 0 > 0 and C > 0, depending only on T , ω and γ * , such that the estimate

s e -sη ∇ x v 2 L 2 (Q) + s 3 e -sη v 2 L 2 (Q) + j=1,2 M j e -sη v 2 L 2 (Q) C s e -sη ϕ 1/2 (∂ ν β) 1/2 ∂ ν v 2 L 2 ((-T,T )×γ * ×R) + e -sη (i∂ t -∆)v 2 L 2 (Q) , (1.3.4.4) 
holds for all s s 0 and any function v ∈ L 2 (-T, T ;

H 1 0 (Ω)) verifying (i∂ t -∆)v ∈ L 2 (Q) and ∂ ν v ∈ L 2 (-T, T ; L 2 (γ * × R)).
This new global Carleman estimate is the main novelty of [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF] as it is the main tool for generalizing the Lipschitz stability inequality of [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF][Theorem 1] to the unbounded domain Ω under consideration. The derivation of this Carleman estimate follows from the combination of the Carleman estimate of [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF] for the equation i∂ t -∆ x on the bounded domain (0, T ) × ω and of some properties of the unitary transform e it∂ 2 xn on L 2 (Q). Roughly speaking, we apply the unitary operator e it∂ 2 xn to transform equations of the form

i∂ t v -∆ x v = F on Q to equations of the form i∂ t w -∆ x w = G(•, x n ) on (0, T ) × ω for a.e. x n ∈ R.
Combining this with [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF][Proposition 3], we derive Proposition 1.3.1.

In [START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF], we use the Carleman estimate, stated in Proposition 1.3.1, for proving Theorem 1.3.3. In order to extend the result of [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF] to the stable recovery of none compactly supported function q we use the decay of the difference of the coefficient with respect to the a priori known coefficient q 0 stated in (1.3.3.5). This approach allows to extend the stable recovery of [START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF] to none compactly supported potential, but Lipschitz stability (1.3.3.4) degenerated to the Hölder stability (1.3.3.7). Notice that in the framework of the Bukhgeim-Klibanov method in a bounded spatial domain Ω, it is crucial that |u 0 | be bounded from below by a positive constant, uniformly in Ω. But since Ω is infinitely extended in [START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF], such a statement is incompatible with the square integrability property satisfied by u 0 in Ω. Therefore the usual non-degeneracy condition imposed on the initial condition function has to be weakened into (1.3.3.6). In the same spirit we point out that the derivation of a Carleman estimate in an unbounded domain such as Ω is not straightforward and does not directly follows from the corresponding known results in bounded domains.

In [START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF] we combine the approach developed in [START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] with an extension of the approach of [START_REF] Bellassoued | Logarithmic stability in the dynamical inverse problem for the Schrödinger equation by arbitrary boundary observation[END_REF] to unbounded cylindrical domain in order to relax the geometrical condition imposed to γ * and derive estimate (1.3.3.9). For this purpose, we use the so called Fourier-Bros-Iagolnitzer (abbreviated as FBI) transform in order to establish the connection between Schrödinger and parabolic equations. This application of the FBI transform, already used by [Le92, LeRo, Ph, RaTa, Ro91, Ro95, RoZu] for sharp unique continuation results, transform the solution to (1.3.0.2) to a solution of a parabolic equation in the vicinity of the boundary Γ. Then, applying a parabolic Carleman estimate, where no geometric condition is imposed on the control domain, to the FBI transform of the solution of (1.3.0.2) and applying the Carleman estimate 1.3.1 we derive (1.3.3.9).

Recovery of an electromagnetic potential in a waveguide

Statement of the problem

This section is devoted to [START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF] which is a joint work with Mourad Bellassoued and Eric Soccorsi. We consider Ω = ω × R ⊂ R 3 , where ω is a simply connected bounded open subset of R 2 with C 2 -boundary ∂ω. Then, we introduce the IBVP

   i∂ t u + ∆ A u + qu = 0, in Q := (0, T ) × Ω, u(0, •) = 0, in Ω, u = f, on Σ := (0, T ) × Γ, (1.4.1.1)
where ∆ A is the Laplace operator associated with the magnetic potential A ∈ W 1,∞ (Ω) 3 ,

∆ A := 3 j=1 (∂ xj + ia j ) 2 = ∆ + 2iA • ∇ + i(∇ • A) -|A| 2 , (1.4.1.2)
and q ∈ L ∞ (Ω). We define the DN map associated with (1.4.1.1), as

Λ A,q (f ) := (∂ ν + iA • ν)u, f ∈ L 2 (Σ), (1.4.1.3)
where u is the solution to (1.4.1.1). In [START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF] we examine the uniqueness and stability issues in the inverse problem of determining in some suitable sense the electric potential q and the gauge class of A, from the knowledge of Λ A,q .

Direct problem

We start by examining the well-posedness of the IBVP (1.4.1.1) in the functional space C([0, T ],

H 1 (Ω)) ∩ C 1 ([0, T ], H -1 (Ω))
. Namely, we are aiming for sufficient conditions on the coefficients A, q and the nonhomogeneous Dirichlet data f , ensuring that (1.4.1.1) admits a unique solution in the transposition sense. We say that u ∈ L ∞ (0, T ; H -1 (Ω)) is a solution to (1.4.1.1) in the transposition sense, if the identity

u, F L ∞ (0,T ;H -1 (Ω)),L 1 (0,T ;H 1 0 (Ω)) = f, ∂ ν v L 2 (Σ) ,
holds for any F ∈ L 1 (0, T ; H 1 0 (Ω)). Here v denotes the unique C([0, T ], H 1 (Ω))-solution to the transposition system   

(i∂ t v + ∆ A + q)v = F, in Q, v(T, •) = 0, in Ω, v = 0, on Σ.
Since ∂Ω is not bounded, we use the notation introduced in Subsection 1.2.3 and we define

H 2,1 0 (Σ) := {f ∈ H 2,1 (Σ); f (0, •) = ∂ t f (0, •) = 0}
and state the existence and uniqueness result of solutions to (1.4.1.1) in the transposition sense, as follows.

Theorem 1.4.1 (Theorem 1.1, [BeKiSo2]) For M > 0, let A ∈ W 1,∞ (Ω, R) 3 and q ∈ W 1,∞ (Ω, R) satisfy the condition A W 1,∞ (Ω) 3 + q W 1,∞ (Ω) M. (1.4.2.1)
Then, for each f ∈ H 2,1 0 (Σ), the IBVP (1.4.1.1) admits a unique solution in the transposition sense u ∈ H 1 (0, T ; H 1 (Ω)), and the estimate

u H 1 (0,T ;H 1 (Ω)) C f H 2,1 (Σ) , (1.4.2.2)
holds for some positive constant C depending only on T , ω and M . Moreover, the normal derivative ∂ ν u ∈ L 2 (Σ), and we have

∂ ν u L 2 (Σ) C f H 2,1 (Σ) . (1.4.2.3) 
It is clear from the definition (1.4.1.3) and the continuity property (1.4.2.3), that the DN map Λ A,q belongs to B(H 2,1 0 (Σ), L 2 (Σ)), the set of linear bounded operators from H 2,1 0 (Σ) into L 2 (Σ).

Obstructions to uniqueness

Two magnetic potentials A j ∈ W 1,∞ (Ω) 3 , j = 1, 2, are said gauge equivalent, if there exists Ψ ∈ W 2,∞ (Ω) obeying Ψ| Γ = 0, such that

A 2 = A 1 + ∇Ψ. (1.4.3.1)
There is a natural obstruction to the identification of A by Λ A,q , arising from the invariance of the DN map under gauge transformation. More precisely, if Ψ ∈ W 2,∞ (Ω) verifies Ψ| Γ = 0, then we have u A+∇Ψ = e -iΨ u A , where u A (resp., u A+∇Ψ ) denotes the solution to (1.4.1.1) associated with the magnetic potential A (resp., A + ∇Ψ), q ∈ L ∞ (Ω) and f ∈ H 2,1 0 (Σ). Further, as

(∂ ν + i(A + ∇Ψ) • ν)u A+∇Ψ = e -iΨ (∂ ν + iA • ν)u A = (∂ ν + iA • ν)u A on Σ,
by direct calculation, we get that Λ A,q = Λ A+∇Ψ,q , despite of the fact that the two potentials A and A + ∇Ψ do not coincide in Ω (unless ψ is uniformly zero). This shows that the best we can expect from the knowledge of the DN map is to identify (A, q) modulo gauge transformation of A. Assuming that A is known on ∂Ω, this may be equivalently reformulated as to whether the magnetic field defined by the 2-form dA := 1 2

3 i,j=1 (∂ xj a i -∂ xi a j )dx j ∧ dx i ,
and the electric potential q, can be retrieved by Λ A,q . This is the inverse problem that we examine [START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF].

Stable recovery of the electromagnetic potential

We define the set of admissible magnetic potentials as 

A := A = (a i ) 1 i 3 ; a 1 , a 2 ∈ L ∞ x3 (R, H 2 0 (ω)) ∩ W 2,∞ ( 
x 3 d |∂ α x a 3 (x)|   < ∞ for some d > 1, (1.4.4.1) 
and

∂ α x a 3 (x) = 0, x ∈ ∂Ω, α ∈ N 3 such that |α| 2. (1.4.4.2)
Here H 2 0 (ω) denotes the closure of C ∞ 0 (ω) in the H 2 (ω)-topology, and x 3 := (1 + x 2 3 ) 1/2 . The first result of [START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF] claims stable determination of the magnetic field dA and unique identification of electric potential q, from the knowledge of the full data, i.e. the DN map defined by (1.4.1.3), where both the Dirichlet and Neumann measurements are performed on the whole boundary Σ. 3 , and for j = 1, 2, let q j ∈ W 1,∞ (Ω; R), and A j := (a i,j ) 1 i 3 ∈ A * + A, satisfy the condition:

Theorem 1.4.2 (Theorem 1.2, [BeKiSo2]) Fix A * := (a i, * ) 1 i 3 ∈ W 2,∞ (Ω; R)
2 i=1 ∂ xi (∂ x3 (a i,1 -a i,2 ) -∂ xi (a 3,1 -a 3,2 )) = 0, in Ω. (1.4.4.3) 
Then, Λ A1,q1 = Λ A2,q2 yields (dA 1 , q 1 ) = (dA 2 , q 2 ). Assume moreover that the estimate

2 j=1 A j W 2,∞ (Ω) + q j W 1,∞ (Ω) + e j W 3,∞ (Ω) + A * W 2,∞ (Ω) M, (1.4.4.4)
holds for some M > 0, with

e j (x , x 3 ) := x3 -∞
(a 3,j (x , y 3 ) -a 3, * (x , y 3 ))dy 3 , (x , x 3 ) ∈ Ω.

Then there exist two constants µ 0 ∈ (0, 1) and C > 0, both of them depending only on T , ω and M , such that we have

dA 1 -dA 2 L ∞ x 3 (R,L 2 (ω)) C Λ A1,q1 -Λ A2,q2 µ0 . (1.4.4.5)
In (1.4.4.5), • denotes the usual norm in B(H 2,1 0 (Σ), L 2 (Σ)). Notice that in Theorem 1.4.2 we make use of the full DN map, as the magnetic field dA and the electric potential q are recovered by observing the solution to (1.4.1.1) on the entire lateral boundary Σ. In this case we may consider general unknown coefficients, in the sense that the behavior of A and q with respect to the infinite variable is not prescribed (we only assume that these coefficients and their derivatives are uniformly bounded in Ω). In order to achieve the same result by measuring on a bounded subset of Σ only, we need some extra information on the behavior of the unknown coefficients with respect to x 3 . Namely, we impose that the strength of the magnetic field generated by A = (a i ) 1 i 3 , reaches its maximum in the bounded subset (-r, r) × ω of Ω, for some fixed r > 0, i.e.

∂ xi a j -∂ xj a i L ∞ x 3 (R,L 2 (ω)) = ∂ xi a j -∂ xj a i L ∞ x 3
(-r,r;L 2 (ω)) , i, j = 1, 2, 3.

(1.4.4.6)

Thus, with reference to (1.4.4.6), we set Γ r := ∂ω × (-r, r), introduce the space

H 2,1 0 ((0, T ) × Γ r ) := {f ∈ H 2,1 (Σ); f (0, •) = ∂ t f (0, •) = 0 and supp f ⊂ [0, T ] × ∂ω × [-r, r]},
and define the partial DN map Λ A,q,r , by

Λ A,q,r (f ) := (∂ ν + iA • ν)u |(0,T )×Γr , f ∈ H 2,1 0 ((0, T ) × Γ r ),
where u denotes the solution to (1.4.1.1). The following result states for each r > 0, that the magnetic field induced by potentials belonging (up to an additive W 2,∞ (Ω, R) 3 -term) to

A r := {A = (a i ) 1 i 3 ∈ A satisfying (1.4.4.6)},
can be retrieved from the knowledge of the partial DN map Λ A,q,r , provided we have r > r.

Theorem 1.4.3 (Theorem 1.3, [START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF]) For j = 1, 2, let q j ∈ W 1,∞ (Ω; R), and let

A j ∈ W 2,∞ (Ω; R) 3 satisfy A 1 -A 2 ∈ A r
, for some r > 0. Suppose that there exists r > r, such that Λ A1,q1,r = Λ A2,q2,r . Then, we have dA 1 = dA 2 . Furthermore, if

q 1 -q 2 L ∞ x 3 (R,H -1 (ω)) = q 1 -q 2 L ∞ x 3 (-r,r;H -1 (ω)) ,
we have in addition q 1 = q 2 . Assume moreover that (1.4.4.3)-(1.4.4.4) hold. Then, the estimate

dA 1 -dA 2 L ∞ x 3 (R,L 2 (ω)) 3 C Λ A1,q1,r -Λ A2,q2,r µ1 , (1.4.4.7) 
holds with two constants C > 0, and µ 1 ∈ (0, 1), depending only on T , ω, M , r and r .

We stress out that Theorem 1.4.3 applies not only to magnetic (resp., electric) potentials A j (resp., q j ), j = 1, 2, which coincide outside ω × (-r, r), but to a fairly more general class of magnetic potentials, containing, e.g., 2r-periodic potentials with respect to x 3 . More generally, if g ∈ W 2,∞ (R, R + ) (resp. g ∈ W 1,∞ (R, R + )) is an even and non-increasing function in R + , then it is easy to see that potentials of the form g × A j (resp., g × q j ), where A j (resp., q j ) are suitable 2r-periodic magnetic (resp., electric) potentials with respect to x 3 , fulfill the conditions of Theorem 1.4.3.

Notice that the absence of stability for the electric potential q, manifested in both Theorems 1.4.2 and 1.4.3, arises from the infinite extension of the spatial domain Ω in the x 3 direction. Indeed, the usual derivation of a stability equality for q, from estimates such as (1.4.4.5) or (1.4.4.7), requires that the differential operator d be invertible in Ω. Such a property is true in bounded domains (see e.g. [Tz]), but, to the best of our knowledge, it is not known whether it can be extended to unbounded waveguides. One way to overcome this technical difficulty is to impose certain gauge condition on the magnetic potentials, by prescribing their divergence. In this case, we establish in Theorem 1.4.3, below, that the electric and magnetic potentials can be simultaneously and stably determined by the DN map. We first introduce the set of divergence free transverse magnetic potentials,

A 0 := {A = (a 1 , a 2 , 0); a 1 , a 2 ∈ L ∞ x3 (R, H 2 0 (ω)) ∩ W 2,∞ (Ω), ∂ x1 a 1 + ∂ x2 a 2 = 0 in Ω},
in such a way that we have 3 is an arbitrary fixed magnetic potential. Since identifying A ∈ A * + A 0 from the knowledge of the DN map, amounts to determining the magnetic field dA, we have the following result.

∇ • A = ∇ • A * for any A ∈ A * + A 0 . Here A * ∈ W 2,∞ (Ω)
Theorem 1.4.4 (Theorem 1.4, [START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF]) Let M > 0, and let A * ∈ W 2,∞ (Ω, R) 3 . For j = 1, 2, let q j ∈ W 1,∞ (Ω, R), and let A j ∈ A * + A 0 satisfy (1.4.4.4). Then, there exist two constant µ 2 ∈ (0, 1) and C = C(T, ω, M ) > 0, such that we have

A 1 -A 2 L ∞ x 3 (R,L 2 (ω)) 3 + q 1 -q 2 L ∞ x 3 (R,H -1 (ω)) C Λ A1,q1 -Λ A2,q2 µ2 . (1.4.4.8)
Assume moreover that the two following conditions

A 1 -A 2 L ∞ x 3 (R,L 2 (ω)) 3 = A 1 -A 2 L ∞ x 3
(-r,r;L 2 (ω)) 3 , (1.4.4.9)

and q 1 -q 2 L ∞ x 3 (R,H -1 (ω)) = q 1 -q 2 L ∞ x 3
(-r,r;H -1 (ω)) , (1.4.4.10) hold simultaneously for some r > 0. Then, for each r > r, we have

A 1 -A 2 L ∞ x 3 (R,L 2 (ω)) + q 1 -q 2 L ∞ x 3 (R,H -1 (ω)) C Λ A1,q1,r -Λ A2,q2,r µ2 , (1.4.4.11)
where C is a positive constant depending only on T , ω, M , r and r .

Comments

The key ingredient in the analysis of the inverse problem under examination is a suitable set of GO solutions to the magnetic Schrödinger equation appearing in (1.4.1.1). These functions are specifically designed for the waveguide geometry of Ω, in such a way that the unknown coefficients can be recovered by a separation of variables argument. More precisely, we seek GO solutions that are functions of x = (x , x 3 ) ∈ Ω, but where the transverse variable x ∈ ω and the translational variable x 3 ∈ R are separated. This approach was already used in [START_REF] Kian | Stability of the determination of a coefficient for wave equations in an infinite waveguide[END_REF] (see Section 1.2), for determining zero order unknown coefficients of the wave equation. Since we consider first order unknown coefficients in [START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF], the main issue here is to take into account both the cylindrical shape of Ω and the presence of the magnetic potential, in the design of the GO solutions.

When the domain Ω is bounded, we know from [START_REF] Bellassoued | Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map[END_REF] that the magnetic field dA is determined by the DN map associated with (1.4.1.1). The main achievement of [START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF] is to extend the above statement to unbounded cylindrical domains. Actually, we also improve the results of [START_REF] Bellassoued | Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map[END_REF] in two directions. First, we prove simultaneous determination of the magnetic field dA and the electric potential q. Second, the regularity condition imposed on admissible magnetic potentials entering the Schrödinger equation of (1.4.1.1), is weakened from W 3,∞ (Ω) to W 2,∞ (Ω).

To our best knowledge, [START_REF] Bellassoued | An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains[END_REF] is the first mathematical paper claiming identification by boundary measurements, of non-compactly supported magnetic field and electric potential. Moreover, in contrast to the other works [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF][START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] dealing with the stability issue of inverse problems for the Schrödinger equation in an infinite cylindrical domain, available in the mathematics literature, here we no longer require that the various unknown coefficients be periodic, or decay exponentially fast, in the translational direction of the waveguide.

Finally, since the conditions (1.4.4.6) and (1.4.4.9)-(1.4.4.10) are imposed in ω × (-r, r) only, and since the solution to (1.4.1.1) lives in the infinitely extended cylinder (0, T ) × Ω, we point out that the results of Theorems 1.4.3 and 1.4.4 cannot be derived from similar statements stated in a bounded domain.

1.5 The Calderón problem in an unbounded cylindrical domain for periodic coefficients

Position of the problem

In this section we introduce the results of [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map[END_REF][START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF] which correspond to joint works with Mourad Choulli and Eric Soccorsi. Let Ω := R × ω, where ω is a bounded domain of R 2 which contains the origin, with C 2 -boundary. Throughout the entire text we denote the generic point x ∈ Ω by x = (x 1 , x ), where x 1 ∈ R and x := (x 2 , x 3 ) ∈ ω. Given V ∈ L ∞ (Ω), real-valued and 1-periodic w.r.t. x 1 , i.e.

V (x 1 + 1, x ) = V (x 1 , x ), x ∈ ω, x 1 ∈ R, (1.5.1.1)
we consider the following boundary value problem (abbreviated as BVP ):

(-∆ + V )v = 0, in Ω, v = f, on Γ := ∂Ω. (1.5.1.2)
Since Γ = R × ∂ω, the outward unit vector ν normal to Γ reads

ν(x 1 , x ) = (0, ν (x )), x = (x 1 , x ) ∈ Γ,
where ν is the outer unit normal vector of ∂ω. Therefore, for notational simplicity, we shall refer to ν for both exterior unit vectors normal to ∂ω and to Γ. Next for ξ ∈ S 1 := {y ∈ R 2 ; |y| = 1} fixed, we introduce the ξ-illuminated (resp., ξ-shadowed) face of ∂ω, as

∂ω - ξ := {x ∈ ∂ω; ξ • ν(x) 0} (resp., ∂ω + ξ = {x ∈ ∂ω; ξ • ν(x) 0}). (1.5.1.3)
Here and in the remaining part of this text, we denote by x • y := k j=1 x j y j the Euclidian scalar product of any two vectors x := (x 1 , . . . , x k ) and y := (y 1 , . . . , y k ) of R k , for k ∈ N * := {1, 2, . . .}, and we put

|x| := (x • x) 1/2 .
Set G := R×G , where G is an arbitrary closed neighborhood of ∂ω - ξ in ∂ω. In [ChKiSo161, ChKiSo162], we seek stability in the determination of V from the knowledge of the partial DN map

Λ V : f → ∂ ν v |G , (1.5.1.4)
where v is the solution of (1.5.1.2). Otherwise stated we aim for recovering the 1-periodic electric perturbation V of the Dirichlet Laplacian in the waveguide Ω, by probing the system with voltage f at the boundary and measuring the current ∂ ν u on the sub-part G of Γ. From a physics viewpoint, this amounts to estimating the impurity potential perturbing the guided propagation in periodic media such as crystals.

State of the art

Since the seminal paper [Ca] by Calderón, the electrical impedance tomography problem, or Calderón problem, of retrieving the conductivity from the knowledge of the DN map on the boundary of a bounded domain, has attracted many attention. If the conductivity coefficient is scalar, then the Liouville transform allows us to rewrite the Calderón problem into the inverse problem of determining the electric potential in Laplace operator, from boundary measurements. There is an extensive literature on the Calderón problem. For isotropic conductivities, a great deal of work has been spent to weaken the regularity assumption on the conductivity required by [SyUh], in the study of the uniqueness issue, see e.g. [AsPa, CaRo, HaTa]. In all the above mentioned papers, the full DN map are needed, i.e. lateral observations are performed on the whole boundary. The first uniqueness result from partial data for the Calderón problem, was obtained in dimension 3 or greater, by Bukhgeim and Uhlmann in [BuUh]. Their result, which requires that Dirichlet data be imposed on the whole boundary, and that Neumann data boundary be observed on slightly more than half of the boundary, was improved by Kenig, Sjöstrand and Uhlmann in [KeSjUh], where both input and ouput data are measured on subsets of the boundary. In the two-dimensional case, Imanuvilov, Uhlmann and Yamamoto proved in [START_REF] Yu | The Calderón problem with partial data in two dimensions[END_REF][START_REF] Yu | Partial Cauchy data for general second order elliptic operators in two dimensions[END_REF] that the partial DN map uniquely determines the conductivity. These last results were extended to Riemann surfaces by Guillarmou, Tzou in [GuTz11-1] who considered also the recovery of a connection in [GuTz11-2]. We also mention that the special case of the Calderón problem in a bounded cylindrical domain of R 3 , was treated in [START_REF] Yu | Inverse boundary value problem for the Schrödinger equation in a cylindrical domain by partial boundary data[END_REF].

The stability issue for the Calderón problem was addressed by Alessandrini in [Al]. He proved a log-type stability estimate with respect to the full DN map. Such a result, which is known to be optimal, see [Ma], degenerates to log-log stability with partial Neumann data, see [HeWa]. In [START_REF] Caro | Stability estimates for the Radon transform with restricted data and applications[END_REF][START_REF] Caro | Stability estimates for the Calderón problem with partial data[END_REF], Caro, Dos Santos Ferreira and Ruiz proved stability results of log-log type, corresponding to the uniqueness results of [KeSjUh] in dimension 3 or greater. We refer to [BaFaRu, San] for stability estimates associated with the two-dimensional Calderón problem, and we point out that both the electric and the magnetic potentials are stably determined by the partial DN map in [START_REF] Tzou | Stability Estimate for the coefficients of magnetic Schrödinger equation from full and partial boundary measurements[END_REF][START_REF] Potenciano-Machado | Stability estimates for a Magnetic Schrodinger operator with partial data[END_REF][START_REF] Potenciano-Machado | Optimal stability estimates for a Magnetic Schrödinger operator with local data[END_REF].

Notations and admissible potentials

In this subsection we introduce some basic notations used throughout the section and define the set of admissible potentials under consideration in [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map[END_REF][START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF].

Let Y be either ω, ∂ω or G . For r and s in R, we denote by H r,s (R×Y ) the set H r (R; H s (Y )). Evidently we write H r,s (Ω) (resp., H r,s (Γ), H r,s (G)) instead of H r,s (R×ω) (resp., H r,s (R×∂ω), H r,s (R×G )). Although this notation is reminiscent of the one used by Lions and Magenes in [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF] for anisotropic Sobolev spaces

H r (R; L 2 (Y )) ∩ L 2 (R; H s (Y ))
, it is worth noticing that they do not coincide with H r,s (R × Y ), unless we have r = s = 0. Next, it is easy to see for each r > 0 and s > 0 that H -r,-s (R × Y ) is canonically identified with the space dual to H r,s 0 (R × Y ), with respect to the pivot space

H 0,0 (R × Y ) = L 2 (R × Y ). Here we have set H r,s 0 (R × Y ) := H r (R; H s 0 (Y )), where H s 0 (Y ) denotes the closure of C ∞ 0 (Y ) in the topology of the Sobolev space H s (Y ).
Further, X 1 and X 2 being two Hilbert spaces, we denote by B(X 1 , X 2 ) the class of bounded operators T :

X 1 → X 2 .
Let us now introduce the set of admissible unknown potentials. To this end we denote by C ω the Poincaré constant associated with ω, i.e. the largest of those constants c > 0 such that the Poincaré inequality

∇ u L 2 (ω) c u L 2 (ω) , u ∈ H 1 0 (ω), (1.5.3.1) 
holds. Here ∇ stands for the gradient with respect to x = (x 2 , x 3 ). Otherwise stated, we have

C ω := sup{c > 0 satisfying (1.5.3.1)}. (1.5.3.2)
For M -∈ (0, C ω ) and M + ∈ [M -, +∞), we define the set of admissible unknown potentials as

V ω (M ± ) := {V ∈ L ∞ (Ω; R) satisfying (1.5.1.1), V L ∞ (Ω) M + and max(0, -V ) L ∞ (Ω) M -}. (1.5.3.3) Notice that the constraint max(0, -V ) L ∞ (Ω)
M -, imposed on admissible potentials V in V ω (M ± ), guarantees that the perturbation by V of the Dirichlet Laplacian in Ω, is boundedly invertible in L 2 (Ω), with norm not greater than (C ω -M -) -1 . This condition could actually be weakened by only requiring that the distance of the spectrum of this operator to zero, be positive. Nevertheless, since the above mentioned condition on V is more explicit than this latter, we stick with the definition (1.5.3.3) in the remaining part of this text.

Statement of the main results

We start with the result of [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map[END_REF]. Prior to stating the main results of this article we first examine in Proposition 1.5.1 below, the well-posedness of the BVP (1.5.1.2) in the space

H ∆ (Ω) := {u ∈ L 2 (Ω); ∆u ∈ L 2 (Ω)} endowed with the norm u 2 H∆(Ω) := u 2 L 2 (Ω) + ∆u 2 L 2 (Ω) ,
for suitable non-homogeneous Dirichlet boundary data f . Second, we rigorously define the DN map Λ V expressed in (1.5.1.4) and describe its main properties.

As a preamble, we introduce the two following trace maps by adapting the derivation of [LiMa1, Section 2, Theorem 6.5]. Namely, since

C ∞ 0 (Ω) := {u |Ω , u ∈ C ∞ 0 (R 3 )} is dense in H ∆ (Ω)
, by [ChKiSo161, Lemma 2.1], we extend the mapping

T 0 u := u |Γ (resp., T 1 u := ∂ ν u |Γ ), u ∈ C ∞ 0 (Ω), into a continuous function T 0 : H ∆ (Ω) → H -2,-1 2 (Γ) (resp., T 1 : H ∆ (Ω) → H -2,-3 2 (Γ)).
We refer to [ChKiSo161, Lemma 2.2] and its proof, for more details.

CHAPTER 1. INVERSE PROBLEMS IN UNBOUNDED CYLINDRICAL DOMAINS

Next we consider the space

H (Γ) := T 0 H ∆ (Ω) = {T 0 u; u ∈ H ∆ (Ω)}, and notice from [ChKiSo161, Lemma 2.3] that T 0 is bijective from B := {u ∈ L 2 (Ω); ∆u = 0} onto H (Γ).
Therefore, with reference to [BuUh, NaSt], we put

f H (Γ) := T -1 0 f H∆(Ω) = T -1 0 f L 2 (Ω) , (1.5.4.1) 
where T -1 0 denotes the operator inverse to T 0 : B → H (Γ). We have the following existence and uniqueness result for the BVP (1.5.1.2).

Proposition 1.5.1 (Proposition 1.1, [ChKiSo161]) Pick V ∈ V ω (M ± ), where M -∈ (0, C ω ) and M + ∈ [M -, +∞) are fixed. 1) Then, for any f ∈ H (Γ), there exists a unique solution v ∈ L 2 (Ω) to (1.5.1.2), such that the estimate v L 2 (Ω) C f H (Γ) , (1.5.4.2)
holds for some constant C > 0 depending only on ω and M ± .

2) The DN map

Λ V : f → T 1 v |G is a bounded operator from H (Γ) into H -2,-3 2 (G). 3) Moreover, for each W ∈ V ω (M ± ), the operator Λ V -Λ W is bounded from H (Γ) into L 2 (G).
Put Ω := (0, 1) × ω. In view of Proposition 1.5.1, we now state the main result of [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map[END_REF].

Theorem 1.5.1 (Theorem 1.2, [ChKiSo161]) Given M -∈ (0, C ω ) and M + ∈ [M -, +∞), let V j ∈ V ω (M ± ) for j = 1, 2.
Then, there exist two constants C > 0 and γ * ∈ (0, 1), both of them depending only on ω, M ± and G , such that the estimate

V 1 -V 2 H -1 ( Ω) CΦ ( Λ V1 -Λ V2 ) , (1.5.4.3)
holds for

Φ(γ) :=    γ if γ γ * , (ln |ln γ|) -1 if γ ∈ (0, γ * ), 0 if γ = 0.
(1.5.4.4)

Here Λ V1 -Λ V2 denotes the norm of Λ V1 -Λ V2 in B(H (Γ), L 2 (G)).
In [START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF] we extend the result of Theorem 1.5.1 by considering additional restriction on the support of the Dirichlet inputs. In order to introduce the result of [START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF], we fix F an arbitrary closed neighborhood of ∂ω + ξ in ∂ω, F = R × F and we consider Dirichlet data in H (Γ) which are supported in F , i.e. input functions belonging to

H c (F ) := {f ∈ H (Γ); suppf ⊂ F }.
To any f ∈ H c (F ), we associate the unique solution u ∈ H ∆ (Ω) to (1.5.1.2), given by Proposition 1.5.1, and define the partial DN map associated with (1.5.1.2), as

Λ * V : f ∈ H c (F ) → T 1 u |G . (1.5.4.5)
We recall from Proposition 1.5.1 that

Λ * V ∈ B(H c (F ), H -2 (R, H -3 2 (G ))) and Λ * V -Λ * W ∈ B(H c (F ), L 2 (G)), V, W ∈ V ω (M ± ). (1.5.4.6)
The main result of [START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF], which claims that unknown potentials of V ω (M ± ) are stably determined in the elementary cell Ω := (0, 1) × ω, by the partial DN map, is stated as follows. andC ω is defined by (1.5.3.2). Then, there exist two constants C > 0 and γ * > 0, both of them depending only on ω, M ± , F , and G , such that the estimate

Theorem 1.5.2 (Theorem 1.1, [ChKiSo162]) Let V j ∈ V ω (M ± ), j = 1, 2, where M + ∈ [M -, +∞), M -∈ (0, C ω ),
V 1 -V 2 H -1 ( Ω) CΦ Λ * V1 -Λ * V2 , (1.5.4.7) 
holds with Φ given by (1.5.4.4). Here • denotes the usual norm in B(H c (F ), L 2 (G)).

The statement of Theorem 1.5.1 and 1.5.2 remain valid for any periodic potential V ∈ L ∞ (Ω), provided 0 is in the resolvent set of A V , the self-adjoint realization in L 2 (Ω) of the Dirichlet Laplacian -∆+V . In this case, the multiplicative constants C and γ * , appearing in (1.5.4.3)-(1.5.4.4) and (1.5.4.7), depend on (the inverse of) the distance d > 0, between 0 and the spectrum of A V . In the particular case where V ∈ V ω (M ± ), with M -∈ (0, C ω ), we have d C ω -M -, and the implicit condition d > 0 imposed on V , can be replaced by the explicit one on the negative part of the potential, i.e. max(0, -V ) L ∞ (Ω) M -.

Application to the Calderón Problem

The inverse problem addressed in Subsection 1.5.4 is closely related to the periodic Calderón problem in Ω, i.e. the inverse problem of determining the conductivity coefficient a, obeying

a(x 1 + 1, x ) = a(x 1 , x ), x ∈ ω, x 1 ∈ R, (1.5.5.1) 
from partial boundary data of the BVP in the divergence form

-div(a∇u) = 0, in Ω, u = f, on Γ. (1.5.5.2) 
Let T 0 denote the trace operator u → u |Γ on H 1 (Ω). We equip the space K (Γ) := T 0 (H 1 (Ω)) with the norm

f K (Γ) := inf{ u H 1 (Ω) ; T 0 u = f },
and recall for any a ∈ C 1 (Ω) satisfying the ellipticity condition

a(x) a * > 0, x ∈ Ω, (1.5.5.3) 
for some fixed positive constant a * , that the BVP (1.5.5.2) admits a unique solution u ∈ H 1 (Ω) for each f ∈ K (Γ). Moreover, the full DN map associated with (1.5.5.2), defined by f → aT 1 u, where

T 1 u := ∂ ν u |Γ , is a bounded operator from K (Γ) to H -1 (R; H -1 2 (∂ω)).
Here, we rather consider the partial DN map,

Σ a : f ∈ K (Γ) ∩ a -1 2 (H c (F )) → aT 1 u |G , (1.5.5.4) where a -1 2 (H c (F )) := {a -1 2 f ; f ∈ H c (F )}. Further, since the BVP (1.5.5.2) is brought by the Liouville transform into the form (1.5.1.2), with V a := a -1 2 ∆a 1 2
, then, with reference to (1.5.3.3), we impose that V a be bounded in Ω and satisfies the following conditions

V a L ∞ (Ω) M + and max(0, -V a ) L ∞ (Ω) M -, (1.5.5.5) 
where M -∈ (0, C ω ) and M + ∈ [M -, +∞) are a priori arbitrarily fixed constants. Namely, we introduce the set of admissible conductivities, as We check by standard computations that the condition (1.5.5.5) is automatically verified, provided the conductivity a

A ω (a * , M ± ) := a ∈ C 1 (Ω; R) satisfying ∆a ∈ L ∞ (Ω), a W 1,∞ (Ω) M + , ( 1 
∈ A ω (a * , M ± ) is taken so small that a 2 W 1,∞ (Ω) + 2a * ∆a L ∞ (Ω) 4M -a 2 * , or even that a W 2,∞ (Ω) 4M - (4M -+ 1) 1 2 + 1 a * ,
in the particular case where a ∈ W 2,∞ (Ω).

The main result of this subsection claims stable determination of such admissible conductivities a, from the knowledge of Σ a . It is stated as follows.

Corollary 1.5.1 (Corollary 1.2, [START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF]) Fix a * > 0, and let M ± be as in Theorem 1.5.2. Pick

a j ∈ A ω (a * , M ± ), for j = 1, 2, obeying a 1 (x) = a 2 (x), x ∈ ∂Ω (1.5.5.7) and ∂ ν a 1 (x) = ∂ ν a 2 (x), x ∈ F ∩ G.
(1.5.5.8)

Then Σ a1 -Σ a2 is extendable to a bounded operator from a -1 2 1 (H c (F )) into L 2 (G).
Moreover, there exists two constant C > 0 and γ * > 0, both of them depending only on ω, M ± , a * , F , and G , such that we have

a 1 -a 2 H 1 ( Ω) CΦ a -1 2 * Σ a1 -Σ a2 , (1.5.5.9) 
where Φ is the same as in Theorem 1.5.1. Here • denotes the usual operator norm in B(a

-1 2 1 (H c (F )), L 2 (G)).

Floquet decomposition

In this subsection, we reformulate the inverse problem presented in Subsection 1.5.4 into a family of inverse coefficients problems associated with the BVP

       (-∆ + V )v = 0, in Ω := (0, 1) × ω, v = g, on Γ := (0, 1) × ∂ω, v(1, •) -e iθ v(0, •) = 0, in ω, ∂ x1 v(1, •) -e iθ ∂ x1 v(0, •) = 0, in ω, (1.5.6.1)
for θ ∈ [0, 2π), and suitable Dirichlet data g. This is by means of the Floquet-Bloch-Gel'fand (FBG) transform introduced in [ChKiSo161, Section 3.1]. We stick with the notations of [ChKiSo161, Section 3.1], and, for Y being either ω of ∂ω, we denote by

U the FBG transform from L 2 (R × Y ) onto ⊕ (0,2π) L 2 ((0, 1) × Y ) dθ 2π . That is to say, the FBG transform U maps L 2 (Ω) onto ⊕ (0,2π) L 2 ( Ω) dθ 2π if Y = ω, and L 2 (Γ) onto ⊕ (0,2π) L 2 ( Γ) dθ 2π when Y = ∂ω.
We recall that the operator U is unitary in both cases. We start by introducing several functional spaces and trace operators that are needed by the analysis of the inverse problem associated with (1.5.6.1).

Functional spaces and trace operators

Fix θ ∈ [0, 2π). With reference to [ChKiSo14, Section 6.1] or [ChKiSo161, Section 3.1], we set for each n ∈ N ∪ {∞}, C n θ ([0, 1] × ω) := u ∈ C n ([0, 1] × ω) ; ∂ j x1 u(1, •) -e iθ ∂ j x1 u(0, •) = 0 in ω, j n ,
and for Y being either ω or ∂ω, we put

H s θ ((0, 1) × Y ) := u ∈ H s ((0, 1) × Y ); ∂ j x1 u(1, •) -e iθ ∂ j x1 u(0, •) = 0 in ω, j < s - 1 2 if s > 1 2 ,
and

H s θ ((0, 1) × Y ) := H s ((0, 1) × Y ) if s ∈ 0, 1 2 .
Moreover, if X is a Banach space for the norm • X , we define H s θ (0, 1; X), for s ∈ R, as the set of functions

t ∈ (0, 1) → ϕ(t) := k∈Z ϕ k e i(θ+2πk)t associated with (ϕ k ) k ∈ X Z obeying k∈Z (1 + k 2 ) s ϕ k 2 X < ∞. Further, we recall from [ChKiSo161, Eq. (3.29)] that UH ∆ (Ω) = ⊕ (0,2π) H ∆,θ ( Γ) dθ 2π
, where

H ∆,θ ( Ω) := {u ∈ L 2 ( Ω); ∆u ∈ L 2 ( Ω) and u(1, •) -e iθ u(0, •) = ∂ x1 u(1, •) -e iθ ∂ x1 u(0, •) = 0 in ω}. Moreover, the space C ∞ θ ([0, 2π] × ω) is dense in H ∆,θ ( 
Ω), and we have UT j U -1 = ⊕ (0,2π) T j,θ dθ 2π for j = 0, 1, where the linear bounded operator

T j,θ : H ∆,θ ( Ω) → H -2 θ (0, 1; H -2j+1 2 (∂ω)), fulfills T 0,θ u = u | Γ if j = 0, and T 1,θ u = ∂ ν u | Γ if j = 1, provided u ∈ C ∞ θ ([0, 1] × ω). Therefore, putting H θ ( Γ) := {T 0,θ u; u ∈ H ∆,θ ( Ω)}, and H c,θ ( F ) := {f ∈ H θ ( Γ), supp f ⊂ F }, we get that UH (Γ) = ⊕ (0,2π) H θ ( Γ) dθ 2π and UH c (F ) = ⊕ (0,2π) H c,θ ( F ) dθ 2π .
As in [ChKiSo161, Eq. (3.30)], the space H θ ( Γ) is endowed with the norm g H θ ( Γ) := v g L 2 ( Ω) , where v g denotes the unique L 2 ( Ω)-solution to (1.5.6.1) with V = 0, given by Proposition 1.5.1.

Inverse fibered problems

Let V ∈ V ω (M ± ), where M ± are as in Theorem 1.5.1. Then, for any f be in H c (F ), u is the H ∆ (Ω)-solution to (1.5.1.2), if and only if, for almost every θ ∈ [0, 2π), (Uu) θ is the H ∆ ( Ω)-solution to (1.5.6.1), associated with

g = (Uf ) θ ∈ H c,θ ( F ). The corresponding partial DN map, defined by Λ V,θ : g ∈ H c,θ ( F ) → T 1,θ v | Ǧ, where v is the unique H ∆ ( Ω)-solution to (1.5.6.1), is a bounded operator from H c,θ ( F ) into H -2 θ (0, 1; H -3 2 (G )
), and we have

UΛ V U -1 = ⊕ (0,2π) Λ V,θ dθ 2π , (1.5.6.2) according to [ChKiSo161, Proposition 7.1]. Further, if V 1 and V 2 are two potentials lying in V ω (M ± ), then Λ V1,θ -Λ V2,θ ∈ B(H c,θ ( F ), L 2 ( Ǧ)), for each θ ∈ [0, 2π), by (1.5.4.6) and (1.5.6.2). Moreover, Λ V1 -Λ V2 being unitarily equivalent to the family of partial DN maps {Λ V1,θ -Λ V2,θ , θ ∈ [0, 2π)}, it holds true that Λ V1 -Λ V2 B(Hc(F );L 2 (G)) = sup θ∈[0,2π) Λ V1,θ -Λ V2,θ B(H c,θ ( F ),L 2 ( Ǧ)) . (1.5.6.3)
Therefore, it is clear from (1.5.6.3) that Theorem 1.5.1 and 1.5.2 are a byproduct of the following statement.

Theorem 1.5.3 (Theorem 1.3, [START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF]) Let M ± and V j , j = 1, 2, be as in Theorem 1.5.2. Fix θ ∈ [0, 2π). Then, there exist two constants C θ > 0 and γ θ, * > 0, both of them depending only on ω, M ± , F , and G , such that we have

V 1 -V 2 H -1 ( Ω) C θ Φ θ ( Λ V1,θ -Λ V2,θ ) . (1.5.6.4)
Here, Φ θ is the function defined in Theorem 1.5.2 and • denotes the usual norm in B(H c,θ ( F ), L 2 ( Ǧ)).

We notice that the constants C θ and γ θ, * of Theorem 1.5.3, may possibly depend on θ. Nevertheless, we infer from (1.5.6.3) that this is no longer the case for C and γ, appearing in the stability estimate (1.5.4.7) of Theorem 1.5.2, as we can choose C = C θ and γ = γ θ, * for any arbitrary θ ∈ [0, 2π). Therefore, we may completely leave aside the question of how C θ and γ θ, * depend on θ. For this reason, we shall not specify the possible dependence with respect to θ of the various constants appearing in the remaining part of this text. Finally, we stress out that the function Φ θ does actually depend on θ through the constant γ θ , as it is obtained by substituting γ θ for θ in the definition (1.5.4.4).

Description of the result

The proofs of Theorem 1.5.1, 1.5.2, 1.5.3 rely on two different types of complex geometric optics (CGO) solutions to the quasi-periodic Laplace equation in (0, 1) × ω. These functions are built by means of an extension arguments by periodicity and by means of a suitable Carleman estimate. This technique is inspired by [Ha, KeSjUh], but, in contrast to [START_REF] Caro | Stability estimates for the Radon transform with restricted data and applications[END_REF][START_REF] Caro | Stability estimates for the Calderón problem with partial data[END_REF], due to the quasi-periodic boundary conditions imposed on the CGO solutions, we cannot apply the Carleman estimate of [KeSjUh]. Instead we establish a Carleman estimate with linear weight taking the form Proposition 1.5.2 (Proposition 5.1, [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map[END_REF]) Let ξ ∈ S 1 and pick a, b in R, with a < b, in such a way that we have

ω ⊂ {x ∈ R 2 ; ξ • x ∈ (a, b)}. Put d := b -a.
Then for all θ ∈ [0, 2π) and all τ > 0, the estimate

8τ 2 d e -τ ξ•x u 2 L 2 ( Ω) + 2τ e -τ ξ•x (ξ • ν) 1/2 ∂ ν u 2 L 2 ( Γ+ ξ ) e -τ ξ•x ∆u 2 L 2 ( Ω) + 2τ e -τ ξ•x |ξ • ν| 1/2 ∂ ν u 2 L 2 ( Γ- ξ ) , (1.5.7.1) 
holds for every u ∈ C 2 θ ([0, 1] × ω) satisfying u | Γ = 0.
Here we used the notations Γ± ξ := (0, 1) × ∂ω ± ξ .

In [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map[END_REF], we build CGO solutions to the system

   (-∆ + V )u = 0, in Ω, u(1, •) -e iθ u(0, •) = 0, in ω, ∂ x1 u(1, •) -e iθ ∂ x1 u(0, •) = 0, in ω, (1.5.7.2) associated with V ∈ L ∞ ( Ω; R) and θ ∈ [0, 2π).
Namely, given a sufficiently large τ > 0, we seek solutions of the form

u(x) = (1 + w(x)) e ζ•x , x ∈ Ω, (1.5.7.3) to (1.5.7.2), where ζ ∈ i(θ +2πZ)×C 2 is chosen in such a way that ∆e ζ•x = 0 for every x ∈ Ω, and w ∈ H 2 0 ( Ω) satisfies the estimate w H s ( Ω) Cτ s-1 , s ∈ [0, 2], (1.5.7.4) 
for some positive constant C, independent of τ . Then combining these solutions with the Carleman estimate (1.5.7.1) and a result of stability of the unique continuation for analytic functions we complete in [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map[END_REF] the proof of Theorem 1.5.1. In order to state the result of [START_REF] Choulli | Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map[END_REF] with additional restriction on the Dirichlet input, we build in [START_REF] Choulli | On the Calderón problem in periodic cylindrical domain with partial Dirichlet and Neumann data[END_REF] CGO solutions to the BVP

       (-∆ + V )u = 0, in Ω, u(1, •) = e iθ u(0, •), on ω, ∂ x1 u(1, •) = e iθ ∂ x1 u(0, •), on ω, u = 0, on Γ+ ε 2 ,-ξ (1.5.7.5)
taking the form (1.5.7.3). Here for ε > 0, we set

∂ω + ε,ξ := {x ∈ ∂ω; ξ • ν (x ) > ε} and ∂ω - ε,ξ := {x ∈ ∂ω; ξ • ν (x ) ε}, (1.5.7.6)
and we write Γ± ε,ξ instead of (0, 1) × ∂ω ± ε,ξ . We build the CGO solutions of (1.5.7.5) by using the Carleman estimate (1.5.7.1) and by applying the Hahn-Banach theorem. This argument is inspired by [KeSjUh]. Nevertheless, in contrast to [KeSjUh], in our context we need to prove that our construction allows to preserve at the same time the quasiperiodic condition at {0} × ω, {1} × ω, and the homogeneous Dirichlet boundary condition on Γ+ ε 2 ,-ξ . Actually, these is the main difficulty in the proof of Theorem 1.5.3 and, in some sense, it makes an important difference with the usual application of this duality argument. To complete the construction of the CGO solutions of (1.5.7.5), we start by using the Carleman estimate (1.5.7.1) and arguments similar to [KeSjUh] in order to build CGO solutions satisfying only the homogeneous Dirichlet boundary condition on Γ+ ε 2 ,-ξ . Then, we prove that this solutions lies in some suitable space satisfying the quasiperiodic condition on {0} × ω, {1} × ω. For this purpose, we use the expansion in Fourier series of these solutions and we consider some duality arguments that allow to identify the quasiperiodic condition on {0} × ω, {1} × ω.

1.6 Stable recovery of a source term for the heat equation

1.6.

Statement and origin of the problem

In this section consider [KiSaSo] which corresponds to a joint work with Diomba Sambou and Eric Soccorsi. Let ω ⊂ R n-1 , n 2, be open and connected, with C 4 boundary ∂ω. Set Ω := ω × R and Γ := ∂ω × R. For T ∈ (0, +∞) fixed, we consider the parabolic initial boundary value problem (IBVP)

     ∂ t u -∆u = F (t, x) in Q := (0, T ) × Ω, u(0, •) = 0 in Ω, u = 0 on Σ := (0, T ) × Γ, (1.6.1.1)
with source term F ∈ L 2 (Q). In [KiSaSo], we examine the inverse problem of determining F from a single Neumann boundary measurement of the solution u to (1.6.1.1).

Let us first notice that there is a natural obstruction to uniqueness in this problem. This can be easily understood from the identity ∂ ν u = 0 on Σ, verified by any u ∈ C ∞ 0 (Q), despite of the fact that the function F := (∂ t -∆)u may well be non uniformly zero in Q. Otherwise stated, the observation of ∂ ν u on Σ may be unchanged, whereas F is modified. To overcome this problem, different lines of research can be pursued. One of them is to extend the set of data available in such a way that F is uniquely determined by these observations. Another direction is the one of assuming that the source term F is a priori known to have the structure

F (t, x) = σ(t)β(x), (t, x) ∈ Q, (1.6.1.2)
where t → σ(t) is a known function, and then proving that ∂ ν u uniquely determines β. In [KiSaSo] we investigate the second direction. Namely, we examine the stability issue in the identification of the timeindependent part β of the source, from partial observation on Σ of the flux ∂ ν u induced by the solution u to (1.6.1.1). Source terms of the form (1.6.1.2) are commonly associated with the reaction term in linear reaction diffusion equations. These equations arise naturally in various fields of application, investigating systems made of several interacting components, such as population dynamics [Mu], fluid dynamics [Bea], or heat conduction [BeBlCl]. More precisely, when σ(t) := e -µt , where µ a positive constant, the system (1.6.1.1)-(1.6.1.2) describes the diffusion in transmission lines or cooling pipes with significantly large length-todiameter ratio, of decay heat, that is the heat released as a result of radioactive decay. In this particular case, (1.6.1.2) models a heat source produced by the decay of a radioactive isotope, and β is the spatial density of the isotope. From a practical viewpoint, the rate of decay µ of the isotope inducing the decay heat diffusion process, is known, and therefore the same is true for the function σ, while the density function β is generally unknown. This motivates for a closer look into the inverse problem under investigation in [KiSaSo].

1.6.2 Existing papers: a short review Inverse source problems have been extensively studied over the last decades. We refer to [START_REF] Isakov | Inverse source problems[END_REF] for a more general overview of this topic than the one presented in this subsection, where we solely focus on parabolic inverse source problems consisting in determining a source term by boundary measurements of the solution to a parabolic equation. Conditional stability for this problem was derived in [START_REF] Choulli | Some stability estimates in determining sources and coefficients[END_REF][START_REF] Yamamoto | Conditional stability in the determination of force terms of heat equations in a rectangle[END_REF][START_REF] Yamamoto | Conditional stability in the determination of densities of heat sources in a bounded domain, Estimation and Control of Distributed Parameter Systems[END_REF]. In [START_REF] Imanuvilov | Lipschitz stability in inverse parabolic problems by the Carleman estimate[END_REF], inspired by the Bukhgeim-Klibanov approach introduced in [BuKl], Imanuvilov and Yamamoto proved Lipschitz stability of the source with respect to one Neumann boundary measurement of the solution to a parabolic equation with non-degenerate initial data, and partial Dirichlet data supported on arbitrary subregions of the boundary. In [START_REF] Choulli | Some stability estimates in determining sources and coefficients[END_REF], Choulli and Yamamoto established a log-type stability estimate for the time-independent source term β, appearing in (1.6.1.2), by a single Neumann observation of the solution on an arbitrary sub-boundary.

All the above mentioned results are stated in a bounded spatial domain. But, to the best of our knowledge, there is no result available in the mathematical literature, dealing with the recovery of a non-compactly supported unknown source function, appearing in a parabolic equation, by boundary measurements of the solution. This is the starting point of [KiSaSo], in the sense that we aim for extending the stability result of [START_REF] Choulli | Some stability estimates in determining sources and coefficients[END_REF], which is valid in bounded spatial domains only, to the framework of infinite cylindrical domains.

Well-posedness

Prior to describing the main achievement of [KiSaSo], we briefly investigate the well-posedness of the IBVP (1.6.1.1). Actually, we start by examining the forward problem associated with the IBVP

     ∂ t v -∆v = f in Q, v(0, •) = v 0 in Ω, v = 0 on Σ, (1.6.3.1) 
for suitable source term f and initial data v 0 . More precisely, we seek an existence, uniqueness and (improved) regularity result for the solution to the above system, as well as a suitable energy estimate. Such results are rather classical in the case of bounded spatial domains, but it turns out that they are not so well-documented for unbounded domains such as Ω. Therefore, for the sake of completeness, we shall establish Theorem 1.6.1, presented below.

Theorem 1.6.1 (Theorem 1.1, [KiSaSo]) Let v 0 ∈ H 1 0 (Ω) and f ∈ L 2 (0, T ; H 1 0 (Ω)). Then, there exists a unique solution v ∈ H 1,2 (Q) ∩ C([0, T ]; H 1 0 (Ω)) to the IBVP (1.6.3.1), such that v(t) H 1 (Ω) v 0 H 1 (Ω) + T 1 2 f L 2 (0,T ;H 1 (Ω)) , t ∈ [0, T ]. (1.6.3.2)
Theorem 1.6.1 is a crucial step in the derivation of the observability inequality (1.6.5.3) stated below, which is a cornerstone in the analysis of the inverse problem under investigation. But, just as important is the following consequence of Theorem 1.6.1, which enables us to define properly the boundary data used by the identification of the unknown function β in Theorem 1.6.2, below.

Corollary 1.6.1 (Corollary 1.1, [KiSaSo]) Let F be defined by (1.6.1.2), where σ ∈ C 1 ([0, T ]) and β ∈ H 1 0 (Ω). Then, the IBVP (1.6.1.1) admits a unique solution u ∈ H 1,2 (Q). Moreover, we have

∂ t u ∈ H 1,2 (Q)∩ C([0, T ]; H 1 0 (Ω))
, and the following estimate holds:

∂ t u(t) H 1 (Ω) (1 + T ) σ C 1 ([0,T ]) β H 1 (Ω) , t ∈ [0, T ].
(1.6.3.3)

Stable recovery of the source

For M ∈ (0, +∞) fixed, we introduce the set of admissible unknown source functions, as

B(M ) := ϕ ∈ H 1 0 (Ω); ϕ H 1 (Ω) M . (1.6.4.1)
Then, the main result of [KiSaSo] can be stated as follows.

Theorem 1.6.2 (Theorem 1.2, [KiSaSo]) Put γ := γ × R, where γ is an arbitary closed subset of the boundary ∂ω, with non empty interior, and let σ ∈ C 1 ([0, T ]) satisfy σ(0) = 0. For M ∈ (0, +∞), pick β ∈ B(M ), and let u be the H 1,2 (Q)-solution to the IBVP (1.6.1.1), associated with

F (t, x) = σ(t)β(x), (t, x) ∈ Q,
which is given by Corollary 1.6.1. Then, there exists a constant C > 0, depending only on ω, σ, T , M and γ , such that the estimate

β L 2 (Ω) CΦ ∂ ν u H 1 (0,T ;L 2 (γ)) , (1.6.4.2) 
holds with

Φ(r) := r 1/2 + | ln r| -1/2 if r ∈ (0, +∞) 0 if r = 0. (1.6.4.3) 
Notice that we have u ∈ H 1 (0, T ; H 2 (Ω)) from Corollary 1.6.1, which guarantees that the trace ∂ ν u appearing in the right hand side of the stability estimate (1.6.4.2) is well-defined in H 1 (0, T ; L 2 (γ)).

To the best of our knowledge, Theorem 1.6.2 is the first stability result in the identification of the non-compactly supported source term β, appearing in a parabolic equation, by a single partial boundary observation of the solution. A similar statement was actually derived in [ChYa06, Theorem 2.2] (see also [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF]Theorem 3.4]) when the domain Ω is bounded, so Theorem 1.6.2 extends this result to the case of infinite cylindrical domains.

Notice that the statement of Theorem 1.6.2 is valid in absence of any assumption on the behavior of the source term β outside a compact subset of the infinite cylindrical domain Ω = ω × R. Another remarkable feature of the result of Theorem 1.6.2 is that the logarithmic dependency of the space-varying source term, with respect to the boundary data, manifested in [Ch09, Theorem 2.2] for a bounded domain, is preserved by the stability estimate (1.6.4.2). Otherwise stated, the stability of the reconstruction of β by a single boundary observation of the solution, is not affected by the infinite extension of the support of the unknown coefficient. This phenomenon is in sharp contrast with the one observed for the determination of the electric potential appearing in the Schrödinger equation, by a finite number of Neuman data, where Lipschitz stability (see [BaPu02, Theorem 1] and [BaPu07, Theorem 1]) degenerates to Hölder (see [START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF]Theorem 1.4]), as the support of the unknown potential becomes infinite.

Information about the proof

The proof of Theorem 1.6.2 is by means of a Carleman inequality specifically designed for the heat operator in the unbounded cylindrical domain Ω. The derivation of this estimate is inspired by the approach used in this particular framework by [START_REF] Bellassoued | An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation[END_REF][START_REF] Kian | Carleman estimate for infinite cylindrical quantum domains and application to inverse problems[END_REF][START_REF] Kian | Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains[END_REF] for the Schrödinger equation. In order to present this Carleman estimate, we pick a function ψ 0 ∈ C 4 (ω), such that (c.i) ψ 0 (x ) > 0 for all x ∈ ω;

(c.ii) ∃α 0 > 0 such that |∇ ψ 0 (x )| α 0 for all x ∈ ω; (c.iii) ∂ ν ψ 0 (x ) ≤ 0 for all x ∈ ∂ω\γ .
Here, ∇ denotes the gradient with respect to x = (x 1 , . . . , x n-1 ) ∈ R n-1 , i.e. ∇ f := (∂ x1 f, . . . , ∂ xn-1 f ), and ∂ ν is the normal derivative with respect to ∂ω, that is ∂ ν := ν • ∇ , where ν stands for the outward normal vector to ∂ω.

Thus, putting

ψ(x) = ψ(x , x n ) := ψ 0 (x ) for all x = (x , x n ) ∈ Ω, it is apparent that the function ψ ∈ C 4 (Ω) ∩ W 4,∞
(Ω) satisfies the three following conditions:

(C.i) inf x∈Ω ψ(x) > 0; (C.ii) |∇ψ(x)| α 0 > 0 for all x ∈ Ω; (C.iii) ∂ ν ψ(x) 0 for all x ∈ Γ\γ.
Next, for each ρ ∈ (0, +∞), we introduce the following weight function

Φ ρ (t, x) = Φ ρ (t, x ) := g(t) e ρψ(x ) -e 2ρ ψ L ∞ (Ω) with g(t) := 1 t(T -t) , (t, x) ∈ Q, (1.6.5.1)
Now, with reference to (1.6.1.1), we may state the Carleman estimate for the operator P = ∂ t -∆, as follows.

Theorem 1.6.3

(Theorem 3.1, [KiSaSo]) Let u ∈ H 1,2 (Q) ∩ C([0, T ]; H 1 0 (Ω)
) be real valued. Then, there exists ρ 0 ∈ (0, +∞), such that for all ρ ∈ [ρ 0 , +∞), there is λ 0 = λ 0 (ρ) ∈ (0, +∞), depending only α 0 , ω, γ , T and ρ, such that the estimate

e λΦρ (λg) -1/2 ∆u L 2 (Q) + e λΦρ (λg) -1/2 ∂ t u L 2 (Q) + e λΦρ (λg) 1/2 |∇u| L 2 (Q) + e λΦρ (λg) 3 2 u L 2 (Q) ≤ C e λΦρ P u L 2 (Q) + e λΦρ (λg) 1/2 ∂ ν u L 2 ((0,T )×γ) ,
(1.6.5.2)

holds for all λ ∈ [λ 0 , +∞) and some positive constant C, which depends only on α 0 , ω, γ , T , ρ and λ 0 .

Applying this Carleman estimate we derive the observability inequality.

Proposition 1.6.1 (Proposition 4.1, [KiSaSo]) Let γ and γ be the same as in Theorem 1.6.2. For

v 0 ∈ H 1 0 (Ω), let v be the H 1,2 (Q) ∩ C([0, T ], H 1 0 (Ω))
-solution given by Theorem 1.6.1, to the IBVP (1.6.3.1) associated with f = 0. Then, there exists a constant C > 0, depending only on α 0 , ω, γ , and T , such that we have

v(T, •) H 1 (Ω) C ∂ ν v L 2 ((0,T )×γ) . (1.6.5.3)
Chapter 2

Recovery of time-dependent coefficients for evolution PDEs

Introduction

As mentioned in Section 1.1, the recovery of time-independent coefficients appearing in evolution PDEs has been intensively studied over the last decades. Such results have been considered with both single and many boundary measurements. Sometimes, the arguments used for these results can not be applied to the recovery of time-dependent coefficients. There is even counter-examples (see for instance Subsection 2.2.2 below for the obstruction to unique recovery of time-dependent coefficients from the hyperbolic DN map). This chapter is devoted to some results related to this issue. That is the unique and stable recovery of time-dependent coefficients appearing in different evolution PDEs (hyperbolic, parabolic and Schrödinger equations). Beside their own mathematical and physical interests, these problems are related to the recovery of nonlinear terms from boundary measurements. We discuss about this connection in Section 2.6. We recall that, several authors considered the problem of determining time-dependent coefficients for evolution PDEs. These results concern in many case hyperbolic equations. For instance, we can mention [START_REF] Stefanov | Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials[END_REF] dealing with the recovery of a time-dependent potential appearing in the wave equation from the knowledge of scattering data, [RaSj, Sala] dealing with recovery of time-dependent coefficients from measurements of forward solutions of wave equations on the infinite time-space cylindrical domain, [START_REF] Eskin | Inverse hyperbolic problems with time-dependent coefficients[END_REF][START_REF] Eskin | Inverse problems for general second order hyperbolic equations with time-dependent coefficients[END_REF] treating the specific case of time-dependent coefficients analytic with respect to the time variable and [START_REF] Bellassoued | Stable determination outside a cloaking region of two timedependent coefficients in an hyperbolic equation from Dirichlet to Neumann map[END_REF][START_REF] Aicha | Stability estimate for hyperbolic inverse problem with time-dependent coefficient[END_REF][START_REF] Rakesh | Property C and an Inverse Problem for a Hyperbolic Equation[END_REF] considering the recovery of some restriction of time-dependent coefficients. To our best knowledge, [Is911, Theorem 4.2] is the first result of global unique recovery of general time-dependent coefficients. Despite the general statement of [Is911, Theorem 4.2], this result requires important measurements including information at the initial and the final time. In this context, the main goal of the paper [Ki161, Ki162, Ki164, KiOk] was to preserve the general statement of [Is911, Theorem 4.2] but with less information. Namely, the main problem that we have considered in [Ki161, Ki162, Ki164, KiOk] concerns the minimal data that allow the global recovery of general time-dependent coefficients. We have considered these problems with different settings (bounded domain, Riemannian manifold), different coefficients (potential, damping coefficient) with both results of uniqueness and stability. Some authors considered also the recovery of time-dependent coefficients appearing in parabolic equations [START_REF] Cannon | A note on an inverse problem related to the 3-D heat equation[END_REF][START_REF] Choulli | An abstract inverse problem[END_REF][START_REF] Choulli | Stability of the determination of a time-dependent coefficient in parabolic equations[END_REF] and Schrödinger equations [START_REF] Choulli | Stable Determination of Time-Dependent Scalar Potential From Boundary Measurements in a Periodic Quantum Waveguide, New Prospects in Direct, Inverse and Control Problems for Evolution Equations[END_REF][START_REF] Choulli | Determining the time dependent external potential from the DN map in a periodic quantum waveguide[END_REF][START_REF] Eskin | Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect[END_REF]. In contrast to hyperbolic equations, according to [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF][START_REF] Eskin | Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect[END_REF], one can recover uniquely some time-dependent coefficients from measurements restricted to the lateral boundary Σ of the time-space cylindrical domain Q. In this context, we have considered in [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF][START_REF] Kian | Hölder stability in the recovery of time-dependent electromagnetic potential for Schrödinger equations[END_REF] the stability issue for these problems.

This chapter is organized as follows. In Section 2.2 we introduce the work [Ki161, Ki162, Ki164] concern-ing the recovery of time-dependent coefficients for hyperbolic equations in a bounded domain. In Section 2.3, we describe the extension of these results to hyperbolic equations in Riemannian manifolds stated in [KiOk]. In Section 2.4, we consider the stable recovery of electromagnetic potentials from boundary measurements of solutions of Schrödinger equations. In Section 2.5, we consider the stable recovery of zero order coefficients from full and partial boundary measurements for parabolic equations stated in [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF]. Finally, in Section 2.6, we discuss about the application of the results introduced in Section 2.5 to the stable recovery of a nonlinear term appearing in a parabolic equation.

Recovery of time-dependent coefficients for hyperbolic equations

Statement

This section is devoted to the work [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF][START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF][START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF]. Let Ω be a C 2 bounded domain of R n , n 2, and fix 0 < T < ∞. We consider the wave equation

∂ 2 t u -∆u + a(t, x)∂ t u + q(t, x)u = 0, (t, x) ∈ Q, (2.2.1.1)
where the damping coefficient a ∈ L ∞ (Q) and the potential q ∈ L ∞ (Q) are real valued. In [Ki161, Ki162, Ki164], we seek uniqueness and stability in the determination of both a and q from observations of solutions of (2.2.1.

1) on ∂Q = Σ ∪ ({0} × Ω) ∪ ({T } × Ω).

Obstruction to uniqueness

Let and L a,q be the differential operators := ∂ 2 t -∆, L a,q := + a∂ t + q. It has been proved by [RakSy], that for T > Diam(Ω) the data

A a,q = {(u |Σ , ∂ ν u |Σ ) : u ∈ H 1 (0, T ; L 2 (Ω)), u + a∂ t u + qu = 0, u |t=0 = ∂ t u |t=0 = 0} (2.2.2.1)
determines uniquely a time-independent potential q when a = 0. The result of [RakSy] has been extended to the recovery of a time-independent damping coefficient a by [START_REF] Isakov | An inverse hyperbolic problem with many boundary measurements[END_REF]. Contrary to time-independent coefficients, due to domain of dependence arguments there is no hope to recover the restriction of a general time-dependent coefficient to the set

D = {(t, x) ∈ Q : 0 < t < Diam(Ω)/2, dist(x, ∂Ω) > t} from the data A a,q . Indeed, assume that Ω = {x ∈ R n : |x| < R}, T > R > 0. Now let u solve ∂ 2 t u -∆u = 0, u |Σ = f, u |t=0 = ∂ t u |t=0 = 0 with f ∈ H 1 (Σ) satisfying f |t=0 = 0. Since u |t=0 = ∂ t u |t=0 = 0
, the finite speed of propagation implies that u |D = 0. Therefore, for any a, q ∈ C ∞ 0 (D), we have a∂ t u + qu = 0 and u solves

L a,q u = 0, u |Σ = f, u |t=0 = ∂ t u |t=0 = 0.
This last result implies that for any a, q ∈ C ∞ 0 (D) we have A a,q = A 0,0 where A 0,0 stands for A a,q when a = q = 0.

Facing this obstruction to uniqueness, it appears that four different approaches have been considered so far to solve this problem when a = 0: 1) Considering the equation (2.2.1.1) for any time t ∈ R instead of 0 < t < T (e.g. [RaSj], [Sala]).

2) Recovering the restriction on a subset of Q of a time-dependent potential q from the data A q (e.g. [RakRam]).

3) For a = 0, recovering a time-dependent potential q from the extended data C a,q (e.g. [START_REF] Isakov | Completness of products of solutions and some inverse problems for PDE[END_REF]) given by

C a,q = {(u |Σ , u |t=0 , ∂ t u |t=0 , ∂ ν u |Σ , u |t=T , ∂ t u |t=T ) : u ∈ L 2 (Q), L a,q u = 0}.
(2.2.2.2) 4) Recovering time-dependent coefficients that are analytic with respect to the t variable (e.g. [START_REF] Eskin | Inverse hyperbolic problems with time-dependent coefficients[END_REF]).

Therefore, it seems that the only results of unique global determination of a time-dependent potential q proved so far (at finite time) involve strong smoothness assumptions such as analyticity with respect to the t variable or the important set of data C a,q . In [Ki161, Ki162, Ki164], we investigate some conditions that guaranty unique determination of general time-dependent potentials without involving an important set of data. More precisely, the goal of [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF][START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF][START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] is to prove unique and stable global determination of a general time-dependent damping coefficient a and the potential q from partial knowledge of the set of data C a,q .

Motivations

Physically speaking, our inverse problem can be stated as the determination of physical properties such as the time evolving density of an inhomogeneous medium by probing it with disturbances generated on some parts of the boundary and at initial time. The data is the response of the medium to these disturbances, measured on some parts of the boundary and at the end of the experiment, and the purpose is to recover the function q which measures the property of the medium. Note also that the determination of time-dependent potentials can be associated with models where it is necessary to take into account the evolution in time of the perturbation.

We also mention that time-dependent coefficients appear often due to mathematical reductions of nonlinear problems. For instance, in [START_REF] Isakov | On uniqueness in inverse problems for semilinear parabolic equations[END_REF] Isakov applied results on inverse boundary value problems with time-dependent coefficients in order to prove unique recovery of a general semilinear term appearing in a nonlinear parabolic equation from traces of all the solutions to the equation. More recently, applying their results of stable recovery of time-dependent coefficients from the parabolic Dirichlet-to-Neumann map, [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF] treated the stability issue for this problem (see Section 2.4 below). In the same spirit the inverse problem of [Ki161, Ki162, Ki164] can be a tool for the problem of determining a semilinear term appearing in a nonlinear wave equation from observations given by traces of the solutions. We point out that with this application in mind, it is important to treat recovery of non-smooth coefficients.

Known results

The determination of coefficients for hyperbolic equations from boundary measurements has attracted many attention in recent years. Many authors considered the recovery of time-independent potentials from observations given by the set A a,q defined by (2.2.2.1) for a = 0. In [RakSy], the authors proved that, for a = 0, A a,q determines uniquely a time-independent potential q. The uniqueness by partial boundary observations has been considered in [START_REF] Eskin | A new approach to hyperbolic inverse problems[END_REF]. We also mention that the stability issue for this problem has been studied by [START_REF] Bellassoued | Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map[END_REF][START_REF] Bellassoued | Lipschitz stability for a hyperbolic inverse problem by finite local boundary data[END_REF][START_REF] Montalto | Stable determination of a simple metric, a co-vector field and a potential from the hyperbolic Dirichlet-to-Neumann map[END_REF][START_REF] Stefanov | Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media[END_REF][START_REF] Stefanov | Stable determination of the hyperbolic Dirichlet-to-Neumann map for generic simple metrics[END_REF].

Some authors treated the recovery of both time-independent damping coefficients and potentials from boundary measurements. In [START_REF] Isakov | An inverse hyperbolic problem with many boundary measurements[END_REF], Isakov extended the result of [RakSy], to the recovery of both damping coefficients and potentials from the data A a,q . For n = 3, [IsSu] proved stable recovery of the restriction of both time-independent damping coefficients and potentials on the intersection of the domain and a half-space from measurements on the intersection of the boundary of the domain and the same half-space. Following the strategy set by [BuKl], [START_REF] Bukhgeim | Uniqueness in determining damping coefficients in hyperbolic equations[END_REF][START_REF] Liu | Global uniqueness and stability in determining the damping and potential coefficients of an inverse hyperbolic problem[END_REF][START_REF] Liu | Global uniqueness and stability in determining the damping coefficient of an inverse hyperbolic problem with non-homogeneous Neumann B.C. through an additional Dirichlet boundary trace[END_REF] proved uniqueness and stability in the recovery of both damping coefficients and potentials from a single boundary measurements. In some recent work, [AmCh] proved a log-type stability estimate in the recovery of time-independent damping coefficients and potentials appearing in a dissipative wave equation from the initial boundary map.

All the above mentioned results are concerned with time-independent coefficients. Several authors considered the problem of determining time-dependent coefficients for hyperbolic equations. In [START_REF] Stefanov | Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials[END_REF], Stefanov proved the recovery of a time-dependent potential appearing in the wave equation from the knowledge of scattering data by using some properties of the light-ray transform. In [RaSj], Ramm and Sjöstrand considered the determination of a time-dependent potential q from the data (u |R×∂Ω , ∂ ν u |R×∂Ω ) of forward solutions of (2.2.1.1) with a = 0 on the infinite time-space cylindrical domain R t × Ω instead of Q (t ∈ R instead of 0 < t < T < ∞). Rakesh and Ramm [RakRam] treated this problem at finite time on Q, with T > Diam(Ω), and they determined uniquely q restricted to some subset of Q from A a,q with a = 0. Isakov established in [Is911, Theorem 4.2] unique determination of general time-dependent potentials on the whole domain Q from the extended data C a,q given by (2.2.2.2) with a = 0. Using a result of unique continuation borrowed from [START_REF] Tataru | Unique continuation for solutions to PDE; between Hörmander's theorem and Holmgren's theorem[END_REF], Eskin [START_REF] Eskin | Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect[END_REF] proved unique recovery of time-dependent coefficients analytic with respect to the time variable t from partial knowledge of the data A a,q . Salazar [Sala] extended the result of [RaSj] to more general coefficients. Moreover, [Wa] stated stability in the recovery of X-ray transforms of time-dependent potentials on a manifold and [START_REF] Aicha | Stability estimate for hyperbolic inverse problem with time-dependent coefficient[END_REF] proved log-type stability in the determination of time-dependent potentials from the data considered by [START_REF] Isakov | Completness of products of solutions and some inverse problems for PDE[END_REF] and [RakRam]. We mention also the recent work of [BeBen] where the authors have extended the results of [START_REF] Aicha | Stability estimate for hyperbolic inverse problem with time-dependent coefficient[END_REF] to the recovery of both time-dependent damping coefficients and potentials.

Unique and stable recovery of the coefficients

In order to state the main results of [Ki161, Ki162, Ki164], we first introduce some intermediate tools and notations. For all ω ∈ S n-1 := {y ∈ R n : |y| = 1} we introduce the ω-shadowed and ω-illuminated faces

∂Ω +,ω = {x ∈ ∂Ω : ν(x) • ω 0}, ∂Ω -,ω = {x ∈ ∂Ω : ν(x) • ω 0}
of ∂Ω. We consider also the parts of the lateral boundary Σ given by

Σ +,ω = {(t, x) ∈ Σ : ν(x) • ω > 0}, Σ -,ω = {(t, x) ∈ Σ : ν(x) • ω 0}.
From now on we fix ω 0 ∈ S n-1 and we consider F = [0, T ] × F (resp G = (0, T ) × G ) with F (resp G ) an open neighborhood of ∂Ω +,ω0 (resp ∂Ω -,ω0 ) in ∂Ω.

We start by recalling the result of [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF] where we have treated the case a = 0. For this purpose, we consider the set of data Section 2]. The main result of [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF] can be stated as follows.

C * q = {(u |Σ , ∂ t u |t=0 , ∂ ν u |G , u |t=T ) : u ∈ L 2 (Q), u + qu = 0, u |t=0 = 0, suppu |Σ ⊂ F } defined rigorously in [Ki161,
Theorem 2.2.1

(Theorem 1.1, [Ki161]) Let q 1 , q 2 ∈ L ∞ (Q). Assume that C * q1 = C * q2 . Then q 1 = q 2 .
Note that this uniqueness result is stated for bounded potentials with, roughly speaking, half of the data (2.2.2.2) considered in [Is911, Theorem 4.2] which seems to be, with [START_REF] Aicha | Stability estimate for hyperbolic inverse problem with time-dependent coefficient[END_REF], the only result of unique global determination of general time-dependent coefficients for the wave equation, at finite time, in the mathematical literature. More precisely, we consider u ∈ L 2 (Q) solutions of (∂ 2 t -∆ + q)u = 0, in Q, with initial condition u |t=0 = 0 and Dirichlet boundary condition u |Σ supported on F (which, roughly speaking, corresponds to half of the boundary). Moreover, we exclude the data ∂ t u |t=T and we consider the Neumann data ∂ ν u only on G (which, roughly speaking, corresponds to the other half of the boundary). We also mention that in contrast to [START_REF] Eskin | Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect[END_REF], we do not use results of unique continuation where the analyticity of the coefficients with respect to t is required. To our best knowledge condition (2.2.1) is the weakest condition that guaranties global uniqueness of general time-dependent potentials.

Let us also mention that, according to the obstruction to uniqueness given by domain of dependence arguments (see Subsection 2.2.2), even for large values of T , there is no hope to remove all the information on {t = 0} and {t = T } for the global recovery of general time-dependent coefficients. Thus, for our problem the data ∂ t u |t=0 and u |t=T , of solutions u of (2.2.1.1), can not be removed.

In [START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF], we have established a result of stability associated with the uniqueness result of Theorem 2.2.1. For this purpose, we consider the IBVP

   ∂ 2 t u -∆u + q(t, x)u = 0, in Q, u(0, •) = v 0 , ∂ t u(0, •) = v 1 , in Ω, u = g, on Σ, (2.2.5.1)
and we examine the well-posedness of this IBVP. We introduce the space

J = {u ∈ L 2 (Q) : (∂ 2 t -∆)u = 0}
and topologize it as a closed subset of L 2 (Q). We work with the space

H (Q) = {u ∈ L 2 (Q) : u = (∂ 2 t -∆)u ∈ L 2 (Q)}, with the norm u 2 H (Q) = u 2 L 2 (Q) + (∂ 2 t -∆)u 2 L 2 (Q) .
Repeating some arguments of [LiMa1, Chapter 2, Theorem 6.4] we prove in [Ki161, Theorem A.1] that

H (Q) is embedded continuously into the closure of C ∞ (Q) in the space K (Q) = {u ∈ H -1 (0, T ; L 2 (Ω)) : u = (∂ 2 t -∆)u ∈ L 2 (Q)}
topologized by the norm

u 2 K (Q) = u 2 H -1 (0,T ;L 2 (Ω)) + (∂ 2 t -∆)u 2 L 2 (Q) .
Then, following [LiMa1, Chapter 2, Theorem 6.5], we prove in [Ki161, Proposition A.1] that the maps

τ 0 w = (w |Σ , w |t=0 , ∂ t w |t=0 ), τ 1 w = (∂ ν w |Σ , w |t=T , ∂ t w |t=T ), w ∈ C ∞ (Q),
can be extended continuously to τ 0 :

H (Q) → H -3 (0, T ; H -1 2 (∂Ω)) × H -2 (Ω) × H -4 (Ω), τ 1 : H (Q) → H -3 (0, T ; H -3 2 (∂Ω)) × H -2 (Ω) × H -4 (Ω).
Here for all w ∈ C ∞ (Q) we set

τ 0 w = (τ 0,1 w, τ 0,2 w, τ 0,3 w), τ 1 w = (τ 1,1 w, τ 1,2 w, τ 1,3 w),
where

τ 0,1 w = w |Σ , τ 0,2 w = w |t=0 , τ 0,3 w = ∂ t w |t=0 , τ 1,1 w = ∂ ν w |Σ , τ 1,2 w = w |t=T , τ 1,3 w = ∂ t w |t=T .
Therefore, we can introduce

H(∂Q) = {τ 0 u : u ∈ H (Q)} ⊂ H -3 (0, T ; H -1 2 (∂Ω)) × H -2 (Ω) × H -4 (Ω).
Following [BuUh] and [NaSt], in order to define an appropriate topology on H(∂Q) we consider the restriction of τ 0 to the space J.

Proposition 2.2.1 (Proposition 2.1, [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF]) The restriction of τ 0 to J, that maps J onto H(∂Q), is one to one and onto.

From now on, we set P 0 the inverse of τ 0 : J → H(∂Q) and define the norm of H(∂Q) by

(g, v 0 , v 1 ) H(∂Q) = P 0 (g, v 0 , v 1 ) L 2 (Q) , (g, v 0 , v 1 ) ∈ H(∂Q).
In the same way, we introduce the space H F (∂Q) defined by

H F (∂Q) = {(τ 0,1 h, τ 0,3 h) : h ∈ H (Q), τ 0,2 h = 0, supp(τ 0,1 h) ⊂ F }
with the associated norm given by

(g, v 1 ) H F (∂Q) = (g, 0, v 1 ) H(∂Q) , (g, v 1 ) ∈ H F (∂Q).
One can easily check that the space H F (∂Q) is embedded continuously into H(∂Q). We are now in position to state existence and uniqueness of solutions of the IBVP (2.2.5.1) for (g, v 1 ) ∈ H F (∂Q).

Proposition 2.2.2 (Proposition 2.2, [Ki161]) Let (g, v 1 ) ∈ H F (∂Q) and q ∈ L ∞ (Q).
Then, the IBVP (2.2.5.1) admits a unique weak solution u ∈ L 2 (Q) satisfying

u L 2 (Q) C (g, v 1 ) H F (∂Q)
and the boundary operator

B q : (g, v 1 ) → (τ 1,1 u |G , τ 1,2 u) is a bounded operator from H F (∂Q) to H -3 (0, T ; H -3 2 (G )) × H -2 (Ω).
We have established also a smoothing result for the difference of two boundary operators B q given by.

Proposition 2.2.3 (Proposition 1, [Ki162])Let q 1 , q 2 ∈ L ∞ (Q). Then, the operator B q1 -B q2 is a bounded operator from H F (∂Q) to L 2 (G) × H 1 (Ω).
Using this smoothing property we can state the main result of [START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF] in the following way.

Theorem 2.2.2 (Theorem 1, [START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF]) Let p > n + 1 and q 1 , q 2 ∈ W 1,p (Q). Assume that the conditions

q 1 (t, x) = q 2 (t, x), (t, x) ∈ Σ, (2.2 
.5.2)

q 1 W 1,p (Q) + q 2 W 1,p (Q) M
are fulfilled. Then, there exists a constant C > 0 depending on n, p, M , T , Ω, F , G , such that

q 1 -q 2 H -1 (Q) C B q1 -B q2 + ln | ln ( B q1 -B q2 ) | -1 .
(2.2.5.3)

Here B q1 -B q2 stands for the norm of B q1 -B q2 as an element of B(H F (∂Q); L 2 (G) × H 1 (Ω)).
Let us observe that this stability estimate is the first that is stated with the data considered in [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF], where uniqueness is proved with conditions that seems to be one of the weakest so far. Moreover, it appears that with the paper of [START_REF] Aicha | Stability estimate for hyperbolic inverse problem with time-dependent coefficient[END_REF], [START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF] is the first where stability is stated for global determination of general time-dependent potentials appearing in a wave equation from boundary measurements.

The result of [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF] has been extended in [START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] to the unique simultaneous recovery of the damping coefficient a and the potential q appearing in (2.2.1.1) from the data

C * a,q = {(u |Σ , u |t=0 , ∂ t u |t=0 , ∂ ν u |F , u |t=T ) : u ∈ H 1 (0, T ; L 2 (Ω)), L a,q u = 0}.
The main result of [START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] can be stated as follows.

Theorem 2.2.3

(Theorem 1.1, [Ki164]) Let q 1 , q 2 ∈ L ∞ (Q) and let a 1 , a 2 ∈ W 1,p (Q) with p > n + 1.
Assume that a 1 (t, x) = a 2 (t, x), (t, x) ∈ ∂Q.

(2.2.5.4)

Then, the condition

C * a1,q1 = C * a2,q2
(2.2.5.5)

implies that a 1 = a 2 and q 1 = q 2 .

To our best knowledge [START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] is the first paper treating uniqueness in the recovery of time-dependent damping coefficients. Moreover, it seems that, with [Es08, Es16, Sala], [START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] is the first paper considering recovery of time-dependent coefficients of order one and it appears that this work is the first treating this problem for general coefficients at finite time ( [START_REF] Eskin | Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect[END_REF][START_REF] Eskin | Inverse problems for general second order hyperbolic equations with time-dependent coefficients[END_REF] proved recovery of coefficients analytic with respect to the time variable t, [Sala] considered the problem for all time t ∈ R). We point out that Theorem 2.2.3 is stated for general coefficients with observations close to the one considered in Theorem 2.2.1. Indeed, the only difference between Theorem 2.2.1 and Theorem 2.2.3 comes from the restriction on the Dirichlet boundary condition and the initial value.

Note that condition (2.2.5.4) is meaningful for damping coefficients that actually depend on the time variable t (∂ t a j = 0, j = 1, 2). Indeed, for time-independent damping coefficients a 1 , a 2 , (2.2.5.4) implies that a 1 = a 2 . However, by modifying the argumentation of [START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] in accordance with [START_REF] Isakov | Completness of products of solutions and some inverse problems for PDE[END_REF], for T > Diam(Ω) we believe that we can restrict condition (2.2.5.4) to the knowledge of time-independent damping coefficients on ∂Ω (a 1 = a 2 on ∂Ω instead of (2.2.5.4)).

We believe that, with some suitable modifications, the approach developed in [START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] can be used for proving recovery of more general time-dependent coefficients of order one including a magnetic field associated with a time-dependent magnetic potential.

Description of the results

The main tools in the analysis of [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF][START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF][START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] are GO solutions and Carleman estimates. Following an approach used for elliptic equations (e.g. [START_REF] Bukhgeim | Recovering a potential from partial Cauchy data[END_REF][START_REF] Choulli | Double logarithmic stability estimate in the identification of a scalar potential by a partial elliptic Dirichlet-to-Neumann map[END_REF][START_REF] Kenig | The Calderon problem with partial data[END_REF][START_REF] Nachman | Reconstruction in the Calderón problem with partial data[END_REF]) and for the determination of time-independent potentials by [START_REF] Bellassoued | Lipschitz stability for a hyperbolic inverse problem by finite local boundary data[END_REF], we construct two kind of GO solutions: exponentially growing GO solutions and exponentially decaying GO solutions. Using these solutions and some Carleman estimates with linear weight, we prove the recovery of the coefficient a and q stated in Theorem 2.2.1, 2.2.2 and 2.2.3. Our GO solutions differ from the one of [Es08, Is912, RakSy, RaSj, Sala] and, combined with our Carleman estimate, they make it possible to prove global recovery of time-dependent coefficients from partial knowledge of the set C a,q without using additional smoothness or geometrical assumptions.

In [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF] we consider exponentially decaying GO solutions lying in H 1 (Q) without condition on ∂Q and exponentially growing GO solutions associated with (2.2.1.1) for a = 0 that vanish on parts of ∂Q. With these solutions and some Carleman estimates with linear weight, we prove Theorem 2.2.1. Using some properties of fundamental solutions for PDEs with constant coefficients stated in [Ch09, Ho1, Ho2], we build exponentially decaying GO solutions u ∈ H 1 (Q) associated with the equation

∂ 2 t u -∆u + q(t, x)u = 0 on Q. (2.2.6.1)
More precisely, for λ > 1 a large parameter and for ω ∈ S n-1 , ξ ∈ R 1+n satisfying ξ • (1, -ω) = 0, we consider solutions of (2.2.1.1) with a = 0 of the form

u(t, x) = e -λ(t+x•ω) (e -iξ•(t,x) + w(t, x)), (t, x) ∈ Q. (2.2.6.2) Here w ∈ H 1 (Q) fulfills w L 2 (Q) C λ ,
with C > 0 independent of λ. To obtain parts of the restriction on the set of data C a,q stated in Theorem 2.2.1, we consider also exponentially growing GO solutions associated with (2.2.1.1) for a = 0 that vanish on parts of ∂Q. The construction of such solutions requires the following Carleman estimates.

Theorem 2.2.4 (Theorem 4.1, [Ki161]) Let q ∈ L ∞ (Q) and u ∈ C 2 (Q).
If u satisfies the condition u |Σ = 0, u |t=0 = ∂ t u |t=0 = 0, then there exists λ 1 > 1 depending only on Ω, T and M q L ∞ (Q) such that the estimate

λ Ω e -2λ(T +ω•x) |∂ t u(T, x)| 2 dx + λ Σ+,ω e -2λ(t+ω•x) |∂ ν u| 2 |ω • ν(x)| dσ(x)dt + λ 2 Q e -2λ(t+ω•x) |u| 2 dxdt C Q e -2λ(t+ω•x) (∂ 2 t -∆ + q)u 2 dxdt + λ 3 Ω e -2λ(T +ω•x) |u(T, x)| 2 dx +C λ Ω e -2λ(T +ω•x) |∇u(T, x)| 2 dx + λ Σ-,ω e -2λ(t+ω•x) |∂ ν u| 2 |ω • ν(x)| dσ(x)dt
(2.2.6.3) holds true for λ λ 1 with C depending only on Ω, T and M q L ∞ (Q) . If u satisfies the condition

u |Σ = 0, u |t=T = ∂ t u |t=T = 0, then the estimate λ Ω e 2λω•x ∂ t u |t=0 2 dx + λ Σ-,ω e 2λ(t+ω•x) |∂ ν u| 2 |ω • ν(x)| dσ(x)dt + λ 2 Q e 2λ(t+ω•x) |u| 2 dxdt C Q e 2λ(t+ω•x) (∂ 2 t -∆ + q)u 2 dxdt + λ 3 Ω e 2λω•x |u(0, x)| 2 dx + λ Ω e 2λω•x |∇u(0, x)| 2 dx +Cλ Σ+,ω e 2λ(t+ω•x) |∂ ν u| 2 |ω • ν(x)| dσ(x)dt
(2.2.6.4) holds true for λ λ 1 .

For all y ∈ S n-1 and all r > 0, we set ∂Ω +,r,y = {x ∈ ∂Ω : ν(x) • y > r}, ∂Ω -,r,y = {x ∈ ∂Ω : ν(x) • y r} and Σ ±,r,y = (0, T ) × ∂Ω ±,r,y . Here and in the remaining of this text we always assume, without mentioning it, that y and r are chosen in such way that ∂Ω ±,r,±y contain a non-empty relatively open subset of ∂Ω. Without lost of generality we assume that there exists 0 < ε < 1 such that for all ω ∈ {y ∈ S n-1 : |y-ω 0 | ε} we have ∂Ω -,ε,-ω ⊂ F . Using the Carleman estimate (2.2.6.4), we build solutions u ∈ H (Q) to

   (∂ 2 t -∆ + q(t, x))u = 0 in Q, u |t=0 = 0, u = 0, on Σ +,ε/2,-ω , (2.2.6.5) of the form u(t, x) = e λ(t+ω•x) (1 + z(t, x)) , (t, x) ∈ Q.
Here ω ∈ {y ∈ S n-1 : |y -

ω 0 | ε}, z ∈ e -λ(t+ω•x) H (Q) fulfills: z(0, x) = -1, x ∈ Ω, z = -1 on Σ +,ε/2,-ω and 
z L 2 (Q) Cλ -1 2 with C depending on F , Ω, T and any M q L ∞ (Q) . Since Σ \ F ⊂ Σ \ Σ -,ε,-ω = Σ +,ε,-ω and since Σ +,ε/2,-ω is a neighborhood of Σ +,ε,-ω in Σ, it is clear that condition (2.2.6.5) implies (τ 0,1 u, τ 0,3 u) ∈ H F (∂Q) (recall that for v ∈ C ∞ (Q), τ 0,1 v = v |Σ , τ 0,3 v = ∂ t v |t=0
). Using these solutions and the Carleman estimate (2.2.6.3), we prove in [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF] the unique recovery of q from the data C * q by mean of the Fourier transform of q.

The strategy for proving the stability estimate (2.2.5.3) is different and requires different assumptions such as the knowledge of the potential on the lateral boundary Σ stated in (2.2.5.2). More precisely, in order to derive a stability result associated with the uniqueness stated in Theorem 2.2.1, for λ > 0, ω ∈ S n-1 , ϕ ∈ C ∞ (R n ), we consider in [START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF] GO solutions of the form u = e ±λ(t+x•ω) (χ(t, x) + w(t, x)), where χ(t, x) = ϕ(x + tω). Here, in contrast to [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF], we need exponentially decaying GO solutions lying in H 2 (Q) and exponentially growing GO solutions satisfying (2.2.6.5). Indeed, in contrast to uniqueness result, for the stability issue we need to consider traces of GO solutions on ∂Q lying in some suitable spaces and we need estimates of these terms.

Let q = q 1 -q 2 be extended to R 1+n by 0. We consider the light-ray transform of q (see [START_REF] Ramm | An inverse problem of the wave equation[END_REF][START_REF] Stefanov | Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials[END_REF]) given by

Rq(x, ω) = R q(t, x + tω)dt, x ∈ R n , ω ∈ S n-1 .
Repeating some of the arguments already used in Theorem 2.2.1, with additional cares about the dependence of the constant, we start by proving the stable recovery of the light-ray Rq(•, ω) for ω on a small neighborhood of ω 0 in S n-1 . Then, combining this with a result of stability in the analytic continuation problem that follows from [ApEs, Theorem 3] (see also [Ve]), we complete the proof of the stability estimate (2.2.5.3). Now let us consider the result of [START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] stated in Theorem 2.2.3. This time we want to recover simultaneously the first order coefficient a and the zero order coefficient q appearing in (2.2.1.1). Even if the general strategy of [START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] is inspired by [START_REF] Bellassoued | Lipschitz stability for a hyperbolic inverse problem by finite local boundary data[END_REF][START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF][START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF] (see also [BuUh, KeSjUh] for the original idea in the case of elliptic equations), due to the presence of a variable coefficient of order one in (2.2.1.1), our approach in [START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] differs from [BeJeYa1, Ki161, Ki162] in many aspects. Indeed, to prove our Carleman estimate we perturb the linear weight and we prove this estimate by using a convexity argument that allows us to absorb the damping coefficient. Moreover, in contrast to [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF][START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF] our GO are designed for the recovery of the damping coefficient and we can not construct them by applying properties of solutions of PDEs with constant coefficients. We remedy to this by considering Carleman estimates in Sobolev space of negative order and by using these estimates to build our GO solutions. This construction is inspired by the one used in [DoKeSjUh, KeSjUh] for the recovery of Schrödinger operators from partial boundary measurements. The Carleman estimate of [START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] takes the following form.

Theorem 2.2.5 (Theorem 3.1, [Ki164]) Let ω ∈ S n-1 , a, q ∈ L ∞ (Q) and u ∈ C 2 (Q). If u satisfies the condition u |Σ = 0, u |t=0 = ∂ t u |t=0 = 0, then there exists λ 1 > 1 depending only on Ω, T and M q L ∞ (Q) + a L ∞ (Q) such that the estimate λ Ω e -2λ(T +ω•x) ∂ t u |t=T 2 dx + λ Σ+,ω e -2λ(t+ω•x) |∂ ν u| 2 |ω • ν(x)| dσ(x)dt + λ 2 Q e -2λ(t+ω•x) |u| 2 dxdt + Q e -2λ(t+ω•x) (|∇u| 2 + |∂ t u| 2 )dxdt C Q e -2λ(t+ω•x) |L a,q u| 2 dxdt + λ 3 Ω e -2λ(T +ω•x) u |t=T 2 dx +C λ Ω e -2λ(T +ω•x) ∇u |t=T 2 dx + λ Σ-,ω e -2λ(t+ω•x) |∂ ν u| 2 |ω • ν(x)| dσ(x)dt (2.2.6.6) holds true for λ λ 1 with C depending only on Ω, T and M q L ∞ (Q) + a L ∞ (Q) .
The main difference between the Carleman estimate (2.2.6.3) and (2.2.6.6), comes from the expression involving ∂ t u and ∇u. Due to the presence of a variable coefficient of order one this expressions are required for the construction of our GO solutions. In order to establish this Carleman estimate, in a similar way to [DoKeSjUh, KeSjUh], we need to perturb our linear weight in order to absorb the damping coefficient. Namely, we introduce a new parameter s independent of λ, that will be precised later, and we consider, for λ > s > 1, the perturbed weight

ϕ ±λ,s (t, x) := ±λ(t + ω • x) - st 2 2 .
Then, for a suitable value of s depending on the damping coefficient a and for λ > λ 0 (s) where λ 0 (s) depends on s, we obtain (2.2.6.6) (with a constant depending on s). In order to construct our GO solutions we need also an extension of our Carleman estimate to negative order Sobolev space. For this purpose, for all m ∈ R, we introduce the space H m λ (R 1+n ) defined by

H m λ (R 1+n ) = {u ∈ S (R 1+n ) : (|(τ, ξ)| 2 + λ 2 ) m 2 û ∈ L 2 (R 1+n )},
with the norm

u 2 H m λ (R 1+n ) = R R n (|(τ, ξ)| 2 + λ 2 ) m |û(τ, ξ)| 2 dξdτ.
Here for all tempered distribution u ∈ S (R 1+n ), we denote by û the Fourier transform of u which, for u ∈ L 1 (R 1+n ), is defined by

û(τ, ξ) := Fu(τ, ξ) := (2π) -n+1 2 R 1+n e -itτ -ix•ξ u(t, x)dtdx.
Then, in a similar way, combining the arguments used in Theorem 2.2.5 with properties of pseudodifferential operator stated in [Ho3, Volume 18], for P a,ω,±λ := e ∓λ(t+x•ω) (L a,q -q)e ±λ(t+x•ω) , we prove two Carleman estimate in negative Sobolev space taking the form

Lemma 2.2.1 (Lemma 5.1, [Ki164]) Let a ∈ W 1,p (Q). Then, there exists λ 2 > λ 1 such that v L 2 (R 1+n ) C P a,ω,λ v H -1 λ (R 1+n ) , v ∈ C ∞ 0 (Q), λ > λ 2 , (2.2 

.6.7)

with C > 0 independent of v and λ.

Lemma 2.2.2 (Lemma 5.4, [START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF]) Let a ∈ W 1,p (Q). Then, there exists λ 3 > 0 such that for λ > λ 3 , we have

v L 2 (R 1+n ) C P -a,ω,-λ v H -1 λ (R 1+n ) , v ∈ C ∞ 0 (Q), λ > λ 3 , (2.2.6.8) 
with C > 0 independent of v and λ.

Combining Carleman estimates (2.2.6.7)-(2.2.6.8), we construct by duality exponentially growing and decaying solutions of the form

u 1 (t, x) = e -λ(t+x•ω) (b 1,λ (t, x) + w 1 (t, x)), u 2 (t, x) = e λ(t+x•ω) (b 2,λ (t, x) + w 2 (t, x))
(2.2.6.9) with w j ∈ H 1 (Q), j = 1, 2, satisfying the decay

w j H 1 (Q) + λ w j L 2 (Q) Cλ 3-α 3 .
Here the expression b 1,λ , b 2,λ , are respectively a solution of a transport equation and they will be used for the recovery of the damping coefficient. In order to relax the assumptions imposed on the set of admissible coefficients, in a similar way to [Ki163, Salo04], we consider expressions b 1,λ , b 2,λ depending on some smooth approximations of the damping coefficients instead of the damping coefficients themselves.

Recovery of time-dependent coefficients on Riemannian manifold for hyperbolic equations

Formulation of the problem

Let us observe that in [Ki161, [START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF][START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF] we have considered the recovery of time-dependent potential q in the flat case for operators whose principal part is characterized by constant coefficients. This allows us to conclude through an argument using the Fourier transform of the potential q. The same problem stated on a manifold with boundaries should be carry out differently. This section is devoted to the presentation of the extension of [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF] to Riemannian manifold stated in [KiOk] which is a joint work with Lauri Oksanen. Let (M, g) be a smooth Riemannian manifold with boundary of dimension n 2 and let T > 0. We introduce the Laplace and wave operators

∆ g u = |g| -1/2 n j,k=1 ∂ xj g jk |g| 1/2 ∂ x k u , g = ∂ 2 t -∆ g , (2.3.1.1)
where |g| and g jk denote the absolute of value of the determinant and the inverse of g in local coordinates, and consider the wave equation

g u + q(t, x)u = 0, (t, x) ∈ (0, T ) × M, (2.3.1.2) 
with q ∈ L ∞ ((0, T ) × M ). Let ν be the outward unit normal vector to ∂M with respect to the metric g and let ∂ ν be the corresponding normal derivative. We define ∂ ν = ∂ ν on the lateral surface (0, T ) × ∂M , ∂ ν = ∂ t on the top surface {T } × M and ∂ ν = -∂ t on the bottom surface {0} × M , and consider the Cauchy data set on the boundary of the cylinder M = (0, T ) × M ,

C q = {(u |∂M , ∂ ν u |∂M ) : u ∈ L 2 (M ), g u + qu = 0}. (2.3.1.3)
In [KiOk] we study the inverse boundary value problem to recover the time-dependent zeroth order term q appearing in (2.3.1.2) from partial knowledge of the set C q .

There are several previous results on this problem, however to our knowledge all of them assume either that (M, g) is a domain in R n with the Euclidean metric or that q is time-independent.

In the case of time-independent potential q it is enough to know the following lateral restriction of C q ,

C Lat q = {(u |(0,T )×∂M , ∂ ν u |(0,T )×∂M ) : u ∈ L 2 (M ), g u + qu = 0, u |t=0 = ∂ t u |t=0 = 0},
for sufficiently large T > 0, in order to determine q(x) for all x ∈ M , see [BelDo11, KaKuLa04, Mo, RakSy]. However, if q depends on time, due to domain of dependence argument stated in Subsection 2.2.2, the data C Lat q contains no information on the restriction of q on the set

{(t, x) ∈ M : dist(x, ∂M ) > t or dist(x, ∂M ) > T -t}. (2.3.1.4)
Here dist(•, •) is the distance function on (M, g). Indeed, the finite speed of propagation property for the wave equation (2.3.1.2), see e.g. [KaKuLa01, Theorem 2.47], implies that u(t, x), satisfying the equations in the definition of C Lat q , vanishes when dist(x, ∂M ) > t, and therefore changing q in this cone does not affect C Lat q . Moreover, again due to the finite speed of propagation, changing q in the cone dist(x, ∂M ) > T -t causes u to change only in the same cone, but this cone does not intersect the lateral boundary (0, T ) × ∂M .

Facing this obstruction to the uniqueness, all the results of [KiOk] assume some information on the top {T }×M and bottom {0}×M surfaces. In particular, under the assumption that (M, g) is a simple manifold, see Definition 2.3.1 below, we show that the full Cauchy data set C q determines q uniquely.

Physical and mathematical motivations

Note first that this problem has the same physical motivations as [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF][START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF][START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF]. Beside these motivations, this problem has an additional mathematical motivation: the problem to determine q given C q can be seen as a hyperbolic analogy of the Calderón problem on a cylinder as stated in [DoKeSjUh]. Indeed, denoting by dt 2 -g the product Lorentzian metric on M , the wave operator g coincides with the Laplace operator on (M , dt 2 -g). On the other hand, denoting by g = dt 2 + g the Riemannian product metric on M , and choosing a smooth domain Ω ⊂ M , we can formulate the the Calderón problem on a cylinder as follows: given the elliptic Cauchy data set

C Ell q = {(u |∂Ω , ∂ ν u |∂Ω ) : u ∈ L 2 (Ω), ∆ g u + qu = 0}
determine q (here ν is the outward unit normal vector to ∂Ω). In [DoKeSjUh] this problem was solved under the assumption that (M, g) is a simple manifold.

One reason to study these problems is to gain some understanding of the fundamental problem to determine, up to an isometry, a smooth Riemannian or Lorentzian manifold (Ω, g) with boundary given the set of Cauchy data

C(g) = {(u| ∂Ω , ∂ ν u| ∂Ω ); u ∈ L 2 (Ω), ∆ g u = 0}.
Excluding results where full or partial real analyticity is assumed, this problem is open in dimensions three or higher, in both the elliptic and hyperbolic cases. The relation to the present problem to determine q given C q is as follows. In the case when (Ω, g) is a subset of the conformal cylinder

M = (0, T ) × M, g = c(dt 2 + g), (2.3.2.1) 
where only the positive conformal factor c ∈ C 2 (M ) is assumed to be unknown, the problem to determine c given C(g) can be reduced to the problem to determine q given C Ell q via a gauge transformation. Indeed, as explained e.g. in [DoKuLaSa], the function v = c (n-1)/4 u satisfies ∆ g v + q c v = 0 if the function u satisfies ∆ g u = 0, where d is the dimension of M and q c = c -(n-1)/4 ∆ g c (n-1)/4 . This allows us to first determine C Ell qc given C(g), then to solve the inverse boundary value problem for q c , and finally determine c given q c . The argument can be adapted also to the hyperbolic case.

Previous literature

The recovery of coefficients appearing in hyperbolic equations is a topic that has attracted considerable attention. Several authors have treated the determination of time-independent coefficients from Cauchy data analogous to C Lat q above. In this case, the Boundary Control method, originating from [START_REF] Belishev | An approach to multidimensional inverse problems for the wave equation[END_REF], gives very general uniqueness results when combined with the time-sharp unique continuation theorem [START_REF] Robbiano | Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients[END_REF][START_REF] Tataru | Unique continuation for solutions to PDE; between Hörmander's theorem and Holmgren's theorem[END_REF]. We refer to [START_REF] Kurylev | Inverse problems for the connection Laplacian[END_REF][START_REF] Lassas | Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets[END_REF] for state-of-the-art results and to [START_REF] Katchalov | Inverse boundary spectral problems[END_REF] for reviews. However, as shown in [Al, AlBa], unique continuation analogous to [START_REF] Robbiano | Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients[END_REF][START_REF] Tataru | Unique continuation for solutions to PDE; between Hörmander's theorem and Holmgren's theorem[END_REF] may fail in the presence of timedependent zeroth order terms, and the Boundary Control method generalizes only to the case where the dependence on time is real analytic [START_REF] Eskin | Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect[END_REF][START_REF] Eskin | Inverse problems for general second order hyperbolic equations with time-dependent coefficients[END_REF].

Let us now turn to the approach underpinning most of the results in the time-dependent case, including the results in [KiOk], that is, the use of GO solutions. This approach is widely applied also to timeindependent case, and the data used then is typically the same as in the case of the Boundary Control method, that is, C Lat q . Although the GO approach gives less sharp uniqueness results in terms of geometrical assumptions than the Boundary Control method, the advantage of the former is that it yields stronger stability results.

Let us now describe the restriction of C q considered in our second result. To every variable x ∈ M we associate the coordinate

x 1 ∈ R and x ∈ M x1 = {x ∈ M 0 : (x 1 , x ) ∈ M } such that x = (x 1 , x ). We define ϕ(x) = x 1 , ∂M ± = {x ∈ ∂M : ±∂ ν ϕ(x) 0},
and Σ ± = (0, T ) × int(∂M ± ). We consider U = [0, T ] × U (resp V = (0, T ) × V ) with U (resp V ) a closed neighborhood of ∂M + (resp ∂M -) in ∂M , and define the following restriction of C q ,

C q, * = {(u |U , ∂ t u |t=0 , ∂ ν u |V , u |t=T ) : u ∈ L 2 (M ), ( a,g + q)u = 0, u |t=0 = 0, suppu |(0,T )×∂M ⊂ U }.
Our second result is stated as follows.

Theorem 2.3.3 (Theorem 1.4, [KiOk]) Suppose that the leading part of the wave operator is of the form (2.3.4.3). Let T > 0 and let q 1 , q 2 ∈ L ∞ ((0, T ) × M ). Then C q1, * = C q2, * implies that q 1 = q 2 .

Remarks about the proofs of the main results

As indicated above, the proofs of Theorems 2.3.1 and 2.3.2 are based on the use of GO solutions. In the case of the former, we use the oscillating solutions of the form

u(t, x) = k j=1 a j (t, x)e iσψj (t,x) + R σ (t, x), (t, x) ∈ (0, T ) × M, (2.3.5.1) 
with σ ∈ R a parameter, R σ a term that admits a decay with respect to the parameter |σ| and ψ j , j = 1, .., k, real valued. Inspired by the elliptic result [DoKeSaUh], we use these solutions to prove that the hyperbolic inverse boundary value problem reduces to the problem to invert a weighted geodesic ray transform on (M, g). The assumption that (M, g) is simple guarantees that this transform is indeed invertible.

For our purposes it is enough to take k = 2 in (2.3.5.1), and in the case of full data C q already k = 1 is enough. In the case of data sets C(q, 0) and C(q, 0, T ), the second term is needed in order to be able to restrict the data while avoiding a "reflection". Similar construction is likely to work also on the lateral boundary, and one may hope that this could be used to reduce the amount of lateral data. In fact, this type of argument was used in the elliptic case in [KeSa]. There it was assumed that the part of the lateral boundary lacking data, that is, the inaccessible part, satisfies a (conformal) flatness condition in one direction, and the elliptic inverse boundary value problem was reduced to the invertibility of a broken geodesic ray transform. The geodesics used in the transform break via the normal reflection when they hit the inaccessible part of the boundary. However, barring some special cases, it is not known if such a transform is invertible, and moreover, there are also counter-examples to invertibility in general. We refer to [Il] for a discussion of both positive results and counter-examples. In [KiOk] we do not pursue a lateral reflection type argument.

We recall that the result of several authors, that treated our problem for wave equations with constant leading order coefficients (e.g. [Ben15, RakRam, RaSj, Sala]), is based on the use of solutions of form (2.3.5.1). There (M, g) is a domain with the Euclidean geometry, and the inverse boundary value problem is reduced to the problem to invert the light-ray transform in the Minkowski space. An analogous reduction is possible also in the case of more complicated geometry [Wa], however, the invertibility of the light-ray transform on a Lorentzian manifold of the product form ((0, T ) × M, dt 2 -g), where (M, g) is simple, was an open question during the preparation of the paper [KiOk]. Therefore, in [KiOk], as having (restricted) data on the top and bottom allows for a reduction to the well-understood problem to invert a weighted geodesic ray transform, rather than the light-ray transform. More precisely, we start by extending M to a simple manifold M 1 . Then, for all x ∈ ∂M 1 denoting by τ + (x, θ) the time of existence in M 1 of the maximal geodesic γ x,θ satisfying γ x,θ (0) = x and γ x,θ (0) = θ, we introduce the attenuated geodesic ray transform I µ on the inward pointing boundary of the unit sphere bundle ∂ + SM 1 = {(x, θ) ∈ SM 1 : x ∈ ∂M 1 , θ, ν(x) g < 0}, defined by

I µ f (x, θ) = τ+(x,θ) 0 f (γ x,θ (r))e -µr dr, (x, θ) ∈ ∂ + SM 1 , f ∈ C ∞ (M 1 ).
Here µ > 0 gives constant attenuation and we recall that SM 1 = {(x, θ) ∈ T M : |θ| g(x) = 1}. The map I µ admits a unique continuous extension to the distributions on M 1 . We denote by L µ the Laplace transform with respect to t ∈ (0, +∞), that is,

L µ f = +∞ 0 f (t)e -µt dt, f ∈ L 1 (0, +∞).
Using solutions of the form (2.3.5.1), we prove that for q = q 1 -q 2 extended by 0 to (0, +∞) × M 1 , we have I µ L µ q = 0, µ > 0, in the sense of distributions on ∂ + SM 1 . Combining this with some properties of weighted geodesic transform stated in [FrStUh, DoKeSaUh] we complete the proof of Theorem 2.3.1 and 2.3.2. More recently, after a remark of Yaroslav Kurylev, we realized that the injectivity of the light-ray transform on a Lorentzian manifold of the product form (R × M, dt 2 -g) can be deduced from the injectivity of the geodesic ray transform on M . Thus, the proof of Theorem 2.3.1 and 2.3.2 can be refactored to give invertibility of the light ray transform in the product geometry case.

For Theorem 2.3.3, inspired by [Ki161, Ki162, Ki164], we replace the oscillating solutions (2.3.5.1) by exponentially growing or decaying solutions of the form

u(t, x) = e σ(βt+ϕ(x)) (a σ (t, x) + R σ (t, x)), (t, x) ∈ (0, T ) × M, (2.3.5.2) 
with σ ∈ R a parameter, β ∈ [1/2, 1], R σ a term that admits a decay with respect to the parameter |σ| and ϕ a limiting Carleman weight for elliptic equations as defined in [DoKeSaUh]. In a similar way to [Ki161], we use two different approaches for the construction of exponentially growing and decaying solutions of the form (2.3.5.2). We start with a construction of exponentially decaying solutions u 1 ∈ H 1 ((0, T ) × M ) of a,g u 1 + q 1 u 1 = 0 taking the form

u 1 (t, x) = e -σ(βt+ϕ(x)) (a 1,σ (t, x) + R 1 (t, x)), (2.3.5.3) 
where β ∈ [1/2, 1], σ > 0. For this purpose, we extend our manifold M into a cylindrical manifold and we consider the restriction on (0, T ) × M of exponentially decaying solutions on the extended domain.[1/2,1] More precisely, using the reduction

(a -1 ∂ 2 t -∆ g + q) a -n-2 4 v = a -n+2 4 ∂ 2 t v -∆ e⊕g v + q a v , (2.3.5.4) 
with

q a = aq + a n+2 4 ∆ g a -n-2 4 , we consider q 1,a = aq 1 + a n+2 4 ∆ g a -n-2 4 and u 1 = a -n-2 4 v where v is a solution of ∂ 2 t v -∆ e⊕g v + q 1,a (t, x)v = 0 on (0, T ) × (-R, R) × M 1 , (2.3.5.5)
with q 1,a is extended by zero to a function lying in L ∞ ((0,

T ) × (-R, R) × M 0 ). Here, for σ > 1, β ∈ [1/2, 1], v takes the form v(t, x) = e -σ(βt+x1) (k(t, x) + w(t, x)), (t, x) ∈ (0, T ) × (-R, R) × M 1 (2.3.5.6) with w ∈ H 1 ((0, T ) × (-R, R) × M 1 ) satisfying w L 2 ((0,T )×(-R,R)×M1) C σ .
Here the expression k is suitably chosen for the uniqueness result of Theorem 2.3.3. For the construction of the remainder term w appearing in (2.3.5.6), we combine a seperation of variable argument with properties of fundamental solutions of PDEs with constant coefficients. We consider also exponentially growing solutions u 2 ∈ L 2 ((0, T ) × M ) taking the form

u 2 (t, x) = e σ(βt+ϕ(x)) (a 2,σ (t, x) + R 2 (t, x)) (2.3.5.7)
and satisfying the additional condition

u 2 (t, x) = 0, (t, x) ∈ ({0} × M ) ∪ U 1 ,
where U 1 is a neighborhood of ((0, T ) × ∂M ) \ U in (0, T ) × ∂M . The construction of the solutions (2.3.5.7) requires the following Carleman estimate.

Theorem 2.3.4 (Theorem 4.1, [KiOk]) Let q ∈ L ∞ ((0, T ) × M ), β ∈ [1/2, 1] and u ∈ C 2 ([0, T ] × M ). We use the following notation s -= 0, s + = T , ψ(x, t) = βt + x 1 , ψ -(x 1 ) = -βT -x 1 and ψ + (x 1 ) = x 1 . If u satisfies the condition u |(0,T )×∂M = 0, u |t=s± = ∂ t u |t=s± = 0,
then there exist constants σ 1 > 1 and C > 0 depending only on M , T and q L ∞ ((0,T )×M ) such that the estimate

σ M e 2σψ± |∂ t u(s ∓ , x)| 2 dV g (x)
+σ Σ∓ e ±2σψ |∂ ν u| 2 |∂ ν ϕ| dσ g (x)dt + σ 2 (0,T )×M e ±2σψ |u| 2 dV g (x)dt

C (0,T )×M e ±2σψ |( a,g + q)u| 2 dxdt + σ 3 M e 2σψ± |u(s ∓ , x)| 2 dV g (x) +C σ M e 2σψ± |∇ g u(s ∓ , x)| 2 g dV g (x) + σ Σ± e ±2σψ |∂ ν u| 2 |∂ ν ϕ| dσ g (x)dt
holds true for σ σ 1 .

In a similar way to [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF], using these Carleman estimates we construct solutions of the form (2.3.5.7). Combining these two constructions with the Carleman estimates stated in Theorem 2.3.4, we complete the proof of Theorem 2.3.3 by using the injectivity of geodesic ray transform on simple manifolds.

Stable determination of an electromagnetic potential appearing in a Schrödinger equation

Statement of the problem

This section is devoted to the result [KiSo] which is a joint work with Eric Soccorsi. Let Ω be a bounded and simply connected domain of R n , n 2, with C 3 boundary ∂Ω. For T > 0, we consider the initial boundary value problem (IBVP)   

(i∂ t + ∆ A(t) + q(t))u = 0, in Q, u(0, •) = 0, in Ω, u = g, on Σ, (2.4.1.1)
where ∆ A(t) is the Laplace operator associated with the magnetic potential

A ∈ W 2,∞ (Q) n , ∆ A(t) := n j=1 (∂ xj + ia j (t, x)) 2 = ∆ + 2iA(t, x) • ∇ + i(∇ • A(t, x)) -|A(t, x)| 2 ,
and q ∈ W 1,∞ (Q). We associate with (2.4.1.1) the DN map

Λ A,q (g) := (∂ ν + iA • ν)u. (2.4.1.2)
The goal of [KiSo], is to prove, in some suitable sense, the stable recovery of the coefficients (A, q) from the DN map Λ A,q .

Direct problem

We introduce the spaces H(Σ) defined by

g ∈ H(Σ) := g ∈ H 5 2 , 5 2 (Σ); g(0, •) = ∂ t g(0, •) = 0 on ∂Ω
Then, for all g ∈ H(Σ), we establish below, that there exists a unique solution u g ∈ H 1,2 (Q) to (2.4.1.1) and that the mapping g → u g is continuous.

Proposition 2.4.1 (Proposition 2.1, [KiSo])

Let A ∈ W 2,∞ (Q), q ∈ W 1,∞ (Q) and g ∈ H(Σ) such that A W 2,∞ (Q) + q W 1,∞ (Q) M.
Then, problem (2.4.1.1) admits a unique solution u ∈ H 1,2 (Q) satisfying

u H 1,2 (Q) C g H(Σ) .
with C depending on M , T and Ω. Therefore, the DN map Λ A,q is well defined and it is a bounded operator from H(Σ) to L 2 (Σ).

Using this result we can prove that Λ A,q is a bounded operator from H(Σ) to L 2 (Σ).

Obstruction to the unique recovery

For j = 1, 2, let (A j , q j ) ∈ W 2,∞ (Q) n × W 1,∞ (Q).
We say that (A 1 , q 1 ) and (A 2 , q 2 ) are gauge equivalent if there exists ϕ ∈ W 3,∞ (Q) such that ϕ |(0,T )×∂Ω = 0, A 2 = A 1 + ∇ϕ and q 2 = q 1 -∂ t ϕ. We recall that the DN map (2.4.1.2) is invariant by this gauge transformation. Namely, let ϕ ∈ W 3,∞ (Q) be such that ϕ |(0,T )×∂Ω = 0, A 2 = A 1 + ∇ϕ, q 2 = q 1 -∂ t ϕ and, for j = 1, 2, let u j be the solution (2.4.1.1) with A = A j , q = q j . Then, we have (i∂ t + ∆ A1(t) u + q 1 (t))e iϕ u 2 = e iϕ (i∂ t + ∆ A2(t) u + q 2 (t))u 2 = 0 and we deduce that e iϕ u 2 = u 1 and

(∂ ν + iA 1 ν)u 1 = (∂ ν + i(A 1 + ∇ϕ) • ν)u 2 = (∂ ν + iA 2 ν)u 2 .
This implies that Λ A1,q1 = Λ A2,q2 but (A 1 , q 1 ) = (A 2 , q 2 ) as soon as ϕ = 0. Taking into account this obstruction to uniqueness, in [KiSo], we study the recovery of the time-dependent electromagnetic potential (A, q) modulo gauge invariance from the DN map Λ A,q . This problem is equivalent to the determination of (A, q), with div x (A) fixed, from the DN map Λ A,q . The goal of [KiSo] is to treat the stability issue for this last problem.

Hölder stability estimate

Theorem 2.4.1 (Theorem 1, [KiSo]) Fix M ∈ (0, +∞) and for j = 1, 2, let A j ∈ W 5,∞ (Q) n ∩ H 6 (Q) n and q j ∈ W 4,∞ (Q) satisfy the three following conditions:

∂ α x A 1 (t, x) = ∂ α x A 2 (t, x), (t, x) ∈ Σ, α ∈ N n , |α| 5, (2.4.4.1) div x A 1 (t, x) = div x A 2 (t, x), (t, x) ∈ Q (2.4.4.2)
and

2 j=1 A j W 5,∞ (Q) n + A j H 6 (Q) n + q j W 4,∞ (Q) M. (2.4.4.3)
Then, there exist three positive constants, r and s, depending only on n, and C, depending only on n, T , Ω and M , such that we have

A 1 -A 2 L 2 (0,T ;H 5 (Ω)) C Λ A1,q1 -Λ A2,q2 r (2.4.4.4) and q 1 -q 2 H -1 (Q) C Λ A1,q1 -Λ A2,q2 s . (2.4.4.5)
Here Λ A1,q1 -Λ A2,q2 denotes the norm of Λ A1,q1 -Λ A2,q2 as an element of B(H(Σ), L 2 (Σ)).

Known results and comments

Only few authors considered the problem of determining time-dependent coefficients for Schrödinger equations. The recovery of time-dependent electromagnetic potentials has been considered by [START_REF] Eskin | Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect[END_REF], who proved uniqueness modulo gauge invariance from the DN map. The stability issue for this problem was treated by [START_REF] Choulli | Determining the time dependent external potential from the DN map in a periodic quantum waveguide[END_REF] who established a log-type stability estimate in the recovery of a time-dependent electric potential from boundary operator including the DN map and information at initial and final time of the solutions. More recently [START_REF] Aicha | Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field with time-dependent coefficient[END_REF] extended the work of [START_REF] Choulli | Determining the time dependent external potential from the DN map in a periodic quantum waveguide[END_REF] to the stable recovery of electromagnetic potential with a magnetic potential which is time-independent and sufficiently small. To our best knowledge [START_REF] Aicha | Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field with time-dependent coefficient[END_REF][START_REF] Choulli | Determining the time dependent external potential from the DN map in a periodic quantum waveguide[END_REF] are the only papers dealing with stable recovery of time-dependent coefficients for Schrödinger equations.

Let us observe that, to our best knowledge, this result is the first result of stability in the recovery of general time-dependent electromagnetic potentials, with both electric and magnetic potential that dependent on time and space variables, appearing in a Schrödinger equation from boundary measurements. Moreover, not only the stability estimates (2.4.4.4)-(2.4.4.5) restrict the data considered by [START_REF] Aicha | Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field with time-dependent coefficient[END_REF][START_REF] Choulli | Determining the time dependent external potential from the DN map in a periodic quantum waveguide[END_REF], which seem to be the only other results of stable recovery of time-dependent coefficients for Schrödinger equations, but they also improve the log-type stability of [START_REF] Aicha | Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field with time-dependent coefficient[END_REF][START_REF] Choulli | Determining the time dependent external potential from the DN map in a periodic quantum waveguide[END_REF] to a Hölder stability. Actually, our result seems to be the first result of Hölder stability for the recovery of general coefficients, depending on time and space variables, for evolution PDEs (see the log-type stability estimate derived in [START_REF] Aicha | Stability estimate for hyperbolic inverse problem with time-dependent coefficient[END_REF][START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF] for hyperbolic and parabolic equations).

Like many results related to this problem (e.g. [START_REF] Eskin | Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect[END_REF][START_REF] Bellassoued | Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map[END_REF][START_REF] Bellassoued | Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map[END_REF]) our result is based on construction of suitable GO solutions associated with (2.4.1.1). In [KiSo], we purpose a new construction that allows to reduce the regularity assumptions of [START_REF] Eskin | Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect[END_REF] and derive Hölder stability estimate for time-dependent coefficients. More precisely, we consider GO solutions of the form

u(t, x) = e iσ(-σt+x•ω) N k=1 b k (t, x) σ k-1 + R σ , (2.4.5.1)
with ω ∈ S n-1 and a reminder term R σ satisfying

R σ L 2 (0,T ;H 1 (Ω)) + σ R σ L 2 (Q) Cσ -1 .
In [START_REF] Eskin | Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect[END_REF], Eskin considered such solutions for large value of N for proving unique recovery of infinitely smooth time-dependent electromagnetic coefficients. By using the scaling t ↔ σt, [START_REF] Bellassoued | Stable determination of coefficients in the dynamical Schrödinger equation in a magnetic field[END_REF][START_REF] Bellassoued | Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map[END_REF] considered solutions of the form (2.4.5.1) with N = 1. In [KiSo], we use solutions of the form (2.4.5.1) for N = 2. This approach allows us at the same time to reduce the strong regularity assumption of [START_REF] Eskin | Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect[END_REF] and to derive in a straightforward way the stability estimates (2.4.4.4)- (2.4.4.5). Note also that, by extending the asymptotic expansion of the principal part of the GO solutions from order 1 to order 2, with respect to σ → +∞, we manege to extend the stability estimate of [START_REF] Bellassoued | Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map[END_REF] to time-dependent coefficients by "freezing" the time variable in the expression b 1 , b 2 appearing in (2.4.5.1) for N = 2.

Stable recovery of time-dependent coefficients for parabolic equations

Statement

This section is devoted to the inverse parabolic problem of [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF] which is a joint work with Mourad Choulli. We fix Ω a C 2 bounded domain. For X = Ω or X = ∂Ω and r, s > 0 we introduce the Sobolev spaces H r,s ((0,

T ) × X) = H r (0, T ; L 2 (X)) ∩ L 2 (0, T ; H s (X)).
Following [LiMa2, Section 8, Chapter 4], we define also the space H -r,-s ((0, T ) × X) to be the dual space of the H r,s ((0, T ) × X) closure of C ∞ 0 ((0, T ) × X). In particular, in view of [LiMa1, Theorem 11.1, Chapter 1], for r ∈ (0, 1 2 ), H -r,-s (Σ) is the dual space of H r,s (Σ). We consider the IBVP   

∂ t u -∆u + q(t, x)u = 0, in Q, u(0, •) = 0,
in Ω, u = g, on Σ.

(2.5.1.1)

We prove in [ChKi16, Proposition 2.3] that for q ∈ L ∞ (Q) and g ∈ H -1 4 ,-1 2 (Σ) this problem admits a unique weak solution u ∈ L 2 (Q). Moreover, the DN map

Λ q : H -1 4 ,-1 2 (Σ) g → ∂ ν u ∈ H -3 4 ,-3 2 (Σ) is bounded.
In [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF] we consider the problem of determining a time-dependent potential q from partial knowledge of Λ q . More precisely we look for a stability estimate associated with this inverse problem.

Motivations

The IBVP (2.5.1.1) is for instance a typical model of the propagation of the heat through a time-evolving homogeneous body. The goal is to determine the coefficient q, who contains some properties of the body, by applying a heat source on some part of the boundary of the body and measuring the temperature on another part of the boundary of the body. Moreover, in many applications we are often lead to determine physical quantities via parabolic IBVP's including nonlinear terms from boundary measurements. For instance such kind of problems appears in reservoir simulation, chemical kinetics and aerodynamics. Considering timedependent unknown coefficients in parabolic equations is very useful when treating the determination of the nonlinear term appearing in a semilinear parabolic equation. We discuss this topic in Section 2.4.

Known results

There is a wide literature devoted to inverse parabolic problems and specifically the determination of timedependent coefficients. We just present briefly some typical results. Canon and Esteva [START_REF] Cannon | An inverse problem for the heat equation[END_REF] proved a logarithmic stability estimate for the determination of the support of a source term in a one dimension parabolic equation from a boundary measurement. This result was extended to three dimension heat equation in [START_REF] Cannon | A note on an inverse problem related to the 3-D heat equation[END_REF]. The case of a non local measurement was considered by Canon and Lin in [START_REF] Cannon | Determination of a parameter p(t) in some quasi-linear parabolic differential equations[END_REF][START_REF] Cannon | An Inverse Problem of Finding a Parameter in a Semi-linear Heat Equation[END_REF]. In [START_REF] Choulli | An abstract inverse problem[END_REF], Choulli proved existence, uniqueness and Lipschitz stability for the determination of a timedependent coefficient appearing in an abstract integro-differential equation, extending earlier results in [START_REF] Choulli | An abstract inverse problem and application[END_REF]. Choulli and Yamamoto established in [START_REF] Choulli | Some stability estimates in determining sources and coefficients[END_REF] a stability estimate for the inverse problem of determining a source term appearing in a heat equation from Neumann boundary measurements. In [START_REF] Isakov | Completness of products of solutions and some inverse problems for PDE[END_REF], Isakov extended the construction of CGO solutions, introduced in [SyUh], to various PDE's including hyperbolic and parabolic equations to prove the density of products of solutions. One can get from the results in [START_REF] Isakov | Completness of products of solutions and some inverse problems for PDE[END_REF] the unique determination of q from the measurements on the lateral boundary together with data at the final time and all input at initial time. When the space domain is cylindrical, adopting the strategy introduced in [BuKl], [GaKi] proved that the time-dependent zero order coefficient can be recovered uniquely from a single boundary measurement. Based on properties of fundamental solutions of parabolic equations, [START_REF] Choulli | Stability of the determination of a time-dependent coefficient in parabolic equations[END_REF] proved Lipschitz stability for the determination of the time-dependent part of a zero order coefficient in a parabolic IBVP from a single boundary measurement.

Direct problem

In this subsection we introduce the result of [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF] related to the well-posedness of (2.5.1.1) and definition of the DN map Λ q . For ε = ±,

Ω + = {0} × Ω, Ω -= {T } × Ω, we consider the IBVP    (ε∂ t -∆ + q(t, x))u = 0 in Q, u |Ωε = 0, u |Σ = g. (2.5.4.1)
Our first result is given by the following.

Proposition 2.5.1 (Proposition 2.3, [ChKi16]) For m > 0, g ∈ H -1 4 ,-1 2 (Σ) and q ∈ L ∞ (Q), with q L ∞ (Q) m, the IBVP (2.5.4.1) admits a unique transposition solution u ε q,g ∈ L 2 (Q) satisfying u ε q,g L 2 (Q) C g H -1 4 ,- 1 
2 (Σ) , (2.5.4.2)
where the constant C depends only on Q and m. Additionally the parabolic DN map

Λ q : g → ∂ ν u + q,g defines a bounded operator from H -1 4 ,-1 2 (Σ) into H -3 4 ,-3 2 (Σ).
We prove an additional result of smoothing stated in Proposition 2.5.2 (Proposition 2.4, [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF]) Let q, q ∈ L ∞ (Q). Then Λ q -Λ q is a bounded operator from

H -1 4 ,-1 2 (Σ) into H 1 4 , 1 
2 (Σ) and

(Λ q -Λ q )g, h = Q (q -q)u + q,g u - q,h dxdt, g, h ∈ H -1 4 ,- 1 
2 (Σ).

(2.5.4.3)

Main results and comments

The unit ball of a Banach space X will be denoted in the sequel by B X . For

1 2(n+3) < s < 1 2(n+1) , set Ψ s (ρ) = ρ + | ln ρ| -1-2s(n+1) 8 , ρ > 0,
extended by continuity at ρ = 0 by setting Ψ s (0) = 0.

Theorem 2.5.1 (Theorem 1.1, [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF]) Fix m > 0 and

1 2(n+3) < s < 1 2(n+1)
. There exists a constant C > 0, that can depend only on m, Q and s, so that, for any q, q ∈ L ∞ (Q) satisfying

max q L ∞ (Q) , q L ∞ (Q) m,
we have

q 1 -q 2 H -1 (Q) CΨ s ( Λ q1 -Λ q2 ) .
(2.5.5.1)

Here Λ q1 -Λ q2 stands for the norm of Λ q1 -Λ q2 in B(H -1
In the case of the infinite cylindrical domain Q = (0, +∞) × Ω, Isakov [START_REF] Isakov | Uniqueness and Stability in Inverse Parabolic Problems[END_REF] got a stability estimate of determining q = q(x) from the full parabolic DN map by combining the decay in time of solutions of parabolic equations and the stability estimate in [Al] concerning the problem of determining the zero order coefficient in a elliptic BVP from a full DN map. For finite cylindrical domain Q, to our knowledge, even for time-independent coefficients, there is no result in the literature dealing with the stability issue of recovering q from measurements only on the lateral boundary Σ. All such results require also volume measurements at some fix time t 0 ∈ [0, T ].

For ω ∈ S n-1 , set

Γ ±,ω = {x ∈ Γ; ±ν(x) • ω > 0} and Σ ±,ω = Γ ±,ω × (0, T ). Fix ω 0 ∈ S n-1 , U ± a neighborhood of Γ ±,ω0 in Γ and set V + = U + × [0, T ], V -= U -× (0, T ).
Define then the partial parabolic DN map

Λ q : H -1 2 ,-1 4 (Σ) ∩ E (V + ) → H -3 2 ,-3 4 (V -) g → ∂ ν u q,g |V-.
Note that Theorem 2.5.1 is obtained as by-product of the analysis we developed to derive a logarithmic stability estimate for the problem of determining q from the partial parabolic DN map Λ q . This result is stated in the following theorem, where

Φ s (ρ) = ρ + | ln | ln ρ|| -s , ρ > 0, s > 0, (2.5.5.2) 
extended by continuity at ρ = 0 by setting Φ s (0) = 0.

Theorem 2.5.2 (Theorem 1.2, [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF]) Let m > 0, there exist two constants C > 0 and s ∈ (0, 1/2), that can depend only on m, Q and V ± , so that, for any q, q ∈ mB L ∞ (Q) ,

q 1 -q 2 H -1 (Q) CΦ s Λ q -Λ q .
(2.5.5.3)

Here Λ q -Λ q denotes the norm of Λ q -Λ q in B(H

-1 4 ,-1 2 (Σ); H 1 4 , 1 2 (V -)).
It is worth mentioning that the uniqueness holds for the problem of determining q from the partial DN operator that maps the boundary condition g supported on γ 0 × (0, T ) into ∂ ν u q,g restricted to γ 0 × (0, T ), where γ 0 is an arbitrary nonempty open subsets of Γ. This result is stated in [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF]Theorem 3.27]. We note that the stability estimate corresponding to this uniqueness result remains an open problem.

Idea of the proof

Like [Ki161, Ki162, Ki164], the main tool in the analysis of [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF] are suitable solutions depending explicitly on some Carleman weight for the parabolic equation and its adjoint equation. In contrast to the application of such results for elliptic equations by [BuUh, KeSjUh], the main contribution of these solutions is not so much the restriction of the data on the lateral boundary Σ but on the top and on the bottom of the time-space cylindrical domain corresponding to {0} × Ω and {T } × Ω. In contrast to the result for hyperbolic equations [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF][START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF][START_REF] Kian | Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data[END_REF], we actually manage to get rid of the data at {0} × Ω and {T } × Ω for the stable recovery of a time-dependent coefficient. To our best knowledge this is the first result of stability of this kind for general recovery of general time-dependent coefficients appearing in a parabolic equation.

We fix q j ∈ L ∞ (Q), j = 1, 2, and we construct in [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF] two sets of exponentially growing and decaying solutions u 1 ∈ L 2 (Q) and u 2 ∈ L 2 (Q) of the equations

∂ t u 1 -∆u 1 + q 1 (t, x)u 1 = 0, in Q, u 1 (0, •) = 0,
in Ω, then the estimate

Ω e 2ρω•x |u(0, x)| 2 dx + ρ Σ-,ω e 2(ρ 2 t+ρω•x) |∂ ν u| 2 |ω • ν(x)| dσ(x)dt + ρ 2 Q e 2(ρ 2 t+ρω•x) |u| 2 dxdt C Q e 2(ρ 2 t+ρω•x) |(-∂ t -∆ + q)u| 2 dxdt + ρ Σ+,ω e 2(ρ 2 t+ρω•x) |∂ ν u| 2 |ω • ν(x)| dσ(x)dt
holds true for ρ ρ 1 .

Once the construction of our sets of solutions is completed we derive our stability result by recovering the Fourier transform of our coefficients.

Application to the recovery of a nonlinear term

This section is devoted to the application of the result of stable recovery of a time-dependent coefficient for a parabolic equation to the stable recovery of a nonlinear term. This result is stated in the last section of [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF] which is a joint work with Mourad Choulli. The objective is the derivation of a stability estimate for the problem of determining the nonlinear term in a semilinear parabolic IBVP from the corresponding "linearized" DN map. We will give the precise definition of the "linearized" DN map later in this section. The results of this section are obtained as a consequence of Theorem 2.5.1. The linearization procedure, that we use, requires existence, uniqueness and a priori estimate of solutions of IBVP's under consideration. We preferred to work in the Hölder space setting for which we have a precise literature devoted to these aspects of solutions. However we are convinced that the same analysis can be achieved in the Sobolev space setting. But in that case this analysis seems to be more delicate. We mention also that this linearization process is inspired by the strategy set by Isakov in the papers [START_REF] Isakov | On uniqueness in inverse problems for semilinear parabolic equations[END_REF][START_REF] Isakov | Uniqueness of recovery of some quasilinear partial differential equations[END_REF][START_REF] Isakov | Uniqueness of recovery of some systems of semilinear partial differential equations[END_REF] for results of uniqueness. In this section Ω is of class C 2+α for some 0 < α < 1. The parabolic boundary of Q is denoted by Σ p = Σ∪({0}×Ω). Consider the semilinear IBVP for the heat equation

   ∂ t u -∆u + a(t, x, u) = 0 in Q, u = g on Σ, u(0, x) = u 0 (x)
x ∈ Ω.

(2.6.0.3)

We introduce some notations. We denote by A 0 the set of functions from C 1 (Q × R) satisfying one of the following conditions:

(i) There exist two non negative constants c 0 and c 1 so that

ua(x, t, u) ≥ -c 0 u 2 -c 1 , (t, x, u) ∈ Q × R.
(2.6.0.4) (ii) There exist a non negative constant c 2 and a non decreasing positive function

Φ of τ ≥ 0 satisfying ∞ 0 dτ Φ(τ ) = ∞ such that ua(x, t, u) ≥ -|u|Φ(|u|) -c 2 , (t, x, u) ∈ Q × R. (2.6.0.5) Set X = C 2+α,1+α/2 (Q) and let X 0 = {(G |Σ , G |t=0 
); for some G ∈ X}. If • X denotes the natural norm on X we equip X 0 with the quotient norm

H X0 = inf{ G X ; (G |Σ , G |t=0 ) = H}.
By [LaSoUr, Theorem 6.1, page 452], for any a ∈ A 0 and G = (g, u 0 ) ∈ X 0 , the IBVP (2.6.0.3) has a unique solution u a,G ∈ X. Additionally, according to [LaSoUr, Theorem 2.9, page 23], there exists a constant C that can depend only on Q, A 0 and max 

Σp |G| such that max Q |u a,G | ≤ C. ( 2 
a : G ∈ X 0 -→ ∂ ν u a,G ∈ Y = C 1+α,(1+α)/2 (Σ).
Note that, contrary to Section 2.5, the DN map N a is no longer linear. The linearization procedure consists then in computing the Fréchet derivative of N a . Let A be the subset of A 0 of those functions a satisfying ∂ u a ∈ C 2 (Q × R). For a ∈ A and H ∈ X 0 , consider the IBVP

(∂ t -∆)v + ∂ u a(x, t, u a,G (x, t))v = 0 in Q, v = H on Σ p .
In light of [START_REF] Ladyzhenskaja | Linear and quasilinear equations of parabolic type[END_REF]Theorem 5.4,page 322] this IBVP has a unique solution

v = v a,G,H ∈ X satisfying v a,G,H X ≤ c H X0
for some constant c depending only on Q, a and G. In particular H ∈ X 0 → v a,G,H ∈ X defines a bounded operator. The Fréchet derivative of N a is given by the following.

Proposition 2.6.1

(Proposition 6.1, [ChKi16]) For each a ∈ A , N a is continuously Fréchet differentiable and N a (G)H = ∂ ν v a,G,H ∈ Y, G, H ∈ X 0 .
In order to handle the inverse problem corresponding to the semi-linear IBVP (2.6.0.3), we need to extend the operator Λ q introduced in Section 2.5 by varying also the initial condition. To do that we start by considering the IBVP   

(∂ t -∆ + q(t, x))u = 0 in Q, u(0, x) = u 0 , x ∈ Ω u |Σ = g.
(2.6.0.7)

Then, we prove in [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF] that the extended parabolic DN map

Λ e q : X + ⊕ H -1 2 ,-1 4 (Σ) → H -3 2 ,-3 4 (Σ) (u 0 , g) → ∂ ν u q,u0,g
defines a bounded operator. Here X + is a subspace of H -1 (Ω) with a suitable topology (see [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF]page 4] and [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF]page 16]). For

1 2(n+3) < s < 1 2(n+1) , we define Θ s (ρ) = | ln ρ| -1-2s(n+1) n+3 + ρ, ρ > 0, (2.6.0.8)
extended by continuity at ρ = 0 by setting Θ s (0) = 0. Fix λ > 0. There exists a constant c λ > 0 so that

max Q |u a,G | ≤ c λ , a ∈ A 0 , max Σp |G| ≤ λ.
For fixed δ > 0, consider

A = {a = a(x, u) ∈ A ; ∂ u a C(Ω×[-c λ ,c λ ]) ≤ δ}.
To a ∈ A and g ∈ X 0 we associate

p a,G (t, x) = ∂ u a(x, u a,G (t, x)), (t, x) ∈ Q. It is straightforward to check that N a (G) = Λ e p a,G |X0 . From now on N a (G) -N a (G) is considered as a bounded operator from X 0 endowed with norm of X + ⊕ H -1 2 ,-1 4 (Σ) into H 1 2 , 1 4 (Σ). Since p a,G L ∞ (Q) ≤ δ
for any a ∈ A and G ∈ X 0 so that max Σp |G| ≤ λ, we get as a consequence of Proposition 2.6.1

sup{ N a (G) -N a (G) ; a ∈ A , G ∈ X 0 and max Σp |G| ≤ λ} < ∞. Moreover, N a (G) -N a (G) = Λ e p a,G -Λ e p a,G .
(2.6.0.9)

Pick a 0 ∈ C 1 (Ω) and set

A 0 = {a ∈ A ; a(•, 0) = a 0 }.
We note that when G ≡ s, |s| λ, we have

p a,G (0, x) = ∂ u a(x, u a,G (0, x)) = ∂ u a(x, s), x ∈ Ω.
In light of this identity, combining Theorem 2.5.1 with Proposition 2.6.1, we prove the stable recovery of the nonlinear term a from N a .

Theorem 2.6.1 (Theorem 6.2, [START_REF] Choulli | Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term[END_REF]) Fix λ > 0 and

1 2(n+3) < s < 1 2(n+1)
. There exists a constant C > 0, that can depend only on δ, λ, s, Q and A 0 , so that for any a, a ∈ A 0 ,

a -a C(Ω×[-λ,λ]) CΘ s sup g∈X 0,λ N a (g) -N a (g) .
Here X 0,λ = {G ∈ X 0 ; max Σp |G| ≤ λ} and N a (G) -N a (G) stands for the norm of N a (G) -N a (G) in

B(X + ⊕ H -1 2 ,-1 4 (Σ); H 1 2 , 1
4 (Σ)). Remark 2.6.1 From our approach, one can derive many other stability results. We just mention one of them. To this end, let A 0 be defined as before with the only difference that we actually permit to functions of A 0 to depend also on the time variable t. Let a, a ∈ A 0 and pick

(t 0 , x 0 , u 0 ) ∈ Γ × (0, T ) × [-λ, λ] so that |(a -a)(t 0 , x 0 , u 0 )| = 1 2 a -a C([0,T ]×Γ×[-λ,λ]) .
(2.6.0.10)

Let ε = min(t 0 , T -t 0 ) and G ∈ X 0,λ so that G = s on [ε, T -ε] × Γ for some |s| ≤ λ.
We proceed as in the proof of Theorem 2.6.1 in order to derive

a -a C([ε,T -ε]×Γ×[-λ,λ]) ≤ CΘ s sup G∈X 0,λ N a (G) -N a (G) ,
where the constant C depends only on λ, s, Q and A 0 . In light of (2.6.0.10) this estimate yields

a -a C([0,T ]×Γ×[-λ,λ]) ≤ CΘ s sup G∈X 0,λ N a (G) -N a (G) .
Let us mention that uniqueness results for such kind of inverse semilinear parabolic problems was already established by Isakov [Is93,[START_REF] Isakov | Uniqueness of recovery of some quasilinear partial differential equations[END_REF][START_REF] Isakov | Uniqueness of recovery of some systems of semilinear partial differential equations[END_REF]. Stability estimates and uniqueness in the case of a single boundary lateral measurement has been proved in [ChOuYa] for a restricted class of unknown nonlinearities. To our best knowledge, this result is the first stability estimate for the recovery of general non-linear term. Even in the context of uniqueness, Theorem 2.6.1 improves the work of [START_REF] Isakov | On uniqueness in inverse problems for semilinear parabolic equations[END_REF] related to this problem.

Chapter 3

Inverse spectral problems

Introduction

The study of inverse spectral problems, which were one of the first mathematical formulation of inverse problems, goes back to Ambarzumian [Am] who investigated in 1929 the inverse spectral problem of determining the real potential V appearing in the Sturm-Liouville operator A = -∂ xx + V , acting in L 2 (0, 2π) with Neumann boundary condition, from partial spectral data of A. For the same operator acting on L 2 (0, π), but endowed with homogeneous Dirichlet boundary conditions, Borg [START_REF] Borg | Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe[END_REF] and Levinson [Le] established that while the Dirichlet spectrum does not uniquely determine V , assuming that ϕ k (0

) = 1 for k 1, additional spectral data, namely { ϕ k L 2 (0,π) ; k ∈ N * } is needed, where {ϕ k ; k ∈ N * } is an L 2 (0, π)-
orthogonal basis of eigenfunctions of A. Gel'fand and Levitan [GeLe] proved that uniqueness is still valid upon substituting ϕ k (π) for ϕ k L 2 (0,π) in the one-dimensional Borg and Levinson theorem. In 1998, the case where Ω is a bounded domain of R n , n 2, was treated by Nachman, Sylvester and Uhlmann [NaSyUh], and by Novikov [Nov]. Inspired by [GeLe], these authors proved that the boundary spectral data {(λ k , ∂ ν ϕ k|∂Ω ) ; k ∈ N * }, where (λ k , ϕ k ) is the k th eigenpair of A, uniquely determines the Dirichlet realization of the operator A. This result has been improved in several ways by various authors. For instance, Isozaki [Is] (see also Choulli [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF]) extended the result of [NaSyUh] when finitely many eigenpairs remain unknown, and, recently, Choulli and Stefanov [ChSt] proved uniqueness in the determination of V from the asymptotic behaviour of (λ k , ∂ ν ϕ k|∂Ω ) as k → ∞. Moreover, Canuto and Kavian [START_REF] Canuto | Determining Coefficients in a Class of Heat Equations via Boundary Measurements[END_REF][START_REF] Canuto | Determining Two Coefficients in Elliptic Operators via Boundary Spectral Data: a Uniqueness Result, Bolletino Unione Mat[END_REF] proved that both the electric potential V and the conductivity c are uniquely determined from the boundary spectral data of the operator u → -∇ • (c∇u) + V u endowed with either Dirichlet or Neumann boundary conditions. We mention also the work of [Ou] related to these problems.

In this chapter, we will introduce our contributions to this field corresponding to the papers [START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF][START_REF] Kian | A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data[END_REF][START_REF] Kian | Application of the boundary control method to partial data Borg-Levinson inverse spectral problem[END_REF]. We have considered first a formulation in the context of a Schrödinger operator in an infinite cylindrical domain with periodic coefficients. In this context the discrete spectrum is replaced by absolutely continuous spectrum. Nevertheless, by mean of Floquet theory we have established in [KaKiSo] a formulation of a Borg-Levinson type of result similar to [NaSyUh] for such operators. In our analysis, we have not only extended the result of [NaSyUh] to a class of operators with absolute continuous spectrum but we have also improved the result of [ChSt] by showing that a more precise asymptotic behavior of the boundary spectral data determines the Schrödinger operator. In our other contribution, we have considered the case of magnetic Schrödinger operators on a bounded domain. Namely, we have proved in [START_REF] Kian | A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data[END_REF] that an asymptotic behavior of the boundary spectral data, similar to [KaKiSo], determines uniquely a magnetic Schrödinger operator modulo gauge invariance. Finally, in [KiMoOk] we have considered the problem of determining a Schrödinger operator from boundary spectral data restricted to an arbitrary portion of the boundary. For this last result, we apply the so called boundary control method introduced by Bellishev [Beli87] and improved in various way by [START_REF] Belishev | To the reconstruction of a Riemannian manifold via its spectral data (BC-method)[END_REF][START_REF] Katchalov | Inverse boundary spectral problems[END_REF][START_REF] Kurylev | Inverse problems for the connection Laplacian[END_REF][START_REF] Lassas | An inverse problem for a wave equation with sources and observations on disjoint sets[END_REF][START_REF] Lassas | Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets[END_REF]. The first contribution of [KiMoOk] corresponds to an extension of such results to the case of non-smooth coefficients. Moreover, by considering a convex domain instead of a general Riemannian manifold, we have tried in [KiMoOk] to emphasize the main idea of the boundary control method.

Inverse spectral problem on an infinite waveguide

This section is devoted to our work [KaKiSo], which is a joint work with Otared Kavian and Eric Soccorsi related to two inverse spectral problems in which a potential is identified through an incomplete boundary spectral data.

Let ω ⊂ R 2 be a bounded domain. On the one hand set Y := ω × (0, 2π) and Γ := ∂ω × [0, 2π]; on the other hand consider an infinite waveguide Ω = ω × R, and ∂Ω = ∂ω × R. We may assume, without loss of generality, that the cross section ω of the waveguide contains the origin 0 R 2 of R 2 . For simplicity we assume that ω is C 1,1 domain. For the sake of brevity of notations we write x = (x , x 3 ) with x = (x 1 , x 2 ) ∈ ω for every x = (x 1 , x 2 , x 3 ) ∈ Ω.

The main problem we study, and whose solution is a consequence of a result presented a few lines below, concerns an inverse spectral problem in a waveguide given by Ω = ω × R. We consider a real valued bounded electric potential V ∈ L ∞ (Ω; R) which is 2π-periodic with respect to the infinite variable x 3 . Namely, we assume that V ∈ L ∞ (Ω; R), satisfies

V (x , x 3 + 2π) = V (x , x 3 ), ∀ x 3 ∈ R, (3.2.0.1) 
and then we define the self-adjoint operator (A, D(A)) acting in L 2 (Ω) by

Au := -∆u + V u, for u ∈ D(A) (3.2.0.2)
with its domain D(A) := u ∈ H 1 0 (Ω) ; -∆u + V u ∈ L 2 (Ω) . We are interested in the problem of determining V from the partial knowledge of the spectral data associated with A. However, the operator (A, D(A)) being self-adjoint and its resolvent not being compact, it may have a continuous spectrum contained in an interval of type [λ * , +∞): thus in the first place one should state precisely what is meant by an inverse spectral problem. To make this statement more precise we are going to recall the definition of the (full) spectral data associated with the operator A, but before doing so we state another result closely related to the above problem.

This result concerns the following inverse spectral problem: let Y be as above and consider a real valued potential V ∈ L ∞ (Y ), and for a given fixed θ ∈ [0, 2π) let (λ j (θ), ϕ θ,j ) j 1 be the eigenvalues and normalized eigenfunctions of the realization of the operator -∆ + V with quasi-periodic and Dirichlet boundary conditions, more precisely those eigenvalues and eigenfunctions given by

       -∆ϕ θ,j + V ϕ θ,j = λ j (θ)ϕ θ,j in Y, ϕ θ,j (σ) = 0, σ ∈ Γ, ϕ θ,j (x , 2π) = e iθ ϕ θ,j (x , 0), x ∈ ω, ∂ 3 ϕ θ,j (x , 2π) = e iθ ∂ 3 ϕ θ,j (x , 0), x ∈ ω. (3.2.0.3)
Then we show that if N 1 is a given integer, knowledge of

λ j (θ), ∂ ν ϕ θ,j |Γ for j N + 1, with Γ := ∂ω × [0, 2π],
allows us to identify the potential V in Y = ω × (0, 2π). More precisely we show the following:

Theorem 3.2.1 (Theorem 1.1, [KaKiSo]) Denote Γ := ∂ω × [0, 2π]. Let θ ∈ [0, 2π) and, for m = 1, 2, let V m ∈ L ∞ (Y ; R).
We denote by (λ m,k (θ), ϕ m,θ,k ) k 1 the eigenvalues and normalized eigenfunctions given by the eigenvalue problem (3.2.0.3) where V := V m , for m = 1 or m = 2. Let N 1 be an integer such that the following two conditions

∀ k N + 1, λ 1,θ,k (θ) = λ 2,k (θ), (3.2 
.0.4)

and ∀ k N + 1, ∂ ν ϕ 1,θ,k = ∂ ν ϕ 2,θ,k on Γ, (3.2 
.0.5)

hold simultaneously. Then we have V 1 ≡ V 2 .
In order to explain and state our main result concerning waveguides in the next subsection we recall what is meant by boundary spectral data for a waveguide.

The spectral data of the operator A

We recall (see [START_REF] Reed | Methods of Modern Mathematical Physics IV: Analysis of Operators[END_REF]§XIII.16] for more details) that the operator A given by (3.2.0.2), admits the following Floquet decomposition into the direct some

UAU -1 = ⊕ (0,2π) A θ dθ 2π . (3.2.1.1)
Here, U is the FBG transform already considered in Subsection 1.5.6. Moreover, for each fixed θ ∈ [0, 2π)

the operator A θ acts in L 2 (Y ) as -∆ + V on its domain, composed of functions ψ ∈ H 2 (Y ) such that ∀ σ ∈ ∂ω, ∀ x 3 ∈ (0, 2π), ψ(σ , x 3 ) = 0, (3.2.1.2) 
and

ψ(•, 2π) -e iθ ψ(•, 0) = ∂ 3 ψ(•, 2π) -e iθ ∂ 3 ψ(•, 0) = 0 in ω. (3.2.1.3)
Thus, the operator A θ is defined by

A θ ψ := -∆ψ + V ψ, for ψ ∈ D(A θ ) defined to be D(A θ ) := ψ ∈ H 1 (Y ) ; ∆ψ ∈ L 2 (Y ), ψ satisfies (3.2.1.2) and (3.2.1.3) .
It is clear that for each θ ∈ [0, 2π) the operator A θ is self-adjoint, and that the imbedding of D(A θ ) (endowed with its graph norm) into L 2 (Y ) is compact: this means that A θ has a compact resolvent and thus its spectrum is composed of a sequence of real numbers {λ k (θ) ; k ∈ N * }, where these numbers are assumed to be ordered in a non-decreasing order, and λ k (θ) → +∞ as k → +∞. Actually the spectrum of A is determined in terms of the spectrums of (A θ ) θ∈[0,2π) , by the relation:

sp(A) = k∈N * λ k ([0, 2π)). (3.2.1.4)
Moreover, the spectrum of A is purely absolutely continuous (cf. Filonov and Kachkovskii [FiKa, Theorem 2.1]), which amounts to saying that the so-called band functions θ → λ j (θ), j ∈ N * , are non constant.

To go further and say a few words about the generalized eigenfunctions of A, we introduce a family {ϕ θ,k ; k ∈ N * } of eigenfunctions of the operator A θ , which satisfy

A θ ϕ θ,k = λ k (θ)ϕ θ,k in Y,
and form an orthonormal basis of L 2 (Y ). For all k ∈ N * and θ ∈ [0, 2π), we set

Φ θ,k (x , x 3 + 2nπ) := e inθ ϕ θ,k (x), for x = (x , x 3 ) ∈ Y, n ∈ Z, (3.2.1.5) 
so that for any χ ∈ C ∞ c (R), the function x → χ(x 3 ) Φ θ,k (x) belongs to the domain D(A). For any k ∈ N * and θ ∈ [0, 2π), it is easy to check that

(-∆ + V )Φ θ,k = λ k (θ)Φ θ,k in Ω,
in the distributional sense. Therefore, for any given k ∈ N * and θ ∈ [0, 2π), each Φ θ,k is a generalized eigenfunction of A associated with the generalized eigenvalue λ k (θ). Furthermore, the family {Φ θ,k ; k ∈ N * , θ ∈ [0, 2π)} is a complete system of generalized eigenfunctions of A, in the sense that upon setting

u k (θ) := Y u(x , x 3 )Φ θ,k (x , x 3 )dx dx 3 , for u ∈ L 2 (Ω), the mapping u → {u k (θ) ; k ∈ N * , θ ∈ [0, 2π)} ,
defines a unitary operator from L 2 (Ω) onto k∈N * L 2 (0, 2π), that is for any u, v ∈ L 2 (Ω) we have:

(u|v) L 2 (Ω) = k 1 2π 0 u k (θ)v k (θ) dθ 2π .
Now, the (full) Floquet spectral data associated with the operator A is defined as the set

{(λ k (θ), span(Φ θ,k )) ; k ∈ N * , θ ∈ [0, 2π)} .
Often, with two abuses of notations, we shall denote the above full Floquet spectral data set as

FSD(V ) := {(λ k (θ), ϕ θ,k ) ; k ∈ N * , θ ∈ [0, 2π)} . (3.2.1.6)
that is in the first place we use the eigenfunctions ϕ θ,k defined on ω × (0, 2π) instead of Φ θ,k : clearly this does not create any ambiguity since Φ θ,k is known in a unique manner through the definition (3.2.1.5).

The next abuse of notations is owed to the fact that we omit to say that what is indeed important is the eigenspace span(Φ θ,k ), or span(ϕ θ,k ), rather than each eigenfunction Φ θ,k or ϕ θ,k , in particular when the Floquet eigenvalue λ k (θ) is a multiple eigenvalue. Moreover, in accordance with Eskin, Ralston and Trubowitz [EsRaTr, §I.6], for any θ ∈ [0, 2π) fixed, the set {(λ j (θ), Φ θ,j ) ; j ∈ N * } will be referred to as the Floquet spectral data (or equivalently, the Floquet eigenpairs) associated with the operator A at θ ∈ [0, 2π).

Main results in an infinite waveguide

We consider two potentials

V m ∈ L ∞ (Ω; R), m = 1, 2, that are 2π-periodic with respect to x 3 , V m (x , x 3 + 2π) = V m (x , x 3 ), x ∈ ω, x 3 ∈ R, (3.2.2.1) 
and we call A m (resp. A m (θ) for all θ ∈ [0, 2π)) the operator obtained by substituting V m for V in the definition of the operator A (resp. A(θ)), so that we have:

U A m U -1 = ⊕ (0,2π) A m (θ) dθ 2π , for m = 1, 2. (3.2.2.2)
Further, we note {(λ m,k (θ), ϕ m,θ,k ) ; k ∈ N * , θ ∈ [0, 2π)} the full spectral data associated with A m , for m = 1, 2, as defined in (3.2.1.6). The main result of [KaKiSo] is the following uniqueness result.

Theorem 3.2.2 (Theorem 1.2, [KaKiSo]) Denote Γ := ∂ω × [0, 2π]. For m = 1, 2 let V m ∈ L ∞ (Ω; R) fulfill (3.2.2.

1).

Assume that for some θ 0 ∈ [0, 2π) and some integer N 1 the following two conditions

∀ k N + 1, λ 1,k (θ 0 ) = λ 2,k (θ 0 ), (3.2.2.3) 
and

∀ k N + 1, ∂ ν ϕ 1,θ0,k = ∂ ν ϕ 2,θ0,k on Γ, (3.2.2.4) 
hold simultaneously. Then we have

V 1 ≡ V 2 .
Theorem 3.2.2 yields that the knowledge of the Floquet spectral data (with the possible exception of finitely many generalized eigenpairs) at one arbitrary θ 0 ∈ [0, 2π), uniquely determines the operator A. The claim seems quite surprising at first sight, since the full spectral data of A is the collection of the Floquet data at θ for θ evolving in [0, 2π). Nevertheless, we point out that this result is in accordance with Eskin, Ralston and Trubowitz [EsRaTr, I,Theorem 6.2], where Floquet isospectrality at θ = 0 for Schrödinger operators with analytic periodic potential in R n , n 2, implies Floquet isospectrality for all θ ∈ [0, 2π).

As a matter of fact, we show the stability result stated in Theorem 3.2.3 below, which yields a much stronger uniqueness result. Indeed, notwithstanding the fact that the main interest of Theorem 3.2.2 lies in its simplicity, notice that under the assumptions (3.2.2.3)-(3.2.2.4) one has also

∞ k=1 ∂ ν ϕ 1,θ0,k -∂ ν ϕ 2,θ0,k 2 L 2 (Γ) < ∞. (3.2.2.5) 
Actually, the above condition is sufficient to state a stability result in terms of the asymptotic distance between the eigenvalues |λ 1,k (θ 0 ) -λ 2,k (θ 0 )|, as stated in the following:

Theorem 3.2.3 (Theorem 1.3, [KaKiSo]) Let M > 0 be fixed and let V m , m = 1, 2, be the same as in Theorem 3.2.2 and let max m=1,2 |V m | M . Suppose that (3.2.2.5) is fulfilled for some θ 0 ∈ [0, 2π). Fix V the function defined on R 3 by V = V 1 -V 2 and extended by 0 outside of Ω and let V be the Fourier transform of V defined by

V (ξ , j) := (2π) -3 2 2π 0 R 2 V (x , x 3 )e -i(ξ •x +jx3) dx dx 3 , ξ ∈ R 2 , j ∈ Z.
Then there exists a positive constant c depending only on ω and M such that the following stability estimate holds V (ξ , j) c lim sup

k→+∞ |λ 1,k (θ 0 ) -λ 2,k (θ 0 )|, (ξ , j) ∈ R 2 × Z. (3.2.2.6) 
Since one can easily see that in general one has

|λ 1,k (θ 0 ) -λ 2,k (θ 0 )| V 1 -V 2 L ∞ (Ω) = V L ∞ (Ω)
the above stability estimate is, in some loose sense, optimal. Actually, from estimate (3.2.2.6) one can deduce estimates of V H -1 (Ω) with respect to δ. Also, with some additional assumption one can get estimates of V in some suitable spaces (L 2 (Ω), L ∞ (Ω),...). Here, in order to preserve some generality, we do not consider such application. We only introduce a stability estimate in a general setting with as little assumption as possible.

Inverse spectral theory in unbounded domain and results of stability

Note that all the results mentioned in Section 3.1 were obtained when Ω is a bounded domain and thus the operator A has a purely discrete spectrum. Borg [START_REF] Borg | Uniqueness theorem in the spetral theory of y + (λ -q(x))y = 0[END_REF] and Marchenko [Mar] independently examined the uniqueness issue in the inverse problem of determining the electric potential of -∂ xx + V in Ω = R * + , with Fourier flux boundary condition αψ(0) -ψ (0) = 0 at x = 0. They proved that when there is no continuous spectrum, two sets of discrete spectra associated with two distinct boundary conditions at x = 0 uniquely determine the potential and the two boundary conditions. Gesztesy and Simon [GeSi96, GeSi97, GeSi00] and Aktosun and Weder [AkWe] extended the Borg-Marchenko result in presence of a continuous spectrum, where either the Krein's spectral shift function, or an appropriate set containing the discrete eigenvalues and the continuous part of the spectral measure, are used as the known data. To the best of our knowledge, there is only one multi-dimensional Borg-Marcheko uniqueness result available in the mathematical literature, that of Gesztesy and Simon [GeSi96, Theorem 2.6], where the special case of three-dimensional Schrödinger operators with spherically symmetric potentials is studied.

Finally, let us mention for the sake of completeness that the stability issue in the context of inverse spectral problems has been examined by Alessandrini and Sylvester [AlSy], Bellassoued, Choulli and Yamamoto [BeChYa], Bellassoued and Dos Santos Ferreira [START_REF] Bellassoued | Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map[END_REF], Choulli [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF], Choulli and Stefanov [ChSt], that inverse spectral problems stated on Riemannian manifolds have been investigated in Bellassoued and Dos Santos Ferreira [START_REF] Bellassoued | Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map[END_REF], and in Kurylev, Lassas and Weder [KuLaWe], and that isospectral sets of Schrödinger operators with periodic potentials or Schrödinger operators defined on a torus, have been characterized in Eskin [START_REF] Eskin | Inverse spectral problem for the Schrödinger equation with periodic vector potential[END_REF], Eskin, Ralston and Trubowitz [EsRaTr], V. Guillemin [Gui].

We should point out that the problem under examination in [KaKiSo] is a three-dimensional Borg-Levinson inverse problem, stated on the infinitely extended cylindrical domain Ω = ω × R, associated with an operator A = -∆ + V of (as already mentioned in subsection 3.2.1) purely absolutely continuous spectral type. As far as we know, Theorem 3.2.3 is the only multi-dimensional Borg-Levinson uniqueness result for an operator with continuous spectrum.

Brief summary of the proof

The main point in the proof of Theorem 3.2.2, 3.2.3 is contained in the proof of Theorem 3.2.1. For this reason, we will only give an idea of the proof of Theorem 3.2.1. We start with three intermediate results of [KaKiSo]. We denote by f, ψ the duality between ψ ∈ H 1/2 (Γ) and f belonging to the dual of H 1/2 (Γ). However, when in f, ψ both f and ψ belong to L 2 (Γ), to make things simpler •, • can be interpreted as the scalar product of L 2 (Γ), namely

f, ψ = Γ ψ(σ) f (σ) dσ.
Recall that the trace operator γ 0 : C 1 (Y ) -→ C(∂Y ) defined by γ 0 (ϕ) := ϕ |∂Y can be extended to H 1 (Y ). For θ ∈ [0, 2π) fixed, we denote by H 1 θ (Y ) the closed subspace of those functions u ∈ H 1 (Y ) satisfying in the sense of traces u(x , 2π) = e iθ u(x , 0) for x ∈ ω, and we shall set

H 1/2 θ (∂Y ) := γ 0 (H 1 θ (Y )).
The space H 1 0,θ (Y ) denotes the closed subspace of those functions u ∈ H 1 θ (Y ) satisfying in the sense of traces u(σ , x 3 ) = 0 for (σ , x 3 ) ∈ Γ.

We start by considering the following BVP 

       -∆u + V u -λu = 0, in Y, u(σ) = f (σ), σ ∈ Γ, u(x , 2π) = e iθ u(x , 0), x ∈ ω, ∂ 3 u(x , 2π) = e iθ ∂ 3 u(x , 0), x ∈ ω.
u λ := u = k 1 α k λ -λ k (θ) ϕ θ,k , (3.2.4.2) 
where for convenience we set

ψ k,θ := ∂ ν ϕ θ,k , and 
α k := α k (θ, f ) := ψ k,θ , f . Moreover u λ 2 L 2 (Y ) = k 1 |α k | 2 |λ -λ k (θ)| 2 → 0 as λ → -∞.
It is clear that the series (3.2.4.2) giving u λ in terms of α k , λ k (θ) and ϕ θ,k , converges only in L 2 (Y ) and thus we cannot deduce an expression of the normal derivative ∂ ν u λ in terms of α k , λ k (θ) and ψ k . To avoid this difficulty we have the following lemma:

Lemma 3.2.2 (Lemma 2.4, [KaKiSo]) Let f ∈ H 1/2
θ (∂Y ) be fixed and for λ, µ ∈ C \ sp(A θ ) let u λ and u µ be the solutions given by Lemma 3.2.1. If we set v := v λ,µ := u λ -u µ , then

∂ ν v = k (µ -λ)α k (λ -λ k (θ))(µ -λ k (θ)) ψ k,θ , (3.2.4.3) 
the convergence taking place in H 1/2 (Γ)

The next lemma states essentially that if for m = 1 or m = 2 we have two potentials V m and u

m := u m,µ solves        -∆u m + V m u m -µu m = 0, in Y, u m (σ) = f (σ), σ ∈ Γ, u m (x , 2π) = e iθ u m (x , 0), x ∈ ω, ∂ 3 u m (x , 2π) = e iθ ∂ 3 u m (x , 0), x ∈ ω, (3.2.4.4)
then u 1,µ and u 2,µ are close as µ → -∞: in some sense the influence of the potentials V m is dimmed when µ → -∞. More precisely, we have: 

Lemma 3.2.3 (Lemma 2.5, [KaKiSo]) Let V m ∈ L ∞ (Y,
z µ + ∇z µ + ∆z µ → 0 as µ → -∞.
In particular

∂ ν z µ → 0 in L 2 (Γ) as µ → -∞.
In order to prove Theorem 3.2.1, we will combine the properties stated in Lemma 3.2.1, 3.2.2 and 3.2.3 with a suitable representation formula. In his paper going back to 1991, Isozaki [Is], gives a simple representation formula which, in some sense, allows to express the potential V in terms of the DN operator. More precisely, adapting the argument to fit our aim in [KaKiSo], let λ / ∈ sp(A θ ) and denote by Λ θ,V -λ the DN map defined by

f → ∂ ν u on Γ,
where u is the solution of equation (3.2.4.1). For ζ = iξ + η ∈ C 3 , where ξ, η ∈ R 3 , we shall denote

ζ • ζ := -|ξ| 2 + |η| 2 + 2iξ • η,
where ξ • η denotes the usual scalar product of ξ and η in R 3 . Then, for p = 0 or p = 1 consider 

ζ p ∈ C 3 , ζ p • ζ p = -λ, e ζ (x) := exp(ζ • x), e * ζ (x) := exp(ζ • x). ( 3 
S θ,V (λ, ζ 0 , ζ 1 ) := Γ Λ θ,V -λ (e ζ0 )(σ) e ζ1 (σ) dσ = e * ζ1 , Λ θ,V -λ (e ζ0 ) .
Combining the result of [START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF]Lemma 3.3,3.4,3.5,3.6], for all ξ ∈ R 2 × Z and all t > 0, we define λ(t, ξ), ζ 0 (t, ξ) and ζ 1 (t, ξ) such that the following property is fulfilled.

Theorem 3.2.4 (Theorem 3.7, [KaKiSo]) For all ξ ∈ R 2 × Z, we have

Y V (x) e -i ξ•x dx = lim t→+∞ S θ,V (λ(t, ξ), ζ 0 (t, ξ), ζ 1 (t, ξ)) + |ξ| 2 2 Y e -i ξ•x dx. (3.2.4.6) 
For λ ∈ C and µ ∈ R, such that λ, µ / ∈ sp(A 1,θ ) ∪ sp(A 2,θ ), and f ∈ H We shall split N * into two subsets of integers k 1, according to whether (λ 1,θ,k , ∂ ν ϕ 1,θ,k ) = (λ 2,θ,k , ∂ ν ϕ 2,θ,k ) or not: more precisely we set

K 1 := {k 1 ; (λ 1,θ,k , ∂ ν ϕ 1,θ,k ) = (λ 2,θ,k , ∂ ν ϕ 2,θ,k )} ,
and then

K 0 := N * \ K 1 .
Moreover, when k ∈ K 1 we drop the index m = 1 or m = 2, that is we denote by λ k (θ) and ψ k , as well as α k , the common value of these entities. We set

F m (λ, µ, f ) := k∈K0 (µ -λ)α m,k (λ -λ m,k (θ))(µ -λ m,k (θ)) ψ m,k
and analogously set

G(λ, µ, f ) := k∈K1 (µ -λ)α k (λ -λ k (θ))(µ -λ k (θ)) ψ k .
We obtain

∂ ν v m,λ,µ = F m (λ, µ, f ) + G(λ, µ, f ). (3.2.4.7)
Recalling that in Lemma 3.2.3 we have set z µ = u 1,µ -u 2,µ , writing the above identity (3.2.4.7) for m = 1 and m = 2, and then subtracting the resulting equations, we end up with a new relation, namely

∂ ν u 1,λ -∂ ν u 2,λ = ∂ ν z µ + F 1 (λ, µ, f ) -F 2 (λ, µ, f ). (3.2.4.8)
In view of Lemma 3.2.3, upon letting µ → -∞, we prove in [START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF]Lemma 4.3] that

∂ ν u 1,λ -∂ ν u 2,λ = F * 1 (λ, f ) -F * 2 (λ, f ), (3.2.4.9) 
where for convenience we have set 

F * m (λ, f ) := k∈K0 α m,k λ -λ m,k (θ) ψ m,k . Now choose λ(t,
Y (V 1 (x) -V 2 (x)) e iξ•x dx = lim t→∞ (S θ,V1 (λ(t, ξ), ζ 0 (t, ξ), ζ 1 (t, ξ)) -S θ,V2 (λ(t, ξ), ζ 0 (t, ξ), ζ 1 (t, ξ))) = 0
and the proof of Theorem 3.2.1 is completed. Note that the strategy described above can be used for Theorem 3.2.3 where the incomplete Floquet boundary spectral data is replaced by the asymptotic properties given by (3.2.2.5) and lim sup

k→+∞ |λ 1,k (θ 0 ) -λ 2,k (θ 0 )|.
3.3 Borg-levinson theorem for magnetic Schrödinger operators

Our goal

This section is devoted to the result of [START_REF] Kian | A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data[END_REF]. We consider Ω ⊂ R n , n 2, a C 1,1 bounded and connected domain such that R n \ Ω is also connected. We set 

Γ = ∂Ω. Let A ∈ W 1,∞ (Ω; R) n , V ∈ L ∞ (Ω; R)
D(H) = {v ∈ H 1 0 (Ω) : ∆ A v ∈ L 2 (Ω)}.
It is well known that H is a selfadjoint operator. By the compactness of the embedding H 1 0 (Ω) → L 2 (Ω), the spectrum of H is purely discrete. We note {λ k : k ∈ N * } the non-decreasing sequence of eigenvalues of H and {ϕ k : k ∈ N * } an associated Hilbertian basis of eigenfunctions. In [START_REF] Kian | A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data[END_REF], we consider the Borg-Levinson inverse spectral problem of determining uniquely H in some suitable sense.

Obstruction to uniqueness

Let us remark that there is an obstruction to our problem given by the gauge invariance of boundary spectral data for magnetic Shrödinger operators. More precisely, for j = 1, 2, fix A j ∈ W 1,∞ (Ω; R) n and assume that there exists p ∈ C ∞ 0 (Ω; R)\{0} such that

A 1 = ∇p+A 2 = A 2 , V 1 = V 2
. Now, for j = 1, 2, fix H j the Dirichlet realization of -∆ Aj + V j and let {λ 1,k : k ∈ N * } be the non-decreasing sequence of eigenvalues of H 1 with {ϕ 1,k : k ∈ N * } an associated Hilbertian basis of eigenfunctions. For all k ∈ N * , we fix ϕ 2,k = e ip ϕ 1,k and one can easily check that {ϕ 2,k : k ∈ N * } is an Hilbertian basis of L 2 (Ω). Moreover, we have

∆ A2 ϕ 2,k = e ip (∆ A2 ϕ 1,k + 2i∇p • ∇ϕ 1,k + (i∆p -2A 2 • ∇p -|∇p| 2 )ϕ 1,k ) = e ip ∆ A1 ϕ 1,k , k ∈ N * . It follows H 2 ϕ 2,k = λ 1,k ϕ 2,k , k ∈ N *
and, since {ϕ 2,k : k ∈ N * } is an Hilbertian basis of L 2 (Ω), we deduce that {λ 1,k : k ∈ N * } corresponds to the non-decreasing sequence of eigenvalues of H 2 with {ϕ 2,k : k ∈ N * } an associated Hilbertian basis of eigenfunctions. In addition, we have

∂ ν ϕ 2,k |Γ = (i∂ ν p)ϕ 2,k |Γ + e ip ∂ ν ϕ 1,k |Γ = ∂ ν ϕ 1,k |Γ .
Therefore, the boundary spectral data

{(λ 1,k , ∂ ν ϕ 1,k |∂Ω ) : k 1} of H 1 coincides with the boundary spectral data {(λ 1,k , ∂ ν ϕ 2,k |∂Ω ) : k 1} of H 2 but H 1 = H 2 .
Taking into account this obstruction to uniqueness we are restricted to the recovery of the magnetic Schrödinger operator modulo the gauge invariance given by: H 1 and H 2 are gauge equivalent if there exists p ∈ W 2,∞ (Ω, R) ∩ H 1 0 (Ω) such that H 2 = e -ip H 1 e ip . Assuming A is known on Γ, the recovery of the operator H modulo gauge invariance is equivalent to the recovery of V and of the 2-form dA of the vector valued function A = (a 1 , . . . , a n ) defined by

dA = 1 2 n i,j=1 (∂ xj a i -∂ xi a j )dx j ∧ dx i .
In [START_REF] Kian | A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data[END_REF], we study this problem.

Unique recovery modulo gauge invariance

Let A j ∈ W 1,∞ (Ω; R) n , V j ∈ L ∞ (Ω; R) and consider the magnetic Schrödinger operators H j = H for A = A j and V = V j , j = 1, 2. Further, we note (λ j,k , ϕ j,k ), k 1, the k th eigenpair of H j , for j = 1, 2. Our main result can be stated as follows.

Theorem 3.3.1 (Theorem 1.1, [Ki163]) We fix Ω 1 an arbitrary open neighborhood of Γ in Ω (Γ ⊂ Ω 1 and Ω 1 Ω). For j = 1, 2, let V j ∈ L ∞ (Ω; R) and let A j ∈ C 1 (Ω; R) n fulfill A 1 (x) = A 2 (x), x ∈ Ω 1 . (3.3.3.1)
Assume that the conditions

lim k→+∞ |λ 1,k -λ 2,k | = 0, +∞ k=1 ∂ ν ϕ 1,k -∂ ν ϕ 2,k 2 
L 2 (Γ) < ∞ (3.3.3.2)
hold simultaneously. Then, we have

dA 1 = dA 2 and V 1 = V 2 .
Note that condition (3.3.3.1) corresponds to the knowledge of the magnetic potential on a neighborhood of the boundary. Let us observe that, as mentioned by [ChSt, KaKiSo], Theorem 3.3.1 can be considered as a uniqueness theorem under the assumption that the spectral data are asymptotically "very close". Conditions (3.3.3.2) are similar to the one considered by [KaKiSo] and they are weaker than the requirement that

|λ 1,k -λ 2,k | Ck -α , ∂ ν ϕ 1,k -∂ ν ϕ 2,k L 2 (Γ) Ck -β
for some α > 1 and β > 1 -1 2n , considered in [START_REF] Choulli | Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data[END_REF]Theorem 2.1]. Note also that conditions (3.3.3.2) are weaker than the knowledge of the boundary spectral data with a finite number of data missing considered by [Is].

We stress out that this problem is a Borg-Levinson inverse problem for the magnetic Schrödinger operator H = -∆ A + V . To our best knowledge, there are only two multi-dimensional Borg-Levinson uniqueness result for magnetic Schrödinger operators available in the mathematical literature, [KaKu98, Theorem B] and [START_REF] Serov | Borg-Levinson theorem for magnetic Schrödinger operator[END_REF]Theorem 3.2]. In [START_REF] Katchalov | Multidimensional inverse problem with incomplete boundary spectral data[END_REF], the authors considered general magnetic Schrödinger operators with smooth coefficients on a smooth connected Riemannian manifold and they proved unique determination of these operators modulo gauge invariance from the knowledge of the boundary spectral data with a missing finite number of data. In [Ser], Serov treated this problem on a bounded domain of R n , and he proved that, for A ∈ W 1,∞ (Ω; R) n and V ∈ L ∞ (Ω; R), the full boundary spectral data {(λ k , ∂ ν ϕ k|Γ ) : k ∈ N * } determines uniquely dA and V . In contrast to [START_REF] Katchalov | Multidimensional inverse problem with incomplete boundary spectral data[END_REF][START_REF] Serov | Borg-Levinson theorem for magnetic Schrödinger operator[END_REF], in [START_REF] Kian | A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data[END_REF] we prove that the asymptotic knowledge of the boundary spectral data, given by the conditions (3.3.3.2), is sufficient for the unique determination of dA and V . To our best knowledge, conditions (3.3.3.2) are the weakest conditions on boundary spectral data that guaranty uniqueness of magnetic Schrödinger operators modulo gauge transformation. Moreover, our uniqueness result is stated with conditions similar to [START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF]Theorem 1.4], which seems to be the most precise Borg-Levinson uniqueness result so far for Schrödinger operators without magnetic potential (A = 0).

Idea of the proof

An important ingredient in the analysis of [START_REF] Kian | A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data[END_REF] is a suitable representation that allows to express the magnetic potential A and the electric potential V in terms of the DN map associated with the equations -∆ A u + V u -λu = 0 for some λ ∈ C. In [Is], Isozaki applied a similar approach to the Schrödinger operator -∆ + V with Dirichlet boundary condition and [ChSt, KaKiSo] applied the representation formulas of [Is]. Inspired by the construction of CGO solutions of [START_REF] Bellassoued | Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map[END_REF][START_REF] Santos Ferreira | Determining a magnetic Schrödinger operator from partial Cauchy data[END_REF][START_REF] Salo | Inverse problems for nonsmooth first order perturbations of the Laplacian[END_REF][START_REF] Sun | An inverse boundary value problem for the Schrödinger operator with vector potentials[END_REF] we prove that the approach of [ChSt, Is, KaKiSo] can be extended to magnetic Schrödinger operators. More precisely, we derive two representation formulas that allow to recover both the magnetic field and the electric potential of magnetic Schrödinger operators which means recovery of both coefficients of order one and zero in contrast to [ChSt, Is, KaKiSo], where only determination of coefficients of order zero is considered. It seems that [START_REF] Kian | A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data[END_REF] is the first paper where the extension of the approach developed by [Is] to more general coefficients than coefficients of order zero is considered. Note also that our approach makes it possible to prove this extension without imposing important assumptions of regularity on the admissible coefficients.

For this representation, we set A j ∈ C 1 (Ω; R) n , V j ∈ L ∞ (Ω; R), j = 1, 2, and we assume that condition (3.3.3.1) is fulfilled. For j = 1, 2 and λ ∈ C \ R, we associate with the problem

-∆ Aj u j + V j u j -λu j = 0, in Ω, u j (x) = f (x), x ∈ Γ (3.3.4.1)
the DN map Λ j,λ :

H 1 2 (∂Ω) f → (∂ ν + iA j • ν)u j,λ |Γ ,
where u j,λ solves (3.3.4.1). Then, we apply the DN maps Λ j,λ to some suitable ansatzs associated with (3.3.4.1) in order to get two representation formulas involving the magnetic potentials A j and the electric potentials V j , j = 1, 2. The idea is to establish the link between the electric and magnetic potentials and the boundary spectral data by mean of an expression involving the DN maps Λ 1,λ , Λ 2,λ . In contrast to [ChSt, Is, KaKiSo], in [START_REF] Kian | A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data[END_REF] we need to extend this strategy to Schrödinger operators with both magnetic and electric potentials, which means an extension to Schrödinger operators with variable coefficients of order zero and one. In addition, we need to consider ansatzs that allow to recover both the magnetic field and the electric potential. Therefore, we fix a large parameter τ > 1 and two vectors ξ ∈ R n , η ∈ S n-1 satisfying ξ • η = 0. We define λ(τ ) ∈ C \ R depending on τ and η 1 (τ, η, ξ), η 2 (τ, η, ξ) ∈ S n-1 depending on τ , ξ and η.

Then, we consider some ansatzs, associated with (3.3.4.1), of the form

Φ 1,τ,η,ξ (x) = e i √ λ(τ )η1(τ,η,ξ)•x g 1 (x), , Φ 2,τ,η,ξ (x) = e -i √ λ(τ )η2(τ,η,ξ)•x g 2 (x), x ∈ Ω, j = 1, 2. (3.3.4.2)
For λ > 0, these ansatzs are the principal term of the standard GO solutions. In contrast to the CGO solutions taking the form e ζj •x h j (x), j = 1, 2, where the entire vector ζ j ∈ C n is complex valued, here we consider these ansatzs only with complex frequency. The expression g 1 and g 2 appearing in (3.3.4.2), are respectively a solution of the transport equations

iη 1 • ∇g 1 -(η 1 • A 1, )g 1 = 0, iη 2 • ∇g 2 + (η 2 • A 2, )g 2 = 0, (3.3.4.3)
with A j, some smooth function close to the magnetic potential A j , j = 1, 2. More precisely, we define

A j, ∈ C ∞ 0 (R n , R) n , j = 1, 2
, some smooth approximations on Ω of A j . Then, we consider solutions of the transport equations (3.3.4.3) given by

g 1 (x) := e iψ1(x) , g 2 (x) := b 2 (x)e -iψ2(x) , ψ j (x) := - 0 -∞ η j • A j, (x + sη j )ds, η 2 • ∇b 2 (x) = 0, x ∈ R n .
Therefore, we consider ansatzs associated with (3.3.4.1) taking the form

Φ 1,τ,η,ξ (x) := e i √ λη1•x e iψ1(x) , Φ 2,τ,η,ξ (x) := e -i √ λη2•x b 2 (x)e -iψ2(x) , x ∈ Ω. (3.3.4.4) 
We assume in addition that b 2 ∈ W 2,∞ (R n ) and we recall that ψ j solves the equation

η j • ∇ψ j (x) = -η j • A j, , j = 1, 2, x ∈ R n .
In the construction of our ansatzs we consider some smooth approximations of the magnetic potentials instead of the magnetic potentials to obtain sufficiently smooth functions Φ j,τ,η,ξ , j = 1, 2. Using this approach, we can weaken the regularity assumption imposed on admissible magnetic potential from W 3,∞ (Ω) n to C 1 (Ω) n . Further, for j = 1, 2, we put S j (τ, η, ξ) = Γ (Λ j,λ(τ ) Φ 1,τ,η,ξ )Φ 2,τ,η,ξ (x)dσ(x).

(3.3.4.5)

In other words, we apply Λ j,λ(τ ) , j = 1, 2, to ansatzs of the form (3.3.4.2) with g 1 = e iψ1(x) and g 2 = b 2 (x)e -iψ2(x) . From some asymptotic properties of S 1 (τ, η, ξ) -S 2 (τ, η, ξ) as τ → +∞ we derive the two following conditions that guaranty the unique recovery of the magnetic field and the electric potential.

Lemma 3.3.1 (Lemma 4.1, [Ki163]) Assume that for all ξ ∈ R n , η ∈ S n-1 satisfying ξ • η = 0, the condition lim τ →+∞ S 1 (τ, η, ξ) -S 2 (τ, η, ξ) λ(τ ) = 0 (3.3.4.6)
is fulfilled. Then, we have

dA 1 = dA 2 . Lemma 3.3.2 (Lemma 4.2, [Ki163]) Let A 1 = A 2 . Assume that for all ξ ∈ R n , η ∈ S n-1 satisfying ξ •η = 0, the condition lim τ →+∞ S 1 (τ, η, ξ) -S 2 (τ, η, ξ) = 0 (3.3.4.7) is fulfilled. Then, we have V 1 = V 2 .
The remaining part of [START_REF] Kian | A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data[END_REF], consists in proving that conditions (3. ). We prove this implication by adapting to magnetic Schrödinger operators some arguments of [KaKiSo].

Borg-levinson theorem with measurements on an arbitrary portion

Statement of the problem

This section is devoted to [KiMoOk] which is a joint work with Morgan Morancey and Lauri Oksanen. We fix Ω a C 2 bounded and connected domain of R n , n 2 and we set γ a non empty open set of Γ = ∂Ω. We consider the Schrödinger operator A q = -∆ + q acting on L 2 (Ω) with Dirichlet boundary condition and q ∈ L ∞ (Ω) real valued. The spectrum of A q consists in a non decreasing sequence of eigenvalues {λ k : k ∈ N * } to which we associate the Hilbertian basis of eigenfunctions {ϕ k : k ∈ N * }. Then, we introduce the boundary spectral data restricted to the portion γ given by BSD(q, γ)

:= (λ k , ∂ ν ϕ k|γ ) : k ∈ N * .
The main goal of [KiMoOk] is to prove uniqueness in the recovery of q from the data BSD(q, γ).

Main results

For j = 1, 2, we fix q j ∈ L ∞ (Ω). To every operator A qj we associate the non decreasing sequence of eigenvalues {λ j,k : k ∈ N * } to which we associate the Hilbertian basis of eigenfunctions {ϕ j,k : k ∈ N * }. Our main result is the following Theorem 3.4.1 (Theorem 1.1, [KiMoOk]) Assume that Ω is convex and let

q j ∈ L ∞ (Ω), j = 1, 2. Let the conditions λ 1,k = λ 2,k = λ k , k 1 (3.4.2.1) 
∂ ν ϕ 1,k (x) = ∂ ν ϕ 2,k (x) = ψ k (x), x ∈ γ, k 1 (3.4.2.2)
be fulfilled. Then q 1 = q 2 . This result will be proved by applying the so called boundary control method that we adapt to the particular setting of a convex domain. More precisely, we consider the IBVP

   ∂ 2 t u -∆u + q(x)u = 0, in Q, u(0, •) = 0, ∂ t u(0, •) = 0, in Ω, u = f, on Σ. (3.4.2.3)
Then, we prove Theorem 3.4.1 by applying the connection between the boundary spectral data BSD(q, γ) and the solution of (3.4.2.3) when supp(f ) ⊂ (0, T ] × γ. According to [LaLiTr, Theorem 2.1], for f ∈ H 1 (Σ), the problem (3.4.2.3) admits a unique solution u ∈ C([0, T ];

H 1 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)) which satisfies ∂ ν u ∈ L 2 (Σ)
. Thus, we can define the partial hyperbolic DN map given by

Λ q : C ∞ 0 ((0, T ] × γ) f → ∂ ν u |(0,T )×γ .
Repeating the argumentation of Theorem 3.4.1, we can prove that Λ q determines q. This result can be stated in the following way.

Theorem 3.4.2 (Theorem 1.2, [KiMoOk]) Assume that Ω is convex, T > 2Diam(Ω) and let q j ∈ L ∞ (Ω), j = 1, 2. Then the condition Λ q1 = Λ q2 implies that q 1 = q 2 .

Let us mention that the boundary control method considered in the [KiMoOk] was initially introduced by [START_REF] Belishev | An approach to multidimensional inverse problems for the wave equation[END_REF] and extended by [START_REF] Belishev | To the reconstruction of a Riemannian manifold via its spectral data (BC-method)[END_REF] to the recovery of a Riemannian manifold up to an isometry from the boundary spectral data BSD(q, ∂Ω). The result of [START_REF] Belishev | To the reconstruction of a Riemannian manifold via its spectral data (BC-method)[END_REF] has been extended by [START_REF] Katchalov | Multidimensional inverse problem with incomplete boundary spectral data[END_REF] who proved that this result is still true if one consider the data BSD(q, ∂Ω) with the exception of finitely many eigenpairs and [START_REF] Katchalov | Inverse boundary spectral problems[END_REF] proved that the uniqueness remains true if one consider the partial boundary spectral data BSD(q, γ) with γ an arbitrary portion of the boundary. We mention also [START_REF] Kurylev | Inverse problems for the connection Laplacian[END_REF][START_REF] Lassas | An inverse problem for a wave equation with sources and observations on disjoint sets[END_REF][START_REF] Lassas | Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets[END_REF] who considered hyperbolic inverse problems based on the boundary control method and related to the present Borg-Levinson inverse spectral problem.

Let us observe that results similar to Theorem 3.4.1 and 3.4.2 have been proved by [START_REF] Katchalov | Inverse boundary spectral problems[END_REF], and an improvement of Theorem 3.4.2 has been established by [START_REF] Lassas | An inverse problem for a wave equation with sources and observations on disjoint sets[END_REF] in the specific case of smooth coefficients on a smooth Riemannian manifolds. More precisely, in the context of Theorem 3.4.1 and 3.4.2, the result of [START_REF] Katchalov | Inverse boundary spectral problems[END_REF][START_REF] Lassas | An inverse problem for a wave equation with sources and observations on disjoint sets[END_REF] are stated with Ω a C ∞ domain and coefficient q j ∈ C ∞ (Ω), j = 1, 2. To our best knowledge [KiMoOk] is the first one dealing with the recovery of a general bounded potential from boundary spectral data or boundary measurements on an arbitrary portion of the boundary.

Let us remark that all the results of [KiMoOk] can be extended to the recovery of more general coefficients on a general bounded and connected domain Ω by changing some intermediate tools and transforming the last part of the proof into an iterative process described in [START_REF] Kurylev | Inverse problems for the connection Laplacian[END_REF]Subsection 4.2]. The assumption of convexity allows to simplify in various way the exposition in order to emphasize the main idea of the boundary control method. Indeed, for convex domain we can consider Euclidean distance and replace general geodesic by lines. Moreover, in contrast to [START_REF] Katchalov | Inverse boundary spectral problems[END_REF][START_REF] Lassas | An inverse problem for a wave equation with sources and observations on disjoint sets[END_REF] who considered this problem in a more general setting, our result can be proved only in two steps. Note also that in [KiMoOk] we focus our attention on the analytic rather than geometric aspects of the boundary control method. For these reasons [KiMoOk] can also be considered as an introduction to the boundary control method.

Description of the proof

Let us first recall the definition of domain of influence at a time t = T 0 . Definition 3.4.1 For every T 0 > 0 and every open subset S of Γ we define the subset Ω(S, T 0 ) of Ω given by Ω(S, T 0 ) := {x ∈ Ω : dist(x, S) T 0 }.

The set Ω(S, T 0 ) is called the domain of influence of S at time t = T 0 .

The proof of Theorem 3.4.1 is divided into two steps. The local step and the global step. In the local step we prove the following local recovery by mean of the boundary spectral data.

Theorem 3.4.3 (Theorem 3.1, [KiMoOk]) Let q j ∈ L ∞ (Ω), j = 1, 2, and let the conditions (3.4.2.1)-(3.4.2.2) be fulfilled. Then there exists τ ∈ (0, +∞) and an open set γ of ∂Ω such that γ ⊂ γ and

q 1 (x) = q 2 (x), x ∈ Ω(γ , τ ), (3.4.3.1) 
In the global step we apply (3.4.3.1), in order to replace the boundary data into internal data corresponding to some source to solution map. Namely, we fix B a small ball contained into Ω(γ , τ ) and we consider the following map

L j,B F := v j,F |[0,2T ]×B , F ∈ C ∞ 0 ((τ, 2T ) × B) with v j,F solving    ∂ 2 t v j -∆v j + q j (x)v j = F, in (0, 2T ) × Ω, v j (0, •) = 0, ∂ t v j (0, •) = 0,
in Ω, v j = 0, on (0, 2T ) × ∂Ω.

Then applying (3.4.3.1), we prove that L 1,B = L 2,B and we complete the proof of Theorem 3.4.1 by mean of this internal measurements. The main points in the proof of the local recovery stated in Theorem 3.4.3 are both the connection between boundary spectral data and solutions of (3.4.2.3), and a result of density of solutions restricted to a domain of influence at a fixed time often called approximate controllability. The link between boundary spectral data and solutions of (3.4.2.3), is given by the following. Lemma 3.4.1 (Lemma 3.1, [KiMoOk]) Assume that conditions (3.4.2.1)-(3.4.2.2) are fulfilled. Let γ ⊂ γ be an open set of ∂Ω and let f ∈ H 1 (Σ) satisfy f |t=0 = 0, supp(f ) ⊂ [0, T ] × γ and, for j = 1, 2, let u f j be the solution of (3.4.2.3) with q = q j . Then, we have

u f 1 (t), ϕ 1,k L 2 (Ω) = u f 2 (t), ϕ 2,k L 2 (Ω) = v f k (t) := t 0 γ f (t, x)s k (t -s)ψ k (x)dσ(x), (3.4.3.2)
with s k (t) which is given by

s k (t) :=        sin( √ λ k t) √ λ k if λ k > 0, t if λ k = 0, sin( √ |λ k |t) √ |λ k | if λ k < 0
The result of density that we need is given by Theorem 3.4.4 (Corollary 2.1, [KiMoOk]) Let S ⊂ γ be an open set ∂Ω, T ∈ (0, T ] and let q j ∈ L ∞ (Ω), j = 1, 2. For j = 1, 2, let u f j be the solution of (3.4.2.3) with q = q j . Then, the set

{u f j (T , •) |Ω(S,T ) : f ∈ C ∞ 0 ((0, T ] × S)} (3.4.3.3)
is dense in L 2 (Ω(S, T )).

Theorem 3.4.4 follows from a global Holmgren-John unique continuation, derived from results of unique continuation such as [START_REF] Robbiano | Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients[END_REF][START_REF] Tataru | Unique continuation for solutions to PDE; between Hörmander's theorem and Holmgren's theorem[END_REF], and a duality argument. Combining Lemma 3.4.1 and Theorem 3.4.4 with a suitable application of the Lebesgue differentiation measure, we recover the restriction of products of solutions (3.4.2.3), for all input f supported on (0, T ] × γ, to a neighborhood of γ . Then, with suitable choice of the input f in (3.4.2.3) to one of the two solutions appearing in the product, we derive the unique recovery of the restriction of products of solutions (3.4.2.3), for all input f supported on (0, T ] × γ, to a neighborhood of γ . Finally, we complete the proof of Theorem 3.4.3 by applying again the density result stated in Theorem 3.4.4.

The global step requires arguments similar to the local step but for internal measurements.

Chapter 4

Inverse and direct problems for fractional diffusion equations

Introduction

This chapter is devoted to our work stated in [KiOkSoYa, KiYa, KiSoYa] related to fractional diffusion equations with time fractional derivatives. These equations take the form

ρ(x)∂ α t u - n i,j=1 ∂ xi (a i,j (x)∂ xj u) + q(x)u = F (t, x) (4.1.0.1)
where α ∈ (0, 1) ∪ (1, 2) is not an integer and the fractional derivative ∂ α t considered in the Caputo sense is defined by In [KiOkSoYa, KiYa, KiSoYa] we have studied both forward and inverse problems for these equations.

∂ α t u(t, x) := 1 Γ(m + 1 -α) t 0 (t -s) m-α ∂ m+1 s u(s, x)ds, ( 4 
Recall that fractional diffusion equations with time fractional derivatives of the form (4.1.0.1) describe several physical phenomena related to anomalous diffusion such as diffusion of substances in heterogeneous media, diffusion of fluid flow in inhomogeneous anisotropic porous media, turbulent plasma, diffusion of carriers in amorphous photoconductors, diffusion in a turbulent flow, a percolation model in porous media, fractal media, various biological phenomena and finance problems (see [CaSaLuGa]). In particular, it is known (e.g., [AdGe]) that the classical diffusion-advection equation does not often interpret field data of diffusion of substances in the soil, and as one model equation, the fractional diffusion equation is used. The diffusion equation with time fractional derivative is a corresponding macroscopic model equation to the continuous-time random walk (CTRW in short) and is derived from the CTRW (e.g., [MetKl, RoAl]). Note also that fractional diffusion equations with fractional variable power α, instead of a constant, is suitable for some complex media where the presence of heterogeneous regions causes variations of the permeability in different spatial positions.

The main purpose of [KiOkSoYa, KiYa, KiSoYa] was the study of these equations from different aspects. In [KiOkSoYa], we have studied the inverse problem of determining different coefficients appearing in the equation (4.1.0.1) from measurements of the solutions on the boundary of the domain. In [KiYa] we have been interested by the forward problem for (4.1.0.1) when α ∈ (1, 2). This corresponds to the super-diffusive case where the equation is called fractional wave equation. For these equations, we have introduced a new definition of weak solutions, by mean of their Laplace transform, that extended other known works to more general conditions. In addition, in [KiYa] we have established some L p L q estimates, also called Strichartz estimates, that we have used for proving existence and uniqueness of solutions for such equations with a nonlinear term. In [KiSoYa], we have considered both the forward and inverse problem for equations of the form (4.1.0.1) in the specific case where the fractional power α is a function of x. After proving existence of solutions, with a definition of weak solutions that extends the one of [KiYa], with suitable properties of analiticity, we have considered the inverse problem of recovering the power α as well as some coefficients appearing in the equation.

An inverse problem for fractional diffusion equations

The inverse problem

This section is devoted to [KiOkSoYa] which is a joint work with Lauri Oksanen, Eric Soccorsi and Masahiro Yamamoto. Let (M, g) be a compact connected Riemannian manifold of dimension n 2, with boundary ∂M . For a positive function µ we consider the weighted Laplace-Beltrami operator ∆ g,µ := µ -1 div g µ ∇ g , where div g (resp., ∇ g ) denotes the divergence (resp., gradient) operator on (M, g), and µ ±1 stands for the multiplier by the function µ ±1 . If µ is identically 1 in M then ∆ g,µ coincides with the usual Laplace-Beltrami operator on (M, g). In local coordinates, we have

∆ g,µ u = n i,j=1 µ -1 |g| -1/2 ∂ xi (µ|g| 1/2 g ij ∂ xj u), u ∈ C ∞ (M ),
where g -1 := (g ij ) 1 i,j n and |g| := det g. For α ∈ (0, 2) \ {1} we consider the IBVP

   ∂ α t u -∆ g,µ u + qu = 0, in (0, T ) × M, u = f, on (0, T ) × ∂M, ∂ k t u(0, •) = 0, in M, k = 0, ..., m, (4.2.1.1) 
with non-homogeneous Dirichlet data f . Here m := [α] denotes the integer part of α and ∂ α t is the Caputo fractional derivative of order α with respect to t, defined by (4.1.0.2).

The system (4.2.1.1) models anomalous diffusion phenomena. In the sub-diffusive case α ∈ (0, 1), the first line in (4.2.1.1) is usually named fractional diffusion equation, while in the super-diffusive case α ∈ (1, 2), it is referred as fractional wave equation.

Given two non empty open subsets S in and S out of ∂M , T 0 ∈ (0, T ) and α ∈ (0, 2) \ {1}, we introduce the function space

H in,α,T0 := {f ∈ C [α]+1 ([0, T ], H 3 2 (∂M )); supp(f ) ⊂ (0, T 0 ) × S in },
where we recall that [α] stands for the integer part of α. As established in [KiOkSoYa, Section 2], problem (4.2.1.1) associated with f ∈ H in,α,T0 is well posed and the partial DN map

Λ M,g,µ,q : H in,α,T0 f → ∂ ν u(T 0 , •) |Sout , (4.2.1.2)
where u denotes the solution to (4.2.1.1) and ν is the outward unit normal vector with respect to g field along the boundary ∂M , is linear bounded from H in,α,T0 into L 2 (S out ).

In [KiOkSoYa], we examine the problem whether knowledge of Λ M,g,µ,q determines the Riemannian manifold (M, g), and the functions µ and q, uniquely.

Physical motivations

Recall that fractional diffusion equations with time fractional derivatives of the form (4.2.1.1) describe several physical phenomena introduced in Section 4.1. In particular, in the case where we consider fractional diffusion equations describing the diffusion of contaminants in a soil, we cannot a priori know governing parameters in (4.2.1.1) such as reaction rate of pollutants. Thus, for prediction of contamination, we need to discuss our inverse problem of determining these parameters from measurements of the flux on S out at a fixed time t = T 0 associated with Dirichlet inputs at S in .

State of the art

Fractional derivative, ordinary and partial, differential equations have attracted attention over the two last decades. See [MiRo, SaKiMa, Pod] regarding fractional calculus, and [Ag, GoMa], and references therein, for studies of partial differential equations with time fractional derivatives. More specifically, the well-posedness of problem (4.2.1.1) with time-independent coefficients is examined in [BekYa, SaYa].

There is a wide mathematical literature for inverse coefficients problems associated with the system (4.2.1.1) when α = 1 or 2. Without being exhaustive, we refer to [START_REF] Bukhgeim | Global uniqueness of a class of multidimensional inverse problem[END_REF][START_REF] Canuto | Determining Coefficients in a Class of Heat Equations via Boundary Measurements[END_REF][START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF][START_REF] Choulli | Stability of the determination of a time-dependent coefficient in parabolic equations[END_REF][START_REF] Choulli | Some stability estimates in determining sources and coefficients[END_REF][START_REF] Katchalov | Equivalence of time-domain inverse problems and boundary spectral problem[END_REF] for the parabolic case α = 1 and to [Beli87, BeliKu92, BeChYa, BelDo11, BeJeYa1, LaOk10, LaOk141, LaOk142] for the hyperbolic case α = 2. In contrast to parabolic or hyperbolic inverse coefficient problems, there is only a few mathematical papers dealing with inverse problems associated with (4.2.1.1) when α ∈ (0, 1) ∪ (1, 2). In the one-dimensional case, [ChNaYaYa] proved unique determination of the fractional order α and a time-independent coefficient, by Dirichlet boundary measurements. For n 2, the fractional order α is recovered in [HaNaWaYa] from pointwise measurements of the solution over the entire time span. In [SaYa], the authors prove stable determination of the time-dependent prefactor of the source term. In the particular case where n = 1 and α = 1/2, using a specifically designed Carleman estimate for (4.2.1.1), [ChXaYa, YaZh] derive a stability estimate of a zero order time-independent coefficient, with respect to partial internal observation of the solution. In [LiImYa], time-independent coefficients are uniquely identified by the DN map obtained by probing the system with inhomogeneous Dirichlet boundary conditions of the form λ(t)g(x), where λ is a fixed real-analytic positive function of the time variable. Recently, [FuKi] proved unique determination of a time-dependent parameter appearing in the source term or in a zero order coefficient, from pointwise measurements of the solution over the whole time interval.

Unique recovery of manifolds and coefficients

The paper [KiOkSoYa] contains two main results. Both of them are uniqueness results for inverse coefficients problems associated with (4.2.1.1), but related to two different settings. In the first one, (M, g) is a known compact subset of R d , while in the second one, (M, g) is an unknown Riemannian manifold to be determined. The first setting is not contained in the second one, however, in the second case, (M, g) and all the other unknown coefficients are assumed to be smooth, while in the first case the regularity assumptions are relaxed considerably.

We begin by considering the case of a connected bounded domain

Ω in R n , n 2, with C 1,1 boundary ∂Ω. Let ρ ∈ C(Ω), V ∈ L ∞ (Ω) and a ∈ C 1 (Ω) fulfill the condition ρ(x) c, a(x) c, V (x) 0, x ∈ Ω, (4.2.4.1)
for some positive constant c. For M := Ω, put g := ρa -1 I n , µ := ρ 1-n/2 |a| 1/2 , and q := ρ -1 V, (4.2.4.2) in the first line of (4.2.1.1), where I n denotes the identity matrix in R n 2 . Since (M, g) is a Riemannian manifold with boundary such that µ|g| 1/2 = ρ, g ij = 0 if i = j, and g ii = ρ -1 a for i, j ∈ {1, . . . , n}, we have

∆ g,µ u = ρ -1 div(a∇u), u ∈ C ∞ (Ω).

Obstruction to uniqueness

Notice that the absence of global uniqueness result manifested in Theorems 4.2.1 (in the sense that only two among the three coefficients ρ, a, and V , are recovered) and 4.2.2 (where the metric g is determined up to an isometry and (µ, q) are identified modulo gauge transformation) arises from one or several natural obstructions to identification in the system under investigation, each of them being induced by an invariance property satisfied by (4.2.1.1). The first obstruction, concerns the recovery of the coefficients (ρ, a, q). Namely, fix (ρ 1 , a 1 , q 1 ) be defined in a similar way than in Theorems 4.2.1 and, for any positive function κ ∈ C 2 (Ω) \ {1} satisfying (4.2.4.7), we assume that (ρ 2 , a 2 , q 2 ) are given by

ρ 2 = κ 2 ρ 1 , a 2 = κ 2 a 1 , V 2 = V 1 κ 2 -κdiv(a 1 ∇κ).
Then, we have

(ρ 1 ∂ α t -div(a 1 ∇•) + V 1 )κu = κρ 1 ∂ α t u -κ -1 div(a 1 κ 2 ∇u) + (V 1 κ -div(a 1 ∇κ))u = κ -1 (ρ 2 ∂ α t u -div(a 2 ∇u) + V 2 u)
.

Thus, for u j , j = 1, 2, the solution of (4.2.4.3) with ρ = ρ j , a = a j and V = V j , we have u 1 = κu 2 . This, in particular means that Λ ρ1,a1,V1 = Λ ρ2,a2,V2 but (ρ 1 , a 1 , V 1 ) = (ρ 2 , a 2 , V 2 ). Therefore, the DN map is invariant under the group of gauge transformations

(ρ, a, V ) → (κ 2 ρ, κ 2 a, V κ 2 -κdiv(a∇κ))
parametrized by positive functions κ ∈ C ∞ (Ω) satisfying (4.2.4.7) for M = Ω.

A similar obstruction can be found in Theorem 4.2.2. This obstruction is due to the invariance of (4.2.1.1) under the group of gauge transformations given by (4.2.4.8). Indeed, given a strictly positive function κ ∈ C ∞ (M ) satisfying (4.2.4.7), we observe for any (µ 1 , q 1 ) and (µ 2 , q 2 ) obeying (4.2.4.8), that ∆ g,µ2 (κw) = κ∆ g,µ1 w + δκw, w ∈ C ∞ (M ), where δ := κ -1 ∆ g,µ1 κ -2κ -2 (∇ g κ, ∇ g κ) g , and (•, •) g denotes the inner product on (M, g). In particular, taking w = κ -1 we get the simpler expression δ = -κ∆ g,µ1 κ -1 . Finally, taking w = u, where u is the solution to (4.2.1.1) associated with µ = µ 1 and q = q 1 , we find that

(∂ α t -∆ g,µ2 + q 2 )(κu) = κ(∂ α t -∆ g,µ1 + q 1 )u = 0.
Since our assumptions (4.2.4.7) on κ imply that ∂ ν (κu) = ∂ ν u and κu = u on (0, T ) × ∂M , we find that Λ M,g,µ1,q1 = Λ M,g,µ2,q2 . This proves that the DN map is invariant under the group of gauge transformations

(µ, q) → (κ -2 µ, q -κ∆ g,µ κ -1 )
parametrized by strictly positive functions κ ∈ C ∞ (M ) satisfying (4.2.4.7).

The last obstruction arises from the fact that (4.2.1.1) is invariant with respect to changes of coordinates. That is, if Φ : M → M is a diffeomorphism fixing the boundary ∂M then Λ M,g,µ,q = Λ M,Φ * g,µ•Φ,q•Φ where Φ * g is the pullback of g by Φ.

Comments about our results

To our best knowledge, the results of [KiOkSoYa] are the most precise so far, about the recovery of coefficients appearing in a time fractional diffusion equation from boundary measurements. We prove recovery of a wide class of coefficients from partial boundary measurements that consist in an input on the part S in of the boundary and observation of the flux at the part S out for one fixed time t = T 0 ∈ (0, T ). Our results extend the ones contained in the previous works [ChNaYaYa, ChXaYa, LiImYa, YaZh] related to this problem. Another benefit of our approach is its generality, which makes it possible to treat the case of a smooth Riemannian manifold, and the one of a bounded domain with weak regularity assumptions on the coefficients.

Notice that (4.2.4.3) associated with α = 1 is the usual heat equation, in which case Theorem 4.2.1 is contained in [START_REF] Canuto | Determining Coefficients in a Class of Heat Equations via Boundary Measurements[END_REF][START_REF] Canuto | Determining Two Coefficients in Elliptic Operators via Boundary Spectral Data: a Uniqueness Result, Bolletino Unione Mat[END_REF]. We point out that the strategy used in [START_REF] Canuto | Determining Coefficients in a Class of Heat Equations via Boundary Measurements[END_REF][START_REF] Canuto | Determining Two Coefficients in Elliptic Operators via Boundary Spectral Data: a Uniqueness Result, Bolletino Unione Mat[END_REF] for the derivation of Theorem 4.2.1 with α = 1, cannot be adapted to the framework of time fractional derivative diffusion equations of order α ∈ (0, 1) ∪ (1, 2). This is due to the facts that a solution to a time fractional derivative equation is not described by a semi-group, and that there is only limited smoothing property, and no integration by parts formula or Leibniz rule, with respect to the time variable, in this context. As a consequence, the analysis developed in this text is quite different from the one carried out by [START_REF] Canuto | Determining Coefficients in a Class of Heat Equations via Boundary Measurements[END_REF][START_REF] Canuto | Determining Two Coefficients in Elliptic Operators via Boundary Spectral Data: a Uniqueness Result, Bolletino Unione Mat[END_REF].

Notice from Theorem 4.2.2 that the statement of Theorem 4.2.1 still holds true for smooth coefficients in a smooth domain, under the weaker assumption S in ∩ S out = ∅. Nevertheless, in contrast to Theorem 4.2.2 where we focus on the recovery of the Riemanniann manifold and the metric, the main interest of Theorem 4.2.1 lies in the weak regularity assumptions imposed on the unknown coefficients of the inverse problem under consideration. In the same spirit, we point out with Theorem 4.2.4 below, that the result of Theorem 4.2.2 remains valid when S in ∩ S out = ∅, in the special case where µ = 1 and q = 0, and assuming a Hassell-Tao type inequality [HasTao].

Idea of the proof and extension

The key idea to our proof is the connection between the DN map associated with (4.2.1.1) and the boundary spectral data of the corresponding elliptic Schrödinger operator. This ingredient has already been used by several authors in the context of hyperbolic (see e.g. [KaKuLa01, KaKuLa04, LaOk10, LaOk141]), parabolic (see e.g. [START_REF] Canuto | Determining Two Coefficients in Elliptic Operators via Boundary Spectral Data: a Uniqueness Result, Bolletino Unione Mat[END_REF][START_REF] Katchalov | Equivalence of time-domain inverse problems and boundary spectral problem[END_REF]), and dynamical Schrödinger (see e.g. [START_REF] Katchalov | Equivalence of time-domain inverse problems and boundary spectral problem[END_REF]) equations. Nevertheless, to our best knowledge, there is no such approach for time fractional diffusion equations, available in the mathematical literature.

Let us start by considering Theorem 4.2.1. Given a positive constant c, we assume that ρ ∈ L ∞ (Ω) satisfies ρ(x) c > 0 for a.e. x ∈ Ω, so the scalar product

u, v ρ := Ω ρ(x)u(x)v(x)dx, u, v ∈ L 2 (Ω),
is equivalent to the usual one in L 2 (Ω). We denote by L 2 ρ (Ω) the Hilbertian space L 2 (Ω) endowed with •, • ρ . Next, for a nonnegative V ∈ L ∞ (Ω), and for a ∈ C 1 (Ω) fulfilling a(x) c > 0 for every x ∈ Ω, we introduce the quadratic form

h[u] := Ω a(x)|∇u(x)| 2 + V (x)|u(x)| 2 dx, u ∈ Dom(h) := H 1 0 (Ω),
and consider the operator

H generated by h in L 2 ρ (Ω). Since ∂Ω is C 1,1 , H is self-adjoint in L 2 ρ (Ω)
and acts on its domain as 

Hu := ρ -1 (div(a∇u) + V u) , u ∈ Dom(H) := H 1 0 (Ω) ∩ H 2 (Ω), ( 4 
Hϕ k = λ k ϕ k , k ∈ N * , (4.2.7.2)
and form an orthonormal basis in L 2 ρ (Ω). Notice that each ϕ k is a solution to the following Dirichlet problem: Proposition 4.2.1 Under the conditions of Theorem 4.2.1, assume that either of the three assumptions (i), (ii) or (iii) is verified. Then BSD(ρ 1 , a 1 , q 1 ) = BSD(ρ 2 , a 2 , q 2 ) entails that (ρ 1 , a 1 , q 1 ) = (ρ 2 , a 2 , q 2 ).

   -div(a∇ϕ k ) + V ϕ k = λ k ρϕ k , in Ω, ϕ k = 0, on ∂Ω, Ω ρ(x) |ϕ k (x)| 2 dx = 1, (4.2 
In view of the inverse spectral result stated in Proposition 4.2.1, we may derive the claim of Theorem 4.2.1 upon showing that two sets of admissible coefficients (ρ j , a j , V j ), j = 1, 2, have same boundary spectral data, provided their boundary operators Λ ρj ,aj ,Vj coincide. Otherwise stated, the proof of Theorem 4.2.1 is a consequence of Proposition 4.2.1 combined with the coming result:

Theorem 4.2.3 (Theorem 2.2, [KiOkSoYa]) For j = 1, 2, let V j ∈ L ∞ (Ω), ρ j ∈ L ∞ (Ω) and a j ∈ C 1 (Ω) satisfy (2.3.4.1) with ρ = ρ j , a = a j , V = V j . Then Λ ρ1,a1,V1 = Λ ρ2,a2,V2 implies BSD(ρ 1 , a 1 , V 1 ) = BSD(ρ 2 , a 2 , V 2 
), up to an appropriate choice of the eigenfunctions of the operator H 1 defined in (4.2.7.1) and associated with (ρ, a, V ) = (ρ 1 , a 1 , V 1 ).

Therefore, we are left with the task of proving Theorem 4.2.3. To do so, we establish a representation of solutions of (4. For more general Riemannian manifold, Theorem 4.2.3 can be replaced by similar results related to the boundary control method (e.g. [START_REF] Katchalov | Inverse boundary spectral problems[END_REF]) where the condion S in ∪ S out = ∂M is not required. The main task of Theorem 4.2.2 consisting of proving the recovery of the boundary spectral data restricted to an arbitrary portion of the boundary in the specific case S in ∩ S out = ∅, S in ∩ S out = ∅. This can be done by using some intermediate data and by applying some results of [START_REF] Lassas | An inverse problem for a wave equation with sources and observations on disjoint sets[END_REF].

In the specific case when µ = 1, q = 0, we can even extend our result to the recovery of the manifold (M, g) up to an isometry from the DN map Λ M,g,1,0 when S in ∩S out = ∅. In order to introduce this result, we fix (M k , g k ), k = 1, 2, two compact and smooth connected Riemannian manifolds of dimension n 2 with the same boundary. We associate with (M k , g k ), k = 1, 2, the sequence of increasing eigenvalues {λ k, ; ∈ N * }. For each ∈ N * , we denote by m k, ∈ N * the algebraic multiplicity of the eigenvalue λ k, and we introduce a family {ϕ k, ,p ; p = 1, . . . , m k, } of eigenfunctions of H k , which satisfy H k ϕ k, ,p = λ k, ϕ k, ,p , and form an orthonormal basis in L 2 (M k ) of the algebraic eigenspace of H k associated with λ k, (i.e. the linear sub-space of L 2 (M k ) spanned by {ϕ k, ,p , p = 1, . . . , m j, }). Then, we introduce the following spectral inequality where the constant C > 0 is independent of and p. We recall that Hassell and Tao [HasTao] showed that all non-trapping Riemannian manifolds (M k , g k ) satisfy (4.2.7.4) when S in is replaced by ∂M k . Moreover, (4.2.7.4) follows from (and is strictly weaker than) the geometric control condition by Bardos, Lebeau and Rauch [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] (see [START_REF] Lassas | Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets[END_REF]). Using the spectral condition (4.2.7.4), we prove the following extension of our result to measurements on disjoint portions.

Theorem 4.2.4 (Theorem 5.3, [KiOkSoYa]) Let (M k , g k ), k = 1, 2, be two compact and smooth connected Riemannian manifolds of dimension n 2 with the same boundary. Let S in , S out ⊂ ∂M 1 be relatively open, and suppose that g 1 = g 2 on ∂M 1 . Suppose, moreover, that both (M k , g k ), k = 1, 2, satisfy the spectral inequality (4.2.7.4). Then, the condition Λ M1,g1,1,0 = Λ M2,g2,1,0 implies that (M k , g k ), k = 1, 2, are isometric.

We prove this extension by considering first the recovery of a partial hyperbolic DN map associated with the operators H k , k = 1, 2. Then, we apply the result of [START_REF] Lassas | Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets[END_REF]. We do not know if Theorem 4.2.4 holds for operators with varying µ and q, see the discussion in [LaOk141, pp. 7-8].

Well posedness for semilinear fractional wave equations

Our objective

In this section we will introduce [KiYa] which is a joint work with Masahiro Yamamoto. Let Ω be a C The main purpose of [KiYa] is to give a suitable definition of solutions of (4.3.1.1) and to study the wellposedeness of this problem.

where F (p) = L[f (t, .)1 (0,T ) (t)](p) =

T 0 e -pt f (t, .)dt.

Remark 4.3.1 Recall (e.g. formula (2.140) page 80 of [Pod]) that for h ∈ C 2 (R + ) satisfying inf{ε > 0 : e -εt h (k) ∈ L 1 (R + ), k = 0, 1, 2} = ε 0 we have e -pt h(t)dt. Therefore, for sufficiently smooth data u 0 , u 1 , f (e.g. [SaYa]) one can check that problem (4.3.3.1) admits a unique strong solution which is also a weak solution of (4.3.3.1).

Consider the operator A acting on L 2 (Ω) with domain D(A) = {g ∈ H 1 0 (Ω) : Ag ∈ L 2 (Ω)} defined by Au = Au, u ∈ D(A). Recall that in view of the Sobolev embedding theorem (e.g. [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]Theorem 1.4.4.1]) the multiplication operator u → V u is bounded from H 1 (Ω) to L 2 (Ω). Thus, we have D(A) = H 2 (Ω) ∩ H 1 0 (Ω). Moreover, by V ≥ 0 in Ω, the operator A is a positive selfadjoint operator with a compact resolvent. Therefore, the spectrum of A consists in a non-decreasing sequence of positive eigenvalues (λ k ) k 1 . Let us also introduce an orthonormal basis in the Hilbert space L 2 (Ω) of eigenfunctions (ϕ k ) k 1 of A associated with the non-decreasing sequence of eigenvalues (λ k ) k 1 . From now on, by •, • , we denote the scalar product of L 2 (Ω). For all s 0, we denote by A s the operator defined by .

A s h = +∞ k=1 h, ϕ k λ s k ϕ k , h ∈ D(A s ) = h ∈ L 2 (Ω) : +∞ k=1 | h, ϕ k | 2 λ 2s k < ∞
Here •, • -2s denotes the duality bracket between D(A -s ) and D(A s ). Since D(A 1/2 ) = H 1 0 (Ω), we identify H -1 (Ω) with D(A -1/2 ).

Using eigenfunction expansions we show our first main result where we state existence and uniqueness of weak solutions of (4.3.3.1). Moreover, assuming that there exists 0 < r < 1 4 such that u 0 ∈ H 2r (Ω), we have u ∈ W 1,1 (0, T ; L 2 (Ω)) and u W 1,1 (0,T ;L 2 (Ω)) C( u 0 H 2r (Ω) + u 1 H -1 (Ω) + f L 1 (0,T ;L 2 (Ω)) ).

Recall that for γ, r, s 0, 1 p, q, p, q ∞, Strichartz estimates for solutions u of (4.3.1.1) denotes estimates of the form u C([0,T ];H 2r (Ω)) + u L p (0,T ;L q (Ω)) C( u 0 H 2γ (Ω) + u 1 H 2s (Ω) + f L p(0,T ;L q (Ω)) ).

It is well known that these estimates, introduced by [START_REF] Strichartz | A priori estimates for the wave equation and some applications[END_REF][START_REF] Strichartz | Restriction of Fourier transform to quadratic surfaces and decay of solutions to the wave equation[END_REF] and extended to the endpoints by [KeTa] (as well as on manifolds with hyperbolic trapped geodesics by [BuGuHa]) for both wave and Schrödinger equations, are important tools in the study of well-posedness of nonlinear equations (e.g. [Kap, BuLePl]). In [KiYa], we prove these estimates for solutions of (4. 3.3.1). For this purpose, we consider 1 p, q ∞ and 0 < γ < 1 satisfying:

1) q = ∞, for n 4 < γ < 1, 2) 2 < q < ∞, for γ = n 4 , 3) q = 2n n-4γ , for 0 < γ < n 4 .

(4.3.3.2) and C 0 depends only on Ω, γ, n, α, p, A.

1) p <
In the last section of [KiYa], we apply estimates (4.3.3.4) to prove the last result of this paper which is related to the existence and uniqueness of local solutions of (4.3.1.1). For this purpose, we first need to define local solutions of (4.3.1.1). In [KiYa, Section 2] (see also [SaYa]), using the eigenfunction expansions we introduce the operators

S 1 (t)h = ∞ k=1 E α,1 (-λ k t α ) h, ϕ k ϕ n , h ∈ L 2 (Ω), S 2 (t)h = ∞ k=1 tE α,2 (-λ k t α ) h, ϕ k ϕ n , h ∈ L 2 (Ω), S 3 (t)h = ∞ k=1 t α-1 E α,α (-λ k t α ) h, ϕ k ϕ k , h ∈ L 2 (Ω),
where for all α > 0, β ∈ R, E α,β denotes the Mittag-Leffler function given by E α,β (z) = ∞ k=0 z k Γ(αk + β) .

Fractional diffusion equations with variable order

Statement of the problem

This section is devoted to the work [KiSoYa], which is a joint work with Eric Soccorsi and Masahiro Yamamoto. Let Ω be a bounded domain of R n , n 2, with Lipschitz continuous boundary ∂Ω, and let (a i,j ) 1 i,j n ∈ L ∞ (Ω; R n 2 ) be symmetric, i.e., fulfill a i,j = a j,i a.e. in Ω, for i, j = 1, . . . , n, and satisfy the ellipticity condition ∃c > 0, n i,j=1 a i,j (x)ξ i ξ j c|ξ| 2 , x ∈ Ω, ξ = (ξ 1 , . . . , ξ n ) ∈ R n .

(4.4.1.1)

For κ ∈ (n, +∞] and q ∈ L κ (Ω; R + ), we introduce the formal differential operators

A 0 u(x) = - n i,j=1
∂ xi a i,j (x)∂ xj u(x) and A q u(x) := A 0 u(x) + q(x)u(x), x ∈ Ω.

Given T ∈ (0, +∞] and two functions α ∈ L ∞ (Ω) and ρ ∈ L ∞ (Ω), such that 0 < α 0 α(x) α M < 1 and 0 < ρ 0 ρ(x) ρ M < +∞, x ∈ Ω, + A q )u(t, x) = f (t, x), (t, x) ∈ Q := (0, T ) × Ω, u(t, x) = 0, (t, x) ∈ Σ := (0, T ) × ∂Ω, u(0, x) = u 0 (x), x ∈ Ω. where Γ is the usual Gamma function.

In [KiSoYa] we pursue two goals. The first one is to establish the well-posedness of the IBVP (4.4.1.3) for suitable source terms f and initial data u 0 . The second one is to analyse the uniqueness issue in the inverse problem of determining simultaneously the fractional order α, the density ρ, and the electric potential q, entering the diffusion equation appearing in (4.4.1.3), by partial Neuman data.

Physical motivations

Anomalous diffusion in complex media is a rapidly growing field of academic research with multiple engineering applications in geophysics, environmental science and biology. The diffusion properties of homogeneous porous media are currently modeled, see e.g. [AdGe, CaSaLuGa], by constant order time-fractional diffusion processes (that is by (4.4.1.3) where the mapping x → α(x) is maintained constant over Ω). But in complex media, the presence of heterogeneous regions causes variations of the permeability in different spatial positions, and in this case, the variable order time-fractional model is more relevant for describing the diffusion process, see [SuChCh]. This justifies for a closer look into the analysis of variable order time-fractional diffusion equations.

Existence of solutions and identification

The first result of [KiSoYa], which is stated in the framework of Lipschitz continuous bounded domains Ω, is concerned with the forward problem associated with (4.4.1.3), that is with the existence, uniqueness and some regularity properties of the weak solution to the Cauchy problem (4.4.1.3). Namely, Theorem 4.4.1 states for all T ∈ (0, +∞], all bounded functions α and ρ fulfilling (4.4.1.2), and all non-negative potentials q ∈ L κ (Ω) with κ ∈ (d, +∞], that the IBVP (4.4.1.3) admits a unique solution within the class C((0, T ]; L 2 (Ω)), provided the initial data u 0 is taken in L 2 (Ω) and the source terms f belonging to C((0, T ]; L 2 (Ω)) and satisfying the condition t → (1 + t) -m f (t, •) ∈ L ∞ ((0, T ); L 2 (Ω) for some m ∈ N. Here and in the remaining part of this section, the interval (0, T ] should be understood as (0, +∞) in the particular case where T = +∞. In order to introduce this first result, we start by considering a definition of weak solutions close to the one introduced in the last section but extended to more general equations.

Let S (R; L 2 (Ω)) := B(S(R; L 2 (Ω)); R) be the space dual to S(R; L 2 (Ω)). We denote by S (R + ; L 2 (Ω)) := {v ∈ S (R; L 2 (Ω)) : supp (v) ⊂ [0, +∞) × Ω} the set of distributions in S (R; L 2 (Ω)), supported in [0, +∞) × Ω. Otherwise stated, v ∈ S (R; L 2 (Ω)) lies in S (R + ; L 2 (Ω)) if and only if v, ϕ S (R;L 2 (Ω)),S(R;L 2 (Ω)) = 0, whenever ϕ ∈ S(R; L 2 (Ω)) vanishes in R + × Ω. As a consequence, for a.e. x ∈ Ω, we have v(•, x), ϕ S (R),S(R) = v(•, x), ψ S (R),S(R) , ϕ, ψ ∈ S(R), Definition 4.4.1 Let u 0 ∈ L 2 (Ω). For T < +∞, we assume that f ∈ L 1 (0, T ; L 2 (Ω)) and, for T = +∞, we assume that there exists m ∈ N such that (1 + |t|) -m f ∈ L 1 (R + ; L 2 (Ω). We say that u is a weak solution to (4.4.1.3) if u is the restriction to Q of a distribution v ∈ S (R + ; L 2 (Ω)), i.e. u = v |Q , whose Laplace transform V := L[v] solves, for all p ∈ (0, +∞), the boundary value problem:

A q V + ρ(x)p α(x) V = F (p) + ρ(x)p α(x)-1 u 0 , x ∈ Ω, V = 0, x ∈ ∂Ω, Further, we denote by A q the self-adjoint realization in L 2 (Ω), of the operator A q with homogeneous Dirichlet boundary conditions, and by (A q + ρ(x)p α(x) ) -1 , for p ∈ C \ R -, the resolvent operator of A q + ρ(x)p α(x) .

Then, the existence and uniqueness result of a weak solution to the IBVP (4.4.1.3) is as follows. where we have set for all ψ ∈ L 2 (Ω), S 0 (t)ψ := 1 2iπ γ(ε,θ) e tp (A q + ρ(x)p α(x) ) -1 ρ(x)p α(x)-1 ψdp, S 1 (t)ψ := 1 2iπ γ(ε,θ) e tp (A q + ρ(x)p α(x) ) -1 ψdp, and S 2 ψ := 1 2iπ γ(ε,θ) p -1 (A q + ρ(x)p α(x) ) -1 ψdp, the three above integrals being independent of the choice of ε ∈ (0, 1) and θ ∈ π 2 , π . Moreover, in the particular case where f = 0, the mapping t → u(t) is analytic in (0, T ). Remark 4.4.1 (Remark 1, [KiSoYa]) We point out for all α 0 ∈ 0, 1 2 , that the operator S 2 is identically zero, provided we have α M ∈ (α 0 , 2α 0 ). Therefore, (4.4. The second result of [KiSoYa] deals with the inverse problem of determining the unknown coefficients α, ρ, q, entering the time fractional diffusion equation appearing in (4.4.1.3), by partial boundary measurements of the solution. More precisely, assuming that ∂Ω is C 1,1 , ∈ N \ {0, 1}, we probe the following system    (ρ(x)∂ α(x) t -∆ + q(x))u(t, x) = 0, (t, x) ∈ (0, +∞) × Ω, u(t, x) = t g(x), (t, x) ∈ (0, +∞) × ∂Ω, u(0, x) = 0,

x ∈ Ω, with suitable Dirichlet data g. Given two non empty subsets of ∂Ω, S in and S out , we then introduce for all t ∈ (0, +∞), the following boundary operator N α,ρ,q (t) : We examine the uniqueness issue in the inverse problem of determining the coefficients (α, ρ, q) from the knowledge of the boundary operators {N α,ρ,q (t k ), k ∈ N} associated with a time-sequence {t k , k ∈ N} ∈ (0, +∞) N , fulfilling ∃τ ∈ (0, +∞), τ is an accumulation point of {t k , k ∈ N}, (4.4.3.9)

H in g → ∂ ν u g (t, •) |Sout , ( 4 
and suitable observation regions S in and S out . Namely, we assume that the domain Ω and the input and output regions satisfy the following conditions.

(i) If n = 2, it is required that Ω be connected and that ∂Ω = N k=1 γ k be made of a finite number of smooth closed contours γ k , k = 1, . . . , N . In this case, we choose S in = S out := γ, where γ is any arbitrary non-empty open subset of ∂Ω, and the set of admissible unknown coefficients reads E 2 := (α, ρ, q) : α ∈ W 1,r (Ω) and ρ ∈ W 1,r (Ω) fulfill (4.4.1.2), and q ∈ W 1,r (Ω; R + ) with r ∈ (2, +∞) .

(ii) If n 3, we assume that the domain Ω is smooth and connected. We pick x 0 ∈ R n outside the convex hull of Ω, impose that {x ∈ ∂Ω : (x -x 0 ) • ν 0} ⊂ S in and {x ∈ ∂Ω : (x -x 0 ) • ν 0} ⊂ S out , and define the set of admissible unknown coefficients by E n := {(α, ρ, q); α ∈ L ∞ (Ω) and ρ ∈ L ∞ (Ω) fulfill (4.4.1.2), and q ∈ L ∞ (Ω; R + )} .

The uniqueness result for the above described inverse coefficients problem is as follows.

Theorem 4.4.2 (Theorem 1.2, [KiSoYa]) Let {t k , k ∈ N} ∈ (0, +∞) N fulfill (4.4.3.9) and assume that either (i) or (ii) is satisfied, depending on whether d = 2 or d 3. Pick (α j , ρ j , q j ) ∈ E n , j = 1, 2, such that N α1,ρ1,q1 (t k ) = N α2,ρ2,q2 (t k ), k ∈ N. Then, we have (α 1 , ρ 1 , q 1 ) = (α 2 , ρ 2 , q 2 ).

Comments and outline

As the Laplace transform of a solution to constant order time-fractional diffusion equations is expressed in terms of Mittag-Leffler functions, most of its features are inherited from the well known properties of these special functions. This is no longer the case when the fractional order of the time-fractional diffusion equation depends on the space variable, which makes for a more challenging analysis of the well-posedness of these systems. This new technical difficulty translates in particular into the definition of a weak solution to variable order time-fractional diffusion equations, which extends the one of a weak solution to constant order time-fractional diffusion equations.

Description of the proof

We start with Theorem 4.4.1. For this purpose, we remark that problem (4.4.3.2), admits a unique solution if and only if the the operator A q + ρp α(x) is invertible. Moreover, if A q + ρp α(x) is invertible, the unique solution of (4.4.3.2) is given by V (p) = (A q + ρp α(x) ) -1 F (p) + (A q + ρp α(x) ) -1 ρ(x)p α(x)-1 u 0 .

Combining this remark with properties of inversion of Laplace transform (e.g. [START_REF] Rudin | Real and complex analysis[END_REF]Theorem 19.2]), we need to consider some properties of the family of operators (A q + ρp α(x) ) -1 for a complex valued parameter p. We remark that for p ∈ C \ R the operator A q + ρp α(x) is no longer selfadjoint and some specific treatment should be used for the inversion of such operators. We prove the following properties of this family of operators.

Proposition 4.4.1 (Proposition 2.1, [KiSoYa]) For all p ∈ C \ R -, the operator A q + ρ(x)p α(x) is boundedly invertible in L 2 (Ω) and (A q + ρ(x)p α(x) ) -1 maps L 2 (Ω) into D(A 0 ). Moreover, the following estimate holds for all r ∈ (0, +∞), (A q + ρ(x)r α(x) e iβα(x) ) -1 

.3. 4 )

 4 holds for some positive constant C depending only on , T , M , ω and γ * . Under the prescribed conditions (1.3.2.1), (1.3.3.1) and Theorem 1.3.1, the first statement (1.3.3.3) of Theorem 1.3.2 claims Lipschitz stability in the determination of the scalar potential appearing in the dynamic Schrödinger equation in Ω from two different observations of the solution u to (1.3.0.2). The first one is a lateral measurement on some subboundary of ∂ω × (-L, L) of the normal derivative ∂ ν u |Σ . The second observation is an internal measurement of u which is performed in each of the two "slices" S - L := ω ×(-L, -) and S + L := ω × ( , L) of Ω. One way to get rid of both volume observations simultaneously is to use a global Carleman estimate specifically designed for the unbounded quantum waveguide Ω, which is stated in [KiPhSo1, Proposition 3.3].

Ω) and a 3 ∈

 3 C 3 (Ω) satisfies (1.4.4.1) -(1.4.4.2) ,

  .5.5.1), (1.5.5.3), and (1.5.5.5) .(1.5.5.6) 

( 3 . 2 . 4 . 1 ) 2 θ

 32412 Lemma 3.2.1 (Lemma 2.3, [KaKiSo]) For any f ∈ H 1/(∂Y ) and λ ∈ C \ sp(A θ ), there exists a unique solution u ∈ H 2 θ (Y ) to the BVP (3.2.4.1) which can be written as

2 θ

 2 R) be given for m = 1 or m = 2, and denote by A m (θ) the corresponding operator defined in the beginning of Subsection 3.2.2. For f ∈ H 1/(∂Y ) and µ ∈ C and µ / ∈ sp(A 1,θ ) ∪ sp(A 2,θ ), let u m,µ := u m be the solution of (3.2.4.4). Then if z µ := u 1,µ -u 2,µ we have

1 / 2 θ

 12 (∂Y ) consider u m,λ the solution to the equation (3.2.4.1) where V := V m , and also denote ψ m,k := ψ m,θ,k := ∂ ν ϕ m,θ,k , α m,k := ψ m,θ,k , f .

  and consider the magnetic Schrödinger operator H = -∆ A +V , where ∆ A denote the magnetic Laplacian already defined in (1.4.1.2), acting on L 2 (Ω) with domain

  3.3.1)-(3.3.3.2) imply (3.3.4.6)-(3.3.4.7

  .1.0.2) with m the integer part of α. Here Γ is the usual Gamma function expressed as Γ(z) := +∞ 0 e -t t z-1 dt, z ∈ {ξ ∈ C : Reξ > 0}.

.7. 3 )

 3 Put ψ k := (a∂ ν ϕ k ) |∂Ω for every k ∈ N * . Following[START_REF] Canuto | Determining Coefficients in a Class of Heat Equations via Boundary Measurements[END_REF][START_REF] Katchalov | Inverse boundary spectral problems[END_REF], we define the boundary spectral data associated with (ρ, a, V ), asBSD(ρ, a, V ) := {(λ k , ψ k ); k 1}.We recall from [CaKa04, Corollaries 1.5, 1.6 and 1.7] the following Borg-Levinson type theorem.

  2.4.3) involving the Mittag-Leffler functions, given by E r,s (z) = +∞ k=0 z k Γ(rk + s) , r, s > 0, z ∈ C, and the boundary spectral data of the operator (4.2.7.1). Combining this representation with different properties of solutions of (4.2.4.3), we derive (4.2.3).

2 L 2 (

 22 λ k, ≤ C ∂ ν ϕ k, ,p Sin) ,(4.2.7.4)

  2 bounded domain of R n with n = 2,3. In what follows, we define A by the differential operatorAu(x) = -n i,j=1 ∂ xi a ij (x)∂ xj u + V (x)u(x), x ∈ Ω, where a ij = a ji ∈ C 1 (Ω) and V ∈ L κ (Ω), for some κ > n, satisfy n i,j=1 a ij (x)ξ i ξ j c|ξ| 2 , x ∈ Ω, ξ = (ξ 1 , . . . , ξ n ) ∈ R nand V 0 a.e. in Ω. We consider the following IBVP for the fractional semilinear wave equation u+ Au = f b (u), (t, x) ∈ Q, u(t, x) = 0, (t, x) ∈ Σ, u(0, x) = u 0 (x), ∂ t u(0, x) = u 1 (x), x ∈ Ω,(4.3.1.1)where 1 < α < 2, ∂ α t denotes the Caputo fractional derivative with respect to t, s)1-α ∂ 2 s u(s, x)ds, (t, x) ∈ Q, b > 1 and f b ∈ C 1 (R) satisfies f b (0) = 0 and |f b (u)| C |u| b-1 , u ∈ R.

L

  [∂ α h](p) = p α H(p) -p α-1 h(0) -p α-2 h (0), p > ε 0 , where H(p) = L[h](p) = +∞ 0

| h, ϕ k | 2 λ 2s k 1 2 ,

 12 and consider on D(A s ) the normh D(A s ) = +∞ k=1 h ∈ D(A s ).By duality, we can also set D(A -s ) = D(A s ) by identifying L 2 (Ω) = L 2 (Ω) which is a Hilbert space with the normh D(A -s ) = ∞ k=1 h, ϕ k -2s λ -2s k 1 2

Theorem 4 . 3 . 1 (

 431 Theorem 1.2, [KiYa]) Let u 0 ∈ L 2 (Ω), u 1 ∈ H -1 (Ω) = D(A -1 2 ), f ∈ L 1 (0, T ; L 2 (Ω)). Then, problem (4.3.3.1) admits a unique weak solution u ∈ C([0, T ]; L 2 (Ω)) satisfying u C([0,T ];L 2 (Ω)) C( u 0 L 2 (Ω) + u 1 H -1 (Ω) + f L 1 (0,T ;L 2 (Ω)) ).

1 1 -( 4 . 3 . 3 . 3 ) 4 )

 143334 α(1-γ) , for γ > 1 -1 α , 2) p = ∞, for γ 1 -1 α .Then, our second main result can be stated as follows. Theorem 4.3.2 (Theorem 1.3, [KiYa]) (Strichartz estimates) Assume that 1 p, q ∞ and 0 < γ < 1 fulfill (4.3.3.2), (4.3.3.3) and sets = max 0, γ -1 α , r = min 1 -1 α , γ . Let u 0 ∈ D(A γ ), u 1 ∈ D(A s ), f ∈ L 1 (0, T ; L 2 (Ω)).Then, the unique weak solution u of problem (4.3.3.1) is lying in L p (0, T ; L q (Ω)) ∩ C([0, T ]; H 2r (Ω)) and fulfills estimateu C([0,T ];H 2r (Ω)) + u L p (0,T ;L q (Ω)) C( u 0 H 2γ (Ω) + u 1 H 2s (Ω) + f L 1 (0,T ;L 2 (Ω)) ).(4.3.3.Here the constant C takes the formC = C 0 (1 + T ) δ ,(4.3.3.5)whereδ = max (α(1 -γ) -1, 1 -α(γ -s), 1 -α(r -s), α(1 -r) -1) , for p = ∞, max1p , 1 -α(γ -s) + 1 p , 1 -α(r -s), α(1 -r) -1, α(1 -γ) -1 + 1 p , for p < ∞ (4.3.3.6)

  initial boundary value problem for space-dependent variable order fractional diffusion equa-

( 4 . 4 . 1 . 3 )

 4413 Here and below, ∂ α(x) t denotes the Caputo fractional derivative of order α(x) with respect to t, defined by∂ α(x) t u(t, x) := 1 Γ(1 -α(x)) t 0 (t -s) -α(x) ∂ s u(s, x)ds, (t, x) ∈ Q,

  (4.4.3.1) provided ϕ = ψ in R + . Further, we say that ϕ ∈ S(R + ) if ϕ is the restriction to R + of a function φ ∈ S(R). Then, we setx → v(•, x), ϕ S (R+),S(R+) := x → v(•, x), φ S (R),S(R) , v ∈ S (R + ; L 2 (Ω)).Notice from (4.4.3.1) that φ may be any function in S(R) such that φ(t) = ϕ(t) for all t ∈ R + . For p ∈ C + := {z ∈ C : Rez > 0}, we put e p (t) := exp(-pt), t ∈ R + .Evidently, e p lies in S(R + ). For v ∈ S (R + ; L 2 (Ω)), we define the Laplace transform L[v] in t of v, by L[v](p) := x → v(•, x), e p S (R+),S(R+) , p ∈ C + , and notice that p → L[v](p) ∈ C ∞ (C + ; L 2 (Ω)). Having seen this, we define the weak solution to (4.4.1.3) as follows.

( 4 . 4 . 3 . 2 )

 4432 Here F (p) := L[f (t, .)1 (0,T ) (t)](p) = T 0 e -pt f (t, .)dt. For θ ∈ (π/2, π) and ε ∈ (0, 1), we introduce the contourγ(ε, θ) := γ -(ε, θ) ∪ γ 0 (ε, θ) ∪ γ + (ε, θ),(4.4.3.3) in the complex plane C, where γ 0 (ε, θ) := {εe iβ ; β ∈ [-θ, θ]} and γ ± (ε, θ) := {se ±iθ ; s ∈ [ε, +∞)}. (4.4.3.4)

Theorem 4 . 4 . 1 ( 0 S 1

 44101 Theorem 1.1,[KiSoYa]) Suppose that (4.4.1.1) and (4.4.1.2) are fulfilled. Let u 0 ∈ L 2 (Ω) and, depending on whether T ∈ (0, +∞) or T = +∞, assume either that f ∈ L ∞ (0, T ;L 2 (Ω)) ∩ C((0, T ]; L 2 (Ω)) or that f ∈ C((0, +∞); L 2 (Ω)) satisfies (1 + |t|) -ζ f ∈ L ∞ (R + ; L 2 (Ω)) for some ζ ∈ R + .Then, there exists a unique weak solution u ∈ C((0, T ]; L 2 (Ω)) to (4.4.1.3), which is expressed by u(t) = S 0 (t)u 0 + t (t -τ )f (τ )dτ + S 2 f (t), t ∈ (0, T ],(4.4.3.5) 

3 . 5 ) 0 S 1

 3501 reduces to the "classical" Duhamel formula in this case:u(t) = S 0 (t)u 0 + t (t -τ )f (τ )dτ, t ∈ (0, T ].(4.4.3.6) 

  .4.3.8) where H in := {g ∈ H 3/2 (∂Ω) : supp (g) ⊂ S in }. Here, u g denotes the unique C([0, +∞); H 2 (Ω))-solution to (4.4.3.7), whose existence is guaranteed by Theorem 4.4.1, stated in Proposition 4.4.2 below.

  This immediately entails the: Corollary 1.3.1 Under the conditions of Theorem 1.3.1 for k = + 1, where is defined by (1.3.2.5), the solution u to (1.3.0.2) with g given by (1.3.2.1) satisfies (1.3.2.4) and the estimate

  .2.4.5) Definition 3.2.1 Assume that ζ p ∈ C 3 for p = 0, 1 satisfy (3.2.4.5) and are such that e ζ0 ∈ H 1 θ (Y ) and e * ζ1 ∈ H 1 θ (Y ). Then, following Isozaki, we set

  ξ), ζ 0 (t, ξ), ζ 1 (t, ξ) as in Theorem 3.2.4, and f = e ζ0 . Then, the identity given by (3.2.4.9) and the Definition 3.2.1 yieldS θ,V1 (λ(t, ξ), ζ 0 (t, ξ), ζ 1 (t, ξ)) -S θ,V2 (λ(t, ξ), ζ 0 (t, ξ), ζ 1 (t, ξ)) = e * ζ1 , F * 1 (λ, e ζ0 ) -F * 2 (λ, e ζ0 ) .

	Moreover, we prove in [KaKiSo, Lemma 4.4, 4.5] that
	lim t→+∞	e * ζ1 (t, ξ), F * 1 (λ(t, ξ), e ζ0 (t, ξ)) -F * 2 (λ(t, ξ), e ζ0(t,ξ) ) = 0.
	Therefore, Theorem 3.2.4 shows that we have

  the spectrum σ(H) of the operator H is purely discrete. Let {λ k ; k ∈ N * } be the non-decreasing sequence of the eigenvalues of H. Furthermore, we introduce a family {ϕ k ; k ∈ N * } of eigenfunctions of the operator H, which satisfy

	.2.7.1)
	according to [Gr, Theorem 2.2.2.3].
	By the compactness of the embedding H 1 0 (Ω) → L 2 ρ (Ω),

Combining this result with a decomposition in high and low frequency of the solution of (1.6.1.1) we complete the proof of Theorem 1.6.2.

,-1 2 (Σ); H 1 4 , 1 2 (Σ)).

Remerciements

Apart from [START_REF] Eskin | Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect[END_REF][START_REF] Eskin | Inverse problems for general second order hyperbolic equations with time-dependent coefficients[END_REF], all the above results are concerned with time-independent coefficients. For time-dependent coefficient we refer to the results mentioned in Subsection 2.2.4. All the results [Ben15, Is911, Ki161, Ki162, Ki164, RakRam, RakSy, Sala, Ste], introduced in Subsection 2.2.4, assume that the leading order coefficients in the wave equation are constant. The main contribution of [KiOk] is to consider the recovery of a time-dependent potential in the case of non-constant leading order coefficients.

Unique recovery of q

We prove two results on unique determination of the potential q. In the first result we assume that the Cauchy data set C q is fully known on the lateral boundary (0, T ) × ∂M and partly restricted on the top and bottom. In the second result we restrict the data also on the lateral boundary. In both results we impose geometric conditions on the manifold (M, g), the conditions being more stringent in the second case. In the first case, we make the typical assumption that (M, g) is simple in the sense of the following definition. Definition 2.3.1 A compact smooth Riemannian manifold with boundary (M, g) is simple if it is simply connected, the boundary ∂M is strictly convex in the sense of the second fundamental form, and M has no conjugate points.

We consider the restricted version of C q , C(q, 0) = {(u| ∂M \({0}×M ) , ∂ ν u| ∂M ); u ∈ L 2 (M ), g u + qu = 0, u |t=0 = 0}, and formulate our first result.

Theorem 2.3.1 (Thorem 1.2, [KiOk]) Suppose that (M, g) is a simple manifold. Let T > 0 and let q 1 , q 2 ∈ L ∞ ((0, T ) × M ). Then C(q 1 , 0) = C(q 2 , 0) (2.3.4.1)

Let us point out that an analogous result holds with the data restricted on the top {T } × M rather than on the bottom {0} × M , and also with the time derivative ∂ t u| t=T vanishing instead of u| t=0 . Moreover, we prove also a variation of Theorem 2.3.1 using the data

In order to restrict the data also on the lateral part of the boundary, we make the assumption that (M, g) is contained in a conformal cylinder of the form (2.3.2.1), that is, we assume that it satisfies the geometric assumption introduced in [DoKeSaUh] in the context of the Calderón problem. Furthermore, we assume that also the time direction is multiplied by the same conformal factor, which amounts to assuming, after the gauge transformation discussed in Section 2.3.2, that the wave equation has two Euclidean directions, one of them being the time direction.

More precisely, we assume that (M 0 , g ) is a simple Riemannian manifold of dimension n -1 2, M ⊂ R × int(M 0 ) is a compact domain with smooth boundary, and that g = a(e ⊕ g ) where e is the euclidean metric on R and a ∈ C ∞ (M ) is positive, and consider the wave operator

In order to introduce the general form of these solutions we consider, for all y ∈ S n-1 and all r > 0, the parts of the boundary ∂Ω +,r,y = {x ∈ ∂Ω : ν(x) • y > r}, ∂Ω -,r,y = {x ∈ ∂Ω : ν(x) • y r} and Σ ±,r,y = (0, T ) × ∂Ω ±,r,y . Then, we fix ω ∈ S n-1 , ξ ∈ R n with ξ • ω = 0, τ ∈ R and ρ > ρ 1 . We build solutions u 1 of the form

and solutions u 2 of the form

Here the function w j , j = 1, 2, are chosen in such a way that for some ε ∈ (0, 1) we have 4 (T -t) , (t, x) ∈ Σ +,ε/2,ω .

(2.5.6.2)

In all these estimates C is a constant depending on Ω, T , ε, M q 1 L ∞ (Q) + q 2 L ∞ (Q) . Moreover, ξ , (τ, ξ) denote respectively the quantity

The main point in the construction of these solutions comes from the expression w j , j = 1, 2, satisfying (2.5.6.1)-(2.5.6.2). The construction of this expression is by means of the following Carleman estimate.

then there exists ρ 1 > 1 depending only on Ω, T and M q L ∞ (Q) such that the estimate

holds true for ρ ρ 1 with C depending only on Ω, T and M q L ∞ (Q) . If u satisfies the condition

Therefore, (4.2.1.1) can be equivalently rewritten as

In [KiOkSoYa, Proposition 3.1], we prove that for any arbitrary α ∈ (0, 1) ∪ (1, 2) and T 0 ∈ (0, T ), the partial DN map

where u is the solution to (4.2.4.3), is bounded from H in,α,T0 into L 2 (S out ). Our first result claims that knowledge of Λ ρ,a,V uniquely determines two out of the three coefficients ρ, a, and V , which are referred as, respectively, the density, the conductivity, and the (electric) potential.

Moreover, let either of the three following conditions be fulfilled: Then, Λ ρ1,a1,V1 = Λ ρ2,a2,V2 yields (ρ

The second result describes the identifiability properties of the Riemannian manifold (M, g) and the functions µ ∈ C ∞ (M ) and q ∈ C ∞ (M ), appearing in the first line of the IBVP (4.2.1.1), that can be inferred from Λ M,g,µ,q . It is well known that the DN map is invariant under isometries fixing the boundary. Moreover, gauge equivalent coefficients (µ, q) cannot be distinguished by the DN map either. Here and henceforth, (µ 1 , q 1 ) and (µ 2 , q 2 ) are said gauge equivalent if there exists a strictly positive valued function

such that

The second result of [KiOkSoYa] can be stated as follows.

Theorem 4.2.2 (Theorem 1.2, [KiOkSoYa]) For j = 1, 2, let (M j , g j ) be two compact and smooth connected Riemannian manifolds of dimension n 2 with the same boundary, and let µ j ∈ C ∞ (M j ) and q j ∈ C ∞ (M k ) satisfy µ j (x) > 0 and q j (x) ≥ 0 for all x ∈ M j . Let S in , S out ⊂ ∂M 1 be relatively open and suppose that S in ∩ S out = ∅. Suppose, moreover, that

Then, Λ M1,g1,µ1,q1 = Λ M2,g2,µ2,q2 yields that (M 1 , g 1 ) and (M 2 , g 2 ) are isometric and that (µ 1 , q 1 ) and (µ 2 , q 2 ) are gauge equivalent.

Physical motivations and known results

Recall that equation (4.3.1.1) is associated with anomalous diffusion phenomenon. More precisely, for 1 < α < 2, the linear part of equation (4.3.1.1) is frequently used for super-diffusive model of anomalous diffusion such as diffusion in heterogeneous media. In particular, in the linear case (i.e., f b ≡ 0), some physical background is found in Sokolov, Klafter and Blumen [SoKlBl]. As for analytical results in the case of 1 < α < 2, we refer to Mainardi [Ma] as one early work, and also to §6.1 in Kilbas, Srivastava and Trujillo [KilSrTr], §10.10 in Podlubny [Pod]. For 0 < α < 1, there are works in view of the theory of partial differential equations (e.g., Beckers and Yamamoto [BekYa], Sakamoto and Yamamoto [SaYa]). Such researches are rapidly developing and here we do not intend to give any comprehensive lists of references.

In contrast to the wave equation, even linear fractional wave equations are not well studied. In fact, few authors treated the well-posedness of the linear IBVP associated with (4.3.1.1) and to our best knowledge even the definition of weak solutions does not allow source term with low regularity. For a general study of the linear fractional wave equation and the regularity of solutions we refer to [SaYa]. When we consider e.g., reaction effects in a super-diffusive model, we have to introduce a semilinear term.

To the best knowledge of the authors, there are no publications on fractional semilinear wave equations by the Strichartz estimate which is a common technique for semilinear wave and Schrödinger equations. For the wave equation (α = 2), the well-posedness of problem (4.3.1.1) has been studied by various authors. In the case Ω = R k with k 3 and A = -∆, the global well-posedness has been proved both in the subcritical case 1 < b < 1 + 4 k-2 by Ginibre and Velo [START_REF] Ginibre | The global Cauchy problem for nonlinear Klein-Gordon equation[END_REF], and in the critical case b = 1 + 4 k-2 by Shatah and Struwe [ShSt]. For Ω = R 2 , Nakamura and Ozawa [START_REF] Nakamura | Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth[END_REF][START_REF] Nakamura | The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order[END_REF] proved global well-posedness with exponentially growing nonlinearity. Without being exhaustive, for other results related to regularity of solutions or existence of solutions for more general semilinear hyperbolic equations we refer to [Kap]. In the case of Ω a smooth bounded domain of R 3 , [BuLePl] proved the global well-posedness in the critical case b = 5. In addition, following the strategy set by [BuLePl], [IbJr] treated the case of Ω a smooth bounded domain of R 2 with exponentially growing nonlinearity.

Well-posedness and Strichartz estimates

In order to give a suitable definition of solutions of (4.3.1.1) we first need to consider the IBVP associated with the linear fractional wave equation

The paper [KiYa] contains three main results. Our two first main results are related to properties of solutions of (4.3.3.1), while our last result concerns the nonlinear problem (4.3.1.1).

Let us first remark that in contrast to usual derivatives, there is no exact integration by parts formula for fractional derivatives. Therefore, it is difficult to introduce the definition of weak solutions of (4.3.3.1) in the sense of distributions. To overcome this gap we give the following definition of weak solutions of (4.3.3.1). Let 1 (0,T ) (t) be the characteristic function of (0, T ).

2) for all p > 0 the Laplace transform V (p) = +∞ 0 e -pt v(t, .)dt with respect to t of v solves

It is well known (e.g. [BekYa, Pod, SaYa]) that for all t > 0 we have S j (t) ∈ B(L 2 (Ω)), j = 1, 2, 3. Moreover, according to [KiYa, Theorem 1.2], for u 0 , u 1 ∈ L 2 (Ω) and f ∈ L 1 (0, T ; L 2 (Ω)), the unique weak solution of (4.3.1.1) is given by

For all T > 0, we introduce the space

Recall that, by applying the Hölder inequality, one can check that for all u, v ∈ X T we have

where the constant C b > 0 depends only on b, f b . Therefore, in view of Theorem 4.3.1, the map H b defined by

and T > 0. We say that (4.3.1.1) admits a weak solution on (0,

admits a fixed point u ∈ X T . Such a fixed point u ∈ X T is called a weak solution to (4.3.1.1) on (0, T ). We say that problem (4.3.1.1) admits a local weak solution if there exists T > 0, depending on u 0 , u 1 , such that problem (4.3.1.1) admits a weak solution on (0, T ).

Now we can state our result of existence and uniqueness of local solutions for (4.3.1.1). We recall that δ > 0 is given in (4. 3.3.6).

and let

Then, we have b < 

), T 0 > 0, there exists T T 0 that takes the form

such that problem (4.3.1.1) admits a weak solution u on (0, T ) lying in L p (0, T ; L q (Ω)) ∩ C([0, T ]; H 2r (Ω)) ∩ W 1, (0, T ; L 2 (Ω)). Note that in (4.3.3.12) the constant C takes the form

with C0 depending only on f b , Ω, α, b, p, n, A. Moreover, this local weak solution u is the unique weak solution of (4.3.1.1) on (0, T ) lying in L p (0, T ; L q (Ω)) and u satisfies

Here the constant C > 0 depends on n, Ω, f b , b, T 0 , p, α, A.

A direct consequence of Theorem 4. 

, where the constant C0 is introduced in (4. 3.3.13). Then, for any T > 0 satisfying

.1.1) admits a unique weak solution u on (0, T ) lying in L p (0, T ; L q (Ω)) ∩ C([0, T ]; H 2r (Ω)) ∩ W 1, (0, T ; L 2 (Ω)).

This last result means that for smaller initial data we obtain longer time of existence of weak solutions. Let us remark that, [KiYa] seems to be the first paper where the Definition 4.3.1 of weak solutions of (4.3.3.1) is considered. The main contribution of Definition 4.3.1 comes from the fact that it allows wellposedness of (4.3.3.1) with weak conditions. Indeed, in contrast to other definitions of weak solutions for (4.3.3.1) (e.g. [START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusionwave equations and applications to some inverse problems[END_REF]Definition 2.1] used by [SaYa] to prove existence of weak solutions of (4.3.3.1) with f ∈ L 2 (Q), u 0 ∈ L 2 (Ω), u 1 = 0 in [SaYa, Corollary 2.5, 2.6]), applying Definition 4.3.1 we can show well-posedness of (4.3.3.1) with f ∈ L 1 (0, T ; L 2 (Ω)), u 0 ∈ L 2 (Ω) and u 1 ∈ H -1 (Ω). The choice of Definition 4.3.1 is inspired both by the analysis of [Pod] and the connection between elliptic equations and fractional diffusion equations used by [LiImYa]. Note also that Definition 4.3.1 plays an important role in the Definition 4.3.2 of weak solutions of (4.3.1.1).

Let us observe that in contrast to the wave equation the solution of (4.3.3.1) are not described by a semigroup. Therefore, we can not apply many arguments that allow to improve the Strichartz estimates (4.3.3.4) such as the T T * method of [KeTa]. Nevertheless, we prove local existence of solution of (4.3.1.1) with estimates (4.3.3.4). Note also that estimates (4.3.3.4) are derived from suitable estimates of Mittag-Leffler functions.

To our best knowledge [KiYa] is the first work treating well-posedness for semilinear fractional wave equations. Contrary to semilinear wave equations, it seems difficult to give a suitable definition of the energy for (4.3.1.1). This is mainly due to the fact that, once again, there is no exact integration by parts formula for fractional derivatives as well as properties of composition and conjugation of the fractional Caputo derivative ∂ α t (e.g. [START_REF] Podlubny | Fractional differential equations[END_REF]Section 2]). For this reason, it seems complicate to derive global well-posedness from local well-posedness. However, using the explicit dependence with respect to T of the constant in (4.3.3.4) we can establish an explicit dependence of the time of existence T of (4.3.1.1) with respect to the initial conditions u 0 , u 1 . From this result, we prove long time of existence for small initial data (see Corollary 4.3.1).

with Furthermore, the mapping p → (A q + ρ(x)p α(x) ) -1 is bounded holomorphic in C \ R -.

Using these properties we prove Theorem 4.4.1. In contrast to Theorem 4.4.1, Theorem 4.4.2 requires additional regularity and some properties of analyticity of the DN map. In order to define the DN map we consider first the following result. In view of this result, the condition (4.4.3.10) implies N α1,ρ1,q1 (t) = N α2,ρ2,q2 (t), t ∈ (0, +∞).

Using this identity with some additional estimates, we can transform the inverse problem stated in Theorem 4.4.2 to the inverse problem of determining the coefficient (α, ρ, q) appearing in the family of elliptic boundary value problems -∆U (p) + [ρ(x)p α(x) + q(x)]U (p) = 0, x ∈ Ω, p ∈ R + , U (p)(x) = g(x), x ∈ ∂Ω from the knowledge of the associated elliptic partial DN map given by Λ ρp α +q : H in g → ∂ ν U (p) |Sout .

Then, we complete the proof of Theorem 4.4.2 by applying [ImYa131, Theorem 7] (see also [START_REF] Yu | Inverse boundary value problem for Schrödinger equation in two dimensions[END_REF]) in the particular case where n = 2, and from [KeSjUh, Theorem 1.2] when n 3.