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Évaluation de la confiance dans la
collaboration à large échelle
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Lionel Brunie Professeur, INSA de Lyon

Directeurs de thèse : François Charoy Professeur, Université de Lorraine
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Résumé
Les systèmes collaboratifs à large échelle, où un grand nombre d’utilisateurs collaborent pour
réaliser une tâche partagée, attirent beaucoup l’attention des milieux industriels et académiques.
Bien que la confiance soit un facteur primordial pour le succès d’une telle collaboration, il est
difficile pour les utilisateurs finaux d’évaluer manuellement le niveau de confiance envers chaque
partenaire. Dans cette thèse, nous étudions le problème de l’évaluation de la confiance et
cherchons à concevoir un modèle de confiance informatique dédiés aux systèmes collaboratifs.

Nos travaux s’organisent autour des trois questions de recherche suivantes.

1. Quel est l’effet du déploiement d’un modèle de confiance et de la représenta-
tion aux utilisateurs des scores obtenus pour chaque partenaire ? Nous avons
conçu et organisé une expérience utilisateur basée sur le jeu de confiance qui est un pro-
tocole d’échange d’argent en environnement contrôlé dans lequel nous avons introduit des
notes de confiance pour les utilisateurs. L’analyse détaillée du comportement des utilisa-
teurs montre que: (i) la présentation d’un score de confiance aux utilisateurs encourage
la collaboration entre eux de manière significative, et ce, à un niveau similaire à celui de
l’affichage du surnom des participants, et (ii) les utilisateurs se conforment au score de
confiance dans leur prise de décision concernant l’échange monétaire. Les résultats sug-
gèrent donc qu’un modèle de confiance peut être déployé dans les systèmes collaboratifs
afin d’assister les utilisateurs.

2. Comment calculer le score de confiance entre des utilisateurs qui ont déjà
collaboré ? Nous avons conçu un modèle de confiance pour les jeux de confiance répétés
qui calcule les scores de confiance des utilisateurs en fonction de leur comportement passé.
Nous avons validé notre modèle de confiance en relativement à: (i) des données simulées,
(ii) de l’opinion humaine et (iii) des données expérimentales réelles. Nous avons appliqué
notre modèle de confiance à Wikipédia en utilisant la qualité des articles de Wikipédia
comme mesure de contribution. Nous avons proposé trois algorithmes d’apprentissage
automatique pour évaluer la qualité des articles de Wikipédia: l’un est basé sur une forêt
d’arbres décisionnels tandis que les deux autres sont basés sur des méthodes d’apprentissage
profond.

3. Comment prédire la relation de confiance entre des utilisateurs qui n’ont pas
encore interagi ? Etant donné un réseau dans lequel les liens représentent les relations de
confiance/défiance entre utilisateurs, nous cherchons à prévoir les relations futures. Nous
avons proposé un algorithme qui prend en compte les informations temporelles relatives à
l’établissement des liens dans le réseau pour prédire la relation future de confiance/défiance
des utilisateurs. L’algorithme proposé surpasse les approches de la littérature pour des jeux
de données réels provenant de réseaux sociaux dirigés et signés.

Mots-clés: collaboration, confiance, théorie des jeux, apprentissage automatique

Abstract

Large-scale collaborative systems wherein a large number of users collaborate to perform a
shared task attract a lot of attention from both academic and industry. Trust is an important
factor for the success of a large-scale collaboration. It is difficult for end-users to manually assess
the trust level of each partner in this collaboration. We study the trust assessment problem and
aim to design a computational trust model for collaborative systems.

We focused on three research questions.



1. What is the effect of deploying a trust model and showing trust scores of
partners to users? We designed and organized a user-experiment based on trust game, a
well-known money-exchange lab-control protocol, wherein we introduced user trust scores.
Our comprehensive analysis on user behavior proved that: (i) showing trust score to users
encourages collaboration between them significantly at a similar level with showing nick-
name, and (ii) users follow the trust score in decision-making. The results suggest that a
trust model can be deployed in collaborative systems to assist users.

2. How to calculate trust score between users that experienced a collaboration?
We designed a trust model for repeated trust game that computes user trust scores based
on their past behavior. We validated our trust model against: (i) simulated data, (ii)
human opinion, and (iii) real-world experimental data. We extended our trust model to
Wikipedia based on user contributions to the quality of the edited Wikipedia articles. We
proposed three machine learning approaches to assess the quality of Wikipedia articles:
the first one based on random forest with manually-designed features while the other two
ones based on deep learning methods.

3. How to predict trust relation between users that did not interact in the past?
Given a network in which the links represent the trust/distrust relations between users,
we aim to predict future relations. We proposed an algorithm that takes into account the
established time information of the links in the network to predict future user trust/distrust
relationships. Our algorithm outperforms state-of-the-art approaches on real-world signed
directed social network datasets.

Keywords: collaboration, trust, game theory, machine learning
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1.1 Research Context
Collaboration is defined in Oxford Advanced Learner’s Dictionary as “the act of working with
another person or group of people to create or produce something” [Sally et al., 2015].

Human societies might not have been formed without collaboration between individuals.
Human need to collaborate when they can not finish a task alone [Tomasello et al., 2012]. Kim
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Hill, a social anthropologist at Arizona State University, stated that “humans are not special
because of their big brains. That’s not the reason we can build rocket ships – no individual can.
We have rockets because 10,000 individuals cooperate in producing the information” [Wade,
2011]. Collaboration is an essential factor for the success in the 21st century [Morel, 2014].

Before the Internet era, collaboration was usually formed within small groups whose members
were physically co-located and knew each other. Studies [Erickson and Gratton, 2007] argued
that in 20th century “true teams rarely had more than 20 members” . According to the same
research study, today “many complex tasks involve teams of 100 or more”. Collaboration from
distance is easier for everyone thanks to the Internet.

Collaborative systems are the software systems which allow multiple users to collaborate.
Some collaborative systems today are collaborative editing systems. They allow multiple users
who are not co-located to share and edit documents over the Internet [Lv et al., 2016]. The
term “document” can refer to different kinds of document such as a plain text document [Gobby,
2017], a rich-text document like in Google Docs [Attebury et al., 2013], a UML diagram [Sparx,
2017] or a picture [J. C. Tang and Minneman, 1991]. Other examples of collaborative systems are
collaborative e-learning systems where students and teachers collaborate for knowledge sharing
[Monahan et al., 2008].

The importance of collaborative systems is increasing over recent years. An evidence is that
the collaborative systems attract a lot of attention from both academy and industry, and their
number of users has increased significantly over time. For example, we display the number of
users of ShareLatex, a collaborative Latex editing system, over last five years in Figure 1.1.
The number of users of ShareLatex increases rapidly. Zoho1 - a collaborative editing system
similar to Google Docs - achieved the number of registered users of 13 millions [Vaca, 2015]. The
number of authors who collaborated in scientific writing has increased over years as displayed
in Figure 1.2. Collaboration is more and more popular in scientific writing [Jang et al., 2016;
Science et al., 2017]. Version control systems like git and their hosting services such as Github
became de-facto standard for developers to share and collaborate [Gerber and Craig, 2015]. In
April 2017, Github has 20 millions registered users and 57 millions repositories [Firestine, 2017].

In traditional software systems such as Microsoft Office2, users use and interact with the
software system only. In collaborative systems, user need to interact not only with the system
but also with other users. Therefore, the usage of collaborative systems raises several new issues
that will be discussed in the next section.

In the following section we discuss about the new issues of collaborative systems. Then
we discuss about trust between human in collaboration as our research topic. Afterwards we
formalize our research questions, present related studies and our contributions for each research
question.

1.1.1 Issues of collaborative systems

In a collaborative system, a user needs to use the system and interact with other users called
partners in this thesis.

Studies [Greenhalgh, 1997] indicated several problems in developing collaborative systems.
These problems are similar with problems in developing traditional software systems, such as
designing a user interface for collaborative systems [J. C. Tang and Minneman, 1991; Dewan and
Choudhary, 1991], improve response time [R. Kraut et al., 1992] or designing effective merging
algorithms that combine modification of users [C.-L. Ignat et al., 2017]. Collaborative systems

1https://www.zoho.com/
2We refer to the desktop version, not Office 365 where users can collaborate online.

2

https://www.zoho.com/


1.1. Research Context

Figure 1.1: Number of ShareLatex’s users over years. Image source: [ShareLatex, 2017].

like Google Docs are widely used in small-scale [Tan and Y. Kim, 2015]. Surveys and user
experiments [Edwards, 2011; Wood, 2011] claimed the positive perception from Google Docs
users.

However, in collaborative systems, users interact with their partners to finish tasks. We
assume that the main objective of a user is to finish tasks at the highest quality level. The final
outcome depends not only on the user herself but also all her partners. If a malicious partner is
accepted to join a group of users and is able to modify the shared resource, she can harm other
honest users. We define malicious users as users performed malicious actions.

The malicious actions can take different forms in different collaborative systems. InWikipedia,
malicious users can try to insert false information to attack other people or promote themselves.
These modifications are called vandalism in Wikipedia [Potthast et al., 2008; P. S. Adler and
C. X. Chen, 2011]. In source-code version control system such as git, malicious users can destroy
legacy code or insert virus into the code [B. Chen and Curtmola, 2014]. Git supports revert
action but it is not easy by non-experienced users [Chacon and Straub, 2014]. In collaborative
editing systems such as ShareLatex, a malicious user can take the content written by honest
users for an improper usage, such as to use the content in a different article and claim their
authorship.

Alternatively, if a user collaborates with honest partners, they can achieve some outcomes
that no individual effort can. The claim has been confirmed by studies in different fields [Persson
et al., 2004; Choi et al., 2016], such as in programming [Nosek, 1998] or in scientific research
[Sonnenwald, 2007]. For instance, it is popular in scientific writing today that a scientific
article is written by multiple authors [Science et al., 2017; Jang et al., 2016] because each
author holds a part of the knowledge which is needed for the article. If they can collaborate
effectively together they can produce a scientific publication. Otherwise each of them only
keeps a meaningless piece of information. In collaborative software development, it is often that

3



Chapter 1. Introduction

Figure 1.2: Average number of collective author names per MEDLINE/PubMed citation (when
collective author names present). Image source: [Science et al., 2017].

developers in the team have expertise in a narrow field. For instance a developer has experience
in back-end programming while another developer only has knowledge in user interface design
and implementation. If these two developers do not collaborate with each other, none of them
can build a complete software system.

In collaborative systems, a user decides to collaborate with a partner or not by granting
some rights to the partner. For instance, in Google Docs or ShareLatex, the user decides to
allow a partner to view and modify a particular document or not. In git repositories, the user
decides to allow a partner to view and modify code. The user needs to make a right decision,
i.e. to collaborate with honest partners and not with malicious ones.

However, we only can determine malicious partners if:

• Malicious actions have been performed.

• The user is aware about the malicious actions. For instance, the user needs to be aware
about the actions, or the direct or indirect consequences of the actions. If the user is aware
of a potential malicious action, she also needs to decide if this action is really a malicious
action or just a mistake [Avizienis et al., 2004]. Therefore, usually a single harmful action
is not enough to determine one partner as a malicious partner.

As an example, suppose Alice collaborates with Bob and Carol. Bob is a honest partner and
Carol is a malicious one. However, so far both Bob and Carol collaborated and none of them
performed any malicious activity. The malicious action is only planned inside Carol’s mind. In
this case, there is no way for Alice to detect Carol as a malicious user unless Alice can read
Carol’s mind which is not yet possible at the time of writing [Poldrack, 2017]. Furthermore,
if Carol performed the malicious action but the result of this action has not been revealed to
Alice, Alice also cannot detect the malicious partner.

Unfortunately, it is usual in collaborative systems that the user can reveal the result of a
malicious action after a long time. In some cases, the results will never be revealed.

4



1.1. Research Context

Suppose Alice is a director of an university and she inserted a wrong information into
Wikipedia to claim that her university is the best one in the continent with modern facili-
ties and a lot of successful students. The result might be that the university attracts more
student, receives more supporting fund or be able to recruit better researchers - but these re-
sults might take a long duration or even are impossible to reveal. As of this writing, it is not
easy to detect wrong information automatically [Y. Zheng et al., 2017]. Some Wikipedia editors
received money to insert wrong or controversial information [Pinsker, 2015].

The bad outcomes might also come from the fact that partners lack competency, i.e. they do
not have enough information or skill to finish the task with an expected quality. For instance, a
developer might insert an exploiting code without intention. It might be difficult to distinguish
whether the action was malicious. However as we discuss in Section 1.1.2, a user might not need
to distinguish a malicious action from an unintended one. The reason is that trust reflects the
user expectation that a partner adopts a particular kind of behavior in the future.

Hence the user has to decide to collaborate with a partner or not with some uncertainty about
future behavior of this partner. Moreover the results of future behavior are also uncertain. In
other words, there is risk in collaboration. To start the collaboration, the user needs to trust
their partner at a certain level.

1.1.2 Trust as Research Topic

Studies claimed that trust between humans is an essential factor for a successful collaboration
[Mertz, 2013]. [Cohen and Mankin, 1999, page 1] defined virtual teams as team “composed
of geographically dispersed organizational members”. We can use the definition to refer to the
team who collaborate using a collaborative system over the Internet and some members of the
team do not know each other. [Kasper-Fuehrera and Ashkanasy, 2001; L. M. Peters and Manz,
2007] claimed that trust is a vital factor for the effectiveness of the virtual teams.

Because trust is a common and important concept in different domains, the term has been
defined in different ways and there is no wide-accepted definition [Rousseau et al., 1998; Cho
et al., 2015].

In psychology, trust is defined as “an expectancy held by an individual that the word,
promise, verbal or written statement of another individual can be relied upon” [Rotter, 1967,
page 651] or “cognitive learning process obtained from social experiences based on the conse-
quences of trusting behaviors” [Cho et al., 2015, page 3]. [Rousseau et al., 1998, page 395]
reviewed different studies on trust and proposed a definition of trust as “a psychological state
comprising the intention to accept vulnerability based upon positive expectations of the inten-
tions or behavior of another”. The definitions of [Rotter, 1967] and [Rousseau et al., 1998] focus
on the future expectation of trust, while the definition presented in [Cho et al., 2015] focused on
the historical experience of trust: trust is built based on observations in the past.

In sociology, trust is defined as “subjective probability that another party will perform an
action that will not hurt my interest under uncertainty and ignorance” by [Gambetta, 1988,
page 217] while [Sztompka, 1999, page 25] defined trust as “a bet about the future contingent
actions of a trustee”. The trust definition in sociology emphasizes the uncertainty aspect of
trust: people need to trust because they do not know everything.

In computer science, the definition of trust is derived from psychology and sociology [Sher-
chan et al., 2013] and is given as “a subjective expectation an entity has about another’s future
behavior” [Mui, 2002, page 75].

The definitions of trust in literature are diverse. However they share some similarities. Based
on the above definitions, we can address some features of trust relations. When a user trusts a
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partner, it means:

• The user expects that the partner will behave well in the future. As we discussed in
the previous section, the definitions of well behavior are different in different settings,
depending user objectives. For example, in Wikipedia a user could expect that a partner
will not insert a wrong information, while in github a user could expect that a partner will
not insert a virus code to the code repository.

• The user accepts the risk that a partner might perform a malicious activity. It means,
trust is only needed in the presence of risk [Mayer et al., 1995].

• The trust assessment is based on historical experience of the user with the partner [Den-
ning, 1993].

– Based on this feature we can state that trust depends on the context, i.e. a user could
trust a partner in doing a particular task but not in doing another task, because the
user only observed the behavior of the partner in the first task but not in the second
one. For instance, Alice trusts Bob in writing code because she observed Bob doing
implementation in the past, but it does not mean that Alice trusts Bob in drawing
UML diagrams.

– As we briefly mentioned in the previous section, a partner can perform a harmful
activity with or without intention. The user can not know the intention of the partner.
The user only can observe the behavior of the partner to decide the trustworthiness
of this partner.

From the above definitions of trust, we claim that trust is a personal state [Cho et al.,
2015] because trust is based on personal experience of a user on a partner. Therefore, we
distinguish trust and reputation. Trust reflects personal opinions, i.e. Alice trusts Bob, while
reputation reflects collective opinions from a community to a person [Ruan and Durresi, 2016].
Usually higher reputation leads to higher trust [Doney and Cannon, 1997] but this claim is
not necessary true: even Bob is well-considered by the community, Alice personally might not
trust him because her experience with Bob is different from other people. In other words, trust
is an one-to-one relation [Abdul-Rahman and Hailes, 1997] while reputation is a many-to-one
relation.

Trust is one of the most critical issues in general online systems where users do not have
much information about each other [Golbeck, 2009]. If users have no trust in their partners
collaboration becomes very difficult. In many cases, there will be no activity to be performed if
the trust level between users is too low [Dasgupta, 2000]. As an example, in e-commerce systems
the lack of trust is one of the most popular reasons for consumers not buying [M. K. O. Lee and
Turban, 2001]. Before collaborating with a partner, a user should be able to assess the trust
level of their partners.

Suppose Alice is writing a scientific article on ShareLatex and Bob asks to join the project.
Alice needs to decide to accept the request of Bob or not. In order to do that, she assess the trust
level of Bob to evaluate the expectation and the risk. Alice could perform the trust assessment
by two main approaches [Cho et al., 2015]: she can assess the trust level of Bob by reviewing
her own experience with Bob, or she can do that by evaluating the indirect relations between
her and Bob, e.g. if she does not know Bob well but she trusts Carol and Carol trusts Bob,
Alice could trust Bob also [Guha et al., 2004]. If the risk is too high, Alice will not collaborate
with Bob.
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As previously mentioned, besides technical hardware/software issues, usage of collaborative
systems is challenging. There is not yet comprehensive studies about the user-related problems
and particularly the problem of trust assessment between users in collaborative contexts.

In common sense, trust is a fuzzy concept [McKnight and Chervany, 2001]. One could believe
that trust is neither measurable nor comparable [S. P. Marsh, 1994]. For instance, in daily life it
is rare to hear Alice stating that she trusts Bob at 62.4%. However, various studies [Thurstone,
1928; Mui et al., 2002; Golbeck, 2009; Brülhart and Usunier, 2012; Sherchan et al., 2013; Hoelz
and Ralha, 2015] claimed that trust can be measured, i.e. trust level between users can be
represented by numerical values. A computational trust model can be designed to calculate
trust level between users.

In the next section, we discuss the need of computational trust models in large-scale collab-
orative systems.

1.2 Research Questions

As we discussed in the previous section, trust assessment is important in collaborative systems.
However, people are using collaborative systems such as Google Docs without a trust assessment
tool. Thereupon someone could ask why should we introduce the idea of trust models and trust
scores to users.

Most collaborative systems only support small-scale collaboration, i.e. they allow a small
number of users to share a document. For instance, Google Docs [Google, 2017] or Dropbox
Paper [Center, 2017] allows up to 50 users to edit a document at the same time. In practice
Google service might stop when the number of users reaches to 30 [Q. Dang and C. Ignat, 2016c].
In scientific writing, the average number of authors of a scientific article is around 5 [Science
et al., 2017; Economist, 2016; Jang et al., 2016]. Nevertheless, studies addressed the need of
large-scale collaboration where the number of users can reach thousands or more [Richardson
and Domingos, 2003; Elliott, 2007]. For instance, the average number of authors for an article
is increasing over years [Jang et al., 2016]. There are scientific articles which are the result of a
collaborative work between five thousands scientists [Castelvecchi, 2015]. Wikipedia and Linux
kernel project are well-known examples of large-scale collaboration where the number of users
reaches to millions [Doan et al., 2010].

We distinguish large-scale collaborative systems with small-scale systems by the number
of users. However, to the best of our knowledge, there is not yet a clear distinction between
large-scale collaboration and small-scale collaboration in literature, despite the fact that the
term “large-scale collaboration” has been mentioned several times in research studies [Gaver
and R. B. Smith, 1990; Gu et al., 2007; Siangliulue et al., 2016].

Researchers used the term large-scale collaboration to refer to various collaboration sizes.
[Star and Ruhleder, 1994] studied the collaboration of 1, 400 geneticists from over 100 labora-
tories. [P. S. Adler and C. X. Chen, 2011] considered an example of a collaboration between
5000 engineers in designing a new aircraft engine as a large-scale collaboration. [Kolowich, 2013]
reported a case when the number of users in real-time collaborative editing systems reaches tens
of thousands, which definitely overcame the supported limit size causing system break. We can
consider the collaboration on Github as large-scale collaboration. Studies [Thung et al., 2013]
stated that it is common for a Github developer contributes to a same project together with
more than 1, 000 other developers.

In small-scale collaborations, users can assess the trust level of their partners by remembering
and recalling their experience with these partners [Teacy et al., 2006]. In large-scale collabora-
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tions where the number of users is huge, it is difficult for a user to recall and analyze their history
in order to assess the trust level of a particular partner among other partners. [Abdul-Rahman
and Hailes, 1997] claimed that it is not possible for an average user to analyze the potential risk
of every on-line interaction. Furthermore, [Riegelsberger, Martina Angela Sasse, et al., 2005,
page 405] specifically notes the overhead associated with the maintenance of partner-specific
trust values. Therefore, users need assistance in assessing the trustworthiness of their partners.

Different techniques have been used to allow users to judge the trustworthiness of their part-
ners [Grabner-Kraeuter, 2002; Clemons et al., 2016]. Websites today rely on several mechanisms
which are reputation score [Gary E Bolton et al., 2002], nick-name or ID3 [Corbitt et al., 2003;
Jøsang, Fabre, et al., 2005], avatar [Yuksel et al., 2017] and review [Park et al., 2007] to support
users in deciding to trust another user or not.

Each of the above methods have their shortcomings. We will discuss them in details in
Section 2.1. Reputation schemes and review systems are vulnerable to attacks from malicious
third parties [Hoffman et al., 2009], while identity and avatar can be faked or changed easily.
Furthermore, review, identity and avatar do not scale well.

Studies [Abdul-Rahman and Hailes, 1997; Golbeck, 2009] suggested that a computational
trust model can be deployed to assist users in assessing the trustworthiness of their partners so
they can decide to collaborate with this partner or not.

The task of a trust model is to calculate and display the computational trust level of a partner
to a user. The value can be in a form of binary-trust level, i.e. trust/distrust relations [Golbeck
and Hendler, 2006; Leskovec et al., 2010a] or in a form of a numerical value [Abdul-Rahman
and Hailes, 1997; Xiong and L. Liu, 2004].

Using a computational trust model a user can calculate trust score of other partners by using
only the information she observed. The user does not need to rely any external information.
Hence it is more difficult to attack trust score compared to other techniques.

A trust model has several advantages compared to other mechanisms:

• It is easy to use. Users do not need to remember anything as opposed to identity or avatar.

• It does not require a central server. Any user can compute a trust score by herself without
querying an external information.

• It cannot be modified by third-party. Therefore trust score is robust against many attacks
which are available to reputation schemes. We will discuss more about this in Section
2.1.1.3.

To the best of our knowledge there is not yet a study that verified quantitatively the effect of a
trust model to user behavior in collaboration. Moreover, the problem of designing computational
trust models for collaborative systems has not been studied comprehensively.

In this thesis we study the computational trust models for large-scale collaborative systems.
We will focus on three research questions:

1. Should we deploy a computational trust model and display trust score of partners to the
users? In other words, does the fact that the trust scores of partners are displayed to users
has effect on user behavior?

2. If a trust model is useful, how do we calculate trust score of users who collaborated?
3In this thesis we used the term nick-name and ID interchangeably, refer to a unique virtual identity associated

with a user account on a website.

8



1.2. Research Questions

3. In case users did not interact with each other, can we predict future trust/distrust relations
between them?

In the following we will discuss in details each research question.

1.2.1 Should we introduce trust score to users?

As of this writing we are not aware of any real-world systems that integrated a computational
trust model. Therefore, we do not know the effect of deploying a trust model and display trust
scores on user behavior.

As [Franklin Jr, 1997, page 74] stated, “even perfect technology solutions are useless if no one
can be persuaded to try them". The need of computational trust models has been addressed for
a long time [Abdul-Rahman and Hailes, 1997]. To the best of our knowledge, no study focusing
on the influence of a computational trust model on user behavior.

Particularly in collaborative contexts, we do not know if introducing the trust score to users
will encourage the collaboration between them. We do not know if the users will notice and
follow the guidance of trust score, i.e. they will prefer to collaborate with high score partners
or not. We will address these problems in the first part of this thesis.

1.2.2 How do we calculate the trust score of partners who collaborated?

The second research question is how to calculate trust score of partners?
Assume that in a particular collaborative system Alice considers to collaborate with Bob

and she wants to calculate her trust score on Bob. Studies have proposed several ways to assess
trust [Jiang et al., 2016]. Most of them rely on external information, i.e. if Alice wants to assess
the trustworthiness of Bob, she has to query some information from other members say Carol or
Dave [Jøsang, S. Marsh, et al., 2006; R. Zhang and Y. Mao, 2014]. These external information
needs to be verified to make sure that Alice does not receive the wrong information [Jøsang,
S. Marsh, et al., 2006]. Furthermore, this information is not always available, e.g. Dave might
not want to tell Alice what he thinks about Bob.

In fact, the most reliable information Alice can rely on is the one observed by herself in the
system. We call the information about historical observation of a user as history log in this
thesis. For instance, in Google Docs, Alice can rely on the activity log of documents that she
can access. The computational trust models should calculate the trust score of Alice on Bob
using only this history log.

We defined the second research question as: in a particular context, assuming the history
log of a user A is available, how do we calculate the trust score of A on a partner B.

Different collaboration contexts require different trust calculation methods [Huynh, 2009;
Pinyol and Sabater-Mir, 2013]. The reason is that in different contexts, the definition of col-
laboration or malicious actions as well as gain or loss for users are different. Due to the fact
that several collaboration systems are available today, it is not possible to cover all of them
within the scope of this thesis. We will focus on two selected contexts which are Wikipedia and
repeated trust game to study the computational trust models. These contexts will be discussed
in Section 1.3.
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1.2.3 How do we predict the trust/distrust relations of users who did not
interact with each other?

We address the problem of calculating trust score for users who have already interacted in
the second research question. In the third research question, we will focus on the relationship
between users who did not interact with each other. In large-scale collaborative systems, the
number of partners that a user collaborated with is usually a very small number compare to the
total number of users in the system [Laniado and Tasso, 2011; Thung et al., 2013].

At some points of time a user will need to extend their network and setup collaboration with
a partner that she did not interact with before. For instance, Alice is maintaining a project
on Github. Bob discovered the project through the Internet and he wants to join the project.
However, Alice does not know Bob, but she needs to decide to accept Bob joining the project or
not. In this situation, because there is no interaction between two users, calculating trust score
as in the previous section is not possible [X. Liu et al., 2013].

Studies [Guha et al., 2004; J. Tang, Y. Chang, et al., 2016] suggested that, if the infor-
mation of trust/distrust relationship between a subset of users is provided, we can predict
the trust/distrust relationship between two users who never interacted with each other before.
Therefore, we can recommend a user to trust or not a particular partner. However, due to the
lack of information, we can only provide binary-trust level recommendation, i.e. we can only
predict the future trust/distrust relationship between two users.

We address the research question in this thesis: “How to predict a particular future relation-
ship from a user to a partner as trust or distrust, given the relationship between other pair of
users?” [Leskovec et al., 2010a].

1.3 Study Contexts

As we discussed in Section 1.1, many collaborative systems are available today. In this thesis, we
will focus on two contexts which are Wikipedia and repeated trust game to address the research
questions defined in Section 1.2. In what follows we review these two contexts.

1.3.1 Wikipedia

Wikipedia is “a free online encyclopedia that, by default, allows its users to edit any article”
[Wales and Sanger, 2001]. Different from traditional encyclopedia such as Britannica whose
authors are well-known scholars, the content of Wikipedia is created by a huge number of con-
tributors, mostly unknown and volunteering, from all over the world. Wikipedia contributors
(or Wikipedians) can also vote for or vote against other contributors to elect them to be ad-
ministrators of particular Wikipedia pages in the process called Request for Adminship (RfA)
[Burke and R. E. Kraut, 2008]. Wikipedia is built based on a collaboration system called Wiki
[Wikipedia, 2017e]. Wikipedia is the largest and probably one of the most important Wiki-based
systems in the world [Laniado and Tasso, 2011; Zha et al., 2016].

Wikipedia is the result of an incredible collaboration between millions of people. AWikipedia
editor [Nov, 2007] can positively contribute to Wikipedia by adding content, fixing errors or
removing irrelevant text [J. Liu and Ram, 2011] but also can destroy the value of Wikipedia by
removing good content or adding advertisements to promote herself. These actions are called
vandalism [Potthast et al., 2008; Tramullas et al., 2016]. A Wikipedian can deviate to gain her
own benefit: studies suggested that people have a lot of motivations to contribute and claim
their ownership of Wikipedia content [Forte and Bruckman, 2005; Kuznetsov, 2006].
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We chose Wikipedia because of two reasons.
The first reason is that Wikipedia probably is the result of the most important collaboration

today. Wikipedia is the dominant information source for the entire generation of Internet users
[Brown, 2011]. Modern users tend to take for granted information fromWikipedia even regarding
health-care information [Jones, 2009]. This phenomenon is more popular among youths [Pan
et al., 2007; Rowlands et al., 2008]. Furthermore, users of popular search engines such as Google
usually reach Wikipedia [Natalie Kupferberg et al., 2011], increasing the influence of information
presented on Wikipedia.

The second reason is that Wikipedia provides a well-annotated open datasets which allows
us to evaluate the quality of our proposed trust model. As we will discuss in Section 1.4.2.2, our
computational trust models are based on the quality of the previous contributions of partners.
It is not trivial to determine the quality of contributions in Wikipedia, and we need to design
some algorithms to predict their quality. Wikipedia provides a large set of articles with quality
labels assigned manually by Wikipedia reviewers, and these quality labels are officially approved
by Wikipedia [Warncke-Wang, Cosley, et al., 2013]. Therefore we can train and test our algo-
rithms in predicting the quality of articles and then to measure the quality of each individual
contribution.

Annotated datasets with quality level are not available in other popular collaboration sys-
tems. To the best of our knowledge, there is not yet a well-accepted definition of contribution
quality in other collaborative systems. However, as we will discuss in next chapters, the ideas
of our trust model for Wikipedia can be easily extended to other systems.

Furthermore, datasets where Wikipedia editors explicitly express their trust/distrust opin-
ions on other editors in RfA process are available [Burke and R. E. Kraut, 2008; Leskovec et al.,
2010b]. These datasets allow us to train and validate our trust/distrust prediction algorithm.
There is no dataset with trust annotation for other systems such as Github [Cruz et al., 2016]
making impossible to validate the algorithm.

As we will describe in following chapters, the trust models and trust/distrust relationship
prediction algorithms are validated against not only Wikipedia dataset but also other datasets
collected from different time and location. The results allow us to be confident that the ideas
of our proposed algorithms can be applied not only in Wikipedia but in other collaborative
contexts.

1.3.2 Collaborative Games

Collaborative games are games wherein multiple players need to collaborate to achieve the best
collective payoff [Riegelsberger, M Angela Sasse, et al., 2003]. These games are usually game-
theoretic protocols. They are widely used in psychology, experimental economic and behavioral
studies to conduct research about human behavior [Chakravarty et al., 2011], but also can
benefit research studies in computer science [Grossklags, 2007] or in computer-human interaction
[Nguyen and Canny, 2007].

A very popular collaborative game is the prisoner-dilemma [Tucker, 1950]. In this game, if
two players collaborate, they will achieve the highest collective payoff. However, each player
always has incentive to deviate, and it is very difficult to form the collaboration. Game theory
predicts that, in one-shot prisoner dilemma, two players will both deviate [Camerer, 2003,
Chapter 2]. Prisoner dilemma has been used under various conditions [Murnighan and L. Wang,
2016]. Different techniques have been proposed to encourage users to collaborate, but the most
common way is to allow repeated prisoner dilemma experiments [Kendall et al., 2007].
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In traditional settings of prisoner dilemma experiment, two players make decision simulta-
neously. [Riegelsberger, M Angela Sasse, et al., 2003] suggested that the prisoner dilemma is
too limited in studying human trust because of two reasons: (1) it covers a very specific subset
of trust-requiring situations, and (2) it does not take all sources of vulnerability into account.
The authors suggested to use sequential experiments instead of prisoner-dilemma.

Players in prisoner dilemma have only two choices that are collaboration or deviation. Studies
suggested that trust value might be a continuous value rather than a simple binary decision
[Xiong and L. Liu, 2004; S. Marsh and Briggs, 2009]. [Berg et al., 1995] presented an extension
of sequential prisoner dilemma called trust game4, wherein the players can select an arbitrary
number of action within a range. In trust game, trust between players can be measured more
precisely [Glaeser et al., 2000; Brülhart and Usunier, 2012].

Trust game is a game between two players: sender and receiver. An one-trial trust game
contains two turns. First, the senders sends an amount between 0 and 10 to the receiver.
Suppose the sending amount is x. The receiver will receive 3 ∗ x on their side. In the second
turn, the receiver sends an amount y between 0 and 3 ∗ x back to the sender. In this turn, the
sender receives y to their balance. The game can be repeated, i.e. the game can be played in
multiple rounds and the roles of players can be changed [Cochard et al., 2004]. We will use
repeated trust game in this thesis.

Similar to prisoner-dilemma, in trust game the highest payoff will be maximized if two players
collaborate, i.e. if the sender sends 10 and the receiver sends back an amount which is large
enough to maintain the future collaboration. However each player has the incentive to deviate
for maximizing their own profit, i.e. a player can deviate by sending 0 to maximize their own
profit in this round while reducing the profit of their partner [Camerer, 2003]. By doing so they
also destroy the future collaboration .

Trust game is used as one of our study context due to several reasons:

• User experimental protocols like trust game are important research tools to understand
human behavior [Brandenburger and Nalebuff, 2011]. They provide a general guideline to
design real-world systems. In fact, experimental games, along with surveys, are two main
measurement strategies in studying trust [Dinesen and Bekkers, 2015]. Human-Computer
Interaction (HCI) studies have used games like prisoner-dilemma and trust game for a
long time to study how do users trust each other under different conditions [Riegelsberger,
M Angela Sasse, et al., 2003].

Various studies [Falk and Heckman, 2009; Charness and Kuhn, 2011] suggested that the
results from lab-control experiments can be applied successfully into real-world systems.
For instance, [Yao and Darwen, 1999] suggested that the reputation score can encourage
users to collaborate more while deviate less. This phenomenon has been confirmed on
eBay [Resnick, Zeckhauser, et al., 2006]. The role of avatar in increasing trust has been
confirmed in Second Life [Hemp, 2006] and in experiments [Bente, Dratsch, Rehbach, et
al., 2014]. [Laaksonen et al., 2009] used the trust game to analyze the interfirm trust
with data collected from interviews with managers. The main message is that, there is a
consistency between findings in lab-control experiments and human behavior in real life.

4In fact, Berg called their game as investment game, but many follow-up studies used the term trust game
[Johnson and Mislin, 2011; Murnighan and L. Wang, 2016; Cooper and Kagel, 2016], while several research works
used the term trust game to refer the sequential prisoner dilemma setting [Riegelsberger, M Angela Sasse, et al.,
2003; Rabanal and Friedman, 2015]. To be consistent, in this thesis, we used trust game to refer the game
presented by [Berg et al., 1995], and sequential prisoner dilemma for the other game.
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Therefore, we could expect that effects of trust score on user behavior in repeated trust
game will be found in real-world collaborative settings.
In this thesis, we propose a computational trust model for repeated trust game. As
we will discuss in Section 3.2.5, the trust model can be applied to calculate trust of
Wikipedians. The requirement is that we need to propose a method to convert the behavior
of Wikipedians into numerical values so we can apply the trust model of trust game.

• In trust game, researchers can easily control the condition of experiments, i.e. we can
change only one setting while keeping other settings constant. It is not easy to do that in
real-world systems.

• Studies showed that the exchanging amounts between users reflect their trust on each
others [Brülhart and Usunier, 2012]. It is an important feature of trust game, because the
representation of trust of users on partners might be not clear in other real-world settings.
Hence, using trust game we can measure the trust between users by their behaviors [Glaeser
et al., 2000] under different conditions.

• Values like gain and loss of users as well as options of users are well-designed because they
are represented by numerical values already [Rapoport, 1973], making the results easy to
analyze. For instance, it is not trivial to define the gain and loss of users who contribute
to Wikipedia.

As we will discuss in following chapters, the trust model we presented for repeated trust
game can be applied to Wikipedia. It showed that the findings from trust game experiments
can be extended to real-world settings. The condition is that we need to tailor the trust model
for each particular context.

In the next section, we will discuss several important studies that relate to our three research
questions.

1.4 Related Work

In this section, we review several important state-of-the-art studies which are related to our
three research questions.

• How do previous research works study the influence of different information on user be-
havior?

• What trust models have been presented for repeated trust game and Wikipedia?

• How do previous research studies predict signs of future links in signed directed networks?

1.4.1 Studying user trust under different circumstances with trust game

To the best of our knowledge, there is no previous work that studies the influence of trust score
on user behavior in collaborative contexts. There is no evidence that users will listen and react
to trust score. However, as we discussed above, the popular mechanisms to let users assess the
trust level of their partners are reputation score, avatar, nick-name and review. The effect of
these mechanisms on user has been studied using lab-control experiments such as trust game
[Riegelsberger, M Angela Sasse, et al., 2003].
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Existing research studies analyzed the influence of these mechanisms on user behavior to
verify whether these mechanisms could change the behavior of users or not. [Yao and Darwen,
1999; Gary E Bolton et al., 2002] studied the influence of reputation score on user behavior in
repeated games and suggested that introducing the reputation score could reduce the deviation
of users. [Charness and Gneezy, 2008] studied the effect of revealing name in dictator game and
suggested that if the users have to reveal a part of their names, they will share more. [Karlan,
2005] studied the effect of using nickname in trust game and concluded a similar observation.
[Bente, Dratsch, Rehbach, et al., 2014; Yuksel et al., 2017] analyzed the effect of avatars on
user behavior in a lab-control experiments. [Park et al., 2007; Duan et al., 2008; J. Lee et al.,
2008] analyzed the influence of reviews from other users on the decision of a new user in e-
commerce systems and stated that the influence of user reviews on buying decision is not very
clear. Generally speaking, existing studies showed that while some mechanisms have positive
impacts on user behavior, the influence of some other mechanisms are not clear.

In this thesis, we will study the influence of trust score on user behavior using repeated trust
games. The experimental results could give us some more insights about how users will react to
trust score in collaborative systems. As we discussed in Section 1.3.2, the effects we observed in
repeated trust games could be found in real-world collaborative systems.

1.4.2 Calculating trust score

Several studies claimed that trust depends on the context [J. Tang, Gao, et al., 2012; Granatyr et
al., 2015; Pinyol and Sabater-Mir, 2013; Sherchan et al., 2013; Rosaci et al., 2012], i.e. different
environments require different different trust models. However, the existing reputation/trust
models rely on a common principle that we discuss in Section 1.4.2.1. Then we discuss about
model evaluation, i.e. how can we claim that a model is better than another one. Finally we
review important state-of-the-art trust calculation for two case studies: repeated trust game and
Wikipedia.

1.4.2.1 General Principle

Different environments require different trust methods. In this thesis we focus on Wikipedia and
repeated trust game. However, the computational trust models rely on a common principle that
trust is built based on past behavior of partners as we discussed in Section 1.1.2 and in general,
a partner who behave well in the past is expected to behave well in the future. The idea is the
core idea of many reputation and trust models in different settings [S. Ba and Paul A Pavlou,
2002; Weisberg et al., 2011; Xiong and L. Liu, 2004; B. Thomas Adler and Alfaro, 2007; Cho
et al., 2015]. The problem is how to define the term “good behavior” in different contexts.

1.4.2.2 Evaluation of Trust Models

We discuss about evaluation method of trust models, or how can we claim a trust model is
better than another model.

A trust model will take as input a pair of users that are trustor and trustee and returns a
numerical value which is the computed trust level from the trustor to the trustee. The output
value can be normalized into range [0, 1] so we suppose that the trust value of two users is a
number between 0 and 1 inclusive. It is easy to define an arbitrary number of trust models. For
instance, we can return a random number as a trust value.

According to [Malaga, 2001], reputation (and by inference trust score) comprises a prediction
about future behavior. For instance, if Alice has a high score, we could expect to observe a good
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behavior from her in the future. If she fails to do so, the score assigned to her is wrong. Hence
to compare the trust models, we compare their predictive power.

As we discussed in Section 1.1.2, trust from Alice to Bob reflects the expectation of Alice
on the future behavior of Bob. It means, in a collaborative system if Alice trusts Bob more
than Carol, Alice expects that in the future Bob will contribute more than Carol to the sharing
work. The computed trust values can be considered as advice to a user about what trust level
she could assign to their partners. Therefore, a good computational trust model should produce
good advice, i.e. the future behavior of a partner matches with the previous computed trust
score of this partner.

We consider an example. Alice has two partners Bob and Carol. Two trust models are
proposed. The first model computed the trust scores from Alice to Bob and Carol and claimed
that the trust score from Alice to Bob is higher than the trust score from Alice to Carol.
The second model suggested an opposite view. Alice checked and realized that in fact, Bob
collaborated while Carol deviated. Alice could claim that the first trust model is a better model
and she should follow its suggestion in the future.

We considered a trust model as good if we can predict the future behavior of partners based
on the computed trust scores. As we discussed in Section 1.1.2, if a future malicious partner
did not deviate in the past, there is no way to detect this partner. Hence, there is no perfect
predicting model and we have to accept some misleading predictions. However, using real-world
datasets we can evaluate and compare our computational trust model with other baseline models.

1.4.2.3 Calculating trust in repeated trust game

Besides studying collaborative behavior, trust game is also an important research tool to study
human trust under different contexts. The exchanging amounts among users in trust game reflect
their trust on partners [Brülhart and Usunier, 2012]. Generally speaking, if Alice sends more to
Bob than Carol, we could claim that Alice trusts Bob more than Carol. However, the problem
of designing a trust calculation method in trust game has not been studied comprehensively.

The most popular trust calculation in repeated trust game is the averaging method [Glaeser
et al., 2000; Burks et al., 2003; Karlan, 2005; Johnson and Mislin, 2011; Dubois et al., 2012;
Murnighan and L. Wang, 2016; Butler et al., 2016]. According to the averaging method, trust
score of a partner to a user is simply the average value of sending amount from this partner to
this user in the past.

The advantage of the averaging method is that it is very straightforward. Non-technical
users can easily understand the method. In fact the averaging method is widely used in many
real-world systems today [Jøsang, Ismail, et al., 2007; Tavakolifard and Almeroth, 2012].

However, the averaging method is not able to cope with fluctuations and cheating behavior,
such as a malicious partner who collaborates in the beginning to gain the trust of users before
deviates. It also does not take into account the time information, i.e. the averaging method
consider a recent action as same weight as an action since a long time [Jøsang, Ismail, et al.,
2007].

1.4.2.4 Calculating trust of Wikipedians

In this thesis, we aim to compute the trust score of Wikipedians based on the quality of their
contributions. Quality of user contributions relies on quality of Wikipedia articles. The trust
score can assist users in assessing trustworthiness of their partners, such as in Wikipedia Request
for Adminship (RfA) process [Burke and R. E. Kraut, 2008].
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Assessing the quality of Wikipedia articles We quickly review several state-of-the-art
studies in automatically assessing quality of Wikipedia articles in literature.

We can roughly divide the existing approaches into two families: editor-based approaches
and article-based approaches [Warncke-Wang, Cosley, et al., 2013]. The editor-based approaches
rely on the idea that a high quality document is written by good editors [M. Hu et al., 2007],
therefore we can analyze the editors of an article to determine its quality [Betancourt et al.,
2016]. On the other hand, the article-based approaches focus on the content of an article to
determine its quality. For instance, [Blumenstock, 2008] suggested that a longer article tends to
have higher quality than a short one. Following studies introduced more features into the model
[Dalip, Goncalves, et al., 2009; Dalip, Lima, et al., 2014].

As of this writing, state-of-the-art in assessing quality of Wikipedia articles belongs to the
work of [Warncke-Wang, Ayukaev, et al., 2015], wherein the authors defined eleven features to
describe Wikipedia articles such as length of articles or number of images the article has. The
set of features then is fed to a random forest model for classification. The model has been
used by Wikimedia ORES service [Halfaker and Taraborelli, 2015]. However, the performance
of these quality assessment methods is not very high: the state-of-the-art model achieves the
accuracy score of only 62% in classifying six quality categories of 30, 000 English Wikipedia
articles [Wikimedia, 2016].

The set of eleven features describes Wikipedia articles intensively. However they do not
consider how the articles have been written. Studies suggested that writing style does matter
in measuring quality of Wikipedia articles [Lipka and B. Stein, 2010]. Furthermore, [Warncke-
Wang, Ayukaev, et al., 2015] focused on accuracy score only, which does not cover all aspects of
performance evaluation of a machine learning algorithm. Studies suggested that another metric
which is more robust than accuracy, such as AUC , should be used [Huang and Ling, 2005;
Japkowicz and Shah, 2011].

Existing approaches rely on traditional machine learning with manual feature engineering.
Therefore, a new feature set is required for each language of Wikipedia. It makes the existing
approaches difficult to generalize.

Assessing trust of Wikipedians In this section we review several approaches on assigning
trust levels to Wikipedians. In fact, existing studies designed reputation models rather than
trust models for Wikipedia editors.

WikiTrust [B. Thomas Adler, Chatterjee, et al., 2008] is a project to assess trust level of
information presented on Wikipedia. Based on the trust level of information, we can assess the
reputation level of Wikipedians [Javanmardi, Ganjisaffar, et al., 2009]. Unfortunately, at the
time of writing the WikiTrust service is not available [WikiTrust, 2017].

Several studies focused on measuring user contribution to Wkipedia quantitatively, i.e. how
much a user contributed to Wikipedia regardless the quality of the contribution [R. Agrawal
and Alfaro, 2016]. The official metric which is being used by Wikipedia is the number of edits
[Wikipedia, 2017f]. [B. Thomas Adler and Alfaro, 2007] proposed to use edit longevity, i.e. how
long does a piece of text survive on Wikipedia, to measure the quality of text and then measure
the reputation of the author of this text. The idea of the authors is that, if a text survives in a
longer period of time, the text has higher quality. The authors compared their approach with
the naive approach as counting the number of edit. The issue with the approach is that, in fact
the edit longevity of a particular text can be determined exactly after this text is removed. In
other words, this approach is not applicable for new content because there is no information on
the survival time. For instance, if a user has recently inserted a new information to Wikipedia,
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it is not possible to measure the longevity of this information: we have to wait at least a certain
period of time to see if this text can survive or not.

Studies suggested that, in order to calculate the contribution value of a user, quality is more
important the quantity [Alfaro et al., 2011; B Thomas Adler, 2012]. Nonetheless, no existing
model takes into account the quality of Wikipedia articles. In this thesis, we propose a trust
model that considers the quality of articles to calculate trust scores of Wikipedians.

1.4.3 Predicting trust relationship

The collaborative systems wherein users declare their trust/distrust explicitly on other users
can be well described by a graph. The vertices of the graph represent users whose relations
between them can be represented as positive or negative links [J. Tang, Y. Chang, et al., 2016].
These networks are called signed directed networks [Song and Meyer, 2015]. In these networks,
a positive link can be interpreted as a trust relation from a user to another while a negative link
can be interpreted as a distrust relation [DuBois et al., 2011; Ye et al., 2013].

By modelling a system as a signed directed graph, the task of predicting trust/distrust
relations between users now turn to be the task of predicting positive/negative sign of future
links that will be added to the network.

The link-sign prediction can recommend users to trust or not to trust partners who has never
interacted with the user. As we discussed above, the size of modern collaborative systems are
huge and it is difficult for a user to manually analyze the trustworthiness of partners that she
has not known before.

Research studies claimed that we can infer unknown edge status easily by using personal in-
formation [J. Tang, Gao, et al., 2012; Ye et al., 2013] such as sociological information or personal
trading history. In fact, many early trust prediction models exist relying on the similarity of two
users [Ning et al., 2015], which in turn require access to personal information of users. However,
due to the increasing concern of privacy on the Internet [X. Chen and Shi, 2009; Trottier, 2016],
this information is usually neither available nor reliable. In order to reduce privacy concern, we
aim to use graph-based algorithms [Jiang et al., 2016].

We notate a signed directed graph as G =< V,E > where V is the set of vertices which
represent users, and E is the set of links, or edges, which represent relationships between users
[Leskovec et al., 2010a; J. Tang, Gao, et al., 2012]5. Link-sign predictors assume existence of a
graph where signs of all edges are known, except for an edge from node u to node v, denoted
u → v. The task is to predict the sign of u → v, denoted s(u, v) by using the information
provided by the rest of the network [Leskovec et al., 2010a].

The input of graph-based algorithms is the graph of connections between users. We display
an example of user connection graph with positive/negative directed links in Figure 1.3. A
graph-based algorithm takes this graph as an input to inference the missing sign (from Alice to
Carol in this example) based on the information of other edges.

For graph-based algorithms, there is no distinction between vertices because there is no per-
sonal information such as gender or personal preferences provided. The only reliable information
is the topology of the graph. Therefore the graph-based algorithms preserve privacy.

One of the first studies in link-sign prediction is [Guha et al., 2004]. Firstly the authors
represented a graph as a user relation matrix, which is still the most popular data representation
in the field [J. Tang, Y. Chang, et al., 2016]. In user relation matrix, each cell represents a link
from a user (row) to another user (column). The corresponding relation matrix of the graph

5In this thesis, we used the terms graph and network refer a same concept. Similarly, the terms edge, edge and
link are used interchangeably. We also do not distinguish two terms vertex and node.
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Figure 1.3: A social graph with signed directed connections.

displayed in Figure 1.3 is presented in Table 1.1. After that, the authors applied several well-
known long-history rules such as “friend of friend is friend” and “friend of enemy is enemy” in
term of matrix operations to predict missing signs.

Alice Bob Carol
Alice + ?
Bob - +
Carol

Table 1.1: User relation matrix

Many link-sign prediction studies [Song and Meyer, 2015; J. Tang, Y. Chang, et al., 2016]
rely on two sociological rules that are structural balance theory [Easley and Kleinberg, 2010,
Chapter 5] and social status theory [Leskovec et al., 2010a].

Despite of the success of structural balance theory and social status theory, these rules are
not very suitable for using in sparse networks. Furthermore, these rules ask for fully observed
networks. [Song and Meyer, 2015] presented a Bayesian inference to predict link-sign prediction
in partial observed networks.

The main problem with existing approaches is that they all work on static graphs, i.e. they
take a snapshot of a social network and analyze the social network at this given point of time.
However, modern social networks are very dynamic and the topology of the networks change
every second. It is not realistic to train everything from scratch whenever a network changes.
The challenge is to design a link-sign prediction method that can adapt to new information,
such as the change of the network topology, while using the previous information.

In fact, the graph-based link-sign predictions can be applied to any signed directed graphs.
In this thesis we focus on one application of these algorithms that is to predict trust/distrust
relations of users in collaborative systems.

In this section, we discussed and highlighted important studies related to our research ques-
tions. In next section, we will briefly summarize our contributions for each research question.
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1.5 Contributions

In this section we briefly describe our contributions for the research questions we presented in
Section 1.2.

1.5.1 Studying influence of trust score on user behavior

In order to assist users in assessing the trust level of their partners, the popular mechanisms are
identity, avatar, reputation score and review. As we discussed in Section 1.3.2, previous studies
analyzed the effect of these mechanisms on user behavior. However, the effect of trust score on
user behavior has not been yet analyzed.

Using repeated trust game, we tested the effect of trust score. Our experimental settings
follow previous studies [Colombo and Merzoni, 2006; Avner Ben-Ner and Putterman, 2009;
Dubois et al., 2012; Buntain and Golbeck, 2015] to test the effect of a new information given to
users.

We recruited six groups of five participants to play repeated trust game under four conditions:
(i) no information is displayed, (ii) partner identity is displayed, (iii) trust score of partner is
displayed, and (iv) both identity and trust score of partner are displayed. We reviewed literature
and stated the weakness of reputation schemes against attacks from third-party. We addressed
the scaling problem of identity and avatar in large-scale collaboration. We analyzed the user
behavior and claimed that: (i) introducing trust score improve the collaboration between users,
(ii) trust score has a comparable effect with nick-name with no additive effect, (iii) users trust
and follow the guidance of trust score, and (iv) trust score has a better predictive power than
reputation score.

The results suggest that trust score could be deployed in real-world collaborative systems to
assist users in assessing trustworthiness of their partners.

1.5.2 Designing trust calculation methods

Based on trust game experimental results, we claimed that trust models could be deployed to
encourage and guide users in collaboration. The next question is how do we calculate trust score
between a pair of users, given their interaction history. In this section we quickly describe our
proposed trust model for repeated trust game and Wikipedia.

1.5.2.1 Computational Trust Model for Repeated Trust Games

Studies [Sapienza et al., 2013; Brülhart and Usunier, 2012] suggested that sending amounts
between players in trust game represent their trust on each other . However, it is not clear how
to build up a trust model given history of sending amounts between two users.

We present a novel computational trust score for repeated trust games that deals with
fluctuating behavior. The main idea is to compute trust as a function of the amount exchanged
in an interaction and accumulate it over several interactions. To deal with misbehavior, we
record over time the change pattern in behavior. When the accumulative change factor exceeds
a threshold, i.e. the partner fluctuated too much over time, this user trust score is decremented.

We validated the trust model against: (i) simulated data generated based on the meta-
analysis [Johnson and Mislin, 2011], (ii) human rating [Keser, 2003], and (iii) real experimental
data from trust game experiments, organized by ourselves and external trust game dataset
provided by other studies [Bravo et al., 2012; Dubois et al., 2012].
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To the best of our knowledge, it is the first presented computational trust model for repeated
trust game. As trust game is an important tool in studying human behavior, we considered the
work as a contribution not only for studying effect of trust score on user behavior but also for
game theory research field.

The work is published in [Q. Dang and C. Ignat, 2016a].

1.5.2.2 Trust Calculation for Wikipedia Authors

In order to design a quality-based trust calculation for Wikipedia, we need to design first a
method to automatically assess the quality of Wikipedia articles. We presented three differ-
ent approaches to measure the quality of Wikipedia articles. Then we presented a method to
calculate user trust score based on their contribution history.

Measuring quality of Wikipedia articles We presented three different approaches to mea-
sure quality of Wikipedia articles described in what follows. Each approach has its own pros
and cons that will be discussed later.

Manual feature engineering approach As we discussed above, the state-of-the-art approach
in assessing quality of Wikipedia articles is the approach presented by [Warncke-Wang,
Ayukaev, et al., 2015] wherein the authors used a model of 11 features such as the length
of article, the number of image, etc. to predict the quality of articles.
We improved the state-of-the-art by introducing nine additional features which are reada-
bility scores into the feature set of [Warncke-Wang, Ayukaev, et al., 2015]. The extracted
features are fed into a random forest model. We performed different evaluation meth-
ods to test the performance of the new model. The experiments on English Wikipedia
dataset claimed that the new model achieved an accuracy score of 64% and AUC score of
0.91 compared to an accuracy of 58% and AUC of 0.87 of state-of-the-art. Furthermore,
statistic test confirmed that the performance difference between two models is significant.
The work has is in [Q. Dang and C. Ignat, 2016b]. We will refer this model as random
forest based approach in this thesis.

Deep learning approaches Traditional machine learning algorithms relies on carefully se-
lected features [Guyon and Elisseeff, 2003]. The feature selection process is mostly based
on expertise of researchers. There is not yet a way to extract the best features from a given
dataset [Stanczyk and Jain, 2015]. In practice, feature selection is done by listing as many
features as possible then evaluating them to eliminate non-relevant features [Stanczyk,
2015]. However, this approach cannot find missing features. Different Wikipedia language
require different feature set [Wikimedia, 2016].
We present two novel approaches on assessing quality of Wikipedia articles that do not
require manual feature engineering. These approaches can be used in any language of
Wikipedia.
The first approach uses Doc2V ec [Le and Mikolov, 2014] to convert Wikipedia articles into
numerical vectors then feed these vectors into Deep Neural Networks (DNN) for training
and predicting [Goodfellow et al., 2016, Chapter 6]. The approach achieves the accuracy
score of 55%, not far from [Warncke-Wang, Ayukaev, et al., 2015], but is much faster in
term of development time, i.e. a beginner can implement the approach in few days, while
it took several years for researchers team to come up with the approach of [Warncke-Wang,
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Ayukaev, et al., 2015] or [Wikimedia, 2016]. The work is published in [Q. Dang and C.
Ignat, 2016d]

In the second approach, instead of using Doc2V ec which is very expensive in term of
computation, we used Recurrent Neural Networks (RNN) [Rumerhart et al., 1986] with
Long-Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] for building an
end-to-end learning method. The approach achieves higher accuracy and AUC scores
compared to the random forest based approach. However, the running time is much longer:
the RNN-LSTM approach takes several days for training and several hours for testing using
a powerful server while the random forest based approach takes several minutes for training
and several seconds for testing on the same dataset using a Macbook Pro Mid 2014. The
work is published in [Q. Dang and C. Ignat, 2017].

The deep learning approaches achieve higher accuracy and AUC and are available for any
language without human intervention, but the cost is a longer running time. Therefore, the
selection of solution depends on the application requirements and computational resource.

Calculating trust score of Wikipedians Consider a scenario: a Wikipedia editor wants
to decide which partner she should collaborate with to write a new Wikipedia article. She
wants to see who is the most effective partner among ones collaborated with her in the past.
Unfortunately, she realized that she has collaborated with so many different partners and now
she is not able to remember who is who, let alone to determine their collaboration quality.

We applied the computational trust model we presented in Section 1.5.2.1 for Wikipedians.
Our method will scan through the user’s history and calculate trust score of each partner based
on the quality of collaborative works. We validated our algorithm in real-world Wikipedia
dataset. The experimental results suggest that, given the quality information of collaborative
articles we can better assign trust score to users and predict their future contributions than
other averaging baseline methods.

1.5.3 Predicting trust relationship

In the previous section we described how we calculate the trust score between two users if they
interacted. However in collaborative systems there are pairs of users who did not interact but
one needs to assess the trust level of the other. In this section we describe our contribution in
predicting future trust/distrust relationship of users. We proposed a new link-sign prediction
for this task.

Several link-sign prediction algorithms have been presented in recent years as we discussed
roughly in Section 1.4.3. Existing methods mostly rely on traditional machine learning tech-
niques which require manual feature engineering and require fully observed networks which are
usually not available in practice [Song and Meyer, 2015]. Furthermore, these algorithms need
to be trained from scratch if the network changes.

We presented an approach that combines RandomWalk, Doc2Vec [Le and Mikolov, 2014] and
Recurrent Neural Network (RNN) [Goodfellow et al., 2016, Chapter 10] for link-sign prediction
in dynamic networks. Our contributions are:

• Our algorithm requires only local information.

• Our algorithm can be trained incrementally, i.e. if the network changes we only need to
update the new information to the trained model without learning everything from scratch.
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• Our algorithm outperforms state-of-the-art in evaluation using real-world datasets.

Therefore, our algorithm is more suitable for dynamic networks, wherein nodes and links are
established and removed frequently.

As we discussed before, the link-sign prediction can be used as trust/distrust prediction
in collaborative systems. We can predict and assist users in assessing the trustworthiness of
partners that they did not interact with before.

1.6 Outline
The thesis is organized as follows.

Chapter 2 presents our study for the first research question: “should we introduce trust
score to users?”. We analyze the weaknesses of popular techniques such as identity, avatar and
reputation score and how using trust score can resolve these problems. Then we describe our
experimental design and analyze the influence of trust score on user behavior.

Chapter 3 presents our study on calculating trust score, which is the content of the second re-
search question. We present two trust calculation methods for two environments: repeated trust
game and Wikipedia. Each trust calculation method is validated against real-world datasets.

Chapter 4 presents our algorithm for link-sign prediction in dynamic large-scale signed di-
rected networks. The algorithm is a combination of Random Walk, Doc2Vec and RNN. The
algorithm is validated on popular real-world datasets and it achieves better performance in term
of accuracy score and F1-score compared to state-of-the-art.

Chapter 5 concludes the thesis and draws some potential future research ideas.
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Chapter 2

Influence of Trust Score on User
Behavior: A Trust Game

Experiment

You have to learn the rules of the game. And then
you have to play better than anyone else.

— Albert Einstein
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In this chapter, we address the first research question: “Should we introduce trust score to
users in collaborative environments?”. We divide the research question to following problems.

1. Does the availability of trust score have effect on user behavior in collaboration?

2. Do users follow the guidance of trust score?

In this chapter, we address the above problems. First we will analyze the problems of existing
popular mechanisms to help users in assessing trust level of their partners, which are avatar,
nick-name, review and reputation score. We analyze how can trust score resolve these problems.
We distinguish between trust and reputation because these two concepts are easily be confused.
Then we will describe our experimental design to study the influence of trust score on user
behavior in trust game. After that we present the experimental results and conclusions. Lastly
we will discuss the external validity of the experimental findings in real-world systems.

2.1 Methodology

In a large-scale collaboration, a user interacts with a large number of partners. It is helpful for
a user to assess the trust level of each partner, so the user can decide to collaborate with which
partner. We propose to deploy a trust model to assist user in trust assessment. The trust model
takes into account the interaction between a user and a partner to calculate the trust score of
the user on the partner. The trust score will be displayed to the user as the suggestion of the
model about the trust level of the partner. To the best of our knowledge, there is no real-world
system that integrated a trust model. We do not know the effect of showing trust score to user
behavior. In this chapter, we validate the influence of trust score on user behavior in trust game
environment. We address two questions relate to the choice of using trust game:

1. Existing techniques to assist users in assessing trust level of their partners in large-scale
collaboration are available. The popular ones are reputation score, nick name, review and
avatar. Why does the trust score should be used?

2. Why did we use trust game instead of real-world applications as the experimental envi-
ronment?

2.1.1 Review on existing techniques

Several techniques are used today on the Internet to assist users in assessing the trustworthiness
of their partners. The most popular ones are nick name, avatar, review and reputation score.

We review these techniques in the following sections. We show that they have several critical
shortcomings making them not be suitable in large-scale collaboration. We will also argue that
trust score can resolve these problems.

2.1.1.1 Nick name and avatar

Nick-name is a string that is assigned by the system or chosen by users to represent their
identities. Nick-name is a widely-used mechanism today to allow users to identify their partners.
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We note that in this thesis, we used the term nick-name and ID interchangeably. Thanks to the
identification, users can recall their history with the partners. They can assess the trust level
of the partners based on her experience [Bhargav-Spantzel et al., 2007]. Studies [Bays, 1998]
suggested that Internet users maintain their faces, or their images, through their nick-names so
other users can recognize and accept them.

The nick-name aligns with our experience in daily life: we identify and remember other
people by their names. However, in large-scale online contexts, a nick-name system has several
shortcoming. Studies showed that it is very difficult for human to remember non-sense strings,
such as pan2216771887bOz [Dix, 2009]. This kind of string is being used on the Internet as
nick-name. On the other hand, the nick-name can be “faked", as a malicious user could create
a new user with the nick-name as pan221677l887bOz which is not easy to recognize by ordinary
users - the same idea is applied for “fake" famous brands, such as Panasonic or Panansonic.
Moreover, users can change their nick-name to distinguish the bad experience of other users on
the old nick-name.

More concerning is that, it is difficult for typical users to remember nick-name of every
partners in large-scale collaboration. Psychological research has established the persisting re-
sponse time penalties of increasing the size and interconnectedness of declarative content such
as ID [Anderson and Reder, 1999]. As a result, increasingly large, dense networks with rarely
accessed nodes, such as those made possible by internet collaboration, pose retrieval problems,
and hence access to the knowledge that supports effective collaboration. [Riegelsberger, Mar-
tina Angela Sasse, et al., 2005] specifically notes the overhead associated with the maintenance
of partner-specific information.

Avatar is another mechanism to assist users in assessing trustworthiness. Avatar is a photo
chosen by the system or by the user to represent the user. The core idea of using avatar is similar
to using nick name: a user look to an avatar of a partner to identify the partner and recall their
experience with this partner. Studies suggested that users can remember images better than
text [Dhamija and Perrig, 2000] so using avatar can enhance the quality of user suggestion.

Studies suggested user preferences on avatar. For instance, [Bente, Dratsch, Kaspar, et al.,
2014] suggested that a portrait avatar will gain more trust from partners than a random image.
Furthermore, [Bente, Rüggenberg, et al., 2008; Yuksel et al., 2017] suggested that in the same
context participants tend to trust partners with more beautiful face avatars.

Avatar shares the same limitation with nick-name system. In large-scale collaboration it is
difficult for users to remember avatar of every partners. It is easy to fake an avatar, i.e. one
can use a photo of another person as their avatar. Furthermore, a honest user might lose their
trust relationship she built with other users when she changes her avatar.

We conclude that both ID and avatar systems do not scale well to large-scale collaborations.

2.1.1.2 Reputation score

Reputation score is another method to measure the trustworthiness of users. Using a single
score such as a reputation score can overcome the limitation of nick-name or avatar, because
users do not need to remember anything. When Alice observes a score of Bob she can decide
her next activity with Bob.

Trust and reputation are used sometimes interchangeably in literature [Vu et al., 2010; Sun
and Ku, 2014; Pecori, 2016]. They are close but not the same concepts [Fetchenhauer and
Dunning, 2009]. Reputation is a collective opinion from community to a particular user, while
trust is a personal opinion from a user to another user. As [Abdul-Rahman and Hailes, 1997]
stated, trust is an one-to-one relation, while reputation is a many-to-one relation. Reputation
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value of a community on a user is a global value, i.e. everyone from this community will see a
same reputation score of the user. On the other hand trust of a user on a partner is a personal
value and different from partners [Hoelz and Ralha, 2015; Ert et al., 2016], i.e. different users
will have different trust score on a same partner.

The scoring systems used widely on the Internet today are reputation systems, not trust
systems [Resnick, Kuwabara, et al., 2000]. Examples include Amazon rating system (Figure
2.1). The score (4.5 stars in this case) is reputation score because it is global, calculated by
averaging all rating score from all buyers. Every buyer will see the same score when they look
to the profile of the seller.

Figure 2.1: A screenshot from Amazon: the website shows the reputation score, which is
average rating score.

Studies [Yao and Darwen, 1999] proved the effectiveness of reputation score in collaborative
games. In general higher reputation leads to higher trust [Doney and Cannon, 1997]. However
the covariance relationship between reputation and trust might be disrupted by malicious be-
havior. One of the most popular attacks to reputation systems which is called discrimination
[Sun and Ku, 2014]. It occurs when a service provider offer bad services to only a proportion of
users. By doing that, the service provider can gain both revenue and reputation score.

Beside discrimination attack strategy, several other attack strategies to reputation schemes
exist [Hoffman et al., 2009]. The vulnerability of reputation score is not as obvious as nick name
and avatar, and reputation score is a close concept with trust score. We review these attacks
in more details in Section 2.1.1.3. Designing defense techniques for some of these attacks are
still open questions today [Sun and Ku, 2014] but as we will see in Section 2.1.1.3, trust score
is robust against these attacks.

Another problem with reputation schemes is that they require a central server to operate
[Aberer and Despotovic, 2001]. The schemes might not scale well in large-scale collaboration.

Furthermore, the reputation scores lack personalization. According to [Y. Wang and Vas-
sileva, 2007] a personalized score is required in the presence of subjective factors, i.e. user needs
or interests. A personal trust scoring system can overcome such limitations. A trust score is
ideally calculated and attached to a participant. Because the trust score reflects personal expe-

26



2.1. Methodology

rience between pairs of users, the playbook attack is not possible. A user can compute the trust
score of a partner locally without querying information from third parties. Crucially, with trust
scoring, participants do not need to recall anything. Continued, context sensitive interaction
therefore proceeds without the cognitive demand.

In the next section we describe in details attacks on reputation score. We show that there
is not yet effective solutions for some of these attacks.

2.1.1.3 Attacks on reputation score

Due to the fact that reputation score is widely used on the Internet today and it is a very close
concept to trust score, it is important to address several popular critical threats to reputation
score [Hoffman et al., 2009; Sun and Ku, 2014].

We divide attacks on reputation score into two groups malicious individual and malicious
collective. Malicious individual means that even a single malicious user can start an attack,
while malicious collective means that in order to establish an attack two or more malicious users
are required.

Malicious individual [Sun and Ku, 2014] listed three attack types that belong to this group.
They are providing inauthentic services [Mármol and Pérez, 2009], Sybil attack [Douceur, 2002]
and playbook [Y. Wang and Vassileva, 2007].

Providing inauthentic services. This attack could be considered as a naive attack model,
when the attacker did not provide a service as advertised before. This attack type is easy
to deal with [Sun and Ku, 2014], such as blocking and reporting the malicious partner to
the system or to other users.

Sybil attack. Sybil attack is defined as, the attacker continuously create new identity to offer
bad services. There is not yet a very good method to handle this kind of attack. A popular
suggestion is to create an entry barrier to the system to make it difficult for attackers to
create new identities. On the other hand the system will lose its availability to honest
users [Dinger and Hartenstein, 2006].

Playbooks. A playbook can be defined as a strategy of an agent to maximize their own profit
[Y. Wang and Vassileva, 2007]. A typical playbook is that an attacker plays honestly
in the beginning then suddenly deviate, and then the attacker can even plays honestly
again to recover the reputation level. In some systems, this kind of action is not punished
so the reputation can be recovered easily, and in fact “most of the trust and reputation
mechanisms prove useless for malicious agents to behave in this way” [Sun and Ku, 2014].
Together with Sybil attack, a possible defense technique is to increase reputation or trust
score slowly in the beginning and punish immediately if the cheating behavior is detected.

Malicious collectives A malicious collective can be formed when multiple attacker establish
a collation to increase reputation score of each other [Mármol and Pérez, 2009; Jøsang and
Golbeck, 2009].

Malicious spies. Many reputation schemes [Yamamoto et al., 2004; Allahbakhsh et al., 2012]
are influenced by the idea of PageRank [Page et al., 1999], i.e. a user is good if she is
rated as good by other good users. Therefore, a malicious spy can be created: a malicious
spy is an agent who always behave honestly so she earns a high reputation, then she can
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give high rating values to other malicious users. Because a malicious spy owns a high
reputation score, her rating value has a high weight and can improve reputation scores for
other malicious users.

Self-Promoting. Self-Promoting is defined as attackers try to increase their own reputation
score [Hoffman et al., 2009]. There may be several attackers, or several accounts which
belong to an attacker, give positive feed-backs and increase reputation score of each other.

White-Washing. White-Washing is related to Sybil attack: an attacker gave up their old
account and create a new one to dismiss with bad experiences. However, these account
exist longer than in the case of Sybil attack, so the attacker can even gain some reputation.

Slandering. Slandering is an opposite side of Self-Promoting attack. In Slandering attack,
attackers try to decrease the reputation score of honest users by declaring negative feed-
backs and giving low rating values [S. Ba and Paul A. Pavlou, 2002].

Discrimination. Discrimination attack occurs when an attacker cheat only a small proportion
of her partners, while playing honestly to the remains.

The discrimination attack can be explained by a simple example. Suppose a service
provider has 100 customers. For each customer, if the provider plays honestly she will
earn a profit of 1, and if she cheats this customer, the profit will be 10. A customer who
has been treated honestly will rate the score of 5, while customers who are cheated will
give the rating score of 1. Now, if the service provider treated all customers honestly,
she earns an average rating score of 5 and profit of 100. However, if she cheats 10% of
customers, she earns an average rating score of 4.6 which is still high, but now she earns
the profit of 190 - almost double.

If the number of partners is large enough, the attacker then can simply skip the partners
she already cheated and continue with the others. Furthermore, the partners who received
good services can introduce the service to their friends, increase the number of potential
victims of the attacker. Even in the case of limited number of partners and these partners
may know each others, the attacker can still offer her service for a long time before she is
denied by all partners [Easley and Kleinberg, 2010, Chapter 21].

It’s easy to prove that, in order to maintain the reputation score at the value of s, in each
step the attacker can cheat 5−s

4 of her partners. For instance, if the attacker wants to
maintain the reputation score of 4, at each step she can cheat 25% of her partners.

Furthermore, reputation score relies on a very important assumption, named partner-
independent behavior pattern, i.e. the reputation schemes assume that a user will perform
the similar activities to all partners. The reason is, the reputation score of a user, say
Alice, is global, so Bob and Carol observe a same reputation score of Alice and they could
expect the similar actions from Alice. We will analyze the predictive power of reputation
score in Section 2.1.3 and 2.4.3.

Defense techniques & trust score Up to now, designing an effective defense technique for
malicious collective attacks is still a difficult problem [Sun and Ku, 2014]. Malicious collective
attacks are based on the fact that the reputation score can be affected by third-party. Due to
the nature of trust score which is a personal score and can not be affected by third-party, trust
score is robust against malicious collective attacks.
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Therefore, a trust model can deal with malicious individual attacks. We will discuss more
about trust score calculation in Section 3.

However, we do not know yet the effect of showing trust score on user behavior in collabo-
rative contexts. We will use trust game experiments to study this effect. In the next section we
discuss about trust game.

2.1.2 Why trust game?

We deployed trust game experiments to study human collaboration when trust score is available.
We present the most important descriptions about trust game here. More details information
about trust game is available in Section A.1.

Figure 2.2: Trust game

Trust game is visualized in Figure 2.2. Trust game is a game between two players sender
and receiver. The game is played in two turns. In the first turn, the sender selects an amount
between 0 and 10 to send to the receiver. The amount will be tripled in the receiver’s side. In
the second turn, the receiver selects an amount between 0 and what she received to send back
to the sender. In this turn, the amount the sender receives will not be tripled. The objective of
each player is to maximize their profit.

The game pits joint payoff against individual payoff. Joint payoff is maximized if the sender
returns 10 to the receiver, so the total profit is 20. However, assuming that users only seek to
maximize their own profit, normative game theory predicts that the sender will send 0 and upon
receiving any sum the receiver will send back 0. Any other amount other than 0 will reduce
the receiver’s profit. According to normative theory for the one-round trust game, the sender
knows this fact, so at her turn, she should send 0 to the receiver because if she sends any greater
amount, she must assume that she will not receive anything back [Camerer, 2003].

In fact, participants do not behave according to normative theory, but choose to maximize
their joint profit. The trust game is therefore considered to be cooperative [Cesarini et al., 2008;
Camera and Casari, 2009; Balliet and Van Lange, 2013], or said differently, increases in payoff
reflect cooperation.

Trust game can be repeated, i.e. the game can be played in multiple rounds [Engle-Warnick
and Robert L. Slonim, 2004]. The players can be switched, i.e. a player can play with different
partners in different rounds [Dubois et al., 2012]. The roles of players can be switched also, i.e.
a player can play as a sender in a round and as a receiver in another round [Burks et al., 2003].

We used trust game due to several reasons:
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• The findings about human behavior in trust game can be extended to real-world systems
[Baran et al., 2010]. Therefore, trust game is a valuable tool to study human behavior in
collaborative contexts. We discuss in details about the external validation of trust game
in Section 2.6.

– Consider a collaborative editing system like ShareLatex. Alice started a document
and wrote a part of this document. She realizes that it is very difficult to complete
the document by herself, so she needs the help from a partner. However, if Alice
shares the document with Bob, two cases can occur. Bob can contribute to the
document by completing it, modifying the mistakes Alice made, adding information.
The result is that Alice and Bob have a complete document, which is definitely more
valuable than two incomplete parts written by Alice and Bob individually. However,
Bob can deviate by adding false information, or removing good content written by
Alice, or copy the parts of Alice to serve his own purpose, such as claim his copyright.
In this case, Alice will lose her contribution and even more, such as time, effort and
opportunity in term she missed the deadline to complete the document. The situation
between Alice and Bob can be described as a trust game. The unknown information
here is how can we define and measure the contribution, the profit and the loss of
Alice and Bob.

– Various studies have confirmed the external validity of experimental games in studying
trust. We discuss this in more details in Section 2.6.

• It is very costly to implement a trust model in real-world systems such as Wikipedia.

• Deploying and controlling the experimental factors in trust game is easy. We can change
one factor, such as displaying or hiding trust score, while keeping other factors constant.

• Studies proved that the exchanging amounts between users represent their trust on each
others [Brülhart and Usunier, 2012], while trust representation in other contexts are rather
challenging.

– For instance, let’s consider a case wherein a user A buy a product B of the manufac-
turer C from a seller D on a commercial website E likes Amazon or Wish. In this case,
it is difficult to say A trust whom. In fact, A might trust the quality and functions of
the particular product B, or trust C as a famous company, or trust D because some
friends of A bought something else from D, or trust E because A knows that E can
protect customers’ rights well. The analysis in this case will be very complex.

– On the other hand, in case of non-fulfillment [Riegelsberger, Martina Angela Sasse,
et al., 2005], i.e. the expectation of the trustor fails, it might be difficult to determine
that the fault belong whom. In the above example, if the user A receives a damaged
stuff, it might be the fault of the seller or the post service. The analysis becomes
over-complicated to analyze the factors that effect to human trust.

• Multiple studies on trust game have been presented. It allows us to reuse the existing data
and compare with other experimental designs. In fact, experimental games and survey are
two main measurement methods to study human trust [Dinesen and Bekkers, 2015].
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2.1.3 Analyze predictive power of trust and reputation score

Above we reviewed the problems of reputation models and explained how a trust model may
resolve these problems. Here we present a preliminary analysis of the predictive power of par-
ticipants’ future behavior in the trust game comparing trust and reputation scores.

As we discussed in Section 1.4.2.2, we evaluate the performance of a scoring method by its
predictive power of future behavior of users. In this section we present the comparison between
our trust model and a reputation model in predicting future behavior of users in two external
datasets from [Dubois et al., 2012] and [Bravo et al., 2012].

We employed two external datasets from two repeated simple trust game experiments inde-
pendently conducted by Dubois et al. [Dubois et al., 2012] in Montpelier, France and Bravo
et al. [Bravo et al., 2012] in Bresica and Cuneo, Italy. The [Bravo et al., 2012] experiment
involved 36 participants and contained five rounds. The [Dubois et al., 2012] experiment in-
volved 108 participants and contained ten rounds. For computing trust scores we employed the
trust function that we describe in Section 3.1.1, shown to reflect and predict user behavior in
repeated trust game with resistance to fluctuating user behavior. As a reputation measure we
used users average sending proportion up to the moment the reputation is computed, which is
similar to many real-world reputation scoring methods [Jøsang, Ismail, et al., 2007; Tavakolifard
and Almeroth, 2012].

We employed a regression analysis with the trust score computed by our trust function as
a predictor and with observed sending proportion as the criterion. Starting with round 4 when
the trust metric has stabilized, we predicted the send proportion of participants starting from
round 4 by the trust score calculated after the previous round. We employed a similar regression
analysis with the reputation score as a predictor and the sending proportion as the criterion.
The results for the sender role are displayed in Table 2.1 and for the receiver role are displayed
in Table 2.2. The corresponding t-values for the trust value assigned to each participant in
predicting their future behavior are all significant for both senders and receivers, i.e. the trust
score calculated by our trust function is predictive for external datasets. Adjusted R2 are higher
for trust values than for reputation in all cases except for round 7 and 8 for senders in the Dubois
dataset. We recall that the trust model require less information (only information observed by
the user) than the reputation model which requires full information from all users.

Dataset df t-value Adj. R2 t-value Adj. R2

for trust for trust for reputation for reputation
Bravo dataset (round 4) 106 7.85*** 0.36 3.05** 0.19
Bravo dataset (round 5) 106 10.0*** 0.48 8.86*** 0.42
Dubois dataset (round 4) 34 4.41*** 0.35 3.24** 0.21
Dubois dataset (round 5) 34 4.51*** 0.36 2.84** 0.17
Dubois dataset (round 6) 34 4.68*** 0.37 4.26*** 0.32
Dubois dataset (round 7) 34 4.05*** 0.31 4.29*** 0.33
Dubois dataset (round 8) 34 4.15*** 0.32 4.83*** 0.39
Dubois dataset (round 9) 34 4.25*** 0.33 3.17** 0.21
Dubois dataset (round 10) 34 4.52*** 0.36 2.36* 0.11

Table 2.1: Regression analysis of our trust function and reputation applied on external
datasets for sender role.

While parity would be satisfactory, this preliminary analysis provides compelling evidence
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Dataset df t-value Adj. R2 t-value Adj. R2

for trust for trust for reputation for reputation
Bravo dataset (round 4) 93 4.72*** 0.18 4.71*** 0.18
Bravo dataset (round 5) 64 5.04*** 0.27 4.61*** 0.24
Dubois dataset (round 4) 30 3.84*** 0.31 3.15** 0.22
Dubois dataset (round 5) 31 4.58*** 0.35 2.95** 0.19
Dubois dataset (round 6) 31 6.06*** 0.53 2.20* 0.11
Dubois dataset (round 7) 29 6.52*** 0.58 2.93** 0.20
Dubois dataset (round 8) 30 6.69*** 0.64 4.88*** 0.42
Dubois dataset (round 9) 26 3.86*** 0.34 1.59 0.05
Dubois dataset (round 10) 27 4.88*** 0.45 4.38*** 0.39

Table 2.2: Regression analysis of our trust function and reputation applied on external
datasets for receiver role.

for the predictive power of trust scores. These are somewhat surprising findings given that
none of these participants were aware of their partners. In fact, the trust function has more
contextual parameters than reputation, accounting for partner, cumulative behavior over time,
and punishment of misbehavior. In the next sections we present our research questions and
experimental design for demonstrating the influence of trust scores on user cooperative behavior.

In Section 2.1.1.3 and Section 2.1.3, we showed by both logical arguments and real-world
datasets analysis that a trust model can resolve some open problems of reputation models.
However, while the effect of reputation model on user behavior has been studied [Yao and
Darwen, 1999], there is yet an evidence that showing trust score will have any effect on the
behavior of users. In the following section, we present our experimental design and analysis to
study this question.

2.2 Experimental Design

In this section we present our experimental design using trust game to study the effect of showing
trust score on user behavior. We displayed the terminology of the design in Table 2.3.

Term Definition

Participant A person who joined our experiment
Sender The first mover in a round
Receiver The second mover in a round
Round A one-trial interaction between a sender and a receiver
Game A game contains 25 rounds

Session A set of six participants play all four games in a random
order. A session contains 100 rounds in total

Group A group of six participants who participate a same
session

Table 2.3: Definition of terms used in the paper
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Simple Game: The
trust game when

participants have no
information about

partners

Identity Game: The
trust game when

participants have only
nick names of partners

T
R
U
E Score Game: The trust

game when participants
have only trust scores

of partners

Combine Game: The
trust game when

participants are given
both trust scores and
nick names of partners

Table 2.4: Game descriptions

2.2.1 Participants

Participants were recruited through a public announcement. Five independent groups of six
participants resulted in a total 30 of participants. Four of the five groups included one female
participant, while the fifth group included two female participants. The ages of participants
ranged from 19 to 45 with an average age of 28.5.

Typically researchers compensate participants using an exchange rate between virtual money
in the experiment and real money, then pay the participants an amount based on how much
they earned during the experiment. To assure continuing incentive throughout the session, each
person who participated received a coupon of ten euros, but the person who earned most, i.e.
who had the highest payoff among other people in the group, received an additional coupon of
ten euros.

2.2.2 Task

The basic experimental task consisted of exactly 25 rounds of the trust game between a pair of
players, during which a participant served as sender and receiver equally often. At the beginning
of the first played game each user receives 10 money units. In each round, the sender moves
first. She knows how much money she has, and must decide the amount she wants to send
to the receiver. After that, the receiver receives a message indicating how much he has at the
beginning of this round, how much he received from the sender, and how much he has after
receiving. Then, the receiver decides how much she wants to return.

2.2.3 Independent Variables

We crossed the availability of nicknames and partner trust scores to create four different games
as shown in Table 2.4. Nicknames, such as “Mr. Black" or “Mrs. Green", were assigned to
participants, fixed during a game and varied between games. We do not describe the trust
function here because the main objective of the chapter is to study the effect of trust score on
user behavior, not trust function. Technical details about the trust calculation is presented in
Section 3.1. Trust scores were always calculated for each participant in a pair, but only displayed
according to experimental condition and only partner scores were available. The theoretical trust
score value ranges from 0.0 to 1.0 inclusive, presented when available with two significant digits.
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Participants started with the neutral value of 0.5 [Abbass et al., 2016].
We calculated user reputation_score as distinct from trust_score by averaging all previous

sending proportion amounts of that user in both roles sender or receiver.

2.2.4 Design

The experimental conditions were organized as a split-plot factorial with group as a between
subjects factor and Show-ID and Show-Trust as within subjects, such that each group of six
participants participated in the set of four randomly ordered games. Show-ID and Show-Trust
are two Boolean variables to indicate that identity and trust score of partners are presented or
not. In each round, participants were paired randomly within their group. We ensured that
in each game, a participant was paired with a particular other participant exactly five times.
Within this pairing, two participants in a pair were assigned their roles randomly: one was the
sender and one was the receiver.

2.2.5 Dependent Measures

Sending proportion by senders: the net amount the sender sends to the receiver over 10,
which is the maximum amount the sender could send.
Sending proportion by receivers: the net amount the receiver sends back over the amount
she received after being tripled. Other studies [Bornhorst et al., 2010; Bourgeois-Gironde and
Corcos, 2011; Burks et al., 2003; Dubois et al., 2012; R. Slonim and Garbarino, 2008] also
used sending proportion measures in order to normalize the sending behavior of receivers for
comparison.

For example, sender A has sent 6 to receiver B, and B sent back 9 to A. In this round, the net
sending amount of A and B are 6 and 9 respectively, the sending proportion of A is 6/10 = 0.6
and the sending proportion of B is 9/18 = 0.5.

Consistent with [Bornhorst et al., 2010; Burks et al., 2003; Dubois et al., 2012] for all
analyses of receiver behavior, we eliminated the zero transaction between the sender and the
receivers, i.e. the sender sends 0 and the receiver is obliged to send 0, for two reasons. First,
receiver behavior is completely determined by the sender, so that the receiver’s behavior is not
informative. Moreover, in this case, the sending proportion for receiver (0 divided by 0) is not
calculable.

For sender, there are exactly 375 data points in each game. For receiver, the number of data
points vary between 250 (Simple Game) and 340 (Combine Game) due to the zero-transaction
elimination.

Average sending proportion by senders: the average of sending proportions by each
sender over all trials in the game. Taking an average distributes the effect of the zero transaction
and also eliminates trial as a repeated factor in analysis.

Average sending proportion by receivers: the average sending proportion the receiver
sends back to the sender over all trials in the game, without the zero transaction case from the
sender.

Using average sending proportion for both sender and receiver will provide us 30 data points
for each role. For receiver, the zero-transaction data is removed before calculating the means.

34



2.3. Results

2.2.6 Procedure

All groups participated independently using z-Tree [Fischbacher, 2007] on our laboratory com-
puters. At the beginning of each session, we asked all participants to read the instructions
presenting the purpose of the experiment, a short description of the four games, the payment
procedure and some example screenshots demonstrating the interaction of users with the zTree
tool. The instructions informed participants that they will play the games in an arbitrary order.
For each of the games participants were stated what partner information would be displayed
during each interaction: for the Simple Game no information, for the Identity Game the partner
identity in the form of a nickname, for the Score Game a partner trust score computed accord-
ing to her behaviour in previous interactions (without any details about the metric) and for the
Combine Game, the partner identity and trust score. Participants did not know the number
of rounds they would play in each game. After confirming that they had read and understood
the instructions and had no further questions, participants reviewed and signed an informed
consent form prior to commencing the experiment. Participants were placed in different rooms
to avoid any communication during the experiments. Each participant used a computer running
our zTree application. All senders in the group finished their decision making process before
proceeding to the next trial. Play then waited for every receiver to respond before starting a
new round. This eliminated response time cues as an indication of player identity. No other
means of communication or identification were available. Participants were informed of their
cumulative earnings at each round.

It is possible to play with a negative balance but this never occurred.
The repeated measures design resulted in exactly 100 rounds across the four games. A session

usually lasted two hours. At the end of the experiment participants filled out a questionnaire
regarding general information such as university major and game preference.

In the next section we will present our analysis and findings of the user behavior collected
from the experiments.

2.3 Results

In this section we present the results from our experiments. We divide the section into three sub-
sections: behavior of senders, behavior of receivers, and considerations about our experimental
design.

2.3.1 Sender Behavior

In this subsection we study the behavior of sender in responding to our manipulations. We show
that both trust score and ID increase sending generosity with equivalent improvement and no
combined effect. To examine cooperation, we analyze the 0 exchange condition and rule-out
round effects as influential for all games except the Simple Game with no partner information.
Finally, we demonstrate the dependence of performance on trust score metrics.

2.3.1.1 Omnibus ANOVA

We performed a basic ANOVA with Subject, Show-Trust and Show-ID as predictors. The
analysis reveals an interaction, F(1,29) = 19.36, p < 0.001 as measured by average proportion
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Figure 2.3: Interaction between trust score and ID availability for sender. The bars present
standard errors.

sent for each game6. The interaction between the availability of trust score and ID on average
sending proportion for senders appears in Figure 2.3. We note that showing either trust score or
ID improves sending proportion but showing both partner information sources does not change
the sent amount relative to one source. Table 2.5 shows the descriptive results by game. The
open-jaw pattern suggests the need for paired comparisons between games.

[Johnson and Mislin, 2011] claimed that in large-scale the send proportion of users in trust
game follows the normal distribution. We use confidence intervals from paired t-test (yoking by
sender ID) in Table 2.6 to document the presence of differences between the Simple Game and
any other tested game7, demonstrating either trust score or ID increases sending amounts with
no additive effect. The differences between the other three games (Identity, Score and Combine
Games) are not significant, i.e. p > 0.10. To rule out any possible difference between sender
performance with Show-ID and Show-Trust, we followed up with a paired t-test, yoking the
results from the Identity Game and the Score Game for each sender-receiver pair for each trial
t(266) = -0.175, p > 0.10.

Without Trust With Trust
Metric Without ID With ID Without ID With ID

(Simple) (Identity) (Score) (Combine)

Sending proportion by senders 0.30 0.53 0.529 0.545

Table 2.5: Average sending proportion for senders by game

Along with paired t-test, we also tested the difference between games by using post-hoc tests
[Crawley, 2015]. Particularly, we used Tukey-HSD test [Kanji, 2006] to verify the difference

6We have replicated our findings by using an arcsine transformation F(1,29) = 16.39, p < 0.001. Because the
arcsine transformation is controversial and does not change the pattern of findings, we do not generally report
these values.

7The negative signs indicate that the sending amount of participants in Simple Game is less than the sending
amount of these participants in other games.
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Game in Comparison 95% confidence Df
with Simple Game interval
Identity Game (-0.32, -0.14) 29
Score Game (-0.35, -0.13) 29

Combine Game (-0.35, -0.14) 29

Table 2.6: Paired t-based confidence intervals for senders’ sending proportion in Simple Game
compared to other games

between games for each role. We display the results of Tukey-HSD test in Table 2.7. The
Tukey-HSD test confirmed the t-test.

Game Difference Lower Upper p-value
Identity-Combine -0.01493333 -0.08006388 0.05019721 -
Score-Combine -0.01653333 -0.08166388 0.04859721 -
Simple-Combine -0.24506667 -0.31019721 -0.17993612 ***
Score-Identity -0.00160000 -0.06673055 0.06353055 -
Simple-Identity -0.23013333 -0.29526388 -0.16500279 ***
Simple-Score -0.22853333 -0.29366388 -0.16340279 ***

Table 2.7: Tukey-HSD test for sending proportion of sender in four games.

Using the informal notation, we conclude IdentityGame ≈ ScoreGame ≈ CombineGame >
SimpleGame for sending proportion8.

2.3.1.2 Cooperative Behavior

Below we address the claim that providing identification or trust score controls cooperative
behavior, explaining the above results. We consider the cases of non cooperation where senders
send 0, the change in trust scores over time and the dependence of sending behavior on trust
score values.

The percentage of times that a sender sends 0 in Simple Game, Identity Game, Score Game
and Combine Game are 33.3%, 9.3%, 13.6% and 12.7% respectively. We verified the difference
by performing a logistic regression on the frequency of 0 transactions for all rounds with sending
participant, Show-Trust and Show-ID as predictors. The logistic regression indicates an inter-
action between Show-Trust and Show-ID z = 5.607, p < 0.001. It is more likely that senders
send 0 in Simple Game9

To examine the potential change in sending behavior over time, we regressed sending behavior
on participant ID to remove general participant effects that would contaminate a regression
analysis. We then used the resulting residuals as the criterion in a regression with round number
as the predictor, reducing the df in the error term due to the prior regression. The only game
with a significant round effect was the game with no information (Simple Game), revealing
decreasing cooperation over time F(1,116) = 7.3, p < 0.01. No other game indicated a round
effect: Identity Game, F(1,114) = 0.05, p > 0.10, Score Game F(1,115) = 0.42, p > 0.10 and

8We also replicated these analyses with the non-parametric Kolmogorov-Smirnov (K-S) test for percentage
data due to the potential violations of normality, using trial-level data. The K-S test confirmed the findings.

9Apart from demonstrating the effect of our manipulations on cooperation, these results preview the reduced
and variable degrees of freedom (df) in the analysis of receiver behavior as we removed the 0 transactions.
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Combine Game F(1,116) = 0.008, p > 0.10. Partner information in general eliminates decreasing
cooperation over time and end game effects for senders.

Without Trust With Trust
Without ID With ID Without ID With ID
(Simple) (Identity) (Score) (Combine)

Own trust 12.80*** 9.31*** 7.36*** 8.33***
Partner trust 1.65 1.73 5.69*** 4.69***
Adjusted R2 0.85 0.75 0.88 0.89
F(2,27) 86.03 43.57 106.9 117.1

Table 2.8: Trust regression analysis for average sending behavior of senders. The table reports
on t values. ‘*’p < 0.05, ‘**’ p < 0.01, ‘***’ p < 0.001.

Finally, in Table 2.8 we present regression analyses between average sending behavior as
the dependent variable with trust values and trust values of sender (participant) and receiver
(partner) as predictors. Sender behavior is positively correlated with his own trust value for
all games. The trust function predicts sender behavior well. Moreover, partner trust controls
sending behavior when it is available. Notably, this is the only analysis suggesting any difference
between the availability of partner identity and the trust score, as partner trust score does not
predict send behavior in games without a trust score. We conclude that partner trust score
availability controls cooperation. We also note the relatively high adjusted R2 for the Simple
Game. We attribute this to range restriction on trust score values that eliminates non-linear
influences at higher levels of trust.

2.3.1.3 Summary of Sender Behavior

Senders are less cooperative in the Simple Game than all other games. Decreasing cooperation
in the form of round effects only appears in the Simple Game. Good models for sending behavior
show predictive effects of own trust in all conditions, and partner trust when trust scores are
available. The availability of partner trust score therefore controls sending behavior.

2.3.2 Receiver Behavior

In this section we study the behavior of receiver (trustee) responding to our manipulations. We
show that both trust score and ID increase sending generosity with equivalent improvement
and no combined effect. To examine cooperation, we analyze the 0 exchange condition10. We
rule-out round effects and examine the dependence of performance on trust score metrics.

2.3.2.1 Omnibus ANOVA

We performed a basic ANOVA with Subject, Show-Trust and Show-ID as predictors. The
ANOVA reveals an interaction, F(1,29) = 14.36, p < 0.001 as measured by average sending
proportion11. The interaction between the availability of trust score and ID on average sending

10We recall that, the 0-exchange from a receiver means that she received a positive amount from the sender
but decided to send back 0.

11Similar with the sender case, we performed the same analysis on arcsine transformation, F(1,29) = 14.74,
p < 0.001.
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Figure 2.4: Interaction between trust score and ID availability for receiver. The bars present
standard errors.

proportion appears in Figure 2.4. We note that showing either trust score or ID improves
receiver return proportions, but showing both partner information sources does not change
the sent amount relative to one source. The open-jaw pattern suggests the need for paired
comparisons between games. Table 2.9 shows the descriptive results by game. As above, and
consistent with [Johnson and Mislin, 2011] we assume that the sending proportion of receivers
follows the normal distribution in large-scale. We used paired-t based confidence intervals in
Table 2.10 to document the absence of differences between the Simple Game and any other tested
game12. Showing either trust score or ID increases the amount sent back with no additive effect.
To rule out any possible difference between receiver performance with Show-ID and Show-Trust,
we followed up with a paired t-test yoking the results from the Identity Game and the Score
Game for each receiver-sender pair for each trial. The results of the paired t-test, i.e. t(219) =
-0.458, p > 0.10 confirmed the absence of difference between Identity Game and Score Game.

We verified the difference between games by performing post-hoc Tukey-HSD test. We
display the results in Table 2.11. The Tukey-HSD test confirmed the t-test.

We conclude CombineGame ≈ ScoreGame ≈ IdentityGame > SimpleGame for sending
back proportion of receiver behavior.

Without Trust With Trust
Metric Without ID With ID Without ID With ID

(Simple) (Identity) (Score) (Combine)

Sending proportion by receivers 0.262 0.441 0.476 0.477

Table 2.9: Average sending proportion for receivers by game

12The negative signs indicate that the sending amount of participants in Simple Game is less than the sending
amount of these participants in other games.
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Game in Comparison 95% confidence Df
with Simple Game interval
Identity Game (-0.23, -0.10) 29
Score Game (-0.25, -0.08) 29

Combine Game (-0.26, -0.11) 29

Table 2.10: Paired t-test confidence intervals for receivers sending proportion in Simple Game
with other games

Game Difference Lower Upper p-value
Identity-Combine -0.0355430588 -0.08109565 0.01000953 -
Score-Combine -0.0004646928 -0.04656710 0.04563771 -
Simple-Combine -0.2149111883 -0.26433187 -0.16549050 ***
Score-Identity 0.0350783661 -0.01065251 0.08080924 -
Simple-Identity -0.1793681295 -0.22844241 -0.13029385 ***
Simple-Score -0.2144464955 -0.26403156 -0.16486143 ***

Table 2.11: Tukey-HSD test for sending proportion of receiver in four games.

2.3.2.2 Cooperative Behavior

Below we address the claim that providing identification or trust score increases cooperative
behavior, explaining the above results. We consider the cases of sending 0, the change in trust
scores over time and the dependence of receiver behavior on trust score values

The percentage of times that a receiver sends 0 when she received a positive amount from
sender in Simple Game, Identity Game, Score Game and Combine Game are 36.8%, 8.5%, 8.3%
and 4.5% respectively. We performed a logistic regression on the frequency of 0 transactions for
all trials with sending participant, Show-Trust and Show-ID as predictors. The logistic regression
indicates an interaction between Show-Trust and Show-ID z = 3.68, p < 0.01. Receivers are
more likely to return 0 in the Simple Game.

To examine the potential change in receiver behavior over round, we regressed receiver behav-
ior on participant id to remove general participant effects that would contaminate a regression
analysis. We then used the resulting residuals as the criterion in a regression with round number
as the predictor, reducing the df in the error term due to the prior regression. Round is not
significant for any game: Simple Game F(1,100) = 0.052, p > 0.10, Identity Game, F(1,114)
= 1.44, p > 0.10, Score Game F(1,108) = 0.019, p > 0.10 and Combine Game F(1,110) =
0.027, p > 0.10. Participant information conditions therefore have no effect on the prevention
of end-game effects.

Finally, in Table 2.12 we present regression analyses between average sending behavior as the
criterion with sender trust values, participant trust values and amount received from the sender
as predictors. Receiver behavior is positively correlated with his own trust value for all games.
This confirms our ability to predict receiver cooperation (i.e., receiver trustworthiness) from
past trust values. However, receiver behavior is only related to partner trust in the combined
game. Moreover, model fits are not as good for receivers as they are for senders13.

13We have explored models that include interactions between amount received and trust values. These often
improve the relatively smaller adjusted R2 we obtain for receiver behavior. Such models suggest the need for
different trust functions for sender and receiver, to accommodate the asymmetry in their relationship.
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Without Trust With Trust
Without ID With ID Without ID With ID
(Simple) (Identity) (Score) (Combine)

Own trust 6.003** 8.936*** 4.617*** 3.927***
Partner trust 0.687 0.978 0.237 -2.158*
Partner sending amount -2.214* -1.849 -1.469 0.587
Adjusted R2 0.565 0.746 0.415 0.494
F(3,26) 13.53 29.36 7.854 10.44

Table 2.12: Trust regression analysis for average sending behavior of receivers. ‘*’p < 0.05, ‘**’
p < 0.01, ‘***’ p < 0.001.

2.3.2.3 Summary of Sender Behavior

Receivers are less cooperative in the Simple Game than all other games. There is no evidence
of round effects in any game. Fair models for sending behavior show predictive effects of own
trust in all conditions confirming our trustworthiness predictions. However, partner trust is only
predictive in the combined game.

2.4 Experimental Design Issues
In this section we investigate the properties of our experiment, comparing our results with other
trust game experiments, evaluating the accuracy of our trust function, and addressing repeated
measures concerns such as the nesting of participants in groups.

2.4.1 Comparison with other trust game data sets

Departures from the standard trust game require us to establish that our findings are not due
to such idiosyncrasies rather than the manipulations we have examined.

We compared the average sending proportions of participants in our Simple Game (30 data
points) with two external datasets from [Dubois et al., 2012] with 36 data points and [Bravo et
al., 2012] with 108 data points. Table 2.13 shows Welch two-sample t-test values comparing our
results in the simple game to their results, assuming unequal variances. None of the comparisons
are statistically significant. The observed behavior in the simple game in our experimental design
is consistent with other experiments. We visualized the findings in Figure 2.5.

Dubois (2012) Bravo (2012)
Sender t(61.6) = -1.33 t(45.3) = -0.991
Receiver t(55.9) = 1.69 t(45.6) = -0.598

Table 2.13: Welch two-sample t-values between our Simple Game average send proportion data
with two external datasets.

2.4.2 Trust function analysis

In the previous sections, we demonstrated that showing the trust score improves cooperation,
but how good is the trust function? If merely showing a score can improve the behavior of
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Figure 2.5: Visualization of the average values and standard errors of users’ sending
proportions in three datasets.

the participant, perhaps any random number would suffice. We provide two forms of support
for the quality of the trust function: prediction of participant behavior in our experiment and
prediction of participant behavior in two external datasets.

2.4.2.1 Predicting behavior in our experiment.

The trust score models participant behavior, even when, as in Simple and Identity Games, the
trust score is not made available to participants. Thus participant behavior should correlate with
their own trust scores. In the games with available trust scores (Score and Combine Games),
participant behavior should appear to react to partner trust values. The R2 values in Tables
2.8 and 2.12 provide some evidence of prediction accuracy, although we noted less satisfactory
models for receivers, and less evidence for the relevance of partner trust values in receiver
behavior. Here we rule out interactions between trust values themselves as better predictors of
behavior. We also examine correlations between behavior and trust scores separately for rounds
4 and 5 when trust scores have sufficient data to stabilize.

Regressions of sender behavior, i.e. average sending proportion, on the interaction of sender
and receiver trust values in the presence of both predictors as main effects provide no evidence
of interaction effects in any game: Score Game t(26) = 1.079, p > 0.1, Combine Game t(26) =
0.022, p > 0.1, Simple Game t(26) = -0.352, p > 0.1 nor Identity Game t(26) = 0.725, p > 0.1.

Regressions of receiver behavior, i.e., average return proportion, on the interaction of sender
and receiver trust values in the presence of both predictors as main effects provide no evidence
of interaction effects in any game: Score Game t(26) = -0.122, p > 0.1, Combine Game t(26) =
-0.776, p > 0.1, Simple Game t(26) = 0.706, p > 0.1 nor Combine Game t(26) = 0.080, p > 0.1.
Adding interactions between trust predictors does not improve our models.

To further examine the predictive power of the trust function, we performed separate multiple
regression analyses for each game, for rounds 4 and 5 when trust scores have accrued sufficient
data. The dependent variable is the sending proportion of the participants to their partners.
Table 2.14 provides the results of a regression of the senders sending proportion on a model with
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her trust value and the trust value of her partner for both rounds. In all cases, the sender’s
trust value predicts sending behavior. Moreover, the partner’s trust value also predicts sending
behavior in the presence of ID or trust score information, confirming sender attention to these
sources. Adjusted R2 values range from 0.26 to 0.70, with lower values resulting from the game
with no information.

Table 2.15 provides comparable information for receiver behavior, answering the question of
how well we can predict whether a participant is trustworthy. These regression models included
own trust value, partner trust value and the amount just received (i.e., three times the amount
sent). While receivers never were aware of their own trust values, our trust function is a good
predictor of receiver behavior when trust score is not provided. This does support our claim
that the trust function is a good predictor of trustworthiness. However, the mere presence of
trust scores in the trust score conditions dampens its predictive capability. Partner trust value
is rarely predictive. Receivers did not rely on this systematically. Adjusted R2values range from
0.08 to 0.45 with higher values in the conditions where trust score is not provided.

Without Trust With Trust
Without ID With ID Without ID With ID
(Simple) (Identity) (Score) (Combine)

Round 4 df = 72 df = 72 df = 72 df = 72
Own trust value 6.46*** 5.80*** 3.89*** 7.28***
Partner’s trust value 0.67 3.24** 6.98*** 4.41***
Adj. R2 0.36*** 0.40*** 0.66*** 0.70***
Round 5 df = 72 df = 72 df = 72 df = 72
Own trust value 4.87*** 7.13*** 3.19** 7.11***
Partner’s trust value 1.16 4.54*** 7.38*** 3.52***
Adj. R2 0.26*** 0.55*** 0.67*** 0.70***

Table 2.14: Trust regression analysis on senders’ sending proportion with t-values for
individual slope tests. ‘*’p < 0.05, ‘**’ p < 0.01, ‘***’ p < 0.001.

2.4.3 Post-hoc Reputation Analysis

In this section, we present a post-hoc analysis to compare the predictive power of future behavior
of participants in the trust games we designed for our experiment between trust and reputation
scores.

In our analyses presented in Tables 2.16 and 2.17 we substituted reputation predictors for
trust predictors, using average sending proportion as the criterion. These models differ from
those in Tables 2.8 and 2.12 by the absence of own-score predictors. These reduced models were
necessary because of the close relationship between average reputation and average sending
amount. However, the absence of own-values does inflate the error term. As in Table 2.8, in
Table 2.16 partner values predict sender behavior when trust values are shown. As measured
by Adjusted R2, the resulting models of sender behavior with trust predictors are better than
models with reputation predictors. Regarding receiver behavior, in Table 2.12 partner trust
is only significant in the combined game. In Table 2.17 partner reputation predicts receiver
behavior for the ID game, no doubt assisted by the significant effect of partner sending amount.
We note that in those cases with significant partner effects, the direction is negative regarding to
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Without Trust With Trust
Without ID With ID Without ID With ID
(Simple) (Identity) (Score) (Combine)

Round 4 df = 42 df = 62 df = 60 df = 60
Own trust value 3.41** 7.21*** 1.98 1.76
Partner’s trust value 0.02 1.40 1.63 0.50
Amount received -0.53 -1.62 -2.37* 0.33
Adj. R2 0.18* 0.45*** 0.08 0.10*
Round 5 df = 39 df = 61 df = 61 df = 60
Own trust value 4.21*** 3.56*** 3.06** 1.09
Partner’s trust value 0.14 2.10* 0.74 1.53
Amount received -2.19* 0.06 -1.75 -0.16
Adj. R2 0.30*** 0.29*** 0.13* 0.09*

Table 2.15: Trust regression analysis on receivers’ sending proportion with t-values for
individual slope tests. ‘*’p < 0.05, ‘**’ p < 0.01, ‘***’ p < 0.001.

the amount received. Model fits are poor. Adjusted R2 are however better for trust predictors
than the reputation predictors for the games where trust information was present.

Without Trust With Trust
Without ID With ID Without ID With ID
(Simple) (Identity) (Score) (Combine)

Trust predictors

Partner trust 1.09 0.33 7.42*** 6.92***
Adjusted R2 0.007 -0.03 0.65 0.62
F(1,28) 1.202 0.11 55.07*** 47.86***

Reputation predictors

Partner reputation 0.69 -1.14 4.55*** 3.78***
Adjusted R2 -0.01 0.01 0.40 0.31
F(1,28) 0.48 1.3 20.72*** 14.31***

Table 2.16: Trust and reputation analysis for average sending proportion of senders. The table
reports on t values. ‘*’p < .05, ‘**’ p < .01, ‘***’ p < .001.

2.4.4 Group Effects

While data on the trust game are typically collected in groups, concern for group effects has re-
ceived little attention in trust game analyses. Moreover, in our experiment, group is confounded
with treatment order. In order to consider group effects, we conducted a three factors split-plot
ANOVA with group as a between subjects effect and Show-ID and Show-Trust as within subjects
effects [Keppel, 1991]. Moreover, if group is regarded as a random (sampled) factor, then the
independent variables are properly tested against the interaction of group with the independent
variables.
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Without Trust With Trust
Without ID With ID Without ID With ID
(Simple) (Identity) (Score) (Combine)

Trust predictors

Partner trust -0.71 -0.41 -0.26 -2.73*
Partner sending amount -0.22 1.35 0.85 3.20*
Adjusted R2 0.00 0.00 -0.02 0.22
F(2,27) 0.99 1.05 0.64 5.18*

Reputation predictors

Partner reputation -1.70 -2.72* -0.15 -1.40
Partner sending amount 0.23 2.33* 0.45 2.07*
Adjusted R2 0.08 0.21 -0.02 0.08
F(2,27) 2.26 4.93 0.62 2.21

Table 2.17: Trust and reputation analysis for average sending proportion of receivers. The
table reports on t values. ‘*’p < .05, ‘**’ p < .01, ‘***’ p < .001.

Our sole concern here therefore is the robustness of manipulation effects in a very conserva-
tive, low power test owing to the reduced df in the error term. We tested our effects considering
group as a random factor, and interactions with group as an error term. Our analysis of sending
behavior, as measured by relative sending proportion, withstands even this less powerful test.
The omnibus test for the interaction of ID and Trust is F(1,4) = 8.86, p < 0.05. Moreover,
none of the Group by Treatment interactions are significant: with Show-Trust F(4,25) = 2.610,
p > 0.05, with Show-ID F(4,25) = 1.253, p > 0.05, or the interaction F(4,25) = 2.698, p > 0.0514

Regarding receiver behavior, as measured by relative returned proportion, the omnibus interac-
tion contrast just misses significance F(1,4) = 6.966, p < 0.1. These findings are best captured
as two main effects: for Show-Trust F(1,4) = 74.44, p < 0.001 (M = and for Show-ID F(1,4)
= 35.862, p < 0.01). As above, none of the Group by treatment interactions are significant:
with Show-Trust F(4,25) = 0.153, p > 0.75, with Show-ID F(4,25) = 0.553, p > 0.75, or the
interaction F(4,25) = 2.484, p > 0.05.

These analyses limit concern for group effects in general, and the game order differences
confounded with group in particular15.

.

2.5 Discussion

Below we consider our findings with respect to our research questions, system design implications
and limitations.

14Precautionary adjustments for sphericity are not required because all repeated factors have one degree of
freedom [Winer et al., 1971, page 306].

15We conducted similar analyses for sending behavior by trial for the first eight trials, which only revealed a
single significant case of Group by Treatment interactions in 24 tests.
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2.5.1 Summary

In the trust game senders and receivers have two different roles and potentially behave differently
with respect to the provision of partner information. We analyzed some concerns and findings
distinguishing between two roles.

Result 1 Does showing partner trust score or ID change user cooperative behavior?
We provided several forms of evidence regarding the influence of these interventions on

cooperation. These include overall increases in the proportion returned and reductions in the
frequency of 0 unit returns for both senders and receivers. Only the simple game differs from the
alternatives, in paired-t tests of sending behavior and in the persistence of end-game effects for
senders. Otherwise, we eliminated end game effects. Large-n, yoked dependent t-tests by round
failed to reveal any difference in behavior between the availability of names and the availability
of trust scores.

Result 2 Does the trust calculation predict participants’ future behavior ?
Our models are generally more successful for predicting sender (trustor) behavior, although

some findings predict receiver (trustee) behavior.
With respect to senders, we provide excellent predictive models for average behavior. These

average models always depend positively on own trust values, and on partner trust values when
trust values are available. Sender behavior is also well modeled at the round level, always
depending upon own trust values and on partner trust values for all games except the simple
game. Senders are attending to the specific values shown for partners, as predictions based on
reputation are not as good as predictions based on the trust values displayed. We note that the
effect is not to encourage blind cooperation, but rather cooperation in response to the available
information. Low partner trust scores elicit low sending amounts.

With respect to receivers, models of average return proportions behavior do depend on own-
trust. This supports a claim for some ability to predict trustworthiness. Models at the round
level are best when the trust score is not available. This unexpected result is possibly due to
strategic differences in receiver behavior. Models are quite poor when own-values are removed in
order to compare with reputation predictions. While receiver models did include an additional
factor (partner sending amount), our general impression is that the models of receiver behavior
are more complex than models of sender behavior and not yet accommodated by the trust
function used. Moreover, unlike the sender, duplicitous receiver behavior is not punished until
the subsequent round. These considerations suggest that the trust function should differ for
sender and receiver.

We have not identified the source of leverage on the success of the trust function for senders.
Relative to an average reputation calculation, we have noted three different influences: the
specification of partners, the management of change over time and the treatment of variability,
particularly punishment in response to non-cooperative behavior. These influences cast the trust
function as a psychometric issue, concerning the psychological factors that influence the response
to experience. Limitations in the receiver model highlight this claim, where the role of amount
received may interact with the partner trust values in ways that we have not yet captured.

Certainly, other dimensions merit investigation. The relationship between age, gender and
behavior in trust game is not established in the literature: several studies claimed no relation
[Cesarini et al., 2008; R. Slonim and Garbarino, 2008; R. Slonim and Guillen, 2010]. Other
research claimed that men trusted more than women in sender role, and less in receiver role
[Buchan et al., 2008] but other studies refute this finding[Haselhuhn et al., 2015].

The trust function used considers only the sending proportion as a parameter, but not for
instance the amount sent by the partner. This trust model fits well for a sender that initiates
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the interaction by sending an initial amount. But the trustworthiness value associated to a
receiver should depend not only on the return proportion but also on the amount received. We
might consider associating a higher trustworthiness to a receiver that received 6 and returned 0.5
than to someone that received 30, but returned the same proportion. The receiver that received
30 received the maximum possible amount but did not reciprocate the granted trust. These
suggestions further reinforce the need to consider the measurement of trust from a psychometric
perspective, capturing the relationship between physical quantities and behavioral response.

2.5.2 System Design Implications

We have demonstrated that the presence of partner information benefits cooperative behavior.
The burden of recalling past experience with participants is just one justification for the use of
trust values as a source of this information [J. Tang, X. Hu, et al., 2013].

Compared with reputation scores, trust scores have several advantages. Reputation scores
are globally computed values that are stored on a central server that is vulnerable to attack
[Hoffman et al., 2009; Sun and Ku, 2014]. Trust scores are suitable for distributed architectures
and do not require a central server. Trust scores are computed in a distributed way for each user:
each member of the network locally computes trust levels of her partners. Moreover, trust scores
emphasize personal experience and value. For instance, in reputation systems, if ten thousand
participants rated a seller, the next participant does not have a high motivation to provide a
rating because it will not change the average rating score of this seller. However, in trust-based
systems, her impression has a great influence because the trust value is calculated for her only
based on her experience.

On the other hand, as our experiments suggested, the trust score has a similar effect on
cooperative behavior relative to ID. Therefore, the trust scores may complement current systems
that employ ID to identify users, helping users define the trustworthiness of their connections.
While it is possible for participants to change their ID in on line systems, they cannot not change
the trust level other participants assigned to them. If a trust score is available, participants do
not need to remember individuals by name, nor do they need to assess previous experience with
imprecise mental calculations. Instead, they can make decisions based on their partner’s current
trust score.

Such a system greatly facilitates engagement with large scale collaborative networks. Our
proposed solution for computing partner trust scores scales well with the number of partners.
For each user ui, where 1 ≤ i ≤ n and n is the total number of partners, the system stores mi

trust values tij , with 1 ≤ j ≤ mi, associated with the mi partners with whom he is interacting.
Each time a participant ui interacts with another parnter uj , the trust score corresponding to
that interaction is aggregated to the old trust value tij . The new aggregated value becomes the
new value of tij . The time complexity of the computation of the trust score from an interaction
is O(1), i.e. constant. The space complexity for a participant to keep track of the trust scores
of the other participants is linear with the number of participants with whom he interacts.

2.5.3 Limitations

Limitations span issues of experimental design and issues of generalizability.
Power is a possible consideration in the failure to identify a difference between the three

experimental conditions. We addressed this with large-n analyses at the round level. Moreover,
our sample size is consistent with [Dubois et al., 2012] who organized a team of 36 participants.
Small group sizes (4−6 people per group) are commonly observed in the experimental trust game
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[Bohnet and Zeckhauser, 2004; Gary E. Bolton et al., 2005; Camera and Casari, 2009], mostly
because of practical difficulty in recruiting and organizing participants. The total number of
participants is usually limited also. For instance, [Lunawat, 2013] organized experiments with
16 and 22 participants. Finally, we note that inflating sample size to force a difference is likely
to result in a small effect size.

Few studies criticized trust game for the lack of context [Riegelsberger, Martina Angela Sasse,
et al., 2005]. Our view, consistent with the proponents of situated cognition, is that there is no
such thing as an absence of context. Games requiring limited background knowledge control for
individual differences in expertise and provide statistical power. We view the use of a standard
paradigm as crucial to our exploratory studies. Behavior in this paradigm is well-documented,
with known pitfalls such as end-game effects, and known standards for cooperation. Because we
obtained results in the simple game that are consistent with the literature, we can attribute our
findings to our interventions, rather than idiosyncrasies of an unknown paradigm.

Regarding generalizability, significant effort remains in developing trust functions for other
domains. Whether the issue is commercial trade, sharing information or granting modification
access, the interaction requires a quantitative foundation. Our claim is not that the specific
function we used is suitable for every domain, but rather that the dimensions we have identified
(partner specificity, the representation of cumulative experience, and the treatment of variability)
are candidates for inclusion. As we discuss in Chapter 3, our trust function can be applied into
Wikipedia. We claim that the proposed trust model is able to generalized.

2.6 Extension of Experimental Results

The experimental results in trust game suggests the positive effects of showing trust score to
users in encouraging them to collaborate more. However, it is not clear that the same effect will
occur if we introduce trust score in real-world systems like Wikipedia.

There is no certain answer until we can validate the influence of trust score in the real-world
systems, but as we discussed above it is very costly and almost impossible to deploy and test in
real scenarios. However, based on the long history of experimental behavior study [Pruitt and
Kimmel, 1977; Wilde, 1981; Kendall et al., 2007], studies have suggested that the experimental
results in studying human behavior can be applied into real-world scenarios [Falk and Heckman,
2009] if the appropriate adjustments are provided [J. List, S. Levitt, et al., 2007]. In other words,
the experimental results of lab-control experiments provide a general guideline in principle about
human behavior but not a details instruction of how to implement them in real-world scenarios.

On the other hand, the lab-control experiments are used because their suggestions, if any,
are independent from the context, hence for each real-world scenarios the engineers can find
a different way to deploy the suggestions. For instance, if we validated the influence of trust
score on user behavior in Wikipedia, the results might not be extendable to Google Docs. The
first reason is that the trust score will be very likely to be deployed along with other existing
mechanisms such as nick-name, avatar, etc. and these existing mechanisms are different between
systems. The second reason is that the interaction of users in Wikipedia will be much more
complicated than in trust game to analyze the causality between trust score and the changes in
user behavior. [Charness and Kuhn, 2011] discussed in details about gaming experiments and
claimed that the experiments are important tools to study human behavior, and the results from
the experiments can be used externally. [Baran et al., 2010] particularly address the question
of inferring the social preferences from lab data. The authors found the consistent between
behavior of same participants in trust game and real-world: who sends more in trust game
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tends to donate more in real-world.
Several observations in lab-control gaming experiments in general and in trust game in par-

ticular have been confirmed in real-world scenarios. [Benz and Meier, 2008] in Zurich and [Baran
et al., 2010] in Chicago particularly addressed the question of inferring the social preferences
from lab data. The authors found the consistent between behavior of same participants in trust
game and real-world: who sends more in trust game tends to donate more in real-world. [Kar-
lan, 2005] studied the difference of behavior in trust game and in real-life of people in Peru
while [Johansson-Stenman et al., 2013] made a similar research work in Bangladesh. Both re-
search studies confirmed that the results from trust game experiments are consistent with the
results from field studies [S. D. Levitt and J. A. List, 2009]. [Yao and Darwen, 1999; Gary E
Bolton et al., 2002] observed the effects of reputation score on user behavior in repeated trust
game and the effect has been confirmed in eBay [Resnick, Zeckhauser, et al., 2006]. Similarly,
the influence of partner’s avatar on decision of users are both observed in real-world systems
[Pentina and Taylor, 2010] and in gaming experiences [Wilson and Eckel, 2006; Bente, Rüggen-
berg, et al., 2008]. [J. Zheng et al., 2001] studied the effect of chat on improving trust between
users in prisoner-dilemma while [A Ben-Ner et al., 2009] studied the effect of chat in repeated
trust games, and the effect of chat has been confirmed in collaborative software development
environment [Hupfer et al., 2004].

We showed in repeated trust game, showing trust score to users will encourage the collab-
oration between users. We showed that users follow trust score. We analyzed and argued that
trust score can overcome some limitations of popular techniques such as nick-name, avatar and
reputation score. We conclude that trust score should be deployed in real-world collaboration
systems. In the next chapter, we discuss in details the trust model, i.e. how do we calculate the
trust score of users in collaboration.
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Chapter 3

Measuring Trust: Case Studies in
Repeated Trust Game and

Wikipedia

The best material model of a cat is another, or
preferably the same, cat.

— A. Rosenblueth & N. Wiener, Philosophy of
Science (1945)
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In the previous chapter, we answered the first research question: “Should we introduce trust
score to users?”. We showed that a computational trust model can be deployed to assist users
in assessing the trustworthiness of partners. However, we did not discuss how do we calculate
trust scores of partners to display to users. In this chapter, we discuss the next question: “How
do we calculate trust score of users in a collaborative system?”

Studies suggested that different contexts require different trust models [Huynh, 2009]. Sev-
eral collaborative systems exist already as of this writing so we can not cover all of them in this
thesis. We focus on two contexts that are trust game and Wikipedia.

Trust game is a lab-control collaborative environment. Studying trust method design in
trust game could give us some more insight for designing trust methods in real-world settings.
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As we discussed in Section 1.3, the findings about human behavior in trust game can be applied
in other real-world systems.

On the other hand, Wikipedia is a result of a tremendously collaboration effort from millions
of users. As we presented in Section 1.3, studies emphasized the importance of Wikipedia to
Internet users. Designing a trust method in Wikipedia could help to speed up the review process
therefore new information can be published faster on Wikipedia.

3.1 Trust Calculation in Repeated Trust Game

In this section, we present our trust calculation method which has been deployed to test the
influence of trust score on user behavior in the previous chapter. We used the same datasets
described in the previous chapter to validate the trust method.

3.1.1 Trust Calculation

Trust score is defined as a metric to measure the goodness of user behavior in the past. A trust
model is considered as a good trust model if we can use the score calculated by this model to
predict future behavior of users. On the other hand, a trust model is considered as a failed
model if it assigns a high trust score to a user but this user deviate in the future, because in this
scenario the trust model failed to give a warning message to other users on a malicious user.

In trust games, trustworthiness of a user depends on the amount sent to her partners [Dubois
et al., 2012; Glaeser et al., 2000]. A higher sending amount should lead to higher trustworthiness,
but the relationship between these two variables is not necessary linear. As we discussed in
Section 2.1.1.3, a user might try to behave well in the beginning and then suddenly deviate.
Our trust calculation will take into account this strategy that we call fluctuate strategy.

The trust value calculated by the trust model needs to satisfy the following requirements:

1. The trust value is higher if the sending amount is higher.

2. The trust value can distinguish between different types of users.

3. The trust value considers user behavior over time.

4. The trust value encourages a stable behavior rather than a fluctuating one.

5. The trust value is robust against attacks.

The final trust score of a user is combined from several scores as follows.

3.1.1.1 Current trust

In repeated trust game, for each round, two users who are sender and receiver interact by
sending non-negative amounts to each other. The maximum amount the sender can send is 10,
and the maximum amount the receiver can send is the amount she received from the sender (i.e.
three times of what the sender sent). For both roles, we normalize the send_proportiont as the
sending proportion of a user at round t, with t ≥ 1:

send_proportiont = sending_amountt
maximum_sending_amountt

(3.1)
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In case of receiver, if the sender sent first the amount of 0, the receiver has no other option
but sending back 0 also. We eliminate this zero-transaction for receiver, because of two reasons:
(i) the behavior of sending back 0 is not informative, i.e. it does not tell us any new information
about the receiver, and (ii) the send_proportion which is 0/0 is not calculable. In this case, we
keep the previous trust score of the receiver to the next round. We note that the zero-transaction
elimination is applied only for receiver. In case the send_proportion value is calculable, it is
easy to see that ∀t, 0 ≤ send_proportiont ≤ 1.

The trust score calculated for a single interaction between users is called current_trust.
current_trustt is defined as a function of send_proportiont . We define current_trustt ∈ [0, 1].
This function should satisfy the following properties (for convenience, we use the notation
f(x), f : [0, 1]→ [0, 1] for the function of current_trustt , with x being send_proportiont):

• f(x) is continuous in [0, 1].

• f(0) = 0, i.e. current_trust is 0 if the user sends nothing.

• f(1) = 1, i.e. current_trust is 1 if the user sends the maximum possible amount.

• f ′(x) > 0 with x ∈ [0, 1], i.e. f(x) > f(y) iff x > y for x, y ∈ [0, 1] meaning that the value
of current_trust is strictly increasing when send_proportion increases from 0 to 1. f ′(x)
denotes the derivative of function f(x).

• f ′′(x) ≤ 0 with x ∈ [0, 1] meaning that the function is concave, i.e. the closer to 1 the
value of current_trust is, the harder is to increment it.

• f ′(x−) = f ′(x+),∀x ∈ [0, 1], meaning that the function is smooth, i.e. there is no reason
that at some point the current trust increases sharply less than previously.

We propose the following function that satisfies the above mentioned conditions:

current_trustt = log(send_proportiont × (e− 1) + 1) (3.2)

where current_trustt is the current_trust function at round t and send_proportiont is the value
of send_proportion at round t.

Explanation about the selection of the formula 3.2 will be provided in following sections.

3.1.1.2 Aggregate Trust

current_trustt uniquely computes the value of trust based on a single current interaction t.
However, we also take into consideration the previous interactions between two users. The
calculation of trust for repeated interactions is inspired by the trust model SecuredTrust [Das
and Islam, 2012]. The main shortcoming of SecuredTrust is that the metric assumes the existence
of current_trustt value. However, as shown in the previous section, computing current_trust is
not a trivial task as it has to satisfy several requirements. Furthermore, SecuredTrust was mainly
designed for peer-to-peer network systems where the computation of the trust in a peer node
relies on information provided by the neighbours in the network. In this way, the trust value in
one peer is in fact the reputation of that peer computed as an aggregation of the neighbor trust
values on that peer. Nevertheless, in collaborative environments different users have different
experiences with a certain user and therefore their trust values on that user are different.

On the other hand, SecuredTrust uses a constant value α as forgetting factor. If this prop-
erty can be valid in the peer-to-peer networks, it does not hold for human users. Based on

53



Chapter 3. Measuring Trust: Case Studies in Repeated Trust Game and Wikipedia

psychological peak-end rule [Fredrickson and Kahneman, 1993] we present a dynamic α. The
peak-end rule claims that, in a series of experiences, humans remember the extreme and the last
experience, and tend to forget the other ones.

We calculate aggregate_trust as follows:

δt = |current_trustt − current_trustt−1 | (3.3)
βt = c× δt + (1− c)× βt−1 (3.4)

αt = threshold + c× δt
1 + βt

(3.5)

aggregate_trustt = αt × current_trustt (3.6)
+ (1− αt)× aggregate_trustt−1

As we describe in Section 3.1.1.4, current_trust0 = 0. We also present other constant values
used for trust calculation in this section.

The δt is the measurement of change of current trust values by two sequential interactions t−1
and t between two users. We calculate δt to see how much a person changes her behavior with a
partner since their last interaction. It is easy to prove that, αt is bigger if δt is bigger, and vice
versa. It means that, if the trust of the current interaction is much different from accumulated
trust of all previous interactions, the current interaction will play a more important role in the
final trust value.

3.1.1.3 Dealing with fluctuating behavior

Some users may collaborate in the beginning and then suddenly stop collaborating. We add a
change_ratet variable into our model to punish this kind of activity.

First, we calculate the trend_factort at round t representing the recent trend of user behavior,
with higher value meaning that users improved lately their behavior:

trend_factort =

trend_factort−1 + φ

if current_trustt − aggregate_trustt > ε

trend_factort−1 − φ
if aggregate_trustt − current_trustt > ε

trend_factort−1 otherwise

(3.7)

adj_atft =


atft
2 if atft > MAX_ATF

atft otherwise
(3.8)

atft =



adj_atft−1 + (current_trustt−aggregate_trustt)
2

if current_trustt − aggregate_trustt > φ

adj_atft−1 + (aggregate_trustt − current_trustt)
if aggregate_trustt − current_trustt > φ

adj_atft−1 otherwise

(3.9)
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change_ratet =

0 if atft > MAX_ATF
cos (π2 ×

atft
MAX_ATF) otherwise

(3.10)

We present the accumulated trust fluctuation (atf) function in the formula 3.9. We aim
to punish both kinds of fluctuation-based cheating behaviors. We consider both scenarios when
the latest sending amount is suddenly higher or lower than usual behavior as cheating behav-
iors. However, it is arguable that the latter behavior is more dangerous than the former one.
Therefore, the punishment in the latter case will be stronger.

The accumulated trust fluctuation is a non-decreasing function. The increase depends on
the change over time of user’s behavior. If the behavior is stable or changes within the allowed
range (defined by the constant φ), atft will not change.

When atft reaches the threshold value MAX_ATF, it means that accumulated change in
user behavior over time reaches the level of betrayal and therefore change_ratet drops to 0.
Otherwise, as shown by Equation 3.10, change_ratet decreases if atft increases.

The cosine function is used in formula 3.10 because the cos function has a low degradation
rate in the initial stage, and a high degradation rate in the case of repeated fluctuating behav-
ior[Das and Islam, 2012]. It means that, if a user starts adopting a fluctuating behavior the
punishment is low, but it increases fast while fluctuating behavior persists.

Finally, we calculate the trust value after round t:

trust_valuet = expect_trustt × change_ratet (3.11)
where,

expect_trustt = trend_factort × current_trustt

+ (1− trend_factort)× aggregate_trustt

We update the trust value on each round, after both players made their decisions.

3.1.1.4 Parameters initial values

We display the values of the parameters used for the trust metric computation in Table 3.1. The
left side of the table contains the initial values of the corresponding parameters, while the right
side of the table contains the constant values of the corresponding parameters. We explain the
choice of these initial values in Section 3.1.2.1.

Table 3.1: Parameter Initial values.

α0 0. ε 0.3
β0 0. φ 0.1
atf0 0. MAX_ATF 2.
expect_trust0 0. threshold 0.25
trend_factor0 0. c 0.9
current_trust0 0.
aggregate_trust0 0.
change_rate0 0.
trust_value0 0.5
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3.1.2 Trust Model Evaluation

In this section, we evaluate the performance of our trust model according to the following three
aspects:

1. Performance in simulated data. We evaluate our trust model with simulated data. More
specifically, we analyze whether our trust model can distinguish between user types and
cope with a fluctuating strategy.

2. Consistency with human opinions. We study how we can validate our trust model with real
user data. More specifically, given the same data set, we analyze whether our trust metric
provides the same ratings of user behavior as the ones manually assigned by humans.

3. Performance in real data. We study whether our trust model can predict users future
behavior. In other words, we analyze whether the trust score assigned by the trust model
to a user reflects her future behavior.

As discussed in Section 1.4.2.2, in general we evaluate a trust model by analyzing whether we
can use the trust score computed by this model to predict the future behavior of the partners.
However, due to the advantage of trust game as we described in Section 2.1.2, we can study and
analyze the consistency of our trust model with human opinion from previous studies.

3.1.2.1 Evaluation with simulated data

Our trust model should punish fluctuating user behaviors. Moreover, it should detect user
behavior patterns, i.e. it should be able to distinguish different types of user profiles: low,
medium and high which correspond to a user who send at high, medium or low amount in all
of their rounds. In this section, we verify that our trust model satisfies these criteria.

Fluctuating user behaviors We define three types of user profiles according to the values
of send_proportion: low, medium and high. Similar to [Buntain and Golbeck, 2015], we define
that a user with a low profile sends in average 20% of the maximum possible amount, while for
a medium profile user the send_proportion is 50% and for a high profile user it is 80%. We also
define a fluctuate profile user who first tries to behave well and then deviates.

By means of simulations16 for the above user profiles, we compare the behavior of our trust
model with the average trust model which calculates the trust score of a user on a partner as
an average of previous sending amount from this user to this partner [Anderhub et al., 2002;
Avner Ben-Ner and Putterman, 2009; Cochard et al., 2004; Dubois et al., 2012; Engle-Warnick
and Robert L. Slonim, 2006; Glaeser et al., 2000; Johnson and Mislin, 2011]. We display the
trust scores calculated by our trust model in Figure 3.1. We display the trust scores calculated
by the average model in Figure 3.2.

We can see that, our trust model can cope and punish the fluctuating behavior very well, as
it reduces the trust score of fluctuating user to the same as of a low profile user. On the other
side, the simple average metric cannot distinguish between fluctuating and high profile users.

16All the data and code including simulation code and analysis code are available at [Q.-V. Dang, 2017].
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Figure 3.1: Trust scores calculated by our trust model for different user types in first 10 rounds.

Distinction between user types We analyze the behavior of our trust model on constant
sending behavior versus fluctuating behavior. However, the constant sending behavior is not
realistic. We relax our user profiles by allowing them to vary their behavior around the average
sending amount. In particular, we define the behavior of low profile, medium profile and high
profile as normal distributions with means of 0.2, 0.5 and 0.8 respectively, and standard deviation
of 0.15 (this standard deviation value has been approximated from the meta analysis of 23, 000
trust game players presented in [Johnson and Mislin, 2011]). In what follows we analyze whether
our trust model can distinguish between different user types. Hence, after a large number of
rounds, trust scores of different users will follow a distribution. In order to distinguish between
different profiles, these distributions must satisfy the following properties:

• The trust scores assigned to fluctuating users should be similar with the trust scores
assigned to low profile users, and should not overlap with the trust scores assigned to
medium profile users.

• The difference between two mean values should be at least the sum of two standard devi-
ations. If we denote by meanlow , meanmedium and meanhigh the mean values of trust scores
of bad profile, medium profile and high profile respectively, and by stdlow , stdmedium and
stdhigh the corresponding standard deviations, then:

meanlow + stdlow ≤ meanmedium − stdmedium (3.12)

meanmedium + stdmedium ≤ meanhigh − stdhigh (3.13)

• The ratio of any two variances of these distributions should not be larger than 3, as
suggested by [Keppel, 1991].
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Figure 3.2: Trust scores calculated by the average model for different user types in first 10
rounds.

It is not easy to find a current_trust function which satisfies these above requirements. After
an empirical process, the formula presented in Equation 3.2 is the only function we found so far
that can satisfy these requirements. We select the initial values of parameters in Section 3.1.1.4
by using the same empirical process.

For instance, if we replace our current_trust formula by a new formula such as current_trust =
send_proportion, this trust model will not be able to distinguish between medium profile and
fluctuating users. As we show in Figure 3.3, after ten rounds, the new trust model will assign
overlapping trust scores to medium profile and fluctuating users, but our trust model still can
distinguish between these two user profiles as displayed in Figure 3.4.

Figure 3.3: Distribution of the trust score calculated by the trust model with
current_trust = send_proportion after ten rounds. The trust scores assigned to fluctuating

users overlap with trust scores assigned to medium profile users.
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Figure 3.4: Distribution of our trust score calculated by our trust model after ten rounds. The
trust scores assigned to fluctuating users do not overlap with trust scores assigned to medium

profile users.

3.1.2.2 Consistency with human opinions

In this section, we evaluate our trust model according to user ratings obtained by an existing
experimental study of the repeated trust game [Keser, 2002].

[Keser, 2002] organized a repeated trust game experiment where users could rate in each
round their partners’ sending behavior. The three levels proposed were: negative, neutral or
positive. Based on the data published in this study, we created three virtual users called positive
user, neutral user and negative user respectively corresponding to the levels of possible ratings.
These virtual users follow the average behavior of real users who have the corresponding rating.

In what follows we analyze the results we obtained by applying our trust model to the
behavior of these virtual users. Since we are using a continuous rating score and Keser was
using a discrete rating score, the two rating scores do not match completely. However, we should
expect that our trust model does not conflict with Keser’s results, i.e. for any two behaviors
A and B, if A was rated higher than B (for instance, positive versus neutral or positive versus
negative), our trust model should assign a higher trust score to A than B.

The analysis is displayed in Figure 3.5. As expected, our trust model assigns in all cases
higher trust values to positive user than neutral user, and higher trust values to neutral user
than negative user.

The conclusion is that our trust model and people’s opinion about trustworthiness of behavior
in repeated trust games do not contradict each other.

3.1.2.3 Evaluation with real data

We showed that our trust model matches real people’s opinions about partner’s behavior in the
past. In this section we address the issue whether it can predict the future behavior of users.
For instance, if our trust model assigns a high trust value for a user, we are interested whether
this particular user behaves well or badly in the future.

We note that, a low R-squared value is usual in predicting human behavior However in many
cases, it does not mean that the prediction is useless [Gunnthorsdottir et al., 2002]. For instance,
[Ashraf et al., 2006] used a list of ten factors to predict users’ behavior in one-shot trust game,
and achieved the average R-squared of 0.25.

Observation on data First, we show that our models on user profiles (low, medium, high
and fluctuate profiles) are consistent with data collected throughout experiments. Next, we
show that real data proves the existence of different user types such as participants who send
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Figure 3.5: Validating trust model with real users’ ratings.

in average a high amount and those who send in average a low amount. We also show that real
data proves the existence of users with a fluctuating behavior.

We notice that changes in user behavior in repeated trust games are very usual. Figure 3.7
illustrates the average and standard deviation of sending amount proportions of each user in
the three datasets previously mentioned. The standard deviations of user sending proportions
are large compared with their average sending proportions, meaning that users often change
their sending behavior during the experiments. For instance, Figure 3.6 illustrates a selected
user behavior from our dataset: this player cooperates very well at beginning then deviates and
never cooperates again. We observed that in all data sets, only few players send a constant
amount throughout a session.

Figure 3.7 shows that for all three datasets, the average sending proportions of participants
vary from 0 to 1, matching with our defined profiles: low, medium and high corresponding to a
sending proportion of 0.2, 0.5 and 0.8 respectively.

We can conclude that, fluctuating behavior is a fact in all three data sets, and for this reason,
it is important to design a trust model that copes with this behavior.

Predicting users’ behavior In Section 2.3, we presented the trust analysis on user behavior
in interaction with other information. Here we focus only on the predictive performance of trust
function only. We also implemented a slightly different evaluation method. Instead of dividing
sender and receiver role, we consider them together to see if the trust score can be used to
predict users’ behavior in both roles.

Based on the behavior log we applied our trust model on users’ behavior at a certain round,
then used the output trust score as the independent variable to predict the user’s behavior in
the next round. For all rounds starting with round five, we found a high correlation between
the output trust scores and user behavior in the next round.
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Figure 3.6: An observation of fluctuating behavior from our data set.

Figure 3.7: Average and standard deviation of sending proportions in datasets.
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Figure 3.8: Relationship between trust score and user behavior at round ten in our own
experiment.

In our analysis the independent variables are the trust score for each user after fourth and
ninth interaction and the dependent variables are the sending proportions of users in the fifth
and tenth round. For the data in [Dubois et al., 2012], we tested the relationship between our
trust model and the user behavior at round five and ten. However, because of the design of the
experiment in [Bravo et al., 2012], we could only test the relationship between our trust model
and user behavior at round five. Figure 3.8 displays the prediction of user sending behavior at
round ten by using the data set from our experiment. Figure 3.9 displays the prediction of user
sending behavior at round five by using the Bravo dataset.

Intercept Slope Adjusted R-square
Our dataset (round 5) 0.071 0.701*** 0.319
Our dataset (round 10) -0.022 0.913*** 0.542
Bravo dataset (round 5) -0.006 0.715*** 0.362
Dubois dataset (round 5) 0.072 0.848*** 0.356
Dubois dataset (round 6) 0.095 0.855*** 0.451
Dubois dataset (round 7) 0.058 0.969*** 0.414
Dubois dataset (round 8) -0.007 1.027*** 0.487
Dubois dataset (round 9) 0.049 0.878*** 0.330
Dubois dataset (round 10) 0.027 0.855*** 0.357

Table 3.2: Regression analysis of our trust function applied on external datasets. All slope
values are significant at the level of 99.9%.

The summary of all linear regressions previously mentioned is displayed in Table 3.2, where
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Figure 3.9: Relationship between trust score and user behavior at round five in the Bravo
dataset.

the independent variable (x-axis in Figure 3.8 and Figure 3.9) is the trust score our model
assigned to each user before a particular round, and the dependent variable is the behavior of
this user in this round (y-axis in Figure 3.8 and Figure 3.9). We notice that the slopes of all
regressions are significant, meaning that our trust metric predicts well user’s behavior. Similar
results were obtained for the same analysis in other rounds (i.e. a significant slope value and a
positive r-value).

Comparison with baseline methods As previously mentioned, there is no prior work in
predicting users behavior in repeated trust game. For this reason, in this section, we compare
our model with two other baseline models: average model and null model.

Average model predicts that, the next sending amount of a user is equal to the average of her
previous sending amounts. On the other hand, the null model predicts that, the next sending
amount of a user is equal to her previous sending amount.

In order to compare the performance of these three models, we calculate the predicting values
of each of these models. We compute the adjusted R-squared value for each model from round
five to round ten and then calculate the average of adjusted R-squared. The higher average
R-squared a model achieves, the better this model is in predicting users behavior.

The comparison of performance of different models is displayed in Table 3.3. For our data and
data of Dubois, we calculate an average adjusted R-squared values in predicting users behavior
from round five to ten. As Bravo’s dataset contains only five rounds, we computed the average
adjusted R-squared values in predicting users behavior at round five.

We can see that, our model outperforms the other two baseline models in predicting users
behavior in repeated trust games.

In this section, we presented our computational trust model for repeated trust games. To
the best of our knowledge, it is the first trust model for repeated trust game which has been
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Table 3.3: Comparison of R-squared values of different predicting models.

Average model Null model Our model

Our data 0.42 0.43 0.55
Dubois’s data 0.28 0.34 0.40
Bravo’s data 0.3 0.32 0.36

presented. We validated the trust model against (i) simulated data to verify the model on
predefined user behavior patterns, (ii) human opinions to verify that the model is consistent
with human idea about trust level of partners, and (iii) real user behavior datasets collected
from different lab experiments to verify the prediction power of the model on user behavior.

The trust model is based on the assumption that we know the numerical values of each
behavior of users in the context. It is easy in trust game context because user behaviors are
already represented by numerical values. However, in order to extend the trust model into other
contexts we need to find a way to define these values in these contexts. In the next section, we
will present an application of our computational trust model in Wikipedia. First of all we will
present several methods to automatically assess the quality of Wikipedia articles, then based
on the quality of Wikipedia articles we can measure the contribution of each Wikipedia editor.
The experimental results showed that by applying our computational trust model on Wikipedia
we can better predict the future contribution of Wikipedia editors compared to the predictions
made by baseline models.

3.2 Trust Calculation in Wikipedia
In the previous section we presented a computational trust model for repeated trust game which
is based on the goodness of behavior of users in the past. As we discussed, it is easy to measure
the goodness of user behavior in trust game because they are represented by numbers. In this
section, we will focus on a real-world collaborative system which is Wikipedia. The task of
defining the quality of previous behavior of users in Wikipedia is not an easy task and some
research works need to be done to automatically assess the quality of contribution of users before
we can design a trust model for Wikipedians.

3.2.1 Why Wikipedia?

Wikipedia is considered as the largest knowledge repository that has been created through the
human history. At the time of writing, Wikipedia contains more than 41 millions articles in
all languages with 5.3 millions articles particularly belong to English Wikipedia, as the result
of the contribution from around 29 millions users17. The size of Wikipedia, in term of number
of articles, has increased continuously since the beginning of Wikipedia in 2001 as displayed
in Figure 3.1018. Moreover, Wikipedia is being modified in an impressive speed. According to
Wikipedia Statistics19, on average per second ten edits are performed on Wikipedia.

Wikipedia is a dominant information source for the entire generation of Internet users [Brown,
2011]. Present day users tend to take for granted from Wikipedia, even for a serious and

17https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
18Image source: https://en.wikipedia.org/wiki/Wikipedia:Modelling_Wikipedia’s_growth
19https://en.wikipedia.org/wiki/Wikipedia:Statistics
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Figure 3.10: Number of English Wikipedia articles from 2001 to 2015.

dangerous problem such as health-care information [Jones, 2009]. This phenomenon is more
popular among youths [Pan et al., 2007; Rowlands et al., 2008]. Furthermore, users of popular
search engines such as Google usually reach to Wikipedia [Natalie Kupferberg et al., 2011]
because Wikipedia is usually selected among the first result of Google search queries. As a
result, the influence of the information presented on Wikipedia is increased. It is reported that
the physicists might try to take the information from Wikipedia for their works [Pinsker, 2015].

A study [Goodwin, 2012] looked at 1, 000 search terms in Google and measured the rankings
for the website Wikipedia.org. The study found that Wikipedia is page one of Google for 99%
of searches (of nouns), that Wikipedia is position one of Google for 56% of searches and that
96% of searches had Wikipedia in position 1-5 on Google. Today, a query on Google usually
returns directly the content of corresponding Wikipedia page as showed in Figure 3.11.

Wikipedia is very well-organized website. A lot of annotated Wikipedia data is available. The
Wikipedia dataset makes it easier to analyze and study in comparison with free text platforms
such as Google Docs. We could expect that, studies on Wikipedia will be the first step in
studying real-world collaborative systems.

3.2.1.1 Trust between Wikipedians

Trust is a very important factor in collaborative editing activities in general and Wikipedia in
particular. When an author collaborate with other authors to write an article, she needs to
decide to trust and collaborate with these partners or not, or should she grant some access
rights to a particular coauthor or not.

As we will discuss in more details in Section 3.2.3.2, there is no previous work in measuring
trust of Wikipedians. Existing studies that focus on measuring reputation are mostly based on
quantitative metrics such as the number of edits made by an author, but have not discussed
about the qualitative metrics such as the quality of the text.

We present a computational trust model for Wikipedia authors. The main idea of the
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Figure 3.11: Google displayed the content from Wikipedia as the search result.

computational trust model is, a coauthor who collaborated before in high quality text is expected
to produce high quality text in the future, and therefore should be assigned a high trust score.
However, different from trust game, it is not trivial to determine the quality of the contributions
of users in Wikipedia. In this thesis, we propose to measure the quality of the contributions of
users by the quality of the articles that the users contributed to. Therefore, in order to measure
the trust between Wikipedians we need to know the quality of Wikipedia articles.

In fact, the quality of Wikipedia articles are being classified manually by reviewers [Wikipedia,
2017g] with the support of some automatic tools such as ORES [Foundation, 2015]. In the next
section we will discuss why does this approach not work well and the reason why we need an
automatic solution for quality assessment.

3.2.2 Problem Definition

As discussed above, in order to measure the trust score of users we need to know the quality
of Wikipedia articles in which they are involved. Therefore the problem of measuring trust of
Wikipedia authors is divided into two sub-problems. First we need to find a method to measure
the quality of Wikipedia articles. Secondly we need to define a trust metric which takes the
quality of collaborative articles into account.

3.2.2.1 Quality of Wikipedia articles

We define the problem as follow. For a given language of Wikipedia, a set of quality class is
defined. A set of Wikipedia articles (represented with revision ID) whose quality classes are
already assigned by human reviewers is provided as ground truth [Shalev-Shwartz and Ben-
David, 2014]. We need to design an algorithm to predict the quality class of a new Wikipedia
article. This is a multi-class classification problem [Shalev-Shwartz and Ben-David, 2014].

The available quality classes for each English, French and RussianWikipedia datasets are pro-
vided as below. The definition and requirements for each quality classes in English Wikipedia are
provided in Table 3.4 [Wikipedia, 2017b]. Similar definitions for French and Russian Wikipedia
can be found on corresponding Wikipedia language sites.
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English : FA, GA, B, C, Start, Stub.

French : ADQ, BA, A, B, BD, E.

Russian : FA, GA, SA, I, II, III, IV.

Class Description

FA Professional, outstanding, and thorough; a definitive source for encyclopedic in-
formation.

GA Useful to nearly all readers, with no obvious problems; approaching (but not
equalling) the quality of a professional encyclopedia.

B Readers are not left wanting, although the content may not be complete enough
to satisfy a serious student or researcher.

C Useful to a casual reader, but would not provide a complete picture for even a
moderately detailed study.

Start Provides some meaningful content, but most readers will need more.
Stub Provides very little meaningful content; may be little more than a dictionary

definition. Readers probably see insufficiently developed features of the topic and
may not see how the features of the topic are significant.

Table 3.4: Description of English Wikipedia’s quality labels

Currently, human reviewers are reviewing and assigning quality classes to Wikipedia arti-
cles manually [Wikipedia, 2017g]. The reviewers might need to review an article after each
modification on the article, because the quality might change dramatically after even a single
modification. However, due to the very high modification speed of Wikipedia, human resources
are simply not enough to review every Wikipedia revisions. We need an automatic solution.
As a matter of fact, ORES service [Halfaker and Taraborelli, 2015] has been used since 2014 to
assist Wikipedia users in determining the quality of Wikipedia articles. ORES is built based on
the work of [Warncke-Wang, Ayukaev, et al., 2015]. In this thesis we will consider these works
as state-of-the-art.

Studies [Warncke-Wang, Ayukaev, et al., 2015; Blumenstock, 2008; Suzuki, 2015; Betancourt
et al., 2016] proposed different approaches to assess the quality of Wikipedia articles. Generally
speaking, most existing approaches are based on traditional machine learning algorithms such
as svm or random forest. The common characteristic of these algorithms is they all require their
input as a manual designed feature set.

A feature is defined as an individual measurable property of the process being observed
[Chandrashekar and Sahin, 2014]. We can consider a feature set as a simplified model of the
Wikipedia articles. Designing a good feature set is a very difficult task in machine learning [Ng,
2013]. In addition, the feature set is usually designed for a specific task and does not generalize
well. For instance, measuring quality of Wikipedia articles in different languages require different
feature sets [Halfaker and Taraborelli, 2015].

We propose three different approaches in assessing the quality of Wikipedia articles. The first
approach is an extension of state-of-the-art [Warncke-Wang, Ayukaev, et al., 2015] by adding
more features. In the second approach, we use Doc2Vec [Le and Mikolov, 2014] to convert
articles into vectors then used Deep Neural Network to predict the quality labels of articles.
In the third approach, we use Recurrent Neural Network (RNN) [Rumerhart et al., 1986] with
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Long-Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] to build an end-to-end
classifier.

We can use the second and the third approach in any language while the first approach is
available only for English. In term of accuracy and AUC the third approach achieves the highest
performance, but the running time of the first approach is very low (in order of seconds) compare
to other two approaches (the running time is in order of hours). Therefore, we can use the first
approach if the computational resource is limit, while the third approach is suitable if the task
is not needed to be finished immediately.

We note that, the problem we are considering is measuring the quality of a given Wikipedia
article, i.e. to measure how well an article is written. The task is not to measure the correctness
of the information presented in the article, i.e. how true an article is written [Y. Zheng et al.,
2017].

3.2.2.2 Measuring Trust of Wikipedia Coauthors

We define the problem as follows.
Given an author whose name is Alice in Wikipedia. Alice has joined Wikipedia for a while

and collaborated with n partners in total so far denoted by p1, p2, .. pn in m collaborative
articles denoted by a1, a2, ... an.

Indeed Alice collaborated with different partners in different documents. For instance, she
collaborated with p1 and p3 in the article a1, but collaborated with the partners p3 , p4 and p5
in the article a2.

Now, given the modification log of all articles that involved Alice, we need to assign a trust
value for each partner of Alice.

In the next section we will review related studies to the two problems that are measuring
quality of Wikipedia articles and measuring trust of Wikipedia editors.

3.2.3 Related Work

3.2.3.1 Measuring Quality of Wikipedia

Existing studies in measuring quality of Wikipedia articles rely on traditional machine learning
with hand-engineered features. Based on the nature of the features that are used, we can roughly
divide them into two categories: editor-based and article-based features.

Editor-based features Approaches that used editor-based information analyzed information
that cannot be computed uniquely from the current content of Wikipedia pages, such as the
authors of a particular article, their contributions and the duration of each contribution.

Using the hypothesis that the more reputable an author is, the higher the quality of the
articles this author produces, Hu et at. [M. Hu et al., 2007] and Adler et al. [B. Thomas Adler,
Chatterjee, et al., 2008] used reputation of authors to determine the quality of Wikipedia articles.
The result was confirmed in German Wikipedia [K. Stein and Hess, 2007]. The social capital of
the editors could also affect the quality of the articles they contributed [Nemoto et al., 2011].
Using statistical approach, Javanmardi and Lopes [Javanmardi and C. Lopes, 2010] verified that
the editors reputation can be used to detect the quality of Wikipedia articles. Suzuki applied the
h-index on academic ranking for assessing the quality of an article [Suzuki, 2015]. Li et al. [Xinyi
Li et al., 2015] presented a modified weighted PageRank algorithm in the network of editors and
articles to assess Wikipedia quality. [Betancourt et al., 2016] studied the team characteristics,
such as how many FA or GA articles the team members have worked on before, to predict the
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quality class of Wikipedia articles. The authors limit their work at classifying FA-GA articles
with other articles, but not classify all quality classes as the work of [Warncke-Wang, Ayukaev,
et al., 2015].

Another criteria used for assessing the quality of a text is the period of time the text remains
stable or is modified by other authors/reviewers. If an article has not been modified significantly
for a long time, this article can be considered as mature and of high quality. For instance,
[Calzada and Dekhtyar, 2010] presented the idea of stable articles to determine the quality of
Wikipedia. [Wöhner and R. Peters, 2009] also claimed that a good article should not be modified
for a long enough period of time.

Some other works presented the idea that the quality of Wikipedia articles can be determined
based on the interaction between authors and reviewers [La Robertie et al., 2015; G. Wu et al.,
2012]. [Wilkinson and Huberman, 2007] showed that a large number of authors and reviewers
with an intensive cooperation should lead to high quality articles. [Kittur and R. E. Kraut,
2008] showed that the effectiveness of adding contributors is dependent on the degree and type
of coordination those contributors use. [Arazy and Nov, 2010] showed that inequality of editors’
contribution in a particular article, and inequality in overall Wikipedia activity levels for the
same set of editors affect document quality. Liu and Ram [J. Liu and Ram, 2011] suggested
that the behavior pattern of editors also effects articles quality.

Article-based features The second main approach of assessing quality of Wikipedia articles
is to analyze directly the content of Wikipedia articles.

One of the simplest solutions is to measure the length of Wikipedia articles [Blumenstock,
2008]. This solution achieved a very high accuracy in separating between FA and non-FA articles.
With the same target to distinguish between FA and non-FA articles, other works considered
the writing styles, such as how editors vary the words they used, for assessing the quality of
articles [Lipka and B. Stein, 2010; Xu and Luo, 2011].

Dalip et al. [Dalip, Goncalves, et al., 2009] analyzed the effect of the feature set comprising
text, review and network on the quality of Wikipedia articles. The authors verified the correla-
tion between this feature set and the quality of Wikipedia articles. They claimed that, using the
error term of linear regression, the features that describe the structure and style of the articles
are the best to distinguish between articles of different quality classes.

Similarly, using content, structure and network and edit history features, Anderka et al.
[Anderka et al., 2012] built a binary classifier to predict quality flaws in Wikipedia. They based
their approach on the cleanup tags, which are given by the reviewers who detected the flaws but
do not have enough time or expertise to fix them.

Focusing on the feature set that describes the content of the Wikipedia articles, Warncke-
Wang et al. [Warncke-Wang, Cosley, et al., 2013] presented and analyzed the feature set in-
cluding 17 features, such as article lengths and the number of headings of an article. Authors
claimed that there are 11 features that should be considered to evaluate the quality of Wikipedia
articles. The result is presented in [Warncke-Wang, Ayukaev, et al., 2015].

Based on the work of [Warncke-Wang, Ayukaev, et al., 2015; Warncke-Wang, Cosley, et al.,
2013], Wikimedia Foundation20 built an online service to predict the quality class of Wikipedia
articles called ORES (Objective Revision Evaluation Service) [Halfaker and Taraborelli, 2015].
Currently, ORES provides predicting services for English, French and Russian Wikipedia. For
each language, a new feature set is required, though some features are shared21.

20https://wikimediafoundation.org
21The work of ORES has not been published anywhere but only on the Wikipedia website and is subject to be
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Other Related Studies The research works we mentioned above directly study the problem
of measuring quality of Wikipedia articles. There are other research studies which are not
directly solving the problem, but focus on very close issues.

Instead of measuring the quality of Wikipedia articles, [Suzuki and Nakamura, 2016] tried
to measure the quality of Wikipedia editors. Interestingly, the authors proposed to use a crowd-
sourcing system to address the issue related to a particular revision, i.e. the authors used some
crowd-sourcing platforms like Amazon Mechanical Turk [N. Zhang, 2010] to recruit workers to
analyze an article. The analysis result is accepted only if two workers agree with each other.

Another related task to measuring quality of Wikipedia articles is to detect vandalism in
Wikipedia revision [Potthast et al., 2008; Tramullas et al., 2016]. An example of a Wikipedia
vandalism is displayed in Figure 3.12. As discussed above, the task of measuring quality of
Wikipedia articles does not aim to measure the trustworthiness of the information given by the
authors. For instance, the two sentences “Napoleon is a man.” and “Napoleon is a girl.” are
considered as similar in the view of a quality measuring algorithm. Therefore, before measuring
the quality of an article, we need to detect and remove any vandalism to ensure that the informa-
tion is correct at a certain level [Halfaker, Kittur, et al., 2011]. As of this writing, vandalism is
effectively detected in Wikipedia by using both manual and automatic ways [Wikipedia, 2017d].

Figure 3.12: An example of Wikipedia vandalism. In fact, as of this writing, Jason Terry is
still alive.

3.2.3.2 Measuring Trust of Wikipedia Authors

To the best of our knowledge, there is no prior research work on assigning trust scores to
Wikipedia authors. However, several studies on measuring reputation of Wikipedians are pre-
sented22.

[B. Thomas Adler and Alfaro, 2007] presented a content-driven reputation scheme. The
authors used longevity of text to measure the reputation of Wikipedia editors, i.e. an author
updated. The results we presented in this thesis are based on the information retrieved from [Wikimedia, 2016].

22Several authors used the term trust [Javanmardi, Ganjisaffar, et al., 2009], but in fact they refer to reputation
of authors.
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gains her reputation if their modification is not modified by subsequent authors. Naturally, the
reputation of an author fails if their modification is removed by other ones. The ideas then
are implemented in WikiTrust [B. Thomas Adler, Chatterjee, et al., 2008; Alfaro et al., 2011;
B Thomas Adler, 2012]. However, as of this writing WikiTrust service has been shut down
[WikiTrust, 2017]. The idea of [B. Thomas Adler and Alfaro, 2007] is extended in [Javanmardi,
C. V. Lopes, et al., 2010], where the authors consider not only the inserting text, but also other
activities such as deleting or rolling back to measure the contribution of authors.

[Meo et al., 2017] studied a related issue with our study, but on a reverse direction. Starting
from RfA trust networks when Wikipedia users declares that they trust or distrust other users
[Burke and R. E. Kraut, 2008], the authors tried to predict the reputation the network members.

In this section, we presented the state-of-the-art in two different problems: measuring quality
of Wikipedia articles and measuring the reputation of Wikipedia editors. In the next two sections
we will present our approaches for these two problems.

3.2.4 Measuring Quality of Wikipedia Articles

We present three different approaches to measure the quality of Wikipedia articles. In the
first approach, we improve the state-of-the-art model [Warncke-Wang, Ayukaev, et al., 2015] by
adding new hand-designed features. In two other methods, we present novel techniques using
deep learning for automatic feature extraction and end-to-end learning for quality measurement.

3.2.4.1 Improvement of existing studies

State-of-the-art As of this writing, the model presented in [Warncke-Wang, Ayukaev, et al.,
2015] is considered as state-of-the-art. [Warncke-Wang, Ayukaev, et al., 2015] analyzed English
Wikipedia articles and defined 11 features to represent the quality of a Wikipedia article. The
list of features are as follow. The names inside the parentheses are the corresponding variable
names. We use the variable names later to represent the features.

• Article length in bytes (content_length)

• Number of references (num_references)

• Number of outlinks to other Wikipedia pages (num_page_links)

• Number of citation templates (num_cite_temp)

• Number of non-citation templates (num_non_cite_templates)

• Number of categories linked in the text (num_categories)

• Number of images / length of article (num_images_length)

• Information noise score (info_noise_score) [Stvilia et al., 2008]

• Article has an infobox or not (has_infobox)

• Number of level 2 headings (num_lv2_headings)

• Number of level 3+ headings (num_lv3_headings)
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Variable Formula

avg_sentence_len number_of _words
number_of _sentences

avg_word_len number_of _letters
number_of _words

avg_syllables_per_word number_of _syllables
number_of _words

percentage_of_difficult_words number_of _difficult_words
number_of _words %

Table 3.5: Definition of variables used in readability scores

Adding features The above feature list does not take into account how the articles are
written. Other studies [Lipka and B. Stein, 2010] claimed that writing style does matter in
assessing the quality of Wikipedia articles. Therefore, we improved the model by adding nine
readability scores into the feature set, so in total we have a feature set of 20 features.

The list of added features are:

Flesch reading score (flesch_reading_ease) Flesch reading score, or Flesch reading ease
[Kincaid et al., 1975], is a measure to test how difficult to understand an English text. Flesch
reading ease for a given text is a number between 100 and 0, where higher scores indicate text
that is easier to read while lower numbers mark text that is more difficult to read.

flesch_reading_ease = 206.835−(1.015×avg_sentence_len)−(84.6×avg_syllables_per_word)
(3.14)

Flesch-Kincaid grade level (flesch_kincaid_grade) Flesch-Kincaid grade level [Kincaid
et al., 1975] for a given English text is a number corresponding to the US grade level required to
understand the text. For example, if the score is 9.3, it means that the reader of the text should
be ninth grader or higher. Although Flesch reading ease and Flesch-Kincaid grade level use both
word length and sentence length as core measures, they have different weighting factors. These
measures are inversely correlated: a text with a high score on the reading ease test should have
a low score on the grade-level test.

flesch_kincaid_grade = 11.8× avg_syllables_per_word
+0.39× avg_sentence_len − 15.59

(3.15)

Smog index (smog_index) Smog index [McLaughlin, 1969] of a text estimates the years
of education a person needs to understand a given text in English.

smog_index = 3 +
√

polysyllable_count (3.16)

The polysyllable_count is defined as the number of words with more than two syllables.
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Coleman-Liau index (coleman_liau_index) Coleman-Liau index, or Coleman-Liau re-
adability formula [Coleman and Liau, 1975] is a linguistic test that measures as Flesch-Kincaid
grade the US grade level thought necessary to comprehend a text. As opposed to Flesch-Kincaid
grade, Coleman - Liau index relies on characters instead of syllables per word.

coleman_liau_index = 5.88× avg_word_len
−29.6× avg_sentence_len − 15.8

(3.17)

Automated readability index (automated_readability_index) Automated readability
index (ARI) [Senter and E. Smith, 1967] is another readability score to detect the readability
of a given text in English in terms of the US grade level similar to Flesch-Kincaid grade and
Coleman - Liau index. ARI and Coleman-Liau index rely on a factor of characters per word,
instead of syllables per word as the other listed measures.

automated_readability_index = 4.71× avg_word_len
+0.5× avg_sentence_len − 21.43

(3.18)

Difficult words (difficult_words) The difficult words score [Jeanne Sternlicht Chall and
Dale, 1995] of a given English text is calculated based on how many difficult words appear in a
text. A word is considered difficult if it does not appear in a list of 3000 common English words
that groups of fourth-grade American students could reliably understand.

Dale-Chall score (dale_chall_readability_score) Dale-Chall readability score [Dale and
Jeanne S Chall, 1948] is another measure for comprehension difficulty when reading a text. This
score takes into account the percentage of difficult words in the text as well as the ratio between
the number of words and the number of sentences.

dale_chall_readability_score = 0.1579× percentage_of_difficult_words
+0.0496× avg_sentence_len

(3.19)

Linsear write formula (linsear_write_formula) Linsear Write Formula is a readability
score initially designed for the United States Air Force to compute the readability of their
technical manuals [H. Chen, 2012]. This score corresponds to the US grade level of a text sample
based on sentence length and the number of words used that have three or more syllables.

More precisely, based on a sample of 100 words from the text, where the number of words
with two syllables or less is denoted by n1 and the number of words with three syllables or more
by n2, Linsear Write Formula is calculated as n1+3×n2

number_of_sentences×2 if n1+3×n2
number_of_sentences > 20

and as n1+3×n2
number_of_sentences×2 − 1 in other cases.

Gunning-Fog index (gunning_fog) Gunning-Fog index [Gunning, 1969] is another rea-
dability score to measure the difficulty of a given text in terms of the years of formal education
needed to understand the text on a first reading. It is a weighted average of the number of
words per sentence, and the number of long words per word.

gunning_fog = 0.4× (avg_sentence_len + percentage_of_difficult_words) (3.20)
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After defining the set of 20 above features, we wrote a script to extract these features from
Wikipedia articles, then feed the output vectors into random forest model for training and
testing.

3.2.4.2 Novel approaches with deep learning

Issues of hand-engineered features Defining feature set is a very difficult task in machine
learning [Chandrashekar and Sahin, 2014; Shalev-Shwartz and Ben-David, 2014]. A feature set
can be considered as a simplified model of the given data, such as we model a person by height,
weight, date of birth, etc. The key issue of manual feature engineering approach is information
loss, i.e. there are always some missing information that are present in the raw data but are not
available in the feature set. Usually this information is considered as irrelevant by the researchers
[Chandrashekar and Sahin, 2014], but in fact we never know if these features are irrelevant or
not, because they are never taken into consideration.

The information loss problem can be avoided if and only if the entire data is used as the
feature set, as Norbert Wiener said, “the best material model of a cat is another, or preferably
the same, cat" [Rosenblueth and Wiener, 1945].

Furthermore, feature engineering mostly relies on expert knowledge, which is usually expen-
sive. Feature engineering requires effort and time, and when the researchers switch to a new
problem, a new feature set is needed. Each Wikipedia language requires a new feature set to
be designed, and it is difficult to do so without at least some basic understanding of this lan-
guage. For instance, it is almost impossible to remove stop words, i.e. words with not many
meanings like “a", “an", “the" in English, for Vietnamese Wikipedia without some knowledge
about Vietnamese language and Vietnamese processing.

Many feature selection algorithms have been proposed [Chandrashekar and Sahin, 2014].
Their inputs are a large feature set with a lot of features and these algorithms try to remove
irrelevant features. There is no automatic method to define the initial feature set - the best
practical way is to add as many feature as possible. Particularly, [Aphinyanaphongs et al., 2014]
performed a comprehensive analysis on feature selection for text categorization. In fact the
authors suggested that using all features “consistently produces high and the nominally best
AUC performance for the majority of classifiers". The work of [Aphinyanaphongs et al., 2014]
suggested that, using the entire document contents for classification might be a good idea.

Someone could argue that, we can continue the traditional manual feature engineering ap-
proach by using feature selection methods. We can start with a complete feature set that
contains all the possible features, then eliminate them one by one. Unfortunately, this approach
is not feasible, not only because of computational resource requirements but also because the
number of possible features we can extract from the raw data basically is infinitive. The reason
is, along with primitive features which can be extracted directly from the raw data, we can also
create new features based on primitive features. For instance, based on two primitive features
which are the length of the document and the number of sentences in the document, we can
create a new feature which is the average length of the sentences in the document. Definitely
there is no limit in creating new feature by this way.

Deep learning [LeCun et al., 2015] can avoid manual feature engineering by learning directly
from raw data. Furthermore, deep learning techniques take the entire Wikipedia articles as the
input, hence it does not lose any information. In other words, the input of the deep learning
algorithms is the same as the input of human reviewers. Therefore, theoretically an algorithm
which can achieve the same assessment with human reviewers is possible, as proved in recent
studies in different fields [J. S. Chung et al., 2016].
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Automatic feature engineering with Doc2Vec Most machine learning algorithms includ-
ing neural networks require the input to be represented as a fixed-length feature vector. As
Wikipedia articles have different lengths, we need an approach that maps Wikipedia articles
to fixed-length feature vectors. The most common fixed-length vector representation for docu-
ments is the bag-of-words [Harris, 1954] where a document is represented as the bag of its words.
However, this approach disregards semantics and even word order.

As Wikipedia articles have various length, the classification task is more complex than in
the case of fixed length articles. A common approach is by using bag of words to represent a
document. However, this approach cannot capture the structure of a document, which might
lead to ambiguities. For instance, bag of words cannot distinguish the two pieces of text "not
good" and "good not" since they have the same words but in different orders.

In this thesis, we applied the unsupervised learning algorithm called Paragraph Vector, re-
cently known as Doc2Vec [Le and Mikolov, 2014] that learns vector representations for variable-
length pieces of texts and overcomes the disadvantages of bag-of-words by taking into account
the order and semantics of words. In this approach every word and every paragraph are mapped
to a unique vector. The paragraph vector is concatenated with several word vectors from the
paragraph and trained in order to predict the next word in a text window. While word vectors
are shared among paragraphs, paragraph vectors are unique among paragraphs.

The idea of Doc2Vec is to capture not only context around a word as the previous technique
Word2Vec [Mikolov et al., 2013] does, but also to capture the order of the words in the document,
which is an important factor in understanding the document, as displayed in Figure 3.14. An
example of Word2Vec framework is displayed in Figure 3.13 where the model uses three words
"the", "cat", and "sat" to predict the next word "on".

Figure 3.13: Word2Vec [Le and Mikolov, 2014].

We applied the Doc2Vec approach where each Wikipedia document corresponds to a para-
graph in the above description. While the generated word vectors are not further used, the
document vector is given as input for our deep neural network. The output vectors will be used
as the input for a deep neural network to classify the quality class.

In implementation phase, we performed Doc2Vec with the output_size = 500. We fed the
output vectors in a DNN with four layers. Each layer of the DNN has 2000, 1000, 500 and 200
neurons respectively. We applied early stopping criteria in 5 epochs.
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Figure 3.14: Doc2Vec [Le and Mikolov, 2014]. Doc2Vec is very similar with Word2Vec, except
that it takes the document’s content into account.

An end-to-end learning solution The approach of using Doc2Vec is promising. However,
there are several disadvantages related to this approach:

• The result is not as good as other techniques.

• The model need to be retrained every-time when a new article arrives23.

• The word can be divided into two independent phases with no information exchange be-
tween them. Therefore, the work limits the potential of weight sharing [Goodfellow et al.,
2016].

We present an end-to-end learning method to predict the quality class of Wikipedia articles
by using RNN with bidirectional LSTM. RNN and LSTM are presented in more details in Section
A.2.2.2. In short, RNN is a neural network model that learns the data in sequence. RNN is a
powerful tool to use in natural language processing, because the order of words is important in
natural language.

The model is visualized in Figure 3.15 which can learn directly from the data input to the
predicting output. The model is constructed with one embedding layer (size = 300), two stacked
LSTM layers with 512 neurons of each layer, and finally a fully connected layer (size = 6 as the
number of quality classes). Similar with [Gal and Ghahramani, 2016] we used Adam optimizer
[Kingma and J. Ba, 2014] with dropout ratio [Zaremba et al., 2015] of 0.75, based on the studies
of [Molchanov et al., 2017; C. Zhang et al., 2017] stated that a deep neural network is redundant
enough for aggressive dropout values. Similar with [Gal and Ghahramani, 2016] we used adaptive
learning rate with Adam optimizer [Kingma and J. Ba, 2014]. The initial learning rate is set at
0.001. We used the batch_size of 32. We set the number of training epochs as 200 but in fact
the model became stable after around 100 epochs. All hyper-parameters are selected by using
Random Discrete Search [Bergstra and Bengio, 2012].

In this section we presented three different approaches to automatically assess the quality
of Wikipedia articles. In the next section, we will discuss the problem that given the quality of

23It took several day for training Doc2Vec model on 30, 000 Wikipedia articles using a cluster with 2x8-core
CPU and 250GB of memory.
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Figure 3.15: The bidirectional LSTM model to predict quality class of Wikipedia articles.

Wikipedia articles resulting from the contribution of a user and a partner, how can we calculate
the trust score of the partner for the user.

3.2.5 Measuring trust of coauthors

In this section, we present an application of our computational trust model presented in Section
3.1.1 to the case of Wikipedia. The method allows a user to calculate trust score of all her
partners she has collaborated with so far. The object of this task is to assign a contribution-
based trust score to each partner, so we can assist users in assessing the trustworthiness of their
partner.

As we discussed in the end of Section 3.1.2, in order to apply our computational trust model
into real-world systems, we need to find a way to convert the behavior of users into numerical
values. In Wikipedia, we propose to use the contribution values of users to represent their
behaviors. We calculate the contribution value as the product of the size of a contribution by
the quality of the article of this contribution.

Currently, the contribution of users to Wikipedia is measured quantitatively, i.e. the mea-
surement counts only number of edits [Wikipedia, 2017c] made by users. However, several
studies [B. Thomas Adler and Alfaro, 2007; B. Thomas Adler, Alfaro, et al., 2008] suggested
that the measurement should take into account not only the number of edits but also the quality
of edits. As the Wikipedia page “Edit Counts" claimed, “Edit counts do not necessarily reflect
the value of a userś contributions to the Wikipedia project” [Wikipedia, 2017a].

It is difficult to measure quality of a single contribution itself, because usually the content
of a modification along is not enough to analyze. We have to analyze the modification in its
relations to the entire document. [Biancani, 2014] proposed to use crowd-sourcing system to
measure the quality of each contribution. However, the work is just a proposal rather than a
complete study.

To build a contribution measurement which takes the edit quality into account, we should rely
on the quality of the article, because the quality of the article is made by all the contributions.
We propose a novel method to calculate user contribution as follows.

Given an article A. We can scan through its entire history and determine the contribution
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proportion of each contributors in term of number of characters, then we can normalize these
proportions to the contribution score of each contributor.

We use Levenshtein distance [Levenshtein, 1966] to measure the contribution of each user.
Levenshtein distance between two strings s and t is measured by total number of deletions,
insertions and substitutions need to trans from s to t.

For the article A, we calculate the contribution proportion of each user to this article as the
Algorithm 1.

Algorithm 1: Measuring contribution of users to an individual Wikipedia article.
Data: a Wikipedia article with complete history
Result: a dictionary, keys are users who contributed to the article and values are their

contribution
// initialization
R := list of revision contents of the article;
U := list of users who contributed to each revision;
output := dictionary with keys as unique(U) and values are all 0;
N = |R|;
// measure the contribution
for i in 1:N do

contribution := levenshtein (source = R[i-1], destination = R[i]);
output[U[i]] += contribution;

end
output := normalize (output);
return output;

After calculating the contribution score in a single article, we can move on to calculate con-
tribution score of a user through multiple articles. The main idea is to apply the computational
trust model we presented in Section 3.1.1 for Wikipedians, but replace the sending proportion
by the contributions of editors.

Consider a user Alice who wants to see how other partners contribute to her collaborative
works. First of all, she should retrieve all the articles she was involved. After that, she could
calculate the contribution score of each partner in each article. In the next step, she could
multiply the contribution score of partner in each article by a weight number defined by the
quality of the article. The main idea is, a contribution to a FA article should be counted more
than a same contribution to a Stub article. In practice, we follow the previous studies [M. Hu et
al., 2007; Suzuki, 2015] by assigning the score of 1 for the lowest quality class, then increase the
score by 1 for each next higher quality class. For instance, for English Wikipedia, we assigned
the score of 1 for Stub quality class, score of 2 for Start quality class, and so on. The final step
is just to normalize the scores of all partners. We presented the pseudo-code in Algorithm 2. In
this Algorithm, we presented also two baseline methods. The first baseline method considers all
the contributions as the same quality level and use the sum of the contributions of a partner as
the score. The second baseline method is similar with the first one but it takes into account the
quality of Wikipedia articles.

In this section, we presented an approach of calculating trust score for a partner based on
the assumption that we know the quality of all the articles that are shared between the user and
the partner. In the next section we will present the experimental results in real-world Wikipedia
datasets and discuss our approaches.
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Algorithm 2: Measuring trust of Wikipedia editors.
Data: a Wikipedia editor u
Result: a dictionary, keys are partners who collaborated with this user and values are

their trust score
// initialization
A := list of articles that the user involved;
Q := list of quality level of each article in A;
P := list of partners of u, in term they collaborate in at least one article in A;
output := dictionary with keys as unique(P ) and values are all 0;
N = |A|;
M = |P|;
// measure the trust
for i in 1:N do

for j in 1:M do
contribution := contribution (article = A[i], user = P[j]);
if use the first baseline method then

output[P[j]] += contribution;
end
if use the second baseline method then

output[P[j]] += contribution * quality_score (A[i]);
end
if use our trust model then

output[P[j]] += trust_model (contribution * quality_score (A[i]));
end

end
end
output := normalize (output);
return output;
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3.2.6 Experiments & Results

3.2.6.1 Datasets

We test our models on three Wikipedia datasets provided by Wikimedia Foundation: English,
French and Russian Wikipedia [Wikimedia, 2017]. The distribution of each quality classes in
each datasets are provided in Table 3.6. The datasets are balanced, i.e the number of articles
that belong to different quality class are similar. This is a very important characteristic, because
we can avoid many problems which occur only in imbalanced datasets [Branco et al., 2016].

English French Russian
FA/ADQ/FA 4921 1500 1155
GA/BA/GA 4893 1500 1155
B/A/SA 4916 1500 1155
C/B/I 4908 1500 1155

Start/BD/II 4913 1500 1155
Stub/E/III 4917 1500 1155

IV 1155

Table 3.6: Distribution of articles by quality class in each datasets, ranked by order of quality
class from the highest to the lowest.

3.2.6.2 Results

Measuring the quality of Wikipedia articles The results of different methods on mea-
suring quality of Wikipedia articles are displayed in Table 3.7.

English French Russian
accuracy AUC accuracy AUC accuracy AUC

[Warncke-Wang, Ayukaev, et al., 2015] 59% 0.85 - - - -
[Q. Dang and C. Ignat, 2016b] 63% 0.90 - - - -
[Q. Dang and C. Ignat, 2016d] 55% 0.79 52% 0.75 50% 0.72
[Halfaker and Taraborelli, 2015] 62% 0.86 53% 0.82 56% 0.81

RNN-LSTM 68% 0.92 65% 0.84 63% 0.83

Table 3.7: Performance of different algorithms

We presented three different approaches in assessing the quality of Wikipedia articles. In
this section we will discuss in details about the advantaged and disadvantages of each approach.

The first method [Q. Dang and C. Ignat, 2016b] was using the traditional machine learning
approach: we define features by hand and apply several shallow machine learning algorithms
on the defined features. The second method [Q. Dang and C. Ignat, 2016d] is mixed between
shallow and deep learning techniques where we used Doc2Vec for automatic feature engineering
then Deep Neural Networks on the output of Doc2Vec. The third method is an end-to-end deep
learning solution where we feed raw Wikipedia contents into a RNN-LSTM model to predict
directly the quality classes.

In the perspective of predicting performance, the method of using RNN-LSTM achieves the
highest scores. On the other hand, the method of RNN-LSTM and Doc2Vec-DNN are language-
neutral, means that they can be applied in any language, while the other method depends on
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language. In fact, the method presented in [Q. Dang and C. Ignat, 2016b] is available only for
English.

However, the method of RNN-LSTM has several disadvantages:

Computational time. The computing time of RNN-LSTM is much longer than [Q. Dang and
C. Ignat, 2016b; Halfaker and Taraborelli, 2015]. In practice24, it took several days for
training one model and several hours for testing. By contrast the methods of [Q. Dang and
C. Ignat, 2016b] or [Halfaker and Taraborelli, 2015] can return the results on the order of
seconds.

Interpretation. Interpretation is another problem of machine learning in general, means that
the machine learning model is not understandable from end user’s point of view [M. T.
Ribeiro et al., 2016]. While the prediction of [Q. Dang and C. Ignat, 2016b; Halfaker and
Taraborelli, 2015; Warncke-Wang, Ayukaev, et al., 2015] is somewhat explainable in plain
text, the results of LSTM model do not have this feature. For instance, the results of [Q.
Dang and C. Ignat, 2016b; Halfaker and Taraborelli, 2015; Warncke-Wang, Ayukaev, et
al., 2015] can be interpreted as suggestions like “with two more references you can improve
the quality class of your article from Stub to Start". On the other hand, it is difficult to
explain how can the RNN-LSTM model make a prediction.

To summarize, the RNN-LSTM method can be used in offline quality assessment, i.e. when
we do not need the result be returned quickly. On the other hand, the method using random
forest can be implemented as an online quality assessment, i.e. we can make a prediction right
after a modification of a user.

Measuring trust of Wikipedia coauthors We collected a set of 400 Wikipedians and
calculated trust score of users as described in Section 3.2.5. The baseline method to compare is
to calculate the contribution of users regardless the quality of Wikipedia articles as being done
currently in Wikipedia.

As we discussed in Section 1.4.2.2, a trust model is good if we can use the trust scores
calculated by this model to predict future behavior of users. Therefore, we compare our proposed
trust model with the baseline trust models to see whether our trust model can do better than
the baseline one in predicting the future contribution of users.

We used the future contributions of partners as the the dependent variable, and used scores
from three scoring methods we presented in Section 3.2.5 alternatively as the independent vari-
ables, then we fed them into linear regression analysis to see how each score relate to the future
contribution. The results of the analysis are presented in Table 3.8. We see that, the scores
computed by the first baseline method do not correlate with the future contributions. The scores
computed by the second method correlate with the future contributions but with very low ad-
justed R-squared value. The scores computed by our trust model correlate with the dependent
variable at much higher F-statistic and adjusted R2 compare to the baseline methods.

Based on he experimental results, we claimed that our trust model can better predict the
future behavior of users. Therefore, a user can rely on this trust model to see whether a partner
will contribute in the future or not.

Our proposed trust model relies on the quality of sharing articles. If we can define quality
models for other collaborative systems, we can easily extend the trust model to these systems.

24We used Grid5000 [Balouek et al., 2012] to train and test the model on the cluster which is equipped with
strong GPUs such as Titan X or K40. The least powerful cluster is equipped with 64GB of RAM.

81



Chapter 3. Measuring Trust: Case Studies in Repeated Trust Game and Wikipedia

F-value Adj.R-squared
Baseline_1 F(1,398) = 3.16 0.005
Baseline_2 F(1,398) = 4.06* 0.01

Our trust model F(1,398) = 33.54*** 0.1***

Table 3.8: Regression analysis on three scoring methods against future contribution in
Wikipedia

3.3 Discussion
In this chapter, we discuss the second research question of the thesis: “How do we calculate
trust score of users in a collaborative system?". We aim to design a trust model that calculate
the trust score between a pair of a user and a partner in collaborative contexts. We assume that
the user and the partner interacted with each other before.

We present a computational trust model to calculate a trust score of a user on a partner,
based on an assumption that the user and the partner interacted before. The trust model takes
into account only the behavior log of an user, i.e. the trust model relies only on activities that
the user can observe. The model traces the behavior of partner and calculate the trust score of
this partner.

We validate the model in two different contexts: trust game andWikipedia. The two contexts
are different in nature. Trust game is a lab-control experiment with a small number of partici-
pants compare to Wikipedia. Wikipedia is an online encyclopedia wherein people from all over
the world can contribute their knowledge. We show that our trust model outperforms baseline
models in both contexts. It is an indicator that human behaviors share similarities cross-domain.
Therefore we can expect that our trust model can be applied in other collaborative systems.

In the next chapter, we study the relations between users who did not interact with each
other.
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In the previous chapters, we studied two research questions: “Should we introduce trust
score to users?” and “How do we calculate trust scores between users that already interacted
with each other?”

In this chapter, we will study the last main research question. Given two users that have
not interacted with each other, how can we predict their trust or distrust relationship?

4.1 Introduction
In the previous chapter, we presented our computational trust model that can calculate trust
score for any pair of interacted users. It is also important to predict the trust/distrust relations
between users who have never interacted with each others. The reason is that modern collab-
oration networks are huge in term of number of nodes but very sparse [Leskovec et al., 2010b;
J. Tang, Gao, et al., 2012]. It means that the number of established links is much smaller than
the number of possible links.
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In collaborative systems, the interactions and relationships between users form implicit social
networks [Maniu et al., 2011; Rozenshtein et al., 2017], i.e. the relationships between users can
be represented as a graph where nodes are users and edges are relations between them [J.
Tang, Y. Chang, et al., 2016]. In collaborative systems like Wikipedia, users can express their
positive/negative opinions on partners in voting for someone to be an administrator of particular
Wikipedia pages [Burke and R. E. Kraut, 2008]. The positive or negative signs are considered
as trust/distrust opinions from users to partners [DuBois et al., 2011; Bachi et al., 2012; Z. Wu
et al., 2016]. These systems can be represented by a signed directed network [Song and Meyer,
2015], i.e. the edges in this network have direction and sign (positive/negative).

In this chapter, we address the third research question. The question is how can we predict
a future relation from a user to a partner is trust or distrust.

In this problem, we are given a network. The links of the network are assigned with posi-
tive/negative labels. However, the sign of one link is missing. Using the information from the
network, we need to infer the sign of the link. The problem is also called link-sign prediction in
literature [Leskovec et al., 2010a].

A lot of existing link-sign prediction algorithms fall into graph-based algorithms [Jiang et
al., 2016]. The algorithms take the graph topology as the only input data without knowing
the details of the graph. These algorithms can be applied to any signed directed graph. In
this chapter, we proposed a graph-based link-sign prediction algorithm. Therefore, along with
Wikipedia which is one of two main case studies in this thesis, we take into consideration two
other signed directed graph datasets which are widely used in literature to evaluate the link-sign
prediction algorithms.

We will use the following datasets to evaluate our algorithm:

Wikipedia In Request for Admissionship (RfA) process [Burke and R. E. Kraut, 2008], Wikipedia
users can vote for (positive) or vote against (negative) other users in the election to be an
administrator of particular Wikipedia pages.

Epinions. Users on Epinions can express their opinions as trust (positive) or distrust (negative)
to other users.

Slashdot. Users on Slashdot can tag other users as friend (positive) or foe (negative).

These datasets are used widely in literature to evaluate link-sign prediction algorithms
[Leskovec et al., 2010a; Dubois et al., 2012; Bachi et al., 2012; Song and Meyer, 2015; You
et al., 2016; J. Wang et al., 2017].

The link-sign prediction problem has some applications in collaborative systems. If we can
predict precisely the future relations between users, we can:

• Assist user in making some decisions.

– In collaborative editing systems, a user (Alice) can require the access right to a
document which belongs to another user (Bob) but Bob does not know Alice yet. In
this situation, we can assist Bob to make a decision of sharing or not the document
with Alice.

– In Wikipedia, we can recommend users to vote for or vote against a candidate in RfA
process.

– We can also suggest to a candidate which user will vote for her and which user will
against her, so this candidate can adjust her strategy. For instance, she can try to
increase the trust of the users who are not fond of her currently.
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• Assist users in deciding to trust or not to trust a partner that she does not interact with.

• Link-sign prediction can enhance the quality of existing mechanisms which we discussed
in Chapter 2 such as reputation score or review.

– Suppose Alice wants to assess the trust level of Bob in a system that is using a
reputation scheme. She realizes that Bob is rated by 100 users and the average score
of Bob is 4.2. However, if we can predict precisely the unknown relations, we can
discover that Alice only trusts 60 users in 100 users who rated Bob. Therefore Alice
only care about the rating score from these 60 users. In this case, the score of Bob
becomes 2.5. Hence, Alice has a better view about Bob from people she trust rather
than everyone.

4.2 Background Knowledge

In this section, we briefly describe some important properties of graphs in general and social
graphs in particular for the task of predicting trust/distrust relationship.

4.2.1 Network properties

There are several ways to classify networks [Takemoto and Oosawa, 2012].
On the difference of links, there are undirected and directed networks. The links might be

unsigned or signed. In this chapter, we only focus on signed directed network data.
On the topology of the network, we have two network classes: classical networks, i.e. a

network is artificially established using some predefined rules, and scale-free networks that are
real-world social network data [Takemoto and Oosawa, 2012].

There are several interesting properties of real-world social network data:

Connected Components Connected component (or weakly connected component for directed
graphs) is defined as a set of nodes in a graph that there exists a path between any two
nodes in the set.
Studies suggested that giant connected components form in real-world social networks
[McGlohon et al., 2011]. For instance, [Ugander et al., 2011] claimed that the largest
connected component of Facebook contains 99.1% of Facebook users. A same phenomenon
is observed in other social networks [Leskovec et al., 2010a; J. Tang, Gao, et al., 2012].
We can interpret this property as in a network, everyone relate to everyone. We can predict
the sign of almost any link in the network based on the information from the rest of the
network.

Small-world phenomenon A classical theory suggested that all people in the world are sepa-
rated by at most of six degree of separation [Guare, 1990]. In the Internet era, the degree
of separation in online social networks decreases dramatically to 4 [Backstrom et al., 2012]
and the most recent value is only 3.57 for Facebook users [Edunov et al., 2016].
Due to this property, we will focus on local neighborhood of a link for the sign prediction
task rather than focus on the whole network.

Heavy-tailed distribution Distributions of node degree in social networks usually follow
power-law distribution [Takemoto and Oosawa, 2012; X. Zheng et al., 2015; J. Tang,
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Gao, et al., 2012; Leskovec et al., 2010a; Perozzi et al., 2014] as follows [McGlohon et al.,
2011]:

y(x) = Ax−γ (4.1)

wherein A and γ are two positive constants.
Power law distribution means that, while there is a small number of popular nodes, i.e.
these nodes have a lot of connections, most of nodes have few connections. The power
law distribution is observed in almost every existing networks. In fact three datasets we
used in this chapter (Wikipedia, Epinions, Slashdot) follow the power-law distribution
[Maniu et al., 2011; Dong et al., 2012]. It suggests that if we build a graph-based link-sign
prediction algorithm, we can apply this algorithm on different social graphs if they follow
the same distribution.

4.2.2 Graph sampling

We define a graph G =< V,E > as a set of vertices V and edges E. We denote W as a weight
matrix for edges. W has |V |2 cells. Each cell wij of the matrix W could contain one of three
values: 1 means that there is a positive link from node i to node j, 0 means there is no link and
−1 means there is a negative link.

There are two extreme sampling methods which are popular for graph data [Cormen et al.,
2009, Chapter 22]:

• Breath-first Sampling (BFS).

• Depth-first Sampling (DFS).

Both of these extreme sampling will cover the entire graph.
However, as studies [Leskovec et al., 2010a; Song and Meyer, 2015; X. Zheng et al., 2015]

suggested, the information of a node is mostly influenced by neighbor nodes rather than the
entire network. For instance, a decision made by a user in Chile probably has no influence on a
user in South Africa, given that there are no direct relationship between them.

[Manning et al., 2008, Chapter 21] defined a random walk on nodes as a series of nodes
v1, v2, ..vn wherein vi and vi+1 are immediate neighbours for 1 ≤ i ≤ n− 1. n is the number of
steps of the walk.

We define a random walk formally as follow [Grover and Leskovec, 2016]. Given a starting
node u and a length n of the walk. We denote ci as the ith node in the walk, with c0 = u.

P (ci = x|ci−1 = v) =

β ∗
πv,x

Z if (v, v) ∈ E
(1− β) otherwise

(4.2)

wherein πv,x is the transition probability between two nodes v and x, Z is the normalizing
constant, and β is a random jump constant [Page et al., 1999].

4.2.3 Link analysis tasks

[J. Tang, Y. Chang, et al., 2016] distinguished different link analysis problems. We visualize
them in Figure 4.1. In this Figure, subfigure (a) represents the link prediction problem [Liben-
Nowell and Kleinberg, 2007], subfigure (b) represents the link-sign prediction problem [Leskovec
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et al., 2010a] and subfigure (c) represents the negative link prediction [J. Tang, S. Chang, et al.,
2015].

In this thesis, we only focus on link-sign prediction problem, because this problem fits to the
problem of trust/distrust prediction.

Figure 4.1: Different link analysis tasks [J. Tang, S. Chang, et al., 2015].

4.3 Related Work

Several studies have been presented for the problem of trust/distrust prediction, or link-sign
prediction in signed directed graphs [Song and Meyer, 2015]. Here we only present the research
works which belong to graph-based approaches [Jiang et al., 2016] that do not require any
external information, such as personal information or users’ historical trading information. The
input information of these algorithms are uniquely graph topology as visualized in Fig. 4.1.

Graph-based link analysis algorithms are proposed because of two reasons:

• These algorithms can be applied in an arbitrary graph without knowing details information
about graph.

• These algorithms used a minimal personal information. In fact, some link signs are easily
inferred by using personal information [J. Tang, Gao, et al., 2012]. For instance if we know
two users are a couple it is easy to infer with a high confident level that they will maintain
positive links between them. However, due to the raising privacy concerns on the Internet
the usage of personal information should be avoided.

[Guha et al., 2004] presented one of the first prediction by using a trust and distrust propaga-
tion framework. The authors defined four atomic propagating operators which can be described
in natural language as “if A trusts B and B trusts C so A trusts C", “if A trusts C and D and B
trusts C so B trusts D", “if A trusts B and C trusts B so C trusts A" and “if A and B trust D
and C trusts A so C trusts B". The prediction is executed by recursively applying these atomic
operators on users’ relations matrix. In theory the propagation could be performed until all
missing links are predicted. However, longer propagation tracks lead to lower confidence of the
prediction results.

Several algorithms rely on two social psychology rules: structural balance theory and social
status theory. In short, structural balance theory states that, a triad which represents relations
between three users tends to be balanced, i.e. it has an odd number of positive signs regardless
the direction, as we visualize in Figure 4.2. Social status theory claims that, if there is a positive
edge from A to B, then A considers herself having a lower social status than B, and if there is
a negative edge from A to B, then that A consider herself having a higher social status than B.
In this thesis, we will use the notation A +→ B to state that there is a positive link from A to
B, A −→ B to state that there is a negative link from A to B, and A > B to state that A has a
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Figure 4.2: Visualization of structural balance theory [Leskovec et al., 2010a]. According to
structural balance theory [Leskovec et al., 2010a], triads (a) and (b) are balanced, while (c) and
(d) are not. According to weak balance theory [Hsieh et al., 2012; Leskovec et al., 2010a], triads
(a), (b) and (c) are balanced, while (d) is not. Structural balance theory does not take the

direction of edges into consideration.

higher social status than B. We use A→ B to state that there is a link from A to B regardless
the sign.

Using the above notations, we could express social status theory as, if A +→ B, then A < B,
and if A −→ B, then A > B. If everyone agreed on a common social status, we could make a
prediction as, if A > B then A −→ B and B +→ A. We visualize social status theory in Figure
4.3.

Based on these two theories, [Leskovec et al., 2010a] trained a logistic regression on a set of
seven degree features calculated from triads of the signed directed social network graphs. [Chiang
et al., 2011] extended the research work of [Leskovec et al., 2010a] by using longer cycles such as
quadrilaterals or pentagons. [Hsieh et al., 2012] presented low-rank matrix approximation with
weak balance theory, which extended the structural balance theory by considering a triad with all
three negative edges as a balance triad. [You et al., 2016] combined the two social theories with
users trustworthiness and predict how likely a user will trust other users. [Zhou et al., 2014]
presented a technique called PLSP which uses parallel programming to speed up the training
speed of classifier based on social psychology theories. The approach achieves good performance,
but requires global information and also other external information such as reviews of users on
other users.

Figure 4.3: Visualization of social status theory [Leskovec et al., 2010a]. The sign of the dash
line from C to A is inferred by their social status. Because A +→ B and B +→ C, therefore we
have B > A and C > B, so C > A, hence social status theory predicts that the sign of line

from C to A is negative.
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[DuBois et al., 2011] developed an algorithm by combining path-probability trust inference
algorithm with spring-embedding technique for trust / distrust prediction. The proposed al-
gorithm requires a global view on the entire network. Although the algorithm performs well
in density networks, i.e. where vertices of networks form triangles, its performance decreases
dramatically in sparse networks.

[Song and Meyer, 2015] argued that, (i) even structural balance theory and social status
theory contributed played an important role in existing research studies on link sign prediction,
these theories are not very suitable in large-scale and extreme sparse network, and (ii) a fully
observed network is not always available in practice, and developed a Bayesian node features
based on partially observed networks. Finally the authors used a logistic regression classifier
for link sign prediction problem. However, the performance of the approach is not very good
compare to other recent studies.

Deep learning is gradually adapted in recommendation on graphs. On using deep learning for
feature selection of graphs before applying other “shallow" machine learning algorithms, [F. Liu
et al., 2013] used Deep Belief Network (DBN) on node degree feature sets, while [S. Deng et al.,
2016] applied deep autoencoder for feature selection in social recommendations, and [Xiaoyi Li
et al., 2014] used Restricted Boltzmann Machine (RBM) for feature selection. All the approaches
presented in [F. Liu et al., 2013; Xiaoyi Li et al., 2014; S. Deng et al., 2016] required re-training
when the network changes.

[Covington et al., 2016] presented the usage of feed-forward neural networks for Youtube
recommendation. The solution is being used by Google. However, the solution requires to
access personal information.

Inspired by recommender systems, [You et al., 2016] considered trust / distrust declarations
from users to other users as recommendations, and applied matrix factorization, which is well-
known and has been used for a long time in recommender systems, for link sign prediction
problem.

Several research studies focus on a more general problem that is network embedding problem.
The network embedding algorithms aim to represent a network by a low-dimensional matrix.
We can apply a conventional machine learning algorithm on the output matrix for different
predictive tasks including link-sign prediction [Grover and Leskovec, 2016]. [S. Wang et al., 2017]
presented an algorithm called SiNE that uses multi-layer feed-forward neural network to learn
the representations of a signed graph. The authors designed the objective function of the neural
network based on structural balance theory, i.e. the neural network tries to approximate the
similarities between users based on the structural balance theory. [Yuan et al., 2017] presented
an algorithm called SNE that uses the skip-gram model to learn the similarities between nodes
in a signed graph.

Many presented approaches require a fully observed network which consumes a lot of com-
putational power while the long running time is ignored [Zhou et al., 2014]. Furthermore, none
of existing approaches consider dynamic graphs. In other words, the existing approaches took a
snapshot at a particular point of time of a network then do the analysis. If the graph changes,
the prediction needs to be performed from the beginning.

Real-world social networks change frequently. The reason is there are a huge number of
active users in popular social networks and their activities change the network topology. For
instance, Facebook reported that the company has 1.23 billion daily active users on the last
day of 201625. The network topology of real-world social networks change every second, or even
faster. It leads to several critical issues:

25http://newsroom.fb.com/company-info/ accessed on 14-Feb-2017.
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• It is very difficult to capture a full snapshot of a social network [Morstatter et al., 2013]. In
fact, the most popular method to capture a snapshot of a social network is to start from
several seed nodes then recursively collect the neighbors of these seed nodes [Leskovec
et al., 2010b; Grover and Leskovec, 2016] by the graph sampling techniques we discussed
above. However, the network itself will change during the graph sampling process, so the
graph at the beginning and at the end of the process are different. In order to capture a
precise snapshot of a network we have to freeze the network during the sampling process
which is definitely impossible.

• The existing approaches do not utilize the time information. Studies [J. Tang, Gao, et
al., 2012; Ostrom, 2014] claimed that time plays an important role in forming social
relationship. For instance, a friendship which was formed 20 years ago should has a
different influence from another friendship which was formed two hours before. However,
existing approaches treat these two relations as the same.

• Furthermore, by eliminating time information, we might bias the model by learning wrong
information. The reason is, when we remove the time information, we implicitly assume
that the link with missing sign is established after other links with known signs. In training
phase, the learning algorithm will learn the topology corresponding with a sign but that
topology might be created after the link, so the topology does not reflect the observation
of a user when she establish the link.

– Consider an example graph with five nodes: Alice, Bob, Carol, Dave and Evie. In
day 1, Alice established a positive link to Carol, i.e. Alice trusts Carol. In day 2,
Carol established a positive link to Bob. In day 3, Alice wanted to form a link to Bob.
She looked to her topology and realized that one her trusted friends, Carol, trusts
Bob, so Alice formed a positive link to Bob. In day 4, both Dave and Evie formed
negative links to Bob. If we feed the topology after day 4 to a learning algorithm, the
algorithm will learn that Alice formed a positive link to Bob when a majority of her
friends formed negative links to Bob, despite the fact that when Alice made a link
these negative links did not exist yet.

• The existing approaches do not utilize trained data. Training in general is an expensive
task in large-scale machine learning. On the other hand, new arriving data does not
change the previous one, which means that a new link in the network does not change
the status of established links. Therefore, it is better to perform incremental learning, i.e.
that the model only needs to learn new data when it arrives rather than learn everything
from beginning. We note that, several incremental training solutions for logistic regression
which are used by previous studies [Leskovec et al., 2010a] are available. However, the
concerns are not only that the previous studies do not utilize them but also they require
performing feature engineering process from beginning when the network changes. For
instance, when the network changes, the algorithm of [Leskovec et al., 2010a] requires
scanning the network again to assign new features to nodes.

To solve the above issues, we propose a novel incremental learning approach using random
walk and stateful LSTM for the problem of trust/distrust prediction.

Similar to our approach, [R. Agrawal, Alfaro, and Polychronopoulos, 2016] learned a graph
neighborhood by using LSTM. However, the authors used tree-based sampling approach while
we used random walk and they do not consider the time information. As we discussed in previous
section, tree-based sampling is an extreme sampling method that will travel the graph entirely.
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4.4 Our Approach
In this section we present our approach for link-sign prediction problem.

The approach can be divided in two steps. In the first step, we perform a sampling process
then measure the distance between nodes. In the second step, we feed the action list of a node
as a time-series data into RNN-LSTM for prediction.

4.4.1 Node distance by random walk & Doc2Vec

The task of link-sign prediction is, given a link from node A to node B, we need to predict the
sign of the link. As discussed above, the first step is to measure the distance between A and B.

There are two main approaches to measure the node distance in graphs which are global-based
measurement and local-based measurement [Even, 2011]. Global-based measurement means that
the full observation of the graph is available and local-based measurement means that only local
topology around current interest nodes are available.

We chose local-based measurement in this thesis because of two reasons:

• As we discussed above, the full observation of real-world networks is not available.

• As studies [DuBois et al., 2011; Song and Meyer, 2015; Cygan et al., 2015] suggested, the
decision of a user is influenced by their directed friends, and the influence becomes weaker
quickly while the distance between two users increases. It is not necessary to acquire global
information of the network to predict sign of only one link.

The distance measurement task can be further divided in two smaller tasks: graph sampling
and vector mapping.

4.4.1.1 Sampling by Random Walk

Random Walk is used widely in graph sampling [Leskovec and Faloutsos, 2006; Vishwanathan
et al., 2010; B. F. Ribeiro and Towsley, 2010; Perozzi et al., 2014; R. Li et al., 2015; Grover and
Leskovec, 2016; Kipf and Welling, 2017].

In order to measure the distance between nodes, we perform random walk for each node.
The random walk we used is similar with [Grover and Leskovec, 2016], i.e. we follow the edges
regardless the direction with the transitional probability. For instance, we can perform a step
from node A to node B even there is only link from B to A.

Let’s consider an example of a walk as visualized in Figure 4.4. Suppose that the walk
has just moved from node A to B and now the walk is staying in node B. Now we form the
unnormalized the transitional probability, i.e. the probability of following node, as follows:

α(A) = 1
p

α(x|there is a link between A and x) = 1

α(x|there is no link between A and x) = 1
q

There is an unnormalized probability of 1
p for the walk to immediately come back to the

previous node (node A). Similarly, the probability of 1
q is the probability that the walk further

explores the part of the network which has not been explored before. Different from Node2Vec
[Grover and Leskovec, 2016], we keep the sign of visited links through the walk.
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Figure 4.4: Graph sampling by random walk.

4.4.1.2 Vector mapping

Now for each node, we have a list of nodes as the result of random walk. Recent studies in graph
embedding utilize the techniques in natural language processing [Perozzi et al., 2014; Ristoski
and Paulheim, 2016; Grover and Leskovec, 2016].

Existing studies usually rely on Word2Vec [Mikolov et al., 2013] for mapping a series of node
to a vector. However, because the links in our case are signed links, we used Doc2Vec [Le and
Mikolov, 2014] instead of Word2Vec for the task.

The vector mapping algorithm is described in Algorithm 3.

Algorithm 3: Graph Vectorizing
Data: a signed directed graph G =< V,E >
Result: a list of vector, each vector represents a node in the graph.
// initialization
walks := an empty vector;
output := an empty vector;
N = |V |;
// random walk
for i in 1:N do

w := RandomWalk (V[i]);
walks.append (w);

end
// vectorize
output := Doc2Vec (walks);
return output;

4.4.2 Recurrent Neural Networks for Relationship Prediction

After using Doc2Vec for transforming a node series to a vector, the final tasks to predict the
sign of the link from node A to node B are:

• Initialize an empty vector.
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• For each link established from A to x, calculate the distance from A to x.

• For each distance value calculated, if the sign is negative, put the negative value of the
distance value to the vector. Otherwise, put the distance value to the vector.

• Feed the vector to the RNN.

We display the pseudo-code of using RNN-LSTM in Algorithm 4. In this Algorithm, we
used the argument length = 1 for RNN to predict the sign of the next link. The main idea of
the algorithm is that we consider a link established from A to B as a step from A. Given the
list of previous steps of A over time, we feed the data into a RNN model to predict the next
step made by A.

Algorithm 4: Sign Prediction
Data: output of the Graph Vectorizing task graph_vectors.
Data: the graph G =< V,E >
Data: two nodes A and B whose the link has unknown sign.
Result: predicting sign of the link A→ B.
// initialization
indexA := V.index(A);
indexB := V.index(B);
distance_vector := anemptyvector;
K := length(graph_vectors[indexA])
// distance calculation
for i in 1:K do

d := cosine_distance(graph_vectors[indexA][i]);
distance_vector.append(d);

end
sort(distance_vector, key = established_time);
// sign prediction
rnn := RNN_LSTM(distance_vector);
raw_predict := rnn.predict(length = 1);
sign := ifelse (raw_predict > 0,1,-1);
return sign;

4.5 Experimental Results

4.5.1 Datasets

The RNN-LSTM algorithm for link-sign prediction is validated against three popular signed
directed real-world datasets: Epinions, Slashdot and Wikipedia26. The datasets are collected
by [Leskovec et al., 2010b].

• Epinions is a product review website. Users of Epinions can explicitly state their trust
(positive) or distrust (negative) opinions on other users.

26The datasets can be obtained at http://snap.stanford.edu
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Figure 4.5: Visualization of connected component. The set of three vertices A, B and C is a
strongly connected component, while the set of all four vertices is a weakly connected

component (WCC).

• Slashdot is a website focusing on technological news. Users on Slashdot can declare other
users as friend (positive) or foe (negative).

• Wikipedia dataset contains voting results for Wikipedia Request for Adminship (RfA)
process. A user can vote for (positive) or against (negative) other users to become admin-
istrators of Wikipedia pages.

Several basic statistics of three datasets are displayed in Table 4.1.
The 1st and 2nd row of the table displayed number of vertices and edges in each dataset. The

3rd row showed the fraction of existing edges over the total number of possible edges, i.e. the
number of edges if the network is fully connected. We could see that all graphs are extremely
sparse.

The 4th and 5th row displayed the distribution of positive and negative edges on each dataset.
Most of edges are positive, therefore a predicting model need to provide a prediction with
accuracy higher than the percentage of positive edges. For instance, a predicting model which
provides a prediction with accuracy of 84% on Epinions dataset is nonsense, because a naive
approach which predicts every output as positive will achieve the accuracy of 85%.

The value “largest WCC" presented in the 6th row of Table 4.1 showed how many percent
of total edges belong to the largest weakly connected component in each dataset. We visualize
WCC in Figure 4.5. We claim that these graphs are weakly connected. The finding is consistent
with other OSN platforms. For instance, 99.91% of Facebook users are connected [Ugander
et al., 2011].

The 7th row of Table 4.1 presents the average size of primary neighborhood sets of all edges
in each datasets. The size of primary neighborhood set of node A is the number of nodes that
have direct connection with A regardless the direction. The details distribution of primary
neighborhood set size is displayed in Figure 4.6. The histograms show that the distributions of
primary neighborhood set size are similar between datasets.

The 8th row “fraction of triads" presents the fraction of number of existing triads over total
number of possible triads in each dataset. We could see that these fractions are extremely small,
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Epinions Slashdot Wikipedia
# of nodes 119 217 82 140 7 118
# of edges 841 200 549 202 103 747

fraction of edges 6e−5 8e−5 2e−3

+ edges (%) 85.0 77.4 78.8
− edges (%) 15.0 22.6 21.2

largest WCC (%) 99.1 100 100
average # of directed connection 590 327 418

# of triads 13 375 407 1 508 105 790 532
fraction of triads 1.35e−10 5.46e−11 4.25e−9

Table 4.1: Basic statistics of datasets. WCC stands for weakly connected component.

(a) Epinions (b) Slashdot (c) Wikipedia

Figure 4.6: Distribution of size of primary neighborhood sets in three datasets (log scale)

i.e. triads are not popular in all three datasets. Therefore, the algorithms rely on sociology rules
[Leskovec et al., 2010a; Hsieh et al., 2012] might not perform well on these datasets.

4.5.2 Experiments on Static Graphs

In this section, we perform link-sign prediction in static graphs, i.e. the graphs where all nodes
and links are available, and there is no removal or addition of nodes or links. We follow the
leave-one-out validation setting of [Leskovec et al., 2010a], i.e. we alternatively remove the sign
of one link and try to predict this sign. Finally we compare the prediction with the ground
truth.

All three datasets are highly imbalanced, therefore accuracy score is not the most suitable
metric to evaluate the algorithms. However, due to the fact that most existing studies used the

Size Epinions Slashdot Wikipedia
100 16.15% 26.95% 6.92%
200 27.46% 46.24% 25.44%
300 37.82% 64.37% 44.02%
400 47.53% 75.06% 60.93%
500 55.54% 82.20% 70.87%
1000 81.25% 95.01% 93.44%

Table 4.2: Cumulative distribution of primary neighborhood set size. For instance, on
Epinions dataset, there are 16.15% of edges that have the size of primary neighborhood set

smaller or equal 100.
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Figure 4.7: The distribution of edge embeddedness in three datasets [Song and Meyer, 2015]

accuracy score to report the performance of their algorithms, we keep using this metric for the
comparison purpose. We also report F1-score but only for further references.

Epinions Slashdot Wikipedia
Degree features[Leskovec et al., 2010a] 90.39 83.76 83.58
Triad features [Leskovec et al., 2010b] 90.42 80.42 82.46

Degree + triad features [Leskovec et al., 2010a; Leskovec et al., 2010b] 92.25 84.91 84.87
Longer cycles features [Chiang et al., 2011] 90.64 83.83 84.04
Spring-based inference [DuBois et al., 2011] 89 82 81

Low-rank modeling [Hsieh et al., 2012] 92.48 84.57 84.93
Weighted MF-LiSP [P. Agrawal et al., 2013] 89.0 80.2 80.0

PLSP [Zhou et al., 2014] 96.2 89.6 89.1
Bayesian-based model [Song and Meyer, 2015] 93.61 85.24 87.28

ESS [G.-N. Wang et al., 2015] 95.0 88.08 -
PMF [You et al., 2016] 94.06 91.28 -

RNN-LSTM 96.31 91.66 89.76

Table 4.3: Link Sign Prediction Accuracies (%). The best accuracies are highlighted in bold.
The values are extracted from corresponding papers. The metric of Wikipedia prediction by

ESS and PMF are missing because the authors do not present the performance of these
algorithms on Wikipedia dataset.

We presented the accuracy scores on three datasets in comparison with state-of-the-art so-
lutions in Table 4.3. Our algorithm outperforms other state-of-the-art algorithms in term of
accuracy score in all three datasets.

We presented the F1-score of the RNN-LSTM approach with other algorithms in Table 4.4.
However, we note that the F1-score for these other baseline algorithms are based on our own
implementation of these algorithms, therefore they might not reflect their true performance.

4.5.3 Experiments on Dynamic Graphs

In this section, we consider the link-sign prediction problem in dynamic graphs, i.e. the graphs
when links are added over time. Because there is no existing study link-sign prediction in
dynamic graphs, we reimplemented two algorithms presented by [Guha et al., 2004] and [Leskovec
et al., 2010a] as baseline algorithms.

We first established the network by adding links one by one. When the number of links
reach to 1, 000, we start the prediction. We fed the next link into each algorithm, namely the
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Epinions Slashdot Wikipedia
Trust propagation [Guha et al., 2004] 0.892 0.885 0.882
Degree features [Leskovec et al., 2010a] 0.889 0.893 0.887

RNN-LSTM 0.911 0.905 0.896

Table 4.4: F1-score of different algorithms on static graphs. The F1-score of two baseline
algorithms are based on our own implementation.

algorithm of [Guha et al., 2004], the algorithm of [Leskovec et al., 2010a] and ours. After all
three algorithms made the prediction, we added this new link into the training set and fed the
next link. All the experiments are executed on Grid5000 [Balouek et al., 2012] server. In order
to make a fair comparison, we executed our algorithm on CPU mode.

As we described above, the approach presented by [Guha et al., 2004] is a simple rule-based
approach. The approach is implemented as matrix operations that requires constant running
time regardless of input size. The approach presented by [Leskovec et al., 2010a] is a logistic
regression based approach, so the running time should increase linearly with the input size
[Minka, 2003]. Our algorithm relies on stateful RNN-LSTM, so we could expect a long running
time in the beginning and stable running time in next predictions.

We display the running time of three algorithms in Figure 4.8. The running time of the trust
propagation algorithm [Guha et al., 2004] is constant regardless of the size of the dataset, while
the running time of the logistic regression based on sociology rules [Leskovec et al., 2010a] in-
creases almost linear with the graph size. The observations confirmed our theoretical predictions
about the running time of each algorithm.

Similarly, we display the accuracy score of three algorithms on dynamic graphs in Figure
4.9. Again, we could see that the performance of the trust propagation [Guha et al., 2004] does
not depend much on the size of dataset, while the logistic regression based approach [Leskovec
et al., 2010a] performs better when there are more data available. The RNN-LSTM also achieves
higher score with more data but the influence of new data is less than the method of [Leskovec
et al., 2010a]. Furthermore, the accuracy scores we achieved with our implementation are similar
with the scores reported in [Guha et al., 2004] and [Leskovec et al., 2010a]. It confirmed that
the performance of our implementation is not far from the original ones.

4.6 Discussion

We presented an approach of combining Random Walk, Doc2Vec and RNN-LSTM for link-sign
prediction in signed directed networks. We recall that, while the proposed algorithm can be
applied to an arbitrary network, the original objective is to predict the trust/distrust relations
between users in collaborative systems as we discussed in Section 1.2.3. We used the Wikipedia
dataset as the main validation dataset, but we included Epinions and Slashdot datasets for
external validation. The fact that our algorithm performs well in all three datasets despite the
fact that they are collected from different websites, allows us to expect that our algorithm can
perform well in other systems.

We showed that our algorithm outperforms state-of-the-art algorithms in link-sign prediction
for static graphs. We showed that, in dynamic graphs where nodes and links are added, our
algorithm outperforms two well-known link-sign prediction algorithms of [Guha et al., 2004] and
[Leskovec et al., 2010a]. In fact, the running time of our algorithm is very high compared to
other two algorithms in beginning, but it require almost constant running time when new links
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Figure 4.8: Running time of different algorithms on dynamic graphs.

Figure 4.9: Accuracies on dynamic graphs.

are introduced. It makes our algorithm suitable for deploying in real networks. Nonetheless,
our algorithm shares a same limitation as we discussed in Section ??: it is more difficult to
explain the algorithm to users than some rule-based algorithms such as [Guha et al., 2004] or
sociological-rules based algorithms such as [Leskovec et al., 2010a].

In fact, when a user expressed their trust/distrust opinion on other partner in Wikipedia
RfA process, the user might know the partner already. However, this information is not available
in the dataset, so our algorithm treats the user and the partner as they did not interact in the
past. Therefore, our algorithm can be used to predict the future trust/distrust opinions between
users who do not know each other.

Furthermore, our algorithm does not reveal personal information of users. Studies showed
that users hesitate in expressing explicitly their opinions, particularly negative ones, on other
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users [Massa and Avesani, 2007]. Our algorithm used an anonymous graph as an input to avoid
the leak of personal opinions.

In Wikipedia, users can explicitly express their trust/distrust opinions on other users. These
explicit relationship might not be available in other collaborative systems such as Google Docs.
However, in these systems, we can consider a different kind of trust expression, such as if Alice
grants an access to a document for Bob, or if Alice has collaborated with Bob for a long time.
These relationship could be explored in future research.

In this chapter, we presented our algorithm to predict future relationship between users who
did not interact with each others. It finishes the thesis. In the next chapter, we conclude the
thesis and present some future research works.
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In this thesis we presented our studies on trust assessment in large-scale collaborative con-
texts from different views. We argued that, in large-scale collaborations, it is difficult for a
typical user to assess the trust level of every partner she have. We argued that the conventional
trust assessment techniques such as avatar or nick-name are either vulnerable or not scalable.
The core idea of the thesis is that we can assist users in collaboration by introducing personal
trust score that is unique for a pair of a user and a partner.

In order to bring trust into computer-based collaboration, we need a computational trust
model.

We addresses three main research questions in the thesis:

1. Should we introduce trust score to users?

2. How to calculate trust score for a pair of users who interacted?

3. How to predict trust relations between users that have not interacted with each others?

5.1 Outcomes

In this section, we summarize the outcomes of the thesis for three research questions we presented
in Section 1.2.
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5.1.1 Influence of trust score on user behavior

Studies proposed different computational trust models in literature. However, to the best of
our knowledge we are not aware of a research work that study the effect of trust score on user
behavior. Particularly we study the effect of trust score on cooperative behavior.

We deployed trust game [Berg et al., 1995] which is widely used to understand human trust
[Chakravarty et al., 2011; Dinesen and Bekkers, 2015] to study the influence of trust score
in user collaboration. We organized experiments with participants recruited through public
announcement at our institute. We collected user behavior log and analyzed the behavior
statistically. :

We demonstrated that introducing either trust score or user ID significantly im-
prove user collaboration with no additive effect. In comparison with simple repeated
trust game when we show no information to users, in other games when we show either trust
score or user ID to users, the sending proportion between users are higher significantly. We do
not observe any additive effect, i.e. in case we show both trust score and user ID to users, the
sending proportion is similar with the case we show only one of the two information.

We showed that users follow the suggestion of trust score. The sending proportion of
users to partners are correlate with the trust scores of partners, i.e. users tend to send higher
amount to partners with higher trust scores.

Trust score is better than reputation score in predicting future behavior of users.
We used either trust score or reputation score as independent variables to predict future sending
proportion of users. The experiments showed that trust score is better than reputation score in
predicting future behavior.

We verified the findings by using a comprehensive statistical analysis.
As we discussed in Section 2.6, studies suggested that the findings of trust game experiment

can be extended in real-world systems, i.e. it could be valuable to deploy a computational trust
model into real-world collaborative systems.

Limitations of our works are the following:

• We used the factorial experimental design. Due to the nature of the design, we ask
same groups of people play different games to compare the user behavior under different
contexts.Therefore, it might be difficult in practice to extend the experiment. For instance,
it might be difficult to ask a group of people to play six games that might last for three
hours.

• We argue and reason that reputation score does not reflect the behavior of users due to the
assumption of constant-behavior pattern over partners. The assumption might be verified
by organizing an experiment in which we display reputation score to users.

5.1.2 Calculating trust score

We defined the question as, given a log of a collaborative system, for a particular user, how to
calculate trust score of each partner who has already interacted with this user.

Because trust score is calculated based on the user contribution to the sharing task, the first
step is to calculate the quality of the sharing task. Then we can calculate the contribution by
checking how the user behavior affect the quality.
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We studied repeated trust game and Wikipedia as two collaborative contexts in designing
trust calculation methods.

For repeated trust games:

1. We proposed a novel computational trust method for repeated trust games. The trust
model requires only observable information from a user. Therefore, the model does not
rely on any external information. Using the model, a user can always calculate trust score
of a partner.

2. We validated the trust method against:

Simulated users: We defined different user types and apply the trust model into these
users. We showed that our trust function can punish cheating behavior and distin-
guish between different user types better than other baseline models.

Human opinions: We used the dataset provided by [Keser, 2002] in which players in
trust game also give rating score (positive, neutral, negative) to their partners. We
compare the trust scores calculated by our trust model with human opinion. We
showed that our trust model is consistent with human opinion.

Human behavior: We used the trust scores calculated by our trust model to predict
future behavior of users in three trust game datasets: our own dataset, the dataset
provided by [Dubois et al., 2012] and the dataset provided by [Bravo et al., 2012].
We showed that our trust model can be used to predict future behavior better than
other baseline models.

On the other hand, we presented several methods to measure the quality of articles on
Wikipedia which is one of the most important collaborative systems in the world. We also applied
the computational trust model presented for trust game into Wikipedia. Our contributions are:

1. We proposed three different methods in measuring quality of Wikipedia articles.

• We improved state-of-the-art method [Warncke-Wang, Ayukaev, et al., 2015] by in-
troducing new features to the random forest algorithm. We performed a more com-
prehensive evaluation. We refer this model as random forest based model.
• We proposed two novel approaches of using deep learning on measuring quality of
Wikipedia articles. The first model uses Doc2Vec and Deep Neural Networks (DNN)
to predict the quality of articles. The second model uses Recurrent Neural Networks
(RNN) with Long-Short Term Memory (LSTM) to predict the quality. We refer these
two models as DNN-based and RNN-based model.

We validated all three models using real-world Wikipedia datasets: English, French and
Russian Wikipedia. The random forest based model is available only for English. We
showed that the random forest based model and RNN-based model outperform state-of-
the-art algorithm in term of accuracy and AUC scores. The RNN-based model achieves the
highest results in predicting, but the cost is longer running time and lack of explanation.

2. We proposed a quality-based trust measurement for Wikipedia coauthors. We applied
the trust model that we presented for trust to Wikipedia editors. We used Levenshtein
distance as a contribution metric. We considered the quality of Wikipedia articles as a
factor to measure the contribution of users. We showed that our trust model can predict
the future contributions of users better than other baseline models.

103



Chapter 5. Conclusions

The fact that our single trust model performs better than other baseline methods in both
repeated trust game and Wikipedia allows us to expect an application of our trust model in
other real-world collaborative systems.

Limitations of our works are the following:

• In repeated trust game, while our model predicts future behavior of senders pretty well, it
does not achieve the same performance in predicting future behavior of receivers. We are
aware of potential complicated interaction between multiple factors. The trust model can
be improved to capture better the behavior trend of receivers.

• In Wikipedia, we proposed to use edit distance as a contribution metric. We might combine
our work with previous studies that use edit longevity as contribution metric. For instance,
we might use the trust scores calculated by a trust model to predict the survival time of
a text.

5.1.3 Predicting trust relations

In large-scale collaborative systems, it is usual that a user needs to interact with a partner that
she never interacted with. In this situation, she needs to decide to trust this partner or not.
Because there is no previous interaction, the trust model we presented in the previous section is
not possible. However, if the partner is not a new member of the system but had interacted and
set up the relations with other users, we can predict the trust or distrust relations that the user
will have to this partner. Therefore, we can recommend the user to trust or not the partner.

If the information about trust/distrust relations of a subset of users is available, we can
predict the future relations which will be established. Because the relations between users
can be represented as a signed directed network where vertices are users and edges are their
relations, the task of predicting trust/distrust relations became the task of link-sign prediction
in the network [Leskovec et al., 2010a; Song and Meyer, 2015].

We presented an approach of using Random Walk, Doc2Vec and RNN-LSTM for predicting
the signs of the future links in a network. We used the Wikipedia dataset wherein the users
express explicitly their trust/distrust opinions on other users [Leskovec et al., 2010b] as the main
testing dataset to validate our solution. We also used Epinions and Slashdot datasets [Leskovec
et al., 2010b] for external validation because in fact the solution can be applied in any signed
directed network. The experiments showed that our algorithm can predict more accurately than
state-of-the-art algorithms in both static and dynamic networks. Furthermore, our algorithm
requires only local information, while some existing algorithms ask for full observed network
[Leskovec et al., 2010a; Dubois et al., 2012; You et al., 2016].

If the algorithm is deployed into a collaborative system, we can suggest users in collaborating
with other users that they do not know. For instance, Alice receives a request from Bob to join
a private project on Github, but Alice does not know Bob yet. The algorithm hence can suggest
Alice to trust Bob or not.

In order to perform the proposed algorithm, we assumed a trust network where users explic-
itly express their trust/distrust opinions on other users. The web of trust might not be always
available. We might consider other expressions of trust/distrust opinions. For instance, if Alice
denies Bob to access her documents, we might consider that Alice does not trust Bob.

To summarize, in this thesis we studied the problem of trust assessment in large-scale collab-
oration systems from different perspectives. We showed that trust score can be used to encourage
the collaboration between users. We designed a trust model to calculate trust scores between
users who interacted and verified the model in different contexts. We presented an algorithm to
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predict future trust/distrust relations between users who did not interact. Therefore, before a
user decides to collaborate or not with a partner, regardless the interaction history between the
user and the partner, we can always provide a recommendation to the user to trust the partner
or not.

5.2 Perspectives

In this section, we discuss about the limitations of our studies and propose some future research
works.

5.2.1 Large-scale trust game experiments

Due to several practical difficulties, we organized trust game experiments with only 30 partic-
ipants. While the number of participant is not so small compared to other behavioral experi-
ments, we can benefit from large-scale experiments. If we can do so, we can increase the power
and confidence of the results.

We can organize large-scale experiments by using crowd-sourcing system like Amazon Turk
[N. Zhang, 2010]. We suggest to use oTree [D. L. Chen et al., 2016] which is a web-based tool to
deploy behavioral experiments. In our opinion oTree is more suitable than zTree [Fischbacher,
2007] in organizing large-scale experiments, because users do not need to install any client
software and can do the experiment over the Internet.

We address several potential research ideas that can be deployed in large-scale user experi-
ments:

Testing the effect of reputation score against trust score. We might test and compare
the effect of showing reputation score with the effect of showing trust score to users. We can
compare two scores in three aspects: (i) does showing the score have any effect on user behavior;
(ii) do users follow the scores; and (iii) can we use the calculated scores to predict future behavior
of users.

Testing the effect of showing trust/distrust suggestion based on link-sign prediction
on user behavior. We showed that displaying trust scores of partners to users can encourage
the collaboration, and we showed that users follow the suggestions of trust scores. However, we
did not test yet the effect of showing trust/distrust recommendation to user behavior.

Deploying simulated users to test the reaction of real users. We can deploy different
simulated users (but show them as real users to other real users) to see how real users react with
some particular kinds of behavior. For instance, we can deploy an honest user who always send
a high amount of money, or a cheating user who will deviate at some point in the future.

5.2.2 Validating The Influence of Trust Score in Real-World Systems

We validated the influence of trust score using repeated trust games, i.e. trust score is validated
using a non-context lab-control experiment. Indeed, it is very difficult to deploy a computational
trust model in an existing system like Github or Google Docs, because we have no right to
integrate our idea to these systems. It could take a long time to propose the idea of trust model
to the companies that own these systems.
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We suggest to deploy the trust model into a collaborative system for education. For instance,
MUTE [C.-L. Ignat et al., 2017] is an open-source collaborative editing system developed by
COAST team, Inria Nancy Grand-Est, France and can be used for testing the effect of trust
score in real-world scenarios.

Wikipedia is used in this thesis because it provides a very well-annotated data and some
articles are assigned quality label as ground truth already. For free text editing systems like
MUTE, it is more difficult to define the quality of user contribution. [Yim et al., 2017] presented
some approaches to determine the quality of a Google Docs document which can be used as a
starting point for further study. If one can develop a quality model for MUTE, we can design
and deploy a trust model and test that with real users.

5.2.3 Semi-supervised Deep Learning on Networks

We presented a novel approach of using RNN-LSTM for link-sign prediction in dynamic net-
works. Our algorithm is a supervised algorithm and requires a fully labelled dataset. Studies
claimed that a fully labelled network data is not always available. In practice usually we ob-
serve a network where only a small part is labelled by users, i.e. a graph where only a subset
of its edges are labelled as positive/negative. We suggest to focus on semi-supervised learning
algorithms [Kipf and Welling, 2017] in these scenarios.

5.3 Closing Words
Trust is a very important factor not only for the success of collaboration but also in our daily life.
In this thesis, we studied trust assessment in large-scale collaboration. We combined knowledge
from multiple fields: computer science, psychology and economic to propose trust models for
collaborative contexts. We suggested that in measuring trust, what is important is not only the
quality of the behavior but also the stability of the behavior. We hope that our contribution can
help to understand more about human trust. We expect to see real-world systems to integrate
trust models in the future.
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In this chapter, we describe some fundamentals knowledge which will be used in the following
chapters.

A.1 Trust Game

A.1.1 Game design

Trust game is one of behavioral games that encourage participants not only to compete but also
to cooperate with other participants [Murnighan and L. Wang, 2016]. Trust game is considered
as an extended variation of the classical prisoner’s dilemma [Kendall et al., 2007] in game theory.
The standard trust game design is presented by [Berg et al., 1995]27.

Trust game is visualized in Figure A.1. In the most simple form [Berg et al., 1995], trust
game contains two participants or two players, one is called sender28 and the other one is called
receiver29. The game is played by turn. The sender plays first by selecting an amount of money
between 0 and 10 to sends to the receiver. The money will be tripled before the receiver receives
it. Then the receiver can play by selecting an amount of money between 0 and what he received
to send back to the sender. This time, the sending amount will not be tripled but kept the same.

27In fact, Berg called their game as investment game, but many follow-up studies used the term trust game
[Johnson and Mislin, 2011; Murnighan and L. Wang, 2016; Cooper and Kagel, 2016], while for several other
research works the term trust game is used to refer sequential prisoner dilemma setting [Riegelsberger, M Angela
Sasse, et al., 2003; Rabanal and Friedman, 2015]. To be consistent, in this thesis, we used trust game to refer the
game presented by [Berg et al., 1995], and sequential prisoner dilemma for the other game.

28In literature, this player is also called trustor [Engle-Warnick and Robert L. Slonim, 2004] or first mover
[McCabe et al., 2003] or just simply player A [Fehr et al., 2003].

29Similarly, this player is called trustee, second mover, or player B also.
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Figure A.1: Trust game

The goal of each participant is to maximize their own profit.
The exchanging amounts between players are considered as representation of trust between

them [Glaeser et al., 2000; Fehr et al., 2003; Bellemare and Kröger, 2007; Brülhart and Usunier,
2012; Sapienza et al., 2013].

Let’s give an example with two players: Alice as the sender and Bob as the receiver. In the
first move, Alice sends 5 to Bob. Therefore, Bob will receive 15 to his balance. Then Bob sends
back 7 to Alice. This time, Alice receives 7 only. In the end, the profit of this turn for Alice
and Bob are 7 and 8 respectively.

Based on the definition of collaboration discussed in Chapter 1, trust game is indeed a
collaborative environment because:

• Participants need to collaborate to earn a higher reward value for everyone.

• However, a malicious participant can deviate to gain their own profit while harming other
participant.

A.1.2 Game analysis

One of the basic assumptions in economics and game theory is that the participants are self-
interests and rational [Camerer, 2003], means that:

• A participant has one and only one target which is to maximize their own profit. The
participant is not bounded by any ethical rule but only the rules of the game.

• A participant has infinite computational power. It means, given a scenario with complete
or incomplete information, the participant can always reason and make the optimized
decision.

• A participant knows that other participants share the same two above characteristics.

For self-interested subjects, a subgame perfect Nash equilibrium [Tadelis, 2013, Chapter 8]
predicts that both players should send nothing [Camerer, 2003; Murnighan and L. Wang, 2016].

The reasoning process is as follows. Any other sending back amount y that y ≥ 0 will reduce
the receiver’s profit. According to theory, the sender knows this fact, so at her turn, she should
send 0 to the receiver because she knows that she will not receive anything back regardless what
she sends [Camerer, 2003]. It is noted that the analysis only holds for one-shot trust game. To
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our knowledge, the theoretical analysis for users behavior in repeated trust game is still an open
question [Bruttel and Kamecke, 2012; Breitmoser, 2015].

Despite the theoretical analysis, the zero-behavior when both participants send 0 is not
dominant in large scale experiments. In fact, the sending and sending back amounts follow
the normal distribution [Berg et al., 1995; Johnson and Mislin, 2011; Cooper and Kagel, 2016;
Murnighan and L. Wang, 2016].

The game has been adapted using a vast range of different conditions [Chakravarty et al.,
2011; Johnson and Mislin, 2011]. The original game was single-trial, i.e. consisting of a single
interaction between two users, specifically to isolate trust from reputation. However, one inter-
action is not enough for building a trust relationship between users. Therefore the game has
been extended with repeated trials [Cochard et al., 2004; Engle-Warnick and Robert L Slonim,
2006; Engle-Warnick and Robert L Slonim, 2001]. The length of the repeated trust game could
be undefined [Engle-Warnick and Robert L. Slonim, 2006] or fixed [Dubois et al., 2012], which
may affect participant strategies. Different studies employ different conditions, mostly con-
cerning the provision of partner information. The authors of [R. Slonim and Garbarino, 2008]
provided partner gender, age and income information. The historical log of partners’ action
can also be provided to players [Berg et al., 1995; Bracht and Feltovich, 2009; Gary E. Bolton
et al., 2005; Dubois et al., 2012]. Some studies analyze players behavior when they are allowed
to communicate during the game [Vanberg, 2008; Bracht and Feltovich, 2009]. Other research
studies simulate business contracts to allow players to setup contracts between each other [Avner
Ben-Ner and Putterman, 2009; Braynov and Sandholm, 2002; Colombo and Merzoni, 2006; Fel-
tovich and Swierzbinski, 2011] or provide pre-commitments prior to the game start [Bracht and
Feltovich, 2008]. There are several papers that use the trust game to study trust transfer, i.e.
trust between contexts [Buntain and Golbeck, 2015; Delgado-Márquez et al., 2012].

Predicting users’ behavior before the trust game starts is the subject of numerous studies. All
of the studies we are aware of in this topic focused on the one-trial trust game. [Gunnthorsdottir
et al., 2002] used the Mach test to determine participant personality characteristics before the
game experiment and then used the resulting Mach score to predict participant game behavior.
[Evans and Revelle, 2008] predicted users’ behavior based on previously collected responses to
the Propensity to Trust Survey. Using a similar idea, [Yamagishi et al., 2015] defined attitudinal
trust calculated from prior questionnaire responses, to predict user behavior. [Yen, 2002] claimed
that participants with higher income send more to their partners than users with lower income.
[Falk, Meier, et al., 2010] confirmed this suggestion by showing that students tend to send less
than other social groups.

[Yao and Darwen, 1999] showed that displaying reputation score can increase the cooperation
rate in repeated prisoner dilemma game which can be considered as a simple version of repeated
trust game.

[Bente, Dratsch, Rehbach, et al., 2014] tested the influence of avatar and reputation levels
on buyers’ decisions. The authors showed that reputation score and avatars could encourage the
buying decision of buyers. However, the authors did not study the behavior of sellers (receivers
in our paper), and the reputation scores are artificial rather than computing from real behavior.
Different from this work, we studied the effect of trust score which is computed based on real
behavior of participants in the experiment. [Lunawat, 2013] studied the building process of
reputation in repeated trust game while the receiver can decide to disclose or not her private
information. In the studied game participants depend on their partners decision on providing
information. In our approach, each participant can calculate trust score of any partner based
on their observed behavior without any dependency. [Yuksel et al., 2017] studies an interesting
research question: which is more important to build trust, reliability or attractiveness? The
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Figure A.2: Linear regression

study indeed suggested that, having a beautiful avatar is more important.
Trust game has been used to test the effect of different mechanisms in human trust [Riegels-

berger, Martina Angela Sasse, et al., 2005]. However, to the best of our knowledge there is not
yet a study of the influence of trust score on human behavior.

A.2 Machine Learning Basics
In this section, we describe several machine learning and deep learning techniques that will be
used in following chapters. We also describe how do we validate the algorithms, and the metrics
to measure the performance of these algorithms.

A.2.1 Shallow machine learning

In fact, the term “shallow machine learning” is used only after the term “deep learning” was
invented30. Today, the term “shallow machine learning” is used to refer to any algorithm before
the deep learning era, includes linear and logistic regression, support vector machine (SVM),
decision tree, and random forest.

A.2.1.1 Linear regression

Linear regression could be considered as the most simple machine learning algorithm. Given
a set of feature X1, X2, ...Xk with the corresponding output Y , the linear regression algorithm
tries to estimate the following formula:

y =
k∑
i=1

αi ∗ xi + β (A.1)

The value αi and β are estimated by minimizing the difference between the estimated values
and the real values of Y [Mohri et al., 2012, Chapter 10]. The difference metric which is usually
used is mean squared error, defined as:

1
k

k∑
i=1

(αi ∗ xi + β − yi)2 (A.2)

30http://deeplearning.net/
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Figure A.3: Logistic regression

A.2.1.2 Logistic regression

Logistic regression [Lesmeister, 2015, Chapter 3] is visualized in Figure A.3. Logistic regression
estimates the probability that Y = 1 as:

Pr(Y = 1) = 1

1 + e−β−
∑k

i=1 αi∗xi

(A.3)

Originally, logistic regression can work only in binary classification problem. However, by
setting up multiple conditional probability, we can extend the logistic regression to multi-class
classification problem, which is called multinomial logistic regression [Böhning, 1992].

A.2.1.3 Support vector machine (SVM)

The idea of SVM [Gollapudi, 2016, Chapter 6] is to build a hyperplane to separate two classes
of objects, as visualized in Figure A.4. Different from logistic regression, the idea of SVM can
be easily extended to multi-class case.

A.2.1.4 Decision Tree & Random Forest

Decision tree [Gollapudi, 2016, Chapter 5] is visualized in Figure A.5. Following a decision tree
to classify is obvious: we start at a root of tree and just follow the guidance at each node until
a leaf.

In practice, a decision tree is considered as a weak learning algorithm [Galar et al., 2012].
An updated version of decision tree, random forest is used more popular. The idea of random
forest is to build many trees as visualized in Figure A.6 then used majority voting to decide the
final output value.
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Figure A.4: Support vector machines

Figure A.5: Decision tree
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Figure A.6: Random forest

A.2.2 Deep learning

Deep learning is a part of machine learning which attempts to model high-level abstract of data
[L. Deng and Yu, 2014]. Deep learning research attracts a lot of attention from both academy
and industry. Deep learning techniques have been applied successfully in many topics, including
image processing, video processing and natural language processing [Schmidhuber, 2015]. In
fact, the deep learning theory has been introduced in 1980s [Rumerhart et al., 1986; Pineda,
1987], but in practice, the breakthrough appeared only in 2006 with the work of Hinton in digit
recognition using Restricted Boltzmann Machine [Goodfellow et al., 2016].

In this section we presented some fundamental knowledge to understand and use deep learn-
ing techniques in our studies. Readers should refer to two intensive reviews [Schmidhuber, 2015;
H. Wang et al., 2017] or the deep learning textbook [Goodfellow et al., 2016] for more details
information.

A.2.2.1 Deep neural networks

Artificial neural network was invented in 1943 [McCulloch and Pitts, 1943] as a mathematical
model of human brains. An artificial neural network includes at least one input and one output
layer, and optional one or many hidden layers, and each layer includes one or many neurons.
An artificial neural network with multiple hidden layers is called deep neural network, but so
far there is not yet a standard definition of how many hidden layers as a minimum number for
an artificial neural network to be considered as be deep [Schmidhuber, 2015]. Basically we can
consider all the neural networks with at least two hidden layers as a deep neural network.

A visualization of a DNN is displayed in Figure A.7. The layer k computes an output vector
hk using the output hk-1 of the previous layer, starting with the input layer x = h0 as in Equation
A.4, with bk is offset vector and W k is matrix of weights.

hk = f(bk +W khk-1) (A.4)

The function f in Equation A.4 is called activation function, which decides how each neuron
calculates and transfers the signal to the neurons in subsequent layer. The advantage of deep
neural networks is that, the calculation in deep neural networks usually requires simple mathe-
matical activation functions. A popular activation function is called rectifier, which is the most
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Figure A.7: A multi-layer feed-forward neural network.

simple non-linear function. Rectifier function is defined as:

rectifier(x) = max(0, x) (A.5)

Even the rectifier function is very simple, it can produce a good performance in deep learning
[Nair and Hinton, 2010]. The advantage of rectifier activation function in compare with other
activation function like tanh or sigmoid is that it can speed up the training process [Goodfellow
et al., 2016].

As we observe in Equation A.4, training and applying deep neural networks could be consid-
ered as a series of matrix calculation. These operations can be calculated very fast today using
parallel computing techniques, such as Hadoop and MapReduce [Dean and Ghemawat, 2008] or
GPU-computing technology likes CUDA [Chetlur et al., 2014].

Deep neural networks are usually trained by using gradient descent [Bengio, 2012]. The goal
of training phase is to minimize the error loss on training data, i.e. to minimize the difference
between the actual output values and the predicting output values of the DNN model on the
training data [Martens and Sutskever, 2012]. The issue of gradient descent training is that it
might stuck in local minima [Bengio, 2009]. The problem is solved practically by tuning the
parameter number of training steps.

A.2.2.2 Recurrent neural networks

Recurrent neural networks (RNN) is a class of dynamic models which are used for sequence
generation in different domains [Graves, 2013]. The connections between neurons in RNN can
form cycles [Graves, 2012]. The visualization of a RNN is displayed in Figure A.8. The input
of RNN is a token series X = x1, x2, ..xT ordered in time. The input will be passed through a
stack of hidden layer to compute the output y. The output then will be used as a part of the
next input sequence to predict the next input token. In other words we use the input xt and
the output yt to predict the distribution of the input xt+1.

The hidden layers are computed as:

h1
t = H(Wih1xt +Wh1h1h1

t−1 + b1
h) (A.6)

hnt = H(Wihnxt +Whn−1hnhn−1
t +Whnhnhnt−1 + bnh) (A.7)

wherein:

• hnt is the output of the nth hidden layer at time t.
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Figure A.8: Deep Recurrent Neural Network [Graves, 2013].

• b is the bias vector. bnh is the bias vector of the nth hidden layer. by is the bias vector of
the output layer.

• W is the weight matrices, with Wihn is the matrix between the input and the nth hidden
layer, and Whjhk is the matrix connects the jth hidden layer and kth hidden layer. If
j == k means that it is a recurrent connection.

• H is the activation function. In the past the sigmoid is usually used as the activation
function [J. Chung et al., 2014] but today the LSTM cell is used more often [N.D.Lewis,
2016, Chapter 7,8].

RNN is claimed as a universal model [Goodfellow et al., 2016], means that it can compute
any function computable by a Turing machine. If the model is large enough, RNN can gradually
learn any sequence at any complexity level [Graves, 2013].

Up to now, one of the most effective sequence models is LSTM [Goodfellow et al., 2016]. The
performance of LSTM have been proved empirically in several studies [Graves, 2013; J. Chung
et al., 2014; Józefowicz et al., 2015]. The idea of LSTM is to replace the activation unit inside
a RNN cell, which is traditional a tanh activation [J. Chung et al., 2014], by a LSTM unit as
visualized in Figure A.9.

The output of a LSTM cell is calculated as:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (A.8)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (A.9)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (A.10)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo) (A.11)
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ht = ot tanh(ct) (A.12)

wherein: σ is the logistic sigmoid function; i, f, o are input gate, forget gate and output gate
respectively, and c is memory cell.

After we computed the hidden sequences hT , the output of RNN is computed as:

ŷt = by +
N∑
n=1

Whnyh
n
t (A.13)

yt = γ(ŷt) (A.14)

where γ is the activation function of output layer.
The probability of the input sequence X is:

Pr(X) =
T∏
t=1

Pr(xt+1|yt) (A.15)

and the loss function which is used to train the network is defined as:

L(X) = −
T∑
t=1

logPr(xt+1|yt) (A.16)

In the last LSTM layer, we trained a softmax cost function to predict the quality class as:

δ(z)j = ezj∑K
k=1 e

zk
for j = 1..K (A.17)

Figure A.9: Long-Short Term Memory Cell [Graves, 2013].
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Figure A.10: 5-fold cross validation

Most machine learning algorithms are designed to work on the data where all instances
have the same length [Shalev-Shwartz and Ben-David, 2014] while in our research studies the
input data have different length between instances. However, by design, RNN is perfectly fit
with varied-length data because it can roll back or forward with a flexible number of step. In
practice, among other deep architectures, RNN usually be used in natural language processing
field [Goodfellow et al., 2016; J. Mao et al., 2016], especially in language modelling [Grave et al.,
2016; Gal and Ghahramani, 2016; Sundermeyer et al., 2015].

Originally, RNN was designed for time-series analysis [Connor et al., 1994], so it only learn
from the historical data. However, RNN can be extended to bidirectional RNN [Graves, 2012;
Graves, 2013]. The core idea of bidirectional RNN is to have two RNN to learn the data. One
RNN will learn from the beginning of the data while the other learns from the end.

Stateful LSTM Originally if the training data is modified, we need to train RNN-LSTM
from scratch again. However, using stateful LSTM model [Gers et al., 2000] we can continuously
train the model on new data without retraining old data. The core idea of stateful LSTM is
to remember the states of each batch [Pascanu et al., 2013] and use these states as the initial
states of the next training batch [N.D.Lewis, 2016].

A.2.3 Validation & Metrics

A.2.3.1 Cross validation

In order to evaluate a predicting algorithm, a dataset will be single-divided into a training set
and a testing set, such as 80% of the dataset is used for training and the remaining 20% of the
dataset is used for testing [Warncke-Wang, Ayukaev, et al., 2015]. However, it could lead to
bias in the evaluation result [James et al., 2013, Chapter 5]. Therefore, a k-fold cross-validation
is used.

The idea of k-fold cross validation is, the dataset is divided into k equal parts. The algorithm
which is evaluated will be performed k times. For each run, a single part will be used as the
testing set, while the remaining k − 1 parts will be used as the training set. In practice, the
value of k is usually set to 5 or 10 [James et al., 2013, Chapter 5]. At the extreme level, we can
set the value of k to the number of instance in the dataset. This division is called leave-one-out
cross validation. 5-fold cross validation is visualized in Figure A.10.

The advantage of k-fold cross validation is that the entire dataset will be used for testing,
so the algorithm will be evaluated more intensively and the dataset is utilized better. On the
other side, the time for the experiment will be increased k times.
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A.2.3.2 Metrics

Several metrics are defined to evaluate a classification algorithm. In this thesis, we will use
primarily accuracy and AUC [Huang and Ling, 2005].

Accuracy score is simply defined as

accuracy = correct_prediction_number
total_prediction_number (A.18)

Accuracy score is used because of several reasons:

• In the case of balanced dataset, the accuracy score is the most commonly metric used[Galar
et al., 2012]. In this thesis, all Wikipedia datasets used for evaluation are balanced datasets.

• The score is understandable even for normal users [Japkowicz and Shah, 2011]. This feature
is not highly prioritized before, but recent studies in interpreting machine learning [M. T.
Ribeiro et al., 2016] emphasised the importance of let users understand the algorithm.

However, as studies [Huang and Ling, 2005] have pointed out, accuracy does not represent
completely the performance of a classification algorithm. Accuracy score tell us the final result
of a classifier, but does not tell us how the algorithm behave when the threshold changes.

Therefore, we also used AUC , stands for Area Under Curve. AUC is visualized in Figure
A.11. In order to calculate AUC , we plot ROC curve. ROC stands for Receiver Operating
Characteristic, with x-axis is the false positive rate, and y-axis is the true positive rate.

The idea is, we want to observe how the true positive rate of the algorithm changes according
to the movement of the false positive rate.

Let’s consider an example of binary classification. In fact, a machine learning algorithm in
general [Shalev-Shwartz and Ben-David, 2014] does not return a prediction as a hard Positive
or Negative value, but will return a numeric value which can be normalized into the range [0, 1]
to state the probability that an instance of testing data should belong to a certain class. In a
naive approach, one can use 0.5 as the threshold, means that if the return value is less than 0.5
we will classify the instance as Negative, and otherwise we will classify it as Positive. However,
based on specific requirements the threshold might be changed.

To calculate AUC value, we will vary the threshold from 0 to 1. Then for each threshold
value we will plot a point with the coordination as the true positive rate and false positive rate.
The ROC curve is the set of these points. After plotting the ROC curve, we measure the area
covered by the curve to receive the value of AUC .

The true positive rate (TPR) is defined as:

TPR = TP

P
(A.19)

The false positive rate (FPR) as:

FPR = FP

N
(A.20)

wherein, TP is the number of cases that the algorithm predicted as positive and they are
indeed positive, FP is the number of cases when the algorithm predicted as positive but they are
in fact negative, P and N are total number of positive and negative case in the testing dataset
respectively.

Originally, AUC is defined for binary classification problem. There is no standard way to
extend the AUC calculation to multi-class classification problem. However, in consistent with
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Figure A.11: ROC AUC for binary classification.

previous studies [Q. Dang and C. Ignat, 2016b], we applied the calculation proposed by [Hand
and Till, 2001] which is widely used in practice. In compare to other methods, the advantage
of the method of [Hand and Till, 2001] is that it produces only a single output value, make it
easier to compare between different algorithms.

The AUC by definition of [Hand and Till, 2001] is defined as follow. Given a multi-class
classification problem with c class, labelled as 0, 1, ... c− 1 with c > 2. We define Â(i|j) as the
probability that a randomly drawn member of class j will have a lower estimated probability
of belonging to class i than a random member of class i. Then we define Â(i, j) = Â(i|j)+Â(j|i)

2 .
The AUC value is calculated as:

AUC = 2
c(c− 1)

∑
i<j

Â(i, j) (A.21)

Both accuracy and AUC values range from 0.0 to 1.0. A higher value means a better
algorithm.
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Résumé
Les systèmes collaboratifs à large échelle, où un grand nombre d’utilisateurs collaborent pour
réaliser une tâche partagée, attirent beaucoup l’attention des milieux industriels et académiques.
Bien que la confiance soit un facteur primordial pour le succès d’une telle collaboration, il est
difficile pour les utilisateurs finaux d’évaluer manuellement le niveau de confiance envers chaque
partenaire. Dans cette thèse, nous étudions le problème de l’évaluation de la confiance et
cherchons à concevoir un modèle de confiance informatique dédiés aux systèmes collaboratifs.

Nos travaux s’organisent autour des trois questions de recherche suivantes.

1. Quel est l’effet du déploiement d’un modèle de confiance et de la représenta-
tion aux utilisateurs des scores obtenus pour chaque partenaire ? Nous avons
conçu et organisé une expérience utilisateur basée sur le jeu de confiance qui est un pro-
tocole d’échange d’argent en environnement contrôlé dans lequel nous avons introduit des
notes de confiance pour les utilisateurs. L’analyse détaillée du comportement des utilisa-
teurs montre que: (i) la présentation d’un score de confiance aux utilisateurs encourage
la collaboration entre eux de manière significative, et ce, à un niveau similaire à celui de
l’affichage du surnom des participants, et (ii) les utilisateurs se conforment au score de
confiance dans leur prise de décision concernant l’échange monétaire. Les résultats sug-
gèrent donc qu’un modèle de confiance peut être déployé dans les systèmes collaboratifs
afin d’assister les utilisateurs.

2. Comment calculer le score de confiance entre des utilisateurs qui ont déjà
collaboré ? Nous avons conçu un modèle de confiance pour les jeux de confiance répétés
qui calcule les scores de confiance des utilisateurs en fonction de leur comportement passé.
Nous avons validé notre modèle de confiance en relativement à: (i) des données simulées,
(ii) de l’opinion humaine et (iii) des données expérimentales réelles. Nous avons appliqué
notre modèle de confiance à Wikipédia en utilisant la qualité des articles de Wikipédia
comme mesure de contribution. Nous avons proposé trois algorithmes d’apprentissage
automatique pour évaluer la qualité des articles de Wikipédia: l’un est basé sur une forêt
d’arbres décisionnels tandis que les deux autres sont basés sur des méthodes d’apprentissage
profond.

3. Comment prédire la relation de confiance entre des utilisateurs qui n’ont pas
encore interagi ? Etant donné un réseau dans lequel les liens représentent les relations de
confiance/défiance entre utilisateurs, nous cherchons à prévoir les relations futures. Nous
avons proposé un algorithme qui prend en compte les informations temporelles relatives à
l’établissement des liens dans le réseau pour prédire la relation future de confiance/défiance
des utilisateurs. L’algorithme proposé surpasse les approches de la littérature pour des jeux
de données réels provenant de réseaux sociaux dirigés et signés.

Mots-clés: collaboration, confiance, théorie des jeux, apprentissage automatique

Abstract

Large-scale collaborative systems wherein a large number of users collaborate to perform a
shared task attract a lot of attention from both academic and industry. Trust is an important
factor for the success of a large-scale collaboration. It is difficult for end-users to manually assess
the trust level of each partner in this collaboration. We study the trust assessment problem and
aim to design a computational trust model for collaborative systems.

We focused on three research questions.
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1. What is the effect of deploying a trust model and showing trust scores of
partners to users? We designed and organized a user-experiment based on trust game, a
well-known money-exchange lab-control protocol, wherein we introduced user trust scores.
Our comprehensive analysis on user behavior proved that: (i) showing trust score to users
encourages collaboration between them significantly at a similar level with showing nick-
name, and (ii) users follow the trust score in decision-making. The results suggest that a
trust model can be deployed in collaborative systems to assist users.

2. How to calculate trust score between users that experienced a collaboration?
We designed a trust model for repeated trust game that computes user trust scores based
on their past behavior. We validated our trust model against: (i) simulated data, (ii)
human opinion, and (iii) real-world experimental data. We extended our trust model to
Wikipedia based on user contributions to the quality of the edited Wikipedia articles. We
proposed three machine learning approaches to assess the quality of Wikipedia articles:
the first one based on random forest with manually-designed features while the other two
ones based on deep learning methods.

3. How to predict trust relation between users that did not interact in the past?
Given a network in which the links represent the trust/distrust relations between users,
we aim to predict future relations. We proposed an algorithm that takes into account the
established time information of the links in the network to predict future user trust/distrust
relationships. Our algorithm outperforms state-of-the-art approaches on real-world signed
directed social network datasets.

Keywords: collaboration, trust, game theory, machine learning
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