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1.1 Preface
Nowadays, mobile and embedded devices have become ubiquitous. This is due to recent advanced tech-

nologies in communications and computer science. We find numerous applications in various fields such
as digital electronics, telecommunications, computing networks, smart cards, satellite systems, military
defence system equipments, research system equipments, and so on [130, 33]. These devices are intercon-
nected either locally or over the internet. This phenomenon is called the Internet of Things (IoT) [86, 82].
The term of IoT was firstly introduced, as a title of a presentation made at Procter & Gamble (P&G) in 1999
by Kevin Ashton, who was laying the groundwork for what would become the IoT [30]. The core idea of
this concept lies in the presence of everyday physical objects known as things which are connected to the
internet. Interconnection is ensured by technologies such as Radio Frequency IDentification (RFID) [274],
Wireless Sensor Networking (WSN) [65], cloud servicing, machine-to-machine interfacing (M2M) [107],
etc. The IoT is currently emerging: 50 billion devices are estimated to be wirelessly connected to the
Internet by 2020 [82].

The vast majority of devices that will integrate the IoT are expected to work under severe constrained
resources such as limited battery and computing power (e.g., running on tiny batteries) as well as little
memory [231]; These constraints often exacerbate each other. The term constrained device was introduced
in 2014 by Bormann, et al. [51] to define a class of connected devices with strict resource restrictions
in comparison with common desktop computers, such as limited computation power (MegaFLOPS vs.
TeraFLOPS), less memory (KiloBytes vs. GigaBytes) and significantly reduced power consumption (mWatt
vs. Watt): a typical node has a 8 MHz micro-controller with less than 128 KB of instructions memory
and approximately 10 KB of RAM memory [218, 260]. Moreover, micro-controllers that are used for
constrained devices typically provide a limited set of features, e.g, they are not commonly equipped with
memory management units (MMU), which in fact prevent using operating systems such as Linux on such
devices [197].

The mass deployment of pervasive devices provides on the one hand several benefits such as lower lo-
gistic costs, optimized supply-chains, higher process granularity, etc. On the other hand, many applications
are very security sensitive (e.g., defence, military, financial, automotive or aerospace applications), not to
mention ones which require a baseline of privacy. The communication technique among a large number
of constrained devices that generate huge amount of data has an impact on security and privacy of appli-
cations. Such devices have to be invulnerable to malicious attempts of communication jamming which
can limit their functionalities. Furthermore, pervasive devices have to include protection strategies against
physical attacks. Consequently, it is necessary to increase the security of data to be transmitted in order to
avoid hacking of informations and fraud and to not outweigh any of IoT benefits.

To provide security foundations, such as data confidentiality, data integrity and authentication, one solu-
tion is to use appropriate cryptographic algorithms.

Cryptography is the art and science that concerns the transformation of informations so that it is not
possible to other people different from the legitimate source and destination to access these informations
while it is stored or transferred over insecure networks; This can be achieved by designing crypto-systems
[117, 165]. A crypto-system is a cryptographic algorithm that depends on certain parameters and initial
conditions called secret key. Cryptography algorithms are categorized into two main categories: symmetric
crypto-system and asymmetric crypto-system [96, 242, 132]. An asymmetric crypto-system uses a public
key and a private key, to encrypt/decrypt a message. On the other hand, a symmetric crypto-system uses
only one key to encrypt and decrypt messages, which should be distributed before transmission of the
emitter and the receiver. A symmetric key primitive can be further divided into two main categories: block
ciphers and stream ciphers [165, 177]. A block cipher encrypts a fixed-length n-bits of data, - known as a
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block - at one time (typically equal to 64-256 bits). Stream cipher encrypts one bit or byte or a group of
bytes at a time. It is based on generating an "infinite" cryptographic keystream, and using that to encrypt
data. To remain secure, the keystream should be unpredictable and should be never used.

In the literature, a growing number of cryptographic techniques to secure transmitted information have
been developed [234, 161, 61, 64, 170]. In recent years, chaotic cryptography has received much attention.
Chaos in cryptography was introduced by Matthews in 1990s [173]. Since then, investigation on chaotic
image encryption has become an active field of research due to the interesting properties of chaos such as
ergodicity, sensitivity to initial conditions and parameters of the system, similarity to random behaviour,
and broad-band power spectrum [127]. Many chaotic image encryption methods have been proposed in
the litterature [97, 142, 175, 115, 186]. Most of them can not be applied directly in constrained devices,
because their design goals focus in providing high levels of security and do not meet the specific limita-
tions offered by such innovative technologies and capabilities devices of the IoT [205, 204]. Hence, the
main challenge is to design and develop new efficient cryptographic techniques capable of guaranteeing
secure data transmission and providing an optimized security/cost/performance trade-off. The implemen-
tation of cryptographic primitives under such limited resource availability represents the research field of
LightWeight Cryptography (LWC) [74]. LWC focuses in designing primitives for constrained devices with
very limited resources in terms of memory, computing power, and battery supply [20, 202].

Stream ciphers are characterized by their simplicity and high speed compared to block ciphers since
they work on a few bits at a time and have relatively low memory requirements. In the other hand, block
ciphers work on larger block of data and often have feedbacks from previous ones. Stream ciphers are
more appropriate in some applications (e.g. some telecommunications applications) where the amount of
data is either unknown, or when data must be individually processed as it is received or when buffering
is limited. Also, they are less susceptible to noise in transmission since bytes are individually encrypted
with no relation with other blocks of data. Contrary to block ciphers where in most ciphers modes, bytes
are encrypted using previous encrypted bytes. Consequently, if one part of the data is modified, all the rest
is probably unrecoverable. Due to all these reasons, stream ciphers are well suited to constrained devices.
This explains the recent evolution researchers efforts in the field of lightweight stream ciphers.

Certainly, security is an important key issue for the IoT applications which is well treated by many
research works. In the same context, IoT will be confronted with other severe challenges among them,
producing correct output at the correct time. In some real-time applications, real time performance becomes
critical. The correctness of a real-time system depends not only on the correctness of the logical result of
the computation but also on the physical time when this result is produced. The role of an operating system
in communication devices is important.

Embedded systems require a Real-time Operating System (RTOS) that has real time capabilities in
terms of scheduling and synchronization. Using such RTOS enables the applications to guarantee timing
constraints on response times, even in desktop computers. Such a system can take in charge the analysis of
an application ensuring that the input is given from a real time system at a predetermined interval of time.
Then, the cryptographic system will permit both the checking of the validity of the key as well as the time
interval at which the key is presented to the system.

1.2 Motivations and objectives

Using cryptographic techniques provides many of the security services required by the pervasive ap-
plications such that protecting data transmission against attacks. Yet, existing cryptographic techniques
developed for enterprise and desktop computing might not satisfy embedded application requirements as
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they can be huge and have a high energy consumption. In fact, smart devices of the IoT, including sen-
sors, are inherently resource constrained with regard to memory, communication band-width, processing
power and energy availability. Hence, a challenging topic concerns the design of efficient and lightweight
cryptographic techniques to guarantee secure data transmission in the IoT. Such techniques should fit the
low energy, computation and memory capabilities of cyber-physical systems. Nonetheless, they should also
provide an optimized security/cost/performance trade-off.

The purpose of this thesis is to study the problem of information security under real-time and energy
constraints and to design new chaos-based crypto-systems that answer these challenges. This research
work, first, will focus on designing, implementing and analysing three pseudo-chaotic number generators
(PCNGs). These generators use basic chaotic maps, a weak coupling matrix or a high diffusion binary
coupling matrix, and a chaotic multiplexing technique. Then, three secure chaotic stream ciphers based on
the proposed PCNGs are realized. The cryptographic analysis of the chaotic systems realized shows their
robustness against known attacks. The performance obtained in computational complexity indicates their
uses in real-time applications. We integrated these chaotic crypto-systems through a real-time operating
system called Xenomai [14]. We comparatively measured energy, power and processing time consumption
of the three proposed chaotic systems. We showed how to adapt the degree of security of these systems
according to the time energy availability.

1.3 Thesis Outline and Contributions
This thesis is organized as follows:

Chapter 2 is dedicated to explaining the fundamental concepts of cryptography primitives. We start by
discussing principles of foundation and basic concepts of cryptography and the two major categories of
modern cryptographic primitives, namely symmetric and asymmetric algorithms. We present block ciphers
and stream ciphers. After that, we introduce chaos theory and briefly present some chaotic maps including
Gauss map, Tent map, Hénon map, Lozi map, Lorenz attractor and Rössler attractor. Then, we provide the
state of the art of block ciphers, pseudo-random number generators and stream ciphers based on chaotic
maps.

Chapter 3 presents a security and computing performance study of some discrete chaotic maps including:
Logistic, Skew Tent and PWLCM maps, as base of proposed chaos-based stream ciphers during this thesis.
First, we present a collection of common and standard security tools useful to define that assessment.
Second, we discretize the chaotic maps making them running over a finite precision (N=32), and we analyze
their cryptographic properties and speed. Then, we introduce a perturbation technique which permits to
decrease the degradation caused by the discretizing process. We perform some security analysis of chaotic
maps using this perturbation technique. In order to improve the cryptographic performance of chaotic maps,
we propose a recursive structure. Then, we give the security and speed performance of chaotic maps using
the perturbation technique and the recursive structure.

Chapter 4 presents our first contribution. It consists of designing and implementing, in an efficient and
secure manner, three stream ciphers based on three proposed robust Pseudo-Chaotic Numbers Generators
(PCNGs). We describe in details the general structure of the three proposed PCNGs. The first proposed
PCNG, called CM-PCNG, uses three weakly coupled chaotic maps: PWLCM, Skew Tent and Logistic
and includes a multiplexing chaotic technique. In comparison with the architecture of CM-PCNG, the
second PCNG - DM-PCNG - uses a binary diffusion matrix as a coupling technique. The architecture of
the third proposed PCNG, named CS-PCNG, is based on using two chaotic maps, namely PWLCM and
SkewTent, and includes coupling and swap chaotic techniques. We give the security and statistical analysis,
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and the computing performance measures of the proposed PCNGs and the corresponding stream ciphers.
The proposed crypto-systems are very secure, due to the use of chaotic coupling, swap and multiplexing
techniques, while they offer a high speed performance.

Chapter 5 first focuses on studying the performance of two proposed chaotic stream ciphers CM-SC &
CS-SC in terms of energy and power consumption and memory assessment. We show that the proposed
stream ciphers are lightweight crypto-systems. Compared to other crypto-systems presented in the litera-
ture, we demonstrate that our designed stream ciphers are suitable for practical secure applications of the
IoT in a constrained resources environment. The second part of this chapter concerns the integration of the
proposed crypto-systems with real-time features. We show how to implement a crypto-system in the frame-
work of a real time application which is managed by a well known free open-source real-time operating
system, Xenomai. And we present the results of our experiment, giving execution time measures of the two
proposed real time crypto-systems.

Chapter 6 concludes the manuscript. We report a summary of the main new ideas and contributions that
were brought by our work in the domain of real-time cryptography. Finally, we present a short list of open
problems and future research issues.
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2.1 Introduction
Over the last several years, there has been tremendous interest world-wide in the possibility of using

chaos in numerous fields, such as electronic systems, fluid dynamics, lasers, weather and communication
systems [109, 287]. Chaos theory studies the behaviour of complex dynamic systems which have high sen-
sitivity to small change in their parameters and makes the generated results entirely "unpredictable". The
idea of using chaos theory in the cryptography field to enrich the design of new ciphers, has attracted more
and more attention. Many fundamental characteristics of chaos, such as the ergodicity, deterministic nature,
unpredictability, random-look nature and its sensitivity to initial conditions, can be connected with the "con-
fusion" and "diffusion" property in cryptography [167, 127]. Chaotic systems have potential applications
in such cryptography algorithms as block cipher, stream cipher and pseudo random number generator.

Some proposed cryptographic algorithms are not suitable for constrained devices or pervasive devices
in the Internet of Things (IoT), including RFID (Radio Frequency Identification) tags, Wireless Sensors and
mobile phones. Such devices are inherently resource constrained with regard to memory, communication
band-width, processing power and energy [100]. Therefore, due to its low computation capabilities, there
is a need to build a lightweight security cipher that can fit these devices. The design of lightweight cryp-
tographic algorithm is always a great challenge that the designer needs to cope with the trade-off between
achieving robust security with low cost and enhanced performance [74].

We dedicate this chapter to explain first the fundamental concepts of cryptography primitives. We start
by discussing principles of foundation and basic concepts of cryptography and the two major categories of
modern cryptographic primitives, namely symmetric and asymmetric algorithms. We discuss in detail block
ciphers and stream ciphers. Furthermore, we focus on chaos theory and briefly introduce some chaotic maps
including Gauss map, Tent map, Hénon map, Lozi map, Lorenz attractor and Rössler attractor. Finally, we
will provide a review of block ciphers, pseudo-random number generators and stream ciphers based on
chaotic maps.

2.2 Cryptography: foundation and basic concepts
Almost since the beginning of the writing language, it was necessary to find ways to hide valuable

information [243]. Cryptography is the science that concerns the transformation of information so that it is
not possible to other people different from the legitimate source and destination to access this information.
The Cryptology process requires two different and complementary stages. The first step is cryptography
which presents selection of the tools and the framework which guide the concealing of the information. The
second one is cryptanalysis. It means the evaluation of the transformation system. The word ’Cryptography’
has a Greek etymology. It is derived from krýpto "hidden" and the verb gráfo "to write". Cryptography is
the process of converting a message (or plaintext) into unintelligible form or ciphertext and viceversa [117].
The transformation of the plaintext into the ciphertext is called encryption, while the inverse process is
named decryption. The algorithm used for performing encryption is named the cipher. The document
history of ’Cryptography’ begins with ancient Egyptian hieroglyphic. It has predominantly been used by
the governments and military for the confidentiality of information. The modern cryptography begins with
the Shannon theory [235], in which three fundamental goals must be achieved:

— Confidentiality: It is roughly equivalent to privacy. It ensures that information is not made available
or disclosed to an adversary who has access to a communication channel and he is not able to derive
messages exchanged by the emitter and the receiver;

— Integrity: It is the assurance that the information is trustworthy and accurate. It ensures that an
adversary who has access to a communication channel is not able to change and modify the content
of messages exchanged by the emitter and the receiver;

— Availability: It ensures that information are available to authorized people when it is needed.
There are two major categories of modern cryptographic primitives, namely symmetric and asymmetric

algorithms [96, 242, 132]. The main distinguishing property of these categories is the different usage of the
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key.
Symmetric encryption algorithms use only one key for both encryption and decryption, which should be

distributed before transmission to the emitter and the receiver. Figure 2.1 gives an overview on the symmet-
ric encryption primitive. Symmetric ciphers are based on a combination of mathematics and cryptographic
principles that usually call for simple primitives such as rotation, substitution, permutation, shift, bit-wise
XOR etc. The key plays an important role in the encryption/decryption process. Its effectiveness directly
depends on the size of key. An adversary may access and decrypt message if a weak key is used in the
encryption algorithm. The strength of symmetric encryption algorithm depends also on the size of the used
key. For the same algorithm, encryption is more robust and harder to break when using longer key than the
one performed using smaller key. A main problem with these categories is securing the key transmission
over the malicious network.

Figure 2.1 – Symmetric encryption primitive.

Asymmetric encryption algorithm is used to solve the problem of key distribution. In asymmetric algo-
rithms, each participant possesses a pair of keys: a public key and a private key. The public key is known
by all the public while the private key is known only by the user. There is no need to distribute them before
transmission. The two keys are strongly related to each other and each has its own purpose: The public key
is used for encryption, whereas the private key is used for decryption. We give in Fig.2.2 the principle of
the asymmetric encryption. The public key encryption is based on mathematical primitives so that they are
computationally intensive. Asymmetric encryption relies on mathematical functions which are computa-
tionally intensive such as modular addition, subtraction, modular multiplication, variable length rotations,
etc. It is almost 1000 times slower than symmetric ones. This makes asymmetric encryption not well-suited
to most of wireless sensors of the IoT which are low-cost computing devices [62, 105, 247].

In this thesis, we focus on symmetric cryptography and we introduce in next section its essential princi-
ples.

2.2.1 Symmetric encryption algorithms
There are two main kinds of modern symmetric encryption algorithms: block ciphers and stream ci-

phers. In the following, we describe these types in more details. In 1883, Kerckhoffs proposed six princi-
ples of designing practical symmetric encryption algorithms [121]. Among these, the most important and
relevant for modern ciphers, known as Kerckhoff’s principles, is the principle that the security of a cipher
should not depend on keeping secret the cipher, but only the key must be secret. Kerckhoffs’ principle
was later restated Shannon as "the enemy knows the system being used", i.e., "one ought to design systems
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Figure 2.2 – Asymmetric encryption primitive.

under the assumption that the enemy will immediately gain full familiarity with them". In that form, it is
called Shannon’s maxim [236]. The idea is that the security of the cipher rests only in the keys and not in
the algorithm. This presents one of the main concepts of modern cryptography. In fact, in cryptography,
the key can be compromised and replaced with different one, without requirement of redesign cipher. This
concept applies to the cipher security in general. We apply this principle when designing our proposed
crypto-systems. We now briefly describe the above listed types of symmetric encryption algorithms.

2.2.2 Block ciphers
A block cipher is a deterministic algorithm which maps fixed-length n-bits of plaintext, called a block,

to n-bits ciphertext blocks; n is called the blocklength (typically equal to 64-256 bits). Block cipher is an
invertible transformation that takes as inputs the secret key K and n-bits plaintext and outputs n-bits cipher-
text. It consists of two paired algorithms, one for encryption (E), and the other for decryption, (D) [69].
The decryption algorithm presents the inverse function of encryption, i.e., D = E−1 [177]. The encryption
cipher is given by the following equation:

EK(P ) := E(K,P ) : {0, 1}k × {0, 1}n → {0, 1}n. (2.1)

Where K is a secret key of length k bits and P is plaintext of length n. EK(P ) returns a ciphertext C of
n bits. For each K, the function EK(P ) is required to be invertible mapping on {0, 1}n. The inverse for
EK(P ) which presents the decryption function is defined as:

E−1K (P ) := DK(C) := D(K,C) : {0, 1}k × {0, 1}n → {0, 1}n. (2.2)

DK(C) takes a key K and a ciphertext C to return a plaintext P, such that ∀K : DK(EK(P )) = P .
In most contemporary block ciphers, the blocklength is at least equal to 128 bits. In order to encrypt a

long plaintext P, it must first be partitionned into separate blocks, each one is small enough to be input to a
block cipher. In the simplest case, called the Electronic CodeBook (ECB) mode, the plaintext is split into
separate blocks and then each one is encrypted and decrypted independently. However, this native mode
is generally not secure because of if plaintext block p1,p2,..., are encrypted twice under the same key, or
equal plaintext blocks are encrypted, the same output ciphertext will be produced. Therefore, patterns in the
plaintext become evident in the ciphertext output evidently. To overcome this disadvantage, several modes
of employing block ciphers ( so-called modes of operation) have been designed. The four most common
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modes are CBC, CFB, OFB and CTR [177]. The CBC mode is used in block ciphers, the other modes
(CFB, OFB and CTR) are used in stream ciphers. The general concept is to use an additional random input
value, called an initial vector IV to create probabilistic encryption [40].

Many block cipher algorithms have been proposed in the literature [211, 213, 70, 230, 172, 229]. The
most and best-known proposed algorithms of block ciphers are the DES and the AES. The DES was de-
veloped in the early 1970s, by IBM as a symmetric-key algorithm for the encryption of electronic data. It
was selected by the National Security Agency (NSA) an official Federal Information Processing Standard
(FIPS) for the United States in 1977 and became a standard for most communication protocols [250]. By
the mid ’90s, the DES considered to be not secure for many applications due to its short 56-bit key size.
And it has been superseded by the Advanced Encryption Standard (AES) in 2001 as the US standard.

The AES algorithm is the most widely used symmetric cipher today in several industries and in many
commercial systems. To date, there are no classical cryptanalysis better than brute-force attack against
AES algorithm. However, the AES algorithm is vulnerable against Implementation attacks. This standard
specifies the Rijndael algorithm [3], [4], [5], [6], a symmetric block cipher that can process data blocks of
128 bits, using secret keys with lengths of 128, 192, and 256 bits, and may be referred to as "AES-128",
"AES-192", and "AES-256" (see Figure 2.3).

Figure 2.3 – AES input/output parameters.

AES is an iterated cipher; the number of rounds, which denoted by Nr, depends on the key length
according to Table 2.1.

Key lengths Number of rounds Nr
128 bits 10
192 bits 12
256 bits 14

Table 2.1 – Key lengths and number of rounds for AES.

Internally, the operations in the AES algorithm are performed on a two-dimensional array of bytes called
the State. The state consists of four rows of bytes, each containing Nb bytes, where Nb = 128/32 = 4. All
operation in AES are byte-oriented operations, and all variables used are considered to be formed from an
appropriate number of bytes. The state is referred to as either sr,c or s[r, c], where r and c are the row
number and the column number, with: 0 ≤ r < 4 and 0 ≤ c < 4.

At the start of the cipher or inverse cipher, the input (plain text) - the array of bytes in0, in1, ..., in15 is
copied into the state array. The cipher or inverse cipher operations are then conducted on this state array,
after which its final value (cipher text) is copied to the output - the array of bytes out0, out1, ..., out15.
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The input array is copied to the state array according to:

s[r, c] = in[r + 4c] (2.3)

for 0 ≤ r < 4 and 0 ≤ c < 4.
At the end of the cipher or inverse cipher, the state is copied to the output array as follows:

out[r + 4c] = s[r, c] (2.4)

for 0 ≤ r < 4 and 0 ≤ c < 4.

2.2.3 Stream ciphers
Stream ciphers are an important class of symmetric encryption algorithms. They encrypt, with a time-

varying transformation, individual data (usually binary digits) of plaintext one at a time, contrary to block
ciphers (section 2.2.2) which simultaneously operate with a fixed transformation on large groups of plain-
text; thus block ciphers are memoryless. Stream ciphers are generally characterized by their hight speed
compared to block ciphers in hardware, and less complex hardware implementation. Also, they are more
appropriate in some applications (e.g. some telecommunications applications) when data must be indi-
vidually processed as it is received or when buffering is limited. Moreover, synchronous stream ciphers
(described in later) are more suitable in some cases where transmission errors are highly possible, since
they are not affected by error-propagation.

Stream ciphers process plaintext in single bit and the cipher function may change as plaintext is pro-
cessed. This is achieved by combining, bit by bit, the plaintext and a keystream sequence - also called
running-key - to obtain the cipher text. The keystream is generally generated by a finite state function
called the keystream generator or the running-key generator. Stream ciphers can be either synchronous or
asynchronous stream ciphers [176, 223].

A synchronous stream cipher (see Fig. 2.4) is one in which the keystream is produced independently of
the plaintext message and of the ciphertext. It depends only on the secret key. The OFB mode of a block
cipher is an example of a synchronous stream cipher. The sender and the receiver must be synchronized.
They used the same secret key to obtain proper decryption. If the decryption fails due to lost of synchro-
nization or ciphertext bits are inserted or deleted during transmission, then decryption process can be only
restored through additional re-synchronization techniques. In addition, a cipher text bit which is changed (
but not deleted) does not affect the decryption of other bits of ciphertext.

Figure 2.4 – Encryption process of a synchronous stream cipher.

In contrast, an asynchronous stream cipher or self-synchronizing stream cipher is one where the keystream
also depends on the ciphertext. The keystream is produced as a function of the key and a fixed number of
previous ciphertext bits. The most common example of this is provided by some block cipher in what is
termed cipher-feedback (CFB) mode. The encryption process of an asynchronous stream cipher is described
in Figure 2.5.



2.2. CRYPTOGRAPHY: FOUNDATION AND BASIC CONCEPTS 25

Figure 2.5 – Encryption process of an asynchronous stream cipher.

Suppose that the asynchronous stream cipher depends on l previous ciphertext bits. If one ciphertext bit
is modified or deleted during transmission, then decryption of up to l ciphertext bits can be incorrect.

The most famous stream cipher that has been proposed to date in the literature is the Vernam cipher, also
called One-Time Pad (OTP). It is a synchronous stream cipher in which the plaintext is combined with a
random "keystream" of the same length, used only once, to generate the ciphertext, using the Boolean "ex-
clusive or" (XOR) function. The keystream is produced by a pseudo-random sequence generator, having as
an input a secret shared key K. The XOR operation is symbolised by

⊕
. Figure 2.6 presents the encryption

process using an OTP stream cipher. The OTP stream cipher is unconditionally secure [215].

Figure 2.6 – Encryption process of OTP stream cipher.

In recent years, several research efforts have investigated secure stream cipher designs. Many of these
have been proposed in software implementation.

The RC4 stream cipher (also known as ARC4 or ARCFOUR meaning Alleged RC4,) [193, 212] was
designed by Ron Rivest for RSA Data Security in 1987. It was the most commonly used in industrial
applications, Internet protection using sing the SSL (Secure Sockets Layer) and TLS (Transport Layer
Security) protocols... RC4 was characterized by its simple implementation. It produces a pseudo-random
stream of bits (the keystream). The cipher is based on using a random permutation technique, which is
initialized with a variable-length key of from 1 to 256 bytes to initialize a 256-byte state vector S, using
the key-scheduling algorithm (KSA). Once these operations were carried out and have been complete, the
keystream is produced using the pseudo-random generation algorithm (PRGA), by outputting some values
of the S permutation updated at each clock. Several papers have been published analyzing the security
of RC4 [125, 179, 88, 124]. Multiple vulnerabilities have been discovered which rend it insecure [201],
especially when the beginning of the generated keystream is not discarded, or when non-random or related
secret keys are used [120]. In 2014, Ronald L. Rivest reconsiders the design of the RC4, and proposes an
improved variant - called Spritz - which attempts to repair weak design decisions in RC4 while keeping
its original principles. Spritz uses a sponge (or sponge-like) function, which can discard bits of keystream
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at any time and from which one can produce pseudo random output bytes of arbitrary length. Spritz can
be used as an encryption algorithm, a message-authentication code generator or as a cryptographic hash
function. But it is rather slow compared to other hash functions such as SHA-3 and best known hardware
implementation of RC4 [214, 44].

AES-CTR algorithm is used as a stream cipher. In fact, it is the AES block cipher in Counter mode
(CTR). The CTR mode was introduced by Whitfield Diffie and Martin Hellman in 1979 [149, 116]. The
AES-CTR requires an initialization vector IV and the secret key of length 128, 192 or 256 bits. The same
IV and key combination must not be used more than once. Many approaches are possible to IV generation
that ensures uniqueness, including incrementing a counter for each packet and linear feedback shift registers
(LFSRs). The AES-CTR cipher operation consists in ciphering a counter value which must be nonce, with
the secret key and xoring the obtained keystream with the corresponding block of the plaintext. The counter
corresponding with a IV value is then updated to cipher in "one-time pad" mode the next plaintext block.
Figure 2.7 presents the principle of the encryption process of the AES-CTR stream cipher.

Figure 2.7 – The encryption process of the AES-CTR stream cipher.

The AES-CTR mode is one of the best known modes of the AES block cipher and recommended
by Niels Ferguson and Bruce Schneier in [149]. The CTR mode has similar characteristics to the AES
algorithm which has been standardized by the NIST. Thus, we say that the AES-CTR is secure. The AES-
CTR model is fully parallelizable and enables effective utilization of many architectural features of modern
processors including aggressive pipelining, multiple instruction dispatch per clock cycle, a large number of
registers, and SIMD instruction.

A5/1 is a stream cipher used in most European country in order to provide communication privacy in
the Global System for Mobile Communications (GSM) standards. A5/1 was developed in 1987. It was
initially kept secret by the GSM companies, but it was entirely reverse engineered and published in 1999
by Marc Briceno from an actual GSM telephone [55, 54]. A5/1 is based on irregular clocking of three short
Linear Feedback Shift Registers (LFSR) of lengths 19, 22 and 23, denoted by R1, R2, R3, respectively. The
key size is equal to 64 bits and the keystream is produced by xoring the output from the three registers. A
GSM transmission is organised as sequences of frames. A new session key K is used for each conversation.
One frame is sent every 4.165 milliseconds and contains 114 bits representing the communication between
the emitter and the receiver. For each frame, A5/1 is used to produce 114 bits of keystream which is xored
with 114 bits of plaintext to produce the cipher text. Figure 2.8 presents the general structure of the A5/1
stream cipher. The three LFSRs are updated according to their primitive feedback polynomials which are
summarized in Table 2.2. The output of each LFSR is the last bit. The clocking function is based on stop/go
technique using a majority rule. The three bits are being examined and their majority is calculated. The
register is clocked if the clocking bit agrees with the majority bit. Hence, note that at each step at least two
or three LFSRs are clocked and the probability for each LFSR being clocked is equal to 3/4. Initially, all
the LFSRs are set to zero. Then for 64 cycles, the 64-bits key are consecutively combined in parallel to the
least significant bit of each LFSR using XOR operation: R[0] = R[0]

⊕
K[i]. Each LFSR is then clocked.

Similarly, the three LFSRs are clocked 22 times and the entire system is clocked for 100 additional clock
cycles using the irregular clocking mechanism, but the output discarded. Then, finally, the three LFSRs are
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clocked for 228 clock cycles, producing two 114 bit sequences of output keystream, first 114 for downlink,
last 114 for uplink.

Figure 2.8 – The A5/1 stream cipher structure.

Register Lengths (bits) Feedback Polynomial Clocking Bit Bits that are Xored
R1 19 x19 + x5 + x+ 1 8 18,17,16,13
R2 22 x22 + x+ 1 10 20,21
R3 23 x23 + x15 + x2 + x+ 1 10 22,21,20,7

Table 2.2 – Parameters of the A5/1 Registers.

Several attacks on the A5/1 have been published [46, 45, 76] and serious weaknesses have been identi-
fied.

In 2004, a project under the Information Societies Technology (IST) Program of the European Network
of Excellence for Cryptology (ECRYPT), called "eStream" was tasked with seeking a strong stream cipher
[216, 3].

Its goal was to give rise to a standardization of fast and secure stream ciphers. Thirty-four candidate ci-
phers were submitted. Only a few proposals were chosen to belong to the current official "eStream" project
and the others were rejected because of security vulnerabilities or lower overall performance. Currently,
none of these ciphers have been used in a widespread application, but all show advanced developments
in the state of the art of stream cipher design. Two profiles of stream ciphers for software and hardware
implementations were defined in the eStream project. The first profile is oriented to software-ciphers with
high throughput and is faster than the 128-bits AES-CTR. The second profile is oriented to hardware ci-
phers that are suitable for highly constrained environments and are more compact than the 80-bits AES.
The finalist ciphers for the two profiles are given in Table 2.3. These ciphers were found to be secure
against known attacks. However, some tangible results have been reported by newer cryptanalysis attempts
for some of these ciphers (Rabbit, Salsa12, SOSEMANUK, Grain, Trivium and MICKEY2.0)[162]. We
briefly describe below two examples of the finalist stream ciphers for the first profile oriented to software
implementation namely Rabbit and HC-128.

Profiles The finalist stream ciphers
First profile Rabbit, HC-128, Salsa20/12, SOSEMANUK
second profile Grain, Trivium, MICKEY 2.0

Table 2.3 – The finalist stream ciphers for the eStream project.

The Rabbit is a synchronous stream cipher developed by Martin Boesgaard, Mette Vesterager, Thomas
Pedersen, Jesper Christiansen, and Ove Scavenius [49]. The design of Rabbit was inspired by the complex
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behaviour of chaotic maps and their heigh sensitivity to small change which lead to that chaotic systems can
be used for cryptographic purposes (more explanations in next sections). Rabbit works internally on a finite
precision N bits equal to 32 which makes it suitable for software implementation. The Rabbit algorithm is
based on iterating a set of coupled non-linear functions. It takes as input a 128-bit secret key and produces
for each iteration an output sequence of 128 pseudo random bits using a combination of the internal state
bits. The internal state consists of 513 bits divided between eight 32-bit state variables xj,t, eight 32-bit
counters cj,t (0 ≤ j < 8 and t denotes the number of iterations) and one counter carry bit φ7,t, which needs
to be stored between iterations. Initially, φ7,t is set to zero and the eight xj,t and cj,t are derived from the
key at initialization using a next-state function.

The core of the Rabbit algorithm is the iteration of the system with the next-state function defined by
the following equations:

x0,t+1 = g0,t + (g7,t <<< 16) + (g6,t <<< 16)

x1,t+1 = g1,t + (g0,t <<< 8) + g7,t

x2,t+1 = g2,t + (g1,t <<< 16) + (g0,t <<< 16)

x3,t+1 = g3,t + (g2,t <<< 8) + g1,t

x4,t+1 = g4,t + (g3,t <<< 16) + (g2,t <<< 16)

x5,t+1 = g5,t + (g4,t <<< 8) + g3,t

x6,t+1 = g6,t + (g5,t <<< 16) + (g4,t <<< 16)

x7,t+1 = g7,t + (g6,t <<< 8) + g5,t

(2.5)

xj,t = (xj,t + cj,t+1)
2 ⊕ [(xj,t + cj,t+1)

2 >> 32]mod232 (2.6)

Where <<< and >> denote left bit-wise rotation and right logical bit-wise shift respectively. All
additions are modulo 232. Figure 2.9 illustrates schematically the next-state function.

Figure 2.9 – The next-state function of the Rabbit stream cipher.
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The counters are incremented as follows:

c0,t+1 = c0,t + a0 + φ7,tmod 232

c1,t+1 = c1,t + a1 + φ0,t+1mod 232

c2,t+1 = c2,t + a2 + φ1,t+1mod 232

c3,t+1 = c3,t + a3 + φ2,t+1mod 232

c4,t+1 = c4,t + a4 + φ3,t+1mod 232

c5,t+1 = c5,t + a5 + φ4,t+1mod 232

c6,t+1 = c6,t + a6 + φ5,t+1mod 232

c7,t+1 = c7,t + a7 + φ6,t+1mod 232

(2.7)

where the carry φ7,t+1 is given by:

φj,t+1 =


1 ifc0,t + a0 + φ7,t ≥ 232ˆj = 0

1 ifcj,t + aj + φj−1,t+1 ≥ 232ˆj = 0

0 otherwise
(2.8)

Furthermore, the aj constants are equal to:

a0 = a3 = a6 = Ox4D34D34D,

a1 = a4 = a7 = 0xD34D34D3

a2 = a5 = 0x34D34D34

(2.9)

After each iteration, 128 bits of keystream are generated according to an extraction technique. Once
the extraction function is completed, the extracted bits are xored with the plaintext/ciphertext for encryp-
tion/decryption.

Rabbit is a high speed stream cipher. Its simple design also helps in hardware implementation. The
computing performance of Rabbit algorithm is much better than some modern stream ciphers but is far
behind a stream cipher designed for hardware implementation such as Trivium. The cryptanalysis of Rabbit
did not reveal any attacks against Rabbit. Only the existence of a non-null bias in the keystream generated
by Rabbit is demonstrated [31]. The keystream bias is greater than 2−124.5 for certain bits, and this leads to a
distinguisher requiring about 2247 128-bit samples of keystream derived from random keys, which remains
much higher than the cost of exhaustive key search.

The HC-128 is a synchronous stream cipher designed by Hongjun Wu [4, 194] and is currently a mem-
ber of the eSTREAM software portfolio. The HC-128 design is suitable for modern super-scalar processors.
It makes use of a 128-bit key K and 128-bit initialization vector IV. Its state contains two tables P and Q,
each with 512 registers of length equal to 32 bits. At each step, a non-linear feedback function is used to
update one register of one of the tables. All the elements of the two tables get updated every 1024 steps.
A non-linear output filtering function generates a 32-bit keystream output word. The cipher specification
states that a keystream with length up to 264 bits can be generated from 128-bit key K and a 128-bit IV.

HC-128 is the simplified version of HC-256 which uses a 256-bit key and 256-bit IV [280]. There are
six functions being used in HC-128: f1(x), f2(x), g1(x), g2(x), h1(x) and h2(x). P is used as a S-box in h2
and Q is used in the same purpose for h1. The used functions are described in Table 2.4 and 2.5 where x is
a 32-bit word and x = x3 || x2 || x1 || x0, x0, x1, x2, and x3 are four bytes. The bytes x3 and x0 respectively
denote the most and least significant byte of x.

The generation process starts with the initialization step i.e. with the Key and IV setup algorithms: K
and IV are expanded into the two table P and Q, and the cipher runs 1024 steps.The Key and IV setup
function is described in Algorithm 1. Once the initialization step completes, the algorithm is ready to
generate keystream.
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symbol Meaning
+ addition mod 232

- subtraction
⊕ xor operation
|| concatenation
� /� left / right shift
≪ /≫ left / right rotate
� subtraction mod 512

Table 2.4 – Symbols and their meaning used in HC-128 stream cipher.

Function Description
f1(x) (x≫ 7) ⊕ (x≫ 18) ⊕ (x� 3)
f2(x) (x≫ 17) ⊕ (x≫ 19) ⊕ (x� 10)
g1(x) ((x≫ 10) ⊕(z≫ 23)) + (y≫8)
g2(x) ((x≪ 10) ⊕(z≪ 23)) + (y≪ 8)
h1(x) Q[x0] + Q[256+x2]
h2(x) P[x0] + P[256+x2]

Table 2.5 – Functions used in HC-128 stream cipher and their description.

Algorithm 1 KEY-IV-SETUP
Step-1: Expanding Key & IV into an array Wi (0 ≤ i ≤1279)...
for i =0→ 7 do
Wi ← Ki

end for
for i =8→ 15 do
Wi ← IVi−8

end for
for i =16→ 1279 do
Wi = f2(Wi−2) +Wi−7 + f1(Wi−15) +Wi−16 + i

end for
Step-2: Update the tables P and Q with the array W
for i =0→ 511 do
P [i]← Wi+256

Q[i]← Wi+768

end for
Step-3: Run the cipher for 1024 steps and use the outputs to replace the table elements...
for i =0→ 511 do
P [i] = (P [i] + g1(P [i�3], P [i�10], P [i�511]))⊕ h1(p[i�12])
Q[i] = (Q[i] + g2(P [i�3], P [i�10], P [i�511]))⊕ h2(p[i�12])

end for

At each step, one element of a table is updated and one 32-bit output is generated. Each S-box is used
to generate only 512 outputs, then it is updated in the next 512 steps. The keystream generation algorithm
of HC-128 is given in Figure 2 [181].
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Algorithm 2 KEYSTREAM-GENERATION
Assume N bits are required...
for i =0→ N do
j = imod512
if (i mod 1024) ≤ 512 then
P [j]← P [j] + g1(P [j�3], P [j�10], P [j�511])
si = h1(P [j]⊕ P [j�12])

else
Q[j]← Q[j] + g1(Q[j�3], Q[j�10], Q[j�511])
si = h1(Q[j]⊕Q[j�12])

end if
i← i+1

end for

Many other stream ciphers have been proposed in software form, e.g., LEVIATHAN (Cisco), MUGI
(Hitachi-K.U. Leuven), SNOW [75], SOBER (Qualcomm) and [217]. These stream ciphers have proven to
be very weak and insecure. This has incited researchers to search for new methodologies that are immune
to many attacks that can be applied.

2.3 Chaos-based cryptography

2.3.1 Chaos Theory
The word chaos is derived from the ancient Greek ’xαos’, which means unpredictable behaviour or a

state without order. Chaos theory has been established since 1970s. It is a branch of mathematics that
focused on the behaviour of dynamical systems. In chaos theory, a chaotic system is a simple, non-linear
dynamic process that reflects completely unpredictable behaviour, and hence randomness. Moreover, it is a
deterministic system and high sensitive to initial conditions, such that, if two identical chaotic systems are
in two slightly different initial conditions, they will evolve toward amazingly different results [36, 287]. A
system is called a chaotic system if it is high sensitive to initial conditions and parameters and if periodic
orbits are dense [43]. Chaos theory has many applications in several disciplines, including meteorology,
physics, computer science, engineering, economics, philosophy, and biology [109].

Chaos-based cryptography is the use of chaos theory in cryptographic systems. Since 1980s, the idea
of using chaotic systems to design crypto-systems has attracted more and more attention. It can be traced
to Shanon’s classical paper on theory of secrecy systems [236]. The good dynamical properties of chaotic
systems implies good cryptographical properties of crypto-systems. And, the basic method to make crypto-
systems have good and strong cryptographical properties implies quasi-chaos.

Chaos theory and nonlinear dynamic have been used in the design of cryptographic primitives including
image encryption algorithms, hash functions, secure pseudo-random number generators, block ciphers,
stream ciphers, watermarking and steganography [18].

The chaotic cryptographic primitives are generally made by combination of two operations called confu-
sion and diffusion, which are modelled well by chaos theory [27]. Both operations are repeatedly performed
till the sufficient security level is achieved. The quality of security is tested by its capability to defend dif-
ferent attacks including known plaintext attack, statistical attack, deferential attack, and brute-force attack,
etc.

Most of the cryptographic algorithms are based on using uni-modal chaotic maps, their control parame-
ters and their initial conditions as their keys [38]. Many chaotic maps are proposed in the literature that have
been applying to cryptography in several ways. In the following sections, we will give a brief introduction
to some chaotic maps, and their applications in cryptography particularly proposed chaotic pseudo-random
number generators, chaos-based block ciphers and chaos-based stream ciphers of the literature.
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2.3.2 Chaotic maps
In mathematics, a chaotic map is a function which exhibits some sort of chaotic behaviour. It often

takes the form of iterated function and occurs in the study of dynamical systems. Chaotic maps may be
parametrized by a continuous-time or a discrete-time parameter.

According to Alligood et al., [21] a chaotic map is a function of its domain onto itself, the starting point
of the trajectory (the sate from which the system starts) is called the initial condition. Chaotic maps clearly
illustrate statements of many characteristics of chaotic behaviour such us sensitivity to initial conditions,
complex behaviour and the evolution of information in deterministic and unpredictable behaviour [32].
Several chaotic maps with one-dimension (1-D), two-dimensions (2-D) and three-dimensions (3-D) are
proposed in the literature. In this subsection, we will give a brief description to some chaotic maps including
Gauss map, Tent map, Hénon map, Lozi map, Lorenz attractor and Rössler attractor. Other maps such as
Logistic map, Skew Tent and Piecewise Linear Chaotic Map (PWLCM) will be described in Chapter 3 since
they will be used in this thesis as base of the proposed pseudo-chaotic number generators.

Gauss map The Gauss map (also known as Gaussian map), is a 1-D non-linear iterated map of the reals
into a real interval given by the Gaussian function:

xn+1 = exp(−αx2n) + β (2.10)

where α and β are real parameters.
The Gauss map is also called the mouse map because its bifurcation diagram resembles a mouse (see

Figure 2.10).

Figure 2.10 – Bifurcation diagram of the Gauss map with α= 4.90 and β in the range -1 to +1.

The discrete Gauss function is given by the following equation [160]:

Xn+1 = G(Xn) =


0 if Xn = 0,

1
Xn
− [ 1

Xn
] otherwise

(2.11)

where the notation [.] means to take the fractional part.
The researches have shown that the Gauss is a good example of a chaotic discrete dynamical system, in

that it exhibits in an accessible fashion all the common features of such systems [67].
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Tent map The Tent map is an iterated function of a dynamical system which exhibits chaotic behaviours.
It is a 1-D simple map, on the unit interval J = [0, 1] into itself and governed by Eq.(2.12):

xn+1 =


axn+1 if xn < 1

2

a(1− xn+1) ifxn ≤ xn

(2.12)

where a is a control parameter which is varied between 0 and 2.
The mapping of the Tent map function and its bifurcation diagram are given in Figure 2.11.

(a) Mapping (b) Bifurcation diagram

Figure 2.11 – Mapping and bifurcation digram of the Tent map [12].

The Tent map has been shown to have a uniform distribution. Therefore, the tent map is often used to
design chaos-based crypto-systems [285].

Hénon map The Hénon map is a 2-D discrete-time dynamical map. It was introduced in 1976 by Michel
Hénon as a simplified model of the Poincaré section of the Lorenz model [106]. The Hénon map takes one
point (x, y) and maps this point to a new point in the plane. It is elaborated as follows:{

xn+1 = 1− αx2n + yn
yn+1 = βxn

(2.13)

The Hénon map depends on two control parameters, α and β. It is known to display chaos for certain
parameter values and initial conditions. The Hénon map is chaotic for of α = 1.4 and β = 0.3. For other
values of α and β the map may be chaotic, intermittent, or converge to a periodic orbit.

The Hénon map tends toward a "strange attractor" (see Figure 2.12).
The Hénon map is an excellent system that bears all the classical chaotic characteristics, yet, it has its

own disadvantages. Due its simplicity, it has become a benchmark system which is frequently used as an
example to demonstrate scheme, analyse and control chaotic behaviour [210].

Lozi map Lozi Map is a 2-D map introduced by René Lozi in 1978 [154]. Lozi Map equations and
attractors resemble the Hénon map, but with the term−αx2n replaced by−α|xn|. It is given by the following
equation:
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Figure 2.12 – Attractor of the Hénon map for α = 1.4 and β = 0.3. [272]

{
xn+1 = 1− α|xn|+ βyn
yn+1 = xn

(2.14)

where α and β are bifurcation parameters
The strange attractor [178] illustrated in Figure 2.13 results from α=1.4, β=0.3.

Figure 2.13 – Attractor of the Lozi map for α=1.4, β=0.3 [273].

This Lozi map is the subject of many works focused on its various properties [288].

Lorenz attractor The Lorenz attractor is one of the most know 3-D chaotic attractors. It was first studied
and introduced by Edward Lorenz in 1963 [153, 246] as a simplified mathematical model for atmospheric
convection. Edward Lorenz showed that a slight change in the initial conditions of a weather model would
affect the whole system and could give large differences in the resulting weather. This is called sensitivity to
the initial conditions. Lorenz’s dynamic system is nonlinear, non-periodic, deterministic and very sensitive
to the initial value. It presents a chaotic attractor which resembles a butterfly (see Figure 2.14).

The Lorenz attractor is a system of three ordinary differential equations now known as the Lorenz
equations, defined as follows:
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dx
dt

= σ(y − x)
dx
dt

= x(ρ− z)− y
dz
dt

= xy − βz
(2.15)

where x, y, and z make up the system state, t is time, and σ, ρ and β are the system control parameters.

Figure 2.14 – Attractor of the Lorenz system for σ = 10, β = 8/3, ρ = 28.

The Lorenz equations have been the subject of several research articles in chaos-based cryptography.
They also arise in simplified models for other applications such as lasers, dynamos,thermosyphons, electric
circuits and chemical reactions.

Rössler attractor The Rössler attractor was created by Otto Rössler in 1976, with a system of three
non-linear ordinary differential equations [221, 220]. These differential equations define a continuous-time
dynamical system that exhibits chaotic dynamics. The defining equations of the Rössler system are:

dx
dt

= −y − z
dx
dt

= x+ ay
dz
dt

= b+ z(x− c)
(2.16)

where a,b and c are constants.
O.Rössler studied the chaotic attractor with a=0.2, b=0.2 and c=5.7. The plotted attractor is a quite nice

but is not famous attractor (see Figure 2.15).

2.3.3 Chaos Applications in Cryptography

Block ciphers based on Chaotic Systems As we discussed before, a block cipher is an algorithm that
operates on fixed length of bits called block, with a transformation function which maps block of plaintext
bits to ciphertext bits of equal bits size, specified by a symmetric key. The decryption algorithm is defined
to be the inverse function of encryption: the ciphertext is divided into blocks of the same bit size and then
the decryption function is applied to each block using the same shared secret key.
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Figure 2.15 – Attractor of the Rössler system [11].

The security of a block cipher is evaluated with assuming that the attacker have access all transmitted
ciphers and knows the encryption cipher details but he ignores the shared secret key. If the shared secret key
is discovered, the block cipher is considered totally broken. Whereas, if part of the plaintext is retrieved, the
block cipher is considered partially broken [249]. A well-designed block cipher should contains two layers:
a confusion layer and a diffusion one. Confusion refers to how making each binary bit of the ciphertext
should depend on several parts of the secret key, obscuring the connections between both. Diffusion means
how a single bit change of the plaintext affects the ciphered bits. Several chaos-based block ciphers are
based on the Fridrich structure in which the confusion and diffusion layers are separated.

A general structure of chaos-based block cipher is given in Figure 2.16, where the confusion and the
diffusion layers are working separately. First, the confusion process is applied rc times on the block (or
on the whole image), then the diffusion process is applied rd times on the output of the confusion process,
and finally, the two processes are repeated r times. As we can see, both layers required image-scanning
(for rc = rd = r =1). The confusion process is usually done by substitution operation. The substitution can
be achieved by any 2-D chaotic permutation map, such as: Cat map, Standard map, or Baker map [94],
and also, by using any nonlinear chaotic function as the 1-D finite state Skew tent map. In the permutation
case, the image pixels are relocated, but their values remain unchanged. The diffusion process changes the
statistical properties of the plain-image by spreading the influence of each bit of the plain-image over all the
ciphered ones. The diffusion process is essential for any secure cryptosystem, otherwise it is easy to break
the system. The dynamic keys Kc and Kd are supplied by the chaotic generator(s) (keys generator(s)).

Figure 2.16 – General structure of chaos-based block cipher.

Over the past two decades, many researchers have used a chaotic system to design block cipher encryp-
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tion algorithms in order to provide high security. These algorithms were studied and analyzed. Among these
algorithms, there are those which are considered robust and secure and can be used in data transmission ap-
plications. But, unfortunately, some of them are described as insecure and/or slow algorithms. Therefore,
further research is still needed to design fast and secure chaos-based block ciphers. In this section, we will
review some chaos-based block ciphers and give brief details of their algorithms.

In 1997, Fridrich introduced a symmetric block encryption technique based on two-dimensional chaotic
map [93, 94]. The general architecture of this crypto-system is shown in Figure 2.17. Fridrich crypto-
system became the main structure of the most proposed chaos-based crypto-systems and it has been widely
referenced since 1997.

Figure 2.17 – Image encryption scheme of Fridrich [148].

Fridrich’s crypto-system consists of two parts: chaotic confusion and pixel diffusion. The former pro-
cess is achieved by permuting all the pixels of a plain-image as a whole, using one of the three types of 2-D
chaotic maps, namely, Standard map, Cat map, and generalized Baker map defined. The parameters of the
chaotic map serve as the confusion key. The diffusion process changes sequentially the value of each pixel
one by one, in such a manner that the change to a particular pixel depends on the accumulated effect of all
previous pixel values. The parameters of the chaotic map as the initial value or control parameter of the
diffusion function serve as the diffusion key (see Eq (1.18), (1.19) and (1.20)) [148].
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Lian et al., [148] studied the performance of Fridrich’s crypto-system and its security against brute-
force attack, statistical attack, known-plaintext attack, select-plaintext attack and so on, by investigating the
properties of the involved chaotic maps and diffusion functions. Furthermore, They found some weaknesses
and proposed some enhancement means to strengthen the overall performance of the focused crypto-system,
and some advices to select suitable chaotic map, diffusion function and iteration time. In 2010, Solak et
al., [245] cryptanalyzed Fridrich’s chaotic crypto-system and showed that the later could be broken using
chosen-ciphertext attacks.

In 1998, M.S. Baptista [34] published a new crypto-system based on ergodic property of the simple
low-dimensional and chaotic logistic map. In such crypto-system, the logistic map is used as a chaotic
source and its output range is divided into intervals [Xmin, Xmax). The number of intervals are S (where S
is the number of symbols can be used in plaintext). Consider a plain text having S different characters set
Ca1, Ca2...CaS , use a one to one onto mapping fS : Xt = X1, X2, ..., XS → At = Ca1, Ca2, ..., CaS to
associate S different intervals with S different characters. After Baptista’s system publication, there have
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been several attacks [144, 111, 24, 25] on it and several modified versions have been proposed [208, 145,
279, 277, 278, 187].

According to Alvarez et al., [24], Baptista’s encryption scheme has several weaknesses. They found that
three types of cryptanalysis attacks: the chosen plain text attack, the entropy attack and the key recovery
attack. Wong et al., [279] found that Baptista’s approach has two main drawbacks. First, the resultant
ciphertext is usually concentrated at few number of iterations. The second drawback is that the algorithm has
low encryption speed and random numbers are repeated early. After these drawbacks, Baptista’s crypsto-
system is not competitive for standard algorithms of secure applications.

In 2004, Mao et al., [166] extended the two-dimensional chaotic baker map to be three-dimensional and
proposed a new Symmetric block encryption scheme based on this map. The 3-D baker map was used to
speed up image encryption while retaining its high degree of security. The proposed algorithm contains
confusion and diffusion stage, and aims to obey traditional block cipher’s principles (see Figure 2.18).

Figure 2.18 – Block cipher encryption scheme proposed in [166].

Compared to other existing similar schemes that were designed on the 2-D baker map, Mao et al.,
scheme [166] has higher security and faster encryption/decryption speeds, which makes it a potential can-
didate for real-time image encryption applications.

In 2005, Lian et al., [147] designed a block cipher based on the discretized chaotic standard map, which
can be presented for encrypting large-volume data sets. It is composed of three parts: a confusion process
based on chaotic standard map which consists of the random-scan process, a diffusion function realized by
a logistic map, and a key generator based on the chaotic Skew Tent. Some cryptanalysis on the security
of the designed cipher is carried out. The cipher has satisfactory security with a low cost: it is of high
key-sensitivity, and high security against brute-force attack, statistical attack and differential attack. Thus,
it may provide a choice for multimedia encryption applications such as images, audios and even videos.

In 2011, Wang et al., [268] introduced the idea of combining the permutation and diffusion layers into
one single layer. As a result, one image scanning is required and the algorithm may win at least two-time
on image-scanning (see Figure 2.19).

In Wang’s algorithm, the image is first partitioned into a number of blocks Nbblocks = L×P
64

, where L
and P are the height and the width of the image, respectively. Then, the pseudo-random numbers, generated
from the nearest-neighboring coupled-map lattices (NCML) given in Eq.(2.17) [118], are used to modify
the pixel values in the blocks. Meanwhile, the blocks are moved to new positions according to the lattice
values of the NCML and some lattice values are exchanged. These steps are repeated R rounds until the
required security level is reached.

xn+1(i) = (1− ε)f(xn(i)) + εf(xn(i+ 1)) (2.17)

Using multiplication and conversion from floating points to integers operations when generating pseudo-
random numbers from NCML can avoid time-consuming, which greatly increases the encryption speed.
Also, the mixing of the permutation and diffusion layers makes the image scan required only once in
each encryption round, which also improves the encryption speed. In addition, the new algorithm has
high security level, it can well resist brute-force attack, statistical attack, differential attack, known/chosen-
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Figure 2.19 – Image crypto-system combining the permutation-diffusion architecture [268].

plaintext attacks. Therefore, the algorithm indeed has excellent potential for practical image encryption
applications.

In 2016, Farajallah et al., [85] proposed an efficient crypto-system that overcome the weaknesses of
Zhang crypto-system [289] while keeping a very high speed compared to the main chaos-based crypto-
system of the literature. The encryption side of the proposed cryptosystem is given in Figure 2.20, for the
first block.

Figure 2.20 – Encryption structure of the proposed crypto-system by Farajallah et al., [85].

Each pixel from the plain block p0(k) is XOR-ed with the initial byte iv(k) from the initial vector IV,
then the output is XOR-ed with the discrete logistic map output to carry out the diffusion process. Then, the
8 least significant bits resulting from the diffusion process LSB8 (y0(k)) are relocated using the modified
2-D cat map to obtain the ciphered pixel at the new position c0(kn). It is important to note that the input
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of the discrete logistic map is based on the previous ciphered pixel (since c0(kn) = LSB8(y0(k)) and the
input of the discrete logistic map is 32 bits and the ciphered pixel is 8 bits. That is why the crypto-system
takes y0(k−1) before the LSB8 function and not after. For the first encrypted byte, the input of the discrete
logistic map is Kdm and this value is re-initialized every new encryption round. Because the c0(kn) is only
a part of the logistic map input, it is impossible to recover y0(k − 1) from c0(kn) only. The encryption of
the next blocks is almost the same. Each pixel from the plain block pl(k) is XOR-ed with ciphered byte
from the previous block at the same position(i.e., c(l − 1)(k) to achieve the CBC mode). Then the rest of
the operations are the same as in the first encryption block.

The security level of the proposed cryptosystem is verified by testing different kinds of known mathe-
matical attacks and statistical analysis. The proposed crypto-system in proved to be more resistant against
known attacks and faster than Zhang crypto-systems; the dynamic key space is much larger. All results
prove that such crypto-system is suitable for securing real-time applications.

Pseudo-random number generators and stream ciphers based on chaotic maps

Noise like appearance and unpredictable behavior of the results generated by chaotic systems have
attracted the researchers’ interest in applying such systems for designing Pseudo-random number generators
(PRNGs) [168, 290, 238, 22, 126, 259]. PRNGs are the main element on stream cipher algorithms as
keystreams are combined, using an XOR operation, to the plaintext to generate the corresponding ciphertext
[239]. The keystream must be random enough and different at each new execution to ensure that if an
attacker knows at instant t the keystream, he cannot recover the secret key or derive the internal state. Thus,
the security of any stream cipher depends on the randomness of the keystream, therefore on the robustness
of the used PRNG. In addition, it is very important to use RNG and PRNGs when generating the secret
keys and initialization variables [256]. Many stream cipher algorithms have been proposed in the literature,
based on pseudo chaotic number generators (PCNGs). In the design of PCNGs, many chaotic maps have
been utilized including Logistic map, Tent map, Piecewise non-linear chaotic map and Hénon map. Some
researchers have used multiple chaotic maps to enhance the PCNG security [276].

Over the past two decades, many researchers have utilized chaotic maps for the design of PRNGs and
stream ciphers to obtain high security performance [168, 290, 238, 22, 126, 259]. Unfortunately, some of
the proposed PCNGs are considered as insecure and/or slow algorithms. Therefore, further research is still
needed to design fast and secure pseudo-random number generators. In this section, we will review some of
pseudo-chaotic number generators and stream ciphers, and we will give brief details of insecure and slow
algorithms.

In 1985, Wolfram published the first paper on a dynamical system; this was a stream cipher based on
a simple one-dimensional cellular automation [276]. The cellular automation which consists of a circular
register with N cells, is used to generate a random binary keystream sequence that is XORed with the
plaintext to produce the correspondence ciphertext.

In 1989, Matthews et al., [173] used discrete chaotic dynamical systems for the first time, to design
chaos-based stream cipher algorithm. This work has attracted the attention of many researchers. Matthews
suggested using a one-dimensional chaotic map, which exhibits chaotic behavior for a range of parameter
and initial values. This map is used for generating a random sequence as system keys, which serves as a one
time pad for encrypting plaintext. Matthews’s algorithm has been criticized later by Wheeler [275], who
demonstrated that this map, when implemented on digital computer systems, produces repeating cycles
of values, which are unpredictable and often have short length. Therefore, the map is not suitable for
cryptographic use in the manner proposed by Matthews.

In 2001, Shujuna et al., [240] presented a novel pseudo-random binary sequence generator based on a
couple of chaotic systems called CCS-PRBG. The general structure of CCS-PRBG is given in Figure 2.21.
Authors used two different chaotic maps instead of one in order to provide higher security.

In the same year, another stream cipher based on the logistic map was presented [200]. Two nearby
logistic map trajectories were used to generate the pseudo-random sequences with high complexity. The
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Figure 2.21 – Structure of the digital CCS-PRBG proposed in [240].

plaintext is Xored with the generated sequence to obtain the ciphertext. The simplified block diagram of
this algorithm is shown on Figure 2.22 [244] where: yn is the plaintext stream, Cn is a ciphertext, ⊕ means
a bitwise xor operation, x0, x′0 and λ are the cipher’s key. f is the logistic map function.

Figure 2.22 – Structure of the chaos-based stream cipher proposed by [200].

Skrobek [244] presented an efficient attack on the values of the key of this algorithm. Other weaknesses
of this cipher are presented, and proposals of algorithm’s improvement as well.

In 2003, Lee et al., [138] proposed a new scheme for generating good pseudo-rando mnumbers, based
on the composition of multiple chaotic maps. The proposed algorithm generates first a sequence of pseudo-
random bytes by using a known chaotic dynamical system, then applies certain permutations to them, using
the discretized version of another two-dimensional chaotic map. The proposed cipher can generate a high
percentage of usable pseudo-random numbers, while maintaining a large key space for potential use in
encryption. Thus far, there have been no successful attacks on this cipher. In the same year, a new chaos-
based PRNG were proposed for cryptographic applications [126]. Its construction is based on the fact that
the inverse of a function is not a well-defined function, and has a large number of branches, although the
inverse can be easily computed on a particular branch. The proposed generator uses only binary operations.

In 2005, Addabbo et al., [16] proposed a pseudo random number generator, based on a family of digital
maps derived from the discretized chaotic Sawtooth map, as a source of long-period pseudo random bits.
Several statistical parameters and tests showed that these PRNG have a good performance in terms of period
length and statistical properties of the generated sequences, while requiring a moderate increase in silicon
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area in comparison with LFSRs, that are the reference for low hardware complexity PRNGs.
In 2006, Wang et al., [266] proposed a new chaotic pseudo-random bit generator (PRBG), named NDF-

PRBG, using n-dimensional non-linear digital filter (NDF) and chaotic maps. They used a coupling method
followed by a quantization function to overcome the effects of finite wordlength to NDF and to hide its dy-
namic behaviour (see Figure 2.23). Proposed PRBG is confirmed to have perfect cryptographic properties,
and can be used to construct stream ciphers with high level security. Moreover, it is much faster than other
chaotic pseudo random number generators due to the inherent parallel structure of NDF.

Figure 2.23 – Architecture of NDF-PRBG [266].

Yu and Cao [286] proposed a novel approach of encryption based on chaotic Hopfield neural networks
with time varying delay. They used the chaotic neural network to generate a binary pseudo-random se-
quence, which will be used for masking plaintext. The plaintext is masked by switching of chaotic neural
network maps and permutation of generated binary sequences. Li et al., [140] studied the performance of
this chaos-based encryption algorithm. They proved that the generated pseudo-random sequence does not
have uniform distribution and sufficient randomness. In addition, this scheme is insecure against the differ-
ential known-plaintext attack and the chosen-plaintext attack, in which only two known/chosen plaintexts
are required to achieve a perfect breaking performance.

Kwok et al., [134] proposed a fast chaos-based image encryption system with stream cipher structure.
A 32-bit precision representation with fixed point arithmetic is assumed. The major core of the encryption
system is a pseudo-random keystream generator. It consists of two parts, serving for the generation of initial
keystream and mixing, based on a cascade of chaotic high-dimensional cat map and tent map, respectively.
It is found that such a design not only achieves a very fast throughput, but also enhance the randomness, even
under finite precision implementation. Thus far, there have been no successful attacks on this algorithm.

Chong Fu et al. [95], proposed an improved chaos-based key stream generator to enlarge the key space,
extend the period and improve the linear complexity of the key stream under precision restricted condition
so as to enhance the security of a chaos-based image encryption system. The generator is constructed by
three Logistic maps and a nonlinear transform. The balance and correlation properties of the generated
sequence are analyzed in this work.

Ahmed et al., [17] published a chaos-based feedback stream cipher (ECBFSC) for image cryptosystems.
The proposed stream cipher is based on the use of a logistic map and an external secret key of 256-bit. The
initial conditions for the logistic map are derived using the external secret key by providing weight to its bits
corresponding to their position in the key. Furthermore, new features of the proposed stream cipher include
the heavy use of data-dependent iterations, data-dependent inputs, and the inclusion of three independent
feedback mechanisms.

In 2008, Kurian et al., [133] proposed a new chaotic stream cipher for digital communication. It uses
one-dimensional chaotic systems such as Logistic map and Tent map. The algorithm utilized the Sym-
bolic dynamics (SD) of chaotic system based synchronisation to produce a pseudo-random sequence as a
keystream. The plaintext is then encrypted using the SD of the Tent map or the Logistic map with certain
values of its initial conditions and parameters. Statistical tests reveal that the proposed system qualifies as
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random binary source. In [29], the authors studied the proposed stream cipher encryption scheme. Analysis
of the keystream reveals the existence of some security problems, since a chosen-plaintext attack makes
possible to estimate the control parameter of the underlying chaotic map, based on a "noisy" version of the
keystream.

Patidar et al., [191] presented an image encryption scheme based on chaotic standard and logistic maps
with simple mixing operation. Rhouma et al., proposed an equivalent description of the Patidar et al.’s
cryptosystem which facilitated them in the cryptanalysis of the original cipher in terms of chosen plainext
and known plaintext attacks. They found that the scheme can be broken with only one known/chosen-
plaintext and the corresponding ciphertext. [209]. Later, Patidar et al., proposed modifications in their
image cipher to make it robust against these two cryptanalytic attacks [190]. In [141], Li et al., pointed
out that the modified scheme is still insecure against the same known/chosen-plaintext attack. In addition,
some other security defects existing in both the original and the modified schemes are also reported.

In 2010, Liu et al., [151] designed a stream-cipher algorithm based on one-time keys and robust chaotic
maps, in order to obtain high security and improve the dynamic degradation. They used the piecewise
linear chaotic map as the generator of a pseudo-random key stream sequence. The initial conditions were
generated by the true random number generators, the Message-Digest algorithm 5 (MD5) of the mouse
positions.

In 2013, Goumidi et al. [101], two schemes are combined to enhance the encryption process complexity,
the key space and the robustness of the cryptosystem. First, the image is divided into two sub-images. Next,
these two sub-images are encrypted using respectively stream and block cipher schemes. After that, the two
sub-images are merged to create enciphered image.

In 2014, cheng et al., proposed in [63] an efficient image encryption scheme. Logistic chaos-based
stream cipher is utilized to permute the color image. The MD5 hash function and the ZUC stream cipher
algorithm are combined to diffuse the color image. ZUC is a new stream cipher due for possible inclusion
in the Long Term Evolution standards for mobile devices. The ZUC algorithms are the new crypto- graphic
algorithms recommended by CCSA to be used in 3GPP LTE (Long Term Evolution).

Vidal et al., [265] proposed a new fast and light stream cipher based on a hyper-chaotic dynamic system,
a codifying method with a whitening technique and a non linear transformation. This stream cipher has been
implemented in video-conference applications for smart phones.

In 2016, Jallouli et al., [112] presented two pseudo-chaotic number generators (PCNGs). The first
PCNG is based on two nonlinear recursive filters of order one using a Skew Tent map (STmap) and a Piece-
Wise Linear Chaotic map (PWLCmap) as non linear functions. Whereas the second one consists of four
coupled chaotic maps, namely: PWLCmaps, STmap, Logistic map by means a binary diffusion matrix [D].
The structure of the two PCNGs are shown in Figures 2.24 and 2.25 respectively.

Figure 2.24 – Structure of the first proposed PCNG proposed in [112].
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Figure 2.25 – Structure of the second proposed PCNG proposed in [112].

A comparative analysis of the performance in terms of computation time and security of the two PCNGs
is carried out. The analysis study and the obtained results of the two PCNGs show that the two proposed
PCNGs have strong cryptographic properties. Security performance of the first proposed PCNG is better
than the second one but it is slightly slower.

2.4 Conclusion
Researchers have been attracted by chaos theory in the cryptography field due to its interesting such

as deterministic nature, sensitivity to initial conditions, unpredictability, and complex structure. Over the
past two decades, several cryptographic systems based on chaotic systems / maps have been proposed such
as pseudo random number generators and cipher encryption algorithms. Unfortunately, there are those
which suffer from security problems or slow performance. Also, some of them are not suitable to smart
devices that have very limited resources in terms of memory, computing power, and battery supply. For such
cipher algorithms that are particularly suited for this purpose, the main challenge is to design lightweight
cryptographic ciphers that cope with the trade-offs between security, cost, and performance. In this chapter,
we provided the fundamental concepts of cryptography primitives and the two major categories of modern
cryptographic primitives, namely symmetric and asymmetric algorithms. We gave an overview of block
ciphers and stream ciphers. Also, we introduce chaos theory and some chaotic maps are briefed. Finally,
we presented a review of block ciphers, pseudo-random number generators and stream ciphers based on
chaotic maps.
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3.1 Introduction
Random number sequences are used for a variety of purposes in various contexts like statistical mechan-

ics, gaming industry, cryptography and communications, etc. The generation of such sequences may be car-
ried out by a generator based on an algorithmic process or on a physical process. There are two basic types
of random number generators: True Random Number Generators (TRNGs) and Pseudo-Random Number
Generators (PRNGs). TRNGs produce a random bit stream from a non-deterministic natural source. They
extract randomness from certain physical phenomena such as thermal and atmospheric noises. TRNGs are
characterized by a higher security. However, their implementation requires additional devices, which make
them more tedious (cost and slow) [258]. A PRNG is a deterministic algorithm that produces numbers
whose distribution is uniform, by inputting an initial seed (often generated by a TRNG). PRNGs are im-
portant in practice for their rapidity in number generation, reproducibility of the pseudo-random sequences
and use of less memory for storage [119].

Over the past years, Pseudo Chaotic Number Generators (PCNGs) have been one of the most impor-
tant elements of chaos-based crypto-systems. Indeed, chaotic signals have very interesting characteristics
for security and for digital communications such as: ergodicity, high sensitivity to initial conditions and
parameters, good cryptographic properties, identical reproducibility (deterministic), broadband spectrum,
auto and cross-correlation similar to pseudo-random signals [127]. The chaotic maps present potential el-
ements in the design of a PCNG. Several generators based on continuous-time chaotic maps have been
studied and proposed in the literature. However, using chaotic maps in continuous-time cannot avoid the
floating data operations, which make the encryption and decryption depend on the computer’s resolution.
Indeed, it may be difficult to realize synchronization between the sender and the receiver if they use com-
puters with different resolutions, because of chaos properties of high initial-value sensitivity and parameter
sensitivity.

To solve this problem, discrete chaotic maps are proposed [94, 131, 171], which permits to discrete
chaotic maps and make them run in integer domain. Based on these chaotic maps, the security of the
corresponding crypto-system [23] is determined by the property of the discrete chaotic map and the crypto-
system architecture.

In this chapter, we study the security performance of some discrete chaotic maps including: Logistic,
Skew Tent and PWLCM maps, as base of proposed chaos-based stream ciphers during this thesis. We
present the cryptographic properties of studied maps as well as their time computing performance. First, we
define in Section 3.2 a collection of common and standard security tools useful for that assessment. Second,
the chaotic maps are discretized making them run over a finite precision N=32, and their cryptographic
properties and speed are analyzed in Section 3.3. As we know that the discretizing process degrades the
original chaotic map’s properties according to the high initial-value sensitivity, we introduce in Section 3.4.1
a perturbation technique that permits the decrease of the degradation. The security analysis of chaotic
maps using the perturbation technique are performed (presented) in Section 3.4. In order to improve the
cryptographic performance of chaotic maps, we propose a recursive structure described in Section 3.5.1.
Then, we give in Section 3.4.4 the security and speed performance of chaotic maps using the perturbation
technique and the recursive structure. Finally, some conclusions are presented in Section 3.6.

3.2 Common and standard security performance evaluation tools
In order to quantify and compare the cryptographic properties of the generated pseudo-chaotic se-

quences, a series of statistical security measurements and evaluation tools must be performed. These
security tests check the randomness degree of the produced sequences. This is done by measuring dif-
ferent characteristics such as the uniformity degree of the sequence distribution. In this section, we describe
in details the well-known statistical security measurements and evaluation tools. These tools are used in
this chapter to study the cryptographic properties of some chaotic maps and also in Chapter 4 to evaluate
the security performance of the proposed PCNGs. These security tests include phase space or mapping,
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histogram, Chi-square test, auto and cross-correlation and the NIST test. Also, we present the used metrics
to evaluate the speed performance of PCNGs and stream ciphers.

3.2.1 Phase space
The phase space or mapping is a diagram that reflects the signature of a chaotic map. It is a tool to

visualize the behaviour of a dynamical system and does not provide any additional information about the
system. The phase space refers to the graphic presentation of the corresponding differential equation or
chaotic function [122]. In this thesis, for all phase space analysis, we plot the mapping of a decimal random
sequence formed by 31250 samples.

3.2.2 Histogram analysis
The histogram is a graphical representation of the numerical data distribution. It is an estimation of

the probability distribution of a random or pseudo-random variable. It was first introduced by Karl Pear-
son [195]. We use the histogram test to study the distribution uniformity of the generated random sequences.

3.2.3 Chi-square test analysis
A random sequence that has a good cryptographic properties must provide a uniform distribution. The

histogram is a visual test of uniformity. It is necessary, but it is not sufficient. To ensure the uniformity, the
Chi-square test is applied to statistically confirm the uniformity of the histogram [282, 184].

The experimental Chi-square χ2 value is given by:

χ2
exp =

K−1∑
i=0

(Oi − Ei)2

Ei
. (3.1)

where K is the number of classes (sub-intervals) chosen in our experiment equal to 1000, Oi is the
number of observed (calculated) samples in the i-th class and Ei is the expected number of samples of a
uniform distribution, Ei = 107/K.

To prove the uniformity of a sequence, the experimental value of Chi-Square must be lower than the
theoretical one. Also, the smaller the experimental value of Chi-Square is than the theoretical one, the better
the uniformity of the histogram.

For the histogram and Chi-square experiments, we generate 320 different decimal sequences, each one
with a different secret key formed by 31250 samples.

3.2.4 Correlation analysis
Correlation analysis is also one of the statistical test that are used to evaluate the security performance

of a generated random sequence. Correlation reflects the intensity of connection which may exist between
two random variables. For cryptographic application, the values in a random sequence must not be repeated
nor correlated. To evaluate the statistical analysis, three metrics can be used: the cross correlation which
is a measure of similarity of two series, the auto-correlation, which is the cross-correlation of a signal with
itself, and the correlation coefficient. The cross and auto-correlation give information about how much the
sequence of a random numbers as a whole depends on the other sequence or on the value of the preceding
members in the sequence itself. If two sequencesX and Y are not correlated, then the correlation coefficient
ρXY between X and Y should be close to zero. Else if sequences X and Y are highly correlated, then ρXY
should be close to one. ρXY is given by the following equation [207]:

ρXY =

∑N
i=1(xi − X̄)(yi − Ȳ )

[
∑N

i=1(Xi − X̄)2]1/2 × [
∑N

i=1(Yi − ȳ)2]1/2
. (3.2)
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where X̄ = 1
N

∑N
i=1 xi and Ȳ = 1

N

∑N
i=1 Yi are the mean values of two sequences X and Y respectively.

We produce two sequences of a random numbers computed with nearby initial conditions, each com-
posed of 31250 samples, to analyse its correlation properties.

3.2.5 NIST test analysis
We apply the NIST statistical test, which presents one of the most popular standard test for analysing

randomness of binary data [224]. The STS 2.1.2 version statistical test suite published in [81] is used. It
consists of a battery of 188 tests (globally 15 different tests) to conclude regarding the randomness or non-
randomness of binary sequences. For each test, a set of m P-values are expected to indicate failure. Indeed,
an α = 0.01, indicates that 1% of the sequences are expected to fail.
• A P − value ≥ α = 0.01 would mean that the sequence would be random with a confidence of

(1− α) = 99%.
• A P −value < α = 0.01 would mean that the conclusion was that the sequence is non-random with

a confidence of (1− α) = 99%.
To apply the NIST test, we generate 100 different binary sequences, each one with a different secret key

(size of each sequence equal to 31250 samples = 106 bits) and α = 0.01.

3.2.6 Computing performance analysis
Computing performance is an important factor for evaluating the performance of a chaotic maps and

PCNGs. For that, we calculate the Bit Rate (in Mega bits per second) and the number of needed cycles
to generate one byte (NCpB). The later permits to compare the speed performance of different systems
working on different platforms. The Bit Rate and NCpB are calculated respectively as follows:

Bit Rate(Mbps) =
Generated data size(Mbits)

Average generation time(s)
(3.3)

NCpB =
CPUspeed(Hz)

Bit Rate(Byte/s)
(3.4)

In this thesis, all experiments are performed on a personal computer with Intel(R) Core(TM) i5-4300M
CPU @2.60GHz and memory 15,6 GB and the operating system is Ubuntu 14.04 Trusty Linux distribution,
using GNU GCC Compiler. For all speed performance evaluations, we give, over 100 different secret keys,
the average Bit Rate in Mbps and the average number of needed cycles to generate one byte (NCpB).

3.3 Performance Evaluation of some chaotic maps
Chaotic maps are dynamic systems defined in real by recurrence relations, given by the following

equation:

xi(n) = f(x1(n− 1), x2(n− 1), ..., xm(n− 1)), i = 1, 2..m (3.5)

where x ∈ S, f : S → S is a function with m variables, S ⊂ [0, 1]ou[−1, 1].
Some one-dimensional chaotic maps such as the Logistic map, the Piecewise Linear Chaotic Maps

(PWLCM), and the Skew Tent [126, 199, 239], and two-dimensional chaotic maps such as: the Cat map,
the baker map, the standard map [94] And the Lozi map [155, 157] are studied in the literature and widely
used for the design of random number generators and in chaos based crypto-systems.

The chaotic generators proposed in this thesis are based on the following discrete chaotic maps: Logistic
map, Skew Tent and PWLCM map, using finite precision N = 32 bits.

Fig. 3.1 shows the general scheme of generating a pseudo-random sequence using a chaotic map.
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Figure 3.1 – Scheme for generating a pseudo-random sequence by a chaotic map.

In the following sections, we discuss the performance of each discrete chaotic map namely Logistic map,
Skew Tent and PWLCM, by presenting the results of the various security performance tests performed.

3.3.1 Performance Evaluation of the Logistic map
The logistic map is a one-dimensional map displaying a singularity, that is characterized by the simplic-

ity of its recurrence equation depending on a single parameter λ. The logistic equation first created by Pierre
Francois Verhulst [264] as a discrete-time demographic model and it was popularized by Robert May who
used it as a pseudo random generator [174]. Since then, it is one of the most used maps in cryptographic
applications. The basic form of the logistic map is given by the following equation 3.6.

FL(xn−1) = xn = λxn−1(1− xn−1) (3.6)

with FL : S → S =]0, 1], xn ∈ S.
The values of interest for the growth rate parameter λ are those in the interval [0,4]. The Logistic map

exhibits an astonishing range of behavior as the growth rate λ is varied [189, 257].
In Fig. 3.2, we present the known curves of the bifurcation diagram and the Lyapunov exponent of the

Logistic map, with a growth rate λ values between 0 and 4.

(a) Bifurcation Diagram (b) Lyapunov Exponent

Figure 3.2 – Bifurcation Diagram and Lyapunov Exponent of the Logistic map.

Fig. 3.2a shows that for growth rates λ less than one, the system always eventually collapses to zero.
For growth rates λ between 1 and 3, the system always settles into an exact stable population level. At a
growth rate between 3 and 3.4, the system oscillates between two population values. Just beyond a growth
rate of 3.4, the diagram bifurcates into 4 paths and with r increasing beyond a growth rate of 3.5, beyond a
growth rate of 3.5, the system oscillates over 8 population values, then 16, 32, etc.
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Beyond a growth rate of 3.75, the bifurcations ramp up until the system is able to land on any population
value. The length of the parameter intervals that yield oscillations decreases rapidly; the ratio between the
lengths of two successive bifurcation intervals tends to the Feigenbaum constant δ ' 4.66920. This behavior
gives a concrete example of a period-doubling cascade. However, for a growth rate value equal to 4, the
population value covers the whole interval ]0,1]. For that, in the discrete version of the map, we set the
value of the growth rate (control parameter) to the optimal value corresponding to 4 (λ = 4) [48].

The discrete Logistic map equation for the control parameter set to 4 is given by the following equa-
tion [196]:

FL[X(n− 1)] = X(n) =


⌊
X(n−1)×[2N−X(n−1)]

2N−2

⌋
if X(n− 1) 6= [3× 2N−2; 2N ]

2N − 1 if X(n− 1) = [3× 2N−2; 2N ]

(3.7)

where bZc(functionF loor) is the greatest integer less than or equal to Z.
X(n) takes an integer value ∈ [0, 2N -1] and N = 32 is the used precision.

Phase space trajectory analysis We draw in Fig. 3.3, the phase space (mapping) of a sequence XL(n)
produced by the discrete chaotic Logistic map and formed of 31250 samples, the attractor and the discrete
variation. The chosen initial condition XL(0) is equal to 1488169157.

The produced phase space trajectory clearly shows the signature relating to the Logistic map.

Histogram and Chi-square test analysis We plotted in Fig. 3.4 the histogram of the generated sequence
XL(n). Visually, the generated sequence XL(n) is not uniform over all values [1, 232-1]. This is intuitively
confirmed since the invariant measure of XL(n) is given by P (XL(n)) = 1

π×
√
XL(n)(1−XL(n))

.

We confirm the non-uniformity of the sequence using the Chi-square test.
The calculated experimental value χ2

exp is equal to 12546727 which is significantly higher than the theo-
retical one χ2

th, equal to 1073,64. This asserts the non-uniformity of the sequence. However, as the Logistic
map is the most used chaotic map in cryptographic applications, only the following interval [b0.2× 232c,
b0.8× 232c] is useful and in which the values follow a uniform distribution.

Correlation analysis To evaluate the correlation between two sequences XL and XL′ generated using
slightly different keys, we calculate the correlation coefficient ρXL,XL′

. The obtained value is equal to -
0,0019. Also, we draw the auto-correlation of sequence XL and a zoom of this autocorrelation on 200
samples in Fig. 3.5. And we plot in Fig. 3.6, the cross-correlation between the two sequences XL and XL′ ,
a zoom on it and a zoom of the auto and cross-correlation. Obtained results show that the different generated
sequencesXL andXL′ have good auto and cross-correlation properties. This asserts the pseudo-randomness
of the generated sequences.

NIST test analysis We performed the NIST test by generating 100 different sequences, each of size equal
to 31250 samples and using different secret key for each sequence (the total size of sequences is equal to
107 bits). In Table 3.1 and Fig. 3.7, we present the obtained results of the NIST test.

The obtained results show that the sequences do not pass all the NIST tests and that some tests are far
from the acceptance threshold of a test materialized by the red line. This shows that the Logistic map does
not have good cryptographic statistical properties for all values [1, 2N − 1] or ]0, 1].

Computing performance of the Logistic map We evaluate the computing performance of the Logistic
map and we report in Table 3.2, the obtained results in average for the Generation Time in µs, the Bit Rate
in Mbits/s and the number of cycle needed to generate one byte (NCpB).
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(a) Phase space (b) Attractor

(c) Discrete variation

Figure 3.3 – Phase space trajectory, attractor and discrete variation of sequence XL(n) generated by the
discrete Logistic map.

Obtained values show that the Logistic map is characterized by a high bit rate compared to the bit rates
of the other chaotic maps presented in the following sections.

3.3.2 Performance Evaluation of the Skew Tent map

The Skew Tent map is a one dimensional piecewise map, exhibiting chaotic dynamics. It is a non
invertible transformation of the unit interval onto itself. It depends on the one parameter p. The Skew Tent
map is given by:
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Figure 3.4 – Histogram of sequence XL generated by the discrete Logistic map.

(a) Auto-correlation of sequence XL (b) A zoom of the autocorrelation on 200 samples of se-
quence XL

Figure 3.5 – Auto-correlation of sequence XL generated by Logistic map.

FS(xn−1) = xn =


xn−1

p
if 0 ≤ xn−1 ≤ p

xn−1−1
p−1 if p < xn−1 ≤ 1

(3.8)

where: FS : S → S, S =]0, 1] and p is the control parameter with p ∈ ]0,1[, xn ∈ S.

If p is equal to 0.5, FS becomes the regular tent map.
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(a) Cross-correlation of sequences XL and XL′ (b) A zoom of the cross-correlation on 200 samples of se-
quences XL and XL′

(c) A zoom of the cross-correlation of sequences XL and
XL′ and of the auto-correlation of sequence XL′

Figure 3.6 – Cross-correlation functions of sequences XL and XL′ generated by the Logistic map

The equation of the discretized Skew Tent function is defined by Eq(3.9):

FS[X(n− 1)] = X(n) =



⌈
2N × X(n−1)

P

⌉
if 0 < X(n− 1) < P

2N − 1 if X(n− 1) = P

⌈
2N × 2N−X(n−1)

2N−P

⌉
if P < X(n− 1) < 2N

(3.9)

where dZe (ceiling function) is the least integer greater than or equal to Z, X(n) takes an integer value
that belongs to the interval [0, 2N − 1], and P is the control parameter with: 0 < P ≤ 2N − 1.
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Figure 3.7 – NIST test results of the Logistic map.

Test P-value Proportion

Frequency test 0.000 92.000
Block-frequency test 0.000 0.000
Cumulative-sums test 0.000 93.500
Runs test 0.000 0.000
Longest-run test 0.000 0.000
Rank test 0.419 98.000
FFT test 0.000 41.000
Non-periodic-templates 0.036 61.304
Overlapping-templates 0.000 0.000
Universal 0.000 0.000
Approximty entropie 0.000 0.000
Random-excursions: 0.002 90.367
Random-excursions-variant 0.400 99.145
Serial test 0.000 0.500
Linear-complexity 0.081 97.000

Table 3.1 – P-values and Proportion results of NIST test for the Logistic map.

Generation Time (µs) 317.75
Bit Rate (Mbits/s) 3147.13
NCpB 3

Table 3.2 – Computing performance of the Logistic map.

Phase space trajectory analysis We draw in Fig. 3.8 the phase space trajectory, the attractor and the
discrete variation of a sequence XS(n) generated by the Skew Tent map. This figure shows the signature
for the Skew Tent map.
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(a) Phase space (b) Attractor

(c) Discrete variation

Figure 3.8 – Phase space trajectory, attractor and discrete variation of sequence XS(n) generated by the
discrete Skew Tent map.

Histogram and Chi-square test analysis Fig. 3.9 presents the histogram of a sequence XS(n) which is
visually more uniform than the histogram of a sequence XL(n) generated by the Logistic map.

However, the Skew Tent map is not uniform. This is proved by the Chi-square test. The experimental
value of the Chi-square test is bigger than the theoretical one (χ2

th = 1073.64, χ2
exp = 1111.62).

Correlation analysis The Skew tent map has good auto and cross-correlation properties as shown in
Fig. 3.10 and Fig. 3.11 respectively. This result is confirmed by the value of the coefficient of correlation of
two sequences XS and XS′ generated with nearby initial, which is very low ( ρXS ,XS′

= -0.0013).
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Figure 3.9 – Histogram of sequence XS generated by the discrete Skew Tent map.

(a) Auto-correlation of sequence XS (b) A zoom of the autocorrelation on 200 samples of se-
quence XS

Figure 3.10 – Auto-correlation of sequence XS generated by a Skew Tent map.

NIST test analysis Table 3.3 and Fig. 3.12 give the results of NIST test applied on a sequence XS(n).
Obtained results show that sequences XS(n) does not pass all the NIST tests but they remains better than
the results obtained for a sequence XL(n) generated by the Logistic map ( the number of passed tests is
higher and the passed tests are closer to the threshold).

Computing performance of the Skew Tent map Table 3.4 shows the computing performance of the
Skew Tent map. We note that the Skewtent map is slower than the Logistic map.
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(a) Cross-correlation of sequences XS and XS′ (b) A zoom of the cross-correlation on 200 samples of se-
quences XS and XS′

(c) A zoom of the cross-correlation of sequences XS and
XS′ and of the auto-correlation of sequence XS′

Figure 3.11 – Cross-correlation functions of sequences XS and XS′ generated by the Skew tent map.

3.3.3 Performance Evaluation of the PWLCM map

The Piecewise Linear Chaotic Maps (PWLCM) map is another piecewise linear chaotic map, described
by the following equation (3.10):
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Figure 3.12 – NIST test results of the Skew Tent map.

Test P-value Proportion

Frequency test 0.262 93.000
Block-frequency test 0.000 59.000
Cumulative-sums test 0.198 91.000
Runs test 0.081 93.000
Longest-run test 0.575 99.000
Rank test 0.000 79.000
FFT test 0.000 55.000
Non-periodic-templates 0.531 98.108
Overlapping-templates 0.760 98.000
Universal 0.000 88.000
Approximty entropie 0.575 97.000
Random-excursions: 0.468 97.645
Random-excursions-variant 0.369 98.631
Serial test 0.402 100.000
Linear-complexity 0.103 98.000

Table 3.3 – P-values and Proportion results of NIST test for the Skew Tent map.

Generation Time (µs) 422.20
Bit Rate (Mbits/s) 2368.54
NCpB 8

Table 3.4 – Computing performance of the Skew Tent map.

FP (xn−1) = xn =



xn−1

p
if 0 ≤ xn−1 < p

xn−1−p
0.5−p if p ≤ xn−1 < 0.5

FP (1− xn−1) otherwise

(3.10)
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where: FS : S → S, S =]0, 1], xn ∈ S and p is the control parameter with p ∈ [0, 0.5].
The PWLCM is known to be chaotic when its control parameter p is within [0, 0.5] and its initial

condition is chosen within the interval ]0, 1] [291]. The PWLCM has been used in data encryption due to
its features of parameter-controllable and good randomness [188].

Eq(3.11) gives the discrete PWLCM function [146]

X(n) = F [X(n− 1)] =



⌈
2N × X(n−1)

P

⌉
if 0 < X(n− 1) ≤ P

⌈
2N × X(n−1)−P

2N−1−P

⌉
if P < X(n− 1) ≤ 2N−1

⌈
2N × 2N−P−X(n−1)

2N−1−P

⌉
if 2N−1 < X(n− 1) ≤ 2N − P

⌈
2N × 2N−X(n−1)

P

⌉
if 2N − P < X(n− 1) ≤ 2N − 1

(3.11)

where X(n− 1) ∈ [1, 2N -1] and P is the discrete control parameter and satisfies 0 < P < 2N−1.

Phase space trajectory analysis We give in the Fig. 3.13 the phase space, attractor and discrete varia-
tion of a sequence XP , formed by 31250 samples and generated by the discrete PWLCM map, with P =
1210290246, and an initial state X(0) = 830235384. Resulted mapping shows the signature of the PWLCM
map.

Histogram and Chi-square test analysis Fig. 3.14 represents the histogram of a sequence XP generated
by the PWLCM. Visually, the distribution of the sequence XP looks uniform.

The experimental value of the Chi-square test χ2
exp which is equal to 1219.97, is greater than the theo-

retical value χ2
th, equals 1073.64. Therefore, the distribution of the discrete PWLCM map is non-uniform.

Also, χ2
exp is higher than that of the Skew Tent map. Thus, the Skew Tent map has better uniform distri-

bution than the PWLCM map. In fact, studies have shown that the periodicity of the Skew Tent map is
greater than the periodicity of the PWLCM, this may explain the fact that the Skew Tent map has a better
uniformity.

Correlation analysis We give in Fig. 3.15, the auto-correlation function of sequence XP and a zoom
of the autocorrelation on 200 samples of this sequence. Fig. 3.16 presents the Cross-correlation functions
of sequences XP and XP ′ generated by the PWLCM map, and a zoom of the auto and cross-correlation.
We note that the cross-correlation function is very low (maximum value = 0.025). Consequently, there
is no correlation between the generated sequences, that are produced using slightly different seeds. The
correlation coefficient ρXP ,XP ′

which is equal 0.0028 confirms this result.

NIST test analysis We give in Fig. 3.17 and Table 3.5 the obtained NIST test results of a sequence XP

generated by the discrete PWLCM map. Some sub-tests have not passed but they are close to the acceptance
threshold. Also, we remark that the PWLCM map has better security performance than the other studied
chaotic maps Skew Tent and Logistic map.

Computing performance of the PWLCM map Table 3.6 shows the PWLCM map’s computing perfor-
mance. Compared to the other chaotic maps, the PWLCM is slower than the Skew Tent and the Logistic
map.
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(a) Phase space (b) Attractor

(c) Discrete variation

Figure 3.13 – Phase space trajectory, attractor and discrete variation of sequence XP (n) generated by the
discrete PWLCM map.

3.4 Performance Evaluation of some disturbed chaotic maps

3.4.1 Description of the used perturbation technique

The discretizing process and the usage of a finite precision N bits cause a degradation of the chaotic
signals and may cause some state circles [143], which degrades the chaotic properties. Indeed, for a system
of N bits, the maximum number of different chaotic levels is smaller than 2N . The limited space values
(assumed to be infinite for analogue chaos) causes periodic cycles of the different chaotic orbits, each
having a maximum length necessarily less than 2N [239, 78]. Moreover, for each initial condition, we have
a chaotic orbit formed generally of two parts: a transient branch of length l and a cycle of period c. The



3.4. PERFORMANCE EVALUATION OF SOME DISTURBED CHAOTIC MAPS 61

Figure 3.14 – Histogram of sequence XP generated by the discrete PWLCM map.

(a) Auto-correlation of sequence XP (b) A zoom of the autocorrelation on 200 samples of se-
quence XP

Figure 3.15 – Auto-correlation of sequence XP generated by the PWLCM map.

general scheme of a chaotic orbit of length o = l + c is presented in Fig. 3.18.
In order to decrease the degradation and to circumvent the effect of finite precision on chaotic signal,

we use a perturbation technique. This technique permits to increase the length of the cycles and to impose
a minimum length of cycle, depending directly on the disturbing signal. The perturbation technique results
in the fact that no stable cycle exists, ie, if the chaotic system describes a given cycle at a given time, it
can, by application of a perturbation, leave this cycle immediately to go to another cycle. Fig. 3.19 shows
the principle of the perturbation technique. The disturbed structure is composed of a chaotic map, an XOR
function and a disturbing generator. A good candidate for the generation of disturbing sequences is the
Linear Feedback Shift Register (LFSR), whose role is to disrupt the chaotic orbit, thus allowing it to reach
a new orbit.
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(a) Cross-correlation of sequences XP and XP ′ (b) A zoom of the cross-correlation on 200 samples of se-
quences XP and XP ′

(c) A zoom of the cross-correlation of sequences XP and
XP ′ and of the auto-correlation of sequence XP

Figure 3.16 – Cross-correlation functions of sequences XP and XP ′ generated by the PWLCM map.

The choice of the disturbing sequence is made according to the following rules: it should have a long
controllable cycle length and a uniform distribution; It should not degrade the good statistical properties
of the chaotic dynamics, so the amplitude of the disturbing signal must be much smaller than that of the
chaotic signal [78, 80]. We choose the disturbing sequence by choosing a polynomial of perturbations. We
list in Appendix B the list of disturbance polynomials.

In the next sections, we study the security performance of disturbed chaotic maps: Logistic map, Skew
Tent and PWLCM which include a perturbation technique. Also, we present their computing performance.

3.4.2 Performance Evaluation of the disturbed Logistic map
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Figure 3.17 – NIST test results of the PWLCM map.

Test P-value Proportion

Frequency test 0.994 98.000
Block-frequency test 0.456 100.000
Cumulative-sums test 0.856 97.000
Runs test 0.924 100.000
Longest-run test 0.720 98.000
Rank test 0.616 97.000
FFT test 0.040 93.000
Non-periodic-templates 0.482 98.838
Overlapping-templates 0.964 98.000
Universal 0.868 100.000
Approximty entropie 0.868 93.000
Random-excursions: 0.266 97.955
Random-excursions-variant 0.308 99.495
Serial test 0.269 93.500
Linear-complexity 0.046 99.000

Table 3.5 – P-values and Proportion results of NIST test for the PWLCM map.

Generation Time (µs) 514.98
Bit Rate (Mbits/s) 1941.82
NCpB 10

Table 3.6 – Computing performance of the PWLCM map.

Security Performance Evaluation In order to carry out the various cryptographic tests, we choose the
polynomial number 24 to generate different sequences XL(n). We recall that for the different tests, the size
of a generated sequence, apart from the NIST test (which requires 100 sequences) and the Chi-square test
(320 sequences), is equal to 31250 samples. We give in Fig. 3.20 and Table 3.7 the mapping, histogram,
correlation and NIST test results of a sequence XL(n) generated by the disturbed Logistic map.

We notice that the phase space, given in Fig. 3.20a, looks like that of a sequence generated by the
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Figure 3.18 – General pseudo chaotic orbit of length o = l + c.

Figure 3.19 – Scheme of generating a pseudo-random sequence by a chaotic map using a perturbation
technique.

Test P-value Proportion

Frequency test 0.000 98.000
Block-frequency test 0.000 0.000
Cumulative-sums test 0.000 97.500
Runs test 0.000 0.000
Longest-run test 0.000 0.000
Rank test 0.898 100.000
FFT test 0.000 43.000
Non-periodic-templates 0.041 61.304
Overlapping-templates 0.000 0.000
Universal 0.000 0.000
Approximty entropie 0.000 0.000
Random-excursions: 0.002 90.367
Random-excursions-variant 0.400 99.901
Serial test 0.000 2.000
Linear-complexity 0.103 100.000

Table 3.7 – P-values and Proportion results of NIST test for the disturbed Logistic map.

non-disturbed Logistic map and clearly shows the signature relating to the map. This indicates that the
perturbation technique has no effect on the phase space. This remark remains true for the phase space of
the other disturbed Skew Tent and PWLCM maps.

Visually, the histogram is non-uniform (see Fig. 3.20b). This non-uniformity is confirmed by the Chi-
square test. Indeed, the experimental value is equal to 925222 and it still higher than the theoretical one.
But, it is less than the experimental value of an undisturbed sequence, i.e the uniformity is improved when
using a perturbation technique.

Fig. 3.20c gives a zoom of the cross-correlation of sequences XL and XL′ and a zoom of the auto-
correlation of sequence XL. Obtained results shows that the generated sequences XL and XL′ possess good
auto and cross correlation properties. This is confirmed by ρXLXL′

with is equal to 0.002.
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(a) Mapping (b) Histogram

(c) Correlation (d) NIST Test

Figure 3.20 – Mapping, histogram, correlation and NIST test results of sequence generated by the disturbed
Logistic map.

Computing Performance Evaluation In Table 3.8, we present the computing performance measures of
the disturbed Logistic map. The additional perturbation technique decreases the computing performance of
the map.

Generation Time (µs) 319.66
Bit Rate (Mbits/s) 3128.32
NCpB 7

Table 3.8 – Computing performance of the disturbed Logistic map.
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3.4.3 Performance Evaluation of the disturbed Skew Tent map
Security Performance Evaluation We choose the polynomial P = 12 to integrate the perturbation tech-
nique in the generation of the different sequences. We show in Fig. 3.21 and Table 3.9, an example of the
results obtained: (a) Mapping, (b) Histogram, (c) Correlation and (d) NIST Test.

(a) Mapping (b) Histogram

(c) Correlation (d) NIST Test

Figure 3.21 – Mapping, histogram, correlation and NIST test results of a sequence generated by the dis-
turbed Skew Tent map.

All of these results show that the disturbed Skew Tent map using the perturbation technique has better
cryptographic properties than the non-disturbed Skew Tent map. Indeed, the generated sequences are uni-
form (The experimental value of chi-square test equal to 1020.97 is less than the theoretical one which is
equal to 1073.64. There are no correlation between sequences generated with slightly different secret keys
(ρXSXS′

= 0.0015). The number of passed NIST tests increases as compared to the number of tests passed
from the ordinary map. This intensifies the importance of the perturbation technique in the generation of
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Test P-value Proportion

Frequency test 0.616 95.000
Block-frequency test 0.000 60.000
Cumulative-sums test 0.252 94.000
Runs test 0.154 94.000
Longest-run test 0.456 98.000
Rank test 0.000 85.000
FFT test 0.000 54.000
Non-periodic-templates 0.484 98.108
Overlapping-templates 0.506 96.000
Universal 0.000 83.000
Approximty entropie 0.883 97.000
Random-excursions: 0.196 98.707
Random-excursions-variant 0.286 99.713
Serial test 0.380 99.000
Linear-complexity 0.554 100.000

Table 3.9 – P-values and Proportion results of NIST test for the disturbed Skew Tent map.

chaotic sequences.

Computing Performance Evaluation Table 3.10 shows the computing performance of the disturbed
Skew Tent map. We note that the bit rate of a disturbed Skew Tent map is a little less than the bit rate of the
Skew Tent map used alone.

Generation Time (µs) 448.94
Bit Rate (Mbits/s) 2227.46
NCpB 10

Table 3.10 – Computing performance of the disturbed Skew Tent map.

3.4.4 Performance Evaluation of the disturbed PWLCM map

Security Performance Evaluation We use the polynomial P number 7 to integrate the perturbation tech-
nique in the generation of the different sequences. As for the Logistic and Skew Tent maps, the perturba-
tion technique improves the cryptographic performance of the produced sequences. This result is shown in
Fig. 3.22 and Table 3.11.

Despite the used perturbation technique, according to Fig. 3.22b, the histogram and the Chi-square test
demonstrated that the generated sequences are not uniform (Experimental value of Chi-square test equal to
1697.81 is higher than the theoretical value). However, the disturbed PWLCM map has a better NIST test
and cross-correlation results (ρXPXP ′

= -0.001).

Computing Performance Evaluation Table 3.12 gives the computing performance of the PWLCM map
incorporating a perturbation technique. The PWLCM becomes slower than the Skew Tent map.
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(a) Mapping (b) Histogram

(c) Correlation (d) NIST Test

Figure 3.22 – Mapping, histogram, correlation and NIST test results of a sequence generated by the dis-
turbed PWLCM map.

3.5 Performance Evaluation of some disturbed chaotic maps includ-
ing recursive technique

3.5.1 Description of the proposed non linear recursive structure

Another technique used to decrease the degradation caused by the finite precision usage and to improve
the cryptographic performance of generated pseudo-chaotic sequences is the recursive structure.

Fig. 3.23 shows the principle scheme of a chaotic map inserted in a recursive structure. The produced
sample X(n) depends not only on the previous sample X(n − 1) but also on other previous samples. The
number of samples to be dependent is chosen by the user, called "delay". In Fig. 3.23, we present a recursive



3.5. PERFORMANCE EVALUATION OF SOME DISTURBED CHAOTIC MAPS INCLUDING RECURSIVE TECHNIQUE69

Test P-value Proportion

Frequency test 0.182 100.000
Block-frequency test 0.163 99.000
Cumulative-sums test 0.378 100.000
Runs test 0.154 98.000
Longest-run test 0.276 98.000
Rank test 0.225 100.000
FFT test 0.494 96.000
Non-periodic-templates 0.504 98.682
Overlapping-templates 0.401 99.000
Universal 0.122 99.000
Approximty entropie 0.033 94.000
Random-excursions: 0.359 97.461
Random-excursions-variant 0.422 99.132
Serial test 0.387 93.000
Linear-complexity 0.834 98.000

Table 3.11 – P-values and Proportion results of NIST test for the disturbed PWLCM map.

Generation Time (µs) 523.030
Bit Rate (Mbits/s) 1960.66
NCpB 11

Table 3.12 – Computing performance of the disturbed PWLCM map.

structure with number of delays equal to three.
To produce a sample X(n), the system uses the previous samples, calculated as follows:

X(n− 1) = U =
3∑
i=1

Xi ×Ki (3.12)

where Ki are integers, 0 < Ki < 2N and X1 = X(n-1), X2 = X(n-2), X3 = X(n-3).

Figure 3.23 – Non linear recursive structure.

We study the performance of the non linear recursive structure with the Logistic, Skew Tent and
PWLCM disturbed maps as non linear functions. Fig. 3.24 presents the general scheme of the non lin-
ear recursive structure based on disturbed chaotic map. We generate different chaotic sequences, using the
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same previously chosen perturbation polynomials for each map and random coefficients Ki .

Figure 3.24 – Non linear recursive structure based on disturbed chaotic map.

3.5.2 Performance evaluation of the non linear recursive structure using the dis-
turbed Logistic map

Security Performance Evaluation We draw in Fig. 3.25 the mapping and a zoom on the mapping of
a generated sequence XL(n) by the structure of Fig. 3.24 with delay equal to 1 and using the disturbed
Logistic map. The resulted mapping is random. Similar results of mapping are obtained for sequences
generated with delays equal to 2 and 3. This shows that with the recursive structure, the mapping loses the
signature of the chaotic map. Consequently, it is impossible to recognize the used map through the tracing
of the phase space or mapping.

(a) Mapping (b) Zoom on the mapping

Figure 3.25 – Mapping and zoom on the mapping of a sequence XL(n) generated by the recursive structure
with delay equal to 1, using the disturbed Logistic map.

Fig. 3.26 presents the autocorrelation and cross-correlation of two sequences XL and XL′ generated by
the same structure with slightly different secret keys. Table 3.13 gives the correlation coefficients between
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sequences XL and XL′ . Obtained results show good correlation properties of the generated sequences XL

and XL′ .

(a) Auto-correlation of sequence XL (b) A zoom of the autocorrelation on 200 samples of se-
quence XL

(c) Cross-correlation of sequences XL and XL′ (d) A zoom of the cross-correlation of sequences XL and
XL′ and of the auto-correlation of sequence XL′

Figure 3.26 – Cross-correlation functions of sequences XL and XL′ generated by the structure of Figure
3.5.2 with delay equal to 1 and using the disturbed Logistic map.

Correlation coefficient delay = 1 delay = 2 delay = 3
ρXL,XL′

0.0014 -0.0017 0.0013

Table 3.13 – Correlation coefficient values for sequences generated by the structure of Figure 3.5.2 using
the disturbed Logistic map with delays equal to 1, 2 and 3.
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We give in Fig. 3.27 the histograms of sequences generated with the perturbation technique in recursive
structure with delays equal to 1, 2 and 3 respectively. The obtained histograms are visually non-uniform.
This result is confirmed by the Chi-square test (see Table 3.14).

(a) delay = 1 (b) delay = 2

(c) delay = 3

Figure 3.27 – Histograms of sequences XL generated by a disturbed Logistic map in a recursive structure
with delays equal to 1, 2 and 3 respectively.

Chi-square value delay = 1 delay = 2 delay = 3
χ2
th 1073.64 1073.64 1073.64
χ2
exp 17017171.47 17214833.41 17201737.77

Table 3.14 – Theoretical and experimental values of Chi-square test for sequences generated by the structure
of Fig. 3.5.2 with delay equal to 1 and using the disturbed Logistic map.
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Fig. 3.28 and Table 3.15 presents the results of the NIST for sequences generated by the disturbed
Logistic map using a perturbation technique in a recursive structure, with delay equal to 1, 2 and 3 respec-
tively. Obtained results show that the perturbation technique and the recursion structure have improved
cryptographic properties of the Logistic map.

(a) NIST test for delay = 1 (b) NIST test for delay = 2

(c) NIST test for delay = 3

Figure 3.28 – NIST test results for sequences generated by the structure of Fig. 3.5.2 with delays equal to
1, 2 and 3 and using the disturbed Logistic map.

Computing Performance Evaluation We study the speed of the disturbed Logistic map in recursive
structure (see Table 3.16). The bit rate decreases as the delay increases. This is expected since the number
of operations increases as the delay increases.
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delay = 1 delay = 2 delay = 3

Test P-value Proportion P-value Proportion P-value Proportion

Frequency test 0.000 0.000 0.000 0.000 0.000 0.000
Block-frequency test 0.000 0.000 0.000 0.000 0.000 0.000
Cumulative-sums test 0.000 0.000 0.000 0.000 0.000 0.000
Runs test: 0.000 0.000 0.000 0.000 0.000 0.000
Runs test 0.000 0.000 0.000 0.000 0.000 0.000
Longest-run test 0.000 0.000 0.000 0.000 0.437 99.000
Rank test 0.596 100.000 0.786 99.000 0.952 100.000
FFT test 0.000 0.000 0.000 0.000 0.000 0.000
Non-periodic-templates 0.026 49.000 0.063 51.007 0.065 53.676
Overlapping-templates 0.000 0.000 0.000 0.000 0.000 0.000
Universal 0.000 0.000 0.000 0.000 0.000 0.000
Approximty entropie 0.000 0.000 0.000 0.000 0.000 0.000
Random-excursions: 0.002 90.367 0.180 92.000 0.502 100.000
Random-excursions-variant 0.400 96.145 0.600 99.000 0.681 100.000
Serial test 0.000 5.500 0.000 6.500 0.002 52.500
Linear-complexity 0.798 98.000 0.898 99.000 0.974 99.000

Table 3.15 – P-values and Proportion results of NIST test for the disturbed Logistic map in a recursive
structure.

delay = 1 delay = 2 delay = 3
Generation Time (µs) 418.830 420.30 421.93
Bit Rate (Mbits/s) 2387.6036 2379.2529 2370.0614
NCpB 7.71 7.73 7.76

Table 3.16 – Computing performance of the structure of Fig. 3.5.2 with delays equal to 1, 2 and 3 and using
the disturbed Logistic map.

3.5.3 Performance evaluation of the non linear recursive structure using the dis-
turbed Skew Tent map

Security Performance Evaluation Fig. 3.29 gives the mapping and a zoom on this mapping of sequence
XS(n) generated by the disturbed Skew Tent map used in a recursive structure with a delay equal to 1. The
mapping seems random. This is due to the used recursive structure when generating sequences. It should
also be noted that the mapping of the sequences generated with a delay equal to 2 and 3 is practically
identical to the phase space of Fig. 3.29.

We show in Fig. 3.30 the auto and cross-correlation of two sequences XS and XS′ generated by the
cited recursive structure with a delay equal to 1. The sequences possess good auto and cross-correlation
properties (see also Table 3.17).

Correlation coefficient delay = 1 delay = 2 delay = 3
ρXS ,XS′

-0.0015 -0.002 0.0013

Table 3.17 – Correlation coefficient values for sequences generated by the structure of Fig. 3.5.2 using the
disturbed Skew Tent map with delays equal to 1, 2 and 3.

We give in Fig. 3.31 the histograms of generated sequences produced with the same structure with
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(a) Mapping (b) Zoom on the mapping

Figure 3.29 – Mapping and zoom on the mapping of a sequence XS(n) generated by the disturbed Skew
Tent map used in a recursive structure with a delay equal to 1.

delays equal to 1, 2 and 3 respectively. Visually, generated sequences have uniform distribution.
Table 3.18 presents the theoretical and experimental values of the Chi-square test. We note that the

sequences generated with a delay equal to 2 and 3 are uniform. Also, the uniformity of the sequence with a
delay of 3 is the best. This demonstrate that, the more the number of delay increase, the more the uniformity
is better.

Chi-square value delay = 1 delay = 2 delay = 3
χ2
th 1073.64 1073.64 1073.64
χ2
exp 93533.54 1020.92 992.57

Table 3.18 – Theoretical and experimental values of Chi-square test for sequences generated by the structure
of Fig. 3.5.2 with delay equal to 1 and using the disturbed Skew Tent map.

The results of the NIST test given in Fig. 3.32 and Table 3.19 show that, by integrating the perturbation
technique and the recursion structure, the success rate of the various tests increases. Also, the more the
number of delay increases, the more the number of tests that pass increases. Hence the interest of the
perturbation technique and the recursive structure.

Computing Performance Evaluation We present in Table 3.20 the computing performance measures of
a disturbed Skew Tent map in a recursive structure.

3.5.4 Performance evaluation of the non linear recursive structure using the dis-
turbed PWLCM map

Security Performance Evaluation We present the mapping of a sequence XP (n) generated by a dis-
turbed PWLCM map used in a recursive structure with a delay equal to 1 and a zoom on this mapping in
Fig. 3.33. The obtained mapping is random.
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(a) Auto-correlation of sequence XS (b) A zoom of the autocorrelation on 200 samples of se-
quence XS

(c) Cross-correlation of sequences XS and XS′ (d) A zoom of the cross-correlation of sequences XS and
XS′ and of the auto-correlation of sequence XS′

Figure 3.30 – Cross-correlation functions of sequences XS and XS′ generated by the structure of Fig. 3.5.2
with delay equal to 1 and using the disturbed Skew Tent map.

We draw in Fig. 3.34 the autocorrelation and cross-correlation of sequences XP and XP ′ generated by
the disturbed PWLCM map used in a recursive structure with a delay equal to 1. And we give in Table 3.21
the correlation coefficients values of sequences XP and XP ′ . Good correlation properties are obtained for
the generated sequences XP and XP ′ .

We plot in Fig. 3.35 the histograms of sequences XP generated by the disturbed PWLCM map used in
a recursive structure with a delay equal to 1, 2 and 3 respectively. The obtained histograms seems to be
uniform.

We calculate the theoretical and experimental values of the Chi-square test to assert the uniformity of
the generated sequences. Obtained measures are given in Table 3.22.
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(a) delay = 1 (b) delay = 2

(c) delay = 3

Figure 3.31 – Histograms of sequences XS generated by a disturbed Skew Tent map in a recursive structure
with delays equal to 1, 2 and 3 respectively.

The generated sequences with a delay equal to 2 and 3 are uniform. Also, the uniformity is better for a
delay of 3. This confirms that the recursion structure improves the uniformity of the chaotic sequences.

We present in Fig. 3.36 and Table 3.23 the results of NIST test applied for sequences generated by the
same structure with different delays (1, 2 and 3). The sequence generated with a delay of 3 passes all NIST
tests. This asserts the utility of perturbation perturbation and recursive structure in terms of cryptographic
robustness.

Computing Performance Evaluation Table 3.24 gives the computing performance measures performed
to study the speed performance of a disturbed PWLCM map using a perturbation technique in a recursive
structure.
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(a) NIST test for delay = 1 (b) NIST test for delay = 2

(c) NIST test for delay = 3

Figure 3.32 – NIST test results for sequences generated by the structure of Fig. 3.5.2 with delays equal to
1, 2 and 3 and using the disturbed Skew Tent map.

3.6 Conclusion

In this chapter, we study the security and computing performance of some chaotic maps in particular
Logistic map, Skew Tent and PWLCM map which present the basic elements of the proposed chaotic
generator presented in Chapter 4. We first presented the common and standard tools for measuring the
performance of chaotic sequences, in order to quantify and compare the cryptographic properties of the
generated chaotic sequences including: phase space or mapping, auto and cross-correlation, histogram,
Chi-square test and NIST test.

Then, we have presented the equations of different maps in real and discrete domain. We have also
performed a series of statistical tests and we have presented the results obtained of these tests. We note that
the Logistic map is the fastest one but it has the weakest cryptographic properties compared to the Skew
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delay = 1 delay = 2 delay = 3

Test P-value Proportion P-value Proportion P-value Proportion

Frequency test 0.616 93.000 0.494 99.000 0.616 98.000
Block-frequency test 0.946 96.000 0.262 100.000 0.249 100.000
Cumulative-sums test 0.617 94.000 0.351 99.000 0.689 98.000
Runs test 0.172 95.000 0.122 100.000 0.350 98.000
Longest-run test 0.290 94.000 0.658 98.000 0.596 100.000
Rank test 0.637 99.000 0.851 99.000 0.596 100.000
FFT test 0.000 79.000 0.740 100.000 0.401 99.000
Non-periodic-templates 0.459 97.581 0.530 98.966 0.474 98.831
Overlapping-templates 0.384 90.000 0.456 99.000 0.898 100.000
Universal 0.213 96.000 0.071 98.000 0.437 99.000
Approximty entropie 0.000 81.000 0.145 99.000 0.419 97.000
Random-excursions: 0.458 99.091 0.454 99.254 0.619 99.180
Random-excursions-variant 0.437 99.495 0.257 98.259 0.512 99.180
Serial test 0.000 78.000 0.464 99.500 0.461 97.500
Linear-complexity 0.437 96.000 0.637 100.000 0.456 98.000

Table 3.19 – P-values and Proportion results of NIST test for the disturbed Skew Tent map in a recursive
structure.

delay = 1 delay = 2 delay = 3
Generation Time (µs) 507.23 508.94 529.34
Bit Rate (Mbits/s) 1971.49 1964.86 1889.14
NCpB 10.55 10.59 11.01

Table 3.20 – Computing performance of the structure of Fig. 3.5.2 with delays equal to 1, 2 and 3 and using
the disturbed Skew Tent map.

Correlation coefficient delay = 1 delay = 2 delay = 3
ρXS ,XS′

0.0013 -0.001 0.0009

Table 3.21 – Correlation coefficient values for sequences generated by the structure of Fig. 3.5.2 using the
disturbed PWLCM map with delays equal to 1, 2 and 3.

Chi-square value delay = 1 delay = 2 delay = 3
χ2
th 1073.64 1073.64 1073.64
χ2
exp 4313.57 947.47 925.11

Table 3.22 – Theoretical and experimental values of Chi-square test for sequences generated by the structure
of Fig. 3.5.2 with delay equal to 1 and using the disturbed PWLCM map.

Tent and PWLCM maps. The PWLCM map is characterized by its good cryptographic properties that are
better than those of the Skew Tent map but it is less fast than the later.

Also, we have showed the importance of integrating a perturbation technique and a recursive structure
when generating chaotic sequences. We presented a description for each technique and its effect on the
robustness and time performance of each chaotic map. The two proposed techniques improve the crypto-
graphic performance of the chaotic maps, but they increase the computation time of the sequences.
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(a) Mapping (b) Zoom on the mapping

Figure 3.33 – Mapping and zoom on the mapping of a sequenceXP (n) generated by the disturbed PWLCM
map used in a recursive structure with a delay equal to 1.

delay = 1 delay = 2 delay = 3

Test P-value Proportion P-value Proportion P-value Proportion

Frequency test 0.182 98.000 0.779 99.000 0.996 98.000
Block-frequency test 0.419 99.000 0.554 99.000 0.081 97.000
Cumulative-sums test 0.378 100.000 0.593 99.000 0.720 97.500
Runs test 0.367 94.000 0.163 99.000 0.213 99.000
Longest-run test 0.494 92.000 0.012 100.000 0.616 100.000
Rank test 0.898 99.000 0.637 99.000 0.419 100.000
FFT test 0.000 78.000 0.779 99.000 0.163 100.000
Non-periodic-templates 0.457 97.824 0.487 99.027 0.500 98.865
Overlapping-templates 0.817 94.000 0.834 97.000 0.456 99.000
Universal 0.868 99.000 0.798 99.000 0.163 98.000
Approximty entropie 0.000 80.000 0.554 100.000 0.475 99.000
Random-excursions: 0.579 98.750 0.433 98.694 0.338 98.387
Random-excursions-variant 0.467 98.778 0.438 98.093 0.355 98.925
Serial test 0.000 78.000 0.748 98.000 0.647 100.000
Linear-complexity 0.983 100.000 0.276 100.000 0.679 98.000

Table 3.23 – P-values and Proportion results of NIST test for the disturbed PWLCM map in a recursive
structure.

delay = 1 delay = 2 delay = 3
Generation Time (µs) 627.55 654.69 694
Bit Rate (Mbits/s) 1593.49 1527.44 1440.92
NCpB 13.05 13.62 14.44

Table 3.24 – Computing performance of the structure of Fig. 3.5.2 with delays equal to 1, 2 and 3 and using
the disturbed PWLCM map.
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(a) Auto-correlation of sequence XP (b) A zoom of the autocorrelation on 200 samples of se-
quence XP

(c) Cross-correlation of sequences XP and XP ′ (d) A zoom of the cross-correlation of sequences XP and
XP ′ and of the auto-correlation of sequence XP ′

Figure 3.34 – Cross-correlation functions of sequences XP and XP ′ generated by the structure of Fig. 3.5.2
with delay equal to 1 and using the disturbed PWLCM map.
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(a) delay = 1 (b) delay = 2

(c) delay = 3

Figure 3.35 – Histograms of sequences XP generated by a disturbed PWLCM map in a recursive structure
with delays equal to 1, 2 and 3 respectively.
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(a) NIST test for delay = 1 (b) NIST test for delay = 2

(c) NIST test for delay = 3

Figure 3.36 – NIST test results for sequences generated by the structure of Figure 3.5.2 with delays equal
to 1, 2 and 3 and using the disturbed PWLCM map.
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4.1 Introduction

Nowadays, the increasing pervasiveness of technologies concerning the Internet of Things (IoT) and the
fast development of digital technologies and communication networks, have given rise to dense traffic of
information (documents, images, audio, videos...)[86]. Therefore, it is particularly important and essential
to protect data transmission against attackers. Consequently, security of data transmission has been gain-
ing more and more importance in the last decade and has been a subject of intense research [262, 219].
In this context, a growing number of crypto-systems to secure transmitted information have been devel-
oped [61, 228, 64, 89, 90]. Among them, chaos-based crypto-systems emerged to be promising. The idea
of using digital chaotic systems to design cryptosystems has been extensively studied since 1989 [173].
Many research works have shown that chaos systems have many interesting properties such as ergodicity,
similarity to random behavior, and sensitivity to initial conditions and parameters of the system, that make
chaos a good candidate for use in information hiding and security systems. Also, chaotic maps present
many desired qualities such as simplicity of implementation that leads to high encryption/decryption rates,
and excellent security.

The robustness of any chaos-based crypto-system depends on the quality of the used Pseudo-Chaotic
Number Generator (PCNG) which is a fundamental block in cryptography. The robustness of such PCNGs
is crucial to ensure secure communication and to avoid all the various and existing attacks. Many PCNGs are
proposed in the literature [92, 239, 192, 91]. Generated sequences must be absolutely random (practically
very close to random) and have some properties such as: long cycle’s length, cross-correlation near to zero,
high linear complexity and fully distributed phase space. Existing PCNGs satisfy some of these properties,
but most of them suffer from short cycle’s length since they are performed in finite precision N which
causes a dynamical degradation.

In this chapter, we propose and realize in an effective way three stream ciphers, based on three robust
Pseudo-Chaotic Numbers Generators (PCNGs). The proposed crypto-systems are very secure, due to the
use of chaotic coupling, swap and multiplexing techniques, while having a high speed performance. They
can be used for real-time applications.

The three proposed crypto-systems have the same general structure of PCNGs, presented in Section 4.2.1.
The main difference between these PCNGs appears in the Internal State and Output functions. The first pro-
posed PCNG, called CM-PCNG, uses three weakly coupled chaotic maps: PWLCM, Skew Tent and Logis-
tic and includes a multiplexing chaotic technique. Its architecture is described in Section 4.2.1. We illustrate
the architecture of the second PCNG - DM-PCNG - in Section 4.2.1. In comparison with the architecture
of CM-PCNG, the main difference lies in using a binary diffusion matrix on the chaotic coupling tech-
nique. Section 4.2.1 describes also the architecture of the third proposed PCNG, named CS-PCNG which is
based on using two chaotic maps, namely PWLCM and SkewTent, and includes coupling and swap chaotic
techniques. These proposed PCNGs are defined on finite numbers and implemented in C code. Their im-
plementation in sequential and parallel programming is detailed in Section 4.2.2. In Section 4.2.3 and 4.2.4,
we give the security and statistical analysis of the proposed PCNGs. Section 4.2.5 presents the computing
performance measures of the two PCNGs in terms of average generation time, average Bit Rate (BR), and
average Number of Cycles needed to generate one Byte (NCpB) according to the data size. The security
analysis and statistical tests of the three proposed stream ciphers and their speed performance are presented
in Section 4.3. Finally, Section 4.4 concludes this chapter.

4.2 Proposed Pseudo-Chaotic Number Generators

The proposed PCNGs consists of four main functions: IV-setup, Key-setup, Internal State and Output
function. In the following, we describe in detail the general structure of the proposed PCNGs and their
architectures. Then, we study the security and computing performance of these PCNGs.
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4.2.1 Description of the general proposed structure of PCNGs
The general structure of the proposed PCNGs is presented in Fig. 4.1. It takes the parameters of the

system (N and the number of samples Ns), a secret key "K" and a 32-bit initial vector "IV" as input, and as
output, it generates pseudo-chaotic samples X(n), n=1, 2, ..., each quantified on N = 32 bits.

The structure consists of four function blocks: IV-setup, Key-setup, Internal State and Output function.
All the proposed PCNGs have the same general structure but differ in their internal state and slightly change
in their Key-setup, IV-setup and Output function. Each function block will be detailed in the architectural
description of the proposed PCNGs.

Figure 4.1 – General structure of the proposed PCNGs.

Architecture of the proposed CM-PCNG

The architecture of the first proposed chaotic generator CM-PCNG is given in Fig. 4.2. It uses three
weakly coupled chaotic maps: PWLCM, Skew Tent and Logistic and includes a multiplexing chaotic tech-
nique [156][26][155][198][79][80].

Figure 4.2 – Architecture of the proposed CM-PCNG.

The Key-setup function consists of two main parts. It takes the secret key K and the initial vector IV
as input and calculates the initial values Xp(0), Xs(0) and Xl(0) of the three chaotic maps: PWLCM,
Skewtent and Logistic respectively.
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The secret key of the system is formed by:
— the initial conditions Xp, Xs and Xl of the three chaotic maps: PWLCM, Skewtent and Logistic

respectively, ranging from 1 to 2N -1,
— the control parameter Pp and Ps of PWLCM and Skewtent maps, in the range [1, 2N−1 − 1] and

[1, 2N − 1] respectively,
— the parameters of the coupling matrix A, εij , ranging from 1 to 2k with k≤ 5.
All the initial conditions, parameters and initial vector are chosen randomly from the file "/dev/urandom"

which presents a special character file in the Linux environment that provides an interface with the Linux
Pseudo-Random Number Generator (LRNG). LRNG is based on generating randomness from entropy of
operating system events. It allows access to environmental noise collected from device drivers and other
sources. The output of LRNG is used by internal kernel functionalities which use random bits and by calls
to its application programming interface (API). Generated random data can also be used for other various
purposes, such as generating random identifiers, computing TCP sequence numbers, producing passwords,
and generating SSL private keys [104].

The initial values Xp(0), Xs(0) and Xl(0) are calculated as follows:
Xp(0) = Xp⊕ IV p
Xs(0) = Xs⊕ IV s
Xl(0) = Xl ⊕ IV l

(4.1)

where 
IV p = lsb(IV )

IV s = Lcir[lsb(IV ), 3]

IV l = Lcir[lsb(IV ), 2]

(4.2)

with ⊕ denotes the XOR operator, lsb(IV ) is the 32 least significant bits of IV and Lcir[S, q] performs the
q-bits left circular shift on the binary sequence S.

The internal state function achieves the weak coupling of the chaotic maps and produces the future
samples Xp(n), Xs(n) and Xl(n) from which the output function, by using a chaotic switching technique,
produces the output sequence X(n) (see Fig. 4.2).

The system is governed by the following equation :Xp(n)
Xs(n)
Xl(n)

 = A×

Fp[Xp(n− 1)]
Fs[Xs(n− 1)]
Fl[Xl(n− 1)]

 . (4.3)

where A represents the weak coupling matrix:

A =

(2N − ε12 − ε13) ε12 ε13
ε21 (2N − ε21 − ε23) ε23
ε31 ε32 (2N − ε31 − ε32)

 . (4.4)

with εij are the weakly coupling parameters, and Fp[Xp(n−1)], Fs[Xs(n−1)] and Fl[Xl(n−1)] are
the discrete functions of the chaotic maps PWLCM, Skew Tent and Logistic respectively defined in Chapter
3.

The obtained multiplexed samples of the sequence X(n) are controlled by the chaotic sample Xth(n)
and a threshold T , as shown in Fig.4.2, and are defined as follows:

X(n) =

{
Xp(n), if 0 < Xth(n) < T
Xs(n), otherwise (4.5)

Where Xth(n) = Xl(n)⊕Xs(n).
After the generation of all needed samples X(n), the IV-setup function computes a new IV that will be

used for the next running of the PCNG. The new IV is generated from the LRNG.



4.2. PROPOSED PSEUDO-CHAOTIC NUMBER GENERATORS 89

Architecture of the proposed DM-PCNG

The architecture of the second proposed generator called DM-PCNG is presented in Fig.4.3. In com-
parison with the previous architecture, the main difference lies in the internal-state function, which is based
on a binary diffusion matrix D.

Figure 4.3 – Architecture of the proposed DM-PCNG.

The initial values Xp(0), Xs(0) and Xl(0) are initialized throughout the key-setup function, as in
Eq.(A.1) and Eq.(A.2).

The equation of the system is given by:Xp(n)
Xs(n)
Xl(n)

 = D�

Fp[Xp(n− 1)]
Fs[Xs(n− 1)]
Fl[Xl(n− 1)]

 . (4.6)

where D is the binary diffusion matrix:

D =

1 1 0
0 1 1
1 0 1

 . (4.7)

And � is the operator defined as follows :Xp(n)
Xs(n)
Xl(n)

 =

Fp[Xp(n− 1)]⊕ Fs[Xs(n− 1)]
Fs[Xs(n− 1)]⊕ Fl[Xl(n− 1)]
Fp[Xp(n− 1)]⊕ Fl[Xl(n− 1)]

 . (4.8)

The choice of the output samples X(n) is governed, as in Eq.(A.5) by a threshold T and the chaotic
sample Xth, with Xth(n) = Xp(n)⊕Xs(n).

For each new running of the system, the initial vector IV is updated using the LRNG.
The secret key is similar to one used in CM-PCNG, but does not include the coupling parameters εij .

Architecture of the proposed CS-PCNG

The architecture of CS-PCNG is presented in Fig.4.4. Compared to the architecture of CM-PCNG, CS-
PCNG’s architecture is differentiated not only to internal-state function, but also to output function. The
internal state uses two chaotic maps (PWLCM and SkewTent), and includes coupling and swap chaotic
techniques. The output function is a XOR operation between Xp(n) and Xs(n) samples.

The initial values Xp(0) and Xs(0) are calculated as follows:{
Xp(0) = Xp⊕ IV p
Xs(0) = Xs⊕ IV s

(4.9)
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Figure 4.4 – Architecture of the proposed CS-PCNG.

Where IV p = lsb(IV ) and IV s = Lcir[lsb(IV ), 3].
Notice that, the secret key K of the system is formed by:
— the initial conditions Xp and Xs of the chaotic maps Pwlcm and Skewtent, ranging from 1 to 2N -1,
— the control parameters Pp and Ps of Pwlcm and Skewtent maps, in the range [1, 2N−1 − 1] and

[1, 2N − 1] respectively,
— the parameters of the coupling technique, εij , ranging from 1 to 2k with k ≤ 5 and i, j ∈ {1, 2}.
The samples Xp(n) and Xs(n) are produced by using a coupling and swap chaotic techniques. The

coupling technique is based on using the matrix A during the calculation of the samples Xp(n) and Xs(n).
While the swap technique consists in using Xp(n− 1) as an input of the discrete function of the Skew Tent
map Fs, and Xs(n− 1) as an input of the discrete function of the PWLCM map Fp.

The equation of the system is governed as follows:[
Xp(n)
Xs(n)

]
= A×

[
Fp[Xs(n− 1)]
Fs[Xp(n− 1)]

]
. (4.10)

with

A =

[
(2N − ε11) ε12

ε21 (2N − ε22)

]
(4.11)

Output samples X(n) are calculated throughout the produced samples Xp(n) and Xs(n) as follows:

X(n) = Xp(n)⊕Xs(n). (4.12)

4.2.2 Implementation of the proposed PCNGs
In order to study the performance evaluation of the proposed PCNGs, we implement the proposed

architectures on an Intel Core i5 @ 2.60 GHz with 15.6 GB Running on Ubuntu 14.04 Trusty Linux, in
C language and using the GCC GNU compiler. In this section, we will consider the proposed CM-PCNG
as an example to well explain the C implementation. Two versions are implemented: a sequential version
and a parallel one, based on the "pthread" library. In next sub-sections we will describe in details these
implementations.

Sequential implementation of the proposed PCNGs

The general structure of a PCNG as presented in Figure 4.1 has as input the secret "K", the initial "IV"
and the parameters of the system, and generates as an output a random sequence X(n).

In our implementation, the secret key and the parameters are taken from the files "key.txt" and "param-
eters.txt" respectively. For the CM-PCNG, the secret key is composed of the initial conditions Xp, Xs
and Xl, the control parameter Pp and Ps and the parameters of the coupling matrix A, εij . The initial
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conditions and the control parameters are quantified on 4 bytes (32 bits) while εij are encoded in one byte
(8 bits). The generated sequence X(n) is composed of Ns samples. The "parameters.txt" file contains the
number of bits N in which each sample of the generated sequences is encoded and the number of samples
Ns. In this thesis, we choose N equal to 32 bits. Figure 4.5 presents the general structure of a generated
sequence.

Figure 4.5 – General structure of a generated sequence X(n).

As mentioned in Figure 4.1, in order to generate the required random sequence of Ns samples, once we
have the secret keyK and the initial vector IV which is chosen randomly from the LRNG, first we calculate
the initial samples Xs(0) and Xp(0) using the key-setup function. Second, we generate the samples Xs(n)
and Xp(n) and we choose the output sample X(n). These operations (internal state and output function)
are repeated Ns times to generate all the desired samples of the sequence. All used functions have been
implemented in series. The following Alg.3, illustrate the generation of the pseudo random sequence X(n).

Algorithm 3 Generation of the pseudo random sequence X(n).
Key setup function
Xs = Xs ⊕ IVs
Xp = Xp ⊕ IVp
Xl = Xl ⊕ IVl
samples generation
A11 = 232 − ε12 − ε13
A22 = 232 − ε21 − ε23
A33 = 232 − ε31 − ε32
for int k = 1, k++, while k < Ns do

internal state
Xp = Fp(Xp)
Xs = Fs(Xs)
Xl = Fl(xl)
Xp=((A11 × Xp) + (ε12× Xs) + (ε13×Xl))
Xs=((ε21×Xp) + (A22× Xs) + (ε23× Xl))
Xl=((ε31×Xp) + (ε32×Xs) +(A33× Xl))
output function
XTh = Xs ⊕ Xl
if XTh < T then

X[k] = Xp
else

X[k] = Xs
end if

end for
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Parallel implementation of the proposed PCNGs

With the progress in computer science field and high computational power available nowadays, parallel
implementation has been very ubiquitous. Most laptops, desktops and servers use a multicore processor.
The main purpose of parallel implementation is to perform computations faster than can be done with a
single processor. In simple terms, parallel software processing provide the possibility to divide a massive
computational operation into several separate processes that execute concurrently through different proces-
sors to solve a common operation [185] [203].

Many parallel thread libraries for software applications have been implemented in the literature to pro-
vide threads - a unit of concurrent/parallel execution- which permit parallel execution according to the
system [227][206][71][35]. Each library provides a specific model of parallelism such as geometric mod-
eling or graph algorithms which use dynamic linked data structures. The choice among them will be based
on the model performance, data dependencies, statistical feedback, current run-time conditions and also its
portability in many operating systems.

The library we choose to implement parallelism in the generation of the random sequence is POSIX
threads, or, more often, Pthreads [59] which is a part of the IEEE standard for Unix-like operating systems,
called POSIX [35]. Pthreads presents an application programming interface (API) for multithreaded pro-
gramming. Pthreads is not a programming language (like Java and C), but it is defined as a C library that
can be, in principle, linked with a C program.

For our parallel implementation of the proposed PCNG, only the Internal state and output functions are
ensured with parallel programming. The used computer to implement our programs is composed of four
cores. So, we create four threads in our application which will participate concurrently in the generation
of the pseudo random sequence. Each thread Thi with i=1,2,3,4, is given a section of the sequence (or a
specified number of samples) to be generated. Each thread works on the generation of its subsequence using
a different secret key. In fact, as the system is deterministic, each thread needs to have a different secret key
to not generate the same sequence. Also, chaotic systems are highly sensitive to initial conditions. For that,
from the initial conditions Xs, Xp and Xl, we create four different sub-initial conditions using a circular
shift function (rotation) as described in Alg.4.

Algorithm 4 Generation of initial conditions for each thread.
{left circular shift by 3 bits}
{Xp[i], Xs[i] and Xl[i] are initial conditions for thread Thi}.
uint32_t shift = 0
for int i = 1, i++, while i ≤ 4 do
shift = Xp[i− 1] >> (32− 3) //shifted left by (32-3) bits
Xp[i] = Xp[i− 1] << 3 //shifted right by 3 bits
Xp[i] = Xp[i] | shift
shift = Xs[i− 1] >> (32− 3)
Xs[i] = Xs[i− 1] << 3
Xs[i] = Xs[i] | shift
shift = Xl[i− 1] >> (32− 3)
Xl[i] = Xl[i− 1] << 3
Xl[i] = Xl[i] | shift

end for

Each thread has a fixed number of samples to generate. Suppose that our sequence is composed of
Ns=10 samples. The number of samples generated by each thread is calculated as explained in Alg.5.
Table 4.1 presents the number of samples generated by each thread when Ns is equal to 10.
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Algorithm 5 Number of samples generated by each thread.
int remainder = MOD(Ns / 4)
int min = 0, max = 0
for int k = 1, k++, while k ≤ 4 do

min = (k-1) × (Ns / 4)
if (k != 4) then

max = k × (Ns/4)+ remainder
else

max = k × (Ns/4)
end if
{Nbth[k]is the number of samples to be generated by the thread Thk }
Nbth[k] = max - min

end for

Table 4.1 – Number of samples generated by each thread.

Thread min max Number of samples

Th1 0 2 2
Th2 2 4 2
Th3 4 6 2
Th4 6 10 4

As we already noted, all threads participate concurrently in the generation of the random sequence.
Each one generates individually a fixed number of samples. Once generation of samples finishes including a
waiting process, generated samples are saved in the sequence following a specific structure. The structure of
the sequence with the different generated samples from threads, using a parallel programming, is described
in Figure 4.6. Finally, the generated sequence is saved a result file to check the randomness of the sequence.

Figure 4.6 – General structure of a generated sequence using a parallel programming.

Software implementation testing

The software testing is an important and integral phase in any software development cycle, responsible
for a significant portion of the costs of developing and maintaining software [39][139]. Software testing
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aims to evaluate the capability of the program and determine that it meets its required results. Software
testing is not limited to treating the specification of the program. But it also include analysing and testing of
the software implementation and code in various ways to determine the degree of correspondence between
code and specifications [84][123]. There are an abundance of code testing tools and techniques exist. These
can be classified into following two categories: static analysis and dynamic testing, which are complemen-
tary approaches to code testing. In static analysis, the structure of the code is analyzed, but the code is not
executed. Static analysis inspects program code for all possible run-time behaviours and seek out coding
flaws, memory leaks, buffer overflows, and potentially malicious code. It can for example, detect that a par-
ticular variable is uninitialized on all possible control paths through a code or that a variable is assigned a
value which is never used on any subsequent path through the program. On the other hand, dynamic testing
adopts the opposite approach and investigates the runtime behaviour of the code. It involves deriving a test
plan, executing test cases, and evaluating the results. Dynamic testing can for example, record the exact
sequence of values assigned to a variable, although only on the particular control path traversed during the
test.

We have performed different static and dynamic tools in order to verify and test our program code.
Among the static analysis tools that we used, we quote:

— Clang Static Analyzer: It is a industrial-quality static analysis tool for analyzing C, C++, and
Objective-C programs. Clang Static Analyzer is part of the Clang project. It is open-source, ex-
tensible, and has a high quality of implementation [1]. Clang Static Analyzer helps programmer to
find bugs, including some issues that might not be easily detected by the programmer. The analyzer
is invoked from the command line, and is intended to be run in tandem with a build of a code-base.

— GCC compiler on Debugging mode: GCC, the GNU Compiler Collection, is a collection of com-
pilers created by the GNU project [5]. GCC is free software that can compile various programming
languages, including C, C++, Java, etc. GCC has a debugging tool, GNU Debugger (gdb) that al-
lows to track the bugs / errors found in any program code [6]. Also, GCC has some options (such
as -wall and -Wextra) which enables all the warnings about constructions that some users consider
questionable, and that are easy to avoid (or modify to prevent the warning), even in conjunction with
macros.

The dynamic tests include:
— LeakTracer: It is a tiny and efficient memory-leak tracer for C and C++ programs [7]. LeakTracer

is open-source and available in the Ubuntu software Center. It uses gdb to print out the lines of code
that have memory leaks, together with leak count and size. It does not trace malloc etc., but only
operator new/delete.

— Leak-analyzer: It is memory-leak analyzer, similar to the LeakTracer tool. It uses the gdb debugger
to analysis the code and show the memory leaks.

— Valgrind: A free and open-source framework for building dynamic analysis tools, available under
the GNU General Public License [13][182]. It is goal is to automatically detect many memory
management and threading bugs, and profile programs in detail. Valgrind includes many debugging
and profiling tools. An interesting example of these tools is Memcheck [233]. Memcheck detects
a wide range of memory problems and is designed primarily to C and C++ programs. It checks all
reads and writes of memory and intercept calls to malloc/new/free/delete functions.

— Callgrind: A part of Valgrind framework and extension to Cachegrind tool. It is a cache profiler.
It performs detailed simulation of the caches (I1, D1 and L2) in the CPU and so can accurately
determine the sources of cache misses in the program code. It provides informations about the
number of cache misses, memory references, instructions executed for each line of source code and
extra information about callgraphs [270].

— DRD: A Valgrind tool for detecting errors in multithreaded C and C++ programs [2]. It works for
any programs that uses threading concepts built on the POSIX threading primitives.

We have conducted these static and dynamic analysis tool in order to test our C program code. Obtained
results show that our implementations have not memory leaks and anomalies or defects in the code.
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Program code security test is another important factor to ensure the software quality and to eliminate
every security gaps. In cryptographic applications, ensuring that sensitive data (e.g., cryptographic keys)
is no longer accessible, if the application no longer has pointers to it, will reduce the impact of the attack.
Therefore, it is often necessary to wipe sensitive data from memory once it is no longer needed. Zeroing
buffers which contained sensitive information is an exploit mitigation technique. The memset() function ,
defined below, is an approach that permits to set a range of memory to a value, and is often used to zero out
a series of bytes [8].

void *memset(void *str, int c, size_t n);
Where:
— str is a pointer to the block of memory to fill;
— c is the value to be set. The value is passed as an int, but the function fills the block of memory using

the unsigned char conversion of this value;
— n is the number of bytes to be set to the value.
Some optimizing compiler could employ "dead store removal"; that is, it could decide that str is never

accessed after the call to memset(). Thus, the call to memset() could be optimized away. Consequently,
the observable behaviour of the program is unchanged by the optimization. The str remains in memory
and possibly to be discovered by some other process requesting memory. To work around this, we use
the volatile function pointer memset_ptr, as described in Listening 4.1. The volatile type will prevent the
compiler from optimizing the code; and so the compiler is forced to emit the function call which causes the
key buffer to be zeroed. This approach should work on any standard-compliant platform.

1 static void * (* const volatile memset_ptr)(void *, int, size_t) = memset;
2 static void secure\_memzero(void * p, size_t len){
3 (memset_ptr)(p, 0, len);
4 }
5

6 void dosomethingsensitive(void){
7 uint8_t key[32];
8 ...
9 / * Zero sensitive information. * /

10 secure_memzero(key, sizeof(key));
11 }

Listing 4.1 – Description of secure_memzero function

Another issue which needs to be taken into account in security code analysis is that confidential data in
a process’ address space might be saved on secondary storage and survive there beyond the expectations of
the programmer. To solve this problem, the memory pages containing the sensitive data can be locked to
prevent them from being paged to disk or transmitted over a network. One approach that we used in our
implementations to prevent memory from being swapped out, is by using the mlock() system call to lock
the physical pages associated with a virtual address range into memory [103].

The two functions that locks and unlocks pages are described as follows:
int mlock(const void *addr, size_t len);

int munlock(const void *addr, size_t len);

mlock() locks pages in the address range starting at addr and continuing for len bytes. All pages that
contain a part of the specified address range are guaranteed to be resident in RAM when the call returns
successfully; the pages are guaranteed to stay in RAM until later unlocked [9].

munlock() unlocks pages in the address range starting at addr and continuing for len bytes. After this
call, all pages that contain a part of the specified memory range can be moved to external swap space again
by the kernel [10].
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In next sections, we demonstrate the robustness of the proposed chaotic number generators through, first
a theoretical analysis in Section 4.2.3 and second several known statistical tests presented in Section 4.2.4.

4.2.3 Security Analysis of the proposed PCNGs

Key space analysis

A PCNG should have a large key space in order to make brute-force attack infeasible. It is generally
accepted that a key space of size equal or greater to 2128 is secure. The size of the secret key of the proposed
CM-PCNG, DM-PCNG and CS-PCNG are respectively given by:

|K1| = (|Xp|+ |Xs|+ |Xl|) + (|Pp|+ |Ps|) + 6× |εij| = 189 bits. (4.13)

|K2| = (|Xp|+ |Xs|+ |Xl|) + (|Pp|+ |Ps|) = 159 bits. (4.14)

|K3| = (|Xp|+ |Xs|) + (|Pp|+ |Ps|) + 4× |εij| = 147 bits. (4.15)

where |Xp| = |Xs| = |Xl| = |Ps| = 32 bits; |Pp| = 31 bits and |εij| is equal to 5 bits. The proposed
algorithms have 2189, 2159 and 2147 different combinations of the secret key. Therefore the secret key sizes
of the three architectures are large enough to make brute-force attack infeasible. Such a large space of
keys is a necessary condition, but not sufficient. Indeed, the generated sequences must be cryptographically
secure.

Key Sensitivity analysis

The sensitivity on the key is an essential property for any PCNG. Naturally, a small change in the
secret key causes a large change in the output sequences. In order to verify this characteristic, we calculate
the Hamming Distance of two sequences generated with only one bit change (least significant bit of the
parameter Pp). We calculate the average Hamming Distance DH between two sequences S1 and S2, over
100 random secret keys. The DH(S1, S2) is defined by the following equation:

DH(S1, S2) =
1

Nb
×

Nb∑
n=1

(S1[n]⊕ S2[n]) (4.16)

With Nb is the number of bits in a sequence. The obtained average value of Hamming distance for the
proposed CM-PCNG, DM-PCNG and CS-PCNG are presented in Table 4.2. These values are close to the
optimal value of 50%. This result illustrates the heigh sensitivity on the secret key of the proposed PCNGs.

Table 4.2 – Values of DH for the proposed CM-PCNG, DM-PCNG and CS-PCNG.

PCNG DH

CM-SC 0.499988
DM-SC 0.500025
CS-SC 0.500041
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4.2.4 Statistical Analysis of the proposed PCNGs
Phase space trajectory or mapping analysis

The mapping or the phase space trajectory is one of the characteristics of the generated sequence that
reflects the dynamic behaviour of the system. We draw in Figures 4.7a, 4.7c and 4.7e the mapping of
sequences X1, X2 and X3, each containing Ns = 31250 samples, generated by CM-PCNG, DM-PCNG
and CS-PCNG respectively and a zoom of these mappings are given in Figures 4.7b, 4.7d and 4.7f.

(a) Mapping of sequence X1 (b) Zoom on the mapping

(c) Mapping of sequence X2 (d) Zoom on the mapping

(e) Mapping of sequence X3 (f) Zoom on the mapping

Figure 4.7 – Mapping of sequences X1, X2 and X3, generated by CM-PCNG, DM-PCNG and CS-PCNG
respectively, and a zoom of these mappings.

The resulting mapping of X1, X2 and X3 seems to be random. This is due to the used techniques of
coupling, swapping and chaotic multiplexing. Therefore, it is impossible from the generated sequences to
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know which type of map is used. However, in the mapping of X2, we observe small empty areas. Then,
we can say that the generated sequences of the CM-PCNG and CS-PCNG are more uniform than those
generated by the DM-PCNG. This observation will be confirmed by the Chi-square test of the generated
sequence. Also, we notice that the mapping of the coupled sequences Xp, Xs and Xl seems to be random.
We draw in Figures 4.8a, 4.8c and 4.8e the mapping of sequencesXp generated by CM-PCNG, DM-PCNG
and CS-PCNG respectively and we give a zoom of these mappings in Figures 4.8b, 4.8d and 4.8f. Similar
results are obtained for mappings of the sequences Xs and Xl.

(a) Mapping of sequence Xp gener-
ated by CM-PCNG.

(b) Zoom on the mapping

(c) Mapping of sequence Xp gener-
ated by DM-SC.

(d) Zoom on the mapping

(e) Mapping of sequence Xp gener-
ated by CS-SC.

(f) Zoom on the mapping

Figure 4.8 – Mapping of sequences Xp generated by CM-PCNG, DM-PCNG and CS-PCNG respectively.
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Approximated Invariant values

To prove the uniformity of the generated sequences, Lozi [156] uses the "approximated invariant mea-
sures". This function was computed with floating numbers and based on the partition of the mapping
space to M2 small squares (boxes). In finite precision N, we defined the approximated invariant measures
PdN(si, tj) in the same manner as in [156]. First, the space mapping is divided into M2 boxes ri,j as
follows:

si = Xmin + i× l, i = 0, ...,M. (4.17)

tj = Xmin + j × l, j = 0, ...,M. (4.18)

where
l =

Xmax −Xmin

M
. (4.19)

with Xmin = min(Xi(Ns)) , Xmax = max(Xi(Ns)) and Ns is the number of samples under test.
The box ri,j is given by :

ri,j = [si, si+1[×[tj, tj+1[, i, j = 0, ...,M − 1. (4.20)

In Figures4.9a, 4.9b and 4.9c, we show the r6,6 box, after zooming the mapping of sequences X1, X2
and X3 .

(a) Zoom on the phase space of X1 (b) Zoom on the phase space of X2 (c) Zoom on the phase space of X3

Figure 4.9 – Zoom on the phase space of sequences X1, X2 and X3 generated by CM-PCNG, DM-PCNG
and CS-PCNG respectively.

The approximated probability distribution function PdN(si, tj) is defined as follows:

PdN(si, tj) =
#ri,j
Ns/M2

. (4.21)

with #ri,j is the number of samples inside the box ri,j .
Obtained values of #ri,j and PdN(si, tj) for sequences X1, X2 and X3 are given in Tables 4.3, 4.4

and 4.5 respectively, for all boxes with M = 10 and Ns= 31250. In Tables 4.6, 4.7 and 4.8 we give the
values of #ri,j and PdN(si, tj) for Ns= 31250 × 100.

Theoretically, the number of samples inside each box ri,j is Ns/M2 ' 312. Furthermore, the closer the
PdN(si, tj) value is to 1, the better the uniformity.

As we can see, compared to results in Tables 4.4 and 4.5, results of Table 4.3 are closer to uniform dis-
tribution. Indeed, for sequence X1, the smallest value of PdN(si, tj) is 0.883 and the biggest PdN(si, tj)
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value is 1.107. Also, for sequence X3, the smallest value of PdN(si, tj) is 0.832 and we only have 4 values
smaller than 0.88. Likewise, the biggest PdN(si, tj) value is 1.142 and only we have 5 values bigger than
1.10. For sequence X2, we observe that: the smallest value of PdN(si, tj) is 0.246 and there are 34 values
smaller than 0.88. Additionally, the highest PdN(si, tj) value is 1.658 and there are 40 values higher than
1.10.

Table 4.3 – Values of #ri,j and PdN(si, tj) for sequence X1 with Ns = 31250 samples.

#ri,j
PdN (si, tj)

325 319 311 314 336 296 314 309 294 296
1.04 1.020 0.995 1.005 1.075 0.947 1.005 0.989 0.941 0.947

320 320 325 311 301 295 308 327 301 297
1.0240 1.024 1.040 0.995 0.963 0.944 0.986 1.046 0.963 0.950

333 334 341 321 306 316 305 287 333 344
1.066 1.069 1.0919 1.027 0.979 1.011 0.976 0.918 1.065 1.1

317 326 315 344 337 346 310 319 334 313
1.0144 1.043 1.008 1.1008 1.078 1.107 0.992 1.02 1.068 1.001

325 292 304 331 303 309 297 321 297 303
1.04 0.934 0.972 1.059 0.969 0.988 0.950 1.027 0.950 0.969

310 300 324 338 297 301 301 304 295 319
0.992 0.96 1.036 1.081 0.950 0.963 0.963 0.972 0.944 1.020

309 333 317 307 293 310 318 327 293 285
0.988 1.065 1.014 0.982 0.937 0.992 1.017 1.046 0.937 0.912

298 276 304 328 319 314 310 329 342 286
0.953 0.883 0.972 1.049 1.02 1.004 0.992 1.052 1.094 0.915

311 308 341 338 284 298 330 293 331 296
0.995 0.985 1.091 1.081 0.908 0.953 1.056 0.937 1.059 0.947

266 299 338 329 306 304 299 289 309 309
0.851 0.956 1.081 1.052 0.979 0.972 0.956 0.924 0.988 0.988

Table 4.4 – Values of #ri,j and PdN(si, tj) for sequence X2 with Ns = 31250 samples.

#ri,j
PdN (si, tj)

291 307 284 293 287 313 332 349 328 353
0.931 0.982 0.909 0.938 0.918 1.002 1.062 1.117 1.05 1.13

474 399 415 352 422 205 211 214 184 196
1.517 1.277 1.328 1.126 1.35 0.656 0.675 0.685 0.589 0.627

381 344 359 331 361 292 233 224 250 328
1.219 1.101 1.149 1.059 1.155 0.934 0.746 0.717 0.8 1.05

328 332 339 452 377 277 292 288 236 210
1.050 1.062 1.085 1.446 1.206 0.886 0.934 0.922 0.755 0.672

518 420 421 425 394 169 199 190 214 247
1.658 1.344 1.347 1.36 0 1.261 0.541 0.637 0.608 0.685 0.790

77 141 184 211 208 442 428 477 456 438
0.246 0.451 0.589 0.675 0.666 1.414 1.37 1.526 1.459 1.402

315 226 210 214 257 350 344 351 368 405
1.008 0.723 0.672 0.685 0.822 1.12 1.101 1.123 1.178 1.296

197 298 283 285 276 342 371 387 378 328
0.63 0.954 0.906 0.912 0.883 1.094 1.187 1.238 1.21 1.05

216 253 230 200 232 389 365 402 437 411
0.691 0.81 0.736 0.64 0.742 1.245 1.168 1.286 1.398 1.315

340 352 378 368 383 283 265 263 284 311
1.088 1.126 1.21 1.178 1.226 0.906 0.848 0.842 0.909 0.995

Besides, compared to results in Table 4.3, the obtained values of PdN(si, tj) in Table 4.6, are closer to
1. Indeed, the uniformity is better when the number of samples Ns is larger. The same remark is observed
for results of CS-PCNG (see Tables 4.5 and 4.8). However, these results are not valid for DM-PCNG when
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Table 4.5 – Values of #ri,j and PdN(si, tj) for sequence X3 with Ns = 31250 samples.

#ri,j
PdN (si, tj)

312 338 291 322 330 289 348 296 323 301
0.998 1.082 0.931 1.03 1.056 0.925 1.114 0.947 1.034 0.963

343 343 311 284 306 314 305 337 316 338
1.098 1.098 0.995 0.909 0.979 1.005 0.976 1.078 1.011 1.082

295 313 293 297 295 312 312 316 321 286
0.944 1.002 0.938 0.95 0.944 0.998 0.998 1.011 1.027 0.915

313 314 318 315 317 307 301 314 287 324
1.002 1.005 1.018 1.008 1.014 0.982 0.963 1.005 0.918 1.037

319 292 314 306 337 285 315 357 319 333
1.021 0.934 1.005 0.979 1.078 0.912 1.008 1.142 1.021 1.066

299 304 301 343 326 313 314 278 320 298
0.957 0.973 0.963 1.098 1.043 1.002 1.005 0.89 1.024 0.954

339 303 313 289 304 310 349 294 318 321
1.085 0.97 1.002 0.925 0.973 0.992 1.117 0.941 1.018 1.027

290 319 313 307 312 328 320 290 324 310
0.928 1.021 1.002 0.982 0.998 1.05 1.024 0.928 1.037 0.992

319 337 273 298 319 346 298 320 260 315
1.021 1.078 0.874 0.954 1.021 1.107 0.954 1.024 0.832 1.008

321 333 313 348 331 292 278 312 297 314
1.027 1.066 1.002 1.114 1.059 0.934 0.89 0.998 0.95 1.005

Table 4.6 – Values of #ri,j and PdN(si, tj) for sequence X1 with Ns = 31250× 100 samples.

#ri,j
PdN (si, tj)

31300 31602 31335 31421 31404 31468 31206 31201 31286 31462
1.002 1.011 1.003 1.005 1.005 1.007 0.999 0.998 1.001 1.007

31568 31215 30925 31044 31711 31264 31150 31098 31072 31293
1.01 0.999 0.99 0.993 1.015 1 0.997 0.995 0.994 1.001

31425 31076 31270 31229 31304 31279 31287 31068 31073 31020
1.006 0.994 1.001 0.999 1.002 1.001 1.001 0.994 0.994 0.993

31375 30950 31126 30988 31286 31380 31203 30913 31221 31396
1.004 0.99 0.996 0.992 1.001 1.004 0.998 0.989 0.999 1.005

31475 30911 31154 31304 31411 31362 31286 31506 31358 31427
1.007 0.989 0.997 1.002 1.005 1.004 1.001 1.008 1.003 1.006

31395 31360 31380 31601 31251 31458 31173 31380 31096 31440
1.005 1.004 1.004 1.011 1 1.007 0.998 1.004 0.995 1.006

31269 31478 31470 31108 31358 31499 31384 31250 31060 30705
1.001 1.007 1.007 0.995 1.003 1.008 1.004 1 0.994 0.983

31233 31368 31183 31053 31198 31122 31271 31180 30889 31361
0.999 1.004 0.998 0.994 0.998 0.996 1.001 0.998 0.988 1.004

31218 31022 31083 31013 31154 31265 31233 30911 31027 31351
0.999 0.993 0.995 0.992 0.997 1 0.999 0.989 0.993 1.003

31427 31357 31105 31077 31117 31438 31388 31351 31195 31206
1.006 1.003 0.995 0.994 0.996 1.006 1.004 1.003 0.998 0.999

comparing Tables 4.4 and 4.7. This is due to the fact that the samples are distributed on a periodic orbit
with a small period length.

We give also the cumulative relative error calculated by:

CRE =
M∑
i,j=1

|Ns/M
2 −#ri,j

Ns/M2
|. (4.22)

In table 4.9, we report the obtained values of CRE for sequences X1, X2 and X3. For this experiment,
we took three different values for Ns: Ns = 31250, Ns = 31250 × 10, and Ns = 31250 × 100. And for
each Ns, we consider two values of M : M = 5 and M = 10.
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Table 4.7 – Values of #ri,j and PdN(si, tj) for sequence X2 with Ns = 31250× 100 samples.

#ri,j
PdN (si, tj)

29390 28231 27973 28024 26081 34062 33679 33191 33276 34079
0.94 0.903 0.895 0.897 0.835 1.089 1.077 1.062 1.065 1.09

45311 41954 38137 38005 38769 22302 23238 22161 20312 20596
1.45 1.342 1.22 1.216 1.24 0.714 0.743 0.709 0.65 0.659

38874 32922 36507 37833 35911 27787 26633 23892 25664 29221
1.244 1.053 1.168 1.211 1.149 0.889 0.852 0.764 0.821 0.935

3233 2 33458 38293 43204 40442 29067 28551 29473 23292 20085
1.035 1.07 1.225 1.382 1.294 0.93 0.914 0.943 0.745 0.643

4950 3 43437 41164 40803 39851 15716 18061 20104 2286 5 23238
1.584 1.39 1.317 1.306 1.275 0.503 0.578 0.643 0.732 0.743

9008 14252 18517 20938 20945 4643 7 46812 47074 45721 43910
0.288 0.456 0.592 0.67 0.67 1.486 1.498 1.506 1.463 1.405

2771 1 26873 2516 2 22977 24330 35524 33475 35438 37720 40422
0.887 0.86 0.805 0.735 0.779 1.137 1.071 1.134 1.207 1.293

2261 2 28674 29421 27095 27703 35328 35300 37512 35492 34186
0.724 0.917 0.941 0.867 0.886 1.13 1.13 1.2 1.136 1.094

20412 25354 24276 21672 23290 40373 37131 38233 39201 39745
0.653 0.811 0.777 0.693 0.745 1.292 1.188 1.223 1.254 1.272

32781 35632 35804 37640 37403 27062 26757 26242 2614 5 26693
1.049 1.14 1.146 1.204 1.197 0.866 0.856 0.84 0.836 0.854

Table 4.8 – Values of #ri,j and PdN(si, tj) for sequence X3 with Ns = 31250× 100 samples.

#ri,j
PdN (si, tj)

31146 31521 31105 31266 31271 31197 31087 31295 31126 31314
0.996 1.008 0.995 1.0005 1.0006 0.998 0.994 1.001 0.996 1.002

30845 31019 31233 31041 31203 31163 31504 31388 31448 31321
0.987 0.992 0.999 0.993 0.998 0.997 1.008 1.004 1.006 1.002

31486 31101 31323 31267 31331 31405 31134 31124 31362 30858
1.007 0.995 1.002 1 1.002 1.004 0.996 0.995 1.003 0.987

31185 31555 31419 31249 31282 31210 31054 31094 31282 31582
0.997 1.009 1.005 0.999 1.001 0.998 0.993 0.995 1.001 1.010

31199 31192 31177 31231 31041 31093 31487 31350 31322 31209
0.998 0.998 0.997 0.999 0.993 0.994 1.007 1.003 1.002 0.998

31552 30868 31065 31629 31477 31255 31483 31083 31176 31222
1.009 0.987 0.994 1.012 1.007 1.0001 1.007 0.994 0.997 0.999

31351 31091 31462 31265 31145 31364 31353 31412 31194 31236
1.003 0.994 1.006 1.0004 0.996 1.003 1.003 1.005 0.998 0.999

31151 31154 31302 31529 31112 31528 30971 31345 31340 30790
0.996 0.996 1.001 1.008 0.995 1.008 0.991 1.003 1.002 0.985

31177 31043 31094 31358 31277 31226 31745 31194 31236 31390
0.997 0.993 0.995 1.003 1.003 0.999 1.015 0.998 0.999 1.004

31236 31621 31211 31076 31162 31370 31055 30937 31254 31335
0.999 1.011 0.998 0.994 0.997 1.003 0.993 0.989 1.000 1.002

We observe that, whatever the values of Ns and M , the Cumulative Relative Error CRE of sequences
generated by CM-PCNG is smaller than the CRE of sequences generated by DM-PCNG. Also, we notice
that, for each M, the CRE of CM-PCNG decreases with a factor approximately equal to

√
Ns, when Ns

increases. However, sequences generated by DM-PCNG do not follow the previous rule.

Histogram and Chi-square analysis

We study the distribution uniformity of the generated sequences. A PCNG must provide a uniform
distribution in the whole phase space. We give in Figure 4.10a, Figure 4.10b and Figure 4.10c the histograms
of generated sequencesX1,X2 andX3, each formed by 107 samples, generated by CM-PCNG, DM-PCNG
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Table 4.9 – Values of the Cumulative Relative Error.

Ns
M PCNG 31250 31250 × 10 31250 × 100

5
CM-PCNG 0.5432 0.1982 0.0651
DM-PCNG 2.5512 2.3857 2.3657
CS-PCNG 0.7959 0.1812 0.0480

10
CM-PCNG 4.4869 1.5268 0.4722
DM-PCNG 23.0597 22.8217 22.6401
CS-PCNG 4.4255 1.6144 0.4498

and CS-PCNG respectively.
Visually, we observe that the generated sequencesX1, X2 andX3 are nearly uniformly distributed. We

then apply the Chi-square test to assert the uniformity of these sequences. The experimental Chi-square χ2

value is given by:

χ2
exp =

K−1∑
i=0

(Oi − Ei)2

Ei
. (4.23)

where K is the number of classes (sub-intervals) chosen in our experiment equal to 1000, Oi is the
number of observed (calculated) samples in the i-th class and Ei is the expected number of samples of a
uniform distribution, Ei = 107/K.

We compare the experimental value given by Eq.4.23 with a theoretical value obtained for a threshold
α=0.05 and a degree of freedomK-1=999. Smaller is the experimental value of Chi-square test compared to
the theoretical one, better is the uniformity of the generated sequence. Experimental and theoretical values
of the Chi-Square test for sequences X1, X2 and X3 are presented in Table 4.10. These results confirm
the uniformity of the generated sequences. We note that sequence X1 has a better uniform distribution than
other sequences and sequence X3 is more uniform than sequence X2.

Table 4.10 – Theoretical and experimental values of the Chi-Square test for the proposed PCNGs.

Chi-square test value CM-PCNG DM-PCNG CS-PCNG

χ2
th 1073.642 1073.642 1073.642
χ2
exp 904.652 960.689 918.988

Correlation analysis

To evaluate the security of the proposed PCNGs regarding to the correlation analysis, we calculate the
correlation coefficient between two sequences X and Y which are produced with nearby initial conditions
and also the correlation coefficient between a generated sequence X and the coupled sequences Xp, Xs
and Xl for the proposed PCNGs. The obtained results are given in Table 4.11.

We give in Figure 4.11, the auto-correlation function of sequence X , a zoom of the autocorrelation on
200 samples of sequenceX and of the cross-correlation of the sequencesX and Y generated by CM-PCNG,
and a zoom of the cross-correlation of sequences X and Y and of the auto-correlation of sequence X . We
note the cross-correlation function of sequences X and Y given by Figure 4.11c is very low (maximum
value = 0.025) compared to the auto-correlation function of sequence X . Correlation coefficients given in
Table 4.11 are close to zero. Consequently, there is no correlation between the generated sequences, that are
produced using slightly different keys. Similar observations are concluded for both proposed DM-PCNG
and CS-PCNG. (See Figures 4.12 and 4.13 )
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(a) The histogram of generated sequence X1. (b) The histogram of generated sequence X2.

(c) The histogram of generated sequence X3.

Figure 4.10 – The histograms of sequences X1, X2 and X3 generated by CM-PCNG, DM-PCNG and
CS-PCNG respectively.

Table 4.11 – Correlation coefficients of the proposed PCNGs.

Correlation coefficient CM-PCNG DM-PCNG CS-PCNG

ρX,Y 0.0025 0.0104 0.0080
ρX,Xp 0.0015 0.0078 -0.0034
ρX,Xs -0.0047 0.0150 0.0063
ρX,Xl

0.0020 -0.0010 /

NIST test analysis

We also use one of the most popular standard test for investigating the randomness of binary data,
namely the NIST statistical test [81, 224]. It focus on variety of different types of non-randomness that



4.2. PROPOSED PSEUDO-CHAOTIC NUMBER GENERATORS 105

(a) Autocorrelation of sequence X (b) A zoom of the autocorrelation on 200
samples of sequence X

(c) Cross-correlation of sequences X and Y (d) A zoom of the cross-correlation of se-
quences X and Y and of the auto-correlation
of sequence X

Figure 4.11 – Auto and cross-correlation functions of sequences X and Y generated by CM-PCNG.

could exist in a binary sequence. For each test, a P − value is calculated. The associated test is a success,
if P − value ≥ α (α is a fixed value set for all tests equal to 0.01).

Figure 4.14 and Table 4.12 give the results of NIST test obtained for sequences X1, X2 and X3 gener-
ated by the proposed CM-PCNG, DM-PCNG and CS-PCNG respectively.

We observe that, sequences X1, X2 and X3 have successfully passed all the NIST tests. Therefore, the
proposed chaotic generators are robust against statistical attacks. In addition, we observe that globally, the
sequence X1 generated by the CM-PCNG algorithm pass NIST tests more efficiently than sequences X2
and X3 generated by DM-PCNG and CS-PCNG. This is in accordance with results obtained by the others
statistical tests.

4.2.5 Speed performance of the proposed PCNGs

Speed performance of a PCNG is an important factor for practical applications, such in encryption
algorithms for example. We study the computing performance of the proposed PCNGs. In Tables 4.13, 4.14
and 4.15 we give, the average generation time in microsecond (µs), the average bit rate in Megabits/second
(Mbits/s) and the average required number of cycles to generate one byte for different lengths of sequences,
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(a) Autocorrelation of sequence X (b) A zoom of the autocorrelation on 200
samples of sequence X

(c) Cross-correlation of sequences X and Y (d) A zoom of the cross-correlation of se-
quences X and Y and of the auto-correlation
of sequence X

Figure 4.12 – Auto and cross-correlation functions of sequences X and Y generated by DM-PCNG.

using sequential and parallel programming for the three proposed chaotic generators CM-PCNG, DM-
PCNG and CS-PCNG respectively. The average is calculated over 100 different sequences using a different
secret key for each one.

The bit rate and the number of cycles needed to generate one byte NCpB is defined as follows:

Bit rate(Mbits/s) =
Generated data size(Mbits)

Average generation time(s)
(4.24)

NCpB =
CPUspeed(Hz)

Bit rate(Byte/s)
(4.25)

From results of Tables 4.13, 4.14 and 4.15, we remark first that, due to its less complex internal state,
the speed performance of CS-PCNG is better than one of CM-PCNG and DM-PCNG. Also, DM-PCNG
is faster than CM-PCNG. Second, we observe that, for small size data (up to 32768 bytes) the PCNG
implemented with sequential programming is faster than that programmed in parallel (see also Figures
4.15, 4.16 and 4.17). This is due to the time synchronization between the four threads.

Notice that, in addition of stream ciphers, the proposed PCNGs can be used in several applications that
require the generation of a large amount of secure random numbers.
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(a) Autocorrelation of sequence X (b) A zoom of the autocorrelation on 200
samples of sequence X

(c) Cross-correlation of sequences X and Y (d) A zoom of the cross-correlation of se-
quences X and Y and of the auto-correlation
of sequence X

Figure 4.13 – Auto and cross-correlation functions of sequences X and Y generated by CS-PCNG.

In Table 4.16, we give the performance in terms of NCpB of some known pseudo random number
generators: Wang et al., [267], Akhshani et al., [19] and our proposed PCNGs. The comparison is performed
for a data size equal to 786432 bytes. It can be observed that the NCpB performance of the proposed
PCNGs is better than the others cited.

In the following section, we will study the security analysis and the speed performance of the three
proposed stream ciphers CM-SC, DM-SC and CS-SC which use as a pseudo number generator CM-PCNG,
DM-PCNG and CS-PCNG respectively.

4.3 Proposed chaos-based stream ciphers

A stream cipher, as shown in Figure 4.18, is a symmetric encryption algorithm. It takes a stream of
plaintext Pi, a secret key K and an initial vector IV as input and then operates the Pi with a keystream which
is produced by a PCNG using the secret key K and IV to obtain a ciphered text Ci. The keystream must be
different for each encryption round. As the PCNG is deterministic, the same keystream can be generated
in the decryption. Then, one can recover the original plaintext Pi, by XORing the same keystream with the
cipher text Ci.
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Table 4.12 – P-values and Proportion results of NIST for the proposed stream ciphers.

CM-PCNG DM-PCNG CS-SC

Test P-value Proportion P-value Proportion P-value Proportion

Frequency test 0.946 100 0.740 100 0.249 98
Block-frequency test 0.883 99 0.091 100 0.063 99
Cumulative-sums test 0.376 100 0.646 100 0.862 98
Runs test: 0.616 98 0.658 100 0.456 100
Longest-run test 0.898 100 0.596 99 0.720 100
Rank test 0.290 99 0.534 98 0.924 100
FFT test 0.534 100 0.554 100 0.596 98
Non-periodic-templates 0.483 99.061 0.494 99.088 0.540 98.784
Overlapping-templates 0.063 100 0.798 100 0.817 98
Universal 0.172 99 0.040 99 0.720 98
Approximty entropie 0.419 99 0.097 98 0.972 98
Random-excursions: 0.335 99.123 0.545 97.656 0.325 98.674
Random-excursions-variant 0.436 99.318 0.576 99.566 0.273 98.401
Serial test 0.478 100 0.627 99.5 0.720 99.5
Linear-complexity 0.249 98 0.262 98 0.475 100

Table 4.13 – Speed Performance of CM-PCNG using sequential and parallel implementations.

Data Size (Byte) Generation Time (µs) Bit Rate (Mbits/s) NCpB

Sequential Parallel Sequential Parallel Sequential Parallel
Impl. Impl. Impl. Impl. Impl. Impl.

64 4.02 79.56 127.36 6.43 163.31 3082.39
128 5.69 98.13 179.96 10.43 115.58 1900.93
256 8.9 95.29 230.11 21.49 90.39 922.96
512 14.89 96.90 275.08 42.27 75.61 492.07
1024 27.36 93.51 299.41 87.60 69.47 237.43
2048 49.63 89.95 330.12 182.14 63.01 108.9
4096 89.33 99.75 366.81 328.50 56.7 60.38
8192 144.19 141,03 454.51 464.67 45.76 44.76
16384 262.31 271,64 499.68 482.52 41.63 43.11
32768 521.49 359.05 502.68 724.48 41.38 27.38
65536 782.22 616.22 670.25 850.81 31.03 23.31
125000 1269.86 1140.89 787.48 876.50 25.19 22.63
196608 1970.40 1548.23 798.24 1015.91 24.85 19.53
393216 3930.71 2838.58 800.29 1108.2 24.79 17.9
786432 7826.19 4279.44 803.89 1470.15 24.68 13.49
3145728 31229.65 16936.79 805.83 1485.86 24.63 13.35

The keystream must be random enough to ensure that if an attacker has access to the keystream, he
cannot recover the secret key or derive the internal state. Thus, the security of any stream cipher depends on
the randomness of the keystream, therefore on the robustness of the used PCNG which is the main element
of a stream cipher. Note that the same secret key and IV must be shared by the emitter and the receiver in
order to encrypt/decrypt the message sent through the communication channel and must be protected from
access by others.
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(a) NIST tests results of the proposed CM-SC. (b) NIST tests results of the proposed DM-SC.

(c) NIST tests results of the proposed CS-SC.

Figure 4.14 – NIST test results of the proposed PCNGs.

Several techniques have been proposed for the distribution of keys and IV. Concerning our algorithms,
a symmetric key distribution is used in the generation and management of the secret keys and IV, in order
to provide confidentiality and integrity of the keys. This technique is based on the use of a master key,
which is infrequently used and is long lasting, and session keys which are generated and distributed for
each communication between emitter and receiver [248].

A good stream cipher algorithm should be robust against cryptanalytic, statistical and brute-force at-
tacks. Also, it should provide a high encryption speed. In this section, we discuss the security analysis of
the proposed stream cipher algorithms namely CM-SC, DM-SC and CS-SC, based on the proposed CM-
PCNG, DM-PCNG and CS-PCNG respectively, described in Section 4.2 and their speed performance. Key
space, Key sensitivity and Statistical analysis are carried out in order to prove that the proposed stream
ciphers are secure against the most common attacks.

As most encryption algorithms (AES-CTR, Rabbit, HC-128...) encrypt 128 bits by 128 bits, our stream
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Table 4.14 – Speed Performance of DM-PCNG using sequential and parallel implementations.

Data Size (Byte) Generation Time (µs) Bit Rate (Mbits/s) NCpB

Sequential Parallel Sequential Parallel Sequential Parallel
Impl. Impl. Impl. Impl. Impl. Impl.

64 1.92 52.79 266.66 9.69 74.39 2144.59
128 2.58 65.16 369.89 15.71 49.98 1323.56
256 3.59 98.96 570.47 35.59 34.77 584.39
512 6.16 79.45 664.93 51.55 29.83 384.77
1024 12.03 76.29 680.96 107.37 29.13 184.73
2048 21.55 84.26 760.27 194.44 26.09 106.97
4096 42.52 77.00 770.51 425.55 25.74 48.88
8192 84.72 127.67 773.52 513.32 25.64 38.64
16384 169.33 222.98 774.03 587.81 25.63 33.75
32768 337.30 293.37 777.17 893.56 25.52 23.28
65536 671.59 491.9 780.65 1065.84 25.41 19.52
125000 1194.58 718.93 837.11 1458.52 24.85 14.26
196608 1867.03 1293.01 842.44 1621.91 24.69 12.82
393216 3465.25 2235.05 907.79 1789.66 22.91 11.62
786432 6413.96 3417.52 980.90 1840.94 21.2 11.3
3145728 25664.74 14827.4 980.56 1697.25 21.08 12.26

Table 4.15 – Speed Performance of CS-PCNG using sequential and parallel implementation.

Data Size (Byte) Generation Time (µs) Bit Rate (Mbits/s) NCpB

Sequential Parallel Sequential Parallel Sequential Parallel
Impl. Impl. Impl. Impl. Impl. Impl.

64 1.19 17.47 429.83 29.30 46.15 676.93
128 1.92 18.07 531.81 56.67 37.30 350.4
256 2.70 16.57 756.84 123.55 26.21 160.56
512 4.65 19.43 880.46 210.76 22.5 3 94.12
1024 8.61 23.41 950.95 349.85 20.86 56.70
2048 16.56 37.32 989.36 439.65 20.05 45.12
4096 31.73 62.07 1032.63 527.85 19.2 1 37.58
8192 62.50 103.73 1048.45 631.74 18.92 31.40
16384 122.50 170.67 1069.94 767.97 18.54 25.83
32768 238.26 232.84 1100.21 1125.81 18.03 17.62
65536 473.36 447.72 1107.58 1171 17.9 1 16.94
125000 884.22 656.86 1130.94 1522.39 17.54 13.03
196608 1339.21 994.30 1174.47 1581.88 16.89 12.54
393216 2492.65 1712.66 1262.69 1836.74 15.71 10.8
786432 4836.71 3124.03 1300.77 2013.89 15.25 9.85
3145728 18217.75 10656.62 1381.39 2361.52 14.36 8.4

cipher algorithms are adjusted also to encrypt 128 by 128 bits of the plain text. For this, the keystream
generator produces 128 bits of keystream to be combined with 128 bits of plain text by an XOR operation.
Recall that for each new encryption, a new IV is produced.

From the speed performance of the PCNGs given in Tables 4.13, 4.14 and 4.15, the PCNGs are faster
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(a) Generation Time of the proposed CM-PCNG. (b) Generation Time of the proposed DM-PCNG.

(c) Generation Time of the proposed CS-PCNG.

Figure 4.15 – Generation Time of the proposed PCNGs.

Table 4.16 – Computing performance of some known pseudo random number generators.

Pseudo random generator NCpB

Wang et al., [267] 160
Akhshani et al., [19] 45
Abu Taha et al., [112] 17.3
CM-PCNG 24.68
DM-PCNG 21.2
CS-PCNG 12

when generating 128 bits of keystream in sequential programming. For this, we use sequential programming
in the implementation of the three proposed stream ciphers.

To evaluate the performance of the proposed stream ciphers, a number of experiments were performed
based on several color images, which were used as plain images having the sizes (128 × 128 × 3), (256 ×
256 × 3), (512 × 512 × 3) and (1024 × 1024 × 3).

4.3.1 Security analysis of the proposed stream ciphers

In the following part, some classical cryptanalytic analysis is performed.
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(a) Bit Rate of the proposed CM-PCNG. (b) Bit Rate of the proposed DM-PCNG.

(c) Bit Rate of the proposed CS-PCNG.

Figure 4.16 – Bit Rate of the proposed PCNGs.

Key space analysis

For any secure crypto-system, the key space should be large enough to resist a brute-force attack. The
spaces of the secret keys for the proposed stream ciphers are related to the key sizes of the used PCNGs,
given by Eqs.4.13, 4.14 and 4.15 respectively. Consequently, the key spaces of the secret keys are equal to
2189, 2159 and 2147 for the proposed stream ciphers CM-SC, DM-SC and CS-SC respectively. Therefore,
they are large enough to resist any brute-force attacks.

Key sensitivity analysis

An efficient stream cipher should be very sensitive to the secret key. The change of a single bit in
the secret key should produce a completely different encrypted image. Indeed, to verify this feature, we
calculate the average Hamming Distance DH(X, Y ) (using 100 secret keys), between two ciphered images
C1 and C2, of the same plain image P , with only one change in the least significant bit of the parameter Pp.
DH(C1, C2) is given by the following equation :

DH(C1, C2) =
1

Nb
×

Nb∑
n=1

(C1[n]⊕ C2[n]) (4.26)

With Nb is the number of bits in an encrypted image. The obtained results of the Hamming distance
for three different ciphered images by the three algorithms are close to the optimal value of 50% (see
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(a) NCpB of the proposed CM-PCNG.
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(b) NCpB of the proposed DM-PCNG.

(c) NCpB of the proposed CS-PCNG.

Figure 4.17 – NCpB of the proposed PCNGs.

Table 4.17). Such results are obtained regardless of the position of the changed bit in the secret key. This
demonstrates that the proposed algorithms are highly sensitive to the secret key. Other common measures
used to test sensitivity to the secret key on the encrypted image when changing one bit are the Number of
Pixel Change Rate (NPCR) and Unified Average Changing Intensity (UACI). The former is used to measure
the number of different pixels between the two images, whereas the latter is used to measure the average
intensity difference. Let C1[i, j, p] and C2[i, j, p] be the (i,j,p)th pixel of two ciphered images C1 and C2,
respectively. The NPCR and UACI are defined by Eqs.(4.27) and (4.29), respectively.

NPCR =
1

L× C × P
×

P∑
p=1

L∑
i=1

C∑
j=1

D[i, j, p]× 100% (4.27)

D[i, j, p] =

{
0, if C1[i, j, p] = C2[i, j, p]

1, if C1[i, j, p] 6= C2[i, j, p]
(4.28)

UACI =
1

L× C × P × 255
×

P∑
p=1

L∑
i=1

C∑
j=1

|C1 − C2| × 100% (4.29)

Table 4.17 also shows the obtained results of NPCR and UACI for the previous three ciphered images.
The resulting values are near to the expected values of NPCR and UACI which are 99.60% and 33.46%,
respectively [281] [158]. So, as we can see, the proposed algorithms are very sensitive with respect to small
changes in the secret Key.
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Figure 4.18 – General scheme of a stream cipher.

Table 4.17 – DH , NPCR and UACI performance.

Baboon Peppers Lena

CM-SC DH 0.500022 0.500009 0.500015
NPCR 99.60918 99.60866 99.61024
UACI 33.46386 33.46330 33.465842

DM-SC DH 0.500017 0.500018 0.500018
NPCR 99.60954 99.60987 99.60899
UACI 33.469 33.46388 33.47010

CS-SC DH 0.499995 0.499985 0.499995
NPCR 99.60415 99.60412 99.61072
UACI 33.46402 33.46258 33.46153

Chosen plaintext attack analysis

The proposed stream ciphers resist to the chosen plain text attack. Assume one knows a plaintext Pi and
the corresponding ciphertext Ci. For each new encryption of the same Pi and using the same secret K, we
utilize a new IV. Therefore, as the algorithms have a high sensitivity to small changes in the secret key or
the IV, a new ciphertext C ′i is obtained.

4.3.2 Statistical analysis of the proposed stream ciphers

To prove the robustness of the proposed stream ciphers against statistical attacks, we perform the fol-
lowing experiments: histogram, chi-square test and correlation analysis.

Histogram analysis

A key property of a secure stream cipher algorithm is that the encrypted image should have a uniform
distribution. We applied the proposed CM-SC stream cipher on three different plain images (Lena, Baboon
and Peppers) of size (512 × 512 × 3). The obtained results are given in Figures.4.19, 4.20 and 4.21. On
each one, we show (a) the plain image, (b) the corresponding cipher image, (c) the histogram of the plain
image and (d) the histogram of the ciphered image.

We can visually observe that the histograms of the encrypted images are uniform and significantly dif-
ferent from those of the plain-images. The same visual results are obtained for the two proposed algorithms
DM-SC and CS-SC.
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Figure 4.19 – (a) Lena image, (b) Lena cipher image, (c) the histogram of Lena image and (d) the histogram
of the ciphered Lena image.

Chi-square test analysis

In order to assert the uniformity of the encrypted images, we apply the Chi-Square test. The experimen-
tal Chi-Square test χ2 is calculated by the following formula:

χ2
exp =

K−1∑
i=0

(Oi − Ei)2

Ei
. (4.30)

Where K is the number of levels (here 256), Oi are the observed occurrence frequencies of each color
level (0-255) in the histogram of the ciphered image, and Ei is the expected occurrence frequency of the
uniform distribution, given here by Ei = (L× C × P )/256 [77][85].

We compare the experimental value with the theoretical value obtained for a threshold α=0.05 and a
degree of freedom K -1 = 255. To prove the uniformity of a sequence, the experimental value of Chi-
Square must be lower than the theoretical one χ2

exp < χ2
th (255, 0.05). The smaller the experimental value

of Chi-Square is than the theoretical one, the better the uniformity of the histogram.
In Table 4.18, we reported the experimental and theoretical values of the Chi-Square test for the three

ciphered images (Baboon, Peppers, and Lena) obtained by the proposed algorithms. We note that for the
three images, χ2

exp < χ2
th(255, 0.05). In addition, images encrypted by the CM-SC algorithm have a better

uniform distribution than those encrypted by the DM-SC and CS-SC algorithms. Also, the distribution of
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Figure 4.20 – (a)Baboon image, (b) Baboon cipher image, (c) the histogram of Baboon image and (d) the
histogram of the ciphered Baboon image.

images encrypted by the CS-SC is more uniform than those of DM-SC algorithm.

Table 4.18 – Theoretical and experimental values of the Chi-Square test for the proposed stream ciphers.

Baboon Peppers Lena

χ2
th 293.247 293.247 293.247
χ2
exp of CM-SC 211.966 239.10 252.703
χ2
exp of DM-SC 267.293 265.37 262.31
χ2
exp of CS-SC 253.5 259.1 253.2

Correlation analysis

The adjacent pixels in a plain image normally have strong correlation. Also, the pixels in an encrypted
image, with a high security level, is expected to be randomly distributed. Therefore, a good encryption
scheme should have the ability to efficiently reduce the correlation among adjacent pixels. We measured
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Figure 4.21 – (a) Peppers image, (b) Peppers cipher image, (c) the histogram of Peppers image and (d) the
histogram of the ciphered Peppers image.

the correlation coefficient between adjacent pixels, selected randomly from three directions: horizontally,
vertically and diagonally. The correlation coefficient ρxy of adjacent pixels is calculated by the following
equation:

ρxy =

∑M
i=1(xi −

1
M

∑M
j=1 xj)(yi −

1
M

∑M
j=1 yj)

[
∑M

i=1(xi −
1
M

∑M
j=1 xj)

2]1/2 × [
∑M

i=1(yi −
1
M

∑M
j=1 yj)

2]1/2
. (4.31)

where xi and yi form ith pair of horizontally/vertically/diagonally adjacent pixels, M is the total number
of pairs of horizontally/ vertically/diagonally adjacent pixels.

In Table 4.19, we give the obtained correlation coefficients in horizontal, vertical and diagonal directions
of 1000 pairs of adjacent pixels of the plain images mentioned above and their corresponding ciphered
images.

These results show that the correlation coefficients of the plain images are close to 1 while those of
encrypted images are near to 0. Then, the proposed encryption schemes generate an image with uncorrelated
adjacent pixels. This indicates that the proposed algorithms are secure against statistical attacks.

In addition, such results are confirmed in Figure 4.22, which shows the correlation of two horizontally,
vertically and diagonally adjacent pixels in the plain and ciphered Baboon image (512 × 512 × 3) using
the CM-SC stream cipher. Similar results are obtained when using the DM-SC and CS-SC algorithms.
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Table 4.19 – Correlation coefficients between pairs of plain and encrypted images.

Image Direction Plain Image Ciphered Image Ciphered Image Ciphered Image
by CM-SC by DM-SC by CS-SC

Lena Horizontal 0.993176 0.008713 0.00131 -0.00578
Vertical 0.997055 0.008154 0.00121 -0.00467
Diagonal 0.988176 0.008324 0.00117 -0.00509

Baboon Horizontal 0.99233 0.00157 0.00317 0.00278
Vertical 0.99649 -0.00151 -0.00326 0.00261
Diagonal 0.98712 -0.00158 -0.00309 0.00273

Peppers Horizontal 0.96775 0.00320 0.01183 0.00508
Vertical 0.95753 -0.00309 0.00016 0.00541
Diagonal 0.93002 -0.00306 0.01480 0.00527

NIST test analysis

To evaluate the performance of the proposed algorithms, we use the NIST test. For that, we encrypted
100 different binary sequences of plain text, P1, P2 and P3; using the proposed stream ciphers CM-SC,
DM-SC and CS-SC, respectively, each one with a different secret key and containing 106 bits. We present
the results of NIST for the encrypted sequences C1, C2 and C3 in Table 4.20, with a level of significance
of the test α = 0.01. Results show that sequences C1, C2 and C3 have successfully passed all NIST tests.
Therefore, the proposed stream ciphers can resist statistical attacks.

Table 4.20 – P-values and Proportion results of NIST for the proposed stream ciphers.

CM-SC DM-SC CS-SC

Test P-value Proportion P-value Proportion P-value Proportion

Frequency test 0.225 100 0.760 98 0.319 98
Block-frequency test 0.798 99 0.051 93 0.067 100
Cumulative-sums test 0.696 100 0.527 100 0.657 98
Runs test: 0.575 100 0.898 100 0.514 99
Longest-run test 0.137 98 0.596 100 0.760 99
Rank test 0.798 99 0.367 100 0.067 99
FFT test 0.554 99 0.154 100 0.249 100
Non-periodic-templates 0.483 98.966 0.522 99 0.506 99.223
Overlapping-templates 0.720 100 0.063 98 0.851 99
Universal 0.834 100 0.276 99 0.130 100
Approximty entropie 0.740 99.000 0.834 99 0.475 99
Random-excursions: 0.483 98.321 0.576 99.414 0.364 98.843
Random-excursions-variant 0.312 98.425 0.615 98.351 0.475 99.383
Serial test 0.257 99.500 0.519 98.500 0.480 98
Linear-complexity 0.868 100 0.182 98 0.016 99

4.3.3 Computing performance of the proposed stream ciphers

We have performed the computing performance of the proposed stream ciphers. In this implementation,
we do not parallelize processes and operations. We evaluated the computing performance as follows: for
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(a) Distributions of two horizontally adjacent
pixels in the plain ’Lena’ image

(b) Distributions of two horizontally adjacent
pixels in the encrypted ’Lena’ image

(c) Distributions of two vertically adjacent
pixels in the plain ’Lena’ image

(d) Distributions of two vertically adjacent
pixels in the encrypted ’Lena’ image

(e) Distributions of two diagonally adjacent
pixels in the plain ’Lena’ image

(f) Distributions of two diagonally adjacent
pixels in the encrypted ’Lena’ image

Figure 4.22 – Distributions of two horizontally/ vertically/ diagonally adjacent pixels in the plain and en-
crypted ’Lena’ images.

100 different keys, we executed our algorithm and then, we calculated the average encryption time in (Micro
second), the average encryption throughput (ET) in (MByte) and the number of cycles per byte (NCpB).

ET =
Image size(MByte)

Encryption time(s)
(4.32)

NCpB =
CPUspeed(Hz)

ET (Byte/s)
(4.33)

The obtained results of computing performance for the proposed stream ciphers CM-SC, DM-SC and
CS-SC are given in Tables 4.21, 4.22 and 4.23, respectively. We remark that globally, the speed performance
of the stream ciphers is approximately 17 % less than that of the corresponding PCNGs. In Table 4.24, we
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give a comparison of NCpB for the proposed algorithms (for Lena 512 × 512 × 3) with other chaos-based
algorithms and the most known stream ciphers [52][28].

Table 4.21 – Speed Performance of the proposed CM-SC stream cipher.

Data Size (Byte) Encryption Time (µs) Encryption throughput (Mbits/s) NCpB

512 21.26 183.73 107.96
1024 37.05 210.86 94.07
2048 44.28 352.86 56.21
4096 73.58 424.70 46.71
256×256×3 2403.04 624.20 31.78
512×512×3 8511.00 704.97 28.14
1024×1024×3 32710.50 733.70 27.04

Table 4.22 – Speed Performance of the proposed DM-SC stream cipher.

Data Size (Byte) Encryption Time (µs) Encryption throughput (Mbits/s) NCpB

512 12.50 312.50 63.48
1024 23.35 334.58 59.29
2048 34.70 450.28 44.05
4096 49.05 637.10 31.14
256×256×3 2168.31 691.783 28.71
512×512×3 7267.27 825.6195 24.03
1024×1024×3 28808.11 833.0987 23.81

Table 4.23 – Speed Performance of the proposed CS-SC stream cipher.

Data Size (Byte) Encryption Time (µs) Encryption throughput (Mbits/s) NCpB

512 10.66 384.13 51.64
1024 18.70 437.89 45.3
2048 24.54 667.45 29.72
4096 28.21 1161.40 17.08
256×256×3 1059.5 1415.76 14
512×512×3 3964.52 1586.94 12.5
1024×1024×3 1834964.6 1755.47 11.3

We observe that the proposed algorithms have a better speed performance than the cited chaos-based
algorithms except that of [265]. However, in [265], the authors do not explain the measurement method
used to obtain such excellent results, given that the complexity of their system is similar to ours. Compared
to the AES-CTR, Rabbit, HC-128, Salsa20/12 and SOSEMANUK, the obtained performance is not as
good. However, the non linearity of the proposed systems is higher than the other systems, consequently,
its robustness against known attacks is higher.

4.4 Conclusion
In this chapter, we designed and developed three novel chaos-based stream ciphers, defined on finite

precision N=32, for secure data transmission in real-time applications.
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Table 4.24 – Comparison of NCpB performance between different algorithms.

Algorithms NCpB

Ref.[17] 321
Ref.[151] 226
Ref.[265] 1.77
CM-SC 28.14
DM-SC 24.03
CS-SC 12.5
AES-CTR 21.2
Rabbit 9.5
HC-128 14.4
Salsa20/12 9.9
SOSEMANUK 10.5

The high efficiency obtained from these crypto-systems is due to the designed PCNGs structure. Indeed,
their architectures integrate chaotic maps weakly coupled using a predefined matrix or coupled by a binary
diffusion matrix. The CM-PCNG and DM-PCNG uses a chaotic multiplexing technique while the CS-
PCNG includes a swap technique. The used techniques permit to decrease the degradation caused by the
descretizing process and the finite precision N. For that, we do not include in the proposed architectures
the perturbation technique and the recursive structure proposed in Chapter 3. Simulation tests, security
analyses and computing performance were carried out to prove the efficiency in terms of robustness and
speed performance of the proposed PCNGs and stream ciphers. The obtained results show that the proposed
stream ciphers are robust against known attacks of the literature and can be used in practical applications
including secure network communication.
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5.1 Introduction

The concept of Internet of Things (IoT) is becoming an increasingly growing topic, due to huge ad-
vancements in wireless networking technology and standardization of communication protocols [86] [82].
The core idea of this concept lies in the presence of everyday physical objects known as things which
are connected to the internet. Interconnection between things is made possible by technologies such as
Radio Frequency IDentification (RFID), Wireless Sensor Networking (WSN), cloud servicing, machine-to-
machine interfacing (M2M), etc.

Secure data transmission in the IoT is a very significant issue because confidential and proprietary infor-
mation have to be transmitted, especially in healthcare applications. Unfortunately, existing cryptographic
techniques developed for enterprise and desktop computing might not satisfy embedded applications with
strong real-time requirements as they can be too slow, huge and very power consuming [128].

Smart devices of the IoT, including sensors, are inherently resource constrained with regard to memory,
communication bandwidth, processing power and energy [100]. The most widespread energy sources are
typically batteries, renewable energy sources of the environment, or both. Most of wireless devices should
be autonomous i.e. operate for several years even for decades without any human intervention. Energy
consumption is consequently a central performance factor since it directly impacts lifetime of the device.
Hence, a challenging topic concerns the design of efficient and lightweight (from the point of view of energy
and processing time consumption) cryptographic techniques to guarantee secure data transmission in the
IoT. Such techniques should fit the low energy, computation and memory capabilities of cyber-physical
systems and provide an optimized security/cost/performance trade-off [74]. This is why the new field of
Light Weight Cryptography (LWC) is emerging.

The four main characteristics that differentiate one crypto-system from another are: ability to secure
the protected data, speed i.e. computational complexity, energy consumption and memory required in
doing so. The first objective of this chapter is to study the performance of two chaotic stream ciphers that
we recently designed in terms of energy and power consumption and memory assessment, since we have
presented their security and speed performance in the previous chapter. We will show that the proposed
stream ciphers are lightweight crypto-systems. Compared to other crypto-systems of the literature, we
demonstrate that our designed stream ciphers are suitable for practical secure applications of the IoT with
constrained resources environment. In section 5.2, we present some energy and power measurements tools
proposed in the literature. And we give energy and power consumption measurements for our proposed
algorithm. Section 5.3 deals with the requirements of the designed stream ciphers in terms of RAM and
code size requirements.

The second part of this chapter concerns the actual integration of the proposed crypto-systems with
real-time features. Indeed, the development of real-time embedded systems is continuously growing. In
some real-time applications such as automotive, robotic, tele-medicine and avionics, real time performance
becomes critical because each component of the system must work in cooporation and coordination. "The
correctness of a real-time system depends not only on the correctness of the logical result of the compu-
tation but also on the physical time when this result is produced"[251] The role of an operating system in
communication devices is important. Besides scheduling the real-time tasks for access to the processor,
it realizes synchronization between tasks and in particular it controls access to multiple resource through
specific resource management protocols.

In order to study the effective behaviour of our crypto-systems as part of a real-time application, we
implemented the proposed stream ciphers using a famous RTOS (Real Time Operating System) named
Xenomai . In section 5.4, we give a brief introduction to the field of real-time computing, especially to the
topics which are relevant in the context of this thesis. We also define a number of basic terms including
embedded systems, real-time systems, real-time operating system, etc. In addition, we report in subsection
5.4.5 the model used to implement the real-time crypto-systems using Xenomai which presents a software
framework able to give real time capabilities to the operating system. Tools for execution time measure-
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ments and resulting results about computation performance are given in 5.4.6. Section 5.5 concludes the
chapter.

5.2 Energy and Power consumption evaluation

Energy and power consumption are currently a major concern in the design and usage of high perfor-
mance crypto-systems. Many researchers in the energy field are contributing to elaborate multiple tools
and libraries to measure energy and power consumption of software components. In spite of their efforts,
there is no current standard for energy and power measurements. Traditionally, the energy consumption of
an application is measured using power meters and performance counters. In the last years, different tools
have been proposed to provide access to power and energy measurements. Each tool offers its own level
of precision and intrusion. The choice of a concrete tool is often a matter of availability, compatibility and
precision. In the next subsection 5.2.1, we present different existing tools that have been proposed in the
literature. In particular, we have selected several ones to measure the energy and power consumption of
our proposed algorithms, namely the ’the Intel’s RAPL technology’ and ’powertop’ tool. Results on our
measurements are reported in subsections 5.2.2 and 5.2.3 respectively.

5.2.1 Energy and power measurement tools

Several software tools are being used to measure energy consumption. We classify the set of existing
tools in different groups according to their interaction with hardware and software:

External devices

There are many energy measurement systems that have been used to measure energy consumption and
energy efficiency outside the experimental nodes. These measurements can be done without interfering the
experiment. Nonetheless, they could be unsuitable for experiments that require high precision measures.
These measurement systems include:

— The power distribution units (PDUs) are devices that are used to supply energy to data center servers
and at the same time have energy monitoring capabilities. They are used to facilitate, control, and
optimize energy generation and transmission. PDUs are usually composed of a number of outlets
where devices are connected [159].

— The PowerMon2 presents a low-cost power monitoring device that operates inside commodity com-
puter systems. It is used to analyse performance and power consumption trade-offs in computer
applications. PowerMon2 measures voltage and current on the individual DC power rails between a
system’s power supply and the motherboard and peripherals [37].

— PowerPack presents a power/energy/performance profiling infrastructure [98]. It is a combination
of hardware (e.g., sensors and digital meters) and software (e.g., drivers, instrumentation APIs,
benchmarks, and analysis tools) and used to evaluate energy efficiency and power-aware techniques
for parallel applications.

— PowerScope [87] is a tool for profiling energy usage by applications. It uses a digital multimeter to
perform off-line analysis using statistical sampling. It provides a kernel-level interface (via system
calls) to start and stop measurements; this requires modifying the operating system. PowerScope
maps energy consumption to program structure, in much the same way that CPU profilers map
processor cycles to specific processes and procedures.

— The energy endoscope [252] is an new embedded networked sensor platform architecture that com-
bines hardware and software tools. It offers detailed, fine-grained real-time energy measurements.
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Intra node tools

The intra-node group includes highly customized tools which have a restricted hardware platform and a
costly development:

— The Linux Energy Attribution and Accounting Platform (LEA2P ) [225][226] presents an energy
attribution and accounting architecture for multi-core systems that can provide accurate, per-process
energy information of individual hardware components. (LEA2P ) consists on a hardware-assisted
direct energy measurement system that integrates seamlessly with the host platform and provides
detailed energy information of multiple hardware elements at millisecond-scale time resolution.
These informations are passed into the Linux kernel and made available via the /proc file system
and can be read in-band.

— The Seoul National University Energy Scanner (SES) [237] is an integrated energy monitoring tool,
consists in a power instrumentation board that connects via PCI(E) bus, supporting various power
measurement tools although it was not a generic API. SES collects power consumption information
in a cycle-by-cycle resolution and associates the collected power data with C program and assembly
language source code.

— Bellosa [41] presents Joule Watcher, an approach based on information about active hardware units
(e.g., integer/floating-point unit, cache/memory interface) gathered by event counters to establish a
thread-specific energy measurement.

Other libraries

Other energy measurement tools have been proposed which are focused on a general API to access the
information provided by the hardware counter but are restricted by the platform:

— The performance API (PAPI) [56] is a standard application programming interface (API) for ac-
cessing hardware performance counters available on most modern CPUs. It provides the ability
to measure system’s energy and power consumption. This is offered by using the RAPL interface
(which will be later described)[269].

— LIKWID ("Like I Knew What I am Doing") [261] is a performance-oriented library that is targeted
towards applications in a Linux environment and does not require any kernel patching. It has the
ability to measure energy consumption by measuring performance counter metrics over the complete
run time of an application or, with support from a simple API, between arbitrary points in the
code. LIKWID is suitable for Intel and AMD processor architectures. It only supports x86-based
processors.

— The Intel® Energy Checker Software Developer Kit (Intel® EC SDK) provides tools to help devel-
opers design energy-efficient applications. It has a small set of simple APIs for software instrumen-
tation to measure the energy consumption. It is restricted to Intel architectures [110].

— The NVIDIA Management Library (NVML) is a C-based API for monitoring and managing vari-
ous states of the NVIDIA GPU devices. It provides the power usage and the power limits of the
supported products [72].

— The PowerAPI is a software library to monitor the energy consumed at the process-Level. It provides
an application programming interface (API) that estimates, in real-time, the energy consumed at the
granularity of a system process, from formulas based on CPU, memory and disk usage metrics.
PowerAPI supports only a single Power-Spy2 PDU [53].

— The Energy Measurement Library (EML) [60] is a software library created to facilitate the exper-
imentation of energy consumption in distributed systems. It is based on using an API that offers
multiple options to users in order to speed up the measurement and experimentation process. It
provides energy information by accessing energy counter measurements through PAPI.
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5.2.2 Measurement of energy consumption with RAPL

Running Average Power Limit (RAPL) tool

In this thesis, we use another software tool which is named "Running Average Power Limit" (RAPL)
interface, to measure energy consumption of our proposed algorithms.

Recently, the Intel Company has equipped its systems with a new tool for obtaining fine-grain energy
models: on board energy sensors for measuring the energy consumed by on-core hardware components
and the energy consumed by the code that runs on these components. Intel introduced these sensors called
"Running Average Power Limit" (RAPL) with their Sandy Bridge micro-architecture [68]. RAPL provides
a set of counters which reports energy and power consumption information. RAPL is available in newer
versions of the Xeon server-level CPUs. RAPL is not an analog power meter, but rather it uses a software
power model. This one estimates energy usage of the CPU-level components, listed in Table 5.1, through
hardware performance counters and I/O models [222].

Table 5.1 – List of available RAPL sensors.

RAPL_PKG Whole CPU package
RAPL_PP0 Processor cores only
RAPL_PP1 A specific device in the uncore
RAPL_DRAM Memory controller

RAPL reports various energy readings measurements that include: the energy consumption of the total
processor package (PKG), the total combined energy used by all cores (Power-Plane 0 (PP0) which includes
all processor caches) and the energy readings for the DRAM interface (DRAM). Also, some versions of
SandyBridge chips report power usage due to the on-board GPU (PP1).

Experiment methodology

The results of RAPL model are available to the user via a model specific register (MSR), with an update
frequency on the order of milliseconds [222]. To access MSRs, we require a ring-0 access to the hardware.
Typically, only the OS kernel can do this. This means that accessing the RAPL values needs a kernel driver.
Currently, Linux does not provide such a driver. To overcome this problem, we use the "MSR driver" that
exports MSR access to user space via a special device driver. When the MSR driver is enabled and given
proper read-only permission, the PAPI can access these registers without needing kernel support.

On Linux, the "MSR driver" is not auto-loaded. On modular kernels we might need to use the following
command to load it explicitly before use: sudo modprobe msr.

We use the RAPL interface and the MSR driver to measure the energy consumption of the encryption
task. Energy consumption presents the difference of the energy amount energy available in the CPU level
components before starting and after completing the encryption function.

Experimental results on energy consumption

We have conducted our energy measurement experiment for the two stream-cipher algorithms CM-
SC and CS-SC proposed respectively in [114] and [113]. Table 5.2 gives the different average values for
energy consumption of the two stream ciphers CM-SC and CS-SC which are compared to that of Rabbit
and HC-128.

The different average values of energy consumption are calculated after running 100 times the stream
ciphers using 100 different secret keys and the Lena image (256 × 256 × 3).
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Table 5.2 – Energy consumption (J).

Stream cipher CM-SC CS-SC Rabbit HC-128

PKG energy(J) 0.078613 0.022672 0.013855 0.038768
PP0 (J) 0.036316 0.010297 0.006104 0.020316
PP1 (J) 0.007568 0.000112 0.000150 0.000030
DRAM (J) 0.012939 0.002669 0.001648 0.003806

5.2.3 Measurement of power consumption with PowerTOP tool
We also report a power estimation through the PowerTop Linux tool provided by Intel, which permits

to diagnose issues with power consumption and power management. This tool helps the user to point out
the power inefficiencies of a program. It shows how well the different hardware power-saving features are
used. It reports the software components that prevent optimal usage [15] [136]. It also returns a power
estimation for each device.

To use PowerTOP, one must meet the following requirements:
• an Intel processor,
• a Linux kernel 2.6.21 or better,
• PowerTOP is mainly useful for a laptop since it can only study battery consumption. For best results,

when using PowerTOP on a laptop, do so when running on battery.
Power consumption measurements are given in table 5.3.

Table 5.3 – Power consumption in milliwatt (mW).

Stream cipher CM-SC CS-SC Rabbit HC-128

Power Estimation (mW) 3.4 2.9 2.7 3.18

Results shown in Tables 5.2 and 5.3 indicate that CS-SC algorithm has less energy and power con-
sumption compared to CM-SC and HC-128 algorithms. Indeed, CS-SC consumes about 30% of energy
consumed by the CM-SC algorithm, and 60% of that of the HC-128 algorithm. However, CS-SC consumes
about two times more energy than Rabbit.

5.3 Memory assessment
Whatever the complexity of the cryptographic primitives in terms of computational overhead and mem-

ory usage, the hardware resources available must be performant enough to minimize the execution time of
the secured applications. However, embedded devices often have inherent limitations in terms of memory
space. Hence, it would be necessary to analyse how these primitives perform over highly-constrained de-
vices. We calculate the requirements of the designed stream ciphers in terms of RAM consumption and
code size. We use the FELICS framework which is an open source benchmarking framework [73]. We
describe FELICS framework in section 5.3.1 and the main modifications to operate on the code so as to use
FELICS. Also, we give the code size and RAM consumption values for our algorithms.

5.3.1 FELICS framework
FELICS (Fair Evaluation of Lightweight Cryptographic Systems) is a free, open source and flexible

framework, which determine the performance of C and assembly software implementations of lightweight
primitives on resource constrained devices commonly used in the IoT [263].
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To the best of our knowledge, FELICS is the only open source and free framework that provide fair
and consistent performance evaluation of software implementations of lightweight ciphers on different IoT
embedded devices in the same usage conditions. FELICS is designed to work on Linux operating systems.
It is able to benchmark C and assembly implementations of lightweight block and stream ciphers on three
different devices: 8-bit AVR, 16-bit MSP and 32-bit ARM. The three extracted metrics are: code size, RAM
consumption and execution time.

— The code size is measured in bytes. It corresponds to the amount of data that is stored in the Flash
memory of the target device. To calculate the code size for each target device, FELICS uses the
GNU size tool that lists the section sizes and the total size in bytes for a given binary file.
The code size extraction process is completely automated and can be done using the cipher code
size.sh script for a given cipher implementation and a given evaluation scenario.

— The RAM consumption is split into data consumption and stack consumption. The data requirement
represents the static RAM and it is given in bytes by the size of the constants stored in target device
RAM. It includes data which is specific to each scenario such as data to encrypt, master key, round
keys or initialization vectors. The stack consumption permits to assess, in bytes, the RAM used to
store local variables.
The cipher ram.sh script is able to extract the RAM requirement for a given cipher in a given usage
scenario.

— The execution time is expressed in number of CPU clock cycles required to execute a set of op-
erations. It is computed from the system timer at the finishing point of the operations minus the
system timer at the starting point of the operations. The cipher execution time.sh script extracts the
execution time for a given cipher implementation and scenario.

FELICS framework source code, with implemented ciphers source code and performance figures are
available on the web site [263]. Information on how to use the FELICS framework is also available.

In this research work, we use the FELICS virtual machine that we downloaded from its web site. We
had to adapt our C implementation to the framework requirements to be able to evaluate the new stream
ciphers.

A template cipher implementation is provided to integrate a new algorithm implementation into FELICS
framework. The process of integration consists on filling the functions from the template cipher with the
source code of the cipher according with the requirements described in the README file.

The main modifications required to integrate the new stream cipher algorithms are the followings:
• The cipher state size, key size and initialization vector size have to be defined in "constants.h" file.
• The constants used by the stream cipher must be declared in "constants.h" file and defined in "con-

stants.c" or any other "*.c" file, except the predefined "*.c" files.
• Declaration and definition of the cipher test vectors in "test_vectors.c".
• Implementation of the setup function in "setup.c" using the following function signature:

void Setup(uint8_t *state, uint8_t *key, uint8_t *iv);
Note: After running the setup, the key "key" and IV "iv" should not be modified.
In our algorithmic structure, the setup function presents the two functions key-setup and IV-setup.
• Implementation of the encryption function in "encrypt.c" using the following function signature:

void Encrypt(uint8_t *state, uint8_t *stream, uint16_t length);
• Add a description of the cipher implementation in "implementation.info" file, in the "Implementa-

tionDescription" section. If there are other functions used in the cipher implementation and defined
in "*.c" files, add the "*.c" name in "implementation.info" file, in the corresponding section(s) ("Se-
tupCode", "EncryptCode").

FELICS parses the implementation.info file to be able to count the common source code and constants
only once in the extracted metrics. The implementation of each of the required functions can be split into
several files provided that the implementation information is correctly given in the implementation.info file.

Two evaluation scenarios are implemented for the stream cipher module:
• The first scenario (Scenario 0) is evaluated using the provided test vectors.
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• The second scenario (Scenario 1) consists in encryption of 128 bytes of data. It covers the need for
secure communication sensor networks and between IoT devices.

Results are given using the second scenario (Scenario 1).
To evaluate and test the cipher implementation, we do not need to compile the provided "makefile" that
can build the cipher in different scenarios and test cases, either in debug or in release mode. If the cipher
builds without errors or warnings and the two tests (test-cipher, test-scenario1) run as expected, the cipher
implementation is correctly integrated into the FELICS framework.

In order to analyse and post process the results for the different metrics (Code Size, the RAM consump-
tion and the execution time), the framework can export the extracted results for each scenario and target
architecture in various formats, including: raw data table, CSV file, XML, MediaWiki table and LaTeX
table.

5.3.2 Code size and RAM consumption results
The code size measures the amount of data that is stored in the Flash memory of the target device.

The RAM consumption includes the stack requirements and data requirement. The former presents the
maximum value of RAM used to store local variables. The later forms the static RAM, given by the size of
the constants stored in target device RAM (such as data to encrypt, key, initial vectors...). Table 5.4 clarifies
the code size and RAM consumption measurements of the four tested algorithms using FELICS framework.
The code size and RAM consumption values, for Rabbit and HC-128 stream ciphers, are given by [163].

Table 5.4 – Code size and RAM consumption (bytes).

Stream cipher Code size (bytes) RAM consumption (bytes)

CM-SC 7240 660
CS-SC 6562 564
Trivium 5764 1516
Snow 12861 1741
Rabbit 1714 216
HC-128 23100 4556

These experimental results show that RAM and ROM required by the two designed stream ciphers
CM-SC and CS-SC, are less than 8 KB and 32 KB respectively. Theses values are consequently very low
and compatible with limitations of most of small devices. In conclusion, we may state that stream ciphers
CM-SC and CS-SC are suitable for memory-constrained devices as those encountered in the IoT.

5.4 Integration of a real-time crypto-system

5.4.1 Definitions
This section recalls concepts and terminology relating to real-time computing such as embedded system,

real-time system and real-time operating system.

Embedded system

An embedded system can be defined as a combination of computer hardware and software, with ei-
ther fixed or programmable capabilities. It is particularly dedicated towards a specific kind of application
device in which the resources are constrained. Embedded systems are commonly deployed in micropro-
cessor or microcontroller that impose severe space, weight, and power constraints. They mostly have no
user interface[169][253]. Today, embedded systems are the dominant form of computing due to the IoT,
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vastly outnumbering "traditional" computers such as PCs. They are found in transportation systems like
cars, trains, or air-planes as well as telecommunication equipment like cell phones and internet routers.
Production and process control systems are among the many possible hosts of an embedded system.

Real-time system

According to [57], a real-time system is defines as "any information processing activity or system which
has to respond to externally generated input stimuli within a finite and specified period". In other words,
the correct behaviour of a real time system depends not only on the logical result of computation, but also
on the time at which the results are produced[129][58]. If the timing constraints of the system are not
respected, a system failure occurs or a sanction is incurred for the violation of the timing constraints. It is
therefore essential that the timing constraints of the system are guaranteed to be met. It is also desirable for
the system to achieve a high degree of utilization while satisfying the timing constraints of the system.

There are three fundamental characteristics that define the behaviour that a real time system must adopt:
predictability, determinism and reliability [50]. Indeed, activities must be planned and executed within the
specified time constraints. To ensure this, the real-time system designer must always be in the worst case.
Determinism is to remove any uncertainty about the behaviour of individual activities, including when they
must interact. Among the sources of non-determinism, we can cite the calculation load, the input-outputs,
the interruptions, etc. Concerning the reliability constraint, the hardware and software components must be
reliable in a real time context. This is why, in general, real time systems are designed to be fault-tolerant.

Real-time operating system

A real-time operating system (RTOS) is the underlying software or operating system (OS) that manages
hardware resources and coordinates the execution of user applications. It is adopted to fulfill the demands of
a real time system and to explicitly satisfy response-time constraints. So, it supports a scheduling method
that guarantees response time especially to critical tasks[135]. Nowadays, there are many RTOSes (for
example RTLinux,LynxOS, Windows CE, VxWorks, QNX,...) that offer the basic functions such as multi-
tasking, synchronization, communication, resource access, fault tolerance and so on. However, they differ
in the ease of use, performance and debugging facilities.

According to [152], what makes an OS a Real-Time OS (RTOS) is the imperative presence of several
specific properties:

— A RTOS has to be multi-threaded and preemptible.
— The existence of thread (or process) priority notion,
— The OS has to support predictable thread synchronization mechanisms,
— A system of priority inheritance has to exist to limit priority inversion,
— OS behaviour should be predictable.
A RTOS allows real time application software to be easily designed and expanded. Functions can

be added without the requirement of major changes to the software. Using a RTOS simplifies the de-
sign process by splitting the application code into different separate software elements called process or
task. A RTOS allows the designer to make better use of the resources by providing precious services like
semaphores, queues, time delays, timeouts, mailboxes, etc.

Simple real time applications are often implemented without any operating system and consequently
with no pseudo-parallelism. In this case, the designer should take care of hardware resources accesses
and should verify that timing constraints of the software operations be guaranteed. RTOSes are now used
whenever the application gets complexity and requires modularity in software for debugging. RTOSes are
now widely used in the development of embedded real time systems which are deployed in high number.
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5.4.2 Classification of real-time systems

There are three classes of real time systems depending on the consequence of violating specifications
on timing constraints mostly expressed in terms of deadlines for finishing the executions of programs. The
three classes are defined here below.

We call a soft real-time system [108][102], the system in which response time is important but the con-
sequence of missing a deadline is relatively mild. The system will still function correctly. Its performance
is degraded without causing dramatic consequences on the environment under control and without calling
into question the integrity of the system. Exceeding deadlines will have a certain cost for the system, which
will result, for example, in lower calculation accuracy, lower data refresh rate, and so on.

In contrast, a hard real-time system [232][150][47] is a system for which all processing operations
must imperatively respect all their temporal constraints in nominal operating condition. The system must
be predictable [137] in terms of its logical and temporal performances. The inability of the system to
meet temporal constraints causes failures and often leads to catastrophic consequences on the controlled
environment. A single time fault can then have an intolerable cost in terms of human lives, material damage
or economic losses. Hard real-time systems are mainly present in the fields of aeronautics, aerospace,
robotics, supervision of chemical or nuclear power plants, etc.

On the boundary between the two previous constraints levels, we find the Firm real-time system in
which the real-time processing is based on strict constraints, but a low probability of missing the temporal
limits can be tolerated [42]. The measure of the respect of temporal constraints can then take the form of a
probabilistic data: the Quality of Service (QoS). This is directly related to a service offered by the system
and/or to the behaviour of the system as a whole. Deadline misses may degrade the system’s quality of
service. These new types of applications displaying firm real-time systems are for the most part emerging
applications in the fields of multimedia, automatic control, and surveillance.

5.4.3 Real-time task characterization and modelling

The functionality of a real-time system is yielded by the software controlling the system’s hardware and
peripherals. Generally, several jobs are handled by a single embedded system, e.g. a personal monitoring
device that allows one to measure one’s heart rate in real-time and send the heart rate for later study. In
order to ensure the different jobs and improve reuseability and maintainability, the jobs are modularized
and each module is called a task. In next sections, we define a real-time task and its different properties .

Definition of a real-time task

Nissanke defines a task as "a software entity or program intended to process some specific input or to
respond in a specific manner to events conveyed to it" [183].

A task is a software entity that performs a particular function within a software application. It corre-
sponds to the execution of a sequence of operations given on the processor. This sequence of operations
relating to the service provided by the task can be repeated several times, periodically for example. Each of
the executions is then considered individually in the form of instances (or works).

In a multi-tasking environment, tasks can be in one of four states: executing, ready, suspended and
dormant. The first three states are considered active states (The tasks exist and provide a special service
for the application), the last being an inactive state (the tasks do not exist from the point of view of the
application). The transition from one state to another is made by the decision of the scheduler. In practice, a
change of state will often result in a change of context. Figure 5.1 illustrates the active states and transitions
from one state to another.

A task in the executing state has the control of the processor and executes its code. The task at execution
is the one that at any given time is considered to have the highest priority among candidates for CPU
allocation. A suspended task is not a candidate for CPU assignment. Its execution is temporarily suspended
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Figure 5.1 – Task active state Diagram.

until it gets the resource that it lacks to run (in addition to the processor). A ready task is waiting to be
selected to be able to execute. A task in dormant state is either not yet created or is definitively terminated.

In addition to the time constraints, other constraints can be associated with the execution of real-time
tasks. Among these, we can cite [241]:

— Resource constraints: The resources required by a task at its activation are not always assumed to
be available whenever this task requires execution, and their access must be protected to ensure
consistency (eg.shared variables in memory).

— The synchronization constraints which can be described by a set of precedence relations that deter-
mine the order in which the tasks must execute. When there is no precedence relationship between
tasks, then we are talking about independent tasks.

— The execution constraints are based on two modes of execution of the tasks, respectively qualified
as preemptive and non-preemptive. A preemptible task means that its execution can be interrupted
at any time and can be retrieved later. Unlike the non-preemptive case in which the task reserves
access to the processor from the beginning to the end of its execution.

— The placement constraints that relate to the identity of the processor(s) of a multicore system on
which a task is allowed to execute.

Based on the way real-time tasks recur over a period of time, a real-time task is generally placed into
two main categories: the periodic tasks and the aperiodic tasks.The model of each of these tasks is written
below.

In the following, we consider a task τi belonging to the system of tasks τ to which is associated the set
of jobs Ji executing on the set of processors M .

Model of a periodic real-time task

A periodic task is one that repeats regularly, after a certain fixed time interval which is the period of the
task τi. A common use of periodic task is to process sensor data and update the current state of the real-time
system on a regular basis. Periodic tasks, typically used in control and signal-processing applications have
hard deadlines.

From a temporal point of view, a periodic task τi is characterized by (ri, Ci, Di, Pi) where:
— The release time ri: It represents the wake-up date of the task, that is, the time at which this task is

ready for processing.
— The worst-case execution time Ci: It denotes the maximum uninterrupted/undisturbed execution

time taken to complete the task.
— The deadline Di: It is the critical time-delay by which execution of the task should be completed,

after the task is released.
— The period Pi: It corresponds to the period of activation, that is to say to the duration which separates

two successive arrivals of work for τi.
Figure 5.2 shows the model of a periodic real-time task. The time is plotted on the horizontal axis, while

the vertical axis is used to indicate whether the task is active (high state) or inactive (low state).
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Figure 5.2 – Model of a periodic real-time task

The periodic task τi defines an infinite number of jobs all having the same execution time. Every job
jn ∈ J that wakes up at time ri + (n− 1)× Pi, must end before its deadline di = ri + (n− 1)× Pi +Di;
∀n ∈ N∗.

In the case where Pi = Di then τi is said task with deadlines on requests. Furthermore, if all the periodic
tasks of τ have the same initial release time (∀i, j ∈ N, ri = rj), then this task configuration is said to be
synchronous, otherwise it is said asynchronous.

Model of an aperiodic real-time task

An aperiodic task requires execution only once. The activation of such a task takes place when an event
occurs, which can be either external when it is emitted by the environment or when it comes from another
task.

An aperiodic task τi is characterized by (ri, Ci, Di) where:
— ri: it represents the moment of the first job of τi
— Ci: It denotes the worst-case execution time.
— Di: It is the critical time-delay or deadline by which execution of the task should be completed.
Figure 5.3 illustrates the model of an aperiodic task. The date of arrival ai in the system of an aperiodic

task is not known a priori. Once taken into account by the system, the aperiodic task begins its execution
on a date ri where ri ≥ ai and must have completed its execution before di = ri +Di.

Figure 5.3 – Model of an aperiodic real-time task

Processor utilization factor

An important property which characterize each task is the Processor utilization factor Ui, which is the
ratio of the worst-case execution time (WCET) and the period ( Ui = Ci/Pi ). The utilisation provides
a very simple scheduling check for any processor. Processor utilisation U refers to the sum of the task
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utilisations Ui of all tasks scheduled on that processor (U =
∑
Ui). If the processor utilisation is greater

than 1, the tasks cannot all be scheduled successfully on that processor by any scheduler.

5.4.4 Real-time operating system

RTLinux, RTAI and Xenomai are common real-time Linux operating systems developed by open-source
projects. We specifically focus on these operating systems because they are free. Our objective is to select
one of them for the integration phase of our work. These RTOSes have several benefits. They can be built at
a lower cost and provide as good performance as proprietary RTOSes. They are developed using different
approaches and techniques. In the next sections, we present a detailed description of these RTOSes.

RTLinux

RTLinux [283] uses a dual-kernel approach which has a transparent, modular and extensible architecture
(see figure 5.4). One of them is the Linux kernel, which provides all the features of a general purpose OS,
whereas the other one is the RTLinux kernel. RTLinux provides hard real-time capabilities. It has a hybrid
kernel architecture with a small real-time kernel that coexists with the Linux kernel which runs at the
lowest priority level. This combination allows RTLinux to provide highly optimized, time-shared services
in parallel with the real-time, predictable, and low-latency execution[284]

Figure 5.4 – RTLinux architecture

The RTLinux scheduler is pure priority driven. The priority can be fixed by Rate Monotonic algorithm.
Nonetheless, a dynamic priority scheduler called Earliest Deadline First can be used. The priority of every
job is computed from the current deadline of the job. Higher is the urgency of the job, higher is its priority.

RTAI

RTAI abbreviated from Real Time Application Interface, is a real-time extension for the Linux kernel,
bringing it hard real-time features. RTAI was developed by The "Dipartimento di Ingegneria Aerispaziale
del Politecnico di Milano" (DIAPM) in 1997. It is originally developed as a variant of RTLinux, at a time
when neither floating point support nor periodic mode scheduling were supported by RTLinux. RTAI has
now added many new features without compromising performance. One of which is RTHAL [164]. Un-
fortunately, a patent on the design concept of RTLinux brings the open source RTAI project some potential
problems [180]. Thus, the RTAI project has been working to replace RTHAL with ADEOS (Adaptive
Domain Environment for Operating Systems) which is a resource virtualization layer available as a Linux
kernel patch, to be free of the RTLinux patent.
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RTAI takes a unique approach of running Linux as a task (lowest priority) that competes with other
real-time tasks for the CPU [66]. RTAI provides deterministic response to POSIX, interrupt, native RTAI
real-time task. RTAI consists mainly of two parts:

— The Linux kernel (patch with Adeos-based) which introduces a hardware abstraction layer.
— A broad variety of services which make real-time programmer’s lives easier.
The general architecture of RTAI framework is presented in Figure 5.5.

Figure 5.5 – General architecture of RTAI.

RTAI supports several hardware architectures, including IA-32, x86-64, PowerPC, ARM, and MIPS.

Xenomai

The increased requirements of hard real-time capability lead to develop all kinds of real-time operating
systems. All these real-time systems are characterized by their own APIs, which makes developers spending
more and more time to learn how to use and familiar with the APIs. Also, developers have to rewrite their
code when they run their applications in different RTOSes.

The Xenomai project [99] has been launched in August 2001. It has merged in 2003 with the RTAI
project, to produce an industrial-grade real-time Free Software platform for GNU/Linux called RTAI/fusion,
on top of Xenomai’s abstract RTOS core. Eventually, the RTAI/fusion effort became independent from
RTAI in 2005 as the Xenomai project. Xenomai aims to design a new framework that supports traditional
real-time operating system APIs. This makes that existing industrial applications from different RTOSes
can easily run with stringent response time requirements, on embedded Linux platforms. Xenomai offers
hard real-time capabilities to the mainline Linux kernel [14].

Xenomai implements an abstract real-time nucleus to support the traditional real-time APIs. It imple-
ment the pseudo APIs in different modules, called skins including VxWorks®, pSOS®, VRTX, ulTRON,
RTAI and three other skins: POSIX 1003.1b, RTDM and Native skin.

As RTAI, Xenomai uses Adeos as its micro kernel, in order to handle interrupts from the hardware.
Adeos is a resource virtualization layer which is available as a Linux kernel patch. In particular, hardware
interrupts are intercepted by ADEOS and logically propagated through the pipe structure. This organization
is fully achieved in Xenomai as illustrated in Figure 5.6. RTAI has a somewhat different organization, at
the point of using ADEOS , as shown in Figure 5.5. Instead of letting ADEOS handle all the interrupt
sources, it intercepts them, using ADEOS to propagate those interrupt notifications to Linux in which RTAI
is not interested in (i.e., the interrupt does not affect real-time scheduling). In contrast, Xenomai handles
all interrupts using ADEOS.

Xenomai can runs on X86, x86-64, PowerPC, ARM, PowerPC64, Blackfin platform Architecture.
In this thesis, we will be interested in Xenomai RTOS for the real-time integration phase of the crypto-

system. Our option for Xenomai is motivated by the following reasons:
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Figure 5.6 – General architecture of Xenomai.

— Xenomai has a strong focus on embedded systems, although it runs over mainline desktop and server
architectures as well.

— It has proven its high performance level of compliance with hard real-time constraints.
— Good documentation is available on the website of the project.
— The mailing list of Xenomai project provides good support for developers with prompt and active

responses.

5.4.5 Integration of crypto-systems in Xenomai framework

This section deals with the real-time implementation of two proposed stream ciphers using the Xenomai
framework. We started by installing Xenomai 2.6 with linux kernel 3.16.0 on our personal computer. An
installing documentation was provided by the Xenomai project in [14].

Once the real-time framework was set up and functional, the next step had two main objectives:
• firstly, design of a cryptosystem around real time tasks, and integration with the Xenomai RTOS.
• secondly, performance evaluation of the cryptosystems under the Xenomai RTOS in comparison

with the Linux OS.

Real-time cryptosystem design

A stream cipher is a symmetric cryptographical system. It means that the emitter (Alice) and the receiver
(Bob) must share the same secret key in order to encrypt/decrypt the message which is transmitted through
the communication channel. With this secret key, both emitter and receiver generate the same keystream
using a keystream generator, having as input a secret Key "K" and an Initial Vector "IV". XORing this
keystream with the plaintext/ciphertext enables us to obtain the ciphertext/plaintext as it is shown in Figure
5.7

In this thesis, we focus on the design of the cryptosystem from the point of view of the emitter. We
implement the proposed stream ciphers in order to encrypt the plaintext and transmit the cipher text to the
receiver.

First, we have divided our application software into four main tasks:
• τK : this task ensures the function of reading the secret Key and the Initial vector IV.
• τP : The plain text can be a text file or an image. In this research work, we use images as plaint-text.

This task reads the plain-text which is an image. We use for that the opencv library.
• τE: the encryption function is ensured by Xoring the generated keystream and the plain text. This

task ensures generation of keystream by the PCNG and the Xor function between the plain text and
the keystream to create the cipher text.
• τT : once the encryption bas been performed, the cipher text can be transmitted to the receiver.
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Figure 5.7 – General communication scheme using a stream cipher.

We use the Xenomai API 2.6.5 to implement the real-time stream cipher. Xenomai provides a set of
multitasking mechanisms. The creation of different real-time tasks is ensured by calling the function int
rt_task_create (RT_TASK *task, const char *name, int stack_size, int priority, int mode). With:

— task is a pointer to an RT_TASK type structure which necessarily has been declared and its structure
is filled.

— name is an ASCII string for the symbolic name of the task.
— stack_size is the size of the stack to be used by the new task.
— priority is the priority to be assigned to the task. The highest priority is 99, while the lowest one is

1.
— mode is a set of flags which affect the task.
Creation of a Real-time task is described by the following code:

1 #include <native/task.h>
2 #include <native/timer.h>
3 #include <native/sem.h>
4 / * tasks declarations * /
5 RT_TASK read_key_task;
6 RT_TASK read_plaintext_task;
7 RT_TASK encryption_task;
8 RT_TASK transfer_task;
9 / * tasks creation * /

10 void taskCreate(void){
11 int err;
12 if (err = rt_task_create(&read_key_task, "read_key_task", 0, 99, 0)){
13 rt_printf("Error task create: %s\n", strerror(-err));
14 exit(EXIT_FAILURE);
15 }
16 if (err = rt_task_create(&read_plaintext_task, "read_plaintext_task",

0, 99, 0)){
17 rt_printf("Error task create: %s\n", strerror(-err));
18 exit(EXIT_FAILURE);
19 }
20 if (err = rt_task_create(&encryption_task, "encryption_task", 0,99, 0)){
21 rt_printf("Error task create: %s\n", strerror(-err));
22 exit(EXIT_FAILURE);
23 }
24 if (err = rt_task_create(&transfer_task, "transfer_task", 0, 99, 0)){
25 rt_printf("Error task transfer create: %s\n", strerror(-err));
26 exit(EXIT_FAILURE);
27 }
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28 }

Listing 5.1 – Description of Tasks creation code

Description of tasks dependencies

The four tasks τK , τP , τE and τT have execution dependency on each other. τE should begin execution
only after the two tasks τK and τP terminate. Once encryption is complete, τT may start to transfer the
encrypted plaintext or the ciphertext to the receiver.

We use three binary semaphores namely Semkey, SemP and SemE . The initial values of the binary
semaphores are 0.

Task τE has to wait for task τK to start execution, at which time, task τK signals to task τE its completion
by unlocking the semaphore and changing the value of the binary semaphore Semkey to 1. In the same way,
Task τE must also wait for task τIV to start execution. At the end of its execution, task τP unlocks i.e.
changes the value of SemP to 1 and signals to task τE its completion. Once the two semaphores SemP and
Semkey are equal to 1 (both are unlocked), Task τE start execution. Task τT cannot begin execution before
completion of τE . τE signals to τT the end of its execution by changing the value of SemE to 1. Figure 5.8
describes the dependency and the synchronisation of the four tasks τK , τP , τE and τT .

Figure 5.8 – Tasks Dependency Graph.

Mechanisms of Xenomai

Xenomai offers a complete set of classic synchronization mechanisms e.g. semaphores, mutex, variable
conditions, event waiting. The description of the Xenomai API is available online or in the Xenomai
installation directory.

To manage the dependency of tasks and synchronise their activities, we use binary binary semaphores.
Binary semaphore can be used for tasks synchronisation. It is initially set equal to 0 (empty), because it acts
as en event other tasks are waiting for. Other tasks that need to run in a particular sequence then wait (block)
for the binary semaphore to be equal to 1 (until the event occurs) to take the semaphore from the original
task and set it back to 0. The semaphores in Xenomai provide fast intertask communication. Semaphores
are the primary means for addressing the requirements of task synchronization. In general we can say:
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— The creation of semaphores is assured by the function: int rt_sem_create (RT_SEM* sem, const
char* name, unsigned long icount, int mode) .

— The interface of a semaphore consists of two atomic operations, V and P, which affect an internal
counter associated with the semaphore.

— The ’V’ ("Verhogen" from Dutch, signal, release, increment) operation increments the counter and
returns immediately. This is ensured by the function int rt_sem_v (RT_SEM* sem).

— The ’P’ operation ("Proberen", wait, acquire, take) decrements the counter and returns immedi-
ately, unless the counter is already zero and the operation blocks until another process releases the
semaphore. This is done by the function int rt_sem_p(RT_SEM* sem, RTIME timeout).

The creation and use of semaphores are described in 5.2 and 5.3 respectively.

1 #include <native/task.h>
2 #include <native/timer.h>
3 #include <native/sem.h>
4 #define SEM_INIT 0 / * Initial semaphore count * /
5 #define SEM_MODE S_FIFO / * Wait by FIFO order * /
6 / * Semaphores declarations * /
7 RT_SEM sem_K;
8 RT_SEM sem_P;
9 RT_SEM sem_E;

10 / * Semaphores creation * /
11 void SemaphoreCreate(void){
12 if (err = rt_sem_create(&sem_K,"Semaphore_readkey",SEM_INIT,SEM_MODE)) {
13 rt_printf("Error semaphore_readkey create: %s\n", strerror(-err));
14 exit(EXIT_FAILURE);
15 }
16

17 if (err = rt_sem_create(&sem_P,"Semaphore_readplaintext",SEM_INIT,SEM_MODE
)) {

18 rt_printf("Error semaphore_readplaintext create: %s\n", strerror(-err))
;

19 exit(EXIT_FAILURE);
20 }
21

22 if (err = rt_sem_create(&sem_E,"Semaphore_En",SEM_INIT,SEM_MODE)) {
23 rt_printf("Error semaphore_en create: %s\n", strerror(-err));
24 exit(EXIT_FAILURE);
25 }
26 }

Listing 5.2 – Description of Semaphores creation code

1 #include <native/task.h>
2 #include <native/timer.h>
3 #include <native/sem.h>
4 void read_key(void *arg){
5 / *** code of the function read_key *** /
6 rt_sem_v(&sem_K); / * Signal to Encryption task * /
7 }
8

9 void read_plaintext(void *arg){
10 / *** code of the function read_plaintext *** /
11 rt_sem_v(&sem_P); / * Signal to Encryption task * /
12 }
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13 void transfer_ciphertext(void *arg){
14 rt_sem_p(&sem_K,TM_INFINITE); / * Pend on semaphore sem_K * /
15 rt_sem_p(&sem_P,TM_INFINITE); / * Pend on semaphore sem_P * /
16

17 / * Passing TM_INFINITE causes the caller to block indefinitely until a unit
is available. * /

18

19 / *** code of the function transfer cipher text *** /
20 }

Listing 5.3 – Use of Semaphores by real time tasks code

A task can be started by calling : int rt_task_start (RT_TASK *task, void(*task_func) (void *arg), void
*arg) where:

— task is a pointer to an RT_TASK type structure which must be already initialized by a call to
rt_task_create().

— task_function is the task function to be executed by this real-time task.
— arg is the void pointer argument given to the task function.

1 void startTasks() {
2 int err;
3 if (err = rt_task_start(&read_key_task, &read_key, 0)) {
4 rt_printf("Error task start: %s\n", strerror(-err));
5 exit(EXIT_FAILURE);
6 }
7 if (err = rt_task_start(&read_plaintext_task, &read_plaintext, 0)) {
8 rt_printf("Error task start: %s\n", strerror(-err));
9 exit(EXIT_FAILURE);

10 }
11 if (err = rt_task_start(&encryption_task, &encryption, 0)) {
12 rt_printf("Error task start: %s\n", strerror(-err));
13 exit(EXIT_FAILURE);
14 }
15 if (err = rt_task_start(&transfer_task, &transfer, 0)) {
16 rt_printf("Error task start: %s\n", strerror(-err));
17 exit(EXIT_FAILURE);
18 }
19 }

Listing 5.4 – Execution start tasks code

5.4.6 Measurements under the RTOS Xenomai
The objective of this section is to measure the time required for the execution of the encryption task

under Xenomai. We will present two techniques.

Over the years, many different software- and hardware-based timing measurement methods have been
developed [255][254], but there is no single best technique. Rather, each technique is a compromise between
multiple attributes including [83]:
• Resolution: it is a representation of the limitations of the timing hardware.
• Accuracy: it represents the closeness of the measured value using a given method of measuring, as

compared to the actual time if a perfect measurement was obtained.
• Retargetability: a solution suitable for a particular processor and hardware platform might not be

directly applicable on another one.
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• Availability: there are some type of systems that are not using an OS with suitable timing facilities
support.
• Cost: Special purpose hardware solutions, such as an emulator, are more often costly than general

purpose ones, such as an oscilloscope.
• Difficulty: subjectively defines the effort to obtain measurements. A technique that requires usage of

hardware equipment such as a logic analyzer or filtering of data to obtain the answers is considered
hard. A technique that requires a simple execution of the code and produces an instant measurement
is considered easy. Typically, software techniques are easier, but yield only coarse-grain results.
Hardware-assisted techniques are hard, but they can provide fine-grain results with high accuracy.

In this thesis, we used two different software techniques to calculate the execution time of the tasks.
The first one consists on using the gettimeofday system-call which is present in the Linux environment.
gettimeofday gives answers in micro-second resolution. The second method is using a predefined function
present in the Xenomai API, called int rt_task_inquire and produces information about current task such us
execution time nanoseconds. In next sections, we give a description of these two techniques.

First Method: gettimeofday system-call

The POSIX standard C-library available in Linux, provides the system-call gettimeofday to access the
timing resource and determine the current time.

The gettimeofday system call gets the system’s wall-clock time. It takes a pointer to a struct timeval
variable (as specified in <sys/time.h>):

int gettimeofday (struct timeval ∗ tv, struct timezone ∗ tz);

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */
};

This structure represents a time, in seconds, split into two fields. The tv_sec field contains the integral
number of seconds, and the tv_usec field contains an additional number of microseconds. This struct timeval
value represents the number of seconds elapsed since the start of the UNIX epoch, on midnight UTC on
January 1, 1970. The gettimeofday call also takes a second argument, which should be NULL.

To use the gettimeofday approach, the program must be instrumented such that the clock is read at the
beginning (start)and the end (end)of the code segment(s) being measured.

The time spent to execute this code segment(s) is equal to the difference between the end and start clock
time. Instrumenting the code means adding lines of code explicitly to perform the timing measurements.
Such lines of code are temporary, and are removed once the desired data has been collected.

Here is an example of a code that uses gettimeofday to measure the execution time of the encryption
task.

1 #include <sys/time.h>
2 #include <time.h>
3

4 struct timeval start, end; / * absolute times (start/end times) * /
5 double elapsed;
6

7 void encryption(void *arg){
8 gettimeofday(&start, NULL);
9 / *** encryption process code *** /

10 gettimeofday(&end, NULL); // the end of time measurement
11 }
12
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13 / * measurement of encryption time in microsecond * /
14 elapsed=((end.tv_sec - start.tv_sec)*1000000.0)+(end.tv_usec - start.tv_usec)

;
15 rt_printf("Encryption time = %.9lf Microsecond",elapsed);

Listing 5.5 – Execution time measurement using gettimeofday method.

Second method: rt_task_inquire function

Xenomai offers a function that returns various information about the status of a given task such us task
name, task status (blocked, ready, delayed, etc.), initial priority, execution time in nanoseconds, time of
the next activation, etc. This function is called rt_task_inquire (RT_TASK * task, RT_TASK_INFO * info)
having as parameters:

— task: The descriptor address of the inquired task.
— info: The address of a structure the task information will be written to.
In the following example 5.6, we give part of C code in which we use rt_task_inquire to calculate the

execution time in nanoseconds of a given task.

1 #include <native/task.h>
2 #include <native/timer.h>
3 / * execution time measurements * /
4 double execTime (RT\_TASK *curtask){
5 RT_TASK_INFO curtaskinfo1;
6 double execTimeResult;
7 rt_task_inquire(curtask,&curtaskinfo1);
8 execTimeResult=(double)curtaskinfo.exectime;
9 return execTimeResult;

10 }

Listing 5.6 – Execution time measurement using rt_task_inquire method.

Specifically, we mention that the resulting values of execution time with the first and second methods,
present estimations of how long the task takes to execute. It is the difference between the time instant
when the task finishes execution and the time instant when the task starts execution. It does not take into
consideration preemptions and interrupts. That means that the execution time Ci a task τi is calculated as
tend − tstart − tpreempt; where tstart is the time that gettimeofday(&start,NULL) returned, tend is the
time given by gettimeofday(&end,NULL) / (tend − tstart) is the time returned by rt_task_inquire and
tpreempt is computed as the amount of time that another task executed during that time period.

As the rt_task_inquire function gives better resolution (nanosecond) than to gettimeofday system-call
method, we use the rt_task_inquire function to calculate the execution time of the encryption task. In the
next section, we describe our results for execution time measurements using the second method (rt_task_inquire
function).

Measurements for execution times

In the design of any cryptosystem, the computational efficiency of the encryption algorithm is an im-
portant factor to exhibit its performance. We calculate the average encryption time in micro second (µs),
the encryption throughput in Mega bit par second BR(Mbit/s), and the number of cycles needed to encrypt
one byte (NCpB), given as follow:

ET =
Image size(MByte)

Encryption time(s)
(5.1)
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NCpB =
CPUspeed(Hz)

ET (Byte/s)
(5.2)

Obtaining information about the execution time of a program is by executing the program 100 times
with different secret keys and IVs, and then measuring the execution time for each test run. We report in
table 5.5 the computation performance measurements of our proposed stream ciphers CM-SC and CS-SC
proposed respectively in [114] and [113], implemented in Xenomai RTOS. Also, we restore the computation
performance of the algorithms when they are running on ubuntu in table 5.6.

Table 5.5 – Computation performance measurements of stream ciphers implemented in Xenomai RTOS.

Stream cipher Average encryption time ET (Mbits/s) NCpB
(µs)

CM-SC 4695,72 319,44 62.10
CS-SC 3214,42 466,64 42.51
Rabbit 1966 762,96 26
HC-128 3327,06 450,842 44

Table 5.6 – Computation performance measurements of stream ciphers implemented in Ubuntu.

Stream cipher Average encryption time ET (Mbits/s) NCpB
(µs)

CM-SC 2403.04 624.2 31.78
CS-SC 1059.5 1415.76 14
Rabbit 855.45 1753.46 11.31
HC-128 1330 1127.81 17.59
AES-CTR - - 21.2

Results from tables 5.5 and 5.6 show that CS-SC algorithm has better computing performance than
CM-SC algorithm as mentioned earlier. In addition, for all the algorithms, the encryption time is greater
when the program runs on xenomai. This is due to preemption and interrupts time taken into consideration.
Therefore, to better evaluate the time required to perform encryption/decryption, it is necessary to consider
non real time OS in which there will be no preemption interferences and interruption issues.

5.5 Conclusion
Standard cryptographic algorithms can be huge, slow or very energy-consuming and consequently not

adapted to small electronic devices with severe limitations. Lightweight cryptography concerns the design
of new cryptographic algorithms tailored for implementation in constrained environments including RFID
tags, sensors, smart cards, health-care devices and also applications of the IoT field. In software implemen-
tation, the code and RAM sizes are the important features to evaluate the lightweight properties.

In the first part of this chapter, we have provided a quantitative evaluation of energy, power consumption
and memory size requirement of lightweight stream cipher algorithms including CM-SC and CS-SC that
were proposed in [114] and [113]. We presented the tools which are well known to measure energy and
power consumption such as RAPL and powertop that we used for our experiments. We have choosen these
tools among the others since they are open source and free, and do not require external hardware materials.
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Also we calculated the requirements of the designed stream ciphers in terms of RAM consumption and
code size. Our experiment demonstrates that our chaos-based stream ciphers can be efficiently implemented
on energy and time constrained resources devices of the IoT where security is a big concern.

The second part of this chapter concerned the integration of the cryto-systems under the real-time Xeno-
mai software framework. Xenomai has many advantages over other real time operating systems. First, it
was developed for use in the Linux kernel as a microkernel and it was primarily considered as a migration
tool. Second, its principal characteristic is the presence of skins to adapt the source code from another
RTOS to the Linux environment extended with Xenomai. Third, it offers an interesting particularity that is
the development of real-time applications in user space and not only as modules in kernel space. For Xeno-
mai, the development in kernel space is reserved for real-time RTDM drivers (Real Time Driver Model).
We recommend Xenomai in the design, development and running of real-time application on Linux.

We studied the performance of the crypto-systems by calculating the execution time of the encryption
task. Table 5.7 exhibits a comparison between the different measurements of the average encryption time,
energy consumption, code size and RAM consumption, obtained by the proposed stream ciphers CM-SC
and CS-SC and some algorithms of the literature notably Rabbit and HC-128.

Table 5.7 – Comparative study of the proposed stream ciphers in terms of encryption time, energy con-
sumption, code size and RAM consumption.

Stream cipher Average encryption time PKG energy Code size RAM consumption
(µs) (J) (bytes) (bytes)

CM-SC 4695,72 0.078613 7240 660
CS-SC 3214,42 0.022672 6562 564
Rabbit 1966 0.013855 1714 216
HC-128 3327,06 0.038768 23100 4556

Results show that CS-SC algorithm has better computing performance than CM-SC algorithm. It con-
sumes less energy and has less memory requirements. Also, these performances are comparable or better
than some lightweight stream ciphers of the literature.
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Progress in mobile and wireless technologies, coupled with embedded devices, has led to giving rise to
the notion of ubiquitous computing. The vision of Mark Weiser in his article "The Computer of the 21st

Century", according to which "the most profound technologies are those that disappear; they weave them-
selves into the fabric of everyday life until they are indistinguishable from it," is today a reality [271]. We
can observe that from automobiles to smart phones, environmental sensors to medical devices and personal
communication - embedded computing increasingly pervade our lives. Therefore, computing is becoming
revolved around the huge amount of information gotten from a large number of embedded devices that form
the Internet of Things (IoT). The core idea of this concept lies in the presence of uniquely identifiable phys-
ical objects known as things which can interact with other objects through the Internet. The vast majority of
devices that will integrate the IoT are expected to work under severe constrained resource in terms of com-
puting capabilities, memory capacitance, and limited battery and computing power. The communication
technique among a large number of constrained devices that generate huge amount of data has an impact on
the security and privacy of the applications. These requirements lead to the need of specific security primi-
tives for pervasive devices. Hence, there is an increasing demand for lightweight cryptography, capable of
guaranteeing secure data transmission and providing an optimized security/cost/performance trade-off.

In Chapter 2, we presented the fundamental concepts of cryptography primitives. We started by dis-
cussing principles of foundation and basic concepts of cryptography and the two major categories of mod-
ern cryptographic primitives, namely symmetric and asymmetric algorithms. We described in details block
ciphers and stream ciphers. The next step was to introduce chaos theory and briefly present some chaotic
maps including Gauss map, Tent map, Hénon map, Lozi map, Lorenz attractor and Rössler attractor. Then,
we provided the state of the art of block ciphers, pseudo-random number generators and stream ciphers
based on chaotic maps.

In Chapter 3, we studied the security and computing performance of some discrete chaotic maps in-
cluding: Logistic, Skew Tent and PWLCM maps, as base of proposed chaos-based stream ciphers during
this thesis. First, we presented a collection of common and standard security tools useful to define that
assessment. Second, we discretized the chaotic maps making them running over a finite precision (N=32),
and we analyzed their cryptographic properties and speed. Then, we introduced a perturbation technique
which permits to decrease the degradation caused by the discretizing process. We performed some security
analysis of chaotic maps using this perturbation technique. In order to improve the cryptographic perfor-
mance of chaotic maps, we have proposed a recursive structure. Afterwards, we gave the security and speed
performance of chaotic maps using the perturbation technique and the recursive structure.

In Chapter 4, we presented our first contribution. It consists of designing and implementing in an efficient
and secure manner the three proposed stream ciphers, based on three robust Pseudo-Chaotic Numbers
Generators (PCNGs). We described in details the general structure of the three proposed PCNGs. The first
proposed PCNG, called CM-PCNG, uses three weakly coupled chaotic maps: PWLCM, Skew Tent and
Logistic and includes a multiplexing chaotic technique. In comparison with the architecture of CM-PCNG,
the second PCNG - DM-PCNG - uses a binary diffusion matrix on the chaotic coupling technique. The
architecture of the third proposed PCNG, named CS-PCNG, is based on using two chaotic maps, namely
PWLCM and SkewTent, and includes coupling and swap chaotic techniques. We gave the security and
statistical analysis, and the computing performance measures of the proposed PCNGs and stream ciphers.
The proposed crypto-systems are very secure, due to the use of chaotic coupling, swap and multiplexing
techniques, while having a high speed performance.

In Chapter 5, we focused first on studying the performance of two proposed chaotic stream ciphers CM-
SC & CS-SC in terms of energy and power consumption and memory assessment. We showed that the
proposed stream ciphers are lightweight crypto-systems. Compared to other crypto-systems presented in
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the literature, we demonstrated that our designed stream ciphers are suitable for practical secure applica-
tions of the IoT with constrained resources environment. The second part of this chapter concerned the
implementation of the proposed crypto-systems as real-time crypto-systems, using a real time operating
systems named Xenomai which presents a software framework able to give real time capabilities to the
operating system. We reported the used model to implement the real-time crypto-systems and we gave the
execution time measurements tools and obtained results of computation performance for the two proposed
crypto-systems.

In future work, we plan on continuing the real time performance analysis study. During this thesis, we
measured the execution time of individual tasks of the proposed crypto-systems, which presents a necessary
step toward fully understanding the timing of a real-time system, but it is not sufficient to analyze its real-
time performance. Among the basis measures to be quantified, we quote the worst-case utilization of each
task. The worst-case utilization Ui of a task τi is computed as the ratio between the task’s worst-case
execution time (Ci) and its period (Pi). An important piece of information that also must be considered in
the computing performance evaluation of any real-time system is the presence of timing errors, notably the
missed deadline and improper scheduling rates.

In addition, we will propose the realization of a library of crypto-systems based on the proposed al-
gorithms, available to the users in order to implement their real time applications. The users can choose
the appropriate crypto-systems according to the requirements of the application in terms of security per-
formance level, and the available resources (energy and available memory) in the device. Also, we plan to
prepare a user guide to help developers to implement their real-time crypto-systems under Xenomai RTOS.
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A
Synthèse des travaux réalisés: Sécurité basée
Chaos sous contraintes temps réel et d’énergie
pour l’Internet des Objets

A.1 Contexte et Objectives

De nos jours, les périphériques mobiles et embarqués sont devenus omniprésents dans notre vie quo-
tidienne. Cela s’explique par la croissance rapide des technologies de pointe récentes d’informatique et
de communication. Ces systèmes embarqués sont utilisés dans nombreuses applications dans divers do-
maines tels que l’électronique numérique, les télécommunications, les réseaux informatiques, les systèmes
satellites, les équipements du système de défense militaire, les équipements du système de recherche, etc.
Ces systèmes sont connectés entre eux soit localement, soit via Internet. Ce phénomène est appelé In-
ternet des objets (Internet of Things IoT). L’idée centrale de ce concept réside dans la présence d’objets
physiques quotidiens liés à Internet. L’interconnexion entre eux est assurée par des technologies telles que
l’identification par radiofréquence (RFID), Wireless Sensor Networking (WSN), etc. L’IoT est actuelle-
ment en train d’émerger: 50 milliards de périphériques sont estimés être connectés sans fil à Internet d’ici
2020. Le déploiement massif de dispositifs de l’IoT a soulevé la problématique cruciale de la sécurité des
données, transmises via des canaux publiques non protégés et utilisées dans nombreuses applications très
sensibles à la sécurité (par exemple, défense, militaire, financier, automobiles ou aéronautiques...). De tels
dispositifs doivent être invulnérables aux tentatives malveillantes de sabotage de la communication ou qui
peuvent limiter leurs fonctionnalités. Ainsi, ces dispositifs doivent inclure des stratégies de protection con-
tre les attaques cryptographiques. Par conséquent, il est nécessaire d’augmenter la sécurité des données
transmises afin d’éviter le piratage d’informations et de fraudes, tout en conservant les avantages de l’IoT.

L’utilisation des techniques cryptographiques est appropriée pour fournir de nombreux services de sécu-
rité, tel que la protection de la transmission des données contre les attaques cryptographiques passives et
actives. Un nombre croissant de techniques cryptographiques efficaces pour sécuriser l’information trans-
mise ont été développées dans la littérature. Ces techniques cryptographiques existantes développées pour
l’informatique d’entreprise pourraient ne pas satisfaire les exigences des applications des systèmes embar-
qués car elles peuvent être lentes et très consommatrices d’énergie. En effet, les dispositifs de l’IoT sont
intrinsèquement contraints aux ressources en matière de mémoire et d’énergie. Par conséquent, il est néces-
saire de conçevoir des crypto-systèmes "légères" et efficaces pour garantir une transmission de données
sécurisée dans l’IoT.
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Au cours des dernières années, la cryptographie basée chaos a reçu beaucoup d’attention suite à son
efficacité dans la protection des données. En effet, les propriétés des systèmes chaotiques et déterministes
telles que: ergodicité, sensibilité aux conditions initiales et paramètres de contrôle, nombre important de
trajectoires très longues (apériodiques), etc., sont très recherchées pour tout système cryptographique dédié
à la sécurité des données.

Dans ce contexte, nous avons étudié, dans cette thèse, la problématique de la sécurité de l’information
basée chaos sous contraintes temps réel et d’énergie. A ce sujet d’abord, nous avons étudié les performances
de trois cartes chaotiques (Logistique, SkewTent et PWLCM) seules et intégrées dans des cellules récursives
de 1 à 3 retards. Basé sur les cartes précédentes, nous avons conçu, implémenté de façon efficace et
analysé trois générateurs de nombres pseudo-chaotiques (PCNGs). Ces générateurs utilisent une matrice
de couplage faible ou une matrice de couplage binaire à forte diffusion entre les cartes chaotiques de base,
et une technique de multiplexage chaotique. Puis, nous avons réalisé de façon sécurisée trois systèmes de
chiffrement/déchiffrement par flux basés sur les PCNGs proposés. L’analyse cryptographique des systèmes
chaotiques réalisés montrent leur robustesse contre des attaques connues. Ce résultat est dû aux structures
proposées qui intègrent une forte non-linéarité, une technique de couplage faible, ou de couplage binaire
à fort diffusion, un multiplexage chaotique et une technique de permutation pour le troisième système. La
performance obtenue en complexité de calcul indique leurs utilisations dans des applications temps réel.

Ensuite, nous avons intégré ces systèmes de chiffrement/déchiffrement chaotiques au sein d’un système
d’exploitation temps réel appelé Xenomai. Enfin, nous avons mesuré la consommation d’énergie et de
puissance des trois systèmes chaotiques réalisés, et nous avons montré comment adapter le degré de sécurité
de ces systèmes en fonction de la disponibilité énergétique temporelle.

A.2 Contributions:

A.2.1 1 ère contribution: Conception, mise en oeuvre et analyse de générateurs de
nombres pseudo-chaotiques et systèmes de chiffrement par flux

La structure générale des PCNG proposés est présentée dans la Fig. A.1. Elle prend comme entrée, les
paramètres du système (N et le nombre d’échantillons Ns), une clé secrète "K" et un vecteur initial "IV"
de taille 32 bits, et comme sortie, elle génère une séquence d’échantillons pseudo-chaotiques X(n), n = 1,
2, ..., chacun quantifié sur N = 32 bits. Les PCNG proposés se composent de quatre fonctions principales:

— IV-Setup: bloc de configuration IV;
— Key-setup: bloc de configuration de clés secrétes;
— Internal function: bloc de fonction interne;
— Output function: configuration de sortie.
Tous les PCNG proposés ont la même structure générale mais diffèrent dans leur état interne (Internal

function) et légèrement leur fonction de configuration de clé, de configuration IV et de sortie (Key-setup,
IV-setup and Output function). Chaque bloc fonctionnel sera détaillé dans la description architecturale des
PCNG proposés. Dans ce qui suit, nous décrivons en détail la structure générale des PCNG proposés et
leurs architectures. Ensuite, nous étudions la sécurité et la performance en termes de vitesse de ces PCNGs.

Architecture du CM-PCNG proposé

L’architecture du premier générateur chaotique proposé CM-PCNG est donnée dans la Fig. A.2. Il utilise
trois cartes chaotiques faiblement couplées: PWLCM, Skew Tent et Logistique; et comprend une technique
de multiplexage chaotique.

La fonction Key-setup se compose de deux parties principales. Elle prend la clé secrète K et le vecteur
initial IV comme entrée et calcule les valeurs initiales Xp(0), Xs(0) et Xl(0) des trois cartes chaotiques:
PWLCM, Skewtent et Logistique respectivement.
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Figure A.1 – Structure générale des PCNGs proposés.

Figure A.2 – architecture du générateur proposé CM-PCNG.

La clé secrète du système est formée par:
— les conditions initiales Xp, Xs et Xl des trois cartes chaotiques: PWLCM, Skewtent et Logistique

respectivement, allant de 1 à 2N -1,
— le paramètres de contrôles Pp et Ps des cartes PWLCM et Skewtent, appartenant aux intervalles

[1, 2N−1 − 1] et [1, 2N − 1] respectivement,
— les parametres de la matrice de couplage A, εij , allant de 1 à 2k avec k≤ 5.
Les valeurs initiales Xp(0), Xs(0) et Xl(0) sont calculées comme suit:

Xp(0) = Xp⊕ IV p
Xs(0) = Xs⊕ IV s
Xl(0) = Xl ⊕ IV l

(A.1)

où 
IV p = lsb(IV )

IV s = Lcir[lsb(IV ), 3]

IV l = Lcir[lsb(IV ), 2]

(A.2)

Avec ⊕ désigne l’opérateur XOR, lsb(IV ) sont les 32 bits les moins significatifs de IV et Lcir[S, q]
effectue un déplacement circulaire gauche des q-bits sur la séquence binaire S.
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La fonction d’état interne (internal state) effectue le couplage faible des cartes chaotiques et produit les
futurs échantillons Xp(n), Xs(n) et Xl(n),qui sont utulisés par la fonction de sortie en appliquant une
technique de commutation chaotique, pour produire la séquence de sortie X(n) (voir Fig. A.2).

Le système est gouverné par l’équation suivante:Xp(n)
Xs(n)
Xl(n)

 = A×

Fp[Xp(n− 1)]
Fs[Xs(n− 1)]
Fl[Xl(n− 1)]

 . (A.3)

Où A présente la matrice de couplage faible:

A =

(2N − ε12 − ε13) ε12 ε13
ε21 (2N − ε21 − ε23) ε23
ε31 ε32 (2N − ε31 − ε32)

 . (A.4)

Avec εij sont les paramètres de couplage faible, et Fp[Xp(n − 1)], Fs[Xs(n − 1)] et Fl[Xl(n − 1)]
sont les fonctions discrètes des cartes chaotiques PWLCM, Skew Tent et Logistic respectivement.

Les échantillons multiplexés obtenus de la séquence X(n) sont contrôlés par l’échantillon chaotique
Xth(n) et un seuil T , comme c’est illustré dans Fig. A.2, et sont définis comme suit:

X(n) =

{
Xp(n), if 0 < Xth(n) < T
Xs(n), otherwise (A.5)

avec Xth(n) = Xl(n)⊕Xs(n).

Architecture du DM-PCNG proposé

L’architecture du deuxième générateur proposé appelé DM-PCNG est présentée dans la Fig. A.3. Par
rapport à l’architecture précédente, la principale différence réside dans la fonction d’état interne, qui repose
sur une matrice de diffusion binaire D.

Figure A.3 – Architecture du DM-PCNG proposé.

L’équation du système est donnée par:Xp(n)
Xs(n)
Xl(n)

 = D�

Fp[Xp(n− 1)]
Fs[Xs(n− 1)]
Fl[Xl(n− 1)]

 . (A.6)

Où D est la matrice de diffusion binaire:

D =

1 1 0
0 1 1
1 0 1

 . (A.7)
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Et � est l’opérateur défini comme suit:Xp(n)
Xs(n)
Xl(n)

 =

Fp[Xp(n− 1)]⊕ Fs[Xs(n− 1)]
Fs[Xs(n− 1)]⊕ Fl[Xl(n− 1)]
Fp[Xp(n− 1)]⊕ Fl[Xl(n− 1)]

 . (A.8)

Le choix des échantillonsX(n) est contrôlé, comme dans l’équation Eq.(A.5) par un seuil T et l’échantillon
chaotique Xth, avec Xth(n) = Xp(n)⊕Xs(n).

Architecture du CS-PCNG proposé

L’architecture de CS-PCNG est présentée dans la Fig.A.4. Par rapport à l’architecture de CM-PCNG,
l’architecture de CS-PCNG se distingue non seulement par la fonction d’état interne, mais aussi par la
fonction de sortie. L’état interne utilise deux cartes chaotiques (PWLCM et SkewTent), et inclut des tech-
niques de couplage et de permutation. La fonction de sortie est une opération XOR entre Xp(n) et Xs(n)
samples.

Figure A.4 – Architecture du CS-PCNG proposé.

La technique de couplage est basée sur l’utilisation de la matrice A lors du calcul des échantillons
Xp(n) et Xs(n). La technique de permutation consiste à utiliser Xp(n − 1) comme une entrée de la
fonction discrète de la carte SkewTent Fs et Xs(n − 1) comme entrée de la fonction discrète de la carte
PWLCM Fp.

L’équation du systeme est donnée par:[
Xp(n)
Xs(n)

]
= A×

[
Fp[Xs(n− 1)]
Fs[Xp(n− 1)]

]
. (A.9)

Avec:

A =

[
(2N − ε11) ε12

ε21 (2N − ε22)

]
(A.10)

Les échantillons de sortie X(n) sont calculés à partir des échantillons Xp(n) et Xs(n) comme suit:

X(n) = Xp(n)⊕Xs(n). (A.11)

Réalisation de système de chiffrement par flux basé sur les générateurs proposés et étude de leurs
performances cryptographiques
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Nous avons réalisé et analysé trois systèmes de chiffrement/déchiffrement par flux nommé CM-SC, DM-
SC et CS-SC basés sur les générateurs proposés CM-PCNG, DM-PCNG et CS-PCNG respectivement( voir
Fig. A.5). En effet, la sécurité de tout système de chiffrement par flux dépend du caractère aléatoire de la
clé (keystream) générée par le PCNG, donc de la robustesse du PCNG utilisé qui est l’élément principal de
tout système de chiffrement par flux.

Figure A.5 – Système de chiffrement/déchiffrement par flux.

Nous avons analysé la sécurité des systèmes réalisés. Les résultats obtenus lors des différents tests
expérimentaux appliqués montrent leur robustesse contre les attaques cryptographiques et statistiques con-
nues, et peuvent être utilisés dans des applications pratiques. Ci-dessous, nous donnons quelques résultats
obtenus pour le système de chiffrement par flux CM-SC proposé. L’histogramme de l’image chiffrée est
uniforme et significativement différent de celui de l’image d’origine (voir Fig A.6). Ceci est prouvé par le
test Chi2. Nous utilisons également l’un des tests standard les plus populaires pour enquêter sur le carac-
tère aléatoire des données binaires, appelé NIST test. Il est composé de 188 tests statistiques et sous-tests
groupés sur 15 tests. Nous montrons dans la Fig. A.7, un exemple de résultat obtenu par le test de NIST sur
100 séquences produites, chacune contenant 1 million de bits. Toutes les séquences passent le test de NIST.

Aussi, nous avons étudié les performances des systèmes de chiffrement par flux en termes de vitesses de
calcul. Nous donnons dans le tableau A.1 le nombre de cycles nécessaires pour chiffrer un octet (NCpB),
pour les 3 systèmes de chiffrements par flux proposés et ceux de Rabbit, HC-128 et AES-CTR. Ces résultats
montrent que le système CS-SC est le plus rapide comparé aux autres systèmes proposés sauf celui de
Rabbit.

Table A.1 – Perfermance en termes de vitesse de chiffrement des systèmes proposés.

Système de chiffrement par flux NCpB

CM-SC 31.78
DM-SC 24.03
CS-SC 14
Rabbit 11.31
Hc-128 17.59
AES-CTR 21.2

A.2.2 2 ème contribution: Évaluation de la consommation d’énergie et mise en
œuvre en temps réel des systèmes de chiffrement par flux proposés

Nous avons étudié la consommation d’énergie et les exigences en termes de mémoire RAM et la taille de
code des deux systèmes de chiffrement proposés CM-SC et CS-SC. Pour effectuer ces mesures, nous avons
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Figure A.6 – (a) Lena Image, (b) Image chiffrée de Lena , (c) tHistogramme de Lena Image et (d) his-
togramme de l’image chiffrée de Lena.

utilisé les outils logiciels appelés RAPL (Running Average Power Limit) pour mesurer la consommation
d’énergie, et FELICS pour calculer la consommation de RAM et la taille de code. Les résultats obtenus,
donnés dans le tableau A.2, indiquent que les systèmes de chiffrement par flux basés chaos peuvent être mis
en oeuvre efficacement sur les dispositifs de l’IoT qui sont caractérisés par des fortes contraintes de con-
sommation d’énergie et aussi de mémoire. Aussi, CS-SC a moins de consommation d’énergie par rapport
aux algorithmes CM-SC et HC-128. En effet, CS-SC consomme environ 30% de l’énergie consommée par
l’algorithme CM-SC et 60% de celle de l’algorithme HC-128. Aussi, CS-SC consomme environ deux fois
plus d’énergie que Rabbit. Cependant, CM-SC est le plus efficace en termes de sécurité.

Nous avons intégré les deux crypto-systèmes CM-SC et CS-SC dans un système temps réel. Pour cela,
nous avons utilisé le système d’exploitation temps réel Xenomai. Nous avons évalué les performances des
crypto-systèmes sous RTOS Xenomai par rapport au système d’exploitation Linux. Les résultats obtenus
prouvent que CS-SC a de meilleures performances en termes de vitesse que CM-SC comme mentionné
précédemment. En outre, pour tous les algorithmes, le temps de chiffrement est plus grand lorsque le pro-
gramme fonctionne sur Xenomai. Cela est dû à la préemption et le temps d’interruption pris en compte. Par
conséquent, pour mieux évaluer le temps requis pour effectuer le chiffrement / déchiffrement, il faut tenir
compte du système d’exploitation non temps réel dans lequel il n’y aura pas d’interférences de préemption
et d’interruption.
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Figure A.7 – Résultat du test NIST du système CM-SC.

Table A.2 – Etude comparative des systèmes de chiffrement par flux proposés en termes de consommation
d’énergie, taille de code et de mémoire RAM.

Systèmes de chiffrement par flux énergie consommée taille de code mémoire RAM
(J) (bytes) (bytes)

CM-SC 0.078613 7240 660
CS-SC 0.022672 6562 564
Rabbit 0.013855 1714 216
HC-128 0.038768 23100 4556

Mots clés:Internet des Objets, Sécurité des Données, Générateurs de nombres pseudo-chaotiques, Chiffre-
ment par flux basé chaos, Analyse de la sécurité, Vitesse de chiffrement, Consommation d’énergie, Temps
réel.
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List of perturbation polynomials

List of perturbation polynomials for the Logistic map

P - PW - G1 : g1(x) =x16 + x12 + x3 + x+ 1, or [16, 12, 3, 1, 0])
P - PW - G3 : g3(x) =x16 + x12 + x7 + x2 + 1
P - PW - G5 : g5(x) =x16 + x9 + x5 + x2 + 1
P - PW - G7 : g7(x) = x16 + x15 + x9 + x4 + 1
P - PW - G9 : g9(x) =x16 + x12 + x9 + x6 + 1
P - PW - G11 : g11(x) =x16 + x10 + x7 + x6 + 1
P - PW - G13 : g13(x) =x16 + x9 + x4 + x3 + 1
P - PW - G2 : g2(x) = x17 + x3 + 1
P - PW - G4 : g4(x) =x17 + x16 + x3 + x+ 1
P - PW - G6 : g6(x) =x17 + x8 + x7 + x6 + x4 + x3 + 1
P - PW - G8 : g8(x) =x17 + x9 + x8 + x6 + x4 + x+ 1
P - PW - G10 : g10(x) = x17 + x7 + x4 + x3 + 1
P - PW - G12 : g12(x) = x17 + x12 + x6 + x3 + x2 + x+ 1
P - PW - G14 : g14(x) = x17 + x11 + x8 + x6 + x4 + x2 + 1
P - PW - G15 : g15(x) = x19 + x5 + x2 + x+ 1
P - PW - G17 : g17(x) =x19 + x12 + x10 + x9 + x7 + x3 + 1
P - PW - G19 : g19(x) =x19 + x13 + x8 + x5 + x4 + x3 + 1
P - PW - G21 : g21(x) = x19 + x18 + x17 + x16 + x12 + x7 + x6 + x5 + x3 + x+ 1
P - PW - G23 : g23(x) = x19 + x9 + x8 + x7 + x6 + x3 + 1
P - PW - G25 : g25(x) =x19 + x16 + x15 + x13 + x12 + x9 + x5 + x4 + x2 + x+ 1
P - PW - G27 : g27(x) =x19 + x18 + x15 + x14 + x11 + x10 + x8 + x5 + x3 + x2 + 1
P - PW - G16 : g16(x) =x23 + x5 + 1
P - PW - G18 : g18(x) =x23 + x12 + x5 + x4 + 1
P - PW - G20 : g20(x) =x23 + x11 + x10 + x7 + x6 + x5 + 1
P - PW - G22 : g22(x) =x23 + x17 + x11 + x5 + 1
P - PW - G24 : g24(x) =x23 + x21 + x7 + x5 + 1
P - PW - G26 : g26(x) =x23 + x5 + x4 + x+ 1
P - PW - G28 : g28(x) = x23 + x16 + x13 + x6 + x5 + x3 + 1

161



162 APPENDIX B. LIST OF PERTURBATION POLYNOMIALS

List of perturbation polynomials for the Skew Tent map
P - SK - G1 : g1(x) = x15 + x13 + x10 + x+ 1, or [15, 13, 10, 1, 0])

P - SK - G3 : g3(x) = x19 + x5 + x2 + x+ 1
P - SK - G5 : g5(x) = x21 + x2 + 1
P - SK - G7 : g7(x) =x15 + x9 + x4 + x+ 1
P - SK - G9 : g9(x) = x21 + x14 + x7 + x2 + 1
P - SK - G11 : g11(x) = x17 + x16 + x3 + x+ 1
P - SK - G13 : g13(x) =x15 + x14 + x12 + x2 + 1
P - SK - G2 : g2(x) = x17 + x3 + x2 + x+ 1
P - SK - G4 : g4(x) = x23 + x12 + x5 + x4 + 1
P - SK - G6 : g6(x) = x17 + x7 + x4 + x3 + 1
P - SK - G8 : g8(x) =x19 + x9 + x8 + x7 + x6 + x3 + 1
P - SK - G10 : g10(x) =x15 + x7 + x4 + x+ 1
P - SK - G12 : g12(x) = x21 + x13 + x5 + x2 + 1
P - SK - G14 : g14(x) =x15 + x13 + x10 + x9 + 1
P - SK - G15 : g15(x) =x23 + x5 + x4 + x+ 1
P - SK - G17 : g17(x) =x15 + x13 + x9 + x6 + 1
P - SK - G19 : g19(x) =x21 + x10 + x6 + x4 + x3 + x2 + 1
P - SK - G21 : g21(x) =x15 + x14 + x9 + x2 + 1
P - SK - G23 : g23(x) =x15 + x13 + x12 + x10 + 1
P - SK - G25 : g25(x) = x15 + x12 + x3 + x+ 1
P - SK - G27 : g27(x) =x19 + x13 + x8 + x5 + x4 + x3 + 1
P - SK - G16 : g16(x) = x17 + x12 + x6 + x3 + x2 + x+ 1
P - SK - G18 : g18(x) = x21 + x14 + x7 + x6 + x3 + x2 + 1
P - SK - G20 : g20(x) =x23 + x17 + x11 + x5 + 1
P - SK - G22 : g22(x) =x17 + x9 + x8 + x6 + x4 + x+ 1
P - SK - G24 : g24(x) =x21 + x8 + x7 + x4 + x3 + x2 + 1
P - SK - G26 : g26(x) =x17 + x8 + x7 + x6 + x4 + x3 + 1
P - SK - G28 : g28(x) =x15 + x13 + x7 + x4 + 1

List of perturbation polynomials for the PWLCM map
P - PW - G1 : g1(x) =x16 + x12 + x3 + x+ 1, or [16, 12, 3, 1, 0])

P - PW - G3 : g3(x) =x16 + x12 + x7 + x2 + 1
P - PW - G5 : g5(x) =x16 + x9 + x5 + x2 + 1
P - PW - G7 : g7(x) = x16 + x15 + x9 + x4 + 1
P - PW - G9 : g9(x) =x16 + x12 + x9 + x6 + 1
P - PW - G11 : g11(x) =x16 + x10 + x7 + x6 + 1
P - PW - G13 : g13(x) =x16 + x9 + x4 + x3 + 1
P - PW - G2 : g2(x) = x17 + x3 + 1
P - PW - G4 : g4(x) =x17 + x16 + x3 + x+ 1
P - PW - G6 : g6(x) =x17 + x8 + x7 + x6 + x4 + x3 + 1
P - PW - G8 : g8(x) =x17 + x9 + x8 + x6 + x4 + x+ 1
P - PW - G10 : g10(x) = x17 + x7 + x4 + x3 + 1
P - PW - G12 : g12(x) = x17 + x12 + x6 + x3 + x2 + x+ 1
P - PW - G14 : g14(x) = x17 + x11 + x8 + x6 + x4 + x2 + 1
P - PW - G15 : g15(x) = x19 + x5 + x2 + x+ 1
P - PW - G17 : g17(x) =x19 + x12 + x10 + x9 + x7 + x3 + 1
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P - PW - G19 : g19(x) =x19 + x13 + x8 + x5 + x4 + x3 + 1
P - PW - G21 : g21(x) = x19 + x18 + x17 + x16 + x12 + x7 + x6 + x5 + x3 + x+ 1
P - PW - G23 : g23(x) = x19 + x9 + x8 + x7 + x6 + x3 + 1
P - PW - G25 : g25(x) =x19 + x16 + x15 + x13 + x12 + x9 + x5 + x4 + x2 + x+ 1
P - PW - G27 : g27(x) =x19 + x18 + x15 + x14 + x11 + x10 + x8 + x5 + x3 + x2 + 1
P - PW - G16 : g16(x) =x23 + x5 + 1
P - PW - G18 : g18(x) =x23 + x12 + x5 + x4 + 1
P - PW - G20 : g20(x) =x23 + x11 + x10 + x7 + x6 + x5 + 1
P - PW - G22 : g22(x) =x23 + x17 + x11 + x5 + 1
P - PW - G24 : g24(x) =x23 + x21 + x7 + x5 + 1
P - PW - G26 : g26(x) =x23 + x5 + x4 + x+ 1
P - PW - G28 : g28(x) = x23 + x16 + x13 + x6 + x5 + x3 + 1
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encryption. International Journal of Bifurcation and Chaos, 20(05):1405–1413, 2010. 37

[246] C. Sparrow. The Lorenz equations: bifurcations, chaos, and strange attractors, volume 41. Springer
Science & Business Media, 2012. 34

[247] W. Stallings. Cryptography and network security: principles and practices. Pearson Education India,
2006. 21

[248] W. Stallings. Cryptography and Network Security: Principles and Practice, International Edition:
Principles and Practice. Pearson Higher Ed, 2014. 109

[249] M. Stamp and R. M. Low. Applied cryptanalysis: breaking ciphers in the real world. John Wiley &
Sons, 2007. 36

[250] D. E. Standard et al. Federal information processing standards publication 46. National Bureau of
Standards, US Department of Commerce, 1977. 23

[251] J. A. Stankovic. Real-time computing system: The next generation. 1988. 124

[252] T. Stathopoulos, D. McIntire, and W. J. Kaiser. The energy endoscope: Real-time detailed energy
accounting for wireless sensor nodes. In Proceedings of the 7th international conference on Infor-
mation processing in sensor networks, pages 383–394. IEEE Computer Society, 2008. 125

[253] D. Stepner, N. Rajan, and D. Hui. Embedded application design using a real-time os. In Design
Automation Conference, 1999. Proceedings. 36th, pages 151–156. IEEE, 1999. 130

[254] D. B. Stewart. Twenty-five most common mistakes with real-time software development. In Pro-
ceedings of the 1999 Embedded Systems Conference (ESC’99), 1999. 141

[255] D. B. Stewart. Measuring execution time and real-time performance. In Embedded Systems Confer-
ence (ESC), 2001. 141

[256] T. Stojanovski and L. Kocarev. Chaos-based random number generators-part i: analysis [cryp-
tography]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
48(3):281–288, 2001. 40

[257] S. H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and
engineering. Westview press, 2014. 49

[258] B. Sunar, W. J. Martin, and D. R. Stinson. A provably secure true random number generator with
built-in tolerance to active attacks. IEEE Transactions on computers, 56(1):109–119, 2007. 46

[259] X.-j. Tong, M.-g. Cui, and W. Jiang. The production algorithm of pseudo-random number generator
based on compound non-linear chaos system. In Intelligent Information Hiding and Multimedia
Signal Processing, 2006. IIH-MSP’06. International Conference on, pages 685–688. IEEE, 2006. 40



BIBLIOGRAPHY 177

[260] W. Trappe, R. Howard, and R. S. Moore. Low-energy security: Limits and opportunities in the
internet of things. IEEE Security & Privacy, 13(1):14–21, 2015. 14

[261] J. Treibig, G. Hager, and G. Wellein. Likwid: A lightweight performance-oriented tool suite for
x86 multicore environments. In Parallel Processing Workshops (ICPPW), 2010 39th International
Conference on, pages 207–216. IEEE, 2010. 126

[262] A. Ukil, J. Sen, and S. Koilakonda. Embedded security for internet of things. In Emerging Trends
and Applications in Computer Science (NCETACS), 2011 2nd National Conference on, pages 1–6.
IEEE, 2011. 86

[263] L. university. Cryptolux > felics. In https://www.cryptolux.org/index.php/FELICS. 2016. 128, 129
[264] P. F. Verhulst. Recherches mathématiques sur la loi d’accroissement de la population. Nouveaux

mémoires de l’académie royale des sciences et belles-lettres de Bruxelles, 18:14–54, 1845. 49
[265] G. Vidal, M. S. Baptista, and H. Mancini. A fast and light stream cipher for smartphones. The

European Physical Journal Special Topics, 223(8):1601–1610, 2014. 43, 120, 121
[266] X. Wang, J. Zhang, Y. Fan, and W. Zhang. Chaotic pseudorandom bit generator using n-dimensional

nonlinear digital filter. In Communication Technology, 2006. ICCT’06. International Conference on,
pages 1–4. IEEE, 2006. 42

[267] Y. Wang, Z. Liu, J. Ma, and H. He. A pseudorandom number generator based on piecewise logistic
map. Nonlinear Dynamics, 83(4):2373–2391, 2016. 107, 111

[268] Y. Wang, K.-W. Wong, X. Liao, and G. Chen. A new chaos-based fast image encryption algorithm.
Applied soft computing, 11(1):514–522, 2011. 38, 39

[269] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terpstra, and S. Moore.
Measuring energy and power with papi. In Parallel Processing Workshops (ICPPW), 2012 41st
International Conference on, pages 262–268. IEEE, 2012. 126

[270] J. Weidendorfer. Cache performance analysis with callgrind and kcachegrind. In 8 VI-HPS Tuning
Workshop. 94

[271] M. Weiser. The computer for the 21st century. Mobile Computing and Communications Review,
3(3):3–11, 1999. 148

[272] E. W. Weisstein. "hénon map." from mathworld–a wolfram web resource. 34
[273] E. W. Weisstein. "lozi map." from mathworld–a wolfram web resource. 34
[274] E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer, M. Balazinska, and G. Borriello.

Building the internet of things using rfid: the rfid ecosystem experience. IEEE Internet computing,
13(3), 2009. 14

[275] D. D. Wheeler. Problems with chaotic cryptosystems. Cryptologia, 13(3):243–250, 1989. 40
[276] S. Wolfram. Cryptography with cellular automata. In Conference on the Theory and Application of

Cryptographic Techniques, pages 429–432. Springer, 1985. 40
[277] K.-W. Wong. A fast chaotic cryptographic scheme with dynamic look-up table. Physics Letters A,

298(4):238–242, 2002. 38
[278] K.-W. Wong. A combined chaotic cryptographic and hashing scheme. Physics letters A, 307(5):292–

298, 2003. 38
[279] W.-k. Wong, L.-p. Lee, and K.-w. Wong. A modified chaotic cryptographic method. In Communica-

tions and Multimedia Security Issues of the New Century, pages 123–126. Springer, 2001. 38
[280] H. Wu. A new stream cipher hc-256. In Fast Software Encryption, pages 226–244. Springer, 2004.

29
[281] Y. Wu, J. P. Noonan, and S. Agaian. Npcr and uaci randomness tests for image encryption. Cy-

ber journals: multidisciplinary journals in science and technology, Journal of Selected Areas in
Telecommunications (JSAT), pages 31–38, 2011. 113



178 BIBLIOGRAPHY

[282] K. L. Wuensch. Chi-square tests. In International Encyclopedia of Statistical Science, pages 252–
253. Springer, 2011. 47

[283] V. Yodaiken, C. Dougan, M. Barabanov, et al. Rtlinux/rtcore dual kernel real-time operating system.
FSMLabs, White Paper, 2003. 135

[284] V. Yodaiken et al. The rtlinux manifesto. In Proc. of the 5th Linux Expo, 1999. 135

[285] T. Yoshida, H. Mori, and H. Shigematsu. Analytic study of chaos of the tent map: band structures,
power spectra, and critical behaviors. Journal of statistical physics, 31(2):279–308, 1983. 33

[286] W. Yu and J. Cao. Cryptography based on delayed chaotic neural networks. Physics Letters A,
356(4):333–338, 2006. 42

[287] X. Zeng, R. A. Pielke, and R. Eykholt. Chaos theory and its applications to the atmosphere. Bulletin
of the American Meteorological Society, 74(4):631–644, 1993. 20, 31

[288] E. Zeraoulia. Lozi mappings: Theory and applications. 2013. 34

[289] W. Zhang, K.-w. Wong, H. Yu, and Z.-l. Zhu. An image encryption scheme using reverse 2-
dimensional chaotic map and dependent diffusion. Communications in Nonlinear Science and Nu-
merical Simulation, 18(8):2066–2080, 2013. 39

[290] F. Zheng, X.-j. Tian, J.-y. Song, and X.-Y. Li. Pseudo-random sequence generator based on the gener-
alized henon map. The Journal of China Universities of Posts and Telecommunications, 15(3):64–68,
2008. 40

[291] H. Zhou. A design methodology of chaotic stream ciphers and the realization problems in finite
precision. Department of Electrical Engineering, Fudan University, Shanghai, China, 1996. 59





Thèse de Doctorat
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Sécurité basée Chaos sous contraintes temps réel et d’énergie pour l’Internet
des Objets

Chaos-based security under real-time and energy constraints for the Internet of
Things

Résumé
De nos jours, la croissance rapide des technologies
de l’Internet des Objets (IoT) rend la protection des
données transmises un enjeu important. Les
dispositifs de l’IoT sont intrinsèquement contraints à la
mémoire, à la puissance de traitement et à l’énergie
disponible. Ceci implique que la conception de
techniques cryptographiques sécurisées, efficaces et
légères est cruciale. Dans cette thèse, nous avons
étudié la problématique de la sécurité de l’information
basée chaos sous contraintes temps réel et d’énergie.
À ce sujet, nous avons conçu et implémenté dans un
premier temps, trois générateurs de nombres
pseudo-chaotiques (PCNGs). Ces PCNGs utilisent
une matrice de couplage faible ou une matrice de
couplage binaire à forte diffusion entre des cartes
chaotiques, et une technique de multiplexage
chaotique. Puis, nous avons réalisé trois systèmes de
chiffrement/déchiffrement par flux basés sur les
PCNGs proposés. L’analyse cryptographique des
systèmes chaotiques réalisés a montré leur
robustesse contre des attaques connues. La
performance obtenue en complexité de calcul met
bien en évidence leur utilisation dans des applications
temps réel. Dans un second temps, nous avons
intégré ces systèmes de chiffrement/déchiffrement
chaotiques au sein du système d’exploitation temps
réel Xenomai. Enfin, nous avons mesuré la
consommation d’énergie et de puissance des trois
systèmes chaotiques réalisés ainsi que le temps
moyen de chiffrement/déchiffrement.

Abstract
Nowadays, due to the rapid growth of Internet of
Things (IoT) towards technologies, the protection of
transmitted data becomes an important challenge.
The devices of the IoT are very constrained resource
in terms of computing capabilities, energy and
memory capacities. Thus, the design of secure,
efficient and lightweight crypto-systems becomes
more and more crucial. In this thesis, we have studied
the problem of chaos based data security under
real-time and energy constraints. First, we have
designed and implemented three pseudo-chaotic
number generators (PCNGs). These PCNGs use a
weak coupling matrix or a high diffusion binary
coupling matrix between chaotic maps and a chaotic
multiplexing technique. Then, we have realized three
stream ciphers based on the proposed PCNGs.
Security performance of the proposed stream ciphers
were analysed and several cryptanalytic and statistical
tests were applied. Experimental results highlight
robustness as well as efficiency in terms of
computation time. The performance obtained in
computational complexity indicates their use in
real-time applications. Then, we integrated these
chaotic stream ciphers within the real-time operating
system Xenomai. Finally, we have measured the
energy and power consumption of the three proposed
chaotic systems, and the average computing
performance. The obtained results show that the
proposed stream ciphers can be used in practical IoT
applications.

Mots clés
Internet des Objets, Sécurité des Données,
Générateurs de nombres pseudo-chaotiques,
Chiffrement par flux basé chaos, Analyse de la
sécurité, Vitesse de chiffrement, Consommation
d’énergie, Temps réel.

Key Words
Internet of Things, Chaos-based Data Security,
Pseudo-Chaotic Number Generators,
Chaos-Based Stream Cipher, Security Analysis,
Computing Performance, Power Consumption,
Real-Time.
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