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Dirmeikis. My thanks extend to Radek Novák and all (former) PhD students that I had
pleasure to meet in Nantes. Especially, I thank Christophe A.N. Biscio for his care.

I am grateful to my godparents for their encouragement to travel during my studies.

3



Acknowledgements 4

Finally, I wish to thank my beloved mother who kindly accepted to spend less time
together for the sake of my extra work on the thesis. Her full and unconditional support is
indispensable for me.
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Notation and abbreviations

:= by definition
Z := {0,±1,±2, . . .} the set of integers
N := {1, 2, . . .} the set of positive integers
R := (−∞,∞) the set of real numbers

R+ := (0,∞)
C(A) the space of continuous functions defined on a set A

C positive constant, which may change from line to line
i :=

√
−1

1(A) indicator function of a set A
x ∧ y := min(x, y)
x ∨ y := max(x, y)
x+ := max(x, 0)
[x] the greatest integer less than or equal to x (floor)
dxe the least integer greater than or equal to x (ceiling)

Γ(x) the gamma function
B(x, y) the beta function

EX mean of a random variable X
N (µ, σ2) normal distribution with mean µ and variance σ2

d= equality in distribution
fdd= equality of finite-dimensional distributions
p→ convergence in probability
d→ convergence in distribution
fdd→ weak convergence of finite-dimensional distibutions

(fdd) lim limit of finite-dimensional distributions
a.s. almost surely
d.f. (cumulative) distribution function

i.i.d. independent identically distributed
r.v. random variable
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Notation and abbreviations 8

w.r.t. with respect to
w.l.g. without loss of generality
AR(1) autoregressive process of order 1
LRD long-range dependence
SRD short-range dependence
RF random field



Résumé long en français

Nous résumons dans ce chapitre les problèmes abordés dans cette thèse et présentons les
principaux résultats obtenus.

Agrégation de processus AR(1) (Chapitres 3, 4).

Dans le chapitre 3 nous discutons de l’agrégation temporelle et contemporaine de N copies
indépendantes X1, . . . , XN d’un processus AR(1) X à paramètre autorégressif a aléatoire.
Nous étudions la limite en loi des sommes partielles normalisées du processus somme X1 +
· · · + XN , quand N le nombre des copies et n la longueur des séries tendent vers l’infini
simultanément. Sous l’hypothèse que la loi de a admet une densité à variation régulière
d’indice β ∈ (−1, 1) au voisinage de a = 1, nous montrons que le processus limite est
différent suivant que la suite N1/(1+β)/n tend vers (i)∞, (ii) 0, (iii) µ ∈ (0,∞). Ces résultats
sont comparables à ceux obtenus par [35, 70] pour le processus de charge cumulée sur un
réseau constitué de N sources.

Le chapitre 4 complète le chapitre 3 au sens où le problème résolu est le même mais
sous des hypothèses différentes sur le modèle. Les processus AR(1) ne sont plus supposés
indépendants, le processus des innovations est commun à tous les processus AR(1). Sous les
mêmes hypothèses sur la loi du coefficient autorégressif a avec β ∈ (−1/2, 0) nous montrons
que le processus limite est différent suivant que la suite N1/(1+β)/n tend vers (i) ∞, (ii) 0,
(iii) µ ∈ (0,∞).

Un processus X = {X(t), t ∈ Z} est appelé processus autorégressif d’ordre 1 (ou AR(1))
avec coefficient aléatoire si il est stationnaire et si pour tout t, il vérifie

X(t) = aX(t− 1) + ζ(t),

où {ζ(t), t ∈ Z} sont i.i.d. avec Eζ(0) = 0, Eζ2(0) = 1 et le coefficent autorégressif a ∈ (−1, 1)
est une variable aléatoire indépendante de {ζ(t), t ∈ Z}.
Hypothèse A(β). La loi de la variable aléatoire a ∈ [0, 1) admet une densité g telle que

g(x) = ψ(x)(1− x)β, x ∈ [0, 1),

où β > −1 et ψ est une fonction intégrable sur [0, 1) vérifiant limx→1 ψ(x) = ψ1 > 0.

9



Introduction 10

Soit

SN,n(τ) :=
N∑
i=1

[nτ ]∑
t=1

Xi(t), τ ≥ 0,

où Xi, i = 1, . . . , N , sont des copies du processus X satisfaisant l’hypothèse A(β). Soit
N, n→∞ (simultanément) et

N1/(1+β)

n
→ µ ∈ [0,∞].

On considère les trois situations suivantes:

cas (i): µ =∞, cas (ii): µ = 0, cas (iii): 0 < µ <∞.

Théorème (Chapitre 3, Théorème 3.2). Soit Xi, i = 1, 2, . . . , des copies indépendantes du
processus X satisfaisant l’hypothèse A(β) avec β ∈ (−1, 1). Alors
dans le cas (i):

N−1/2n−1+(β/2)SN,n(τ) fidi→ BH(τ), β ∈ (0, 1),
N−1/2(1+β)n−1SN,n(τ) fidi→ V τ, β ∈ (−1, 0),

(N log(N/n))−1/2n−1 SN,n(τ) fidi→ V τ, β = 0,

où BH est le mouvement brownien fractionnaire de paramètre H = 1− β/2 ∈ (1/2, 1); V est
une variable aléatoire 2(1 + β)-stable et {V τ, τ ≥ 0} est une droite aléatoire;
dans le cas (ii):

N−1/(1+β)n−1/2SN,n(τ) fidi→W1/2B(τ),

où {W1/2B(τ), τ ≥ 0} est un processus (1 + β)-stable avec W > 0 une variable aléatoire
(1 + β)/2-stable, indépendante de B un mouvement brownien standard;
dans le cas (iii):

N−1/(1+β)n−1/2SN,n(τ) fidi→ µ1/2Z(τ/µ),

où Z est un processus dit ‘intermédiaire’ dont les fonctions caractéristiques de ses lois fini-
dimensionnelles sont connues.
Z admet une représentation intégrale de la forme suivante pour tout β ∈ (−1, 1),

Z(τ) :=
∫

(0,1)×C(R)

( ∫ τ

−∞

{ ∫ τ

0
e−x(t−s)1(s ≤ t)dt

}
dB(s)

)
M(dx, dB)

+
∫

[1,∞)×C(R)

( ∫ τ

−∞

{ ∫ τ

0
e−x(t−s)1(s ≤ t)dt

}
dB(s)

)
M̃(dx, dB), (1)

où M(dx, dB) est une mesure aléatoire de Poisson sur R+ × C(R) d’intensité µ(dx, dB) =
ψ1x

βdx × PB(dB(·)) avec PB une mesure de Wiener standard sur C(R) et M̃(dx, dB) :=
M(dx, dB)− µ(dx, dB) est une mesure aléatoire de Poisson compensée.

La proposition suivante donne les propriétés du processus Z.
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Proposition (Chapitre 3, Propositions 3.4, 3.5). (i) Le processus Z défini en (1) est bien
défini pour tout β ∈ (−1, 1). C’est un processus à accroissements stationnaires dont les lois
fini-dimensionnelles sont infiniment divisibles.
(ii) E|Z(τ)|p <∞, p ∈ (0, 2(1 + β)), et

EZ(τ) = 0, β ∈ (−1/2, 1),
E[Z(τ1)Z(τ2)] = E[BH(τ1)BH(τ2)], β ∈ (0, 1),

où BH est le processus défini dans le cas (i) du théorème précédent.
(iii) Pour tout β ∈ (−1/2, 1), presque surement le processus Z a des trajectoires continues.
(iv) Le processus Z est localement et globalement asymptotiquement auto-similaire:

c−HZ(cτ) fidi→ BH(τ) quand c→ 0, β ∈ (0, 1),
c−1Z(cτ) fidi→ V τ quand c→ 0, β ∈ (−1, 0),

c−1 log−1/2(1/c)Z(cτ) fidi→ V τ quand c→ 0, β = 0,
c−1/2Z(cτ) fidi→ W 1/2B(τ) quand c→∞, β ∈ (−1, 1),

où les processus limites sont définis dans le théorème précédent.

Théorème (Chapitre 4, Théorème 4.3). Si Xi, i = 1, 2, . . . , sont des processus AR(1) ayant
les mêmes innovations {ζ(t), t ∈ Z} et des coefficients autorégressifs i.i.d., indépendants de
{ζ(t), t ∈ Z} et vérifiant A(β) avec β ∈ (−1/2, 0). Alors
dans le cas (i):

nβ−1/2N−1SN,n(τ) fidi→ BH(τ),
où BH est le mouvement brownien fractionnaire de paramètre H = 1/2− β ∈ (1/2, 1);
dans le cas (ii):

N−1/(1+β)n−1/2SN,n(τ) fidi→ WB(τ),
où W > 0 est une variable aléatoire (1 + β)-stable, indépendante du mouvement brownien
standard B;
dans le cas (iii):

N−1/(1+β)n−1/2SN,n(τ) fidi→ µ1/2Z(τ/µ),
où Z est un processus dit ‘intermédiaire’ dont la fonction caractéristique de ses lois fini-
dimensionnelles sont connues.

Z admet une représentation intégrale de la forme suivante pour tout β ∈ (−1/2, 0),

Z(τ) :=
∫ τ

−∞

∫
R+

{ ∫ τ

0
e−x(t−s)1(s ≤ t)dt

}
dB(s)N(dx),

où N(dx) est une mesure de Poisson sur R+ d’intensité ψ1x
βdx, indépendante du mouvement

brownien standard {B(s), s ∈ R}.
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Inférence statistique à partir des données de panel AR(1) (Chapitre 5).

Dans le chapitre 5 nous abordons la question de l’estimation de la loi du coefficient
autorégressif (de fonction de répartition G) à partir de N séries AR(1) à paramètre aléatoire
de longueur n. Contrairement à [9, 92], nous adoptons une approche non paramétrique. On
estime sur chaque série le coefficient autorégressif par l’autocorrélation empirique de lag 1,
puis on construit la fonction de répartition empirique de cet échantillon. Nous étudions la
convergence de la fonction de répartition empirique sous des conditions de régularité sur G
et de vitesse de convergence de N et n vers l’infini. Le résultat est appliqué pour tester
l’adéquation de la loi G à une loi donnée ou à la famille de lois beta à l’aide de la statistique
de Kolmogorov-Smirnov. Les performances des tests sont illustrés par des simulations et
comparés à l’analogue paramétrique développé par [9].

Nous précisons maintenant le modèle. On considère des processus AR(1) à coefficient
autorégressif aléatoire (RCAR(1)) Xi := {Xi(t), t ∈ Z}, i = 1, 2, . . . , solution stationnaire
de l’équation

Xi(t) = aiXi(t− 1) + ζi(t), t ∈ Z,

dont les innovations {ζi(t)} se décomposent de la forme suivante

ζi(t) = biη(t) + ciξi(t), t ∈ Z,

avec les hypothèses suivantes:
Hypothèse (B1). {η(t)} i.i.d. avec Eη(t) = 0, Eη2(t) = 1, E|η(t)|2p < ∞ pour un certain
p > 1.
Hypothèse (B2). {ξi(t)}, i = 1, 2, . . ., i.i.d. avec Eξi(t) = 0, Eξ2

i (t) = 1, E|ξi(t)|2p < ∞
pour la même valeur de p qu’en (B1).
Hypothèse (B3). (bi, ci), i = 1, 2, . . ., i.i.d. avec bi, ci éventuellement dépendant, P(b2

i +c2
i >

0) = 1, E(b2
i + c2

i ) <∞.
Hypothèse (B4). ai ∈ (−1, 1), i = 1, 2, . . ., i.i.d. suivant la loi de fonction de répartition
G(x) = P(ai ≤ x), x ∈ [−1, 1], vérifiant E(1− a2

i )−1 <∞.
Hypothèse (B5). {η(t)}, {ξi(t)}, (bi, ci), ai sont indépendants pour tout i = 1, 2, . . . .
Hypothèse (B6). G holdérienne: il existe L > 0, % ∈ (0, 1] tel que |G(x)−G(y)| ≤ L|x−y|%
pour tout x, y ∈ [−1, 1].

On note que dans le contexte des données de panel {η(t)} est la composante des chocs
communs et {ξi(t)} est la composante des chocs individuels. Le processus RCAR(1) Xi est à
longue mémoire si E(1−a2

i )−1 <∞ et E(1−a2
i )−2 =∞. Ces conditions sont compatibles avec

l’hypothèse (B4). Les mêmes propriétés de longue mémoire sont vérifiés pour le processus
limite d’un modèle d’agrégation contemporaine de processus RCAR(1) indépendants.

On construit un estimateur non paramétrique de la fonction de répartition G(x) = P(ai ≤
x), x ∈ [−1, 1], à partir des données de panel {Xi(t), t = 1, . . . , n, i = 1, . . . , N}. Il est
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important de noter que l’on ne dispose donc pas d’observation suivant la loi G. L’estimateur
proposé est

ĜN,n(x) := 1
N

N∑
i=1

1(âi,n ≤ x), x ∈ [−1, 1],

avec
âi,n :=

∑n−1
t=1 (Xi(t)− X̄i,n)(Xi(t+ 1)− X̄i,n)∑n

t=1(Xi(t)− X̄i,n)2
,

où X̄i,n := 1
n

∑n
t=1Xi(t) pour tout i = 1, . . . , N . Nous prouvons la convergence faible du

processus empirique ĜN,n vers le pont brownien généralisé. Ce résultat implique la consistence
et la normalité asymptotique de l’estimateur non paramétrique ĜN,n(x) de G(x).

Théorème (Chapitre 5, Théorème 5.3). Supposons que le modèle de panel RCAR(1) vérifie
les hypothèses (B1)-(B6). Si N, n→∞ tel que Nn−

2%
%+p ( p2∧(p−1)) → 0, alors

N1/2(ĜN,n(x)−G(x))⇒ W (x), x ∈ [−1, 1],

où {W (x), x ∈ [−1, 1]} est un processus gaussien centré avec Cov(W (x),W (y)) = G(x∧y)−
G(x)G(y), x, y ∈ [−1, 1], et on note par ⇒ la convergence faible dans l’espace D[−1, 1] avec
la norme uniforme.

La preuve de ce théorème repose sur la propriété suivante qui donne la vitesse de conver-
gence en probabilité de l’autocorrélation âi,n vers ai.

Proposition (Chapitre 5, Proposition 5.1). Sous les hypothèses (B1)-(B5), pour tout 0 <
γ < 1 et n = 1, 2 . . . , on a le résultat suivant à i fixé

P(|âi,n − ai| > γ) ≤ C(n−( p2∧(p−1))γ−p + n−1),

avec C > 0 qui ne depend pas de n, γ.

Le théorème limite obtenu s’applique pour construire le test d’ajustement:

H0 : G = G0, H1 : G 6= G0,

où G0 est une loi donnée vérifiant (B4), (B6). On fixe ω ∈ (0, 1), la région critique du test
de Kolmogorov-Smirnov est

√
N sup

x
|ĜN,n(x)−G0(x)| > c(ω),

où c(ω) est le quantile supérieur d’ordre ω de la loi de Kolmogorov. Si les hypothèses (B1)-
(B6) sont vérifiées et Nn−

2%
%+p ( p2∧(p−1)) → 0, le test est asymptotiquement de niveau ω et sa

puissance converge vers 1. Nous comparons numériquement sur des petits échantillons les
performances de ce test avec un test paramétrique construit à partir de l’estimateur étudié
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par [9]. Nous n’observons pas une perte importante de puissance pour le test de Kolmogorov-
Smirnov par rapport à l’approche paramétrique. L’intérêt du test de Kolmogorov-Smirnov
est qu’il ne nécessite pas la calibration d’un paramètre de réglage contrairement à l’approche
paramétrique issue de [9]. De plus ses propriétés asymptotiques sont établies sous des hy-
pothèses plus faibles sur les innovations du modèle RCAR(1).

Nous abordons aussi la question des hypothèses composées. Les hypothèses du test sont

H0 : G ∈ G := {Gθ, θ ∈ (1,∞)2}, H1 : G 6∈ G,

où Gθ est la fonction de répartition de loi beta de paramètre θ = (α, β). On utilise la
statistique de Kolmogorov-Smirnov avec θ estimé par la méthode des moments:

√
N sup

x
|ĜN,n(x)−G

θ̂N,n
(x)|.

Nous obtenons la loi limite de cette statistique ainsi que la normalité asymptotique de
l’estimateur

µ̂
(u)
N,n := 1

N

N∑
i=1

(âi,n)u

des moments µ(u) =
∫ 1
−1 x

udG(x), u = 1, 2, . . . . Robinson [92] a proposé un estimateur
différent de µ(u), dont il a établi la normalité asymptotique à n fixé quand N → ∞. Son
résultat est obtenu uniquement pour des RCAR(1) indépendants et sous des hypothèses plus
fortes sur G, qui ne permettent pas au processus individuel RCAR(1) Xi d’être à longue
mémoire.

Le dernier résultat du chapitre 5 porte sur l’estimateur à noyau de g(x) = G′(x). Nous
montrons la normalité asymptotique de cet estimateur et la convergence vers zéro de son
erreur quadratique intégrée.

Transition d’échelle pour des champs aléatoires non linéaires (Chapitre 6).

Dans le chapitre 6 nous considérons des champs aléatoires X définis comme des fonc-
tionnelles non linéaires (polynômes d’Appell) d’un champ aléatoire Y indexé par Z2. Le
processus Y est supposé linéaire, plus précisément c’est une moyenne mobile indexé par Z2

de variables aléatoires i.i.d. dont les coefficients déterministes tendent lentement vers zéro
(de telle sorte que Y est à longue mémoire) et éventuellement avec des vitesses différentes
dans les directions horizontale et verticale. Pour un champ aléatoire non linéaire X, nous
étudions la loi limite des sommes partielles normalisées calculées sur des rectangles dont les
cotés augmentent aux vitesses O(λ) et O(λγ) quand λ → ∞ et γ > 0 arbitraire. Nous es-
sayons de trouver les champs aléatoires limites pour toutes les valeurs de γ > 0. La question
principale est l’existence d’un point de transition γ0 > 0 tel que les champs aléatoires limites
ne dépendent pas de γ mais diffèrent pour γ > γ0 et γ < γ0. On cherche donc à établir
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les conditions qui assurent l’existence de γ0. Nous étendons les résultats de [89, 90], où ce
phénomène, appelé transition d’échelle, apparaît pour certains champs aléatoires linéaires à
longue mémoire.

Plus précisément quelque soit γ > 0 nous étudions la limite

A−1
λ,γ

[λx]∑
t=1

[λγy]∑
s=1

X(t, s) fidi→ Vγ(x, y), (x, y) ∈ R2
+, (2)

des sommes partielles d’un champ aléatoire stationnaire X = {X(t, s), (t, s) ∈ Z2} prises sur
une suite croissante de rectangles (0, λx]× (0, λγy] ∩ Z2 quand λ→∞, où Aλ,γ →∞ est la
normalisation. Lorsque γ 6= 1, les cotés des rectangles croissent à des taux différents O(λ) et
O(λγ) quand λ→∞, donc γ > 0 caractérise l’anisotropie du comportement asymptotique.

Si la limite Vγ := {Vγ(x, y), (x, y) ∈ R2
+} définie en (2) existe pour un certain γ > 0 avec

Aλ,γ = λH`(λ), où H > 0 et ` : [1,∞) → R+ est une fonction à variation lente, alors pour
tout λ > 0,

{Vγ(λx, λγy), (x, y) ∈ R2
+}

fidi= {λHVγ(x, y), (x, y) ∈ R2
+}.

Cette propriété est un cas particulier de la notion d’auto-similarité matricielle introduite par
Biermé et al. [12]. De plus, les accroissements rectangulaires du champ Vγ sont stationnaires:
pour tout (x0, y0) ∈ R2

+ fixé,

{Vγ((x0, x]× (y0, y]), x > x0, y > y0}
fidi= {Vγ((0, x− x0]× (0, y − y0]), x > x0, y > y0}
≡ {Vγ(x− x0, y − y0), x > x0, y > y0},

où l’accroissement rectangulaire du champ Vγ sur le rectangle (x0, x]× (y0, y] ⊂ R2
+ est défini

par Vγ((x0, x]×(y0, y]) := Vγ(x, y)−Vγ(x0, y)−V (x, y0)+Vγ(x0, y0). Ces propriétés générales
sur la limite Vγ ont été obtenues par [90].

Pour de nombreux champs aléatoires non triviaux, la limite Vγ définie en (2) existe pour
tout γ > 0. Dans ce cas pour un champ aléatoire fixé X, nous associons la famille des
champs limites indéxée par γ, {Vγ, γ > 0}, qui caractérise la dépendance et les propriétés
asymptotiques du X. Si {X(t, s), (t, s) ∈ Z2} sont des variables aléatoires i.i.d. centrées et
réduites, la limite Vγ coïncide avec le drap brownien standard pour tout γ > 0, i.e. {Vγ, γ > 0}
est réduit à un élément. On obtient des résultats similaires pour les champs à courte mémoire,
voir e.g. [15]. Les théorèmes limites pour les champs aléatoires à courte mémoire sont souvent
obtenus pour des formes générales du domaine de sommation, la loi limite étant indépendante
de la façon dont la région tend vers Z2. Des phénomènes surprenants apparaissent pour des
champs à longue mémoire X, qui possèdent un changement de comportement asymptotique
au point γ0 > 0 comme décrit dans la définition suivante.

Définition (Puplinskaitė, Surgailis [90]). On dit que X possède une transition d’échelle s’il
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existe γ0 > 0 tel que

Vγ
fidi= V+ pour tout γ > γ0, Vγ

fidi= V− pour tout γ < γ0,

V+
fidi
6= aV− pour tout a > 0.

Si Vγ ne dépend pas de γ > 0, alors X ne possède pas de transition d’échelle.

Il semble que la transition d’échelle soit une nouvelle caractéristique générale de la dépen-
dance spatiale qui se produit pour de nombreuses champs aléatoires isotropes et anisotropes
sur Z2 à longue mémoire. Elle a été établie pour une classe de champs gaussiens à longue
mémoire [89], une classe de modèles agrégés sur les plus proches voisins [90] et certains
champs aléatoires résultant de l’agrégation de ON/OFF ou de processus RCAR(1); voir
[27, 35, 55, 70, 79] et [90, Remarque 2.3]. D’une manière plus générale, le phénomène s’est
avéré apparaitre pour certains champs aléatoires sur Zd avec d ≥ 2 in [10].

Les travaux mentionnés traitent des champs aléatoires linéaires exprimés sous la forme
de sommes (intégrales stochastiques) par rapport à un «bruit» i.i.d. Il est bien connu que
les champs aléatoires non linéaires peuvent avoir un comportement asymptotique assez com-
pliqué et non gaussien. Voir Dobrushin, Major [26], [2, 4, 36, 38, 45, 59, 66, 100, 104] et les
références citées dans ces papiers.

Considérons un champ aléatoire linéaire Y = {Y (t, s), (t, s) ∈ Z2} admettant une représen-
tation moyenne mobile:

Y (t, s) :=
∑

(u,v)∈Z2

a(t− u, s− v)ε(u, v), (t, s) ∈ Z2, (3)

où les variables aléatoires {ε(t, s), (t, s) ∈ Z2} sont i.i.d. Eε(0, 0) = 0, Eε2(0, 0) = 1, et où les
coefficients

a(t, s) = (|t|2 + |s|2
q2
q1 )−

q1
2

(
L
(

t

(|t|2 + |s|2
q2
q1 ) 1

2

)
+ o(1)

)
,

quand |t|+ |s| → ∞, qi > 0, i = 1, 2, satisfont

1 < Q := 1
q1

+ 1
q2
< 2,

et L : [−1, 1]→ [0,∞) est bornée et continue.
La condition Q < 2 assure que ∑(t,s)∈Z2 a2(t, s) < ∞, i.e. Y est bien défini, et Q > 1

implique ∑(t,s)∈Z2 |a(t, s)| = ∞, en d’autre terme Y est à longue mémoire. Notons que
a(t, 0) = O(|t|−q1), t→∞, et a(0, s) = O(|s|−q2), s→∞, décroissent à des taux différents si
q1 6= q2, auquel cas Y présente une forte anisotropie.
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Nous considérons une classe de champs aléatoires non linéaires X = {X(t, s), (t, s) ∈ Z2}
construits de la façon suivante à partir de Y défini en (3). Pour k ∈ N fixé, on suppose
E|ε(0, 0)|2k <∞ et on pose

X(t, s) := Ak(Y (t, s)), (t, s) ∈ Z2, (4)

où Ak est le k ème polynôme d’Appell par rapport à Y (0, 0). Rappelons que le kème polynôme
d’Appell Ak(x), x ∈ R, par rapport à la loi de ξ avec E|ξ|k <∞, est défini par

Ak(x) := (−i)k dk
duk

( eiux

Eeiuξ

)∣∣∣∣
u=0

.

Par exemple si Eξ = 0, alors A1(ξ) = ξ, A2(ξ) = ξ2 − Eξ2, A3(ξ) = ξ3 − 3ξEξ2 − Eξ3. Si
ξ

d= N (0, 1), les polynômes d’Appell et les polynômes de Hermite coïncident.
Pour donner les conditions de longue mémoire pour le champ X = Ak(Y ), nous intro-

duisons les paramètres pi := qi(2−Q), i = 1, 2 et P := 1
p1

+ 1
p2
. On a l’équivalence suivante:

P > 1⇐⇒ Q > 1.

Proposition (Chapitre 6, Corollaire 6.11). Supposons que X = Ak(Y ) défini en (4) avec Y
défini en (3). Soit r(t, s) := EX(0, 0)X(t, s), (t, s) ∈ Z2.

(i) Si 1 ≤ k < P , alors ∑(t,s)∈Z2 |r(t, s)| =∞ (longue mémoire).
(ii) Si k > P , alors ∑(t,s)∈Z2 |r(t, s)| <∞ (courte mémoire).

Dans le chapitre 6 nous étudions les limites des sommes partielles normalisées de X =
Ak(Y ) calculées sur des rectangles. Le résumé suivant décrit les principaux résultats (voir
Chapitre 6, Théorèmes 6.1-6.5).

(R1) Si 1 < k < P , alors X = Ak(Y ) possède la propriété de transition d’échelle au point
γ0 := p1/p2 = q1/q2 indépendant de k.

(R2) Vγ0 est non gaussien (sauf si k = 1) et s’exprime comme une intégrale multiple d’Itô-
Wiener de dimension k.

(R3) Si γ > γ0, alors

Vγ =
FBSheet(H

+
1k, 1/2) avec H+

1k ∈ (1/2, 1) si kp2 > 1,
{xZ+

k (y), (x, y) ∈ R2
+} si kp2 < 1,

où FBSheet représente le drap brownien fractionnaire et où Z+
k est un processus auto-

similaire qui s’écrit comme une intégrale multiple d’Itô-Wiener de dimension k. On
obtient un résultat similaire si 0 < γ < γ0.

(R4) Si k > P , alors X = Ak(Y ) ne possède pas la propriété de transition d’échelle et Vγ est
le drap brownien pour tout γ > 0.
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(R5) Si ε(0, 0) d= N (0, 1) et Y (0, 0) d= N (0, 1), i.e. Y est gaussien, alors (R1)-(R4) sont
vérifiées pour X = G(Y ), où G est une fonction non linéaire avec EG(Y (0, 0)) = 0,
EG2(Y (0, 0)) <∞ et G est de rang de Hermite k ≥ 1.

La liste ci-dessus contient plusieurs résultats de type théorème central ou non-central
limite. (R2), (R4) et (R5) sont des nouveaux résultats dans le cas «anisotrope» p1 6= p2,
tandis que (R3) est nouveau, même pour le champ linéaire X = A1(Y ) = Y . Comme dans le
cas des modèles linéaires [89, 90], les limites dans (R3) ont des accroissements indépendants
ou complètement dépendants le long de l’un des axes. La dichotomie de la distribution limite
dans (R3) est liée à la présence ou à l’absence de la propriété de longue mémoire verticale
/ horizontale de X, voir la remarque 6.4, page 116. Nous notons également que les preuves
du théorème central limite de (R3) et (R4) utilisent une approximation plutôt simple par les
variables aléatoires m-dépendantes.

Les résultats de ce type contribuent à la théorie asymptotique des processus spatiaux
fortement dépendants en montrant que la distribution limite des statistiques linéaires et non
linéaires peut dépendre de la relation entre γ et γ0.

Comportement asymptotique anisotropique pour les modèles germes-grains
(Chapitre 7).

Dans le chapitre 7 nous considérons un champ aléatoire X indexé par R2, appelé modèle
germes-grains aléatoire. Les germes sont des points uniformément distribués sur le plan R2

auxquels on associe des ensembles (appelés grains) dont les aires sont des variables aléatoires
i.i.d. de variance infinie. En chaque point, X est égale au nombre d’ensembles aléatoires
auxquels le point appartient. La condition sur la variance des aires implique que le champ
X est à longue mémoire. Notre objectif est d’obtenir le champ aléatoire limite des intégrales
partielles normalisées et centrées de X calculées sur les rectangles, dont les côtés augmentent
à la vitesse O(λ) et O(λγ) quand λ → ∞ pour γ > 0 arbitraire. Nous étendons donc les
résultats sur le changement d’échelle isotrope (γ = 1) obtenus par [53]. En outre, nous
étudions la charge totale accumulée sur un réseau à partir d’un modèle M/G/∞ généralisé
et relions les résultats asymptotiques aux résultats obtenus pour X.

Pour être plus précis, nous considérons le modèle de germes-grains aléatoire:

X(t, s) :=
∑
i

1
((

t− ui
Rp
i

,
s− vi
R1−p
i

)
∈ B

)
, (t, s) ∈ R2, (5)

où le grain B ⊂ R2 est un ensemble borélien déterministe borné (par exemple un disque, un
carré) avec Leb(∂B) = 0, 0 < p < 1 est le paramètre de forme, {(ui, vi), Ri} est un processus
ponctuel de Poisson sur R2 × R+ d’intensité dudvF (dr). Nous supposons que F est une
fonction de répartition sur R+ admettant une densité f de la forme

f(r) ∼ cfr
−(1+α) quand r →∞, avec 1 < α < 2, cf > 0. (6)
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La somme dans (5) compte le nombre d’ensembles de la forme (ui, vi)+RP
i B contenant (t, s),

où RPB := {(Rpu,R1−pv) : (u, v) ∈ B} ⊂ R2 est la version dilatée de B par le facteur Rp

(resp. R1−p) dans la direction horizontale (resp. verticale).
Le cas p = 1/2 correspond à la dilatation uniforme ou isotropique. Notons que l’aire

Leb(RPB) = Leb(B)R du grain générique dilaté aléatoirement est proportionnelle à R. Elle
ne dépend pas de p et elle a une loi à queue lourde de moyenne E Leb(RPB) <∞ et de vari-
ance infinie E Leb(RPB)2 =∞ d’après (6). La condition (6) assure aussi que la fonction de co-
variance du modèle de germes-grains n’est pas intégrable i.e.

∫
R2 |Cov(X(0, 0), X(t, s))|dtds =

∞, donc (5) est un champ à longue mémoire.
Soit γ > 0 arbitraire, nous étudions la limite suivante du modèle de germes-grains:

A−1
λ,γ

∫
(0,λx]×(0,λγy]

(X(t, s)− EX(t, s))dtds fidi→ Vγ(x, y), (x, y) ∈ R2
+, (7)

quand λ→∞, où Aλ,γ →∞ est la normalisation. Le changement d’échelle isotropique (cas
γ = 1) pour p = 1/2 en dimension quelconque a été discuté dans Kaj et al. [53], Biermé
et al. [11]. Nous résumons les résultats de ce chapitre dans la figure suivante, elle décrit les
limites Vγ := {Vγ(x, y), (x, y) ∈ R2

+} dans (7) quand γ varie entre 0 et ∞.

b̀aaà̀̀̀̀
0 ∞

b̀aaà̀̀̀̀
γ−

b̀aaà̀̀̀̀
γ+

α−-stable Lévy slide,
1 < α < 1 + p︷ ︸︸ ︷

︸ ︷︷ ︸
FBSheet(1/2, H−),

1 + p ≤ α < 2

︷ ︸︸ ︷
α-stable Lévy sheet,

1 < α < 2 ︷ ︸︸ ︷
α+-stable Lévy slide,

1 < α < 2− p

︸ ︷︷ ︸
FBSheet(H+, 1/2),

2− p ≤ α < 2

?

‘intermediate Poisson−’

?

‘intermediate Poisson+’

Figure: Vγ en fonction de γ variant de 0 à ∞, 1 < α < 2, 0 < p < 1.

Tout d’abord, nous obtenons {Vγ, γ > 0} avec deux points de transition

γ− := 1− p
α− (1− p) < γ+ := α− p

p
,

ceci est une nouvelle caractéristique de la dépendance spatiale par rapport aux résultats
obtenus dans [89,90], où l’unicité du point de transition a été prouvée pour certains champs
gaussiens, des modèles autorégressifs agrégés sur les plus proches voisins. En raison de la
symétrie du modèle de germes-grains aléatoire dans (5), les limites dans (7) sont symétriques
sous le changement simultané x↔ y, γ ↔ 1/γ, p↔ 1−p, et une transformation de réflexion
de B. Cette symétrie se reflète dans la figure, où la région gauche 0 < γ ≤ γ− et la région
droite γ+ ≤ γ <∞, y compris les points de transition γ±, sont symétriques par rapport aux



Introduction 20

transformations ci-dessus. La région du milieu γ− < γ < γ+ dans la figure correspond à un
drap de Lévy α-stable. Pour γ > γ+, les limites dans (7) présentent une dichotomie selon
les paramètres α, p. Si 2 − p ≤ α < 2, alors le champ aléatoire Vγ est un drap brownien
fractionnaire de paramètre de Hurst (H+, 1/2), où H+ = (2− α+ p)/2p ∈ (1/2, 1), alors que
si 1 < α < 2 − p, on a Vγ(x, y) = xL(y), (x, y) ∈ R2

+, où L(y), y ∈ R2
+, est un processus de

Lévy α+-stable avec α+ := (α− p)/(1− p) > α. Cette dichotomie de Vγ pour γ > γ+ est liée
à la transition de X de la longue mémoire verticale vers la courte mémoire verticale: pour
n’importe quel T > 0,

∫
[−T,T ]×R

Cov(X(0, 0), X(t, s))dtds
=∞, 1 < α ≤ 2− p,
<∞, 2− p < α < 2.

Enfin, les limites «Poisson intermédiaire» au point γ = γ± ne sont pas stables, bien que les
champs soient infiniment divisibles, définis par des intégrales stochastiques par rapport à une
mesure aléatoire de Poisson sur R2 × R+ de mesure d’intensité cfdudvr−(1+α)dr

Nos résultats sont liés par exemple, à ceux obtenus dans [27, 35, 55, 70], où différents
régimes se produisent pour les modèles de trafic internet agrégés. Plus précisément, dans ces
études, on suppose que le trafic est généré par des sources indépendantes (copies du modèle
ON/OFF avec des durées à queue lourde) et l’objectif est d’obtenir la distribution limite du
trafic agrégé car l’échelle de temps et le nombre de sources ont tous deux tendance à tendre
vers ∞, éventuellement à des taux différents. Dans Théorèmes 7.9, 7.10, nous étendons les
travaux mentionnés ci-dessus et obtenons la distribution limite du processus de charge agrégé

A−1
T

∫ Tx

0
(W (t)− EW (t))dt, x ≥ 0,

quand T →∞, où AT →∞ est la normalisation et

W (t) :=
∑
i

(R1−p
i ∧ T β)1(ui < t ≤ ui +Rp

i ), t ≥ 0, (8)

où {ui, Ri} est un processus ponctuel de Poisson sur R × R+ d’intensité T γduf(r)dr avec
f vérifiant (6) et 0 < p ≤ 1, 0 < γ < ∞, 0 < β ≤ ∞ sont arbitraires. La quantité W (t)
définie en (8) représente la charge au temps t transmise par les sources connectées au temps
ui et transmettant avec un taux R1−p

i ∧ T β pendant l’intervalle de temps (ui, ui + Rp
i ]. On

remarque que T β joue le rôle du taux de transmission maximum et T γ est l’intensité de la
source. Le cas p = 1 dans (8) correspond à un taux constant pour le modèle file M/G/∞. Le
processus de charge dans (8) est étroitement liée au modèle germes-grains avec B = (0, 1]2.
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Introduction

Long-range dependence (also called long memory) is a well-established empirical fact
observed in diverse scientific disciplines and applied fields, including hydrology, astronomy,
environmental sciences, economics and finance, communication networks, see [7,8,29] for data
examples and numerous references on the subject. It refers to the persistence of dependence
between observations that are far apart in time or space. In mathematical framework, long-
range dependence usually means the property of a stationary process, when its covariance
series is not absolutely convergent. To develop statistical methodology for long-range depen-
dent data is of great importance. Given the difficulty to specify the law of sample statistics,
a significant part of statistical procedures relies on limit theorems for sums of observations or
their functions. However, asymptotic results and thus statistical inference under long-range
dependence may differ very much from the classical case of i.i.d. random variables. This
thesis is devoted to limit theorems for spatio-temporal models with long-range dependence.

Aims and problems. We summarize briefly the problems studied in this doctoral thesis.
In Chapter 3 we discuss a joint temporal and contemporaneous aggregation of N inde-

pendent copies X1, . . . , XN of AR(1) process X with random autoregressive coefficient a.
Given the point-wise sum of X1, . . . , XN , we look for the limit distribution of its normalized
partial sums process as both N and time scale n tend to infinity. Under assumption that a
has a density, regularly varying near the unit root a = 1 with index β ∈ (−1, 1), we show
that different limit processes exist if N1/(1+β)/n tends to (i) ∞, (ii) 0, (iii) µ ∈ (0,∞). We
compare our results to those obtained by [35, 70], where three distinct limit regimes appear
for cumulative network traffic generated by N independent sources at time scale n.

Chapter 4 complements Chapter 3 as we solve the identical problem for AR(1) processes
with i.i.d. random autoregressive coefficients, but all driven by common innovations. Under

21
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the same assumption on the density of autoregressive coefficient, for β ∈ (−1/2, 0) we obtain
different limit distribution of normalized aggregated partial sums process if N1/(1+β)/n tends
to (i) ∞, (ii) 0, (iii) µ ∈ (0,∞).

In Chapter 5 we discuss estimation of the distribution function G of the autoregressive
coefficient from N random-coefficient AR(1) series each of length n. And contrary to [9,
92], we take a nonparametric approach to the problem. We estimate G by the empirical
distribution function of lag 1 sample autocorrelations of individual AR(1) processes, which
are themselves estimates of unobservable autoregressive coefficients. We study the limit of
the corresponding empirical process under some conditions on regularity of G and on the
relative rate how fast N and n tend to infinity. We apply the obtained result to testing
with Kolmogorov–Smirnov statistic both simple and composite hypotheses that G equals
the beta distribution function. We perform a simulation study to compare the finite-sample
performance of our test and its parametric analogue due to [9].

In Chapter 6 we consider a random field X defined as a nonlinear function (Appell
polynomial) of a Z2-indexed random field Y . Let Y itself be linear, more precisely, a moving
average of Z2-indexed standardized i.i.d. r.v.s with deterministic coefficients decaying slowly
(so as to induce long-range dependence in Y ) and possibly at different rate along horizontal
and vertical directions. For a nonlinear random field X, we study the limiting distribution
of its normalized partial sums over rectangles with sides growing at rates O(λ) and O(λγ) as
λ → ∞ for arbitrary γ > 0. We aim to find the limiting random fields for all γ > 0. The
main question is if there exists a change-point γ0 > 0 such that the limiting random fields do
not depend on γ but differ for γ > γ0 and γ < γ0 and if so under what conditions. We extend
the results of [89, 90], where this phenomenon, referred to as scaling transition, appears for
some linear long-range dependent random fields.

In Chapter 7 we consider a R2-indexed random field X, the so-called random grain model,
that counts sets, which are uniformly scattered on the plane and of infinite variance in area
so that to induce long-range dependence in X. Our aim is to obtain the limiting random
field of normalized partial integrals of the centered X over rectangles with sides growing at
rates O(λ) and O(λγ) as λ → ∞ for arbitrary γ > 0. We thus extend results on isotropic
scaling (γ = 1 case) due to [53]. Moreover, we investigate the total accumulated workload
from a generalized M/G/∞ model and relate its asymptotics to the results obtained for X.

The novelty of the results in the thesis:

• three different limit regimes identified in the scheme of joint temporal-contemporaneous
aggregation for random-coefficient AR(1) processes; new limit process in the ‘interme-
diate’ regime and its properties;

• proof that the empirical process, based on lag 1 sample autocorrelations of individual
random-coefficient AR(1) processes, converges weakly to a generalized Brownian bridge;

• proof that nonlinear random fields may exhibit scaling transition;
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• proof that two change-points may exist in the family of scaling limits (for a random
grain model).

Publications. This doctoral thesis contains the following research articles, which have been
co-authored:

1. V. Pilipauskaitė, D. Surgailis. Joint temporal and contemporaneous aggregation of
random-coefficient AR(1) processes. Stochastic Process. Appl. 124(2):1011–1035, 2014.

2. V. Pilipauskaitė, D. Surgailis. Joint aggregation of random-coefficient AR(1) processes
with common innovations. Statist. Probab. Lett. 101:73–82, 2015.

3. V. Pilipauskaitė, D. Surgailis. Anisotropic scaling of the random grain model with
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2
Literature review

In this chapter we review the most important concepts and some results related to the
later parts of the thesis and give references for their in-depth coverage.

2.1 Long-range dependence
A T -indexed stochastic process X is a collection {X(t), t ∈ T} of random variables

(r.v.s), where T ⊆ Rd is the set of indices with d = 1 or 2 in the thesis. If d ≥ 2, X is usually
called a random field (RF) on T . The law (distribution) of X is completely determined
by its finite-dimensional distributions P(X(t1) ∈ A1, . . . , X(tm) ∈ Am) for all Borel sets
Ai ⊂ R, ti ∈ T , i = 1, . . . ,m and m ∈ N. A stochastic process X indexed by T = Zd
or Rd is called stationary if X and {X(t + t0), t ∈ T} have the same law for any t0 ∈ T .
In case of stationary X with EX2(0) < ∞, its mean function t 7→ EX(t) is constant and
its covariance function (t, s) 7→ Cov(X(t), X(s)) depends only on the difference t − s, since
Cov(X(t), X(s)) = Cov(X(0), X(t− s)) for any t, s ∈ T .

In the thesis, we study several examples of stationary X that may have long-range de-
pendence. We also refer to this property as long memory, which is a more common term for
processes indexed by Z in literature for time series analysis.

Definition 2.1. A stationary stochastic process {X(t), t ∈ Zd} with EX2(0) < ∞ and
covariance function r(t) := Cov(X(0), X(t)), t ∈ Zd, is said to be long-range dependent
(LRD) if ∑

t∈Zd
|r(t)| =∞,

25
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and short-range dependent (SRD) if∑
t∈Zd
|r(t)| <∞ and

∑
t∈Zd

r(t) 6= 0.

The case when ∑
t∈Zd
|r(t)| <∞ and

∑
t∈Zd

r(t) = 0

is referred to as negative dependence.

This definition easily extends to the Rd-indexed X.
By Bochner’s theorem, the covariance function of a stationary RFX on Zd with EX2(0) <

∞ has the following spectral representation:

r(t) =
∫

[−π,π)d
ei<t,x>F (dx), t ∈ Zd,

where F (dx) is a nonnegative finite measure on [−π, π)d called the spectral measure of X and
< t, x > is the scalar product of t and x. In most cases of interest, the spectral measure is
absolutely continuous w.r.t. the Lebesgue measure and is determined by its density function
f(x), x ∈ [−π, π)d called the spectral density of X, which can also describe the dependence
of X. In particular, the fact that the spectral density f is unbounded implies that X has
LRD, since the absolute convergence of the covariance series results in bounded f .

Definition 2.1 being limited to stationary processes with finite second moment, there are
other notions of LRD, see e.g. [22,44,94,95] and [77,86] with references therein. In the thesis
we refer to LRD in the sense of Definition 2.1, unless stated otherwise. In case d = 2, the
dependence of X may vary when quantified along different directions. This leads to a more
detailed classification of LRD/SRD properties by Definition 7.1 on page 143.

2.2 Random-coefficient AR(1) process
In Chapters 3–5 of the thesis, the following stochastic model plays an important role.

The process X = {X(t), t ∈ Z} is said to be an autoregressive process of order 1 (or AR(1))
with random coefficient if it is stationary and for every t satisfies

X(t) = aX(t− 1) + ζ(t), (2.1)

where innovations {ζ(t), t ∈ Z} are i.i.d. r.v.s with Eζ(0) = 0, Eζ2(0) = 1 and AR coefficient
a ∈ (−1, 1) is a r.v., independent of {ζ(t), t ∈ Z}. There exists a unique stationary solution
to this equation, given by the series

X(t) =
∑
s≤t

at−sζ(s), (2.2)
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see [87, Proposition 1]. The series converges conditionally a.s. and in L2 for almost every
a ∈ (−1, 1). Moreover, if

E
[ 1
1− a2

]
<∞,

then the series in (2.2) converges unconditionally in L2 and X has zero-mean and covariance
function

r(t) := EX(0)X(t) = E
[
a|t|

1− a2

]
, t ∈ Z.

See [92] for spectral properties of r(t) and some other properties of X.
Next, we discuss two types of aggregation considered in the thesis jointly for copies of

the process X in (2.2) and a related problem of estimating the underlying distribution of the
AR coefficient. Recent developments in aggregation and statistical inference for AR models
with focus on the long memory property can be found in the review [64] and the thesis [86].

2.2.1 Aggregation
Contemporaneous (or cross-sectional) aggregation refers to the point-wise summation of

processes Xi = {Xi(t), t ∈ Z}, i = 1, 2, . . . . The limit aggregated process X , if exists, is
defined as

{X (t), t ∈ Z} := (fdd) lim
N→∞

{
A−1
N

N∑
t=1

Xi(t), t ∈ Z
}
, (2.3)

where AN is some normalization. Granger [40] originated the idea that contemporaneous
aggregation may be a reason for the long memory phenomenon observed in macro-level
economic time series X .

To be specific, consider a huge population of heterogeneous ‘micro-agents’ (such as house-
holds or firms), each of which evolves according to a short memory AR(1) process Xi with
its own deterministic coefficient ai. Drawing a random sample from this population leads to
the assumption that AR coefficients ai are i.i.d. r.v.s. Following Granger [40], assume that
the common distribution of ai is continuous with the following density function of beta type

g(x) = 2
B(α, β)x

2α−1(1− x2)β−1, x ∈ (0, 1), (2.4)

where α > 0, β > 0. To rephrase this, the squared AR coefficient ai is beta distributed with
parameters (α, β).

Let Xi, i = 1, 2, . . . be independent copies of a random-coefficient AR(1) process X in
(2.2) under assumption (2.4) with β > 1, which guarantees EX2(0) < ∞. Then by the
classical CLT, the limit in (2.3) exists for AN =

√
N with X being a stationary Gaussian

process with the same second-order characteristics as those of the individual ‘micro-agent’,
i.e. X has zero-mean and covariance function EX (0)X (t) = EX(0)X(t) = r(t). If β ∈ (1, 2)
in (2.4), then r(t) ∼ const t1−β as t → ∞, implying that X has long memory. (Note that
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long memory of single X is not observable since X is indistinguishable from AR(1) series
with the same deterministic AR coefficient.)

Another limit arises in aggregation of dependent time series. Let Xi, i = 1, 2, . . . , be
random-coefficient AR(1) processes as X in (2.1), that have i.i.d. AR coefficients ai, but are
all driven by the same innovations {ζi(t), t ∈ Z} ≡ {ζ(t), t ∈ Z}. Assume (2.4) with β > 1/2.
In this case, under normalization AN = N the limit (in probability) aggregated process X
exists and can be written as X (t) := ∑

s≤t E[at−s]ζ(s), t ∈ Z, see [87, 111]. If β ∈ (1/2, 1),
the limit X has long memory, since EX (0)X (t) ∼ const t−2β+1 as t→∞.

Following Granger [40], many authors took up the topic of contemporaneous aggregation,
extending it to more general processes. We refer to [37,39,74,87,88,111,112], for instance.

Let us now introduce another type of aggregation. Temporal aggregation occurs when
the frequency at which we observe a variable is lower than the frequency of its generating
model. For a process Y = {Y (t), t ∈ Z} accumulating over time, we define its ‘stock’ as a
partial sums process

Sn(τ) :=
[nτ ]∑
t=1

Y (t), τ ≥ 0,

with Sn(0) := 0, whereas

Sn(τ)− Sn(τ − 1) =
nτ∑

t=n(τ−1)+1
Y (t), τ = 1, 2, . . . ,

represents a ‘flow’, measured per unit of time. Note that evolution of the partial sum process
Sn during a time interval [0, τ ] corresponds to an interval [0, nτ ] on the original finer time
scale for Y .

We may wonder which processes may occur as limits in temporal aggregation of Y as
n→∞. Under reasonably weak assumptions, Lamperti [58] showed that all possible limiting
processes of suitably normalized Sn are self-similar. Recall that a process V = {V (τ), τ ≥ 0}
is called self-similar, if for some H > 0,

{V (λτ), τ ≥ 0} fdd= {λHV (τ), τ ≥ 0} for all λ > 0.

In other words, V is invariant in distribution under certain simultaneous scaling of time and
space.
Theorem 2.1 (Lamperti [58]). Let {Y (t), t ∈ Z} be a stationary process and assume there
exist a sequence of positive numbers An →∞ such that

A−1
n

[nτ ]∑
t=1

Y (t) fdd→ V (τ), τ ≥ 0,

as n → ∞, where the limit process V := {V (τ), τ ≥ 0} is not identically zero and is
stochastically continuous. Then V is a H-self-similar process having stationary increments,
where H > 0 and the normalization An = nH`(n) for some slowly varying function ` at
infinity.
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The only H-self-similar Gaussian process with stationary increments is a fractional Brow-
nian motion. Let H ∈ (0, 1]. A Gaussian process {BH(τ), τ ≥ 0} with EBH(τ) ≡ 0 and
covariance function given by

EBH(τ1)BH(τ2) = 1
2(τ 2H

1 + τ 2H
2 − |τ1 − τ2|2H), τ1 ≥ 0, τ2 ≥ 0,

is called a standard fractional Brownian motion with (Hurst) index H.
Recall the limit X in (2.3) for independent copies of random-coefficient AR(1) process

under assumption (2.4) with β ∈ (1, 2). By [88, Theorem 3.1],

n−H
[nτ ]∑
t=1
X (t) fdd→ σBH(τ), τ ≥ 0,

where σ > 0 is a certain constant and BH is a standard fractional Brownian motion with
index H = (3− β)/2 ∈ (1/2, 1). A similar fact holds for random-coefficient AR(1) processes
driven by common innovations under assumption (2.4) with β ∈ (1/2, 1), see e.g. [87].

There are other classes of long memory processes Y . Limit theory for their partial sums
{Sn(τ), τ ≥ 0} can be found in books [8, Chapter 4], [36, Chapter 4]. The methods and
results differ significantly from the case when Y has short memory.

In the thesis temporal and contemporaneous aggregation are treated jointly. We look
for the limit distribution of the normalized joint aggregate (contemporaneously aggregated
partial sums) of random-coefficient AR(1) copies X1, . . . , XN as N and the time scale n tend
to infinity simultaneously.

2.2.2 Estimation of the distribution of the AR coefficient
A statistical problem naturally arises, such as recovering the distribution function G(x),

x ∈ [−1, 1], of the random AR coefficient. Estimation of G from the limit aggregated series
{X (0), . . . ,X (n)} was treated in [20,61] and some related results were obtained in [19,48,50].
However, we may expect a much more accurate estimate if individual series (panel data) are
available.

Consider N random-coefficient AR(1) series, each of length n + 1: {Xi(0), . . . , Xi(n)},
i = 1, . . . , N , which are independent copies of X in (2.1). Robinson [92] suggested to estimate
the parameters characterizing G by the method of moments. [92] identified moments of G in
terms of autocovariances of individual random-coefficient AR(1) processes:

µ(u) :=
∫ 1

−1
xudG(x) = r(u)− r(u+ 2)

r(0)− r(2)

where r(u) := EX(0)X(u), u = 0, . . . , n, can be estimated by

1
(n− u+ 1)N

n−u∑
t=0

N∑
i=1

Xi(t)Xi(t+ u),
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and proved the asymptotic normality of the corresponding estimators of µ(u), u = 1, . . . , n−2,
as N →∞, whereas n remains fixed, under assumption

∫ 1

−1

dG(x)
(1− x2)2 <∞,

which does not allow for long memory in X and the limit aggregated process X .
Beran et al. [9] considered independent copies Xi, i = 1, 2, . . . , of the process X =

{X(t), t = 0, 1, . . .}, satisfying the AR(1) equation (2.1) for all t ∈ N with initial value
|X(0)| ≤ C, EX(0) = 0, independent of the AR coefficient a and i.i.d. standard normal
innovations {ζ(t), t ∈ N}. Assume that a has a density function g given by (2.4) with
(α, β) ∈ (1,∞)2. (Recall X and the limit aggregated process X in (2.3) have long memory
if β ∈ (1, 2).) Given the panel random-coefficient AR(1) data {Xi(t), t = 0, . . . , n, i =
1, . . . , N}, [9] estimated (α, β) by the method of maximum likelihood. The idea of [9] about
the likelihood is to replace each unobservable ai, i = 1, . . . , N , by its estimate, which in turn
is a truncated version of lag 1 sample autocorrelation of the individual AR(1) process:

âi,n,κ := min(max(âi,n, κ), 1− κ), where

âi,n :=
∑n−1
i=0 Xi(t)Xi(t+ 1)∑n

i=0X
2
i (t) , κ > 0.

[9] proved the consistency of the corresponding maximum likelihood estimator of (α, β) and
its asymptotic normality with the convergence rate

√
N under the following conditions on

the length of series n and the truncation parameter κ: (log κ)2N−1/2 → 0,
√
Nκmin(α,β) → 0

and
√
Nκ−2n−1 → 0 as N, n→∞, κ→ 0.

[9] is the closest in spirit to Chapter 5, where we discuss nonparametric estimation of
the distribution function G of the AR coefficient from panel random-coefficient AR(1) data.
Furthermore, employing the idea of [9], we consider a different estimator for moments of G
and prove its asymptotic normality as N, n → ∞ under less restrictive condition on G in
contrast to [92].

2.3 Aggregation of network traffic models
To explain the observed self-similarity and LRD in network traffic measurements, the

following model has been proposed. Consider cumulative network traffic as an aggregate
of data streams from a large number of independent sources, where each source alternates
between ON and OFF states depending if it transmits data (at a constant rate 1) or not.
Then it is natural to analyze the total workload of high-speed network accumulated over time
and study the distribution of its fluctuations around cumulative average.

But firstly, let us introduce the ON/OFF process in a mathematical framework. Assume
the lengths of ON-periods {Xon, X1, X2, . . .} are i.i.d. non-negative r.v.s and the lengths
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of OFF-periods {Yoff , Y1, Y2, . . .} are i.i.d. non-negative r.v.s with the Pareto distribution
functions:

Fon(x) := P(Xon ≤ x) = 1− Conx
−αon , αon ∈ (1, 2), (2.5)

Foff(y) := P(Yoff ≤ y) = 1− Coffy
−αoff , αoff ∈ (1, 2),

where Con, Coff are finite positive constants (which can be replaced by arbitrary slowly varying
functions at infinity). Note that Xon, Yoff have finite means µon, µoff respectively, but their
variances are infinite so that to induce LRD in the ON/OFF process. We define the renewal
sequence {Tk, k = 0, 1, . . .} by

Tk :=
k∑
j=0

(Xj + Yj),

X0 := BX̃on, Y0 := BYoff + (1−B)Ỹoff ,

where B is a Bernoulli r.v. with P(B = 1) = 1 − P(B = 0) = µon/(µon + µoff) and X̃on, Ỹoff
have distribution functions

P(X̃on ≤ x) = 1
µon

∫ x

0
(1− Fon(u))du, P(Ỹoff ≤ y) = 1

µoff

∫ y

0
(1− Foff(u))du,

respectively. Assume all B, X̃on, Ỹoff , {Xon, X1, X2, . . .}, {Yoff , Y1, Y2, . . .} are mutually inde-
pendent. Finally, we define a stationary ON/OFF process W = {W (t), t ≥ 0} as

W (t) := 1(0 ≤ t < X0) +
∞∑
k=0

1(Tk ≤ t < Tk +Xk+1). (2.6)

In other words, W (t) = 1 if time t is in the ON-period, W (t) = 0 if time t is in the OFF-
period. For αon < αoff , we have r(t) := Cov(W (0),W (t)) ∼ const t−(αon−1) as t→∞, see [43].
With the covariance function being absolutely nonintegrable, W exhibits LRD.

Now consider N independent copies Wi, i = 1, . . . , N , of the ON/OFF proces W =
{W (t), t ≥ 0} in (2.6). Let

SN,n(τ) :=
∫ nτ

0

N∑
i=1

Wi(t)dt, τ ≥ 0, (2.7)

be the total accumulated workload from N i.i.d. ON/OFF sources by time τ at scale n.
Taqqu et al. [105] studied the asymptotic behavior of SN,n = {SN,n(τ), τ ≥ 0} in the sequen-
tial scheme. More precisely, [105] proved that finite-dimensional distributions of properly
normalized and centered SN,n converge weakly to those of a fractional Brownian motion as
first the numberN of sources goes to infinity and then the time scale n converges to infinity. If
limits are taken in reversed order, the limit distribution of properly normalized and centered
SN,n corresponds to an infinite variance αon-stable Lévy motion. The increment process of
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fractional Brownian motion, fractional Gaussian noise, exhibits LRD. This is in contrast to
stable Lévy motion, which while self-similar too, has independent increments. In Mikosch et
al. [70], the double limits are replaced by a single scheme as N and n go to infinity simultane-
ously. Two limit regimes of fast connection rate and slow connection rate (see Theorem 2.2(i)
and (ii) below, respectively) are identified. In these two regimes fractional Brownian motion
and αon-stable Lévy motion reappear as limit processes of the scaled centered total ON/OFF
workload accumulated over time. [27] complemented the results of [70] by showing that a
third limit process arises at intermediate connection rate (see Theorem 2.2(iii)).

Theorem 2.2 (Mikosch et al. [70], Dombry, Kaj [27]). Let α := αon < αoff in (2.5). If
N →∞ and n→∞ so that

(i) N/nα−1 →∞, then

SN,n(τ)− ESN,n(τ)
N1/2n(3−α)/2

fdd→ σ∞BH(τ), τ ≥ 0,

where BH = {BH(τ), τ ≥ 0} is a standard fractional Brownian motion with index
H = (3− α)/2 and

σ2
∞ := Con

2µ2
offΓ(2− α)/(α− 1)

(µon + µoff)3Γ(4− α) ;

(ii) N/nα−1 → 0, then
SN,n(τ)− ESN,n(τ)

N1/αn1/α
fdd→ σ0L(τ), τ ≥ 0,

where L = {L(τ), τ ≥ 0} is an α-stable Lévy motion with EeiθL(1) = exp{−|θ|α(1 −
i sgn θ tan(πα/2))}, θ ∈ R, and

σ0 := µoff(Con/Cα)1/α

(µon + µoff)1+1/α , Cα := 1− α
Γ(2− α) cos(πα/2);

(iii) N/nα−1 → cα−1(µon + µoff)/Con, then

SN,n(τ)− ESN,n(τ)
n

fdd→ µoff

µon + µoff
cZ(τ/c), τ ≥ 0,

where Z = {Z(τ), τ ≥ 0} is characterized by the cumulant generating function of its
finite-dimensional distributions.

The ‘intermediate’ process Z = {Z(τ), τ ≥ 0} is zero-mean, non-Gaussian and non-stable
with stationary increments. It is not self-similar and has a representation as

Z(τ) =
∫
R×R+

{ ∫ τ

0
1(u ≤ t < u+ x)dt

}
M̃(dx, du),
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where M̃(dx, du) := M(dx, du)− αx−α−1dxdu and M(dx, du) is a Poisson random measure
on R+ × R with intensity αx−α−1dxdu. Other properties of Z are discussed in [34, 35]. In
particular, employing the stochastic-integral representation of Z, Gaigalas [34] showed that
the process is locally and globally asymptotically self-similar with BH and L as its tangent
limits. So Z can be viewed as a bridge between the limiting processes in cases (i) and (ii).

Similar limit theorems as for the ON/OFF hold for other network traffic models, e.g.
renewal-reward process, M/G/∞ queue (or infinite source Poisson process), see [54,55,68,70,
83], with Gaigalas, Kaj [35] being the first to obtain the limit Z at intermediate connection
rate for the sum of independent scaled renewal processes.

In Chapters 3, 4 of the thesis we discuss joint aggregation of type (2.7) for copies of
random-coefficient AR(1) process, which has a very different dependence structure from the
above-mentioned models.

Finally, let us introduce another popular network traffic model related to the thesis.
M/G/∞ queue Wλ = {Wλ(t), t ≥ 0} describes a system where the arrivals are Markovian,
the service times follow some general distribution and there are infinitely many servers, so
jobs do not need to wait. More precisely, let Wλ(t) count the number of active sessions (or
sources in the network system) at time t. The sessions start at times {Tk, k ∈ Z}, which are
the points of a rate λ homogeneous Poisson process on R, and throughout each session data
are transmitted at rate 1. Assume the transmission durations (session lengths) {Xk, k ∈ Z}
are i.i.d. r.v.s with the distribution function Fon given by (2.5), independent of the starting
points of sessions. Then we define the workload process Wλ by

Wλ(t) :=
∞∑

k=−∞
1(Tk ≤ t < Tk +Xk), t ≥ 0. (2.8)

Similarly to the ON/OFF case, high variability in transmission durations causes LRD in the
rate at which work is offered: Cov(Wλ(0),Wλ(t)) ∼ const t−(αon−1) as t → ∞. The so-called
infinite source Poisson process

Sλ,n(τ) =
∫ nτ

0
Wλ(t)dt, τ ≥ 0,

represents the total accumulated workload by time τ at scale n. Note, as the session intensity
λ→∞ and n→∞ simultaneously, normalized and centered Sλ,n admits the same limits as
the total accumulated ON/OFF workload.

In Chapter 7 of the thesis we generalize the network traffic model Wλ in (2.8) for the
situation when the transmission rate is random and bound with its duration and then study
asymptotic behavior of the corresponding aggregated workload. Moreover, Chapter 7 of the
thesis treats a random grain model, whose analogue in dimension 1 the M/G/∞ queue is.
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2.4 Anisotropic scaling of random fields
Let X = {X(t, s), (t, s) ∈ Z2} be a stationary random field (RF). For arbitrary γ > 0 we

study the limit

A−1
λ,γ

[λx]∑
t=1

[λγy]∑
s=1

X(t, s) fdd→ Vγ(x, y), (x, y) ∈ R2
+, (2.9)

of the partial sums of X over increasing rectangles (0, λx] × (0, λγy] ∩ Z2 as λ → ∞, where
Aλ,γ → ∞ is a normalization. Provided γ 6= 1, the sides of the rectangles grow at different
rates O(λ) and O(λγ) as λ→∞, thus γ > 0 characterizes the anisotropy of scaling procedure.
Next, let us introduce some general properties of scaling limits in (2.9).

Proposition 2.3 (Puplinskaitė, Surgailis [90]). Let X = {X(t, s), (t, s) ∈ Z2} be a stationary
RF satisfying (2.9) for some γ > 0 and Aλ,γ = λH`(λ), where H > 0 and ` : [1,∞) → R+
is a slowly varying function at infinity. Then the limit RF Vγ = {Vγ(x, y), (x, y) ∈ R2

+} in
(2.9) satisfies the operator-scaling property:

{Vγ(λx, λγy), (x, y) ∈ R2
+}

fdd= {λHVγ(x, y), (x, y) ∈ R2
+} for all λ > 0. (2.10)

Moreover, Vγ has stationary rectangular increments: for any fixed (x0, y0) ∈ R2
+,

{Vγ((x0, x]× (y0, y]), x > x0, y > y0}
fdd= {Vγ((0, x− x0]× (0, y − y0]), x > x0, y > y0}
≡ {Vγ(x− x0, y − y0), x > x0, y > y0},

where the increment of Vγ on a rectangle (x0, x] × (y0, y] ⊂ R2
+ is defined as Vγ((x0, x] ×

(y0, y]) := Vγ(x, y)− Vγ(x0, y)− Vγ(x, y0) + Vγ(x0, y0).

Note (2.10) is a particular case of the operator-scaling RF property introduced in Biermé
et al. [12].

For many RFs, nontrivial Vγ in (2.9) exists for any γ > 0. In that case, with a given RF X
we can associate a one-parameter family {Vγ, γ > 0} of scaling limits, which characterizes the
dependence structure and large-scale properties of the underlying X. If {X(t, s), (t, s) ∈ Z2}
are i.i.d. standardized r.v.s, the scaling limit Vγ coincides with a standard Brownian sheet for
all γ > 0, i.e. {Vγ, γ > 0} consists of a single element. A similar fact holds for SRD RFs, see
e.g. [15, 31] and the references therein. Actually, limit theorems for SRD RFs often assume
a general shape of summation domain, the limit distribution being independent of the way
in which this region tends to Z2. However, a surprising phenomenon appears for many LRD
RFs X, which exhibit a dramatic change of their scaling behavior at some point γ0 > 0 in
the following sense.
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Definition 2.2 (Puplinskaitė, Surgailis [90]). We say that the RF X = {X(t, s), (t, s) ∈ Z2}
exhibits a scaling transition at γ0 > 0 such that

Vγ
fdd= V+ for all γ > γ0, Vγ

fdd= V− for all 0 < γ < γ0, (2.11)

V+
fdd
6= aV− for any a > 0.

If Vγ is the same for all γ > 0, then X does not exhibit scaling transition.
In other words, (2.11) says that scaling limits Vγ do not depend on γ for γ > γ+ and

γ < γ− and are different up to a multiplicative constant (the last condition is needed to
exclude a trivial change of the scaling limit by a linear change of normalization).

Scaling transition arises under joint temporal and contemporaneous aggregation of in-
dependent LRD processes in communication networks and economics, see [27, 35, 55, 70, 79],
also [90, Remark 2.3]. E.g., let {Xi(t) := Wi(t)−EWi(t), t ≥ 0}, i = 1, 2, . . . , be independent
copies of a centered ON/OFF process given by (2.6) with αon < αoff . Align them vertically to
define a RF X = {Xi(t), t ≥ 0, i = 1, 2, . . .} with ‘one-dimensional dependence’, exhibiting
scaling transition, since the limit distribution in

A−1
λ,γ

∫ λτ

0

[λγy]∑
i=1

Xi(t)dt fdd→ Vγ(τ, y), (τ, y) ∈ R2
+, as λ→∞,

changes from a stable Lévy sheet for 0 < γ < γ0 to a fractional Brownian sheet for γ >
γ0 := αon−1. Indeed, since Vγ has stationary rectangular increments, which are independent
in the vertical direction, the limit process {Vγ(τ, 1), τ ≥ 0} arising in Theorem 2.2(i)–(iii)
determines the distribution of Vγ for γ > γ0, 0 < γ < γ0 and γ = γ0, respectively. We observe
that for the individual ON/OFF process W , its properly normalized and centered partial
sums process tends to a stable Lévy motion, though W itself has a finite second moment
and exhibits LRD. We can expect to obtain scaling transition for independent copies of other
LRD processes if asymptotic behaviour of their partial sums differs from fractional Brownian
motion.

Recently, scaling transition has been observed for some classes of LRD Gaussian and
aggregated nearest-neighbor autoregressive RFs on Z2 in [89,90]. In a more general way, the
phenomenon has appeared for some RF on Zd with d ≥ 2 in [10]. We summarize briefly the
results of [89].

Let X = {X(t, s), (t, s) ∈ Z2} be a real-valued stationary Gaussian RF, having the
spectral representation

X(t, s) :=
∫

[−π,π]2
ei(tu+sv)

√
f(u, v)Z(du, dv), (2.12)

where Z(du, dv) is a complex-valued Gaussian random measure on [−π, π]2 with zero mean
and variance E|Z(du, dv)|2 = dudv and the spectral density is given by

f(u, v) = g(u, v)
(|u|2 + |v|2h2/h1)h1/2

, (u, v) ∈ [−π, π]2,
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where 0 < h1 ≤ h2 <∞, hi 6= 1, i = 1, 2, ∑2
i=1 1/hi > 1 and g ≥ 0 is bounded and continuous

at the origin with g(0, 0) > 0.
Recall that a zero-mean Gaussian RF BH1,H2 = {BH1,H2(x, y), (x, y) ∈ R2

+} is a standard
fractional Brownian sheet with Hurst index (H1, H2) ∈ (0, 1]2 if

EBH1,H2(x1, x2)BH1,H2(y1, y2) = 1
22

2∏
i=1

(x2Hi
i + y2Hi

i − |xi − yi|2Hi).

Theorem 2.4 (Puplinskaitė, Surgailis [89]). Assume X = {X(t, s), (t, s) ∈ Z2} in (2.12)
and set γ0 := h1/h2. Then for any γ > 0 the limit in (2.9) exists with

Vγ :=


V+, γ > γ0,

V−, γ < γ0,

Vγ0 , γ = γ0,

H(γ) :=


H+

1 + γ/2, h1 < 1, γ ≥ γ0,

1 + γH+
2 , h1 > 1, γ ≥ γ0,

1/2 + γH−2 , h2 < 1, γ ≤ γ0,

H−1 + γ, h2 > 1, γ ≤ γ0;

where H+
1 = (1+h1)/2, H+

2 = (1+h2−h2/h1)/2, H−2 = (1+h2)/2, H−1 = (1+h1−h1/h2)/2
and

V+ := σ+
h1,h2

BH+
1 ,1/2

, h1 < 1,
B1,H+

2
, h1 > 1;

V− := σ−h1,h2

B1/2,H−2
, h2 < 1,

BH−1 ,1
, h2 > 1;

and σ±h1,h2 are some positive constants and Vγ0 is a Gaussian RF given by its spectral repre-
sentation. As a consequence, the RF X exhibits scaling transition at γ0 = h1/h2.

In Theorem 2.4 the RFs V+ and V− have either independent, or invariant (completely
dependent) rectangular increments along one of the coordinate axes, whereas Vγ0 inherits the
dependence structure of the underlying X. This property of increments is characteristic of
limits V± in the presence of scaling transition.

However, for another class of LRD Gaussian RFs, [89] proved the absence of scaling
transition. To be precise, if X is defined by (2.12) with a spectral density given by

f(u, v) = g(u, v)
|u|2d1|v|2d2

, (u, v) ∈ [−π, π]2,

where 0 < di < 1/2, i = 1, 2, and g ≥ 0 is bounded and continuous at the origin with
g(0, 0) > 0, then, for all γ > 0, the scaling limit of X in (2.9) coincides with a fractional
Brownian sheet with Hurst index (d1 + 1/2, d2 + 1/2).

Results of this type contribute to the large-sample theory of strongly dependent spatial
data by showing that the limit distribution of simple statistics such as the sample mean may
depend on the relation between γ and γ0. And if so, these quantities need to be estimated
or decided in advance before applying the limit theorem.

Although general properties of {Vγ, γ > 0} are of interest, in the thesis we focus on
describing the anisotropic scaling limits for specific classes of RFs, see Chapters 6, 7.



3
Aggregation of independent
AR(1) processes

This chapter contains the article [79]. We discuss joint temporal and contemporaneous
aggregation of N independent copies of AR(1) process with random-coefficient a ∈ [0, 1)
when N and time scale n increase at different rate. Assuming that a has a density, regularly
varying at a = 1 with exponent −1 < β < 1, different joint limits of normalized aggregated
partial sums are shown to exist when N1/(1+β)/n tends to (i) ∞, (ii) 0, (iii) 0 < µ <∞. The
limit process arising under (iii) admits a Poisson integral representation on (0,∞)×C(R) and
enjoys ‘intermediate’ properties between fractional Brownian motion or random line limit in
(i) and sub-Gaussian limit in (ii).

3.1 Introduction

Since macroeconomic time series are obtained by aggregation of microeconomic variables,
an important issue in econometrics is establishing the relationship between individual (mi-
cro) and aggregate (macro) models. One of the simplest aggregation schemes deals with
contemporaneous aggregation of N independent copies Xi := {Xi(t), t ∈ Z}, i = 1, . . . , N ,
of stationary random-coefficient AR(1) process

X(t) = aX(t− 1) + ε(t), t ∈ Z, (3.1)

37
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with standardized i.i.d. innovations {ε(t), t ∈ Z} and a random coefficient a ∈ [0, 1), inde-
pendent of {ε(t), t ∈ Z} and such that E(1− a)−1 <∞. The limit aggregated process

N−1/2
N∑
i=1

Xi(t) fdd→ X (t), t ∈ Z, (3.2)

exists in the sense of weak convergence of finite-dimensional distributions, and is a Gaussian
process with zero mean and covariance function

E[X (0)X (t)] = E[X(0)X(t)] = E
[
a|t|

1− a2

]
, t ∈ Z. (3.3)

Granger [40] observed that for a particular type of beta-distributed random coefficient a, the
processes X and X may have slowly decaying autocovariance functions similarly as in the
case of ARFIMA models while normalized partial sums of X tend to a fractional Brownian
motion. Further results on aggregation of autoregressive models with finite variance were
obtained in Gonçalves and Gouriéroux [39], Zaffaroni [111], Oppenheim and Viano [74],
Celov et al. [19] and other papers. In economic interpretation, individual processes Xi,
i = 1, . . . , N , in (3.2) are obtained by random sampling from a huge and heterogeneous
‘population’ of independent ‘microagents’, each evolving according to a short memory AR(1)
process with its own deterministic parameter a ∈ [0, 1), the population being characterized
by the distribution (frequency) of a across the population. Thus, aggregation of (randomly
sampled) short memory processes may provide an explanation of long memory in observed
macroeconomic time series. See also [8, page 85], [111], [112, page 238].

In this chapter we consider the limit behavior of sums

SN,n(τ) :=
N∑
i=1

[nτ ]∑
t=1

Xi(t), τ ≥ 0, (3.4)

where Xi, i = 1, . . . , N , are the same as in (3.2). The sum in (3.4) represents joint temporal
and contemporaneous aggregate of N individual AR(1) evolutions (3.1) at time scale n. Our
main object is the joint aggregation limit of {A−1

N,nSN,n(τ), τ ≥ 0} in distribution, where
AN,n are some normalizing constants and both N and n increase to infinity, possibly at
different rate. We also discuss the iterated limits of {A−1

N,nSN,n(τ), τ ≥ 0} when first n→∞
and then N → ∞, and vice-versa. Related problems for some network traffic models were
studied in Willinger et al. [110], Taqqu et al. [105], Mikosch et al. [70], Gaigalas and Kaj [35],
Pipiras et al. [83], Dombry and Kaj [27] and other papers. In these papers, the role of AR(1)
processes Xi in (3.4) is played by independent and centered ON/OFF processes, renewal or
renewal-reward processes, or M/G/∞ queues with heavy-tailed activity periods.

Let us describe the main results of this chapter. Similarly to [88, 111], we assume that
the r.v. a ∈ [0, 1) in (3.1), or the mixing distribution, has a probability density function φ
such that

φ(x) = ψ(x)(1− x)β, x ∈ [0, 1), (3.5)



39 3.1. Introduction

where β > −1 and ψ is an integrable function on [0, 1) having a limit limx→1 ψ(x) = ψ1 > 0.
Under the above condition with 0 < β < 1, it immediately follows from the Tauberian
theorem [33, Chapter 13, §5, Theorem 3] that the covariance in (3.3) decays as ct−β, t →
∞, with c = (ψ1/2)Γ(β), implying that partial sums of the Gaussian process X in (3.2)
normalized by nH with H := 1− (β/2) ∈ (1/2, 1), tend to a fractional Brownian motion BH

with Hurst parameter H (see [103]). Hence it follows that BH coincides with the iterated
limit of {n−HN−1/2SN,n(τ), τ ≥ 0} when N →∞ first, followed by n→∞. However, when
the order of the above limits is reversed, the limit is a sub-Gaussian (1 + β)-stable process
defined in (3.11). See Theorem 3.1 for rigorous formulations.

Let now N, n increase simultaneously so as

N1/(1+β)

n
→ µ ∈ [0,∞], (3.6)

leading to the three cases (i)–(iii):

Case (i): µ =∞, Case (ii): µ = 0, Case (iii): 0 < µ <∞. (3.7)

Our main result is Theorem 3.2 which says that under (3.5) and (3.6), the ‘simultaneous
limit’ of {A−1

N,nSN,n(τ), τ ≥ 0} exists and is different in all three Cases (i)–(iii), namely, it
agrees with the above iterated limits in the extreme Cases (i) and (ii), while in Case (iii)
it is written as {µ1/2Z(τ/µ), τ ≥ 0}, where the process Z corresponding to ‘intermediate
scaling’ in (iii) is defined in (3.31) as a stochastic integral w.r.t. a Poisson random measure
on the product space R+ ×C(R) with mean ψ1x

βdx× PB, where PB is the Wiener measure
on C(R). This process enjoys several ‘intermediate’ properties between the limits in (i) and
(ii) and is discussed in Section 3.3 in detail.

Theorems 3.1 and 3.2 can be compared to the results in [27, 35, 55, 70, 83] and other
papers, with [55] probably being the closest in spirit to the present work. In particular,
Mikosch et al. [70] discuss the ‘total accumulated input’ AN,n := {∑N

i=1
∫ nτ
0 Wi(t)dt, τ ≥ 0}

from N independent ‘sources’ at time scale n. The aggregated inputs Wi, i = 1, . . . , N ,
are i.i.d. copies of ON/OFF process W := {W (t), t ≥ 0}, alternating between 1 and 0 and
taking value 1 if t is in an ON-period and 0 if t is in an OFF-period, the ON- and OFF-
periods forming a stationary renewal process having heavy-tailed lengths with respective tail
parameters αon, αoff ∈ (1, 2), αon < αoff , see [70] for details. The role of condition (3.6) is
played in the above papers by

N

nαon−1 → µ ∈ [0,∞],

leading to the three cases analogous to (3.7):

Case (i’): µ =∞, Case (ii’): µ = 0, Case (iii’): 0 < µ <∞,

known as the ‘fast growth condition’, the ‘slow growth condition’ and the ‘intermediate
growth condition’, respectively. The limit of (normalized) ‘accumulated input’ AN,n in
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Cases (i’) and (ii’) was obtained in [70], as fractional Brownian motion and αon-stable Lévy
process, respectively. The ‘intermediate’ limit in Case (iii’) was identified in [34,35] and [27]
who showed that this process can be regarded as a ‘bridge’ between the limiting processes in
Cases (i’) and (ii’), and can be represented as a stochastic integral w.r.t. a Poisson random
measure on R+ × R, see (3.49), although distinctly different from the corresponding process
Z arising in Case (iii). Related results for some other heavy-tailed duration-based models
were obtained in [52,55,68,83] and elsewhere.

The differences between the respective limiting processes in this chapter and the above
mentioned works can be partially explained by the fact that the ‘memory mechanism’, or
dependence structure, of the AR(1) model is very different from that of telecommunication
models. Contrary to the latter models, the random-coefficient AR(1) process is non-ergodic
(each individual Xi picks a random value a and sticks to it forever), the long memory being
a consequence of a sufficiently high concentration of a’s near the unit root 1. This ‘memory
mechanism’ is very different from the M/G/∞model where each session gets its own duration
and the long memory is essentially due to the occurrence of a few very long durations. The
above differences are reflected in different limit behaviors of the partial sums of the individual
processes (a discontinuous stable Lévy process with independent increments in the latter case
and a continuous sub-Gaussian process with conditionally independent and unconditionally
dependent increments in the former case), extending also to the ‘slow growth’ limits in (ii)
and (ii’). On the other hand, the ‘fast growth’ limits in (i) and (i’) coincide up to a choice
of parameters, since in both cases Gaussian fluctuations play a dominating role.

In the above context, an interesting open problem concerns possible existence and descrip-
tion of an ‘intermediate limit regime’ for double sums (3.4), whereXi, i = 1, 2, . . . , are general
independent and identically distributed processes such that the iterated limits of (3.4) exist
and are different. A particular case of such Xi is the regime-switching AR(1) process with
covariance long memory and Lévy stable partial sums behavior studied in [62,65]. This pro-
cess is of particular interest since it combines the dependence structures of random-coefficient
AR(1) and duration models. Other possible generalizations of our results concern random-
coefficient AR(1) process with infinite variance [88] and/or common innovations [87, 111],
autoregressive random fields [90]. See also Remark 3.5.

3.2 Main results

Let {ε, ε(t), t ∈ Z} be i.i.d. r.v.s with Eε = 0, Eε2 = 1, and a ∈ [0, 1) be a r.v. independent
of {ε(t), t ∈ Z}. It is easy to show [88, Proposition 2.1] that there exists a unique stationary
solution to the AR(1) equation (3.1) given by

X(t) =
∞∑
k=0

akε(t− k), t ∈ Z. (3.8)
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The series in (3.8) converges conditionally almost surely and in L2 given a ∈ [0, 1). Moreover,
if

E
[ 1
1− a

]
<∞,

then the series in (3.8) converges in L2 and defines a stationary process with zero mean and
covariance in (3.3).

Consider the following stochastic integral representation of a fractional Brownian motion
B1−(β/2) := {B1−(β/2)(τ), τ ≥ 0}:

B1−(β/2)(τ) :=
∫
R+×R

(f(x, τ − s)− f(x,−s))Z(dx, ds), where (3.9)

f(x, t) :=
(1− e−xt)/x, if x > 0 and t > 0,

0, otherwise,

w.r.t. a Gaussian random measure Z(dx, ds) on R+×R with zero mean, variance ν(dx, ds) :=
ψ1x

βdxds and the characteristic function E exp{iθZ(A)} = exp{−θ2ν(A)/2} for each Borel
set A ⊂ R+ × R with ν(A) < ∞. Here 0 < β < 1 and ψ1 is the asymptotic constant from
(3.5). The representation (3.9) appeared in Puplinskaitė and Surgailis [88, equation (1.5)],
as a particular case of a new class of stable self-similar processes. It is related to the super-
position of Ornstein-Uhlenbeck processes discussed in Barndorff-Nielsen [6, Section 6], see
also Section 3.3. It easily follows that

EB1−(β/2)(u)B1−(β/2)(v)

=
∫
R+×R

(f(x, u− s)− f(x,−s))(f(x, v − s)− f(x,−s))ν(dx, ds)

= Γ(β)ψ1

2(2− β)(1− β)(u2−β + v2−β − |u− v|2−β), u, v ≥ 0. (3.10)

When −1 < β < 0, let Vβ be a symmetric 2(1 +β)-stable r.v. with characteristic function
given in Proposition 3.5(ii). Let V0

d= N (0, ψ1/2) be a normal r.v. Thus, the process
{Vβτ, τ ≥ 0} is a random 2(1 + β)-stable line for any −1 < β ≤ 0.

Next, let Wβ > 0, −1 < β < 1, be a (1 + β)/2-stable r.v. with Laplace transform
Ee−θWβ = exp{−kβθ(1+β)/2}, θ ≥ 0, and kβ > 0 defined at (3.60). Let {B(τ), τ ≥ 0} be a
standard Brownian motion, EB2(τ) = τ , independent of r.v. Wβ. The process

Wβ(τ) := W
1/2
β B(τ), τ ≥ 0, (3.11)

has (1 + β)-stable finite-dimensional distributions and stationary increments. According to
the terminology in [96, Section 3.8], Wβ is called a sub-Gaussian process.
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Finally, we define a random process Zβ := {Zβ(τ), τ ≥ 0} depending on parameter
−1 < β < 1, through its finite-dimensional characteristic function:

E exp
{

i
m∑
j=1

θjZβ(τj)
}

= exp
{
ψ1

∫
R+

(
e−

1
2

∫
R(
∑m

j=1 θj(f(x,τj−s)−f(x,−s)))
2ds − 1

)
xβdx

}
, (3.12)

where θj ∈ R, τj ∈ R+, j = 1, . . . ,m, m ∈ N, and f is given in (3.9). A Poisson stochastic
integral representation and various properties of Zβ are discussed in Section 3.3.

In Theorems 3.1 and 3.2, SN,n(τ) is the double sum in (3.4) of independent copies of the
random-coefficient AR(1) process X (3.8) and the mixing density satisfies (3.5).
Theorem 3.1. The iterated limits of the normalized aggregated partial sums process SN,n are
given by

(fdd) lim
n→∞

lim
N→∞

n(β/2)−1N−1/2SN,n(τ) = B1−(β/2)(τ) if β ∈ (0, 1), (3.13)

(fdd) lim
n→∞

lim
N→∞

n−1N−1/2(1+β)SN,n(τ) = Vβτ if β ∈ (−1, 0), (3.14)

(fdd) lim
n→∞

lim
N→∞

n−1(N logN)−1/2SN,n(τ) = V0τ if β = 0, (3.15)

(fdd) lim
N→∞

lim
n→∞

N−1/(1+β)n−1/2SN,n(τ) = Wβ(τ) if β ∈ (−1, 1). (3.16)

Theorem 3.2. The simultaneous limits of the normalized aggregated partial sums process
SN,n when N, n→∞ as in (3.6) are given in respective Cases (i)–(iii) of (3.7) by

N−1/2n−1+(β/2)SN,n(τ) fdd→ B1−(β/2)(τ) in Case (i) if β ∈ (0, 1), (3.17)
N−1/2(1+β)n−1SN,n(τ) fdd→ Vβτ in Case (i) if β ∈ (−1, 0), (3.18)
(N log(N/n))−1/2n−1SN,n(τ) fdd→ V0τ in Case (i) if β = 0, (3.19)

N−1/(1+β)n−1/2SN,n(τ) fdd→Wβ(τ) in Case (ii) if β ∈ (−1, 1), (3.20)
N−1/(1+β)n−1/2SN,n(τ) fdd→ µ1/2Zβ(τ/µ) in Case (iii) if β ∈ (−1, 1). (3.21)

Since higher β means smaller chances for the individual AR(1) process being close to the
unit root a = 1, hence having less memory, it is natural to expect that this tendency should
be reflected in the limit behavior of the partial sums SN,n. It is most clearly seen in (3.17),
as the ‘memory’ of the fractional Brownian motion B1−(β/2) decreases with β increasing. On
the other hand, in (3.18) and (3.20), a change of β does not alter the dependence structure of
the limit processes Vβτ and Wβ but rather affects their variability since β is directly related
to the stability index of these processes. These tendencies can be also observed although less
clearly in the ‘intermediate’ limit of (3.21). However, when β > 1 these differences disappear
and the joint limit of the partial sums process is a usual Brownian motion independent of β
and the mutual increase rate of N and n; see below.



43 3.3. The ‘intermediate’ process

Theorem 3.3. Let β > 1. Then, as N, n→∞ in arbitrary way,

N−1/2n−1/2SN,n(τ) fdd→ σB(τ) with σ2 := E(1− a)−2 <∞.

Remark 3.1. The question about weak convergence in the Skorohod space D[0, 1] in The-
orems 3.1–3.3 remains generally open, although in some cases ((3.13), (3.17)) the weak con-
vergence follows rather easily by the Kolmogorov criterion.

3.3 The ‘intermediate’ process
This section discusses the definition and various properties of the process Zβ arising in

the ‘intermediate’ limit (iii) of Theorem 3.2. Let X be a measurable space with a σ-finite
measure µ defined on a σ-algebra F(X) of measurable subsets of X. Let M be a Poisson
random measure on X with mean µ and M̃ =M−µ be the centered Poisson random measure.
The stochastic integrals

∫
X f(x)M(dx) ≡

∫
f(x)M(dx) and

∫
X f(x)M̃(dx) ≡

∫
f(x)M̃(dx)

are defined for any measurable function f : X→ R with
∫

1∧|f(x)|µ(dx) <∞ and
∫
|f(x)|∧

|f(x)|2µ(dx) < ∞, respectively, as limits in probability of suitable integral sums, and their
characteristic functions are given by

Eeiθ
∫
f(x)M(dx) = exp

{ ∫
(eiθf(x) − 1)µ(dx)

}
,

Eeiθ
∫
f(x)M̃(dx) = exp

{ ∫
(eiθf(x) − 1− iθf(x))µ(dx)

}
, θ ∈ R. (3.22)

We have E
∫
f(x)M̃(dx) = 0, f ∈ L1(X), and E[

∫
f(x)M̃(dx)]2 =

∫
f 2(x)µ(dx), f ∈ L2(X).

Moreover,

E
∣∣∣∣ ∫ f(x)M̃(dx)

∣∣∣∣p <∞⇐⇒

∫

(|f(x)|2 ∧ |f(x)|p)µ(dx) <∞, 1 ≤ p ≤ 2,∫
(|f(x)|2 ∨ |f(x)|p)µ(dx) <∞, p ≥ 2;

(3.23)

see Rajput and Rosinski [91], while

E
∣∣∣∣ ∫ f(x)M(dx)

∣∣∣∣p ≤ C(p)‖f‖pp, 0 < p ≤ 1,

E
∣∣∣∣ ∫ f(x)M̃(dx)

∣∣∣∣p ≤ C(p)‖f‖pp, 1 ≤ p ≤ 2, (3.24)

where ‖f‖pp :=
∫
X |f(x)|pµ(dx) and the constant C(p) <∞ depends only on p. For step func-

tions f = ∑∞
j=1 fj1(· ∈ Aj) ∈ Lp(X) taking values fj ∈ R on Aj ∈ F(X) with µ(Aj) <∞, the

first inequality of (3.24) with C(p) = 1 follows from |∑∞j=1 fjM(Aj)|p ≤
∑∞
j=1 |fj|p|M(Aj)|p

and E|M(Aj)|p ≤ EM(Aj) = µ(Aj). The second inequality of (3.24) with C(p) = 22−p ≤ 2
is obtained in [99, Theorem 3.1], by interpolation between L1(X) and L2(X).
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Consider a family of ‘elementary’ integrated Ornstein-Uhlenbeck processes

z(τ ;x) :=
∫ τ

0
du
∫
R

e−x(u−s)1(u > s)dB(s)

=
∫
R

(
f(x, τ − s)− f(x,−s)

)
dB(s), τ ∈ R, x > 0, (3.25)

where B := {B(s), s ∈ R} is a standard Brownian motion and f is defined in (3.9). For each
x > 0 the process {z(τ ;x), τ ∈ R} is a.s. continuously differentiable on R and its derivative
z′(τ ;x) = dz(τ ;x)/dτ satisfies the Langevin equation

dz′(τ ;x) = −xz′(τ ;x)dτ + dB(τ). (3.26)

Accordingly, the joint characteristic function of z(τj;xj), τj ∈ R, xj ∈ R, j = 1, . . . ,m,
m ∈ N, is given by

E exp
{

i
m∑
j=1

θjz(τj;xj)
}

= exp
{
− 1

2

∫
R

( m∑
j=1

θj
(
f(xj, τj − s)− f(xj,−s)

))2
ds
}
. (3.27)

W.l.g., we may assume that the process {z(τ ;x), τ ∈ R, x > 0} is defined on the space C(R)
equipped with the Wiener measure PB induced by the Brownian motion B. In other words,
for any cylinder set A = {ζ(·) ∈ C(R) : ζ(τj) ∈ Ij, j = 1, . . . ,m}, τj ∈ R, and intervals
Ij ⊂ R, j = 1, . . . ,m, we have

PB(A) = P(B(τj) ∈ Ij, j = 1, . . . ,m). (3.28)

Let M(dx, dB) be a Poisson random measure on the product space R+ × C(R) with the
mean

µ(dx, dB) = EM(dx, dB) = ψ1x
βdx× PB(dB(·)), (3.29)

where PB is defined at (3.28), and let

M̃(dx, dB) :=M(dx, dB)− µ(dx, dB)

be the centered Poisson measure. Then, Zβ is defined as a stochastic integral with respect
to the above Poisson measure:

Zβ(τ) :=
∫

(0,1)×C(R)
z(τ ;x)M(dx, dB) +

∫
[1,∞)×C(R)

z(τ ;x)M̃(dx, dB), τ ≥ 0, (3.30)

As shown below, for −1/2 < β < 1 the two integrals can be combined into a single one:

Zβ(τ) =
∫
R+×C(R)

z(τ ;x)M̃(dx, dB) (3.31)

=
∫
R+×C(R)

{ ∫
R

(
f(x, τ − s)− f(x,−s)

)
dB(s)

}
M̃(dx, dB).
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Proposition 3.4. (i) The process Zβ in (3.30) is well-defined for any −1 < β < 1. It
has stationary increments, infinitely divisible finite-dimensional distributions and the joint
characteristic function is given in (3.12).
(ii) E|Zβ(τ)|p <∞ for any p < 2(1 + β), 0 < p < 4, and EZβ(τ) = 0 for −1/2 < β < 1.
(iii) If 0 < β < 1 then EZ2

β(τ) <∞ and

E[Zβ(τ1)Zβ(τ2)] = Γ(β)ψ1

2(2− β)(1− β)(τ 2−β
1 + τ 2−β

2 − |τ1 − τ2|2−β), τ1, τ2 ≥ 0. (3.32)

(iv) For −1/2 < β < 1, the process Zβ in (3.31) has a.s. continuous trajectories.

Proof. (i) It suffices to check that I1 :=
∫

(0,1)×C(R) µ(dx, dB) = C
∫ 1

0 x
βdx < ∞ and I2 :=∫

[1,∞)×C(R) |z(τ ;x)|2 µ(dx, dB) = C
∫∞

1 EB|z(τ ;x)|2xβdx <∞.We have EB|z(τ ;x)|2 = σ2(τ ;x),
where

σ2(τ ;x) :=
∫ τ

−∞

(
f(x, τ − s)− f(x,−s)

)2
ds ≤ C

((xτ) ∧ (xτ)3

x3 + (1− e−xτ )2

x3

)
≤ C

((xτ) ∧ (xτ)3

x3 + 1 ∧ (xτ)2

x3

)
≤ Cτ

x2 (1 ∧ (τx)). (3.33)

Thus, I2 < ∞ when β < 1. (3.12) follows from (3.22), (3.27) and Ez(τ ;x) = 0. The
stationarity of increments is immediate from (3.12).
(ii) Obviously, it suffices to show E|Zβ(τ)|p <∞ for p < 2(1+β) sufficiently close to 2(1+β)
such that 1 + β < p < 2(1 + β). Let first 0 < p ≤ 2. Then using (3.24) we have E|Zβ(τ)|p ≤
C
∫∞

0 EB|z(τ ;x)|pxβdx. Since z(τ ;x) d= N (0, σ2(τ ;x)), we have EB|z(τ ;x)|p ≤ C|σ(τ ;x)|p
and hence from (3.33) we obtain

E|Zβ(τ)|p ≤ Cτ p/2
∫ ∞

0

[1 ∧ (xτ)
x2

]p/2
xβdx = Cτ (3p/2)−1−β <∞. (3.34)

Next, let p > 2. Then E|Zβ(τ)|p <∞ follows from (3.23) and∫ ∞
0

xβdxEB

[
|z(τ ;x)|p ∨ |z(τ ;x)|2

]
≤ C

∫ ∞
0

(
|σ(τ ;x)|p + |σ(τ ;x)|2

)
xβdx <∞

according to (3.34). The fact that (3.34) holds for p = 1 < 2(1 + β) implies EZβ(τ) = 0 for
−1/2 < β < 1.
(iii) From (3.31), (3.25) and (3.10) we have that for any τ ≥ 0

EZ2
β(τ) =

∫
R+×R

(f(x, τ − s)− f(x,−s))2ν(dx, ds)

= EB2
1−β/2(τ) = Γ(β)ψ1

(2− β)(1− β)τ
2−β,
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hence (3.32) follows from (3.10).
(iv) From (3.34) and stationarity of increments, for −1/2 < β < 1 and 1 < p < 2(1 + β)
sufficiently close to 2(1 + β), we have that E|Zβ(τ + h) − Zβ(τ)|p ≤ Ch(3p/2)−1−β for any
τ, h ≥ 0. Since (3p/2) − 1 − β > 1, the Kolmogorov criterion applies, yielding the a.s.
continuity of (3.31). Proposition 3.4 is proved.

Remark 3.2. LetM2(dx, dB) be a Gaussian random measure on R+×C(R) with zero mean
and variance µ(dx, dB) in (3.29). From Proposition 3.4(iii) it follows that for 0 < β < 1 the
corresponding Gaussian integral of (3.31) is a representation of fractional Brownian motion:

B1−β/2(τ) fdd=
∫
R+×C(R)

z(τ ;x)M2(dx, dB).

Remark 3.3. As noted in [96], the sub-Gaussian process Wβ (3.11) admits a stochastic
integral representation

Wβ(τ) fdd=
∫
C(R+)

B(τ)N (dB)

w.r.t. symmetric (1+β)-stable random measureN on C(R+) with control measure ν := cβPB,
where PB is the Wiener measure, see (3.28), and cβ := ψ1π/2 sin(π(1 + β)/2)Γ(2 + β). The
process Wβ can be further represented as a stochastic integral w.r.t. the Poisson random
measureM(dx, dB) on R+ × C(R+) in (3.29), viz.,

Wβ(τ) fdd=
∫

(0,1)×C(R+)

B(τ)
x
M(dx, dB) +

∫
[1,∞)×C(R+)

B(τ)
x
M̃(dx, dB).

Remark 3.4. Curiously enough, the 2(1 + β)-stable r.v. Vβ in Theorem 3.1(ii) (see Proposi-
tion 3.5(ii) below) can be also represented as a stochastic integral w.r.t. the Poisson measure
M(dx, dB):

Vβ
d=
∫

(0,1)×C(R)
z′(1;x)M(dx, dB) +

∫
[1,∞)×C(R)

z′(1;x)M̃(dx, dB),

where {z′(τ ;x)} is the stationary Ornstein-Uhlenbeck process in (3.26).

The following proposition describes local and global scaling behavior of the process Zβ.

Proposition 3.5. Let Zβ be defined as in (3.31).
(i) Let 0 < β < 1. Then

b−1+β/2(Zβ(τ + bu)−Zβ(τ)) fdd→ B1−β/2(u) as b→ 0.

(ii) Let −1 < β < 0. Then

b−1(Zβ(τ + bu)−Zβ(τ)) fdd→ uVβ as b→ 0,
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where Vβ is a 2(1 + β)-stable r.v. with characteristic function

EeiθVβ = e−Kβ |θ|2(1+β)
, Kβ := ψ1Γ(−β)

41+β(1 + β) .

(iii) Let β = 0. Then

(b log1/2(1/b))−1(Zβ(τ + bu)−Zβ(τ)) fdd→ uV0 as b→ 0,

where V0
d= N (0, ψ1/2) is a Gaussian r.v. with variance ψ1/2.

(iv) Let −1 < β < 1. Then

b−1/2Zβ(bτ) fdd→Wβ(τ) as b→∞.

Proof. (i) By stationarity of increments, it suffices to prove the convergence for τ = 0,
or E exp{i∑m

j=1 θjb
−1+β/2Zβ(buj)} → E exp{i∑m

j=1 θjB1−β/2(uj)} for any uj ∈ R+, θj ∈ R,
m ∈ N. Using (3.12) and (3.9), the last convergence follows from∫ ∞

0

(
1− exp

{
− bβ−2

2

∫
R

∣∣∣∣ m∑
j=1

θj(f(x, buj − s)− f(x,−s))
∣∣∣∣2ds

})
xβdx

→ 1
2

∫
R+×R

∣∣∣∣ m∑
j=1

θj(f(x, uj − s)− f(x,−s))
∣∣∣∣2xβdxds. (3.35)

Using the scaling property f(x/b, bs) = bf(x, s) of f in (3.9), the l.h.s. of (3.35) can be rewritten
as

b−1−β
∫ ∞

0

(
1− exp

{
− b1+β

2

∫
R

∣∣∣∣ m∑
j=1

θj(f(x, uj − s)− f(x,−s))
∣∣∣∣2ds

})
xβdx

and the convergence in (3.35) follows from b−1−β(1−e−b1+βI)→ I (b→ 0) and the dominated
convergence theorem, since 0 ≤ 1 − e−x ≤ x for any x ≥ 0 and the integral on the r.h.s. of
(3.35) converges. This proves part (i).
(ii) Using the notation in (3.35), it suffices to show that∫ ∞

0

(
1− exp

{
− b−2

2

∫
R

∣∣∣∣ m∑
j=1

θj(f(x, buj − s)− f(x,−s))
∣∣∣∣2ds

})
ψ1x

βdx

→
∫ ∞

0

(
1− exp

{
− 1

4x

∣∣∣∣ m∑
j=1

θjuj

∣∣∣∣2})ψ1x
βdx = Kβ

∣∣∣∣ m∑
j=1

θjuj

∣∣∣∣2(1+β)
. (3.36)

Towards this end, consider

Ψ(x; b) :=
∫
R

1
2b2

∣∣∣∣ m∑
j=1

θj(f(x, buj − s)− f(x,−s))
∣∣∣∣2ds =

( ∫ 0

−∞
+
∫ ∞

0

)
. . .

=: Ψ1(x; b) + Ψ2(x; b). (3.37)
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Then for any x > 0,

Ψ1(x; b) = 1
4x3

∣∣∣∣ m∑
j=1

θj
b

(1− e−bxuj)
∣∣∣∣2 → 1

4x

∣∣∣∣ m∑
j=1

θjuj

∣∣∣∣2 =: Ψ(x), b→ 0, (3.38)

and

Ψ2(x; b) = 1
2x2b2

∫ bum

0

∣∣∣∣ m∑
j=1

θj(1− e−x(buj−s))1(s < buj)
∣∣∣∣2ds

≤ C

x2b2

∫ bum

0
(xs)2ds ≤ Cb→ 0. (3.39)

Hence, Ψ(x; b) → Ψ(x). From the inequality 1 − e−x ≤ x, x ≥ 0, it easily follows the
dominating bound 0 ≤ Ψ(x; b) ≤ C min(1, 1/x), ∀b, x > 0. The convergence in (3.36), or∫∞

0 (1−e−Ψ(x;b))xβdx→
∫∞

0 (1−e−Ψ(x))xβdx now easily follows by the dominating convergence
theorem.
(iii) As in (3.36), it suffices to show that

I(b) := ψ1

∫ ∞
0

(1− e−Ψ(x,b)/ log(1/b))dx→ ψ1

4

∣∣∣∣ m∑
j=1

θjuj

∣∣∣∣2, (3.40)

where Ψ(x, b) is defined in (3.37). Split the integral

I(b) = ψ1

( ∫ 1/b

0
+
∫ ∞

1/b

)
(1− e−Ψ(x,b)/ log(1/b))dx =: ψ1(I1(b) + I2(b)).

Then using (3.38) and (3.39) we infer that

I1(b) ∼
∫ 1/b

0

(
1− exp

{
− 1

4x log(1/b)

∣∣∣∣ m∑
j=1

θjuj

∣∣∣∣2})dx

∼ O
( 1

log(1/b)

)
+
|∑m

j=1 θjuj|2

4 log(1/b)

∫ 1/b

1/ log(1/b)

dx
x

∼ 1
4

∣∣∣∣ m∑
j=1

θjuj

∣∣∣∣2.
On the other hand, using |Ψ(x; b)| ≤ C/(b2x3 + bx2), see (3.38), (3.39), with C independent
of x, b > 0 we obtain that

I2(b) ≤ C
∫ ∞

1/b

dx
(b2x3 + bx2) log(1/b) = O

( 1
log(1/b)

)
= o(1),

proving (3.40) and part (iii).
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(iv) Similarly as above, it suffices to prove that∫ ∞
0

(
1− exp

{
− 1

2b

∫
R

∣∣∣∣ m∑
j=1

θj(f(x, buj − s)− f(x, buj−1 − s))
∣∣∣∣2ds

})
ψ1x

βdx

→
∫ ∞

0

(
1− exp

{
− 1

2x2

m∑
j=1

θ2
j (uj − uj−1)

})
ψ1x

βdx

= kβ
2(1+β)/2

∣∣∣∣ m∑
j=1

θ2
j (uj − uj−1)

∣∣∣∣(1+β)/2
, (3.41)

where 0 =: u0 < u1 < · · · < um. The l.h.s. of (3.41) can be rewritten as
∫∞

0 (1 −
e−x−2J(x;b))ψ1x

βdx, where for any x > 0,

J(x; b) := x2

2

∫
R

∣∣∣∣ m∑
j=1

θj
(
f(x, b(uj − s))− f(x, b(uj−1 − s))

)∣∣∣∣2ds

→ J := 1
2

m∑
j=1

θ2
j (uj − uj−1)

as b→∞ follows easily by substituting f (3.9) into the integral above. The dominating bound
0 ≤ J(x; b) ≤ C min(1, 1/x) is elementary and allows to use the dominating convergence
theorem, yielding the convergence in (3.41). Proposition 3.5 is proved.

Proposition 3.5 entails the convergences

µ1/2Zβ(τ/µ) fdd→Wβ(τ) and
µ1−(β/2)Zβ(τ/µ) fdd→ B1−β/2(τ), 0 < β < 1,
µZβ(τ/µ) fdd→ τVβ, −1 < β < 0,
µ(log µ)−1/2Zβ(τ/µ) fdd→ τV0, β = 0,

(3.42)

as µ → 0 and µ → ∞, respectively. In other words, the ‘intermediate’ limit in Theo-
rem 3.2(iii) plays the role of a ‘bridge’ between the limits in Cases (i) and (ii). Since Wβ,
B1−(β/2) and τVβ are distinct processes, (3.42) imply that Zβ is not self-similar and not stable.

The definition of Zβ in (3.31) naturally extends to a two-parameter random field {Zβ(τ, x),
(τ, x) ∈ R2

+} defined as a stochastic integral

Zβ(τ, x) :=
∫

(0,x]×(0,1)×C(R)
z(τ ; v)M(dy, dv, dB)

+
∫

(0,x]×[1,∞)×C(R)
z(τ ; v)M̃(dy, dv, dB), τ, x ≥ 0, (3.43)

with respect to a Poisson random measure on R+×R+×C(R) with intensity EM(dy, dv, dB)
= dyµ(dv, dB) = ψ1dyvβdv PB(dB(·)), see (3.29), where M̃(dy, dv, dB) :=M(dy, dv, dB)−
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EM(dy, dv, dB). Then Zβ(τ) = Zβ(τ, 1). Note that for each τ > 0, {Zβ(τ, x), x ≥ 0} is a
homogeneous Lévy process with independent increments. The two-parameter process Zβ in
(3.43) satisfies the following properties:
for any (τ0, x0) ∈ R2

+,

{Zβ(τ + τ0, x+ x0)−Zβ(τ + τ0, x0)−Zβ(τ0, x+ x0) + Zβ(τ0, x0)} fdd= {Zβ(τ, x)}; (3.44)

for any c > 0, {
Zβ(cτ, c1+βx)

} fdd=
{
c3/2Zβ(τ, x)

}
. (3.45)

Property (3.44) is stationarity of increments and (3.45) is an anisotropic two-parameter
scaling (self-similarity) property. Note that (3.45) implies{

(cµ)−1c−1/2Zβ(cτ, (cµ)1+β), τ ∈ R+
}

fdd=
{
µ1/2Zβ(τ/µ, 1), τ ∈ R+

}
for all c > 0, (3.46)

which resembles the limit in Theorem 3.2(iii) for N = (cµ)1+β, n = c growing as in (3.6).
The two-parameter process {Yβ(τ, µ) := µ1/2Zβ(τ/µ, 1)} on the r.h.s. of (3.46) satisfies
{Yβ(cτ, cµ), τ ∈ R+}

fdd= {c1/2Yβ(τ, µ), τ ∈ R+}. A related notion of self-similarity was intro-
duced in Jørgensen et al. [51], who call a two-parameter process Y = {Y (τ, µ), (τ, µ) ∈ R2

+}
self-similar with Hurst exponent H and rate parameter µ if for all c > 0,

{Y (cτ, cH−1µ), τ ∈ R+}
fdd= {cHY (τ, µ), τ ∈ R+}. (3.47)

Note that the two-parameter process {Ỹβ(τ, x) := Zβ(τ, x2(1+β))} satisfies the self-similarity
property (3.47) with H = 3/2.

Another self-similarity property was introduced in Kaj [52]. Accordingly, a process U =
{U(τ), τ ∈ R+} is called aggregate-similar with rigidity index ρ if for any integer m ≥ 1,{ m∑

i=1
U (i)(τ), τ ∈ R+

}
fdd= {mρU(τ/mρ), τ ∈ R+}, (3.48)

where U (i), i ≥ 1, are independent copies of U . Let {Uβ(τ) := Zβ(τ 2/3, 1)}, then Uβ satisfies
(3.48) with ρ := 3

2(1+β) , which again follows from (3.45) with c = m1/(1+β), x = 1 and the
fact that {∑m

i=1Z
(i)
β (τ 2/3, 1)} fdd= {Zβ(τ 2/3,m)}.

Remark 3.5. Kaj [52], Gaigalas [34] discussed the ‘intermediate process’

Zβ(τ) :=
∫
R+×R

{ ∫ τ

0
1(s− v < u < s)du

}
M̃(dv, ds), τ ≥ 0, (3.49)

where M̃(dv, ds) = M(dv, ds)−EM(dv, ds) is a centered Poisson random measure on R+×R
with mean EM(dv, ds) = Cv−β−2dvds and 0 < β < 1 is a parameter. The process Zβ in
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(3.49) arises in the ‘intermediate’ aggregation regime of ON/OFF and infinite source Poisson
models in network traffic. See also [54, 55, 68, 83]. Similarly to (3.43), Zβ extends to a
two-parameter random field

Zβ(τ, x) :=
∫

(0,x]×R+×R

{ ∫ τ

0
1(s− v < u < s)du

}
M̃(dy, dv, ds), τ, x ≥ 0, (3.50)

where M̃(dy, dv, ds) = M(dy, dv, ds)− dyEM(dv, ds) is a centered Poisson random measure
on R+ × R+ × R with mean EM(dy, dv, ds) = dyEM(dv, ds). The random field in (3.50)
satisfies the stationary increment property (3.44) and a scaling property similar to (3.45):
{Zβ(cτ, cβx)} fdd= {cZβ(τ, x)} for every c > 0. These properties might be typical to random
fields arising in the ‘intermediate regime’ of joint temporal and contemporaneous aggregation
of independent copies of random processes with long-range dependence. We conjecture that
(3.50) and (3.43) can be linked into a general class of Poisson stochastic integrals on the
product space R+ × S ′(R), where S ′(R) is the Schwartz space of tempered distributions
equipped with a σ-finite shift and scaling invariant product measure, which includes the
above mentioned ‘intermediate’ limits as particular cases and enjoys similar local and global
scaling properties.

3.4 Proofs of Theorems 3.1–3.3
Proof of Theorem 3.1. Statement (3.13) follows from Theorems 2.1 and 3.1 in Puplinskaitė
and Surgailis [88]. Next, consider (3.14). From [88, Proposition 2.3] we have that for any
−1 < β < 0 and any n ≥ 1 fixed,

N−1/2(1+β)SN,n(τ) fdd→ [nτ ]Vβ

as N → ∞. Hence, (3.14) immediately follows. In a similar way, (3.15) is a consequence of
(N logN)−1/2SN,n(τ) fdd→ [nτ ]V0, or

(N logN)−1/2SN(t) fdd→ V0, SN(t) :=
N∑
i=1

Xi(t), (3.51)

which is proved below.
Similarly to the rest of this chapter, we use the method of characteristic functions. We

shall use the fact that the characteristic function of a standardized r.v. ε has the following
representation in a neighborhood of the origin: there exists an ε > 0 such that

χ(θ) := Eeiθε = e−θ2h(θ)/2 for each |θ| < ε, (3.52)

where h is a positive function tending to 1 as θ → 0 (see, e.g., Ibragimov and Linnik [49,
Theorem 2.6.5]). Fixm ∈ N and θ = (θ1, . . . , θm) ∈ Rm, then∑m

t=1 θtX(t) = ∑
s∈Z ϑ(s, a)ε(s),
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where ϑ(s, a) := ∑m
t=1 θta

t−s1(s ≤ t). Using (3.52) similarly as in [88, pages 519, 521], the
convergence (3.51) follows from

ΨN(θ) := NE
[
1− exp

{
− 1

2N logN
∑
s∈Z

(ϑ(s, a))2h
(

ϑ(s, a)
(N logN)1/2

)}]

→ Ψ(θ) := ψ1

4

∣∣∣∣ m∑
t=1

θt

∣∣∣∣2. (3.53)

Arguing further as in [88, page 521], we reduce the proof of (3.53) to ΨN1(θ)→ Ψ(θ), where

ΨN1(θ) := ψ1N
∫ 1

1−ε

(
1− exp

{
− 1

2N logN
∑
s≤0

(ϑ(s, a))2h
(

ϑ(s, a)
(N logN)1/2

)})
da

∼ ψ1

∫ εN

0

(
1− exp

{
− |

∑m
t=1 θt|2

4y logN

})
dy

∼ ψ1

(
O
(

K

logN

)
+
∫ εN

K/ logN

(
1− exp

{
− |

∑m
t=1 θt|2

4y logN

})
dy
)

∼ ψ1|
∑m
t=1 θt|2

4 logN

∫ εN

K/ logN

dy
y

∼ ψ1|
∑m
t=1 θt|2

4
since 1

logN
∫ εN
K/ logN y

−1dy → 1 when ε → 0 and K → ∞ together with N → ∞ but slowly
enough (so that log(1/ε) = o(logN), logK = o(logN)). This proves (3.51) and (3.15).

It remains to prove (3.16). Let us first show that

n−1/2S1,n(τ) = n−1/2
[nτ ]∑
t=1

X(t) fdd→ (1− a)−1B(τ) as n→∞, (3.54)

where B is a Brownian motion as in (3.11) and a ∈ [0, 1) is independent of B and has the
same (mixing) distribution in (3.5). Accordingly, it suffices to show that for any fixed m ∈ N
and any 0 = τ0 < τ1 < · · · < τm, θ = (θ1, . . . , θm) ∈ Rm,

Un(θ) := E exp
{

in−1/2
m∑
j=1

θj (S1,n(τj)− S1,n(τj−1))
}

→ E exp
{

i (1− a)−1
m∑
j=1

θj (B(τj)−B(τj−1))
}

= E exp
{
− (1/2)(1− a)−2

m∑
j=1

θ2
j (τj − τj−1)

}
=: U(θ) (3.55)

as n→∞, where S1,n(0) := 0. Denote

ϑ̃n(s, a) :=
m∑
j=1

θj

[nτj ]∑
t=[nτj−1]+1

at−s1(s ≤ t).
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Then ∑m
j=1 θj(S1,n(τj) − S1,n(τj−1)) = ∑

s≤[nτm] ϑ̃n(s, a)ε(s). Let An := {a : 0 ≤ a < 1 −
log n/

√
n}, Acn := [0, 1) \An. Note that sups∈Z, a∈An |ϑ̃n(s, a)|/

√
n = O(1/ log n)→ 0, imply-

ing sups∈Z, a∈An |h(ϑ̃n(s, a)/
√
n)− 1| = o(1). Using this and (3.52), for n large enough, split

Un(θ) = Un1(θ) + Un2(θ), where

Un1(θ) := E
[

exp
{
− 1

2n
∑

s≤[nτm]
(ϑ̃n(s, a))2h

(
ϑ̃n(s, a)
n1/2

)}
1(a ∈ An)

]
(3.56)

and Un2(θ) := E
[

exp{in−1/2∑m
j=1 θj(S1,n(τj) − S1,n(τj−1))}1(a ∈ Acn)

]
. Then (3.55) follows

from Un1(θ)→ U(θ) and Un2(θ) = o(1), where the last relation is immediate from |Un2(θ)| ≤
P(a ∈ Acn) = o(1). Using (3.56) and the argument above, the convergence Un1(θ) → U(θ)
reduces to

lim
n→∞

n−1 ∑
s≤[nτm]

(ϑ̃n(s, a))2 = (1− a)−2
m∑
j=1

(τj − τj−1) θ2
j (3.57)

for each a ∈ [0, 1). Relation (3.57) follows by splitting the sum on the l.h.s. of (3.57) as∑
s≤[nτm] = ∑m

k=0
∑

[nτk−1]<s≤[nτk], [nτ−1] := −∞, and noting that

n−1 ∑
[nτk−1]<s≤[nτk]

(ϑ̃n(s, a))2 → (1− a)−2θ2
k(τk − τk−1)

for 1 ≤ k ≤ m and n−1∑
s≤0(ϑ̃n(s, a))2 ≤ Cn−1∑

s≤0(∑∞t=1 a
t−s)2 ≤ Cn−1(1 − a2)−1(1 −

a)−2 → 0, for each a ∈ [0, 1). This proves (3.57) and (3.54), too.
Let W := {(1− a)−1B(τ), τ ≥ 0} and Wi, i = 1, 2, . . . , be its independent copies. With

(3.54) in mind, it remains to prove that

N−1/(1+β)
N∑
i=1
Wi(τ) fdd→Wβ(τ). (3.58)

For notational simplicity, we restrict the proof of (3.58) to two-dimensional convergence at
0 ≤ τ1 < τ2, viz.,

UN(θ1, θ2) := E exp
{
N−1/(1+β)

(
i θ1

N∑
i=1
Wi(τ1) + i θ2

N∑
i=1

(
Wi(τ2)−Wi(τ1)

))}
→ E exp

{
iθ1Wβ(τ1) + iθ2

(
Wβ(τ2)−Wβ(τ1)

)}
(3.59)

= E exp
{
−Wβ

(
τ1θ

2
1 + (τ2 − τ1)θ2

2/2
)}

= exp
{
− kβ

(
(τ1θ

2
1 + (τ2 − τ1)θ2

2)/2
)(1+β)/2}

.

We have UN(θ1, θ2) = (1− ΨN (θ1,θ2)
N

)N , where

ΨN(θ1, θ2) := N
∫ 1

0

(
1− exp

{
− ω(θ1, θ2)
N2/(1+β)(1− a)2

})
ψ(a)(1− a)βda,



Chapter 3. Aggregation of independent AR(1) processes 54

where ω(θ1, θ2) := (1/2)(τ1θ
2
1 + (τ2 − τ1)θ2

2) ≥ 0. From the above expression and assumption
(3.5), it easily follows that for any ε > 0,

ΨN(θ1, θ2) ∼ ψ1N
∫ 1

1−ε

(
1− exp

{
− ω(θ1, θ2)
N2/(1+β)(1− a)2

})
(1− a)βda

→ kβ(ω(θ1, θ2))(1+β)/2,

where
kβ := ψ1

2

∫ ∞
0

(1− e−y) dy
y(β+3)/2 = ψ1

1 + β
Γ
(1− β

2

)
. (3.60)

This proves (3.59) and Theorem 3.1, too.

Proof of Theorem 3.2. As in the proof of the previous theorem, we use the method of char-
acteristic functions. For notational convenience we assume that ε d= N (0, 1) or h(θ) ≡ 1 in
(3.52), and that ψ(a) ≡ ψ1 > 0, a ∈ [0, 1), in the mixing density (3.5). For the general case,
the proof of Theorem 3.2 does not require essential changes.
Case (i), 0 < β < 1 (proof of (3.17)). It suffices to prove that for any fixed m ∈ N,
0 < τ1 < · · · < τm, and any θ = (θ1, . . . , θm) ∈ Rm,

UN,n(θ) := E exp
{

iN−1/2n−1+β/2
m∑
j=1

θjSN,n(τj)
}

→ E exp
{

i
m∑
j=1

θjB1−(β/2)(τj)
}

=: U(θ), (3.61)

as N, n,N/n1+β →∞. By definition,

U(θ) = exp
{
− ψ1

2

∫ ∞
0

K(x)xβdx
}
, where (3.62)

K(x) :=
∫
R

( m∑
j=1

θj
(
f(x, τj − s)− f(x,−s)

))2
ds

and f is given by (3.9). We also have

UN,n(θ) =
(

E
∏
s∈Z

exp
{
− 1

2

(
ϑn(s, a)

N1/2n1−β/2

)2})N
with (3.63)

ϑn(s, a) :=
m∑
j=1

θj

[nτj ]∑
t=1

at−s1(s ≤ t).

Then UN,n(θ) = (1− ΨN,n(θ)
N

)N , where

ΨN,n(θ) := N
[
1− E exp

{
− 1

2
∑
s∈Z

(ϑn(s, a))2

Nn2−β

}]
.
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Thus (3.61) will be proved once we show that

ΨN,n(θ)→ ψ1

2

∫ ∞
0

K(x)xβdx as N, n,N/n1+β →∞, for all θ ∈ Rm. (3.64)

After a change of variable we obtain

ΨN,n(θ) = ψ1N

n1+β

∫ n

0

(
1− exp

{
−n

1+β

2N KN,n(x)
})

xβdx,

where

KN,n(x) := 1
n3

∑
s∈Z

(
ϑn

(
s, 1− x

n

))2

=
∫
R

( m∑
j=1

θj

∫ [nτj ]/n

0

(
1− x

n

)dnte−dnse
1(dnse ≤ dnte)dt

)2
ds

is written as a Riemann sum. By the dominated convergence theorem it follows that

KN,n(x)→
∫
R

( m∑
j=1

θj

∫ τj

0
e−x(t−s)1(s ≤ t)dt

)2
ds = K(x) for each x > 0, (3.65)

where K(x) is the same as in (3.62). Moreover, the inequality 1 − z ≤ e−z, z ≥ 0, yields
(1− x/n)dnte−dnse ≤ e−x(dnte−dnse)/n ≤ Ce−x(t−s), x ≥ 0, t ≥ s, and then

|KN,n(x)| ≤ C
m∑
j=1

∫
R

( ∫ τj

0
e−x(t−s)1(s ≤ t)dt

)2
ds =: K̄(x) (3.66)

with K̄(x) independent of N and n. We conclude by (3.65) and (3.66) that

JN,n(x) := N

n1+β

(
1− exp

{
− n1+β

2N KN,n(x)
})
→ K(x)

2

for each x > 0, and that |JN,n(x)| is dominated by the function K̄(x) ≥ 0 satisfying∫∞
0 K̄(x)xβdx < ∞. Hence the dominated convergence theorem applies and leads to (3.64)
and (3.61). This completes the proof of Case (i) of Theorem 3.2 for 0 < β < 1.
Case (i), −1 < β < 0 (proof of (3.18)). Using the notation in (3.61) it suffices to show that

UN,n(θ) := E exp
{

iN−1/2(1+β)n−1
m∑
j=1

θjSN,n(τj)
}

→ E exp
{

i
( m∑
j=1

θjτj

)
Vβ

}
=: U(θ) as N, n,N/n1+β →∞. (3.67)
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Here, U(θ) = exp{−Kβ|
∑m
j=1 θjτj|2(1+β)} and UN,n(θ) = (1− ΨN,n(θ)

N
)N , where

ΨN,n(θ) := ψ1N
∫ 1

0

(
1− exp

{
− 1

2N1/(1+β)n2

∑
s∈Z

(ϑn(s, a))2
})

(1− a)βda.

Hence to prove (3.67), it is enough to verify that for any θ ∈ Rm

ΨN,n(θ)→ Kβ

∣∣∣∣ m∑
j=1

θjτj

∣∣∣∣2(1+β)
as N, n,N/n1+β →∞. (3.68)

We have ∑s∈Z(ϑn(s, a))2 = R0(a) +R1(a), where

R0(a) := (1− a2)−1
( m∑
j=1

θj

[nτj ]∑
t=1

at
)2
,

R1(a) :=
[nτm]∑
s=1

( m∑
j=1

θj1(s ≤ [nτj])
[nτj ]∑
t=s

at−s
)2
. (3.69)

Clearly, R1(a) ≤ C min{n3, n/(1 − a)2} for any 0 ≤ a < 1. After a change of variable
1− a = N−1/(1+β)x, we get

ΨN,n(θ) = ψ1

∫ N1/(1+β)

0

(
1− exp

{
− 1

2
(
R̃0(x) + R̃1(x)

)})
xβdx, (3.70)

where

R̃0(x) := 1
x(2−N−1/(1+β)x)

∣∣∣∣ m∑
j=1

θj

( 1
n

[nτj ]∑
t=1

(
1−N−1/(1+β)x

)t)∣∣∣∣2

→ 1
2x

∣∣∣∣ m∑
j=1

θjτj

∣∣∣∣2 =: R̃(x) (3.71)

and

R̃1(x) := R1(1−N−1/(1+β)x)
N1/(1+β)n2 ≤ C min

{
n

N1/(1+β) ,
N1/(1+β)

x2n

}
→ 0. (3.72)

Write ΨN,n(θ) = ∑3
i=1 Ψ̃i(θ), where

Ψ̃1(θ) := ψ1

∫ N1/(1+β)

0

(
1− e−R̃(x)/2

)
xβdx,

Ψ̃2(θ) = ψ1

∫ N1/(1+β)

0

(
e−R̃(x)/2 − e−R̃0(x)/2

)
xβdx,

Ψ̃3(θ) = ψ1

∫ N1/(1+β)

0

(
e−R̃0(x)/2 − e−(R̃0(x)+R̃1(x))/2

)
xβdx.
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Now, relation Ψ̃1(θ) → ψ1
∫∞

0 (1 − e−R̃(x)/2)xβdx = Kβ|
∑m
j=1 θjτj|2(1+β) follows by the dom-

inated convergence theorem. Relation Ψ̃2(θ) → 0 follows in a similar way, since H(x) :=
e−R̃(x)/2− e−R̃0(x)/2 → 0 (see (3.71)) and |H(x)| ≤ |1− e−R̃(x)/2|+ |1− e−R̃0(x)/2| ≤ C(|R̃(x)|+
|R̃0(x)|) ≤ C min(1, 1/x) =: H̄(x), with

∫∞
0 H̄(x) xβdx <∞. Finally, Ψ̃3(θ)→ 0 follows from

the bound (3.72) since |Ψ̃3(θ)| ≤ ψ1
∫N1/(1+β)

0 |1− e−R̃1(x)/2|xβdx ≤ C
∫N1/(1+β)

0 |R̃1(x)|xβdx ≤
C× (

∫N1/(1+β)/n
0 +

∫∞
N1/(1+β)/n)|R̃1(x)|xβdx = O((N1/(1+β)/n)β) = o(1). This proves (3.68) and

(3.18).
Case (i), β = 0 (proof of (3.19)). Following (3.67), (3.68), it suffices to show that

ΨN,n(θ)→ ψ1

4

( m∑
j=1

θjτj

)2
as N, n,N/n→∞, (3.73)

where

ΨN,n(θ) := ψ1N
∫ 1

0

(
1− exp

{
− 1

2n2N log(N/n)
∑
s∈Z

(ϑn(s, a))2
})

da,

ϑn(s, a) being defined in (3.63). By change of variable 1− a = x/N arguing as in the proof
of (3.68), relation (3.73) follows from

Ψ̂0(θ) :=
∫ N

0

(
1− exp

{
− R̃0(x)

2 log(N/n)

})
dx→ 1

4

( m∑
j=1

θjτj

)2
, (3.74)

Ψ̂1(θ) :=
∫ N

0

(
1− exp

{
− R̃1(x)

2 log(N/n)

})
dx→ 0, (3.75)

where R̃0(x), R̃1(x) are the same as in (3.70) with β = 0.
In order to simplify the exposition and notation, we restrict the subsequent proof of

(3.74) to the one-dimensional case m = τ = 1, θ = θ ∈ R. From definition in (3.71) we have
R̃0(x) = Q1(x) +Q2(x), where

Q1(x) := θ2

2x

( 1
n

n∑
t=1

(
1− x

N

)t)2
,

Q2(x) := θ2

2N(2− (x/N))

( 1
n

n∑
t=1

(
1− x

N

)t)2
≤ C

N
.

Since
∫N

0 (1− exp{−Q2(x)/(2 log(N/n))})dx ≤ C
log(N/n)

∫N
0 |Q2(x)|dx = O( 1

log(N/n)) = o(1), it
suffices to show (3.74) with R̃0(x) replaced by Q1(x), viz.,

Φ(θ) :=
∫ N

0

(
1− exp

{
− θ2

4x log(N/n)

( 1
n

n∑
t=1

(
1− x

N

)t)2})
dx→ θ2

4 . (3.76)



Chapter 3. Aggregation of independent AR(1) processes 58

Rewrite Φ(θ) = 1
log(N/n)

∫∞
(N log(N/n))−1 ΓN,n(y)dy

y
= ∑3

i=1 Φi(θ), where

ΓN,n(y) := 1
y

(
1− e−θ2yΛN,n(y)/4

)
, ΛN,n(y) :=

( 1
n

n∑
t=1

(
1− 1

yN log(N/n)

)t)2

and Φ1(θ) := 1
log(N/n)

∫ n/N
1/(N log(N/n)) ΓN,n(y)dy

y
, Φ2(θ) := 1

log(N/n)
∫ 1
n/N ΓN,n(y)dy

y
, Φ3(θ) := 1

log(N/n)
×
∫∞

1 ΓN,n(y)dy
y
. We have

Φ1(θ) ≤ C

log(N/n)

∫ n/N

1/(N log(N/n))
ΛN,n(y)dy

y

= C

log(N/n)

∫ n/N

1/(N log(N/n))

( 1
n

n∑
t=1

(
1− 1

yN log(N/n)

)t)2 dy
y

= C

n2 log(N/n)

n∑
t,s=1

`N,n(t+ s), with

`N,n(k) :=
∫ n/N

1/(N log(N/n))

(
1− 1

yN log(N/n)

)kdy
y
.

Using 1− x ≤ e−x, x ≥ 0, we obtain

`N,n(k) ≤
∫ n/N

1/(N log(N/n))
exp

{
− k

yN log(N/n)

}dy
y

≤ C log
(
n log(N/n)

k

)
, 1 ≤ k ≤ 2n. (3.77)

Indeed, by change of variable z := k
yN log(N/n) , z

−1dz = −y−1dy the integral in (3.77)
for N log(N/n) > k can be rewritten as

∫ k
k/n log(N/n) e−zz−1dz = J1 + J2, where J1 :=∫ k

1 e−zz−1dz ≤ C, J2 :=
∫ 1
k/n log(N/n) e−zz−1dz ≤

∫ 1
k/n log(N/n) z

−1dz = log(n log(N/n)
k

), proving
(3.77). Using (3.77) we obtain

Φ1(θ) ≤ C

n2 log(N/n)

n∑
t,s=1

log
(
n log(N/n)

t+ s

)

≤ C

n2 log(N/n)

2n∑
k=1

k log
(2n log(N/n)

k

)

= C

n2 log(N/n)

2n∑
k=1

k log
(2n
k

)
+ C log log(N/n)

log(N/n) n−2
2n∑
k=1

k

= O
( log log(N/n)

log(N/n)

)
= o(1),

since ∑2n
k=1 k log(2n

k
) ≤

∫ 2n
1 x log(2n

x
)dx ≤ Cn2. Clearly, ΓN,n(y) ≤ y−1, implying Φ3(θ) =

O( 1
log(N/n)) = o(1). Hence, (3.76) follows from Φ2(θ)→ θ2/4. To show the last relation, split
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Φ2(θ) = Φ21(θ) + Φ22(θ), where

Φ21(θ) := 1
log(N/n)

∫ 1

n/N
G(y)dy

y
, Φ22(θ) := 1

log(N/n)

∫ 1

n/N
[ΓN,n −G(y)]dy

y

and G(y) := 1
y
(1− e−(θ2/4)y). Using the facts that G(n/N)− θ2/4 = o(1),

∫ 1
n/N

dy
y

= log(N/n)
and supy∈(0,1] |G′(y)| < C, we obtain

|Φ21(θ)− θ2/4| ≤ |G(n/N)− θ2/4|+ 1
log(N/n)

∣∣∣∣ ∫ 1

n/N
(G(y)−G(n/N))dy

y

∣∣∣∣
= o(1) + 1

log(N/n)

∣∣∣∣ ∫ 1

n/N
G′(y)(log y)dy

∣∣∣∣ = o(1).

Next, consider Φ22(θ). Note that ΛN,n(y) is monotone in y ∈ (0, 1], hence ΛN,n(n/N) ≤
ΛN,n(y) ≤ ΛN,n(1) ≤ 1, n/N ≤ y ≤ 1. Moreover, ΛN,n(n/N) = ( 1

n

∑n
t=1(1− 1

n log(N/n))
t)2 → 1

follows from (1− 1
n log(N/n))

t → 1, 1 ≤ t ≤ n. Using these facts, we obtain

Φ22(θ) = 1
log(N/n)

∫ 1

n/N

{1
y

e−(θ2/4)yΛN,n(y)
[
1− e−(θ2/4)y(1−ΛN,n(y))

]}dy
y

≤ C

log(N/n)

∫ 1

n/N
(1− ΛN,n(y))dy

y

≤ C(1− ΛN,n(n/N)) = o(1).

It remains to show (3.75). Using 0 ≤ R̃1(x) ≤ C min(n/N,N/nx2), see (3.72), it follows
that Ψ̂1(θ) ≤ C

log(N/n)
∫N

0 R̃1(x)dx, where the last integral is bounded by a finite constant
independent of N, n. This proves (3.75) and completes the proof of (3.19), too.
Case (ii), −1 < β < 1 (proof of (3.20)). Because of similarities with the proofs of (3.17)
and (3.18), we restrict the proof to the one-dimensional convergence at τ = 1. We have
E exp{iθN−1/(1+β)n−1/2SN,n(1)} = (1− ΨN,n(θ)

N
)N , where

ΨN,n(θ) := ψ1N
∫ 1

0

(
1− exp

{
− θ2(R0(a) +R1(a))

2N2/(1+β)n

})
(1− a)βda

and whereR0(a) := ∑
s≤0(ϑn(s, a))2 ≤ (1−a)−3, R1(a) := ∑n

s=1(ϑn(s, a))2 = (1−a)−2∑n
k=1(1−

ak)2. By the change of variables 1− a = N−1/(1+β)x, ΨN,n(θ) can be rewritten as

ΨN,n(θ) = ψ1

∫ N1/(1+β)

0

(
1− exp

{
− θ2

2

(
R̃0(x) + R̃1(x)

x2

)})
xβdx,

where

R̃0(x) := 1
N2/(1+β)n

R0

(
1− x

N1/(1+β)

)
≤ N3/(1+β)

x3N2/(1+β)n
≤ N1/(1+β)

x3n
→ 0,

R̃1(x) := 1
n

n∑
k=1

(
1−

(
1− x

N1/(1+β)

)k)2
→ 1.
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The above facts entail

ΨN,n(θ)→ ψ1

∫ ∞
0

(1− e−θ2/2x2)xβdx = kβ|θ|1+β

2(1+β)/2 = − log EeiθWβ ,

hence also the proof of (3.20).
Case (iii), −1 < β < 1 (proof of (3.21)). Similarly as above, it suffices to prove that for any
θ ∈ Rm,

ΨN,n(θ)→ Ψµ(θ) as N, n→∞, N1/(1+β)/n→ µ ∈ (0,∞), (3.78)

where

Ψµ(θ) := − log E exp
{

i
m∑
j=1

θjµ
1/2Zβ(τj/µ)

}

= ψ1

∫ ∞
0

(
1− exp

{
− 1

2µ2

∫
R

( m∑
j=1

θj
(
f(x/µ, τj − s)− f(x/µ,−s)

))2
ds
})
xβdx,

see (3.12), and

ΨN,n(θ) := ψ1N
∫ 1

0

(
1− exp

{
− R0(a) +R1(a)

2N2/(1+β)n

})
(1− a)βda,

with R0(a), R1(a) defined in (3.69). By change of variable 1− a = N−1/(1+β)x we obtain

ΨN,n(θ) = ψ1

∫ N1/(1+β)

0

(
1− exp

{
− (1/2)

(
R̃0(x) + R̃1(x)

)})
xβdx,

where

R̃0(x) := N1/(1+β)(1−N−1/(1+β)x)2

nx3(2−N−1/(1+β)x)

( m∑
j=1

θj

(
1−

(
1− x

N1/(1+β)

)[nτj ]))2
,

R̃1(x) := 1
x2n

[nτm]∑
s=1

( m∑
j=1

θj

(
1−

(
1− x

N1/(1+β)

)[nτj ]−s+1)
1(s ≤ [nτj])

)2
.

It is easy to verify that for each x > 0, R̃0(x)→ K0(x), R̃1(x)→ K1(x), where

K0(x) := µ

2x3

( m∑
j=1

θj(1− e−(x/µ)τj)
)2

= µ−2
∫ 0

−∞

( m∑
j=1

θj
(
f(x/µ, τj − s)− f(x/µ,−s)

))2
ds,

K1(x) := x−2
∫ τm

0

( m∑
j=1

θj(1− e−(x/µ)(τj−s))1(s ≤ τj)
)2

ds

= µ−2
∫ τm

0

( m∑
j=1

θjf(x/µ, τj − s)
)2

ds.
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Note Ψµ(θ) = ψ1
∫∞

0 [1 − exp{−(1/2)(K0(x) + K1(x))}]xβdx. The convergence (3.78) now
follows by the dominated convergence theorem using a similar argument as in the proof of
Theorem 3.1 in [88]. This proves (3.21) and thereby completes the proof of Theorem 3.2.

Proof of Theorem 3.3. The proof is analogous to that of the previous theorem. Let SN,n :=
SN,n(1). We prove only one-dimensional convergence at τ = 1, or

UN,n(θ) := EeiθSN,n/(Nn)1/2 =
(

1− ΨN,n(θ)
N

)N
→ e−θ2σ2/2, (3.79)

where

ΨN,n(θ) := NE
[
1− eiθS1,n/(Nn)1/2

]
= NE

[
1−

∏
s≤n

χ
(
θ
ϑn(s, a)
(Nn)1/2

)]
,

ϑn(s, a) :=
n∑
t=1

at−s1(s ≤ t),

χ being the characteristic function of i.i.d. innovations {ε(s)}, see (3.52). Let An := {a : 0 ≤
a < 1− log n/

√
n}, Acn := [0, 1)\An similarly to the proof of Theorem 3.1. Accordingly, split

ΨN,n(θ) = Ψ′N,n(θ) + Ψ′′N,n(θ), where

Ψ′N,n(θ) := NE
[
1− eiθS1,n/(Nn)1/2]1(a ∈ An),

Ψ′′N,n(θ) := NE
[
1− eiθS1,n/(Nn)1/2]1(a ∈ Acn).

Since |Ψ′′N,n(θ)| = N |EE[1 − eiθS1,n/(Nn)1/2 |a]1(a ∈ Acn)| and E[S1,n|a] = 0, E[S2
1,n|a] =∑

s≤n(ϑn(s, a))2 satisfies ∑s≤n(ϑn(s, a))2 ≤ 2n/(1− a)2, we obtain∣∣∣Ψ′′N,n(θ)
∣∣∣ ≤ N(θ2/2)E

[
N−1n−1 ∑

s≤n
(ϑn(s, a))21(a ∈ Acn)

]
≤ θ2E

[
(1− a)−21(a ∈ Acn)

]
= O

(
(log n/

√
n)β−1

)
= o(1)

due to β > 1. Finally, (3.79) follows from

Ψ′N,n(θ) = NE
[
1− exp

{
− θ2

2Nn
∑
s≤n

(ϑn(s, a))2h
(
θϑn(s, a)
(Nn)1/2

)}]
1(a ∈ AN)

→ θ2σ2

2 ,

by (3.55) and by Taylor expansion of the exponent in a standard way. This both proves
(3.79) and Theorem 3.3.

As a final remark, let us note that the above proof does not require (3.5) and the conclusion
of Theorem 3.3 remains valid under the more general condition E(1− a)−2 <∞.





4
Aggregation of AR(1) processes with
common innovations

This chapter contains the article [80]. We discuss joint temporal and contemporaneous
aggregation of N copies of stationary random-coefficient AR(1) processes with common i.i.d.
standardized innovations, when N and time scale n increase at different rate. Assuming that
the random coefficient a has a density, regularly varying at a = 1 with exponent −1/2 <
β < 0, different joint limits of normalized aggregated partial sums are shown to exist when
N1/(1+β)/n tends to (i) ∞, (ii) 0, (iii) 0 < µ <∞. We extend the results of Chapter 3 from
the case of idiosyncratic innovations to the case of common innovations.

4.1 Introduction
Let Xi := {Xi(t), t ∈ Z}, i = 1, . . . , N, be stationary random-coefficient AR(1) processes

Xi(t) = aiXi(t− 1) + ε(t), t ∈ Z, (4.1)

with common standardized i.i.d. innovations {ε(t), t ∈ Z} and i.i.d. random coefficients
ai ∈ (−1, 1), i = 1, . . . , N , independent of {ε(t), t ∈ Z}. Consider the double sum

SN,n(τ) :=
N∑
i=1

[nτ ]∑
t=1

Xi(t), τ ≥ 0, (4.2)

representing joint temporal and contemporaneous aggregate ofN individual AR(1) evolutions
(4.1) at time scale n. We discuss the limit distribution of appropriately normalized double
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sums SN,n in (4.2) as N , n jointly increase to infinity, possibly at a different rate. Throughout
this chapter we suppose that the distribution of generic coefficient a ∈ (−1, 1) in (4.1), or
the mixing distribution, satisfies the following two assumptions.
Assumption (A1). There exist β > −1 and ε ∈ (0, 1) such that P(a ≤ x) is differentiable
on (1− ε, 1) with derivative

dP(a ≤ x)/dx = (1− x)βψ(x), x ∈ (1− ε, 1), (4.3)

where ψ is bounded on (1− ε, 1) and continuous at x = 1 with ψ1 := limx→1 ψ(x) > 0.
Assumption (A2). E(1 + a)−1/2 <∞.

Assumptions (A1) and (A2) refer to the behavior of the mixing distribution in the vicinity
of a = 1 and a = −1, respectively (the positive and negative unit roots of generic AR(1)
process X = Xi in (4.1)). Because of oscillation of the moving-average coefficients of X
when a < 0, the behavior of the mixing distribution near a = −1 is generally less important
for partial sums processes than its behavior near a = 1, the crucial role being played by
the parameter β in (4.3). Assumption (A1) is similar to (3.5) on page 38 and [87, 88, 111],
although the ‘typical’ range of β is different in the aggregation schemes with common and
idiosyncratic innovations. The random-coefficient AR(1) process X has finite variance if
and only if EX2(t) = E∑s≤t a

2(t−s) = E(1 − a2)−1 < ∞, which implies β > 0 in (4.3).
It is well-known that under the condition (4.3) with 0 < β < 1 (and a ∈ [0, 1) a.s.), X
has long memory in the sense that its covariance decays as Cov(X(0), X(t)) = O(t−β),
t→∞, so that ∑∞t=0 |Cov(X(0), X(t))| =∞. Zaffaroni [111], Puplinskaitė and Surgailis [87]
discussed the existence and long memory properties of the limit (in probability) X (t) :=
limN→∞N

−1∑N
i=1Xi(t), t ∈ Z, of aggregated AR(1) processes Xi in (4.1), written as a

moving-average X (t) = ∑∞
j=0 g(j)ε(t−j) with (deterministic) coefficients g(j) := E[aj], j ≥ 0.

For −1/2 < β < 0 in (4.3) and under similar condition on the mixing distribution near a =
−1, the coefficients g(j) ∼ Γ(1 + β)j−β−1, j →∞, and the (normalized) partial sum process
of X tends to a fractional Brownian motion with parameter H = (1/2)−β ∈ (1/2, 1), see [87,
Propositions 2 and 4]. We recall that Granger [40] proposed the scheme of contemporaneous
aggregation of heterogeneous random-coefficient AR(1) processes as a possible explanation
of the long memory phenomenon in macroeconomic time series. Subsequently, large-scale
contemporaneous aggregation of linear and heteroscedastic heterogeneous time series models
was studied in [19,37,39,74,79,87,88,111,112] and other papers.

Let us describe the main results of the present chapter. Assume that the mixing density
satisfies Assumptions (A1) and (A2) with −1/2 < β < 0 and N, n increase simultaneously
so as

N1/(1+β)

n
→ µ ∈ [0,∞], (4.4)

leading to the three cases (i)–(iii):

Case (i): µ =∞, Case (ii): µ = 0, Case (iii): 0 < µ <∞. (4.5)
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Our main result is Theorem 4.3 of Section 4.2 which states that the ‘simultaneous limit’ of
SN,n(τ) exists in the sense of weak convergence of finite-dimensional distributions, and is
different in all three Cases (i)–(iii), namely,

N−1nβ−(1/2)SN,n(τ) fdd→ σβB(1/2)−β(τ) in Case (i), (4.6)
N−1/(1+β)n−1/2SN,n(τ) fdd→ WβB(τ) in Case (ii), (4.7)
N−1/(1+β)n−1/2SN,n(τ) fdd→ µ1/2Zβ(τ/µ) in Case (iii). (4.8)

Here, B(1/2)−β is a standard fractional Brownian motion with Hurst parameter H = (1/2)−β,
σβ is a constant defined in Proposition 4.2(ii), Wβ > 0 is a (1 + β)-stable r.v. independent
of a standard Brownian motion B, and Zβ is an ‘intermediate process’ defined as the double
stochastic integral

Zβ(τ) :=
∫
R×R+

{ ∫ τ

0
e−x(u−s)1(s ≤ u)du

}
dB(s)N(dx), τ ≥ 0, (4.9)

where N = {N(dx), x ∈ R+} is a Poisson random measure on R+ := (0,∞) with intensity
ν(dx) := EN(dx) := ψ1x

βdx, independent of standard Brownian motion B. The existence
of the process Zβ in (4.9) and its properties are discussed in Section 4.2. In particular, we
show that Zβ can be regarded as a ‘bridge’ between the limit processes in Cases (i) and (ii),
in the sense that Zβ behaves as B(1/2)−β at ‘small scales’ and as WβB at ‘large scales’. See
Proposition 4.2 for rigorous formulation.

This chapter extends the previous one (based on [79]), where a similar problem was
discussed for stationary random-coefficient AR(1) processes Yi = {Yi(t), t ∈ Z}, i = 1, . . . , N ,
with independent (or idiosyncratic) innovations:

Yi(t) = aiYi(t− 1) + εi(t), t ∈ Z,

where {εi(t), t ∈ Z} are independent copies of {ε(t), t ∈ Z} in (4.1), independent of ai ∈
[0, 1), i = 1, . . . , N . Let SN,n(τ) := ∑N

i=1
∑[nτ ]
t=1 Yi(t), τ ≥ 0, be the analogue of SN,n(τ) in (4.2).

In Theorem 3.2 on page 42 under Assumption (A1) with −1 < β < 1 and N, n increasing as
in (4.4), we obtained joint limits of SN,n(τ) in the respective Cases (i)–(iii) of (4.5). Namely,
the limit process of SN,n(τ) in Case (i) is a fractional Brownian motion similarly to (4.6),
but the limits of SN,n(τ) in Cases (ii) and (iii) differ from (4.7) and (4.8). In particular, the
‘intermediate process’ Zβ in Chapter 3 arising under Case (iii) is written as a ‘Poisson mixture’
of integrated Ornstein-Uhlenbeck (O-U) processes

∫ τ
−∞{

∫ τ
0 e−x(u−s)1(s ≤ u)du}dB(s) on the

product space R+×C(R) equipped with the measure ν(dx)×PB, with PB being the Wiener
measure on C(R), while in the representation (4.9) of Zβ, these O-U processes are ‘mixed’
w.r.t. x only. These differences are due to different dependence structure between summands
Xi and Yi in the common and idiosyncratic aggregation schemes: the Yi’s are mutually
independent processes while theXi’s are strongly interdependent due to common innovations.
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The results of Chapter 3 and the present chapter are related to the study of joint limits
of the aggregated input in network traffic models, see [27, 34, 35, 55, 70, 105] and references
therein. See Chapter 3 for a discussion of the relation between AR(1) and network traffic
aggregation schemes and their limit processes.

4.2 Main results
For −1/2 < β < 0, define a standard fractional Brownian motion B(1/2)−β with Hurst

index H = (1/2)− β ∈ (1/2, 1) as stochastic integral

B(1/2)−β(τ) := C−1
β

∫ τ

−∞

(
(τ − s)−β − (−s)−β+

)
dB(s), τ ≥ 0, (4.10)

w.r.t. a standard Brownian motion B, where C2
β := −βB(−β, 1 + 2β)/(1 − 2β) =

∫ 1
−∞((1 −

s)−β − (−s)−β+ )2ds. Note that EB2
(1/2)−β(τ) = τ 1−2β. See [36, page 545].

Next, let WβB := {WβB(τ), τ ≥ 0}, −1/2 < β < 0, where Wβ > 0 is a completely
asymmetric (1+β)-stable r.v., independent of standard Brownian motion B = {B(τ), τ ≥ 0}
and having the log-Laplace transform log Ee−θWβ = ψ1

∫∞
0 (e−θ/x−1)xβdx = −ψ1(Γ(−β)/(1+

β))θ1+β, θ ≥ 0. Note, the process WβB has stationary increments and is self-similar with
index 1/2.

Proposition 4.2 details the third limit process arising under (4.4)–(4.5). Before that, we
discuss the double stochastic integral w.r.t. Gaussian and Poisson random measures.

Let N = {N(dx), x ∈ R+} be a Poisson random measure on R+ with intensity ν(dx) :=
EN(dx) := ψ1x

βdx, −1/2 < β < 0, independent of a standard Brownian motion B =
{B(s), s ∈ R}. Let Ñ(dx) = N(dx) − ν(dx) be the centered Poisson random measure. Let
Lp (p ≥ 1) be the space of all r.v.s ξ measurable w.r.t. the σ-field generated by N and B and
such that E|ξ|p < ∞. Write E = EN × EB, where EN ,EB refer to expectation w.r.t. N,B
only. For 1 ≤ p ≤ 2, let Lp(R+ × R) denote the Banach space of all measurable real-valued
functions h = h(x, s), (x, s) ∈ R+ × R such that

‖h‖Lp :=
( ∫

R+

{ ∫
R
h2(x, s)ds

}p/2
ν(dx)

)1/p
+
∫
R+

{ ∫
R
h2(x, s)ds

}1/2
ν(dx) <∞.

Let L0(R+ ×R) consist of all (step) functions h = h(x, s) taking a finite number of non-zero
values hn(k, j) on squares (k/n, (k + 1)/n] × (j/n, (j + 1)/n] ⊂ R+ × R, k = 0, 1, . . . , j =
0,±1,±2, . . . for some n = 1, 2, . . . . For such h ∈ L0(R+ × R), define the double stochastic
integral I(h) ≡

∫
R+×R h(x, s)N(dx)dB(s) as a sum

I(h) :=
∑
k,j

hn(k, j)N((k/n, (k + 1)/n])B((j/n, (j + 1)/n]), (4.11)

where B((j/n, (j + 1)/n]) := B((j + 1)/n)−B(j/n).
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Proposition 4.1. For any 1 ≤ p ≤ 2, the double stochastic integral I(h) =
∫
R+×R h(x, s)N(dx)

dB(s) in (4.11) extends to any h ∈ Lp(R+ × R), by continuity in Lp, and satisfies the in-
equality

E|I(h)|p ≤ C‖h‖pLp (4.12)
with C > 0 independent of h ∈ Lp(R+ × R). Moreover, for any h ∈ Lp(R+ × R) and any
θ ∈ R,

EeiθI(h) = EB exp
{ ∫

R+

(
exp

{
iθ
∫
R
h(x, s)dB(s)

}
− 1

)
ν(dx)

}

= EN exp
{
− θ2

2

∫
R

( ∫
R+
h(x, s)N(dx)

)2
ds
}
. (4.13)

In particular, I(h) has a mixed Gaussian distribution with ‘random variance’
∫
R(
∫
R+
h(x, s)

N(dx))2ds.
Proposition 4.2. (i) The process Zβ = {Zβ(τ), τ ≥ 0} in (4.9) is well-defined for any
β ∈ (−1/2, 0), as a stochastic integral of Proposition 4.1, and satisfies E|Zβ(τ)|p < ∞ for
any p ∈ [1, 2(1 + β)) ⊂ [1, 2). Moreover, Zβ has stationary increments and a.s. continuous
paths on R+.
(ii) (Asymptotic self-similarity.) For any −1/2 < β < 0,

bβ−(1/2)Zβ(bτ) fdd→ σβB(1/2)−β(τ) as b→ 0, (4.14)
b−1/2Zβ(bτ) fdd→ WβB(τ) as b→∞, (4.15)

where σβ := −ψ1Γ(β)Cβ.
In Theorems 4.3 and 4.4, SN,n(τ) is the aggregated sum (4.2), where Xi are stationary

random-coefficient AR(1) processes

Xi(t) =
∞∑
s=0

asiε(t− s), t ∈ Z, i = 1, . . . , N, (4.16)

with common i.i.d. innovations {ε(t), t ∈ Z} such that Eε(t) = 0, Eε2(t) = 1, and i.i.d.
random coefficients ai ∈ (−1, 1), i = 1, . . . , N , independent of {ε(t), t ∈ Z}. Note that the
series in (4.16) converges conditionally a.s. and in L2 for any fixed ai ∈ (−1, 1).
Theorem 4.3. Let Assumptions (A1) and (A2) be satisfied, where −1/2 < β < 0. Then the
simultaneous limits of the normalized partial sums SN,n as N, n→∞ under (4.4) are given
in (4.6)–(4.8) in respective Cases (i)–(iii) of (4.5).
Theorem 4.4. Let Assumptions (A1) and (A2) be satisfied, where β > 0. Then, as N, n→
∞ in arbitrary way,

N−1n−1/2SN,n(τ) fdd→ σB(τ), (4.17)

where {B(τ), τ ≥ 0} is a standard Brownian motion and σ := E(1− a)−1.
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4.3 Proofs
Proof of Proposition 4.1. Rewrite I(h) in (4.11) as I(h) = I1(h) + I2(h), where I1(h) :=∑
k,j hn(k, j)ν((k/n, (k + 1)/n])B((j/n, (j + 1)/n]), I2(h) := ∑

k,j hn(k, j) × Ñ((k/n, (k +
1)/n])B((j/n, (j+1)/n]). By inequality (3.24) on page 43 for pth moment of Poisson stochas-
tic integrals, it follows that for any 1 ≤ p ≤ 2,

E|I2(h)|p = EE
[
|I2(h)|p|B

]
≤ 2E

∑
k

∣∣∣∣∑
j

hn(k, j)B((j/n, (j + 1)/n])
∣∣∣∣pν((k/n, (k + 1)/n])

≤ 2
∑
k

{
E
∣∣∣∣∑
j

hn(k, j)B((j/n, (j + 1)/n])
∣∣∣∣2}p/2ν((k/n, (k + 1)/n])

= 2
∑
k

{∑
j

h2
n(k, j)(1/n)

}p/2
ν((k/n, (k + 1)/n])

= 2
∫
R+

{ ∫
R
h2(x, s)ds

}p/2
ν(dx),

while

E|I1(h)|p ≤ {E|I1(h)|2}p/2

=
{∑

j

(∑
k

hn(k, j)ν((k/n, (k + 1)/n])
)2

(1/n)
}p/2

≤
{∑

k

(∣∣∣∣∑
j

h2
n(k, j)(1/n)

∣∣∣∣2)1/2
ν((k/n, (k + 1)/n])

}p

=
{ ∫

R+

( ∫
R
h2(x, s)ds

)1/2
ν(dx)

}p
by Minkowski’s inequality. Hence, I(h) in (4.11) satisfies (4.12). The set L0(R+ × R)
being dense in Lp(R+ × R), the linear map I : L0(R+ × R) → Lp in (4.11) extends by
continuity in Lp to Lp(R+ × R) and satisfies (4.12). The second equality in (4.13) is ob-
vious. Consider the first equality in (4.13), which obviously holds for h ∈ L0(R+ × R).
Note that L(h) :=

∫
R+

(eiθ
∫
R h(x,s)dB(s) − 1)ν(dx) is well-defined and satisfies EB|L(h)| ≤

|θ|
∫
R+

EB|
∫
R h(x, s)dB(s)|ν(dx) ≤ |θ|

∫
R+

E1/2
B |

∫
R h(x, s)dB(s)|2ν(dx) = |θ|

∫
R+
ν(dx){

∫
R+
h2(x,

s)ds}1/2 ≤ |θ|‖h‖Lp and Re(L(h)) ≤ 0. Due to these facts, the first equality in (4.13) easily
extends to h ∈ Lp(R+ × R). Proposition 4.1 is proved.

The proof of Proposition 4.2 uses Lemma 4.5. For (x, t) ∈ R+ × R define

f(x, t) :=
(1− e−xt)/x, if x > 0 and t > 0,

0, otherwise.
(4.18)
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Lemma 4.5. (i) Let L(τ, x) :=
∫ τ
−∞(f(x, τ − s)− f(x,−s))dB(s); Λb(τ, x) := b−(1+β)(exp{iθ

b1+βL(τ, x)} − 1); Λ0(τ, x) := iθL(τ, x) for τ > 0, x > 0, b > 0, θ ∈ R. Then∫ ∞
0

Λb(τ, x)ν(dx) p→
∫ ∞

0
Λ0(τ, x)ν(dx), b→ 0. (4.19)

(ii) LetMb(τ, x) := exp{iθx−1 ∫ τ
0 (1−e−bx(τ−s))dB(s)}−1;M∞(τ, x) := exp{iθx−1 ∫ τ

0 dB(s)}−
1 for τ > 0, x > 0, b > 0, θ ∈ R. Then∫ ∞

0
Mb(τ, x)ν(dx) p→

∫ ∞
0
M∞(τ, x)ν(dx), b→∞. (4.20)

Proof. (i) Let 1 < p < 2(1 + β) < 2. Using |eix − 1− x| ≤ min(2|x|, x2/2), x ∈ R, we obtain

|Λb(τ, x)− Λ0(τ, x)| ≤ C min
(
b1+βL2(τ, x), |L(τ, x)|

)
= C

{
b1+β|L(τ, x)|1(1 ≤ b1+β|L(τ, x)|)

+b1+β|L(τ, x)|21(1 ≥ b1+β|L(τ, x)|)
}

≤ Cb(1+β)(p−1)|L(τ, x)|p,

which tends to 0 with probability 1 as b→ 0 for any x > 0. Hence

EB

∣∣∣∣ ∫ ∞
0

(Λb(τ, x)− Λ0(τ, x))ν(dx)
∣∣∣∣ ≤ Cb(1+β)(p−1)

∫ ∞
0

EB|L(τ, x)|pν(dx)

= O(b(1+β)(p−1)) = o(1),

since
∫∞

0 EB|L(τ, x)|pν(dx) ≤ C
∫∞

0 |σ(τ, x)|pν(dx) <∞ by (4.22) with σ2(τ, x) = EBL
2(τ, x)

evaluated in (4.21). This proves (4.19).
(ii) Since|Mb(τ, x)−M∞(τ, x)| ≤ C min(1, |θx−1 ∫ τ

0 e−bx(τ−s)dB(s)|) =: Lb(τ, x), we have

EB

∫ ∞
0
|Mb(τ, x)−M∞(τ, x)|ν(dx)

≤
∫ ε

0
EB|Lb(τ, x)|ν(dx) +

∫ ∞
ε

EB|Lb(τ, x)|ν(dx) =: I1 + I2.

Since β > −1/2 > −1 and Lb is bounded, the integral I1 can be made arbitrary small by
choosing ε > 0 small enough. The proof is completed by showing that

I2 ≤ C
∫ ∞
ε

EB

∣∣∣∣x−1
∫ τ

0
e−bx(τ−s)dB(s)

∣∣∣∣xβdx

≤ C
∫ ∞
ε

E1/2
B

∣∣∣∣ ∫ τ

0
e−bx(τ−s)dB(s)

∣∣∣∣2xβ−1dx

≤ C
∫ ∞
ε

∣∣∣∣ ∫ τ

0
e−2bxsds

∣∣∣∣1/2xβ−1dx

≤ C
∫ ∞
ε

(xb)−1/2xβ−1dx→ 0, b→∞.

This proves (4.20) and the lemma, too.
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Proof of Proposition 4.2. (i) We have hτ (x, s) :=
∫ τ

0 e−x(u−s)1(s ≤ u)du = f(x, τ − s) −
f(x,−s), (x, s) ∈ R+ × R, where f(τ, x) is defined in (4.18). By Proposition 4.1, Zβ(τ) =
I(hτ ) is well-defined provided ‖hτ‖Lp < ∞ for some 1 ≤ p ≤ 2. From (3.33), (3.34) on
page 45 we have

σ2(τ, x) :=
∫
R
h2
τ (x, s)ds ≤ C

τ

x2 (1 ∧ (τx)) (4.21)

and hence ∫
R+

{ ∫
R
h2
τ (x, s)ds

}p/2
ν(dx) ≤ Cτ p/2

∫ ∞
0

{ 1
x2 (1 ∧ (τx))

}p/2
xβdx

≤ Cτ (3p/2)−1−β <∞ (4.22)

for 1 + β < 1 ≤ p < 2(1 + β). Therefore

E|Zβ(τ)|p ≤ C‖hτ‖pLp ≤ C(τ (3p/2)−1−β + τ (1−2β)(p/2)) <∞ (4.23)

for τ > 0, 1 ≤ p < 2(1 + β). Zβ(τ) =
∫
R+×R hτ (x, s)N(dx)dB(s) has stationary increments

because the invariance properties hτ+u(x, s)− hu(x, s) = hτ (x, s− u), {dB(s+ u), s ∈ R} fdd=
{dB(s), s ∈ R}, τ, u ≥ 0, hold for the integrand and the white noise dB. The fact that
Zβ(τ) has a.s. continuous paths follows from (4.23) and stationarity of increments, and the
Kolmogorov criterion [73, Theorem 2.2.3], by noting that both exponents of τ on the r.h.s. of
(4.23) are strictly greater than 1 for p < 2(1 + β) sufficiently close to 2(1 + β). This proves
part (i).
(ii) We use the method of characteristic functions and restrict the proof to the one-dimensional
convergence at fixed τ > 0; the proof of finite-dimensional convergence follows similarly.
Proof of (4.14). Using (4.13) and the scaling property f(x, bt) = bf(bx, t) we obtain

Ub(θ) := EB exp
{ ∫ ∞

0

(
exp

{
iθbβ−1/2

∫ bτ

−∞
(f(x, bτ − s)

−f(x,−s))dB(s)
}
− 1

)
ν(dx)

}
= EB exp

{ ∫ ∞
0

(
exp

{
iθb1+β

∫ τ

−∞
(f(bx, τ − s)

−f(bx,−s))dB(s)
}
− 1

)
ν(dx)

}
= EB exp

{ ∫ ∞
0

Λb(τ, y)ν(dy)
}
,

where we changed a variable to get the last equality with Λb(τ, y) defined in Lemma 4.5(i).
Since Re{

∫∞
0 Λb(τ, y)ν(dy)} ≤ 0, Lemma 4.5(i) implies the convergence Ub(θ) → U0(θ) :=

EB exp{
∫∞
0 Λ0(τ, y)ν(dy)} for any θ ∈ R. It remains to show that U0(θ) = E exp{iθσβB(1/2)−β(τ)}.
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Using the definitions of B(1/2)−β(τ) in (4.10) and f(x, τ) in (4.18) and the identity
∫∞

0 f(x, τ)
ν(dx) = −ψ1Γ(β)τ−β, β ∈ (−1, 0), τ > 0, we obtain

∫ ∞
0

Λ0(τ, x)ν(dx) = iθ
∫ τ

−∞

∫ ∞
0

(f(x, τ − s)− f(x,−s))ν(dx)dB(s)

= iθσβB(1/2)−β(τ), (4.24)

where the interchange of the order of integration in the first equality of (4.24) can be justified
by the stochastic Fubini theorem, see [85, Chapter 6, Theorem 65]. The proof of (4.14) is
complete.
Proof of (4.15). It is well-known (see, e.g., [96, Theorem 3.12.2]) that the (1 + β)-stable
r.v. Wβ in (4.15) can be written as stochastic integral w.r.t. Poisson random measure N :
Wβ

d=
∫∞

0 x−1N(dx). Let us prove that as b→∞,

Vb(θ) := E exp
{

iθb−1/2
∫ ∞

0

∫ bτ

0
f(x, bτ − s)N(dx)dB(s)

}
→ E exp

{
iθ
∫ ∞

0
x−1N(dx)B(τ)

}
= EeiθWβB(τ) =: V∞(θ).

Indeed, using (4.13) and scaling properties of f(x, t) andB, we have Vb(θ) = EB exp{
∫∞

0 Mb(τ,
x)ν(dx)}, whereMb(τ, x) is defined in Lemma 4.5(ii). Since Re{

∫∞
0 Mb(τ, x)ν(dx)} ≤ 0, re-

lation Vb(θ) → V∞(θ) = EB exp{
∫∞

0 M∞(τ, x)ν(dx)}, b → ∞, follows from Lemma 4.5(ii).
It remains to prove that

I(b, p) := b−p/2E
∣∣∣∣ ∫ ∞

0

∫ 0

−∞

(
f(x, bτ − s)− f(x,−s)

)
N(dx)dB(s)

∣∣∣∣p → 0, (4.25)

b→∞, for some p > 0. Using
∫ 0
−∞(f(x, bτ−s)−f(x,−s))dB(s) = x−1(1−e−xbτ )

∫∞
0 e−xsdB(s)

and the inequality in (3.24) on page 43 with 0 < p < 1 + β < 1, 3p/2 > 1 + β we obtain

bp/2I(b, p) ≤
∫ ∞

0
|(1− e−xbτ )/x|pEB

∣∣∣∣ ∫ ∞
0

e−xsdB(s)
∣∣∣∣pν(dx)

≤ C
∫ ∞

0
|(1− e−xbτ )/x|p

( ∫ ∞
0

e−2xsds
)p/2

ν(dx)

≤ C
∫ ∞

0
|(1− e−xbτ )/x|px−p/2ν(dx) = O(b(p/2)+p−1−β) = o(bp/2),

which yields (4.25) and completes the proof of (4.15). Proposition 4.2 is proved.

To prove Theorem 4.3 we need the following lemma.
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Lemma 4.6. Let ηn(a, s) := ∑[nτ ]
t=1 a

t−s1(s ≤ t), s ∈ Z, a ∈ (−1, 1). Then as N, n→∞ and
N1/(1+β)/n→ µ ∈ {1,∞},

N−2n2β−1 ∑
s∈Z

( N∑
i=1

ηn(ai, s)
)2

d→


∫
R

( ∫ ∞
0

∫ τ

0
e−x(t−s)1(s ≤ t)dtN(dx)

)2
ds, µ = 1,

(−ψ1Γ(β))2
∫
R
((τ − s)−β+ − (−s)−β+ )2ds, µ =∞.

(4.26)

Proof. We use the criterion in Cremers and Kadelka [23]. Rewrite (4.26) as IN,n d→ I, where
IN,n :=

∫
RA

2
N,n(s)ds, I :=

∫
RA

2(s)ds and

AN,n(s) := nβ

N

N∑
i=1

ηn(ai, dnse),

A(s) :=


∫ ∞

0

∫ τ

0
e−x(t−s)1(s ≤ t)dtN(dx), µ = 1,

κ((τ − s)−β+ − (−s)−β+ ), µ =∞,

with κ := −ψ1Γ(β). Accordingly (see [23], the second Corollory to Theorem 3), it suffices to
verify two conditions:

AN,n(s) fdd→ A(s) (4.27)

and
E
[ ∫

R
A2
N,n(s)ds

]1/2
< C. (4.28)

Relation (4.27) follows from the convergence of the joint characteristic functions:

Eei
∑m

j=1 θjAN,n(sj) =
(

1 + ΘN,n

N

)N
→ eΘ = Eei

∑m

j=1 θjA(sj) (4.29)

for any (θ1, . . . , θm) ∈ Rm, −∞ < s1 < · · · < sm <∞, m ∈ N, where

ΘN,n := NE
[

exp
{

in
β

N

m∑
j=1

θjηn(a, dnsje)
}
− 1

]

and

Θ :=


ψ1

∫ ∞
0

(
exp

{
i
m∑
j=1

θj

∫ τ

0
e−x(t−sj)1(sj ≤ t)dt

}
− 1

)
xβdx, µ = 1,

i
m∑
j=1

θjA(sj) = iκ
m∑
j=1

θj((τ − sj)−β+ − (−sj)−β+ ), µ =∞.
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Observe that A(s) = ψ1
∫∞

0 (
∫ τ

0 e−x(t−s)1(s ≤ t)dt)xβdx if µ =∞. Split ΘN,n = ΘN,n,1+ΘN,n,2,
where

ΘN,n,1 := NE
[

exp
{

in
β

N

m∑
j=1

θjηn(a, dnsje)
}
− 1

]
1(1− ε < a < 1),

ΘN,n,2 := NE
[

exp
{

in
β

N

m∑
j=1

θjηn(a, dnsje)
}
− 1

]
1(−1 < a ≤ 1− ε),

with the same ε > 0 as in Assumption (A1). From ηn(a, s) ≤ 2/(1 − a) and |eiz − 1| ≤
|z| (z ∈ R), we obtain |ΘN,n,2| ≤ CnβE[(1− a)−11(−1 < a < 1− ε)] = o(1) as β < 0. Next,
with hn(x, s) :=

∫ [nτ ]/n
0 (1− x

n
)dnte−dnse1(dnse ≤ dnte)dt by change of variable a = 1− x/n we

obtain

ΘN,n,1 = N
∫ 1

1−ε

(
exp

{
in

1+β

N

m∑
j=1

θj

∫ [nτ ]/n

0
adnte−dnsje1(dnsje ≤ dnte)dt

}
− 1

)
×ψ(a)(1− a)βda

= N

n1+β

∫ εn

0

(
exp

{
in

1+β

N

m∑
j=1

θjhn(x, sj)
}
− 1

)
ψ
(

1− x

n

)
xβdx

→ Θ (4.30)

in both cases µ = 1 and µ = ∞. This follows from the pointwise convergence hn(x, s) →∫ τ
0 e−x(t−s)1(s ≤ t)dt, (x, s) ∈ R+ × R, and the dominating bound

N

n1+β

∣∣∣∣ exp
{

in
1+β

N

m∑
j=1

θjhn(x, sj)
}
− 1

∣∣∣∣1(0 < x < εn) ≤ C min(1, (1/x)),

which is a consequence of the inequalities |eiz − 1| ≤ |z| (z ∈ R), |1 − u| ≤ e−u (u ∈ [0, 1]).
This proves (4.29) and (4.27).

Consider (4.28). Write JN,n for the l.h.s. of (4.28). By Minkowski’s inequality,

JN,n = nβ−(1/2)N−1E
[∑
s∈Z

( N∑
i=1

ηn(ai, s)
)2]1/2

≤ nβ−(1/2)E
[∑
s∈Z

η2
n(a, s)

]1/2

= nβ−(1/2)
{

E
[∑
s∈Z

η2
n(a, s)

]1/2
1(1− ε < a < 1)

+E
[∑
s∈Z

η2
n(a, s)

]1/2
1(−1 < a ≤ 1− ε)

}
=: JN,n,1 + JN,n,2
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for the same ε > 0 as in Assumption (A1). Since ∑s≤0 η
2
n(a, s) + ∑[nτ ]

s=1 η
2
n(a, s) ≤ C((1 +

a)−1 +n) for −1 < a ≤ 1−ε, we therefore get JN,n,2 = O(nβ) = o(1) under Assumption (A2).
Next, similarly to (4.30), by change a = 1− x/n of variable and with the same hn(x, s) as in
(4.30), we obtain

JN,n,1 ≤ C
∫ εn

0
xβdx

[ ∫ τ

−∞
h2
n(x, s)ds

]1/2
< C.

This proves (4.28) and completes the proof of Lemma 4.6.

Proof of Theorem 4.3. We use the method of characteristic functions as in Chapter 3. For
notational convenience, we restrict the proof to one-dimensional convergence at τ > 0. The
case of general finite-dimensional distributions does not require essential changes.
Case (iii) (proof of (4.8)). Let µ = 1. As in the proof of Theorem 3.2, we first assume ε to
be a standard normal r.v., i.e. ε d= N (0, 1). It suffices to show that for each θ ∈ R,

E exp{iθN−1/(1+β)n−1/2SN,n(τ)} (4.31)

→ EeiθZβ(τ) = EN exp
{
− θ2

2

∫
R

( ∫
R+

∫ τ

0
e−x(t−s)1(s ≤ t)dtN(dx)

)2
ds
}

as N, n→∞, N1/(1+β)/n→ 1, where the characteristic function of Zβ(τ) follows from (4.9),
(4.13). Use Xi(t) = ∑

s≤t a
t−s
i ε(s) and Eeiθε = e−θ2/2 to write the l.h.s. of (4.31) as

EE
[

exp
{

iθN−1/(1+β)n−1/2 ∑
s∈Z

( N∑
i=1

ηn(ai, s)
)
ε(s)

}∣∣∣∣a1, . . . , aN
]

= E exp
{
− (θ2/2)N−2/(1+β)n−1 ∑

s∈Z

( N∑
i=1

ηn(ai, s)
)2}

, (4.32)

with the same ηn(a, s) as in Lemma 4.6. Whence, (4.31) immediately follows from the above-
mentioned lemma.

In a general case of ε, the above argument needs some modification, see the proof of
Theorem 3.1. Namely, we use the fact (see, e.g., Ibragimov and Linnik [49, Theorem 2.6.5])
that the characteristic function of ε has the following representation in a neighborhood of
the origin: there exists δ > 0 such that

Eeiθε := e−(1/2)θ2h(θ) for each |θ| < δ, (4.33)

where h(θ) is a positive function tending to 1 as θ → 0. For 0 < p < 1/2 consider the set
ΩN,n := {a = (a1, a2, . . . ) ∈ [0, 1)N : ∑N

i=1(1− ai)−1 < N1/(1+β)np}. Then supa∈ΩN,n, s∈Z |
∑N
i=1

ηn(ai, s)| ≤ 2N1/(1+β)np implies

sup
a∈ΩN,n, s∈Z

∣∣∣h(θN−1/(1+β)n−1/2
N∑
i=1

ηn(ai, s)
)
− 1

∣∣∣ = o(1). (4.34)
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For N and n large enough, split UN,n(θ) := E exp{iθN−1/(1+β)n−1/2SN,n(τ)} = UN,n,1(θ) +
UN,n,2(θ), where UN,n,1(θ) := E[exp{iθN−1/(1+β)n−1/2SN,n(τ)}1(a ∈ ΩN,n)],
UN,n,2(θ) := E[exp{iθN−1/(1+β)n−1/2SN,n(τ)}1(a 6∈ ΩN,n)]. By Markov’s inequality, for (1 +
β)/(1 + p) < q < 1 + β < 1, we get

|UN,n,2(θ)| ≤ P
( N∑
i=1

(1− ai)−1 ≥ N1/(1+β)np
)
≤

E
(∑N

i=1(1− ai)−1
)q(

N1/(1+β)np
)q

≤ E
[ 1
(1− a)q

](
N1/(1+β)

n

)pq
N1−q(1+p)/(1+β) → 0.

Using (4.33), (4.34), P(a 6∈ ΩN,n)→ 0 and (4.31), we obtain

UN,n,1(θ) = E
[

exp
{
− (θ2/2)N−2/(1+β)n−1 ∑

s≤[nτ ]

( N∑
i=1

ηn(ai, s)
)2

×h
(
θN−1/(1+β)n−1/2

N∑
i=1

ηn(ai, s)
)}

1(a ∈ ΩN,n)
]
→ EeiθZβ(τ),

and finish the proof of UN,n(θ)→ EeiθZβ(τ) in the general case of ε. Finally, the general case
of 0 < µ < ∞ reduces to µ = 1, since n−1/2SN,n(τ) = µ1/2ñ−1/2SN,ñ(τ/µ) with ñ = nµ
satisfying N1/(1+β)/ñ→ 1.
Case (i) (proof of (4.6)). Follows similarly to Case (iii) by using (4.32) and Lemma 4.6 with
µ =∞.
Case (ii) (proof of (4.7)). Split

SN,n(τ) = ΣN,n,1(τ)− ΣN,n,2(τ) + ΣN,n,3(τ), (4.35)

where

ΣN,n,1(τ) :=
[nτ ]∑
s=1

ε(s)
N∑
i=1

1
1− ai

,

ΣN,n,2(τ) :=
[nτ ]∑
s=1

( N∑
i=1

a
[nτ ]−s+1
i

1− ai

)
ε(s),

ΣN,n,3(τ) :=
∑
s≤0

( N∑
i=1

a1−s
i (1− a[nτ ]

i )
1− ai

)
ε(s).

It suffices to prove that

N−1/(1+β)n−1/2ΣN,n,1(τ) fdd→ WβB(τ), (4.36)
ΣN,n,i(τ) = op(N1/(1+β)n1/2), i = 2, 3,
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as N, n→∞, N1/(1+β)/n→ 0. The first relation in (4.36) follows from

n−1/2
[nτ ]∑
s=1

ε(s) d→ B(τ) and N−1/(1+β)
N∑
i=1

(1− ai)−1 d→ Wβ, (4.37)

by independence of {ε(s)} and {ai} and the continuous mapping theorem. In turn, the
first relation in (4.37) follows by the classical central limit theorem for i.i.d. r.v.s with finite
variance. A similar statement for sums of i.i.d. r.v.s in the domain of attraction of stable
law (see [49, Theorem 2.6.7]) implies the second limit in (4.37), because the distribution of
(1 − a)−1 belongs to the domain of attraction of the (1 + β)-stable law Wβ: P((1 − a)−1 >
x) = P(a > 1 − x−1) ∼ (ψ1/(1 + β))x−(1+β), x → ∞, according to (4.3). The remaining
relations in (4.36) are established in Lemma 4.7. This proves (4.7) and completes the proof
of Theorem 4.3.

Lemma 4.7. ΣN,n,i(τ) = op(n1/2N1/(1+β)), i = 2, 3, as N, n→∞ and N1/(1+β)/n→ 0.

Proof. W.l.g., let τ = 1 and ΣN,n,i := ΣN,n,i(1), i = 2, 3. We shall prove that for 2
3(1 + β) <

p < 1 + β,
E|ΣN,n,i|p = o(np/2Np/(1+β)), i = 2, 3. (4.38)

We have E|ΣN,n,2|p ≤ EV p
2 , where

V2 := E1/2
[
|ΣN,n,2|2

∣∣∣a1, . . . , aN
]

=
{ n∑
s=1

( N∑
i=1

an−s+1
i

1− ai

)2}1/2

≤
N∑
i=1

{ n∑
s=1

a2s
i

(1− ai)2

}1/2
=

N∑
i=1

(1− a2n
i )1/2

(1− ai)(1− a2
i )1/2

by Minkowski’s inequality. Hence,

E|ΣN,n,2|p ≤ NEAp2, where A2 := (1− a2n)1/2

(1− a)(1− a2)1/2 , (4.39)

as p < 1. Split EAp2 = E[Ap21(a ≤ 1− ε)] + E[Ap21(a > 1− ε)] =: Λ′2 + Λ′′2 for the same ε > 0
as in Assumption (A1). Then Λ′2 ≤ CE(1 + a)−p/2 < C under Assumption (A2). Next, by
change of variable 1− a = x/n we obtain

Λ′′2 ≤ C
∫ 1

1−ε

(1− a2n)p/2
(1− a)3p/2 (1− a)βda

= Cn(3p/2)−(1+β)
∫ εn

0

(
1−

(
1− x

n

)2n)p/2
xβ−(3p/2)dx,

where the last integral tends to
∫∞

0 (1− e−2x)p/2xβ−(3p/2)dx <∞ for 2(1 + β)/3 < p < 1 + β
by the dominated convergence theorem. Therefore, E|ΣN,n,2|p ≤ CNn(3p/2)−(1+β), proving
(4.38) for i = 2.
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The proof of (4.38) for i = 3 is similar. Namely, E|ΣN,n,3|p ≤ EV p
3 , where

V3 := E1/2
[
|ΣN,n,2|2

∣∣∣a1, . . . , aN
]

=
{∑
s≤0

( N∑
i=1

a1−s
i (1− ani )

1− ai

)2}1/2

≤
N∑
i=1

{ n∑
s≤0

a
2(1−s)
i (1− ani )2

(1− ai)2

}1/2
≤

N∑
i=1

1− ani
(1− ai)(1− a2

i )1/2 .

Hence

E|ΣN,n,3|p ≤ NEAp3, where A3 := 1− an
(1− a)(1− a2)1/2

similarly to (4.39). Next, EAp3 = E[Ap31(a ≤ 1 − ε)] + E[Ap31(a > 1 − ε)] =: Λ′3 + Λ′′3, where
Λ′3 ≤ CE(1 + a)−p/2 < C and

Λ′′3 ≤ C
∫ 1

1−ε

(1− an)p
(1− a)3p/2 (1− a)βda

= Cn(3p/2)−(1+β)
∫ εn

0

(
1−

(
1− x

n

)n)p
xβ−(3p/2)dx,

where the last integral tends to
∫∞

0 (1− e−x)pxβ−(3p/2)dx <∞. Lemma 4.7 is proved.

Proof of Theorem 4.4. We restrict the proof of (4.17) to one-dimensional convergence at
τ > 0. Split SN,n(τ) as in (4.35). Then, by the central limit theorem and the law of large
numbers, n−1/2N−1ΣN,n,1(τ) d→ σB(τ) as N, n→∞ in an arbitrary way. It remains to show
that ΣN,n,i(τ) = op(Nn1/2), i = 2, 3. W.l.g., let τ = 1. According to (4.39), E|ΣN,n,2(1)| ≤
E{E[|ΣN,n,2(1)|2 | a1, . . . , aN ]}1/2 ≤ NEA2. Split EA2 = E[A21(a ≤ 1−ε)]+E[A21(a > 1−ε)]
as in the proof of Lemma 4.7. Then E[A21(a ≤ 1 − ε)] ≤ CE(1 + a)−1/2 < C. Using
1 − un ≤ min(1, n(1 − u)), u ∈ (0, 1), for max(0, 1/2 − β) < q < 1/2 we get E[A21(a >
1− ε)] ≤ CnqE[(1− a)q−3/2] < Cnq and thus E|ΣN,n,2(1)| ≤ CNnq = o(Nn1/2). The proof of
E|ΣN,n,3(τ)| = o(Nn1/2) is analogous. Theorem 4.4 is proved.





5
Statistical inference from
panel AR(1) data

This chapter contains the article [63]. We discuss nonparametric estimation of the dis-
tribution function G of the autoregressive coefficient a ∈ (−1, 1) from a panel of N random-
coefficient AR(1) series, each of length n, by the empirical distribution function of lag 1 sample
autocorrelations of individual AR(1) processes. Consistency and asymptotic normality of the
empirical distribution function and a class of kernel density estimators is established under
some regularity conditions on G as N and n increase to infinity. The Kolmogorov–Smirnov
goodness-of-fit test for simple and composite hypotheses of beta distributed a is discussed.
A simulation study for goodness-of-fit testing compares the finite-sample performance of our
nonparametric estimator to the performance of its parametric analogue discussed in [9].

5.1 Introduction

Panel data can describe a large population of heterogeneous units/agents which evolve
over time, e.g., households, firms, industries, countries, stock market indices. In this chapter
we consider a panel where each individual unit evolves over time according to order-one
random coefficient autoregressive model (RCAR(1)). It is well known that aggregation of
specific RCAR(1) models can explain long memory phenomenon, which is often empirically
observed in economic time series (see [40] for instance). More precisely, consider a panel
{Xi(t), t = 1, . . . , n, i = 1, . . . , N}, where each Xi = {Xi(t), t ∈ Z} is an RCAR(1) process

79
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with (0, σ2) noise and random coefficient ai ∈ (−1, 1), whose autocovariance

EXi(0)Xi(t) = σ2
∫ 1

−1

x|t|

1− x2 dG(x)

is determined by the distribution functionG(x) = P(a ≤ x), x ∈ [−1, 1], of the AR coefficient.
Granger [40] showed, for a specific beta-type distribution G, that the contemporaneous ag-
gregation of independent processes X1, . . . , XN results in a stationary Gaussian long memory
process {X (t), t ∈ Z}, i.e.,

N−1/2
N∑
i=1

Xi(t) fdd→ X (t) as N →∞, (5.1)

where the autocovariance EX (0)X (t) = EX1(0)X1(t) decays slowly as t → ∞ so that∑
t∈Z |EX (0)X (t)| =∞.
A natural statistical problem is recovering the distributionG (the frequency of a across the

population of individual AR(1) ‘microagents’) from the aggregated sample {X (1), . . . ,X (n)}.
This problem was treated in [20, 21, 61]. Some related results were obtained in [19, 48, 50].
Albeit nonparametric, the estimators in [20, 61] involve an expansion of the density g = G′

in an orthogonal polynomial basis and are sensitive to the choice of the tuning parameter
(the number of polynomials), being limited in practice to very smooth densities g. The
last difficulty in estimation of G from aggregated data is not surprising due to the fact that
aggregation per se inflicts a considerable loss of information about the evolution of individual
‘micro-agents’.

Clearly, if the available data comprises evolutions {Xi(1), . . . , Xi(n)}, i = 1, . . . , N , of all
N individual ‘micro-agents’ (the panel data), we may expect a much more accurate estimate
of G. Robinson [92] constructed an estimator for the moments of G using sample autocovari-
ances of Xi and derived its asymptotic properties as N → ∞, whereas the length n of each
sample remains fixed. Beran et al. [9] discussed estimation of two-parameter beta densities
g from panel RCAR(1) data using maximum likelihood estimators with unobservable ai re-
placed by sample lag 1 autocorrelation coefficient of Xi(1), . . . , Xi(n) (see Section 5.6), and
derived the asymptotic normality together with some other properties of the estimators as
N and n tend to infinity.

The present chapter studies nonparametric estimation of G from panel RCAR(1) data
using the empirical distribution function:

ĜN,n(x) := 1
N

N∑
i=1

1(âi,n ≤ x), x ∈ [−1, 1], (5.2)

where âi,n is the lag 1 sample autocorrelation coefficient of Xi, i = 1, . . . , N (see (5.12)).
We also discuss kernel estimation of the density g = G′ based on smoothed version of (5.2).
We assume that individual AR(1) processes Xi are driven by identically distributed shocks
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containing both common and idiosyncratic (independent) components. Consistency and
asymptotic normality as N, n→∞ of the above estimators are derived under some regularity
conditions on G. Our results can be applied to test goodness-of-fit of the distribution G to
a given hypothesized distribution (e.g., a beta distribution) using the Kolmogorov–Smirnov
statistic, and to construct confidence intervals for G(x) or g(x).

The chapter is organized as follows. In Section 5.2 we obtain the rate of convergence of
the lag 1 sample autocorrelation coefficient âi,n to ai in probability, the result of independent
interest. In Section 5.3 we prove the weak convergence of the empirical process in (5.2) to
a generalized Brownian bridge. Section 5.4 treats the Kolmogorov–Smirnov goodness-of-fit
test for simple and composite hypotheses of beta distributed a. In Section 5.5 we show
that kernel density estimators of g(x) are asymptotically normally distributed and their
mean integrated squared error tends to zero. In Section 5.6 a simulation study compares
the empirical performance of (5.2) and the parametric estimator of [9] when testing the
equality of G to a given beta distribution. The proofs of auxiliary statements can be found
in Section 5.7.

5.2 Estimation of random AR coefficient
Consider an RCAR(1) process

X(t) = aX(t− 1) + ζ(t), t ∈ Z, (5.3)

where innovations {ζ(t)} admit the following decomposition:

ζ(t) = bη(t) + cξ(t), t ∈ Z, (5.4)

where random sequences {η(t)}, {ξ(t)} and random coefficients a, b, c satisfy the following
conditions:
Assumption (A1). {η(t)} are i.i.d. r.v.s with Eη(0) = 0, Eη2(0) = 1, E|η(0)|2p < ∞ for
some p > 1.
Assumption (A2). {ξ(t)} are i.i.d. r.v.s with Eξ(0) = 0, Eξ2(0) = 1, E|ξ(0)|2p <∞ for the
same p as in (A1).
Assumption (A3). b and c are possibly dependent r.v.s such that P(b2 + c2 > 0) = 1 and
Eb2 <∞, Ec2 <∞.
Assumption (A4). a ∈ (−1, 1) is a r.v. with a distribution function (d.f.) G(x) := P(a ≤ x)
supported on [−1, 1] and satisfying

E
( 1

1− |a|

)
=
∫ 1

−1

dG(x)
1− |x| <∞. (5.5)

Assumption (A5). a, {η(t)}, {ξ(t)} and the vector (b, c)> are mutually independent.



Chapter 5. Statistical inference from panel AR(1) data 82

Remark 5.1. In the context of panel observations (see (5.10)), {η(t)} is the common com-
ponent and {ξ(t)} is the idiosyncratic component of shocks. The innovation process {ζ(t)} in
(5.4) is i.i.d. if the coefficients b and c are nonrandom. In the general case {ζ(t)} is a depen-
dent and uncorrelated stationary process with Eζ(0) = 0, Eζ2(0) = Eb2 +Ec2, Eζ(0)ζ(t) = 0,
t 6= 0.

Under conditions (A1)–(A5), a unique strictly stationary solution of (5.3) with finite
variance exists and is written as

X(t) =
∑
s≤t

at−sζ(s), t ∈ Z. (5.6)

Clearly, EX(t) = 0 and EX2(t) = Eζ2(0)E(1− a2)−1 <∞. Note that (5.5) is equivalent to

E
( 1

1− |a|p
)
<∞, 1 < p ≤ 2,

since 1− |a| ≤ 1− |a|p ≤ 2(1− |a|) for a ∈ (−1, 1).
For an observed sample X(1), . . . , X(n) from the stationary process in (5.6), define the

sample mean X̄n := n−1∑n
t=1X(t) and the sample lag 1 autocorrelation coefficient

ân :=
∑n−1
t=1 (X(t)− X̄n)(X(t+ 1)− X̄n)∑n

t=1(X(t)− X̄n)2
. (5.7)

Note the estimator ân in (5.7) does not exceed 1 a.s. in absolute value by the Cauchy–Schwarz
inequality. Moreover, it is invariant to shift and scale transformations of {X(t)} in (5.3), i.e.,
we can replace {X(t)} by {ρX(t) + µ} with some (unknown) µ ∈ R and ρ > 0.

Proposition 5.1. Under Assumptions (A1)–(A5), for any 0 < γ < 1 and n ≥ 1, it holds

P(|ân − a| > γ) ≤ C(n−( p2∧(p−1))γ−p + n−1),

with C > 0 independent of n, γ.

Proof. See Section 5.7.

Assume now that the d.f. G of a satisfies the following Hölder condition:
Assumption (A6). There exist constants LG > 0 and % ∈ (0, 1] such that

|G(x)−G(y)| ≤ LG|x− y|%, x, y ∈ [−1, 1]. (5.8)

Consider the d.f. of ân:

Gn(x) := P(ân ≤ x), x ∈ [−1, 1]. (5.9)
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Corollary 5.2. Let Assumptions (A1)–(A6) hold. Then, as n→∞,

sup
x∈[−1,1]

|Gn(x)−G(x)| = O(n−
%
%+p ( p2∧(p−1))).

Proof. Denote δn := ân − a. For any (nonrandom) γ > 0 from (5.8) we have

sup
x∈[−1,1]

|Gn(x)−G(x)| = sup
x∈[−1,1]

|P(a+ δn ≤ x)− P(a ≤ x)|

≤ LGγ
% + P(|δn| > γ),

implying
sup

x∈[−1,1]
|Gn(x)−G(x)| ≤ LGγ

% + C(n−1 + n−( p2∧(p−1))γ−p)

with C > 0 independent of n, γ. Then the corollary follows from Proposition 5.1 by taking
γ = γn = o(1) such that γ%n ∼ n−( p2∧(p−1))γ−pn and noting that the exponent %

%+p(p2 ∧ (p−1)) <
1.

5.3 Asymptotics of the empirical distribution function
Consider RCAR(1) processes {Xi(t)}, i = 1, 2, . . . , which are stationary solutions to

Xi(t) = aiXi(t− 1) + ζi(t), t ∈ Z, (5.10)

with innovations {ζi(t)} having the same structure as in (5.4):

ζi(t) = biη(t) + ciξi(t), t ∈ Z. (5.11)

More precisely, we make the following assumption:
Assumption (B). {η(t)} satisfies (A1); {ξi(t)}, (bi, ci)>, ai, i = 1, 2, . . . , are independent
copies of {ξ(t)}, (b, c)>, a, respectively, which satisfy Assumptions (A2)–(A6). (Note that
we assume (A5) for every i = 1, 2, . . ..)

Remark 5.2. The individual processes {Xi(t)} have covariance long memory if conditions
(5.5) and

∫ 1
−1 |1−x2|−2dG(x) =∞ hold, which is compatible with Assumption (B). The same

is true about the limit aggregated process in (5.1) arising when the common component of
shocks is absent (i.e. in case P(b = 0) = 1). On the other hand, in the presence of the common
component, the limit aggregated process has long memory if the individual processes have
infinite variance and condition (5.5) fails, see [87].

Define the sample mean X̄i,n := n−1∑n
t=1Xi(t), the corresponding lag 1 sample autocor-

relation coefficient

âi,n :=
∑n−1
t=1 (Xi(t)− X̄i,n)(Xi(t+ 1)− X̄i,n)∑n

t=1(Xi(t)− X̄i,n)2
, 1 ≤ i ≤ N, (5.12)
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and the empirical d.f.

ĜN,n(x) := 1
N

N∑
i=1

1(âi,n ≤ x), x ∈ [−1, 1]. (5.13)

Recall that (5.13) is a nonparametric estimate of the d.f. G(x) = P(ai ≤ x) from the observed
panel data {Xi(t), t = 1, . . . , n, i = 1, . . . , N}. In the following theorem we show that ĜN,n(x)
is an asymptotically unbiased estimator of G(x) as n and N both tend to infinity, and prove
the weak convergence of the corresponding empirical process.

Theorem 5.3. Let the panel data model in (5.10)–(5.11) satisfy Assumption (B). Then, as
N, n→∞,

sup
x∈[−1,1]

|EĜN,n(x)−G(x)| = O(n−
%
%+p ( p2∧(p−1))). (5.14)

If, in addition,
N = o(n

2%
%+p ( p2∧(p−1))), (5.15)

then
N1/2(ĜN,n(x)−G(x))⇒ W (x), x ∈ [−1, 1], (5.16)

where {W (x), x ∈ [−1, 1]} is a continuous Gaussian process with zero mean and Cov(W (x),W (y)) =
G(x∧y)−G(x)G(y), x, y ∈ [−1, 1], and⇒ denotes the weak convergence in the space D[−1, 1]
with the supremum (uniform) metric.

Proof. Note â1,n, . . . , âN,n are identically distributed, in particular, EĜN,n(x) = Gn(x) with
Gn(x) defined in (5.9). Hence, (5.14) follows immediately from Corollary 5.2.

To prove the second statement of the theorem, we approximate ĜN,n(x) by the empirical
d.f.

ĜN(x) := 1
N

N∑
i=1

1(ai ≤ x), x ∈ [−1, 1],

of i.i.d. r.v.s a1, . . . , aN . We have N1/2(ĜN,n(x) − G(x)) = N1/2(ĜN(x) − G(x)) + DN,n(x)
with DN,n(x) := N1/2(ĜN,n(x)− ĜN(x)). Since (A6) guarantees the continuity of G, it holds

N1/2(ĜN(x)−G(x))⇒ W (x), x ∈ [−1, 1],

by the classical Donsker theorem. Then (5.16) follows once we prove

sup
x∈[−1,1]

|DN,n(x)| p→ 0.

By definition,

DN,n(x) = N−1/2
N∑
i=1

(1(ai + δi,n ≤ x)− 1(ai ≤ x)) = D′N,n(x)−D′′N,n(x),
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where δi,n := âi,n − ai, i = 1, . . . , N , and

D′N,n(x) := N−1/2
N∑
i=1

1(x < ai ≤ x− δi,n, δi,n ≤ 0),

D′′N,n(x) := N−1/2
N∑
i=1

1(x− δi,n < ai ≤ x, δi,n > 0).

For γ > 0 we have

D′N,n(x) ≤ N−1/2
N∑
i=1

1(x < ai ≤ x+ γ) +N−1/2
N∑
i=1

1(|δi,n| > γ)

=: V ′N(x) + V ′′N,n.

(Note that V ′′N,n does not depend on x.) By Proposition 5.1, we obtain

EV ′′N,n = N−1/2
N∑
i=1

P(|δi,n| > γ) ≤ CN1/2(n−((p/2)∧(p−1))γ−p + n−1),

which tends to 0 when γ is chosen as γ%+p = n−((p/2)∧(p−1)) → 0. Next,

V ′N(x) = N1/2(ĜN(x+ γ)− ĜN(x))
= N1/2(G(x+ γ)−G(x)) + UN(x, x+ γ],

UN(x, x+ γ] := N1/2(ĜN(x+ γ)−G(x+ γ))−N1/2(ĜN(x)−G(x)).

The above choice of γ%+p = n−((p/2)∧(p−1)) implies supx∈[−1,1]N
1/2|G(x+γ)−G(x)| = O(N1/2γ%) =

o(1), whereas UN(x, x+ γ] vanishes in the uniform metric in probability (see Lemma 5.11 in
Section 5.7). Since D′′N,n(x) is analogous to D′N,n(x), this proves the theorem.

Remark 5.3. (5.15) implies that n � N (%+p)/%p asymptotically for p ≥ 2. Note that (% +
p)/%p > 1 and limp→∞(%+p)/%p = 1/% for any % ∈ (0, 1]. We may conclude that Theorem 5.3
as well as other results of this chapter apply to long panels with n increasing much faster than
N , except maybe for the limiting case p =∞ for % = 1. The main reason for this conclusion
is that ai need to be accurately estimated by (5.12) in order that ĜN,n behaves similarly to
the empirical d.f. ĜN based on unobserved autocorrelation coefficients a1, . . . , aN .

5.4 Goodness-of-fit testing
Theorem 5.3 can be used for testing goodness-of-fit. In the case of simple hypothesis, we

test the null H0 : G = G0 vs. H1 : G 6= G0 with G0 being a certain hypothetical distribution
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satisfying the Hölder condition in (5.8). Accordingly, the corresponding Kolmogorov–Smirnov
(KS) test rejecting H0 whenever

N1/2 sup
x∈[−1,1]

|ĜN,n(x)−G0(x)| > c(ω) (5.17)

has asymptotic size ω ∈ (0, 1) provided N, n,G0 satisfy the assumptions for (5.16) in Theo-
rem 5.3. (Here, c(ω) is the upper ω-quantile of the Kolmogorov distribution.) However, the
goodness-of-fit test in (5.17) requires the knowledge of parameters of the model considered,
which is not typically a very realistic situation. Below, we consider testing composite hy-
pothesis using the Kolmogov–Smirnov statistic with estimated parameters. The parameters
will be estimated by the method of moments.

Write µ = (µ(1), . . . , µ(m))> and µ̂N,n = (µ̂(1)
N,n, . . . , µ̂

(m)
N,n)>, where

µ(u) := Eau =
∫ 1

−1
xudG(x), µ̂

(u)
N,n := 1

N

N∑
i=1

(âi,n)u, 1 ≤ u ≤ m.

Proposition 5.4. Let the panel data model in (5.10)–(5.11) satisfy Assumption (B) with
exception of Assumption (A6). If N = o(n

2
1+p ( p2∧(p−1))) as N, n→∞, then

N1/2(µ̂N,n − µ) d→ N (0,Σ), where Σ :=
(

Cov(au, av)
)

1≤u,v≤m
. (5.18)

Proof. Write

N1/2(µ̂N,n − µ) = N1/2(µ̂N,n − µ̂N) +N1/2(µ̂N − µ),

where µ̂N := 1
N

∑N
i=1(ai, . . . , ami )>. We have N1/2(µ̂N − µ) d→ N (0,Σ) as N → ∞ by the

multivariate central limit theorem. On the other hand, N1/2(µ̂N,n − µ̂N) p→ 0 follows from
E|âun − au| ≤ CE|ân − a| ≤ C(γ + P(|ân − a| > γ)) and Proposition 5.1 with γ1+p =
n−((p/2)∧(p−1)), proving the proposition.

Remark 5.4. Robinson [92, Theorem 7] discussed a different estimator of µ and proved it to
be asymptotically normally distributed for fixed n as N →∞ in contrast to ours. However,
his result holds in the case of idiosyncratic innovations only and under stronger assumption
on G than in Proposition 5.4, which does not allow for long memory.

Consider testing the composite null hypothesis that G belongs to the family G = {Gθ, θ =
(α, β)> ∈ (1,∞)2} of beta d.f.s versus an alternative G 6∈ G, where

Gθ(x) = 1
B(α, β)

∫ x

0
tα−1(1− t)β−1dt, x ∈ [0, 1], (5.19)

and B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the beta function. The uth moment of Gθ is given by

µ(u) =
∫ 1

0
xudGθ(x) =

u−1∏
r=0

α + r

α + β + r
.
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Parameters α, β can be found from the first two moments µ = (µ(1), µ(2))> as

α = µ(1)(µ(1) − µ(2))
µ(2) − (µ(1))2 , β = (1− µ(1))(µ(1) − µ(2))

µ(2) − (µ(1))2 . (5.20)

The moment-based estimator θ̂N,n := (α̂N,n, β̂N,n)> of θ = (α, β)> is obtained by replacing µ
in (5.20) by its estimator µ̂N,n. The consistency and asymptotic normality of this estimator
follows by the delta method from Proposition 5.4, see Corollary 5.5, where we need condition
α > 1, β > 1 to satisfy Assumptions (A4) and (A6).

Corollary 5.5. Let the panel data model in (5.10)–(5.11) satisfy Assumption (B). Let G =
Gθ, θ = (α, β)>, be a beta d.f. in (5.19), where α > 1, β > 1. Let N, n increase as in (5.15)
where % = 1. Then

N1/2(θ̂N,n − θ) d→ N (0,Λθ), Λθ := ∆−1Σ(∆−1)′, (5.21)

where Σ is the 2× 2 matrix in (5.18) and

∆ := ∂µ/∂θ =
(
∂µ(1)/∂α ∂µ(1)/∂β
∂µ(2)/∂α ∂µ(2)/∂β

)
.

Moreover, θ̂N,n is asymptotically linear:

N1/2(θ̂N,n − θ) = N−1/2
N∑
i=1

lθ(ai) + op(1), (5.22)

lθ(x) := ∆−1(x− µ(1), x2 − µ(2))>,

where Elθ(a) =
∫ 1

0 lθ(x)dGθ(x) = 0 and Elθ(a)lθ(a)> =
∫ 1
0 lθ(x)lθ(x)>dGθ(x) = Λθ.

Corollary 5.6. Let assumptions of Corollary 5.5 hold. Then

N1/2(ĜN,n(x)−G
θ̂N,n

(x))⇒ Vθ(x), x ∈ [0, 1],

where {Vθ(x), x ∈ [0, 1]} is a continuous Gaussian process with zero mean and covariance

Cov(Vθ(x), Vθ(y)) = Gθ(x ∧ y)−Gθ(x)Gθ(y) + ∂θGθ(x)>Λθ∂θGθ(y)

−
∫ x

0
lθ(u)>dGθ(u)∂θGθ(y)−

∫ y

0
lθ(u)>dGθ(u)∂θGθ(x),

where ∂θGθ(x) := ∂Gθ(x)/∂θ = (∂Gθ(x)/∂α, ∂Gθ(x)/∂β)>, x, y ∈ [0, 1], and Λθ is defined in
(5.21).
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Proof. The d.f. Gθ with α > 1, β > 1 satisfies Assumptions (A4) and (A6) with % = 1.
Recall ĜN(x) := N−1∑N

i=1 1(ai ≤ x), x ∈ [0, 1]. Since condition (5.15) is satisfied, so
N1/2 supx∈[0,1] |ĜN,n(x) − ĜN(x)| vanishes in probability by Theorem 5.3, whereas the con-
vergence N1/2(ĜN(x)−G

θ̂N,n
(x))⇒ Vθ(x), x ∈ [0, 1], follows from (5.22) using the fact that

∂θGθ(x), x ∈ [0, 1], is continuous in θ, see [30] or [106, Theorem 19.23].

With Corollary 5.6 in mind, the Kolmogorov–Smirnov test for the composite hypothesis
G ∈ G can be defined as

sup
x∈[0,1]

N1/2|ĜN,n(x)−G
θ̂N,n

(x)| > c
θ̂N,n

(ω), (5.23)

where cθ(ω) is the upper ω-quantile of the distribution of supx∈[0,1] |Vθ(x)|:

P
(

sup
x∈[0,1]

|Vθ(x)| > cθ(ω)
)

= ω, ω ∈ (0, 1).

The test in (5.23) has correct asymptotic size for any ω ∈ (0, 1), which follows from Corol-
lary 5.6 and the continuity of the quantile function cθ(ω) in θ, see [102, page 69], [106]. By
writing N1/2(ĜN,n(x)−G

θ̂N,n
(x)) = N1/2(ĜN,n(x)−G(x))+N1/2(G(x)−G

θ̂N,n
(x)), it follows

that the Kolmogorov–Smirnov statistic on the l.h.s. of (5.23) tends to infinity (in probability)
under any fixed alternative G 6∈ G which cannot be approximated by a beta d.f. Gθ in the
uniform metric, i.e., such that infθ supx∈[0,1] |G(x) − Gθ(x)| > 0. Moreover, even under the
alternative, we preserve the consistency of µ̂N,n, hence cθ̂N,n(ω) being a continuous function
of sample moments, converges in probability to some finite limit. Therefore the test (5.23)
is consistent.

In practice, the evaluation of cθ(ω) requires Monte Carlo approximation which is time-
consuming. Alternatively, [98, 102] discussed parametric bootstrap procedures to produce
asymptotically correct critical values. We note that the assumptions of [102, Theorem 1] are
valid for the family of beta d.f.s and the moment-based estimator of θ in Corollary 5.6. The
consistency of the test when using bootstrap critical values follows by a similar argument as
in (5.23).

5.5 Kernel density estimation
In this section we assume G has a bounded probability density function g(x) = G′(x),

x ∈ [−1, 1], implying Assumption (A6) with Hölder exponent % = 1 in (5.8). It is of interest
to estimate g in a nonparametric way from â1,n, . . . , âN,n (5.12).

Consider the kernel density estimator

ĝN,n(x) := 1
Nh

N∑
i=1

K
(
x− âi,n

h

)
, x ∈ R,
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where K is a kernel, satisfying Assumption (A7) and h = hN,n is a bandwidth which tends
to zero as N and n tend to infinity.
Assumption (A7). K : [−1, 1] → R is a continuous function of bounded variation that
satisfies

∫ 1
−1K(x)dx = 1. Set ‖K‖2

2 :=
∫ 1
−1K(x)2dx and µ2(K) :=

∫ 1
−1 x

2K(x)dx and K(x) :=
0, x ∈ R \ [−1, 1].

We consider two cases separately.
Case (i): P(b1 = 0) = 1, meaning that the coefficient bi = 0 for the common shock in (5.11)
is zero and that the individual processes {Xi(t)}, i = 1, 2, . . ., are independent and satisfy

Xi(t) = aiXi(t− 1) + ciξi(t), t ∈ Z.

Case (ii): P(b1 6= 0) > 0, meaning that {Xi(t)}, i = 1, 2, . . . , are mutually dependent
processes.
Proposition 5.7. Let the panel data model in (5.10)–(5.11) satisfy Assumption (B) and let
Assumption (A7) hold. If n(p/2)∧(p−1)h1+p →∞, then

EĝN,n(x)→ g(x) (5.24)
at every continuity point x ∈ R of g. Moreover, ifn(p/2)∧(p−1)h1+p →∞ in Case (i),

n(p/2)∧(p−1)(h/N)1+p →∞ in Case (ii),
(5.25)

then

NhCov(ĝN,n(x1), ĝN,n(x2))→
g(x1)‖K‖2

2 if x1 = x2,

0 if x1 6= x2
(5.26)

at any continuity points x1, x2 ∈ R of g. If Nh → ∞ holds in addition to (5.25), then the
estimator ĝN,n(x) is consistent at every continuity point x ∈ R:

E|ĝN,n(x)− g(x)|2 → 0. (5.27)
Proof. Throughout the proof, letKh(x) := K(x/h), x ∈ R. Consider (5.24). Note EĝN,n(x) =
h−1EKh(x−ân), because â1,n, . . . , âN,n are identically distributed. Let us approximate ĝN,n(x)
by

ĝN(x) := 1
Nh

N∑
i=1

Kh(x− ai), x ∈ R, (5.28)

which satisfies EĝN(x) = h−1EKh(x − a) → g(x) as h → 0 at a continuity point x of g,
see [76]. Integration by parts and Corollary 5.2 yield

h|EĝN,n(x)− EĝN(x)| =
∣∣∣∣ ∫

R
(Gn(y)−G(y))dKh(x− y)

∣∣∣∣ (5.29)

≤ V (K) sup
y∈[−1,1]

|Gn(y)−G(y)|

= O(n−((p/2)∧(p−1))/(1+p)),
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uniformly in x ∈ R, where V (K) denotes the total variation of K and V (K) = V (Kh). This
proves (5.24).

Next, let us prove (5.26). We have

NhCov(ĝN(x1), ĝN(x2)) = 1
h

EKh(x1 − a)Kh(x2 − a)

→

g(x1)‖K‖2
2 if x1 = x2,

0 if x1 6= x2,

as h→ 0 at any points x1, x2 of continuity of g, see [76]. Split Nh{Cov(ĝN,n(x1), ĝN,n(x2))−
Cov(ĝN(x1), ĝN(x2))} = ∑3

i=1Qi(x1, x2), where

Q1(x1, x2) := h−1{EKh(x1 − ân)Kh(x2 − ân)− EKh(x1 − a)Kh(x2 − a)},
Q2(x1, x2) := h−1{EKh(x1 − ân)EKh(x2 − ân)− EKh(x1 − a)EKh(x2 − a)},
Q3(x1, x2) := (N − 1)h−1 Cov(Kh(x1 − â1,n), Kh(x2 − â2,n)).

Note Q3(x1, x2) = 0 in Case (i). Similarly to (5.29),

|Q1(x1, x2)| = h−1
∣∣∣∣ ∫

R
(Gn(y)−G(y))dKh(x1 − y)Kh(x2 − y)

∣∣∣∣
≤ Ch−1n−((p/2)∧(p−1))/(1+p) → 0,

since V (Kh(x1−·)Kh(x2−·)) ≤ C and |Q2(x1, x2)| ≤ Ch−1n−((p/2)∧(p−1))/(1+p) → 0 uniformly
in x1, x2. Finally, by Lemma 5.12,

|Q3(x1, x2)| = N − 1
h

∣∣∣∣ ∫
R

∫
R
(P(â1,n ≤ y1, â2,n ≤ y2)

−P(â1,n ≤ y1)P(â2,n ≤ y2))dKh(x1 − y1)dKh(x2 − y2)
∣∣∣∣

≤ CN

h
sup

y1,y2∈[−1,1]
|P(â1,n ≤ y1, â2,n ≤ y2)− P(â1,n ≤ y1)P(â2,n ≤ y2)|

= O(Nh−1n−((p/2)∧(p−1))/(1+p)) = o(1),

proving (5.26) and the proposition.

Remark 5.5. It follows from the proof of the above proposition that in the case of a (uni-
formly) continuous density g(x), x ∈ [−1, 1], relations (5.24), (5.27) and the first relation in
(5.26) hold uniformly in x ∈ R, implying the convergence of the mean integrated squared
error: ∫ ∞

−∞
E|ĝN,n(x)− g(x)|2dx→ 0.
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Proposition 5.8. (Asymptotic normality) Let the panel data model in (5.10)–(5.11) satisfy
Assumption (B) and let Assumption (A7) hold. Moreover, let K be a Lipschitz function in
Case (ii) and assume Nh→∞ in addition to (5.25). Then

ĝN,n(x)− EĝN,n(x)√
Var(ĝN,n(x))

d→ N (0, 1) (5.30)

at every continuity point x ∈ (−1, 1) of g such that g(x) 6= 0.
Proof. First, consider Case (i). Since ĝN,n(x) = (Nh)−1∑N

i=1 Vi,N is a (normalized) sum of
i.i.d. r.v.s Vi,N := Kh(x − âi,n) with common distribution VN := V1,N , it suffices to verify
Lyapunov’s condition

E|VN − EVN |2+δ

N δ/2 {Var(VN)}(2+δ)/2 → 0, (5.31)

for some δ > 0. This follows by the same arguments as in [76]. Analogously to Propo-
sition 5.7, we have E|VN |2+δ = E|Kh(x − ân)|2+δ ∼ hg(x)

∫ 1
−1 |K(y)|2+δdy = O(h) while

Var(VN) = Nh2 Var(ĝN,n(x)) ∼ hg(x)‖K‖2
2 according to (5.26). Hence the l.h.s. of (5.31) is

O((Nh)−δ/2) = o(1), proving (5.30) in Case (i).
Let us turn to Case (ii). It suffices to prove that

√
Nh(ĝN,n(x) − ĝN(x)) p→ 0, for ĝN(x)

given in (5.28). By |K(x)−K(y)| ≤ LK |x− y|, x, y ∈ R, for ε > 0,

P
(√

Nh|ĝN,n(x)− ĝN(x)| > ε
)
≤ P

(
LK√
Nh

N∑
i=1

|âi,n − ai|
h

> ε
)

≤ NP
(
|ân − a| >

√
Nh

(
h

N

)
ε

LK

)
≤ C

(
h(Nh)−p/2

(
N

h

)1+p
n−((p/2)∧(p−1)) + N

n

)
= o(1)

from Proposition 5.1 and (5.25) with Nh→∞.
Corollary 5.9. Let assumptions of Proposition 5.8 hold with h ∼ cN−1/5 for some c > 0,
i.e.,

N =
o(n

5
3

1
1+p ( p2∧(p−1))) in Case (i),

o(n
5
6

1
1+p ( p2∧(p−1))) in Case (ii).

Moreover, let g ∈ C2[−1, 1] and
∫ 1
−1 yK(y)dy = 0. Then

N2/5(ĝN,n(x)− g(x)) d→ N (µ(x), σ2(x)),
where µ(x) := (c2/2)g′′(x)µ2(K) and σ2(x) := (1/c)g(x)‖K‖2

2.
Proof. This follows from Proposition 5.8, by noting that EĝN(x)− g(x) ∼ h2g′′(x) µ2(K)/2
as h→ 0 and EĝN,n(x)− EĝN(x) = O(h−1n−((p/2)∧(p−1))/(1+p)) by (5.29).
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5.6 Simulations
In this section we compare our nonparametric goodness-of-fit test in (5.17) for testing the

null hypothesis G = G0 with its parametric analogue studied in [9]. In accordance with the
last paper, we assume {Xi(t)} in (5.10) to be independent RCAR(1) processes with standard
normal i.i.d. innovations {ζi(t)}, ζ(0) d= N (0, 1) and the random AR coefficient ai ∈ (0, 1)
having a beta-type density g with unknown parameters θ := (α, β)>:

g(x) = 2
B(α, β)x

2α−1(1− x2)β−1, x ∈ (0, 1), α > 1, β > 1. (5.32)

Note that β ∈ (1, 2) implies the long memory property in {Xi(t)}. Beran et al. [9] discuss
a maximum likelihood estimator θ̂N,n,κ = (α̂N,n,κ, β̂N,n,κ)> of θ = (α, β)> when each unob-
servable coefficient ai is replaced by its estimate âi,n,κ := min{max{âi,n, κ}, 1− κ} with âi,n
given in (5.12) and 0 < κ = κN,n → 0 is a truncation parameter. Under certain conditions
on N, n→∞ and κ→ 0, Beran et al. [9, Theorem 2] showed that

N1/2(θ̂N,n,κ − θ0) d→ N (0, A−1(θ0)), (5.33)

where θ0 is the true parameter vector,

A(θ) :=
(
ψ1(α)− ψ1(α + β) −ψ1(α + β)
−ψ1(α + β) ψ1(β)− ψ1(α + β)

)
,

and ψ1(x) := d2 ln Γ(x)/dx2 is the trigamma function. Based on (5.17) and (5.33), we
consider testing both ways (nonparametrically and parametrically) the hypothesis that the
unobserved AR coefficients a1, . . . , aN are drawn from the reference distribution G0 having
density function in (5.32) with a specific θ0, i.e., the null G = G0 vs. the alternative G 6= G0.
The respective test statistics are

T1 := N1/2 sup
x∈[0,1]

|ĜN,n(x)−G0(x)|; T2 := N(θ̂N,n,κ − θ0)>A(θ0)(θ̂N,n,κ − θ0). (5.34)

Under the null hypothesis, the distributions of statistics T1 and T2 converge to the Kolmogorov
distribution and the chi-square distribution with 2 degrees of freedom, respectively, see (5.17),
(5.33).

To compare the performance of the above testing procedures, we compute the empirical
d.f.s of the p-values of T1 and T2 under null and alternative hypotheses. The p-value of
observed Ti is defined as p(Ti) = 1−Ki(Ti), i = 1, 2, where Ki(y), i = 1, 2, denote the limit
d.f.s of (5.34). Recall that when the significance level of the test is correct, the (asymptotic)
distribution of the p-value is uniform on [0, 1]. The simulation procedure to compare the
performance of T1 and T2 is the following:
Step (S0). We fix the parameter under the null hypothesis H0 : θ = θ0 with θ0 = (2, 1.4)>.
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Step (S1). We simulate 5000 panels with N = 250, n = 817 for five chosen values θ =
(2, 1.2)>, (2, 1.3)>, (2, 1.4)>, (2, 1.5)>, (2, 1.6)> of beta parameters.
Step (S2). For each simulated panel we compute the p-value of statistics T1 and T2.
Step (S3). The empirical d.f.s of computed p-values of statistics T1 and T2 are plotted.

The values of beta parameters θ0 = (2, 1.4)>, N , n were chosen in accordance with the
simulation study in [9].

Figure 5.1 presents the simulation results under the true hypothesis θ = θ0 with zoom-
in on small p-values. We see that both d.f.s in the left graph are approximately linear.
Somewhat surprisingly, it appears that the empirical size of T1 (the nonparametric test) is
better than the size of T2 (the parametric test). Particularly, for significance levels 0.05 and
0.1 we provide the empirical size values in Table 5.1.

Figure 5.2 gives the graphs of the empirical d.f.s of p-values of T1 and T2 for several
alternatives θ 6= θ0. It appears that for β > β0 = 1.4 the parametric test T2 is more powerful
than the nonparametric test T1 but for β < β0 the power differences are less significant.
Table 5.1 illustrates the empirical power for the significance levels 0.05, 0.1.

Figure 5.1: [left] Empirical d.f. of p-values of T1 and T2 under H0 : θ = (2, 1.4)>; 5000
replications with N = 250, n = 817. [right] Zoom-in on the region of interest: p-values
smaller than 0.1.
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ω 5% 10%
β 1.2 1.3 1.4 1.5 1.6 1.2 1.3 1.4 1.5 1.6
T1 .532 .137 .049 .208 .576 .653 .223 .103 .315 .702
T2 .500 .104 .077 .313 .735 .634 .184 .134 .421 .827

Table 5.1: Numerical results of the comparison for testing procedure H0 : θ = (2, 1.4)> at the
significance level ω = 5% and ω = 10%. The column for β = 1.4 provides the empirical size.

The above simulations (Figures 5.1 and 5.2, Table 5.1) refer to the case of independent
individual processes {Xi(t)}. There are no theoretical results for the parametric test T2,
when RCAR(1) series are dependent. Although the nonparametric test T1 is valid for the
latter case, one may expect that the presence of the common shock component in the panel
data in (5.11) has a negative effect on the test performance for short series. To illustrate this
effect, we simulate 5000 panels with RCAR(1) processes {Xi(t)} driven by dependent shocks
in (5.11) with bi = b, ci = (1 − b2)1/2. As previously, we choose θ0 = (2, 1.4)>, N = 250,
n = 817 and we fix θ = (2, 1.4)> to evaluate the empirical size of T1. Figure 5.3[left] presents
the graphs of the empirical d.f.s of the p-values of T1 for b = 1, b = 0.6 and b = 0, the latter
corresponding to independent individual processes as in Figure 5.1. We see that the size of
the test worsens as b increases, particularly for b = 1 when {Xi(t)} are all driven by the
same shocks. To overcome the last effect, the sample length n of each series in the panel may
be increased as in Figure 5.3[right], where the choice of n = 5500 and b = 1 shows a much
better performance of T1 under the null hypothesis θ = θ0 = (2, 1.4)> and the alternative
(θ = (2, 1.5)> and θ = (2, 1.6)>) scenarios.

In conclusion,

1. We do not observe an important loss of the power for the nonparametric KS test T1
compared to the parametric approach.

2. The KS test T1 does not require to choose any tuning parameter contrary to the test
T2.

3. One can use the KS test T1 under weaker assumptions on RCAR(1) innovations. We
only impose moment conditions. The dependence between the series is allowed by
(5.11).
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Figure 5.2: Empirical d.f. of p-values of T1 and T2 for testing H0 : θ = (2, 1.4)> under several
alternatives of the form θ = (2, β)>; 5000 replications with N = 250, n = 817.
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Figure 5.3: [left] Empirical d.f. of p-values of T1 under H0 : θ = (2, 1.4)> for different depen-
dence structure between RCAR(1) series : bi = b and ci = (1− b2)1/2 and N = 250, n = 817.
[right] Empirical d.f. of p-values of T1 for testing H0 : θ = (2, 1.4)>. RCAR(1) series are
driven by common innovations, i.e., bi = 1, ci = 0, for θ = (2, β)>; 5000 replications with
N = 250, n = 5500.
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5.7 Some proofs and auxiliary lemmas
We use the following martingale moment inequality.

Lemma 5.10. Let p > 1 and {ξj, j ≥ 1} be a martingale difference sequence: E[ξj|ξ1, . . . , ξj−1] =
0, j = 2, 3, . . ., with E|ξj|p < ∞. Then there exists a constant Cp < ∞ depending only on p
and such that

E
∣∣∣∣ ∞∑
j=1

ξj

∣∣∣∣p ≤ Cp


∑∞
j=1 E|ξj|p, 1 < p ≤ 2,(∑∞
j=1(E|ξj|p)2/p

)p/2
, p > 2.

(5.35)

For 1 < p ≤ 2, inequality (5.35) is known as von Bahr and Esséen inequality, see [107],
and for p > 2, it is a consequence of the Burkholder and Rosenthal inequality ( [18, 93], see
also [36, Lemma 2.5.2]).

Proof of Proposition 5.1. Since ân in (5.7) is invariant w.r.t. a scale factor of innovations
{ζ(t)}, w.l.g. we can assume b2 + c2 = 1 and Eζ2(0) = 1, E|ζ(0)|2p < ∞. Then ân − a =∑3
i=1 δni, where

δn1 := − aX2(n)∑n
t=1X

2(t)− n(X̄n)2
, δn2 :=

∑n−1
t=1 X(t)ζ(t+ 1)∑n

t=1X
2(t)− n(X̄n)2

,

δn3 := X̄n(X(1) +X(n))− (X̄n)2(1 + n(1− a))∑n
t=1X

2(t)− n(X̄n)2
.

The statement of the proposition follows from

P(|δni| > γ) ≤ C(n−1 + n−((p/2)∧(p−1))γ−p) (0 < γ < 1, i = 1, 2, 3). (5.36)

To show (5.36) for i = 1, note that δn1 = Ln/(n + Dn), where Ln := −a(1 − a2)X2(n)
and Dn = Dn1 − Dn2, Dn1 := ∑n

t=1((1 − a2)X2(t) − 1), Dn2 := n(1 − a2)(X̄n)2. We have
P(|δn1| > γ) ≤ P(|Dn| > n/2) + P(|Ln| > nγ/2). Thus, (5.36) for i = 1 follows from

E|Dn1|p∧2 ≤ Cn, E|Dn2| ≤ C and E|Ln|p ≤ C. (5.37)

Consider the first relation in (5.37). Clearly, it suffices to prove it for 1 < p ≤ 2 only. We
have Dn1 = 2D′n1 +D′′n1, where

D′n1 := (1− a2)
∑

s2<s1≤n

n∑
t=1∨s1

a2(t−s1)as1−s2ζ(s1)ζ(s2),

D′′n1 := (1− a2)
∑
s≤n

n∑
t=1∨s

a2(t−s)(ζ2(s)− 1).
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We will use the following elementary inequality: for any −1 ≤ a ≤ 1, n ≥ 1, s ≤ n,

αn(s) := (1− a2)
n∑

t=1∨s
a2(t−s) =

a2(1−s)(1− a2n), s ≤ 0,
1− a2(n+1−s), 1 ≤ s ≤ n

≤ C

a−2s min(1, 2n(1− |a|)), s ≤ 0,
1, 1 ≤ s ≤ n.

(5.38)

Using the independence of {ζ(s)} and a and inequality (5.35) (twice) for 1 < p ≤ 2 we obtain

E|D′n1|p = E
∣∣∣∣ ∑
s1≤n

αn(s1)ζ(s1)
∑
s2<s1

as1−s2ζ(s2)
∣∣∣∣p

≤ CE
∑
s1≤n

∣∣∣∣αn(s1)ζ(s1)
∑
s2<s1

as1−s2ζ(s2)
∣∣∣∣p

≤ CE
∑
s1≤n
|αn(s1)|p

∑
s2<s1

|a|p(s1−s2)

≤ CE(1− |a|)−1 ∑
s≤n
|αn(s)|p ≤ Cn

since E(1 − |a|)−1 < ∞ (see (5.5)) and ∑s≤n |αn(s)|p ≤ Cn follows from (5.38). Similarly,
since {ζ2(s)− 1, s ≤ n} form a martingale difference sequence,

E|D′′n1|p ≤ CE
∑
s≤n
|αn(s)|p ≤ Cn,

proving the first inequality (5.37). The second inequality in (5.37) follows by noting that
nX̄n = ∑

s≤n(∑n
t=1∨s a

t−s)ζ(s) and

(1− a2)E[(nX̄n)2|a] = a2
(1− an

1− a

)2
+ (1− a2)

n∑
s=1

(1− as
1− a

)2
≤ Cn

1− a.

Consider the last inequality in (5.37). We have |Ln| ≤ |2L′n + L′′n + 1|, where

L′n := (1− a2)
∑

s2<s1≤n
a2(n−s1)as1−s2ζ(s1)ζ(s2),

L′′n := (1− a2)
∑
s≤n

a2(n−s)(ζ2(s)− 1).

We use Lemma 5.10, as above. Let 1 ≤ p ≤ 2. Then E|L′′n|p ≤ CE∑s≤n{(1− a2)a2(n−s)}p ≤
C and E|L′n|p ≤ CE∑s2<s1≤n{(1 − a2)|a|2(n−s1)|a|s1−s2}p ≤ CE(1 − |a|)p−2 ≤ C. Next,
let p ≥ 2. Then E|L′′n|p ≤ CE{∑s≤n |(1 − a2)a2(n−s)|2}p/2 ≤ C and E|L′n|p ≤ CE(1 −
a2)p{∑s2<s1≤n a

4(n−s1)a2(s1−s2)}p/2 ≤ C, proving (5.37) and hence (5.36) for i = 1.
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Consider (5.36) for i = 2. We have δn2 = Rn/(n+Dn), whereRn := (1−a2)∑n−1
t=1 X(t)ζ(t+

1) and Dn is the same as in (5.37). Then P(|δn2| > γ) ≤ P(|Rn| > nγ/2) + P(|Dn| > n/2),
where

P(|Dn| > n/2) ≤ (n/4)−(p∧2)E|Dn1|p∧2 + (n/4)−1E|Dn2|

≤ C

n−(p−1), 1 < p ≤ 2,
n−1, p > 2,

(5.39)

according to (5.37). Therefore (5.36) for i = 2 follows from

E|Rn|p ≤ C

n, 1 < p ≤ 2,
np/2, p > 2.

(5.40)

Since Rn = (1 − a2)∑s≤n−1 ζ(s)∑n−1
t=1∨s a

t−sζ(t + 1) is a sum of martingale differences, by
inequality (5.35) with 1 < p ≤ 2 we obtain

E|Rn|p ≤ CE
∑

s≤n−1

∣∣∣∣(1− a2)ζ(s)
n−1∑
t=1∨s

at−sζ(t+ 1)
∣∣∣∣p

≤ CE|1− a2|p
∑

s≤n−1

n−1∑
t=1∨s

|a|p(t−s)

≤ CE|1− a2|p
(∑
s≤0
|a|−ps

n−1∑
t=1
|a|pt +

n−1∑
s=1

n−1∑
t=s
|a|p(t−s)

)
≤ CE|1− a2|p{(1− |a|p)−2 + n(1− |a|p)−1} ≤ Cn,

proving (5.40) for p ≤ 2. Similarly, using (5.35) with p > 2 we get

E|Rn|p = E
[
|1− a2|pE

[∣∣∣∣ ∑
s≤n−1

ζ(s)
n−1∑
t=1∨s

at−sζ(t+ 1)|p
∣∣∣∣a]]

≤ CE
[
|1− a2|p

{ ∑
s≤n−1

(
E
[∣∣∣∣ζ(s)

n−1∑
t=1∨s

at−sζ(t+ 1)|p
∣∣∣∣a])2/p}p/2]

≤ CE|1− a2|p
{ ∑
s≤n−1

n−1∑
t=1∨s

a2(t−s)
}p/2

≤ CE|1− a2|p
{∑
s≤0

a−2s
n−1∑
t=1

a2t +
n−1∑
s=1

n−1∑
t=s

a2(t−s)
}p/2

≤ CE|1− a2|p{(1− a2)−2 + n(1− a2)−1}p/2 ≤ Cnp/2,

proving (5.40) and (5.36) for i = 2.
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It remains to prove (5.36) for i = 3. Similarly as above, P(|δn3| > γ) ≤ P(|Qn| >
nγ/2) + P(|Dn| > n/2), where Qn := (1− a2){X̄n(X(1) +X(n))− (X̄n)2(1 + n(1− a))} and
Dn is evaluated in (5.39). Thus, (5.36) for i = 3 follows from (5.39) and

E|Qn|p ≤ C{E|(1− a2)X2(n)|p + E|(1− a2)(X̄n)2|p (5.41)
+npE|(1− a)(1− a2)(X̄n)2|p} ≤ C.

Since nX̄n = ∑
s≤n(∑n

t=1∨s a
t−s)ζ(s), an application of the second inequality of (5.35) yields

E[|nX̄n|2p|a] ≤ C
( (1− an)2

(1− a2)(1− a)2 +
n∑
s=1

(1− as
1− a

)2)p
.

Using 1−an ≤ 1∧(n(1−a)) we obtain E|(1−a)(1−a2)(X̄n)2|p ≤ Cn−p and E|(1−a2)(X̄n)2|p ≤
CE(1−a)−1n−1. Finally, E|(1−a2)X2(n)|p ≤ C follows by the same arguments as E|Ln|p ≤ C
(see (5.37)). This proves (5.41), thereby completing the proof of (5.36) and of the proposition,
too.

Let a, a1, . . . , aN be i.i.d. r.v.s with d.f. G(x) = P(a ≤ x) supported on [−1, 1]. Define
ĜN(x) := N−1∑N

i=1 1(ai ≤ x), UN(x) := N1/2(ĜN(x)−G(x)), x ∈ [−1, 1], and ωN(δ) (= the
modulus of continuity of UN) by

ωN(δ) := sup
0≤y−x≤δ

|UN(y)− UN(x)|, δ > 0.

Lemma 5.11. Assume that G satisfies Assumption (A6). Then for all ε > 0,

ε4P(ωN(δ) > 6ε) ≤ (3 + 3C)LGδ% +N−1,

where C is a constant independent of ε, δ, N .

Proof. As in [13, page 106, equation (13.17)] we have that

E|UN(y)− UN(x)|2|UN(z)− UN(y)|2 ≤ 3P(a ∈ (x, y])P(a ∈ (y, z]),
E|UN(y)− UN(x)|4 ≤ 3P(a ∈ (x, y])2 +N−1P(a ∈ (x, y])

for −1 ≤ x ≤ y ≤ z ≤ 1, where the second inequality treats the 4th central moment of a
binomial variable. Now fix δ > 0 and split [−1, 1] = ∪i∆i, where ∆i = [−1+iδ,−1+(i+1)δ],
i = 0, 1, . . . , b2/δc − 1, ∆b2/δc = [−1 + b2/δcδ, 1]. According to [109, page 49, Lemma 1], for
all ε > 0,

ε4P(ωN(δ) > 6ε) ≤ (3 + 3C) max
i

P(a ∈ ∆i) +N−1,

where C is a constant independent of ε, δ, N . Lemma follows from Assumption (A6) on the
d.f. G of the r.v. a.

Note that if we take δ = δN = o(1), we then get P(ωN(δ) > ε)→ 0 as N →∞.
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Lemma 5.12. Let â1,n, â2,n be given in (5.12) under Assumptions (A1)–(A6) with % = 1.
Then for all γ ∈ (0, 1) and n ≥ 1, it holds

sup
x,y∈[−1,1]

|P(â1,n ≤ x, â2,n ≤ y)− P(â1,n ≤ x)P(â2,n ≤ y)| = O(n−((p/2)∧(p−1))/(1+p)).

Proof. Define δi,n := âi,n − ai, i = 1, 2. For γ ∈ (0, 1), we have

P(|δ1,n| > γ or |δ2,n| > γ) ≤ P(|δ1,n| > γ) + P(|δ2,n| > γ)
≤ C(n−((p/2)∧(p−1))γ−p + n−1)

by Proposition (5.1). Consider now

P(â1,n ≤ x, â2,n ≤ y) = P(a1 + δ1,n ≤ x, a2 + δ2,n ≤ y)
≤ P(a1 + δ1,n ≤ x, a2 + δ2,n ≤ y, |δ1,n| ≤ γ, |δ2,n| ≤ γ)

+P(|δ1,n| > γ or |δ2,n| > γ).

Then

P(a1 + δ1,n ≤ x, a2 + δ2,n ≤ y, |δ1,n| ≤ γ, |δ2,n| ≤ γ)
≤ P(a1 ≤ x+ γ, a2 ≤ y + γ, |δ1,n| ≤ γ, |δ2,n| ≤ γ)
≤ G(x+ γ)G(y + γ)

and

P(a1 + δ1,n ≤ x, a2 + δ2,n ≤ y, |δ1,n| ≤ γ, |δ2,n| ≤ γ)
≥ P(a1 ≤ x− γ, a2 ≤ y − γ, |δ1,n| ≤ γ, |δ2,n| ≤ γ)
≥ G(x− γ)G(y − γ)− P(|δ1,n| > γ or |δ2,n| > γ).

From (5.8) we obtain

|G(x± γ)G(y ± γ)−G(x)G(y)|
= |(G(x) +O(γ))(G(y) +O(γ))−G(x)G(y)| ≤ Cγ.

Hence,

|P(a1 ≤ x, a2 ≤ y)−G(x)G(y)| ≤ C(γ + n−1 + n−((p/2)∧(p−1))γ−p). (5.42)

In a similar way,

|P(a1 ≤ x)P(a2 ≤ y)−G(x)G(y)| ≤ C(γ + n−1 + n−((p/2)∧(p−1))γ−p). (5.43)

By (5.42), (5.43), the proof of the lemma is complete with γ = γn = o(1), which satisfies
γn ∼ n−((p/2)∧(p−1))γ−pn .





6
Scaling transition for
nonlinear random fields

This chapter contains the article [82]. We obtain a complete description of anisotropic
scaling limits and the existence of scaling transition for nonlinear functions (Appell polyno-
mials) of stationary linear random fields on Z2 with moving average coefficients decaying at
possibly different rate in the horizontal and vertical direction. This chapter extends recent
results on scaling transition for linear random fields in [89,90].

6.1 Introduction
[90] introduced the notion of scaling transition for stationary random field (RF) X =

{X(t, s), (t, s) ∈ Z2} in terms of partial sums limits

D−1
λ,γ

∑
(t,s)∈K[λx,λγy]

X(t, s) fdd→ Vγ(x, y), (x, y) ∈ R2
+, λ→∞, γ > 0, (6.1)

where Dλ,γ →∞ is normalization and K[λx,λγy] := {(t, s) ∈ Z2 : 1 ≤ t ≤ λx, 1 ≤ s ≤ λγy} is
a family of rectangles whose sides grow at possibly different rate O(λ) and O(λγ) and γ > 0
is arbitrary. RF X is said to exhibit scaling transition at γ0 > 0 if the limit RFs Vγ ≡ V X

γ

in (6.1) do not depend on γ for γ > γ0 and γ < γ0 and are different up to a multiplicative
constant, viz.,

V X
γ

fdd= V X
+ (∀γ > γ0), V X

γ
fdd= V X

− (∀γ < γ0), V X
+

fdd
6= aV X

− (∀a > 0).
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In such case, RF V X
γ0 is called the well-balanced while RFs V X

+ and V X
− the unbalanced scaling

limits of X.
It appears that scaling transition is a new and general feature of spatial dependence which

occurs for many isotropic and anisotropic RFs on Z2 with long-range dependence (LRD).
It was established for a class of aggregated α-stable autoregressive models [90], a class of
Gaussian LRD RFs [89], and some RFs arising by aggregation of network traffic and random-
coefficient time series models in telecommunications and economics; see [35,70,79,80], also [90,
Remark 2.3]. The unbalanced limits V X

± in these studies have a very special dependence
structure (either independent or invariant rectangular increments along one of the coordinate
axes) and coincide in the Gaussian case with a fractional Brownian sheet (FBS) BH1,H2 with
one of the two parameters H1, H2 ∈ (0, 1] equal to 1/2 or 1.

The above mentioned works deal with linear RF models written as sums (stochastic
integrals) w.r.t. i.i.d. ‘noise’. It is well-known that nonlinear RFs can display quite complicated
nongaussian scaling behavior. See Dobrushin and Major [26], also [2, 4, 36, 38, 45, 59, 66, 100,
104] and the references therein.

The present chapter establishes the existence of scaling transition for a class of nonlinear
subordinated RFs:

X(t, s) = G(Y (t, s)), (t, s) ∈ Z2, (6.2)
where Y = {Y (t, s), (t, s) ∈ Z2} is a stationary linear LRD RF in (6.3) and G(x) = Ak(x),
x ∈ R, is the Appell polynomial of degree k ≥ 1 (see Section 6.2 for the definition) with
EG(Y (0, 0))2 <∞, EG(Y (0, 0)) = 0. The (underlying) RF Y is written as a moving-average

Y (t, s) =
∑

(u,v)∈Z2

a(t− u, s− v)ε(u, v), (t, s) ∈ Z2, (6.3)

in a standardized i.i.d. sequence {ε(u, v), (u, v) ∈ Z2} with deterministic moving-average
coefficients such that

a(t, s) ∼ const(|t|2 + |s|2q2/q1)−q1/2, |t|+ |s| → ∞, (6.4)

where parameters q1, q2 > 0 satisfy

1 < Q := 1
q1

+ 1
q2
< 2. (6.5)

In Theorems 6.1–6.5, the moving-average coefficients a(t, s) may take a more general form in
(6.10) including an ‘angular function’. Condition Q < 2 guarantees that ∑(t,s)∈Z a(t, s)2 <∞
or Y in (6.3) is well-defined, while Q > 1 implies that ∑(t,s)∈Z |a(t, s)| =∞ (in other words,
that RF Y is LRD). Note a(t, 0) = O(|t|−q1), a(0, s) = O(|s|−q2) decay at a different rate when
q1 6= q2 in which case Y exhibits strong anisotropy. The form of moving-average coefficients
in (6.4) implies a similar behavior of the covariance function rY (t, s) := EY (0, 0)Y (t, s) =∑

(u,v)∈Z2 a(u, v)a(t+ u, s+ v), namely,

C1(|t|2 + |s|2p2/p1)−p1/2 ≤ rY (t, s) ≤ C2(|t|2 + |s|2p2/p1)−p1/2, |t|+ |s| → ∞, (6.6)
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for some positive constants C1, C2 > 0, where

pi := qi(2−Q), i = 1, 2. (6.7)

Note p1/p2 = q1/q2 and the 1-1 correspondence between (q1, q2) and (p1, p2):

qi := pi
2 (1 + P ), i = 1, 2, where P := 1

p1
+ 1
p2
. (6.8)

(6.6) implies that for any integer k ≥ 1 and P 6∈ N,∑
(t,s)∈Z2

|rY (t, s)|k =∞⇐⇒ 1 ≤ k < P. (6.9)

See Propositions 6.8 and 6.10. In the case when Y in (6.3) is a (standardized) Gaussian RF,
rY (t, s)kk! coincides with the covariance of the kth Hermite polynomial Hk(Y (t, s)) of Y and
the (nonlinear) subordinated RF X = Hk(Y ) is LRD if condition (6.9) holds. A similar result
is true for nongaussian moving-average RF Y in (6.3) and Hermite polynomial Hk replaced
by Appell polynomial Ak.

The following summary describes the main results of this chapter.

(R1) Subordinated RFs X = Ak(Y ), 1 ≤ k < P , exhibit scaling transition at the same point
γ0 := p1/p2 = q1/q2 independent of k.

(R2) The well-balanced scaling limit V X
γ0 of X = Ak(Y ) is nongaussian unless k = 1 and is

given by a k-tuple Itô–Wiener integral.
(R3) Unbalanced scaling limits V X

+ = V X
γ , γ > γ0, of X = Ak(Y ) agree with FBS BH+

1k,1/2

with Hurst parameter H+
1k ∈ (1/2, 1) if kp2 > 1, and with a ‘generalized Hermite slide’

V X
+ (x, y) = xZ+

k (y) if kp2 < 1, where Z+
k is a self-similar process written as a k-tuple

Itô–Wiener integral. A similar fact holds for unbalanced limits V X
− = V X

γ , γ < γ0.
(R4) For k > P , RF X = Ak(Y ) does not exhibit scaling transition and all scaling limits

V X
γ , γ > 0, agree with Brownian sheet B1/2,1/2.

(R5) In the case of Gaussian underlying RF Y in (6.3), the above conclusions hold for general
nonlinear function G in (6.2) and k equal to the Hermite rank of G.

The above list contains several new noncentral and central limit results. (R2), (R4)
and (R5) are new in the ‘anisotropic’ case p1 6= p2 while (R3) is new even for linear RF
X = A1(Y ) = Y (see Remark 6.1 concerning the terminology in (R3)). Similarly as in the
case of linear models (see [89, 90]), unbalanced limits in (R3) have either independent or
completely dependent increments along one of the coordinate axes. According to (R3), the
sample mean of nonlinear LRD RF X = Ak(Y ), 1 < k < P , on rectangles K[λ,λγ ], γ 6= γ0,
may have Gaussian or nongaussian limit distribution depending on k, γ and parameters
p1, p2, moreover, in both cases the variance of the sum ∑

(t,s)∈K[λ,λγ ]
X(t, s) grows faster
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than λ1+γ, or the number of summands. The dichotomy of the limit distribution in (R3)
is related to the presence or absence of the vertical/horizontal LRD property of X, see
Remark 6.4. We also note that our proofs of the central limit results in (R3) and (R4)
use rather simple approximation by m-dependent r.v.s and do not require a combinatorial
argument or Malliavin’s calculus as in [16,72] and other papers.

It is well-known that Appell polynomials play a similar role to Hermite polynomials in
limit theorems for nonlinear functions of linear nongaussian LRD processes, except that they
lack the orthogonality property of the latter and therefore expansions in Appell polynomials
are of limited use. See [4, 36, 101]. Particularly, the results in (R1)–(R4) hold for arbitrary
polynomial G(x) = ∑m

j=k cjAj(x) with ck 6= 0 under suitable moment assumptions on the
innovations. However, except for the Gaussian case, dealing with non-polynomial functions
of LRD processes requires different techniques, see e.g. [45, 101], and is much harder in the
case of noncausal spatial models, c.f. [28].

The results of this chapter have direct relevance for statistics of strongly dependent spatial
data by showing that the (asymptotic) shape of the spatial region may have a drastic effect
on the limit distribution of linear and nonlinear statistics. See Section 6.8 (Final comment)
at the end of the chapter.

The rest of the chapter is organized as follows. Section 6.2 provides the precise assump-
tions on RFs Y andX and some known properties of Appell polynomials. Section 6.3 contains
formulations of the main results (Theorems 6.1–6.5) as described in (R1)–(R5) above. Sec-
tion 6.4 provides two examples of linear fractionally integrated RFs satisfying the assumptions
in Section 6.2. Section 6.5 discusses some properties of generalized homogeneous functions
and their convolutions used to prove the results. Section 6.6 discusses the asymptotic form
of the covariance function and the asymptotics of the variance of anisotropic partial sums of
subordinated RF X = Ak(Y ). All proofs are collected in Section 6.7.

In this chapter, we denote R+ := (0,∞), R2
+ := (0,∞)2, R2

0 := R2 \ {(0, 0)}, Z+ :=
{0, 1, . . .}, N := {1, 2, . . .}, Z•2k := {((u1, v1), . . . , (uk, vk)) ∈ Z2k : (ui, vi) 6= (uj, vj), 1 ≤ i <
j ≤ k}, k ∈ N.

6.2 Assumptions and preliminaries
Assumption (A1). {ε, ε(t, s), (t, s) ∈ Z2} is an i.i.d. sequence with Eε = 0, Eε2 = 1.
Assumption (A2). Y = {Y (t, s), (t, s) ∈ Z2} is a moving-average RF in (6.3) with coeffi-
cients

a(t, s) = 1
(|t|2 + |s|2q2/q1)q1/2

(
L0

(
t

(|t|2 + |s|2q2/q1)1/2

)
+ o(1)

)
, |t|+ |s| → ∞, (6.10)

(t, s) 6= (0, 0), where qi > 0, i = 1, 2, satisfy Q = ∑2
i=1 q

−1
i ∈ (1, 2) (see (6.5)) and L0(u) ≥ 0,

u ∈ [−1, 1], is a bounded piece-wise continuous function on [−1, 1].
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We refer to L0 in (6.10) as angular function. Assumptions (A1)–(A2) imply EY (0, 0)2 =∑
(t,s)∈Z2 a(t, s)2 <∞ and hence RF Y in (6.3) is well-defined and stationary, with zero mean

EY (0, 0) = 0. Moreover, if E|ε|α < ∞ for some α > 2 then E|Y (0, 0)|α < ∞ follows by
Rosenthal’s inequality; see e.g. [36, Corollary 2.5.1].

Given a r.v. ξ with E|ξ|k <∞, k ∈ Z+, the kth Appell polynomial Ak(x) relative to the
distribution of ξ is defined by Ak(x) := (−i)kdk(eiux/Eeiuξ)/duk

∣∣∣
u=0

. See [4, 36] for various
properties of Appell polynomials. In what follows, Ak(ξ) stands for the r.v. obtained by sub-
stituting x = ξ in the Appell polynomial Ak(x) relative to the distribution of ξ. Particularly,
if Eξ = 0 then A1(ξ) = ξ, A2(ξ) = ξ2 − Eξ2, A3(ξ) = ξ3 − 3ξEξ2 − Eξ3 etc. For standard
normal ξ d= N (0, 1) the Appell polynomials Ak(ξ) = Hk(ξ) = (−i)kdkeiuξ+u2/2/duk

∣∣∣
u=0

agree
with the Hermite polynomials.
Assumption (A3)k. For k ∈ N, E|ε|2k <∞ and

X = {X(t, s) := Ak(Y (t, s)), (t, s) ∈ Z2}, (6.11)

where Ak is the kth Appell polynomial relative to the (marginal) distribution of Y (t, s) in
(6.3).

We also use the representation of (6.11) via Wick products of noise variables (see [36,
Chapter 14]):

Ak(Y (t, s)) =
∑

(u,v)k∈Z2k

a(t− u1, s− v1) · · · a(t− uk, s− vk) :ε(u1, v1) · · · ε(uk, vk) : . (6.12)

By definition, for mutually distinct points (uj, vj) 6= (uj′ , vj′) (j 6= j′, 1 ≤ j, j′ ≤ i) the Wick
product : ε(u1, v1)k1 · · · ε(ui, vi)ki : = ∏i

j=1Akj(ε(uj, vj)) equals the product of independent
r.v.s Akj(ε(uj, vj)), 1 ≤ j ≤ i. (6.12) leads to the decomposition of (6.11) into the ‘off-
diagonal’ and ‘diagonal’ parts:

Ak(Y (t, s)) = Y •k(t, s) + Z(t, s), (6.13)

where

Y •k(t, s) :=
∑

(u,v)k

•
a(t− u1, s− v1) · · · a(t− uk, s− vk)ε(u1, v1) · · · ε(uk, vk) (6.14)

and the sum∑•
(u,v)k is taken over all (u, v)k = ((u1, v1), · · · , (uk, vk)) ∈ Z2k such that (ui, vi) 6=

(uj, vj) (i 6= j) (the set of such (u, v)k ∈ Z2k will be denoted by Z•2k). By definition, the
‘diagonal’ part Z(t, s) in (6.13) is given by the r.h.s. of (6.12) with (u, v)k ∈ Z2k replaced by
(u, v)k ∈ Z2k \Z•2k. In most of our limit results, Z(t, s) is negligible and Y •k(t, s) is the main
term which is easier to handle compared to Ak(Y (t, s)) in (6.13). We also note that limit
distributions of partial sums of ‘off-diagonal’ polynomial forms in i.i.d. r.v.s were studied
in [5, 36,100] and other works.
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Assumption (A4)k. ε(0, 0) d= Z and Y (0, 0) d= Z have standard normal distribution
Z

d= N (0, 1) and X(t, s) = G(Y (t, s)), where G = G(x), x ∈ R, is a measurable function
with EG(Z)2 <∞, EG(Z) = 0 and Hermite rank k ≥ 1.

Assumptions (A1), (A2) and (A4)k imply that Y in (6.3) is a Gaussian RF. As noted
above, under Assumption (A4)k Appell polynomials Ak(x) coincide with Hermite polynomials
Hk(x). Recall that the Hermite rank of a measurable function G : R→ R with EG(Z)2 <∞
is defined as the index k of the lowest nonzero coefficient cj in the Hermite expansion of G,
viz., G(x) = ∑∞

j=k cjHj(x)/j! where ck 6= 0.
Let L2(R2k) denote the Hilbert space of real-valued functions h = h((u, v)k), (u, v)k =

(u1, v1, . . . , uk, vk) ∈ R2k with finite norm ‖h‖k := {
∫
R2k h((u, v)k)2d(u, v)k}1/2, d(u, v)k =

du1dv1 · · · dukdvk. Let W = {W (du, dv), (u, v) ∈ R2} denote a real-valued Gaussian white
noise with zero mean and variance EW (du, dv)2 = dudv. For any h ∈ L2(R2k) the k-tuple
Itô–Wiener integral

∫
R2k h((u, v)k)dkW =

∫
R2k h(u1, v1, . . . , uk, vk)W (du1, dv1) · · ·W (duk, dvk)

is well-defined and satisfies
E
∫
R2k h((u, v)k)dkW = 0, E(

∫
R2k h((u, v)k)dkW )2 ≤ k!‖h‖2

k; see e.g. [36].

6.3 Main results
Recall the definitions of pi, P in (6.7), (6.8); γ0 = q1/q2 = p1/p2. Denote

SXλ,γ(x, y) :=
∑

(t,s)∈K[λx,λγy]

X(t, s), SXλ,γ := SXλ,γ(1, 1).

Consider a RF

V X
k,γ0(x, y) :=

∫
R2k

h(x, y; (u, v)k)dkW, (x, y) ∈ R2
+, (6.15)

where

h(x, y; (u, v)k) :=
∫

(0,x]×(0,y]

k∏
i=1

a∞(t− ui, s− vi)dtds, (6.16)

a∞(t, s) := (|t|2 + |s|2q2/q1)−q1/2L0
(
t/(|t|2 + |s|2q2/q1)1/2

)
, (t, s) ∈ R2.

Theorem 6.1. (i) The RF V X
k,γ0 in (6.15)–(6.16) is well-defined for 1 ≤ k < P as an Itô–

Wiener stochastic integral and has zero mean EV X
k,γ0(x, y) = 0 and finite variance EV X

k,γ0(x, y)2

= k!‖h(x, y; ·)‖2
k. Moreover, RF V X

k,γ0 has stationary rectangular increments and satisfies the
operator-scaling property (see [12])

{V X
k,γ0(λx, λγ0y), (x, y) ∈ R2

+}
fdd= {λH(γ0)V X

k,γ0(x, y), (x, y) ∈ R2
+}, ∀λ > 0, (6.17)

where H(γ0) := 1 + γ0 − kp1/2.
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(ii) Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k, 1 ≤ k < P .
Then as λ→∞,

Var(SXλ,γ0) ∼ c(γ0)λ2H(γ0), c(γ0) := k!‖h(1, 1; ·)‖2
k (6.18)

and
λ−H(γ0)SXλ,γ0(x, y) fdd→ V X

k,γ0(x, y). (6.19)

Next, we discuss the case 1 ≤ k < P , γ 6= γ0. This case is split into four subcases: (c1):
γ > γ0, k > 1/p2, (c2): γ > γ0, k < 1/p2, (c3): γ < γ0, k > 1/p1, and (c4): γ < γ0, k < 1/p1
(the ‘boundary’ cases k = 1/pi, i = 1, 2, are more delicate and omitted, see Remark 6.2).
Cases (c3) and (c4) are symmetric to (c1) and (c2) and essentially follow by exchanging the
coordinates t and s. Introduce random processes Z+

k and Z−k with one-dimensional time:

Z+
k (y) :=

∫
R2k

h+(y; (u, v)k)dkW, Z−k (x) :=
∫
R2k

h−(x; (u, v)k)dkW, x, y ∈ R+, (6.20)

where

h+(y; (u, v)k) :=
∫ y

0

k∏
i=1

a∞(ui, s− vi)ds, h−(x; (u, v)k) :=
∫ x

0

k∏
i=1

a∞(t− ui, vi)dt, (6.21)

and a∞(t, s) is defined in (6.16). In Theorem 6.3, ? stands for convolution of functions
indexed by R2 (see Section 6.5 for definition).

Theorem 6.2. (i) Processes Z+
k and Z−k in (6.20) are well-defined for 1 ≤ k < 1/p2 and

1 ≤ k < 1/p1, respectively, as Itô–Wiener stochastic integrals. They have zero mean, finite
variance, stationary increments and are self-similar with respective indices H+

2k := 1−kp2/2 ∈
(1/2, 1) and H−1k := 1− kp1/2 ∈ (1/2, 1).
(ii) Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k, 1 ≤ k < 1/p2.
Then for any γ > γ0, as λ→∞,

Var(SXλ,γ) ∼ c(γ)λ2H(γ), (6.22)

where H(γ) := 1 + γH+
2k and c(γ) := k!‖h+(1; ·)‖2

k > 0. Moreover,

λ−H(γ)SXλ,γ(x, y) fdd→ xZ+
k (y), λ→∞. (6.23)

(iii) Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k, 1 ≤ k < 1/p1.
Then for any γ < γ0, as λ→∞,

Var(SXλ,γ) ∼ c(γ)λ2H(γ),

where H(γ) := γ +H−1k and c(γ) := k!‖h−(1; ·)‖2
k > 0. Moreover,

λ−H(γ)SXλ,γ(x, y) fdd→ yZ−k (x), λ→∞.
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Remark 6.1. Processes Z±k in (6.20) have a similar structure and properties to generalized
Hermite processes discussed in [5] except that (6.20) are defined as k-tuple Itô–Wiener inte-
grals with respect to white noise in R2 and not in R as in [5]. Following the terminology in [81],
RFs xZ+

k (y) and yZ−k (x) may be called a generalized Hermite slide since they represent a ran-
dom surface ‘sliding linearly to 0’ along one of the coordinate on the plane from a generalized
Hermite process indexed by the other coordinate. In the Gaussian case k = 1, a generalized
Hermite slide agrees with a FBS BH1,H2 where one of the two parameters H1, H2 equals 1.
Recall that a fractional Brownian sheet (FBS) BH1,H2 = {BH1,H2(x, y), (x, y) ∈ R2

+} with
parameters 0 < H1, H2 ≤ 1 is a Gaussian process with zero mean and covariance function

EBH1,H2(x1, y1)BH1,H2(x2, y2) = (1/4)(x2H1
1 + x2H1

2 − |x1 − x2|2H1)
×(y2H2

1 + y2H2
2 − |y1 − y2|2H2). (6.24)

Theorem 6.3. (i) Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k,
1/p2 < k < P . Then for any γ > γ0, as λ→∞,

Var(SXλ,γ) ∼ c(γ)λ2H(γ), (6.25)

where H(γ) := H+
1k + γ/2, H+

1k := 1 + γ0/2 − kp1/2 ∈ (1/2, 1) and c(γ) := k!
∫

(0,1]2×R((a∞ ?

a∞)(t1 − t2, s))kdt1dt2ds > 0. Moreover,

λ−H(γ)SXλ,γ(x, y) fdd→ c(γ)1/2BH+
1k,1/2

(x, y), λ→∞. (6.26)

(ii) Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k, 1/p1 < k < P .
Then for any γ < γ0, as λ→∞,

Var(SXλ,γ) ∼ c(γ)λ2H(γ), (6.27)

where H(γ) := γH−2k+1/2, H−2k := 1+1/(2γ0)−kp2/2 ∈ (1/2, 1) and c(γ) := k!
∫
R×(0,1]2((a∞?

a∞)(t, s1 − s2))kdtds1ds2 > 0. Moreover,

λ−H(γ)SXλ,γ(x, y) fdd→ c(γ)1/2B1/2,H−2k
(x, y), λ→∞. (6.28)

Remark 6.2. Note H+
1k = 1 (kp2 = 1) and H−2k = 1 (kp1 = 1). We expect that the

convergences (6.26) and (6.28) remain true (modulo a logarithmic correction of normalization)
in the ‘boundary’ cases kp2 = 1 and kp1 = 1 of Theorem 6.3(i) and (ii) and the limit RFs in
these cases agree with FBS B1,1/2 or B1/2,1, respectively, having both parameters equal to 1
or 1/2.

The next theorem discusses the case k > P .

Theorem 6.4. Let RFs Y and X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k and
k > P . Then for any γ > 0, as λ→∞,

λ−(1+γ) Var(SXλ,γ)→ σ2
X ,
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where σ2
X := ∑

(t,s)∈Z2 Cov(X(0, 0), X(t, s)) ∈ [0,∞). Moreover, if σ2
X > 0 then

λ−(1+γ)/2SXλ,γ(x, y) fdd→ σXB1/2,1/2(x, y), λ→∞.

Our last theorem extends the above results to general function G having Hermite rank k and
Gaussian underlying RF Y .

Theorem 6.5. Let X = G(Y ) satisfy Assumptions (A1), (A2) and (A4)k. Assume w.l.g.
that G has Hermite expansion G(x) = Hk(x) +∑∞

j=k+1 cjHj(x)/j!.
(i) Let 1 ≤ k < P . Then RF X satisfies all statements of Theorems 6.1–6.3.
(ii) Let k > P . Then RF X satisfies the statements of Theorem 6.4.

According to Theorems 6.2–6.3, the unbalanced scaling limits V X
± of RF X = Ak(Y )

satisfying Assumptions (A1)–(A3)k are given by

V X
+ (x, y) =

xZ
+
k (y), kp2 < 1,

c
1/2
+ BH+

1k,1/2
(x, y), kp2 > 1,

V X
− (x, y) =

yZ
−
k (x), kp1 < 1,

c
1/2
− B1/2,H−2k

(x, y), kp1 > 1,
(6.29)

where c± ≡ c(γ) > 0 are constants given in Theorem 6.3. The covariance functions of RFs
V X
± in (6.29) agree (modulo a constant) with the covariance of FBS BH1,H2 where at least

one of the two parameters H1, H2 equals 1 or 1/2, namely (H1, H2) = (1, H+
2k) if kp2 < 1,

= (H+
1k, 1/2) if kp2 > 1 in the case of V X

+ , and (H1, H2) = (H−1k, 1) if kp1 < 1, = (1/2, H−2k)
if kp1 > 1 in the case of V X

− . These facts and the explicit form of the covariance of FBS, see

(6.24), imply that V X
+

fdd
6= aV X

− (∀a > 0), for any k, p1, p2 in Theorems 6.2–6.3, yielding the
following corollary.

Corollary 6.6. Let RF X = Ak(Y ) satisfy Assumptions (A1), (A2) and (A3)k, 1 ≤ k < P ,
kpi 6= 1, i = 1, 2. Then X exhibits scaling transition at γ0 = p1/p2.

6.4 Examples: fractionally integrated RFs
In this section we present two examples of linear fractionally integrated RFs Y on Z2

satisfying Assumptions (A1) and (A2).

Example 1. Isotropic fractionally integrated random field. Introduce the (discrete)
Laplace operator ∆Y (t, s) := (1/4)∑|u|+|v|=1(Y (t+u, s+ v)−Y (t, s)) and a lattice isotropic
fractionally integrated RF {Y (t, s), (t, s) ∈ Z2} satisfying the equation:

(−∆)dY (t, s) = ε(t, s), (6.30)
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where {ε(t, s), (t, s) ∈ Z2} are standard i.i.d. r.v.s, 0 < d < 1/2 is the order of fractional
integration, (1− z)d = ∑∞

j=0 ψj(d)zj, ψj(d) := Γ(j − d)/Γ(j + 1)Γ(−d). More explicitly,

(−∆)dY (t, s) =
∞∑
j=0

ψj(d)(1 + ∆)jY (t, s) =
∑

(u,v)∈Z2

b(u, v)Y (t− u, s− v), (6.31)

where b(u, v) := ∑∞
j=0 ψj(d)pj(u, v) and pj(u, v) are j-step transition probabilities of a sym-

metric nearest-neighbor random walk {Wj, j = 0, 1, . . .} on Z2 with equal 1-step probabilities
P(W1 = (u, v)|W0 = (0, 0)) = 1/4, |u|+ |v| = 1. Note ∑(u,v)∈Z2 |b(u, v)| = ∑∞

j=0 |ψj(d)| <∞,
d > 0, and therefore the l.h.s. of (6.31) is well-defined for any stationary RF Y with
E|Y (0, 0)| < ∞. As shown in [56], for 0 < d < 1/2 a stationary solution of (6.30) with
zero-mean and finite variance can be defined as a moving-average RF:

Y (t, s) = (−∆)−dε(t, s) =
∑

(u,v)∈Z2

a(u, v)ε(t− u, s− v), (6.32)

with coefficients
a(u, v) =

∞∑
j=0

ψj(−d)pj(u, v) (6.33)

satisfying ∑(u,v)∈Z2 a(u, v)2 < ∞. Moreover, RF Y in (6.32) has an explicit spectral density
f(x, y) = (2π)−22−2d|(1−cosx)+(1−cos y)|−2d, (x, y) ∈ [−π, π]2, which behaves as const(x2+
y2)−2d as x2 + y2 → 0. According to [56, Proposition 5.1], the moving-average coefficients in
(6.33) satisfy the isotropic asymptotics:

a(t, s) = (A+ o(1))(t2 + s2)−(1−d), t2 + s2 →∞,

where A := π−1Γ(1− d)/Γ(d) and hence Assumption (A2) with q1 = q2 = 2(1− d) ∈ (1, 2),
Q = 1/(1− d) ∈ (1, 2) and a constant angular function L0(z) = A, z ∈ [−1, 1].

Example 2. Anisotropic fractionally integrated random field. Consider the ‘discrete
heat operator’ ∆1,2Y (t, s) = Y (t, s) − θY (t − 1, s) − 1−θ

2 (Y (t − 1, s + 1) + Y (t − 1, s − 1)),
0 < θ < 1, and a fractionally integrated RF satisfying

∆d
1,2Y (t, s) = ε(t, s), (6.34)

where {ε(t, s)} are as in (6.30). Similarly to (6.32), a stationary solution of (6.34) can be
written as a moving-average RF:

Y (t, s) = ∆−d1,2ε(t, s) =
∑

(u,v)∈Z+×Z
a(u, v)ε(t− u, s− v), (6.35)

with coefficients
a(u, v) = ψu(−d)qu(v), (6.36)
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where qu(v) are u-step transition probabilities of a random walk {Wu, u = 0, 1, . . .} on Z
with 1-step probabilities P(W1 = v|W0 = 0) = θ if v = 0, = (1 − θ)/2 if v = ±1. As shown
in [60], ∑(u,v)∈Z2 a(u, v)2 < ∞ and the RF in (6.35) is well-defined for any 0 < d < 3/4,
θ ∈ [0, 1); moreover, the spectral density f(x, y) of (6.35) is singular at the origin: f(x, y) ∼
const(x2 + (1− θ)2y4/4)−d, (x, y)→ (0, 0).

Proposition 6.7. For any 0 < d < 3/4, 0 < θ < 1, the coefficients in (6.36) satisfy
Assumption (A2) with q1 = 3/2 − d, q2 = 2q1 and a continuous angular function L0(z),
z ∈ [−1, 1], given by

L0(z) =


zd−3/2

Γ(d)
√

2π(1− θ)
exp

{
−

√
(1/z)2 − 1
2(1− θ)

}
, 0 < z ≤ 1,

0, −1 ≤ z ≤ 0.
(6.37)

Remark 6.3. [14, 41] discussed fractionally integrated RFs satisfying the equation

∆d1
1 ∆d2

2 Y (t, s) = ε(t, s), (6.38)

where ∆1Y (t, s) := Y (t, s)−Y (t−1, s), ∆2Y (t, s) := Y (t, s)−Y (t, s−1) are difference oper-
ators and 0 < d1, d2 < 1/2 are parameters. Stationary solution of (6.38) is a moving-average
RF Y (t, s) = ∑

(u,v)∈Z2
+
a(u, v)ε(t − u, v − s) with coefficients a(u, v) := ψu(−d1)ψv(−d2).

Following the proof of Theorem 6.1 one can show that for any γ > 0 the (normalized)
partial sums process of RF Y in (6.38) tends to a FBS depending on d1, d2 only, viz.,
λ−H1−γH2SYλ,γ(x, y) fdd→ c(d1)c(d2)BH1,H2(x, y), where Hi = di + 1/2 and c(di) > 0 are some
constants. See [89, Proposition 3.2] for related result. We conclude that the fractionally in-
tegrated RF in (6.38) featuring a ‘separation of LRD along coordinate axes’ does not exhibit
scaling transition in contrast to models in (6.30) and (6.34).

6.5 Properties of convolutions of
generalized homogeneous functions

For a given $ > 0 denote

ρ(t, s) := (|t|2 + |s|2/$)1/2, ρ+(t, s) := 1 ∨ ρ(t, s), (t, s) ∈ R2.

Let f(t, s) = ρ(t, s)−hL(t/ρ(t, s)), where h ∈ R and L = L(z), z ∈ [−1, 1], is an arbitrary
measurable function, then f(t, s) satisfies the scaling property: f(λt, λ$s) = λ−hf(t, s),
(t, s) ∈ R2

0, for each λ > 0. Such functions are called generalized homogeneous functions
(see [42]).
We use the notation (a1?a2)(t, s) =

∫
R2 a1(u, v)a2(t+u, s+v)dudv for convolution of functions
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ai, i = 1, 2, defined on R2. Similarly, we write [a1?a2](t, s) = ∑
(u,v)∈Z2 a1(u, v)a2(t+u, s+v) for

‘discrete’ convolution of sequences ai, i = 1, 2, defined on Z2. Note the symmetry ai(t, s) =
ai(t,−s), i = 1, 2, implies the symmetry [a1 ? a2](t, s) = [a1 ? a2](t,−s), (a1 ? a2)(t, s) =
(a1 ? a2)(t,−s) of convolutions.
Let Bδ(t, s) := {(u, v) ∈ R2 : |t− u|+ |s− v| ≤ δ}, Bc

δ(t, s) := R2 \Bδ(t, s).

Proposition 6.8. (i) For any δ > 0, h > 0,∫
Bδ(0,0)

ρ(t, s)−hdtds <∞⇐⇒ h < 1 +$ (6.39)

and ∫
Bc
δ
(0,0)

ρ(t, s)−hdtds <∞∑
(t,s)∈Z2

ρ+(t, s)−h <∞

⇐⇒ h > 1 +$. (6.40)

(ii) Let hi > 0, i = 1, 2, h1 + h2 > 1 + $. Then there exists C > 0 such that for any
(t, s) ∈ R2

0,

(ρ−h1 ? ρ−h2)(t, s) ≤ Cρ(t, s)1+$−h1−h2 , hi < 1 +$, i = 1, 2, (6.41)
(ρ−h1

+ ? ρ−h2)(t, s) ≤ Cρ+(t, s)−h2 , h2 < 1 +$ < h1, (6.42)
(ρ−h1

+ ? ρ−h2
+ )(t, s) ≤ Cρ+(t, s)−h1∧h2 , hi > 1 +$, i = 1, 2. (6.43)

Moreover, inequalities (6.41)–(6.43) are also valid for ‘discrete’ convolution [ρ−h1
+ ?ρ−h2

+ ](t, s),
(t, s) ∈ Z2 with ρ(t, s) on the r.h.s. of (6.41) replaced by ρ+(t, s).
(iii) Let ai = ai(t, s), (t, s) ∈ Z2, satisfy ai(t, s) = ρ+(t, s)−hi(Li(t/ρ+(t, s))+o(1)), |t|+|s| →
∞, where 0 < hi < 1 + $ < h1 + h2, and Li(u) 6≡ 0, u ∈ [−1, 1], are bounded piecewise
continuous functions, i = 1, 2. Let ai∞(t, s) := ρ(t, s)−hiLi(t/ρ(t, s)), (t, s) ∈ R2, i = 1, 2.
Then

(a1∞ ? a2∞)(t, s) = ρ(t, s)1+$−h1−h2L12(t/ρ(t, s)), (t, s) ∈ R2, (6.44)

and

[a1 ? a2](t, s) = ρ+(t, s)1+$−h1−h2
(
L12(t/ρ+(t, s)) + o(1)

)
, |t|+ |s| → ∞, (6.45)

where

L12(z) := (a1∞ ? a2∞)(z, (1− z2)$/2) =
∫
R2
a1∞(u, v)a2∞(u+ z, v + (1− z2)$/2)dudv (6.46)

is a bounded continuous function on the interval z ∈ [−1, 1]. Moreover, if L1(z) = L2(z) ≥ 0
then L12(z) in (6.46) is strictly positive on [−1, 1].
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Proposition 6.9. Let b(t, s) := ρ+(t, s)−h(L(t/ρ+(t, s)) + o(1)), |t| + |s| → ∞, (t, s) ∈ Z2,
b∞(t, s) := ρ(t, s)−hL(t/ρ(t, s)), (t, s) ∈ R2, where 0 < h < 1 +$ and L(u) ≥ 0, u ∈ [−1, 1],
is a continuous function. Then for any γ > 0,

Bλ(γ) :=
∑

(ti,si)∈K[λ,λγ ],i=1,2
b(t1 − t2, s1 − s2) ∼ C(γ)λ2H(γ), λ→∞, (6.47)

where

H(γ) :=



1 +$ − h
2 , (I)

1 + γ − γh
2$ , (II)

1 + γ
2 −

h−$
2 , (III)

1 + γ − h
2 , (IV)

1
2 + γ − γ(h−1)

2$ , (V)

C(γ) :=



∫
(0,1]4

b∞(t1 − t2, s1 − s2)dt1dt2ds1ds2, (I)∫
(0,1]2

b∞(0, s1 − s2)ds1ds2, (II)∫
(0,1]2×R

b∞(t1 − t2, s)dt1dt2ds, (III)∫
(0,1]2

b∞(t1 − t2, 0)dt1dt2, (IV)∫
R×(0,1]2

b∞(t, s1 − s2)dtds1ds2, (V)

(6.48)

in respective cases (I): γ = $, (II): γ > $, h < $, (III): γ > $, h > $, (IV): γ < $, h < 1
and (V): γ < $, h > 1.

6.6 Covariance structure of
subordinated anisotropic RFs

In this section from Propositions 6.8 and 6.9 with $ = γ0, ρ(t, s) = (|t|2 + |s|2/γ0)1/2 we
obtain the asymptotic form of the covariance function of rX(t, s) := EX(0, 0)X(t, s) and the
asymptotics of the variance of anisotropic partial sums SXλ,γ of subordinated RF X = Ak(Y ).

Proposition 6.10. Let RF X = Ak(Y ) satisfy assumptions (A1), (A2) and (A3)k.
(i) Let k ≥ 1. Then X(t, s) = Y •k(t, s) + Z(t, s), where Z(t, s) is defined in (6.14) and

rZ(t, s) = O(ρ(t, s)−2q1), |t|+ |s| → ∞. (6.49)

(ii) Let 1 ≤ k < P . Then

rX(t, s) = k!ρ(t, s)−kp1
(
LX(t/ρ(t, s)) + o(1)

)
, |t|+ |s| → ∞, (6.50)
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where LX(z) := ((a∞ ? a∞)(z, (1 − z2)γ0/2))k, z ∈ [−1, 1], is a strictly positive continuous
function and a∞ is defined in (6.16). Moreover, rZ(t, s) = o(ρ(t, s)−kp1), |t|+ |s| → ∞.
(iii) Let k > P . Then

rX(t, s) = O(ρ(t, s)−(kp1)∧(2q1)), |t|+ |s| → ∞. (6.51)

Clearly, (6.50) implies C1ρ(t, s)−kp1 ≤ rX(t, s) ≤ C2ρ(t, s)−kp1 for all |t| + |s| > C3 and
some 0 < Ci < ∞, i = 1, 2, 3. The last fact together with Proposition 6.8(i) implies the
following corollary.

Corollary 6.11. Let X = Ak(Y ), k ≥ 1, be the subordinated RF defined in Proposition 6.10
and satisfying the conditions therein.
(i) Let 1 ≤ k < P . Then ∑(t,s)∈Z2 |rX(t, s)| =∞. Moreover, ∑s∈Z |rX(0, s)| =∞⇐⇒ kp2 ≤
1 and ∑t∈Z |rX(t, 0)| =∞⇐⇒ kp1 ≤ 1.
(ii) Let k > P . Then ∑(t,s)∈Z2 |rX(t, s)| <∞.

Remark 6.4. Following the terminology in [81], we say that a stationary RF X = {X(t, s),
(t, s) ∈ Z2} with finite variance has vertical LRD property (respectively, horizontal LRD
property) if ∑s∈Z |rX(0, s)| =∞ (respectively, ∑t∈Z |rX(t, 0)| =∞). From Corollary 6.11 we
see the dichotomy of the limit distribution in Theorems 6.2–6.3 at points kp2 = 1 and kp1 = 1
is related to the change of vertical and horizontal LRD properties of the subordinated RF
X = Ak(Y ).

Corollary 6.12. Let X(t, s) = Ak(Y (t, s)) = Y •k(t, s) + Z(t, s), 1 ≤ k < P , kpi 6= 1,
i = 1, 2, be the subordinated RF defined in Proposition 6.10 and satisfying the conditions
therein. Then for any γ > 0, as λ→∞,

Var(SXλ,γ) ∼ Var(SY •kλ,γ ) ∼ c(γ)λ2H(γ) (6.52)

and
Var(SZλ,γ) = O(λ1+γ), (6.53)

where H(γ) ∈ ((1 + γ)/2, 1 + γ) and c(γ) are defined in Theorems 6.1–6.3.

6.7 Proofs

6.7.1 Proofs of Propositions 6.8–6.10 and Corollary 6.12
Proof of Proposition 6.8. With the notation % := ρ(t, s) we have that (t, s) 7→ (%, t/%) is a
1-1 mapping from R× [0,∞) to [0,∞)× [−1, 1]. Particularly, if $ = 1 then (%, arccos(t/%))
are the polar coordinates of (t, s) ∈ R× [0,∞). We use the inequality:

ρ(t1 + t2, s1 + s2) ≤ C$
2∑
i=1

ρ(ti, si), (6.54)
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with C$ := 1 ∨ 21/$−1, which follows from

ρ(t1 + t2, s1 + s2)1∧$ ≤
2∑
i=1

ρ(ti, si)1∧$, (ti, si) ∈ R2, i = 1, 2. (6.55)

(i) W.l.g., let δ = 1. Then
∫
B1(0,0) ρ(t, s)−hdtds ≤ 4

∫ 1
0 t

$−hdt
∫ 1/t$

0 (1 + u2/$)−h/2du, where
the inner integral = O(1) if h > $, = O(th−$) if h < $, = O(| log t|) if h = $, as u → 0.
This proves (6.39) and (6.40) follows analogously.
(ii) After the change of variables: u→ %u, v → %$v, % := ρ(t, s), we get

(ρ−h1 ? ρ−h2)(t, s) = %1+$−h1−h2
∫
R2
ρ(u, v)−h1ρ((t/%) + u, (s/%$) + v)−h2dudv,

= %1+$−h1−h2(I1 + I2 + I12), (6.56)

where

I1 :=
∫
Bδ(0,0)

ρ(u, v)−h1ρ((t/%) + u, (s/%$) + v)−h2dudv,

I2 :=
∫
Bδ(−t/%,−s/%$)

. . . dudv, I12 :=
∫
Bc
δ
(0,0)∩Bc

δ
(−t/%,−s/%$)

. . . dudv

with δ > 0 such that Bδ(0, 0) ∩ Bδ(−t/%,−s/%$) = ∅ for any (t, s) 6= (0, 0). The integrals
Ii ≤ C, i = 1, 2 by (6.39) and 0 < hi < 1 + $, i = 1, 2. Next, by Hölder’s inequality with
h := h1 + h2,

I12 ≤
∫
Bc
δ
(0,0)

ρ(u, v)−hdudv ≤ C,

in view of (6.40) and∫
Bc
δ
(−t/%,−s/%$)

ρ((t/%) + u, (s/%$) + v)−hdudv =
∫
Bc
δ
(0,0)

ρ(u, v)−hdudv.

This proves (6.41).
Next, consider (6.42), or the case 0 < h2 < 1 + $ < h1. By changing the variables as in

(6.56), we get (ρ−h1
+ ? ρ−h2)(t, s) ≤ %1+$−h1−h2(I ′1 + I2 + I12), where I2 < C, I12 < C are the

same as in (6.56), whereas

I ′1 :=
∫
Bδ(0,0)

(%−1 ∨ ρ(u, v))−h1ρ((t/%) + u, (s/%$) + v)−h2dudv.

Note that if given small enough δ > 0, then (6.55) implies ρ((t/%) + u, (s/%$) + v)1∧$ ≥
1−ρ(u, v)1∧$ ≥ 1/2 for all (u, v) ∈ Bδ(0, 0), and hence I ′1 ≤ C%h1−1−$ ∫

R2 ρ+(u, v)−h1dudv ≤
C%h1−1−$ according to (6.40). Since ρ(t, s)1+$−h1−h2 = o(ρ(t, s)−h2) as |t| + |s| → ∞, the
proof of (6.42) is complete.
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Finally, consider (6.43). We follow the proof of (6.42) and get (ρ−h1
+ ? ρ−h2

+ )(t, s) ≤
%1+$−h1−h2(I ′1 + I ′2 + I12) with the same I ′1 < C%h1−1−$, I12 < C, whereas

I ′2 :=
∫
Bδ(−t/%,−s/%$)

ρ(u, v)−h1(%−1 ∨ ρ((t/%) + u, (s/%$) + v))−h2dudv.

For small enough δ > 0, we have ρ(u, v)1∧$ ≥ 1 − ρ((t/%) + u, (s/%$) + v)1∧$ ≥ 1/2 for all
(u, v) ∈ Bδ(−t/%,−s/%$), and hence I ′2 ≤ C%h2−1−$ ∫

R2 ρ+(t+ u, s+ v)−h2dudv ≤ C%h2−1−$

by (6.40). Using ρ(t, s)1+$−h1−h2 = o(ρ(t, s)−h1∧h2) as |t| + |s| → ∞, we conclude (6.43).
Extension of (6.41)–(6.43) to ‘discrete’ convolution [ρ−h1

+ ? ρ−h2
+ ](t, s) requires minor changes

and we omit the details. This proves part (ii).
(iii) It suffices to show (6.45) for (t, s) ∈ Z × Z+, (t, s) 6= (0, 0), in which case ρ+(t, s) =
ρ(t, s). We have [a1 ?a2](t, s) = ∑1

i,j=0[ai1 ?a
j
2](t, s), where a0

i (t, s) := ρ+(t, s)−hiLi(t/ρ+(t, s)),
a1
i (t, s) := ai(t, s)− a0

i (t, s) = o(ρ+(t, s)−hi), i = 1, 2. Clearly, (6.45) follows from

lim
|t|+|s|→∞

∣∣∣ρ(t, s)h1+h2−1−$[a0
1 ? a

0
2](t, s)− L12(t/ρ(t, s))

∣∣∣ = 0 (6.57)

and

[ai1 ? a
j
2](t, s) = o(ρ(t, s)1+$−h1−h2), (i, j) 6= (0, 0), i, j = 0, 1, |t|+ |s| → ∞. (6.58)

The proof of (6.58) mimics the proof of (6.57) and is omitted. To prove (6.57), write [a0
1 ?

a0
2](t, s) as the integral: [a0

1 ? a
0
2](t, s) =

∫
R2 a0

1([u], [v])a0
2([u] + t, [v] + s)dudv. After the

same change of variables u → %u, v → %$v, % := ρ(t, s) as in the proof of (ii) we obtain
[a0

1 ? a
0
2](t, s) = %1+$−h1−h2L%(t/%), where

L%(z) :=
∫
R2
g%(u, v; z)dudv, z ∈ [−1, 1]

and where

g%(u, v; z) := a1%
(
ũ, ṽ

)
a2%
(
ũ+ z, ṽ + (1− z2)$/2

)
,

with ũ := [%u]/%, ṽ := [%$v]/%$ and

ai%(u, v) :=
(
%−1 ∨ ρ(u, v)

)−hi
Li
(
u/
(
%−1 ∨ ρ(u, v)

))
, i = 1, 2, (6.59)

since s/%$ = (1− z2)$/2 for z = t/% ∈ [−1, 1], s ≥ 0. Then with ai∞(u, v), i = 1, 2, defined
by the statement of Proposition 6.8(iii) we get that

g%(u, v; z)→ g∞(u, v; z) := a1∞(u, v)a2∞(u+ z, v + (1− z2)$/2) (6.60)

as % = ρ(t, s) → ∞ (|t| + |s| → ∞) for any fixed (u, v; z) ∈ R2 × [−1, 1] such that (u, v) 6∈
{(0, 0), (−z,−(1− z2)$/2)} and u/ρ(u, v), (u+ z)/ρ(u+ z, v + (1− z2)$/2) being continuity
points of L1 and L2 respectively. Let us prove that

L%(z)→ L12(z) as %→∞ (6.61)
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uniformly in z ∈ [−1, 1], which implies (6.57), viz., |L%(t/%)−L12(t/%)| ≤ supz∈[−1,1] |L%(z)−
L12(z)| = o(1) as % → ∞. The uniform convergence in (6.61) follows if lim%→∞ L%(z%) =
L12(z) holds for any z ∈ [−1, 1] and every sequence {z%} ⊂ [−1, 1] tending to z: lim%→∞ z% =
z. Choose δ > 0 and split the difference L%(z%)− L12(z) = I1 + I2 + I12, where

I1 :=
∫
Bδ(0,0)

(g%(u, v; z%)− g∞(u, v; z))dudv,

I2 :=
∫
Bδ(−z,−z′)

. . . dudv, I12 :=
∫
Bc
δ
(0,0)∩Bc

δ
(−z,−z′)

. . . dudv

with the notation z′ := (1− z2)$/2. Note that ρ(z, z′) = 1 and δ > 0 is chosen small enough
so that Bδ(0, 0)∩Bδ(−z,−z′) = ∅. Let us first check that |Ii|, i = 1, 2, can be made arbitrary
small by taking sufficiently small δ. Towards this end, we need the bound

|ai%(ũ, ṽ)| ≤ Cρ(u, v)−hi , (u, v) ∈ R2, i = 1, 2. (6.62)

Indeed, by (6.54), ρ(u, v) ≤ C$(ρ(ũ, ṽ) + ρ(u− ũ, v− ṽ)), where |u− ũ| ≤ %−1, |v− ṽ| ≤ %−$

and hence ρ(u − ũ, v − ṽ) ≤
√

2%−1, with C$ > 0 dependent only on $ > 0. Therefore,
ρ(u, v) ≤

√
2C$(ρ(ũ, ṽ) + %−1) ≤ 2

√
2C$(ρ(ũ, ṽ) ∨ %−1) implying

ρ(ũ, ṽ) ∨ %−1 ≥ (2
√

2C$)−1ρ(u, v), (6.63)

or (6.62) in view of the definition of ai% in (6.59). Using (6.62) it follows that

|g%(u, v; z%)− g∞(u, v; z)| ≤ Cρ(u, v)−h1
(
ρ(u+ z%, v + z′%)−h2 + ρ(u+ z, v + z′)−h2

)
. (6.64)

From (6.64) we obtain |I1| ≤ C
∫
Bδ(0,0) ρ(u, v)−h1dudv ≤ Cδ1+$−h1 = o(1) and similarly,

|I2| ≤ Cδ1+$−h2 = o(1). Hence it suffices to show that I12 → 0 (z% → z), viz., that for each
δ > 0 ∫

Bc
δ
(0,0)∩Bc

δ
(−z,−z′)

|g%(u, v; z%)− g∞(u, v; z)|dudv → 0 as %→∞. (6.65)

From (6.55), ρ(u+z%, v+z′%)1∧$ ≥ ρ(u+z, v+z′)1∧$− (δ/2)1∧$/2 ≥ (1/2)ρ(u+z, v+z′)1∧$

for all (u, v) ∈ Bc
δ(−z,−z′) and % large enough that ρ(z − z%, z′ − z′%)1∧$ ≤ (δ/2)1∧$/2 (in

view of z% → z). Hence and from (6.64) we obtain that the integrand in (6.65) is dominated
on Bc

δ(0, 0) ∩ Bc
δ(−z,−z′) by an integrable function independent of %, viz., |g%(u, v; z%) −

g∞(u, v; z)| ≤ Cρ(u, v)−h1ρ(u+ z, v + z′)−h2 . Since this integrand vanishes a.e. on Bc
δ(0, 0) ∩

Bc
δ(−z,−z′) as % → ∞, see (6.60), relation (6.65) follows by the dominated convergence

theorem, proving (6.61). The continuity of L12 (6.46) follows similarly by the dominated
convergence theorem.

It remains to prove the strict positivity of L12 in the case where L1(z) ≡ L2(z) =: L(z) ≥
0. Under assumption of piecewise continuity of L and L 6≡ 0 a.e., we can find 0 < |z0| < 1
and δ > 0 such that L(z) > δ for any |z − z0| < δ. We also have |u/ρ(u, v)− (u + z)/ρ(u +
z, v+ z′)| ≤ ρ(u, v)−1 + |1−ρ(u+ z, v+ z′)/ρ(u, v)| = O(ρ(u, v)−1∧$) uniformly in z ∈ [−1, 1]
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for ρ(u, v) ≥ 1. Indeed, this follows from |1 − (ρ(u + z, v + z′)/ρ(u, v))1∧$| ≤ ρ(u, v)−1∧$

by (6.55), when combined with 1 − x ≤ $−1(1 − x$), 0 < x < 1, if 0 < $ < 1 and
ρ(u + z, v + z′)/ρ(u, v) ≤ 2C$ for ρ(u, v) ≥ 1 by (6.54). Hence, given K large enough
|u/ρ(u, v)−(u+z)/ρ(u+z, v+z′)| < δ/2 for all (u, v) ∈ Bc

K(0, 0). Next, we choose the interior
point (u0, v0) of Bc

K(0, 0) such that u0/ρ(u0, v0) = z0. In view of continuity of u/ρ(u, v), there
exists ε > 0 such that |z0 − u/ρ(u, v)| < δ/2 holds for all (u, v) ∈ Bε(u0, v0) ⊂ Bc

K(0, 0).
Consequently, L(u/ρ(u, v))L((u + z)/ρ(u + z, v + z′)) > δ2 > 0 for any z ∈ [−1, 1] and all
(u, v) ∈ Bε(u0, v0). Finally, L12(z) > δ2(2C$)−h2

∫
Bε(u0,v0) ρ(u, v)−h1−h2dudv > 0, proving

L12(z) > 0, z ∈ [−1, 1], and part (iii). Proposition 6.8 is proved.

Proof of Proposition 6.9. Rewrite the l.h.s. of (6.47) as

Bλ(γ) =
∫
K̃2

[λ,λγ ]

b([t1]− [t2], [s1]− [s2])dt1dt2ds1ds2, (6.66)

where K̃[λ,λγ ] := {(t, s) ∈ R2 : ([t], [s]) ∈ K[λ,λγ ]}.
Case (I): γ = $. By changing the variables in (6.66) as ti → λti, si → λ$si, i = 1, 2, we
obtain λ−2H($)Bλ($) =

∫
R4 b̃λ(t1, t2, s1, s2)dt1dt2ds1ds2, where

b̃λ(t1, t2, s1, s2) := bλ(([λt1]− [λt2])/λ, ([λ$s1]− [λ$s2])/λ$) (6.67)
×1(([λti], [λ$si]) ∈ (0, λ]× (0, λ$], i = 1, 2)

with bλ(t, s) := (λ−1 ∨ ρ(t, s))−h(L(t/(λ−1 ∨ ρ(t, s))) + o(1)) as λ→∞. Then

b̃λ(t1, t2, s1, s2)→ b∞(t1 − t2, s1 − s2)1((ti, si) ∈ (0, 1]2, i = 1, 2), λ→∞,

point-wise for any (t1, t2, s1, s2) ∈ R4, (t1, s1) 6= (t2, s2) fixed. The dominating bound

λ−1 ∨ ρ
(
([λt1]− [λt2])/λ, ([λ$s1]− [λ$s2])/λ$

)
≥ Cρ(t1 − t2, s1 − s2),

follows by the same arguments as (6.63). These facts and the dominated convergence theorem
justify limλ→∞ λ

−2H($)Bλ($) = C($) since the integral C($) ≤ C
∫

(−1,1]2 ρ(t, s)−hdtds < ∞
in (6.48) converges by Proposition 6.8(i).
Case (II): γ > $, h < $. By changing the variables in (6.66) as ti → λti, si → λγsi, i = 1, 2,
we obtain λ−2H(γ)Bλ(γ) =

∫
R4 b̃λ(t1, t2, s1, s2)dt1dt2ds1ds2, where

b̃λ(t1, t2, s1, s2) := bλ(([λt1]− [λt2])/λγ/$, ([λγs1]− [λγs2])/λγ)
×1(([λti], [λγsi]) ∈ (0, λ]× (0, λγ], i = 1, 2)

with bλ(t, s) := (λ−γ/$ ∨ ρ(t, s))−h(L(t/(λ−γ/$ ∨ ρ(t, s))) + o(1)) as λ → ∞. Hence since
γ/$ > 1 it follows that

b̃λ(t1, t2, s1, s2)→ b∞(0, s1 − s2)1((ti, si) ∈ (0, 1]2, i = 1, 2), λ→∞,
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point-wise for any (t1, t2, s1, s2) ∈ R4, s1 6= s2 fixed. Note b∞(0, s) = L(0)|s|−h/$ is integrable
on [−1, 1] due to h < $. The limit limλ→∞ λ

−2H($)Bλ($) = C($) can be justified by the
dominated convergence theorem using the bound

λ−γ/$ ∨ ρ
(
([λt1]− [λt2])/λγ/$, ([λγs1]− [λγs2])/λγ

)
≥ λ−γ/$ ∨ ρ(0, ([λγs1]− [λγs2])/λγ)
≥ Cρ(0, s1 − s2),

which follows by the same arguments as (6.63).
Case (III): γ > $, h > $. By changing the variables in (6.66) as ti → λti, i = 1, 2,
s1− s2 → λ$s1, s2 → λγs2, we obtain λ−2H(γ)Bλ(γ) =

∫
R4 b̃λ(t1, t2, s1, s2)dt1dt2ds1ds2, where

b̃λ(t1, t2, s1, s2) := bλ(([λt1]− [λt2])/λ, ([λ$s1 + λγs2]− [λγs2])/λ$)
×1([λti] ∈ (0, λ], i = 1, 2,

[λ$s1 + λγs2] ∈ (0, λγ], [λγs2] ∈ (0, λγ])

with bλ(t, s) := (λ−1 ∨ ρ(t, s))−h(L(t/(λ−1 ∨ ρ(t, s)) + o(1)) as λ→∞. Then

b̃λ(t1, t2, s1, s2)→ b∞(t1 − t2, s1)1((t1, t2, s2) ∈ (0, 1]3), λ→∞,

for any t1 6= t2, s1 ∈ R \ {0}, s2 ∈ R \ {0, 1} fixed since γ > $ implies 1(0 < [λ$s1 + λγs2] ≤
λγ)→ 1(0 < s2 < 1). The dominating bound

λ−1 ∨ ρ
(
([λt1]− [λt2])/λ, ([λ$s1 + λγs2]− [λγs2])/λ$

)
≥ Cρ(t1 − t2, s1)

follows in the same way as (6.63), because |([λ$s1 + λγs2]− [λγs2])/λ$ − s1| ≤ 2λ−$. Then
the dominated convergence in (6.47) is proved in view of C(γ) ≤ C

∫ 1
−1
∫
R ρ(t, s)−hdtds <∞.

Cases (IV) and (V) can be treated similarly to Cases (II) and (III) and we omit the details.
Proposition 6.9 is proved.

In the rest of the chapter, we apply Propositions 6.8 and 6.9 with $ = γ0 and use the
notation ρ(t, s) = (|t|2 + |s|2/γ0)1/2, (t, s) ∈ R2.

Proof of Proposition 6.10. (i) Since Z(t, s) ≡ 0 for k = 1, let k ≥ 2 in what follows. Accord-
ing to (6.12),

Z(t, s) =
k−1∑
i=1

∑
(D)i

∑
(u,v)i

•
a(t− u1, s− v1)|D1| · · · a(t− ui, s− vi)|Di| (6.68)

×A|D1|(ε(u1, v1)) · · ·A|Di|(ε(ui, vi)),

where the sum∑
(D)i is taken over all partitions of {1, 2, · · · , k} into i nonempty setsD1, . . . , Di

having cardinality |D1| ≥ 1, . . . , |Di| ≥ 1, |D1| + · · · + |Di| = k. Thus, (6.68) is a decompo-
sition of Z(t, s) = Ak(Y (t, s)) − Y •k(t, s) into a sum of stationary ‘off-diagonal’ polynomial
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forms of order i < k in i.i.d. r.v. A|D`|(ε(u`, v`)), 1 ≤ ` ≤ i, with max(|D1|, · · · , |Di|) ≥ 2.
From (6.68) it follows that

|EZ(0, 0)Z(t, s)| ≤ C
k−1∑
i=1

∑
(d)i,(d′)i

i∏
`=1

[|a|d` ? |a|d′` ](t, s), (6.69)

where the second sum is taken over all collections (d)i = (d1, . . . , di), (d′)i = (d′1, . . . , d′i) of
integers d` ≥ 1, d′` ≥ 1 with ∑i

`=1 d` = ∑i
`=1 d

′
` = k. See [36], proof of Theorem 14.2.1.

Then a(t, s)d` ≤ Cρ(t, s)−β` , a(t, s)d′` ≤ Cρ(t, s)−β′` , where β` := d`q1, β′` := d′`q1. By
Proposition 6.8(ii),

|EZ(0, 0)Z(t, s)| ≤ C
k−1∑
i=1

∑
(d)i,(d′)i

i∏
`=1

ρ(t, s)−w` , (6.70)

where

w` :=


2q1 − 1− γ0 = p1, if d` = d′` = 1,
q1, if d` ≥ 2, d′` = 1 or d` = 1, d′` ≥ 2,
2q1, if d` ≥ 2, d′` ≥ 2.

(6.71)

Relations (6.71) and max1≤`≤i d` ≥ 2, max1≤`≤i d
′
` ≥ 2 imply ∑i

`=1w` ≥ 2q1 and hence (6.49).
(ii) Since RFs {Y •k(t, s)} and {Z(t, s)} are uncorrelated: Cov(Y •k(t, s),Z(u, v)) = 0 for any
(t, s), (u, v) ∈ Z2, relation (6.50) follows from (6.49) and

Cov(Y •k(t, s), Y •k(0, 0)) = k!rY (t, s)k(1 + o(1)), |t|+ |s| → ∞. (6.72)

To show (6.72), note that the difference |rY (t, s)kk! − Cov(Y •k(t, s), Y •k(0, 0))| = |([a ?
a](t, s))k −∑•(u,v)k

∏k
i=1 a(t + ui, s + vi)a(ui, vi)|k! satisfies the same bound as in (6.70) and

therefore this difference is O(ρ(t, s)−2q1) = o(rY (t, s)k) according to (6.49). This proves (6.72)
and part (ii).
(iii) follows similarly to (ii) using (6.49) and |Cov(Y •k(t, s), Y •k(0, 0))| ≤ k!([|a|?|a|](t, s))k ≤
Cρ+(t, s)−kp1 . Proposition 6.10 is proved.

Proof of Corollary 6.12. Relation (6.53) follows from (6.49) and Proposition 6.8(i) since the
l.h.s. of (6.53) does not exceed∑(t1,s1),(t2,s2)∈K[λ,λγ ]

|rZ(t1−t2, s1−s2)| ≤ λ1+γ∑
(t,s)∈Z2 |rZ(t, s)|

≤ Cλ1+γ∑
(t,s)∈Z2 ρ+(t, s)−2q1 and the last sum converges by Proposition 6.8(i) due to 2q1 >

1 + γ0.
Relations (6.52) follow from (6.53), the orthogonality of {Y •k(t, s)} and {Z(t, s)} and

V•λ,γ := Var
( ∑

(t,s)∈K[λ,λγ ]

Y •k(t, s)
)
∼ c(γ)λ2H(γ). (6.73)
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In turn, (6.73) follows from

Vλ,γ := k!
∑

(t1,s1),(t2,s2)∈K[λ,λγ ]

rY (t1 − t2, s1 − s2)k ∼ c(γ)λ2H(γ) (6.74)

and
V•λ,γ − Vλ,γ = o(λ2H(γ)). (6.75)

Relation (6.74) follows from rY (t, s) = [a ? a](t, s), Propositions 6.8(iii), 6.9 and the fact
that the asymptotic constants C(γ) in (6.47) coincide with c(γ) in Theorems 6.1–6.3. (The
last fact follows by exchanging the order of integration in these integrals, e.g. c(γ0) in (6.18)
writes as c(γ0) = k!

∫
R2k

( ∫
(0,1]2

∏k
i=1 a∞(t − ui, s − vi)dtds

)2∏k
i=1 duidvi = k!

∫
(0,1]4 b∞(t1 −

t2, s1 − s2)dt1dt2ds1ds2 = C(γ0), where b∞(t, s) = ((a∞ ? a∞)(t, s))k, see (6.44).) Finally,
the difference in (6.75) can be estimated as in (6.69)–(6.70) and therefore this difference is
O(λ1+γ) = o(λ2H(γ)) as shown in (6.53). This proves (6.73) and the proposition.

6.7.2 Proofs of Theorems 6.1–6.5 and Proposition 6.7
We use the criterion in Proposition 6.13 for the convergence in distribution of off-diagonal

polygonal forms towards Itô–Wiener integral which is a straightforward extension of [36,
Proposition 14.3.2].

Let L2(Z2k) be the class of all real-valued functions g = g((u, v)k), (u, v)k ∈ Z2k, with∑
(u,v)k∈Z2k g((u, v)k)2 < ∞ and Qk(g) := ∑•

(u,v)k g((u, v)k)ε(u1, v1) · · · ε(uk, vk), g ∈ L2(Z2k)
be a k-tuple off-diagonal form in i.i.d. r.v.s {ε(u, v)} satisfying Assumption (A1). For gλ,γ ∈
L2(Z2k) (λ > 0, γ > 0) define a step function g̃λ,γ ∈ L2(R2k) by

g̃λ,γ((u, v)k) := λkγ(1+γ−1
0 )/2gλ,γ([λγ/γ0u1], [λγv1], . . . , [λγ/γ0uk], [λγvk]),

(u, v)k ∈ R2k. (6.76)

Proposition 6.13. Assume there exists hγ ∈ L2(R2k) such that limλ→∞ ‖g̃λ,γ − hγ‖k → 0.
Then Qk(gλ,γ) d→

∫
R2k hγ((u, v)k)dkW (λ→∞).

Proof of Theorem 6.1. (i) Let us show that the stochastic integral V X
k,γ0(x, y) is well-defined

or ‖h(x, y; ·)‖k <∞, where h(x, y; (u, v)k) is defined in (6.16). It suffices to consider the case
x = y = 1. By (6.41), (6.39) of Proposition 6.8, ‖h(1, 1; ·)‖2

k =
∫

(0,1]4((a∞ ? a∞)(t1 − t2, s1 −
s2))kdt1dt2ds1ds2 ≤ C

∫
(0,1]4 ρ(t1 − t2, s1 − s2)−kp1dt1dt2ds1ds2 < ∞ since kp1 < 1 + γ0 =

1 + p1/p2 or k < P holds. The self-similarity property in (6.17) follows by scaling properties
a∞(λt, λγ0s) = λ−q1a∞(t, s), {W (dλu, dλγ0v)} fdd= {λ(1+γ0)/2W (du, dv)} of the integrand and
the white noise, and the change of variables rules for multiple Itô–Wiener integral, see [25],
also [36, Proposition 14.3.5].
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(ii) Relation (6.18) is proved in Corollary 6.12. Let us prove (6.19). Recall the decomposition
X(t, s) = Y •k(t, s) + Z(t, s) in (6.13). Using Var(SZλ,γ0) = O(λ1+γ0) = o(λ2H(γ0)), see (6.53),
relation (6.19) follows from

Qk(gλ,γ0(x, y; ·)) = λ−H(γ0) ∑
(t,s)∈K[λx,λγ0y]

Y •k(t, s) fdd→ V X
k,γ0(x, y), (6.77)

where

gλ,γ0(x, y; (u, v)k) := λ−H(γ0) ∑
(t,s)∈K[λx,λγ0y]

a(t− u1, s− v1) · · · a(t− uk, s− vk),

(u, v)k ∈ Z2k. (6.78)

Using Proposition 6.13 and Cramér–Wold device, relation (6.77) follows from

lim
λ→∞

∥∥∥∥∑m

i=1 θi(g̃λ,γ0(xi, yi; ·)− h(xi, yi; ·))
∥∥∥∥
k

= 0, (6.79)

for any m ≥ 1 and any θi ∈ R, (xi, yi) ∈ R2
+, 1 ≤ i ≤ m, where the limit function

h(x, y; (u, v)k) is given in (6.16). We restrict the subsequent proof of (6.79) to the case
m = θ1 = 1, (x1, y1) = (x, y) since the general case of (6.79) follows analogously. Using
(6.10), (6.78), (6.76) and notation aλ(t, s) := (λ−1 ∨ ρ(t, s))−q1(L0(t/(λ−1 ∨ ρ(t, s))) + o(1)),
λ→∞, and λ′ := λγ0 similarly to (6.67) we get

g̃λ,γ0(x, y; (u, v)k) =
∫
R2

k∏
i=1

aλ
(

[λt]−[λui]
λ

, [λ′s]−[λ′vi]
λ′

)
×1

(
([λt], [λ′s]) ∈ (0, λx]× (0, λ′y]

)
dtds

→ h(x, y; (u, v)k) (6.80)

point-wise for any (u, v)k ∈ R2k, (ui, vi) 6= (uj, vj) (i 6= j) fixed. A similar inequality to
(6.63), viz.,

1
λ
∨ ρ

(
[λt]−[λu]

λ
, [λ′s]−[λ′v]

λ′

)
≥ cρ(t− u, s− v), ∀t, u, s, v ∈ R, (6.81)

holds with some constant c > 0 independent of t, u, s, v ∈ R, implying the dominating bound

|g̃λ,γ0(x, y; (u, v)k)| ≤ C
∫

(0,2x]×(0,2y]

k∏
i=1

ρ(t− ui, s− vi)−q1dtds =: ḡ(x, y : (u, v)k),

where ‖ḡ(x, y; ·)‖k < ∞ by (6.41), (6.39) of Proposition 6.8, so that (6.79) follows by the
dominated convergence theorem in view of (6.80). Theorem 6.1 is proved.

Proof of Theorem 6.2. As noted in Section 6.3, part (iii) follows by the same argument as
part (ii) by exchanging the coordinates t and s and we omit the details.
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(i) Let us show that the stochastic integral in (6.20) is well-defined or ‖h+(y; ·)‖k < ∞,
where h+(y; (u, v)k) is defined in (6.21). Indeed by (6.41) of Proposition 6.8 ‖h+(y; ·)‖2

k =∫
(0,1]2((a∞ ?a∞)(0, s1−s2))kds1ds2 ≤ C

∫
(0,1]2 ρ(0, s1−s2)−kp1ds1ds2 ≤ C

∫
[−1,1] |s|−kp2ds <∞

since kp2 < 1. The remaining facts in (i) follow similarly as in the proof of Theorem 6.1(i).
(ii) Relation (6.22) is proved in Corollary 6.12. Similarly to the proof of (6.19), the weak
convergence in (6.23) follows from

Qk(gλ,γ(x, y; ·)) = λ−H(γ) ∑
(t,s)∈K[λx,λγy]

Y •k(t, s) fdd→ xZ+
k (y), (6.82)

where

gλ,γ(x, y; (u, v)k) := λ−H(γ) ∑
(t,s)∈K[λx,λγy]

a(t− u1, s− v1) · · · a(t− uk, s− vk),

(u, v)k ∈ Z2k.

Again, we restrict the proof of (6.82) to one-dimensional convergence at (x, y) ∈ R2
+. By

Proposition 6.13 this follows from

lim
λ→∞
‖g̃λ,γ(x, y; ·)− xh+(y; ·)‖k = 0, (6.83)

where, with λ′ := λγ, λ′′ := λγ/γ0 , λ = o(λ′′), aλ′′(t, s) := ((λ′′)−1 ∨ ρ(t, s))−q1(L0(t/((λ′′)−1 ∨
ρ(t, s))) + o(1)),

g̃λ,γ(x, y; (u, v)k) =
∫
R2

k∏
i=1

aλ′′
(

[λt]−[λ′′ui]
λ′′

, [λ′s]−[λ′vi]
λ′

)
×1

(
([λt], [λ′s]) ∈ (0, λx]× (0, λ′y]

)
dtds

→ xh+(y; (−u, v)k) (6.84)

point-wise for any (u, v)k ∈ R2k, (ui, vi) 6= (uj, vj) (i 6= j) fixed.
The dominating convergence argument to prove (6.83) from (6.84) uses Pratt’s lemma [84],

as follows. Similarly to (6.81) note that

1
λ′′
∨ ρ

(
[λt]−[λ′′u]

λ′′
, [λ′s]−[λ′v]

λ′

)
≥ cρ((λt/λ′′)− u, s− v),

with c > 0 independent of t, u, s, v ∈ R and hence

|g̃λ,γ(x, y; (u, v)k)| ≤ C
∫

(0,2x]×(0,2y]

k∏
i=1

ρ((λt/λ′′)− ui, s− vi)−q1dtds

=: CGλ((u, v)k)
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with C > 0 independent of λ > 0, (u, v)k ∈ R2k. Clearly, limλ→∞Gλ((u, v)k) = G((u, v)k) :=
2x
∫

(0,2y]
∏k
i=1 ρ(ui, s− vi)−q1ds point-wise in R2k and

‖Gλ‖2
k =

∫
(0,2x]2×(0,2y]2

(
(ρ−q1 ? ρ−q1)((λ/λ′′)(t1 − t2), s1 − s2)

)k
dt1dt2ds1ds2

→
∫

(0,2x]2×(0,2y]2

(
(ρ−q1 ? ρ−q1)(0, s1 − s2)

)k
dt1dt2ds1ds2 = ‖G‖2

k <∞

by (6.41) of Proposition 6.8 and condition 1 ≤ k < 1/p2, or p2 = q2(2 − Q) < 1/k. Thus,
application of [84] proves (6.83). Theorem 6.2 is proved.

To prove Theorem 6.3 we use approximation by m-dependent variables and the following
CLT for triangular array of m-dependent r.v.s.

Lemma 6.14. Let {ξni, 1 ≤ i ≤ Nn}, n ≥ 1, be a triangular array of m-dependent r.v.s
with zero mean and finite variance. Assume that: (L1) ξni, 1 ≤ i ≤ Nn, are identically
distributed for any n ≥ 1, (L2) ξn := ξn1

d→ ξ, Eξ2
n → Eξ2 < ∞ for some r.v. ξ and (L3)

Var(∑Nn
i=1 ξni) ∼ σ2Nn, σ2 > 0. Then N−1/2

n

∑Nn
i=1 ξni

d→ N(0, σ2).

Proof. W.l.g., we can assume Nn = n in the subsequent proof. We use the CLT due to Orey
[75]. Accordingly, let ξτni := ξni1(|ξni| ≤ τn1/2), ατni := Eξτni, στnij := Cov(ξτni, ξτnj). It suffices
to show that for any τ > 0 the following conditions in [75] are satisfied: (O1) n−1/2∑n

i=1 α
τ
ni →

0, (O2) n−1∑n
i,j=1 σ

τ
nij → σ2, (O3) n−1∑n

i=1 σ
τ
nii = O(1), and (O4)∑n

i=1 P(|ξni| > τn1/2)→ 0.
Consider (O1), or n1/2ατn → 0, ατn := ατn1. We have 0 = n1/2Eξn = n1/2ατn + κn, where
|κn| := n1/2|Eξn1(|ξn| > τn1/2)| ≤ τ−1Eξ2

n1(|ξn| > τn1/2). Therefore, (O1) follows from

Eξ2
n1(|ξn| > τn1/2)→ 0. (6.85)

Using the Skorohod representation theorem [97] w.l.g. we can assume that r.v.s ξ, ξn, n ≥ 1,
are defined on the same probability space and ξn → ξ almost surely. The latter fact together
with (L2) and Pratt’s lemma [84] implies that E|ξ2

n− ξ2| → 0 and hence (6.85) follows due to
P(|ξn| > τn1/2) → 0, see [71, Chapter 2, Proposition 5.3]. The above argument also implies
(O4) since P(|ξn| > τn1/2) ≤ τ−2n−1Eξ2

n1(|ξn| > τn1/2) by Markov’s inequality. (O3) is
immediate from (L1) and (L2). Finally, (O2) follows from (L3), (O1) and

n−1 ∑
1≤i,j≤n,|i−j|≤m

E(ξniξnj − ξτniξτnj)→ 0. (6.86)

Let ξ̃τni := ξni−ξτni. Since |E(ξniξnj−ξτniξτnj)| ≤ |E(ξ̃τniξτnj +ξτniξ̃
τ
nj + ξ̃τniξ̃

τ
nj)| ≤ CE1/2ξ2

n1(|ξn| >
τn1/2), relation (6.86) follows from (6.85). Lemma 6.14 is proved.

Proof of Theorem 6.3. Again, we prove part (i) only since part (ii) follows similarly by ex-
changing the coordinates t and s.
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Relation (6.25) is proved in Corollary 6.12. Let us prove (6.26). Similarly as in the case of the
previous theorems, we shall restrict ourselves with the proof of one-dimensional convergence
at (x, y) ∈ R2

+. For m ≥ 1, λ > 0, define stationary RFs

Xm(t, s) := Ak(Ym(t, s)), where
Ym(t, s) :=

∑
(u,v)∈Z2:|s−v|≤[λγ0 ]m

a(t− u, s− v)ε(u, v), (6.87)

and where Ak stands for the Appell polynomial of degree k relative to the distribution of
Ym(t, s). Note Xm(t1, s1) and Xm(t2, s2) are independent if |s1 − s2| > 2[λγ0 ]m. Then

SXmλ,γ (x, y) :=
∑

(t,s)∈K[λx,λγy]

Xm(t, s) =
Nλ+1∑
i=1

Uλ,m(i), (6.88)

where Nλ := [[λγy]/[λγ0 ]] = O(λγ−γ0) and

Uλ,m(i) :=
∑

1≤t≤[λx]

∑
(i−1)[λγ0 ]<s≤i[λγ0 ]

Xm(t, s). (6.89)

Note Uλ,m(i) and Uλ,m(j) are independent provided |i− j| > 2m hence (6.88) is a sum of 2m-
dependent r.v.s. The one-dimensional convergence in (6.26) follows from standard Slutsky’s
argument (see e.g. [36, Lemma 4.2.1]) and the following lemma. Theorem 6.3 is proved.

Lemma 6.15. Under the conditions and notation of Theorem 6.3(i), for any γ > γ0 and
any m = 1, 2, . . . ,

Var(SXmλ,γ (x, y)) ∼ σ2
m(x, y)λ2H(γ) and (6.90)

λ−H(γ)SXmλ,γ (x, y) d→ N(0, σ2
m(x, y)) as λ→∞, (6.91)

where σ2
m(x, y) is defined in (6.93). Moreover,

lim
m→∞

lim sup
λ→∞

λ−2H(γ) Var(SXλ,γ(x, y)− SXmλ,γ (x, y)) = 0. (6.92)

Proof. By adapting the argument in the proof of (6.25) and Proposition 6.9 Case (III), we
can show the limits

λ−2H(γ) Var(SXmλ,γ (x, y)) → k!y
∫

(0,x]2×R

(
(a∞,m ? a∞,m)(t1 − t2, s)

)k
dt1dt2ds

=: σ2
m(x, y) (6.93)



Chapter 6. Scaling transition for nonlinear random fields 128

and

λ−2H(γ) Var(SXλ,γ(x, y)− SXmλ,γ (x, y))
= λ−2H(γ) ∑

(ti,si)∈K[λx,λγy],i=1,2

{
Cov(X(t1, s1), X(t2, s2))

−Cov(X(t1, s1), Xm(t2, s2))− Cov(Xm(t1, s1), X(t2, s2))
+ Cov(Xm(t1, s1), Xm(t2, s2))

}
→ k!y

∫
(0,x]2×R

Gm(t1 − t2, s)dt1dt2ds, λ→∞, (6.94)

where Gm(t, s) := ((a∞ ? a∞)(t, s))k − ((a∞,m ? a∞)(t, s))k − ((a∞ ? a∞,m)(t, s))k + ((a∞,m ?
a∞,m)(t, s))k and

a∞,m(t, s) := L0(t/ρ(t, s))ρ(t, s)−q11(|s| ≤ m), (t, s) ∈ R2, (6.95)

is a ‘truncated’ version of a∞(t, s) in (6.15). Since |Gm(t, s)| ≤ 4((a∞ ? a∞)(t, s))k and
Gm(t, s) vanishes with m→∞ for any fixed (t, s) 6= (0, 0), (6.92) follows from (6.94) by the
dominated convergence theorem.

The proof of (6.91) uses Lemma 6.14. Accordingly, let Nλ := [[λγy]/[λγ0 ]] and ξλi :=
λ−H(γ0)Uλ,m(i), where H(γ0) = 1 + γ0− kp1/2 is the same as in Theorem 6.1 and Uλ,m(i) are
2m-dependent r.v.s defined in (6.89). Note Uλ,m(i), 1 ≤ i ≤ Nλ, are identically distributed
and λH(γ0)N

1/2
λ ∼ λH(γ)y1/2. Thus, condition (L1) of Lemma 6.14 for ξλi, 1 ≤ i ≤ Nλ, is

satisfied and (L3) follows from Var(∑Nλ
i=1 ξλi) ∼ λ−2H(γ0) Var(SXmλ,γ (x, y)) ∼ λγ−γ0σ2

m(x, y), see
(6.90). Finally, condition (L2), or

ξλ,1 = λ−H(γ0)Uλ,m(1) d→ ξ, Eξ2
λ,1 → Eξ2

follows similarly as in Theorem 6.1 with the limit r.v. ξ given by the k-tuple Itô–Wiener
integral:

ξ :=
∫
R2k

{ ∫ x

0

∫ 1

0

k∏
`=1

a∞,m(t− u`, s− v`) dtds
}

dkW

and a∞,m(t, s) defined in (6.95). This proves (6.91) and Lemma 6.15, too.

Proof of Theorem 6.4. The proof is an adaptation of the proof of CLT in [36, Theorem 4.8.1]
for sums of ‘off-diagonal’ polynomial forms with one-dimensional ‘time’ parameter. Define

Xm(t, s) := Ak(Ym(t, s)),
Ym(t, s) :=

∑
(u,v)∈Z2:|t−u|+|s−v|≤m

a(t− u, s− v)ε(u, v), (6.96)

where Ak stands for the Appell polynomial of degree k relative to the distribution of Ym(t, s).
Note the truncation level m in (6.96) does not depend on λ in contrast to the truncation level
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m[λγ0 ] in (6.87). Similarly to Lemma 6.15 it suffices to prove for any γ > 0, m = 1, 2, . . . ,

Var(SXmλ,γ (x, y)) ∼ xyσ2
Xmλ

1+γ, λ−(1+γ)/2SXmλ,γ (x, y) d→ N(0, xyσ2
Xm) (6.97)

lim
m→∞

lim sup
λ→∞

λ−(1+γ) Var(SXλ,γ(x, y)− SXmλ,γ (x, y)) = 0, (6.98)

where σ2
Xm := ∑

(t,s)∈Z2 rXm(t, s) and rXm(t, s) := Cov(Xm(0, 0), Xm(t, s)). Note Xm(t1, s1)
and Xm(t2, s2) are independent if |t1−t2|+ |s1−s2| > 2m. Therefore∑(t,s)∈Z2 |rXm(t, s)| <∞
and (6.97) follows from the CLT for m-dependent RFs, see [15]. Consider (6.98), where we
can put x = y = 1 w.l.g. We have λ−(1+γ) Var(SXλ,γ − SXmλ,γ ) ≤ ∑

(t,s)∈Z2 |φm(t, s)|, where
φm(t, s) := Cov(X(0, 0) − Xm(0, 0), X(t, s) − Xm(t, s)). From (6.69), (6.70) and (6.72) we
conclude that

|Cov(X(0, 0), X(t, s))|+ |Cov(X(0, 0), Xm(t, s))|+ |Cov(Xm(0, 0), Xm(t, s))|
≤ Cρ+(t, s)−(kp1)∧(2q1)

as in (6.51), with C > 0 independent of m. Hence |φm(t, s)| ≤ Cρ+(t, s)−(kp1)∧(2q1) =: φ(t, s),
where ∑(t,s)∈Z2 φ(t, s) < ∞, see Proposition 6.8(i), also Corollary 6.11(ii). Thus, (6.98)
follows by the dominated convergence theorem and the fact that limm→∞ φm(t, s) = 0 for
any (t, s) ∈ Z2. Theorem 6.4 is proved.

Proof of Theorem 6.5. (i) Split X = Xk + X ′k, where X ′k := ∑∞
j=k+1 cjXj/j!, Xj(t, s) :=

Hj(Y (t, s)). Since all statements of Theorems 6.1–6.3 hold for RFXk = Hk(Y ) and Cov(Xk(t1,
s1), X ′k(t2, s2)) = 0, ∀(ti, si) ∈ Z2, i = 1, 2, it suffices to show that

Var(SX
′
k

λ,γ) = o(λ2H(γ)), λ→∞, (6.99)

for H(γ) defined in Theorems 6.1–6.3. By well-known properties of Hermite polynomials,
Var(SX

′
k

λ,γ) = ∑∞
j=k+1 c

2
j Var(SXjλ,γ)/(j!)2, Var(SXjλ,γ) = j!∑(ti,si)∈K[λ,λγ ],i=1,2 rY (t1− t2, s1− s2)j ≤

j!Σk+1(λ), where Σk+1(λ) := ∑
(ti,si)∈K[λ,λγ ],i=1,2 |rY (t1 − t2, s1 − s2)|k+1 for j ≥ k + 1 since

|rY (t, s)| ≤ 1 according to Assumption (A4)k. Therefore, Var(SX
′
k

λ,γ) ≤ (∑∞j=k+1 c
2
j/j!)Σk+1(λ)

≤ EG(Y (0, 0))2Σk+1(λ), where Σk+1(λ) = o(λ2H(γ)) follows by Proposition 6.9. This proves
(6.99) and part (i).
(ii) For large K ∈ N, K > k, split X = X̂K + X ′K , where X̂K(t, s) := ∑K

j=k cjHj(Y (t, s))/j!
and X ′K(t, s) := ∑∞

j=K+1 cjHj(Y (t, s))/j!. Then Var(SX
′
K

λ,γ ) ≤ (∑∞j=K+1 c
2
j/j!)ΣK+1(λ) as in

the proof of part (i), implying Var(SX
′
K

λ,γ ) ≤ CεKλ
1+γ, where εK := ∑∞

j=K+1 c
2
j/j! can be

made arbitrary small by choosing K large enough. On the other hand, by Theorem 6.4,
λ−(1+γ)/2S

Xj
λ,γ(x, y) fdd→ σXjB1/2,1/2(x, y) for any j ≥ k and the last result extends to finite

sums of Hermite polynomials, viz., λ−(1+γ)/2SX̂Kλ,γ (x, y) fdd→ σX̂KB1/2,1/2(x, y), where σ2
X̂K

=∑
(t,s)∈Z2 Cov(X̂K(0, 0), X̂K(t, s))→ σ2

X , K →∞. See e.g. [36, proof of Theorem 4.6.1]. The
remaining details are easy. Theorem 6.4 is proved.
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Proof of Proposition 6.7. The transition probabilities qu(v) in (6.36) can be explicitly written
in terms of binomial probabilities bin(j, k; p) :=

(
k
j

)
pj(1− p)k−j, k = 0, 1, . . . , j = 0, 1, . . . , k,

0 ≤ p ≤ 1:

qu(v) =
u∑
j=0

bin(u− j, u; θ) bin((v + j)/2, j; 1/2), u ∈ N, |v| ≤ u. (6.100)

Similarly to [56, proof of Proposition 4.1], we shall use the following version of the Moivre–
Laplace theorem (Feller [32, Chapter 7, §3, Theorem 1]): There exists a constant C such
when j →∞ and k →∞ vary in such a way that

(j − kp)3

k2 → 0,

then ∣∣∣∣ bin(j, k; p)
1√

2πkp(1−p)
exp{− (j−kp)2

2kp(1−p)}
− 1

∣∣∣∣ < C

k
+ C|j − kp|3

k2 . (6.101)

Let us first explain the idea of the proof. Using (6.100) and replacing the binomial probabil-
ities by Gaussian densities according to (6.101) leads to

a(u, v) ∼ 1
2

u∑
j=0

1
Γ(d)u1−d

1√
2πθ(1− θ)u

exp
{
− (j − (1− θ)u)2

2θ(1− θ)u

}

× 1√
jπ/2

exp
{
− v2

2j

}

= ud−3/2

Γ(d)
√

2π

u∑
j=0

1
u
√

2πθ(1− θ)/u
exp

{
− ((j/u)− (1− θ))2

2θ(1− θ)/u

}

× 1√
j/u

exp
{
− v2/u

2j/u

}

∼ ud−3/2

Γ(d)
√

2π

∫ 1

0

1√
2πθ(1− θ)/u

exp
{
− (x− (1− θ))2

2θ(1− θ)/u

}

× 1√
x

exp
{
− v2/u

2x

}
dx

∼ ud−3/2

Γ(d)
√

2π(1− θ)
exp

{
− v2/u

2(1− θ)

}
= ρ(u, v)d−3/2L0(u/ρ(u, v))

with L0(z), z ∈ [−1, 1], defined in (6.37). Here, factor 1/2 in front of the sum in the first
line appears since bin((v + j)/2, j; 1/2) = 0 whenever v + j is odd, in other words, by using
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Gaussian approximation for all (even and odd) j we double the sum and therefore must divide
it by 2. Note also that in the third line, the Gaussian kernel 1√

2πθ(1−θ)/u
exp{− (x−(1−θ))2

2θ(1−θ)/u }
acts as a δ-function at x = 1− θ when u→∞.

Let us turn to a rigorous proof of the above asymptotics. For (u, v) ∈ Z2, (u, v) 6= (0, 0),
denote % := (u2 + v4)1/2, z := u/% ∈ [−1, 1], then u = z%, v2 = %

√
1− z2. It suffices to prove

%3/2−da(u, v)− L0(z)→ 0 as |u|+ |v| → ∞. (6.102)

By definition (see (6.36), (6.37)), (6.102) holds for u ≥ 0, z ≥ 0 hence we can assume u ≥ 1,
z > 0 in what follows. Moreover, for any ε > 0 there exists K > 0 such that

%3/2−da(u, v) < ε and L0(z) < ε (∀1 ≤ u < v9/5, % > K). (6.103)

The second relation in (6.103) is immediate by limz→0 L0(z) = L0(0) = 0 and z = u/% ≤
%9/10/% → 0 (% → ∞). To prove the first relation we use Hoeffding’s inequality [46]. Let
bin(j, k; p) be the binomial distribution. Then for any τ > 0,∑

0≤j≤k:|j−kp|≥τ
√
k

bin(j, k; p) ≤ 2e−2τ2
. (6.104)

(6.104) implies bin((v + j)/2, j; 1/2) ≤ 2e−v2/2j ≤ 2e−v2/2u for any |v| ≤ u, 0 ≤ j ≤ u.
Also note that 1 ≤ u < v9/5 implies 2v2 ≥ u%1/10. Using these facts and (6.100) with∑u
j=0 bin(u− j, u; θ) = 1 for any 1 ≤ u < v9/5 we obtain

%3/2−da(u, v) ≤ C%3/2−dqu(v) ≤ C%3/2−de−v2/2u ≤ C%3/2−de−%1/10/4 → 0, %→∞,

proving (6.103). Hence, it suffices to prove (6.102) for u → ∞, 0 ≤ v ≤ u5/9. Next, we give
the proof for v even, the proof for v odd being similar. Denote

D+(u, v) := {0 ≤ j ≤ u/2 : |2j − u(1− θ)| < u3/5 and |v| < j3/5},
D−(u, v) := {0 ≤ j ≤ u/2 : |2j − u(1− θ)| ≥ u3/5 or |v| ≥ j3/5}.

Split a(u, v) = ψu(−d)∑0≤j≤u/2 bin(u − 2j, u; θ) bin(v/2 + j, 2j; 1/2) = a+(u, v) + a−(u, v),
where a±(u, v) := ψu(−d)∑j∈D±(u,v) . . . . It suffices to prove that

%3/2−da+(u, v)− L0(z)→ 0 and %3/2−da−(u, v)→ 0 (6.105)

as u→∞, 0 ≤ v ≤ u5/9. To show the first relation in (6.105), let j∗u := [u(1− θ)/2] and

a∗(u, v) := bin(v/2 + j∗u, 2j∗u; 1/2)ψu(−d)
∑

j∈D+(u,v)
bin(u− 2j, u; θ),

then

a∗(u, v)− a+(u, v) = ψu(−d)
∑

j∈D+(u,v)
bin(u− 2j, u; θ)

×
(

bin(v/2 + j∗u, 2j∗u; 1/2)− bin(v/2 + j, 2j; 1/2)
)
.
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According to (6.101), for j ∈ D+(u, v), j∗u ∈ D+(u, v),

bin(v/2 + j, 2j; 1/2) = 1√
πj

e−v2/4j
(
1 +O(j−1/5)

)
= 1√

πj
e−v2/4j

(
1 +O(u−1/5)

)
,

bin(v/2 + j∗u, 2j∗u; 1/2) = 1√
πj∗u

e−v2/4j∗u
(
1 +O(u−1/5)

)
.

Using c−u < j < c+u, j ∈ D+(u, v) for some c± > 0, and elementary inequalities we obtain
that | 1√

πj
e−v2/4j − 1√

πj∗u
e−v2/4j∗u| ≤ Cu−7/10e−cv2/u for some C, c > 0 and hence the bound

| bin(v/2 + j∗u, 2j∗u; 1/2)− bin(v/2 + j, 2j; 1/2)| ≤ Cu−7/10e−cv2/u

for all j ∈ D+(u, v) and all u > 0 large enough. Therefore since∑j∈D+(u,v) bin(u−2j, u; θ) ≤ 1
we obtain

%3/2−d|a∗(u, v)− a+(u, v)| ≤ C%3/2−du−7/10+d−1e−cv2/u = %−1/5L∗(z) ≤ C%−1/5,

where L∗(z) := Czd−17/10e−c
√

(1/z)2−1, z ∈ (0, 1], is a bounded function. As a consequence, it
suffices to prove the first relation in (6.105) with a+(u, v) replaced by a∗(u, v). This in turn
follows from relations 1√

πj∗u
e−v2/4j∗u ∼ 1√

πu(1−θ)/2
e−v2/2u(1−θ), ψu(−d) ∼ Γ(d)−1ud−1, and∑

j∈D+(u,v)
bin(u− 2j, u; θ)→ 1/2 as u→∞, (6.106)

each of which hold uniformly in 0 ≤ v ≤ u5/9. Let us check (6.106) for instance. Since
c−u < j < c+u, j ∈ D+(u, v) for some c± > 0, see above, so u5/9 = o(j3/5) and (6.106)
follows from

B′(u)→ 1/2 and B′′(u)→ 0, (6.107)
where B′(u) := ∑u

j=0 bin(u − j, u; θ)1(j is even), B′′(u) := ∑u
j=0 bin(u − j, u; θ)1(|j − u(1 −

θ)| ≥ u3/5). Here, the first relation in (6.107) is obvious by well-known properties of binomial
coefficients while the second one follows from (6.104) according to which B′′(u) ≤ Ce−2u1/5 →
0. This proves the first relation in (6.105).

The proof of the second relation in (6.105) uses Hoeffding’s inequality in (6.104) in a simi-
lar way. We have a−(u, v) ≤ a−1 (u, v)+a−2 (u, v), where a−1 (u, v) := ψu(−d)∑0≤j≤u:|j−u(1−θ)|≥u3/5

bin(u − j, u; θ) ≤ Cud−1e−2u1/5 implying %3/2−da−1 (u, v) ≤ Cu(10/9)(3/2−d)+(d−1)e−2u1/5 → 0
(u→∞) uniformly in |v| ≤ u5/9. Finally,

a−2 (u, v) := ψu(−d)
∑

0≤j≤u:|j−u(1−θ)|≤u3/5,v≥(j/2)3/5

bin(u− j, u; θ)

× bin((v + j)/2, j; 1/2)
≤ Cud−1 ∑

c1u≤j≤u,v≥(j/2)3/5

e−v2/2j ≤ Cude−c2u1/5
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for some positive constants c1, c2 > 0, implying %3/2−da−2 (u, v) ≤ Cu(10/9)(3/2−d)+d e−c2u1/5 → 0
(u→∞) uniformly in |v| ≤ u5/9 as above. This proves (6.105) and Proposition 6.7, too.

6.8 Final comment
Limit theorems for weakly dependent RFs usually assume very general shape of summa-

tion domains (spatial regions), the limit distribution being independent of the way in which
these regions tend to infinity. Particularly, van Hove’s condition (see e.g. [17]) roughly says
that the volume (cardinality) of spatial region grows faster than that of its boundary. For
rectangular domains, van Hove’s condition means that all sides of rectangles grow to infinity
in an arbitrary way.

The situation is very different for LRD RFs. We prove that for a class of nonlinear LRD
RF X on Z2 and rectangular domains with sides increasing as O(n) and O(nγ), the limit
distribution of sums of X depends on γ in a crucial way. Specifically, there exists γ0 > 0
such that the limit distribution is different whenever γ < γ0, γ = γ0 or γ > γ0. For partial
sums of Gaussian or stable LRD RFs, a similar trichotomy (termed scaling transition) was
observed [90], [89].

The above facts have important implications for statistics of strongly dependent spatial
data. The quantity γ > 0 can be broadly interpreted as the ratio of the vertical and horizontal
dimensions of the sampling region (an ‘external scale ratio’) while γ0 = p1/p2 can be defined
as the ratio of the ‘vertical and horizontal Hurst exponents’ of the RF (an ‘internal scale
ratio’). Since the limit distribution of simple statistics such as the sample mean or the
sample variance may depend on the relation between γ and γ0, these quantities need to be
estimated or decided in advance before applying the limit theorem. Particularly, deciding on
the value of γ in a concrete situation might be difficult. For panel data, this is a question of
dealing with either long, or short panel which is not easy to answer and then the natural limit
theory leads to models where the limit is independent of how the numbers of horizontal (time
series) and vertical (cross section) panel observations tend to infinity [78]. Nevertheless, for
some panels with LRD, a ‘scaling transition’ occurs, see [79], and the above question must
be answered in a practical situation.

Let us also mention some open problems related to the present chapter. It is of interest
to extend our results for nonlocal functions or vector-valued RFs, particularly for covariance
estimates, c.f. [3,47]. Several works note that in many practical applications, sampling regions
are non-rectangular, and possibly of a nonstandard shape, see [24, 57]. Extending scaling
transition to such domains seems possible but is open at present. Using the terminology
in [57], our results are limited to positively dependent RFs while the case of negatively
dependent RFs is completely open. Finally, a complete description of anisotropic scaling
limits of LRD RFs on Zν , ν ≥ 3, remains a challenging task, see [89].





7
Anisotropic scaling of
the random grain model

This is an extended version of the article [81]. We obtain a complete description of
anisotropic scaling limits of random grain model on the plane with heavy tailed grain area
distribution. The scaling limits have either independent or completely dependent increments
along one or both coordinate axes and include stable, Gaussian and ‘intermediate’ infinitely
divisible random fields. Asymptotic form of the covariance function of the random grain
model is obtained. Application to superposed network traffic is included.

7.1 Introduction
It is well-known that many random fields (RFs) exhibit different scaling behavior in dif-

ferent directions. Important examples of RFs with such behavior is fractional Brownian sheet
(FBS) and various classes of stochastic partial differential equations driven by FBS, see e.g. [2]
and the references therein. For stationary RF Y = {Y (t, s), (t, s) ∈ R2} the simplest form of
anisotropic scaling is obtained by taking partial integrals Sλ,γ(x, y) =

∫
(0,λx]×(0,λγy] Y (t, s)dtds

over rectangles (0, λx]× (0, λγy] ⊂ R2
+ whose sides grow with λ→∞ at different rate O(λ)

and O(λγ) (provided γ 6= 1). The (large-scale) behavior of Y is reflected in the scaling limit

a−1
λ,γSλ,γ(x, y) fdd→ Vγ(x, y) as λ→∞, (7.1)

where aλ,γ → ∞ is a normalization. Moreover, if aλ,γ is regularly varying at infinity with
exponent H(γ) > 0, the limit RF Vγ in (7.1) has stationary rectangular increments and
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satisfies the self-similarity property:

{Vγ(λx, λγy)} fdd= {λH(γ)Vγ(x, y)} for each λ > 0;

see [90], which is a particular case of the operator-scaling RF property introduced in Biermé
et al. [12].

[90] observed that for many RFs Y on Z2 or R2, (nontrivial) scaling limits in (7.1) exist
for any γ > 0, resulting in a one-dimensional family {Vγ, γ > 0} of scaling limits termed
the scaling diagram of Y below. Since scaling limits characterize the dependence structure
and large-scale properties of the underlying random process, the scaling diagram provides a
more complete ‘large-scale summary of Y ’ compared to the (isotropic or anisotropic) scaling
with fixed γ > 0 discussed in [1, 2, 16, 26, 59, 67, 100, 108] and elsewhere. Scaling diagrams
of some classes of long-range dependent (LRD) Gaussian and aggregated nearest-neighbor
autoregressive RFs on Z2 were identified in [89, 90]. It turned out that for these RFs, there
exists a unique point γ0 > 0 such that the scaling limits Vγ fdd= V± do not depend on γ

for γ < γ0 and γ > γ0 and V+
fdd
6= V−. [90] termed this phenomenon scaling transition (at

γ = γ0). Scaling transition also arises under joint temporal and contemporaneous aggregation
of independent LRD processes in telecommunication and economics, see [35, 55, 70, 79, 80],
see also [90, Remark 2.3]. In this chapter we obtain a different kind of scaling diagram (see
Figure 7.1) with two change-points γ− < γ+ of scaling limits which shows that this concept
might be more complex and needs further studies.

The present chapter studies scaling limits (scaling diagram) of random grain model:

X(t, s) :=
∑
i

1
((

(t− xi)/Rp
i , (s− yi)/R

1−p
i

)
∈ B

)
, (t, s) ∈ R2, (7.2)

where B ⊂ R2 (‘generic grain’) is a measurable bounded set of finite Lebesgue measure
leb(B) < ∞, 0 < p < 1 is a shape parameter, {(xi, yi), Ri} is a Poisson point process on
R2 × R+ with intensity dxdyF (dr). We assume that F is a probability distribution on R+
having a density function f such that

f(r) ∼ cfr
−1−α as r →∞, for some 1 < α < 2, cf > 0. (7.3)

The sum in (7.2) counts the number of uniformly scattered and randomly dilated grains
(xi, yi) + RP

i B containing (t, s), where RPB := {(Rpx,R1−py) : (x, y) ∈ B} ⊂ R2 is the
dilation of B by factors Rp and R1−p in the horizontal and vertical directions, respec-
tively. The case p = 1/2 corresponds to uniform or isotropic dilation. Note that the area
leb(RPB) = leb(B)R of generic randomly dilated grain is proportional to R and does not de-
pend on p and has a heavy-tailed distribution with finite mean E leb(RPB) <∞ and infinite
second moment E leb(RPB)2 = ∞ according to (7.3). Condition (7.3) also guarantees that
covariance of the random grain model is not integrable:

∫
R2 |Cov(X(0, 0), X(t, s))|dtds =∞,

see Section 7.3, hence (7.2) is a LRD RF. Examples of the grain set B are the unit ball
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and the unit square, leading respectively to the random ellipses model X(t, s) = ∑
i 1((t −

xi)2/R2p
i + (s − yi)2/R

2(1−p)
i ≤ 1) and the random rectangles model: X(t, s) = ∑

i 1(xi <
t ≤ xi + Rp

i , yi < s ≤ yi + R1−p
i ). Note that for p 6= 1/2 the ratio Rp/R1−p = R2p−1 of

sides of a generic rectangle tends to 0 or ∞ as R → ∞ implying that large rectangles are
‘elongated’ or ‘flat’ and resulting in a strong anisotropy of the random rectangles model. A
similar observation applies to the general random grain model in (7.2).

b̀aaà̀̀̀̀
0 ∞

b̀aaà̀̀̀̀
γ−

b̀aaà̀̀̀̀
γ+

α−-stable Lévy slide,
1 < α < 1 + p︷ ︸︸ ︷

︸ ︷︷ ︸
FBSheet(1/2, H−),

1 + p ≤ α < 2

︷ ︸︸ ︷
α-stable Lévy sheet,

1 < α < 2 ︷ ︸︸ ︷
α+-stable Lévy slide,

1 < α < 2− p

︸ ︷︷ ︸
FBSheet(H+, 1/2),

2− p ≤ α < 2

?

‘intermediate Poisson−’

?

‘intermediate Poisson+’

Figure 7.1: Scaling diagram of a random grain model.

Our main results are summarized in Figure 7.1 which shows a panorama of scaling limits
Vγ in (7.1) as γ changes between 0 and ∞. Precise formulations pertaining to Figure 7.1
and the terminology therein are given in Section 7.2. Below we explain the most important
facts about this diagram. First of all note that, due to the symmetry of the random grain
model in (7.2), the scaling limits in (7.1) are symmetric under simultaneous exchange x↔ y,
γ ↔ 1/γ, p ↔ 1 − p and a reflection transformation of B. This symmetry is reflected in
Figure 7.1, where the left region 0 < γ ≤ γ− and the right region γ+ ≤ γ <∞ including the
change points of the scaling limits

γ− := 1− p
α− (1− p) , γ+ := α

p
− 1, (7.4)

are symmetric with respect to the above transformations. The middle region γ− < γ < γ+
in Figure 7.1 corresponds to an α-stable Lévy sheet defined as a stochastic integral over
(0, x] × (0, y] with respect to (w.r.t.) an α-stable random measure on R2

+. According to
Figure 7.1, for γ > γ+ the scaling limits in (7.1) exhibit a dichotomy depending on parameters
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α, p, featuring a Gaussian (fractional Brownian sheet) limit for 2 − p ≤ α < 2, and an α+-
stable limit for 1 < α < 2− p with stability parameter

α+ := α− p
1− p > α (7.5)

larger than the parameter α. The terminology α±-stable Lévy slide refers to a RF of the
form xL+(y) or yL−(x) ‘sliding’ linearly to zero along one of the coordinate axes, where
L± are α±-stable Lévy processes (see Section 7.2 for definition). Finally, the ‘intermediate
Poisson’ limits in Figure 7.1 at γ = γ± are not stable although infinitely divisible RFs given
by stochastic integrals w.r.t. Poisson random measure on R2 × R+ with intensity measure
cfdudvr−1−αdr.

The results of this chapter are related to those in, e.g. [11,27,35,53,55,70,79,80,89,90] in
which different scaling regimes occur for various classes of LRD models, in particular, heavy-
tailed duration models. Isotropic scaling limits (case γ = 1) of random grain and random
balls models in arbitrary dimension were discussed in Kaj et al. [53] and Biermé et al. [11].
The monograph [69] provides a nice discussion of limit behavior of heavy-tailed duration
models whose spatial version is the random grain model in (7.2). From an application view-
point, probably the most interesting is the study of different scaling regimes of superposed
network traffic models [27,35,55,70]. In these studies, it is assumed that traffic is generated
by independent sources and the problem concerns the limit distribution of the aggregated
traffic as the time scale T and the number of sources M both tend to infinity, possibly at
different rate. The present chapter extends the above-mentioned work, by considering the
limit behavior of the aggregated workload process:

AM,K(Tx) :=
∫ Tx

0
WM,K(t)dt, where (7.6)

WM,K(t) :=
∑
i

(R1−p
i ∧K)1(xi < t ≤ xi +Rp

i , 0 < yi < M), t ≥ 0,

and where {(xi, yi), Ri} is the same Poisson point process as in (7.2). The quantity WM,K(t)
in (7.6) can be interpreted as the active workload at time t from sources arriving at xi with
0 < yi < M and transmitting at rate R1−p

i ∧K during time interval (xi, xi + Rp]. Thus, the
transmission rate in (7.6) is a (deterministic) function (Rp)(1−p)/p ∧ K of the transmission
duration Rp depending on parameter 0 < p ≤ 1, with 0 < K ≤ ∞ playing the role of the
maximal rate bound. The limiting case p = 1 in (7.6) corresponds to a constant rate workload
from stationary M/G/∞ queue. Theorems 7.9–7.11 obtain the limit distributions of the
centered and properly normalized process {AM,K(Tx), x ≥ 0} with heavy-tailed distribution
of R in (7.3) when the time scale T , the source intensity M and the maximal source rate
K tend jointly to infinity so as M = T γ, K = T β for some 0 < γ < ∞, 0 < β ≤ ∞. The
results of Theorems 7.9 and 7.10 are summarized in Table 7.1. The workload process in (7.6)
featuring a power-law dependence between transmission rate and duration is closely related
to the random rectangles model with B = (0, 1]2, the last fact being reflected in Table 7.1,
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where most (but not all) of the limit processes can be linked to the scaling limits in Figure 7.1
and where γ+, α+ are the same as in (7.4), (7.5).

Parameter region Limit process
(1 + γ)(1− p) < αβ ≤ ∞ 1 < α < 2 α-stable Lévy process

0 < αβ < (1 + γ)(1− p) 1 < α < 2p (α/p)-stable Lévy process
1 ∨ 2p < α < 2 Brownian motion

a) Slow connection rate: 0 < γ < γ+.

Parameter region Limit process

0 < α+β < γ+
1 < α < 2p FBMotion, H = (3− (α/p))/2
1 ∨ 2p < α < 2 Brownian motion

γ+ < α+β < γ 1 < α < 2− p Gaussian line
γ < α+β ≤ ∞ α+-stable line
γ+ < α+β ≤ ∞ 2− p < α < 2 FBMotion, H = (2− α + p)/2p

b) Fast connection rate: γ+ < γ <∞.

Table 7.1: Limit distribution of the workload process in (7.6) with M = T γ, K = T β.

The rest of the chapter is organized as follows. Section 7.2 contains rigorous formulations
(Theorems 7.1–7.6) of the asymptotic results pertaining to Figure 7.1. Section 7.3 discusses
LRD properties and asymptotics of the covariance function of the random grain model.
Section 7.4 obtains limit distributions of the aggregated workload process in (7.6). All proofs
are relegated to Section 7.5.

7.2 Scaling limits of random grain model
We can rewrite the sum (7.2) as the stochastic integral

X(t, s) =
∫
R2×R+

1
((

t− u
rp

,
s− v
r1−p

)
∈ B

)
N(du, dv, dr), (t, s) ∈ R2, (7.7)

w.r.t. a Poisson random measure N(du, dv, dr) on R2×R+ with intensity measure EN(du, dv,
dr) = dudvF (dr). The integral (7.7) is well-defined and follows a Poisson distribution with
mean EX(t, s) = leb(B)

∫∞
0 rF (dr). The RF X in (7.7) is stationary with finite variance and

the covariance function

Cov(X(0, 0), X(t, s))

=
∫
R2×R+

1
((

u

rp
,
v

r1−p

)
∈ B,

(
u− t
rp

,
v − s
r1−p

)
∈ B

)
dudvF (dr). (7.8)
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Let

Sλ,γ(x, y) :=
∫ λx

0

∫ λγy

0
(X(t, s)− EX(t, s))dtds (7.9)

=
∫
R2×R+

{ ∫ λx

0

∫ λγy

0
1
((

t− u
rp

,
s− v
r1−p

)
∈ B

)
dtds

}
Ñ(du, dv, dr)

for (x, y) ∈ R2
+, where Ñ(du, dv, dr) = N(du, dv, dr)−EN(du, dv, dr) is the centered Poisson

random measure in (7.7). Recall the definition of γ±:

γ− := 1− p
α− (1− p) , γ+ := α

p
− 1.

In Theorems 7.1–7.6 we specify limit RFs Vγ and normalizations aλ,γ in (7.1) for all γ > 0
and α ∈ (1, 2), p ∈ (0, 1) as in Figure 7.1. Throughout the chapter we assume that B is a
bounded Borel set whose boundary ∂B has zero Lebesgue measure: leb(∂B) = 0.

7.2.1 Case γ− < γ < γ+

For 1 < α < 2, we introduce an α-stable Lévy sheet

Lα(x, y) := Zα((0, x]× (0, y]), (x, y) ∈ R2
+, (7.10)

as a stochastic integral w.r.t. an α-stable random measure Zα(du, dv) on R2 with control
measure σαdudv and skewness parameter 1, where the constant σα is given in (7.31). Thus,
E exp{iθZα(A)} = exp{− leb(A)σα|θ|α(1 − i sgn(θ) tan(πα/2))}, θ ∈ R, for any Borel set
A ⊂ R2 of finite Lebesgue measure leb(A) <∞. Note EZα(A) = 0.

Theorem 7.1. Let γ− < γ < γ+, 1 < α < 2. Then

λ−H(γ)Sλ,γ(x, y) fdd→ Lα(x, y) as λ→∞, (7.11)

where H(γ) := (1 + γ)/α and Lα is an α-stable Lévy sheet defined in (7.10).

7.2.2 Cases γ > γ+, 1 < α < 2− p and γ < γ−, 1 < α < 1 + p

For 1 < α < 2 − p and 1 < α < 1 + p introduce totally skewed stable Lévy processes
{L+(y), y ≥ 0} and {L−(x), x ≥ 0} with respective stability indices α± ∈ (1, 2) defined as

α+ := α− p
1− p , α− := α− 1 + p

p

and characteristic functions

E exp{iθL±(1)} := exp{−σα± |θ|α±(1− i sgn(θ) tan(πα±/2))}, θ ∈ R, (7.12)

where σα+ is given in (7.36) and σα− can be found by symmetry, see (7.27).
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Theorem 7.2. (i) Let γ > γ+, 1 < α < 2− p. Then

λ−H(γ)Sλ,γ(x, y) fdd→ xL+(y) as λ→∞, (7.13)

where H(γ) := 1 + γ/α+ and L+ is the α+-stable Lévy process defined by (7.12).
(ii) Let 0 < γ < γ−, 1 < α < 1 + p. Then

λ−H(γ)Sλ,γ(x, y) fdd→ yL−(x) as λ→∞,

where H(γ) := γ + 1/α− and L− is the α−-stable Lévy process defined by (7.12).

7.2.3 Cases γ > γ+, 2− p ≤ α < 2 and γ < γ−, 1 + p ≤ α < 2
A standard FBS BH1,H2 with Hurst indices 0 < H1, H2 ≤ 1 is defined as a Gaussian

process with zero mean and covariance

EBH1,H2(x1, y1)BH1,H2(x2, y2) = 1
4(x2H1

1 + x2H1
2 − |x1 − x2|2H1)

×(y2H2
1 + y2H2

2 − |y1 − y2|2H2),

(xi, yi) ∈ R2
+, i = 1, 2. The constants σ+ and σ̃+ appearing in Theorems 7.3(i) and 7.4(i) are

defined in (7.40) and (7.42), respectively. The corresponding constants σ− and σ̃− in parts
(ii) of these theorems can be found by symmetry (see (7.27)).

Theorem 7.3. (i) Let γ > γ+, 2− p < α < 2. Then

λ−H(γ)Sλ,γ(x, y) fdd→ σ+BH+,1/2(x, y) as λ→∞, (7.14)

where H(γ) := H+ + γ/2, H+ := 1/p− γ+/2 = (2− α + p)/2p ∈ (1/2, 1) and BH+,1/2 is an
FBS with parameters (H+, 1/2).
(ii) Let γ < γ−, 1 + p < α < 2. Then

λ−H(γ)Sλ,γ(x, y) fdd→ σ−B1/2,H−(x, y) as λ→∞,

where H(γ) := γH− + 1/2, H− := 1/(1− p) + (1− p− α)/2(1− p) ∈ (1/2, 1) and B1/2,H− is
an FBS with parameters (1/2, H−).

Theorem 7.4. (i) Let γ > γ+, α = 2− p. Then

λ−H(γ)(log λ)−1/2Sλ,γ(x, y) fdd→ σ̃+B1,1/2(x, y) as λ→∞, (7.15)

where H(γ) := 1 + γ/2, B1,1/2 is an FBS with parameters (1, 1/2).
(ii) Let γ < γ−, α = 1 + p. Then

λ−H(γ)(log λ)−1/2Sλ,γ(x, y) fdd→ σ̃−B1/2,1(x, y) as λ→∞,

where H(γ) := γ + 1/2 and B1/2,1 is an FBS with parameters (1/2, 1).
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7.2.4 Cases γ = γ±

Define ‘intermediate Poisson’ RFs I± = {I±(x, y), (x, y) ∈ R2
+} as stochastic integrals

I+(x, y) :=
∫
R×(0,y]×R+

∫
(0,x]×R

1
((

t− u
rp

,
s

r1−p

)
∈ B

)
dtdsM̃(du, dv, dr), (7.16)

I−(x, y) :=
∫

(0,x]×R×R+

∫
R×(0,y]

1
((

t

rp
,
s− v
r1−p

)
∈ B

)
dtdsM̃(du, dv, dr)

w.r.t. the centered Poisson random measure M̃(du, dv, dr) = M(du, dv, dr)−EM(du, dv, dr)
on R2 × R+ with intensity measure EM(du, dv, dr) = cfdudvr−(1+α)dr.
Proposition 7.5. (i) The RF I+ in (7.16) is well-defined for 1 < α < 2, 0 < p < 1 and
E|I+(x, y)|q <∞ for any 0 < q < α+ ∧ 2. Moreover, if 2− p < α < 2 then E|I+(x, y)|2 <∞
and

EI+(x1, y1)I+(x2, y2) = σ2
+EBH+,1/2(x1, y1)BH+,1/2(x2, y2), (7.17)

(xi, yi) ∈ R2
+, i = 1, 2,

where σ+, H+ are the same as in Theorem 7.3(i).
(ii) The RF I− in (7.16) is well-defined for 1 < α < 2, 0 < p < 1 and E|I−(x, y)|q < ∞ for
any 0 < q < α− ∧ 2. Moreover, if 1 + p < α < 2 then E|I−(x, y)|2 <∞ and

EI−(x1, y1)I−(x2, y2) = σ2
−EB1/2,H−(x1, y1)B1/2,H−(x2, y2),

(xi, yi) ∈ R2
+, i = 1, 2,

where σ−, H− are the same as in Theorem 7.3(ii).
Theorem 7.6. (i) Let γ = γ+, 1 < α < 2. Then

λ−H(γ)Sλ,γ(x, y) fdd→ I+(x, y) as λ→∞, (7.18)

where H(γ) := 1/p and RF I+ is defined in (7.16).
(ii) Let γ = γ−, 1 < α < 2. Then

λ−H(γ)Sλ,γ(x, y) fdd→ I−(x, y) as λ→∞,

where H(γ) := γ−/(1− p) and RF I− is defined in (7.16).
Remark 7.1. The normalizing exponent H(γ) ≡ H(γ, α, p) in Theorems 7.1–7.6 is a jointly
continuous (albeit non-analytic) function of (γ, α, p) ∈ (0,∞)× (1, 2)× (0, 1).
Remark 7.2. Restriction α < 2 is crucial for our results. Indeed, if α > 2 then for any
γ > 0, p ∈ (0, 1) the normalized integrals tend

λ−(1+γ)/2Sλ,γ(x, y) fdd→ σB1/2,1/2(x, y) as λ→∞,

to a classical Brownian sheet B1/2,1/2 with variance σ2 = leb(B)2 ∫∞
0 r2F (dr). We omit the

proof of the last result which follows a general scheme of the proofs in Section 7.5.
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7.3 LRD properties of random grain model
One of the most common definitions of LRD property pertains to stationary random pro-

cesses with non-summable (non-integrable) autocovariance function. In the case of anisotropic
RFs, the autocovariance function may decay at different rates in different directions, moti-
vating a more detailed classification of LRD as in Definition 7.1. In this section we also
verify these LRD properties for the random grain model in (7.2)–(7.3) and relate them to
the change of the scaling limits or the dichotomies in Figure 7.1; see Remark 7.3.
Definition 7.1. Let Y = {Y (t, s), (t, s) ∈ R2} be a stationary RF with finite variance and
nonnegative covariance function ρY (t, s) := Cov(Y (0, 0), Y (t, s)) ≥ 0. We say that:
(i) Y has short-range dependence (SRD) property if

∫
R2 ρY (t, s)dtds < ∞; otherwise we say

that Y has long-range dependence (LRD) property;
(ii) Y has vertical SRD property if

∫
[−Q,Q]×R ρY (t, s)dtds <∞ for any 0 < Q <∞; otherwise

we say that Y has vertical LRD property;
(iii) Y has horizontal SRD property if

∫
R×[−Q,Q] ρY (t, s)dtds < ∞ for any 0 < Q < ∞;

otherwise we say that Y has horizontal LRD property.
The main result of this section is Theorem 7.7 providing the asymptotics of the covariance

function of the random grain model in (7.2)–(7.3) as |t|+|s| → ∞ and enabling the verification
of its integrability properties in Definition 7.1. Let

w := (|t|1/p + |s|1/(1−p))p, for (t, s) ∈ R2.

For p = 1/2, w is the Euclidean norm and (w, arccos(t/w)) are the polar coordinates of
(t, s) ∈ R2, s ≥ 0. Introduce a function b(z), z ∈ [−1, 1], by

b(z) := cf

∫ ∞
0

leb
(
B ∩

(
B +

(
z/rp, (1− |z|1/p)1−p/r1−p

)))
r−αdr, (7.19)

playing the role of the ‘angular function’ in the asymptotics (7.20). For the random balls
model with p = 1/2 and B = {x2 + y2 ≤ 1}, b(z) is a constant function independent on z.
Theorem 7.7. Let 1 < α < 2, 0 < p < 1.
(i) The function b(z) in (7.19) is bounded, continuous and strictly positive on [−1, 1].
(ii) The covariance function ρ(t, s) := Cov(X(0, 0), X(t, s)) in (7.8) has the following asymp-
totics:

ρ(t, s) ∼ b(sgn(s)t/w)w−(α−1)/p as |t|+ |s| → ∞. (7.20)

Theorem 7.7 implies the following bound for covariance function ρ(t, s) = Cov(X(0, 0),
X(t, s)) of the random grain model: there exist Q > 0 and strictly positive constants 0 <
C− < C+ <∞ such that for any |t|+ |s| > Q,

C−(|t|1/p + |s|1/(1−p))1−α ≤ ρ(t, s) ≤ C+(|t|1/p + |s|1/(1−p))1−α. (7.21)

The bounds in (7.21) together with integrability properties of the function (|t|1/p + |s|1/(1−p))1−α

on {|t|+ |s| > Q} imply the following corollary.
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Corollary 7.8. The random grain model in (7.2)–(7.3) has:
(i) LRD property for any 1 < α < 2, 0 < p < 1;
(ii) vertical LRD property for 1 < α ≤ 2 − p and vertical SRD property for 2 − p < α < 2
and any 0 < p < 1;
(iii) horizontal LRD property for 1 < α ≤ 1+p and horizontal SRD property for 1+p < α < 2
and any 0 < p < 1.

Remark 7.3. The above corollary indicates that the dichotomy at α = 2− p in Figure 7.1,
region γ > γ+ is related to the change from the vertical LRD to the vertical SRD property in
the random grain model. Similarly, the dichotomy at α = 1 + p in Figure 7.1, region γ < γ+
is related to the change from the horizontal LRD to the horizontal SRD property.

[90] introduced Type I distributional LRD property for RF Y with two-dimensional ‘time’
in terms of dependence properties of rectangular increments of Vγ, γ > 0. The increment of a
RF V = {V (x, y), (x, y) ∈ R2

+} on rectangle K = (u, x]× (v, y] ⊂ R2
+ is defined as the double

difference V (K) = V (x, y) − V (u, y) − V (x, v) + V (u, v). Let ` ⊂ R2 be a line, (0, 0) ∈ `.
According to [90, Definition 2.2], a RF V = {V (x, y), (x, y) ∈ R2

+} is said to have:

• independent rectangular increments in direction ` if V (K) and V (K ′) are independent
for any two rectangles K,K ′ ⊂ R2

+ which are separated by an orthogonal line `′ ⊥ `;

• invariant rectangular increments in direction ` if V (K) = V (K ′) for any two rectangles
K,K ′ such that K ′ = (x, y) +K for some (x, y) ∈ `;

• properly dependent rectangular increments if V has neither independent nor invariant
increments in arbitrary direction `.

Further on, a stationary RF Y on Z2 is said to have Type I distributional LRD [90,
Definition 2.4] if there exists a unique point γ0 > 0 such that its scaling limit Vγ0 has
properly dependent rectangular increments while all other scaling limits Vγ, γ 6= γ0, have
either independent or invariant rectangular increments in some direction ` = `(γ). The
above definition trivially extends to RF Y on R2.

We end this section with the observation that all scaling limits of the random grain
model in (7.2)–(7.3) in Theorems 7.1–7.6 have either independent or invariant rectangular
increments in direction of one or both coordinate axes. The last fact is immediate from
stochastic integral representations in (7.10), (7.16), the covariance function of FBS with
Hurst indices H1, H2 equal to 1 or 1/2 (see also [90, Example 2.3]) and the limit RFs in (7.13).
We conclude that the random grain model in (7.2)–(7.3) does not have Type I distributional
LRD in contrast to Gaussian and other classes of LRD RFs discussed in [89, 90]. The last
conclusion is not surprising since similar facts about scaling limits of heavy-tailed duration
models with one-dimensional time are well-known; see e.g. [62].
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7.4 Limit distributions of aggregated workload process
We rewrite the accumulated workload in (7.6) as the integral

AM,K(Tx)

=
∫
R×(0,M ]×R+

{
(r1−p ∧K)

∫ Tx

0
1(u < t ≤ u+ rp)dt

}
N(du, dv, dr), (7.22)

whereN(du, dv, dr) is the same Poisson randommeasure on R2×R+ with intensity EN(du, dv,
dr) = dudvF (dr) as in (7.2). We assume that F (dr) has a density f(r) satisfying (7.3) with
1 < α < 2 as in Section 7.2. We let p ∈ (0, 1] in (7.22) and thus the parameter may take
value p = 1 as well. We assume that K and M grow with T in such a way that

M = T γ, K = T β for some 0 < γ <∞, 0 < β ≤ ∞.

We are interested in the limit distribution

b−1
T (AM,K(Tx)− EAM,K(Tx)) fdd→ A(x) as T →∞, (7.23)

where bT ≡ bT,γ,β →∞ is a normalization.
Recall from (7.4) and (7.5) the definitions

γ+ = α

p
− 1, α+ = α− p

1− p .

For p = 1, let α+ :=∞. By assumption (7.3), transmission durations Rp
i , i ∈ Z, have a heavy-

tailed distribution with tail parameter α/p > 1. Following the terminology in [27,35,53,70],
the regions γ < γ+, γ > γ+ and γ = γ+ will be respectively referred to as slow connection
rate, fast connection rate and intermediate connection rate. For each of these ‘regimes’,
Theorems 7.9, 7.10 and 7.11 detail the limit processes and normalizations in (7.23) depending
on parameters β, α, p.

Apart from the classical Gaussian and stable processes listed in Table 7.1, some ‘inter-
mediate’ infinitely divisible processes arise. Let us introduce

I(x) :=
∫
R×R+

{ ∫ x

0
1(u < t ≤ u+ rp)dt

}
M̃(du, dr), x ≥ 0, (7.24)

where M̃(du, dr) is a centered Poisson random measure with intensity measure cfdur−(1+α)dr.
The process in (7.24) essentially depends on the ratio α/p only and is well-defined for 1 <
α < 2p and 1/2 < p ≤ 1. Under the ‘intermediate’ regime this process arises for many heavy-
tailed duration models (see e.g. [27, 35, 55]). It was studied in detail in [34]. We introduce a
‘truncated’ version of (7.24):

Î(x) :=
∫
R×R+

{
(r1−p ∧ 1)

∫ x

0
1(u < t ≤ u+ rp)dt

}
M̃(du, dr), x ≥ 0, (7.25)
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and its Gaussian counterpart

Ẑ(x) :=
∫
R×R+

{
(r1−p ∧ 1)

∫ x

0
1(u < t ≤ u+ rp)dt

}
Z(du, dr), x ≥ 0, (7.26)

where Z(du, dr) is a Gaussian randommeasure on R×R+ with the same variance cfdur−(1+α)dr
as the centered Poisson random measure M̃(du, dr). The processes in (7.25) and (7.26) are
well-defined for any 1 < α < 2, 0 < p ≤ 1 and have the same covariance functions.

The RFs defined in Section 7.2 reappear in Theorems 7.9–7.11 for the certain grain set,
namely the unit square B = (0, 1]2. Recall that a homogeneous Lévy process {L(x), x ≥ 0}
is completely specified by its characteristic function EeiθL(1), θ ∈ R. A standard fractional
Brownian motion with Hurst parameter H ∈ (0, 1] is a Gaussian process {BH(x), x ≥ 0}
with zero mean and covariance function (1/2)(x2H + y2H − |x− y|2H), x, y ≥ 0.

Theorem 7.9 (Slow connection rate). Let 0 < γ < γ+. The convergence in (7.23) holds
with the limit A and normalization bT = TH specified in (i)–(v) below.
(i) Let (1 + γ)(1 − p) < αβ ≤ ∞. Then H := (1 + γ)/α and A := {Lα(x, 1), x ≥ 0} is an
α-stable Lévy process defined by (7.10).
(ii) Let 0 < αβ < (1 + γ)(1 − p) and 1 < α < 2p. Then H := β + (1 + γ)p/α and
A := {Lα/p(x), x ≥ 0} is an (α/p)-stable Lévy process with characteristic function given by
(7.48).
(iii) Let 0 < αβ < (1+γ)(1−p) and 1∨2p < α < 2. Then H := (1/2)(1+γ+β(2−α)/(1−p))
and A := {σ1B(x), x ≥ 0} is a Brownian motion with variance σ2

1 given by (7.49).
(iv) Let 0 < αβ < (1+γ)(1−p) and α = 2p. Then bT := TH(log T )1/2 with H := β+(1+γ)/2
and A := {σ̂1B(x), x ≥ 0} is a Brownian motion with variance σ̂2

1 given by (7.50).
(v) Let αβ = (1 + γ)(1− p). Then H := (1 + γ)/α and A := {L̂(x), x ≥ 0} is a Lévy process
with characteristic function in (7.51).

Theorem 7.10. (Fast connection rate.) Let γ+ < γ < ∞. The convergence in (7.23) holds
with the limit A and normalization bT := TH specified in (i)–(ix) below.
(i) Let 0 < α+β < γ+ and 1 < α < 2p. Then H := H + β + γ/2 and A := {σ2BH(x), x ≥ 0}
is a fractional Brownian motion with H = (3− α/p)/2 and variance σ2

2 given by (7.52).
(ii) Let 0 < α+β < γ+ and 1 ∨ 2p < α < 2. Then H and A are the same as in Theo-
rem 7.9(iii).
(iii) Let γ+ < α+β < γ and 1 < α < 2− p. Then H := 1 + (1/2)(γ + β(2− α− p)/(1− p))
and A := {xZ, x ≥ 0} is a Gaussian line with random slope Z ∼ N (0, σ2

3) and σ2
3 given in

(7.53).
(iv) Let γ < α+β ≤ ∞ and 1 < α < 2− p. Then H := 1 + γ/α+ and A := {xL+(1), x ≥ 0}
is an α+-stable line with random slope L+(1) having α+-stable distribution defined by (7.12).
(v) Let γ+ < α+β ≤ ∞ and 2−p < α < 2. Then H := H+ +γ/2 and A := {σ+BH+,1/2(x, 1),
x ≥ 0} is a fractional Brownian motion with H = H+ = (2 − α + p)/2p and variance σ2

+
given by (7.40).
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(vi) Let 0 < α+β < γ+ and α = 2p. Then bT := TH(log T )1/2 with H := β + (1 + γ)/2 and
A := {σ̂2B(x), x ≥ 0} is a Brownian motion with variance σ̂2

2 in (7.54).
(vii) Let α+β = γ+. Then H := (1/2)(1 + γ + (2 − α)/p) and A := {Ẑ(x), x ≥ 0} in an
intermediate Gaussian process defined by (7.26).
(viii) Let α+β = γ and 1 < α < 2 − p. Then H = 1 + β and A := {xẐ, x ≥ 0}, where a
slope Ẑ is a r.v. defined by (7.55).
(ix) If γ+ < α+β ≤ ∞ and α = 2 − p. Then bT := TH(log T )1/2, H := 1 + γ/2 and A :=
{σ̃+B1,1/2(x, 1), x ≥ 0} = {xZ̃, x ≥ 0} is a Gaussian line with random slope Z̃ ∼ N (0, σ̃2

+)
and σ̃2

+ given by (7.42).
Theorem 7.11. (Intermediate connection rate.) Let γ = γ+. The convergence in (7.23)
holds with the limit A and normalization bT := TH specified in (i)–(v) below.
(i) Let 0 < α+β < γ+ and 1 < α < 2p. Then H := 1 + β and A := {I(x), x ≥ 0} is defined
by (7.24).
(ii) Let 0 < α+β < γ+ and 1 ∨ 2p < α < 2. Then H and A are the same as in Theorem
7.9(iii).
(iii) Let 0 < α+β < γ+ and α = 2p. Then H and A are the same as in Theorem 7.9(iv).
(iv) Let α+β = γ+. Then H := 1/p and A := {Î(x), x ≥ 0} is defined by (7.25).
(v) Let γ+ < α+β ≤ ∞. Then H := 1/p and A := {I+(x, 1), x ≥ 0} is defined by (7.16).
Remark 7.4. Note that p = 1 implies γ+ = α − 1. In this case, Theorem 7.9 reduces to
the α-stable limit in (i), whereas Theorem 7.10 reduces to the fractional Brownian motion
limit in (v) discussed in [70] and other papers. A similar dichotomy appears for β close to
zero and 1 < α < 2p with the difference that α is now replaced by α/p. Intuitively, it can
be explained as follows. For small β > 0, the workload process WM,K(t) in (7.6) behaves like
a constant rate process K∑

i 1(xi < t ≤ xi + Rp
i , 0 < yi < M) with transmission lengths Rp

i

that are i.i.d. and follow the same distribution P(Rp
i > r) = P(Ri > r1/p) ∼ (cf/α)r−(α/p),

r →∞, with tail parameter 1 < α/p < 2. Therefore, for small β our results agree with [70],
including the Gaussian limit in Theorems 7.9(iii) and 7.10(ii) arising when the Rp

i ’s have
finite variance.
Remark 7.5. As it follows from the proof, the random line limits in Theorem 7.10(iv)
and (iii) are caused by extremely long sessions starting in the past at times xi < 0 and
lasting Rp

i = O(T γ/γ+), γ+ < γ < α+β or Rp
i = O(Tα+β/γ+), γ+ < α+β < γ, respectively, so

that typically these sessions end at times xi +Rp
i � T .

7.5 Proofs

7.5.1 Proofs of Sections 7.2 and 7.3
Let

X∗(t, s) :=
∫
R2×R+

1
((

t− u
r1−p ,

s− v
rp

)
∈ B∗

)
N(du, dv, dr), (t, s) ∈ R2,
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be a ‘reflected’ version of (7.7), with B replaced by B∗ := {(u, v) ∈ R2 : (v, u) ∈ B}, p
replaced by 1 − p and the same Poisson random measure N(du, dv, dr) as in (7.7). Let
S∗λ∗,γ∗(y, x) :=

∫ λ∗y
0

∫ λγ∗∗ x
0 (X∗(t, s)−EX∗(t, s))dtds, (y, x) ∈ R2

+, be the corresponding partial
integral in (7.9). If λ∗, γ∗ are related to λ, γ as λ∗ = λγ, γ∗ = 1/γ then

S∗λ∗,γ∗(y, x) fdd= Sλ,γ(x, y) (7.27)

holds by symmetry property of the Poisson random measure. As noted in the Introduction,
relation (7.27) allows to reduce the limits of Sλ,γ(x, y) as λ → ∞ and γ ≤ γ− to the limits
of S∗λ∗,γ∗(y, x) as λ∗ → ∞ and γ∗ ≥ γ∗+ := α/(1 − p) − 1. As a consequence, the proofs of
parts (ii) of Theorems 7.2–7.6 can be omitted since they can be deduced from parts (i) of
the corresponding statements.

The convergence of normalized partial integrals in (7.1) is equivalent to the convergence
of characteristic functions:

E exp
{

ia−1
λ,γ

m∑
i=1

θiSλ,γ(xi, yi)
}
→ E exp

{
i
m∑
i=1

θiVγ(xi, yi)
}

as λ→∞, (7.28)

for all m = 1, 2, . . . , (xi, yi) ∈ R2
+, θi ∈ R, i = 1, . . . ,m. We restrict the proof of (7.28) to

one-dimensional convergence for m = 1, (x, y) ∈ R2
+ only. The general case of (7.28) follows

analogously. We have

Wλ,γ(θ) := log E exp{iθa−1
λ,γSλ,γ(x, y)} (7.29)

=
∫
R2×R+

Ψ
(
θ

aλ,γ

∫ λx

0

∫ λγy

0
1
((

t− u
rp

,
s− v
r1−p

)
∈ B

)
dtds

)
dudvf(r)dr,

where Ψ(z) := eiz − 1− iz, z ∈ R. We shall use the following inequality:

|Ψ(z)| ≤ min(2|z|, z2/2), z ∈ R. (7.30)

Proof of Theorem 7.1. In the integrals on the r.h.s. of (7.29) we change the variables:

t− u
rp
→ t,

s− v
r1−p → s, u→ λu, v → λγv, r → λH(γ)r.

This yields Wλ,γ(θ) =
∫∞
0 gλ(r)fλ(r)dr, where

fλ(r) := λ(1+α)H(γ)f(λH(γ)r)→ cfr
−(1+α), λ→∞

according to (7.3), and

gλ(r) :=
∫
R2

Ψ(θhλ(u, v, r))dudv,

hλ(u, v, r) := r
∫
B

1(0 < u+ λ−δ1rpt ≤ x, 0 < v + λ−δ2r1−ps ≤ y)dtds,
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where the exponents δ1 := 1 − H(γ)p = (γ+ − γ)/(1 + γ+) > 0, δ2 := γ − H(γ)(1 − p) =
(γ − γ−)/(1 + γ−) > 0. Clearly,

hλ(u, v, r)→ leb(B)r 1(0 < u ≤ x, 0 < v ≤ y), λ→∞,

for any fixed (u, v, r) ∈ R2 × R+, u 6∈ {0, x}, v 6∈ {0, y}, implying

gλ(r)→ xyΨ(θ leb(B)r)

for any r > 0. Since
∫
R2 hλ(u, v, r)dudv = xyr leb(B) and hλ(u, v, r) ≤ Cr, the dominating

bound |gλ(r)| ≤ C min(r, r2) follows by (7.30). Whence and from Lemma 7.12 we conclude
that

Wλ,γ(θ)→ Wγ(θ) := xycf

∫ ∞
0

(eiθ leb(B)r − 1− iθ leb(B)r)r−(1+α)dr.

It remains to verify that

Wγ(θ) = −xyσα|θ|α(1− i sgn(θ) tan(πα/2)) = log E exp{iθLα(x, y)},

where
σα := cf leb(B)α cos(πα/2)Γ(2− α)/α(1− α). (7.31)

This proves the one-dimensional convergence in (7.11) and Theorem 7.1, too.

Proof of Theorem 7.2. In (7.29), change the variables as follows:

t→ λt, s− v → λ(1−p)γ/(α−p)s,

u→ λpγ/(α−p)u, v → λγv, r → λγ/(α−p)r. (7.32)

This yields Wλ,γ(θ) =
∫∞
0 gλ(r)fλ(r)dr, where

fλ(r) := λ(1+α)γ/(α−p)f(λγ/(α−p)r)→ cfr
−(1+α), λ→∞, (7.33)

and gλ(r) :=
∫
R2 Ψ(θhλ(u, v, r))dudv with

hλ(u, v, r) :=
∫ x

0
dt
∫
R

1
((

λ−δ1t− u
rp

,
s

r1−p

)
∈ B

)
1(0 < v + λ−δ2s < y)ds, (7.34)

where δ1 := pγ/(α − p) − 1 = (γ − γ+)/γ+ > 0, δ2 := γ(α − 1)/(α − p) > 0. Let B(u) :=
{v ∈ R : (u, v) ∈ B} and write leb1(A) for the Lebesgue measure of a set A ⊂ R. By the
dominated convergence theorem,

hλ(u, v, r)→ h(u, v, r) := x1(0 < v < y)
∫
R

1
((−u

rp
,
s

r1−p

)
∈ B

)
ds (7.35)

= x1(0 < v < y)r1−p leb1(B(−u/rp))



Chapter 7. Anisotropic scaling of the random grain model 150

for any (u, v, r) ∈ R2 × R+, v 6∈ {0, y}, implying

gλ(r)→ g(r) :=
∫
R2

Ψ(θh(u, v, r))dudv = yrp
∫
R

Ψ
(
θxr1−p leb1(B(u))

)
du

for any r > 0. Indeed, since B is bounded, for fixed r > 0 the function (u, v) 7→ hλ(u, v, r) has
a bounded support uniformly in λ ≥ 1. Therefore it is easy to verify domination criterion for
the above convergence. Combining hλ(u, v, r) ≤ Cr1−p with

∫
R2 hλ(u, v, r)dudv = xyr leb(B)

gives |gλ(r)| ≤ C min(r, r2−p) by (7.30). Hence and by Lemma 7.12, Wλ,γ(θ) → Wγ(θ) :=
cf
∫∞

0 g(r)r−(1+α)dr. By change of variable, the last integral can be rewritten as

Wγ(θ) = cf y x
α+(1− p)−1

∫
R

leb1(B(u))α+du
∫ ∞

0
(eiθw − 1− iθw)w−(1+α+)dw

= −(y xα+)σα+|θ|α+(1− i sgn(θ) tan(πα+/2)) = log E exp{iθxL+(y)},

where

σα+ := cfΓ(2− α+) cos(πα+/2)
(1− p)α+(1− α+)

∫
R

leb1(B(u))α+du, (7.36)

thus completing the proof of one-dimensional convergence in (7.13). Theorem 7.2 is proved.

Proof of Theorem 7.3. In (7.29), change the variables as follows:

t→ λt, s− v → λ(1/p)−1s, u→ λu, v → λγv, r → λ1/pr. (7.37)

We get Wλ,γ(θ) =
∫∞

0 gλ(r)fλ(r)dr, where

fλ(r) := λ(1+α)/pf(λ1/pr),

gλ(r) :=
∫
R2
λ2(H(γ)−1/p)Ψ(θλ(1/p)−H(γ)hλ(u, v, r))dudv, (7.38)

with

hλ(u, v, r) :=
∫ x

0
dt
∫
R

1(0 < v + λ−δs < y)1
((

t− u
rp

,
s

r1−p

)
∈ B

)
ds

→ 1(0 < v < y)
∫ x

0
dt
∫
R

1
((

t− u
rp

,
s

r1−p

)
∈ B

)
ds

= 1(0 < v < y) r1−p
∫ x

0
leb1(B((t− u)/rp))dt

=: h(u, v, r) (7.39)

as λ → ∞, for all (u, v, r) ∈ R2 × R+, v 6∈ {0, y}, since δ := 1 + γ − (1/p) > 0. Note that
2(H(γ)− 1/p) = γ − γ+ > 0 and hence

λ2(H(γ)−1/p)Ψ(θλ(1/p)−H(γ)hλ(u, v, r))→ −(θ2/2)h2(u, v, r), λ→∞.
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Next, by the dominated convergence theorem

gλ(r)→ g(r) := −θ
2

2

∫
R2
h2(u, v, r)dudv

for any r > 0. Using
∫
R2 hλ(u, v, r)dudv = xy leb(B)r and hλ(u, v, r) ≤ C min(r1−p, r) simi-

larly as in the proof of Theorem 7.2 we obtain |gλ(r)| ≤ C
∫
R2 h2

λ(u, v, r)dudv ≤ C min(r2−p, r2).
Then by Lemma 7.12,

Wλ,γ(θ)→ Wγ(θ) := cf

∫ ∞
0

g(r)r−(1+α)dr = −(θ2/2)σ2
+x

2H+y,

where

σ2
+ := cf

∫
R

du
∫ ∞

0

( ∫ 1

0
leb1(B((t− u)/rp))dt

)2
r1−α−2pdr, (7.40)

where the last integral converges. (Indeed, since u 7→ leb1(B(u)) =
∫

1((u, v) ∈ B)dv
is a bounded function with compact support, the inner integral in (7.40) does not exceed
C(1∧rp)1(|u| < K(1+rp)) for some C,K > 0 implying σ2

+ ≤ C
∫∞

0 (1∧rp)2(1+rp)r1−α−2pdr <
∞ since 2 − p < α < 2.) This ends the proof of one-dimensional convergence in (7.14).
Theorem 7.3 is proved.

Proof of Theorem 7.4. After the same change of variables as in (7.32), viz.,

t→ λt, s− v → λγ/2s, u→ λpγ/2(1−p)u, v → λγv, r → λγ/2(1−p)r,

we obtain Wλ,γ(θ) =
∫∞

0 gλ(r)fλ(r)dr with fλ(r) as in (7.33) and gλ(r) :=
∫
R2 Ψ(θ(log λ)−1/2

hλ(u, v, r))dudv, where

hλ(u, v, r) :=
∫ x

0
dt
∫
R

1
((

λ−δ1t− u
rp

,
s

r1−p

)
∈ B

)
1(0 < v + λ−δ2s < y)ds,

δ1 := pγ/2(1− p)− 1 = (γ − γ+)/γ+ > 0, δ2 := γ/2 > 0 are the same as in (7.34) and

hλ(u, v, r)→ h(u, v, r) := x1(0 < v < y)
∫
R

1
((−u

rp
,
s

r1−p

)
∈ B

)
ds

c.f. (7.35). Below we prove that the main contribution to the limit of Wλ,γ(θ) comes from
the interval λ−δ1/p < r < 1, namely, that Wλ,γ(θ)−W 0

λ,γ(θ)→ 0, where

W 0
λ,γ(θ) :=

∫ 1

λ−δ1/p
gλ(r)fλ(r)dr (7.41)

∼ −θ
2

2
cf

log λ

∫ 1

λ−δ1/p

dr
r3−p

∫
R2
h2(u, v, r)dudv

= −θ
2

2 x
2ycf

∫
R
(leb1(B(u)))2du 1

log λ

∫ 1

λ−δ1/p

dr
r

= −θ
2

2 σ̃
2
+x

2y =: Wγ(θ),
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where
σ̃2

+ := cf (γ − γ+)
2(1− p)

∫
R

leb(B ∩ (B + (0, u)))du (7.42)

and where we used the fact that
∫
R2 h2(u, v, r)dudv = x2yr2−p ∫

R leb1(B(u))2du = x2yr2−p∫
R leb(B ∩ (B + (0, u)))du.

Accordingly, write Wλ,γ(θ) = W 0
λ,γ(θ) +W−

λ,γ(θ) +W+
λ,γ(θ), where W−

λ,γ(θ) :=
∫ λ−δ1/p

0 gλ(r)
fλ(r)dr and W+

λ,γ(θ) :=
∫∞

1 gλ(r)fλ(r)dr are remainder terms. Indeed, using (7.30) and∫
R2
hλ(u, v, r)dudv = xyr leb(B), hλ(u, v, r) ≤ C(λδ1r) ∧ r1−p. (7.43)

it follows that

|W+
λ,γ(θ)| ≤

C

(log λ)1/2

∫ ∞
1

dr
r3−p

∫
R2
hλ(u, v, r)dudv = O((log λ)−1/2) = o(1).

Similarly,

|W−
λ,γ(θ)| ≤

Cλδ1

log λ

∫ λ−δ1/p

0
rfλ(r)dr

∫
R2
hλ(u, v, r)dudv

≤ Cλδ1

log λ

∫ λ−δ1/p

0
r2fλ(r)dr = C

λ log λ

∫ λ1/p

0
r2f(r)dr

= O((log λ)−1) = o(1),

since δ1 = pγ/2(1− p)− 1.
Consider the main termW 0

λ,γ(θ) in (7.41). Let W̃λ,γ(θ) := − θ2

2 log λ
∫ 1
λ−δ1/p fλ(r)dr

∫
R2 h2

λ(u, v,
r)dudv. Then using (7.43) and |Ψ(z) + z2/2| ≤ |z|3/6 we obtain

|W 0
λ,γ(θ)− W̃λ,γ(θ)| ≤

C

(log λ)3/2

∫ 1

λ−δ1/p
r2−2pfλ(r)dr

∫
R2
hλ(u, v, r)dudv

≤ C

(log λ)3/2

∫ 1

λ−δ1/p
r3−2pfλ(r)dr

≤ C

(log λ)3/2

∫ 1

0
r−pdr = O((log λ)−3/2) = o(1).

Finally, it remains to estimate the difference |W̃λ,γ(θ)−Wγ(θ)| ≤ C(J ′λ + J ′′λ), where

J ′λ := 1
log λ

∫ 1

λ−δ1/p
fλ(r)dr

∫
R2
|h2
λ(u, v, r)− h2(u, v, r)|dudv,

J ′′λ := 1
log λ

∫ 1

λ−δ1/p
r2−p|fλ(r)− cfrp−3|dr.

Let

h̃λ(u, v, r) := x
∫
R

1
((−u

rp
,
s

r1−p

)
∈ B

)
1(0 < v + λ−δ2s < y)ds.
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Then J ′λ ≤ J ′λ1 + J ′λ2, where J ′λ1 := (log λ)−1 ∫ 1
λ−δ1/p fλ(r)dr

∫
R2 |h2

λ(u, v, r)− h̃2
λ(u, v, r)|dudv,

J ′λ2 := (log λ)−1 ∫ 1
λ−δ1/p fλ(r)dr

∫
R2 |h̃2

λ(u, v, r) − h2(u, v, r)|dudv. Using the fact that B is a
bounded set with leb(∂B) = 0 we get that∫

R2
|hλ(u, v, r)− h̃λ(u, v, r)|dudv

≤ yr
∫ x

0
dt
∫
R2

∣∣∣∣1((λ−δ1trp
− u, s

)
∈ B

)
− 1((−u, s) ∈ B)

∣∣∣∣duds

≤ rε(λ−δ1r−p),

where ε(z), z ≥ 0, is a bounded function with limz→0 ε(z) = 0. We also have hλ(u, v, r) +
h̃λ(u, v, r) ≤ Cr1−p as in (7.43). Using these bounds together with fλ(r) ≤ Crp−3, r > λ−δ1/p

we obtain

J ′λ1 log λ ≤ C
∫ 1

λ−δ1/p
ε(λ−δ1r−p)r−1dr = C

∫ 1

λ−δ1
ε(z)z−1dz = o(log λ),

proving J ′λ1 → 0 as λ → ∞. In a similar way, using
∫
R2 |h̃λ(u, v, r) − h(u, v, r)|dudv ≤

xr
∫
R3 1((−u, s) ∈ B)|1(0 < v + λ−δ2r1−ps < y) − 1(0 < v < y)|dudvds ≤ Cr2−pλ−δ2 we

obtain J ′λ2 log λ ≤ Cλ−δ2
∫ 1

0 r
−pdr = O(λ−δ2), proving J ′λ2 → 0 and hence J ′λ → 0. Finally,

J ′′λ = (log λ)−1 ∫∞
λ1/p r2−p|f(r) − cfr

p−3|dr → 0 follows from (7.3). This proves the limit
limλ→∞Wλ,γ(θ) = Wγ(θ) = −(θ2/2)σ̃2

+x
2y for any θ ∈ R, or one-dimensional convergence in

(7.15). Theorem 7.4 is proved.

Proof of Proposition 7.5. We use well-known properties of Poisson stochastic integrals and
inequality (3.3) in [79]. Accordingly, I+(x, y) is well-defined and satisfies E|I+(x, y)|q ≤
2Jq(x, y) (1 ≤ q ≤ 2) provided

Jq(x, y) := cf

∫ ∞
0

r−(1+α)dr
∫
R×(0,y]

dudv
∣∣∣∣ ∫

(0,x]×R
1
((

t− u
rp

,
s

r1−p

)
∈ B

)
dtds

∣∣∣∣q
= cfy

∫ ∞
0

rq(1−p)−(1+α)dr
∫
R

du
∣∣∣∣ ∫ x

0
leb1

(
B
(
t− u
rp

))
dt
∣∣∣∣q <∞.

Split Jq(x, y) = cfy[
∫ 1

0 dr+
∫∞
1 ] . . . dr =: cfy[J ′+J ′′]. Then J ′′ ≤ C

∫∞
1 rq(1−p)r−(1+α)dr

∫
1(|u|

≤ Crp)du ≤ C
∫∞
1 rq(1−p)−(1+α)+pdr < ∞ provided q < (α − p)/(1 − p). Similarly, J ′ ≤

C
∫ 1

0 r
q(1−p)−(1+α)dr|

∫
1(|t| ≤ Crp)dt|q ≤ C

∫ 1
0 r

q(1−p)r−(1+α)+qpdr <∞ provided α < q. Note
that α < (α − p)/(1− p) ≤ 2 for 1 < α ≤ 2− p and (α − p)/(1− p) > 2 for 2− p < α < 2.
Relation (7.17) follows from (7.14) and J2(x, y) = σ2

+yx
2H+ by a change of variables. This

proves part (i). The proof of part (ii) is analogous.

Proof of Theorem 7.6. Using the change of variables as in (7.37) we get Wλ,γ(θ) =
∫∞

0 gλ(r)
fλ(r)dr with the same fλ(r), gλ(r) as in (7.38) and hλ(u, v, r) satisfying (7.39). (Note
H(γ) = H(γ+) = 1/p hence λH(γ+)−(1/p) = 1 in the definition of gλ(r) in (7.38).) Par-
ticularly, Ψ(θhλ(u, v, r)) → Ψ(θh(u, v, r)) for any (u, v, r) ∈ R2 × R+, v 6∈ {0, y}. Then
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gλ(r) → g(r) :=
∫
R2 Ψ(θh(u, v, r))dudv follows by the dominated convergence theorem. Us-

ing
∫
R2 hλ(u, v, r)dudv = xyr leb(B) and hλ(u, v, r) ≤ Cr we obtain |gλ(r)| ≤ C min(r, r2)

and hence Wλ,γ(θ)→
∫∞

0 g(r)r−(1+α)dr = log E exp{iθI+(x, y)}, proving the one-dimensional
convergence in (7.18). The proof of Theorem 7.6 is complete.

Proof of Theorem 7.7. (i) Write Dr(x, y) := {(u, v) ∈ R2 : (u − x)2 + (v − y)2 ≤ r2} for
a ball in R2 centered at (x, y) and having radius r. Recall that B is bounded. Note that
infz∈[−1,1](|z|/rp + (1 − |z|1/(p−1))1−p/r1−p) ≥ c0 min(r−p, r−(1−p)) for some constant c0 > 0.
Therefore, there exists r0 > 0 such that for all 0 < r < r0 the intersection Bz,r := B ∩

(
B +(

z/rp, (1− |z|1/p)1−p/r1−p
))

= ∅ in (7.19). Hence b(z) ≤ C <∞ uniformly in z ∈ [−1, 1].
Let (x, y) ∈ B \ ∂B. Then D2r(x, y) ⊂ B for all r < r0 and some r0 > 0. If we

translate B by distance r0 at most, the translated set still contains the ball Dr0(x, y). Since
supz∈[−1,1](|z|/rp + (1 − |z|1/p)1−p/r1−p) ≤ 2 max(r−p, r−(1−p)), there exists r1 > 0 for which
infr>r1 leb(Bz,r) ≥ πr2

0, proving infz∈[−1,1] b(z) > 0. The continuity of b(z) follows from the
above argument and the continuity of the mapping z 7→ leb(Bz,r) : [−1, 1] → R+, for each
r > 0.
(ii) Let s ≥ 0. In the integral (7.8) we change the variables: u→ rpu, v → r1−pv, r → w1/pr.
Then

ρ(t, s) = w−(α−1)/p
∫ ∞

0
leb(Bt/w,r)fw(r)rdr,

where fw(r) := w(1+α)/pf(w1/pr)→ cf r
−(1+α), w →∞. Then (7.20) follows by Lemma 7.12

and the afore-mentioned properties of leb(Bt/w,r). Theorem 7.7 is proved.

In this chapter we often use the following lemma which is a version of Lemma 2 in [53]
or Lemma 2.4 in [11].
Lemma 7.12. Let F be a probability distribution that has a density function f satisfying
(7.3). Set fλ(r) := λ1+αf(λr) for λ ≥ 1. Assume that g, gλ are measurable functions on R+
such that gλ(r)→ g(r) as λ→∞ for all r > 0 and such that the inequality

|gλ(r)| ≤ C(rβ1 ∧ rβ2) (7.44)
holds for all r > 0 and some 0 < β1 < α < β2, where C does not depend on r, λ. Then∫ ∞

0
gλ(r)fλ(r)dr → cf

∫ ∞
0

g(r)r−(1+α)dr as λ→∞.

Proof. Split
∫∞

0 gλ(r)fλ(r)dr = (
∫ ε

0 +
∫∞
ε )gλ(r)fλ(r)dr =: I1(λ) + I2(λ), where ε > 0. It

suffices to prove

lim
λ→∞

I2(λ) = cf

∫ ∞
ε

g(r)r−(1+α)dr and lim
ε→0

lim sup
λ→∞

I1(λ) = 0. (7.45)

The first relation in (7.45) follows by the dominated convergence theorem, using (7.44) and
the bound fλ(r) ≤ Cr−(1+α) which holds for all r > ρ/λ and a sufficiently large ρ > 0
by virtue of (7.3). The second relation in (7.45) follows from |I1(λ)| ≤ C

∫ ε
0 r

β2fλ(r)dr =
Cλα−β2

∫ λε
0 xβ2f(x)dx ≤ Cλα−β2 + Cλα−β2

∫ λε
1 xβ2−(1+α)dx ≤ C(λα−β2 + εβ2−α).
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7.5.2 Proofs of Section 7.4
Proof of Theorem 7.9. We have

WT,γ,β(θ) := log E exp
{

iθb−1
T

(
AM,K(Tx)− EAM,K(Tx)

)}
(7.46)

= T γ
∫
R×R+

Ψ
(
θT−H(r1−p ∧ T β)

∫ Tx

0
1(u < t < u+ rp)dt

)
duf(r)dr,

where Ψ(z) = eiz − 1− iz, z ∈ R, as in Section 7.5.1.
(i) Let 0 < p < 1, δ1 := β − (1 + γ)(1− p)/α > 0, δ2 := 1 − (1 + γ)p/α = (γ+ − γ)p/α > 0.
Using the change of variables (t− u)/rp → t, u→ Tu, r → T (1+γ)/αr in (7.46), we obtain

WT,γ,β(θ) =
∫ ∞

0
gT (r)fT (r)dr, (7.47)

where fT (r) := T (1+α)(1+γ)/αf(T (1+γ)/αr) and

gT (r) :=
∫
R

Ψ
(
θ(r1−p ∧ T δ1)rphT (u, r))

)
du

and where hT (u, r) :=
∫ 1

0 1(0 < u+T−δ2rpt < x)dt→ 1(0 < u < x) for fixed (u, r) ∈ R×R+,
u 6∈ {0, x}. Hence gT (r) → g(r) := xΨ(θr) follows by the dominated convergence theorem.
The bound |gT (r)| ≤ C min(r, r2) follows from (7.30) and

∫
R hT (u, r)du = x with hT (u, r) ≤ 1.

Finally, by Lemma 7.12,WT,γ,β(θ)→ xcf
∫∞

0 Ψ(θr)r−(1+α)dr = log E exp{iθLα(x, 1)}, proving
part (i) for 0 < p < 1. The case p = 1 follows similarly.
(ii) By the same change of variables as in part (i) we get WT,γ,β(θ) as in (7.47), where

gT (r) :=
∫
R

Ψ
(
θ((T−δ1r1−p) ∧ 1)rphT (u, r)

)
du,

where δ1, fT (r), hT (u, r) are the same as in (7.47) except that now δ1 < 0. Next, gT (r) →
xΨ(θrp) by the dominated convergence theorem while |gT (r)| ≤ C min(rp, r2p) follows by
(7.30) and

∫
R min(hT (u, r), h2

T (u, r))du ≤ C. Then WT,γ,β(θ) → Wγ,β(θ) := xcf
∫∞

0 Ψ(θrp)
r−(1+α)dr follows by Lemma 7.12. To finish the proof of part (ii) it suffices to check that

Wγ,β(θ) = −xcfΓ(2− α/p)
α(1− α/p) cos

(
πα

2p

)
|θ|α/p

(
1− i sgn(θ) tan

(
πα

2p

))
(7.48)

=: log E exp{iθLα/p(x)}.

(iii) Denote δ1 := 1 + γ − αβ/(1 − p) > 0, δ2 := 1 − pβ/(1 − p) > 0. Then by change of
variables: (t − u)/rp → t, u → Tu, r → T β/(1−p)r we rewrite WT,γ,β(θ) as in (7.47), where
fT (r) := T (1+α)β/(1−p)f(T β/(1−p)r) and

gT (r) :=
∫
R
T δ1Ψ

(
θT−δ1/2(r1−p ∧ 1)rphT (u, r)

)
du
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with hT (u, r) :=
∫ 1

0 1(0 < u+T−δ2rpt < x)dt→ 1(0 < u < x). Then gT (r)→ −(θ2/2)(r1−p∧
1)2r2px by the dominated convergence theorem using the bounds |Ψ(z)| ≤ z2/2, z ∈ R
and hT (u, r) ≤ 1(−rp < u < x). Moreover, |gT (r)| ≤ C min(r2p, r2) holds in view of∫
R h

2
T (u, r)du ≤ C. Using Lemma 7.12 we getWT,γ,β(θ)→ −(θ2/2)xcf

∫∞
0 (r1−p∧1)2r2p−(1+α)dr

= −(θ2/2)σ2
1x, where

σ2
1 := 2cf (1− p)

(2− α)(α− 2p) <∞ (7.49)

since max(1, 2p) < α < 2. This proves part (iii).
(iv) By the same change of variables as in part (iii), we rewrite WT,γ,β(θ) as in (7.47), where

gT (r) :=
∫
R
T δ1Ψ

(
θT−δ1/2(log T )−1/2(r1−p ∧ 1)rphT (u, r)

)
du

and fT (r) and δ1, δ2 > 0 and hT (u, r) :=
∫ 1

0 1(0 < u+T−δ2rpt < x)dt→ 1(0 < u < x) are the
same as in (iii). We split WT,γ,β(θ) = W−

T,γ,β(θ) + W 0
T,γ,β(θ) + W+

T,γ,β(θ) and next prove that
W−
T,γ,β(θ) :=

∫ 1
0 gT (r)fT (r)dr and W+

T,γ,β(θ) :=
∫∞
T δ1/2p gT (r)fT (r)dr are the remainder terms,

whereas

W 0
T,γ,β(θ) :=

∫ T δ1/2p

1
gT (r)fT (r)dr ∼ −θ

2

2
xcf

log T

∫ T δ1/2p

1
r2p−(1+2p)dr

= −θ
2

2 σ̂
2
1x =: Wγ,β(θ),

where
σ̂2

1 := cf
δ1

2p = cf
2p(1− p)((1 + γ)(1− p)− 2pβ). (7.50)

By (7.3), there exists ρ > 0 such that fT (r) ≤ Cr−(1+2p) for all r > ρ/T β/(1−p). Using this
bound along with

∫
R hT (u, r)du = x, hT (u, r) ≤ 1 and (7.30), we get

|W−
T,γ,β(θ)| ≤ C

log T

∫ 1

0
r2fT (r)dr = O((log T )−1) = o(1),

|W+
T,γ,β(θ)| ≤ C

T δ1/2

(log T )1/2

∫ ∞
T δ1/2p

rp−(1+2p)dr = O((log T )−1/2) = o(1).

We now consider the main termW 0
T,γ,β(θ). Let W̃T,γ,β(θ) := − θ2

2 log T
∫ T δ1/2p

1 r2pfT (r)dr
∫
R h

2
T (u,

r)du. Then, by |Ψ(z) + z2/2| ≤ |z|3/6, z ∈ R, it follows that

|W 0
T,γ,β(θ)− W̃T,γ,β(θ)| ≤ C

(log T )3/2T δ1/2

∫ T δ1/2p

1
r3pfT (r)dr

∫
R
h3
T (u, r)du

≤ C

(log T )3/2T δ1/2

∫ T δ1/2p

1
rp−1dr

= O((log T )−3/2) = o(1).
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Finally, we estimate |W̃T,γ,β(θ)−Wγ,β(θ)| ≤ C(J ′T + J ′′T ), where

J ′T := 1
log T

∫ T δ1/2p

1
r2pfT (r)dr

∫
R
|h2
T (u, r)− 1(0 < u < x)|du,

J ′′T := 1
log T

∫ T δ1/2p

1
r2p|fT (r)− cfr−(1+2p)|dr.

Using ∫
R
|h2
T (u, r)− 1(0 < u < x)|du

≤ 2
∫ 1

0
dt
∫
R
|1(0 < u+ T−δ2rpt < x)− 1(0 < u < x)|du ≤ CrpT−δ2 ,

we obtain J ′T ≤ C(log T )−1T−δ2
∫ T δ1/2p

1 rp−1dr = o(1), since δ1/2 ≤ δ2 for γ ≤ γ+. Then
J ′′T = o(1) follows from (7.3), since |fT (r) − cfr−(1+2p)| ≤ εcfr

−(1+2p) for all r > ρ/T β/(1−p)

and some ρ > 0 if given any ε > 0. This completes the proof of WT,γ,β(θ) → −(θ2/2)σ̂2
1x =

log E exp{iθσ̂1B(x)} as T →∞ for any θ ∈ R.
(v) After the same change of variables as in part (iii) we get WT,γ,β(θ) in (7.47), where

gT (r) :=
∫
R

Ψ
(
θ(r1−p ∧ 1)rphT (u, r)

)
du

with the same fT (r) and hT (u, t) → 1(0 < u < x) as in (iii). By dominated convergence
theorem, gT (r) → xΨ(θ(r1−p ∧ 1)rp), where we justify its use by (7.30), and hT (u, r) ≤
1(−rp < u < x). The bound |gT (r)| ≤ C min(rp, r2) follows from (7.30) and

∫
R hT (u, r)du = x

with hT (u, r) ≤ 1. Finally, by Lemma 7.12,

WT,γ,β(θ)→ xcf

∫ ∞
0

Ψ
(
θ(r1−p ∧ 1)rp

)
r−(1+α)dr =: log E exp{iθL̂(x)}. (7.51)

The proof of Theorem 7.9 is complete.

Proof of Theorem 7.10. (i) Denote δ1 := 1+γ−α/p = γ−γ+ > 0 and δ2 := (1−p)/p−β > 0.
By changing the variables in (7.29): t → Tt, u → Tu, r → T 1/pr we rewrite WT,γ,β(θ) as in
(7.47), where fT (r) := T (1+α)/pf(T 1/pr) and

gT (r) :=
∫
R
T δ1Ψ

(
θT−δ1/2((T δ2r1−p) ∧ 1)h(u, r)

)
du

with h(u, r) :=
∫ x

0 1(u < t < u + rp)dt. The dominated convergence gT (r) → g(r) :=
−(θ2/2)

∫
R h

2(u, r)du follows by (7.30). The latter combined with
∫
R h

2(u, r)du ≤ C min(1, rp)∫
R h(u, r)du ≤ C min(rp, r2p) gives the bound |gT (r)| ≤ C min(rp, r2p). Finally, by Lemma
7.12, WT,γ,β(θ)→ −(θ2/2)σ2

2x
2H , where

σ2
2 := cf

∫
R×R

( ∫ 1

0
1(u < t < u+ rp)dt

)2 dudr
r1+α

= 2cf
α(2− α/p)(3− α/p)(α/p− 1) , (7.52)
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proving part (i).
(ii) The proof is the same as that of Theorem 7.9(iii).
(iii) Let δ1 := γ − α+β > 0, δ2 := α+β/γ+ − 1 > 0. By change of variables: t → Tt,
u→ T βp/(1−p)u, r → T β/(1−p)r we get (7.47) with fT (r) := T (1+α)β/(1−p)f(T β/(1−p)r) and

gT (r) :=
∫
R
T δ1Ψ(θT−δ1/2(r1−p ∧ 1)hT (u, r))du,

with hT (u, r) :=
∫ x

0 1(0 < (T−δ2t− u)/rp < 1)dt→ h(u, r) := x1(−rp < u < 0). Then (7.30)
and h2

T (u, r) ≤ x1(−rp < u < 1) justify the dominated convergence gT (r)→ −(θ2/2)(r1−p ∧
1)2rpx2. By (7.30) and

∫
R h

2
T (u, r)du ≤ C

∫
R hT (u, r)du ≤ Crp, we have |gT (r)| ≤ C min(rp,

r2−p). Finally, by Lemma 7.12 WT,γ,β(θ) → −(θ2/2)x2cf
∫∞

0 (r1−p ∧ 1)2rp−(1+α)dr = −(θ2/2)
x2σ2

3 with

σ2
3 := 2cf (1− p)

(2− p− α)(α− p) , (7.53)

proving part (iii).
(iv) Denote δ1 := β − γ/α+ > 0, δ2 := γ/γ+ − 1 > 0. By the change of variables: t → Tt,
u→ T γ/γ+u, r → T γ/γ+pr we get (7.47) with fT (r) := T (1+α)γ/γ+pf(T γ/γ+pr) and

gT (r) :=
∫
R

Ψ(θ(r1−p ∧ T δ1)hT (u, r))du,

where hT (u, r) :=
∫ x

0 1(u < T−δ2t < u + rp)dt → h(u, r) := x1(−rp < u < 0). Then
gT (r) → g(r) :=

∫
R Ψ(θxr1−p1(−rp < u < 0))du and WT,γ,β(θ) → cf

∫∞
0 g(r)r−(1+α)dr =

log E exp{iθxL+(1)} similarly to the proof of Theorem 7.2(ii).
(v) Set δ1 := γ − γ+ > 0, δ2 := β − (1 − p)/p > 0. After a change of variables: t → Tt,
u→ Tu, r → T 1/pr, we get (7.47) with fT (r) := T (1+α)/pf(T 1/pr) and

gT (r) :=
∫
R
T δ1Ψ(θT−δ1/2(r1−p ∧ T δ2)h(u, r))du,

where h(u, r) :=
∫ x

0 1(u < t < u + rp)dt. Then gT (r) → g(r) := −(θ2/2)
∫
R r

2(1−p)h2(u, r)du
and WT,γ,β(θ) → cf

∫∞
0 g(r)r−(1+α)dr = −(θ2/2)σ2

+x
2H+ similarly to the proof of Theorem

7.3(i).
(vi) We follow the proof of Theorem 7.9(iv). By the same change of variables, we rewrite
WT,γ,β(θ) as in (7.47). We split WT,γ,β(θ) = W−

T,γ,β(θ) +W 0
T,γ,β(θ) +W+

T,γ,β(θ) with the same
W±
T,γ,β(θ) being the remainder terms. Note that now δ2 < δ1/2, since γ > γ+. Next, we split

W 0
T,γ,β(θ) = W ′

T,γ,β(θ) +W ′′
T,γ,β(θ), where

W ′
T,γ,β(θ) :=

∫ T δ2/p

1
gT (r)fT (r)dr, W ′′

T,γ,β(θ) :=
∫ T δ1/2p

T δ2/p
gT (r)fT (r)dr.
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Analogously to the proof of Theorem 7.9(iv), we show the convergence W ′
T,γ,β(θ)→ −(θ2/2)

σ̂2
2x, where

σ̂2
2 := cf

δ2

p
= cf

(1
p
− β

1− p

)
. (7.54)

Using (7.30) and
∫
R hT (r, u)du = x with hT (r, u) ≤ x(T δ2/rp), we get

|W ′′
T,γ,β(θ)| ≤ C

log T

∫ T δ1/2p

T δ2/p

dr
r

∫
R
h2
T (r, u)du

≤ CT δ2

log T

∫ T δ1/2p

T δ2/p

dr
r1+p = O((log T )−1) = o(1),

which completes the proof of WT,γ,β(θ)→ −(θ2/2)σ̂2
2x = log E exp{iθσ̂2B(x)} as T →∞ for

any θ ∈ R.
(vii) By the same change of variables as in part (i), we rewrite WT,γ,β(θ) as in (7.47), where

gT (r) :=
∫
R
T δ1Ψ

(
θT−δ1/2(r1−p ∧ 1)h(u, r)

)
du

and where δ1, h(u, r), fT (r) are the same as in (i). Then gT (r)→ −(θ2/2)
∫
R h

2(u, r)du along
with

∫
R h

2(u, r)du ≤ C min(rp, r2p) and (7.30) imply WT,γ,β(θ) → −(θ2/2)cf
∫∞
0
∫
R(r1−p ∧

1)2h2(u, r)r−(1+α)drdu =: log E exp{iθẐ(x)} as T →∞ for any θ ∈ R, by Lemma 7.12.
(viii) By the same change of variables as in part (iii) we obtain WT,γ,β(θ) as in (7.47), where
gT (r) :=

∫
R Ψ(θ(r1−p ∧ 1)hT (u, r))du with fT (r), δ2 = γ/γ+− 1 > 0 and hT (u, r) :=

∫ x
0 1(u <

T−δ2t < u + rp)dt → x1(−rp < u < 0) the same as in (iii). Using
∫
R hT (u, r)du = xrp and

hT (u, r) ≤ x yields |gT (r)| ≤ C min(rp, r2−p) from (7.30). Hence, by Lemma 7.12, it follows
that

WT,γ,β(θ)→ cf

∫ ∞
0

Ψ(θx(r1−p ∧ 1))rp−(1+α)dr =: log E exp{iθxẐ}. (7.55)

(ix) By the same change of variables as in the proof of part (iv), we rewrite WT,γ,β(θ) as in
(7.47), where

gT (r) :=
∫
R

Ψ
(
θ(log T )−1/2(r1−p ∧ T δ1)hT (u, r)

)
du

with δ1, δ2 := γ/γ+ − 1 > 0 and hT (u, r) :=
∫ x

0 1(u < T−δ2t < u + rp)dt → x1(−rp <
u < 0) =: h(u, r) and fT (r) being the same as in (iv). We split WT,γ,β(θ) = W−

T,γ,β(θ) +
W 0
T,γ,β(θ) + W+

T,γ,β(θ) and next prove that W−
T,γ,β(θ) :=

∫ T−δ2/p
0 gT (r)fT (r) and W+

T,γ,β(θ) :=∫∞
1 gT (r)fT (r)dr are the remainder terms, whereas

W 0
T,γ,β(θ) :=

∫ 1

T−δ2/p
gT (r)fT (r)dr ∼ −θ

2

2
cf

log T

∫ 1

T−δ2/p

dr
r1+p

∫
R
h2(u, r)du

= −θ
2

2 σ̃
2
+x

2 =: Wγ,β(θ),
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where the constant σ̃2
+ is given in (7.42). Using

∫
R hT (u, r)du = xrp and hT (u, r) ≤ x∧(T δ2rp)

along with (7.30), we show that

|W+
T,γ,β(θ)| ≤ C

(log T )1/2

∫ ∞
1

rfT (r)dr = O((log T )−1/2) = o(1),

|W−
T,γ,β(θ)| ≤ CT δ2

log T

∫ T−δ2/p

0
r2fT (r) = C

T log T

∫ T 1/p

0
r2f(r)dr

= O((log T )−1) = o(1).

To deal with the main term W 0
T,γ,β(θ), set W̃T,γ,β(θ) := − θ2

2 log T
∫ 1
T−δ2/p r

2(1−p)fT (r)dr
∫
R h

2
T (u,

r)du. From |Ψ(z) + z2/2| ≤ |z|3/6, we obtain

|WT,γ,β(θ)− W̃T,γ,β(θ)| ≤ C

(log T )3/2

∫ 1

T−δ2/p
r3(1−p)fT (r)dr

∫
R
h3
T (u, r)du

≤ C

(log T )3/2

∫ 1

T−δ2/p
r3−2pfT (r)dr

= O((log T )−3/2) = o(1).

Finally, we consider |W̃T,γ,β(θ)−Wγ,β(θ)| ≤ C(J ′T + J ′′T ), where

J ′T := 1
log T

∫ 1

T−δ2/p
r2(1−p)fT (r)dr

∫
R
|h2
T (u, r)− h2(u, r)|du,

J ′′T := 1
log T

∫ 1

T−δ2/p
r2−p|fT (r)− cfrp−3|dr.

Using ∫
R
|h2
T (u, r)− h2(u, r)|du

≤ C
∫ x

0
dt
∫
R
|1(u < T−δ2t < u+ rp)− 1(−rp < u < 0))|du ≤ CT−δ2

we obtain J ′T ≤ C(log T )−1T−δ2
∫ 1
T−δ2/p r

−(1+p)dr = O((log T )−1) = o(1). Then J ′′T = o(1) fol-
lows from (7.3), since |fT (r)−cfrp−3| ≤ εcfr

p−3 for all r > ρ/T γ/2(1−p) and some ρ > 0 if given
any ε > 0. This finishes the proof of WT,γ,β(θ)→ −(θ2/2)σ̃2

+x
2 = log E exp{iθσ̃2

+B1,1/2(x, 1)}
as T →∞ for any θ ∈ R.
The proof of Theorem 7.10 is complete.

Proof of Theorem 7.11. (i) By the same change of variables as in Theorem 7.10(i), we rewrite
WT,γ,β(θ) as in (7.47), where

gT (r) :=
∫
R

Ψ
(
θ((T δ2r1−p) ∧ 1)h(u, r)

)
du→

∫
R

Ψ(θh(u, r))du =: g(r),
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since δ2 := (1 − p)/p − β = γ+/α+ − β > 0 with h(u, r), fT (r) being the same as in Theo-
rem 7.10(i). Using (7.30) along with

∫
R h(u, r)du = xrp and h(u, r) ≤ rp, we get |gT (r)| ≤

C min(rp, r2p). Hence WT,γ,β(θ) → cf
∫∞

0
∫
R Ψ(θh(u, r))r−(1+α)drdu =: log E exp{iθI(x)} by

Lemma 7.12.
(ii), (iii) The proof is the same as that of Theorem 7.9(iii), (iv) respectively.
(iv) By the same change of variables as in Theorem 7.10(i), we rewrite WT,γ,β(θ) as in (7.47),
where g(r) :=

∫
R Ψ(θ(r1−p ∧ 1)h(u, r))du with h(u, r), fT (r) being the same as in Theorem

7.10(i). Then |g(r)| ≤ C min(rp, r2) follows from (7.30). By Lemma 7.12, we getWT,γ,β(θ)→
cf
∫∞

0 g(r)r−(1+α)dr =: log E exp{iθÎ(x)}.
(v) By the same change of variables as in Theorem 7.10(v), we rewrite WT,γ,β(θ) as in (7.47),
where fT (r), gT (r) are the same as in Theorem 7.10(v) except for δ1 = 0. Then gT (r) →
g(r) :=

∫
R Ψ(θr1−ph(u, r))du and |gT (r)| ≤ C min(r, r2) from (7.30) lead to WT,γ,β(θ) →

cf
∫∞

0 g(r)r−(1+α)dr = log E exp{iθI+(x, 1)} by Lemma 7.12, similarly to the proof of Theorem
7.6.
The proof of Theorem 7.11 is complete.





8
Conclusions

In this last chapter, we review the main research contributions of this thesis.

• We identified three distinct limit regimes in the scheme of joint temporal-contemporaneous
aggregation for independent copies of random-coefficient AR(1) process. We obtained
three limit processes respectively. We showed that the process, arising in the ‘inter-
mediate’ regime, admits a Poisson integral representation and can be regarded as a
‘bridge’ between the other two limit processes. The ‘intermediate’ limit of cumulative
network traffic studied in [27,34,35,55], though different, but has similar properties.

• We identified three different limit regimes in the scheme of joint temporal-contemporaneous
aggregation for copies of random-coefficient AR(1) process, all driven by common in-
novations. We showed that a new process arising under ‘intermediate’ scaling can be
regarded as a ‘bridge’ between the other two limit processes.

• We proved that the empirical process based on lag 1 sample autocorrelations of in-
dividual random-coefficient AR(1) series weakly converges to a generalized Brownian
bridge under certain conditions. Applications of the obtained result arise in statistical
inference from multiple random-coefficient AR(1) series, which are long enough so that
lag 1 sample autocorrelations accurately estimate the unobservable AR coefficients.
In particular, we justified testing with Kolmogorov–Smirnov statistic both simple and
composite hypotheses, that AR coefficient is beta distributed.

• We proved that a nonlinear RF, defined as the Appell polynomial of some stationary
linear LRD RF on Z2, may exhibit scaling transition. Such being the case, scaling tran-
sition occurs at the point γ0 > 0, independent of the degree of the Appell polynomial
even if the underlying linear RF is anisotropic.
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• For the random grain model on R2 with LRD, we obtain two change-points 0 < γ− < γ+
(distinct even in the p = 1/2 case) in its scaling limits, which shows that the concept
of scaling transition requires further study. We showed that for γ > γ+, the random
grain model can have two different scaling limits, depending on α, p. We relate this
dichotomy to the change from the vertical LRD to the vertical SRD property in the
random grain model. A similar result holds for 0 < γ < γ−.

The following are some directions for future research.

• An interesting open problem concerns joint temporal-contemporaneous aggregation of
independent copies of regime-switching AR(1) process, which combines the dependence
structures of both random-coefficient AR(1) and network traffic models, see [62,65].

• Another possible generalization concerns joint temporal-contemporaneous aggregation
of random-coefficient AR(1) processes driven by innovations of infinite variance.

• If random AR coefficient a has a regularly varying density near the unit root, then
1/(1−a) is heavy-tailed distributed with the same index. We will adapt some Hill-type
estimator of a tail index to the context of panel random-coefficient AR(1) data and
study asymptotic properties of this estimator.

• One may ask if some random field model can have more than two change-points in the
family of its scaling limits.

• It is of interest to obtain scaling transition for RFs on R2 as λ→ 0.
• For all models considered, it would be useful to strengthen the weak convergence of

finite-dimensional distributions to the weak convergence in the space of functions.
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[80] V. Pilipauskaitė and D. Surgailis. Joint aggregation of random-coefficient AR(1) pro-
cesses with common innovations. Statist. Probab. Letters, 101:73–82, 2015. 63, 104,
136, 138
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[90] D. Puplinskaitė and D. Surgailis. Aggregation of autoregressive random fields and
anisotropic long-range dependence. Bernoulli, 22(4):2401–2441, 2016. 15, 16, 18, 19,
22, 34, 35, 40, 103, 104, 105, 133, 136, 138, 144

[91] B. S. Rajput and J. Rosinski. Spectral representations of infinitely divisible processes.
Probab. Theory Related Fields, 82(3):451–487, 1989. 43

[92] P. M. Robinson. Statistical inference for a random coefficient autoregressive model.
Scand. J. Stat., 5(3):163–168, 1978. 12, 14, 22, 27, 29, 30, 80, 86

[93] H. P. Rosenthal. On the subspaces of Lp (p > 2) spanned by sequences of independent
random variables. Israel J. Math., 8(3):273–303, 1970. 97

[94] G. Samorodnitsky. Long range dependence. Foundations and Trends® in Stochastic
Systems, 1(3), 2007. 26

[95] G. Samorodnitsky. Stochastic Processes and Long Range Dependence. Springer, 2016.
26



Bibliography 172

[96] G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes. Chap-
man & Hall, New York, 1994. 41, 46, 71

[97] A. V. Skorokhod. Limit theorems for stochastic processes. Theory Probab. Appl.,
1(3):261–290, 1956. 126

[98] W. Stute, W. G. Manteiga, and M. P. Quindimil. Bootstrap based goodness-of-fit-tests.
Metrika, 40(1):243–256, 1993. 88

[99] D. Surgailis. On L2 and non-L2 multiple stochastic integration. In M. Arató, D. Vermes,
and A. V. Balakrishnan, editors, Stochastic Differential Systems, volume 36 of Lect.
Notes Control Inf. Sci., pages 212–226. Springer, Berlin Heidelberg, 1981. 43

[100] D. Surgailis. Zones of attraction of self-similar multiple integrals. Lith. Math. J.,
22(3):185–201, 1982. 16, 104, 107, 136

[101] D. Surgailis. Stable limits of sums of bounded functions of long-memory moving aver-
ages with finite variance. Bernoulli, 10(2):327–355, 2004. 106

[102] G. Szűcs. Parametric bootstrap tests for continuous and discrete distributions. Metrika,
67(1):63–81, 2008. 88

[103] M. S. Taqqu. Weak convergence to fractional Brownian motion and to the Rosenblatt
process. Z. Wahrsch. verw. Geb., 31(4):287–302, 1975. 39

[104] M. S. Taqqu. Convergence of integrated processes of arbitrary Hermite rank. Z.
Wahrsch. verw. Geb., 50(1):53–83, 1979. 16, 104

[105] M. S. Taqqu, W. Willinger, and R. Sherman. Proof of a fundamental result in self-
similar traffic modeling. SIGCOMM Comput. Commun. Rev., 27(2):5–23, 1997. 31,
38, 66

[106] A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 2000. 88

[107] B. von Bahr and C.-G. Esséen. Inequalities for the rth absolute moment of a sum of
random variables, 1 5 r 5 2. Ann. Math. Statist., 36(1):299–303, 1965. 97

[108] Y. Wang. An invariance principle for fractional Brownian sheets. J. Theoret. Probab.,
27(4):1124–1139, 2014. 136

[109] G. R. Wellner and J. A. Shorack. Empirical Processes with Applications to Statistics.
Wiley, New York, 1986. 100

[110] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity through high-
variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM
Trans. Netw., 5(1):71–86, 1997. 38



173 Bibliography

[111] P. Zaffaroni. Contemporaneous aggregation of linear dynamic models in large
economies. J. Econometrics, 120(1):75–102, 2004. 28, 38, 40, 64

[112] P. Zaffaroni. Aggregation and memory of models of changing volatility. J. Economet-
rics, 136(1):237–249, 2007. 28, 38, 64







Thèse de Doctorat

Vytautė PILIPAUSKAITĖ

Théorèmes limites pour les modèles spatio-temporels à longue mémoire

Limit theorems for spatio-temporal models with long-range dependence

Résumé
Les travaux de la thèse portent sur les théorèmes limites
pour des modèles stochastiques à forte dépendance.
Dans la première partie, nous considérons des modèles
AR(1) à coefficient aléatoire. Nous identifions trois
régimes asymptotiques différents pour le schéma
d’agrégation conjointe temporelle-contemporaine
lorsque les processus AR sont indépendants et lorsque
les AR possède des innovations communes. Ensuite, on
discute de l’estimation non paramétrique de la fonction
de répartition du coefficient autorégressif à partir d’un
panel de séries AR(1) à coefficient aléatoire. Nous
prouvons la convergence faible du processus empirique
basé sur des estimations des coefficients autorégressifs
non observables vers un pont brownien généralisé. Ce
résultat est ensuite appliqué pour valider différents outils
d’inférence statistique à partir des données du panel
AR(1). Dans la deuxième partie de la thèse, nous nous
concentrons sur les modèles spatiaux en dimension 2.
Nous considérons des champs aléatoires construits à
partir des polynômes Appell et de champs aléatoires
linéaires. Pour ce modèle non linéaire, nous étudions la
limite de ses sommes partielles normalisées prises sur
des rectangles et prouvons l’existence d’une transition
d’échelle. Enfin, nous abordons la même question pour
le modèle de germes-grains aléatoire. Nous mettons en
évidence l’existence de deux points de transition dans
les limites de ces modèles.

Abstract
The thesis is devoted to limit theorems for stochastic
models with long-range dependence. We first consider
a random-coefficient AR(1) process, which can have
long memory provided the distribution of autoregressive
coefficient concentrates near the unit root. We identify
three different limit regimes in the scheme of joint
temporal-contemporaneous aggregation for
independent copies of random-coefficient AR(1)
process and for its copies driven by common
innovations. Next, we discuss nonparametric estimation
of the distribution of the autoregressive coefficient given
multiple random-coefficient AR(1) series. We prove the
weak convergence of the empirical process based on
estimates of unobservable autoregressive coefficients to
a generalized Brownian bridge and apply this result to
draw statistical inference from panel AR(1) data. In the
second part of the thesis we focus on spatial models in
dimension 2. We define a nonlinear random field as the
Appell polynomial of a linear random field with
long-range dependence. For the nonlinear random field,
we investigate the limit of its normalized partial sums
over rectangles and prove the existence of scaling
transition. Finally, we study such like scaling of the
random grain model and obtain two-change points in its
limits.

Mots clés
Théorème limite, Longue mémoire, Processus
AR(1) à coefficient aléatoire, Statistique non
paramétrique, Données de panel, Agrégation,
Transition d’échelle, Modèle germes-grains.

Key Words
Limit theorem, Long-range dependence,
Random-coefficient AR(1) process, Nonparametric
statistics, Panel data, Aggregation, Scaling
transition, Random grain model.
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