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Limit theorems for spatio-temporal models with long-range dependence

Vytautė Pilipauskaitė
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Vytautė Pilipauskaitė

Vilnius September 12, 2017 := by definition Z := {0, ±1, ±2, . . .} the set of integers N := {1, 2, . . .} the set of positive integers R := (-∞, ∞) the set of real numbers R + := (0, ∞) C(A) the space of continuous functions defined on a set A C positive constant, which may change from line to line i := √ -1 1(A) indicator function of a set A x ∧ y := min(x, y) x ∨ y := max(x, y)

x + := max(x, 0)

[x] the greatest integer less than or equal to x (floor)

x the least integer greater than or equal to x (ceiling) Γ(x) the gamma function B(x, y) the beta function EX mean of a random variable X N (µ, σ 2 ) normal distribution with mean µ and variance σ 2 X i (t), τ ≥ 0, où X i , i = 1, . . . , N , sont des copies du processus X satisfaisant l'hypothèse A(β). Soit N, n → ∞ (simultanément) et

N 1/(1+β) n → µ ∈ [0, ∞].
On considère les trois situations suivantes: cas (i): µ = ∞, cas (ii): µ = 0, cas (iii): 0 < µ < ∞.

Théorème (Chapitre 3, Théorème 3.2). Soit X i , i = 1, 2, . . . , des copies indépendantes du processus X satisfaisant l'hypothèse A(β) avec β ∈ (-1, 1). Alors dans le cas (i):

N -1/2 n -1+(β/2) S N,n (τ ) fidi → B H (τ ), β ∈ (0, 1), N -1/2(1+β) n -1 S N,n (τ ) fidi → V τ, β ∈ (-1, 0), (N log(N/n)) -1/2 n -1 S N,n (τ ) fidi → V τ, β = 0,
où B H est le mouvement brownien fractionnaire de paramètre H = 1 -β/2 ∈ (1/2, 1); V est une variable aléatoire 2(1 + β)-stable et {V τ, τ ≥ 0} est une droite aléatoire; dans le cas (ii):

N -1/(1+β) n -1/2 S N,n (τ ) fidi → W 1/2 B(τ ),
où {W 1/2 B(τ ), τ ≥ 0} est un processus (1 + β)-stable avec W > 0 une variable aléatoire (1 + β)/2-stable, indépendante de B un mouvement brownien standard; dans le cas (iii):

N -1/(1+β) n -1/2 S N,n (τ ) fidi → µ 1/2 Z(τ /µ),
où Z est un processus dit 'intermédiaire' dont les fonctions caractéristiques de ses lois finidimensionnelles sont connues.

Z admet une représentation intégrale de la forme suivante pour tout β ∈ (-1, 1),

Z(τ ) := (0,1)×C(R) τ -∞ τ 0 e -x(t-s) 1(s ≤ t)dt dB(s) M(dx, dB) + [1,∞)×C(R) τ -∞ τ 0
e -x(t-s) 1(s ≤ t)dt dB(s) M(dx, dB), [START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF] où M(dx, dB) est une mesure aléatoire de Poisson sur R + × C(R) d'intensité µ(dx, dB) = ψ 1 x β dx × P B (dB(•)) avec P B une mesure de Wiener standard sur C(R) et M(dx, dB) := M(dx, dB) -µ(dx, dB) est une mesure aléatoire de Poisson compensée. La proposition suivante donne les propriétés du processus Z.

Inférence statistique à partir des données de panel AR(1) (Chapitre 5).

Dans le chapitre 5 nous abordons la question de l'estimation de la loi du coefficient autorégressif (de fonction de répartition G) à partir de N séries AR(1) à paramètre aléatoire de longueur n. Contrairement à [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF][START_REF] Robinson | Statistical inference for a random coefficient autoregressive model[END_REF], nous adoptons une approche non paramétrique. On estime sur chaque série le coefficient autorégressif par l'autocorrélation empirique de lag 1, puis on construit la fonction de répartition empirique de cet échantillon. Nous étudions la convergence de la fonction de répartition empirique sous des conditions de régularité sur G et de vitesse de convergence de N et n vers l'infini. Le résultat est appliqué pour tester l'adéquation de la loi G à une loi donnée ou à la famille de lois beta à l'aide de la statistique de Kolmogorov-Smirnov. Les performances des tests sont illustrés par des simulations et comparés à l'analogue paramétrique développé par [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF].

Nous précisons maintenant le modèle. On considère des processus AR(1) à coefficient autorégressif aléatoire (RCAR(1)) X i := {X i (t), t ∈ Z}, i = 1, 2, . . . , solution stationnaire de l'équation

X i (t) = a i X i (t -1) + ζ i (t), t ∈ Z,
dont les innovations {ζ i (t)} se décomposent de la forme suivante

ζ i (t) = b i η(t) + c i ξ i (t), t ∈ Z,
avec les hypothèses suivantes: Hypothèse (B1). {η(t)} i.i.d. avec Eη(t) = 0, Eη 2 (t) = 1, E|η(t)| 2p < ∞ pour un certain p > 1. Hypothèse (B2). {ξ i (t)}, i = 1, 2, . . ., i.i.d. avec Eξ i (t) = 0, Eξ 2 i (t) = 1, E|ξ i (t)| 2p < ∞ pour la même valeur de p qu'en (B1).

Hypothèse (B3). (b i , c i ), i = 1, 2, . . ., i.i.d. avec b i , c i éventuellement dépendant, P(b 2 i +c 2 i > 0) = 1, E(b 2 i + c 2 i ) < ∞. Hypothèse (B4). a i ∈ (-1, 1), i = 1, 2, . . ., i.i.d. suivant la loi de fonction de répartition G(x) = P(a i ≤ x), x ∈ [-1, 1], vérifiant E(1 -a 2 i ) -1 < ∞. Hypothèse (B5). {η(t)}, {ξ i (t)}, (b i , c i ), a i sont indépendants pour tout i = 1, 2, . . . . Hypothèse (B6). G holdérienne: il existe L > 0, ∈ (0, 1] tel que |G(x)-G(y)| ≤ L|x-y| pour tout x, y ∈ [-1, 1].

On note que dans le contexte des données de panel {η(t)} est la composante des chocs communs et {ξ i (t)} est la composante des chocs individuels. Le processus RCAR(1) X i est à longue mémoire si E(1-a

2 i ) -1 < ∞ et E(1-a 2 i ) -2 = ∞.
Ces conditions sont compatibles avec l'hypothèse (B4). Les mêmes propriétés de longue mémoire sont vérifiés pour le processus limite d'un modèle d'agrégation contemporaine de processus RCAR(1) indépendants.

On construit un estimateur non paramétrique de la fonction de répartition G(x) = P(a i ≤ x), x ∈ [-1, 1], à partir des données de panel {X i (t), t = 1, . . . , n, i = 1, . . . , N }. Il est important de noter que l'on ne dispose donc pas d'observation suivant la loi G. L'estimateur proposé est

G N,n (x) := 1 N N i=1 1( a i,n ≤ x), x ∈ [-1, 1], avec a i,n := n-1 t=1 (X i (t) -Xi,n )(X i (t + 1) -Xi,n ) n t=1 (X i (t) -Xi,n ) 2
, où Xi,n := 1 n n t=1 X i (t) pour tout i = 1, . . . , N . Nous prouvons la convergence faible du processus empirique G N,n vers le pont brownien généralisé. Ce résultat implique la consistence et la normalité asymptotique de l'estimateur non paramétrique G N,n (x) de G(x).

par [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF]. Nous n'observons pas une perte importante de puissance pour le test de Kolmogorov-Smirnov par rapport à l'approche paramétrique. L'intérêt du test de Kolmogorov-Smirnov est qu'il ne nécessite pas la calibration d'un paramètre de réglage contrairement à l'approche paramétrique issue de [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF]. De plus ses propriétés asymptotiques sont établies sous des hypothèses plus faibles sur les innovations du modèle RCAR [START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF].

Nous abordons aussi la question des hypothèses composées. Les hypothèses du test sont

H 0 : G ∈ G := {G θ , θ ∈ (1, ∞) 2 }, H 1 : G ∈ G,
où G θ est la fonction de répartition de loi beta de paramètre θ = (α, β). On utilise la statistique de Kolmogorov-Smirnov avec θ estimé par la méthode des moments:

√ N sup x | G N,n (x) -G θ N,n (x)|.
Nous obtenons la loi limite de cette statistique ainsi que la normalité asymptotique de l'estimateur

µ (u) N,n := 1 N N i=1 ( a i,n ) u
des moments µ (u) = 1 -1 x u dG(x), u = 1, 2, . . . . Robinson [START_REF] Robinson | Statistical inference for a random coefficient autoregressive model[END_REF] a proposé un estimateur différent de µ (u) , dont il a établi la normalité asymptotique à n fixé quand N → ∞. Son résultat est obtenu uniquement pour des RCAR [START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF] indépendants et sous des hypothèses plus fortes sur G, qui ne permettent pas au processus individuel RCAR(1) X i d'être à longue mémoire.

Le dernier résultat du chapitre 5 porte sur l'estimateur à noyau de g(x) = G (x). Nous montrons la normalité asymptotique de cet estimateur et la convergence vers zéro de son erreur quadratique intégrée.

Transition d'échelle pour des champs aléatoires non linéaires (Chapitre 6).

Dans le chapitre 6 nous considérons des champs aléatoires X définis comme des fonctionnelles non linéaires (polynômes d'Appell) d'un champ aléatoire Y indexé par Z 2 . Le processus Y est supposé linéaire, plus précisément c'est une moyenne mobile indexé par Z 2 de variables aléatoires i.i.d. dont les coefficients déterministes tendent lentement vers zéro (de telle sorte que Y est à longue mémoire) et éventuellement avec des vitesses différentes dans les directions horizontale et verticale. Pour un champ aléatoire non linéaire X, nous étudions la loi limite des sommes partielles normalisées calculées sur des rectangles dont les cotés augmentent aux vitesses O(λ) et O(λ γ ) quand λ → ∞ et γ > 0 arbitraire. Nous essayons de trouver les champs aléatoires limites pour toutes les valeurs de γ > 0. La question principale est l'existence d'un point de transition γ 0 > 0 tel que les champs aléatoires limites ne dépendent pas de γ mais diffèrent pour γ > γ 0 et γ < γ 0 . On cherche donc à établir les conditions qui assurent l'existence de γ 0 . Nous étendons les résultats de [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF][START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF], où ce phénomène, appelé transition d'échelle, apparaît pour certains champs aléatoires linéaires à longue mémoire.

Plus précisément quelque soit γ > 0 nous étudions la limite

A -1 λ,γ [λx] t=1 [λ γ y] s=1 X(t, s) fidi → V γ (x, y), (x, y) ∈ R 2 + , (2) 
des sommes partielles d'un champ aléatoire stationnaire X = {X(t, s), (t, s) ∈ Z 2 } prises sur une suite croissante de rectangles (0, λx] × (0, λ γ y] ∩ Z 2 quand λ → ∞, où A λ,γ → ∞ est la normalisation. Lorsque γ = 1, les cotés des rectangles croissent à des taux différents O(λ) et O(λ γ ) quand λ → ∞, donc γ > 0 caractérise l'anisotropie du comportement asymptotique. Si la limite V γ := {V γ (x, y), (x, y) ∈ R 2 + } définie en (2) existe pour un certain γ > 0 avec A λ,γ = λ H (λ), où H > 0 et : [1, ∞) → R + est une fonction à variation lente, alors pour tout λ > 0, {V γ (λx, λ γ y), (x, y) ∈ R 2 + } fidi = {λ H V γ (x, y), (x, y) ∈ R 2 + }. Cette propriété est un cas particulier de la notion d'auto-similarité matricielle introduite par Biermé et al. [START_REF] Biermé | Operator scaling stable random fields[END_REF]. De plus, les accroissements rectangulaires du champ V γ sont stationnaires: pour tout (x 0 , y 0 ) ∈ R 2 + fixé, {V γ ((x 0 , x] × (y 0 , y]), x > x 0 , y > y 0 } fidi = {V γ ((0, x -x 0 ] × (0, y -y 0 ]), x > x 0 , y > y 0 } ≡ {V γ (x -x 0 , y -y 0 ), x > x 0 , y > y 0 }, où l'accroissement rectangulaire du champ V γ sur le rectangle (x 0 , x] × (y 0 , y] ⊂ R 2 + est défini par V γ ((x 0 , x] × (y 0 , y]) := V γ (x, y) -V γ (x 0 , y) -V (x, y 0 ) + V γ (x 0 , y 0 ). Ces propriétés générales sur la limite V γ ont été obtenues par [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF].

Pour de nombreux champs aléatoires non triviaux, la limite V γ définie en (2) existe pour tout γ > 0. Dans ce cas pour un champ aléatoire fixé X, nous associons la famille des champs limites indéxée par γ, {V γ , γ > 0}, qui caractérise la dépendance et les propriétés asymptotiques du X. Si {X(t, s), (t, s) ∈ Z 2 } sont des variables aléatoires i.i.d. centrées et réduites, la limite V γ coïncide avec le drap brownien standard pour tout γ > 0, i.e. {V γ , γ > 0} est réduit à un élément. On obtient des résultats similaires pour les champs à courte mémoire, voir e.g. [START_REF] Bolthausen | On the central limit theorem for stationary mixing random fields[END_REF]. Les théorèmes limites pour les champs aléatoires à courte mémoire sont souvent obtenus pour des formes générales du domaine de sommation, la loi limite étant indépendante de la façon dont la région tend vers Z 2 . Des phénomènes surprenants apparaissent pour des champs à longue mémoire X, qui possèdent un changement de comportement asymptotique au point γ 0 > 0 comme décrit dans la définition suivante.

Définition (Puplinskaitė,Surgailis [90]). On dit que X possède une transition d'échelle s'il existe γ 0 > 0 tel que

V γ fidi = V + pour tout γ > γ 0 , V γ fidi = V -pour tout γ < γ 0 , V + fidi = aV -pour tout a > 0.
Si V γ ne dépend pas de γ > 0, alors X ne possède pas de transition d'échelle.

Il semble que la transition d'échelle soit une nouvelle caractéristique générale de la dépendance spatiale qui se produit pour de nombreuses champs aléatoires isotropes et anisotropes sur Z 2 à longue mémoire. Elle a été établie pour une classe de champs gaussiens à longue mémoire [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF], une classe de modèles agrégés sur les plus proches voisins [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF] et certains champs aléatoires résultant de l'agrégation de ON/OFF ou de processus RCAR [START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF]; voir [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF][START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF][START_REF] Pilipauskaitė | Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes[END_REF] et [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF]Remarque 2.3]. D'une manière plus générale, le phénomène s'est avéré apparaitre pour certains champs aléatoires sur Z d avec d ≥ 2 in [START_REF] Biermé | Invariance principles for operator-scaling Gaussian random fields[END_REF].

Les travaux mentionnés traitent des champs aléatoires linéaires exprimés sous la forme de sommes (intégrales stochastiques) par rapport à un «bruit» i.i.d. Il est bien connu que les champs aléatoires non linéaires peuvent avoir un comportement asymptotique assez compliqué et non gaussien. Voir Dobrushin, Major [START_REF] Dobrushin | Non-central limit theorems for non-linear functional of Gaussian fields[END_REF], [START_REF] Anh | Macroscaling limit theorems for filtered spatiotemporal random fields[END_REF][START_REF] Avram | Noncentral limit theorems and Appell polynomials[END_REF][START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF][START_REF] Giraitis | CLT and other limit theorems for functionals of Gaussian processes[END_REF][START_REF] Ho | Limit theorems for functionals of moving averages[END_REF][START_REF] Lavancier | Invariance principles for non-isotropic long memory random fields[END_REF][START_REF] Leonenko | Random Fields with Singular Spectrum[END_REF][START_REF] Surgailis | Zones of attraction of self-similar multiple integrals[END_REF][START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF] et les références citées dans ces papiers.

Considérons un champ aléatoire linéaire Y = {Y (t, s), (t, s) ∈ Z 2 } admettant une représentation moyenne mobile:

Y (t, s) := (u,v)∈Z 2 a(t -u, s -v)ε(u, v), (t, s) ∈ Z 2 , ( 3 
)
où les variables aléatoires {ε(t, s), (t, s) ∈ Z 2 } sont i.i.d. Eε(0, 0) = 0, Eε 2 (0, 0) = 1, et où les coefficients

a(t, s) = (|t| 2 + |s| 2 q 2 q 1 ) -q 1 2 L t (|t| 2 + |s| 2 q 2 q 1 ) 1 2 
+ o [START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF] ,

quand |t| + |s| → ∞, q i > 0, i = 1, 2, satisfont 1 < Q := 1 q 1 + 1 q 2 < 2, et L : [-1, 1] → [0, ∞) est bornée et continue.
La condition Q < 2 assure que (t,s)∈Z 2 a 2 (t, s) < ∞, i.e. Y est bien défini, et Q > 1 implique (t,s)∈Z 2 |a(t, s)| = ∞, en d'autre terme Y est à longue mémoire. Notons que a(t, 0) = O(|t| -q 1 ), t → ∞, et a(0, s) = O(|s| -q 2 ), s → ∞, décroissent à des taux différents si q 1 = q 2 , auquel cas Y présente une forte anisotropie.

Nous considérons une classe de champs aléatoires non linéaires X = {X(t, s), (t, s) ∈ Z 2 } construits de la façon suivante à partir de Y défini en [START_REF] Arcones | Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors[END_REF]. Pour k ∈ N fixé, on suppose E|ε(0, 0)| 2k < ∞ et on pose

X(t, s) := A k (Y (t, s)), (t, s) ∈ Z 2 , ( 4 
)
où A k est le k ème polynôme d'Appell par rapport à Y (0, 0). Rappelons que le kème polynôme d'Appell A k (x), x ∈ R, par rapport à la loi de ξ avec E|ξ| k < ∞, est défini par

A k (x) := (-i) k d k du k e iux
Ee iuξ u=0 .

Par exemple si Eξ = 0, alors [START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF], les polynômes d'Appell et les polynômes de Hermite coïncident.

A 1 (ξ) = ξ, A 2 (ξ) = ξ 2 -Eξ 2 , A 3 (ξ) = ξ 3 -3ξEξ 2 -Eξ 3 . Si ξ d = N (0,
Pour donner les conditions de longue mémoire pour le champ X = A k (Y ), nous introduisons les paramètres p i := q i (2 -Q), i = 1, 2 et P := 1 p 1 + 1 p 2 . On a l'équivalence suivante:

P > 1 ⇐⇒ Q > 1.
Proposition (Chapitre 6, Corollaire 6.11). Supposons que X = A k (Y ) défini en (4) avec Y défini en [START_REF] Arcones | Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors[END_REF]. Soit r(t, s) := EX(0, 0)X(t, s), (t, s) ∈ Z 2 .

(i) Si 1 ≤ k < P , alors (t,s)∈Z 2 |r(t, s)| = ∞ (longue mémoire).

(ii) Si k > P , alors (t,s)∈Z 2 |r(t, s)| < ∞ (courte mémoire).

Dans le chapitre 6 nous étudions les limites des sommes partielles normalisées de X = A k (Y ) calculées sur des rectangles. Le résumé suivant décrit les principaux résultats (voir Chapitre 6, Théorèmes 6.1-6.5).

(R1) Si 1 < k < P , alors X = A k (Y ) possède la propriété de transition d'échelle au point γ 0 := p 1 /p 2 = q 1 /q 2 indépendant de k.

(R2) V γ 0 est non gaussien (sauf si k = 1) et s'exprime comme une intégrale multiple d'Itô-Wiener de dimension k.

(R3) Si γ > γ 0 , alors

V γ =    FBSheet(H + 1k , 1/2) avec H + 1k ∈ (1/2, 1) si kp 2 > 1, {xZ + k (y), (x, y) ∈ R 2 + } si kp 2 < 1,
où FBSheet représente le drap brownien fractionnaire et où Z + k est un processus autosimilaire qui s'écrit comme une intégrale multiple d'Itô-Wiener de dimension k. On obtient un résultat similaire si 0 < γ < γ 0 .

(R4) Si k > P , alors X = A k (Y ) ne possède pas la propriété de transition d'échelle et V γ est le drap brownien pour tout γ > 0.

(R5) Si ε(0, 0) d = N (0, 1) et Y (0, 0) d = N (0, 1), i.e. Y est gaussien, alors (R1)-(R4) sont vérifiées pour X = G(Y ), où G est une fonction non linéaire avec EG(Y (0, 0)) = 0, EG 2 (Y (0, 0)) < ∞ et G est de rang de Hermite k ≥ 1.

La liste ci-dessus contient plusieurs résultats de type théorème central ou non-central limite. (R2), (R4) et (R5) sont des nouveaux résultats dans le cas «anisotrope» p 1 = p 2 , tandis que (R3) est nouveau, même pour le champ linéaire X = A 1 (Y ) = Y . Comme dans le cas des modèles linéaires [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF][START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF], les limites dans (R3) ont des accroissements indépendants ou complètement dépendants le long de l'un des axes. La dichotomie de la distribution limite dans (R3) est liée à la présence ou à l'absence de la propriété de longue mémoire verticale / horizontale de X, voir la remarque 6.4, page 116. Nous notons également que les preuves du théorème central limite de (R3) et (R4) utilisent une approximation plutôt simple par les variables aléatoires m-dépendantes.

Les résultats de ce type contribuent à la théorie asymptotique des processus spatiaux fortement dépendants en montrant que la distribution limite des statistiques linéaires et non linéaires peut dépendre de la relation entre γ et γ 0 .

Comportement asymptotique anisotropique pour les modèles germes-grains (Chapitre 7).

Dans le chapitre 7 nous considérons un champ aléatoire X indexé par R 2 , appelé modèle germes-grains aléatoire. Les germes sont des points uniformément distribués sur le plan R 2 auxquels on associe des ensembles (appelés grains) dont les aires sont des variables aléatoires i.i.d. de variance infinie. En chaque point, X est égale au nombre d'ensembles aléatoires auxquels le point appartient. La condition sur la variance des aires implique que le champ X est à longue mémoire. Notre objectif est d'obtenir le champ aléatoire limite des intégrales partielles normalisées et centrées de X calculées sur les rectangles, dont les côtés augmentent à la vitesse O(λ) et O(λ γ ) quand λ → ∞ pour γ > 0 arbitraire. Nous étendons donc les résultats sur le changement d'échelle isotrope (γ = 1) obtenus par [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]. En outre, nous étudions la charge totale accumulée sur un réseau à partir d'un modèle M/G/∞ généralisé et relions les résultats asymptotiques aux résultats obtenus pour X.

Pour être plus précis, nous considérons le modèle de germes-grains aléatoire:

X(t, s) := i 1 t -u i R p i , s -v i R 1-p i ∈ B , (t, s) ∈ R 2 , ( 5 
)
où le grain B ⊂ R 2 est un ensemble borélien déterministe borné (par exemple un disque, un carré) avec Leb(∂B) = 0, 0 < p < 1 est le paramètre de forme, {(u i , v i ), R i } est un processus ponctuel de Poisson sur R 2 × R + d'intensité dudvF (dr). Nous supposons que F est une fonction de répartition sur R + admettant une densité f de la forme

f (r) ∼ c f r -(1+α) quand r → ∞, avec 1 < α < 2, c f > 0. ( 6 
)
La somme dans (5) compte le nombre d'ensembles de la forme (u i , v i ) + R P i B contenant (t, s), où R P B := {(R p u, R 1-p v) : (u, v) ∈ B} ⊂ R 2 est la version dilatée de B par le facteur R p (resp. R 1-p ) dans la direction horizontale (resp. verticale).

Le cas p = 1/2 correspond à la dilatation uniforme ou isotropique. Notons que l'aire Leb(R P B) = Leb(B)R du grain générique dilaté aléatoirement est proportionnelle à R. Elle ne dépend pas de p et elle a une loi à queue lourde de moyenne E Leb(R P B) < ∞ et de variance infinie E Leb(R P B) 2 = ∞ d'après [START_REF] Barndorff-Nielsen | Superposition of Ornstein-Uhlenbeck type processes[END_REF]. La condition [START_REF] Barndorff-Nielsen | Superposition of Ornstein-Uhlenbeck type processes[END_REF] assure aussi que la fonction de covariance du modèle de germes-grains n'est pas intégrable i.e. R 2 | Cov(X(0, 0), X(t, s))|dtds = ∞, donc [START_REF] Bai | Generalized Hermite processes, discrete chaos and limit theorems[END_REF] est un champ à longue mémoire.

Soit γ > 0 arbitraire, nous étudions la limite suivante du modèle de germes-grains:

A -1
λ,γ (0,λx]×(0,λ γ y] (X(t, s) -EX(t, s))dtds fidi → V γ (x, y), (x, y) ∈ R 2 + , [START_REF] Beran | Statistics for Long-Memory Processes[END_REF] quand λ → ∞, où A λ,γ → ∞ est la normalisation. Le changement d'échelle isotropique (cas γ = 1) pour p = 1/2 en dimension quelconque a été discuté dans Kaj et al. [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF], Biermé et al. [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF]. Nous résumons les résultats de ce chapitre dans la figure suivante, elle décrit les limites V γ := {V γ (x, y), (x, y) ∈ R 2 + } dans [START_REF] Beran | Statistics for Long-Memory Processes[END_REF] quand γ varie entre 0 et ∞. 

V γ en fonction de γ variant de 0 à ∞, 1 < α < 2, 0 < p < 1.

Tout d'abord, nous obtenons {V γ , γ > 0} avec deux points de transition

γ -:= 1 -p α -(1 -p) < γ + := α -p p ,
ceci est une nouvelle caractéristique de la dépendance spatiale par rapport aux résultats obtenus dans [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF][START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF], où l'unicité du point de transition a été prouvée pour certains champs gaussiens, des modèles autorégressifs agrégés sur les plus proches voisins. En raison de la symétrie du modèle de germes-grains aléatoire dans [START_REF] Bai | Generalized Hermite processes, discrete chaos and limit theorems[END_REF], les limites dans [START_REF] Beran | Statistics for Long-Memory Processes[END_REF] sont symétriques sous le changement simultané x ↔ y, γ ↔ 1/γ, p ↔ 1 -p, et une transformation de réflexion de B. Cette symétrie se reflète dans la figure, où la région gauche 0 < γ ≤ γ -et la région droite γ + ≤ γ < ∞, y compris les points de transition γ ± , sont symétriques par rapport aux transformations ci-dessus. La région du milieu γ -< γ < γ + dans la figure correspond à un drap de Lévy α-stable. Pour γ > γ + , les limites dans [START_REF] Beran | Statistics for Long-Memory Processes[END_REF] présentent une dichotomie selon les paramètres α, p. Si 2 -p ≤ α < 2, alors le champ aléatoire V γ est un drap brownien fractionnaire de paramètre de Hurst (H + , 1/2), où H + = (2 -α + p)/2p ∈ (1/2, 1), alors que si 1 < α < 2 -p, on a V γ (x, y) = xL(y), (x, y) ∈ R 2 + , où L(y), y ∈ R 2 + , est un processus de Lévy α + -stable avec α + := (α -p)/(1 -p) > α. Cette dichotomie de V γ pour γ > γ + est liée à la transition de X de la longue mémoire verticale vers la courte mémoire verticale: pour n'importe quel T > 0,

[-T,T ]×R

Cov(X(0, 0), X(t, s))dtds

   = ∞, 1 < α ≤ 2 -p, < ∞, 2 -p < α < 2.
Enfin, les limites «Poisson intermédiaire» au point γ = γ ± ne sont pas stables, bien que les champs soient infiniment divisibles, définis par des intégrales stochastiques par rapport à une mesure aléatoire de Poisson sur R 2 × R + de mesure d'intensité c f dudvr -(1+α) dr Nos résultats sont liés par exemple, à ceux obtenus dans [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF][START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF], où différents régimes se produisent pour les modèles de trafic internet agrégés. Plus précisément, dans ces études, on suppose que le trafic est généré par des sources indépendantes (copies du modèle ON/OFF avec des durées à queue lourde) et l'objectif est d'obtenir la distribution limite du trafic agrégé car l'échelle de temps et le nombre de sources ont tous deux tendance à tendre vers ∞, éventuellement à des taux différents. Dans Théorèmes 7.9, 7.10, nous étendons les travaux mentionnés ci-dessus et obtenons la distribution limite du processus de charge agrégé

A -1 T T x 0 (W (t) -EW (t))dt, x ≥ 0, quand T → ∞, où A T → ∞ est la normalisation et W (t) := i (R 1-p i ∧ T β )1(u i < t ≤ u i + R p i ), t ≥ 0, (8) 
où {u i , R i } est un processus ponctuel de Poisson sur R × R + d'intensité T γ duf (r)dr avec f vérifiant (6) et 0 < p ≤ 1, 0 < γ < ∞, 0 < β ≤ ∞ sont arbitraires. La quantité W (t) définie en [START_REF] Beran | Long-Memory Processes: Probabilistic Properties and Statistical Methods[END_REF] représente la charge au temps t transmise par les sources connectées au temps u i et transmettant avec un taux R 1-p i 1

Introduction

Long-range dependence (also called long memory) is a well-established empirical fact observed in diverse scientific disciplines and applied fields, including hydrology, astronomy, environmental sciences, economics and finance, communication networks, see [START_REF] Beran | Statistics for Long-Memory Processes[END_REF][START_REF] Beran | Long-Memory Processes: Probabilistic Properties and Statistical Methods[END_REF][START_REF] Doukhan | Theory and Applications of Long-Range Dependence[END_REF] for data examples and numerous references on the subject. It refers to the persistence of dependence between observations that are far apart in time or space. In mathematical framework, longrange dependence usually means the property of a stationary process, when its covariance series is not absolutely convergent. To develop statistical methodology for long-range dependent data is of great importance. Given the difficulty to specify the law of sample statistics, a significant part of statistical procedures relies on limit theorems for sums of observations or their functions. However, asymptotic results and thus statistical inference under long-range dependence may differ very much from the classical case of i.i.d. random variables. This thesis is devoted to limit theorems for spatio-temporal models with long-range dependence.

Aims and problems.

We summarize briefly the problems studied in this doctoral thesis.

In Chapter 3 we discuss a joint temporal and contemporaneous aggregation of N independent copies X 1 , . . . , X N of AR(1) process X with random autoregressive coefficient a. Given the point-wise sum of X 1 , . . . , X N , we look for the limit distribution of its normalized partial sums process as both N and time scale n tend to infinity. Under assumption that a has a density, regularly varying near the unit root a = 1 with index β ∈ (-1, 1), we show that different limit processes exist if N 1/(1+β) /n tends to (i) ∞, (ii) 0, (iii) µ ∈ (0, ∞). We compare our results to those obtained by [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF], where three distinct limit regimes appear for cumulative network traffic generated by N independent sources at time scale n.

Chapter 4 complements Chapter 3 as we solve the identical problem for AR(1) processes with i.i.d. random autoregressive coefficients, but all driven by common innovations. Under the same assumption on the density of autoregressive coefficient, for β ∈ (-1/2, 0) we obtain different limit distribution of normalized aggregated partial sums process if N 1/(1+β) /n tends to (i) ∞, (ii) 0, (iii) µ ∈ (0, ∞).

In Chapter 5 we discuss estimation of the distribution function G of the autoregressive coefficient from N random-coefficient AR(1) series each of length n. And contrary to [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF][START_REF] Robinson | Statistical inference for a random coefficient autoregressive model[END_REF], we take a nonparametric approach to the problem. We estimate G by the empirical distribution function of lag 1 sample autocorrelations of individual AR(1) processes, which are themselves estimates of unobservable autoregressive coefficients. We study the limit of the corresponding empirical process under some conditions on regularity of G and on the relative rate how fast N and n tend to infinity. We apply the obtained result to testing with Kolmogorov-Smirnov statistic both simple and composite hypotheses that G equals the beta distribution function. We perform a simulation study to compare the finite-sample performance of our test and its parametric analogue due to [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF].

In Chapter 6 we consider a random field X defined as a nonlinear function (Appell polynomial) of a Z 2 -indexed random field Y . Let Y itself be linear, more precisely, a moving average of Z 2 -indexed standardized i.i.d. r.v.s with deterministic coefficients decaying slowly (so as to induce long-range dependence in Y ) and possibly at different rate along horizontal and vertical directions. For a nonlinear random field X, we study the limiting distribution of its normalized partial sums over rectangles with sides growing at rates O(λ) and O(λ γ ) as λ → ∞ for arbitrary γ > 0. We aim to find the limiting random fields for all γ > 0. The main question is if there exists a change-point γ 0 > 0 such that the limiting random fields do not depend on γ but differ for γ > γ 0 and γ < γ 0 and if so under what conditions. We extend the results of [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF][START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF], where this phenomenon, referred to as scaling transition, appears for some linear long-range dependent random fields.

In Chapter 7 we consider a R 2 -indexed random field X, the so-called random grain model, that counts sets, which are uniformly scattered on the plane and of infinite variance in area so that to induce long-range dependence in X. Our aim is to obtain the limiting random field of normalized partial integrals of the centered X over rectangles with sides growing at rates O(λ) and O(λ γ ) as λ → ∞ for arbitrary γ > 0. We thus extend results on isotropic scaling (γ = 1 case) due to [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF]. Moreover, we investigate the total accumulated workload from a generalized M/G/∞ model and relate its asymptotics to the results obtained for X.

The novelty of the results in the thesis:

• three different limit regimes identified in the scheme of joint temporal-contemporaneous aggregation for random-coefficient AR(1) processes; new limit process in the 'intermediate' regime and its properties;

• proof that the empirical process, based on lag 1 sample autocorrelations of individual random-coefficient AR(1) processes, converges weakly to a generalized Brownian bridge;

• proof that nonlinear random fields may exhibit scaling transition;

• proof that two change-points may exist in the family of scaling limits (for a random grain model).

• Thiele Seminar, Aarhus University, Denmark, January 19, 2017.

• 2nd Conference on Ambit Fields and Related Topics, Aarhus, Denmark, August 14-16, 2017.

• 34th International Seminar on Stability Problems for Stochastic Models, Debrecen, Hungary, August 25-29, 2017.

The results of the thesis were also presented at the seminar on Probability Theory and Statistics held at the Institute of Mathematics and Informatics of Vilnius University, and at the seminar on Econometrics held at the Faculty of Mathematics and Informatics of Vilnius University.

Literature review

In this chapter we review the most important concepts and some results related to the later parts of the thesis and give references for their in-depth coverage.

Long-range dependence

A T -indexed stochastic process X is a collection {X(t), t ∈ T } of random variables (r.v.s), where T ⊆ R d is the set of indices with d = 1 or 2 in the thesis. If d ≥ 2, X is usually called a random field (RF) on T . The law (distribution) of X is completely determined by its finite-dimensional distributions P(X(t 1 ) ∈ A 1 , . . . , X(t m ) ∈ A m ) for all Borel sets A i ⊂ R, t i ∈ T , i = 1, . . . , m and m ∈ N. A stochastic process X indexed by T = Z d or R d is called stationary if X and {X(t + t 0 ), t ∈ T } have the same law for any t 0 ∈ T . In case of stationary X with EX 2 (0) < ∞, its mean function t → EX(t) is constant and its covariance function (t, s) → Cov(X(t), X(s)) depends only on the difference t -s, since Cov(X(t), X(s)) = Cov(X(0), X(t -s)) for any t, s ∈ T .

In the thesis, we study several examples of stationary X that may have long-range dependence. We also refer to this property as long memory, which is a more common term for processes indexed by Z in literature for time series analysis. This definition easily extends to the R d -indexed X. By Bochner's theorem, the covariance function of a stationary RF X on Z d with EX 2 (0) < ∞ has the following spectral representation:

Definition 2.1. A stationary stochastic process

{X(t), t ∈ Z d } with EX 2 (0) < ∞ and covariance function r(t) := Cov(X(0), X(t)), t ∈ Z d , is said to be long-range dependent (LRD) if t∈Z d |r(t)| = ∞,
r(t) = [-π,π) d e i<t,x> F (dx), t ∈ Z d ,
where F (dx) is a nonnegative finite measure on [-π, π) d called the spectral measure of X and < t, x > is the scalar product of t and x. In most cases of interest, the spectral measure is absolutely continuous w.r.t. the Lebesgue measure and is determined by its density function f (x), x ∈ [-π, π) d called the spectral density of X, which can also describe the dependence of X. In particular, the fact that the spectral density f is unbounded implies that X has LRD, since the absolute convergence of the covariance series results in bounded f . Definition 2.1 being limited to stationary processes with finite second moment, there are other notions of LRD, see e.g. [START_REF] Cox | Long-range dependence: A review[END_REF][START_REF] Heyde | On defining long-range dependence[END_REF][START_REF] Samorodnitsky | Long range dependence[END_REF][START_REF] Samorodnitsky | Stochastic Processes and Long Range Dependence[END_REF] and [START_REF] Paulauskas | Some remarks on definitions of memory for stationary random processes and fields[END_REF][START_REF] Puplinskaitė | Aggregation of Autoregressive Processes and Random Fields with Finite or Infinite Variance[END_REF] with references therein. In the thesis we refer to LRD in the sense of Definition 2.1, unless stated otherwise. In case d = 2, the dependence of X may vary when quantified along different directions. This leads to a more detailed classification of LRD/SRD properties by Definition 7.1 on page 143.

Random-coefficient AR(1) process

In Chapters 3-5 of the thesis, the following stochastic model plays an important role. The process X = {X(t), t ∈ Z} is said to be an autoregressive process of order 1 (or AR(1)) with random coefficient if it is stationary and for every t satisfies

X(t) = aX(t -1) + ζ(t), ( 2.1) 
where innovations {ζ(t), t ∈ Z} are i.i.d. r.v.s with Eζ(0) = 0, Eζ 2 (0) = 1 and AR coefficient a ∈ (-1, 1) is a r.v., independent of {ζ(t), t ∈ Z}. There exists a unique stationary solution to this equation, given by the series

X(t) = s≤t a t-s ζ(s), ( 2.2) 
see [START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and common innovations[END_REF]Proposition 1]. The series converges conditionally a.s. and in L 2 for almost every a ∈ (-1, 1). Moreover, if

E 1 1 -a 2 < ∞,
then the series in (2.2) converges unconditionally in L 2 and X has zero-mean and covariance function

r(t) := EX(0)X(t) = E a |t| 1 -a 2 , t ∈ Z.
See [START_REF] Robinson | Statistical inference for a random coefficient autoregressive model[END_REF] for spectral properties of r(t) and some other properties of X.

Next, we discuss two types of aggregation considered in the thesis jointly for copies of the process X in (2.2) and a related problem of estimating the underlying distribution of the AR coefficient. Recent developments in aggregation and statistical inference for AR models with focus on the long memory property can be found in the review [START_REF] Leipus | Aggregation and long memory: recent developments[END_REF] and the thesis [START_REF] Puplinskaitė | Aggregation of Autoregressive Processes and Random Fields with Finite or Infinite Variance[END_REF].

Aggregation

Contemporaneous (or cross-sectional) aggregation refers to the point-wise summation of processes X i = {X i (t), t ∈ Z}, i = 1, 2, . . . . The limit aggregated process X , if exists, is defined as

{X (t), t ∈ Z} := (fdd) lim N →∞ A -1 N N t=1 X i (t), t ∈ Z , ( 2.3) 
where A N is some normalization. Granger [START_REF] Granger | Long memory relationships and the aggregation of dynamic models[END_REF] originated the idea that contemporaneous aggregation may be a reason for the long memory phenomenon observed in macro-level economic time series X . To be specific, consider a huge population of heterogeneous 'micro-agents' (such as households or firms), each of which evolves according to a short memory AR(1) process X i with its own deterministic coefficient a i . Drawing a random sample from this population leads to the assumption that AR coefficients a i are i.i.d. r.v.s. Following Granger [START_REF] Granger | Long memory relationships and the aggregation of dynamic models[END_REF], assume that the common distribution of a i is continuous with the following density function of beta type

g(x) = 2 B(α, β) x 2α-1 (1 -x 2 ) β-1 , x ∈ (0, 1), (2.4) 
where α > 0, β > 0. To rephrase this, the squared AR coefficient a i is beta distributed with parameters (α, β). Let X i , i = 1, 2, . . . be independent copies of a random-coefficient AR(1) process X in (2.2) under assumption (2.4) with β > 1, which guarantees EX 2 (0) < ∞. Then by the classical CLT, the limit in (2.3) exists for A N = √ N with X being a stationary Gaussian process with the same second-order characteristics as those of the individual 'micro-agent', i.e. X has zero-mean and covariance function EX (0)X (t) = EX(0)X(t) = r(t). If β ∈ (1, 2) in (2.4), then r(t) ∼ const t 1-β as t → ∞, implying that X has long memory. (Note that long memory of single X is not observable since X is indistinguishable from AR(1) series with the same deterministic AR coefficient.)

Another limit arises in aggregation of dependent time series. Let X i , i = 1, 2, . . . , be random-coefficient AR(1) processes as X in (2.1), that have i.i.d. AR coefficients a i , but are all driven by the same innovations {ζ i (t), t ∈ Z} ≡ {ζ(t), t ∈ Z}. Assume (2.4) with β > 1/2. In this case, under normalization A N = N the limit (in probability) aggregated process X exists and can be written as X (t) := s≤t E[a t-s ]ζ(s), t ∈ Z, see [START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and common innovations[END_REF][START_REF] Zaffaroni | Contemporaneous aggregation of linear dynamic models in large economies[END_REF]. If β ∈ (1/2, 1), the limit X has long memory, since EX (0)X (t) ∼ const t -2β+1 as t → ∞.

Following Granger [START_REF] Granger | Long memory relationships and the aggregation of dynamic models[END_REF], many authors took up the topic of contemporaneous aggregation, extending it to more general processes. We refer to [START_REF] Giraitis | Aggregation of random coefficient GLARCH(1,1) process[END_REF][START_REF] Gonçalves | Agrégation de processus autorégressifs d'ordre 1[END_REF][START_REF] Oppenheim | Aggregation of random parameters Ornstein-Uhlenbeck or AR processes: some convergence results[END_REF][START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and common innovations[END_REF][START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and idiosyncratic innovations[END_REF][START_REF] Zaffaroni | Contemporaneous aggregation of linear dynamic models in large economies[END_REF][START_REF] Zaffaroni | Aggregation and memory of models of changing volatility[END_REF], for instance.

Let us now introduce another type of aggregation. Temporal aggregation occurs when the frequency at which we observe a variable is lower than the frequency of its generating model. For a process Y = {Y (t), t ∈ Z} accumulating over time, we define its 'stock' as a partial sums process

S n (τ ) := [nτ ] t=1 Y (t), τ ≥ 0, with S n (0) := 0, whereas S n (τ ) -S n (τ -1) = nτ t=n(τ -1)+1 Y (t), τ = 1, 2, . . . ,
represents a 'flow', measured per unit of time. Note that evolution of the partial sum process S n during a time interval [0, τ ] corresponds to an interval [0, nτ ] on the original finer time scale for Y .

We may wonder which processes may occur as limits in temporal aggregation of Y as n → ∞. Under reasonably weak assumptions, Lamperti [START_REF] Lamperti | Semi-stable stochastic processes[END_REF] showed that all possible limiting processes of suitably normalized S n are self-similar. Recall that a process V = {V (τ ), τ ≥ 0} is called self-similar, if for some H > 0,

{V (λτ ), τ ≥ 0} fdd = {λ H V (τ ), τ ≥ 0} for all λ > 0.
In other words, V is invariant in distribution under certain simultaneous scaling of time and space.

Theorem 2.1 (Lamperti [58]). Let {Y (t), t ∈ Z} be a stationary process and assume there exist a sequence of positive numbers A n → ∞ such that

A -1 n [nτ ] t=1 Y (t) fdd → V (τ ), τ ≥ 0,
as n → ∞, where the limit process V := {V (τ ), τ ≥ 0} is not identically zero and is stochastically continuous. Then V is a H-self-similar process having stationary increments, where H > 0 and the normalization A n = n H (n) for some slowly varying function at infinity.

The only H-self-similar Gaussian process with stationary increments is a fractional Brownian motion. Let H ∈ (0, 1]. A Gaussian process {B H (τ ), τ ≥ 0} with EB H (τ ) ≡ 0 and covariance function given by

EB H (τ 1 )B H (τ 2 ) = 1 2 (τ 2H 1 + τ 2H 2 -|τ 1 -τ 2 | 2H ), τ 1 ≥ 0, τ 2 ≥ 0,
is called a standard fractional Brownian motion with (Hurst) index H.

Recall the limit X in (2.3) for independent copies of random-coefficient AR(1) process under assumption (2.4) with β ∈ [START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF][START_REF] Anh | Macroscaling limit theorems for filtered spatiotemporal random fields[END_REF]. By [START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and idiosyncratic innovations[END_REF]Theorem 3.1],

n -H [nτ ] t=1 X (t) fdd → σB H (τ ), τ ≥ 0,
where σ > 0 is a certain constant and B H is a standard fractional Brownian motion with index H = (3 -β)/2 ∈ (1/2, 1). A similar fact holds for random-coefficient AR(1) processes driven by common innovations under assumption (2.4) with β ∈ (1/2, 1), see e.g. [START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and common innovations[END_REF].

There are other classes of long memory processes Y . Limit theory for their partial sums {S n (τ ), τ ≥ 0} can be found in books [START_REF] Beran | Long-Memory Processes: Probabilistic Properties and Statistical Methods[END_REF]Chapter 4], [START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF]Chapter 4]. The methods and results differ significantly from the case when Y has short memory.

In the thesis temporal and contemporaneous aggregation are treated jointly. We look for the limit distribution of the normalized joint aggregate (contemporaneously aggregated partial sums) of random-coefficient AR(1) copies X 1 , . . . , X N as N and the time scale n tend to infinity simultaneously.

Estimation of the distribution of the AR coefficient

A statistical problem naturally arises, such as recovering the distribution function G(x), x ∈ [-1, 1], of the random AR coefficient. Estimation of G from the limit aggregated series {X (0), . . . , X (n)} was treated in [START_REF] Celov | Asymptotic normality of the mixture density estimator in a disaggregation scheme[END_REF][START_REF] Leipus | Orthogonal series density estimation in a disaggregation scheme[END_REF] and some related results were obtained in [START_REF] Celov | Time series aggregation, disaggregation, and long memory[END_REF][START_REF] Horváth | Effect of aggregation on estimators in AR(1) sequence[END_REF][START_REF] Jirak | Limit theorems for aggregated linear processes[END_REF]. However, we may expect a much more accurate estimate if individual series (panel data) are available.

Consider N random-coefficient AR(1) series, each of length n + 1: {X i (0), . . . , X i (n)}, i = 1, . . . , N , which are independent copies of X in (2.1). Robinson [START_REF] Robinson | Statistical inference for a random coefficient autoregressive model[END_REF] suggested to estimate the parameters characterizing G by the method of moments. [START_REF] Robinson | Statistical inference for a random coefficient autoregressive model[END_REF] identified moments of G in terms of autocovariances of individual random-coefficient AR(1) processes:

µ (u) := 1 -1 x u dG(x) = r(u) -r(u + 2) r(0) -r(2)
where r(u) := EX(0)X(u), u = 0, . . . , n, can be estimated by

1 (n -u + 1)N n-u t=0 N i=1 X i (t)X i (t + u),
and proved the asymptotic normality of the corresponding estimators of µ (u) , u = 1, . . . , n-2, as N → ∞, whereas n remains fixed, under assumption

1 -1 dG(x) (1 -x 2 ) 2 < ∞,
which does not allow for long memory in X and the limit aggregated process X .

Beran et al. [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF] considered independent copies X i , i = 1, 2, . . . , of the process X = {X(t), t = 0, 1, . . .}, satisfying the AR(1) equation (2.1) for all t ∈ N with initial value |X(0)| ≤ C, EX(0) = 0, independent of the AR coefficient a and i.i.d. standard normal innovations {ζ(t), t ∈ N}. Assume that a has a density function g given by (2.4) with (α, β) ∈ (1, ∞) 2 . (Recall X and the limit aggregated process X in (2.3) have long memory if β ∈ (1, 2).) Given the panel random-coefficient AR(1) data {X i (t), t = 0, . . . , n, i = 1, . . . , N }, [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF] estimated (α, β) by the method of maximum likelihood. The idea of [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF] about the likelihood is to replace each unobservable a i , i = 1, . . . , N , by its estimate, which in turn is a truncated version of lag 1 sample autocorrelation of the individual AR(1) process:

a i,n,κ := min(max( a i,n , κ), 1 -κ), where a i,n := n-1 i=0 X i (t)X i (t + 1) n i=0 X 2 i (t)
, κ > 0.

[9] proved the consistency of the corresponding maximum likelihood estimator of (α, β) and its asymptotic normality with the convergence rate √ N under the following conditions on the length of series n and the truncation parameter κ:

(log κ) 2 N -1/2 → 0, √ N κ min(α,β) → 0 and √ N κ -2 n -1 → 0 as N, n → ∞, κ → 0. [9]
is the closest in spirit to Chapter 5, where we discuss nonparametric estimation of the distribution function G of the AR coefficient from panel random-coefficient AR(1) data. Furthermore, employing the idea of [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF], we consider a different estimator for moments of G and prove its asymptotic normality as N, n → ∞ under less restrictive condition on G in contrast to [START_REF] Robinson | Statistical inference for a random coefficient autoregressive model[END_REF].

Aggregation of network traffic models

To explain the observed self-similarity and LRD in network traffic measurements, the following model has been proposed. Consider cumulative network traffic as an aggregate of data streams from a large number of independent sources, where each source alternates between ON and OFF states depending if it transmits data (at a constant rate 1) or not.

Then it is natural to analyze the total workload of high-speed network accumulated over time and study the distribution of its fluctuations around cumulative average.

But firstly, let us introduce the ON/OFF process in a mathematical framework. Assume the lengths of ON-periods {X on , X 1 , X 2 , . . .} are i.i.d. non-negative r.v.s and the lengths of OFF-periods {Y off , Y 1 , Y 2 , . . .} are i.i.d. non-negative r.v.s with the Pareto distribution functions:

F on (x) := P(X on ≤ x) = 1 -C on x -αon , α on ∈ (1, 2),
(2.5)

F off (y) := P(Y off ≤ y) = 1 -C off y -α off , α off ∈ (1, 2),
where C on , C off are finite positive constants (which can be replaced by arbitrary slowly varying functions at infinity). Note that X on , Y off have finite means µ on , µ off respectively, but their variances are infinite so that to induce LRD in the ON/OFF process. We define the renewal sequence {T k , k = 0, 1, . . .} by

T k := k j=0 (X j + Y j ), X 0 := B Xon , Y 0 := BY off + (1 -B) Ỹoff ,
where B is a Bernoulli r.v. with P(B = 1) = 1 -P(B = 0) = µ on /(µ on + µ off ) and Xon , Ỹoff have distribution functions

P( Xon ≤ x) = 1 µ on x 0 (1 -F on (u))du, P( Ỹoff ≤ y) = 1 µ off y 0 (1 -F off (u))du, respectively. Assume all B, Xon , Ỹoff , {X on , X 1 , X 2 , . . .}, {Y off , Y 1 , Y 2 , .
. .} are mutually independent. Finally, we define a stationary ON/OFF process W = {W (t), t ≥ 0} as

W (t) := 1(0 ≤ t < X 0 ) + ∞ k=0 1(T k ≤ t < T k + X k+1 ). (2.6)
In other words, W (t) = 1 if time t is in the ON-period, W (t) = 0 if time t is in the OFFperiod. For α on < α off , we have r(t) := Cov(W (0), W (t)) ∼ const t -(αon-1) as t → ∞, see [START_REF] Heath | Heavy tails and long range dependence in on/off processes and associated fluid models[END_REF].

With the covariance function being absolutely nonintegrable, W exhibits LRD. Now consider N independent copies

W i , i = 1, . . . , N , of the ON/OFF proces W = {W (t), t ≥ 0} in (2.6). Let S N,n (τ ) := nτ 0 N i=1 W i (t)dt, τ ≥ 0, (2.7) 
be the total accumulated workload from N i.i.d. ON/OFF sources by time τ at scale n. Taqqu et al. [START_REF] Taqqu | Proof of a fundamental result in selfsimilar traffic modeling[END_REF] studied the asymptotic behavior of S N,n = {S N,n (τ ), τ ≥ 0} in the sequential scheme. More precisely, [START_REF] Taqqu | Proof of a fundamental result in selfsimilar traffic modeling[END_REF] proved that finite-dimensional distributions of properly normalized and centered S N,n converge weakly to those of a fractional Brownian motion as first the number N of sources goes to infinity and then the time scale n converges to infinity. If limits are taken in reversed order, the limit distribution of properly normalized and centered S N,n corresponds to an infinite variance α on -stable Lévy motion. The increment process of fractional Brownian motion, fractional Gaussian noise, exhibits LRD. This is in contrast to stable Lévy motion, which while self-similar too, has independent increments. In Mikosch et al. [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF], the double limits are replaced by a single scheme as N and n go to infinity simultaneously. Two limit regimes of fast connection rate and slow connection rate (see Theorem 2.2(i) and (ii) below, respectively) are identified. In these two regimes fractional Brownian motion and α on -stable Lévy motion reappear as limit processes of the scaled centered total ON/OFF workload accumulated over time. [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF] complemented the results of [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF] by showing that a third limit process arises at intermediate connection rate (see Theorem 2.2(iii)).

Theorem 2.2 (Mikosch et al. [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF], Dombry, Kaj [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF]).

Let α := α on < α off in (2.5). If N → ∞ and n → ∞ so that (i) N/n α-1 → ∞, then S N,n (τ ) -ES N,n (τ ) N 1/2 n (3-α)/2 fdd → σ ∞ B H (τ ), τ ≥ 0,
where

B H = {B H (τ ), τ ≥ 0} is a standard fractional Brownian motion with index H = (3 -α)/2 and σ 2 ∞ := C on 2µ 2 off Γ(2 -α)/(α -1) (µ on + µ off ) 3 Γ(4 -α) ; (ii) N/n α-1 → 0, then S N,n (τ ) -ES N,n (τ ) N 1/α n 1/α fdd → σ 0 L(τ ), τ ≥ 0,
where L = {L(τ ), τ ≥ 0} is an α-stable Lévy motion with Ee iθL(1) = exp{-|θ| α (1i sgn θ tan(πα/2))}, θ ∈ R, and

σ 0 := µ off (C on /C α ) 1/α (µ on + µ off ) 1+1/α , C α := 1 -α Γ(2 -α) cos(πα/2) ; (iii) N/n α-1 → c α-1 (µ on + µ off )/C on , then S N,n (τ ) -ES N,n (τ ) n fdd → µ off µ on + µ off cZ(τ /c), τ ≥ 0,
where Z = {Z(τ ), τ ≥ 0} is characterized by the cumulant generating function of its finite-dimensional distributions.

The 'intermediate' process Z = {Z(τ ), τ ≥ 0} is zero-mean, non-Gaussian and non-stable with stationary increments. It is not self-similar and has a representation as

Z(τ ) = R×R + τ 0 1(u ≤ t < u + x)dt M (dx, du),
where M (dx, du) := M (dx, du) -αx -α-1 dxdu and M (dx, du) is a Poisson random measure on R + × R with intensity αx -α-1 dxdu. Other properties of Z are discussed in [START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF][START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF]. In particular, employing the stochastic-integral representation of Z, Gaigalas [START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF] showed that the process is locally and globally asymptotically self-similar with B H and L as its tangent limits. So Z can be viewed as a bridge between the limiting processes in cases (i) and (ii).

Similar limit theorems as for the ON/OFF hold for other network traffic models, e.g. renewal-reward process, M/G/∞ queue (or infinite source Poisson process), see [START_REF] Kaj | Scaling limit results for the sum of many inverse Lévy subordinators[END_REF][START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF][START_REF] Levy | Renewal reward processes with heavy-tailed inter-renewal times and heavy-tailed rewards[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF][START_REF] Pipiras | Slow, fast and arbitrary growth conditions for renewal-reward processes when both the renewals and the rewards are heavy-tailed[END_REF], with Gaigalas, Kaj [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF] being the first to obtain the limit Z at intermediate connection rate for the sum of independent scaled renewal processes.

In Chapters 3, 4 of the thesis we discuss joint aggregation of type (2.7) for copies of random-coefficient AR(1) process, which has a very different dependence structure from the above-mentioned models.

Finally, let us introduce another popular network traffic model related to the thesis. M/G/∞ queue W λ = {W λ (t), t ≥ 0} describes a system where the arrivals are Markovian, the service times follow some general distribution and there are infinitely many servers, so jobs do not need to wait. More precisely, let W λ (t) count the number of active sessions (or sources in the network system) at time t. The sessions start at times {T k , k ∈ Z}, which are the points of a rate λ homogeneous Poisson process on R, and throughout each session data are transmitted at rate 1. Assume the transmission durations (session lengths) {X k , k ∈ Z} are i.i.d. r.v.s with the distribution function F on given by (2.5), independent of the starting points of sessions. Then we define the workload process W λ by

W λ (t) := ∞ k=-∞ 1(T k ≤ t < T k + X k ), t ≥ 0.
(2.8)

Similarly to the ON/OFF case, high variability in transmission durations causes LRD in the rate at which work is offered: Cov(W λ (0), W λ (t)) ∼ const t -(αon-1) as t → ∞. The so-called infinite source Poisson process

S λ,n (τ ) = nτ 0 W λ (t)dt, τ ≥ 0,
represents the total accumulated workload by time τ at scale n. Note, as the session intensity λ → ∞ and n → ∞ simultaneously, normalized and centered S λ,n admits the same limits as the total accumulated ON/OFF workload. In Chapter 7 of the thesis we generalize the network traffic model W λ in (2.8) for the situation when the transmission rate is random and bound with its duration and then study asymptotic behavior of the corresponding aggregated workload. Moreover, Chapter 7 of the thesis treats a random grain model, whose analogue in dimension 1 the M/G/∞ queue is.

Anisotropic scaling of random fields

Let X = {X(t, s), (t, s) ∈ Z 2 } be a stationary random field (RF). For arbitrary γ > 0 we study the limit

A -1 λ,γ [λx] t=1 [λ γ y] s=1 X(t, s) fdd → V γ (x, y), (x, y) ∈ R 2 + , ( 2.9) 
of the partial sums of X over increasing rectangles (0, λx] × (0, λ γ y] ∩ Z 2 as λ → ∞, where A λ,γ → ∞ is a normalization. Provided γ = 1, the sides of the rectangles grow at different rates O(λ) and O(λ γ ) as λ → ∞, thus γ > 0 characterizes the anisotropy of scaling procedure.

Next, let us introduce some general properties of scaling limits in (2.9).

Proposition 2.3 (Puplinskaitė,Surgailis [90]). Let X = {X(t, s), (t, s) ∈ Z 2 } be a stationary RF satisfying (2.9) for some γ > 0 and A λ,γ = λ H (λ), where H > 0 and : [1, ∞) → R + is a slowly varying function at infinity. Then the limit RF V γ = {V γ (x, y), (x, y) ∈ R 2 + } in (2.9) satisfies the operator-scaling property:

{V γ (λx, λ γ y), (x, y) ∈ R 2 + } fdd = {λ H V γ (x, y), (x, y) ∈ R 2 + } for all λ > 0. (2.10)
Moreover, V γ has stationary rectangular increments: for any fixed (x 0 , y 0 ) ∈ R 2 + , {V γ ((x 0 , x] × (y 0 , y]), x > x 0 , y > y 0 } fdd = {V γ ((0, x -x 0 ] × (0, y -y 0 ]), x > x 0 , y > y 0 } ≡ {V γ (x -x 0 , y -y 0 ), x > x 0 , y > y 0 }, where the increment of V γ on a rectangle (x 0 , x] × (y 0 , y] ⊂ R 2 + is defined as V γ ((x 0 , x] × (y 0 , y]) := V γ (x, y) -V γ (x 0 , y) -V γ (x, y 0 ) + V γ (x 0 , y 0 ). Note (2.10) is a particular case of the operator-scaling RF property introduced in Biermé et al. [START_REF] Biermé | Operator scaling stable random fields[END_REF].

For many RFs, nontrivial V γ in (2.9) exists for any γ > 0. In that case, with a given RF X we can associate a one-parameter family {V γ , γ > 0} of scaling limits, which characterizes the dependence structure and large-scale properties of the underlying X. If {X(t, s), (t, s) ∈ Z 2 } are i.i.d. standardized r.v.s, the scaling limit V γ coincides with a standard Brownian sheet for all γ > 0, i.e. {V γ , γ > 0} consists of a single element. A similar fact holds for SRD RFs, see e.g. [START_REF] Bolthausen | On the central limit theorem for stationary mixing random fields[END_REF][START_REF] Machkouri | A central limit theorem for stationary random fields[END_REF] and the references therein. Actually, limit theorems for SRD RFs often assume a general shape of summation domain, the limit distribution being independent of the way in which this region tends to Z 2 . However, a surprising phenomenon appears for many LRD RFs X, which exhibit a dramatic change of their scaling behavior at some point γ 0 > 0 in the following sense.

2.4. Anisotropic scaling of random fields Definition 2.2 (Puplinskaitė,Surgailis [90]). We say that the RF X = {X(t, s), (t, s) ∈ Z 2 } exhibits a scaling transition at γ 0 > 0 such that

V γ fdd = V + for all γ > γ 0 , V γ fdd = V -for all 0 < γ < γ 0 ,
(2.11)

V + fdd = aV -for any a > 0.
If V γ is the same for all γ > 0, then X does not exhibit scaling transition.

In other words, (2.11) says that scaling limits V γ do not depend on γ for γ > γ + and γ < γ -and are different up to a multiplicative constant (the last condition is needed to exclude a trivial change of the scaling limit by a linear change of normalization).

Scaling transition arises under joint temporal and contemporaneous aggregation of independent LRD processes in communication networks and economics, see [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF][START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF][START_REF] Pilipauskaitė | Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes[END_REF], also [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF]Remark 2.3]. E.g., let {X i (t) := W i (t)-EW i (t), t ≥ 0}, i = 1, 2, . . . , be independent copies of a centered ON/OFF process given by (2.6) with α on < α off . Align them vertically to define a RF X = {X i (t), t ≥ 0, i = 1, 2, . . .} with 'one-dimensional dependence', exhibiting scaling transition, since the limit distribution in

A -1 λ,γ λτ 0 [λ γ y] i=1 X i (t)dt fdd → V γ (τ, y), (τ, y) ∈ R 2 + , as λ → ∞,
changes from a stable Lévy sheet for 0 < γ < γ 0 to a fractional Brownian sheet for γ > γ 0 := α on -1. Indeed, since V γ has stationary rectangular increments, which are independent in the vertical direction, the limit process {V γ (τ, 1), τ ≥ 0} arising in Theorem 2.2(i)-(iii) determines the distribution of V γ for γ > γ 0 , 0 < γ < γ 0 and γ = γ 0 , respectively. We observe that for the individual ON/OFF process W , its properly normalized and centered partial sums process tends to a stable Lévy motion, though W itself has a finite second moment and exhibits LRD. We can expect to obtain scaling transition for independent copies of other LRD processes if asymptotic behaviour of their partial sums differs from fractional Brownian motion.

Recently, scaling transition has been observed for some classes of LRD Gaussian and aggregated nearest-neighbor autoregressive RFs on Z 2 in [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF][START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF]. In a more general way, the phenomenon has appeared for some RF on Z d with d ≥ 2 in [START_REF] Biermé | Invariance principles for operator-scaling Gaussian random fields[END_REF]. We summarize briefly the results of [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF].

Let X = {X(t, s), (t, s) ∈ Z 2 } be a real-valued stationary Gaussian RF, having the spectral representation

X(t, s) := [-π,π] 2 e i(tu+sv) f (u, v)Z(du, dv), (2.12) 
where Z(du, dv) is a complex-valued Gaussian random measure on [-π, π] 2 with zero mean and variance E|Z(du, dv)| 2 = dudv and the spectral density is given by

f (u, v) = g(u, v) (|u| 2 + |v| 2h 2 /h 1 ) h 1 /2 , (u, v) ∈ [-π, π] 2 , where 0 < h 1 ≤ h 2 < ∞, h i = 1, i = 1, 2, 2
i=1 1/h i > 1 and g ≥ 0 is bounded and continuous at the origin with g(0, 0) > 0.

Recall that a zero-mean Gaussian RF

B H 1 ,H 2 = {B H 1 ,H 2 (x, y), (x, y) ∈ R 2 + } is a standard fractional Brownian sheet with Hurst index (H 1 , H 2 ) ∈ (0, 1] 2 if EB H 1 ,H 2 (x 1 , x 2 )B H 1 ,H 2 (y 1 , y 2 ) = 1 2 2 2 i=1 (x 2H i i + y 2H i i -|x i -y i | 2H i ).
Theorem 2.4 (Puplinskaitė, Surgailis [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF]). Assume X = {X(t, s), (t, s) ∈ Z 2 } in (2.12) and set γ 0 := h 1 /h 2 . Then for any γ > 0 the limit in (2.9) exists with

V γ :=        V + , γ > γ 0 , V -, γ < γ 0 , V γ 0 , γ = γ 0 , H(γ) :=              H + 1 + γ/2, h 1 < 1, γ ≥ γ 0 , 1 + γH + 2 , h 1 > 1, γ ≥ γ 0 , 1/2 + γH - 2 , h 2 < 1, γ ≤ γ 0 , H - 1 + γ, h 2 > 1, γ ≤ γ 0 ;
where

H + 1 = (1 + h 1 )/2, H + 2 = (1 + h 2 -h 2 /h 1 )/2, H - 2 = (1 + h 2 )/2, H - 1 = (1 + h 1 -h 1 /h 2 )/2 and V + := σ + h 1 ,h 2    B H + 1 ,1/2 , h 1 < 1, B 1,H + 2 , h 1 > 1; V -:= σ - h 1 ,h 2    B 1/2,H - 2 , h 2 < 1, B H - 1 ,1 , h 2 > 1;
and σ ± h 1 ,h 2 are some positive constants and V γ 0 is a Gaussian RF given by its spectral representation. As a consequence, the RF X exhibits scaling transition at γ 0 = h 1 /h 2 .

In Theorem 2.4 the RFs V + and V -have either independent, or invariant (completely dependent) rectangular increments along one of the coordinate axes, whereas V γ 0 inherits the dependence structure of the underlying X. This property of increments is characteristic of limits V ± in the presence of scaling transition.

However, for another class of LRD Gaussian RFs, [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF] proved the absence of scaling transition. To be precise, if X is defined by (2.12) with a spectral density given by

f (u, v) = g(u, v) |u| 2d 1 |v| 2d 2 , (u, v) ∈ [-π, π] 2 ,
where 0 < d i < 1/2, i = 1, 2, and g ≥ 0 is bounded and continuous at the origin with g(0, 0) > 0, then, for all γ > 0, the scaling limit of X in (2.9) coincides with a fractional Brownian sheet with Hurst index (d

1 + 1/2, d 2 + 1/2).
Results of this type contribute to the large-sample theory of strongly dependent spatial data by showing that the limit distribution of simple statistics such as the sample mean may depend on the relation between γ and γ 0 . And if so, these quantities need to be estimated or decided in advance before applying the limit theorem.

Although general properties of {V γ , γ > 0} are of interest, in the thesis we focus on describing the anisotropic scaling limits for specific classes of RFs, see Chapters 6, 7.

Introduction

Since macroeconomic time series are obtained by aggregation of microeconomic variables, an important issue in econometrics is establishing the relationship between individual (micro) and aggregate (macro) models. One of the simplest aggregation schemes deals with contemporaneous aggregation of N independent copies X i := {X i (t), t ∈ Z}, i = 1, . . . , N , of stationary random-coefficient AR(1) process

X(t) = aX(t -1) + ε(t), t ∈ Z, (3.1) 
with standardized i.i.d. innovations {ε(t), t ∈ Z} and a random coefficient a ∈ [0, 1), independent of {ε(t), t ∈ Z} and such that E(1 -a) -1 < ∞. The limit aggregated process

N -1/2 N i=1 X i (t) fdd → X (t), t ∈ Z, (3.2) 
exists in the sense of weak convergence of finite-dimensional distributions, and is a Gaussian process with zero mean and covariance function

E[X (0)X (t)] = E[X(0)X(t)] = E a |t| 1 -a 2 , t ∈ Z. (3.3)
Granger [START_REF] Granger | Long memory relationships and the aggregation of dynamic models[END_REF] observed that for a particular type of beta-distributed random coefficient a, the processes X and X may have slowly decaying autocovariance functions similarly as in the case of ARFIMA models while normalized partial sums of X tend to a fractional Brownian motion. Further results on aggregation of autoregressive models with finite variance were obtained in Gonçalves and Gouriéroux [START_REF] Gonçalves | Agrégation de processus autorégressifs d'ordre 1[END_REF], Zaffaroni [START_REF] Zaffaroni | Contemporaneous aggregation of linear dynamic models in large economies[END_REF], Oppenheim and Viano [START_REF] Oppenheim | Aggregation of random parameters Ornstein-Uhlenbeck or AR processes: some convergence results[END_REF], Celov et al. [START_REF] Celov | Time series aggregation, disaggregation, and long memory[END_REF] and other papers. In economic interpretation, individual processes X i , i = 1, . . . , N , in (3.2) are obtained by random sampling from a huge and heterogeneous 'population' of independent 'microagents', each evolving according to a short memory AR(1) process with its own deterministic parameter a ∈ [0, 1), the population being characterized by the distribution (frequency) of a across the population. Thus, aggregation of (randomly sampled) short memory processes may provide an explanation of long memory in observed macroeconomic time series. See also [8, page 85], [START_REF] Zaffaroni | Contemporaneous aggregation of linear dynamic models in large economies[END_REF], [112, page 238].

In this chapter we consider the limit behavior of sums

S N,n (τ ) := N i=1 [nτ ] t=1 X i (t), τ ≥ 0, (3.4) 
where X i , i = 1, . . . , N , are the same as in (3.2). The sum in (3.4) represents joint temporal and contemporaneous aggregate of N individual AR(1) evolutions (3.1) at time scale n. Our main object is the joint aggregation limit of {A -1 N,n S N,n (τ ), τ ≥ 0} in distribution, where A N,n are some normalizing constants and both N and n increase to infinity, possibly at different rate. We also discuss the iterated limits of {A -1 N,n S N,n (τ ), τ ≥ 0} when first n → ∞ and then N → ∞, and vice-versa. Related problems for some network traffic models were studied in Willinger et al. [START_REF] Willinger | Self-similarity through highvariability: statistical analysis of Ethernet LAN traffic at the source level[END_REF], Taqqu et al. [START_REF] Taqqu | Proof of a fundamental result in selfsimilar traffic modeling[END_REF], Mikosch et al. [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF], Gaigalas and Kaj [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF], Pipiras et al. [START_REF] Pipiras | Slow, fast and arbitrary growth conditions for renewal-reward processes when both the renewals and the rewards are heavy-tailed[END_REF], Dombry and Kaj [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF] and other papers. In these papers, the role of AR(1) processes X i in (3.4) is played by independent and centered ON/OFF processes, renewal or renewal-reward processes, or M/G/∞ queues with heavy-tailed activity periods.

Let us describe the main results of this chapter. Similarly to [START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and idiosyncratic innovations[END_REF][START_REF] Zaffaroni | Contemporaneous aggregation of linear dynamic models in large economies[END_REF], we assume that the r.v. a ∈ [0, 1) in (3.1), or the mixing distribution, has a probability density function φ such that

φ(x) = ψ(x)(1 -x) β , x ∈ [0, 1), (3.5) 
where β > -1 and ψ is an integrable function on [0, 1) having a limit lim x→1 ψ(x) = ψ 1 > 0.

Under the above condition with 0 < β < 1, it immediately follows from the Tauberian theorem [33, Chapter 13, §5, Theorem 3] that the covariance in (3.3) decays as ct -β , t → ∞, with c = (ψ 1 /2)Γ(β), implying that partial sums of the Gaussian process X in (3.2) normalized by n H with H := 1 -(β/2) ∈ (1/2, 1), tend to a fractional Brownian motion B H with Hurst parameter H (see [START_REF] Taqqu | Weak convergence to fractional Brownian motion and to the Rosenblatt process[END_REF]). Hence it follows that B H coincides with the iterated limit of {n -H N -1/2 S N,n (τ ), τ ≥ 0} when N → ∞ first, followed by n → ∞. However, when the order of the above limits is reversed, the limit is a sub-Gaussian (1 + β)-stable process defined in (3.11). See Theorem 3.1 for rigorous formulations. Let now N, n increase simultaneously so as

N 1/(1+β) n → µ ∈ [0, ∞], (3.6) 
leading to the three cases (i)-(iii):

Case (i): µ = ∞, Case (ii): µ = 0, Case (iii): 0 < µ < ∞. (3.7)
Our main result is Theorem 3.2 which says that under (3.5) and (3.6), the 'simultaneous limit' of {A -1 N,n S N,n (τ ), τ ≥ 0} exists and is different in all three Cases (i)-(iii), namely, it agrees with the above iterated limits in the extreme Cases (i) and (ii), while in Case (iii) it is written as {µ 1/2 Z(τ /µ), τ ≥ 0}, where the process Z corresponding to 'intermediate scaling' in (iii) is defined in (3.31) as a stochastic integral w.r.t. a Poisson random measure on the product space R + × C(R) with mean ψ 1 x β dx × P B , where P B is the Wiener measure on C(R). This process enjoys several 'intermediate' properties between the limits in (i) and (ii) and is discussed in Section 3.3 in detail.

Theorems 3.1 and 3.2 can be compared to the results in [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF][START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF][START_REF] Pipiras | Slow, fast and arbitrary growth conditions for renewal-reward processes when both the renewals and the rewards are heavy-tailed[END_REF] and other papers, with [START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF] probably being the closest in spirit to the present work. In particular, Mikosch et al. [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF] discuss the 'total accumulated input' A N,n := { N i=1 nτ 0 W i (t)dt, τ ≥ 0} from N independent 'sources' at time scale n. The aggregated inputs W i , i = 1, . . . , N , are i.i.d. copies of ON/OFF process W := {W (t), t ≥ 0}, alternating between 1 and 0 and taking value 1 if t is in an ON-period and 0 if t is in an OFF-period, the ON-and OFFperiods forming a stationary renewal process having heavy-tailed lengths with respective tail parameters α on , α off ∈ (1, 2), α on < α off , see [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF] for details. The role of condition (3.6) is played in the above papers by

N n αon-1 → µ ∈ [0, ∞],
leading to the three cases analogous to (3.7):

Case (i'): µ = ∞, Case (ii'): µ = 0, Case (iii'): 0 < µ < ∞,
known as the 'fast growth condition', the 'slow growth condition' and the 'intermediate growth condition', respectively. The limit of (normalized) 'accumulated input' A N,n in Cases (i') and (ii') was obtained in [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF], as fractional Brownian motion and α on -stable Lévy process, respectively. The 'intermediate' limit in Case (iii') was identified in [START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF][START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF] and [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF] who showed that this process can be regarded as a 'bridge' between the limiting processes in Cases (i') and (ii'), and can be represented as a stochastic integral w.r.t. a Poisson random measure on R + × R, see (3.49), although distinctly different from the corresponding process Z arising in Case (iii). Related results for some other heavy-tailed duration-based models were obtained in [START_REF] Kaj | Limiting fractal random processes in heavy-tailed systems[END_REF][START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF][START_REF] Levy | Renewal reward processes with heavy-tailed inter-renewal times and heavy-tailed rewards[END_REF][START_REF] Pipiras | Slow, fast and arbitrary growth conditions for renewal-reward processes when both the renewals and the rewards are heavy-tailed[END_REF] and elsewhere.

The differences between the respective limiting processes in this chapter and the above mentioned works can be partially explained by the fact that the 'memory mechanism', or dependence structure, of the AR(1) model is very different from that of telecommunication models. Contrary to the latter models, the random-coefficient AR(1) process is non-ergodic (each individual X i picks a random value a and sticks to it forever), the long memory being a consequence of a sufficiently high concentration of a's near the unit root 1. This 'memory mechanism' is very different from the M/G/∞ model where each session gets its own duration and the long memory is essentially due to the occurrence of a few very long durations. The above differences are reflected in different limit behaviors of the partial sums of the individual processes (a discontinuous stable Lévy process with independent increments in the latter case and a continuous sub-Gaussian process with conditionally independent and unconditionally dependent increments in the former case), extending also to the 'slow growth' limits in (ii) and (ii'). On the other hand, the 'fast growth' limits in (i) and (i') coincide up to a choice of parameters, since in both cases Gaussian fluctuations play a dominating role.

In the above context, an interesting open problem concerns possible existence and description of an 'intermediate limit regime' for double sums (3.4), where X i , i = 1, 2, . . . , are general independent and identically distributed processes such that the iterated limits of (3.4) exist and are different. A particular case of such X i is the regime-switching AR(1) process with covariance long memory and Lévy stable partial sums behavior studied in [START_REF] Leipus | Renewal regime switching and stable limit laws[END_REF][START_REF] Leipus | Random coefficient autoregression, regime switching and long memory[END_REF]. This process is of particular interest since it combines the dependence structures of random-coefficient AR(1) and duration models. Other possible generalizations of our results concern randomcoefficient AR(1) process with infinite variance [START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and idiosyncratic innovations[END_REF] and/or common innovations [START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and common innovations[END_REF][START_REF] Zaffaroni | Contemporaneous aggregation of linear dynamic models in large economies[END_REF], autoregressive random fields [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF]. See also Remark 3.5.

Main results

Let {ε, ε(t), t ∈ Z} be i.i.d. r.v.s with Eε = 0, Eε 2 = 1, and a ∈ [0, 1) be a r.v. independent of {ε(t), t ∈ Z}. It is easy to show [88, Proposition 2.1] that there exists a unique stationary solution to the AR(1) equation (3.1) given by

X(t) = ∞ k=0 a k ε(t -k), t ∈ Z. (3.8)
The series in (3.8) converges conditionally almost surely and in L 2 given a ∈ [0, 1). Moreover, if

E 1 1 -a < ∞,
then the series in (3.8) converges in L 2 and defines a stationary process with zero mean and covariance in (3.3). Consider the following stochastic integral representation of a fractional Brownian motion 

B 1-(β/2) := {B 1-(β/2) (τ ), τ ≥ 0}: B 1-(β/2) (τ ) := R + ×R (f(x, τ -s) -f(x, -s))Z(dx,
EB 1-(β/2) (u)B 1-(β/2) (v) = R + ×R (f(x, u -s) -f(x, -s))(f(x, v -s) -f(x, -s))ν(dx, ds) = Γ(β)ψ 1 2(2 -β)(1 -β) (u 2-β + v 2-β -|u -v| 2-β ), u, v ≥ 0. (3.10)
When -1 < β < 0, let V β be a symmetric 2(1 + β)-stable r.v. with characteristic function given in Proposition 3.5(ii). Let V 0 d = N (0, ψ 1 /2) be a normal r.v. Thus, the process

{V β τ, τ ≥ 0} is a random 2(1 + β)-stable line for any -1 < β ≤ 0. Next, let W β > 0, -1 < β < 1, be a (1 + β)/2-stable r.v.
with Laplace transform Ee -θW β = exp{-k β θ (1+β)/2 }, θ ≥ 0, and k β > 0 defined at (3.60). Let {B(τ ), τ ≥ 0} be a standard Brownian motion, EB 2 (τ ) = τ , independent of r.v. W β . The process

W β (τ ) := W 1/2 β B(τ ), τ ≥ 0, (3.11) 
has (1 + β)-stable finite-dimensional distributions and stationary increments. According to the terminology in [96, Section 3.8], W β is called a sub-Gaussian process.

Finally, we define a random process Z β := {Z β (τ ), τ ≥ 0} depending on parameter -1 < β < 1, through its finite-dimensional characteristic function:

E exp i m j=1 θ j Z β (τ j ) = exp ψ 1 R + e -1 2 R ( m j=1 θ j (f(x,τ j -s)-f(x,-s))) 2 ds -1 x β dx , ( 3.12) 
where θ j ∈ R, τ j ∈ R + , j = 1, . . . , m, m ∈ N, and f is given in (3.9). A Poisson stochastic integral representation and various properties of Z β are discussed in Section 3.3. In Theorems 3.1 and 3.2, S N,n (τ ) is the double sum in (3.4) of independent copies of the random-coefficient AR(1) process X (3.8) and the mixing density satisfies (3.5).

Theorem 3.1. The iterated limits of the normalized aggregated partial sums process S N,n are given by

(fdd) lim n→∞ lim N →∞ n (β/2)-1 N -1/2 S N,n (τ ) = B 1-(β/2) (τ ) if β ∈ (0, 1), (3.13) 
(fdd) lim n→∞ lim

N →∞ n -1 N -1/2(1+β) S N,n (τ ) = V β τ if β ∈ (-1, 0), (3.14) 
(fdd) lim n→∞ lim

N →∞ n -1 (N log N ) -1/2 S N,n (τ ) = V 0 τ if β = 0, (3.15) 
(fdd) lim

N →∞ lim n→∞ N -1/(1+β) n -1/2 S N,n (τ ) = W β (τ ) if β ∈ (-1 , 1). (3.16) 
Theorem 3.2. The simultaneous limits of the normalized aggregated partial sums process S N,n when N, n → ∞ as in (3.6) are given in respective Cases (i)-(iii) of (3.7) by

N -1/2 n -1+(β/2) S N,n (τ ) fdd → B 1-(β/2) (τ ) in Case (i) if β ∈ (0, 1), (3.17 
)

N -1/2(1+β) n -1 S N,n (τ ) fdd → V β τ in Case (i) if β ∈ (-1, 0), (3.18) 
(N log(N/n)) -1/2 n -1 S N,n (τ ) fdd → V 0 τ in Case (i) if β = 0, (3.19 
)

N -1/(1+β) n -1/2 S N,n (τ ) fdd → W β (τ ) in Case (ii) if β ∈ (-1, 1), (3.20 
)

N -1/(1+β) n -1/2 S N,n (τ ) fdd → µ 1/2 Z β (τ /µ) in Case (iii) if β ∈ (-1, 1). (3.21)
Since higher β means smaller chances for the individual AR(1) process being close to the unit root a = 1, hence having less memory, it is natural to expect that this tendency should be reflected in the limit behavior of the partial sums S N,n . It is most clearly seen in (3.17), as the 'memory' of the fractional Brownian motion B 1-(β/2) decreases with β increasing. On the other hand, in (3.18) and (3.20), a change of β does not alter the dependence structure of the limit processes V β τ and W β but rather affects their variability since β is directly related to the stability index of these processes. These tendencies can be also observed although less clearly in the 'intermediate' limit of (3.21). However, when β > 1 these differences disappear and the joint limit of the partial sums process is a usual Brownian motion independent of β and the mutual increase rate of N and n; see below. 

N -1/2 n -1/2 S N,n (τ ) fdd → σB(τ ) with σ 2 := E(1 -a) -2 < ∞.
Remark 3.1. The question about weak convergence in the Skorohod space D[0, 1] in Theorems 3.1-3.3 remains generally open, although in some cases ((3.13), (3.17)) the weak convergence follows rather easily by the Kolmogorov criterion.

The 'intermediate' process

This section discusses the definition and various properties of the process Z β arising in the 'intermediate' limit (iii) of Theorem 3.2. Let X be a measurable space with a σ-finite measure µ defined on a σ-algebra F(X) of measurable subsets of X. Let M be a Poisson random measure on X with mean µ and M = M-µ be the centered Poisson random measure. The stochastic integrals X f (x)M(dx) ≡ f (x)M(dx) and X f (x) M(dx) ≡ f (x) M(dx) are defined for any measurable function f :

X → R with 1 ∧ |f (x)|µ(dx) < ∞ and |f (x)| ∧ |f (x)| 2 µ(dx) < ∞,
respectively, as limits in probability of suitable integral sums, and their characteristic functions are given by Ee iθ f (x)M(dx) = exp (e iθf (x) -1)µ(dx) ,

Ee iθ f (x) M(dx) = exp (e iθf (x) -1 -iθf (x))µ(dx) , θ ∈ R. (3.22) 
We have E f (x) M(dx) = 0, f ∈ L 1 (X), and

E[ f (x) M(dx)] 2 = f 2 (x)µ(dx), f ∈ L 2 (X). Moreover, E f (x) M(dx) p < ∞ ⇐⇒      (|f (x)| 2 ∧ |f (x)| p )µ(dx) < ∞, 1 ≤ p ≤ 2, (|f (x)| 2 ∨ |f (x)| p )µ(dx) < ∞, p ≥ 2; (3.23)
see Rajput and Rosinski [START_REF] Rajput | Spectral representations of infinitely divisible processes[END_REF], while

E f (x)M(dx) p ≤ C(p) f p p , 0 < p ≤ 1, E f (x) M(dx) p ≤ C(p) f p p , 1 ≤ p ≤ 2, (3.24) 
where [START_REF] Surgailis | On L 2 and non-L 2 multiple stochastic integration[END_REF]Theorem 3.1], by interpolation between L 1 (X) and L 2 (X).

f p p := X |f (x)| p µ(dx) and the constant C(p) < ∞ depends only on p. For step func- tions f = ∞ j=1 f j 1(• ∈ A j ) ∈ L p (X) taking values f j ∈ R on A j ∈ F(X) with µ(A j ) < ∞, the first inequality of (3.24) with C(p) = 1 follows from | ∞ j=1 f j M(A j )| p ≤ ∞ j=1 |f j | p |M(A j )| p and E|M(A j )| p ≤ EM(A j ) = µ(A j ). The second inequality of (3.24) with C(p) = 2 2-p ≤ 2 is obtained in
Consider a family of 'elementary' integrated Ornstein-Uhlenbeck processes

z(τ ; x) := τ 0 du R e -x(u-s) 1(u > s)dB(s) = R f(x, τ -s) -f(x, -s) dB(s), τ ∈ R, x > 0, (3.25) 
where B := {B(s), s ∈ R} is a standard Brownian motion and f is defined in (3.9). For each x > 0 the process {z(τ ; x), τ ∈ R} is a.s. continuously differentiable on R and its derivative z (τ ; x) = dz(τ ; x)/dτ satisfies the Langevin equation

dz (τ ; x) = -xz (τ ; x)dτ + dB(τ ). (3.26)
Accordingly, the joint characteristic function of z(τ j ; x j ),

τ j ∈ R, x j ∈ R, j = 1, . . . , m, m ∈ N, is given by E exp i m j=1 θ j z(τ j ; x j ) = exp - 1 2 R m j=1 θ j f(x j , τ j -s) -f(x j , -s) 2 ds . ( 3.27) 
W.l.g., we may assume that the process {z(τ ; x), τ ∈ R, x > 0} is defined on the space C(R) equipped with the Wiener measure P B induced by the Brownian motion B. In other words, for any cylinder set Let M(dx, dB) be a Poisson random measure on the product space

A = {ζ(•) ∈ C(R) : ζ(τ j ) ∈ I j , j = 1, . . . , m}, τ j ∈ R,
R + × C(R) with the mean µ(dx, dB) = EM(dx, dB) = ψ 1 x β dx × P B (dB(•)), (3.29) 
where P B is defined at (3.28), and let

M(dx, dB) := M(dx, dB) -µ(dx, dB)
be the centered Poisson measure. Then, Z β is defined as a stochastic integral with respect to the above Poisson measure:

Z β (τ ) := (0,1)×C(R) z(τ ; x)M(dx, dB) + [1,∞)×C(R) z(τ ; x) M(dx, dB), τ ≥ 0, (3.30) 
As shown below, for -1/2 < β < 1 the two integrals can be combined into a single one:

Z β (τ ) = R + ×C(R) z(τ ; x) M(dx, dB) (3.31) = R + ×C(R) R f(x, τ -s) -f(x, -s) dB(s) M(dx, dB). Proposition 3.4. (i) The process Z β in (3.30) is well-defined for any -1 < β < 1.

It has stationary increments, infinitely divisible finite-dimensional distributions and the joint characteristic function is given in

(3.12). (ii) E|Z β (τ )| p < ∞ for any p < 2(1 + β), 0 < p < 4, and EZ β (τ ) = 0 for -1/2 < β < 1. (iii) If 0 < β < 1 then EZ 2 β (τ ) < ∞ and E[Z β (τ 1 )Z β (τ 2 )] = Γ(β)ψ 1 2(2 -β)(1 -β) (τ 2-β 1 + τ 2-β 2 -|τ 1 -τ 2 | 2-β ), τ 1 , τ 2 ≥ 0. (3.32) (iv) For -1/2 < β < 1, the process Z β in (3.31) has a.s. continuous trajectories. Proof. (i) It suffices to check that I 1 := (0,1)×C(R) µ(dx, dB) = C 1 0 x β dx < ∞ and I 2 := [1,∞)×C(R) |z(τ ; x)| 2 µ(dx, dB) = C ∞ 1 E B |z(τ ; x)| 2 x β dx < ∞. We have E B |z(τ ; x)| 2 = σ 2 (τ ; x), where σ 2 (τ ; x) := τ -∞ f(x, τ -s) -f(x, -s) 2 ds ≤ C (xτ ) ∧ (xτ ) 3 x 3 + (1 -e -xτ ) 2 x 3 ≤ C (xτ ) ∧ (xτ ) 3 x 3 + 1 ∧ (xτ ) 2 x 3 ≤ Cτ x 2 (1 ∧ (τ x)). ( 3.33) 
Thus, I 2 < ∞ when β < 1. (3.12) follows from (3.22), (3.27) and Ez(τ ; x) = 0. The stationarity of increments is immediate from (3.12).

(ii) Obviously, it suffices to show E|Z

β (τ )| p < ∞ for p < 2(1 + β) sufficiently close to 2(1 + β) such that 1 + β < p < 2(1 + β). Let first 0 < p ≤ 2. Then using (3.24) we have E|Z β (τ )| p ≤ C ∞ 0 E B |z(τ ; x)| p x β dx. Since z(τ ; x) d = N (0, σ 2 (τ ; x)), we have E B |z(τ ; x)| p ≤ C|σ(τ ; x)| p and hence from (3.33) we obtain E|Z β (τ )| p ≤ Cτ p/2 ∞ 0 1 ∧ (xτ ) x 2 p/2 x β dx = Cτ (3p/2)-1-β < ∞. (3.34) Next, let p > 2. Then E|Z β (τ )| p < ∞ follows from (3.23) and ∞ 0 x β dxE B |z(τ ; x)| p ∨ |z(τ ; x)| 2 ≤ C ∞ 0 |σ(τ ; x)| p + |σ(τ ; x)| 2 x β dx < ∞ according to (3.34). The fact that (3.34) holds for p = 1 < 2(1 + β) implies EZ β (τ ) = 0 for -1/2 < β < 1.
(iii) From (3.31), (3.25) and (3.10) we have that for any τ ≥ 0

EZ 2 β (τ ) = R + ×R (f(x, τ -s) -f(x, -s)) 2 ν(dx, ds) = EB 2 1-β/2 (τ ) = Γ(β)ψ 1 (2 -β)(1 -β) τ 2-β ,
hence (3.32) follows from (3.10).

(iv) From (3.34) and stationarity of increments, for -1/2 < β < 1 and

1 < p < 2(1 + β) sufficiently close to 2(1 + β), we have that E|Z β (τ + h) -Z β (τ )| p ≤ Ch (3p/2)-1-β for any τ, h ≥ 0. Since (3p/2) -1 -β > 1,
the Kolmogorov criterion applies, yielding the a.s. continuity of (3.31). Proposition 3.4 is proved.

Remark 3.2. Let M 2 (dx, dB) be a Gaussian random measure on R + ×C(R) with zero mean and variance µ(dx, dB) in (3.29). From Proposition 3.4(iii) it follows that for 0 < β < 1 the corresponding Gaussian integral of (3.31) is a representation of fractional Brownian motion:

B 1-β/2 (τ ) fdd = R + ×C(R) z(τ ; x)M 2 (dx, dB).
Remark 3.3. As noted in [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF], the sub-Gaussian process W β (3.11) admits a stochastic integral representation

W β (τ ) fdd = C(R + ) B(τ )N (dB) w.r.t. symmetric (1+β)-stable random measure N on C(R + ) with control measure ν := c β P B ,
where P B is the Wiener measure, see (3.28), and

c β := ψ 1 π/2 sin(π(1 + β)/2)Γ(2 + β). The process W β can be further represented as a stochastic integral w.r.t. the Poisson random measure M(dx, dB) on R + × C(R + ) in (3.29), viz., W β (τ ) fdd = (0,1)×C(R + ) B(τ ) x M(dx, dB) + [1,∞)×C(R + ) B(τ ) x M(dx, dB).
Remark 3.4. Curiously enough, the 2(1 + β)-stable r.v. V β in Theorem 3.1(ii) (see Proposition 3.5(ii) below) can be also represented as a stochastic integral w.r.t. the Poisson measure M(dx, dB):

V β d = (0,1)×C(R) z (1; x)M(dx, dB) + [1,∞)×C(R) z (1; x) M(dx, dB),
where {z (τ ; x)} is the stationary Ornstein-Uhlenbeck process in (3.26).

The following proposition describes local and global scaling behavior of the process Z β .

Proposition 3.5. Let Z β be defined as in (3.31).

(i) Let 0 < β < 1. Then b -1+β/2 (Z β (τ + bu) -Z β (τ )) fdd → B 1-β/2 (u) as b → 0. (ii) Let -1 < β < 0. Then b -1 (Z β (τ + bu) -Z β (τ )) fdd → uV β as b → 0, where V β is a 2(1 + β)-stable r.v.

with characteristic function

Ee

iθV β = e -K β |θ| 2(1+β) , K β := ψ 1 Γ(-β) 4 1+β (1 + β) . (iii) Let β = 0. Then (b log 1/2 (1/b)) -1 (Z β (τ + bu) -Z β (τ )) fdd → uV 0 as b → 0, where V 0 d = N (0, ψ 1 /2) is a Gaussian r.v. with variance ψ 1 /2. (iv) Let -1 < β < 1. Then b -1/2 Z β (bτ ) fdd → W β (τ ) as b → ∞.
Proof. (i) By stationarity of increments, it suffices to prove the convergence for

τ = 0, or E exp{i m j=1 θ j b -1+β/2 Z β (bu j )} → E exp{i m j=1 θ j B 1-β/2 (u j )} for any u j ∈ R + , θ j ∈ R, m ∈ N.
Using (3.12) and (3.9), the last convergence follows from

∞ 0 1 -exp - b β-2 2 R m j=1 θ j (f(x, bu j -s) -f(x, -s)) 2 ds x β dx → 1 2 R + ×R m j=1 θ j (f(x, u j -s) -f(x, -s)) 2 x β dxds. (3.35) 
Using the scaling property f(x/b, bs) = bf(x, s) of f in (3.9), the l.h.s. of (3.35) can be rewritten as

b -1-β ∞ 0 1 -exp - b 1+β 2 R m j=1 θ j (f(x, u j -s) -f(x, -s)) 2 ds x β dx
and the convergence in (3.35) follows from b -1-β (1-e -b 1+β I ) → I (b → 0) and the dominated convergence theorem, since 0 ≤ 1 -e -x ≤ x for any x ≥ 0 and the integral on the r.h.s. of (3.35) converges. This proves part (i).

(ii) Using the notation in (3.35), it suffices to show that

∞ 0 1 -exp - b -2 2 R m j=1 θ j (f(x, bu j -s) -f(x, -s)) 2 ds ψ 1 x β dx → ∞ 0 1 -exp - 1 4x m j=1 θ j u j 2 ψ 1 x β dx = K β m j=1 θ j u j 2(1+β)
. (3.36) Towards this end, consider

Ψ(x; b) := R 1 2b 2 m j=1 θ j (f(x, bu j -s) -f(x, -s)) 2 ds = 0 -∞ + ∞ 0 . . . =: Ψ 1 (x; b) + Ψ 2 (x; b). (3.37)
Then for any x > 0,

Ψ 1 (x; b) = 1 4x 3 m j=1 θ j b (1 -e -bxu j ) 2 → 1 4x m j=1 θ j u j 2 =: Ψ(x), b → 0, (3.38) 
and

Ψ 2 (x; b) = 1 2x 2 b 2 bum 0 m j=1 θ j (1 -e -x(bu j -s) )1(s < bu j ) 2 ds ≤ C x 2 b 2 bum 0 (xs) 2 ds ≤ Cb → 0. (3.39) Hence, Ψ(x; b) → Ψ(x). From the inequality 1 -e -x ≤ x, x ≥ 0, it easily follows the dominating bound 0 ≤ Ψ(x; b) ≤ C min(1, 1/x), ∀b, x > 0. The convergence in (3.36), or ∞ 0 (1-e -Ψ(x;b) )x β dx → ∞ 0 (1-e -Ψ(x) )
x β dx now easily follows by the dominating convergence theorem. (iii) As in (3.36), it suffices to show that

I(b) := ψ 1 ∞ 0 (1 -e -Ψ(x,b)/ log(1/b) )dx → ψ 1 4 m j=1 θ j u j 2 , ( 3.40) 
where Ψ(x, b) is defined in (3.37). Split the integral

I(b) = ψ 1 1/b 0 + ∞ 1/b (1 -e -Ψ(x,b)/ log(1/b) )dx =: ψ 1 (I 1 (b) + I 2 (b)).
Then using (3.38) and (3.39) we infer that

I 1 (b) ∼ 1/b 0 1 -exp - 1 4x log(1/b) m j=1 θ j u j 2 dx ∼ O 1 log(1/b) + | m j=1 θ j u j | 2 4 log(1/b) 1/b 1/ log(1/b) dx x ∼ 1 4 m j=1 θ j u j 2 .
On the other hand, using

|Ψ(x; b)| ≤ C/(b 2 x 3 + bx 2 ), see (3.38), (3.39), with C independent of x, b > 0 we obtain that I 2 (b) ≤ C ∞ 1/b dx (b 2 x 3 + bx 2 ) log(1/b) = O 1 log(1/b) = o(1),
proving (3.40) and part (iii).

(iv) Similarly as above, it suffices to prove that

∞ 0 1 -exp - 1 2b R m j=1 θ j (f(x, bu j -s) -f(x, bu j-1 -s)) 2 ds ψ 1 x β dx → ∞ 0 1 -exp - 1 2x 2 m j=1 θ 2 j (u j -u j-1 ) ψ 1 x β dx = k β 2 (1+β)/2 m j=1 θ 2 j (u j -u j-1 ) (1+β)/2 , ( 3.41) 
where 0 =:

u 0 < u 1 < • • • < u m . The l.h.s. of (3.41) can be rewritten as ∞ 0 (1 - e -x -2 J(x;b) )ψ 1 x β dx, where for any x > 0, J(x; b) := x 2 2 R m j=1 θ j f(x, b(u j -s)) -f(x, b(u j-1 -s)) 2 ds → J := 1 2 m j=1 θ 2 j (u j -u j-1 )
as b → ∞ follows easily by substituting f (3.9) into the integral above. The dominating bound 0 ≤ J(x; b) ≤ C min(1, 1/x) is elementary and allows to use the dominating convergence theorem, yielding the convergence in (3.41). Proposition 3.5 is proved.

Proposition 3.5 entails the convergences

µ 1/2 Z β (τ /µ) fdd → W β (τ ) and          µ 1-(β/2) Z β (τ /µ) fdd → B 1-β/2 (τ ), 0 < β < 1, µZ β (τ /µ) fdd → τ V β , -1 < β < 0, µ(log µ) -1/2 Z β (τ /µ) fdd → τ V 0 , β = 0, (3.42) 
as µ → 0 and µ → ∞, respectively. In other words, the 'intermediate' limit in Theorem 3.2(iii) plays the role of a 'bridge' between the limits in Cases (i) and (ii). Since W β , B 1-(β/2) and τ V β are distinct processes, (3.42) imply that Z β is not self-similar and not stable. The definition of Z β in (3.31) naturally extends to a two-parameter random field

{Z β (τ, x), (τ, x) ∈ R 2 + } defined as a stochastic integral Z β (τ, x) := (0,x]×(0,1)×C(R) z(τ ; v)M(dy, dv, dB) + (0,x]×[1,∞)×C(R) z(τ ; v) M(dy, dv, dB), τ, x ≥ 0, (3.43) 
with respect to a Poisson random measure on R + ×R + ×C(R) with intensity EM(dy, dv, dB) = dyµ(dv, dB) = ψ 1 dyv β dv P B (dB(•)), see (3.29), where M(dy, dv, dB) := M(dy, dv, dB) -EM(dy, dv, dB). Then Z β (τ ) = Z β (τ, 1). Note that for each τ > 0, {Z β (τ, x), x ≥ 0} is a homogeneous Lévy process with independent increments. The two-parameter process Z β in (3.43) satisfies the following properties: for any (τ 

0 , x 0 ) ∈ R 2 + , {Z β (τ + τ 0 , x + x 0 ) -Z β (τ + τ 0 , x 0 ) -Z β (τ 0 , x + x 0 ) + Z β (τ 0 , x 0 )} fdd = {Z β (τ, x)}; (3.44) for any c > 0, Z β (cτ, c 1+β x) fdd = c 3/2 Z β (τ, x) . ( 3 
(cµ) -1 c -1/2 Z β (cτ, (cµ) 1+β ), τ ∈ R + fdd = µ 1/2 Z β (τ /µ, 1), τ ∈ R + for all c > 0, (3.46) 
which resembles the limit in Theorem 3.2(iii) for N = (cµ) 1+β , n = c growing as in (3.6).

The two-parameter process {Y β (τ, µ) := µ 1/2 Z β (τ /µ, 1)} on the r.h.s. of (3.46) satisfies

{Y β (cτ, cµ), τ ∈ R + } fdd = {c 1/2 Y β (τ, µ), τ ∈ R + }.
A related notion of self-similarity was introduced in Jørgensen et al. [START_REF] Jørgensen | Self-similarity and Lamperti convergence for families of stochastic processes[END_REF], who call a two-parameter process Y = {Y (τ, µ), (τ, µ) ∈ R 2 + } self-similar with Hurst exponent H and rate parameter µ if for all c > 0,

{Y (cτ, c H-1 µ), τ ∈ R + } fdd = {c H Y (τ, µ), τ ∈ R + }.
(3.47)

Note that the two-parameter process { Ỹβ (τ, x) := Z β (τ, x 2(1+β) )} satisfies the self-similarity property (3.47) with H = 3/2. Another self-similarity property was introduced in Kaj [START_REF] Kaj | Limiting fractal random processes in heavy-tailed systems[END_REF]. Accordingly, a process

U = {U (τ ), τ ∈ R + } is called aggregate-similar with rigidity index ρ if for any integer m ≥ 1, m i=1 U (i) (τ ), τ ∈ R + fdd = {m ρ U (τ /m ρ ), τ ∈ R + }, (3.48) 
where

U (i) , i ≥ 1, are independent copies of U . Let {U β (τ ) := Z β (τ 2/3 , 1)}, then U β satisfies (3.48) with ρ := 3 2(1+β) , which again follows from (3.45) with c = m 1/(1+β) , x = 1 and the fact that { m i=1 Z (i) β (τ 2/3 , 1)} fdd = {Z β (τ 2/3 , m)}.
Remark 3.5. Kaj [52], Gaigalas [START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF] discussed the 'intermediate process'

Z β (τ ) := R + ×R τ 0 1(s -v < u < s)du M (dv, ds), τ ≥ 0, (3.49) 
where M (dv, ds) = M (dv, ds)-EM (dv, ds) is a centered Poisson random measure on R + ×R with mean EM (dv, ds) = Cv -β-2 dvds and 0 < β < 1 is a parameter. The process Z β in (3.49) arises in the 'intermediate' aggregation regime of ON/OFF and infinite source Poisson models in network traffic. See also [START_REF] Kaj | Scaling limit results for the sum of many inverse Lévy subordinators[END_REF][START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF][START_REF] Levy | Renewal reward processes with heavy-tailed inter-renewal times and heavy-tailed rewards[END_REF][START_REF] Pipiras | Slow, fast and arbitrary growth conditions for renewal-reward processes when both the renewals and the rewards are heavy-tailed[END_REF]. Similarly to (3.43), Z β extends to a two-parameter random field

Z β (τ, x) := (0,x]×R + ×R τ 0 1(s -v < u < s)du M (dy, dv, ds), τ, x ≥ 0, (3.50) 
where M (dy, dv, ds) = M (dy, dv, ds) -dyEM (dv, ds) is a centered Poisson random measure on R + × R + × R with mean EM (dy, dv, ds) = dyEM (dv, ds). The random field in (3.50) satisfies the stationary increment property (3.44) and a scaling property similar to (3.45):

{Z β (cτ, c β x)} fdd = {cZ β (τ,
x)} for every c > 0. These properties might be typical to random fields arising in the 'intermediate regime' of joint temporal and contemporaneous aggregation of independent copies of random processes with long-range dependence. We conjecture that (3.50) and (3.43) can be linked into a general class of Poisson stochastic integrals on the product space R + × S (R), where S (R) is the Schwartz space of tempered distributions equipped with a σ-finite shift and scaling invariant product measure, which includes the above mentioned 'intermediate' limits as particular cases and enjoys similar local and global scaling properties.

Proofs of Theorems 3.1-3.3

Proof of Theorem 3.1. Statement (3.13) follows from Theorems 2.1 and 3.1 in Puplinskaitė and Surgailis [START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and idiosyncratic innovations[END_REF]. Next, consider (3.14). From [88, Proposition 2.3] we have that for any -1 < β < 0 and any n ≥ 1 fixed,

N -1/2(1+β) S N,n (τ ) fdd → [nτ ]V β as N → ∞. Hence, (3.14) immediately follows. In a similar way, (3.15) is a consequence of (N log N ) -1/2 S N,n (τ ) fdd → [nτ ]V 0 , or (N log N ) -1/2 S N (t) fdd → V 0 , S N (t) := N i=1 X i (t), (3.51) 
which is proved below.

Similarly to the rest of this chapter, we use the method of characteristic functions. We shall use the fact that the characteristic function of a standardized r.v. ε has the following representation in a neighborhood of the origin: there exists an > 0 such that

χ(θ) := Ee iθε = e -θ 2 h(θ)/2 for each |θ| < , (3.52)
where h is a positive function tending to 1 as θ → 0 (see, e.g., Ibragimov and Linnik [49, Theorem 2.6.5]). Fix m ∈ N and θ

= (θ 1 , . . . , θ m ) ∈ R m , then m t=1 θ t X(t) = s∈Z ϑ(s, a)ε(s),
where ϑ(s, a) := m t=1 θ t a t-s 1(s ≤ t). Using (3.52) similarly as in [88, pages 519, 521], the convergence (3.51) follows from

Ψ N (θ) := N E 1 -exp - 1 2N log N s∈Z (ϑ(s, a)) 2 h ϑ(s, a) (N log N ) 1/2 → Ψ(θ) := ψ 1 4 m t=1 θ t 2 . (3.53)
Arguing further as in [88, page 521], we reduce the proof of (3.53) to Ψ N 1 (θ) → Ψ(θ), where

Ψ N 1 (θ) := ψ 1 N 1 1- 1 -exp - 1 2N log N s≤0 (ϑ(s, a)) 2 h ϑ(s, a) (N log N ) 1/2 da ∼ ψ 1 N 0 1 -exp - | m t=1 θ t | 2 4y log N dy ∼ ψ 1 O K log N + N K/ log N 1 -exp - | m t=1 θ t | 2 4y log N dy ∼ ψ 1 | m t=1 θ t | 2 4 log N N K/ log N dy y ∼ ψ 1 | m t=1 θ t | 2 4 since 1 log N N K/ log N y -1 dy → 1 when → 0 and K → ∞ together with N → ∞ but slowly enough (so that log(1/ ) = o(log N ), log K = o(log N ))
. This proves (3.51) and (3.15).

It remains to prove (3.16). Let us first show that

n -1/2 S 1,n (τ ) = n -1/2 [nτ ] t=1 X(t) fdd → (1 -a) -1 B(τ ) as n → ∞, (3.54) 
where B is a Brownian motion as in (3.11) and a ∈ [0, 1) is independent of B and has the same (mixing) distribution in (3.5). Accordingly, it suffices to show that for any fixed m ∈ N and any 0 =

τ 0 < τ 1 < • • • < τ m , θ = (θ 1 , . . . , θ m ) ∈ R m , U n (θ) := E exp i n -1/2 m j=1 θ j (S 1,n (τ j ) -S 1,n (τ j-1 )) → E exp i (1 -a) -1 m j=1 θ j (B(τ j ) -B(τ j-1 )) = E exp -(1/2)(1 -a) -2 m j=1 θ 2 j (τ j -τ j-1 ) =: U (θ) (3.55) as n → ∞, where S 1,n (0) := 0. Denote θn (s, a) := m j=1 θ j [nτ j ] t=[nτ j-1 ]+1 a t-s 1(s ≤ t). Then m j=1 θ j (S 1,n (τ j ) -S 1,n (τ j-1 )) = s≤[nτm] θn (s, a)ε(s). Let A n := {a : 0 ≤ a < 1 - log n/ √ n}, A c n := [0, 1) \ A n . Note that sup s∈Z, a∈An | θn (s, a)|/ √ n = O(1/ log n) → 0, imply- ing sup s∈Z, a∈An |h( θn (s, a)/ √ n) -1| = o(1)
. Using this and (3.52), for n large enough, split

U n (θ) = U n1 (θ) + U n2 (θ), where U n1 (θ) := E exp - 1 2n s≤[nτm] ( θn (s, a)) 2 h θn (s, a) n 1/2 1(a ∈ A n ) (3.56)
and

U n2 (θ) := E exp{in -1/2 m j=1 θ j (S 1,n (τ j ) -S 1,n (τ j-1 ))}1(a ∈ A c n ) . Then (3.55) follows from U n1 (θ) → U (θ) and U n2 (θ) = o(1), where the last relation is immediate from |U n2 (θ)| ≤ P(a ∈ A c n ) = o(1)
. Using (3.56) and the argument above, the convergence

U n1 (θ) → U (θ) reduces to lim n→∞ n -1 s≤[nτm] ( θn (s, a)) 2 = (1 -a) -2 m j=1 (τ j -τ j-1 ) θ 2 j (3.57)
for each a ∈ [0, 1). Relation (3.57) follows by splitting the sum on the l.h.s. of (3.57) as

s≤[nτm] = m k=0 [nτ k-1 ]<s≤[nτ k ] , [nτ -1 ] := -∞, and noting that n -1 [nτ k-1 ]<s≤[nτ k ] ( θn (s, a)) 2 → (1 -a) -2 θ 2 k (τ k -τ k-1 ) for 1 ≤ k ≤ m and n -1 s≤0 ( θn (s, a)) 2 ≤ Cn -1 s≤0 ( ∞ t=1 a t-s ) 2 ≤ Cn -1 (1 -a 2 ) -1 (1 - a) -2 → 0, for each a ∈ [0, 1
). This proves (3.57) and (3.54), too.

Let W := {(1 -a) -1 B(τ ), τ ≥ 0} and W i , i = 1, 2, . . . , be its independent copies. With (3.54) in mind, it remains to prove that

N -1/(1+β) N i=1 W i (τ ) fdd → W β (τ ).
(3.58)

For notational simplicity, we restrict the proof of (3.58) to two-dimensional convergence at 0 ≤ τ 1 < τ 2 , viz.,

U N (θ 1 , θ 2 ) := E exp N -1/(1+β) i θ 1 N i=1 W i (τ 1 ) + i θ 2 N i=1 W i (τ 2 ) -W i (τ 1 ) → E exp iθ 1 W β (τ 1 ) + iθ 2 W β (τ 2 ) -W β (τ 1 ) (3.59) = E exp -W β τ 1 θ 2 1 + (τ 2 -τ 1 )θ 2 2 /2 = exp -k β (τ 1 θ 2 1 + (τ 2 -τ 1 )θ 2 2 )/2 (1+β)/2 . We have U N (θ 1 , θ 2 ) = (1 -Ψ N (θ 1 ,θ 2 )

N

) N , where

Ψ N (θ 1 , θ 2 ) := N 1 0 1 -exp - ω(θ 1 , θ 2 ) N 2/(1+β) (1 -a) 2 ψ(a)(1 -a) β da, where ω(θ 1 , θ 2 ) := (1/2)(τ 1 θ 2 1 + (τ 2 -τ 1 )θ 2 
2 ) ≥ 0. From the above expression and assumption (3.5), it easily follows that for any > 0,

Ψ N (θ 1 , θ 2 ) ∼ ψ 1 N 1 1- 1 -exp - ω(θ 1 , θ 2 ) N 2/(1+β) (1 -a) 2 (1 -a) β da → k β (ω(θ 1 , θ 2 )) (1+β)/2 ,
where

k β := ψ 1 2 ∞ 0 (1 -e -y ) dy y (β+3)/2 = ψ 1 1 + β Γ 1 -β 2 . (3.60)
This proves (3.59) and Theorem 3.1, too.

Proof of Theorem 3.2. As in the proof of the previous theorem, we use the method of characteristic functions. For notational convenience we assume that ε d = N (0, 1) or h(θ) ≡ 1 in (3.52), and that ψ(a) ≡ ψ 1 > 0, a ∈ [0, 1), in the mixing density (3.5). For the general case, the proof of Theorem 3.2 does not require essential changes. Case (i), 0 < β < 1 (proof of (3.17)). It suffices to prove that for any fixed m ∈ N,

0 < τ 1 < • • • < τ m , and any θ = (θ 1 , . . . , θ m ) ∈ R m , U N,n (θ) := E exp iN -1/2 n -1+β/2 m j=1 θ j S N,n (τ j ) → E exp i m j=1 θ j B 1-(β/2) (τ j ) =: U (θ), (3.61) 
as N, n, N/n 1+β → ∞. By definition,

U (θ) = exp - ψ 1 2 ∞ 0 K(x)x β dx , where (3.62) K(x) := R m j=1 θ j f(x, τ j -s) -f(x, -s) 2 ds
and f is given by (3.9). We also have

U N,n (θ) = E s∈Z exp - 1 2 ϑ n (s, a) N 1/2 n 1-β/2 2 N with (3.63) ϑ n (s, a) := m j=1 θ j [nτ j ] t=1 a t-s 1(s ≤ t). Then U N,n (θ) = (1 - Ψ N,n (θ) N
) N , where

Ψ N,n (θ) := N 1 -E exp - 1 2 s∈Z (ϑ n (s, a)) 2 N n 2-β .
Thus (3.61) will be proved once we show that

Ψ N,n (θ) → ψ 1 2 ∞ 0 K(x)x β dx as N, n, N/n 1+β → ∞, for all θ ∈ R m . (3.64)
After a change of variable we obtain

Ψ N,n (θ) = ψ 1 N n 1+β n 0 1 -exp - n 1+β 2N K N,n (x) x β dx,
where

K N,n (x) := 1 n 3 s∈Z ϑ n s, 1 - x n 2 = R m j=1 θ j [nτ j ]/n 0 1 - x n nt -ns 1( ns ≤ nt )dt 2 ds
is written as a Riemann sum. By the dominated convergence theorem it follows that

K N,n (x) → R m j=1 θ j τ j 0 e -x(t-s) 1(s ≤ t)dt 2 ds = K(x) for each x > 0, (3.65) 
where K(x) is the same as in (3.62). Moreover, the inequality 1 -z ≤ e -z , z ≥ 0, yields (1 -x/n) nt -ns ≤ e -x( nt -ns )/n ≤ Ce -x(t-s) , x ≥ 0, t ≥ s, and then

|K N,n (x)| ≤ C m j=1 R τ j 0 e -x(t-s) 1(s ≤ t)dt 2 ds =: K(x) (3.66)
with K(x) independent of N and n. We conclude by (3.65) and (3.66) that

J N,n (x) := N n 1+β 1 -exp - n 1+β 2N K N,n (x) → K(x) 2
for each x > 0, and that

|J N,n (x)| is dominated by the function K(x) ≥ 0 satisfying ∞ 0 K(x)x β dx < ∞.
Hence the dominated convergence theorem applies and leads to (3.64) and (3.61). This completes the proof of Case (i) of Theorem 3.2 for 0 < β < 1.

Case (i), -1 < β < 0 (proof of (3.18)). Using the notation in (3.61) it suffices to show that

U N,n (θ) := E exp iN -1/2(1+β) n -1 m j=1 θ j S N,n (τ j ) → E exp i m j=1 θ j τ j V β =: U (θ) as N, n, N/n 1+β → ∞. (3.67) Here, U (θ) = exp{-K β | m j=1 θ j τ j | 2(1+β) } and U N,n (θ) = (1 - Ψ N,n (θ) N
) N , where

Ψ N,n (θ) := ψ 1 N 1 0 1 -exp - 1 2N 1/(1+β) n 2 s∈Z (ϑ n (s, a)) 2 (1 -a) β da.
Hence to prove (3.67), it is enough to verify that for any

θ ∈ R m Ψ N,n (θ) → K β m j=1 θ j τ j 2(1+β) as N, n, N/n 1+β → ∞. (3.68) We have s∈Z (ϑ n (s, a)) 2 = R 0 (a) + R 1 (a), where R 0 (a) := (1 -a 2 ) -1 m j=1 θ j [nτ j ] t=1 a t 2 , R 1 (a) := [nτm] s=1 m j=1 θ j 1(s ≤ [nτ j ]) [nτ j ] t=s a t-s 2 . (3.69) Clearly, R 1 (a) ≤ C min{n 3 , n/(1 -a) 2 } for any 0 ≤ a < 1. After a change of variable 1 -a = N -1/(1+β) x, we get Ψ N,n (θ) = ψ 1 N 1/(1+β) 0 1 -exp - 1 2 R0 (x) + R1 (x) x β dx, (3.70) 
where 1+β) follows by the dominated convergence theorem. Relation Ψ2 (θ) → 0 follows in a similar way, since H(x) := e -R(x)/2 -e -R0 (x)/2 → 0 (see (3.71)) and 1). This proves (3.68) and (3.18).

R0 (x) := 1 x(2 -N -1/(1+β) x) m j=1 θ j 1 n [nτ j ] t=1 1 -N -1/(1+β) x t 2 → 1 2x m j=1 θ j τ j 2 =: R(x) (3.71) and R1 (x) := R 1 (1 -N -1/(1+β) x) N 1/(1+β) n 2 ≤ C min n N 1/(1+β) , N 1/(1+β) x 2 n → 0. (3.72) Write Ψ N,n (θ) = 3 i=1 Ψi (θ), where Ψ1 (θ) := ψ 1 N 1/(1+β) 0 1 -e -R(x)/2 x β dx, Ψ2 (θ) = ψ 1 N 1/(1+β) 0 e -R(x)/2 -e -R0 (x)/2 x β dx, Ψ3 (θ) = ψ 1 N 1/(1+β) 0 e -R0 (x)/2 -e -( R0 (x)+ R1 (x))/2 x β dx. Now, relation Ψ1 (θ) → ψ 1 ∞ 0 (1 -e -R(x)/2 )x β dx = K β | m j=1 θ j τ j | 2(
|H(x)| ≤ |1 -e -R(x)/2 | + |1 -e -R0 (x)/2 | ≤ C(| R(x)| + | R0 (x)|) ≤ C min(1, 1/x) =: H(x), with ∞ 0 H(x) x β dx < ∞. Finally, Ψ3 (θ) → 0 follows from the bound (3.72) since | Ψ3 (θ)| ≤ ψ 1 N 1/(1+β) 0 |1 -e -R1 (x)/2 |x β dx ≤ C N 1/(1+β) 0 | R1 (x)|x β dx ≤ C × ( N 1/(1+β) /n 0 + ∞ N 1/(1+β) /n )| R1 (x)|x β dx = O((N 1/(1+β) /n) β ) = o(
Case (i), β = 0 (proof of (3.19)). Following (3.67), (3.68), it suffices to show that Ψ N,n (θ) → ψ 1 4 m j=1 θ j τ j 2 as N, n, N/n → ∞, (3.73) 
where 

Ψ N,n (θ) := ψ 1 N 1 0 1 -exp - 1 2n 2 N log(N/n) s∈Z (ϑ n (s, a)) 2 da,
= N 0 1 -exp - R0 (x) 2 log(N/n) dx → 1 4 m j=1 θ j τ j 2 , ( 3.74) 
Ψ1 (θ) := N 0 1 -exp - R1 (x) 2 log(N/n) dx → 0, (3.75) 
where R0 (x), R1 (x) are the same as in (3.70) with β = 0. In order to simplify the exposition and notation, we restrict the subsequent proof of (3.74) to the one-dimensional case 

m = τ = 1, θ = θ ∈ R. From definition in (3.71) we have R0 (x) = Q 1 (x) + Q 2 (x), where Q 1 (x) := θ 2 2x 1 n n t=1 1 - x N t 2 , Q 2 (x) := θ 2 2N (2 -(x/N )) 1 n n t=1 1 - x N t 2 ≤ C N . Since N 0 (1 -exp{-Q 2 (x)/(2 log(N/n))})dx ≤ C log(N/n) N 0 |Q 2 (x)|dx = O( 1 log(N/n) ) = o(1), it suffices to show (3.74) with R0 (x) replaced by Q 1 (x), viz., Φ(θ) := N 0 1 -exp - θ 2 4x log(N/n) 1 n n t=1 1 - x N t 2 dx → θ 2 4 . (3.76) Rewrite Φ(θ) = 1 log(N/n) ∞ (N log(N/n)) -1 Γ N,n (y) dy y = 3 i=1 Φ i (θ), where Γ N,n (y) := 1 y 1 -e -θ 2 yΛ N,n (y)/4 , Λ N,n (y) := 1 n n t=1 1 - 1 yN log(N/n) t 2 and Φ 1 (θ) := 1 log(N/n) n/N 1/(N log(N/n)) Γ N,n (y) dy y , Φ 2 (θ) := 1 log(N/n) 1 n/N Γ N,n (y) dy y , Φ 3 (θ) := 1 log(N/n) × ∞ 1 Γ N,n (y) dy y . We have Φ 1 (θ) ≤ C log(N/n) n/N 1/(N log(N/n)) Λ N,n (y) dy y = C log(N/n) n/N 1/(N log(N/n)) 1 n n t=1 1 - 1 yN log(N/n) t 2 dy y = C n 2 log(N/n) n t,s=1 N,n (t + s), with N,n (k) := n/N 1/(N log(N/n)) 1 - 1 yN log(N/n) k dy y . Using 1 -x ≤ e -x , x ≥ 0, we obtain N,n (k) ≤ n/N 1/(N log(N/n)) exp - k yN log(N/n) dy y ≤ C log n log(N/n) k , 1 ≤ k ≤ 2n. ( 3 
k/n log(N/n) e -z z -1 dz = J 1 + J 2 , where J 1 := k 1 e -z z -1 dz ≤ C, J 2 := 1 k/n log(N/n) e -z z -1 dz ≤ 1 k/n log(N/n) z -1 dz = log( n log(N/n) k ), proving (3.77). Using (3.77) we obtain Φ 1 (θ) ≤ C n 2 log(N/n) n t,s=1 log n log(N/n) t + s ≤ C n 2 log(N/n) 2n k=1 k log 2n log(N/n) k = C n 2 log(N/n) 2n k=1 k log 2n k + C log log(N/n) log(N/n) n -2 2n k=1 k = O log log(N/n) log(N/n) = o(1), since 2n k=1 k log( 2n k ) ≤ 2n 1 x log( 2n x )dx ≤ Cn 2 . Clearly, Γ N,n (y) ≤ y -1 , implying Φ 3 (θ) = O( 1 log(N/n) ) = o(1
Φ 21 (θ) := 1 log(N/n) 1 n/N G(y) dy y , Φ 22 (θ) := 1 log(N/n) 1 n/N [Γ N,n -G(y)]
|Φ 21 (θ) -θ 2 /4| ≤ |G(n/N ) -θ 2 /4| + 1 log(N/n) 1 n/N (G(y) -G(n/N )) dy y = o(1) + 1 log(N/n) 1 n/N G (y)(log y)dy = o(1). Next, consider Φ 22 (θ). Note that Λ N,n (y) is monotone in y ∈ (0, 1], hence Λ N,n (n/N ) ≤ Λ N,n (y) ≤ Λ N,n (1) ≤ 1, n/N ≤ y ≤ 1. Moreover, Λ N,n (n/N ) = ( 1 n n t=1 (1 - 1 n log(N/n) ) t ) 2 → 1 follows from (1 - 1 n log(N/n) ) t → 1, 1 ≤ t ≤ n. Using these facts, we obtain Φ 22 (θ) = 1 log(N/n) 1 n/N 1 y e -(θ 2 /4)yΛ N,n (y) 1 -e -(θ 2 /4)y(1-Λ N,n (y)) dy y ≤ C log(N/n) 1 n/N (1 -Λ N,n (y)) dy y ≤ C(1 -Λ N,n (n/N )) = o(1). It remains to show (3.75). Using 0 ≤ R1 (x) ≤ C min(n/N, N/nx 2 ), see (3.72), it follows that Ψ1 (θ) ≤ C log(N/n) N 0 R1 (x)dx,
where the last integral is bounded by a finite constant independent of N, n. This proves (3.75) and completes the proof of (3.19), too. Case (ii), -1 < β < 1 (proof of (3.20)). Because of similarities with the proofs of (3.17) and (3.18), we restrict the proof to the one-dimensional convergence at τ = 1. We have

E exp{iθN -1/(1+β) n -1/2 S N,n (1)} = (1 - Ψ N,n (θ) N
) N , where

Ψ N,n (θ) := ψ 1 N 1 0 1 -exp - θ 2 (R 0 (a) + R 1 (a)) 2N 2/(1+β) n (1 -a) β da and where R 0 (a) := s≤0 (ϑ n (s, a)) 2 ≤ (1-a) -3 , R 1 (a) := n s=1 (ϑ n (s, a)) 2 = (1-a) -2 n k=1 (1- a k ) 2 . By the change of variables 1 -a = N -1/(1+β) x, Ψ N,n (θ) can be rewritten as Ψ N,n (θ) = ψ 1 N 1/(1+β) 0 1 -exp - θ 2 2 R0 (x) + R1 (x) x 2 x β dx, where R0 (x) := 1 N 2/(1+β) n R 0 1 - x N 1/(1+β) ≤ N 3/(1+β) x 3 N 2/(1+β) n ≤ N 1/(1+β) x 3 n → 0, R1 (x) := 1 n n k=1 1 -1 - x N 1/(1+β) k 2 → 1.
The above facts entail

Ψ N,n (θ) → ψ 1 ∞ 0 (1 -e -θ 2 /2x 2 )x β dx = k β |θ| 1+β 2 (1+β)/2 = -log Ee iθW β ,
hence also the proof of (3.20). Case (iii), -1 < β < 1 (proof of (3.21)). Similarly as above, it suffices to prove that for any

θ ∈ R m , Ψ N,n (θ) → Ψ µ (θ) as N, n → ∞, N 1/(1+β) /n → µ ∈ (0, ∞), (3.78) 
where

Ψ µ (θ) := -log E exp i m j=1 θ j µ 1/2 Z β (τ j /µ) = ψ 1 ∞ 0 1 -exp - 1 2µ 2 R m j=1 θ j f(x/µ, τ j -s) -f(x/µ, -s) 2 ds x β dx, see (3.
12), and

Ψ N,n (θ) := ψ 1 N 1 0 1 -exp - R 0 (a) + R 1 (a) 2N 2/(1+β) n (1 -a) β da, with R 0 (a), R 1 (a) defined in (3.69). By change of variable 1 -a = N -1/(1+β) x we obtain Ψ N,n (θ) = ψ 1 N 1/(1+β) 0 1 -exp -(1/2) R0 (x) + R1 (x) x β dx, where R0 (x) := N 1/(1+β) (1 -N -1/(1+β) x) 2 nx 3 (2 -N -1/(1+β) x) m j=1 θ j 1 -1 - x N 1/(1+β) [nτ j ] 2 , R1 (x) := 1 x 2 n [nτm] s=1 m j=1 θ j 1 -1 - x N 1/(1+β) [nτ j ]-s+1 1(s ≤ [nτ j ]) 2 .
It is easy to verify that for each x > 0, R0 (x) → K 0 (x), R1 (x) → K 1 (x), where

K 0 (x) := µ 2x 3 m j=1 θ j (1 -e -(x/µ)τ j ) 2 = µ -2 0 -∞ m j=1 θ j f(x/µ, τ j -s) -f(x/µ, -s) 2 ds, K 1 (x) := x -2 τm 0 m j=1 θ j (1 -e -(x/µ)(τ j -s) )1(s ≤ τ j ) 2 ds = µ -2 τm 0 m j=1 θ j f(x/µ, τ j -s) 2 ds. Note Ψ µ (θ) = ψ 1 ∞ 0 [1 -exp{-(1/2)(K 0 (x) + K 1 (x))}]x β dx.
The convergence (3.78) now follows by the dominated convergence theorem using a similar argument as in the proof of Theorem 3.1 in [START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and idiosyncratic innovations[END_REF]. This proves (3.21) and thereby completes the proof of Theorem 3.2.

Proof of Theorem 3.3. The proof is analogous to that of the previous theorem. Let S N,n := S N,n [START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF]. We prove only one-dimensional convergence at τ = 1, or

U N,n (θ) := Ee iθS N,n /(N n) 1/2 = 1 - Ψ N,n (θ) N N → e -θ 2 σ 2 /2 , ( 3.79) 
where

Ψ N,n (θ) := N E 1 -e iθS 1,n /(N n) 1/2 = N E 1 - s≤n χ θ ϑ n (s, a) (N n) 1/2 , ϑ n (s, a) := n t=1 a t-s 1(s ≤ t), χ being the characteristic function of i.i.d. innovations {ε(s)}, see (3.52). Let A n := {a : 0 ≤ a < 1 -log n/ √ n}, A c n := [0, 1) \ A n similarly to the proof of Theorem 3.1. Accordingly, split Ψ N,n (θ) = Ψ N,n (θ) + Ψ N,n (θ), where Ψ N,n (θ) := N E 1 -e iθS 1,n /(N n) 1/2 1(a ∈ A n ), Ψ N,n (θ) := N E 1 -e iθS 1,n /(N n) 1/2 1(a ∈ A c n ). Since |Ψ N,n (θ)| = N |EE[1 -e iθS 1,n /(N n) 1/2 |a]1(a ∈ A c n )| and E[S 1,n |a] = 0, E[S 2 1,n |a] = s≤n (ϑ n (s, a)) 2 satisfies s≤n (ϑ n (s, a)) 2 ≤ 2n/(1 -a) 2 , we obtain Ψ N,n (θ) ≤ N (θ 2 /2)E N -1 n -1 s≤n (ϑ n (s, a)) 2 1(a ∈ A c n ) ≤ θ 2 E (1 -a) -2 1(a ∈ A c n ) = O (log n/ √ n) β-1 = o(1)
due to β > 1. Finally, (3.79) follows from

Ψ N,n (θ) = N E 1 -exp - θ 2 2N n s≤n (ϑ n (s, a)) 2 h θϑ n (s, a) (N n) 1/2 1(a ∈ A N ) → θ 2 σ 2 2 ,
by (3.55) and by Taylor expansion of the exponent in a standard way. This both proves (3.79) and Theorem 3.3.

As a final remark, let us note that the above proof does not require (3.5) and the conclusion of Theorem 3.3 remains valid under the more general condition E(1 -a) -2 < ∞.

Aggregation of AR(1) processes with common innovations

This chapter contains the article [START_REF] Pilipauskaitė | Joint aggregation of random-coefficient AR(1) processes with common innovations[END_REF]. We discuss joint temporal and contemporaneous aggregation of N copies of stationary random-coefficient AR(1) processes with common i.i.d. standardized innovations, when N and time scale n increase at different rate. Assuming that the random coefficient a has a density, regularly varying at a = 1 with exponent -1/2 < β < 0, different joint limits of normalized aggregated partial sums are shown to exist when N 1/(1+β) /n tends to (i) ∞, (ii) 0, (iii) 0 < µ < ∞. We extend the results of Chapter 3 from the case of idiosyncratic innovations to the case of common innovations.

Introduction

Let X i := {X i (t), t ∈ Z}, i = 1, . . . , N, be stationary random-coefficient AR(1) processes X i (t) = a i X i (t -1) + ε(t), t ∈ Z, (4.1) 
with common standardized i.i.d. innovations {ε(t), t ∈ Z} and i.i.d. random coefficients

a i ∈ (-1, 1), i = 1, . . . , N , independent of {ε(t), t ∈ Z}. Consider the double sum S N,n (τ ) := N i=1 [nτ ] t=1 X i (t), τ ≥ 0, (4.2) 
representing joint temporal and contemporaneous aggregate of N individual AR(1) evolutions (4.1) at time scale n. We discuss the limit distribution of appropriately normalized double sums S N,n in (4.2) as N , n jointly increase to infinity, possibly at a different rate. Throughout this chapter we suppose that the distribution of generic coefficient a ∈ (-1, 1) in (4.1), or the mixing distribution, satisfies the following two assumptions.

Assumption (A1).

There exist β > -1 and ∈ (0, 1) such that P(a

≤ x) is differentiable on (1 -, 1) with derivative dP(a ≤ x)/dx = (1 -x) β ψ(x), x ∈ (1 -, 1), (4.3) 
where ψ is bounded on (1 -, 1) and continuous at x = 1 with ψ 1 := lim x→1 ψ(x) > 0.

Assumption (A2). E(1 + a) -1/2 < ∞.
Assumptions (A1) and (A2) refer to the behavior of the mixing distribution in the vicinity of a = 1 and a = -1, respectively (the positive and negative unit roots of generic AR(1) process X = X i in (4.1)). Because of oscillation of the moving-average coefficients of X when a < 0, the behavior of the mixing distribution near a = -1 is generally less important for partial sums processes than its behavior near a = 1, the crucial role being played by the parameter β in (4.3). Assumption (A1) is similar to (3.5) on page 38 and [START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and common innovations[END_REF][START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and idiosyncratic innovations[END_REF][START_REF] Zaffaroni | Contemporaneous aggregation of linear dynamic models in large economies[END_REF], although the 'typical' range of β is different in the aggregation schemes with common and idiosyncratic innovations. The random-coefficient AR(1) process X has finite variance if and only if EX

2 (t) = E s≤t a 2(t-s) = E(1 -a 2 ) -1 < ∞, which implies β > 0 in (4.3).
It is well-known that under the condition (4.3) with 0 < β < 1 (and a ∈ [0, 1) a.s.), X has long memory in the sense that its covariance decays as Cov(X(0),

X(t)) = O(t -β ), t → ∞, so that ∞ t=0 | Cov(X(0), X(t))| = ∞.
Zaffaroni [START_REF] Zaffaroni | Contemporaneous aggregation of linear dynamic models in large economies[END_REF], Puplinskaitė and Surgailis [START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and common innovations[END_REF] discussed the existence and long memory properties of the limit (in probability) X (t) := lim N →∞ N -1 N i=1 X i (t), t ∈ Z, of aggregated AR(1) processes X i in (4.1), written as a moving-average X (t) = ∞ j=0 g(j)ε(t-j) with (deterministic) coefficients g(j) := E[a j ], j ≥ 0. For -1/2 < β < 0 in (4.3) and under similar condition on the mixing distribution near a = -1, the coefficients g(j) ∼ Γ(1 + β)j -β-1 , j → ∞, and the (normalized) partial sum process of X tends to a fractional Brownian motion with parameter H = (1/2)-β ∈ (1/2, 1), see [START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and common innovations[END_REF]Propositions 2 and 4]. We recall that Granger [START_REF] Granger | Long memory relationships and the aggregation of dynamic models[END_REF] proposed the scheme of contemporaneous aggregation of heterogeneous random-coefficient AR(1) processes as a possible explanation of the long memory phenomenon in macroeconomic time series. Subsequently, large-scale contemporaneous aggregation of linear and heteroscedastic heterogeneous time series models was studied in [START_REF] Celov | Time series aggregation, disaggregation, and long memory[END_REF][START_REF] Giraitis | Aggregation of random coefficient GLARCH(1,1) process[END_REF][START_REF] Gonçalves | Agrégation de processus autorégressifs d'ordre 1[END_REF][START_REF] Oppenheim | Aggregation of random parameters Ornstein-Uhlenbeck or AR processes: some convergence results[END_REF][START_REF] Pilipauskaitė | Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes[END_REF][START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and common innovations[END_REF][START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and idiosyncratic innovations[END_REF][START_REF] Zaffaroni | Contemporaneous aggregation of linear dynamic models in large economies[END_REF][START_REF] Zaffaroni | Aggregation and memory of models of changing volatility[END_REF] and other papers.

Let us describe the main results of the present chapter. Assume that the mixing density satisfies Assumptions (A1) and (A2) with -1/2 < β < 0 and N, n increase simultaneously so as

N 1/(1+β) n → µ ∈ [0, ∞], (4.4) 
leading to the three cases (i)-(iii):

Case (i): µ = ∞, Case (ii): µ = 0, Case (iii): 0 < µ < ∞. (4.5)
Our main result is Theorem 4.3 of Section 4.2 which states that the 'simultaneous limit' of S N,n (τ ) exists in the sense of weak convergence of finite-dimensional distributions, and is different in all three Cases (i)-(iii), namely,

N -1 n β-(1/2) S N,n (τ ) fdd → σ β B (1/2)-β (τ ) in Case (i), (4.6 
)

N -1/(1+β) n -1/2 S N,n (τ ) fdd → W β B(τ ) in Case (ii), (4.7 
) 

N -1/(1+β) n -1/2 S N,n (τ ) fdd → µ 1/2 Z β (τ /µ) in Case (iii). ( 4 
Z β (τ ) := R×R + τ 0 e -x(u-s) 1(s ≤ u)du dB(s) N (dx), τ ≥ 0, (4.9) 
where

N = {N (dx), x ∈ R + } is a Poisson random measure on R + := (0, ∞) with intensity ν(dx) := EN (dx) := ψ 1 x β dx, independent of standard Brownian motion B.
The existence of the process Z β in (4.9) and its properties are discussed in Section 4.2. In particular, we show that Z β can be regarded as a 'bridge' between the limit processes in Cases (i) and (ii), in the sense that Z β behaves as B (1/2)-β at 'small scales' and as W β B at 'large scales'. See Proposition 4.2 for rigorous formulation. This chapter extends the previous one (based on [START_REF] Pilipauskaitė | Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes[END_REF]), where a similar problem was discussed for stationary random-coefficient AR(1) processes Y i = {Y i (t), t ∈ Z}, i = 1, . . . , N , with independent (or idiosyncratic) innovations:

Y i (t) = a i Y i (t -1) + ε i (t), t ∈ Z, where {ε i (t), t ∈ Z} are independent copies of {ε(t), t ∈ Z} in (4.1), independent of a i ∈ [0, 1), i = 1, . . . , N . Let S N,n (τ ) := N i=1 [nτ ]
t=1 Y i (t), τ ≥ 0, be the analogue of S N,n (τ ) in (4.2). In Theorem 3.2 on page 42 under Assumption (A1) with -1 < β < 1 and N, n increasing as in (4.4), we obtained joint limits of S N,n (τ ) in the respective Cases (i)-(iii) of (4.5). Namely, the limit process of S N,n (τ ) in Case (i) is a fractional Brownian motion similarly to (4.6), but the limits of S N,n (τ ) in Cases (ii) and (iii) differ from (4.7) and (4.8). In particular, the 'intermediate process' Z β in Chapter 3 arising under Case (iii) is written as a 'Poisson mixture' of integrated Ornstein-Uhlenbeck (O-U) processes τ -∞ { τ 0 e -x(u-s) 1(s ≤ u)du}dB(s) on the product space R + × C(R) equipped with the measure ν(dx) × P B , with P B being the Wiener measure on C(R), while in the representation (4.9) of Z β , these O-U processes are 'mixed' w.r.t. x only. These differences are due to different dependence structure between summands X i and Y i in the common and idiosyncratic aggregation schemes: the Y i 's are mutually independent processes while the X i 's are strongly interdependent due to common innovations.

The results of Chapter 3 and the present chapter are related to the study of joint limits of the aggregated input in network traffic models, see [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF][START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF][START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF][START_REF] Taqqu | Proof of a fundamental result in selfsimilar traffic modeling[END_REF] and references therein. See Chapter 3 for a discussion of the relation between AR(1) and network traffic aggregation schemes and their limit processes.

Main results

For -1/2 < β < 0, define a standard fractional Brownian motion

B (1/2)-β with Hurst index H = (1/2) -β ∈ (1/2, 1) as stochastic integral B (1/2)-β (τ ) := C -1 β τ -∞ (τ -s) -β -(-s) -β + dB(s), τ ≥ 0, (4.10) 
w.r.t. a standard Brownian motion B, where

C 2 β := -βB(-β, 1 + 2β)/(1 -2β) = 1 -∞ ((1 - s) -β -(-s) -β + ) 2 ds. Note that EB 2 (1/2)-β (τ ) = τ 1-2β . See [36, page 545]. Next, let W β B := {W β B(τ ), τ ≥ 0}, -1/2 < β < 0, where W β > 0 is a completely asymmetric (1+β)-stable r.v., independent of standard Brownian motion B = {B(τ ), τ ≥ 0} and having the log-Laplace transform log Ee -θW β = ψ 1 ∞ 0 (e -θ/x -1)x β dx = -ψ 1 (Γ(-β)/(1+ β))θ 1+β , θ ≥ 0.
Note, the process W β B has stationary increments and is self-similar with index 1/2. Proposition 4.2 details the third limit process arising under (4.4)-(4.5). Before that, we discuss the double stochastic integral w.r.t. Gaussian and Poisson random measures.

Let N = {N (dx), x ∈ R + } be a Poisson random measure on R + with intensity ν(dx) := EN (dx) := ψ 1 x β dx, -1/2 < β < 0, independent of a standard Brownian motion B = {B(s), s ∈ R}. Let N (dx) = N (dx) -ν(dx) be the centered Poisson random measure. Let L p (p ≥ 1) be the space of all r.v.s ξ measurable w.r.t. the σ-field generated by N and B and such that E|ξ|

p < ∞. Write E = E N × E B , where E N , E B refer to expectation w.r.t. N, B only. For 1 ≤ p ≤ 2, let L p (R + × R) denote the Banach space of all measurable real-valued functions h = h(x, s), (x, s) ∈ R + × R such that h Lp := R + R h 2 (x, s)ds p/2 ν(dx) 1/p + R + R h 2 (x, s)ds 1/2 ν(dx) < ∞. Let L 0 (R + × R) consist of all (step) functions h = h(x, s) taking a finite number of non-zero values h n (k, j) on squares (k/n, (k + 1)/n] × (j/n, (j + 1)/n] ⊂ R + × R, k = 0, 1, . . . , j = 0, ±1, ±2, . . . for some n = 1, 2, . . . . For such h ∈ L 0 (R + × R), define the double stochastic integral I(h) ≡ R + ×R h(x, s)N (dx)dB(s) as a sum I(h) := k,j h n (k, j)N ((k/n, (k + 1)/n])B((j/n, (j + 1)/n]), (4.11) 
where B((j/n, (j + 1)/n]) := B((j + 1)/n) -B(j/n). 

with C > 0 independent of h ∈ L p (R + × R). Moreover, for any h ∈ L p (R + × R) and any θ ∈ R, Ee iθI(h) = E B exp R + exp iθ R h(x, s)dB(s) -1 ν(dx) = E N exp - θ 2 2 R R + h(x, s)N (dx) 2 ds . ( 4 
. (ii) (Asymptotic self-similarity.) For any -1/2 < β < 0, b β-(1/2) Z β (bτ ) fdd → σ β B (1/2)-β (τ ) as b → 0, (4.14) b -1/2 Z β (bτ ) fdd → W β B(τ ) as b → ∞, (4.15) 
where

σ β := -ψ 1 Γ(β)C β .
In Theorems 4.3 and 4.4, S N,n (τ ) is the aggregated sum (4.2), where X i are stationary random-coefficient AR(1) processes 

X i (t) = ∞ s=0 a s i ε(t -s), t ∈ Z, i = 1, . . . ,
N -1 n -1/2 S N,n (τ ) fdd → σB(τ ), (4.17) 
where {B(τ ), τ ≥ 0} is a standard Brownian motion and σ := E(1 -a) -1 .

Proofs

Proof of Proposition 4.1. Rewrite I(h) in (4.11) as I(h) = I 1 (h) + I 2 (h), where I 1 (h) := k,j h n (k, j)ν((k/n, (k + 1)/n])B((j/n, (j + 1)/n]), I 2 (h) := k,j h n (k, j) × N ((k/n, (k + 1)/n])B((j/n, (j +1)/n]). By inequality (3.24) on page 43 for pth moment of Poisson stochastic integrals, it follows that for any 1 

≤ p ≤ 2, E|I 2 (h)| p = EE |I 2 (h)| p |B ≤ 2E k j h n (k, j)B((j/n, (j + 1)/n]) p ν((k/n, (k + 1)/n]) ≤ 2 k E j h n (k, j)B((j/n, (j + 1)/n]) 2 p/2 ν((k/n, (k + 1)/n]) = 2 k j h 2 n (k, j)(1/n) p/2 ν((k/n, (k + 1)/n]) = 2 R + R h 2 (x, s)ds p/2 ν(dx), while E|I 1 (h)| p ≤ {E|I 1 (h)| 2 } p/2 = j k h n (k, j)ν((k/n, (k + 1)/n]) 2 (1/n) p/2 ≤ k j h 2 n (k, j)(1/n) 2 1/2 ν((k/n, (k + 1)/n]) p = R + R h 2 (x, s)ds
(R + × R). Note that L(h) := R + (e iθ R h(x,s)dB(s) -1)ν(dx) is well-defined and satisfies E B |L(h)| ≤ |θ| R + E B | R h(x, s)dB(s)|ν(dx) ≤ |θ| R + E 1/2 B | R h(x, s)dB(s)| 2 ν(dx) = |θ| R + ν(dx){ R + h 2 (x, s)ds} 1/2 ≤ |θ| h Lp
) ∈ R + × R define f (x, t) :=    (1 -e -xt )/x, if x > 0 and t > 0, 0, otherwise. (4.18) Lemma 4.5. (i) Let L(τ, x) := τ -∞ (f (x, τ -s) -f (x, -s))dB(s); Λ b (τ, x) := b -(1+β) (exp{iθ b 1+β L(τ, x)} -1); Λ 0 (τ, x) := iθL(τ, x) for τ > 0, x > 0, b > 0, θ ∈ R. Then ∞ 0 Λ b (τ, x)ν(dx) p → ∞ 0 Λ 0 (τ, x)ν(dx), b → 0. (4.19) (ii) Let M b (τ, x) := exp{iθx -1 τ 0 (1-e -bx(τ -s) )dB(s)}-1; M ∞ (τ, x) := exp{iθx -1 τ 0 dB(s)}- 1 for τ > 0, x > 0, b > 0, θ ∈ R. Then ∞ 0 M b (τ, x)ν(dx) p → ∞ 0 M ∞ (τ, x)ν(dx), b → ∞. (4.20) Proof. (i) Let 1 < p < 2(1 + β) < 2. Using |e ix -1 -x| ≤ min(2|x|, x 2 /2), x ∈ R, we obtain |Λ b (τ, x) -Λ 0 (τ, x)| ≤ C min b 1+β L 2 (τ, x), |L(τ, x)| = C b 1+β |L(τ, x)|1(1 ≤ b 1+β |L(τ, x)|) +b 1+β |L(τ, x)| 2 1(1 ≥ b 1+β |L(τ, x)|) ≤ Cb (1+β)(p-1) |L(τ, x)| p ,
which tends to 0 with probability 1 as b → 0 for any x > 0. Hence

E B ∞ 0 (Λ b (τ, x) -Λ 0 (τ, x))ν(dx) ≤ Cb (1+β)(p-1) ∞ 0 E B |L(τ, x)| p ν(dx) = O(b (1+β)(p-1) ) = o(1), since ∞ 0 E B |L(τ, x)| p ν(dx) ≤ C ∞ 0 |σ(τ, x)| p ν(dx) < ∞ by (4.22) with σ 2 (τ, x) = E B L 2 (τ, x) evaluated in (4.21). This proves (4.19). (ii) Since|M b (τ, x) -M ∞ (τ, x)| ≤ C min(1, |θx -1 τ 0 e -bx(τ -s) dB(s)|) =: L b (τ, x), we have E B ∞ 0 |M b (τ, x) -M ∞ (τ, x)|ν(dx) ≤ 0 E B |L b (τ, x)|ν(dx) + ∞ E B |L b (τ, x)|ν(dx) =: I 1 + I 2 .
Since β > -1/2 > -1 and L b is bounded, the integral I 1 can be made arbitrary small by choosing > 0 small enough. The proof is completed by showing that

I 2 ≤ C ∞ E B x -1 τ 0 e -bx(τ -s) dB(s) x β dx ≤ C ∞ E 1/2 B τ 0 e -bx(τ -s) dB(s) 2 x β-1 dx ≤ C ∞ τ 0 e -2bxs ds 1/2 x β-1 dx ≤ C ∞ (xb) -1/2 x β-1 dx → 0, b → ∞.
This proves (4.20) and the lemma, too. (3.34) on page 45 we have

Proof of Proposition 4.2. (i) We have h

τ (x, s) := τ 0 e -x(u-s) 1(s ≤ u)du = f (x, τ -s) - f (x, -s), (x, s) ∈ R + × R, where f (τ, x) is defined in (4.18). By Proposition 4.1, Z β (τ ) = I(h τ ) is well-defined provided h τ Lp < ∞ for some 1 ≤ p ≤ 2. From (3.33),
σ 2 (τ, x) := R h 2 τ (x, s)ds ≤ C τ x 2 (1 ∧ (τ x)) (4.21)
and hence

R + R h 2 τ (x, s)ds p/2 ν(dx) ≤ Cτ p/2 ∞ 0 1 x 2 (1 ∧ (τ x)) p/2 x β dx ≤ Cτ (3p/2)-1-β < ∞ (4.22) for 1 + β < 1 ≤ p < 2(1 + β). Therefore E|Z β (τ )| p ≤ C h τ p Lp ≤ C(τ (3p/2)-1-β + τ (1-2β)(p/2) ) < ∞ (4.23) for τ > 0, 1 ≤ p < 2(1 + β). Z β (τ ) = R + ×R h τ (x, s)N (dx)dB(s) has stationary increments because the invariance properties h τ +u (x, s) -h u (x, s) = h τ (x, s -u), {dB(s + u), s ∈ R} fdd = {dB(s), s ∈ R}, τ, u ≥ 0,
hold for the integrand and the white noise dB. The fact that Z β (τ ) has a.s. continuous paths follows from (4.23) and stationarity of increments, and the Kolmogorov criterion [73, Theorem 2.2.3], by noting that both exponents of τ on the r.h.s. of (4.23) are strictly greater than 1 for p < 2(1 + β) sufficiently close to 2(1 + β). This proves part (i).

(ii) We use the method of characteristic functions and restrict the proof to the one-dimensional convergence at fixed τ > 0; the proof of finite-dimensional convergence follows similarly.

Proof of (4.14). Using (4.13) and the scaling property f (x, bt) = bf (bx, t) we obtain

U b (θ) := E B exp ∞ 0 exp iθb β-1/2 bτ -∞ (f (x, bτ -s) -f (x, -s))dB(s) -1 ν(dx) = E B exp ∞ 0 exp iθb 1+β τ -∞ (f (bx, τ -s) -f (bx, -s))dB(s) -1 ν(dx) = E B exp ∞ 0 Λ b (τ, y)ν(dy) ,
where we changed a variable to get the last equality with Λ b (τ, y) defined in Lemma 4.5

(i). Since Re{ ∞ 0 Λ b (τ, y)ν(dy)} ≤ 0, Lemma 4.5(i) implies the convergence U b (θ) → U 0 (θ) := E B exp{ ∞ 0 Λ 0 (τ, y)ν(dy)} for any θ ∈ R. It remains to show that U 0 (θ) = E exp{iθσ β B (1/2)-β (τ )}.

Proofs

Using the definitions of B (1/2)-β (τ ) in (4.10) and f (x, τ ) in (4.18) and the identity ∞

0 f (x, τ ) ν(dx) = -ψ 1 Γ(β)τ -β , β ∈ (-1, 0), τ > 0, we obtain ∞ 0 Λ 0 (τ, x)ν(dx) = iθ τ -∞ ∞ 0 (f (x, τ -s) -f (x, -s))ν(dx)dB(s) = iθσ β B (1/2)-β (τ ), (4.24) 
where the interchange of the order of integration in the first equality of (4.24) can be justified by the stochastic Fubini theorem, see [ 

W β d = ∞ 0 x -1 N (dx). Let us prove that as b → ∞, V b (θ) := E exp iθb -1/2 ∞ 0 bτ 0 f (x, bτ -s)N (dx)dB(s) → E exp iθ ∞ 0 x -1 N (dx)B(τ ) = Ee iθW β B(τ ) =: V ∞ (θ).
Indeed, using (4.13) and scaling properties of f (x, t) and B, we have

V b (θ) = E B exp{ ∞ 0 M b (τ, x)ν(dx)}, where M b (τ, x) is defined in Lemma 4.5(ii). Since Re{ ∞ 0 M b (τ, x)ν(dx)} ≤ 0, re- lation V b (θ) → V ∞ (θ) = E B exp{ ∞ 0 M ∞ (τ, x)ν(dx)}, b → ∞, follows from Lemma 4.

5(ii). It remains to prove that

I(b, p) := b -p/2 E ∞ 0 0 -∞ f (x, bτ -s) -f (x, -s) N (dx)dB(s) p → 0, (4.25) b → ∞, for some p > 0. Using 0 -∞ (f (x, bτ -s)-f (x, -s))dB(s) = x -1 (1-e -xbτ )
∞ 0 e -xs dB(s) and the inequality in (3.24) on page 43 with 0

< p < 1 + β < 1, 3p/2 > 1 + β we obtain b p/2 I(b, p) ≤ ∞ 0 |(1 -e -xbτ )/x| p E B ∞ 0 e -xs dB(s) p ν(dx) ≤ C ∞ 0 |(1 -e -xbτ )/x| p ∞ 0 e -2xs ds p/2 ν(dx) ≤ C ∞ 0 |(1 -e -xbτ )/x| p x -p/2 ν(dx) = O(b (p/2)+p-1-β ) = o(b p/2 ),
which yields (4.25) and completes the proof of (4.15). Proposition 4.2 is proved.

To prove Theorem 4.3 we need the following lemma. 

t=1 a t-s 1(s ≤ t), s ∈ Z, a ∈ (-1, 1). Then as N, n → ∞ and N 1/(1+β) /n → µ ∈ {1, ∞}, N -2 n 2β-1 s∈Z N i=1 η n (a i , s) 2 d →        R ∞ 0 τ 0 e -x(t-s) 1(s ≤ t)dtN (dx) 2 ds, µ = 1, (-ψ 1 Γ(β)) 2 R ((τ -s) -β + -(-s) -β + ) 2 ds, µ = ∞. (4.26)
Proof. We use the criterion in Cremers and Kadelka [START_REF] Cremers | On weak convergence of integral functionals of stochastic processes with applications to processes taking paths in L E p[END_REF]. Rewrite (4.26) as

I N,n d → I, where I N,n := R A 2
N,n (s)ds, I := R A 2 (s)ds and

A N,n (s) := n β N N i=1
η n (a i , ns ),

A(s) :=      ∞ 0 τ 0 e -x(t-s) 1(s ≤ t)dtN (dx), µ = 1, κ((τ -s) -β + -(-s) -β + ), µ = ∞,
with κ := -ψ 1 Γ(β). Accordingly (see [START_REF] Cremers | On weak convergence of integral functionals of stochastic processes with applications to processes taking paths in L E p[END_REF], the second Corollory to Theorem 3), it suffices to verify two conditions: 

A N,n (s) fdd → A(s) (4.
Ee i m j=1 θ j A N,n (s j ) = 1 + Θ N,n N N → e Θ = Ee i m j=1 θ j A(s j ) (4.29) for any (θ 1 , . . . , θ m ) ∈ R m , -∞ < s 1 < • • • < s m < ∞, m ∈ N, where Θ N,n := N E exp i n β N m j=1 θ j η n (a, ns j ) -1 and Θ :=            ψ 1 ∞ 0 exp i m j=1 θ j τ 0 e -x(t-s j ) 1(s j ≤ t)dt -1 x β dx, µ = 1, i m j=1 θ j A(s j ) = iκ m j=1 θ j ((τ -s j ) -β + -(-s j ) -β + ), µ = ∞. 4.3. Proofs Observe that A(s) = ψ 1 ∞ 0 ( τ 0 e -x(t-s) 1(s ≤ t)dt)x β dx if µ = ∞. Split Θ N,n = Θ N,n,1 +Θ N,n,2
, where

Θ N,n,1 := N E exp i n β N m j=1 θ j η n (a, ns j ) -1 1(1 -< a < 1), Θ N,n,2 := N E exp i n β N m j=1 θ j η n (a, ns j ) -1 1(-1 < a ≤ 1 -),
with the same > 0 as in Assumption (A1). From η n (a, s)

≤ 2/(1 -a) and |e iz -1| ≤ |z| (z ∈ R), we obtain |Θ N,n,2 | ≤ Cn β E[(1 -a) -1 1(-1 < a < 1 -)] = o(1) as β < 0. Next, with h n (x, s) := [nτ ]/n 0 (1 -x n ) nt -ns 1( ns ≤ nt )dt by change of variable a = 1 -x/n we obtain Θ N,n,1 = N 1 1- exp i n 1+β N m j=1 θ j [nτ ]/n 0 a nt -ns j 1( ns j ≤ nt )dt -1 ×ψ(a)(1 -a) β da = N n 1+β n 0 exp i n 1+β N m j=1 θ j h n (x, s j ) -1 ψ 1 - x n x β dx → Θ (4.30)
in both cases µ = 1 and µ = ∞. This follows from the pointwise convergence h n (x, s) → τ 0 e -x(t-s) 1(s ≤ t)dt, (x, s) ∈ R + × R, and the dominating bound

N n 1+β exp i n 1+β N m j=1 θ j h n (x, s j ) -1 1(0 < x < n) ≤ C min(1, (1/x)),
which is a consequence of the inequalities

|e iz -1| ≤ |z| (z ∈ R), |1 -u| ≤ e -u (u ∈ [0, 1]).
This proves (4.29) and (4.27). Consider (4.28). Write J N,n for the l.h.s. of (4.28). By Minkowski's inequality,

J N,n = n β-(1/2) N -1 E s∈Z N i=1 η n (a i , s) 2 1/2 ≤ n β-(1/2) E s∈Z η 2 n (a, s) 1/2 = n β-(1/2) E s∈Z η 2 n (a, s) 1/2 1(1 -< a < 1) +E s∈Z η 2 n (a, s) 1/2 1(-1 < a ≤ 1 -) =: J N,n,1 + J N,n,2
for the same > 0 as in Assumption (A1). Since s≤0 η 2 n (a, s)

+ [nτ ] s=1 η 2 n (a, s) ≤ C((1 + a) -1 + n) for -1 < a ≤ 1 -, we therefore get J N,n,2 = O(n β ) = o(1) under Assumption (A2).
Next, similarly to (4.30), by change a = 1 -x/n of variable and with the same h n (x, s) as in (4.30), we obtain

J N,n,1 ≤ C n 0 x β dx τ -∞ h 2 n (x, s)ds 1/2 < C.
This proves (4.28) and completes the proof of Lemma 4.6.

Proof of Theorem 4.3. We use the method of characteristic functions as in Chapter 3. For notational convenience, we restrict the proof to one-dimensional convergence at τ > 0. The case of general finite-dimensional distributions does not require essential changes. Case (iii) (proof of (4.8)). Let µ = 1. As in the proof of Theorem 3.2, we first assume ε to be a standard normal r.v., i.e. ε d = N (0, 1). It suffices to show that for each θ ∈ R,

E exp{iθN -1/(1+β) n -1/2 S N,n (τ )} (4.31) → Ee iθZ β (τ ) = E N exp - θ 2 2 R R + τ 0 e -x(t-s) 1(s ≤ t)dtN (dx) 2 ds as N, n → ∞, N 1/(1+β) /n → 1,
where the characteristic function of Z β (τ ) follows from (4.9), (4.13). Use X i (t) = s≤t a t-s i ε(s) and Ee iθε = e -θ 2 /2 to write the l.h.s. of (4.31) as

EE exp iθN -1/(1+β) n -1/2 s∈Z N i=1 η n (a i , s) ε(s) a 1 , . . . , a N = E exp -(θ 2 /2)N -2/(1+β) n -1 s∈Z N i=1 η n (a i , s) 2 , ( 4.32) 
with the same η n (a, s) as in Lemma 4.6. Whence, (4.31) immediately follows from the abovementioned lemma.

In a general case of ε, the above argument needs some modification, see the proof of Theorem 3.1. Namely, we use the fact (see, e.g., Ibragimov and Linnik [49, Theorem 2.6.5]) that the characteristic function of ε has the following representation in a neighborhood of the origin: there exists δ > 0 such that

Ee iθε := e -(1/2)θ 2 h(θ) for each |θ| < δ, ( 4.33) 
where h(θ) is a positive function tending to 1 as θ → 0. For 0 < p < 1/2 consider the set 

Ω N,n := {a = (a 1 , a 2 , . . . ) ∈ [0, 1) N : N i=1 (1 -a i ) -1 < N 1/(1+β) n p }. Then sup a∈Ω N,n , s∈Z | N i=1 η n (a i , s)| ≤ 2N 1/(1+β) n p implies sup a∈Ω N,n , s∈Z h θN -1/(1+β) n -1/2 N i=1 η n (a i , s) -1 = o(1
= E exp{iθN -1/(1+β) n -1/2 S N,n (τ )} = U N,n,1 (θ) + U N,n,2 (θ), where U N,n,1 (θ) := E[exp{iθN -1/(1+β) n -1/2 S N,n (τ )}1(a ∈ Ω N,n )], U N,n,2 (θ) := E[exp{iθN -1/(1+β) n -1/2 S N,n (τ )}1(a ∈ Ω N,n )]. By Markov's inequality, for (1 + β)/(1 + p) < q < 1 + β < 1, we get |U N,n,2 (θ)| ≤ P N i=1 (1 -a i ) -1 ≥ N 1/(1+β) n p ≤ E N i=1 (1 -a i ) -1 q N 1/(1+β) n p q ≤ E 1 (1 -a) q N 1/(1+β) n pq N 1-q(1+p)/(1+β) → 0.
Using (4.33), (4.34), P(a ∈ Ω N,n ) → 0 and (4.31), we obtain

U N,n,1 (θ) = E exp -(θ 2 /2)N -2/(1+β) n -1 s≤[nτ ] N i=1
η n (a i , s)

2 ×h θN -1/(1+β) n -1/2 N i=1 η n (a i , s) 1(a ∈ Ω N,n ) → Ee iθZ β (τ ) ,
and finish the proof of U N,n (θ) → Ee iθZ β (τ ) in the general case of ε. Finally, the general case of 0

< µ < ∞ reduces to µ = 1, since n -1/2 S N,n (τ ) = µ 1/2 ñ-1/2 S N,ñ (τ /µ) with ñ = nµ satisfying N 1/(1+β) /ñ → 1.
Case (i) (proof of (4.6)). Follows similarly to Case (iii) by using (4.32) and Lemma 4.6 with µ = ∞. Case (ii) (proof of (4.7)). Split

S N,n (τ ) = Σ N,n,1 (τ ) -Σ N,n,2 (τ ) + Σ N,n,3 (τ ), (4.35) 
where

Σ N,n,1 (τ ) := [nτ ] s=1 ε(s) N i=1 1 1 -a i , Σ N,n,2 (τ ) := [nτ ] s=1 N i=1 a [nτ ]-s+1 i 1 -a i ε(s), Σ N,n,3 (τ ) := s≤0 N i=1 a 1-s i (1 -a [nτ ] i ) 1 -a i ε(s).
It suffices to prove that 

N -1/(1+β) n -1/2 Σ N,n,1 (τ ) fdd → W β B(τ ), (4.36) Σ N,n,i (τ ) = o p (N 1/(1+β) n 1/2 ), i = 2, 3, as N, n → ∞, N 1/(1+β) /n → 0. The first relation in (4.36) follows from n -1/2 [nτ ] s=1 ε(s) d → B(τ ) and N -1/(1+β) N i=1 (1 -a i ) -1 d → W β , ( 4 
: P((1 -a) -1 > x) = P(a > 1 -x -1 ) ∼ (ψ 1 /(1 + β))x -(1+β) , x → ∞,
(τ ) = o p (n 1/2 N 1/(1+β) ), i = 2, 3, as N, n → ∞ and N 1/(1+β) /n → 0.
Proof. W.l.g., let τ = 1 and Σ N,n,i := Σ N,n,i (1), i = 2, 3. We shall prove that for

2 3 (1 + β) < p < 1 + β, E|Σ N,n,i | p = o(n p/2 N p/(1+β) ), i = 2, 3. (4.38) 
We have E|Σ N,n,2 | p ≤ EV p 2 , where

V 2 := E 1/2 |Σ N,n,2 | 2 a 1 , . . . , a N = n s=1 N i=1 a n-s+1 i 1 -a i 2 1/2 ≤ N i=1 n s=1 a 2s i (1 -a i ) 2 1/2 = N i=1 (1 -a 2n i ) 1/2 (1 -a i )(1 -a 2 i ) 1/2 by Minkowski's inequality. Hence, E|Σ N,n,2 | p ≤ N EA p 2 , where A 2 := (1 -a 2n ) 1/2 (1 -a)(1 -a 2 ) 1/2 , (4.39) as p < 1. Split EA p 2 = E[A p 2 1(a ≤ 1 -)] + E[A p 2 1(a > 1 -)] =: Λ 2 + Λ 2 for the same > 0 as in Assumption (A1). Then Λ 2 ≤ CE(1 + a) -p/2 < C under Assumption (A2). Next, by change of variable 1 -a = x/n we obtain Λ 2 ≤ C 1 1- (1 -a 2n ) p/2 (1 -a) 3p/2 (1 -a) β da = Cn (3p/2)-(1+β) n 0 1 -1 - x n 2n p/2 x β-(3p/2) dx,
where the last integral tends to ∞ 0 (1 -e -2x ) p/2 x β-(3p/2) dx < ∞ for 2(1 + β)/3 < p < 1 + β by the dominated convergence theorem. Therefore, E|Σ N,n,2 | p ≤ CN n (3p/2)-(1+β) , proving (4.38) for i = 2.

Proofs

The proof of (4.38) for i = 3 is similar. Namely, E|Σ N,n,3 | p ≤ EV p 3 , where

V 3 := E 1/2 |Σ N,n,2 | 2 a 1 , . . . , a N = s≤0 N i=1 a 1-s i (1 -a n i ) 1 -a i 2 1/2 ≤ N i=1 n s≤0 a 2(1-s) i (1 -a n i ) 2 (1 -a i ) 2 1/2 ≤ N i=1 1 -a n i (1 -a i )(1 -a 2 i ) 1/2 . Hence E|Σ N,n,3 | p ≤ N EA p 3 , where A 3 := 1 -a n (1 -a)(1 -a 2 ) 1/2 similarly to (4.39). Next, EA p 3 = E[A p 3 1(a ≤ 1 -)] + E[A p 3 1(a > 1 -)] =: Λ 3 + Λ 3 , where Λ 3 ≤ CE(1 + a) -p/2 < C and Λ 3 ≤ C 1 1- (1 -a n ) p (1 -a) 3p/2 (1 -a) β da = Cn (3p/2)-(1+β) n 0 1 -1 - x n n p x β-(3p/2) dx,
where the last integral tends to ∞ 0 (1 -e -x ) p x β-(3p/2) dx < ∞. Lemma 4.7 is proved. Proof of Theorem 4.4. We restrict the proof of (4.17) to one-dimensional convergence at τ > 0. Split S N,n (τ ) as in (4.35). Then, by the central limit theorem and the law of large numbers, n -1/2 N -1 Σ N,n,1 (τ ) d → σB(τ ) as N, n → ∞ in an arbitrary way. It remains to show that Σ N,n,i (τ ) = o p (N n 1/2 ), i = 2, 3. W.l.g., let τ = 1. According to (4.39), E|Σ N,n,2 [START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF]

| ≤ E{E[|Σ N,n,2 (1)| 2 | a 1 , . . . , a N ]} 1/2 ≤ N EA 2 . Split EA 2 = E[A 2 1(a ≤ 1-)]+E[A 2 1(a > 1-)] as in the proof of Lemma 4.7. Then E[A 2 1(a ≤ 1 -)] ≤ CE(1 + a) -1/2 < C. Using 1 -u n ≤ min(1, n(1 -u)), u ∈ (0, 1), for max(0, 1/2 -β) < q < 1/2 we get E[A 2 1(a > 1 -)] ≤ Cn q E[(1 -a) q-3/2 ] < Cn q and thus E|Σ N,n,2 (1)| ≤ CN n q = o(N n 1/2 ). The proof of E|Σ N,n,3 (τ )| = o(N n 1/2 ) is analogous. Theorem 4.4 is proved.

Statistical inference from panel AR(1) data

This chapter contains the article [START_REF] Leipus | Nonparametric estimation of the distribution of the autoregressive coefficient from panel random-coefficient ar(1) data[END_REF]. We discuss nonparametric estimation of the distribution function G of the autoregressive coefficient a ∈ (-1, 1) from a panel of N randomcoefficient AR(1) series, each of length n, by the empirical distribution function of lag 1 sample autocorrelations of individual AR(1) processes. Consistency and asymptotic normality of the empirical distribution function and a class of kernel density estimators is established under some regularity conditions on G as N and n increase to infinity. The Kolmogorov-Smirnov goodness-of-fit test for simple and composite hypotheses of beta distributed a is discussed. A simulation study for goodness-of-fit testing compares the finite-sample performance of our nonparametric estimator to the performance of its parametric analogue discussed in [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF].

Introduction

Panel data can describe a large population of heterogeneous units/agents which evolve over time, e.g., households, firms, industries, countries, stock market indices. In this chapter we consider a panel where each individual unit evolves over time according to order-one random coefficient autoregressive model (RCAR(1)). It is well known that aggregation of specific RCAR(1) models can explain long memory phenomenon, which is often empirically observed in economic time series (see [START_REF] Granger | Long memory relationships and the aggregation of dynamic models[END_REF] for instance). More precisely, consider a panel {X i (t), t = 1, . . . , n, i = 1, . . . , N }, where each X i = {X i (t), t ∈ Z} is an RCAR(1) process with (0, σ 2 ) noise and random coefficient a i ∈ (-1, 1), whose autocovariance

EX i (0)X i (t) = σ 2 1 -1 x |t| 1 -x 2 dG(x)
is determined by the distribution function G(x) = P(a ≤ x), x ∈ [-1, 1], of the AR coefficient. Granger [START_REF] Granger | Long memory relationships and the aggregation of dynamic models[END_REF] showed, for a specific beta-type distribution G, that the contemporaneous aggregation of independent processes X 1 , . . . , X N results in a stationary Gaussian long memory process {X (t), t ∈ Z}, i.e.,

N -1/2 N i=1 X i (t) fdd → X (t) as N → ∞, (5.1) 
where the autocovariance EX (0)X (t) = EX 1 (0)X 1 (t) decays slowly as t → ∞ so that

t∈Z |EX (0)X (t)| = ∞.
A natural statistical problem is recovering the distribution G (the frequency of a across the population of individual AR(1) 'microagents') from the aggregated sample {X (1), . . . , X (n)}. This problem was treated in [START_REF] Celov | Asymptotic normality of the mixture density estimator in a disaggregation scheme[END_REF][START_REF] Chong | The polynomial aggregated AR(1) model[END_REF][START_REF] Leipus | Orthogonal series density estimation in a disaggregation scheme[END_REF]. Some related results were obtained in [START_REF] Celov | Time series aggregation, disaggregation, and long memory[END_REF][START_REF] Horváth | Effect of aggregation on estimators in AR(1) sequence[END_REF][START_REF] Jirak | Limit theorems for aggregated linear processes[END_REF]. Albeit nonparametric, the estimators in [START_REF] Celov | Asymptotic normality of the mixture density estimator in a disaggregation scheme[END_REF][START_REF] Leipus | Orthogonal series density estimation in a disaggregation scheme[END_REF] involve an expansion of the density g = G in an orthogonal polynomial basis and are sensitive to the choice of the tuning parameter (the number of polynomials), being limited in practice to very smooth densities g. The last difficulty in estimation of G from aggregated data is not surprising due to the fact that aggregation per se inflicts a considerable loss of information about the evolution of individual 'micro-agents'.

Clearly, if the available data comprises evolutions {X i (1), . . . , X i (n)}, i = 1, . . . , N , of all N individual 'micro-agents' (the panel data), we may expect a much more accurate estimate of G. Robinson [START_REF] Robinson | Statistical inference for a random coefficient autoregressive model[END_REF] constructed an estimator for the moments of G using sample autocovariances of X i and derived its asymptotic properties as N → ∞, whereas the length n of each sample remains fixed. Beran et al. [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF] discussed estimation of two-parameter beta densities g from panel RCAR(1) data using maximum likelihood estimators with unobservable a i replaced by sample lag 1 autocorrelation coefficient of X i (1), . . . , X i (n) (see Section 5.6), and derived the asymptotic normality together with some other properties of the estimators as N and n tend to infinity.

The present chapter studies nonparametric estimation of G from panel RCAR(1) data using the empirical distribution function:

G N,n (x) := 1 N N i=1 1( a i,n ≤ x), x ∈ [-1, 1], (5.2) 
where a i,n is the lag 1 sample autocorrelation coefficient of X i , i = 1, . . . , N (see (5.12)).

We also discuss kernel estimation of the density g = G based on smoothed version of (5.2). We assume that individual AR(1) processes X i are driven by identically distributed shocks 5.2. Estimation of random AR coefficient containing both common and idiosyncratic (independent) components. Consistency and asymptotic normality as N, n → ∞ of the above estimators are derived under some regularity conditions on G. Our results can be applied to test goodness-of-fit of the distribution G to a given hypothesized distribution (e.g., a beta distribution) using the Kolmogorov-Smirnov statistic, and to construct confidence intervals for G(x) or g(x).

The chapter is organized as follows. In Section 5.2 we obtain the rate of convergence of the lag 1 sample autocorrelation coefficient a i,n to a i in probability, the result of independent interest. In Section 5.3 we prove the weak convergence of the empirical process in (5.2) to a generalized Brownian bridge. Section 5.4 treats the Kolmogorov-Smirnov goodness-of-fit test for simple and composite hypotheses of beta distributed a. In Section 5.5 we show that kernel density estimators of g(x) are asymptotically normally distributed and their mean integrated squared error tends to zero. In Section 5.6 a simulation study compares the empirical performance of (5.2) and the parametric estimator of [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF] when testing the equality of G to a given beta distribution. The proofs of auxiliary statements can be found in Section 5.7.

Estimation of random AR coefficient

Consider an RCAR(1) process

X(t) = aX(t -1) + ζ(t), t ∈ Z, (5.3) 
where innovations {ζ(t)} admit the following decomposition:

ζ(t) = bη(t) + cξ(t), t ∈ Z, (5.4) 
where random sequences {η(t)}, {ξ(t)} and random coefficients a, b, c satisfy the following conditions:

Assumption (A1). {η(t)} are i.i.d. r.v.s with Eη(0) = 0, Eη 2 (0) = 1, E|η(0)| 2p < ∞ for some p > 1.

Assumption (A2). {ξ(t)} are i.i.d. r.v.s with Eξ(0) = 0, Eξ 2 (0) = 1, E|ξ(0)| 2p < ∞ for the same p as in (A1).

Assumption (A3). b and c are possibly dependent r.v.s such that P(b Under conditions (A1)-(A5), a unique strictly stationary solution of (5.3) with finite variance exists and is written as

2 + c 2 > 0) = 1 and Eb 2 < ∞, Ec 2 < ∞. Assumption (A4). a ∈ (-1, 1) is a r.v. with a distribution function (d.f.) G(x) := P(a ≤ x) supported on [-1, 1] and satisfying E 1 1 -|a| = 1 -1 dG(x) 1 -|x| < ∞. ( 5 
X(t) = s≤t a t-s ζ(s), t ∈ Z.
(5.6)

Clearly, EX(t) = 0 and EX

2 (t) = Eζ 2 (0)E(1 -a 2 ) -1 < ∞. Note that (5.5) is equivalent to E 1 1 -|a| p < ∞, 1 < p ≤ 2, since 1 -|a| ≤ 1 -|a| p ≤ 2(1 -|a|) for a ∈ (-1, 1).
For an observed sample X(1), . . . , X(n) from the stationary process in (5.6), define the sample mean Xn := n -1 n t=1 X(t) and the sample lag 1 autocorrelation coefficient

a n := n-1 t=1 (X(t) -Xn )(X(t + 1) -Xn ) n t=1 (X(t) -Xn ) 2 . ( 5.7) 
Note the estimator a n in (5.7) does not exceed 1 a.s. in absolute value by the Cauchy-Schwarz inequality. Moreover, it is invariant to shift and scale transformations of {X(t)} in (5.3), i.e., we can replace {X(t)} by {ρX(t) + µ} with some (unknown) µ ∈ R and ρ > 0.

Proposition 5.1. Under Assumptions (A1)-(A5), for any 0 < γ < 1 and n ≥ 1, it holds

P(| a n -a| > γ) ≤ C(n -( p 2 ∧(p-1)) γ -p + n -1 ),
with C > 0 independent of n, γ.

Proof. See Section 5.7.

Assume now that the d.f. G of a satisfies the following Hölder condition:

Assumption (A6).

There exist constants L G > 0 and ∈ (0, 1] such that

|G(x) -G(y)| ≤ L G |x -y| , x, y ∈ [-1, 1]. (5.8)
Consider the d.f. of a n : 

G n (x) := P( a n ≤ x), x ∈ [-1, 1]. ( 5 
|G n (x) -G(x)| = O(n -+p ( p 2 ∧(p-1)) ).
Proof. Denote δ n := a n -a. For any (nonrandom) γ > 0 from (5.8) we have

sup x∈[-1,1] |G n (x) -G(x)| = sup x∈[-1,1] |P(a + δ n ≤ x) -P(a ≤ x)| ≤ L G γ + P(|δ n | > γ), implying sup x∈[-1,1] |G n (x) -G(x)| ≤ L G γ + C(n -1 + n -( p 2 ∧(p-1)) γ -p )
with C > 0 independent of n, γ. Then the corollary follows from Proposition 5.1 by taking

γ = γ n = o(1) such that γ n ∼ n -( p 2 ∧(p- 1 
)) γ -p n and noting that the exponent +p ( p 2 ∧ (p -1)) < 1.

Asymptotics of the empirical distribution function

Consider RCAR(1) processes {X i (t)}, i = 1, 2, . . . , which are stationary solutions to

X i (t) = a i X i (t -1) + ζ i (t), t ∈ Z, (5.10) 
with innovations {ζ i (t)} having the same structure as in (5.4):

ζ i (t) = b i η(t) + c i ξ i (t), t ∈ Z.
(5.11)

More precisely, we make the following assumption:

Assumption (B). {η(t)} satisfies (A1); {ξ i (t)}, (b i , c i ) , a i , i = 1, 2, . . . , are independent copies of {ξ(t)}, (b, c) , a, respectively, which satisfy Assumptions (A2)-(A6). (Note that we assume (A5) for every i = 1, 2, . . ..)

Remark 5.2. The individual processes {X i (t)} have covariance long memory if conditions (5.5) and 1 -1 |1-x 2 | -2 dG(x) = ∞ hold, which is compatible with Assumption (B). The same is true about the limit aggregated process in (5.1) arising when the common component of shocks is absent (i.e. in case P(b = 0) = 1). On the other hand, in the presence of the common component, the limit aggregated process has long memory if the individual processes have infinite variance and condition (5.5) fails, see [START_REF] Puplinskaitė | Aggregation of random coefficient AR(1) process with infinite variance and common innovations[END_REF].

Define the sample mean Xi,n := n -1 n t=1 X i (t), the corresponding lag 1 sample autocorrelation coefficient

a i,n := n-1 t=1 (X i (t) -Xi,n )(X i (t + 1) -Xi,n ) n t=1 (X i (t) -Xi,n ) 2 , 1 ≤ i ≤ N,
(5.12)

and the empirical d.f.

G N,n (x) := 1 N N i=1 1( a i,n ≤ x), x ∈ [-1, 1]. (5.13)
Recall that (5.13) is a nonparametric estimate of the d.f. G(x) = P(a i ≤ x) from the observed panel data {X i (t), t = 1, . . . , n, i = 1, . . . , N }. In the following theorem we show that G N,n (x) is an asymptotically unbiased estimator of G(x) as n and N both tend to infinity, and prove the weak convergence of the corresponding empirical process. 

|E G N,n (x) -G(x)| = O(n -+p ( p 2 ∧(p-1)) ).
(5.14)

If, in addition, N = o(n 2 +p ( p 2 ∧(p-1)) ), (5.15 
)

then N 1/2 ( G N,n (x) -G(x)) ⇒ W (x), x ∈ [-1, 1], (5.16) 
where with the supremum (uniform) metric.

{W (x), x ∈ [-1, 1]} is a
Proof. Note a 1,n , . . . , a N,n are identically distributed, in particular, E G N,n (x) = G n (x) with G n (x) defined in (5.9). Hence, (5.14) follows immediately from Corollary 5.2.

To prove the second statement of the theorem, we approximate G N,n (x) by the empirical d.f.

G N (x) := 1 N N i=1 1(a i ≤ x), x ∈ [-1, 1], of i.i.d. r.v.s a 1 , . . . , a N . We have N 1/2 ( G N,n (x) -G(x)) = N 1/2 ( G N (x) -G(x)) + D N,n (x) with D N,n (x) := N 1/2 ( G N,n (x) -G N (x)
). Since (A6) guarantees the continuity of G, it holds

N 1/2 ( G N (x) -G(x)) ⇒ W (x), x ∈ [-1, 1],
by the classical Donsker theorem. Then (5.16) follows once we prove

sup x∈[-1,1] |D N,n (x)| p → 0.
By definition,

D N,n (x) = N -1/2 N i=1 (1(a i + δ i,n ≤ x) -1(a i ≤ x)) = D N,n (x) -D N,n (x),
where δ i,n := a i,n -a i , i = 1, . . . , N , and

D N,n (x) := N -1/2 N i=1 1(x < a i ≤ x -δ i,n , δ i,n ≤ 0), D N,n (x) := N -1/2 N i=1 1(x -δ i,n < a i ≤ x, δ i,n > 0).
For γ > 0 we have

D N,n (x) ≤ N -1/2 N i=1 1(x < a i ≤ x + γ) + N -1/2 N i=1 1(|δ i,n | > γ) =: V N (x) + V N,n .
(Note that V N,n does not depend on x.) By Proposition 5.1, we obtain

EV N,n = N -1/2 N i=1 P(|δ i,n | > γ) ≤ CN 1/2 (n -((p/2)∧(p-1)) γ -p + n -1 ),
which tends to 0 when γ is chosen as

γ +p = n -((p/2)∧(p-1)) → 0. Next, V N (x) = N 1/2 ( G N (x + γ) -G N (x)) = N 1/2 (G(x + γ) -G(x)) + U N (x, x + γ], U N (x, x + γ] := N 1/2 ( G N (x + γ) -G(x + γ)) -N 1/2 ( G N (x) -G(x)).
The above choice of 1), whereas U N (x, x + γ] vanishes in the uniform metric in probability (see Lemma 5.11 in Section 5.7). Since D N,n (x) is analogous to D N,n (x), this proves the theorem.

γ +p = n -((p/2)∧(p-1)) implies sup x∈[-1,1] N 1/2 |G(x+γ)-G(x)| = O(N 1/2 γ ) = o(
Remark 5.3. (5.15) implies that n N ( +p)/ p asymptotically for p ≥ 2. Note that ( + p)/ p > 1 and lim p→∞ ( +p)/ p = 1/ for any ∈ (0, 1]. We may conclude that Theorem 5.3 as well as other results of this chapter apply to long panels with n increasing much faster than N , except maybe for the limiting case p = ∞ for = 1. The main reason for this conclusion is that a i need to be accurately estimated by (5.12) in order that G N,n behaves similarly to the empirical d.f. G N based on unobserved autocorrelation coefficients a 1 , . . . , a N .

Goodness-of-fit testing

Theorem 5.3 can be used for testing goodness-of-fit. In the case of simple hypothesis, we test the null H 0 : G = G 0 vs. H 1 : G = G 0 with G 0 being a certain hypothetical distribution satisfying the Hölder condition in (5.8). Accordingly, the corresponding Kolmogorov-Smirnov (KS) test rejecting H 0 whenever

N 1/2 sup x∈[-1,1] | G N,n (x) -G 0 (x)| > c(ω)
(5.17) has asymptotic size ω ∈ (0, 1) provided N, n, G 0 satisfy the assumptions for (5.16) in Theorem 5.3. (Here, c(ω) is the upper ω-quantile of the Kolmogorov distribution.) However, the goodness-of-fit test in (5.17) requires the knowledge of parameters of the model considered, which is not typically a very realistic situation. Below, we consider testing composite hypothesis using the Kolmogov-Smirnov statistic with estimated parameters. The parameters will be estimated by the method of moments. Write µ = (µ (1) , . . . , µ (m) ) and µ N,n = ( µ

(1) N,n , . . . , µ (m) N,n ) ,
where 

µ (u) := Ea u = 1 -1 x u dG(x), µ (u) N,n := 1 N N i=1 ( a i,n ) u , 1 ≤ u ≤ m.
2 1+p ( p 2 ∧(p-1)) ) as N, n → ∞, then N 1/2 ( µ N,n -µ) d → N (0, Σ), where Σ := Cov(a u , a v ) 1≤u,v≤m . 
(5.18)

Proof. Write N 1/2 ( µ N,n -µ) = N 1/2 ( µ N,n -µ N ) + N 1/2 ( µ N -µ),
where µ N := 1 N N i=1 (a i , . . . , a m i ) . We have N 1/2 ( µ N -µ) d → N (0, Σ) as N → ∞ by the multivariate central limit theorem. On the other hand, N 1/2 ( µ N,n -µ N ) p → 0 follows from E| a u n -a u | ≤ CE| a n -a| ≤ C(γ + P(| a n -a| > γ)) and Proposition 5.1 with γ 1+p = n -((p/2)∧(p-1)) , proving the proposition. Remark 5.4. Robinson [92,Theorem 7] discussed a different estimator of µ and proved it to be asymptotically normally distributed for fixed n as N → ∞ in contrast to ours. However, his result holds in the case of idiosyncratic innovations only and under stronger assumption on G than in Proposition 5.4, which does not allow for long memory.

Consider testing the composite null hypothesis that G belongs to the family

G = {G θ , θ = (α, β) ∈ (1, ∞) 2 } of beta d.f.s versus an alternative G ∈ G, where G θ (x) = 1 B(α, β) x 0 t α-1 (1 -t) β-1 dt, x ∈ [0, 1], (5.19) 
and B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the beta function. The uth moment of G θ is given by

µ (u) = 1 0 x u dG θ (x) = u-1 r=0 α + r α + β + r .
Parameters α, β can be found from the first two moments µ = (µ (1) , µ (2) ) as

α = µ (1) (µ (1) -µ (2) ) µ (2) -(µ (1) ) 2 , β = (1 -µ (1) )(µ (1) -µ (2) ) µ (2) -(µ (1) ) 2 .
(5.20)

The moment-based estimator θ N,n := ( α N,n , β N,n ) of θ = (α, β) is obtained by replacing µ in (5.20) by its estimator µ N,n . The consistency and asymptotic normality of this estimator follows by the delta method from Proposition 5.4, see Corollary 5.5, where we need condition α > 1, β > 1 to satisfy Assumptions (A4) and (A6). Then

N 1/2 ( θ N,n -θ) d → N (0, Λ θ ), Λ θ := ∆ -1 Σ(∆ -1 ) , (5.21)
where Σ is the 2 × 2 matrix in (5.18) and ∆ := ∂µ/∂θ = ∂µ (1) /∂α ∂µ (1) /∂β ∂µ (2) /∂α ∂µ (2) /∂β .

Moreover, θ N,n is asymptotically linear:

N 1/2 ( θ N,n -θ) = N -1/2 N i=1 l θ (a i ) + o p (1), (5.22 
)

l θ (x) := ∆ -1 (x -µ (1) , x 2 -µ (2) ) ,
where El θ (a) = 1 0 l θ (x)dG θ (x) = 0 and El θ (a)l θ (a) = 1 0 l θ (x)l θ (x) dG θ (x) = Λ θ .

Corollary 5.6. Let assumptions of Corollary 5.5 hold. Then

N 1/2 ( G N,n (x) -G θ N,n (x)) ⇒ V θ (x), x ∈ [0, 1],
where {V θ (x), x ∈ [0, 1]} is a continuous Gaussian process with zero mean and covariance

Cov(V θ (x), V θ (y)) = G θ (x ∧ y) -G θ (x)G θ (y) + ∂ θ G θ (x) Λ θ ∂ θ G θ (y) - x 0 l θ (u) dG θ (u)∂ θ G θ (y) - y 0 l θ (u) dG θ (u)∂ θ G θ (x),
where ∂ θ G θ (x) := ∂G θ (x)/∂θ = (∂G θ (x)/∂α, ∂G θ (x)/∂β) , x, y ∈ [0, 1], and Λ θ is defined in (5.21).

Proof. The d.f. G θ with α > 1, β > 1 satisfies Assumptions (A4) and (A6) with = 1.

Recall G N (x) := N -1 N i=1 1(a i ≤ x), x ∈ [0, 1]. Since condition (5.15) is satisfied, so N 1/2 sup x∈[0,1] | G N,n (x) -G N (x)|
vanishes in probability by Theorem 5.3, whereas the convergence N 1/2 ( G N (x) -G θ N,n (x)) ⇒ V θ (x), x ∈ [0, 1], follows from (5.22) using the fact that ∂ θ G θ (x), x ∈ [0, 1], is continuous in θ, see [START_REF] Durbin | Weak convergence of the sample distribution function when parameters are estimated[END_REF] or [START_REF] Van Der | Asymptotic Statistics[END_REF]Theorem 19.23].

With Corollary 5.6 in mind, the Kolmogorov-Smirnov test for the composite hypothesis G ∈ G can be defined as

sup x∈[0,1] N 1/2 | G N,n (x) -G θ N,n (x)| > c θ N,n (ω), (5.23) 
where c θ (ω) is the upper ω-quantile of the distribution of sup x∈[0,1] |V θ (x)|:

P sup x∈[0,1] |V θ (x)| > c θ (ω) = ω, ω ∈ (0, 1).
The test in (5.23) has correct asymptotic size for any ω ∈ (0, 1), which follows from Corollary 5.6 and the continuity of the quantile function c θ (ω) in θ, see [102, page 69], [START_REF] Van Der | Asymptotic Statistics[END_REF]. By writing

N 1/2 ( G N,n (x) -G θ N,n (x)) = N 1/2 ( G N,n (x) -G(x)) + N 1/2 (G(x) -G θ N,n (x)
), it follows that the Kolmogorov-Smirnov statistic on the l.h.s. of (5.23) tends to infinity (in probability) under any fixed alternative G ∈ G which cannot be approximated by a beta d.f. G θ in the uniform metric, i.e., such that inf θ sup x∈[0,1] |G(x) -G θ (x)| > 0. Moreover, even under the alternative, we preserve the consistency of µ N,n , hence c θ N,n (ω) being a continuous function of sample moments, converges in probability to some finite limit. Therefore the test (5.23) is consistent.

In practice, the evaluation of c θ (ω) requires Monte Carlo approximation which is timeconsuming. Alternatively, [START_REF] Stute | Bootstrap based goodness-of-fit-tests[END_REF][START_REF] Szűcs | Parametric bootstrap tests for continuous and discrete distributions[END_REF] discussed parametric bootstrap procedures to produce asymptotically correct critical values. We note that the assumptions of [102, Theorem 1] are valid for the family of beta d.f.s and the moment-based estimator of θ in Corollary 5.6. The consistency of the test when using bootstrap critical values follows by a similar argument as in (5.23).

Kernel density estimation

In this section we assume G has a bounded probability density function g(x) = G (x), x ∈ [-1, 1], implying Assumption (A6) with Hölder exponent = 1 in (5.8). It is of interest to estimate g in a nonparametric way from a 1,n , . . . , a N,n (5.12).

Consider the kernel density estimator

g N,n (x) := 1 N h N i=1 K x -a i,n h , x ∈ R,
where K is a kernel, satisfying Assumption (A7) and h = h N,n is a bandwidth which tends to zero as N and n tend to infinity.

Assumption (A7). K

: [-1, 1] → R is a continuous function of bounded variation that satisfies 1 -1 K(x)dx = 1. Set K 2 2 := 1 -1 K(x) 2 dx and µ 2 (K) := 1 -1 x 2 K(x)dx and K(x) := 0, x ∈ R \ [-1, 1].
We consider two cases separately. Case (i): P(b 1 = 0) = 1, meaning that the coefficient b i = 0 for the common shock in (5.11) is zero and that the individual processes {X i (t)}, i = 1, 2, . . ., are independent and satisfy 

X i (t) = a i X i (t -1) + c i ξ i (t), t ∈ Z.

Case (ii):

P(b 1 = 0) > 0, meaning that {X i (t)}, i = 1,
(p/2)∧(p-1) h 1+p → ∞, then E g N,n (x) → g(x)
(5.24)

at every continuity point x ∈ R of g. Moreover, if    n (p/2)∧(p-1) h 1+p → ∞ in Case (i), n (p/2)∧(p-1) (h/N ) 1+p → ∞ in Case (ii), (5.25) 
then

N h Cov( g N,n (x 1 ), g N,n (x 2 )) →    g(x 1 ) K 2 2 if x 1 = x 2 , 0 if x 1 = x 2 (5.26)
at any continuity points x 1 , x 2 ∈ R of g. If N h → ∞ holds in addition to (5.25), then the estimator g N,n (x) is consistent at every continuity point x ∈ R:

E| g N,n (x) -g(x)| 2 → 0. (5.27)
Proof. Throughout the proof, let K h (x) := K(x/h), x ∈ R. Consider (5.24). Note E g N,n (x) = h -1 EK h (xa n ), because a 1,n , . . . , a N,n are identically distributed. Let us approximate g N,n (x) by

g N (x) := 1 N h N i=1 K h (x -a i ), x ∈ R, (5.28) 
which satisfies E g N (x) = h -1 EK h (x -a) → g(x) as h → 0 at a continuity point x of g, see [START_REF] Parzen | On estimation of a probability density function and mode[END_REF]. Integration by parts and Corollary 5.2 yield

h|E g N,n (x) -E g N (x)| = R (G n (y) -G(y))dK h (x -y) (5.29) ≤ V (K) sup y∈[-1,1] |G n (y) -G(y)| = O(n -((p/2)∧(p-1))/(1+p) ),
uniformly in x ∈ R, where V (K) denotes the total variation of K and V (K) = V (K h ). This proves (5.24).

Next, let us prove (5.26). We have

N h Cov( g N (x 1 ), g N (x 2 )) = 1 h EK h (x 1 -a)K h (x 2 -a) →    g(x 1 ) K 2 2 if x 1 = x 2 , 0 if x 1 = x 2 ,
as h → 0 at any points x 1 , x 2 of continuity of g, see [START_REF] Parzen | On estimation of a probability density function and mode[END_REF].

Split N h{Cov( g N,n (x 1 ), g N,n (x 2 )) - Cov( g N (x 1 ), g N (x 2 ))} = 3 i=1 Q i (x 1 , x 2 )
, where

Q 1 (x 1 , x 2 ) := h -1 {EK h (x 1 -a n )K h (x 2 -a n ) -EK h (x 1 -a)K h (x 2 -a)}, Q 2 (x 1 , x 2 ) := h -1 {EK h (x 1 -a n )EK h (x 2 -a n ) -EK h (x 1 -a)EK h (x 2 -a)}, Q 3 (x 1 , x 2 ) := (N -1)h -1 Cov(K h (x 1 -a 1,n ), K h (x 2 -a 2,n )). Note Q 3 (x 1 , x 2 ) = 0 in Case (i). Similarly to (5.29), |Q 1 (x 1 , x 2 )| = h -1 R (G n (y) -G(y))dK h (x 1 -y)K h (x 2 -y) ≤ Ch -1 n -((p/2)∧(p-1))/(1+p) → 0, since V (K h (x 1 -•)K h (x 2 -•)) ≤ C and |Q 2 (x 1 , x 2 )| ≤ Ch -1 n -((p/2)∧(p-1
))/(1+p) → 0 uniformly in x 1 , x 2 . Finally, by Lemma 5.12,

|Q 3 (x 1 , x 2 )| = N -1 h R R (P( a 1,n ≤ y 1 , a 2,n ≤ y 2 ) -P( a 1,n ≤ y 1 )P( a 2,n ≤ y 2 ))dK h (x 1 -y 1 )dK h (x 2 -y 2 ) ≤ CN h sup y 1 ,y 2 ∈[-1,1] |P( a 1,n ≤ y 1 , a 2,n ≤ y 2 ) -P( a 1,n ≤ y 1 )P( a 2,n ≤ y 2 )| = O(N h -1 n -((p/2)∧(p-1))/(1+p) ) = o(1),
proving (5.26) and the proposition. at every continuity point x ∈ (-1, 1) of g such that g(x) = 0.

Proof. First, consider Case (i). Since

g N,n (x) = (N h) -1 N i=1 V i,N is a (normalized) sum of i.i.d. r.v.s V i,N := K h (x -a i,n ) with common distribution V N := V 1,N , it suffices to verify Lyapunov's condition E|V N -EV N | 2+δ N δ/2 {Var(V N )} (2+δ)/2 → 0, (5.31) 
for some δ > 0. This follows by the same arguments as in [START_REF] Parzen | On estimation of a probability density function and mode[END_REF]. Analogously to Proposition 5.7, we have

E|V N | 2+δ = E|K h (x -a n )| 2+δ ∼ hg(x) 1 -1 |K(y)| 2+δ dy = O(h) while Var(V N ) = N h 2 Var( g N,n (x)) ∼ hg(x) K 2
2 according to (5.26). Hence the l.h.s. of (5.31) is O((N h) -δ/2 ) = o(1), proving (5.30) in Case (i).

Let us turn to Case (ii). It suffices to prove that

√ N h( g N,n (x) -g N (x)) p → 0, for g N (x) given in (5.28). By |K(x) -K(y)| ≤ L K |x -y|, x, y ∈ R, for > 0, P √ N h| g N,n (x) -g N (x)| > ≤ P L K √ N h N i=1 | a i,n -a i | h > ≤ N P | a n -a| > √ N h h N L K ≤ C h(N h) -p/2 N h 1+p n -((p/2)∧(p-1)) + N n = o(1)
from Proposition 5.1 and (5.25) with N h → ∞. Corollary 5.9. Let assumptions of Proposition 5.8 hold with h ∼ cN -1/5 for some c > 0, i.e.,

N =    o(n 5 3 1 1+p ( p 2 ∧(p-1)) ) in Case (i), o(n 5 6 1 1+p ( p 2 ∧(p-1)) ) in Case (ii).
Moreover, let g ∈ C 2 [-1, 1] and 1 -1 yK(y)dy = 0. Then

N 2/5 ( g N,n (x) -g(x)) d → N (µ(x), σ 2 (x)),
where µ(x) := (c 2 /2)g (x)µ 2 (K) and σ 2 (x) := (1/c)g(x) K 2 2 . Proof. This follows from Proposition 5.8, by noting that E g N (x) -g(x) ∼ h 2 g (x) µ 2 (K)/2 as h → 0 and E g N,n (x) -E g N (x) = O(h -1 n -((p/2)∧(p-1))/(1+p) ) by (5.29).

Simulations

In this section we compare our nonparametric goodness-of-fit test in (5.17) for testing the null hypothesis G = G 0 with its parametric analogue studied in [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF]. In accordance with the last paper, we assume {X i (t)} in (5.10) to be independent RCAR(1) processes with standard normal i.i.d. innovations {ζ i (t)}, ζ(0) d = N (0, 1) and the random AR coefficient a i ∈ (0, 1) having a beta-type density g with unknown parameters θ := (α, β) :

g(x) = 2 B(α, β) x 2α-1 (1 -x 2 ) β-1 , x ∈ (0, 1), α > 1, β > 1.
(5.32)

Note that β ∈ (1, 2) implies the long memory property in {X i (t)}. Beran et al. [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF] discuss a maximum likelihood estimator θ N,n,κ = ( α N,n,κ , β N,n,κ ) of θ = (α, β) when each unobservable coefficient a i is replaced by its estimate a i,n,κ := min{max{ a i,n , κ}, 1 -κ} with a i,n given in (5.12) and 0 < κ = κ N,n → 0 is a truncation parameter. Under certain conditions on N, n → ∞ and κ → 0, Beran et al. [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF]Theorem 2] showed that

N 1/2 ( θ N,n,κ -θ 0 ) d → N (0, A -1 (θ 0 )), (5.33) 
where θ 0 is the true parameter vector,

A(θ) := ψ 1 (α) -ψ 1 (α + β) -ψ 1 (α + β) -ψ 1 (α + β) ψ 1 (β) -ψ 1 (α + β) ,
and ψ 1 (x) := d 2 ln Γ(x)/dx 2 is the trigamma function. Based on (5.17) and (5.33), we consider testing both ways (nonparametrically and parametrically) the hypothesis that the unobserved AR coefficients a 1 , . . . , a N are drawn from the reference distribution G 0 having density function in (5.32) with a specific θ 0 , i.e., the null G = G 0 vs. the alternative G = G 0 . The respective test statistics are

T 1 := N 1/2 sup x∈[0,1] | G N,n (x) -G 0 (x)|; T 2 := N ( θ N,n,κ -θ 0 ) A(θ 0 )( θ N,n,κ -θ 0 ). (5.34)
Under the null hypothesis, the distributions of statistics T 1 and T 2 converge to the Kolmogorov distribution and the chi-square distribution with 2 degrees of freedom, respectively, see (5.17), (5.33).

To compare the performance of the above testing procedures, we compute the empirical d.f.s of the p-values of T 1 and T 2 under null and alternative hypotheses. The p-value of observed T i is defined as p(T i ) = 1 -K i (T i ), i = 1, 2, where K i (y), i = 1, 2, denote the limit d.f.s of (5.34). Recall that when the significance level of the test is correct, the (asymptotic) distribution of the p-value is uniform on [0, 1]. The simulation procedure to compare the performance of T 1 and T 2 is the following:

Step (S0). We fix the parameter under the null hypothesis H 0 : θ = θ 0 with θ 0 = (2, 1.4) .

Step (S1). We simulate 5000 panels with N = 250, n = 817 for five chosen values θ = (2, 1.2) , (2, 1.3) , (2, 1.4) , (2, 1.5) , (2, 1.6) of beta parameters.

Step (S2). For each simulated panel we compute the p-value of statistics T 1 and T 2 .

Step (S3). The empirical d.f.s of computed p-values of statistics T 1 and T 2 are plotted.

The values of beta parameters θ 0 = (2, 1.4) , N , n were chosen in accordance with the simulation study in [START_REF] Beran | From short to long memory: Aggregation and estimation[END_REF].

Figure 5.1 presents the simulation results under the true hypothesis θ = θ 0 with zoomin on small p-values. We see that both d.f.s in the left graph are approximately linear. Somewhat surprisingly, it appears that the empirical size of T 1 (the nonparametric test) is better than the size of T 2 (the parametric test). Particularly, for significance levels 0.05 and 0.1 we provide the empirical size values in Table 5.1.

Figure 5.2 gives the graphs of the empirical d.f.s of p-values of T 1 and T 2 for several alternatives θ = θ 0 . It appears that for β > β 0 = 1.4 the parametric test T 2 is more powerful than the nonparametric test T 1 but for β < β 0 the power differences are less significant. Table 5.1 illustrates the empirical power for the significance levels 0.05, 0.1. 5.1) refer to the case of independent individual processes {X i (t)}. There are no theoretical results for the parametric test T 2 , when RCAR(1) series are dependent. Although the nonparametric test T 1 is valid for the latter case, one may expect that the presence of the common shock component in the panel data in (5.11) has a negative effect on the test performance for short series. To illustrate this effect, we simulate 5000 panels with RCAR(1) processes {X i (t)} driven by dependent shocks in (5.11) 

with b i = b, c i = (1 -b 2 ) 1/2 .
As previously, we choose θ 0 = (2, 1.4) , N = 250, n = 817 and we fix θ = (2, 1.4) to evaluate the empirical size of T 1 . Figure 5. 3[left] presents the graphs of the empirical d.f.s of the p-values of T 1 for b = 1, b = 0.6 and b = 0, the latter corresponding to independent individual processes as in Figure 5.1. We see that the size of the test worsens as b increases, particularly for b = 1 when {X i (t)} are all driven by the same shocks. To overcome the last effect, the sample length n of each series in the panel may be increased as in Figure 5. 3[right], where the choice of n = 5500 and b = 1 shows a much better performance of T 1 under the null hypothesis θ = θ 0 = (2, 1.4) and the alternative (θ = (2, 1.5) and θ = (2, 1.6) ) scenarios.

In conclusion, 1. We do not observe an important loss of the power for the nonparametric KS test T 1 compared to the parametric approach.

2. The KS test T 1 does not require to choose any tuning parameter contrary to the test T 2 .

3. One can use the KS test T 1 under weaker assumptions on RCAR(1) innovations. We only impose moment conditions. The dependence between the series is allowed by (5.11). 

Some proofs and auxiliary lemmas

We use the following martingale moment inequality.

Lemma 5.10. Let p > 1 and {ξ j , j ≥ 1} be a martingale difference sequence: E[ξ j |ξ 1 , . . . , ξ j-1 ] = 0, j = 2, 3, . . ., with E|ξ j | p < ∞. Then there exists a constant C p < ∞ depending only on p and such that 

E ∞ j=1 ξ j p ≤ C p    ∞ j=1 E|ξ j | p , 1 < p ≤ 2, ∞ j=1 (E|ξ j | p ) 2/p p/
(0) = 1, E|ζ(0)| 2p < ∞. Then a n -a = 3 i=1 δ ni , where δ n1 := - aX 2 (n) n t=1 X 2 (t) -n( Xn ) 2 , δ n2 := n-1 t=1 X(t)ζ(t + 1) n t=1 X 2 (t) -n( Xn ) 2 , δ n3 := Xn (X(1) + X(n)) -( Xn ) 2 (1 + n(1 -a)) n t=1 X 2 (t) -n( Xn ) 2 .
The statement of the proposition follows from

P(|δ ni | > γ) ≤ C(n -1 + n -((p/2)∧(p-1)) γ -p ) (0 < γ < 1, i = 1, 2, 3).
(5.36)

To show (5.36) for i = 1, note that

δ n1 = L n /(n + D n ), where L n := -a(1 -a 2 )X 2 (n) and D n = D n1 -D n2 , D n1 := n t=1 ((1 -a 2 )X 2 (t) -1), D n2 := n(1 -a 2 )( Xn ) 2 . We have P(|δ n1 | > γ) ≤ P(|D n | > n/2) + P(|L n | > nγ/2). Thus, (5.36) for i = 1 follows from E|D n1 | p∧2 ≤ Cn, E|D n2 | ≤ C and E|L n | p ≤ C.
(5.37)

Consider the first relation in (5.37). Clearly, it suffices to prove it for 1 < p ≤ 2 only. We have D n1 = 2D n1 + D n1 , where

D n1 := (1 -a 2 ) s 2 <s 1 ≤n n t=1∨s 1 a 2(t-s 1 ) a s 1 -s 2 ζ(s 1 )ζ(s 2 ), D n1 := (1 -a 2 ) s≤n n t=1∨s a 2(t-s) (ζ 2 (s) -1).
We will use the following elementary inequality: for any -

1 ≤ a ≤ 1, n ≥ 1, s ≤ n, α n (s) := (1 -a 2 ) n t=1∨s a 2(t-s) =    a 2(1-s) (1 -a 2n ), s ≤ 0, 1 -a 2(n+1-s) , 1 ≤ s ≤ n ≤ C    a -2s min(1, 2n(1 -|a|)), s ≤ 0, 1, 1 ≤ s ≤ n. (5.38)
Using the independence of {ζ(s)} and a and inequality (5.35) (twice) for 1 < p ≤ 2 we obtain 

E|D n1 | p = E s 1 ≤n α n (s 1 )ζ(s 1 ) s 2 <s 1 a s 1 -s 2 ζ(s 2 ) p ≤ CE s 1 ≤n α n (s 1 )ζ(s 1 ) s 2 <s 1 a s 1 -s 2 ζ(s 2 ) p ≤ CE s 1 ≤n |α n (s 1 )| p s 2 <s 1 |a| p(s 1 -s 2 ) ≤ CE(1 -|a|) -1 s≤n |α n (s)| p ≤ Cn since E(1 -|a|) -1 < ∞ (see (5. 5 
(1 -a 2 )E[(n Xn ) 2 |a] = a 2 1 -a n 1 -a 2 + (1 -a 2 ) n s=1 1 -a s 1 -a 2 ≤ Cn 1 -a .
Consider the last inequality in (5.37). We have

|L n | ≤ |2L n + L n + 1|
, where

L n := (1 -a 2 ) s 2 <s 1 ≤n a 2(n-s 1 ) a s 1 -s 2 ζ(s 1 )ζ(s 2 ), L n := (1 -a 2 ) s≤n a 2(n-s) (ζ 2 (s) -1).
We use Lemma 5.10, as above. Let (5.39) according to (5.37). Therefore (5.36) for i = 2 follows from

1 ≤ p ≤ 2. Then E|L n | p ≤ CE s≤n {(1 -a 2 )a 2(n-s) } p ≤ C and E|L n | p ≤ CE s 2 <s 1 ≤n {(1 -a 2 )|a| 2(n-s 1 ) |a| s 1 -s 2 } p ≤ CE(1 -|a|) p-2 ≤ C. Next, let p ≥ 2. Then E|L n | p ≤ CE{ s≤n |(1 -a 2 )a 2(n-s) | 2 } p/2 ≤ C and E|L n | p ≤ CE(1 - a 2 ) p { s 2 <s 1 ≤n a 4(n-s 1 ) a 2(s 1 -s 2 ) } p/2 ≤
P(|D n | > n/2) ≤ (n/4) -(p∧2) E|D n1 | p∧2 + (n/4) -1 E|D n2 | ≤ C    n -(p-1) , 1 < p ≤ 2, n -1 , p > 2,
E|R n | p ≤ C    n, 1 < p ≤ 2, n p/2 , p > 2.
(5.40)

Since R n = (1 -a 2 ) s≤n-1 ζ(s) n-1 t=1∨s a t-s ζ(t + 1
) is a sum of martingale differences, by inequality (5.35) with 1 < p ≤ 2 we obtain

E|R n | p ≤ CE s≤n-1 (1 -a 2 )ζ(s) n-1 t=1∨s a t-s ζ(t + 1) p ≤ CE|1 -a 2 | p s≤n-1 n-1 t=1∨s |a| p(t-s) ≤ CE|1 -a 2 | p s≤0 |a| -ps n-1 t=1 |a| pt + n-1 s=1 n-1 t=s |a| p(t-s) ≤ CE|1 -a 2 | p {(1 -|a| p ) -2 + n(1 -|a| p ) -1 } ≤ Cn,
proving (5.40) for p ≤ 2. Similarly, using (5.35) with p > 2 we get

E|R n | p = E |1 -a 2 | p E s≤n-1 ζ(s) n-1 t=1∨s a t-s ζ(t + 1)| p a ≤ CE |1 -a 2 | p s≤n-1 E ζ(s) n-1 t=1∨s a t-s ζ(t + 1)| p a 2/p p/2 ≤ CE|1 -a 2 | p s≤n-1 n-1 t=1∨s a 2(t-s) p/2 ≤ CE|1 -a 2 | p s≤0 a -2s n-1 t=1 a 2t + n-1 s=1 n-1 t=s a 2(t-s) p/2 ≤ CE|1 -a 2 | p {(1 -a 2 ) -2 + n(1 -a 2 ) -1 } p/2 ≤ Cn p/2 ,
proving (5.40) and (5.36) for i = 2.

It remains to prove (5.36) for i = 3. Similarly as above, P( (5.39). Thus, (5.36) for i = 3 follows from (5.39) and

|δ n3 | > γ) ≤ P(|Q n | > nγ/2) + P(|D n | > n/2), where Q n := (1 -a 2 ){ Xn (X(1) + X(n)) -( Xn ) 2 (1 + n(1 -a))} and D n is evaluated in
E|Q n | p ≤ C{E|(1 -a 2 )X 2 (n)| p + E|(1 -a 2 )( Xn ) 2 | p (5.41) +n p E|(1 -a)(1 -a 2 )( Xn ) 2 | p } ≤ C.
Since n Xn = s≤n ( n t=1∨s a t-s )ζ(s), an application of the second inequality of (5.35) yields (5.37)). This proves (5.41), thereby completing the proof of (5.36) and of the proposition, too.

E[|n Xn | 2p |a] ≤ C (1 -a n ) 2 (1 -a 2 )(1 -a) 2 + n s=1 1 -a s 1 -a 2 p . Using 1-a n ≤ 1∧(n(1-a)) we obtain E|(1-a)(1-a 2 )( Xn ) 2 | p ≤ Cn -p and E|(1-a 2 )( Xn ) 2 | p ≤ CE(1-a) -1 n -1 . Finally, E|(1-a 2 )X 2 (n)| p ≤ C follows by the same arguments as E|L n | p ≤ C (see
Let a, a 1 , . . . , a N be i.i.d. r.v.s with d.f. G

(x) = P(a ≤ x) supported on [-1, 1]. Define G N (x) := N -1 N i=1 1(a i ≤ x), U N (x) := N 1/2 ( G N (x) -G(x)), x ∈ [-1, 1], and ω N (δ) (= the modulus of continuity of U N ) by ω N (δ) := sup 0≤y-x≤δ |U N (y) -U N (x)|, δ > 0.
Lemma 5.11. Assume that G satisfies Assumption (A6). Then for all > 0,

4 P(ω N (δ) > 6 ) ≤ (3 + 3C)L G δ + N -1 ,
where C is a constant independent of , δ, N .

Proof. As in [13, page 106, equation (13.17)] we have that

E|U N (y) -U N (x)| 2 |U N (z) -U N (y)| 2 ≤ 3P(a ∈ (x, y])P(a ∈ (y, z]), E|U N (y) -U N (x)| 4 ≤ 3P(a ∈ (x, y]) 2 + N -1 P(a ∈ (x, y]) for -1 ≤ x ≤ y ≤ z ≤ 1,
where the second inequality treats the 4th central moment of a binomial variable. Now fix δ > 0 and split [-

1, 1] = ∪ i ∆ i , where ∆ i = [-1+iδ, -1+(i+1)δ], i = 0, 1, . . . , 2/δ -1, ∆ 2/δ = [-1 + 2/δ δ, 1]. According to [109, page 49, Lemma 1], for all > 0, 4 P(ω N (δ) > 6 ) ≤ (3 + 3C) max i P(a ∈ ∆ i ) + N -1 ,
where C is a constant independent of , δ, N . Lemma follows from Assumption (A6) on the d.f. G of the r.v. a.

Note that if we take δ = δ N = o(1), we then get P(ω N (δ) > ) → 0 as N → ∞.

Lemma 5.12. Let a 1,n , a 2,n be given in (5.12) under Assumptions (A1)-(A6) with = 1.

Then for all γ ∈ (0, 1) and n ≥ 1, it holds

sup x,y∈[-1,1] |P( a 1,n ≤ x, a 2,n ≤ y) -P( a 1,n ≤ x)P( a 2,n ≤ y)| = O(n -((p/2)∧(p-1))/(1+p) ).
Proof. Define δ i,n := a i,n -a i , i = 1, 2. For γ ∈ (0, 1), we have

P(|δ 1,n | > γ or |δ 2,n | > γ) ≤ P(|δ 1,n | > γ) + P(|δ 2,n | > γ) ≤ C(n -((p/2)∧(p-1)) γ -p + n -1 )
by Proposition (5.1). Consider now

P( a 1,n ≤ x, a 2,n ≤ y) = P(a 1 + δ 1,n ≤ x, a 2 + δ 2,n ≤ y) ≤ P(a 1 + δ 1,n ≤ x, a 2 + δ 2,n ≤ y, |δ 1,n | ≤ γ, |δ 2,n | ≤ γ) +P(|δ 1,n | > γ or |δ 2,n | > γ). Then P(a 1 + δ 1,n ≤ x, a 2 + δ 2,n ≤ y, |δ 1,n | ≤ γ, |δ 2,n | ≤ γ) ≤ P(a 1 ≤ x + γ, a 2 ≤ y + γ, |δ 1,n | ≤ γ, |δ 2,n | ≤ γ) ≤ G(x + γ)G(y + γ) and P(a 1 + δ 1,n ≤ x, a 2 + δ 2,n ≤ y, |δ 1,n | ≤ γ, |δ 2,n | ≤ γ) ≥ P(a 1 ≤ x -γ, a 2 ≤ y -γ, |δ 1,n | ≤ γ, |δ 2,n | ≤ γ) ≥ G(x -γ)G(y -γ) -P(|δ 1,n | > γ or |δ 2,n | > γ).
From (5.8) we obtain

|G(x ± γ)G(y ± γ) -G(x)G(y)| = |(G(x) + O(γ))(G(y) + O(γ)) -G(x)G(y)| ≤ Cγ.
Hence,

|P(a 1 ≤ x, a 2 ≤ y) -G(x)G(y)| ≤ C(γ + n -1 + n -((p/2)∧(p-1)) γ -p ).
(5.42)

In a similar way,

|P(a 1 ≤ x)P(a 2 ≤ y) -G(x)G(y)| ≤ C(γ + n -1 + n -((p/2)∧(p-1)) γ -p ).
(5.43) By (5.42), (5.43), the proof of the lemma is complete with γ = γ n = o(1), which satisfies

γ n ∼ n -((p/2)∧(p-1)) γ -p n .

Scaling transition for nonlinear random fields

This chapter contains the article [START_REF] Pilipauskaitė | Scaling transition for nonlinear random fields with long-range dependence[END_REF]. We obtain a complete description of anisotropic scaling limits and the existence of scaling transition for nonlinear functions (Appell polynomials) of stationary linear random fields on Z 2 with moving average coefficients decaying at possibly different rate in the horizontal and vertical direction. This chapter extends recent results on scaling transition for linear random fields in [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF][START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF]. [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF] introduced the notion of scaling transition for stationary random field (RF) X = {X(t, s), (t, s) ∈ Z 2 } in terms of partial sums limits

Introduction

D -1 λ,γ (t,s)∈K [λx,λ γ y] X(t, s) fdd → V γ (x, y), (x, y) ∈ R 2 + , λ → ∞, γ > 0, (6.1)
where

D λ,γ → ∞ is normalization and K [λx,λ γ y] := {(t, s) ∈ Z 2 : 1 ≤ t ≤ λx, 1 ≤ s ≤ λ γ y}
is a family of rectangles whose sides grow at possibly different rate O(λ) and O(λ γ ) and γ > 0 is arbitrary. RF X is said to exhibit scaling transition at γ 0 > 0 if the limit RFs V γ ≡ V X γ in (6.1) do not depend on γ for γ > γ 0 and γ < γ 0 and are different up to a multiplicative constant, viz.,

V X γ fdd = V X + (∀γ > γ 0 ), V X γ fdd = V X -(∀γ < γ 0 ), V X + fdd = aV X -(∀a > 0).
In such case, RF V X γ 0 is called the well-balanced while RFs V X + and V X -the unbalanced scaling limits of X.

It appears that scaling transition is a new and general feature of spatial dependence which occurs for many isotropic and anisotropic RFs on Z 2 with long-range dependence (LRD). It was established for a class of aggregated α-stable autoregressive models [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF], a class of Gaussian LRD RFs [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF], and some RFs arising by aggregation of network traffic and randomcoefficient time series models in telecommunications and economics; see [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF][START_REF] Pilipauskaitė | Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes[END_REF][START_REF] Pilipauskaitė | Joint aggregation of random-coefficient AR(1) processes with common innovations[END_REF], also [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF]Remark 2.3]. The unbalanced limits V X ± in these studies have a very special dependence structure (either independent or invariant rectangular increments along one of the coordinate axes) and coincide in the Gaussian case with a fractional Brownian sheet (FBS) B H 1 ,H 2 with one of the two parameters H 1 , H 2 ∈ (0, 1] equal to 1/2 or 1.

The above mentioned works deal with linear RF models written as sums (stochastic integrals) w.r.t. i.i.d. 'noise'. It is well-known that nonlinear RFs can display quite complicated nongaussian scaling behavior. See Dobrushin and Major [START_REF] Dobrushin | Non-central limit theorems for non-linear functional of Gaussian fields[END_REF], also [START_REF] Anh | Macroscaling limit theorems for filtered spatiotemporal random fields[END_REF][START_REF] Avram | Noncentral limit theorems and Appell polynomials[END_REF][START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF][START_REF] Giraitis | CLT and other limit theorems for functionals of Gaussian processes[END_REF][START_REF] Ho | Limit theorems for functionals of moving averages[END_REF][START_REF] Lavancier | Invariance principles for non-isotropic long memory random fields[END_REF][START_REF] Leonenko | Random Fields with Singular Spectrum[END_REF][START_REF] Surgailis | Zones of attraction of self-similar multiple integrals[END_REF][START_REF] Taqqu | Convergence of integrated processes of arbitrary Hermite rank[END_REF] and the references therein.

The present chapter establishes the existence of scaling transition for a class of nonlinear subordinated RFs:

X(t, s) = G(Y (t, s)), (t, s) ∈ Z 2 , ( 6.2) 
where

Y = {Y (t, s), (t, s) ∈ Z 2 } is a stationary linear LRD RF in (6.3) and G(x) = A k (x),
x ∈ R, is the Appell polynomial of degree k ≥ 1 (see Section 6.2 for the definition) with EG(Y (0, 0)) 2 < ∞, EG(Y (0, 0)) = 0. The (underlying) RF Y is written as a moving-average

Y (t, s) = (u,v)∈Z 2 a(t -u, s -v)ε(u, v), (t, s) ∈ Z 2 , (6.3)
in a standardized i.i.d. sequence {ε(u, v), (u, v) ∈ Z 2 } with deterministic moving-average coefficients such that

a(t, s) ∼ const(|t| 2 + |s| 2q 2 /q 1 ) -q 1 /2 , |t| + |s| → ∞, (6.4) 
where parameters q 1 , q 2 > 0 satisfy

1 < Q := 1 q 1 + 1 q 2 < 2. (6.5)
In Theorems 6.1-6.5, the moving-average coefficients a(t, s) may take a more general form in (6.10) including an 'angular function'.

Condition Q < 2 guarantees that (t,s)∈Z a(t, s) 2 < ∞ or Y in (6.3) is well-defined, while Q > 1 implies that (t,s)∈Z |a(t, s)| = ∞ (in other words, that RF Y is LRD). Note a(t, 0) = O(|t| -q 1 ), a(0, s) = O(|s| -q 2 )
decay at a different rate when q 1 = q 2 in which case Y exhibits strong anisotropy. The form of moving-average coefficients in (6.4) implies a similar behavior of the covariance function r Y (t, s)

:= EY (0, 0)Y (t, s) = (u,v)∈Z 2 a(u, v)a(t + u, s + v), namely, C 1 (|t| 2 + |s| 2p 2 /p 1 ) -p 1 /2 ≤ r Y (t, s) ≤ C 2 (|t| 2 + |s| 2p 2 /p 1 ) -p 1 /2 , |t| + |s| → ∞, (6.6) 
than λ 1+γ , or the number of summands. The dichotomy of the limit distribution in (R3) is related to the presence or absence of the vertical/horizontal LRD property of X, see Remark 6.4. We also note that our proofs of the central limit results in (R3) and (R4) use rather simple approximation by m-dependent r.v.s and do not require a combinatorial argument or Malliavin's calculus as in [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF][START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] and other papers.

It is well-known that Appell polynomials play a similar role to Hermite polynomials in limit theorems for nonlinear functions of linear nongaussian LRD processes, except that they lack the orthogonality property of the latter and therefore expansions in Appell polynomials are of limited use. See [START_REF] Avram | Noncentral limit theorems and Appell polynomials[END_REF][START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF][START_REF] Surgailis | Stable limits of sums of bounded functions of long-memory moving averages with finite variance[END_REF]. Particularly, the results in (R1)-(R4) hold for arbitrary polynomial G(x) = m j=k c j A j (x) with c k = 0 under suitable moment assumptions on the innovations. However, except for the Gaussian case, dealing with non-polynomial functions of LRD processes requires different techniques, see e.g. [START_REF] Ho | Limit theorems for functionals of moving averages[END_REF][START_REF] Surgailis | Stable limits of sums of bounded functions of long-memory moving averages with finite variance[END_REF], and is much harder in the case of noncausal spatial models, c.f. [START_REF] Doukhan | Asymptotics of weighted empirical processes of linear fields with long-range dependence[END_REF].

The results of this chapter have direct relevance for statistics of strongly dependent spatial data by showing that the (asymptotic) shape of the spatial region may have a drastic effect on the limit distribution of linear and nonlinear statistics. See Section 6.8 (Final comment) at the end of the chapter.

The rest of the chapter is organized as follows. Section 6.2 provides the precise assumptions on RFs Y and X and some known properties of Appell polynomials. Section 6.3 contains formulations of the main results (Theorems 6.1-6.5) as described in (R1)-(R5) above. Section 6.4 provides two examples of linear fractionally integrated RFs satisfying the assumptions in Section 6.2. Section 6.5 discusses some properties of generalized homogeneous functions and their convolutions used to prove the results. Section 6.6 discusses the asymptotic form of the covariance function and the asymptotics of the variance of anisotropic partial sums of subordinated RF X = A k (Y ). All proofs are collected in Section 6.7.

In this chapter, we denote

R + := (0, ∞), R 2 + := (0, ∞) 2 , R 2 0 := R 2 \ {(0, 0)}, Z + := {0, 1, . . .}, N := {1, 2, . . .}, Z •2k := {((u 1 , v 1 ), . . . , (u k , v k )) ∈ Z 2k : (u i , v i ) = (u j , v j ), 1 ≤ i < j ≤ k}, k ∈ N.

Assumptions and preliminaries

Assumption (A1). {ε, ε(t, s), (t, s) ∈ Z 2 } is an i.i.d. sequence with Eε = 0, Eε 2 = 1.

Assumption (A2). Y

= {Y (t, s), (t, s) ∈ Z 2 } is a moving-average RF in (6.3) with coeffi- cients a(t, s) = 1 (|t| 2 + |s| 2q 2 /q 1 ) q 1 /2 L 0 t (|t| 2 + |s| 2q 2 /q 1 ) 1/2 + o(1) , |t| + |s| → ∞, (6.10) (t, s) = (0, 0), where q i > 0, i = 1, 2, satisfy Q = 2 i=1 q -1 i ∈ (1, 2) (see (6.5)) and L 0 (u) ≥ 0, u ∈ [-1, 1]
, is a bounded piece-wise continuous function on [-1, 1].

Assumptions and preliminaries

We refer to L 0 in (6.10) as angular function. Assumptions (A1)-(A2) imply EY (0, 0) 2 = (t,s)∈Z 2 a(t, s) 2 < ∞ and hence RF Y in (6.3) is well-defined and stationary, with zero mean EY (0, 0) = 0. Moreover, if E|ε| α < ∞ for some α > 2 then E|Y (0, 0)| α < ∞ follows by Rosenthal's inequality; see e.g. [START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF]Corollary 2.5.1].

Given a r.v. ξ with E|ξ| k < ∞, k ∈ Z + , the kth Appell polynomial A k (x) relative to the distribution of ξ is defined by

A k (x) := (-i) k d k (e iux /Ee iuξ )/du k u=0
. See [START_REF] Avram | Noncentral limit theorems and Appell polynomials[END_REF][START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF] for various properties of Appell polynomials. In what follows, A k (ξ) stands for the r.v. obtained by substituting x = ξ in the Appell polynomial A k (x) relative to the distribution of ξ.

Particularly, if Eξ = 0 then A 1 (ξ) = ξ, A 2 (ξ) = ξ 2 -Eξ 2 , A 3 (ξ) = ξ 3 -3ξEξ 2 -Eξ 3 etc. For standard normal ξ d = N (0, 1) the Appell polynomials A k (ξ) = H k (ξ) = (-i) k d k e iuξ+u 2 /2 /du k u=0
agree with the Hermite polynomials.

Assumption (A3) k . For k ∈ N, E|ε| 2k < ∞ and X = {X(t, s) := A k (Y (t, s)), (t, s) ∈ Z 2 }, (6.11)
where A k is the kth Appell polynomial relative to the (marginal) distribution of Y (t, s) in (6.3). We also use the representation of (6.11) via Wick products of noise variables (see [START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF]Chapter 14]):

A k (Y (t, s)) = (u,v) k ∈Z 2k a(t -u 1 , s -v 1 ) • • • a(t -u k , s -v k ) : ε(u 1 , v 1 ) • • • ε(u k , v k ) : . (6.12)
By definition, for mutually distinct points (u j , v j ) = (u j , v j ) (j = j , 1 ≤ j, j ≤ i) the Wick product :

ε(u 1 , v 1 ) k 1 • • • ε(u i , v i ) k i : = i j=1 A k j (ε(u j , v j )
) equals the product of independent r.v.s A k j (ε(u j , v j )), 1 ≤ j ≤ i. (6.12) leads to the decomposition of (6.11) into the 'offdiagonal' and 'diagonal' parts:

A k (Y (t, s)) = Y •k (t, s) + Z(t, s), ( 6.13) 
where

Y •k (t, s) := (u,v) k • a(t -u 1 , s -v 1 ) • • • a(t -u k , s -v k )ε(u 1 , v 1 ) • • • ε(u k , v k ) (6.14)
and the sum

• (u,v) k is taken over all (u, v) k = ((u 1 , v 1 ), • • • , (u k , v k )) ∈ Z 2k such that (u i , v i ) = (u j , v j ) (i = j) (the set of such (u, v) k ∈ Z 2k will be denoted by Z •2k
). By definition, the 'diagonal' part Z(t, s) in (6.13) is given by the r.h.s. of (6.12) with (u, v) k ∈ Z 2k replaced by (u, v) k ∈ Z 2k \ Z •2k . In most of our limit results, Z(t, s) is negligible and Y •k (t, s) is the main term which is easier to handle compared to A k (Y (t, s)) in (6.13). We also note that limit distributions of partial sums of 'off-diagonal' polynomial forms in i.i.d. r.v.s were studied in [START_REF] Bai | Generalized Hermite processes, discrete chaos and limit theorems[END_REF][START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF][START_REF] Surgailis | Zones of attraction of self-similar multiple integrals[END_REF] and other works.

Assumption (A4) k . ε(0, 0) d = Z and Y (0, 0) d = Z have standard normal distribution Z d = N (0, 1) and X(t, s) = G(Y (t, s)), where G = G(x), x ∈ R, is a measurable function with EG(Z) 2 < ∞, EG(Z) = 0 and Hermite rank k ≥ 1.
Assumptions (A1), (A2) and (A4) k imply that Y in (6.3) is a Gaussian RF. As noted above, under Assumption (A4) k Appell polynomials A k (x) coincide with Hermite polynomials H k (x). Recall that the Hermite rank of a measurable function G : R → R with EG(Z) 2 < ∞ is defined as the index k of the lowest nonzero coefficient c j in the Hermite expansion of G, viz.,

G(x) = ∞ j=k c j H j (x)/j! where c k = 0. Let L 2 (R 2k ) denote the Hilbert space of real-valued functions h = h((u, v) k ), (u, v) k = (u 1 , v 1 , . . . , u k , v k ) ∈ R 2k with finite norm h k := { R 2k h((u, v) k ) 2 d(u, v) k } 1/2 , d(u, v) k = du 1 dv 1 • • • du k dv k . Let W = {W (du, dv), (u, v) ∈ R 2 }
denote a real-valued Gaussian white noise with zero mean and variance EW (du, dv)

2 = dudv. For any h ∈ L 2 (R 2k ) the k-tuple Itô-Wiener integral R 2k h((u, v) k )d k W = R 2k h(u 1 , v 1 , . . . , u k , v k )W (du 1 , dv 1 ) • • • W (du k , dv k ) is well-defined and satisfies E R 2k h((u, v) k )d k W = 0, E( R 2k h((u, v) k )d k W ) 2 ≤ k! h 2 k
; see e.g. [START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF].

Main results

Recall the definitions of p i , P in (6.7), (6.8);

γ 0 = q 1 /q 2 = p 1 /p 2 . Denote S X λ,γ (x, y) := (t,s)∈K [λx,λ γ y] X(t, s), S X λ,γ := S X λ,γ (1, 1). Consider a RF V X k,γ 0 (x, y) := R 2k h(x, y; (u, v) k )d k W, (x, y) ∈ R 2 + , ( 6.15) 
where

h(x, y; (u, v) k ) := (0,x]×(0,y] k i=1 a ∞ (t -u i , s -v i )dtds, (6.16) a ∞ (t, s) := (|t| 2 + |s| 2q 2 /q 1 ) -q 1 /2 L 0 t/(|t| 2 + |s| 2q 2 /q 1 ) 1/2 , (t, s) ∈ R 2 . Theorem 6.1. (i) The RF V X k,γ 0 in (6.15)-(6.16
) is well-defined for 1 ≤ k < P as an Itô-Wiener stochastic integral and has zero mean EV X k,γ 0 (x, y) = 0 and finite variance EV X k,γ 0 (x, y) 2 = k! h(x, y; •) 2 k . Moreover, RF V X k,γ 0 has stationary rectangular increments and satisfies the operator-scaling property (see [START_REF] Biermé | Operator scaling stable random fields[END_REF])

{V X k,γ 0 (λx, λ γ 0 y), (x, y) ∈ R 2 + } fdd = {λ H(γ 0 ) V X k,γ 0 (x, y), (x, y) ∈ R 2 + }, ∀λ > 0, (6.17)
where H(γ 0 ) := 1 + γ 0 -kp 1 /2.

(ii) Let RFs Y and X = A k (Y ) satisfy Assumptions (A1), (A2) and (A3) k , 1 ≤ k < P . Then as λ → ∞,

Var(S X λ,γ 0 ) ∼ c(γ 0 )λ 2H(γ 0 ) , c(γ 0 ) := k! h(1, 1; •) 2 k (6.18) and λ -H(γ 0 ) S X λ,γ 0 (x, y) fdd → V X k,γ 0 (x, y). (6.19)
Next, we discuss the case 1 ≤ k < P , γ = γ 0 . This case is split into four subcases: (c1):

γ > γ 0 , k > 1/p 2 , (c2): γ > γ 0 , k < 1/p 2 , (c3): γ < γ 0 , k > 1/p 1 ,
and (c4): γ < γ 0 , k < 1/p 1 (the 'boundary' cases k = 1/p i , i = 1, 2, are more delicate and omitted, see Remark 6.2). Cases (c3) and (c4) are symmetric to (c1) and (c2) and essentially follow by exchanging the coordinates t and s. Introduce random processes Z + k and Z - k with one-dimensional time:

Z + k (y) := R 2k h + (y; (u, v) k )d k W, Z - k (x) := R 2k h -(x; (u, v) k )d k W, x, y ∈ R + , (6.20)
where

h + (y; (u, v) k ) := y 0 k i=1 a ∞ (u i , s -v i )ds, h -(x; (u, v) k ) := x 0 k i=1 a ∞ (t -u i , v i )dt, (6.21)
and a ∞ (t, s) is defined in (6.16). In Theorem 6.3, stands for convolution of functions indexed by R 2 (see Section 6.5 for definition). Then for any γ > γ 0 , as λ → ∞,

Var(S X λ,γ ) ∼ c(γ)λ 2H(γ) , (6.22)
where H(γ) := 1 + γH + 2k and c(γ

) := k! h + (1; •) 2 k > 0. Moreover, λ -H(γ) S X λ,γ (x, y) fdd → xZ + k (y), λ → ∞. (6.23) (iii) Let RFs Y and X = A k (Y ) satisfy Assumptions (A1), (A2) and (A3) k , 1 ≤ k < 1/p 1 .
Then for any γ < γ 0 , as λ → ∞,

Var(S X λ,γ ) ∼ c(γ)λ 2H(γ) ,
where

H(γ) := γ + H - 1k and c(γ) := k! h -(1; •) 2 k > 0. Moreover, λ -H(γ) S X λ,γ (x, y) fdd → yZ - k (x), λ → ∞.
Remark 6.1. Processes Z ± k in (6.20) have a similar structure and properties to generalized Hermite processes discussed in [START_REF] Bai | Generalized Hermite processes, discrete chaos and limit theorems[END_REF] except that (6.20) are defined as k-tuple Itô-Wiener integrals with respect to white noise in R 2 and not in R as in [START_REF] Bai | Generalized Hermite processes, discrete chaos and limit theorems[END_REF]. Following the terminology in [START_REF] Pilipauskaitė | Anisotropic scaling of the random grain model with application to network traffic[END_REF], RFs xZ + k (y) and yZ - k (x) may be called a generalized Hermite slide since they represent a random surface 'sliding linearly to 0' along one of the coordinate on the plane from a generalized Hermite process indexed by the other coordinate. In the Gaussian case k = 1, a generalized Hermite slide agrees with a FBS B H 1 ,H 2 where one of the two parameters H 1 , H 2 equals 1. Recall that a fractional Brownian sheet (FBS) 

B H 1 ,H 2 = {B H 1 ,H 2 (x, y), (x, y) ∈ R 2 + } with parameters 0 < H 1 , H 2 ≤ 1

is a Gaussian process with zero mean and covariance function

EB H 1 ,H 2 (x 1 , y 1 )B H 1 ,H 2 (x 2 , y 2 ) = (1/4)(x 2H 1 1 + x 2H 1 2 -|x 1 -x 2 | 2H 1 ) ×(y 2H 2 1 + y 2H 2 2 -|y 1 -y 2 | 2H 2 ). ( 6 
Var(S X λ,γ ) ∼ c(γ)λ 2H(γ) , (6.25)
where H(γ) 

:= H + 1k + γ/2, H + 1k := 1 + γ 0 /2 -kp 1 /2 ∈ (1/2, 1) and c(γ) := k! (0,1] 2 ×R ((a ∞ a ∞ )(t 1 -t 2 , s)) k dt 1 dt 2 ds > 0. Moreover, λ -H(γ) S X λ,γ (x, y) fdd → c(γ) 1/2 B H + 1k ,1/2 (x, y), λ → ∞. ( 6 
) := k! R×(0,1] 2 ((a ∞ a ∞ )(t, s 1 -s 2 )) k dtds 1 ds 2 > 0. Moreover, λ -H(γ) S X λ,γ (x, y) fdd → c(γ) 1/2 B 1/2,H - 2k (x, y), λ → ∞. (6.28) Remark 6.2. Note H + 1k = 1 (kp 2 = 1
) and H - 2k = 1 (kp 1 = 1). We expect that the convergences (6.26) and (6.28) remain true (modulo a logarithmic correction of normalization) in the 'boundary' cases kp 2 = 1 and kp 1 = 1 of Theorem 6.3(i) and (ii) and the limit RFs in these cases agree with FBS B 1,1/2 or B 1/2,1 , respectively, having both parameters equal to 1 or 1/2.

The next theorem discusses the case k > P . 

λ -(1+γ) Var(S X λ,γ ) → σ 2 X ,
where

σ 2 X := (t,s)∈Z 2 Cov(X(0, 0), X(t, s)) ∈ [0, ∞). Moreover, if σ 2 X > 0 then λ -(1+γ)/2 S X λ,γ (x, y) fdd → σ X B 1/2,1/2 (x, y), λ → ∞.
Our last theorem extends the above results to general function G having Hermite rank k and Gaussian underlying RF Y . 

(x) = H k (x) + ∞ j=k+1 c j H j (x)/j!. (i) Let 1 ≤ k < P .
Then RF X satisfies all statements of Theorems 6.1-6.3. (ii) Let k > P . Then RF X satisfies the statements of Theorem 6.4.

According to Theorems 6.2-6.3, the unbalanced scaling limits V X ± of RF X = A k (Y ) satisfying Assumptions (A1)-(A3) k are given by

V X + (x, y) =    xZ + k (y), kp 2 < 1, c 1/2 + B H + 1k ,1/2 (x, y), kp 2 > 1, V X -(x, y) =    yZ - k (x), kp 1 < 1, c 1/2 -B 1/2,H - 2k (x, y), kp 1 > 1, (6.29) 
where c ± ≡ c(γ) > 0 are constants given in Theorem 6.3. The covariance functions of RFs V X ± in (6.29) agree (modulo a constant) with the covariance of FBS B H 1 ,H 2 where at least one of the two parameters

H 1 , H 2 equals 1 or 1/2, namely (H 1 , H 2 ) = (1, H + 2k ) if kp 2 < 1, = (H + 1k , 1/2) if kp 2 > 1 in the case of V X + , and (H 1 , H 2 ) = (H - 1k , 1) if kp 1 < 1, = (1/2, H - 2k ) if kp 1 > 1 in the case of V X
-. These facts and the explicit form of the covariance of FBS, see (6.24), imply that V X + fdd = aV X -(∀a > 0), for any k, p 1 , p 2 in Theorems 6.2-6.3, yielding the following corollary. Corollary 6.6. Let RF X = A k (Y ) satisfy Assumptions (A1), (A2) and (A3) k , 1 ≤ k < P , kp i = 1, i = 1, 2. Then X exhibits scaling transition at γ 0 = p 1 /p 2 .

Examples: fractionally integrated RFs

In this section we present two examples of linear fractionally integrated RFs Y on Z 2 satisfying Assumptions (A1) and (A2).

Example 1. Isotropic fractionally integrated random field. Introduce the (discrete)

Laplace operator ∆Y (t, s) := (1/4) |u|+|v|=1 (Y (t + u, s + v) -Y (t, s)) and a lattice isotropic fractionally integrated RF {Y (t, s), (t, s) ∈ Z 2 } satisfying the equation: (6.30) where {ε(t, s), (t, s) ∈ Z 2 } are standard i.i.d. r.v.s, 0 < d < 1/2 is the order of fractional integration, (1 (6.31) where b(u, v) := ∞ j=0 ψ j (d)p j (u, v) and p j (u, v) are j-step transition probabilities of a symmetric nearest-neighbor random walk {W j , j = 0, 1, . . .} on Z 2 with equal 1-step probabilities

(-∆) d Y (t, s) = ε(t, s),
-z) d = ∞ j=0 ψ j (d)z j , ψ j (d) := Γ(j -d)/Γ(j + 1)Γ(-d). More explicitly, (-∆) d Y (t, s) = ∞ j=0 ψ j (d)(1 + ∆) j Y (t, s) = (u,v)∈Z 2 b(u, v)Y (t -u, s -v),
P(W 1 = (u, v)|W 0 = (0, 0)) = 1/4, |u| + |v| = 1. Note (u,v)∈Z 2 |b(u, v)| = ∞ j=0 |ψ j (d)| < ∞, d > 0,
and therefore the l.h.s. of (6.31) is well-defined for any stationary RF Y with E|Y (0, 0)| < ∞. As shown in [START_REF] Koul | A goodness-of-fit test for marginal distribution of linear random fields with long memory[END_REF], for 0 < d < 1/2 a stationary solution of (6.30) with zero-mean and finite variance can be defined as a moving-average RF:

Y (t, s) = (-∆) -d ε(t, s) = (u,v)∈Z 2 a(u, v)ε(t -u, s -v), (6.32)
with coefficients

a(u, v) = ∞ j=0 ψ j (-d)p j (u, v) (6.33) satisfying (u,v)∈Z 2 a(u, v) 2 < ∞. Moreover, RF Y in (6.32) has an explicit spectral density f (x, y) = (2π) -2 2 -2d |(1-cos x)+(1-cos y)| -2d , (x, y) ∈ [-π, π] 2
, which behaves as const(x 2 + y 2 ) -2d as x 2 + y 2 → 0. According to [56, Proposition 5.1], the moving-average coefficients in (6.33) satisfy the isotropic asymptotics:

a(t, s) = (A + o(1))(t 2 + s 2 ) -(1-d) , t 2 + s 2 → ∞,
where A := π -1 Γ(1 -d)/Γ(d) and hence Assumption (A2) with

q 1 = q 2 = 2(1 -d) ∈ (1, 2), Q = 1/(1 -d) ∈ (1, 2) and a constant angular function L 0 (z) = A, z ∈ [-1, 1]. Example 2. Anisotropic fractionally integrated random field. Consider the 'discrete heat operator' ∆ 1,2 Y (t, s) = Y (t, s) -θY (t -1, s) -1-θ 2 (Y (t -1, s + 1) + Y (t -1, s -1)), 0 < θ < 1,
and a fractionally integrated RF satisfying

∆ d 1,2 Y (t, s) = ε(t, s), (6.34) 
where {ε(t, s)} are as in (6.30). Similarly to (6.32), a stationary solution of (6.34) can be written as a moving-average RF:

Y (t, s) = ∆ -d 1,2 ε(t, s) = (u,v)∈Z + ×Z a(u, v)ε(t -u, s -v), (6.35) 
with coefficients

a(u, v) = ψ u (-d)q u (v), (6.36) 
where q u (v) are u-step transition probabilities of a random walk {W u , u = 0, 1, . . .} on Z with 1-step probabilities P(W

1 = v|W 0 = 0) = θ if v = 0, = (1 -θ)/2 if v = ±1.
As shown in [START_REF] Lavancier | Anisotropic long-range dependence and aggregation of space-time models[END_REF], (u,v)∈Z 2 a(u, v) 2 < ∞ and the RF in (6.35) is well-defined for any 0 < d < 3/4, θ ∈ [0, 1); moreover, the spectral density f (x, y) of (6.35) is singular at the origin: f (x, y) ∼ const(x 2 + (1 -θ) 2 y 4 /4) -d , (x, y) → (0, 0). Proposition 6.7. For any 0 < d < 3/4, 0 < θ < 1, the coefficients in (6.36) satisfy Assumption (A2) with q 1 = 3/2 -d, q 2 = 2q 1 and a continuous angular function

L 0 (z), z ∈ [-1, 1],
given by

L 0 (z) =          z d-3/2 Γ(d) 2π(1 -θ) exp - (1/z) 2 -1 2(1 -θ) , 0 < z ≤ 1, 0, -1 ≤ z ≤ 0.
(6.37) Remark 6.3. [START_REF] Boissy | Parameter estimates for fractional autoregressive spatial processes[END_REF][START_REF] Guo | Local Whittle estimator for anisotropic random fields[END_REF] discussed fractionally integrated RFs satisfying the equation

∆ d 1 1 ∆ d 2 2 Y (t, s) = ε(t, s), (6.38) 
where

∆ 1 Y (t, s) := Y (t, s) -Y (t -1, s), ∆ 2 Y (t, s) := Y (t, s) -Y (t, s -1) are difference oper- ators and 0 < d 1 , d 2 < 1/2 are parameters. Stationary solution of (6.38) is a moving-average RF Y (t, s) = (u,v)∈Z 2 + a(u, v)ε(t -u, v -s) with coefficients a(u, v) := ψ u (-d 1 )ψ v (-d 2 )
. Following the proof of Theorem 6.1 one can show that for any γ > 0 the (normalized) partial sums process of RF Y in (6.38) tends to a FBS depending on d 1 , d 2 only, viz.,

λ -H 1 -γH 2 S Y λ,γ (x, y) fdd → c(d 1 )c(d 2 )B H 1 ,H 2 (x, y)
, where H i = d i + 1/2 and c(d i ) > 0 are some constants. See [89, Proposition 3.2] for related result. We conclude that the fractionally integrated RF in (6.38) featuring a 'separation of LRD along coordinate axes' does not exhibit scaling transition in contrast to models in (6.30) and (6.34).

Properties of convolutions of generalized homogeneous functions

For a given > 0 denote

ρ(t, s) := (|t| 2 + |s| 2/ ) 1/2 , ρ + (t, s) := 1 ∨ ρ(t, s), (t, s) ∈ R 2 . Let f (t, s) = ρ(t, s) -h L(t/ρ(t, s)), where h ∈ R and L = L(z), z ∈ [-1, 1]
, is an arbitrary measurable function, then f (t, s) satisfies the scaling property: f (λt, λ s) = λ -h f (t, s), (t, s) ∈ R 2 0 , for each λ > 0. Such functions are called generalized homogeneous functions (see [START_REF] Hankey | Systematic application of generalized homogeneous functions to static scaling, dynamic scaling, and universality[END_REF]). We use the notation (a 1 a 2 )(t, s) = R 2 a 1 (u, v)a 2 (t+u, s+v)dudv for convolution of functions

a i , i = 1, 2, defined on R 2 . Similarly, we write [a 1 a 2 ](t, s) = (u,v)∈Z 2 a 1 (u, v)a 2 (t+u, s+v) for 'discrete' convolution of sequences a i , i = 1, 2, defined on Z 2 . Note the symmetry a i (t, s) = a i (t, -s), i = 1, 2, implies the symmetry [a 1 a 2 ](t, s) = [a 1 a 2 ](t, -s), (a 1 a 2 )(t, s) = (a 1 a 2 )(t, -s) of convolutions. Let B δ (t, s) := {(u, v) ∈ R 2 : |t -u| + |s -v| ≤ δ}, B c δ (t, s) := R 2 \ B δ (t, s).
Proposition 6.8. (i) For any δ > 0, h > 0,

B δ (0,0) ρ(t, s) -h dtds < ∞ ⇐⇒ h < 1 + (6.39)
and

B c δ (0,0) ρ(t, s) -h dtds < ∞ (t,s)∈Z 2 ρ + (t, s) -h < ∞        ⇐⇒ h > 1 + . (6.40) (ii) Let h i > 0, i = 1, 2, h 1 + h 2 > 1 + . Then there exists C > 0 such that for any (t, s) ∈ R 2 0 , (ρ -h 1 ρ -h 2 )(t, s) ≤ Cρ(t, s) 1+ -h 1 -h 2 , h i < 1 + , i = 1, 2, (6.41) 
(ρ -h 1 + ρ -h 2 )(t, s) ≤ Cρ + (t, s) -h 2 , h 2 < 1 + < h 1 , (6.42) 
(ρ -h 1 + ρ -h 2 + )(t, s) ≤ Cρ + (t, s) -h 1 ∧h 2 , h i > 1 + , i = 1, 2. (6.43)
Moreover, inequalities (6.41)-(6.43) are also valid for 'discrete' convolution [ρ -h 1 + ρ -h 2 + ](t, s), (t, s) ∈ Z 2 with ρ(t, s) on the r.h.s. of (6.41) replaced by ρ + (t, s).

(iii) Let a i = a i (t, s), (t, s) ∈ Z 2 , satisfy a i (t, s) = ρ + (t, s) -h i (L i (t/ρ + (t, s))+o(1)), |t|+|s| → ∞, where 0 < h i < 1 + < h 1 + h 2 , and L i (u) ≡ 0, u ∈ [-1, 1], are bounded piecewise continuous functions, i = 1, 2. Let a i∞ (t, s) := ρ(t, s) -h i L i (t/ρ(t, s)), (t, s) ∈ R 2 , i = 1, 2. Then (a 1∞ a 2∞ )(t, s) = ρ(t, s) 1+ -h 1 -h 2 L 12 (t/ρ(t, s)), (t, s) ∈ R 2 , ( 6.44) 
and

[a 1 a 2 ](t, s) = ρ + (t, s) 1+ -h 1 -h 2 L 12 (t/ρ + (t, s)) + o(1) , |t| + |s| → ∞, (6.45) 
where

L 12 (z) := (a 1∞ a 2∞ )(z, (1 -z 2 ) /2 ) = R 2 a 1∞ (u, v)a 2∞ (u + z, v + (1 -z 2 ) /2 )dudv (6.46) is a bounded continuous function on the interval z ∈ [-1, 1]. Moreover, if L 1 (z) = L 2 (z) ≥ 0 then L 12 (z) in (6.46) is strictly positive on [-1, 1].
where

L X (z) := ((a ∞ a ∞ )(z, (1 -z 2 ) γ 0 /2 )) k , z ∈ [-1, 1]
, is a strictly positive continuous function and a ∞ is defined in (6.16).

Moreover, r Z (t, s) = o(ρ(t, s) -kp 1 ), |t| + |s| → ∞. (iii) Let k > P . Then r X (t, s) = O(ρ(t, s) -(kp 1 )∧(2q 1 ) ), |t| + |s| → ∞. (6.51) 
Clearly, (6.50) implies C 1 ρ(t, s) -kp 1 ≤ r X (t, s) ≤ C 2 ρ(t, s) -kp 1 for all |t| + |s| > C 3 and some 0 < C i < ∞, i = 1, 2, 3. The last fact together with Proposition 6.8(i) implies the following corollary. Corollary 6.11. Let X = A k (Y ), k ≥ 1, be the subordinated RF defined in Proposition 6.10 and satisfying the conditions therein.

(i) Let 1 ≤ k < P . Then (t,s)∈Z 2 |r X (t, s)| = ∞. Moreover, s∈Z |r X (0, s)| = ∞ ⇐⇒ kp 2 ≤ 1 and t∈Z |r X (t, 0)| = ∞ ⇐⇒ kp 1 ≤ 1. (ii) Let k > P . Then (t,s)∈Z 2 |r X (t, s)| < ∞.
Remark 6.4. Following the terminology in [START_REF] Pilipauskaitė | Anisotropic scaling of the random grain model with application to network traffic[END_REF], we say that a stationary RF X = {X(t, s), (t, s) ∈ Z 2 } with finite variance has vertical LRD property (respectively, horizontal LRD property) if s∈Z |r X (0, s)| = ∞ (respectively, t∈Z |r X (t, 0)| = ∞). From Corollary 6.11 we see the dichotomy of the limit distribution in Theorems 6.2-6.3 at points kp 2 = 1 and kp 1 = 1 is related to the change of vertical and horizontal LRD properties of the subordinated RF

X = A k (Y ). Corollary 6.12. Let X(t, s) = A k (Y (t, s)) = Y •k (t, s) + Z(t, s), 1 ≤ k < P , kp i = 1, i = 1,
2, be the subordinated RF defined in Proposition 6.10 and satisfying the conditions therein. Then for any γ > 0, as λ → ∞,

Var(S X λ,γ ) ∼ Var(S Y •k λ,γ ) ∼ c(γ)λ 2H(γ) (6.52) and Var(S Z λ,γ ) = O(λ 1+γ ), (6.53) 
where H(γ) ∈ ((1 + γ)/2, 1 + γ) and c(γ) are defined in Theorems 6.1-6.3. 

Proofs

) → ( , t/ ) is a 1-1 mapping from R × [0, ∞) to [0, ∞) × [-1, 1]. Particularly, if = 1 then ( , arccos(t/ ))
are the polar coordinates of (t, s) ∈ R × [0, ∞). We use the inequality:

ρ(t 1 + t 2 , s 1 + s 2 ) ≤ C 2 i=1 ρ(t i , s i ), (6.54) 6.7. Proofs 
with C := 1 ∨ 2 1/ -1 , which follows from

ρ(t 1 + t 2 , s 1 + s 2 ) 1∧ ≤ 2 i=1 ρ(t i , s i ) 1∧ , (t i , s i ) ∈ R 2 , i = 1, 2. (6.55) (i) W.l.g., let δ = 1. Then B 1 (0,0) ρ(t, s) -h dtds ≤ 4 1 0 t -h dt 1/t 0 (1 + u 2/ ) -h/2 du, where the inner integral = O(1) if h > , = O(t h-) if h < , = O(| log t|) if h = , as u → 0.
This proves (6.39) and (6.40) follows analogously. (ii) After the change of variables:

u → u, v → v, := ρ(t, s), we get (ρ -h 1 ρ -h 2 )(t, s) = 1+ -h 1 -h 2 R 2 ρ(u, v) -h 1 ρ((t/ ) + u, (s/ ) + v) -h 2 dudv, = 1+ -h 1 -h 2 (I 1 + I 2 + I 12 ), (6.56) 
where

I 1 := B δ (0,0) ρ(u, v) -h 1 ρ((t/ ) + u, (s/ ) + v) -h 2 dudv, I 2 := B δ (-t/ ,-s/ )
. . . dudv,

I 12 := B c δ (0,0)∩B c δ (-t/ ,-s/ )
. . . dudv with δ > 0 such that B δ (0, 0) ∩ B δ (-t/ , -s/ ) = ∅ for any (t, s) = (0, 0). The integrals I i ≤ C, i = 1, 2 by (6.39) and 0 < h i < 1 + , i = 1, 2. Next, by Hölder's inequality with h := h 1 + h 2 ,

I 12 ≤ B c δ (0,0) ρ(u, v) -h dudv ≤ C,
in view of (6.40) and

B c δ (-t/ ,-s/ ) ρ((t/ ) + u, (s/ ) + v) -h dudv = B c δ (0,0) ρ(u, v) -h dudv.
This proves (6.41). Next, consider (6.42), or the case 0 < h 2 < 1 + < h 1 . By changing the variables as in (6.56), we get (ρ

-h 1 + ρ -h 2 )(t, s) ≤ 1+ -h 1 -h 2 (I 1 + I 2 + I 12 )
, where I 2 < C, I 12 < C are the same as in (6.56), whereas

I 1 := B δ (0,0) ( -1 ∨ ρ(u, v)) -h 1 ρ((t/ ) + u, (s/ ) + v) -h 2 dudv.
Note that if given small enough δ > 0, then (6.55) implies ρ((t/ ) + u, (s/ ) + v) 1∧ ≥ 1 -ρ(u, v) 1∧ ≥ 1/2 for all (u, v) ∈ B δ (0, 0), and hence

I 1 ≤ C h 1 -1- R 2 ρ + (u, v) -h 1 dudv ≤ C h 1 -1-according to (6.40). Since ρ(t, s) 1+ -h 1 -h 2 = o(ρ(t, s) -h 2 ) as |t| + |s| → ∞, the proof of (6.42) is complete.
Finally, consider (6.43). We follow the proof of (6.42) and get (ρ

-h 1 + ρ -h 2 + )(t, s) ≤ 1+ -h 1 -h 2 (I 1 + I 2 + I 12 ) with the same I 1 < C h 1 -1-, I 12 < C, whereas I 2 := B δ (-t/ ,-s/ ) ρ(u, v) -h 1 ( -1 ∨ ρ((t/ ) + u, (s/ ) + v)) -h 2 dudv.
For small enough δ > 0, we have ρ(u, v) 1∧ ≥ 1 -ρ((t/ ) + u, (s/ ) + v) 1∧ ≥ 1/2 for all (u, v) ∈ B δ (-t/ , -s/ ), and hence (6.43). Extension of (6.41)-(6.43) to 'discrete' convolution [ρ -h 1 + ρ -h 2 + ](t, s) requires minor changes and we omit the details. This proves part (ii). (iii) It suffices to show (6.45) 

I 2 ≤ C h 2 -1- R 2 ρ + (t + u, s + v) -h 2 dudv ≤ C h 2 -1- by (6.40). Using ρ(t, s) 1+ -h 1 -h 2 = o(ρ(t, s) -h 1 ∧h 2 ) as |t| + |s| → ∞, we conclude
for (t, s) ∈ Z × Z + , (t, s) = (0, 0), in which case ρ + (t, s) = ρ(t, s). We have [a 1 a 2 ](t, s) = 1 i,j=0 [a i 1 a j 2 ](t, s), where a 0 i (t, s) := ρ + (t, s) -h i L i (t/ρ + (t, s)), a 1 i (t, s) := a i (t, s) -a 0 i (t, s) = o(ρ + (t, s) -h i ), i = 1, 2.
Clearly, (6.45) follows from

lim |t|+|s|→∞ ρ(t, s) h 1 +h 2 -1-[a 0 1 a 0 2 ](t, s) -L 12 (t/ρ(t, s)) = 0 (6.57)
and

[a i 1 a j 2 ](t, s) = o(ρ(t, s) 1+ -h 1 -h 2 ), (i, j) = (0, 0), i, j = 0, 1, |t| + |s| → ∞. (6.58) 
The proof of (6.58) mimics the proof of (6.57) and is omitted. To prove (6.57), write [a 0 1

a 0 2 ](t, s) as the integral: [a 0 1 a 0 2 ](t, s) = R 2 a 0 1 ([u], [v])a 0 2 ([u] + t, [v] + s)dudv. After the same change of variables u → u, v → v, := ρ(t, s) as in the proof of (ii) we obtain [a 0 1 a 0 2 ](t, s) = 1+ -h 1 -h 2 L (t/ )
, where

L (z) := R 2 g (u, v; z)dudv, z ∈ [-1, 1]
and where

g (u, v; z) := a 1 ũ, ṽ a 2 ũ + z, ṽ + (1 -z 2 ) /2 , with ũ := [ u]/ , ṽ := [ v]/ and a i (u, v) := -1 ∨ ρ(u, v) -h i L i u/ -1 ∨ ρ(u, v) , i = 1, 2, (6.59) 
since s/ = (1 -z 2 ) /2 for z = t/ ∈ [-1, 1], s ≥ 0.
Then with a i∞ (u, v), i = 1, 2, defined by the statement of Proposition 6.8(iii) we get that

g (u, v; z) → g ∞ (u, v; z) := a 1∞ (u, v)a 2∞ (u + z, v + (1 -z 2 ) /2 ) (6.60) as = ρ(t, s) → ∞ (|t| + |s| → ∞) for any fixed (u, v; z) ∈ R 2 × [-1, 1] such that (u, v) ∈ {(0, 0), (-z, -(1 -z 2 ) /2 )} and u/ρ(u, v), (u + z)/ρ(u + z, v + (1 -z 2 ) /2
) being continuity points of L 1 and L 2 respectively. Let us prove that

L (z) → L 12 (z) as → ∞ (6.61) 6.7. Proofs 
uniformly in z ∈ [-1, 1], which implies (6.57), viz.,

|L (t/ ) -L 12 (t/ )| ≤ sup z∈[-1,1] |L (z) - L 12 (z)| = o(1) as → ∞.
The uniform convergence in (6.61) follows if lim →∞ L (z ) = L 12 (z) holds for any z ∈ [-1, 1] and every sequence {z } ⊂ [-1, 1] tending to z: lim →∞ z = z. Choose δ > 0 and split the difference L (z ) -L 12 (z) = I 1 + I 2 + I 12 , where

I 1 := B δ (0,0) (g (u, v; z ) -g ∞ (u, v; z))dudv, I 2 := B δ (-z,-z )
. . . dudv,

I 12 := B c δ (0,0)∩B c δ (-z,-z )
. . . dudv with the notation z := (1 -z 2 ) /2 . Note that ρ(z, z ) = 1 and δ > 0 is chosen small enough so that B δ (0, 0)

∩ B δ (-z, -z ) = ∅. Let us first check that |I i |, i = 1, 2
, can be made arbitrary small by taking sufficiently small δ. Towards this end, we need the bound

|a i (ũ, ṽ)| ≤ Cρ(u, v) -h i , (u, v) ∈ R 2 , i = 1, 2. (6.62) 
Indeed, by (6.54

), ρ(u, v) ≤ C (ρ(ũ, ṽ) + ρ(u -ũ, v -ṽ)), where |u -ũ| ≤ -1 , |v -ṽ| ≤ - and hence ρ(u -ũ, v -ṽ) ≤ √ 2 -1 , with C > 0 dependent only on > 0. Therefore, ρ(u, v) ≤ √ 2C (ρ(ũ, ṽ) + -1 ) ≤ 2 √ 2C (ρ(ũ, ṽ) ∨ -1 ) implying ρ(ũ, ṽ) ∨ -1 ≥ (2 √ 2C ) -1 ρ(u, v), (6.63) 
or (6.62) in view of the definition of a i in (6.59). Using (6.62) it follows that

|g (u, v; z ) -g ∞ (u, v; z)| ≤ Cρ(u, v) -h 1 ρ(u + z , v + z ) -h 2 + ρ(u + z, v + z ) -h 2 . (6.64)
From (6.64) we obtain [START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF]. Hence it suffices to show that I 12 → 0 (z → z), viz., that for each δ > 0

|I 1 | ≤ C B δ (0,0) ρ(u, v) -h 1 dudv ≤ Cδ 1+ -h 1 = o(1) and similarly, |I 2 | ≤ Cδ 1+ -h 2 = o
B c δ (0,0)∩B c δ (-z,-z ) |g (u, v; z ) -g ∞ (u, v; z)|dudv → 0 as → ∞. (6.65) 
From (6.55), ρ(u

+ z , v + z ) 1∧ ≥ ρ(u + z, v + z ) 1∧ -(δ/2) 1∧ /2 ≥ (1/2)ρ(u + z, v + z ) 1∧ for all (u, v) ∈ B c δ (-z, -z ) and large enough that ρ(z -z , z -z ) 1∧ ≤ (δ/2) 1∧ /2 (in view of z → z).
Hence and from (6.64) we obtain that the integrand in (6.65) is dominated on

B c δ (0, 0) ∩ B c δ (-z, -z ) by an integrable function independent of , viz., |g (u, v; z ) - g ∞ (u, v; z)| ≤ Cρ(u, v) -h 1 ρ(u + z, v + z ) -h 2 . Since this integrand vanishes a.e. on B c δ (0, 0) ∩ B c
δ (-z, -z ) as → ∞, see (6.60), relation (6.65) follows by the dominated convergence theorem, proving (6.61). The continuity of L 12 (6.46) follows similarly by the dominated convergence theorem.

It remains to prove the strict positivity of L 12 in the case where L 1 (z) ≡ L 2 (z) =: L(z) ≥ 0. Under assumption of piecewise continuity of L and L ≡ 0 a.e., we can find 0 < |z 0 | < 1 and δ > 0 such that L(z) > δ for any |z -z 0 | < δ. We also have |u/ρ(u, v) -

(u + z)/ρ(u + z, v + z )| ≤ ρ(u, v) -1 + |1 -ρ(u + z, v + z )/ρ(u, v)| = O(ρ(u, v) -1∧ ) uniformly in z ∈ [-1, 1] for ρ(u, v) ≥ 1. Indeed, this follows from |1 -(ρ(u + z, v + z )/ρ(u, v)) 1∧ | ≤ ρ(u, v) -1∧ by (6.55), when combined with 1 -x ≤ -1 (1 -x ), 0 < x < 1, if 0 < < 1 and ρ(u + z, v + z )/ρ(u, v) ≤ 2C for ρ(u, v) ≥ 1 by (6.54). Hence, given K large enough |u/ρ(u, v)-(u+z)/ρ(u+z, v+z )| < δ/2 for all (u, v) ∈ B c K (0, 0). Next, we choose the interior point (u 0 , v 0 ) of B c K (0, 0) such that u 0 /ρ(u 0 , v 0 ) = z 0 . In view of continuity of u/ρ(u, v), there exists ε > 0 such that |z 0 -u/ρ(u, v)| < δ/2 holds for all (u, v) ∈ B ε (u 0 , v 0 ) ⊂ B c K (0, 0). Consequently, L(u/ρ(u, v))L((u + z)/ρ(u + z, v + z )) > δ 2 > 0 for any z ∈ [-1, 1] and all (u, v) ∈ B ε (u 0 , v 0 ). Finally, L 12 (z) > δ 2 (2C ) -h 2 Bε(u 0 ,v 0 ) ρ(u, v) -h 1 -h 2 dudv > 0, proving L 12 (z) > 0, z ∈ [-1, 1]
, and part (iii). Proposition 6.8 is proved.

Proof of Proposition 6.9. Rewrite the l.h.s. of (6.47) as

B λ (γ) = K 2 [λ,λ γ ] b([t 1 ] -[t 2 ], [s 1 ] -[s 2 ])dt 1 dt 2 ds 1 ds 2 , ( 6.66) 
where

K [λ,λ γ ] := {(t, s) ∈ R 2 : ([t], [s]) ∈ K [λ,λ γ ] }.
Case (I): γ = . By changing the variables in (6.66) as

t i → λt i , s i → λ s i , i = 1, 2, we obtain λ -2H( ) B λ ( ) = R 4 b λ (t 1 , t 2 , s 1 , s 2 )dt 1 dt 2 ds 1 ds 2 , where b λ (t 1 , t 2 , s 1 , s 2 ) := b λ (([λt 1 ] -[λt 2 ])/λ, ([λ s 1 ] -[λ s 2 ])/λ ) (6.67) ×1(([λt i ], [λ s i ]) ∈ (0, λ] × (0, λ ], i = 1, 2) with b λ (t, s) := (λ -1 ∨ ρ(t, s)) -h (L(t/(λ -1 ∨ ρ(t, s))) + o(1)) as λ → ∞. Then b λ (t 1 , t 2 , s 1 , s 2 ) → b ∞ (t 1 -t 2 , s 1 -s 2 )1((t i , s i ) ∈ (0, 1] 2 , i = 1, 2), λ → ∞,
point-wise for any (t 1 , t 2 , s 1 , s 2 ) ∈ R 4 , (t 1 , s 1 ) = (t 2 , s 2 ) fixed. The dominating bound

λ -1 ∨ ρ ([λt 1 ] -[λt 2 ])/λ, ([λ s 1 ] -[λ s 2 ])/λ ≥ Cρ(t 1 -t 2 , s 1 -s 2 ),
follows by the same arguments as (6.63). These facts and the dominated convergence theorem justify lim λ→∞ λ -2H( ) B λ ( ) = C( ) since the integral C( ) ≤ C (-1,1] 2 ρ(t, s) -h dtds < ∞ in (6.48) converges by Proposition 6.8(i). Case (II): γ > , h < . By changing the variables in (6.66) as [START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF] due to h < . The limit lim λ→∞ λ -2H( ) B λ ( ) = C( ) can be justified by the dominated convergence theorem using the bound

t i → λt i , s i → λ γ s i , i = 1, 2, we obtain λ -2H(γ) B λ (γ) = R 4 b λ (t 1 , t 2 , s 1 , s 2 )dt 1 dt 2 ds 1 ds 2 , where b λ (t 1 , t 2 , s 1 , s 2 ) := b λ (([λt 1 ] -[λt 2 ])/λ γ/ , ([λ γ s 1 ] -[λ γ s 2 ])/λ γ ) ×1(([λt i ], [λ γ s i ]) ∈ (0, λ] × (0, λ γ ], i = 1, 2) with b λ (t, s) := (λ -γ/ ∨ ρ(t, s)) -h (L(t/(λ -γ/ ∨ ρ(t, s))) + o(1)) as λ → ∞. Hence since γ/ > 1 it follows that b λ (t 1 , t 2 , s 1 , s 2 ) → b ∞ (0, s 1 -s 2 )1((t i , s i ) ∈ (0, 1] 2 , i = 1, 2), λ → ∞, 6.7. Proofs point-wise for any (t 1 , t 2 , s 1 , s 2 ) ∈ R 4 , s 1 = s 2 fixed. Note b ∞ (0, s) = L(0)|s| -h/ is integrable on [-1,
λ -γ/ ∨ ρ ([λt 1 ] -[λt 2 ])/λ γ/ , ([λ γ s 1 ] -[λ γ s 2 ])/λ γ ≥ λ -γ/ ∨ ρ(0, ([λ γ s 1 ] -[λ γ s 2 ])/λ γ ) ≥ Cρ(0, s 1 -s 2 ),
which follows by the same arguments as (6.63). Case (III): γ > , h > . By changing the variables in (6.66) as

t i → λt i , i = 1, 2, s 1 -s 2 → λ s 1 , s 2 → λ γ s 2 , we obtain λ -2H(γ) B λ (γ) = R 4 b λ (t 1 , t 2 , s 1 , s 2 )dt 1 dt 2 ds 1 ds 2 , where b λ (t 1 , t 2 , s 1 , s 2 ) := b λ (([λt 1 ] -[λt 2 ])/λ, ([λ s 1 + λ γ s 2 ] -[λ γ s 2 ])/λ ) ×1([λt i ] ∈ (0, λ], i = 1, 2, [λ s 1 + λ γ s 2 ] ∈ (0, λ γ ], [λ γ s 2 ] ∈ (0, λ γ ]) with b λ (t, s) := (λ -1 ∨ ρ(t, s)) -h (L(t/(λ -1 ∨ ρ(t, s)) + o(1)) as λ → ∞. Then b λ (t 1 , t 2 , s 1 , s 2 ) → b ∞ (t 1 -t 2 , s 1 )1((t 1 , t 2 , s 2 ) ∈ (0, 1] 3 ), λ → ∞, for any t 1 = t 2 , s 1 ∈ R \ {0}, s 2 ∈ R \ {0, 1} fixed since γ > implies 1(0 < [λ s 1 + λ γ s 2 ] ≤ λ γ ) → 1(0 < s 2 < 1). The dominating bound λ -1 ∨ ρ ([λt 1 ] -[λt 2 ])/λ, ([λ s 1 + λ γ s 2 ] -[λ γ s 2 ])/λ ≥ Cρ(t 1 -t 2 , s 1 )
follows in the same way as (6.63), because

|([λ s 1 + λ γ s 2 ] -[λ γ s 2 ])/λ -s 1 | ≤ 2λ -.
Then the dominated convergence in (6.47) is proved in view of C(γ) ≤ C 1 -1 R ρ(t, s) -h dtds < ∞. Cases (IV) and (V) can be treated similarly to Cases (II) and (III) and we omit the details. Proposition 6.9 is proved.

In the rest of the chapter, we apply Propositions 6.8 and 6.9 with = γ 0 and use the notation

ρ(t, s) = (|t| 2 + |s| 2/γ 0 ) 1/2 , (t, s) ∈ R 2 .
Proof of Proposition 6.10. (i) Since Z(t, s) ≡ 0 for k = 1, let k ≥ 2 in what follows. According to (6.12),

Z(t, s) = k-1 i=1 (D) i (u,v) i • a(t -u 1 , s -v 1 ) |D 1 | • • • a(t -u i , s -v i ) |D i | (6.68) ×A |D 1 | (ε(u 1 , v 1 )) • • • A |D i | (ε(u i , v i )),
where the sum (D) i is taken over all partitions of {1, 2,

• • • , k} into i nonempty sets D 1 , . . . , D i having cardinality |D 1 | ≥ 1, . . . , |D i | ≥ 1, |D 1 | + • • • + |D i | = k. Thus, (6.68) is a decompo- sition of Z(t, s) = A k (Y (t, s)) -Y •k (t, s) into a sum of stationary 'off-diagonal' polynomial forms of order i < k in i.i.d. r.v. A |D | (ε(u , v )), 1 ≤ ≤ i, with max(|D 1 |, • • • , |D i |) ≥ 2.
From (6.68) it follows that

|EZ(0, 0)Z(t, s)| ≤ C k-1 i=1 (d) i ,(d ) i i =1 [|a| d |a| d ](t, s), ( 6.69) 
where the second sum is taken over all collections (d

) i = (d 1 , . . . , d i ), (d ) i = (d 1 , . . . , d i ) of integers d ≥ 1, d ≥ 1 with i =1 d = i =1 d = k. See [36], proof of Theorem 14.2.1. Then a(t, s) d ≤ Cρ(t, s) -β , a(t, s) d ≤ Cρ(t, s) -β , where β := d q 1 , β := d q 1 . By Proposition 6.8(ii), |EZ(0, 0)Z(t, s)| ≤ C k-1 i=1 (d) i ,(d ) i i =1 ρ(t, s) -w , ( 6.70) 
where

w :=        2q 1 -1 -γ 0 = p 1 , if d = d = 1, q 1 , if d ≥ 2, d = 1 or d = 1, d ≥ 2, 2q 1 , if d ≥ 2, d ≥ 2. (6.71) 
Relations (6.71) and max (6.50) follows from (6.49) and

1≤ ≤i d ≥ 2, max 1≤ ≤i d ≥ 2 imply i =1 w ≥ 2q 1 and hence (6.49). (ii) Since RFs {Y •k (t, s)} and {Z(t, s)} are uncorrelated: Cov(Y •k (t, s), Z(u, v)) = 0 for any (t, s), (u, v) ∈ Z 2 , relation
Cov(Y •k (t, s), Y •k (0, 0)) = k!r Y (t, s) k (1 + o(1)), |t| + |s| → ∞. (6.72) 
To show (6.72), note that the difference |r Y (t, s)

k k! -Cov(Y •k (t, s), Y •k (0, 0))| = |([a a](t, s)) k -• (u,v) k k i=1 a(t + u i , s + v i )a(u i , v i )|k
! satisfies the same bound as in (6.70) and therefore this difference is O(ρ(t, s) -2q 1 ) = o(r Y (t, s) k ) according to (6.49). This proves (6.72) and part (ii).

(iii) follows similarly to (ii) using (6.49) and

| Cov(Y •k (t, s), Y •k (0, 0))| ≤ k!([|a| |a|](t, s)) k ≤ Cρ + (t, s) -kp 1 . Proposition 6.10 is proved.
Proof of Corollary 6.12. Relation (6.53) follows from (6.49) and Proposition 6.8(i) since the l.h.s. of (6.53) does not exceed

(t 1 ,s 1 ),(t 2 ,s 2 )∈K [λ,λ γ ] |r Z (t 1 -t 2 , s 1 -s 2 )| ≤ λ 1+γ (t,s)∈Z 2 |r Z (t, s)| ≤ Cλ 1+γ (t,s)∈Z 2 ρ + (t, s) -2q
1 and the last sum converges by Proposition 6.8(i) due to 2q 1 > 1 + γ 0 . Relations (6.52) follow from (6.53), the orthogonality of {Y •k (t, s)} and {Z(t, s)} and

V • λ,γ := Var (t,s)∈K [λ,λ γ ] Y •k (t, s) ∼ c(γ)λ 2H(γ) . ( 6.73) 123 6.7. Proofs 
In turn, (6.73) follows from

V λ,γ := k! (t 1 ,s 1 ),(t 2 ,s 2 )∈K [λ,λ γ ] r Y (t 1 -t 2 , s 1 -s 2 ) k ∼ c(γ)λ 2H(γ) (6.74) and V • λ,γ -V λ,γ = o(λ 2H(γ) ). (6.75) 
Relation (6.74) follows from r Y (t, s) = [a a](t, s), Propositions 6.8(iii), 6.9 and the fact that the asymptotic constants C(γ) in (6.47) coincide with c(γ) in Theorems 6.1-6.3. (The last fact follows by exchanging the order of integration in these integrals, e.g. c(γ 0 ) in (6.18) writes as c(γ (6.44).) Finally, the difference in (6.75) can be estimated as in (6.69)-(6.70) and therefore this difference is O(λ 1+γ ) = o(λ 2H(γ) ) as shown in (6.53). This proves (6.73) and the proposition.

0 ) = k! R 2k (0,1] 2 k i=1 a ∞ (t -u i , s -v i )dtds 2 k i=1 du i dv i = k! (0,1] 4 b ∞ (t 1 - t 2 , s 1 -s 2 )dt 1 dt 2 ds 1 ds 2 = C(γ 0 ), where b ∞ (t, s) = ((a ∞ a ∞ )(t, s)) k , see

Proofs of Theorems 6.1-6.5 and Proposition 6.7

We use the criterion in Proposition 6.13 for the convergence in distribution of off-diagonal polygonal forms towards Itô-Wiener integral which is a straightforward extension of [START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF]Proposition 14.3.2].

Let L 2 (Z 2k ) be the class of all real-valued functions g = g((u, v) k ), (u, v) k ∈ Z 2k , with

(u,v) k ∈Z 2k g((u, v) k ) 2 < ∞ and Q k (g) := • (u,v) k g((u, v) k )ε(u 1 , v 1 ) • • • ε(u k , v k ), g ∈ L 2 (Z 2k ) be a k-tuple off-diagonal form in i.i.d. r.v.s {ε(u, v)} satisfying Assumption (A1). For g λ,γ ∈ L 2 (Z 2k ) (λ > 0, γ > 0) define a step function g λ,γ ∈ L 2 (R 2k ) by g λ,γ ((u, v) k ) := λ kγ(1+γ -1 0 )/2 g λ,γ ([λ γ/γ 0 u 1 ], [λ γ v 1 ], . . . , [λ γ/γ 0 u k ], [λ γ v k ]), (u, v) k ∈ R 2k . ( 6.76) 
Proposition 6.13. Assume there exists

h γ ∈ L 2 (R 2k ) such that lim λ→∞ g λ,γ -h γ k → 0. Then Q k (g λ,γ ) d → R 2k h γ ((u, v) k )d k W (λ → ∞).
Proof of Theorem 6.1. where h(x,y;(u,v) k ) is defined in (6.16). It suffices to consider the case x = y = 1. By (6.41), (6.39) of Proposition 6.8, h(1, 1;

(i) Let us show that the stochastic integral V X k,γ 0 (x, y) is well-defined or h(x, y; •) k < ∞,
•) 2 k = (0,1] 4 ((a ∞ a ∞ )(t 1 -t 2 , s 1 - s 2 )) k dt 1 dt 2 ds 1 ds 2 ≤ C (0,1] 4 ρ(t 1 -t 2 , s 1 -s 2 ) -kp 1 dt 1 dt 2 ds 1 ds 2 < ∞ since kp 1 < 1 + γ 0 = 1 + p 1 /
p 2 or k < P holds. The self-similarity property in (6.17) follows by scaling properties a ∞ (λt, λ γ 0 s) = λ -q 1 a ∞ (t, s), {W (dλu, dλ γ 0 v)} fdd = {λ (1+γ 0 )/2 W (du, dv)} of the integrand and the white noise, and the change of variables rules for multiple Itô-Wiener integral, see [START_REF] Dobrushin | Gaussian and their subordinated self-similar random generalized fields[END_REF], also [START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF]Proposition 14.3.5].

(ii) Relation (6.18) is proved in Corollary 6.12. Let us prove (6.19). Recall the decomposition

X(t, s) = Y •k (t, s) + Z(t, s) in (6.13). Using Var(S Z λ,γ 0 ) = O(λ 1+γ 0 ) = o(λ 2H(γ 0 ) ), see (6.53), relation (6.19) follows from Q k (g λ,γ 0 (x, y; •)) = λ -H(γ 0 ) (t,s)∈K [λx,λ γ 0 y] Y •k (t, s) fdd → V X k,γ 0 (x, y), (6.77) 
where 

g λ,γ 0 (x, y; (u, v) k ) := λ -H(γ 0 ) (t,s)∈K [λx,λ γ 0 y] a(t -u 1 , s -v 1 ) • • • a(t -u k , s -v k ), (u, v) k ∈ Z 2k . ( 6 
; •) -h(x i , y i ; •)) k = 0, (6.79) 
for any m ≥ 1 and any θ i ∈ R, (x i , y i ) ∈ R 2 + , 1 ≤ i ≤ m, where the limit function h(x, y; (u, v) k ) is given in (6.16). We restrict the subsequent proof of (6.79) to the case m = θ 1 = 1, (x 1 , y 1 ) = (x, y) since the general case of (6.79) follows analogously. Using (6.10), (6.78), (6.76) and notation a λ (t, s) := (λ -1 ∨ ρ(t, s)) -q 1 (L 0 (t/(λ -1 ∨ ρ(t, s))) + o( 1)), λ → ∞, and λ := λ γ 0 similarly to (6.67) we get

g λ,γ 0 (x, y; (u, v) k ) = R 2 k i=1 a λ [λt]-[λu i ] λ , [λ s]-[λ v i ] λ ×1 ([λt], [λ s]) ∈ (0, λx] × (0, λ y] dtds → h(x, y; (u, v) k ) (6.80)
point-wise for any (u, v) k ∈ R 2k , (u i , v i ) = (u j , v j ) (i = j) fixed. A similar inequality to (6.63), viz.,

1 λ ∨ ρ [λt]-[λu] λ , [λ s]-[λ v] λ ≥ cρ(t -u, s -v), ∀t, u, s, v ∈ R, (6.81) 
holds with some constant c > 0 independent of t, u, s, v ∈ R, implying the dominating bound

| g λ,γ 0 (x, y; (u, v) k )| ≤ C (0,2x]×(0,2y] k i=1 ρ(t -u i , s -v i ) -q 1 dtds =: ḡ(x, y : (u, v) k ),
where ḡ(x, y; •) k < ∞ by (6.41), (6.39) of Proposition 6.8, so that (6.79) follows by the dominated convergence theorem in view of (6.80). Theorem 6.1 is proved.

Proof of Theorem 6.2. As noted in Section 6.3, part (iii) follows by the same argument as part (ii) by exchanging the coordinates t and s and we omit the details. 

= (0,1] 2 ((a ∞ a ∞ )(0, s 1 -s 2 )) k ds 1 ds 2 ≤ C (0,1] 2 ρ(0, s 1 -s 2 ) -kp 1 ds 1 ds 2 ≤ C [-1,1] |s| -kp 2 ds < ∞ since kp 2 < 1.
The remaining facts in (i) follow similarly as in the proof of Theorem 6.1(i).

(ii) Relation (6.22) is proved in Corollary 6.12. Similarly to the proof of (6.19), the weak convergence in (6.23) follows from

Q k (g λ,γ (x, y; •)) = λ -H(γ) (t,s)∈K [λx,λ γ y] Y •k (t, s) fdd → xZ + k (y), (6.82) 
where

g λ,γ (x, y; (u, v) k ) := λ -H(γ) (t,s)∈K [λx,λ γ y] a(t -u 1 , s -v 1 ) • • • a(t -u k , s -v k ), (u, v) k ∈ Z 2k .
Again, we restrict the proof of (6.82) to one-dimensional convergence at (x, y) ∈ R 2 + . By Proposition 6.13 this follows from

lim λ→∞ g λ,γ (x, y; •) -xh + (y; •) k = 0, (6.83) 
where, with λ

:= λ γ , λ := λ γ/γ 0 , λ = o(λ ), a λ (t, s) := ((λ ) -1 ∨ ρ(t, s)) -q 1 (L 0 (t/((λ ) -1 ∨ ρ(t, s))) + o(1)), g λ,γ (x, y; (u, v) k ) = R 2 k i=1 a λ [λt]-[λ u i ] λ , [λ s]-[λ v i ] λ ×1 ([λt], [λ s]) ∈ (0, λx] × (0, λ y] dtds → xh + (y; (-u, v) k ) (6.84) point-wise for any (u, v) k ∈ R 2k , (u i , v i ) = (u j , v j ) (i = j) fixed.
The dominating convergence argument to prove (6.83) from (6.84) uses Pratt's lemma [START_REF] Pratt | On interchanging limits and integrals[END_REF], as follows. Similarly to (6.81) note that

1 λ ∨ ρ [λt]-[λ u] λ , [λ s]-[λ v] λ ≥ cρ((λt/λ ) -u, s -v),
with c > 0 independent of t, u, s, v ∈ R and hence

| g λ,γ (x, y; (u, v) k )| ≤ C (0,2x]×(0,2y] k i=1 ρ((λt/λ ) -u i , s -v i ) -q 1 dtds =: CG λ ((u, v) k ) with C > 0 independent of λ > 0, (u, v) k ∈ R 2k . Clearly, lim λ→∞ G λ ((u, v) k ) = G((u, v) k ) := 2x (0,2y] k i=1 ρ(u i , s -v i ) -q 1 ds point-wise in R 2k and G λ 2 k = (0,2x] 2 ×(0,2y] 2 (ρ -q 1 ρ -q 1 )((λ/λ )(t 1 -t 2 ), s 1 -s 2 ) k dt 1 dt 2 ds 1 ds 2 → (0,2x] 2 ×(0,2y] 2 (ρ -q 1 ρ -q 1 )(0, s 1 -s 2 ) k dt 1 dt 2 ds 1 ds 2 = G 2 k < ∞
by (6.41) of Proposition 6.8 and condition 1 ≤ k < 1/p 2 , or p 2 = q 2 (2 -Q) < 1/k. Thus, application of [START_REF] Pratt | On interchanging limits and integrals[END_REF] proves (6.83). Theorem 6.2 is proved.

To prove Theorem 6.3 we use approximation by m-dependent variables and the following CLT for triangular array of m-dependent r.v.s. Lemma 6.14. Let {ξ ni , 1 ≤ i ≤ N n }, n ≥ 1, be a triangular array of m-dependent r.v.s with zero mean and finite variance. Assume that: (L1) ξ ni , 1 ≤ i ≤ N n , are identically distributed for any n ≥ 1, (L2)

ξ n := ξ n1 d → ξ, Eξ 2 n → Eξ 2 < ∞ for some r.v. ξ and (L3) Var( Nn i=1 ξ ni ) ∼ σ 2 N n , σ 2 > 0. Then N -1/2 n Nn i=1 ξ ni d → N (0, σ 2 ).
Proof. W.l.g., we can assume N n = n in the subsequent proof. We use the CLT due to Orey [START_REF] Orey | A central limit theorem for m-dependent random variables[END_REF]. Accordingly, let

ξ τ ni := ξ ni 1(|ξ ni | ≤ τ n 1/2 ), α τ ni := Eξ τ ni , σ τ nij := Cov(ξ τ ni , ξ τ nj )
. It suffices to show that for any τ > 0 the following conditions in [START_REF] Orey | A central limit theorem for m-dependent random variables[END_REF] are satisfied: (O1)

n -1/2 n i=1 α τ ni → 0, (O2) n -1 n i,j=1 σ τ nij → σ 2 , (O3) n -1 n i=1 σ τ nii = O(1)
, and (O4) n i=1 P(|ξ ni | > τ n 1/2 ) → 0. Consider (O1), or n 1/2 α τ n → 0, α τ n := α τ n1 . We have 0 = n 1/2 Eξ n = n 1/2 α τ n + κ n , where Using the Skorohod representation theorem [START_REF] Skorokhod | Limit theorems for stochastic processes[END_REF] w.l.g. we can assume that r.v.s ξ, ξ n , n ≥ 1, are defined on the same probability space and ξ n → ξ almost surely. The latter fact together with (L2) and Pratt's lemma [START_REF] Pratt | On interchanging limits and integrals[END_REF] implies that E|ξ 

|κ n | := n 1/2 |Eξ n 1(|ξ n | > τ n 1/2 )| ≤ τ -1 Eξ 2 n 1(|ξ n | > τ n 1/2
| > τ n 1/2 ) ≤ τ -2 n -1 Eξ 2 n 1(|ξ n | > τ n 1/2
) by Markov's inequality. (O3) is immediate from (L1) and (L2). Finally, (O2) follows from (L3), (O1) and (6.86) follows from (6.85). Lemma 6.14 is proved.

n -1 1≤i,j≤n,|i-j|≤m E(ξ ni ξ nj -ξ τ ni ξ τ nj ) → 0. (6.86) Let ξ τ ni := ξ ni -ξ τ ni . Since |E(ξ ni ξ nj -ξ τ ni ξ τ nj )| ≤ |E( ξ τ ni ξ τ nj + ξ τ ni ξ τ nj + ξ τ ni ξ τ nj )| ≤ CE 1/2 ξ 2 n 1(|ξ n | > τ n 1/2 ), relation
Proof of Theorem 6.3. Again, we prove part (i) only since part (ii) follows similarly by exchanging the coordinates t and s.

Proofs

Relation (6.25) is proved in Corollary 6.12. Let us prove (6.26). Similarly as in the case of the previous theorems, we shall restrict ourselves with the proof of one-dimensional convergence at (x, y) ∈ R 2 + . For m ≥ 1, λ > 0, define stationary RFs

X m (t, s) := A k (Y m (t, s)),
where 

Y m (t, s) := (u,v)∈Z 2 :|s-v|≤[λ γ 0 ]m a(t -u, s -v)ε(u, v), ( 6 
X m (t, s) = N λ +1 i=1 U λ,m (i), (6.88) 
where 

N λ := [[λ γ y]/[λ γ 0 ]] = O(λ γ-γ 0 ) and U λ,m (i) := 1≤t≤[λx] (i-1)[λ γ 0 ]<s≤i[λ γ 0 ] X m (t,
λ -H(γ) S Xm λ,γ (x, y) d → N (0, σ 2 m (x, y)) as λ → ∞, (6.91) 
where σ 2 m (x, y) is defined in (6.93). Moreover,

lim m→∞ lim sup λ→∞ λ -2H(γ) Var(S X λ,γ (x, y) -S Xm λ,γ (x, y)) = 0. (6.92)
Proof. By adapting the argument in the proof of (6.25) and Proposition 6.9 Case (III), we can show the limits

λ -2H(γ) Var(S Xm λ,γ (x, y)) → k!y (0,x] 2 ×R (a ∞,m a ∞,m )(t 1 -t 2 , s) k dt 1 dt 2 ds =: σ 2 m (x, y) (6.93)
and

λ -2H(γ) Var(S X λ,γ (x, y) -S Xm λ,γ (x, y)) = λ -2H(γ) (t i ,s i )∈K [λx,λ γ y] ,i=1,2 Cov(X(t 1 , s 1 ), X(t 2 , s 2 )) -Cov(X(t 1 , s 1 ), X m (t 2 , s 2 )) -Cov(X m (t 1 , s 1 ), X(t 2 , s 2 )) + Cov(X m (t 1 , s 1 ), X m (t 2 , s 2 )) → k!y (0,x] 2 ×R G m (t 1 -t 2 , s)dt 1 dt 2 ds, λ → ∞, (6.94) 
where 

G m (t, s) := ((a ∞ a ∞ )(t, s)) k -((a ∞,m a ∞ )(t, s)) k -((a ∞ a ∞,m )(t, s)) k + ((a ∞,m a ∞,m )(t, s)) k and a ∞,m (t, s) := L 0 (t/ρ(t, s))ρ(t, s) -q 1 1(|s| ≤ m), (t, s) ∈ R 2 , ( 6 
:= [[λ γ y]/[λ γ 0 ]] and ξ λi := λ -H(γ 0 ) U λ,m (i)
, where H(γ 0 ) = 1 + γ 0 -kp 1 /2 is the same as in Theorem 6.1 and U λ,m (i) are 2m-dependent r.v.s defined in (6.89). Note U λ,m (i), 1 ≤ i ≤ N λ , are identically distributed and λ H(γ 0 ) N 1/2 λ ∼ λ H(γ) y 1/2 . Thus, condition (L1) of Lemma 6.14 for ξ λi , 1 ≤ i ≤ N λ , is satisfied and (L3) follows from Var( N λ i=1 ξ λi ) ∼ λ -2H(γ 0 ) Var(S Xm λ,γ (x, y)) ∼ λ γ-γ 0 σ 2 m (x, y), see (6.90). Finally, condition (L2), or

ξ λ,1 = λ -H(γ 0 ) U λ,m (1) d → ξ, Eξ 2 λ,1 → Eξ 2
follows similarly as in Theorem 6.1 with the limit r.v. ξ given by the k-tuple Itô-Wiener integral:

ξ := R 2k x 0 1 0 k =1 a ∞,m (t -u , s -v ) dtds d k W
and a ∞,m (t, s) defined in (6.95). This proves (6.91) and Lemma 6.15, too.

Proof of Theorem 6.4. The proof is an adaptation of the proof of CLT in [START_REF] Giraitis | Large Sample Inference for Long Memory Processes[END_REF]Theorem 4.8.1] for sums of 'off-diagonal' polynomial forms with one-dimensional 'time' parameter. Define [START_REF] Bolthausen | On the central limit theorem for stationary mixing random fields[END_REF]. Consider (6.98), where we can put x = y = 1 w.l.g. We have λ -(1+γ) Var(S X λ,γ -S Xm λ,γ ) ≤ (t,s)∈Z 2 |φ m (t, s)|, where φ m (t, s) := Cov(X(0, 0) -X m (0, 0), X(t, s) -X m (t, s)). From (6.69), (6.70) and (6.72) we conclude that

X m (t, s) := A k (Y m (t, s)), Y m (t, s) := (u,v)∈Z 2 :|t-u|+|s-v|≤m a(t -u, s -v)ε(u, v), ( 6 
| Cov(X(0, 0), X(t, s))| + | Cov(X(0, 0), X m (t, s))| + | Cov(X m (0, 0), X m (t, s))| ≤ Cρ + (t, s) -(kp 1 )∧(2q 1 )
as in (6.51), with C > 0 independent of m. Hence |φ m (t, s)| ≤ Cρ + (t, s) -(kp 1 )∧(2q 1 ) =: φ(t, s), where (t,s)∈Z 2 φ(t, s) < ∞, see Proposition 6.8(i), also Corollary 6.11(ii). Thus, (6.98) follows by the dominated convergence theorem and the fact that lim m→∞ φ m (t, s) = 0 for any (t, s) ∈ Z 2 . Theorem 6.4 is proved.

Proof of Theorem 6.5. (i) Split X = X k + X k , where X k := ∞ j=k+1 c j X j /j!, X j (t, s) := H j (Y (t, s)). Since all statements of Theorems 6.1-6.3 hold for RF

X k = H k (Y ) and Cov(X k (t 1 , s 1 ), X k (t 2 , s 2 )) = 0, ∀(t i , s i ) ∈ Z 2 , i = 1, 2, it suffices to show that Var(S X k λ,γ ) = o(λ 2H(γ) ), λ → ∞, (6.99) 
for H(γ) defined in Theorems 6.1-6.3. By well-known properties of Hermite polynomials, Var(S

X k λ,γ ) = ∞ j=k+1 c 2 j Var(S X j λ,γ )/(j!) 2 , Var(S X j λ,γ ) = j! (t i ,s i )∈K [λ,λ γ ] ,i=1,2 r Y (t 1 -t 2 , s 1 -s 2 ) j ≤ j!Σ k+1 (λ), where Σ k+1 (λ) := (t i ,s i )∈K [λ,λ γ ] ,i=1,2 |r Y (t 1 -t 2 , s 1 -s 2 )| k+1 for j ≥ k + 1 since |r Y (t, s)| ≤ 1 according to Assumption (A4) k . Therefore, Var(S X k λ,γ ) ≤ ( ∞ j=k+1 c 2 j /j!)Σ k+1 (λ) ≤ EG(Y (0, 0)) 2 Σ k+1 (λ)
, where Σ k+1 (λ) = o(λ 2H(γ) ) follows by Proposition 6.9. This proves (6.99) and part (i). (ii) For large K ∈ N, K > k, split X = XK + X K , where XK (t, s)

:= K j=k c j H j (Y (t, s))/j! and X K (t, s) := ∞ j=K+1 c j H j (Y (t, s))/j!. Then Var(S X K λ,γ ) ≤ ( ∞ j=K+1 c 2 j /j!)Σ K+1 (λ) as in the proof of part (i), implying Var(S X K λ,γ ) ≤ C K λ 1+γ
, where K := ∞ j=K+1 c 2 j /j! can be made arbitrary small by choosing K large enough. On the other hand, by Theorem 6.4, Proof of Proposition 6.7. The transition probabilities q u (v) in (6.36) can be explicitly written in terms of binomial probabilities bin(j, k; p) := k j p j (1 -p) k-j , k = 0, 1, . . . , j = 0, 1, . . . , k, 0 ≤ p ≤ 1: 

λ -(1+γ)/2 S X j λ,γ (x, y) fdd → σ X j B 1/2,
q u (v) =
(j -kp) 3 k 2 → 0, then bin(j, k; p) 1 √ 2πkp(1-p) exp{-(j-kp) 2 2kp(1-p) } -1 < C k + C|j -kp| 3 k 2 . (6.101)
Let us first explain the idea of the proof. Using (6.100) and replacing the binomial probabilities by Gaussian densities according to (6.101) leads to

a(u, v) ∼ 1 2 u j=0 1 Γ(d)u 1-d 1 2πθ(1 -θ)u exp - (j -(1 -θ)u) 2 2θ(1 -θ)u × 1 jπ/2 exp - v 2 2j = u d-3/2 Γ(d) √ 2π u j=0 1 u 2πθ(1 -θ)/u exp - ((j/u) -(1 -θ)) 2 2θ(1 -θ)/u × 1 j/u exp - v 2 /u 2j/u ∼ u d-3/2 Γ(d) √ 2π 1 0 1 2πθ(1 -θ)/u exp - (x -(1 -θ)) 2 2θ(1 -θ)/u × 1 √ x exp - v 2 /u 2x dx ∼ u d-3/2 Γ(d) 2π(1 -θ) exp - v 2 /u 2(1 -θ) = ρ(u, v) d-3/2 L 0 (u/ρ(u, v))
with L 0 (z), z ∈ [-1, 1], defined in (6.37). Here, factor 1/2 in front of the sum in the first line appears since bin((v + j)/2, j; 1/2) = 0 whenever v + j is odd, in other words, by using 6.7. Proofs Gaussian approximation for all (even and odd) j we double the sum and therefore must divide it by 2. Note also that in the third line, the Gaussian kernel

1 √ 2πθ(1-θ)/u exp{-(x-(1-θ)) 2
2θ(1-θ)/u } acts as a δ-function at x = 1 -θ when u → ∞.

Let us turn to a rigorous proof of the above asymptotics. For (u, v) ∈ Z 2 , (u, v) = (0, 0), denote :

= (u 2 + v 4 ) 1/2 , z := u/ ∈ [-1, 1], then u = z , v 2 = √ 1 -z 2 . It suffices to prove 3/2-d a(u, v) -L 0 (z) → 0 as |u| + |v| → ∞. (6.102) 
By definition (see (6.36), (6.37)), (6.102) holds for u ≥ 0, z ≥ 0 hence we can assume u ≥ 1, z > 0 in what follows. Moreover, for any > 0 there exists K > 0 such that

3/2-d a(u, v) < and L 0 (z) < (∀1 ≤ u < v 9/5 , > K). (6.103)
The second relation in (6.103) is immediate by lim z→0 L 0 (z) = L 0 (0) = 0 and z = u/ ≤ 9/10 / → 0 ( → ∞). To prove the first relation we use Hoeffding's inequality [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF]. Let bin(j, k; p) be the binomial distribution. Then for any τ > 0,

0≤j≤k:|j-kp|≥τ √ k bin(j, k; p) ≤ 2e -2τ 2 . (6.104) (6.104) implies bin((v + j)/2, j; 1/2) ≤ 2e -v 2 /2j ≤ 2e -v 2 /2u for any |v| ≤ u, 0 ≤ j ≤ u.
Also note that 1 ≤ u < v 9/5 implies 2v 2 ≥ u 1/10 . Using these facts and (6.100) with u j=0 bin(u -j, u; θ) = 1 for any 1 ≤ u < v 9/5 we obtain

3/2-d a(u, v) ≤ C 3/2-d q u (v) ≤ C 3/2-d e -v 2 /2u ≤ C 3/2-d e -1/10 /4 → 0, → ∞,
proving (6.103). Hence, it suffices to prove (6.102) for u → ∞, 0 ≤ v ≤ u 5/9 . Next, we give the proof for v even, the proof for v odd being similar. Denote

D + (u, v) := {0 ≤ j ≤ u/2 : |2j -u(1 -θ)| < u 3/5 and |v| < j 3/5 }, D -(u, v) := {0 ≤ j ≤ u/2 : |2j -u(1 -θ)| ≥ u 3/5 or |v| ≥ j 3/5 }. Split a(u, v) = ψ u (-d) 0≤j≤u/2 bin(u -2j, u; θ) bin(v/2 + j, 2j; 1/2) = a + (u, v) + a -(u, v),
where a ± (u, v) := ψ u (-d) j∈D ± (u,v) . . . . It suffices to prove that

3/2-d a + (u, v) -L 0 (z) → 0 and 3/2-d a -(u, v) → 0 (6.105)
as u → ∞, 0 ≤ v ≤ u 5/9 . To show the first relation in (6.105), let

j * u := [u(1 -θ)/2] and a * (u, v) := bin(v/2 + j * u , 2j * u ; 1/2)ψ u (-d) j∈D + (u,v) bin(u -2j, u; θ), then a * (u, v) -a + (u, v) = ψ u (-d) j∈D + (u,v) bin(u -2j, u; θ) × bin(v/2 + j * u , 2j * u ; 1/2) -bin(v/2 + j, 2j; 1/2) .
According to (6.101), for j

∈ D + (u, v), j * u ∈ D + (u, v), bin(v/2 + j, 2j; 1/2) = 1 √ πj e -v 2 /4j 1 + O(j -1/5 ) = 1 √ πj e -v 2 /4j 1 + O(u -1/5 ) , bin(v/2 + j * u , 2j * u ; 1/2) = 1 √ πj * u e -v 2 /4j * u 1 + O(u -1/5 ) .
Using c -u < j < c + u, j ∈ D + (u, v) for some c ± > 0, and elementary inequalities we obtain that

| 1 √ πj e -v 2 /4j -1 √ πj * u e -v 2 /4j * u | ≤ Cu -7
/10 e -cv 2 /u for some C, c > 0 and hence the bound

| bin(v/2 + j * u , 2j * u ; 1/2) -bin(v/2 + j, 2j; 1/2)| ≤ Cu -7
/10 e -cv 2 /u for all j ∈ D + (u, v) and all u > 0 large enough. Therefore since j∈D + (u,v) bin(u-2j, u; θ) ≤ 1 we obtain

3/2-d |a * (u, v) -a + (u, v)| ≤ C 3/2-d u -7/10+d-1 e -cv 2 /u = -1/5 L * (z) ≤ C -1/5 ,
where L * (z) := Cz d-17/10 e -c

√

(1/z) 2 -1 , z ∈ (0, 1], is a bounded function. As a consequence, it suffices to prove the first relation in (6.105) with a + (u, v) replaced by a * (u, v). This in turn follows from relations 1 √

πj * u e -v 2 /4j * u ∼ 1 √ πu(1-θ)/2 e -v 2 /2u(1-θ) , ψ u (-d) ∼ Γ(d) -1 u d-1
, and

j∈D + (u,v) bin(u -2j, u; θ) → 1/2 as u → ∞, (6.106) 
each of which hold uniformly in 0 ≤ v ≤ u 5/9 . Let us check (6.106) for instance. Since c -u < j < c + u, j ∈ D + (u, v) for some c ± > 0, see above, so u 5/9 = o(j 3/5 ) and (6.106) follows from B (u) → 1/2 and B (u) → 0, (

where B (u) := u j=0 bin(u -j, u; θ)1(j is even), B (u) := u j=0 bin(u -j, u; θ)1(|j -u(1θ)| ≥ u 3/5 ). Here, the first relation in (6.107) is obvious by well-known properties of binomial coefficients while the second one follows from (6.104) according to which B (u) ≤ Ce -2u 1/5 → 0. This proves the first relation in (6.105).

The proof of the second relation in (6.105) uses Hoeffding's inequality in (6.104) in a similar way. We have a

-(u, v) ≤ a - 1 (u, v)+a - 2 (u, v), where a - 1 (u, v) := ψ u (-d) 0≤j≤u:|j-u(1-θ)|≥u 3/5 bin(u -j, u; θ) ≤ Cu d-1 e -2u 1/5 implying 3/2-d a - 1 (u, v) ≤ Cu (10/9)(3/2-d)+(d-1) e -2u 1/5 → 0 (u → ∞) uniformly in |v| ≤ u 5/9 . Finally, a - 2 (u, v) := ψ u (-d) 0≤j≤u:|j-u(1-θ)|≤u 3/5 ,v≥(j/2) 3/5
bin(u -j, u; θ)

× bin((v + j)/2, j; 1/2)

≤ Cu d-1 c 1 u≤j≤u,v≥(j/2) 3/5
e -v 2 /2j ≤ Cu d e -c 2 u 1/5

6.8. Final comment for some positive constants c 1 , c 2 > 0, implying 3/2-d a - 2 (u, v) ≤ Cu (10/9)(3/2-d)+d e -c 2 u 1/5 → 0 (u → ∞) uniformly in |v| ≤ u 5/9 as above. This proves (6.105) and Proposition 6.7, too.

Final comment

Limit theorems for weakly dependent RFs usually assume very general shape of summation domains (spatial regions), the limit distribution being independent of the way in which these regions tend to infinity. Particularly, van Hove's condition (see e.g. [START_REF] Bulinski | Central limit theorems for the excursion set volumes of weakly dependent random fields[END_REF]) roughly says that the volume (cardinality) of spatial region grows faster than that of its boundary. For rectangular domains, van Hove's condition means that all sides of rectangles grow to infinity in an arbitrary way.

The situation is very different for LRD RFs. We prove that for a class of nonlinear LRD RF X on Z 2 and rectangular domains with sides increasing as O(n) and O(n γ ), the limit distribution of sums of X depends on γ in a crucial way. Specifically, there exists γ 0 > 0 such that the limit distribution is different whenever γ < γ 0 , γ = γ 0 or γ > γ 0 . For partial sums of Gaussian or stable LRD RFs, a similar trichotomy (termed scaling transition) was observed [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF], [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF].

The above facts have important implications for statistics of strongly dependent spatial data. The quantity γ > 0 can be broadly interpreted as the ratio of the vertical and horizontal dimensions of the sampling region (an 'external scale ratio') while γ 0 = p 1 /p 2 can be defined as the ratio of the 'vertical and horizontal Hurst exponents' of the RF (an 'internal scale ratio'). Since the limit distribution of simple statistics such as the sample mean or the sample variance may depend on the relation between γ and γ 0 , these quantities need to be estimated or decided in advance before applying the limit theorem. Particularly, deciding on the value of γ in a concrete situation might be difficult. For panel data, this is a question of dealing with either long, or short panel which is not easy to answer and then the natural limit theory leads to models where the limit is independent of how the numbers of horizontal (time series) and vertical (cross section) panel observations tend to infinity [START_REF] Phillips | Linear regression limit theory for nonstationary panel data[END_REF]. Nevertheless, for some panels with LRD, a 'scaling transition' occurs, see [START_REF] Pilipauskaitė | Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes[END_REF], and the above question must be answered in a practical situation.

Let us also mention some open problems related to the present chapter. It is of interest to extend our results for nonlocal functions or vector-valued RFs, particularly for covariance estimates, c.f. [START_REF] Arcones | Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors[END_REF][START_REF] Horváth | Sample autocovariances of long-memory time series[END_REF]. Several works note that in many practical applications, sampling regions are non-rectangular, and possibly of a nonstandard shape, see [START_REF] Cressie | Statistics for Spatial Data[END_REF][START_REF] Lahiri | Central limit theorems for long range dependent spatial linear processes[END_REF]. Extending scaling transition to such domains seems possible but is open at present. Using the terminology in [START_REF] Lahiri | Central limit theorems for long range dependent spatial linear processes[END_REF], our results are limited to positively dependent RFs while the case of negatively dependent RFs is completely open. Finally, a complete description of anisotropic scaling limits of LRD RFs on Z ν , ν ≥ 3, remains a challenging task, see [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF].

Introduction

It is well-known that many random fields (RFs) exhibit different scaling behavior in different directions. Important examples of RFs with such behavior is fractional Brownian sheet (FBS) and various classes of stochastic partial differential equations driven by FBS, see e.g. [START_REF] Anh | Macroscaling limit theorems for filtered spatiotemporal random fields[END_REF] and the references therein. For stationary RF Y = {Y (t, s), (t, s) ∈ R 2 } the simplest form of anisotropic scaling is obtained by taking partial integrals S λ,γ (x, y) = (0,λx]×(0,λ γ y] Y (t, s)dtds over rectangles (0, λx] × (0, λ γ y] ⊂ R 2 + whose sides grow with λ → ∞ at different rate O(λ) and O(λ γ ) (provided γ = 1). The (large-scale) behavior of Y is reflected in the scaling limit

a -1 λ,γ S λ,γ (x, y) fdd → V γ (x, y) as λ → ∞, (7.1) 
where a λ,γ → ∞ is a normalization. Moreover, if a λ,γ is regularly varying at infinity with exponent H(γ) > 0, the limit RF V γ in (7.1) has stationary rectangular increments and satisfies the self-similarity property:

{V γ (λx, λ γ y)} fdd = {λ H(γ) V γ (x, y)} for each λ > 0; see [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF], which is a particular case of the operator-scaling RF property introduced in Biermé et al. [START_REF] Biermé | Operator scaling stable random fields[END_REF]. [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF] observed that for many RFs Y on Z 2 or R 2 , (nontrivial) scaling limits in (7.1) exist for any γ > 0, resulting in a one-dimensional family {V γ , γ > 0} of scaling limits termed the scaling diagram of Y below. Since scaling limits characterize the dependence structure and large-scale properties of the underlying random process, the scaling diagram provides a more complete 'large-scale summary of Y ' compared to the (isotropic or anisotropic) scaling with fixed γ > 0 discussed in [START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF][START_REF] Anh | Macroscaling limit theorems for filtered spatiotemporal random fields[END_REF][START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF][START_REF] Dobrushin | Non-central limit theorems for non-linear functional of Gaussian fields[END_REF][START_REF] Lavancier | Invariance principles for non-isotropic long memory random fields[END_REF][START_REF] Leonenko | Tauberian and Abelian theorems for long-range dependent random fields[END_REF][START_REF] Surgailis | Zones of attraction of self-similar multiple integrals[END_REF][START_REF] Wang | An invariance principle for fractional Brownian sheets[END_REF] and elsewhere. Scaling diagrams of some classes of long-range dependent (LRD) Gaussian and aggregated nearest-neighbor autoregressive RFs on Z 2 were identified in [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF][START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF]. It turned out that for these RFs, there exists a unique point γ 0 > 0 such that the scaling limits V γ fdd = V ± do not depend on γ for γ < γ 0 and γ > γ 0 and V + fdd = V -. [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF] termed this phenomenon scaling transition (at γ = γ 0 ). Scaling transition also arises under joint temporal and contemporaneous aggregation of independent LRD processes in telecommunication and economics, see [START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF][START_REF] Pilipauskaitė | Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes[END_REF][START_REF] Pilipauskaitė | Joint aggregation of random-coefficient AR(1) processes with common innovations[END_REF], see also [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF]Remark 2.3]. In this chapter we obtain a different kind of scaling diagram (see Figure 7.1) with two change-points γ -< γ + of scaling limits which shows that this concept might be more complex and needs further studies.

The present chapter studies scaling limits (scaling diagram) of random grain model:

X(t, s) := i 1 (t -x i )/R p i , (s -y i )/R 1-p i ∈ B , (t, s) ∈ R 2 , ( 7.2) 
where B ⊂ R 2 ('generic grain') is a measurable bounded set of finite Lebesgue measure leb(B) < ∞, 0 < p < 1 is a shape parameter, {(x i , y i ), R i } is a Poisson point process on R 2 × R + with intensity dxdyF (dr). We assume that F is a probability distribution on R + having a density function f such that

f (r) ∼ c f r -1-α as r → ∞, for some 1 < α < 2, c f > 0. (7.3)
The sum in (7.2) counts the number of uniformly scattered and randomly dilated grains

(x i , y i ) + R P i B containing (t, s), where R P B := {(R p x, R 1-p y) : (x, y) ∈ B} ⊂ R 2
is the dilation of B by factors R p and R 1-p in the horizontal and vertical directions, respectively. The case p = 1/2 corresponds to uniform or isotropic dilation. Note that the area leb(R P B) = leb(B)R of generic randomly dilated grain is proportional to R and does not depend on p and has a heavy-tailed distribution with finite mean E leb(R P B) < ∞ and infinite second moment E leb(R P B) 2 = ∞ according to (7.3). Condition (7.3) also guarantees that covariance of the random grain model is not integrable: R 2 | Cov(X(0, 0), X(t, s))|dtds = ∞, see Section 7.3, hence (7.2) is a LRD RF. Examples of the grain set B are the unit ball and the unit square, leading respectively to the random ellipses model X(t, s) = i 1((t -

x i ) 2 /R 2p i + (s -y i ) 2 /R 2(1-p) i ≤ 1
) and the random rectangles model:

X(t, s) = i 1(x i < t ≤ x i + R p i , y i < s ≤ y i + R 1-p i
). Note that for p = 1/2 the ratio R p /R 1-p = R 2p-1 of sides of a generic rectangle tends to 0 or ∞ as R → ∞ implying that large rectangles are 'elongated' or 'flat' and resulting in a strong anisotropy of the random rectangles model. A similar observation applies to the general random grain model in (7.2). Our main results are summarized in Figure 7.1 which shows a panorama of scaling limits V γ in (7.1) as γ changes between 0 and ∞. Precise formulations pertaining to Figure 7.1 and the terminology therein are given in Section 7.2. Below we explain the most important facts about this diagram. First of all note that, due to the symmetry of the random grain model in (7.2), the scaling limits in (7.1) are symmetric under simultaneous exchange x ↔ y, γ ↔ 1/γ, p ↔ 1 -p and a reflection transformation of B. This symmetry is reflected in Figure 7.1, where the left region 0 < γ ≤ γ -and the right region γ + ≤ γ < ∞ including the change points of the scaling limits

b a a a 0 ∞ b a a a γ- b a a a γ+ α --stable Lévy slide, 1 < α < 1 + p FBSheet(1/2, H -), 1 + p ≤ α < 2 α-stable Lévy sheet, 1 < α < 2 α + -stable Lévy slide, 1 < α < 2 -p FBSheet(H + , 1/2), 2 -p ≤ α < 2 ? ' intermediate 
γ -:= 1 -p α -(1 -p) , γ + := α p -1, (7.4) 
are symmetric with respect to the above transformations. The middle region γ -< γ < γ + in Figure 7.1 corresponds to an α-stable Lévy sheet defined as a stochastic integral over (0, x] × (0, y] with respect to (w.r.t.) an α-stable random measure on R 2 + . According to Figure 7.1, for γ > γ + the scaling limits in (7.1) exhibit a dichotomy depending on parameters α, p, featuring a Gaussian (fractional Brownian sheet) limit for 2 -p ≤ α < 2, and an α +stable limit for 1 < α < 2 -p with stability parameter The results of this chapter are related to those in, e.g. [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF][START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF][START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF][START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF][START_REF] Pilipauskaitė | Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes[END_REF][START_REF] Pilipauskaitė | Joint aggregation of random-coefficient AR(1) processes with common innovations[END_REF][START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF][START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF] in which different scaling regimes occur for various classes of LRD models, in particular, heavytailed duration models. Isotropic scaling limits (case γ = 1) of random grain and random balls models in arbitrary dimension were discussed in Kaj et al. [START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF] and Biermé et al. [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF]. The monograph [START_REF] Lifshits | Random Processes by Example[END_REF] provides a nice discussion of limit behavior of heavy-tailed duration models whose spatial version is the random grain model in (7.2). From an application viewpoint, probably the most interesting is the study of different scaling regimes of superposed network traffic models [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF][START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF]. In these studies, it is assumed that traffic is generated by independent sources and the problem concerns the limit distribution of the aggregated traffic as the time scale T and the number of sources M both tend to infinity, possibly at different rate. The present chapter extends the above-mentioned work, by considering the limit behavior of the aggregated workload process:

α + := α -p 1 -p > α (7.
A M,K (T x) := T x 0 W M,K (t)dt, where (7.6) W M,K (t) := i (R 1-p i ∧ K)1(x i < t ≤ x i + R p i , 0 < y i < M ), t ≥ 0,
and where {(x i , y i ), R i } is the same Poisson point process as in (7.2). The quantity W M,K (t) in (7.6) can be interpreted as the active workload at time t from sources arriving at x i with 0 < y i < M and transmitting at rate R 1-p i ∧ K during time interval (x i , x i + R p ]. Thus, the transmission rate in (7.6) is a (deterministic) function (R p ) (1-p)/p ∧ K of the transmission duration R p depending on parameter 0 < p ≤ 1, with 0 < K ≤ ∞ playing the role of the maximal rate bound. The limiting case p = 1 in (7.6) corresponds to a constant rate workload from stationary M/G/∞ queue. Theorems 7.9-7.11 obtain the limit distributions of the centered and properly normalized process {A M,K (T x), x ≥ 0} with heavy-tailed distribution of R in (7.3) when the time scale T , the source intensity M and the maximal source rate K tend jointly to infinity so as M = T γ , K = T β for some 0 < γ < ∞, 0 < β ≤ ∞. The results of Theorems 7.9 and 7.10 are summarized in Table 7.1. The workload process in (7.6) featuring a power-law dependence between transmission rate and duration is closely related to the random rectangles model with B = (0, 1] 2 , the last fact being reflected in Table 7

.1, Let S λ,γ (x, y) := λx 0 λ γ y 0 (X(t, s) -EX(t, s))dtds (7.9) = R 2 ×R + λx 0 λ γ y 0 1 t -u r p , s -v r 1-p ∈ B dtds N (du, dv, dr)
for (x, y) ∈ R 2 + , where N (du, dv, dr) = N (du, dv, dr)-EN (du, dv, dr) is the centered Poisson random measure in (7.7). Recall the definition of γ ± :

γ -:= 1 -p α -(1 -p) , γ + := α p -1.
In Theorems 7.1-7.6 we specify limit RFs V γ and normalizations a λ,γ in (7.1) for all γ > 0 and α ∈ (1, 2), p ∈ (0, 1) as in Figure 7.1. Throughout the chapter we assume that B is a bounded Borel set whose boundary ∂B has zero Lebesgue measure: leb(∂B) = 0.

Case γ

-< γ < γ + For 1 < α < 2, we introduce an α-stable Lévy sheet L α (x, y) := Z α ((0, x] × (0, y]), (x, y) ∈ R 2 + , (7.10) 
as a stochastic integral w.r.t. an α-stable random measure Z α (du, dv) on R 2 with control measure σ α dudv and skewness parameter 1, where the constant σ α is given in (7.31). Thus, E exp{iθZ α (A)} = exp{-leb(A)σ α |θ| α (1 -i sgn(θ) tan(πα/2))}, θ ∈ R, for any Borel set A ⊂ R 2 of finite Lebesgue measure leb(A) < ∞. Note EZ α (A) = 0.

Theorem 7.1. Let γ -< γ < γ + , 1 < α < 2. Then λ -H(γ) S λ,γ (x, y) fdd → L α (x, y) as λ → ∞, (7.11) 
where H(γ) := (1 + γ)/α and L α is an α-stable Lévy sheet defined in (7.10).

Cases

γ > γ + , 1 < α < 2 -p and γ < γ -, 1 < α < 1 + p
For 1 < α < 2 -p and 1 < α < 1 + p introduce totally skewed stable Lévy processes {L + (y), y ≥ 0} and {L -(x), x ≥ 0} with respective stability indices α ± ∈ (1, 2) defined as

α + := α -p 1 -p , α -:= α -1 + p p and characteristic functions E exp{iθL ± (1)} := exp{-σ α ± |θ| α ± (1 -i sgn(θ) tan(πα ± /2))}, θ ∈ R, (7.12) 
where σ α + is given in (7.36) and σ α -can be found by symmetry, see (7.27).

Theorem 7.2. (i) Let

γ > γ + , 1 < α < 2 -p. Then λ -H(γ) S λ,γ (x, y) fdd → xL + (y) as λ → ∞, (7.13) 
where H(γ) := 1 + γ/α + and L + is the α + -stable Lévy process defined by (7.12).

(ii) Let 0 < γ < γ -, 1 < α < 1 + p. Then λ -H(γ) S λ,γ (x, y) fdd → yL -(x) as λ → ∞,
where H(γ) := γ + 1/α -and L -is the α --stable Lévy process defined by (7.12).

Cases

γ > γ + , 2 -p ≤ α < 2 and γ < γ -, 1 + p ≤ α < 2 A standard FBS B H 1 ,H 2 with Hurst indices 0 < H 1 , H 2 ≤
1 is defined as a Gaussian process with zero mean and covariance

EB H 1 ,H 2 (x 1 , y 1 )B H 1 ,H 2 (x 2 , y 2 ) = 1 4 (x 2H 1 1 + x 2H 1 2 -|x 1 -x 2 | 2H 1 ) ×(y 2H 2 1 + y 2H 2 2 -|y 1 -y 2 | 2H 2 ), (x i , y i ) ∈ R 2 + , i = 1, 2.
The constants σ + and σ + appearing in Theorems 7.3(i) and 7.4(i) are defined in (7.40) and (7.42), respectively. The corresponding constants σ -and σ -in parts (ii) of these theorems can be found by symmetry (see (7.27)). 

Theorem 7.3. (i) Let γ > γ + , 2 -p < α < 2. Then λ -H(γ) S λ,γ (x, y) fdd → σ + B H + ,1/2 (x, y) as λ → ∞, ( 7 
(H + , 1/2). (ii) Let γ < γ -, 1 + p < α < 2. Then λ -H(γ) S λ,γ (x, y) fdd → σ -B 1/2,H -(x, y) as λ → ∞, where H(γ) := γH -+ 1/2, H -:= 1/(1 -p) + (1 -p -α)/2(1 -p) ∈ (1/2, 1) and B 1/2,H -is an FBS with parameters (1/2, H -). Theorem 7.4. (i) Let γ > γ + , α = 2 -p. Then λ -H(γ) (log λ) -1/2 S λ,γ (x, y) fdd → σ + B 1,1/2 (x, y) as λ → ∞, (7.15) 
where H(γ)

:= 1 + γ/2, B 1,1/2 is an FBS with parameters (1, 1/2). (ii) Let γ < γ -, α = 1 + p. Then λ -H(γ) (log λ) -1/2 S λ,γ (x, y) fdd → σ -B 1/2,1 (x, y) as λ → ∞,
where H(γ) := γ + 1/2 and B 1/2,1 is an FBS with parameters (1/2, 1). 

+ (x, y)| q < ∞ for any 0 < q < α + ∧ 2. Moreover, if 2 -p < α < 2 then E|I + (x, y)| 2 < ∞ and EI + (x 1 , y 1 )I + (x 2 , y 2 ) = σ 2 + EB H + ,1/2 (x 1 , y 1 )B H + ,1/2 (x 2 , y 2 ), (7.17) (x i , y i ) ∈ R 2 + , i = 1, 2
, where σ + , H + are the same as in Theorem 7.3(i)

. (ii) The RF I -in (7.16) is well-defined for 1 < α < 2, 0 < p < 1 and E|I -(x, y)| q < ∞ for any 0 < q < α -∧ 2. Moreover, if 1 + p < α < 2 then E|I -(x, y)| 2 < ∞ and EI -(x 1 , y 1 )I -(x 2 , y 2 ) = σ 2 -EB 1/2,H -(x 1 , y 1 )B 1/2,H -(x 2 , y 2 ), (x i , y i ) ∈ R 2 + , i = 1, 2
, where σ -, H -are the same as in Theorem 7.3(ii).

Theorem 7.6. (i) Let

γ = γ + , 1 < α < 2. Then λ -H(γ) S λ,γ (x, y) fdd → I + (x, y) as λ → ∞, (7.18) 
where H(γ) := 1/p and RF I + is defined in (7.16).

(ii) Let γ = γ -, 1 < α < 2. Then λ -H(γ) S λ,γ (x, y) fdd → I -(x, y) as λ → ∞,
where H(γ) := γ -/(1 -p) and RF I -is defined in (7.16).

Remark 7.1. The normalizing exponent H(γ) ≡ H(γ, α, p) in Theorems 7.1-7.6 is a jointly continuous (albeit non-analytic) function of (γ, α, p) ∈ (0, ∞) × (1, 2) × (0, 1).

Remark 7.2. Restriction α < 2 is crucial for our results. Indeed, if α > 2 then for any γ > 0, p ∈ (0, 1) the normalized integrals tend

λ -(1+γ)/2 S λ,γ (x, y) fdd → σB 1/2,1/2 (x, y) as λ → ∞,
to a classical Brownian sheet B 1/2,1/2 with variance σ 2 = leb(B) 2 ∞ 0 r 2 F (dr). We omit the proof of the last result which follows a general scheme of the proofs in Section 7.5.

LRD properties of random grain model

One of the most common definitions of LRD property pertains to stationary random processes with non-summable (non-integrable) autocovariance function. In the case of anisotropic RFs, the autocovariance function may decay at different rates in different directions, motivating a more detailed classification of LRD as in Definition 7.1. In this section we also verify these LRD properties for the random grain model in (7.2)-( 7.3) and relate them to the change of the scaling limits or the dichotomies in Figure 7 

(ii) Y has vertical SRD property if [-Q,Q]×R ρ Y (t, s)dtds < ∞ for any 0 < Q < ∞; otherwise we say that Y has vertical LRD property; (iii) Y has horizontal SRD property if R×[-Q,Q] ρ Y (t, s)dtds < ∞ for any 0 < Q < ∞;
otherwise we say that Y has horizontal LRD property.

The main result of this section is Theorem 7.7 providing the asymptotics of the covariance function of the random grain model in (7.2)-( 7.3) as |t|+|s| → ∞ and enabling the verification of its integrability properties in Definition 7.1. Let

w := (|t| 1/p + |s| 1/(1-p) ) p , for (t, s) ∈ R 2 .
For p = 1/2, w is the Euclidean norm and (w, arccos(t/w)) are the polar coordinates of ( 

t, s) ∈ R 2 , s ≥ 0. Introduce a function b(z), z ∈ [-1, 1], by b(z) := c f ∞ 0 leb B ∩ B + z/r p , (1 -|z| 1/p ) 1-p /r
C -< C + < ∞ such that for any |t| + |s| > Q, C -(|t| 1/p + |s| 1/(1-p) ) 1-α ≤ ρ(t, s) ≤ C + (|t| 1/p + |s| 1/(1-p) ) 1-α . (7.21)
The bounds in (7.21) together with integrability properties of the function (|t| 1/p + |s| 1/(1-p) ) 1-α on {|t| + |s| > Q} imply the following corollary.

7.4. Limit distributions of aggregated workload process

Limit distributions of aggregated workload process

We rewrite the accumulated workload in (7.6) as the integral

A M,K (T x) = R×(0,M ]×R + (r 1-p ∧ K) T x 0 1(u < t ≤ u + r p )dt N (du, dv, dr), (7.22) 
where N (du, dv, dr) is the same Poisson random measure on R 2 ×R + with intensity EN (du, dv, dr) = dudvF (dr) as in (7.2). We assume that F (dr) has a density f (r) satisfying (7.3) with 1 < α < 2 as in Section 7.2. We let p ∈ (0, 1] in (7.22) and thus the parameter may take value p = 1 as well. We assume that K and M grow with T in such a way that

M = T γ , K = T β for some 0 < γ < ∞, 0 < β ≤ ∞.
We are interested in the limit distribution

b -1 T (A M,K (T x) -EA M,K (T x)) fdd → A(x) as T → ∞, (7.23) 
where b T ≡ b T,γ,β → ∞ is a normalization. Recall from (7.4) and (7.5) the definitions

γ + = α p -1, α + = α -p 1 -p .
For p = 1, let α + := ∞. By assumption (7.3), transmission durations R p i , i ∈ Z, have a heavytailed distribution with tail parameter α/p > 1. Following the terminology in [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF][START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Kaj | Scaling limits for random fields with long-range dependence[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF], the regions γ < γ + , γ > γ + and γ = γ + will be respectively referred to as slow connection rate, fast connection rate and intermediate connection rate. For each of these 'regimes', Theorems 7.9, 7.10 and 7.11 detail the limit processes and normalizations in (7.23) depending on parameters β, α, p.

Apart from the classical Gaussian and stable processes listed in Table 7.1, some 'intermediate' infinitely divisible processes arise. Let us introduce

I(x) := R×R + x 0 1(u < t ≤ u + r p )dt M(du, dr), x ≥ 0, (7.24) 
where M (du, dr) is a centered Poisson random measure with intensity measure c f dur -(1+α) dr. The process in (7.24) essentially depends on the ratio α/p only and is well-defined for 1 < α < 2p and 1/2 < p ≤ 1. Under the 'intermediate' regime this process arises for many heavytailed duration models (see e.g. [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF][START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF]). It was studied in detail in [START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF]. We introduce a 'truncated' version of (7.24): (ii) Let 0 < α + β < γ + and 1 ∨ 2p < α < 2. Then H and A are the same as in Theorem 7.9(iii). (iii) Let 0 < α + β < γ + and α = 2p. Then H and A are the same as in Theorem 7.9(iv). (iv) Let α + β = γ + . Then H := 1/p and A := { I(x), x ≥ 0} is defined by (7.25). (v) Let γ + < α + β ≤ ∞. Then H := 1/p and A := {I + (x, 1), x ≥ 0} is defined by (7.16).

I(x) := R×R + (r 1-p ∧ 1) x 0 1(u < t ≤ u + r p )dt M(du, dr), x ≥ 0, ( 7 
Remark 7.4. Note that p = 1 implies γ + = α -1. In this case, Theorem 7.9 reduces to the α-stable limit in (i), whereas Theorem 7.10 reduces to the fractional Brownian motion limit in (v) discussed in [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF] and other papers. A similar dichotomy appears for β close to zero and 1 < α < 2p with the difference that α is now replaced by α/p. Intuitively, it can be explained as follows. For small β > 0, the workload process W M,K (t) in (7.6) behaves like a constant rate process K i 1(x i < t ≤ x i + R p i , 0 < y i < M ) with transmission lengths R p i that are i.i.d. and follow the same distribution P(R p i > r) = P(R i > r 1/p ) ∼ (c f /α)r -(α/p) , r → ∞, with tail parameter 1 < α/p < 2. Therefore, for small β our results agree with [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF], including the Gaussian limit in Theorems 7.9(iii) and 7.10(ii) arising when the R p i 's have finite variance. Remark 7.5. As it follows from the proof, the random line limits in Theorem 7.10(iv) and (iii) are caused by extremely long sessions starting in the past at times x i < 0 and lasting

R p i = O(T γ/γ + ), γ + < γ < α + β or R p i = O(T α + β/γ + ), γ + < α + β < γ
, respectively, so that typically these sessions end at times x i + R p i T . 

Proofs

:= α/(1 -p) -1.
As a consequence, the proofs of parts (ii) of Theorems 7.2-7.6 can be omitted since they can be deduced from parts (i) of the corresponding statements.

The convergence of normalized partial integrals in (7.1) is equivalent to the convergence of characteristic functions:

E exp ia -1 λ,γ m i=1 θ i S λ,γ (x i , y i ) → E exp i m i=1 θ i V γ (x i , y i ) as λ → ∞, (7.28) 
for all m = 1, 2, . . . , (x i , y i ) ∈ R 2 + , θ i ∈ R, i = 1, . . . , m. We restrict the proof of (7.28) to one-dimensional convergence for m = 1, (x, y) ∈ R 2 + only. The general case of (7.28) follows analogously. We have

W λ,γ (θ) := log E exp{iθa -1 λ,γ S λ,γ (x, y)} (7.29) = R 2 ×R + Ψ θ a λ,γ λx 0 λ γ y 0 1 t -u r p , s -v r 1-p ∈ B dtds dudvf (r)dr,
where Ψ(z) := e iz -1 -iz, z ∈ R. We shall use the following inequality:

|Ψ(z)| ≤ min(2|z|, z 2 /2), z ∈ R. (7.30)
Proof of Theorem 7.1. In the integrals on the r.h.s. of (7.29) we change the variables:

t -u r p → t, s -v r 1-p → s, u → λu, v → λ γ v, r → λ H(γ) r. This yields W λ,γ (θ) = ∞ 0 g λ (r)f λ (r)dr, where f λ (r) := λ (1+α)H(γ) f (λ H(γ) r) → c f r -(1+α) , λ → ∞
according to (7.3), and

g λ (r) := R 2 Ψ(θh λ (u, v, r))dudv, h λ (u, v, r) := r B 1(0 < u + λ -δ 1 r p t ≤ x, 0 < v + λ -δ 2 r 1-p s ≤ y)dtds,
where the exponents δ

1 := 1 -H(γ)p = (γ + -γ)/(1 + γ + ) > 0, δ 2 := γ -H(γ)(1 -p) = (γ -γ -)/(1 + γ -) > 0. Clearly, h λ (u, v, r) → leb(B)r 1(0 < u ≤ x, 0 < v ≤ y), λ → ∞, for any fixed (u, v, r) ∈ R 2 × R + , u ∈ {0, x}, v ∈ {0, y}, implying g λ (r) → xyΨ(θ leb(B)r)
for any r > 0. Since R 2 h λ (u, v, r)dudv = xyr leb(B) and h λ (u, v, r) ≤ Cr, the dominating bound |g λ (r)| ≤ C min(r, r 2 ) follows by (7.30). Whence and from Lemma 7.12 we conclude that

W λ,γ (θ) → W γ (θ) := xyc f ∞ 0 (e iθ leb(B)r -1 -iθ leb(B)r)r -(1+α) dr.
It remains to verify that

W γ (θ) = -xyσ α |θ| α (1 -i sgn(θ) tan(πα/2)) = log E exp{iθL α (x, y)}, where σ α := c f leb(B) α cos(πα/2)Γ(2 -α)/α(1 -α). ( 7.31) 
This proves the one-dimensional convergence in (7.11) and Theorem 7.1, too.

Proof of Theorem 7.2. In (7.29), change the variables as follows:

t → λt, s -v → λ (1-p)γ/(α-p) s, u → λ pγ/(α-p) u, v → λ γ v, r → λ γ/(α-p) r. (7.32) This yields W λ,γ (θ) = ∞ 0 g λ (r)f λ (r)dr, where

f λ (r) := λ (1+α)γ/(α-p) f (λ γ/(α-p) r) → c f r -(1+α) , λ → ∞, (7.33) 
and g λ (r

) := R 2 Ψ(θh λ (u, v, r))dudv with h λ (u, v, r) := x 0 dt R 1 λ -δ 1 t -u r p , s r 1-p ∈ B 1(0 < v + λ -δ 2 s < y)ds, ( 7.34) 
where

δ 1 := pγ/(α -p) -1 = (γ -γ + )/γ + > 0, δ 2 := γ(α -1)/(α -p) > 0. Let B(u) := {v ∈ R : (u, v)
∈ B} and write leb 1 (A) for the Lebesgue measure of a set A ⊂ R. By the dominated convergence theorem,

h λ (u, v, r) → h(u, v, r) := x1(0 < v < y) R 1 -u r p , s r 1-p ∈ B ds (7.35) = x1(0 < v < y)r 1-p leb 1 (B(-u/r p )) for any (u, v, r) ∈ R 2 × R + , v ∈ {0, y}, implying g λ (r) → g(r) := R 2 Ψ(θh(u, v, r))dudv = yr p R Ψ θxr 1-p leb 1 (B(u)) du
for any r > 0. Indeed, since B is bounded, for fixed r > 0 the function (u, v) → h λ (u, v, r) has a bounded support uniformly in λ ≥ 1. Therefore it is easy to verify domination criterion for the above convergence. Combining h λ (u, v, r) ≤ Cr 1-p with R 2 h λ (u, v, r)dudv = xyr leb(B) gives |g λ (r)| ≤ C min(r, r 2-p ) by (7.30). Hence and by Lemma 7.12, W λ,γ (θ) 1+α) dr. By change of variable, the last integral can be rewritten as

→ W γ (θ) := c f ∞ 0 g(r)r -(
W γ (θ) = c f y x α + (1 -p) -1 R leb 1 (B(u)) α + du ∞ 0 (e iθw -1 -iθw)w -(1+α + ) dw = -(y x α + )σ α + |θ| α + (1 -i sgn(θ) tan(πα + /2)) = log E exp{iθxL + (y)},
where

σ α + := c f Γ(2 -α + ) cos(πα + /2) (1 -p)α + (1 -α + ) R leb 1 (B(u)) α + du, (7.36) 
thus completing the proof of one-dimensional convergence in (7.13). Theorem 7.2 is proved.

Proof of Theorem 7.3. In (7.29), change the variables as follows:

t → λt, s -v → λ (1/p)-1 s, u → λu, v → λ γ v, r → λ 1/p r. (7.37) We get W λ,γ (θ) = ∞ 0 g λ (r)f λ (r)dr, where f λ (r) := λ (1+α)/p f (λ 1/p r), g λ (r) := where the last integral converges. (Indeed, since u → leb 1 (B(u)) = 1((u, v) ∈ B)dv is a bounded function with compact support, the inner integral in (7.40) does not exceed C(1∧r p )1(|u| < K(1+r p )) for some C, K > 0 implying σ 2 + ≤ C ∞ 0 (1∧r p ) 2 (1+r p )r 1-α-2p dr < ∞ since 2 -p < α < 2.) This ends the proof of one-dimensional convergence in (7.14). Theorem 7.3 is proved.

Proof of Theorem 7.4. After the same change of variables as in (7.32), viz., t → λt, s -v → λ γ/2 s, u → λ pγ/2(1-p) u, v → λ γ v, r → λ γ/2(1-p) r, we obtain W λ,γ (θ) = ∞ 0 g λ (r)f λ (r)dr with f λ (r) as in (7.33) and g λ (r) := R 2 Ψ(θ(log λ) -1/2 h λ (u, v, r))dudv, where λ -δ 1 t -u r p , s r 1-p ∈ B 1(0 < v + λ -δ 2 s < y)ds, δ 1 := pγ/2(1 -p) -1 = (γ -γ + )/γ + > 0, δ 2 := γ/2 > 0 are the same as in (7.34) and h λ (u, v, r) → h(u, v, r) := x 1(0 < v < y) R

1

-u r p , s r 1-p ∈ B ds c.f. (7.35). Below we prove that the main contribution to the limit of W λ,γ (θ) comes from the interval λ -δ 1 /p < r < 1, namely, that W λ,γ (θ) -W 0 λ,γ (θ) → 0, where W 0 λ,γ (θ) := and where we used the fact that R 2 h 2 (u, v, r)dudv = x 2 yr 2-p R leb 1 (B(u)) 2 du = x 2 yr 2-p R leb(B ∩ (B + (0, u)))du.

Accordingly, write W λ,γ (θ) = W 0 λ,γ (θ) + W - λ,γ (θ) + W + λ,γ (θ), where W - λ,γ (θ) := λ -δ 1 /p 0 g λ (r) f λ (r)dr and W + λ,γ (θ) := ∞ 1 g λ (r)f λ (r)dr are remainder terms. Indeed, using (7.30) and -u r p , s r 1-p ∈ B 1(0 < v + λ -δ 2 s < y)ds.

Proofs

Then J λ ≤ J λ1 + J λ2 , where J λ1 := (log λ) -1 1 λ -δ 1 /p f λ (r)dr R 2 |h 2 λ (u, v, r) -h 2 λ (u, v, r)|dudv, J λ2 := (log λ) -1 1 λ -δ 1 /p f λ (r)dr R 2 | h 2 λ (u, v, r) -h 2 (u, v, r)|dudv. Using the fact that B is a bounded set with leb(∂B) = 0 we get that λ -δ 1 t r p -u, s ∈ B -1((-u, s) ∈ B) duds ≤ r (λ -δ 1 r -p ), where (z), z ≥ 0, is a bounded function with lim z→0 (z) = 0. We also have h λ (u, v, r) + h λ (u, v, r) ≤ Cr 1-p as in (7.43). Using these bounds together with f λ (r) ≤ Cr p-3 , r > λ -δ 1 /p we obtain

J λ1 log λ ≤ C 1 λ -δ 1 /p (λ -δ 1 r -p )r -1 dr = C 1 λ -δ 1 (z)z -1 dz = o(log λ),
proving J λ1 → 0 as λ → ∞. In a similar way, using R 2 | h λ (u, v, r) -h(u, v, r)|dudv ≤ xr R 3 1((-u, s) ∈ B)|1(0 < v + λ -δ 2 r 1-p s < y) -1(0 < v < y)|dudvds ≤ Cr 2-p λ -δ 2 we obtain J λ2 log λ ≤ Cλ -δ 2 1 0 r -p dr = O(λ -δ 2 ), proving J λ2 → 0 and hence J λ → 0. Finally, J λ = (log λ) -1 ∞ λ 1/p r 2-p |f (r) -c f r p-3 |dr → 0 follows from (7.3). This proves the limit lim λ→∞ W λ,γ (θ) = W γ (θ) = -(θ 2 /2) σ 2 + x 2 y for any θ ∈ R, or one-dimensional convergence in (7.15). Theorem 7.4 is proved.

Proof of Proposition 7.5. We use well-known properties of Poisson stochastic integrals and inequality (3.3) in [START_REF] Pilipauskaitė | Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes[END_REF]. Accordingly, I + (x, y) is well-defined and satisfies E|I + (x, y)| q ≤ 2J q (x, y) (1 ≤ q ≤ 2) provided Then J ≤ C ∞ 1 r q(1-p) r -(1+α) dr 1(|u| ≤ Cr p )du ≤ C ∞ 1 r q(1-p)-(1+α)+p dr < ∞ provided q < (α -p)/(1 -p). Similarly, J ≤ C 1 0 r q(1-p)-(1+α) dr| 1(|t| ≤ Cr p )dt| q ≤ C 1 0 r q(1-p) r -(1+α)+qp dr < ∞ provided α < q. Note that α < (α -p)/(1 -p) ≤ 2 for 1 < α ≤ 2 -p and (α -p)/(1 -p) > 2 for 2 -p < α < 2. Relation (7.17) follows from (7.14) and J 2 (x, y) = σ 2 + yx 2H + by a change of variables. This proves part (i). The proof of part (ii) is analogous.

Proof of Theorem 7.6. Using the change of variables as in (7.37) we get W λ,γ (θ) = ∞ 0 g λ (r) f λ (r)dr with the same f λ (r), g λ (r) as in (7.38) and h λ (u, v, r) satisfying (7.39). (Note H(γ) = H(γ + ) = 1/p hence λ H(γ + )-(1/p) = 1 in the definition of g λ (r) in (7.38).) Particularly, Ψ(θh λ (u, v, r)) → Ψ(θh(u, v, r)) for any (u, v, r) ∈ R 2 × R + , v ∈ {0, y}. Then g λ (r) → g(r) := R 2 Ψ(θh(u, v, r))dudv follows by the dominated convergence theorem. Using R 2 h λ (u, v, r)dudv = xyr leb(B) and h λ (u, v, r) ≤ Cr we obtain |g λ (r)| ≤ C min(r, r 2 ) and hence W λ,γ (θ) → ∞ 0 g(r)r -(1+α) dr = log E exp{iθI + (x, y)}, proving the one-dimensional convergence in (7.18). The proof of Theorem 7.6 is complete.

Proof of Theorem 7.7. (i) Write D r (x, y) := {(u, v) ∈ R 2 : (u -x) 2 + (v -y) 2 ≤ r 2 } for a ball in R 2 centered at (x, y) and having radius r. Recall that B is bounded. Note that inf z∈[-1,1] (|z|/r p + (1 -|z| 1/(p-1) ) 1-p /r 1-p ) ≥ c 0 min(r -p , r -(1-p) ) for some constant c 0 > 0. Therefore, there exists r 0 > 0 such that for all 0 < r < r 0 the intersection B z,r := B ∩ B + z/r p , (1 -|z| 1/p ) 1-p /r 1-p = ∅ in (7.19). Hence b(z) ≤ C < ∞ uniformly in z ∈ [-1, 1].

Let (x, y) ∈ B \ ∂B. Then D 2r (x, y) ⊂ B for all r < r 0 and some r 0 > 0. If we translate B by distance r 0 at most, the translated set still contains the ball D r 0 (x, y). Since sup z∈[-1,1] (|z|/r p + (1 -|z| 1/p ) 1-p /r 1-p ) ≤ 2 max(r -p , r -(1-p) ), there exists r 1 > 0 for which inf r>r 1 leb(B z,r ) ≥ πr 2 0 , proving inf z∈[-1,1] b(z) > 0. The continuity of b(z) follows from the above argument and the continuity of the mapping z → leb(B z,r ) : [-1, 1] → R + , for each r > 0.

(ii) Let s ≥ 0. In the integral (7.8) we change the variables: u → r p u, v → r 1-p v, r → w 1/p r. Then ρ(t, s) = w -(α-1)/p ∞ 0 leb(B t/w,r )f w (r)rdr, where f w (r) := w (1+α)/p f (w 1/p r) → c f r -(1+α) , w → ∞. Then (7.20) follows by Lemma 7.12 and the afore-mentioned properties of leb(B t/w,r ). Theorem 7.7 is proved.

In this chapter we often use the following lemma which is a version of Lemma 2 in [53] or Lemma 2.4 in [START_REF] Biermé | Self-similar random fields and rescaled random balls models[END_REF]. Lemma 7.12. Let F be a probability distribution that has a density function f satisfying (7.3). Set f λ (r) := λ 1+α f (λr) for λ ≥ 1. Assume that g, g λ are measurable functions on R + such that g λ (r) → g(r) as λ → ∞ for all r > 0 and such that the inequality

|g λ (r)| ≤ C(r β 1 ∧ r β 2 ) (7.44)
holds for all r > 0 and some 0 < β 1 < α < β 2 , where C does not depend on r, λ. Then The first relation in (7.45) follows by the dominated convergence theorem, using (7.44) and the bound f λ (r) ≤ Cr -(1+α) which holds for all r > ρ/λ and a sufficiently large ρ > 0 by virtue of (7.3). The second relation in (7.45) follows from |I 1 (λ)| ≤ C 0 r β 2 f λ (r)dr = Cλ α-β 2 λ 0 x β 2 f (x)dx ≤ Cλ α-β 2 + Cλ α-β 2 λ 1 x β 2 -(1+α) dx ≤ C(λ α-β 2 + β 2 -α ). Then by change of variables: (t -u)/r p → t, u → T u, r → T β/(1-p) r we rewrite W T,γ,β (θ) as in (7.47), where f T (r) := T (1+α)β/(1-p) f (T β/(1-p) r) and g T (r) := R T δ 1 Ψ θT -δ 1 /2 (r 1-p ∧ 1)r p h T (u, r) du with h T (u, r) := 1 0 1(0 < u + T -δ 2 r p t < x)dt → 1(0 < u < x). Then g T (r) → -(θ 2 /2)(r 1-p ∧ 1) 2 r 2p x by the dominated convergence theorem using the bounds |Ψ(z)| ≤ z 2 /2, z ∈ R and h T (u, r) ≤ 1(-r p < u < x). Moreover, |g T (r)| ≤ C min(r 2p , r 2 ) holds in view of (1+2p) for all r > ρ/T β/ (1-p) and some ρ > 0 if given any > 0. This completes the proof of W T,γ,β (θ) → -(θ 2 /2) σ 2 1 x = log E exp{iθ σ 1 B(x)} as T → ∞ for any θ ∈ R. (v) After the same change of variables as in part (iii) we get W T,γ,β (θ) in (7.47), where g T (r) := R Ψ θ(r 1-p ∧ 1)r p h T (u, r) du with the same f T (r) and h T (u, t) → 1(0 < u < x) as in (iii). By dominated convergence theorem, g T (r) → xΨ(θ(r 1-p ∧ 1)r p ), where we justify its use by (7.30), and h T (u, r) ≤ 1(-r p < u < x). The bound |g T (r)| ≤ C min(r p , r 2 ) follows from (7.30) and R h T (u, r)du = x with h T (u, r) ≤ 1. Finally, by Lemma 7.12, W T,γ,β (θ) → xc f ∞ 0 Ψ θ(r 1-p ∧ 1)r p r -(1+α) dr =: log E exp{iθ L(x)}.

(7.51)

The proof of Theorem 7.9 is complete.

Proof of Theorem 7.10. (i) Denote δ 1 := 1+γ -α/p = γ -γ + > 0 and δ 2 := (1-p)/p-β > 0. By changing the variables in (7.29): t → T t, u → T u, r → T 1/p r we rewrite W T,γ,β (θ) as in (7.47), where f T (r) := T (1+α)/p f (T 1/p r) and g T (r) := R T δ 1 Ψ θT -δ 1 /2 ((T δ 2 r 1-p ) ∧ 1)h(u, r) du with h(u, r) := x 0 1(u < t < u + r p )dt. The dominated convergence g T (r) → g(r) := -(θ 2 /2) R h 2 (u, r)du follows by (7.30). The latter combined with R h 2 (u, r)du ≤ C min(1, r p ) (vii) By the same change of variables as in part (i), we rewrite W T,γ,β (θ) as in (7.47), where g T (r) := R T δ 1 Ψ θT -δ 1 /2 (r 1-p ∧ 1)h(u, r) du and where δ 1 , h(u, r), f T (r) are the same as in (i). Then g T (r) → -(θ 2 /2) R h 2 (u, r)du along with R h 2 (u, r)du ≤ C min(r p , r 2p ) and (7.30) imply W T,γ,β (θ) → -(θ 2 /2)c f ∞ 0 R (r 1-p ∧ 1) 2 h 2 (u, r)r -(1+α) drdu =: log E exp{iθ Z(x)} as T → ∞ for any θ ∈ R, by Lemma 7.12. (viii) By the same change of variables as in part (iii) we obtain W T,γ,β (θ) as in (7.47), where g T (r) := R Ψ(θ(r 1-p ∧ 1)h T (u, r))du with f T (r), δ 2 = γ/γ + -1 > 0 and h T (u, r) := x 0 1(u < T -δ 2 t < u + r p )dt → x1(-r p < u < 0) the same as in (iii). Using R h T (u, r)du = xr p and h T (u, r) ≤ x yields |g T (r)| ≤ C min(r p , r 2-p ) from (7.30). Hence, by Lemma 7.12, it follows that • For the random grain model on R 2 with LRD, we obtain two change-points 0 < γ -< γ + (distinct even in the p = 1/2 case) in its scaling limits, which shows that the concept of scaling transition requires further study. We showed that for γ > γ + , the random grain model can have two different scaling limits, depending on α, p. We relate this dichotomy to the change from the vertical LRD to the vertical SRD property in the random grain model. A similar result holds for 0 < γ < γ -.

The following are some directions for future research.

• An interesting open problem concerns joint temporal-contemporaneous aggregation of independent copies of regime-switching AR(1) process, which combines the dependence structures of both random-coefficient AR(1) and network traffic models, see [START_REF] Leipus | Renewal regime switching and stable limit laws[END_REF][START_REF] Leipus | Random coefficient autoregression, regime switching and long memory[END_REF].

• Another possible generalization concerns joint temporal-contemporaneous aggregation of random-coefficient AR(1) processes driven by innovations of infinite variance.

• If random AR coefficient a has a regularly varying density near the unit root, then 1/(1 -a) is heavy-tailed distributed with the same index. We will adapt some Hill-type estimator of a tail index to the context of panel random-coefficient AR(1) data and study asymptotic properties of this estimator.

• One may ask if some random field model can have more than two change-points in the family of its scaling limits.

• It is of interest to obtain scaling transition for RFs on R 2 as λ → 0.

• For all models considered, it would be useful to strengthen the weak convergence of finite-dimensional distributions to the weak convergence in the space of functions.

Thèse de Doctorat

Vytaut ė PILIPAUSKAIT 

Abstract

The thesis is devoted to limit theorems for stochastic models with long-range dependence. We first consider a random-coefficient AR(1) process, which can have long memory provided the distribution of autoregressive coefficient concentrates near the unit root. We identify three different limit regimes in the scheme of joint temporal-contemporaneous aggregation for independent copies of random-coefficient AR(1) process and for its copies driven by common innovations. Next, we discuss nonparametric estimation of the distribution of the autoregressive coefficient given multiple random-coefficient AR(1) series. We prove the weak convergence of the empirical process based on estimates of unobservable autoregressive coefficients to a generalized Brownian bridge and apply this result to draw statistical inference from panel AR(1) data. In the second part of the thesis we focus on spatial models in dimension 2. We define a nonlinear random field as the Appell polynomial of a linear random field with long-range dependence. For the nonlinear random field, we investigate the limit of its normalized partial sums over rectangles and prove the existence of scaling transition. Finally, we study such like scaling of the random grain model and obtain two-change points in its limits.

d

  = equality in distribution fdd = equality of finite-dimensional distributions p → convergence in probability d → convergence in distribution fdd → weak convergence of finite-dimensional distibutions (fdd) lim limit of finite-dimensional distributions a.s. almost surely d.f. (cumulative) distribution function i.i.d. independent identically distributed r.v. random variable Soit S N,n (τ ) :=

  and short-range dependent (SRD) ift∈Z d |r(t)| < ∞ and t∈Z d r(t) = 0.The case whent∈Z d |r(t)| < ∞ and t∈Z d r(t) = 0is referred to as negative dependence.
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 33 Let β > 1. Then, as N, n → ∞ in arbitrary way,

  and intervals I j ⊂ R, j = 1, . . . , m, we have P B (A) = P(B(τ j ) ∈ I j , j = 1, . . . , m).(3.28)

  ϑ n (s, a) being defined in(3.63). By change of variable 1 -a = x/N arguing as in the proof of (3.68), relation(3.73) follows from Ψ0 (θ) :

. 77 )

 77 Indeed, by change of variable z := k yN log(N/n) , z -1 dz = -y -1 dy the integral in(3.77) for N log(N/n) > k can be rewritten as k

  dy y and G(y) := 1 y (1 -e -(θ 2 /4)y ). Using the facts that G(n/N ) -θ 2 /4 = o(1), 1 n/N dy y = log(N/n) and sup y∈(0,1] |G (y)| < C, we obtain

  and Re(L(h)) ≤ 0. Due to these facts, the first equality in (4.13) easily extends to h ∈ L p (R + × R). Proposition 4.1 is proved.The proof of Proposition 4.2 uses Lemma 4.5. For (x, t

Lemma 4 . 6 .

 46 Let η n (a, s) := [nτ ]

  [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF] follows from the convergence of the joint characteristic functions:

. 5 )Remark 5 . 1 .

 551 Assumption (A5). a, {η(t)}, {ξ(t)} and the vector (b, c) are mutually independent. In the context of panel observations (see (5.10)), {η(t)} is the common component and {ξ(t)} is the idiosyncratic component of shocks. The innovation process {ζ(t)} in (5.4) is i.i.d. if the coefficients b and c are nonrandom. In the general case {ζ(t)} is a dependent and uncorrelated stationary process with Eζ(0) = 0, Eζ 2 (0) = Eb 2 + Ec 2 , Eζ(0)ζ(t) = 0, t = 0.

Theorem 5 . 3 .

 53 Let the panel data model in (5.10)-(5.11) satisfy Assumption (B). Then, as N, n → ∞, sup x∈[-1,1]

  continuous Gaussian process with zero mean and Cov(W (x), W (y)) = G(x∧y)-G(x)G(y), x, y ∈ [-1, 1], and ⇒ denotes the weak convergence in the space D[-1, 1]

Proposition 5 . 4 .

 54 Let the panel data model in (5.10)-(5.11) satisfy Assumption (B) with exception of Assumption (A6). If N = o(n

Corollary 5 . 5 .

 55 Let the panel data model in (5.10)-(5.11) satisfy Assumption (B). Let G = G θ , θ = (α, β) , be a beta d.f. in(5.19), where α > 1, β > 1. Let N, n increase as in (5.15) where = 1.

Remark 5 . 5 .Proposition 5 . 8 .

 5558 It follows from the proof of the above proposition that in the case of a (uniformly) continuous density g(x), x ∈ [-1, 1], relations (5.24), (5.27) and the first relation in (5.26) hold uniformly in x ∈ R, implying the convergence of the mean integrated squared error: ∞ -∞ E| g N,n (x) -g(x)| 2 dx → 0. (Asymptotic normality) Let the panel data model in (5.10)-(5.11) satisfy Assumption (B) and let Assumption (A7) hold. Moreover, let K be a Lipschitz function in Case (ii) and assume N h → ∞ in addition to (5.25). Then g N,n (x) -E g N,n (x) Var( g N,n (x))

Figure 5 . 1 :

 51 Figure 5.1: [left] Empirical d.f. of p-values of T 1 and T 2 under H 0 : θ = (2, 1.4) ; 5000 replications with N = 250, n = 817. [right] Zoom-in on the region of interest: p-values smaller than 0.1.

  H 0 : θ = (2, 1.4) at the significance level ω = 5% and ω = 10%. The column for β = 1.4 provides the empirical size. The above simulations (Figures 5.1 and 5.2, Table

Figure 5 . 2 :

 52 Figure 5.2: Empirical d.f. of p-values of T 1 and T 2 for testing H 0 : θ = (2, 1.4) under several alternatives of the form θ = (2, β) ; 5000 replications with N = 250, n = 817.

Figure 5 . 3 :

 53 Figure 5.3: [left] Empirical d.f. of p-values of T 1 under H 0 : θ = (2, 1.4) for different dependence structure between RCAR(1) series : b i = b and c i = (1 -b 2 ) 1/2 and N = 250, n = 817. [right] Empirical d.f. of p-values of T 1 for testing H 0 : θ = (2, 1.4) . RCAR(1) series are driven by common innovations, i.e., b i = 1, c i = 0, for θ = (2, β) ; 5000 replications with N = 250, n = 5500.

Theorem 6 . 2 .

 62 (i) Processes Z + k and Z - k in (6.20) are well-defined for 1 ≤ k < 1/p 2 and 1 ≤ k < 1/p 1 , respectively, as Itô-Wiener stochastic integrals. They have zero mean, finite variance, stationary increments and are self-similar with respective indices H + 2k := 1-kp 2 /2 ∈ (1/2, 1) and H - 1k := 1 -kp 1 /2 ∈ (1/2, 1). (ii) Let RFs Y and X = A k (Y ) satisfy Assumptions (A1), (A2) and (A3) k , 1 ≤ k < 1/p 2 .

. 26 )

 26 (ii) Let RFs Y and X = A k (Y ) satisfy Assumptions (A1), (A2) and (A3) k , 1/p 1 < k < P . Then for any γ < γ 0 , as λ → ∞,Var(S X λ,γ ) ∼ c(γ)λ 2H(γ) , (6.27)where H(γ) := γH - 2k +1/2, H - 2k := 1+1/(2γ 0 )-kp 2 /2 ∈ (1/2, 1) and c(γ

Theorem 6 . 4 .

 64 Let RFs Y and X = A k (Y ) satisfy Assumptions (A1), (A2) and (A3) k and k > P . Then for any γ > 0, as λ → ∞,

Theorem 6 . 5 .

 65 Let X = G(Y ) satisfy Assumptions (A1), (A2) and (A4) k . Assume w.l.g. that G has Hermite expansion G

  -j, u; θ) bin((v + j)/2, j; 1/2), u ∈ N, |v| ≤ u. (6.100) Similarly to [56, proof of Proposition 4.1], we shall use the following version of the Moivre-Laplace theorem (Feller [32, Chapter 7, §3, Theorem 1]): There exists a constant C such when j → ∞ and k → ∞ vary in such a way that

Figure 7 . 1 :

 71 Figure 7.1: Scaling diagram of a random grain model.

  Let 0 < α + β < γ + and α = 2p. Then b T := T H (log T ) 1/2 with H := β + (1 + γ)/2 and A := { σ 2 B(x), x ≥ 0} is a Brownian motion with variance σ2 2 in (7.54). (vii) Let α + β = γ + . Then H := (1/2)(1 + γ + (2 -α)/p) and A := { Z(x), x ≥ 0} in an intermediate Gaussian process defined by(7.26). (viii) Let α + β = γ and 1 < α < 2 -p. Then H = 1 + β and A := {x Z, x ≥ 0}, where a slope Z is a r.v. defined by(7.55).(ix) If γ + < α + β ≤ ∞ and α = 2 -p. Then b T := T H (log T ) 1/2 , H := 1 + γ/2 and A := { σ + B 1,1/2 (x, 1), x ≥ 0} = {x Z, x ≥ 0} is a Gaussian line with random slope Z ∼ N (0, σ 2 + ) and σ 2+ given by (7.42). Theorem 7.11. (Intermediate connection rate.) Let γ = γ + . The convergence in (7.23) holds with the limit A and normalization b T := T H specified in (i)-(v) below. (i) Let 0 < α + β < γ + and 1 < α < 2p. Then H := 1 + β and A := {I(x), x ≥ 0} is defined by(7.24).

R 2 λ 2 (

 22 H(γ)-1/p) Ψ(θλ (1/p)-H(γ) h λ (u, v, r))dudv,(7.38) withh λ (u, v, r) p ∈ B ds = 1(0 < v < y) r 1-p x 0 leb 1 (B((t -u)/r p ))dt =: h(u, v, r) (7.39) as λ → ∞, for all (u, v, r) ∈ R 2 × R + , v ∈ {0, y}, since δ := 1 + γ -(1/p) > 0. Note that 2(H(γ) -1/p) = γ -γ + > 0 and hence λ 2(H(γ)-1/p) Ψ(θλ (1/p)-H(γ) h λ (u, v, r)) → -(θ 2 /2)h 2 (u, v, r), λ → ∞.
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 5121 ProofsNext, by the dominated convergence theoremg λ (r) → g(r) := -θ 2 2 R 2 h 2 (u, v, r)dudv for any r > 0. Using R 2 h λ (u, v, r)dudv = xy leb(B)r and h λ (u, v, r) ≤ C min(r 1-p , r) similarly as in the proof of Theorem 7.2 we obtain |g λ (r)| ≤ C R 2 h 2 λ (u, v, r)dudv ≤ C min(r 2-p , r 2). Then by Lemma 7.12,W λ,γ (θ) → W γ (θ) := c f ∞ 0 g(r)r -(1+α) dr = -(θ 2 /2)σ 2+ x 2H + y, B((t -u)/r p ))dt -α-2p dr,(7.40) 

1 λ -δ 1 2 +

 112 /p g λ (r)f λ (rx 2 y =: W γ (θ), whereσ 2 + := c f (γ -γ + ) 2(1 -p) R leb(B ∩ (B + (0, u)))du(7.42) 

R 2 h 2 h

 22 λ (u, v, r)dudv = xyr leb(B), h λ (u, v, r) ≤ C(λ δ 1 r) ∧ r 1-p . λ (u, v, r)dudv = O((log λ) -1/2 ) = o(1).Similarly,|W - λ,γ (θ)| ≤ Cλ δ 1 log λ λ -δ 1 /p 0 rf λ (r)dr

R 2 h≤ Cλ δ 1 log λ λ -δ 1 /p 0 r 2 2 2 log λ 1 λ 1 λ

 202211 λ (u, v, r)dudv f λ (r)dr = C λ log λ λ 1/p 0 r 2 f (r)dr = O((log λ) -1 ) = o(1), since δ 1 = pγ/2(1 -p) -1.Consider the main term W 0 λ,γ (θ) in(7.41). Let W λ,γ (θ) := -θ -δ 1 /p f λ (r)dr R 2 h 2 λ (u, v, r)dudv. Then using(7.43) and |Ψ(z) + z 2 /2| ≤ |z| 3 /6 we obtain|W 0 λ,γ (θ) -W λ,γ (θ)| ≤ C (log λ) 3/2 -δ 1 /p r 2-2p f λ (r)dr

R 2 h 1 λ 1 0r

 211 λ (u, v, r)dudv ≤ C (log λ) 3/2 -δ 1 /p r 3-2p f λ (r)dr ≤ C (log λ) 3/2 -p dr = O((log λ) -3/2 ) = o(1).

Finally, it remainslog λ 1 λ

 1 to estimate the difference | W λ,γ (θ) -W γ (θ)| ≤ C(J λ + J λ ),whereJ λ := 1 -δ 1 /p f λ (r)dr

R 2 |h 2 λlog λ 1 λ

 21 (u, v, r) -h 2 (u, v, r)|dudv, J λ := 1 -δ 1 /p r 2-p |f λ (r) -c f r p-3 |dr. Let h λ (u, v, r) := x R 1

R 2 |h

 2 λ (u, v, r) -h λ (u, v, r)|dudv

1

 1 

J

  q (x, y) := c f Split J q (x, y) = c f y[ 1 0 dr+ ∞ 1 ] . . . dr =: c f y[J +J ].

∞ 0 g

 0 λ (r)f λ (r)dr → c f ∞ 0 g(r)r -(1+α) dr as λ → ∞. Proof. Split ∞ 0 g λ (r)f λ (r)dr = ( 0 + ∞ )g λ (r)f λ (r)dr =: I 1 (λ) + I 2 (λ), where > 0. It suffices to prove lim λ→∞ I 2 (λ) = c f ∞ g(r)r -(1+α) dr and lim
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 575241 Proofs of Section 7.Proof of Theorem 7.9. We have W T,γ,β (θ) := log E exp iθb -M,K (T x) -EA M,K (T x) (7.46)= T γ R×R + Ψ θT -H (r 1-p ∧ T β ) < t < u + r p )dt duf (r)dr,where Ψ(z) = e iz -1 -iz, z ∈ R, as in Section 7.5.1.(i) Let 0 < p < 1, δ 1 := β -(1 + γ)(1 -p)/α > 0, δ 2 := 1 -(1 + γ)p/α = (γ + -γ)p/α > 0.Using the change of variables (t -u)/r p → t, u → T u, r → T (1+γ)/α r in (7.46), we obtainW T,γ,β (θ) = ∞ 0 g T (r)f T (r)dr,(7.47)where f T (r) := T (1+α)(1+γ)/α f (T (1+γ)/α r) andg T (r) := R Ψ θ(r 1-p ∧ T δ 1 )r p h T (u, r)) duand where h T (u, r):= 1 0 1(0 < u + T -δ 2 r p t < x)dt → 1(0 < u < x) for fixed (u, r) ∈ R × R + , u ∈ {0, x}. Hence g T (r) → g(r) := xΨ(θr) follows by the dominated convergence theorem. The bound |g T (r)| ≤ C min(r, r 2 ) follows from (7.30) and R h T (u, r)du = x with h T (u, r) ≤ 1.Finally, by Lemma 7.12, W T,γ,β (θ) → xc f ∞ 0 Ψ(θr)r -(1+α) dr = log E exp{iθL α (x, 1)}, proving part (i) for 0 < p < 1. The case p = 1 follows similarly. (ii) By the same change of variables as in part (i) we get W T,γ,β (θ) as in(7.47), whereg T (r) := R Ψ θ((T -δ 1 r 1-p ) ∧ 1)r p h T (u, r) du,where δ 1 , f T (r), h T (u, r) are the same as in(7.47) except that now δ 1 < 0. Next, g T (r) → xΨ(θr p ) by the dominated convergence theorem while |g T (r)| ≤ C min(r p , r 2p ) follows by(7.30) and R min(hT (u, r), h 2 T (u, r))du ≤ C. Then W T,γ,β (θ) → W γ,β (θ) := xc f ∞ 0 Ψ(θr p ) r -(1+α) dr follows by Lemma 7.12. To finish the proof of part (ii) it suffices to check thatW γ,β (θ) = -x c f Γ(2 -α/p) α(1 -α/p) cos πα 2p |θ| α/p 1 -i sgn(θ) tan πα 2p (7.48) =: log E exp{iθL α/p (x)}. (iii) Denote δ 1 := 1 + γ -αβ/(1 -p) > 0, δ 2 := 1 -pβ/(1 -p) > 0.

R h 2 TRT δ 1 ΨT δ 1 /2p 1 g 1 0r 2 f 2 ∞T δ 1 / 2 2 log T T δ 1 /2p 1 r 2 T δ 1 /2p 1 r 3 T 2 T δ 1 /2p 1 r

 2111221212113211 (u, r)du ≤ C. Using Lemma 7.12 we get W T,γ,β (θ) → -(θ 2 /2)xc f ∞ 0 (r 1-p ∧1) 2 r 2p-(1+α) dr = -(θ 2 /2)σ2 1 x, whereσ 2 1 := 2c f (1 -p) (2 -α)(α -2p) < ∞ (7.49)since max(1, 2p) < α < 2. This proves part (iii).(iv) By the same change of variables as in part (iii), we rewrite W T,γ,β (θ) as in(7.47), whereg T (r) := θT -δ 1 /2 (log T ) -1/2 (r 1-p ∧ 1)r p h T (u, r) du and f T (r) and δ 1 , δ 2 > 0 and h T (u, r) := 1 0 1(0 < u + T -δ 2 r p t < x)dt → 1(0 < u < x) are the same as in (iii). We split W T,γ,β (θ) = W - T,γ,β (θ) + W 0 T,γ,β (θ) + W + T,γ,β (θ) and next prove that W - T,γ,β (θ) := 1 0 g T (r)f T (r)dr and W + T,γ,β (θ) := ∞ T δ 1 /2p g T (r)f T (r)dr are the remainder terms, whereasW 0 T,γ,β (θ) := T (r)f T (r)dr ∼γ)(1 -p) -2pβ). (7.50) By (7.3), there exists ρ > 0 such that f T (r) ≤ Cr -(1+2p) for all r > ρ/T β/(1-p) . Using this bound along with R h T (u, r)du = x, h T (u, r) ≤ 1 and (7.30), we get|W - T,γ,β (θ)| ≤ C log T T (r)dr = O((log T ) -1 ) = o(1), |W + T,γ,β (θ)| ≤ C T δ 1 /2 (log T ) 1/2p r p-(1+2p) dr = O((log T ) -1/2 ) = o[START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF].We now consider the main termW 0 T,γ,β (θ). Let W T,γ,β (θ) := -θ 2p f T (r)dr R h 2 T (u, r)du. Then, by |Ψ(z) + z 2 /2| ≤ |z| 3 /6, z ∈ R, it follows that |W 0 T,γ,β (θ) -W T,γ,β (θ)| ≤ C (log T ) 3/2 T δ 1 /3p f T (r)drR h (u, r)du ≤ C (log T ) 3/2 T δ 1 /p-1 dr = O((log T ) -3/2 ) = o(1).
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 51121 ProofsFinally, we estimate | W T,γ,β (θ) -W γ,β (θ)| ≤ C(J T + J T ), whereJ T := 1 log T 2p f T (r)dr R |h (u, r) -1(0 < u < x)|du, 2p |f T (r) -c f r -(1+2p) |dr. < u + T -δ 2 r p t < x) -1(0 < u < x)|du ≤ Cr p T -δ 2 , we obtain J T ≤ C(log T ) -1 T -δ 2 T δ 1 /2p 1 r p-1 dr = o(1), since δ 1 /2 ≤ δ 2 for γ ≤ γ + . Then J T = o(1) follows from (7.3), since |f T (r) -c f r -(1+2p) | ≤ c f r -

R 2 := c f R×R 1 0 1 (T δ 1 T δ 2

 21112 h(u, r)du ≤ C min(r p , r 2p ) gives the bound |g T (r)| ≤ C min(r p , r 2p ). Finally, by Lemma 7.12, W T,γ,β (θ) → -(θ 2 /2)σ 2 2 x 2H , whereσ 2 u < t < u + r p )dt 2 dudr r 1+α = 2c f α(2 -α/p)(3 -α/p)(α/p -1), (7.52)7.5. ProofsAnalogously to the proof of Theorem 7.9(iv), we show the convergence W T,γ,β (θ) → -(θ 2 30) and R h T (r, u)du = x with h T (r, u) ≤ x(T δ 2 /r p ), we get|W T,γ,β (θ)| ≤ C log T /p dr r 1+p = O((log T ) -1 ) = o(1), which completes the proof of W T,γ,β (θ) → -(θ 2 /2) σ 2 2 x = log E exp{iθ σ 2 B(x)} as T → ∞ for any θ ∈ R.

W 1 T 2 + 2 ∞ 1 rfr 2 f 2 2 log T 1 T 1 T 1 T

 122122111 T,γ,β (θ) → c f ∞ 0 Ψ(θx(r 1-p ∧ 1))r p-(1+α) dr =: log E exp{iθx Z}.(7.55) (ix) By the same change of variables as in the proof of part (iv), we rewrite W T,γ,β (θ) as in(7.47), whereg T (r) := R Ψ θ(log T ) -1/2 (r 1-p ∧ T δ 1 )h T (u, r) du with δ 1 , δ 2 := γ/γ + -1 > 0 and h T (u, r) := x 0 1(u < T -δ 2 t < u + r p )dt → x1(-r p < u < 0) =: h(u, r) and f T (r) being the same as in (iv). We split W T,γ,β (θ) = W - T,γ,β (θ) + W 0 T,γ,β (θ) + W + T,γ,β (θ) and next prove that W - T,γ,β (θ) := T -δ 2 /p 0 g T (r)f T (r) and W + T,γ,β (θ) := ∞ 1 g T (r)f T (r)dr are the remainder terms, whereasW 0 T,γ,β (θ) := -δ 2 /p g T (r)f T (r)dr ∼x 2 =: W γ,β (θ),where the constant σ 2 + is given in(7.42). Using R h T (u, r)du = xr p and h T (u, r) ≤ x∧(T δ 2 r p ) along with (7.30), we show that|W + T,γ,β (θ)| ≤ C (log T ) 1/T (r)dr = O((log T ) -1/2 ) = o(1), |W - T,γ,β (θ)| ≤ (r)dr = O((log T ) -1 ) = o(1).To deal with the main termW 0 T,γ,β (θ), set W T,γ,β (θ) := -θ -δ 2 /p r 2(1-p) f T (r)dr R h 2 T (u, r)du. From |Ψ(z) + z 2 /2| ≤ |z| 3 /6, we obtain |W T,γ,β (θ) -W T,γ,β (θ)| ≤ C (log T ) 3/2 -δ 2 /p r 3(1-p) f T (r)drR h 3 T (u, r)du ≤ C (log T ) 3/2 -δ 2 /p r 3-2p f T (r)dr = O((log T ) -3/2 ) = o(1).

Finally, we 1 T 2 T 1 T

 121 consider | W T,γ,β (θ) -W γ,β (θ)| ≤ C(J T + J T ), whereJ T := 1 log T -δ 2 /p r 2(1-p) f T (r)dr R |h (u, r) -h 2 (u, r)|du, -δ 2 /p r 2-p |f T (r) -c f r p-3 |dr. Using R |h 2 T (u, r) -h 2 (u, r)|du < T -δ 2 t < u + r p ) -1(-r p < u < 0))|du ≤ CT -δ 2 we obtain J T ≤ C(log T ) -1 T -δ 2 1 T -δ 2 /p r -(1+p) dr = O((log T ) -1 ) = o(1). Then J T = o(1) follows from (7.3), since |f T (r)-c f r p-3 | ≤ c f r p-3 for all r > ρ/T γ/2(1-p) and some ρ > 0 if given any > 0. This finishes the proof ofW T,γ,β (θ) → -(θ 2 /2) σ 2 + x 2 = log E exp{iθ σ 2 + B 1,1/2 (x, 1)} as T → ∞ for any θ ∈ R.The proof of Theorem 7.10 is complete.Proof of Theorem 7.11. (i) By the same change of variables as in Theorem 7.10(i), we rewrite W T,γ,β (θ) as in(7.47), where g T (r) := R Ψ θ((T δ 2 r 1-p ) ∧ 1)h(u, r) du → R Ψ(θh(u, r))du =: g(r),

  .45) Property (3.44) is stationarity of increments and (3.45) is an anisotropic two-parameter scaling (self-similarity) property. Note that (3.45) implies

  .8)Here, B (1/2)-β is a standard fractional Brownian motion with Hurst parameter H = (1/2)-β, σ β is a constant defined in Proposition 4.2(ii), W β > 0 is a (1 + β)-stable r.v. independent of a standard Brownian motion B, and Z β is an 'intermediate process' defined as the double stochastic integral

  85, Chapter 6, Theorem 65]. The proof of (4.14) is complete. Proof of (4.15). It is well-known (see, e.g., [96, Theorem 3.12.2]) that the (1 + β)-stable r.v. W β in (4.15) can be written as stochastic integral w.r.t. Poisson random measure N :

  .37) by independence of {ε(s)} and {a i } and the continuous mapping theorem. In turn, the first relation in(4.37) follows by the classical central limit theorem for i.i.d. r.v.s with finite variance. A similar statement for sums of i.i.d. r.v.s in the domain of attraction of stable law (see[START_REF] Ibragimov | Independent and Stationary Sequences of Random Variables[END_REF] Theorem 2.6.7]) implies the second limit in (4.37), because the distribution of (1 -a) -1 belongs to the domain of attraction of the (1 + β)-stable law W β

  according to (4.3). The remaining relations in (4.36) are established in Lemma 4.7. This proves (4.7) and completes the proof of Theorem 4.3.

Lemma 4.7. Σ N,n,i

  2, . . . , are mutually dependent processes.

	Proposition 5.7. Let the panel data model in (5.10)-(5.11) satisfy Assumption (B) and let
	Assumption (A7) hold. If n

Table 5 .

 5 1: Numerical results of the comparison for testing procedure

	ω 5%	10%	
	β 1.2	1.3 1.4 1.5 1.6 1.2	1.3 1.4 1.5 1.6
	T 1 .532 .137 .049 .208 .576 .653 .223 .103 .315 .702
	T 2 .500 .104 .077 .313 .735 .634 .184 .134 .421 .827

  Proof of Proposition 5.1. Since a n in (5.7) is invariant w.r.t. a scale factor of innovations {ζ(t)}, w.l.g. we can assume b 2 + c 2 = 1 and Eζ 2

	2	, p > 2.	(5.35)
	For 1 < p ≤ 2, inequality (5.35) is known as von Bahr and Esséen inequality, see [107],
	and for p > 2, it is a consequence of the Burkholder and Rosenthal inequality ( [18, 93], see
	also [36, Lemma 2.5.2]).		

  Consider(5.36) for i = 2. We haveδ n2 = R n /(n+D n ), where R n := (1-a 2 ) n-1t=1 X(t)ζ(t+ 1) and D n is the same as in(5.37). Then P(|δ n2 | > γ) ≤ P(|R n | > nγ/2) + P(|D n | > n/2), where

C, proving (5.37) and hence

(5.36) 

for i = 1.

6.7.1 Proofs of Propositions 6.8-6.10 and Corollary 6.12

  

	Proof of Proposition 6.8. With the notation := ρ(t, s) we have that (t, s

  Let us show that the stochastic integral in (6.20) is well-defined or h + (y; •) k < ∞, where h + (y; (u, v) k ) is defined in(6.21). Indeed by(6.41) of Proposition 6.8 h + (y; •) 2 k

	6.7. Proofs
	(i)

  2 n -ξ 2 | → 0 and hence (6.85) follows due to P(|ξ n | > τ n 1/2 ) → 0, see [71, Chapter 2, Proposition 5.3]. The above argument also implies (O4) since P(|ξ n

  .87) and where A k stands for the Appell polynomial of degree k relative to the distribution ofY m (t, s). Note X m (t 1 , s 1 ) and X m (t 2 , s 2 ) are independent if |s 1 -s 2 | > 2[λ γ 0 ]m. Then

	S Xm λ,γ (x, y) :=
	(t,s)∈K [λx,λ γ y]

  .95) is a 'truncated' version of a ∞ (t, s) in (6.15). Since |G m (t, s)| ≤ 4((a ∞ a ∞ )(t, s)) k and G m (t, s) vanishes with m → ∞ for any fixed (t, s) = (0, 0), (6.92) follows from (6.94) by the dominated convergence theorem.The proof of (6.91) uses Lemma 6.14. Accordingly, let N λ

  .96) where A k stands for the Appell polynomial of degree k relative to the distribution of Y m (t, s). Note the truncation level m in (6.96) does not depend on λ in contrast to the truncation level 6.7. Proofs m[λ γ 0 ] in(6.87). Similarly to Lemma 6.15 it suffices to prove for any γ > 0, m = 1, 2, . . . , Xm := (t,s)∈Z 2 r Xm (t, s) and r Xm (t, s) := Cov(X m (0, 0), X m (t, s)). Note X m (t 1 , s 1 ) and X m (t 2 , s 2 ) are independent if |t 1 -t 2 |+|s 1 -s 2 | > 2m. Therefore (t,s)∈Z 2 |r Xm (t, s)| < ∞ and (6.97) follows from the CLT for m-dependent RFs, see

	Var(S Xm λ,γ (x, y)) ∼ xyσ 2 Xm λ 1+γ , λ -(1+γ)/2 S Xm λ,γ (x, y)	d → N (0, xyσ 2 Xm )	(6.97)
	lim m→∞ lim sup λ→∞	λ -(1+γ) Var(S X λ,γ (x, y) -S Xm λ,γ (x, y)) = 0,	(6.98)
	where σ 2		

  1/2 (x, y) for any j ≥ k and the last result extends to finite sums of Hermite polynomials, viz., λ -(1+γ)/2 S XK λ,γ (x, y)

	fdd → σ XK B 1/2,1/2 (x, y), where σ 2 XK	=
	(t,s)∈Z 2 Cov( XK (0, 0), XK (t, s)) → σ 2 X , K → ∞. See e.g. [36, proof of Theorem 4.6.1]. The
	remaining details are easy. Theorem 6.4 is proved.	

  [START_REF] Bai | Generalized Hermite processes, discrete chaos and limit theorems[END_REF] larger than the parameter α. The terminology α ± -stable Lévy slide refers to a RF of the form xL + (y) or yL -(x) 'sliding' linearly to zero along one of the coordinate axes, where L ± are α ± -stable Lévy processes (see Section 7.2 for definition). Finally, the 'intermediate Poisson' limits in Figure7.1 at γ = γ ± are not stable although infinitely divisible RFs given by stochastic integrals w.r.t. Poisson random measure on R 2 × R + with intensity measure c f dudvr -1-α dr.

  Define 'intermediate Poisson' RFs I ± = {I ± (x, y), (x, y) ∈ R 2 + } as stochastic integrals Poisson random measure M (du, dv, dr) = M (du, dv, dr) -EM (du, dv, dr) on R 2 × R + with intensity measure EM (du, dv, dr) = c f dudvr -(1+α) dr.

	7.2.4 Cases γ = γ ±				
	I + (x, y) :=	R×(0,y]×R + (0,x]×R	1	t -u r p ,	s r 1-p ∈ B dtds M (du, dv, dr),	(7.16)
	I -(x, y) :=	(0,x]×R×R + R×(0,y]	1	t r p ,	s -v r 1-p ∈ B dtds M (du, dv, dr)
	w.r.t. the centered Proposition 7.5. (i) The RF I + in (7.16) is well-defined for 1 < α < 2, 0 < p < 1 and
	E|I					

  .1; see Remark 7.3. Let Y = {Y (t, s), (t, s) ∈ R 2 } be a stationary RF with finite variance and nonnegative covariance function ρ Y (t, s) := Cov(Y (0, 0), Y (t, s)) ≥ 0. We say that: (i) Y has short-range dependence (SRD) property if R 2 ρ Y (t, s)dtds < ∞; otherwise we say that Y has long-range dependence (LRD) property;

	Definition 7.1.

7.5.1 Proofs of Sections 7.2 and 7.3

  be a 'reflected' version of (7.7), with B replaced by B * := {(u, v) ∈ R 2 : (v, u) ∈ B}, p replaced by 1 -p and the same Poisson random measure N (du, dv, dr) as in (7.7). (t, s) -EX * (t, s))dtds, (y, x) ∈ R 2 + , be the corresponding partial integral in (7.9). If λ * , γ * are related to λ, γ as λ * = λ γ , γ * = 1/γ then property of the Poisson random measure. As noted in the Introduction, relation(7.27) allows to reduce the limits of S λ,γ (x, y) as λ → ∞ and γ ≤ γ -to the limits of S * λ * ,γ * (y, x) as λ * → ∞ and γ * ≥ γ * +

	S * λ * ,γ * (y, x) := λ * y 0 holds by symmetry	R 2 ×R + λ γ * * x 0 (X S * 1 t -u r 1-p , λ * ,γ * (y, x) s -v r p	fdd = S λ,γ (x, y) ∈ B Let (7.27)

Let

X * (t, s) := * N (du, dv, dr), (t, s) ∈ R 2 , *

Ė Théorèmes limites pour les modèles spatio-temporels à longue mémoire Limit theorems for spatio-temporal models with long-range dependence Résumé Les

  travaux de la thèse portent sur les théorèmes limites pour des modèles stochastiques à forte dépendance. Dans la première partie, nous considérons des modèles AR(1) à coefficient aléatoire. Nous identifions trois régimes asymptotiques différents pour le schéma d'agrégation conjointe temporelle-contemporaine lorsque les processus AR sont indépendants et lorsque les AR possède des innovations communes. Ensuite, on discute de l'estimation non paramétrique de la fonction de répartition du coefficient autorégressif à partir d'un panel de séries AR(1) à coefficient aléatoire. Nous prouvons la convergence faible du processus empirique basé sur des estimations des coefficients autorégressifs non observables vers un pont brownien généralisé. Ce résultat est ensuite appliqué pour valider différents outils d'inférence statistique à partir des données du panel AR[START_REF] Albeverio | Stratified structure of the Universe and Burgers' equation -a probabilistic approach[END_REF]. Dans la deuxième partie de la thèse, nous nous concentrons sur les modèles spatiaux en dimension 2. Nous considérons des champs aléatoires construits à partir des polynômes Appell et de champs aléatoires linéaires. Pour ce modèle non linéaire, nous étudions la limite de ses sommes partielles normalisées prises sur des rectangles et prouvons l'existence d'une transition d'échelle. Enfin, nous abordons la même question pour le modèle de germes-grains aléatoire. Nous mettons en évidence l'existence de deux points de transition dans les limites de ces modèles.
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for some positive constants C 1 , C 2 > 0, where

(6.7)

Note p 1 /p 2 = q 1 /q 2 and the 1-1 correspondence between (q 1 , q 2 ) and (p 1 , p 2 ): The following summary describes the main results of this chapter.

(R1) Subordinated RFs X = A k (Y ), 1 ≤ k < P , exhibit scaling transition at the same point γ 0 := p 1 /p 2 = q 1 /q 2 independent of k.

(R2) The well-balanced scaling limit V X γ 0 of X = A k (Y ) is nongaussian unless k = 1 and is given by a k-tuple Itô-Wiener integral.

(R3) Unbalanced scaling limits V X + = V X γ , γ > γ 0 , of X = A k (Y ) agree with FBS B H + 1k ,1/2

with Hurst parameter H + 1k ∈ (1/2, 1) if kp 2 > 1, and with a 'generalized Hermite slide' V X + (x, y) = xZ + k (y) if kp 2 < 1, where Z + k is a self-similar process written as a k-tuple Itô-Wiener integral. A similar fact holds for unbalanced limits V X -= V X γ , γ < γ 0 . (R4) For k > P , RF X = A k (Y ) does not exhibit scaling transition and all scaling limits V X γ , γ > 0, agree with Brownian sheet B 1/2,1/2 . (R5) In the case of Gaussian underlying RF Y in (6.3), the above conclusions hold for general nonlinear function G in (6.2) and k equal to the Hermite rank of G.

The above list contains several new noncentral and central limit results. (R2), (R4) and (R5) are new in the 'anisotropic' case p 1 = p 2 while (R3) is new even for linear RF X = A 1 (Y ) = Y (see Remark 6.1 concerning the terminology in (R3)). Similarly as in the case of linear models (see [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF][START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF]), unbalanced limits in (R3) have either independent or completely dependent increments along one of the coordinate axes. According to (R3), the sample mean of nonlinear LRD RF X = A k (Y ), 1 < k < P , on rectangles K [λ,λ γ ] , γ = γ 0 , may have Gaussian or nongaussian limit distribution depending on k, γ and parameters p 1 , p 2 , moreover, in both cases the variance of the sum (t,s)∈K [λ,λ γ ] X(t, s) grows faster 6.6. Covariance structure of subordinated anisotropic RFs Proposition 6.9. Let b(t, s)

is a continuous function. Then for any γ > 0,

where

in respective cases (I): γ = , (II): γ > , h < , (III): γ > , h > , (IV): γ < , h < 1 and (V): γ < , h > 1.

Covariance structure of subordinated anisotropic RFs

In this section from Propositions 6.8 and 6.9 with = γ 0 , ρ(t, s) = (|t| 2 + |s| 2/γ 0 ) 1/2 we obtain the asymptotic form of the covariance function of r X (t, s) := EX(0, 0)X(t, s) and the asymptotics of the variance of anisotropic partial sums S X λ,γ of subordinated RF

where most (but not all) of the limit processes can be linked to the scaling limits in Figure 7.1 and where γ + , α + are the same as in (7.4), (7.5).

Parameter region Limit process

Parameter region

Limit process

The rest of the chapter is organized as follows. Section 7.2 contains rigorous formulations (Theorems 7.1-7.6) of the asymptotic results pertaining to Figure 7.1. Section 7.3 discusses LRD properties and asymptotics of the covariance function of the random grain model. Section 7.4 obtains limit distributions of the aggregated workload process in (7.6). All proofs are relegated to Section 7.5.

Scaling limits of random grain model

We can rewrite the sum (7.2) as the stochastic integral (iii) horizontal LRD property for 1 < α ≤ 1+p and horizontal SRD property for 1+p < α < 2 and any 0 < p < 1.

Remark 7.3. The above corollary indicates that the dichotomy at α = 2 -p in Figure 7.1, region γ > γ + is related to the change from the vertical LRD to the vertical SRD property in the random grain model. Similarly, the dichotomy at α = 1 + p in Figure 7.1, region γ < γ + is related to the change from the horizontal LRD to the horizontal SRD property.

[90] introduced Type I distributional LRD property for RF Y with two-dimensional 'time' in terms of dependence properties of rectangular increments of

+ } is said to have:

• independent rectangular increments in direction if V (K) and V (K ) are independent for any two rectangles K, K ⊂ R 2 + which are separated by an orthogonal line ⊥ ; • invariant rectangular increments in direction if V (K) = V (K ) for any two rectangles K, K such that K = (x, y) + K for some (x, y) ∈ ;

• properly dependent rectangular increments if V has neither independent nor invariant increments in arbitrary direction .

Further on, a stationary RF Y on Z 2 is said to have Type I distributional LRD [90, Definition 2.4] if there exists a unique point γ 0 > 0 such that its scaling limit V γ 0 has properly dependent rectangular increments while all other scaling limits V γ , γ = γ 0 , have either independent or invariant rectangular increments in some direction = (γ). The above definition trivially extends to RF Y on R 2 .

We end this section with the observation that all scaling limits of the random grain model in (7.2)-(7.3) in Theorems 7.1-7.6 have either independent or invariant rectangular increments in direction of one or both coordinate axes. The last fact is immediate from stochastic integral representations in (7.10), (7.16), the covariance function of FBS with Hurst indices H 1 , H 2 equal to 1 or 1/2 (see also [START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF]Example 2.3]) and the limit RFs in (7.13). We conclude that the random grain model in (7.2)-(7.3) does not have Type I distributional LRD in contrast to Gaussian and other classes of LRD RFs discussed in [START_REF] Puplinskaitė | Scaling transition for long-range dependent Gaussian random fields[END_REF][START_REF] Puplinskaitė | Aggregation of autoregressive random fields and anisotropic long-range dependence[END_REF]. The last conclusion is not surprising since similar facts about scaling limits of heavy-tailed duration models with one-dimensional time are well-known; see e.g. [START_REF] Leipus | Renewal regime switching and stable limit laws[END_REF]. and its Gaussian counterpart

where Z(du, dr) is a Gaussian random measure on R×R + with the same variance c f dur -(1+α) dr as the centered Poisson random measure M(du, dr). The processes in (7.25) and (7.26) are well-defined for any 1 < α < 2, 0 < p ≤ 1 and have the same covariance functions. The RFs defined in Section 7.2 reappear in Theorems 7.9-7.11 for the certain grain set, namely the unit square B = (0, 1] 2 . Recall that a homogeneous Lévy process {L(x), x ≥ 0} is completely specified by its characteristic function Ee iθL (1) , θ ∈ R. A standard fractional Brownian motion with Hurst parameter H ∈ (0, 1] is a Gaussian process {B H (x), x ≥ 0} with zero mean and covariance function (1/2)(x 2H + y 2H -|x -y| 2H ), x, y ≥ 0. Theorem 7.9 (Slow connection rate). Let 0 < γ < γ + . The convergence in (7.23) holds with the limit A and normalization b given by (7.52). (ii) Let 0 < α + β < γ + and 1 ∨ 2p < α < 2. Then H and A are the same as in Theorem 7.9(iii).

3 ) and σ 2 3 given in (7.53). (iv) Let γ < α + β ≤ ∞ and 1 < α < 2 -p. Then H := 1 + γ/α + and A := {xL + (1), x ≥ 0} is an α + -stable line with random slope L + (1) having α + -stable distribution defined by (7.12).

given by (7.40).

proving part (i).

(ii) The proof is the same as that of Theorem 7.9(iii).

proving part (iii).

(iv) Denote

where h T (u, r) := x 0 1(u < T -δ 2 t < u + r p )dt → h(u, r) := x1(-r p < u < 0). Then g T (r) → g(r) := R Ψ(θxr 1-p 1(-r p < u < 0))du and W T,γ,β (θ) → c f ∞ 0 g(r)r -(1+α) dr = log E exp{iθxL + (1)} similarly to the proof of Theorem 7.2(ii).

(v) Set δ 1 := γ -γ + > 0, δ 2 := β -(1 -p)/p > 0. After a change of variables: t → T t, u → T u, r → T 1/p r, we get (7.47) with f T (r) := T (1+α)/p f (T 1/p r) and

(vi) We follow the proof of Theorem 7.9(iv). By the same change of variables, we rewrite W T,γ,β (θ) as in (7.47). We split W T,γ,β (θ) = W - T,γ,β (θ) + W 0 T,γ,β (θ) + W + T,γ,β (θ) with the same W ± T,γ,β (θ) being the remainder terms. Note that now δ 2 < δ 1 /2, since γ > γ + . Next, we split W 0 T,γ,β (θ) = W T,γ,β (θ) + W T,γ,β (θ), where

T δ 2 /p g T (r)f T (r)dr. (ii), (iii) The proof is the same as that of Theorem 7.9(iii), (iv) respectively. (iv) By the same change of variables as in Theorem 7.10(i), we rewrite W T,γ,β (θ) as in (7.47), where g(r) := R Ψ(θ(r 1-p ∧ 1)h(u, r))du with h(u, r), f T (r) being the same as in Theorem 7.10(i). Then |g(r)| ≤ C min(r p , r 2 ) follows from (7.30). By Lemma 7.12, we get W T,γ,β (θ) → c f ∞ 0 g(r)r -(1+α) dr =: log E exp{iθ I(x)}. (v) By the same change of variables as in Theorem 7.10(v), we rewrite W T,γ,β (θ) as in (7.47), where f T (r), g T (r) are the same as in Theorem 7.10(v) except for δ 1 = 0. Then g T (r) → g(r) := R Ψ(θr 1-p h(u, r))du and |g T (r)| ≤ C min(r, r 2 ) from (7.30) lead to W T,γ,β (θ) → c f ∞ 0 g(r)r -(1+α) dr = log E exp{iθI + (x, 1)} by Lemma 7.12, similarly to the proof of Theorem 7.6. The proof of Theorem 7.11 is complete.

Conclusions

In this last chapter, we review the main research contributions of this thesis.

• We identified three distinct limit regimes in the scheme of joint temporal-contemporaneous aggregation for independent copies of random-coefficient AR(1) process. We obtained three limit processes respectively. We showed that the process, arising in the 'intermediate' regime, admits a Poisson integral representation and can be regarded as a 'bridge' between the other two limit processes. The 'intermediate' limit of cumulative network traffic studied in [START_REF] Dombry | The on-off network traffic model under intermediate scaling[END_REF][START_REF] Gaigalas | A Poisson bridge between fractional Brownian motion and stable Lévy motion[END_REF][START_REF] Gaigalas | Convergence of scaled renewal processes and a packet arrival model[END_REF][START_REF] Kaj | Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach[END_REF], though different, but has similar properties.

• We identified three different limit regimes in the scheme of joint temporal-contemporaneous aggregation for copies of random-coefficient AR(1) process, all driven by common innovations. We showed that a new process arising under 'intermediate' scaling can be regarded as a 'bridge' between the other two limit processes.

• We proved that the empirical process based on lag 1 sample autocorrelations of individual random-coefficient AR(1) series weakly converges to a generalized Brownian bridge under certain conditions. Applications of the obtained result arise in statistical inference from multiple random-coefficient AR(1) series, which are long enough so that lag 1 sample autocorrelations accurately estimate the unobservable AR coefficients.

In particular, we justified testing with Kolmogorov-Smirnov statistic both simple and composite hypotheses, that AR coefficient is beta distributed.

• We proved that a nonlinear RF, defined as the Appell polynomial of some stationary linear LRD RF on Z 2 , may exhibit scaling transition. Such being the case, scaling transition occurs at the point γ 0 > 0, independent of the degree of the Appell polynomial even if the underlying linear RF is anisotropic.