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Abstract : The dynamic contact models for tyre/road noise are often based on a quasi-static
assumption and a half-space approximation for the tyre. The aim of the thesis is to assess these
assumptions by measuring contact forces on a test rig composed of a smooth reduced-sized tyre
rolling on a cylindrical basis. Beforehand, the experimental modal analysis of the tyre allows
the identification of eigenmodes of classical shapes. Although a finite element model based on
a homogeneous elastic tyre section yields satisfactory modes, a hyper-viscoelastic heterogeneous
section provides a good compromise between vibrations and static contact. The dynamic contact
force on a single spherical or conical asperity during rolling of the tyre is then measured. The
relationship between the maximum force and the height of the asperity is consistent with theoret-
ical contact laws. The contact duration on the asperity is inversely proportional to the speed. The
contact calculations based on an elastic half-space assumption lead to a proper estimation of the
maximum force measured on high asperity heights, but not on low asperity heights. The dissym-
metry of the force time signal is well modelled by introducing the viscoelasticity in the model.
The dynamic contact forces measured between the tyre and several asperities of simple shapes
confirm the previous results, demonstrating the quasi-static nature of the rolling contact. However,
the calculated forces are underestimated at the edges of the contact area, showing a limitation of
the half-space assumption to describe the tyre structure.

Keywords : dynamic tyre/road contact, modal analysis, viscoelasticity, contact forces measure-
ments, rolling contact, tyre/road test rig, tyre/road noise

Résumé : Les modèles de contact dynamique pour le bruit de roulement reposent souvent sur
une hypothèse quasi-statique et une approximation de massif semi-infini pour le pneu. L’objectif
de la thèse est de vérifier ces hypothèses par la mesure de forces de contact sur un banc d’essai
constitué d’un pneu lisse de taille réduite roulant sur un bâti cylindrique. Au préalable, l’analyse
modale expérimentale du pneu permet d’identifier des modes propres de formes classiques. Bien
qu’un modèle éléments finis basé sur une section de pneu homogène élastique donne des modes
satisfaisants, une section hétérogène hyper-viscoélastique permet d’obtenir un bon compromis en-
tre vibrations et contact statique. La force de contact dynamique lors du roulement du pneu sur
une seule aspérité sphérique ou conique est ensuite mesurée. La relation entre la force maximale
et la hauteur de l’aspérité est conforme aux lois de contact théoriques. La durée de contact sur
l’aspérité est inversement proportionnelle à la vitesse. Les calculs de contact basés sur un mas-
sif semi-infini élastique permettent d’approcher correctement la force maximale mesurée pour les
fortes hauteurs d’aspérités, mais pas pour les faibles. La dissymétrie du signal temporel de force
est bien modélisée en introduisant la viscoélasticité dans le modèle. Les forces de contact dy-
namique mesurées entre le pneu et plusieurs aspérités de formes simples confirment les résultats
précédents, démontrant dans l’ensemble la nature quasi-statique du contact roulant. Toutefois, les
forces calculées sont sous-estimées sur les bords de l’aire de contact, montrant une limitation de
l’hypothèse de massif semi-infini pour décrire la structure du pneu.

Mots-clés : contact dynamique pneumatique/chaussée, analyse modale, viscoélasticité, mesures
de forces de contact, contact roulant, banc d’essai pneumatique/chaussée, bruit de roulement.





Acknowledgements

First and foremost, I would like to thank my advisors Michel Bérengier and Honoré Yin and
my supervisor Julien Cesbron for always being available and ready to give valuable advice and
mentoring throughout the three years of my thesis. They have demonstrated to me the qualities
that make a good researcher. It has also been an honour for me to be Michel’s very last PhD
student.

I am sincerely thankful to Wolfgang Kropp and Daniel Nélias for having spent their precious
time to review my thesis and to Denis Duhamel, Patrice Cartraud and Alain Le Bot for their being
members of the jury together with the formers.

I thank all the colleagues of the Environmental Acoustics Laboratory of IFSTTAR for their
friendliness and support, especially when I encountered difficulties in my life. I am grateful to
Judicaël Picaut for having given me various opportunities to attend conferences, seminars and
summer schools. My heartfelt thanks go to colleagues whose technical expertise was essential for
the successful completion of the thesis: colleagues from the Structures and Integrated Instrumen-
tation Laboratory who helped design and fabricate the test rig; Vincent Gary who collaborated
with me in the measurements of forces and accelerations; colleagues from the Advanced Materials
for Transportation Infrastructure Laboratory who helped us with the material charaterisation tests;
colleagues from École des Ponts ParisTech for the assistance in the experimental modal analysis
of the tyre.

I am thankful to IFSTTAR and the Région Pays de la Loire for having jointly funded the
thesis and the test rig.

Finally, I thank my parents for giving my life, for educating me to be a righteous person, for
encouraging me to pursue my interests especially during all my years abroad. Thank you!





Table of Contents

Résumé long en français (Executive summary in French) 1

Introduction 7

Résumé du chapitre 1 en français (Summary of Chapter 1 in French) 9

1 Literature review 11
1.1 Noise generation mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Sources of rolling noise . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.2 Mechanisms of noise generation . . . . . . . . . . . . . . . . . . . . . . 12
1.1.3 Frequency ranges and speed exponents for the mechanisms . . . . . . . . 12

1.2 Existing tyre/road contact models for rolling noise prediction . . . . . . . . . . . 13
1.2.1 Envelopment procedures for hybrid models . . . . . . . . . . . . . . . . 13
1.2.2 Contact models developed at Chalmers University of Technology (Sweden) 16
1.2.3 Multi-asperity contact models developed at IFSTTAR/ENPC . . . . . . . 24

1.3 Experimental set-ups in laboratories . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.1 Tyre/road contact testing . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.2 Tyre vibrations and noise . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Résumé du chapitre 2 en français (Summary of Chapter 2 in French) 43

2 Characterisation of the reduced-sized tyre incorporated to the test rig 45
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Modal analysis of the reduced-sized tyre under free boundary conditions . . . . . 46

2.2.1 Experimental modal analysis . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.2 Numerical modelling approaches . . . . . . . . . . . . . . . . . . . . . 52
2.2.3 Viscoelastic heterogeneous model . . . . . . . . . . . . . . . . . . . . . 58
2.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3 Static contact analysis of the reduced-sized tyre . . . . . . . . . . . . . . . . . . 63
2.3.1 Static contact area measurement on a plane flat surface . . . . . . . . . . 63
2.3.2 Matrix Inversion Method (MIM) used in static contact patch analysis . . 65
2.3.3 Exploitation of symmetries . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.4 Numerical results of static contact analysis using the optimised MIM. . . 66
2.3.5 Static contact area measurement on the rolling surface . . . . . . . . . . 68

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Résumé du chapitre 3 en français (Summary of Chapter 3 in French) 73

i



Table of Contents

3 Dynamic contact with a single asperity 75
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.1 Configurations for simple contact analysis . . . . . . . . . . . . . . . . . 75
3.2.2 Measurement of actual surface geometries . . . . . . . . . . . . . . . . . 76
3.2.3 Measurement procedure and repeatability . . . . . . . . . . . . . . . . . 78

3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.1 Influence of the geometric shapes of indenter . . . . . . . . . . . . . . . 80
3.3.2 Influence of the total load . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.3 Influence of the rolling speed . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4 Contact model assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.1 Elastic contact model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.2 Viscoelastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Résumé du chapitre 4 en français (Summary of Chapter 4 in French) 107

4 Dynamic contact with multiple asperities 109
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2.1 Configurations for multiple contact analysis . . . . . . . . . . . . . . . . 109
4.2.2 Measurement of actual surface geometries . . . . . . . . . . . . . . . . . 111
4.2.3 Measurement repeatability . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.3.1 Influence of the geometric shapes of indenter . . . . . . . . . . . . . . . 116
4.3.2 Influence of the total load . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.3 Influence of the rolling speed . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4 Contact model assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.4.1 Static contact patch calculations . . . . . . . . . . . . . . . . . . . . . . 127
4.4.2 Viscoelastic contact calculation . . . . . . . . . . . . . . . . . . . . . . 129

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Conclusions and outlooks 137

Bibliography 141

A Validation of the optimised MIM in the case of a spherical indenter A.1

ii



Résumé long en français
(Executive summary in French)

Inroduction

Le trafic routier est la cause de diverses nuisances environnementales, en particulier son émis-
sion acoustique. Le bruit de roulement est une source principale du bruit routier, en hausse dans
les zones urbaines au cours des dernières décennies. Le contact dynamique entre le pneumatique
et la chaussée est un contributeur majeur à des phénomènes tels que les mécanismes vibratoire et
aérodynamique à l’origine du bruit pneumatique/chaussée.

Pour réduire le bruit de roulement à la source, il est essentiel de bien comprendre l’interaction
pneumatique/chaussée. Il existe des modèles numériques pour prédire les niveaux de force de con-
tact pneumatique/chaussée. Cependant, ces modèles sont souvent basés sur une description quasi-
statique du contact dynamique et utilisent une hypothèse de massif semi-infini. Des vérifications
expérimentales manquent cependant pour valider ces modèles, puisque l’étude de l’interaction
pneumatique/chaussée dans des conditions de laboratoire bien maîtrisées s’avère difficile.

Pour faire face à ce problème, un nouveau banc d’essai a été conçu et fabriqué au Laboratoire
d’Acoustique Environnementale de l’IFSTTAR, où le bruit du trafic routier est une préoccupation
majeure dans ses activités de recherche depuis de nombreuses années. Ce dispositif permet de
mesurer directement les forces de contact dynamiques entre un pneumatique et une ou plusieurs
aspérités. Ces mesures serviront à la vérification de la nature quasi-statique du contact, ainsi qu’à
l’évaluation des modèles numériques basés sur l’hypothèse de massif semi-infini.

Cette thèse contient 4 chapitres. Le chapitre 1 développe une étude bibliographique qui ré-
sume les modèles numériques et les travaux expérimentaux existants. Les principaux objectifs de
la thèse sont identifiés à la fin de ce chapitre. Le chapitre 2 justifie le choix d’un pneumatique de
taille réduite à utiliser sur le banc d’essai et concerne ensuite la caractérisation vibratoire ainsi que
l’analyse du contact statique entre le pneumatique et une surface lisse. Dans le chapitre 3, le banc
d’essai est utilisé pour étudier la force de contact dynamique entre le pneumatique de taille réduite
et une seule aspérité de forme sphérique ou conique. Suivant une approche similaire au chapitre 3,
le chapitre 4 concerne le contact dynamique entre le pneumatique et de multiples aspérités. Dans
les deux derniers chapitres, la nature quasi-statique du contact est étudiée pour les deux config-
urations respectives et l’hypothèse de massif semi-infini est évaluée pour un modèle élastique de
contact statique et un modèle viscoélastique de contact avec roulement. Des perspectives sont
proposées à la fin de la thèse concernant l’amélioration du modèle dynamique de contact et de
l’utilisation du banc d’essai dans le futur.
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Chapitre 1 : étude bibliographique

A partir de 50 km/h, le bruit de contact pneumatique/chaussée est la source prédominante du
bruit du trafic routier en conditions de trafic fluide. Son spectre large bande, compris entre 100 Hz
et 5000 Hz, est principalement généré par les vibrations radiales du pneumatique en-dessous de
1000 Hz et par le pompage d’air au-delà de 1000 Hz. Ces deux types de sources sont amplifiées
par l’effet dièdre. Les mécanismes de génération du bruit de roulement sont fortement influencés
par les efforts de contact dynamique entre le pneumatique et la surface de la chaussée. L’étude
bibliographique se focalise sur les modèles de contact développés pour la prévision du bruit et sur
les études expérimentales menées jusqu’à présent pour leur validation.

Dans un premier temps, les procédures d’enveloppement de profil de texture de chaussée sont
rappelées. Bien que basées sur un contact statique, ces dernières permettent l’estimation rapide
du bruit de roulement par approche statistique hybride, dont le modèle HyRoNE de l’Ifsttar est un
exemple opérationnel.

Les modèles de contact dynamique développés pour la prévision du bruit de roulement sont
pour la plupart basés sur une description quasi-statique du contact. En raison de la nature non-
linéaire du contact, le problème doit être résolu dans le domaine temporel. Certaines approches
couplent les conditions de contact unilatéral avec la réponse impulsionnelle du pneumatique (fonc-
tion de Green). Il existe différents modèles vibratoires de pneumatique : plaque orthotrope, struc-
ture double couches élastique, modèles éléments finis en guide d’onde ou périodique. La bande
de roulement du pneumatique est très souvent approchée par un massif semi-infini élastique qui
permet de prendre en compte l’interaction entre les points de contact. La nature multi-échelle des
surfaces de chaussée nécessite un traitement préalable pour une résolution efficace du problème,
soit par le calcul de raideur de contact non-linéaire à partir des petites échelles de texture (approche
de l’université de Chalmers), soit par une décomposition multi-aspérités de la surface de chaussée
(approche Ifsttar/ENPC). Cette dernière nécessite également la connaissance des lois de contact
locales sur chacune des aspérités. Les forces de contact dynamique calculées sont utilisées pour
la prévision du bruit d’origine vibratoire, soit par méthode statistique hybride, soit par méthode
physique déterministe.

Pour des conditions de chargement statique, les études expérimentales ont permis de valider
les lois de contact ponctuel et l’hypothèse de massif semi-infini pour des configurations simplifiées
entre un pavé de gomme et des aspérités sphériques. Les empreintes de contact statique entre un
pneumatique et différentes surfaces de chaussée rugueuse ont également permis d’estimer la préci-
sion du modèle multi-aspérités de l’Ifsttar. De plus, les mesures de force de contact dynamique en
conditions de roulement sur piste, plus difficiles à réaliser, ont montré une diminution de l’ordre
de 20 % de l’aire de contact pneumatique/chaussée lors du roulement. Ce phénomène est attribué
à la viscoélasticité de la gomme composant le pneumatique. En revanche, les mesures sur piste
n’ont pas permis de démontrer clairement le caractère quasi-statique du contact.

Au regard de ce chapitre, la modélisation du contact dynamique pour la prévision du bruit de
roulement nécessite des hypothèses simplificatrices dont une partie reste à valider expérimentale-
ment. À cet effet, un banc d’essai spécifique a été développé à l’Ifsttar afin de réaliser des mesures
en conditions de laboratoire maîtrisées. À l’aide de cet équipement, les objectifs de la thèse sont
d’une part d’étudier l’influence de la vitesse de roulement sur les forces de contact dynamique,
incluant l’effet de la vitesse sur l’amplitude des forces de contact et sur les lois de contact local,
et d’autre part d’étudier l’interaction entre les aspérités et la distribution des forces de contact
dynamique en conditions de roulement.

2



Résumé long en français (Executive summary in French)

Chapitre 2 : Caractérisation du pneumatique de taille réduite intégré
au banc d’essai

Afin d’étudier les forces de contact dynamique en conditions de laboratoire maîtrisées, un
banc d’essai cylindrique a été développé à l’Ifsttar afin de simuler une surface de chaussée sur
laquelle un pneumatique de taille réduite roule. Il s’agit d’un pneumatique de karting de sur-
face lisse et de taille 114/55 R5, soit des dimensions environ réduites de moitié par rapport à
un pneumatique de véhicule léger standard. Ce chapitre concerne la caractérisation vibratoire du
pneumatique ainsi que l’analyse du contact statique entre le pneumatique et une surface lisse.

Dans un premier temps, l’analyse modale expérimentale du pneu en conditions libres est
menée. Une approche SIMO (Single-Input Multiple-Output) classique est utilisée pour les es-
sais. Le pneu est suspendu à l’aide de tendeurs à une structure rigide et excité par un pot vi-
brant délivrant un signal aléatoire. Les accélérations sont mesurées en plusieurs points à l’aide
d’accéléromètres collés à la surface du pneu. Les propriétés de symétrie sont vérifiées et exploitées
lors des essais. Trois pressions de gonflage différentes (0, 1 et 2 bars) sont étudiées. Les Fonctions
de Réponse en Fréquence (FRF) mesurées sont traitées afin d’extraire les fréquences propres et
les taux d’amortissement du pneu. La méthode RFP (Rational Fraction Polynomial) globale est
utilisée et consiste à utiliser une fraction rationnelle polynomiale pour identifier les paramètres
modaux. Au final, 8 modes propres sont identifiés entre 280 Hz et 1200 Hz. Leur forme est
conforme aux résultats de la littérature, de même que l’influence de la pression de gonflage est
retrouvée. L’accord entre FRF mesurées et synthétisées est bon, aussi bien au point d’excitation
qu’aux points de transfert.

Une modélisation par éléments finis sous Abaqus est ensuite proposée pour l’analyse modale
du pneu. Plusieurs degrés de complexité sont testés pour la structure interne du pneu : section com-
posée d’un matériau homogène élastique, puis viscoélastique, avant de terminer par une section
hétérogène constituée d’une bande de roulement viscoélastique et de couches de nylon constituant
la ceinture du pneu. Dans le cas homogène élastique, un bon accord avec les résultats expéri-
mentaux est obtenu, mais d’une part l’amortissement expérimental doit être utilisé pour calculer
les FRF et d’autre part le modèle, trop rigide, sous-estime l’empreinte de contact statique. Le
modèle homogène viscoélastique permet d’intégrer la dissipation intrinsèque à la gomme en se
basant sur une série de Prony identifiée à partir du module complexe mesuré sur visco-analyseur.
Les taux d’amortissement sont alors conformes à l’expérience mais, la structure devenant moins
rigide, les fréquences propres sont décalées vers les basses fréquences. L’introduction des couches
de nylon dans le modèle hétérogène permet de compenser cet effet et donne des FRF proches de
l’expérience. De plus, l’ajout de l’hyper-viscoélasticité permet d’obtenir une empreinte de contact
conforme aux mesures.

La dernière partie du chapitre s’intéresse au contact statique entre le pneu et une surface
lisse. Les mesures d’empreinte au papier Fuji sur une plaque montrent une diminution de l’aire de
contact totale lorsque la pression de gonflage du pneu augmente. L’aire de contact augmente avec
la charge totale appliquée, en raison d’une augmentation de la largeur de l’empreinte dans le sens
longitudinal (la dimension transversale varie peu). La Méthode d’Inversion de Matrice (MIM),
basée sur une hypothèse de massif semi-infini, est ensuite optimisée en exploitant les symétries
des géométries en contact. Les résultats de la MIM montrent qu’il est possible d’obtenir des em-
preintes de contact similaires à l’expérience en adaptant convenablement le module élastique pour
chaque configuration. Enfin, des mesures de contact statique sont effectuées sur le bâti cylindrique
du banc d’essai. La courbure de ce dernier influence peu les aires de contact dont la dimension lon-
gitudinale diminue toujours lorsque la charge totale augmente. Le contact est également mesuré
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après avoir atteint une température stabilisée de la gomme pour différentes vitesse de roulement
(5, 10 et 15 m/s). Les aires de contact diminuent légèrement avec la vitesse, démontrant une
diminution du module élastique de la gomme avec la température (effet viscoélastique).

Chapitre 3 : Contact dynamique avec une seule aspérité

Dans ce chapitre, le banc d’essai est utilisé pour étudier la force de contact dynamique entre
le pneumatique de taille réduite et une seule aspérité de forme sphérique ou conique. Les essais
sont réalisés en conditions de roulement. La force de contact dynamique est mesurée à l’aide d’un
capteur de force piezo-électrique intégré au bâti cylindrique du banc d’essai, sans l’ajout de papier
ou de capteur de pression à l’interface de contact. L’aspérité consiste en un embout de forme
sphérique ou conique vissé à la surface du capteur de force dont la hauteur est variable et connue
avec précision à l’aide d’une mesure par capteur à faisceau laser. La répétabilité des essais est
évaluée à partir de 100 impacts successifs à une même vitesse de roulement. En prenant garde de
bien respecter le temps de chauffe du pneumatique, les résultats sont satisfaisants aussi bien pour
les signaux temporels que pour le maximum de la force de contact.

Les résultats expérimentaux sont ensuite présentés en s’intéressant à différents paramètres.
Dans un premier temps, l’influence de la géométrie de l’aspérité sur la force de contact dynamique
est étudiée. À hauteur équivalente, la force de contact sur la sphère est plus élevée que sur le cone
mais l’allure des signaux temporels est très similaire et les durées de contact sont très proches.
L’analyse spectrale de la force d’impact donne des résultats proches de ceux pour un demi-sinus,
à savoir un spectre plat jusqu’à une fréquence critique égale à l’inverse de la durée de contact,
puis des pics d’amplitude décroissante aux harmoniques de cette fréquence. La relation entre
la force de contact maximale et la hauteur de l’aspérité est étudiée pour les deux géométries.
Moyennant un recalage du module élastique, les courbes expérimentales sont cohérentes avec les
lois de puissance analytiques issues de la théorie de Boussinesq. L’influence de la charge totale
sur la force de contact dynamique est ensuite étudiée. L’amplitude maximale de la force diminue
lorsque la charge augmente, alors que la durée de contact diminue avec la charge, ce qui est
cohérent avec les empreintes de contact mesurées en statique. Enfin, l’influence de la vitesse de
roulement sur la force de contact est analysée. Il apparaît que la durée de contact est inversement
proportionnelle à la vitesse et que les spectres aux différentes vitesses, modifiés en fréquence,
coïncident jusqu’à 350 Hz. Ces résultats illustrent la nature quasi-statique du contact dynamique
sur une seule aspérité.

Dans la dernière partie du chapitre, la Méthode d’Inversion de Matrice (MIM) basée sur
l’hypothèse de massif semi-infini est confrontée aux résultats expérimentaux. Le modèle élastique
est premièrement testé. Des empreintes de contact statique sont calculées pour différentes hau-
teurs d’aspérité puis la force de contact locale sur l’aspérité est comparée aux résultats expérimen-
taux. Moyennant un recalage du module d’Young, le modèle élastique permet d’approcher la force
maximale mesurée pour les fortes hauteurs, mais l’erreur est plus élevée pour les faibles hauteurs,
notamment lorsque la charge totale appliquée augmente. La comparaison avec des empreintes de
contact, mesurées en statique à l’aide de papier Fuji, indique que le problème pourrait être dû à
une sous-estimation des pressions de contact au niveau des flancs du pneumatique, comme déjà
observé au chapitre 2. Le fait que la force de contact maximale sur l’aspérité soit plus élevée pour
une charge totale plus faible est ensuite expliqué par une effet thermo-rhéologique de la gomme
constituant le pneumatique. En effet, lorsque la charge augmente, la température de la gomme lors
du roulement augmente et cette dernière devient moins rigide de par ses propriétés viscoélastiques.
Un module d’Young adapté à chaque charge permet d’approcher ces résultats à l’aide du modèle
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élastique. Des calculs temporels quasi-statiques montrent clairement que la MIM élastique ne per-
met pas de retrouver la dissymétrie temporelle du signal de force mesuré. Cette dissymétrie est
attribuée à la viscoélasticité de la gomme qui est alors introduite dans le modèle.

Après un rappel des relations constitutives entre contrainte et déplacement pour un matériau
viscoélastique, le problème de contact avec roulement est formulé puis discrétisé afin d’appliquer
la MIM dans le cas viscoélastique. Les calculs de la force de contact temporelle sont effectués
en utilisant un modèle simplifié de Zener. Le modèle permet d’obtenir des signaux temporels
dissymétriques par rapport au maximum de la force de contact, ce qui est conforme aux résultats
expérimentaux. En recalant convenablement le module long-terme et le temps caractéristique du
modèle de Zener, la MIM donne des résultats en très bon accord avec l’expérience pour une charge
totale de 500 N et une hauteur d’aspérité élevée. L’accord essai/calcul est cependant moins bon
pour les faibles hauteurs d’aspérité, comme dans le cas élastique. Pour une charge totale de 1000
N, le modèle donne des résultats satisfaisants, mais la durée de contact est sous-estimée, donnant
une incertitude plus importante par rapport à l’expérience. Cet écart pourrait être réduit en utilisant
un modèle de Kelvin généralisé à la place du modèle de Zener. Il pourrait aussi s’agir d’un effet
des flancs du pneumatique ou de l’hyperélasticité, plus marqués lorsque la charge totale augmente
et non pris en compte dans le modèle de contact basé sur une hypothèse de massif semi-infini.

Chapitre 4 : Contact dynamique avec plusieurs aspérités

Dans ce dernier chapitre, le banc d’essai est utilisé pour étudier les forces de contact dy-
namique entre le pneumatique de taille réduite et plusieurs aspérités de forme sphérique ou conique.
Les essais sont réalisés en conditions de roulement. Comme au chapitre précédent, les forces de
contact dynamique sont mesurées à l’aide d’un ensemble de capteurs de force piezo-électriques
intégrés au bâti cylindrique du banc d’essai. Toutes les aspérités sont situées à la même hauteur,
qui est contrôlée avec précision à l’aide d’une mesure par capteur à faisceau laser. La répétabilité
des essais sur chaque aspérité est vérifiée à partir de 100 impacts successifs à une même vitesse de
roulement. La symétrie des forces de contact par rapport à l’axe de roulement n’est pas parfaite-
ment vérifiée en raison de défauts de montage du système et de l’apparition de forces de contact
négatives sur certaines aspérités, dont l’origine reste à expliquer.

Les résultats expérimentaux sont ensuite présentés en s’intéressant à différents paramètres.
Dans un premier temps, l’influence de la géométrie de l’aspérité sur la distribution des forces de
contact dynamique est étudiée. Comme au chapitre 3, à hauteur équivalente, les forces de contact
sur les sphères sont plus élevées que sur les cônes mais l’allure des signaux temporels est similaire
et les durées de contact sont proches. L’influence de la charge totale sur la distribution des forces
de contact dynamique est ensuite étudiée. La durée de contact augmente avec la charge totale,
ce qui est cohérent avec la configuration d’une seule aspérité. Cependant, bien que l’évolution
temporelle de la force de contact soit dissymétrique, le temps nécessaire pour atteindre la force
maximale sur une aspérité est presque le même pour toutes les charges testées. Enfin, l’influence
de la vitesse de roulement sur la force de contact est analysée. La nature quasi-statique du contact
dynamique sur plusieurs aspérités est ainsi vérifiée par le fait que la durée de contact est inverse-
ment proportionnelle à la vitesse de roulement.

Dans la dernière partie du chapitre, la Méthode d’Inversion de Matrice (MIM) basée sur
l’hypothèse de massif semi-infini est confrontée aux résultats expérimentaux. Le modèle élas-
tique est premièrement testé en utilisant les modules d’Young recalés au chapitre précédent. Des
empreintes de contact statique sont calculées pour différentes charges totales sur le pneumatique
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puis comparées aux empreintes mesurées à l’aide de papier Fuji. Les dimensions des empreintes
et les aires de contact sur les aspérités sont assez bien estimées. Enfin, le problème de contact
multi-aspérités avec roulement est résolu dans le cas viscoélastique en employant un modèle de
Zener avec les mêmes paramètres recalés pour le contact avec une seule aspérité. L’accord essai/-
calcul est meilleur pour les aspérités qui ont moins d’interactions avec les fortes concentrations
de pressions de contact au niveau des flancs du pneumatique. Il pourrait aussi s’agir d’un effet
des flancs et d’une limitation de l’hypothèse de massif semi-infini. Néanmoins, la dissymétrie des
signaux temporels est bien estimée dans cette approche, ce qui est physiquement représentatif de
l’interaction pneumatique/chaussée en conditions de roulement.

Conclusions et perspectives

Au préalable, l’analyse modale expérimentale du pneu permet d’identifier des modes pro-
pres de formes classiques. Bien qu’un modèle éléments finis basé sur une section de pneu ho-
mogène élastique donne des modes satisfaisants, une section hétérogène hyper-viscoélastique
permet d’obtenir un bon compromis entre vibrations et contact statique. La force de contact
dynamique lors du roulement du pneu sur une seule aspérité sphérique ou conique est ensuite
mesurée. La relation entre la force maximale et la hauteur de l’aspérité est conforme aux lois de
contact théoriques. La durée de contact sur l’aspérité est inversement proportionnelle à la vitesse.
Les calculs de contact basés sur un massif semi-infini élastique permettent d’approcher correcte-
ment la force maximale mesurée pour les fortes hauteurs d’aspérités, mais pas pour les faibles. La
dissymétrie du signal temporel de force est bien modélisée en introduisant la viscoélasticité dans le
modèle. Les forces de contact dynamique mesurées entre le pneu et plusieurs aspérités de formes
simples confirment les résultats précédents, démontrant dans l’ensemble la nature quasi-statique
du contact roulant. Toutefois, les forces calculées sont sous-estimées sur les bords de l’aire de
contact, montrant une limitation de l’hypothèse de massif semi-infini pour décrire la structure du
pneu.

Compte tenu du travail qui a été effectué au cours de la thèse, les aspects suivants pourraient
être étudiés pour améliorer le modèle de contact dynamique :

• utiliser le modèle par éléments finis du pneumatique de taille réduite pour calculer la matrice
d’influence utilisée dans le calcul de contact en remplacement de la matrice analytique basée
sur l’hypothèse de massif semi-infini ;

• utiliser une fonction de fluage basée sur le modèle de Kelvin généralisé à la place du modèle
de Zener pour améliorer la description de la viscoélasticité dans le modèle et améliorer
l’accord entre les signaux temporels calculés et mesurés ;

• effectuer des mesures sur le banc d’essai pour une et plusieurs aspérités de formes aléatoires
afin de valider l’approche multi-aspérités pour les surfaces de chaussées réelles ;

• effectuer des mesures dans des conditions plus réalistes à l’échelle d’un pneumatique de
véhicule léger.

En outre, le banc d’essai ouvre plusieurs perspectives dans le domaine de l’interaction pneuma-
tique/chaussée, parmi lesquels l’étude du mécanisme d’air-pumping dans des configurations sim-
plifiées, la mesure du bruit ou la résistance au roulement en laboratoire pour le recalage des outils
de prévision et la recherche académique pour l’optimisation acoustique des propriétés de texture
de chaussée.
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Introduction

Road traffic is responsible for various environmental issues, especially road noise emission
from an acoustical point of view. Tyre/road noise is a main cause of the increasing road noise
exposure in urban areas over the last decades [EEA, 2014, Fritschi et al., 2011]. In particular, for
passenger cars rolling at over 50 km/h, it dominates among all the road noise sources [Sandberg,
2001]. The dynamic contact between rolling tyres and road asperities is a major contributor to
phenomena such as the vibrational and aerodynamic mechanisms at the origin of tyre/road noise.

To reduce rolling noise from sources, it is essential to understand tyre/road interaction in a
proper way. There exist numerical models for predicting tyre/road contact force levels or even
noise levels. However, quite often, these models are based on a quasi-static description of the
dynamic contact and use an elastic or viscoelastic half-space assumption. The applicability of
these assumptions lacks experimental verification, since experimental investigation of tyre/road
interaction under well-controlled laboratory conditions remains a challenging task despite previous
efforts.

To tackle this problem, a novel test rig has been designed and fabricated at the Environmen-
tal Acoustics Laboratory of IFSTTAR, where road traffic noise has been a major concern of the
research for a long time. This apparatus allows direct measurements, without interfacial layer, of
the dynamic contact forces between a tyre and a single asperity or multiples ones to be performed.
These measurements will provide necessary elements for verifying the quasi-static nature of the
contact and also for assessing numerical models in terms of the half-space assumption.

This thesis is divided into 4 chapters. Chapter 1 is a literature review which will first briefly
describe the noise generation mechanisms. After that, existing models, as well as experimental
set-ups and outcomes in laboratories, will be summarised. Following these surveys, the main aims
of the thesis will be identified at the end of this chapter. For the sake of simplicity, a reduced-sized
tyre is chosen to be used on the test rig. Chapter 2 involves the characterisation of the dynamic and
the contact behaviours of the tyre. A modal analysis is carried out to investigate the vibrational
nature of the tyre structure, and the materials properties of the tread rubber are also measured. A
finite-element model is then built as a reference method that offers a good compromise between
the modal frequencies and the contact patch. A static contact analysis is conducted to study the
influence of various parameters on the contact area and to calibrate a numerical model based on
the elastic half-space assumption. In Chapter 3, the test rig is used to investigate the contact
force between the tyre and a single asperity of simple geometric shape under rolling conditions.
The experimental set-up is presented and the measurement repeatability is verified. Tests are
performed to study the influences of different parameters on the peak contact force, such as the
geometric shape of indenter, the asperity height, the total load on the tyre and the rolling speed.
Then, the experimental results are used to assess numerical models, namely an elastic model for
static contact comparisons and a viscoelastic model for the rolling contact analysis. Similar to
Chapter 3, Chapter 4 deals with the dynamic contact between the tyre and multiple asperities.
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In addition to parametric studies, this chapter also focusses on the interaction between asperities.
Finally, numerical models based on the elastic or viscoelastic half-space assumption are assessed
in the case of the multiple asperities. Concluding remarks are then given on the verification of
the quasi-static nature of the contact and the performance of the half-space assumption. Outlooks
are also proposed with respect to the improvement of the dynamic contact model and to the future
utility of the test rig.
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Chapitre 1 : Étude bibliographique

A partir de 50 km/h, le bruit de contact pneumatique/chaussée est la source prédominante du
bruit du trafic routier en conditions de trafic fluide. Son spectre large bande, compris entre 100 Hz
et 5000 Hz, est principalement généré par les vibrations radiales du pneumatique en-dessous de
1000 Hz et par le pompage d’air au-delà de 1000 Hz. Ces deux types de sources sont amplifiées
par l’effet dièdre. Les mécanismes de génération du bruit de roulement sont fortement influencés
par les efforts de contact dynamique entre le pneumatique et la surface de la chaussée. L’étude
bibliographique se focalise sur les modèles de contact développés pour la prévision du bruit et sur
les études expérimentales menées jusqu’à présent pour leur validation.

Dans un premier temps, les procédures d’enveloppement de profil de texture de chaussée sont
rappelées. Bien que basées sur un contact statique, ces dernières permettent l’estimation rapide
du bruit de roulement par approche statistique hybride, dont le modèle HyRoNE de l’Ifsttar est un
exemple opérationnel.

Les modèles de contact dynamique développés pour la prévision du bruit de roulement sont
pour la plupart basés sur une description quasi-statique du contact. En raison de la nature non-
linéaire du contact, le problème doit être résolu dans le domaine temporel. Certaines approches
couplent les conditions de contact unilatéral avec la réponse impulsionnelle du pneumatique (fonc-
tion de Green). Il existe différents modèles vibratoires de pneumatique : plaque orthotrope, struc-
ture double couches élastique, modèles éléments finis en guide d’onde ou périodique. La bande
de roulement du pneumatique est très souvent approchée par un massif semi-infini élastique qui
permet de prendre en compte l’interaction entre les points de contact. La nature multi-échelle des
surfaces de chaussée nécessite un traitement préalable pour une résolution efficace du problème,
soit par le calcul de raideur de contact non-linéaire à partir des petites échelles de texture (approche
de l’université de Chalmers), soit par une décomposition multi-aspérités de la surface de chaussée
(approche Ifsttar/ENPC). Cette dernière nécessite également la connaissance des lois de contact
locales sur chacune des aspérités. Les forces de contact dynamique calculées sont utilisées pour
la prévision du bruit d’origine vibratoire, soit par méthode statistique hybride, soit par méthode
physique déterministe.

Pour des conditions de chargement statique, les études expérimentales ont permis de valider
les lois de contact ponctuel et l’hypothèse de massif semi-infini pour des configurations simplifiées
entre un pavé de gomme et des aspérités sphériques. Les empreintes de contact statique entre un
pneumatique et différentes surfaces de chaussée rugueuse ont également permis d’estimer la préci-
sion du modèle multi-aspérités de l’Ifsttar. De plus, les mesures de force de contact dynamique en
conditions de roulement sur piste, plus difficiles à réaliser, ont montré une diminution de l’ordre
de 20 % de l’aire de contact pneumatique/chaussée lors du roulement. Ce phénomène est attribué
à la viscoélasticité de la gomme composant le pneumatique. En revanche, les mesures sur piste
n’ont pas permis de démontrer clairement le caractère quasi-statique du contact.

Au regard de ce chapitre, la modélisation du contact dynamique pour la prévision du bruit de
roulement nécessite des hypothèses simplificatrices dont une partie reste à valider expérimentale-
ment. À cet effet, un banc d’essai spécifique a été développé à l’Ifsttar afin de réaliser des mesures
en conditions de laboratoire maîtrisées. À l’aide de cet équipement, les objectifs de la thèse sont
d’une part d’étudier l’influence de la vitesse de roulement sur les forces de contact dynamique,
incluant l’effet de la vitesse sur l’amplitude des forces de contact et sur les lois de contact local,
et d’autre part d’étudier l’interaction entre les aspérités et la distribution des forces de contact
dynamique en conditions de roulement.
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Chapter 1

Literature review

People are getting more exposed to road traffic noise in urban areas over the last decades.
Tyre/road noise is a major contributor to this environmental issue. In particular, for passenger cars
rolling at over 50 km/h, it dominates among all the road noise sources [Sandberg, 2001].

Various models have been established using different theories and analysing different as-
pects of noise generation, with the final aim to predict the tyre/road noise and to control the noise
emission by, for instance, optimizing road surface structures. These aspects include a thorough un-
derstanding of pressure distribution over the tyre/road contact patch and its correlation with noise,
tyre’s structure-borne noise radiation, horn effect amplification as well as aerodynamic issues,
namely air-pumping, Helmholtz resonance and pipe resonance.

The present literature review will first briefly describe the aforementioned noise generation
mechanisms. After that, existing models, as well as experimental set-ups and outcomes in labora-
tories, will be summarised in two sections. The final section will identify and discuss areas yet to
be explored, explaining why the work of the present thesis is of special scientific interest.

1.1 Noise generation mechanisms

Rolling noise is generated by different sources located separately around the tyre at vari-
ous frequency ranges. Meanwhile, most generation mechanisms can be classified into 3 main
categories: structural, aerodynamic and amplification effects. Understanding these aspects helps
diagnose the most critical research challenges.

1.1.1 Sources of rolling noise

Generally speaking, for a passenger car under the cruise-by condition, i.e. a constant rolling
speed above 50 km/h, rolling noise is stated to be a wide-band noise ranging from 100 Hz to
5000 Hz. The maximum of acoustic energy is usually situated between 700 Hz and 1500 Hz.

Iwao and Yamazaki [1996] distinguished four main sources of tyre/road noise, as shown
in Figure 1.1, based on measurements carried out on a car rolling at 50 km/h. The first-order
frequency component of the tread pattern, included between 400 Hz and 600 Hz, is radiated by
the sidewall. Two zones very near the contact patch on each side, the leading edge and the trailing
edge, generate noise from 500 to 2 kHz, covering the second-order component. The last source is
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the resonance phenomenon due to the upper part of the wheel housing and radiates noise between
500 Hz and 600 Hz. In practice, rolling noise is reduced by treating physical processes from which
it arises.

Figure 1.1 – Contour map of sound intensity level in the case of a car tyre rolling on a chassis
dynamometer drum [Iwao and Yamazaki, 1996].

1.1.2 Mechanisms of noise generation

Rolling noise is due to a combination of complex physical phenomena that go into two cat-
egories: mechanical or structural mechanisms and aerodynamic mechanisms. Additional amplifi-
cation effects are not to be ignored as well.
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(b) Aerodynamic Mechanisms

Figure 1.2 – Mechanisms of noise generation [Kuijpers and van Blokland, 2001].

Mechanical mechanisms (Figure 1.2a) mainly include radial and tangential vibrations, stick-
slip and stick-snap effects. The most common aerodynamic noise sources (Figure 1.2b) are air-
pumping, Helmholtz resonances and pipe resonances. The generated noise is then amplified by
the multiple reflections within the tyre horn, named the horn effect.

1.1.3 Frequency ranges and speed exponents for the mechanisms

According to Kuijpers and van Blokland [2001], each mechanism is associated with a speed
exponent k and influences particularly a specific frequency range. Figure 1.3 summarises speed
exponents and frequency ranges for major mechanisms. The sound level Lp can be related to the
so-called speed exponent k with the following mathematical expression:

Lp ⇠ 10log(v/v0)k[dB] = 10klog(v/v0)[dB] (1.1)
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Radial vibration of tyre is the main noise source at frequencies below 1 kHz while airflow
related noise are dominant at frequencies above 1 kHz.

vibrational mechanisms

radial vibrations of the tyre carcass
radial vibrations of the profile elements

tangential vibrations of the profile elements   
stick-slip stick-snap

aerodynamical mechanisms

air-pumping
Helmholtz resonances
pipe resonances
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Figure 1.3 – Overview of speed exponents and frequency ranges for tyre/road noise generation
mechanisms [Kuijpers and van Blokland, 2001].

1.2 Existing tyre/road contact models for rolling noise prediction

Facing the complexity of the whole problem, a number of theoretical models, taking into ac-
count one or several of the aforementioned aspects, have been proposed. These models are either
physical or statistical (empirical or hybrid) with regard to how relationships between noise and in-
fluential factors, such as tyre tread patterns and road textures, are analysed. Deterministic physical
models involve simplified yet reasonable approaches of the real physical problem to reduce the
time of calculation while trying to retain a good approximation of the noise generation procedure.
Statistical empirical models, on the contrary, bypass the physical mechanisms and seek directly
the link between noise and parameters to be optimised for noise reduction, which are, most often,
the road textures. Statistical hybrid models combine both physical models and statistical data to
relate physical variables to noise measurement results. This section focuses on tyre/road contact
models and how they can be used to assess rolling noise.

1.2.1 Envelopment procedures for hybrid models

Envelopment procedures are applied to determining the static contact pressure distribution
of a tyre on a pavement and the corresponding rubber displacement when given the tyre’s Young’s
modulus. The contact pressure tends to infinity at the edges limiting a profile with a finite length
along the contact surface, represented in two dimensions [Johnson, 1985]. This problem is known
as the edge effect. The word "envelopment" refers to methods aiming at omitting the boundary
discontinuities. Accurate tyre/road noise prediction requires realistic modelling of the tyre defor-
mation on texture profiles. Several methods have been proposed to this purpose and are either
empirical or physical.

An empirical method by von Meier et al. [1992] is based on the idea of limiting the second-
order derivative of texture profile. The envelopment profile thus obtained can then be correlated
with noise. This procedure, however, is a purely statistical approach and does not involve the
contact problem.
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Figure 1.6 – HyRoNE structure [Beckenbauer et al., 2008].

Two rolling noise generation mechanisms, namely radial vibrations and air-pumping, are
treated separately in the frequency ranges they predominate: 100 Hz to 1250 Hz for radial vibra-
tions and 1250 Hz to 5 kHz for air-pumping. The INRETS static tyre envelopment model analyses
the partial tyre/road contact. The statistical sub-model uses linear relations between contact forces
and sound pressures and calculates the global pass-by noise levels in one-third octave bands. The
noise absorption effect is then integrated and corrected to provide the final predicted noise level.
The HyRoNE model handles only a limited numbers of road surface types and of rolling speeds,
as well as one specific type of tyre.

1.2.2 Contact models developed at Chalmers University of Technology (Sweden)

Several models have been developed at Chalmers University in Sweden during a series of
PhD theses. Based on an approach proposed by Kropp [1992], the tyre/road contact problem
has been progressively modelled in a more realistic way by step-wise incorporation of previously
unconsidered phenomena. The models are used either in hybrid approach (SPERoN model) or in
deterministic physical models for rolling noise prediction.

1.2.2.1 Kropp’s model

Kropp [1992] first came up with a 2-D contact model based on which the following mod-
els are developed. For frequencies above 400 Hz, the curvature of tyre has little influence on
structure-borne rolling noise and can hence be neglected, as the wavelengths are no longer sig-
nificant compared with the radius of curvature. According to this observation, Kropp proposed
to represent the tyre with an orthotropic plate using a Winkler bedding (elastic foundation) for
modelling the contact between the rubber and the road surface. Nevertheless, tangential forces are
not taken into account and the contact force is assumed to be uniformly distributed over the width
of the rolling band.

The contact problem is to identify the radial contact force Fe('e, t) at point e in the time
domain. By dividing the rolling band into discrete elements along its circumference, the position
of each point e can be characterised by the angle 'e between the radius passing through it and the
vertical direction. The contact force is a function of the tyre tread compression ∆ye(t). The latter
is given by the following equation:
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∆ye(t) = y0(t) + k10('e, t) + ⇠e('e, t) � k2('e, t) (1.8)

where y0(t) is the position of the rim center, k10('e, t) the contour of the undeformed tyre, ⇠e('e, t)
the vibration of tyre belt and k2('e, t) the roughness of the road surface as illustrated in Figure 1.7.

Figure 1.7 – Winkler bedding model for the tyre/road contact [Kropp, 1992].

As the contact configuration varies from one point to another and therefore leads to a non-
linear contact problem, the use of a Winkler bedding [Johnson, 1985] allows the calculation time to
be reduced. The contact between rolling band and road surface is modelled by a series of isolated,
uncoupled springs, as shown in Figure 1.7. The contact force Fe('e, t) exerted at point e by a
spring of stiffness se is described as follows:

Fe('e, t) = se∆ye(t)H(∆ye(t)) (1.9)

where H is the Heaviside function which retains only positive values since Fe('e, t) exists only
when contact occurs and the spring is compressed.

The deformation of the tyre belt ⇠e('e, t) at point e is calculated thanks to an orthotropic
plate model supported by an elastic foundation. The latter, illustrated in Figure 1.8, represents
the interior pressure of the tyre and the contribution of the side walls to the radial stiffness. The
plate under tension lying on this elastic foundation is orthotropic, i.e. the bending stiffnesses are
different along circumferential and lateral directions.

Figure 1.8 – Model of an orthotropic plate representing the belt of a tyre [Kropp, 1992].

The impulse response or the Green’s function g of an orthotropic plate can either be evalu-
ated first in the frequency domain then transferred into the time domain with help of a Fast Fourier
Transform [Kropp, 1992] or directly in the time domain [Hamet, 2001]. The following equation
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expresses the convolution of the contact forces Fe and the impulse response functions g that de-
scribes ⇠e:

⇠e(t) =
X

m

Fm(t) ⇤ gm,e(t) =
X

m

Z t

0
Fm(⌧)gm,e(t � ⌧)d⌧ (1.10)

The system composed of equations (1.8), (1.9) and (1.10) defines the non-linear contact problem
to be solved in the time domain. The resolution can be achieved by using the Newton-Raphson
iterative scheme.

This model has been extended to a quasi 3D one [Kropp et al., 2001, Wullens, 2003] to in-
troduce the roughness distribution in traversal direction into the contact problem. When the road
surface is discretised into slices along its circumference, the non-linear local stiffness can be cal-
culated from a Boussinesq’s problem for each section, as schematically represented in Figure 1.9.
Hence, the contact force Fe('e, t) at point e becomes:

Fe('e, t) =
Z

∆ye('e,t)

0
se(⌘)d⌘, (1.11)

where se is the characteristic function of stiffness and ⌘ the displacement of the section in question.
The contact force is assumed to be acting evenly over the width of the rolling band.

lateral� roughness

rubber� slice,� no� contact

lateral� roughness

partial� contact

lateral� roughness

total� contact

� road� surface

rubber� slice,� no� contact partial� contact total� contact

road� surface road� surface

Figure 1.9 – Schematic representation of a lateral rubber slice in no, partial and total contact with
the road surface (left) and realisation as a Winkler bedding [Wullens, 2003].

1.2.2.2 Larsson’s model

Kropp’s model does not take into account the local deformation of the tyre tread which gains
importance as the frequency rises, especially for small excitation areas. Therefore, it is only able
to predict radial responses, but not tangential or lateral ones. To tackle this problem, Larsson
proposed a high-frequency tyre model and has extended the contact model to a refined 3D one,
considering the interaction between contact points.

The tyre model based on elastic field equations (1.12) is used to describe local deformations
for excitations in both radial and tangential directions. Since the internal structure plays a rela-
tively important role in the radiation of rolling noise at high frequencies, the tyre is modelled by
two layers, each composed of an elastic homogeneous isotropic material, representing respectively
the rubber rolling band and the stiff metal belt. The plates are under tension because of the infla-
tion pressure in longitudinal and transverse directions. The bottom plate is placed on an elastic
foundation to simulate the stiffness of sidewalls. Figure 1.10 illustrates the structure of the tyre
model.

18



1.2. Existing tyre/road contact models for rolling noise prediction

Figure 1.10 – Winkler spring model for the tyre [Larsson and Kropp, 2002].

The elastic field equations write as follows:
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(1.12)

where ⇠, ⌘ and ⇣ are displacements in x-, y- and z- directions respectively and u the correspond-
ing velocity vector. ∆ is the Laplace operator and r the nabla operator. G, ⌫ and ⇢ are the shear
modulus, Poisson’s ratio and the density respectively and, �0 the tension in the tangential direc-
tion. The equations fulfilling the boundary conditions are then solved with a Fourier transform.
However, as the local deformation and stiffness are sensible to the unknown excitation area and
pressure distribution, errors are induced while doing measurements. This problem has been treated
by Andersson and Larsson [2005] who modelled the excitation used in measurements.

The tyre model has been experimentally validated [Andersson et al., 2004, Andersson and
Larsson, 2005] and can thus be incorporated into the contact model to describe the deformation
of the tyre surface. Equation (1.13) expresses the position ye of point e on the rolling band as a
function of time t:

ye(t) = y0 + k10('e, t) + ue(t) (1.13)

where k10('e, t) is the geometry of the tyre before deformation and ue the displacement at the
tyre surface due to contact forces. The stationary Green’s function is obtained with the same Fast
Fourier Transform method as in Kropp’s model and leads to the Green’s function g of a rolling
tyre by including the time phase shift due to tyre rotation. The convolution of the contact forces
Fe and the updated Green’s function g gives the aforementioned displacement ue, as described in
Equation (1.14).

ue(t) =
N
X

m=1

Z t

0
Fm(⌧)gr,m,e(t � ⌧)d⌧ (1.14)
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where gr(t) = g(t)�(' � Ωt), with Ω the angular velocity of the tyre. The contact boundary con-
ditions are checked for each time step, and the problem is solved thanks to an iterative scheme
proposed by Kalker [2013]. The quasi 3D model [Kropp et al., 2001] is applied to evaluating the
contact forces.

Despite its consideration of local interaction at contact points between the rolling band and
the road surface, this model appears to be computationally more expensive compared with Kropp’s
model. Its most important usage remains in the validation of simpler models including Kropp’s
one.

1.2.2.3 Wullens and Kropp’s model

Wullens and Kropp [2004] put forward another three-dimensional model capable of mod-
elling the contact problem between a tyre and a rough road surface, assumed to be rigid, under
rolling conditions in the time domain. It calculates the time history of dynamic radial contact
forces and the local deformation of the tread. The orthotropic plate model is used to evaluate the
response of the tyre structure, serving as an input data for the contact model. The rolling band of
such a tyre is considered to be an elastic half-space in this model, and only normal contact forces
are considered.

The non-linear contact problem is a classical one to be solved with the Matrix Inversion
Method [Johnson, 1985]. The contact surface is divided into rectangular elements subjected to
uniform pressures, and the influence matrix Cp relating pressure u and deformation of the elastic
half-space p at equilibrium can be derived from analytical solutions to the contact problem for a
single element:

u = Cp p. (1.15)

When using this method, the elementary excitation area is incorporated into the influence matrix
C, and the relation between contact force F(t) and deformation of the elastic half-space ∆y(t) is
expressed as:

F(t) = C�1
∆y(t) (1.16)

Based on Equation (1.16), the iterative algorithm presented below is to be followed for each time
step until ∆yn+1(t) = ∆yn(t), providing the solution at step n + 1:

n

Fn+1(t) = (Cn)�1
∆yn(t)∆yn+1(t) = CFn+1(t)8n,∆yn+1(t) � ∆yn(t) (1.17)

where Cn is a sub-matrix of C for points in contact at iteration n and ∆y0(t) exactly the same notion
as defined in Equation (1.8). The convolution product between the contact force Fm(t) at point m
and the Green’s function gm,e(t) of the normal displacement at point e due to excitation at point m
gives the resulting displacement ⇠e(t) at point e:

⇠e(t) =
X

m

Fm(t) ⇤ gm,e(t) (1.18)
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1.2. Existing tyre/road contact models for rolling noise prediction

Measurements of accelerations carried out on an airplane tyre rolling on an ISO road show a
good agreement for rotational velocities at 80 and 100 km/h, meanwhile a somewhat poorer quality
of agreement at 60 km/h. Wullens [2003] compared this model with Kropp’s and Larsson’s model,
hereinafter referred to as the 3D EHS, Q3D bedding and Q3D EHS models respectively. The time
domain representation shows very similar results for the three models. However, more variations
can be observed from the frequency content. For frequencies between 200 and 1000 Hz, the Q3D
bedding model produces a higher force level explained by the absence of interaction between the
non-linear springs.

This tyre/road contact model is then used to compute the force time-history with help of a tyre
model in the hybrid model SPERoN (Statistical Physical Explanation of Rolling Noise) developed
by Chalmers and Müller-BBM within the German project "Quiet Traffic", the EC project ITARI
and the P2RN project [Beckenbauer et al., 2008]. The principle of the SPERoN model is shown
in Figure 1.11. This model requires a quasi-3D description of non sound-absorbing road surface
texture as one of the input data. Other ones are airflow resistance within a contact patch on a
dense road surface, as well as tyre load and driving speed. The latter covers the whole speed
range between 30 km/h and 120 km/h. Nevertheless, combinations of road and tyre characteristics
and speeds need to be pre-processed based on comprehensive and well-documented data archived
in the Sperenberg project measurements database. In addition, unlike HyRoNE, the version of
SPERoN at that time was still limited to processing impervious road surfaces.
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Figure 1.11 – SPERoN structure [Beckenbauer et al., 2008].

Based on the SPERoN contact model, Wullens and Kropp [2007] used the contact forces and
the Green’s functions of the tyre structure to calculate the vibration field of a rolling tyre in the
wavenumber frequency domain, leading to a further step toward the understanding of rolling noise
radiation. A new deterministic physical model for rolling noise prediction has been proposed by
Kropp et al. [2012]. It combines the contact model described in this subsection, a wave guide
finite element tyre model and a boundary element model for noise estimation. Calculated sound
pressure levels are in good agreement with measured ones.

1.2.2.4 Andersson and Kropp’s model

Winroth et al. [2014] used a numerical contact model [Andersson and Kropp, 2008] to inves-
tigate the influence of tread inertia and material damping on dynamic response, that none of the
aforementioned models have taken into account. The interfacial layer between the elastic rubber
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and the rigid road surface is discretised into elements represented by pairs of matching points con-
nected by non-linear contact springs. The contact problem for multiple contact elements is then
solved numerically in the time domain.

In the first place, the contact patch needs to be divided into discrete elements to lower the
computational expense. Figure 1.12b shows the discretisation of a detailed scan of the apparent
contact area of 2 ⇥ 2 cm2 used in the simulation. The sampled road surface geometry contains
20 ⇥ 20 "pixels" of 1 ⇥ 1 mm2 each representing a pair of matching points, characterised by a non-
linear contact spring. The height of a matching point is placed at the center of the element, and
roughness at smaller length-scales than the element dimension is neglected. The use of non-linear
springs is the most common method in contact modelling, and their stiffness can be approximately
evaluated according to a detailed scan of road surface (Figure 1.12a) and material properties. A
re-sampling process is necessary to ensure numerical stability during computation by increasing
the time resolution.
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Figure 1.12 – (a) High resolution scan of the road surface and (b) sampled version of the road
surface containing 400 elements [Andersson and Kropp, 2008].

Constitutive contact equations are then employed to establish the relation between contact force
Fm, assumed to be evenly acting on an element of area Am, and displacement dm of the latter, as
expressed in the following equation:

Fm = Am f (dm) or dm = h(Fm/Am) (1.19)

When ignoring very detailed roughness, the interaction between two rough surfaces in a single
contact zone can be modelled as a pair of matching points linked by a non-linear spring (Fig-
ure 1.13), as in the case of a discrete element of tyre/road contact patch. The compression of
spring ⇣(t) is the negative separation distance expressed as:

⇣(t) = �d(t) = �z2 � w2(t) + z1(t) + w1(t) (1.20)

where z1 and z2 are respectively the positions of matching points belonging to body 1 and body 2
at rest, while w1(t) and w2(t) the displacements of matching points. In this very case, w1(t) is equal
to zero, since the road surface is assumed to be rigid, and w2(t) is given by the convolution of the
contact force F(t) with the Green’s function g(t).
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1.2. Existing tyre/road contact models for rolling noise prediction

Figure 1.13 – Geometry and modelling approach of the problem [Andersson and Kropp, 2008].

Using Equation (1.20) and predetermined non-linear spring stiffness, the contact force F(t)
can then be written as:

F(t) =
Z ⇣(t)

�1

k(x)dx (1.21)

The contact problem is first sampled with low-pass filter and then re-sampled for time dis-
cretisation. All variables are thus expressed as functions of time step N. The Newton-Raphson
numerical method is used to solve the system for a single contact element. Finally, the whole
contact model deals with an equation system for multiple pairs of matching points.

Winroth et al. [2014] arranged and simulated two dynamic contact scenarios between a tyre
tread block and a rough road surface for comparison with the quasi-static case. The influence of
the mass is not taken into account in the latter, which is not the case for dynamic contact problems.
In one scenario, representing an infinite impedance, the elastic layer is forced vertically into the
road surface with a predetermined and constant indentation acceleration (50 m/s2, 250 m/s2 or
500 m/s2). While in the other one, a mass of 5 grams assigned to the tread block is released from a
certain height (0.1, 0.3 or 0.4 m) above the road surface. The set of Green’s functions is obtained by
using the model proposed by Larsson and Kropp [2002] and is transformed into the time domain.
Simulations of the predetermined indentation scenario (Figure 1.14) show that contact force and
stiffness increase with indentation acceleration and that dynamic contact cases yield higher values
than the quasi-static case. When changing the loss factor, results indicate that material damping
could be roughly modelled by a slightly augmented contact stiffness. The released mass scenario
is a preliminary study of the inertial effect. It is believed that the latter only matters for highly
detailed contact modelling.
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Figure 1.14 – Results for different predetermined indentation accelerations and the quasi static
case [Winroth et al., 2014].
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1.2.3 Multi-asperity contact models developed at IFSTTAR/ENPC

A multi-asperity tyre/road contact model has been developed at IFSTTAR in an active collab-
oration with the ENPC. First, Sameur [2004] proposed an analytical description of the load/pen-
etration relationship while considering the interaction between asperities. Next, Cesbron [2007]
developed a Two-Scale Iterative Method to find numerical solutions to the contact problem in
statics efficiently. Finally, Dubois [2012] incorporated a road surface partitioning algorithm and
introduced rubber viscoelasticity into the contact problem to obtain more accurate results with re-
gards to geometrical and material properties. A summary of contact assumptions and applicable
road surface geometry types at respectively macro- and micro-scales in the multi-asperity contact
models is given in Table 1.1.

Table 1.1 – Summary of contact assumptions and applicable road surface geometry types at macro-
and micro-scales in the multi-asperity contact models.

Macro scale (multi-point) Micro scale

Sameur (2004)
Elastic
Simple geometries (spheres, cones)

Cesbron (2007)
Elastic Elastic
Complex geometries (real road surfaces) Simple geometries: final contact pressure

Complex geometries : initial contact pressure

Dubois (2012)
Elastic/viscoelastic with/without tyre vibrations Elastic
Complex geometries

Complex geometries:
Small surfaces: final iteration
tyre/road contact: initial pressure

1.2.3.1 Sameur’s model: multi-point elastic approach for tyre/road contact

Sameur [2004] proposed an analytical model to describe the load/penetration relationship
for a 3-D multi-point frictionless elastic contact problem on simple shaped indenters. A theory of
interaction potential is used to express the contact law between a single punch of arbitrary profile
and an elastic half-space, based on the assumption that only normal loading is considered. The
contact force P is written as a function of the depth of penetration � at the tip of the punch:

P(�) =
@U(�)
@�

with U = c
8

15⇡1/4(✓1 + ✓2)

V2
Γ

p1/2
Γ

S 7/4
Γ

(1.22)

where U is the potential, VΓ the volume of the contact domain Γ, S Γ the projected area of Γ onto
the tangent plane at the contact point and pΓ the projected perimeter.

After its experimental validation on single indenters of simple shapes, this analytical model
serves to describe local contact laws in a multi-point contact problem. This formulation takes into
account the interaction between N asperities composing a surface in contact with an elastic half-
space. The total normal load P is divided into N normal forces Pi applied to the summit Mi of
each indenter. The local depth of penetration �i on the ith indenter is deduced from the total depth
of penetration �0, the height Hi and the interaction displacement due to forces on other asperities
M j. The contact law for the ith asperity is then written as follows:

Pi(�) =
@U

@�
(�0 � Hi � ui) with ui =

N
X

j = 1
j , i

Ti jP j (1.23)
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The interaction coefficients Ti j are calculated using the influence function of Boussinesq [1885]
for a concentrated normal force loading the surface of an elastic half-space:

Ti j = T (xi, yi; x j, y j) =
1

⇡E⇤
q

(xi � x j)2 + (yi � y j)2
with E⇤ =

E

1 � ⌫2
(1.24)

The contact is considered in statics for each time step, and the system of N non-linear equations
(1.23) is numerically solved using the Newton-Raphson iteration method.

When compared with a finite element model, the analytical model proves to be considerably
more time-efficient. According to Sameur [2004], the results are in good agreement with those ob-
tained from the FE model and experiments configured for contact between few indenters of simple
shapes and a rubber block. Cesbron et al. [2006] obtained satisfactory results for measurements of
contact forces and areas in the case of a periodic surface composed of 25 spherical indenters. This
simplified analytical model dealing with the tyre/road contact problem at macro-scale is a first step
towards a more reliable and more efficient one.

1.2.3.2 Two-scale elastic approach for tyre/road contact

Based on the aforementioned method capable of calculating force distribution in the Boussi-
nesq [1885] problem, Cesbron et al. [2009b] proposed a Two-scale Iterative Method (TIM) to
fully solve this problem by introducing a second step for evaluation of pressure distribution at
micro-scale, as depicted in Figure 1.15.

Figure 1.15 – Schematic view of the two-step iterative method, (a) macro-scale, (b) micro-scale
[Dubois et al., 2012].

The contact forces Pk at the summit of the asperities are calculated in the macro-scale step using
the follow equation:

8k 2 [1,N], Pk =

8

>

>

<

>

>

:

fk(�k) if �k > 0

0 if �k  0
and P +

N
X

k=1

Pk = 0 (1.25)

In the micro-scale calculation step, the surface of the elastic half-space is divided into n
identical square elements with coordinates (xi, yi, zi) and size h ⇥ h. A global influence matrix,
denoted A, is defined. Its coefficients are calculated using the analytical results of Love [1929]
assuming that a uniform pressure is acting on each square element. Defining a global pressure
vector p = {pi}

T
i2[1,n] and a displacement vector b = {� � zi}

T
i2[1,n] then the Boussinesq problem is

written as a vector equation Ap = b. Matrix A is organised by blocks as follows:
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(1.26)

where N is the number of indenters at macro-scale, Akk the local influence matrix, pk the local
pressure vector and bk the local displacement vector for the kth punch. The extra-diagonal block
Akl is the part of A relative to interaction of the lth punch on the kth punch. An initial approximation

of the contact pressure distribution p0 =
n

p0
1(P1) · · · p0

k(Pk) · · · p0
N(PN)

oT
is calculated based on the

macro-scale forces Pk using the classical matrix inversion method. For the kth punch, the equation
is written as:
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(1.27)

Equation (1.26) is then solved using a non-linear block Gauss-Seidel-like algorithm. The iteration
starts from p0. At step m+1, the pressure distribution on each punch k, denoted pm+1

k , is calculated
by inverting the following local linear problem:

Akkpm+1
k = bm

k �

k�1
X

l=1

Aklpm+1
l �

N
X

l=k+1

Aklpm
l (1.28)

Negative pressures are replaced by zeros and the procedure is repeated for the other punches.
It is stopped until no negative pressure is detected during an iteration and when the following
convergence criterion is checked:

k pm+1 � pm k

k pm k
6 " with k x k=

n
X

i=1

| xi |
2 (1.29)

The macro-scale step quickly provides a good estimation of the initial pressure distribution
p0 for the micro-scale step, which saves time on the most time-consuming part of the whole cal-
culation process by applying the iterative formula (1.28) instead of inverting the global influence
matrix as in conventional methods. Comparison between numerical and experimental results for
3 configurations of spherical indenters loaded on a rubber block proves this model to be time-
efficient and fairly accurate.

Although Cesbron’s model shows several advantages, the macro-scale step identifies only
the emergent part of asperities on road surface. Dubois et al. [2012] improved this approach
by introducing an algorithm for partitioning the whole measured surface. A global flow chart
(Figure 1.16) outlines the calculation steps in the whole modelling process and indicates the time
cost on each step.
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1.2. Existing tyre/road contact models for rolling noise prediction

Figure 1.16 – Global flow chart of the method to evaluate numerically tyre/road contact pressures
using a multi-asperity approach (the numbers in percentages are the relative computational effort
in each part) [Dubois et al., 2012].

The measured road surface profile is first processed through a partitioning procedure as illustrated
in Figure 1.17. Two image processing methods are used: an iterative labeling method [Cesbron
et al., 2008] for binarizing the image of measured surface and the watershed segmentation method
proposed by Vincent and Soille [1991]. Thus the surface is partitioned into segments, each asso-
ciated to the summit of the asperity it surrounds. This is performed only once, and the results are
saved for use as input data in contact calculations.

Figure 1.17 – Schematic view of the partitioning method for a real road surface [Dubois et al.,
2012].

Dubois et al. [2012] extended the contact law on a single asperity to all situations (Fig-
ure 1.18), written as follows:

8k 2 [1,N], Pk =

8

>

>

>

<

>

>

>

:

0 if �k  0 Non-contact
CkE⇤��k

k if 0 < �k < dk Power law
KkE⇤(�k � dk) +CkE⇤��k

k if dk  �k Linear
(1.30)
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where Ck and �k are constants depending on the shape and size of the asperity, the constant dk

is a critical depth above which the contact law becomes linear, and KkE⇤ corresponds to a linear
stiffness. A local Boussinesq problem has to be solved individually for each asperity to obtain the
numerical pairs (�k,Pk), with which the aforementioned contact law parameters can be deduced
from Equation (1.30).

Figure 1.18 – Analytical contact law proposed for a single road asperity [Dubois et al., 2012]. In
[Cesbron, 2007], the contact law was limited to the power law alone.

Dubois et al. [2012] computed the contact forces at macro-scale and the final pressure distri-
bution at micro-scale for a small surface sample and compared results with those of the classical
matrix inversion method. As shown in Figure 1.19, the comparisons are satisfactory. However,
calculating the final pressure distribution within the full contact patch for real road surfaces is
time-consuming. Bearing in mind that the contact forces evaluated at macro-scale are sufficiently
accurate, the initial pressure distribution is used for noise estimation.

Figure 1.19 – Comparison of contact forces at the summit of each asperity between a reference
method (matrix inversion method) and the multi-asperity method at macro-scale [Dubois et al.,
2012].
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Dubois et al. [2013] studied the relationship between tyre/road numerical contact data and
close-proximity (CPX) rolling noise measurements at low frequencies and provided a statistical
way to estimate the latter from the former. The complete procedure for the contact pressure calcu-
lation, considering a succession of static states in the rolling direction, is shown in Figure 1.20.

Figure 1.20 – Schematic view of the contact calculations on several metres of road surfaces
[Dubois et al., 2013].

The pressure distribution is integrated and then transformed into contact force spectra represented
in one-third octave bands. The contact force levels are calculated respectively for a slick tyre and
a classic patterned tyre over all the tested road surfaces and for a rolling speed of 90 km/h and
processed for correlation with the measured noise levels using a CPX equipment. Figure 1.21
shows the calculated force spectra for both tyres.

(a) (b)

Figure 1.21 – Calculated one-third octave bands contact force levels at 90 km/h for each surface
for a slick tyre (a) and for a classic patterned tyre (b) [Dubois et al., 2013].
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The noise level can be estimated from the contact force levels using a weighted linear regression
relation. The measured and estimated noise levels are then correlated in Figure 1.22. The mean
absolute difference " is 1.50% for the slick tyre and 1.34% for the classic patterned tyre.

(a) Correlation between measured noise and es-
timated noise for a slick tyre.

(b) Correlation between measured noise and es-
timated noise for a classic patterned tyre.

Figure 1.22 – Correlation between measured noise and estimated noise from contact forces by
hybrid method for a tyre at 90 km/h. Strong correlation is found within the frequency range
between 315 and 1250 Hz for the slick tyre and between 315 and 800 Hz for the classic patterned
tyre, by fixing a minimum threshold of correlation coefficient at 0.8 [Dubois et al., 2013].

1.2.3.3 Multi-point viscoelastic approach

Dubois et al. [2011] presented a macro-scale approach capable of taking into account the
viscoelastic behaviour of the tyre tread and how it influences the load/penetration relationship.
To consider the time-dependent stress-strain(�-") relationship, rheological models such as Zener
model and generalised Maxwell model are used to determine the creep compliance function Φ and
the relaxation function Ψ, as depicted in Figure 1.23. Assuming that each time increment is short
enough to treat Φ and Ψ as constant functions very close to the initial instant, the numerical vis-
coelastic contact problem is turned into an elastic-like problem described by equations (1.31) and
(1.32) for the whole road surface partitioned into N asperities. The latter, expressed as a Boussi-
nesq problem, leads to an analytical elastic solution which will be transformed into a viscoelastic
solution using Radok’s technique [Radok, 1957].

(a) (b)

Figure 1.23 – Schematic view of both rheological models: (a) Zener model, (b) generalised
Maxwell model [Dubois et al., 2011].

8k 2 [1,N], Pk(t) =

8

>

>

<

>

>

:

 (0) fk(�k(t)) + Pk
old(t) if �k(t) > 0

0 if �k(t)  0
(1.31)
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with:

Pk
old(t) =

Z t��t

0
 (t � ⌧)

d
d⌧

( fk(�k(⌧)))d⌧ �  (0) fk(�k(t � �t)) (1.32)

where Pk
old represents the known historical contact force on asperity k, whose penetration is given

by the following equations:

�k(t) = zs
r,k � �(t) � zs

t,k � uk
old(t) � �(0)

N(t)
X

l=1
l,k

GklPl(t) (1.33)

where uk
old represents the known historic displacement on asperity k. Combining equations (1.31)

and (1.33), a non-linear system of N(t)+1 equations with N(t)+1 unknowns {P1(t), . . . , PN(t), �(t)}
is obtained. It is then solved using the Newton-Raphson iterative method at each time step.

This viscoelastic approach was numerically validated by comparison with a reference method
proposed by Kozhevnikov et al. [2008] (Figure 1.24), showing an even considerably higher time-
efficiency than an enhanced method based on the latter from Kozhevnikov et al. [2010]. When
both the elastic and viscoelastic approaches are applied to real road surfaces, a decrease of about
20% in the contact areas can be observed between static and dynamic conditions. This result is
in agreement with the experimental observation made by Cesbron et al. [2009a]. Thus, the static
contact method can be a first approximation of the dynamic contact forces for tyre/road noise
prediction at low frequencies, if the shear modulus is correctly chosen. A similar approach has
been applied by Bui [2014] to investigate the influence of road textures on rolling resistance.

Figure 1.24 – Comparison of contact forces at the summit of each asperity between a reference
method (matrix inversion method) and the multi-asperity method [Dubois et al., 2011].

1.2.3.4 Reduced Green’s formalism approach for dynamic contact

Meftah [2011] came up with another approach to study the dynamic tyre/road contact prob-
lem. The tyre response is calculated using an FE periodic model. To solve the contact problem,
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stable. Four characteristic relaxation times are identified, and a Prony’s series is reconstructed to
describe the stress as a function of the time parameter.

σ

σ ∞σ

σ

∞σ

σ

∞σ

Figure 1.26 – Stress relaxation test for determination of the Young’s modulus of rubber [Sameur,
2004].

The Young’s modulus can also be determined using Hertzian contact theory, which is ex-
perimentally studied by pressing the rubber pad onto a steel ball (Figure 1.27). The force P is
proportional to �3/2, where � is the penetration depth. When P is plotted versus � using a log-
arithmic scale, the Young’s modulus can be deduced from the slope of the linear relation. The
test yields a very similar result to the relaxation test, and the one given by the latter is used for
identification of constant c. A value of 0.34 that best fits the force/penetration curve is deduced
according to Equation (1.22). Similar tests are done for steel cones with different angles (↵ = 45
and ↵ = 60), as well as for a steel pyramid. Table 1.2 summarises experimental and analytical
values of constant c for all the three shapes of punch. The results are in good agreement.

 
 

 

 

 

 

 

Figure 1.27 – Compress of a rubber pad on a spherical indenter for evaluation of the constant c in
equation (1.23) [Sameur, 2004].

Table 1.2 – Identification of the constant c in Equation (1.22) [Sameur, 2004].

Sphere Cone Pyramid
c cs cc cp

Experimental 0.34
45° 60°

0.53
0.43 0.45

Analytical 0.36 0.45 -
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A study carried out by Liu et al. [2012] also involves investigation of tyre/road contact forces
at the asperity scale. By treating each stone chip as an asperity with a spherical top, they proposed
a viscoelastic indentation model with edge effect correction capable of predicting dynamic contact
forces. After validation of their proposed model by comparison with an FE model, a tread block
rolling test rig is used to simulate the dynamic contact between a tread block and single asperities.
A tread block sample is mounted on a bi-axial load cell in the smaller wheel, and the bigger
wheel contains three holes equipped with holders. Light beam breakers and corresponding optical
sensors mounted on the wheels detect contact, and the bi-axial load cell captures both the normal
and tangential forces. Figure 1.28 shows a typical contact force time history of the contact over a
spherical indenter. Real stone chips of different shapes are then used to validate the spherical top
formulation, and good agreements are found between experiments, FE and viscoelastic indentation
models at low force levels. Although tangential forces can be measured, friction is not taken into
account in the model, and FE analysis in this study suggests that the effect of friction is negligible.
In addition, tests on spherical indenters show that the rolling speed has a weak influence on contact
forces. This model focuses on the dynamic response of a tread block in contact with an isolated
road surface asperity. However, without consideration of the interaction between asperities, the
estimate of force distribution would not be sufficiently accurate. And one drawback of the tests
carried out on stone chips is that the smooth shapes are not fully representative of a real road
aggregate.

Figure 1.28 – Typical tread block contact force history. [Liu et al., 2012]

1.3.1.2 Multi-point contact testing

The single point contact law proposed by Sameur [2004] being rather accurate for a single as-
perity, it can be used to help study the interaction effect between asperities. Figure 1.29 illustrates
how two identical steel balls are installed with a height gap of 0.2 mm between them and respec-
tively labeled sphere 1 and sphere 2. The results show that there is a greater difference between
experimental and analytical values on sphere 2 which is lower. This could reflect the importance
of taking into account the interaction in modelling. More tests simulating double or triple contacts
with mixed shapes of asperity confirm this conclusion, hence the multi-point contact law proposed
by Sameur [2004] expressed as Equation (1.23).
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Figure 1.29 – Two spherical indenters installed with a height gap of 0.2 mm between them
[Sameur, 2004].

Cesbron et al. [2006] measured contact forces and radii of contact areas using Fuji films to
validate this new contact law. The contact area is between a rubber block and a periodic surface
composed of 25 identical steel balls set at equal height (Figure 1.30). A press exerts a certain
compression force on the contact surface and leaves prints on Fuji Prescale Films between the
indenters and the rubber block. The prints are then converted to mean contact pressures or apparent
radii. The latter yields coherent results with theoretical ones, whereas the differences can exceed
10% for contact forces (Figure 1.31).

                                            

ε

ε

Figure 1.30 – Periodic surface and experimental set-up for the contact tests with the rubber block
[Cesbron et al., 2006].
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Figure 1.31 – Comparison between the experimental and the theoretical contact forces for P = 419
N [Cesbron et al., 2006].
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Cesbron et al. [2009b] performed first an in-lab validation for the Two-scale Iterative Method
proposed by himself. The experiment set-up is similar to the one explained above. A digital pres-
sure sensing device I-Scan® developed by Tekscan© replaces Fuji films for force measurements.
Three surfaces composed of spherical indenters are configured as depicted in Figure 1.32. Surface
S1 has seven identical and hexagonally arranged indenters. Surface S2 is periodic and composed
of 25 asperities of equal radius. Surface S3 has 24 indenters with ramdom positions and three
possible radii.

Figure 1.32 – Pictures of the three indenting surfaces S1, S2 and S3 (top) and associated numbering
(bottom). [Cesbron et al., 2009b]

The pressure distribution is measured in quasi-statics for each surface thanks to each sensor
cell in the contact patch. The contact forces at the tips of asperities are calculated by integrating
the measured pressure inside each local contact area. Two indicators "M and "m are defined to
represent errors at macro-scale and micro-scale, respectively. The values of the indicators for each
total load P and each surface is summarised in Table 1.3. Since the precision of measurements
is ±10%, the results show that the proposed method could be relevant to modelling multi-contact
problems at both scales.

Table 1.3 – Macro and micro-scale indicators for the three surfaces at the three loading cases.
[Cesbron et al., 2009b]

Surface S 1 S 2 S 3

P (N) 50 100 150 200 250 300 200 250 300
"̄M (%) 0.4 0.2 0.1 0.5 0.5 0.6 1.1 0.7 0.7
"̄m (%) 5.9 4.8 4.9 3.9 4.2 4.0 7.4 7.4 7.0

1.3.1.3 Static tyre/road contact testing

Cesbron et al. [2008] then studied the influence of road texture on tyre/road contact in static
conditions by making numerical and experimental comparisons. The experimental set-up for con-
tact pressure measurement using a large Tekscan© device I-Scan® under static loading is shown
in Figure 1.33. The tests were carried out on a passenger car fitted with two slick tyres on the rear
wheels.
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Figure 1.33 – Experimental setup: (1) Vehicle, (2) Lift system, (3) Measurement area, (4) Slick
tyre, (5) Tekscan sensor 3150, (6) Tested surface, (7) Tekscan handle [Cesbron et al., 2008].

Figures 1.34a and 1.34b represent respectively measured and numerically calculated pressure dis-
tributions of three out of the eight tested road surfaces. The Model Surface MS 1 is composed of
spheres with a periodic distribution. Each colored square element represents a cell of the Tekscan©

sensor. Due to the low spatial resolution, the real contact area on each asperity cannot be iden-
tified in details. The pressure measured on a cell can be due to several asperities. Thus the total
measured area, denoted A, is closer to the apparent contact area than to the real one.
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(a) Examples of measured normal pressure distribution.
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(b) Calculated numerical pressure integrated at Tekscan sensor scale.

Figure 1.34 – Comparison of measured and numerically calculated pressure distributions [Cesbron
et al., 2008].

Correlations between calculated and measured contact areas A and mean pressure values
pm are in good agreement. The best correlations for contact pressure distributions are obtained
for model surfaces composed of spherical punches and real road surfaces of moderated or high
macro-texture. The results are less conclusive for road surfaces of fine macro-texture. This may
be explained by a limitation of the multi-asperity model when the surface is composed of very
small protruding aggregates.
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1.3.1.4 Dynamic tyre/road contact testing

Encouraged by the efficiency of the TIM approach for analysing static tyre/road contact prob-
lems, Cesbron et al. [2009a] implements an experimental study of dynamic contact for noise pre-
diction. The same passenger car and sensor are used for the measurement, but only a line of
sensors is activated as illustrated in Figure 1.35. The sensor is taped on the road surface and cali-
brated according to the total load applied exerted on the tyre which is measured independently on
a weighing device. At the same position, dynamic tests are performed for rolling speeds at 30, 40
and 50 km/h. First measurements, denoted "transverse tests", are performed with the active line
of the sensor perpendicular to the rolling direction. Thus dynamic contact patches in rolling con-
ditions can be estimated. Then measurements are performed with the active line along the rolling
direction. These "longitudinal tests" are used to investigate variations of dynamic contact forces
with speed on six different road surfaces.

(a) Transverse tests.

(b) Longitudinal tests.

Figure 1.35 – Position of the active line of cells for (a) the "transverse tests" and (b) the "longitu-
dinal tests" [Cesbron et al., 2009a].

An example of the contact patches measured at different rolling speeds in "transverse tests"
is given for one road surface in Figure 1.36. The results show that the contact areas are about 20%
smaller in rolling than in static conditions. Moreover, the dynamic contact areas are in the same
order for the three rolling speeds. The decrease in contact area is mainly explained by the dynamic
properties of tyre compounds, like the viscoelastic behaviour of the rubber, whose influence is also
observed in numerical studies carried out later by Dubois et al. [2011].
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Figure 1.36 – Contact patches measured statically and reconstructed from the "transverse tests" at
30, 40 and 50 km/h for the DAC 0/10 (new) road surface [Cesbron et al., 2009a].

In the case of longitudinal tests, contact pressures are measured along the activated line of
sensors at each time step. One example is given in Figure 1.37. Resultant contact forces calculated
by integrating measured pressures for one road surface but different rolling speeds are plotted as
a function of t or Vt in Figure 1.38. The signals are similar for the three rolling speeds, and
this could be explained by the effect of the road texture. However, significant variations can be
observed in the modified force spectra plotted in one-third octave bands for different rolling speeds
(Figure 1.39). This result may be due to the dynamic characteristics of the tyre. Thus, the quasi-
static contact assumption would not be verified experimentally.
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Figure 1.37 – Contact pressures measured at 3 km/h for the DAC 0/10 (old) road surface in the
case of the "longitudinal tests" [Cesbron et al., 2009a].
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Figure 1.38 – Contact forces obtained from the "longitudinal tests" at 30, 40 and 50 km/h for the
DAC 0/10 (old) road surface: (a) resultant contact forces F(t) and (b) associated functions g(Vt)
[Cesbron et al., 2009a].
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Figure 1.39 – Modified spectra in one-third octave bands of the resultant force at 30, 40 and
50 km/h for the DAC 0/10 (old) road surface with the reference speed Vr = 30 km/h [Cesbron
et al., 2009a].

1.3.2 Tyre vibrations and noise

Périsse [2002] investigated two motions composing the tyre vibrations: stationary motion of
a smooth tyre rolling on a smooth road, bending wave motion due to unsteady tyre/road interac-
tions. Two accelerometers, numbered 1 and 2 in Figure 1.40, are mounted onto the inner surface
of the tread and the sidewall, respectively. The tyre first rolls on a smooth road surface. During
the contact, a plateau phase can be observed for the acceleration. In Figure 1.41, the acceleration
signals during one third revolution around the contact zone are compared for three different rolling
speeds, i.e., 40, 60 and 80 km/h. Results show that the acceleration amplitude is proportional to
the square of the tyre rolling speed.
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Figure 1.40 – Experimental set-up for tyre radial acceleration measurements [Périsse, 2002].
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Figure 1.41 – Stationary acceleration signals of the tread in the vicinity of the contact area for
three rolling speeds [Périsse, 2002].

Next, the tyre rolls on two rough surfaces composed of either an isolated step singularity or
a set of such singularities. Acceleration signals measured from both accelerometers at a rolling
speed of 60 km/h over one revolution represent a superimposition of the stationary acceleration
signals and the vibration responses due to the road roughness.

Kindt et al. [2009b] performed experimental analysis of structure-borne tyre/road noise due
to road discontinuities and parametric influences on noise generation. Two identical tyres rolling
against each other are used. Thus, the static deformation of each tyre is equal to that of a tyre
loaded on a flat road surface. For simulation of the impact on the tyre, a cleat is mounted onto the
driven tyre and can easily be replaced by a cleat in another dimension. Photos of the experimental
set-up and the measuring equipments are shown in Figure 1.42. The spindle forces and moments
are measured by the multi-axial wheel hub dynamometer. Different influencing factors such as
rolling speed, inflation pressure, static preload, temperature and cleat dimension are studied by
analysing the spindle force spectra. The parameter causing the most significant variations is the
rolling speed. The greatest peak values for the three rolling speeds (15.71, 26.18 and 31.42 rad/s)
are identified for the (1,0) vertical resonance and appear around 80 Hz. The vertical resonances
are found at low frequencies (below 400 Hz). Certain modes cannot be well excited by the cleat at
certain speed.
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Figure 1.42 – (a) Test setup with two tyres mounted; (b) static tyre deformation due to preload;
and (c) multi-axial wheel hub dynamometer [Kindt et al., 2009a].

1.4 Discussion and conclusions

This literature review tries to cover the major attempts to understand the rolling noise genera-
tion mechanisms using theoretical or experimental methods. Based on classical theories in contact
mechanics, many studies have been carried out on the static tyre/road contact problem. Never-
theless, the dynamic contact problem has only been modelled under simplifying assumptions and
little investigated through experiments.

Thus, the following chapters propose investigations into:

• the influence of rolling speed on dynamic contact forces, including the effect of speed on
contact force magnitude and possible effect on the local load/penetration relationship;

• the interaction between asperities and the distribution of dynamic forces under rolling con-
ditions;

For these purposes, a test rig has been designed and fabricated for experiments that are ex-
pected to provide an insight into the validity of the classical contact mechanics theories, and, if
necessary, how they are to be corrected due to the influence of the speed on dynamics contact
forces. Once the punctual contact law is established for the dynamic case, the test bench is to be
used to analyse the interaction between asperities by measuring the distribution of dynamic forces
for different combinations of asperity geometries.
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Résumé du chapitre 2 en français (Summary of Chapter 2 in French)

Chapitre 2 : Caractérisation du pneumatique de taille réduite intégré
au banc d’essai

Afin d’étudier les forces de contact dynamique en conditions de laboratoire maîtrisées, un
banc d’essai cylindrique a été développé à l’Ifsttar afin de simuler une surface de chaussée sur
laquelle un pneumatique de taille réduite roule. Il s’agit d’un pneumatique de karting de sur-
face lisse et de taille 114/55 R5, soit des dimensions environ réduites de moitié par rapport à
un pneumatique de véhicule léger standard. Ce chapitre concerne la caractérisation vibratoire du
pneumatique ainsi que l’analyse du contact statique entre le pneumatique et une surface lisse.

Dans un premier temps, l’analyse modale expérimentale du pneu en conditions libres est
menée. Une approche SIMO (Single-Input Multiple-Output) classique est utilisée pour les es-
sais. Le pneu est suspendu à l’aide de tendeurs à une structure rigide et excité par un pot vi-
brant délivrant un signal aléatoire. Les accélérations sont mesurées en plusieurs points à l’aide
d’accéléromètres collés à la surface du pneu. Les propriétés de symétrie sont vérifiées et exploitées
lors des essais. Trois pressions de gonflage différentes (0, 1 et 2 bars) sont étudiées. Les Fonctions
de Réponse en Fréquence (FRF) mesurées sont traitées afin d’extraire les fréquences propres et
les taux d’amortissement du pneu. La méthode RFP (Rational Fraction Polynomial) globale est
utilisée et consiste à utiliser une fraction rationnelle polynomiale pour identifier les paramètres
modaux. Au final, 8 modes propres sont identifiés entre 280 Hz et 1200 Hz. Leur forme est
conforme aux résultats de la littérature, de même que l’influence de la pression de gonflage est
retrouvée. L’accord entre FRF mesurées et synthétisées est bon, aussi bien au point d’excitation
qu’aux points de transfert.

Une modélisation par éléments finis sous Abaqus est ensuite proposée pour l’analyse modale
du pneu. Plusieurs degrés de complexité sont testés pour la structure interne du pneu : section com-
posée d’un matériau homogène élastique, puis viscoélastique, avant de terminer par une section
hétérogène constituée d’une bande de roulement viscoélastique et de couches de nylon constituant
la ceinture du pneu. Dans le cas homogène élastique, un bon accord avec les résultats expéri-
mentaux est obtenu, mais d’une part l’amortissement expérimental doit être utilisé pour calculer
les FRF et d’autre part le modèle, trop rigide, sous-estime l’empreinte de contact statique. Le
modèle homogène viscoélastique permet d’intégrer la dissipation intrinsèque à la gomme en se
basant sur une série de Prony identifiée à partir du module complexe mesuré sur visco-analyseur.
Les taux d’amortissement sont alors conformes à l’expérience mais, la structure devenant moins
rigide, les fréquences propres sont décalées vers les basses fréquences. L’introduction des couches
de nylon dans le modèle hétérogène permet de compenser cet effet et donne des FRF proches de
l’expérience. De plus, l’ajout de l’hyper-viscoélasticité permet d’obtenir une empreinte de contact
conforme aux mesures.

La dernière partie du chapitre s’intéresse au contact statique entre le pneu et une surface
lisse. Les mesures d’empreinte au papier Fuji sur une plaque montrent une diminution de l’aire de
contact totale lorsque la pression de gonflage du pneu augmente. L’aire de contact augmente avec
la charge totale appliquée, en raison d’une augmentation de la largeur de l’empreinte dans le sens
longitudinal (la dimension transversale varie peu). La Méthode d’Inversion de Matrice (MIM),
basée sur une hypothèse de massif semi-infini, est ensuite optimisée en exploitant les symétries
des géométries en contact. Les résultats de la MIM montrent qu’il est possible d’obtenir des em-
preintes de contact similaires à l’expérience en adaptant convenablement le module élastique pour
chaque configuration. Enfin, des mesures de contact statique sont effectuées sur le bâti cylindrique
du banc d’essai. La courbure de ce dernier influence peu les aires de contact dont la dimension lon-
gitudinale diminue toujours lorsque la charge totale augmente. Le contact est également mesuré
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après avoir atteint une température stabilisée de la gomme pour différentes vitesse de roulement
(5, 10 et 15 m/s). Les aires de contact diminuent légèrement avec la vitesse, démontrant une
diminution du module élastique de la gomme avec la température (effet viscoélastique).
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Chapter 2

Characterisation of the reduced-sized
tyre incorporated to the test rig

2.1 Introduction

To examine the dynamic contact forces under well-controlled laboratory conditions, a cylin-
drical test rig has been built at IFSTTAR to simulate a road surface on which a smooth go-kart tyre
will be rolling. The go-kart tyre, due to its reduced size and consequently its reduced mass, will
be easier to manipulate in laboratory and will have less inertial effects during rotations, relative
to a standard tyre. Moreover, the latter, composed of multiple layers of different materials, will
present more difficulties in modelling, hence the choice of using a go-kart tyre with a simplified
inner structure on the test rig. Figure 2.1 gives a picture of the whole system. A concrete ring with
an outer diameter of 2 m is placed horizontally and remains immobile. A horizontal steel beam is
maintained at a certain vertical distance above the concrete ring and can be driven to rotate about
the axle of the latter by a motor. A reduced-sized pneumatic tyre, inflated to 1 bar, is mounted hor-
izontally onto a vertical spindle which connects it to one end of the steel beam. The beam is free
to translate longitudinally along a slide rail installed in the middle of the system and is actuated
by a pneumatic jack installed beneath the beam to maintain a constant force exerted radially on
the tyre. To balance the inertial effects during rotations, an extra mass is added to the other end of
the beam with its weight so calculated that the centre of mass of the rotating components is on the
axis of rotation. Thus, the system can be considered in equilibrium in the rotating reference frame
because the resultant centrifugal force is zero for any rotational speed.

The exterior surface of the test rig simulates a concrete road surface on which the tyre will
be driven to roll. The reduced-sized tyre used in this work is a slick commercial go-kart tyre from
the manufacturer Duro. The tyre code indicating its size is 10-4.50-5: the first number (10) is
the height of the tyre in inches, the second number (4.50) is the width of the tyre tread in inches
and the last number (5) indicates the diameter of the rim in inches. These dimensions correspond
to 114/55R5 in the ISO Metric sizing system. The dimensions are also illustrated in Figure 2.21.
Compared with a slick car tyre having a size of 205/55R16 used in another study [Kindt et al.,
2006], the go-kart tyre is approximately 40% large in diameter and 56% in width. The tyre tread
is composed of a thin rubber layer, the carcass has two rubber coated nylon layers and the bead is
reinforced by steel wires. The maximal inflation pressure is 3.9 bars.

1Source: http://www.kartpartsdepot.com/Go_Kart_Wheels_s/1850.htm
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Chapter 2. Characterisation of the reduced-sized tyre incorporated to the test rig

Figure 2.1 – Test rig designed at IFSTTAR for tyre/road dynamic contact measurements.

Figure 2.2 – Dimensions of the go-kart tyre incorportated to the test rig.

The choice of a reduced-sized tyre is on account of the ease of experimental manipulation and
numerical modelling. During the concrete casting process, a rectangular parallelepiped volume
was left out on the exterior surface of the test rig. This cavity allows a metallic plate hosting a set
of asperities to be mounted, as shown in Figure 2.3 for a single asperity. The metallic plate was
curved during machining to have the same curvature radius as the concrete ring.

2.2 Modal analysis of the reduced-sized tyre under free boundary
conditions

The present section focusses on both experimental and FE (Finite-Element) modal analyses
of the aforementioned pneumatic tyre, a reduced-sized one, to be used for experimental investiga-
tion of tyre/road interaction in laboratory. The section starts with a description of the modal testing
technique and results. Next, FE tyre modelling approaches with increasing complexity are intro-
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2.2. Modal analysis of the reduced-sized tyre under free boundary conditions

Figure 2.3 – A metallic plate hosts a single asperity connected to a force transducer for normal
contact force measurement.

duced. For each model, a numerical modal analysis is carried out, and the results are compared
with experiment. The possible uses of the models are discussed before concluding remarks.

2.2.1 Experimental modal analysis

2.2.1.1 Experimental set-up

Modal tests with a classical SIMO (Single-Input Multiple-Output) approach were performed
for 3 different tyre inflation pressures, respectively 0, 1 and 2 bars, at an ambient temperature of
20 °C. The experimental set-up shown in Figure 2.4 was similar to those used in the literature
[Kindt et al., 2006, Andersson et al., 2004]. All the transducers were connected to a data ac-
quisition front-end (hardware: Brüel & Kjær PULSE front-end; software: Brüel & Kjær PULSE
Labshop v. 14.0.0.124) from which the data were saved and then processed with a software dedi-
cated to modal analysis (Brüel & Kjær PULSE Reflex Modal Analysis Type 8721). To achieve a
relatively complete and reliable exploration of the geometrical influences of the tyre on the modal
parameters, measurements were carried out at points all around the tyre, spanning from the central
rolling band to the sidewalls. The measurement points were marked on the outer contours of 48
cross-sections, evenly spaced in the circumferential direction, on each of which 5 equidistantly
aligned points were symmetrically placed on both sides about the median point, leading to a total
of 528 measurement points (Figure 2.5). The cross-sections were numbered from 0 to 47 with the
median point of the cross-section number 0 being the drive point, onto which a square aluminium
plate of edge length 10 mm was attached. An impedance head (PCB Piezotronics Model 288D01)
was screwed onto the mounting plate. It measured the input force and the output acceleration at the
drive point, thus the direct FRF (Frequency Response Function). The tyre, inflated to the desired
pressure, was then horizontally suspended. A shaker (Brüel & Kjær Modal Exciter Type 4824)
was connected to the impedance head by a stinger to exercise a radial excitation force on the tyre,
as shown in Figure 2.4. Figure 2.5 illustrates how 5 lightweight single-axis accelerometers (PCB
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Piezotronics Model 352A24) were repeatedly mounted onto a set of points on the upper or lower
part of a cross-section with petro-wax, allowing a good temporary bonding that could be quickly
removed.

Figure 2.4 – Shaker attached to the suspended reduced-sized tyre.

Figure 2.5 – Impedance head and accelerometers mounted onto the suspended reduced-sized tyre.

To start a measurement, a random white noise signal between 0 and 6000 Hz was generated
by the acquisition software and then increased by an amplifier to drive the shaker. Once the station-
ary state had been reached, the input force and the direct and transfer output accelerations served to
calculate the complex accelerance FRFs H1(!) = S FA(!)/S FF(!) and H2(!) = S AA(!)/S AF(!),
as defined in [Ewins, 2000], where ! = 2⇡ f is the angular frequency, S FF is the power spectral
density of the input signal F, S AA is the power spectral density of the output signal A, S AF and
S FA are the cross power spectral density of the input and output signals. The coherence CFA(!)
is classically defined by the ratio between H1(!) and H2(!). Its value is situated between 0 and 1
and helps verify the linear link between the drive point and the transfer points. Ideally, the two
estimates of FRFs should be identical, thus the coherence should be 1.

All of the 528 measurement points were investigated for the tyre inflation pressure of 1 bar.
The coherence value remained very close to 1 in most of the cases, especially under 3000 Hz,
suggesting that using either H1(!) or H2(!) for modal parameter extraction was appropriate. The
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2.2. Modal analysis of the reduced-sized tyre under free boundary conditions

magnitudes and the phase angles of the complex FRFs H1(!) were used for validations of geo-
metrical symmetries. This was first done for the symmetry about the median plane of the tyre.
The curves proved to be coherent and therefore allowed to check the symmetry of measurements
about the excitation direction, which also turned out to be true. These symmetries led to the con-
clusion that the measurements for 0 and 2 bars needed only to be performed between 0 and 90° on
a half section of the tyre. These symmetries will also be used in Section 2.2.2 for numerical modal
analysis.

2.2.1.2 Modal identification method

The measurement results were then imported into the software PULSE Reflex Modal Anal-
ysis2. The geometry of the quarter of the tyre was built and the FRFs were attributed to the
associated point coordinates. The global RFP (Rational Fraction Polynomial) method was chosen
to extract modal frequencies and damping ratios from the imaginary part of the complex FRFs,
as recommended in [Ewins, 2000] and [Gatti, 2014]. In this method, the complex FRF in the
frequency domain H(!) generally expressed as:

H(!) =
N
X

k=1

Ak

!2
k � !

2 + 2i!!k⇣k
, (2.1)

where N is the number of modes composing the FRF, Ak the kth complex modal constant, !k the
kth natural frequency and ⇣k the kth modal damping ratio, is alternatively formulated as a rational
fraction, i.e. a ratio of two polynomials:

H(!) =

2N�1
P

k=0
ak(i!)k

2N
P

k=0
bk(i!)k

, (2.2)

where ak and bk are the polynomial coefficients. The coefficients are identified by minimising
the error e f between the calculated FRF and the measured one H̃(! f ) for each of the measured
frequencies ! f :

e f =

2m�1
X

k=0

ak(i! f )
k � H̃(! f )

2m
X

k=0

bk(i! f )
k, (2.3)

where m is the mode order selected for analysis, and the subscript f indicates variables related to
measurements. In fact, the global curve-fitting approach in this method can be done in a frequency
band chosen to include a certain number of modes. The CMIF (Complex Mode Indicator Func-
tion) was used for preliminary quality checks of the measured data. The curve-fitting frequency
range was chosen to be from 280 to 1200 Hz to include the few modes that are identifiable from
visual inspection, since peak magnitudes are found at natural frequencies in the imaginary part of
accelerance [Ewins, 2000, Gatti, 2014].

2Product description available on: http://www.bksv.com/Products/analysis-software/vibration/

structural-dynamics/classical-modal-analysis/advanced-modal-analysis-8720-8721?tab=

descriptions
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Based on the extracted modal parameters, a synthesised FRF was plotted for each mea-
surement point for comparison with experiment. The extracted modal parameters could contain
erroneous results, hence the validation step. The AutoMAC technique was used by looking at the
correlation of a set of modes with themselves. The higher the mode order is, the more likely the
mode is correlated with other ones. To determine which modes had to be eliminated, several fac-
tors needed to be considered: aberrant damping ratio; strong correlations with other modes; clearly
false results from visual inspections of the FRFs; correlation degradation of the synthesised FRFs
with the measured ones.

2.2.1.3 Results

Finally, the frequencies and damping ratios of the retained eigenmodes were identified for
each inflation pressure. They are given in Table 2.1 for the inflation pressure of 1 bar. The damp-
ing ratios are relatively homogeneous and ranged between 4.6% and 6.2%. It can be seen from
Figure 2.6 that the modal frequency increases with the tyre inflation pressure at low frequencies
due to the stiffening of the tyre structure with inflation pressure. This is consistent with literature
results [Kung et al., 1985].

Table 2.1 – Modal parameters extracted from the measurements for the tyre inflation pressure of
1 bar.

Mode 1 2 3 4 5 6 7 8

f (Hz) 310 357 416 505 602 726 850 1000
⇣(%) 4.9 5.4 4.6 6.2 5.9 5.6 5.8 5.3

1 2 3 4 5 6 7 8
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Figure 2.6 – Modal frequencies of the reduced-sized tyre for inflation pressures of 0, 1 and 2 bars.
Eights modes are identified for 1 and 2 bars and six modes for 0 bar as higher modes are difficultly
indentifiable in the latter case.

Mode shapes are plotted in two dimensions for the first five modes in Figure 2.7 by con-
sidering only the median measurement points. The mode shapes are simply the displacements of
measurement points added to their initial positions around the tyre circumference. Having already
calculated the complex accelerations due to a unit force, i.e. the accelerance FRFs, the displace-
ments due to a unit force can be readily obtained by dividing the accelerance values by �!2.
Higher modes are not visually identifiable.
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Figure 2.7 – Experimentally obtained mode shapes for mode orders m = 1 to 5: (a) oval (m = 1),
(b) triangle (m = 2), (c) square (m = 3), (d) pentagon (m = 4) and (e) hexagon (m = 5).

Figures 2.8 and 2.9 represent the magnitude and the phase angle of the directly measured and
the synthesised accelerance FRFs respectively at the drive point and at a point making an angle of
90° with the drive point about the tyre axle. The synthesised FRFs correlate well the experimental
curves over the curve-fitting frequency range from 280 to 1200 Hz.
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Figure 2.8 – Directly measured (H1) and synthesised (Global RFP) accelerance FRFs at the drive
point for the tyre inflation pressure of 1 bar: (a) magnitude and (b) phase angle.
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Figure 2.9 – Directly measured (H1) and synthesised (Global RFP) accelerance FRFs at a transfer
point at 90° for the tyre inflation pressure of 1 bar: (a) magnitude and (b) phase angle.

2.2.2 Numerical modelling approaches

2.2.2.1 Elastic homogeneous model

A simplified FE modelling approach is first used to simulate the vibrational nature of the
tyre carcass. The main idea is to model the tyre cross-section with a homogeneous and linearly
elastic material and then seek a Young’s modulus that allows the tyre model to reproduce similar
vibrational characteristics as from the measurements. The FE model is developed using Abaqus
software (v. 6.14) for the unloaded tyre on which a numerical frequency response analysis is carried
out respectively for three inflation pressures: 0, 1 and 2 bars. On the one hand, the experimental
and the numerical modal analysis results could be mutually validated with the calculated natural
frequencies tuned to fit the measured ones; on the other hand, the numerical model could be used
in combination with a contact model for further analyses of tyre/road rolling noise problem.

The geometry is constructed in three steps as shown in Figure 2.10. To take the pressurisation
of the tyre into account, a distributed load corresponding to the tyre inflation pressure is applied
onto the inner side of the tyre. First, an axisymmetric model representing a half cross-section
is built and meshed; second, the geometrical deformations of the tyre under pressurisation are
transferred into a partial 3D (three-dimensional) model by revolving the axisymmetric model about
the tyre axle to form a half of the tyre; third, the results are transferred into a full 3D model
by reflecting the geometry about the median plane of the tyre [Dassault Systèmes, 2014]. The
structure of the tyre half cross-section is simplified as a single layer of rubber, considered as an
elastic material. Its density is defined as being equal to 1100 kg/m3, the Young’s modulus 112 MPa
and the Poisson’s ratio 0.48. The half cross-section is composed of 129 CGAX4H (4-node bilinear,
hybrid with constant pressure) elements. One revolution of the axisymmetric model results in 96
element subdivisions. The inflation pressure is applied once again in the new model to ensure the
accuracy of calculation. The connection between the rim and the part of the tyre on which the rim
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2.2. Modal analysis of the reduced-sized tyre under free boundary conditions

is mounted is defined as a rigid body constraint. The displacements of the nodes and elements in
the median plane are confined within the plane due to the reflection symmetry.

Figure 2.10 – Geometry construction using symmetric results transfer in Abaqus.

The natural frequencies between 0 and 1050 Hz were extracted for the full 3D model with
the Lanczos eigensolver [Dassault Systèmes, 2014]. More frequencies were identified than exper-
imentally. The additional modes include two modes with one wavelength and one axisymmetric
mode with rotation. The frequency values are listed in Table 2.2. By comparing frequencies of
mode orders m = 3 to 10 with corresponding experimental values of mode orders m = 1 to 8 pre-
sented in Table 2.1, a fairly positive correlation is observed. Except for the axisymmetric mode,
at the same frequency, two different modes having the same mode shape with a phase shift appear
due to the axisymmetry of the tyre model, as stated in [Kindt et al., 2006] and [Ewins, 2000].

Table 2.2 – Modal frequencies extracted from the elastic homogeneous FE model for the tyre
inflation pressure of 1 bar.

Mode 1 2 3 4 5 6 7 8 9 10

f (Hz) 291 302 310 355 419 502 605 729 871 1031

Mode shapes (m = 3 to 7) obtained with the FE model represented in Figure 2.11 are the
same as those (m = 1 to 5) in Figure 2.7. Mode shapes m = 1 and 2 are illustrated in Figure 2.12.

(a) (b) (c)

(d) (e)

Figure 2.11 – Numerically calculated mode shapes for mode orders m = 3 to 7: (a) oval (m = 3),
(b) triangle (m = 4), (c) square (m = 5), (d) pentagon (m = 6) and (e) hexagon (m = 7).

The next step was to perform a Steady-State Dynamic analysis of the tyre to calculate the
FRFs from the FE model. The input excitation force was modelled by a unit force applied at
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(a) (b)

Figure 2.12 – Numerically calculated mode shapes for mode orders m = 1 and 2: (a) with one
wavelength (m = 1), (b) axisymmetric (m = 2).

the drive point node in the middle of the tread. Thus, according to the definition of accelerance,
the radial output accelerations at an investigated point gave directly the accelerance FRF. Abaqus
allows the option to specify the modes to be considered in this analysis from the aforementioned
frequency extraction step and to attribute an experimentally determined modal damping ratio to
the corresponding mode. Figures 2.13 and 2.14 represent, in addition to experimental results, the
numerically calculated accelerance at the drive point and the transfer point at 90° obtained by
including only the modes reported in Table 2.2. The agreement is good from 280 Hz up to 800 Hz.
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Figure 2.13 – Experimental accelerance FRFs at the drive point for the tyre inflation pressure of
1 bar in comparison with numerically calculated FRFs from the elastic homogeneous FE model:
(a) magnitude and (b) phase angle.

When comparing the results obtained with the partial 3D and the full 3D model, no significant
differences are stated. Therefore, further modal analyses will be carried out on partial 3D models.
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Figure 2.14 – Experimental accelerance FRFs at a transfer point at 90° for the tyre inflation pres-
sure of 1 bar in comparison with numerically calculated FRFs from the elastic homogeneous FE
model: (a) magnitude and (b) phase angle.

2.2.2.2 Viscoelastic homogeneous model

The aforedescribed elastic homogeneous model uses a unified Young’s modulus for the whole
tyre structure. However, since rubber is a rate-dependent material, the damping of the tyre under
small perturbations relies on the viscoelasticity of rubber. A second model takes into account this
aspect and therefore tends to be closer to the reality. The rubber’s viscoelasticity is described
using a Prony series which was measured in a uniaxial tension test. A specimen of the rubber
was taken from the central part of the rolling band of the tyre and cut into a 10 mm ⇥ 5 mm ⇥
5 mm parallelepiped. The specimen was placed on a platform in a dynamic mechanical analyser
(Metravib Viscoanalyser) as shown in Figure 2.15 and glued at both ends. The measurements
were performed for five temperatures in the following order: 50, 40, 30, 20 and 10 °C. For each
temperature, perturbations with a constant amplitude of 5 µm were applied to the specimen with
11 frequencies ranging from 1 to 120 Hz on a logarithmic scale, and the corresponding complex
moduli |E⇤| and phase angles � were measured.

The next step was to construct a master curve using the measured isotherms with the refer-
ence temperature equal to 20 °C, i.e. the ambient temperature at which the experimental modal
tests were carried out. Having no knowledge beforehand on the type of rubber in question, this
was done using a mathematical method [Chailleux et al., 2006] based on Booij and Thoone’s ap-
proximation [Booij and Thoone, 1982] which yields the shift factor for a certain isotherm related
to a reference temperature according to the time-temperature superposition principle. Figure 2.16
shows the continuous master curves formed with isotherms that overlap with neighbouring ones.
The upper graph represents the complex modulus E* and the lower one, the phase angle �, both as
functions of frequency. The complex modulus rises with frequency within the frequency range to
be considered for modal analysis. The phase angle has a value situated between 8° and 9° which
is almost constant over the frequency range concerned.
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Figure 2.15 – A dynamic mechanical analyser (Metravib Viscoanalyser) in which a specimen
prepared for a uniaxial tension test is placed.
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Figure 2.16 – Master curves constructed for a reference temperature of 20 °C based on the time-
temperature superposition principle: (a) complex modulus |E⇤| (MPa) and (b) phase angle � (°).
The master curves constructed based on experimental data are plotted as dots, while the fitted
curves are plotted as lines for comparison.

The frequency-dependent parameters E⇤(!) and �(!) are related to the storage and loss mod-
uli, Es(!) and El(!), as described in the following equations:

E⇤(!) = Es(!) + iEl(!), (2.4)

�⇤(!) = arctan
El(!)
Es(!)

. (2.5)
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Abaqus systematically considers the Prony series parameters from a shear test. In the in-
stance of an incompressible material like rubber, the shear storage and loss moduli, Gs(!) and
Gl(!), are simply one third of the respective uniaxial storage and loss moduli, Es(!) and El(!).
Therefore, the relations that are valid for shear tests can also be used for the uniaxial tension test.
By using a fitting method [Chailleux et al., 2010], parameters E1, ḡP

i and ⌧i were determined
based on the measured master curves. The term E1 represents the modulus at f = 0, and ḡP

i is
the modulus ratio in the ith term in the Prony series expansion of the traction relaxation modulus
whose corresponding relaxation time is ⌧i. These parameters describe the storage and loss moduli
as follows:

Es(!) = E0[1 �
N
X

i=1

ḡP
i ] + E0

N
X

i=1

ḡP
i ⌧

2
i !

2

1 + ⌧2
i !

2
, (2.6)

El(!) = E0

N
X

i=1

ḡP
i ⌧i!

1 + ⌧2
i !

2
, (2.7)

where E0 is the instantaneous modulus, i.e. the modulus at t = 0, and is expressed as follows:

E0 =
E1

1 �
N
P

i=1
ḡP

i

, (2.8)

The identified value of the long-term modulus E1 is 18.97 MPa. A Prony series with 10
elements yields a good agreement between the experimental and calculated master curves as shown
in Figure 2.16. The identified values of ḡP

i and ⌧i are presented in Table 2.3.

Table 2.3 – Prony series parameters ḡP
i and ⌧i.

ḡP
i ⌧i

0.2355 4.910E-05
0.0911 3.462E-04
0.1051 2.440E-03
0.0871 1.720E-02
0.0727 1.213E-01
0.0669 8.551E-01
0.0530 6.029E+00
0.0496 4.250E+01
0.0355 2.996E+02
0.0394 2.112E+03

The parameters E1, ḡP
i and ⌧i replace therefore the linear elastic modulus of 112 MPa used

in the elastic homogeneous model and describe the viscoelastic behaviour in the frequency domain
of the rubber that fills the whole tyre section. The first eight circumferential modes were extracted
for this viscoelastic homogeneous partial 3D tyre model. The natural frequencies obtained for the
inflation pressure of 1 bar are listed in Table 2.4. The "oval" mode is of order m = 3. All the
eigenvalues extracted are smaller than the experimental ones as presented in Table 2.1, meaning
that the overall stiffness of the tyre structure is not high enough.
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Chapter 2. Characterisation of the reduced-sized tyre incorporated to the test rig

Table 2.4 – Modal frequencies extracted from the viscoelastic homogeneous FE model for the tyre
inflation pressure of 1 bar.

Mode 1 2 3 4 5 6 7 8 9 10

f (Hz) 256 257 282 328 386 454 534 628 737 859

Another aspect to be considered in a modal analysis is the damping effect for which the
viscosity of rubber is mainly responsible. The FRFs were evaluated for the same two points as in
Figures 2.13 and 2.14, and the results are shown in Figures 2.17 and 2.18. Despite the fact that
the calculated modes are not in phase with the experimental ones, the viscoelasticity of rubber
alone yields comparable damping effects with the measurements, without having to introduce
experimental structural damping into the Abaqus tyre model.
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Figure 2.17 – Experimental accelerance FRFs at the drive point for the tyre inflation pressure of
1 bar in comparison with numerically calculated FRFs from the viscoelastic homogeneous FE
model: (a) magnitude and (b) phase angle.

2.2.3 Viscoelastic heterogeneous model

Since the viscoelastic homogeneous tyre model is not rigid enough to reach the experimen-
tally extracted natural frequencies for the corresponding modes yet capable of reproducing the
correct damping effects, a viscoelastic heterogeneous model comprising the essential compounds
in the real tyre is proposed to maintain the damping properties while enhancing the structural stiff-
ness. Figure 2.19 depicts the inner structure of the tyre by displaying a half-section view of the
real tyre in the left and the FE model geometry in the right. In the real tyre section, the carcass
under the rubber tread occupies the innermost third of the tyre thickness and is made of rubber
reinforced by two nylon layers. The nylon cords in the two layers are symmetrically oriented
about the median plane of the tyre and both make an angle of about 35° with the circumferential
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Figure 2.18 – Experimental accelerance FRFs at a transfer point at 90° for the tyre inflation pres-
sure of 1 bar in comparison with numerically calculated FRFs from the viscoelastic homogeneous
FE model: (a) magnitude and (b) phase angle.

direction in the flat rolling band. In the sidewalls, the number of nylon rebar layers is increased to
four. The bead is reinforced by steel wires.

Figure 2.19 – Real and FE cross-sections of the tyre.

Figure 2.20 shows the material composition of the viscoelastic heterogeneous tyre model.
The rubber has the same experimentally determined material properties as presented in the previ-
ous section. The material properties of the bead, which sits firmly on the rim, turn out to have no
significant influence on the tyre dynamics, especially at high frequencies. Thus it is considered
to be rubber for the sake of simplicity in modelling. The nylon layers are inserted as rebar layers
composed of elastic cords having a diameter of 0.48 mm and a spacing of 0.82 mm and respecting
the measured angular orientations. Its density is defined as being equal to 1100 kg/m3 and the
Poisson’s ratio 0.4 which are classical values for nylon. The inflation pressure of the tyre leads to
a pre-tension of the nylon cords, therefore the elastic modulus of the nylon cannot be experimen-
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tally assessed. A value of 0.83 GPa is found to be a suitable fit for the inflation pressure of 1 bar by
producing reasonably coherent natural frequencies with experiment as presented in Table 2.5. Two
different values are also tested to show the sensitivity of the results to the variation of the nylon’s
modulus. It should be noted that for 0.42 GPa, the "oval" mode comes after the axisymmetric
mode thus is of mode order m = 3, while for 0.83 and 1.63 GPa, the "oval" mode is between the
mode with one wavelength and the axisymmetric mode and is of mode order m = 2.

Figure 2.20 – Materials forming the heterogeneous half-section of the tyre.

Table 2.5 – Modal frequencies extracted from the viscoelastic heterogeneous FE model for the
tyre inflation pressure of 1 bar with moduli of nylon equal to 0.42, 0.83 and 1.66 GPa for test of
sensitivity. A modulus of 0.83 GPa is found to be a suitable fit to the experiments.

Mode 1 2 3 4 5 6 7 8 9 10

Enylon = 0.42 GPa f (Hz) 273 290 295 341 399 468 549 645 756 882

Enylon = 0.83 GPa f (Hz) 291 310 319 357 416 485 568 667 782 911

Enylon = 1.66 GPa f (Hz) 318 336 362 384 443 511 596 698 818 953

In Figures 2.21 and 2.22 are plotted the FRFs evaluated at the drive point and a transfer point
at 90° on the tyre. The experimental and calculated curves show a good consistency for frequencies
up to 500 Hz. Beyond this frequency range, a phase shift is observed.

2.2.4 Discussion

The discussion mainly concerns two of the aforedescribed FE models, the simplified elastic
homogeneous model and the more complex viscoelastic heterogeneous model. The viscoelastic
homogeneous model should rather be regarded as an intermediate step between the two other ones.

The elastic homogeneous model simulates the dynamic responses of the unloaded reduced-
sized tyre’s carcass and gives satisfying results in comparison with experiment, especially for the
frequency range between 200 and 800 Hz. Nevertheless, the elastic modulus (112 MPa) chosen for
the homogeneous half-section is too rigid when local deformations are considered, as loading the
tyre model in Abaqus with 1000 N onto a rigid flat surface leads to a contact area of approximately
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Figure 2.21 – Experimental accelerance FRFs at the drive point for the tyre inflation pressure of
1 bar in comparison with numerically calculated FRFs from the viscoelastic heterogeneous FE
model: (a) magnitude and (b) phase angle.
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Figure 2.22 – Experimental accelerance FRFs at a transfer point at 90° for the tyre inflation pres-
sure of 1 bar in comparison with numerically calculated FRFs from the viscoelastic heterogeneous
FE model: (a) magnitude and (b) phase angle.

8 cm2 which is too small in comparison with what will be presented in Section 2.3. An example of
the calculated contact pressure distribution is given in Figure 2.23. Therefore, a more sophisticated
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Chapter 2. Characterisation of the reduced-sized tyre incorporated to the test rig

model is needed for a closer investigation of the contact problem.
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Figure 2.23 – Example of the contact pressure distribution calculated using the elastic homoge-
neous model in Abaqus for an inflation pressure of 1 bar and a static load of 1000 N.

The viscoelastic heterogeneous model considers the facts that rubber is a rate-dependent
material and that the tyre cross-section is reinforced by nylon rebar layers which make it a robust
model that can be tuned for different inflation pressures when simulating the vibration problem.
The calculated dynamics responses, especially those for the transfer point where the influence
of the mounting plate’s size can be omitted, correlate well with experiment for frequencies up
to 500 Hz, covering the first four modes which are visually identifiable, both in terms of amplitude
and phase. To study dynamic contact laws or predict rolling resistance, it is necessary to investigate
the contact problem with a detailed physical model of the tyre. A FE model could serve as a
reference method. In this instance, the viscoelastic long-term modulus which is applicable for
small strains may need to be described by a hyperelastic constitutive model since the material
will undergo large deformations. Without exploring in depth, using a polynomial first-order strain
energy potential with a coefficient C10 = 3.5 MPa combined with the experimentally determined
Prony series yields a good compromise between the dynamic and the static behaviours. The modal
frequencies are presented in Table 2.6. The "oval" mode is of order m = 2. Figure 2.24 shows
a more reasonable contact patch than the one in Figure 2.23. The white areas within the contact
zone corresponds to meshes having a slightly negative contact pressure due to calculation error
in Abaqus or meshes having a very small positive pressure that cannot be distinguished from the
non-contact area in the colormap in Matlab.

Table 2.6 – Modal frequencies extracted from the hyper-viscoelastic heterogeneous FE model for
the tyre inflation pressure of 1 bar.

Mode 1 2 3 4 5 6 7 8 9 10

f (Hz) 304 326 328 377 441 517 609 718 843 984
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Figure 2.24 – Example of the contact pressure distribution calculated using the hyper-viscoelastic
heterogeneous model in Abaqus for an inflation pressure of 1 bar and a static load of 1000 N.

2.3 Static contact analysis of the reduced-sized tyre

2.3.1 Static contact area measurement on a plane flat surface

In addition to modal analysis of the tyre, measuring its contact area under static loading also
reveals the mechanical behaviour of the tyre structure and complements the basis for validation
of numerical models. This was done by vertically pressing the tyre, inflated to various pressures,
under different loads onto Fujifilm pressure sensitive papers3 (type of Prescale: LLW) that were
horizontally supported by a metal plate as shown in Figure 2.25. The two sheets of films react
with each other when pressure is applied to give red patches. The vertical load was adjusted by a
hydraulic pump and monitored by a vehicle scale system. A complete view of the experimental
set-up is given in Figure 2.26.

The tested inflation pressures were 0.6, 0.8 and 1 bar and the vertical loads were 400, 600, 800
and 1000 N. The scanned images of the contact patches were processed to be displayed in gray
scale. An example of the contact patch with an inflation pressure of 0.6 bar and a static load
of 1000 N is presented in Figure 2.27. The contact patch is roughly rectangle in shape, consider-
ing the loss of area due to the pressures outside the sensitivity range of the Fujifilm. Its longitudinal
size lx, i.e. along the rolling direction, varies proportionally with the inflation pressure or the verti-
cal load; the transverse size ly barely changes. The contact area A can be estimated as the product
of lx and ly. The experimental values of lx, ly and A are summarised in Table 2.7. The highest
pressures are mostly concentrated on the longitudinal borders. A certain pressure concentration
can also be observed, though not clearly, within a transverse band in the middle of the contact
patch. The dimensions of the contact patch in Figure 2.24 are comparable with the experimental
ones.

3Product description available on: http://www.fujifilm.com/products/prescale/prescalefilm
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Figure 2.25 – Measurement of contact area of the tyre loaded onto a flat surface using Fuji paper.

Figure 2.26 – Complete view of the experiemental set-up for static contact patch measurement on
a flat surface using Fuji paper.

Table 2.7 – Summary of lx and ly, widths of the go-kart tyre’s static contact area respectively in the
longitudinal and the transverse directions as well as A, the contact area, for the inflation pressures
of 0.6, 0.8 and 1 bar and the static loads of 400, 600, 800 and 1000 N.

400 N 600 N 800 N 1000 N

0.6 bar
lx (cm) 3.4 4.3 5.4 6.3
ly (cm) 7.2 7.6 7.8 7.9
A (cm2) 24.48 32.68 42.12 49.77

0.8 bar
lx (cm) 2.8 3.4 4.7 5.4
ly (cm) 7.2 7.3 7.5 7.7
A (cm2) 20.16 24.82 35.25 41.58

1 bar
lx (cm) 2.6 3.2 4.2 5
ly (cm) 7.2 7.2 7.5 7.6
A (cm2) 18.72 23.04 31.5 38
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Figure 2.27 – Example of the contact patch measured in a compression test for an inflation pressure
of 0.6 bar and a static load of 1000 N. lx is the longitudinal size, i.e. the dimension along the rolling
direction; ly is the transverse size.

2.3.2 Matrix Inversion Method (MIM) used in static contact patch analysis

The FE (Finite-Element) model used for modal analysis represents well the dynamic be-
haviour of the tyre carcass. However, problems arise as we try to calculate the static footprint of
the tyre pressed onto a smooth, rigid surface. While the transverse size of the contact area com-
pares well with the experimentation for the loads and inflation pressures summarised in Table 2.7,
the longitudinal size is almost one order of magnitude smaller. The elastic modulus chosen for
the homogeneous half-section is thus too rigid when the local deformation is considered. Thus, in
the present study, the half-space assumption was applied to the reduced-sized tyre and the static
contact with a smooth rigid surface was studied using the MIM. The tyre contour geometry is
depicted in Figure 2.28. The detailed numerical procedure used here for the MIM can be found in
[Cesbron and Yin, 2010] and is summarised in Appendix A.

Figure 2.28 – Tyre contour used in the Matrix Inversion Method for the contact problem with a
smooth rigid surface at z = 0.
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2.3.3 Exploitation of symmetries

Theoretically, the contact pressure distribution should be symmetric about an axis parallel
to the longitudinal direction and about another parallel to the transverse direction. By defining
the centre of the contact patch as the origin of the coordinate system for the contact patch and
the longitudinal and transverse symmetry axes as the x and y axes, the analysis of the contact
problem can be confined to only a quarter of the original area of study. In this instance, the
contact patch, originally having a roughly rectangular shape whose area A = lx ⇥ ly, now becomes
a lx/2⇥ly/2 rectangular shape. If the dimensions hx and hy of the mesh elements remain unchanged,
the number of elements in question is also divided by 4, i.e. n/4. The original influence matrix A
in Equation A.4 is an n ⇥ n matrix. When the symmetries are exploited, the dimensions of the
new influence matrix are reduced to n/4 ⇥ n/4, thus considerably saving its computation time and
storage size.

To allow the symmetries to be exploited, any point Mi (i 2 [1, n/4]) around which an ele-
ment i is centred should have coordinates (xi, yi) in which xi is an odd multiple of hx/2 and yi an
odd multiple of hy/2. Naturally, n is a multiple of 4. The new influence matrix Asym considering
the symmetries will have elements Ai j,sym that are calculated as the sum of influences at element i
associated with point Mi at coordinates (xi, yi) by elements associated with point (x j, y j) and its
mirror points about the x axis (x j,�y j), about the y axis (�x j, y j) and about both the x and the y
axes (�x j,�y j).

8(i, j) 2 [1, n/4]2 , Ai j,sym =

Z y j+hy/2

y j�hy/2

Z x j+hx/2

x j�hx/2
T (xi, yi; ⇠, ⌘)d⇠d⌘

+

Z �y j+hy/2

�y j�hy/2

Z x j+hx/2

x j�hx/2
T (xi, yi; ⇠, ⌘)d⇠d⌘

+

Z y j+hy/2

y j�hy/2

Z �x j+hx/2

�x j�hx/2
T (xi, yi; ⇠, ⌘)d⇠d⌘

+

Z �y j+hy/2

�y j�hy/2

Z �x j+hx/2

�x j�hx/2
T (xi, yi; ⇠, ⌘)d⇠d⌘ .

(2.9)

Figure 2.29 illustrate the meshing of the surface of the half-space and the elements to be
considered for the calculation of the influence coefficient Ai j,sym.

It should be noted that the original influence matrix A is a Toeplitz-block Toeplitz matrix,
i.e. a Toeplitz matrix composed of block that are themselves Toeplitz matrices. However, the new
matrix Asym no longer conserves this property. Meanwhile, since it is still a symmetric matrix,
calculating the upper triangular matrix is sufficient to obtain all the influence coefficient values
presents in the whole matrix and halves the computational labour. The aforedescribed optimisation
does not only simplify the computation of the influence matrix, but also reduces the dimensions
of the matrices to be inverted in solving Equation A.8. Any optimisation concerning the matrix
factorisation algorithm is not within the scope of the present thesis.

2.3.4 Numerical results of static contact analysis using the optimised MIM.

After optimisation, this method yields a rough estimation of the contact area efficiently at
little sacrifice of the spatial resolution. It also determines the pressure distribution covering the full
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Figure 2.29 – Meshing of the surface of the half-space. The positions of the element i, element j
and its mirror elements for calculating Ai j,sym are illustrated. The zone in red frame represents the
elements used for the optimised MIM considering the contact symmetries.

pressure range. Although the MIM can be used for quick static contact analyses, its has limitations
due to its simplicity. For example, since only the boundary values are considered, the modulus of
rubber needs to be fitted for each contact configuration. Furthermore, the influence of the inflation
pressure is not taken into account in the model. The local Young’s modulus E is thus determined
by achieving the measured values of the contact area and the static load on a smooth plat surface in
the calculations. Figure 2.30 plots E as a function of load for the three inflation pressures: 0.6, 0.8
and 1 bar. The increase in E with the inflation pressure confirms the stiffening effect of the air
inside the tyre cavity which also explains the increase in the value of eigenfrequency.
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Figure 2.30 – Young’s modulus E determined using the Matrix Inversion Method and represented
as a function of the static load.
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Figure 2.31 shows numerically calculated contact patches of the tyre, inflated to 1 bar, loaded
with 500, 750 and 1000 N onto a smooth flat surface. The corresponding Young’s moduli are
respectively 3.7, 3.3 and 2.9 MPa. The calculated results show that the highest contact pressures
are concentrated along the longitudinal borders and in the middle of the contact patch which is
consistent with the experimental results. As the load increases, the highest pressure tends to expand
from the middle to the longitudinal borders.
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Figure 2.31 – Numerically determined contact patches based on the Method Inversion Method for
an inflation pressure of 1 bar and static loads of 500, 750 and 1000 N. The tyre is loaded onto a
smooth flat surface. The colours indicate the calculated contact pressure distribution (in MPa).

2.3.5 Static contact area measurement on the rolling surface

In the aforedescribed contact analysis, the contact patches were measured for the tyre loaded
onto a flat and smooth surface. However, for the specific contact problem of the tyre rolling on
the test rig, the curvature of the latter may affect the contact area and consequently the contact
pressure distribution. Furthermore, in reality, the energy dissipation during rolling may cause the
temperature at the surface of the tyre to vary, depending on the total load and the rolling speed.
Although an experimental method to estimate the dynamic contact area has been proposed by Ces-
bron et al. [2009a], the novel test rig has the particular advantage of allowing direct measurements
of contact forces without interfacial layer. Meanwhile, direct measurements of contact patches are
not feasible.

Nevertheless, it is possible to measure the contact patch using Fuji pressure-sensitive paper
on the test rig for a given loading condition and the tyre surface temperature corresponding to a
certain rolling speed. The normal load applied on the tyre can be precisely controlled through
a pneumatic jack. Contact patches were first measured for three loads, 500 , 750 and 1000 N,
respectively, with the tyre surface temperature being equal to the room temperature, i.e. 20 °C.
Then different combinations of load and rolling speed were tested: the tyre was driven to rolling
under a given load and at a given speed until stabilisation of its surface temperature. The static
contact patch was measured immediately after stopping the tyre from rolling. A photo of how the
tyre was loaded for the static contact measurement is shown in Figure 2.32. The tyre was inflated
to 1 bar for all the contact patch measurements performed on the test rig. An example of measured
contact patch is given in Figure 2.33. The real geometry of the tyre comprises some irregularities
and thus alters the pressure distribution from that of a completely smooth tyre to a slight extent by
leaving a narrow blank stripe along the rolling direction in the middle of the contact patch.

The influence of load condition is analysed by comparing the contact patches measured with
the tyre surface being at the room temperature as displayed in Figure 2.34. As the load increase,
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Figure 2.32 – Measurement of the contact area of the tyre loaded onto the rolling surface on the
test rig using Fuji paper.

Figure 2.33 – Example of contact patch measured on the test rig using Fuji paper.

the contact patch tends to have a rectangular shape and the highest contact pressure moves from
the middle of the contact patch to the borders along the x-axis, i.e. the rolling direction. The
widths along the x-axis are slightly smaller than the values in Table 2.7 due to the curvature of the
test rig in the circumferential direction.

Figure 2.35 shows numerically calculated contact patches of the tyre, inflated to 1 bar, loaded
with 500, 750 and 1000 N onto a smooth surface having the same curvature of the test rig. The
rubber modulus used for each respective loading condition is the same as for the contact simula-
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tions in the case of a smooth flat surface (Figure 2.31), i.e. 3.7, 3.3 and 2.9 MPa for 500, 750 and
1000 N, respectively, when the tyre surface is at the room temperature. The contours of the numer-
ical contact patches are added to Figure 2.34 for comparison of dimensions. The numerical results
confirm the slight decrease in width along the longitudinal direction when the load decreases. Al-
though the shapes and dimensions of the measured contact patches can be reproduced using the
MIM with a carefully calibrated Young’s modulus for the elastic half-space, the calculated contact
pressure tends to be concentrated both in the middle and at the longitudinal borders of the contact
patch, especially for high total loads on the tyre. This comparison shows some limitations of the
MIM as a simplified approach that overlooks the influences of factors such as the inner structure
of the tyre or the hyper-viscoelasticity of the tread rubber, which are taken into account in the FE
model.
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Figure 2.34 – Comparison of contact patches measured with the tyre surface being at the room
temperature (20 °C) and under a load of 500, 750 and 1000 N, respectively. The contours of the
numerical contact patches from Figure 2.35 are superposed for comparison of dimensions.
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Figure 2.35 – Numerically determined contact patches based on the Method Inversion Method in
the case where the tyre surface is at the room temperature (20 °C). The inflation pressure is 1 bar,
and the static loads are 500, 750 and 1000 N. The corresponding Young’s moduli are respectively
3.7, 3.3 and 2.9 MPa. The curvature of the test rig is taken into account in the geometry of
the surface onto which the tyre is loaded. The colours indicate the calculated contact pressure
distribution (in MPa).

The static contact patches measured under the same three loads, after the stabilisation of the
tyre surface temperature induced by rolling at 10 m/s, are compared in Figure 2.36. Figure 2.37
shows numerically calculated static contact patches of the tyre, after rolling at 10 m/s, for 500, 750
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2.3. Static contact analysis of the reduced-sized tyre

and 1000 N. The fitted Young’s moduli are respectively 7, 6 and 5 MPa. The widths along the x-
axis are smaller than those shown in Figure 2.34. In the meantime, as the tyre surface temperature
increases, the contact pressure tends to be more concentrated on the borders along the x-axis
for the same loading condition. The increasing concentration of contact pressure on the borders
along the x-axis and decreasing concentration in the middle of the contact patch due to increase in
tyre surface temperature can also be seen from Figure 2.38, which represents the contact patches
measured with the tyre surface temperature corresponding to different rolling speeds. However,
the influence of the frequency of the cyclic loading on the rubber’s viscoelastic modulus cannot be
observed from the figure, as the static contact patch measurement reflects only the long-term value
of the modulus.
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Figure 2.36 – Comparison of contact patches measured under a load of 500, 750 and 1000 N,
respectively, with the tyre surface being at a stabilised temperature after rolling at 10 m/s and
under the respective load. The contours of the numerical contact patches from Figure 2.37 are
superposed for comparison of dimensions.
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Figure 2.37 – Numerically determined contact patches based on the Method Inversion Method in
the case where the tyre surface is at a stabilised temperature after rolling at 10 m/s. The inflation
pressure is 1 bar, and the static loads are 500, 750 and 1000 N. The corresponding Young’s moduli
are respectively 7, 6 and 5 MPa. The curvature of the test rig is taken into account in the geometry
of the surface onto which the tyre is loaded. The colours indicate the calculated contact pressure
distribution (in MPa).
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Figure 2.38 – Comparison of contact patches measured under a load of 1000 N with the tyre
surface having reached a stabilised temperature after rolling at 0, 5, 10 and 15 m/s, respectively,
and under a load of 1000 N.

2.4 Conclusions

This chapter involves the characterisation of the dynamic and contact behaviours of the
reduced-sized tyre to be used on a novel test rig. The global structure and the working principle
of the latter are presented, as well as the specifications of the tyre. For the dynamic aspect, modal
tests are carried out using a shaker. The measured FRFs (Frequency Response Functions) are pro-
cessed to extract 8 modal frequencies between 280 and 1200 Hz and the corresponding damping
ratios. A simplified FE (finite-element) tyre model is built to first simulate the vibrational nature
of the tyre. By treating the tyre as elastic and homogeneous and by calibrating a Young’s modulus,
this model yields modal frequencies that are in agreement with the experiment. However, the size
of the numerical contact patch obtained is not reasonable. Thus, a more sophisticated model, tak-
ing into account the inner structure of the tyre and the properties of the different materials used in
the tyre, including the measured viscoelasticity of the rubber, is proposed. The new model offers
a good compromise between the modal frequencies and the contact patch and could serve as a
reference method. For the contact calculations, the MIM (Matrix Inversion Method), based on the
elastic half-space assumption, is used to predict the contact pressure distribution within the contact
patch between the tyre and the rolling surface on the test rig. Real contact patches are measured
using Fuji pressure-sensitive paper. The numerical model yields static contact patches of similar
shapes and dimensions to the measured ones, while being time-efficient as the contact symmetries
have been exploited. Meanwhile, it provides lesser accuracy in terms of contact pressure distribu-
tion for high loads, which could be due to the oversimplifying elastic half-space assumption and
the underestimation of the sidewall effect. Contact patches have also been measured for different
contact configurations to study the influences of factors such as the curvature of the test rig, the
total load, the rolling speed and the consequent change in temperature at the tyre surface.
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Résumé du chapitre 3 en français (Summary of Chapter 3 in French)

Chapitre 3 : Contact dynamique avec une seule aspérité

Dans ce chapitre, le banc d’essai est utilisé pour étudier la force de contact dynamique entre
le pneumatique de taille réduite et une seule aspérité de forme sphérique ou conique. Les essais
sont réalisés en conditions de roulement. La force de contact dynamique est mesurée à l’aide d’un
capteur de force piezo-électrique intégré au bâti cylindrique du banc d’essai, sans l’ajout de papier
ou de capteur de pression à l’interface de contact. L’aspérité consiste en un embout de forme
sphérique ou conique vissé à la surface du capteur de force dont la hauteur est variable et connue
avec précision à l’aide d’une mesure par capteur à faisceau laser. La répétabilité des essais est
évaluée à partir de 100 impacts successifs à une même vitesse de roulement. En prenant garde de
bien respecter le temps de chauffe du pneumatique, les résultats sont satisfaisants aussi bien pour
les signaux temporels que pour le maximum de la force de contact.

Les résultats expérimentaux sont ensuite présentés en s’intéressant à différents paramètres.
Dans un premier temps, l’influence de la géométrie de l’aspérité sur la force de contact dynamique
est étudiée. À hauteur équivalente, la force de contact sur la sphère est plus élevée que sur le cone
mais l’allure des signaux temporels est très similaire et les durées de contact sont très proches.
L’analyse spectrale de la force d’impact donne des résultats proches de ceux pour un demi-sinus,
à savoir un spectre plat jusqu’à une fréquence critique égale à l’inverse de la durée de contact,
puis des pics d’amplitude décroissante aux harmoniques de cette fréquence. La relation entre
la force de contact maximale et la hauteur de l’aspérité est étudiée pour les deux géométries.
Moyennant un recalage du module élastique, les courbes expérimentales sont cohérentes avec les
lois de puissance analytiques issues de la théorie de Boussinesq. L’influence de la charge totale
sur la force de contact dynamique est ensuite étudiée. L’amplitude maximale de la force diminue
lorsque la charge augmente, alors que la durée de contact diminue avec la charge, ce qui est
cohérent avec les empreintes de contact mesurées en statique. Enfin, l’influence de la vitesse de
roulement sur la force de contact est analysée. Il apparaît que la durée de contact est inversement
proportionnelle à la vitesse et que les spectres aux différentes vitesses, modifiés en fréquence,
coïncident jusqu’à 350 Hz. Ces résultats illustrent la nature quasi-statique du contact dynamique
sur une seule aspérité.

Dans la dernière partie du chapitre, la Méthode d’Inversion de Matrice (MIM) basée sur
l’hypothèse de massif semi-infini est confrontée aux résultats expérimentaux. Le modèle élastique
est premièrement testé. Des empreintes de contact statique sont calculées pour différentes hau-
teurs d’aspérité puis la force de contact locale sur l’aspérité est comparée aux résultats expérimen-
taux. Moyennant un recalage du module d’Young, le modèle élastique permet d’approcher la force
maximale mesurée pour les fortes hauteurs, mais l’erreur est plus élevée pour les faibles hauteurs,
notamment lorsque la charge totale appliquée augmente. La comparaison avec des empreintes de
contact, mesurées en statique à l’aide de papier Fuji, indique que le problème pourrait être dû à
une sous-estimation des pressions de contact au niveau des flancs du pneumatique, comme déjà
observé au chapitre 2. Le fait que la force de contact maximale sur l’aspérité soit plus élevée pour
une charge totale plus faible est ensuite expliqué par une effet thermo-rhéologique de la gomme
constituant le pneumatique. En effet, lorsque la charge augmente, la température de la gomme lors
du roulement augmente et cette dernière devient moins rigide de par ses propriétés viscoélastiques.
Un module d’Young adapté à chaque charge permet d’approcher ces résultats à l’aide du modèle
élastique. Des calculs temporels quasi-statiques montrent clairement que la MIM élastique ne per-
met pas de retrouver la dissymétrie temporelle du signal de force mesuré. Cette dissymétrie est
attribuée à la viscoélasticité de la gomme qui est alors introduite dans le modèle.

Après un rappel des relations constitutives entre contrainte et déplacement pour un matériau
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viscoélastique, le problème de contact avec roulement est formulé puis discrétisé afin d’appliquer
la MIM dans le cas viscoélastique. Les calculs de la force de contact temporelle sont effectués
en utilisant un modèle simplifié de Zener. Le modèle permet d’obtenir des signaux temporels
dissymétriques par rapport au maximum de la force de contact, ce qui est conforme aux résultats
expérimentaux. En recalant convenablement le module long-terme et le temps caractéristique du
modèle de Zener, la MIM donne des résultats en très bon accord avec l’expérience pour une charge
totale de 500 N et une hauteur d’aspérité élevée. L’accord essai/calcul est cependant moins bon
pour les faibles hauteurs d’aspérité, comme dans le cas élastique. Pour une charge totale de 1000 N,
le modèle donne des résultats satisfaisants, mais la durée de contact est sous-estimée, donnant une
incertitude plus importante par rapport à l’expérience. Cet écart pourrait être réduit en utilisant un
modèle de Kelvin généralisé à la place du modèle de Zener. Il pourrait aussi s’agir d’un effet des
flancs du pneumatique ou de l’hyperélasticité, plus marqués lorsque la charge totale augmente et
non pris en compte dans le modèle de contact basé sur une hypothèse de massif semi-infini.
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Chapter 3

Dynamic contact with a single asperity

3.1 Introduction

In this chapter, the test rig is used to investigate the contact force between the reduced-sized
pneumatic tyre and a single asperity of spherical or conical shape under rolling conditions. The
influencing factors related to the solid indenter in static contact laws are the indenter height and
the geometric shape. Similarly, peak dynamic contact forces are to be investigated by varying
these two factors. Section 3.2 describes the experimental set-up and explains how contact forces
and relative asperity heights are measured and analysed to verify the repeatability. In Section 3.3,
experimental results are presented for studying the influences of different parameters on the peak
contact force, such as the shape of the asperities, the total load and the rolling velocity. Section
3.4 concerns the contact model assessment and is divided into two parts. The first part concerns
the comparison between experimental results on the influence of geometric shapes of indenter
and solutions from a numerical model based on the elastic half-space assumption. The validity
of the static contact assumptions in the rolling contact case is then discussed. In the second part,
the influence of rubber viscoelasticity is introduced to discuss the results with varying loads and
rolling speeds. Finally, concluding remarks are given.

3.2 Materials and Methods

3.2.1 Configurations for simple contact analysis

A detailed description of the operating principle of the test rig has been given in Section
2.1. Figure 2.3 shows the positions of the single asperity and of the tyre, sized 114/55R5, on the
metallic plate. The asperity is screwed onto a uni-axial force transducer (PCB Model 208A12)
which is embedded in the metallic plate. The force transducer is placed behind the metallic plate
to facilitate the experimental set-up as depicted in Figure 3.1. The piezoelectric force transducer
captures the dynamic normal force history throughout the contact duration. The height of the
asperity tip can be adjusted by inserting metallic flat washers of different thicknesses under the
transducer. The tyre comes into contact with the asperity once per revolution about the cylindrical
axis of the test rig. The influencing factors related to the solid indenter in static contact laws are
the indenter height and the geometric shape. Dynamic peak contact forces are also examined for
different configurations involving these two factors.
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Chapter 3. Dynamic contact with a single asperity

(a) Global transverse view of the metallic plate host-
ing a single asperity connected to a force transducer.

(b) Zoom of the connection between the asperity and
the force tranducer.

Figure 3.1 – A single asperity is connected to a uni-axial force transducer situated behind the
metallic plate integrated to the cylindrical concrete basis of the test rig.

3.2.2 Measurement of actual surface geometries

In this study, two geometric shapes of indenter are considered: spherical and conical. The
spherical asperity is in fact a 3.50-mm-high cap of a sphere with a radius of 7.50 mm. Thus, its
base radius is 6.35 mm. The conical one has a half-apex angle of 61.1°, a height of 3.50 mm and
a base radius of 6.35 mm. Both asperities fit into a cylindrical cavity with a radius of 6.50 mm.

Although the position of the asperity tip with regard to the road surface could be calculated
with the nominal thicknesses of the metallic flat washers inserted between the asperity and the
force transducer, inaccuracy may be induced due to manufacture imperfections and mounting un-
certainties. The contact force would vary sensitively with the value of the relative asperity height,
denoted by h, which was of the order of magnitude of millimetres. Therefore, a 2D laser scanner
(Micro-Epsilon Model scanCONTROL 2700-50) was used to assess more accurately the relative
asperity heights for each measurement, as shown in Figure 3.2. By placing a transverse laser line
that passed through the asperity tip, a list of scattered points whose positions described the surface
geometries of the metallic plate and the asperity could be obtained. The plate being not curved
in the transverse direction, its profile is approximated by two segments on the same straight line
whose slope needs to be adjusted to bring the scanned profile to a horizontal position. The least
squares fitting technique was applied to find a smooth circular curve for the profile of the spheri-
cal asperity and two straight lines for the profile of the conical asperity, respectively presented in
Figures 3.3 and 3.4.
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3.2. Materials and Methods

Figure 3.2 – Experimental set-up of the 2D laser profile scanner for measuring asperity height in
the case of a single asperity.
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Figure 3.3 – An example of circular curve fitting the scanned profile of the spherical asperity at a
relative height of 1.57 mm. The theoretical radius is 7.50 mm. The measured radius is 7.52 mm.
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Figure 3.4 – An example of straight lines fitting the scanned profile of the conical asperity at a
relative height of 1.61 mm. The theoretical half-apex angle is 61.1°. The measured half-apex
angle is 61.4°.
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Chapter 3. Dynamic contact with a single asperity

Seven heights were measured for the spherical and the conical shapes. The relative asperity
height h is the distance between the asperity tip and the horizontal position of the plate profile.
The relative heights determined for the two asperities are listed in Table 3.1. N.B.: The relative
heights may be negative for low asperity positions.

Table 3.1 – Measured relative asperity heights h for the spherical and the conical asperities.

hspherical (mm) -0.12 0.13 0.44 0.76 1.13 1.35 1.57
hconical (mm) -0.15 0.15 0.49 0.79 1.16 1.34 1.61

3.2.3 Measurement procedure and repeatability

Before starting a measurement of the contact force between the tyre and the asperity, it is
essential to make sure that the tyre reaches a steady-state rolling regime, despite the small distur-
bance per revolution by the single asperity. First, the pneumatic jack applied a load to the tyre
inwards along the radius of the test rig, thus normal to the rolling surface. An appropriate load
value should be chosen to ensure a relatively large contact area with the road surface and would
be maintained constant during an experiment. Then, the motor brought the steel beam to rotate
around the centre of the test rig. Consequently, the tyre would start rolling on the concrete surface
while the spindle rotated along with the beam. Finally, after an acceleration phase, the rolling had
to continue for a while until the temperature at the surface of the tyre became stable before starting
a measurement. This is due to a thermo-rheological effect that changes rubber’s elastic modulus:
the faster the tyre rolls, the higher the temperature rises and the less stiff the rubber becomes. For
instance, for a total load of 1000 N, the surface temperature stabilises:

• between 34 �C and 35 �C at a rolling speed of 5 m/s;

• between 44 �C and 46 �C at a rolling speed of 10 m/s;

• between 46 �C and 50 �C at a rolling speed of 15 m/s.

The uni-axial force transducer under the asperity was connected to a data acquisition front-
end (hardware: Brüel & Kjær PULSE front-end; software: Brüel & Kjær PULSE Labshop v. 14).
A dynamic force exceeding a threshold value perceived by the transducer triggers a measurement.
One measurement lasted 0.125 s to ensure that a complete impact force evolution was included
in the time interval. The data acquisition front-end registered, with a fixed sampling frequency
of 25600 Hz, the impact force history for each revolution as the tyre/road contact patch rolled
over the asperity tip. The representativeness of measurements for one configuration was ensured
by averaging measurements over multiple revolutions. The peak normal contact force was thus
measured as the average of the maximum values of 100 impact force history curves. Figure 3.5
shows the 100 force history curves for one configuration for the spherical asperity.

As previously mentioned, one of the advantages of the test rig in comparison with in-situ
measurement set-ups is that it permits tests to be performed under well-controlled laboratory con-
ditions. The test rig is placed in an air-conditioned room. At the start of the beam rotations, and
at the start and the end of one measurement, the tyre surface temperature, the room temperature
and humidity were measured. While rolling, the tyre should be subjected to a constant load, have
a constant speed and follow the same trajectory. Since these measurement conditions were con-
trolled and monitored, the contact force detected for a given relative asperity height should not
vary much from one test to another. This global repeatability of the apparatus was verified by per-
forming three tests under the same measurement conditions but on three different days. Figure 3.6
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Figure 3.5 – An example of 100 time signals of the impact force evolution during impacts with the
spherical asperity measured for the same configuration: a relative asperity height of 1.57 mm, a
speed of 10 m/s and a load of 1000 N. The peak force is 107.5 ± 6.5 N.

shows the time signals measured in these three tests, respectively represented by solid, dash-dot
and dashed lines. In this figure, the average contact force evolution is plotted versus the time. The
measured curves reveal good repeatability of the tests. It can also be concluded from the figure that
the lower the asperity is relative to the rolling surface, the shorter the contact time with asperity
lasts.
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Figure 3.6 – Repeatability of the averaged time signals of contact forces measured for different
relative heights of the spherical asperity. The three tests were carried out on different days (solid,
dash-dot and dashed lines) but under the same conditions: a speed of 10 m/s and a load of 1000 N.
The legend entries appear in the descending amplitude order of the curves in the figure.

79



Chapter 3. Dynamic contact with a single asperity

Due to the high normal load on the tyre, the impact with the asperity should not cause the
contact area to decrease significantly. Therefore, at the instant the normal tyre/asperity contact
force reaches its peak value, the asperity should be completely located within the tyre/road contact
patch. It is thus meaningful to take the peak value of impact force evolution over time as the peak
contact force. Figure 3.7 shows repeatable experimental results in terms of peak contact force. The
tyre surface temperatures were situated in the interval between 41 �C and 45 �C. Thus, the global
repeatability of the test rig is verified. In addition, the error bars represent the standard deviations
of results averaged over 100 revolutions. The variation of peak forces is small within the same test
containing 100 revolutions.
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Figure 3.7 – Repeatability of experiments performed on the test rig. The three tests were carried
out on different days but under the same conditions: a speed of 10 m/s and a load of 1000 N. The
tyre temperature was measured for each test. Error bars are plotted for the three tests.

3.3 Experimental results

3.3.1 Influence of the geometric shapes of indenter

The influence of the geometric shapes was tested for the spherical and the conical inden-
ters. In both cases, the tyre was brought to the same rolling speed of 10 m/s and subjected to
a load of 1000 N. According to classical analytical solutions for static elastic contact, the force-
indentation relationships for spherical [Hertz, 1882] and conical [Love, 1939] indenters can both
be approximated by power laws but with distinct exponents. Under rolling conditions, different
behaviours of the contact force as a function of the relative asperity height should also be expected,
due to the significant influence of the geometric shape of indenter.

In Figure 3.8, time signals of contact force measured for a spherical asperity and a conical
asperity of similar relative heights (1.57 mm for the spherical asperity and 1.61 mm for the conical
one) are compared. Despite a substantial difference in magnitude, especially for peak forces, the
contact duration Tc is similar in both cases (close to 7.5 ms), and so is the signal shape.

A comparison of spectra of the resultant contact forces for a spherical asperity and a conical
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Figure 3.8 – Time signals of the contact force measured for a spherical asperity and a conical one
of similar relative heights under the same conditions: a speed of 10 m/s and a load of 1000 N.

asperity of similar relative heights is given in Figure 3.9. In each calculation, a Blackman-Harris
window was applied to the complete contact duration and the oscillations outside this time window
were zero-padded. Each time signal in Figure 3.8 corresponds to an impact force pulse that can
be approximated by a half-sine function. For such pulses, the frequency spectra remain flat up
to a critical frequency equal to 1/Tc and then diminish and bounce [Ewins, 2000]. At multiples
of 1/Tc, wave peaks occur. This behaviour is verified for both curves in Figure 3.9 up to a fre-
quency of 3/Tc. For higher frequencies, the approximation by sine-function is no longer reliable,
especially for the conical asperity.
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Figure 3.9 – Spectra S F of the resultant contact forces for a spherical asperity with a relative height
of 1.57 mm and a conical asperity with a relative height of 1.61 mm. The rolling speed was 10 m/s
and the load on the tyre was 1000 N, in both cases.
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Chapter 3. Dynamic contact with a single asperity

In Figure 3.10, the peak contact forces measured for the spherical and the conical asperities
are plotted versus the relative asperity heights presented in Table 3.1 for comparison. The tyre
surface temperatures were very close to 45 �C in both cases. However, the contact forces have
significantly different behaviours. This will be discussed in the next section by comparison with a
numerical model. For asperity tip positions slightly below the road surface, contact forces, albeit
very weak, could still be detected. This fact implies that the part of the tyre covering the cylindrical
cavity was able to penetrate into the latter due to the applied load and to come into contact with
the asperity tip. To verify the validity of the half-space assumption in the Boussinesq theory of
elastic contact, analytical solutions [Hertz, 1882, Love, 1939] are plotted by assuming an effective
modulus of 8.7 MPa. The solution for a spherical asperity given by Hertz is:

PHertz =
4
3

E⇤ R0.5 �1.5, (3.1)

and the solution for a conical asperity given by Love is:

PLove =
2
⇡

E⇤ tan(✓) �2. (3.2)

Therefore, the theoretical exponents involved in these force-indentation relationships are 1.5 for
a spherical asperity and 2 for a conical one. To take into account the partial penetration of tread
rubber into the cavity, the curves are shifted by an assumed reference height hre f of -0.32 mm
corresponding to the lowest asperity tip position relative to the rolling surface where the contact
first occurs under the present loading conditions. Note that here � ⇡ h + hre f . The experimental
exponent are then calculated: 1.58 for the spherical asperity and 2.04 for the conical one. The
good agreement between the experimental and the analytical results verifies, though roughly, the
applicability of the Boussinesq contact theory in the present contact configuration. Although the
existence of the cavity is not ideal for numerical modelling of the contact problem, it is inevitable
in practice and will be included in the model in Subsection 3.4.1.
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Figure 3.10 – Influence of geometric shapes of indenter. The tests were performed under the same
conditions: a speed of 10 m/s and a load of 1000 N. The tyre temperature was measured for each
test. Error bars are plotted for both tests. Classical analytical solutions by Hertz (sphere) and
Love (cone) are plotted for comparison.
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3.3. Experimental results

3.3.2 Influence of the total load

Tests were conducted to study the influences of the total load on the contact forces for a
spherical asperity. Three loads, 500, 750 and 1000 N, were tested with the tyre rolling at 10 m/s.

The influence of normal loading condition on the time evolution of contact force is stud-
ied by plotting the time signals for the three loads on the tyre, measured for the highest relative
height (1.57 mm) of the spherical asperity, as presented in Figure 3.11. The contact durations Tc

for 500, 750 and 1000 N are respectively 5.7, 6.8 and 7.6 ms. In Figure 3.12, the time is multiplied
by the common rolling speed to represent the contact length. Therefore, the values for 500, 750
and 1000 N are respectively 0.057, 0.068 and 0.076 m. The contact length is influenced by the
normal load, which is equally true under static loading condition: the higher the load, the greater
the contact length (see Subsection 2.3.5). The shape of the signals is also influenced by the loading
condition: as the load increases, the signal tends to have, after reaching the peak value, a longer
phase of slow decrease in force value followed by a phase of faster decrease until end of contact.
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Figure 3.11 – Influence of the total load on the contact force. Three rolling speeds, respec-
tively 500, 750 and 1000 N, were tested on the same day for the same rolling speed of 10 m/s.

A comparison of spectra of the resultant contact forces under the three loads is given in
Figure 3.13. Based on the same method as used for analysing Figure 3.9, the approximation by
sine-function can be applied to the three curves in Figure 3.13. The critical frequency is found near
1/Tc and wave peaks are found at multiples of 1/Tc, at least up to 3/Tc. Since Tc increases with
the load, the critical frequency decreases accordingly. Therefore, the greater the load, the shorter
the flat part of the spectrum. The experimental result is in agreement with the theory.

The peak contact forces for the three loads are plotted versus the relative asperity heights,
as represented in Figure 3.14. The tyre surface temperature was also measured for each test. The
higher the load, the higher the tyre surface temperature and the lower the contact force. Numerical
simulation results are presented in Subsection 3.4.1.2 to justify that it is the temperature rather
than the force distribution that influences the peak contact force.
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Figure 3.12 – Influence of the total load on the contact length. Three rolling speeds, respec-
tively 500, 750 and 1000 N, were tested on the same day for the same rolling speed of 10 m/s. The
time t is multiplied by the respective rolling speed V to represent the distance d travelled during
rolling.
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Figure 3.13 – Spectra S F of the resultant contact forces for total loads of respectively 500, 750 and
1000 N. The spherical asperity has a relative height of 1.57 mm. The rolling speed was 10 m/s.

3.3.3 Influence of the rolling speed

The influence of the rolling speed on the time evolution of the contact force is studied by
plotting the time signals for three different rolling speed, respectively 5, 10 and 15 m/s, measured
for the highest relative height of the spherical asperity, i.e. 1.57 mm, as presented in Figure 3.15.
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Figure 3.14 – Influence of the total load experienced by the tyre on the peak force. Three loads,
respectively 500, 750 and 1000 N, were tested on the same day for the same rolling speed of 10 m/s.
The tyre temperature was measured for each test. Error bars are plotted for the three loading
conditions.

The contact durations Tc for 5, 10 and 15 m/s are respectively 15.5, 7.6 and 5.3 ms. In Figure 3.16,
the time is multiplied by each rolling speed to represent the contact length. The curves are shifted
horizontally so that their peak values occur at the same position. The contact length is approxi-
mately the same for the three speeds and is close to 0.077 m. Therefore, the contact duration is
inversely proportional to the rolling speed, which means that the contact is quasi-static. The peak
contact forces are reached at the same position and are close in magnitude for 10 and 15 m/s, as
also evidenced in the following in Figure 3.19.

A comparison of spectra S F of the resultant contact forces corresponding to the three rolling
speeds is given in Figure 3.17. Take now 10 m/s as a reference speed Vr, the curve corresponding
to the lower speed of 5 m/s is shifted to the left while having greater amplitudes at the first wave
peaks. Reversely, the higher speed of 15 m/s causes the curve to be shifted to the right while
having smaller amplitudes at peaks. By using an approach proposed in [Cesbron et al., 2009a]
to regard the dynamic contact as quasi-static states, i.e. the resultant contact force is an invariant
function of the position Vt, the spectral levels in Figure 3.17 can be linked to that of a reference
speed. The modified spectrum S ⇤F,i for a given speed Vi can be calculated as follows:

S ⇤F,i( f ) = S F,i( f ) + 20log10(Vi). (3.3)

By assuming that the resultant force F is an invariant function of Vit, the following relation should
be verified:

S ⇤F,r( f ) = S ⇤F,i( f Vi/Vr). (3.4)

The modified spectra are represented in Figure 3.18 and are very similar in terms of magnitude up
to 350 Hz. Therefore, the quasi-static nature of the contact is again verified.
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Figure 3.15 – Influence of the rolling speed on the contact force. Three rolling speeds, respec-
tively 5, 10 and 15 m/s, were tested on the same day for the same load on the tyre of 1000 N.
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Figure 3.16 – Influence of the rolling speed on the contact length. Three rolling speeds, respec-
tively 5, 10 and 15 m/s, were tested on the same day for the same load on the tyre of 1000 N. The
time t is multiplied by the respective rolling speed V to represent the distance d travelled during
rolling.
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Figure 3.17 – Spectra S F of the resultant contact force at 5, 10 and 15 m/s. The spherical asperity
has a relative height of 1.57 mm. The load on the tyre was 1000 N.
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Figure 3.18 – Modified spectra S ⇤F of the resultant contact force at 5, 10 and 15 m/s with the
reference speed Vr = 10 m/s. The spherical asperity has a relative height of 1.57 mm. The load on
the tyre was 1000 N.

The contact forces measured at seven relative asperity heights for rolling speeds of respec-
tively 5, 10 and 15 m/s are given in Figure 3.19. The tyre surface temperature was measured for
each test. The higher the speed, the higher the tyre surface temperature and the lower the contact
force. As the speed rises, the contact force tends to stabilise. By comparing Figures 3.14 and 3.19,
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Chapter 3. Dynamic contact with a single asperity

it can be observed that, a change in load, which leads to a smaller change in temperature than
a change in speed does, induces, meanwhile, a more pronounced change in contact force. This,
again, supports the quasi-static nature of the contact.
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Figure 3.19 – Influence of the rolling speed on the peak force. Three rolling speeds, respec-
tively 5, 10 and 15 m/s, were tested on the same day for the same load on the tyre of 1000 N. The
tyre temperature was measured for each test. Error bars are plotted for the three rolling speeds.

3.3.4 Conclusions

The influences of several parameters have been analysed in this section. The asperity shape
has a great influence on the contact. The experimental force-indentation relationships for a spher-
ical asperity and a conical one follow the theoretical solutions by Hertz (sphere) and Love (cone),
though shifted by a reference height hre f . The exponents extracted from the measured data are
close to those in the classical analytical solutions. Meanwhile, the total load and the rolling speed
affect less the force-indentation relationship. By analysing the contact lengths and the force spectra
for different rolling speeds, the quasi-static nature of the contact has been verified.

3.4 Contact model assessment

3.4.1 Elastic contact model

3.4.1.1 Static contact patch calculations

Based on the assumptions that the contact is frictionless and that the tread of the tyre can be
regarded as an elastic half-space, the tyre/road contact problem dealing with multiple asperities
can be solved using the classical Matrix Inversion Method (MIM) [Johnson, 1985]. In this subsec-
tion, the validity of the elastic half-space assumption in the case of rolling contact with a single
asperity is examined. To allow such comparisons to be performed, the assumption that the peak
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3.4. Contact model assessment

force is reached when the tyre is right above the asperity tip is made. We first develop a numeri-
cal model to take the actual contact surface geometries, especially the existence of the cylindrical
cavity, into account. Knowing the total load on the tyre, the contact pressure distribution within
the tyre/road and tyre/asperity contact interfaces is calculated based on the elastic half-space as-
sumption. Summing the pressure over the tyre/asperity contact area yields the peak normal contact
force. Similar to the construction of experimental force-indentation relationships, numerical ones
are established by plotting peak contact forces versus different relative asperity heights. Finally,
they are compared with the experimental ones to evaluate the elastic half-space assumption for the
prediction of peak forces under rolling conditions.

Thus, in the present section, the half-space assumption is applied to the reduced-sized tyre.
The static contact with a rigid, smooth road surface including a cylindrical cavity inside which a
rigid asperity is placed at the measured positions relative to the road surface is studied using the
MIM. The actual curvatures of the road surface and the dimensions of the cavity and the asperity
are taken into account in the model.

The detailed numerical procedure of the classical MIM can be found in [Cesbron and Yin,
2010]. In this study, the computation labour is reduced compared with the classical MIM by
exploiting symmetries in the contact problem (see Appendix A). This optimisation not only sim-
plifies the computation of the influence matrix, but also reduces the dimensions of matrices to be
inverted in solving the matrix equation that combines the influence matrix and the equilibrium
equation.

The dimensions of the mesh elements in this model are chosen to be 0.5 mm in both x (longi-
tudinal) and y (transverse) directions. The estimated Young’s modulus of 5 MPa used for calculat-
ing the static contact patches of the tyre, after rolling at 10 m/s and under a total load of 1000 N, in
Figure 2.37 yields here relatively correct fits of contact forces to the experimental results. For the
spherical asperity, the peak forces calculated for the measured relative asperity heights are com-
pared with the experimental values in Table 3.2 for the configuration of a total load of 1000 N and
a rolling speed of 10 m/s. The coefficients of variation of the measurements, defined as the ratio
of standard deviation �(Pmax,exp) to peak contact force Pmax,exp, range from 1.9% to 15.6% with
a better precision for higher asperity positions. The numerical results for higher asperity positions
agree better with the measured ones than those for lower positions.

Table 3.2 – Comparison of experimental results and numerical ones from the MIM for the spherical
asperity. A Young’s modulus of 5 MPa is calibrated for the configuration of a total load of 1000 N
and a rolling speed of 10 m/s. The standard deviations � are given for the measured results.

hspherical (mm) -0.12 0.13 0.44 0.76 1.13 1.35 1.57

Pmax,MIM (N) 13.6 22.6 36.6 53.1 75.6 90.9 107.0
Pmax,exp (N) 4.5 11.2 26.8 44.8 71.5 91.5 108.1
�(Pmax,exp) (N) ± 0.7 ± 0.9 ± 1.2 ± 1.4 ± 1.7 ± 1.8 ± 2.1

A similar comparison is made for a total load of 500 N and a rolling speed of 10 m/s and is
presented in Table 3.3. A change in total load necessitates solely a readjustment of the Young’s
modulus of the elastic half-space, as explained in Subsection 2.3.5. A modulus of 7 MPa is cal-
ibrated for the present loading condition and also coincides with the one used in Figure 2.37. A
good agreement is found again for higher asperity positions between the calculated and the mea-
sured peak contact forces. Meanwhile, for lower positions, the elastic model yields better results
for 500 N than for 1000 N.
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Chapter 3. Dynamic contact with a single asperity

Table 3.3 – Comparison of experimental results and numerical ones from the MIM for the spherical
asperity. A Young’s modulus of 7 MPa is calibrated for the configuration with a total load of 500 N
and a rolling speed of 10 m/s. The standard deviations � are given for the measured results.

hspherical (mm) -0.12 0.13 0.44 0.76 1.13 1.35 1.57

Pmax,MIM (N) 9.8 20.1 37.2 58.3 87.5 107.2 128.8
Pmax,exp (N) 4.9 13.6 32.5 57.4 83.4 109.4 126.7
�(Pmax,exp) (N) ± 0.8 ± 1.3 ± 1.4 ± 1.8 ± 2.2 ± 1.8 ± 2.6

Numerical and experimental static contact pressure distributions are compared in Figures
3.20, and 3.21, respectively for relative heights of 0.44 and 1.57 mm. The experimental results
remain qualitative, especially for 1.57 mm in which case the Fuji paper is considerably crumpled.
For each relative height, calculations were performed based on the elastic half-space assumption
for three loading conditions: 500, 750 and 1000 N. The corresponding Young’s moduli are re-
spectively 3.7, 3.3 and 2.9 MPa, same as those used in Figure 2.35, because the contact patches
were measured with the tyre being at the room temperature. The contours of the numerical contact
patches are superposed on the measured patches for comparison of dimensions.
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Figure 3.20 – Contact pressure distributions (in MPa) in the case of the spherical asperity at the
relative height of 0.44 mm. The total loads are respectively 500, 750 and 1000 N. The correspond-
ing Young’s moduli are respectively 3.7, 3.3 and 2.9 MPa. The contours of the numerical contact
patches are superposed on the measured patches for comparison of dimensions.
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Figure 3.21 – Contact pressure distributions (in MPa) in the case of the spherical asperity at the
relative height of 1.57 mm. The total loads are respectively 500, 750 and 1000 N. The correspond-
ing Young’s moduli are respectively 3.7, 3.3 and 2.9 MPa. The contours of the numerical contact
patches are superposed on the measured patches for comparison of dimensions.

From the measured contact patches, it can be seen that for a fixed relative height of asperity,
the total load does not affect significantly the contact area on the asperity. In addition, a similar
influence of the sidewalls, when increasing the total load, on the contact pressure distribution to
that in the configuration of the tyre loaded onto a flat surface, presented in Subsection 2.3.5, is
observed. The higher pressure at the sidewalls is not well represented by the numerical model,
with or without the asperity and the cylindrical cavity.

For the conical asperity, the peak forces calculated for the measured relative asperity heights
are compared with the experimental values in Table 3.4. The coefficients of variation range
from 2.7% to 16.1% with a better precision for higher asperity positions. The agreement is bet-
ter than that for the spherical asperity (Table 3.2 for a total load of 1000 N and a rolling speed
of 10 m/s) over the whole height range. An example of the numerical results is given in Fig-
ure 3.22.

The less desirable differences between the experimental and numerical results for lower as-
perity tip positions may have been induced by various factors. To enhance the agreement, the
hyperelasticity of rubber and the sidewall effect could be taken into account in the model. Nev-
ertheless, considering the simplicity of the numerical model, it provides satisfying predictions of
contact forces for high asperities which interact more with the tyre than lower ones.
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Table 3.4 – Comparison of experimental results and numerical ones from the MIM for the conical
asperity. A Young’s modulus of 5 MPa is calibrated for the configuration of a total load of 1000 N
and a rolling speed of 10 m/s. The standard deviations � are given for the measured results.

hconical (mm) -0.15 0.15 0.49 0.79 1.16 1.34 1.61

Pmax,MIM (N) 2.9 6.8 13.1 20.4 32.2 38.8 50.5
Pmax,exp (N) 1.7 2.8 8.0 15.8 27.6 38.1 48.4
�(Pmax,exp) (N) ± 0.1 ± 0.4 ± 0.7 ± 0.9 ± 1.2 ± 1.3 ± 1.3
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Figure 3.22 – Calculated contact pressure distribution (in MPa) in the case of the conical asperity
at the relative height of 1.61 mm. The total load is 1000 N. The Young’s modulus is 2.9 MPa.

3.4.1.2 Influence of thermo-rheological properties

The tread rubber being a viscoelastic material, the temperature- and rate-dependences of its
elastic modulus may influence the tyre/asperity contact force. As the load on the tyre increases,
the tyre/road contact area also increases causing the rolling resistance to augment. The dissipated
energy induces a rise in rubber temperature. Consequently, the storage modulus of tread rub-
ber decreases which could explain the decrease in contact force in Figure 3.14. At low loading
frequencies, the loss modulus rises with the frequency. Therefore, more energy is dissipated as
the rolling speed rises. However, the decrease in storage modulus due to a rise in temperature is
partially compensated by the fact that the modulus also increases with the frequency, which may
explain the less pronounced influence of the rolling speed on the contact force in Figure 3.19.

Meanwhile, varying loads lead to varying force distributions on the metallic plate and the
asperity. The possibility of the force distribution’s being the main cause of the change in contact
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3.4. Contact model assessment

force can be excluded by performing simulations using the MIM first without, then with consider-
ation of the temperature-induced change in modulus. Figure 3.23 shows the results calculated with
the same Young’s modulus of 5 MPa for the three loads of 500, 750 and 1000 N. The variation
of contact force does not follow the same tendency as in the experimental results. Figure 3.24
shows the results calculated with Young’s moduli of 7, 6 and 5 MPa, respectively calibrated for
the three loads of 500, 750 and 1000 N. In this instance, the numerical and experimental results are
very close for higher asperity positions. Therefore, it may be concluded that the loading condition
influences the contact force mostly via the temperature-dependence of rubber viscoelasticity.
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Figure 3.23 – Numerically calculated contact forces using the same Young’s modulus of 5 MPa
for the three loads of 500, 750 and 1000 N. The experimental curves in Figure 3.14 are plotted for
comparison.
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Figure 3.24 – Numerically calculated contact forces using Young’s moduli of 7, 6 and 5 MPa
respectively for the three loads of 500, 750 and 1000 N. The experimental curves in Figure 3.14
are plotted for comparison.
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3.4.1.3 Quasi-static calculations of the contact force evolution

Under the quasi-static assumption, the elastic contact model is used to calculate the contact
force evolution for a series of positions along the tyre’s rolling trajectory. To facilitate the descrip-
tion of the latter, the curvature of the rolling surface on the test rig is omitted in the model. Hence,
the tyre rolls in a straight line at a chosen speed of 10 m/s. The dimensions of the mesh elements
are respectively 1.25 mm in the rolling direction and 2.5 mm in the transverse direction. The tyre
moves forward at a pace of 5 mm per time step.

Calculations are first performed for a total load of 500 N and a relative asperity height
of 1.57 mm. The Young’s modulus is 7 MPa. The numerical results of the contact force evo-
lution are plotted along with the experimental curve in Figure 3.25 for comparison. The time is
multiplied by the rolling speed to represent the distance travelled during rolling. The asperity tip
position in the model is also represented. Note that the actual position of the tyre with respect to the
rolling surface during the measurement is unknown. Thus, it is reasonable to place the positions
where the peak forces occur in the experimental and the numerical curves to coincide with each
other and then compare the shapes of the curves before and after reaching the maximum value.
For 500 N, the contact duration with the asperity corresponds to 12 time steps in the numerical
curve, which is symmetric and seems to be in agreement with the experimental curve. However,
whether the actual asperity tip coincides with the one in the numerical model is still unclear.
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Figure 3.25 – Comparison of the contact force evolution, calculated using the elastic contact
model, with the experimental curve in the case of a total load of 500 N and a rolling speed
of 10 m/s. The time t is multiplied by the rolling speed V to represent the distance d travelled
during rolling. The positions where the peak forces occur are placed to coincide with each other.

Knowing that the experimental force evolution is strongly dissymmetric under high loads,
calculations are then performed for a total load of 1000 N and a relative asperity height of 1.57 mm.
The Young’s modulus is 5 MPa. The comparison between the numerical and the experimental
curves is illustrated in Figure 3.26. In this instance, the two curves do not have similar shapes;
neither do they have the same contact duration.
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Figure 3.26 – Comparison of the contact force evolution, calculated using the elastic contact
model, with the experimental curve in the case of a total load of 1000 N and a rolling speed
of 10 m/s. The time t is multiplied by the rolling speed V to represent the distance d travelled
during rolling. The positions where the peak forces occur are placed to coincide with each other.

The elastic model fails to produce results with dissymmetry as in the measured contact force
evolution, especially for high loads. Therefore, it would be necessary to introduce the viscoelas-
ticity of rubber into the numerical model for rolling contact calculations.

3.4.2 Viscoelastic model

3.4.2.1 Viscoelastic stress-strain constitutive relations

To provide the theoretical ground of the memory effect due to the viscoelasticity of rubber
involved in the tyre/road contact problem, a general formulation of viscoelastic stress strain consti-
tutive relations is considered in the first place [Gurtin and Sternberg, 1962]. We assume isothermal
conditions which can be physically interpreted as the stabilisation of tyre surface temperature so
that constitutive model parameters are constant for the complete duration of the rolling problem to
be analysed.

Consider the infinitesimal deformations at a point within a solid composed of a viscoelastic
material which is said to have a memory. We make the hypothesis that the Cauchy stress tensor
components �i j depend on the complete past history of the Cauchy strain tensor components ✏kl.
This hereditary relation can be expressed in the form of a Stieltjes integral:

�i j(t) =
Z 1

0
✏kl(t � s) dGi jkl(s) or �i j(t) = ✏kl ⇤ dGi jkl, (3.5)

where Gi jkl are components of a fourth order tensor and are called relaxation functions. The
commutativity of the Stieltjes convolution allows the equation above to be written as follows:
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�i j(t) =
Z t

0
Gi jkl(t � ⌧)

d✏kl(⌧)
d⌧

d⌧ or �i j(t) = Gi jkl ⇤ d✏kl. (3.6)

The inverse relation to Equation (3.6) leads to an alternative form of the stress strain relation:

✏i j(t) =
Z t

0
Ji jkl(t � ⌧)

d�kl(⌧)
d⌧

d⌧ or ✏i j(t) = Ji jkl ⇤ d�kl, (3.7)

where Ji jkl are components of a fourth order tensor and are called creep functions.

If we assume isotropy of the viscoelastic materials, the following expression obtains:

Gi jkl =
G2 �G1

3
�i j �kl +

G1

2
(�ik � jl + �il � jk), (3.8)

where G1 and G2 are respectively scalar relaxation functions in shear and isotropic compression
and �i j the Kronecker delta. G1 is typically associated with the stress deviator tensor si j and the
strain deviator tensor ei j, respectively defined by:

si j = �i j �
1
3
�i j �kk , skk = 0, (3.9)

ei j = ✏i j �
1
3
�i j ✏kk , ekk = 0, (3.10)

where �kk is the first stress invariant and skk the first deviatoric stress invariant.

By separating the relaxation integral laws for shear and isotropic compression, the isotropic
form of Equation (3.6) is split into two equations:

si j = G1 ⇤ dei j. (3.11)

�kk = G2 ⇤ d✏kk. (3.12)

The corresponding creep integral laws are:

ei j = J1 ⇤ dsi j. (3.13)

✏kk = J2 ⇤ d�kk, (3.14)

where J1 and J2 are respectively scalar creep functions in shear and isotropic compression. By
introducing the Laplace transform L , defined by:

L { f (t)}(s) =
Z 1

0
f (t)e�stdt, (3.15)

and using the property:

L {� ⇤ d }(s) = sL {�}L { }, (3.16)
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the relationship between the relaxation and creep functions can be obtained from Equations (3.11)
to (3.14):

J↵ = (s2 G↵)�1, ↵ = 1, 2. (3.17)

It is now expedient to use expressions of the isotropic relaxation functions in an analogous
manner to those in the linear elasticity theory:

µ(t) = G1(t)/2, (3.18)

k(t) = G2(t)/3, (3.19)

where µ(t) corresponds to the second Lamé parameter in elasticity and k(t) the bulk modulus.
This analogy between viscoelastic solutions and corresponding elastic solutions is termed elastic-
viscoelastic correspondence principle. Elastic solutions are allowed to be converted into quasi-
static viscoelastic ones by replacing elastic moduli by transformed viscoelastic properties [Chris-
tensen, 2012].

3.4.2.2 Rolling contact formulation and discretisation

The 3D viscoelastic rolling contact has already been treated by Yin et al. [2015] in the trav-
elling coordinate system of the contact patch. In this thesis, the contact pressure evolution is
described in the fixed coordinate system of the road surface. Consider now the specific problem of
viscoelastic rolling contact between a tyre and a road surface. The elastic solution of displacement
along z-axis u to a Boussinesq problem due to distributed pressure on an elastic half-space writes:

u(I) =
"
Σm

T (I,M)
G

p(M) ds, I 2 Σm, M 2 Σc (3.20)

where Σc is the contact area, G the shear modulus (also called the second Lamé parameter)
and T (I,M) the influence function defined as follows:

T (I,M) =
1 � ⌫

2 ⇡ d(I,M)
, (3.21)

where ⌫ is the Poisson’s ratio and d(I,M) =
p

(xM � xI)2 + (yM � yI)2 is the Euclidean distance
between two point I and M in the xy-plane. The shear modulus G considered here is an effective
value taking into account the contributions of both solids. By assuming the shear modulus of
the road material to be very large in front of that of the tyre rubber, the effective shear modulus
could be considered equal to the rubber’s shear modulus. The elastic half-space assumption is then
readily applicable to the road surface by interchanging the shear moduli of both solids.

The elastic-viscoelastic correspondence principle is then applied to convert Equation (3.20)
into a viscoelastic solution, written in Laplace transforms, to a contact problem in which the tyre
is loaded onto the road surface without rolling:

u(I, s) =
"
Σm

T (I,M) s J(s) p(M, s) ds. (3.22)
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When written in the Stieltjes integral form as in Equation (3.7), the equation above becomes:

u(I, t) =
Z t

0
J(t � ⌧)

d

d⌧

""
Σm

T (I,M) p(M, ⌧) ds

#

d⌧, I 2 Σc(t), M 2 Σm, (3.23)

where t denotes the current time and ⌧ varies between 0 and t. The vertical displacement u due
to the contact pressure history is evaluated within the current contact area Σc(t). The maximum
contact area Σm comprises all points belonging to contact areas from the start of loading to the
current time t. The pressure distribution p(⌧) within Σm is a function of the time variable ⌧. J(t)
is the creep function converted from the relaxation function G(t), analogous to the elastic shear
modulus G in Equation (3.20), through Equation (3.17).

The rolling conditions to be considered in the present problem are under the simplifying
assumption that the friction at the contact interface can be neglected. Thus the rolling problem
reduces to a sliding problem of a rigid solid representing the tyre loaded onto a viscoelastic half-
space under a constant force. The kinematic conditions can be introduced by describing the spatial
displacement of the contact area Σc(t) relative to a global coordinate system fixed to the road
surface as a function of time, i.e. in the Eulerian manner. A constant translational speed of Vx

along the x-axis is assumed for the tyre center.

Consider a point I belonging to the road surface whose xy-coordinates in the global coordi-
nate system are denoted by (XI ,YI). The total vertical displacement u(I, t) observed at this point
could be regarded as the summed contributions of contact pressure at all instants previous to t.
Consider then a typical material point M within the tyre and belonging to the contact area for the
whole contact duration. It has a fixed position in the local, travelling coordinate system fixed to
the tyre center. Its coordinates in the global coordinate system at the initial instant are denoted
by (XM,YM). The global coordinates in the xy-plane are therefore functions of the speed Vx and
the time variable ⌧: (XM + Vx ⌧,YM). The viscoelastic solution of u(I, t) with consideration of the
rolling conditions becomes:

u(I, t) =
Z t

0
J(t � ⌧)

d

d⌧

""
Σc(⌧)

T (I,M) p(M, ⌧) ds

#

d⌧, I 2 Σc(t), M 2 Σc(⌧), (3.24)

where

T (I,M) =
1 � ⌫

2 ⇡
p

(XI � XM � Vx ⌧)2 + (YI � YM)2
. (3.25)

The boundary conditions for solving the pressure distribution are as follows:

(

8I 2 Σc(t), �(t) � z(I, t) � u(I, t) = 0 and p(I, t) > 0
8I < Σc(t), �(t) � z(I, t) � u(I, t) > 0 and p(I, t) = 0

(3.26)

where �(t) is the normal penetration of the tyre into the viscoelastic half-space yet to be deter-
mined, as the load is imposed in this problem. z(I, t) represents the separation at point I and
instant t between the undeformed surfaces of the two bodies and can be written as the differ-
ence between the tyre surface geometry zt(I, t) and the road surface geometry zr(I, t). Since the
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road is immobile, zr is independent of time. Hence, zr(I, t) ⌘ zr(I). On the contrary, zt(I, t),
the z-coordinate of the projection point of I onto the tyre surface, is a function of speed Vx and
time t: zt(I, t) ⌘ zt(XI ,YI , t) = zt(XI � Vx t,YI , 0). Therefore, z(I, t) is expressed as:

z(I, t) = zt(XI � Vx t,YI , 0) � zr(XI ,YI). (3.27)

The tyre surface geometry is obtained by rotating the outer contour of tyre cross-section
around the axis parallel to the y-axis and passing through the tyre center. For the sake of simplicity,
the outer contour within the global yz-plane containing the tyre center is considered. The geometry
of the contour curve can be described by a polynomial curve F(y) fitted to pass through several
points whose positions relative to the tyre center are already measured. The polynomial curve F(y)
is shown in the left of Figure 3.27. For a given coordinate on the y-axis, the tyre contour geometry
in the xz-plane, i.e. in the circumferential direction, is a circular arc to be calculated based on the
transverse outer contour F(y) of the tyre and the global coordinates (XP,YP,RP) of the tyre center,
with RP being the radius of the tyre. The circular contour in the xz-plane for y = 0 is shown in
the right of Figure 3.27. For any point of xy-coordinates (X,Y) on the tyre surface potentially in
contact with the road surface, the z-coordinate Z(X,Y) is involved in the following equation.

(RP � F(Y))2 = (X � XP)2 + (RP � Z(X,Y))2, (3.28)

which leads to the solution of Z:

Z(X,Y) = RP �
p

(RP � F(Y))2 � (X � XP)2. (3.29)

Therefore, zt(XI � Vx t,YI , 0) in Equation (3.27) can be expressed as:

zt(XI � Vx t,YI , 0) = Z(XI � Vx t,YI). (3.30)
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Figure 3.27 – Left: tyre contour along the transverse direction, described by a polynomial curve.
Right: tyre contour along the circumferential direction, described by a circular arc.

The tyre surface is meshed with the same resolution as that of the road surface, with distinct
spacings dx and dy along the x and the y directions, respectively. An example of the tyre surface
geometry to be used in the viscoelastic rolling model is represented in Figure 3.28. Each mesh
element is associated with its center point where the local displacement u, the separation z between
contact surfaces and the uniformly distributed pressure p are evaluated.

To simulate the rolling contact with a prescribed loading for the complete rolling duration,
to Equations (3.24), (3.25), (3.26) and (3.30) is added the following equation of equilibrium:
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Figure 3.28 – Tyre surface geometry with the mesh used for the MIM calculation. The spacings
are dx = 1.25 mm and dy = 2.5 mm.

P(t) =
Z

Σc(t)
p(t) ds. (3.31)

The discretisation in space leads to the expression of the influence coefficient Ti j to be cal-
culated, using Love’s result [Love, 2013], as the influence of a load associated to point j on the
element associated to point i [Kozhevnikov et al., 2008].

To solve the time-dependent contact problem, a temporal discretisation is necessary in addi-
tion to the spatial discretisation. The total rolling duration t is divided into l time steps of dura-
tion d⌧. The creep function involved in Equation (3.24) becomes a right-continuous step function
defined as follows:

J(t) =
l
X

k=1

J(kd⌧ � d⌧) 1[kd⌧�d⌧,kd⌧[(t), (3.32)

where 1[kd⌧�d⌧,kd⌧[(t) is the indicator function of interval [kd⌧ � d⌧, kd⌧[ defined as:

1[kd⌧�d⌧,kd⌧)(t) =

(

1 if t 2 [kd⌧ � d⌧, kd⌧[
0 if t < [kd⌧ � d⌧, kd⌧[

(3.33)

Therefore, the displacement ul
i at point i and time step l is written in the following discretised

form:

ul
i =

l
X

k=1

J((l � k)d⌧)
n
X

j=1

Ti j [pk
j � pk�1

j ], (3.34)
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where pk
j = p(X j,Y j, k⌧). By injecting the equation above into the discretised form of Equa-

tion (3.26) and placing the knowns on one side of the equal sign and the unknowns on the other
side, the following equations obtain:

�l � J(0)
n
X

j=1

Ti j pl
j = zl

i + vl�1
i , (3.35)

vl�1
i =

l�1
X

k=1

J((l � k)d⌧)
n
X

j=1

Ti j [pk
j � pk�1

j ] � J(0)
n
X

j=1

Ti j pl�1
j , (3.36)

where Ti j with consideration of the rolling conditions is written as:

Ti j =
1 � ⌫
2 ⇡

Z Yk
j+(dy/2)

Yk
j�(dy/2)

Z Xk
j+(dx/2)

Xk
j�(dx/2)

dx dy
q

(Xi � X j � Vx d⌧)2 + (Yi � Y j)2
, (3.37)

with the same convention as in Equation (3.25) that the coordinates correspond to the initial instant.

3.4.2.3 Results

Calculations are first performed for a total load of 500 N and a rolling speed of 10 m/s. The
parameters of the model are very similar to those in the elastic model for contact force evolution.
Only the elastic material properties are replaced by a viscoelastic constitutive model. It would be
ideal to use the Prony series identified in Subsection 2.2.2. However, the Prony series is usually an
expansion of the shear relaxation modulus. Calculating the creep compliance from a Prony series
with multiple terms requires using Equation (3.17) to which there is no closed-form solution.
Therefore, a Zener model (Figure 3.29) is used for the sake of simplicity. The creep compliance is
expressed as:

J(t) =
1

E1
�

E1

E1(E1 + E1)
e�t/⌧1 , (3.38)

where ⌧1 = ⌘(E1 + E1)/E1E1 [Christensen, 2012]. The elastic moduli E1 in the spring branch
and E1 in the Maxwell branch are assumed to be equal. After calibration, the long-term modulus
E1 = 4 MPa and the characteristic time of the Maxwell branch ⌧ = ⌘/E1 = 0.5 ms.

Figure 3.29 – Schematic view of the Zener model [Dubois et al., 2011].

The numerical results of contact force evolution are plotted, as a function of the distance,
along with the experimental curve in Figure 3.30 for comparison. The calculated curve is clearly
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no longer symmetric, as indicated by the deviation of the position where the peak force occurs
from the asperity tip. The peak force is reached before the center of the tyre arrives right above
the asperity tip. The contact pressure distributions are plotted for the instant of peak force and an
instant after the contact with the asperity, respectively in the left and the right of Figure 3.31.
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Figure 3.30 – Comparison of the contact force evolution, calculated using the viscoelastic con-
tact model, with the experimental curve in the case of a total load of 500 N and a rolling speed
of 10 m/s. The time t is multiplied by the rolling speed V to represent the distance d travelled
during rolling. The positions where the peak forces occur are placed to coincide with each other.
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Figure 3.31 – Contact pressure distributions (in MPa) for (left) the instant of peak force and (right)
an instant after the contact with the asperity.

To verify the convergence in the previous calculations, the model is reconfigured with a
finer resolution in both space and time: the spacings dx = 0.625 mm instead of 1.25 mm, dy =
1.25 mm instead of 2.5 mm and the number of time step within the same total time is also doubled.
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The contact force evolution and the pressure distribution are respectively depicted in Figures 3.32
and 3.33. It can be seen that the model already converges with a lower resolution which takes
about 4 minutes for the calculation presented, while the finer version takes about 8 hours.
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Figure 3.32 – Contact force evolution calculated using the viscoelastic contact model with a higher
resolution in both time and space than for Figure 3.30.

x (mm)

y
 (

m
m

)

 

 

150 160 170 180 190 200

−40

−30

−20

−10

0

10

20

30

40

0.5

1

1.5

2

2.5

3

x (mm)

y
 (

m
m

)

 

 

230 240 250 260 270

−40

−30

−20

−10

0

10

20

30

40

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.33 – Contact pressure distributions (in MPa), calculated with a higher resolution in both
time and space than for Figure 3.31, for (left) the instant of peak force and (right) an instant after
the contact with the asperity.

The viscoelastic model with lower resolution is then used to calculate the force evolution
for different relative heights of the spherical asperity. The results are plotted in Figure 3.34 for
comparison with experimental curves. The model predicts peak forces rather accurately for high
asperity positions. For lower positions, the contact force on the asperity could be more easily
affected by the pressure distribution that is not well represented by the model.
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Figure 3.34 – Comparison of the contact force evolutions, calculated using the viscoelastic contact
model for different relative heights of the spherical asperity, with the experimental curve in the
case of a total load of 500 N and a rolling speed of 10 m/s. The positions where the peak forces
occur are placed to coincide with each other.

This same model with E1 = 2.8 MPa is used to calculate the force evolution and the contact
pressure distribution for a total load of 1000 N and a rolling speed of 10 m/s, as respectively shown
in Figures 3.35 and 3.36. The discrepancy between the numerical and the experimental curves may
be due to the use of an oversimplified constitutive model instead of the Prony series. The absence
of the sidewall effect and the hyperelasticity in the model may also contribute to the inconsistency.
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Figure 3.35 – Comparison of the contact force evolution, calculated using the viscoelastic contact
model, with the experimental curve in the case of a total load of 1000 N and a rolling speed
of 10 m/s. The positions where the peak forces occur are placed to coincide with each other.
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Figure 3.36 – Contact pressure distributions (in MPa) for (left) the instant of peak force and (right)
an instant after the contact with the asperity.

3.5 Conclusions

This chapter deals with the investigations of dynamic contact forces between the reduced-
sized tyre and a single asperity of simple geometric shape which is embedded in the rolling surface
of the test rig and connected to a uni-axial force transducer. The latter, combined with the asperity,
has the advantage of allowing direct measurements of the contact force, without interfacial layer,
to be performed. The position of the asperity tip relative to the rolling surface is measured for
7 height levels for both a spherical asperity and a conical one. By comparing the measurement
results for the same configuration but obtained on three different days, the repeatability of the tests
is verified for the whole range of relative heights under consideration.

Next, tests are performed to study how factors like the geometric shapes of indenter, the
total load and the rolling speed affect the dynamic contact, more precisely, from three aspects
including the contact force evolution, the frequency content and the force-indentation relationship.
The influence of the geometric shapes of indenter is studied through comparison of:

• the contact force evolutions, which shows that the spherical asperity induces greater contact
forces than a conical asperity of similar relative height, while the signal shapes and the
contact durations remain close;

• the frequency contents, which shows that the contact force evolution for the spherical asper-
ity is better approximated by a half-sine function than the conical one is;

• the force-indentation relationships, which shows that the Boussinesq contact theory can be
applied with adjusted indentation depths.

The influence of the total load is studied through comparison of:

• the contact force evolutions, which shows that a greater total load leads to a weaker peak
force yet a wider contact patch in the rolling direction;

• the frequency contents, which shows that a higher load causes the resultant contact force to
start to decrease significantly at a lower critical frequency, due to a longer contact duration;
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• the force-indentation relationships, which shows that the load affects the contact force through
a change in temperature at the surface of the tyre, changing the mechanical properties of the
tread rubber.

The influence of the rolling speed is studied through comparison of:

• the contact force evolutions, which shows that the contact duration is inversely proportional
to the rolling speed;

• the frequency contents, which shows that the resultant contact force is an invariant function
of the position in the rolling direction;

• the force-indentation relationships, which shows that the rolling speed does not have a pro-
nounced influence on the peak force.

The aforementioned conclusions concerning the influence of the rolling speed support the quasi-
static nature of the contact.

Finally, numerical models based on the elastic or viscoelastic half-space assumption have
been assessed in terms of how well they can be used to predict the contact force evolution and
pressure distribution vis-à-vis the experimental results. For the elastic contact model, the assump-
tion that the peak force is reached when the tyre is right above the asperity tip is made. Therefore,
this configuration is employed in static contact calculations to evaluate the variations of the peak
force and the contact pressure distribution for different relative heights of the asperity. With a
carefully calibrated Young’s modulus, the calculated peak contact forces are in good agreement
with the measurement ones for high asperity position. However, the sidewall effect on the pressure
distribution is not well represented by the elastic model. Quasi-static calculations of the contact
force evolution show that the dissymmetry in the experimental curves is absent in the results from
the elastic model. Consequently, a viscoelastic rolling contact model is formulated, and numerical
results are obtained by using a Zener constitutive model. The model is most accurate for weak
total loads and high asperity positions. Possible ways to improve the accuracy are to use the mea-
sured Prony series instead of a Zener model and/or to take into account the hyperelasticity and the
sidewall effect in the model.
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Résumé du chapitre 4 en français (Summary of Chapter 4 in French)

Chapitre 4 : Contact dynamique avec plusieurs aspérités

Dans ce dernier chapitre, le banc d’essai est utilisé pour étudier les forces de contact dy-
namique entre le pneumatique de taille réduite et plusieurs aspérités de forme sphérique ou conique.
Les essais sont réalisés en conditions de roulement. Comme au chapitre précédent, les forces de
contact dynamique sont mesurées à l’aide d’un ensemble de capteurs de force piezo-électriques
intégrés au bâti cylindrique du banc d’essai. Toutes les aspérités sont situées à la même hauteur,
qui est contrôlée avec précision à l’aide d’une mesure par capteur à faisceau laser. La répétabilité
des essais sur chaque aspérité est vérifiée à partir de 100 impacts successifs à une même vitesse de
roulement. La symétrie des forces de contact par rapport à l’axe de roulement n’est pas parfaite-
ment vérifiée en raison de défauts de montage du système et de l’apparition de forces de contact
négatives sur certaines aspérités, dont l’origine reste à expliquer.

Les résultats expérimentaux sont ensuite présentés en s’intéressant à différents paramètres.
Dans un premier temps, l’influence de la géométrie de l’aspérité sur la distribution des forces de
contact dynamique est étudiée. Comme au chapitre 3, à hauteur équivalente, les forces de contact
sur les sphères sont plus élevées que sur les cônes mais l’allure des signaux temporels est similaire
et les durées de contact sont proches. L’influence de la charge totale sur la distribution des forces
de contact dynamique est ensuite étudiée. La durée de contact augmente avec la charge totale,
ce qui est cohérent avec la configuration d’une seule aspérité. Cependant, bien que l’évolution
temporelle de la force de contact soit dissymétrique, le temps nécessaire pour atteindre la force
maximale sur une aspérité est presque le même pour toutes les charges testées. Enfin, l’influence
de la vitesse de roulement sur la force de contact est analysée. La nature quasi-statique du contact
dynamique sur plusieurs aspérités est ainsi vérifiée par le fait que la durée de contact est inverse-
ment proportionnelle à la vitesse de roulement.

Dans la dernière partie du chapitre, la Méthode d’Inversion de Matrice (MIM) basée sur
l’hypothèse de massif semi-infini est confrontée aux résultats expérimentaux. Le modèle élas-
tique est premièrement testé en utilisant les modules d’Young recalés au chapitre précédent. Des
empreintes de contact statique sont calculées pour différentes charges totales sur le pneumatique
puis comparées aux empreintes mesurées à l’aide de papier Fuji. Les dimensions des empreintes
et les aires de contact sur les aspérités sont assez bien estimées. Enfin, le problème de contact
multi-aspérités avec roulement est résolu dans le cas viscoélastique en employant un modèle de
Zener avec les mêmes paramètres recalés pour le contact avec une seule aspérité. L’accord essai/-
calcul est meilleur pour les aspérités qui ont moins d’interactions avec les fortes concentrations
de pressions de contact au niveau des flancs du pneumatique. Il pourrait aussi s’agir d’un effet
des flancs et d’une limitation de l’hypothèse de massif semi-infini. Néanmoins, la dissymétrie des
signaux temporels est bien estimée dans cette approche, ce qui est physiquement représentatif de
l’interaction pneumatique/chaussée en conditions de roulement.
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Chapter 4

Dynamic contact with multiple
asperities

4.1 Introduction

In this chapter, the test rig is used to investigate the contact force between the reduced-sized
pneumatic tyre and multiple asperities of spherical or conical shape under rolling conditions. All
16 asperities are have the same relative height and are arranged in several columns in the trans-
verse direction. Triggering the force transducer connected to the first asperity to be in contact
with the tyre activates simultaneously all other transducers. Section 4.2 explains how the asperi-
ties are arranged and presents the measured geometric properties of the spherical and the conical
asperities. The measurement repeatability of the time signals is also verified in this section for all
spherical asperities. In Section 4.3, experimental results are presented for studying the influences
of different parameters on the peak contact force, such as the shape of the asperities, the total load
and the rolling velocity. Section 4.4 concerns the contact model assessment in the case of multiple
asperities and is divided into two parts. The first part concerns the comparison between experi-
mental contact patches measured in static conditions under different total loads and solutions from
a numerical model based on the elastic half-space assumption. In the second part, numerical re-
sults on all 16 asperities from a viscoelastic model are compared with experimental ones. Finally,
concluding remarks are given.

4.2 Materials and Methods

4.2.1 Configurations for multiple contact analysis

In this configuration, the metallic plate hosting a single asperity described in Section 3.2 is
replaced by another one which hosts 16 asperities of the same geometric shape. The 16 asperities
are arranged in columns with one to four asperities per column in the transverse direction. A
schematic view of the arrangement is depicted in Figure 4.1 in which the asperities in column 4 are
highlighted as an example. Each of the asperities has a unique number and is screwed onto a uni-
axial force transducer (PCB Model 208A12) which is embedded in the metallic plate. The force
transducers are placed behind the metallic plate to facilitate the experimental set-up as illustrated in
Figure 4.2. Each piezoelectric force transducer is triggered simultaneously with the one in column
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Chapter 4. Dynamic contact with multiple asperities

1, positioned under the first asperity that comes into contact with the tyre in one revolution, and
captures the dynamic normal force history throughout the contact duration on the corresponding
asperity. The tyre comes into contact with the asperities once per revolution about the cylindrical
axis of the test rig. The asperity tips are so placed that they all have the same height relative to the
rolling surface, irrespective of the geometric shape of the asperities. However, the influence of the
latter, the only factor related to the asperities, will be examined.

No 1

Column 1

No 2

No 3

Column 2

No 4

No 5

No 6

Column 3

No 7

No 8

No 9

No 10

Column 4

No 11

No 12

No 13

Column 5

No 14

No 15

Column 6

No 16

Column 7

Rolling direction  

Figure 4.1 – Arrangement of the 16 asperities in 7 columns oriented in the transverse direction.

(a) Global view of the rolling surface on the metallic
plate hosting multiple asperities.

(b) Zoom of the connection between the asperities and
the force transducers.

Figure 4.2 – Global transverse view of the metallic plate hosting multiple asperities connected to
force transducers.
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4.2. Materials and Methods

4.2.2 Measurement of actual surface geometries

In this study, a 2D laser scanner (Micro-Epsilon Model scanCONTROL 2700-50) was used
to assess more accurately the relative height of each asperity, as shown in Figure 4.3. By placing
a transverse laser line that passed through the asperity tips belonging to the same column, a list
of scattered points whose positions described the surface geometries of the metallic plate and the
asperity could be obtained. The least squares fitting technique was applied to find a smooth circular
curve for the profile of the spherical asperities and two straight lines for the profile of the conical
asperities. Figure 4.4 shows the scanned profiles of the asperities belonging to column 4, in the
cases of spherical and conical asperities. The fitting accuracy may be compromised due to the
incomplete profile of the asperities on the two sides limited by the length of the laser line and the
short segments between the asperities that can be used to find the horizontal position.

Figure 4.3 – Experimental set-up of the 2D laser profile scanner for measuring asperity height in
the case of multiple asperities.
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(a) Spherical asperities
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(b) Conical asperities

Figure 4.4 – Scanned profile of the asperities No 7 to 10 belonging to column 4.
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The relative heights and the radii of all 16 spherical asperities are respectively presented in
Figures 4.5 and 4.6. The average relative height is 1.03 mm with a standard deviation of 0.05 mm.
The average radius is 7.47 mm with a standard deviation of 0.09 mm while the theoretical radius
is 7.50 mm.

−0.05 0 0.05
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.93 mm

1.05 mm

1.02 mm

1.06 mm

0.98 mm

1.01 mm

1.00 mm

1.05 mm

1.02 mm

1.15 mm

1.05 mm

1.05 mm

1.02 mm

1.00 mm

1.03 mm

1.07 mm

x (m)

y
 (

m
)

h
spherical

 (Configuration 2)

Figure 4.5 – Relative asperity heights measured for 16 spherical asperities. The tyre rolls along
the x direction.
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Figure 4.6 – Radii measured for 16 spherical asperities.

The relative heights and the half-apex angles of all 16 conical asperities are respectively
presented in Figures 4.7 and 4.8. The average relative height is 1.03 mm with a standard deviation
of 0.04 mm. The average half-apex angle is 61.2° with a standard deviation of 0.4° while the
theoretical half-apex angle is 61.1°.
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Figure 4.7 – Relative asperity heights measured for 16 conical asperities. The tyre rolls along the
x direction.
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Figure 4.8 – Half-apex angles measured for 16 conical asperities.

4.2.3 Measurement repeatability

Similar to the single contact analysis, the repeatability of the measurements for multiple
contact needs to be verified by comparing tests conducted on three different days. All three tests
were performed for the same configuration: a total load of 1000 N and a rolling speed of 10 m/s.
After a warm-up phase, the temperature at the surface of the tyre stabilises between 45 �C and
46 �C. Then, a test can be started for 100 revolutions. Figures 4.9 to 4.15 show, column by
column, the time signals measured in these three tests, respectively represented by solid, dash-dot
and dashed lines. The schematic drawing in the right of each figure indicates the positions of the
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corresponding asperities. In these figures, the average contact force evolutions are plotted versus
the time.
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Figure 4.9 – Repeatability of the averaged time signal of contact force on the asperity No 1 be-
longing to column 1. The three tests were carried out on different days (solid, dash-dot and dashed
lines) but under the same conditions: a speed of 10 m/s and a load of 1000 N.
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Figure 4.10 – Repeatability of the averaged time signals of contact force on the asperities No 2 and
No 3 belonging to column 2.
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Figure 4.11 – Repeatability of the averaged time signals of contact force on the asperities No 4, 5
and 6 belonging to column 3.
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Figure 4.12 – Repeatability of the averaged time signals of contact force on the asperities No 7, 8,
9 and 10 belonging to column 4.
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Figure 4.13 – Repeatability of the averaged time signals of contact force on the asperities No 11,
12 and 13 belonging to column 5.
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Figure 4.14 – Repeatability of the averaged time signals of contact force on the asperities No 14
and No 15 belonging to column 6.

The measured curves reveal good repeatability of the tests. Ideally, all the force transducers
should measure compression forces between the tyre and the asperities and the time signals mea-
sured at asperities positions symmetrical about the axis passing through the summits of asperities
No 1, 5, 12 and 16 (along the rolling direction) should be identical. But in reality, the contact force
from certain transducers (e.g. No 15 in column 6) drops to a negative value just before the contact,
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Figure 4.15 – Repeatability of the averaged time signal of contact force on the asperity No 16
belonging to column 7.

becomes negative again at the end of the contact and finally returns to zero after the contact. This
behaviour is also repeatable. The positions of the transducers have been interchanged and showed
no influence on the negative forces at the initial asperities positions. Further investigations would
be necessary to understand whether this is due to a tension force between the tyre and the asperity
or a general acceleration in the negative direction of the transducer.

The symmetry along the rolling direction is verified for asperities No 2 and 3. But for other
asperities pairs, the comparison is less convincing which may be due to the difference of relative
asperities heights or a non-symmetric loading of the tyre on the asperities. For asperities at mirror
positions about column 4, e.g. asperities No 1 and 16, there should be theoretically no symmetry
in terms of the shape of time signal since the contact pressures distribution is dissymmetric during
rolling due to the viscoelasticity of rubber.

4.3 Experimental results

4.3.1 Influence of the geometric shapes of indenter

The influence of the geometric shapes was tested for the spherical and the conical indenters.
In both cases, the tyre was brought to the same rolling speed of 10 m/s and subjected to a load of
1000 N. In Figure 4.16, the time evolution of the contact forces on all 16 spherical asperities with
scaled colours representing the magnitudes of the forces is plotted. For all 16 conical asperities,
the results are given in Figure 4.17 with the same colour axis scaling as in Figure 4.16.

By comparing these two figures, it can be seen that the contact durations are similar for
both geometric shapes of indenter, while the contact forces are significantly higher for spherical
asperities. This observation is consistent with that made for Figure 3.8 in the case of a single
asperity.

The contact force distribution on the spherical asperities is illustrated in Figure 4.18 for the
average instant of peak force occurrence on asperities No 7, 8, 9 and 10 belonging to column 4.
This average instant corresponds to t = 0.0163 s in Figure 4.16, plotted as a blue dashed line. The
tyre is mostly in contact with the asperities in column 2, 3 and 4 and is leaving contact with the
asperity in column 1 and starting contact with the asperities in column 5. Generally, the asperities
close to the borders parallel to the x-axis of the contact patches, i.e. asperities No 7 and 10, are
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Figure 4.16 – Time evolution of the contact forces on all 16 spherical asperities with scaled colours
representing the magnitudes of the forces. The total load is 1000 N. The rolling speed is 10 m/s.
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Figure 4.17 – Time evolution of the contact forces on all 16 conical asperities with scaled colours
representing the magnitudes of the forces. The colour axis scaling is set to be equal to that of
Figure 4.16. The total load is 1000 N. The rolling speed is 10 m/s.

subjected to higher forces than those close to the centre, i.e. asperities No 8 and 9. This could be
due to the high contact pressure concentration on the borders induced by the sidewall effect. The
dissymmetry of the contact force distribution is also clearly visible.

The contact force distributions for all 16 conical asperities is shown in Figure 4.19. The
blue dashed line in Figure 4.17 corresponding to t = 0.0159 s should be referred to for better
understanding the contact situation which appears to be similar to the configuration of multiple
spherical asperities, also with dissymmetry of the contact force distribution in the contact patch.
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Figure 4.18 – Contact force distribution measured for 16 spherical asperities at the average instant
of peak force occurrence on asperities No 7, 8, 9 and 10 belonging to column 4.
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Figure 4.19 – Contact force distribution measured for 16 conical asperities at the average instant
of peak force occurrence on asperities No 7, 8, 9 and 10 belonging to column 4.

4.3.2 Influence of the total load

Tests were conducted to study the influences of the total load on the contact forces for spher-
ical asperities. Three loads, 500, 750 and 1000 N, were tested with the tyre rolling at 10 m/s.
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The time evolution of the contact forces on all 16 spherical asperities with scaled colours
representing the magnitudes of the forces are plotted for total loads of 500, 750 and 1000 N, re-
spectively in Figures 4.20, 4.21 and 4.22, using the same colour axis scaling. Comparison of these
three figures shows that, with the same rolling speed, the contact duration is mainly determined
by the total load and is almost independent of the asperity position: the higher the load, the longer
the contact. This conclusion is consistent with that for the configuration of a single asperity. The
peak contact force on each asperity appears early within the contact duration, implying that the
peak force is reached in the leading part of the dynamic contact patch. The time to reach the peak
force from the start of the contact with an asperity is nearly the same for the three loads, while the
time to run through the trailing part of the contact patch is influenced by the loading condition.
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Figure 4.20 – Time evolution of the contact forces on all 16 spherical asperities with scaled colours
representing the magnitudes of the forces. The total load is 500 N. The rolling speed is 10 m/s.
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Figure 4.21 – Time evolution of the contact forces on all 16 spherical asperities with scaled colours
representing the magnitudes of the forces. The colour axis scaling is set to be equal to that of
Figure 4.20. The total load is 750 N. The rolling speed is 10 m/s.
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Figure 4.22 – Time evolution of the contact forces on all 16 spherical asperities with scaled colours
representing the magnitudes of the forces. The colour axis scaling is set to be equal to that of
Figure 4.20. The total load is 1000 N. The rolling speed is 10 m/s.

The contact force distribution on the spherical asperities for total loads of 500, 750 and
1000 N are plotted respectively in Figures 4.23, 4.24 and 4.25 for the average instants of peak
force occurrence on asperities No 7, 8, 9 and 10 belonging to column 4. Blue dashed lines are also
added to Figures 4.20, 4.21 and 4.22 to represent these instants corresponding to t = 0.0162 s,
0.0163 s and 0.0163 s, respectively for 500, 750 and 1000 N. This also confirms that the time to
reach the peak force is almost constant, irrespective of the load.
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Figure 4.23 – Contact force distribution measured under 500 N for 16 spherical asperities at the
average instant of peak force occurrence on asperities No 7, 8, 9 and 10 belonging to column 4.
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Figure 4.24 – Contact force distribution measured under 750 N for 16 spherical asperities at the
average instant of peak force occurrence on asperities No 7, 8, 9 and 10 belonging to column 4.
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Figure 4.25 – Contact force distribution measured under 1000 N for 16 spherical asperities at the
average instant of peak force occurrence on asperities No 7, 8, 9 and 10 belonging to column 4.

According to Figures 4.23, 4.24 and 4.25, the tyre is in contact with asperities in column 3
and 4 and starts to come into contact with asperities in column 5. Concerning the asperities in
column 2: under 500 N, the tyre in not in contact with them; under 750 N, the tyre is leaving
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Chapter 4. Dynamic contact with multiple asperities

contact with them; under 1000 N, the tyre is still in contact with them. The peak forces in column
4 are highest under 500 N and are slightly higher under 750 N than 1000 N.

4.3.3 Influence of the rolling speed

The influence of the rolling speed is studied by plotting the time evolution of the contact
forces on all 16 spherical asperities with scaled colours representing the magnitudes of the forces
at 5, 10 and 15 m/s, respectively in Figures 4.26, 4.27 and 4.28, using the same colour axis scaling.
The time is multiplied by each rolling speed to represent the rolling distance.
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Figure 4.26 – Evolution of the contact forces on all 16 spherical asperities with scaled colours
representing the magnitudes of the forces. The total load is 1000 N. The rolling speed is 5 m/s.
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Figure 4.27 – Evolution of the contact forces on all 16 spherical asperities with scaled colours
representing the magnitudes of the forces. The colour axis scaling is set to be equal to that of
Figure 4.20. The total load is 1000 N. The rolling speed is 10 m/s.
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Figure 4.28 – Evolution of the contact forces on all 16 spherical asperities with scaled colours
representing the magnitudes of the forces. The colour axis scaling is set to be equal to that of
Figure 4.20. The total load is 1000 N. The rolling speed is 15 m/s.

The contact length with each asperity is almost constant for the three rolling speeds. Al-
though the measurements are triggered at nearly the same time, when the time is multiplied by the
respective rolling speed, the distance travelled by the tyre before touching the first asperity from
the start of the contact force recording in each revolution is proportional to the rolling speed. The
blue dashed lines in Figures 4.26, 4.27 and 4.28 indicate the respective distance of peak force oc-
currence on asperities No 7, 8, 9 and 10 belonging to column 4, i.e. 0.115 m for 5 m/s, 0.163 m for
10 m/s and 0.213 m for 15 m/s. The difference of distances between 10 m/s and 5 m/s is 0.048 m
and that between 15 m/s and 10 m/s is 0.050 m. These two values are very close and should corre-
spond to the distance travelled from the start of one contact force recording until touching the first
asperity. The fact that the resultant contact force is invariant with respect to the positions of the
asperities suggests that the contact is of quasi-static nature.

A comparison of modified spectra S ⇤F,i are represented in Figures 4.29 to 4.35 respectively for
the spherical asperities in column 1 to 7, by taking 10 m/s as a reference speed Vr and regarding
the dynamic contact as quasi-static states. For each asperity, the flat parts of the curves corre-
sponding to different rolling speed coincide, and the first two wave peaks tend to appear at similar
frequencies. Therefore, the quasi-static nature of the contact is again verified for the configuration
of multiple asperities.
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Figure 4.29 – Modified spectra S ⇤F of the resultant contact force on the spherical asperity placed
in column 1 at 5, 10 and 15 m/s with the reference speed Vr = 10 m/s. The load on the tyre was
1000 N.
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Figure 4.30 – Modified spectra S ⇤F of the resultant contact force on the spherical asperities placed
in column 2 at 5, 10 and 15 m/s with the reference speed Vr = 10 m/s. The load on the tyre was
1000 N.
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Figure 4.31 – Modified spectra S ⇤F of the resultant contact force on the spherical asperities placed
in column 3 at 5, 10 and 15 m/s with the reference speed Vr = 10 m/s. The load on the tyre was
1000 N.
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Figure 4.32 – Modified spectra S ⇤F of the resultant contact force on the spherical asperities placed
in column 4 at 5, 10 and 15 m/s with the reference speed Vr = 10 m/s. The load on the tyre was
1000 N.
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Figure 4.33 – Modified spectra S ⇤F of the resultant contact force on the spherical asperities placed
in column 5 at 5, 10 and 15 m/s with the reference speed Vr = 10 m/s. The load on the tyre was
1000 N.
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Figure 4.34 – Modified spectra S ⇤F of the resultant contact force on the spherical asperities placed
in column 6 at 5, 10 and 15 m/s with the reference speed Vr = 10 m/s. The load on the tyre was
1000 N.
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Figure 4.35 – Modified spectra S ⇤F of the resultant contact force on the spherical asperity placed
in column 7 at 5, 10 and 15 m/s with the reference speed Vr = 10 m/s. The load on the tyre was
1000 N.

4.3.4 Conclusions

The influences of several parameters have been analysed in this section. The asperity shape
has a great influence on the contact in the case of multiple asperities. Generally, the asperities
close to the borders parallel to the x-axis are subjected to higher forces than those close to the
centre of the contact patch, possibly due to the sidewall effect. The total load affects the contact
duration: the higher the load, the longer the contact. Meanwhile, the peak contact force is reached
in the leading part of the contact patch, requiring almost the same amount of time. Therefore, the
influence of the total load is more on the trailing part. Comparing the contact force evolution as a
function of the rolling distance for each of the asperities for three rolling speed approves the quasi-
static nature of the contact. This conclusion is further supported by the fact the modified spectra
of the resultant contact force on all 16 spherical asperities are similar in shape up to 500 Hz.

4.4 Contact model assessment

4.4.1 Static contact patch calculations

In the present subsection, the half-space assumption is applied to the reduced-sized tyre.
The static contact with a rigid, smooth road surface including 16 rigid spherical asperities inside
cylindrical cavities placed at the measured positions is studied using the MIM. The actual curva-
tures of the road surface and the dimensions of the cavity and the asperity are taken into account
in the model. The dimensions of the mesh elements in this model are chosen to be 0.5 mm in
both x (longitudinal) and y (transverse) directions.
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Chapter 4. Dynamic contact with multiple asperities

Numerical and experimental static contact pressure distributions are compared in Figures 4.36,
4.37 and 4.38, respectively for total loads of 500, 750 and 1000 N. The Young’s moduli are the
same as those used in Figures 3.20 and 3.21, i.e. 3.7, 3.3 and 2.9 MPa for 500, 750 and 1000 N,
respectively. The contours of the numerical contact patches are added to the measured patches
for comparison of dimensions. Despite the absence of high contact pressure concentration on the
borders parallel to the x-axis, the elastic model estimates quite well the contact area on each of the
asperities and the width of the contact patch along the rolling direction.
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Figure 4.36 – Contact pressure distributions (in MPa) in the case of 16 spherical asperities. The
total load is 500 N. The Young’s modulus is 3.7 MPa. The contour of the numerical contact patch
is superposed on the measured patch for comparison of dimensions.
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Figure 4.37 – Contact pressure distributions (in MPa) in the case of 16 spherical asperities. The
total load is 750 N. The Young’s modulus is 3.3 MPa. The contour of the numerical contact patch
is superposed on the measured patch for comparison of dimensions.
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Figure 4.38 – Contact pressure distributions (in MPa) in the case of 16 spherical asperities. The
total load is 1000 N. The Young’s modulus is 2.9 MPa. The contour of the numerical contact patch
is superposed on the measured patch for comparison of dimensions.

4.4.2 Viscoelastic contact calculation

Calculations are performed for a total load of 500 N and a rolling speed of 10 m/s. The
same Zener model parameters as in the case of a single asperity are used: the long-term modulus
E1 = 4 MPa, the elastic modulus in the Maxwell branch E1 = 4 MPa and the characteristic time of
the Maxwell branch ⌧ = ⌘/E1 = 0.5 ms. The experimental and numerical peak contact forces on
all 16 spherical asperities are plotted in Figure 4.39. Generally, the numerical model overestimates
the peak forces on the asperities close to the centre (No 5, 8, 9 and 12) and underestimates the
peak forces on the asperities situated near the borders (No 7 and 10). This problem can also be
observed by comparing the numerical and experimental contact force evolution curves plotted in
Figures 4.40 to 4.46 as functions of the distance, respectively for the spherical asperities in column
1 to 7. (Note that the numerical curves for asperities placed symmetrically about the x-axis are
perfectly identical and thus coincide with each other.) Nevertheless, the time evolution of the
calculated contact force is in accordance with the experiment. The dissymmetry of the signal is
observed and the contact durations are quite similar on the full set of asperities.
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Figure 4.39 – Comparison of calculated and measured peak forces on all 16 spherical asperities.
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Figure 4.40 – Comparison of the contact force evolutions, calculated using the viscoelastic contact
model, with the experimental curves for the spherical asperity in column 1 in the case of a total
load of 500 N and a rolling speed of 10 m/s. The time t is multiplied by the rolling speed V to
represent the distance d travelled during rolling.
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Figure 4.41 – Comparison of the contact force evolutions, calculated using the viscoelastic contact
model, with the experimental curves for the spherical asperities in column 2 in the case of a total
load of 500 N and a rolling speed of 10 m/s. The time t is multiplied by the rolling speed V to
represent the distance d travelled during rolling.
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Figure 4.42 – Comparison of the contact force evolutions, calculated using the viscoelastic contact
model, with the experimental curves for the spherical asperities in column 3 in the case of a total
load of 500 N and a rolling speed of 10 m/s. The time t is multiplied by the rolling speed V to
represent the distance d travelled during rolling.
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Figure 4.43 – Comparison of the contact force evolutions, calculated using the viscoelastic contact
model, with the experimental curves for the spherical asperities in column 4 in the case of a total
load of 500 N and a rolling speed of 10 m/s. The time t is multiplied by the rolling speed V to
represent the distance d travelled during rolling.

131



Chapter 4. Dynamic contact with multiple asperities

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

d=V*t (m)

-10

0

10

20

30

40

50

60

70

80

P
 (

N
)

Exp.  N
o
 11

Num. N
o
 11

Exp.  N
o
 12

Num. N
o
 12

Exp.  N
o
 13

Num. N
o
 13

Figure 4.44 – Comparison of the contact force evolutions, calculated using the viscoelastic contact
model, with the experimental curves for the spherical asperities in column 5 in the case of a total
load of 500 N and a rolling speed of 10 m/s. The time t is multiplied by the rolling speed V to
represent the distance d travelled during rolling.
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Figure 4.45 – Comparison of the contact force evolutions, calculated using the viscoelastic contact
model, with the experimental curves for the spherical asperities in column 6 in the case of a total
load of 500 N and a rolling speed of 10 m/s. The time t is multiplied by the rolling speed V to
represent the distance d travelled during rolling.
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Figure 4.46 – Comparison of the contact force evolutions, calculated using the viscoelastic contact
model, with the experimental curves for the spherical asperity in column 7 in the case of a total
load of 500 N and a rolling speed of 10 m/s. The time t is multiplied by the rolling speed V to
represent the distance d travelled during rolling.

The contact pressure distributions are plotted for the instant of peak force occurrence in
column 4 and an instant after the contact with the asperities, respectively in the left and the right
of Figure 4.47. The contact patch has a higher pressure concentration in the leading part, which is
in coherence with the results in the case of a single asperity and with experimental observations.
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Figure 4.47 – Contact pressure distributions (in MPa) for (left) the instant of peak force occurrence
in column 4 and (right) an instant after the contact with the asperities.
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The dissymmetry is also visible from the numerical contact force evolution on all 16 spherical
asperities plotted in Figures 4.48 with scaled colours representing the magnitudes of the forces.
The corresponding experimental results are plotted in Figure 4.49 using the same colour axis
scaling for comparison. The time is multiplied by each rolling speed to represent the rolling
distance. The blue dashed lines represent the positions where the peak forces are reached for
the asperities in column 4 in both figures. The distance axes are adjusted to have the two blue
dashed lines appear at approximately the same position. The sidewall effect that is absent from the
numerical model can be observed by comparing the contact force levels on asperities No 7 to 10.
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Figure 4.48 – Calculated evolution of the contact forces on all 16 spherical asperities with scaled
colours representing the magnitudes of the forces. The total load is 500 N. The rolling speed is
10 m/s.
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Figure 4.49 – Measured evolution of the contact forces on all 16 spherical asperities with scaled
colours representing the magnitudes of the forces. The total load is 500 N. The rolling speed is
10 m/s.
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4.5. Conclusions

The experimental and numerical contact forces on all 16 spherical asperities at the instants of
peak force occurrence in column 3, 4 and 5 are respectively plotted in Figures 4.50, 4.51 and 4.52.
Due to the negative forces that affect the peak force values and the abnormally high force level
on certain asperities (e.g. No 4) in the experimental results, the comparison is only qualitative. A
general observation is that the comparison is better when the contact patch is less in contact with
the asperities in column 4, especially No 7 and 10 where the sidewall effect is most salient.
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Figure 4.50 – Comparison of the calculated and the measured contact forces on all 16 spherical
asperities at the instant of peak force occurrence in column 3.
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Figure 4.51 – Comparison of the calculated and the measured contact forces on all 16 spherical
asperities at the instant of peak force occurrence in column 4.

4.5 Conclusions

This chapter deals with the investigations of dynamic contact forces between the reduced-
sized tyre and multiple asperities. Measurements of the asperity geometries show that all the
spherical or conical asperities are fabricated with good precision and have very similar geometric
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Figure 4.52 – Comparison of the calculated and the measured contact forces on all 16 spherical
asperities at the instant of peak force occurrence in column 5.

properties and relative heights. By comparing the measurement results for the same configuration
but obtained on three different days, the repeatability of the tests is verified for each asperity.

Next, tests are performed to study how factors like the geometric shapes of indenter, the
total load and the rolling speed affect the dynamic contact, in the case of multiple asperities.
The influence of the geometric shapes of indenter is first studied through comparison of the time
evolutions of the contact forces on all 16 spherical and 16 conical asperities of similar height and
then through comparison of the contact force distributions at the instant of peak force occurrence
in the central column. The spherical asperities are subjected to significantly higher contact forces
than the conical ones. Analogous approaches are used to examine the influence of the total load.
A higher load leads to a longer contact duration. However, the time required to reach the peak
force on an asperity from the start of the contact is almost independent of the load. Therefore, the
total load changes mainly the size of the trailing part of the contact patch. To compare the contact
force evolutions due to different rolling speeds, the time is multiplied by the speed to represent the
distance travelled by the tyre. The rolling speed, at least up to 15 m/s, does not have a significant
influence on the contact. Therefore, the contact is of quasi-static nature. The modified spectra of
all 16 spherical asperities further confirm this conclusion.

Finally, numerical models based on the elastic or viscoelastic half-space assumption have
been assessed. With the same Young’s moduli identified for static contact analyses in previous
chapters, the elastic contact model predicts well the dimensions of the contact patch and the contact
areas on the asperities under different total loads. However, the sidewall effect on the contact
pressure distribution is not well represented by the elastic half-space model. A viscoelastic rolling
contact model with the same material properties as in the case of a single asperity is used to
provide numerical results for comparison with experimental ones. The predicted contact forces
differ from the measurements at positions where there is a high contact pressure concentration.
This is probably due to the absence of the sidewall effect in the numerical model and a limitation of
the half-space assumption. Nevertheless, the dissymmetry of the time signal is well assessed with
the viscoelastic approach, which is physically representative of the tyre/road contact interaction
during rolling.
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Dynamic rolling contact between the tyre and the road has a great influence on the vibrational
and aerodynamic mechanisms at the origin of tyre/road noise. Researches within the framework of
this thesis have been focussed on the experimental study of tyre/road contact in rolling conditions
by means of a specific laboratory test rig developed at Ifsttar. The measurements performed in
well-controlled conditions have been used to assess the reliability of existing contact models in
simplified contact configurations.

In Chapter 1, a literature survey on existing numerical and experimental researches on contact
for tyre/road noise prediction has been carried out. The dynamic contact models are mostly based
on a quasi-static description of the contact. The tread of the tyre is often approached by an elastic
half-space that allows taking into account the interaction between contact points. A multi-asperity
decomposition of the road surface has been proposed at Ifsttar and requires knowledge of the local
contact laws on each asperity. For static loading conditions, experimental studies have validated
the half-space assumption for simplified configurations between a rubber pad and spherical asper-
ities. Static contact footprints between a pneumatic tyre and different rough surfaces have also
been used to estimate the accuracy of the multi-asperity approach. In addition, measurements of
dynamic contact forces on a test track, more difficult to achieve, showed a decrease of about 20%
in contact area when rolling. This was attributed to the viscoelasticity of the rubber components
of the tyre. However, these tests did not clearly demonstrate the quasi-static nature of the contact.
Therefore, the simplifying assumptions of the dynamic contact model still remain to be validated
experimentally. To this end, a special test rig was developed at Ifsttar to perform measurements
under controlled conditions. Using this equipment, the objectives of the thesis have been focussed
firstly on the study of the influence of the rolling speed on the dynamic contact forces and secondly
on the study of the interaction between asperities and the distribution of dynamic contact forces in
rolling conditions.

Chapter 2 has involved the characterisation of the vibrational and contact behaviours of the
reduced-sized tyre to be used on the aforementioned test rig. Modal tests have been carried out,
leading to the extraction of 8 modal frequencies between 280 and 1200 Hz and the corresponding
damping ratios. A simplified FE tyre model was built to first simulate the vibrational nature of
the tyre. By treating the tyre as elastic and homogeneous and by calibrating a Young’s modulus,
this model yielded modal frequencies that were in agreement with the experiment. However,
the size of the numerical contact patch obtained was too small in the rolling direction. Thus, a
more sophisticated model, taking into account the inner structure of the tyre and the properties
of the different materials used in the tyre, including the measured viscoelasticity of the rubber,
has been proposed. The new model offers a good compromise between the modal frequencies
and the contact patch. The MIM, based on elastic half-space assumption, has also been used
to predict the contact in static conditions between the tyre and the rolling surface on the test
rig. The numerical model is time-efficient as the contact symmetries have been exploited. Real
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contact patches have been measured using Fuji pressure-sensitive film. After adjusting the elastic
Young’s modulus for each configuration, the numerical model yields static contact patches of
similar shapes and dimensions to the measured ones. Meanwhile, it provides lesser accuracy in
terms of contact pressure distribution for high loads, which could be due to the oversimplifying
elastic half-space assumption and the underestimation of the sidewall effect. Contact patches have
also been measured for different contact configurations to study the influences of factors such as the
curvature of the test rig, the total load, the rolling speed and the consequent change in temperature
at the tyre surface.

Chapter 3 has dealt with the investigations of dynamic contact forces between the reduced-
sized tyre and a single asperity of spherical or conical shape. The repeatability of the tests was
checked for the whole range of relative heights of the asperity. Experimental results have been
presented by focussing on different parameters. First, the influence of the geometry of the asperity
on the dynamic contact force has been studied. At equivalent height, the contact force on the sphere
is larger than on the cone but the shape of time signals is very similar and contact durations are very
close. The relationship between the maximum contact force and the relative height of the asperity
has been studied for both geometries and is consistent with Boussinesq’s theory. The influence
of the total load on the dynamic contact force has also been studied. The maximum amplitude
of the force decreases when the load increases, while the contact time decreases with the load,
which is consistent with the contact prints measured statically. Finally, the influence of the rolling
speed on the contact force has been analysed. It appears that the contact duration is inversely
proportional to the speed and that the spectra at different speeds, modified in frequency, coincide
up to 350 Hz. These results illustrate the quasi-static nature of the dynamic contact on a single
asperity. Finally, numerical models based on the elastic or viscoelastic half-space assumption have
been compared with experimental results. For the elastic contact model, with a carefully calibrated
Young’s modulus, the calculated peak contact forces are in good agreement with measurements
for high asperity position. However, the sidewall effect on the pressure distribution is not well
represented. Quasi-static calculations of the contact force evolution show that the dissymmetry in
the experimental curves is absent in the results from the elastic model. Consequently, a viscoelastic
rolling contact model has been formulated, and numerical results have been obtained by using a
Zener constitutive model. The model is most accurate for weak total loads and high asperity
positions. Possible ways to improve the accuracy are to use the measured Prony series instead of
a Zener model and/or to take into account the hyperelasticity and the sidewall effect in the model.

In Chapter 4, the dynamic contact force between the reduced-sized tyre and multiple asperi-
ties of spherical or conical shape has been investigated. The asperities are all identical and located
at the same relative height. The repeatability of the tests has been checked for the full set of asper-
ities. The influences of different parameters have been studied experimentally. First, the influence
of the geometry of the asperities on the contact forces has been examined, through comparison
of the time evolutions of the contact forces on all 16 spherical and 16 conical asperities and also
through comparison of the contact force distributions at the instant of peak force occurrence on
a set of asperities with common positions. The contact forces on the spherical asperities are sig-
nificantly higher than on the conical ones located at the same positions. Analogous approaches
have been used to study the influence of the total load. Similar to the case of a single asperity,
the contact duration increases with the total load. The contact forces on the asperities change in a
dissymmetric manner in time. Nevertheless, the time necessary to reach the peak force from the
start of contact with an asperity is almost constant, irrespective of the load. Therefore, the load
affects rather the length of the trailing part of the contact patch. Finally, the influence of the rolling
speed, up to 15 m/s, has been investigated for the full set of spherical asperities. Both the evolution
of the contact force as a function of the distance travelled by the tyre and the modified spectra of
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the resultant contact forces approve the quasi-static nature of the contact. The measurements also
provided elements for assessing numerical models based on the elastic or viscoelastic half-space
assumption in the case of multiple asperities. With the same Young’s moduli calibrated in Chap-
ter 3, the elastic contact model estimates quite well the dimensions of the contact patch and the
contact areas on the asperities under different loads. Finally, a viscoelastic rolling contact model
has been configured with the same material properties calibrated in the case of a single asperity.
The numerical results are in better agreement with the experimental ones at positions where there
is less interaction with the high contact pressure concentration on the borders of the contact patch.
The discrepancies may be due to the absence of the sidewall effect in the model and a limitation of
the half-space assumption. Nevertheless, the dissymmetry of the time signal is well assessed with
the viscoelastic approach, which is physically representative of the tyre/road contact interaction
during rolling.

Considering the work that has been performed during the thesis, the following aspects could
be further investigated to improve the dynamic contact model:

• use the finite-element model of the reduced-sized tyre for calculating the influence matrix
used in contact calculation in replacement of the analytical matrix based on half-space as-
sumption;

• use a creep function based on the generalised Kelvin model instead of the Zener model to
improve the description of viscoelasticity in the model and improve the agreement between
the calculated and measured time signals;

• perform measurements on the test rig for single and multiple asperities of random shapes to
validate the multi-asperity approach for actual road surfaces;

• scale laboratory results in simplified configurations to realistic conditions.

Furthermore, the test rig opens several outlooks within the field of tyre/road interaction, among
which are investigation of air-pumping mechanisms in simplified configurations, measurement of
noise or rolling resistance in laboratory for calibrating prediction tools, academic research for
acoustical optimisation of road surface properties.
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Appendix A

Validation of the optimised MIM in the
case of a spherical indenter

The essential idea of the MIM goes as follows. The Boussinesq problem at Σ, the surface of
the half-space, is governed by the following relationships:

8M 2 Σ, u(M) =
Z

Σ

T (M, S )p(S )dΣ , (A.1a)

8(M(x, y), S (x0, y0)) 2 Σ2, T (M, S ) =
1 � ⌫2

⇡E
p

(x � x0)2 + (y � y0)2
, (A.1b)

where u is the displacement at the surface of the half-space, p is the normal contact pressure and T
is the Boussinesq’s influence function with E the Young’s modulus and ⌫ the Poisson’s coefficient
of the half-space. The points within the contact area should satisfy Equation (A.2a); those outside,
Equation (A.2b):

8M 2 Σc , g(M) = 0 and p(M) > 0 , Contact (A.2a)

8M 2 Σ̄c , g(M) > 0 and p(M) = 0 , Separation (A.2b)

where Σc is the contact area and Σ̄c is the non-contact area (Σ = Σc[Σ̄c and Σc\Σ̄c = ;). g(M) =
u(M) + g̃(M) is the gap function with g̃(M) = � + zt(M) � zr(M) where � is the global penetration
between the contacting bodies, zr describes the height of the road surface and zt the height of the
tyre. Commonly, the total load P applied to the tyre is specified which provides the additional
equilibrium equation:

�P =

Z

Σ

p(S )dΣ . (A.3)

The surface of the half-space is meshed into n identical rectangular pressure elements of
dimensions hx by hy and centred around points Mi (i 2 [1, n]) of coordinates (xi, yi). On each
element i, the normal displacement denoted by u(Mi) = ui and the normal contact pressure p(Mi) =
pi are assumed constant. Thus, Equation (A.1a) is rewritten in a matrix form:

A.1
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Ap = b , (A.4)

where A is the influence matrix in which any element Ai j is calculated as follows:

8(i, j) 2 [1, n]2 , Ai j =

Z y j+hy/2

y j�hy/2

Z x j+hx/2

x j�hx/2
T (xi, yi; ⇠, ⌘)d⇠d⌘ . (A.5)

By integrating Equation (A.5), Equation (A.6) obtains.

Ai j =
(1 � ⌫)
2⇡G

[F(u2, v2) � F(u1, v2) � F(u2, v1) + F(u1, v1)] , (A.6)

where F(u, v) and u1, u2, v1, v2 are given by:

F(u, v) = v ln(u +
p

u2 + v2) + u ln(v +
p

u2 + v2) , (A.7a)

u1 = x j � hx/2 � xi , (A.7b)

u2 = x j + hx/2 � xi , (A.7c)

v1 = y j � hy/2 � yi , (A.7d)

v2 = y j + hy/2 � yi . (A.7e)

(A.7f)

Combining Equations (A.3) and (A.5) results in Equation (A.8) expressed in matrix form.
Equation (A.8) is solved by means of an iterative algorithm in order to satisfy the contact condi-
tions. The contact area is overestimated in the first instance. Matrix A is inverted in each iteration
to compute the contact pressure distribution. After each iteration, the negative pressures are re-
placed by zero. The procedure goes on until all the elements within the contact area calculated
have positive pressure.
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(A.8)

To check the validity of the optimised MIM proposed in Subsection 2.3.3, this method is used
to solve the contact problem in a special case where a perfect elastic half-space is in contact with
a rigid spherical indenter. The Young’s modulus E of the half-space is chosen to be 5 MPa, the
Poisson’s ratio ⌫ 0.5. The indenter is a hemisphere with a radius R of 7.5 mm. The optimised MIM
reduces the memory usage during processing, thus allows a much finer mesh grid of the contact
surface. In the present contact problem, the dimensions hx and hy of the mesh elements are both 0.5
mm. Figure A.1 shows the contact pressure distribution over one quarter of the contact surface
between an elastic half-space and a rigid spherical indenter. The fine mesh grid leads to a good
resolution in terms of contact pressure, revealing the roundness of the contact area contour. Two
aspects are considered in the comparison of the semi-analytical results with classical theoretical
solutions given by Hertz [1882] and Sneddon [1965]: the relationship between the contact force P
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Figure A.1 – Contact pressure distribution (in MPa) over one quarter of the contact surface between
an elastic half-space and a rigid spherical indenter.

and the indentation depth � and the evolution of the contact pressure p along the radial direction
in the base plane of the indenter.

The contact law based on the Hertzian non-adhesive contact theory for a paraboloidal inden-
ter is as follows:

P =
4
3

E⇤R
1
2 �

3
2 , (A.9)

where the effective elastic modulus E⇤ = E/(1 � ⌫2).

Sneddon proposed a solution in the case of spherical indenters:

P =
1
2

E⇤
✓

(a2 + R2) ln
✓R + a

R � a

◆

� 2aR
◆

, (A.10)

where a denotes the radius of the contact area. The indentation depth � is expressed in terms of a
and R:

� =
1
2

a ln
✓R + a

R � a

◆

. (A.11)

The three contact laws are plotted in Figure A.2. Globally, all the three solutions are in very
good agreement with each other. The Hertzian solution start to diverge from the other two from � ⇡

1.2 mm which corresponds to 1.6 times the sphere radius. The solution proposed by Sneddon still
holds beyond this depth because it gives a better approximation of the deformed surface geometry
of the elastic half-space.
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Appendix A. Validation of the optimised MIM in the case of a spherical indenter
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Figure A.2 – Contact law between an elastic half-space and a rigid spherical indenter calculated
using the optimised MIM compared with classical solutions given by Hertz and Sneddon.
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