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RESUMÉ

I

Résumé

Nous nous intéressons dans ce travail au guidage optimal des usagers dans un réseau routier. Plus précisément, nous nous focalisons sur les stratégies adaptatives de guidage avec des garanties en termes de fiabilité des temps de parcours, et en termes de robustesse de ces stratégies. Nous nous basons sur une approche stochastique où des distributions de probabilités sont associées aux temps de parcours sur les liens du réseau. Le guidage est adaptatif et individuel. L'objectif de ce travail de recherche est le développement de stratégies « robustes » de guidage des usagers dans un réseau de transport routier. Une stratégie de guidage d'un noeud origine vers un noeud destination est dite robuste, ici, si elle minimise la détérioration de sa valeur maximale calculée au départ de l'origine, contre d'éventuelles reconfigurations du réseau dues à des coupures de liens (accidents, travaux, etc.) La valeur de la stratégie de guidage est maximisée par rapport à la moyenne et à la fiabilité des temps de parcours associées à la stratégie. Deux principales parties sont distinguées dans ce travail. Nous commençons par l'aspect statique du guidage, où la dynamique du trafic n'est pas prise en compte. Nous proposons une extension d'une approche existante de guidage, pour tenir compte de la robustesse des itinéraires calculés.

Dans une deuxième étape, nous combinons notre nouvel algorithme avec un modèle microscopique du trafic pour avoir l'effet de la dynamique du trafic sur le calcul d'itinéraires robustes.

INTRODUCTION GÉNÉRALE

Introduction générale

Contexte et Problématique

De nos jours, le besoin de se déplacer est devenu une question primordiale pour l'homme. Ce besoin est bien fondamental pour la vie professionnelle et la vie sociale de l'être humain. Avec l'augmentation de la population, l'amélioration du niveau de Chaque année, TomTom publie le TomTom Traffic Index qui permet de déterminer le taux d'embouteillage dans les plus grandes métropoles mondiales. En 2016, c'est la ville de Mexico qui est la plus touchée par les embouteillages à l'échelle mondiale, avec un taux de 66%, en hausse de 7% par rapport à 2015. Cela représente 227 heures de plus passées dans sa voiture sur l'année pour le conducteur mexicain. En France, Marseille et Paris arrivent en tête du classement avec un taux de 40% et 38% respectivement. En effet, en 2016, le trafic en région parisienne a augmenté de 2% et les automobilistes franciliens ont perdu en moyenne 40 minutes par jour dans les embouteillages, soit 154 heures dans l'année.

Ce niveau élevé des taux de motorisation a des conséquences négatives considérables en terme économique, social, et surtout environnemental. En effet, cela indique une hausse du niveau de demande de déplacements sur les réseaux routiers (qui peut être due à une hausse du niveau de la demande de déplacement sur tous les modes, comme ça peut être un basculement de la demande de déplacement vers le mode routier). Les deux cas, sont générateurs de congestions récurrentes sur les réseaux routiers qui traduisent un déséquilibre notable entre l'offre de transport et la demande de déplacement. Ces congestions induisent de nombreuses conséquences économiques, sociales, sanitaires et écologiques telles que des émissions inutiles de gaz à effet de serre, une perte de temps importante, et une augmentation de la consommation du carburant. Par conséquent, l'optimisation de la gestion des déplacements et du transport s'impose comme un sujet primordial à traiter.

Pour combattre la congestion routière, on agit ou bien sur la demande ou sur l'offre de déplacement (en référence à la définition de ce phénomène qui apparait à chaque fois que la demande de déplacement dépasse l'offre). L'action sur l'offre consiste à améliorer la capacité du réseau routier, en augmentant sa capacité (construction de nouvelles routes ou autoroutes, augmentation des nombres de voies etc.) ou en optimisant sa gestion (gestion des intersections, limitations de vitesses, contrôle d'accès, etc.). L'action sur la demande consiste en l'orientation des usagers dans leurs choix de mode de déplacement, dans leurs choix d'itinéraire, ou encore dans leurs choix d'heure de départ.

Nous nous intéressons dans cette thèse à l'action sur la demande de déplacement, et plus particulièrement au guidage des usagers dans leurs déplacements, qui consiste donc à les guider dans leurs choix d'itinéraires. Nous nous basons sur une approche stochastique et adaptative du guidage, qui permet de garantir des itinéraires à temps de parcours fiables, et des stratégies adaptatives de routages aux niveaux des jonctions du réseau. Nous proposons ici une extension à cette approche dans l'objectif d'inclure une sorte de robustesse pour ces stratégies de guidage.

Objectifs et Contribution

Les systèmes de transport sont des systèmes complexes. L'optimisation de leur gestion nécessite une bonne compréhension du fonctionnement de ces systèmes, et un développement de stratégies efficaces de gestion et de régulation du trafic. Dans les réseaux routiers, les usagers ont le choix entre différents moyens de transport pour effectuer leurs trajets, à savoir le véhicule particulier, les transports collectifs (bus, train, etc), la marche à pieds, etc. En termes de confort, les usagers choisissent en général le véhicule particulier même si en termes du coût financier et du temps de trajet, les transports en commun sont plus favorables. Une optimisation du choix d'itinéraire pourrait être bénéfique aussi bien pour l'usager que pour la collectivité.

Nous nous intéressons ici au mode routier, et au choix d'itinéraire. Ce dernier réalise une affectation des usagers sur les itinéraires du réseau. Plusieurs formulations de l'affectation existent : guidage, affectation statique (équilibre usager et optimum social), et affectation dynamique. Nous nous intéressons dans ce travail au guidage optimal des usagers dans un réseau routier. Plus précisément, aux stratégies adaptatives de guidage avec des garanties en termes de fiabilité des temps de parcours et en termes de robustesse de ces stratégies. On entend par robustesse d'une stratégie de guidage, une stratégie qui proposerait un ou des chemins dont les temps de parcours et leurs fiabilités respectives peuvent « résister » à des événements exceptionnels qui changeraient la reconfiguration du réseau : ruptures de liens suite à des travaux, des accidents, ou autre. L'approche adoptée ici est stochastique, où des distributions de probabilités sont associées aux temps de parcours sur les liens du réseau.

Le guidage est adaptatif, en ce sens que la stratégie peut adapter le chemin proposé avant d'atteindre la destination. Cette adaptation se fait en général aux niveaux des noeuds, et tient compte de nouvelles informations sur l'état du trafic dans le réseau, au moment d'arrivée au noeud concerné. Le guidage est individuel, en ce sens que chaque usager optimise son cheminement. Il est dynamique dans le sens où l'optimisation est adaptative et se fait dans le temps. L'optimisation ne prend pas en compte la dynamique du trafic, ni l'élasticité de la demande, comme dans un modèle d'affectation dynamique. Cependant, l'adaptation du guidage en temps réel à l'état du trafic récompense cet aspect. La modélisation stochastique que nous avons choisie ici permet d'avoir non seulement des chemins à temps de parcours minimaux en moyenne, mais elle permet surtout de maximiser la probabilité d'arriver à destination dans un temps donné. Ceci permet une meilleure gestion du temps par les usagers, et garantie la fiabilité des temps de parcours des chemins obtenus. De plus, cette approche étant adaptative, ceci nous donne la possibilité de relancer le calcul au niveau de chaque noeud du réseau et donc d'utiliser l'information temps-réel sur l'état du trafic. L'objectif de cette thèse est le développement de stratégies « robustes » de guidages des usagers dans un réseau de transport routier. Deux aspects sont distingués dans ce travail.

Nous commençons par l'aspect statique du guidage, où la dynamique du trafic n'est pas prise en compte. Nous proposons une extension d'une approche existante de guidage, pour tenir compte de la robustesse des itinéraires calculés. Dans une deuxième étape, nous combinons notre nouvel algorithme avec un modèle microscopique de trafic pour avoir l'effet de la dynamique du trafic sur le calcul d'itinéraires robustes.

Nous citons dans ce qui suit les différentes approches existantes sur lesquelles nous nous baserons dans cette thèse, ainsi que nos contributions principales.

Comme nous l'avons précisé précédemment, l'une des approches efficaces pour minimiser la congestion du trafic dans les réseaux routiers est de fournir aux usagers des informations fiables et opportunes sur l'état du trafic. Cela inclut à la fois des informations prédictives basées sur des indicateurs historiques de la demande, des informations sur les événements tels que des fermetures de routes, des conditions météorologiques, des accidents, etc. La mise à disposition de ces informations permet aux voyageurs de prendre des décisions éclairées et d'accroître l'efficacité du réseau routier. La prolifération des téléphones portables intelligents et des dispositifs de navigation GPS a révolutionné la capacité de fournir de telles informations. Par conséquent, les voyageurs peuvent facilement obtenir des informations routières via les applications fournies par Google, Apple, TomTom, Garmin, Waze, etc., et par l'intermédiaire d'organisations telles que 511.org, autoroute.fr. L'une des principales caractéristiques de ces applications est la possibilité de planifier des chemins et de guider les véhicules vers leur destination selon le principe du plus court chemin. Les systèmes actuels sont capables de fournir des informations routières en temps réel et ils ont la capacité de guider dynamiquement les usagers en tenant compte de l'état du trafic sur le réseau. Cependant, la sélection d'itinéraire dans de nombreux contextes pratiques peut nécessiter à la fois une route courte et fiable. Les systèmes de navigation actuels n'ont pas la capacité de fournir des informations de fiabilité sur l'itinéraire recommandé.

Lorsque les temps de parcours des liens sont stochastiques, l'approche simple consiste à trouver l'itinéraire le plus court en moyenne appelé le chemin LET (Least Expected Traveltime) proposé par Louis [START_REF] Louis | Optimal paths in graphs with stochastic or multidimensional weights[END_REF]. Le problème LET a été bien étudié et de nombreux algorithmes efficaces existent avec des différentes variantes du problème comme celles proposées par Fu et al. [START_REF] Fu | Expected shortest paths in dynamic and stochastic traffic networks[END_REF], ou encore par Miller-Hooks et al. [START_REF] Miller-Hooks | Least expected time paths in stochastic time-varying transportation networks[END_REF]. Lorsque les temps de parcours sur les liens sont indépendants et lorsque leurs distributions sont invariables dans le temps, le problème LET peut être réduit au problème du plus court chemin déterministe, en associant le poids de chaque lien à son temps de parcours moyen. Ce problème a été largement étudié depuis l'algorithme original de Dijkstra [START_REF] Dijkstra | A note on two problems in connection with graphs[END_REF]. Abraham et al dans [START_REF] Abraham | Highway Dimension, Shortest Paths, and Provably Efficient Algorithms[END_REF] ont montré que les solutions actuelles pour résoudre le problème du plus court chemin déterministe peuvent être exécutées en temps logarithmique avec un prétraitement polynomial. Cependant, Hall dans [START_REF] Hall | The fastest path through a network with random time-dependent travel times[END_REF] à montré que l'algorithme de Dijkstra et ses variantes ne fournissent pas une solution optimale lorsque les poids des liens varient en fonction du temps. Si le réseau satisfait la condition FIFO (First In First Out) étudiée par Astrarita [164], le problème peut être résolu à l'aide d'une programmation dynamique utilisant des poids dépendant du temps avec le graphe original proposé par Dean [START_REF] Dean | Algorithms for minimum-cost paths in time-dependent networks with waiting policies[END_REF].

Cependant, les solutions du problème du plus court chemin à temps variant sont considérablement plus lentes que leurs équivalentes à temps invariant.

Bien que des algorithmes efficaces existent pour résoudre le problème du plus court chemin déterministe, le problème du plus court chemin stochastique (tenant compte de la fiabilité de la solution) se révèle considérablement plus difficile à résoudre. Selon Fan et al. [START_REF] Fan | Arriving on time[END_REF], Nikolava [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF], il existe de nombreuses définitions possibles pour le plus court chemin stochastique en fonction du compromis entre le temps de parcours moyen et la variance. Par exemple, on peut minimiser la variance sous réserve d'une contrainte sur le temps de parcours moyen; ou minimiser les temps de parcours moyens sous réserve d'une contrainte sur la variance, ou encore minimiser une somme pondérée du temps de parcours et de la variance.

Une autre définition du plus court chemin stochastique est proposée par Frank [START_REF] Frank | Shortest paths in probabilistic graphs[END_REF].

Elle consiste à maximiser la probabilité d'atteindre la destination sous réserve d'un budget de temps. Cette formulation élimine la nécessité de considérer plusieurs objectifs. Elle est connue sous le nom de problème stochastique d'arrivée à l'heure (SOTA : Stochastic On Time Arrival). Le problème SOTA peut être résolu en tant que problème de contrôle optimal stochastique étudié par Bertsekas [136]. La stratégie de guidage se traduit dans ce cas comme une politique optimale adaptative, par opposition à un chemin optimal. Une politique optimale génère une règle de décision qui s'adapte aux niveaux des noeuds, et qui définit le chemin optimal d'un noeud donné vers la destination, conditionné sur le temps de déplacement réalisé. Il est clair qu'une telle politique adaptative est meilleure qu'une solution statique apriori. Avec des usagers qui obtiennent des instructions de navigation en temps réel durant leurs trajets, par opposition à une direction imprimée avant le départ, une solution adaptative est également une approche pratique. Pour les situations où un chemin fixe est nécessaire, une route statique peut être obtenue en résolvant le problème SOTA basé sur le chemin associé. Flajolet et al. [START_REF] Flajolet | Robust Adaptive Routing Under Uncertainty[END_REF] ont étendu cette formulation SOTA pour résoudre des objectifs plus généraux en modifiant simplement la fonction du coût à la destination.

Nous nous basons ici sur la famille d'algorithmes SOTA (Stochastic on Time Arrival).

Une extension de cet algorithme existant est proposée afin d'inclure le critère de robustesse dans le calcul de stratégies de routage. Notre définition de la robustesse est la suivante. Une stratégie de guidage est dite robuste si elle minimise la détérioration des valeurs maximales (en termes de temps de parcours et de sa fiabilité) des chemins qu'elle génère. Nous rappelons que l'approche SOTA permet déjà l'obtention d'un chemin de valeur maximale, c.-à-d. de probabilité maximale d'atteindre la destination avec un budget de temps donné. Notre extension consiste donc à prendre en compte les ruptures de liens, et de favoriser les chemins permettant des alternatives intéressantes en termes de temps de parcours et de sa fiabilité, dans ces cas de rupture.

Organisation de la thèse

Le mémoire de la thèse est présenté en trois chapitres. Le premier chapitre, écrit en langue française, est dédié à l'état de l'art bibliographique. Les chapitres 2 et 3 sont issus d'articles, soumis ou publiés. Ils correspondent donc aux contributions principales de ce travail de recherche. Ces deux parties sont écrites en langue anglaise. Ce mémoire est organisé comme suit.

Chapitre 1: Etat de l'art

L'état de l'art est présenté en trois parties.

Partie 1 : Variables et modèles du trafic routier.

Cette première partie est une introduction à la modélisation et à la simulation du trafic routier. Nous rappelons les modèles existants (statiques et dynamiques) sur les deux principales échelles de modélisations microscopique et macroscopique. Le but est de préciser le cadre de cette étude et de décrire les outils mathématiques existants. L'accent est mis sur les modèles microscopiques car nous nous intéressons dans ce travail par des stratégies de guidage des usagers individuellement.

Partie 2 : Problèmes et algorithmes courant de plus court chemin

Cette deuxième partie porte sur les fondements théoriques de la problématique traitée.

Nous commençons par présenter la théorie des graphes utilisée pour la modélisation des réseaux, et les différentes méthodes existantes pour la présentation d'un graphe. Nous nous intéressons également au problème de plus court chemin, sa définition et les algorithmes de recherche d'itinéraire dans les différents graphes, à savoir les graphes statiques, dynamiques, stochastiques, ..., etc.

Partie 3 : Optimisation robuste, et critère de prise de décision dans un environnement incertain.

Cette dernière partie de ce premier chapitre s'articule autour de l'optimisation en définissant l'optimisation robuste, et les différents critères existants qui nous permettent de prendre une décision face à l'incertitude qui fait partie intégrante de notre vie.

Chapitre 2 : Robust guidance

Ce chapitre traite le problème de guidage robuste qui constitue le coeur de notre sujet de recherche. Ce chapitre est organisé en 7 sections comme suit.

La section 1 a pour but d'introduire ce chapitre. La section 2, fait l'objet d'un bref rappel sur le problème SOTA, que nous divisons en trois sous-sections -La sous-section 2.1 introduit le modèle de l'approche SOTA existant dans le cas où les distributions des temps de parcours sur les liens du réseau sont indépendantes.

-La sous section 2.2 s'articule autour d'un modèle SOTA qui prend en considération les corrélations des distributions des temps de parcours sur les liens du réseau.

-Dans la sous-section 2.3, nous illustrons cette approche SOTA avec un petit exemple académique. La section 3 propose un algorithme pour le guidage robuste des usagers.

-La sous section 3.1 s'intéresse au cas où les temps de parcours sur les liens du réseau ne sont pas corrélés. Nous commençons cette sous-section par étendre 

Quelques définitions et notions liées au trafic

Ces éléments classiques et généraux, on peut les trouver aussi d'une manière détaillée dans [START_REF] Henn | Information routière et affectation du trafic : vers une modélisation floue[END_REF].

 La demande individuelle de déplacement : est le déplacement qu'un usager souhaite à réaliser. Cette demande est supposée réalisable au moins par rapport aux possibilités offertes par le réseau de relier son origine i à sa destination j.

 La demande globale de déplacement : est la somme des demandes individuelles.

On la note généralement sous la forme d'une matrice de demande, appelée matrice Origine-Destination (OD).

 Le débit : on le note généralement D ij (t), il définit la demande de l'origine i vers la destination j à l'instant t.

 L'émission : notée

E i (t) c'est la demande totale à l'origine i, avec E i (t) = ∑ D ij (t) j .
 L'attraction : notée A j (t) désigne la demande totale vers la destination j, avec 

A j (t) = ∑ D ij (t)

Modélisation du trafic

La modélisation est la conception d'un modèle qui sert à prédire le comportement d'un système. Elle peut être classée en différentes catégories selon son objectif et les moyens utilisés.

La modélisation sur la base de gestion du temps

Selon l'objectif de cette catégorie qui est la gestion de temps, on peut distinguer deux grandes classes à savoir la modélisation statique et la modélisation dynamique. [START_REF] Prigogine | Kinetic theory of vehicular traffic[END_REF], [START_REF] Mahnke | Stochastic theory of freeway traffic[END_REF] ou encore [START_REF] Leclerc | Meso lighthill-whitham and Richards's model designed for network applications[END_REF]. approches. On cite à titre d'exemple, AIMSUN [START_REF] Getram/Aimsun | A model for simulating vehicular traffic on multi-lane and arterial road, version 4.1 users manuals[END_REF] pour la modélisation microscopique, METACOR [START_REF] Elloumi | Metacor" a macroscopic modelling tool for urban corridors[END_REF] 1)-Quelles sont mes pratiques de mobilité ? (Étape de génération )

2)-Comment est déterminée ma destination ? (Étape de distribution )

3)-Quels sont les modes de transport à ma disposition ? (Étape de choix modal ) 4)-Quel chemin j'emprunte pour réaliser ce déplacement ? (Étape d'affectation )

Les deux premières étapes visent à déterminer la demande de déplacement, les deux dernières correspondent à la répartition du trafic en fonction de l'offre modale et routière. -Modèle de Kesting [START_REF] Kesting | Microscopic modeling of human and automated driving: towards traffic-adaptive cruise control[END_REF]: récemment, un modèle de changement de voie dans un trafic à deux ou plusieurs voies à été proposé dans [START_REF] Kesting | Microscopic modeling of human and automated driving: towards traffic-adaptive cruise control[END_REF]. Contrairement au modèle de Hidas, ce modèle considère trois véhicules pour la prise de décision 

Conclusion

Dans cette première partie, nous avons fait l'état de l'art sur la modélisation de trafic.

Nous avons présenté dans un premier temps les notions essentielles à la modélisation du 

Un bref historique sur la théorie des graphes

On accorde à Euler l'origine de la théorie des graphes parce qu'il fut le premier à proposer un traitement mathématique de la question, suivi par Vandermonde. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes. Elle  Un graphe simple ou encore un 1 -graphe est celui qui ne possède pas de boucles ni d'arcs parallèles (deux arcs distincts joignant la même paire de noeuds). En revanche un p -graphe ou graphe généralisé est un graphe dans lequel il n'existe pas de p arcs de la forme (i, i).

Notions et définitions générales

 Un graphe G est réflexif s'il possède une boucle sur chaque sommet (noeud).

 Un graphe est symétrique si, pour tout arc a 1 = (i, j) ∈ A, l'arc a 2 = (j, i) ∈ A. En revanche, un graphe est antisymétrique si, pour tout arc a 1 = (i, j) ∈ A, l'arc a 2 = (j, i) ∉ A  Un graphe G est transitif si quels que soient deux arcs adjacents

a 1 = (i, j) ∈ A et a 2 = (j, k) ∈ A, alors l'arc a 3 = (i, k) ∈ A.
 Un graphe G est dit complet si, pour toute paire de sommets (i, j), il existe au moins un arc de la forme (i, j) ou (j, i). Pour plus des détails veuillez se référer par exemple à [START_REF] Diestel | Graph theory[END_REF], [START_REF] Berge | Graphes[END_REF] ou encore [START_REF] Deo | Graph theory with applications to engineering and computer science[END_REF].

Un chemin dans un graphe peut être défini comme une suite ordonnée de noeuds tels que chaque deux noeuds successifs soient reliés par un arc.

Méthodes de représentation d'un graphe

Pour représenter un graphe, il existe plusieurs modes. On peut les classer en trois principales catégories selon la nature des traitements que l'on souhaite appliquer au graphe considéré. 

(0,1) (0,2) (1,3) (1,5) (1,2) (2,5) (3,4) (4,1) (5,3) 0 1 1 0 0 0 0 0 0 1 -1 0 1 1 1 0 0 -1 2 0 -1 0 0 -1 1 0 0 3 0 0 -1 0 0 0 1 0 -1 4 0 0 0 0 0 0 -1 1 5 0 0 0 -1 0 -1 0 0 Graphe illustratif Matrice d'incidence
m inc (i, k) = �
1 si i est l ′ extrémité initiale de a k -1 si i est l ′ extrémité terminale de a k 0 si si i n ′ estpas une extrémité de a k La matrice d'adjacence du graphe de la Figure 6 peut s'écrit comme sur la Figure 7.

Le problème du plus court chemin

Le problème du plus court chemin constitue la base de tous les problèmes de planification d'itinéraire. C'est un problème qui se rencontre dans de nombreuses applications telles que :

les problèmes de tournées, certains problèmes d'investissement et de gestion de stocks, les problèmes de programmation dynamique à états discrets et temps discret, les problèmes d'optimisation dans les réseaux (routiers, télécommunications), certaines méthodes de traitement numérique du signal, de codage et de décodage de l'information.

Le problème du plus court chemin dans un graphe se formule comme suit. Etant donné un graphe orienté G = (N, A), on associé à chaque arc a = (i, j) ∈ A un nombre l(a) ∈ ℝ appelé longueur de l'arc. On dit que le graphe G est valué par les longueurs l(a). Le problème de plus court chemin entre deux noeuds i et j consiste alors à trouver un chemin u(i, j) allant de i à j et dont la longueur totale l(u(i, j)) = ∑ l(a) a∈u(i,j) soit minimum.

Ce problème a de nombreuses applications pratiques car la "longueur" l(a) peut s'interpréter aussi bien comme un coût de transport sur l'arc, comme les dépenses de construction de l'arc a, comme le temps nécessaire pour parcourir l'arc a, etc. 

C(u 0 , u 1 , … , u n ) = ⎩ ⎪ ⎨ ⎪ ⎧ � FC(u k , u k+1 ) n-1 k=0 Si n > 0 𝑒𝑒𝑒𝑒 ∀𝑘𝑘, (u k , u k+1 ) ∈ A 0 Si n = 0 ∞ Sinon
La fonction FC(u k , u k+1 ) est la fonction de poids pour les arcs.

Alors le plus court chemin entre i et j qu'on note par PCCh(i, j) est donné par la relation suivante:

PCCh(i, j) = Ch(i, j) avec C�Ch(i, j)� = min P∈ECh (i,j) {C(P)}

Si plusieurs chemins existent avec un coût minimal, alors on choisira un aléatoirement. dans la littérature pour améliorer l'algorithme initial et diminuer sa complexité [START_REF] Dial | Algorithm 360: Shortest path forest with topological ordering[END_REF], [START_REF] Johnson | On shortest paths and sorting[END_REF], [START_REF] Van | Improved shortest path algorithms for transport networks[END_REF].

Table 1. Algorithme de Dijkstra (𝐺𝐺, 𝐹𝐹𝐹𝐹, 𝑠𝑠)

Step 0 : Initialisation

PCCh(s, s) = (s) #initialiser le plus court chemin PCCh(s, i) = ∅ ∀i ∈ N, i ≠ s F = ∅ Q = {s}
# initialiser Q qui contient au départ que le noeud origine s

Step 1 Tant que (Q ≠ ∅) faire Choisir i dans Q tel que C�PCCh(s, i)� soit minimal # on choisit le sommet avec la plus petite valeur de

C Q = Q -{i} F = F ∪ {i} Développer les successeurs j de i Pour tout sommet j faire # relâchement de l'arc (i, j) Si C�PCCh(s, j)� > C�PCCh(s, i)� + FC(i, j) alors #test de plus court ou non? PCCh(s, j) = PCCh(s, i) ∪ {j} #mise à jour la distance temporaire Q = Q ∪ {j}
#mise à jour la file de priorité Fin Si Fin Pour Fin Tant que La distance temporaire est mise à jour après chaque détente et comparaison d'un arc, ce qui permet de dire que cet algorithme est un algorithme à fixation d'étiquettes "label-setting". La mise à jour peut être une opération de type "insérer" si j n'est pas marqué ou bien une opération de type "diminuer clé". L'exécution de cet algorithme sur un graphe avec n noeuds et m arcs consiste alors à effectuer n opérations d "insertion" dans la file de priorité, n opérations de "suppression", et m opérations de "diminution clé" dans le cas le plus défavorable, ce qui donne une complexité de l'ordre Ο(m + n log n) [START_REF] Fredman | Fibonacci heaps and their uses in improved network optimization algorithms[END_REF] 6.2. Graphes statiques stochastiques 6.2.1. Définition : un graphe G = (N, A) orienté et pondéré est considéré comme un graphe statique stochastique si les poids sur tous les arcs sont définis par des distributions de probabilités discrètes. Alors la fonction de poids FC, dans ce cas, pour un arc (i, j) est définit sous la forme suivante : 

FC(i, j) = � c 1 , p 1 c 2 , p 2 ⋮ c m , p m avec ∑ p k m k=1 = 1 Avec c 1 , c
c ij * (k + 1) = k × c ij * (k) + c ij k + 1 c ij * ( 
k) est l'estimation du coût sur le lien (i, j) à k ième étape. c ij est le coût payé après avoir traversé le lien (i, j).

Par la suite, Jamali a remplacé le coût estimé par la moyenne pondérée du coût estimatif précédent et du coût nouvellement payé. Lorsque l'usager arrive au noeud de destination, on met à jour le coût estimé pour chaque noeud pour atteindre le noeud de destination par la relation suivante :

est i = min (i,j)∈A c ij * + est j
Dans cet algorithme, on continue les itérations jusqu'à ce qu'il n'y ait pas de changement ou que la quantité moyenne de changement soit inférieure à une constante donnée.

Cet algorithme est en quelque sorte comme l'algorithme de Dijkstra [START_REF] Dijkstra | A note on two problems in connection with graphs[END_REF],

mais il utilise simplement les connaissances locales sur les noeuds. Etant donné un graphe dynamique deterministe G = (N, A), on note par FC la fonction de coût d'un chemin dans G, et par FC t 0 (u 0 , u 1 , … , u m ) le coût d'un chemin (u 0 , u 1 , … , u m ) en partant du noeud u 0 à t 0 . La valeur de FC t 0 (u 0 , u 1 , … , u m ) est définie par la relation suivante :

Graphes dynamiques

FC t 0 (u 0 , u 1 , … , u m ) = � FC t 0 �(u 0 , u 1 , … , u m -1 ) + FC(u m-1 , u m , FC t 0 (u 0 , u 1 , … , u m -1 ) )� si m > 0 t 0 sinon
Le plus court chemin PCCh t 0 (i, j) entre i et j en partant du neoud i à l'instant t 0 est alors défini comme suit:

PCCh t 0 (i, j) = Ch(i, j) avec FC t 0 �Ch(i, j)� = min P∈ECh (i,j) {FC t 0 (P)} Step 0 : Initialisation

PCCh t 0 (s, s) = (s) #initialiser le plus court chemin PCCh t 0 (s, i) = ∅ ∀i ∈ N, i ≠ s F = ∅ Q = {s} # initialiser Q qui contient au départ que le noeud origine s
Step 1 Tant que (Q ≠ ∅) faire Choisir i de Q tel que FC t 0 �PCCh t 0 (s, i)� soit minimal # on choisit le sommet avec la plus petite valeur de C Q = Q -{i} F = F ∪ {i} Développer les successeurs j de i Pour tout sommet j faire # relâchement de l'arc (i, j) Si FC t 0 �PCCh t 0 (s, j)� > FC t 0 �PCCh t 0 (s, i)� + FC(i, j, FC t 0 �PCCh t 0 (s, i)�) alors #test de plus court ou non? PCCh t 0 (s, j) = PCCh t 0 (s, i) ∪ {j} #mise à jour la distance temporaire SOTA comme elle a été présentée pour la première fois par les auteurs de [START_REF] Fan | Arriving on time[END_REF].

Q = Q ∪ {j} #mise
Etant donné un graphe G(N, A, ), on note par u i (t) la probabilité maximale d'arriver au noeud destination d à partir du noeud i avec un budget inferieur ou égal à t. Si un usager qui est au noeud i choisit de visiter le noeud successeur j, alors la probabilité de temps de parcous sur le lien (i, j) est donnée par p(ω)dω.

Le temps restant pour atteindre la destination d à partir du noeud j est alors tω. Sur la base du principe de Bellman, peu importe le noeud que le voyageur choisit de visiter, le voyageur doit atteindre la meilleure valeur de la fonction u j (t -ω) en partant du noeud j vers la destination d avec le temps restant t -ω.

Il peut y avoir plusieurs noeuds j qui peuvent être visités à partir du noeud actuel i.

Le voyageur devrait choisir le noeud j qui fournit la probabilité maximale d'arrivér à la destination à partir du noeud i. L'application du principe de Bellman dans le contexte du problème SOTA fournit le système d'équations non linéaires suivant :

u i (t) = max i≠j � p ij (ω)u j (t -ω)dω t 0 , 0 ≤ t < ∞ u d (t) = 1
p ij (ω)dω est la distribution des temps de parcours sur le lien (i, j) . u i (t) c'est la probabilité qu'à partir du noeud i, un voyageur arrive au noeud destination d avec un budget t. La stratégie s i (t) optimale est donnée comme suit.

s i (t) = arg max i≠j � p ij (ω)u j (t -ω)dω t 0 , 0 ≤ t < ∞
L'une des approches possibles pour résoudre ce système d'équations est la méthode de Picard basée sur les approximations itératives appelée SA (Successive Approximation). Pour plus de détails sur cette approche, les lecteurs peuvent se référer à [START_REF] Mikhlin | Approximate methods for solution of differential and integral equations[END_REF] et [START_REF] Nie | Arriving-on-time problem: discrete algorithm that ensures convergence[END_REF].

Conclusion

Cette deuxième partie de ce chapitre introductif a fait l'objet d'un état de l'art sur le 

Introduction

L'optimisation robuste est un domaine de recherche jeune et émergent qui a reçu une attention considérable au cours de la dernière décennie. De la même façon que l'approche de l'optimisation stochastique, l'optimisation robuste concerne des modèles dans lesquels les données exactes sont inconnues, mais limitées par un ensemble de réalisations possibles (ou de scénarios). Les premières étapes de l'optimisation robuste remontent au travail de Soyster [START_REF] Soyster | Convex programming with set-inclusive constraints and applications to inexact linear programming[END_REF]. L'optimisation robuste n'est apparue comme un domaine de recherche à part entière que vers la fin des années 90 avec les travaux centraux de [START_REF] Ben-Tal | Robust convex optimization[END_REF][START_REF] Ben-Tal | Robust solutions of uncertain linear programs[END_REF]. Dans cette troisième partie de ce premier chapitre, nous décrivons plus en détail le contexte général de l'optimisation robuste, puis nous donnerons un résumé des différents concepts de robustesse existants.

Les problèmes d'optimisation incertains

Presque chaque problème d'optimisation souffre d'incertitude avec un certain degré, même si cela ne semble pas être le cas à première vue. D'une manière générale, on peut distinguer deux types d'incertitude. L'incertitude microscopique, comme les erreurs numériques et les erreurs de mesure; et l'incertitude macroscopique, telle que les erreurs de prévision, les perturbations, ou d'autres conditions modifiant l'environnement où une solution est mise en oeuvre. Dans l'optimisation "classique", on définit ce qu'on appelle "scénario nominal", qui décrit le comportement attendu ou "le plus typique" des données incertaines. Selon le type d'incertitude, ce scénario peut être, par exemple, le coefficient de la précision donnée pour les erreurs numériques, la valeur mesurée pour les erreurs de mesure, la prévision la plus probable pour les erreurs de prévision ou tout simplement un environnement pour les solutions à long terme. Selon l'application, calculer un tel scénario peut être un processus non trivial, voir par exemple [START_REF] Jenkins | Selecting scenarios for environmental disaster planning[END_REF].

Nous considérons des problèmes d'optimisation décrits sous la forme :

(Ρ) min f(x) s. t. F(x) ≤ 0 x ∈ χ Où F ∶ ℝ n → ℝ m décrit le problème à m contraintes. f ∶ ℝ n → ℝ est la fonction
objectif. χ ⊆ ℝ n est l'espace variable. Dans des applications réelles, les contraintes et la fonction objectif peuvent dépendre des paramètres incertains. Pour tenir compte de ces incertitudes, au lieu de (P), on considère la famille de problèmes paramétrés suivante : Le problème d'optimisation incertaine consiste en fait en tout un ensemble de problèmes paramétrés, qui sont souvent infiniment grand. Le but des concepts d'optimisation robustes est de transformer cette famille de problèmes en un seul problème, qui s'appelle la contrepartie robuste. Le choix de l'ensemble de l'incertitude est d'un impact majeur non seulement pour l'application, mais aussi pour la complexité informatique de la contrepartie robuste qui en résulte. Il doit donc être choisi avec soin par le modéliste [START_REF] Goerigk | ROPI -a Robust Optimization Programming Interface for C++[END_REF].

�Ρ(ξ)� min f(x, ξ) s. t. F(x, ξ) ≤ 0 x ∈ χ F(x, ξ) ∶ ℝ n → ℝ m et f(x, ξ) ∶ ℝ n → ℝ
Pour un problème d'optimisation incertain donné (Ρ(ξ), ξ ∈ 𝒰𝒰), on note l'ensemble réalisables de scenarios ξ ∈ 𝒰𝒰 par :

ℱ(ξ) = {x ∈ χ: F(x, ξ) ≤ 0}
En outre, s'il existe un scénario nominal, il est noté par ξ ̂ ∈ 𝒰𝒰. La valeur optimale de la fonction objectif pour le scenario ξ ∈ 𝒰𝒰 est notée par f * (ξ).

On dit qu'un problème d'optimisation incertain (Ρ(ξ), ξ ∈ 𝒰𝒰) est convexe (quasi-convexe, affine, linéaire) lorsque les deux fonctions F(x, . ) ∶ 𝒰𝒰 → ℝ m et f(x, . ): 𝒰𝒰 → ℝ sont convexes (quasi-convexes, affines, linéaires).

Les différentes classes d'incertitude. Il existe certains types d'ensembles

d'incertitude qui sont fréquemment utilisés dans la littérature. Ceux-ci inclus:

1)-Incertitude finie : 𝒰𝒰 = {ξ 1 , ξ 2 , … . , ξ N }.

2)-Incertitude bornée par intervalle :

𝒰𝒰 = �ξ 1 , ξ 1 � × … . .× �ξ M , ξ M �.
3)-Incertitude polytopique : 𝒰𝒰 = conv {ξ 1 , ξ 2 , … . , ξ N }.

4)-Incertitude bornée par norme :

𝒰𝒰 = �ξ ∈ ℝ m ∶ � ξ -ξ ̂� ≤ α � pour α ≥ 0. 5)-Incertitude ellipsoïdale : 𝒰𝒰 = �ξ ∈ ℝ m ∶ �∑ ξ i 2 /σ i 2 M i=1
≤ Ω� pour Ω ≥ 0.

Concepts et critères de robustesse

Une optimisation robuste a commencé par des concepts assez conservateurs couvrant tout ce qui est considéré comme susceptible de se produire. Ces concepts ont été développés grâce aux différentes situations et applications appelant à des solutions «robustes». Dans cette section, nous donnons un aperçu des critères anciens les plus importants et des critères récents. peut être alors réécrit de la façon suivante.

Strict Robustness

�Ρ(ξ)� min f(u, v, ξ) s. t. F(u, v, ξ) ≤ 0 (u, v) ∈ χ 1 × χ 2
Lorsque on fixe les variables here-and-now, on doit s'assurer que pour tout scenario possible ξ ∈ 𝒰𝒰, il existe v ∈ χ 2 tel que (u, v) est réalisable pour ξ. L'ensemble des solutions robustes réglables est donc donné par :

aSR = {u ∈ χ 1 ∶ ∀ξ ∈ 𝒰𝒰 ∃v ∈ χ 2 s. t. (u, v) ∈ ℱ(ξ)} = � Pr χ 1 ℱ(ξ) ξ ∈𝒰𝒰 où Pr χ 1 ℱ(ξ) = {u ∈ χ 1 ∶ ∃v ∈ χ 2 s. t. (u, v) ∈ ℱ(ξ) } représente la projection de ℱ(ξ)
sur χ 1 . La fonction objectif dans le pire cas pour certains u ∈ aSR est donnée par 

z aSR (u) = sup ξ ∈𝒰𝒰 inf v: (u,v)∈ℱ(ξ) f(u, v, ξ)
min σ�u, v 1 , … . , v N � + ω ρ�z 1 , … . , z N � s. t. Au = b B i u + C i v i + z i = e i , ∀i = 1, … . , N u ∈ ℝ + n 1 , v i ∈ ℝ + n 2 , z i ∈ ℝ m
z i est un ensemble de vecteurs d'erreur qui mesureront l'infaillibilité autorisée dans les contraintes de contrôle sous scénario i. La fonction σ représente la robustesse de la solution.

Elle peut être modélisée comme la fonction la plus défavorable (le pire-cas) de la fonction objectif nominale.

σ�u, v 1 , … . , v N � = c t u + max i=1,….,N d t v i
La fonction ρ représente la robustesse du modèle et dépend de l'infaillibilité des contraintes incertaines. Les fonctions de pénalité possibles sont

ρ�z 1 , … . , z N � = � p i � max�0, z j i � m j=1 N i=1 ou bien ρ�z 1 , … . , z N � = ∑ p i N i=1 �z i � t z i
Comme (Mulvey) est un modèle bi-critère, alors ω est utilisé comme facteur de scalarisation pour combiner les deux objectifs, et p i représente la probabilité du scénario i.

Light Robustness

Une autre façon de détendre le conservatisme est donnée dans le concept de Light Robustness. Ce concept couple une optimisation robuste avec une approche simplifiée de programmation stochastique en deux étapes, et présente un certain nombre d'avantages importants en termes de flexibilité et de facilité d'utilisation. Cette approche à été proposée dans [START_REF] Fischetti | Light robustness[END_REF]. Ces auteurs ne sont intéressés que par des solutions qui ne sont pas trop conservatrices et, par conséquent, ajoutent une limite à la valeur nominale de la solution.

Dans toutes les solutions qui satisfont cette contrainte, on choisit celle qui dévie moins les contraintes dans le pire des cas. Le concept a été appliqué à des problèmes de programmation linéaire et à des ensembles d'incertitude basés sur des intervalles. Dans une étude de cas, les auteurs de [START_REF] Fischetti | Light robustness[END_REF] montrent que leur approche convient aux problèmes de chronométrage. Depuis, l'idée de Light Robustness a été appliquée à un chronométrage rigoureux des chemins de fer dans [START_REF] Fischetti | Fast approaches to improve the robustness of a railway timetable[END_REF], à l'information du calendrier dans [START_REF] Goerigk | The price of strict and light robustness in timetable information[END_REF]. Cette approche a été comparée à d'autres concepts de robustesse dans une étude sur le calendrier apériodique dans [START_REF] Goerigk | An empirical analysis of robustness concepts for timetabling[END_REF]. Light Robustness a également été mentionnée dans [START_REF] Ben-Tal | A soft robust model for optimization under ambiguity[END_REF], et étudiée dans le cadre d'une approche unifiée pour la robustesse dans [START_REF] Klamroth | A unified approach for different concepts of robustness and stochastic programming via nonlinear scalarizing functionals[END_REF]. Dans [START_REF] Schobel | Generalized light robustness and the trade-obetween robustness and nominal quality[END_REF], les auteurs ont étendu l'idée de 

(LR) min � ω i γ i m i=1 s. t. f�x, ξ ̂� ≤ f * (ξ) + ρ F(ξ) ≤ γ, ∀ ξ ∈ 𝒰𝒰 x ∈ χ, γ ∈ ℝ m
Où ω i modélise un poids de pénalité pour la violation des contraintes i et ρ détermine la qualité nominale requise. On désigne par ξ ̂ le scénario nominal. Cette approche a été, dans sa première application dans [START_REF] Fischetti | Fast approaches to improve the robustness of a railway timetable[END_REF], utilisée comme un développement ultérieur de la notion de Cardinality Constrained Robustness. Les variables γ i agissent comme des variables de recours en deuxième étape utilisées pour se remettre d'une éventuelle infaillibilité, dont la somme pondérée est minimisée par la fonction objectif. Chaque variable γ i définit le niveau de robustesse de la solution par rapport à l'incertitude des paramètres.

Recoverable Robustness

Similaire 

Conclusion

Dans cette dernière partie de ce premier chapitre, nous avons donné une vaste collection de concepts de robustesse dynamique, offrant chacun leurs avantages et inconvénients. [START_REF] Soyster | Convex programming with set-inclusive constraints and applications to inexact linear programming[END_REF] a introduit le concept de Strict Robstness. Ce concept a été illustré dans plusieurs exemples (par exemple, pour la programmation linéaire dans [START_REF] Jenkins | Selecting scenarios for environmental disaster planning[END_REF], ou pour le bras d'une porte à feu dans [START_REF] Ben-Tal | Robust convex optimization[END_REF] ), et analysé pour ces exemples de manière mathématique.

L'analyse dans ces articles a montré que la complexité du problème augmente en introduisant la robustesse. Le critère Strict Robstness tend à conduire à des décisions qui sont très conservatrices dans la nature et la principale préoccupation est de savoir comment se prémunir contre le pire événement possible. Pour faire face au caractère de conservatisme, d'autres concepts moins conservateurs ont été proposés dans la littérature. Des idées ont été prises en compte dans [START_REF] Bertsimas | The price of robustness[END_REF] en introduisant leur nouvelle notion de Cardinality Constrained Robustness, qui est moins conservatrice et plus abordable sur le plan informatique, mais qui peut être appliquée uniquement à des ensembles d'incertitude plus faciles à manipuler.

L'application de ce concept pour la planification des trains a été le point de départ de [START_REF] Fischetti | Fast approaches to improve the robustness of a railway timetable[END_REF] qui ont assoupli les contraintes et ont développé le concept de Light Robustness, qui a ensuite été généralisé à des ensembles d'incertitude arbitraires par [START_REF] Schobel | Generalized light robustness and the trade-obetween robustness and nominal quality[END_REF]. En reconnaissant que le concept de Strict Robstness est trop conservateur, [START_REF] Ben-Tal | Adjustable robust solutions of uncertain linear programs[END_REF], ont proposé la première approche de robustesse en deux étapes en introduisant leur concept de Adjustable Robustness. Lors de l'application de ce concept à plusieurs applications de la planification ferroviaire dans le cadre du projet ARRIVAL (voir [105], [START_REF] Liebchen | The concept of recoverable robustness, linear programming recovery, and railway applications[END_REF]), les actions autorisées à ajuster un calendrier ne correspondent pas aux besoins pratiques. Cela les a motivés à intégrer les actions de récupération dans une planification robuste, ce qui a donné naissance à un autre concept appelé Recoverable Robustness. Malheureusement, les solutions robustes avec cette approche sont difficiles à obtenir. La recherche sur l'élaboration d'algorithmes pratiques est toujours en cours. Les exemples récents sont une approche basée sur la génération de colonnes pour les problèmes de sacs à dos et les problèmes de chemins les plus courts avec une demande incertaine [START_REF] Bouman | Recoverable robustness by column generation[END_REF], une approche utilisant la décomposition de Bender pour la planification du matériel roulant ferroviaire [START_REF] Caprara | Railway rolling stock planning: Robustness against large disruptions[END_REF], et l'idée de remplacer l'algorithme de récupération par une métrique [START_REF] Goerigk | A scenario-based approach for robust linear optimization[END_REF] et [START_REF] Goerigk | Algorithms and Concepts for Robust Optimization[END_REF][START_REF] Goerigk | Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling[END_REF]. 

Conclusion

Introduction

In a given network, the most used way to plan a route consists to determine shortest paths for origin/destination pairs. Finding such optimal paths is an important problem in the network theory, and has vast applications in many scientific and engineering fields, particularly in transportation engineering. Shortest path algorithms are widely available in the literature. However, in a stochastic framework, different performance criteria may lead to different optimal routing strategies. In case of having perfect information on the link travel-times, a shortest path problem may be solved for example by Dijkstra algorithm [START_REF] Farhi | On the robust guidance of users in road traffic networks[END_REF], or more generally by value iteration [START_REF] Dijkstra | A note on two problems in connection with graphs[END_REF]. If we have a known dependence on the link travel-times, an optimal strategy may be a sequence of links, that is, a path, because no additional information can be acquired therein. In case of stochastic shortest path problem, link travel-times are random variables, and available information is given as probability distributions. This kind of problems is widely studied in the literature, and is formulated by means of different objective functions; we can cite for example, -minimizing the expected travel-time explored in [112-113-114-115-116-117-118-119], -maximizing the expected utility, as investigated in [START_REF] Huang | Optimal paths in dynamic networks with dependent random link travel times[END_REF][START_REF] Louis | Optimal paths in graphs with stochastic or multidimensional weights[END_REF], -maximizing the probability of arriving at the destination on time [122-123-124-45-126-127-128], -minimizing the expected travel-time while ensuring a pre-specified probability of arriving by a given deadline [127-129-130-131-132], or minimizing the sum of expected travel-time [45-127-133-134]. The stochastic shortest path problem solutions are either a priori or adaptive solutions. In a priori case, the path is solved based on the information available at the starting time only. In adaptive solutions, the solution consists in a routing policy that adapts the path according to information obtained during the travel.

Among the several formulations, the simple formulation of the stochastic shortest path problem is the Least Expected Time (LET). This formulation is based on the minimization of the expected travel-time. Determining a LET path when random link travel-times are independently distributed and constant over time, is trivial. Fortunately, LET problems have been studied broadly and have been extended to other cases. Hall [START_REF] Hall | The fastest path through a network with random time-dependent travel times[END_REF] studied the LET problem in a stochastic time-dependent network and considered that the travel-times on outgoing links from a node are conditional on the arrival time to the node. The authors [112-114-115] addressed the LET problem by including real-time information about the travel-time. In [START_REF] Lavalle | Planning algorithms[END_REF], Fu has shown that the relationship between route planning and information can be divided into three schemes. The first one is the non-adaptive routing rule which is made at the beginning of the task. In this category, a complete fixed path is identified on the basis of a priori or historical travel-time information. In general, this complete path is computed before a trip starts and no re-route adaptive diversion is taken into account, either because of lack of real-time information, or of an unavailability of route guidance system. The second category is the open-loop adaptive routing. It is similar to the non-adaptive routing in the sense that a complete path must be computed. In this case, the remaining path by non-adaptive routing is replanted every time new data become available. The third class is the closed-loop adaptive routing. Contrary to the open-loop adaptive routing, an optimal adaptive routing system should be one of closed-loop adaptive routing, because this category takes into account the future availability of travel-time information, and thus, specifies at each node how to react to the information obtained.

The LET problem is not affected by the travel time variance. In other words, LET solutions are risk-neutral and they do not depend on the uncertainties of the link traveltime. A possible method to formulate attitude towards risk is to use a utility function [136][START_REF] French | Statistical decision theory[END_REF]. More details on utility functions in stochastic shortest path problems can be found in [119-120-121]. There exist heuristic methods to study risk aversion also; see for example [START_REF] Nie | Arriving-on-time problem: discrete algorithm that ensures convergence[END_REF][START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF][START_REF] Samaranayake | A tractable class of algorithms for reliable routing in stochastic networks[END_REF][START_REF] Chen | Path finding under uncertainty[END_REF][START_REF] Nie | Shortest path problem considering on-time arrival probability[END_REF][START_REF] Nie | Reliable route guidance: A case study from Chicago[END_REF][START_REF] Pan | Finding reliable shortest path in stochastic time-dependent network[END_REF]. However, most of these formulas result in extremely complex problems in relation to the objective function that does not accumulate over the links. In this case, dynamic programming cannot be applied [START_REF] Huang | Optimal paths in dynamic networks with dependent random link travel times[END_REF].

In the stochastic path planning problem, Frank [START_REF] Frank | Shortest paths in probabilistic graphs[END_REF] introduced the objective of maximizing the probability that the destination travel-time is less than a given deadline time. Since the work of Frank, the on-time arrival problems have been explored by many researchers [122-123-45-126-127-128]. In [START_REF] Murthy | Stochastic shortest path problems with piecewise-linear concave utility functions[END_REF], Fan et.al defined optimality as the maximization of the travel-time reliability and proposed an adaptive optimal path algorithm to solve this optimization problem. This is the Stochastic On-Time Arrival (SOTA) problem. In this section, a brief discussion on the concept of the SOTA problem is given including the two existing variants, for the convenience of readers and the continuity of our discussion in the next sections. In the SOTA problem, one seeks to maximize the probability of a time arrival at a given destination, departing from a given origin, with a given travel-time budget. The travel-time across every link is a random variable with some robust here, if it minimizes the deterioration of its maximum value (in terms of the mean travel time and its reliability) calculated at the origin, against eventual reconfigurations of the network due to link failures (accidents, works, etc.). We begin this sub-section by extending the stochastic on time arrival (SOTA) algorithm proposed in [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF] by incorporating the alternative routing choices at nodes considering the possible failures of links in routes connecting to the destination. The proposed algorithm developed differs from the existing SOTA algorithm family in that, in the objective function we use a weighted average of the cumulative probabilities to arrive at the destination in a given time budget instead of the maximum of probabilities. We provide also, a new definition of robust-optimality and we explain how can the user measure the robustness and investigate the solution quality. In this section, we provide also, the discretization scheme of the model for the case of independent link travel times and we analyze the algorithm complexity of the model. In sub-section 3.2, we provide the robust guidance model in case of correlated link travel-times. As in [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF] we present a simple extension to our formulation that considers the correlation between a link and the upstream neighbors (ie successive links) via which the link is reached. We are not interested in other correlations (ie correlations between non-consecutive links) because it makes the problem more complex.

In section 4, we propose a parameter optimization of the robust routing algorithm, and we show how to choose the robustness parameter in function of the desired travel-time reliability and the desired travel-time budget.

In section 5, we present an extension of our model in case of time varying link traveltimes.

In section 6, we conduct numerical experiments and we compare several scenarios on a well-known road network (the Sioux Falls network) in a static domain, to consider the sensitivity of the proposed approach to changes in the key parameters.

In section 7, some conclusions are drawn.

Formula (1) expresses the fact that a traveler being at node i, having a time budget t, and knowing u p (t), ∀p ∈ {1,2, … , n}, ∀s ∈ [0, t], should go through the link (i, j) that maximizes the probability of arriving within time t to the destination node d, with respect to all the possible successor nodes j of i. Formula (2) tells simply that parting from node d, the maximum probability of arriving to the same node d, within any time budget is 1.

Formula (3) tells that the optimal successor node for the traveller being at node i, is given as the argument of the maximum taken in (1).

To solve the system of nonlinear equations ( 1)-( 2), the Picard method of successive approximation is one possible approach proposed in [START_REF] Fan | Arriving on time[END_REF]. This fixed point method starts with initial approximations of the solution and refines these approximations by successive iterations. Then, the iterative relationships for successive approximations are given as follows.

u i iter +1 (t) = max j∈Γ +1 (i) � p ij (w)u j iter (t -w)dw t 0 , ∀i ∈ N\{d}, j ∈ Γ +1 (i), 0 ≤ t ≤ T ) 4 ( u d iter +1 (t) = 1, 0 ≤ t ≤ T ) 5 (
Where the superscript iter is the iteration index. The function u i iter (t) represents the probability of reaching the destination node d if optimal choices are made.

Given initial approximations, the pseudo-code for successive approximation algorithm is given by Algorithm 1 below.

Algorithm 1 : Successive approximation algorithm [START_REF] Fan | Optimal routing for maximizing the travel time reliability[END_REF] Step 0. Initialization iter = 0 (iteration index)

u i iter (t) = 0, ∀i ∈ N\{d}, 0 ≤ t ≤ T u d iter (t) = 1, 0 ≤ t ≤ T
computation methods than the standard (brute force) discrete time approximation algorithm used in [START_REF] Samaranayake | A tractable class of algorithms for reliable routing in stochastic networks[END_REF]. In that formulation, the order in which the nodes of the graph are considered when solving the underlying dynamic program greatly impacts the computation time of the proposed solution. Therefore, an optimal ordering algorithm that determines the best order in which to solve the dynamic program is also proposed in [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF].

The model ( 1)-( 3) present the simple case of the SOTA problem where the travel-times on the links of the network are uncorrelated. Different variants of the SOTA problem with correlated link travel times are proposed in the literature, see for example . We expose below the model with travel-time correlations proposed in [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF].

Formulation of the SOTA problem with correlated link travel-times

In [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF], the authors presented a simple extension of the SOTA model that considers correlation between the travel times of any two consecutive links. Let us denote by u ki (t, y) the maximum probability for a user to arrive to destination node d within a time t, parting from node i, conditioned that the user comes from node k, and that the realized travel time on link (k, i) is y. The maximum probabilities u ki (t, y) satisfy the following equations.

u ki (t, y) = max j∈Γ +1 (i) � p ij (w | y)u ij (t -w, w)dw t 0 , ∀i ∈ N\{d}, k ∈ Γ -1 (i), j ∈ Γ +1 (i), 0 ≤ t ≤ T, 0 ≤ y ≤ T -t ) 6 ( u kd (t, y) = 1, ∀k ∈ Γ -1 (d), 0 ≤ t ≤ T, 0 ≤ y ≤ T -t. ) 7 ( s ki (t, y) = arg max j∈Γ +1 (i) � p ij (w | y)u ij (t -w, w)dw t 0 , ) 8 ( ∀i ∈ N\{d}, k ∈ Γ -1 (i), j ∈ Γ +1 (i), 0 ≤ t ≤ T, 0 ≤ y ≤ T -t
where tt ij denotes the travel time on link (i, j), and p ij (w | y) is the probability distribution function (pdf) of w, conditioned by y. The pdf p ij (. ) is assumed to be known and can be CHAPITRE 2. ROBUST GUIDANCE obtained for example, using historical data or real-time traffic information. u ij (t -w, w) is the maximum probability of arriving to destination node d within time t -w, parting from node j, conditioned that the travel time on link (i, j) is w.

An academic example

Let us consider the network of Figure 8 including 5 nodes and 7 links. We illustrate here the approach routing by applying the SOTA algorithm given by model ( 1)-( 3) to find an optimal path from node 1 to node 5 with a time budget of 25 time units. We derive the probabilities u 1 (t) for origin nodes 1 of the network, as well as the associated optimal policies s 1 (t).We assume that the travel times on the links of the network are uncorrelated, and follow Gamma probability distributions. The gamma probability distribution is a twoparameter family of continuous probability distributions. There are three different parametizations in common use:

with a shape parameter 𝑘𝑘 ans a scale parameter 𝜃𝜃.

with a shape parameter 𝛼𝛼 = 𝑘𝑘 and an inverse scale parameter 𝛽𝛽 = 1 𝜃𝜃 called a rate parameter.

with a shape parameter 𝑘𝑘 and a mean parameter 𝜇𝜇 = 𝑘𝑘 𝛽𝛽 � .

In each of these three forms, both parameters are positive real numbers.

The corresponding probability density function in the shape α and rate β parameterization that we use in this example is:

𝑓𝑓(𝑥𝑥, 𝛼𝛼, 𝛽𝛽) = 𝛽𝛽 𝛼𝛼 𝑥𝑥 𝛼𝛼-1 𝑒𝑒 -𝛽𝛽𝑥𝑥 𝛤𝛤(𝛼𝛼)
where 𝛤𝛤(𝛼𝛼) is a complete gamma function which is defined by the following integral

𝛤𝛤(𝛼𝛼) = � 𝑥𝑥 𝛼𝛼-1 𝑒𝑒 -𝑥𝑥 𝑑𝑑𝑥𝑥 ∞ 0
For all the links of the network, we assume an average travel time of 7 time units with a standard deviation of 3 time units, except for link [START_REF] Henn | Information routière et affectation du trafic : vers une modélisation floue[END_REF]3), for which we assume an average We apply the SOTA algorithm (model ( 1)-(3)) for this example. We obtain the results

given in Table 1. u 1 (t) denotes the probability to reach the destination node 5 from origin node 1 within a time budget t, and s 1 (t) is the optimal strategy from origin node 1 to destination node 5 within a time budget t.

Note that, we will take the same academic example in the following sections in order to illustrate our robust approach and make a comparison between the two approaches. policy s 1 (t)

3 3 3 3 3 3 3 3 3 3 3
probability u 1 (t) 0,9436 0,9742 0,9909 0,9968 0,9989 0,9990 0,9996 0,9999

1 1 1
We can clearly see in Table 1 that the optimal route is the route passing through node 3

i.e. route 1, for all the considered time budgets. The SOTA algorithm permits the maximum cumulative probability distribution computation of the time arrival toward a given destination in the network. These distributions allow to user selection of the most reliable origin-destination paths under given time cost. However, the question that arises here is the following. If the link (3.5) fails once the user arrives at node 3, what will be the options for the user? The answer is clear, if link (3,5) fails once the user arrives to node 3, then he will not have any other alternative route to reach the destination.

Then, by this illustrative example, we can say that the optimal strategy given by the SOTA algorithm is not robust because it does not propose any alternative route in case of link failures. To solve this problem, we propose an extension of the SOTA algorithm by introducing robustness against link and path failures for the selection of guidance strategy.

The new algorithm takes into account the reliability of itinerary travel times, since it is based on a SOTA algorithm. In addition, it takes into account itinerary robustness, by favoring itineraries with possible and reliable alternative diversions (in case of link failures), with respect to itineraries without or with less reliable alternatives.

In the next sections, based on the SOTA formulation described above, an extension of the routing algorithm is performed including a robustness criterion for the routing strategy, against link and path failures.

Robust guidance

In this section we base on the routing model presented in [START_REF] Fan | Arriving on time[END_REF] (model ( 1)-( 3) above)

where from the probability distributions of travel times through the links of the network, users evaluate their maximum probability to reach their destination in given time budgets, and using different possible routes.

We propose here an extension of this approach in order to take into account the existence and the performance of alternative detours of the selected paths, in the calculus of the guidance strategy. We take into account the fact that one or many links of the selected optimal path may fail during the travel. We then consider that users may be sensitive to path changing. That is to say that they may prefer paths with efficient alternative detours, with respect to paths without, or with less efficient detours, even with a loss in the average travel time, and/or in its reliability. In order to take into account such behaviors, we propose a model that includes the existence as well as the performance of detours for selected paths, in the calculus of the travel time reliability (i.e. the probability of reaching a destination node). This new way of calculating travel time reliability guarantees a kind of robustness of the guidance strategies. That is to say that the travel time reliability associated to the obtained optimal guidance strategy is not likely to change, however associated adaptive paths change during the travel. The variation of the travel time reliability, with respect to a network structure changing, is thus improved. For that, we propose to calculate for each node i the probability u i (t) to reach the destination node d, where we take into account the case where the selected path fails before the users who selected it reach the destination node d; for which case, alternative neighboring paths are used. u i (t) denotes, as above, the probability to reach the destination node d, parting from node i, in a time-budget t. The mathematical definition of u i (t) is different from the one of the model ( 1)-( 3). It is given in the following sub-sections, in both cases of uncorrelated and correlated link travel-times.

Robust guidance with uncorrelated link travel-times

In a stochastic framework, robustness is generally defined as the probability that the system of interest has the ability to resist to changes without adapting its initial stable configuration. Recently, path robustness in transport networks has emerged as an important topic. It has attracted many researchers to develop various indicators to assess the path robustness in road networks as explained in chapter 1. In this thesis, we provide a new idea of incorporating robustness with route choice using the case that link failure may occur. We consider here that a routing strategy is robust, if it minimizes the deterioration of its maximum value calculated before the depart at the origin, against eventual reconfigurations of the network that may due to accidents, works, etc. The value of a strategy is maximized with respect to the average travel-time and its reliability associated to the routing strategy. Consequently, a robust routing strategy would resist network reconfiguration due to link failures. We notice here that the connectivity of the network is important for the robustness of routing strategies. Indeed, a path passing through nodes having many successor nodes would be more robust than a path passing through nodes having one or small number of successor nodes; see definition 1 for more details.

In this sub-section we give the robust model which does not take into account correlations between the travel times through the links. First, we begin by presenting the different relations in the continuous time. In a second step, we expose the discrete formula of our robust model.

Continuous time formulation

We consider a directed network G(N, A), where N is the set of nodes, with |N| = n, and A is the set of arcs, with |A| = a. The set of successor and predecessor nodes are denoted by Γ +1 (i) = {j|(i, j) ∈ A} and Γ -1 (i) = {k|(k, i) ∈ A} respectively. The weights of each link (i, j) ∈ A are a random variables with probability density functions p ij(.) that represent the travel-time on links (i, j). The link travel-time distributions are assumed to be uncorrelated.

The optimal routing policy for the robust guidance problem can be expressed as follows.

The probabilities 𝐮𝐮 𝐢𝐢 (𝐭𝐭)

We introduce here a modification on the model ( 1)-( 3) in order to take into account the existence and the performance of alternative paths in the calculated optimal routing strategy. In our model, the word "optimal" refers to the robustness of the strategy. The idea here is to replace the maximum operator in equation ( 1) by a weighted mean over a chosen number of successor nodes. Instead of calculating u i (t) basing on the successor node giving the optimum value of u i (t), we propose here to consider also other successor nodes of i, and we rather calculate u i (t) basing on a weighted mean over a number of successor nodes of i. Let us consider the following notation.

) 9 ( A ij (t) = ∫ p ij (w )u j (t -w)dw t 0 , ∀i ∈ N\{d}, j ∈ Γ +1 (i), ∀0 ≤ t ≤ T We denote by A i (t) the vector A i (t) = �A i1 (t), A i2 (t), … , A in i (t)�.
Where n i is the number of successor nodes of node i in the graph. We then define N maps S i , i = 1,2, … . , N as follows.

) 10 ( S i ∶ ℝ n i → ℝ n i A i (t) ⟼ S i �A i (t)� ∀i ∈ {1,2, … . , N}
Where S i �A i (t)� is the vector whose components are the same as those of A i (t) but sorted in a decreasing order. S ij �A i (t)� denotes here the j th component �S i �A i (t)�� j of vector

S i �A i (t)�.
We then rewrite the probability for a user to reach the destination node d from node i in a time budget t, as follows.

u i (t) = � ψ p S ip �A i (t)�, m p=1 ∀i ≠ d, 0 ≤ t ≤ T, ) 11 ( u d (t) = 1, 0 ≤ t ≤ T, ) 12 
(
where m is a parameter giving the number of successor nodes taken into account in the sum of equation ( 11), ψ p are non increasing weighting coefficients satisfying

ψ p ≥ 0, ∀p ∈ {1,2, … , m}, � ψ p = 1 m p=1 ,
and

ψ 1 ≥ ψ 2 ≥ ⋯ ≥ ψ m .
The following two cases are distinguished.

-Case 1. m ≤ |Γ +1 (i)|, in which case, no more than the number of successors of i are considered in the sum of Eq [START_REF] Lighthill | On kinematic waves ii : A theory of traffic flow on long crowded roads[END_REF].

-Case 2. m > |Γ +1 (i)|, in which case, we have S ip �A i (t)� = 0 for p > �Γ +1 (i)�. and

∑ ψ j j∈Γ +1 (i) ≤ ∑ ψ p = 1 m p=1
.

In case 2 above, nodes i with small numbers of successors are penalized; they get low values u i (t). Therefore, paths passing through these nodes i.e. paths with small number of alternatives or detours shall have low probabilities to be selected as optimal paths. One way to choose m can be to take the maximum over the cardinals of the sets Γ +1 (i) of successors of all the nodes of the network.

m = max i∈N |Γ +1 (i)|
where | . | denotes the cardinal of a set. In the examples we give below, we take m = 2.

In order that equation [START_REF] Lighthill | On kinematic waves ii : A theory of traffic flow on long crowded roads[END_REF] will have a meaning, ψ p have to be chosen such that ψ 1 ≥ ψ 2 ≥ ⋯ ≥ ψ m . That is to say that ψ p decrease as S ip �A i (t)� decrease with respect to p.

This dependence of ψ p on A ip (t) makes the model non-trivial. Indeed, instead of taking the maximum over A ip (t), with respect to successors p of i, as in equation ( 1), we take a weighted mean in equation [START_REF] Lighthill | On kinematic waves ii : A theory of traffic flow on long crowded roads[END_REF], where the weights are in the same order as the one of the quantities S ip �A i (t)�. Therefore, we need to first sort the quantities A ip (t), before applying the mean operator. So the model [START_REF] Lighthill | On kinematic waves ii : A theory of traffic flow on long crowded roads[END_REF] needs more operations than the model (1).

Finally, let us notice that if m = 1, or if m > 1 and ψ p = 0, ∀p ≥ 2, then equations ( 1)-

(2) coincides with equations ( 11)- [START_REF] Richards | Shock waves on the highway[END_REF]. Therefore, the model ( 11)-( 12) extends the model ( 1)-(2).

The successor nodes

In the calculus of u i (t) by equation ( 11), instead of maximizing the quantities A ij (t),

we proposed to take a weighted mean of theses quantities, with weights ψ p , p =

The optimal guidance strategy is then determined by the sequence of successor nodes s i (t)

as given by equation (13) below.

s i (t) = arg max j∈Γ +1 (i) �A ij (t)� , i ∈ N ) 13 (
s i (t) denotes here the optimal successor node of node i for a user to reach the destination node d. By taking a mean in equation [START_REF] Lighthill | On kinematic waves ii : A theory of traffic flow on long crowded roads[END_REF] rather than the maximum (as in equation ( 1)), we take into account the existence and the performance of alternative deviations at every intermediate node from i to d. We notice here that although formula (13) resembles to formula (3), the resulted successor nodes from the two formulas are not necessarily the same, since the quantities u i (t) in equation ( 1) and u i (t) in equation ( 11) are calculated differently. Table 4 below gives a continuous time scheme for the model ( 11)-( 13).

Table 4. Continuous time formulation of the robust guidance algorithm

Definition 1 : Robust-optimality.

We say that u is robust-optimal, with respect to parameters m, ψ p , p = 1,2, … , m and time-budget T, if it is the unique possible routing strategy for the time budget T, or if u is robust-optimal with respect to parameters m, ψ p , p = 1,2, … , m and time-budget Tδ, and u satisfies

Step 0. Initialization  Fix m (maximum number of successor nodes to take into account). For example, m =

max i∈N |Γ +1 (i)|.  Fix ψ p , p = 1, … , m such that ∑ ψ p m p=1 = 1 and ψ 1 ≥ ψ 2 ≥ ⋯ ≥ ψ m .
 Fix the time unit δ = tt min -ε, where tt min is the minimum realizable travel-time across the network, and ε is a short time. We then have ∀i, j ∈ N, ∀w ∈ [0, δ], p ij (w ) = 0.

 Fix T = Lδ The total time budget T is a multiple of δ.

 Fix iter = 0 (iteration index).

 u i iter (t) = 0, ∀i ∈ N\{d}, 0 ≤ t ≤ T  u d iter (t) = 1, 0 ≤ t ≤ T Step 1. Update For iter = 1,2, … … . L, with L = T δ ⁄ ,  τ iter = iter * δ  u d iter (t) = 1, 0 ≤ t ≤ Lδ.  u i iter (t) = u i iter -1 (t), ∀i ∈ N, i ≠ d, t ∈ �0, τ iter -δ�.
 Calculate A ip iter -1 (t), for every i, p, t as indicated below.

 For every i, t, apply S i to sort A i iter -1 (t) with in a decreasing order, and obtain S i iter -1 (t)

 u i iter (t) = ∑ ψ p S ip iter -1 (A i (t)) m p=1 , ∀i ∈ N\{d}, j ∈ Γ +1 (i), t ∈ ( τ iter -δ, τ iter ]  s i iter (t) = arg max j∈Γ +1 (i) �A ij iter -1 (t)�, ∀i ∈ N\{d}, j ∈ Γ +1 (i), t ∈ ( τ iter -δ, τ iter ], u i (t) = � ψ p S ip �A i (t)�, m p=1 ∀i ∈ N\{d}, j ∈ Γ +1 (i), t ∈ (t -δ, T],
Robustness of a routing strategy has a price in term of travel time reliability and a price in term of travel time budget, as explained in section 3.4.1.

Proposition 1. For a total time budget T = δL, the solution obtained at iteration iter = δL of Step 1 is robust-optimal.

Proof : By induction on 𝐋𝐋.

 For L = 0, the total time budget is zero, and thus only Step 0 is performed by the algorithm, which consequently terminates with a u satisfying u i (0) = 0, ∀i ∈ N\{d} and u d (0) = 1. This solution is robust-optimal since it is the unique possible solution for the time budget zero.

 Assume that for T = δL, the solution given at iteration k = δL of Step 1 of the algorithm of Table 2 is robust-optimal. Then with a time budget T = (L + 1)δ, the algorithm keeps the same robust-optimal solution u i L+1 (t) = u i L (t), ∀i ∈ N for every time t ∈ [0, δL]. For times t ∈ (δL, δ(L + 1)], u i L+1 (t) is robust-optimal by definition of the robust-optimality.

The meaning of Proposition 1 is that the continuous scheme of Table 4 can be solved in a single update i.e. without resorting to value iteration. It is similar to the one introduced in [START_REF] Treiber | Microscopic simulation of congested traffic[END_REF]. The unique difference lies in the calculus of u i (t), using here a weighted mean instead of the maximum.

Discretization Scheme of the robust guidance algorithm

To numerically approximate u i (t), we descretize the interval [0, T ] into L = T/∆t time steps of length ∆t. As in [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF], the discretization length is supposed to satisfy ∆t ≤ δ. To simplify the notations, we assume that T = n. ∆t. The discretized algorithm is then given in Table 5 below.

The probability distributions of the link travel times are discrete here. Therefore, the calculus of A ij (x) is done as follows (replacing ( 9)).

A ij (x) = � p ij �tt ij = h �u j (x -h) x h=0
tt ij : the travel-time on link (i,j).

Table 5. Discrete time formulation of the robust guidance algorithm

Step 0. Initialization  Fix m (maximum number of successor nodes to take into account). For example, m =

max i∈N |Γ +1 (i)|.  Fix ψ p , p = 1, … , m such that ∑ ψ p m p=1 = 1 and ψ 1 ≥ ψ 2 ≥ ⋯ ≥ ψ m .
 Fix the time unit ∆t ≤ δ. We then have ∀i, j ∈ N, ∀w ∈ [0, ∆t], p ij �tt ij = w � = 0.

 Fix T = Lδ The total time budget T is a multiple of δ.

 u i iter (x) = 0, ∀i ∈ N\{d}, x ∈ ℕ, 0 ≤ x ≤ T ∆t ,  u d iter (x) = 1, x ∈ ℕ, 0 ≤ x ≤ T ∆t
Step 1. Update

For iter = 1,2, … … . L, with L = T δ ⁄ ,  τ iter = iter * δ  u d iter (x) = 1, x ∈ ℕ, 0 ≤ x ≤ T ∆t .  u i iter (x) = u i iter -1 (x), ∀i ∈ N, i ≠ d, x ∈ �0, τ iter -δ ∆t �, x ∈ ℕ.
 Calculate A ip iter -1 (x), for every i, p, x as indicated in Section 3.1 above.

 For every i, x, apply S i to sort A i iter -1 (x) with in a decreasing order, and obtain

S i iter -1 (x)  u i iter (x) = ∑ ψ p S ip iter -1 (A i (x)) m p=1 , ∀i ∈ N\{d}, j ∈ Γ +1 (i), x ∈ � τ iter -δ ∆t + 1, τ iter ∆t � , x ∈ ℕ.  s i iter (x) = arg max j∈Γ +1 (i) �A ij iter -1 (x)�, ∀i ∈ N\{d}, j ∈ Γ +1 (i), x ∈ � τ iter -δ ∆t + 1, τ iter ∆t � , x ∈ ℕ.

Complexity analysis

Proposition 2. The complexity of the Algorithm of Table 3 is

Ο(a(T ∆t ⁄ ) 2 + (T ∆t ⁄ )a log a).

Proof.

The functions A ij (. ) and p ij (. ) are vectors of length L. Each link travel-time distribution in the network is of length T ∆t ⁄ , and the discretized probability mass function is computed in time Ο(T ∆t ⁄ ) for each link. As there are a links, then the total time is Ο(a T ∆t ⁄ ). In step 0, there are iter vectors to initialize for each node, and each vector is of length T ∆t ⁄ .

Then the initialization is done in time Ο(iter T ∆t ⁄ ). In step 1, the algorithm progressively calculates:

 The sum of the convolution product A ij (x) from x = 0 to x = T ∆t ⁄ . Then the time complexity of the summation for a link is O(a(T ∆t ⁄ ) 2 ).

 The quantities A ij (x) are sorted for each x, then the complexity of this sorting is

O((T ∆t ⁄ ) a log a).
 The sum on the weighting coefficients from p = 1 to p = m. Then the time complexity of this summation is O(a T ∆t ⁄ ).

Therefore, the total complexity to this algorithm is Ο(a(T ∆t ⁄ ) 2 + (T ∆t ⁄ ) a log a).

An academic example

Let us consider the same network of Figure 1 of sub-section 2.3. The network includes 5 nodes and 7 links. We illustrate here our approach by applying the algorithm given in Table 2 to find a robust-optimal path from node 1 to node 5, and we compare the results with those obtained in section 2.3. We assume that the travel times on the links of the network are uncorrelated, and follow Gamma probability distributions. For all the links of the network, we assume an average travel time of 7 time units with a standard deviation of 3 time units, except for link [START_REF] Henn | Information routière et affectation du trafic : vers une modélisation floue[END_REF]3), for which we assume an average travel time of 6 time units and a standard deviation of 3 time units. To reach node 5 from node 1, four routes exist: route1 (1-3-5), route2 (1-2-4-5), route3 (1-2-4-3-5) and route 4 (1-2-5). In term of minimum average travel time (i.e. applying the LET routing algorithm), it is easy to check then route 1 is the optimal one.

We apply our algorithm (model ( 11)-( 13)) for this example. We fix m = 2 (the maximum number of successor nodes in the network). We then have two weighting parameters ψ 1 and ψ 2 , with ψ 1 + ψ 2 = 1. To simplify, we denote ψ = ψ 1 and then ψ 2 = 1 -ψ. We vary ψ in (1/2, 1]. The results are given in Table 3 below.

Table 3. Robust-optimal solutions (probabilities u and policies s) to reach node 5 from node 1 for different value of 𝛙𝛙. 

ψ = 1 s 1 (t) 3 3 3 3 3 3 3 3 3 3 3 
u 1 (t) 0,9436 0,9742 0,9909 0,9968 0,9989 0,9990 0,9996 0,9999

1 1 1 ψ = 0.9 s 1 (t) 3 2 2 2 2 2 2 2 2 2 2
u 1 (t) 0,8442 0,8772 0,9038 0,9283 0,9457 0,9587 0,9683 0,9751 0,9797 0,9828 0,9849

ψ = 0.8 s 1 (t) 2 2 2 2 2 2 2 2 2 2 2
u 1 (t) 0,7472 0,7817 0,8208 0,8503 0,8744 0,8941 0,9096 0,9213 0,9300 0,9365 0,9415

ψ = 0.7 s 1 (t) 2 2 2 2 2 2 2 2 2 2 2
u 1 (t) 0,6522 0,6921 0,7294 0,7600 0,7865 0,8092 0,8277 0,8423 0,8540 0,8634 0,8711 ψ = 1 corresponds to the model (1-3) and ψ < 1 corresponds to the model [START_REF] Lighthill | On kinematic waves ii : A theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF][START_REF] Aw | Resurrection of second order models of traffic flow[END_REF]. We can clearly see in Table 3 that probabilities u 1 (t) are decreasing with ψ, for a fixed timebudget. For ψ = 1, the optimal route is the route passing through node 3 i.e. route 1, for all the considered time budgets. For ψ < 1, the robust-optimal route changes with the time budget. For example, for ψ = 0.9, the robust-optimal route is route1 (the same as in the case ψ = 1) for time budgets less than 16 time units, while for time budgets bigger than or equal to 16 time units, the robust-optimal policy changes and node 2 becomes the robustoptimal successor node of node 1. The robust-optimal route in this case is route 4. The selection of route 4 as the robust-optimal route rather than route 1 in case ψ < 1 is justified by the fact that, node 2 offers two routing options (go to node 5, or go to node 4).

More options offer more alternatives in adaptive routing. Indeed, for a user who has chosen route 4, if link (2,5) fails once the user arrives to node 2, then he will still have two other alternative routes to reach the destination node 5: route 2 and route 3 by link (2,4).

However, if the user chooses route 1, then if link (3,5) fails once the user arrives to node 3, then he will not have any other alternative route to reach the destination. Therefore, route 4 passing through node 2 is more robust than route 1 passing through node 3, because node 2 has more successor nodes than node 3. The robust guidance algorithm favors routes passing by nodes with alternative detours. From these results we can conclude that:

-If a user prefers to maximize the travel time reliability of his routing strategy, without taking into account its robustness against link and path failures, then he should select route 1 because it is the one maximizing the probability of reaching the destination node 5 in the considered time budget.

-If the user seeks a guarantee in terms of robustness and if he accepts to lose in terms of travel time budget and/or travel time reliability, then he should select route 4

because it is the one giving more alternative detours in case of link failure.

Price of robust-optimality

Robustness of a routing strategy has a price in term of travel time reliability, in the sense that a user with a fixed time budget can improve the robustness of his routing strategy if he accepts to lose travel time reliability. In the other side, robustness of a routing strategy has a price in term of time budget, in the sense that a user who requires a fixed level of travel time reliability can improve the robustness of his routing strategy if he accepts to extend his time budget. In order to illustrate this concept of price of robustoptimality, let us back to the academic example given above. From Table 3, if a user likes to reach the destination node within a time budget of 16 time units, then he gets a travel time reliability of 0.9742 by passing by a non robust route (route 1 with ψ = 1), and a travel time reliability of 0.8772 by passing by a more robust route (route 4 with ψ = 0.9).

Then, the value 0.097 = 0.9742 -0.8772 can be interpreted as the price of robustness (of passing from a robustness level corresponding to ψ = 1 to a robustness level corresponding to ψ = 0.9) to pay in term of travel time reliability; see Figure 2. On the other side, if the user likes to reach the destination node with a travel time reliability of at least 0.9742, he can select a non robust route (route 1 with ψ = 1) with a time budget of 16 time units, or a more robust route (route 4 with ψ = 0.9) with a time budget of 22 time units (assuring a travel time reliability of 0.9751). Then, the value 6 = 22 -16 can be interpreted as the price of robustness (of passing from a robustness corresponding to ψ = 1 to a robustness level corresponding to ψ = 0.9) to pay in term of travel time budge; see Figure 9. According to Figure 9 we can also say that, the price of travel-time reliability varies according to the desired time budget, and the price of travel-time budget varies according to the desired reliability. For example, if the user likes to ensure a travel time reliability of 0.6 instead of 0.9742 then the price of robustness that he will pay in term of travel-time budget will be the value 1=13-12(time unit) as illustrated by Figure 10. 

Formulation of the algorithm in the case of correlated link travel-times

In this section we generalize our algorithm to the case of correlated link travel-times.

More precisely, we propose an extension of the model ( 11)-( 13) that takes into account eventual correlation between any consecutive links in the network. For that, we propose to calculate for each node i the probability to reach the destination node d, where we take into account the case where the selected path fails before the users who selected it reach the destination node d; for which case, alternative neighboring paths are used. u ki (t, y) denotes, as above, the probability to reach the destination node d, parting from node i, in a time-budget t, and knowing that the user comes from node k upstream of i, and that the realized travel time from k to i is y. The mathematical definition of u ki (t, y) is the following. We proceed as in section 3. Let us consider the following notation.

A kij (t, y) = � p kij (w | y)u ij (t -w, w)dw t 0 , ∀i ∈ N\{d}, k ∈ Γ -1 (i), j ∈ Γ +1 (i), ∀0 ≤ t ≤ T, 0 ≤ y ≤ T -t.
Where p kij (. | . ) denotes the probability distribution function of the travel-time on link (i, j) conditioned by the one on link (k, i).

For given k, i, t and y, we sort the quantities A kij (t, y) in a decreasing order with respect to the index j as done above in section 3.1. We denote by A ki (t, y) the vector A ki (t, y) =

�A ki 1 (t, y), A ki 2 (t, y), … , A ki n i (t, y)�, where n i is the number of successor nodes of node i in the graph. We then define 𝑁𝑁 maps S i , i = 1,2, … . , N , as follows.

S i ∶ ℝ n i → ℝ n i A ki (t, y) ⟼ S i �A ki (t, y)� , ∀i ∈ {1,2, … . , N}, ∀k ∈ Γ -1 (i)
where S i �A ki (t, y)� is the vector whose components are the same as those of A ki (t, y) but sorted in a decreasing order. S ij �A ki (t, y)� denotes here the j th component �S i �A ki (t, y)�� j of vector S i �A ki (t, y)�.

We then rewrite the probability for a user to reach the destination node d from node i in a time budget t, knowing that the user comes from node k and that the travel-time from k to i is y, as follows.

u ki (t, y) = � ψ p S ip �A ki (t, y)�, m p=1 ∀i ≠ d, k ∈ Γ -1 (i), 0 ≤ t ≤ T, 0 ≤ y ≤ T -t ) 14 ( u kd (t, y) = 1, ∀k ∈ Γ -1 (d), 0 ≤ t ≤ T, 0 ≤ y ≤ T -t, ) 15 
(
where m is a parameter giving the number of successor nodes taken into account in the sum of formula [START_REF] Zhang | A non-equilibrium traffic model devoid of gas-like behavior[END_REF], and ψ p are weighting coefficients satisfying

ψ p ≥ 0, ∀p ∈ {1,2, … , m}, � ψ p = 1 m p=1 ,
and

ψ 1 ≥ ψ 2 ≥ ⋯ ≥ ψ m .
The optimal guidance strategy is then determined by the sequence of successor nodes s ki (t, y) as given by the formula (16) below.

s ki (t, y) = arg max j∈Γ +1 (i)

�A kij (t, y)� ) 16 (

How to fix the parameters ψ p

As mentioned above, in order that the model ( 14)-( 16) has a meaning, ψ p have to be chosen such that ψ 1 ≥ ψ 2 ≥ ⋯ ≥ ψ m . We will be interested here in the case where m = 2 (i.e. we only take into account the two best successor nodes of every node i). In this case, we have two weighting parameters ψ 1 and ψ 2 , such that ψ 1 + ψ 2 = 1. In order to simplify the notations, we simply denote ψ = ψ 1 , and ψ 2 is given by ψ 2 = 1 -ψ.

Therefore, we have only one parameter ψ for the robustness, such that the case ψ = 1 corresponds to the case where robustness is not taken into account; while the obtained routing strategy is as robust as the parameter ψ is small. We notice here that ψ should satisfy 1/2 ≤ ψ ≤ 1, since we have

ψ 1 ≥ ψ 2 .
We propose in this section a method to fix the parameter ψ in such a way that a user will be able to manage his travel time budget to favour travel time reliability with respect to robustness. More precisely, the user fixes a desired travel time reliability that he aims to reach, and by that, the routing algorithm will use the entire available travel time budget in order to reach the desired level of travel time reliability; and the remaining travel time budget is used to improve the robustness of the routing strategy. The details are given below.

Given a travel time budget τ and a desired travel time reliability 𝑝𝑝 (expressed as the probability that the destination will be reached on the time budget τ); given a time interval ψ to which the parameter ψ belongs (for example ψ = (1 2 ⁄ , 1]), the optimal weighting coefficient ψ * is determined as follows (formulas ( 17)-( 18) below).

The desired travel time reliability 𝑝𝑝 being fixed, the algorithm first calculates the map ψ ↦ T kiy (𝑝𝑝, ψ) giving, for every value of ψ, the minimum time budget needed to satisfy the desired travel time reliability 𝑝𝑝.

T kiy (𝑝𝑝, ψ) = u ki -1 �t, y, ψ� ∶= min(t, t ≥ 0, u ki (t, y, ψ) ≥ 𝑝𝑝) ) 17 (

The notation u ki -1 �t, y, ψ� denotes the pseudo-inverse of the non-decreasing map t ↦ u ki (t, y, ψ); see Figure 11. Therefore, the calculus of ψ kiy * (τ, 𝑝𝑝) consists in inversing the maximum cumulative probability distribution u ki (t, y, ψ) once on the variable t in order to derive, for every fixed value of robustness parameter ψ, the optimal time budget T kiy (𝑝𝑝, ψ) needed to satisfy the desired travel time reliability 𝑝𝑝; and a second time (inversing T kiy (𝑝𝑝, ψ)) on the variable ψ in order to calculate the optimal robustness parameter ψ * needed to satisfy the constraint on the travel time budget.

The optimization of robustness given by equations ( 17)-( 18) is general, in the sense that it includes the case where one only likes to optimize travel time reliability, and not pathfailure robustness. In this case, one can just let ψ belonging to the singleton {1}, i.e. set ψ = 1. Moreover, if one tries to optimize robustness, but he does not have any margin on the time budget that permits this optimization, equation [START_REF] Kerner | Experimental features of self-organization in traffic flow[END_REF] will fix systematically ψ * to the value ψ * = 1. In other terms, any margin on the travel time budget is first used to optimize travel-time reliability, and after that, the remaining margin is used to optimize robustness.

Generalized algorithm for time-varying distributions

According to proposition 4, an optimal policy for the robust guidance problem does not prescribe waiting at node, when the assumption from proposition 3 is satisfied. Therefore, the problem with time-varying link travel times can be treated by time indexing the link travel-time distributions. We denote here by p kij τ (w, y) the probability distribution function of the travel time on link (i, j) at w, knowing that the user comes from the upstream node k of i, that the realized travel time on link (k, i) is y, and that the user leaves node i at time τ. Similarly, u ki τ (t, y) denotes the robust-optimal probability of reaching the destination node d within time budget t, parting from node i at time τ, and knowing that the user comes from the upstream node k of i, and that the realized travel time on link (k, i) is y.

We use similar notations as above.

) 19 ( A kij τ (t, y) = ∫ p kij τ (w | y)u ij τ+w (t -w, w)dw t 0 ∀i ∈ N\{d}, k ∈ Γ -1 (i), j ∈ Γ +1 (i), ∀0 ≤ t ≤ T, 0 ≤ y ≤ T -t, 0 ≤ τ
As explained in section 3, For given τ, k, i, t and y, we sort the quantities A kij τ (t, y) in a decreasing order with respect to the index j. We denote by A ki τ (t, y) the vector A ki τ (t, y) =

�A ki 1 τ (t, y), A ki 2 τ (t, y), … , A ki n i τ (t, y)�, where n i is the number of successor nodes of node i in the graph. We then define 𝑁𝑁 maps S i , i = 1,2, … . , N, as follows.

S i ∶ ℝ n i → ℝ n i A ki τ (t, y) ⟼ S i �A ki τ (t, y)� , ∀i ∈ {1,2, … . , N}, ∀k ∈ Γ -1 (i), 0 ≤ τ
Where S i �A ki τ (t, y)� is the vector whose components are the same as those of A ki τ (t, y) but sorted in a decreasing order. S ij �A ki τ (t, y)� denotes here the j th component �S i �A ki τ (t, y)�� j of vector S i �A ki τ (t, y)�.

We then write u ki τ (t, y) as follows.

) 20 ( u ki τ (t, y) = ∑ ψ p S ip �A ki τ (t, y)�, m p=1 ∀i ≠ d, k ∈ Γ -1 (i), 0 ≤ t ≤ T, 0 ≤ y ≤ T -t, 0 ≤ τ ) 21 ( u kd τ (t, y) = 1, ∀k ∈ Γ -1 (d), 0 ≤ t ≤ T, 0 ≤ y ≤ T -t, 0 ≤ τ
This model is optimal according to proposition 4. As we can see in equation ( 19), the departure time from node i (superscript of A kij τ (. )) is the same at the time spent on link (i, j) (superscript on p kij τ (. )) , which justifies the fact that waiting at node is not beneficial for the optimal policy in the SOTA problem.

Static routing in Sioux Falls network

We use here the well known Sioux Falls network to test our algorithm. This network is simplified to 24 nodes and 76 links as illustrated in Figure 13 bellow. Gamma. We base here on the bi-variate Gamma distribution given by Smith et al. (1982) CHAPITRE 2. ROBUST GUIDANCE [START_REF] Kobitzsch | Pruning techniques for the stochastic ontime arrival problem, An experimental study[END_REF]. Indeed, the joint PDF of two positively correlated random variables 𝑊𝑊 and 𝑌𝑌, with Gamma marginal distributions 𝑓𝑓 𝑊𝑊 and 𝑓𝑓 𝑌𝑌 with shape and scale parameters (𝛼𝛼 𝑊𝑊 , 𝛽𝛽 𝑊𝑊 ) and

(𝛼𝛼 𝑌𝑌 , 𝛽𝛽 𝑌𝑌 ) respectively, was derived by Smith et al. (1982) as follow.

) 22 ( 𝑓𝑓(𝑤𝑤, 𝑦𝑦) = � 𝑔𝑔 1 𝑔𝑔 2 ∑ ∑ 𝑒𝑒 𝑘𝑘 1 𝑘𝑘 2 (𝛽𝛽 𝑊𝑊 𝑤𝑤) 𝑘𝑘 1 (𝜂𝜂𝛽𝛽 𝑌𝑌 𝑦𝑦) 𝑘𝑘 1 +𝑘𝑘 2 𝑑𝑑𝑓𝑓 𝜌𝜌 > 0 ∞ 𝑘𝑘 2 =0 ∞ 𝑘𝑘 1 =0 𝑓𝑓 𝑊𝑊 (𝑤𝑤) ⋅ 𝑓𝑓 𝑌𝑌 (𝑦𝑦) 𝑑𝑑𝑓𝑓 𝜌𝜌 = 0
where 𝜌𝜌 is the product-moment correlation coefficient of 𝑊𝑊 and 𝑌𝑌, estimated from the sample data,

) 23 ( 𝜌𝜌 = 𝐸𝐸[(W -𝑚𝑚 W )(Y-𝑚𝑚 Y )]
𝜎𝜎 𝑊𝑊 𝜎𝜎 𝑌𝑌 m W , m Y and σ W , σ Y are the sample means and standard deviations of the variables 𝑊𝑊 and 𝑌𝑌 respectively.

𝑤𝑤, 𝑦𝑦 ≥ 0, 0 < 𝜂𝜂 = 𝜌𝜌�𝛼𝛼 𝑦𝑦 𝛼𝛼 𝑤𝑤 ⁄ < 1, 𝛼𝛼 𝑦𝑦 ≥ 𝛼𝛼 𝑤𝑤 , 0 ≤ 𝜌𝜌 ≤ 𝜂𝜂�𝛼𝛼 𝑤𝑤 𝛼𝛼 𝑦𝑦 ⁄ ) 24 ( 𝑔𝑔 1 = (𝛽𝛽 W 𝑤𝑤) 𝛼𝛼 W -1 (𝛽𝛽 Y 𝑦𝑦) 𝛼𝛼 Y -1 exp �- 𝛽𝛽 W 𝑤𝑤 +𝛽𝛽 Y 𝑦𝑦 1-𝜂𝜂 � ) 25 ( 𝑔𝑔 2 = (1 -𝜂𝜂) 𝛼𝛼 𝑊𝑊 𝛤𝛤(𝛼𝛼 𝑊𝑊 ) 𝛤𝛤(𝛼𝛼 𝑌𝑌 -𝛼𝛼 𝑊𝑊 ) ) 26 ( 𝐹𝐹 𝑘𝑘 1 𝑘𝑘 2 = 𝜂𝜂 𝑘𝑘 1 +𝑘𝑘 2 𝛤𝛤(𝛼𝛼 𝑌𝑌 -𝛼𝛼 𝑊𝑊 +𝑘𝑘 2 ) (1-𝜂𝜂 ) 2𝑘𝑘 1 +𝑘𝑘 2 𝛤𝛤(𝛼𝛼 𝑌𝑌 +𝑘𝑘 1 +𝑘𝑘 2 )𝑘𝑘 1 !𝑘𝑘 2 ! 𝛤𝛤(. ) is the Gamma function 𝛤𝛤(𝑧𝑧) = ∫ 𝑒𝑒 𝑧𝑧-1 𝑒𝑒 -𝑒𝑒 𝑑𝑑𝑒𝑒 ∞ 0 .
In the network of Figure 13, even though the maximum number of successors over all the nodes is equal to 5, we take here, for simplification,m = 2, with weighting coefficients ψ 1 and ψ 2 , and denote ψ = ψ 1 and then we have ψ 2 = 1ψ.

To reach the destination node 10 parting from node 1, we have 2979 elementary paths. We apply our algorithm (model [START_REF] Zhang | A non-equilibrium traffic model devoid of gas-like behavior[END_REF][START_REF] Zhang | Anisotropic property revisited-does it hold in multi-lane traffic?[END_REF][START_REF] Elloumi | Metacor" a macroscopic modelling tool for urban corridors[END_REF]) and derive the probabilities u ki (t, y) for all origin nodes i of the network. In order to illustrate our approach, let us consider the following parameters. Travel-times on two successor links of the network follow a bi-variate Gamma As mentioned in section 3, our approach takes into account the existence and the performance of alternative detours of the selected paths, in the calculus of the guidance strategy. The proposed algorithm takes into account the fact that one or many links of the selected optimal path may fail during the travel. We consider that users may be sensitive to path changing. That is to say that they may prefer paths with efficient alternative detours, with respect to paths without, or with less efficient detours, even with a loss in the average travel time, and/or in its reliability. To illustrate our algorithm, we will be interested in what will happen at node 3 in two different scenarios presented in sub-section 6.1, and subsection 6.2.

In the following, we apply our algorithm (model(14-16)) for a user being at node 1 and going to node 10. We assume that the user has a time budget equal to 2400 seconds (40 minutes). We apply here a version of Algorithm 1 which takes into account travel time correlations (model ( 14)-( 16)). In order to illustrate the algorithm, we consider two scenarios. In scenario 1, we use the network of Figure 13. We show that the algorithm The case ψ = 1 (dashed line) corresponds to the version of the model ( 6)-(8) taking into account travel time correlations, while the cases ψ ∈ (1/2, 1) (solid lines) correspond to the model ( 14)-( 16). We see from Figure 7 that, for any time budget t, the robust-optimal probabilities u 13 (t, 115) decrease as the values of ψ decreases. That is to say that for lower values of ψ, lower values of u 13 (t, 115) are obtained. This is because we replaced a maximum operator in ( 6)-( 8) by a mean value in ( 14)- [START_REF] Elloumi | Metacor" a macroscopic modelling tool for urban corridors[END_REF]. Indeed, a user taking a lower value of ψ, asks for more path-robustness or path-flexibility, and, in the counterpart, he loses in term of travel-time reliability. The difference u 1,3 (t, 115, ψ 1 ) -u 1,3 (t, 115, ψ 2 ) can then be interpreted as the price of path-robustness corresponding to a measure of it, given by the difference ψ 1 -ψ 2 . We can see also from Figure 15 that, , for any desired probability u (travel time reliability), the time budget needed to attain this fixed level of reliability increase as the values of ψ decreases. That is to say that for lower values of ψ, bigger time budget are needed to satisfy the asked level of reliability. Indeed, a user taking a lower value of ψ, asks for more path-robustness or path-flexibility, and in order that he satisfies the fixed level of reliability, he will need more time budget. The difference

𝑢𝑢 1,3 -1 (t, 115, ψ 2 ) -u 1,3 -1 ( 
t, 115, ψ 1 ) can then be interpreted as the price of pathrobustness corresponding to a measure of it, given by the difference ψ 1 -ψ 2 . Figure 16 gives the robust-optimal routing policy in term of the robust-optimal successor nodes. We see from that figure that the optimal routing policy is the same for every value of ψ, and corresponds to the path passing through nodes (1,3,12,11,10).

Scenario 2

This second scenario aims to illustrate our approach with respect to the robustness of the optimal strategy offered by our algorithm, in the case of path failure. The scenario is the following. We take the same network of Figure 13, but we remove link 37. By that, we penalize (in term of robustness) the passage by node 12, since we decrease the number of successor nodes of it. Therefore, node 12 will have only two, instead of three successor nodes. At node 3, coming from node 1, we have three routing actions: go to successor node 12, which will give us only two routing options at the next step (go to successor node 11 or back to 3), or go to successor node 4, which will give us three routing options at the next step (go to successor nodes 5 or 11, or back to 3). Indeed, if we chose node 12 as successor of node 3, then at node 12, if link 36 fails, we have to back to node 3. However, if we chose node 4 as successor of node 3, then at node 4, if one of the links 9 or 10 fails, we have the possibility to change and take a detour using the other link; see Figure 13.

Therefore, passing by node 4 allows us more options than passing by node 12. We will see CHAPITRE 2. ROBUST GUIDANCE below that our algorithm is able to take into account such robustness criterion in the selection of the optimal routing strategy. In scenario 2, the optimal policies obtained by the algorithm for the two cases of ψ = 1 and ψ ∈ (1/2, 1) are clearly different. For the case ψ = 1, we obtain the same optimal policy as in scenario 1 (dashed line in Figure 18). However, with low values of ψ (ψ = 0.95, respectively 0.93, 0.9, 0.85, 0.8), where path-robustness is considered, we see that, with a time budget equal or bigger than 57 time units (a time unit is 24 seconds here) (respectively 56, 55, 53 time units), the robust-optimal successor node of node 3 is node 4 rather than node 12, even though paths passing through node 12 have lower average travel time comparing to those passing through node 4. For example, for ψ = 0.95, we see that with a time budget lower than 56 time units, the algorithm prefers paths passing through node 12 (see blue line in Figure 18). However, with a time budget higher than 56 minutes, the optimal policy on node 3 changes and node 4 becomes the robust-optimal successor node (see blue line in Figure 18). That means that, node 12 which has only two successor nodes is penalized, i.e. it gets low values u ki (t, y). Therefore, paths that pass through that node i.e. paths with small number of alternatives or detours have low probability to be selected as robust-optimal paths.

In order to illustrate the price of robustness here, let us take a time budget t = 55 seconds, and distinguish two cases.

 Case 1 : ψ = 0.95. In this case we do not give a high importance to the robustness. Then we see clearly on Figure 18 (blue line) that the algorithm still gives node 12 as the optimal successor node of node 3.

 Case 2 : ψ = 0.8. In this case we give more importance to the robustness criterion. Then we see clearly on Figure 18 (black line) that the algorithm chooses node 4 as the optimal successor node of node 3.

Therefore, to pass from a robustness level of 0.95 to a higher robustness level of 0.8, a user needs to increase its time budget from 53 to 57 time units, i.e. to sacrifice 4 time units (96 seconds) of his time budget. We can conclude that, in this example, the price of 0.15 units of the robustness parameter ψ is 96 seconds.

Conclusion

In this chapter, we considered the optimal guidance problem of users in road networks, and proposed a new robust adaptive strategy. We based on an existing routing model, which is the SOTA algorithm, and extended it to take into account robustness of routing strategies against path failure. In order to include the performance of alternative detours of the selected paths, we extended the concept of reliability by introducing a new reliability index. The improvement we made here allows the selection of an optimal path according to two criteria: the reliability of the path in term of travel time and the robustness of the path in term of its flexibility (i.e., existence and performance of alternative detours). Finally, the developed algorithm was tested in static version (without considering traffic dynamics) and shown some interesting properties.

In the next chapter, we will illustrate the effectiveness of the guidance algorithm in some dynamic scenarios. For that, we will combine the guidance algorithm with a dynamic traffic model by using the traffic simulator SUMO.

Introduction

In this chapter we combine the robust guidance algorithm presented in the previous chapter with a dynamic traffic model in a closed loop, in order to see how the algorithm reacts dynamically to the state of traffic. We use here the microscopic traffic simulator SUMO (Simulation of Urban MObility) and we illustrate our results on the Sioux Falls network. We begin this chapter by explaining in a general way the procedure we followed in our work to recover the state of traffic and implement our robust-optimal guidance algorithm. We then introduce SUMO and present the different packages used, before describing the configuration steps. We conclude by presenting and commenting on the results obtained.

How to proceed?

In order to see how the algorithm reacts dynamically to the state of traffic, we combine it with a dynamic traffic model in a closed loop. We use the microscopic traffic simulator SUMO (Simulation of Urban MObility) [START_REF] Astarita | A continuous time link model for dynamic network loading based on travel time function[END_REF], with the traffic control interface Traci (Traffic control interface), where we implement our robust-optimal guidance algorithm. We illustrate our results on the Sioux Falls network below (Figure 19).

We apply the guidance here only for the traffic demand parting from the zone around origin 1 to the zone around destination 10 because the optimization of the code is not yet done which leads to a significant calculation time. The routing of all other origindestination traffic demands is done by SUMO, by means of DUAROUTER algorithm that we will present in the next section. The application of our algorithm in parallel with another dynamic routing algorithm permits also to evaluate its efficiency in case where only some travelers are optimizing the robustness of the guidance against link failures.

We define a time period (10 minutes here) at the end of which we apply our robustoptimal guidance algorithm. The algorithm is applied periodically on the network. More precisely, at every time period, we retrieve the state of traffic (average travel times and variations) and give it to the algorithm. The latter proposes an itinerary from origin 1 to destination 10. We apply the obtained itinerary for the considered time period, and for the associated traffic demand, and apply the itineraries obtained by DUAROUTER for all the other traffic demands. We iterate this process for a given simulation time (40 minutes). networks. We explain each of these configuration steps in the following.

Configuration of the traffic simulation with SUMO

Edit and modify the network with JOSM

First of all, we take the same network (Sioux Falls road network in South Dakota of the United States of America) (Figure 19). The network is downloaded from the OpenStreetMap as a simulation case. To bring changes in the Sioux Falls network, the OSM xml files are edited using the JAVA editor (JOSM) in order to remove streets, buildings, railway, etc which are not used in the simulation. The real network downloaded from OpenSteetMap contains 12440 nodes and 31162 edges (Figure 19). After modification, the final network is given in Figure 21 below. The road properties (such as speed limits, traffic lights, length edges, etc.) are included in the OSM data, and with the NETCONVERT tool, theses OSM data are converted into the network xml file <Sioux_falls.net.xml> as explained in the following.

Import Sioux Falls network with NETCONVERT

NETCONVERT imports digital road networks from different sources and converts them into a format read by SUMO. In this work, we imported our network presented in 

Generate a single vehicle trips by OD2TRIPS

Once the network is ready, the next step consisted in the generation of the traffic. For this, we built in SUMO a file containing a mapping from traffic assignment zones to edges However, the simulation requires the complete list of edges to pass. Such routes are usually calculated by performing a dynamic user assignment (DUAROUTER). This is an iterative process employing a routing procedure such as shortest path calculation under different cost functions.

Generate a complete specification of the vehicles and their routes by DUAROUTER

DUAROUTER is an algorithm for Dynamic User Assignment which has been proposed in [151][START_REF] Behrisch | Comparison of Methods for Increasing the Performance of a DUA Computation[END_REF]. With DUAROUTER algorithm, vehicles are guided along routes selected according to calculated probabilities. The travel time for each car is measured, and the probabilities are adjusted accordingly, so that all the traffic is distributed. This is repeated for a defined number of iteration steps. However, since DUAROUTER does not optimize the travel time for each user, some users are guided along detour paths.

In our case, we imported produced definitions <Sioux_falls_trips. The <tt.add> is an an additional file we created to save all generated <ttOutput(id).xml> files between the time period "PeriodTime" and the next one "periodTime=+periodTime". In our simulation, we initialized the time period to "periodTime=60 seconds". The generation of <ttOutput(id).xml> files is described in the following

Generate a sumo-outputs SUMO-GUI

There are two versions of the traffic simulation. The application "SUMO" is a pure command line application for efficient batch simulation. The application "SUMO-GUI" is basically the same application as "sumo", just extended by a graphical user interface "GUI" rendering the simulation network and vehicles using open GL. "sumo" and "SUMO-GUI" allow generating various outputs for each simulation run.

We have generated the <sumoOutput.xml> file by SUMO-GUI simulation using summary <File> as summarized in Figure 23. , where b is the maximum deceleration of the vehicle

(m s 2 )
⁄ and v � is the average velocity of the leader and the follower v � = (v l + v f )/2 g des is the desired gap. It can be chosen in different ways. For example, in [6] it was chosen to be v l τ.

As v safe (t) may be larger than the maximum speed v max allowed on the road or larger than the vehicle is capable to reach until the next step due to his acceleration capabilities, the minimum of those values is called the desired speed v des (t) computed as next :

) 28 ( v des (t) = min(v safe (t), v(t) + at, v max )

where a represents maximum acceleration of the vehicle (m s 2 ) ⁄ .

Assuming that the driver is note able to perfectly adapt his desired velocity v des (t) , the driver's imperfection value ϵ multiplied with the car's acceleration ability a and a random number is subtracted from the desired velocity. One must assume that the vehicle is not driving backwards. Due to this, the last of the model's equation is: ϵ is a parameter between 0 and 1. rand[x 1 , x 2 ] denotes a random number between x 1 and x 2 .

There are four free parameters in this model: the maximum velocity v max , the maximum acceleration a, the maximum deceleration b, and the noise parameter ϵ.

The velocity, multiplied with the simulation step duration, which is constantly equal to one second, here, is added to the vehicle's current position to achieve the position for the next time step. This model presented here is the single lane traffic model. In reality, however, this situation is hardly ever found on highways. Instead, a road generally is made up of two or more lanes, which allow vehicles to pass. Stefan Krauss has generalized the model to multilane traffic. The model formulation had been based on a few very simple assumptions:

-A lane change is performed, if it is favourable and safe.

-Passing on the right side is allowed only under congested conditions.

-There is a small probability p change that a safe lane change is performed, even if it is not favourable.

Dynamic travel-times estimation

The dynamic data of travel-times on the network of Figure 4 are obtained by using the SUMO function "getTraveltime [String edgeID]" that returns the estimated travel time (in seconds) on the given edge within the last time step. This function needs as input parameters a string identifying of the edge. To apply this function, we need to retrieve all identifiers of short edges on the network, knowing that this network contains 24 zones and 76 large links between zones as shown in Figure 21. However, each big link consists of a set of nodes and a number of short edges. The network of Figure 21 contains a total of 502 nodes and 774 short edges. In order to estimate the travel time on the 76 big links, we proceeded as follows.

 Retrieve identifiers of all the 774 short edges on the network.

 Calculate the estimated travel-times on these short edges.

 Calculate the travel-times on the 76 big links.

In the following, we will detail each of these three parts.

Calculate the travel-times on the big edges

To have the travel time on a big link, we simply added all the travel times obtained on all short edges that build this big link, and we got an estimated travel time every 60 seconds. In our case, we launched a simulation for a total time Tsim = 2400 seconds and we retrieved results every 600 seconds, that is to say we simulated for each of the following rang time [0,600], [600,1200], [1200,1800] and [1800,2400] seconds. Therefore, for each of these intervals, we took the average of the estimated travel times. We take the same covariance matrix (variance = 3, covariance = 1.5).

The average travel-times on the big links are given in Figures 26,[START_REF] Molina | Commande de l'inter-distance entre deux véhicules[END_REF] 

Simulations results

For the simulation with SUMO, we have used the network of Figure 22, and set node 1 as the origin, and node 10 as the destination. We considered a total simulation time of 40 minutes, with a time period of 10 minutes, at the end of which, we apply periodically the guidance algorithm for the traffic demand from 1 to 10. The guidance algorithm is applied as follows. We assume that we are at node 1 and that we have spent a time y on the upstream link, and we seek to reach destination node 10. The maximum time budget we consider here is T = 40 minutes. The routes obtained at different times are given in Table 6 and Figures 31,[START_REF] Gipps | A model for the structure of lane-changing decisions[END_REF] to the case ψ = 0.9.

Table 6. Optimal route for ψ = 1 and optimal robust route for ψ = 0.9 This table chows the different routes obtained at each time period, in the case where ψ = 1 (without taking into account robustness criterion) and in the case where ψ = 0.9

ψ
(with taking into account robustness criterion). Figure 31 show the optimal route and the optimal robust route from zone 1 to zone 10.

Figure 31. The optimal route and the optimal robust route from zone 1 to zone 10

Figure 32 gives the estimated travel-times on links constructing the optimal path and the robust optimal path.

Figure 33 gives the maximum probability of arriving on time at destination node 10 from node 1, coming from node 2, corresponding to the case ψ = 1. The optimal paths corresponding to the maximum cumulative probability distributions are given in Table 6.

Figure 34 gives the robust-optimal probability of arriving on time at destination node 10 from node 1, coming from node 2 corresponding to the case ψ = 0.9. The robust-optimal paths corresponding to the robust-optimal cumulative probability distributions are given in Table 6.

For ψ = 1, the optimal route obtained at 10 and 20 minutes is the one constructed of links [2-7-36-32]. At 30 minutes, the optimal strategy changes to [2-6-10-32]. We obtain the same route at 40 minutes. This optimal route is different from that obtained at 10 minutes. The optimal strategy obtained from node 3 changes, and node 4 becomes the optimal successor node, instead of node 12. Indeed, we observed that the link 7 is highly congested during the time periods [START_REF] Holden | Model of traffic flow on a network of unidirectional roads[END_REF][START_REF] Al-Jameel | Examining and improving the limitations of the gazisherman-rothery carfollowing model[END_REF] and [START_REF] Al-Jameel | Examining and improving the limitations of the gazisherman-rothery carfollowing model[END_REF][START_REF] Van | Improved shortest path algorithms for transport networks[END_REF] minutes. The guidance algorithm then proposes to rather pass by link 6, during these two periods of time.

For ψ = 0.9, where robustness is taken into account by the guidance algorithm, the robust-optimal route obtained during all the period times is the one constructed of links [2-6-10-32]. We explain here why the algorithm proposes this robust-optimal route during the time periods [0,10] and [START_REF] Lebacque | The Godunov scheme and what it means for first-order traffic flow models[END_REF][START_REF] Holden | Model of traffic flow on a network of unidirectional roads[END_REF] minutes, where the link 7 is not yet congested, and where the guidance algorithm with ψ = 1 proposes rather path [2-7-36-32]. From node 3 coming from node 1 we have three routing options: go to successor node 12, which will give us three routing actions at the next step (back to 3, go to 11, or go to 13), or go to successor node 4, which will give us also three routing actions at the next step (back to 3, go to 11, or go to 5), or back to node 1. It is clear that the option of backing to node 1 is not very interesting. Let us now compare the two options of going to node 4, and going to node 12.

The two nodes 4 and 12 have two common successor nodes 3 and 11. The difference is in the third successor node (node 5, successor for node 4, and node 13, successor for node 12). Thus, we need to compare the two nodes 5 and 13. In terms of routing robustness, node 5 is better than node 13, since node 5 has three successor nodes, while node 13 has only two successor nodes. Therefore, it is better to pass by node 4 rather than passing by node 12. We recall here that the number of successor nodes is important for the robust guidance because, if we are at a given node with many successor nodes, we have more options in case of failures of any successor link. In this example, being at node 4 is better than being at node 12 because, if we are at node 4 and if link 10 fails, we need to choose between backing to node 3 or to go to node 5, which has three routing options (successor nodes), but if we are at node 12 and if link 36 fails, we have to choose between backing to node 3 (which option is also offered by node 4) or to go to node 13, which has also two routing options.

Conclusion

In order to see how the algorithm reacts dynamically to the state of traffic, we combined it with a dynamic traffic model in a closed loop. We used the microscopic traffic simulator SUMO (Simulation of Urban MObility), with the traffic control interface Traci (Traffic control interface), where we implemented our robust-optimal guidance algorithm.

We illustrated our results on the Sioux Falls network.

Conclusion générale

Les travaux réalisés dans cette thèse concernent le problème du guidage des usagers 

  vie des citoyens et l'extension des zones urbaines, le nombre de véhicules particuliers ne cesse d'augmenter. Selon l'Association des Constructeurs Européens d'Automobiles (ACEA), les taux de motorisation en 2014 sont de 661 pour 1000 habitants pour l'Amérique du Nord et 569 pour 1000 habitants pour l'Union européenne, contre 44 pour 1000 habitants en Afrique. En France, le taux de motorisation a atteint un pic avec 82,5 % des ménages français disposant d'un véhicule particulier en 2010 et 82,9% en 2015 [source statista.com].

Chapitre 3 :

 3 l'algorithme SOTA proposé par Samaranayake et al. en 2012, en incorporant les choix de routage alternatifs au niveau des noeuds en considérant d'éventuelles défaillances des liens sur les routes menant à la destination. L'algorithme développé diffère de la famille d'algorithmes SOTA. En effet, dans le calcul de la stratégie de guidage, nous calculons une moyenne pondérée des probabilités cumulatives pour arriver à la destination dans un budget de temps donné, au lieu du maximum de ces probabilités cumulatives. Nous fournissons aussi une définition de "l'Optimisation Robuste" dans la sous-section 3.1.1, et nous expliquons comment un usager peut mesurer la robustesse et étudier la qualité de la solution dans la sous-section 3.3.4. Nous donnons également la forme discrète du model robuste et nous analysons sa complexité dans la sous-section 3.1.2. -La sous-section 3.2 expose le modèle de guidage robuste dans le cas ou les distributions des temps de parcours sont corrélées. Comme dans Samaranayake et al. (2012), nous présentons une extension simple à notre formulation qui considère la corrélation entre un lien et ses voisins en amont (c.-à-d. deux liens successifs). Nous ne nous intéressons pas dans ce travail, aux autres corrélations (c.-à-d. les corrélations entre les liens non successifs), car cela rend le problème plus complexe. Ce point sera une perspective pour nos futurs travaux. Dans la section 4 nous proposons une optimisation des paramètres de l'algorithme de guidage robuste, et nous montrons comment choisir le paramètre de robustesse en fonction de la fiabilité et du budget de temps souhaités. La section 5 s'intéresse à une extension de notre algorithme au cas temps-variant, et fait quelques propositions relatives au problème de guidage sous certaines conditions. La section 6 s'articule autour d'une expérience numérique dans laquelle nous comparons plusieurs scénarios sur un réseau routier bien connu (réseau Sioux Falls) dans le cas statique, afin de considérer la sensibilité de l'approche proposée aux changements par rapport aux paramètres clés. La section 7 fait l'objet d'une conclusion pour le chapitre. Combination of the robust routing algorithm with a dynamic traffic model Dans ce chapitre, le problème de routage est testé dans le contexte de l'affectation du trafic grâce au logiciel de simulation microscopique SUMO (Simulation of Urban MObility). Ce chapitre est organisé comme suit. La section 1 fait l'objet d'une introduction de ce dernier chapitre. La section 2 s'articule autour de la procédure à suivre pour combiner notre algorithme de guidage avec le simulateur microscopique SUMO. La section 3 s'intéresse à introduire le simulateur microscopique SUMO et à présenter les différentes étapes à suivre pour l'initialiser. Le but est de décrire les différents packages que nous utilisons dans cette étude pour générer le réseau et le trafic routier, et définir les différents fichiers et données pour notre fichier de configuration. La section 4 rappelle le modèle du trafic utilisé dans SUMO, qui est le modèle de Krauss par défaut. La section 5 s'intéresse aux différentes étapes à suivre pour récupérer les temps de parcours, leurs moyennes et leurs variances. La section 6 expose la procédure de simulation. La section 7 s'articule autour d'une expérience numérique, et fournit les différents résultats de simulations obtenus. La section 8 fait l'objet d'une conclusion pour ce chapitre.
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CHAPITRE 1 . 1 Variables et modèles du trafic routier Sommaire 1 .

 111 ÉTAT DE L'ART Introduction Pour traiter les problèmes présentés dans les chapitres suivants, des notions issues de la modélisation des transports, de la théorie des graphes, et de l'optimisation sont utilisées. L'objectif de ce chapitre que nous avons organisé en trois parties, est d'introduire ces différentes notions. Tout d'abord, il est important d'exposer quelques notions fréquemment utilisées dans la modélisation et la simulation du trafic, et d'attirer l'attention du lecteur sur les différences de dénominations des approches de modélisation. En effet, il apparait que les appellations semblent varier selon l'objectif visé c.à.d. la modélisation peut être effectuée sur la base de gestion de temps (statique, dynamique), ou sur la base des niveaux d'agrégation (microscopique, macroscopique, mesoscopique et sous-microscopique) ou encore sur la base d'autre critères basés sur le modèle et ce qu'il prend en compte (monomodale, multimodale, urbaine et interurbaine). Dans le cadre de ce travail, nous nous intéressons beaucoup plus aux définitions du "microscopique", "monomodale", "statique" et "dynamique". CHAPITRE 1. ÉTAT DE L'ART En suite, nous nous intéressons au problème et algorithmes du plus court chemin qui constituent le vif du sujet de la thèse. Nous donnons un bref historique et quelques notions liés à la théorie des graphes qui est un outil primordial pour les problèmes d'acheminement. Puis nous résumons les différentes méthodes de représentation d'un graphe. Par la suite, nous définissons les différentes classes de graphes. Pour chaque classe de graphes, le problème du plus court chemin est donné et un des algorithmes de sa résolution est présenté. Enfin, nous considérons l'optimisation robuste et les problèmes d'optimisation dans un environnement incertain. Nous exposons une vaste collection de concepts de robustesse dynamiques, offrant chacun leurs avantages et inconvénient. CHAPITRE 1. ÉTAT DE L'ART. VARIABLES ET MODÈLES DU TRAFIC ROUTIER Partie Introduction..................................................................................................................................14 2. Quelques définitions et notions liées au trafic.........................................................................14 3. Modélisation du trafic..................................................................................................................16 3.1. La modélisation sur la base de gestion du temps................................................................16 3.1.1. La modélisation statique...............................................................................................16 3.1.2. La modélisation dynamique.........................................................................................17
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 2214232 La modélisation sur la base des niveaux d'agrégation........................................................18 3.2.1. La modélisation microscopique...................................................................................18 3.2.2. La modélisation macroscopique..................................................................................29 3.2.3. La modélisation mesoscopique....................................................................................20 3.2.4. La modélisation sous-microscopique.........................................................................20 3.3. Autres classification................................................................................................................21 3.3.1. La modélisation monomodale.....................................................................................21 3.3.2. La modélisation multimodale.......................................................................................21 3.3.3. La modélisation urbaine et interurbaine.....................................................................Le modèle à quatre étapes......................................................................................................22 4. Les modèles microscopiques......................................................................................................23 4.1. Les variables de base des modèles microscopiques............................................................Les principaux modèles microscopiques..............................................................................24 4.2.1. Les modèles microscopiques longitudinaux..............................................................25 4.2.2. Les modèles microscopiques latéraux........................................................................26 5. Conclusion.....................................................................................................................................27 1. Introduction Les modèles de transport sont un outil indispensable de compréhension et de planification des déplacements. Il est en effet essentiel de disposer d'instruments permettant de simuler l'évolution des trafics et donc de prévoir la fréquentation des futures infrastructures de transport, de comparer l'intérêt de plusieurs variantes ou bien de tester des scénarios prospectifs à l'échelle d'un territoire. La modélisation est cependant un exercice difficile qui nécessite une constante prise de recul par rapport aux hypothèses que l'on est amené à prendre. Cette première partie de ce premier chapitre a donc pour objet d'apporter des éléments essentiels liés à la modélisation et à la simulation du trafic. Nous commençons par examiner quelques notions et définitions relative à la demande de déplacement, à l'affectation et à l'écoulement du trafic, avant de nous intéresser aux différentes approches pour la modélisation du trafic et d'exposer le modèle classique à quatre étapes. Nous présenterons ensuite l'approche microscopique en commençant par présenter les différentes variables relatives à cette approche, pour exposer par la suite quelques modèles qui décrivent et évaluent les phénomènes d'un trafic à l'échelle microscopique .Nous terminons par une conclusion à cette première partie.

i. 1 ,

 1 L'option : notée p indique toute possibilité de déplacement entre une origine i et une destination j. Les options peuvent être décrites sous la forme d'itinéraires, de variantes ou autre.  Le point de choix : est un lieu ou les usagers peuvent choisir entre différentes options pour atteindre leur destination. Les points de choix correspondent à des noeuds de réseau (les interactions sur un réseau réel).  L'affectation du trafic : est le processus qui associe une demande de déplacement à une répartition de cette demande entre plusieurs options.  Le réseau d'affectation : est le réseau sur lequel les usagers conçoivent leur déplacement c.à.d. celui sur lequel ils appréhendent les différentes options et effectuent leurs choix d'option.  Le coefficient d'affectation : la proportion de la demande utilisant une option donnée est appelée coefficient d'affectation relatif a cette option. On note donc γ p ij (t) le coefficient d'affectation définissant la proportion de la demande de l'origine i vers la destination j qui empreinte l'option p à l'instant t. D'après la conservation des véhicules appliquée en un point de choix , ces coefficients vérifient la relation ∀ i, j, n, t.  Le Modèle : un modèle est une représentation simplifiée d'une partie du monde réel qui se concentre sur certains éléments considérés comme importants d'un point de vue particulier. Les modèles sont, par conséquent, spécifiques au problème et au point de vue. Le guidage : se réfère à la proposition d'un ensemble de chemins ou de stratégies de cheminement entre un noeud origine et un noeud destination d'un réseau, en optimisant une fonction objective soumise à la demande de trafic et aux contraintes de capacité.

3. 2 . 4 .

 24 La modélisation sous-microscopique : Ce type de modélisation est à un niveau en dessous de la modélisation microscopique. On considère que chaque véhicule peut se diviser en plusieurs sous-structures (par exemple modélisation de la vitesse de rotation du moteur par rapport à la vitesse du véhicule).Ces quatre approches de la modélisation du trafic sont illustrées par la figure ci dessous ade trafic ont été développés pour étudier les modèles issus de ces

  Figure2 : Schématisation des séquences de modélisation pour le modèle classique
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 344 Les modèles longitudinaux : Ces modèles visent à gérer la poursuite d'un véhicule sur un autre. Ils décrivent, analysent et évaluent plusieurs caractéristiques du trafic comme la congestion. On peut distinguer deux catégories de modèles longitudinaux en se basant sur le style de conduite, à savoir la conduite "manuelle" et la conduite "automatisée". Parmi les modèles longitudinaux les plus connus on cite: Le modèle de "conducteurs" : c'est un modèle qui tient compte de plusieurs paramètres liés d'une part au comportement du conducteur avec le véhicule et d'autre part à sa réaction par rapport à l'environnement. Parmi les premiers modèles "conducteurs", on cite le modèle GRH(Gazis, Herman, Rothery, 1958). L'idée de ce modèle est basée sur l'application d'un retard sur la commande du véhicule suivi dans un contexte de conduite en fille. Ce modèle à été étudié et amélioré dans plusieurs travaux, par exemple[START_REF] Al-Jameel | Examining and improving the limitations of the gazisherman-rothery carfollowing model[END_REF]. En 2000, Treiber a développé un autre modèle appelé IDM (Intelligent Driver Model), c'est un modèle qui privilégie une définition de l'accélération mais n'integre pas de temps de retard. Le modèle de véhicules automatisés : ce type de modélisation « automatisée » est relativement récent. On trouve plusieurs modèles qui ont été publiés par les constructeurs automobiles à savoir le modèle décrit dans[START_REF] Ioannou | Autonomous intelligent cruise control[END_REF], qui est basé sur la modélisation de la dynamique du véhicule. Ce modèle est actuellement CHAPITRE 1. ÉTAT DE L'ART. VARIABLES ET MODÈLES DU TRAFIC ROUTIER utilisé par le constructeur américain Ford. On trouve aussi, le modèle de développé dans[START_REF] Germann | Nonlinear distance and cruise control for passenger cars[END_REF] qui est un modèle basé sur les réseaux de neurones et la logique floue. Plus récemment, un autre modèle basé sur la théorie de l'élasticité et de la mécanique des contacts à été développé par[START_REF] Molina | Commande de l'inter-distance entre deux véhicules[END_REF]. Les modèles latéraux : Ces modèles représentent le comportement latéral du véhicule en situation de changement de voie. La modélisation du trafic à plusieurs voies a commencé par les travaux de Gipps[START_REF] Gipps | A model for the structure of lane-changing decisions[END_REF]. La plupart de ces modèles sont basés sur le principe que les conducteurs évaluent la voie occupée et la voie cible, puis ils choisissent leurs directions de voie (changer ou ne pas changer de voie) en comparant ces deux voies (occupée et ciblée) sur la base de critères bien définis. Parmi les modèles latéraux les plus connus on cite :-Modèle de Gipps[START_REF] Gipps | A model for the structure of lane-changing decisions[END_REF] : ce modèle est basé sur la condition de sécurité qui peut être considérée par les distances de freinage de voitures individuelles. Ainsi, le comportement du conducteur est déterminé par deux critères principaux, à savoir le maintien de la vitesse désirée et le bon choix de la voie pour une manoeuvre de virage. Si le virage est loin, le conducteur se base seulement sur sa vitesse désirée (atteinte ou maintenue). Lorsque le conducteur ne dispose plus d'une voie acceptable pour changer, alors le conflit est résolu d'une manière déterministe à l'aide d'un système de priorité en tenant en compte l'emplacement des obstacles, la présence de véhicules lourds et le gain de vitesse. Krauss[START_REF] Krauss | Microscopic modelling of traffic flow : Investigation of collision free vehicle dynamics[END_REF] a présenté un modèle basé sur le modèle de Gipps qui a été intégré dans le simulateur de trafic SUMO, et que nous allons utilisé dans la suite de cette thèse. Pour cette raison, une présentation détaillée de ce modèle de Krauss est donnée dans le chapitre 3 de cette thèse. Modèle de Hidas [26] : dans ce modèle, le critère de faisabilité est indispensable, c.à.d. on doit disposer d'un minimum d'inter-distance entre le véhicule leader et le véhicule suiveur. C'est un modèle qui considère l'état de trafic sous ses trois forme à savoir trafic libre, trafic congestionné avec un véhicule leader coopératif (un véhicule leader coopératif est celui qui adapte et évalue sa vitesse et la distance de sécurité pour laisser au véhicule suiveur la possibilité de changer de voie), et un trafic congestionné avec un véhicule leader non coopératif.

  de changement de voie, c.à.d. il prend en compte le véhicule courant, le véhicule suiveur dans la voie occupée (actuelle), et encore le véhicule suiveur dans la voie ciblée. D'après Kesting, pour changer la voie, on doit satisfaire deux conditions; la sécurité (fixation d'un seuil de décélération pour le prochain véhicule suiveur dans la voie ciblée), et la motivation (caractéristiques des conducteurs, et caractéristiques de l'autoroute).
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 2131132232335135123513352372137223723 trafic. Nous avons résumé dans une seconde phase les différentes approches existantes, de façon à éclairer d'une part le point de vue temporel et d'autre part le point de vue comportemental, pour effectuer une modélisation. La dernière phase qui concerne spécifiquement la description de l'approche microscopique présente les modèles significatifs correspondant à la conduite longitudinale. Ces modèles permettent d'une part, d'analyser et d'évaluer plusieurs caractéristiques du trafic comme la congestion, et d'autre part, de gérer la poursuite d'un véhicule par un autre. On a également cité les modèles de la conduite latérale microscopiques, qui sont destinés à gérer le changement de voie dans un trafic à deux ou plusieurs voies. Nous reportons à la deuxième partie la description du problème du plus court chemin et des algorithmes pour sa résolution. CHAPITRE 1. ETAT DE L'ART. PROBLÈMES ET ALGORITHMES COURANTS DE PLUS COURT CHEMIN Partie Introduction..................................................................................................................................29 2. Un bref historique sur la théorie des graphes..........................................................................29 3. Notions et définitions générales.................................................................................................30 4. Méthodes de représentation d'un graphe..................................................................................Liste des successeurs..............................................................................................................Matrice d'adjacence..................................................................................................................Matrice d'incidence..................................................................................................................33 5. Le problème du plus court chemin............................................................................................34 6. Graphes statiques.........................................................................................................................Graphes statiques déterministes............................................................................................35 6.1.1. Définition........................................................................................................................Problème du plus court chemin.................................................................................Algorithme de résolution............................................................................................Graphes statiques stochastiques............................................................................................Définition........................................................................................................................Problème du plus court chemin..................................................................................Algorithme de résolution.............................................................................................37 7. Graphes dynamiques....................................................................................................................39 7.1. Graphes dynamiques déterministes......................................................................................39 1. Introduction Sur la base des éléments fournis dans la partie 1 de ce premier chapitre, nous abordons dans cette deuxième partie le problème du plus court chemin, et exposons les outils essentiels à sa résolution. Nous commençons par donner quelques notions liées à la définition de graphe, puis exposer le problème du plus court chemin tel que défini dans la littérature. Nous terminons par quelques algorithmes essentiels pour trouver le plus court chemin dans un réseau de transport.

  constitue un outil primordial pour résoudre les problèmes de cheminement. Un article du mathématicien suisse Leonhard Euler, présenté à l'Académie de Saint-Pétersbourg en 1735 puis publié en 1741, traitait du problème des sept ponts de Königsberg, ainsi que schématisé par la figure 4 . a. Image réel des sept ponts de Königsberg b. Dessin simplifié des sept ponts de Königsberg c. Graphe associé au problème sept ponts de Königsberg

Figure 4 .

 4 Figure 4. Problème des sept ponts de Königsberg
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 1542643 Figure 5. Exemple d'une présentation d'un graphe par une liste des successeurs

Figure 7 .

 7 Figure 7. Exemple d'une présentation d'un graphe par une matrice d'incidence
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  pour n'importe quelle valeur fixe de ξ ∈ ℝ M . Chaque ξ décrit un scenario qui peut se produire. Souvent, en pratique, on ne peut pas savoir exactement quelle valeur qu'un tel scenario ξ peut prendre pour le problème d'optimisation Ρ(ξ). On suppose qu'il est connu que ξ réside dans un ensemble d'incertitude donné 𝒰𝒰 ⊆ ℝ M . Un tel ensemble d'incertitude représente les scénarios qui sont susceptibles d'être considérés[START_REF] Goerigk | Algorithm Engineering in Robust Optimization[END_REF]. Le problème d'optimisation incertain qui correspond à Ρ(ξ) est alors donné par (Ρ(ξ), ξ ∈ 𝒰𝒰)

  Cette approche est connue aussi parfois sous le nom d'optimisation classique robuste, optimisation min-max, ou simplement optimisation robuste. Une solution 𝑥𝑥 ∈ 𝜒𝜒 au problème d'optimisation incertain (Ρ(ξ), ξ ∈ 𝒰𝒰) est dite robuste absolue si elle est réalisable pour tous les scenarios dans 𝒰𝒰 c.à.d. 𝐹𝐹(𝑥𝑥, 𝜉𝜉) ≤ 0 pour tout ξ ∈ 𝒰𝒰. L'objectif suit habituellement la vue pessimiste de minimiser le pire des cas sur tous les scénarios. On note par SR(𝒰𝒰) l'ensemble des solutions robustes absolues par rapport à l'ensemble incertain 𝒰𝒰. SR(𝒰𝒰) = � ℱ(ξ) ξ ∈𝒰𝒰 Le problème d'optimisation équivalent est donné comme suit.

CHAPITRE 2 .

 2 ROBUST GUIDANCE travel time of 6 time units and a standard deviation of 3 time units. To reach node 5 from node 1, four routes exist: route1 (1-3-5), route2 (1-2-4-5), route3 (1-2-4-3-5) and route 4 (1-2-5). In term of minimum average travel time (i.e. applying the LET routing algorithm), it is easy to check that route 1 is the optimal one.
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 8 Figure 8. A simple test network
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 9 Figure 9. The price of robust-optimality

Figure 10

 10 Figure 10

Figure 11 . 18 (

 1118 Figure 11. How to choose the minimum time budget T kiy (p, ψ)?

Figure 12 .

 12 Figure 12. How to choose the optimal robustness parameter ψ kiy * (τ, 𝑝𝑝) ?

Figure 13 .

 13 Figure 13. Sioux falls test network

CHAPITRE 2 .

 2 ROBUST GUIDANCE probability distribution, with given average travel times tt l for links l and variancecovariance matrix Cov, with Cov ll = 3, ∀l and Cov ll ′ = 1.5, ∀l ≠ l′. The average travel times we take here are shown in Figure 14.

Figure 14 .

 14 Figure 14. The average travel-time on each link (seconds)

Figure 15 .

 15 Figure 15. The robust-optimal probability of arriving on time in function of the time budget, and for different values of ψ.

Figure 16 .

 16 Figure 16. The robust-optimal routing policy on node 3 in function of the time budget, and for different values of ψ.

Figure 17 .Figure 18 .

 1718 Figure 17. The probability of arriving on time in function of the time budget, and for different values of ψ

Figure 19 .

 19 Figure 19. Sioux Falls network, image from OpenStreetMap

For the simulation phase

  of our work, we have chosen microscopic simulation tool for urban mobility SUMO. It is an open source and highly portable traffic simulator [147]. It is a purely microscopic traffic simulation tool where each vehicle is explicitly represented (identifier, start time, distance, source, destination, speed...). It lends itself well to various types of research, for example the route choice problem, management algorithms of traffic lights or simulating the inter-vehicular communication. This architecture is used in many projects to simulate and study various traffic management strategies. SUMO also offers the opportunity to interact with an external application via a socket connection: it is an CHAPITRE 3. COMBINATION OF THE ROBUST ROUTING ALGORITHM WITH A DYNAMIC TRAFFIC MODEL interface to operate the simulations in client-server mode. In this mode, the client can dynamically control the execution of road simulation through a traffic control interface called Traci (Traffic Control Interface).We briefly explain in this sub-section the requirements for the initialization of the urban traffic simulator SUMO. Several applications contained in the SUMO package were used to generate the road network and road traffic (vehicle routes). The parameters and the interactions between applications that we used to create our urban environment simulation are shown schematically in Figure20.

Figure 20 .

 20 Figure 20. Files configuration of Sioux falls network

Figure 21 .

 21 Figure 21. Sioux Falls network, simplified diagram on the JOSM (Sioux_falls.osm)

Figure 2 .

 2 Figure 2. Traffic lights and access to the motorway junctions are instantiated by NETCONVERT using the geometry of the network nodes. The simplified network consists of 24 zones that contains 502 nodes and 774 small edges as illustrated in Figure 22.

Figure 22 .

 22 Figure 22. Sioux Falls network, simplified diagram on the SUMO (Sioux_falls.net.xml)

(

  TAZ) <Sioux_falls_tazs.xml>. We collected data on demand from [147] in order to build the Origine/Destination matrix <sioux_falls_od.O>. This matrix describes the movements between so called traffic analysis zones (TAZ) in vehicle number per time. The program OD2TRIPS of SUMO reads O/D matrices and TAZ files to generate trip definitions <Sioux_falls_trips.xml> and flows <Sious_falls_flows.xml>. The resulting trips obtained from OD2TRIPS consist of a start and an end road together with a departure time.

  xml> and calculate vehicle routes <Sioux_falls_routes.rou.xml> using DUAROUTER. The result is a complete specification of the vehicles and their routes: ID, color, maximum speed, destination, time of departure, route, etc. The final step before initiating SUMO is to create a configuration file <Sioux_falls_config.sumo.cfg> pointing to all files that use SUMO to its initialization. In our case, we use the net file <Sioux_falls.net.xml>, the routes file <Sioux_falls_routes.rou.xml> and the additional file <tt.add>. The configuration file CHAPITRE 3. COMBINATION OF THE ROBUST ROUTING ALGORITHM WITH A DYNAMIC TRAFFIC MODEL contains also the port value <8813> for Traci-Server to establish the connection as illustrated in Figure 20.

Figure 23 . 3 . 6 .

 2336 Figure 23. Data output about vehicles using Simulation/ output/ Summary

4 .

 4 The car driver model SUMO uses by default an extension of the stochastic car-following model (the Gipps model extension) proposed by Stefan Krauss[START_REF] Krauss | Microscopic modelling of traffic flow : Investigation of collision free vehicle dynamics[END_REF]. The model reproduces the main features of traffic, namely free and congested flow. At each time step, the vehicle's speed is adapted to the speed of the leading vehicle in a way that it results in a collision-free system behavior within the following simulation step. The model of Krauss is chosen because of its simplicity and its high execution speed. In this section, we give a brief reminder of this model.The model developed by StefanKrauss, 1998, is a microscopic, space-continuous, carfollowing model based on the safe speed paradigm. That means that a pilot tries to stay away from the driver who precedes him at a safe distance and speed that allows him to adapt his movement with respect to eventual decelerations of the leader. The model assumes the driver to have a reaction time τ of about one second. The safe velocity is computed using the following equation.

) 27 (

 27 v safe (t) = v l (t) + g(t)-g des (t) τ b +τ where v l (t) represents the speed of the leading vehicle in time t. g(t) is the gap to the leading vehicle at time t τ is the driver reaction time, usually 1s.The time scale τ b is defined asv � b(v �)

  ) = ma x(0, rand[v des (t) -ϵat, v des (t)])

  , 28 and 29 for the time periods [0,600], [600,1200], [1200,1800] and [1800,2400] seconds respectively.

Figure 26 .Figure 27 .Figure 28 .

 262728 Figure 26. Average travel -time on each link for [0, 600]s

  and 34, for ψ = 1 (without taking into account robustness criterion) and for ψ = 0.9 (with taking into account robustness criterion).

  Figure 33 gives the CHAPITRE 3. COMBINATION OF THE ROBUST ROUTING ALGORITHM WITH A DYNAMIC TRAFFIC MODEL 115 maximum probability of arriving on time at destination node 10 from node 1, coming from node 2, corresponding to the case ψ = 1. Figure 34 gives the robust-optimal probability of arriving on time at destination node 10 from node 1, coming from node 2 corresponding

  𝟐𝟐 → 𝟕𝟕 → 𝟑𝟑𝟑𝟑 → 𝟑𝟑𝟐𝟐 (Figure 30.a) 𝟐𝟐 → 𝟑𝟑 → 𝟏𝟏𝟏𝟏 → 𝟑𝟑𝟐𝟐 (Figure 30.b) [10, 20] 𝟐𝟐 → 𝟕𝟕 → 𝟑𝟑𝟑𝟑 → 𝟑𝟑𝟐𝟐 (Figure 30.a) 𝟐𝟐 → 𝟑𝟑 → 𝟏𝟏𝟏𝟏 → 𝟑𝟑𝟐𝟐 (Figure 30.b) [20, 30] 𝟐𝟐 → 𝟑𝟑 → 𝟏𝟏𝟏𝟏 → 𝟑𝟑𝟐𝟐 (Figure 30.b) 𝟐𝟐 → 𝟑𝟑 → 𝟏𝟏𝟏𝟏 → 𝟑𝟑𝟐𝟐 (Figure 30.b) [30, 40] 𝟐𝟐 → 𝟑𝟑 → 𝟏𝟏𝟏𝟏 → 𝟑𝟑𝟐𝟐 (Figure 30.b) 𝟐𝟐 → 𝟑𝟑 → 𝟏𝟏𝟏𝟏 → 𝟑𝟑𝟐𝟐 (Figure 30.b)

Figure 33 .

 33 Figure 33. The maximum probability of arriving on time at destination node 10 from node 1 coming from node 2, for 𝜓𝜓 = 1.

Figure 34 .

 34 Figure 34. The probability of arriving on time at destination node 10 from node 1 coming from node 2, for 𝜓𝜓 = 0.9.

  dans les réseaux routiers. Un algorithme de guidage a été développé et une nouvelle stratégie adaptative robuste a été proposée. Le travail a été basé sur un modèle de routage existant, qui est l'algorithme SOTA. Cet algorithme a été étendu pour tenir compte de la robustesse des stratégies de routage face à une faille qui peut survenir sur l'itinéraire. Afin d'inclure la possibilité ainsi que la performance d'éventuels détours alternatifs des chemins sélectionnés, le concept de fiabilité a été étendu en introduisant un nouvel indice de fiabilité. Les améliorations portées sur cet algorithme permettent de sélectionner un chemin optimal selon deux critères: la fiabilité du chemin en termes de temps de parcours et la robustesse du chemin en termes de flexibilité (c.-à-d. l'existence et la performance de détours alternatifs). L'algorithme développé a été testé en version statique (sans considérer la dynamique du trafic) et les simulations ont été exécutées sur le réseau connu de Sioux Falls. Ceci a permis de montrer quelques propriétés intéressantes de l'algorithme. L'algorithme de guidage robuste présenté dans ce travail a été ensuite combiné avec un modèle dynamique du trafic en boucle fermée, afin de voir comment l'algorithme réagit dynamiquement à l'état du trafic. Le simulateur de trafic microscopique SUMO (Simulation of Urban MObility) a été utilisé avec l'interface de contrôle du trafic TRACI (TRAffic Control Interface) sur laquelle l'algorithme de guidage proposé a été implémenté. Les résultats ont été illustrés sur le réseau Sioux Falls, et ont été comparés dans les deux aspects statique et dynamique, à ceux obtenus par l'approche SOTA de Samaranayake (2012). Ces résultats, aussi satisfaisant soient-ils, nous indiquent tout de même que la performance générale du réseau et de l'algorithme peut encore être améliorée en proposant une série de perspectives.

  

  

  

  

  

3.2. La modélisation sur la base des niveaux d'agrégation

  

	CHAPITRE 1. ÉTAT DE L'ART. VARIABLES ET MODÈLES DU TRAFIC ROUTIER CHAPITRE 1. ÉTAT DE L'ART. VARIABLES ET MODÈLES DU TRAFIC ROUTIER
	est fonction de la problématique. Les modèles statiques servent à tester des projets ou
	des politiques de transport sur une zone d'étude donnée.
	Dans cette catégorie, la modélisation est effectuée sur la base de comportement des
	3.1.2. La modélisation dynamique : La précédente modélisation fait abstraction de véhicules, c'est à dire soit on prend chaque véhicule individuellement, soit on considère
	tout aspect dynamique et temporel. Or le trafic routier est par nature un l'ensemble des véhicules. Ces modèles sont généralement classés en deux principales
	phénomène dynamique du fait de la variabilité de la demande et de sa familles : modèles microscopiques et modèles macroscopiques, que nous décrivons ci-
	dessous.	propagation sur le réseau routier. Donc par opposition à la modélisation statique,
		la modélisation dynamique s'appuie sur une demande de transport qui évolue
	dans le temps et qui tient compte des interactions entre les résultats des 3.2.1. La modélisation microscopique : elle permet de représenter l'évolution
		différents pas de temps et sections du réseau. Un modèle dynamique va en effet individuelle des véhicules sur le réseau. Ce type de modélisation est utilisée
		générer chaque véhicule de la matrice correspondante (avec une origine et une lorsque les problèmes à résoudre nécessitent une description détaillée de la route
		destination) et lui faire parcourir son trajet toujours selon le plus court chemin. et des comportements des conducteurs. Beaucoup de paramètres sont
		Cependant, il tient aussi compte des autres véhicules déjà introduits dans le généralement pris en compte, et le comportement d'un véhicule est perçu de
		modèle et son chemin initial peut varier en fonction de l'état du trafic en temps façon individuelle par ses voisins. Dans cette approche, le trafic est vu comme un
		réel. Il peut aussi être bloqué par un encombrement et ne pas avoir le temps système de véhicules en interaction dont chacun est géré par un modèle. Deux
		d'arriver à destination. La matrice de résultat est donc différente de la matrice de types de modèles sont proposés dans la littérature, le modèle longitudinal et le
		demande de déplacement et les écarts les plus importants sont significatifs d'un modèle latéral. Les modèles microscopiques longitudinaux sont utilisés pour
		dysfonctionnement du réseau. Un autre aspect dynamique du problème est lié au décrire le mouvement du véhicule seul ou bien pour représenter son
		choix de temps de départ. Les usagers peuvent, en effet, choisir l'heure de départ comportement de poursuite d'un autre véhicule. Les modèles microscopiques
		en vue de rencontrer de meilleurs conditions de circulation qui leurs garantissent latéraux sont utilisés pour contrôler le changement de voies des véhicules dans
		un instant d'arrivée plus proche de leurs instant d'arrivée souhaité. [3] pose les un trafic à deux ou plusieurs voies. Ces modèles latéraux comportent en général
		bases du modèle de choix de l'heure de départ, dans le cas élémentaire d'un deux étapes; l'étape de prise de décision et l'étape de changement de voie. Deux
		couple OD relié par un seul itinéraire, en introduisant un coût généralisé qui approches ont été proposées dans la littérature pour l'étape de changement de
		intègre le coût des éventuels retard ou avance. Par la suite, de nombreux voie à savoir l'approche discrète c.à.d. le conducteur fait des sauts entre les voies
		Les modèles stochastiques d'affectation proposent de décrire les choix chercheurs ont enrichi cette formulation initiale au niveau de la modélisation du [19], ou encore l'approche continue. Dans ce dernier cas le véhicule suit une
		individuels comme les résultats d'une perception stochastique des coûts des comportement des usagers d'une part (c.à.d. par rapport à la contrainte de l'heure trajectoire bien déterminée pour changer la voie.
	d'arrivée par exemple en introduisant différentes classes de conducteurs non options. Les interactions entre les usagers sont alors intégrées a posteriori à 3.2.2. La modélisation macroscopique : dans la modélisation macroscopique, le homogènes [4] ou des tolérances vis-à-vis du retard [6]), et de la complexité de la travers l'utilisation de l'équilibre stochastique qui régit l'état final résultant de tous trafic est considéré comme un groupe de véhicules. Les paramètres mis en jeu situation de trafic considérée d'autre part (avec l'utilisation de modèles de trafic les choix individuels. plus sophistiqués sur des réseaux à plusieurs couples OD, par exemple [7]ou [5]). dans cette approche sont principalement la concentration k (densité), la vitesse Les modèles statiques ont pour objet de répartir la demande de déplacement sur le Désormais, La plupart des modèles d'affectation dynamique intègre une moyenne U et le débit Q . Ces paramètres caractérisent l'état d'un trafic donné réseau en fonction du plus court chemin, au moyen d'un algorithme faisant intervenir la notion de coût de déplacement minimum. Le coût de trajet étant paramétré par le composante de choix de l'heure de départ, et ce généralement sous la forme de ainsi que son diagramme fondamental.
	temps de parcours, le trajet parcouru et le budget en cas de péage. Le choix du modèle modules annexes.

3.1.1. La modélisation statique : la modélisation statique consiste à représenter de manière simplifiée les déplacements sur un secteur défini et une période donnée. Ce modèle ne prend pas en compte les fluctuations et interactions de la demande de déplacements par rapport au temps et à la distance sur une période donnée, car il s'appuie sur des hypothèses de fonctionnement des déplacements. On parle de modèle statique car les flux sont modélisés de manière stable tout au long d'une période de temps (heures de pointes ou journée). La modélisation statique de représentation des trafics est utilisée pour des réseaux maillés complexes (échelles de territoire variables) dans ce cas la modélisation est macroscopique, ou encore pour des études de carrefours pour lesquels il n'y a pas de choix d'itinéraires possibles dans ce cas la modélisation est microscopique et l'affectation est statique. Un modèle statique peut être monomodal ou multimodal. De même, la méthodologie de modélisation peut être différente selon les données d'entrée et de sortie utilisées pour reproduire le modèle. En effet, on peut distinguer les modèles déterministes et les modèles stochastiques.

Les modèles de l'affectation déterministe introduite dans

[2]

, étudient non pas directement les interactions entre les usagers mais l'état du réseau résultant de l'affectation de la demande sur le réseau. Dans cet état, qualifié d'équilibre usager du réseau, les usagers minimisent effectivement et individuellement le coût de leur déplacement et seules les options les plus performantes sont empruntées.

Définition d'un diagramme fondamental

  : Le diagramme fondamental du trafic donne une relation entre le débit et la densité. Il peut être utilisé pour prédire le comportement d'un tronçon routier. Le diagramme fondamental peut s'écrire sur trois plans différents. La figure ci-dessous montre la forme générale du diagramme fondamental dans les trois plans.

	Il existe deux autres classes de modélisation, moins courantes que les classes des
	modèles microscopiques et macroscopiques.
	3.2.3. La modélisation mesoscopique : le point de vue mésoscopique peut être
	qualifié d'intermédiaire entre les descriptions microscopique et macroscopique en
	termes de quantité d'informations pour la modélisation des systèmes. Ce type de
	modélisation permet de modéliser les véhicules par paquets (pelotons) pouvant
	s'échanger des véhicules. [25] a proposé deux stratégies pour cette approche. La
	première stratégie permet de prendre en considération l'hétérogénéité des
	différents conducteurs en combinant le comportement microscopique d'un
	véhicule avec les règles macroscopiques comportementales. La deuxième
	stratégie est basée sur la spécification des comportements d'un groupe
	hétérogène de véhicules. Plusieurs travaux ont été menés dans le cadre de cette
	approche à savoir ceux développés par
	de la densité k est accompagnée par une augmentation du débit Q. Le seuil k c est
	appelé densité critique. Un trafic congestionné est caractérisé par une forte densité
	(zone où k c < 𝑘𝑘). Dans cette zone une augmentation de la densité k est accompagnée
	par une diminution du débit Q. Cependant, [18] a identifié une troisième zone appelée
	zone critique qui est caractérisée par une densité moyenne k c et un débit maximal
	Q max , il la qualifié cette zone par un trafic synchronisé. Plusieurs travaux ont été
	réalisés dans le cadre de cette approche macroscopique. Pour plus de détails le lecteur
	peut se référer à [20-21], ou encore [23]. Parmi les modèles du trafic macroscopiques
	les plus reconnus aujourd'hui, on cite les trois modèles suivants : le modèle d'équilibre
	LWR [11-12], le modèle de non-équilibre ARZ [13] et le modèle multi-classes
	d'origine-destination MOD [10] et [14]. Dans ces modèles, l'évolution temporelle des
	grandeurs macroscopiques comme densité, vitesse et flux est représentée par des
	systèmes d'équations aux dérivées partielles non-linéaires.

Figure1 : diagramme fondamental dans différents plans Prenant le diagramme dans le plan (k, Q). La plupart des travaux dans la littérature définissent deux zones du trafic; la zone libre et la zone congestionnée. Le trafic libre est qualifié par sa faible densité (zone où k < k c ). Dans cette zone, une augmentation

3.3.3. Modélisation urbaine ou interurbaine : Dans la modélisation interurbaine, les

  

	pour la simulation macroscopique, et SUMO [147] pour la simulation
	mesoscopique et microscopique.
	Dans la suite de cette thèse, les algorithmes que nous définissions ont tendance à
	privilégier les modèles microscopiques. Pour cette raison, nous allons aborder d'une
	manière un peu plus détaillée, dans la section 5 de ce chapitre, ces modèles microscopiques.
	Le principal simulateur utilisé dans cette thèse est SUMO qui possède une vision
	microscopique du trafic routier, afin de modéliser les comportements individuels des
	automobilistes et de se rapprocher d'un cas réel.
	3.3. Autres classifications
	Si on s'intéresse de plus près au modèle et de ce qu'il prend en compte, on peut avoir
	d'autres approches de modélisation à savoir:
	3.3.1. Modélisation monomodale : On s'intéresse seulement à un seul mode de
	transport pendant tout le trajet. Même s'il s'agit d'un seul type spécifique de
	véhicule, le transfert peut avoir lieu avec ce moyen de transport, par exemple
	bus-bus, métro-métro,.....etc.
	3.3.2. Modélisation multimodale : On considère plusieurs modes de transport et
	aussi les interactions entre eux. Par exemple métro et bus, vélo, et marche à
	pied,....etc.
	flux Origines Destinations sont reconstitués en estimant directement les flux
	routiers sur la zone d'étude, avant de les affecter sur le réseau modélisé. Cette
	méthode est utilisée pour les modèles d'affectation des Transports en Commun
	sur les réseaux urbains. Dans ces cas, la demande de transport est une donnée
	d'entrée.
	Le modèle classique le plus connu dans la littérature est le modèle à quatre étapes
	"MODUS" qui est un modèle statique, multimodal et macroscopique qu'on résume dans la
	sous section suivante.

3.4. Modèle à quatre étapes

  

	Le « modèle à quatre étapes » ne constitue pas un modèle au sens propre, mais une
	approche générale de modélisation. Il s'agit de modéliser (prévoir) les déplacements à
	l'intérieur d'une agglomération urbaine donnée, découpée en plusieurs zones pour les
	besoins de la modélisation. La formulation classique qui procède en quartes étapes a été
	proposé initialement par Wilson 1970. Ces quartes étapes répondent généralement aux
	questions suivantes:

4. Modèles microscopiques de l'écoulement du trafic

  

	Les techniques de modélisation du trafic routier permettent aux gestionnaires des
	réseaux de transport de mieux exploiter leurs infrastructures et représentent ainsi des outils
	d'aide à la décision. En effet, les modèles permettent la prédiction de l'état du trafic. En
	prévenant les congestions et en détectant les incidents et accidents, ils offrent la possibilité
	de traiter et intervenir dans des délais de temps réduits.
	Comme nous l'avons précisé dans la section précédente il existe plusieurs types de
	modèles à différentes échelles qu'il convient de choisir en fonction du phénomène
	physique que l'on cherche à comprendre. Selon qu'on s'intéresse à l'écoulement global du
	trafic sur un réseau routier ou à des interactions locales entre quelques véhicules lors d'un
	changement de direction ou à l'approche d'une intersection, la question de spécification du
	niveau de détail est primordiale. Pour une raison liée à l'objectif des travaux de notre thèse,
	nous n'allons aborder dans cette section que les modèles microscopiques qui reflètent le
	comportement individuel des conducteurs interagissant avec les véhicules environnants.
	Avant d'exposer les différents modèles de cette famille, nous commençons d'abord par
	introduire les variables de base au niveau microscopique (le niveau du véhicule).

4.1. Variables de base des modèles microscopiques

  

	CHAPITRE 1. ÉTAT DE L'ART. VARIABLES ET MODÈLES DU TRAFIC ROUTIER
	où l n+1 est la longueur du véhicule n + 1;
	 le temps inter-véhiculaire h n (t) est le rapport de la distance inter-véhiculaire par la
	vitesse du véhicule suiveur n ;
	 la vitesse relative du véhicule n par rapport à son véhicule leader n + 1 est ṡn(t) =
	ẋn +1 (t) -ẋn(t);
	 le temps à collision t c (t) défini comme le rapport de l'inter-distance à la vitesse
	relative ;
	Figure 3 :
	On considère un véhicule n à l'instant t , à la position x n (t), de vitesse instantanée
	v n (t) = ẋn(t). L'accélération est notée a n (t) = ẍn(t). Le véhicule leader n + 1 précède
	le véhicule suiveur n.
	Les variables microscopiques sont alors :
	 la distance inter-véhiculaire s n (t) = x n+1 (t) -x n (t), définie comme la distance
	séparant deux points identiques (par exemple, les deux pare-chocs avant) des deux
	véhicules, comme le montre la figure 3 ci dessous
	 l'inter-distance d n (t) représente l'espace disponible entre deux véhicules (la distance
	entre la pare-chocs avant du véhicule suiveur, et le pare-chocs arrière du véhicule
	leader). L'inter-distance est liée à la distance inter-véhiculaire par la relation suivante.
	s n (t) = d n (t) + l n+1

variables pour les modèles microscopiques 4.2. Les principaux modèles microscopiques

  Dans cette section nous présentons un état de l'art des modèles microscopiques qu'on divise en deux grandes classes à savoir les modèles latéraux et les modèles longitudinaux.

	la vitesse libre varie d'un pilote à l'autre, mais la vitesse libre d'un seul conducteur change
	aussi dans le temps. La plupart des modèles microscopiques supposent, cependant, que les
	vitesses libres ont une valeur constante qui est spécifiée par le conducteur. Lorsque les
	conditions de circulation se dégradent, les conducteurs ne pourront plus choisir leurs
	vitesses librement, car ils ne pourront pas toujours dépasser ou passer un véhicule plus lent.
	Le conducteur devra adapter sa vitesse aux conditions de circulation en vigueur, c'est-à-dire
	que le conducteur suit.
	Un modèle microscopique fournit une description des mouvements individuels de
	véhicules. Il s'agit de mouvements considérés comme étant attribuables aux caractéristiques
	des conducteurs et des véhicules, aux interactions entre les éléments conducteur-véhicule,
	aux caractéristiques routières, aux conditions extérieurs, et aux règles de circulation et de
	contrôle. La plupart des modèles de simulation microscopiques supposent que le
	conducteur répondra uniquement à l'un des véhicules qui roule dans la même voie devant
	lui (c.à.d. le leader). Lorsque le nombre d'unités de conduite-véhicule sur la route est très
	faible, le conducteur peut choisir librement sa vitesse compte tenu de ses préférences et
	capacités, des conditions de la chaussée, de la courbure, des limites de vitesse en vigueur,
	etc. En tout état de cause, le conducteur aura peu de raison d'adapter sa vitesse aux autres
	usagers de la route. La vitesse cible du pilote est la soi-disant vitesse libre. Dans la vie réelle,

Nous nous intéressons beaucoup plus aux modèles latéraux, particulièrement le modèle de KRAUSS

[START_REF] Krauss | Microscopic modelling of traffic flow : Investigation of collision free vehicle dynamics[END_REF] 

qui a été choisi par défaut dans le simulateur SUMO

[147]

.

  ETAT DE L'ART. PROBLÈMES ET ALGORITHMES COURANTS DE PLUS COURT CHEMIN à savoir l'algorithme de Bellman-Ford, l'algorithme de Johnson, et le plus connu l'algorithme proposé par Dijkstra [111], que nous présentons dans ce qui suit. L'algorithme de Dijkstra consiste à déterminer le chemin le plus court entre un noeud origine et tous les sommets d'un graphe pondéré dont le poids est nonnégatif. L'algorithme de Dijkstra utilise deux ensembles notés Q et F. L'ensemble des noeuds candidats Q contient tous les noeuds dont le plus court chemin n'a pas encore été calculé. Par contre l'ensemble F des noeuds fermés contient tous les noeuds dont le plus court chemin à été déterminé définitivement. L'algorithme peut aussi être utilisé pour calculer le plus court chemin entre un seul noeud origine et un seul noeud destination. Plusieurs améliorations ont été proposées

6.1.3. Algorithme de résolution : de nombreux algorithmes ont été proposés dans la littérature pour résoudre le problème du plus court chemin statique déterministe CHAPITRE 1.

2.2. Problème du plus court chemin : le

  

	CHAPITRE 1. ETAT DE L'ART. PROBLÈMES ET ALGORITHMES COURANTS DE
	PLUS COURT CHEMIN
	6.2.3. Algorithme de résolution : comme nous l'avons précisé précédemment, il
	existe plusieurs algorithmes pour résoudre le problème du plus court chemin
	dans le cas statique stochastique. Dans cette sous-section, nous exposons
	uniquement la version la plus simple qui est l'algorithme proposé par Jamali en
	2006. Le principe de cet algorithme est très simple. L'algorithme résout le
	problème du plus court chemin en calculant les estimations des coûts sur chaque
	arc (par apprentissage). Ce calcul est fait d'une manière itérative. Chaque noeud
	du graphe construit un arc avec son noeud voisin, sauf pour le noeud de
	destination. Sur chaque noeud on a une estimation de la longueur du chemin le
	chemin optimal a été donnée dans [45-46] et qui considère qu'un chemin optimal
	est celui qui maximise la probabilité que la longueur totale du chemin ne dépasse
	pas une valeur fixe. Les auteurs dans [47-48-49] ont considéré un chemin optimal
	comme étant celui qui a la plus grande probabilité d'être le chemin le plus court.

2,…., c m sont les poids possibles pour l'arc (i, j) et p 1 , p 2,…., p m indiquent les probabilités associés aux poids.

6.problème du plus court chemin dans les

graphes statiques stochastiques a été abordé de différentes manières dans littérature, selon la définition de la fonction d'utilité utilisée. La définition la plus courante est celle qui définit comme chemin optimal, le chemin qui maximise la valeur espérée d'une fonction d'utilité

[41-42-43-44]

. Une autre définition d'un La plus simple définition utilisée dans la littérature et celle qui décrit l'optimalité d'un chemin par rapport au coût espéré du chemin

[START_REF] Jamali | Learning to Solve Stochastic Shortest Path Problems[END_REF]

. plus court qui devrait être mise à jour, et une autre information sur les coûts estimés des liens voisins. Dans cet algorithme, on commence à parcourir le graphe du noeud source au noeud destination. A chaque noeud i, on sélectionne l'arc (i, s) qui conduit au plus petit coût estimé du noeud i vers le noeud destination en fonction de la connaissance du noeud sur l'estimation des coûts dans cette étape : s = arg min i∈N,(i,j)∈A �c ij * + est j � c ij * représente le coût estimé sur l'arc (i, j), et est j est l'estimation apprise sur le coût le plus faible pour atteindre le noeud destination à partir du noeud j. En parcourant le graphe, le coût estimatif de chaque arc sera mis à jour. Lors du passage d'un arc, nous aurions un coût avec une distribution de probabilité qui lui serait affecté. Les mises à jour des estimations sont faites par la relation suivante:

  Pour un exemple pratique, considérant une route à une seule voie. La voiture qui emprunte cette route la première et certaine d'arriver la première car aucun véhicule ne peut la dépasser.

	7.1.2. Problème du plus court chemin : le problème du plus court chemin dans le
	cas des graphes dynamiques a été étudié pour la première fois dans [51] où les
	auteurs ont proposé un algorithme basé sur le principe d'optimalité de Bellman.
	Depuis, différentes variantes de ce problème ont été proposées par d'autres
	chercheurs, comme le problème du plus court chemin dynamique dans le cas
	discret développé par [52-53-54]. La recherche dans le cas continu est effectuée
	dans [55-56-57].

7.1. Graphes dynamiques déterministes 7.1.1. Définition : un graphe G = (N, A) orienté et pondéré est dit dynamique déterministe si les poids sur tous les arcs sont des valeurs constantes mais dépendantes du temps. Par conséquent, la fonction de coût pour un lien (i, j) est définit dans ce cas par FC(i, j, t), où t désigne le temps de départ du noeud i. Le temps, pour ce genre de graphe, peut être considéré comme continu ou discret. Mais dans la plus part des cas, et pour simplifier le problème, on considère un temps discret en le divisant en périodes égales de longueurs ∆t. La fonction de poids est supposée constante durant chaque période ∆t, et le temps n'est pas réinitialisé au niveau de chaque noeud. Avant de décrire le problème du plus court chemin dans le cas d'un graphe dynamique déterministe, nous abordons d'abord une propriété très importante et utile dans la modélisation d'un réseau. Cette propriété s'appelle la condition FIFO (First In, First Out) qui modélise l'attente à un noeud.

Condition FIFO. Formellement la définition de FIFO pour un graphe est la suivante

[START_REF] Diestel | Graph theory[END_REF] 

: un graphe G = (N, A) est un graphe FIFO si tous ses arcs sont des arcs FIFO. Un arc (i, j) est dit FIFO s'il vérifie la propriété suivante :

∀ t, t ′ ≥ 0 ⟹ t + FC(i, j, t) ≤ t ′ + FC�i, j, t ′ �

Cela signifie qu'en démarrant du noeud i pour aller vers le noeud j à t ′ ≥ t implique nécessairement une arrivée à j plus tard que t + FC(i, j, t).

Dans le cadre d'un problème du plus court chemin dynamique déterministe, on peut destinguer deux principales problématiques. La première problématique consiste à determiner le plus court chemin d'un noeud origine vers tous les autres noeuds du graphe, pour une heure de départ du noeud origine fixée. La seconde problèmatique est de calculer le plus court chemin d'un noeud origine vers tous les noeuds du graphe mais cette fois pour toutes les heures de départ du noeud origine.

Les fonction de coût d'un chemin et du plus court chemin dans un graphe dynamique deterministe sont définies comme suit :

  Comme dans le cas statique déterministe, si plusieurs chemins avec un coût minimal existent, alors on choisira arbitrairement un parmi eux. Dans les travaux de[START_REF] Orda | Shortest-path and minimum-delay algorithms in networks with timedependent edge length[END_REF] il a été montré que déterminer le plus court chemin dynamique pour une heure de départ fixée est NP-Difficile , et qu'il est polynomial pour les graphes de type FIFO.[START_REF] Ahnetj | Vehicle-Routing with Time Windows and Time-Varying Congestion[END_REF] et par la suite[START_REF] Kaufman | Fastest Paths in Time-Dependent Networks for Intelligent Vehicle-Highway Systems Application[END_REF] ont proposé une version dynamique de Dijkstra qui offre une solution optimale dans le cadre des graphes FIFO. Sept ans plus tard,[START_REF] Pallottino | Shortest path algorithms in Transportation models: classical and innovative aspects[END_REF] ont proposé un paradigme algorithmique appelé Chrono-SPT, pour les graphes non-FIFO. L'idée de ce paradigme consiste à visiter les noeuds dans un ordre chronologique, et il est valable que pour le cas où le temps est discret.

7.1.3. Algorithme de résolution : comme nous l'avons mentionné précédemment, une version de l'algorithme Dijkstra adaptée au cas dynamique existe. Nous présentons dans cette sous section cette version dynamique de l'algorithme de Dijkstra. Considérant un graphe G(N, A) FIFO, avec un noeud origine s ∈ N. Le pseudo-code de cet algorithme qui détermine le plus court chemin en partant du noeud origine s à l'instant t 0 vers tous les noeuds du graphe est présenté dans la table ci-dessous.

Table 2. Version dynamique de l'algorithme de Dijkstra

. graphes dynamiques stochastiques 7.2.1. Définition : un

  graphe G(N, A) est dit graphe dynamique si tous les poids sur les arcs sont représentés par des distributions de probabilité discrètes dépendantes du temps. Le poids d'un arc (i, j) dans un graphe dynamique stochastique est présenté par une fonction de coût FC(i, j, t), où t désigne l'instant de départ du noeud i. Cette fonction de coût est déterminée à chaque instant t par une distribution de probabilité de la forme: l'heure d'arrivée à ce noeud.[START_REF] Pretolani | A directed hyper graph model for random time-dependent shortest paths[END_REF] a montré que le calcul à priori d'un chemin avec un coût espèré minimal est un problème NP-Difficile. Une solution à ce problème à été porté dans[START_REF] Miller-Hooks | Least expected time paths in stochastic time-varying transportation networks[END_REF] en proposant un algorithme à correction de label appelé LET (Least Expected Time) à priori. Le problème de trouver une strategie adaptative a reçu plus d'attention que celui de trouver un chemin à priori. Dans la littérature, plusieurs algorithmes de routage adaptatif ont été proposés sous différentes approches pour résoudre ce problème. La plupart des algorithmes adaptatifs pour un chemin optimal sont basés sur la minimisation de coût espéré comme la version adaptative de LET proposé dans qui détermine une strategie de routage en ligne permettant de réagir aux poids effectifs des noeuds intermédiaires pour choisir efficacement les noeuds suivants. Dans cette partie nous presentons la formulation du problème

					à jour la file de
	priorité				
	Fin Si				
	Fin Pour				
	Fin Tant que				
	c 1 t , p 1 t c 2 7.2FC(i, j, t) = � t , p 1 t c m t , p m t ⋮	avec ∑	m k=1	p k t	= 1
	où c 1 t , c 2 t , … . , c m t représentent les poids possibles d'un lien (i, j) à l'instant t et
	p 1 t , p 2 t , … . , p m				
	déterminer le plus court chemin entre deux noeuds avec des temps de
	déplacement qui sont à la fois aléatoires et dépendants du temps. Il a montré que
	les algorithmes standards appliqués dans le cas statique stochastique ne sont pas
	efficaces sur des réseaux dynamiques stochastiques. Il a montré que le «choix de

t sont les probabilités associées aux poids à l'instant t.

7.2.2. Problème du plus court chemin : le problème du plus court chemin

dynamique stochastique a reçu une grande attention dans différents domaine. Le premier qui a abordé ce problème est Hall

[START_REF] Hall | The fastest path through a network with random time-dependent travel times[END_REF]

. Il a évoqué le problème de route» optimal n'est pas un calcul à priori d'un chemin mais une règle de décision adaptative, et que le meilleur itinéraire à partir d'un noeud donné à la destination finale dépend de

[START_REF] Miller-Hooks | Adaptive least-expected time paths in stochastic, time-varying transportation and datanetworks[END_REF]

. Cependant, il existe plusieurs cas dans lesquels la solution LET n'est pas adéquate, car elle ne tient pas compte de la variance des distributions des temps de parcours sur les arcs et n'offre aucune garantie de fiabilité. Le chemin optimal défini par la solution LET peut être peu fiable et peut entraîner des réalisations très variables du temps de parcours. Dans de nombreux cas, les voyageurs ont des délais difficiles. Par exemple dans le routage commercial, il existe des garanties de livraison qui doivent être respectées et des produits périssables qui doivent être livrés dans un délai fixe.

[START_REF] Frank | Shortest paths in probabilistic graphs[END_REF] 

présente une définition très naturelle d'un chemin optimal fiable, comme le chemin qui maximise la probabilité de réaliser un temps de déplacement inférieur à une constante donnée. Cependant, la formulation donnée par Frank exige l'énumération de tous les chemins possibles et n'est donc pas traitable pour des problèmes pratiques.

[START_REF] Fan | Arriving on time[END_REF] 

considèrent la formulation de Frank également connu sous le nom du problème SOTA (Stochastic On Time Arrival) et le formulent comme un problème de programmation dynamique stochastique. Le programme dynamique proposé est résolu à l'aide d'un algorithme d'approximation successive standard (SA)

[START_REF] Fan | Optimal routing for maximizing the travel time reliability[END_REF]

.

Le travail effectué dans notre thèse est basé sur cette dernière approche (Problème SOTA) que nous allons presenter d'une manière détailleé dans le chapitre qui suit.

7.2.3. Algorithme de résolution : comme nous venons de le voir, plusieurs

algorithmes ont été developpés dans la litterature pour résoudre le plroblème du plus court chemin dans le cas dynamique stochastique et deux approches ont été proposées, à savoir l'approche qui vise à calculer un chemin à priori, et l'approche

  Les décisions prises dans ce cas sont de nature conservatrice, car elles sont basées sur l'anticipation que le pire pourrait arriver. Le premier qui a étudié la robustesse absolue à partir d'une perspective d'un programme linéaire généralisé est Soyster en 1973. Il a considéré un ensemble incertain 𝒰𝒰 du type K 1, K 2 , … … , K n , où K i contient tous les vecteurs colonnes possibles A i de la matrice des coefficients A. Par la suite, plusieurs travaux ont été menés par des chercheurs dans le cadre de cette approche, voir par exemple[START_REF] Thuente | Duality theory for generalized linear programs with computational methods[END_REF][START_REF] Falk | Exact solutions of inexact linear programs[END_REF]. Cependant, la formulation et la construction de cette approche dans un cadre théorique solide est due à une série de travaux de[START_REF] Ben-Tal | Robust truss topology design via semidefinite programming[END_REF],[START_REF] Ghaoui | Robust solutions to least-squares problems with uncertain data[END_REF],[START_REF] Ben-Tal | Robust convex optimization[END_REF] et[START_REF] Ben-Tal | Robust solutions of linear programming problems contaminated with uncertain data[END_REF]. Leurs travaux ont été résumés dans le livre "Robust optimization"[START_REF] Ben-Tal | Robust Optimization[END_REF]. pour lesquels les paramètres les plus incertains par contrainte changent à leurs valeurs les plus défavorables. En faisant ça, on limite le nombre de coefficients qui sont autorisés à changer, en conduisant à la notion de robustesse à cardinalité limitée. Considérant une contrainte de la formea 1 x 1 + ⋯ + a n x n ≤ b Avec une incertitude 𝒰𝒰 = {a ∈ ℝ n : a i ∈ [a � i -d i , a � i + d i ] , i = 1, … . n}.Le concept de robustesse à cardinalité limitée nécessite une solution x pour satisfaire: and-see peut attendre que le scénario actuel ξ ∈ 𝒰𝒰 devienne connu. Cela est similaire au principe de la programmation en deux étapes en optimisation stochastique.Pour cette approche, on suppose que les variables x sont divisées en u ∈ χ 1 ⊆ ℝ n 1 et en v ∈ χ 2 ⊆ ℝ n 2 , tels que n 1 + n 2 = n, où les variables u doivent être déterminées avant que le scenario ξ ∈ 𝒰𝒰 devienne connu, tandis que les variables v peuvent être déterminées après la réalisation du scenario ξ . Ainsi, on peut également écrire x(ξ) pour souligner la dépendance de v sur les scenarios. Le problème d'optimisation incertain (Ρ(ξ), ξ ∈ 𝒰𝒰)

			min sup ξ ∈𝒰𝒰 𝑓𝑓(𝑥𝑥, ξ)
	(SR)		s. t. 𝑥𝑥 ∈ SR(𝒰𝒰)
				𝑥𝑥 ∈ χ
	n			
	� a � i x i i=1	+	max S⊆{1,….n},|S|=Γ	�� d i |x i |
	générales dans [78]. L'approche des problèmes d'optimisation combinatoire a été
	3.2. Cardinality Constrained Robustness généralisée dans [79-80].	
	L'une des possibilités de résoudre le problème du conservatisme de la robustesse absolue 3.3. Adjustable Robustness
	est de réduire l'ensemble des incertitudes 𝒰𝒰. Cela a été introduit dans [78] pour des
	problèmes de programmation linéaire. Pour cette raison, ce concept est parfois aussi connu Dans [81], une observation complètement différente des cas se produisant dans des
	problèmes réels avec des données incertaines est utilisée. Souvent, les variables peuvent

L'idée sous-jacente de base est de se prémunir contre tous les scénarios qui peuvent survenir. Comme ils le font valoir, une telle approche est logique dans de nombreux contextes, par exemple pour les avions ou pour les centrales nucléaires. Cependant, ce degré élevé de conservatisme de robustesse absolue ne s'applique pas à toutes les situations nécessitant des solutions robustes. Un exemple pour cela est l'horodatage dans les transports publics : être strictement robuste pour un calendrier signifie que tous les horaires d'arrivée et de départ annoncés doivent être respectés, peu importe ce qui se passe. Cela peut signifier ajouter des temps de tampon élevés, en fonction de l'ensemble d'incertitude utilisé, et donc n'entraînerait pas un calendrier pratiquement applicable. De telles applications ont déclenché des recherches en optimisation robuste sur les façons d'étendre le concept. Nous décrivons certaines de ces approches dans ce qui suit. sous le nom de "l'approche de Bertsimas et Sim" ou encore Γ-Robustesse. En analysant la structure de l'incertitude dans les applications typiques, Bertsimas et Sim ont observé qu'il est peu probable que tous les coefficients d'une contrainte changent simultanément à leurs valeurs les plus défavorables. Au lieu de cela, ils proposent de se protéger uniquement contre des scénarios i∈S � ≤ b

Pour un paramètre Γ ∈ {1, … . n} donné. Toute solution x à ce modèle se protège donc de tous les scénarios dans lesquels un plus grand nombre Γ de coefficients incertains peuvent s'écarter de leurs valeurs nominales en même temps. Il a été montré que la robustesse de cardinalité limitée peut également être considérée comme une robustesse absolue en utilisant l'enveloppe convexe de l'ensemble d'incertitude à cardinalité limitée :

𝒰𝒰(Γ) = {a ∈ 𝒰𝒰 ∶ a i ≠ a � i , pour Γ d ′ indices i au plus} ⊆ 𝒰𝒰

Comme 𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐�𝒰𝒰(Γ)� est un ensemble polyédrique, les résultats sur une robustesse absolue par rapport à l'incertitude polyédrique peuvent également être appliqués à la robustesse à cardinalité limitée. Le concept de cette approche s'étend également aux valeurs fractionnaires de Γ. Leur concept a été étendu aux ensembles d'incertitude selon les normes être décomposées en deux ensembles. Les valeurs des variables here-and-now doivent être trouvées à l'avance par l'algorithme d'optimisation robuste, alors que la décision concernant les variables wait-

  Où u représente un vecteur de variables de conception qui ne peut pas être ajusté, et v est un vecteur de variables de contrôle qui peut être ajusté lorsque le scénario réalisé devient connu.

	précédé par l'approche similaire de [83], où les auteurs ont considéré un problème
	d'optimisation linéaire incertain de la forme	
		min c t u + d t v
	�Ρ(B, C, e)�	s. t. Au = b Bu + Cv = e u ∈ ℝ + n 1 , v ∈ ℝ + n 2
	Pour un ensemble incertain fini 𝒰𝒰 = {(B 1 , C 1 , e 1 ), … , (B N , C N , e N )}, sa solution robuste
	est donnée par	
	(Mulvey)	
	La solution robuste réglable est donnée par	
	min�z aSR (u) ∶ u ∈ aSR�
	Il existe plusieurs variantes du concept de robustesse réglable. Au lieu de deux étapes,
	plusieurs étapes sont possibles. Par exemple, les auteurs dans [82] ont calculé un ensemble

de solutions statiques possibles au lieu de calculer une nouvelle solution pour chaque scénario. Cet ensemble a été calculé de sorte qu'au moins une des solutions de cet ensemble est réalisable à chaque étape. En outre, le développement de la robustesse réglable a été

  à l'approche Adjustable Robustness, Revovrable Robustness est aussi un concept à deux étapes. Ce concept a été développé dans[ 91-92-93-94], et utilisé dans[START_REF] Erera | Robust optimization for empty repositioning problems[END_REF]. L'idée de base de cette approche consiste à autoriser une classe d'algorithmes de récupération 𝒜𝒜 qui peuvent être utilisés en cas de perturbation. Une solution x est dite Recovery Robust par rapport à 𝒜𝒜 si pour tout scénario possible ξ ∈ 𝒰𝒰 , il existe un algorithme A ∈ 𝒜𝒜 de sorte

	min sup ξ ∈𝒰𝒰 �f(x, ξ) -f * (ξ)�
	3.6. Regret Robustness Le concept de Regret Robustness diffère des autres concepts de robustesse présentés, dans la mesure où il ne considère généralement que l'incertitude dans la fonction objectif. Au lieu de minimiser les performances les plus défavorables d'une solution, il minimise la différence entre la fonction objectif et la meilleure solution qui aurait été possible dans un scénario. Dans certaines publications, on parle aussi de déviation robuste. s. t. F(x) ≤ 0 x ∈ χ Regret robustness est un concept avec une grande quantité d'applications, par exemple, dans la théorie de l'emplacement ou dans la planification. Pour plus de détails veuillez consulter [98-99]. Dans un esprit similaire, le concept de 𝛼𝛼-robustesse lexicographique a récemment été proposé [100]. Son idée de base est d'évaluer une solution fixe en réordonnant l'ensemble des scénarios en fonction de la performance de la solution. Cette courbe de résolu séparément pour chaque scénario. (Reliability) min sup ξ ∈𝒰𝒰 f(x, ξ) s. t. F(x, ξ) ≤ γ, ξ ∈ 𝒰𝒰 x ∈ χ De même que pour l'approche de Light Robustness, il faut veiller à ce que la représentation des contraintes n'affecte pas la fiabilité de la solution 3.7.2. Soft Robustness. L'idée de base de cette approche telle que introduite dans [102] est de gérer le conservatisme de l'approche Strict Robustness en considérant une famille imbriquée d'ensembles d'incertitude, et autorisant une plus grande déviation dans les contraintes pour des incertitudes plus importantes. sofR = {x ∈ χ ∶ F(x, ξ) ≤ ε, ∀ε ∈ 𝒰𝒰(ε), ε > 0} On note que l'approche de Strict Robustness est un cas spécial avec {𝒰𝒰(ε) = 𝒰𝒰} ε>0 . 3.7.3. Comprehensive Robustness. Bien que l'approche Adjustable Robustness détend 3.7.4. Uncertainty Feature Optimization. Au lieu de supposer qu'un ensemble d'incertitude explicite est donné, ce qui peut être difficile à modéliser pour les problèmes réels, l'approche de l'optimisation des fonctionnalités d'incertitude (UFO) suppose plutôt que la robustesse d'une solution est donnée par une (UFO) vecmax μ(x) s. t. F(x) ≤ 0 f(x) ≤ (1 + ρ)f * �ξ ̂� x ∈ χ où f * (ξ ̂) présente la meilleure valeur au problème nominal. Les auteurs ont montré que cette approche généralise à la fois l'optimisation stochastique et le Soit f (Regret) performance est ensuite comparée à une courbe idéale, où le problème d'optimisation est l'hypothèse que toutes les décisions doivent être prises avant que le scénario concept de Cardinality Constrained Robustness de Bertsimas et Sim.

que A appliqué à la solution x et au scénario ξ construit une solution A(x, ξ) ∈ ℱ(ξ), c.à.d. une solution qui est réalisable pour le scénario actuel. Le programme d'optimisation selon

[START_REF] Liebchen | The concept of recoverable robustness, linear programming recovery, and railway applications[END_REF] 

est le suivant :

(RR) min (x,A)∈ℱ�ξ � �×𝒜𝒜 f(x) s. t. A(x, ξ) ∈ ℱ(ξ), ∀ ξ ∈ 𝒰𝒰

Dans

[START_REF] Goerigk | The price of strict and light robustness in timetable information[END_REF][START_REF] Goerigk | A scenario-based approach for robust linear optimization[END_REF] 

et

[START_REF] Goerigk | Algorithms and Concepts for Robust Optimization[END_REF][START_REF] Goerigk | Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling[END_REF]

, la notion de robustesse récupérable a été considérée sous usage de métriques pour mesurer les coûts de récupération. L'objectif est de minimiser les coûts lors de la récupération, où ils diffèrent entre la récupération vers une solution faisable ("recoveryto-feasibility") et la récupération vers une solution optimale ("recovery-to-optimality") dans le scénario réalisé. * (ξ) la meilleure valeur (optimale) pour le scenario ξ ∈ 𝒰𝒰, alors la solution de problème d'optimisation avec la déviation robuste est donnée par 3.7. Quelques concepts de robustesse supplémentaires 3.7.1. Reliability. Une autre approche de l'optimisation robuste est de relâcher les contraintes de robustesse absolue. Cela conduit à la notion de fiabilité de

[START_REF] Ben-Tal | Robust solutions of linear programming problems contaminated with uncertain data[END_REF] 

dans laquelle les contraintes F(x, ξ) ≤ 0 sont remplacées par F(x, ξ) ≤ γ, pour

certaines valeurs de γ ∈ ℝ ≥0 m . Une solution x qui satisfait F(x, ξ) ≤ γ

pour tous les scenarios ξ ∈ 𝒰𝒰 est dite solution fiable par rapport à γ. L'objectif est de trouver une solution fiable qui minimise la fonction objectif initiale dans le pire cas. Le programme d'optimisation fiable est donné alors sous la forme : Plus précisément, au lieu d'un ensemble d'incertitude 𝒰𝒰 ⊆ ℝ M , on utilise une famille d'incertitudes {𝒰𝒰(ε) ⊆ 𝒰𝒰} ε>0 avec 𝒰𝒰(ε 1 ) ⊆ 𝒰𝒰(ε 2 ) pour tous les ε 2 ≥ ε 1 . L'ensemble des solutions qualifiées de Soft Robustness est alors donné par : réalisé ne soit connu, l'approche de Comprehensive Robustness supprime également l'hypothèse selon laquelle seuls les scénarios définis dans l'ensemble d'incertitude 𝒰𝒰 doivent être considérés [103]. Au lieu de cela, en utilisant une mesure de distance 𝑑𝑑𝑑𝑑𝑠𝑠𝑒𝑒 dans l'espace des scénarios, et une mesure de distance dist ����� dans l'espace de la solution, les auteurs supposent que plus un scénario est loin de l'ensemble d'incertitude, plus la solution correspondante est autorisée à être loin de l'ensemble de solutions réalisables. Comme dans l'approche de Adjustable Robustness, la dépendance entre la solution x et le scenario ξ est autorisée, et on peut écrire x(ξ). Le programme d'optimisation dans le cadre de l'approche Comprehensive Robustness est de la forme: (CR) min z s. t. f(x(ξ), ξ) ≤ z + α 0 dist(ξ, 𝒰𝒰), ∀ξ dist ����� �x(ξ), ℱ(ξ)� ≤ α dist(ξ, 𝒰𝒰) , ∀ξ Où α 0 et α représentent les paramètres de sensibilité. Cette formule nécessite d'autres spécifications formelles qui sont données dans [103]. fonction explicite [104]. Pour un problème d'optimisation incertain �P(ξ)�, soit μ ∶ ℝ n → ℝ p une mesure de p performances robustes. Le programme d'optimisation dans le cadre de cette approche (UFO) est donné sous la forme suivante :

Table 3 .

 3 Optimal solution (probabilities u and policies s) to reach node 5 from node 1

	Time t	15	16	17	18	19	20	21	22	23	24	25

a). b).

Chapter 2

Robust guidance Summary arbitrary probability distribution. Two primary variants can be distinguished for the SOTA problem. The first one consists in finding the most reliable fixed path to the destination. This first variant is designed as the shortest path problem on-time arrival reliability, or also the path-based SOTA problem as explored in [START_REF] Chen | Path finding under uncertainty[END_REF]. The second variant is referred as the policy-based SOTA problem, which consisting in calculating a routing policy such as the selection of the next node at each intersection depending on the current state (remaining time budget). The policy-based SOTA problem is solved in discrete-time. In [START_REF] Lim | Practical route planning under delay uncertainty: Stochastic shortest path queries[END_REF], the authors presented a discrete SOTA algorithm that ensures finite convergence and runs very well in polynomial time. Solving the SOTA problem in discrete-time consist in computing product convolution of arbitrary distributions. The computation of the policy requires a subsequent maximization step. Unfortunately, this step mixes distributions and prevents finding an analytical solution in continuous-time. A successive approximation method is proposed in [START_REF] Fan | Arriving on time[END_REF] for solving the policy-based SOTA problem. This algorithm is improved in [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF][START_REF] Samaranayake | A tractable class of algorithms for reliable routing in stochastic networks[END_REF][START_REF] Chen | Path finding under uncertainty[END_REF][START_REF] Nie | Shortest path problem considering on-time arrival probability[END_REF][START_REF] Nie | Reliable route guidance: A case study from Chicago[END_REF][START_REF] Pan | Finding reliable shortest path in stochastic time-dependent network[END_REF][START_REF] Chen | Reliable shortest path finding in stochastic net-works with spatial correlated link travel times[END_REF][START_REF] Zockaie | Simulation-based method for finding minimum travel time budget paths in stochastic networks with correlated link times[END_REF][136][START_REF] French | Statistical decision theory[END_REF][START_REF] Neumann | Theory of games and economic behavior[END_REF] to a dynamic programming algorithm, and the speed-up techniques including zero-delay convolution [START_REF] Samaranayake | Speedup techniques for the stochastic on-time arrival problem[END_REF] have been explored to solve the problem in pseudopolynomial-time. The authors of [START_REF] Dean | Speeding up stochastic dynamic programming with zero-delay convolution[END_REF] have shown how pre-processing methods can be used to further reduce the computation time of the SOTA problem. Unfortunately, the structure of the SOTA problem formulation limits the types of pre-processing methods that can be used for this problem, and prevents massive running times reductions as possible in the deterministic case.. Recently, [START_REF] Sabran | Precomputation techniques for the stochastic on-time arrival problem[END_REF] presented a novel approach to reduce the immense computational effort of stochastic routing based on existing techniques for alternative routes.

In this chapter an extension of the SOTA algorithm reported in [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF] is presented. This extension permits to include robustness in the criteria of the routing optimization. Instead of considering a unique objective of maximizing the travel-time reliability, we also optimize the robustness of the selected paths and routing policies against link failures. The remainder of this chapter is organized as follows.

In section 2, we give a short review of the SOTA problem in cases of independent link travel-times and correlated link travel-times. Section 3 contains 2 main subsections. In sub-section 3.1, we consider the problem of robust guidance in case of independent link travel-times. A guidance strategy is said to be

Stochastic On Time Arrival (SOTA) problem

In this section, we briefly summarize the original SOTA problem for the convenience of readers and for the continuity of our discussion in the next sections. The details of the approach summarized here are available for example in [START_REF] Fan | Arriving on time[END_REF].

Formulation of the SOTA problem with uncorrelated link travel-times

A road network is represented by a graph including arcs and nodes which correspond respectively to the links and junctions of the road network. We denote the graph representing the road network by G(N, A), where N is the set of nodes, with |N| = n, and A is the set of arcs, with |A| = a. The set of successor and predecessor nodes are denoted by Γ +1 (i) = {j|(i, j) ∈ A} and Γ -1 (i) = {k|(k, i) ∈ A} respectively. The travel times through the links of the network are assumed here to be stochastic. Probability distributions of the travel times are then associated to the links of the graph. The SOTA problem consists in finding the best routing strategy from any starting node i, (i = 1,2, … … , n), that maximises the probability of arriving to a given destination node, denoted d, within a time budget t.

Given a node i ∈ N and a time budget t, u i (t) denotes the maximum probability of arriving to the destination node d parting from node i, within a time budget t, and under the optimal policy. The latter, denoted by s i (t) is given by the optimal subsequent node. p ij (. ) denotes the probability distribution function (pdf) of the travel time on link (i, j). It is assumed to be known and can for example be obtained using historical data or real-time traffic information. The maximum probability u i (t) and the optimal successor node s i (t) are written as follows.

Where T is the maximum time budget.
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Step 1. Update

Otherwise go to step 1

In an acyclic network, at each iteration iter, u ki iter (t) gives the probability of reaching the destination node d from origin node i within a time budget t ∈ [0, T], using a path that contains no more than iter links, and under the optimal policy. The approximation error monotonically decreases with iter and the solution eventually reaches an optimal value when iter is equal to the number of links in the optimal path. However, in a network that contains cycles, as is the case with all road networks, there is no finite bound on the maximum number of iterations required for the algorithm to converge [START_REF] Fan | Arriving on time[END_REF]. This is due to the fact that the optimal solution can contain loops. To solve the problem raised by the unbounded convergence of Algorithm 1, A discrete SOTA algorithm is presented in [START_REF] Lim | Practical route planning under delay uncertainty: Stochastic shortest path queries[END_REF] which ensures finite convergence and, more important, runs in polynomial time. The authors of [START_REF] Lim | Practical route planning under delay uncertainty: Stochastic shortest path queries[END_REF] showed that given a finite time budget T, the solution of the SOTA algorithm can be found by scanning a discrete probability expansion network (DPEN), which is constructed from the original stochastic network (see section Finite Convergence

Algorithm in [START_REF] Lim | Practical route planning under delay uncertainty: Stochastic shortest path queries[END_REF] for more details).

The authors of [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF] show how the SOTA problem can be solved exactly in a finite number of steps, even in cyclic networks when there is a uniform strictly positive minimum link travel-time. As in [START_REF] Fan | Arriving on time[END_REF], this algorithm requires computing a continuous-time convolution product, which is one of the main computational challenges of the method. In general, this convolution cannot be solved analytically when routing in general networks, and therefore, a discrete approximation scheme is required. The solution presented in [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF] allows for batch computation of the convolution product and thus more efficient CHAPITRE 2. ROBUST GUIDANCE

The algorithm that we proposed in the previous section remains valid in the static case because the distribution of the travel times on the links are static i.e. do not vary over time.

Networks in the real world are, nevertheless, stochastic and time-varying, and the link travel-times are stochastic processes (i.e. random variables with probability distribution functions varying in time). One of the most used approaches when solving shortest path problems on networks with time-dependent travel times is to consider the corresponding temporal extended graph with static travel times. If the network satisfies the First In First Out (FIFO) condition defined by Astrarita in [START_REF] Deo | Graph theory with applications to engineering and computer science[END_REF], then the problem can be solved using a modified version of Dijkstra's algorithm with the original graph. Dean explored in [START_REF] Dean | Algorithms for minimum-cost paths in time-dependent networks with waiting policies[END_REF] the shortest path problem in FIFO time-dependent network, with waiting policies, and assumed that waiting at a node is never beneficial. Samaranayake et al [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF] explored the problem by the same way as Dean, showed that commonly used travel-times estimates satisfy the FIFO condition, and made propositions that waiting at node is not optimal.

Some definitions and propositions made in [START_REF] Nikolova | Approximation algorithms for reliable stochastic combinatorial optimization[END_REF] remain valid for our model. For this reason, we have just cited them before exposing the time-varying model. For more details please see [128-143-144].

Proposition 3. A stochastic discrete-time traffic estimate such that link travel-time distributions are fixed for each time discretization yields a stochastic FIFO path.

Definition 2 (Stochastic FIFO condition).

Let u π t denotes the cumulative travel-time distribution on path π when departing at time t. The graph satisfy the stochastic FIFO condition if and only if:

This definition states that at any given time and on any given path on the network, departing as soon as possible yields a greater probability of arriving on time than delaying the departure. gives the path passing by nodes [START_REF] Henn | Information routière et affectation du trafic : vers une modélisation floue[END_REF]3,[START_REF] Richards | Shock waves on the highway[END_REF][START_REF] Lighthill | On kinematic waves ii : A theory of traffic flow on long crowded roads[END_REF][START_REF] Lebacque | The Godunov scheme and what it means for first-order traffic flow models[END_REF] as the robust-optimal one in the two cases of ψ = 1 (without taking into account the robustness criterion) and ψ ∈ (1/2, 1) (by taking into account the robustness criterion). For scenario 2, we remove link 37 form the network of Figure 13. By removing link 37, node 12 will have only 2 successor nodes. Then, the user being at node 3 will have to chose between the two successor nodes: node 4 (with 3

successor nodes) and node 12 (with only 2 successor nodes). We will show that the algorithm gives the same optimal path as for scenario 1, in the case ψ = 1, but it gives another optimal path, the one passing by nodes [START_REF] Henn | Information routière et affectation du trafic : vers une modélisation floue[END_REF]3,4,[START_REF] Lighthill | On kinematic waves ii : A theory of traffic flow on long crowded roads[END_REF][START_REF] Lebacque | The Godunov scheme and what it means for first-order traffic flow models[END_REF], in the case ψ ∈ (1/2, 1).

Indeed, path [START_REF] Henn | Information routière et affectation du trafic : vers une modélisation floue[END_REF]3,4,[START_REF] Lighthill | On kinematic waves ii : A theory of traffic flow on long crowded roads[END_REF][START_REF] Lebacque | The Godunov scheme and what it means for first-order traffic flow models[END_REF] has more alternatives than path [START_REF] Henn | Information routière et affectation du trafic : vers une modélisation floue[END_REF]3,[START_REF] Richards | Shock waves on the highway[END_REF][START_REF] Lighthill | On kinematic waves ii : A theory of traffic flow on long crowded roads[END_REF][START_REF] Lebacque | The Godunov scheme and what it means for first-order traffic flow models[END_REF], since, in scenario 2, node 4 has more successor nodes than node 12.

Scenario 1

In this first scenario, we consider the network of Figure 13. Let us consider the probability u 13 (t, y) of reaching the destination node 10 from node 3, coming from node 1, and knowing that tt 13 = y. We take here y = 115 seconds. In this first scenario, we have three routing actions from node 3 coming from node 1: go to successor node 12, which will give us three routing actions at the next step (go to successor node 11, or 13 or back to 3), or go to successor node 4, which will give us three routing actions at the next step (go to 5 or 11, or back to 3). The simulation results are given in Figure 15 and Figure 16. Figure 15 shows the robust-optimal probability u 13 (t, 115) in function of the time budget t, and for different values of ψ. Figure 16 gives the optimal successor nodes s 13 (t, 115) in function of the time budget t, and for different values of ψ.

Chapter 3

Combination of the robust routing algorithm with a dynamic traffic model

Retrieve identifiers of 774 short edges

To recover these identities, we first created a first file <zone.trip.xml>, which contains the input edge and the output edge for a zone, and a second file <link.xml> which contains the input edge and the output edge for a big link. We have merged these two files in order to have a single file <zone_link_i.trip.xml>, where i is an index on big link (i = 1,2, … ,76). We have proceeded in the same way for each zone and for each big link, so we have built 76 files, one for each link.

Thereafter, we used DUAROUTER, in order to retrieve in a file <edges_route_i.rou.xml> for the route edges for each big link as shown in the following diagram (Figure 24). We have retrieved 76 files, one for each big link of the network, and each file <edges_route_i.rou.xml> contains all the identifiers of the short edges that build a big link.

Calculate the estimated travel-times on the short edges

After having retrieved the identifiers of the short edges, we used the sumo function "getTraveltime [String edgeID]", in order to obtain the estimated travel time on each short edge as illustrated in Figure 25. 

Simulation procedure

The guidance is applied in its static form but periodically in time. The traffic is simulated by SUMO for a fixed period of time. At the end of the time period, travel times on the links of the network are retrieved, and estimations are made on the average travel times and on their variations. By that, we obtain an estimation of the bi-variate Gamma probability distribution of every couple of successive links in the network. With these travel time distributions, we apply the robust guidance algorithm for the traffic demand corresponding to the origin destination pair [START_REF] Henn | Information routière et affectation du trafic : vers une modélisation floue[END_REF][START_REF] Lebacque | The Godunov scheme and what it means for first-order traffic flow models[END_REF]. We recall here that for the traffic demand corresponding to the other origin-destination pairs, the assignment is done by SUMO using DUAROUTER algorithm. The optimal and robust itineraries (obtained by our algorithm for the origin-destination pair (1, 10), and obtained by DUAROUTER for the other origin-destination pairs) are then used by SUMO to load the network and simulate the traffic for another time period. We iterate this procedure up to a given total simulation time. An example of simulation during the second time period (i.e. [600, 1200] seconds) is illustrated in Figure 30 below. Le guidage a été uniquement appliqué pour les demandes partantes de la zone 1 à la zone 10 du réseau Sioux Falls. Le guidage pour les autres demandes sur le réseau a été calculé par l'algorithme DUAROUTER de SUMO. Il serait donc intéressant de pouvoir appliquer l'algorithme de guidage pour toutes les paires origines-destinations.

L'algorithme développé a été testé dans le contexte de l'affectation du trafic grâce aux outils de simulation microscopique SUMO. Il serait intéressant de l'intégrer dans une application mobile.