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Chapter 1

Introduction

Over the past 10 years, I have been involved in research related to di↵erent aspects of data
analysis. As a Ph.D candidate, my work started in an INRIA research group called As
Scalable As Possible, whose primary focus what the design of large-scale peer-to-peer sys-
tems. During the second year of my Ph.D, I had the privilege to do an internship at Yahoo!
Research Barcelona, on data mining applied to probabilistic graphs. Since then, this combi-
nation of large-scale systems and data mining has been at the center of my research. After
my Ph.D, I returned to Yahoo! Research Barcelona as post-doctorate researcher in the dis-
tributed systems group. I developed large-scale systems for data processing, often borrowing
techniques from information retrieval and data mining to optimize the behavior of the sys-
tems by leveraging properties of the data. Since 2012, I am an associate professor at the
university of Grenoble, and a permanent member of the Scalable Information Discovery and
Exploitation group at LIG (Laboratoire d’Informatique de Grenoble). My research is data-
driven, and generally starts by the study of a new dataset, from which research challenges
emerge.

I have kept a broad interest in topics related to data processing. They can be summarized
as follows:

• Systems design

• Algorithms development

• Information discovery

This versatility allows me to contribute to many steps of a data analysis problem, starting
with scaling the processing, developing more e�cient algorithms, up to the problem of better
targeting relevant information. This thesis presents some of my contributions to each of these
three research topics (Chapters 2, 3 and 4). Then, I give an outlook on my future research
in Chapter 5.

Systems design

Systems are the muscles of data analysis. The goal of systems research is to build hardware
and software architectures that provide users with an increasing amount of processing power
while hiding the underlying complexity behind simple paradigms. Although this definition
applies to high-performance computing community in general, data analysis is currently one of
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the largest consumer of computing resources, which makes it a primary target. For the past
years, systems research has focused on scale-out (horizontally) architectures that provide
parallel processing through the use of multi-core CPUs and distributed systems spanning
hundreds of servers. Map-Reduce [35], published by Google, is a seminal work that has had a
huge impact in the systems community. It has also unlocked new possibilities for the users of
these systems by allowing any organization to build a data processing cluster from commodity
hardware. More recent work, such as Heron [62] and Flink [27] illustrate the trend of switching
from a batch processing model to analyzing continuous streams of data.

Systems are considered as the underlying layer of data processing architectures. Hence,
they aim at being general purpose and support many data processing applications. Even more
specialized systems, such as Arabesque [89] that targets graph analysis, o↵er a flexible pro-
gramming model supporting di↵erent algorithms. This layered approach means that systems
are generally oblivious to the properties of the workload they execute. Their main concern
is load balancing, i.e. ensuring that all processing resources are used equally. In Chapter 2
of this thesis, I present my work on optimizing distributed systems for data processing. I
advocate the idea that the distribution of data in a system should account for its properties:
pieces of data which are correlated in the application’s workload should be placed in close
proximity. I apply this design principle to distributed search engines, deployed over several
data-centers, and key/value-based applications, deployed in a single location.

Algorithms development

Algorithms are the articulations of data analysis. Algorithms are at the core of Database
research to produce more e�cient ways of querying data. Although the relational model [32]
remains a cornerstone of databases, a large fraction of the recent work is related to XML [18]
and RDF [82], with contributions to query optimization and rewriting [24], or the creation of
indexes for accelerating query execution [94]. The Data Mining community also creates many
algorithms that compete to extract results e�ciently as possible.

Algorithms research often builds on systems work, and accounts for the processing model
exposed by the system to optimize algorithms. Hence, the publication of Map-Reduce lead
to a large number of follow-up databases publications related to porting existing queries (e.g.
theta-joins [100]) to this new programming model. In Chapter 3 of this thesis, I tackled two
specific types of algorithms: temporal joins, and pattern mining. The challenge in developing
these algorithms for a Map-Reduce execution model is that they rely on a dynamic exploration
of a result-space, which is particularly hard to optimize with a distributed system.

Information discovery

Information discovery is the brain of data analysis. This research area deals with identifying
information relevant to the data analyst. In the standard Information Retrieval model, a user
submits a query to a search engine, and the goal is to assign a relevance score to documents in
a collection. Unsupervised Data Mining aims at discovering information in a dataset without
the need for a specific query. With the democratization of massive datasets, identifying and
ranking the most important results is of crucial importance. Indeed, data processing systems
can scale to hundreds of machine and generate millions of results, but the ability of analysts
to read those results and identify by themselves the interesting ones remains limited. Thus,
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building relevance models for varied data types and modeling user intent remain popular
topics [69]. In addition, learning to rank has been a very active field of research [95].

Chapter 4 of this thesis deals with the problem of identifying relevant results. The first
part considers association rules mining, a popular algorithm of unsupervised data mining. A
major challenge is to identify, among all interestingness measures defined in the literature,
which should be used to rank the rules produced in a specific domain (retail in this case). The
second part of this chapter considers complex information needs, and goes beyond returning
individual results by building composite items.
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Chapter 2

Data placement in distributed
systems

The resources needed to execute an application in a timely manner increase with its workload.
From a single-threaded execution on a single server to a parallel execution over thousands
of servers, each step taken to scale an application requires the developer to fragment the
processing tasks into smaller independent pieces, and distribute memory over the resources
available. In this chapter, we focus on the problem of distributing memory.

The question of where to allocate a data structure arises as soon as an application becomes
parallel. Computer architectures are not uniform, they are hierarchical. Most multi-core sys-
tems implement a Non-Uniform Memory Access architecture, which means that computing
resources (CPU cores) pay a di↵erent cost for accessing di↵erent parts of the memory. The
High Performance Computing community has been investigating the issue of optimizing mem-
ory management in NUMA architectures for over 10 years, with an increases interest since
the advent of multi-core CPUs [46]. Distributed systems are, to some extent, another step in
the hierarchical memory structure. Each server has a privileged access to its own memory,
and can access the memory of other servers with a penalty varying with the performance of
the network. A server located in the same rack can be accessed e�ciently, while exchanging
data with a server located in a di↵erent data-center halfway across the world is less e�cient
and more costly.

Currently there are two main strategies for placing data in distributed systems. When
communication costs are high (e.g. data centers in di↵erent regions) and data is relatively
static (read dominated workload), data is replicated to avoid remote accesses. This is no-
tably the case of Web search engines: multiple data centers are necessary to scale with the
number of queries, but the full Web index is replicated in each of them so that they operate
independently. When data is modified frequently (significant amount of writes), data is split
among servers using a pseudo-random assignments. This is the case if most key-value based
applications, in which a hash function is used to assign each key to a server. Replicating
data consumes memory, and thus has a monetary cost (additional servers and energy), while
a pseudo-random partitioning does not account for the hierarchical nature of data center ar-
chitectures. I advocate for a di↵erent solution: the distribution of data across servers should
account for its properties, i.e. pieces of data which are correlated in the application’s workload
should be placed in close proximity.

Section 2.1 considers the case of a search engine distributed across multiple datacenters.
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We show that, by dividing the index according to the queries of users in each region, we can
deploy a distributed search engine that executes most queries locally while replication remains
minimal. In Section 2.2, we address the problem of key-value based applications and show
that we can drastically reduce network usage, and thus increase performance, by leveraging
correlations in key access patterns.
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2.1 Multiple data centers: Distributed Search Engine

2.1.1 Context

Search engines are of critical importance for navigating the Web. Their goal is to help users
identify relevant content by answering complex queries. Even in the case of a simple navigation
operation, people would rather type “facebook” in a search engine than www.facebook.com

in the address bar of their browser. Hence, search engines continuously receive a huge amount
of tra�c that must be answered with low latency to preserve user experience.

A search engine is typically deployed in a single location, or data center, and comprises
a large number of servers hosting an full index of the Web. When a query is received, it
is processed locally using the Web index and results are returned to the client. This local
search engine architecture scales with the number of queries horizontally, i.e. by replicating
the search engine over multiple standalone sites (data centers). These sites can be located
in di↵erent regions of the world, which has the advantage of reducing network latency with
respect to users. The drawback of local search engines is that each site is a replica of the
original search engine, and must be dimensioned to host a full index of the Web to answer
any query. When the size of the index increases, each data center must be upgraded: this is
referred to as vertical scalability.

An appealing solution to scale Web search is to avoid the Web index replication by having
search sites collaborate to answer queries. Distributed search engines rely on multiple sites
deployed in distant regions across the world, and each site specializes in serving queries
issued by the user of its region. Thus, each site hosts a fraction of the Web index specifically
selected to serve queries originating from its region. When a site receives a query it is unable
to answer accurately (e.g. a query in Japanese at a European site), it forwards the query to
the appropriate site to preserves the quality of the results. All sites of the distributed search
engine collectively provide a full index of the Web, so this architecture enables horizontal
scalability with the index size: adding a new site to a geographic area allows other data
centers to eliminate part of their Web index as they no longer receive queries from this area.
A smaller index means faster processing [21], so distributed search engines have the potential
to be answer queries faster than their centralized counterpart. However, if a query cannot
be answered locally, forwarding it increases both latency and the workload of all search sites.
Thus, a major challenge in deploying a distributed search engine is to carefully select which
documents are indexed by each search site, and optimize the trade-o↵ between memory usage
and locality.

The work presented in this section was done during my post-doc at Yahoo! Research
Barcelona, and is detailed in the following publications:

• Assigning documents to master sites in distributed search

Roi Blanco, B. Barla Cambazoglu, Flavio P. Junqueira, Ivan Kelly and Vincent Leroy
In Proceedings of the ACM Conference on Information and Knowledge Management
(CIKM), 2011, pages 67–76.

• Reactive index replication for distributed search engines

Flavio P. Junqueira, Vincent Leroy and Matthieu Morel
In Proceedings of the ACM Conference on Research and Development in Information
Retrieval (SIGIR), 2012, pages 831–840.

7

www.facebook.com


Web

Crawler
Master site
selection

Master
Index

Shadow
Index

Forwarding
Index

Master
Index

Shadow
Index

Forwarding
Index

Site s

Site s
0

Index replication
service

Query
forwarding
heuristic

Local query
processing

User

Distributed query
processing

Replication of
full documents Partial replication

of posting lists

Query

Results

Figure 2.1: Overview of the distributed search engine architecture

In this thesis, I focus on the data placement policies and omit systems details. Section 2.1.2
gives an overview of the search engine architecture. In Section 2.1.3, we consider the prob-
lem of placing new documents, that have just been discovered by the Web crawler. Then,
in Section 2.1.4, we describe the index replication protocol, that learns from user queries to
dynamically adjust the content of the index and minimize query forwarding. Finally, Sec-
tion 2.1.5 concludes.

2.1.2 Architecture

A search engine consists of three main components:

• The crawler fetches documents from the Web and discovers new content by following
hypertext links.

• The indexer processes the collection of documents fetched by the crawler to generate
an inverted index. For each term t present in the collection, the inverted index contains
a posting list, i.e. a list of the documents that contain t.

• The query processor receives user queries and processes them against the index to iden-
tify relevant results. Web search generally relies on conjunctive query processing [88],
which means that a document has to contain all the terms in the query to be in the
result set. The search engines then identifies the top-k (typically k = 10) documents
having the highest relevance score and returns them to the user.
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We consider a distributed search engine comprising a set of search sites S deployed across
geographically di↵erent regions. Collectively, the sites form a search engine indexing a collec-
tion of documents D. We assume that each search site has a fixed index capacity, either due
to limited resources, or arbitrarily chosen to reduce query processing time. We express this
limit as a number of postings, i.e. the sum of the length of all the posting lists in the index.
Users are very sensitive to the quality of a search engine. Thus, we decided to not make any
trade-o↵ on the relevance of search results: the distributed search engine must return the
same results as its centralized counterpart for any query submitted to any search site.

Figure 2.1 gives an overview of the architecture of the distributed search engine. To
remain concise, this figure only represents two sites s, s

0
2 S and details s. As explained in

Section 2.1.1, the main goal of this work is to specialize the index of each search site to answer
the queries of the users in its region and avoid query forwarding. Hence, while geographically
distributed crawling is an interesting research problem [45], we focus on indexing and query
processing. For the sake of simplicity, we consider the case of a single crawler. The distribution
of the search engine architecture starts after the crawler, with the master site selection. We
now detail the indexer and query processor of the distributed search engine.

Assignment of documents to search sites In a distributed search engine, each search
site has its own index and processes the queries of the users in its region. It is therefore
important to carefully select documents to index in each site and tailor each search site for its
users. For a short response time, a search site must be able to process most of the queries it
receives using its local index alone. Indexing documents that are popular in a region enables
locality. However, it is also important to limit the number of documents indexed at each site
for scalability reasons, and to reduce query processing latency [21]. Upon its discovery by the
crawler, each document D 2 D is assigned to a single master site s 2 S and is fully indexed in
the Master Index of this search site MI s. The master selection generates a partitioning of D,
and results in a minimal index, with each document indexed in a single location. The presence
of the master index guarantees the search results quality: it is always possible to execute a
query on all search site and merge the results to obtain the same results as a centralized search
engines. Evidently, broadcasting search queries to all sites is not desirable, as it incurs a large
processing cost and increases response time. Hence, our goal is to select for each document
the site where it is most likely to be requested as a master. The challenge is that master
assignment is proactive: a document is assigned upon its discovery by the crawler, before
it appears in search results. We detail di↵erent methods for the master selection process in
Section 2.1.3 and evaluate their performance.

Full documents replication The popularity of Web pages typically follows a power law:
while most Web pages are unpopular, a few of them are requested very frequently. A Web
page might present a high locality, being popular in a single region (e.g. Le Monde in France),
or be popular across many regions (e.g. IMDb). Distributed search engines work better in a
context where documents have a strong locality. Indeed, this means that each document only
needs to be indexed by the search site located in the region where it is popular. Fortunately,
a large fraction of Web pages exhibit a high divergence in their popularity across regions [58].
There are still documents which are popular across region boundaries and are requested by
users of di↵erent search sites. When a document D is frequently requested at a search site
s, and s

0
6= s is the master of D, s can replicate the document by indexing it in its Shadow
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Index SI s. Contrary to the master site selection process, replicating documents in the shadow
index can be reactive as it does not a↵ect the quality of search results, only likelihood that
all results can be found locally. Section 2.1.4 describes our document replication solution.

Distributed query processing and partial index replication In a distributed search
engine, a query is submitted by a user to the search site of her region. This query is first
processed locally, on the documents indexed in the master and shadow indexes (i.e. on the
content of MI s and SI s), to obtain local results. A query forwarding heuristic is then in
charge of deciding whether local results are su�cient and can be returned immediately, or
if another search site could provide better results, in which case the query is forwarded.
As explained previously, our goal is to always return exact results. Consequently, the query
forwarding heuristic considered in this work is conservative: it can generate false positives (i.e.
forwarding when local results were already exact), but no false negatives (i.e. not forwarding
when a document not indexed locally should be added to the results). Hence, the heuristic
at site s must answer the following question: is there a possibility that a document can
score higher than the k best results computed from MI s and SI s? To answer this question,
the heuristic leverages properties of the search engine ranking function to compute an upper
bound on the score of documents which are not indexed locally. Equation 2.1 presents the
function s(D |Q) that computes the score of a document D given a query Q.

s(D|Q) = wff(D) +
wg

|Q|

X

t2Q
g(D|t)

r(D|t) = wff(D) + wgg(D|t)

s(D|Q) =
1

|Q|

X

t2Q
r(D|t)

(2.1)

This simple function was introduced in [13] and expresses the fact that a document D has a
query independent quality score f(D) (e.g. PageRank [22]) and a relevance score g(D|t) for
each term of the query t 2 Q. The partial score r(D|t), combining both quality and relevance,
is maintained in the posting list of t. Each search site maintains a Forwarding Index that
contains portions of the posting lists of other search sites. This partial data is then used
by the forwarding heuristic to bound the score of results of other search sites. We show in
Section 2.1.4 how fragments of posting lists are selected for replication.

2.1.3 Proactive placement: Master selection

Problem definition We consider the problem of selecting exactly one site for each docu-
ment fetched by the crawler. This site is referred to as the master of the document, and is
responsible for keeping it in its Master Index. Master site selection relies on a scoring function
mScore such that:

master : D ! S

mScore : D ⇥ S ! R
master(D) = argmax

s2S
mScore(D, s)

(2.2)

Hence, our objective is to design a mScore function that produces higher scores when it
predicts that the document D matches the interests of the users of site s.
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Document assignment by language The first feature we consider for mScore is the
language of the document. Regional documents are more likely to be requested from the
countries whose language is the same [20]. Using past search engine activity, we define mScore
as the the conditional probability p(s|l): given that a document in language l is returned to a
user, what is the probability that the user is querying site s? This solution is rather simple, as
the only requirement is to provide the crawler with a language classifier and the distribution
p(s|l).

Document assignment by likelihood While predicting the language leverages the con-
tent of the document, it remains a coarse grain information. Many terms, including names
and locations, can be used to make a more accurate estimation. Hence, we propose to com-
pute mScore using a probability estimation based on the distribution of terms. The optimal
placement for a document D at a master site s depends on the queries that will be issued to
s in the future Q

f
s in which D appears among the top results. We make use of two sources of

information: Cs is a random vector that represents the content of site s, and Qs is a random
vector representing the most recent query stream processed by s. Both these information can
be extracted from the cache of the search engine or its query logs. We want to select the most
probable site maximizing the following log-likelihood:

log p(s|D) =

Z
log p(s|D,Q

f
s )p(Q

f
s |D)dQf

s

=

Z
log p(Cs,Qs|D,Q

f
s ) + log p(Qf

s |D)dQf
s

(2.3)

In order to estimate Q
f
s , we make use of Qs, i.e. we estimate that a recent query stream is

representative of future queries.

log p(s|D) ⇡

Z
log p(Cs,Qs|D,Qs) + log p(Qs|D)dQs

⇡ log p(Cs|D) +
1

|Qs|

X

Q2Qs

log p(q|D)
(2.4)

This formulation has two components: one that uses the content of a given site and its
relatedness to the document p(Cs, D), and another one that uses the available query stream
Qs as a source of evidence. We relate to the former probability with the term distribution of
the site, and the latter as the fraction of queries that are invalidated by a given document.

The term distribution probability can be estimated using a similarity function, in the
same way standard language models score documents with respect to their likelihood to a
query. The rationale is that if the contents of the documents returned by a site matches
the queries it receives, we should assign a new document to the search site that has the
closest term distribution. To estimate p(Cs|D), we employ the language-model-based KL
divergence [98], which measures how similar a term distribution (query) is with respect to a
reference distribution (document). We consider two di↵erent ways to obtain Cs, the content
of search site s. The first one uses the content of the documents returned as results to the
users of the site, while the second approach directly uses the term distribution of user queries.
It is important to notice that both of these approaches are directly driven by user activity,
and not influenced by the master selection process. This avoids propagating errors based on
previous erroneous master assignment decisions.

11



Probability p(Qs|D) represents the likelihood of the query stream to the document. This
has been studied in the past in the context of cache invalidation. Search engines cache query
results to avoid computing them multiple times when a query is repeated. Cache entries
need to be invalidated when indexing new documents to avoid results staleness. This can be
done by estimating which queries present in the cache would return di↵erent results given the
presence of the new document [17]. Master site assignment takes place upon the discovery
of the document, and thus cannot directly rely on the appearance of the document in search
result. However, cache invalidation gives us knowledge on which past queries would have
returned the new document in their top-k results if it had been in the index at that time.
This is expressed as:

p(Qs|D) =
1

|Qs|

X

Q2Qs

I(Q,D) (2.5)

where I(Q,D) is 1 if D would be in the top-k results for Q (i.e. indexing D invalidates the
cached results for Q) and 0 otherwise. Contrary to the probability based on term distribution,
cache invalidation considers exact queries that were submitted to s, and the impact of D on
their results. This information is more precise than considering all queries simultaneously
as a bag of words, since is maintains the co-occurrence of terms in queries. However, not
all documents cause cache invalidation, so this method does not indicate a more important
region for all documents.

Evaluation We use a dataset D of 31M Web pages obtained from a Web crawl and a
workload Q of 7M queries from a commercial search engine. In our experiments, we assume
that the top-10 documents returned by the search engine to a query are all relevant (k = 10).
Let RQ ✓ D be the set of 10 results for query Q. Each query is assigned to one of 5 search sites

based on its country of origin. Q
f
s are test queries of site s, and Ds the documents assigned

to s by the master selection method evaluated. Our evaluation measure is the locality of the
results returned by each site, i.e.:

locality(s) =
1

|Q
f
s |

X

Q2Qf
s

RQ \Ds

|RQ|
(2.6)

Given that some popular Web pages are requested by queries originating from di↵erent
sites, it is impossible to achieve 100% locality at all sites. We first define an optimal baseline
for master assignment that assigns each document to the site that requests it the most in the
test queries. This gives us a performance upper bound of 72.9%.

In spite of being a simple feature, master selection by language achieves a performance
of 38.1%. In our dataset, 58% of the documents are in English, and over 30% of the results
of each site are in English. When performing assignment by language, all these documents
are sent to a search site assumed to be in North America (80% results in English). This
significantly limits performance. However, for less popular languages, this feature performs
quite well.

Term distribution improves on language by considering specific words present in the doc-
ument. Our experiments show that learning the term distribution of a site from the queries
gives better result than learning it from the documents it returns. While documents are
richer, they also contain noise, while queries describe more specifically the intent of a site’s
users. Overall, using the term distribution of queries we achieve an average locality of 45.3%.
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Cache invalidation mimics query processing to determine which recent query results would
be a↵ected by the presence of the new document. Hence, it is not surprising to see that it
gives the best results, with 52% locality. However, it can only be applied to 24% of the
documents, since most of them do not trigger any invalidation. On this subset of documents,
term distribution achieves 48.7% and language 39.5%. Since term distribution and cache
invalidation can be interpreted as probabilities, it is possible to combine them. This leads to
a performance of 52.6% on documents that trigger a cache invalidation, and 46% overall.

These experiments indicate that it is possible to improve query processing locality in a
distributed search engine by predicting which search site is most likely to request a document.
Measuring the similarity between a new document and terms used in the queries of each site
leads to good results, which can be further improved by using information from the cache
invalidation protocol. However, predicting where a new document will be popular remains a
di�cult task. In addition, many popular documents are requested at several sites. Hence,
in addition to the master index, each search site is given additional information in a shadow
index and a forwarding index. Contrary to master assignment, these indexes are maintained
in a reactive manner, so they adjust to changes in user queries. The protocol maintaining
them is presented in Section 2.1.4.

2.1.4 Reactive placement: Index replication

Problem definition Following the master selection process (Section 2.1.3), the collection
of documents D is partitioned and indexed across search sites. This ensures the quality of
the results through a conservative query forwarding process. Our goal is now to reduce query
processing cost and latency by increasing the number of queries for which a search site can
provide exact results locally, without resorting to query forwarding. As we did previously,
we estimate Q

s
f , the future queries received at site s, with a recent query stream Qs. At any

point in time, we aim at maximizing the locality of queries in Qs to increase the probability
that future queries are answered locally.

RQ ✓ D is the set of the k documents obtaining the highest scores for query Q according
to the search engine’s ranking function s(D|Q) (Equation 2.1). A site s 2 S has to fulfill two
conditions to answer Q locally.

1. The documents of RQ must all be indexed an copied locally. The search site needs to
compute an exact score for each document to display them properly ranked. In addition,
it needs a copy of the document to generate the snippet presented on the results page,
and also in the case that it uses a two-phase ranking [26]. This requirement can be
expressed as follows:

8 D 2 RQ, D 2 MIs [ SIs

2. The search site must be able to determine, using local data only, that no other document
could potentially score higher than the lowest score of the results:

8 D 2 (D \RQ), 8 D
0
2 RQ, sBound(D|Q)  s(D0

|Q)

where sBound(D|Q) is the function that computes an upper bound on the score of
document D for query Q using only local information, i.e. information from MI s, SI s
and FI s
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Figure 2.2: Forwarding heuristic on FI s

Document replication using a Knapsack model The cost of indexing a document is
equivalent to the number of posting list entries required. To simplify the problem, suppose
that all documents contain the same number of terms and therefore have the same cost for
full indexation (SI s). The problem we are trying to solve is a particular form of the knapsack
problem in which objects selected are queries. The utility of selecting a query is proportional
to its frequency, while its cost is equal to the indexing of the results (SI s), as well as the
partial information ensuring the quality of results (FI s). Given that each query has k results,
we could make the simplifying assumption that all queries have the same cost: indexing
k documents. The knapsack problem is NP-hard, but has greedy heuristics that perform
well. The most common approach consist of selecting objects in a decreasing order of value

cost .
However, in our case, the complexity arises from the fact that many queries share results,
so the cost of selecting a query depends on the other queries selected. This makes these
heuristics unusable in our setting.

Document replication using a Graph model We can model the dependencies between
queries and documents as an hypergraph: documents are vertices, and a query Q is an edge
connecting its results RQ. Replicating a set of documents becomes equivalent to selecting a
subgraph, and it allows a search site to meet the first local-answer criterion for all queries
present in the subgraph. Hence, we can formulate selection of documents to be replicated in
SI s as a densest subgraph selection, where the weight of an edge is linked to the frequency
of the query. Chlamtác [30] et al. found approximation bounds for this problem in the case
where each edge is connected to exactly 3 vertices. This is however not the case in our setting,
as generally k � 10.

Document replication using online caching Search engine workloads can vary over
time, with new search topics becoming popular overnight (e.g. death of a celebrity, political
scandal) and new documents being continuously discovered by the crawler. This consideration
indicates that an online approach is favorable, as it allows for faster adaptation of the index.
Furthermore, a practical solution should use a minimal amount of computation and memory,
so as to ensure that as many resources as possible are dedicated to query processing. Inspired
by previous work on Web caches [87], we propose a Reactive Indexing Protocol (RIP) that
continuously monitors query execution to trigger replication decisions.

To understand RIP, it is first necessary to describe in details what triggers a query for-
warding decision, and more specifically how sBound(D|Q), the function that computes an
upper bound on the score of documents that are not indexed locally, works. The score func-
tion of the search engine is a linear combination of partial scores, for each query term. Thus,
the search engine can rely on the seminal NRA top-k processing algorithm [55], with a few

14



adaptations to deal with partial knowledge caused by the distributed setting. In NRA, post-
ing lists are sorted by score and processed from top to bottom. NRA maintains a sorted heap
of potential top-k results with upper and lower bounds on their scores. These bounds are
updated as the processing progresses down the posting lists. As soon as the upper bound of
the k + 1th document is lower than the lower bound of the k

th document, the top-k results
are identified an the algorithm terminates. In the worst case, NRA has to process the full
posting lists, but, in most situations, it terminates early and only processes a small fraction
of the index. When processing a query, the search engine starts by computing the top-k
results on documents that are indexed locally (MI s and SI s) and obtains a first version of
the top-k. The query forwarding heuristic then executes NRA over the Forwarding Index
FI s, that represents all other documents, and obtains computes upper bounds on scores. The
posting lists of FI s are only partial, but they are continuous. A posting list replicated by s

for a term t down to the score value v contains all the documents of D whose master is not
s and whose partial score r(D|t) is higher than v. Therefore, for a given term, FI s provides
either an exact partial score, or an upper bound v. While processing, the forwarding heuristic
ignores the documents present in the shadow index SI s, as they are already evaluated.

We illustrate the forwarding algorithm with the example of Figure 2.2. The query Q is
red panda facts and the figure displays the posting lists of FI s for those terms. The top
documents for red are replicated in SI s (in bold), so they are not considered. The following
document is d555, so we know its exact partial score for this term. This document is also
present in the posting list of panda, so we will also find its exact partial score for panda as
NRA progresses. However, d555 is not present in the posting list of facts. The last known
document in this posting list is d135. As a consequence, we use its partial score as an upper
bound of r(d135, facts). This gives us sBound(d555|Q) = 23.1+17.3+14.9

3 = 18.4. We can also
compute sBound for any document absent from these posting lists using the scores of the last
entries (22.8+16.7+14.9

3 = 18.13 in this example).
Using FI s, the forwarding heuristic computes the highest possible score for a document

that is not fully indexed locally and compares it with the score of local documents (MI s
and SI s). If this score bound is higher, the query is forwarded to other search sites. To
avoid this situation, RIP adjusts which posting lists are prioritized in FI s. More specifically,
RIP controls replication by selecting, for each term t, two replication thresholds expressed
in partial score values: the document replication threshold td t and the postings replication
threshold tpt.

8 D 2 D, r(D|t) � td t ^master(D) 6= s =) D 2 SI i

8 D 2 D, r(D|t) � tpt ^master(D) 6= s =) D 2 FI i[t]

In the example described on Figure 2.2, td red = 24.2 while tpred = 22.8. By lowering td t,
RIP decreases the highest scores associated to t from a non local document. Lowering tpt
decreases the lowest score associated to t in FI i. Both these actions increase the information
related to the term t and decrease the amount of query forwarding. However, their impact
and cost can vary significantly. Fully replicating a document is costly, as it generates one
posting entry per unique term in the document. On average, a Web page contains 250 unique
terms [99], so replicating a document is 250 times more costly than replicating a posting entry.
Given that the di↵erence in partial scores between entries are, in most cases, higher among
high quality documents, fully replicating a document often has a higher positive impact on
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query forwarding. RIP achieves a good balance between documents and postings replication
to use the replication budget as e�ciently as possible.

Evaluation We use the same distributed search engine setup and dataset as in the eval-
uation of Section 2.1.3. As explained in the problem definition, our goal is to maximize
the number of queries that can be answered locally, which is the equivalent of minimizing
query forwarding. Following the master assignment phase, each document is indexed by a
single search site. Then, each site has a replication budget that can be used to either fully
index documents it is not the master of (SI ) or replicate fragments of posting lists (FI ). We
compare 3 di↵erent replication policies:

• Static Documents replication (SDR): Using the training queries, we determine which
documents are globally popular and replicate this static set across all sites [13, 25]. In
this case, FI contains an upper bound per term for non replicated documents, which
corresponds to the thresholds of Baeza-Yates et al [13].

• Reactive Documents Replication (RDR): Each search site reactively determines which
documents are most frequently part of the results of their users and replicates the most
popular ones. This setup computes a di↵erent set of replicated documents for each site
to match the activities of their users. As with SDR, FI only contains one bound per
term, dynamically adjusted to reflect document replication.

• Reactive Indexing protocol (RIP): Each site reactively replicates blocks of documents
and posting lists, as well as individual documents when they generate false positives
in query forwarding. This is the approached based on online caching described in this
section. Each site replicates data matching the needs of its users, while preserving
continuity on information in posting lists.

We evaluate the impact of each approach on the proportion of local queries for varying
replication budgets and report results on Figure 2.3. SDR replicates the same documents
on all search engines, so it does not optimize replication based on the behavior of the users
of each specific search site. Hence, it obtains the lowest performance, as users of di↵erent
regions are generally interested in di↵erent documents. For a low replication budget (below
100k documents), we observe that simply replicating the results of the queries is more e�cient
than replicating to FI , so RDR performs best. However, as the budget increases, RIP clearly
outperforms RDR.With a replication budget of 1M documents, each search site has an average
indexing capacity of 7,119,982 documents (22.5% of the total collection), which represents an
overhead of 14% over a setup without any replication. In this configuration, RIP raises the
amount of queries processed locally by 25% while RDR raises it by 13%.

These experiments show that it is necessary to integrate the index replication process with
the query processing function. RIP takes into account the properties of top-k algorithms to
ensure not only that relevant documents are replicated locally, but also that the search engine
is able to lower the score bound on unseen documents su�ciently to avoid query forwarding.

2.1.5 Conclusion

Di↵erent people from di↵erent regions of the world request di↵erent content. While this simple
fact seems obvious, based on language di↵erences alone, using it to design more scalable search
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Figure 8: Query locality wrt replication budget

ing global statistics. Indeed, as observed in Section 4.1, the
users of each site are interested in di�erent documents.

For a low replication budget, below 100,000, we observe
that simply replicating the results of the queries is more
e�cient than replicating blocks of documents and posting
lists. However, as the budget increases, the blocks replica-
tion scheme clearly outperforms the replication of individ-
ual documents. This di�erence grows with the amount of
space dedicated to replication. With a replication budget of
1,000,000 documents, each search site has an average index-
ing capacity of 7,119,982 documents (22.5% of the total col-
lection), which represents an overhead of 14% over a setup
without any replication. In this configuration, RIP raises
the amount of queries processed locally by 23%, while RDR
raises it by 13%. Note that the � parameter of RIP, used
to compute replication thresholds, is set to 0.6. In practice,
any value between 0.55 and 0.65 obtains good performance,
above 59.7% with a budget of 1,000,000.

Detailed performance analysis.
We detail the performance of RDR and RIP in Figure 9.

With a small replication budget, it is most e�cient to focus
replication on single term queries. They only require lit-
tle replicated data to be answered locally, as the results are
simply the documents with the highest scores for the query
term. RDR performs well for these easy queries. Given
that one-term queries are less likely to be unique, the tem-
perature of their results increases over time and they are
replicated. However, when the replication budget increases,
it becomes more interesting to also replicate data for longer
queries. The results show that RDR is unable to answer
these queries, even with a large budget. The documents
that are part of the results may be replicated. However,
given that the corresponding posting lists are not replicated,
the search engine is unable to ensure that the query results
are optimal, and the forwarding heuristic returns a false
positive. RIP can compute low thresholds, even for longer
queries, and is able to answer locally over 10% of long queries
by replicating continuous blocks of documents and postings.

Query replication cost analysis.
Figure 10 presents the position of the query results in

the posting list blocks of RIP’s forwarding index, depending
on the query length. For a one term query, the result set
comprises the documents with the highest partial scores for

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5+

P
ro

p
. 

a
n

s.
 lo

ca
lly

, 
ig

n
o
ri
n

g
 c

a
ch

e
 h

its

Query length

RDR (budget=10,000)
RIP (budget=10,000)

RDR (budget=1,000,000)
RIP (budget=1,000,000)

Figure 9: Query locality wrt query length

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5  6  7  8  9  10

P
ro

p
o
rt

io
n
 o

f 
re

su
lts

 (
cd

f)

Posting list block number

query length = 2
query length = 3
query length = 4

query length = 5+

Figure 10: Depth of results in posting lists

the term. Hence, they are all located in the first posting
list block, which is a small amount of information for RIP
to replicate to answer these queries correctly. However, as
the length of the query increases, the matching documents
are less frequent, due to the conjunctive nature of the query
processing. As a consequence, they are located in deeper
blocks, and require more replicated information to enable
local processing. For example, 67% of the results of 5-term
queries are located in the 10th block. Given that the size
of blocks is a power of two, this data is costly to replicate,
making forwarding more frequent for long queries.

New queries.
The replication algorithms rely on previous queries to

compute a replication scheme and increase the probability of
answering future queries locally. When a query is repeated,
it can be answered by the results cache, if it falls within the
TTL, or by the data replicated upon the first occurrence
of the query. New queries however are more challenging.
We examine the query processing locality for new queries
on Figure 11, with a replication budget of 1,000,000.

SDR is particularly e�cient at processing new one-term
queries locally, since it benefits from document popularity
information from all search sites. A query that is processed
for the first time in a site might have been present at another
site during the training period. Consequently, the static
replication has included it in the computation of the list of
replicated documents.

838

Figure 2.3: Query locality wrt. replication budget

engine architectures is quite challenging. The main reason is that search results quality is of
the utmost importance, so every request must be answered as if each search site was hosting a
full copy of the Web index. Whenever a search site is missing content to ensure the accuracy
of its results, the query is forwarded to other search sites, which incurs a high processing cost
and latency.

We divide the problem of selecting on which search site a document should be indexed in
two phases:

• In the case of new documents that have never been returned as search results before, we
compare the distribution of terms in the documents to the queries of the users in each
site, and select for each document a single master site that is responsible for indexing it.
When the search engine has a cache, we can also rely on the cache invalidation protocol
to estimate the proportion of queries that would have returned this document if it had
been indexed previously.

• In the case of a document that is already indexed at a master site, a di↵erent search
site can replicate this document is its absence causes a significant amount of query
forwarding. The main di�culty is that having all correct documents is not enough to
avoid query forwarding, the search site must also ensure that no unknown document can
score higher. This is done by integrating with top-k processing algorithm and replicating
score bounds from other search sites.

This work integrates existing search engine architectures (indexer, query processor, cache
. . . ) with a fully data-driven content assignment policy. As each search site specializes for
the queries of its users, search engines become more scalable and less costly to operate. Our
approach was validated using a real dataset consisting of a Web crawl and user queries from
di↵erent countries. While experimental results were promising, there was unfortunately no
real deployment within Yahoo! due to a change of focus in the company.
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2.2 Single data center: Key/Value-based applications

2.2.1 Context

Distributed applications are deployed in clusters of servers that collaborate to provide a
service. As an application becomes more popular and its workload increases, more severs are
added to the pool of resources available. In this section, we are interested in the problem
of dividing the workload among these servers. Many applications are modeled following the
key/value paradigm. Pieces of data (values) are uniquely identified by a key, and can be
updated or retrieved. For instance, in a social network such as Twitter, the publications of
a user (value) can be stored using the identifier of the user as a key. When the user posts
a status update, the value associated to her identifier is updated. When she browses her
social feeds, the values associated to her friends are retrieved. Another example of key/value
application is a URL shortener service such as Bitly. Each time a user clicks one of the
shortened URLs (key), the popularity counter associated to it (value) is updated.

In this work, we consider two building-block operations of these key/value applications:

• Multi-get query: This query consists in retrieving content associated to multiple
keys: multiget(k1, k2) fetches content associated to keys k1 and k2. This type of query
represents a significant proportion of the workload of social networks such as Twitter
or Facebook [91]. The multi-get query can be used to construct the social feed of a
given user by retrieving content generated by all of her friends. Hence, a user following
50 twitter accounts triggers a multi-get to 50 di↵erent keys whenever the social feed is
updated.

• Streaming sequence: This operation consists in streaming a message to di↵erent keys
sequentially: stream(m, k1, k2) sends messagem first to key k1 and then to k2. Note that
the sequence of keys is not always known in advance from m alone: k2 can depend on
the combination of m and the current value associated to k1. This operation is common
in stream processing applications. For instance, when a customer buys products in a
store, her receipt can be first routed to the user identifier to update her purchase history,
then to the store identifier to update its stock, and depending on the stock count, to
the appropriate provider.

The common feature of these two operations is that they access the data associated to several
keys, in parallel or sequentially. As the application is deployed on a varying number of servers,
it requires an application level routing service able to determine which server is currently
hosting data associated to a given key. The most common strategy to implement this type of
routing is a hash-based pseudo-random assignment: server = hash(key). The main advantage
of this policy is that routing is stateless: any server can directly route to the recipient server
of any key without requiring a consistent view of a routing table. The main drawback is
that this deterministic yet random assignment leads to a significant spread of keys accessed
by each operation. Indeed, the likelihood that two keys are located on the same machine is

1
#servers . As the application is scaled to a larger number of servers, the average number of
servers each operation needs to access increases, up to, in the worst case, one per key.

Servers within a data-center are typically connected following a hierarchical tree-shaped
network structure. Figure 2.4 provides an example of a three-level tree of switches, with a
core tier at the root of the tree, an intermediate tier, and an edge tier at the leaves of the
tree. The core tier consists of the top-level switch (ST), which connects multiple intermediate
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Figure 2.4: Hierarchical network architecture

switches. The intermediate tier consists of intermediate switches (SI), and each of them
connects a subset of racks. Finally, the edge tier consists of racks, and each rack is formed
by a set of servers connected by a rack switch (SR). This hierarchical structure leads to
heterogeneous communication costs between servers. Messages exchanged between servers
of the same rack only need to traverse the rack switch. However, messages between servers
located in di↵erent branches of the tree also require going through intermediate switches, and
potentially all the way to the top-level switch. As the resources needs of the application grow,
the number of servers increases, and an application originally deployed in a single rack spreads
to multiple racks. In this situation, hash-based key assignment generates communications
between random pairs of servers, which tends to saturate top-level and intermediate switches,
leading to degraded performance and limiting scalability.

The solution we propose to counteract this e↵ect is to account for the heterogeneity of
network architecture, and replace pseudo-random data placement by a stateful routing policy
designed to optimize the likelihood that keys accessed by an operation are located at close
network distance, ideally on the same server or within the same rack.

The work presented in this section was started during my post-doc at Yahoo! Research
Barcelona, and was continued at the University of Grenoble in collaboration with the ERODS
research group. It is detailed in the following publications:

• DynaSoRe: E�cient In-Memory Store for Social Applications

Xiao Bai, Arnaud Jégou, Flavio P. Junqueira and Vincent Leroy
In Proceedings of the 14th International Middleware Conference (Middleware), 2013,
pages 425–444.

• Locality-Aware Routing in Stateful Streaming Applications

Matthieu Caneill, Ahmed El Rheddane, Vincent Leroy and Noel De Palma
In Proceedings of the 16th International Middleware Conference (Middleware), 2016,
pages 1–13.

In Section 2.2.2, we first consider the case of an o✏ine optimization for a static workload
and model it as a graph partitioning problem. We then move on to the online optimization
problem. Section 2.2.3 presents the case of a social network application using multi-get
queries. Then, Section 2.2.4 presents the case of streaming applications relying on sequentially
routing messages to keys. Finally, we conclude in Section 2.2.5.
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2.2.2 O✏ine approach: data placement as a graph partitioning problem

Problem definition Given an application deployed on a set of servers S and maintaining
data associated to a set of keys K, our goal is to assign each key k 2 K to a server s 2 S.
Ks ✓ K represents the set of keys assigned to s, and serv(k) = s indicates that k was assigned
to s.

Our first goal is to optimize locality : given an operation of the application, we want
to minimize the cost of messages exchanged between servers. We assume the existence of a
netCost(s, s0) function aware of the network topology and indicating the network cost of com-
municating between servers s and s

0. By definition, netCost(s, s) = 0, while netCost(s, s0) <
netCost(s, s00) if s and s

0 are in the same rack, while s and s
00 are on di↵erent racks.

In the case of multiget(k1, . . . , kn) executed from a broker b, we want to minimize the cost
of contacting all servers hosting keys:

X

s2
Sn

i=1{serv(ki)}

netCost(b, s)

This can be done by ensuring keys are co-located on the same server to reduce the number
of servers reached by the query, but also by ensuring that these servers are in the same rack
as the one executing the query, b.

Similarly, in the case of a streaming operations stream(m, k1, . . . , kn), our goal is to min-
imize the cost of transitions between keys:

n�1X

i=1

netCost(serv(ki), serv(ki+1))

In this case, the cost is reduced when consecutive keys ki, ki+1 are located on the same server
or, failing that, close servers.

Each key is associated a weight weight(k) representing the resources a server spends to
serve queries related to k. Depending on the application’s bottleneck, this weight can be
related to the size of the data associated to k, or the frequency at which k is accessed. Hence,
the load of a server is given by:

load(s) =
X

k2Ks

weight(k)

Our second objective is to ensure load balancing, i.e. ensure that the load of all servers is
comparable. This secondary objective is necessary to ensure that no server is overloaded,
as the trivial solution of assigning all keys to the same server would maximize locality. We
express load balancing using a maximum imbalance factor ":

8 s 2 S, load(s)  (1 + ")min
s02S

load(s0)

i.e. no server is assigned a load higher than (1 + ") times the minimum load.

Modeling as a graph When the workload is steady, it is possible to gather statistics
on queries executed, compute an o✏ine assignment, and deploy the application using this
optimized configuration. In our context, the natural solution to describe the workload is a

20



read proxy
for u1

read proxy
for u2

view u1 view u2 view u3 view u4

Figure 2.5: Graph obtained with multi-get queries in a social network. u1 follows u2 and u3

while u2 follows u1, u3 and u4.

graph of keys with edges representing communications between servers handling these keys.
For instance, Figure 2.5 presents a graph resulting from multi-get queries. In the case of a
social network, the structure of the graph is given by friendship relations between users, while
observing the real workload gives insight on the frequency of queries and thus the weight of
edges. Indeed, it is more important to optimize queries for users that refresh their twitter
feed every 10 minutes than for users that consult it once a week. Figure 2.6 is an example of
graph obtained from streaming sequences. In this context, the graph structure is discovered
from application traces, as it relies on correlations between di↵erent fields of messages.

Once the graph is obtained, assigning keys to a set of servers S consists in partitioning
the graph into |S| subgraphs, where the keys of each subgraph are assigned to a single server.
Graph partitioning aims at minimizing the cost of edges traversing partitions, which is con-
sistent with our locality objective. Furthermore, several partitioning algorithms, including
the ones from the METIS library [59], support constraints on the balance of clusters, and
thus meet our load-balancing objective. Hence, we can implement an o✏ine algorithm based
on METIS that gathers traces from previous executions of the applications, and generates a
static assignment of keys to servers. This is the approach used by Schism [33] to improve the
locality of transactions in a distributed database. In our case however, it only constitutes a
starting point. Indeed, we aim at supporting workloads that vary over time. This requires an
online approach, able to monitor the workload and reconfigure the system dynamically with-
out interrupting the application. In Section 2.2.3, we detail the online configuration process
for multi-get queries, and in Section 2.2.4, we present our approach for streaming applications.

2.2.3 Online multi-get

Architecture In the context of multi-get queries, the system we developed, DynaSoRe
(Dynamic Social stoRe), is specifically designed for handling social feeds (e.g. Twitter).
Publications are stored as producer-pivoted views, i.e. all publications of a user are stored in
a single data structure keyed by the user identifier. The API provides two functions:

• read retrieves the views of all the friends of the user, according to the social network.
This function relies on the multiget query introduced earlier, and aims at generating
the social feed of the user.
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France Spain Vietnam

#Paris #Food #Sun #Springrolls

Figure 2.6: Graph obtained with routing sequences. The first key corresponds to a location,
while the second key is a hashtag. Tweets posted in France are associated with hashtags
#Paris and #Food.

• write appends a publication to the view of the user. DynaSoRe is designed as an
in-memory cache, so adding a message to a view evicts the oldest publication to keep
its size constant. We assume that publications are simultaneously persisted to a stable
storage.

Each user is assigned two proxies deployed on broker servers and in charge of executing her
read and write operations. The rationale behind separating the read proxy and the write
proxy is that these functions access di↵erent views (friends’ views against user view), and
so their optimal positioning with respect to the hierarchy of servers can di↵er. The view of
the user can be replicated to several servers. This further improves locality, as a read proxy
can chose to access the closest replica of the view to further reduce the load of the top-level
switch. The trade-o↵ is that writes must be sent to all replicas of the view, and that memory
consumption increases.

Gathering of statistics DynaSoRe starts from an initial data placement obtained from a
clustering algorithm based on previous execution traces, as described in Section 2.2.2. Then,
DynaSoRe continuously monitors the workload to continuously adjust and improve locality.
DynaSoRe maintains statistics about the frequency and the origin of each access to a view.
This information is stored on the servers, along with the view itself. The origin of an access
to a view is the switch from which the request accessing this view originates. Consequently,
two brokers directly connected to the same switch correspond to the same origin. The writes
to a given view are always executed from the write proxy. However, reads can originate from
any broker in the cluster, so their origin should be tracked.

To reduce the memory footprint of access recording, DynaSoRe makes the granularity
coarser as the network distance increases. Considering a tree-shaped topology, a server records
accesses originating from all the switches located between the server and the top-level switch,
as well as their siblings. For example, in Figure 2.4, a server located in the rack of SR1,1

records accesses from SR1,1, SR1,2, SR1,3, SI2, SI3. In this way, in a cluster ofm intermediate
switches and n rack switches per intermediate switch, every replica records a maximum of
m� 1 + n origins instead of m⇥ n. While significantly reducing the memory footprint, this
solution does not a↵ect the e�ciency of DynaSoRe, as the algorithm still benefits from precise
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information when making the final adjustments on the assignment of a view. In addition, to
adjust to variations of the workload over time, we use rotating counters to focus on recent
activity.

Data migration policy Each server has a fixed memory capacity, expressed as the number
of views it can store. DynaSoRe ensures that the view of each user is stored on at least one
server. Each server stores several views, some of them being the only instance in the system,
while others are replicated across multiple servers and therefore optional. Using the view
access statistics, DynaSoRe evaluates the utility of a view on a given server, i.e. the impact
of storing the view on this server in terms of network tra�c. In the absence of the view,
the overhead for read requests is computed by assuming the request would be sent to the
closest replica of the view instead. The cost of updating the view (write) is then subtracted.
If the utility is negative the cost of maintaining the replica outweights its benefits for read
requests, so the view is immediately eliminated. Each server maintains a utility admission
threshold equal to the 10th percentile of the views they host (or 0 if the server has over 10%
free capacity). If the server reaches 95% memory usage, it eliminates the view replicas having
the lowest utility. Upon receiving a read for a view, the server evaluates the possibility of
replicating it to a server closer to the proxy performing the request. Similarity to the utility
computation presented above, the server evaluates the benefits of this additional replica by
simulating a “what-if scenario” in which the replica exists. If the utility computed is higher
than the admission threshold of the server hosting the new replica, the view is replicated.
When replicating or evicting data associated to a given key, the write proxy of the associated
user acts as a coordination point to ensure that one copy always remains available, and that
writes are propagated to all replicas. Note that while DynaSoRe does not implement a “view
migration” operation per-se, they occur by first replicating the view to a new location, and
then deleting the original view because of its low utility.

Evaluation We consider a social network extracted from Facebook [96] that consists in
3M users connected by 47M friendship links. Each user to the social graph is assigned real
user tra�c extracted from Yahoo! News Activity for a total of 17M writes and 9.8M reads.
Since this Yahoo! application allows users to share news with their Facebook friends, this
combination of datasets represents a realistic setup. When establishing a correspondence
between Yahoo! users and the Facebook graph, we assign the most active profiles to the
users with most friends to account for the correlations observed by Huberman et al. [52].
The data-center considered is simulated. It has a top switch, 5 intermediate switches, each
connected to 5 rack switches, for a total of 25 racks containing 10 servers each. In each rack,
1 server is a broker while the 9 others are used for storage of views associated to keys. The
capacity of the servers is tailored to the dataset, with an additional 50% for replication.

We compare 4 di↵erent data placement policies:

• Random: This policy is a baseline that corresponds to a hash-based pseudo-random
assignment of keys to servers. This policy is used by many distributed data-stores.
Each key is stored on a single server, so this policy does not leverage additional storage
capacity.

• SPAR: This algorithm replicates all the views in a user’s social network on the same
server to implement highly e�cient read operations [81]. SPAR does not consider write
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Figure 2.8: A simple wordcount stream application. S sends sentences, operator A extracts
words, B converts them to lowercase, and C counts the frequency of each word.

costs when creating additional replicas, and does not assume bounds on the capacity of
servers. To obtain a fair comparison, we adapt SPAR to avoid replication when a server
is out of capacity.

• DynaSoRe from random: This is a fully online version of our algorithm described in
Section 2.2.3, where the initial data placement is random.

• DynaSoRe fromMETIS: This is the algorithm described throughout Section 2.2.3, where
the initial assignment of keys to servers is obtained using a clustering algorithm (Sec-
tion 2.2.2).

Figure 2.7 shows the tra�c of the top-level switch throughout the 14 days of the tra�c log
duration. This figure shows that DynaSoRe is able to converge to an e�cient view placement
configuration, even in the case with high variance tra�c. DynaSoRe clearly outperforms the
random baseline, but also SPAR, despite its e↵orts to improve locality. This is caused by
three main factors: (i) DynaSoRe handles limited server capacity by prioritizing replicating
views that have a high impact on tra�c, (ii) DynaSoRe accounts for the network hierarchy to
place data in the vicinity when a server is full, (iii) DynaSoRe evaluates the read and write
costs when replicating data, to avoid high update costs when the read benefits are low. We
can see that DynaSoRe performs better when the initial configuration is obtained through
clustering, while it gets stuck in a local minimum when starting from a random configuration.
These results only show the tra�c of the top-level switch, which is where DynaSoRe has
the highest impact. However, the network tra�c is reduced at all levels, albeit in a smaller
proportion.

2.2.4 Online stream sequence

Architecture Stream processing was developed to continuously execute operators on po-
tentially unbounded streams of data tuples. Apache Storm [90], Flink [27], S4 [73], Samza [11],
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Figure 2.9: PO instrumentation: every instance counts the key pairs it receives and sends,
and keeps the most frequent pairs in memory.

and Twitter Heron [62], are examples of popular stream processing engines. Following the
dataflow programming paradigm, a stream processing application can be described as a Di-
rected Acyclic Graph (DAG). Vertices represent processing operators (POs) that consume
and produce data streams, which flow along edges. A source constitutes the entry point of
the DAG, and streams data tuples, such as posted tweets or uploaded pictures, to POs. Fig-
ure 2.8 represents a simple wordcount application for streams of sentences. POs A and B are
stateless, as they do not update any internal state when processing data, while C is stateful
as it maintains frequency counts. In this work, we are interested in stateful POs, since they
maintain state associated to keys.

The specification of the application DAG indicates which PO is the recipient of another
PO’s output stream. To scale stream processing, each PO is executed in parallel on multiple
instances (POIs) deployed on servers. In the case of a stateful PO, the state maintained is
partitioned horizontally across POIs. Hence, it is important to select which particular POI
receives each tuple of data. This is handles by the fields grouping routing policy, where the
developer selects the field of the tuple that is used as a key in the stateful PO. As mentioned
in Section 2.2.1, the default implementation for fields grouping relies on hash functions. Our
contribution is the addition of routing tables in fields grouping that optimize data placement.
These routing tables indicate, for some keys, the POI they should be routed to. If a key is
absent from the routing tables, the default hash-based policy is used.

Gathering of statistics Data streams often fluctuate over time, particularly when they
are generated by human activity. For example, #breakfast is associated to America and
Europe at di↵erent moments of the day. In addition to diurnal and seasonal patterns, flash
events can occur, generating temporary correlations between keys. It is necessary to detect
these correlations at run time to perform an online optimization of stream routing without
interrupting the execution of the application. For this purpose, we add an instrumentation
tool to stateful POs. For each passing message, a POI extracts the input key, which was
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used to route the data tuple to this instance, and the output key, which decides towards
which POI the message is routed next. Pairs of keys are stored in memory along with their
frequency, as depicted in Figure 2.9. Computing the frequency of pairs of keys online can be
done with the SpaceSaving algorithm [70]. Using a bounded amount of memory, it maintains
an approximated list of the n most frequent pairs of keys. This limitation on the collection
of statistics is, fortunately, not problematic for most large-scale datasets. Indeed, many real
datasets follow a Zipfian distribution [9], with few very frequent keys, and many rare keys.
Identifying the pairs containing the most frequent keys captures most of the potential for
optimization, so the loss compared to an exact o✏ine approach is limited. Whenever the
routing of keys is updated, the statistics are reset to only take into account recent data and
detect new trends.

Data migration policy State migration in the case of stream processing is more complex
than in the case of multi-get queries. Stream workloads are significantly more write intensive,
so data is not replicated and a key is only handled by a single POI. Furthermore, in Dyna-
SoRe (Section 2.2.3), we know that write messages for a given key all go through its write
proxy. Hence, we can use it as a coordinator to control state migration while ensuring data
consistency. In the case of stream processing, a write to a given key can originate from any
POI of the previous PO, so there is no obvious single coordinator.

Every stateful POI holds the state of the keys to which it is associated. When a key is
assigned to a di↵erent POI in the updated routing tables, its corresponding state needs to be
transferred between POIs. Moreover, after POIs migrate the state of their previous keys, they
should no longer receive any message related to this key. This means that preceding POs in the
DAG must have proceeded to their reconfiguration first, and route messages according to the
new routing tables. To this purpose, we opt for synchronized reconfiguration cycles, instead
of a fully on-the-fly approach as in DynaSoRe. A global coordinator gathers all statistics and
generates a new optimized configuration which is deployed regularly. The configuration is
computed using graph partitioning, as described in Section 2.2.2. The challenge is to deploy
this new configuration and migrate data without interrupting stream processing or losing
data. The coordinator synchronizes key migration in a progressive reconfiguration following
the PO order specified by the DAG. This protocol is shown in Figure 2.10.

The reconfiguration protocol is executed by the coordinator C. The coordinator first asks
every running POI to send the collected statistics 1�. Upon receiving them all 2�, it builds
the bipartite graph of the key pairs (see Figure 2.6), partitions this graph with METIS, and
computes the new routing tables. It sends these tables to the respective POIs 3�, and waits
for all acknowledgements 4�. It then enter the propagates phase, and tell the instances of the
first PO to proceed to the reconfiguration 5�. The two instances update their routing table
and exchange the state of the keys whose assignment has changed 6�. After this operation,
they forward the propagation instruction to the instances of the second PO 5�, which in turn
update their routing tables and exchange their states if necessary 6�.

The data stream is not suspended during reconfiguration, so it is possible that a POI
receives a tuple associated to a key while it has not yet received the state associated to it. In
this case, tuples are bu↵ered and are only processed once the state of their key is received.
This solution is preferable to suspending the stream as some stream sources do not support
back pressure and would lose messages. To handle fault tolerance, the coordinator saves all
routing configurations to stable storage before starting reconfiguration. If a POI crashes,
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Figure 2.10: Reconfiguration protocol, forwarding routing tables and key states between POIs.
1� Get statistics. 2� Send statistics. 3� Send reconfiguration. 4� Send ACK. 5� Propagate.
6� Exchange keys.

the guarantees are the ones provided by the streaming engine and are not impacted by state
migration.

Evaluation We implement our algorithm in Apache Storm to evaluate its performance. For
evaluation purposes, we consider the case of a streaming application composed one source, S,
and two stateful POs, A and B. The first PO computes statistics based on the first field of
the tuples by counting the number of occurrences of its di↵erent values, and the second PO
executes the same operation on the second field. Hence, fields grouping is used to route data
tuples to both POs. Each PO is deployed as 6 instances, and we ensure that every instance
of the first PO (A) has a local instance of the second (B).

Our workload consists of tweets crawled from October 2015 to May 2016 using the API of
Twitter. Twitter provides for each tweet a location identifier which can be either the location
of the user at the moment of the tweet, or a location associated to the content of the tweet.
Locations can be countries, cities, or points of interests. Overall, our dataset contains 173
million associations between locations and hashtags. We set our application to first route
using the location, and then the hashtag.

We compare 3 di↵erent data placement policies:

• Random: This is the default pseudo-random key assignment policy based on hash func-
tions.

• O✏ine: This consists of a single data-placement configuration step, corresponding to
an o✏ine approach which is then never updated.
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Figure 2.11: Locality obtained with di↵erent data placement policies

• Online: This consists a regularly optimizing data placement to continuously improve
performance and adjust to changes in the characteristics of the workload.

Our performance measure is locality, i.e. the proportion of data tuples that are processed on
the same server for both POs.

Figure 2.11 shows the evolution of locality over time, Hash-based achieves a locality of
16.6%, which corresponds to a random assignment with 6 servers. After one week, online
and o✏ine both obtain a su�cient amount of data to perform locality-aware routing, which
raises the locality to 49%. However, this value decreases over time in the case of o✏ine, and
stabilizes around 40%. O✏ine preserves locality for stable associations, but fails to leverage
transient ones. Online however maintains a locality in the vicinity of 50%. This shows that
to capture volatile correlations, reconfiguration should be triggered on a regular basis. Our
throughput experiments indicate that a 10% di↵erence in locality can lead to a throughput
gain of 25%. This demonstrates the benefits of the online optimization process in the case of
fluctuating workloads. Note that when generating routing tables, METIS reports an expected
locality of 75%. This di↵erence in performance is explained by two reasons. The first one is
that we only record the most frequent associations between keys, so METIS does not have
perfect information. The second is that data varies between consecutive weeks. It contains a
significant proportion of new hashtags and locations that were not observed previously and
are thus routed using hash functions.

2.2.5 Conclusion

When distributing applications across several servers co-located in a data-center, the most
common strategy is a hash-based pseudo-random assignment of data. However, this simplicity
has a cost: diminishing returns when scaling applications. As more servers are involved, the
probability that pieces of data accessed are located on di↵erent servers increases, which leads
to degraded performance as the number of servers increases.

We consider the case of Key/Value-based applications, such as social networks and stream
processing, as their execution cost is generally dominated by network communications, and not
processing costs. By analyzing execution traces, we can discover correlations between accesses
to specific keys, and place them on the same servers to avoid communications. We used the
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Schism approach [33] as a starting point for an o✏ine optimization using graph clustering.
Our contribution is an extension to online reconfiguration. This allows the optimization of
systems without interrupting their execution, and is also necessary to deal with workloads
that vary over time.

• For social applications relying on the multi-get query, we opt for a fully online-approach.
The data of a given key can be replicated to several servers to improve the locality of
accesses, while replicas with low utility are eliminated. We rely on one coordinator per
key, so the protocol is event-based and is triggered by performance measures triggered
by data accesses.

• In the case of stream processing, an access to a given key can originate from multiple
machines, which makes it more di�cult to maintain the consistency of routing tables.
In this case, we opt for a cycle-based optimization orchestrated by a coordinator on
a regular basis. The computation of an optimal configuration is similar to the o✏ine
approach, and the main focus is on deploying this new configuration through the appli-
cation without interrupting it or losing consistency.

In the case of social applications, our system was evaluated on real datasets through the use
of an event-driven simulator. Subsequently, when working on streaming application, we were
able to implement our solution in the storm processing framework using a real deployment.
In both cases, our experiments demonstrated significant gains, and I the next step will be
releasing our implementation to an open-source stream-processing platform to benefit as many
applications as possible.
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2.3 Summary of contributions

During my Ph.D, on large-scale P2P networks, I was dealing with the problem of organizing
networks by connecting users interested in the same data. In the context of my post-doc,
I remained in the domain of distributed systems, but considered applications running on
dedicated hardware. The main di↵erence is that dedicated hardware means that I was in
control of the data, and could decide which machine should be storing a specific information.
Hence, instead of establishing a link between two servers, I could instead move the data to
avoid network communications altogether.

When dealing with applications deployed on multiple data-centers, such as Web search
engines, regional trends in data accessed can be easily observed by examining the query log
of each search engine. These di↵erences can then be analyzed to predict, using the content of
each Web page, in which region it is likely to be accessed. In the case of single data-centers,
all queries are processed from the same location, and discovering locality in data accesses can
be more di�cult, as trends are not naturally partitioned in di↵erent query logs. Fortunately,
graph clustering algorithms applied to access patterns are able to uncover correlations. The
application can then be configured to place data according to these clusters in order to
maximize the locality of data accesses.

Data processing frameworks generally consider data-centers as a flat infrastructure, and
advertise easy scalability by simply adding servers (“Kill It With Iron”). But without paying
attention to data placement, communication costs increase significantly with the number of
servers, so each new server brings diminishing returns. We showed, through simulations and
live deployments using real datasets, that improving the locality of distributed applications
has a large impact on their throughput and scalability. By better leveraging the properties of
data, we can actually divide large applications running on hundreds of machines into many
small clusters of machines collaborating, with few communications between them, and get
much better performance with the same hardware.
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Chapter 3

Distributed algorithms for top-k
processing

Several frameworks have been developed for batch processing on large-scale datasets. Hadoop
Map-Reduce and Spark are two of the most popular open-source options available. These
frameworks deploy the execution over executors distributed across servers in a data center.
The execution of a program is divided into stages. Within a stage, each executor processes
data locally, without communicating with other executors. Between stages, the framework can
operate a shu✏e that re-distributes the data between executors. This is most notably the case
before reduce phases, that require pieces of data having the same key to be stored on the same
executor. Shu✏ing is expensive, as it generates a significant amount of I/O operations, so
these frameworks aims at limiting shu✏es to a minimum. In addition, a barrier synchronizes
executors at the end of a phase, so each phase should encapsulate as much processing as
possible, to avoid wasting execution time. To sum up, the only time at which data can be
exchanged is between processing phases, which does not occur frequently.

Given these constraints, we can see that algorithms in which the workload can be parti-
tioned into independent jobs while requiring very rare data exchange between jobs are natural
candidates for being ported to these frameworks. This is for instance the case for join process-
ing algorithms, that aim at outputting all data tuples satisfying a predicate. Generally, the
challenge when distributing these algorithms lies in ensuring each executor gets a balanced
load while minimizing data transfers (I/O) [100]. This becomes increasingly di�cult in cases
where the presence of a data tuple in the output does not only depend on a input query, but
also on other results candidates discovered at runtime. A common class of such problems
is top-k processing [41]: the score of a data tuple is defined by the query, but its presence
in the output depends on the score of all other result candidates. Top-k queries require a
dynamic exploration of the results space in order to discover promising results first and prune
as many candidates as possible to reduce the workload. The first challenge in distributing
top-k processing is that it is di�cult to predict the cost of processing a workload partition:
all candidates may be pruned from the beginning, leading to a small execution time, or all
candidates may be explored, leading to a high execution time. The second challenge comes
from the lack of communications between executors during processing phases: if an executor
discovers a candidate with a very high score, the other executors are not aware of it until
the next shu✏e phase, which can lead to the exploration of candidates that would have been
pruned otherwise.
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In this chapter, we propose solutions for distributing two specific top-k processing ap-
plications. In Section 3.1, we consider the case of processing joins on interval data. Using
scored temporal predicates, we assign a score to each data tuple, and aim at finding the top-k
best results. Our distributed algorithm, TKIJ, relies on statistics on the data to bound the
scores of results present in each partition of the workload. We then ensure that each executor
receives a fair share of high-scoring tuples so that it can prune e�ciently locally despite the
lack of communications between them. Section 3.2 considers the case of mining patterns in
large-scale retail datasets. We propose item-centric mining, an approach that aims at finding
the top-k patterns of each product in the dataset. We then present TopPI, an algorithm that
solves this problem by combining methods from pattern mining and top-k processing. We
show that TopPI can be implemented on Map-Reduce by splitting the mining phase into only
two stages, without altering the pruning e�ciency of the algorithm.
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3.1 Temporal joins

3.1.1 Context

Temporal data is pervasive. Store receipts, tweets, tra�c data, and temperature measures
generated by weather sensors or by wearables, are just some examples. Such data is best
represented as intervals with start and end timestamps. For example, in network tra�c, a
connection between machines forms an interval. In social media, the lifespan of a discussion
topic is represented as an interval. Temporal data analysis requires the ability to compare
intervals. These comparisons are expressed as predicates that reflect the chronological rela-
tionship between intervals, such as before, meets, starts or overlaps from Allen algebra [5].

As datasets become larger, these simple binary predicates show their limitations. The
number of results of before query on two collections of intervals C1 and C2 is O(|C1|⇥ |C2|).
This is not practical when dealing with millions of intervals. Not only does generating all
results consume a large amount of processing time, but it is also unlikely that an application
actually requires every single results. Furthermore, binary predicates rely on strict equality of
endpoints, which is illusory in a distributed environment of smart devices where clocks can be
slightly desynchronized. The ability to evaluate predicates approximately and assign scores
to resulting interval pairs appears as a natural requirement to finding interesting results.
We formalize Ranked Temporal Joins (RTJs) that feature any number of interval collections
and temporal predicates and return the k best results. We illustrate RTJ with the following
example on network tra�c monitoring. Consider the two interval collections C1 and C2

in Figure 3.1. Assume that each collection gathers requests from a di↵erent country. An
analyst interested in monitoring tra�c between two countries would seek (x, y) pairs, x 2 C1,
y 2 C2, where x ends just before y starts. A Boolean semantics would compute 9 (x, y)
pairs satisfying before(x, y), including pairs where x ends long before y starts. An appropriate
scoring function and top-k semantics would select {(x1, y1), (x2, y2), (x2, y3)}, that best satisfy
x ends just before y starts for k = 3.

The challenge we tackle is to devise an e�cient query evaluation strategy that guarantees
to return the best answers for a variety of temporal predicates. The first di�culty here is
to develop a general-purpose algorithm that works with a variety of predicates and ranked
semantics and yet, that is able to exploit the nature of those predicates to devise an e�cient
evaluation.

The e�cient processing of interval joins has been studied before [28,36,39,68]. The closest
to our work is the one by Chawda et al. [28] with a focus on processing interval joins on Map-
Reduce [35]. However, proposed algorithms are not directly applicable in our case because
they focus on a Boolean semantics. In our work, scores constitute both a challenge and an
opportunity. They are a challenge because, unlike Boolean semantics, every combination of
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Figure 3.1: Motivating Example
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Figure 3.2: The Allen algebra with Boolean and scored temporal predicates.

intervals is potentially an answer. The opportunity lies in the ability to leverage statistics
on input data in order to avoid computing low-scoring results. The second di�culty of this
work is to design a top-k processing algorithm able to deal with the limitations of distributed
processing frameworks.

The work presented in this section was part of Julien Pilourdault’s Ph.D work, co-
supervised with Sihem Amer-Yahia. It is detailed in the following publication:

• Distributed Evaluation of Top-k Temporal Joins

Julien Pilourdault, Vincent Leroy and Sihem Amer-Yahia
In Proceedings of the ACM International Conference on Management of Data (SIG-
MOD), 2016, pages 1027–1039.

Section 3.1.2 describes our data model and defines the problem of evaluating RTJ queries.
TKIJ is presented in Section 3.1.3. Experiments are detailed in Section 3.1.4. We conclude
in Section 3.1.5.

3.1.2 Data model and problem definition

We are given m collections of intervals C1, . . . , Cm. Each interval x has a unique identifier, a
start time x and an end time x.

Boolean temporal predicates The general form of a temporal predicate between two
intervals x and y is denoted p(x, y) and is expressed as a Boolean conjunction of equalities
and inequalities between their endpoints x, x, y, y. This allows to capture a wide range of
predicates among which the seminal Allen algebra [5]. The first 3 columns of Figure 3.2
summarize Allen temporal predicates and their semantics. For example, meets(x, y) imposes
that y starts when x finishes while starts(x, y) requires that x and y start at the same time
and that x ends before y.
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Figure 3.4: Example of RTJ query

Scored temporal predicates Since we are interested in capturing the degree at which a
temporal predicate is verified by a pair of intervals, we propose to associate a score to each
predicate. Here again, we aim to be general and we adopt the flexible approach for scoring
Allen predicates [38] and adapt it to our settings. This approach relies on two primitive
approximation comparators on intervals’ endpoints. Those comparators, equals(x, y) and
greater(x, y), are used to express the degree of equality or inequality of intervals’ endpoints x
and y, where x 2 {x, x}, y 2 {y, y} as a graded value in [0, 1]. They rely on two parameters
� and ⇢ that provide flexibility in controlling the tolerance degree when comparing intervals’
endpoints. Figure 3.3 shows how equals(x, y) and greater(x, y) are used with � and ⇢ to express
that tolerance. For instance, by defining that whenever |x � y|  �, equals(x, y) returns 1,
� sets a tolerance for exact endpoint equality. ⇢, on the other hand, is used to define score
values. A large ⇢ value defines a wide range of score values and a small ⇢ produces a more
abrupt curve and fewer possible score values.

Since temporal predicates are expressed as equalities and inequalities on intervals’ end-
points, their approximation can be achieved using a conjunction of equals() and greater()
with appropriate � and ⇢ values. This allows us to associate a scored variant to each temporal
predicate. We denote that variant s-p(x, y) and refer to it as scored temporal predicate, abus-
ing the term “predicate” to mean “function”. Indeed, while p(x, y) returns a Boolean value,
s-p(x, y), returns a score in [0,1]. For example, we can define the scored version of starts(x, y)
as s-starts(x, y) = min{equals(x, y), greater(y, x)} (last column of Figure 3.2).

Temporal join queries We are interested in expressing n-ary join queries on interval
collections C1, . . . , Cm. We express a query Q as a weakly connected oriented simple graph of
the form (V,E). Each each vertex vi 2 V is mapped to a collection Ci. Each edge (i, j) 2 E

between two vertices vi and vj is labeled with a scored temporal predicate s-p(i,j)() between
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Figure 3.5: Overview of TKIJ

the two collections Ci and Cj corresponding to vi and vj . Figure 3.4 presents a sample query.
The evaluation of an n-ary join query Q returns a set of tuples of the form (x1, . . . , xn)

where xi 2 Ci. The score of each tuple in the query result is computed using a function S

that aggregates the partial scores assigned by each predicate s-p(i,j)() associated with each
query edge (i, j) 2 E. S could be any monotone function such as the weighted sum as it is
commonly the case in ranked aggregation [41,42,54,74].

For example, we can express a 3-way query that returns a tuple (x, y, z) where x 2 C1,
y 2 C2 and z 2 C3 and the score of (x, y, z) is computed as an aggregation of its partial scores
for query predicates s-starts(x, y) and s-meets(y, z).

Although we use the term “join” to refer to our queries, their expressivity goes beyond
traditional relational joins. Our queries are not compositional in the sense of a relational join
since their results are not intervals but tuples of any length (corresponding to the number of
vertices in the query). Our queries can express any combination of interval collections with
any scored predicates including chain queries and queries containing cycles.

Ranked Temporal Join (RTJ) problem Given an n-ary temporal join query Q=(V,E)
expressed over a set of collections C1, . . . , Cm corresponding to query vertices in V and
temporal predicates s-p(i,j)() associated to each edge (i, j) 2 E, our problem is to find
a top-k set of tuples of the form (x1, . . . , xn), xi 2 Ci, ranked by (descending) order of
S(i,j)2E(s-p(i,j)(xi, xj)).

3.1.3 TKIJ algorithm

We present TKIJ, our approach for evaluating Top-K Interval Joins, that e�ciently finds the
set of k best results for an RTJ query Q. We first provide an overview of TKIJ, then we give
each step in detail.

Overview

Figure 3.5 summarizes our approach, TKIJ. Given a set of interval collections C1 . . . Cm,
TKIJ executes a query-independent pre-processing phase to collect statistics on intervals’
distribution. This phase partitions time into granules and computes buckets for each collection
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(a). A bucket associated to a collection Ci corresponds to a pair of granules, and contains the
number of intervals of Ci starting at one granule and ending at another. Given a query Q,
these statistics are used to evaluate bucket combinations that should be processed in order to
obtain top-k results (b). TKIJ relies on a constraint programming solver to compute score
bounds for each bucket combination and uses those bounds to prune combinations that do
not contain top-k results. The third phase is the actual join processing which relies on two
Map-Reduce jobs. The first job assigns a subset of buckets to each reducer rj (c) which then
processes locally the RTJ query, returning local top-k results (d). This assignment aims at
reducing data replication to limit I/O, and leverages score bounds to distribute high-scoring
results evenly so that each reducer can quickly prune low-ranking results. The second Map-
Reduce job merges all local results into a single query output (e).

Statistics collection

TKIJ pre-processes each dataset once in order to collect statistics which are then used to
optimize the execution of any RTJ query on this dataset. These statistics maintain a matrix
Bi representing the distribution of endpoints of intervals in each collection Ci. TKIJ partitions
the time range of each Ci into a set of contiguous granules. We adopt a uniform partitioning
which has been shown to be appropriate for temporal joins [28, 36,44].

As illustrated in Figure 3.5a, each matrix entry records the cardinality of a bucket, where
a bucket bi,l,l0 =(gi,l, gi,l0) contains all intervals of Ci that start in gi,l and end in gi,l0 :

Bi[l][l
0]= |bi,l,l0 |= |{x 2 Ci, x 2 gi,l ^ x 2 gi,l0}|

As an example, given g1,1=[10, 20] and g1,2=[20, 30], the matrix entry for b1,1,2 = (g1,1, g1,2)
indicates 6 intervals starting in [10, 20] and ending in [20, 30].

Range partitioning is a common approach in temporal join processing [28,36,44,68]. The
rationale is that intervals having similar endpoints are likely to satisfy similar join predicates.
For example, most previous studies that focus on intersection joins leverage partitions to
avoid pairs of intervals that are guaranteed not to intersect. Similarly, TKIJ relies on these
statistics to obtain information on the distribution of intervals within buckets and prune the
search space of any RTJ query.

Statistics are computed in a single Map-Reduce phase. Each mapper reads a fraction of
the data and maintains a local matrix per collection. Matrices are then aggregated in the
reduce phase, and the reducer responsible for collection Ci outputs a final matrix Bi.

Selection of bucket combinations

We now describe how TKIJ uses pre-computed statistics to estimate score bounds on candi-
date results. Then, we present how score bounds are used to avoid computing unnecessary
results while we guarantee to return the exact top-k results.This constitutes a preliminary
pruning step of the top-k processing: using a summary of the dataset, the idea is to identify
part of the results space that are promising and should be further explored.

Estimating score bounds Processing an RTJ query Q requires to return the top-k tuples
(x1, . . . , xn), xi 2 Ci according to a scoring function S. Since any tuple (x1, . . . , xn) is a
potential answer, we investigate how to reduce the amount of data processed using scores.
We use ! = (b1,l1,l01 , . . . , bn,ln,l0n) to denote a bucket combination, !.nbRes=

Qn
i=1 |bi,li,l0i

| the
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total number of results that can be obtained from a bucket combination !, and ⌦ the set
of all combinations.We define score upper and lower bounds in each !, denoted !.UB and
!.LB .

Definition 1. The score upper-bound (resp. lower-bound) !.UB (resp. !.LB) of a bucket
combination ! = (b1,l1,l01 , . . . , bn,ln,l0n) is the upper-bound (resp. lower-bound) of
S(i,j)2E(s-p(i,j)(xi, xj)) where xi 2 gi,li , xi 2 gi,l0i

, 8i 2 1 . . . n.

As an example, suppose that query Q features a predicate s-meets(1,2)(x, y) where x2C1

and y2C2, using scoring parameters (�equals, ⇢equals)=(4, 8). Collected statistics show 6 inter-
vals in bucket b1,1,2=([10, 20], [20, 30]) for C1 and 7 intervals in bucket b2,2,3=([20, 30], [30, 40])
for C2. We build the bucket combination !=(b1,1,2, b2,2,3). Then, we can derive bounds on the
score S(x, y)=s-meets(x, y) of a result (x, y)2!. The maximum possible score is 1 (e.g. with
(x, y) = ([12, 25], [25, 35])), and the minimum score is 0.25 (with (x, y) = ([15, 20], [30, 35])).
Hence, !.UB=1,!.LB=0.25. Thus, 42 results in ! have a score in [0.25, 1].

TKIJ relies on a constraint programming solver as a generic approach to compute score
bounds for any combination of predicates.

Pruning bucket combinations TKIJ leverages computed score bounds to reduce com-
putation cost by eliminating results that are guaranteed not to be in the top-k. To do so, it
computes ⌦k,S ✓ ⌦, a subset of the search space that is su�cient to guarantee correctness.
We define ⌦k,S as follows:

Definition 2. The set of Top Buckets⌦k,S is a subset of⌦ satisfying the following conditions:

• 8! 2 ⌦ \⌦k,S 9 ✓ ⌦k,S :

– 8!
0
2  !

0
.LB � !.UB

–
P

!02 !
0
.nbRes � k

This definition ensures that whenever a bucket combination ! is pruned, there are at least
k results from ⌦k,S with a score higher than results generated from !. Pruning unnecessary
results is a two-step process, coined TopBuckets . A first step computes score bounds for bucket
combinations using a solver. Then, a second step uses those bounds to eliminate unnecessary
results. In our setting, all (x1, . . . , xn) combinations are potential answers, and we cannot
employ traditional top-k techniques to prune the search space. TopBuckets addresses this
challenge using pre-computed statistics to locate high-scoring answers.

Distributed Top-k Join Processing

The TopBuckets process generates ⌦k,S , a set of bucket combinations that are su�cient to
accurately compute the top-k results. We now describe how TKIJ computes the top-k results
(Steps (c)-(d)-(e) in Figure 3.5). We implement TKIJ on Map-Reduce [35]. Given a set of r
reducers, TKIJ assigns each bucket combination ! 2 ⌦k,S to a single reducer rj , j 2 1 . . . r,
that processes results in !. The main challenge in distributed join processing is to devise an
e�cient workload assignment function. When performing large-scale joins, I/O often consti-
tutes a major bottleneck. We first review existing assignment algorithms, then we consider
the specifics of distributed top-k computation and show that it is essential to take scores into
account when dividing the workload. Indeed, during top-k join processing, each executor
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leverages high scoring results to prune candidates on-the-fly. We present DistributeTopBuck-
ets, a novel function that focuses on assigning high-scoring results to each reducer, while
minimizing I/O cost as a secondary objective. Finally, we present how an RTJ query is
processed using appropriate Map-Reduce algorithms.

Existing I/O optimizations When di↵erent reducers require the same chunk of data, this
data is replicated in the shu✏e phase of Map-Reduce, which increases input cost. Several
distributed join algorithms, such as RCCIS [28] and the work of Afrati et al. [1] specifically aim
at reducing that cost. In TKIJ, this corresponds to di↵erent reducers being assigned bucket
combinations involving the same bucket. Other approaches focus on assigning a balanced
load to each reducer [28, 75]. This ensures that the number of results generated by each
reducer is comparable, so that no reducer will have a larger workload in output dominated
tasks. Finally, some algorithms optimize both input and output costs simultaneously [100].
All these approaches are not directly applicable to our settings. They achieve optimizations
for specific queries (equi-join [1], 2-way ✓-join [75], m-way ✓-join [100]). One close related work
to ours [28] reduces I/O cost by leveraging the Boolean interpretation of Allen predicates.
That is not directly applicable to scored predicates.

Top-k optimizations TKIJ significantly di↵ers from standard Map-Reduce-based join pro-
cesses due to its ranked semantics. In TKIJ, each reducer processes a full RTJ query locally
using the bucket combinations it receives (Figure 3.5d). Hence, it is important to ensure that
each reducer quickly identifies high-scoring results as it is usually the case in top-k process-
ing [40, 41, 42, 85]. Therefore, the assignment of bucket combinations to reducers favors an
even distribution of high-scoring results to ensure that each executor can execute on-the-fly
pruning e�ciently.

DTB algorithm TKIJ relies on the DistributeTopBuckets process to assign bucket combi-
nations from ⌦k,S to reducers. Following the principles described above, DTB increases the
probability that each reducer receives a fair share of high-scoring results. This step relies on
the knowledge, for each bucket combination, of the number of results generated, as well as
their score bounds computed during the pruning step by the solver. DTB first sorts ⌦k,S by
descending order of score upper-bound to access them according to their likelihood of generat-
ing high-scoring results. It then assigns each bucket combination to the least loaded reducer.
Furthermore, DTB opportunistically optimizes I/O cost by giving priority to reducers that
already process some of the buckets of the combination considered while limiting imbalanced
assignments.

Join Processing The final phase of TKIJ first runs DTB using ⌦k,S to determine data
distribution among reducers. Then, a Map-Reduce phase processes the RTJ query locally.
For each input interval x, a mapper computes the bucket bix,lx,l0x in which x falls. Then, x is
communicated to all reducers rj that received bix,lx,l0x . That way, each reducer rj receives its
share of input data, and a list of bucket combinations ⌦rj ✓⌦k,S whose results are potential
top-k candidates. Once each reducer has processed locally the RTJ query, we run an additional
Map-Reduce phase (Step (e) in Figure 3.5), that merges local results and returns the final
top-k answers.
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Id
Scored Temporal Predicates In Q.

xi 2 Ci 8i 2 1 . . . n.

Qb,b s-before(x1, x2), s-before(x2, x3)

Qf,f s-finishedBy(x1, x2), s-finishedBy(x2, x3)

Qo,o s-overlaps(x1, x2), s-overlaps(x2, x3)

Qs,f,m s-starts(x1, x2), s-finishedBy(x2, x3), s-meets(x1, x3)

Qs,s s-starts(x1, x2), s-starts(x2, x3)

Table 3.1: Queries

3.1.4 Evaluation

We evaluate TKIJ on a 8-node cluster with 6 executors having 8 cores each. To vary dataset
parameters, we generate synthetic data following the approach of previous work [28]. We
use a pseudo-random uniform generator to get intervals’ startpoints and lengths in specified
ranges (respectively s = [0, 105] and w = [1, 100]). Intervals’ endpoints are integers. We
vary the number |Ci| of intervals per collection, and the number n of collections. For our

evaluation, we define varied queries described in Tables 3.1. We use S =
P

(i,j)2E s-p(i,j)(xi,xj)

|E|
to compute the score of a query result (x1, . . . , xn).

In this thesis, I focus on the workload distribution aspect of TKIJ. The challenge in
executing top-k queries over Map-Reduce is to preserve the top-k pruning e�ciency and
load balancing in spite of the lack of communications between executors. We compare two
workload distribution algorithms and evaluate their impact on TKIJ:

• DTB: This is the approach described in Section 3.1.3. DistributeTopBuckets ensures
that each executor gets high scoring results in order to process its local top-k e�ciently
and benefit from early pruning decisions. In addition, DistributeTopBuckets oppor-
tunistically optimizes for I/O.

• LPT: The LPT (Longest Processing Time) heuristic aims to minimize scheduling time
on parallel machines [37]. LPT executes tasks in descending order of processing time.
In our context, a naive approach would minimize the maximum number of candidate
join results that a reducer has to process, so as to reduce the duration of the longest
task. We sort the set of bucket combinations by descending order of number of results
(!.nbRes) and assign each one to the least loaded reducer.

Figure 3.6a presents the running time of the join phase on all queries, where |Ci| varies
from 1M to 1.6M and k = 1000. On Qb,b, running time is identical for LPT and DTB , since
a single bucket combination is selected in ⌦k,S and a large number of results with maximum
score can be quickly found during the join phase. On other queries, DTB outperforms LPT
for two reasons. Firstly, LPT incurs a higher shu✏e cost (on average 43% higher). When
assigning a bucket combination to a reducer, DTB favors assignments that lessen shu✏e cost.
LPT favors the assignment of bucket combinations with a large number of results to the least
loaded reducers. Hence, buckets have a higher probability to be sent to several reducers with
LPT than with DTB . Secondly, LPT does not necessarily give a fair share of high-scoring
results to each reducer. Figure 3.6b shows the running time of the longest reducer task (we
omit Qb,b where LPT and DTB perform equally for the reason exposed above). DTB always
outperforms LPT because it increases the probability that all reduce tasks terminate early
since they can all find high-scoring results. This di↵erence is exacerbated on query Qs,f,m
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with |Ci|=1M . Here, the few results that satisfy best all 3 predicates featured in Qs,f,m are
better distributed using DTB . On Figure 3.6c, we represent the minimum score of the k

th

result among the results returned by reducers. These results support our observation: the
score of returned results is higher when distribution is defined using DTB , while unnecessary
results with lower scores are returned with LPT .

3.1.5 Conclusion

Temporal data contains contains valuable that can be explored to discover relations between
temporal events. We introduce Ranked Temporal Joins as a query model for extracting
relevant interval tuples from collections. RTJs generalizes Allen temporal Boolean predicates
by introducing scores that can be parametrized by the analyst to better express the relations
they seek.

We propose TKIJ, a 3-stage query evaluation approach for RTJ queries that identifies the
top-k tuples scoring the highest. TKIJ performs the following steps:

1. Compute query-independent statistics about the dataset. Each collection of intervals is
represented as a matrix that indicates the distribution of interval endpoints.

2. Execute a preliminary pruning using the properties of the query and the statistics. Using
a solver, TKIJ determines which portions of the dataset contain promising results, and
which ones can be safely ignored. This eliminates a large fraction of the search space.
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3. Process the top-k queries locally on executors. At this step, each executor performs
on-the-fly pruning using its local top-k results. TKIJ ensures that each executor is
assigned high scoring result candidates that can be discovered early in the execution in
order to improve the pruning performance.

TKIJ was evaluated on synthetic datasets, as well as a real dataset containing a network
tra�c log [79] provided by an industrial partner. In the future, we aim at performing RTJs on
streams of data. A preliminary analysis of this problem can be found in Julien Pilourdault’s
Ph.D thesis [78].
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Figure 3.7: Schematic distinction between frequent itemsets mining and TopPI. The area in
red represent each method’s output.

3.2 Pattern mining for long-tailed datasets

3.2.1 Context

Pattern mining algorithms have been applied successfully on various datasets to extract fre-
quent itemsets and uncover hidden associations [3, 66]. Frequent itemsets mining (FIM) was
popularized by the famous “beer and diapers” association [3] extracted from a retail dataset.
20 years after this publication, FIM is still very appreciated by marketing analysts, as it
gives them access a product’s sales trends and associations with other products. This allows
managers to obtain feedback on customer behavior and to propose relevant product bundles.
In the context of a research project, we collaborated with the french retailer Intermarché with
the goal of modernizing FIM to scale to massive datasets: 2 years of sales recorded all over
France and totaling 290M receipts.

Scaling FIM initially appears as a distributed systems problem that can simply be solved
by porting the current state-of-the-art algorithm to a parallel processing framework such
as Map-Reduce [35]. However, when executing FIM on large-scale dataset, a fundamental
problem appears, and its cause is the definition of FIM. FIM is designed to discover itemsets in
order of decreasing support (i.e. frequency), whether it is using a minimum support threshold,
or a top-k definition. The worst-case complexity of FIM is exponential in the number of
items in the dataset, so analysts use high support threshold to control execution time, thus
restricting the mining to the globally most frequent itemsets. Many large datasets today
exhibit a long-tailed distribution, characterized by the presence of a majority of infrequent
items [48]. Mining at high thresholds eliminates low-frequency items, thus ignoring most of the
data (Figure 3.7a). In the context of retail, this means that standard FIM generates hundreds
of millions of itemsets related to the most frequent products (i.e. top 5% products sold), and
no result for all other products (95%). Online stores such as Amazon have demonstrated that
a significant proportion of revenue originates from the long-tail, so it is important to ensure
that FIM can produce results for all items.

Our first contribution to address these issues is item-centric mining, a new semantics for
FIM that is more appropriate for mining large-scale long-tailed datasets. Item-centric mining
solves the problem of items coverage by ensuring that each item is described by at least k
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itemsets (Figure 3.7b). Table 3.2 contains examples of item-centric itemsets we generated
from a retail dataset, along with their frequencies. Each item is associated to its 3 most
frequent itemsets, whether it sells a lot (e.g. milk) or not (e.g. wasabi). With this new
definition, our mining problem becomes an exploration of itemsets in which the goal is to
fill the list of top-k itemsets of each item. Our second contribution is TopPI, an algorithm
that performs item-centric mining e�ciently. While TopPI leverages lessons learned from
previous FIM algorithms, we show that our new definition significantly alters the properties
used by traditional FIM, and requires a di↵erent pruning strategy. We design both parallel
and distributed version of TopPI, ensuring the completeness of the results while minimizing
redundant computations.

The work presented in this section was part of Martin Kirchgessner’s Ph.D work, co-
supervised with Sihem Amer-Yahia. It is detailed in the following publication:

• TopPI: An e�cient algorithm for item-centric mining

Vincent Leroy, Martin Kirchgessner, Alexandre Termier and Sihem Amer-Yahia
Information Systems (IS), 2017, 64: 104-118.

In this thesis, I focus on the distributed version of TopPI and omit the details of the
pruning strategy. The main challenges in scaling TopPI is preserving the e�ciency of tradi-
tional top-k search-space pruning, while dealing with the limitations of distributed processing
environment that do not allow communications between executors during a mining stage.

Section 3.2.2 presents the data model and the definition of item-centric mining. Sec-
tion 3.2.3 gives an overview of TopPI’s algorithm in its centralized version. Section 3.2.4
details the distributed version of TopPI. Finally, Section 3.2.5 provides some experimental
results.

3.2.2 Item-centric mining

The data contains items drawn from a set I. Each item has an integer identifier, referred
to as an index, which provides an order on I. A dataset D is a collection of transactions,
denoted {T1, ..., Tn}, where Ti ✓ I. An itemset P is a subset of I. A transaction T is an
occurrence of P if P ✓ T . Given a dataset D, the projected dataset for an itemset P is the
dataset D restricted to the occurrences of P : D[P ] = {T | T 2 D ^ P ✓ T}. In the example
dataset shown in Table 3.3a, D[{0, 1}] = {T0, T1, T2}. To further reduce its size, all items of
P can be removed, giving the reduced dataset of P : DP = {T \ P | T 2 D[P ]}. Hence, in the
example, D{0,1} = {{2}, {2}, {}}.

The number of occurrences of an itemset inD is called its support and denoted supportD(P ).
More formally, supportD(P ) = |DP |. For example, in the dataset shown in Table 3.3a, the

item (support) top-3 (itemset,support) pairs

milk (682,288) ({milk, grated cheese}, 40,890)
({milk, cola}, 40,846)
({milk, carrier bag}, 40,675)

wasabi (2132) ({wasabi, nori seaweed},352)
({wasabi, sushi rice},244)
({wasabi, nori seaweed, sushi rice},163)

Table 3.2: TopPI results for k = 3 on a retail dataset.
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TID Transaction
T0 {0, 1, 2}
T1 {0, 1, 2}
T2 {0, 1}
T3 {2, 3}
T4 {0, 3}

(a) Input D

item top(i): P , support(P )
i 1st 2nd

0 {0}, 4 {0, 1}, 3
1 {0, 1}, 3 {0, 1, 2}, 2
2 {2}, 3 {0, 1, 2}, 2
3 {3}, 2

(b) TopPI results for k = 2

Table 3.3: Sample dataset

itemset {1, 2} has a support equal to 2. To avoid redundant information, when a superset
of items also has the same support, we do not output this itemset. For instance, {1,2} is
replaced by {0,1,2} since they both have a support of 2. The largest superset having the
same support is called the closure of the itemset.

Mining algorithms generally target the most frequent itemsets. As explained in Sec-
tion 3.2.1, this leads in the case of long-tailed datasets to extracting millions of itemsets only
related to the most frequent items. In this work, we propose a new mining objective called
item-centric mining: given a dataset D and an integer k, our goal is to return, for each item in
D, the k most frequent closed itemsets containing this item. Table 3.3b shows the solution to
this problem applied to the dataset in Table 3.3a with k = 2. This new definition of relevant
patterns avoids the problem of traditional approaches by ensuring coverage, as each item is
described in the results by k itemsets.

3.2.3 TopPI algorithm

In this section, we present an overview of TopPI, an algorithm that solves the problem of
finding the top-k itemsets of each item. We first describes how TopPI recursively enumerates
itemsets, an approach inherited from state-of-the-art FIM algorithms. Then we present how
TopPI prunes the search-space of itemsets to e�ciently perform item-centric mining. A more
detailed description of TopPI and its algorithm is given in [64]. We address the problem of
scaling TopPI in Section 3.2.4.

Tree-shaped recursion

Several algorithms aim at mining itemsets present in a dataset [50, 76, 92]. For e�ciency
reasons, TopPI borrows some principles developed for the LCM algorithm [93] and enumerates
itemsets by recursively adding items to a previous itemsets. In this context, pruning the
solution space means avoiding recursions. In Table 3.3a, {0, 1, 2} is an extension of both
{0, 1} and {1, 2}. To avoid redundant computation, extensions are restricted to items smaller
than those already contained in the itemset. An additional “first-parent” criterion ensures
that even in the case of a closure, each itemset is only enumerated once.

The extension enumeration order shapes the extensions lattice as a tree. Figure 3.8 shows
the itemsets tree for the dataset in Table 3.3a. h{2}, 1i is the first parent of {0, 1, 2}, but
h{2}, 0i is not. Therefore the branch produced by h{2}, 0i is pruned. These enumeration
principles lead to the following property: by extending P with e, TopPI can only recursively
generate itemsets Q such that max (Q \ P) = e.
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Figure 3.8: CIS enumeration tree on our example dataset (Table 3.3a). hP, ii denotes
extension to closed ItemSest operations.

Pruning strategy

The core recursive structure provides TopPI with the basic ability to enumerate itemsets.
The number of possible itemsets in the tree is 2|I|. What makes FIM possible in practice is
the ability to prune this enumeration tree to focus on itemsets that are useful to the analyst.
In the case of item-centric mining, we only target k ⇥ |I| of the 2|I| itemsets. Hence, the
e�ciency of TopPI relies on a specifically designed pruning strategy.

TopPI maintains, for each item i 2 I, top(i), a heap that stores the most frequent itemsets
containing i enumerated so far. Top-k algorithms have been studied for years in the database
community [41]. The lowest support value in the top-k results constitutes an entrance thresh-
old to be a result candidate. The goal is then to obtain an upper-bound on the score of results
of fractions (branches in our case) of the results space and eliminate them when this upper
bound is lower than the entrance threshold. The specificity of TopPI is that it computes |I|
top-k simultaneously, which makes pruning the tree of itemsets significantly more complex
than the one of traditional FIM algorithm. We now give an overview of the main features of
TopPI:

• TopPI aims at mining very large datasets while preserving their long-tailed distribution.
FIM generally handles these cases by raising the frequency threshold ", which allows the
elimination of a large, infrequent, fraction of the data, to increase performance. With
TopPI, we want to be able to output itemsets appearing with very low frequency in
the dataset, so we start at " = 2. To this end, TopPI incorporates a dynamic threshold
adjustment to improve performance without eliminating relevant data. In each branch
of the enumeration tree, TopPI adjusts the threshold to the lowest bound of the top-k
itemsets of each item that can be recursively produced in the branch.

• Standard FIM algorithms rely on a simple pruning strategy to drastically reduce the
number of itemsets enumerated. Algorithms targeting the most frequent itemsets, using
a threshold or a global top-k, directly rely on the anti-monotony property of itemsets’
support [3]. Given two itemsets P and Q, P ⇢ Q, if P is not a valid result, then Q

isn’t one either, since supportD(P ) � supportD(Q). Hence, reaching an itemset whose
support is too low to be a valid result means the early termination of a recursion, with
the pruning of the sub-tree. This is, however, not applicable for TopPI: it is possible
for the itemset {0, 1, 2} to be in the top-k of the item 0 while {1, 2} is not in the top-k
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Figure 3.9: Overview of TopPI

of 1 or 2. This makes the early termination of the enumeration of a branch harder to
decide. TopPI introduces a new pruning heuristic to tackle this issue.

• E�cient top-k processing generally relies on the early discovery of high ranking results.
This allows, using heuristics, the pruning of large fractions of candidates without having
to perform their exact computation. TopPI boosts the e�ciency of its pruning algorithm
by introducing the early collection of promising results, and optimizing the order of
itemsets enumeration.

The key components of TopPI are depicted in Figure 3.9. TopPI executes the startBranch
function for each item and recursively calls expand to enumerate itemsets. In both these
functions, TopPI takes advantage of an indexing of items by frequency to optimize the order
of itemsets enumeration. The top-k collector stores the results of TopPI by maintaining for
each item the current version of its top-k itemsets. TopPI transmits itemsets to the collector
using collect in expand , but also in startBranch with an early collection of partial itemsets.
Using the current status of the top-k of each item, the collector provides a dynamic support
threshold at the beginning of each branch that allows TopPI to heavily compress the dataset
without losing any potential result. The state of the collector is also used in expand through
the prune function to determine whether a recursive execution may produce itemsets part of
the top-k of an item.

3.2.4 Scaling TopPI

We first present the multithreaded version of TopPI, designed to take full advantage of the
multi-core CPUs available on servers. Then, to scale beyond the capacity of a single server,
we present a distributed version of TopPI designed for Map-Reduce [35]. The goal is to divide
the mining process into independent subtasks executed on executors while (i) ensuring the
output completeness, (ii) avoiding redundant computation, and (iii) maintaining pruning
performance.

Shared-memory TopPI

The enumeration of itemsets by TopPI follows a tree structure, described in Section 3.2.3. As
shown by Négrevergne et al. [72], such enumeration can be adapted to shared-memory parallel
systems by dispatching branches of the tree (i.e. startBranch invocations) to di↵erent threads.
This policy ensures that reduced datasets materialized in memory by a thread are accessed by
the same thread, which improves memory locality in NUMA architectures and makes better
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Figure 3.10: Hadoop implementation of TopPI

use of CPU caches. Some branches of the enumeration can generate much more itemsets than
others. Towards the end of the execution, when a thread finishes the exploration of a branch
and no new branch needs to be explored, TopPI relies on a work stealing policy to split the
recursions of expand over multiple threads. Threads take into account the NUMA topology
to prioritize stealing from other threads that share caches or are on the same socket. The
top-k collector is shared between threads using fine-grained locks for the top-k of each item.
Hence, the behavior of TopPI when using top-k entrance thresholds for pruning is similar to
the sequential implementation, as accurate bounds can be accessed at any time.

Distributed TopPI

When executing TopPI on a cluster of executors, each executor runs one instance of the multi-
threaded version of TopPI described above. We consider the case of a distributed processing
framework implementing the Map-Reduce primitives. We first describe how the enumeration
of itemsets is split between the executors, and then describe a two-stage mining approach
designed to preserve the e�ciency of pruning for distributed top-k processing. Figure 3.10
gives an overview of our solution.

Partitioning the itemsets enumeration In a distributed setting, enumeration branches
are dispatched among executors. Each executor is assigned a partition of items G ✓ I, and
restricts its exploration to the branches starting with an element of G. Following the example
of Table 3.3, a executor that is assigned the partition G = {0, 2} outputs the itemsets {0},{2}
and {0, 1, 2}. TopPI’s itemset extensions follow a strictly decreasing item order, so an executor
generates itemsets P such that max (P ) 2 G. Thus, all executors generate di↵erent itemsets,
without overlap nor need for a synchronization among them. This partitioning ensures that
itemsets are only generated once, so that no processing time is wasted executing redundant
operations.

Given the restrictions on the enumeration tree, an executor only requires the transactions
of D containing items of its partition G. Executors must agree on the ordering of items as
it determines valid extensions of itemsets. Should two tasks obtain a di↵erent assignment
of items identifiers, several itemsets would be generated multiple times, and others would be
lacking in the output. Consequently, indexing items by decreasing frequency is performed
jointly by all executors on the original dataset D (Figure 3.10 1 ). Once the items have been
sorted by frequency and indexed, they are assigned to groups in a round robin fashion. This
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Partition Partial top-k (phase 1) Bounds Comp. top-k (phase 2)
G0 top(0)! {0}, 4; {0, 1, 2}, 2 0! 2 top(1)! {0, 1, 2}, 2

{0, 2} top(2)! {2}, 3; {0, 1, 2}, 2 2! 2 top(3)! ;
G1 top(1)! {0, 1}, 3 1! 0 top(0)! {0, 1}, 3

{1, 3} top(3)! {3}, 2 3! 0 top(2)! ;

Table 3.4: 2-phase mining over the sample database (Table 3.3a) with 2 workers, k = 2.

ensures that the most frequent items, which are more costly during the mining stage, are
assigned to di↵erent groups. This balances the load of executors.

Two-stage mining The partitioning of the enumeration tree introduces the drawback that
the top-k itemsets of an item may be generated by any executor, without the possibility of
predicting which ones. A naive solution is for each executor to compute a local top-k for all
items, and then merge all local top-k into the exact top-k. This is causes each executor to
maintains a local top-k for each item, instead of a globally shared structure in the case of
the shared-memory version. Since executors cannot communicate during the execution of a
processing stage, each executor significantly underestimates the entrance thresholds for the
global top-k of the item as it only benefits from results produced locally. Consequently, TopPI
ends up enumerating up to k⇥ |I| itemsets per executor instead of k⇥ |I| overall, significantly
limiting the scalability.

Instead, we rely on the following idea: given an item i 2 G, the executor responsible for G
collects a partial version of top(i) close to the complete one. Indeed, the branch of the itemset
tree rooted at i contains itemsets that combine i with smaller items of the dataset (i.e. more
frequent items, thanks the pre-processing). Even though these may not all be in the actual
top-k itemsets of i, they are likely to have high support. Consequently, we run distributed
TopPI as a two-stage mining process. In the first stage (Figure 3.10 2 ), the executor only
collects itemsets for items i 2 G. This step outputs a first partial version of each item’s top-k,
as well as a lower bound on the support of their complete top-k. After this first stage, these
bounds are broadcasted to all executors. In the second stage (Figure 3.10 3 ), the executor
only collects itemsets for items i 62 G to generate the complement top-k. A final Map-Reduce
job is executed to merge the partial top-k and the complement top-k (Figure 3.10 4 ). We
illustrate this process with the example in Table 3.4.

Overall, this two-stage process is scalable. The first stage of mining completely splits
the enumeration and the collection among groups, without any impact on the accuracy of
pruning since the top-k of each item is maintained by a single executor. If we compare it to
the naive version, we can see that the second stage is the exact complement of stage one, to
overall achieve the same goal. Even though the second stage apparently su↵ers from the same
problem of underestimating entrance thresholds as the naive version, the bounds generated at
stage one ensure that pruning remains e�cient. This second mining stage is extremely short
and accurately targeted to simply complete the results of stage one. We confirm the overall
scalability of two-stage TopPI in Section 3.2.5.

3.2.5 Evaluation

We evaluate TopPI on a retail dataset provided by Intermarché in the early stages of our
collaboration. It consists of receipt data collected over 27 months in 87 supermarkets. Overall,
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Figure 3.11: TopPI speedup when running on Hadoop with on Supermarket (k = 1000)

the dataset contains 54.8M transactions and 389k distinct items. The multithreaded version
of TopPI is able to process this dataset in 20 minutes on a single server (31 threads) for
k = 1000. Our main goal in this section is to highlight the scalability of the two-stage mining
distributed version.

Figure 3.11 shows the performance of TopPI when running on a cluster of 1 to 48 machines.
TopPI shows a perfect speedup from 1 to 8 machines (64 cores), and steadily gets faster with
the addition of executors. Overall, the total CPU time (summed over all machines) spent in
the mining stages remains stable: from 35,000 seconds on average from 1 to 8 machines, it
only raises to 38,500 seconds with 48 machines (using their 384 cores). Adding a task to TopPI
incurs I/O costs, such as the time spent reading the initial dataset. Hence there is a trade-o↵
between the execution time of the mining stages and the I/O overhead. In this configuration,
the sweet spot is around 8 executors. Should the workload increases, TopPI would achieve
optimal speedup on larger clusters, as the overall mining time increases and compensates the
I/O costs. This validates the distribution strategy used for the mining stages: the load is well
partitioned, and the top-k pruning e�ciency does not diminish significantly with increased
partitioning.

3.2.6 Conclusion

Pattern mining is one of the key tools of data analysts, especially in the retail industry. As
datasets get larger, finding patterns is not only about speeding up algorithms and implemen-
tations, but also about better identifying what patterns will be most useful to analysts. In
this work, we collaborate with Intermarché to propose a new item-centric mining objective
that guarantees the coverage of all products with k patterns in the results. The core of our
algorithm, TopPI, is derived from state of the art standard FIM algorithm. This is com-
bined with a top-k pruning strategy with an additional twist, as TopPI computes one top-k
per product simultaneously. When executing in a distributed environment, top-k process-
ing becomes challenging, since executors do not exchange information during mining phases,
which could lead to sub-optimal pruning decision. We propose a two-stage mining approach
that alleviates this issue by first assigning each product to a single executor to generate an
approximate version of its top-k results. This produces bounds for each top-k structure are
broadcasted, and can then be used in a second stage to generate the missing results while
preserving pruning e�ciency.
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TopPI was mainly designed for a retail application, but was also evaluated on a variety of
Web datasets. TopPI was released as an open-source project and can be found on github. Fol-
lowing this collaboration, Intermarché deployed TopPI on their own infrastructure to further
analyze their data.
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3.3 Summary of contributions

Over the past years, datasets have become increasingly large. As a reaction, distributed pro-
cessing frameworks, such as Hadoop and Spark have been developed to scale data processing
applications by deploying them on several executors running in parallel. The ability of human
analysts to interpret results however has not benefited from the same improvement. Hence, as
datasets grow, it is important to improve data analysis to better identify the most important
results, rather than returning more.

Top-k processing [41] in general is well suited for this qualitative data analysis process.
Given a scoring function representing how relevant a result is to the analyst, it aims at
returning the k highest scoring results. By letting the analyst select k, the number of results
displayed, this approach aims at saving execution time by avoiding computing answers that
will never be read. Top-k processing has been studied in a variety of contexts, and the pruning
techniques associated to it are well known. Still, implementing e�cient top-k algorithms
in distributed processing frameworks remains challenging because the programming model
significantly restricts communications between executors, which is detrimental to pruning
algorithms as results discovered cannot be shared.

In this chapter, we consider two specific data analysis problems and see how a top-k algo-
rithm can be e�ciently implemented to solve them. The first issue considered is temporal data
processing. Using statistics on the dataset, our algorithm executes a preliminary pruning step
that eliminates a large fraction of the results candidates. We then optimize the distributed
join processing by ensuring that each executor is able to discover high scoring results locally,
which is key to perform on-the-fly pruning. Then, we consider the case of pattern mining. In
this context, we show that the mining stage can be split into two stages, which allows almost
optimal pruning despite only using one communication phase between executors. In both
cases, we validate our approaches with industrial partners on real datasets.
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Chapter 4

Information discovery for large and
heterogeneous datasets

The previous chapter presents my work on developing scalable algorithms for data analysis.
Distributed systems provide computational resources, and top-k processing limits the number
of result candidates by pruning the search space. Building these algorithms requires a good
understanding of the mindset of the analyst. Indeed, they rely on a scoring function that
represents the likelihood of a result to be of interest to the analyst.

On smaller datasets, simple signals such as frequency are su�cient to select results that
the analyst can then browse. As datasets become larger, the number of potential results
increases. Basic ranking functions are insu�cient, as the most relevant results are drowned in
an increasing amount of less insightful results. Web search engines have been dealing with this
issue for years: they index billions of Web pages, and users will only read the first 10 results
that are returned. Hence, a lot of work has been done to build relevance models specifically
for text documents [63]. However, other data mining applications, including pattern mining,
have received less attention, and thus require additional e↵orts to identify refined relevance
measure. In addition to the ranking problem is the issue of identifying what constitutes
a result. While some simple queries are satisfied with individual relevant item, others are
more exploratory, and require an overview of the dataset. This is achieved by clustering
algorithms [16], but also by returning a set of items with diversity constraints [84]. A new
paradigm that has emerge recently is the concept of composite items [8]. Composite items
bundle together individual items that, together, provide a relevant answer to a query.

Section 4.1 is a continuation of the work on pattern mining presented in Section 3.2. We
evaluate, in collaboration with marketing specialists, which measure is the most appropriate
to rank retail patterns. Over 30 di↵erent mathematical formulas have been proposed in the
literature to assess the interestingness of patterns. Hence, in practice, analysts are faced with
an embarrassingly large number of options. We first measure empirically the behavior of
these measures, and then compare them in a user study. In Section 4.2, we consider the case
of complex information needs that require the use of composite items. We propose a new
approach based on fuzzy clustering to build high quality representative composite items.
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Table 4.1: Top-5 demographics association rules, according to di↵erent interestingness mea-
sures. Rules are denoted {age, gender, department} ! product category.

by confidence by Piatetsky-Shapiro [77] by Pearson’s �2

{> 65, F, Aube} ! Dairy {⇤, ⇤, Nord} ! Liquids {⇤, ⇤, Somme} ! Cut cheese
{> 65, F, Aveyron} ! Dairy {⇤, ⇤, Nord} ! Soft drinks {⇤, F, Somme} ! Cut cheese

{> 65, F, Val de Marne} ! Dairy {⇤, ⇤, Nord} ! Beers {> 65, ⇤, Morbihan} ! Fresh milk
{> 65, F, Seine St Denis} ! Dairy {⇤, ⇤, Nord} ! Spreads {> 65, ⇤, Somme} ! Cut cheese
{> 65, F, Haute Saone} ! Dairy {⇤, F, Nord} ! Soft drinks {⇤, ⇤, F inistere} ! Canned pork

4.1 Comparison of interestingness measures

4.1.1 Context

Ever since databases have been able to store basket data, many techniques have been proposed
to extract useful insights for analysts. One of the first, association rule mining [2], also remains
one of the most intuitive. Finding association rules in long-tailed dataset is challenging, and
we developed the algorithm TopPI (Section 3.2) to solve this problem. TopPI performs item-
centric mining, which ensures that each product is represented in the result by k itemsets.
From these itemsets, association rules can be built and presented to the analysts. While TopPI
solves computational problem of extracting these rules, a follow-up challenge is to identify,
for each item, the most interesting rules. TopPI finds, for each product, k association rules,
with k typically varying from 10 to 1000. While k can be set to a reasonably low value,
a marketing analyst browsing these results is unlikely to read all of them, so ranking is
crucial. Unfortunately, there is a lack of thorough studies of which of the many interestingness
measures for ranking rules [47] is most appropriate for which application domain. For instance,
Table 4.1 shows a ranking of the top-10 rules of the form customer segment! product category
according to 3 di↵erent interestingness measures proposed in [47]. If we denote rules as
A ! B, confidence is akin to precision and is defined as the probability to observe B given
that we observed A, i.e., P (B|A). Piatetsky-Shapiro [77] combines how A and B occur
together with how they would if they were independent, i.e., P (AB)�P (A)P (B). Pearson’s
�
2 measures how unlikely observations of A and B are independent. This example shows that

these measures result in di↵erent rule rankings.
In collaboration with Intermarché, one of the largest retailers in France, we developed

CAPA, a framework to compare the rankings generated by 34 di↵erent interestingness mea-
sures. CAPA loads the results generated by TopPI, ranks them according to each measure,
and identifies correlations between these rankings. Following this step, CAPA is able to au-
tomatically scale down the problem from 34 measures to 6 di↵erent groups of measures. We
then conduct a user study with two experienced domain experts from Intermarché in to an-
swer the following question: out of the 6 families of interestingness measures, which ones are
meaningful?

The work presented in this section was part of Martin Kirchgessner’s Ph.D work, co-
supervised with Sihem Amer-Yahia. It is detailed in the following publication:

• Testing Interestingness Measures in Practice: A Large-Scale Analysis of

Buying Patterns

Martin Kirchgessner, Vincent Leroy, Sihem Amer-Yahia, Shashwat Mishra and Inter-
marché Alimentaire International Stime

54



In Proceedings of the International Conference on Data Science and Advanced Analytics
(DSAA), 2016, pages 547–556.

4.1.2 Problem definition

Table 4.2: Our mining scenarios and example association rules.
Target Associations Desired association rules

demo assoc: A customer segment tends to purchase products in a category.
segment ! category {< 35, F, ⇤}! Baby food

prod assoc t: Products purchased simultaneously (1 visit to the store).
product(s) ! product {vanilla cream}! chocolate cream

prod assoc c: Customers’ product associations over time (multiple visits).
product(s) ! product {Pork sausage, mustard}! dry Riesling

Mining Scenarios We consider three mining scenarios described in Table 4.2. Each sce-
nario leads to the construction of a collection of transactions, on which TopPI is executed.
Each itemset P returned in the top-k of an item i implies an association rule of the form
P \ {i} ! i. P \ {i} is the antecedent of the rule, and i its consequent. In demo assoc,
the antecedent is a customer segment and the consequent is a single product category. In
prod assoc t and prod assoc c, the antecedent is a set of products and the consequent is a
single product. Analysts generally focus on particular products or product categories. This
can be done by specifying a list of items for TopPI to focus on.

Interestingness Measures

Large datasets often contain millions of frequent closed itemsets, and each of them may
lead to several association rules. The ability to identify valuable rules is therefore of the
utmost importance to avoid drowning analysts in useless information. Association rules A!
B were originally selected using thresholds for support (supportT (A [ B)) and confidence

( supportT (A[B)
supportT (A) ) [2]. However using two separate values, and guessing the right threshold is

not natural. Furthermore, support and confidence do not always coincide with the interest
of analysts. Hence, a number of interestingness measures that serve di↵erent analyses were
proposed in the literature [47,67,71]. Table 4.3 summarizes the measures we use in this work.
The first column contains the name of the measure. The second column will be referred to
later. A more complete version of this table including the expression of each measure can be
found in [61].

Goal

Our goal is to help analysts test and compare the rankings produced by di↵erent interest-
ingness measures on rules extracted from their data. An analyst can specify one of 3 mining
scenarios, demo assoc, prod assoc t, and prod assoc c, and one or several targets (cate-
gories in the case of demo assoc, products in the case of the other two), and CAPA generates
as many rule rankings as the number of interestingness measures.
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Table 4.3: Interestingness measures of a rule A ! B. ⇤, . indicate measures producing
identical rule rankings when B is fixed. ⌃, †,  , ⌦ indicate measures that always produce
the same rule ranking. |T | is the number of transactions. P (A) = support(A)/|T |.

Measure Group and description

One-Way Support
Relative Risk
Odd Multiplier
Zhang
Yule’s Q ⌃
Yule’s Y ⌃
Odds Ratio ⌃
Information Gain ⇤ Highest confidence
Lift ⇤ G1 Very low recall
Added Value ⇤ Favors frequent targets
Certainty Factor ⇤
Confidence / Precision ⇤⌦
Laplace Correction ⇤⌦
Loevinger †
Conviction †

Example and Counter-example Rate
Sebag-Schoenauer
Leverage

Least Contradiction Very high confidence
Accuracy

G2 Very low recall

Pearson’s �2
.

Gini Index .

J-measure High confidence
� Linear Correlation Coe�cient Low recall
Two-Way Support Variation Low sensitivity
Fisher’s exact test (to target frequency)
Jaccard

G3

Cosine Average confidence
Two-Way Support

G4 Average recall, Low sensitivity

Piatetsky-Shapiro

Klosgen G5 Low confidence
Specificity High recall

Recall Lowest confidence
Collective Strength

G6 Highest recall, Favors rare targets

4.1.3 Empirical evaluation

We present an empirical evaluation of the 34 measures for association rules introduced in
Section 4.1.2. Recall that our goal is to assist the analyst in selecting measures. Our evaluation
consists in comparing rankings produced by these measures on retail data to discover which
measures di↵er significantly in practice. We then use that similarity to classify ranking
measures into groups. We annotate these groups based on the properties common to the
group. We discuss key insights obtained from experimentation on each group. The goal of this
evaluation is to automatically detect similarities between interestingness measures and reduce
the number of candidate measures to present to analysts in the user study (Section 4.1.4).
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We first present methods used to compare ranked list. Then, we compare the resulting
rankings and select representative measures.

Ranking similarity measures

In this section, we discuss some methods for comparison of ranked lists. The first three
methods are taken from the literature. We then introduce NDCC, a new parameter-free
ranking similarity designed to emphasize di↵erences at the top of the ranking.

We are given of a set of association rules R to rank. We interpret each measure, m, as
a function that receives a rule and generates a score, m : R ! R. We use L

m
R to denote an

ordered list composed of rules in R, sorted by decreasing score. Thus, Lm
R =< r1, r2, . . . > s.t.

8i > i
0
m(ri) < m(ri0). We generate multiple lists, one for each measure m, from the same

set R. Lm
R denotes a ranked list of association rules according to measure m where the rank

of rule r is given as rank(r, Lm
R) = |{r

0
|r

0
2 R, m(r0) � m(r)}|. To assess the dissimilarity

between two measures, m and m
0, we compute the dissimilarity between their ranked lists,

L
m
R and L

m0
R . We use r

m as a shorthand notation for rank(r, Lm
R).

Spearman’s rank correlation coe�cient Given two ranked lists L
m
R and L

m0
R , Spear-

man’s rank correlation [34] computes a linear correlation coe�cient that varies between 1
(identical lists) and �1 (opposite rankings) as shown below.

Spearman(Lm
R ,Lm 0

R ) = 1�

6
P
r2R

(rm � r
m0
)2

|R|(|R|2 � 1)

This coe�cient depends only on the di↵erence in ranks of the element (rule) in the two lists,
and not on the ranks themselves. Hence, the penalization is the same for di↵erences occurring
at the beginning or at the end of the lists.

Kendall’s ⌧ rank correlation coe�cient Kendall’s ⌧ rank correlation coe�cient [60] is
based on the idea of agreement among element (rule) pairs. A rule pair is said to be concordant
if their order is the same in L

m
R and L

m0
R , and discordant otherwise. ⌧ computes the di↵erence

between the number of concordant and discordant pairs and divides by the total number of
pairs as shown below.

⌧(Lm
R, L

m0
R ) =

|C|� |D|

1
2 |R|(|R|� 1)

C = {(ri, rj)|ri, rj 2 R ^ i < j^

sign(rmi � r
m
j ) = sign(rm

0
i � r

m0
j )}

D = {(ri, rj)|ri, rj 2 R ^ i < j^

sign(rmi � r
m
j ) 6= sign(rm

0
i � r

m0
j )}

Similar to Spearman’s, ⌧ varies between 1 and �1, and penalizes uniformly across all positions.
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Figure 4.1: Hierarchical clustering of interestingness measures for a single target

Overlap@k Overlap@k is another method for ranked lists comparison widely used in In-
formation Retrieval. It is based on the premise that in long ranked lists, the analyst is only
expected to look at the top few results that are highly ranked. While Spearman and ⌧ ac-
count for all elements uniformly, Overlap@k compares two rankings by computing the overlap
between their top-k elements only.

Overlap@k(Lm
R ,Lm 0

R ) =
|{r 2 R | rm  k ^ rm

0
 k}|

k

Normalized Discounted Correlation Coe�cient Overlap@k, Spearman’s and ⌧ sit at
two di↵erent extremes. The former is conservative in that it takes into consideration only the
top k elements of the list whereas the latter two take too liberal an approach by penalizing all
parts of the lists uniformly. In practice, we aim for a good tradeo↵ between these extremes.

To bridge this gap, we propose a new ranking correlation measure coined Normalized Dis-
counted Correlation Coe�cient or NDCC. NDCC draws inspiration from NDCG, Normalized
Discounted Cumulative Gain [57], a ranking measure commonly used in Information Retrieval.
The core idea in NDCG is to reward a ranked list L

m
R for placing an element r of relevance

relr by relr
log rm .

The logarithmic part acts as a smoothing discount rate representing the fact that as the
rank increases, the analyst is less likely to observe r. In our setting, there is no ground truth
to properly assess relr . Instead, we use the ranking assigned by m

0 as a relevance measure
for r, with an identical logarithmic discount. When summing over all of R, we obtain DCC ,
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which presents the advantage of being a symmetric correlation measure between two rankings
L
m
R and L

m0
R .

DCC (Lm
R ,Lm 0

R ) =
X

r2R

1

log (1 + rm
0) log (1 + rm)

We compute NDCC by normalizing DCC between 1 (identical rankings) and �1 (reversed
rankings).

NDCC (Lm
R ,Lm 0

R ) =
dcc� avg

max� avg

where dcc = DCC (Lm
R ,Lm 0

R ), max = DCC (Lm 0
R ,Lm 0

R )

min = DCC (L⇤,Lm 0
R ), L⇤ = rev(Lm 0

R )

avg = (max+min)/2

Ranking comparison by example We illustrate the di↵erence between all ranking cor-
relation measures with an example in Table 4.4. This shows correlation of a ranking L

1 with
3 others, according to each measure. NDCC does indeed penalize di↵erences at higher ranks,
and is more tolerant at lower ranks.

Rankings comparison

We perform a comparative analysis of ranking measures, on our 3 mining scenarios summa-
rized in Table 4.2. We generate association rules A! B where B is a single product among a
set of 64 previously studied by analysts. Overall we obtain 1,651,024 association rules, and we
compute one rule ranking per product and per interestingness measure. Our first observation
is that the results we obtain for all scenarios lead to the same conclusions. Therefore, we only
report numbers for prod assoc c.

While all measures are computed di↵erently, we notice that some of them always return
the same ranking for association rules of a given target. We identify them in Table 4.3
using symbols. Other notable similarities include Sebag-Schoenauer [47] and lift (89% of
rankings are equal), as well as Loevinger and lift (87%). This di↵erence between the number
of interestingness measures considered (34) and the number of di↵erent rankings obtained
(25) can easily be explained analytically in the case of a fixed target. Indeed, for a given
ranking, P (B) is constant, which eliminates some of the di↵erences between interestingness
measures. In addition, some measures only have subtle di↵erences which only appear when
selecting extreme values for P (A), P (B) and P (AB), which do not occur in practice in our
retail dataset.

Comparative analysis We now evaluate similarity between interestingness measures that
do not return the same rankings. We compute a 34 ⇥ 34 correlation matrix of all rankings
according to each correlation measure described in Section 4.1.3, and average them over
the 64 target products. This gives us a ranking similarity between all pairs of measures.
We then rely on hierarchical clustering with average linkage [86] to obtain a dendrogram of
interestingness measures and analyze their similarities. The dendrograms for NDCC and ⌧

are presented in Figure 4.1. For better readability, we merge sub-trees when correlation is
above 0.9. To describe the results more easily, we partition interestingness measures into 6
groups, as indicated in the third column in Table 4.3.
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Table 4.4: Example rankings and correlations
Ranking Content

L
1

r1, r2, r3, r4

L
2

r2, r1, r3, r4

L
3

r1, r2, r4, r3

L
4

r2, r3, r1, r4

Spearman ⌧ Overlap@2 NDCC
L
2 0.80 0.67 1 0.20

L
3 0.80 0.67 1 0.97

L
4 0.40 0.33 0.5 �0.18
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Figure 4.2: Rank correlations

G1 is by far the largest group: in addition to 4 measures that always generate the same
rankings, 14 other measures output similar results. A second group, G2, comprising 2 mea-
sures, is quite similar to G1 according to NDCC . ⌧ also discovers this similarity, but considers
it lower, which shows that it is mostly caused by high ranks. Jaccard is as a slight outlier in
G3 according to NDCC . Indeed, when focusing on the first 20 elements (Overlap@20), only
an average of 71% are shared between Jaccard and the rest of G3. This situation also occurs
between Klosgen and the rest of G5. Interestingly, we observe that, according to NDCC , G5

is closest to G6 and is negatively correlated with the other groups. However, according to
⌧ , G5 is very similar to G4 and is negatively correlated with G6. This di↵erence between
ranking measures illustrates the importance of accounting for rank positions. When the top
of the ranking is considered more important, some similarities emerge.

We illustrate this behavior in Figure 4.2 by displaying correlation between rankings ob-
tained with di↵erent interestingness measures. This experiment clearly shows that overall,
cosine (G4) is closer to specificity (G5) than Gini (G3), as the rank di↵erence observed in the
results is overall smaller. However, when focusing on the top-10 results of cosine, Gini assigns
closer ranks than specificity. This explains the di↵erence in clustering between NDCC/overlap
and ⌧/Spearman.

Annotating groups While using hierarchical clustering on interestingness measures allows
the discovery of families of measures, and their relative similarity, it does not fully explain
which types of results are favored by each of them. We propose to compare their outputs
according to the two most basic and intuitive interestingness measures employed in data
mining: recall and confidence. recall represents the proportion of target items that can be
retrieved by a rule, that is, P (A|B). Its counterpart, confidence, represents how often the
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Figure 4.3: Avg. recall/confidence of the top-20 results of interestingness measures

consequent is present when the antecedent is, that is, P (B|A). We present, in Figure 4.3,
the average recall and confidence of the top-20 rules ranked according to each interestingness
measure. G1 contains confidence, so it is expected to score the highest on this dimension.
G2 is extremely close to G1, but obtains slightly lower confidence and recall. We then have,
in order of increasing recall and decreasing confidence G3, G4 and G5. Finally, G6, which
contains recall, obtains the highest recall but the lowest confidence. Figure 4.3 also shows
that executing a Euclidean distance-based clustering, such as k-means, with recall/confidence
coordinates would lead to groups similar to the ones obtained with hierarchical clustering.
Hence, this analysis is consistent with the hierarchical grouping and the correlation with
NDCC .

While we believe that NDCC better reflects the interpretation of analysts browsing rules,
it is important to note that the grouping of interestingness measures created through this
evaluation is stable across all 4 correlation measures and for all 3 scenarios. Correlation
between di↵erent families of measures may vary, but measures within a single family always
have a high similarity. Thus, we conjecture that the obtained results are true in the general
case of food retailers and we can rely on these groups to reduce the number of options
presented to analysts.

Selecting representative measures We summarize the findings of the comparative evalu-
ation in the last column of Table 4.3. We identify 6 families of measures that behave similarly.
Each family o↵ers a di↵erent trade-o↵ in terms of confidence and recall, and thus ranks as-
sociation rules di↵erently. We select the quality measure that most represents each family of
measures (i.e. with highest average similarity) in order to confront the results of this analysis
with the opinion of domain experts in our user study. Taking a general data mining perspec-
tive leads us to considering G3 and G4 as the most promising families for finding interesting
association rules. Indeed, it is important to achieve a good trade-o↵ between recall and con-
fidence in order to find reliable association rules that can be applied in a significant number
of cases. Hence, F1 score, that combines recall and confidence, would prefer G3 and G4 to
others.

4.1.4 User study

We now report the results of a user study with domain experts from Intermarché. The goal
of this study is to assess the ability of interestingness measures to rank association rules
according to the needs of an analyst. As explained in Section 4.1.3, we identified 6 families
of measures, and selected a representative of each group for the user study (their names are
in bold in Table 4.3). We rely on the expertise of our industrial partner to determine, for
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each analysis scenario, which family produces the most interesting results. This experiment
involved 2 experienced analysts from the marketing department of Intermarché. We setup
CAPA and let analysts select targets multiple times in order to populate a web application’s
database with association rules. We let our analysts interact with CAPA without any time
restriction, and collect their feedback in a free text form.

Each analyst firstly has to pick a mining scenario among demo assoc, prod assoc t, or
prod assoc c. Then she picks a target category or a target product in the taxonomy. In
prod assoc t and prod assoc c, she also has the option to filter out rules whose antecedent
products are not from the same category as the target. Finally, she chooses one of our 6
ranking measures to sort association rules. Neither the name of the measure nor its computed
values for association rules are revealed, because we wanted analysts to evaluate rankings
without knowing how they were produced.

Resulting association rules are ranked according to a selected measure. Each rule is
displayed with its support, confidence and recall, such that analysts can evaluate it at a
glance. For each scenario, our analysts are asked which representative measure highlights the
most interesting results (as detailed below, in all cases a few of them were chosen).

Scrolling behavior

Once the analyst selects a target, all matching rules are returned. The initial motivation
of this choice was to determine how many results are worth displaying and are actually
examined by the analysts. According to the follow-up interview with the analysts, they
carefully considered the first ten results, and screened up to a hundred more. Interestingly,
analysts mentioned that they also scrolled down to the bottom of the list in order to see which
customer segments are not akin to buying the selected category. For example, when browsing
demographic association rules, they expected to find {50-64} ! pet food among top results,
but also expected {< 35, Paris} ! pet food among bottom results. This confirms that all
rules should remain accessible. This also indicates that while interestingness measures favor
strong associations, it could also be useful to highlight anti-rules.

Feedback on ranking measures

We let marketing experts explore all 3 scenarios and express their preference towards groups
of measures.

In the demo assoc case, G1 and G3 were both highly appreciated. G1 favors rules such as
{< 35,M, Oise} ! Flat and Carbonated drinks. These rules are very specific and thus have
a very high confidence (31,58 % in this particular case). However, this comes at the cost of
recall (0,08 %). Experts involved in this study value confidencemuch more than recall, as their
priority is finding rules that they consider reliable. A low support is not necessarily an issue,
and can lead to the discovery of surprising niche rules that can be exploited nonetheless.
As discussed in Section 4.1.3, G3 o↵ers a more balanced trade-o↵ between confidence and
recall, and prioritizes rules such as {< 35, *, *} ! Baby food (confidence 8,57 %, recall
37,61%). These rules are interesting because they capture a large fraction of the sales of a
given category, but are less reliable and generally less surprising. G2 and G4 were considered
as less interesting than G1 and G3 respectively. Their results o↵er similar trade-o↵s, but with
lower confidence each time. G5 and G6 were considered unusable because of their very low
confidence.
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When experimenting with prod assoc, we observed a slightly di↵erent behavior. By
default, the analysts favored G1 and G2 because of the confidence of their results. Then,
we o↵ered the analysts the possibility of filtering the rules to only keep the ones in which
the antecedent contains products from the same category as the target. This led to analysts
favoring G3 and G5. This di↵erence is caused by an important criterion: the ability of a
measure to filter out very popular products. For example, the rule {van. cream, emmental}!
choc. cream usually appears just above its shorter version {van. cream}! choc. cream,
because the first one has a confidence of 32% and the second 31%. However, experts prefer
the second one, because emmental (cheese) is among the heavy hitters in stores. Its addition to
the rule is hence considered insignificant. This “noise” generally increases with recall. Hence,
when no filtering is available, G1 is selected, but analysts prefer the recall and confidence
trade-o↵ provided by G3 and G5. Again, G4 su↵ered from its proximity to G3 with lower
confidence, while G6’s confidence was too low.

In all cases, analysts mentioned G6 as uninteresting because it selects rules of low confi-
dence. In general, sorting by decreasing lift (which is close to sorting by decreasing confidence)
is the preferred choice. Combined with the minimum support threshold used in the mining
phase, this ranking promotes rules that are considered reliable. However, in the case where
analysts are given the ability to filter out noisy products (very frequent ones), they prefer
the ranking produced by Piatetsky-Shapiro’s measure [77]. That could be explained by the
fact this measure provides a good compromise between confidence and support. The noisy
products that this measure may introduce can be filtered out by analysts.

4.1.5 Conclusion

Mining algorithms often generate thousands of results. Identifying the most interesting ones
and showing them to the analysts first is important, as otherwise they may be ignored. When
searching for an appropriate ranking function in the literature, we face too many choices:
over 34 interestingness measures have been proposed, with no guidelines on which should be
used.

We proposed CAPA, a framework for automatically analyzing interestingness functions
by comparing the rankings they produce in real use-cases. CAPA clusters the measures into
groups and determines the characteristics of each group. This scales down the problem to a
much smaller number of options, so it becomes manageable for analysts. A user study can
then find out which is the best option among the initial 34.

In the context of retail data and the dataset provided by Intermarché, we concluded that
lift and Piatetsky-Shapiro best fit the needs of analysts, as they ensure high confidence. Our
user study also led us to thinking about future research directions, including the extraction
of negative results (anti-rules).
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4.2 Integrated approach for building Composite Items

4.2.1 Context

Some queries are inherently multi-faceted and cannot be answered by a single item. For
instance, planning a city tour is not simply asking either for an hotel suggestion or one
location to visit. Instead, the user requires a bundle that contains an hotel, a few locations to
visit and suggestions of restaurants. Building a bundle is more than aggregating the results
of independent queries on di↵erent types of objects. Indeed, this one-type-at-a-time approach
does not necessarily guarantee that items in the bundle (e.g. an hotel, a restaurant and
a museum) will be close to each other, i.e., cohesive. Instead, we consider the problem of
selecting this bundle in one step: this approach is known as building Composite Items.

CIs have been shown to be very e↵ective in solving complex information needs such as
organizing vacations, selecting books for a reading club, or organizing a movie rating con-
test [8, 10, 19, 23, 31, 49, 56, 83, 97]. In those applications, a CI is a set of close items (e.g.,
geographically close points of interest - POIs, movies rated by the same users) that satisfy
a budget (e.g., at least two schools and one theater, at least one movie per genre). When
summarizing POIs, a CI may correspond to geographically close places that have di↵erent
types (e.g., theater and museum) and whose total visit time does not exceed 3 hours. When
selecting books, a CI may be formed by similar books, i.e., on similar topics, written by di↵er-
ent authors and whose total price is less than a maximum amount. When organizing a movie
contest, a CI is a set of comparable movies, i.e., having common reviewers, and with di↵erent
genres or release years. The budget constraint of a CI can therefore be used to glue together
heterogeneous items, i.e., items with di↵erent types. In that case, we say that a CI is valid.
The problem of summarizing heterogeneous item collections can therefore be formulated as
finding k valid, cohesive and representative CIs, i.e., each CI satisfies budget constraints, is
formed of “close” items, and the set of CIs “covers” all input items.

Forming valid, cohesive and representative CIs can be naturally expressed as a constrained
optimization problem [8]. Existing solutions to solve this problem usually rely on two phases:
in one solution, many valid CIs (i.e. satisfying the budget constraint) are built, and then the
k farthest are chosen thereby resulting in representative CIs. In the other, a k-clustering is
performed in the first stage to address representativity, and then one valid CI, i.e. satisfying
constraints, is picked from each cluster in order to produce k CIs overall. This process decou-
ples budget constraint satisfaction (e.g., a CI must contain one museum and 2 restaurants)
from the optimization goal (e.g., each CI is a set of closely located POIs). As a result, we can
argue that while clustering is a natural solution to finding CIs, existing formulations are not
well-adapted to achieve validity, cohesiveness and representativity simultaneously. We hence
advocate the seamless integration of validity, cohesiveness and representativity when building
CIs.

The work presented in this section is the result of a collaboration between the SLIDE and
AMA groups from LIG, and the KEIO University. It is detailed in the following publications:

• Building Representative Composite Items

Vincent Leroy, Sihem Amer-Yahia, Eric Gaussier and Hamid Mirisaee
In Proceedings of the ACM Conference on Information and Knowledge Management
(CIKM), 2015, pages 1421–1430.

• Task Composition in Crowdsourcing
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Sihem Amer-Yahia, Ria Borromeo, Eric Gaussier, Vincent Leroy, Julien Pilourdault
and Motomichi Toyama
In Proceedings of the International Conference on Data Science and Advanced Analytics
(DSAA), 2016, pages 194–203.

Section 4.2.2 contains our formalization and general problem statement. Section 4.2.3
describes our integrated algorithm, KFC. We evaluate our approach in Section 4.2.4. We
conclude in Section 4.2.5.

4.2.2 Model and Problem

In this section, we first define our formal model and discuss the link between clustering,
validity, cohesiveness and representativity. We then formalize the problem of finding a set of
k, possibly overlapping, valid, cohesive and representative CIs.

Data Model

We are given a set X of items where x 2 X is uniquely identified. X is a heterogeneous set
of items each of which may have one or several types in T = {t1, . . . , tn}. For example, the
movie Titanic has two types: romance and drama. A book type could be novel or adventure
and the type of a point of interest could be museum, park, etc. We use x.type to refer to the
type(s) of x. We furthermore assume that an item x may have a cost, that will be denoted
as x.cost. For a book, this would typically be its selling price. For a museum, it could either
be the cost of an entry ticket or the average time required to visit it.

We define a budget vector b = h#t1, . . . ,#tn,#$i where each #ti specifies a cardinality
for an item type ti 2 T and #$ is a total cost (e.g., maximum price a user is willing to pay
for a movie or maximum time a user is willing to spend visiting a place). For example, the
vector h1, 2, 1, 90i applied on books would represent 1 novel, 2 art books, and 1 self-help book,
assuming those are the only available book types, whose total price does not exceed 90$. The
same vector applied on points of interest in a city would be interpreted very di↵erently and
represent 1 gym, 2 subway stops and 1 bakery and a total time not exceeding 90 minutes.

We will make use of a distance function, noted d(, ) to compare a pair of items (x, x0) 2
X ⇥ X . For instance, if x and x

0 are points of interest in a city, it is natural to use their
geographic distance. If items are books, it is more appropriate to compare them according to
their content, e.g. based on the cosine between their vectors; similarly, if items are movies,
their distance can be inversely proportional to the fraction of reviewers who like both x and
x
0.

Representativity through fuzzy clustering

We are interested in identifying valid, cohesive and representative sets of items where each
item has one or several types. The validity of a set of items is expressed in terms of the
budget vector b = h#t1, . . . ,#tn,#$i introduced above. The cohesiveness is the ability to
identify sets of items relatively close to each other, whereas the representativity is the ability
to cover the input dataset. The clustering literature contains many proposals for finding
representative points of a dataset. Indeed, representative points are typically obtained, in
any given dataset, as the centroids of the clusters present in that dataset: The set of clusters
“covers” the whole dataset and their centroids represent a summary of the content of each
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cluster. In hard clustering, items are divided into distinct clusters and each item belongs to
exactly one cluster, a framework well adapted to homogeneous items [56]. However, in the
case of a heterogeneous set of items, an item may have di↵erent types and hence belong to
more than one cluster. Therefore, we propose to study the applicability of fuzzy clustering [16]
to the problem of finding valid, cohesive and representative items.

The most popular fuzzy clustering algorithm is Fuzzy C-Means (FCM) [16]. FCM assigns
a set of items X to a collection of k fuzzy clusters represented through their centroids vj , 1 
j  k (the set of centroids will be denoted V ). More precisely, given a set of N items, X , the
algorithm returns both the k centroids and a partition matrix W = wi,j 2 [0, 1], i 2 [1, N ],
j 2 [1, k] where each wij represents the degree to which item xi belongs to cluster j. Given a
distance function d(, ), the standard objective function of FCM is as follows:

argmin
V,W

NX

i=1

kX

j=1

w
m
ij d(xi, vj)

s.t. 8i 2 [1, N ],
kX

j=1

wij = 1

where m is a weighting exponent, greater than one. A large value of m results in smaller
memberships wij and hence, fuzzier clusters, whereas setting m to 1 leads to hard cluster-
ing [16]. The problem above is typically solved through an alternate optimization process in
which one fixes v (respectively w) and solves for w (respectively v). The proof that such an
approach converges is given in [15]; furthermore, initialization of k-means++ [12] can also be
used for the centroids.

Fuzzy clustering thus represents a direct way to identify clusters in a dataset and their
representative points defined by their centroids. Furthermore, its fuzzy nature enables each
point to be assigned to di↵erent clusters (and centroids) through membership values.

Problem Statement

We seek to find a set of k valid, cohesive and representative items. Intuitively, validity finds
sets of items that satisfy a budget constraint (i.e., cardinality and/or cost) b which glues
together items of di↵erent types into composite items, CIs. Cohesion and representativity
intuitively try to identify those CIs formed of close items that cover the input dataset (i.e.,
that are close to cluster centroids). We first define a valid CIs as follows:

Definition 1. Given a set of items X and a budget b, a valid CI, denoted {x1, · · · , xle;xi 2
X, 1  i  le}, is a set of items such that :

8
>>>>><

>>>>>:

(i) 8#tj 2 b,

leX

i=1

(tj , xi.type) � #tj

(ii)
leX

i=1

xi.cost  #$

where is an indicator function which is 1 if both arguments are equal and 0 otherwise. le is
the number of items in the CI and is such that le � n, where n is the number of type values
considered. The set of all valid CIs will be denoted as VCI .
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We can now formulate our problem as a joint optimization problem where one part aims
at identifying good summaries (i.e. cluster centroids that are representative) of the set of
items whereas the other part ensures that the representatives chosen are “close” to valid CIs,
which are in turn cohesive, i.e., formed of closeby items. The closest cohesive CIs to the
obtained centroids are thus valid and representative of the set of items. We in fact face a
minimization problem involving the distance function d(, ). Note that the weighting exponent
m of the fuzzy clustering problem takes values in [1,1]. This leads to:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

General formulation

argmin
V,W

(1� �)
kX

j=1

NX

i=1

w
m
ij d(xi, vj)

| {z }
FC

+

�

kX

j=1

min
C2VCI

 
X

x2C
d(x, vj)

!

| {z }
CRCI

s.t. 8i 2 [1, N ],
kX

j=1

wij = 1

(4.1)

where V denotes a set of k points (centroids) and W a partition matrix of size N ⇥ k.
� is a parameter that controls the influence of the two aspects of the problem: identifying
cluster centroids that are representative of the complete dataset (FC - Fuzzy Clustering) while
ensuring that the centroids obtained are close to some valid CI (CRCI - Close Representative
CI). Minimizing the sum of the distances of all the items of the CI to the centroid in CRCI

additionally ensures the cohesion of the valid CI considered. It is the compromise between
these di↵erent aspects that allows one to identify valid, cohesive and representative CIs. It
is important to note that the above formulation corresponds to an integrated approach that
directly yields valid, cohesive and representative CIs. This contrasts with most previous
solutions that rely on a two-step approach in which candidate CIs are first generated and
then filtered [8].

4.2.3 Algorithmic solution

We present here an algorithmic solution for the optimization problem above, focusing on the
Euclidean distance for d(, ). Prior to that, we first introduce a slight generalization that partly
circumvents the minimization problem in CRCI.

Given a set of items X , X ✓ Rp, a budget constraint b and the set of valid CIs VCI , let f
be a function that associates to a point v 2 Rp a valid CI from VCI : f : Rp

! VCI . As before,
we will denote by V a set of k points (centroids) and by W a partition (weight) matrix of size
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N⇥k. We consider the following general minimization problem using the Euclidean distance:
8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Euclidean distance-based formulation

argmin
V,W

(1� �)
kX

j=1

NX

i=1

w
m
ij ||xi � vj ||

2
2+

�

kX

j=1

X

x2Cj

||x� vj ||
2
2

with : Cj = f(vj)

and s.t. 8i 2 [1, N ],
kX

j=1

wij = 1

(4.2)

In the remainder, we will use Geucl (V,W, f) to denote (1 � �)
Pk

j=1

PN
i=1w

m
ij ||xi � vj ||

2
2 +

�
Pk

j=1

P
x2Cj

||x� vj ||
2
2, with Cj obtained from vj through f .

If the set V is fixed and f is given, so that Cj is known for 1  j  k, then Geucl (V,W, f) is
a convex function of W and the W that minimizes it can be obtained by setting the derivative
of the Lagrangian of Geucl (that integrates the constraints on W ) with respect to W to 0 and
solving for W . This leads to the following update rule for W (equivalent to the standard
FCM update rule [16]):
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(4.3)

where l serves to indicate that new values are computed from known (old) ones. Similarly, for
fixed W and given Cj , the function Geucl (V,W, f) is convex in V . The values of V minimizing
Geucl are obtained by setting the derivatives of Geucl with respect to V to 0 and solving for
V , leading to:
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where |C
(l)
j | represents the number of items in C

(l)
j .

For the valid composite item Cj associated to the centroid vj , two cases may arise de-
pending on the function f considered. Either the valid composite item provided by f for the

new centroid v
(l+1)
j leads to a better solution than the one associated to v

(l)
j , and it is kept,

or it does not lead to a better solution, in which case the previous valid composite item is
used. This can be formalized as:
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Algorithm 1

Require: X , budget constraint b, k, �, step ⌘, procedure f

Ensure: Set S of k CIs
1: S  ;; �0 = �; � = 0
2: Initialize (e.g. through random assignment) V and W ! V

(0)
,W

(0)
, f

(0)(V (0)) = f(V (0))
3: repeat

4: repeat

5: Update W through Eq. 4.3
6: Update V through Eq. 4.4
7: Update f(V ) through Eq. 4.5
8: until Geucl (resp. Gcos) does not change
9: � = �+ ⌘

10: until � � �
0

11: S  f(V ) (with the final f and V obtained)

The above update rules guarantee that, starting with W
(l), V (l) and f , one has:

Geucl (V
(l+1)

,W
(l+1)

, f)  Geucl (V
(l)
,W

(l)
, f)

as, for each update of W and V , the function Geucl is minimized and does not decrease when
updating the CIs provided by f . Thus, the algorithm iterating over the update rules defined
by Eq. 4.3, 4.4 and 4.5 convergences (as Geucl is lower bounded by 0) and provides a local
minimum for the problem with the Euclidean distance.

Algorithm 1 summarizes the steps followed. As one can note, we first set � to 0 and
gradually increase its value. By doing so, one first identifies fuzzy centroids that are then
moved towards valid, cohesive CIs.

Choice of f

Because the budget constraints b considered here have two parts, related respectively to type
cardinality and cost (see Definition 1), we rely on two scenarios associated to two di↵erent
choices for f . In the first scenario, we restrict ourselves to budget constraints b that only
contain type cardinality constraints: b = h#t1, . . . ,#tni. In that particular case, it is possible
to e�ciently compute, for any vj , min

C2VCI

P
x2C ||x� vj ||

2
2 through the following process:

1. Set C  ;

2. For i = 1 to n, add to C the #ti items of type ti closest to vj

3. Return C

The function f defined by the above algorithm, the complexity of which is O(kN) in the
worst case, directly yields the minimizer of CRCI in Problem 4.1 as there is no other valid CI
closer to the given point vj .

In the second scenario, we consider cost constraints in addition to type cardinality con-
straints, leading to the general budget constraint: b = h#t1, . . . ,#tn,#$i. In that case one
cannot directly use the above approach and we resort in this study to backtracking: we first
select the closest item to a given vj with a type in b, and iteratively add the next closest item
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to vj compatible with the constraint in b. If the cost constraint is violated, the process back-
tracks until all the constraints are satisfied. Lastly, the backtracking process may not lead to
an optimal solution in the sense of the minimization problem defined in CRCI (Problem 4.1);
it will nevertheless yield a valid CI (close to the centroid considered), which is required to
solve Problem 4.2.

4.2.4 Evaluation

We demonstrate the benefits of using an integrated approach for building k CIs through
the following example. Consider the case of Mary whose job is to train future users of
products developed by a large software company. Mary often travels to di↵erent places
where she spends extended periods of time, i.e., at least 2 weeks, during which she rents an
apartment. In her free time, Mary enjoys going to the theater and dining out wherever she
stays. She also practices yoga and likes swimming. Mary would be interested in exploring
a map with representative CIs in di↵erent areas in the city she is planning to visit. The
validity constraints for each CI is that they should contain at least one theater, a pharmacy, a
gym, two restaurants and a subway station, and cohesiveness is measured through geographic
distance. Figures 4.4a, 4.4b and 4.4c show three sets of CIs for Paris produced using a dataset
from Tourpedia1 with three di↵erent methods: the one-at-a-time approach that summarizes
each homogeneous item collection separately, the two-stage approach that decouples validity,
cohesiveness and representativity, and the integrated approach, detailed in this chapter, that
optimizes validity, cohesiveness and representativity together. The CIs generated using the
integrated approach (KFC, Figure 4.4c) o↵er the best trade-o↵ between validity, cohesiveness
and representativity. Indeed, the CIs in Figure 4.4a tend to favor representativity (coverage
of the city) to the expense of cohesiveness (items in each CI are not close to each other).
Those in Figure 4.4b are located on the edges of the city because this two-stage approach first
produces the most cohesive valid CIs, which limits their representativity in the second stage.

4.2.5 Conclusion

On the Web, simple navigation queries can be easily answered by a list of individual links to
Websites. However, as the needs of the user become more complex, Composite Items become
more appropriate, as they cover multiple facets of the needs of the user simultaneously. In
this chapter, we propose an integrated approach for building valid and cohesive CIs, while
also ensuring that our results are representative of the dataset. This is a departure from
previous approaches that use disjoint processes phases to achieve this goal.

We designed a new integrated algorithm that builds the k most valid, cohesive and repre-
sentative CIs of an input dataset. Our algorithm integrates constraint satisfaction into fuzzy
clustering in order to simultaneously optimize for validity, cohesion and representativity. Ex-
periments on real datasets show that the integrated approach outperforms two-stage ones
resulting in CIs that achieve very good representativity of existing items.

While the evaluation presented in this chapter only builds CIs of POIs, we also experi-
mented with CIs in a very di↵erent context: crowdsourcing. We show in [7] that CIs can be
used to e�ciently aggregate micro-tasks into a composite task, which helps worker navigate
crowdsourcing platforms such as Amazon Mechanical Turk [6] more e�ciently.

1http://datahub.io/dataset/tourpedia
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(a) One-at-a-Time Approach (b) Two-Stage Approach

(c) Integrated Approach (KFC)

Figure 4.4: Alternative approaches to build composite items
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4.3 Summary of contributions

Analyzing increasingly large amounts of data stresses the importance of having a qualitative
approach. Analysts are unable to browse thousands of results. It is our role, as data miners,
to synthesize the most relevant information of a dataset before returning it.

One of the directions to achieve this goal is to focus on raking functions, and the ability
to assign a score to each result. This is the traditional approach of information retrieval,
and the goal is to extend this to di↵erent types of data mining algorithms. Surprisingly,
the challenge often does not come from devising new interestingness functions, as there are
in practice plenty in the literature. Instead, it is of selecting the right relevance function
for the right dataset. In our work on pattern mining, presented in Section 4.1, we propose
CAPA, a general approach for automatically comparing a large number of interestingness
functions. This is followed by a user study with marketing experts, in which we identify the
most appropriate ranking function for their use-case.

A di↵erent direction consists in re-defining what constitutes a result. We are specifically
interested in the composite-items approach, that, instead of individual results, returns a bun-
dle of items that complement each other. Section 4.2 describes KFC, an algorithm that aims
at increasing the quality of composite items by using an integrated approach that optimizes
validity, cohesiveness and representativity simultaneously. We demonstrate the benefits of
composite-items in a variety of applications, including recommending POIs for visiting new
cities, recommending movies [65], and crowd-sourcing.
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Chapter 5

Perspectives

While data analysis has been a very active area of research, there are still many avenues of
research to explore. As stated in the introduction, I enjoy working on diverse topics, and this
is something I would like to preserve in the future. In the remainder of this section, I list
research topics I plan to pursue in the next few years.

Systems design

Distributed exploration of a result-space

Popular distributed data processing platform (namely Hadoop and Spark) expose an execution
model in which large tasks are partitioned into independent stages. During the execution of
a stage, there are no communications between executors. This model is problematic for any
algorithm doing a dynamic exploration of a results space for two main reasons: (i) it is very
di�cult to initially produce a balanced partition of the workload, as the result candidates are
generated dynamically and their number can vary a lot from one partition to the next, and
(ii) results discovered in one partition cannot be shared with other partitions to eliminate
portions of the search-space.

In Chapter 3, I describe two algorithms for processing top-k queries on these platforms.
The algorithms presented remain within the bounds of Map-Reduce, but compensate for its
limitations by using strategies specific to the type of queries considered. In other cases [51],
researchers have deployed a Publish-Subscribe platform (namely Kafka) in addition to the
Map-Reduce one in order to obtain message-passing functionalities. This requires a lot of
e↵ort from the developer, and the solution implemented is specific to the problem considered.
A di↵erent approach would be to extend the programming model and o↵er more possibilities
to the developer.

Coming up with a proper abstraction for large-scale data processing is di�cult. The pop-
ularity of Map-Reduce comes from its simplicity: developing a Map-Reduce application does
not require extensive knowledge about distributed systems, parallelism, or fault tolerance.
Hence, Map-Reduce is accessible to most developers and is taught to many students. There is
clearly a huge gap between Map-Reduce platforms, and low level primitives such as MPI. The
challenge is to significantly extend the possibilities o↵ered by the model, without transferring
the complexity to the developer. I believe what is required is an integrated abstraction for
distributed shared objects that can be accessed by multiple executors simultaneously to share
information. These shared objects have to integrate seamlessly with the fault tolerance policy
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of the platforms, which is non trivial as the executions are no longer isolated. Furthermore,
they need to have a simple general purpose API accessible to most developers.

Algorithms development

Hardware-accelerated algorithms for machine learning

Innovation in algorithms and software for machine learning leads to new applications and
better results. However, hardware can also be a driving force behind discoveries in data
analysis. Specialized hardware support significantly improves the e�ciency of data processing,
both in terms of speed and power usage. Companies like Microsoft added reconfigurable
hardware (FPGA) to their servers to accelerate some modules of the Bing search engine. In
addition, GPUs have seen a lot of use in the domain of neural networks.

For the past two years, I have worked with STMicroelectronics and the TIMA laboratory
in Grenoble to develop data analysis algorithms with hardware support. Our first results
on pattern mining [80] and deep neural networks [4] are very promising, and outperformed
existing industrial products such as IBM TrueNorth. This work demonstrates that the co-
development of the algorithm and the hardware solution to support it leads to more progress
than the development of algorithms for existing hardware or of hardware for existing al-
gorithms. Indeed, the cost of algorithmic operation varies significantly depending on the
hardware support available, so they influence each other. I will continue this collaboration
and extend this work to di↵erent types of data mining algorithms, with a specific focus on
data streams.

Mining massive graph datasets

Many interesting datasets are represented as graphs showing relations between entities. The
YAGO dataset for instance contains 120M facts about 10M entities. The structure of molecules
and proteins can also be represented as a graph, and their properties are related to specific
layouts. Analyzing these graphs is important to detect structural characteristics, and predict
new facts. Processing large graphs is challenging because of the connected nature of the data:
a graph cannot be easily split into independent partitions.

Several general-purpose platforms were built to process these graphs at scale in parallel
and distributed platforms such as MapReduce and Spark (e.g. Arabesque [89]). To the best
of my knowledge, the platforms able to perform graph mining all require the graph to be
replicated on each executor, which limits scalability in terms of graph size. More specialized
algorithms backed by a standard databases approach (joins) were developed to mine graphs
(e.g. AMIE++ [43] and Ontological Pathfinding [29]). These algorithms are unable to scale
beyond patterns of 3 edges, because they search for instances from scratch each time instead
of building on previous results. In addition, I suspect these existing approaches to be unable
to deal e�ciently with some specific graph structures such as cliques and stars, that generate
a number of instances that grows exponentially with the pattern size.

Over the past years I have developed an expertise both in distributed systems and mining
algorithms. My goal is to design graph mining algorithms that will benefit from large-scale
distributed platforms while being optimized to solve specific graph mining problems. Prelim-
inary experiments on Spark show promising results.
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Information discovery

A data mining approach to debugging applications

Debugging application can be a di�cult problem. Many tools exist to solve functional bugs,
in which a function does not output the correct result. However, there are many more subtle
bugs that emerge in complex systems for which these tools (debuggers. . . ) are unable to
help developers. Consider for instance a video playback software. A frame decoded correctly
but displayed late is the symptom of a temporal bug. The code was executed correctly and
does not contain errors, but some system activity occurring in the background delayed the
execution of the function decoding the frame, resulting in screen tearing.

Data mining can help developers analyze the behavior of their program to better identify
the origin of these subtle bugs. I have supervised in collaboration with STMicroelectronics a
Ph.D student working on this problem [53]. In addition, I am currently supervising a Ph.D
student applying data mining to model checking [14].

For my future research activities, I am starting a collaboration with François Trahay and
Gaël Thomas from Telecom SudParis. Our goal is to develop data mining algorithms to better
understand the performance of large-scale parallel and distributed systems. This requires
pattern mining algorithms to identify structure in application traces, and an integration of
quantitative measures such as CPU usage, proportion of cache misses, and frequency context
switches, to correlated patterns with performance issues.

Contextual recommendation

The goal of a recommendation strategy and is to estimate a user’s interest for items she
has not expressed interest for before, and return the items she is most likely to appreciate.
Context-aware recommendations refer to the need to take into account additional information
in serving recommendations in serving content to users. Context refers to many di↵erent
dimensions, temporal (time of day or time of year), geographical (at home or at work),
presence of absence of others (in the company of friends or in the company of kids). . . . Context
can be utilized at various stages of the recommendation process, including at the pre-filtering
and the post-filtering stages and also as an integral part of the contextual modeling.

In this work, I will investigate how various techniques of using the contextual information
can be combined into a single recommendation approach to improve recommendation accu-
racy. In collaboration with Sihem Amer-Yahia, I will take part in a project funded by Total
and starting in 2018 to explore this issue. Total will provide a dataset of user-data obtained
using the beacon technology that makes use of customers’ smartphones to better understand
their needs.
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