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Résumé
Tout d’abord, mon sujet de recherche porte sur le cryptographie à clé publique, plus
précisément la cryptographie basée sur la théorie des codes correcteurs d’erreurs. L’objectif
principal de cette thèse est d’analyser la sécurité des systèmes de chiffrement. Pour cela
j’étudie les propriétés structurelles des différentes familles de codes linéaires utilisées dans
la pratique. Mon travail de recherche s’est orienté de maniéré naturelle, vers l’étude des
deux dernières propositions de cryptosystèmes, plus exactement le schéma de McEliece
à base des codes MDPC [MTSB13](moderate parity check codes) et des codes Polaires
[SK14].

Dans le cas des codes MDPC on a mis en évidence une faiblesse importante au niveau
des clés utilisées par les utilisateurs du système. En effet, on a proposé un algorithme
très efficace qui permet de retrouver une clé privé à partir d’une clé publique. Ensuite
on a compté le nombre des clés faibles et on a utilisé le problème d’équivalence de codes
pour élargir le nombre de clés faibles. On a publié notre travail de recherche dans une
conférence internationale en cryptographie [BDLO16].

Ensuite on a étudié les codes Polaires et leur application à la cryptographie à clé
publique. Depuis leur découverte par E. Arikan [Arı09], les codes Polaires font partie
des famille de codes les plus étudié du point de vue de le théorie de l’information. Ce
sont des codes très efficaces en terme de performance car ils atteignent la capacité des
canaux binaires symétriques et ils admettent des algorithmes d’encodage et décodage très
rapides. Néanmoins, peu des choses sont connu sur leur propriétés structurelles. Dans
ce cadre la, on a introduit un formalisme algébrique qui nous a permit de révéler une
grande partie de la structure de ces codes. En effet, on a réussi à répondre à des questions
fondamentales concernant les codes Polaires comme : le dual ou la distance minimale
d’un code Polaire, le groupe des permutations ou le nombre des mots de poids faible d’un
code Polaire. On a publié nos résultats dans une conférence internationale en théorie de
l’information [BDOT16].

Par la suite on a réussi à faire une cryptanalyse complète du schéma de McEliece à base
des codes Polaires. Ce résultat a été une application directe des propriétés découvertes sur
les codes Polaires et il a été publié dans une conférence internationale en cryptographie
post-quantique [BCD+16].

Abstract
First of all, during my phd I focused on the public key cryptography, more exactly on
the code-based cryptography. The main motivation is to study the security of the latest
encryption schemes. For that, I analyzed in detail the structural properties of the main
code families. Thus, my research was naturally directed to the study of the McEliece
based encryption schemes, among which the latest MDCP based variant [MTSB13] and
Polar codes variant [SK14].

In the case of the MDPC based variant, we manage to reveal an important weakness
regarding the key pairs that are used in the protocol. Indeed, we proposed an efficient
algorithm that retrieves the private key given the public key of the scheme. Next we
counted the proportion of weak keys and we used the code equivalence problem to extend
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the number of weak keys. We published our results in an international conference in
cryptography [BDLO16].

Next we studied the Polar codes and their application to public key cryptography.
Since they were discovered by Arikan [Arı09], Polar codes are part of the most studied
from an information theory point of view, family of codes. In terms of performance they
are really efficient since they are capacity achieving over the Binary Discrete Memoryless
Channels and they allow extremely fast encoding and decoding algorithms. Nonetheless,
few facts are known about their structure. In this context, we have introduced an algebraic
formalism which allowed us to reveal a big part of the structure of Polar codes. Indeed,
we have managed to answer fundamental questions regarding Polar codes such as the
dual, the minimum distance, the permutation group and the number of minimum weight
codewords of a Polar code. Our results were published in an international conference in
information theory [BDOT16].

We also managed to completely cryptanalyze the McEliece variant using Polar codes.
The attack was a direct application of the aforementioned results on the structural
properties of Polar codes and it was published in an international conference in post-
quantum cryptography [BCD+16].
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1
Introduction

1.1 Motivations
Public-key cryptography is one of the newest subfield in cryptology and maybe one

of the most challenging one. Essentially based on the evolution of the Internet of things
and the highly increasing number of connected devices, the public key cryptography
became one of the most spread solution for Internet security issues. It emerged in the late
seventies motivated by a practical issue: how to securely exchange keys over a non reliable
communication channel. The first key exchange protocol based on the idea of using a
public key/private key pair was proposed by Diffie-Hellman [DH76], followed two years
after by the public-key encryption scheme of Rivest, Shamir and Adleman [RSA78]. Miller
[Mil85] proposed for the first time in 1985 to use elliptic curve in public key cryptography,
field that is widely used nowadays. Three of the main technologies on which information
technologies and Internet are based, namely TLS, PGP and SSH, they all implement
Elliptic Curve Cryptography.

Meanwhile the scientific community begin to study the mathematical problems on
which public-key schemes base their security. There are two number theory problems
for the aforementioned protocols, the integer factorization and the discrete logarithm. If
at the beginning, the general belief was that these two problems are hard enough for a
cryptographic purpose, nowadays the future of number theory based cryptosystems is
rather uncertain. There are two reasons for that:

• The latest classic algorithms for discrete logarithm in small characteristic finite fields
are quasi-polynomial in the size of the group [BGJT14] and therefore they became
a real threat from a theoretical point of view as well as a practical point of view.

• The quantum algorithms for factoring integers over Z and for computing logarithms
in the multiplicative group Fp∗ have a theoretical polynomial time complexity [Sho94].
Even though in practice we are still far from factoring a 2048-bit RSA module, the
danger coming from the quantum computers has been raised.

The question weather it is a classical algorithm or a quantum algorithm that will break
for the first time a 2048-RSA public key in practice in a reasonable time, is a challenging
debate. Lately another question is making a lot of noise, that is the problem of finding a
proper quantum resistant encryption scheme. National security agencies (NSA) as well as
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1.1. MOTIVATIONS

institutions that establish standards in information technologies (NIST in the USA, ETSI
in Europe) and international projects (PQCrypto EU) related to Quantum Resistant
Cryptography seem to accelerate the process. From the private sector there are many
signals that seem to enforce the necessity of a Quantum Resistant Cryptography (see
Intel, Microsoft etc.).

There are two fields on which the scientific community focus their attention: quantum
cryptography based on quantum theory and post-quantum cryptography based on classic
theory. They are both suppose to deal with quantum computer threats and thereby might
replace the actual number theory based cryptography. We deal here with the classical
vision and study one of the solutions proposed by the post-quantum cryptography.

There are several hard problems on which the post-quantum cryptography base their
security and we recall here one of them. Let n and k be two integers such that 1 6 k 6 n−1
and H be a random (n−k)×n matrix over a field F. Then we have the following problem

Instance: A (n− k)× n matrix H over F, a vector s ∈ Fn−k
and a small integer ω > 0.

Question: Is there a vector x ∈ Fn of weight 6 ω, such that HxT = s?
We emphasize that without the weight condition this problem is easy to solve using

linear algebra. It is exactly the condition on the weight that makes the later problem
difficult and there are three different well-known distances which are used for cryptographic
purpose:

• when F is a finite field, F = Fq we can consider the Hamming distance. Then
the problem is known as the Syndrome Decoding Problem and it was proved NP-
complete by Berlekamp, McEliece and van Tilborg in [BMvT78]. Based on this
problem McEliece proposed a public key encryption scheme [McE78]. This subfield
is known under the name of code-based cryptography field.

• when F is a finite field such that F = Fpm we can consider the Rank distance.
Then the problem is known as the Rank Syndrome Decoding Problem and it was
proved NP-complete by Gaborit and Zémor in [GZ14]. This subfield is known as
the rank-based cryptography, from which we recall the LRPC encryption scheme
[GMRZ13].

• when F is the residue integer ring F = Zq we consider the Euclidean distance and
the problem is known as the decisional Closest Vector Problem. Aijtaj begun the
study of this type of problems and initiated based on the hardness of the CVP
the lattice based cryptography [Ajt96, AD97], which is one of the most promising
post-quantum solutions. We recall some well known encryption schemes coming
from this area, namely the Ring-LWE [LPR10], the GGH scheme [GGH97] or the
NTRU scheme [HPS98].

The resemblance between these three fields is not only in the problem on which their
security stands on, it is also in the choice of the encryption schemes. The most promising
encryption protocols, and here we refer to efficiency, key size and security arguments,
are the QC-MDPC McEliece, the QC-LRPC and the NTRU-cryptosystem. They all
have a similar description, since the private key can be defined as a pair of polynomials
(h1(x), h2(x)) ∈ (F[x]/(xn − 1))2 with weight ‖h1‖+ ‖h2‖ 6 ω and the public key is the
polynomial f(x) = h1(x)h2(x)−1 (mod xn − 1).
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CHAPTER 1. INTRODUCTION

In this particular challenging context we focus on the first candidate, the code-based
cryptography and study the security of the latest encryption schemes, namely the QC-
MDPC McEliece and the Polar codes based McEliece.

1.2 Our contribution

1.2.1 Decreasing Monomial Codes
The first contribution is to introduce a class of algebraic error correcting codes, that we
call Decreasing Monomial Codes. As their name indicates this family of codes possess an
algebraic structure since it is defined as evaluation of multivariate monomials. In addition
the monomials forming a basis for a Decreasing Monomial code are selected with respect
to an ordering, the “�” (see Definition 3.3.1).

The initial motivation was rather a cryptographic one, since we first propose the use
of such a code family when we cryptanalyzed the McEliece variant using Polar codes.
The intriguing part is that Polar codes were introduces as part of the probabilistic codes
and the scientific community was searching for an algebraic formalism related to Polar
codes. Indeed in the initial article [Arı09], introducing Polar codes, Arikan pointed out
that constructing Polar codes is a challenging task that maybe requires more knowledge
on the underlying structure of the Polar codes. He also pointed out the strong relation
between Polar codes and Reed-Muller codes, fact that gives the first intuition on the
algebraic structure of Polar codes. Nevertheless Arikan’s article was a major contribution
in the field of coding theory since he proved for the first time that Polar codes achieve the
capacity of many communication channels. We recall that many interesting properties
were known about Polar codes but there is no complete study or knowledge about several
issues like: dual of Polar codes, permutation group or minimum weight codewords of a
Polar code. Therefore the study of Polar codes from a coding perspective is a highly
motivating task and understanding the structure of this codes is necessary.

In the first place we prove that Polar codes designed for the Binary Discrete Memoryless
Channels are Decreasing Monomial codes (see Theorem 3.3.31). We also prove that Reed-
Muller codes are part of this big family of linear codes (see Proposition 3.3.12). Based on
this fact we analyze the structure of the Polar codes, seen as a Decreasing Monomial code.

The main results are the following

• The dual of a Decreasing Monomial code is a Decreasing Monomial code (see
Proposition 3.4.12).

• The permutation group of a Decreasing Monomial code contains the Lower Triangular
Group, LTA(m, 2) (see Definition 3.6.2), which is a subgroup of the General Afiine
group (see Theorem 3.6.6).

• The structure of minimum weight codewords of a Decreasing Monomial code is given
by the orbits of the maximum degree monomials (see Proposition 3.7.12).

• We give a counting method for the number of minimum weight codewords of a
Decreasing Monomial code based on the Young diagrams associated to the maximum
degree monomials (see Theorem 3.7.14).
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1.2. OUR CONTRIBUTION

1.2.2 Cryptanalysis of the McEliece scheme based on Polar codes
A major impact for the code-based community is that Polar codes can not be used in
a McEliece type scheme, at least not in the original version of the cryptosystem. Our
second major contribution related to Decreasing Monomial codes is that we propose a
full cryptanalysis of the McEliece variant based on Polar codes. The attack is based
on the fact that we are able to determine exactly the structure of the minimum weight
codewords of a Polar code. Therefore we manage to distinguish between the maximum
degree monomials for the code and thus solve the Code Equivalence Problem in this case.

1.2.3 Weak keys for the QC-MDPC McEliece
The McEliece variant using QC-MDPC codes [MTSB13] is one of the most promising
candidates for a post-quantum cryptosystem using the theory of error correcting codes.
There are several reason for that like for example the “random-like” structure of the codes,
the efficiency, the key size and many others.

Weak keys approach - differences and advantages from generic model The
best attacks against the QC-MDPC scheme are variants of the Information Set Decoding,
with exponential complexity in the weight of the error vector [MTSB13]. Our initial
motivation was to attack the QC-MDPC’s security from another point of view. We
investigate particular configurations which are vulnerable against polynomial time attacks.
For that we redefine the Key Recovery Problem for the QC-MDPC scheme as a modified
version of the well-known Rational Recovery Problem. Hence we use the Extended
Euclidean Algorithm, which is one of the possible solutions to the later problem, to recover
a private key from the public data.

We emphasize the difference between our method and generic ones. In the general
model one considers the work factor of the best algorithm that is able to recover the
private key from the public key for any random public key. Hence in this model any
private key can be attacked with an exponential algorithm and thus there is no distinction
whatsoever between the different private keys. On the other hand in the weak keys model,
only a proportion of keys, that has to be determined, might be vulnerable to polynomial
time attacks. But since the attack is very efficient, the designers of the scheme must
carefully choose the parameters in such manner to avoid weak keys.

Weak keys for the QC-MDPC scheme - results and consequences Our first
contribution is to estimate the proportion of weak keys of a (2p, p, ω) QC-MDPC scheme.
The asymptotic analysis shows that the proportion of weak keys for the smooth (2p, p, ω)
QC-MDPC schemes, is equivalent when p goes to infinity, to ω1/22−H(α)ω where H(x) is
the binary entropy function. We also prove that the proportion of weak keys for all the
(2p, p, ω) QC-MDPC schemes is equivalent to ω2−H(α)ω.

The first observation is that the proportion of weak keys is really close to the security
level given by the work factor of the best ISD variants. We also stress out that no
structural property of the QC-MDPC code was considered in the counting process and
thus the aforementioned probabilities might considerably be increased with the use of
some specific properties. For this we consider equivalent QC-MDPC codes, fact that we

xiv



CHAPTER 1. INTRODUCTION

define in terms of group actions, namely we consider the additive group (Fp,+) and the
multiplicative group (Fp∗, ·).With the use of the additive group we increase the proportion
of weak keys by a factor equal to ω2. As for the multiplicative group the proportion of
weak keys can be increased in the best case by a factor equal to p− 1. In the worst case
the factor equals (p− 1)/ω/2.

We compute the values of the probabilities for all the proposed parameters of the QC-
MDPC scheme from [MTSB13] and discover that for several parameters the probability
of weak keys is considerably bigger than the announced security level of the scheme.
Thus we propose a secured version of the Key Generation algorithm and analyze its time
complexity. We also analyze the complexity of the attack and implement a practical
attack in MAGMA Software, for which we give the execution timings. We point out that
the secured version has two advantages: firstly it eliminated the possible weak keys and
secondly it can be implemented in an efficient manner.

xv



2
Code-based Cryptography

2.1 Introduction
Code-based cryptography appeared for the first time in 1978, when McEliece proposed
the first public key encryption scheme which is not based on number theory primitives
[McE78]. Instead he built a scheme for which the security relies on two problems:

• the hardness of the Syndrome Decoding Problem [BMvT78].

• the difficulty to distinguish between a binary Goppa code and a random linear code
[FGO+10].

McEliece’s scheme is composed of three algorithms: key generation, encryption and
decryption. The key generation algorithm picks a random k × n generator matrix G of
a binary linear code C which is itself randomly picked in a family of codes for which
t errors can be efficiently corrected. The secret key is the decoding algorithm (or the
private parameters of the decoding algorithm) associated to C and the public key is G.
To encrypt m ∈ Fk2, the sender chooses a random vector e in Fn2 of Hamming weight less
than or equal to t and computes the ciphertext c = mG + e. The receiver then recovers
the plaintext by applying a decoding algorithm on c.

The scheme disposes of various advantages like for example

• the complexity of the encryption and decryption algorithms are equivalent to those
of symmetric schemes and thus are very efficient compared to other public key
schemes. [OS09]

• the best attacks for solving the Syndrome Decoding Problem are exponential in the
code length, which makes code-based schemes of high potential.[TS16]

However code-based cryptography came with a big disadvantage: the size of the
public keys was about five hundred thousands bits, for a 260 security level, which was
unacceptable at that time. Nevertheless the scientific community made a huge progress
in reducing the key size of the McEliece PKC by proposing different structures like
quasi-cyclic or quasi-dyadic codes. Nowadays the key size is no longer an issue and several
practical implementations of the McEliece prove the efficiency and potential of the scheme
[BS08, Str10b, CHP12, BCS13, HvMG13, MOG15].

1



2.2. CODING THEORY

Outline. The chapter is divided into two major parts Section 2.2 and Section 2.3. In
the first section we recall the main facts concerning the theory of Error-Correcting codes.
We begin with a subsection (2.2.1) on the general model of a channel of communication
and then give the necessary background on linear codes (2.2.2). We emphasize in this
part the main problems related to the cryptographic aspects such as: permutation group,
syndrome decoding problem, minimum distance problem and the most frequent code
constructions that are used in cryptography like shortened and punctured codes, Plotkin
sum codes as well as star product codes. We also define and detail the main code families
that we studied during the thesis (2.2.3).

In Section 2.3 we explain how the code-based cryptography evolved from its beginnings
with the original McEliece scheme up to nowadays. In parallel we give a survey of the
existing variants of the McEliece PKC (2.3.3) and the potential security flaws as well as
the existing attacks for some of the variants. We also discuss from a general point of view
which are the main threats for this scheme (2.3.2) and point out which are the remaining
candidates.

2.2 Coding Theory

Coding theory is a fundamental field in communication and was introduce in 1948
by Claude E. Shannon in [Sha48]. The main purpose of coding theory is to propose
schemes that can be used to efficiently and reliably transmit information over a noisy
channel. From a practical point of view the main challenge is to design coding schemes
that could approach channel capacity, also known as “the Shannon limit”. Shannon’s
objective required extraordinary efforts and finally proved to be possible with the help of
probabilistic codes.

2.2.1 Channel coding

message
source encoder channel decoder usermessage codeword

received

word

decoded

message

Figure 2.1 – Channel coding

Channel coding can be defined as the process of adding enough redundancy to a
message that has to be sent over a communication channel in order to recover the message
after errors have been added by the channel.

Definition 2.2.1 (Discrete channel). Let k and m be two strictly positive integers. Then
a discrete channel W is defined by

• A finite input alphabet X = {x1, . . . , xk}.

2



CHAPTER 2. CODE-BASED CRYPTOGRAPHY

• A finite output alphabet Y = {y1, . . . , ym}.

• The transition probability k ×m matrix P = (pi,j)16i6k , 16j6m with pi,j = W (yj|xi)
is the probability that yi is received knowing that xi was sent over the channel.

The communication process can now be defined using a probability model for the
source, the channel and the receiver.

• The source is defined through an input probability space given by (X , probX ), where
probX is a discrete probability distribution over X . We denote the input probability
vector by pX = (probX (x1), . . . , probX (xk)) .

• The channel is defined through P = (W (y|x))(x,y)∈X×Y .

• The receiver is defined through the output probability space given by (Y , probY)
where the output probability vector pY = (probY(y1), . . . , probY(ym)) is defined by
the relation

pY = pXP .

We extend the conditional probability from symbols (letters) to finite length words in
a natural manner: we define the transition probability W (y|x) as the probability of
receiving the word y = y(1) . . . y(n) ∈ Yn knowing that x = x(1) . . . x(n) ∈ X n was sent
over the channel. For “memoryless” channels we have

W (y|x) =
n∏
i=1

W (y(i)|x(i))

Figure 2.2 shows two well known memoryless channels, the Binary Symmetric (BSC)
and Binary Erasure (BEC) channels.

• The BSC(p) is defined for 0 6 p 6 1/2 by

X = Y = {0, 1} and W (yj|xi) =
{

1− p if yj = xi
p if yj 6= xi

• The BEC(p) is defined for 0 6 p 6 1 by

X = {0, 1},Y = X ∪ {?} and W (yj|xi) =


1− p if yj = xi
p if yj =?
0 elsewhere

The “memoryless” property comes from the fact that both channels take a bit as input
and flip (BSC) or erase (BEC) the bit independently of the past or the future. They are
symmetric since the probabilities are the same regardless the value of the input. They are
part of the big family of Binary Discrete Memoryless Channels (B-DMC). The parameter
p is the crossover probability and represents the probability that a bit is not sent correctly,
in particular it can be deleted in the case of a BEC or flipped in the case of a BSC.

Furthermore we define the notion of concatenated channel and degraded channel.

3
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0 0 0 0

?

1 1 1 1

1− p

p

p

1− p

1− p

p

p

1− p

Figure 2.2 – (left) BSC(p) and (right) BEC(p)

Definition 2.2.2 (Concatenated channel). Let W : X → Y and W ′ : Y → Z be two
memoryless channels such that the input alphabet of W ′ is equal to the output alphabet of
W . The concatenation of W with W ′ is denoted by W ′ ◦W and is a memoryless channel
W” : X → Z with transition probabilities specified by

W”(z|x) =
∑
y∈Y

W ′(z|y)W (y|x).

Definition 2.2.3 (Degraded channel). Let W : X → Z and W ′ : X → Y be two
memoryless channels, both with input alphabet X and respective output alphabets Z and
Y. We say that W is a channel degradation of W ′ if and only if there exists a memoryless
channel W” : Y → Z such that W = W” ◦W ′, that is

W (z|x) =
∑
y∈Y

W”(z|y)W ′(y|x).

We write
W �d W

′

to denote that W is degraded with respect to W ′.

Lemma 2.2.4. �d is a transitive relation

W �d W ′

W ′ �d W”

}
⇒ W �d W”. (2.1)

Proof. Let W : X → Z , W ′ : X → Y and W ′′ : X → U . By definition of a degraded
channel we have thatW = W1◦W ′ withW1 : Y → Z andW ′ = W2◦W ′′ withW2 : U → Y .
Then W = W3 ◦W ′′ with W3 : U → Z is such that W3 = W1 ◦W2, which ends the
proof.

An example of degradation from [RU08] is the family of binary erasure channels
{BEC(p)}06p61. For any pair of parameters (ε, δ) with 0 6 ε < δ 6 1 we have that
BEC(δ) �d BEC(ε) (see Figure 2.3).

2.2.2 Linear Codes

The main facts that we remind in this part are well known results coming from classical
books like [MS86] or [Rot06].

4
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0 0 0

? ?

1 1 1

1− ε

ε

ε

1− ε

1− δ−ε
1−ε

δ−ε
1−ε

δ−ε
1−ε

1− δ−ε
1−ε

1

Figure 2.3 – BEC(δ) seen as a degradation of BEC(ε) for 0 6 ε < δ < 1.

Preliminaries. All the objects that we recall in this part are defined over F2 since we
concentrate our study on binary linear codes.

Definition 2.2.5 (Binary linear code). An [n, k] linear code C over F2 is a linear subspace
of dimension k of the vector space Fn2 .

Any element in C is called a codeword. The redundancy of C is the difference n− k
and the rate of a code is denoted by r = k/n.

Generator and Parity check matrix. A generator matrix for a [n, k] linear code is
a k × n binary matrix (often denoted by G) whose rows form a basis for the code, as a
vector space. A generator matrix is in systematic form, if G = (Ik | R) where Ik is the
identity matrix and R is a k × (n− k) binary matrix.

Definition 2.2.6 (Information set). Any subset I ⊂ {0, 1, . . . , n} of the positions of a
[n, k] linear code is called an information set if for any generator matrix G the restriction
of G to I, denoted GI , is invertible.

A binary (n − k) × n matrix H, is called a parity-check matrix of a linear code
C = [n, k], if we have

c ∈ C ⇔HcT = 0n−k.

Since this equation is equivalent to HGT = 0(n−k)×k and H has rank (n− k), we can
compute the parity-check matrix of a code given the generator matrix by finding a basis
for the kernel of G. This can be done easily when G is into systematic form since in this
case we have H =

(
−RT | In−k

)
.

The dual of a linear code, denoted by C ⊥ is the binary linear code which consists of
all vectors u ∈ Fn2 such that ∀ c ∈ C , u · cT = 0. The generator matrix of the dual code
is the parity-check matrix of the code and we have

(
C ⊥

)⊥
= C .

Minimum distance of a linear code. The Hamming distance dH between two code-
words is the number of coordinates on which they differ. The Hamming distance endows
the set of binary n length vectors with a metric and the pair (Fn2 , dH) forms a metric space
called the Hamming space of dimension n.

The Hamming weight of a codeword is the number of its coordinates different from
zero. The support of a codeword supp(c) is the set of its coordinates different from zero.

5
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Definition 2.2.7 (Minimum distance). The minimum distance of a linear code is:

dmin (C ) = min
(c,c∗)∈C×C

c 6=c∗

dH(c, c∗)

Since C is a binary linear code we have that dH(c, c∗) = wt(c − c∗). So dmin (C ) =
min

c∈C ,c 6=0
wt(c) which is also equal to dmin (C ) = min

c∈C ,c 6=0
|supp(c)|. In order to estimate

wt(x − y) for any pair of vectors (x,y) in the Hamming space we have to define the
intersection of x and y

Definition 2.2.8 (Component-wise product). Let x and y ∈ Fn2 , then the component-wise
product of y and x is

x ? y
def= (x1y1, . . . , xnyn) ∈ Fn2 .

Proposition 2.2.9. Let x and y ∈ Fn2 , then we have

wt(x + y) = wt(x) + wt(y)− 2wt(x ? y). (2.2)

Notation 2.2.10. Furthermore for a linear code of length n, dimension k and minimum
distance d we use the [n, k, d] notation.

There are code families for which the minimum distance is known, most of them are
algebraic codes. In the general case estimating the minimum distance of a linear code is a
hard problem.

Remark 2.2.11 (Decisional minimum distance problem). The minimum distance decision
problem is NP-complete [Var97] and can be formalized as follow

Instance: A binary (n− k)× n matrix H and an integer ω > 0.
Question: Is there a nonzero vector x ∈ Fn2 of weight 6 ω, s.t. HxT = 0n−k?

Decoding linear codes.

Definition 2.2.12. Let C be a [n, k, d] linear code over F2 and W be a discrete channel
defined by (F2,Y ,P ). A decoder for C with respect to W is a function

D : Yn → C .

The probability that a codeword c is decoded erroneously, given that c was transmitted over
the channel W is

Perr(c) def=
∑

y∈Yn
D(y)6=c

W (y | c).

The error probability of D is
Perr = max

c∈C
Perr(c).

The error probability is a measure of the efficiency of a decoder and the goal is
to have decoders with Perr as small as possible. A particular decoding strategy is the
maximum-likelihood decoder.

6
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Definition 2.2.13 (Maximum-Likelihood Decoder). Given a [n, k, d] linear code C over
F2 and a channel W = (F2,Y ,P ) a maximum-likelihood decoder (MLD) for C with
respect to W is the function DMLD : Yn → C defined as:

for every y ∈ Yn ,D(y) def= argmax
c∈C

W (y | c).

Take for example the case of a BSC(p) with crossover probability 0 < p < 1/2. Then
we have

W (y | c) =
n∏
i=1

W (yi | ci)

= pdH(y,c)(1− p)n−dH(y,c)

= (1− p)n
(

p

1− p

)dH(y,c)

.

Since p/(1 − p) < 1 when p < 1/2 we have that DMLD(y) is the codeword c which
minimize the Hamming distance dH(y, c). In other words c is the closest codeword of C
to y.

Definition 2.2.14 (Nearest Codeword Decoder). The nearest codeword decoder for a
[n, k, d] linear code C over F2 is the function D : Fn2 → C defined as:

∀y ∈ Fn2 ,D(y) def= argmin
c∈C

dH(y, c).

Remark 2.2.15. We notice that the closest codeword to y might not be unique. Indeed,
the unicity property can be guaranteed when dH(y, c) 6 b(d− 1)/2c.

Proof. In order to prove this fact suppose that C is a [n, k, d] binary linear code and
that c is the transmitted codeword and y the received vector with dH(y, c) 6 (d− 1)/2.
Suppose that D(y) = c′ 6= c. By the definition of the decoder we have dH(y, c′) 6 dH(y, c)
and hence by the triangular inequality we obtain

d 6 dH(c, c′) 6 dH(y, c) + dH(y, c′) 6 d− 1.

Error correction. We consider here the BSC(p) with crossover probability 0 < p < 1/2.
Given a [n, k, d] linear code C over F2, let c ∈ C be the transmitted codeword and y ∈ Fn2
the received word. During the communication process the channel modified the codeword
which means that some bits of c were flipped. The error vector e ∈ Fn2 is such that
c = y − e. In this case the nearest codeword problem can be reformulated as:
Definition 2.2.16 (Nearest Codeword Problem for BSC).

Given: [n, k, d] linear code C over F2 and a word y ∈ Fn2 .
Find: e ∈ Fn2 of minimum Hamming weight such that y − e ∈ C .

There are several methods for the nearest codeword decoder but we remind here only
one, namely the syndrome decoding. First we define the syndrome of a vector with respect
to a parity-check matrix

7
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Definition 2.2.17. Let C be a [n, k, d] linear code over F2 and H be a (n − k) × n
parity-check matrix for C . Then the syndrome of a word y ∈ Fn2 with respect to H is the
the vector s ∈ Fn−k2 defined as:

s
def= HyT .

Since for every vector c ∈ Fn2 we have that c ∈ C ⇔HcT = 0n−k we can reformulate
the nearest codeword decoder in an equivalent manner, more exactly

Given: a [n, k, d] linear code over F2 with a (n− k)× n parity-check matrix H
and a received word y ∈ Fn2

Find: a word e ∈ Fn2 of minimum Hamming weight such that s = HeT ,
where s is the syndrome of y with respect to H .

Remark 2.2.18. The decision problem it is known in the literature as the Syndrome
Decoding Problem (SDP) and it is NP-complete [BMvT78]. The SDP can be formalized
as follow

Instance: A binary (n− k)× n matrix H, a vector s ∈ Fn−k2
and an integer ω > 0.

Question: Is there a vector x ∈ Fn2 of weight 6 ω, such that HxT = s?

Operations on codes

• Basic constructions
The intersection between a code C and its dual is called the Hull of C

H(C ) = C ∩ C ⊥.

A code C with dimension k 6 n/2 is called weakly self-dual if H(C ) = C ⊂ C ⊥ and
self-dual if H(C ) = C = C ⊥ (in this case k = n/2).

• Shortened and Punctured codes
For a given code C and a subset J ⊆ {0, . . . , n − 1} the punctured code PJ (C )
and shortened code SJ (C ) are defined as:

PJ (C ) =
{

(ci)i/∈J | c ∈ C
}

;

SJ (C ) =
{

(ci)i/∈J | ∃c = (ci)i ∈ C such that ∀i ∈ J , ci = 0
}
.

Instead of writing P{j} (C ) and S{j} (C ) when J = {j} we rather use the notation
Pj (C ) and Sj (C ).

Theorem 2.2.19. Let C be a [n, k, d] binary linear code and J ⊆ {0, . . . , n− 1} a
non empty set of coordinates. Then we have

SJ
(
C ⊥

)
= (PJ (C ))⊥

A direct consequence of Theorem 2.2.19 is the following equality

(SJ (C ))⊥ = PJ
(
C ⊥

)
.

8
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Example 2.2.20. Let C be a [6, 3, 2] binary linear code defined by the generator

matrix

1 0 1 1 0 0
0 1 0 1 0 1
0 0 0 0 1 0

 and I = {1, 2} be a set of positions. Then we have

– SI (C ) is a [4, 1, 1] binary linear code with generator matrix
(
0 0 1 0

)

– PI (C ) is a [4, 3, 1] binary linear code with generator matrix

1 0 0 1
0 1 0 1
0 0 1 0


We also have that C ⊥ is a [6, 3, 2] binary linear code with generator matrix1 0 0 1 0 1

0 1 0 0 0 1
0 0 1 1 0 1

 . Then we obtain

– SI
(
C ⊥

)
is a [4, 1, 3] binary linear code with generator matrix

(
1 1 0 1

)

– PI
(
C ⊥

)
is a [4, 3, 1] binary linear code with generator matrix

1 0 0 0
0 1 0 0
0 0 0 1


• Plotkin sum

Definition 2.2.21. For i ∈ {1, 2} let Ci be a [n, ki, di] binary linear code. Then
the Plotkin sum of C1 and C2 is the binary linear code [2n, k1 + k2,min (2d1, d2)]
denoted C

C
def= {(c1|c1 + c2) | ci ∈ Ci i ∈ {1, 2}} .

If Ci has generator matrix Gi and parity check-matrix Hi for i ∈ {1, 2} then a
generator matrix and a parity check matrix for C are the two following block
matrices (

G1 G1
0 G2

)
and

(
H1 0
−H2 H2

)
.

• Star product of codes.
Using the component-wise product of binary vectors in Fn2 (see Definition 2.2.8) we
define the star product of two codes

Definition 2.2.22 (Star product code). For i ∈ {1, 2} let Ci be a [n, ki, di] binary
linear code. Then the star product code of C1 and C2 is the binary linear code denoted
C1 ? C2 defined as

C1 ? C2
def= SpanF2 {c1 ? c2 | c1 ∈ C1 and c2 ∈ C2} .

Proposition 2.2.23. Let C1 be a [n, k1, d1] binary linear code and C2 be a [n, k2, d2]
binary linear code. Then we have

dmin (C1 ? C2) 6 min{d1, d2}.

9
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dim (C1 ? C2) 6 min
{
n, k1k2 −

(
dim (C1 ∩ C2)

2

)}
.

When the two codes are equal we will rather denote C ?C by C 2 and call it the square
code of C . If C is a [n, k, d] binary linear code then C 2 is a binary linear code of length
n, minimum distance dmin(C 2) 6 d and dimension dim(C 2) 6 min

{
n,
(
k+1

2

)}
.

Example 2.2.24. Let C be a [6, 2, 2] binary linear code defined by the generator

matrix
(

1 1 0 0 1 0
0 0 0 1 1 0

)
. Then the square code C 2 is a [6, 3, 1] binary linear

code defined by the generator matrix

1 1 0 0 1 0
0 0 0 1 1 0
0 0 0 0 1 0

 . We remark that here the

dimension of C 2 equals
(

2+1
2

)
= 3.

Automorphism group of binary linear codes
Definition 2.2.25. Any mapping τ : Fn2 → Fn2 that preserves the Hamming distance is
called an isometry. An automorphism of a linear code C is an isometry which maps C
onto itself.

There are two types of isometries known in the literature, for linear codes, namely
linear and semi-linear isometries [Huf98]. In the case of binary fields we have the following
result: the group of linear isometries of the Hamming space of dimension n over F2 is
isomorphic to the symmetric group Sn [SS13]. So we can define the permutation group of
a binary linear code as the group of permutations of positions in the support of the code,
that leave the code globally invariant:
Definition 2.2.26 (Permutation group of a code). Let C be a [n, k, d] binary linear
code and π ∈ Sn.We denote by xπ = (xπ−1(i))16i6n the vector x permuted by π. C π =
{cπ | c ∈ C } denotes the permuted code of C . Then the permutation group of a code is

Perm (C ) def= {π ∈ Sn | C π = C }
When Perm (C ) is reduced to only one element then we speak of “trivial” group.

Despite the fact that we know the permutation group of some code families, in general it
is not an easy task to compute it. In Appendix A we give some relations between the
permutation group of a code and its dual or its Hull.

2.2.3 Code families
We propose here to recall and give the main properties of some of the code families that
are used in public key cryptography. We emphasize that during the thesis other code
families were studied but we prefer to detail each one at adequate moment.

Reed-Muller codes. The Reed-Muller codes were introduced by David Muller [Mul54]
and rediscovered shortly after with an efficient decoding algorithm by Irving Reed [Ree54].1

1Although it seems that these codes were firstly discovered by Mitani in 1951 [Mit51], they became
popular only after the article of Muller and Reed.

10
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The scientific community was highly interested in this family of codes and therefore
discovered many structural properties of Reed-Muller codes citeMS86.

Definition 2.2.27 (Reed-Muller codes). Let m and r be two integers such that 1 6 r 6 m

and let n def= 2m.Then the rth order Reed-Muller code R(r,m) is the binary linear code
defined as the set of all vectors (g(v1, . . . , vm))(v1,...,vm)∈Fm2

∈ Fn2 , where g ∈ F2[x1, . . . , xm]
ranges over the set of polynomials over F2 in m variables with degree at most r.

R(r,m) def=
{

(g(v1, . . . , vm))(v1,...,vm)∈Fm2
| deg g 6 r

}
.

Properties 2.2.28 (Chapter 13, [MS86]). The R(r,m) code has the following properties:

1. The R(r,m) code is a
[
n,
∑r
i=0

(
m
r

)
, 2m−r

]
binary linear code.

2. The dual of a Reed-Muller code is a Reed-Muller code, namely

R(r,m)⊥ = R(m− r − 1,m).

3. The number of minimum weight codewords equals [KT70]

Wmin = 2r
[
m

r

]
2
,

where
[
m
r

]
2

def=
m−r−1∏
i=0

2m−i − 1
2m−r−i − 1 is the 2-analog of the Binomial coefficient also

known as the Gaussian coefficient.

Definition 2.2.29. The set of affine transformations over Fm2 of the form x 7→ Ax + b
where A ∈ Fm×m2 is an invertible binary matrix and b ∈ Fm2 forms a group called the
general affine group GA(m).

Proposition 2.2.30. The permutation group of binary Reed-Muller codes for 1 6 r 6
m− 2 is the general affine group

Perm (R(r,m)) = GA(m).

Generalized Reed-Solomon and Goppa codes. Generalized Reed-Solomon codes,
or shortly GRS codes, were introduced by Reed and Solomon in [ISR60] and represent a
powerful family of codes with many applications. Ten years after, a new class of codes,
binary Goppa codes, was introduced by Valery Goppa [Gop70]. The main reason we
detail Goppa codes in the same paragraph with GRS codes is because Goppa codes can
be defined as subfield subcodes of GRS codes.

Definition 2.2.31 (Generalized Reed-Solomon codes). Let k and n be two integers such
that 1 6 k < n 6 q where q = pm is a power of a prime number p. Let (x,y) ∈ Fnq ×Fnq be
a pair such that x is an n-tuple of distinct elements of Fq and the elements yi are nonzero
elements in Fq. Then the Generalized Reed-Solomon code is

GRSk(x,y) def= {(y1f(x1), . . . , ynf(xn) | f ∈ Fq[x] , deg(f) < k} .

11



2.3. THE MCELIECE PUBLIC KEY ENCRYPTION SCHEME

The vector x is called the support of the code and y the multiplier vector. GRS codes
are MDS since the minimum distance is d = n− k − 1.

Generalized Reed-Solomon codes can be defined using the generator matrix, more
exactly

GGRSk(x,y) =



1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n
... ... ... ...

xk−1
1 xk−1

2 . . . xk−1
n




y1

y2 0
0 . . .

yn

 .

Proposition 2.2.32.
GRSk(x,y)⊥ = GRSn−k(x, z),

where z is a non zero codeword of a [n, 1, n] GRS code with the same code locators and
column multipliers as GRSk(x,y), i.e. HGRSn−1(x,y)z

T = 0.

We notice that the vector z with ∀ 1 6 i 6 n , zi 6= 0 exists since any non zero
codeword of a [n, 1, n] GRS code has a Hamming weight equal to n.

Definition 2.2.33 (Alternant codes). Let C ⊂ Fnpm be a linear code over Fpm . Then an
alternant code is a linear code over Fnp of length n dimension k > n−mr and minimum
distance d > r + 1 is defined by

Altr(x,y) def= GRSr(x,y)⊥ ∩ Fnp .

Using Proposition 2.2.32 we obtain that Altr(x,y) consists of all vectors c over Fp
such that HGRSn−r(x,y)c

T = 0.

Definition 2.2.34 (Binary Goppa codes). Let x ∈ Fn2m be a n − tuple of distinct
elements and g ∈ F2m [x] be a polynomial of degree t such that ∀ i, g(xi) 6= 0. Let
y

def= (1/g(xi), . . . , 1/g(xn)) then the binary Goppa code is defined by

Γ(x, g) def= Altt(x,y).

2.3 The McEliece Public Key Encryption Scheme

2.3.1 Textbook McEliece
The McEliece public key encryption scheme [McE78] is composed of three algorithms: key
generation (KeyGen), encryption (Encrypt) and decryption (Decrypt).

The first step is the key generation algorithm that takes as input the integers n, k, t
such that k < n and t < n and outputs the public key/private key pair (pk, sk). In order
to encrypt a message m ∈ Fk2 one applies the Encrypt(, ) function. The last step is the
decryption function that takes as input a ciphertext z and the private key sk and outputs
the corresponding message m.

12
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1. Pick a generator matrix G of a [n, k] binary Goppa code Γ(x, g) that can corrects t
errors.

2. Pick at random a k × k invertible matrix S and a n× n permutation matrix P .

3. Compute Gpub
def= SGP .

4. Return
pk = (Gpub, t) and sk = (S,P ).

Figure 2.4 – The Key Generation function of the original McEliece scheme -
KeyGen(n, k, t) = (pk, sk)

1. Generate a random error-vector e ∈ Fn2 with ‖e‖ 6 t

2. Return z = mGpub ⊕ e

Figure 2.5 – The Encryption function of the original McEliece scheme -
Encrypt(m, pk) = z

1. Compute z∗ = zP−1 and m∗ = Decode(z∗,H)
2. Return m∗S−1.

Figure 2.6 – The Decryption function of the original McEliece scheme -
Decrypt(z, sk) = m

Here Decode(., .) is an efficient decoding algorithm for Γ(x, g). Notice that multiplying
the error vector by a permutation does not change the weight of the vector. One can
easily verify the correctness of the scheme by checking

Decrypt(Encrypt(m, pk), sk) = m.

2.3.2 Security of the scheme
In the last part of his article McEliece brought up a discussion on the security of the
scheme. The author proposed two types of attacks: firstly a key recovery attack in which
he imagine an adversary that might recover the private generator matrix of the Goppa code
and then use the Paterson algorithm to decode. Secondly he proposed a message recovery
attack in which the codeword is retrieved from the ciphertext without the knowledge of
the private key. In a sense McEliece established the major security threats the one has to
consider when designing a code based cryptosystem, namely the Message Recovery Attack
(MRA) and the Key Recovery Attack (KRA). He proposed as parameters for the scheme
n = 210 and t = 50 as for the dimension of the code he picked k = 524. Nowadays, these
parameters correspond to a 60 bits security level.

• Message Recovery Attack
The message recovery attack aims to retrieve the message that was sent using
only the ciphertext and the public key. In this case an adversary has to solve the
Syndrome Decoding Problem (see 2.2.18).

13
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The most efficient algorithm to solve the Syndrome Decoding Problem, for the
moment, is the Information Set Decoding (ISD). The ISD algorithm searches for
an information set such that the error positions are all out of the information
set. Details about the different variants of ISD are given in [TS16]. Almost all
McEliece variants base their security on the assumption that the public code is
indistinguishable from a random linear code. Therefore the security level against the
MRA attacks is based on the complexity of the ISD, namely O(e−ω log(1−R)(1+o(1)))
when ω = o(n) [TS16].

• Key Recovery Attack
The key recovery adversary aims to retrieve the private key of a McEliece type
cryptosystem given the public key. If the attacker manages to efficiently recover
the private key, then he can also decode and find all the messages that have been
encrypted with that key. Therefore it is considered as the most powerful possible
attack. In the KRA scenario the adversary can be reduced to solve the code
equivalence problem.

Code Equivalence Problem. Since we consider only binary linear codes we will
define the Permutation Equivalence problem (see [SS13]).

Definition 2.3.1 (Permutation Code Equivalence Problem). Let G and G∗ be the
generating matrices for two [n, k] binary linear codes. Given G and G∗ does there
exist a k × k binary invertible matrix S and n× n permutation matrix P such that
G∗ = SGP ?

The computational problem was studied by Petrank and Roth over the binary
field [PR97]. The authors proved that this problem is harder than the Graph
Isomorphism problem but that the Code Equivalence problem is not NP-complete.
One solution to this problem, that is employed by the MAGMA software, is to use
Leon’s algorithm that searches for minimum weight codewords. Since the complexity
of Leon’s algorithm is exponential in the weight of the codewords that are searched,
it is not efficient in the case of random codes. So another solution to this problem is
the Support Splitting Algorithm (SSA) [Sen00]. This algorithm computes the weight
enumerator polynomial of the hull. It has heuristic time complexity for random
[n, k] linear codes equal to O(n3 + 2hn2 log n), where h is the dimension of the hull
[SS13]. This algorithm is very efficient in general but cannot be used in the case of
codes with large Hulls or codes with large Permutation group.

Distinguisher Attack The distinguisher problem is a recent issue that had a major
impact on the code-based cryptography. The question that we raise here is:

Can a linear code be distinguished from a random linear code using an efficient
deterministic algorithm ?

The article [FGO+10] was a breakthrough in this field since it proposed a deterministic
polynomial-time distinguisher for high rate Alternant codes, that is the dimension of the
square code 2. It allowed to distinguish many algebraic codes from random codes, like

2For the square code we refer here to the square star product, for more details see Definition 2.2.22
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Reed-Solomon codes, Goppa codes, Reed-Muller codes etc. Ever since the original article
on the distinguisher was published, many successful cryptanalysis used the star product,
attacks that we recall them in Section 2.3.3.

2.3.3 McEliece PKC variants
Binary irreducible Goppa codes were proposed in the original paper of McEliece
[McE78]. Even though the original parameters were broken by Bernstein, Lange and
Peters in [BLP08], they proposed a new set of parameters (see Figure 2.7). Despite their
well known structure for the moment there are no efficient key recovery or decoding
attacks against binary irreducible Goppa codes. A distinguisher exists in the case of
high rate Goppa codes [FGO+10]. But despite of this potential vulnerability there is no
efficient algorithm for the moment exploiting the knowledge and the properties of the
distinguisher.

The existence of weak keys for Goppa codes was raised by Sendrier and Loidreau in
[LS01]. They managed to distinguish the Goppa codes generated by binary irreducible
polynomials. The number of such codes is exponentially smaller than the number of
all Goppa codes, more exactly the probability of choosing a weak key is approximately
2−(m−1)t.

Security level( -bit) [n, k] t Public Key size (bits)
80 [1632, 1269] 33 460647
128 [2960, 2288] 56 1537536
256 [6624, 5129] 115 7667855

Figure 2.7 – Parameters for McEliece with Goppa codes from [BLP08]

We also mention the existence of a compact variant of the McEliece scheme based on
quasi-dyadic Goppa codes due to Misoczki and Barreto [MB09], variant that is not yet
broken in the binary case.

Generalized Reed-Solomon codes were proposed for the first time by Niederreiter
in [Nie86] but turned out to be an insecure solution. Indeed, six years after the article
was published, Sidelnikov and Shestakov proposed a polynomial time attack against this
variant [SS92]. Nevertheless the idea of using GRS codes was reconsidered more than ten
years after by Berger and Loidreau when they proposed to consider subcodes of GRS codes
[BL05]. Unfortunately this technique was also attacked in two steps by Wieschebrink
[Wie06a, Wie09], using the square code structure.

Other attempts to repair the Niederreiter variant were proposed by Wieschebrink
[Wie06b] who’s idea was to add random column to the generator matrix. Baldi, Bianchi,
Chiaralice, Rosenthal and Schipani [BBC+16] proposed to use Wieschebrink’s idea but
in addition they suggest to change the permutation matrix. But many of these variants
turned out to be extremely unsecured against square code type attacks or filtration
type attacks [CGG+14].

Reed-Muller codes were proposed by Sidelnikov’s in [Sid94]. This variant was firstly
attacked by Minder and Shokrollahi [MS07]. In the case of Reed-Muller codes the Key
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Recovery Attack is reduced to solving the code equivalence problem since there is only
one R(r,m). Minder and Shokrollahi managed to solve this problem using a filtration
type attack based on the structure properties of the minimum weight codewords. The
complexity of their algorithm was dominated by the minimum weight codewords searching
algorithm.

Chizhov and Borodin proposed another attack. Their algorithm could solve the code
equivalence problem, for some of the parameters of the Reed-Muller codes, in polynomial
time [CB13, CB14].

A modified version [GM13] using the masking technique introduced by Wieschebrink
was recently broken by Otmani and Kalachi using a square code type attack [OK15].

Algebraic-geometry codes was suggested by Janwa and Moreno in 1996 [JM96].
Several articles discussed the potential vulnerabilities of this variant and proposed algo-
rithms that could be deployed to attack in some particular cases [FM08, SS92]. Neverthe-
less they can not be generalized and suffer in terms of efficiency. In [CMCP14] Couvreur,
Marquez-Corbella and Pellikaan proposed a polynomial type algorithm that works on
codes from curves of arbitrary genus. They managed to recover an error-correcting pair
from the square code using a filtration type attack and the structure of the square
code.

Concatenated codes were the first family of probabilistic codes analyzed from a
cryptographic point of view. Sendrier detailed in [Sen94, Sen98] the main vulnerabilities
of ordinary concatenated codes.

LDPC codes presented a disputed class of codes in cryptography. In the book of
Baldi [Bal14] all the details about the thrilling combats defeating and attacking the LDPC
codes are given. Monico, Rosenthal and Shokrollahi were the first ones to propose and
analyze a McEliece variant using low density parity check codes in [MRAS00]. Partially
inspired by the idea of Gaborit to consider quasi-cyclic codes [Gab05] 3 the new QC-LDPC
cryptosystem was presented by Baldi and Chiaraluce in [BC07]. Both BCH codes and
LDPC codes with the quasi-cyclic structure were successfully cryptanalyzed by Otmani,
Tillich and Dallot [OTD08]. In order to prevent the scheme to the last attack a modification
that aims to increase the weight of the codewords in the dual of the LDPC code was
proposed in [BBC08]. This modification seems to be working for the moment since no
other structural attacks were discovered.

Wild Goppa codes was a natural extension from binary Goppa codes to non binary
fields. It was proposed by Bernstein, Lange and Peters in [BLP10] and [BLP11]. Many
of the proposed parameters, namely those for which the extension degree was equal
to 2, were broken by Couvreur, Otmani and Tillich using filtration type techniques
[COT14a, COT14b].

Srivastava codes were proposed in [Per12]. The author is using Quasi-Dyadic
Srivastava codes and gives another application of these types of codes, namely for signature
schemes. Even though the parameters for the signature were broken in [FOP+14], the
parameters for the encryption scheme are still valid.

3In [Gab05] the author proposes BCH codes with the quasi-cyclic structure. The idea of adding the
quasi cyclic structure became one of the main techniques for reducing the key size in the McEliece scheme.
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Convolutional codes represented among the shortest term solutions since between
the proposal article by Londahl and Johansson [LJ12] and an efficient attack by Landais
and Tillich [LT13] only one year passed.

2.4 Conclusion
Many of the McEliece variants were successfully cryptanalyzed, mainly because of their
algebraic structure. Therefore probabilistic codes were proposed as possible substitutions
for algebraic codes. We propose to analyze the security of two of the latest variants,
namely the MDPC and Polar code variants.

Polar codes were firstly proposed by Shrestha and Kim [SK14]. A second proposal,
using subcodes of Polar codes was given in [HSEA14]. In Chapter 4 we analyze the
security of the first variant and propose an attack based on the structure of the minimum
weight codewords.

MDPC codes are probably the most suitable codes for the moment in a McEliece
type scheme [MTSB13]. Many cryptographic arguments are in favor of using this family
of codes like efficiency, small key size when used with a quasi-cyclic structure and the
most important to our opinion the lack of algebraic structure. We analyze the security of
the QC-MDPC McEliece in Chapter 5.
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3
Decreasing Monomial Codes

3.1 Introduction
Decreasing Monomial codes are a family of algebraic codes that contains two well known
class of codes: Polar and Reed-Muller codes. We introduced for the first time this family
of codes during the cryptanalysis of a public key encryption scheme à la McEliece using
Polar codes [SK14, HSEA14]. At that moment few things were known about the structure
of Polar codes, even though they were studied since 2007, when they were introduced by
Arıkan [Arı09]. The main results concerning Polar codes were about the performance,
construction and decoding capacity.

Contributions Our first major contribution is to propose a partial order �, on the set of
monomials in the polynomial ring F2[x0, x1, . . . , xm−1]/(x2

0 − x0, . . . , x
2
m−1 − xm−1), which

is used to redefine Polar codes as vector spaces spanned by the evaluation of monomials
that belong to a decreasing monomial subset I.

We define three families of codes ordered by inclusion and analyze the structure of these
codes: Decreasing Monomial codes (�) are included in the class of Weakly Decreasing
Monomial codes (�w), which are included in the class of Monomial codes. We focus our
interest on the class of Decreasing Monomial codes and try to answer several fundamental
questions like: the minimum distance, the permutation group, the duality properties and
many more.

Our first major contribution is to prove that Reed-Muller codes and Polar codes are
Decreasing Monomial codes. This result represent a new step into classifying “universal”
Polar codes for the Binary Discrete Memoryless Channels, which was one of the most
challenging problems proposed in [Arı09].

Among the most relevant properties of Decreasing Monomial codes that we reveal in
this chapter we enumerate: the dual of a Decreasing Monomial code is still a Decreasing
Monomial code, the permutation group of Decreasing Monomial codes contains the Lower
Triangular Affine Group, which is a subgroup of the General Affine group. We also raise
another non-trivial question regarding Decreasing Monomial codes, that is the number of
minimum weight codewords. For that we give a counting technique for the number of
minimum weight codewords based on Young diagrams and hence propose a closed formula.
Several opened questions remain about Decreasing Monomial codes, fact that we point
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out at the end of the chapter. Some of the results in this Chapter were published in
[BDOT16].

3.2 Monomial Codes

3.2.1 Definitions and Properties
Throughout this chapter we will use the following conventions and notations
Notation 3.2.1.

• The ambient space is the polynomial ring

Rm = F2[x0, x1, . . . , xm−1]/(x2
0 − x0, . . . , x

2
m−1 − xm−1).

• We set n = 2m.

• Any binary vector u ∈ Fm2 is denoted by u = (u0, . . . , um−1), where um−1 is the most
significant bit.

Furthermore we will define an order on the elements of Fm2 . A natural order is to
associate to any element u ∈ Fm2 the integer u ∈ Z defined by u = ∑m−1

i=0 ui2i, and then to
use the natural order on the integers. Notice that that value u is computed regardless of
the fact that ui ∈ F2.

This order it is known in the literature as the index order and it is already used by
Arıkan in [Arı09]. We remark that the index order is equivalent to the lexicographic order
induced by 0 < 1, over the sequences um−1 . . . u0. In other words, given u and v we say
that u is smaller than or equal to v if um−1 . . . u0 �lex vm−1 . . . v0. The following example
illustrates our proposal

Example 3.2.2. Let v = (0, 1, 0, 1) and u = (1, 0, 0, 1). We have that u �lex v since
1001 �lex 1010.

On the other hand v = 2 + 8 = 10 and u = 1 + 8 = 9 and by the index order we obtain
u < v.

We choose here to write the elements in Fm2 in decreasing index order, which means
that we begin with the greatest element (1, . . . , 1) and end up with the smallest element
(0, . . . , 0).

Example 3.2.3. For m = 2 we have

F2
2 = [(1, 1), (0, 1), (1, 0), (0, 0)].

Next we will define the evaluation function that associate to a polynomial g ∈ Rm the
binary vector denoted by ev(g) in Fn2 .

Definition 3.2.4. Let g ∈ Rm and order the elements in Fm2 with respect to the decreasing
index order. Define the evaluation function

Rm → Fn2
g 7→ ev(g) =

(
g(u)

)
u∈Fm2
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Lemma 3.2.5. [Car10a] The function ev is a bijection.
Corollary 3.2.6. The function ev defines a vector space isomorphism between the vector
space (Rm,+, ·) and (Fn2 ,+, ·).
Example 3.2.7. For m = 3 and g = x0x1 + x0 we have

111 011 101 001 110 010 100 000
ev(x0x1) = 1 0 0 0 1 0 0 0
ev(x0) = 1 0 1 0 1 0 1 0
ev(g) = 0 0 1 0 0 0 1 0

Remark 3.2.8. The polynomials in Rm are also known in the literature as a particular
representation of Boolean function, that is the Algebraic Normal Form, or shortly ANF
(see [Car10a, Car10b]). In [Car10a, Section 2.1] several properties are given, including
those regarding the ev function. Since ev is bijective, an efficient algorithm to compute its
inverse is given. This algorithm is called the Fast Mobius Transform and it is running in
m2m bit operations.

An important part in the formalism will be played by the monomials.
Notation 3.2.9. We denote by xi the monomial xi00 · · ·x

im−1
m−1 , where i ∈ Fm2 . We also

denote the set of monomials

Mm
def=
{
xi | i = (i0, . . . , im−1) ∈ Fm2

}
.

For any monomial g ∈ Mm of degree 1 6 s 6 m we use the notation g = xl1 . . . xls
where 0 6 l1 < l2 · · · < ls 6 m − 1. We also denote the support of a monomial by
ind(g) = {l1 . . . , ls}.
Definition 3.2.10 (Polynomial and Monomial code). Let I ⊆ Rm be a finite set of
polynomials in m variables. The linear code defined by I is the vector subspace C (I) ⊆ Fn2
generated by {ev(f) | f ∈ I}.

• When I ⊆ Rm we say that C (I) is a polynomial code.

• When I ⊆Mm we say that C (I) is a monomial code.

Proposition 3.2.11. For all I ⊆Mm the dimension of the monomial code C (I) is equal
to |I|.
Proof. This comes first of all from the linear independence of the monomials in Rm and
second of all from the fact that ev is bijective (see Lemma 3.2.5).

Remark 3.2.12. R(r,m) is a monomial code with dimension k = ∑r
i=0

(
m
i

)
. In order

to demonstrate this fact we recall the definition of R(r,m) from 2.2.27, more exactly
R(r,m) def=

{
ev(g) | g ∈ Rm, deg g 6 r

}
.

The later remark stress out the importance of the degree of polynomials involved in
a Reed-Muller code. We will see in Section 3.5 that the notion of degree it is also used
to determine the minimum distance of a Monomial code. Therefore we introduce the
following notation
Notation 3.2.13. Let I ⊆Mm. We denote the subset of monomials of degree r in I by
Ir = {g ∈ I | deg(g) = r}.
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3.2.2 Construction of Monomial codes
In order to construct monomial codes we use Arikan’s definition [Arı08b]. It is mainly
based on the recursive Plotkin construction. Therefore we use this last construction to
define the generator matrix of a monomial code. We will call this matrix the monomial
evaluation basis. Let’s begin by recalling the Kronecker product of two matrices.

Definition 3.2.14 (Kronecker product). Let A = (aij)16i6ra
16j6ca

and B = (bi,j)16i6rb
16j6cb

be two
matrices defined over the same field. Then the Kronecker product of A and B is the
rarb × cacb matrix defined by:

A⊗B
def=


a1,1B · · · a1,caB

... bi,jB
...

ara,1B · · · ara,caB

 .
Using the Kronecker product we define the following matrix with coefficients in F2

Gm
def=
(

1 0
1 1

)
⊗ · · · ⊗

(
1 0
1 1

)
︸ ︷︷ ︸

m times

.

Example 3.2.15. When m = 2 we have

G2 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

 .

Remark 3.2.16. We notice that Gm is a basis for the vector space (Fn2 ,+,×). Indeed,
Gm is a matrix with full rank, more exactly rank(Gm) = 2m.

In the next paragraph we will prove that each row of Gm is the evaluation of a
monomial in Mm on all the elements u of Fm2 , in decreasing index order. Since any
monomial is defined as xi with i ∈ Fm2 we choose the same order on the exponents i as
for the evaluation elements u. For example when m = 2 we evaluate the monomials in
the in the following order: [x0x1, x1, x0, 1].

Example 3.2.17. For m = 2 we have

11 01 10 00
11 ev(x0x1) 1 0 0 0
01 ev(x1) 1 1 0 0
10 ev(x0) 1 0 1 0
00 ev(1) 1 1 1 1

Remark 3.2.18. The function ev defines a one-to-one mapping between the rows of
the monomial evaluation matrix (in the previous example G2, which is a generating
matrix for the vector space (F4

2,+,×)) and the monomials inMm (in the exampleM2 =
{1, x0, x1, x1x0} which is a generating basis for (R2,+,×)).
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Lemma 3.2.19. Gm is the monomial evaluation basis for the vector space Fn2 and

Gm[i] = ev(xi00 . . . x
im−1
m−1 ).

Proof. We use induction on m. For m = 1 we have that

ev(x0) =(1, 0)
ev(1) =(1, 1)

which equals G1.
We suppose that our statement is true up to an integer m and prove it for m+ 1. By

definition we have Gm+1 =
(

Gm 02m

Gm Gm

)
.

From the order on the evaluation points we have that the first half of the columns is rep-
resented by the 2m elements having their last position equal to 1, namely (u0, . . . , um−1, 1),
and the second half by the elements (u0, . . . , um−1, 0) where ui ∈ F2.

Using the same argument we have that the lower half of the rows is represented by the
monomials involving only the first m variables, more exactly x0 . . . xm−1, . . . , x0, 1m. As
for the upper half, the monomials here admit xm as variable, namely the set of monomials
is {x0 . . . xm, . . . , x0xm, xm}. Therefore the evaluation of the first rows block on the first
columns block equals Gm since xm equals one on this block. In the same sense on the
second column block xm equals zero so we obtain 02m . As for the lower part the variable
xm is not involved in the evaluation, thus we obtain that the two blocks are equal to Gm.

In conclusion Gm+1 is the evaluation of all the monomials in m+ 1 variables over all
the elements (u0, . . . , um) ∈ Fm+1

2 .

Straightforward we can define Monomial codes in an equivalent manner:

Proposition 3.2.20. Let Gm be the generator matrix for the vector space Fn2 . Then any
row sub-matrix of Gm defines a linear code C ⊆ Fn2 , that we call monomial code.

Notation 3.2.21. Any row sub-matrix of Gm indexed by the monomials in the set I will
be furthermore denoted by GI .

3.2.3 Polar codes are Monomial codes
In order to prove that Polar codes are monomial codes we could just recall the definition
given by Arıkan in [Arı09]. He pointed out that the generator matrices of both Reed-Muller
and Polar codes are obtained by a suitable choice of the rows of Gm.

Nevertheless, in order to have a better understanding on how the selecting rule works
for Polar codes, we recall the construction technique that was originally used for this
family of codes.

Polar codes

The Polar codes construction is based on the channel combining (Figure 3.1) and splitting
technique (Figure 3.3). Arıkan used this two techniques in [Arı09], in order to construct

23



3.2. MONOMIAL CODES

the circuit that we illustrate in Figure 3.2. This circuit will be used both for encoding
and decoding of Polar codes over a specific channel. For this purpose we denote by W the
memoryless channel for which the polar code is devised. Its input alphabet is binary and
its output alphabet is denoted by Y and it is also assumed to be discrete. We assume
that the channel is symmetric meaning that there exists a permutation π of Y which is
also an involution (π−1 = π) and W (y|1) = W (π(y)|0) for all y ∈ Y .

u2 W y2

u1 W y1

Figure 3.1 – The channel combining for m = 1

Duplicating the construction m times results in a complex circuit, denoted Wm, that
we plot in Figure 3.2.

0: 000

1: 001

2: 010

3: 011

4: 100

5: 101

6: 110

7: 111

Figure 3.2 – The combined circuit for m = 3 and the binary expansion of each row.
The index order is used for the row numbers (Arıkan’s notation)

The resulting channelWm can be defined as a vector channel, for exampleW1 is defined
by W (y1, y2 | u1, u2) = W (y1 | u1)W (y2 | u1 ⊕ u2). Using the second technique the circuit
will be split into 2m synthetic channels. We define the Arıkan channel transforms W+ and
W− of W which are both binary-input memoryless symmetric channel with transitions
probabilities specified by

Definition 3.2.22 (Synthetic channels).

W−(y1, y2|u2) def= 1
2
∑
u1∈F2

W (y1|u1)W (y2|u1 ⊕ u2)

W+(y1, y2, u2|u1) def= 1
2W (y1|u1)W (y2|u1 ⊕ u2)

Here the output alphabet of W− is Y × Y whereas the output alphabet of W+ is
Y × Y × F2.
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Remark 3.2.23. Notice that the formula for W+(y1, y2, u2 | u1) can be deduced directly
from the definition on W1 using Bayes formula. Indeed,

W+(y1, y2, u2 | u1) = W (y1, y2 | u1, u2)prob(u2 | u1)

which implies W+(y1, y2, u2 | u1) = 1
2W (y1, y2 | u1, u2). As for the second synthetic channel

we have

W−(y1, y2|u2) =
∑
u1∈F2

W (y1, y2, u1 | u2)

=
∑
u1∈F2

W (y1, y2 | u1, u2)prob(u1 | u2)

= 1
2
∑
u1∈F2

W (y1|u1)W (y2|u1 ⊕ u2).

u2 W y2 u2 W y2

u1 W y1 u1 W y1

Figure 3.3 – The two synthetic channels
(left) W− : F2 → Y × Y , (right) W+ : F2 → Y × Y × F2

In order to have a better understanding of the synthetic channels we detail in Appendix
B how the successive cancellation decoder works. Notice that encoding (u2, u1) into
(u2 ⊕ u1, u1) can also be described as vector matrix multiplication

(u2, u1)×G1 = (u2 + u1, u1).

Therefore we can identify the channel W− to W x0 and W+ = W 1. Straightforward we
define the synthetic channel corresponding to a monomial

Definition 3.2.24. Let g ∈Mm. Then the synthetic channel corresponding to g is

W g = W vm−1···v0 ,

where vi = − if xi|g and vi = + otherwise.

Example 3.2.25. For instance when m = 5 we have W x0x1x3 = W+−+−−. Figure 3.4
plots the synthetic channels corresponding to each monomial for m = 3.

We also need to define the Bhattacharyya parameter B (W ) of a binary-input symmetric
channel W

Definition 3.2.26. Let W be a B-DMC with output alphabet Y . Then the Bhattacharyya
parameter of the channel W is

B (W ) =
∑
y∈Y

√
W (y|0)W (y|1) (3.1)
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7: 111 : x0x1x2 : W−−− W

6: 011 : x1x2 : W−−+ W

5: 101 : x0x2 : W−+− W

4: 001 : x2 : W−++ W

3: 110 : x0x1 : W+−− W

2: 010 : x1 : W+−+ W

1: 100 : x0 : W++− W

0: 000 : 1 : W+++ W

x0 x1 x2

Figure 3.4 – The combined circuit for m = 3 with the monomial representation and the
corresponding synthetic channels. The rows are in decreasing index order.

Example 3.2.27. In the case of the Binary Erasure Channels and Binary Symmetric
Channels we have

•
B (BEC(p)) = p.

•
B (BSC(p)) = 2

√
p(1− p).

Remark 3.2.28. Let W be a BEC(p) then we have that B (W−) = 2p−p2 and B (W+) =
p2. This fact can be proved directly either from the model of the synthetic channels in the
case of the BEC family (see Exemple B.0.3) or by computing the Bhattacharyya parameter
on W− and W+ using Defintion 3.2.26 and 3.2.22.

With these definitions we can construct a polar code of length n = 2m and dimension
k devised for a binary-input symmetric channel W .

Definition 3.2.29. The polar code of length n = 2m and dimension k devised for the
channel W is the monomial code C (I) where I is the set of k monomials inMm which
take the k smallest values B (W g) among all g inMm.

Note that the output alphabet size of the channelsW g is exponential in m which makes
this ranking rather delicate. However there are various methods for computing these k
“best” channels. The first method was proposed by Arıkan and uses the Monte Carlo
simulation in order to estimate the Bhattacharyya parameters [Ari08a]. No more that one
year after, he proposed to ignore the actual channel type that is used and compute the
best channels in the case of a BEC [Arı09]. Another technique based of the factor graph
is used by Mori and Tanaka in [MT09a]. Tal and Vardy proposed in [TV13] a sandwich
method where each channels is caught between a degraded and an upgraded channel that
are apparently very tight in terms of capacity.
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3.3 Decreasing and Weakly Decreasing Monomial
Codes

3.3.1 Definitions and Properties

Polar codes and Reed-Muller codes are both monomial codes. But the family of monomial
codes is too large to explain the intriguing algebraic properties of polar codes (for instance
their very large automorphism group). Therefore we will introduce a partial order over
the set of monomials

Definition 3.3.1. Let f and g be two monomials inMm.

• The �w order between f and g is defined as

f �w g iff f |g.

• The � order between f and g is defined as

– when deg(f) = deg(g) = s and f = xi1 . . . xis, g = xj1 . . . xjs we have

f � g iff ∀ 1 6 ` 6 s i` 6 j`.

– when deg(f) < deg(g) we have

f � g iff ∃g∗ ∈Mm s.t. f � g∗ �w g.

Remark 3.3.2.

• The two relations �w and � are well defined partial orders since they are reflexive,
antisymmetric, and transitive.

• The order of divisibility was already used in the case of Polar codes but in a completely
different context by Mori and Tanaka in [MT09b, Section VI]. In their case the
purpose was to tighten the bounds of the error block probability of a Polar code
designed for the BEC family.

• The order �w is weaker than � in the sense that any pair of monomials f, g that
satisfy the relation f �w g, also satisfy the relation f � g, by definition. The inverse
is not always true, take for example f = x0x2 and g = x1x2. By definition f � g but
f 6�w g.

• The constant polynomial 1 is the smallest element for both � and �w . We also have
that for � the variables are totally ordered

x0 � x1 � · · · � xm−1.
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3.3.2 Weakly Decreasing Monomial Codes
Definition 3.3.3. Let f and g be two monomials inMm such that f �w g and I ⊂Mm.

• We define the closed interval [f, g]�w with respect to the partial order �w as the set
of monomials h ∈Mm such that f �w h �w g.

• The set I is called a weakly decreasing set if and only if (f ∈ I and g �w f) implies
g ∈ I.

• Let I weakly decreasing set. We define the subset of maximum monomials of I

Imax�w
= {f ∈ I | 6 ∃g ∈ I, g 6= f s.t. f �w g}.

We notice that an interval [f, g]�w is composed of at least two elements f and g.

Remark 3.3.4. Any weakly decreasing set is uniquely defined as a union of weakly
decreasing intervals :

I =
⋃

g∈Imax�w

[1, g]�w .

We stress out that in general for a weakly monomial set I the set of maximum
monomials with respect to �w order is different from the set of maximum degree monomials.
Nevertheless the two sets might be equal and this is the case when ∀g ∈ Imax�w

, deg(g) = r,
where 0 6 r 6 m.

Definition 3.3.5. Let I ⊂Mm be a weakly decreasing set. Then the linear code C (I) is
called weakly decreasing monomial code.

Proposition 3.3.6. Reed-Muller codes are weakly decreasing monomial codes

R(r,m) = C

 ⋃
deg(g)=r

[1, g]�w

 .
If I represents the set of monomial defining the R(r,m) code, then we have equality

between the subset of maximum degree monomials and the subset of maximum monomials
for the order �w: Imax�w

= Ir.

Proof. The result is a direct consequence of the definition of Reed-Muller codes 2.2.27
and the Definition 3.3.1 of �w .

3.3.3 Decreasing Monomial Codes
Definition 3.3.7. Let f and g be two monomials inMm such that f � g and I ⊂Mm.

• We define the closed interval [f, g]� with respect to the partial order � as the set of
monomials h ∈Mm such that f � h � g.

• The set I is called a decreasing set if and only if (f ∈ I and g � f) implies g ∈ I.
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x0x1x2x3

x1x2x3 x0x2x3 x0x1x3 x0x1x2

x2x3 x1x3 x1x2 x0x3 x0x2 x0x1

x3 x2 x1 x0

1

Figure 3.5 – The Hasse diagram for the weakly decreasing monomial order when m = 4

• Let I decreasing set. We define the subset of maximum monomials of I

Imax� = {f ∈ I | 6 ∃g ∈ I, g 6= f s.t. f � g}.

Remark 3.3.8. Let I ⊆Mm be a decreasing set.

• Then I is also a weakly decreasing set and we have the following equalities

I =
⋃

g∈Imax�

[1, g]�.

and
I =

⋃
f∈Imax�w

[1, f ]�w .

• In general the intervals are different since [1, f ]�w ⊆ [1, f ]�. And this is a direct
implication of the fact that Imax� ⊆ Imax�w

.

Nonetheless there are particular cases when the two intervals are equal, namely for
any f = x0 . . . xt with 0 6 t 6 m− 1.

• We also stress out that as for the weakly decreasing sets, the set of maximum degree
monomials is, in general, different from the set of maximum monomials with respect
to the � order.

But there is a particular case when the two sets are equals, for example when the
set of maximum monomials is reduced to one element Imax� = {x0 . . . xt}. Then we
have Imax� = Imax�w

= It.

• We notice that that for any monomial set I the subset of maximum degree monomials
It is independent to any order property that I might satisfy. For this reason in
general It is different from the subset of maximum monomials with respect to �w or
� .

Definition 3.3.9 (Decreasing monomial code). Let I ⊂Mm be a decreasing set. Then
the linear code C (I) is called decreasing monomial code.
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Proposition 3.3.10. Let f , g in Mm such that f � g and let us set f ∗, g∗ as the
monomials inMm such that f = f ∗ gcd(f, g) and g = g∗ gcd(f, g), then we have:

f ∗ � g∗.

Furthermore, for any h inMm such that gcd(g, h) = 1, we have:

fh � gh.

Proof. If gcd(f, g) = 1 we directly deduce the relation f ∗ � g∗. So suppose that gcd(f, g) 6=
1.

Firstly consider the case deg(f) = deg(g) = s. Let ind(f) = {i1, . . . , is} and ind(g) =
{j1, . . . , js} where 1 6 s 6 m. Now let ind(gcd(f, g)) = {il1 , . . . , ilr} = {jk1 , . . . , jkr} =
ind(f) ∩ ind(g) with 1 6 r 6 s. By definition of the support of a monomial and of the �
order we have that il1 = jk1 with k1 6 l1, and . . . , and ilr = jkr with kr 6 lr.

Now consider any element in ind(gcd(f, g)), for example il1 . Then we have il1 = jk1

with k1 6 j1. Since ik1 < jm1+1 and . . . il1−1 < jl1 we obtain

f/xil1 � g/xjm1
.

Continue down to f/(xil1 . . . xilr ) � g/(xk1 . . . xkr).
Secondly consider that deg(f) < deg(g). Then by definition of the � order we have

g = g1g2 with deg(g1) = deg(f) and f � g1. This implies that we can write f =
f ∗ gcd(f, g1) gcd(f, g2) and g = g∗1 gcd(f, g1)g∗2 gcd(f, g2) with gi = g∗i gcd(f, gi) for 1 6 i 6
2. By the first step of our proof we deduce f ∗ gcd(f, g2) � g∗1, which implies f ∗ gcd(f, g2) �
g∗1g
∗
2 gcd(f, g2). We directly deduce that f ∗ � g∗1g

∗
2 = g∗.

Remark 3.3.11. The condition on h to be prime with f and g is essential. Indeed, for
instance x0 � x1 but x0x1 6� x2

1 since x2
1 = x1 in Rm.

Proposition 3.3.12. Reed-Muller codes are Decreasing Monomial codes given by

R(r,m) = C ([1, xm−r · · · xm−1]�) . (3.2)

Proof. Let I be the set of monomials in Rm of degree at most r. We have R(r,m) = C (I).
Note now that xm−r . . . xm−1 belongs to I and that all monomials f of degree at most r
are smaller than or equal to this monomial

f � xm−r · · ·xm−1.

This implies
I ⊆ [1, xm−r · · ·xm−1]�.

Moreover no monomial of degree greater than r can be smaller than xm−r . . . xm−1.
Therefore we have

I = [1, xm−r · · ·xm−1]�.
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x0x1x2

x1x2

x0x2

x0x1 x2

x1

x0

1

x0x1x2x3

x1x2x3

x0x2x3

x0x1x3 x2x3

x0x1x2 x1x3

x1x2 x0x3

x0x2 x3

x0x1 x2

x1

x0

1

Figure 3.6 – The Hasse diagram for the decreasing monomial order
(left) m = 3 and (right) m = 4

Remark 3.3.13.
Let 1 6 k 6 n and {C (I)}I⊆Mm,|I|=k be the class of Monomial codes of length n and

dimension k. Then any subclass of {C (I)}I⊆Mm,|I|=k inherits all the properties of the
class of Monomial codes. Therefore any property of the Monomial codes is transmitted to
Weakly Decreasing Monomial codes and Decreasing Monomial codes.

In the same manner the class of Decreasing Monomial codes inherits the properties of
the class of Weakly Decreasing Monomial codes.

Example 3.3.14 (Weakly decreasing and decreasing sets).

• Let m = 4 and I be a monomial set defined by

I = {1, x0, x1, x2, x3, x0x1, x0x2, x0x3, x1x2}.

Then we have that I is a decreasing set with I = [1, x0x3]�∪ [1, x1x2]�. We also have
Imax� = {x0x3, x1x2} and I2 = {x0x1, x0x2, x0x3, x1x2}.
On the other hand I is a weakly decreasing set I = [1, x0x1]�w ∪ [1, x0x2]�w ∪
[1, x1x2]�w ∪ [1, x0x3]�w . Here we have that Imax�w

= I2.

• Let = 4 and J be a monomial set defined by

J = {1, x0, x1, x2, x3, x0x3, x1x2}.

Then we have that J is a weakly decreasing monomial set, more exactly J =
[1, x0x3]�w ∪ [1, x1x2]�w . We also have that Jmax�w

= J2 = {x0x3, x1x2}.
But J is not a decreasing monomial set since x0x2 6∈ J.
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3.3.4 Polar codes are Decreasing Monomial codes
In this part we will focus on proving that Polar codes are Decreasing Monomial codes.
We will begin by considering the Binary Erasure Channel and then the general case of
Binary Discrete Memoryless Channels. We point out that an equivalent demonstration of
the fact that Polar codes over the B-DMC are Decreasing Monomial codes was given in
parallel by Christian Schürch in [Sch16].

Polar codes over the BEC

The Binary Erasure Channel was a deeply studied case and also the first channel for which
we proved that Polar codes satisfy the decreasing property.

Proposition 3.3.15. The Bhattacharyya parameter for the synthetic channels in the case
of a BEC(p) is:

B
(
W xu

)
(p) = fu0 ◦ · · · ◦ fum−1(p),

where f0 : [0, 1] → [0, 1]
p 7→ p2 and f1 : [0, 1] → [0, 1]

p 7→ 1− (1− p)2 .

This fact comes directly from the Definition 3.2.26 of the Bhattacharyya parameter
and Example B.0.3 on the BEC(p).

Remark 3.3.16. We remark that the two functions f0, f1 are increasing functions and thus
B
(
W xu

)
is an increasing function over [0, 1] as the composition of increasing functions.

Proposition 3.3.17 (Bhattacharyya function of a monomial over the BEC).
Let g = xg1 . . . xgs with 0 6 g1 < · · · < gs 6 m− 1. Then the Bhattacharyya function

for the BEC(p) associated to g is

B (W g)(p) = f g1
0 ◦ f1 ◦ f g2−g1−1

0 ◦ f1 · · · ◦ f gs−gs−1−1
0 ◦ f1 ◦ fm−gs−1

0 (p).

Example 3.3.18. For m = 2 we have

B (W x0x1) = B
(
W−−

)
= f1 ◦ f1 = p(2− p) (2− p(2− p))

B (W x1) = B
(
W−+

)
= f0 ◦ f1 = p2(2− p)2

B (W x0) = B
(
W+−

)
= f1 ◦ f0 = p2(2− p2)

B
(
W 1

)
= B

(
W++

)
= f0 ◦ f0 = p4.

We notice that for a given binary erasure channel BEC(p) the order induced by the
Bhattacharyya parameter on the synthetic channels is a total order. We raise here a more
general question, that is what happens when the crossover probability of the channel it’s
unknown to the designer? In this case we define the Bhattacharyya order over the family
of {BEC(p)}06p61.

Definition 3.3.19 (Bhattacharyya order over the family of BEC). Let W and W ′ be
two synthetic channels. Then we say that B (W ) 6 B (W ′) if and only if for any erasure
probability p ∈ [0, 1] we have that

B (W )(p) 6 B (W ′)(p).
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We say that two channels W and W ′ are incomparable, with respect to the Bhattacharyya
order, if there exist a pair of erasure probabilities (p, p′) ∈ [0, 1]× [0, 1] such that

B (W )(p) < B (W ′)(p) and B (W )(p′) > B (W ′)(p′).

In Figure 3.7 and 3.8 we plot the Bhattacharyya order over the family of BEC as a
function of the channel probability for all the synthetic channels. We show that up to
m = 4 the Bhattacharyya order is total. Starting from m = 5 the Bhattacharyya order
over the family of BEC becomes a partial order. In this particular case the monomials
that are no longer comparable are x4 and x1x0. Moreover they generate, with respect
to the divisibility order, two other non comparable pair of monomials x4x3 with x3x1x0
and x4x2 with x2x1x0. But this partial order it is stronger that the “�” and thus for this
family of channels Polar codes might admit a better ordering than the �, fact that opens
new perspectives in this topic.

Figure 3.7 – The Bhattacharyya parameter for all the synthetic channels when m = 4

In the next paragraph we will detail some necessary properties for proving that Polar
codes are Decreasing Monomial codes over the BEC.

Lemma 3.3.20. For i ∈ {1, . . . , s}, let li, l∗i be increasing functions from [0, 1] → [0, 1]
such that ∀x ∈ [0, 1], l∗i (x) 6 li(x). Let Z = l1 ◦ · · · ◦ ls and Z∗ = l∗1 ◦ · · · ◦ l∗s , then

∀x ∈ [0, 1], Z∗(x) 6 Z(x).

Proof. The proof is by induction on s. For s = 1, the result comes from the assumption.
For s > 2, let Zs−1 = l2 ◦ · · · ◦ ls and Z∗s−1 = l∗2 ◦ · · · ◦ l∗s , then for any x ∈ [0, 1] by induction
we have Z∗s−1(x) 6 Zs−1(x), hence using the fact that l∗1 is increasing and that l∗1 6 l1 we
get Z∗(x) = l∗1(Z∗s−1(x)) 6 l∗1(Zs−1(x)) 6 l1(Zs−1(x)) = Z(x).

Lemma 3.3.21 (The bit position). Let g = xg1 . . . xgs−1xgs with 0 6 g1 < · · · < gs 6 m−1
and g(∗i) = xg1 . . . xgixg∗i+1

xgi+2 . . . xgs with gi 6 g∗i+1 6 gi+1. Then g(∗i) � g and

B
(
W g∗

)
6 B (W g).
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Figure 3.8 – The Bhattacharyya parameter for all the synthetic channels when m = 5

Proof. From the definition of the Bhattacharyya parameter we have B (W g) = l1 ◦
f
gi+1−g∗i+1
0 ◦ f1 ◦ l3 and B

(
W g∗

)
= l1 ◦ f1 ◦ f

gi+1−g∗i+1
0 ◦ l3 where l1 = f g1

0 ◦ f1 ◦ · · · ◦
f
gi−gi−1−1
0 ◦ f1 ◦ f

g∗i+1−gi−1
0 and l3 = f

gi+2−gi+1−1
0 ◦ f1 ◦ · · · ◦ fm−gs−1

0 . Let l∗2 = f1 ◦ f
gi+1−g∗i+1
0

and l2 = f
gi+1−g∗i+1
0 ◦ f1. In order to use the previous lemma, it remains to prove that

,∀y ∈ [0, 1] l∗2(y) 6 l2(y).
Since l∗2(y) = y2gi+1−g

∗
i+1 (2− y2gi+1−g

∗
i+1 ) and l2(y) = (y(2− y))2gi+1−g

∗
i+1 we obtain

l2(y)− l∗2(y) = y2gi+1−g
∗
i+1 ((2− y)2gi+1−g

∗
i+1 − 2 + y2gi+1−g

∗
i+1 ). (3.3)

Let Lk be the function defined by Lk(y) = (2 − y)k − 2 + yk for y ∈ [0, 1] and k ∈ N∗.
As Lk+1(y) − Lk(y) = (1 − y)((2 − y)k − yk) > (1 − y)(2 − y − y) = 2(1 − y)2 > 0
for y ∈ [0, 1], then Lk+1(y) > Lk(y) > L0(y) = 0 by induction. Hence, l2(y) − l∗2(y) =
y2gi+1−g

∗
i+1
L

2gi+1−g∗i+1
(y) > 0.

Proposition 3.3.22. Let g = xg1 . . . xgs−1xgs and h = xh1 . . . xhs−1xhs be two monomials
such that g � h. Then

B (W g) 6 B
(
W h

)
.

Proof. For i = 0, . . . , s let g(∗i) = xg1 . . . xgixhi+1 . . . xhs . We have g(∗0) = h, g(∗s) = g, and
g(∗(i+1)) � g(∗i) verify the hypotheses of the previous lemma. Applying the previous lemma
s times, we get B (W g) 6 B

(
W h

)
.

Proposition 3.3.23. Let 0 6 t 6 s 6 m − 1 and g = xg1 . . . xgt−1xgt and h =
xh1 . . . xhs−1xhs be two monomials such that g � h. Then

B (W g) 6 B
(
W h

)
.

Proof. From the definition of the order �, we have g � xhs−t+1 . . . xhs and B (W g) 6
B (W xhs−t+1 ...xhs ). But we can write

B (W xhs−t+1 ...xhs ) = f
hs−t+1
0 ◦ l2,
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with l2 = f1f
hs−t+2−hs−t+1
0 ◦ · · · ◦ fm−1−hs

0 and B
(
W h

)
= l1 ◦ l2 where l1 is the composition

of hs−t+1 functions f0 or f1. As f0 6 f1, applying Lemma 3.3.20 we get the result.

Finally we can state our result, that is

Theorem 3.3.24. Polar codes designed for the Binary Erasure Channel are Decreasing
Monomial codes.

Proof. Let C (I) be a Polar code of length N = 2m over the BEC family and I ⊂ Mm.
We prove that I is decreasing, i.e. for any monomial g ∈ I, for any monomial h ∈Mm, if
h � g then h ∈ I. This will be the case if the Bhattacharyya parameter of g and h verify
B (W g) 6 B

(
W h

)
,which is the case from Proposition 3.3.23.

Polar codes over the B-DMC

In this part we will prove a more general statement that is Polar codes are Decreasing
Monomial codes. We will start by proving a weaker statement whose ingredients and
lemmas used in the proof will be essential for the proof of Theorem 3.3.31. But first we
begin by recalling some useful facts about concatenated and degraded channel.

Lemma 3.3.25 ([RU08, p207]). Let W be a binary input channel. If W �d W
′ then

B (W ′) 6 B (W ).

Lemma 3.3.26 ([Kob09, Lemma 4.7],[TV13, Lemma 5]). LetW be a binary input channel
and let W ′ be a degradation of this channel (W ′ �d W ). Then

W ′− �d W−

W ′+ �d W+.

From this lemma we obtain that

Corollary 3.3.27. Let W be a binary input channel and let W ′ be a degradation of this
channel: W ′ �d W . For any monomial f inMm we have

W ′f
m �d W

f
m.

Lemma 3.3.28. For any binary-input symmetric channel W : {0, 1} → Y we have

W− �d W �d W
+.

Proof. First of all let us recall why we have W �d W
+. Consider the output (y1, y2, u2)

of the W+ channel when a bit u1 has been sent through it. By definition y1 is the
result of sending u1 through the W -channel. Therefore if we define W ′ as the channel
W ′ : Y × Y × {0, 1} → Y which takes (y1, y2, u1), erases y2 and u1 to send just y1, we
clearly have that W = W ′ ◦W+.

Let us prove now that W− �d W by constructing a channel W ′′ such that W ′′ ◦W =
W−. The channel W ′′ is defined as follows. It takes as input y1. At that point a bit u1
is drawn uniformly at random and sent through channel W to get some value y2. Then
W ′′ outputs the pair (y1, y2) when u1 = 0 and (π(y1), y2) when u1 = 1. Here π is the
involution acting on Y such that W (y|1) = W (π(y)|0).

Now sending b through channel W ′′ ◦W and receiving y1y2 happens in two cases
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• when u1 = 0, this happens when y1 has been received after sending u2 through W
and y1, y2 has been received after sending y1 through W ′′. This means that for W ′′,
y2 has been received with the second use of W when u1 has been sent through it;

• when u1 = 1, this happens when π(y1) has been received after sending u2 through
W (so that W ′′ changes π(y1) into π(π(y1)) = y1) and y2 has been received with the
second use of W when u1 has been sent through it.

This implies that

(W ′′ ◦W )(y1, y2|u2) = prob(x = 0)prob(receiving (y1, y2)|u2 was sent, u1 = 0) +
prob(u1 = 1)prob(receiving (y1, y2)|u2 was sent, u1 = 1)

= prob(u1 = 0)W (y1|u2)W (y2|u1 = 0)
+ prob(u1 = 1)W (π(y1)|u2)W (y2|u1 = 1)

= 1
2 {W (y1|u2)W (y2|u1 = 0) +W (π(y1)|u2)W (y2|u1 = 1)}

= 1
2 {W (y1|u2)W (y2|u1 = 0) +W (y1|1⊕ u2)W (y2|u1 = 1)}

= 1
2
∑
u∈F2

W (y1|u)W (y2|u⊕ u2)

= W−(y1, y2|u2)

This computation shows that W ′′ ◦W is precisely the channel W−.

Proposition 3.3.29. Let W be a binary input symmetric channel. Let f and g be two
monomials ofMm. If f �w g then

W g
m �d W

f
m.

Proof. This follows by induction on m. When m = 1 we just have to prove that

W x0
1 �d W

1
1 . (3.4)

Recall that

W x0
1 = W−

W 1
1 = W+

The inequality (3.4) follows directly from Lemma 3.3.28. Assume now that Proposition
3.3.29 holds for some positive integer m and let f and g be inMm+1 such that f �w g.

Let us define the following monomials:

f0...(m−1) = gcd
(
f,

m−1∏
i=0

xi

)

g0...(m−1) = gcd
(
g,

m−1∏
i=0

xi

)
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fm =
{
x0 if xm divides f,
1 otherwise.

gm =
{
x0 if xm divides g,
1 otherwise.

Note now that

W f
m+1 =

(
W fm

1

)f0...m−1

m

W g
m+1 = (W gm

1 )g0...m−1
m

Since f0...m−1 divides g0...m−1 we have by the induction hypothesis
(
W fm

1

)g0...m−1

m
�d

(
W fm

1

)f0...m−1

m
(3.5)

Since fm �w gm we have
W gm

1 �d W
fm
1 .

From Corollary 3.3.27 we deduce that

(W gm
1 )g0...m−1

m �d
(
W fm

1

)g0...m−1

m
(3.6)

From (3.5) and (3.6) we deduce that

(W gm
1 )g0...m−1

m �d
(
W fm

1

)f0...m−1

m

which proves the statement of the proposition for m+ 1.

We are ready now to prove that Polar codes are Weakly Decreasing Monomial codes

Proposition 3.3.30. Let C (I) be a polar code devised for a binary discrete memoryless
channel W. Then C (I) is a Weakly Decreasing Monomial code.

Proof. Let C (I) be a polar code generated by the set of monomials I devised for a channel
W . Let f and g be two monomials such that g is in I and f �w g. From Proposition
3.3.29 we know that

W g
m �d W

f
m.

By applying Lemma 3.3.25 we deduce that

B
(
W f
m

)
6 B (W g

m).

This implies that f also belongs to I.

Theorem 3.3.31. Polar codes are Decreasing Monomial codes.

In order to prove Therorem 3.3.31 we will need to have a finer understanding of the
W f
m’s and for that we give the following lemma:
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Lemma 3.3.32. Let x ∈ F2 be the input of a synthetic channel W f
m. Then the channel

W f
m can be described as follows:

1. choose binary word a = (ag)g∈Mm of length 2m indexed by the monomials ofMm

using the decreasing index order from Section 3.2.

2. let a′ = (a′g)g∈Mm be the binary word of length 2m such that for all g ∈Mm a′g = ag
with the exception of a′f where a′f = x.

3. compute b
def= a′Gm.

4. send the bits of b through channel W to obtain a vector y ∈ Y2m .

5. the output of the channel W f
m is then y, (ag)g:g>f .

Proof. This lemma is a direct consequence of the Definition 3.2.24 of W f
m and Definition

3.2.22 of the synthetic channels.

Theorem 3.3.31 heavily relies on Proposition 3.3.29 on one hand and the following
lemma on the other hand.

Lemma 3.3.33. Let W be a B-DMC. In such a case for any positive integer m we have

W x1x2...xm−2xm−1
m �d W

x0x1...xm−2
m .

Proof. We use Lemma 3.3.32 and consider W x0x1...xm−2
m . As explained in this lemma, the

channel takes as input a bit c and outputs y and (ag)g:g>x0x1...xm−2 , where y = (yg)g∈Mm ∈
Y2m is the result of sending a′Gm through the channel W.

Let τ :Mm −→Mm be a permutation on the set of monomials inMm defined by

τ(xi1 · · ·xit) = x(i1−1) (mod m) · · ·x(it−1) (mod m).

Let W ′ be a B-DMC which consists in reordering y as yτ
def= (yτ(g))g∈M and deleting

all the entries of (ag)g:g>x0x1...xm−2 with the exception of ax0...xm−1 . To finish the proof we
check that

W x0x1...xm−2
m ◦W ′ = W x1x2...xm−2xm−1

m .

Before giving a slightly more general statement, let us introduce some notation which
will be very helpful.

Notation 3.3.34. Let f = xi1 . . . xis be a monomial in Mm. We denote by f[a..b] the
monomial Πij :a6ij6bxij and by f−t, with t 6 i1 the monomial xi1−t . . . xis−t.

Example 3.3.35. Let m = 7 and f = x0x2x3x4x6. Then f[1..3] = x2x3 and f−2
[2..4] = x0x1x2.

Lemma 3.3.36. Let f and g be two monomials ofMm of the same degree such that

(i) f � g,

(ii) f[0..i−1] = g[0..i−1],
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(iii) f[i+t+1..m−1] = g[i+t+1..m−1],

(iv) f[i..i+t] = xixi+1 . . . xi+t−1,

(v) g[i..i+t] = xi+1xi+2 . . . xi+t.

Then
W g
m �d W

f
m

More generally in the case of two monomials f and g satisfying (ii) and (iii) and

W
g−i[i..i+t]
t+1 �d W

f−i[i..i+t]
t+1 (3.7)

then
W g
m �d W

f
m.

Proof. We can write in the first case

W f
m =

((
W

f[i+t+1..m−1]
m−i−t−1

)x0x1...xt−1

t+1

)f[0..i−1]

i

W g
m =

((
W

f[i+t+1..m−1]
m−i−t−1

)x1x2...xt

t+1

)f[0..i−1]

i
.

We can apply Lemma 3.3.33 to W f[i+t+1..m−1]
m−i−t−1 to deduce that((

W
f[i+t+1..m−1]
m−i−t−1

)x1x2...xt

t+1

)
�d

((
W

f[i+t+1..m−1]
m−i−t−1

)x0x1...xt−1

t+1

)
.

By applying Corollary 3.3.27 we obtain((
W

f[i+t+1..m−1]
m−i−t−1

)x1x2...xt

t+1

)f[0..i−1]

i
�d

((
W

f[i+t+1..m−1]
m−i−t−1

)x0x1...xt−1

t+1

)f[0..i−1]

i
.

The second statement follows by a similar reasoning but uses now (3.7) directly instead of
using Lemma 3.3.33.

This lemma can now be used to prove by induction on m that

Lemma 3.3.37. Let W be a symmetric binary input channel. Let m be a positive integer
and let f and g be two monomials ofMm that are of same degree and such that f � g.
Then

W g
m �d W

f
m.

Proof. When m = 1 the two monomials are necessarily equal and we are done. Assume
now that the property we want to prove holds for all positive integers up to some positive
integer m. Consider now two monomials f and g ofMm+1 with the same degree t and
such that f � g. We can write

f = xi1 . . . xit
g = xj1 . . . xjt
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with i1 < i2 < · · · < it and j1 < j2 < . . . jt. Let il be the smallest index among
{i1, . . . , it} such that il < jl. If such an index does not exist we have f = g and therefore
W g
m+1 �d W

f
m+1 which is what we want to prove. Let is be the largest index greater than

or equal to il such that
ij = il + (j − l)

for all j in {l, l + 1, . . . , s}. In other words in such a case

xil . . . xis = xilxil+1 . . . xil+(s−l).

Observe that we can write f as

f = f[0..il−1]xilxil+1 . . . xil+(s−l)f[il+(s−l)+2..m].

We can apply the previous lemma and obtain

W
f[0..il−1]xil+1xil+2...xil+(s−l)+1f[il+(s−l)+2..m]
m+1 �d W

f
m+1. (3.8)

Observe now that g is such that

xil+1xil+2 . . . xil+(s−l)+1f[il+(s−l)+2..m] � g[il..m].

This comes from the fact that all the ju’s for u ∈ {l, l + 1, . . . , s} necessarily satisfy
ju > iu + 1, since this is true for u = l and can be shown for values that are larger by
noting that ju > jl + (l − u) > il + 1 + (l − u) = iu + 1. We can apply the induction
hypothesis to the pair g−il[il..m] and x1 . . . x(s−l)+1f

−il
[il+(s−l)+2..m] since

x1 . . . x(s−l)+1f
−il
[il+(s−l)+2..m] � g−il[il..m]

and therefore
W

g
−il
[il..m]

m−il+1 �d W
x1...x(s−l)+1f

−il
[il+(s−l)+2..m]

m−il+1 .

By applying Corollary 3.3.27 we deduce that

W g
m+1 �d W

g[0..il−1]xil+1...xil+(s−l)+1f[il+(s−l)+2..m]
m+1 . (3.9)

Using the fact that by definition g[0..il−1] = f[0..il−1] and putting (3.8) and (3.9) together
by using the transitivity of �d we get

W g
m+1 �d W

f
m+1.

We are ready now for the proof of Theorem 3.3.31.

Proof of Theorem 3.3.31. Let C (I) be a polar code generated by the set of monomials I
devised for a channel W . Let f and g be two monomials such that g is in I and f � g.
Assume first that f and g have the same degree. In such a case we can apply Lemma
3.3.37 and deduce that

W g
m �d W

f
m.
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When f and g are not of the same degree, we know that there exists a divisor g∗ of g such
that g∗ and f have the same degree and f � g∗. By applying Lemma 3.3.37 to the pair
(f, g∗) we deduce that

W g∗

m �d W
f
m.

Since g∗ divides g we know from Proposition 3.3.30 that

W g
m �d W

g∗

m .

By transitivity of �d we deduce again that

W g
m �d W

f
m.

Therefore in all cases we can apply Lemma 3.3.25 and obtain that

B
(
W f
m

)
6 B (W g

m).

This implies that f also belongs to I.

3.4 Duality properties
We begin here by studying the problem of duality in the case of monomial codes. We
will see that the dual of a monomial code is a polynomial code, but not necessarily a
monomial code. We will prove that up to a permutation of the support of the code, the
dual of a monomial code is still a monomial code, fact that is already known from Vardy
and Mahdavifar [MV15]. Moreover the dual of a weakly decreasing monomial code turns
out to be a weakly decreasing monomial code.

3.4.1 Dual of Monomial Codes
Definition 3.4.1. The multiplicative complement of a monomial g ∈Mm is defined as:

ǧ
def=

∏
i∈{0,...,m−1}\ind(g)

xi = x0 . . . xm−1

g
.

By extension for any subset I ⊆Mm, the set Ǐ ⊆Mm denotes Ǐ = {f̌ : f ∈ I}.

Definition 3.4.2. Let m be a positive integer and s < m. We define the application ψ
that associates to any monomial g inMm the polynomial ψ(g) in Rm

ψ :Mm −→ Rm

g = xi1 . . . xis 7−→ ψ(g) = (xi1 + 1) . . . (xis + 1).

Lemma 3.4.3. Let π be the permutation that swaps the positions i with 2m − i+ 1 for
all 0 6 i 6 2m − 1.

π
def=
(

0 . . . i . . . 2m − 1
2m − 1 . . . 2m − i . . . 0

)
.

Then
ev(ψ(g))π = ev(g).
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Proof. Since for any element u = (u0, . . . , um−1) ∈ Fm2 we have that π(u) = (u0 +
1, . . . , um−1 + 1) it is straightforward to remark that for any monomial g ∈ Mm the
evaluation of ψ(g) on π(u) equals the evaluation of g on u.

Example 3.4.4. Let m = 2 then we have

11 01 10 00
ev(x0x1) 1 0 0 0
ev(x1) 1 1 0 0
ev(x0) 1 0 1 0
ev(1) 1 1 1 1

= G2.

If we apply ψ to all the monomials we obtain

11 01 10 00
ev((x0 + 1)(x1 + 1)) 0 0 0 1

ev(x1 + 1) 0 0 1 1
ev(x0 + 1) 0 1 0 1

ev(1) 1 1 1 1

= Gπ
2 .

Lemma 3.4.5. Let C (I) be a monomial code. Then

dim(C (I)) = dim(C (ψ(I))).

Proof. We denote as usual G the generator matrix of C (I) and G∗ the generator matrix
of C (ψ(I)). First we recall that for any permutation π ∈ Sn and any row submatrix GI

of Gm, indexed by a subset of monomials we have

rank(GI) = rank(Gπ
I ) = |I|. (3.10)

Then we use Lemma 3.4.3, more exactly the fact that G∗ψ(I) = Gπ
I , where π is the

permutation that swaps the positions i with 2m − i + 1 for all 0 6 i 6 2m − 1. Hence
rank(GI) = rank(G∗ψ(I)).

Proposition 3.4.6. Let C (I) be a monomial code, then its dual is a polynomial code
given by

C (I)⊥ = C
(
ψ(Mm \ Ǐ)

)
.

Proof. First of all we apply Lemma 3.4.5 to obtain dim(C (ψ(Mm \ Ǐ))) = n − |I| =
dim(C (I)⊥), sinceMm \ Ǐ is a monomial set and |Ǐ| = |I|. Hence we have to prove only
one inclusion.

Let (f, g) ∈
(
I, ψ(Mm \ Ǐ)

)
be a pair of elements such that deg(fg) 6 m− 1. Since

for any polynomial P ∈ Rm with deg(P ) 6 m− 1 we have wt(ev(P )) = 0 mod 2, then
we have that ev(f) · ev(g) = 0. In other words the vectors corresponding to the evaluation
of f and g are orthogonal.

Now suppose that deg(fg) = m, which means that fg = x0 . . . xm−1 + h(x) where
h ∈ Rm with deg(h) < m. Since g ∈ ψ(Mm \ Ǐ) we have by definition that g =
(xi1 + 1) . . . (xis + 1) with xi1 . . . xis ∈ Mm \ Ǐ and s < m. This implies that f · (xi1 +
1) . . . (xis + 1) = x0 . . . xm−1 + h(x), which means that f̌ |xi1 . . . xis .

There are two possible cases:
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1. if f̌ = xi1 . . . xis it’s impossible since f̌ ∈ Ǐ and xi1 . . . xis ∈Mm \ Ǐ .

2. if f̌ |xi1 . . . xis and deg(f̌) < s we have that it exists at least one variable xil with
l ∈ {1..s} so that gcd(xil , f̌) = 1. But this implies that xil |f and furthermore

f · (xi1 + 1) . . . (xis + 1) = 0

fact that is impossible since deg(h) < m.

3.4.2 Dual of Weakly Decreasing Monomial Codes
Proposition 3.4.7. Let I be a weakly decreasing monomial set, with respect to �w. Then

C (I) = C (ψ(I)) .

Proof. Since for any g ∈ Mm we have ψ(g) = ∏
i∈ind(g)

(xi + 1) = ∑
f |g

f∈Mm

f, we deduce

that C ([1, g]�w) = C (ψ([1, g]�w)). Now using Definition 3.3.3 and 3.3.5 we have that
C (I) = C ( ⋃

gi∈Imax�w

[1, gi]�w) and since ψ and ∪ commute, namely ⋃
gi∈Imax�w

ψ([1, gi]�w =

ψ( ⋃
gi∈Imax

[1, gi]�w) we obtain the wanted result.

Lemma 3.4.8. For all f and g inMm, f �w g if and only if ǧ �w f̌ .

Proof. Let f �w g. Then we have g = f gcd(f, g) and by definition

ǧ = x0 . . . xm−1

f gcd(f, g) = f̌

gcd(f, g) �w f̌ .

For the second implication use the first result applied to f̌ and ǧ and the fact that
ˇ̌
f = f for any monomial f.

Example 3.4.9. Take m = 5 and f = x0x1 and g = x0x1x4. Then we have f �w g and

ǧ = x2x3 �w f̌ = x2x3x4.

Corollary 3.4.10. Let I ⊆ Mm be a weakly decreasing set. Then Mm \ Ǐ is a weakly
decreasing set.

Proof. Let h be a monomial that belongs toMm \ Ǐ, and let g ∈ Mm be a monomial
such that g �w h. Assume by contradiction that g /∈ Mm \ Ǐ, i.e. g ∈ Ǐ. Then there
exists f ∈ I such that g = f̌ �w h, which implies that ȟ �w f by Lemma 3.4.8. Since I is
a weakly decreasing set, ȟ ∈ I, that is to say, ˇ̌

h = h ∈ Ǐ which contradicts the assumption.
ThereforeMm \ Ǐ is a weakly decreasing set

Proposition 3.4.11. Let C (I) be a weakly decreasing monomial code. Then its dual is a
weakly decreasing monomial code given by

C (I)⊥ = C (Mm \ Ǐ).
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Proof. As |Ǐ| = |I|, we have dim C (Mm \ Ǐ) = |Mm \ Ǐ| = N − dim C (I) = dim C (I)⊥,
so we need to prove only one inclusion.

Let f ∈ Mm \ Ǐ and consider g ∈ I. If deg(fg) < m we have that wt(ev(fg)) ≡ 0
mod 2, therefore the vectors ev(f) and ev(g) are orthogonal.

Now assume that fg = x0 · · · xm−1. This means there exists h ∈Mm such that f = hǧ,
or equivalently ǧ �w f , that is to say f ∈ Ǐ because I is a weakly decreasing set (and
thanks to Lemma 3.4.8). Hence the inclusion C (Mm \ Ǐ) ⊆ C (I)⊥ is proved.

Dual of Decreasing Monomial Code

The later results on the dual of a weakly decreasing monomial code are also valid for any
decreasing monomial code.
Proposition 3.4.12. Let C (I) be a decreasing monomial code. Then its dual is a
decreasing monomial code given by

C (I)⊥ = C (Mm \ Ǐ).

Proof. Since the class of Decreasing Monomial codes inherits the properties of Weakly
Decreasing Monomial codes (see Remark 3.3.13) we obtain the wanted result.
Corollary 3.4.13. Using the result on the dual of Decreasing Monomial codes we deduce
a well known fact on the dual of Reed-Muller codes

R(r,m)⊥ = C (Mm \ [x0 . . . xm−r−1;x0 . . . xm−1]�)
= C ([1;xr+1 . . . xm−1]�) = R(m− r − 1,m),

A straightforward consequence of Proposition 3.4.12 is that under some conditions,
any decreasing monomial code is weakly self-dual.
Corollary 3.4.14. Let C (I) be a decreasing monomial code with |I| 6 n/2. Then
C (I) ⊆ C (I)⊥ if and only if for any f ∈ I, f̌ 6∈ I, or in other words I ⊆Mm \ Ǐ .

There are Decreasing Monomial codes for which the later condition in not satisfied.
Consider for example I = [1, x0 · · ·xm−3]� ∪ [1, xm−2xm−1]�. The dimension of the code
C (I) is dim(C (I)) = 1 +m(m+ 1)/2 + 2m−2. Then for the values of m that satisfy the
inequality 1 +m(m+ 1)/2 + 2m−2 6 2m−1 we have that C (I) is a decreasing monomial
code with rate smaller that 0.5, which is not weakly self-dual. This comes from the fact
that xm−2xm−1 and x0 · · · xm−3 belong to the set I but they do not satisfy the condition
in Corollary 3.4.14.
Example 3.4.15. Let m = 3 and

I = {1, x0, x1, x0x2} , J = {1, x0, x2, x0x2} , L = {1, x0, x1, x0x1}.

We have that I is a monomial set, J is a weakly decreasing monomial set and L is a
decreasing monomial set. We compute the multiplicative complement of the three sets and
obtain

Ǐ = {x0x1x2, x1x2, x0x2, x1}
J̌ = {x0x1x2, x1x2, x0x1, x1}
Ľ = {x0x1x2, x1x2, x0x2, x2}
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from which we obtain

Mm \ Ǐ = {1, x0, x2, x0x1}
Mm \ J̌ = {1, x0, x2, x0x2}
Mm \ Ľ = {1, x0, x1, x0x1}

We obtain that C (J)⊥ = C (J) and C (L)⊥ = C (L). As for the monomial code we have

C (I)⊥ = C ({1, x0, x2, x0x1 + x1}) .

3.5 Minimum Distance
The minimum distance of Polar codes was already studied in the literature by Korada
[Kor09]. The estimation of the minimum distance of a monomial code is quite similar and
needs the following notion.

Definition 3.5.1. Let C (I) be a monomial code over m variables. We let

r−(C (I)) def= max
{
r | R(r,m) ⊆ C (I)

}
r+(C (I)) def= min

{
r | C (I) ⊆ R(r,m)

}
We notice that another way of defining these quantities is that r− is the largest r for

which the monomial xm−r · · ·xm−1 is in I. On the other hand r+ is the largest integer r
for which x0 · · ·xr−1 is in I. These quantities are related to the minimum distance of a
decreasing monomial code and its dual through the following result

Proposition 3.5.2. Let C (I) be a weakly decreasing monomial code over m variables.
We have the following properties:

1. The minimum distance of C (I) is equal to 2m−r+(C (I)).

2. r−(C (I)⊥) and r+(C (I)⊥) satisfy the equalities:

r−(C (I)⊥) = m− 1− r+(C (I)) (3.11)
r+(C (I)⊥) = m− 1− r−(C (I)) (3.12)

3. The minimum distance of C (I)⊥ is equal to 2r−(C (I))+1

Proof. 1. We notice that r+ is the largest degree of a monomial in I. If we consider
the evaluation of any monomial in Ir+ we obtain a codeword of weight 2m−r+(C (I)).
This implies that the minimum distance of C (I) is smaller than or equal to this
quantity. On the other hand, the minimum distance of C (I) is larger than or equal
to the minimum distance of R(r+,m) which is equal to 2m−r+(C (I)), which implies
our claim.

2. Equation (3.11) and (3.12) follow immediately from Proposition 3.4.11: C (I)⊥ =
C (Mm \ Ǐ) and the alternative definitions of r−(C (I)⊥) and of r+(C (I)⊥) which are
respectively the largest degree r such that all monomials of degree r are monomials
inMm \ Ǐ and the largest degree of a monomial that belongs toMm \ Ǐ.
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3. Using the two previous points we have

dmin(C (I)⊥) = 2m−r+(C (I)⊥)

= 2m−(m−1−r−(C (I)))

= 21+r−(C (I))

Corollary 3.5.3. The same properties hold for any Decreasing Monomial codes.

Proof. Since the class of Decreasing Monomial codes inherits the properties of Weakly
Decreasing Monomial codes (see Remark 3.3.13) we obtain the wanted result.

3.6 Permutation Group

3.6.1 Definitions and Properties
Applying an affine permutation to a monomial code yields a polynomial code but not
necessarily a monomial code. Furthermore, polynomial codes and monomial codes may
have a trivial permutation group. However by considering the subclass of Decreasing
Monomial codes we obtain codes with a very large permutation group which is the lower
triangular affine group. Before giving its precise definition, we introduce some notation.

Notation 3.6.1. Binary square matrices with m rows (and m columns) are denoted by
Fm×m2 .

Let us recall that a bijective affine transformation over Fm2 can be represented by a
pair (A, b) where A lies in the general linear group GL(m, 2) and b in Fm2 . The action of
(A, b) on a monomial g is denoted by (A, b) · g. It basically consists in replacing each
monomial xi by a “new” monomial yi defined by:

yi =
m−1∑
j=0

aijxj + bi.

In the case of Decreasing Monomial codes, we are interested in a subclass of these
transformations that are lower triangular. We recall that a matrix A = (ai,j) is lower
triangular if ai,j = 0 whenever j > i.

Definition 3.6.2. Let A ∈ Fm×m2 be a lower triangular binary matrix with ai,i = 1 and
b ∈ Fm2 . Define the following affine transformation

Mm −→ Rm

x 7−→ Ax + b.

We denote the set of such transformations LTA(m, 2).

Proposition 3.6.3. The set LTA(m, 2) forms a group that we call lower triangular affine
group.
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Proof. LTA(m, 2) can be decomposed into the semi-direct product of two groups and
therefore it forms a group. The two groups are

• The group of translations T(m, 2)

Fm2 −→ Fm2
x 7−→ x + b,

where b ∈ Fm2 .

• The subgroup of GL(m, 2) defined by the set of all lower triangular matrices A ∈
Fm×m2 with ai,i = 1.

Then (LTA(m, 2), ◦) is defined by:

(A, b), (A′, b′) ∈ LTA(m, 2) we have (A, b) ◦ (A′, b′) = (AA′,Ab′ + b)

3.6.2 Permutation group of Weakly Decreasing Monomial codes.
Proposition 3.6.4. The permutation group of a weakly decreasing monomial code contains
the group of translations T(m, 2).

Proof. Let I be a weakly decreasing set of monomials in m variables and g = xi1 . . . xis
be a monomial that belongs to I. Then consider en element b ∈ T(m, 2) which acts on g

xi1 . . . xis 7→ (xi1 + bi1) . . . (xis + bis) = g∗.

Consider a subset of ind(g) that we denote Sb,g, for which ∀j ∈ Sb,g , bj = 0. This set
might be empty and in that case

g∗ =
∏

i∈ind(g)
(xi + 1) =

∑
f�wg

f.

But since I is a weakly decreasing set all the monomials in the sum belong to I. Hence if
Sb,g = ∅ we have ev(g∗) ∈ C (I).

If Sb,g is non empty then we have

g∗ =
∏
i∈Sb,g

xi
∏

j∈ind(g)\Sb,g

(xj + 1) =
∏
i∈Sb,g

xi
∑
f�wgb

f,

where gb = ∏
i∈ind(g)\Sb,g

xi. Therefore g∗ equals the sum of all monomials h �w g such that

g/gb �w h. Hence ev(g∗) ∈ C (I).
Remark 3.6.5.

• Since the order of the group T(m, 2) equals 2m we have that for any weakly decreasing
monomial code |Perm (C (I))| /2m ∈ N∗.

• For the Reed-Muller codes we have |Perm (R(r,m)) | = |GA(m)| = 2m
m−1∏
i=0

(2m − 2i).

• Nevertheless, the structure of the hole group of permutations for weakly decreasing
monomial codes remains an opened question.
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3.6.3 Permutation group of Decreasing Monomial codes
Theorem 3.6.6. The permutation group of a decreasing monomial code in m variables
contains LTA(m, 2).

Proof. Let C (I) be a decreasing monomial code and let (A, b) be in LTA(m, 2). The
action of (A, b) where A = (ai,j) ∈ Fm×m2 and b ∈ Fm2 can be viewed as a change of
variables where xi is replaced by the variable yi defined by

yi = xi +
i−1∑
j=0

aijxj + bi.

Hence if xi1 · · ·xis belongs to I with 0 6 i1 < · · · < is 6 m− 1 then yi1 · · · yis is a linear
combination involving only monomials of the form ∏

i∈J xi where J describes the powerset
of {i1, . . . , is}. In particular, ∏i∈J xi is in I since I is decreasing and therefore ev(yi1 · · · yis)
belongs to C (I), which terminates the proof.

Remark 3.6.7.

• The order of LTA(m, 2) equals 2m+(m2 ). Therefore for any Decreasing Monomial code
C (I) we have |Perm (C (I))| /2m+(m2 ) ∈ N∗.

• For the Reed-Muller codes we have

|Perm (R(r,m)) | = |GA(m)| = |LTA(m, 2)|
m∏
i=1

(2i − 1).

• The problem of finding the hole permutation group remains open for Decreasing
Monomial codes.

In a recent work Soro, Lacan, Roca, Savin and Cunche [SLR+16] used a similar
permutation in order to propose a recursive algorithm for decoding Reed-Muller over the
Binary Erasure Channel. The algorithm exploits the Plotkin construction of Reed-Muller
codes and the permutation group, in order to improve the generic decoder. Their idea
might also be used in the case of any Decreasing Monomial code but it is not exploited
for the moment. Nevertheless we exploit the permutation group of Decreasing Monomial
codes to answer another fundamental question: what is the structure of minimum weight
codewords of a Decreasing Monomial Code?

3.7 Minimum weight codewords

3.7.1 Orbits under the action of LTA(m, 2)
A natural object when dealing with group actions is the orbit of an element. We denote
by

LTA(m, 2) · g = {(A, b) · g| (A, b) ∈ LTA(m, 2)} for g ∈Mm
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the orbit of a monomial g under the action of LTA(m, 2).When g is equal to the monomial

xi then its orbits is of the form
{
xi +

i−1∑
j=0

ajxj + b | aj and b ∈ F2

}
. A consequence is that

the cardinality of the orbit of xi equals 2i+1.
When the degree of g is greater than 1 counting the number of elements in the orbit is

less obvious. The reason why the task is more complicated comes from the fact that the
stabilizer subgroup of LTA(m, 2) with respect to g is not trivial. The following example
illustrates this fact.

Example 3.7.1. Let g = x0x1 then by definition
LTA(m, 2).g = {(x0 + b0)(x1 + a1,0x0 + b1)|b0, a1,0, b1 ∈ F2}. We remark that there are

two group elements in LTA(m, 2) that leave g invariant: (x0 + b0)(x1 + a1,0x0 + b1) = x0x1
if and only if b0 = 0 and a1,0 = b1, in other words x0x1 = x0(x1 + x0 + 1). Hence there
are 4 distinct polynomials in the orbit of x0x1 which are x0x1, x0(x1 + 1), (x0 + 1)x1 and
(x0 + 1)(x1 + 1).

Definition 3.7.2. For any g fromMm we define LTA(m, 2)g as the subgroup of (A, b) ∈
LTA(m, 2) such that:

bi = 0 and aij = 0 if i 6∈ ind(g) or j ∈ ind(g).

Proposition 3.7.3. For any monomial g in Mm the orbit of g under the action of
LTA(m, 2) is equal to the orbit of g under the action of LTA(m, 2)g:

LTA(m, 2) · g = LTA(m, 2)g · g. (3.13)

Proof. The inclusion LTA(m, 2)g ⊆ LTA(m, 2) is clear. We prove the converse inclusion
by induction on deg g.

Let deg g = 1. We have that g = xi and by definition of LTA(m, 2)

LTA(m, 2) · xi = {xi +
∑
j<i

αjxj + bi with αj, bi ∈ F2}.

By definition of LTA(m, 2)g we have that A =


0 . . . . . . . . . . . . 0

ai0 . . . ai(i−1) 1 . . . 0

0 . . . . . . . . . . . . 0

 and b =

(0, . . . , 0, bi, 0, . . . , 0)t. Therefore Ax + b = bi + ai0x0 + . . . ai(i−1)xi−1 + xi.
Let us assume that is true for any monomial of degree 6 d where d > 1. Let g be a

monomial inMm of degree d+ 1. Let us consider (A, b) in LTA(m, 2) and for any i in
ind(g) we define yi as:

yi = xi +
i−1∑
t=0

aitxt + bi

Hence we have (A, b) · g = ∏
j∈ind(g)

yj. Now let i be the maximum element of ind(g). We

then have:
yi = xi +

∑
t∈ind(g),t6=i

aitxt +
i−1∑

t=0,t/∈ind(g)
aitxt + bi
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Using the fact that f 2 = f for any f in Rm, we also have:∏
j∈ind(g)

yj = yi
∏

t∈ind(g),t6=i
y′t

=
xi +

∑
t∈ind(g),t 6=i

ait(xt + 1 + yt)

+
i−1∑

t=0,t/∈ind(g)
aitxt + bi

 ∏
t∈ind(g),t6=i

yt

Since ∏
t∈ind(g),t6=i

yt is of degree d then by induction assumption, there exists (A∗, b∗) ∈

LTA(m, 2)g such that for any t ∈ ind(g) and t 6= i, it holds:

yt = xt +
t−1∑

s=0,s/∈ind(g)
a∗tsxs + b∗t .

This implies in particular that we can write:

∑
t∈ind(g),t 6=i

ait(xt + 1 + yt) =
∑

t∈ind(g)
t6=i

t−1∑
s=0

s/∈ind(g)

ait(a∗tsxs + b∗t + 1)

This last equation only involves variables xs with 0 6 s < i and s /∈ ind(g). Hence we can
find a binary vector (a′i0, . . . , a′i(i−1)) with a′it = 0 if t ∈ ind(g), and b′i ∈ F2 such that:

∏
t∈ind(g)

yt =
∏

t∈ind(g)

xt +
t−1∑

s=0,s/∈ind(g)
a′tsxs + b′t

 .
This last equality proves LTA(m, 2) · g ⊆ LTA(m, 2)g · g and concludes the proof.

Proposition 3.7.4. For any g ∈Mm we have

|LTA(m, 2) · g| = |LTA(m, 2)g| .

Proof. From Proposition 3.7.3 we have that |LTA(m, 2) · g| 6 |LTA(m, 2)g|.
Let g ∈Mm and let us consider (A, b) and (A′, b′) in LTA(m, 2)g. We prove that if

(A, b) · g = (A′, b′) · g in Rm then A = A′ and b = b′.
This comes from the fact that in the polynomial (A, b) · g ∈ Rm, the coefficient

of xj
∏

k∈ind(g),k 6=i
xk when i ∈ ind(g) and j /∈ ind(g) is exactly aij and the coefficient of∏

k∈ind(g),k 6=i
xk is bi. This proves that (A, b) = (A′, b′).

Therefore there is a bijection between the two sets and counting the number of elements
in the orbit of g is equivalent to counting the number of pairs A, b ∈ LTA(m, 2)g.

3.7.2 Computing the cardinality of orbits
In order to give the cardinality of an orbit we use a well-known combinatorial object called
the Ferrers diagram (or Young diagram).
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Young diagrams

Definition 3.7.5 ([Com12]). A Young diagram is a finite collection of boxes arranged in
left-justified rows, with the rows sizes weakly increasing.

∗
∗
∗ ∗ ∗

∗
∗ ∗

∗ ∗
∗ ∗ ∗ ∗ ∗

∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

Figure 3.9 – Young diagrams inside a 2× 3 grid

The diagram is generally used to represent a partition λ of integers. In the above
figure we have the following partitions from left to right:

ε, (1), (1, 1), (2), (2, 1), (2, 2), (3), (3, 1), (3, 2), (3, 3).

Notation 3.7.6. Let m and d be two positive integers such that d 6 m. We denote by
λ ⊂ d× (m− d) the set of all partitions λ = (λd−1, . . . , λ0) inside the d× (m− d) grid,
where 0 6 λi 6 m− d and λ0 6 · · · 6 λd−1.

In the literature the usual convention is to have 1 6 λi 6 m− d. But here we prefer to
write the zero elements since we consider partitions inside a fixed grid.

Example 3.7.7. For the diagrams in Figure3.9 the partitions, using our convention, are:

(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3).

Bijection between monomials and Young diagrams

We construct a bijection between Young diagrams in grids of size d×(m−d) and monomials
of degree d in m variables. First of all we associate to a monomial g the corresponding
matrix A ∈ LTA(m, 2)g. Then we will use a well known bijection between the Young
diagrams and the matrices in row echelon form [Knu71a].

The bijection works as follows: if (A, b) ∈ LTA(m, 2)g, then by definition of A the
rows i /∈ ind(g) and the columns j ∈ ind(g) contains only a 1 on the diagonal (and 0
elsewhere). If we remove from A the rows i /∈ ind(g) and the columns j ∈ ind(g), we get
a d× (m− d) matrix with possible non-zero coefficients exactly inside the boxes of the
associated Ferrers diagram.

Proposition 3.7.8. For any integers m, d with 1 6 d 6 m, there is a bijection between
monomials inMm of degree d and Young diagrams inside the d× (m− d) grid.
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Proof. If g = xi0 · · ·xid−1 ∈Mm is a monomial of degree d, then the partition associated
to g is λg = (id−1 − (d− 1), id−2 − (d− 2), . . . , i0 − 0) inside the d× (m− d) grid. It is a
partition since ik − k > ik−1 − (k − 1).

If λ = (λd−1, . . . , λ0) is a partition inside the d × (m − d) grid with λd−1 > λd−2 >
· · · > λ0 > 0, then the monomial g associated to it is g = xi1 · · ·xid where ik = λk + k >
λk−1 + k − 1 = ik−1.

Example 3.7.9. We consider in this example that m = 5 and the monomial g has
deg(g) = 2.

• Let λg be the empty partition λg = ε inside the 2 × 3 grid. With our convention
λg = (0, 0) and we have g = x0x1.

.

• Now let g = x1x4 then the partition associated to g is λg = (4 − 1, 1 − 0) = (3, 1)
and it’s Young diagram in the 2× 3 grid is

∗
∗ ∗ ∗ .

We also illustrate the bijection between A and λg.

A =


1 0 0 0 0
a10 1 0 0 0
0 0 1 0 0
0 0 0 1 0
a40 0 a42 a43 1

 .

After deleting the rows corresponding to x0, x2, x3 and the columns corresponds to

x1, x4, we get
(
a10 0 0
a40 a42 a43

)
which corresponding to the 8th Ferrers diagram from

Figure 3.9.

Using the same technique we obtain that the monomials associated to the Young
diagrams from Figure 3.9 are (in the same order as in the fugure): x0x1, x0x2, x1x2, x0x3,
x1x3, x2x3, x0x4, x1x4, x2x4 and x3x4.

We denote by λg the Ferrers diagram corresponding to g and |λg| the size of a diagram,
that is to say the number of * in the diagram. Thanks to Proposition 3.7.4 we can state
the following.

Proposition 3.7.10. The cardinality of the orbit of g under the action of LTA(m, 2) is

|LTA(m, 2) · g| = 2 deg(g)+|λg |
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Example 3.7.11. Let m = 5 and g = x1x4 then the partition associated to g is λg =
(4− 1, 1− 0) = (3, 1) and it’s Young diagram in the 2× 3 grid is

∗
∗ ∗ ∗ .

Using Proposition 3.7.10 we have that the cardinality of the orbit of x1x4 equals
22+4 = 26.

We can also use the matrix representation, which is in this case
(
a10 0 0
a40 a42 a43

)
We

deduce that there are 24 different matrices A in LTA(m, 2)g, and 22 different vectors b
which gives a cardinality equal to 26

3.7.3 The minimum weight codewords of a decreasing monomial
code.

Characterizing the minimum weight codewords is often quite difficult and there are
few families of codes for which the structure of the minimum weight codewords is well
known. In the case of Decreasing Monomial codes the subgroup LTA(m, 2) gives enough
information to understand the structure of the minimum weight codewords.

Definitions and Properties

We suppose that C (I) is a decreasing monomial code. From Proposition 3.5.2, the set of
minimum weight codewords is

Wmin = {c ∈ C (I) | |c| = 2m−r+},

where r+ = r+(C (I)).

Proposition 3.7.12.

Wmin =
{
ev(P ) | ∃f ∈ Ir+ , P ∈ LTA(m, 2) · f

}
.

Proof. The ⊇ inclusion comes from the fact that LTA(m, 2) acts on C (I) as a permutation,
and thus for any f ∈ Ir+ , ev(f) has weight 2m−r+ .

As for the ⊆ inclusion, consider an arbitrary element ev(P ) ∈Wmin. From [KTA76]
we know that an element of weight 2m−r+ is the evaluation of a product of r+ independent
affine linear forms P =

r+∏
j=1

`j. Each linear form can be written as

`j = xij +
∑

06k<ij
ajkxk + εj.

If all the maximal variables xij in the r+ linear forms are pairwise distinct then P ∈
LTA(m, 2) · (xi1 . . . xir+

).
Now suppose that this assumption is not true and consider two linear forms `1, `2 sharing

the same maximum variable and such that `1`2 6= 0. In other words `1 = xi2 + ∑
k<i2

a1kxk+ε1
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and `2 = xi2 + ∑
k<i2

a2kxk +ε2. Let `∗1 = xi2 + `1 and `∗2 = xi2 + `2. It is clear that `∗1 + `∗2 6= 0
because of the independence condition. We also have that `∗1 + `∗2 6= 1 because if not we
would obtain `1`2 = 0. Using the relation f 2 = f for any f ∈ Rm we can rewrite

`1`2 = (`1 + `2 + 1) `2 = (`∗1 + `∗2 + 1) `2 = `
′

1`2

where the maximum variable of `′1 is strictly smaller than xi2 and the two forms are
independent.

By induction on the number of linear forms, we can prove that any product of r+
linear forms can be rewritten in a product of r+ linear independant forms with distincts
maximal variable.

Furthermore we prove that for any two distinct monomials the intersection of their
orbits is the empty set and conclude with the formula counting the number of minimum
weight codewords of a decreasing monomial code.

Lemma 3.7.13. Let f and g be two different monomials inMm. Then the intersection
of their orbits is equal to the empty set.

LTA(m, 2) · f ∩ LTA(m, 2) · g = ∅.

Proof. If the two monomial can be compared with respect to our order then we can
consider without loss of generality that f � g. Using the definition of LTA(m, 2) we have
that any polynomial in the orbit of g contains the monomial g and any polynomial in
the orbit of f does not contain the monomial g. So it is impossible to find a polynomial
belonging to both orbits.

If the two monomials are incomparable the proof works in the same way. Let f and
g be two monomials such that f = gcd(f, g)f ∗ and g = gcd(f, g)g∗. Since f and g are
incomparable we know that there exists a maximum variable xi such that xi|f and xi 6 |g
and ∀j ∈ ind(g) , i > j. Therefore any polynomial in the orbit of f contains the monomial
xi gcd(f, g). On the other hand since the variable xi is bigger than all the variables in g∗
the monomial xi gcd(f, g) in not contaned in any of the polynomials in the orbit of g.

Computing the number of minimum weight codewords

Theorem 3.7.14. Let C (I) be a decreasing monomial code, then the number of minimum
weight codewords in C (I) equals

|Wmin| = 2r+
∑
g∈Ir+

2|λg |.

Proof. Use Proposition 3.7.12 and Lemma 3.7.13

Corollary 3.7.15. The number of minimum weight codewords in R(r,m) equals

|Wmin(R(r,m))| = 2r
[
m

r

]
2

where
[
m
r

]
2

= (2m − 1) . . . (2m − 2r−1)
(2r − 1) . . . (2r − 2r−1) is the Gaussian binomial coefficient.
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Proof. Recall that
[
m
r

]
2
represents the number of r-dimensional subspaces of Fm2 . The

problem of counting the number of r-dimensional subspaces of Fm2 is equivalent to counting
the number of r ×m matrices of rank r in reduced echelon form. Each matrix gives rise
to a Young diagram inside the r× (m− r) grid and each diagram λ can be obtained from
2|λ| matrices [Knu71a]. So we have the following combinatorial identity:[

m

r

]
2

=
∑

λ⊂r×(m−r)
2|λ|. (3.14)

Moreover we recall that R(r,m) = C ([1, xm−r . . . xm−1]) , which implies that the
Young diagrams corresponding to all the maximum degree monomials of a Reed-Muller
Code are all the possible diagrams in the r × (m− r) grid. Thus we have

|Wmin(R(r,m))| = 2r
∑

λ⊂r×(m−r)
2|λ| = 2r

[
m

r

]
2

Remark 3.7.16. We notice that the number of minimum weight codewords of the Reed-
Muller codes represent an upper bound on the number of minimum weight codewords of
any Decreasing Monomial code C (I)

|Wmin(C (I))| 6 |Wmin(R(r+,m))|.

Decreasing Monomial Weakly Decreasing Monomial Monomial

C (I)⊥ C (Mm \ Ǐ) C (Mm \ Ǐ) C
(
ψ(Mm \ Ǐ)

)

dmin(C (I)) 2m−r+ 2m−r+ 2m−r+

Perm (C (I)) LTA(m, 2) ⊆ Perm (C (I)) T(m, 2) ⊆ Perm (C (I))

|Wmin| 2r+
∑

g∈Ir+

2|λg |

Figure 3.10 – Main properties of Monomial, Weakly Decreasing Monomial and Decreasing
Monomial codes

3.8 Perspectives
There are many questions related to this topic and we do not pretend to select here the
most important ones. We just enumerate some of the subjects on which we tend to focus
in the near future.
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x1x0 x2

x1

x0

1

Figure 3.11 – The decreasing order over the Young diagrams corresponding to the
monomials when m = 4

1. The first topic is a combinatorial question concerning the number of Decreasing
Monomial codes of fixed dimension, let’s say k. If the answer if obvious for the class
of Monomial codes, that is

(
n
k

)
, in the case of Weakly Decreasing Monomial codes

and Decreasing Monomial codes the question doesn’t have a trivial answer. The
main direction that we that we tend to follow is a detail study of ideals of posets.

2. Experiments show that the order of the full permutation group for Decreasing
Monomial codes is way bigger that the order of the lower triangular group. In many
cases it is close up to a constant to the general affine group. Therefore to reveal
the full permutation group for the Decreasing Monomial codes is still an opened
question that could unlock other important results.
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3. Since both Reed-Muller codes and Polar codes achieve the capacity of the Binary
Erasure Channel, a natural question is whether any Decreasing Monomial code
achieve the capacity of the BEC. For that we believe that the previous question,
regarding the permutation group might be extremely useful. Also the results that
we obtained on the structure of the minimum weight codewords could be potentially
one of the ideas to be used in this sense.
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4
Cryptanalysis of the McEliece scheme based on Polar

Codes

4.1 Introduction
Since Polar codes benefit of various interesting properties like fast encoding and decoding
algorithms and high decoding capacity they seem fitted in cryptographic applications.
They were proposed in a public key encryption scheme à la McEliece by [SK14] and
[HSEA14]. as well as for a secret key cryptosystem in [HSA13]. Due to their high
decoding capacity they might also be suitable for signature schemes [OT12].

Contribution We propose in this Chapter to analyze the security of the McEliece
variant based on Polar codes. More exactly we focus on the Key Recovery Problem and
show that in the case of Polar codes it can be reduced to the Code Equivalence Problem.
Based on the results that we proved in Chapter 3 we explain that generic algorithms, like
the SSA [Sen00], for solving this problem are not feasible due to the structural properties
of Polar codes.

Our main contribution is to propose a Key Recovery Attack against the McEliece
scheme based on Polar codes. The advantage of our algorithm is that it can be applied
on any Decreasing Monomial code that admits a specific discriminant that we detail in
Section 4.4.2. The signature that we propose for our attack is based on the number of
minimum weight codewords in the dual of a shortened Polar code. With this tool we
manage to discriminate between several monomials that define the Polar code fact that
allows us to solve the code equivalence problem. We detail our algorithm on a toy example,
over a small extension of F2, and also give some details about a practical implementation
applicable for cryptographic parameters. The results in this Section were published in
[BCD+16].

4.2 The McEliece PKC variant using Polar codes

4.2.1 Introduction
Shrestha and Kim proposed a public key encryption scheme à la McEliece based on
Polar codes [SK14]. The idea is the same as in the original scheme, it only replaces
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the binary Goppa code with a Polar code designed for a BSC(p). Therefore during the
KeyGeneration algorithm, one has to compute the Bhattacharya parameter for all the 2m
synthetic channels and choose the best k channels in order to output the generator matrix
G of the Polar code. The masking technique is the usual one, using a permutation and
an invertible matrix. Moreover the encryption and decryption algorithms work exactly in
the same way as in the original version (see Section 2.3 for details).

4.2.2 Parameters for the scheme
The authors in [SK14] proposed as practical parameters, codes of length 2048 and rate
close to 1/3, more exactly a [2048, 614] Polar code. The Shannon limit for the noise on
a binary symmetric channel of crossover probability p that a code of rate 614

2048 is able to
sustain is about p = 0.19. So in order to built the generator matrix of the Polar code we
have to choose the best 614 rows of G11 which give the best performance for the successive
cancellation decoder. Regarding the performance of the SC decoder we illustrate in Figure
4.1 the decoding error probability in function of the weight of the error vector in the case
of a [2048, 614] Polar code designed for a BSC(0.19).

wt(e) 143 164 184 205 225 246 266
Perr(e) 2.10−6 3, 2.10−5 2, 56.10−4 1, 02.10−3 3, 37.10−3 1, 49.10−2 4, 76.10−2

Figure 4.1 – Error probability for a [2048, 614] Polar code in function of the error weight

If we suppose that the scheme has to be deployed in a practical environment where
a reasonable error probability would be lower than or equal to 10−3, then we choose to
consider error vectors with Hamming weight less than 200.

4.2.3 Security arguments
Shrestha and Kim proposed a security analysis based on two aspects: firstly they analyze
the complexity of the brute force attack and secondly they give some arguments against
the eventual use of the attack against the Sidelnikov cryptosystem [Sid94]. But there
is no reference to any generic attack, therefore we give in Figure 4.2 the security level
against the MRA, for a [2048, 614] Polar code in function of the error vector weight, with
respect to the complexity of the ISD algorithm.

wt(e) 143 164 184 205 225 246 266
security level 78 89 100 111 123 135 146

Figure 4.2 – Security level against the MRA of the [2048, 614] Polar code in function of
the error weight

We notice that in this case we could get a 100-bit security if we choose error vectors
with a Hamming weight at least 184. In this case the error probability equals 2.56 · 10−4

which is reasonable for a practical purpose.
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For the Key Recovery Attack, we face in the case of Polar codes the Code Equivalence
Problem. There is in essence a single Polar code of a given dimension and length.
So breaking the scheme amounts to find for a permuted version of the Polar code a
permutation that gives the original Polar code. What makes this problem difficult for
Polar codes is that the standard algorithm for solving it, namely the Support Splitting
Algorithm [Sen00] is too complex to be used in this context due to the very large size of
the hull of the Polar code (see Section 3.4). What makes the problem even more intricate
is the fact that a Polar code have a very large permutation group (see Section 3.6) which
complicates the task significantly.

So it seems that this variant is not threatened by any known key recovery attack, at
least not an obvious one. Moreover a proper choice of parameters seems to be possible,
parameters that give the security of the scheme with respect to the MRA attack. Despite
all these arguments for the use of Polar codes, we will reveal the existence of a flawless in
this case, which is represented by the set of minimum weight codewords. In the case of
a [2048, 614] Polar code the minimum distance equals 32, which is way lower than the
minimum error weight that has to be considered for a proper security level. On top of
that we have just seen in the previous section that the structure of the minimum weight
codewords is given by the action of the lower triangular affine group. Therefore there
might be a distinguisher on the maximum degree monomials using this group action,
which is exactly the idea that we will use against this McEliece variant.

4.3 Solving the code equivalence problem for Polar
codes

In order to solve the code equivalence problem for Polar codes we will need to define the
notion of signature for a linear code.

4.3.1 Definitions
Definition 4.3.1 (Signature). Let C be a code of length n. Let G be a subgroup of
permutations of C and W be a subset of C globally invariant under G. We say that a
function Σ(c,C ) where c belongs to C is a signature for the action of G on W if and only
if:

1. Σ(c,C ) = Σ(cπ,C π) for π from Sn (i.e. Σ is invariant by permutation),

2. Σ(c,C ) 6= Σ(c′,C ) if c and c′ both belong to W but are not in the same orbit under
G (i.e. Σ takes distinct values for each orbit).

Notice here that a signature always takes the same value on an orbit under G since if
we take c in W and γ is an element of G, then Σ(c,C ) = Σ(cγ,C γ) = Σ(cγ,C ) since γ
belongs to the permutation group of the code.

The main idea of our attack is that we are able to find an efficient signature for the
Polar codes C (I). This signature will allow us to determine the orbit of a particular
monomial f ∈ I under the action of the LTA(m, 2). Furthermore we will proceed by
induction, more exactly we will determine the monomials fi which divide f and solve the
code equivalence problem for the shortened code on the support of fi.
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4.3.2 Preliminaries
Before we detail the attack we recall some of the properties of Polar codes that are going
to be used. We will suppose that the Polar code of length n = 2m and dimension k is
defined by the set of monomials I and that the maximum degree of monomials in I equals
r+. We will denote as before the set of monomials of degree r+ by Ir+ ⊂ I. Next we recall
the necessary ingredients for a successful cryptanalysis of Polar codes:

• From Theorem 3.6.6 we know that the permutation group of a decreasing monomial
code in m variables contains LTA(m, 2).

• The minimum weight codewords of a Polar code C (I) are given by the evaluation
of the polynomials in the orbits LTA(m, 2) · f for any maximum degree monomial
f ∈ Ir+ .

• Since any Polar code is a decreasing monomial code and Ir+ 6= ∅ we have that
x0 . . . xr+−1 ∈ Ir+ . We denote the corresponding codeword by cmin

def= ev(x0 · · · xr+−1)

Notation 4.3.2. Let cmin
def= ev(x0 · · ·xr+−1), than we denote by I be the support of cmin,

and J be the complementary set (that is the set of position for which cmin takes the value
0).

Let ci = ev(x0 . . . , xi−1) with c0 being ev(1), that is the all-one codeword and cmin = cr+ .
We denote by I i the support of ci and J i be the complementary set. We remark that we
have Ir+ = I and J r+ = J .

4.3.3 Attack algorithm.
The algorithm for performing the attack can now be summarized as follows:

Step 1. (Minimum weight codewords searching) Search the non-zero minimum weight vectors
of C (I) and C (I)π, that we denote by Wmin and Wmin

π respectively. We know from
Properties 4.3.2 that cmin belongs to Wmin.

Step 2. (Signature of orbits in Wmin) Compute the orbits of Wmin under the action of
LTA(m, 2) and find a signature for these orbits. This signature is based on shortening
the dual C (I)⊥ on the support of c (where c belongs to Wmin) and computing the
dimension of this code and the number of codewords of minimum weight in it.

Step 3. (Computation of orbits in Wmin
π) Use this signature to decompose Wmin

π into
distinct orbits under the group π−1LTA(m, 2)π and use it to find the orbit of cπmin.

Step 4. (Identification of affine spaces) Without loss of generality, we may take any codeword
in the orbit of cπmin and declare that it is equal to cπmin. The structure of the orbit of
cmin is such that the supports of all the codewords in this orbit are affine spaces of
the form x0 = ε0, x1 = ε1, . . . , xr+−1 = εr+−1, where the εi’s are arbitrary elements
in F2. Denote this affine space by A(ε0, . . . , εr+−1) and let cmin(ε0, . . . , εr+−1) be
the corresponding codeword. Up to a permutation of C π, we identify all the
elements cmin(ε0, . . . , εr+−1)π. This gives all the affine spaces permuted by π, that
is A(ε0, . . . , εr+−1)π def= {π−1(i) | i ∈ A(ε0, . . . , εr+−1)}.
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Step 5. (Equivalence problem for a short code) We compute the codes D
def= PJ (C ) and

Dπ def= PJ π (C π) and solve the code equivalence problem for D and Dπ′ where π′ is
the restriction of the permutation π to the affine space I. Notice that this problem
is solved for much shorter codes than the original system.

Step 6. (Induction step) We compute the punctured code D i = PJ i (C ). Then solve for
i = r+ − 1, . . . , 0 the code equivalence problem for the pair (D i, (D i)πi) by using
the solution to the code equivalence problem (D i+1, (D i+1)πi+1) where πi is the
restriction of π to the set of positions of D i.

The last code equivalence problem we solve here (namely for i = 0) is just a solution
to the original code equivalence problem.

4.4 Cryptanalyze of the McEliece variant based on
Polar codes

4.4.1 Step 1 – Minimum weight codewords searching.
Finding the minimum weight codewords of C (I)π can be performed by applying any
variants of the ISD algorithm.On the other hand, all the minimum codewords of C (I) are
easily obtained by using Theorem 3.7.14: Wmin decomposes into orbits under the action
of LTA(m, 2) where each orbit contains one of the monomials of I of degree r+.

Example 4.4.1. The example that we give here will be considered through all the crypt-
analysis. We will consider the [256, 79] Polar code. It is defined by the set I = [1, x6x7]� ∪
[1, x1x4x7]� ∪ [1, x0x5x6]� ∪ [1, x2x4x6]� ∪ [1, x3x4x5]� ∪ [1, x0x1x2x5]� ∪ [1, x0x1x3x4]�.

The Polar code is such that R(2, 8) ⊂ C (I) ⊂ R(4, 8).Therefore we have that the
minimum weight equals 28−4 = 16 and the set of maximum degree monomials is: I4 =
{x0x1x2x3, x0x1x2x4, x0x1x2x5, x0x1x3x4}.

Using the minimum weight counting method we have that there are 16 words in the orbit
of x0x1x2x3, 32 in the orbit of x0x1x2x4 and 64 in the orbit of x0x1x2x5 and x0x1x3x4,
which makes a total of 176 minimum weight codewords.

4.4.2 Step 2 – Signature of orbits in Wmin

To distinguish between the codewords of Wmin we have first chosen a monomial in each
of the orbits under LTA(m, 2) that decompose Wmin. For each of such monomials g we
have computed the dual of the shortened code D

def=
(
SJ (C (I))

)⊥
with respect to the

support J of ev(g). It has turned out that, for the Polar codes we have considered, the
pair (number of codewords of weight 2r− in D , dimension of D) was discriminant enough
to yield a signature of the orbit. This critical quantity 2r− occurs because we have

Theorem 4.4.2. Let g = xi1 . . . xir+
be a monomial of degree r+ in I. Denote by supp(g)

the support of ev(g), then the minimum distance of
(
Ssupp(g) (C (I))

)⊥
is equal to 2r− if

and only if there exists a monomial h inMm \ Ǐ such that:
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1. deg(gcd(h, g)) = r+ − 1

2. deg(gcd(h, ǧ)) = m− r− − r+

We will first begin this demonstration by proving a general result about the dual of
shortened monomial codes.

Lemma 4.4.3. Let C (I) be a decreasing monomial code and g ∈ I. Let supp(g) be the
support of ev(g). We denote by E

(
Ssupp(g) (C (I))

)⊥
the dual of the shortened code in

supp(g) that we have extended by zeros in the positions in which we have shortened the
code. Then

E
(
Ssupp(g) (C (I))

)⊥
=
{
ev((1 + g)f) : f ∈Mm \ Ǐ

}
Proof. Recall that we have(

Ssupp(g) (C (I))
)⊥

= Psupp(g)
(
C (I)⊥

)
We know that C (I)⊥ = C (Mm\ Ǐ). The lemma follows from this and the fact the ev(1+g)
takes value 1 on the complementary of supp(g) and 0 on supp(g).

We will also need the following result that is only a slight generalization of [Min07,
Prop. 6, p.69] (and our proof will follow closely the proof of this proposition).

Lemma 4.4.4. Let g be some monomial of degree s > 1. Denote by supp(g) the support
of ev(g), then the minimum distance of

(
Ssupp(g) (C (I))

)⊥
is greater than or equal to 2r−.

If the minimum distance is equal to 2r− then there exists a monomial h inMm \ Ǐ such
that

1. deg(gcd(h, g)) = s− 1

2. deg(gcd(h, ǧ)) = m− r− − s

Proof. Let us take a nonzero codeword of C (I)⊥, say that is the evaluation of some
polynomial f , which is in this case of degree at most m − 1 − r−. Write f = ∑

jmj

as a sum of monomials. Then f̃
def= ∑

j:g-mj mj is defined as the polynomial where we
have removed from the monomial expression of f all monomials that are divisible by
g. Since (Ssupp(g) (C (I)))⊥ = Psupp(g)

(
C (I)⊥

)
, we want to prove that the evaluation of

f on {0, 1}m \ supp(g) is either zero or of weight > 2r− . Notice that the evaluation on
{0, 1}m \ supp(g) coincides with the evaluation of f̃ .

Let us assume that g = x0 . . . xs−1. With this choice, let us pick a monomial of f̃ that
has maximum degree in xs, . . . , xm−1. Let d be this degree (in xs, . . . , xm−1). f̃ can be
written as

f̃ = mu(x0, . . . , xs−1) + v(x0, . . . , xm−1),

where m is a monomial of degree d in xs, . . . , xm−1. We take here in the monomials whose
sum is equal to f̃ all monomials that are divisible by m and u is just the sum of these
monomials divided by m. Let d′ be the degree of u which is necessarily smaller than s
since f̃ does not contain any monomial divisible by g.
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Notice that u(x0 . . . xs−1) is non zero in at least 2s−d′ − 1 entries if we do not count
the (1, . . . , 1) entry, since its evaluation is a codeword of R(d′, s).

Call a “block” the set of points (x0, . . . , xm−1) which take a prescribed value on
x0, . . . , xs−1. The support supp(g) of g corresponds to the block x0 = 1, . . . , xs−1 = 1.
Notice that the weight of ev(f̃) restricted to a block (with the exception of the block
x0 = 1, . . . , xs−1 = 1) is at least 2m−s−d, since this restriction is a codeword of R(d,m− s).
In other words the weight of ev(f̃(1 + g)) is lower-bounded by

|ev(f̃)(1 + g)| > 2m−s−d(2s−d′ − 1) > 2m−s−d2s−d′ 12 = 2m−d−d′−1.

Notice that we have d+ d′ 6 m− r− − 1 and therefore we finally obtain

|ev(f̃)| > 2m−(m−r−−1)−1 = 2r− .

This proves the statement about the minimum distance in this case. A quick inspection
of this proof shows that the only fact we used on g was that is is different from 1 (the
particular form of g was only here to simplify notation), and therefore it also holds for all
monomials g different from 1.

Assume now that the minimum distance of
(
Ssupp(g) (C (I))

)⊥
is equal to 2r− . By a quick

inspection of this proof this means that deg u = s− 1 and degm = m− r−− 1− (s− 1) =
m− r− − s. Write u as a set of monomials u = ∑

jm
′
j and choose m′ as any monomial

in this sum that is of degree s − 1. Obviously h
def= mm′ is a monomial of degree

s − 1 + m − r− − s = m − r− − 1 that appears as a monomial in the sum f = ∑
jmj.

Therefore h is inMm \ Ǐ. Such an h has the aforementioned form.

We will now use this to prove Theorem 4.4.2.

Proof. First of all let us notice that the minimum distance of E
(
Ssupp(g) (C (I))

)⊥
is the

same as the minimum distance of
(
Ssupp(g) (C (I))

)⊥
. From Lemma 4.4.3 we know that

any codeword in the first code can be written as ev((1+g)f)) where f is polynomial which
is a linear combination of monomials inMm \ Ǐ. Consider now that there is a monomial
h satisfying the conditions above. Let us prove that the weight of ev((1 + g)h) is equal to
2r− . Let i0 be the only index that is in ind(g) but not in ind(g ∧ h). Observe now that

(1 + g)h = (1 + xi1 . . . xir+
)

∏
i∈ind(gcd(g,h))

xi
∏

i∈ind(gcd(ǧ,h))
xi

= (1 + xi0)
∏

i∈ind(gcd(g,h))
xi

∏
i∈ind(gcd(ǧ,h))

xi

= (1 + xi0)h.

Thus
|ev((1 + g)h))| = |(ev((1 + xj0)h)| = 2m−(m−r−−1+1) = 2r− .

By using the lower-bound on the minimum distance coming from Lemma 4.4.4 we obtain
that the minimum distance of

(
Ssupp(g) (C (I))

)⊥
is equal to 2r− .

Assume now that the minimum distance of
(
Ssupp(g) (C (I))

)⊥
is equal to 2r− , then we

can use Lemma 4.4.4 and obtain the aforementioned claim.
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Example 4.4.5. If we consider the dual of the Polar code we have that R(3, 8) ⊂ C (I)⊥ ⊂
R(5, 8). The maximum degree monomials in the dual code are

{g ∈Mm , g � x0x1x2x5x7 , or g � x0x1x3x5x6 , or g � x0x2x3x4x7 , or g � x1x2x3x4x6}.

Recall that the minimum weight codewords of the Polar code are given by the monomials
in I4 = {x0x1x2x3, x0x1x2x4, x0x1x2x5, x0x1x3x4}. So we obtain that the minimum distance
of the dual of the shortened code is

• 24+2 for x0x1x2x3 since (1 + x0x1x2x3)x0x1x2x5x7 = x0x1x2(1 + x3)x5x7.

• 24+2 for x0x1x2x4 since (1 + x0x1x2x4)x0x1x2x5x7 = x0x1x2(1 + x4)x5x7.

• 24+2 for x0x1x2x5 since (1 + x0x1x2x5)x0x1x2x4x7 = x0x1x2(1 + x5)x4x7.

• 24+2 for x0x1x3x4 since (1 + x0x1x3x4)x0x1x2x4x7 = x0x1x4(1 + x3)x2x7.

If we apply the minimum weight counting method from Section 3.7 to the four monomials
we obtain that in the dual of the shortened code there are 372 minimum weight codewords
when we consider the monomial x0x1x2x3, 340 codewords for x0x1x2x4, 308 codewords for
x0x1x2x5 and 148 codewords for x0x1x3x4.

Therefore, here the number of minimum weight codewords in the dual of the shortened
code can be considered as signature for the monomials.

Step 3 – Computation of orbits in Wmin
π

The signature Σ that has been found in the previous step is now applied to Wmin
π. It

gives the orbits of Wmin
π with respect to the conjugate group π−1Gπ. Indeed, it can be

verified that

Proposition 4.4.6. Wmin
π is invariant by the action of π−1LTA(m, 2)π and if Σ is a

signature for Wmin under the action of LTA(m, 2), then it is also a signature for the action
of π−1LTA(m, 2)π on Wmin

π.

We use this signature for finding the orbit of cmin.

Proposition 4.4.7. The orbit of cmin under LTA(m, 2) consists of 2r+ codewords that are
of the form cmin(ε0, . . . , εr+−1) where the εi’s are arbitrary elements of F2. The orbit of cπmin
under π−1LTA(m, 2)π is given by 2r+ codewords of weight 2m−r+ that have disjoint supports
which are the permuted versions A(ε0, . . . , εr+−1)π of the affine spaces A(ε0, . . . , εr+−1).

In other words, finding this orbit in Wmin
π and looking at the support of the codewords

that we have found in this way allows us to find the support of the permuted versions
A(ε0, . . . , εr+−1)π of the affine spaces A(ε0, . . . , εr+−1).
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4.4.3 Step 4 – Identification of affine spaces
There are several ways to identify the permuted versions of the affine spaces we are
interested in. One of the simplest way is by computing the dimensions of certain spaces.
First we take any codeword in the orbit of cmin. Such codeword is of the form cγπmin
where γ is a permutation leaving C (I) invariant. In other words, up to applying the
permutation group, we can safely declare that this codeword is cπmin. Let I0 be the support
of cmin = c(1, . . . , 1). We choose I ′0 be the support of the codeword c( 1, . . . , 1︸ ︷︷ ︸

(r+−1) times

, 0). Notice

that I def= I0∪I ′0 is the support of the codeword ev(x0 . . . xr+−2). We compute the dimension
of the code PI (C (I)). Now, we let J0, . . . ,J2r+−1 be the supports of the codewords that
are in the orbit of cπmin, with J0 being the support of the codeword cγπmin that has been chosen.
We compute the dimensions of the codes PJ0∪Ji (C (I)π) for i = 1, . . . , 2r+−1. It turns out
that there is generally a single space Ji such that dim (PJ0∪Ji (C (I)π)) = dim (PI (C (I))).
We pair these two spaces J0 and Ji together. This process can be used to pair together
all the spaces A(ε0, . . . , εr+−2, 0)γπ and A(ε0, . . . , εr+−2, 1)γπ by pairing together Ji and
Jj when Jj is the only space for a given i such that

dim
(
PJi∪Jj (C (I)π)

)
= dim (PI (C (I))) .

In such a case, Ji and Jj necessarily correspond to

A(ε0, . . . , εr+−2, 0)γπ and A(ε0, . . . , εr+−2, 1)γπ

for a certain (ε0, . . . , εr+−2) ∈ Fr+−1
2 . In other words, we know after this process all the

spaces A(ε0, . . . , εr+−2)γπ = A(ε0, . . . , εr+−2, 0)γπ ∪ A(ε0, . . . , εr+−2, 1)γπ. We can carry
on this process with the codeword c = ev(x0 . . . xr+−1) instead of cmin and recover all
the permuted affines spaces A(1)γπ, A(1, 1)γπ, . . . , A(1, 1, . . . , 1︸ ︷︷ ︸

r+ times

)γπ for some permutation γ

leaving C (I) invariant.

Example 4.4.8. If we consider the Polar code and we puncture the code on the support of
the vector ev(x0x1x2) = ev(x0x1x2x3 + x0x1x2(1 + x3)) we obtain a code of dimension 75.
If we puncture now on the other 24 − 1 possible supports we obtain each time a dimension
strictly greater than 75. Which means that there is only one minimum weight codeword,
namely ev(x0x1x2(x3 + 1)), that can be paired with ev(x0x1x2x3).

We continue and consider the vector ev(x0x1) and remark that this is the only codeword
for which the dimension of the punctured code equals 68. It means that there is only one
vector, namely ev(x0x1(x2 + 1)), than can be paired with ev(x0x1x2).

In the last step we find the support of the permuted of the codeword ev(x0).

4.4.4 Step 5 – Equivalence problem for a short decreasing mono-
mial code

We now have to solve the code equivalence problem for D which is a code of length 2m−r+

which is much shorter than the original code. It is also straightforward to check that it is
a decreasing monomial code.
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4.4.5 Step 6 – Induction step
The idea here is to reconstruct the permutation π̂ given that we already know its action
on the support of cmin. More precisely, the code equivalence problem that we solve here is:

Problem 4.4.9 (Code equivalence search problem with side information). Given (C , C π)
and t pairs of code positions (i0, j0), (i1, j1), . . . , (it−1, jt−1), find π̂ such that C π̂ = C π

and π̂(is) = js for all s ∈ {0, 1, . . . , t− 1}

We use the following algorithm for solving this problem (we let here I def= {i0, . . . , it−1}
and J def= {j0, . . . , jt−1})

1. we pick a certain number ` of codewords c(0), . . . , c(`− 1) of C .

2. Let C (j) the set of codewords of C which coincide with c(j) on the positions
belonging to J . We also define C (i)π as the set of codewords of C π that coincide
with c(i)π on I.

3. We compute for all i in 0, 1, . . . , `− 1 and all positions j which are not in J , the
number Σ(i, j) which is the number of codewords of minimum weight in Pj (C (i)),
and similarly for all all positions j that are not in I, the number Σπ(i, j) which is
the number of codewords of minimum weight in Pj (C (i)π).

4. We declare for u which is not in I that π̂(u) = v if there exists a unique v which
does not belong to J such that Σ(i, v) = Σπ(i, u) for all i in {0, 1, . . . , `− 1}.

It is straightforward to verify that this algorithm outputs the unique π̂ solving the
problem in this case. We have also encountered cases, where even with the knowledge
we have on π̂, we have different solutions. In such a case, we were able to compute how
many solutions we had and add to the set of pairs (is, js) an additional pair (or additional
pairs) which gives a unique solution.

4.5 Implementation
We implemented the attack on the [2048, 614]-Polar code.Such a code is able to correct
more than 200 errors with a small error probability- this should be compared to the 130
errors that a Goppa code of the same rate is able to tolerate. In the case of a Goppa code
we have about 70 bits of security against message attacks based on generic linear codes
decoding algorithms, whereas we have more than 105 bits of security for the Polar code.

We first checked that this code C and its dual C ⊥ are both Decreasing Monomial
codes and computed all the minimum weight codewords by using Proposition 3.7.12. We
have also checked that the code was weakly self-dual C ⊂ C ⊥. The minimum distance of
C turned out to be equal to 32 and there were 42176 codewords of this weight, whereas
the minimum distance of C ⊥ was 8 and there were 6912 codewords of this weight in the
dual, numbers that were computed using Theorem 3.7.14. The same number of codewords
were found by Dumer’s algorithm in C π and in (C π)⊥. It tooks 27 seconds to find these
codewords in C π and 3 seconds to find these codewords in (C π)⊥ on a 8-core XEON
E3-1240 running at 3.40 GHz.
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But the most time consuming part was Step 6 of the attack when we have to compute
the various Σ(i, j)’s that are needed. This is done again by using Dumer’s algorithm. The
difference with obtaining codewords of minimum weight of the Polar code is that in the
polar case we know beforehand the number of minimum weight codewords by using a
counting procedure based on Theorem 3.7.14 and we can stop the search procedure once
we have the right amount of different codewords. However when we compute Σ(i, j) we do
not know beforehand the number of minimum weight codewords in Pj (C (i)) and we use
a probabilistic procedure based on the coupon collector problem : once we have found n
different minimal codewords, where on average we have found each codeword α lnn times
we stop the procedure for a certain value of α greater than 1. Here we have taken α to be
equal to 3. In this case, to speed up the computation we chose the c(i)’s to be minimum
weight codewords of C . More than 80% of the total computation is actually taken for the
last step of induction where we recover a permutation for the whole [2048, 614] code from
the partial permutation acting on half its positions. This takes about 227 hours and the
total computation time is about 280 hours. This part of the attack is very likely to be
improved significantly if need be.

4.6 Perspectives
Even though we managed to totally break the McEliece scheme based on Polar codes there
is another variant using Polar codes which is not vulnerable to our attack. In [HSEA14]
the authors propose to choose a subcode of the Polar code instead of the whole code, which
is equivalent to choosing a Monomial code from a subset of monomials inMm. Therefore
our attack can not be directly implemented on this code and different techniques have to
be investigated. We notice that this variant is similar to [Rin15], in which the authors
propose to choose a subcode of a Reed-Muller code. Remark that choosing subcodes
of Decreasing Monomial codes rises a bigger difficulty in finding the structure of the
code since in general the subcodes lose all the decreasing properties and more important
properties related to the permutation group. Another fundamental difference is that there
is no more only one private code but an exponential number of codes since there are(
kD
kS

)
where kD is the dimension of the decreasing code and kS is the dimension of the

subcode. Therefore the code equivalence problem becomes even more complicated to solve
in this case. So if one manges to solve the code equivalence problem for Monomial codes
or even Weakly Decreasing Monomial codes it might make a step towards the complete
elimination of this family of codes from public key cryptography.

The second aspect we want to reveal is the efficiency of the attack. Since the main
step in our algorithm is to search for the minimum weight codewords one might suggest to
propose parameters for which the minimum distance is big enough in order to make the
attack unfeasible in practice. But this is not always a good solution since the minimum
distance of the dual code might decrease and thus we can apply our attack on the dual
code, since it is a Decreasing Monomial code. Nonetheless, there is another type of attack,
much more efficient, that worked on the family of Reed-Muller codes [CB13]. The idea is
to use the square code and the dual code in order to decrease the dimension of the initial
Reed-Muller code down to the first order Reed-Muller code. The only issue is that for this
family of codes the square code has the same permutation group as the initial code, which
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is not the case for a Decreasing Monomial code in general. In the case of Polar codes, we
tried this attack but we did not managed to find the whole structure of the code. By that
we mean that only a part of the generating monomials of the Polar code were found.
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5
Weak keys in the QC-MDPC McEliece

5.1 Introduction
Moderate Density Parity-Check codes, or shortly MDPC codes, were introduces in 2009
[OB09] and became famous for their application in cryptography, in a McEliece type
scheme [MTSB13].

The security assessment for the QC-MDPC is based on a reduction towards the
syndrome decoding problem for quasi-cyclic codes. The main ingredient for the reduction
is the assumption that a QC-MDPC code can not be distinguish from a random QC linear
code. More details on this issue can be found in the original paper [MTSB13] and in
[Sen10].

The scientific community presented a real interest in this variant and thus several
efficient implementations were proposed [HvMG13, vMG14a, MOG15, Cho16] as well
as a structural attack against the cyclosymmetric MDPC codes [Per14], side-channel
attacks [vMG14b, GJS16] and improved decoders for the scheme [CS16]. But this variant
using QC-MDPC codes, made a big step towards a global recognition at The Seventh
International Conference on Post-Quantum Cryptography PQCrypto2016, where the
scientific community seemed to agree on the fact that this variant could be among the
finalists in the POST-QUANTUM CRYPTO Project, initiated by the NIST.

Our contribution. We propose here to analyze the security of the MDPC-McEliece
cryptosystem from another point of view, more exactly to identify a subset of private
keys, that we will call weak keys, which can be efficiently retrieved from the corresponding
public keys. For that we describe the Key Generation step using an algebraic formalism
for quasi-cyclic codes and show that the Key Recovery Attack is just a particular instance
of the Rational Reconstruction Problem. Hence we propose to use a modified version of
the Extended Euclidean Algorithm, or shortly EEA as a Key Recovery Attack against the
QC-MDPC scheme. The main advantage of this approach is the low complexity of the
algorithm that we use, since the EEA runs in O(n2) bit operations, where n is the length
of the code.

The most challenging part of our study was to estimate the proportion of weak and
search for different techniques that might increase the proportion of weak keys. So the
first step was to determine the exact proportion of private keys that can be recovered
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using the EEA. In our study we have considered the case of a 2-quasi-cyclic MDPC scheme
with parameters (2p, p, ω), where ω is the Hamming weight of the two blocks and p is the
length of each block. We have proved that the proportion of weak keys is asymptotically
dominated by 2−cω where 0 < c 6 1 is a constant. Thus the chances of finding a weak key
are very close to the security level for the scheme, which is given by the cost of the best
variant of Information Set Decoding.

In our study we also investigate different methods to improve our initial results. A
successful approach is to consider the problem of equivalence of quasi-cyclic codes and use
it in order to increase the proportion of weak keys. For that we use two group actions that
preserve the 2-quasi-cyclic structure of the (2p, p, ω) QC-MDPC code, namely the additive
group Fp and the multiplicative group Fp∗. We prove that using the additive group we
increase the proportion of weak keys by a factor equal to ω2. As for the multiplicative
group Fp∗, we extend the proportion of vulnerable keys with a linear factor in p.

We confront our result with the proposed parameters for the QC-MDPC scheme and
remark that we obtain probability values that are bigger than the announced security level.
Hence we estimate that some of the parameters must be reviewed in order to at least
decrease this probability below the security level. In order to do so one must increase the
weight of the MDPC, which comes with a degradation of the decoding error probability.
Therefore we propose another step in the Key Generation which completely eliminates
weak keys from the possible set of keys. The results that we detail in this Chapter were
published in [BDLO16].

72



CHAPTER 5. WEAK KEYS IN THE QC-MDPC MCELIECE

5.2 Preliminaries on QC-MDPC Codes

5.2.1 Cyclic and Quasi-Cyclic codes
Cyclic codes were studied for the first time by Prange [Pra57] and benefit of simple
encoding and decoding techniques. Part of this family of codes are Bose-Chaudhuri-
Hocquenghem [Hoc59, BRC60] and Reed-Solomon codes [ISR60]. Since here we are rather
interested in the quasi-cyclic structure we prefer to recall only a small part of the properties
of cyclic codes. For a detailed presentation of cyclic codes we address the reader to the
well-known [MS86]. As for the structural results on quasi-cyclic codes many of the result
we recall here come from the work of San Lin and Patrick Solé, more precisely from
the third part [LS05] of a four series of articles entitled On the algebraic structure of
quasi-cyclic codes, as well as the phd thesis of Christophe Chabot [Cha09].

Preliminaries

In order to define cyclic codes we need to introduce the notion of cyclic shift of a n length
vector. We will use the usual convention, that is we consider the shifts to the right, and as
in the previous chapter, the most significant bit of a vector (c0, . . . , cn−1) is the rightmost
bit, here cn−1.

Definition 5.2.1 (Cyclic Shift). We define the cyclic shift of a binary n-length vector
c = (c0, . . . , cn−1) by T (c), where

T : Fn2 → Fn2
(c0, c1, . . . , cn−1) 7→ (cn−1, c0, . . . , cn−2)

For any 0 6 i 6 n−1 the ith cyclic shift of a vector c is T i(c) = (cn−i, . . . , c0, . . . , cn−i−1).

Definition 5.2.2 (Cyclic and Quasi-Cyclic codes). Let n be a strictly positive integer and
C be a [n, k] binary linear code.

• We say that C is a cyclic code if for any codeword c ∈ C we have T (c) ∈ C .

• We say that C is a n0-quasi-cyclic code if ∃ 0 < n0 < n with n0|n, such that for any
codeword c ∈ C we have T n0(c) ∈ C .

Let’s recall the main properties regarding cyclic and quasi-cyclic codes:
Proposition 5.2.3.

• ([MS86]) Let C be a [n, k] binary cyclic code, then for any codeword c ∈ C all the
cyclic shifts T i(c), for 1 6 i 6 n− 1 are codewords of C .

• ([MS86]) Any [n, k] binary cyclic code admits as parity-check matrix a n×n circulant
matrix, that we denote H , such that rank(H) = n− k, where a circulant matrix is a
n× n matrix obtained by cyclically right shifting its first row h = (h0, h1, . . . , hn−1)

H =


h0 h1 · · · hn−1
hn−1 h0 · · · hn−2
... ... . . . ...
h1 h2 · · · h0

 . (5.1)
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• ([Bal14]) Any binary n0-quasi-cyclic code of length n0p and rate k0/n0 admits a
parity-check matrix H such that

H =


H1,1 H1,2 · · · H1,n0
... ... ... ...

Hn0−k0,1 Hn0−k0,2 · · · Hn0−k0,n0

 ,
where for each 1 6 i 6 n0 − k0 and 1 6 j 6 n0 the matrix Hi,j is p× p circulant.
An interesting case that is used for the QC-LDPC and QC-MDPC codes is when
k0 = n0 − 1. In this case we have a n0-quasi-cyclic code of length n0p and rate
(n0 − 1)/n0 that admits a parity check matrix

H =
(

H1 H2 · · · Hn0

)
.

Algebraic formalism

It is already known that cyclic codes can be defined using an algebraic formalism [MS86].
For that we associate to any binary n length vector c = (c0, . . . , cn−1) the polynomial over
F2[x], that is c(x) = ∑n−1

i=0 cix
i. Now we can define a cyclic code in an equivalent manner

Proposition 5.2.4. [MS86] A binary cyclic code of length n is an ideal of the polynomial
algebra F2[x]/(xn − 1).

Since both cyclic and quasi-cyclic codes are strongly related to the algebra of circulant
matrices we recall some well-known facts concerning this algebra.

Theorem 5.2.5. [Dav79] The algebra of n × n binary circulant matrices denoted by(
Cn(F2),+,×

)
is isomorphic to the polynomial algebra

(
F2[x]/(xn − 1),+, ·

)
through the

mapping
Φ : Cn(F2) −→ F2[x]/(xn − 1)

M 7−→ m(x) =
n−1∑
i=0

mix
i (mod xn − 1).

where m = (m0, . . . ,mn−1) is the first row defining M .

Proposition 5.2.6. Let M ∈ Cn(F2) be a circulant matrix and m(x) ∈ F2[x]/(xn − 1)
the corresponding polynomial. Then M is invertible if and only if m(x) and xn − 1 are
coprime.

Furthermore the inverse of M is given by the polynomial m−1(x) ∈ F2[x]/(xn − 1).
An efficient algorithm to compute m−1(x) is the Extended Euclidean Algorithm.

Corollary 5.2.7 ([Bal14]). Let M ∈ Cn(F2) be a circulant matrix and m the first row
vector defining M . If m has an even Hamming weight then M is rank deficient, in other
words M is not invertible.

Remark 5.2.8. From now on we will consider the case n = p a prime number, choice
that is also considered in [MTSB13]. Our choice has several motivations that we will point
out at adequate moment, see for example Section 5.3.2.
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Proposition 5.2.9. [LS05] The mapping Φ defined in Theorem 5.2.5 can be extended to
quasi circulant matrices in a natural manner

(Cp(F2))n0 −→ (F2[x]/(xp − 1))n0

(M0, . . . ,Mn0−1) 7−→ (m0(x), . . . ,mn0−1(x)) .

Then application Φ induces a one-to-one correspondence between binary quasi-cyclic codes
of length n0p and linear codes over F2[x]/(xp − 1) of length n0.

Since we deal with polynomials in the algebra
(
F2[x]/(xp − 1),+, ·

)
we recall in

Appendix C the main facts about the factorization of xp − 1 over F2[x].

5.2.2 QC-MDPC codes
Gallager discovered the low density parity check (LDPC) codes during his phd thesis
[Gal63]. He was motivated by the problem of finding “random-like” codes that could be
decoded near the capacity with quasi-optimal performance and feasible complexity. Since
LDPC were too complex for the technology at that time, they were forgotten for more
than 30 years, and rediscovered by MacKay [Mac99] and Sipser and Spielman [SS96].
These codes were extended in a natural way to moderate density parity check (MDPC)
codes in [OB09].

Definition 5.2.10. A (n, r, ω)-code is a linear code defined by a r×n parity-check matrix
(r < n) where each row has weight ω.

• a LDPC code is a (n, r, ω) with ω = O(1) when n→∞

• a MDPC code is a (n, r, ω) with ω = O(
√
n log n) when n→∞

Definition 5.2.11. A (n0p, p, ω) Quasi-Cyclic MDPC (QC-MDPC) code is a MDPC
code defined by a block parity-check matrix

H =
(

H1 H2 · · · Hn0

)
, (5.2)

where each block Hi is a p× p circulant matrix.

Remark 5.2.12. Using the isomorphism defined in Proposition 5.2.5 we can define a
(n0p, p, w) QC-MDPC code in an equivalent manner. Indeed, we can consider hi(x) ∈
F2[x]/(xp − 1) such that ∑n0

i=1 ‖hi‖ = ω, where ‖h‖ denotes the Hamming weight of h(x),
that is the number of non zero coefficients of h(x).

Bit flipping decoding algorithm. The decoding techniques for MDPC codes are
slightly modified version of the original bit flipping algorithm, due to Gallager [Gal63].
This technique is known to provide an error-correction capability that increase linearly
with the length of the code, but decreases with the weight of the parity-checks. Therefore
MDPC codes come with a degradation of the performances for decoding, compared to a
LDPC code.
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The bit flipping algorithm takes for input a vector y ∈ Fn2 and the parity-check matrix
H of the MDPC code, as well as a threshold b. At each iteration it computes the syndrome
of y with respect to H and for each bit i of the vector y it computes the number of parity
equations unsatisfied by i. If the number of unsatisfied equations is greater than or equal
to the threshold b then the corresponding bit is flipped and the procedure restarts with
the new vector and syndrome. The algorithm stops when the syndrome is equal to zero
or the number of iterations has reached a fixed upper bound. A full description of the
algorithm is given in [Gal63] and in [MTSB13, CS16] for the latest variants.

Remark 5.2.13. Since the performance and the correctness of the bit flipping algorithm
depends on the density of the parity-check matrix H , any equivalent parity-check matrix
that respects the density condition enables a correct decoding algorithm. In other words
given a LDPC/MDPC code C and a vector y, then any equivalent LDPC/MDPC code
of C can decode the vector y with the same decoding algorithm, namely the bit flipping
algorithm.

5.3 QC-MDPC McEliece

5.3.1 Description
We begin by describing the Key Generation of the QC-MDPC McEliece as defined in
[MTSB13]. The private key of an (n0p, p, ω) QC-MDPC code is a parity check matrix

H =
(

H1 H2 · · · Hn0

)
, (5.3)

where Hi are p × p circulant matrices for 1 6 i 6 n0. This private key is obtained by
taking at random the first row of H until Hn0 is invertible. The public key is the block
parity-check matrix F

def= H−1
n0 H , or equivalently

F =
(

H−1
n0 H1 · · · H−1

n0 Hn0−1 Ip
) def=

(
F1 · · · Fn0−1 Ip

)
. (5.4)

Hence, the main steps in the QC-MDPC scheme can be summarized as follows

1. Key-Generation

• Private key. Pick at random a valid parity check matrix matrix H of a
(n0p, p, ω) QC-MDPC code.
• Public key. The parity check matrix F (or equivalently the generator matrix

G, where GF T = 0).

2. Encryption of a plaintext m ∈ F(n0−1)p
2 into z ∈ Fn0p

2 :

• choose a random error vector e ∈ Fn0p
2 with weight ‖e‖ 6 t, where t is the

decoding capacity of the code.
• compute the ciphertext z = mG + e

3. Decryption of the ciphertext z using the private key and the bit-flipping decoder:
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• compute mG using the bit-flipping algorithm applied to z with the knowledge
of H .

• extract the first (n0 − 1)p positions of mG in order to obtain m.

Remark 5.3.1. Using the isomorphism defined in Proposition 5.2.5, the private and
public keys are fully described by the sequences h1, . . . , hn0 and f1, . . . , fn0−1 of polynomials
in F2[x]/(xp − 1) such that for all i ∈ {1, . . . , n0 − 1},

fi = hi
hn0

(mod xp − 1), (5.5)

where the private polynomials are taken so that
n0∑
i=1
‖hi‖ = ω.

5.3.2 The choice of parameters for the scheme
There are several factors to be considered in the choice of the parameters for the QC-MDPC
McEliece scheme.

• The parameter p has to be prime in order to avoid attacks using the decomposition
of xp − 1 into irreducible [Loi01, FL08] or squaring type attack [LJS+16].

• Against Folding type attacks [Gen01, FOP+14] we need to choose values for p such
that the number of irreducible factors of xp− 1 in F2[x] different from x− 1, denoted
d, is as small as possible, for example d = O(1). In Figure 5.1 we detail the values
for d for all the proposed parameters in [MTSB13].

• During the Key Generation step one must randomly choose the polynomials hi until
at least one of them is invertible. So we might expect, for security reasons, that the
designers selected those parameters for which the set of invertible polynomials in the
polynomial algebra F2[x]/(xp − 1) is the largest possible. Using a ring isomorphism
we give the number of invertible polynomials and thus show which are the proper
parameters to be selected.

Proposition 5.3.2. Let p be a prime number and assume (x− 1)
d∏
i=1

gi(x) is the decom-
position of xp − 1 into irreducible polynomials over F2[x] for some d > 1. Then

• an invertible polynomial has necessarily an odd Hamming weight.

• the number of invertible polynomials in F2[x]/(xp − 1) equals
(
2 p−1

d − 1
)d
.

.

Hence, if we take into consideration that d = O(1) when p tends to infinity, we obtain
that the number of invertible polynomials in F2[x]/(xp − 1) tends to 2p−1when p tends to
infinity, which is exactly the number of polynomials with an odd Hamming weight. So

77



5.4. WEAK KEYS FOR THE QC-MDPC SCHEME

Security level n0 n p ω t d

2 9602 4801 90 84 4
80 3 10779 3593 153 53 2

4 12316 3079 220 42 2
2 19714 9857 142 134 2

128 3 22299 7433 243 85 2
4 27212 6803 340 68 1
2 65542 32771 274 264 1

256 3 67593 22531 465 167 1
4 81932 20483 644 137 7

Figure 5.1 – Suggested parameters for the QC-MDPC scheme in [MTSB13]

the probability of choosing an invertible polynomial from the set of polynomials with an
odd Hamming weight is

(
1− 2− p−1

d

)d
, which tends to 1 when d = O(1).

We notice from Figure 5.1 that the designers of the scheme considered in most of the
cases d = 1 or d = 2. Therefore they maximized the cardinality of the set of invertible
polynomials.

Remark 5.3.3. Furthermore we restrict the study to the case of a two blocks (2p, p, ω)
QC-MDPC scheme that is to say n0 = 2 with p a prime number such that d = 1 or possibly
d = 2. We consider that for 1 6 i 6 2 we have ‖hi‖ = ωi with ωi an odd integer and
ω1 + ω2 = ω. Thus we maximize our chances that hi is invertible.

In [MTSB13] it is also recommended to choose the polynomials hi with 1 6 i 6 2, using
a smooth distribution of their Hamming weight, by that we understand that ω1 = ω2 = ω/2.
We analyze in detail in the next section the consequence of a smooth distribution as well
as non-smooth distribution.

5.4 Weak keys for the QC-MDPC scheme

5.4.1 The key recovery attack
We are interested in a key-recovery under a chosen plaintext attack when applied on a
(2p, p, ω) QC-MDPC scheme.
Definition 5.4.1 (QC-MDPC Key Recovery Problem). Given the public key f ∈
F2[x]/(xp − 1), of a (2p, p, ω) QC-MDPC scheme, find a pair of polynomials (h1, h2), with
hi ∈ F2[x]/(xp − 1) satisfying

f = h1

h2
(mod xp − 1) and ‖h1‖+ ‖h2‖ 6 ω. (5.6)

This problem can be tackled by applying classical techniques based on exponential
algorithms seeking low-weight codewords, which is the idea used in [MTSB13] in order to
set up the security level of the scheme. It can also be recast as the problem of solving
the rational reconstruction problem that is described in full details in Sec. 5.4.2. The
extended Euclidean algorithm solves (5.6) when there exists an integer t > 0 such that
deg(h1) < t 6 p and deg(h2) 6 p− t.
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5.4.2 The Rational Reconstruction Problem
Definition 5.4.2 (Rational reconstruction). Let g and f be polynomials in K[x] where K
is a field such that 0 < deg(f) < deg(g). For a given integer r satisfying 1 6 r 6 deg(g),
the rational reconstruction of f modulo g consists in finding ϕ and ψ in K[x] such that
gcd(ϕ, g) = 1, deg(ψ) < r and deg(ϕ) 6 deg(g)− r and satisfying

ψ

ϕ
= f (mod g). (RR)

Remark 5.4.3. When g = xp then we rather speak of Padé approximation.

Note that if (RR) has a solution (ϕ, ψ) then ψ
ϕ

is unique. Furthermore if (ϕ, ψ) ∈ K[x]2

is a solution of the problem (RR), then it is also a solution to the following problem.

Definition 5.4.4. Let g and f be polynomials in K[x] where K is a field such that
0 < deg(f) < deg(g) = p. For a given integer r satisfying 1 6 r 6 p, the SRR
problem consists in finding ϕ and ψ in K[x] such that (ϕ, ψ) 6= (0, 0) and deg(ψ) < r and
deg(ϕ) 6 p− r and satisfying

ϕf = ψ (mod g) (SRR)

Clearly, any solution to (SRR) is solution to (RR) if and only if gcd(ϕ, g) = 1.
Moreover, (SRR) always has a non-trivial solution since recovering ϕ and ψ can be done
by solving a linear system of p equations with r+(p−r+1) = p+1 unknowns representing
the coefficients of ϕ and ψ.

A very efficient way to solve (RR) is to apply the Extended Euclidean Algorithm (EEA)
to (f, g). Recall that if we denote by (ϕi, δi, ψi), with i > 0, the polynomials obtained at
the i-th step of EEA(f, g) then we have ψ0

def= g, ψ1
def= f and for all i > 0:

ψi = Qi+1ψi+1 + ψi+2 with 0 6 deg(ψi+2) < deg(ψi+1),

ψi = ϕif + δig with (ϕ0, ϕ1) def= (0, 1) and (δ0, δ1) def= (1, 0).

We also have the relations ϕi+2 = −Qi+1ϕi+1 + ϕi and δi+2 = −Qi+1δi+1 + δi.

Input: Two polynomials f, g ∈ K[x]
Output: The polynomial ψ ∈ K[x] s.t. ψ = gcd(f, g)

together with ϕ, δ ∈ K[x] s.t. ψ = ϕf + δg
1 ψ0 = g, ϕ0 = 0, δ0 = 1;
2 ψ1 = f, ϕ0 = 1, δ0 = 0;
3 i = 0;
4 while ψi+2 6= 0 do
5 Qi+1 = ψi quo ψi+1 ;
6 ψi+2 = −Qi+1ψi+1 + ψi;
7 ϕi+2 = −Qi+1ϕi+1 + ϕi;
8 δi+2 = −Qi+1δi+1 + δi
9 end

10 return (ψi, ϕi, δi)
Algorithm 1: The Extended Euclidean Algorithm

79



5.4. WEAK KEYS FOR THE QC-MDPC SCHEME

We are now able to prove that this approach provides a non-trivial solution. Let’s
denote by j the smallest index such that deg(ψj) < r 6 deg(ψj−1). We require the
following proposition.

Proposition 5.4.5 ([Pan12, Chapter 2]). At each step i > 0 of EEA(f, g) it holds that

deg(ϕi+1) = p− deg(ψi). (5.7)

The following proposition characterizes a solution to (RR) when it exists.

Proposition 5.4.6 ([Pan12]). Let (ϕi, δi, ψi), with i > 0, be the polynomials obtained at
the i-th step of EEA(f, g). Let j be the smallest integer such that deg(ψj) < r then (ϕj, ψj)
is a non-trivial solution to (SRR). Furthermore, if (ϕ, ψ) is a solution to (RR) then there
exists λ in K\{0} such that ϕ = λϕj and ψ = λψj.

5.4.3 Weak keys
This section is devoted to the identification of private keys (h1, h2) that can be recovered
from the public key f by means of the Extended Euclidean Algorithm.

Main idea of the attack. Since f = h1

h2
(mod xp−1), the idea of our attack is to find a

rational reconstruction of f1 modulo xp−1. At each step t of algorithm EEA(f, xp−1), the
attacker checks if the ongoing computed polynomials denoted by (ψt, ϕt) where ψt = fϕt,
satisfy the inequality

‖ϕt‖+ ‖f1ϕt‖ 6 ω. (5.8)
If such a solution is found then by Proposition 5.4.6 we have found (equivalent) secret
polynomials. With these polynomials we built an equivalent parity-check matrix for the
QC-MDPC code and thus we are able to decrypt any ciphertext (see Remark 5.2.13). The
main question we want to answer is to estimate precisely the number of keys that can be
recovered with this technique.

Definition 5.4.7. Let p be a prime number and ω an even integer with 1 < ω < p. Let
(ω1, ω2) ∈ N2 be odd integers such that ω1 + ω2 = ω. We define the set of private pairs
with fixed weights by

Pω1,ω2 =
{

(h1, h2) ∈ (F2[x]/(xp − 1))2 | ‖hi‖ = ωi and ωi odd
}
,

and the set of all private pairs of a (2p, p, ω) QC-MDPC scheme by Pω = ⋃
ω1+ω2=ω

Pω1,ω2.

Private pairs that can be recovered using the Extended Euclidiean Algorithm are
declared weak pairs.

Definition 5.4.8. A pair (h1, h2) ∈ Pω is called a weak pair if

deg(h1) + deg(h2) < p. (5.9)

The set of weak pairs is denoted by Wω = {(h1, h2) ∈ Pω | deg(h1) + deg(h2) < p}.
Similarly, Wω1,ω2 is defined as Wω ∩ Pω1,ω2.
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Remark 5.4.9.

• The exact collection of private keys of a general (2p, p, ω) QC-MDPC scheme is
actually the set Pω∗ = ⋃

ω1+ω2=ω
P∗ω1,ω2 where

P∗ω1,ω2 =
{

(h1, h2) ∈ Pω1,ω2 | gcd(h2, x
p − 1) = 1

}
.

• Since we consider parameters for which d = 1 and d = 2, where d comes from the
factorization of xp − 1, we have

– when d = 1
Pω1,ω2 = P∗ω1,ω2 and Pω = Pω∗.

– when d = 2 (see Proposition 5.4.14)

lim
p→∞

p∑
ω=2
ω even

|Wω
∗| = lim

p→∞

2p∑
ω=2
ω even

|Wω|.

Proposition 5.4.10. Let p be a prime number and ω an even integer with 1 < ω < p.
Let (ω1, ω2) ∈ N2 be odd integers such that ω1 + ω2 = ω. Then we have

|Wω1,ω2| =
(

p+1
ω1+ω2

)
and |Wω| =

ω

2

(
p+ 1
ω

)
. (5.10)

|Pω1,ω2| =
(
p

ω1

)(
p

ω2

)
and |Pω| =

1
2

((
2p
ω

)
− (−1)ω2

(
p
ω
2

))
. (5.11)

Proof. Let (h1, h2) ∈ Pω1,ω2 . Then hi has ωi non-zero coefficients, and a degree less than
p, hence |Pω1,ω2 | =

(
p
ω1

)(
p
ω2

)
. For (h1, h2) ∈ Wω1,ω2 we have deg(h1) + deg(h2) < p. If

k = deg(h1), then h1 has a leading coefficient xk and ω1 − 1 non-zero coefficients between
x0 and xk−1. The number of such polynomials is

(
k

ω1−1

)
.

Furthermore the number of polynomials h2 with ω2 non-zero coefficients and deg(h2) <
p− k equals

(
p−k
ω2

)
. Using the Gould’s formulae [Gou72], we get

|Wω1,ω2| =
p−1∑
k=0

(
k

ω1 − 1

)(
p− k
ω − ω1

)
=
(
p+ 1
ω

)
,

and
|Pω| =

∑
ω1+ω2=ω
ωi odd

(
p

ω1

)(
p

ω2

)
= 1

2

[(
2p
ω

)
− (−1)ω2

(
p
ω
2

)]
.

As for Wω we obtain:

|Wω| =
∑

ω1+ω2=ω
ωi odd

(
p+ 1
ω

)
=
(
p+ 1
ω

) ∑
ω1+ω2=ω
ωi odd

1 = ω

2

(
p+ 1
ω

)
.
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Corollary 5.4.11. Let p be a prime number and ω an even integer with 1 < ω < p and
H(α) = −α log2 α− (1− α) log2(1− α) be the binary entropy function for any 0 6 α 6 1.
Let (ω1, ω2) ∈ N2 be odd integers such that ω1 + ω2 = ω and ω = o(p). Then we have

|Wω1,ω2|
|Pω1,ω2|

=
√

2πα(1− α)ω 1
2 2−ωH(α) ×


e−2√c1c2

(
1 +O( 1√

p
)
)

if ω2
i

2p = ci +O( 1√
p
)

p−2√c1c2

(
1 +O(

√
log3 p
p

)
)

if ω2
i

2p = ci log p+O(
√

log p
p

)

with α = 1
1 +

√
c2
c1

.

|Wω|
|Pω|

= ω2−ω ×


e−

c
2
(
1 +O( 1√

p
)
)

if ω2

2p = c+O( 1√
p
),

p−
c
2

(
1 +O(

√
log3 p
p

)
)

if ω2

2p = c log p+O(
√

log p
p

).

For all the asymptotic expansion that we derive in this Chapter we mainly use the
Stirling formula. In Appendix D we detail the asymptotic expansion of the binomial
coefficient and deduce all the asymptotic expansions that we state here.

Corollary 5.4.12. In particular for a smooth (2p, p, ω) QC-MDPC, we have∣∣∣Wω/2,ω/2

∣∣∣∣∣∣Pω/2,ω/2∣∣∣ =

(
p+1
ω

)
(
p
ω/2

)2 ,

with asymptotic equivalence

∣∣∣Wω/2,ω/2

∣∣∣∣∣∣Pω/2,ω/2∣∣∣ ∼


√
πp

1
4 e−22 1

4−2
√

2p if ω = 2
√

2p,

√
πp

1
4−2 log

1
4 p2 1

4−2
√

2p log p if ω = 2
√

2p log p.

Remark 5.4.13. We notice from Proposition 5.4.10 that the probability of a weak key
with fixed weight is asymptotically dominated by 2−ωH(α). Therefore the most secure choice
for the parameters is when α equals 1, which is equivalent to ω1 = ω2 = ω/2, in other
words the smooth distribution. Nevertheless the impact of a non smooth distribution is not
measured in [MTSB13] but now it can be determined by the means of Proposition 5.4.10
(see Figure 5.3 for numerical values).

In the next proposition we demonstrate that the cardinality of the set of all weak pairs
for all the possible values of ω tends to the cardinality of the set of all weak keys when
d = 2. Hence our choice of counting weak pairs, when the length goes to infinity, is a
justified solution, for d = 1 and d = 2.

Proposition 5.4.14. Let xp − 1 = (x− 1)g1(x)g2(x) be the decomposition of xp − 1 into
irreducible factors over F2[x]. Then we have:

lim
p→∞

p∑
ω=2
ω even

|Wω
∗| = lim

p→∞

p∑
ω=2
ω even

|Wω|
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Proof. Since the set of weak keys equals the set of weak pairs minus the set of non
invertible pairs of odd weight polynomials (h1, h2) we have:

Wω \ (Pω \ Pω∗) = Wω
∗ ⊆ Wω

p⋃
ω=2
ω even

Wω \ (Pω \ Pω∗) =
p⋃

ω=2
ω even

Wω
∗ ⊆

p⋃
ω=2
ω even

Wω

p∑
ω=2
ω even

(
|Wω| − |Pω \ Pω∗|

)
6

p∑
ω=2
ω even

|Wω
∗| 6

p∑
ω=2
ω even

|Wω|

We compute the cardinal of pairs of non invertible polynomials with odd Hamming
weight (h1, h2):

p∑
ω=2
ω even

|Pω \ Pω∗| =
(
2p−1 − (2 p−1

2 − 1)2
)2

= (2 p+1
2 − 1)2.

From Proposition 5.4.10 we deduce
p∑

ω=2
ω even

|Wω| =
p∑

ω=2
ω even

ω

2

(
p+ 1
ω

)

=
p∑

ω=2
ω even

p+ 1
2

(
p

ω − 1

)

= p+ 1
2 2p−1

So when d = 2 we have that:

lim
p→∞

p∑
ω=2
ω even

|Pω \ Pω∗|

p∑
ω=2
ω even

|Wω|
6 lim

p→∞

8
p+ 1 = 0.

Numerical results. In Figure 5.2 we plot the numerical results for the suggested
parameters in [MTSB13] and [Bal14]. We notice that the values we obtain for the
proportion of weak keys are lower than the security level, which is a good security
argument in favor of the parameters that were chosen for the scheme. The values were
computed in PARI/GP as well as in MAPLE software.

In Figure 5.3 we compute the proportion of weak keys for the 80 bit security parameters,
namely the (9602, 4801, 90) QC-MDPC. In this case we consider all the possible values
for (ω1, ω2) such that ω1 + ω2 = 90 with 21 6 ω1 6 45. We notice that a non smooth
distribution of the Hamming weight has a negative impact on the security of the scheme,
reason for which we suggest to choose ω1 = ω2 = ω/2.

Since the proportion of weak keys is lower that the security level for a smooth (2p, p, ω)
QC-MDPC, we focus our interest in finding additional techniques that allow us to increase
this proportion. For that we naturally begin by considering the equivalence problem for
quasi-cyclic codes.
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Security p ω
2

|Wω/2,ω/2|
|Pω/2,ω/2|

level Corollary 5.4.12
80 4801 45 2−87

100 6851 56 2−109

128 9857 71 2−139

160 15101 87 2−171

256 32771 132 2−260

Figure 5.2 – Proportion of weak key for the (2p, p, ω) QC-MDPC when ω1 = ω2 = ω
2 .

ω1 45 43 41 39 37 35 33 31 29 27 25 23 21

log |Wω1,ω2|
|Pω1,ω2|

−87.0 −86.9 −86.5 −85.8 −84.9 −83.8 −82.3 −80.6 −78.6 −76.3 −73.7 −70.8 −67.6

Figure 5.3 – Proportion of weak keys for the (9602, 4801, 90) QC-MDPC for ω1 = 90− ω2
with 21 6 ω1 6 45.

5.5 Equivalence of codes

5.5.1 Equivalence of cyclic codes
The equivalence of cyclic codes is presented in [MS86, Chapter8]. There are two group
actions that preserves a cyclic code C , group actions that we redefine here using the
algebraic formalism for cyclic codes.

Preliminaries

Definition 5.5.1. Let C be a [p, k] binary cyclic code and π ∈ Perm (C ) . Then for all
c ∈ C the permutation π acts on the polynomial c(x) as in Definition 2.2.26

cπ(x) =
p−1∑
i=0

cπ−1(i)x
i.

Next we define the first group that acts as a permutation and leaves a cyclic code
invariant. It comes directly from the definition of cyclic codes and consists of the cyclic
shifts:

Definition 5.5.2. The additive group (Fp,+) acts on the set of polynomials F2[x]/(xp−1)
as:

σ+ : Fp × F2[x]/(xp − 1) → F2[x]/(xp − 1)
(α , c(x)) 7→ σ+

α (c(x)) = xαc(x).

We denote by Fp. c the orbit of c(x) under the action of Fp.
Remark 5.5.3.

• We notice that σ+ is a group action since we have σ+
0 (c(x)) = c(x) for any c(x) ∈

F2[x]/(xp − 1) and σ+
α (σ+

β (c(x))) = σ+
α+β(c(x)) for any c(x) ∈ F2[x]/(xp − 1) and α

and β ∈ (Fp,+).
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• We also have that σ+
α induces a permutation on the coefficients of any polynomial in

F2[x]/(xp − 1) and thus doesn’t modify the weight of the polynomial

σ+
α (c(x)) =

p−1∑
i=0

ci−α (mod p)x
i. (5.12)

Proposition 5.5.4. Let C be a [p, k] binary cyclic code. Then for any α ∈ (Fp,+) we
have

σ+
α (C ) = C .

Proof. Let c(x) be a polynomial in F2[x]/(xp− 1) and C be the ideal 〈c(x)〉. By definition
of the group action we have that σ+

α (c(x)) is an element of the ideal 〈c(x)〉. Conversely
we have that c(x) is an element of the ideal generated by < σ+

α (c(x)) > . Indeed, since xα
and xp − 1 are coprime then xα admits an inverse modulo xp − 1 and thus we can write
c(x) = (xα)−1(xαc(x)).

The second group action that plays an important role in the equivalence of cyclic
codes is:

Definition 5.5.5. The action of the multiplicative group (Fp∗, ·) over F2[x]/(xp − 1) can
be defined as follow:

σ∗ : Fp∗ × F2[x]/(xp − 1) → F2[x]/(xp − 1)
(α , c(x)) 7→ σ∗α(c(x)),

where σ∗α
(
p−1∑
i=0

cix
i

)
=

p−1∑
i=0

cix
αi (mod xp − 1).

We denote by Fp∗. c the orbit of c(x) under the action of Fp∗.

Remark 5.5.6.

• σ∗ is well defined as a group action on the set of polynomials in F2[x]/(xp− 1) since
σ∗1(xi) = xi, ∀i and for any pair α and β elements of the group (Fp∗, ·) we have

σ∗α(σ∗β(xi)) = xαβi (mod xp − 1)
= σ∗αβ(xi), ∀0 6 i 6 p− 1.

• We also have that σ∗α induce a permutation on the coefficients of any polynomial in
F2[x]/(xp − 1) and thus doesn’t modify the weight of the polynomial

σ∗α(c(x)) =
p−1∑
i=0

ciα−1 (mod p)x
i, (5.13)

It is known from the literature that if two cyclic codes C1 and C2 are such that
∃α ∈ Fp∗ satisfying C1 = σ∗α (C2), then we say that C1 and C2 are multiplier equivalent.
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Proposition 5.5.7. Let C be a [p, k] cyclic code. Then for any α in the multiplicative
subgroup 〈2〉 ⊆ Fp∗ we have

σ∗α (C ) = C .

Proof. Let c(x) be a polynomial in F2[x]/(xp− 1) and C be the ideal 〈c(x)〉. By definition
of the group action and using the field characteristic we have that σ∗2(c(x)) = c(x)2.
Hence σ∗2(c(x)) is an element of the ideal 〈c(x)〉. Conversely we have to prove that
c(x) ∈ 〈σ∗2(c(x))〉. First notice that for any power of two we have c(x)2i ∈ 〈σ∗2(c(x))〉. Since
c(x) = c(x)2ord(2)

, where ord(2) is the multiplicative order of 2, we have that C ∈ σ∗2 (C ) .

When the two group actions are combined we use the following notation for the orbits

Notation 5.5.8. We denote the orbit of a polynomial c(x) under the action of Fp
and Fp∗ by Fp∗. (Fp. c) = ∪f(x)∈Fp.c{σ∗α(f(x)) | α ∈ Fp∗} respectively Fp. (Fp∗. c) =
∪f(x)∈Fp∗.c{σ+

α (f(x)) | α ∈ Fp}.

5.5.2 Equivalence of quasi-cyclic codes.
Since we deal with (2p, p, ω) QC-MDPC codes we detail in this section only the case
of 2-quasi-cyclic codes. Hence we consider a pair of polynomials (h1(x), h2(x)) ∈
(F2[x]/(xp − 1))2 and study the group actions that act as a permutation and preserve the
quasi-cyclic structure, notion that we define as follows:

Definition 5.5.9. Let p be a prime number. We say that a permutation π ∈ S2p preserves
the 2-quasi-cyclic structure if for any 2-quasi-cyclic code C , C π is a 2-quasi-cyclic code.

The action of Fp and Fp∗ can be extended in a natural manner to (F2[x]/(xp − 1))2 ,
by considering the action on each component.

Definition 5.5.10. For any pair (α1, α2) ∈ F2
p and any pair of polynomials (h1(x), h2(x)) ∈

(F2[x]/(xp − 1))2 we define

σ+
(α1,α2)(h1(x), h2(x)) =

(
σ+
α1(h1(x)), σ+

α2(h2(x))
)
.

Proposition 5.5.11. For any pair (α1, α2) ∈ F2
p the permutation induced by σ+

(α1,α2) is
an element of the symmetric group S2p that preserves the 2-quasi-cyclic structure.

Moreover for any α ∈ Fp and any 2-quasi-cyclic code C we have

σ+
(α,α)(C ) = C .

As for the second group action we have

Definition 5.5.12. For any pair (α1, α2) ∈ (Fp∗)2 and any pair of polynomials (h1, h2) ∈
(F2[x]/(xp − 1))2 we define

σ∗(α1,α2)(h1, h2) =
(
σ∗α1(h1), σ∗α2(h2)

)
.

Proposition 5.5.13. For any α ∈ Fp∗ the permutation induced by σ∗(α,α) is an element
of the symmetric group S2p that preserves the 2-quasi-cyclic structure.
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Since the later Proposition states that only σ∗α,β with α = β preserves the 2-quasi-cyclic
structure, we simplify the notations and rather say that Fp∗ acts on the set of polynomials
(F2[x]/(xp − 1))2 .

Proposition 5.5.14. For any π ∈ S2, (β1, β2) ∈ F2
p and α ∈ Fp∗ we have that π ◦ σ+

β1,β2 ◦
σ∗α,α preserves the 2-quasi-cyclic structure.

Moreover for a given 2-quasi-cyclic code C there are at most 2p2(p − 1) equivalent
2-quasi-cyclic codes.

For the orbits we use the usual notations
Notation 5.5.15. (Fp)2 . (h1, h2) = {σ+

(α1,α2)(h1(x), h2(x)) | (α1, α2) ∈ (Fp)2} and Fp∗. (h1, h2) =
{σ∗(α,α)(h1(x), h2(x)) | α ∈ Fp∗}.

5.6 Attacking equivalent public keys
Considering the equivalence of quasi-cyclic codes for the QC-MDPC scheme can be used to
extend the initial key recovery attack. In this part we explain how to deploy the Extended
Euclidean Algorithm on the equivalent public keys.

5.6.1 The modified EEA for the attack
Equivalence under the action of (Fp)2 . Let f ∈ F2[x]/(xp − 1) be a public key
of a (2p, p, ω) QC-MDPC scheme, and (h1, h2) ∈ F2[x]/(xp − 1) × F2[x]/(xp − 1) the
corresponding private key. So we have that f = h1

h2
mod (xp − 1). Now assume that h1

and h2 can not be recovered only by applying EEA(xp − 1, f) but instead there exists
(α1, α2) ∈ F2

p such that (xα1h1, x
α2h2) is a weak key. Then the public key xα1−α2f = xα1h1

xα2h2
can be attacked by EEA, which is equivalent to say that

∃α1, α2 ∈ F2
p such that deg(xα1h1) + deg(xα2h2) < p. (5.14)

Using this idea if our attack does not work on f we repeat it on all p− 1 cyclic shifts of
f , namely xf, x2f, . . . , xp−1f. If there is a shift such that the outgoing polynomials satisfy
the weight conditions in (5.8) then we have successfully recovered (equivalent) secret
polynomials by Proposition 5.4.6. In other words we extend our technique to equivalent
private keys, more exactly equivalent under the action of the additive group (Fp,+)2 . We
call these solutions weak orbits and formally define them:
Definition 5.6.1 (Weak orbit). The set (Fp)2 . (h1, h2) defined by a private key (h1, h2) ∈
F2[x]/(xp − 1)2 of a (2p, p, ω) QC-MDPC is called a weak orbit if it contains at least one
weak key, i.e. satisfies (5.14).

We denote W̃ω1,ω2 = {(h1, h2) ∈ Pω1,ω2 | (h1, h2) satisfy (5.14)} the set of private
keys that define weak orbits.

In the case of all (2p, p, ω) QC-MDPC codes we denote

W̃ω =
⋃

ω1+ω2=ω
ω1 odd

W̃ω1,ω2 .

We deduce immediately that

Wω1,ω2 ⊆ W̃ω1,ω2 and |Wω1,ω2 | 6
∣∣∣W̃ω1,ω2

∣∣∣ 6 p2 |Wω| . (5.15)
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Equivalence under the action of Fp∗. Let f ∈ F2[x]/(xp − 1) be the public key
of a (2p, p, ω) QC-MDPC scheme, and (h1, h2) ∈ F2[x]/(xp − 1) × F2[x]/(xp − 1) the
corresponding private key. Now suppose that @(α1, α2) ∈ F2

p such that (xα1h1, x
α2h2) is a

weak key, in other words (h1, h2) can not be recovered by means of EEA applied to f or
any of the cyclic shifts of f.

The idea to increase our chances of finding the private key or an equivalent one is
to use the second group action, namely (Fp∗, ·). Therefore we start our attack by fixing
α ∈ Fp∗ and try to find a rational reconstruction of σ∗α(f) modulo xp− 1. If the algorithm
finds a solution (ψt, ϕt) where ψt = α · fϕt satisfy the inequality

‖ϕt‖+ ‖ψt‖ 6 ω. (5.16)

then we have found as before (equivalent) secret polynomials.
Otherwise, the attacker performs the same attack to all shifts of f , namely α · xjf .

If the attack fails, another α is chosen and the procedure is repeated until the good
combination of α and shifts are founded. We call these solutions extended weak orbits and
define them

Definition 5.6.2 (Extended weak orbits). Let (h1, h2) ∈ (F2[x]/(xp − 1))2 be a private
key of a (2p, p, ω) QC-MDPC. We say that the set Fp∗.

(
(Fp)2 . (h1, h2)

)
is an extended

weak orbit if and only if it contains at least one weak orbit.
We denote ˜̃Wω1,ω2 = {(h1, h2) ∈ Pω1,ω2 | ∃α ∈ Fp∗ s.t. σ∗α,α(h1, h2) satisfy (5.14)}

the set of private keys that define extended weak orbits.
In the case of all (2p, p, ω) QC-MDPC codes we denote

˜̃Wω =
⋃

ω1+ω2=ω
ω1 odd

˜̃Wω1,ω2 .

We deduce immediately that

Wω1,ω2 ⊆ W̃ω1,ω2 ⊆
˜̃Wω1,ω2 and

∣∣∣W̃ω1,ω2

∣∣∣ 6 ∣∣∣∣ ˜̃Wω1,ω2

∣∣∣∣ 6 (p− 1)
∣∣∣W̃ω1,ω2

∣∣∣ . (5.17)

We are left to determine how these two group actions increase the proportion of
equivalent private keys that can be recovered using the Extended Euclidean Algorithm.

5.6.2 Orbits of the QC-MDPC private keys
So far we have seen that applying the Extended Euclidean Algorithm on the public key
f of a (2p, p, ω) QC-MDPC scheme reveals a proportion of weak keys that is lower than
the security level given by the designers in [MTSB13]. Thus we have defined two group
actions that could potentially increase the proportion of weak keys. In order to achieve
our goal, namely to determine how these group actions might increase the proportion of
weak keys we proceed in two steps

1. we determine the cardinality of the orbits of (h1(x), h2(x)) ∈ Pω1,ω2 under the action
of (Fp)2 and Fp∗.
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2. we compute the cardinality of the orbits of (h1(x), h2(x)) ∈ ˜̃Wω1,ω2 under the action
of (Fp)2 and Fp∗.

Before we detail how to compute the cardinality of the orbits we give an upper bound
on the proportion of weak keys that might be obtained using these two group actions.
Using Equation (5.15) and (5.17) we have∣∣∣∣ ˜̃Wω1,ω2

∣∣∣∣
|Pω1,ω2|

6 p2(p− 1) |Wω1,ω2 |
|Pω1,ω2|

. (5.18)

In order to better illustrate the potential effect of the group action that we propose
here, we plot in Figure 5.4 the numerical values for proportion of weak keys and the upper
bound from (5.18) for the proportion of extended weak orbits for the (2p, p, ω) QC-MDPC
scheme.

Security p ω
2

|Wω/2,ω/2|
|Pω/2,ω/2| p2(p− 1) |Wω/2,ω/2|

|Pω/2,ω/2|
level Corollary 5.4.12 Equation (5.18)
80 4801 45 2−87 2−49

100 6851 56 2−109 2−70

128 9857 71 2−139 2−98

160 15101 87 2−171 2−128

256 32771 132 2−260 2−214

Figure 5.4 – Proportion of weak key and upper bound for the proportion of weak keys
under the action of (Fp)2 and Fp∗ for the (2p, p, ω) QC-MDPC when ω1 = ω2 = ω

2 .

The results in Figure 5.4 are a strong motivation for computing the exact value of
the proportion of weak keys under the action of the two groups, (Fp)2 and Fp∗. Therefore
the remaining part of this section as well as Section 5.7, Section 5.8 and Section 5.9 are
dedicated to solving the aforementioned problem. In the rest of this section we give some
general properties regarding the orbits of polynomials in F2[x]/(xp − 1).

Proposition 5.6.3. Let (h1, h2) ∈ (F2[x]/(xp − 1))2 . Then we have

Fp∗.
(
(Fp)2 . (h1, h2)

)
= (Fp)2 . (Fp∗. (h1, h2)) .

Proof. Let c(x) =
p−1∑
i=0

cix
i be a polynomial in F2[x]/(xp − 1). Then by definition we have

σ∗α(σ+
β (c(x))) = σ∗α

xβ p−1∑
i=0

cix
i


=

p−1∑
i=0

cix
(i+β)α

= xαβ
p−1∑
i=0

cix
iα

= σ+
αβ(σ∗α(c(x))).
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Use the later result in the case of (h1, h2) ∈ (F2[x]/(xp − 1))2 . By definition of the
two group actions we have

σ∗(α,α)(σ+
(β1,β2)(h1, h2)) = (σ∗α(σβ1(h1)), σ∗α(σβ2(h2)))

=
(
σ+
αβ1(σ∗α(h1)), σ+

αβ2(σα(h2))
)

= σ+
(αβ1,αβ2)(σ

∗
(α,α)(h1, h2))

Since the later Proposition states that we obtain the same orbit regardless of the order
in which we decided to act on the set of polynomials, we will begin by considering the
action of the additive group. Hence in the next section we estimate the proportion of
weak keys under the action of (Fp)2 .

5.7 Weak orbits and Extended weak orbits

5.7.1 Orbits under the action of (Fp)2

Proposition 5.7.1. Let c(x) be a polynomial in F2[x]/(xp − 1), then if 0 < ‖c‖ < p− 1
the cardinality of the orbit of h under the action of the additive group (Fp,+) equals

|Fp. c| = p.

Proof. First of all recall that for a prime number p the only subgroups of the additive group
(Fp,+) are the trivial group ({0},+) or the whole group. Therefore if for a polynomial
c the stabilizer subgroup of (Fp,+) with respect to c is reduced to the trivial group we
obtain

|Fp. c| = p.

Now notice that the only polynomials c for which the stabilizer subgroup is the hole
group are either c(x) = 0 or c(x) = xp−1 + xp−2 · · ·+ x+ 1, which ends our proof.

Straightforward we obtain

Corollary 5.7.2. Let (h1, h2) be a pair of polynomials in F2[x]/(xp − 1)2, then if 0 <
‖hi‖ < p− 1 we have ∣∣∣(Fp)2 . (h1, h2)

∣∣∣ = p2.

In particular ∣∣∣Pω1,ω2/ (Fp)2
∣∣∣ = 1/p2 |Pω1,ω2| = 1/p2

(
p

ω1

)(
p

ω2

)

and ∣∣∣W̃ω1,ω2/ (Fp)2
∣∣∣∣∣∣Pω1,ω2/ (Fp)2
∣∣∣ =

∣∣∣W̃ω1,ω2

∣∣∣
|Pω1,ω2|

and

∣∣∣∣(˜̃Wω1,ω2/ (Fp)2
)
/Fp∗

∣∣∣∣∣∣∣(Pω1,ω2/ (Fp)2
)
Fp∗

∣∣∣ =

∣∣∣∣ ˜̃Wω1,ω2

∣∣∣∣
|Pω1,ω2|

.
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5.7.2 Proportion of weak orbits
Computing the cardinality of W̃ω1,ω2/ (Fp)2 turns out to be a challenging task. The
technique that we use to achieve our goal requires a background in Combinatorics of
Words, facts that we details in Section 5.8. We rather give here the results and show how
the cyclic shifts increased the proportion of weak keys on practical parameters.

Theorem 5.7.3. Let p, omega and ω1, ω2 be the parameters of a (2p, p, ω) QC-MDPC
scheme with ω2

i /2p = ci log p+O(
√

log p
p

), where c1 and c2 are constant such that c1 > c2.
Then we have: ∣∣∣W̃ω1,ω2/ (Fp)2

∣∣∣∣∣∣Pω1,ω2/ (Fp)2
∣∣∣ ∼

(
p−1
ω−2

)
1/p2

(
p
ω1

)(
p
ω2

) when p→∞, (5.19)

with asymptotic equivalence∣∣∣W̃ω1,ω2/ (Fp)2
∣∣∣∣∣∣Pω1,ω2/ (Fp)2
∣∣∣ ∼ ω2

√
2πα(1− α)p−2√c1c2ω

1
2 2−ωH(α)

where α = 1
1 +

√
c2
c1

.

The proof of this Theorem is given in details in Section 5.8.

Corollary 5.7.4. Let p ω and ω1, ω2 be the parameters of a (2p, p, ω) QC-MDPC scheme
with ω2

i /2p = ci log p + O(
√

log p
p

), where c1 and c2 are constant such that c1 > c2. Then
using the action of (Fp)2 we have increased the proportion of weak keys by a factor
equivalent to ω2 when p goes to infinity, more exactly we have∣∣∣W̃ω1,ω2/ (Fp)2

∣∣∣ ∼ ω2
∣∣∣Wω1,ω2/ (Fp)2

∣∣∣
Numerical values. In Figure 5.5 we plot the numerical values obtained for the pro-
portion of weak keys and weak orbits for a (2p, p, ω) QC-MDPC scheme. We notice that
for all the proposed parameters the improvement coming from the group action of (Fp)2

has overpassed the announced security level. In other words we managed to increase the
chances of finding a private key above the security level.

Security p ω
2

|Wω1,ω2|
|Pω1,ω2|

∣∣∣W̃ω1,ω2

∣∣∣
|Pω1,ω2|

level Corollary 5.4.12 Theorem 5.7.3
80 4801 45 2−87 2−74

100 6851 56 2−109 2−95

128 9857 71 2−139 2−124

160 15101 87 2−171 2−155

256 32771 132 2−260 2−244

Figure 5.5 – Proportion of weak key and weak orbits for the smooth (2p, p, ω) QC-MDPC
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5.7.3 Orbits under the action of Fp
∗

The action of the multiplicative group Fp∗ is studied in detail in Section 5.9. Here we
synthesize the main results concerning the orbits under the action of Fp∗. The first difficulty
is to determine the cardinality of an orbit Fp∗.

(
(Fp)2 . (h1, h2)

)
where (h1, h2) ∈ Pω1,ω2 .

As for the multiplicative group we begin by studying the action of Fp∗ on a polynomial
c ∈ F2[x]/(xp − 1) and obtain:

Proposition (5.9.3). Let c ∈ F2[x]/(xp − 1) and Γc be the subgroup of (Fp∗, ·) which
stabilizes Fp. c. Then the cardinality of the orbit Fp∗. (Fp. c) is

|Fp∗. (Fp. c)| =
(p− 1)
|Γc|

. (5.20)

Since the polynomials we consider here satisfy a Hamming weight condition we prove
that:

Proposition (5.9.9). Let α ∈ Fp∗ and c ∈ F2[x]/(xp − 1) so that 1 < ‖c‖ < p and
σ∗α(Fp. c) = Fp. c. Then the order of α in the multiplicative group Fp∗ divides either ‖c‖
or ‖c‖ − 1.

From Proposition 5.9.3 and 5.9.9 we deduce that:

Corollary (5.9.12). Let (h1, h2) ∈ Pω1,ω2 with ‖hi‖ = ωi and denote by Γ(h1,h2) the
subgroup of Fp∗ that stabilizes (Fp)2 . (h1, h2). Then we have

• any α ∈ Γ(h1,h2) is such that ord(α)| gcd(p − 1, gcd(l1, l2)), where li runs through
{ωi, ωi − 1}, for 1 6 i 6 2.

• The cardinality of an orbit equals
∣∣∣Fp∗. ((Fp)2. (h1, h2)

)∣∣∣ = (p− 1)
|Γ(h1,h2)|

. (5.21)

• When (h1, h2) is a private key of a (2p, p, ω) QC-MDPC code with ωi = O(
√
p log p)

we have
O

(√
p

log p

)
6
∣∣∣Fp∗. ((Fp)2. (h1, h2)

)∣∣∣ 6 p− 1. (5.22)

5.7.4 Proportion of extended weak orbits

Estimating the cardinality of the set ˜̃Wω1,ω2 highly depends on the subgroups of the
multiplicative group Fp∗. Hence it seems difficult to obtain a general theorem that
characterize the cardinality of the set of extended weak orbits for any prime number p.
Nonetheless we obtain some results regarding this problem that we state bellow.

Proposition (5.9.13). Let (h1, h2) be a private key of a (2p, p, ω) QC-MDPC code. If
(h1, h2) ∈ W̃ω1,ω2 then σ∗−1

(
(Fp)2 . (h1, h2)

)
is a weak orbit.

Moreover if −1 ∈ Γ(h1,h2) then |Fp∗. ((Fp)2. (h1, h2))| 6 p−1
2 .
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In general for a smooth QC-MDPC code we obtain

Corollary (5.9.14). Let p and ω be the parameters of a smooth (2p, p, ω) QC-MDPC code.
Then we have

p− 1
ω/2

∣∣∣W̃ω1,ω2

∣∣∣
|Pω1,ω2|

6

∣∣∣∣ ˜̃Wω1,ω2

∣∣∣∣
|Pω1,ω2|

6 (p− 1)

∣∣∣W̃ω1,ω2

∣∣∣
|Pω1,ω2|

.(5.51)

Numerical values. We plot in Figure 5.6 the numerical values obtained for the pro-
portion of weak keys, weak orbits and extended weak orbits for a (2p, p, ω) QC-MDPC
scheme.

Security p ω
2

|Wω1,ω2|
|Pω1,ω2|

∣∣∣W̃ω1,ω2

∣∣∣
|Pω1,ω2|

∣∣∣˜̃Wω1,ω2

∣∣∣
|Pω1,ω2|

level Corollary 5.4.12 Theorem 5.7.3 Lower bound (5.51) Upper bound (5.51)
80 4801 45 2−87 2−74 2−67 2−62

100 6851 56 2−109 2−95 2−88 2−82

128 9857 71 2−139 2−124 2−117 2−111

160 15101 87 2−171 2−155 2−148 2−141

256 32771 132 2−260 2−244 2−236 2−229

Figure 5.6 – Proportion of weak key, weak orbits and extended weak orbits for the
smooth (2p, p, ω) QC-MDPC

We notice that the proportion of extended weak orbits are big enough to raise the
question whether the designer of this scheme can assume this risk. Therefore we propose
a solution to avoid this type of vulnerabilities, solution that we detail in Section 5.11.4
and that consists in a secure Key Generation algorithm (see Figure 2).

5.8 Computing the proportion of weak orbits

5.8.1 Redefining the problem
The problem we want to solve here, is to estimate the cardinality of
W̃ω1,ω2 = {(h1, h2) ∈ Pω1,ω2 | (h1, h2) satisfy (5.14)} , where Equation (5.14) states

∃α1, α2 ∈ F2
p such that deg(xα1h1) + deg(xα2h2) < p.

In order to achieve our goal we will introduce the concept of longest run and redefine
the problem in an equivalent manner.

Lemma 5.8.1. Let hi = min(Fp. hi) be the minimum polynomial for the lexicographical
order of hi ∈ F2[x]/(xp − 1). Then the set (Fp)2 . (h1, h2) is a weak orbit if and only if
(h1) + deg(h2) < p.

Proof. By definition we have that hi = min(Fp. hi) implies that deg(hi) < xαhi for any
1 6 α < p. Since a weak orbit has to satisfy equation (5.14) we obtain the wanted
result.

Definition 5.8.2. We define the longest run of zeros of a polynomial c in F2[x]/(xp − 1)
by the longest sequence of consecutive zero coefficients of c.
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Remark 5.8.3. We remark that there is a relation connecting the degree of the minimum
polynomial and the longest run of zeros. If ki denotes the longest run of zeros of hi ∈
F2[x]/(xp − 1) we have that deg(hi) = p− ki − 1.

Example 5.8.4. Let p = 7 and consider the polynomial c(x) = 1 + x+ x5. Then the orbit
equals in this case

Fp. c = {1+x+x5, x+x2 +x6, 1+x2 +x3, x+x3 +x4, x2 +x4 +x5, x3 +x5 +x6, 1+x4 +x6}.

The smallest polynomial in lexicographic order is c = 1 + x2 + x3. We also notice that the
longest run of zeros equals k = 3 and deg(c) = p− k − 1 = 3.

Since we have the relation between the degree and the longest run of zeros for the
minimal polynomial in the equivalence class we can redefine a weak orbit in terms of
longest run:

Proposition 5.8.5. The set (Fp)2 . (h1, h2) defined by a private key (h1, h2) ∈ Pω1,ω2 of a
(2p, p, ω) QC-MDPC code is a weak orbit if and only if it satisfies the equation:

k1 + k2 > p− 1. (5.23)

Proof. Use Lemma 5.8.1 and Remark 5.8.3.

At this point we have reduced our key recovery attack to another problem. To count
all pairs (h1, h2) with the restriction mentioned above, we have to answer the following
question:What is the distribution of the longest run of zeros for the equivalence class of
all cyclic shifts of a Fp2 vector with fixed Hamming weight? We will answer this question
using the concept of Lyndon words, that we explain in the next paragraph.

5.8.2 Lyndon words
Before we define the notion of Lyndon words we recall some basic definitions from the
field of Combinatorics of Words.

Definition 5.8.6.

• A finite alphabet Ak = {a0, a1, . . . , ak} is a finite set of symbols that we call letters.

• Any finite sequence of letters belonging to the same alphabet is called a finite word.

• The free monoid generated by the alphabet Ak,usually denoted by A∗k, is defined as
the monoid whose elements are all the finite sequences of zero or more elements
from Ak, with string concatenation as the monoid operation. We will denote the
empty word by ε. This statement can be written in terms of formal series as

∑
w∈A?

k

w = 1

1−
k∑
i=0

ai

. (5.24)
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Example 5.8.7. Let B = {0, 1} denote the binary alphabet. Then the free monoid on B
is

B∗ = ε+ 0 + 1 + 00 + 01 + 10 + 11 + 000 + . . . .

The same set can be generated by means of equation (5.24)
B∗ = (0 + 1)0 + (0 + 1)1 + (0 + 1)2 + (0 + 1)3 + . . .

= ε+ 0 + 1 + 00 + 01 + 10 + 11 + 000 + . . .

Definition 5.8.8. The set of all cyclic shifts of a word is called its conjugacy class. The
conjugacy class of a word can be represented by a necklace, also known as circular word.

There are two types of necklaces, namely periodic and aperiodic (or primitive). Take
for example the word w = 0101 which is periodic since w = (01)2 and w = 001 which is
aperiodic.
Definition 5.8.9. [Lot02]A Lyndon word l is a word satisfying the conditions:
• l is a primitive word (i.e. it cannot be written l = uv, where u and v commute and
u, v 6= ε)

• l is the lexicographically smallest word in its conjugacy class
Example 5.8.10.

1. Let Fp. 00011 = {00011, 00110, 01100, 11000, 10001} . The Lyndon word here is 00011
since it is the strictly smallest than all the cyclic shifts. and it is primitive.

2. Let Fp. 0101 = {0101, 1010, 0101, 1010}. There is no Lyndon word here, since
the smallest element in the conjugacy class is 0101 but it is not primitive since
0101 = (01)2.

Lyndon words are named after the mathematician Roger Lyndon, who introduced
them in 1954 under the name of standard lexicographic sequences. Since a Lyndon word
is the only word which is lexicographically smaller than all its the cyclic shifts it implies
that a Lyndon word is different from all of its non-trivial shifts, and is therefore primitive.
So we have an equivalent way of defining a Lyndon word, that is
Remark 5.8.11. We notice that the existence of a Lyndon word is closely related to the
size of the conjugacy class. Indeed if the set of all cyclic shifts of p-length word w, has
exactly p different elements, in other words the size of the orbit equals p, then we have the
existence of a Lyndon word.

When p is prime we obtain the result in Proposition 5.7.1, namely for any word w
with Hamming weight different from zero or p the number of elements in the conjugacy
class of w equals p.

Lyndon words have many applications in algebra and combinatorics. For instance in
number theory we know that the set of monic irreducible polynomials of degree n over a
field of characteristic p is in bijection with the set of Lyndon words of length n over an
alphabet of size p (see [Lot02] for more details). We also have an application of Lyndon
words in cryptography [Per05].

Since our goal here is to use the Lyndon words to count weak orbits for the QC-MDPC
scheme, we will explain the basic enumeration methods related to Lyndon words and
recall the existing results in this area.
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5.8.3 Longest run of Lyndon words with fixed weight
The longest run problem was previously studied from a probabilistic point of view by
Feller [Fel68] and Schilling, Gordon and Waterman [GSW86]. The problem studied here
is slightly different from our in the sense that the authors give the distribution of the
longest run of binary words with fixed weight and not binary words under the cyclic shift
action. Their approach is to consider an p trial of Bernoulli variables and search for the
probability of the maximum longest run of "heads" or "coins". Results are given for a fixed
length p as well as in the asymptotic case. Same results for the latter case were obtained
using analytical combinatorics by Flajolet [FS09] and Wilson and Permantle [PW08].

Now if we inspect the case of Lyondon words, many results are known about the
number of Lyndon words with different restrictions. We recall the results on the number
of Lyndon words over a q-ary alphabet with length p given by Witt [Wit13] or the number
of Lyndon words over the q-ary alphabet with fixed weight given by Gilbert in [GR61].
The first article analyzing the longest run of Lyndon word is by Bassino, Clément and
Nicaudin [BCN05]. Nonetheless the authors do not take into consideration the longest
run of Lyndon words with fixed weight. In a sense our problem is the both an extension
of Gilbert’s result and Bassino, Clément and Nicaudin’s result.

Counting techniques related to Lyndon words. In order to achieve our goal we
need to recall the main properties and techniques used for enumerating problems related
to Lyndon words. For that we will recall the result in [Wit13] with a full proof. For that
we begin by a well known theorem on the factorization of words into product of Lyndon
words

Theorem 5.8.12. [KTC58, Lot02] Any word w ∈ A∗k may be uniquely written as a unique
non-increasing product of Lyndon words, i.e.,

w = l1l2 . . . ln

where the li are Lyndon words such that ln � ln−1 � · · · � l1.

Example 5.8.13. Let w = 01101001, then the factorization into product of Lyndon words
is w = (011)(01)(001).

There is an efficient algorithm that computes the factorization into Lyndon words due
to Duval [Duv83], algorithm that has a linear complexity in the length of the word to be
factorized.

Corollary 5.8.14. Let L(Ak) denote the set of Lyndon words over the alphabet Ak. Then
we have ∑

w∈A∗
k

w =
↘∏

l∈L(Ak)

1
1− l , (5.25)

where the ↘ denotes the fact that the elements l ∈ L(Ak) are considered in decreasing
lexicographical order.

Example 5.8.15. Let B = {0, 1} be the binary alphabet totally ordered by 0 < 1. We will
generate all the binary words in B∗ of length at most 3, denoted by B63, ordered by length

B63 = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111}.
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Now let us consider the set of Lyndon words of length less than or equal to 3, in
decreasing lexicographical order

L(B,6 3) = {1, 011, 01, 001, 0}

and compute the product in Equation 5.25
↘∏

l∈L(B,63)

1
1− l = (ε+ 1 + 11 + 111)(ε+ 011)(ε+ 01)(ε+ 001)(ε+ 0 + 00 + 000)

= ε+ 0 + 00 + 000 + 001 + 01 + 010 + 011 + 111
+ 11 + 110 + 1 + 10 + 100 + 101 + . . .

Now if we extract from the result of this product only the elements with a length less
that or equal to 3 we obtain the set B63.

The number of Lyndon words over the binary alphabet is a well known sequence, that
can be found in The On-Line Encyclopedia of Integer Sequences

1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, . . . ( sequence A001037 in the Oeis)

The last technique needed in enumeration problems are the generating functions. We do
not recall the definitions regarding the concepts that are involved in this area, we will
only explain how to apply these techniques. For a detailed reference in this field we direct
the reader to the book of Flajolet and Sedgewick [FS09], which turned out to be highly
useful.

The procedure that we follow to obtain the generating function is composed of three
steps:

• the first step is to formally represent each letter of the alphabet Ak by a formal
variable z that represents the length of the letter ∀0 6 i 6 k, ai → z

• since any finite word is a finite sequence of letters we associate to any word w in A∗k
the formal variable z|w|, representing the length of the word w. Here |w| denotes the
length of the word w.

• the univariate generating function

Φ(z) =
∑
w∈A∗

k

z|w|

is so that the coefficient of [zn] Φ(z) represents the number of works of length n over
the alphabet Ak.

Proposition 5.8.16. Let L(Ak, n) denote the set of Lyndon words of length n over Ak.
Then we have

|L(Ak, n)| = 1
n

∑
d|n
µ(d)(k + 1)nd , (5.26)

where µ is the Möbius function, defined by µ(j) = 0 if j has a squared prime factor, µ(j) = 1
if j is square-free with an even number of prime factors and µ(j) = −1 otherwise.
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Proof. From Equation (5.24) the generating function for the words in A∗k equals Φ(z) =
1

1−
k∑
i=0

z
= 1

1− (k + 1)z .

Based on Equation (5.25) and the cyclotomic identity from [Wit13] we have that the

same generating function equals Φ(z) =
∞∏
i=1

( 1
1− zi

)|L(Ak,i)|

So we deduce
1

1− (k + 1)z =
∏
i>1

( 1
1− zi

)|L(Ak,i)|

Taking the logarithm we obtain

log(1− (k + 1)z) =
∞∑
i>1
|L(Ak, i)| log(1− zi)

We develop the later equation using the Taylor-Young formula

∑
n>1

((k + 1)z)n

n
=
∞∑
i>1
|L(Ak, i)|

∑
d>1

zid

d
.

We extract the coefficient of zn on both sides of the equation and obtain

(k + 1)n
n

=
∑
d|n

∣∣∣L(Ak, nd )
∣∣∣

d
.

The last step is to use the Möbius inversion formula [Möb32, Lan09] and obtain the
wanted result.

Remark 5.8.17. A particular case of this formula is for the binary alphabet B, case for
which we obtain |L(B, n)| = 1

n

∑
d|n
µ(d)2n

d . Remember that in our case we have n = p is a

prime number, case for which we have |L(B, p)| = 1
p

(2p − 2) (which is a positive integer,
fact that can be proved using the binomial theorem).

Based on the later technique we will prove the following theorem:

Theorem 5.8.18. Let p, k, ω be integers, such that 1 6 ω 6 p and k 6 p − ω. The
number of binary Lyndon words with length p, longest run less than or equal to k and
weight equal to ω is:

∣∣∣L6k(B, p, ω)
∣∣∣ = 1

ω

∑
j∈N∗, j|gcd(p,ω)

µ (j)
(

ω
j

p
j
− ω

j

)
k

, (5.27)

where
(
j
i

)
k
is known as the standard multinomial coefficient and is defined as the coefficient

of xi in
(
1 + x+ · · ·+ xk

)j
.

98



CHAPTER 5. WEAK KEYS IN THE QC-MDPC MCELIECE

Proof. In the first place we define a well known morphism between A∗k and B∗. The
monoids A∗k and B∗ are endowed with the lexicographic orders satisfying 0 < 1 and
ak < · · · < a0. The morphism

ϕ : A∗k → (0∗1)∗ ⊂ B∗

ai → 0i1

is an order preserving isomorphism (see [Ric03] for details). We deduce that w ∈ A∗k is a
Lyndon word if and only if ϕ(w) is a Lyndon word. The purpose of the application ϕ is
that it allows us to compute the cardinality of the Lyndon words over the binary alphabet
by handling only the set of Lyndon words over the alphabet Ak, which is much easier to
compute.

The next step is to deduce the generating function, which in our case is a bivariate
function.

• Each word in A∗k can be written as follows:

w = al0al2 . . . alj−1 where ∀m ∈ {0, 1, . . . j − 1} alm ∈ Ak and j > 0

• Each letter of the alphabet Ak is formally represented by the translation rule:

alm → zxlm+1

where the formal variable z represents the length of the letter and the formal variable
x represents the sum 1 + lm.

• We have the following translation rule for any word generated by the specified
alphabet:

w → z|w|xψ(w) where ψ(w) = |w|+
|w|−1∑
m=0

lm

• The bivariate generating function

Φ(z, x) =
∑
w∈A∗

z|w|xψ(w)

is so that the coefficient of zωxp in Φ(z, x) represents the number of words of length
ω and ψ-parameter equal to p.

We notice that the we have for any finite word w ∈ A∗k

ψ(w) = |ϕ(w)|.

In other words ψ(w) is the equivalent measure for the length of the binary word ϕ(w) and
|w| is the equivalent measure for the Hamming weight of the binary word ϕ(w).

If we set Lψ(Ak, ω, p) =
{
l ∈ L(Ak)

∣∣∣∣∣ |l| = ω and ψ(l) = p

}
then

ϕ (Lψ(Ak, ω, p)) = L6k(B, p, ω).
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Hence, it suffices to compute |Lψ(Ak, ω, p)| , which can be done using the same
technique as in Proposition 5.8.16.

Using Equation (5.25) and (5.24) we obtain the equality

Φ(z, x) = 1

1− z
k+1∑
i=1

xi
=

∞∏
16j6i

(
1

1− xizj

)|Lψ(Ak,j,i)|
. (5.28)

We apply the logarithm in each side of the equality above and develop using the Taylor
expansion. In the resulting formula we compare the coefficient of zωxp in the left hand
side and the right hand side and obtain

∑
j|ω
ω
j
|p

j

∣∣∣∣Lψ(Ak, j,
p

ω
j)
∣∣∣∣ =

(
ω

p− ω

)
k

, (5.29)

where
(
ω
p

)
k

= ∑
l1+2l2+...klk=p
l0+l1+...lk=ω

ω!
l0!l1! . . . lk!

denotes the coefficient of xp in (1+x+x2+· · ·+xk)ω.

We rewrite the last equation as

∑
j|ω
j|p

ω

j

∣∣∣∣∣Lψ(Ak,
ω

j
,
p

j
)
∣∣∣∣∣ =

(
ω

p− ω

)
k

, (5.30)

and finally apply the Möbius Inversion

Since from now on we deal only with binary words we will simplify the notations and
drop the name of the alphabet from the L(B, p). So starting from this point we denote
the set of Lyndon words over the binary alphabet of length p by L(p).

Corollary 5.8.19. The number of Lyndon words of length p and Hamming weight equal
to ω over the binary alphabet (result already found in [GR61] by Gilbert and Riordan) is:

|L(p, ω)| = 1
p

∑
j| gcd(p,ω)

µ(j)
(
p
j
ω
j

)
. (5.31)

Proof. We notice that the for fixed p and ω the longest run satisfies k 6 p − ω. Hence
L6p−ω(p, ω) = L(p, ω) and using the later theorem we have

|L(p, ω)| = 1
ω

∑
j∈N∗, j| gcd(p,ω)

µ (j)
(

ω
j

p
j
− ω

j

)
p−ω

(5.32)

From [BBK08] we have that

∀k > p,

(
ω

p

)
k

=
(
p+ ω − 1

p

)
(5.33)

Combining the last two equations we obtain the wanted result.
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Corollary 5.8.20. When p is prime,
∣∣∣L6k(p, ω)

∣∣∣ = 1
ω

(
ω

p− ω

)
k

, (5.34)

|L(p, ω)| = 1
p

(
p

ω

)
. (5.35)

Remark 5.8.21. Since we deal only with p a prime number we have that L(p) =
p−1⋃
ω=1

L(p, ω), fact that we verify by computing the size of each set:

|L(p)| = 1
p

(2p − 2)

= 1
p

( p∑
ω=0

(
p

ω

)
−
(
p

0

)
−
(
p

p

))

= 1
p

p−1∑
ω=1

(
p

ω

)
=

∣∣∣∣∣∣
p−1⋃
ω=1

L(p, ω)

∣∣∣∣∣∣ .

ω l k
∣∣∣Lk(7, ω)

∣∣∣ |L(7, ω)| |L(7)|
1 0000001 6 1 1

0000011 5 1
2 0000101 4 1 3

0001001 3 1
0000111 4 1
0001101 3 2

3 0001011 3 5
0010011 2 2
0010101 2
0001111 3 1 18
0011101 2

4 0011011 2 3 5
0010111 2
0101011 1 1
0011111 2 1

5 0101111 1 2 3
0110111 1

6 0111111 1 1 1

Figure 5.7 – The Lyndon words for p = 7. The result from [Wit13] -|L(7)| , the result
from [GR61] -|L(7, ω)| and our result Theorem 5.8.18 -

∣∣∣Lk(7, ω)
∣∣∣

5.8.4 Probability of weak orbits
Recall that our initial problem was to determine the proportion

∣∣∣W̃ω1,ω2/ (Fp)2
∣∣∣/∣∣∣Pω1,ω2/ (Fp)2

∣∣∣.
Since we have associated to any polynomial c in F2[x]/(xp− 1) with fixed hamming weight
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the corresponding Lyndon word in L(p, ‖c‖) we obtain

∣∣∣W̃ω1,ω2/ (Fp)2
∣∣∣∣∣∣Pω1,ω2/ (Fp)2
∣∣∣ =

∣∣∣∣∣ ⋃
k1+k2>p−1

Lk1(p, ω1)Lk2(p, ω2)
∣∣∣∣∣

|L(p, ω1)L(p, ω2)| .

In order to simplify the proofs, in the next part we define a discrete random variable
that represents the longest run of Lyndon words.
Definition 5.8.22. Let L(p, ω) be the probability space for our model and consider that
each Lyndon word in L(p, ω) has the same probability to be chosen, namely p/

(
p
ω

)
.

Now, let Xp,ω be a discrete random variable that represents the longest run of zeros of
Lyndon words with length p and weight ω, which takes values in the set {bp−1

ω
c, . . . , p−ω}.

We define the cumulative distribution and mass function for Xp,ω, for any bp−1
ω
c 6 k 6 p−ω

FXp,ω(k) =

∣∣∣L6k(p, ω)
∣∣∣

|L(p, ω)| and fXp,ω(k) =

∣∣∣Lk(p, ω)
∣∣∣

|L(p, ω)| .

In other words for our probability model we write the set of binary Lyndon words of
length p and weight ω as L(p, ω) = ⋃p−ω

k=b p−1
ω
c L

k(p, ω). Since for the QC-MDPC code we
study pairs of Lyndon words with a certain condition (see Equation (5.23)), we define

Definition 5.8.23. Let Yp,ω1,ω2
def= Xp,ω1 + Xp,ω2 be a discrete random variable that

represents the sum of two independent random variables Xp,ω1 and Xp,ω2.
Remark 5.8.24. The initial problem, that is estimating the proportion of weak orbits,
becomes now a probability problem, namely∣∣∣W̃ω1,ω2/ (Fp)2

∣∣∣∣∣∣Pω1,ω2/ (Fp)2
∣∣∣ = P (Yp,ω1,ω2 > p− 1) =

∑
k1+k2>p−1

fXp,ω1
(k1)fXp,ω2

(k2).

As p is prime, using Corollary 5.8.20 and Definition 5.8.22 we get the exact value:

P (Yp,ω1,ω2 > p− 1) =
∑

k1+k2>p−1

(
ω1
p−ω1

)
k1
−
(

ω1
p−ω1

)
k1−1(

p−1
ω1−1

)
(

ω2
p−ω2

)
k2
−
(

ω2
p−ω2

)
k2−1(

p−1
ω2−1

) (5.36)

The first case that seems interesting is when each variable has a longest run greater
than or equal to half of the wanted quantity p−1

2 .
Proposition 5.8.25. Let ω1 and ω2 > 2, then we have:

P
(
Xp,ω1 >

p− 1
2

)
P
(
Xp,ω2 >

p− 1
2

)
= ω1ω2 ×

( p−1
2

ω1−1

)( p−1
2

ω2−1

)
(
p−1
ω1−1

)(
p−1
ω2−1

) , (5.37)

with asymptotic equivalence

ω1ω22−ω ×



p−
c2
2 if ω2

2
p

= c2 log p+O(
√

log p
p

) and ω1 = O(1),
e−

c1+c2
2 if ω2

i

p
= ci +O( 1√

p
),

e−
c1
2 p−

c2
2 if ω2

1
p

= c1 +O( 1√
p
) and ω2

2
p

= c2 log p+O(
√

log p
p

),
p−

c1+c2
2 if ω2

i

p
= ci log p+O(

√
log p
p

).
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Proof. Apply the formula for the standard multinomial coefficient from [Lot02, BBK08]:

(
ω

p− ω

)
k

=
b p−ω
k+1 c∑
j=0

(−1)j
(
ω

j

)(
p− j(k + 1)− 1

ω − 1

)
.

For asymptotic expansion as before use the Stirling approximation for factorials.

Remark 5.8.26. Using the results from Proposition 5.8.25 and 5.4.10 when ω1 = ω2 = ω
2

we have that

P
(
Xp,ω1 >

p− 1
2

)
P
(
Xp,ω2 >

p− 1
2

)
∼ ω

3
2
|Wω1,ω2|
|Pω1,ω2|

.

We step forward and analyze the probability for a weak orbit in the general case.

Remark 5.8.27. We notice that if ω1 or ω2 equals 1, or ω1 = ω2 = 2 then the probability
of a weak orbit equals

P (Yp,ω1,ω2 > p− 1) = 1.

But the interesting analysis for the QC-MDPC scheme, is when ω1 and ω2 are relatively
close and ω = O

(√
p log p

)
.

Proposition 5.8.28. Let ω1 > ω2 satisfy the relation lim
p→+∞

e
ω2

2
p
−logω1 = +∞. Then we

have:

P (Yp,ω1,ω2 > p− 1) ∼ ω1ω2

(
p−1
ω−2

)
(
p−1
ω1−1

)(
p−1
ω2−1

) when p→∞, (5.38)

Moreover for ω2
i

2p = ci log p+O(
√

log p
p

), we have

P (Yp,ω1,ω2 > p− 1) ∼ ω2
√

2πα(1− α)p−2√c1c2ω
1
2 2−ωH(α)

where α = 1
1 +

√
c2
c1

.

Proof. By definition we have:

P (Yp,ω1,ω2 > p− 1) =
∑

ω2−16k6p−ω1

fXp,ω1
(k)

(
1− FXp,ω2

(p− k − 1− 1)
)
.

In order to estimate the probability P (Yp,ω1,ω2 > p− 1) we begin by some properties on
the distribution function of the random variable Xp,ω.

Lemma 5.8.29. Let ω > 2 and p prime. Then for k > bp−ω2 c we have

fXp,ω(k) =
ω
(
p−k−2
ω−2

)
(
p−1
ω−1

) , FXp,ω(k − 1) = 1−
ω
(
p−k−1
ω−1

)
(
p−1
ω−1

) . (5.39)
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For k 6 bp−ω2 c the bounds are

ω
(
p−k−2
ω−2

)
−
(
ω
2

) [(
p−2k−1
ω−1

)
−
(
p−2k−3
ω−1

)]
(
p−1
ω−1

) 6 fXp,ω(k) 6
ω
(
p−k−2
ω−2

)
(
p−1
ω−1

) , (5.40)

ω
(
p−k−1
ω−1

)
−
(
ω
2

)(
p−2k−1
ω−1

)
(
p−1
ω−1

) 6 1− FXp,ω(k − 1) 6
ω
(
p−k−1
ω−1

)
(
p−1
ω−1

) . (5.41)

For the upper bound, this gives

P (Yp,ω1,ω2 > p− 1) 6
p−ω1∑

k=ω2−1
ω1

(
p−k−2
ω1−2

)
(
p−1
ω1−1

) ω2

(
k

ω2−1

)
(
p−1
ω2−1

) =
ω1ω2

(
p−1

ω1+ω2−2

)
(
p−1
ω1−1

)(
p−1
ω2−1

) . (5.42)

For the lower bound, we separate our sum into three different sums, for k 6 bp−ω1
2 c,

bp−ω1
2 c < k < p − 1 − bp−ω2

2 c = dp+ω2
2 e − 1 and dp+ω2

2 e − 1 6 k 6 p − ω1 and use
relations (5.39), (5.40) and (5.41):

P (Yp,ω1,ω2 > p− 1) >
p−ω1∑

k=ω2−1
ω1

(
p−k−2
ω1−2

)
(
p−1
ω1−1

) ω2

(
k

ω2−1

)
(
p−1
ω2−1

)
−
b p−ω1

2 c∑
k=ω2−1

(
ω1

2

)(p−2k−1
ω1−1

)
−
(
p−2k−3
ω1−1

)
(
p−1
ω1−1

) ω2

(
k

ω2−1

)
(
p−1
ω2−1

)
−

p−ω1∑
k=d p+ω2

2 e−1

(
ω2

2

)(p−k−2
ω1−2

)
(
p−1
ω1−1

) ω1

(
2k−p+1
ω2−1

)
(
p−1
ω2−1

)
We use the relations

(
p−2k−1
ω1−1

)
−
(
p−2k−3
ω1−1

)
=
(
p−2k−2
ω1−2

)
+
(
p−2k−3
ω1−2

)
6 2

(
p−2k−2
ω1−2

)
(as ω1 > 2),

ω1ω2(
p−1
ω1−1

)(
p−1
ω2−1

) = p2(
p
ω1

)(
p
ω2

) and a change of variable k → p− k − 2 in the last sum to get

(
p
ω1

)(
p
ω2

)
p2 P (Yp,ω1,ω2 > p− 1) >

(
p− 1
ω − 2

)
− ω1

b p−ω1
2 c∑

k=ω2−1

(
p− 2k − 2
ω1 − 2

)(
k

ω2 − 1

)

− 1
2ω2

b p−ω2
2 c−1∑

k=ω1−2

(
p− 2k − 3
ω2 − 1

)(
k

ω1 − 2

)

Now we use the following bound on the product
(
p−2k−2
ω1−2

)(
k

ω2−1

)
6
(
p−k−2
ω−3

)
and the relation

from [Gou72] ∑s
k=r

(
a−k
b

)
=
(
a−r+1
b+1

)
−
(
a−s
b+1

)
6
(
a−r+1
b+1

)
to get(

p
ω1

)(
p
ω2

)
p2 P (Yp,ω1,ω2 > p− 1) >

(
p− 1
ω − 2

)
− ω1

(
p− ω2

ω − 2

)
− 1

2ω2

(
p− ω1

ω − 2

)

>

(
p− 1
ω − 2

)
− 3

2ω1

(
p− ω2

ω − 2

)
.
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if ω1 = max(ω1, ω2). We finally get the bounds

1− 3ω1

2

(
p−ω2
ω−2

)
(
p−1
ω−2

) 6
P (Yp,ω1,ω2 > p− 1)

p2(p−1
ω−2)

( p
ω1)(

p
ω2)

6 1. (5.43)

We check that the lower bound tends to 1 when ωi = O(
√
p log p).

The proof of Theorem 5.7.3 comes directly from the later proposition and the fact

that

∣∣∣W̃ω1,ω2/ (Fp)2
∣∣∣∣∣∣Pω1,ω2/ (Fp)2
∣∣∣ = P (Yp,ω1,ω2 > p− 1) .

Corollary 5.8.30. For a smooth (2p, p, ω) QC-MDPC scheme we have

P (Yp,ω/2,ω/2 > p− 1) ∼
(

ω
2(
p−1
ω
2−1

))2(
p− 1
ω − 2

)
when p→∞ and ω = O(

√
p log p).

(5.44)

If we recall the results obtained with the first method in Proposition 5.4.10 and
Corollary 5.4.12 we conclude that we can attack ω2 times more private keys

P (Yp,ω1,ω2 > p− 1) ∼ ω2 × |Wω1,ω2|
|Pω1,ω2|

.

Our result might be extended to the set of all (2p, p, ω) QC-MDPC codes.

Proposition 5.8.31. Let p be a prime number and ω an even integer such that ω =
O(
√
p log p). Then we have

(
ω
2(
p−1
ω
2−1

))2(
p− 1
ω − 2

)
6

∣∣∣W̃ω

∣∣∣
|Pω|

6 ωp2

(
p−1
ω−2

)
(

2p
ω

)
+ (−1)ω2 +1

(
p
ω
2

) . (5.45)

Remark 5.8.32. If we recall the result in Proposition 5.4.10 we obtain a gain factor that
is close to ω2 when we consider the cyclic shifts.

5.9 Extended weak orbits

5.9.1 General Properties
Proposition 5.9.1. Let α ∈ Fp∗ \ {1} and c ∈ F2[x]/(xp − 1). The following equivalence
holds:

σ∗α (Fp. c) = Fp. c⇔ ∃! β ∈ Fp, σ∗α(σ+
β (c)) = σ+

β (c). (5.46)

For α = 1 we have ∀c∗ ∈ Fp. c, σ∗α(c∗) = c∗.
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Proof. For α = 1 the relation comes directly from the definition of the group action. Now
assume that α 6= 1.

The (⇐) implication comes from the definition of the orbits.
For the (⇒) implication let c be such that σ∗α (Fp. c) = Fp. c. This implies that there

exits j < p so that σ∗α(c) = xjc = σ+
j (c). Recall from Proposition 5.6.3 that

∀(α, β) ∈ Fp∗ × Fp σ∗α(σ+
β (c)) = σ+

αβ(σ∗α(c)).

In particular for β = −j(α− 1)−1 the later equality also holds, fact that implies

σ∗α(σ+
−j(α−1)−1(c)) = σ+

α(−j)(α−1)−1(σ∗α(c))
= σ+

α(−j)(α−1)−1(σ+
j (c))

= σ+
α(−j)(α−1)−1+j(c)

= σ+
(−j)(α−1)−1(α+(−1)(α−1))(c)

= σ+
−j(α−1)−1(c).

Let’s now suppose that β is not unique, in other words there are two polynomials in the
orbit Fp. c such that σ∗α(σ+

i (c)) = σ+
i (c) and σ∗α(σ+

l (c)) = σ+
l (c), with 0 6 i < l 6 p− 1.

But this implies

σ∗α(σ+
l (c)) = σ∗α

(
σ+
l−i(σ+

i (c))
)

= σ+
α(l−i)

(
σ∗α(σ+

i (c))
)

= σ+
α(l−i)

(
σ+
i (c)

)
= σ+

α(l−i)+i(c).

Since σ∗α(σ+
l (c)) = σ+

l (c), we deduce

σ+
l (c) = σ+

α(l−i)+i(c),

fact that implies (α− 1)(l − i) = 0. So unless α = 1 or l = i the equation is not satisfied,
which ends the proof

Let’s recall a well-known result about the sugbroups of a finite cyclic group, theorem
that will be applied to Fp∗,

Theorem 5.9.2 ([BC68, Theorem 4.9]). Let G = 〈g〉 be a finite cyclic group, with size m.
Then any subgroup of G has the form 〈gd〉, where d is a positive divisor of m. Different
values of d give subgroups with different sizes, so there is just one subgroup of G having a
given size.

With this theorem at hand we directly deduce

Proposition 5.9.3. Let c ∈ F2[x]/(xp − 1) and Γc be the subgroup of (Fp∗, ·) which
stabilizes Fp. c. Then the cardinality of the orbit Fp∗. (Fp. c) is

|Fp∗. (Fp. c)| =
(p− 1)
|Γc|

. (5.47)
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But in our case we have to consider polynomials with a given Hamming weight, fact
that seems to complicate the computations. We demonstrate that orbits of polynomials
with a given weight are in fact easier to compute. For that we need to introduce some
notations.

Notation 5.9.4. We denote the set of polynomial in F2[x]/(xp − 1) that are fixed by an
element α ∈ Fp∗ by

Rα
p = {c ∈ F2[x]/(xp − 1) | σ∗α(c) = c}.

Cα
i = {i, iα, . . . , iαord(α)−1}, is the α-cyclotomic class of i where ord(α) is the order of α

in Fp∗. For a given α we denote by Iαp = {i1, i2, . . . , il} the set containing one representative
of each α-cyclotomic class.

When p is prime for a given α ∈ Fp∗ there are (p− 1)/ord(α) cyclotomic classes having
the same cardinality plus the class of zero which is reduced to only one element. Hence
Iαp = {0, i1, i2, . . . , i(p−1)/ord(α)}.

Example 5.9.5. Let p = 7. Then we have

• for α = 1 we have C1
i = {i} for any 0 6 i 6 6.

• for α = 2 and α = 4 we have ord(2) = ord(4) = 3, hence we obtain C2
0 = {0}, C2

1 =
{1, 2, 4} and C2

3 = {3, 5, 6}

• for α = 3 and α = 5 we have ord(3) = ord(5) = 6 and C3
0 = {0} and C3

1 = F∗7.

• for α = 6 we have ord(6) = 2. We obtain C6
0 = {0} and C6

i = {i, 7 − i} for any
1 6 i 6 3.

Proposition 5.9.6. The set of polynomials in F2[x]/(xp− 1) that are fixed by an element
α ∈ Fp∗ equals

Rα
p = {c(x) =

p−1∑
i=0

cix
i ∈ F2[x]/(xp − 1) | ∀j ∈ Cα

i cj = ci, for i ∈ Iαp }.

Proof. By the definition we have that σ∗α(c) = c is equivalent to

∀i ∈ Fp cαi mod p = ci. (5.48)

So if we choose one element i ∈ Iαp then αi mod p ∈ Cα
i has to satisfy the later equation.

But this means that α(αi) ∈ Cα
i is also an index that has to satisfy the same equation.

In other words all the indices in Cα
i must satisfy the same equation and thus ∀j ∈ Cα

i we
have ci = cj.

Example 5.9.7. Let p = 7. Then we have

• for α = 1, R1
7 = F2[x]/(xp − 1).

• for α = 2 and α = 4, R2
7 = R4

7 = {c0+c1(x+x2+x4)+c3(x3+x5+x6) , c0, c1, c3 ∈ F2}.
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• for α = 3 and α = 5, R3
7 = R5

7 = {c0 + c1(x+ x2 + x3 + x4 + x5 + x6) , c0, c1 ∈ F2}.

• for α = 6, R6
7 = {c0, c1(x+ x6) + c2(x2 + x5) + c3(x3 + x4) , c0, c1, c2, c3 ∈ F2}.

Remark 5.9.8. We notice that

• for a fixed i ∈ Fp∗, for any element j ∈ Cα
i we have Ri

p = Rj
p. Fact that can be

expressed in an equivalent manner

for 〈i〉 ⊂ Fp∗,∀j ∈ 〈i〉 we have Ri
p = Rj

p.

• the classes defined by the element −1 are Cp−1
0 = {0} and Cp−1

i = {i, p− i} for all
1 6 i < p−1

2 .

• when p is odd Fp∗ admits at least three subgroups: the trivial group, the whole group
Fp∗ and 〈−1〉, which is a group of order two.

Proposition 5.9.9. Let α ∈ Fp∗ and c ∈ F2[x]/(xp−1) so that 1 < ‖c‖ < p and σ∗α(c) = c.
Then the order of α divides either ‖c‖ or ‖c‖ − 1.

Proof. From Proposition 5.9.6 we know that any polynomial c ∈ Rα
p is fully described

c = ∑
i∈Iαp

ci
∑

ji∈Cαi
(xji).But for a fixed α the cardinality of any equivalence class Cα

i equals

the order of the element |Cα
i | = ord(α), from which we deduce two possible cases:

• either c0 = 0 and we obtain that ord(α)| ‖c‖ .

• or c0 = 1 and then we obtain ord(α)| ‖c‖ − 1.

So only group elements that respect the property given above can fix elements in the set
of polynomials with weight restrictions. Since the order of any element α ∈ Fp∗ also satisfies
the condition ord(α)|(p− 1) we deduce that only α ∈ Fp∗ satisfying ord(α)| gcd(‖c‖ , p− 1)
or ord(α)| gcd(‖c‖ − 1, p− 1) can stabilize c. Thus a natural consequence is that we can
use the Burnside lemma for counting the number of orbits in this case.

Theorem 5.9.10. Let p be a prime number and 1 6 ω 6 p− 1. Then we have

|L(p, ω)/Fp∗| =
1

p− 1

(
1
ω

(
p− 1
ω − 1

)
+

∑
α∈Fp∗\{1}

ord(α)| gcd(p−1,ω)

( p−1
ord(α)
ω

ord(α)

)
+

∑
α∈Fp∗\{1}

ord(α)| gcd(p−1,ω−1)

( p−1
ord(α)
ω−1

ord(α)

))

Example 5.9.11.
For p = 7 and ω = 3 we have:

L(7, 3) = {0000111, 0001011, 0010011, 0001101, 0010101}

We also have |F∗7| = 6 and |L(7, 3)| = 5. We count the number of fixed points for all the
elements α ∈ F∗7.
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α = 1, ord(1) = 1 =⇒ L(7, 3)
α = 2, ord(2) = 3 =⇒ {0001011, 0001101}
α = 3, ord(3) = 6 =⇒ ∅
α = 4, ord(4) = 3 =⇒ {0001011, 0001101}
α = 5, ord(5) = 6 =⇒ ∅
α = 6, ord(6) = 2 =⇒ {0000111, 0010011, 0010101}

So using Theorem 5.9.10 we obtain

|L(7, 3)/Z∗7| =
1
6

(
1/3

(
6
2

)
+
(

6/3
3/3

)
+
(

6/3
3/3

)
+
(

6/2
2/2

))
= 5 + 2 + 2 + 3

6 = 2

Verification:

Fp∗. 0000111 = {0000111, 0010011, 0010101} and Fp∗. 0001011 = {0001011, 0001101}

5.9.2 Proportion of extended weak orbits
The case of a 2-quasi-cyclic MDPC code is a direct generalization of the results obtained
in Proposition 5.9.3 and 5.9.9.

Corollary 5.9.12. Let (h1, h2) ∈ Pω1,ω2 with ‖hi‖ = ωi and denote by Γ(h1,h2) the subgroup
of Fp∗ that stabilizes (Fp)2 . (h1, h2). Then we have

• any α ∈ Γ(h1,h2) is such that ord(α)| gcd(p − 1, gcd(l1, l2)), where li runs through
{ωi, ωi − 1}, for 1 6 i 6 2.

• The cardinality of an orbit equals

∣∣∣Fp∗. ((Fp)2. (h1, h2)
)∣∣∣ = (p− 1)

|Γ(h1,h2)|
. (5.49)

• When (h1, h2) is a private key of a (2p, p, ω) QC-MDPC code with ωi = O(
√
p log p)

we have
O

(√
p

log p

)
6
∣∣∣Fp∗. ((Fp)2. (h1, h2)

)∣∣∣ 6 p− 1. (5.50)

Proposition 5.9.13. Let (h1, h2) be a private key of a (2p, p, ω) QC-MDPC code. If
(h1, h2) ∈ W̃ω1,ω2 then σ∗−1

(
(Fp)2 . (h1, h2)

)
is a weak orbit.

Moreover if −1 ∈ Γ(h1,h2) then |Fp∗. ((Fp)2. (h1, h2))| 6 p−1
2 .

In general for a smooth QC-MDPC code we obtain
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Corollary 5.9.14. Let p and ω be the parameters of a smooth (2p, p, ω) QC-MDPC code.
Then we have

p− 1
ω/2

∣∣∣W̃ω/2,ω/2

∣∣∣∣∣∣Pω/2,ω/2∣∣∣ 6

∣∣∣∣ ˜̃Wω/2,ω/2

∣∣∣∣∣∣∣Pω/2,ω/2∣∣∣ 6 (p− 1)

∣∣∣W̃ω/2,ω/2

∣∣∣∣∣∣Pω/2,ω/2∣∣∣ . (5.51)

Now if we consider the set of all (2p, pω) QC-MDPC codes we obtain:

Proposition 5.9.15. Let p be a prime number and ω an even integer such that ω =
O(
√
p log p). Then we have

p− 1
ω/2

(
ω
2(
p−1
ω
2−1

))2(
p− 1
ω − 2

)
6

∣∣∣∣ ˜̃Wω

∣∣∣∣
|Pω|

6
ωp3

2

(
p−1
ω−2

)
(

2p
ω

)
+ (−1)ω2 +1

(
p
ω
2

) . (5.52)

5.10 Numerical Results
The parameters chosen for the experimental part are those suggested by the designers of
the scheme [MTSB13]. The security levels correspond to the best known attacks given
in [MTSB13] and the probabilities displayed in Figure 5.8 and 5.9 are computed directly
from the formulas given in Corollary 5.4.12, Proposition 5.8.25, Corollary 5.8.30 and
Proposition 5.4.10.

In Figure 5.8 we compute the exact values directly from Corollary 5.4.12 and Propo-
sition 5.8.25 for the first and the second probability. In the last column we give the
asymptotic value of the probability of a weak orbit from Corollary 5.8.30. The asymptotic
value approaches very precisely the exact value, at least when the exact computation is
possible. We used the following procedure to obtain our results:

• We generate the list L :=
[( ω

2
p−ω2

)
k
−
( ω

2
p−ω2

)
k−1

]
k∈{(p−1)/ω2 ,...,p−

ω
2 }
.

• We compute the probability from Equation 5.36

P (Yp,ω1,ω2 > p− 1) =
∑

k1+k2>p−1
k1,k2∈{(p−1)/ω2 ,...,p−

ω
2 }

L[k1]L[k2].

In Figure 5.9, we display the probability values for all ω1 + ω2 = ω. In the first column
we compute the exact value of the probability from Proposition 5.4.10. Whereas in the
next column we compute the asymptotic value of lower bound and the upper bound. In
the last column we give only the asymptotic value for the upper bound. One might think
that the upper bound is not very tight and that the exact value of the probability is
way lower than the value of the upper bound. Even though we share this concern we
want to insist on the fact that for achieving sharp bounds we need to deal with complex
summations involving the generalized Pascal-DeMoivre triangles.

In order to cope with that, we experimented for several values of the parameters, which
show that the probability is quite close to the upper bound. As p goes to infinity and
ω = O

(√
p log p

)
the difference between the two values tends to zero. We compute the

probabilities for the first cryptographic parameters p = 4801 and ω = 90. The exact value
for the probability equals 2−71.26 whereas the upper bound equals 2−71.12.
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Security p ω
2

|Wω/2,ω/2|
|Pω/2,ω/2| P (Xp, ω

2
>>> p−1

2 )2 P (Yp, ω
2 , ω

2
>>> p− 1)

level Corollary 5.4.12 Proposition 5.8.25 Equation 5.36 Corollary 5.8.30
exact value exact value exact value asympt. value

4801 45 2−87 2−78 2−74.04 2−74.04

80 3593 51 2−99 2−90 2−86.02 2−86.02

3079 55 2−108 2−98 2−94.12 2−94.12

9857 71 2−139 2−128 2−124.52 2−124.52

128 7433 81 2−159 2−149 2−145.58 2−144.58

6803 85 2−167 2−157 2−153.67 2−152.67

32771 132 2−260 2−249 2−244.3

256 22531 155 2−307 2−295 2−290.5

20483 161 2−319 2−307 2−302.7

Figure 5.8 – Probability of a weak key (orbit) for the QC-MDPC when ω1 = ω2 = ω
2 .

Security p ω
2

|Wω|
|Pω|

∣∣∣W̃ω

∣∣∣
|Pω|

∣∣∣˜̃Wω

∣∣∣
|Pω|

level Proposition 5.4.10 Proposition 5.8.31 Proposition 5.9.15
exact value bounds Eq. (5.45) upper bound

4801 45 2−84 [2−74, 2−71] 2−60

80 3593 51 2−96 [2−86, 2−83] 2−72

3079 55 2−105 [2−94, 2−91] 2−80

9857 71 2−136 [2−125, 2−121] 2−109

128 7433 81 2−156 [2−145, 2−141] 2−129

6803 85 2−164 [2−153, 2−149] 2−137

32771 132 2−257 [2−244, 2−241] 2−227

256 22531 155 2−303 [2−291, 2−287] 2−273

20483 161 2−315 [2−303, 2−299] 2−285

Figure 5.9 – Probability of a weak key, extended weak pairs and improvements on
extended weak pairs for the QC-MDPC for all ω1 + ω2 = ω.

5.11 Complexity and Experimental Timings

5.11.1 Preliminaries
In general for the Key Recovery Attack the model is quite different in the sense that for
any given public key there is an algorithm able to recover the corresponding private key.
So the complexity of the KRA is given by the Working Factor (WF) of the best generic
attack, which in the case of QC-MDPC is exponential in the parameters of the scheme.
In our case the attack algorithm recovers a private key from the public key only if it’s
applied on a weak key, weak orbit or extended weak orbit. Therefore in this model the
WF of the attack is given by the complexity of the algorithm that solves the Rational
Reconstruction Problem.

Extended Euclidean Algorithm complexity. The main brick in our algorithm is the
Rational Reconstruction, that can be performed using the Extended Euclidean Algorithm.
The original version of the EEA has a time complexity which is quadratic in the length
of the input, here O(p2). The first optimizations were proposed by Lehmer [Leh38] in
1938, when the constant factor was improved but the complexity was still quadratic. The
first sub-quadratic algorithm was proposed in 1970 by Knuth [Knu71b] with complexity
O(p(log p)5 log log p) and shortly after revisited by Schönhage in 1971 [Sch71] who obtained
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a better complexity O(p(log p)2 log log p). The Least-Significant-Bit version of the Knuth-
Schönhage algorithm is due to Stehlé and Zimmermann in 2004 [SZ04]. Even though
the time complexity of this algorithm is not improved the description and the proof of
their algorithm is significantly simpler in this case. The average behavior of the EEA was
studied in [LV08, CCD+09].

We remark that here we employ a slightly modified EEA. Indeed, in our version the
algorithm stops when the weight of the two outgoing polynomials satisfies the relation
in (5.6). This means that the number of iterations might possibly be less than the
maximum number of steps in EEA. But this advantage is balanced by the fact that
we check the weight of the polynomials. The complexity of checking the weight of the
polynomials equals ω + ε bit operations, where ε can vary in the set {1, . . . , p− 1− ω}.
This fact comes from the degree condition of the outgoing polynomials in the EEA, that
is deg(h1) + deg(h2) < p. Now if (h1, h2) is a weak key we might have to check p − 1
coefficients and if not, in the best case only ω plus a constant number of coefficients.

5.11.2 Complexity analysis
Worst case.

The worst case scenario is when the attack is performed on a key that is not weak, with
respect to our definition. It is also the case when the attacker manages to find a weak key
at the last operation, more exactly when all the p− 1 actions of the multiplicative group
were shot and all the p actions of the additive group were tried. In this case we perform
p− 1 actions of Fp∗ times p actions of the Fp times the EEA. So in the worst case the work
factor equals p(p− 1) ·WFEEA. We stress out the fact that due to the values of the weak
keys, weak orbits and extended weak orbits, for the cryptographic purpose in [MTSB13]
the worst case scenario work factor complexity is also valid in the case of a random key.

Now let’s suppose that the private key of a QC-MDPC is a weak key or a weak orbit or
an extended weak orbit. We will study the work factor of the attack for each configuration
in the best case and in average.

Best case.

The best case for an adversary is when the private key is a weak key and in this case we
have a work factor WFEEA. Slightly different but still at a constant close work factor from
the best case is when a small number of cyclic shifts is needed to reach a weak key.

Average case.

We consider here two scenarios

• Average case for a weak orbit. Let (h1, h2) be the private key if a QC-MDPC scheme
such that it is not weak, meanwhile the orbit under the additive group Fp is a weak
one. In other words k1 + k2 > p− 1, where ki represents as before, the longest run
of hi. We first notice that the private key cannot be recovered by applying directly
the modified EEA on the public key. So we need to test a several number of cyclic
shifts in order to find the weak pair.
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In order to estimate the average number of shifts needed to retrieve a weak pair we
set k1 + k2 = p− 1 + ε, where 0 6 ε 6 p+ 1− ω. Then we have
Proposition 5.11.1. Let (h1, h2) ∈ F2[x]/(xp − 1) with ‖h1‖ + ‖h2‖ = ω and
k1 + k2 = p− 1 + ε, where 0 6 ε 6 p+ 1− ω. Let f ∈ F2[x]/(xp − 1) be such that
f = h2h

−1
1 (mod xp − 1).

Then there are 2ε+1 shifts of f such that the outgoing polynomials of EEA(xp−1, xif)
are weak pairs.

Proof. The first weak key given (h1, h2) with k1 + k2 = p− 1 + ε is the minimum
pair (h1, h2). Then for all 1 6 i 6 ε we have that (xih1, h2) and (h1, x

ih2) are also
weak pairs. Therefore we have 2ε+ 1 different shifts which give weak pairs.

Thus in order to estimate the average number of shifts we put a simple probability
problem.
Proposition 5.11.2. Consider a set of p balls (representing the total number of
shifts), composed of two type of balls, 2ε+ 1 white balls and the rest are black balls.
Then the probability of picking the first white ball at the ith step equals for all
i ∈ {1, . . . , p− 2ε− 1}. (

p−i
2ε

)
(

p
2ε+1

)
So in average the first white ball is picked at the p+ 1

2(ε+ 1)
th

step.

Proof. The problem is a classic urn process without replacement. In fact is the
analogue of the geometric distribution, law that describes the first arrival probability
in a urn process with replacement. To simplify the computations we denote the
number of white balls by d = 2ε+ 1. So the probability of choosing the first white
ball at the ith step is the ratio between the total number of white balls at the ith step
in the urn, which equals d and the number of balls in the urn, which equals p− i+ 1,
multiplied by the probability of choosing only black balls in the previous (i − 1)
steps, which equals p−d

p
× · · · × p−d−i+2

p−i+2 . From this we deduce that the probability
of the choosing the first white ball at the ith step equals

∀1 6 i 6 p− d+ 1,

(
p−i
d−1

)
(
p
d

) .

We also need to verify that our distribution is well defined
p−d−1∑
i=1

(
p−i
d−1

)
(
p
d

) = 1(
p
d

) p−d∑
j=0

(
j + d− 1
d− 1

)

=

(
p
d

)
−
(
d−1
d

)
(
p
d

)
= 1.
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We used here the following formula from [Gou72]
p∑
i=0

(
i+k
r

)
=
(
p+k+1
r+1

)
−
(

k
r+1

)
.

To compute the average we have

p−d−1∑
i=1

i

(
p−i
d−1

)
(
p
d

) =
p−d∑
j=0

(n− d+ 1− j)

(
j+d−1
d−1

)
(
p
d

)
= n− d+ 1(

p
d

) p−d∑
j=0

(
j + d− 1
d− 1

)
− 1(

p
d

) p−d∑
j=0

j

(
j + d− 1
d− 1

)

= n− d+ 1− 1(
p
d

) p−d∑
j=0

d

(
j + d− 1

d

)

= n− d+ 1− d

(
p
d+1

)
(
p
d

)
= n− d+ 1− dn− d

d+ 1
= n+ 1
d+ 1 .

When ε = 0 in other words only one shift works, we obtain the discrete uniform
distribution and obtain an average number of shifts equal to p+ 1

2 (the working

factor equals p+1
2 WFEEA). Whereas for ε = p+ 1

2c − 1, where c a positive constant,
the average number of shifts is constant and equals c ( the working factor equals
cWFEEA).

• The average case for an extended weak orbit. The last part of the analysis is
estimating the average number of extension (actions of Fp∗) needed to retrieve a
weak pair. Since the relation between the action of this group and the longest run
seems more complicated we just give a lower bound for the searched quantity. We
suppose that there is at least one shift on f ≡ h1

h2
mod (xp − 1) such that two

shifted h1 and h2 can be obtained using the EEA. By Proposition 5.9.13 that σ∗−1(f)
can also be attacked with the same algorithm, so for each weak key there are at
least two good extensions for our attack, which makes an average quantity upper
bounded by p

3 .

5.11.3 Numerical results
The first set of parameters that we used were not in the scale of the cryptographic values.
More precisely we considered p = 101 and ω1 = ω2 = 9. The purpose was to confront
the theoretical values for the probabilities of a weak keys and the experimental results.
In this sense using MAGMA’s random generator we computed 105 pair of polynomials
for the QC-MDPC scheme and executed the attack on the shifted keys. In theory the
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probability of finding a weak orbit equals 0.0032. Meanwhile in practice we obtained a
probability equal to 0.00317 and the time needed to test all the orbits was approximately
6000 seconds.

In the second part we used the first parameters for the 280 security level which are
p = 4801 and ω = 90 and consider the most frequent case max

i∈{1,2}
ωi = 47. In the first case

we applied the EEA on a weak key. In the second part we generated a weak key that we
shifted. Therefore we randomly choose an integer i ∈ Fp and applied the EEA on the
ith shift. We repeated the procedure until a weak key was found. In the worst case we
had to compute all the p shifts, whereas in average we only needed a small number of
trials until the weak key was discovered. The last column corresponds to the following
experience. We generated a weak key, then we applied the action of F∗p and the we shifted.
In this case the procedure is the same: we randomly pick an element of the group F∗p and
consider the key under the action of this element. Then we apply the Shifted(EEA) until
the proper pair of shift and extension in founded. In the worst case we compute all the
possible combinations of shifts and extensions.

On a 4-core Intel(R) Xeon(R) CPU ES-2690 @ 2.90 GHz, using MAGMA V2.19-9 we
applied two variants of the EEA : the recursive original variant with complexity O(p2) and
the MAGMA implementation using the Knuth–Schönhage version.

EEA Shifted(EEA) Extended(Shifted(EEA))
Best Average Worst Average Worst

Recursive Version 0.12 s 4.5 min 9.5 min 5.3 days 1 month
MAGMA Version 0.86 ms 2 s 4.1 s 1 h 5h30 min

Figure 5.10 – Experimental timings for the first set of parameters at a 280 security level
for the QC-MDPC scheme.

5.11.4 Secure QC-MDPC
In order to prevent the scheme from such weakness we have to check whether we can
retrieve an equivalent private pair from the public key. The first solution is to apply our
attack on all the elements in the orbit Fp∗.Fp. f(x). But we can do much better using the
longest run property from (5.23). Indeed we only need to check if the sum of the longest
runs of h1(x) and h2(x) is bigger than p−1. Based on this remark our algorithm generates
two private polynomials for the QC-MDPC code and then checks for each equivalent pair
σ∗(α,α)(h1, h2) for all α ∈ Fp∗, if the longest run condition is satisfied. If the answer is
positive then we restart from the beginning. Figure 2 illustrates the new Key Generation
algorithm for the QC-MDPC scheme.

Proposition 5.11.3. Let p be a prime number such that 2 is a primitive element in the
group Fp∗. Then the time complexity of Algorithm 2 is dominated by Nf (p− 1)(2ω + ω2)
binary operations, where Nf is the number of times we repeat Step 2.

Proof. The time complexity of Algorithm 2 equals p− 1 (the number of steps in the loop)
times the working factor of computing the two lists and their corresponding longest run.
Computing the lists takes ω modular multiplications, at which we add the Sort function

115



5.12. PERSPECTIVES

Input: Two odd integers ω1 and ω2 s.t. ω1 + ω2 = ω
Output: A secure private pair (h1(x), h2(x)) for the QC-MDPC scheme

1 S ← {0, . . . , p− 1} ;
2 L1 ← RandomSubset(S, ω1), L2 ← RandomSubset(S, ω2);
3 // RandomSubset(E,ω) randomly chooses a subset of E of cardinality ω;
4 for α ∈ Fp∗ do
5 Lα1 = Sort([αi (mod p) : i ∈ L1]) and Lα2 = Sort([αi (mod p) : i ∈ L2]);
6 kLαj = max( max

16i6ωj−1
(Lαj [i+ 1]− Lαj [i]), p− 1− Lαj [ωj] + Lαj [1]), for 1 6 j 6 2;

7 if kLα1 + kLα2 > p− 1 then
8 go back to Step 2;
9 end

10 h1(x)← ∑
i∈L1

xi and h2(x)← ∑
i∈L2

xi

Algorithm 2: Secure Key Generation of a QC-MDPC McEliece scheme

that takes ω2
i operations plus ω additions which corresponds to the computation of the

longest run of the two lists Lα1 and Lα2 . The result has to be multiplied by the number of
failures, Nf which ends the proof.

5.12 Perspectives
Our technique might also be useful for other public key encryption schemes like for example
the NTRU scheme [HPS98]. Here the description is similar to the QC-MDPC case. The
Key Generation algorithm takes as input the parameters (p, q, l) and outputs the private
key sk = (h1(x), h2(x)) and the public key pk = f(x) where

• h1(x), h2(x) ∈ Zq[x]/(xp − 1) are such that

1. h1 and h2 are sparse polynomials with respect to the norm L∞. In general the
polynomials have coefficients in {−1, 0,+1}.

2. h1 and h2 are moderately sparse polynomials with respect to the Hamming
distance. For example when p = 251 the weight equals ‖h1‖ = ‖h2‖ = 72.

3. h1 admits an inverse modulo p and modulo q.

• f(x) ∈ Zq[x]/(xp − 1) is such that

h1(x)f(x) = ph2(x) (mod q). (5.53)

So if we apply the weak keys technique we must take into consideration Lyndon words
of length p over the alphabet {−1, 0, 1}. Secondly it is rather unclear how the restriction
on the Hamming weight is considered. Nevertheless the problem seems quite similar to the
QC-MDPC and the probabilities might be computed in this case. But it appears at least
for the (251, 128, 3)−NTRU that the probabilities are significantly smaller than in the
first two security level of the DC-MDPC. Our statement is based on a simple argument,
since the Hamming weight of the two polynomials equals 72, a rough estimation gives a
probability close to 3−2×72 = 3−144.
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6
Conclusion

Motivated by the up-growing weight that code-based cryptography has lately developed
in the public key cryptography, we proposed to study during the thesis the security of the
latest McEliece variants.

We started with the QC-MDPC McEliece, which is among the favorite candidates
for quantum resistant encryption solutions. We proposed a key recovery attack based
on an algorithm that solves the Rational Reconstruction Problem. The main advantage
of our approach is the complexity of the attack, which is quadratic in the code length.
Since only particular configurations of private keys can be retrieved with our algorithm we
analyzed the proportion of such configurations, that we call weak keys. We continued our
analysis and investigated different techniques for extending the proportion of weak keys.
We developed two methods based on the equivalence of quasi-cyclic codes that allowed us
to multiply the proportion of weak keys by a factor equal to the length of the code times
the square of the Hamming weight of the private key. We finished this part by proposing
an efficient and secure Key Generation algorithm for the QC-MDPC McEliece scheme.

Secondly we analyzed the security of the McEliece variant based on Polar codes. The
idea of using Polar codes in cryptography came in a natural manner since Polar codes
posses interesting properties like: they are capacity achieving codes for the class of Binary
Discrete Memoryless channels, they admit efficient encoding and decoding procedures etc.
Even though Polar codes are closely related to Reed-Muller codes the techniques used for
the cryptanalysis of Reed-Muller codes do not work on Polar codes. Therefore we started
to study in detail the structure of Polar codes. If at the beginning our purpose was purely
cryptographic we finally answered to several non-trivial coding theory questions as well as
to our initial problem. The first contribution was to propose an algebraic framework for
both Polar and Reed-Muller codes. It is based on a partial order that we defined, order
that allowed us to determine many of the hidden structural properties of Polar codes.
Using some of the these properties, we proposed a successful cryptanalysis against the
McEliece scheme based on Polar codes.

Perspectives in code-based cryptography Since most of the McEliece variants were
successfully cryptanalyzed, several questions regarding this scheme were raised, among
which a general security question of indistinguishability of the public code from a random
code. And even though some variants remain secured against existing attacks there is no
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theoretical guaranty of their security. By that we mean there is no security proof for the
aforementioned variants. For instance there is no formal proof of the indistinguishability
of the public code from a random one. Following McEliece’s idea a possible solution for
this problem would be to find a new masking technique for which there is a formal proof
of the indistinguishability of the public code from a random one. In [Wan16] the author
propose a masking technique for which he proves that the public code is equivalent to
a random code and thus reintroduce in the context all the structural codes that have
been broken. He mention that the attack we propose against Polar codes do not work any
more in this new context. Another solution was already proposed by Alekhnovich who
proposed an innovative approach based on the difficulty of decoding purely random codes
[Ale11]. Several authors were inspired by his work [DMN12, DV13, KMP14, ABD+16].
This two approaches open a new perspective for code-based cryptography.
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A
Permutation group of linear codes

Proposition A.0.1. Let C be a [n, k, d] binary linear code and π ∈ Sn.Then we have

(
C ⊥

)π
= (C π)⊥ . (A.1)

H (C π) = (H(C ))π . (A.2)

(
C 2
)π

= (C π)2 . (A.3)
Proof.

• Proof of Equation (A.1).
First of all we remark that the scalar product is invariant by permutation of the
vectors positions, namely xy

def= ∑n
i=1 xiyi = ∑n

i=1 xπ(i)yπ(i)
def= xπ−1

yπ
−1
.

Now we can prove the first identity
(
C ⊥

)π
= (C π)⊥ . Let y be a codeword in

(
C ⊥

)π
.

Then y = xπ with x ∈ C ⊥ which means that ∀ c ∈ C we have that ycπ = xπcπ = 0
by definition of x. Therefore

(
C ⊥

)π
⊂ (C π)⊥ .

Moreover dim
(
(C ⊥)π

)
= dim

(
C ⊥

)
= dim

(
(C π)⊥

)
, fact that ends the proof.

• Proof of Equation (A.2).
We begin by recalling that for any n length binary linear codes C1 and C2 we have

C π
1 ∩ C π

2 = (C1 ∩ C2)π . (A.4)

Now we can use the previous result and obtain

(H(C ))π def=
(
C ∩ C ⊥

)π (A.4)= C π ∩
(
C ⊥

)π (A.1)= C π ∩ (C π)⊥ def= H (C π) .

• Proof of Equation (A.3).
For the square code we use the fact that the component-wise product is invariant
by permutation, (c1 ? c2)π = cπ1 ? cπ2 .
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Let y ∈ (C 2)π , then we have that y =
(∑

(i,j)
αi,jci ? cj

)π
with ci and cj codewords

in C and αi,j ∈ F2. Using the previous property of the component-wise product we
have that y = ∑

(i,j)
αi,jc

π
i ?cπj ∈ (C π)2 . For the second inclusion we use the dimension

argument and obtain the wanted result.

Corollary A.0.2. Let C be a binary linear code [n, k, d] and Perm (C ) be its permutation
group. Then we have that

Perm (C ) = Perm
(
C ⊥

)
. (A.5)

Perm (C ) ⊆ Perm (H(C )) . (A.6)

Perm (C ) ⊆ Perm
(
C 2
)
. (A.7)

Proof. The proof for all the three ⊆ inclusions works exactly the same. Let π ∈ Perm (C )
be an element of the permutation group of C . Then we have by Proposition A.0.1 that(

C ⊥
)π

= (C π)⊥= (C )⊥ ⇒ π ∈ Perm
(
C ⊥

)
(H(C ))π = H (C π)= H (C ) ⇒ π ∈ Perm (H(C ))(

C 2
)π

= (C π)2= (C )2 ⇒ π ∈ Perm
(
C 2
)

In order to prove Equation (A.5) we choose an element π ∈ Perm
(
C ⊥

)
and obtain

C ⊥ =
(
C ⊥

)π (A.1)= (C π)⊥ ⇒ C = (C π) .

Hence we have that π ∈ Perm (C ) .

Remark A.0.3.

• If C is weakly self-dual then we have that Perm (C ) = Perm (H(C )) since H(C ) = C .

• There are code families for which Perm (C ) = Perm (H(C )) = Perm (C 2), for
example the Reed-Muller codes R(r,m) with r 6 b(m− 2)/2c. (see 2.2.27)

Proposition A.0.4. Any binary linear code C of dimension 1 or 2 has Perm (C ) =
Perm (C 2) .

Proof. For a binary linear code C of dimension 1 we have that C = C 2.
For a binary linear code C of dimension 2 we set C = {0n, c, b, c + b}, with b 6= c. So

the square code of C is C 2 = {0n, c, b, c + b, c ? b, c ? b + b, c ? b + c, c ? b + c + b}. We
notice that
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Remark A.0.5. If one of the following conditions is satisfied

◦ 1n ∈ C

◦ c ? b = 0n

◦ c ? b = 1n

◦ b ? c = b

◦ b ? c = c

then C = C 2.

So let π ∈ Perm (C 2) , then we have the following possible cases:

• cπ ∈ C , fact that implies that π ∈ Perm (C ) .

• cπ = c ? b. Since π preserves the Hamming weight we have that wt(c) = wt(c ? b).
But this implies that either b = 1n or b = c. For the former case we satisfy the first
condition in A.0.5 and thus C = C 2 so π ∈ Perm (C ) . As for the later case b = c
we have a contradiction since b 6= c.

• cπ = c ? b + c. Using the fact that π preserves the Hamming weight and Equation
(2.2.9) we have that wt(c) = wt(c ? b + c) (2.2.9)= wt(c) + wt(c ? b)− 2wt(c ? b ? c).
This equation implies that wt(c) = wt(c) − wt(c ? b). But unless c ? b = 0n this
equation is not possible, so we have by A.0.5 that C = C 2 and thus π ∈ Perm (C ) .

• cπ = c?b + c + b. Since π preserves the Hamming weight and using Equation (2.2.9)
we have

wt(c) = wt(c ? b + c + b)
= wt(c + b) + wt(c ? b)− 2wt((b + c) ? (c ? b))
= wt(c + b) + wt(c ? b)
(2.2.9)= wt(c) + wt(b)− 2wt(c ? b) + wt(c ? b)
= wt(c) + wt(b)− wt(c ? b)

This fact implies that wt(b) = wt(c ? b). But this equality holds only if b = b ? c
from which by A.0.5 we deduce as before that π ∈ Perm (C ) .

• cπ = c ? b + b. Using Equation (2.2.9) we deduce that

wt(cπ) = wt(b) + wt(c ? b)− 2wt(c ? b),

fact that implies
wt(b) = wt(c) + wt(c ? b).
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Now, based on this equation we obtain

wt(b + c) = 2wt(c)− wt(c ? b)
wt(c ? b + b) = wt(c)
wt(c ? b + c) = wt(c)− wt(c ? b)

wt(c ? b + b + c) = 2wt(c)

If wt(c ? b) ∈ {0,wt(c)} then we deduce as before that either c ? b = 0n or c ? b = c
and by A.0.5 we have π ∈ Perm (C ) .
So we consider that 0 < wt(c ? b) < wt(c). Since the maximum weight is given
by c + b + c ? b and it is strictly bigger than all the other vector weight (because
0 < wt(c ? b) < wt(c)) we have that

c ? b + c + b = (c ? b + c + b)π

= (c ? b + b)π + cπ

= (c ? b + b)π + c ? b + b

But this implies that c = (c ? b + b)π. So for the moment we have determined how
π acts on c, c ? b + b and c ? b + b + c. We continue and see what happens for the
rest of the vectors and we distinguish three different possibilities

1. If 0 < wt(c ? b) < wt(c)/2 we obtain

wt(c ? b) < wt(c ? b + c) < wt(b) < wt(c + b).

This implies that each of the vectors in the later inequality is mapped by π
into itself. Therefore we have

c + b = (c + b)π

= cπ + bπ

= b + b + c ? b

= c ? b.

Which is impossible unless c = b = 0n, from which we obtain that C = C 2.

2. If wt(c)/2 < wt(c ? b) < wt(c) we obtain

wt(c ? b + c) < wt(c ? b) < wt(c + b) < wt(b).

This implies that each of the vectors in the later inequality is mapped by π
into itself and we use the same argument as before to prove that C = C 2.

3. If wt(c ? b) = wt(c)/2 we obtain that (c ? b + b)π = c ? b + b. We also have
that b + c can be mapped by π into itself or into b. We have seen before that
if (c + b)π = c + b and bπ = b then we have that C 2 = C . So we can consider
the remaining case, for which we have

b + c = (b + c)π

= bπ + cπ

= c + b + b + c ? b

= c + c ? b
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Fact that implies b = c ? b which is impossible by the Hamming weight
condition.

In the next paragraph we give an example of a binary linear code for which the
permutation group of the code is different from both the permutation group of Hull and
permutation group of the square code.

Example A.0.6. Let C be a [6, 3, 2] binary linear code defined by the generator matrix1 0 1 1 0 0
0 1 1 1 0 1
0 0 0 0 1 1

 . Then we have that Perm (C ) = {id; (3, 4); (5, 6); (3, 4)(5, 6)}.

We also have that C ⊥ is a [6, 3, 2] binary linear code defined by the generator matrix1 0 0 1 1 1
0 1 0 0 1 1
0 0 1 1 0 0

 and has the same permutation group as C .

The H(C ) is the [6, 0] binary linear code. Indeed the only codeword that belong to
C and C ⊥ is the

(
0 0 0 0 0 0

)
vector. Therefore the permutation group is the

symmetric group Perm (H(C )) = S6.
The square code C 2 is the [6, 5, 1] binary linear code defined by the generator matrix

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . The permutation group Perm (C 2) is a group of order 48 generated

by {(1, 2); (2, 5); (5, 6); (3, 4)}.
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B
Decoding Polar codes

Successive cancellation decoder. We consider the simplest case, namely m = 1.
Suppose that a pair of bits (u2, u1) is encoded into a pair of bits (z2, z1) using W1, in other
words (u2, u1)→ (z2, z1) = (u1 ⊕ u2, u1). Then each element is sent over a channel W to
obtain a pair of symbols (y1, y2). Now given (y1, y2) we want to be able to decode, more
exactly to recover (u1, u2).

The first step consists in computing p1
def= prob(z1 = 1 | y1) and p2

def= prob(z2 = 1 | y2),
given (y1, y2) and the channelW. Remark that computing p1 and 2 can be done by inverting
the probability matrix corresponding to the channel W.

Secondly we detail for each synthetic channel the probability of recovering the initial
bit

1. The first case (the channel W−):
Given p1 and p2 find q2 = prob(u2 = 1 | y1, y2).

Lemma B.0.1.
q2 = 1− (1− 2p1)(1− 2p2)

2 . (B.1)

Proof. Since u2 = z1 ⊕ z2 we obtain

prob(z1 ⊕ z2 = 1) = prob(z1 = 1) + prob(z1 = 1)− 2prob(z1 = 1, z2 = 1).

As we know, the variables z1 and z2 are independent, therefore we obtain

prob(u2 = 1 | y1, y2) = prob(z1 ⊕ z2 = 1 | y1, y2)
= prob(z1 = 1 | y1, y2) + prob(z2 = 1 | y1, y2)
− 2prob(z1 = 1, z2 = 1 | y1, y2)
= prob(z1 = 1 | y1) + prob(z2 = 1 | y2)
− 2prob(z1 = 1 | y1)prob(z2 = 1 | y2)
= p1 + p2 − 2p1p2

= 1− (1− 2p1)(1− 2p2)
2 .
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2. The second case (the channel W+):
Given p1, p2 and u2 find q1 = prob(u1 = 1 | y1, y2, u2).
Lemma B.0.2.

q1 = p1p2

p1p2 + (1− p1)(1− p2) if u2 = 0 (B.2)

q1 = p1(1− p2)
(1− p2)p1 + p2(1− p1) if u2 = 1 (B.3)

Proof. Given u2 = 0 we have that z1 = u1 and z2 = u1, in other words z1 = z2 = u1.

Since we search for the probability that u1 = 1 we have q1 = p1p2

p1p2 + (1− p1)(1− p2)
when u2 = 0.
The second case u2 = 1 works the same. We have that z1 = u1 and z2 = u1 + 1,
in other words z1 = z2 + 1 = u1. Therefore the total number of possibilities
is: either z1 = u1 = 0, z2 = 1 or z1 = u1 = 1, z2 = 0. Among them there is
one good configuration for the probability prob(u1 = 1 | y1, y2), namely when

z1 = u1 = 1, z2 = 0. Thus the probability q1 = p1(1− p2)
(1− p2)p1 + p2(1− p1) when u2 = 1.

u2 z2 W y2 u2 z2 W y2

z1 W y1 u1 z1 W y1

Figure B.1 – The decoding algorithm over the two synthetic channels
(left) W− : F2 → Y × Y , (right) W+ : F2 → Y × Y × F2

We notice that forW+ the value of u2 is necessary, therefore the two synthetic channels
are not independent. Hence the decoder works as follows:

1. Compute the probability q2 corresponding to the channel W−.

2. If q2 > 1/2 then decode u2 = 1 else decode u2 = 0.

3. Use the value of u2 to compute q1 and decode u1.

Example B.0.3.

• Let W = BEC(p). Then W− can be viewed as binary erasure channel. The SC
decoder fails to decode u2 only when at least one of the symbols z1 or z2 were erased.
This fact arrives with probability 1 − (1 − p)2. Thus the decoder recovers u2 with
probability (1− p)2.

W+ can also be viewed as a binary erasure channel. In this case the value of u2 is
provided to the decoder and therefore, the decoder fails to recover the value of u1
when both of the symbols z1 or z2 were erased. This arrives with a probability p2 and
thus the decoder recovers u1 with probability 1− p2.
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• Let W = BSC(p). W− corresponds to u2 → (y1, y2) and if we denote the errors by
(e1, e2) we have that (y1, y2) = (z1 ⊕ e1, z2 ⊕ e2). Since z1 ⊕ z2 = u2 we state that
W− can be viewed as a BSC with u2 → u2 ⊕ e1 ⊕ e2. Therefore we obtain

prob(u2 = 1|y1, y2) = prob(x1 ⊕ x2 = 1|y1, y2)
(B.1)= 1− (1− 2p)2

2
= 2p(1− p).

W+ corresponds to u1 → (y1, y2, u2) where the value of u2 is provided by the decoder
of W−. This implies that (y1, y2 ⊕ u2) = (u1 ⊕ e1, y2 + u2). But since we know
the value of u2 and that y2 = u1 ⊕ u2 ⊕ e2 we say that the channel W+ outputs
(u1 ⊕ e1, u1 ⊕ e2), which is a BSC of diversity 2. Here the probabilities are:

prob(u1 = 1|y1, y2, u2) (B.2)= p2

p2 + (1− p)2 = p2

1− 2p+ 2p2 if u2 = 0

prob(u1 = 1|y1, y2, u2) (B.3)= p(1− p)
2p(1− p) = 1/2 if u2 = 1
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C
Factorization of xp − 1

Notation C.0.1. We denote for any 1 6 α 6 p− 1 the α-cyclotomic coset of the integer
i mod p by Cα

i = {i, iα, . . . , iαord(α)−1}, where ord(α) is the order of α in the multiplicative
group F∗p.

Theorem C.0.2 ([MS86, Chapter 7]). Let p>2 be a prime number. The decomposition
of xp − 1 over F2 is

xp − 1 = (x− 1)
d∏
i=1

gi(x),

where gi(x) are irreducible polynomials over F2[x], with deg gi = p−1
d

for all i ∈ {1, . . . , d}
and

gi(x) =
∏
j∈C2

si

(x− θj),

with θ a primitive pth root of unity and si 6= 0 runs through a set of coset representatives
mod p.

The polynomials gi in the factorization of xp−1 are known as the minimal polynomials
of θsi . The degree of each minimal polynomial gi equals the order ord(2) in the multiplicative
group Fp∗. In general if we search for the factors of xp−1 over Fq[x] with q coprime with p the
minimal polynomials are given by the q-cyclotomic cosets Cq

si
, that is gi(x) = ∏

j∈Cαsi
(x−θj).

Corollary C.0.3. Let p be a prime number such that 2 is a primitive element of the
multiplicative group Fp∗. Then the factorization of xp − 1 over F2[x] is

xp − 1 = (x− 1)(xp−1 + · · ·+ x+ 1).
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D
Binomial Coefficient - Asymptotics

We begin by recalling the Stirling formula for factorials:

p! =
√

2πp
(
p

e

)p [
1 + 1

12p + 1
288p2 +O( 1

p3 )
]
.

and the main asymptotic expansion derived from it:

Proposition D.0.1. When k = αp with α constant we have:

(
p

k

)
=
√

1
2πα(1− α)p

(
αα(1− α)1−α

)−p (
1− 1

12p

( 1
α

+ 1
1− α − 1

)
+O

(
1
p2

))
.

or using the Entropy function:

log
(
p

k

)
= −1

2 log 2πα(1− α)p+ pH(α)− 1
12p

( 1
α

+ 1
1− α − 1

)
+O

(
1
p2

)
.

Proof.
(
p

k

)
= p!
k!(p− k)!

=
√

p

2πk(p− k)

(
p

e

)p ( e

p− k

)p−k (
e

k

)k
f(p, k)

=
√

1
2πα(1− α)p

pp

ααppαp ((1− α))(1−α)p p(1−α)p
f(p, k)

=
√

1
2πα(1− α)p

(
αα(1− α)1−α

)−p
f(p, α)
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where

f(p, k) =
1 + 1

12p + 1
288p2 +O( 1

p3 )(
1 + 1

12(p−k) + 1
288(p−k)2 +O( 1

(p−k)3 )
) (

1 + 1
12k + 1

288k2 +O( 1
k3 )
)

= 1− 1
12p

( 1
α

+ 1
1− α − 1

)
+O

(
1
p2

)

So(
p

k

)
=
√

1
2πα(1− α)p

(
αα(1− α)1−α

)−p (
1− 1

12p

( 1
α

+ 1
1− α − 1

)
+O

(
1
p2

))
.

or using the Entropy function:

log
(
p

k

)
= −1

2 log 2πα(1− α)p+ pH(α)− 1
12p

( 1
α

+ 1
1− α − 1

)
+O

(
1
p2

)
.

Corollary D.0.2. When α = 1
2 we obtain the famous formula for the central coefficient:(

p
p
2

)
=
√

2
πp

2p
(

1− 1
4p +O

(
1
p2

))
.

In the second part we assume that k = o(p) and we develop the formula for the
binomial coefficient and replace the factorials using the Stirling formula:

Proposition D.0.3. When k = o(p) we have:

(
p
k

)
=



pk

k!
(
1 +O(1

p
)
)

if k = O(1)
pk

k! e
−c
(
1 +O( 1√

p
)
)

if k2

2p = c+O( 1√
p
)

pk

k! p
−c
(

1 +O(
√

log3 p
p

)
)

if k2

2p = c log p+O(
√

log p
p

)

Proof. (
p

k

)
= p!
k!(p− k)!

= 1
k!

√
2πp

2π(p− k)

(
p

e

)p ( e

p− k

)p−k 1 + 1
12p + 1

288p2 +O( 1
p3 )

1 + 1
12(p−k) + 1

288(p−k)2 +O( 1
(p−k)3 )

= pk

k!

√
p

(p− k)

(
1 + k

p− k

)p−k
e−kf(p, k)
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We study each element apart and give the asymptotic expansion for several cases:

f(p, k) =
1 + 1

12p + o(1
p
)

1 + 1
12(p−k) + o( 1

(p−k))

=
(

1 + 1
12p + o(1

p
)
)(

1− 1
12(p− k) + o(1

p
)
)

= 1− 1
12

k

p2 + o(1
p

)

= 1 + o

(
1
p

)

Since √
p

p− k
= 1 + k

2p + o

(
k

p

)
we obtain: √

p

p− k
f(p, k) = 1 + k

2p + o

(
k

p

)
+ o

(
1
p

)
= 1 +O

(
k

p

)
For the exponential factor we have:

(
1 + k

p− k

)p−k
e−k = e−ke

p(1− k
p

) log
(

1
1− kp

)

= e−ke
p

(
k
p
− k2

2p2−
k3

6p3 +o
(
k3
p3

))
= e

− k
2

2p−
k3

6p2 +o
(
k3
p2

)
= e−

1
2
k2
p (1+ 1

3
k
p

+o( kp))

If k = O(1) we have: (
p

k

)
= pk

k! e
O( 1

p
)
(

1 +O

(
1
p

))

= pk

k!

(
1 +O

(
1
p

))
.

If k =
√

2cp+O(√p) where c > 0 is a constant, we have:
(
p

k

)
= pk

k! e
−(c+O( 1√

p
))(1+O( 1√

p
))
(

1 +O

(
1
√
p

))

= pk

k! e
−ce

O

(
1√
p

) (
1 +O

(
1
√
p

))

= pk

k! e
−c
(

1 +O

(
1
√
p

))
.
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If k =
√

2cp log p+O(
√
p log p) where c > 0 is a constant, we have:

(
p

k

)
= pk

k! e
−(c log p+O(

√
log p
p

))(1+O(
√

log p
p

))
(

1 +O

(√
log p
p

))

= pk

k! e
−c log pe

O

(√
log3 p
p

) (
1 +O

(√
log p
p

))

= pk

k! p
−c

1 +O


√√√√ log3 p

p


 .

The first consequence of this analysis is the quotient of two binomial coefficients:

Corollary D.0.4.

(
p
k

)
(

2p
k

) =


2−k

(
1 +O(1

p
)
)

if k = O(1)
2−ke− c2

(
1 +O( 1√

p
)
)

if k2

2p = c+O( 1√
p
)

2−kp− c2
(

1 +O(
√

log3 p
p

)
)

if k2

2p = c log p+O(
√

log p
p

)

p 100 500 1000 5000 10000
(
p
k

)
(

2p
k

) 0.3357 ∗ 10−4 0.1835 ∗ 10−9 0.2091 ∗ 10−13 0.4784 ∗ 10−30 0.1624 ∗ 10−42

k =
√

2p
2−ke− 1

2 0.3354 ∗ 10−4 0.1834 ∗ 10−9 0.2091 ∗ 10−13 0.4784 ∗ 10−30 0.1624 ∗ 10−42

(
p
k

)
(

2p
k

) 0.5267 ∗ 10−10 0.6631 ∗ 10−25 0.1087 ∗ 10−36 0.1769 ∗ 10−89 0.5764 ∗ 10−131

k =
√

2p log p
2−kp− 1

2 0.7314 ∗ 10−10 0.8307 ∗ 10−25 0.1309 ∗ 10−36 0.1982 ∗ 10−89 0.6309 ∗ 10−131

Figure D.1 – Difference between the real value of
(
p
k

)
/
(

2p
k

)
and the asymptotic

approximation for k =
√

2p and k =
√

2p log p when p ranges in the set
{100, 500, 1000, 5000, 10000}.
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Proposition D.0.5. When ω1 = O(1) and ω = o(p) we have:

(
p
ω

)
(
p
ω1

)(
p

ω−ω1

) =



1(
ω
ω1

) (1 +O(1
p
)
)

if ω = O(1)

1(
ω
ω1

) (1 +O( 1√
p
)
)

if ω2

2p = c+O( 1√
p
) and ω1 = O(1)

1(
ω
ω1

) (1 +O(
√

log3 p
p

)
)

if ω2

2p = c log p+O(
√

log p
p

) and ω1 = O(1)

p 500 1000 5000 10000
(
p
ω

)
(
p
ω1

)(
p

ω−ω1

) 0.029 0.0213 0.0098 0.6971 ∗ 10−2

(ω1 = 1, ω =
√

2p)
1(
ω
ω1

) 0.031 0.0223 0.010 0.7071 ∗ 10−2

(
p
ω

)
(
p
ω1

)(
p

ω−ω1

) 0.175 ∗ 10−3 0.631 ∗ 10−4 0.583 ∗ 10−5 0.2078 ∗ 10−5

(ω1 = 3, ω =
√

2p)
1(
ω
ω1

) 0.209 ∗ 10−3 0.718 ∗ 10−4 0.618 ∗ 10−5 0.2167 ∗ 10−5

Figure D.2 – Difference between the real value of
(
p
ω

)
/
(
p
ω1

)(
p

ω−ω1

)
and the asymptotic

approximation for (ω1 = 1, ω =
√

2p) and (ω1 = 3, ω =
√

2p log p) when p ranges in the
set {100, 500, 1000, 5000}.

A natural question to ask is what happens when ω1 is up to a constant close to ω. In
this case we have

Proposition D.0.6. When ω1 = o(p) and ω = o(p) we have:

(
p
ω

)
(
p
ω1

)(
p

ω−ω1

) =


1(
ω
ω1

)e−2√cc1
(
1 +O( 1√

p
)
)

if ω2
1

2p = c1 +O( 1√
p
) ; (ω−ω1)2

2p = c+O( 1√
p
)

1(
ω
ω1

)p−2√cc1

(
1 +O(

√
log3 p
p

)
)

if ω2
1

2p = c1 log p+O(
√

log p
p

) ; (ω−ω1)2

2p = c log p+O(
√

log p
p

)
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Proof. First case ω2
1

2p = c1 +O( 1√
p
) and (ω−ω1)2

2p = c+O( 1√
p
)

ω = ω − ω1 + ω1

=
√

2cp+O(√p) +
√

2c1p+O(√p)

ω2

2p = 1
2p

2cp+ 2c1p+O(√p) + 2

√√√√2c1p

(
1 +O

(
1
√
p

))√√√√2cp
(

1 +O

(
1
√
p

))
ω2

2p = c+ c1 +O

(
1
√
p

)
+ 2√cc1

(
1 +O

(
1
√
p

))
ω2

2p = c+ c1 + 2√c1c+O

(
1
√
p

)

(
p
ω

)
(
p
ω1

)(
p

ω−ω1

) = 1(
ω
ω1

)e−2√cc1

(
1 +O

(
1
√
p

))
.

Second case is when (ω−ω1)2

2p = c log p+O
(√

log p
p

)
and ω2

1
2p = c1 log p+O

(√
log p
p

)
.

ω = ω − ω1 + ω1

=
√

2cp log p+O(
√
p log p) +

√
2c1p log p+O(

√
p log p)

ω2

2p = (c+ c1) log p+O

(√
log p
p

)

+ 1
p


√√√√2c1p log p

(
1 +O

(
1√
p log p

))√√√√2cp log p
(

1 +O

(
1√
p log p

))
ω2

2p = (c+ c1) log p+O

(√
log p
p

)
+ 2√cc1 log p

(
1 +O

(
1
√
p

))

ω2

2p = (c+ c1 + 2√c1c) log p+O


√√√√ log2 p

p



So (
p
ω

)
(
p
ω1

)(
p

ω−ω1

) = 1(
ω
ω1

)p−2√cc1

1 +O


√√√√ log3 p

p


 .

With these results at hand we can prove all the asymptotic facts related to the binomial
coefficient. We begin with Corollary 5.4.11 that states the following
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Corollary. 5.4.11 Let p be a prime number and ω an even integer with 1 < ω < p and
H(α) = −α log2 α− (1− α) log2(1− α) be the binary entropy function for any 0 6 α 6 1.
Let (ω1, ω2) ∈ N2 be odd integers such that ω1 + ω2 = ω and ω = o(p). Then we have

|Wω1,ω2|
|Pω1,ω2|

=
√

2πα(1− α)ω 1
2 2−ωH(α) ×


e−2√c1c2

(
1 +O( 1√

p
)
)

if ω2
i

2p = ci +O( 1√
p
)

p−2√c1c2

(
1 +O(

√
log3 p
p

)
)

if ω2
i

2p = ci log p+O(
√

log p
p

)

with α = 1
1 +

√
c2
c1

.

|Wω|
|Pω|

= ω2−ω ×


e−

c
2
(
1 +O( 1√

p
)
)

if ω2

2p = c+O( 1√
p
),

p−
c
2

(
1 +O(

√
log3 p
p

)
)

if ω2

2p = c log p+O(
√

log p
p

).

Proof. In the first case |Wω1,ω2|
|Pω1,ω2|

replace
(
ω
ω1

)
in Proposition D.0.6 by its expansion detailed

in Proposition D.0.1.
The second part is |Wω|

|Pω|
. Here the proof is a simple application of Corollary D.0.4.

The next analysis on our list is Corollary 5.4.12. Here we have to prove that
(
p+1
ω

)
(
p
ω/2

)2 ∼


√
πp

1
4 e−22 1

4−2
√

2p if ω = 2
√

2p

√
πp

1
4−2 log

1
4 p2 1

4−2
√

2p log p if ω = 2
√

2p log p

Proof. This is a particular case of Proposition D.0.6 when c = c1.
So when ω = 2

√
2p we have: (

p
ω

)
(
p
ω
2

)(
p
ω
2

) ∼ √πp 1
4 e−22 1

4−2
√

2p.

and when ω = 2
√

2p log p we have:(
p
ω

)
(
p
ω
2

)(
p
ω
2

) ∼ √πp 1
4−2 log

1
4 p2 1

4−2
√

2p log p.
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p 1000 5000 10000 20000
(
p
ω

)
(
p
ω
2

)2 0.1741 ∗ 10−26 0.1434 ∗ 10−59 0.1990 ∗ 10−84 0.1288 ∗ 10−119

ω = 2
√

2p
1

e2
(
ω
ω
2

) 0.1912 ∗ 10−26 0.1496 ∗ 10−59 0.2048 ∗ 10−84 0.1314 ∗ 10−119

√
πp

1
4 e−22 1

4−2
√

2p 0.1906 ∗ 10−26 0.1492 ∗ 10−59 0.2046 ∗ 10−84 0.1313 ∗ 10−119

(
n
ω

)
(
n
ω
2

)2 0.1741 ∗ 10−26 0.1434 ∗ 10−59 0.1990 ∗ 10−84 0.1288 ∗ 10−119

ω = 2
√

2n log n
1

n2
(
ω
ω
2

) 0.1912 ∗ 10−26 0.1496 ∗ 10−59 0.2048 ∗ 10−84 0.1314 ∗ 10−119

√
πn

1
4−2 log

1
4 n2 1

4−2
√

2n logn 0.1906 ∗ 10−26 0.1492 ∗ 10−59 0.2046 ∗ 10−84 0.1313 ∗ 10−119

Figure D.3 – Difference between the real value of
(
p
ω

)
/
(
p
ω/2

)2
and the asymptotic

approximations for ω =
√

2p and ω = 2
√

2p log p when p ranges in the set
{1000, 5000, 10000, 20000}.
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