
HAL Id: tel-01618806
https://hal.science/tel-01618806v1

Submitted on 18 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decentralized Data Management for the Semantic Web
Hala Skaf-Molli

To cite this version:
Hala Skaf-Molli. Decentralized Data Management for the Semantic Web. Computer Science [cs].
Université de Nantes, 2017. �tel-01618806�

https://hal.science/tel-01618806v1
https://hal.archives-ouvertes.fr

Hala SKAF-MOLLI
Mémoire présenté en vue de l’obtention du
Habilitation à diriger des recherches de l’Université de Nantes

Label européen
sous le sceau de l’Université Bretagne Loire

École doctorale : Sciences et technologies de l’information, et mathématiques

Discipline : Informatique et applications, section CNU 27
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N)

Soutenue le 6 Octobre 2017

Decentralized Data Management for the
Semantic Web

JURY

Présidente : Mme Pascale KUNTZ, Professor, University of Nantes
Rapporteurs : M. Bernd AMANN, Professor, University of Pierre et Marie Curie (Paris 6)

M. Fabien GANDON, Director de recherche, INRIA Sophia-Antipolis Mediterranée
M. Philippe LAMARRE, Professor, INSA Lyon

Examinateurs : Mme Maria ESTHER-VIDAL, Professor, University of Simón BolívarVenezuela and Fraunhofer IAIS, Germany
M. Abdelkader HAMEURLAIN, Professor, University of Paul Sabatier, Toulouse
M. François CHAROY, Professor, TELECOM Nancy - Université de Lorraine

Contents

1 Introduction 4

2 Distributed Semantic Wikis 9

2.1 Swooki: Highly available semantic wikis . 10

2.1.1 System Model . 11

2.1.2 Data Model . 12

2.1.3 Consistency Model . 14

2.1.4 Algorithms . 18

2.2 DSMW: Decentralized social semantic wikis . 20

2.2.1 System Model . 20

2.2.2 Data Model . 21

2.2.3 Consistency Model . 24

2.2.4 Algorithms . 25

2.3 Conclusion . 27

3 Co-Evolution between Social and Semantic Web 32

3.1 Problem Statement . 35

3.2 A collaborative Recommender System For Wikipedia Conventions 36

3.3 Evaluation . 40

3.4 Conclusion . 43

4 SPARQL Queries over Linked data and Deep Web 46

4.1 semLAV Approach . 47

4.2 Algorithms . 50

4.3 Evaluation . 54

2

CONTENTS 3

4.4 Conclusion . 59

5 Read/Write Linked Open Data 61

5.1 SU-Set: a Conflict-Free Replicated Data Type for RDF Graph 63

5.1.1 Algorithms . 63

5.1.2 Evaluating and Optimizing SU-Set . 64

5.2 Col-Graph: A Synchronization Algorithm for RDF Fragments 68

5.2.1 Fragment Consistency . 68

5.2.2 Algorithms . 71

5.3 Conclusion . 77

6 Federated SPARQL Queries Processing with Replicated Fragments 80

6.1 Problem Statement . 81

6.2 Algorithms . 83

6.3 Experimental Study . 85

6.4 Conclusion . 89

7 Research Directions 92

8 Bibliography 95

8.1 Publications by Hala Skaf-Molli (Categorized) . 95

8.2 Publications by other authors . 108

1
Introduction

The semantic web is an extension of the web where information has precise meaning, and ma-

chines are able to understand the information and perform sophisticated tasks for the users [B+01].

The World Wide Web Consortium (W3C) has defined foundation standards for the Semantic Web:

(i) the graph based data model defined by the Resource Description Framework (RDF) [MM04] for

representing information. (ii) the SPARQL web based protocol and query language for querying

RDF data [P+08], and (iii) the Ontology Languages RDFS, and OWL [P+04] for defining shared

knowledge.

The semantic web moves the web from purely syntactic pages to semantic ones that describes

precisely entities mentioned in web pages using W3C standards as presented in Figure 1.1.

Many semantic data have been published in the last years using W3C standards, e.g, more

than 149,945,033,382 RDF triples are available from 2832 datasets 1. Different kind of data have

been published by different data providers: Scientific Publications, e.g. the DBLP Bibliography

Database 2, media, e.g., the Jamendo music repository 3, government agencies, e.g., the UK transport

1. stats.lod2.eu, September, 2016
2. http://dblp.l3s.de/d2r/, September, 2016.
3. http://dbtune.org/jamendo/, September, 2016.

4

stats.lod2.eu
http://dblp.l3s.de/d2r/
http://dbtune.org/jamendo/

5

Figure 1.1 – Semantic Web, Social Web and Social Semantic Web: Source [Bre+09]

dataset 4, the Pays de la loire dataset 5, Life Science, e.g., the UniProt dataset 6, Social Networking,

e.g., FoaF profiles 7 and the general knowledge dataset, e.g. DBpedia 8.

The published datasets follow the Linked Open Data (LOD) principles [BVS; BHB09]. RDF

and ontology are used for representing and linking data from different sources. Linked data forms a

decentralized global data graph that could be queried using SPARQL query language [PAG09].

The social web [BPD09] has largely help to bootstrap the semantic web, for instance, DBpe-

dia [Biz+09] knowledge base is built from data extracted from Wikipedia infoboxes and categories.

However, the social web does not really benefit from the semantic web. The co-evolution between

social and semantic web is an open issue. Among problems to solve are: Issue1: Which social tools

can be used for collaborative production of semantic data? Issue2 : How the social web can take

benefits of the semantic web?.

Despite a great effort has been done by the semantic web community to integrate datasets into the

LOD cloud and make these data accessible through SPARQL servers. There are still a large number

of data sources and Web APIs that are not part of the LOD cloud. The Deep Web which has

around 500 times the size of the Surface Web [He+07] has not been integrated as part of LOD cloud.

Performing SPARQL queries without considering the Deep Web can potentially deliver incomplete

4. http://openuplabs.tso.co.uk/sparql/gov-transport, September 2016.
5. http://lodpaddle.univ-nantes.fr/lodpaddle, September 2016.
6. http://sparql.uniprot.org/, September 2016.
7. http://www.w3.org/People/Berners-Lee/card.rdf, September 2016.
8. http://dbpedia.org/sparql, September 2016.

http://openuplabs.tso.co.uk/sparql/gov-transport
http://lodpaddle.univ-nantes.fr/lodpaddle
http://sparql.uniprot.org/
http://www.w3.org/People/Berners-Lee/card.rdf
http://dbpedia.org/sparql

6 CHAPTER 1. INTRODUCTION

results. Issue3: How to answer SPARQL query over Linked Data and Deep Web?.

LOD data has intrinsic issues related to data quality [Aco+13]. If a data consumer finds a mistake

or inconsistency, how can she fix it? This raises the issue of the quality of Linked Data, Issue4: How

to improve LOD quality?.

Federated SPARQL query engines [Sch+11; Aco+11] allow data consumers to execute SPARQL

queries against a federation of SPARQL servers. In presence of replication, the state-of-art federated

query engines [Sch+11; Aco+11] may retrieve data from every relevant server, and produce a large

number of intermediate results. Therefore, federated query engines may exhibit poor performance

while availability of the selected SPARQL servers is negatively impacted. Issue5: How to ensure

performance of federated SPARQL query engines with replicated data?.

In this HDR thesis, I will present my contributions to the above highlighted issues. Chapters

2-6 details these contributions. Each chapter describes motivations, scientifiques contributions, and

related thesis, publications and projects. The last chapter presents my ongoing research project. The

thesis is organized as follows.

Chapter 2 (Distributed Semantic Wikis). This chapter presents my contributions concern-

ing Issue1. I proposed distributed semantic wiki systems for collaborative editing of RDF data. These

systems rely on optimistic replication approach. Semantic wikis define a new datatype: wiki text

that embeds RDF data. The research questions concern consistency criteria for this new datatype.

The Causality, Consistency and Intention (CCI) consistency criterion used in collaborative editing

systems is not tailored for RDF data model. This chapter details replication models, consistency

criteria and algorithms for my two contributions: Swooki and DSMW. Swooki is an unstructured

peer-to-peer semantic wiki and DSMW is a decentralized social semantic wiki.

Chapter 3 (Co-Evolution between Social and Semantic Web). This chapter details my

contributions related to Issue2. Despite DBpedia data are retrieved from Wikipedia, the semantic ca-

pacities of DBpedia enable SPARQL queries to retrieve information that are not present in Wikipedia.

A SPARQL query that retrieves people born in a place could include more people than those ob-

tained by navigating from the place article in Wikipedia. The integration of missing navigational

paths in Wikipedia is very challenging, it requires to respect the complex Wikipedia conventions. I

formulate this problem as a recommendation problem, the recommander suggests possible links be-

tween wikipedia articles based on similar articles linked by the Wikipedia community. I proposed a

7

collaborative recommender system for enriching the social web with the semantic web. BlueFinder is

a collaborative recommender system that enhances the content of Wikipedia with knowledge inferred

in DBpedia and contributes to complete the virtuous cycle of information flow between Wikipedia

and DBpedia. This chapter presents the information gap between DBpedia and Wikipedia, details

the BlueFinder algorithm and an empirical evaluation.

Chapter 4 (Querying Deep web and Linked Data). This chapter details my contributions

related to Issue3. This chapter details semLAV, the first scalable LAV-based approach for SPARQL

query processing. Contrary to traditional LAV approaches, semLAV does not require query rewrit-

ings. In semLAV relevant views are ranked according to their possible contribution to the answers,

and they are loaded into a graph instance, built during query execution, to answer SPARQL queries.

The challenge is to define the order in which query relevant views should be loaded to outperform

the traditional LAV query rewriting techniques in terms of number of answers produced by a time

unit. This chapter presents semLAV approach, algorithms and experimental evaluation.

Chapter 5 (From Read-Only to Read/Write LOD). For handling Issue4, I proposed to

transform the Read-Only LOD into Read/Write LOD. A data consumer can improve LOD quality by

editing the data and push the enhanced data to the data provider. To support a Read/Write LOD,

we follow an optimistic replication approach. The scientific problem is to propose new consistency

criteria and synchronization algorithms for RDF data and SPARQL updates. This is challenging

because of the autonomocity of data providers and data consumers. For instance, a data provider

could not accept an update of untrusted data consumer. This chapter details SU-Set and Col-

Graph two replication models for Read/Write LOD, their correction criterion and the synchronization

algorithm. SU-Set is a Conflict-Free Replicated Type (CRDT) for RDF Graph, it designed for

large scale replication of RDF graphs with strong eventual consistency, and Col-Graph is designed

for partial (fragment) data replication, it uses annotated RDF graphes and Updates to achieve

fragments consistency.

Chapter 6 (Replication-aware Federated Query Engine). This chapter adresses Issue5.

The research questions are: Can the knowledge about replicated data fragments be used to reduce

the number of selected sources by federated query engines while producing the same answers? Does

considering groups of triple patterns to be executed together, instead of individual triple patterns,

produce source selections that lead to transfer less data from endpoints to the federated query engine?

8 CHAPTER 1. INTRODUCTION

This chapter presents Fedra, the first source selection strategy for a replicated-aware federated query

engine. Fedra uses fragment containment to prune sources that provide redundant data, and an

heuristic for set covering to reduce the number of selected data sources.

Chapter 7 (Conclusion and perspectives). Finally, I present my forthcoming work, Linked

Data in the Fog. The objective is to build a decentralized federated SPARQL query engine for the fog.

This engine will run on a network of end-user browsers sharing CPU, caches resources and common

interests. The new engine will break the state-of-art tradeoffs between availability and performances

thanks to the federation of data consumers.

2
Distributed Semantic Wikis

Motivations : Semantic wikis are a new generation of social editing tools. They allow users

to add semantic annotations in the wiki pages. Users collaborate not only for writing the wiki

pages but also for writing semantic annotations. Usually, this is done by annotating the links

between wikis pages. Links in semantic wikis are typed. For instance, a link between the wiki pages

”France” and ”Paris” may be annotated by ”capital”. Semantic wikis provide a better structuring

of wikis by providing a means to navigate and search based on annotations. These annotations

express relationships between wikis pages, they are usually written in a formal syntax so they are

processed automatically by machines and they are exploited by semantic queries. Many semantic

wikis are proposed [Krö+07; Buf+08]. Despite their success, they suffer from many issues, such

as: (i) Scalability and cost: as the number of users and contributions increase, so do the storage

and bandwidth requirements. (ii) Centralized control/single point of failure: a centralized wiki is

controlled by a single organization. If the organization disappears all the knowledge contributed

to the wiki may disappear as well; (iii) No offline access: if a user’s internet connection or the

central wiki system are temporarily unavailable, the user cannot work; (iv) Handling transactional

changes: a user cannot modify multiple pages simultaneously before making modifications visible

to other users. All incremental modifications are immediately visible to other users. In some cases,

9

10 CHAPTER 2. DISTRIBUTED SEMANTIC WIKIS

users may observe inconsistent states of the wiki, as in a database system without transactional

support [Rah+09a]; (v) Handling disagreements: even when changes to a page are not made with

malicious intent, they can still lead to “edit wars” when different groups of users disagree on the

content that is being contributed and they attempt to cancel or override the other groups’ input.

Contributions : I defined two distributed semantic wikis models: Swooki and DSMW. Swooki

is the first a peer-to-peer semantic wiki and DSMW is the first socially distributed semantic wikis.

Swooki mainly tackles issues traditionally related to distributed systems and DSMW is tailored

for social topologies.

(1) Swooki a Highly available semantic wiki. In Swooki [Rah+09b; RSM09b; SRM08; RSM08a;

RSM09b] the infrastructure is decentralized between the participants, but for the users, the system’s

functionality is identical to that of a traditional wiki. The decentralized infrastructure allows the

participants to share the cost of storage, bandwidth, and maintenance and provides availability,

scalability, and fault-tolerance for the wiki.

(2) DSMW a Decentralized social semantic wikis. DSMW relies on an explicit social network

of participants and aims to support the multi-synchronous collaboration model [Dou95] and offline

access. In these systems, the collaborative editing process follows cycles of divergence/convergence,

where users publish their changes, and acquire those published by others, at the time of their choosing.

In addition, users can be selective in the subset of changes that they integrate. However, these changes

are integrated automatically by algorithms that enforce particular consistency models, which limit

the freedom of the users to select changes from others.

In the following sections, I will detail Swooki, and DSMW.

2.1 Swooki: Highly available semantic wikis
Swooki [SRM09] is the first peer-to-peer semantic wiki. Swooki relies on a self-organized

unstructured peer-to-peer network. The collection of wiki pages is fully replicated across all the par-

ticipants’ sites. The total replication scheme requires that all peers have the same storage capability.

The users are connected to one peer and interact with the local page replicas as with traditional

wikis. Users are able to work even when their node is disconnected from the rest of the network.

When the network is connected, changes are automatically propagated to the other nodes.

Swooki combines advantages of P2P wikis and semantic wikis. The main problem for building

such a system is to maintain consistency of replicated semantic wiki pages.

2.1. SWOOKI: HIGHLY AVAILABLE SEMANTIC WIKIS 11

Figure 2.1 – Swooki, Replicated graph in an unstructured P2P wiki

2.1.1 System Model

An unstructured highly available wiki is conceptually similar to a set of n interconnected and

automatically synchronized wikis.

Definition 2.1.1. A highly available unstructured wiki is a tuple, 〈ΩG, N〉 where:

— ΩG = {G1, G2, . . . , Gn} is a set of wiki graphs;

— N = 〈S,C〉 is a graph representing an unstructured and self-organized overlay network: the

nodes S = {S1, . . . , Sn} are participants, each participant is uniquely identified and the edges

C ⊂ S × S represent their physical interconnections. Participant Si hosts Gi;

— The wiki graphs Gi are eventually consistent: this notion is defined below.

The wiki appears centralized because the participant directly interacts only with the local system,

which is the wiki 〈Si, Gi〉. Propagation of updates happens behind the scenes, and to the user is

indistinguishable from operations that might happen concurrently on the local wiki if it was an

isolated system. Eventually, the set of local page replicas at each node should converge to be

identical. As we will see further, ensuring that this happens is difficult. In order to define eventual

consistency, we must consider a highly available unstructured wiki to be a system that evolves over

time as a result of the user’s actions. We note G(t)
i the state of a graph Gi at time t.

Definition 2.1.2 (Eventual Consistency). Let W be a highly available unstructured wiki, W =

12 CHAPTER 2. DISTRIBUTED SEMANTIC WIKIS

〈ΩG, N〉 as defined in 2.1.1. We consider a finite sequence of (arbitrary) user actions, occurring at

times t1, t2, . . . tk.

The wiki graphs {Gi}i∈[1...n] are eventually consistent if at some time later than the last action

Atk , all of the graphs Gi are identical. Formally,

∃tf > tk,∀i, j ∈ [1 . . . n] G(tf)
i = G

(tf)
j

A highly available unstructured Wiki follows the optimistic replication model [SS05a], with the

hypothesis of eventual delivery of operations; this is generally achieved by using the gossiping algo-

rithm. An anti-entropy algorithm supports intermittent connections. Figure 2.1 shows an example

of an unstructured wiki. In this figure, the wiki graph is replicated on each wiki server. Each wiki

server hosts a copy of all semantic wiki pages and an RDF store for the semantic data. When a peer

updates its local copy of data, it generates a corresponding operation. This operation is processed

in four steps:

1. It is executed immediately against the local replica of the peer, 2. it is broadcasted through

the P2P network to all other peers, 3. it is received by the other peers,

4. it is integrated to their local replica. If needed, the integration process merges this modification

with concurrent ones, generated either locally or received from a remote server.

The system is correct if it ensures the CCI (Causality, Convergence and Intention Preserva-

tion) [Sun+98] consistency model.

2.1.2 Data Model

The data model of Swooki is an extension of Wooki [WUM07] data model to take in consideration

semantic data. Every semantic wiki peer is assigned a global unique identifier named NodeID. These

identifiers are totally ordered. As in any wiki system, the basic element is a semantic wiki page and

every semantic wiki page is assigned a unique identifier PageID, which is the name of the page. The

name is set at the creation of the page. If several servers create concurrently pages with the same

name, their content will be directly merged by the synchronization algorithm. Notice that a URI

can be used to unambiguously identify the concept described in the page. The URI must be global

and location independent in order to ensure load balancing. For simplicity, I use a string as page

identifier.

2.1. SWOOKI: HIGHLY AVAILABLE SEMANTIC WIKIS 13

Definition 2.1.3. A semantic wiki page Page is an ordered sequence of lines

LBL1, L2, . . . LnLE where LB and LE are special lines. LB indicates the beginning of the page and

LE indicates the ending of the page.

Definition 2.1.4. A semantic wiki line L is a four-tuple < LineID, content, degree, visibility >

where

— LineID is the line identifier, it is a pair of (NodeID, logicalclock) where NodeID is the

identifier of the semantic wiki server and logicalclock is a logical clock of that server.

— content is a string representing text and the semantic data embedded in the line.

— degree is an integer used by the synchronization algorithm, the degree of a line is fixed when

the line is generated, it represents a kind of loose hierarchical relation between lines.

— visibility is a boolean representing if the line is visible or not. Lines are never really deleted

they are just marked as invisible. For instance, suppose there are two lines in a semantic wiki page

about ”France" , ”France" is the identifier of the page.

France i s l o ca t ed in [l o ca t ed In : : Europe]

The c a p i t a l o f France i s [hasCapi ta l : : Par i s]

Suppose these two lines are generated on the server with NodeID = 1 in the above order and

there are no invisible lines, so the semantic wiki page will be internally stored as.

LB
((1,1),France is located in [locatedIn::Europe], 1, true)
((1,2), The capital of France is [hasCapital::Paris], 2, true)
LE

Text and semantic data are stored in separate persistent storages. Text can be stored in files and

semantic data can be stored in RDF repositories, as described in the next section.

Semantic data storage model RDF is the standard data model for encoding semantic data. In

P2P semantic wikis, every peer has a local RDF repository that contains a set of RDF statements

extracted from its wikis pages. A statement is defined as a triple (Subject, Predicate, Object) where

the subject is the name of the page and the predicates (or properties) and the objects are related to

that concept. For instance, the local RDF repository of the above server contains: R = {("France",

"locatedIn", "Europe"), ("France", "hasCapital", "Paris") }. As for the page identifier, a global URI

14 CHAPTER 2. DISTRIBUTED SEMANTIC WIKIS

can be assigned to predicates and objects of a concept, for simplicity, we use a string. We define two

operations on the RDF repositories:

— insertRDF(R,t): adds a statement t to the local RDF repository R. — deleteRDF(R,t):

deletes a statement t from the local RDF repository R.

These operations are not manipulated directly by the end user, they are called implicitly by the

editing operations as shown later.

Editing operations

A user of a P2P semantic wiki does not edit directly the data model. Instead, she uses traditional

wiki editing operations, when she opens a semantic wiki page, she sees a view of the model. In this

view, only visible lines are displayed. As in a traditional semantic wiki, she makes modifications i.e.

adds new lines or deletes existing ones and she saves the page(s). To detect user operations, a diff

algorithm is used to compute the difference between the initial requested page and the saved one.

2.1.3 Consistency Model

This section defines causal relationships and intentions of the editing operations of P2P semantic

wiki data model.

Causality preservation

The causality property ensures that operations ordered by a precedence relation will be executed

in the same order on every server.

We define causality for editing operations that manipulate text and RDF data model as:

Definition 2.1.5. insert Preconditions Let Page be the page identified by PageID, let the op-

eration op=Insert(PageID, newline, p , n), newline =< LineID, c, d, v> generated at a server

NodeID, R is its local RDF repository. The line newline can be inserted in the page Page if its

previous and next lines are already present in the data model of the page Page.

∃i ∃j LineID(Page[i]) = p ∧ LineID(Page[j]) = n

Definition 2.1.6. Preconditions of delete operation Let Page be the page identified by PageID,

let op = Delete(PageID, dl) generated at a server NodeID with local RDF repository R, the line

2.1. SWOOKI: HIGHLY AVAILABLE SEMANTIC WIKIS 15

identified by dl can be deleted (marked as invisible), if its dl exists in the page.

∃i LineID(Page[i]) = dl

When a server receives an operation, the operation is integrated immediately if its pre-conditions

are evaluated to true else the operation is added to a waiting queue, it is integrated later when its

pre-conditions become true.
peer1 peer2 peer3

Text
RDFRepository

Text
RDFRepository

Text
RDFRepository

op1 = Insert(1, "France is located..")

22

op2 = Insert(1, "France is a country... ")

pp

$$

France is located in [locatedIn::Europe]
{(France, locatedIn, Europe)}

France is a country in [locatedIn::Europe]
{(France, locatedIn, Europe)}

op2 op1

France is located in [locatedIn::Europe]
France is a country in [locatedIn::Europe]

{(France, locatedIn, Europe)}

France is located in [locatedIn::Europe]
{(France, locatedIn, Europe)}

op3 = delete(1)

rr

Text

op3 op2

France is a country in [locatedIn::Europe]
{ }

France is a country in [locatedIn::Europe]
{(France, locatedIn, Europe)}

Figure 2.2 – Semantic inconsistency after integrating concurrent modifications

Intentions and Intentions preservation

The intention of an operation is the visible effect observed when a change is generated at one

peer, the intention preservation means that the intention of the operation will be observable on all

peers, in spite of any sequence of concurrent operations. We can have a naive definition of intention

for insert and delete:

— The intention of an insert operation op= Insert(PageID, newline, p , n) when generated at

site NodeID, where newline =< nid, c, d, v> is defined as: (1) The content is inserted between

the previous and the next lines and (2) the semantic data in the line content are added to the RDF

repository of the server.

— The intention of a delete operation op= delete(pid, l) when generated at site S is defined as :

(1) the line content of the operation is set to invisible and (2) the semantic data in the line content

are deleted from the RDF repository of the server.

16 CHAPTER 2. DISTRIBUTED SEMANTIC WIKIS

Unfortunately, it is not possible to preserve the previous intention definitions. We illustrate a

scenario of violation of these intentions in figure 2.2. Assume that three P2P semantic wiki servers,

peer1, peer2 and peer3 share a semantic wiki page about ”France”. Every server has its copy of shared

data and has its own persistence storage repository. At the beginning, the local text and the RDF

repositories are empty. At peer1, user1 inserts the line "France is located [located In::Europe]" at the

position 1 in her copy of the "France" page. Concurrently, at peer2 user2 inserts a new line ”France

is a country in [located In::Europe]” in her local copy of "France" page at the same position and

finally at peer3 user3 deletes the line added by user1. When op2 is integrated at peer1, the semantic

annotation is present two times in the text and just one time in the RDF repository. In fact, the

RDF repository cannot store twice the same triple. When op3 is finally integrated on peer1, it deletes

the corresponding line and the semantic entry in the RDF repository. In this state, the text and the

RDF repository are inconsistent. Concurrently, peer3 has integrated the sequence [op1;op3;op2]. This

sequence leads to a state different than the state on peer1. Copies are not identical, convergence is

violated.

The above intentions cannot be preserved because the effect of executing op3 changes the effect

of op2 which is independent, of op3 i.e. op3 deletes the statement inserted by op2, but op3 has not

seen op2 at generation time.

Model for Intention preservation

It is not possible to preserve intentions if the RDF store is defined as a set of statements. However,

if we transform the RDF store into multi-set of statements, it becomes possible to define intentions

that can be preserved.

Definition 2.1.7. RDF repository is the storage container for RDF statements, each container

is a multi-set of RDF statements. Each RDF repository is defined as a pair (T,m) where T is a set

of RDF statements and m is the multiplicity function m : T → N where N = 1, 2......

For instance, the multi-set R = { ("France", "LocatedIn", "Europe"),("France", "LocatedIn", "Eu-

rope"),("France", "hasCapital", "Paris") } can presented by R = { ("France", "LocatedIn", "Europe"

)2, ("France", "hasCapital", "Paris")1 } where 2 is the number of occurrence of the first statement

and 1 is this of the second one.

Definition 2.1.8. Intention of insert operation Let S be a P2P semantic wiki server, R is its

2.1. SWOOKI: HIGHLY AVAILABLE SEMANTIC WIKIS 17

local RDF repository and Page is a semantic wiki page. The intention of an insert operation op=

Insert(PageID, newline, p , n) when generated at site S, where newline =< nid, c, d, v> and T

is the set (or multi-set) of RDF statements in the inserted line, is defined as: (1) The content is

inserted between the previous and the next lines and (2) the semantic data in the line content are

added to R.

∃i ∧ ∃ iP < i LineID(Page[iP]) = p (2.1)

∧ ∃ i ≤ iN LineID(Page[iN]) = n (2.2)

∧Page′[i] = newline (2.3)

∧ ∀j < i Page′[j] = Page[j] (2.4)

∧ ∀j ≥ i Page′[j] = Page[j − 1] (2.5)

∧R′ ← R] T (2.6)

Where Page′ and R′ are the new values of the page and the RDF repository respectively after

the application of the insert operation at the server S and] is the union operator of multi-sets. If

a statement in T already exists in R so its multiplicity is incremented else it is added to R with

multiplicity one.

Definition 2.1.9. Intention of delete operation Let S be a P2P semantic wiki server, R is the

local RDF repository and Page is a semantic wiki page. The intention of a delete operation op=

delete(PageID, ld) where T is the set (or multi-set) of RDF statements in the deleted line, is defined

as: (1) the line ld is set to invisible and (2) the number of occurrence of the semantic data embedded

in ld is decreased by one, if this occurrence is equal to zero which means these semantic data are no

more referenced in the page then they are physically deleted from the R.

∃i ∧ PageID(Page′[i]) = ld (2.7)

∧ visibility(Page′[i])← false (2.8)

∧ R′ ← R − T (2.9)

18 CHAPTER 2. DISTRIBUTED SEMANTIC WIKIS

Where Page′ and R′ are the new values of the page and the RDF repository respectively after the

application of the delete operation at the server S and − is the difference of multi-sets. If statement(s)

in T exists already in R so its multiplicity is decremented and deleted from the repository if it is

equal to zero.

Peer 1 Peer 2 Peer 3
Text

RDFRepository
Text

RDFRepository
Text

RDFRepository

op1 = Insert(1, "France is located..")

22

op2 = Insert(1, "France is a country... ")

pp

$$

France is located in [locatedIn::Europe]
{(France, locatedIn, Europe,1)}

France is a country in [locatedIn::Europe]
{(France, locatedIn, Europe,1)}

op2 op1

France is located in [locatedIn::Europe]
France is a country in [locatedIn::Europe]

{(France, locatedIn,Europe, 2)}

France is located in [locatedIn::Europe]
{(France, locatedIn,Europe, 1)}

op3 = delete(1)

rr

Text

op3 op2

France is a country in [locatedIn::Europe]
{(France, locatedIn,Europe, 1)}

France is a country in [locatedIn::Europe]
{(France, locatedIn,Europe, 1)}

Figure 2.3 – Convergence after integrating concurrent modifications

Let us consider again the scenario of the figure 2.2. When op2 is integrated on peer1, the multiplic-

ity of the statement (”France”, ”locatedIn”, ”Europe”) is incremented to 2. When op3 is integrated

on peer1, the multiplicity of the corresponding statement is decreased and the consistency between

text and RDF repository is ensured. We can observe that Peer1 and Peer3 now converge and that

intentions are preserved.

2.1.4 Algorithms

As any wiki server, a P2P semantic server defines a Save operation which describes what happens

when a semantic wiki page is saved. In addition, it defines Receive and Integrate operations. The first

describes what happens upon receiving a remote operation and the second integrates the operation

locally. In the following, I detail the integration operation.

2.1. SWOOKI: HIGHLY AVAILABLE SEMANTIC WIKIS 19

Algorithm 1 IntegrateDel operation
Require: id: LineID;

1: procedure IntegrateDel(id)

2: IntegrateDelT(id)

3: IntegrateDelRDF(id)

4: end procedure

Algorithm 2 IntegrateIns Operation
Require: p: PageID, l,lP , lN : LineID;

1: procedure IntegrateIns(p, l, lP , lN)

2: IntegratedInsT(p, l, lP , lN)

3: IntegrateInsRDF(l)

4: end procedure

Algorithm 3 IntegrateDelRDF operation
Require: id: LineID;

1: procedure IntegrateDelRDF(id)

2: let S ← ExtractRDF(LineID)

3: if S 6= ∅ then

4: for each triple ∈ S do

5: triple.counter–

6: if triple.counter = 0 then

7: deleteRDF(R,triple)

8: end if

9: end for

10: end if

11: end procedure

Algorithm 4 IntegrateInsRDFOp
Require: line: LineID;

1: procedure I(n)tegrateInsRDF(line) :

2: let S ← ExtractRDF(line)

3: if S 6= ∅ then

4: for each triple ∈ S do

5: if Contains(triple) then

6: triple.counter++

7: else

8: insertRDF(R,triple)

9: end if

10: end for

11: end if

12: end procedure

Integrate operation The integration of an operation is processed in two steps as described in

Algorithm 1): (1) text integration and (2) RDF statements integration.

For text integration, we use integration algorithm defined in [WUM07]. To integrate RDF state-

ments a counter is used to implement a multi-set RDF repository. A counter is attached to every

RDF triple, the value of the counter corresponds to the number of occurrence of the triple in the

repository.

During the delete operation, the counter of the deleted statements is decreased, if the counter is

zero the statements are physically deleted from the repository as described in Algorithm 3

During the insert operation, the RDF statements of the inserted line are extracted and added

to the local RDF repository. If the statements exist already in the repository, their counter is

incremented, otherwise, they are inserted into the RDF repository with a counter value equals to

one as described in Algorithm 4.

I have integrated this algorithm in Swooki. Swooki is implemented in Java as servlets in a

Tomcat Server and uses Sesame 2.0 as RDF store. Swooki is available at: http://sourceforge.

net/projects/wooki/files/.

http://sourceforge.net/projects/wooki/files/
http://sourceforge.net/projects/wooki/files/

20 CHAPTER 2. DISTRIBUTED SEMANTIC WIKIS

Figure 2.4 – DSMW, a Decentralized Social Wiki

2.2 DSMW: Decentralized social semantic wikis

Decentralized social semantic wikis [Rah+09a] aim to support a social collaboration network and

adapt many ideas from decentralized version control systems (DVCS) used for software development.

They promote the multi-synchronous collaboration model [Dou95], in which multiple streams of

activity proceed in parallel. The main structure of a decentralized social wiki is similar to that of

a replicated wiki; however, the unstructured overlay network is a social collaboration network: its

edges represent relationships between users who have explicitly chosen to collaborate.

The synchronization of the nodes is not fully automated; instead, users can choose pages to

replicate and manually publish changes, including sets of changes affecting multiple pages. The

changes are propagated along the edges of the social network, and users can select which changes to

integrate.

As the published changes are propagated through the network, each wiki graph incorporates a

subset of the global sequence of changes, filtered through the participants’ trust relationships. The

task of integrating selected changes can be automated by algorithms that may enforce different

consistency models, as in highly available wikis.

The explicit collaboration network and the manual publishing and integration of changes define

the class of decentralized social wikis, an extension to the main wiki concept.

2.2.1 System Model

Definition 2.2.1. A decentralized social wiki is a tuple 〈ΩG, N〉, where:

2.2. DSMW: DECENTRALIZED SOCIAL SEMANTIC WIKIS 21

— ΩG = {G1, G2, . . . , Gn} is a set of wiki graphs, as in a highly available unstructured wiki;

— N = 〈S,C〉 is a graph representing a socially organized overlay network: the nodes S =

{S1, . . . , Sn} are uniquely identified participants, and the edges C ⊂ S × S represent social

connections through which operations are exchanged. Each participant Si hosts Gi.

The social connections can be defined as “follow and synchronize" relationships [Rah+09a], in

which a user can follow the changes made by specific peers and periodically integrate some or all of

these changes. Decentralized social wiki systems may provide a full-blown publish-subscribe protocol

(e.g., DSMW, which uses “feeds,” shown in figure 2.4), or simply a social acquaintance relationship

that underlies the fact that the “follower” regularly “pulls” (in DVCS terminology) and integrates

changes from the “followed” user.

In decentralized social wikis, the content of a wiki graph could be different from one wiki to

the next; there is no expectation of consistency at the level of the full wiki. However, automatic

synchronization algorithms can still be used; I discuss the consistency issues that they raise in section

2.2.3.

2.2.2 Data Model

The data model of multi-synchronous semantic wikis (M2SW) is defined as an extension of existing

ontologies of semantic wikis. Defining the data model as an ontology allows to provides reasoning

and querying capabilities on the model itself. In this section, I present the M2SW ontology and

detail only its main concepts and their properties.

— Wiki site : this concept corresponds to a semantic wiki server. A site has the following

properties:

— siteID : this attribute contains the URL of the site.

— logicalClock : this attribute has a numeric value. Every semantic wiki server maintains

a logical clock, this clock used to identify patches and operations in an unique way in the

whole network.

— hasPush : the range of this property is push feed. A wiki site has several push feeds.

— hasPull : the range of this property is pull feed. A wiki site has several pull feeds.

— Document : a document can be an image, an audio or a video file or any type of file that can

be uploaded in a wiki page.

22 CHAPTER 2. DISTRIBUTED SEMANTIC WIKIS

Figure 2.5 – Mutli-synchronous ontology

— Semantic Wiki page : this concept corresponds to a normal semantic wiki page. It has the

following properties:

— pageID : this attribute contains the URL of the page.

— hasName : this attribute contains the title of the page.

— hasContent the range of this property is a String, it contains text and the semantic data

embedded in the semantic wiki page.

— hasPageHead : this property points to the last patch applied to the page.

— Operation : represents a change in a line of a wiki page. In our model, there are two editing

operations : insert and delete. An update is considered as a delete of old value followed by an

insert of a new value. An operation has the following properties:

— operationID: this attribute contains the unique identifier of the operation. operationID

is calculated by: operationID = concat(Site.siteID,Site.logicalClock++). The function

concate concatenates two strings.

— opType this attribute contains the type of the operation, it can be either an insert or a

delete.

2.2. DSMW: DECENTRALIZED SOCIAL SEMANTIC WIKIS 23

— positionID denotes the position of the line in the wiki page. This identifier is calculated

by the Logoot algorithm 1.

— lineContent is a string representing text and the semantic data embedded in the line.

— Patch : a patch is a set of operations. A patch is calculated during the save of the modified

semantic wiki page using the Logoot algorithm. A patch has the following properties:

— patchID a unique identifier of the patch. Its value is calculated by :

patchID = concat(Site.siteID, Site.logicalClock + +)

— onPage the range of this property is the page where the patch was applied.

— hasOperation this property points to the operations that generated during the save of the

page.

— previous points to the precedent patch.

— ChangeSet : A change set contains a set of patches. This concept is important in order to

support transactional changes. It allows to regroup patches on multiple semantic wiki pages.

Therefore, it is possible to push modifications on multiple pages. ChangeSet has the following

properties:

— changSetID: a unique identifier of a change set. Its value is calculated as :

changeSetID = concat(Site.siteID,Site.logicalClock + +)

— hasPatch property points to the Patches generated since the last push.

— previousChangeSet points to the precedent change set.

— inPushFeed the range of this property is a PushFeed. This property indicates the

PushFeed that publishes a ChangeSet.

— inPullFeed the range of this property is a PullFeed. This property allows indicates the

PullFeed that pulls a ChangeSet.

— Push Feed : this concept is used to publish changes of a Wikisite. It is a special semantic

wiki page. It inherits the properties of the Semantic Wiki Page concept and defines its own

properties:

1. Stéphane Weiss, Pascal Urso, and Pascal Molli. « Logoot : a Scalable Optimistic Replication Algorithm for
Collaborative Editing on P2P Networks ». In: 32nd International Conference on Distributed Computing Systems.
IEEE Computer Society, 2009, pp. 404–412.

24 CHAPTER 2. DISTRIBUTED SEMANTIC WIKIS

— hasPushHead : this property points to the last published changeSet.

— hasSemanticQuery : this property contains a semantic query. This query determines the

content of the push feed. For instance, the query can be ”find all Lessons”, this will return

all the page in the class (category) Lessons. To answer hasSemanticQuery reasoning and

querying capabilities of semantic wikis are used.

— Pull Feed : this concept is used to pull changes from a remoteWikisite. A pull feed is related

to one push feed. In the sense that it is impossible to pull unpublished data. A pull feed is also

a special semantic wiki page. It inherits the properties of the Semantic Wiki Page concepts

and defines it own properties:

— hasPullHead : this property points to the last change set pulled in the pull feed.

— relatedPushFeed: this property relates a pull feed to the URL of its associated push feed.

We can use this ontology to query and reason on the patches, ChangeSet, PushFeed, For

instance, we can find published patches on a push feed.

Published ≡ ∃(hasPatch−1).∃(inPushFeed−1).PushFeed

The unpublished patches is defined by:

unPublished ≡ Patch u ¬(∃(hasPatch−1).∃(inPushFeed−1).PushFeed)

2.2.3 Consistency Model

The replication of data and the communication between servers is made through channels (feeds).

To make local changes available to the others, she pushes them to channels. The channel usage is

restricted to few servers with simple security mechanisms that requires no login and complex access

control. The key point is that channels are read-only for consumers and can be hosted on hardware

of users. Trusted servers can pull these modifications. During the first pull operation local copies of

pulled pages are created, for the following pull operations concurrent modifications are merged with

pulled ones.

When a semantic wiki page is updated on a server, it generates a corresponding operation. This

operation is processed in four steps as in the case of peer-to-peer semantic wikis.

2.2. DSMW: DECENTRALIZED SOCIAL SEMANTIC WIKIS 25

The system is correct if it ensures the CCI consistency model [Sun+98]. In DSMW, I extend the

Logoot [WUM09] synchronization algorithm to be used with the M2SW ontology. Logoot ensures

convergence and preserves the intentions of operations if the causality of the operations is preserved.

2.2.4 Algorithms

As any semantic wiki server, a DSMW server defines a Save operation which describes what

happens when a semantic wiki page is saved. In addition, we have define special operations : Create

Push, Push, Create Pull, Pull and Integrate for the multi-synchronous semantic wiki. We will use

the Logoot [WUM09] algorithm for the generation and the integration of the insert and delete

operations.

In the following, I detail these operations for a semantic wiki server called site.

Save Operation During the saving a wiki page, the Logoot algorithm computes the difference

between the saved and the previous version of the page and generates a patch.

Algorithm 5 Save Operation
Require: page, page : Wiki Page;
1: procedure On Save(page, page)
2: let Patch p ← Logoot(page, page);
3: p.patchID ← concat(site.siteID,site.logicalClock + +);
4: for each op ∈ p do
5: op.operationID ← concat(site.siteID,site.logicalClock+ +);
6: hasOperation(p,op)
7: Integrate(op,page)
8: end for
9: previous(p,page.hasPageHead);
10: hasPageHead(page,p);
11: onPage(p,page);
12: end procedure

A patch is the set of delete and insert operations on the page

(Op = (opType, operationID, positionID, lineContent)). The Logoot algorithm calculates the positionID,

lineContent and the opType of the operation. These operations are integrated locally and then even-

tually published on feed patches.

CreatePushFeed Operation The communication between DSMW servers is made through feeds.

The CreatePushFeed operation allows the creation of a push feed. A push feed is a special semantic

wiki page that contains a query that defined the pushed data.

26 CHAPTER 2. DISTRIBUTED SEMANTIC WIKIS

Algorithm 6 Create Push Feed Operation
Require: pfname : FeedName, request : Request

1: procedure on CreatePushFeed(pfname, request)

2: PushFeed(pfname)

3: hasSemanticQuery(pfname,request)

4: P(u)sh(pfname)

5: end procedure

Algorithm 7 Create Pull Feed opera-
tion
Require: pullfeedName: FeedName, url: URL;

1: procedure On CreatePull(pullfeedName, url)

2: PullFeed(pullFeedName)

3: relatedPushFeed(pullfeedName,url)

4: Pull(pullfeedName)

5: end procedure

A push feed is used to publish changes of a wiki server. Therefore, authorized sites can access

the published data. CreatePushFeed operation calls the Push operation.

Push Operation The Push operation creates a change set corresponding to the pages returned

by the semantic query and adds it to the push feed. First, it executes the semantic query, the patches

of the pages returned by the query are extracted. These patches are added to the change set if they

have not been published on this feed push yet.

Algorithm 8 Push Operation
Require: pfname : FeedName
1: procedure On Push(pfname)
2: ChangeSet(chgSet);
3: chgSet.changSetID ← concat(site.siteID,site.logicalClock+ +);
4: inPushFeed(chgSet, pfname);
5: let pg ← execQuery(pfname.hasSemanticQuery) ;
6: let qt ← ∅; let pt ← ∅;
7: for each p ∈ pg do
8: qt ← qt

⋃
∃ (onPage−1).pg;

9: pt ← pt
⋃
∃ onPage.p.∃ (hasPatch−1).∃(inPushFeed−1).pfname;

10: end for
11: ∀ patch ∈ pt - qt: hasPatch(chgSet, patch);
12: previousChangeSet(chgSet, pfname.hasPushHead);
13: hasPushHead(pfname,chgSet);
14: end procedure

CreatePullFeed Operation As the replication of data and the communication between DSMW

servers are made through feeds, pull feeds are created to pull changes from push feeds on remote

peers to the local peer (see Algorithm 7). A pull feed is related to a push feed. In the sense that it

is impossible to pull unpublished data.

Pull Operation The Algorithm 9 details the pull operation. This operation fetches for published

change sets that have not pulled yet. It adds these change sets to the pull feed and integrate them

to the concerned pages on the pulled site.

Integration operation The integration of a change set is processed as follows. First all the patches

of the change set are extracted. Every operation in the patch is integrated in the corresponding

semantic wiki page thanks to the algorithm Logoot detailed in [WUM09] .

2.3. CONCLUSION 27

Algorithm 9 Pull operation
Require: pullfeedName: FeedName
1: procedure On Pull(pullfeedName)
2: while ((cs ← pullfeedName.PageID.get(pullfeedName.headPullFeed, pullfeedName.relatedPushFeed)<>null) do
3: inPullFeed(cs,pullfeedName);
4: Call Integrate(cs);
5: hasPullHead(pullfeedName,cs);
6: end while
7: end procedure

Correction model

Theorem 2.2.2. Our algorithms ensure the causality.

Theorem 2.2.3. Our algorithms ensure the CCI model (Causality, Convergence, Intention).

The proofs of theorems are detailed in [Rah+09a]. DSMW is implemented as an extension of

Semantic MediaWiki. Demos of DSMW [SCM10b] are presented at the conference ESWC2010

Extended Semantic Web Conference and DocEngine Conference [SCM10a].

2.3 Conclusion
In this chapter, I presented my contributions on decentralized semantic wikis: Swooki and

DSMW. Swooki mainly tackles issues traditionally related to distributed systems and DSMW is

tailored for social topologies. In Swooki and DSMW, semantic data is modified as a side effect of

text modification. The advantage is that the text is kept synchronized with semantic data embed

in the text, but the drawback is the semantic data cannot be modified directly. Consequently, other

authoring tools for semantic web such as Protégé or SPARQL update cannot be used safely on the

same semantic data authored through a semantic wiki. For future works, I want to develop new

synchronization algorithms dedicated for RDF data and Linked Data.

Supervised Master Thesis associated with this chapter
[Tor09] Diego Torres. « Semantic Wikis using Folksonomies ». MA thesis. licenciature (bac+5)

Université de la Plata, Argentine, July 2009.

Supervised PhD Thesis associated with this chapter
[Rah10] Charbel Rahhal. « Wikis sémantiques distribués sur réseaux pair-à-pair ». PhD thesis.

Université Henri Poincaré, Nancy1, Nov. 2010.

28 CHAPTER 2. DISTRIBUTED SEMANTIC WIKIS

Publications associated with this chapter

Book chapters
[Cor+14] Amélie Cordier, Valmi Dufour-Lussier, Jean Lieber, Emmanuel Nauer, Fadi Badra,

Julien Cojan, Emmanuelle Gaillard, Laura Infante-Blanco, Pascal Molli, Amedeo Napoli,

and Hala Skaf-Molli. « Taaable: a Case-Based System for personalized Cooking ». In:

Successful Case-based Reasoning Applications-2. Vol. 494. Studies in Computational In-

telligence. Springer, Jan. 2014, pp. 121–162. isbn: 978-3-642-38735-7. doi: 10.1007/

978-3-642-38736-4_7. url: http://hal.inria.fr/hal-00912767.

International peer-reviewed journals
[Dav+15] Alan Davoust, Hala Skaf-Molli, Pascal Molli, Babak Esfandiari, and Khaled Aslan.

« Distributed Wikis: A Survey ». In: Concurrency and Computation: Practice and Ex-

perience 27 (2015), pp. 2751–2777. doi: 10.1002/cpe.

[Naj+09] Hala Naja-Jazzar, Nishadi Desilva, Hala Skaf-Molli, Charbel Rahhal, and Pascal Molli.

« OntoRest: A RST-based Ontology for Enhancing Documents Content Quality in Col-

laborative Writing ». In: INFOCOMP Journal of Computer Science 8.3 (2009), pp. 1–

10.

National peer-reviewed journals
[RSM09b] Charbel Rahhal, Hala Skaf-Molli, and Pascal Molli. « SWooki: Un Wiki Sémantique

sur réseau Pair-à-Pair ». In: Ingénierie des Systèmes d’Information 14.1 (Feb. 2009),

pp. 117–140.

International peer-reviewed conferences
[Le+13] Anh-Hoang Le, Marie Lefevre, Amélie Cordier, and Hala Skaf-Molli. « Collecting in-

teraction traces in distributed semantic wikis ». In: 3rd International Conference on

Web Intelligence, Mining and Semantics, WIMS ’13, Madrid, Spain, June 12-14, 2013.

2013, p. 21.

http://dx.doi.org/10.1007/978-3-642-38736-4_7
http://dx.doi.org/10.1007/978-3-642-38736-4_7
http://hal.inria.fr/hal-00912767
http://dx.doi.org/10.1002/cpe

INTERNATIONAL PEER-REVIEWED CONFERENCES 29

[BBS10] Anne Boyer, Armelle Brun, and Hala Skaf-Molli. « Human Computer Collaboration

to Improve Annotations in Semantic Wikis ». In: 6th Conference on Web Information

Systems and Technologies (Webist 2010). Valencia, Spain, Apr. 2010, p. 8. url: https:

//hal.inria.fr/inria-00378416.

[BSB10] Armelle Brun, Hala Skaf-Molli, and Anne Boyer. « Raising up Annotations In Ped-

agogical Resources by Human-Computer Collaboration ». In: European Distance and

E-learning Network (EDEN 2010). Budapest, Hungary, Oct. 2010. url: https://

hal.inria.fr/inria-00597285.

[SCM10a] Hala Skaf-Molli, Gérôme Canals, and Pascal Molli. « DSMW: a distributed infrastruc-

ture for the cooperative edition of semantic wiki documents ». In: ACM Symposium

on Document Engineering (DocEng 2010) (Demo). Manchester, Royaume-Uni: ACM,

2010, pp. 185–186.

[SCM10c] Hala Skaf-Molli, Gérôme Canals, and Pascal Molli. « DSMW: Distributed Seman-

tic MediaWiki ». In: 7th Extended Semantic Web Conference (ESCW 2010) (Demo).

Vol. 6089. Lecture Notes in Computer Science. Heraklion, Gréce: Springer, 2010.

[Rah+09a] Charbel Rahhal, Hala Skaf-Molli, Pascal Molli, and StephaneWeiss. « Multi-Synchronous

Collaborative Semantic Wikis ». In: 10th International Conference on Web Information

Systems Engineering (WISE 2009). Vol. 5802. Lecture Notes in Computer Science. Poz-

nan, Pologne: Springer, Oct. 2009, pp. 115–129.

[SRM09] Hala Skaf-Molli, Charbel Rahhal, and Pascal Molli. « Peer-to-peer Semantic Wikis ». In:

20th International Conference on Database and Expert Systems Applications - DEXA

2009. Vol. 5690. Lecture Notes in Computer Science. Linz, Autriche: Springer-Verlag,

Aug. 2009, pp. 196–213.

[Tor+09b] Diego Torres, Hala Skaf-Molli, Alicia Diaz, and Pascal Molli. « Supporting Personal

Semantic Annotations in P2P Semantic Wikis ». In: 20th International Conference on

Database and Expert Systems Applications - DEXA 2009. Vol. 5690. Lecture Notes in

Computer Science. Linz, Autriche: Springer Berlin / Heidelberg, Aug. 2009, pp. 317–

331.

https://hal.inria.fr/inria-00378416
https://hal.inria.fr/inria-00378416
https://hal.inria.fr/inria-00597285
https://hal.inria.fr/inria-00597285

30 CHAPTER 2. DISTRIBUTED SEMANTIC WIKIS

International peer-reviewed workshops
[Cha+12] Pierre-Antoine Champin, Amélie Cordier, Elise Lavoué, Marie Lefevre, and Hala Skaf-

Molli. « User assistance for collaborative knowledge construction ». In: Workshop on

Semantic Web Collaborative Spaces (SWCS), in conjunction with the World Wide Web

2012 International Conference. Lyon, France: ACM, Apr. 2012, pp. 1065–1074. url:

https://hal.archives-ouvertes.fr/hal-00692091.

[Bla+10a] Alexandre Blansche, Julien Cojan, Valmi Dufour-Lussier, Jean Lieber, Pascal Molli,

Emmanuel Nauer, Hala Skaf-Molli, and Yannick Toussaint. « TAAABLE 3: Adapta-

tion of ingredient quantities and of textual preparations ». In: 18h International Con-

ference on Case-Based Reasoning - ICCBR 2010, Computer Cooking Contest Work-

shop Proceedings. Alessandria, Italie, 2010. url: http://hal.inria.fr/inria-

00526663.

[Bla+10b] Alexandre Blansche, Hala Skaf-Molli, Pascal Molli, and Amedeo Napoli. « Human-

machine Collaboration for Enriching Semantic Wikis using Formal Concept Analysis ».

In: 5th Workshop on Semantic Wikis Linking Data and People - SemWiki2010. 2010.

[Bad+09] Fadi Badra, Julien Cojan, Amélie Cordier, Jean Lieber, Thomas Meilender, Alain Mille,

Pascal Molli, Emmanuel Nauer, Amedeo Napoli, Hala Skaf-Molli, and Yannick Tous-

saint. « Knowledge acquisition and discovery for the textual case-based cooking system

WIKITAAABLE ». In: 8th International Conference on Case-Based Reasoning - IC-

CBR 2009, Workshop Proceedings. Seattle, USA, July 2009, pp. 249–258.

[Cor+09a] Amélie Cordier, Jean Lieber, Pascal Molli, Emmanuel Nauer, Hala Skaf-Molli, and

Yannick Toussaint. « WIKITAAABLE: A semantic wiki as a blackboard for a textual

case-based reasoning system ». In: SemWiki 2009 - 4rd Semantic Wiki Workshop at the

6th European Semantic Web Conference - ESWC 2009. Heraklion, Grèce, May 2009.

[Rah+09b] Charbel Rahhal, Stéphane Weiss, Hala Skaf-Molli, Pascal Urso, and Pascal Molli.

« Undo in Peer-to-peer Semantic Wikis ». In: SemWiki’ 2009 - 4rd Semantic Wiki

Workshop at the 6th European Semantic Web Conference - ESWC 2009. Heraklion,

Grèce, June 2009.

https://hal.archives-ouvertes.fr/hal-00692091
http://hal.inria.fr/inria-00526663
http://hal.inria.fr/inria-00526663

NATIONAL PEER-REVIEWED WORKSHOPS 31

[Tor+09a] Diego Torres, Alicia Diaz, Hala Skaf-Molli, and Pascal Molli. « Personal Navigation in

Semantic Wikis ». In: International Workshop on Adaptation and Personalization for

Web 2.0 - AP-WEB 2.0 2009. Vol. 485. CEUR Workshop Proceedings. Trento, Italie:

CEUR-WS.org, June 2009, pp. 148–151.

[RSM08a] Charbel Rahhal, Hala Skaf-Molli, and Pascal Molli. « SWOOKI: A Peer-to-peer Se-

mantic Wiki ». In: 3rd Semantic Wiki Workshop (SemWiki’2008) at the 5th European

Semantic Web Conference (ESWC 2008). Ed. by Christoph Lange, Sebastian Schaffert,

Hala Skaf-Molli, and Max Völkel. Vol. 360. CEUR Workshop Proceedings. Tenerife,

Espagne: CEUR-WS.org, June 2008, pp. 124–126.

[RSM08b] Charbel Rahhal, Hala Skaf-Molli, and Pascal Molli. « SWOOKI: A Peer-to-peer Se-

mantic Wiki ». In: The 3rd Semantic Wikis workshop, co-located with the 5th Annual

European Semantic Web Conference (ESWC), Tenerife, Spain. 2008.

National peer-reviewed workshops
[Cor+09b] Amélie Cordier, Jean Lieber, Pascal Molli, Emmanuel Nauer, Hala Skaf-Molli, and Yan-

nick Toussaint. « WikiTaaable, un wiki sémantique utilisé comme un tableau noir dans

un système de raisonnement à partir de cas textuel ». In: 17ème atelier de Raison-

nement à Partir de Cas - RàPC 2009. Ed. by Béatrice Fuchs and Amedeo Napoli.

Paris, France, June 2009.

3
Co-Evolution between Social and

Semantic Web

Motivations : Semantic web technologies facilitate search and navigation on the web, while they

can be additionally used to extract data from the social web, e.g., DBpedia is built with data extracted

from Wikipedia infoboxes and categories. Wikipedia links are translated into properties in DBpedia,

and they are semantically described using RDF vocabularies, i.e., DBpedia encodes semantics that

is not represented in Wikipedia and provides a more expressive representation of Wikipedia links.

Therefore, DBpedia allows for retrieving information that is not available in Wikipedia [Tor+12b].

To illustrate, Listing 3.1a presents a SPARQL query named Q1 to retrieve people and their born place

using db-prop:birthplace. A place could be a country, province, city, or state. Nevertheless, if

s e l e c t ? c i t y ? pe r son where {
? pe r son a db−o : Person .
? c i t y a db−o : C i t y .
? pe r son b i r t h p l a c e ? c i t y

}

(a) Q1: is birth palce of

s e l e c t ?p (count (d i s t i n c t ?o) as ? count where
{

? s ?p ?o .
? s rdv : type dbo : Person .
?o rdv : type dbo : P lace .

}
group by ?p
orde r by ? count

(b) Q2: Relevant properties of the classes Person and
Place

Figure 3.1 – DBpedia Queries

32

33

DBpedia extracts information and
stores it in a semantic representation.

All pairs (Place,Person) where
<Place> is birthplace of <Person>

Querying DBpedia, for example:

1 2

(a) Information flow from Wikipedia and DBpedia

DBpedia extracts information and
stores it in a semantic representation.

All pairs (Place,Person) where
<Place> is birthplace of <Person>

Querying DBpedia, for example:

(Paris, Henri_Alekan)
(Rosario, Lionel_Messi)
(Boston, Robin_Moore)

{221,788
1 2

3
4

(b) Complete cycle of information flow between
Wikipedia and DBpedia

Figure 3.2 – Information flow between social web and semantic web

Q1 is executed against the DBpedia endpoint 1, the answer includes more people than those obtained

by navigating from the Wikipedia place article. The evaluation of query Q1 retrieves 409,812 (place,

person) pairs from the DBpedia endpoint. Meanwhile, if we navigate from places to people in

Wikipedia, we only obtain 221,788 connected pairs. Two Wikipedia articles are connected if a regular

Wikipedia user can navigate from one article to another through a navigational path. A navigational

path with a length larger than five is unreachable by a regular user [LN85; LC98; OJ00]; so those

articles are considered as disconnected. Thus, only 54 % of places in Wikipedia have a navigational

path to those people who were born there.

Contributions : In this work, I propose to add missing navigational paths in Wikipedia to

enhance Wikipedia content. This is will complete the virtuous cycle of information flow between

Wikipedia and DBpedia as illustrated in Figure 3.2b. To measure how important the gap between

Wikipedia and DBpedia, we choose the most popular classes of DBpedia defined in [Leh+15], and the

properties with the highest number of triples. We call these properties relevant properties. Listing

3.1b shows the SPARQL query Q2 that retrieves the relevant properties that relate instances of the

classes dbo:Person and dbo:Place. We observe the same phenomenon when querying DBpedia

using relevant properties of other classes, e.g., dbo:Person, dbo:Place, or dbo:Work, as shown

in Table 3.1. The last two columns of the table provide the number of connected pairs obtained

by a SPARQL query and the amount of disconnected pairs in Wikipedia for a specific property,

respectively.

1. DBpedia of July 2013

34 CHAPTER 3. CO-EVOLUTION BETWEEN SOCIAL AND SEMANTIC WEB

DBpedia Property from Class to Class # DBpedia # Wikipedia
connected pairs disconnected pairs

prop1: birthPlace Place Person 409,812 221,788
prop2: deathPlace Place Person 108,148 69,737
prop3: party PoliticalParty Person 31,371 15,636
prop4: firstAppearance Work Person 1,701 142
prop5: recordLabel Company Person 25,350 14,661
prop6: associatedBand MusicalWork Person 365 73
prop7: Company Software developer 14,788 2,329
prop8: recordedIn PopulatedPlace MusicalWork 28,351 27,896
prop9: debutstadium Building Athlete 595 393
prop10: producer Artist MusicalWork 70,272 32,107
prop11: training Building Artist 171 109
prop12: previousWork Album MusicalWork 72,498 3,887
prop13: recordLabel Company MusicalWork 118,028 75,329
prop14: starring Person Film 164,073 42,584
prop15: country PopulatedPlace Book 19,224 17,281
prop16: city PopulatedPlace Educational 34,061 8,681

Institution
prop17: associatedBand Band MusicalArtist 24,846 4,100
prop18: fromAlbum Album Single 18,439 1,268
prop19: location PopulatedPlace Airport 10,049 2,660
prop20: notableWork Book Person 1,510 73

Table 3.1 – Results of 20 SPARQL queries for 20 properties and different classes.

Some connected resources in DBpedia are disconnected in their corresponding Wikipedia articles,

i.e., resources can be navigated in DBpedia while it is not possible to navigate equivalent resources

in Wikipedia. We call this missing navigational paths information gap between Wikipedia and

DBpedia. Figure 3.3 details the number of information gap between Wikipedia and DBpedia for the

properties detailed in Table 3.1.

In order to evaluate the usefulness of adding these navigational paths, we carry out a social evalua-

tion [Tor+12a]. In this evaluation, we have manually added missing navigational paths for 211 discon-

nected pairs and after one month, we analyzed the number of navigational pairs accepted or rejected

by the Wikipedia community. As detailed in [Tor+12a], 90% of new navigational paths were accepted

and 10% were rejected. Although the rejected navigational paths had respected the semantics of the

relation, they were more general than those used by the community. For example, the proposed navi-

gational path to connect (Edinburgh, Charlie Aitken) 2 with the DBpedia property is birthplace of was

Edinburgh / Category:Edinburgh / Category:People_from_Edinburgh / Charlie_Aitken 3.

Wikipedia community argued that the category People from Edinburgh is too general and the more

specific category Sportspeople from Edinburgh is a more appropriate link.

For adding missing navigational paths, it is mandatory to study how the Wikipedia articles

are connected respecting the Wikipedia conventions 4. How to find the Wikipedia convention for a

2. Charlie Aitken (footballer born 1942)
3. It must be read as from Edinburgh article, the user navigates through a link to the category Edinburgh then he

or she navigates to People from Edinburgh category, and then to Charlie Aitken article".
4. http://en.wikipedia.org/wiki/Wikipedia:Conventions

http://en.wikipedia.org/wiki/Wikipedia:Conventions

3.1. PROBLEM STATEMENT 35

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

bir
thP
lac
e	

de
ath
Pla
ce
	 	
pa
rty
	

fir
stA
pp
ea
ran
ce
	 	

rec
ord
La
be
l	

ass
oc
iat
ed
Ba
nd
	 	

Co
mp
an
y	

rec
ord
ed
In	

de
bu
tst
ad
ium

	

pro
du
ce
r	 	

tra
ini
ng
	

pre
vio
us
W
ork
	 	

rec
ord
La
be
l	 	

sta
rri
ng
	 	

co
un
try
	 	

cit
y	

ass
oc
iat
ed
Ba
nd
	 	

fro
mA
lbu
m	

loc
a?
on
	

no
tab
leW

ork
	

Pr
op

or
?o

n	
in
	 %
	

Gap	 Propor?on	

Connected	 %	 Gap	 %	

Figure 3.3 – Gap proportion for the twenty DBpedia properties of Table 3.1

navigational path? We formulate the problem of predicting the best representation of missing links

in Wikipedia as a collaborative recommender system problem and define BlueFinder, a collaborative

recommender system as a solution to this problem. In the following, I detail problem statement and

BlueFinder approach and algorithms.

3.1 Problem Statement

According to Adomavicioius and Tuzhilin [AT05], "collaborative recommender systems try to pre-

dict the utility of items for a particular user based on the items previously rated by other users".

BlueFinder predicts links betweenWikipedia articles based on links previously rated by the Wikipedia

community. Thus, BlueFinder can be considered as a collaborative recommender system for enhanc-

ing content of Wikipedia.

More formally, the utility function u(c, s) of item s for user c is estimated based on the utilities

u(cj, s) assigned to item s by those users cj ∈ C who are “similar” to user c. In the context of

Wikipedia, BlueFinder does not directly apply recommenders to suggest Wikipedia articles to users

but to suggest links between articles. BlueFinder predicts the utility of path queries for a particular

pair of Wikipedia articles based on those rated by the Wikipedia community. In other words, the

pairs of articles (from,to) will play the role of users and the path queries will be the items. Then, the

36 CHAPTER 3. CO-EVOLUTION BETWEEN SOCIAL AND SEMANTIC WEB

DBpedia fetch

Wikipedia
Index

kNN
Path Queries

Analysis

Clustering &
Recommendation

BlueFinderStart-up:
DBpedia SPARQL
end point

Qp(D)

index k similar pairs

similar path queries recommended path
queries

Figure 3.4 – BlueFinder algorithm steps

utility u(c, pq) of a path query pq for a pair c related by a semantic property p is estimated based on

the utilities u(cj, pq) assigned to pair c by those pairs cj ∈ Cp(l), u : Qp(D)× PQ→ R, where R is

a list of path queries sorted according to the rating (see Definition 8).

Given a property p in DBpedia, Cp(l) and PQ path queries covered by the elements of Cp(l).

Then, for a given pair of Wikipedia articles (from, to), we have to recommend the path query that

maximizes the utility function. The following use case illustrates this problem statement in a practical

use.

3.2 A collaborative Recommender System For Wikipedia

Conventions

BlueFinder implements a four-steps pipeline process as shown in Figure 3.4. A preprocessing step

DBpedia fetch configures the BlueFinder start-up information. It fetches from DBpedia SPARQL

endpoint the set of pairs of Wikipedia articles Qp(D) that are related in DBpedia by a semantic

property p. After having the Qp(D), BlueFinder algorithm is ready to start.

The BlueFinder Algorithm 10 receives five inputs: (1) the unconnected pair of Wikipedia articles

x, (2) maximum number of recommendations maxR , (3) the Qp(D) set generated by DBpedia fetch

step, (4) the number of neighbors k , and (5) the maximum length of a path l. BlueFinder algorithm

starts by invoking the WikipediaIndex.

The WikipediaIndex Algorithm 11 builds a path index. It receives Qp(D) and computes the

3.2. A COLLABORATIVE RECOMMENDER SYSTEM FOR WIKIPEDIA CONVENTIONS 37

Algorithm 10 BlueFinder
Require: x : unconnected pair, maxR : maximum number of recommendations, Qp(D), k : number of

neighbors, l:max path length
Ensure: Recommendation path query set
1: index = (PQ, Cp(l), I)←WikipediaIndex(Qp(D), l)
2: kneighbors ← kNN(x, Cp(l))
3: knnPQ←

⋃
ci

pq : (pq, ci) ∈ I, ci ∈ kneighbors
4: knnI ←

⋃
ci

(pq, ci) : (pq, ci) ∈ I, ci ∈ kneighbors
5: knnPI ← (knnPQ, kneighbors, knnI)
6: M ← NoiseF ilter(knnPI) . M ordered in rating descendent order
7: M ← StarGeneralization(M, knnPI)
8: return maxR path queries of M

item set, user set and item ratings. The items are the path queries, and the users are the pairs of

Wikipedia pages retrieved from DBpedia. In this case, for each pair of Wikipedia articles (from, to)

included in a given Qp(D), the algorithm performs a depth-first search up to l starting from the

from article and finishing in the to article in the Wikipedia graph (lines 1-4). For each reaching

to article, it generalizes a path and builds the path index as a bipartite graph (lines 5-8). Finally,

it returns the path index that is ready to be used in the next step of the BlueFinder algorithm 10.

BlueFinder traverses Wikipedia graph starting from the from article and finishing in the to article

in the Wikipedia graph until the maximum length of a path; consequently, a depth-first search is

more appropriate than the breadth-first search for building path index.

Algorithm 11 WikipediaIndex
Require: Qp(D), l: path length
Ensure: PI bipartite graphQp(D), l
1: function WikipediaIndex(Qp(D), l)
2: index = (∅,∅,∅)
3: for eache(from, to) ∈ Qp(D) do
4: allPaths← ∅ , curL← 0, curPath← ∅
5: GenerateAllPaths(from, to, l, curL, allPaths, curPath)
6: for each path ∈ allPaths do
7: pathQuery ← BuildPathQuery(path, from, to)
8: index← InsertInIndex(index, pathQuery, (from, to))
9: end for
10: end for
11: return index
12: end function

After indexing, BlueFinder performs the kNN step (line 2 in Algorithm 10). In this step, given

a disconnected pair of articles in Wikipedia, BlueFinder identifies the k nearest connected pairs to

the disconnected one.

The kNN algorithm uses a similarity measure function to select the nearest neighbors. We define

38 CHAPTER 3. CO-EVOLUTION BETWEEN SOCIAL AND SEMANTIC WEB

the Semantic Pair Similarity Distance (SPSD) function to measure the similarity between pairs of

article. SPSD is based on Jaccard distance, it is defined as:

Definition 3.2.1 (Semantic Pair Similarity Distance (SPSD)). Given two pairs of pages c1 = (a1, b1)

and c2 = (a2, b2). Let ta1, tb1, ta2, tb2 data types in DBpedia for a1, b1, a2 and b2 respectively. Data

types are defined as:

ta1 ={t : < a1 rdf:type t > ∈ DBpedia}, tb1 ={t : < b1 rdf:type t > ∈ DBpedia},

ta2 ={t : < a2 rdf:type t > ∈ DBpedia}, tb2 ={t : < b2 rdf:type t > ∈ DBpedia}.

SPSD(c1, c2) = J(ta1 ,ta2)+J(tb1 ,tb2)
2

where J is Jaccard distance between c1 and c2. J(c1, c2) = |c1∪c2|−|c1∩c2|
|c1∪c2| .

To illustrate, we consider two pairs of Wikipedia pages c1 = (Paris, P ierreCurie) and c2 =

(Paris, Larusso). The data types are:

— tparis = {EuropeanCaptialsOfCulture, PopulatedP lace}.

— tPierreCurie = {Scientist, FrenchCheimists, PeopleFromParis}.

— tLarusso = {Artist, PeopleFromParis}.

SPSD(c1, c2) = J(tparis,tparis)+J(tP ierreCurie,tLarusso)
2 = (0 + 0.75)/2 = 0.375

Now, we can define the kNN [Lu+12] in our context as:

Definition 3.2.2 (kNN). Given a pair r ∈ Qp(D) and an integer k, the k nearest neighbors of

r denoted KNN(r,Qp(D)) is a set of k pairs from Qp(D) where ∀o ∈ KNN(r,Qp(D)) and ∀s ∈

Qp(D)−KNN(r,Qp(D)) then SPSD(o, r) ≤ SPSD(s, r).

Having the kNN step computed, the Path Queries Analysis step starts. It obtains the path

queries that connect the k neighbors in a smaller path index than the original (from line 3 to 5 in

Algorithm 10).

The generated path index contains the path queries that will be recommended and its ratings.

Before the recommendations are returned, in the step Clustering and Recommendation in Figure 3.4,

BlueFinder cleans regular-user-unreachable-paths (e.g., paths that include administrative categories)

by means of the noiseFilter (Algorithm 12) and similar path queries are grouped by StarGeneraliza-

tion algorithm (Algorithm 13). Finally, BlueFinder returns the maxR best ranked path queries.

3.2. A COLLABORATIVE RECOMMENDER SYSTEM FOR WIKIPEDIA CONVENTIONS 39

The NoiseF ilter Algorithm 12 deletes all the paths queries that are not accessible by a Wikipedia

user. Wikipedia includes several administrative categories which are used by administrators. In

order to recommend path queries that can be utilized by regular users, NoiseF ilter deletes those

categories whose names begin with "Articles_", "All_Wikipedia_", etc, such as Cat:Articles_to

_be_merged.

Algorithm 12 NoiseFilter
Require: PI = (PQ, C, I): Path index
Ensure: Set of regular user navigable path queries.
1: function NoiseFilter(PI)
2: noise = {”Articles_”, ”All_Wikipedia_”, ”Wikipedia_”, ”Non −

free”, ”All_pages_”, ”All_non”}
3: for all pq = (p1, .., pn) ∈ PQ; do
4: if pi contains any c ∈ noise; 1 ≤ i ≤ n then
5: PQ← PQ− {pq}
6: end if
7: end for
8: return PQ
9: end function

BlueFinder filters path queries into star path queries in order to reduce data sparsity.

Algorithm 13 StarGeneralization
Require: PQ: set of path queries, PI: Path index
Ensure: PQ∗: set of star path queries
1: function StarGeneralization(PQ, PQ∗)
2: PQ∗ ← ∅
3: for each pq = (p1, .., pn−1, pn) ∈ PQ; do
4: if pn−1 starts with "Cat:" then
5: PQ∗ ← PQ∗

⋃
{(p1, ∗, pn−1, pn)}

6: else
7: PQ∗ ← PQ∗

⋃
{pq}

8: end if
9: end for
10: return PQ∗

11: end function

Definition 3.2.3. A star path query PQ∗(f, t) is a group of similar path queries that meet the

following rules: (1) PQ∗(f, t) starts with #from and ends with #to. (2) The * element can only

be placed between #from and #to variables and * represents any path query. (3) The * cannot be

the penultimate element in the path query because it has to make explicit the last part of the path in

order to make the connection with the #to page.

PQ∗(f, t) =#from/*/Cat:People_from_#from/ #to is a star path query.

40 CHAPTER 3. CO-EVOLUTION BETWEEN SOCIAL AND SEMANTIC WEB

Run BlueFinder
with (A,D)

A is birthplace of D

In Wikipedia it is possible
to navigate from A to D.

If the recommendation recreates the original
path, then BlueFinder �xes the connection.

Example

DCB
A

DCB
A DCB

A

Figure 3.5 – Evaluation method

PQ∗(f, t) =#from/*/#to is not a star path query.

The StarGeneralization Algorithm 13 groups path queries into a star path query, if possible.

3.3 Evaluation

In this section we analyze the behavior of our approach by means of measuring the prediction

the accuracy of BlueFinder predictions over the 20 properties shown in Table 3.1. The evaluation is

conducted to answer the following questions:

1. What is the best combination of k and maxR values to observe the best accuracy from

BlueFinder?

2. Does BlueFinder retrieve path queries that can fix missing relations in Wikipedia?

3. Does the confidence level provided by BlueFinder correlate with the accuracy of the predictions?

4. Does the Wikipedia Community use different conventions to represent a DBpedia property?

In this section we describe the method of the evaluation, the evaluation metrics, and then the data

sets used in the experimentation are presented. Finally, the results and discussions are introduced.

Method

In order to answer the questions described in the previous section, an offline evaluation was de-

signed; user interaction is not considered in the study. The central idea of this evaluation is based

on disconnecting connected pairs of articles in Wikipedia and then observing whether BlueFinder is

able to recreate them. The important fact here is that BlueFinder has to recreate the Wikipedia

community conventions that were defined to connect the pairs and not only to discover the discon-

nection. This approach is based on the assumption that all connected pairs in Wikipedia follow

Wikipedian conventions. Figure 3.5 summarizes the idea of the evaluation method. For the purpose

3.3. EVALUATION 41

of this evaluation all the path queries that connect a pair of pages that are related in DBpedia by a

property p, are considered the correct paths that represent the property p.

A sample of 10% of the connected pairs was taken for the evaluation. They are randomly selected

and kept in a set called N. For instance, for prop1 in Table 3.1, 188,324 pairs are connected in

Wikipedia (i.e. 409,812 - 221,788), so 18,832 randomly selected of those pairs will be in the set N.

After that, for each connected pair (w1, w2) in N the evaluation repeats the following steps:

1. All paths currently connecting (w1, w2) in Wikipedia are stored in the µrelevant set, and imme-

diately all them are eliminated from Wikipedia to “disconnect” (w1, w2).

2. BlueFinder is executed to predict the paths that could connect (w1, w2). The resulting predic-

tions are kept in µpredicted.

3. The µpredicted set is compared with µrelevant set in order to compute the metrics detailed below

such as precision, recall and F1.

4. Finally, Wikipedia is restored up to the state before the pair disconnection. This means that

the (w1, w2) pair is reconnected by means of µrelevant.

In this evaluation, BlueFinder behavior is evaluated in each property mentioned in Table 3.1,

and then aggregates the values of all the metrics to have a general point of view. For example, the

evaluation measures the precision metric for prop1, then for prop2 and then it continues with the rest

of metrics and properties. After all the metrics and properties are computed, the mean of all metric

values is calculated.

In order to have an analysis of the best combination of the number of neighbors and the number

of the BlueFinder recommendations, the BlueFinder execution is configured with many combinations

of the parameter k and maxR for each disconnected pair. The values for k are from 1 to 10, and the

values for maxR are 1, 3, 5 and unlimited. The limit of path queries l was fixed in 5 according to

the analysis presented previously.

42 CHAPTER 3. CO-EVOLUTION BETWEEN SOCIAL AND SEMANTIC WEB

Listing 3.1 – A SPARQL query template for evaluation scenarios

select ? f r ? to where {

?db_from a <fromType> .

?db_to a <toType> .

?db_to db−p:<DBpediaSemanticProperty> ?db_from .

?db_from f o a f : isPrimaryTopicOf ? f r .

?db_to f o a f : isPrimaryTopicOf ? to

}

Datasets

We evaluate BlueFinder with the twenty semantic properties detailed in Table 3.1. For each

property denoted by propi, a SPARQL query was evaluated on the DBpedia SPARQL endpoint.

The SPARQL query for each property follows the template showed in Listing 3.1 and the values

of DBpediaSemanticProperty, fromType and toType are replaced in each property scenario for the

specific values of the first, second and third column respectively that are detailed in Table 3.1. For

instance, the SPARQL query in Listing 3.1a corresponds to prop1. The number of the Wikipedia

connected pairs of each property is the difference between the numbers of the DBpedia connected

pairs minus the number of the Wikipedia disconnected pairs (columns fourth and fifth of Table 3.1).

The evaluation was run with a local copy of the English Wikipedia and DBpedia download in July

2013 and they were stored in a MySQL database.

Evaluation Results

To assess the best behavior of BlueFinder, we analyze the values of accuracy metrics for the 20

properties from a general perspective. Figure 3.6 shows four line-charts with the mean values of

precision, recall, F1 and hit − rate obtained for each property. Each chart describes the relation

between maxR and k values for each metric. BlueFinder is able to find, on average, between 75

% and 82 % of the relevant paths, and according to the hit-rate values it is able to fix around

88 % of the cases for k greater than 4 and maxR = 3, 5 or unlimited. However, the limitations

is that the precision values decrease according to the variation of the k values and the number of

recommendations. To detect the best correlation between precision and recall we use the F1 metric.

According to the Figure 3.6, all the maxR curves converge at k=5 with value 0.65. Therefore,

3.4. CONCLUSION 43

General values for all scenarios
Pr
ec
is
io
n

F1

Re
ca
ll

H
it-
Ra

te

1 3 5 unlimited

K
1 3 5 unlimited

K

1 3 5 unlimited

K

1 3 5 unlimited

K

Figure 3.6 – Precision, Recall, F1, and Hit-rate mean of all properties

maxR = 5 and k = 5 determine the best accuracy for BlueFinder. The number of correct path

queries tips the scales in favor of recall and hit-rate rather than precision. This assumption is based

on the fact that the recommendations are presented to the users in descending confidence order, and

consequently, the users have extra information to determine the accuracy of the recommendation.

Finally, the unlimited maxR was dismissed because it had similar recall than maxR = 5 but lower

precision.

The complete results of all the metrics with the different values for k and maxR are available at

the website: https://sites.google.com/site/bfrecommender/publications/.

3.4 Conclusion

In this chapter, I introduced the information gap between Wikipedia and DBpedia. To reduce

this gap, we have to discover Wikipedia conventions to represent a DBpedia property between a pair

of Wikipedia articles. I proposed BlueFinder, a collaborative recommender system that recommends

navigational paths to represent a DBpedia property in Wikipedia, while respecting Wikipedia con-

ventions. BlueFinder learns from those similar pairs already connected by Wikipedia community and

proposes a set of recommendations to connect a pair of disconnected articles. BlueFinder exploits

https://sites.google.com/site/bfrecommender/publications/

44 CHAPTER 3. CO-EVOLUTION BETWEEN SOCIAL AND SEMANTIC WEB

DBpedia types to define a similarity function. Experimental results demonstrate that BlueFinder is

able to fix in average 89 % of the disconnected pairs with good accuracy and confidence.

Currently, BlueFinder is tailored for Wikipedia/DBpedia where entities matching are well-defined.

However, BlueFinder can be generalized to other datasets with established entities matching.

As a further work, I plan to extend the approach to any property in DBpedia in combination

with other languages of Wikipedia and to offre the next generation of BlueFinder as a service for

any Wikipedia editor.

Supervised PhD Thesis associated with this chapter
[Tor14] Diego Torres. « Co-Evolution between Social and Semantic Web ». PhD thesis. Univer-

sité de Nantes, Oct. 2014.

Publications associated with this chapter

Book chapters
[Tor+16] Diego Torres, Hala Skaf-Molli, Pascal Molli, and Alicia Diaz. « Discovering Wikipedia

Conventions Using DBpedia Properties ». In: Revised Selected, Invited Papers of Se-

mantic Web Collaborative Spaces: SWCS 2013, and SWCS 2014, Springer International

Publishing, 2016, pp. 115–144.

International peer-reviewed conferences
[Tor+13] Diego Torres, Hala Skaf-Molli, Pascal Molli, and Alicia Diaz. « BlueFinder: Recom-

mending Wikipedia Links Using DBpedia Properties ». In: ACM Web Science Confer-

ence 2013 (WebSci 13). Paris, France, May 2013, pp. 115–144.

[Tor+12a] Diego Torres, P. Molli, H. Skaf-Molli, and A. Diaz. « From DBpedia to Wikipedia:

Filling the Gap by Discovering Wikipedia Conventions ». In: 2012 IEEE/WIC/ACM

International Conference on Web Intelligence (WI 12). 2012.

[Tor+11] Diego Torres, Alicia Diaz, Hala Skaf-Molli, and Pascal Molli. « Semdrops: A Social

Semantic Tagging Approach for Emerging Semantic Data ». In: 2011 IEEE/WIC/ACM

International Conference on Web Intelligence (WI 2011). Lyon, France, Aug. 2011.

INTERNATIONAL PEER-REVIEWED WORKSHOPS 45

International peer-reviewed workshops
[Tor+12b] Diego Torres, Pascal Molli, Hala Skaf-Molli, and Alicia Diaz. « Improving Wikipedia

with DBpedia ». In: SWCS - Semantic Web Collaborative Spaces Workshop 2012 in

21st WWW Conference 2012. Lyon, France, Apr. 2012.

4
SPARQL Queries over Linked data and

Deep Web

Motivations: A great effort has been done by the Semantic Web community to integrate datasets

into the Linking Open Data (LOD) cloud and make these data accessible through SPARQL servers.

However, the Deep Web which has around 500 times the size of the Surface Web [He+07] has not

been integrated as part of LOD cloud. Performing SPARQL queries without considering the Deep

Web can potentially deliver incomplete results. For example, the execution of the SPARQL query:

Which members of the Semantic Web community are interested in Dalai Lama, Barack Obama, or

Rihanna? without the integration of the Deep Web will provide no answers. Nevertheless, if data

from social networks such as Twitter, Facebook, or LinkedIn were considered, the query execution

could return some answers.

Contributions: I proposed semLAV, the first scalable Local-As-View (LAV) based approach for

SPARQL query processing over LOD Cloud and deep web. Given a SPARQL query Q on a set M of

LAV views, semLAV selects relevant views for Q and ranks them in order to maximize query results.

Next, data collected from selected views are included into a partial instance of the global schema,

where Q can be executed whenever new data is included; and thus, semLAV incrementally produces

46

4.1. SEMLAV APPROACH 47

query answers. In the following, I will present semLAV approach, algorithms and experimental

results.

4.1 semLAV Approach

semLAV is a scalable LAV-based approach for processing SPARQL queries. It is able to produce

answers even for SPARQL queries against large integration systems with no statistics. semLAV

follows the traditional mediator-wrapper architecture [Wie92]. Schemas exposed by the mediators

and wrappers are expressed as RDF vocabularies. Given a SPARQL query Q over a global schema

G and a set of sound views M = {v1, . . . , vm }, semLAV executes the original query Q rather than

generating and executing rewritings as in traditional LAV approaches. semLAV builds an instance

of the global schema on-the-fly with data collected from the relevant views. The relevant views are

considered in an order that enables to produce results as soon as the query Q is executed against

this instance.

Contrary to traditional wrappers which populate structures that represent the heads of the cor-

responding views, semLAV wrappers return RDF Graphs composed of the triples that match the

triple patterns in the definition of the views. semLAV wrappers could be more expensive in space

than the traditional ones. However, they ensure that original queries are executable even for full

SPARQL queries and they make query execution dependent on the number of views rather than on

the number of rewritings.

To illustrate the semLAV approach, consider a SPARQL query Q with four subgoals given in

Listing 4.1, and a set M of five views given in Listing 4.2.

Listing 4.1 – Products, features, and vendor of the offers
SELECT * WHERE {

?Offer bsbm:vendor ?Vendor .

?Vendor rdfs:label ?Label .

?Offer bsbm:product ?Product .

?Product bsbm:productFeature ?ProductFeature .

}

48 CHAPTER 4. SPARQL QUERIES OVER LINKED DATA AND DEEP WEB

Listing 4.2 – Views that describe contents of five sources having data about products
v1(P,L,T,F):-label(P,L),type(P,T),productfeature(P,F)

v2(P,R,L,B,F):-producer(P,R),label(R,L),publisher(P,B),productfeature(P,F)

v3(P,L,O,R,V):-label(P,L),product(O,P),price(O,R),vendor(O,V)

v4(P,O,R,V,L,U,H):-product(O,P),price(O,R),vendor(O,V),label(V,L),offerwebpage(O,U),homepage(V,H)

v5(O,V,L,C):-vendor(O,V),label(V,L),country(V,C)

In the traditional LAV approach, 60 rewritings are generated and the execution of all these rewrit-

ings will produce all possible answers. However, this is time-consuming and uses a non-negligible

amount of memory to store data collected from views present in the rewritings. In case there are not

enough resources to execute all these rewritings, as many rewritings as possible would be executed.

We apply a similar idea in semLAV, if it is not possible to consider the whole global schema instance

to ensure a complete answer, then a partial instance will be built. The partial instance will include

data collected from as many relevant views as the available resources allow.

The execution of the query over this partial schema instance will cover the results of executing

a number of rewritings. The number of rewritings covered by the execution of Q over the partial

schema instance could be exponential in the number of views included in the instance. Therefore, the

size of the set of covered rewritings may be even greater than the number of rewritings executable

in the same amount of time.

Table 4.1 – Impact of the different views ordering on the number of covered rewritings

Included Order One Order Two
views (k) Included views (Vk) # Covered Included views (Vk) # Covered

rewritings rewritings
1 v5 0 v4 0
2 v5, v1 0 v4, v2 2
3 v5, v1, v3 6 v4, v2, v3 12
4 v5, v1, v3, v2 8 v4, v2, v3, v1 32
5 v5, v1, v3, v2, v4 60 v4, v2, v3, v1, v5 60

The order in which views are included in the partial global schema instance impacts the number of

covered rewritings. Consider two different orders for including the views of the above example: v5, v1,

v3, v2, v4 and v4, v2, v3, v1, v5. Table 4.1 considers partial global schema instances of different sizes.

For each partial global schema instance, the included views and the number of covered rewritings

are presented. Executing Q over the growing instances corresponds to the execution of a quite

different number of rewritings. For instance, if only four views could be included with the available

4.1. SEMLAV APPROACH 49

resources, one order corresponds to the execution of 32 rewritings while the another one corresponds

to the execution of only eight rewritings. If all relevant views for query Q could be included, then

a complete answer will be produced. However, the number of relevant views could be considerably

large, therefore, if we only have resources to consider k relevant views, Vk, we should consider the

ones that increase the chances of obtaining answers. With no knowledge about data distribution, we

can only suppose that each rewriting has nearly the same chances of producing answers. Thus, the

chances of obtaining answers are proportional to the number of rewritings covered by the execution

of Q over an instance that includes views in Vk.

Maximal Coverage Problem (MaxCov). Given an integer k > 0, a query Q on a global schema

G, a set M of sound views over G, and a set R of conjunctive queries whose union is a maximally-

contained rewriting of Q inM . The Maximal Coverage Problem is to find a subset Vk ofM comprised

of k relevant views for Q, Vk ⊆ M ∧ (∀v : v ∈ Vk : v ∈ RV (Q,M)) ∧ |Vk| = k, such that the set of

rewritings covered by Vk, Coverage(Vk, R), is maximal for all subsets of M of size k, i.e., there is

no other set of k views that can cover more rewritings than Vk. Coverage(Vk, R) is defined as:

Coverage(Vk, R) = {r : r ∈ R ∧ (∀p : p ∈ body(r) : p ∈ Vk)} (4.1)

The MaxCov problem has as an input a solution to the Maximally-Contained Rewriting problem.

Nevertheless, using this for building a MaxCov solution would be unreasonable since it makes the

MaxCov solution at least as expensive as the rewriting generation. Instead of generating the rewrit-

ings, we define a formula that estimates the number of covered rewritings when Q is executed over

a global schema instance that includes a set of views. It is the product of the number of ways each

query subgoal can be covered by the set of views. For a query Q(X̄) :- p1(X̄1), . . . pn(X̄n) using only

views in Vk this formula is expressed as:

NumberOfCoveredRewritings(Q, Vk) = Π1≤i≤n|Use(Vk, pi(X̄i))|, (4.2)

where Use(Vk, p) = Σv∈Vk
Σw∈body(v)∧covers(w,p)1. This formula computes the exact number of covered

rewritings when all the view variables are distinguished; this is because the coverage of each query

subgoal by a given view can be considered in isolation. Otherwise, this expression corresponds to an

upper bound of the number of covered rewritings of Q with respect to Vk.

50 CHAPTER 4. SPARQL QUERIES OVER LINKED DATA AND DEEP WEB

Consider the second proposed ordering of the views in the above example, the numbers of views

in V4 that cover each query subgoal are:

— two for the first query subgoal (v4 and v3),

— four for the second query subgoal (v4, v2, v3 and v1),

— two for the third query subgoal (v4 and v3), and

— two for the fourth query subgoal (v2 and v1).

Thus, the number of covered rewritings is 32 (2 × 4 × 2 × 2).

Next, we detail a solution to the MaxCov problem under the assumption that views only contain

distinguished variables.

4.2 Algorithms
I will detail two algorithms. The first one selects and ranks relevant views for a query and the

seconds builds the global instance to execute the query.

Relevant View Selection and Ranking Algorithm

The relevant view selection and ranking algorithm finds the views that cover each subgoal of a

query. This algorithm creates a bucket for each query subgoal q, where a bucket is a set of relevant

views; this resembles the first step of the Bucket algorithm[Hal01]. Additionally, the algorithm sorts

the buckets views according to the number of covered subgoals. Hence, the views that are more likely

to contribute to the answer will be considered first. This algorithm is defined in Algorithm 14.

Algorithm 14 The Relevant View Selection and Ranking
Require: Q : SPARQL Query; M : Set of Views defined as conjunctive queries
Ensure: Buckets: Predicate → List<View>

for all q ∈ body(Q) do
buckets(q) ← ∅

end for
for all q ∈ body(Q) do

b← buckets(q)
for all v ∈M do

for all w ∈ body(v) do
if There are mappings τ , ψ, such that ψ(q) = τ(w) then

vi ← λ(v) . λ(v) replaces all variables ai in the head of v by τ(ai)
insert(b, vi) . add vi to the bucket if it is not redundant

end if
end for

end for
end for
for all q ∈ body(Q) do

b← buckets(q)
sortBucket(buckets,b) . MergeSort with key (#covered buckets,#views subgoals)

end for

The mapping τ relates view variables to query variables.

4.2. ALGORITHMS 51

The sortBucket(buckets, b, q) procedure decreasingly sorts the views of bucket b according to the

number of covered subgoals. Views covering the same number of subgoals are sorted decreasingly

according to their number of subgoals. Intuitively, this second sort criterion prioritizes the more

selective views, reducing the size of the global schema instance. The sorting is implemented as a

classical MergeSort algorithm with a complexity of O(|M| × log(|M|).

Proposition 4.2.1. The complexity of Algorithm 14 is Max(O(N × |M| × P),O(N × |M| × log(|M|)))

where N is the number of query subgoals, M is the set of views and P is the maximal number of view

subgoals.

To illustrate Algorithm 14, consider the SPARQL query Q and the previously defined views v1-v5.

Table 4.2 – For query Q, buckets produced by Algorithm 14 when k views have been included. Vk is
obtained by Algorithm 15 and the number of covered rewritings

(a) Unsorted buckets

vendor(O,V) label(V,L) product(O,P) productfeature(P,F)
v3(P,L,O,R,V) v1(P,L,T,F) v3(P,L,O,R,V) v1(P,L,T,F)
v4(P,O,R,V,L,U,H) v2(P,R,L,B,F) v4(P,O,R,V,L,U,H) v2(P,R,L,B,F)
v5(O,V,L,C) v3(P,L,O,R,V)

v4(P,O,R,V,L,U,H)
v5(O,V,L,C)

(b) Sorted buckets

vendor(O,V) label(V,L) product(O,P) productfeature(P,F)
v4(P,O,R,V,L,U,H) v4(P,O,R,V,L,U,H) v4(P,O,R,V,L,U,H) v2(P,R,L,B,F)
v3(P,L,O,R,V) v3(P,L,O,R,V) v3(P,L,O,R,V) v1(P,L,T,F)
v5(O,V,L,C) v2(P,R,L,B,F)

v1(P,L,T,F)
v5(O,V,L,C)

(c) Included views

Included views (k) Included views (Vk) # Covered rewritings
1 v4 1 × 1 × 1 × 0 = 0
2 v4, v2 1 × 2 × 1 × 1 = 2
3 v4, v2, v3 2 × 3 × 2 × 1 = 12
4 v4, v2, v3, v1 2 × 4 × 2 × 2 = 32
5 v4, v2, v3, v1, v5 3 × 5 × 2 × 2 = 60

Algorithm 14 creates a bucket for each subgoal in Q as shown in Table 4.2a.

For instance, the bucket of subgoal vendor(O, V) contains v3, v4 and v5: all the views having

a subgoal covering vendor(O, V). The final output after executing the sortBucket procedure is

described in Table 4.2b.

52 CHAPTER 4. SPARQL QUERIES OVER LINKED DATA AND DEEP WEB

Views v3 and v4 cover three subgoals, but since v4 definition has more subgoals, i.e., it is more

selective, v4 is placed before v3 in all the buckets.

Global Schema Instance Construction and Query Execution

Each bucket is considered as a stack of views, having on the top the view that covers more

query subgoals. A global schema instance is constructed as described in Algorithm 15 by iteratively

popping one view from each bucket and loading its data into the instance.

Table 4.2c shows how the number of covered rewritings increases as views are included into the

global schema instance. Each Vk in this table is a solution to the MaxCov problem, i.e., the number of

covered rewritings for each Vk is maximal. There are two possible options regarding query execution.

Query can be executed each time a new view is included into the schema instance and partial results

will be produced incrementally; or, it can be executed after including the k views. The first option

prioritizes the time for obtaining the first answer, while the second one favors the total time to receive

all the answers of Q over Vk. The first option produces results as soon as possible; however, in case of

non-monotonic queries, i.e., queries where partial results may not be part of the query answer, this

query processing approach should not be applied. Among non-monotonic queries, there are queries

with modifiers like SORT BY or constraints like a FILTER that includes the negation of a bound

expression. The execution of non-monotonic queries requires all the relevant views to be included in

the global schema instance in order to produce the correct results.

Algorithm 15 The Global Schema Instance Construction and Query Execution
Require: Q : Query
Require: Buckets: Predicate → List<View> . The buckets are produced by Algorithm 14
Require: k : Int
Ensure: A: Set<Answer>
Stacks : Predicate → Stack<View>
Vk : Set<View>
G : RDFGraph
for all p ∈ domain(Buckets) do

Stacks(p) ← toStack(Buckets(p))
end for
while (∃p| : ¬empty(Stacks(p))) ∧ |Vk| < k do

for all p ∈ domain(Stacks) ∧ ¬empty(Stacks(p)) do
v ← pop(Stack(p))
if v /∈ Vk then

load v into G . only if is not redundant
A← A ∪ exec(Q,G) . Option 1: Execute Q after each successful load
Vk ← Vk ∪ {v}

end if
end for

end while
A← exec(Q,G) . Option 2: execute before exit

Proposition 4.2.2. Considering conjunctive queries, the time complexity of Algorithm 15 in option

1 is O(k × N × I), while the time complexity is O(N × I) for option 2. Where k is the number

4.2. ALGORITHMS 53

of relevant views included in the instance, N the number of query subgoals, and I is the size of the

constructed global schema instance.

Proposition 4.2.3. Algorithm 15 finds a solution to the MaxCov problem.

Proof. By contradiction, suppose that the set Vk is not maximal in terms of the number of covered

rewritings, then there is another set V ′k of size k that covers more rewritings than Vk. By construction,

Vk includes the first views of each bucket, i.e., the views that cover more query subgoals. There should

exist at least one view in Vk that is not in V ′k , and vice-versa. Suppose w is the first view in Vk that

is not in V ′k (w ∈ Vk ∧ w 6∈ V ′k) , v is the first one in V ′k and is not in Vk (v ∈ V ′k ∧ v 6∈ Vk) ,

and w belongs to the bucket of the query subgoal q. If v covers q, then it belongs to the bucket of

q. Because Vk includes the views that cover more subgoals, if v was not included in Vk is because

it covers less rewritings than w; thus, the contribution of v to the number of covered rewritings is

inferior to the contribution of w. This generalizes to all the views in V ′k and not in Vk; thus, the

number of rewritings covered by V ′k should be less than the number of rewritings covered by Vk. If v

covers another query subgoal q′ and all the query subgoals are covered at least once by views in Vk;

thus, Algorithm 15 should have included it before including w and v should belong to Vk.

The semLAV Properties

Given a SPARQL query Q over a global schema G, a set M of views over G, the set RV of views

in M relevant for Q, a set R of conjunctive queries whose union is a maximally-contained rewriting

of Q using M , and Vk a solution to the MaxCov problem produced by semLAV.

— Answer Completeness: If semLAV executes Q over a global schema instance I that includes all

the data collected from views in RV , then it produces the complete answer. semLAV outputs

the same answers as a traditional rewriting-based query processing approach:

⋃
r∈R

r(I(M)) = Q(
⋃

v∈RV
I(v)). (4.3)

— Effectiveness: the Effectiveness of semLAV is proportional to the number of covered rewritings,

it is defined as:

Effectiveness(Vk) = |Coverage(Vk, R)|
|R|

. (4.4)

For an execution constrained by time or space, Vk could be smaller than RV .

54 CHAPTER 4. SPARQL QUERIES OVER LINKED DATA AND DEEP WEB

— Execution Time depends on |RV |: The load and execution time of semLAV linearly depends

on the size of the views included in the global schema instance.

— No memory blocking: semLAV guarantees to obtain a complete answer when ⋃
v∈RV I(v) fits

into memory. If not, it is necessary to divide the set RV of relevant views into several subsets

RVi, such that each subset fits into memory and for any rewriting r ∈ R all views v ∈ body(r)

are contained in one of these subsets.

4.3 Evaluation

Table 4.3 – Queries and their answer size, number of subgoals, and views size

(a) Query information

Query Answer Size # Subgoals # Rewritings
Q1 6.68E+07 5 2.04E+10
Q2 5.99E+05 12 1.57E+24
Q4 2.87E+02 2 1.62E+04
Q5 5.64E+05 4 7.48E+07
Q6 1.97E+05 3 3.14E+05
Q8 5.64E+05 3 1.57E+05
Q9 2.82E+04 1 3.40E+01
Q10 2.99E+06 3 4.40E+06
Q11 2.99E+06 2 9.25E+03
Q12 5.99E+05 4 1.50E+09
Q13 5.99E+05 2 6.47E+04
Q14 5.64E+05 3 2.52E+06
Q15 2.82E+05 5 2.04E+10
Q16 2.82E+05 3 3.14E+05
Q17 1.97E+05 2 4.62E+03
Q18 5.64E+05 4 1.20E+09

(b) Views size

Views Size
V1-V34 201,250
V35-V68 153,523
V69-V102 53,370
V103-V136 26,572
V137-V170 5,402
V171-V204 66,047
V205-V238 40,146
V239-V272 113,756
V273-V306 24,891
V307-V340 11,594
V341-V374 5,402
V375-V408 5,402
V409-V442 78,594
V443-V476 99,237
V477-V510 1,087,281

We compare the semLAV approach with traditional rewriting-based approaches GQR [KA11],

MCDSAT [ABV06], MiniCon [PH01], and SSDSAT [IVB10]

The Berlin SPARQL Benchmark (BSBM) [BS09] is used to generate a dataset of 10,000,736

triples using a scale factor of 28,211 products. Additionally, third-party queries and views are used

to provide an unbiased evaluation of our approach. In our experiments, the goal is to study semLAV

as a solution to the MaxCov problem, and we compute the number of rewritings generated by three

state-of-the-art query rewriters. From the 18 queries and 10 views defined in [Cas12], we leave out

the ones using constants (literals) because the state-of-the-art query rewriters are unable to handle

constants either in the query or in the views. In total, we use 16 out of 18 queries and nine out of 10

4.3. EVALUATION 55

100

102

Q1 Q2 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18

E
xe

cu
tio

n
T

im
e

(s
ec

s)

100

104

Q1 Q2 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18

N
um

be
r

of
 R

ew
rit

in
gs

100

102

Q1 Q2 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18T
hr

ou
gh

pu
t (

R
ew

rit
in

gs
/s

ec
)

Figure 4.1 – Comparison of state-of-the-art LAV rewriting engines for 16 queries without existential
variables and 476 views from our experimental setup. Studied engines are: GQR (), MCDSAT
(), MiniCon () and SSDSAT ()

56 CHAPTER 4. SPARQL QUERIES OVER LINKED DATA AND DEEP WEB

the defined views. The query triple patterns can be grouped into chained connected star-shaped sub-

queries, that have between one and twelve subgoals with only distinguished variables, i.e., queries are

free of existential variable. We define five additional views to cover all the predicates in the queries.

From these 14 views, we produce 476 views by horizontally partitioning each original view into 34

parts, such that each part produces 1/34 of the answers given by the original view.

Queries and views are described in Tables 4.3a and 4.3b. The size of the complete answer is

computed by including all the views into an RDF-Store (Jena) and executing the queries against this

centralized RDF dataset.

We implement wrappers as simple file readers. For executing rewritings, we use one named

graph per subgoal as done in [Le+11]. The Jena 2.7.4 1 library with main memory setup is used

to store and query the graphs. The semLAV algorithms are implemented in Java, using different

threads for bucket construction, view inclusion and query execution to improve performance. The

implementation and all evaluation results are available in the project website 2.

Table 4.4 – The semLAV Effectiveness. For 10 minutes of execution, we report the number of
relevant views included in the global schema instance, the number of covered rewritings and the
achieved effectiveness. Also values for total number of views and rewritings are shown

Query Included Views # Relevant Views # Covered rewritings # Rewritings Effectiveness
Q1 30 408 2.28E+06 2.04E+10 0.000112
Q2 194 408 2.05E+23 1.57E+24 0.130135
Q4 156 374 8.77E+03 1.62E+04 0.542017
Q5 52 374 3.13E+06 7.48E+07 0.041770
Q6 44 136 2.13E+04 3.14E+05 0.067728
Q8 81 136 9.36E+04 1.57E+05 0.595588
Q9 34 34 3.40E+01 3.40E+01 1.000000
Q10 88 408 3.20E+05 4.40E+06 0.072766
Q11 77 136 5.24E+03 9.25E+03 0.566176
Q12 238 408 7.70E+08 1.50E+09 0.514286
Q13 245 408 4.26E+04 6.47E+04 0.657563
Q14 46 272 1.22E+04 2.52E+06 0.004837
Q15 70 442 5.12E+08 2.04E+10 0.025144
Q16 82 136 1.90E+05 3.14E+05 0.602941
Q17 56 136 1.90E+03 4.62E+03 0.411765
Q18 23 374 2.80E+05 1.20E+09 0.000234

Experimental Results

The analysis of our results focus on three main aspects: the semLAV effectiveness, memory

consumption and throughput.

To demonstrate the semLAV effectiveness, we execute semLAV with a timeout of 10 minutes.

During this execution, the semLAV algorithms select and include a subset of the relevant views; this

1. http://jena.apache.org/
2. https://sites.google.com/site/semanticlav/

https://sites.google.com/site/semanticlav/

4.3. EVALUATION 57

0

25

50

75

100

Q1 Q2 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18

A
ns

w
er

s
P

er
ce

nt
ag

e

Figure 4.2 – Answer Percentage obtained by semLAV (), MCDSAT (), GQR () and MiniCon
()

set corresponds to Vk as a solution to the MaxCov problem. Then, we use these views to compute the

number of covered rewritings using the formula given in Section 4.1. Table 4.4 shows the number of

relevant views considered by semLAV, the covered rewritings and the achieved effectiveness. Effec-

tiveness is greater than or equal to 0.5 (out of 1) for almost half of the queries. semLAV maximizes

the number of covered rewritings by considering views that cover more subgoals first.

The observed results confirm that the semLAV effectiveness is considerably high. Effectiveness

depends on the number of relevant views, but this number is bounded to the number of relevant views

that can be stored in memory. As expected, the semLAV approach could require more space than

the traditional rewriting-based approach. semLAV builds a global schema instance that includes all

the relevant views in Vk, whereas a traditional rewriting-based approach includes only the views in

one rewriting at the time.

We calculate the throughput as the number of answers divided by the total execution time. For

semLAV, this time includes view selection and ranking, contacting data sources using the wrap-

pers, including data into the global schema instance, and query execution time. For the traditional

rewriting-based approach, this time includes rewriting time, instead of view selection and ranking.

Figures 4.2 and 4.3 show an impressive difference in the answer percentage and throughput,

e.g., for Q1 semLAV produces 37,350.1 answers/sec, while the other approach produces up to 0.5

answers/sec. This huge difference is caused by the differences between the complexity of the rewrit-

ing generation and the semLAV view selection and ranking algorithm, and between the number of

58 CHAPTER 4. SPARQL QUERIES OVER LINKED DATA AND DEEP WEB

100

102

104

Q1 Q2 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18

T
hr

ou
gh

pu
t (

A
ns

w
er

s/
se

c)

Figure 4.3 – Throughput of semLAV (), MCDSAT (), GQR () and MiniCon ()

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

100

102

104

106

Q1 Q2 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18

T
im

e
F

irs
t A

ns
w

er
 (

m
se

cs
)

Figure 4.4 – Time of the First Answer (msec) of semLAV (), MCDSAT (), GQR () and
MiniCon (). “NA” indicates that the approach did not produce answers for that query

rewritings and number of relevant views. This makes possible to generate answers sooner.

Figure 4.4 shows the time for the first answer (TFA); TFA is impacted by executing the query as

soon as possible, according to option 1 given in Algorithm 15. Only for query Q18 semLAV does not

produce any answer in 10 minutes. This is because the views included in the global schema instance

are large (around one million triples per view) and do not contribute to the answer; consequently,

almost all the execution time is spent in transferring data from the relevant views. semLAV produces

answers sooner in all the other cases. Moreover, semLAV also achieves complete answer in 11 of 16

queries in only 10 minutes.

Th results show that semLAV is effective and efficient and produces more answers sooner than

4.4. CONCLUSION 59

a traditional rewriting-based approach. semLAV makes the LAV approach feasible for processing

SPARQL queries [Mon+13b; Mon+14a; Fol+14b; Fol+14a; Fol+15].

4.4 Conclusion
semlav In this chapter, I present semLAV, a Local-As-View mediation technique that allows

to perform SPARQL queries over views without facing problems of NP-completeness, exponential

number of rewritings or restriction to conjunctive SPARQL queries. This is obtained at the price

of including relevant views into a global schema instance which is space consuming. However, I

demonstrated that, even if only a subset of relevant views is included, I obtain more results than

traditional rewriting-based techniques. Chances of producing results are higher, if the number of

covered rewritings is maximized as defined in the MaxCov problem. We proved that our ranking

strategy maximizes the number of covered rewritings.

semLAV opens a new way to execute SPARQL queries for LAV mediators that is tractable. As

perspectives, the performance of semLAV can be greatly improved by parallelizing views inclusion.

Currently, SemLAV includes views sequentially due to Jena restrictions. If views were included in

parallel, time to get first results would be greatly improved. Additionally, the strategy of producing

results as soon as possible, can deteriorate the overall throughput. If users want to improve overall

throughput, then the query should be executed once after all the views in Vk have been included.

It could be also interesting to design an execution strategy where SemLAV would execute under

constrained space. In this case, the problem would be to find the minimum set of relevant views that

would fit in the available space and produce the maximal number of answers. All these problems

will be part of our future works.

The work presented in this chapter is part of Gabriela Montoya [Mon16] and Luis-Daniel Ibáñez[Ibá15]

in collaboration with Maria-Esther Vidal, Professor at the University Simon Bolivar, Venezuela.

Publications associées à ce chapter

International peer-reviewed journals
[Mon+14a] Gabriela Montoya, Luis Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Maria-Esther

Vidal. « SemLAV: Local-as-View Mediation for SPARQL queries ». In: LNCS Trans-

60 CHAPTER 4. SPARQL QUERIES OVER LINKED DATA AND DEEP WEB

actions on Large-Scale Data- and Knowledge-Centered Systems 8420 (2014), pp. 33–

58.

International peer-reviewed conferences
[Mon+13b] Gabriela Montoya, Luis-Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Maria-Esther

Vidal. « GUN: An Efficient Execution Strategy for Querying the Web of Data ». In:

Database and Expert Systems Applications. Springer. 2013, pp. 180–194.

International peer-reviewed workshops
[Fol+15] Pauline Folz, Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vi-

dal. « Parallel Data Loading during Querying Deep Web and Linked Open Data with

SPARQL ». In: Proceedings of the 11th International Workshop on Scalable Semantic

Web Knowledge Base Systems co-located with 14th International Semantic Web Con-

ference (ISWC 2015), Bethlehem, PA, USA, October 11, 2015. 2015, pp. 63–74.

5
Read/Write Linked Open Data

Motivations : The current web of Linked Data is Read-Only, therefore, when a data consumer

detects inconsistencies, she cannot fix them in place. To be able to do so, the web of Linked Data

needs to evolve from Read-Only to Read/Write [BO13]. If participants of the Web of Linked Data

could write, data could be cleaned and evolve with the collaborative intervention of human and

machine agents. The knowledge stored by different communities or even by different individuals or

applications could co-evolve [EL88].

The paradigm of shifting from Read-Only to Read/Write would have a similar impact on the

Web of Linked Data as the one of the advent of the social web had to the Web of Documents. The

shift from the Web 1.0 to 2.0 allowed the collaborative edition of documents. The Web of Data could

draw the same benefits to allow the collaborative construction of knowledge.

Contributions : Data consumers copy data from different sources in order to perform intensive

querying, keeping themselves up-to-date through live update feeds or notification protocols. While

querying, mistakes can be identified and repaired. These updates can be integrated by the sources

or exchanged between data consumers through copying or through pull requests, in the spirit of

Distributed Version Control Systems (DVCS).

Figure 5.1 illustrates this vision. The top three boxes represent three major Linked Data pub-

61

62 CHAPTER 5. READ/WRITE LINKED OPEN DATA

…	

…	

DBpedia	 	 DrugBank	 MusicBrainz	 	

Consumer_1	 Consumer_2	

Consumer_3	

…	

Live	 Feed	 Update,	
Sparql	 Push	

Query	 Engine	
contact	

Pull	
Request	

Pull	
Request	

Replicated	
Fragment	

ApplicaJons	 that	 consume	 Linked	 Data	

Figure 5.1 – Federation of Read/Write Linked Data

lishers, DBpedia 1, DrugBank 2 and MusicBrainz 3. Consumer_1 copies fragments from DBPedia

and DrugBank, Consumer_2 copies fragments from DBPedia and MusicBrainz and Consumer_3

copies fragments from Consumer_1 and Consumer_2. Applications that consume Linked Data can

request data from consumers besides that from the original data publishers. The main contributions

are: (1) SU-Set is a Conflict-Free Replicated Data Type (CRDT) for RDF Graph, it follows an

optimistic replication model [SS05b]. SU-Set enables large scale replication of RDF graphs while

ensuring strong eventual consistency, i.e., when the system is idle all the replicas are convergent.

SU-Set requires the connectivity of the network and the need to exchange all updates.

(2) Col-Graph is a coordination-free protocol based on annotated RDF-Graphs and updates

to achieve fragments consistency. It follows a data sharing model [Kar+13]. Contrary to SU-Set,

Col-Graph enables partial replication of RDF graph while ensuring incremental maintenance of the

data fragment. Col-Graph is well adapted for socially generated networks.

1. http://dbpedia.org
2. www.drugbank.ca
3. http://musicbrainz.org

http://dbpedia.org
www.drugbank.ca
http://musicbrainz.org

5.1. SU-SET: A CONFLICT-FREE REPLICATED DATA TYPE FOR RDF GRAPH 63

5.1 SU-Set: a Conflict-Free Replicated Data Type for RDF

Graph

A Conflict-Free Replicated Data Type (CRDT) [Sha+11] is a data type whose operations, when

concurrent, yield the same result regardless the execution order. Two operations are concurrent

if they occur at different nodes and we cannot determine which one happened before the other.

Common data types are in general not CRDTs, for example, the set data type is not a CRDT,

because concurrent insertion and deletion does not commute.

A CRDT has three components :

— payload : the internal structure that holds the state of the object,

— lookup : queries the payload and returns data elements,

— update: handling operations such as add and remove.

An update operation is prepared at the generator site and sent to all nodes including the generator

one :

— prepare : preparing the arguments for sending the operation to other nodes, if the preconditions

of the operation do not hold, the operation is ignored,

— effect : sends the prepared operation to all nodes, including the generated one. When the

operation is received, it will be executed if the preconditions are evaluated to true, else it will

be delayed until they do so.

A CRDT ensures Strong Eventual Consistency (SEC) [SS05b; Sha+11] where replicas that have

delivered the same updates have equivalent state.

I propose SU-Set a CRDT for the RDF-Graph type with SPARQL 1.1 Update operations that

ensures SEC consistency for RDF Graph.

5.1.1 Algorithms

In the CRDT model operations are assumed to be transmitted through a fully connected com-

munication graph without loss, granting the Eventual Delivery condition of SEC. Therefore, we

introduce on the Read/Write Web of Linked Data the assumption that the update exchange network

is strongly connected, all updates eventually arrive to their destination.

64 CHAPTER 5. READ/WRITE LINKED OPEN DATA

1 payload s e t S
2 i n i t i a l ∅
3 query lookup (element e) : boolean b
4 l et b = (∃u : (t, u) ∈ S)
5 update insert (set<element> T)
6 prepare(T)
7 l et R = ∅
8 foreach t in T:
9 l et α = unique()
10 R := R ∪ {(t, α)}
11 effect(R)
12 S := S ∪R

Specification 5.1 – Union extension to OR-Set

SPARQL 1.1 Update graph update operations can be expressed as set union and difference

on RDF-Graphs. Therefore, we can adapt the existing CRDTs for the set type. SU-Set extends

Observed-Removed Set (OR-Set) [Sha+11] single-element insertion and deletion to union and differ-

ence. Specification 5.1, shows insert operation. Figure 5.2 shows a SU-Set execution, SPARQL 1.1

Update operations executed at Graph Stores are rewritten to SU-Set operations over pairs (triple,id)

in a transparent way for the user, and sent downstream, where they are re-executed upon reception.

SU-Set inherits from OR-Set a precondition concerning the delivery of updates: It must be

granted that deletions of unique pairs are always delivered after the insertions that generated them.

We will use the same strategy used in OR-Set to make the pre-condition hold: a causal delivery

of updates, implemented with Vector Clocks [Mat89]. Each Graph Store holds a monotonically

increasing counter (the clock) that ticks each time an update is made, and an array whose keys are

the identifiers of all other Graph Stores and whose values are the last received clock values from the

corresponding Graph Store. Updates are piggybacked with the full vector at execution time. By

comparing the vectors, one can determine the partial order of update executions in all the network

to ensure that a deletion always happens after its corresponding insertion.

5.1.2 Evaluating and Optimizing SU-Set

This first version of SU-Set has two important overheads to consider. In the delete-insert

operations, computing the triples affected locally and sending them downstream instead of sending

the patterns directly greatly increases the traffic; second, if each element needs to be sent with its

globally unique id, the size of the packets sent will grow.

5.1. SU-SET: A CONFLICT-FREE REPLICATED DATA TYPE FOR RDF GRAPH 65

site 1
{((Apple, is, Fruit),1)}

site 2
{((Apple, is, Fruit),1)}

INSERT DATA {
Orange is Fruit .
Mango is Fruit .}

DELETE { Apple ?p ?o .}
INSERT { Mango ?p ?o .}
WHERE { Apple ?p ?o }

Ins = {
((Orange, is, Fruit),2),
((Mango, is, Fruit),2) }

##

Del = {((Apple, is, Fruit),1)}
Ins = {((Mango, is, Fruit),6) }

��

Payload ∪ Ins (Payload \ Del) ∪ Ins

{((Apple, is, Fruit),1)
((Orange, is, Fruit),2)
((Mango, is, Fruit),2)}

{((Mango, is, Fruit),6)}

DELETE DATA {
Mango is Fruit .}

Payload ∪ Ins

Del = {
((Mango, is, Fruit),2)}

++

{((Mango, is, Fruit),2)
((Orange, is, Fruit),2)
((Mango, is, Fruit),6)}

{((Apple, is, Fruit),1)
((Orange, is, Fruit),2)} Payload \ Del

(Payload \ Del) ∪ Ins ((Orange, is, Fruit),2)
((Mango, is, Fruit),6)}

((Orange, is, Fruit),2)
((Mango, is, Fruit),6)}

Figure 5.2 – SU-Set Execution

66 CHAPTER 5. READ/WRITE LINKED OPEN DATA

1 payload s e t S
2 i n i t i a l ∅
3 query lookup (t r i p l e t) : boolean b
4 l et b = (∃u : (t, u) ∈ S)
5 update insert (set<t r i p l e > T)
6 prepare(T)
7 l et α = unique()
8 effect(T, α)
9 l et R = {(t, α) : t ∈ T}
10 S := S ∪R
11 update delete (set<t r i p l e > T)
12 prepare(T)
13 l et R = ∅
14 foreach t in T:
15 l et Q = {(t, u) | (∃u : | (t, u) ∈ S)}
16 R := R ∪Q
17 effect(R)
18 // Causal Reception
19 pre Al l add (t , u) d e l i v e r e d
20 S := S \R
21 update delete− insert(whrPat, delPat, insPat)
22 // match (m, pattern) : t r i p l e s matching
23 // pattern with in mapping m.
24 prepare(whrPat, delPat, insPat)
25 l et S ′ = {t | (∃u | : (t, u) ∈ S)}
26 // M i s a Mul t i s e t o f mappings
27 l et M = eva l (S e l e c t ∗
28 from S ′ where whrPat)
29 l et D′ = ∅
30 foreach m in M :
31 D′ = D′ ∪match(m, delPat)
32 l et D = {(t, u) : t ∈ D′ ∧ (t, u) ∈ S}
33 l et I ′ = ∅
34 foreach m in M :
35 l et I ′ = I ′ ∪match(m, insPat)
36 l et α = unique()
37 effect(D, I ′, α)
38 // Causal Reception
39 pre Al l add (f , u) ∈ D de l i v e r e d
40 l et I = {(i, α) : i ∈ I ′}
41 S := (S \D) ∪ I

Specification 5.2 – Optimized SU-Set

5.1. SU-SET: A CONFLICT-FREE REPLICATED DATA TYPE FOR RDF GRAPH 67

To test this in a real case, we analyzed the publishing method of DBpedia Live. The core of the

system is a set of extractors that computes the triples affected each time there is an edition in a

Wikipedia page or in the mappings that define the relation between info boxes and triples. After

updating the store, the system writes two files, one with the added RDF-triples, and another with

the deleted ones. These files do not have a fixed size, as this depends on the number and nature of

the editions at a given time. DBpedia Live publishing can be considered as SPARQL Update Insert

Data and Delete Data operations with the triples defined by the change set files. This means that for

the DBpedia Live case, the overhead of computing and sending the affected triples for each operation

is already considered and SU-Set do not adds any further cost.

To evaluate the impact of using globally unique ids, we consider its implementation with two

UUIDs [LMS05] of 16 bytes each, one to identify the generator site, and another to hold a big

enough monotonic counter that increases with each insert. We downloaded the N3 files published by

DBpedia Live from march 10th to march 16th 2012, totalizing 3,403 Megabytes, and appended to

each triple the base64 representation of the two UUIDs. Finally, we measured the new file size with

the UNIX command wc -c. The difference between the version with ids and the version without ids

was 2,04 GB, and the percentage of increase, 54,47%.

Table 5.1 – Comparison of communication overhead between SU-Set, its optimized version and the
use of no ids (nothing). The data used are the triples published by DBpedia Live from the 10th to
the 16th march 2012.

Size (MB)
Operation # Triples Nothing SU-Set Optim.
Insert 21762190 3294,08 5334,29 3296,6
Delete 1755888 265,78 164,61 (430,4) 164,61 (430,4)
Total 23518078 3559,86 5498,9 (5794.69) 3461,21 (3727)

Overhead 54,47% (64,77%) -2,77% (4,68%)

However, we can greatly reduce this overhead if the receivers can afford to spend some time in

constructing the IDs from a resume. The strategy varies depending on the strategy chosen to achieve

the delivery condition. When vector clocks are used, we showed in [Dan+12] that the same id can

be shared by the triples inserted in the same operation, as the uniqueness of the element comprised

by the triple and its id is maintained. Therefore, one can send only one id per insert operation and

let the receiver reconstruct the pairs. Specification 5.2 details the optimized version of SU-Set.

In DBpedia Live, this would mean that only one id is needed for each file containing added triples.

68 CHAPTER 5. READ/WRITE LINKED OPEN DATA

We recomputed the overhead in our case of study using this strategy and we obtained a negligible

2,5 Megabytes for the insertions and a 4,68% file size increase overall. Note that, as the average

triple size is greater than the id size, deletion with the first version of SU-Set is less expensive than

without using any ids.Table 5.1 compares the differences in communication overhead of insertions

and deletions between the two versions of SU-Set and the current publication method without ids.

Note that in both solutions, it is possible to further optimize the deletion by sending only the id (as

it is unique), however, in the case that we would like to analyze the deletes, an extra computation

effort needs to be done to search the triples. As such, we report the overhead of sending only the ids

and, in parentheses, the overhead of sending full pairs.

The poof of correctness and the complexity of algorithms are detailed in [Ibá+13].

5.2 Col-Graph: A Synchronization Algorithm for RDF Frag-

ments

Imagine a participant that wants to perform data cleansing on a subset of DBpedia, e.g., the triples

having as subject the entity DBpedia:France. Copying the entire DBpedia is a waste of resources,

thus, the participant copies only the fragment of data she is interested to, and receives only the

updates from DBpedia that concern such fragment. SU-Set cannot assert the consistency of such

fragment, because both participants have not applied the same updates. In order to support this

use case, we propose Fragment Consistency, a criterion focused on the consistency of the fragments

of data copied instead of on the state equivalence of all participants

5.2.1 Fragment Consistency

Definition 5.2.1 (Fragment). Let S be a SPARQL endpoint of a participant, a fragment of the

RDF-Graph made accessible by S, F [S], is a SPARQL CONSTRUCT federated query where all

graph patterns are contained in a single SERVICE block with S as the remote endpoint. We denote

as eval(F [S]) the RDF-Graph result of the evaluation of F [S].

Definition 5.2.2. Let S be an RDF-GraphStore, we say that an RDF-GraphStore T Materializes a

Fragment of S, if T evaluates F [S] and unions the result with its own data. The subset of updates

made by S delivered to T are the ones that concern F [S]. We call S the source of the fragment and

T its target.

5.2. COL-GRAPH: A SYNCHRONIZATION ALGORITHM FOR RDF FRAGMENTS 69

P1:
+ (M_Perey, nationality, French_People)

+ (M_Perey,knownFor,Francium)
(M_Perey,discoverer,Francium)
(M_Perey,nationality,French)

CONSTRUCT
WHERE {

SERVICE <P1> {
?x knownFor ?y }}
{{

CONSTRUCT
WHERE {

SERVICE <P1> {
?x nationality ?y} }

##
P2:

(M_Perey,knownFor,Francium)
+ (Francium,subject,Chemical_Element)

+ (M_Perey,discoverer,Francium)

CONSTRUCT
WHERE {

SERVICE <P2> {
?x discoverer ?y}}

$$

P3:
(M_Perey,nationality,French_People)

+ (M_Perey,birthPlace,France)
+ (M_Perey, nationality,French)

CONSTRUCT
WHERE {

SERVICE <P3> {
?x ?y French}}
zz

P4:
(M_Perey, discoverer, Francium)
(M_Perey, nationality, French)

CONSTRUCT
WHERE {

SERVICE <P4> {
M_Perey ?x ?y}}

OO

Figure 5.3 – Read/Write Linked Data with Fragments. Underlined triples are the ones coming from
fragments, triples preceded by a ’+’ are the ones locally inserted, struck-through triples are the ones
locally deleted.

Figure 5.3 illustrates how updates are propagated on Read/Write Linked Data using fragments.

P1 starts with data about the nationality and KnownFor properties of M_Perey (prefixes are

omitted for readability). P2 materializes from P1 all triples with the knownFor property. With this

information and its current data, P2 inserts the fact that M_Perey discovered Francium. On the

other hand, P3 materializes from P1 all triples with the nationality property. P3 detects a mistake

(nationality should be French, not French_People) and promptly corrects it. P4 constructed a

dataset materializing from P2 the fragment of triples with the property discoverer the fragment of

triples with the property nationality from P3. P1 trusts P4 about data related to M_Perey, so she

materializes the relevant fragment, indirectly consuming updates done by P2 and P3.

Triples updated on materialized fragments are not necessarily integrated by the source, e.g, the

deletion done by P3 did not reach P1, therefore, equivalence between source and materialized frag-

ment cannot be used as consistency criterion. Intuitively, each materialized fragment must be equal

to the evaluation of the fragment at the source after applying local updates, i.e., the ones executed

by the participant itself and the ones executed during synchronization with other fragments.

Definition 5.2.3 (Fragment Consistency). Let RWLD = (P,E) be the Read/Write Linked Data.

Assume each Pi ∈ P maintains a sequence of uniquely identified updates ∆Pi
with its local updates

and the updates it has consumed from the sources of the fragments F [Pj]@Pi it materializes. Given

a ∆P , let ∆F [S]
P be the ordered subset of ∆P such that all updates concern F [S], i.e., that match the

graph pattern in F [S]. Let apply(Pi,∆) be a function that applies a sequence of updates ∆ on Pi.

70 CHAPTER 5. READ/WRITE LINKED OPEN DATA

P1:
(s,p,o)
(s,q,o)

P2:
(s,p,o)

P1#1 Ins(s,p,o)
P1#2 Ins(s,q,o)

∗
��

P2#1 Ins(s,p,o)
P2#2 Del(s,p,o)

∗

wwP3:
(s,p,o)
(s,q,o)

P1#1 Ins(s,p,o)
P1#2 Ins(s,q,o)
P2#1 Ins(s,p,o)
P2#2 Del(s,p,o)

F [P1]@P3 =
apply({(s, p, o), (s, q, o)},

(P2#1 Ins(s, p, o),
P2#2Del(s, p, o)))

F [P2]@P3 6=
apply(∅,

(P1#1 Ins(s, p, o)))
P1#2 Ins(s, q, o)))

(a) Applying updates as they come does not
comply with the correction criterion.

P1:
(s,p,o) ↪→ 1
(s,q,o) ↪→ 1

P2:
(s,p,o) ↪→ 1

P1#1 (s,p,o) ↪→ 1
P1#2 (s,q,o) ↪→ 1

∗
��

P2#1 (s,p,o) ↪→ 1
P2#2 (s,p,o) ↪→ −1

∗

wwP3:
(s,p,o) ↪→ 1
(s,q,o) ↪→ 1

P1#1 (s,p,o) ↪→ 1
P1#2 (s,q,o) ↪→ 1
P2#1 (s,p,o) ↪→ 1
P2#2 (s,p,o) ↪→ −1

F [P1]@P3 =
apply({(s, p, o) ↪→ 1,

(s, q, o) ↪→ 1},
(P2#1 (s, p, o) ↪→ 1

(P2#2 (s, p, o) ↪→ −1))

F [P2]@P3 =
apply(∅,

(P1#1 (s, p, o) ↪→ 1,
P1#2 (s, q, o) ↪→ 1))

(b) The Annotated RDF-Graph enables a
consistent Collaboration Network

Figure 5.4 – Illustration of Fragment Consistency. Plain boxes represent RDF-Graphs, shaded boxes
simplified sequences of updates. ∗ represents a full fragment.

RWLD is consistent iff when the system is idle, i.e., no participant executes local updates or

fragment synchronization, then:

(∀Pi, Pj ∈ P : F [Pi]@Pj = apply(eval(F [Pi]),∆F [Pi]
Pj
\∆Pi

)

The ∆F [Pi]
Pj
\∆Pi

term formalises the intuition that we need to consider only local updates when

evaluating the consistency of each fragment, i.e., from the updates concerning the fragment, remove

the ones coming from the source.

Unfortunately, applying remote operations as they come does not always comply with Defini-

tion 5.2.3 as shown in Figure 5.4a: P3 synchronizes with P1, applying the updates identified as

P1#1 and P1#2, then with P2, applying the updates identified as P2#1 and P2#2, however, the

fragment materialized from P2 is not consistent. Notice that, had P3 synchronized with P2 before

than with P1, its final state would be different ((s, p, o) would exist) and the fragment materialized

from P1 would not be consistent.

SU-Set algorithm 5.2 also cannot achieve Fragment Consistency due to its requirement of causal

delivery of updates. Suppose a fragment of P1 materialized at P2 F [P1]@P2, and suppose that P1

performs two updates, u1 not concerning F and u2 concerning F . In our model, u1 will not be

delivered to P2, meaning that when u2 is delivered, it will be considered as not causally ready to be

executed and put on hold indefinitely.

5.2. COL-GRAPH: A SYNCHRONIZATION ALGORITHM FOR RDF FRAGMENTS 71

5.2.2 Algorithms

To achieve Fragment Consistency, we propose, in the spirit of [GIT11], to count the number of

insertions and deletions of a triple, i.e., we annotate each RDF-triple with positive or negative

integers, positive values indicate insertions and negative values deletions. This allows for a uniform

representation of data and updates, yielding a simple way to synchronize fragments.

Incrementally synchronizing a materialized fragment using only the updates published by a data

source and the locally materialized fragment without issuing another query on the data source requires

to exclude join conditions from fragments [GJM96], therefore, to not compromise the availability of

sources, we restrict to basic fragments [Ver+14b], i.e., fragments where the query is comprised by

only one triple pattern.

Definition 5.2.4 (Annotated RDF-triple, Graph and Update). 1. Let t be an RDF-triple and

z ∈ Z∗. t ↪→ z is an annotated RDF-triple, t is called the triple and z the annotation.

2. An annotated RDF-Graph GA is a set of annotated RDF-triples such that (∀t, z|t ↪→ z ∈ GA :

z > 0)

3. An annotated update uA is represented by an annotated RDF-triple. More precisely, t ↪→ 1 for

insertion of t and t ↪→ −1 for deletion of t.

Annotations in RDF-Graphs count the number of derivations of a triple in the RWLD.

Definition 5.2.5 (Derivation). Let t be a triple stored in a participant RWLD P0, a derivation of t

is a simple path from the participant that inserted t, P1, and P0, such that the insertion of t concerns

each edge of the path.

An annotation value higher than 1 indicates that the triple exists in more than one source or

there are several simple paths in RWLD leading from the participant that inserted the triple to

the participant. Annotations in updates indicate, if positive, that z derivations of t were inserted;

if negative, that z derivations of t were deleted. For example, an annotated RDF-triple t1 ↪→ 2

means that either t1 has been inserted by two different sources or the same insert arrived through

two different paths in RWLD. The annotated update t2 ↪→ −1 means that t2 was deleted at one

source or by some participant in the path between the source and the target; t3 ↪→ −2 means that

either t3 was deleted by two sources or by some participant in the path between two sources and the

target.

72 CHAPTER 5. READ/WRITE LINKED OPEN DATA

To apply annotated updates to annotated RDF-Graphs, we define an Update Integration function:

Definition 5.2.6 (Update Integration). Let A be the set of all annotated RDF-Graphs and B the

set of all annotated updates. Assume updates arrive and are executed from source to target in FIFO

order. The Update Integration function] : A × B → A takes an annotated RDF-Graph GA ∈ A

and an annotated update t ↪→ z ∈ B:

GA] t ↪→ z =

GA ∪ {t ↪→ z} if (@w : t ↪→ w ∈ GA)

GA \ {t ↪→ w} if t ↪→ w ∈ GA ∧ w + z ≤ 0

(GA \ {t ↪→ w}) ∪ {t ↪→ w + z} if t ↪→ w ∈ GA ∧ w + z > 0

The first piece of the Update Integration function handles incoming updates of triples that are

not in the current state. As we are assuming FIFO in the update propagation from source to target,

insertions always arrive before corresponding deletions, therefore, this case only handles insertions.

The second piece handles deletions: only if the incoming deletion makes the annotation zero the

triple is deleted from the current state. The third piece handles deletions that do not make the

annotation zero and insertions of already existing triples by simply updating the annotation value.

We now consider each participant has an annotated RDF-Graph GA and an sequence of annotated

updates UA. SPARQL queries are evaluated on the RDF-Graph {t | t ↪→ z ∈ GA}. SPARQL Updates

are also evaluated this way, but their effect is translated to annotated RDF-Graphs as follows: the

insertion of t to the insertion of t ↪→ 1 and the deletion of t to the deletion of the annotated

triple having t as first coordinate. Specification 5.3 details the methods to insert/delete triples and

synchronize materialized fragments. To avoid the infinite forwarding of updates, each time an update

is processed, the protocol checks if it has walked a cycle, if so, it is ignored. Figure 5.4b shows the

fragment synchronization algorithm in action.

To materialize fragments for the first time, a SPARQL extension that allows to query the an-

notated RDF-Graph and return the triples and their annotations is needed, for example the one

implemented in [WCG14]. To check when an update has cycled, we propose to add a second annota-

tion to updates, containing a set of participant identifiers φu representing the participants that have

already received and applied the update. When an update u is created, φu is set to the singleton

containing the ID of the author, when u is pushed downstream, the receiving participant checks if

5.2. COL-GRAPH: A SYNCHRONIZATION ALGORITHM FOR RDF FRAGMENTS 73

1 Annotated Graph GA ,
2 Sequence ∆PID
3
4 void insert(t) :
5 pre : t /∈ {t′|t ↪→ x ∈ GA}
6 GA := GA ∪ t ↪→ 1
7 Append(∆PID, t ↪→ 1)
8
9 void delete(t) :
10 pre : t ∈ {t′|t′ ↪→ x ∈ GA}
11 GA := GA] t ↪→ −z
12 Append(∆PID, t ↪→ −z)
13
14 void sync(F [Px],∆Px) :
15 f o r t ↪→ z ∈ ∆Px :
16 i f t ↪→ z has not cyc l ed :
17 GA := GA] t ↪→ z
18 Append(∆PID, t ↪→ z)

Specification 5.3 – Class Participant when
triples are annotated with elements of Z.

1 IRI PID ,
2 Annotated Graph GA ,
3 Sequence ∆PID
4
5 void insert(t) :
6 pre : t /∈ {t′|t ↪→ x ∈ GA}
7 GA := GA ∪ t ↪→ PID
8 Append(∆PID, t ↪→ PID)
9
10 void delete(t) :
11 pre : t ∈ {t′|t′ ↪→ x ∈ GA}
12 GA := GA] t ↪→ −m
13 Append(∆PID, t ↪→ −m)
14
15 void sync(F [Px],∆Px) :
16 f o r t ↪→ m ∈ ∆Px :
17 i f t ↪→ m has not cyc l ed :
18 GA := GA] t ↪→ m
19 Append(∆PID, t ↪→ m)

Specification 5.4 – Class Participant when
triples are annotated with elements of the
monoid M.

his ID is in φu, if yes, u has already been received and is ignored, else, it is integrated, and before

pushing it downstream it adds its ID to φu. Of course, there is a price to pay in traffic, as the use of

φ increases the size of the update. The length of φu is bounded by the length of the longest simple

path in the Collaboration-Network, which in turn is bounded by the number of participants.

Fortunately, the issue described in the previous section can be solved if we make the deletions

stop when they do not affect the current state instead of when cycles are detected, in a similar way

to the fixepoint semantics of datalog. Specification 5.5 shows the modified version of the algorithm.

Figure 5.5 illustrates how this versions fixes the problem. The core of the fix lies on the sync

procedure, the check for cyclic updates is only done for insertions (line 17). For deletions the stop

condition is that the triple is not anymore there.

Provenance for Conflict Resolution

In section 5.2.2 we solved the problem of consistent synchronization of basic fragments. However,

Fragment Consistency is based on the mere existence of triples, instead of on the possible conflicts

between triples coming from different fragments and the ones locally inserted. Col-Graph’s strategy

in this case is that each participant is responsible for checking the semantic correctness of its dataset,

74 CHAPTER 5. READ/WRITE LINKED OPEN DATA

1 Annotated Graph GA ,
2 Sequence ∆PID
3
4 void insert(t) :
5 pre : t /∈ {t′|t ↪→ x ∈ GA}
6 GA := GA ∪ t ↪→ 1
7 Append(∆PID, t ↪→ 1)
8
9 void delete(t) :
10 pre : t ∈ {t′|t′ ↪→ x ∈ GA}
11 GA := GA] t ↪→ −z
12 Append(∆PID, t ↪→ −z)
13
14 void sync(F [Px],∆Px) :
15 f o r t ↪→ z ∈ ∆Px :
16 i f z > 0 :
17 i f t ↪→ z has not cyc l ed :
18 GA := GA] t ↪→ z
19 Append(∆PID, t ↪→ z)
20 i f z < 0 :
21 i f GA] t ↪→ z 6= GA :
22 GA := GA] t ↪→ z
23 Append(∆PID, t ↪→ z)

Specification 5.5 – Class Participant with Z an-
notations modified for all topologies

1 IRI PID ,
2 Annotated Graph GA ,
3 Sequence ∆PID
4
5 void insert(t) :
6 pre : t /∈ {t′|t ↪→ x ∈ GA}
7 GA := GA ∪ t ↪→ PID
8 Append(∆PID, t ↪→ PID)
9
10 void delete(t) :
11 pre : t ∈ {t′|t′ ↪→ x ∈ GA}
12 GA := GA] t ↪→ −m
13 Append(∆PID, t ↪→ −m)
14
15 void sync(F [Px],∆Px) :
16 f o r t ↪→ m ∈ ∆Px :
17 i f m > 0 :
18 i f t ↪→ m has not cyc l ed :
19 GA := GA] t ↪→ m
20 Append(∆PID, t ↪→ m)
21 i f m < 0 :
22 i f GA] t ↪→ m 6= GA :
23 GA := GA] t ↪→ m
24 Append(∆PID, t ↪→ m)

Specification 5.6 – Class participant with M an-
notations modified for all topologies

as criteria often varies and what is semantically wrong for one participant, could be right for another.

Participants can delete/insert triples to fix what they consider wrong. Participants that receive these

updates can edit in turn if they do not agree with them.

In the event that a participant wants to choose between two triples, the main criteria to choose

which one of them delete is their provenance. With this information, the decision can be made based

on the trust on their authors. As in [Kar+13], we propose to substitute the integer annotations of

the triple by an element of a commutative monoid that embeds (Z,+, 0).

Definition 5.2.7 (Commutative Monoid). A Commutative Monoid is is an algebraic structure com-

prised by a set K, a binary, associative, commutative operation ⊕ and an identity element 0K ∈ K

such that

(∀k ∈ K | k ⊕ 0K = k)

Definition 5.2.8 (Embedding). A monoidM = (K,⊕, 0K) embeds another monoidM ′ = (K ′,�, 0K′)

iff there is a map f : K → K ′ called homomorphism such that f(0K) = f(0K′) and (∀a, b ∈ K :

5.2. COL-GRAPH: A SYNCHRONIZATION ALGORITHM FOR RDF FRAGMENTS 75

P1:
(s, p, o) ↪→ 1

{{ &&

P1#1 Ins(s, p, o) ↪→ 1
P2#1 Ins(s, p, o) ↪→ −1

P1#1 Ins(s, p, o) ↪→ 1
P2#1 Ins(s, p, o) ↪→ −1

P2:
(s, p, o) ↪→ 1

!!

P3:
(s, p, o) ↪→ 1

zz

P1#1 Ins(s, p, o) ↪→ 1
P2#1 Ins(s, p, o) ↪→ −1

P4:
(s, p, o) ↪→ 2
(s, p, o) ↪→ 1

OO

P1#1 Ins(s, p, o) ↪→ 1
P1#1 Ins(s, p, o) ↪→ 1
P2#1 Ins(s, p, o) ↪→ −1
P2#1 Ins(s, p, o) ↪→ −1

F [P4]@P1 =
apply({},
∅)

Figure 5.5 – Iterating deletions until no effect allows support for any network topology

f(a⊕ b) = f(a)� f(b)).

If we annotate with elements of a monoid that embeds (Z,+, 0), all the properties of our synchro-

nization algorithm maintain. Formally, the semantics of the querying commutes with the application

of the homomorphism, a fundamental theorem proved in [GKT07] for the more general case of rings

instead of monoids. The use of symbolic expressions that can be morphed to the basic (Z,+, 0)

allows the encoding of useful information, for instance, the provenance of triples.

Definition 5.2.9. Assume each participant in the RWLD has an unique ID, and let X be the set

of all IDs. Let M = (Z[X],⊕, 0) be a monoid with:

1. The identity 0.

2. The set Z[X] of polynomials with coefficients in Z and variable in X.

3. The polynomial sum ⊕, for each monomial with the same indeterminate: aX ⊕ bX = (a+ b)X

4. M embeds (Z,+, 0) through the function f(a1X1 ⊕ · · · ⊕ anXn) =
n∑
1
ai

Each time a participant inserts a triple, she annotates it with its ID with coefficient 1. The

only change in definition 5.2.6 is the use of ⊕ instead of +. Specifications 5.4 and 5.6 describes the

algorithm to insert/delete triples and synchronize fragments with triples annotated with elements of

M .

When annotating with Z, the only information encoded in triples is their number of derivations.

M adds (i) Which participant is the author of the triple. A triple stored by a participant P with an

annotation comprised of the sum of n monomials indicates that the triple was inserted concurrently

76 CHAPTER 5. READ/WRITE LINKED OPEN DATA

P1:
(s,p,o) ↪→ 1

�� ##
P4:

(s,p,r) ↪→ 1

""

P3:
(s,p,o) ↪→ 2

��

P2:
(s,p,o) ↪→ 1
(s,p,v) ↪→ 1

��
Which (s,p,x)? :

(s,p,o) or
(s,p,r) or
(s,p,v)

P5:
(s,p,o) ↪→ 3
(s,p,r) ↪→ 1
(s,p,v) ↪→ 2

(a) Without provenance, P5 only infor-
mation is the number of derivations. She
does not know the author of the facts.

P1:
(s,p,o) ↪→ P1

�� &&
P4:

(s,p,r) ↪→ P4

%%

P3:
(s,p,o) ↪→ P1 + P3

��

P2:
(s,p,o) ↪→ P1
(s,p,v) ↪→ P2

zz
Which (s,p,x)?:

from P1 and P2 or
from P4 or

Mine and from P2

P5:
(s,p,o) ↪→ 2P1 + P3

(s,p,r) ↪→ P4
(s,p,v) ↪→ P5 + P2

(b) With provenance, P5 also knows who inserted
what and if it was concurrent, enabling trust based
decisions to solve conflicts.

Figure 5.6 – Difference between annotating with Z (5.6a) versus annotating with M (5.6b).

by n participants from which there is a path in CN to P . (ii) The number of simple paths in the

Collaboration Network in which all edges concern the triple, starting from the author(s) of the triple

to this participant, indicated by the coefficient of the author’s ID.

Figure 5.6 compares annotations with Z versus annotations withM . In the depicted collaboration

network, the fact (s,p,o) is inserted concurrently by P1 and P3, (s,p,v) is inserted concurrently by P2

and P5 and (s,p,r) inserted only by P4. When the synchronization is finished, P5 notices that it has

three triples with s and p as subject and predicate but different object values. If P5 wants to keep

only one of such triples based on trust, the Z annotations (5.6a) do not give enough information,

while the M annotations (5.6b) give more information for P5 to take the right decision. She can

know that the triple (s, p, o) was inserted by two participants P1 and P3, while (s, p, r) was only

inserted by P4 and that (s, p, v) was inserted by P2 and P5.

Col-Graph’s performance is mainly affected by the following properties of the RWLD:

— The probability of concurrent insertion of the same data by many participants. The higher this

probability, the number of terms of the polynomials is potentially higher.

— Its connectivity. The more connected, the more paths between the participants and the poten-

tial values of ρ are higher. If the network is poorly connected, few updates will be consumed

and the effects of concurrent insertion are minimized.

— The overlapping between fragments. If all fragments copy all data, all incoming updates will be

integrated by every participant, maximizing the effects of connectivity and concurrent insertion.

If all fragments are disjoint, then all updates will be integrated only once and the effects of

connectivity and concurrent insertion will be neutralized.

Details of complexity analysis and experimentations are given in [Ibá+14].

5.3. CONCLUSION 77

5.3 Conclusion
In this chapter, I proposed two solutions: SU-Set and Col-Graph to transform Read-Only LOD

into Read/Write LOD. SU-Set’s guarantees that : Participants that have received the same updates,

have the same state. SU-Set has linear complexity in time and space independently of the topology,

and optimal cost in communication. SU-Set is tailored for full dataset replication.

I proposed Col-Graph to support partial data replication. Each participant can copy or materialize

from other participants a fragment of data defined by a SPARQL CONSTRUCT Federated query

and receives the updates that concern the fragment. Col-Graph’s guarantee that : each materialized

fragment is equal to the evaluation of the fragment at its source modulo the locally made updates.

Col-Graph has the same complexity of SU-Set’s except in two aspects: (i) In space, where it

depends on the connectivity of the network with a worst case of factorial (complete graph). (ii) In

number of total messages exchanged in the network to converge. Nevertheless, our experiments

suggest that for social networks, the performance is much better than for random networks, meaning

that Col-Graph is applicable for the Read/Write Linked Data.

An interesting conclusion of this work is the very close relation between the solutions used for

two very different visions of consistency by different research communities: Conflict-Free Replicated

Data Types (CRDTs) in distributed systems and Collaborative Data Sharing Systems (CDSSs) in

databases. Both resort to annotate data with elements of an algebraic structure, lattices in the case

of CRDTs, and commutative semirings in the case of CDSSs. The main difference is the idempotency

of lattices and the non-idempotency of semi-rings. Idempotency is required in replication scenarios

to tolerate network disorder, on the other hand, semi-rings are required to support relational algebra

operators but this feature requires coordination in the update exchange. We showed that for the

special case of fragments, we can use semi-rings and still have the coordination freeness of idempotent

solutions.

Finally, the connection between provenance and consistency maintenance is also worth to high-

light. The data annotations used to model concurrency in CRDTs equal to one of the basic types of

provenance semi-rings, therefore, if provenance information about triples is maintained in a semi-ring

transformable format, then the consistency criteria proposed in this thesis can be attained.

78 CHAPTER 5. READ/WRITE LINKED OPEN DATA

Supervised PhD Thesis associated with this chapter
[Ibá15] Luis-Daniel Ibáñez. « Towards a Read/Write Web of Linked Data ». PhD thesis. Uni-

versité de Nantes, Feb. 2015.

Publications associated with this chapter

International peer-reviewed journals
[Ibá+13] Luis Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Olivier Corby. « Live Linked

Data: Synchronizing Semantic Stores with Commutative Replicated Data Types ». In:

International Journal of Metadata, Semantics and Ontologies 8.2 (2013), pp. 119–133.

url: http://hal.inria.fr/hal-00903377.

International peer-reviewed conferences
[Ibá+14] Luis-Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Olivier Corby. « Col-Graph:

Towards Writable and Scalable Linked Open Data ». In: ISWC - The 13th International

Semantic Web Conference. Riva del Garda, Italy, Oct. 2014, pp. 325–340.

[ASM12] Khaled Aslan, Hala Skaf-Molli, and Pascal Molli. « Connecting Distributed Version

Control Systems Communities to Linked Open Data ». In: CTS 2012 - The Interna-

tional Conference on Collaboration Technologies and Systems - 2012. 2012.

[Asl+11a] Khaled Aslan, Nagham Alhadad, Hala Skaf-Molli, and Pascal Molli. « SCHO: An On-

tology Based Model for Computing Divergence Awareness in Distributed Collaborative

Systems ». In: European Conference on Computer-Supported Cooperative Work. Aarhus,

Danemark, Sept. 2011.

[ASM10] Khaled Aslan, Hala Skaf-Molli, and Pascal Molli. « From Causal History to Social

Network in Distributed Social Semantic Software ». In: Web Science Conference 2010

- WebSci10. Apr. 2010.

International peer-reviewed workshops
[Dan+12] Ibáñez Luis Daniel, Hala Skaf-Molli, Pascal Molli, and Olivier Corby. « Synchronizing

Semantic Stores with Commutative Replicated Data Types ». In: SWCS - Semantic

http://hal.inria.fr/hal-00903377

INTERNATIONAL PEER-REVIEWED WORKSHOPS 79

Web Collaborative Spaces Workshop - 2012. Lyon, France: ACM, 2012, pp. 1091–1096.

url: http://hal.inria.fr/hal-00686484.

[Ska+12] Hala Skaf-Molli, Emmanuel Desmontils, Emmanuel Nauer, Gérôme Canals, Amélie

Cordier, Marie Lefevre, Pascal Molli, and Yannick Toussaint. « Knowledge Continuous

Integration Process (K-CIP) ». In: WWW 2012 - SWCS’12 Workshop - 21st World

Wide Web Conference - Semantic Web Collaborative Spaces workshop. Lyon, France,

Apr. 2012, pp. 1075–1082. url: http://hal.inria.fr/hal-00765596.

[Asl+11b] Khaled Aslan, Pascal Molli, Hala Skaf-Molli, and Stéphane Weiss. « C-Set : a Com-

mutative Replicated Data Type for Semantic Stores ». In: RED: Fourth International

Workshop on REsource Discovery at 8th Extended Semantic Web Conference, ESWC

2011. Heraklion, Grèce, May 2011.

http://hal.inria.fr/hal-00686484
http://hal.inria.fr/hal-00765596

6
Federated SPARQL Queries Processing

with Replicated Fragments

Motivations: Existing SPARQL federated query engines do not support replicated data. In pres-

ence of replicated data, the performance of the state of the art federated query engines FedX [Sch+11]

and ANAPSID [Aco+11] is degraded. Without the knowledge about replicated data, these engines

may retrieve data from every relevant server, and produce a large number of intermediate results.

Therefore, federated query engines may exhibit poor performance while availability of the selected

SPARQL servers is negatively impacted. To illustrate, we replicated the DBpedia dataset 1 and de-

fined two federations. The first one is composed of one mirror of DBpedia, and the second of two

identical mirrors of DBpedia. We used FedX [Sch+11] and ANAPSID [Aco+11] federated query

engines to execute the query in Figure 6.1a against both federations. In the first federation, both

engines produced all the query answers in less than 23 seconds. For the second federation, the query

engine has to contact both data sources because it has no knowledge about the relationship between

data sources. Therefore, the performance in terms of execution time and number of transferred

tuples, is seriously degraded as depicted in Figure 6.1b. For both engines the execution time and

1. DBpedia Live at August 15th, 2013.

80

6.1. PROBLEM STATEMENT 81

s e l e c t d i s t i n c t ?p ?m ?n ?d where {
?p dbprop : name ?m .
?p dbprop : n a t i o n a l i t y ?n .
?p dbprop : d o c t o r a l A d v i s o r ?d

}

(a) DBpedia Query

#DBpedia FedX ANAPSID
Replicas ET (s) NTT ET (s) NTT

1 4.80 8,230 2.61 8,229
2 2,678.10 2,260,006 3,415.24 8,337,702

(b) Query Execution

Figure 6.1 – DBpedia query and its Execution Time (ET) and Number of Transferred Tuples (NTT)
during query execution against federations with one and two replicas of DBpedia

number of transferred tuples increase more than 250 times when a second replica of DBpedia is

added to the federation. Both query engines have to retrieve twice all the triples that match each of

the triple patterns of the query, instead of evaluating the joins in the endpoints and retrieving only

the query answers. For example, for the first triple pattern, the number of triples is greater than

4 millions. This number is likely to be higher than the maximum number of result rows that the

endpoint is allowed to send, in consequence it risks to produce incomplete answers.

As the number of transferred tuples increases, the availability of the contacted SPARQL endpoints

can be affected. A replication aware federated query engine could select the SPARQL endpoints to

contact in order to produce a complete query answer and transfer the minimum amount of data.

Contributions: We build the first replication-aware SPARQL federated query engine by in-

tegrating into state-of-the art federated query engines FedX [Sch+11] and ANAPSID [Aco+11], a

source selection strategy called Fedra that solves the source selection problem with fragment repli-

cation (SSP-FR). For a given set of SPARQL endpoints with replicated fragments and a SPARQL

query, the problem is to minimize the number of transferred data from endpoints to the federated

query engines, while preserving answer completeness and reducing data redundancy.

6.1 Problem Statement

Given a SPARQL query Q, a set of SPARQL endpoints E, the set of fragments F that have been

replicated by at least one endpoint in E, a fragment mapping endpoints(), a containment mapping

v. The Source Selection Problem with Fragment Replication (SSP-FR) is to assign to each triple

pattern in Q, the set of endpoints from E that need to be contacted to answer Q. A solution of

SSP-FR corresponds to a mapping D that satisfies the following properties:

1. Answer completeness: sources selected in D lead engines to produce complete query answers.

2. Data redundancy minimization: cardinality(D(tp)) is minimized for all triple pattern tp in

Q, i.e., redundant data is minimized.

82CHAPTER 6. FEDERATED SPARQL QUERIES PROCESSING WITH REPLICATED FRAGMENTS

DBpedia

F %s% in CONSTRUCT WHERE { %s% }
f2 ?film dbo:director ?director
f3 ?movie owl:sameAs ?film
f4 ?movie linkedmdb:genre ?genre
f5 ?movie linkedmdb:genre film_genre:14
f6 ?director dbo:nationality dbr:France
f7 ?director dbo:nationality dbr:United_Kingdom

LinkedMDB

C1 C2 C3

select distinct ?director ?nat ?genre where {
?director dbo : nationality ?nat . (tp1)
?film dbo : director ?director . (tp2)
?movie owl : sameAs ?film . (tp3)
?movie linkedmdb : genre ?genre } (tp4)

Client

f2, f6

f4

f2, f7 f3, f5 f3, f4

f2

tp1, tp2, tp4
tp1, tp2, tp3, tp4

tp2, tp3, tp4

Figure 6.2 – Client defines a federation composed of C1,C2, and C3 that replicates fragments f2−f7

Table 6.1 – Q Relevant fragments, and source selections that lead to produce all the obtainable
answers for the federation given in Figure 6.2

(a) Relevant Fragments
Q triple pattern RF Endpoints

tp1 ?director dbo:nationality ?nat f6 C1
f7 C2

tp2 ?film dbo:director ?director f2 C1,C2,C3
tp3 ?movie owl:sameAs ?film f3 C2,C3
tp4 ?movie linkedmdb:genre ?genre f4 C1,C3

f5 C2

(b) Source selections
TP D0(tp) D1(tp) D2(tp)
tp1 {C1,C2} {C1,C2} {C1,C2}
tp2 {C1,C2,C3} {C1} {C3}
tp3 {C2,C3} {C2} {C3}
tp4 {C1,C2,C3} {C3} {C3}
Tuples to
transfer

421,675 170,078 8,953

3. Data transfer minimization: executing the query using the sources selected in D minimizes

the number of transferred data.

We illustrate SSP-FR on running query Q of Figure 6.2. Table 6.1a presents relevant fragments

for each triple pattern. Table 6.1b shows three D(tp) that ensure the answer completeness property.

It may seem counterintuitive that these three D(tp) do ensure the answer completeness property,

as they do not include existing DBpedia triples for dbo:nationality predicate with object different from

dbr:France and dbr:United_Kingdom, but as they are not included in endpoints in E, these triples

are inaccessible to the federation. Even if D1 and D2 minimize the number of selected endpoints

per triple pattern, only D2 minimizes the transferred data. Indeed, executing tp1, tp2, tp3 against

replicated fragments that are located in the same data consumer endpoint will greatly reduce the

6.2. ALGORITHMS 83

./

./

./

∪
tp1{f6} tp1{f7}

tp2{f2}

tp3{f3}

tp4{f4}

./

./

./

∪
tp1{C1} tp1{C2}

tp2{C1,C2,C3}

tp3{C2,C3}

tp4{C1,C3}

Figure 6.3 – Execution plan encoded in data structures R (left) and E (right); multiple subsets
represent union of different fragment (ex. {f6}, {f7}); elements of the subset represent alternative
location of fragments (ex. {C1,C3}); bold sources are the selected sources after set covering is used
to reduce number of selected sources

size of intermediate results.

6.2 Algorithms

The goal of Fedra is to reduce data transfer by taking advantage of the replication of relevant

fragments for several triple patterns on the same endpoint. Algorithm 16 proceeds in four main

steps:

I. Identify relevant fragments for triple patterns, a Basic Graph Pattern (BGP) triple pattern can

be contained in one fragment or a union of fragments (lines 5-6).

II. Localize relevant replicated fragments on the endpoints (line 7).

III. Prune endpoints for the unions (line 11).

IV. Prune endpoints for the BGPs using a set covering heuristic (line 12).

Algorithm 16 Fedra Source Selection algorithm
Require: Q: SPARQL Query; F: set of Fragments; endpoints : Fragment → set of Endpoint; v : TriplePattern × TriplePattern
Ensure: selectedEndpoints: map from TriplePattern to set of Endpoint.
1: function sourceSelection(Q,F,endpoints,v)
2: triplePatterns ← get triple patterns in Q
3: R, E ← ∅, ∅
4: for each tp ∈ triplePatterns do
5: R(tp) ← relevantFragments(tp, F) . Relevant fragments as in
6: R(tp) ← {{f : f ∈ R(tp) : tp v f}}

⋃
{{f} : f ∈ R(tp) : f v tp ∧ ¬(∃g : g ∈ R(tp) : f @ g v tp)}

7: E(tp) ← { (
⋃

endpoints(f) : f ∈ fs) : fs ∈ R(tp) }
8: end for
9: basicGP ← get basic graph patterns in Q
10: for each bgp ∈ basicGP do
11: unionReduction(bgp, E) . endpoints reduction for multiple fragments triples
12: bgpReduction(bgp, E) . endpoints reduction for the bgp triples
13: end for
14: for each (tp, E(tp)) ∈ E do
15: selectedEndpoints(tp) ← for each set in E(tp) include one element
16: end for
17: return selectedEndpoints
18: end function

84CHAPTER 6. FEDERATED SPARQL QUERIES PROCESSING WITH REPLICATED FRAGMENTS

Triple Patterns (Tps) E(tp) S

tp2: ?film dbo : director ?director {{C1,C2,C3}} { s2

tp3: ?movie owl : sameAs ?film {{C2,C3}} s3

tp4: ?movie linkedmdb : genre ?genre {{C1,C3}} s4}

(a) S instances

{{s2,s4},{s2,s3},{s2,s3,s4}}

C1 C2 C3

(b) C instance

Figure 6.4 – Set covering instances of S and C of BGP reduction Algorithm 18 for the query Q
(Figure 6.2)

Next, we illustrate how Algorithm 16 works on our running query Q and data consumer endpoints

C1, C2, C3 from Figure 6.2. 2

First, for each triple pattern, Fedra computes relevant fragments in R(tp), and groups them if

they provide the same relevant data. For tp1, R(tp1) → {{f6}, {f7}}. For tp4, as f5 v f4, f5

is safely removed at line 6, and R(tp4) → {{f4}}. Second, Fedra localizes fragments on endpoints

in E(tp). For tp1, E(tp1) → {{C1}, {C2}}. For tp4, E(tp4) → {{C1, C3}}. Figure 6.3 shows the

execution plans encoded in R(tp) and E(tp). Triple patterns like tp1, with more than one relevant

fragment, represent unions in the execution plan.

Algorithm 17 Union reduction algorithm
Require: tps : set of TriplePattern; E : mapping from TriplePattern to set of set of Endpoint
19: procedure unionReduction(tps, E)
20: triplesWithMultipleFragments ← { tp : tp ∈ tps ∧ cardinality(E(tp)) > 1 }
21: for each tp ∈ triplesWithMultipleFragments do
22: commonSources ← (

⋂
f : f ∈ E(tp)) . get sources in all subsets in E(tp)

23: if commonSources 6= ∅ then
24: E(tp) ← { commonSources }
25: end if
26: end for
27: end procedure

Procedure unionReduction (cf. Algorithm 17) prunes non common endpoints, if possible, to

access triple patterns from as few endpoints as possible. In our running example, it is not possible

because there is no common endpoint that replicates both f6 and f7. However, if, for example, f7

were also replicated at C1, then only C1 would be selected to execute tp1.

Procedure bgpReduction (cf. Algorithm 18) transforms the join part of E(tp) (cf. Figure 6.3)

into a set covering problem (cf. line 30). Each triple pattern is an element of the set to cover, e.g.,

tp2, tp3, tp4 correspond to s2, s3, s4 (cf. Figure 6.4a). And for each endpoint in E(tp), we include

the subset of triple patterns associated with that endpoint, e.g., for endpoint C1 we include the

subset {s2,s4} as relevant fragments tp2 and tp4 are replicated by C1 (cf. Figure 6.4b). Line 31

2. As DBpedia is not included in the federation for processing Q, only fragments f6 and f7 are available to retrieve
data for tp1 and the engine will not produce all the answers that would be produced using DBpedia.

6.3. EXPERIMENTAL STUDY 85

Algorithm 18 Basic graph pattern reduction algorithm
Require: tps : set of TriplePattern; E : mapping from TriplePattern to set of set of Endpoint
28: procedure bgpReduction(tps, E)
29: triplesWithOneFragment ← { tp : tp ∈ tps ∧ cardinality(E(tp)) = 1 }
30: (S, C) ← minimal set covering instance using triplesWithOneFragmentCE
31: C’ ← minimalSetCovering(S, C)
32: selected ← get endpoints encoded by C’
33: for each tp ∈ triplesWithOneFragment do
34: E(tp) ← E(tp)

⋂
selected

35: end for
36: end procedure

relies on an existing heuristic [Joh73] to find the minimum set covering. In our example, it computes

C’={{s2,s3,s4}}. Line 32 computes the selected endpoints, in our example, selected={ C3 }.

Finally, (Algorithm 16, line 15) chooses among endpoints that provide the same fragment and

reduces data redundancy. For query Q, the whole algorithm returns D2 of Table 6.1b.

Proposition 6.2.1. Algorithm 16 has a time complexity of O(n.m2), with n the number of triple

patterns in the query, m the number of fragments, k the number of endpoints, l the number of basic

graph patterns in the query, and m� k ∧ k � l holds.

The upper bound given in Proposition 6.2.1 is unlikely to be reached, as it requires for all frag-

ments to be relevant for each of the triple patterns. In practice (e.g., experiments from Section 6.3),

even for high number of fragments (> 450), the source selection time remains low (< 2 secs).

Theorem 1. If all the RDF data accessible through the endpoints of a federation are described as

replicated fragments, Fedra source selection leads query engine to produce complete answers wrt the

federation data.

6.3 Experimental Study
The goal of the experimental study is to evaluate the effectiveness of Fedra. We compare the

performance of federated SPARQL queries using FedX, DAW [Sal+13] +FedX, Fedra +FedX, ANAP-

SID, DAW+ANAPSID, and Fedra +ANAPSID. DAW is a source selection ables to detect overlap-

ping between datasets and optimize source selection based on that. However, DAW is not designed

to manage data replication, there is no support for explicitly define and use replicated fragments.

Therefore, DAW may select redundant data sources and generate a high number of intermediate

results.

We expect to see that Fedra selects less sources than the engines and DAW, and transfers less

data from endpoints to the query engines.

86CHAPTER 6. FEDERATED SPARQL QUERIES PROCESSING WITH REPLICATED FRAGMENTS

Table 6.2 – Dataset characteristics: version, number of different triples (# DT), and predicates (#
P)

Dataset Version date # DT # P
Diseasome 19/10/2012 72,445 19

Semantic Web Dog Food 08/11/2012 198,797 147
DBpedia Geo-coordinates 06/2012 1,900,004 4

LinkedMDB 18/05/2010 3,579,610 148
WatDiv1 _ 104,532 86
WatDiv100 _ 10,934,518 86

Datasets and Queries: We use the real datasets: Diseasome, Semantic Web Dog Food, Linked-

MDB, and DBpedia Geo-coordinates. Further, we consider two instances of the Waterloo SPARQL

Diversity Test Suite (WatDiv) synthetic dataset [Alu+14; Alu+13] with 105 and 107 triples. Table 6.2

shows the characteristics of these datasets. The datasets are hosted on local Linked Data Fragment

(LDF) servers.

We generate 50,000 queries from 500 templates for the WatDiv federation. We remove the queries

that caused engines to abort execution, and queries that returned zero results. For the real datasets,

we generate more than 10,000 queries using PATH and STAR shaped templates with two to eight

triple patterns, that are instantiated with random values from the datasets. We include the DIS-

TINCT modifier in all the queries, in order to make them susceptible to a reduction in the set of

selected sources without changing the query answer.

For each dataset, we setup a federation of ten consumer SPARQL endpoints (ten as in [Sal+13]).

Consumer SPARQL endpoints are implemented using Jena Fuseki 1.1.1 3. Each consumer endpoint

selects 100 random queries. Each triple pattern of the query is executed as a SPARQL construct

query with the LDF client 4. The results are stored locally if not present in at least three consumer

endpoints and a fragment definition is created. This replication factor of three was set to avoid

federations where all the fragments were replicated by all the endpoints.

In order to measure the number of transferred data, the federated query engine accesses data

consumer endpoints through a proxy.

Implementations: FedX 3.0 5 and ANAPSID 6 have been modified to call Fedra and DAW [Sal+13]

source selection strategies during query processing. Thus, each engine can use the selected sources

to perform its own optimization strategies. Fedra and DAW 7 are implemented in both Java 1.7

3. http://jena.apache.org/, January 2015.
4. https://github.com/LinkedDataFragments, March 2015.
5. http://www.fluidops.com/fedx/, September 2014.
6. https://github.com/anapsid/anapsid, September 2014.
7. We had to implement DAW as its code is not available.

http://jena.apache.org/
http://www.fluidops.com/fedx/
https://github.com/anapsid/anapsid

6.3. EXPERIMENTAL STUDY 87

and Python 2.7.3. Thus, Fedra and DAW are integrated in FedX (Java) and ANAPSID (Python),

reducing the performance impact of including these new source selection strategies. Proxies are

implemented in Java 1.7. using the Apache HttpComponents Client library 4.3.5 8. We used R 9 to

compute the Wilcoxon signed rank test [Wil92].

Evaluation Metrics: i) Number of Selected Sources (NSS): is the sum of the number of sources

that have been selected per triple pattern. ii) Number of Transferred Tuples (NTT): is the number

of tuples transferred from all the endpoints to the query engine during a query execution.

Further informations (implementation, results, setups details, tests p-values) are available at

https://sites.google.com/site/fedrasourceselection.

Data Redundancy Minimization

To measure the reduction of the number of selected sources, 100 queries were randomly chosen,

and the source selection was performed for these queries for each federation using ANAPSID and

FedX with and without Fedra or DAW. For each query, the sum of the number of selected sources

per triple pattern was computed. Boxplots are used to present the results (Figure 6.5). Both Fedra

and DAW significantly reduce the number of selected sources, however, the reduction achieved by

Fedra is greater than the achieved by DAW.

To confirm it, we formulated the null hypothesis: “Fedra selects the same number of sources as

DAW does”, and performed a Wilcoxon signed rank test, p-values were inferior or equal to 1.4e-05 for

all federations and engines. These low p-values allow for rejecting the null hypothesis that DAW and

Fedra reduction are similar, and accepting the alternative hypothesis that Fedra reduction is greater

than the one achieved by DAW. Fedra source selection strategy identifies the relevant fragments and

endpoints that provide the same data. Only one of them is actually selected; in consequence, a huge

reduction on the number of selected sources of up to 400% per query is achieved.

Data Transfer Minimization

To measure the reduction in the number of transferred tuples, queries were executed using proxies

that measure the number of transmitted tuples from endpoints to the engines. Because queries that

timed out have no significance on number of transferred tuples, we removed all these queries from

8. https://hc.apache.org/, October 2014.
9. http://www.r-project.org/

https://sites.google.com/site/fedrasourceselection
https://hc.apache.org/

88CHAPTER 6. FEDERATED SPARQL QUERIES PROCESSING WITH REPLICATED FRAGMENTS

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

F+A D+A A F+A D+A A F+A D+A A F+A D+A A F+A D+A A F+A D+A A

0

10

20

30

40

Diseasome Geocoordinates LinkedMDB SWDF WatDiv1 WatDiv100

N
um

be
r

of
 S

el
ec

te
d

S
ou

rc
es

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●●●

●

●●●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

F+F D+F F F+F D+F F F+F D+F F F+F D+F F F+F D+F F F+F D+F F

0

10

20

30

40

Diseasome Geocoordinates LinkedMDB SWDF WatDiv1 WatDiv100

N
um

be
r

of
 S

el
ec

te
d

S
ou

rc
es

Figure 6.5 – Number of Selected Sources for execution of ANAPSID (A) and FedX (F) using Fedra
(F+), DAW (D+), and the engine source selection

the study. 10 Results (Figure 6.6) show that Fedra source selection strategy leads to executions with

considerably less intermediate results in all the federations except in the SWDF federation. In some

queries of the SWDF federation, Lilac +FedX sends exclusive groups that include BGPs with triple

patterns that do not share a variable, i.e., BGPs with Cartesian products; in presence of Cartesian

product, large intermediate results may be generated. Queries with Cartesian products counters

Fedra positive impact over other queries.

Despite that, globally Fedra shows an effective reduction of the number of transferred tuples.

To confirm it, we formulated the null hypothesis: “using sources selected by Fedra leads to transfer

the same number of tuples as using sources selected by DAW”; and performed a Wilcoxon signed

rank test, p-values were inferior or equal to 0.002 for all federations and engines except SWDF

10. Up to six queries out of 100 queries did not successfully finish in 1,800 seconds, details available at the web page.

6.4. CONCLUSION 89

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●●
●

●

●

●

●●●●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●●●●
●
●

F+A D+A A F+A D+A A F+A D+A A F+A D+A A F+A D+A A F+A D+A A

100

102

104

106

Diseasome Geocoordinates LinkedMDB SWDF WatDiv1 WatDiv100

N
um

be
r

of
 T

ra
ns

fe
rr

ed
 T

up
le

s

●

●
●

●

●
●

●
●●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

F+F D+F F F+F D+F F F+F D+F F F+F D+F F F+F D+F F F+F D+F F

100

102

104

106

Diseasome Geocoordinates LinkedMDB SWDF WatDiv1 WatDiv100

N
um

be
r

of
 T

ra
ns

fe
rr

ed
 T

up
le

s

Figure 6.6 – Number of Transferred Tuples during execution with ANAPSID (A) and FedX (F) using
Fedra (F+), DAW (D+), and the engine source selection

federation + FedX engine. In consequence, for all combinations of federation and engines except

SWDF+FedX, we can reject the null hypothesis DAW and Fedra number of transferred tuples are

similar and accept the alternative hypothesis that Fedra achieves a greater reduction of the number

of transferred tuples than DAW. The reduction of the number of transferred tuples is mainly due

to Fedra source selection strategy aims to find opportunities to execute joins in the endpoints, and

mostly, it leads to a significant reduction of the intermediate results size of up to four orders of

magnitude.

6.4 Conclusion
I illustrated how replicating fragments allow for data re-organization from different data sources

to better fit query needs of data consumers. Then, I proposed a replication-aware federated query

90CHAPTER 6. FEDERATED SPARQL QUERIES PROCESSING WITH REPLICATED FRAGMENTS

engine by extending state-of-art federated query engine ANAPSID and FedX with Fedra, a source

selection strategy that approximates SSP-FR.

Fedra exploits fragment localities to reduce intermediate results. Experimental results demon-

strate that Fedra achieves significant reduction of intermediate results while leading to produce

complete answers.

This work opens several perspectives. First, we made the assumption that replicated fragments

are perfectly synchronized and cannot be updated. We can leverage this assumption and manage

the problem of federated query processing with divergence [Mon+14b] or use the work on col-graph

to synchronize data.

Several variants of SSP-FR can also be developed. SSP-FR does not differentiate between end-

points and the cost of accessing endpoints is considered the same. Finally, SSP-FR and Fedra can

be extended to solve the source selection problem where the number of public endpoint accesses is

minimized [Mon+14b].

Supervised PhD Thesis associated with this chapter
[Mon16] Gabriela Montoya. « Answering SPARQL Queries using View ». PhD thesis. Université

de Nantes, Mar. 2016.

Publications associated with this chapter

International peer-reviewed journals
[Mon+17] Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. « Decom-

posing Federated Queries in Presence of Replicated Fragments ». In: Web Semantics:

Science, Services and Agents on the World Wide Web, Elsevier 42 (2017), pp. 1–18.

International peer-reviewed conferences
[Mon+15] Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. « Federated

SPARQL Queries Processing with Replicated Fragments ». In: The Semantic Web -

ISWC 2015 - 14th International Semantic Web Conference. Bethlehem, United States,

Oct. 2015, pp. 36–51.

TECHNICAL REPORTS 91

Technical reports
[Mon+14b] Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. Fedra: Query

Processing for SPARQL Federations with Divergence. Tech. rep. May 2014. url: http:

//hal.univ-nantes.fr/hal-01022740.

http://hal.univ-nantes.fr/hal-01022740
http://hal.univ-nantes.fr/hal-01022740

7
Research Directions

Traditionally, Linked Open Data (LOD) providers make their datasets accessible through SPARQL

servers. Data consumers can query a single data source or a federation of data sources. However,

existing SPARQL servers suffer from the problems of availability and scalability [Ara+13]. There-

fore, existing SPARQL servers are unreliable for building real linked data applications. Recently,

Triple Pattern Fragment (TPF) [Ver+14a] approach is proposed to tackle this issue by balancing

the cost of query processing between data providers and data consumers. In TPF, data are hosted

in TPF servers providing low-cost publication of data, at the same time, SPARQL query processing

is moved to the TPF clients side, i.e., data consumers. Following TPF approach, a SPARQL query

engine runs within a web browser of a TPF clients, this enables to share query processing between

a TPF server and a TPF client. This approach establishes a trade-off between data availability and

performances leveraging the “pressure" on data providers. TPF improves availability of data at the

price of decreasing the performance of query processing.

The main objective of my research project is to remove this trade-off without requiring more

ressources from data providers. In order to ensure availability and performance, I propose an ap-

proach where data consumers not only participate in SPARQL query processing but they also share

their ressources. The idea is to take advantage of clients resources to improve performance. I propose

92

93

to build a federation of data consumers where members of a federation share their storage resources

and their processing capabilities. This requires is to build an efficient decentralized federated query

engine running in the browsers of data consumers.

Linked Data in the Fog

An efficient decentralized federated query engine running in the browsers of data consumers will

break the state of the art tradeoff between availability and performances by proposing a fog of

browsers.

Fog of browsers produce new way for hosting data and processing SPARQL queries. The main

scientific challenge are :

Customized overlay networks for a fog of browsers. A fog of browsers will connect thou-

sands of browsers in unstructured overlay network. I will use known techniques in distributed sys-

tems [Ber+10] to build this overlay. I propose to build a Random Peer Sampling (RPS) overlay

network that maintains the membership among connected browsers. On the top of this overlay,

other overlay networks can be built according to the applications needs. For instance, I can build a

Clustering Overlay Network (CON) that clusters nodes according to the similarity of their queries.

I experiment this approach by building a collaborative behavioral cache Cyclades in the context

of Web applications. Results [FSM16] show that behavior cache reduces by the 20% the load on the

data provider server. The next step of this challenge will be to define new similarities and clustering

metrics not only based on queries but also on the infrastructure itself. A possible clustering metric

could be the latency of the network. Latency could impact negatively the performance.

Dynamic replication and consistency in a fog of browsers. To improve performance, a TPF

client may decide to locally materialize frequently used data fragments. This kind of dynamic frag-

ment replication poses a number of problems concerning replicated data consistency. Consistency has

already been addressed in [Ibá+14], but without considering the data distribution and communica-

tion costs. The replication strategy (what, where, when) is conditioned by the overlay network (see

above) for deciding between fragment replication/materialization and sub-query delegation. Repli-

cation strategies impact federated query engine performance.

Federated query engine for a fog of browsers. A browser executes an infinite stream of queries

that arrive at anytime. A browser can execute a query by itself or delegate it to a neighbor. Due

94 CHAPTER 7. RESEARCH DIRECTIONS

to browsers limitations, a browser can execute only one query at a time. The challenge is to find

with low overhead, free neighbors to execute in parallel the local workload. However, parallel query

execution must balance the load not only on clients side but also on the server side. The parallelism

must not exceed the limit of the server. In addition, query decomposition and optimisation must

take in consideration replicated data.

The main goal is to build a performant and reliable federated SPARQL query engine by exploiting

the local processing power of web browsers.

8
Bibliography

This bibliography is divided in two parts. The first part corresponds to the author of the document

categorized publications and the second part contains articles by other cited authors.

8.1 Publications by Hala Skaf-Molli (Categorized)

International editorial activities
[Lan+10] Christoph Lange, Jochen Reutelshoefer, Sebastian Schaffert, and Hala Skaf-Molli, eds.

5th Semantic Wiki Workshop (SemWiki 2010) at the 7th European Semantic Web

Conference (ESWC 2010), Hersonissos, Greece, June 1st,2010. Proceedings. Vol. 632.

CEUR Workshop Proceedings. CEUR-WS.org, 2010.

[Lan+09] Christoph Lange, Sebastian Schaffert, Hala Skaf-Molli, and Max Völkel, eds. 4th Se-

mantic Wiki Workshop (SemWiki 2009) at the 6th European Semantic Web Confer-

ence (ESWC 2009), Hersonissos, Greece, June 1st, 2009. Proceedings. Vol. 464. CEUR

Workshop Proceedings. CEUR-WS.org, 2009.

[Lan+08] Christoph Lange, Sebastian Schaffert, Hala Skaf-Molli, and Max Völkel, eds. Proceed-

ings of the 3rd Semantic Wiki Workshop (SemWiki 2008) at the 5th European Seman-

95

96 CHAPTER 8. BIBLIOGRAPHY

tic Web Conference (ESWC 2008), Tenerife, Spain, June 2nd, 2008. Vol. 360. CEUR

Workshop Proceedings. CEUR-WS.org, 2008.

Book chapters
[BVS] Christian Bizer, Maria-Esther Vidal, and Hala Skaf-Molli. « Linked Open Data ». In:

Encyclopedia of Database Systems, to appear. Ed. by Ling Liu and M. Tamer Özsu.

[Tor+16] Diego Torres, Hala Skaf-Molli, Pascal Molli, and Alicia Diaz. « Discovering Wikipedia

Conventions Using DBpedia Properties ». In: Revised Selected, Invited Papers of Se-

mantic Web Collaborative Spaces: SWCS 2013, and SWCS 2014, Springer International

Publishing, 2016, pp. 115–144.

[Cor+14] Amélie Cordier, Valmi Dufour-Lussier, Jean Lieber, Emmanuel Nauer, Fadi Badra,

Julien Cojan, Emmanuelle Gaillard, Laura Infante-Blanco, Pascal Molli, Amedeo Napoli,

and Hala Skaf-Molli. « Taaable: a Case-Based System for personalized Cooking ». In:

Successful Case-based Reasoning Applications-2. Vol. 494. Studies in Computational In-

telligence. Springer, Jan. 2014, pp. 121–162. isbn: 978-3-642-38735-7. doi: 10.1007/

978-3-642-38736-4_7. url: http://hal.inria.fr/hal-00912767.

[Dan+04] Farhad Daneshgar, Pradeep Ray, Fethi Rahbi, Hala Skaf-Molli, Pascal Molli, and

Claude Godart. « Knowledge Sharing Infrastructures for Teams within Virtual Commu-

nities ». In: e-Collaborations and Virtual Organizations. IGP/Infosci/IRM Press, 2004.

url: http://hal.inria.fr/inria-00108109.

[God+99] Claude Godart, Noureddine Belkhatir, Antonio Carzaniga, Jacky Estublier, Elisabetta

Di Nitto, Jens H. Jahnke, Patricia Lago, Wilhelm Schäfer, and Hala Skaf. « Cooper-

ation Control in PSEE ». In: Software Process: Principles, Methodology, Technology.

Vol. 1500. Lecture Notes in Computer Science. Springer, 1999, pp. 117–164.

International peer-reviewed journals
[Mon+17] Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. « Decom-

posing Federated Queries in Presence of Replicated Fragments ». In: Web Semantics:

Science, Services and Agents on the World Wide Web, Elsevier 42 (2017), pp. 1–18.

http://dx.doi.org/10.1007/978-3-642-38736-4_7
http://dx.doi.org/10.1007/978-3-642-38736-4_7
http://hal.inria.fr/hal-00912767
http://hal.inria.fr/inria-00108109

INTERNATIONAL PEER-REVIEWED JOURNALS 97

[Dav+15] Alan Davoust, Hala Skaf-Molli, Pascal Molli, Babak Esfandiari, and Khaled Aslan.

« Distributed Wikis: A Survey ». In: Concurrency and Computation: Practice and Ex-

perience 27 (2015), pp. 2751–2777. doi: 10.1002/cpe.

[Mon+14a] Gabriela Montoya, Luis Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Maria-Esther

Vidal. « SemLAV: Local-as-View Mediation for SPARQL queries ». In: LNCS Trans-

actions on Large-Scale Data- and Knowledge-Centered Systems 8420 (2014), pp. 33–

58.

[Ibá+13] Luis Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Olivier Corby. « Live Linked

Data: Synchronizing Semantic Stores with Commutative Replicated Data Types ». In:

International Journal of Metadata, Semantics and Ontologies 8.2 (2013), pp. 119–133.

url: http://hal.inria.fr/hal-00903377.

[Naj+09] Hala Naja-Jazzar, Nishadi Desilva, Hala Skaf-Molli, Charbel Rahhal, and Pascal Molli.

« OntoRest: A RST-based Ontology for Enhancing Documents Content Quality in Col-

laborative Writing ». In: INFOCOMP Journal of Computer Science 8.3 (2009), pp. 1–

10.

[Mar+06a] Olivera Marjanovic, Hala Skaf-Molli, Pascal Molli, and Claude Godart. « Innovative

Learning Designs Enabled by Process-Driven Collaborative Editing ». In: Journal of Ed-

ucational Technology and Society (endorsed by IEEE Learning Technology Task Force)

(2006).

[Baï+04] Karim Baïna, François Charoy, Claude Godart, Daniela Grigori, Saad El Hadri, Hala

Skaf, S. Akifuji, Toshiaki Sakaguchi, Yoko Seki, and Masaichiro Yoshioka. « CORVETTE:

a cooperative workflow for virtual teams coordination ». In: International Journal of

Networking and Virtual Organizations. Special Issue on Infrastructures for New Virtual

Organisations 2.3 (2004), pp. 232–245.

[God+04] Claude Godart, Pascal Molli, Gérald Oster, Olivier Perrin, Hala Skaf-Molli, Pradeep

Ray, and Fethi Rabhi. « The ToxicFarm Integrated Cooperation Framework for Virtual

Teams ». In: Distributed and Parallel Databases 15.1 (2004), pp. 67–88. doi: 10.1023/

B:DAPD.0000009432.79864.08. url: http://hal.inria.fr/inria-

00099944.

http://dx.doi.org/10.1002/cpe
http://hal.inria.fr/hal-00903377
http://dx.doi.org/10.1023/B:DAPD.0000009432.79864.08
http://dx.doi.org/10.1023/B:DAPD.0000009432.79864.08
http://hal.inria.fr/inria-00099944
http://hal.inria.fr/inria-00099944

98 CHAPTER 8. BIBLIOGRAPHY

[SCG99] Hala Skaf, François Charoy, and Claude Godart. « Maintaining Shared Workspaces

Consistency during Software Development ». In: International Journal of Software En-

gineering and Knowledge Engineering. Special Issue: Knowledge Discovery from Empir-

ical Software Engineering Data 9.5 (1999), pp. 623–642. url: https://hal.inria.

fr/inria-00098802.

[Can+98] Gérôme Canals, Claude Godart, François Charoy, Pascal Molli, and Hala Skaf. « COO

Approach to Support Cooperation in Software Developments ». In: IEE Proceedings -

Software 145.2-3 (1998), pp. 79–84.

National peer-reviewed journals
[RSM09b] Charbel Rahhal, Hala Skaf-Molli, and Pascal Molli. « SWooki: Un Wiki Sémantique

sur réseau Pair-à-Pair ». In: Ingénierie des Systèmes d’Information 14.1 (Feb. 2009),

pp. 117–140.

International peer-reviewed conferences
[FSM16] Pauline Folz, Hala Skaf-Molli, and Pascal Molli. « CyCLaDEs: A Decentralized Cache

for Triple Pattern Fragments ». In: 13th Extended Semantic Web Conference, ESWC

2016, Heraklion, Crete, Greece, May 29 - June 2. 2016, pp. 455–469.

[Mon+15] Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. « Federated

SPARQL Queries Processing with Replicated Fragments ». In: The Semantic Web -

ISWC 2015 - 14th International Semantic Web Conference. Bethlehem, United States,

Oct. 2015, pp. 36–51.

[Ibá+14] Luis-Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Olivier Corby. « Col-Graph:

Towards Writable and Scalable Linked Open Data ». In: ISWC - The 13th International

Semantic Web Conference. Riva del Garda, Italy, Oct. 2014, pp. 325–340.

[Le+13] Anh-Hoang Le, Marie Lefevre, Amélie Cordier, and Hala Skaf-Molli. « Collecting in-

teraction traces in distributed semantic wikis ». In: 3rd International Conference on

Web Intelligence, Mining and Semantics, WIMS ’13, Madrid, Spain, June 12-14, 2013.

2013, p. 21.

https://hal.inria.fr/inria-00098802
https://hal.inria.fr/inria-00098802

INTERNATIONAL PEER-REVIEWED CONFERENCES 99

[Mon+13b] Gabriela Montoya, Luis-Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Maria-Esther

Vidal. « GUN: An Efficient Execution Strategy for Querying the Web of Data ». In:

Database and Expert Systems Applications. Springer. 2013, pp. 180–194.

[Tor+13] Diego Torres, Hala Skaf-Molli, Pascal Molli, and Alicia Diaz. « BlueFinder: Recom-

mending Wikipedia Links Using DBpedia Properties ». In: ACM Web Science Confer-

ence 2013 (WebSci 13). Paris, France, May 2013, pp. 115–144.

[ASM12] Khaled Aslan, Hala Skaf-Molli, and Pascal Molli. « Connecting Distributed Version

Control Systems Communities to Linked Open Data ». In: CTS 2012 - The Interna-

tional Conference on Collaboration Technologies and Systems - 2012. 2012.

[Tor+12a] Diego Torres, P. Molli, H. Skaf-Molli, and A. Diaz. « From DBpedia to Wikipedia:

Filling the Gap by Discovering Wikipedia Conventions ». In: 2012 IEEE/WIC/ACM

International Conference on Web Intelligence (WI 12). 2012.

[Asl+11a] Khaled Aslan, Nagham Alhadad, Hala Skaf-Molli, and Pascal Molli. « SCHO: An On-

tology Based Model for Computing Divergence Awareness in Distributed Collaborative

Systems ». In: European Conference on Computer-Supported Cooperative Work. Aarhus,

Danemark, Sept. 2011.

[Tor+11] Diego Torres, Alicia Diaz, Hala Skaf-Molli, and Pascal Molli. « Semdrops: A Social

Semantic Tagging Approach for Emerging Semantic Data ». In: 2011 IEEE/WIC/ACM

International Conference on Web Intelligence (WI 2011). Lyon, France, Aug. 2011.

[ASM10] Khaled Aslan, Hala Skaf-Molli, and Pascal Molli. « From Causal History to Social

Network in Distributed Social Semantic Software ». In: Web Science Conference 2010

- WebSci10. Apr. 2010.

[BBS10] Anne Boyer, Armelle Brun, and Hala Skaf-Molli. « Human Computer Collaboration

to Improve Annotations in Semantic Wikis ». In: 6th Conference on Web Information

Systems and Technologies (Webist 2010). Valencia, Spain, Apr. 2010, p. 8. url: https:

//hal.inria.fr/inria-00378416.

[BSB10] Armelle Brun, Hala Skaf-Molli, and Anne Boyer. « Raising up Annotations In Ped-

agogical Resources by Human-Computer Collaboration ». In: European Distance and

https://hal.inria.fr/inria-00378416
https://hal.inria.fr/inria-00378416

100 CHAPTER 8. BIBLIOGRAPHY

E-learning Network (EDEN 2010). Budapest, Hungary, Oct. 2010. url: https://

hal.inria.fr/inria-00597285.

[SCM10a] Hala Skaf-Molli, Gérôme Canals, and Pascal Molli. « DSMW: a distributed infrastruc-

ture for the cooperative edition of semantic wiki documents ». In: ACM Symposium

on Document Engineering (DocEng 2010) (Demo). Manchester, Royaume-Uni: ACM,

2010, pp. 185–186.

[SCM10b] Hala Skaf-Molli, Gérôme Canals, and Pascal Molli. « DSMW: Distributed Semantic

MediaWiki ». In: ESWC (2). Ed. by Lora Aroyo, Grigoris Antoniou, Eero Hyvönen, An-

nette ten Teije, Heiner Stuckenschmidt, Liliana Cabral, and Tania Tudorache. Vol. 6089.

Lecture Notes in Computer Science. Heraklion, Crete, Greece: Springer, 2010, pp. 426–

430. isbn: 978-3-642-13488-3.

[SCM10c] Hala Skaf-Molli, Gérôme Canals, and Pascal Molli. « DSMW: Distributed Seman-

tic MediaWiki ». In: 7th Extended Semantic Web Conference (ESCW 2010) (Demo).

Vol. 6089. Lecture Notes in Computer Science. Heraklion, Gréce: Springer, 2010.

[Rah+09a] Charbel Rahhal, Hala Skaf-Molli, Pascal Molli, and StephaneWeiss. « Multi-Synchronous

Collaborative Semantic Wikis ». In: 10th International Conference on Web Information

Systems Engineering (WISE 2009). Vol. 5802. Lecture Notes in Computer Science. Poz-

nan, Pologne: Springer, Oct. 2009, pp. 115–129.

[SRM09] Hala Skaf-Molli, Charbel Rahhal, and Pascal Molli. « Peer-to-peer Semantic Wikis ». In:

20th International Conference on Database and Expert Systems Applications - DEXA

2009. Vol. 5690. Lecture Notes in Computer Science. Linz, Autriche: Springer-Verlag,

Aug. 2009, pp. 196–213.

[Tor+09b] Diego Torres, Hala Skaf-Molli, Alicia Diaz, and Pascal Molli. « Supporting Personal

Semantic Annotations in P2P Semantic Wikis ». In: 20th International Conference on

Database and Expert Systems Applications - DEXA 2009. Vol. 5690. Lecture Notes in

Computer Science. Linz, Autriche: Springer Berlin / Heidelberg, Aug. 2009, pp. 317–

331.

[Ska+08] Hala Skaf-Molli, Pascal Molli, Charbel Rahhal, and Hala Naja-Jazzar. « Collaborative

Writing of XML Documents ». In: IEEE 3rd International Conference on Information

https://hal.inria.fr/inria-00597285
https://hal.inria.fr/inria-00597285

INTERNATIONAL PEER-REVIEWED CONFERENCES 101

& Communication Technologies : From Theory to Applications - ICTTA 2008. Damas,

Syrie: IEEE, Apr. 2008, pp. 1–6. doi: 10.1109/ICTTA.2008.4530334.

[Ost+07] Gérald Oster, Hala Skaf-Molli, Pascal Molli, and Hala Naja-Jazzar. « Supporting Col-

laborative Writing of XML Documents ». In: 9th International Conference on En-

terprise Information Systems - ICEIS 2007. Funchal, Madeira, Portugal, June 2007,

pp. 335–341.

[Rah+07] Charbel Rahhal, Hala Skaf-Molli, Pascal Molli, and Nishadi Desilva. « SemCW: Seman-

tic Collaborative Writing using RST ». In: The 3rd International Conference on Collab-

orative Computing:Networking, Applications and Worksharing - CollaborateCom’2007.

IEEE, Nov. 2007, pp. 484–493.

[Ska+07] Hala Skaf-Molli, Claudia Ignat, Charbel Rahhal, and Pascal Molli. « New Work Modes

For Collaborative Writing ». In: International Conference on Enterprise Information

Systems and Web Technologies - EISWT-07. Orlando, USA: ISRST, July 2007, pp. 176–

182.

[Mar+06b] Olivera Marjanovic, Hala Skaf-Molli, Pascal Molli, Fethi Rabhi, and Claude Godart.

« Supporting Complex Collaborative Learning Activities: The LIBRESOURCE Ap-

proach ». In: 8th International Conference on Enterprise Information Systems, ICEIS

2006. Paphos- Cyprus, May 2006.

[Ska+06] Hala Skaf-Molli, Pascal Molli, Olivera Marjanovic, and Claude Godart. « LibreSource:

Web Based platform for Supporting Collaborative Activities ». In: 2nd IEEE Interna-

tional Conference on Information and Communication Technologies: From Theory to

Applications - ICTTA 2006. Vol. 2. Damas - Syrie: IEEE, Apr. 2006, pp. 3309–3313.

url: http://hal.inria.fr/inria-00097435.

[Mol+03] Pascal Molli, Gérald Oster, Hala Skaf-Molli, and Abdessamad Imine. « Using the Trans-

formational Approach to Build a Safe and Generic Data Synchronizer ». In: Interna-

tional Conference on Supporting Group Work - Group 2003. Sanibel Island, Florida,

USA: ACM Press, Nov. 2003, pp. 212–220. doi: 10.1145/958160.958194.

[Ska+03] Hala Skaf-Molli, Pascal Molli, Gérald Oster, Claude Godart, Pradeep Ray, and Fethi

Rabhi. « Toxic Farm : a cooperative management platform for virtual teams and

http://dx.doi.org/10.1109/ICTTA.2008.4530334
http://hal.inria.fr/inria-00097435
http://dx.doi.org/10.1145/958160.958194

102 CHAPTER 8. BIBLIOGRAPHY

enterprises ». In: 5th International Conference on Enterprise Information Systems -

ICEIS’03. Angers, France: none, 2003. url: http://hal.inria.fr/inria-

00099802.

[MSO02] Pascal Molli, Hala Skaf-Molli, and Gérald Oster. « Divergence Awareness for Virtual

Team through the Web ». In: Sixth World Conference on Integrated Design and Process

Technology - IDPT’2002. Pasadena, CA, USA: Society for Design & Process Science

(SDPS), June 2002, 10 p. url: http://hal.inria.fr/inria-00100747.

[Mol+02] Pascal Molli, Hala Skaf-Molli, Gérald Oster, and Sébastien Jourdain. « SAMS: Syn-

chronous, Asynchronous, Multi-Synchronous Environments ». In: Seventh International

Conference on Computer Supported Cooperative Work in Design - CSCWD’02. Rio de

Janeiro, Brasil: none, 2002, 5 p. url: http://hal.inria.fr/inria-00107571.

[Mol+01] Pascal Molli, Hala Skaf-Molli, Claude Godart, Pradeep Ray, Rajan Shankaran, and

Vijay Varadharajan. « Integrating Network Services for Virtual Teams ». In: Interna-

tional Conference on Enterprise Information Systems - ICEIS 2001. Setúbal, Portugal,

2001, 6 p. url: http://hal.inria.fr/inria-00147539.

[God+00] Claude Godart, François Charoy, Olivier Perrin, and Hala Skaf. « Cooperative Work-

flows to Coordinate Asynchronous Cooperative Applications in a Simple Way ». In:

Seventh International Conference on Parallel & Distributed Systems - ICPADS 2000.

Parallel and Distributed Systems, 2000. Proceedings. Seventh International Conference

on. IEEE Computer Society. Iwate, Japan: IEEE, July 2000, pp. 409–416.

[GSC00] Daniela Grigori, Hala Skaf-Molli, and François Charoy. « Adding Flexibility in a Coop-

erative Workflow Execution Engine ». In: 8th International Conference High-Performance

Computing and Networking HPCN Europe. Amsterdam, The Netherlands, May 2000,

pp. 227–236.

[SCG97] Hala Skaf, François Charoy, and Claude Godart. « An Hybrid Approach to Maintain

Consistency of Cooperative Software Development Activities ». In: Ninth International

Conference on Software Engineering and Knowledge Engineering - SEKE97. Madrid,

Spain, June 1997.

http://hal.inria.fr/inria-00099802
http://hal.inria.fr/inria-00099802
http://hal.inria.fr/inria-00100747
http://hal.inria.fr/inria-00107571
http://hal.inria.fr/inria-00147539

NATIONAL PEER-REVIEWED CONFERENCES 103

[God+96] Claude Godart, Gérôme Canals, François Charoy, Pascal Molli, and Hala Skaf. « De-

signing and Implementing COO: Design Process, Architectural Style, Lessons Learned ».

In: 18th International Conference on Software Engineering, Berlin, Germany, March

25-29, 1996, Proceedings. 1996, pp. 342–352. url: http://portal.acm.org/

citation.cfm?id=227726.227796.

[SCG96] Hala Skaf, Francois Charoy, and Claude Godart. « Maintaining Consistency of Coopera-

tive Software Development Activities. » In: 6th International Workshop on Foundations

of Models and Languages for Data and Objects, Schloss Dagstuhl, Germany, September

16-20. 1996, pp. 103–118.

[Can+95] Gérôme Canals, François Charoy, Claude Godart, Frank Juillard, Pascal Molli, Alexan-

dre Rossel, and Hala Skaf. « P-Root & COO: un système de gestion d’objets et des ser-

vices de mise en oeuvre de procédé de développement ». In: Onzièmes Journées Bases

de Données Avancées, 29 Août - 1er Septembre 1995, Nancy (Informal Proceedings).

1995, p. 477.

National peer-reviewed conferences
[Mon+16] Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. « Federated

SPARQL Queries Processing with Replicated Fragments ». In: 32ème Conférence sur la

Gestion de Données - Principes, Technologies et Applications (BDA). Potières, France,

Oct. 2016, pp. 36–51.

[Fol+14a] Pauline Folz, Gabriela Montoya, Hala Skaf-Molli, and Maria-Esther Molli Pascal and.

« SemLAV : Interroger le Web profond et le Web des données avec SPARQL ». In:

Journées Francophones BDA : Base de Données Avancées. Grenoble, France, Oct. 2014.

url: https://hal.archives-ouvertes.fr/hal-01089917.

[SMC09] Hala Skaf-Molli, Pascal Molli, and Gérôme Canals. « SWooki: Supporting Disconnec-

tion in a Peer-to-peer Semantic Wiki ». In: 5èmes Journées Francophones Mobilité et

Ubiquité 2009 - UbiMob’09. Lille, France, July 2009.

[Jou+06] Florent Jouille, Bernard Ganne, Hala Skaf-Molli, and Pascal Molli. « LibreSource: Une

plate-forme de développement collaboratif basée sur le WEB ». In: 19èmes Journées In-

http://portal.acm.org/citation.cfm?id=227726.227796
http://portal.acm.org/citation.cfm?id=227726.227796
https://hal.archives-ouvertes.fr/hal-01089917

104 CHAPTER 8. BIBLIOGRAPHY

ternationales "Génie Logiciel & Ingénierie de Systèmes et leurs Applications" - ICSSEA

2006. Paris/France, Dec. 2006.

[Ost+04] Gérald Oster, Pascal Molli, Hala Skaf-Molli, and Abdessamad Imine. « Un modèle sûr

et générique pour la synchronisation de données divergentes ». In: Premières Journées

Francophones : Mobilité et Ubiquité - UbiMob’04. Nice, France, June 2004, 9 p.

[Boi+94] Olivier Boissier, Yves Demazeau, Gérald Masini, and Hala Skaf. « Une architecture

Multi-Agents pour l’implémentation du bas niveau d’un système de compréhension de

scènes ». In: Deuxièmes Journées Francophones Intelligence Artificielle Distribuée et

Systèmes Multi-Agents (JFIADSMA’94). Voiron, France, May 1994, pp. 293–304.

[Mas+93] G. Masini, H. Skaf, Y. Demazeau, and O. Boissier. « Contribution à l’implantation d’un

système de compréhension de scènes par une architecture multi-agents ». In: Journées

ORASIS PRC-CHM Pôle Vision. Mulhouse, Oct. 1993.

International peer-reviewed workshops
[Fol+15] Pauline Folz, Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vi-

dal. « Parallel Data Loading during Querying Deep Web and Linked Open Data with

SPARQL ». In: Proceedings of the 11th International Workshop on Scalable Semantic

Web Knowledge Base Systems co-located with 14th International Semantic Web Con-

ference (ISWC 2015), Bethlehem, PA, USA, October 11, 2015. 2015, pp. 63–74.

[Fol+14b] Pauline Folz, Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal.

« SemLAV: Querying Deep Web and Linked Open Data with SPARQL ». In: ESWC:

Extended Semantic Web Conference, ESWC 2014 Satellite Events, LNSC 476. May

2014, pp. 332–337.

[Cha+12] Pierre-Antoine Champin, Amélie Cordier, Elise Lavoué, Marie Lefevre, and Hala Skaf-

Molli. « User assistance for collaborative knowledge construction ». In: Workshop on

Semantic Web Collaborative Spaces (SWCS), in conjunction with the World Wide Web

2012 International Conference. Lyon, France: ACM, Apr. 2012, pp. 1065–1074. url:

https://hal.archives-ouvertes.fr/hal-00692091.

https://hal.archives-ouvertes.fr/hal-00692091

INTERNATIONAL PEER-REVIEWED WORKSHOPS 105

[Dan+12] Ibáñez Luis Daniel, Hala Skaf-Molli, Pascal Molli, and Olivier Corby. « Synchronizing

Semantic Stores with Commutative Replicated Data Types ». In: SWCS - Semantic

Web Collaborative Spaces Workshop - 2012. Lyon, France: ACM, 2012, pp. 1091–1096.

url: http://hal.inria.fr/hal-00686484.

[Ska+12] Hala Skaf-Molli, Emmanuel Desmontils, Emmanuel Nauer, Gérôme Canals, Amélie

Cordier, Marie Lefevre, Pascal Molli, and Yannick Toussaint. « Knowledge Continuous

Integration Process (K-CIP) ». In: WWW 2012 - SWCS’12 Workshop - 21st World

Wide Web Conference - Semantic Web Collaborative Spaces workshop. Lyon, France,

Apr. 2012, pp. 1075–1082. url: http://hal.inria.fr/hal-00765596.

[Tor+12b] Diego Torres, Pascal Molli, Hala Skaf-Molli, and Alicia Diaz. « Improving Wikipedia

with DBpedia ». In: SWCS - Semantic Web Collaborative Spaces Workshop 2012 in

21st WWW Conference 2012. Lyon, France, Apr. 2012.

[Asl+11b] Khaled Aslan, Pascal Molli, Hala Skaf-Molli, and Stéphane Weiss. « C-Set : a Com-

mutative Replicated Data Type for Semantic Stores ». In: RED: Fourth International

Workshop on REsource Discovery at 8th Extended Semantic Web Conference, ESWC

2011. Heraklion, Grèce, May 2011.

[Bla+10a] Alexandre Blansche, Julien Cojan, Valmi Dufour-Lussier, Jean Lieber, Pascal Molli,

Emmanuel Nauer, Hala Skaf-Molli, and Yannick Toussaint. « TAAABLE 3: Adapta-

tion of ingredient quantities and of textual preparations ». In: 18h International Con-

ference on Case-Based Reasoning - ICCBR 2010, Computer Cooking Contest Work-

shop Proceedings. Alessandria, Italie, 2010. url: http://hal.inria.fr/inria-

00526663.

[Bla+10b] Alexandre Blansche, Hala Skaf-Molli, Pascal Molli, and Amedeo Napoli. « Human-

machine Collaboration for Enriching Semantic Wikis using Formal Concept Analysis ».

In: 5th Workshop on Semantic Wikis Linking Data and People - SemWiki2010. 2010.

[Bad+09] Fadi Badra, Julien Cojan, Amélie Cordier, Jean Lieber, Thomas Meilender, Alain Mille,

Pascal Molli, Emmanuel Nauer, Amedeo Napoli, Hala Skaf-Molli, and Yannick Tous-

saint. « Knowledge acquisition and discovery for the textual case-based cooking system

http://hal.inria.fr/hal-00686484
http://hal.inria.fr/hal-00765596
http://hal.inria.fr/inria-00526663
http://hal.inria.fr/inria-00526663

106 CHAPTER 8. BIBLIOGRAPHY

WIKITAAABLE ». In: 8th International Conference on Case-Based Reasoning - IC-

CBR 2009, Workshop Proceedings. Seattle, USA, July 2009, pp. 249–258.

[Cor+09a] Amélie Cordier, Jean Lieber, Pascal Molli, Emmanuel Nauer, Hala Skaf-Molli, and

Yannick Toussaint. « WIKITAAABLE: A semantic wiki as a blackboard for a textual

case-based reasoning system ». In: SemWiki 2009 - 4rd Semantic Wiki Workshop at the

6th European Semantic Web Conference - ESWC 2009. Heraklion, Grèce, May 2009.

[Rah+09b] Charbel Rahhal, Stéphane Weiss, Hala Skaf-Molli, Pascal Urso, and Pascal Molli.

« Undo in Peer-to-peer Semantic Wikis ». In: SemWiki’ 2009 - 4rd Semantic Wiki

Workshop at the 6th European Semantic Web Conference - ESWC 2009. Heraklion,

Grèce, June 2009.

[Tor+09a] Diego Torres, Alicia Diaz, Hala Skaf-Molli, and Pascal Molli. « Personal Navigation in

Semantic Wikis ». In: International Workshop on Adaptation and Personalization for

Web 2.0 - AP-WEB 2.0 2009. Vol. 485. CEUR Workshop Proceedings. Trento, Italie:

CEUR-WS.org, June 2009, pp. 148–151.

[RSM08a] Charbel Rahhal, Hala Skaf-Molli, and Pascal Molli. « SWOOKI: A Peer-to-peer Se-

mantic Wiki ». In: 3rd Semantic Wiki Workshop (SemWiki’2008) at the 5th European

Semantic Web Conference (ESWC 2008). Ed. by Christoph Lange, Sebastian Schaffert,

Hala Skaf-Molli, and Max Völkel. Vol. 360. CEUR Workshop Proceedings. Tenerife,

Espagne: CEUR-WS.org, June 2008, pp. 124–126.

[RSM08b] Charbel Rahhal, Hala Skaf-Molli, and Pascal Molli. « SWOOKI: A Peer-to-peer Se-

mantic Wiki ». In: The 3rd Semantic Wikis workshop, co-located with the 5th Annual

European Semantic Web Conference (ESWC), Tenerife, Spain. 2008.

[Ign+07] Lavinia Ignat Claudia, Gérald Oster, Pascal Molli, and Hala Skaf-Molli. « A Collabora-

tive Writing Mode for Avoiding Blind Modifications ». In: 9th International Workshop

on Collaborative Editing Systems - IWCES 2007. Sanibel Island, Florida, USA, 2007.

[DS06] Nishadi De-Silva and Hala Skaf-Molli. « Narratives to preserve coherence in collabora-

tive writing ». In: The Eighth International Workshop on Collaborative Editing Systems

- ACM CSCW 2006. Banff, Canada, Nov. 2006.

NATIONAL PEER-REVIEWED WORKSHOPS 107

[SMO03] Hala Skaf-Molli, Pascal Molli, and Gérald Oster. « Semantic Consistency for Collab-

orative Systems ». In: Fifth International Workshop on Collaborative Editing - EC-

SCW’2003. Helsinki, Finland: none, 2003, 8 p.

[MSB01] Pascal Molli, Hala Skaf-Molli, and Christophe Boutier. « State Treemap: an Aware-

ness Widget for Multi-Synchronous Groupware ». In: 7th International Workshop on

Groupware - CRIWG’2001. Darmstadt, Germany: IEEE, Sept. 2001, pp. 106–114. doi:

10.1109/CRIWG.2001.951823.

[BSM99] Abdelmajid Bouazza, Hala Skaf-Molli, and Pascal Molli. « Coordinating Virtual Teams

by Measuring Group Divergence ». In: Workshop on Groupware related Task Design at

GROUP’99 Conference. Phoenix, Arizona, USA: none, 1999, 4 p. url: http://hal.

inria.fr/inria-00098869.

[SCG98] Hala Skaf, François Charoy, and Claude Godart. « Flexible Integrity Control of Co-

operative Applications ». In: The Ninth International Workshop on Database & Expert

Systems Applications. 9th International Workshop on Database and Expert Systems

Applications (DEXA’98). Vienne, Autriche: IEEE, Aug. 1998, pp. 901–906.

National peer-reviewed workshops
[Cor+09b] Amélie Cordier, Jean Lieber, Pascal Molli, Emmanuel Nauer, Hala Skaf-Molli, and Yan-

nick Toussaint. « WikiTaaable, un wiki sémantique utilisé comme un tableau noir dans

un système de raisonnement à partir de cas textuel ». In: 17ème atelier de Raison-

nement à Partir de Cas - RàPC 2009. Ed. by Béatrice Fuchs and Amedeo Napoli.

Paris, France, June 2009.

[SRM08] Hala Skaf-Molli, Charbel Rahhal, and Pascal Molli. « Wiki sémantique sur un réseau

pair-à-pair ». In: Atelier IC2.0 en association avec le 19èmes journées Francophone

d’Ingénierie des Connaissances - IC 2008. Nancy, France, June 2008, 4p.

Technical reports and others
[Mon+14b] Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. Fedra: Query

Processing for SPARQL Federations with Divergence. Tech. rep. May 2014. url: http:

//hal.univ-nantes.fr/hal-01022740.

http://dx.doi.org/10.1109/CRIWG.2001.951823
http://hal.inria.fr/inria-00098869
http://hal.inria.fr/inria-00098869
http://hal.univ-nantes.fr/hal-01022740
http://hal.univ-nantes.fr/hal-01022740

108 CHAPTER 8. BIBLIOGRAPHY

[ASM13] Khaled Aslan-Almoubayed, Hala Skaf-Molli, and Pascal Molli. GroupDiv: Formalizing

and Computing Group Divergence Awareness in Multi-Synchronous Distributed Collab-

orative Systems. Tech. rep. July 2013. url: http://hal.univ-nantes.fr/hal-

00842714.

[Mon+13a] Gabriela Montoya, Luis Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Maria-Esther

Vidal. SemLAV: Local-as-View Mediation for SPARQL queries. Tech. rep. July 2013.

url: http://hal.univ-nantes.fr/hal-00841985.

[SM12] Hala Skaf-Molli and Pascal Molli. Distributed Semantic Wiki: Kolflow Project -Task

5- State of the art (D5.1). Tech. rep. June 2012. url: http://hal.archives-

ouvertes.fr/hal-00707185.

[RSM09a] Charbel Rahhal, Hala Skaf-Molli, and Pascal Molli. Multi-synchronous Collaborative

Semantic Wikis. Tech. rep. RR-6947. INRIA, 2009, p. 22.

8.2 Publications by other authors
[Leh+15] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo

N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and

Christian Bizer. « DBpedia - A Large-scale, Multilingual Knowledge Base Extracted

from Wikipedia ». In: Semantic Web Journal 6.2 (2015), pp. 167–195.

[Alu+14] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. « Diversified Stress

Testing of RDF Data Management Systems ». In: ISWC 2014, Part I. 2014, pp. 197–

212.

[Ver+14a] Ruben Verborgh, Olaf Hartig, Ben De Meester, Gerald Haesendonck, Laurens De Vocht,

Miel Vander Sande, Richard Cyganiak, Pieter Colpaert, Erik Mannens, and Rik Van

de Walle. « Querying Datasets on the Web with High Availability ». In: ISWC 2014,

Part I. 2014, pp. 180–196.

[Ver+14b] Ruben Verborgh, Miel Vander Sande, Pieter Colpaert, Sam Coppens, Erik Mannens,

and Rik Van de Walle. « Web-Scale Querying through Linked Data Fragments ». In:

Linked Data on the Web Workshop (LDOW). 2014.

http://hal.univ-nantes.fr/hal-00842714
http://hal.univ-nantes.fr/hal-00842714
http://hal.univ-nantes.fr/hal-00841985
http://hal.archives-ouvertes.fr/hal-00707185
http://hal.archives-ouvertes.fr/hal-00707185

8.2. PUBLICATIONS BY OTHER AUTHORS 109

[WCG14] Marcin Wylot, Philippe Cudré-Mauroux, and Paul Groth. « TripleProv: Efficient Pro-

cessing of Lineage Queries in a Native RDF Store ». In: WWW. 2014.

[Aco+13] Maribel Acosta, Amrapali Zaveri, Elena Simperl, Dimitris Kontokostas, Sören Auer, and

Jens Lehmann. « Crowdsourcing Linked Data Quality Assessment ». In: The Seman-

tic Web - ISWC 2013 - 12th International Semantic Web Conference, Sydney, NSW,

Australia, October 21-25, 2013, Proceedings, Part II. 2013, pp. 260–276.

[Alu+13] Günes Aluç, M Tamer Ozsu, Khuzaima Daudjee, and Olaf Hartig. « chameleon-db: a

Workload-Aware Robust RDF Data Management System ». In: University of Waterloo,

Tech. Rep. CS-2013-10 (2013).

[Ara+13] Carlos Buil Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves Vandenbussche.

« SPARQL Web-Querying Infrastructure: Ready for Action? » In: International Se-

mantic Web Conference ISWC2013. 2013, pp. 277–293. doi: 10.1007/978-3-642-

41338-4_18.

[BO13] Tim Berners-Lee and Kieron O’Hara. « The read-write Linked Data Web ». In: Philo-

sophical Transactions of the Royal Society (2013).

[Kar+13] Grigoris Karvounarakis, Todd J. Green, Zachary G. Ives, and Val Tannen. « Collabo-

rative Data Sharing via Update Exchange and Provenance ». In: ACM Transactions on

Database Systems 38.3 (2013).

[Sal+13] Muhammad Saleem, Axel-Cyrille Ngonga Ngomo, Josiane Xavier Parreira, Helena F.

Deus, and Manfred Hauswirth. « DAW: Duplicate-AWare Federated Query Processing

over the Web of Data ». In: ISWC 2013, Part I. 2013, pp. 574–590.

[Lu+12] W. Lu, Y. Shen, S. Chen, and B.C. Ooi. « Efficient processing of k nearest neighbor joins

using MapReduce ». In: Proceedings of the VLDB Endowment 5.10 (2012), pp. 1016–

1027.

[Aco+11] Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and Edna Ruckhaus.

« ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints ». In:

International Semantic Web Conference (1). 2011, pp. 18–34.

[GIT11] Todd J. Green, Zachary G. Ives, and Val Tannen. « Reconcilable Differences ». In:

Theory of Computer Systems 49.2 (2011).

http://dx.doi.org/10.1007/978-3-642-41338-4_18
http://dx.doi.org/10.1007/978-3-642-41338-4_18

110 CHAPTER 8. BIBLIOGRAPHY

[KA11] George Konstantinidis and José Luis Ambite. « Scalable query rewriting: a graph-based

approach ». In: SIGMOD Conference. Ed. by Timos K. Sellis, Renée J. Miller, Anasta-

sios Kementsietsidis, and Yannis Velegrakis. ACM, 2011, pp. 97–108. isbn: 978-1-4503-

0661-4.

[Le+11] Wangchao Le, Songyun Duan, Anastasios Kementsietsidis, Feifei Li, and Min Wang.

« Rewriting queries on SPARQL views ». In: WWW. Ed. by Sadagopan Srinivasan,

Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi Kumar.

ACM, 2011, pp. 655–664. isbn: 978-1-4503-0632-4.

[Sch+11] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.

« FedX: Optimization Techniques for Federated Query Processing on Linked Data ».

In: International Semantic Web Conference (1). 2011, pp. 601–616.

[Sha+11] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. « Conflict-Free

Replicated Data Types ». In: International Symposium on Stabilization, Safety, and

Security of Distributed Systems (SSS). 2011, pp. 386–400.

[Ber+10] Marin Bertier, Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, and Vincent

Leroy. « The Gossple Anonymous Social Network ». In: 11th International Middleware

Conference ’Middleware 2010. Vol. 6452. LNCS. Springer, 2010, pp. 191–211.

[IVB10] Daniel Izquierdo, Maria-Esther Vidal, and Blai Bonet. « An Expressive and Efficient

Solution to the Service Selection Problem ». In: International Semantic Web Conference

(1). Ed. by Peter F. Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang,

Jeff Z. Pan, Ian Horrocks, and Birte Glimm. Vol. 6496. Lecture Notes in Computer

Science. Springer, 2010, pp. 386–401. isbn: 978-3-642-17745-3.

[BHB09] Christian Bizer, Tom Heath, and Tim Berners-Lee. « Linked Data - The Story So Far ».

In: International Journal of Semantic Web Information Systems 5.3 (2009), pp. 1–22.

[Biz+09] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard

Cyganiak, and Sebastian Hellmann. « DBpedia - A crystallization point for the Web

of Data ». In: Web Semantics: Science, Services and Agents on the World Wide Web

7.3 (2009), pp. 154–165. issn: 1570-8268. doi: 10.1016/j.websem.2009.07.

http://dx.doi.org/10.1016/j.websem.2009.07.002

8.2. PUBLICATIONS BY OTHER AUTHORS 111

002. url: http://www.sciencedirect.com/science/article/pii/

S1570826809000225.

[BS09] Christian Bizer and Andreas Schultz. « The Berlin SPARQL Benchmark ». In: Int. J.

Semantic Web Inf. Syst. 5.2 (2009), pp. 1–24.

[Bre+09] John G. Breslin, Uldis Bojārs, Alexandre Passant, Sergio Fernandez, and Stefan Decker.

« SIOC: Content Exchange and Semantic Interoperability Between Social Networks ».

In: W3C Workshop on the Future of Social Networking. Jan. 2009.

[BPD09] John G. Breslin, Alexandre Passant, and Stefan Decker. The Social Semantic Web.

Springer Publishing Company, 2009.

[PAG09] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. « Semantics and complexity of

SPARQL ». In: ACM Transaction On Database Systems (TODS) 34.3 (2009), 16:1–

16:45. issn: 0362-5915. doi: 10.1145/1567274.1567278. url: http://doi.

acm.org/10.1145/1567274.1567278.

[WUM09] Stéphane Weiss, Pascal Urso, and Pascal Molli. « Logoot : a Scalable Optimistic Repli-

cation Algorithm for Collaborative Editing on P2P Networks ». In: 32nd International

Conference on Distributed Computing Systems. IEEE Computer Society, 2009, pp. 404–

412.

[Buf+08] Michel Buffa, Fabien L. Gandon, Guillaume Ereteo, Peter Sander, and Catherine Faron.

« SweetWiki: A semantic wiki ». In: Journal of Web Semantics 6.1 (2008), pp. 84–97.

[P+08] Eric Prud’Hommeaux, Andy Seaborne, et al. « SPARQL query language for RDF ».

In: W3C recommendation 15 (2008).

[GKT07] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. « Provenance Semirings ». In:

Principles of Database Systems (PODS). 2007.

[He+07] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. « Accessing the

Deep Web ». In: ACM Communication 50.5 (2007), pp. 94–101.

[Krö+07] Markus Krötzsch, Denny Vrandecic, Max Völkel, Heiko Haller, and Rudi Studer. « Se-

mantic Wikipedia ». In: Journal of Web Semantic 5.4 (2007), pp. 251–261.

[WUM07] Stéphane Weiss, Pascal Urso, and Pascal Molli. « Wooki: a P2P Wiki-based Collabo-

rative Writing Tool ». In: Web Information Systems Engineering. Nancy, France, 2007.

http://dx.doi.org/10.1016/j.websem.2009.07.002
http://dx.doi.org/10.1016/j.websem.2009.07.002
http://www.sciencedirect.com/science/article/pii/S1570826809000225
http://www.sciencedirect.com/science/article/pii/S1570826809000225
http://dx.doi.org/10.1145/1567274.1567278
http://doi.acm.org/10.1145/1567274.1567278
http://doi.acm.org/10.1145/1567274.1567278

112 CHAPTER 8. BIBLIOGRAPHY

[ABV06] Yolifé Arvelo, Blai Bonet, and Maria-Esther Vidal. « Compilation of Query-Rewriting

Problems into Tractable Fragments of Propositional Logic ». In: AAAI. AAAI Press,

2006, pp. 225–230.

[AT05] G. Adomavicius and A. Tuzhilin. « Towards the next generation of recommender sys-

tems: A survey of the state-of-the-art and possible extensions ». In: IEEE Transactions

on Knowledge and Data Engineering 17.6 (2005), pp. 734–749.

[LMS05] P. Leach, M. Mealling, and R. Salz. « A Universally Unique IDentifier (UUID) URN

Namespace ». In: Internet RFCs RFC 4122 (2005). url: http://www.rfc-editor.

org/rfc/rfc4122.txt.

[SS05a] Yasushi Saito and Marc Shapiro. « Optimistic Replication ». In: ACM Computing Sur-

veys 37.1 (2005), pp. 42–81. issn: 0360-0300.

[SS05b] Yasushi Saito and Marc Shapiro. « Optimistic replication ». In: ACM Computer Survey

37.1 (2005), pp. 42–81.

[MM04] Frank Manola and Eric Miller. « Resource description framework (RDF) primer ». In:

W3C Recommendation 10 (2004).

[P+04] Peter F Patel-Schneider, Patrick Hayes, Ian Horrocks, et al. « OWL web ontology lan-

guage semantics and abstract syntax ». In: W3C recommendation 10 (2004).

[B+01] Tim Berners-Lee, James Hendler, Ora Lassila, et al. « The semantic web ». In: Scientific

american 284.5 (2001), pp. 28–37.

[Hal01] Alon Y. Halevy. « Answering queries using views: A survey ». In: VLDB J. 10.4 (2001),

pp. 270–294.

[PH01] Rachel Pottinger and Alon Y. Halevy. « MiniCon: A scalable algorithm for answering

queries using views ». In: VLDB J. 10.2-3 (2001), pp. 182–198.

[OJ00] Malcolm Otter and Hilary Johnson. « Lost in hyperspace: metrics and mental models ».

In: Interacting with computers 13.1 (2000), pp. 1–40.

[LC98] Kevin Larson and Mary Czerwinski. « Web page design: implications of memory, struc-

ture and scent for information retrieval ». In: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems. CHI ’98. Los Angeles, California, USA:

http://www.rfc-editor.org/rfc/rfc4122.txt
http://www.rfc-editor.org/rfc/rfc4122.txt

8.2. PUBLICATIONS BY OTHER AUTHORS 113

ACM Press/Addison-Wesley Publishing Co., 1998, pp. 25–32. isbn: 0-201-30987-4. doi:

10.1145/274644.274649. url: http://dx.doi.org/10.1145/274644.

274649.

[Sun+98] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen. « Achiev-

ing Convergence, Causality Preservation, and Intention Preservation in Real-Time Co-

operative Editing Systems ». In: ACM Transactions on Computer-Human Interaction

5.1 (1998), pp. 63–108. issn: 1073-0516. doi: http://doi.acm.org/10.1145/

274444.274447.

[GJM96] Ashish Gupta, H.V. Jagadish, and Inderpal Singh Mumick. « Data Integration using

Self-Maintainable Views ». In: International Conference on Extending Database Systems

(EDBT). 1996.

[Dou95] Paul Dourish. « The Parting of the Ways: Divergence, Data Management and Collab-

orative Work ». In: Proceedings of the European Conference on Computer-Supported

Cooperative Work - ECSCW’95. Stockholm, Sweden, 1995, pp. 215–230.

[Wie92] Gio Wiederhold. « Mediators in the Architecture of Future Information Systems ». In:

IEEE Computer 25.3 (1992), pp. 38–49.

[Wil92] Frank Wilcoxon. « Individual comparisons by ranking methods ». In: Breakthroughs in

Statistics. Springer, 1992, pp. 196–202.

[Mat89] Friedemann Mattern. « Virtual Time and Global States of Distributed Systems ». In:

Parallel and Distributed Algorithms 1.23 (1989). Ed. by Michel Cosnard, Patrice Quin-

ton, Yves Robert, and MichelEditors Raynal, pp. 215–226.

[EL88] Douglas Engelbart and Harvey Lehtman. « Working together ». In: Byte 13.13 (1988).

[LN85] Thomas K Landauer and DW Nachbar. « Selection from alphabetic and numeric menu

trees using a touch screen: breadth, depth, and width ». In: ACM SIGCHI Bulletin 16.4

(1985), pp. 73–78.

[Joh73] David S. Johnson. « Approximation Algorithms for Combinatorial Problems ». In: ACM

Symposium on Theory of Computing. Ed. by Alfred V. Aho et al. ACM, 1973, pp. 38–

49.

http://dx.doi.org/10.1145/274644.274649
http://dx.doi.org/10.1145/274644.274649
http://dx.doi.org/10.1145/274644.274649
http://dx.doi.org/http://doi.acm.org/10.1145/274444.274447
http://dx.doi.org/http://doi.acm.org/10.1145/274444.274447

114 CHAPTER 8. BIBLIOGRAPHY

Hala SKAF-MOLLI

Gestion décentralisée de données du web sémantique

Decentralized Data Management for the Semantic Web

Résumé

Le web sémantique est une extension du web où

l’information a une signification précise. Des milliers

de jeux de données en RDF sont accessibles sur le

web. Cependant, des problèmes important liés à la

qualité des données, l’accès au web profond et la

disponibilité des données restent ouverts. Pour la

qualité de données, nous proposons de transformer le

web de données vers un web de données en

lecture/écriture. Un consommateur de données est à

même de corriger une erreur. Nous définissions des

algorithmes de synchronisation adaptés au modèle

RDF. Pour l’accès au web profond, nous proposons

une approche médiateur permettant de combiner

données sémantique et données du web profond.

Pour la disponibilité des données, nous proposons un

modèle de réplication pour le web de données. Le

problème est d’optimiser des requêtes fédérées en

présence de réplicas.

Abstract

The semantic web is an extension of the web where

information has a precise meaning. Thousands of

linked datasets are available on the web. Important

problems concerning quality, deep web access and

availability still unsolved. For data quality, we propose

to transform the web of data into a read/write web of

data. A data consumer will able to correct an error.

Allowing consumers to write the semantic web poses

the problem of data consistency. We define

synchronization algorithms for RDF data model. To

access to the deep web, we propose a mediator

approach allowing to combine semantic data and deep

web data. The problem is to improve the performance

of queries in the presence of a large number of data

sources. Finally, to ensure the availability, we propose

a replication model for the web of data. The problem is

to optimize federated SPARQL queries in the presence

of replicas selected at queries execution time.

Mots clés

Données ouvertes liées, RDF, Réplication, Requêtes

SPARQL fédérées.

Key Words

Linked Open Data, RDF, Replication, Federated

SPARQL queries.

L’UNIVERSITÉ NANTES ANGERS LE MANS

	Introduction
	Distributed Semantic Wikis
	Swooki: Highly available semantic wikis
	System Model
	Data Model
	Consistency Model
	Algorithms

	DSMW: Decentralized social semantic wikis
	System Model
	Data Model
	Consistency Model
	Algorithms

	Conclusion

	Co-Evolution between Social and Semantic Web
	Problem Statement
	A collaborative Recommender System For Wikipedia Conventions
	Evaluation
	Conclusion

	SPARQL Queries over Linked data and Deep Web
	semLAV Approach
	Algorithms
	Evaluation
	Conclusion

	Read/Write Linked Open Data
	SU-Set: a Conflict-Free Replicated Data Type for RDF Graph
	Algorithms
	Evaluating and Optimizing SU-Set

	Col-Graph: A Synchronization Algorithm for RDF Fragments
	Fragment Consistency
	Algorithms

	Conclusion

	Federated SPARQL Queries Processing with Replicated Fragments
	Problem Statement
	Algorithms
	Experimental Study
	Conclusion

	Research Directions
	Bibliography
	Publications by Hala Skaf-Molli (Categorized)
	Publications by other authors

