L ' Université

Nantes Angers

L E Mans

Keywords: Données ouvertes liées, RDF, Réplication, Requêtes SPARQL fédérées Linked Open Data, RDF, Replication, Federated SPARQL queries

Introduction

The semantic web is an extension of the web where information has precise meaning, and machines are able to understand the information and perform sophisticated tasks for the users [B+01].

The World Wide Web Consortium (W3C) has defined foundation standards for the Semantic Web:

(i) the graph based data model defined by the Resource Description Framework (RDF) [START_REF] Manola | Resource description framework (RDF) primer[END_REF] for representing information. (ii) the SPARQL web based protocol and query language for querying RDF data [P+08], and (iii) the Ontology Languages RDFS, and OWL [P+04] for defining shared knowledge.

The semantic web moves the web from purely syntactic pages to semantic ones that describes precisely entities mentioned in web pages using W3C standards as presented in Figure 1.1.

Many semantic data have been published in the last years using W3C standards, e.g, more than 149,945,033,382 RDF triples are available from 2832 datasets 1 . Different kind of data have been published by different data providers: Scientific Publications, e.g. the DBLP Bibliography Database 2 , media, e.g., the Jamendo music repository 3 , government agencies, e.g., the UK transport dataset 4 , the Pays de la loire dataset 5 , Life Science, e.g., the UniProt dataset 6 , Social Networking, e.g., FoaF profiles 7 and the general knowledge dataset, e.g. DBpedia 8 .

The published datasets follow the Linked Open Data (LOD) principles [START_REF] Bizer | Linked Open Data[END_REF][START_REF] Bizer | Linked Data -The Story So Far[END_REF]. RDF and ontology are used for representing and linking data from different sources. Linked data forms a decentralized global data graph that could be queried using SPARQL query language [START_REF] Pérez | Semantics and complexity of SPARQL[END_REF].

The social web [START_REF] Breslin | The Social Semantic Web[END_REF] has largely help to bootstrap the semantic web, for instance, DBpedia [START_REF] Bizer | DBpedia -A crystallization point for the Web of Data[END_REF] knowledge base is built from data extracted from Wikipedia infoboxes and categories.

However, the social web does not really benefit from the semantic web. The co-evolution between social and semantic web is an open issue. Among problems to solve are: Issue1: Which social tools can be used for collaborative production of semantic data? Issue2 : How the social web can take benefits of the semantic web?.

Despite a great effort has been done by the semantic web community to integrate datasets into the LOD cloud and make these data accessible through SPARQL servers. There are still a large number of data sources and Web APIs that are not part of the LOD cloud. The Deep Web which has around 500 times the size of the Surface Web [START_REF] He | Accessing the Deep Web[END_REF] has not been integrated as part of LOD cloud.

Performing SPARQL queries without considering the Deep Web can potentially deliver incomplete 4. http://openuplabs.tso.co.uk/sparql/gov-transport, September 2016. 5. http://lodpaddle.univ-nantes.fr/lodpaddle, September 2016. 6. http://sparql.uniprot.org/, September 2016. 7. http://www.w3.org/People/Berners-Lee/card.rdf, September 2016. 8. http://dbpedia.org/sparql, September 2016.

results. Issue3: How to answer SPARQL query over Linked Data and Deep Web?.

LOD data has intrinsic issues related to data quality [START_REF] Acosta | Crowdsourcing Linked Data Quality Assessment[END_REF]. If a data consumer finds a mistake or inconsistency, how can she fix it? This raises the issue of the quality of Linked Data, Issue4: How to improve LOD quality?.

Federated SPARQL query engines [START_REF] Schwarte | FedX: Optimization Techniques for Federated Query Processing on Linked Data[END_REF][START_REF] Acosta | ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints[END_REF] allow data consumers to execute SPARQL queries against a federation of SPARQL servers. In presence of replication, the state-of-art federated query engines [START_REF] Schwarte | FedX: Optimization Techniques for Federated Query Processing on Linked Data[END_REF][START_REF] Acosta | ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints[END_REF] may retrieve data from every relevant server, and produce a large number of intermediate results. Therefore, federated query engines may exhibit poor performance while availability of the selected SPARQL servers is negatively impacted. Issue5: How to ensure performance of federated SPARQL query engines with replicated data?.

In this HDR thesis, I will present my contributions to the above highlighted issues. Chapters 2-6 details these contributions. Each chapter describes motivations, scientifiques contributions, and related thesis, publications and projects. The last chapter presents my ongoing research project. The thesis is organized as follows.

Chapter 2 (Distributed Semantic Wikis). This chapter presents my contributions concerning Issue1. I proposed distributed semantic wiki systems for collaborative editing of RDF data. These systems rely on optimistic replication approach. Semantic wikis define a new datatype: wiki text that embeds RDF data. The research questions concern consistency criteria for this new datatype.

The Causality, Consistency and Intention (CCI) consistency criterion used in collaborative editing systems is not tailored for RDF data model. This chapter details replication models, consistency criteria and algorithms for my two contributions: Swooki and DSMW. Swooki is an unstructured peer-to-peer semantic wiki and DSMW is a decentralized social semantic wiki.

Chapter 3 (Co-Evolution between Social and Semantic Web

). This chapter details my contributions related to Issue2. Despite DBpedia data are retrieved from Wikipedia, the semantic capacities of DBpedia enable SPARQL queries to retrieve information that are not present in Wikipedia.

A SPARQL query that retrieves people born in a place could include more people than those obtained by navigating from the place article in Wikipedia. The integration of missing navigational paths in Wikipedia is very challenging, it requires to respect the complex Wikipedia conventions. I formulate this problem as a recommendation problem, the recommander suggests possible links between wikipedia articles based on similar articles linked by the Wikipedia community. I proposed a collaborative recommender system for enriching the social web with the semantic web. BlueFinder is a collaborative recommender system that enhances the content of Wikipedia with knowledge inferred in DBpedia and contributes to complete the virtuous cycle of information flow between Wikipedia and DBpedia. This chapter presents the information gap between DBpedia and Wikipedia, details the BlueFinder algorithm and an empirical evaluation.

Chapter 4 (Querying Deep web and Linked Data). This chapter details my contributions related to Issue3. This chapter details semLAV, the first scalable LAV-based approach for SPARQL query processing. Contrary to traditional LAV approaches, semLAV does not require query rewritings. In semLAV relevant views are ranked according to their possible contribution to the answers, and they are loaded into a graph instance, built during query execution, to answer SPARQL queries.

The challenge is to define the order in which query relevant views should be loaded to outperform the traditional LAV query rewriting techniques in terms of number of answers produced by a time unit. This chapter presents semLAV approach, algorithms and experimental evaluation.

Chapter 5 (From Read-Only to Read/Write LOD). For handling Issue4, I proposed to transform the Read-Only LOD into Read/Write LOD. A data consumer can improve LOD quality by editing the data and push the enhanced data to the data provider. To support a Read/Write LOD, we follow an optimistic replication approach. The scientific problem is to propose new consistency criteria and synchronization algorithms for RDF data and SPARQL updates. This is challenging because of the autonomocity of data providers and data consumers. For instance, a data provider could not accept an update of untrusted data consumer. This chapter details SU-Set and Col-Graph two replication models for Read/Write LOD, their correction criterion and the synchronization algorithm. SU-Set is a Conflict-Free Replicated Type (CRDT) for RDF Graph, it designed for large scale replication of RDF graphs with strong eventual consistency, and Col-Graph is designed for partial (fragment) data replication, it uses annotated RDF graphes and Updates to achieve fragments consistency.

Chapter 6 (Replication-aware Federated Query Engine). This chapter adresses Issue5.

The research questions are: Can the knowledge about replicated data fragments be used to reduce the number of selected sources by federated query engines while producing the same answers? Does considering groups of triple patterns to be executed together, instead of individual triple patterns, produce source selections that lead to transfer less data from endpoints to the federated query engine?

CHAPTER 1. INTRODUCTION

This chapter presents Fedra, the first source selection strategy for a replicated-aware federated query engine. Fedra uses fragment containment to prune sources that provide redundant data, and an heuristic for set covering to reduce the number of selected data sources.

Chapter 7 (Conclusion and perspectives). Finally, I present my forthcoming work, Linked

Data in the Fog. The objective is to build a decentralized federated SPARQL query engine for the fog. This engine will run on a network of end-user browsers sharing CPU, caches resources and common interests. The new engine will break the state-of-art tradeoffs between availability and performances thanks to the federation of data consumers.

Distributed Semantic Wikis

Motivations : Semantic wikis are a new generation of social editing tools. They allow users to add semantic annotations in the wiki pages. Users collaborate not only for writing the wiki pages but also for writing semantic annotations. Usually, this is done by annotating the links between wikis pages. Links in semantic wikis are typed. For instance, a link between the wiki pages "France" and "Paris" may be annotated by "capital". Semantic wikis provide a better structuring of wikis by providing a means to navigate and search based on annotations. These annotations express relationships between wikis pages, they are usually written in a formal syntax so they are processed automatically by machines and they are exploited by semantic queries. Many semantic wikis are proposed [START_REF] Krötzsch | Semantic Wikipedia[END_REF][START_REF] Buffa | SweetWiki: A semantic wiki[END_REF]. Despite their success, they suffer from many issues, such as: (i) Scalability and cost: as the number of users and contributions increase, so do the storage and bandwidth requirements. (ii) Centralized control/single point of failure: a centralized wiki is controlled by a single organization. If the organization disappears all the knowledge contributed to the wiki may disappear as well; (iii) No offline access: if a user's internet connection or the central wiki system are temporarily unavailable, the user cannot work; (iv) Handling transactional changes: a user cannot modify multiple pages simultaneously before making modifications visible to other users. All incremental modifications are immediately visible to other users. In some cases, CHAPTER 2. DISTRIBUTED SEMANTIC WIKIS users may observe inconsistent states of the wiki, as in a database system without transactional support [Rah+09a]; (v) Handling disagreements: even when changes to a page are not made with malicious intent, they can still lead to "edit wars" when different groups of users disagree on the content that is being contributed and they attempt to cancel or override the other groups' input.

Contributions : I defined two distributed semantic wikis models: Swooki and DSMW. Swooki is the first a peer-to-peer semantic wiki and DSMW is the first socially distributed semantic wikis.

Swooki mainly tackles issues traditionally related to distributed systems and DSMW is tailored for social topologies.

(1) Swooki a Highly available semantic wiki. In Swooki [Rah+09b; RSM09b; SRM08; RSM08a; RSM09b] the infrastructure is decentralized between the participants, but for the users, the system's functionality is identical to that of a traditional wiki. The decentralized infrastructure allows the participants to share the cost of storage, bandwidth, and maintenance and provides availability, scalability, and fault-tolerance for the wiki.

(2) DSMW a Decentralized social semantic wikis. DSMW relies on an explicit social network of participants and aims to support the multi-synchronous collaboration model [START_REF] Dourish | The Parting of the Ways: Divergence, Data Management and Collaborative Work[END_REF] and offline access. In these systems, the collaborative editing process follows cycles of divergence/convergence, where users publish their changes, and acquire those published by others, at the time of their choosing.

In addition, users can be selective in the subset of changes that they integrate. However, these changes are integrated automatically by algorithms that enforce particular consistency models, which limit the freedom of the users to select changes from others.

In the following sections, I will detail Swooki, and DSMW.

Swooki: Highly available semantic wikis

Swooki [SRM09] is the first peer-to-peer semantic wiki. Swooki relies on a self-organized unstructured peer-to-peer network. The collection of wiki pages is fully replicated across all the participants' sites. The total replication scheme requires that all peers have the same storage capability.

The users are connected to one peer and interact with the local page replicas as with traditional wikis. Users are able to work even when their node is disconnected from the rest of the network.

When the network is connected, changes are automatically propagated to the other nodes.

Swooki combines advantages of P2P wikis and semantic wikis. The main problem for building such a system is to maintain consistency of replicated semantic wiki pages.

System Model

An unstructured highly available wiki is conceptually similar to a set of n interconnected and automatically synchronized wikis. Definition 2.1.1. A highly available unstructured wiki is a tuple, Ω G , N where:

-Ω G = {G 1 , G 2 , . . . , G n } is a set of wiki graphs; -N = S, C is a graph representing an unstructured and self-organized overlay network: the nodes S = {S 1 , . . . , S n } are participants, each participant is uniquely identified and the edges C ⊂ S × S represent their physical interconnections. Participant S i hosts G i ; -The wiki graphs G i are eventually consistent: this notion is defined below.

The wiki appears centralized because the participant directly interacts only with the local system, which is the wiki S i , G i . Propagation of updates happens behind the scenes, and to the user is indistinguishable from operations that might happen concurrently on the local wiki if it was an isolated system. Eventually, the set of local page replicas at each node should converge to be identical. As we will see further, ensuring that this happens is difficult. In order to define eventual consistency, we must consider a highly available unstructured wiki to be a system that evolves over time as a result of the user's actions. We note G (t) i the state of a graph G i at time t. Definition 2.1.2 (Eventual Consistency). Let W be a highly available unstructured wiki, W = Ω G , N as defined in 2.1.1. We consider a finite sequence of (arbitrary) user actions, occurring at times t 1 , t 2 , . . . t k .

The wiki graphs {G i } i∈ [1...n] are eventually consistent if at some time later than the last action A t k , all of the graphs G i are identical. Formally,

∃t f > t k , ∀i, j ∈ [1 . . . n] G (t f) i = G (t f) j
A highly available unstructured Wiki follows the optimistic replication model [START_REF] Saito | Optimistic Replication[END_REF], with the hypothesis of eventual delivery of operations; this is generally achieved by using the gossiping algorithm. An anti-entropy algorithm supports intermittent connections. Figure 2.1 shows an example of an unstructured wiki. In this figure, the wiki graph is replicated on each wiki server. Each wiki server hosts a copy of all semantic wiki pages and an RDF store for the semantic data. When a peer updates its local copy of data, it generates a corresponding operation. This operation is processed in four steps:

1. It is executed immediately against the local replica of the peer, 2. it is broadcasted through the P2P network to all other peers, 3. it is received by the other peers, 4. it is integrated to their local replica. If needed, the integration process merges this modification with concurrent ones, generated either locally or received from a remote server.

The system is correct if it ensures the CCI (Causality, Convergence and Intention Preservation) [START_REF] Sun | Achieving Convergence, Causality Preservation, and Intention Preservation in Real-Time Cooperative Editing Systems[END_REF] consistency model.

Data Model

The data model of Swooki is an extension of Wooki [START_REF] Weiss | Wooki: a P2P Wiki-based Collaborative Writing Tool[END_REF] data model to take in consideration semantic data. Every semantic wiki peer is assigned a global unique identifier named N odeID. These identifiers are totally ordered. As in any wiki system, the basic element is a semantic wiki page and every semantic wiki page is assigned a unique identifier P ageID, which is the name of the page. The name is set at the creation of the page. If several servers create concurrently pages with the same name, their content will be directly merged by the synchronization algorithm. Notice that a U RI can be used to unambiguously identify the concept described in the page. The U RI must be global and location independent in order to ensure load balancing. For simplicity, I use a string as page identifier.

Definition 2.1.3. A semantic wiki page P age is an ordered sequence of lines Definition 2.1.4. A semantic wiki line L is a four-tuple < LineID, content, degree, visibility > where -LineID is the line identifier, it is a pair of (N odeID, logicalclock) where N odeID is the identifier of the semantic wiki server and logicalclock is a logical clock of that server.

L B L 1 , L 2 , . . . L n L E
content is a string representing text and the semantic data embedded in the line.

degree is an integer used by the synchronization algorithm, the degree of a line is fixed when the line is generated, it represents a kind of loose hierarchical relation between lines.

visibility is a boolean representing if the line is visible or not. Lines are never really deleted they are just marked as invisible. For instance, suppose there are two lines in a semantic wiki page about "France" , "France" is the identifier of the page.

France i s l o c a t e d i n [l o c a t e d I n : : Europe]

The c a p i t a l o f France i s [h a s C a p i t a l : : P a r i s] Suppose these two lines are generated on the server with N odeID = 1 in the above order and there are no invisible lines, so the semantic wiki page will be internally stored as.

L B ((1,1),France is located in [locatedIn::Europe], 1, true) ((1,2), The capital of France is [hasCapital::Paris], 2, true) L E
Text and semantic data are stored in separate persistent storages. Text can be stored in files and semantic data can be stored in RDF repositories, as described in the next section.

Semantic data storage model RDF is the standard data model for encoding semantic data. In P2P semantic wikis, every peer has a local RDF repository that contains a set of RDF statements extracted from its wikis pages. A statement is defined as a triple (Subject, Predicate, Object) where the subject is the name of the page and the predicates (or properties) and the objects are related to that concept. For instance, the local RDF repository of the above server contains: R = {("France", "locatedIn", "Europe"), ("France", "hasCapital", "Paris") }. As for the page identifier, a global U RI can be assigned to predicates and objects of a concept, for simplicity, we use a string. We define two operations on the RDF repositories:

-insertRDF(R,t): adds a statement t to the local RDF repository R. -deleteRDF(R,t): deletes a statement t from the local RDF repository R. These operations are not manipulated directly by the end user, they are called implicitly by the editing operations as shown later.

Editing operations

A user of a P2P semantic wiki does not edit directly the data model. Instead, she uses traditional wiki editing operations, when she opens a semantic wiki page, she sees a view of the model. In this view, only visible lines are displayed. As in a traditional semantic wiki, she makes modifications i.e. adds new lines or deletes existing ones and she saves the page(s). To detect user operations, a diff algorithm is used to compute the difference between the initial requested page and the saved one.

Consistency Model

This section defines causal relationships and intentions of the editing operations of P2P semantic wiki data model.

Causality preservation

The causality property ensures that operations ordered by a precedence relation will be executed in the same order on every server.

We define causality for editing operations that manipulate text and RDF data model as: When a server receives an operation, the operation is integrated immediately if its pre-conditions are evaluated to true else the operation is added to a waiting queue, it is integrated later when its pre-conditions become true.

Intentions and Intentions preservation

The intention of an operation is the visible effect observed when a change is generated at one peer, the intention preservation means that the intention of the operation will be observable on all peers, in spite of any sequence of concurrent operations. We can have a naive definition of intention for insert and delete:

-The intention of an insert operation op= Insert(P ageID, newline, p , n) when generated at site N odeID, where newline =< nid, c, d, v> is defined as: [START_REF] Weiss | Logoot : a Scalable Optimistic Replication Algorithm for Collaborative Editing on P2P Networks[END_REF] The content is inserted between the previous and the next lines and (2) the semantic data in the line content are added to the RDF repository of the server.

-The intention of a delete operation op= delete(pid, l) when generated at site S is defined as :

(1) the line content of the operation is set to invisible and (2) the semantic data in the line content are deleted from the RDF repository of the server.

Unfortunately, it is not possible to preserve the previous intention definitions. We illustrate a scenario of violation of these intentions in figure 2.2. Assume that three P2P semantic wiki servers, peer 1 , peer 2 and peer 3 share a semantic wiki page about "France". Every server has its copy of shared data and has its own persistence storage repository. The above intentions cannot be preserved because the effect of executing op 3 changes the effect of op 2 which is independent, of op 3 i.e. op 3 deletes the statement inserted by op 2 , but op 3 has not seen op 2 at generation time.

Model for Intention preservation

It is not possible to preserve intentions if the RDF store is defined as a set of statements. However, if we transform the RDF store into multi-set of statements, it becomes possible to define intentions that can be preserved.

Definition 2.1.7. RDF repository is the storage container for RDF statements, each container is a multi-set of RDF statements. Each RDF repository is defined as a pair (T, m) where T is a set of RDF statements and m is the multiplicity function m : T → N where N = 1, 2......

For instance, the multi-set R = { ("France", "LocatedIn", "Europe"),("France", "LocatedIn", "Europe"),("France", "hasCapital", "Paris") } can presented by R = { ("France", "LocatedIn", "Europe"

) 2 , ("France", "hasCapital", "Paris")

∧ ∃ i ≤ i N LineID(P age[i N]) = n (2.2) ∧ P age [i] = newline (2.3) ∧ ∀j < i P age [j] = P age[j]
(2.4)

∧ ∀j ≥ i P age [j] = P age[j -1] (2.5) ∧ R ← R T (2.6)
Where P age and R are the new values of the page and the RDF repository respectively after the application of the insert operation at the server S and is the union operator of multi-sets. If a statement in T already exists in R so its multiplicity is incremented else it is added to R with multiplicity one. Let us consider again the scenario of the figure 2.2. When op 2 is integrated on peer 1 , the multiplicity of the statement ("F rance", "locatedIn", "Europe") is incremented to 2. When op 3 is integrated on peer 1 , the multiplicity of the corresponding statement is decreased and the consistency between text and RDF repository is ensured. We can observe that P eer 1 and P eer 3 now converge and that intentions are preserved.

Algorithms

As any wiki server, a P2P semantic server defines a Save operation which describes what happens when a semantic wiki page is saved. In addition, it defines Receive and Integrate operations. The first describes what happens upon receiving a remote operation and the second integrates the operation locally. In the following, I detail the integration operation.

Algorithm 1 IntegrateDel operation

Require: id: LineID;

1: procedure IntegrateDel(id)

2:

IntegrateDelT(id)

3:

IntegrateDelRDF(id)
4: end procedure

Algorithm 2 IntegrateIns Operation

Require: p: PageID, l,l P , l N : LineID;

1: procedure IntegrateIns(p, l, l P , l N)

2:

IntegratedInsT(p, l, l P , l N)

3:

IntegrateInsRDF(l)
4: end procedure

Algorithm 3 IntegrateDelRDF operation

Require: id: LineID;

Integrate operation

The integration of an operation is processed in two steps as described in Algorithm 1): (1) text integration and (2) RDF statements integration.

For text integration, we use integration algorithm defined in [START_REF] Weiss | Wooki: a P2P Wiki-based Collaborative Writing Tool[END_REF]. To integrate RDF statements a counter is used to implement a multi-set RDF repository. A counter is attached to every RDF triple, the value of the counter corresponds to the number of occurrence of the triple in the repository.

During the delete operation, the counter of the deleted statements is decreased, if the counter is zero the statements are physically deleted from the repository as described in Algorithm 3

During the insert operation, the RDF statements of the inserted line are extracted and added to the local RDF repository. If the statements exist already in the repository, their counter is incremented, otherwise, they are inserted into the RDF repository with a counter value equals to one as described in Algorithm 4.

I have integrated this algorithm in Swooki. Swooki is implemented in Java as servlets in a Tomcat Server and uses Sesame 2.0 as RDF store. Swooki is available at: http://sourceforge. net/projects/wooki/files/. They promote the multi-synchronous collaboration model [START_REF] Dourish | The Parting of the Ways: Divergence, Data Management and Collaborative Work[END_REF], in which multiple streams of activity proceed in parallel. The main structure of a decentralized social wiki is similar to that of a replicated wiki; however, the unstructured overlay network is a social collaboration network: its edges represent relationships between users who have explicitly chosen to collaborate.

The synchronization of the nodes is not fully automated; instead, users can choose pages to replicate and manually publish changes, including sets of changes affecting multiple pages. The changes are propagated along the edges of the social network, and users can select which changes to integrate.

As the published changes are propagated through the network, each wiki graph incorporates a subset of the global sequence of changes, filtered through the participants' trust relationships. The task of integrating selected changes can be automated by algorithms that may enforce different consistency models, as in highly available wikis.

The explicit collaboration network and the manual publishing and integration of changes define the class of decentralized social wikis, an extension to the main wiki concept.

System Model

Definition 2.2.1. A decentralized social wiki is a tuple Ω G , N , where:

- The social connections can be defined as "follow and synchronize" relationships [Rah+09a], in which a user can follow the changes made by specific peers and periodically integrate some or all of these changes. Decentralized social wiki systems may provide a full-blown publish-subscribe protocol (e.g., DSMW, which uses "feeds," shown in figure 2.4), or simply a social acquaintance relationship that underlies the fact that the "follower" regularly "pulls" (in DVCS terminology) and integrates changes from the "followed" user.

Ω G = {G 1 , G 2 , . . . , G n }
In decentralized social wikis, the content of a wiki graph could be different from one wiki to the next; there is no expectation of consistency at the level of the full wiki. However, automatic synchronization algorithms can still be used; I discuss the consistency issues that they raise in section 2.2.3.

Data Model

The data model of multi-synchronous semantic wikis (M2SW) is defined as an extension of existing ontologies of semantic wikis. Defining the data model as an ontology allows to provides reasoning and querying capabilities on the model itself. In this section, I present the M2SW ontology and detail only its main concepts and their properties.

-Wiki site : this concept corresponds to a semantic wiki server. A site has the following properties:

-siteID : this attribute contains the U RL of the site.

-logicalClock : this attribute has a numeric value. Every semantic wiki server maintains a logical clock, this clock used to identify patches and operations in an unique way in the whole network.

-hasP ush : the range of this property is push feed. A wiki site has several push feeds.

-hasP ull : the range of this property is pull feed. A wiki site has several pull feeds.

-Document : a document can be an image, an audio or a video file or any type of file that can be uploaded in a wiki page. -pageID : this attribute contains the U RL of the page.

-hasN ame : this attribute contains the title of the page.

-hasContent the range of this property is a String, it contains text and the semantic data embedded in the semantic wiki page.

-hasP ageHead : this property points to the last patch applied to the page.

-Operation : represents a change in a line of a wiki page. In our model, there are two editing operations : insert and delete. An update is considered as a delete of old value followed by an insert of a new value. An operation has the following properties:

-operationID: this attribute contains the unique identifier of the operation. operationID is calculated by: operationID = concat(Site.siteID,Site.logicalClock ++). The function concate concatenates two strings.

-opT ype this attribute contains the type of the operation, it can be either an insert or a delete.

-positionID denotes the position of the line in the wiki page. This identifier is calculated by the Logoot algorithm 1 .

-lineContent is a string representing text and the semantic data embedded in the line.

-Patch : a patch is a set of operations. A patch is calculated during the save of the modified semantic wiki page using the Logoot algorithm. A patch has the following properties:

-patchID a unique identifier of the patch. Its value is calculated by : patchID = concat(Site.siteID, Site.logicalClock + +)

-onP age the range of this property is the page where the patch was applied.

-hasOperation this property points to the operations that generated during the save of the page.

previous points to the precedent patch.

-ChangeSet : A change set contains a set of patches. This concept is important in order to support transactional changes. It allows to regroup patches on multiple semantic wiki pages.

Therefore, it is possible to push modifications on multiple pages. ChangeSet has the following properties:

-changSetID: a unique identifier of a change set. Its value is calculated as : changeSetID = concat(Site.siteID,Site.logicalClock + +)

-hasP atch property points to the P atches generated since the last push.

-previousChangeSet points to the precedent change set.

-inP ushF eed the range of this property is a P ushF eed. This property indicates the P ushF eed that publishes a ChangeSet.

-inP ullF eed the range of this property is a P ullF eed. This property allows indicates the P ullF eed that pulls a ChangeSet.

-Push Feed : this concept is used to publish changes of a W ikisite. It is a special semantic wiki page. It inherits the properties of the Semantic Wiki Page concept and defines its own properties:

-hasP ushHead : this property points to the last published changeSet.

-hasSemanticQuery : this property contains a semantic query. This query determines the content of the push feed. For instance, the query can be "find all Lessons", this will return all the page in the class (category) Lessons. To answer hasSemanticQuery reasoning and querying capabilities of semantic wikis are used.

-Pull Feed : this concept is used to pull changes from a remote W ikisite. A pull feed is related to one push feed. In the sense that it is impossible to pull unpublished data. A pull feed is also a special semantic wiki page. It inherits the properties of the Semantic Wiki Page concepts and defines it own properties:

-hasP ullHead : this property points to the last change set pulled in the pull feed.

-relatedP ushF eed: this property relates a pull feed to the U RL of its associated push feed.

We can use this ontology to query and reason on the patches, ChangeSet, PushFeed, For instance, we can find published patches on a push feed.

P ublished ≡ ∃(hasP atch -1).∃(inP ushF eed -1).P ushF eed

The unpublished patches is defined by: unP ublished ≡ P atch ¬(∃(hasP atch -1).∃(inP ushF eed -1).P ushF eed)

Consistency Model

The replication of data and the communication between servers is made through channels (feeds).

To make local changes available to the others, she pushes them to channels. The channel usage is restricted to few servers with simple security mechanisms that requires no login and complex access control. The key point is that channels are read-only for consumers and can be hosted on hardware of users. Trusted servers can pull these modifications. During the first pull operation local copies of pulled pages are created, for the following pull operations concurrent modifications are merged with pulled ones.

When a semantic wiki page is updated on a server, it generates a corresponding operation. This operation is processed in four steps as in the case of peer-to-peer semantic wikis.

The system is correct if it ensures the CCI consistency model [START_REF] Sun | Achieving Convergence, Causality Preservation, and Intention Preservation in Real-Time Cooperative Editing Systems[END_REF]. In DSMW, I extend the Logoot [START_REF] Weiss | Logoot : a Scalable Optimistic Replication Algorithm for Collaborative Editing on P2P Networks[END_REF] synchronization algorithm to be used with the M2SW ontology. Logoot ensures convergence and preserves the intentions of operations if the causality of the operations is preserved.

Algorithms

As any semantic wiki server, a DSMW server defines a Save operation which describes what happens when a semantic wiki page is saved. In addition, we have define special operations : Create Push, Push, Create Pull, Pull and Integrate for the multi-synchronous semantic wiki. We will use the Logoot [START_REF] Weiss | Logoot : a Scalable Optimistic Replication Algorithm for Collaborative Editing on P2P Networks[END_REF] algorithm for the generation and the integration of the insert and delete operations.

In the following, I detail these operations for a semantic wiki server called site.

Save Operation During the saving a wiki page, the Logoot algorithm computes the difference between the saved and the previous version of the page and generates a patch.

Algorithm 5 Save Operation

Require: page, page : Wiki Page;

1: procedure On Save(page, page) 2:

let Patch p ← Logoot(page, page);

3:

p.patchID ← concat(site.siteID,site.logicalClock + +);

4:

for each op ∈ p do

5:

op.operationID ← concat(site.siteID,site.logicalClock+ +);

6:

hasOperation(p,op)

7:

Integrate(op,page)

8:

end for

9:

previous(p,page.hasPageHead);

10:

hasPageHead(page,p);

11:

onPage(p,page);

12: end procedure

A patch is the set of delete and insert operations on the page (Op = (opT ype, operationID, positionID, lineContent)). The Logoot algorithm calculates the positionID, lineContent and the opT ype of the operation. These operations are integrated locally and then eventually published on feed patches.

CreatePushFeed Operation

The communication between DSMW servers is made through feeds.

The CreatePushFeed operation allows the creation of a push feed. A push feed is a special semantic wiki page that contains a query that defined the pushed data.

Algorithm 6 Create Push Feed Operation

Require: pfname : FeedName, request : Request 1: procedure on CreatePushFeed(pfname, request)

2:

PushFeed(pfname)

3:

hasSemanticQuery(pfname,request)

4:

P(u)sh(pfname)

5: end procedure

Algorithm 7 Create Pull Feed operation

Require: pullfeedName: FeedName, url: URL;

1: procedure On CreatePull(pullfeedName, url)

2:

PullFeed(pullFeedName)

3:

relatedPushFeed(pullfeedName,url)

4:

Pull(pullfeedName)

5: end procedure

A push feed is used to publish changes of a wiki server. Therefore, authorized sites can access the published data. CreatePushFeed operation calls the Push operation.

Push Operation

The P ush operation creates a change set corresponding to the pages returned by the semantic query and adds it to the push feed. First, it executes the semantic query, the patches of the pages returned by the query are extracted. These patches are added to the change set if they have not been published on this feed push yet.

Algorithm 8 Push Operation

Require: pfname : FeedName 1: procedure On Push(pfname) 2:

ChangeSet(chgSet);

3:

chgSet.changSetID ← concat(site.siteID,site.logicalClock+ +);

4:

inPushFeed(chgSet, pfname);

5:

let pg ← execQuery(pfname.hasSemanticQuery) ;

6:

let qt ← ∅; let pt ← ∅;

7:

for each p ∈ pg do

8:

qt ← qt ∃ (onPage -1).pg;

9:

pt ← pt ∃ onPage.p.∃ (hasPatch -1).∃(inPushFeed -1).pfname;

10:

end for

11:

∀ patch ∈ pt -qt: hasPatch(chgSet, patch);

12:

previousChangeSet(chgSet, pfname.hasPushHead);

13:

hasPushHead(pfname,chgSet);

14: end procedure

CreatePullFeed Operation As the replication of data and the communication between DSMW servers are made through feeds, pull feeds are created to pull changes from push feeds on remote peers to the local peer (see Algorithm 7). A pull feed is related to a push feed. In the sense that it is impossible to pull unpublished data.

Pull Operation

The Algorithm 9 details the pull operation. This operation fetches for published change sets that have not pulled yet. It adds these change sets to the pull feed and integrate them to the concerned pages on the pulled site.

Integration operation

The integration of a change set is processed as follows. First all the patches of the change set are extracted. Every operation in the patch is integrated in the corresponding semantic wiki page thanks to the algorithm Logoot detailed in [START_REF] Weiss | Logoot : a Scalable Optimistic Replication Algorithm for Collaborative Editing on P2P Networks[END_REF] .

Algorithm 9 Pull operation

Require: pullfeedName: FeedName

Conclusion

In this chapter, I presented my contributions on decentralized semantic wikis: Swooki and DSMW. Swooki mainly tackles issues traditionally related to distributed systems and DSMW is tailored for social topologies. In Swooki and DSMW, semantic data is modified as a side effect of text modification. The advantage is that the text is kept synchronized with semantic data embed in the text, but the drawback is the semantic data cannot be modified directly. Consequently, other authoring tools for semantic web such as Protégé or SPARQL update cannot be used safely on the same semantic data authored through a semantic wiki. For future works, I want to develop new synchronization algorithms dedicated for RDF data and Linked Data.

Supervised Master Thesis associated with this chapter

[Tor09] Diego Torres. « Semantic Wikis using Folksonomies ». MA thesis. licenciature (bac+5) Université de la Plata, Argentine, July 2009.

Supervised PhD Thesis associated with this chapter

[Rah10] Charbel Rahhal. « Wikis sémantiques distribués sur réseaux pair-à-pair ». PhD thesis.

Université Henri Poincaré, Nancy1, Nov. 2010.

Publications associated with this chapter

Book chapters

International peer-reviewed journals

National peer-reviewed journals

International peer-reviewed conferences

National peer-reviewed workshops

Co-Evolution between Social and

Semantic Web

Motivations : Semantic web technologies facilitate search and navigation on the web, while they can be additionally used to extract data from the social web, e.g., DBpedia is built with data extracted from Wikipedia infoboxes and categories. Wikipedia links are translated into properties in DBpedia, and they are semantically described using RDF vocabularies, i.e., DBpedia encodes semantics that is not represented in Wikipedia and provides a more expressive representation of Wikipedia links.

Therefore, DBpedia allows for retrieving information that is not available in Wikipedia [START_REF] Torres | Improving Wikipedia with DBpedia[END_REF].

To illustrate, Listing 3.1a presents a SPARQL query named Q1 to retrieve people and their born place using db-prop:birthplace. A place could be a country, province, city, or state. Nevertheless, if Some connected resources in DBpedia are disconnected in their corresponding Wikipedia articles, i.e., resources can be navigated in DBpedia while it is not possible to navigate equivalent resources in Wikipedia. We call this missing navigational paths information gap between Wikipedia and DBpedia. Figure 3.3 details the number of information gap between Wikipedia and DBpedia for the properties detailed in Table 3.1.

In order to evaluate the usefulness of adding these navigational paths, we carry out a social evaluation [START_REF] Torres | From DBpedia to Wikipedia: Filling the Gap by Discovering Wikipedia Conventions[END_REF]. In this evaluation, we have manually added missing navigational paths for 211 disconnected pairs and after one month, we analyzed the number of navigational pairs accepted or rejected by the Wikipedia community. As detailed in [START_REF] Torres | From DBpedia to Wikipedia: Filling the Gap by Discovering Wikipedia Conventions[END_REF], 90% of new navigational paths were accepted and 10% were rejected. Although the rejected navigational paths had respected the semantics of the relation, they were more general than those used by the community. For example, the proposed navigational path to connect (Edinburgh, Charlie Aitken) 3.1 navigational path? We formulate the problem of predicting the best representation of missing links in Wikipedia as a collaborative recommender system problem and define BlueFinder, a collaborative recommender system as a solution to this problem. In the following, I detail problem statement and BlueFinder approach and algorithms.

Problem Statement

According to Adomavicioius and Tuzhilin [START_REF] Adomavicius | Towards the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF], "collaborative recommender systems try to predict the utility of items for a particular user based on the items previously rated by other users".

BlueFinder predicts links between Wikipedia articles based on links previously rated by the Wikipedia community. Thus, BlueFinder can be considered as a collaborative recommender system for enhancing content of Wikipedia.

More formally, the utility function u(c, s) of item s for user c is estimated based on the utilities u(c j , s) assigned to item s by those users c j ∈ C who are "similar" to user c. In the context of Wikipedia, BlueFinder does not directly apply recommenders to suggest Wikipedia articles to users but to suggest links between articles. BlueFinder predicts the utility of path queries for a particular pair of Wikipedia articles based on those rated by the Wikipedia community. In other words, the pairs of articles (from,to) will play the role of users and the path queries will be the items. Then, the Given a property p in DBpedia, C p (l) and P Q path queries covered by the elements of C p (l).

Then, for a given pair of Wikipedia articles (f rom, to), we have to recommend the path query that maximizes the utility function. The following use case illustrates this problem statement in a practical use.

A collaborative Recommender System For Wikipedia Conventions

BlueFinder implements a four-steps pipeline process as shown in Figure 3

index = (P Q, C p (l), I) ← W ikipediaIndex(Q p (D), l) 2: k neighbors ← kN N (x, C p (l)) 3: knnP Q ← c i pq : (pq, c i) ∈ I, c i ∈ k neighbors 4: knnI ← c i (pq, c i) : (pq, c i) ∈ I, c i ∈ k neighbors 5: knnP I ← (knnP Q, k neighbors , knnI) 6: M ← N oiseF ilter(knnP I)
M ordered in rating descendent order 7: M ← StarGeneralization(M, knnP I) 8: return maxR path queries of M item set, user set and item ratings. The items are the path queries, and the users are the pairs of Wikipedia pages retrieved from DBpedia. In this case, for each pair of Wikipedia articles (f rom, to) included in a given Q p (D), the algorithm performs a depth-first search up to l starting from the f rom article and finishing in the to article in the Wikipedia graph (lines 1-4). For each reaching to article, it generalizes a path and builds the path index as a bipartite graph (lines 5-8). Finally, it returns the path index that is ready to be used in the next step of the BlueFinder algorithm 10.

BlueFinder traverses Wikipedia graph starting from the f rom article and finishing in the to article in the Wikipedia graph until the maximum length of a path; consequently, a depth-first search is more appropriate than the breadth-first search for building path index. GenerateAllP aths(f rom, to, l, curL, allP aths, curP ath)

Algorithm 11 WikipediaIndex

6:
for each path ∈ allP aths do

and c 2 = (a 2 , b 2). Let t a 1 , t b 1 , t a 2 , t b 2 data types in DBpedia for a 1 , b 1 ,
a 2 and b 2 respectively. Data types are defined as:

t a 1 ={t : < a 1 rdf:type t > ∈ DBpedia}, t b 1 ={t : < b 1 rdf:type t > ∈ DBpedia}, t a 2 ={t : < a 2 rdf:type t > ∈ DBpedia}, t b 2 ={t : < b 2 rdf:type t > ∈ DBpedia}. SP SD(c 1 , c 2) = J(ta 1 ,ta 2)+J(t b 1 ,t b 2) 2
where J is Jaccard distance between c 1 and c 2 .

J(c 1 , c 2) = |c 1 ∪c 2 |-|c 1 ∩c 2 | |c 1 ∪c 2 | .
To illustrate, we consider two pairs of Wikipedia pages c1 = (P aris, P ierreCurie) and c2 = (P aris, Larusso). The data types are:

t paris = {EuropeanCaptialsOf Culture, P opulatedP lace}.

t P ierreCurie = {Scientist, F renchCheimists, P eopleF romP aris}.

t Larusso = {Artist, P eopleF romP aris}.

SP SD(c 1 , c 2) = J(t paris ,t paris)+J(t P ierreCurie ,t Larusso) 2 = (0 + 0.75)/2 = 0.375 Now, we can define the kNN [START_REF] Lu | Efficient processing of k nearest neighbor joins using MapReduce[END_REF] in our context as: Definition 3.2.2 (kN N). Given a pair r ∈ Q p (D) and an integer k, the k nearest neighbors of

r denoted KN N (r, Q p (D)) is a set of k pairs from Q p (D) where ∀o ∈ KN N (r, Q p (D)) and ∀s ∈ Q p (D) -KN N (r, Q p (D)) then SP SD(o, r) ≤ SP SD(s, r).
Having the kN N step computed, the Path Queries Analysis step starts. It obtains the path queries that connect the k neighbors in a smaller path index than the original (from line 3 to 5 in Algorithm 10).

The generated path index contains the path queries that will be recommended and its ratings.

Before the recommendations are returned, in the step Clustering and Recommendation in Figure 3.4, BlueFinder cleans regular-user-unreachable-paths (e.g., paths that include administrative categories) by means of the noiseFilter (Algorithm 12) and similar path queries are grouped by StarGeneralization algorithm (Algorithm 13). Finally, BlueFinder returns the maxR best ranked path queries.

A COLLABORATIVE RECOMMENDER SYSTEM FOR WIKIPEDIA CONVENTIONS 39

The N oiseF ilter Algorithm 12 deletes all the paths queries that are not accessible by a Wikipedia user. Wikipedia includes several administrative categories which are used by administrators. In order to recommend path queries that can be utilized by regular users, N oiseF ilter deletes those categories whose names begin with "Articles_", "All_Wikipedia_", etc, such as Cat:Articles_to _be_merged.

Algorithm 12 NoiseFilter

Require: P I = (P Q, C, I): Path index Ensure: Set of regular user navigable path queries.

P Q * ← P Q * {(p 1 , * , p n-1 , p n)} 6:

Evaluation

In this section we analyze the behavior of our approach by means of measuring the prediction the accuracy of BlueFinder predictions over the 20 properties shown in Table 3.1. The evaluation is conducted to answer the following questions: In this section we describe the method of the evaluation, the evaluation metrics, and then the data sets used in the experimentation are presented. Finally, the results and discussions are introduced.

Method

In order to answer the questions described in the previous section, an offline evaluation was designed; user interaction is not considered in the study. The central idea of this evaluation is based on disconnecting connected pairs of articles in Wikipedia and then observing whether BlueFinder is able to recreate them. The important fact here is that BlueFinder has to recreate the Wikipedia community conventions that were defined to connect the pairs and not only to discover the disconnection. This approach is based on the assumption that all connected pairs in Wikipedia follow Wikipedian conventions. Figure 3.5 summarizes the idea of the evaluation method. For the purpose of this evaluation all the path queries that connect a pair of pages that are related in DBpedia by a property p, are considered the correct paths that represent the property p.

A sample of 10% of the connected pairs was taken for the evaluation. They are randomly selected and kept in a set called N. For instance, for prop 1 in Table 3.1, 188,324 pairs are connected in Wikipedia (i.e. 409,812 -221,788), so 18,832 randomly selected of those pairs will be in the set N.

After that, for each connected pair (w 1 , w 2) in N the evaluation repeats the following steps:

1. All paths currently connecting (w 1 , w 2) in Wikipedia are stored in the µ relevant set, and immediately all them are eliminated from Wikipedia to "disconnect" (w 1 , w 2).

2. BlueFinder is executed to predict the paths that could connect (w 1 , w 2). The resulting predictions are kept in µ predicted .

3. The µ predicted set is compared with µ relevant set in order to compute the metrics detailed below such as precision, recall and F1. 4. Finally, Wikipedia is restored up to the state before the pair disconnection. This means that the (w 1 , w 2) pair is reconnected by means of µ relevant .

In this evaluation, BlueFinder behavior is evaluated in each property mentioned in Table 3.1, and then aggregates the values of all the metrics to have a general point of view. For example, the evaluation measures the precision metric for prop 1 , then for prop 2 and then it continues with the rest of metrics and properties. After all the metrics and properties are computed, the mean of all metric values is calculated.

In order to have an analysis of the best combination of the number of neighbors and the number of the BlueFinder recommendations, the BlueFinder execution is configured with many combinations of the parameter k and maxR for each disconnected pair. The values for k are from 1 to 10, and the values for maxR are 1, 3, 5 and unlimited. The limit of path queries l was fixed in 5 according to the analysis presented previously. The evaluation was run with a local copy of the English Wikipedia and DBpedia download in July 2013 and they were stored in a MySQL database.

Evaluation Results

To assess the best behavior of BlueFinder, we analyze the values of accuracy metrics for the 20 properties from a general perspective. Figure 3.6 shows four line-charts with the mean values of precision, recall, F 1 and hit -rate obtained for each property. Each chart describes the relation between maxR and k values for each metric. BlueFinder is able to find, on average, between 75 % and 82 % of the relevant paths, and according to the hit-rate values it is able to fix around 88 % of the cases for k greater than 4 and maxR = 3, 5 or unlimited. However, the limitations is that the precision values decrease according to the variation of the k values and the number of recommendations. To detect the best correlation between precision and recall we use the F1 metric.

According to the Figure 3.6, all the maxR curves converge at k=5 with value 0.65. Therefore, Finally, the unlimited maxR was dismissed because it had similar recall than maxR = 5 but lower precision.

General values for all scenarios

The complete results of all the metrics with the different values for k and maxR are available at the website: https://sites.google.com/site/bfrecommender/publications/.

Conclusion

In this chapter, I introduced the information gap between Wikipedia and DBpedia.

SPARQL Queries over Linked data and Deep Web

Motivations: A great effort has been done by the Semantic Web community to integrate datasets into the Linking Open Data (LOD) cloud and make these data accessible through SPARQL servers.

However, the Deep Web which has around 500 times the size of the Surface Web [START_REF] He | Accessing the Deep Web[END_REF] has not been integrated as part of LOD cloud. Performing SPARQL queries without considering the Deep Web can potentially deliver incomplete results. For example, the execution of the SPARQL query:

Which members of the Semantic Web community are interested in Dalai Lama, Barack Obama, or Rihanna? without the integration of the Deep Web will provide no answers. Nevertheless, if data from social networks such as Twitter, Facebook, or LinkedIn were considered, the query execution could return some answers.

Contributions: I proposed semLAV, the first scalable Local-As-View (LAV) based approach for SPARQL query processing over LOD Cloud and deep web. Given a SPARQL query Q on a set M of LAV views, semLAV selects relevant views for Q and ranks them in order to maximize query results.

Next, data collected from selected views are included into a partial instance of the global schema, where Q can be executed whenever new data is included; and thus, semLAV incrementally produces query answers. In the following, I will present semLAV approach, algorithms and experimental results.

semLAV Approach

semLAV is a scalable LAV-based approach for processing SPARQL queries. It is able to produce answers even for SPARQL queries against large integration systems with no statistics. semLAV follows the traditional mediator-wrapper architecture [START_REF] Wiederhold | Mediators in the Architecture of Future Information Systems[END_REF]. Schemas exposed by the mediators and wrappers are expressed as RDF vocabularies. Given a SPARQL query Q over a global schema G and a set of sound views M = {v 1 , . . . , v m }, semLAV executes the original query Q rather than generating and executing rewritings as in traditional LAV approaches. semLAV builds an instance of the global schema on-the-fly with data collected from the relevant views. The relevant views are considered in an order that enables to produce results as soon as the query Q is executed against this instance.

Contrary to traditional wrappers which populate structures that represent the heads of the corresponding views, semLAV wrappers return RDF Graphs composed of the triples that match the triple patterns in the definition of the views. semLAV wrappers could be more expensive in space than the traditional ones. However, they ensure that original queries are executable even for full SPARQL queries and they make query execution dependent on the number of views rather than on the number of rewritings.

To illustrate the semLAV approach, consider a SPARQL query Q with four subgoals given in In the traditional LAV approach, 60 rewritings are generated and the execution of all these rewritings will produce all possible answers. However, this is time-consuming and uses a non-negligible amount of memory to store data collected from views present in the rewritings. In case there are not enough resources to execute all these rewritings, as many rewritings as possible would be executed.

We apply a similar idea in semLAV, if it is not possible to consider the whole global schema instance to ensure a complete answer, then a partial instance will be built. The partial instance will include data collected from as many relevant views as the available resources allow.

The execution of the query over this partial schema instance will cover the results of executing a number of rewritings. The number of rewritings covered by the execution of Q over the partial schema instance could be exponential in the number of views included in the instance. Therefore, the size of the set of covered rewritings may be even greater than the number of rewritings executable in the same amount of time. For each partial global schema instance, the included views and the number of covered rewritings are presented. Executing Q over the growing instances corresponds to the execution of a quite different number of rewritings. For instance, if only four views could be included with the available resources, one order corresponds to the execution of 32 rewritings while the another one corresponds to the execution of only eight rewritings. If all relevant views for query Q could be included, then a complete answer will be produced. However, the number of relevant views could be considerably large, therefore, if we only have resources to consider k relevant views, V k , we should consider the ones that increase the chances of obtaining answers. With no knowledge about data distribution, we can only suppose that each rewriting has nearly the same chances of producing answers. Thus, the chances of obtaining answers are proportional to the number of rewritings covered by the execution of Q over an instance that includes views in V k .

Maximal Coverage Problem (MaxCov).

Given an integer k > 0, a query Q on a global schema G, a set M of sound views over G, and a set R of conjunctive queries whose union is a maximally-

contained rewriting of Q in M . The Maximal Coverage Problem is to find a subset V k of M comprised of k relevant views for Q, V k ⊆ M ∧ (∀v : v ∈ V k : v ∈ RV (Q, M)) ∧ |V k | = k, such that the set of rewritings covered by V k , Coverage(V k , R)
, is maximal for all subsets of M of size k, i.e., there is no other set of k views that can cover more rewritings than V k . Coverage(V k , R) is defined as:

Coverage(V k , R) = {r : r ∈ R ∧ (∀p : p ∈ body(r) : p ∈ V k)} (4.1)
The MaxCov problem has as an input a solution to the Maximally-Contained Rewriting problem.

Nevertheless, using this for building a MaxCov solution would be unreasonable since it makes the MaxCov solution at least as expensive as the rewriting generation. Instead of generating the rewritings, we define a formula that estimates the number of covered rewritings when Q is executed over a global schema instance that includes a set of views. It is the product of the number of ways each query subgoal can be covered by the set of views. For a query Q(X) :p 1 (X1), . . . p n (Xn) using only views in V k this formula is expressed as:

N umberOf CoveredRewritings(Q, V k) = Π 1≤i≤n |U se(V k , p i (Xi))|, (4.2)
where U se(V k , p) = Σ v∈V k Σ w∈body(v)∧covers(w,p) 1. This formula computes the exact number of covered rewritings when all the view variables are distinguished; this is because the coverage of each query subgoal by a given view can be considered in isolation. Otherwise, this expression corresponds to an upper bound of the number of covered rewritings of Q with respect to V k .

Consider the second proposed ordering of the views in the above example, the numbers of views in V 4 that cover each query subgoal are:

-two for the first query subgoal (v4 and v3),

-four for the second query subgoal (v4, v2, v3 and v1),

-two for the third query subgoal (v4 and v3), and -two for the fourth query subgoal (v2 and v1).

Thus, the number of covered rewritings is 32 (2 × 4 × 2 × 2).

Next, we detail a solution to the MaxCov problem under the assumption that views only contain distinguished variables.

Algorithms

I will detail two algorithms. The first one selects and ranks relevant views for a query and the seconds builds the global instance to execute the query.

Relevant View Selection and Ranking Algorithm

The relevant view selection and ranking algorithm finds the views that cover each subgoal of a query. This algorithm creates a bucket for each query subgoal q, where a bucket is a set of relevant views; this resembles the first step of the Bucket algorithm [START_REF] Alon | Answering queries using views: A survey[END_REF]. Additionally, the algorithm sorts the buckets views according to the number of covered subgoals. Hence, the views that are more likely to contribute to the answer will be considered first. This algorithm is defined in Algorithm 14.

Algorithm 14 The Relevant View Selection and Ranking

Require: Q : SPARQL Query; M : Set of Views defined as conjunctive queries Ensure: Buckets: Predicate → List<View> for all q ∈ body(Q) do buckets(q) ← ∅ end for for all q ∈ body(Q) do b ← buckets(q) for all v ∈ M do for all w ∈ body(v) do if There are mappings τ , ψ, such that ψ(q) = τ (w) then v i ← λ(v) λ(v) replaces all variables a i in the head of v by τ (a i) insert (b, vi) add v i to the bucket if it is not redundant end if end for end for end for for all q ∈ body(Q) do b ← buckets(q) sortBucket(buckets,b) MergeSort with key (#covered buckets,#views subgoals) end for

The mapping τ relates view variables to query variables.

The sortBucket(buckets, b, q) procedure decreasingly sorts the views of bucket b according to the number of covered subgoals. Views covering the same number of subgoals are sorted decreasingly according to their number of subgoals. Intuitively, this second sort criterion prioritizes the more selective views, reducing the size of the global schema instance. The sorting is implemented as a classical MergeSort algorithm with a complexity of O(|M| × log(|M|). where N is the number of query subgoals, M is the set of views and P is the maximal number of view subgoals.

To illustrate Algorithm 14, consider the SPARQL query Q and the previously defined views v1-v5.

Included views (k) Included views (V k) # Covered rewritings 1 v4 1 × 1 × 1 × 0 = 0 2 v4, v2 1 × 2 × 1 × 1 = 2 3 v4, v2, v3 2 × 3 × 2 × 1 = 12 4 v4, v2, v3, v1 2 × 4 × 2 × 2 = 32 5 v4, v2, v3, v1, v5 3 × 5 × 2 × 2 = 60
Algorithm 14 creates a bucket for each subgoal in Q as shown in Table 4.2a.

For instance, the bucket of subgoal vendor(O, V) contains v3, v4 and v5: all the views having a subgoal covering vendor(O, V). The final output after executing the sortBucket procedure is described in Table 4.2b.

Views v3 and v4 cover three subgoals, but since v4 definition has more subgoals, i.e., it is more selective, v4 is placed before v3 in all the buckets.

Global Schema Instance Construction and Query Execution

Each bucket is considered as a stack of views, having on the top the view that covers more query subgoals. A global schema instance is constructed as described in Algorithm 15 by iteratively popping one view from each bucket and loading its data into the instance. Query can be executed each time a new view is included into the schema instance and partial results will be produced incrementally; or, it can be executed after including the k views. The first option prioritizes the time for obtaining the first answer, while the second one favors the total time to receive all the answers of Q over V k . The first option produces results as soon as possible; however, in case of non-monotonic queries, i.e., queries where partial results may not be part of the query answer, this query processing approach should not be applied. Among non-monotonic queries, there are queries with modifiers like SORT BY or constraints like a FILTER that includes the negation of a bound expression. The execution of non-monotonic queries requires all the relevant views to be included in the global schema instance in order to produce the correct results. Proof. By contradiction, suppose that the set V k is not maximal in terms of the number of covered rewritings, then there is another set V k of size k that covers more rewritings than V k . By construction,

if v / ∈ V k then load v into G only if is not redundant A ← A ∪ exec(Q, G) Option 1: Execute Q after each successful load V k ← V k ∪
V k includes the first views of each bucket, i.e., the views that cover more query subgoals. There should exist at least one view in V k that is not in V k , and vice-versa. Suppose w is the first view in

V k that is not in V k (w ∈ V k ∧ w ∈ V k) , v is the first one in V k and is not in V k (v ∈ V k ∧ v ∈ V k) ,
and w belongs to the bucket of the query subgoal q. If v covers q, then it belongs to the bucket of q. Because V k includes the views that cover more subgoals, if v was not included in V k is because it covers less rewritings than w; thus, the contribution of v to the number of covered rewritings is inferior to the contribution of w. This generalizes to all the views in V k and not in V k ; thus, the number of rewritings covered by V k should be less than the number of rewritings covered by V k . If v covers another query subgoal q and all the query subgoals are covered at least once by views in V k ; thus, Algorithm 15 should have included it before including w and v should belong to V k .

The semLAV Properties

Given a SPARQL query Q over a global schema G, a set M of views over G, the set RV of views in M relevant for Q, a set R of conjunctive queries whose union is a maximally-contained rewriting of Q using M , and V k a solution to the MaxCov problem produced by semLAV.

-Answer Completeness: If semLAV executes Q over a global schema instance I that includes all the data collected from views in RV , then it produces the complete answer. semLAV outputs the same answers as a traditional rewriting-based query processing approach: -Effectiveness: the Effectiveness of semLAV is proportional to the number of covered rewritings, it is defined as:

Ef f ectiveness(V k) = |Coverage(V k , R)| |R| . (4.4)
For an execution constrained by time or space, V k could be smaller than RV .

-Execution Time depends on |RV |: The load and execution time of semLAV linearly depends on the size of the views included in the global schema instance.

-No memory blocking: semLAV guarantees to obtain a complete answer when v∈RV I(v) fits into memory. If not, it is necessary to divide the set RV of relevant views into several subsets RV i , such that each subset fits into memory and for any rewriting r ∈ R all views v ∈ body(r)

are contained in one of these subsets. We compare the semLAV approach with traditional rewriting-based approaches GQR [START_REF] Konstantinidis | Scalable query rewriting: a graph-based approach[END_REF],

Evaluation

MCDSAT [ABV06], MiniCon [PH01], and SSDSAT [IVB10]

The Berlin SPARQL Benchmark (BSBM) [START_REF] Bizer | The Berlin SPARQL Benchmark[END_REF] is used to generate a dataset of 10,000,736 triples using a scale factor of 28,211 products. Additionally, third-party queries and views are used to provide an unbiased evaluation of our approach. In our experiments, the goal is to study semLAV as a solution to the MaxCov problem, and we compute the number of rewritings generated by three state-of-the-art query rewriters. From the 18 queries and 10 views defined in [Cas12], we leave out the ones using constants (literals) because the state-of-the-art query rewriters are unable to handle constants either in the query or in the views. In total, we use 16 out of 18 queries and nine out of 10 the defined views. The query triple patterns can be grouped into chained connected star-shaped subqueries, that have between one and twelve subgoals with only distinguished variables, i.e., queries are free of existential variable. We define five additional views to cover all the predicates in the queries.

From these 14 views, we produce 476 views by horizontally partitioning each original view into 34 parts, such that each part produces 1/34 of the answers given by the original view.

Queries and views are described in Tables 4.3a and 4.3b. The size of the complete answer is computed by including all the views into an RDF-Store (Jena) and executing the queries against this centralized RDF dataset.

We implement wrappers as simple file readers. For executing rewritings, we use one named graph per subgoal as done in [START_REF] Le | Rewriting queries on SPARQL views[END_REF]. The Jena 2.7.4 1 library with main memory setup is used to store and query the graphs. The semLAV algorithms are implemented in Java, using different threads for bucket construction, view inclusion and query execution to improve performance. The implementation and all evaluation results are available in the project website 2 . Table 4.4 -The semLAV Effectiveness. For 10 minutes of execution, we report the number of relevant views included in the global schema instance, the number of covered rewritings and the achieved effectiveness. Also values for total number of views and rewritings are shown

Experimental Results

The analysis of our results focus on three main aspects: the semLAV effectiveness, memory consumption and throughput.

To demonstrate the semLAV effectiveness, we execute semLAV with a timeout of 10 minutes.

During this execution, the semLAV algorithms select and include a subset of the relevant views; this 4.4 shows the number of relevant views considered by semLAV, the covered rewritings and the achieved effectiveness. Effectiveness is greater than or equal to 0.5 (out of 1) for almost half of the queries. semLAV maximizes the number of covered rewritings by considering views that cover more subgoals first.

The observed results confirm that the semLAV effectiveness is considerably high. Effectiveness depends on the number of relevant views, but this number is bounded to the number of relevant views that can be stored in memory. As expected, the semLAV approach could require more space than the traditional rewriting-based approach. semLAV builds a global schema instance that includes all the relevant views in V k , whereas a traditional rewriting-based approach includes only the views in one rewriting at the time.

We calculate the throughput as the number of answers divided by the total execution time. For semLAV, this time includes view selection and ranking, contacting data sources using the wrappers, including data into the global schema instance, and query execution time. For the traditional rewriting-based approach, this time includes rewriting time, instead of view selection and ranking. Th results show that semLAV is effective and efficient and produces more answers sooner than a traditional rewriting-based approach. semLAV makes the LAV approach feasible for processing SPARQL queries [Mon+13b; Mon+14a; Fol+14b; Fol+14a; Fol+15].

Conclusion

semlav In this chapter, I present semLAV, a Local-As-View mediation technique that allows to perform SPARQL queries over views without facing problems of NP-completeness, exponential number of rewritings or restriction to conjunctive SPARQL queries. This is obtained at the price of including relevant views into a global schema instance which is space consuming. However, I demonstrated that, even if only a subset of relevant views is included, I obtain more results than traditional rewriting-based techniques. Chances of producing results are higher, if the number of covered rewritings is maximized as defined in the MaxCov problem. We proved that our ranking strategy maximizes the number of covered rewritings.

semLAV opens a new way to execute SPARQL queries for LAV mediators that is tractable. As perspectives, the performance of semLAV can be greatly improved by parallelizing views inclusion.

Currently, SemLAV includes views sequentially due to Jena restrictions. If views were included in parallel, time to get first results would be greatly improved. Additionally, the strategy of producing results as soon as possible, can deteriorate the overall throughput. If users want to improve overall throughput, then the query should be executed once after all the views in V k have been included.

It could be also interesting to design an execution strategy where SemLAV would execute under constrained space. In this case, the problem would be to find the minimum set of relevant views that would fit in the available space and produce the maximal number of answers. All these problems will be part of our future works.

The work presented in this chapter is part of Gabriela Montoya [Mon16] and Luis-Daniel Ibáñez [START_REF] Ibáñez | Towards a Read/Write Web of Linked Data[END_REF] in collaboration with Maria-Esther Vidal, Professor at the University Simon Bolivar, Venezuela.

Publications associées à ce chapter

International peer-reviewed journals [START_REF] Saito | Optimistic replication[END_REF]. SU-Set enables large scale replication of RDF graphs while ensuring strong eventual consistency, i.e., when the system is idle all the replicas are convergent. SU-Set requires the connectivity of the network and the need to exchange all updates.

(2) Col-Graph is a coordination-free protocol based on annotated RDF-Graphs and updates to achieve fragments consistency. It follows a data sharing model [START_REF] Karvounarakis | Collaborative Data Sharing via Update Exchange and Provenance[END_REF]. Contrary to SU-Set, Col-Graph enables partial replication of RDF graph while ensuring incremental maintenance of the data fragment. Col-Graph is well adapted for socially generated networks.

SU-Set: a Conflict-Free Replicated Data Type for RDF Graph

A Conflict-Free Replicated Data Type (CRDT) [START_REF] Shapiro | Conflict-Free Replicated Data Types[END_REF] is a data type whose operations, when concurrent, yield the same result regardless the execution order. Two operations are concurrent if they occur at different nodes and we cannot determine which one happened before the other.

Common data types are in general not CRDTs, for example, the set data type is not a CRDT, because concurrent insertion and deletion does not commute.

A CRDT has three components :

payload : the internal structure that holds the state of the object, lookup : queries the payload and returns data elements, update: handling operations such as add and remove.

An update operation is prepared at the generator site and sent to all nodes including the generator one :

prepare : preparing the arguments for sending the operation to other nodes, if the preconditions of the operation do not hold, the operation is ignored, effect : sends the prepared operation to all nodes, including the generated one. When the operation is received, it will be executed if the preconditions are evaluated to true, else it will be delayed until they do so.

A CRDT ensures Strong Eventual Consistency (SEC) [START_REF] Saito | Optimistic replication[END_REF][START_REF] Shapiro | Conflict-Free Replicated Data Types[END_REF] where replicas that have delivered the same updates have equivalent state.

I propose SU-Set a CRDT for the RDF-Graph type with SPARQL 1.1 Update operations that ensures SEC consistency for RDF Graph.

Algorithms

In the CRDT model operations are assumed to be transmitted through a fully connected communication graph without loss, granting the Eventual Delivery condition of SEC. Therefore, we introduce on the Read/Write Web of Linked Data the assumption that the update exchange network is strongly connected, all updates eventually arrive to their destination. SU-Set inherits from OR-Set a precondition concerning the delivery of updates: It must be granted that deletions of unique pairs are always delivered after the insertions that generated them.

We will use the same strategy used in OR-Set to make the pre-condition hold: a causal delivery of updates, implemented with Vector Clocks [START_REF] Mattern | Virtual Time and Global States of Distributed Systems[END_REF]. Each Graph Store holds a monotonically increasing counter (the clock) that ticks each time an update is made, and an array whose keys are the identifiers of all other Graph Stores and whose values are the last received clock values from the corresponding Graph Store. Updates are piggybacked with the full vector at execution time. By comparing the vectors, one can determine the partial order of update executions in all the network to ensure that a deletion always happens after its corresponding insertion.

Evaluating and Optimizing SU-Set

This first version of SU-Set has two important overheads to consider. In the delete-insert operations, computing the triples affected locally and sending them downstream instead of sending the patterns directly greatly increases the traffic; second, if each element needs to be sent with its globally unique id, the size of the packets sent will grow. To test this in a real case, we analyzed the publishing method of DBpedia Live. The core of the system is a set of extractors that computes the triples affected each time there is an edition in a Wikipedia page or in the mappings that define the relation between info boxes and triples. After updating the store, the system writes two files, one with the added RDF-triples, and another with the deleted ones. These files do not have a fixed size, as this depends on the number and nature of the editions at a given time. DBpedia Live publishing can be considered as SPARQL Update Insert Data and Delete Data operations with the triples defined by the change set files. This means that for the DBpedia Live case, the overhead of computing and sending the affected triples for each operation is already considered and SU-Set do not adds any further cost.

l e t Q = {(t, u) | (∃u : | (t, u) ∈ S)} R := R ∪ Q ef f ect(R) // Causal
To evaluate the impact of using globally unique ids, we consider its implementation with two UUIDs [LMS05] of 16 bytes each, one to identify the generator site, and another to hold a big enough monotonic counter that increases with each insert. We downloaded the N3 files published by DBpedia Live from march 10th to march 16th 2012, totalizing 3,403 Megabytes, and appended to each triple the base64 representation of the two UUIDs. Finally, we measured the new file size with the UNIX command wc -c. The difference between the version with ids and the version without ids was 2,04 GB, and the percentage of increase, 54,47%. However, we can greatly reduce this overhead if the receivers can afford to spend some time in constructing the IDs from a resume. The strategy varies depending on the strategy chosen to achieve the delivery condition. When vector clocks are used, we showed in [Dan+12] that the same id can be shared by the triples inserted in the same operation, as the uniqueness of the element comprised by the triple and its id is maintained. Therefore, one can send only one id per insert operation and let the receiver reconstruct the pairs. Specification 5.2 details the optimized version of SU-Set.

In DBpedia Live, this would mean that only one id is needed for each file containing added triples.

We recomputed the overhead in our case of study using this strategy and we obtained a negligible 2,5 Megabytes for the insertions and a 4,68% file size increase overall. Note that, as the average triple size is greater than the id size, deletion with the first version of SU-Set is less expensive than without using any ids.Table 5.1 compares the differences in communication overhead of insertions and deletions between the two versions of SU-Set and the current publication method without ids.

Note that in both solutions, it is possible to further optimize the deletion by sending only the id (as it is unique), however, in the case that we would like to analyze the deletes, an extra computation effort needs to be done to search the triples. As such, we report the overhead of sending only the ids and, in parentheses, the overhead of sending full pairs.

The poof of correctness and the complexity of algorithms are detailed in [Ibá+13].

Col-Graph: A Synchronization Algorithm for RDF Fragments

Imagine a participant that wants to perform data cleansing on a subset of DBpedia, e.g., the triples having as subject the entity DBpedia:France. Copying the entire DBpedia is a waste of resources, thus, the participant copies only the fragment of data she is interested to, and receives only the updates from DBpedia that concern such fragment. SU-Set cannot assert the consistency of such fragment, because both participants have not applied the same updates. In order to support this use case, we propose Fragment Consistency, a criterion focused on the consistency of the fragments of data copied instead of on the state equivalence of all participants P 1 starts with data about the nationality and KnownFor properties of M _P erey (prefixes are omitted for readability). P 2 materializes from P 1 all triples with the knownF or property. With this information and its current data, P 2 inserts the fact that M _P erey discovered Francium. On the other hand, P 3 materializes from P 1 all triples with the nationality property. P 3 detects a mistake (nationality should be F rench, not F rench_P eople) and promptly corrects it. P 4 constructed a dataset materializing from P 2 the fragment of triples with the property discoverer the fragment of triples with the property nationality from P 3. P 1 trusts P 4 about data related to M _P erey, so she materializes the relevant fragment, indirectly consuming updates done by P 2 and P 3.

Fragment Consistency

Triples updated on materialized fragments are not necessarily integrated by the source, e.g, the deletion done by P 3 did not reach P 1, therefore, equivalence between source and materialized fragment cannot be used as consistency criterion. Intuitively, each materialized fragment must be equal to the evaluation of the fragment at the source after applying local updates, i.e., the ones executed by the participant itself and the ones executed during synchronization with other fragments. Definition 5.2.3 (Fragment Consistency). Let RW LD = (P, E) be the Read/Write Linked Data.

Assume each P i ∈ P maintains a sequence of uniquely identified updates ∆ P i with its local updates and the updates it has consumed from the sources of the fragments F [P j]@P i it materializes. Given a ∆ P , let ∆ F [S] P be the ordered subset of ∆ P such that all updates concern F [S], i.e., that match the graph pattern in F [S]. Let apply(P i , ∆) be a function that applies a sequence of updates ∆ on P i .

P1: (s,p,o) (s,q,o) P2: (s,p,o) P1#1 Ins(s,p,o) P1#2 Ins(s,q,o) * P2#1 Ins(s,p,o) P2#2 Del(s,p,o) * w w P3: (s,p,o) (s,q,o) P1#1 Ins(s,p,o) P1#2 Ins(s,q,o) P2#1 Ins(s,p,o) P2#2 Del(s,p,o) F [P 1]@P 3 = apply({(s, p, o), (s, q, o)}, (P 2#1 Ins(s, p, o), P 2#2 Del(s, p, o)))
F [P 2]@P 3 = apply(∅,

(P 1#1 Ins(s, p, o))) P 1#2 Ins(s, q, o)))
(a) Applying updates as they come does not comply with the correction criterion. RW LD is consistent iff when the system is idle, i.e., no participant executes local updates or fragment synchronization, then:

P1: (s,p,o) → 1 (s,q,o) → 1 P2: (s,p,o) → 1 P1#1 (s,p,o) → 1 P1#2 (s,q,o) → 1 * P2#1 (s,p,o) → 1 P2#2 (s,p,o) → -1 * w w P3: (s,p,o) → 1 (s,q,o) → 1 P1#1 (s,p,o) → 1 P1#2 (s,q,o) → 1 P2#1 (s,p,o) → 1 P2#2 (s,p,o) → -1 F [P 1]@P 3 = apply({(s, p, o) → 1, (s, q, o) → 1}, (P 2#1 (s, p, o) → 1 (P 2#2 (s, p, o) → -1)) F [P 2]@P 3 = apply(∅, (P 1#1 (s, p, o) → 1, P 1#2 (s, q, o) → 1)) (b) The Annotated RDF-Graph enables a consistent Collaboration Network
(∀P i , P j ∈ P : F [P i]@P j = apply(eval(F [P i]), ∆ F [P i] P j \ ∆ P i) The ∆ F [P i] P j
\ ∆ P i term formalises the intuition that we need to consider only local updates when evaluating the consistency of each fragment, i.e., from the updates concerning the fragment, remove the ones coming from the source.

Unfortunately, applying remote operations as they come does not always comply with Definition 5.2.3 as shown in Figure 5.4a: P 3 synchronizes with P 1, applying the updates identified as P 1#1 and P 1#2, then with P 2, applying the updates identified as P 2#1 and P 2#2, however, the fragment materialized from P 2 is not consistent. Notice that, had P 3 synchronized with P 2 before than with P 1, its final state would be different ((s, p, o) would exist) and the fragment materialized from P 1 would not be consistent. SU-Set algorithm 5.2 also cannot achieve Fragment Consistency due to its requirement of causal delivery of updates. Suppose a fragment of P 1 materialized at P 2 F [P 1]@P 2 , and suppose that P 1 performs two updates, u 1 not concerning F and u 2 concerning F . In our model, u 1 will not be delivered to P 2 , meaning that when u 2 is delivered, it will be considered as not causally ready to be executed and put on hold indefinitely.

Algorithms

To achieve Fragment Consistency, we propose, in the spirit of [START_REF] Green | Reconcilable Differences[END_REF], to count the number of insertions and deletions of a triple, i.e., we annotate each RDF-triple with positive or negative integers, positive values indicate insertions and negative values deletions. This allows for a uniform representation of data and updates, yielding a simple way to synchronize fragments.

Incrementally synchronizing a materialized fragment using only the updates published by a data source and the locally materialized fragment without issuing another query on the data source requires to exclude join conditions from fragments [START_REF] Gupta | Data Integration using Self-Maintainable Views[END_REF], therefore, to not compromise the availability of sources, we restrict to basic fragments [START_REF] Verborgh | Web-Scale Querying through Linked Data Fragments[END_REF], i.e., fragments where the query is comprised by only one triple pattern. Definition 5.2.4 (Annotated RDF-triple, Graph and Update).

1. Let t be an RDF-triple and z ∈ Z * . t → z is an annotated RDF-triple, t is called the triple and z the annotation.

An annotated RDF-Graph

G A is a set of annotated RDF-triples such that (∀t, z|t → z ∈ G A : z > 0)
3. An annotated update u A is represented by an annotated RDF-triple. More precisely, t → 1 for insertion of t and t → -1 for deletion of t.

Annotations in RDF-Graphs count the number of derivations of a triple in the RW LD.

Definition 5.2.5 (Derivation). Let t be a triple stored in a participant RW LD P 0 , a derivation of t is a simple path from the participant that inserted t, P 1 , and P 0 , such that the insertion of t concerns each edge of the path.

An annotation value higher than 1 indicates that the triple exists in more than one source or there are several simple paths in RW LD leading from the participant that inserted the triple to the participant. Annotations in updates indicate, if positive, that z derivations of t were inserted;

if negative, that z derivations of t were deleted. For example, an annotated RDF-triple t 1 → 2 means that either t 1 has been inserted by two different sources or the same insert arrived through two different paths in RW LD. The annotated update t 2 → -1 means that t 2 was deleted at one source or by some participant in the path between the source and the target; t 3 → -2 means that either t 3 was deleted by two sources or by some participant in the path between two sources and the target.

To apply annotated updates to annotated RDF-Graphs, we define an Update Integration function:

Definition 5.2.6 (Update Integration). Let A be the set of all annotated RDF-Graphs and B the set of all annotated updates. Assume updates arrive and are executed from source to target in FIFO order. The Update Integration function : A × B → A takes an annotated RDF-Graph G A ∈ A and an annotated update t → z ∈ B:

G A t → z =                    G A ∪ {t → z} if (w : t → w ∈ G A) G A \ {t → w} if t → w ∈ G A ∧ w + z ≤ 0 (G A \ {t → w}) ∪ {t → w + z} if t → w ∈ G A ∧ w + z > 0
The first piece of the Update Integration function handles incoming updates of triples that are not in the current state. As we are assuming FIFO in the update propagation from source to target, insertions always arrive before corresponding deletions, therefore, this case only handles insertions.

The second piece handles deletions: only if the incoming deletion makes the annotation zero the triple is deleted from the current state. The third piece handles deletions that do not make the annotation zero and insertions of already existing triples by simply updating the annotation value.

We now consider each participant has an annotated RDF-Graph G A and an sequence of annotated updates U A . SPARQL queries are evaluated on the RDF-Graph {t | t → z ∈ G A }. SPARQL Updates are also evaluated this way, but their effect is translated to annotated RDF-Graphs as follows: the insertion of t to the insertion of t → 1 and the deletion of t to the deletion of the annotated triple having t as first coordinate. Specification 5.3 details the methods to insert/delete triples and synchronize materialized fragments. To avoid the infinite forwarding of updates, each time an update is processed, the protocol checks if it has walked a cycle, if so, it is ignored. Figure 5.4b shows the fragment synchronization algorithm in action.

To materialize fragments for the first time, a SPARQL extension that allows to query the annotated RDF-Graph and return the triples and their annotations is needed, for example the one implemented in [START_REF] Wylot | TripleProv: Efficient Processing of Lineage Queries in a Native RDF Store[END_REF]. To check when an update has cycled, we propose to add a second annotation to updates, containing a set of participant identifiers φ u representing the participants that have already received and applied the update. When an update u is created, φ u is set to the singleton containing the ID of the author, when u is pushed downstream, the receiving participant checks if his ID is in φ u , if yes, u has already been received and is ignored, else, it is integrated, and before pushing it downstream it adds its ID to φ u . Of course, there is a price to pay in traffic, as the use of φ increases the size of the update. The length of φ u is bounded by the length of the longest simple path in the Collaboration-Network, which in turn is bounded by the number of participants.

Fortunately, the issue described in the previous section can be solved if we make the deletions stop when they do not affect the current state instead of when cycles are detected, in a similar way to the fixepoint semantics of datalog. Specification 5.5 shows the modified version of the algorithm.

Figure 5.5 illustrates how this versions fixes the problem. The core of the fix lies on the sync procedure, the check for cyclic updates is only done for insertions (line 17). For deletions the stop condition is that the triple is not anymore there.

Provenance for Conflict Resolution

In section 5.2.2 we solved the problem of consistent synchronization of basic fragments. However, Fragment Consistency is based on the mere existence of triples, instead of on the possible conflicts between triples coming from different fragments and the ones locally inserted. Col-Graph's strategy in this case is that each participant is responsible for checking the semantic correctness of its dataset,

G A := G A t → z 19 Append(∆P ID , t → z) 20 i f z < 0 : 21 i f G A t → z = G A : 22 G A := G A t
G A := G A t → m 20 Append(∆P ID , t → m) 21 i f m < 0 : 22 i f G A t → m = G A : 23 G A := G A t → m 24
Append(∆P ID , t → m) Specification 5.6 -Class participant with M annotations modified for all topologies as criteria often varies and what is semantically wrong for one participant, could be right for another.

Participants can delete/insert triples to fix what they consider wrong. Participants that receive these updates can edit in turn if they do not agree with them.

In the event that a participant wants to choose between two triples, the main criteria to choose which one of them delete is their provenance. With this information, the decision can be made based on the trust on their authors. As in [START_REF] Karvounarakis | Collaborative Data Sharing via Update Exchange and Provenance[END_REF], we propose to substitute the integer annotations of the triple by an element of a commutative monoid that embeds (Z, +, 0). Definition 5.2.7 (Commutative Monoid). A Commutative Monoid is is an algebraic structure comprised by a set K, a binary, associative, commutative operation ⊕ and an identity element 0 K ∈ K such that

(∀k ∈ K | k ⊕ 0 K = k) Definition 5.2.8 (Embedding). A monoid M = (K, ⊕, 0 K) embeds another monoid M = (K , , 0 K) iff there is a map f : K → K called homomorphism such that f (0 K) = f (0 K) and (∀a, b ∈ K : P1: (s, p, o) → 1 { { 8 8 P1#1 Ins(s, p, o) → 1 P2#1 Ins(s, p, o) → -1 P1#1 Ins(s, p, o) → 1 P2#1 Ins(s, p, o) → -1 P2: (s, p, o) → 1 3 3 P3: (s, p, o) → 1 z z P1#1 Ins(s, p, o) → 1 P2#1 Ins(s, p, o) → -1 P4: (s, p, o) → 2 (s, p, o) → 1 y y P1#1 Ins(s, p, o) → 1 P1#1 Ins(s, p, o) → 1 P2#1 Ins(s, p, o) → -1 P2#1 Ins(s, p, o) → -1 F [P 4]@P 1 =
apply({}, ∅)

Figure 5.5 -Iterating deletions until no effect allows support for any network topology

f (a ⊕ b) = f (a) f (b)).
If we annotate with elements of a monoid that embeds (Z, +, 0), all the properties of our synchronization algorithm maintain. Formally, the semantics of the querying commutes with the application of the homomorphism, a fundamental theorem proved in [START_REF] Green | Provenance Semirings[END_REF] for the more general case of rings instead of monoids. The use of symbolic expressions that can be morphed to the basic (Z, +, 0)

allows the encoding of useful information, for instance, the provenance of triples.

Definition 5.2.9. Assume each participant in the RW LD has an unique ID, and let X be the set of all IDs. Let M = (Z[X], ⊕, 0) be a monoid with:

1. The identity 0.

The set Z[X]

of polynomials with coefficients in Z and variable in X.

3. The polynomial sum ⊕, for each monomial with the same indeterminate:

aX ⊕ bX = (a + b)X 4. M embeds (Z, +, 0) through the function f (a 1 X 1 ⊕ • • • ⊕ a n X n) = n 1 a i
Each time a participant inserts a triple, she annotates it with its ID with coefficient 1. The only change in definition 5.2.6 is the use of ⊕ instead of +. Specifications 5.4 and 5.6 describes the algorithm to insert/delete triples and synchronize fragments with triples annotated with elements of M .

When annotating with Z, the only information encoded in triples is their number of derivations.

M adds (i) Which participant is the author of the triple. A triple stored by a participant P with an annotation comprised of the sum of n monomials indicates that the triple was inserted concurrently only one of such triples based on trust, the Z annotations (5.6a) do not give enough information, while the M annotations (5.6b) give more information for P 5 to take the right decision. She can know that the triple (s, p, o) was inserted by two participants P 1 and P 3, while (s, p, r) was only inserted by P 4 and that (s, p, v) was inserted by P 2 and P 5.

Col-Graph's performance is mainly affected by the following properties of the RWLD:

-The probability of concurrent insertion of the same data by many participants. The higher this probability, the number of terms of the polynomials is potentially higher.

-Its connectivity. The more connected, the more paths between the participants and the potential values of ρ are higher. If the network is poorly connected, few updates will be consumed and the effects of concurrent insertion are minimized.

-The overlapping between fragments. If all fragments copy all data, all incoming updates will be integrated by every participant, maximizing the effects of connectivity and concurrent insertion.

If all fragments are disjoint, then all updates will be integrated only once and the effects of connectivity and concurrent insertion will be neutralized.

Details of complexity analysis and experimentations are given in [Ibá+14].

Conclusion

In this chapter, I proposed two solutions: SU-Set and Col-Graph to transform Read-Only LOD into Read/Write LOD. SU-Set's guarantees that : Participants that have received the same updates, have the same state. SU-Set has linear complexity in time and space independently of the topology, and optimal cost in communication. SU-Set is tailored for full dataset replication.

I proposed Col-Graph to support partial data replication. Each participant can copy or materialize from other participants a fragment of data defined by a SPARQL CONSTRUCT Federated query and receives the updates that concern the fragment. Col-Graph's guarantee that : each materialized fragment is equal to the evaluation of the fragment at its source modulo the locally made updates.

Col-Graph has the same complexity of SU-Set's except in two aspects: (i) In space, where it depends on the connectivity of the network with a worst case of factorial (complete graph). (ii) In number of total messages exchanged in the network to converge. Nevertheless, our experiments suggest that for social networks, the performance is much better than for random networks, meaning that Col-Graph is applicable for the Read/Write Linked Data.

An interesting conclusion of this work is the very close relation between the solutions used for two very different visions of consistency by different research communities: Conflict-Free Replicated Data Types (CRDTs) in distributed systems and Collaborative Data Sharing Systems (CDSSs) in databases. Both resort to annotate data with elements of an algebraic structure, lattices in the case of CRDTs, and commutative semirings in the case of CDSSs. The main difference is the idempotency of lattices and the non-idempotency of semi-rings. Idempotency is required in replication scenarios to tolerate network disorder, on the other hand, semi-rings are required to support relational algebra operators but this feature requires coordination in the update exchange. We showed that for the special case of fragments, we can use semi-rings and still have the coordination freeness of idempotent solutions.

Finally, the connection between provenance and consistency maintenance is also worth to highlight. The data annotations used to model concurrency in CRDTs equal to one of the basic types of provenance semi-rings, therefore, if provenance information about triples is maintained in a semi-ring transformable format, then the consistency criteria proposed in this thesis can be attained.

Federated SPARQL Queries Processing with Replicated Fragments

Motivations: Existing SPARQL federated query engines do not support replicated data. In presence of replicated data, the performance of the state of the art federated query engines FedX [START_REF] Schwarte | FedX: Optimization Techniques for Federated Query Processing on Linked Data[END_REF] and ANAPSID [START_REF] Acosta | ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints[END_REF] is degraded. Without the knowledge about replicated data, these engines may retrieve data from every relevant server, and produce a large number of intermediate results.

Therefore, federated query engines may exhibit poor performance while availability of the selected SPARQL servers is negatively impacted. To illustrate, we replicated the DBpedia dataset1 and defined two federations. The first one is composed of one mirror of DBpedia, and the second of two identical mirrors of DBpedia. We used FedX [START_REF] Schwarte | FedX: Optimization Techniques for Federated Query Processing on Linked Data[END_REF] and ANAPSID [START_REF] Acosta | ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints[END_REF] federated query engines to execute the query in Figure 6.1a against both federations. In the first federation, both engines produced all the query answers in less than 23 seconds. For the second federation, the query engine has to contact both data sources because it has no knowledge about the relationship between data sources. Therefore, the performance in terms of execution time and number of transferred tuples, is seriously degraded as depicted in Figure 6 during query execution against federations with one and two replicas of DBpedia number of transferred tuples increase more than 250 times when a second replica of DBpedia is added to the federation. Both query engines have to retrieve twice all the triples that match each of the triple patterns of the query, instead of evaluating the joins in the endpoints and retrieving only the query answers. For example, for the first triple pattern, the number of triples is greater than 4 millions. This number is likely to be higher than the maximum number of result rows that the endpoint is allowed to send, in consequence it risks to produce incomplete answers.

As the number of transferred tuples increases, the availability of the contacted SPARQL endpoints can be affected. A replication aware federated query engine could select the SPARQL endpoints to contact in order to produce a complete query answer and transfer the minimum amount of data.

Contributions:

We build the first replication-aware SPARQL federated query engine by integrating into state-of-the art federated query engines FedX [START_REF] Schwarte | FedX: Optimization Techniques for Federated Query Processing on Linked Data[END_REF] and ANAPSID [START_REF] Acosta | ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints[END_REF], a source selection strategy called Fedra that solves the source selection problem with fragment replication (SSP-FR). For a given set of SPARQL endpoints with replicated fragments and a SPARQL query, the problem is to minimize the number of transferred data from endpoints to the federated query engines, while preserving answer completeness and reducing data redundancy.

Problem Statement

Algorithms

The goal of Fedra is to reduce data transfer by taking advantage of the replication of relevant fragments for several triple patterns on the same endpoint. Algorithm 16 proceeds in four main steps:

I. Identify relevant fragments for triple patterns, a Basic Graph Pattern (BGP) triple pattern can be contained in one fragment or a union of fragments (lines 5-6).

II. Localize relevant replicated fragments on the endpoints (line 7).

III. Prune endpoints for the unions (line 11).

IV. Prune endpoints for the BGPs using a set covering heuristic (line 12). 7: access triple patterns from as few endpoints as possible. In our running example, it is not possible because there is no common endpoint that replicates both f 6 and f 7. However, if, for example, f 7

Algorithm 16 Fedra Source Selection algorithm

E(tp) ← { (endpoints(f) : f ∈ fs) : fs ∈ R(
were also replicated at C1, then only C1 would be selected to execute tp1.

Procedure bgpReduction (cf. Algorithm 18) transforms the join part of E(tp) (cf. Figure 6.3) into a set covering problem (cf. line 30). Each triple pattern is an element of the set to cover, e.g., tp2, tp3, tp4 correspond to s2, s3, s4 (cf. Figure 6 The upper bound given in Proposition 6.2.1 is unlikely to be reached, as it requires for all fragments to be relevant for each of the triple patterns. In practice (e.g., experiments from Section 6.3), even for high number of fragments (> 450), the source selection time remains low (< 2 secs).

Theorem 1. If all the RDF data accessible through the endpoints of a federation are described as replicated fragments, Fedra source selection leads query engine to produce complete answers wrt the federation data.

Experimental Study

The goal of the experimental study is to evaluate the effectiveness of Fedra. We compare the performance of federated SPARQL queries using FedX, DAW [START_REF] Saleem | DAW: Duplicate-AWare Federated Query Processing over the Web of Data[END_REF] +FedX, Fedra +FedX, ANAP-SID, DAW+ANAPSID, and Fedra +ANAPSID. DAW is a source selection ables to detect overlapping between datasets and optimize source selection based on that. However, DAW is not designed to manage data replication, there is no support for explicitly define and use replicated fragments.

Therefore, DAW may select redundant data sources and generate a high number of intermediate results.

We expect to see that Fedra selects less sources than the engines and DAW, and transfers less data from endpoints to the query engines.

86CHAPTER 6. FEDERATED SPARQL QUERIES PROCESSING WITH REPLICATED FRAGMENTS We generate 50,000 queries from 500 templates for the WatDiv federation. We remove the queries that caused engines to abort execution, and queries that returned zero results. For the real datasets, we generate more than 10,000 queries using PATH and STAR shaped templates with two to eight triple patterns, that are instantiated with random values from the datasets. We include the DIS-TINCT modifier in all the queries, in order to make them susceptible to a reduction in the set of selected sources without changing the query answer.

For each dataset, we setup a federation of ten consumer SPARQL endpoints (ten as in [START_REF] Saleem | DAW: Duplicate-AWare Federated Query Processing over the Web of Data[END_REF]).

Consumer SPARQL endpoints are implemented using Jena Fuseki 1.1.1 3 . Each consumer endpoint selects 100 random queries. Each triple pattern of the query is executed as a SPARQL construct query with the LDF client 4 . The results are stored locally if not present in at least three consumer endpoints and a fragment definition is created. This replication factor of three was set to avoid federations where all the fragments were replicated by all the endpoints.

In order to measure the number of transferred data, the federated query engine accesses data consumer endpoints through a proxy.

Implementations: FedX 3.0 5 and ANAPSID 6 have been modified to call Fedra and DAW [START_REF] Saleem | DAW: Duplicate-AWare Federated Query Processing over the Web of Data[END_REF] source selection strategies during query processing. Thus, each engine can use the selected sources to perform its own optimization strategies. Fedra and DAW 7 are implemented in both Java 1.7 and Python 2.7.3. Thus, Fedra and DAW are integrated in FedX (Java) and ANAPSID (Python), reducing the performance impact of including these new source selection strategies. Proxies are implemented in Java 1.7. using the Apache HttpComponents Client library 4.3.5 8 . We used R 9 to compute the Wilcoxon signed rank test [START_REF] Wilcoxon | Individual comparisons by ranking methods[END_REF].

Evaluation

Data Redundancy Minimization

To measure the reduction of the number of selected sources, 100 queries were randomly chosen, and the source selection was performed for these queries for each federation using ANAPSID and FedX with and without Fedra or DAW. For each query, the sum of the number of selected sources per triple pattern was computed. Boxplots are used to present the results (Figure 6.5). Both Fedra and DAW significantly reduce the number of selected sources, however, the reduction achieved by Fedra is greater than the achieved by DAW.

To confirm it, we formulated the null hypothesis: "Fedra selects the same number of sources as DAW does", and performed a Wilcoxon signed rank test, p-values were inferior or equal to 1.4e-05 for all federations and engines. These low p-values allow for rejecting the null hypothesis that DAW and Fedra reduction are similar, and accepting the alternative hypothesis that Fedra reduction is greater than the one achieved by DAW. Fedra source selection strategy identifies the relevant fragments and endpoints that provide the same data. Only one of them is actually selected; in consequence, a huge reduction on the number of selected sources of up to 400% per query is achieved.

Data Transfer Minimization

To measure the reduction in the number of transferred tuples, queries were executed using proxies that measure the number of transmitted tuples from endpoints to the engines. Because queries that timed out have no significance on number of transferred tuples, we removed all these queries from 8. https://hc.apache.org/, October 2014. 9. http://www.r-project.org/ q F+A D+A A Number of Selected Sources q F+F D+F F Number of Selected Sources Despite that, globally Fedra shows an effective reduction of the number of transferred tuples.

To confirm it, we formulated the null hypothesis: "using sources selected by Fedra leads to transfer the same number of tuples as using sources selected by DAW"; and performed a Wilcoxon signed rank test, p-values were inferior or equal to 0.002 for all federations and engines except SWDF 10. Up to six queries out of 100 queries did not successfully finish in 1,800 seconds, details available at the web page. q F+A D+A A F+A D+A A F+A D+A A F+A D+A A F+A D+A A F+A D+A A Diseasome Geocoordinates LinkedMDB SWDF WatDiv1 WatDiv100

Number of Transferred Tuples q F+F D+F F F+F D+F F F+F D+F F F+F D+F F F+F D+F F F+F D+F F Diseasome Geocoordinates LinkedMDB SWDF WatDiv1 WatDiv100

Number of Transferred Tuples This work opens several perspectives. First, we made the assumption that replicated fragments are perfectly synchronized and cannot be updated. We can leverage this assumption and manage the problem of federated query processing with divergence [START_REF] Montoya | Fedra: Query Processing for SPARQL Federations with Divergence[END_REF] or use the work on col-graph to synchronize data.

Conclusion

Several variants of SSP-FR can also be developed. SSP-FR does not differentiate between endpoints and the cost of accessing endpoints is considered the same. Finally, SSP-FR and Fedra can be extended to solve the source selection problem where the number of public endpoint accesses is minimized [START_REF] Montoya | Fedra: Query Processing for SPARQL Federations with Divergence[END_REF].

Supervised PhD Thesis associated with this chapter

[Mon16] Gabriela Montoya. « Answering SPARQL Queries using View ». PhD thesis. Université de Nantes, Mar. 2016.

Publications associated with this chapter

International peer-reviewed journals International peer-reviewed conferences

Research Directions

Traditionally, Linked Open Data (LOD) providers make their datasets accessible through SPARQL servers. Data consumers can query a single data source or a federation of data sources. However, existing SPARQL servers suffer from the problems of availability and scalability [START_REF] Buil Aranda | SPARQL Web-Querying Infrastructure: Ready for Action?[END_REF]. Therefore, existing SPARQL servers are unreliable for building real linked data applications. Recently, Triple Pattern Fragment (TPF) [START_REF] Verborgh | Querying Datasets on the Web with High Availability[END_REF] approach is proposed to tackle this issue by balancing the cost of query processing between data providers and data consumers. In TPF, data are hosted in TPF servers providing low-cost publication of data, at the same time, SPARQL query processing is moved to the TPF clients side, i.e., data consumers. Following TPF approach, a SPARQL query engine runs within a web browser of a TPF clients, this enables to share query processing between a TPF server and a TPF client. This approach establishes a trade-off between data availability and performances leveraging the "pressure" on data providers. TPF improves availability of data at the price of decreasing the performance of query processing.

The main objective of my research project is to remove this trade-off without requiring more ressources from data providers. In order to ensure availability and performance, I propose an approach where data consumers not only participate in SPARQL query processing but they also share their ressources. The idea is to take advantage of clients resources to improve performance. I propose to build a federation of data consumers where members of a federation share their storage resources and their processing capabilities. This requires is to build an efficient decentralized federated query engine running in the browsers of data consumers.

Linked Data in the Fog

An efficient decentralized federated query engine running in the browsers of data consumers will break the state of the art tradeoff between availability and performances by proposing a fog of browsers.

Fog of browsers produce new way for hosting data and processing SPARQL queries. The main scientific challenge are :

Customized overlay networks for a fog of browsers. A fog of browsers will connect thousands of browsers in unstructured overlay network. I will use known techniques in distributed systems [START_REF] Bertier | The Gossple Anonymous Social Network[END_REF] to build this overlay. I propose to build a Random Peer Sampling (RPS) overlay network that maintains the membership among connected browsers. On the top of this overlay, other overlay networks can be built according to the applications needs. For instance, I can build a

Clustering Overlay Network (CON) that clusters nodes according to the similarity of their queries.

I experiment this approach by building a collaborative behavioral cache Cyclades in the context of Web applications. Results [START_REF] Folz | CyCLaDEs: A Decentralized Cache for Triple Pattern Fragments[END_REF] show that behavior cache reduces by the 20% the load on the data provider server. The next step of this challenge will be to define new similarities and clustering metrics not only based on queries but also on the infrastructure itself. A possible clustering metric could be the latency of the network. Latency could impact negatively the performance. to browsers limitations, a browser can execute only one query at a time. The challenge is to find with low overhead, free neighbors to execute in parallel the local workload. However, parallel query execution must balance the load not only on clients side but also on the server side. The parallelism must not exceed the limit of the server. In addition, query decomposition and optimisation must take in consideration replicated data.

Dynamic replication and consistency in

The main goal is to build a performant and reliable federated SPARQL query engine by exploiting the local processing power of web browsers.

Figure 1 . 1 -

 11 Figure 1.1 -Semantic Web, Social Web and Social Semantic Web: Source [Bre+09]

Figure 2 . 1 -

 21 Figure 2.1 -Swooki, Replicated graph in an unstructured P2P wiki

 where L B and L E are special lines. L B indicates the beginning of the page and L E indicates the ending of the page.

Figure 2

 2 Figure 2.4 -DSMW, a Decentralized Social Wiki

Figure 2

 2 Figure 2.5 -Mutli-synchronous ontology

 Davoust, Hala Skaf-Molli, Pascal Molli, Babak Esfandiari, and Khaled Aslan. « Distributed Wikis: A Survey ». In: Concurrency and Computation: Practice and Experience 27 (2015), pp. 2751-2777. doi: 10.1002/cpe. [Naj+09] Hala Naja-Jazzar, Nishadi Desilva, Hala Skaf-Molli, Charbel Rahhal, and Pascal Molli. « OntoRest: A RST-based Ontology for Enhancing Documents Content Quality in Collaborative Writing ». In: INFOCOMP Journal of Computer Science 8.3 (2009), pp. 1-10.

[RSM09b]

 RSM09b Charbel Rahhal, Hala Skaf-Molli, and Pascal Molli. « SWooki: Un Wiki Sémantique sur réseau Pair-à-Pair ». In: Ingénierie des Systèmes d'Information 14.1 (Feb. 2009), pp. 117-140.

[Cor+09b]

 Cor+09b Amélie Cordier, Jean Lieber, Pascal Molli, Emmanuel Nauer, Hala Skaf-Molli, and Yannick Toussaint. « WikiTaaable, un wiki sémantique utilisé comme un tableau noir dans un système de raisonnement à partir de cas textuel ». In: 17ème atelier de Raisonnement à Partir de Cas -RàPC 2009. Ed. by Béatrice Fuchs and Amedeo Napoli. Paris, France, June 2009.

s e l e c

 Figure 3.1 -DBpedia Queries

Figure 3

 3 Figure 3.3 -Gap proportion for the twenty DBpedia properties of Table 3.1

Figure 3

 3 Figure 3.4 -BlueFinder algorithm steps

 Require: Q p (D), l: path length Ensure: PI bipartite graphQ p (D), l 1: function WikipediaIndex(Q p (D), l) 2: index = (∅, ∅, ∅) 3: for eache(f rom, to) ∈ Q p (D) do 4:allP aths ← ∅ , curL ← 0, curP ath ← ∅ 5:

 BuildP athQuery(path, f rom, to) 8: index ← InsertInIndex(index, pathQuery, (f rom, to)) After indexing, BlueFinder performs the kNN step (line 2 in Algorithm 10). In this step, given a disconnected pair of articles in Wikipedia, BlueFinder identifies the k nearest connected pairs to the disconnected one. The kNN algorithm uses a similarity measure function to select the nearest neighbors. We define the Semantic Pair Similarity Distance (SPSD) function to measure the similarity between pairs of article. SPSD is based on Jaccard distance, it is defined as: Definition 3.2.1 (Semantic Pair Similarity Distance (SPSD)). Given two pairs of pages c 1 = (a 1 , b 1)

Figure 3

 3 Figure 3.5 -Evaluation method

1 .

 1 What is the best combination of k and maxR values to observe the best accuracy from BlueFinder? 2. Does BlueFinder retrieve path queries that can fix missing relations in Wikipedia? 3. Does the confidence level provided by BlueFinder correlate with the accuracy of the predictions? 4. Does the Wikipedia Community use different conventions to represent a DBpedia property?

 Listing 3.1 -A SPARQL query template for evaluation scenarios s e l e c t ? f r ? t o where { ? db_from a <fromType> . ? db_to a <toType> . ? db_to db-p:< DBpediaSemanticProperty> ? db_from . ? db_from f o a f : i s P r i m a r y T o p i c O f ? f r . ? db_to f o a f : i s P r i m a r y T o p i c O f ? t o }DatasetsWe evaluate BlueFinder with the twenty semantic properties detailed in Table3.1. For each property denoted by prop i , a SPARQL query was evaluated on the DBpedia SPARQL endpoint.The SPARQL query for each property follows the template showed in Listing 3.1 and the values of DBpediaSemanticProperty, fromType and toType are replaced in each property scenario for the specific values of the first, second and third column respectively that are detailed in Table3.1. For instance, the SPARQL query in Listing 3.1a corresponds to prop 1 . The number of the Wikipedia connected pairs of each property is the difference between the numbers of the DBpedia connected pairs minus the number of the Wikipedia disconnected pairs (columns fourth and fifth of Table3.1).

Figure 3

 3 Figure 3.6 -Precision, Recall, F1, and Hit-rate mean of all properties

Listing 4. 1 ,

 1 and a set M of five views given in Listing 4.2. Listing 4.1 -Products, features, and vendor of the offers SELECT * WHERE { ?Offer bsbm:vendor ?Vendor . ?Vendor rdfs:label ?Label . ?Offer bsbm:product ?Product . ?Product bsbm:productFeature ?ProductFeature . } Listing 4.2 -Views that describe contents of five sources having data about products v1(P,L,T,F):-label(P,L),type(P,T),productfeature(P,F) v2(P,R,L,B,F):-producer(P,R),label(R,L),publisher(P,B),productfeature(P,F) v3(P,L,O,R,V):-label(P,L),product(O,P),price(O,R),vendor(O,V) v4(P,O,R,V,L,U,H):-product(O,P),price(O,R),vendor(O,V),label(V,L),offerwebpage(O,U),homepage(V,H) v5(O,V,L,C):-vendor(O,V),label(V,L),country(V,C)

Proposition 4.2. 1 .

 1 The complexity of Algorithm 14 is Max(O(N × |M| × P),O(N × |M| × log(|M|)))

 (a) Unsorted bucketsvendor(O,V) label(V,L) product(O,P) productfeature(P,F) v3(P,L,O,R,V) v1(P,L,T,F) v3(P,L,O,R,V) v1(P,L,T,F) v4(P,O,R,V,L,U,H) v2(P,R,L,B,F) v4(P,O,R,V,L,U,H) v2(P,R,L,B,F) v5(O,V,L,C) v3(P,L,O,R,V) v4(P,O,R,V,L,U,H) v5(O,V,L,C) ,O,R,V,L,U,H) v4(P,O,R,V,L,U,H) v4(P,O,R,V,L,U,H) v2(P,R,L,B,F) v3(P,L,O,R,V) v3(P,L,O,R,V) v3(P,L,O,R,V) v1(P,L,T,F) v5(O,V,L,C) v2(P,R,L,B,F) v1(P,L,T,F) v5(O,V,L,C) (c) Included views

Figure 4 . 2 -

 42 Figure 4.2 -Answer Percentage obtained by semLAV (), MCDSAT (), GQR () and MiniCon ()

Figures 4 .Figure 4 . 3 -

 443 Figures 4.2 and 4.3 show an impressive difference in the answer percentage and throughput, e.g., for Q1 semLAV produces 37,350.1 answers/sec, while the other approach produces up to 0.5 answers/sec. This huge difference is caused by the differences between the complexity of the rewriting generation and the semLAV view selection and ranking algorithm, and between the number of

Figure 4 .

 4 Figure 4.4 shows the time for the first answer (TFA); TFA is impacted by executing the query as soon as possible, according to option 1 given in Algorithm 15. Only for query Q18 semLAV does not produce any answer in 10 minutes. This is because the views included in the global schema instance are large (around one million triples per view) and do not contribute to the answer; consequently, almost all the execution time is spent in transferring data from the relevant views. semLAV produces answers sooner in all the other cases. Moreover, semLAV also achieves complete answer in 11 of 16 queries in only 10 minutes.

[Mon+14a]

 Mon+14a Gabriela Montoya, Luis Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. « SemLAV: Local-as-View Mediation for SPARQL queries ». In: LNCS Trans-Read/Write Linked Open DataMotivations : The current web of Linked Data is Read-Only, therefore, when a data consumer detects inconsistencies, she cannot fix them in place. To be able to do so, the web of Linked Data needs to evolve from Read-Only to Read/Write[START_REF] Berners-Lee | The read-write Linked Data Web[END_REF]. If participants of the Web of Linked Data could write, data could be cleaned and evolve with the collaborative intervention of human and machine agents. The knowledge stored by different communities or even by different individuals or applications could co-evolve[START_REF] Engelbart | Working together[END_REF].The paradigm of shifting from Read-Only to Read/Write would have a similar impact on the Web of Linked Data as the one of the advent of the social web had to the Web of Documents. The shift from the Web 1.0 to 2.0 allowed the collaborative edition of documents. The Web of Data could draw the same benefits to allow the collaborative construction of knowledge.Contributions : Data consumers copy data from different sources in order to perform intensive querying, keeping themselves up-to-date through live update feeds or notification protocols. While querying, mistakes can be identified and repaired. These updates can be integrated by the sources or exchanged between data consumers through copying or through pull requests, in the spirit of Distributed Version Control Systems (DVCS).

Figure 5 . 1

 51 Figure 5.1 illustrates this vision. The top three boxes represent three major Linked Data pub-

Figure 5 . 1 -

 51 Figure 5.1 -Federation of Read/Write Linked Data

 payload s e t S i n i t i a l ∅ query lookup (element e) : b o o l e a n b l e t b = (∃u : (t, u) ∈ S) update insert (s e t <element> T) prepare(T) l e t R = ∅ foreach t i n T: l e t α = unique() R := R ∪ {(t, α)} ef f ect(R) S := S ∪ R Specification 5.1 -Union extension to OR-Set SPARQL 1.1 Update graph update operations can be expressed as set union and difference on RDF-Graphs. Therefore, we can adapt the existing CRDTs for the set type. SU-Set extends Observed-Removed Set (OR-Set) [Sha+11] single-element insertion and deletion to union and difference. Specification 5.1, shows insert operation. Figure 5.2 shows a SU-Set execution, SPARQL 1.1Update operations executed at Graph Stores are rewritten to SU-Set operations over pairs (triple,id) in a transparent way for the user, and sent downstream, where they are re-executed upon reception.

payload s e t S i n i

 t i a l ∅ query lookup (t r i p l e t) : b o o l e a n b l e t b = (∃u : (t, u) ∈ S) update insert (s e t <t r i p l e > T) prepare(T) l e t α = unique() ef f ect(T, α) l e t R = {(t, α) : t ∈ T } S := S ∪ R update delete (s e t <t r i p l e > T) prepare(T) l e t R = ∅ foreach t i n T:

 R e c e p t i o n pre A l l add (t , u) d e l i v e r e d S := S \ R update delete -insert(whrP at, delP at, insP at) // match (m, p a t t e r n) : t r i p l e s matching // p a t t e r n w i t h i n mapping m. prepare(whrP at, delP at, insP at) l e t S = {t | (∃u | : (t, u) ∈ S)} // M i s a M u l t i s e t o f mappings l e t M = e v a l (S e l e c t * from S where whrPat) l e t D = ∅ foreach m i n M : D = D ∪ match(m, delP at) l e t D = {(t, u) : t ∈ D ∧ (t, u) ∈ S} l e t I = ∅ foreach m i n M : l e t I = I ∪ match(m, insP at) l e t α = unique() ef f ect(D, I , α) // Causal R e c e p t i o n pre A l l add (f , u) ∈ D d e l i v e r e d l e t I = {(i, α) : i ∈ I } S := (S \ D) ∪ I Specification 5.2 -Optimized SU-Set

Figure 5

 5 Figure 5.3 -Read/Write Linked Data with Fragments. Underlined triples are the ones coming from fragments, triples preceded by a '+' are the ones locally inserted, struck-through triples are the ones locally deleted.

Figure 5 .

 5 Figure 5.3 illustrates how updates are propagated on Read/Write Linked Data using fragments.

Figure 5

 5 Figure 5.4 -Illustration of Fragment Consistency. Plain boxes represent RDF-Graphs, shaded boxes simplified sequences of updates. * represents a full fragment.

Figure 5 . 6 -

 56 Figure 5.6 -Difference between annotating with Z (5.6a) versus annotating with M (5.6b).

Figure 5 .

 5 Figure 5.6 compares annotations with Z versus annotations with M . In the depicted collaboration network, the fact (s,p,o) is inserted concurrently by P1 and P3, (s,p,v) is inserted concurrently by P2 and P5 and (s,p,r) inserted only by P4. When the synchronization is finished, P5 notices that it has three triples with s and p as subject and predicate but different object values. If P5 wants to keep

Figure 6 . 1 -

 61 Figure 6.1 -DBpedia query and its Execution Time (ET) and Number of Transferred Tuples (NTT) during query execution against federations with one and two replicas of DBpedia

Require:

 Q: SPARQL Query; F: set of Fragments; endpoints : Fragment → set of Endpoint; : TriplePattern × TriplePattern Ensure: selectedEndpoints: map from TriplePattern to set of Endpoint.

1 :

 1 function sourceSelection(Q,F,endpoints,) 2:triplePatterns ← get triple patterns in Q) ← {{f : f ∈ R(tp) : tp f }} {{f } : f ∈ R(tp) : f tp ∧ ¬(∃g : g ∈ R(tp) : f g tp)}

 Metrics: i) Number of Selected Sources (NSS): is the sum of the number of sources that have been selected per triple pattern. ii) Number of Transferred Tuples (NTT): is the number of tuples transferred from all the endpoints to the query engine during a query execution. Further informations (implementation, results, setups details, tests p-values) are available at https://sites.google.com/site/fedrasourceselection.

Figure 6 . 5 -

 65 Figure 6.5 -Number of Selected Sources for execution of ANAPSID (A) and FedX (F) using Fedra (F+), DAW (D+), and the engine source selection

Figure 6 . 6 -

 66 Figure 6.6 -Number of Transferred Tuples during execution with ANAPSID (A) and FedX (F) using Fedra (F+), DAW (D+), and the engine source selection

I

 illustrated how replicating fragments allow for data re-organization from different data sources to better fit query needs of data consumers. Then, I proposed a replication-aware federated query 90CHAPTER 6. FEDERATED SPARQL QUERIES PROCESSING WITH REPLICATED FRAGMENTS engine by extending state-of-art federated query engine ANAPSID and FedX with Fedra, a source selection strategy that approximates SSP-FR. Fedra exploits fragment localities to reduce intermediate results. Experimental results demonstrate that Fedra achieves significant reduction of intermediate results while leading to produce complete answers.

[Mon+17]

 Mon+17 Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. « Decomposing Federated Queries in Presence of Replicated Fragments ». In: Web Semantics: Science, Services and Agents on the World Wide Web, Elsevier 42 (2017), pp. 1-18.

 a fog of browsers. To improve performance, a TPF client may decide to locally materialize frequently used data fragments. This kind of dynamic fragment replication poses a number of problems concerning replicated data consistency. Consistency has already been addressed in[Ibá+14], but without considering the data distribution and communication costs. The replication strategy (what, where, when) is conditioned by the overlay network (see above) for deciding between fragment replication/materialization and sub-query delegation. Replication strategies impact federated query engine performance.Federated query engine for a fog of browsers.A browser executes an infinite stream of queries that arrive at anytime. A browser can execute a query by itself or delegate it to a neighbor. Due CHAPTER 7. RESEARCH DIRECTIONS

Definition 2.1.5. insert Preconditions Let

 P age be the page identified by P ageID, let the operation op=Insert(P ageID, newline, p , n), newline =< LineID, c, d, v> generated at a server N odeID, R is its local RDF repository. The line newline can be inserted in the page P age if its previous and next lines are already present in the data model of the page P age.

∃i ∃j LineID(P age[i]) = p ∧ LineID(P age[j]) = n Definition 2.1.6. Preconditions of delete operation Let P age be the page identified by P ageID, let op = Delete(P ageID, dl) generated at a server N odeID with local RDF repository R, the line identified by dl can be deleted (marked as invisible), if its dl exists in the page. ∃i LineID(P age[i]) = dl

 At the beginning, the local text and the RDF repositories are empty. At peer 1 , user 1 inserts the line "France is located [located In::Europe]" at the position 1 in her copy of the "France" page. Concurrently, at peer 2 user 2 inserts a new line "France is a country in [located In::Europe]" in her local copy of "France" page at the same position and finally at peer 3 user 3 deletes the line added by user 1 . When op 2 is integrated at peer 1 , the semantic annotation is present two times in the text and just one time in the RDF repository. In fact, the RDF repository cannot store twice the same triple. When op 3 is finally integrated on peer 1 , it deletes

the corresponding line and the semantic entry in the RDF repository. In this state, the text and the RDF repository are inconsistent. Concurrently, peer 3 has integrated the sequence [op 1 ;op 3 ;op 2]. This sequence leads to a state different than the state on peer 1 . Copies are not identical, convergence is violated.

Definition 2.1.9. Intention of delete operation

 Where P age and R are the new values of the page and the RDF repository respectively after the application of the delete operation at the server S andis the difference of multi-sets. If statement(s) in T exists already in R so its multiplicity is decremented and deleted from the repository if it is equal to zero.

	Peer 1	Peer 2	Peer 3
	Text	Text	Text
	RDFRepository	RDFRepository	RDFRepository
	op 1 = Insert(1, "France is located..")	op 2 = Insert(1, "France is a country... ")
	France is located in [locatedIn::Europe]	France is a country in [locatedIn::Europe]
	{(France, locatedIn, Europe,1)}	{(France, locatedIn, Europe,1)}
	op 2	p p		P P op 1
	France is located in [locatedIn::Europe] France is a country in [locatedIn::Europe] {(F rance, locatedIn, Europe, 2)}		France is located in [locatedIn::Europe] {(F rance, locatedIn, Europe, 1)}
				op 3 = delete(1)
				Text
	op 3	r r		6 6 op 2
	France is a country in [locatedIn::Europe]		France is a country in [locatedIn::Europe]
	{(F rance, locatedIn, Europe, 1)}		{(F rance, locatedIn, Europe, 1)}
	Figure 2.3 -Convergence after integrating concurrent modifications

Let S be a P2P semantic wiki server, R is the local RDF repository and P age is a semantic wiki page. The intention of a delete operation op= delete(P ageID, ld) where T is the set (or multi-set) of RDF statements in the deleted line, is defined as: (1) the line ld is set to invisible and (2) the number of occurrence of the semantic data embedded in ld is decreased by one, if this occurrence is equal to zero which means these semantic data are no more referenced in the page then they are physically deleted from the R. ∃i ∧ P ageID(P age [i]) = ld (2.7) ∧ visibility(P age [i]) ← f alse (2.8) ∧ R ← R -T (2.9)

end if 11: end procedure Algorithm 4 IntegrateInsRDFOp

			Require: line: LineID;
	1: procedure IntegrateDelRDF(id)	1: procedure I(n)tegrateInsRDF(line) :
	2:	let S ← ExtractRDF(LineID)	2:	let S ← ExtractRDF(line)
	3:	if S = ∅ then	3:	if S = ∅ then
	4:	for each triple ∈ S do	4:	for each triple ∈ S do
	5:	triple.counter-	5:	if Contains(triple) then
	6:	if triple.counter = 0 then	6:	triple.counter++
	7:	deleteRDF(R,triple)	7:	else
	8:	end if	8:	insertRDF(R,triple)
	9:	end for	9:	end if
	10:		10:	end for
			11:	end if
			12: end procedure

 is a set of wiki graphs, as in a highly available unstructured wiki; -N = S, C is a graph representing a socially organized overlay network: the nodes S = {S 1 , . . . , S n } are uniquely identified participants, and the edges C ⊂ S × S represent social connections through which operations are exchanged. Each participant S i hosts G i .

 Successful Case-based Reasoning Applications-2. Vol. 494. Studies in Computational Intelligence. Springer, Jan. 2014, pp. 121-162. isbn: 978-3-642-38735-7. doi: 10.1007/ 978-3-642-38736-4_7. url: http://hal.inria.fr/hal-00912767.

[START_REF] Cordier | Taaable: a Case-Based System for personalized Cooking[END_REF]

Amélie Cordier, Valmi Dufour-Lussier, Jean Lieber, Emmanuel Nauer, Fadi Badra, Julien Cojan, Emmanuelle Gaillard, Laura Infante-Blanco, Pascal Molli, Amedeo Napoli, and Hala Skaf-Molli. « Taaable: a Case-Based System for personalized Cooking ». In:

Table 3

 3

	DBpedia Property	from Class	to Class	# DBpedia	# Wikipedia
				connected pairs	disconnected pairs
	prop 1 : birthPlace	Place	Person	409,812	221,788
	prop 2 : deathPlace	Place	Person	108,148	69,737
	prop 3 : party	PoliticalParty	Person	31,371	15,636
	prop 4 : firstAppearance	Work	Person	1,701	142
	prop 5 : recordLabel	Company	Person	25,350	14,661
	prop 6 : associatedBand	MusicalWork	Person	365	73
	prop 7 : Company	Software	developer	14,788	2,329
	prop 8 : recordedIn	PopulatedPlace	MusicalWork	28,351	27,896
	prop 9 : debutstadium	Building	Athlete	595	393
	prop 10 : producer	Artist	MusicalWork	70,272	32,107
	prop 11 : training	Building	Artist	171	109
	prop 12 : previousWork	Album	MusicalWork	72,498	3,887
	prop 13 : recordLabel	Company	MusicalWork	118,028	75,329
	prop 14 : starring	Person	Film	164,073	42,584
	prop 15 : country	PopulatedPlace	Book	19,224	17,281
	prop 16 : city	PopulatedPlace	Educational	34,061	8,681
			Institution		
	prop 17 : associatedBand	Band	MusicalArtist	24,846	4,100
	prop 18 : fromAlbum	Album	Single	18,439	1,268
	prop 19 : location	PopulatedPlace	Airport	10,049	2,660
	prop 20 : notableWork	Book	Person	1,510	73

.1. The last two columns of the table provide the number of connected pairs obtained by a SPARQL query and the amount of disconnected pairs in Wikipedia for a specific property, respectively.

Table 3 .

 3

1 -Results of 20 SPARQL queries for 20 properties and different classes.

 BlueFinder filters path queries into star path queries in order to reduce data sparsity.

	2:	noise	=	{"Articles_", "All_W ikipedia_", "W ikipedia_", "N on	-
		f ree", "All_pages_", "All_non"}		
	3:	for all pq = (p 1 , .., p n) ∈ P Q; do		
	5:	P Q ← P Q -{pq}		
	6:	end if			
	7:	end for			
	8:	return P Q			
	9: end function			
	Algorithm 13 StarGeneralization		

1: function NoiseFilter(P I) 4: if p i contains any c ∈ noise; 1 ≤ i ≤ n then Require: P Q: set of path queries, P I: Path index Ensure: P Q * : set of star path queries 1: function StarGeneralization(P Q, P Q *) 2: P Q * ← ∅ 3: for each pq = (p 1 , .., p n-1 , p n) ∈ P Q; do 4:

if p n-1 starts with "Cat:" then 5:

 To reduce this gap, we have to discover Wikipedia conventions to represent a DBpedia property between a pair DBpedia types to define a similarity function. Experimental results demonstrate that BlueFinder is able to fix in average 89 % of the disconnected pairs with good accuracy and confidence.Currently, BlueFinder is tailored for Wikipedia/DBpedia where entities matching are well-defined.However, BlueFinder can be generalized to other datasets with established entities matching.As a further work, I plan to extend the approach to any property in DBpedia in combination with other languages of Wikipedia and to offre the next generation of BlueFinder as a service for any Wikipedia editor.

	Supervised PhD Thesis associated with this chapter
	[Tor14]	Diego Torres. « Co-Evolution between Social and Semantic Web ». PhD thesis. Univer-
		sité de Nantes, Oct. 2014.
	Publications associated with this chapter
	Book chapters
		Filling the Gap by Discovering Wikipedia Conventions ». In: 2012 IEEE/WIC/ACM
		International Conference on Web Intelligence (WI 12). 2012.

of Wikipedia articles. I proposed BlueFinder, a collaborative recommender system that recommends navigational paths to represent a DBpedia property in Wikipedia, while respecting Wikipedia conventions. BlueFinder learns from those similar pairs already connected by Wikipedia community and proposes a set of recommendations to connect a pair of disconnected articles. BlueFinder exploits [Tor+16] Diego Torres, Hala Skaf-Molli, Pascal Molli, and Alicia Diaz. « Discovering Wikipedia Conventions Using DBpedia Properties ». In: Revised Selected, Invited Papers of Semantic Web Collaborative Spaces: SWCS 2013, and SWCS 2014, Springer International Publishing, 2016, pp. 115-144.

International peer-reviewed conferences

[Tor+13] Diego Torres, Hala Skaf-Molli, Pascal Molli, and Alicia Diaz. « BlueFinder: Recommending Wikipedia Links Using DBpedia Properties ». In: ACM Web Science Conference 2013 (WebSci 13). Paris, France, May 2013, pp. 115-144. [Tor+12a] Diego Torres, P. Molli, H. Skaf-Molli, and A. Diaz. « From DBpedia to Wikipedia: [Tor+11] Diego Torres, Alicia Diaz, Hala Skaf-Molli, and Pascal Molli. « Semdrops: A Social Semantic Tagging Approach for Emerging Semantic Data ». In: 2011 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2011). Lyon, France, Aug. 2011.

Table 4 .

 4 1 -Impact of the different views ordering on the number of covered rewritings

	# Included	Order One		Order Two	
	views (k) Included views (V k) # Covered Included views (V k) # Covered
			rewritings		rewritings
	1	v5	0	v4	0
	2	v5, v1	0	v4, v2	2
	3	v5, v1, v3	6	v4, v2, v3	12
	4	v5, v1, v3, v2	8	v4, v2, v3, v1	32
	5	v5, v1, v3, v2, v4	60	v4, v2, v3, v1, v5	60
	The order in which views are included in the partial global schema instance impacts the number of
	covered rewritings. Consider two different orders for including the views of the above example: v5, v1,

v3, v2, v4 and v4, v2, v3, v1, v5. Table 4.1 considers partial global schema instances of different sizes.

Table 4 .

 4 2 -For query Q, buckets produced by Algorithm 14 when k views have been included. V k is obtained by Algorithm 15 and the number of covered rewritings

Table 4 .

 4 2c shows how the number of covered rewritings increases as views are included into the global schema instance. Each V k in this table is a solution to the MaxCov problem, i.e., the number of covered rewritings for each V k is maximal. There are two possible options regarding query execution.

Table 5 .

 5 1 -Comparison of communication overhead between SU-Set, its optimized version and the use of no ids (nothing). The data used are the triples published by DBpedia Live from the 10th to the 16th march 2012.

	Size (MB)

 .1b. For both engines the execution time and

	s e l e c t d i s t i n c t ? p ?m ? n ? d where { ? p d b p r o p : name ?m . ? p d b p r o p : n a t i o n a l i t y ? n . ? p d b p r o p : d o c t o r a l A d v i s o r ? d }	#DBpedia Replicas 1 2	FedX ET (s) 4.80 2,678.10 2,260,006 3,415.24 8,337,702 ANAPSID NTT ET (s) NTT 8,230 2.61 8,229
	(a) DBpedia Query		(b) Query Execution

transfer minimization: executing

 Given a SPARQL query Q, a set of SPARQL endpoints E, the set of fragments F that have been replicated by at least one endpoint in E, a fragment mapping endpoints(), a containment mapping . The Source Selection Problem with Fragment Replication (SSP-FR) is to assign to each triple pattern in Q, the set of endpoints from E that need to be contacted to answer Q. A solution of SSP-FR corresponds to a mapping D that satisfies the following properties: , tp 2 , tp 4 tp 1 , tp 2 , tp 3 , tp 4 tp 2 , tp 3 , tp 4 the query using the sources selected in D minimizes the number of transferred data.We illustrate SSP-FR on running query Q of Figure6.2. Table6.1a presents relevant fragments for each triple pattern. Table6.1b shows three D(tp) that ensure the answer completeness property.

	82CHAPTER 6. FEDERATED SPARQL QUERIES PROCESSING WITH REPLICATED FRAGMENTS
			F	%s% in CONSTRUCT WHERE { %s% }	
		DBpedia	f2 ?film dbo:director ?director f3 ?movie owl:sameAs ?film f4 ?movie linkedmdb:genre ?genre tp4 {f 4}		LinkedM DB tp4 {C1,C3}
			f5 ?movie linkedmdb:genre film_genre:14 f6 ?director dbo:nationality dbr:France tp3 {f 3}	tp3 {C2,C3}
			f7 ?director dbo:nationality dbr:United_Kingdom ∪ tp2 {f 2} ∪ tp2 {C1,C2,C3}
		tp1 {f 6} tp1 {f 7}		tp1 {C1} tp1 {C2}
	C1 f 2, f 6 Figure 6.3 -Execution plan encoded in data structures R (left) and E (right); multiple subsets C2 C3 f 4 f 2, f 7 f 3, f 5 f 3, f 4 f 2 represent union of different fragment (ex. {f6}, {f7}); elements of the subset represent alternative
	location of fragments (ex. {C1,C3}); bold sources are the selected sources after set covering is used
	to reduce number of selected sources				
	select distinct ?director ?nat ?genre where { ?director dbo : nationality ?nat . ?film dbo : director ?director . ?movie owl : sameAs ?film . ?movie linkedmdb : genre ?genre } Client tp 1 (a) Relevant Fragments size of intermediate results.	(tp1) (tp2) (tp3) (tp4) (b) Source selections
		Q triple pattern		RF	Endpoints	TP	D 0 (tp)	D 1 (tp)	D 2 (tp)
	tp 1	?director dbo:nationality ?nat	f6	C1	tp 1	{C1,C2}	{C1,C2} {C1,C2}
					f7	C2	tp 2	{C1,C2,C3}	{C1}	{C3}
	tp 2	?film dbo:director ?director	f2	C1,C2,C3	tp 3	{C2,C3}	{C2}	{C3}
	tp 3	?movie owl:sameAs ?film	f3	C2,C3	tp 4	{C1,C2,C3}	{C3}	{C3}
	tp 4	?movie linkedmdb:genre ?genre	f4	C1,C3	Tuples to	421,675	170,078	8,953
					f5	C2	transfer	
	3. Data It may seem counterintuitive that these three D(tp) do ensure the answer completeness property,
	as they do not include existing DBpedia triples for dbo:nationality predicate with object different from

1. Answer completeness: sources selected in D lead engines to produce complete query answers.

2. Data redundancy minimization: cardinality(D(tp)

) is minimized for all triple pattern tp in Q, i.e., redundant data is minimized. Figure

6

.2 -Client defines a federation composed of C1,C2, and C3 that replicates fragments f 2-f 7 Table

6

.1 -Q Relevant fragments, and source selections that lead to produce all the obtainable answers for the federation given in Figure

6

.2 dbr:France and dbr:United_Kingdom, but as they are not included in endpoints in E, these triples are inaccessible to the federation. Even if D 1 and D 2 minimize the number of selected endpoints per triple pattern, only D 2 minimizes the transferred data. Indeed, executing tp1, tp2, tp3 against replicated fragments that are located in the same data consumer endpoint will greatly reduce the

 2 ,s 4 },{s 2 ,s 3 },{s 2 ,s 3 ,s 4 }}

		Triple Patterns (Tps)	E(tp)	S		
		tp2: ?film dbo : director ?director	{{C1,C2,C3}} { s 2		
		tp3: ?movie owl : sameAs ?film	{{C2,C3}}	s 3	C1	C2	C3
		tp4: ?movie linkedmdb : genre ?genre	{{C1,C3}}	s 4 }		
		(a) S instances			(b) C instance
	Figure 6.4 -Set covering instances of S and C of BGP reduction Algorithm 18 for the query Q
	(Figure 6.2)				
		Next, we illustrate how Algorithm 16 works on our running query Q and data consumer endpoints
	C1, C2, C3 from Figure 6.2. 2				
		First, for each triple pattern, Fedra computes relevant fragments in R(tp), and groups them if
	they provide the same relevant data. For tp1, R(tp1) → {{f 6}, {f 7}}. For tp4, as f 5	f 4, f 5
	is safely removed at line 6, and R(tp4) → {{f 4}}. Second, Fedra localizes fragments on endpoints
	21:	for each tp ∈ triplesWithMultipleFragments do				
	22:	commonSources ← (f : f ∈ E(tp))					get sources in all subsets in E(tp)
	23:	if commonSources = ∅ then				
	24:	E(tp) ← { commonSources }				
	25:	end if				
	26:	end for				
	27: end procedure				
		tp) }				
	8:	end for				
	9:	basicGP ← get basic graph patterns in Q				
	10:	for each bgp ∈ basicGP do				
	11:	unionReduction(bgp, E)			endpoints reduction for multiple fragments triples
	12:	bgpReduction(bgp, E)				endpoints reduction for the bgp triples
	13:	end for				
	14:					
		end for				
	17:	return selectedEndpoints				
	18: end function				

for each (tp, E(tp)) ∈ E do 15: selectedEndpoints(tp) ← for each set in E(tp) include one element

16:

{{s in E(tp). For tp1, E(tp1) → {{C1}, {C2}}. For tp4, E(tp4) → {{C1, C3}}. Figure 6.3 shows the execution plans encoded in R(tp) and E(tp). Triple patterns like tp1, with more than one relevant fragment, represent unions in the execution plan. Algorithm 17 Union reduction algorithm Require: tps : set of TriplePattern; E : mapping from TriplePattern to set of set of Endpoint 19: procedure unionReduction(tps, E) 20: triplesWithMultipleFragments ← { tp : tp ∈ tps ∧ cardinality(E(tp)) > 1 } Procedure unionReduction (cf. Algorithm 17) prunes non common endpoints, if possible, to

 Line 32 computes the selected endpoints, in our example, selected={ C3 }.Finally, (Algorithm 16, line 15) chooses among endpoints that provide the same fragment and reduces data redundancy. For query Q, the whole algorithm returns D 2 of Table6.1b.

	Require: tps : set of TriplePattern; E : mapping from TriplePattern to set of set of Endpoint
	28: procedure bgpReduction(tps, E)
	29:	triplesWithOneFragment ← { tp : tp ∈ tps ∧ cardinality(E(tp)) = 1 }
	30:	(S, C) ← minimal set covering instance using triplesWithOneFragment E
	31:	C' ← minimalSetCovering(S, C)
	32:	selected ← get endpoints encoded by C'
	33:	for each tp ∈ triplesWithOneFragment do
	34:	E(tp) ← E(tp)	selected
	35:	end for	
	36: end procedure	
	relies on an existing heuristic [Joh73] to find the minimum set covering. In our example, it computes
	C'={{s2,s3,s4}}.	

.4a). And for each endpoint in E(tp), we include the subset of triple patterns associated with that endpoint, e.g., for endpoint C1 we include the subset {s2,s4} as relevant fragments tp2 and tp4 are replicated by C1 (cf. Figure 6.4b). Line 31 Algorithm 18 Basic graph pattern reduction algorithm Proposition 6.2.1. Algorithm 16 has a time complexity of O(n.m 2), with n the number of triple patterns in the query, m the number of fragments, k the number of endpoints, l the number of basic graph patterns in the query, and m k ∧ k l holds.

Table 6 .

 6 2 -Dataset characteristics: version, number of different triples (# DT), and predicates (# P) We use the real datasets: Diseasome, Semantic Web Dog Food, Linked-MDB, and DBpedia Geo-coordinates. Further, we consider two instances of the Waterloo SPARQL Diversity Test Suite (WatDiv) synthetic dataset [Alu+14; Alu+13] with 10 5 and 10 7 triples. Table6.2shows the characteristics of these datasets. The datasets are hosted on local Linked Data Fragment (LDF) servers.

	Dataset	Version date	# DT	# P
	Diseasome	19/10/2012	72,445	19
	Semantic Web Dog Food	08/11/2012	198,797	147
	DBpedia Geo-coordinates	06/2012	1,900,004	4
	LinkedMDB	18/05/2010	3,579,610	148
	WatDiv1	_	104,532	86
	WatDiv100	_	10,934,518	86
	Datasets and Queries:			

 Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. « Federated SPARQL Queries Processing with Replicated Fragments ». In: The Semantic Web -ISWC 2015 -14th International Semantic Web Conference. Bethlehem, United States, Oct. 2015, pp. 36-51. Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. Fedra: Query Processing for SPARQL Federations with Divergence. Tech. rep. May 2014. url: http: //hal.univ-nantes.fr/hal-01022740.

	[Mon+15] Gabriela Montoya, Technical reports [Mon+14b]

DBpedia of July 2013

DBpedia Live at August 15th, 2013.

As DBpedia is not included in the federation for processing Q, only fragments f 6 and f 7 are available to retrieve data for tp 1 and the engine will not produce all the answers that would be produced using DBpedia.

International peer-reviewed workshops