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Introduction

The thesis is made up of two parts. In the first part we generalize the Abhyankar-Moh theory to a special
kind of polynomials, called free polynomials. These polynomials generalize to K[[z1, ..., z.]][y] the well known
results about polynomials of K[[z]|[y], where K is an algebraically closed field of characteristic zero. More
precisely, consider a polynomial :

f=y"+a@y" "+ +an(z)

in K[[z]][y], and assume that f is irreducible. The Newton-Puiseux theorem [25, 27] says that f admits a
solution y(mi) in the ring of fractional power series K[[x%]] Moreover, we have :

n
fy) = [ — y(wiz))
i=1
where wy, ..., w, are the n-th roots of unity in K. Furthermore, Abhyankar [2 [4] has proved that we can
associate with f a sequence of integers {myi,...,mp} derived from the exponents of some root y = Zp cpa?
of f(x",y) = 0, and this sequence is independent of the choice of the solution. This set of integers is called
the set of Newton-Puiseux exponents of f, and is constructed as follows : mg =n = dy, and for all k > 1 :

my =inf{p € N, such that ¢, # 0, and dj, does not divide p}, dj41 = ged(dy, my)

Then h is such that dpy1 = 1. We can also associate with f its semigroup of values which is defined to be
the set :

L(f) = {int(f,g) = O=(g9(z",y(z))), g € K[[z]][y]\(f)}

where Og(g(2",y(x))) denotes the smallest integer among the exponents of the power series g(z", y(z)). This
semigroup is generated by the elements rg, r1, ..., rp, defined by ro = mg =n,ry = mq,and forall2 < k < h:

d—1
dy,

Abhyankar proved in [4] that there exists a special king of polynomials {G1, ..., G}, }, namely pseudo-roots
of f, such that deg(G;) = 7 and O(f,G;) = r;. Moreover, he proves that O(f,g;) = r; for all i € {1,..., h}
where {g1, ..., gn} are the approximate roots of f (see Definition .

More generally let f = y" + a1 (21, ..., 2e)y" L + - -+ + an(z1, ..., ) be a polynomial in y with coefficients
a;(z1, ..., ze) € K[[x1, ..., zc]], the ring of formal power series in several variables, for all 1 < i < n. Then, f is
said to be quasi-ordinary if its discriminant A, (f), which is defined to be the resultant in y of f and its y-
derivative f, is of the form Ay (f) = a7 - - 28°e(x1, ..., z¢), where e(z1, ..., Zc) is a unit in K[z, ..., z¢]]. If f

TE = Th—1 + Mg — Mg—1
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[

1 1
is irreducible then by the Abhyankar-Jung theorem [3], 18] f admits a solution y(z1, ..., z.) in K[z}, ..., z2]].
Moreover we have :

n

f(x?a '-'a:EZ?y) = H(y - yi(xla '--71;6))

=1

where y; (21, ..., 7e) = y(Bixy, ..., Bixe) are conjugates of y, where ﬁ; is an n-th root of unity for all 1 < i < n,
1<j<e Nowlety= Z(ph.--,pe) C(ph_“ype)xfl .- 28 be a root of f(z7,...2%,y) = 0, and define the support
of f to be the set Supp(f) = {p € N¢, such that ¢, # 0}. In [19], Lipman has proved that there exists a
sequence of elements my, ..., my € Supp(y) such that :

(1) m1 < mg < -+ < my, coordinate-wise.

h

(13) If m € Supp(f), then m € (nZ)¢ + ZmiZ
i=1

(#1) m; ¢ (NZ)°+ 3>, ;m;Z for all i =1,.... h.

The semigroup of f is defined to be the set I'(f) = {O(f,9), g € K[[z1,...,z]][y]\(f)}, where O(f,g) is
the lexiographical order of the the initial form of g(z%, ..., 22, y(z1, ..., z.)). Define the D-sequence of f to be
Dy =nf, and for all 1 < i < h, D; to be the gcd of the e x e minors of the matrix [nIe,mlT, - m?], where
T denotes the transpose of the vector. We have Dy > ... > Dy = n®~1. We define the e-sequence to be

_ D . 1 .
i = P for all 1 <14 < h, the r-sequence 7y, ..., 76, 71, ..., 75 to be :

T = €i—17i—1 + Mm; — M

for all 1 <+4¢ < h, and ré, ...,7G to be the canonical basis of Z¢. The sequence {ré, ey 76,1, oy T} forms a
system of generators of I'(f). Gonzalez Pérez in [16] proved that for all i € {1,...,h} f admits an i-th semi-
root, that is a polynomial g of degree 7 such that g(z",y(x)) = a"e for some € unit in K[[z]]. Moreover, he
proved that for all i € {1, ..., h} the d;-th approximate root of f is an i-th semi-root of f.

In sections 2 and 3 of the thesis we recall some preliminary facts about G-adic expansions, approximate
roots, and affine semigroups. In section 4 we recall the Abhyankar-Jung theorem and the construction of the
characteristic monomials of a quasi-ordinary branch done by Lipman [19], and the study of the semi-roots
and approximate roots of a quasi-ordinary branch done by Gonzalez Pérez in [16].

The aim of the first part of the thesis is to generalize these results from quasi-ordinary to a wider class of
polynomials. Let f(z1,...,2c,y) be a polynomial in y with coefficients in the polynomial ring K[zy, ..., x¢],
McDonald proved in [2I] that f admits a root in the ring of Puiseux power series with support in strongly
convex polyhedral cone. Gonzalez Pérez in [15] extended this result to polynomials with coefficients in the
ring of Puiseux power series with support in a strongly convex polyhedral cone. Moreover, Aroca and Ilardi
in [6] generalized McDonald results. Given w € R™, they proved that the field of w-positive Puiseux series
is algebraically closed, where a w-positive Puiseux series is a Puiseux series with support in a translate of a
strongly convex rational polyhedral cone with w.v > 0 for all v in this cone.

In this work we take a polynomial f = y™ + a1 (21, ..., z)y" L + - + an(z1, ..., Te) in K[[21, ..., z]][y] with
a y-discriminant A, (f)(where the y-discriminant is defined to be the y-resultant of f and its y-derivative).
By a preliminary change of variables we may assume that the homogeneous component of smallest degree of
Ay(f) contains a power of x1. Now by taking the change of variables :

r1 = X1,m0 = Xo X1, ..., 7 = X X3

1 1
we get a new polynomial F(X1,..., X,,y), which is quasi-ordinary, hence it has a root ynx € K[[ X", ..., X&']].
By taking the preimage we get a solution y of f(x1,...,ze,y) = 0, such that the support of y is in some line
free cone C' (where a line free cone C' is a cone such that for all z € C' we have —x ¢ C). Thus y is in the set
1 1

of fractional power series with exponents in the line free cone C, denoted by K¢ |[[z], ..., z&]] (assuming that
f is irreducible in K¢ [[z1,. .., ze]][y]). This set forms a ring under the usual addition and multiplication of
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power series, moreover it is an integral domain.

The main idea of the birational change of variables above is the following : if f is irreducible in K¢|[[x1, . . ., z¢]|[y]
then F' is an irreducible quasi-ordinay polynomial (see Theorem |4 and Lemma .

Since C' is a line free cone, there exists an additive order < on C' which is compatible with C, i.e Vp € C'NZ*¢
we have p > (0, ...,0). In particular every set S C C'NZ€ has a minimal element with respect to this order,
and so if we consider the support of y, then it can be arranged in an increasing order with respect to this
order.

1 1
Let L be the fraction field of K¢[[z1, ..., z.]], and let L, = L(z,...,xZ) be the field obtained by adjoining

1 1
x]',...,x& to L, then a conjugate y; of y is an element #(y) for some automorphism 6 of L,, over L. Note
1 1

that y; belongs to Ko[[z], ...,z ]] also. We define the set of characteristic exponents of f to be :
{O(yi — y;), such that y;,y; are distinct roots of f }

where O(y; — y;) is the smallest element in Supp(y; — y;) with respect to the order compatible with C.
Similarly, for every y; # y; let M;; be the initial monomial of y; — y;. The obtained set {M;;} is called the
set of characteristic monomials of f. Moreover, we prove that L(y) = L(My, ..., Mp).

Obviously the set of characteristic exponents of f is a finite subset in C' N Z€, hence we can arrange them in
an increasing order and write them as :

Moreover we prove that :

h
(¢) For all m € Supp(y), m € (nZ)° + Z m;Z

i=1
i—1

(ii) m; ¢ (nZ€) + Y m;Z

j=1
Let Dy = n®, and define D; 1 to be the gcd of the e x e minors of the matrix (nl., m?, ..., m;[) forall1 <i <h,
and set ¢; = D?j—l- We obtain that Dy > --- > Dy 1, and that the degree of extension of L(Mj, ..., M;) over

L(Mj, ..., M;_1) is equal to e;. Consider the sequence 7§, ...,7§,71,...,r, by taking r{,...,r§ to be the ca-
nonical basis of (nZ)¢, and r; = e;_1r;—1 + m; — m;_1, then set d; = n?il. Now define the semigroup of
f to be the set I'(f) = {O(f,9), g € Kc[[z1,-..,z)][[y]]\(f)}, where O(f,g) is the smallest element in
Supp(g(zt, ..., x2, y(z1,...,xe))) with respect to the chosen order. As in the quasi-ordinary case, I'(f) is ge-
nerated by ré, .oy 76,71, ..., 7. Furthermore, there exists a special set of polynomials g1, ..., gn (approximate
roots of f), such that O(f,g;) =r; foralli=1,.... h.

In the second part of this theis we consider numerical semigroups and their ideals and we study their appli-
cations on one dimensional K-algebras and the module of differentials of plane algebraic curves parametrized
by polynomials. The aim of this part is to characterize these curves in terms of invariants such as Milnor
number and Tjurina number.

A subset S of N is said to be a numerical semigroup if 0 € S and for all a,b € S we have a+b € S, and such
that the set G(S) = N\S is finite. Given a numerical semigroup S, we define the Frobenius number of 5,
denoted by F'(S), to be the maximum of the set G(5). Note that every numerical semigroup admits a finite
system of generators, that is, there exists s, ..., s, € S such that for all s € .S

S=MAS1+ ...+ s

for some A1, ..., Ap € N. In this part we will be interested in a special class of numerical semigroups, called
free numerical semigroups. Free numerical semigroups appear in the theory of singularities of algebraic plane
curves and also in the theory of algebraic plane curves with one place at infinity. We aim to use the techniques
developed in the theory of numerical semigroups and their ideals in order to characterize rational algebraic
plane curves with one place at infinity with respect to invariants such as Milnor number and Tjurina number.
Let S be a numerical semigroup and let I be a subset of N, then [ is said to be a relative ideal of Sif I+5 C I
and for some a € Z we have a+1 C S. Note that for a relative ideal I there exists a set {a1, ..., a;} C I such
that [ = Uézl(ai +5). This set is called a system of generators of I.
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Let {f1,..., fs} be a set of elements in the polynomial ring K[t] and let A = K[f1, ..., fs], where K is a field.
For every element f € K[t] we denote by d(f) the degree of f in t. Consider the set d(A) = {d(f), f € A}
and suppose that the length [(K][t]/A) < +00. Then d(A) is a numerical semigroup. We say that {fi, ..., fs}
is a canonical basis of A if {d(f1),...,d(fs)} generates d(A). It is proven that any K-algebra A admits a
canonical basis, moreover a basis can be obtained algorithmically form the elements fi, ..., fs (see [10]).

Let {F1,..., F}.} be a set of non zero elements in K[t], and let M = 3" | F; A be the A-module generated by
i, ... F.. Set

d(M) = {d(F), F'e M\{0}}

Then d(M) is a relative ideal of d(A). We say that {F1, ..., F}.} is a canonical basis of M if {d(F}),...,d(F})}
is a system of generators of d(M). Note that a basis of M can be obtained algorithmically from {Fi, ..., F.}.

Let {fi,..., fr} be a set of polynomials of K[t]. For all i € {1,...,r} let F; = f! be the derivative of f; with
respect to t. Set M = F1A+ ...+ F. A, then I = d(M) is a relative ideal of S = d(A). Note that if g € A,
then ¢’ € M, and so if s € d(A), then s — 1 € d(M). This leads to the definition of the set of non-exact
elements of M, denoted by N E(M), which is

NEM)={a€cl, a+1¢ S}

We define ne(M) to be the cardinality of NE(M).

Suppose that r» = 2, that is A = K[X (¢),Y (¢)] for some X(¢),Y (¢t) € K[t], and let f(X,Y) be the smallest

degree algebraic relation satisfied by X (¢) and Y (¢)(f(X,Y) is the monic generator of the kernel of the

morphism K[X, Y] — K[t], ¢(X) = X (t),o(Y) =Y (t)). Then f has one place at infinity (see [4]). Denote

d(A) by I'(f) and F(I'(f)) by F. We can construct a set of generators {rg, ..., } of I'(f) by taking the set
K[X,Y]

of ranks of the vector spaces 7o) where g runs over the set of approximate roots of f.

For all i € {0, ..., h} let diy1 = ged(ro, 71, ...,7;) and let e; = d?; foralli € {1,...,h}. Then d; > do > --- >

dpy1 = 1 and e;1; € (ro,...,rm—1) for all i € {1,...,h}. That is T'(f) is free with respect to the arrangement
(ro,...,rn). Let fx, fy be the derivatives of f with respect to X, Y. Let u(f) = dimg ch[X} ]) be the milnor
K[X,Y]

(fx.fy
number of f and v(f) = dimg Foix ) be the Tjurina number of f. We use semigroup techniques in order

to prove that u(f) = v(f) if and only if ne(M) = 0, that is, every element of M is exact if and only if there
exists an isomorphism K[X,Y] — K[W, Z] such that the image of f by this isomorphism is of the form
Wwnm —Z™, with ged(n,m) =1 (Theorem see also [7]). This theorem generalizes the local result of Saito
for curves in [30] and also the result of Zariski in [31].

Suppose that u(f) > v(f), that is ne(M) > 0. We prove in this case that ne(M) > 2"~ (see Proposition.
Moreover we prove that if ne(M) = 1, then S =< m,n > and NE(M) = {F — 1}. Moreover, if ne(M) = 2,
then we have the following two cases (see Theorem :

(1) h =1 with I'(f) =< m,n > and we either have :
eNE(M)={F—-1,F—-m—1} or
oNE(M)=1{F—1,F —n—1}.



(74) h = 2 with T'(f) =< m,n,re > and we either have :
e NE(M)={F—-1,F —n—1} or,

e NE(M)={F—-1,F —m—1} or,

o NE(M)={F —1,F —ry — 1}.

Finally we give a characterization of the semigroup I'(f) in case ne(M) =1 or ne(M) = 2.

13






Free polynomials

2.1 G-adic Expansion and Approximate roots

In this section we introduce the notion of G-adic expansion of a polynomial with respect to a set of po-
lynomials. We also introduce the notion of Tschirnhausen transform and that of approximate root of a
polynomial. These notions will be used later in order to characterize the set of generators of the semigroup
of a free polynomial.

2.1.1 Expansion of integers

Let (myg,...,mp) be an (h 4+ 1)-tuple of integers with h > 1. We set :
dy = me,ds = ged(mg, my), ..., d; = ged(mg, ...,m;—1) = ged(d;—1,m;—1), where ged stands for the greatest
common divisor. Suppose that dy > ds > ... > dp41, and let e; = ddll foralli=1,..., h.

Definition 1 Let m = (mg, m1,...,mp) be a finite sequence of integers. A strict linear combination of m is
an integer of the form :
aomo + a1my + - -+ apmy,

where ag € Z and 0 < a; < e; forallt=1,...,h.

Proposition 1 With the above notation, a given integer n can be expressed in at most one way as a strict

h
linear combination n = Z a;m;.
i=0
h h
Proof : Suppose n = Zaimi = Zb-mi with ag,bg € Z and 0 < a;,b; < e; for all 1 = 1, ..., h. It is required
=0 =0

to prove that a; = b; for all . Suppose to the contrary that it is not true, then there exists some j such that
j

a; # bj, and a; = b; Vj < i < h. Suppose that a; > b;. We have Zalml Zb m; = Z(ai —bi)m; =0

=0 =0 =0
j—1
with 0 < a; — b; < ej, and so (a; — Zb—al
=0
Since d; divides m; forall 7 =0,...,5 — 1, then d; divides (a; — bj)m;, and so e; divides (a; — bj)%, but
ej and - are coprime, then e; d1v1des a; — bj, which is a contradiction since a; —b; < e;. W

As a corollary we get the following :

15
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Corollary 1 Let uq, ..., up be an h-tuple of distinct positive integers such that w; divides u;41 for all
h h
1<i<h-1. IfZaiui = Zbiui with 0 < a; < % and 0 < b; < u;—tl foralli=1,....,h—1 and ap, by,

=1 =1
are non negative integers, then a; = b; for all 1 < i < h.

Proof : Set mg = up, m1 = up_1,...,mp—1 = u1, and let d; = ged(myg, ..., m;—1), then dy = up,...,dp = u;.

Now let e; = dii1 foralli =1,....,h — 1, then ajuy + -+ + apup = apmg + ap_1m1 + - - - + aymyp_1 with
dy_ . N L.
0<ap1< u:’il = % =e1,...0< a1 < P2 = ’glhl = ep_1 is a strict linear combination of (mg, ..., mp_1).

By Proposition [I] this representation is unique, and so a; = b; for all 1 < i < h.l

2.1.2 G-adic expansion of a polynomial

Let R[Y] be the polynomial ring in one variable, where R is a commutative unitary ring. For every element
fin R[Y], let deg(f) be the degree of f in Y, with the convention that deg(0) = —oc.

Let G = (G, ...,Gp) be an h-tuple of polynomials in R[Y] satisfying the following conditions :

(1) The polynomial G; is monic with deg(G;) > 0 for all 1 <i < h.

(17) deg(G;) divides deg(Giy1) for all 1 <i < h —1, and deg(G;) = 1.

Let u; = deg(G;) for i = 1, ..., h, and define the elements n; = Z—f = U9, Ny = Z—z, N T u:’_‘l
and let np = +o00. Let
AG) ={a=(a1,...,ap) €N, 0 < a; <n; V1 <i<h}
and associate with each element a in A(G) the polynomial G* = G{*...G}".
Definition 2 Let f be a polynomial in R[Y'| and suppose that f can be written in the form f = Z faG®

acA(Q),f.€ER
for a finite number of a’s. The expression Z faG® is said to be a G-adic expansion of f.
acA(G)

For every element f = Z faG* we define suppg(f) = {a € A(G), fo # 0}.
acA(Q)

Proposition 2 Let R[G?] be the R-submodule of R[Y] generated by G4 = {G® a € A(G)}. Then R[G*] is
a free R-submodule.

Proof : It is obvious that G is a system of generators of R[G4], and so it is required to prove that elements

in G4 are linearly independent over R.
First of all, note that if a,b are distinct elements in A(G), then deg(G?) # deg(G®). In fact if deg(G*) =

h h
deg(G®), then Z a;u; = Z bju;, and so by Corollary |1| we get that a = b.
i=1 i=1
For linearly independence, suppose that f = Z faG® = 0 for some elements f, in R, and suppose
acA(Q)
to the contrary that for some a € A(G) we have f, # 0. Let ¢ € suppg(f) be such that deg(G¢) =
mazx{deg(G®),a € Supp(f)}, then deg(f) = deg(f.G). If ¢ = 0 in N*, then f = f.G¢ = f. = 0, which
contradicts our assumption. Otherwise, if ¢ # 0, then deg(G®) = deg(f) is strictly positive, and so f # 0
which is impossible. Hence elements in G4 are linearly independent, and so G4 is a free R-basis of R[GA].I
From the above Proposition we conclude that if a polynomial f € R[GA}, then its G-adic expansion is unique.
Moreover, there exists a unique ¢ € suppg(f) such that deg(f) = deg(G¢) = max{deg(G*), a € suppc(f)}.

Lemma 1 Let a = (a1, ...,ap) be an element of A(G). Suppose that a; # 0 for some 1 < j < h, and a; =0
fori=j+1,....h. Then u; < deg(G*) < uj1.
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J
so deg(G?) = Zaiui > uj. Concerning the right hand side of the inequality, we have a; < n; and so

Proof : Since a; > 0 for all 1 < ¢ < j and a; > 0, then a; —1 > 0 and ajuy + ... + (a; — 1)u; > 0, and

i=1
j—1 J
a1u; < niu; = ug. Now suppose that up to j — 1 we have the inequality Z a;u; < uj, and consider Z a;u;.
i=1 i=1
j j—1 j
We have Zaiui = Zaiui + aju; and a; < nj, and so Zaiui < (aj + 1)uj < nju; = ujy1. Finally
i=1 i=1 i=1

uj < deg(G*) < ujy1. A

Lemma 2 Let f be a non-constant polynomial in R[G4], then there exists some j € {1,....h — 1} such
that u; < deg(f) < wjy1. Moreover, for all a € suppa(f), a can be written as a = (a1, ..., a;,0,...,0) with
0<a; <n; foralll<i<j.

Proof : Let a be a non-zero element in suppg(f), then a = (aq, ..., ax,0, ..., 0) for some 1 < k < h and aj # 0.
Let ¢ = (c1, ..., ¢4,0,...,0), with ¢; non zero, be the unique element in suppg(f) such that deg(f) = deg(G°),
then by Lemma (If we have u; < deg(f) < ujy1. Also by Lemma (1] we have u, < deg(G®*) < wug1, but
deg(G*) < deg(G°), then uj, < uji1, andso k <j. W

Proposition 3 Let G = (G1,...,G}p) be a set of polynomials in R[Y], such that deg(G1) = 1 and deg(G;)
divides deg(Gi11) for all i = 1,...,h — 1, then every element f in R[Y] is also in R[GA]. In particular this
expansion 1S uNique.

Proof : We will prove this by induction on the degree of f. If deg(f) = 0 or 1, then the assertion is clear.
Suppose it is true for all polynomials h in R[Y] with deg(h) < n, and let f be a polynomial of degree n. By
Lemma 2] there exists some j € {1, ..., h} such that u; < deg(f) < w;j41. Since uj;1 = njuj, then there exists
some k, with 0 < k < nj, such that ku; < deg(f) < (k + 1)u;. Now dividing f by Gf we get f = qu +r
with deg(r) < deg(Gf) = kuj < deg(f), and so by the induction hypothesis, r admits a G-adic expansion.
It remains to prove that qGQ’-C admits a G-adic expansion. Since deg(f) = deg(qG;?), then deg(q) = deg(f) —
kuj < deg(f), hence ¢ admits such an expansion, say q = Z 3.G%, qq € R, and so :
acA(G)

Gh= > q.GGh= Y .Gl G GE

a€supp(q) acsupp(q)
_ ay aj—1 ~aj+k ~aj1 ap
= E 7.GY ...Gj_1 Gj GjJrl Gy

acsupp(q)

Since deg(q) < uj, then by the Lemma 2] every element a € Suppe(q) has the form a = (a1, ..., aj-1,0, ..., 0),
and so suppg(ng‘?) = {(a1,...,aj-1,k,0,...,0),a1 < n1,...,a;-1 < nj_1,k < n;}, hence anG“G§ is a
G-adic expansion of qGé?, and so f admits a G-adic expansion.

From Proposition [2| we can easily see that the G-adic expansion of f is unique. W

2.1.3 Tschirnhausen Transform

Let g € R[Y] be a monic polynomial with degree m > 1, and let G = (G1,G2), where G; =Y and Gy = g.
Let the notation be as before. In particular we have n; = m = deg(g), n2 = oo and A(G) = {a = (a1, a2),
such that 0 < ay; < m and ay € N}.

According to Proposition [3| every polynomial f(Y') in R[Y] can be written in a unique way as follows :

f(Y) = Zchig(Y)j, 0<i< m,c;j € R.
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m;
Now for each j let f;(Y) = Z chi, then f can be expressed as :
i=1

=350 gry

where f;(Y) are all zero except for a finite number of them and deg(f;(Y)) < m for all j. Note that this
expression is unique so that if f can be written as Z hig® with deg(hy) < deg(g), then h; = f; for all j.

k
This unique expansion of f in terms of g is called the g-adic expansion of f.

Lemma 3 Let f be a monic polynomial in R[Y] and consider another polynomial g such that g is monic
and deg(g) divides deg(f), then the g-adic expansion of f is of the form :

d—1
f=g"+ Z A (YV)g', where d = deg(/)
, ’ d

l
Proof : Let f = Z cig', where ¢; € R[Y] and deg(c;) < deg(g) for all i = 1, ...,1, be the g-adic expansion of

=1
f with respect to g. For alli =1,...,] — 1 we have :
deg(cig’) = deg(c;) + i deg(g) < deg(c;) + (I — 1) deg(g) < ldeg(g) < deg(cig")

and so deg(f) = deg(cig'). Now write deg(f) = d - deg(g) for some strictly positive integer d. We have
deg(c;) +1.deg(g) = d - deg(g), but 0 < deg(c;) < deg(g), hence deg(c;) = 0 and ¢; € R. Moreover | = d. We
have deg(f) = deg(cqg?) and deg(f — cqg?) < deg(f). But f and g are monic, then ¢y = 1, and so the g-adic
expansion of f with respect to g is :

Definition 3 Let f be a non-constant polynomial in R[Y], let g be a monic polynomial such that deg(f) =

d—1
d.deg(g) for some integer d, and let f = gd—i—z cy)gd_i be the g-adic expansion of f. Assume that d~' € R.

=0
The Tschirnhausen transform of g with respect to f is defined to be

71(9) =g +d 'ep(g)

where cf(g) = cgpdfl) is the coefficient of g

coefficient.

d=1 in the g-adic expansion of f ; it is called the Tschirnhausen

Note that the Tschirnhausen transform is a monic polynomial with deg(7f)(g) = deg(g) since deg(cs(g)) <
deg(g), and so we can define recursively by induction the i-th Tschirnhausen transform of g to be :

d—2

Now let f = g% + cf(g)gd_1 + Zcécgi be the g-adic expansion of f as above, and suppose that cs(g) is
i=0

different from zero. Then deg(f — g%) = deg(cs(g)g? ') = deg(cs(g)) + (d — 1) deg(g), and so

deg(cs(g)) = deg(f — g%) — (d — 1) deg(g).

Proposition 4 Let the notation be as above, and let 7¢(g) = g+ d cs(g) be the Tschirnhausen transform
of g with respect to f. Then deg(cs(1¢(g))) < deg(cy(g)).
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Proof : Let n = deg(cs(g)) and h = 74(g9) = g + d"lcp(g), then hd = g% + c;(g)g? ! +r, where r =
d

Z Cfin(g)"gd*", and CY represents the number of all i-combinations of d-elements. Now for all 2 < i < d

i=2
write t = j 4+ 2,0 < j < d— 2 then:

deg((cr(9)'g"™) =i-n+ (d—i)deg(g) = (j+2)n + (d — 2 — j) deg(g)
= 2n + (d — 2) deg(g) + j(n — deg(g))

but n < deg(g), and so deg(cr(g)ig?™") < 2n + (d — 2)deg(g) < n + (d — 1)deg(g), hence deg(r) <
n+ (d—1)deg(g).

d—2 d—2
We have f—h? = f—gd—Cf(g)gd_l—r = Z cécgi—r, but Z cjcgi is the g-adic expansion of f—gd—Cf(g)gd_l
=0 =0
, hence :
d—2
deg(D _ chg') = deg(cf ) + (d — 2) deg(g) < (d — 1) deg(g) < n + (d — 1) deg(g)
=0
d—2 o
Finally we got that deg(z c4g') <n+(d—1)deg(g) and deg(r) < n+ (d — 1) deg(g), hence deg(f — hd) <
=0

n + (d — 1) deg(g). Since deg(cs(1¢(g))) = deg(f — h?) — (d — 1) deg(h) and deg(g) = deg(h), then
deg(cs(77(9))) < n = deg(cs(g)). W

Definition 4 Let f be a monic polynomial in R[Y] of degree n, and let d be a divisor ofn a polynomial g
n

in R[Y] of degree 5 is said to be a d-th Approxzimate root of f if deg(f — g%) < n—2. It is denoted by
Appa(f).

Proposition 5 Let f be a monic polynomial of degree n in R[Y], and let d be a divisor of n. A monic
n

polynomial g is an approvimate root of f if and only if deg(g) = %5 and cs(g) = 0.

Proof : Suppose that g is an approximate root of f. We have deg(f) = n and deg(f — g%) < n — 7 <mn,
then deg(g?) = deg(f) = n and so deg(g) = %. Since deg(g) divides deg(f), then by Lemma (3| the g-adic
expansion of f is of the form :

d—1
f=g° +Zcfg with 0 < deg(c" )<deg( yVi=1,..,d—1.
1=0

Since the g-adic expansion of a polynomial is unique and deg(cgf)) < deg(g) for all i = 1,...,d — 1, then
d—1

Z c?)gi is the g-adic expansion of f —g¢. If cjf_l = cs(g) # 0, then deg(f —g%) = deg(cs(g)) + (d—1)deg(g),
i=0

and so (d — 1)deg(g) < deg(f — ¢g?). But this is impossible because deg(f — g¢) < n — o = (d—1)deg(g),
hence c¢(g) = 0.

Conversely suppose that deg(g) = & and cy(g) = 0, then the g-adic expansion of f is of the form

d—2
f=g"+) g™
i=0
and so Z ¢g%" is the g-adic expansion of f — g% , then :

deg(f — g%) = deg(ct=?) + (d — 2)deg(g) < (d — 1)deg(g) = (d —1)° =n —

QU
SHIN

and so g is a d-th approximate root of f.l
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Proposition 6 Let f be a monic polynomial of degree n in R[Y], and let d be a divisor of n. Then f admits

a d-th approximate root and this approximate root is unique. In particular Appq(f) = ng (9)

n

Proof : Let g be any monic polynomial in R[Y] of degree Z. By Proposition 4 we have deg(c(71(g))) <
deg(cs(g)), and so for all i > 2 we get deg(cs(T4(g))) < deg(Cf(TJ’fl(g))) < deg(g) = 4. In particular if we
take i = 7, then cf(T}(g)) = 0. But deg(7¢(g)) = deg(g), then by Propositionv'}(g) is an approximate root

of f.
For uniqueness, let g1 and g2 be two d-th approximate roots of f with deg(g1) = deg(g2) = 5. We have

n

deg(f — 9?) <n—7% and deg(f — gg) <n-— %, and so :
n
deg(g] — g8) < maz{deg(f — g{),deg(f — g3)} <n — -

But 9(17[ - g(zi = (91 — 92) Z gig%. If g1 # g9, then :
itj=d—1
deg(gi — g3) = deg(g1 — g2) +deg( D> gig3) > deg(gig3) = (i +j) 5 = (d—1) =
itj=d—1

n —

QL
SHIN

which is a contradiction, and so g1 = go, and the d-th approximate root of f is unique.ll

Proposition 7 Let f be a polynomial of of degree n in Rly|, and let di > ... > dp41 be a set of divisors of
n. For alli € {1,...,h} set e; = dfﬁ Then for alli =1,...,h — 1 we have Appg,(f) = Appe,(Appa,., (f))-

1

Proof : Let i € {1,....,h — 1}. Set g; = Appa,(f), gi+1 = Appa,.,(f), and G; = Appe,(gi+1). Note that
degy(9:) = 7, deg,(gi+1) = #H and deg, (G;) = #. Since G; = Appe,(gi+1) then the G;-adic expansion of
gi+1 is of the form :

git1 =G + OéQGfi_Q +. ot ae,1Gi + ag,

Where a; € R[y| for all j =2, ..., e; such that deg, () < g consider the g;;1-adic expansion of f

d; dis1—2
f:gi+-‘il+/829i+ﬁl ++Bd1+1
Where By € R[y] for all k € {2,...,dit1} such that deg, (8x) < dini. Substituting the above value of g; 11 in
the equation of f, by an easy calculation we can prove that f = Ggi + ¢ where 1 is a polynomial in R|[y]

such that deg, (v) < degy(G?i_l) = (di — 1)z, and so the Gj-adic expansion of f is of the form

f=G% 4+ %G44 4,

With degy (i) < ¢ for all I € {2,...,di11}. It follows that Gj1 = Appa,(f) = g;.B
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2.2 Affine semigroups

This section aims to give some general results about affine semigroups. These results will be used constantly
in the next sections, since the semigroup associated with a free polynomial is an affine semigroup.

2.2.1 Free affine semigroups

Definition 5 A Semigroup is a set S equipped with an associative binary operation +, such that for every
x,y in S we have x +y € S.

A semigroup S is said to be finitely generated if there exists a finite number of elements vy, ..., v, in S such
that for every v € S, we have v = A\jv; + - - - Aeve with Aq, ..., \e € N, in this case {v1,...,v.} is said to be a
system of generators of S.

Definition 6 A semigroup S is said to be an Affine Semigroup if it is a finitely generated semigroup of
Z¢ for some e € N*.

Definition 7 A set C' C R® is said to be a cone if Ym € C and X\ > 0 we have A\.om € C.

If there exist some vectors vy, ..., v, in R® such that C' = {Aj.v1 + ... + Apvn, Ay > 0,V 1 < i < n}, then we
say that C is finitely generated. Furthermore if the generating set {v1,...,v,} is a subset of Z¢ then the cone
is said to be rational. From now on all the considered cones are supposed to be rational finitley generated
cones.

Let v = (v1, ..., Ve, Vet1, .-, Verr) De a set of nonzero elements of Z¢ and let

e+h e+h

I'w) = {Z a;vi, a; € N}, G(v) = {Z a;v;, a; € 1}
i=1 i=1

be the subsemigroup of N¢ generated by v, and the subgroup of Z¢ generated by v respectively. Moreover,
e+k

for every 0 < k < h let G = {Z a;v;, a; € Z} be the subgroup of Z¢ generated by vy, ..., Verk, I'r =
i=1

{Zf:f a;v;, a; € N} be the semigroup generated by vy, ..., Uy, and cone(vy, ..., ve) the convex cone generated

by v1, ..., ve. More precisely

e
cone(vy, ..., V) = {Z a;vi, a; € Ry}
=1

Assume that the dimension of cone(vy, ..., ve) is equal to e, i.e {v1, ..., v, } generates R¢ and that vey1, ..., Vetrn €
cone(vy, ..., Ve).

Let D1 be the determinant of the matrix (’UlT, e UeT), where viT denotes the transpose of the vector v;, and

for all i = 2,...,h + 1, let D; be the ged of the e x e minors of the matrix [v] ...,vz,vgﬂ, ...,veT_H«_l]. For all
D;
D1

1=1,...,h set ¢; =

Definition 8 Let vy, ...,vern € Z° and let S = T'(v1, ..., Ve, Vet1y ooy Verh). Then S is said to be a free affine
semagroup if the following two conditions are satisfied :

(1) D1 > Dy > -+ > Dpyq, equivalent to saying that for all i = 1,...,h, vey; is not in the group generated
DY U1,y eevy Vey Vol wevy Vedi—1 -

(13) For each i =1,...,h we have e;vet; € T'(v1, ..., Veti—1).

2.2.2 Standard representation and the Frobenius vector.

Proposition 8 Let 0 < k < h and v € Gyi. There exist unique integers A, ..., e, Aet1, ---y Aetk Such that
e+k

v = Z)‘ivi with 0 < ey < e; foralli=1,...,k.
i=1
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e+k
Proof : Since v € Gy, then v = Zcivi where ¢; € Z for all 1 < i < e+ k. If £ = 0, then the assertion is

=1
clear. Assume that k > 1, and that ceqr < 0. Write coyr = peg + Cerr with 0 < €.y g < eg, then

e+k—1
v = E ¢iV; + (pek + Cotk) Vet
i=1

e+k—1
Since epverr € Gr—_1 then so is for pepveir and so we can write v as v = Z CiVj + CetkVUer With
i=1
et+k—1
0 <Ceyp <ep,and ¢ € Zforalll <i<e+k—1. Now Z ¢;v; € Gg_1, and so we get the result by
i=1

induction on k, hence the expression exists.
e+k e+k

To prove the uniqueness, let v = Z a;v; = Z biv; where 0 < Geyj,beq; < e; foralli =1,... k, and let a be

i=1 i=1
the greatest integer such that a, — b, # 0. Suppose that o = e+ j for some j > 1, and also that aq — b, > 0,
then :

e

(Gets = betrj)Verj = O (bi = ai)vi + (bet1 — Ger1)Vert + o + (begjo1 — Getj—1)Vetj1 € Gj1
=1

and 0 < a; — b; < e;, which contradicts the hypothesis. Bl

e+k
Definition 9 Let v be a vector in Gy, The standard representation of v is defined to be v = Z)\ivi with
=1
0<Aeyi <e; foralli=1,....k.
Proposition 9 Let 0 < k < h, and consider a vector v € Gy. Let

e+k

v = E AiV;
=1

be its standard representation with respect to the vectors vy, ..., Vetr. The vector v € I'y if and only if \; >0
foralli=1,.. e.

Proof : If \; > 0 for all ¢« = 1,...,e, then obviously v € T'(v1,...,ve4). Conversely suppose that v €

e+k
[(v1y ooy Vetk ), then v = Zaivi where a; > 0forall 1 <i<e+4+k. If0<aey; <e;foralli=1,.. k, then it
i=1
is over. Otherwise, take j such that acy; > e; and 0 < aeq; < ¢; for all 7 > j. Write acyj as aeyj = me;j +bj,
e+j—1
where m € N* and 0 < b; < e;. But ejveq; € I'(v1, ..., Veyj—1), and 80 €jVetj = Z c;v;, where ¢; > 0 for
i=1
all1<i<e+j— 1. Hence :
e+j—1 k
v = Z a;v; + (mej + bj)veyj + Z a;V;
i=1 i=e+j+1
et+j—1 k
= Z (a; + me;)vi + bjveyj + Z a;v;
i=1 i=e+j+1
e+k
Proceeding like this we can construct the standard representation of v, with v = Z a;v;, and a; > 0 for all
i=1

i=1,...,el
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Definition 10 Let v = (v1, ..., Veyp) be a set of non-zero vectors of ¢, and let the notation be as above. Let
C' be the topological interior of cone (vq,...,ve), i.e C = { Ny, N\j € R V1 < i < e}. The Frobenius vector
of v is defined to be an element w € cone (vi,...,ve) such that w ¢ I'(v), and for all v € w+ (C — {0}) we
have :

veG) = vel(v)

Theorem 1 Let the notation be as above with v = (v1, ..., Veyp), and C the interior of cone(vy, ..., ve). The
frobenius vector of v is equal to :
h
SDICEITNES ¥
k=1

Proof : It is clear that Zzzl(ek — 1)Utk — Y54 vi 1s a standard representation, but the coefficients of
v1, ..., Ve are negative. By Proposition [9] we get that F(v) ¢ T'(v).
e+h
Now let u € C' — {0}, and consider the vector v = F(v) + u. Assume that v € G(v), and let v = Z vk be
k=1
the standard representation of v with 0 < qeqp < e for all k =1, ..., h. We have :

h

v=Fv)+u=— Z(ek — 1= Qerp)Verr +u= (a1 +Dv1 + ... + (e + 1)ve
k=1

h
and since Z(ek—l—ae+k)ve+k 4+u € C,thenap+1>0forallk=1,...,e,andsoar >0forallk=1,...,e

By Proposition [9] we obtain v = F(v) + u € I'(v).H
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2.3 Quasi-Ordinary Polynomials

In this section we recall the notion of a quasi-ordinary polynomial and how to associate a semigroup to such
a polynomial.

2.3.1 Abhyankar-Jung theorem

Definition 11 Let f = apx™ + ... + a1x + ag and g = bypx™ + ... + bix 4 by be two polynomials of degree n
and m, respectively, in R[x|, where R is an arbitrary ring. The resultant of f and g, denoted by R(f,g) is
defined to be the determinant of the (m + n) X (m + n) matriz given by :

an an_l .« .. .« .. al ao O .. .« . 0
0 an anil al ao 0 ()
0 0 an ay ap
b bm—1 bt b 0 0
0 bm by bo 0 0
0 .. 0 by bpmq - by by

where from the second row up to row m we shift the coefficients an, ...,aq of f one step to the right and zero
elsewhere, and we do the same for by,,...,by the coefficients of g from row m + 2 up to row m + n.

Proposition 10 Let K be an arbitrary field. Let f = anx™ + ...+ a1x + ag and g = bpx™ + ... + byx + by be
polynomials in K[z] of degrees n and m, respectively. The resultant of f and g is given by :

Rit.0) = i [T 1]
i=11=1

where Y1, ..., yn are the roots of f, and z1, ..., zm are the Toots of g in some extension field K of K.

Definition 12 Let f = anz™ + ... + a1z + ag be a polynomial of degree n in K[z], and let yi1,...,yn be its
roots in some extension field of K. The discriminant of f is defined to be :

Af)y=a? T wi—y)

1<i<j<n

Note that we can also define the discriminant of f using the resultant of f and f,, where f, is the derivative
of f with respect to x, more precisely we can prove that :

n(n 1)

A(f)=(-1) ~an 'R(f, f2)-
Let K be an algebraically closed field of characteristic 0, and let K[[x1, ..., z¢]] be the ring of formal power
series in 1, ..., z.. For simplicity we write z* Instead of " - -- 2, where o = (o, ..., @) € N°,
Slmllarly for each n € N* we can define a ring of formal power serles over K with fractlonal exponents denoted
by K[[:cl - ]] For simplicity we write K[[a:n]] instead of]K[[:cl . ]] and K[[z]] instead ofK[[xl, oy Ze]-
Note that an element in K[[@n]] is of the form y(z) = Cmzn , where ¢, € K and zn = x," ajj,
meNe

where m = (mq,...,m.) € N¢.

Definition 13 Let f = y™ + a1(z)y" ' + - + an_1(2)y + an(z) be a monic polynomial in K|[z]][y], and
suppose that a;(0) = 0 for all i = 1,...,n(such a polynomial is called a Weierstrass polynomml). Then f is
said to be a quasi-ordinary polynomial if its discriminant iny, A, (f) is of the form le coealNew(xy, . xe),
where Ni,...,Ne € N and u(z) is a unit in Kl[z]], i.e u(z) = ¢+ v(z) for some formal power series v(x)
satisfying v(0) = 0, and a constant ¢ # 0.
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Theorem 2 Abhyankar-Jung Theorem Let f(z, y) be a quasi-ordinary polynomwl in K[[z]][y]. There
1

1 1 1
exists a formal power series y(x7,...,x&) i K[z, ...,z ]] such that f(z, y(JU1 ey T )) =0 for some n € N.
Furthermore if f is an irreducible polynomial of degree n, we have :

n

@, y) = [0 - y(wiar, o wia,))

i=1

where (Wi, ..., wt)1<i<n are distinct elements of (Uy)¢, where U, is the set of n-th roots of unity in K.

Definition 14 Let y(x Z cpxn e K]| xn]] for some integer n. We define the support of y, denoted

peNe
Supp(y), to be the set Supp(y) = {p € N, ¢, # 0}.

Note that if f is a polynomial in K[[z]][y] that admits a root y(z Z cpxn e K[| %H then for every
peNe

W1,y ey We € Uy, Supp(y(wizy, ..., wize)) = Supp(y). We define the support of f to be Supp(f) = Supp(y)

for some root y of f.

Given a = (ai,...,a¢),b = (b1, ...,b.) € N¢, we say that a < b (respectively a < b) coordinate-wise if a; < b;

(respectively a; < b;) for all 1 <i <n.

2.3.2 Characteristic monomials of a quasi-ordinary polynomial

Proposition 11 Let f be an irreducible quasi-ordinary polynomial of degree n, and let {y;}1<i<n be the set

of roots of f. For all i # j we have y; — y; = M;je;; for some monomial M;; € K[[Q%H and a unit ;5 in
K[[z]].

Proof : Let A(f) be the discriminant of f, then :

A(f) =]]wi —y;) = M.n
i#j

m1 me

where M = $ITZL‘6" and h is unit in K[[l‘%“ i.e h(0) # 0. Since K[[Q%H is a unique factorization domain,
1

and z7,...,z¢& are irreducible elements in K[z %]] then for each 1 < i,j < n with i # j we have y; — y; =

a1 Qe

"t g5 = M; EU, where 0 < aj, < my, are positive integers for all 1 < k < e that depends on y; and y;,
and €;; a unit in K[[Qn“.

Definition 15 Let the notation be as above with f a quasi-ordinary polynomial and {M;;}i+; the set of
monomials such that y; —y; = Mje;j for some €i5 unit in K[[E%H The set {M;;}iz; is said to be the set of
characteristic monomials of f.

Moreover, let y = y; be one of the roots of f, and let M;; be one of the characteristic monomials of f. There
exists some conjugate y; of y such that y — y, = M;;.

Definition 16 Let f be a quasi-ordinary polynomial in K[[z]|[y], and let y(z) € K[[Q%]] be a root of f. The
element y is said to be a quasi-ordinary branch. We define the set of characteristic monomials of y to be the
set of characteristic monomials of f.

Note that if a quasi-ordinary branch y € K][[z]], then it has no characteristic monomials. If y € K[[@i]]
for some n > 1 and z is a Conjugate of y, then they both define the same set of characteristic monomials
{M; = z, .My, =z } with b € N. The set {my,...,mp} C N¢ is called the set of characteristic
exponents of y.

Proposition 12 Let f be an irreducible quasi-ordinary polynomial of degree n in K[[z]][y] with a oot y €

K[[g%]] The set of characteristic exponents of f is ordered with respect to the componentwise order.
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Proof : Let m1,mo be two characteristic exponents of f, and let M7 = g%,Mg = g% be the associated
characteristic monomials, then there exists y;,y; two conjugates of y in K[[Q%H such that y — y; = Mieq
and y — y; = Maeo for some €1, €2 units in K[[Q%H, and so y; —y; = (y — y;) — (y — yi) = Maeg — Mey.
By definition there exists a characteristic monomial M;; such that y; — y; = M;je;; with ¢;; is a unit in
K[[Q%]], and we get that Moeo — Mye1 = M;je;4, hence My divides My or M divides Ms, and so m; < mg or
mg < mj component-wise. We finally conclude that the set of characteristic exponents of y can be arranged
as mp < --- < my component-wise.ll

Remark 1 Let f = y" +ay(2)y" ' + -+ a1(z)y + ao(z) be a quasi-ordinary polynomial in K|[z]][y]. We

have :
n

F0,9) =[] - wi(0) =y
=1
Hence y;(0) = 0, and so the conjugate y; is a non unit in k:[[g%]] forall1 <i<n.
Conversely if y is a non-unit in K[[Q%]], and for every y; conjugate of y we have y — y; = M;e; for some
monomial M; € ]K[[g%]] and some unit €;, then for all 1 < j,k < n we will have y; — y = Mjie . for some
M, monomial and €;;, unit in K[[g%]] Take f = [1,(y — vi), then

A(f) = H(l/] —yi) = HMjk Hsjk =M.ce
jk ik ik

where M is a monomial and € is a unit, and so f is a quasi-ordinary polynomial.

1 1
From now on L denotes the fraction field of K[[z]], and L,, = L(z7,...,xz2). It is well known that L, is a
Galois extension of L.

Proposition 13 Let f be an irreducible quasi-ordinary polynomial in K[[z]][y], and let y be one of its roots in
K[[g%]] with characteristic monomials {Mj, ..., My}. The field extensions L(y) and L(Mj, ..., M}y) coincide.

Proof : Any automorphism of L, over L that fixes y fixes all the monomials of y. In particular it fixes the
characteristic monomials of y since they appear as terms in y, and so L(Mj, ..., Mp) C L(y). On the other
hand if an automorphism 6 of L,, over L fixes all the characteristic monomials of y, then (y) = y. Indeed if
O(y) —y #"(L), then 6(y) —y = z'n unit for some m € N¢, hence z= is a characteristic monomial of y with

m

O(x= ) # z» which contradicts our hypothesis. Hence L(y) = L(My, ..., My).1R
Lemma 4 Let L be a field, and let o be an algebraic element over L. Then L(a) = Lla].

Proof : Since L[a] C L(«) and L(«) is the smallest field containing « and L, it is enough to prove that L[a]
is a field in order to deduce the equality.

Let f be the minimal polynomial of o over L, and suppose that deg(f) = n. Consider any nonzero poly-
nomial g € L[z] with deg(g) < n. Since f is irreducible in L[z]|, then f and g are coprime, and so there
exists hi(z), he(x) € Llz| such that hy(x)f(z) + he(z)g(z) = 1, hence ho(a)g(a) = 1, and so g(«) has a
multiplicative inverse in L[«]. If deg(g) > n, then dividing g by f we get g = f.q + r for some ¢,r € L[z]
with deg(r) < n. Obviously g(a) = r(«), hence g(a) admits a multiplicative inverse in L]a], and so L[] is
a field. We finally get L[a] = L(«). B

More generally, let a1, ..., a;, be algebraic elements over L. By Lemma [ we have L(c;) = L[ay]. Suppose
that L(ay,...,q;) = L]ay, ..., 4] with @ < h, then L(aq, ..., ai41) = Lo, .., ) (i41) = L, ..., ) [ai41] =
Llay, ..., a;][ais1] = Llag, ..., ai41], and so L(ay, ..., ap) = Laq, ..., ap).

Proposition 14 Let f be an irreducible quasi-ordinary polynomial with a root y(x) as above, and a sequence
of characteristic exponents my,...,mp in Supp(f) such that my; < mg < --- < my, coordinatewise. We have :
h

(i) If m € Supp(f), then m € (nZ)¢ + ZmiZ.

i=1
(it) mi ¢ (NZ)° + >, ;m;Z for alli=1,... h.
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Proof : Let M = z» be a monomial of y with m € Z¢, where y € K[[Q%H is a root of f, then M € L(y),
1 Otl
but L(y) = L(My,..., M) = L[Mj, ..., M}]. Hence M = g(M, ..., My) for some g = %M{ll...Mhh + 4
Oél C%l .
%MI LMt with fy, . fi, 91,90 € K[z]] and [ € N*, and so -

1 l
A, Ap,

1 l
g1...glM = flgg...glMlal...Mh + -+ flg1...gl_1M1al...Mh

m

Comparing both sides we can easily see that M = zn = 2t -+ gl M}" - 'M}I;h for some ay, ..., ae, p1, ..., Pp €
h h

Z, hence 7+ € Z° + Z %Z, and obviously m € (nZ)¢ + Z m; 7.

i=1 i=1
Now for the second part of the proposition, consider the characteristic monomial M; = = of y, then by

1

definition there exists an automorphism 6 of L,, over L such that y—0(y) = M;e; with &; unit in K[[z=]]. Hence
O(M;) = M;j for all j =1,...,5— 1. On the other hand 0(M;) # M;, thus M; does not lie in L(My, ..., M;_1),
hence m; ¢ (nZ)* + 3, ,m;Z. ®

Remark 2 In general let M; = g% withi =1, ...,t be a set of monomials with fractional exponents, and t <
¢

h. Let M = zn be an arbitrary monomial. Then x™n lies in L(My, ..., M) if and only if m € (nZ)e—l—ZmiZ.
i=1

Let glex be the well-ordering on N° defined as follows : a <ge, § if and only if |af = Zai < 8| = Z Bi
i=1 i=1

or |a| = |B| and a <je, S(where lex denotes the lexicographical order).

Definition 17 Let u = Z cpa? in K[[z]] be a non-zero formal power series. Let u = ug + ugy1 + ... be the
P
decomposition of u into a sum of homogeneous components. We define the initial form of u to be In(u) = uq.

We set O (u) = d; this quantity is called the z-order of u. We denote by expgie,(u) the smallest exponent of
u with respect to glex. We denote by incoge,(u) the coefficient ceyp,,,.,, and we call it the initial coefficient
of u. We finally set My, (u) = incogieq, (u)x®Poles () and we call it the initial monomial of u.

Remark 3 Let u(xz) be a non-zero formal power series. Let < be another well-ordering of N¢. Define the
leading exponent of u to be the leading exponent of In(u) with respect to <. In this way we get a different
notion of leading exponent (resp. initial coefficient, resp. initial monomial) of u.

Let g be a non-zero element of R[Y]. The order of g with respect to f, denoted by Oges(f,g), is defined to
be expgies(9(xT, ..., 27, y(x)). Note that it is independent of the choice of the root y(x) of f(z7,...,27,y) =
0. Indeed if ' is another root of f, then there exists some automorphism 6 such that 6(y) = y'. Hence
g9(z",y'(z)) = g(z",0(y(z))) = 0(g(z",y(x))), and so g(z",y'(z)) and g(z",y(z)) have the same support.

Definition 18 The semigroup of f, denoted by T'(f), is the subsemigroup of Z¢ defined by :
I'(f) ={ Ogiea(f>9) 9 € K[[z]][y], g & (f) }-

Proposition 15 Let n € N* and let Y(z) = Zcpg% € K[[Q%H, and suppose that there exists a finite

P
sequence of elements my,...,mp, of Supp(Y (z)) such that the following holds :
(1) m1 < mg < ... < my componentwise.

h
(13) If p € Supp(Y (x)), then p € (nZ)° + ZmiZ.
i=1
(131) m; ¢ (nZ)° + ijZ foralli=1,.. h.
i<t
J Jj—1
(wv) If p € Supp(Y) such that p € Z¢ + ZmiZ and p ¢ 7¢ + ZmiZ for some j € {1,...,h} then m; <p
i=1 i=1

coordinate wise.
Then Y (z) is a quasi-ordinary branch.
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Proof : For each i = 1, ..., h define the set G; = M;\M,;_1 and Gp = (nZ)¢ N Supp(Y'), and define for each
i1 = 0,..., h the power series H; = Z ez, then Y (z) can be written as Y (z) = Ho + Hy + ... + Hy. If

meG;
i i1
m € Gy, then m € (nZ)° + ijZ and m ¢ (nZ)° + ijZ, hence by condition (iv) m; < m, and so H;
j=1 j=1

can be written as H; = M;e; with M; = g% and €;(0) # 0. Note that an automorphism 6 of L, over L
fixes Hy, ..., H; if and only if it fixes the monomials M, ..., M;. In fact if 0 fixes H; then it will obviously fix
all monomials M of Hj, in particular it fixes M;. On the other hand suppose that 0 fixes all the monomials
My, ...,M; and let M = 27 be a monomial of H; for some 1 < j <4, then m € G, and it follows from
Remark 2| that M € L(Mj, ..., M;) but 6 fixes My, ..., M; then it will fix M, hence Hj is fixed by 0. Now if 6
is an automorphism that does not fix y = Hy+ ... + Hp, then 6 does not fix all Hy, ..., Hy, and so there exists
some i > 0 such that 6 fixes Hy, ..., H; and does not fix H;;1, hence Y — 0(Y) = M;;1e where £;(0) # 0. It
follows from Remark [I| that Y is a quasi-ordinary branch. B

2.3.3 Field extensions.

Lemma 5 Let my,...,me,m be (e + 1) vectors in Z¢, and let D be the determinant of the matric M =

(m,...,m%) and D; be the determinant of the matriz M; = (mh,...mi_\,mt,ml q,....mb) for all i €
{1,...,e}. Then m can be written as m = ximy + ... + Teme for some x1,...,xe € Z if and only if D

divides D; for all 1 <i <e.

Proof : Let X; be the matrix obtained by replacing the i — th column of the identity (e x e) matrix I, by
the vector x! where x = (z1, ..., 7¢), then we will have M - X; = M;. Calculating the determinants we get
Det(M) - Det(X;) = Det(M;), but the determinant of X; is obviously x;, hence D - z; = D;, and so the
equation m = x1mq + ... + x.m. admits a solution if and only if D # 0, and the obtained solution will be
T; = % for all 1 <14 < e. In particular z; € Z if and only if D divides D; for all 1 <i < e.l

Lemma 6 Let M be a subgroup of (nZ)¢ generated by the elements (B, ..., Be). Consider another system
of generators {v1,...,ve} of M. Then Det(B:, ..., Bl) = Det(v!, ..., v}).

Proof : Consider the two matrices V = (v!,...,0!) and B = (B!, ..., B!). For each of the e columns B! of
B, there exists a vector z € Z¢ such that B! =V - x, so there exists an (e X €) integer matrix U such that
B = V-U. Similarly, there exists an (e x e) integer matrix U’ such that V' = B-U’, hence B =V-U = B(U'-U),
and so BT B = (U'U)T BT B(U'U) where BT is the transpose of B.

Taking determinants, we get that Det(BT B) = (Det(U'U))?Det(BT B), and so Det(U'U)? = 1. Since U
and U’ are integer matrices, then Det(U'U) = Det(U')Det(U) = £1, and so Det(U) = £1. It follows that
Det(B) = Det(V)Det(U) = Det(V).1

We start with a technical Lemma :

Lemma 7 Consider My = (nZ)¢ with its canonical basis Ay, ..., Ae, let Acy1 € Z€ be an arbitrary vector,
and consider the group My = (nZ)€ + Aet1Z. Then My is a free group of rank e. Let Dy be the GCD of the
(e x €) minors of the matric A = (A1, ..., Ae, Aet1), denoted by GCDM (Aq, ..., Ae, Aex1) or GCDM(A),
and let D be the absolute value of the determinant of the matriz (v1, ...,v.), where vy, ...,ve is a basis of M.
Then D = Dy.

Proof : We have (nZ)¢ C M; C Z¢, but Z¢ and (nZ)¢ are free abelian groups of rank e, then M is a free
abelian group of rank e. It is well known that a basis for M is obtained by applying the following elementary
operations on the columns of the matrix A :

(i) A; — A; + kA;, adding a multiple of a column to another column.

(i1) A; <> Aj, interchanging two columns.

Each operation of the above will not affect the GCD of the minors of the obtained matrix, so at the end of
the procedure we will obtain a matrix C' = (B, ..., Be,0) where By, ..., Be is a basis of M7 and GCDM (A) =
GCDM (C) = Det(Bu, ..., B), which is equal to D by Lemma [6]l
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Definition 19 Let f be a quasi-ordinary polynomial, and my,...,m. be its set of characteristic exponents.
Let my = (m},...,m§) be the canonical basis of (nZ¢), and I. the unit e x e matriz. The D—sequence of f,
Dy, ..., Dpyq, is defined to be the set of integers : D1 = n®, and D;y1 the gcd of the e X e minors of the matriz
(nl,,m¥,...,ml).

i
Proposition 16 Let M; = (nZ)€ + Z m;Z, and consider a nonzero vector v in Z°. Let D be the ged of the
j=1
e X e minors of the matriz (nIe,m{, ...,mZT, vT). We have the following :
(1) v € M; if and only if D = Dz+1
(ii) P2tv € M; and if Diyy > D then for all 1 < k < P2 ko ¢ M;.

Proof : Let vy, ..., v, be a basis of M;, then obviously :
v € M; if and only if v = 1v1 + ... + QeVe, where a; € ZV i =1,...,¢

Now let D}, (D}, ..., D.) be the determinant of the matrix (v, ve, ..., ve)((V1, U, ...; Ve)y oey (V1, ooy Ve—1, v)) TeS-
pectively, and D the determinant of the matrix (vy,...,v¢). It follows from Lemma (7| that D = D;;1, and
that D is equal to the GC'D of the minors of the matrix (V1 ey Ve, V).

By Proposition [5| we have : v = aqvi + ... + aeve if and only if D divides Dy, for all 1 < k <'e, if and only if
D;11 divides D), for all 1 < k < e which is equivalent to say D = GCD(Diy1, DY, ..., D)) = Di11.
Concerning part (ii), let 1 < k < Z“, and consider the vector k.v. Let A be the matrix (vy, ..., ve, (k.v)).
The determinant of the minors of thls matrix are clearly k.D7,...,k.D., D;y1.Let D to be the GCD of the
minors of the matrix A. If k = gl then :

_ D) D’ D, D
D= GCD(DZ-HEI, ...7Di+15€7Di+1) = DiHGCD(El, 5 1) =D;11

and so we can conclude that k.v € M; from the first part. Now suppose that D; 1 > D andlet 1 < k < Z“
If k.v € M;, then from part (i) we can conclude that D = D; 1, then D; 1 divides kD4, ...,kD., D; 11, hence it
divides k.D1, ..., k.D., k.D; 1 and consequently divides GCD(kDY, ..., kD., kD;1) but GCD(kD’l, vy kDL kD;y1) =

k.GCD(D},...,D., DZ+1) = k.D, which is a contradlctlon since k.D < Dl+1 by assumptlon [ ]
Now define the sequence (ez)lgzgh to be e; = D¢+1

(3
with f. Let My = (nZ)¢ and M; = (nZ)° + ijZ for all 1 < ¢ < h, where my, ..., mj, are the characteristic
j=1
monomials of f, then My C My C --- C M}, C Z° are free abelian subgroups of rank e for all 1 <i < h.
Remark 4 We have m;y1 ¢ M;, then by Proposition we deduce that D;yo > D1, ejy1miv1 € M;, and
kmiy1 & M; for all1 <k < e;t1.

Let Fy = K((z)) and let Fy, = Fj,_ 1(m ) for all k =1,..., h. Obviously we have

my mp
n

FhCF C..C Fo(gT, vy T ) = F},.

Lemma 8 For alli=1,...,k the minimal polynomial ofxw;zk over Fy_1 is equal to hy = y — ge’“%.
Proof : The polynomial hj belongs to F_1[y], since exmy, € (nZ)¢ +m1Z+ - my_1Z. obviously hk(z%) =0.
Suppose to the contrary that hg is not the minimal polynomial of x %, Then there exists some monic

polynomial f € Fj_1[y] of degree o < e}, such that f(x nk) = 0. Write f = y® + aa_1y*~ ' + - - + ap where
a; € F_q for all i =0, ..., — 1. We have f(ng) =0, and so :

m

Ea% + aa—lf(ail) [ R alx% +ag=0

Hence there exists some i € {0,...,a — 1} such that one of the monomlals of a;x’ T s equal to z* ™ . Let
xn be such monomial. Then a = b + imy, for some b € Z° + Z; 1 mJZ and so amy = b+ imy, hence

(v —i)mp =beZ°+ Z 1 mjZ. But 0 < o — i < e;, which is a contradiction.l
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Proposition 17 Let the notation be as above. We have the following :
(1) Forallk =1,...,h, Fy is an algebraic extension of degree ey, of Fj_1.
(1i) For all k =1,...,h, Fy is an algebraic extension of degree ey.ex_q...e1 of Fy.

(i13) n = degy(f) = e1...ep, = DZL = D’Zil. In particular Dy = n®L.

Proof : (i) By Lemma [8| we have that for all 1 < k < h, the polynomial hy = y® — gek% is the minimal
polynomial of g% over Fj_1, which is a polynomial of degree e,. Hence F} is an algebraic extension of
degree e of Fj_1.

(13) It follows from part (i) that Fj is an algebraic extension of Fy_q of degree ey for all 1 < k < h , and so
F}. is an algebraic extension of Fy of degree eg...e;.

(#ii) By Proposition [13] we have F}, = Fy(y), but [Fy(y); Fo] = deg(f) = n, then [Fy, Fy] = n. By part (ii) we
have that F}, is an algebraic extension of degree ej,...e; of Fy, and so n = degy(f) = e1...ep, = Dy .. _Dn

Dy Dp4q
Dy _ _n° D =ncl A
i1 Dnii It fOHOWS that h+1 n .

2.3.4 Semi-roots and approximate roots of a quasi-ordinary polynomial.

Let f,g be two non zero polynomials, of degrees n,m respectively, in K[[z]][y] such that f.g is a quasi-
ordinary polynomial. Then Ay(f.g) = 2 .¢ for some e unit in K[[z]]. It follows that f and g are quasi ordinary
foralli=1,..,nand j =1,...,m we have y; — zj = g/\ijeij where €;; is a unit. Moreover the exponents \;;
are ordered with respect to the component-wise order. In this case we say that f and g are comparable. This
leads to the following definition.

Definition 20 Let f and g be two comparable polynomials with {)\Zj}f;l”;n as above. The order of coinci-
dence of f and g is defined to be the largest element \;j where i € {1,...,n} and j € {1,...,m} with respect

to the component-wise order.

We define the sequence (dy,da, ...,dp1+1) by d; = D%ﬁ’ in particular d; = n and dj+1 = 1. This sequence is

called the d—sequence associated with f. Let (1, ...,7€) = (m, ..., m§) be the canonical basis of (nZ)¢ and
define the sequence (ry)i1<k<p by r1 =mq and :

Tkl = €Tk + Mpgy1 — Mg
Forall 1 <k < h—1. We call (r§,...,7§, 1, ..., ) the r—sequence associated with f.

Remark 5 Fach of the sequences (my)i1<k<n and (ri)i1<k<n determines the other. More precisely my =

k k—1
and ridi = mid; + Z(m] — mj_1)dj(resp my = rp — Z(ej — 1)r;) for all 2 < k < h. Hence we have
j=2 j=1
k k k—1
My, = (nZ)°¢ + ijZ = (nZ)¢ + ZT’]'Z and exry € (nZ)°¢ + ZT‘]'Z forallk =1,..., h.
j=1 j=1 Jj=1

Definition 21 Let y be a quasi-ordinary branch, and let (Té, s TG, 71, ooy Th) e the T-sequence associated to
h

y. The semigroup of y is defined to be (nN)® + ZriN, and denoted by I'y.
i=1

J
From now on we denote by I'y = (nN)¢ and I'; = (nN)¢ + ZWN forall j=1,...,h.
i=1
Lemma 9 Let the notation be as above. Then we have the following :
(1) ejr; < rig1 for alli=1,...,h — 1(where < means < component wise but not equal).
(2) Forallie{1,...,h}. If u € M; NN®, then u+e;r; € T';.
(3) eiy1rit1 €Ty foralli =1,...,h — 1, that is I'y is a free affine semigroup.
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Proof : (1) We have 711 = ejrj + (mji1 — mj). Then

Cjp1Tj+1 — €57 = €j11€575 + ejr1(mjp1 — myj) — e;r;
=ej(ejr1 — )rj +ejr1(mjrr — my)
> (ej41 — 1)(ejrj + mjy1 —my)

— (ej+1 — 1)7"j+1

It follows that e;r; < rjy1.

(2) For ¢ =1, it is obvious. Suppose that it is true up to j — 1 and let v € M; NN Then u can be written
in a unique way as u = ar; +u with 0 < a < e¢; and v/ € M;_;. Let v = v/ + e;7; — ej_17;j_1. since
ejrj € Mj_q, then v € M;_;. On the other hand e;r; —ej_17j—1 > (e; — 1)r; > ar; component wise, and
so e;rj —ej_17j—1 = ar;j +w for some w € N¢ then v = u + €jrj — €j_1Tj_1 = u + arj +w=u+w € N
hence v € M;_; N N¢, then by the induction hypothesis v + e;_1rj—1 = v’ + ejr; € T'j_1. But u+e;r; =
ar; + (u' + ejr;), and so it belongs to T';.

(3) For all i = 1,....h — 1 we have ej117i+1 = €116, + €ir1(miy1 — m;). But mp1 — m; € N€ since
m; < m;y1 coordinate wise, and e;11m 1 € M;, then e;11(m;1 —m;) € M; NN¢. Hence by part (2) we get
e;r; + ei+1(mi+1 — m,) e I';, whence e;117r;41 € T';.1l

Let dy, ...,dp4+1 be the d sequence associated to y. Note that for all ¢ = 1,...,h we have ¢; = diiﬁ and so
di = di+1ei =..= dh+1eh...ei = €;...Ch. Hence d% = % = €1...€¢;_1.

Definition 22 Let the notation be as above, and let i € {1,...,h}. A polynomial g € K[[z]][y] is said to be

an i — th semi-root of f if degy(g9) = ¢ and g(2",y) = z"'c for some € unit in K[[z]].
Remark 6 Let o = (a',...,a®) be a cone in RS with a' = (ai,...,a’) € N° for each i = 1,...,e. This cone
defines a homomorphism of rings ¢ : K|[x1, ..., ze]] = K[[t1, ..., te]] defined by :
1 e
oy 14

al a$
Lo > 1212

w1 6408
Let M = z{'---2% = z% be a monomial, then (M) = tfl---tge is a monomial, with (B1,...,5.) = (<
at,a >,...,< a® a >) and denoted by (a), where < a,b > is the dot product of two vectors in R®. Also 1)
extends to a homomorphism from K[[z]][y] to K[[t]][y], by sending each g = any™ + -+ a1y + ao in K[[z]][y]
to P(g) = U(an)y™ + -+ ¥(a1)y + ¥(ap) in K[[t]][y]. It is easy to see that 1 sends a unit to another unit.

Lemma 10 Let f € K[[z]][y] be an irreducible quasi-ordinary polynomial of degree n and let {my,...,mp}
be its set of characteristic exponents. Then (f) is an irreducible quasi-ordinary polynomial in K[[t]][y] and
{w0(ms)}iz1,..n is its set of characteristic exponents.

Proof : Since f is a quasi-ordinary polynomial then Ay(f) = a™.unit. But Ay(y(f)) = ¥ (Ay(f)), then
Ay(h(f)) = ¥(z™).unit, hence ¢(f) is a quasi-ordinary polynomial. Let {y1,...,yn} be the roots of f, then
{¥(y1), ..., (yn)} are the roots of 1(f). By definition the characteristic exponents of 1(f) are obtained by
taking the difference of its roots. In particular ¥(y;) — ¢¥(y;) = ¥(yi — yj) = Y(x™ .unit) = (z™7).unit =
2¥(mi3) ynit where m; is a characteristic exponent of f. Then the characteristic exponents of ¢ (f) are the
images of the characteristic exponents of f by .l

Remark 7 we can rewrite the r sequence of f as :

Tk = M + (ek,1 — 1)mk,1 + (ek,Q - 1)ek,1mk,2 + ...+ (61 — 1)62...€k,1m1
M — mp— m
ol h—2 + ...+ n(el — 1)62...€k_171

m
=0 F o nfepy — 1=+ n(ep— — Der
my

mMi—1
= €1...€k,1[€k...6h7 + ek...eh(ek,l — 1)

m1
+ -+ ek...eh(€1€2...ek71 — 62...6]€,1)7]

mg—1

m m
= 61...€k,1[dk7k + (dkfl — dk) 4+t (dl _ d2)71]
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forall k=1,...;h.

Definition 23 Let y = > cpaP be a formal power series in K[[z]]. The Newton polyhedron of y is defined
as the convex hull of the set H = )(p + N€), that is the smallest convex subset of R¢ containing H,
and it is denoted by N(y).

peSupp(

Let f be a quasi-ordinary polynomial, and let g € K[[z]][y]. If y1,y2 are two roots of f, then supp(y;) =
supp(yz2). Consequently N(g(z,vy1)) = N(g(z,y2)). Moreover if g is quasi-ordinary of degree m, and {z; =
2,22, ..., Zm } are its roots. Then :

n

N([ [ 9(@ v)) = deg(f)N(g(x H (z,2;))) = deg(9)N(f(, 2)) = N(Resy(f.,9)) 2.1)

=1

Proposition 18 Let g be an irreducible quasi-ordinary polynomial in K[[z]][y] of degreem = F (i € {1, ..., h}).
Then g is an i—th semi root of f if and only if the order of coincidence between f and g is equal to 7.

Proof : Let {z1,...,2m} be the roots of g. We have g(z,Z) = [[;L;(Z — 2;). Now suppose that g is an
i-th semi root, then by definition we have g(z,y(x)) = z"e for some unit e. Since N([]"; g(z,vi(z))) =
deg(f)N(9(z,y(2))) and g(z,y(z)) = [I}L; (y(z) — 2;), then y;(z) — zj(z) = a*e;; for some unit &5, for all
i=1,...,nand j =1,...,m. Hence the order of coincidence between f and g is defined. Let « be the order of
coincidence between f and g, and suppose without loss of generality that y(z) — z(z) = 2%w for some unit
w. Remember that {mi,...,mp,a} is an ordered set with respect to the component wise order because f.g
is quasi ordinary. Now let my, be the greatest characteristic exponent of z which is smaller than « (which is
also a characteristic exponent of y). For all r = 1, ..., h we have yr( )—z2(z) = (yr(z) —y(z)) + (y(z) — 2(z)),

and so y,(z) — z(z) = z%unit if and only if y,.(z) — y(z) = =z (umt) for some j > k, that is y; is the
image of y by some automorphism of L(y) over L that fixes 3371, ...y . The number of roots satisfying this
property is equal to [L(y) : L(z = , ...,z s )] which is equal to egy1...ep, = dgy1. Moreover for all j = 1,....k
we have :

my my .
#yj, yj — 2z =2 it} = #{y;, y; —y =z~ .unit}
mq mi—1 my mj

=[L(y): L(z= ,...,xz"n )] —[L(y) : Lz ™ ,....,z
= €5...€p — €j41...€p
= d] - dj+1.

Since g; is an i—th semi-root, by equation (2.1)) and similary to Remark [7| we get
m mp
T, = 61...€i_1[(d1 — d2)71 + -+ (dk — dk+1)7 + dk+1a] (22)

If k+1 > 4, then from Remark[7] we get r; > r;, which is a contradiction and so k+1 <i. If k+1 <iora <
all the characteristic exponents of z, we deduce that o > ™ and so ™=t < o and ™= is a characteristic
exponent of z, which is a contradiction. Hence k£ + 1 = i, and so by Remark m we easily deduce that a = =
Conversely if the order of coincidence between f and g is equal to 7%, then it follows easily from equation
that ¢ is an i-th semi root of f.H

In what follows we will prove that every j—th semi-root of f is irreducible.

Definition 24 Let y € K[[z]] and let N(y) be its Newton polyhedron. The Newton initial polynomial of y is
defined to be the sum of the terms of y lying on the compact faces of N(y), and is denoted by iny(y).

Recall that I'; represents the semigroup generated by (rdy ey 761, ooy r;). Let K[I';] be the ring of polynomials
f=>_,cpxP, with supp(f) a finite subset of I';.

Proposition 19 Let the notations as before. Let g be a polynomial in K[[z]][y]. If deg(g) = 0, thenin(g(z",y)) €
K[[o]. Otherwise for all j =1,...,h if deg(g) < ei...e; = djni’ then in(g(z",y)) € K[I';].
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Proof : If deg(g) = 0, then g = a(z) for some a(z) € K[[z]], and so g(z, y) = a(z), then obviously in(g(z,y)) €
K[I'g]. Suppose that the assumption is true for polynomials of degrees < ej...ej_; and let g be a polynomial
of degree < ej...ej. Consider g; to be a j—th semi-root of f, and let

i
g=ap+agj+--+aqgy

be the gj-adic expansion of g. where a; € K|[[z]][y] and deg(a;) < F+ = e1...ej_1 for all i = 0,...,d;. By
J
induction hypothesis we have in(a;(z,y)) € K[T'j_1] for all i = 0, ..., d;. Since terms of the polynomials a;z'"

and a,z*" can not cancel each other for all 0 < 1 # k < d;, then the terms of the polynomial in(g) are terms
of the polynomials a;z'", j =0, ...,d;. Hence in(g) € K[I';].1

Proposition 20 Let f be a quasi-ordinary polynomial and let g € K[[z]][y] be an i—th semi root of f. Then
g is an irreducible polynomial.

Proof : suppose to the contrary that g is not irreducible then there exists g1, go € K][[z]][y] such that g = g1.g2
with deg(g;) < ¢ for j = 1,2. By Proposition 19| we have in(g;) € K[I';_1] for j = 1,2. But r; is an exponent
in the polynomial in(g1) + in(g2), then r; € K[T';_1]. This is a contradiction.l

Lemma 11 Let the notation be as above with f a quasi-ordinary polynomial. Then for all t = 1,...;h, f
admits an i-th semiroot.

Proof : Let y be a root of f, and write y = Hy + Hy + - - - + Hj, as in Proposition [I5] For each i = 1,...h, let
gi+1 be the minimal polynomial of Hy+ - - -+ H;. Then g; is a quasi-ordinary polynomial with characteristic
exponents {myq, ...,m; }, and it is obviously irreducible. We have deg(g;) = [L(Mi,...,M;) : L] = ej...e; = ﬁ.
, then by Proposition (18| g;11 is an

Obviously the order of coincidence between f and g;11 is equal to 7+t

(i 4+ 1)-st semi-root of f.H

Proposition 21 Let the notation be as above with f an irreducible quasi-ordinary polynomial. For each
i=1,...,h+1 let gi = Appa,(f) be the d;-th approximate root of f. Then g; is an i — th semi root of f.

Proof : For i = h +1, g; = Appq, ., (f) = [ and so the assumption is true since f(z",y) = 0 and 7441 = oo.
Suppose that the assumption is true for i+1 and let us prove it for i. We have Appy, (f) = Appe, (Appa,., (f)).

n

Let g be a polynomial of degree 7+, then by Proposition|§|, we have Appg, (f) = ngl(g), where 7 represents
the Tschirnhausen transform. In order to prove that g; is an ¢ — th semi-root, it is enough to prove that if ¢
is an i—th semi-root then 7,4, (g) is an i-th semi-root. Now suppose that g is an i-th semi-root, and let

git1 = 9% +arg" T+ Fa,

be the g-adic expansion of ¢g;11 with a; € K[[z]][y] and deg(a;) < deg(g) for all i = 1, ..., ;. By the induction
hypothesis we have g;1(z",y) = 2"+1.unit. It follows that

N(a1(z",y)g% " (z",y) € N(git1(z",y))

But g is an i—th semi-root of f, and so g(z",y) = z"".unit. Hence if m is an exponent of in(ai(z",y)), then
m+ (e; —1)r; € N(gi+1(z",y)), and so m+ (e; — 1)r; > r;41. Finally we get that m > r; 41 — (e; — 1)1y > 7.

Hence 74,,,9(z",y) = g(z",y) + e%,al (z",y) = x".unit, that is 74, (g) is an i-th semi root.l

Proposition 22 Let the notation be as above with f an irreducible quasi-ordinary polynomial. Let g be an
i—th semi-root of f with i € {1,...,h}. Then g is a quasi-ordinary polynomial.

Proof : Let Ay (g) be the discriminant of g, and let N(A,(g)) be its newton polyhedron. Let o = (al, ..., a®)
be a regular cone such that o C RS, and o is compatible with N(A,(g)). That is there exists a unique
w € N(Ay(g)) such that : N
(a',w)y = inf (a‘,v).
vEN(Ay(9))
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for all i € {1,...,e}. Now let the notations be as in Remark [6 then the discriminant of ¢(g) is 1(Ay(g)).

<alv> <a®,v>

Moreover if 2V = z{* ... z¢° is a monomial of Ay(g) for some v € N°, then ¢(z") = z c e is a

monomial of ¥(A,(g)). Furthermore, ¢ (z%) = xfal’w> L.z but (af,w) < (af,v) foralli € {1,...,e}.
It follows that the discriminant (A (g)) of 1 (g) is of the form

B(Ay(9)) = 2V umit.

It follows that v (g) is a quasi-ordinary polynomial. Since f is a quasi-ordinary irreducible polynomial, then
by Lemmawe get that ¥ (f) is a quasi-ordinary irreducible polynomial. Moreover, the set of characteristic
exponents of ¥(f) is {¢(m1),...,0(mp)}. Since ¥(g) is the the i—th semi root of ¥(f), then by Proposition
we get that ¢(g) is irreducible, and by Proposition |18 we get that the order of coincidence between ( f)
and 1(g) is ¥(m;). Now since 1(g) is an irreducible quasi-ordinary polynomial, it admits some root z(z) and
its set of characteristic exponents is equal to {¢)(my1), ..., ¥ (m;—1)}.

It follows that the element w does not depend on the chosen cone o since it is determined by the characteristic
exponents myq,...,m;—1 of f. Hence N(Ay(g)) has a unique vertex. Thus g is a quasi-ordinary polynomial.l

Proposition 23 Let the notation be as above with f an irreducible quasi-ordinary polynomaial. Let g be an
approzimate root of f. Then g is an irreducible quasi-ordinary polynomial.

Proof : Since ¢ is an approximate root of f, then by Proposition [21] we get that g is a semi root of f. It
follows from Proposition 20| and Proposition 22| that ¢ is an irreducible quasi-ordinary polynomial.ll
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2.4 Free polynomials

In this section we generalize the results of section 4 to a free polynomial (see Definition . We also show
that we can generalize Abhyankar-Moh theory to such a polynomial.

2.4.1 Line Free Cones.

The material of this subsection can be found in [24].

In this subsection we will consider the set of formal power series with exponents in some line free cone C
with a non-empty interior, denoted by K¢[[z]], and we will prove that this set is a ring. Also we will prove
that we can find some order on C' N Z€ such that for each element y € K¢[[z]], the exponents of y can be
written in increasing order.

Definition 25 Let C be a cone, then C is said to be a line-free cone if Vv € C' — {0} we have —v ¢ C.

Lemma 12 (Dickson’s lemma) Let S be a subset of N¢. Then there exists a finite set of elements H =
k

{s1,..., sk} in S such that S C U(Sl + N°).
i=1

Proof : We will proceed by induction on e. For e =1 S is a subset of N, so take s to be the minimal element
of S, then in this case H = {s}, and lemma is true for e = 1.

Suppose that the lemma is true up to e — 1 and consider a subset S of N¢. Let ¢ = (¢y,...,cc) be any
element in S. If @« = (g, ....,ae) € S with o > ¢; for all 1 < i < e, then a € (¢ + N¢). Otherwise
there exists some 1 < ¢ < e such that a; < ¢;. For each 1 < ¢ < e and 0 < a < ¢; define the set
Aia = {(a1, .y i1, i1,y e) € N1 such that (aq,...,@i-1,a, iy1,...,e) € S}. By the induction
hypothesis there exists a finite subset B; , C A; 4 such that for every (a1, ..., -1, Qit1, ..., ) € A; 4 there
exists (51, ey Bi1, 5i+17 ey ﬂe) € Bi,a with (011, SYe 7 TN 0 7 I Oée) € (51, ey Bis1, Bi+1, ey ﬁe)—FNe_l. Hence
(O ooy Qi 1, Ay Qg 1y ooy ) € (B4 vey Bie1, @y Big1, -y Be) + N¢, and so the desired finite subset is

H = {C} U {(Blv ...,,81',1,@, Bi+1a "'756)7 with (ﬁlv "'7/8i*17/8i+17 "'7ﬁ€) S Ba,iv 1 S 1 S e and 0 S a S CZ}.
Lemma 13 Fix a line-free cone C' in R® with a non-empty interior. Let S be any subset of C' N ZE. Then
n

there exists a finite subset F' = {a1,...,an} of S such that S C U(ai +C).

i=1

Proof : Consider a set of generators {vy, ..., v} of the cone C' where vy, ..., v, € Z¢. Let s € S. The element s
can be written as sjvy + ... + svy for some s, ..., s, € RT. Since s € Z¢, 51, ..., 5, are non negative elements
in Q. Define the set

B = {blvl + ...+ bpug, b; € [0, 1] V1<i< k‘}

Since B is bounded, BNZ is finite. Say B = {ci, ..., ¢} for some | € N. Then every s = sjv1 + ... + spvg, € S
can be written as s = ajv; + ... + agvr + ¢; where a; € N is the integer part of s; for all j € {1,...,k} and
¢; is some element in B. Now for each 1 < i < [, let N; be the set of elements (aq,...,ar) € N¢ such that
a1v1 + ... + apvr + ¢; € S for some 1 < ¢ < [. By Dickson’s Lemma there exists a finite set H; C N; such
that for every (ay,...,ar) € N; there is some (hq,..., hy) € H; such that (aq,...,ax) € (hi,...,hg) + N¢, and
so (a1 — h1)vr + ... + (ag — hg)vg € C since (a; — h;) > 0 for all 1 < i < k, hence ajv1 + ... + agvg + ¢; €
hivi + ... + hgvg + ¢; + C, then the desired set F' is equal to

I
U{h1U1 + oo+ hgvg + ciy (ha, s b)) € Hi}
i—1

which is obviously finite, say F' = {a1, ..., a, } for some n € N. We finally get S C | J(a; +C). R

-

=1

Definition 26 Let < be a total order on Z°. The order < is said to be additive if for all m,n,k € Z° we
have - m<n — m+k<n+k.
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Let < be an additive order on a cone C C R€. The order < is called compatible with C' if for all m € C N Z¢
we have m > 0, where 0 := (0, ...,0). Note that if we have an additive order <, then for all m,n € ZP with
m,n >0, we get am + bn > 0 for all a,b € N.

Proposition 24 Let C be a line-free cone of dimension e. Then there exists an additive total order < which
18 compatible with C'.

Proof : Consider any vector z = (1, ...,z.) € R® such that its components are linearly independent over
Q, and define the order on Z¢ as follows : for m,n € Z¢, n <, m <= n-x < m -z, where "-" refers to
the scalar product on R€. It is clear that this is an additive total order on Z€ since if n-x < m -z, then
(n+n')-x < (m+n') zforany n’ € Z¢, and so n+n’ < m+n'. It is antisymmetric since the coordinates
of z are linearly independent over Q, indeed for all m = (my,...,me),n = (n1,...,ne) € Z° if we have m <, n
and n <; m, then n-x = m -z, and we get (ny — my)x; + ... + (ne — me)ze = 0, and so n; = m; for all
1 < i <ehence m =n.

To prove that there exists some order relation which is compatible with C, we have to prove that there exists
some x € R® such that 0 <, n for all n € C'. Since C' is a line-free cone it is enough to choose x to be in the
dual cone of C'. This proves our assertion. H

Proposition 25 Let C' be a cone, and let < be an additive total order which is compatible with C. Then <
1s a well-founded order on C NZE, i.e, every subset of C NZ¢ contains a minimal element with respect to the
chosen order. Moreover this minimal element is unique.

Proof : Let S € C'NZ°. By Lemma|13| we can find a finite subset {s1, ..., s,} of S such that S C LJ(SZ +0O).

Since < is compatible with C it follows that for every m,n € Z¢ such that m € n 4+ C, then m ZS ln So the
minimal element of S is the minimal element of the set {si,..., s, } which exists since < is a total order. B
Let K be an algebraically closed field. Consider infinite formal power series in several variables of the form
y(x) = cqz®, where ¢, € K, and a = (ay, ..., ac) ranges in Z¢, and 2 denotes the monomial z{* - - - x%. We
set Supp(y(z)) = {a, ca # 0}.

If we consider any two series y, z of this form, then y + z is naturally defined, while their multiplication
does not exist in general. For that reason the support of these series should be restricted to be in the same
line-free cone.

Definition 27 Let C be a line-free cone in R¢. We define the set of formal power series with exponents in

C to be Ko[[z]] := {y(z) = Z cpr?, Supp(y(z)) € C}
pEL®

Proposition 26 Let C be a cone, and let < be an additive order on Z¢. Let {v1,...,vx} be a set of generators
of C. C is compatible with < if and only if v; >0 for alli =1,.... k.

Proof : If C' is compatible with <, then v > 0 for all v € C. In particular v; > 0 for all 1 < i < k. On the

other hand, suppose that v; > 0 for all 1 < ¢ < k, and let v € C' N Z°, then v = ajv; + - - - + aeve for some
ai,..,a. € R". Since < is an additive order then v = ajv1 + - -+ + aeve > 0. Hence v > 0 forallv € C. A

Remark 8 Let < be an additive order on Z¢, and consider two cones C,C" in Z° which are compatible with
<. Let {v1,...,vr} be a set of generators of C, and let {w, ..., wp} be a set of generators of C'. By Proposition
vi,wj >0 foralll <i<kandl <j <h. But{vi,..., v, w1,...,wp} is a set of generators of C + C’,
hence by Propositz'on C + C' is compatible with <.

In what follows we shall give some results in order to prove that K¢[[z]] is a ring, where C' is a line free cone
in Z°.

Proposition 27 Let K C R€ be a closed and convex set. The set K is unbounded if and only if there exists
some u € K and a non zero vector v € R®, such that the ray R = {u + A} x>9 € K. Moreover for all
u, v’ € K we have {u+ M} >0 C K <= {u' 4+ M}r>0 C K.
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Proof : If K contains a ray then it is obvious that K is unbounded.

Now suppose that K is unbounded. Let u € K, and let S be the unit sphere in R® centered at the origin.
For each A > 0 consider the map 7 : u+ AS — u + S defined by n(u + x) = u + ﬁ and define the family
of sets {P\ = m((u + AS) N K)} 0. Since 7 is continuous and bijective. u + AS is homeomorphic to u + 5,
and so u+ AS is closed and bounded, hence compact. Since K is closed, K N (u+ A\S) is compact and so Py
is compact for all A > 0. Since K is unbounded, we have Py # ¢ for all A > 0.

For all A < X\ we have Py C Py. Indeed, let u + s = w(u + As) € Py for some s € S. As A > X we have
t= ’\%’\l >0, and so u+ Ns =tu+ (1 —t)(u+ As) belongs to the segment [u, u + As]. Since K is convex we
have u+ X's € K, hence u+ s = w(u+ \N's) € Py, and so Py C Py. Now the family { Py} > is a decreasing
nested sequence of non-empty compact subsets. By Cantor’s intersection theorem :

ﬂPA#Cf)-

A>0

Let p be any vector in this intersection. For all A > 0 there exists sy € S such that u + Asy € K and
p = m(u+ Asy) = u+ sy, and so sy = p — u for all A > 0, hence by letting v = p — u we will have
R = {U+)\U}>\20 - K.

Concerning the last statement of the Proposition, let v € K be such that {u + Av}r>o € K, and let v/ be
another point in K. We want to prove that ' + Av € K for all A > 0. Fix A > 0, and for each n € N*,
consider the point z, = (1 — 2)u’' 4+ £ (u+ Anw). Since v/, u+ (An)v € K and 1 € [0,1], and by the fact that
K is convex, we get that a,, € K for all n € N*. On the other hand z,, = (1 — 1)u’ 4+ Lu + Av converges to
u' 4+ \v as n — oo, but K is closed then v/ + Av € K. Hence v/ + A € K forall A > 0. B

Lemma 14 Let C' C R€ be a line free cone, and let B be a closed and convez set in R® such that CNB = {0}.
Then for all k € R the set C'N (k + B) is bounded.

Proof : Let A = C N (k+ B) for some k € R°. Since C' and k + B are closed and convex, A is closed and
convex. Suppose that A is unbounded, then by Proposition there exists ©u € A and a non zero vector
v € R such that {u+ Av} >0 C A .

Since u € A, then u € C. But 0 € C. Applying Proposition 27| to v and 0 we get

{u+ )\1)})\20 C(C «— {)\U},\ZO ccC

and so Av € C for all A > 0. In particular v € C for A = 1.
On the other hand u € A, and so u € k+ B. But k € k + B since 0 € B. Applying Proposition 27| to v and
k we get

{u—i—)\v})\zo - k‘—l—B<:>{k+)\U}>\20 Ck+B

hence k+v € k+ B, and sov € B.
We obtained that v € C'N B, which is a contradiction since v # 0. Therefore A is bounded. W

Remark 9 Let C be a line free cone in Z¢ and let k € Z¢. We have CN—C = {0}, where —C = {—z, x € C'}.
By Lemma we get that C N (k — C) is a bounded set in Z°, and so it is finite.

Remark 10 Let C be a line free cone and let <, be the total additive order compatible with C given by
Propostion , Then for all i € C the set of elements j € C' such that j <, i is finite. Indeed, let B = {a €
Re, a-x <0}. Since j <, i, then j =i+« for some o € B, and so j € i+ B. For alla € C we have a-x > 0,
then C' N B = {0}. It follows from Proposition [1{] that C N (i + B) is bounded in R®, and so C N (i + B) N Z*
1s finte. Hence the set of elements j € C such that j <, i is finite.

Proposition 28 Let C be a line-free cone in R®. The set Kc|[z]] is a ring.

Proof : The neutral elements 0 and 1 are obviously in K¢[[z]]. It is easy to see that addition is well defined.
Concerning the multiplication, let f(z) = Y, a;z’ and g(z) = Zj bjz? be two elements of K¢|[z]], the
natural definition of multiplication of f and g is :

fl@)g(@) =) (Y aibj)a

k itj=k
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Each k in Supp(f.g) is of the form i 4+ j for some i € supp(f) and j € Supp(g), and since Supp(f) and
Supp(g) are both in the same cone C then i +j = k € C also, hence Supp(f.g) C C. In order to show
that multiplication is well defined, the coefficient of each z* which is ZH—j:k a;b; must be a finite sum. By
Remark [9] we get that for each k in Supp(f.g) the set C' N (k — C) contains only a finite number of points in
Z°, hence the sum is finite. W

Lemma 15 (Principle of Noetherian Induction) : Let C' be a set and let < be a well founded order on C. To
prove that a property p(x) is true for all x € C. It is enough to prove that p(x) is true for minimal elements
and for every x € C we have

(I) : p(y) is true for ally <x = p(z) is true

Proof : Suppose to the contrary that (I) is true but p(z) is not true for some z € C. Let N be the set of all
elements such that p(z) is false. Since < is a well founded order on C' and N is a non empty set, then N
admits a minimal element, say m. Now let y € C' such that y < m. Since m is a minimal element in N, then
y ¢ N, and so p(y) is true. We get that p(y) is true for all y < m. It follows from our hypothesis () that
p(m) is true. This is a contradiction. B

Theorem 3 Let y(z) = >, cqz® be an element of Kc[[z]], where C is a line free cone in R®. There exists
z(z) € Kel[z]] such that y(z).z(x) = 1 if and only if co # 0.

Proof : In fact if ¢y = 0, it is impossible to find a multiplicative inverse for y, since for any z(z) = >, d;xt €
K¢ [[z]], the constant term of y(z)z(x) will be cody = 0 while it should be equal to 1.

Conversely if ¢y # 0, then we can construct a power series z(z) = Y, d;z’, with dy = é. Now consider
an additive order < on Z°€ that is compatible with, which exists since C is line free-cone, then it is a well
founded order on C'. We will prove our statement by noetherian induction. Suppose that the coefficients d;

of z(z) can be chosen in a unique way for all i < k, and let us prove that dj, can be chosen in a unique way.

We have :
y@z@) =) (> adjz

k ijeCiti=k

So the coefficient of z* is equal to Z cid; = cody, + Z cidg_;. Let ¢ > 0, then —¢ < 0 since the order is
it+j=k i#£0
additive. It follows that j = k — ¢ < k, and so by the induction hypothesis d;_; are obtained in a unique
way. Since the coefficient of 2 should be equal to zero, then it is enough to take dj, = f% cidp_;.
i#0

It follows from the principle of noetherian induction that for all £ € C we can choose dj in a unique way.
Hence we get the result.ll

As we can see, K[[z]] is a special case of K¢ [[z]] when C is the cone generated by the canonical basis of N,

and the properties of K[[z]] generalize to rings of the form K¢|[[z]] for any line-free cone C.

2.4.2 Fractional power series solutions

We will define a kind of polynomials, namely free polynomials. They are polynomials in K¢ [[z]][y] that admit

a fractional power series solution in KC[[Q%]], where C' is some line free cone, and n is the degree of the
polynomial. We will prove also that a polynomial f of degree n in K[[z]][y] admits a fractional power series

solution in Kc[[gi]] after some change of variables. Hence it is free.
Consider the polynomial :

f@1,mzey) = flz,y) =y" +ar(@y™ '+ + an-1(z)y + an(@).

Then f is a polynomial in y with coefficients in the multivariate formal power series ring K[[z]], where
K is an algebraically closed field of characteristic zero. Let A be the discriminant of f in gy, and write
A1, e) = D pene Clpr,pe) 1 Lot € K[[2]]. Set

Supp(A) = {p = (pla mape) € Neac(pl,...,pﬁ) 7é 0}
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Write A =3 ua(®1, .., Te) Where ug(z1, ..., xe) = Z C(ph.__7pe):L‘21)l ...2P¢ is the homogeneous com-
p1+..-+pe=d
ponent of A of degree d. Let a = inf{d, ug # 0}. Note that if a = 0, then f is a quasi-ordinary polynomial.

Suppose that a # 0. Then u, is a non constant polynomial in K[[z]], say us = > Nay,..a0)]" - - - TEE

Moreover, suppose without loss of generality that x; appears in u,.

Remark 11 Consider the mapping
¢ K[z, ..., ze]] = K[[X71, ..., Xc]]

defined by £(x1) = X1 and {(x;) = X; + ;X4 for alli € {2,...,e}, where t; is a parameter to be determined.
Forally =) cqx{* ... 28 inK[[z1, ..., xc]] we have £(y) = y(X1, Xo+t2 X1, ..., Xe+teX1) =D o X7 (Xo+

e
toX1)%2 .. (Xe + teXq)%. It is obvious that £ is a homomorphism of rings. Morover consider the mapping

¢+ K[[X1,....Xe]] = Kl&1,....,zc]] defined by ¢(Y) = Y(x1,22 — tow1, ..., xe — tex1) = Y. apal (zg —
tox1)P2 ... (e — tewr)Pe for all Y(X) = > apXT' ... XE°, then

Eod(Y) = apXP(Xy — 1o X1 + 12 X1)P . (X — te Xy + 1 X1)P* =) ap XP'XP2 .. XPe =Y.

It follows that for all y(z) € K[[z1, ..., zc]] and Y(X) € K[[X1, ..., X¢]] we have ¢po&(y) =y and Eop(Y) =Y.
Hence ¢ is the inverse of & and so & is an isomorphism.

Let v : K[z]]ly] — K[X]][y] be the extension of the map & in Remark That is for all f =

an(2)y" + ... +a1(z)y + ao(z) in K[[z]][y] we have ¥(f) = {(an(2))y" + ... + {(a1(z))y + &(ao(z)). Then 1
is an isomorphism between K[[z]][y] and K[[X]][y].

Now let the notation be as above and let A(¢(f)) be the discriminant of ¢ (f). Then

AW =D Cprp) X1 (X2 + 02 X1)P2 (X + e X0)Pe

Moreover, A(w(f)) = ZdZO ud(Xl,Xz—i-tQXl, cees Xe—f-teXl). For all d > 0 let vd(Xl, .. ,Xe) = ud(Xl,X2+
to X1, ..., Xe + teXl). Then

Ud(Xla ooy Xe) = Z c(pl,...,pe))(;i71 (XQ + 752)(1)1)2 S (Xe + te)cl)p‘3
p1+---+pe:d

= eqlty, ..., to) XD TPe L (X0 0 Xe) = ealta, .. te) XE+05(X0, ..., Xe)

where v/, is a homogeneous polynomial of degree d, and e4(t2, ..., t.) is a polynomial in ¢, ..., t.. Since K is
an infinite field, we can choose to,...,t. € K such that e4(to,...,te) # 0.
Note that €q(t2,...,te) = >, 4 1p.—d Cpr,pe)th’ - - - te°, hence this polynomial cannot be identically zero.

This is clear if ug(z1, ..., x.) is a monomial. Otherwise, since p; +...+p. = d for all (p1,...,pe) € Supp(ug),
all elements in Supp(ey) are pairwise distinct.

Example 1 Let A = x129 — x123. Then the change of variables X1 = X1, X = X1 + Xo, 23 = X1 + X3
gives us the new polynomial X1(X1 + Xo) — X1(X1 + X3) = X1 X2 — X1 X3. This justifies the above use of
the variables ta, ..., te since we need the new discriminant to contain a power of X

Let a = inf{d : ug # 0}. By the above change of variables we may assume that the following condition
holds :
(1) The polynomial u, contains z{ with a nonzero constant.
From now on we suppose that f is a polynomial in K[[z]][y] that satisfies the above condition.
Theorem 4 Consider a polynomial f(z,y) in K[[z]][y] and assume that f satisfies condition (1). Then the

polynomial
F(Xl, ...,Xe,y) = f(Xl,XQXl, ey Xeley)

1S a quasi-ordinary polynomial.
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Proof : Let A = Zp Clpr,..., pe)x‘?l ... 2%° be the discriminant of f. Consider the change of variables :
1 = X1, 22 = Xo X1, ..., ze = XXy

The new discriminant Ay of F/(X7, ..., Xe,y) = f( X1, XoX1,..., XeX1,y) is Ay = A(X1, Xo X1, ..., X X1).
Write A = Zdzo ug, where ug is the homogeneous component of degree d of A. Let a = inf{d : uq # 0}. By
hypothesis u, = cqz{ + ... with ¢, # 0. Then

ua(Xl,XgXl, c. 7XeX1) = .’Ecll(ca + Ea(Xl, - ,Xe))
with €(0,...,0) = 0. On the other hand, if ug = Zc(dh_”’de)azfl ...x% then

ug(X1, X0 X1, ..., XeX1) = Xug(1, Xo, ..., Xe) = Xeq(X1, ..., Xe)
with €4(X71,..., Xe) # 0. We finally obtain that

with ¢ # 0 and £(0,...,0) = 0. That is, F' is a quasi-ordinary polynomial. l
In the following we will introduce a line free cone which is independent of the choice of the polynomial f.
However, we should keep in mind that in order to use this cone, the given polynomial should satify condition

(1).

Proposition 29 Let the notation be as above. Consider the set C defined by :
C={(c1y.,ce) ER® 1 > —(ca+...4¢Ce), ¢; >20V2<i<e}

Then C is a line free convex cone.

Proof : Let ¢ = (c1,...,¢e) € Cand A > 0, then ¢y > —(ca+ ...+ ¢¢) and ¢; > 0 for all 2 < i < e, and
soAer > —A(ea+ ...+ ¢c) = —(Aea+ ...+ Ace) and A¢; > 0 for all i € {2,...,e}. It follows that A\.c € C,
hence C' is a cone. Now consider ¢ = (cy,...,¢c.), ¢ = (¢}, ...,c.) € C, then ¢; + ¢, > 0 for all 2 < ¢ < e and
c1+dp > —(ca+chb+...4+c+¢c), and so ¢+ ¢ € C. In particular, if ¢,¢ € C and 0 < X\ < 1, then
Ac+ (1 —=X)d € C, and so C is a convex cone.

Finally to prove that C' is a line free cone, let ¢ = (¢, ...,ce) € C such that ¢ # 0, and let us prove that
—c=(—c1,...,—¢e) ¢ C. We have ¢; > 0 for all i € {2,...,e}. If ¢; > 0 for some i € {2,..., e}, then obviously
—c=(—c1y...,—Ce) § C. If c; =0for all i € {2,...,e}, then c; > —(ca+...+¢c.) =0, but ¢ # 0, then ¢; > 0,
and so —c = (—c1,0,...,0) ¢ C. Hence C' is a line free cone.ll

From now on C denotes the cone defined in Proposition [29| unless otherwise specified.

Lemma 16 Let Y (Xy,..., Xc) be an element of K[[X]] = K[[X1, ..., X¢]|. Consider :
Y(X1, ey Te) = Y(xl,xga:l_l, A xexl_l).

We have y € K¢[[z]].

Proof : Write Y'(X1,... Xe) = > Yoy, Xi" .. X2 We have :

(a1,...,ae)

Y(X1,y ey Te) = Z fy(ah._.,ae)m”{l(xle—l)”... (zewy )

(at,...,ae)
_ alf(a2+-~~+ae) as a,
= E: Vaa,-...ae)T1 Ty~ .. XS
(alv---aae)

Let Supp(Y') be the support of Y, then

Supp(y) = {(a1 — (ag + ... + ae), a2, ..., a¢), (a1, ..., ae) € supp(Y)}.

Now let ¢ = (¢1,92,-.-,qc) = (a1 — (a2 + ... + a¢), a2, ..., ae) be an element of Supp(y), where (a1, ...,a.) €
supp(Y'). Since Y (X) € K[[X]], then (ai,...,a.) > 0 componentwise. Hence ¢1 = a; — (a2 + ... + a.) >
—(ag+...+a)=—(g+...4+¢) and ¢ = a; > 0 for all 2 < i < e, and so q € C. It follows that
y € Ke[[z]].®
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[

1 1
Definition 28 Let n,e € N*. We define the ring Ke[[z],...,x2]], denoted by KC[[Q%]], to be the set of

by pe
formal power series of the form Z cpgg = Z cpxt ...
p=(p1,..,pe)EC p=(p1,---pe)
Lemma 17 Let f be a polynomial in K[[z]|[y]. Then f is irreducible in Ke|[[z]][y] if and only if F(x1, ..., xe,y) =
f(z1, 2021, ..., ke, y) is irreducible in K[[z]|[y], where polynomials are considered as polynomials in the va-
riable y.

Proof : Suppose that f is irreducible in K¢ [[z]][y] and suppose to the contrary that F is reducible in K[[z]][y].
There exists some monic polynomials G, H € K[[z]][y] such that F' = G.H and 0 < degy(G),degy(H) < n.
But f(z1,...,Te,y) = F(xl,xgxfl, e ,xemfl, y). Then :

flx1, o xe,y) = G(ml,xgxfl, e ,xe:nfl, y).H(ml,xgxfl, e memfl,y)
Let g(z,y) = G(:Ul,xQxfl,.. , Lelq L y) and h(z,y) = H(wl,mga:fl,...,xezfl,y). Let m = degy(G) and
write G(z,y) = y™ + a1 (2)y™ ! + ... + am(z), where a;(z) € K[[z]] for all i = 1,...,m. Then :
9(@,y) = y" +ar(wr, oy s wery Dy T 4 am(@y, mary ey )

Since a;(z) € K[[z]] for all i = 1,...,m, then by Lemmawe get that a;(z1, za27 ", ..., zexy ) € Ko[[z]] for
all i = 1,...,m. It follows that g € K¢[[z]][y]. Similarly we can prove that h € K¢[[z]][y]. Hence f = g.h with
0 < degy(g) = degy(G) < n and 0 < degy(h) = degy(H) < n = degy(f), and so f is reducible in K¢[[z]][y],
which is a contradiction. It follows that F is irreducible in K{[z]][y].

Conversely Let F be an irreducible polynomial in K[[z]][y], and let f = F(x1,z927", ..., 22", y). Since
F € K[[z]][y], then F is a polynomial in y with coefficients in K[[z]]. It follows from lemma [16| that f is a
polynomial in y with coefficients in K¢[[z]], and so f € K¢[[z]][y]. Now suppose to the contrary that f is
reducible in K¢ [[z]][y], that is there exists h1, ho € Kc[[z]][y] such that f = hihy with deg,(h1), degy(ha) <

degy(g).
Now let a(z1,...,xzc) = ) caxy' ... 22 be an element in K¢ [[z]], then

a(X1, XX, oy Tel1) = Z Ca M (o) .. (xey) = Z cax‘f1+a2+"'+aem§2 cooxle
Since a(z) € K¢[[z]], then a1 > —(az+...4ae) for all (ay, ..., a.) € Supp(a(x)). It follows that a; +as+...+
ae > 0 for all (ai,...,a.) € Supp(a(z)). Hence, a(z1, 221, ...,xcx1) € K[[z]]. Then hi(x1, xox1, ..., Te1,Y),
ha(z1, 2271, ... ze1, y) € K[[2]][y]. But
F(xy,...,2¢,y) = f(x1, 2221, ..., 221, y) = h1(T1, 2221, ..., Tex1, Y) ho(T1, 2221, .., TeT1, Y).
Hence F is reducible in K[[z]|[y], which is a contradiction.H

Definition 29 Let f be a polynomial of degree n in K¢|[z]][y]. Then f is said to be a free polynomial if f
is irreducible in Ko|[z]]ly] and if it admits a solution in Kc[[g%]]

Theorem 5 Let f(z,y) =y +ar(2)y" '+ - +an_1(z)y +an(z) be a polynomial of K[[z]|[y] that satisfies
condition (1). Suppose that f is irreducible in Kco[[z]][y], then f is free.

Proof : By Theorem [4] the polynomial F' defined by
F(X17 "'7Xeay) = f(X17X2X17 ceey X@Xl,y)

is a quasi-ordinary polynomial of K[[X]][y].
By Lemma (17| we get that F' is an irreducible quasi-ordinary polynomial in K[[X]][y] of degree n, then by

the Abhyankar-Jung theorem there exists a formal power series Z(Xy,...X,) = Z Yas,. 7ae)X o Xe o
(a’ly"'va )

1 1
in K[[X, ..., X&]] such that F(Xy,..., X, Z(X1,..., X)) = 0. But :
F(Xy,.0nXe, Z(X1, ..., X)) = f(X1, X2 X1,..., X X1, Z(X1, ..., Xe))

Then f(x1, 29, ..., Te, Z(T1, T2T] . . ., Tel] )) = 0. It follows that Z(xy,ze27", ..., zex] ") is a solution of
f(z1,...,xe,y) = 0. Since Z(X7q, ..., Xe) € K[[X ]] then by Lemma.we deduce that Z(xy, zexy ", ... wexyt)
belongs to Kc[[gi]] This proves our assertion.Hl
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Proposition 30 Let the notation be as above, with f a free polynomial of degree n in K[[z]][y] that satisfies
condition (1). Let d be a divisor of n. Then the d-th approximate root of f is free.

Proof : By Theorem [4] and Lemma 17 the polynomial F' defined by
F(Xy,..,Xe,y) = f(X1, XoX1,..., X X1,y)
is a quasi-ordinary irreducible polynomial of K[[X]][y]. Let G be the d-th approximate root of F', and let
F=G"+C(X,y)G" " +...+ Cy(X,y)

be the G-adic expansion of F', with deg,(C;) < % for all i € {1,...,d}. Since G is the d-th approximate root
of F', then by Proposition |5 we get that C1(X,y) = 0. Hence :

f(mla "'7$€7y) = F(mlvl'QxIl? s 71’.6'%;1; y)
= ¢ (z,y) + Ch(z, )" (2, y) + ... + Cl(z,y)

Where g(z,y) = G(azl,xgxfl, . .,:Eea:fl,y) and CJ(z,y) = C’i(acl,:zgxfl, .. .,xeazfl,y) for all i € {2,...,d}.
By Lemma (16| we have g € K¢/[[z]][y] and C] € K¢[[z]][y] for all i € {2,...,n}. Since deg,(C;j) < 4§ for all
i €{2,...,d} and deg,(g) = %, then again by Proposition [5 we get that g is the d—th approximate root of
f in K¢[[z]][y]. By Proposition [6 f admits a unique d—th approximate root in K¢[[z]][y], but f € K[[z]][y]
and K[[z]][y] C K¢[[z]][y], then g is the d—th approximate root of f in K[[z]][y].

Since G is the approximate root of an irreducible quasi-ordinary polynomial then by Proposition [23]it is1 an

irreducible quasi-ordinary polynomial, hence by the Abhyankar-Jung theorem G admits a root in K[z 4 ]].
But g(z,y) = G(x1,ze27", ..., xex] ,y), then by a similar discussion as in Theorem we get that g admits

1

a root in K¢/[[z @ ]]. Moreover g is irreducible in K¢/[[z]][y] by Lemma Hence ¢ is free with respect to C.l

2.4.3 Characteristic exponents

Let the notation be as above where f € K¢[[z]][y] is a free polynomial with a root y € K(;[[g%ﬂ We will
study a special set of exponents of y, namely the set of characteristic exponents, with their properties.
Let L be the field of fractions of K¢[[z]]. Moreover set :

1 1 1 1 1
Ly =L(z7),Ly = Li(zy),.... Ly = Ly—1(22) = Lz}, ...,x&)

1
The field L; is obtained by adjoining the root x* of the irreducible polynomial Y™ — z; to L;_1, and L,, is a
1

Galois extension of L of degree n¢. Let U, be the set of n'* roots of unity in K. The conjugates of x over
1

L are w.xf with w € U,.

Definition 30 Let z(z) = Zcpg% € Kc[@%]] The support of z, denoted by Supp(z), is defined to be the
set {p € Z°, ¢, # 0}. Obviously Supp(z) C C NZ°.
1

1 1
Let 0 € Aut(L,/L). For all i =1, ...,e we have 0(z") = w;x] for some w; € Uy,. Then :

1 P1 Pe
W \Pe — P _ P
P O(ze )P =witet L Wk =wit L whea

33
=3

O(zn) = 0(z

where k is a non-zero element in K.

Now let Roots(f) = {yi}1<i<n be the conjugates of y over L, with the assumption that y; =y = Zcpg%.
Then for all 2 < i < n there exists some automorphism 6 € Aut(L, /L) such that y; = 6(y). Hence :

yi =0(y) = H(Z cpgg) = Zc,ﬁ@%) = Zcpkpgg, k, € K*.
Since k, € K* for all p € Supp(y), we have Supp(y) = Supp(y;) for all i =1, ..., h.

By Proposition ﬁ, there exists an order < on Z¢ which is compatible with C'. Hence for all z(z) in KC[[Q%]],
Supp(z(x)) can be arranged as an increasing sequence. We define the following notion : the order of z to be :
O(z) = inf(Supp(z)) if z # 0, and O(z) = oo for z = 0. We set LM (z) = z= where p = O(z), and we call
it the leading monomial of z. We set LC(2) = co(,) and we call it the leading coefficient of z.



2.4. FREE POLYNOMIALS 43

Definition 31 Let the notation be as above with {yi,...,yn} = Roots(f) and y1 = y. The set of Characte-
ristic exponents of y is defined by :

{O(i — y5), vi,yj € Roots(f) and y; # y;}.

Similarly we define the set of Characteristic monomials of y to be : {LM (y; — y;),y; # yj}. Note that this
set depends on the order that we are using.

Proposition 31 Let the notation be as above. Then the set of Characteristic exponents of y is equal to the
set {O(yx — y), Yk # y}-

Proof : For every 1 <1i # j < nlet ¢;j = LC(y; — y;) and M;; = LM (y; — y;), then :
Yi — yj = cijMij + €

where €;; € L, with O(e;;) > O(M;j). Now let § € Aut(Ly/L) be the automorphism such that 0(y;) = .
Then 0(y;) = yg for some 1 < k < n, and 6(y; — vy;) = 0(vi) — 0(y;) = vk —y = cr1Mp1 + €1 with
O(ex1) > O(Mg1). On the other hand 0(y; — y;) = 0(cij Mi;j + €ij) = cijaMij + 0(ei;) with o # 0 and
O(0(ei5)) > O(M;j). Hence My = M;; = LM (y; — y;), and so we get :

{O(yi — y;),yi # y; are conjugates of y} = {O(yx, — y), yx # y}. W

It follows from Proposition [31] that the set of characteristic monomials of y is given by :

{LM(yi —yj),yi # yj} = {Mr = LM(yr. —y), k=2,...,n} ={LM(0(y) —y),0(y) # v, 0 € Aut(L,/L)}.

Note that if n > 2, then the characteristic monomial M} does not belong to L for all k = 2,...,n. Indeed,
for each M}, there exists an element 6 € Aut(L, /L) such that 6(y) —y = cx M}, + € where ¢ is a non zero
constant in K and O(ex) > O(My,). Since Supp(y) = Supp(6(y)) then My is a monomial of y. Moreover we
have :

y=p+cMp+q
where ¢ is a non zero constant and p, ¢ are in KC[@%H such that O(p) < O(My) < O(q), then 0(y) —y =
(0(p) —p) +c(0(My) — My)+ (6(q) — q). It follows that 8(p) —p = 0 and 6(M}) — My, # 0, hence 0(M},) # M,
and so My ¢ L.
Now we write the characteristic monomials in an increasing order and we reindex them as :

My < My < ... < My

Proposition 32 Let the notation be as above with {Mj, ..., My} the set of characteristic monomials of y.
The two field extensins L(y) and L(My, ..., My) are equal.

Proof : Let 0 € Aut(L,/L(y)), then 6 is an L-automorphism of L, with 6(y) = y. But if 6(y) = y then
O(y) =60>_ cpgg) =3 cpe(gg) = Zcpkpg% =y= Zcpg%, with k, # 0 Vp € supp(y), and so 9(@5) = zn.
Hence zn € L(y) V p € supp(y). In particular M, ..., M}, are monomials of y, then M, ..., M) € L(y), and
so L(Mjy, ..., My) C L(y).

Conversely y € L(My, ..., Mp). Since if 0 € Aut(L,/L(M,..,My)), i.e if 6 is an L automorphism of L,
such that O(M;) = M; ¥ i = 1,...,h, then 6(y) = y. In fact if 6(y) # y then O(y) — y = cM; + ¢; for some
characteristic monomial M;, hence for this i we have 6(M;) # M; which contradicts the hypothesis. Then
L(y) C L(M;, ..., My), and so L(y) = L(My, ..., Mp). B

Note that for all K =1, ..., h the characteristic monomials of y are of the form M} = g% for some my, € C.
Moreover g% is a root of the polynomial Y™ — z™* which belongs to L[Y] since 2" € L, and so M} is
algebraic over L. Hence L(My, ..., M;) = L[Mj, ..., M;] for all i =1, ..., h.

Proposition 33 Let the notation be as above with {mj,...,mp} the set of characteristic exponents of y. Let

h
m € Z° be an element of Supp(y), then m € (nZ)° + ZmiZ.
i=1
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Proof : Write M = z». Since M is a monomial of y, then M € L(y) = L(Mj,...,M},) = L[M,, ..., My].

Hence :
1 1 l l
M:ﬁMfl...ijh+...+ﬁM{"1...M§h.
g1 g1
for some f1,..., f1i,91,...,q1 € K¢|[z]] and | € N*, and so :

1 !
A, Ap,

1 !
gl...glM:flgg...glMlal...Mh —1—...—|—flg1...gl_1M1a1...Mh
Comparing both sides we get that LM (g1 ... M) = gaMlall . .M,?;L for some ¢ € {1,...,1} and a € Z°.
Now write LM(g1...q1) = 2t for some b € Z€, then nb+ m = na + oﬂiml + ...+ aﬁlmh, and so m =

n(a —b) + atmy + ... + af,my. It follows that m € (nZ)® + S miZm
Now we define the following fields :

Fo=1
Fz‘ = L[Ml, ,Mz] = Fz—l[Mz] fOT all 7= 1, ,h

We also set : ‘
7
= (nZ)¢ + Z m;7Z
j=1
for all ¢ = ., h, and we write Gy = (nZ)¢. Similar to Proposition [33| we can prove that for any monomial
M:g% 1thm€C we have M € F; & m € G;.

Definition 32 Let the notation be as above with y = Zcpg% a root of f in Kc[[g%]] Let {mq,....,mp} be
the set of characteristic exponents of y. We define the following sequences :

e The GCD-sequence {D;}1<i<hi1, with Dy = n® and for all i € {2,...,h} Diy1 = ged(nle,m¥,....mT), the
ged of the (e, e) minors of the e x (e +1) matriv A = (nl.,m¥,....mI), where I. is the identity e x e matriz.
e The d—sequence {d;}1<i<pht1 with d; = Dfﬂ

e The e-sequence {e;}1<i<p with e; = D[:L = diif

o The r—sequence {18, ....76,71,...,rn} by (13, ...7§) the canonical basis of (nZ)¢, r1 = my, and for all k €
{1, h =1} rpq1 = ex - T+ Mpypr — My

Note that we also have the following

Tht1 - Diy1 = D1 - e - i + (Mpy1 — mi) - Dy = Dy - ri + (mpgr — my) - Diga
k41

= D1+Z —mll

Proposition 34 Let the notation be as in Definition |39 and let v be a non zero vector in Z°. Let ]j)~be the ged
of the e x e minors of the matriz (nlo,m?, ..., mI vT). Thenv € (nZ)® +> ! m;Z if and only if D = D;yq.
Moreover, %.v € (nZ)e—i—Z _,m;Z and if Diyy > D then for all 1 <k < “’1 Jkov ¢ (nZ)° —f—z _1myZ

Proof : Same as the proof of Proposition [16]H

Definition 33 Let a,b € C. We say that zn < g% if a <b.

Proposition 35 Foralli=1,....h — 1 let H; be the algebraic extension of L obtained by adjoining all the
monomials M of y such that M < M;4q then :

(1) F; = H; and M; does not belong to F;_1

(1) The degree [F; : F;_1] of the field extension F;_y C Fj is equal to e;.
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Proof : (i) Since m; < m;yq for all j = 1,...,4, then My,...,M; € H;, and so F; C H;. In order to prove
that H; C F;, consider a monomial M of y such that M < M;;,. For each § € Aut(L,/F;), 6 is an L
automorphism of L, and 0(M;) = M; for all j < i+ 1. Hence LM (6(y) —y) > M, 41, and so (M) = M for
all M < M;41, hence M € F;. Finally we get that H; = F;. Now to prove that m; ¢ F;_1, let 8 € Aut(L,\L)
such that 0(y) —y = c¢M; + ¢ with O(¢) > m,; and ¢ a non zero Constant( such 0 obviously exists since
M; is a characteristic monomial of y), then §(M;) = M; for all j = 1,...,i — 1 and 0(M;) # M;, and so
0 € Aut(L,\F;—1) with 0(M;) # M;, hence M; does not belong to F_1.

Note that (i) is equivalent to say that between all the exponents m of y, m; is the samllest one which does
not belong to G;_.

(74) Since M; ¢ F;_q, then m; ¢ G;_1, and so D; > D;;1. Moreover e;m; € G;—1 and for all 0 < a < ¢;
we have a-m; ¢ G;—1. Now let g = yl + alyl_1 4+ ...+ a; with a;, € F;_1 for all ¢ = 1, ..., be the minimal
polynomial of M; over F;_; and suppose that [ < e;. Since g(M;) = 0, then there exists some k € {0, ..., —1}

km;

such that :Jclwvlz = gn.x n for some o € G;_1, and so (Il —k)m; = a € Gj—1 with 0 < | — k < e; which
is a contradlctlon Hence the degree of the ernlnlmal polynomial of m; is at least e;. It follows easily that
Y€ — 2% %" is the minimal polynomial of ™= over F;_j, hence [F; : F;_1] = ¢;.1

Proposition 36 Let f be a free polynomial of degree n, and let {mq,...,mp}, {ri,....,mn} and {e1,...,en}
be its sequence of characteristic exponents, its r—sequence, and its e—sequence respectively. Then for all
i €{1,...,h} we have e;r; € (nZ)° + 23;11 riZ and ar; ¢ (nZ)¢ + 23;11 riZ for all 1 < o < e;.

Proof : Note that each of the sequences (my)1<k<n and (r;)1<k<n can be obtained from the other. In particular

the r—sequence can be rearranged in the following way : 1y = mqy,79 = e1-r1+ma—m1 = e;-mi+mo—my =

ma+mj(e; —1) and so we get that 7, = my+mp_1(ex—1—1)+mp_o(ex—2—1)ex_1+...+mi(e1 —1)ea...e_1.

Hence (nZ)¢ + Z] L T2 C (nZ)° + Z] L m;Z for all i € {1,...,h}.

On the other hand we have m; = 1 and mga = r2 — (e1 — 1)T1 Suppose that my = r, + (eg—1 — 1)rp—1 +
..+ (e1 — 1)r1 up to some k with k£ > 2, and let us prove it for k£ + 1. We have

T4l = €Tk + Mip1 — My
= Mk4+1 + (ek — I)T'k + (ek,1 - 1)7“]@,1 +...+ (61 — 1)7‘1

Hence my1 = 7p11 — (ex — 1)rp + ... + (e1 — 1)rq, and so it is true for all £ € {2,...,h}. It follows that

(nZ)® + 3251 miZ = (nZ)® + 375y myZ for all i € {1, ..., h}.

We have proved that for any o € N we have am; = ar; — a(e;1 — 1)ri-1 — ... — a(e; — 1)r; and that

(nZ)¢ Z] L mZ = (nZ)° + Z;;ﬁ rj—1Z. It follows easily that ar; € (nZ)® + 23;11 r;Z if and only if

am; € (nZ)® + Z] LM Z

Now let ¢ € {1,...,h} and let M; = z7 be the characteristic monomials. We have m; ¢ (nZ)° + Z _ My

Otherewise, we will get that m; = a1m0+ AaemG+Bimi+. ..+ Bi—imi—q for some o, ..., o, B, . .. ,ﬂe
Z. 1t follows that z» = 2" ... o“fM’B1 Mﬂ’ € L(Ml, ey M;_1). Which is a Contradlctlon It follows from

Prop081t10nthat eim; = D?frlmz (nZ)° + Z 1 mJZ and fm; ¢ (nZ)° + Z _1 mJZ forall 1 < g <e;.

It follows directly that e;r; € (nZ)¢ + ijl r;Z and ar; ¢ (nZ)° ijl r;Z for all 1 < a < e;M.

Remark 12 Since [L(y) : L] = n, it follows from Proposition (35| that [L(y) : L] = e1...ep = Dh -. But
[L(y) : L] =n and D1 = n®, hence Dy 11 = n°"t. Moreover di = n and dj 11 = 1.

Now we define the following sets :
Qi) = {0 € Aut(L, /L), such that O(y —0(y)) < m;}
R(i) = {0 € Aut(L,/L), such that O(y — 0(y)) = m;}
S(i) = {0 € Aut(L, /L), such that O(y — 0(y)) = m;}

Proposition 37 Let the notation be as above with {D;}; the GC D-sequence associated to y, then #S(i) =
D; — D;y1, where #5(i) is the cardinality of the set S(i).
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Proof : Since L,, is an extension of degree n® of L, then #Aut(L,/L) = [Ly, : L] = n®. We have
RS R(l) = O(y - G(y)) = m; & Q(M]) = Mj Vi<is e Aut(Ln/L(Ml, m;Mi—l))

Hence #R(i) = #Aut(L,/L(M,...,M;_1)) = [Ly : L(Ma,...,M;_1)] = [L, : F;_1]. By Proposition |35 we
have :

[Fioi: Ll =[Fi1: Fio]- - [Fi: Ll =ei—1- e

Dy Dy Diy Dy e

"Dy Dy D; D; D

But [Ly, : L] = [L, : F;_1]-[Fi—1 : L] = n®, then [L,, : F;_1] = D;, and so #(R(7)) = D;. Now let § € R(i+1),

then O(y — 0(y)) = mj+1, but mirq1 > my, then O(y — 0(y)) > m;, and so @ € R(i), hence R(i + 1) C R(i).

Moreover 6 € S(i) if and only if O(y — 6(y)) = m; if and only if § € R(i) and 0 ¢ R(i + 1). It follows that
#S(i) = #R(i) — #R(i+ 1), and so #5S(i) = D; — Dj1. W

2.4.4 The initial form of the minimal polynomial of y_,,.

Let f be a free polynomial of degree n in K¢[[z]][y], and let y = Ecpgg IS Kc[[gi]] be a root of f. Let
{m1,...,mp} and {rq, ..., } be the set of characteristic exponents and the r—squence of y respectively. For
all i € {1,...,h} we will define a specific polynomial G; called the i—th pseudo-root of f. We will prove that
O(Gi(z,y(z))) = ri. Moreover, we will prove that G; is a free polynomial in K¢[[z]][y] for all ¢ € {1,...,h},
and we will find the relation between the characteristic exponents of f and those of G;.

Definition 34 Let the notation be as above, and let m be one of the exponents of y. Then an m—truncation

of y is defined to be Yy := Z cpgg with p € Supp(y).
p<m

By p < m we mean that p < m with respect to the defined order on C and p # m. Note that since C' is a

line free cone, y<,, is a finite sum of monomials, and it is obviously an element in KC[[Q%]] C L.
Definition 35 Let the notation be as above with {m1,...,mp} the set of characteristic exponents of y. For
alli=1,....;h let y<m, be the m;-truncation of y, then the i-th pseudo-root of f is defined to be the minimal
polynomial of Yy, over L.

Proposition 38 Let the notation be as above. For all i = 1,...,h let G; be i-th pseudo-root of f, then

e

deg,(Gy) = 1 = .

Proof : By Proposition we have L(Y<m,) = L(Mji,..,M;_1). By a similar argument as in the proof of
Proposition 37, we get :

deg,(G) = [Llyem) : L) = [L(Mi, oo, Mi_y) : L] = %e.-

i

For all ¢ =1, ..., h the 7 — th pseudo-root G; splits completely in L,,. Moreover the conjugates of y,,, over

L are 0(y<m,), with 0 € Aut(L, /L), which are elements of Kc[@%]], then G; has % roots in KC[@%H Let
21, ..., zne be the roots of G;, then
D;

but G; € L, hence G; € K¢[[z]][y].

Proposition 39 Let the notation be as above with f a free polynomial of degree n and y = y(g%) a root of
f, then :

fa) = I & -ow)

0c Aut(Ln /L)
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Proof : Let {y1, ..., yn} be the conjugates of y over L. For all i =1,..,n set :
A; ={0 € Aut(L,/L),0(y) = yi} and a; = #(4A;).
We have 6 € A; if and only if 0 € Aut(L,,/L) and 0(y) = y1 =y if and only if § € Aut(L,,/L(y)), hence :

#(A1) = #Aut(Ln/L(y)) = [Ln : L(y)].

But (L, : L(y)][L(y) : L] = [Ly, : L] with [L;, : L] = n® and [L(y) : L] = deg(f) = n, then [L, : L(y)] = = =
n®~!and so a; = #(A;) =n¢ L.

Write A1 = {f31, ..., Bye—1} and we want to prove that #(A4;) = #(A;) =n® ! foralli =1,..,n. Let 3 be a
conjugate of y other than y. Since L, /L is a normal extension then there existes some «; € Aut(L, /L) such
that a;(y) = y;. For all i = 1, ...,n°"! we have a; 0 8;(y) = a;(y) = y; and so a; 0 3; € A;. Moreover, if j # k,
then a; o B # v o B, hence a; = #(4;) > #(A1) = a1 =nL If q; > ay =n®! for some | = 2, ...,n, then

Z a; > nf, but Z a; = n®, this is a contradiction. It follows that for all i = 1, ..., n we have a; = a; = n¢ L.

=1 I=1
Hence for all ¢ = 1,...,n A; can be written as

A ={0l,1<j<n'}

Hence :

ne—1 ne—1

[T o-owm=1]1I-¢w)=]]T]v-w=]]r=1"
j=1

0cAut(Ln /L) 7j=1i=1 7=11i=1

Hence the proof is completed. B

Proposition 40 Let the notation be as above. For all i = 1,....h let Gi(z,Y") be the i-th pseudo root of f.
Then
Giz, )P = I  (V=6(y<m))

0c Aut(L, /L)

Proof : Let y1,...,yne be the conjugates of y,, with y; = y<y,,. For alle =1, ..., % set :
D, i

A;j ={0 € Aut(L,/L), 0(y<m,;) = y;} and a; = #A,

For each j =1, ..., %ei there exists o; € Aut(L, /L) such that a;(y1) = y;, so we define the set {cj00,0 € A}
and we denote it by a; o A;. We want to prove that A; = a;j o Ay.

Let 6 € A;, we have 6(y1) = y1, hence a; 0 0(y1) = oj(y1) = y;. But o, € Aut(L, /L), then ajof €
Aut(Ly /L), and so aj o 6 € A; this implies that a; 0o Ay C Aj.

Now let 8 € A;, then B(y1) = y;. Write § = o 0 (aj_l o (). Then :

a;((a;' o B)(y1)) = Bly1) = yj = a;(y1)

But «; is injective, then ( 1o B8)(y1) = y1, hence o Lo B e Ay Tt follows that 8 = a; o ( “1op) e a; o Aj.
Then A; C o o Aj. Finally we get that 4; = ;o A

Now A; = {0 € Aut(L,/L),0(y<m,;) = y<mi} = Aut(Ln/L(y<mi)) = Aut(Ly/L(M,...,M;_1)) by Proposi-
tion Hence a; = #A; = #Aut(L,/L(M,...,M;_1)) = D; but since V0,60, € Ay and 0; # 03 we have
aj ol #ajo0; then aj = #A; = #A1 = a1 = D;. Write A; = {0’“,1 < k < D;}, we get :

3
)

3
®

D; Dj D; D; D;
H (Y = 0(y<m;)) = (Y - 9 (Y<my)) HH Y —y;) = HG:GDi. ]
0 Aut(Ln /L) k=1j=1 k=1j=1 k=1
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Lemma 18 Let the notation be as above with y € KC’H&%” a root of a free polynomial f € K¢[[z]][y], and
let {m1,...,mp} be the set of chamctem’stic exponents of y and {D1, ..., Dpy1} be its GCD sequence. For all

1<i<hsetS; =mq- D1—|—Z —mj_1)D; then we have :

O( H (y —0(y))) = Siz1 —mi—1 - D;.
0€Q(i)

Proof : We have 6 € Q(¢) if and only if O(y — 0(y)) < m; if and only if O(y — 0(y)) = m; for some
je{l,...i—1}. It follows that Q(i) = U'Z 15’( ). Hence

IR 0

0€Q(4)

By Proposition [37| we have #(S(j)) = D; — Dj41, and so for all j =1,...,4 — 1 we have :

O( H (y—0())) = (Dj — Djt1)m

0€S5(j)

Hence :

O( H (y—0(y))) = (D1 — D2)m1 + (D2 — D3)ma + ... + (D;—1 — Dij)m; 1
0€Q(i)
= Dimq + Da(ma —mq) + ... + Di_1(mi—1 — mi—2) + Dym;_q
=Si-1—mi—1-D;.

Definition 36 Lety be a formal power series in Kc[[z]]. Let < be an order which is compatible with C, and
let LM (y) and LC(y) be the leading monomial and the leading coefficient of y with respect to this order. The
initial form of y with respect to this order is defined to be : Info(y) := LC(y) - LM (y).

Definition 37 Let the notation be as above with {my,...,mp} the set of characteristic exponents of v,
and Z # 0 an indeterminate. Let i € {1,...,h}, by an (i, Z)-deformation of y we mean an element y* €
K’(Z)C[[g%]] where K’ is an overfield of K, such that Info(y* —y<m,) = Z -z = . Note that the initial form

1s taken with respect to the chosen order on C.

Proposition 41 Let f be a free polynomial with a root y. Let {m1,...,mp} be the set of characteristic
exponents of y, and for all 1 < i < h let G; be the i-th pseudo root of f and y* be an (i, Z) deformation of
y. Then :

3 \J.

Info(Gi(z,y*)) =c-Z-x

Where ¢ € K is a non zero constant.

Proof : By Proposition 0] we have :
Gilz,y)' = [ & —0y<m))-
0cAut(Ly /L)
Since Aut(Ly /L) is the disjoint union of R(:) and Q(7)), then :
Info(Gi(z,y*))P = Info( [ & —0(y<m))

0cAut(Ln/L)

=Info( [[ W =0w<m)) - Info( T] (" —0(y<m.)))-

0eQ(i)) 0€R(7)
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Consider the equation :

y = 0y<m) = (" = y<m) + Y<m: =) + (= 0(y)) + (0(y) = 6(y<m,))

For all § € Aut(L, /L) we have O(0(y) — 6(y<m,;)) = OOy — y<m;)) = Oy — Y<m,) = m;, also by the
definition of the deformation y*, we have O(y* — y<m,) = m;. Then :

(i) If 0 € Q(i), we have Info(y* — 6(y<m,)) = Info(y — 6(y)), and using Lemma [18 we get :
S;—1—m;_1D;
Info [ W —0(@<m)) =Info [ —0@)=r-z = (2.3)
0€Q(9) 0€Q(i)

Where X is a non zero constant in K.

(13) If 6 € R(7), then 0(Y<m,) = Y<m,, and so Info(y* — 0(y<m,)) = Info(y* — yem,;) = Z - . But

card(R(i)) = D;, then :

D;

Info H (y" — O(Yy<m,)) = H Info(y” — 0(y<m1)) = ]‘_I(Zg

0ER(i) 0 R(i) i=1

mg
n

Combining () and (i) we get :

Info(Gi(z,y*)" = Info T] (v* = 0(y<m.)) - Info [ (v" = 0(y<m,)

0€Q(i) 9CR(3)
S;j_1—m;_1D; m, D
_ A . g 1 n’L 2 . ZD'L . & 7;1 A
Si_1—m;_1D;+m;D; S r:D;
:)\ZDlgZ lnl ll:)\.ZDi.gﬁz)\.ZDi.glnl

Hence Info(Gi(z,y*)) =c- Z - zw for some ¢ € K*. Moreover, O(Gi(z,y*)) =r;.1
As a corollary of Proposition 1] we get the following :

Corollary 2 Let the notation be as in Proposition 41l We have O(G;(z,y(z))) = r;.
Proof : In fact, y(z) = y*(x)|z=1. Hence the result follows.

Proposition 42 Let f be a free polynomial in K¢o|[[z]][y], and let G; be the i-th pseudo root of f, where

L
N
d,;

i € {1,....,h}. Then G; is a free polynomial. In particular its root y<m, € Kellz % || and its characteristic
exponents are 7t ..., mcil;l

1
n
d:

Proof : We want to prove that y<,,, € K¢[[z % ]]. Let 2 be a monomial of Y<m,, then A € (nZ)°+>"
Let D be the ged of the minors of the matrix (m(l), .y MG, M1, ...,mi—1, A), then by Proposition |16| we have
D = D;. Foralll € {1,...,e} the matrix A, = (m{, ..., mé_l, A, m6+1, ...,m¢) is one of the minors of the matrix
(mg, ..., m§, m1, ..., m;_1), then D; divides Det(4;) for all [ € {1,..,e}. Write A = (A1, ..., A¢), then obviously
Det(A;) = n°~t)\;, and so D; divides n®~t)\; for all [ € {1,...,e}. It follows that D; divides n®~!), and so

)\/
e— . A i
"D_l)‘ = % € 7Z°. Moreover, since A € C, and % > 0, then 2 € C. It follows that = = z % where N = %,
A

i—1
i—1 ij.

d;
1

and so zn € K(;[[@dﬂi ]

Let 0(y<m,) be a conjugate of Y<r,,, then obviously LM (0(y<m,) — Y<m,) = QTJ for some j € {1,...,7 — 1}.
my
But % = ? , hence the set of characteristic monomials of y<,, is {’g—;, ey mcili_l 1.

i
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2.4.5 The initial form of the approximate roots of f

Let the notation be as above with f a free polynomial of degree n in K¢[[z]][y] and let y(z) € K¢[[z]] be a
root of f(z",y) = 0. Let g € K¢[[z]][y] such that f does not divide g. From now on we will write O(f,g)
for the smallest element in the set Supp(g(z™,y(x))) with respect to the given order on the cone. Note that
if z(z) is another root of f, then z = 6(y) for some 6 € Aut(L,\L), and so g(z", z(z)) = g(z",0(y(z))) =
0(g(z™,y(z))). But Supp(g(z™, y(z))) = Supp(0(g(z"™,y(x)))). It follows that O(f, g) does not depend on the
choice of the root of f. Note also that if g1, g2 are nonzero elements of K¢/[[z]][y], which are not divisible by
f, then O(f, g192) = O(f,91) + O(, g2)-

Now for each polynomial g such that f does not divide g, we will consider O(f, g). We will prove that the set
of such elements form a semigroup. Moreover, if deg,(g9) < 7, then O(f,g) €< 7y ey TE, 71,y ey i1 >. For
all i € {1,...,h} we will take g; to be the d;-th approximate root of f, where {dy, ...,d,} is the d—sequence of
f. We will prove that r; = O(f,g;) for all i € {1,..., h}. The following Proposition shows that O(f,G;) = r;
if G; is the i-th pseudo-root of f.

Proposition 43 Leti € {1,...,h} and let G; be the i-th pseudo-root of f. We have O(f,G;) = r;.
Proof : This is an immediate consequence of Corollary

Proposition 44 Let f be a free polynomial of degree n in Ke[[z]][y], and let {G1, ..., Gr} be the set of pseudo
roots of f. Let i € {1,...,h}, then we have O(G;,G;) = % forallje{1,..,i—1}.

Proof : Let y € Kc[[g%ﬂ be a root of f, and let {mi,...,mp} be its set of characteristic exponents, and

let {dy,...,dn} be its d—sequence. For all j = 1,...,5 — 1 the Tg—: truncation of y<,, is obviously y<pm,;. By
mi mi—1

Proposition 42| we have that T 4 are the characteristic exponents of G;. It follows directly that the
pseudo-roots of G; are {G1,...,G;—1}. Let D}, ..., D} be the GCD—sequence of G;. Then

1 e
T re mq Mi—1 1
D.
; ; ' ' D; a D;
for all j € {1,...;4}. Let {ej}i<j<i—1 be the e—sequence of G;. We have d; = o = D = D Hence
d;
D’ D,
/o — b E— i — . 1 e ./ / . 1 el ;
¢ =D T D <G Let {ag,...,af, 7], ...,7_1} be the r—sequence of G; where {ag,...,af} is the
1 e
: : nrr\e 1 _ Ty e _ Tg /! /I m1 . T1 /o Tk
canonical basis of (£Z)°. Then oy = 2,...;af = ¢ and rp = my = Z+ = 7. Suppose that rj = Z for
k=1,...,7, then
Ty m m; 1 T
R, / | J+1 J _ e ) j+1
T+l = €T+ My —my; = e + A E(ejr] +mjp1 —my) = 7
(2 (2 (2 (2 (2

1 e .
It follows that the r—sequence of Gj; is equal to {2—2, - ;—2, %, ey ”d;l}. Finally by Proposition 43 we get
O(Gi,Gj) = ¢ forall j e {1,...,i—1}.1

Recall that for all H € K¢[[z]][y] the expansion of H with respect to (G1, ..., Gp, f) is given by :

H=> cy(x)G] ...Go 1
(%)

Where 0 = (01,...,0p41) with 0 < 6; < e; = diil for all i = 1,...,h and 0p,1 € N. Moreover we have the
following proposition :

Lemma 19 Let f a free polynomial in Kc|[z]]ly], and let g € Kel[z]]ly] be such that g is not a multiple of

f. Let g = Z cQ(g)G(fl .. .Gf:hfah+1 be the expansion of g with respect to (G1,...,Gp, f). Then there exists a
)

unique 0 € fi such that O(f,g) = O(f, CQ(E)G?I o Gzhfehﬂ)'
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Proof : Note that the expansion of g with respect to (G, ..., Gp, f) is given by g = Z co(x Ge1 Gzhfeh+1
0

with 0 = (017-~-79h+1) € A= {<ﬁ17-~-75h+1)7 0< ,3]' < € Vi =1,..,h, 0h+1 S N} Let C@( )G ! Gzh,

6, Geh be two distinct elements of g, and let 0 = O(f, co(z )) and 0y = O(f, ¢y (2)). Suppose that

co(2)GY'
O(f,co(z )G91 Gzh) = O(f, cgr(g)Gfll ...G ) that is 0y + ZZ LOiri = 65 + S 0lr; and let j be the

greatest element such that 0; # 03, and suppose that 6; > 9 Then

zlz

Jj—1

(6; — 0))r; = (85 — 6p) + > (6f — Ok

k=1

with 0 < 6; «9' < ej, which is a contradiction because e; is the smallest positive integer o such that

arj € (nZ)® + Z rkZ (see Proposition 36). Now If 651 # 0 for all  with cy(x) # 0, then g = h.f for
some h € K¢|[z]][y], and so f divides g Wthh contradicts the hypothesis. It follows that there exists at least
an element § € A with ¢y(z) # 0 which is of the form (61, ...,0p,0), and by the above discussion we conclude
that there exists a unique ¢y(2)G{" ... G)" such that

O(f,9) = O(f, 5 (x)GT" ... G)") 70+Z%n inf{O(f,coG ... G"), g # 0}

by the additive property of O, where o = O(f, cy(z)) = Y51 Nyr§) for some A}, ..., A5 € Z.1A

Remark 13 Note that Lemma|l9| is equivalent to saying that if f is a free polynomial and f does not divide
g, there exist unique A}, ..., A§, M1, ..., Ay € Z such that O(f,g) = Y51 Nyrl + Z?:l Airg with 0 < Ay < e; for
alli € {1,...,h}.

Proposition 45 Let the notation be as above, and consider a non zero polynomial F in Ko[[z]][y] such that
degy(F) < g for some 1 <i < h. Then O(f,F) € (nZ)* + N+ ...+ 71N

Proof : Since deg, (F') < 7, then the expansion of F' with respect to (G1, ..., Gy, f) is given by :
F= Zce )G Gl

WhereQ:(Hl,... 0;— 1) EB:{(ﬁl,. o Bi 1) 0<ﬁj <ej = d+1 Vi=1,. i—l}. Similar to
Lemma |19, we can prove that there exists a unique ¢, (z)G{* ... G]"7" such that

i—1

O(f. F) = O(f.e(2)GT .. .GI ) =0+ D virs = inf{O(f,cgGY ... GI ), ¢g # 0}

i=1
where v9 = O(f, cy(x)) = S5 Nyrd for some A, ..., \§ € Z. Hence we get the result.l

Proposition 46 Let the notation be as above with {G1, ..., G} the set of pseudo-roots of f. Let g € K¢[[z]][y]
such that degy(g) < g for some i € {1,...;h}. Then O(f,g) = d;O(Gi, 9).

Proof : Let g = Z co(x )G Gehfh'H be the expansion of g with respect to (G1, ..., G, f). Since degy(g) <
0

degy(Gi) = d , then the expansion of g with respect to (G, ..., Gp, f) coincides with the expansion of g with

respect to (Gl, ...,Gi—1). In particular for all § such that cp(z) # 0 we have 0= (61,...,0,_1,0,...,0). Since

degy(g) < d%v then by Proposition {45( there exists a unique cgo (g)G G v ! such that :

0
O(f,9) = O(f, cp(@)G ...GY7) = Of, e +29%
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Also by Proposition 45| we have
O(Gi, g) = inf{O(Gy,caGo .. .G, ¢y # 0}

By Propositionwe have O(G;,Gj) = ;—i for all j € {1,...,7—1}, also we have O(G}, cg(z)) = d%O(f, co(2)),

then O(Gi, 9) = O(Gs, cpo(@)) + 32571 05 = 3(O(f, (@) + Koy Oyry) = 3:0(f, ) M
Let f be a polynomial of degree n in K¢[[z]][y], and let di > ... > dj41 be the set of divisors of n. For all

i€{l,..,h} set e; = d:lif Let i € {1,...,h} and consider a monic polynomial G; of degree 7 - Let

f=GM(a,y) + C1(z,y)GP (2, y) + ... + Cay (2,y).

be the G;—adic expansion of f. Recall that, with the notation and results of Section 2.3, the Tshirnhausen
transform of G; with respect to f, denoted by 7/(G;) is the polynomial

1

Tf(Gi) =G+ 0

Cy

Obviously deg, (7/(G;)) = 7. Hence we can define for all j > 2, the j — ¢th Tshirnhausen transform of G;
with respect to f, denoted by 73(G;) = Tf(Tjjfl(Gi)).
Also recall that for all i € {1, ..., h}, there exists a unique polynomial g; of degree d% such that deg(f —gfi) <

n— d%’ this polynomial is called the d;—th approximate root of f, and denoted by Appg, (f). Moreover, recall
that, by Proposition 6 Appg, (f) exists and it is unique for all i € {1,..., h}.

Proposition 47 Let f be a free polynomial of degree n in Kc|[[z]|[y], and let {d;}1<i<n and {r;}i1<i<n be its
d—sequence and r—sequence respectively. Let {gi,...,gn} be the set of approximate roots of f. Then for all
i€ {1,...,h} we have O(f, gi) =7i.

Proof : Let {G1,...,Gi} be the set of pseudo-roots of f. Let i = h and consider the Gj—adic expansion of
I
f=G(@,y) + Ci(a,9)Gy (z,y) + ... + Ca, (2,y).

where Ci(z,y) € Kco[lz]lly] with deg,(Cr(z,y)) < g~ for all k = 1,...,dj. Consider the Tschirnhausen
transform of Gy, with respect to f

Tth(&, y) = Gh(&a y) + d}:101 (&7 y)

We have O(f,Gp) = r,. We want to prove that O(f,C1) > rp,. Taking Cy = 1 we get that f(z,y) =
dp,

Z Ck (&7 y) -G (l? y)dh_k'

k=0

Forall  # k € {0, ..., dp—1} we have O(f, Co G5 ~) # O(f, CxG5» ). In fact, suppose that O(f, CoG4r~*) =
o(f, Cszrk), that is O(f, Co) + (dp, — @)rp, = O(f, Ck) + (dp, — k)rp. Suppose that a > k, then (o —k)rp, =
O(f,Ca) — O(f,Ck). But degy(Ca),degy(Ck) < g-, then by proposition we get O(f,Cy),O(f,Ck) €
(nZ)¢+rZ+ ...+ rp,1Z, and so (o — k)rp, € (nZ)¢ +rZ+ ...+ rp1Z, with 0 < a — k < dj. But by
Remark |12| we have dp1 = 1, and so ej, = dn_ — dp, hence 0 < a — k < ep. Which is a contradiction since

dpy1

jri ¢ (Z)* +mZ+ ...+ rp_1Z for all 0 < j < e}, (see Proposition [36).

Similarly, for all k € {1,...,d, — 1} we have 0 < dj, — k < dp, = e, and O(f,Cy) € (NZ)* +riZ+ ...+ 1rp1Z.
Hence O(f, CLG™™*) = O(f,Cy) + (dn, — k)rn, # O(f,Ca,), otherwise we will get that (dj — k)ry, =
O(f,Ca,) — O(f,Cx) € (nZ)° + riZ + ...+ rp_17Z, which is a contradiction again by Proposition For
all k € {0,...,dp} Let My, = LM(CkGZrk(g”,y(g))) and suppose that for some [ € {1,...,d;, — 1} we have
0 # M; < My, . Moreover suppose that M is the smallest element in the set My, ..., Mg, _1. Since M; # My,
for all k € {0,...,dp} with k # [, it follows that M; = LM(f(z",y(z))), but f(z",y(z)) = 0, which is a
contradiction. Hence M; < M, for all k € {1,...,d}, — 1}, but f(z",y(z)) =0, and so My = My, . It follows
that

O(f,G"y = O(f,Ca,) and O(f,G*) < O(f, CxG*)\k € {1,...,d), — 1}
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In particular O(f, Gi) = dyr, < O(f, CLGS 1) = O(f, C1) + (di — 1)rp, and so O(f, Cy) > 4. 1t follows
that

1
dp,

Applying the same process as above to f and 7¢(G}p) instead of f and G}, we get that O(f, T?Gh) = 7.

O(f, Tth) = O(f, Gy, + Cl) = O(f, Gh) =7rp.

Repeating this process consecutively, we get that O(f, T}‘Gh) = 1y, for all A > 1. But g, = Appa, (f) =

T;lh(Gh). Hence we get that O(f, gn) = rp.
Now suppose that O(fa 9i+1) = Tit1y -y O(f, gh) =Tp, and let us prove that O(f, gl) - By Proposition
i)

deg, (gi+1)

we have that g; = Appe, (gi+1). Since deg, (G;) = d% = —*——, then g; = Appe;(gi+1) = 751, (Gi). Let

giv1 = GSi(z,y) + Bi(z, )G Nz, y) + ... + By (2, y) (2.4)

be the G;—adic expansion of g;;1. We are given that O(f,G;) = r; since G; is a pseudo-root. Then by
a similar discussion as above, and since we have by our hypothesis that O(f, gi+1) = 7i+1 and ri41 €<
T8y s 76,71, ey >. We get that O(f, GS') = O(f, Be;) = eiri and O(f, ﬂle"fl) > O(f,G5") = e;ri. Hence
O(f,B1) + (e; — )1y > e;ry, and so O(f, 1) > r;. It follows that

O, 790 (G)) = O, G+ 1) =

Applying the same process to f and 7, , (G;) instead of f and G;. We get that O(f, T922,+1 (G;)) = r;. Repeating
the same process we get that O(f,g:) = O(f, 757, (Gi)) = r;. It follows that O(f, g;) = r; for all i € {1,..., h}.
This completes the proof.ll

Definition 38 Let f € Ko[[z]][y] be a free polynomial. The semigroup of f is defined to be the set :

I'(f) ={0(f,9), g € Kellz]l[y], f does not divide g}.

The fact that this set is a semigroup follows from the additive property of the order O.

Proposition 48 Let f € Ko[[z]][y] be a free polynomial, and let 1}, ...,78,71, ..., 7e be the r-sequence asso-
ciated to f. Then T'(f) is generated by the elements v, ..., 75, 71, ..., Te.

Proof : Let g € K¢[[z]][y] be a polynomial which is not a multiple of f, and let g = Z CQ(Q)gfl .. .gzhfethl
[’

be the expansion of g with respect to (g1, ..., gn, f), where {g1,...,gn} is the set of approximate roots of

f. Then similar to Proposition we can prove that there exists a unique )\é, ey Ags A1, ooy A, such that

O(f,9) =Y 54 Nord + Z?:l Airi with 0 < \; < e; foralli e {1,....h}.H






Canonical bases of modules over one
dimensional K-algebras

3.1 Numerical semigroups and ideals.

3.1.1 Numerical semigroups.

Let {a1,...,a,} be a set of non-negative integers, and let b € N. Numerical semigroups arise in a natural way
in the study of non-negative integer solutions to Diophantine equations of the form :

a1x1 + -+ apxty, =0b

Note that z1,...,x, is a solution of the above Diophantine equation if and only if x1, ..., z, is a solution of
the Diophantine equation %-xy +--- + ¢z, = g, where d = ged(ay, ..., ay,) is the greatest common divisor
of ai,...,a,. Hence the problem of finding solutions to Diophantine equations is reduced to the case where

ged(ay, ...,;apn) = 1.

Definition 39 Let S be a subset of N. The set S is a submonoid of N if the following holds :
(1) 0€S.
(7i) If a,b € S, thena+b € S.

Clearly, {0} and N are submonoids of N. Also, if a is an element of S, then Aa € S for all A € N. Hence if
S # {0}, then S is an infinite set.

Definition 40 Let S be a submonoid of N, and let G = {>"; | Niai, \i € Z, a; € S} be the subgroup of Z
generated by S. If 1 € G, then we say that S is a numerical semigroup.

Proposition 49 Let S be a submonoid of N. Then S is a numerical semigroup if and only if N\S is a finite
set.

Proof : Let S be a numerical semigroup, and let G = {>_7_; Mia;, i € Z, a; € S} be the subgroup generated
by S in Z. In order to prove that N\S is a finite set, its enough to find some integer m such that for all n > m,
n € S. Since S is a numerical semigroup then there exist some integeres Ai,...,\x € Z* and aq,...,ap € S
such that 1 = Zf;l Aia;. Without loss of generality, suppose that Aj, ..., A\p <0 and Ap4q, ..., A > 0, and let
s = Z?Zl(—/\iai). Obviously s € S, and s+1 = Zf:hﬂ Aia; € S. Now take m = (s—1)(s+1), and let n be any
integer such that n > m, and write n = ¢s+r withr < s. Sincer < s—landn = gs+r > m = (s—1)s+(s—1),
theng>s—1,andsog>r. Butn=qs+r=qs—rs+rs+r=(q¢—r)s+r(s+1). Hence n € S for all
n > m, and so N\ S is a finite set.

Conversely, suppose that N\S is a finite set, then there exists some s € S such that s + 1 € S. Hence
l=s+1-seG.l

55
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Definition 41 Let S be a numerical semigroup. The set of gaps of S is defined to be the set N\'S, denoted
by G(S). Moreover the cardinality of G(S) is called the genus of S, and denoted by g(s).

We set F/(S) = Max(G(S)), and we call it the Frobenius number of S. We define C(S) = F(S) + 1. Note
that C(S) is the smallest integer in S, such that for all n > C(S), we have n € S. Finally we define
m(S) = inf(S\{0}) to be the least positive integer in S which is called the multiplicity of S.

Even though any numerical semigroup S has infinitely many elements, there exists a finite number of elements
in S, such that any other element in S can be written as a linear combination with non-negative integer
coefficients in terms of theses elements.

Definition 42 Let S be a numerical semigroup. A subset A of S is said to be a system of generators of S,
written as S = (A), if for all s € S there exists A1, ..., A\, € N and ay, ...,ap, € A such that s = Z?:l Ait;.

Moreover, S is said to be finitely generated if there exists a finite subset A = {ay,...,ap} of S, such that
S =(A) =(ay,...,an).

Proposition 50 Let S be a numerical semigroup. Then S is finitely generated.

Proof : Let A be any system of generators of .S, and note that such a system of generators always exist since
S is a system of generators of itself. Let m be the multiplicity of S, then obviously m € A since its the least
non zero element in S. Let a be an element of A, and let b be any element of A which is congruent to a
modulo m with b > a, then b = km + a for some k € N*, and so we can find a new system of generators of
S by excluding all such elements b from A. At the end of this process we will have at most one element in
each congruence class modulo m. Hence we obtain a finite system of generators of S.H

Let {ai,...,an} be a system of generators of a numerical semigroup S. We say that {a,...,a;} is a minimal
system of generators of S if a; ¢ (a1, ...,a;—1,ai41,...,ap) for all i =1,... h.

Definition 43 Let S be a numerical semigroup, and let n € S*. The Apéry set of S with respect to n,
denoted by Ap(S,n), is defined to be the set :

Ap(S,n)={se S,s—n ¢ S}

Proposition 51 Let S be a numerical semigroup and let n € S*. For alli=1,...,n let w(i) be the smallest
element of S such that w(i) =i mod n. Then :

Ap(S,n) ={0,w(1),...,w(n —1)}.

Proof: Let i € {1, ...,n}. By definition w(i) € S and w(i) = An+i for some A € N, then w(i) —n = (A—1)n+1,
and so w(i) —n =i mod n, but w(i) —n < w(i), then w(i) —n ¢ S. Hence w(i) € Ap(S,n) for all i =1,...,n.
Since w(i) + (A —1)n € S for all A > 0, then w(i) + An ¢ Ap(S,n) for all A > 0. Now let o € Ap(S, n), then
a €S, and a = w(i) + An for some A > 0 and i € {0,...,n — 1}, hence A = 0, and so o = w(i). Finally we
get the equality.ll

Moreover for all n € S*, S is generated by the set A = (n,w(1),...,w(n — 1)).

Proposition 52 Let S be a numerical semigroup and let n € S*. Then F(S) = max(Ap(S,n)) —n.

Proof : Since maz(Ap(S,n)) is an element in Ap(S,n), then mazx(Ap(S,n)) —n ¢ S. Now let x € N with
x > mazx(Ap(S,n)) —n then x + n > max(Ap(S,n)). Let us prove that x € S. Write  + n = kn + i with
k€ Nand i€ {0,...,n— 1}, and let w(i) € Ap(S,n) be the smallest element of S which is congruent to i
modulo n, then w(i) = An+1i for some A e N;andsox+n=kn+i=(k—ANn+n+i=(k—ANn+w(i),
but z +n > w(i), then k — A > 0. Hence z = (k — A — 1)n+ w(i) with (k —A—1)eN,andsoxz € S. R
Consider the set {x € N, x < F(S)}. The cardinality of this set is obviously equal to F/(S) + 1. Let n(S) be
the cardinality of the set {s € S, s < F(S)}. We deduce the following Lemma :

. . F(S)+1
Lemma 20 Let S be a numerical semigroup, then n(S) < g(S). Moreover we have g(S) > (2 .
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Proof: Let s € S, then FI(S)—s ¢ S. Indeed, suppose that F'(s)—s € S, then we get (F(S)—s)+s = F(S) € S
which is a contradiction. We conclude that n(S) is smaller than or equal to g(.5). But n(S)+¢(S) = F(S)+1,
hence ¢(S) > % |

Definition 44 Let the notation be as above. Then a numerical semigroup S is said to be symmetric if

F(S)+1
9(5) = H5H.
We will be interested in a special class of numerical semigroups, namely free numerical semigroups. The
definition is as follows.

Definition 45 Let S = (ro,r1,...,rn) be a numerical semigroup, and let d;y1 = ged(ro,r1,...,7;) for all
1 € {0,...,h}(in particular di = ro and dpr1 = 1), and let e; = diil for alli € {1,...,h}. We say that S is
free for the arrangement (ro, ...,1,) if the following conditions hold :

(Z) dy >dy > -+ >dh+1:1.

(1) e;ri € (roy...,ri—1) for alli € {1,...;h}.

Note that the notion of freeness depends on the arrangement of the generators. For example, S = (4,6, 13)
is free for the arrangement (4, 6,13) but it is not free for the arrangement (13,4, 6).

If S is a numerical semigroup generated by ag, ..., a,, then an element s € S may be expressed in different
ways as a linear combination with integer coefficients in terms of ay, ..., a,. While if S is free with respect to
the arrangement (ao, ..., ay,), then each element in S has a unique representation in terms of this system in
case we impose some bounds on the coefficients. This representation is called the standard representation.
The following Lemmas are special cases of the Lemmas proved in the section about Affine Semigroups.

Lemma 21 Let S be a free numerical semigroup with respect to the arrangement (ag, ...,ap). Then for all
x € Z, x can be written in a unique way as :

T = Xoag + - -+ Apay

where 0 < A\ < eg forallk=1,....;h and \g € Z.

Lemma 22 Let S be a free numerical semigroup for the arrangement (ag,...,ap). Let © € N and let
ZZ:O Axag be its standard representation. Then x € S if and only if Ao > 0.

Proposition 53 Suppose that S is a free numerical semigroup with respect to the arrangement (ag, ..., ap).
Then we have :

. h
(i) F(S) = Xg=i(er — Dar —ag

(13) S is symmetric, that is g(S) = £S)+1

2

Proof : (i) Let r = 22:1(% —1)ay — ap. Obviously r ¢ S. Let s > r and write s = Agag + A\ai1 + -+ -+ A\pap,
with 0 < \; < ¢; for all i =1,...,h and A\g € Z. Since s > r, then (Ao + 1)ag > ZZ:1(ek — 1 — A\g)ag, but
A <ep—1forall k=1,... h, then (\g + 1)ag > 0, and so \g + 1 > 0 and A9 > 0. Hence s € S, thus the
frobenius number F(S) of S is equal to 2221(619 — Day, — ap.

(77) Let a,b € N such that a + b = F(S), and let us prove that if a ¢ S then b € S. Write a = apap + ara1 +
-+ apap and b = Boag + fra1 + - - - + Bran, with ag, Bp € Z° and 0 < oy, 8; < e; for all i = 1, ..., h. We have
(ao—f—ﬁo)aoﬂ—zgl:l(ai—}—ﬁi)ai = —a0+2?:1(6i—1)ai. suppose that ap+ 8, > ep, then e, < ap+ 6, < 2e,—2,
and so ap + By, = ep + v, for some 0 < 7y, < e, — 2. Hence a + b = ygag —i—Z?:l Yia; with v € Z, 0 < 3 < ¢e;
foralli=1,...,h—1and 0 <+, < e, — 2, which is a contradiction since a + b = —ag + Z?:l(ei — 1)a; and
this representation is unique. Hence ayj + B, = ep — 1. Similarly, we can prove that «; + 5; = e; — 1 for all
i=1,...,hand ag+ By = —1. If a ¢ S then oy < 0 but ag + By = —1, then Sy >0, and so b € S.

Now let n(S) be the cardinality of the set {s € S, s < F(S)}. By our discussion, we have proved that
g(S) < n(S), but n(S) < ¢g(S) by Lemma It follows that n(S) = g(95), but n(S) + ¢(S) = F(S) + 1.
Hence ¢g(S5) = %.l
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3.1.2 Ideals of numerical semigroups

Definition 46 Let S be a numerical semigroup, and let I be a subset of Z. The set I is said to be a relative
ideal of S if for alla € I and s € S we have a+ s € I(in short [ +S C I), and there exists some d € Z such
that d+ 1 C S. The second condition implies that I has a minimum.

Definition 47 Let I be a relative ideal of a numerical seimgroup S, and let A C I. The set A is said to be
a system of generators of I if I = A+ S. Moreover I is said to be finitely generated if it admits a system of
generators A which is finite.

Let a € Z, we write a + S to represent the sum {a} + S. The following proposition shows that every relative
ideal is finitely generated :

Proposition 54 Let S be a numerical semigroup, and let I be a relative ideal of S, then there exists a finite
set {a1,...,a;} C I such that I = UL_(a; + S).

Proof : Since [ is a relative ideal of S, then I +S C I, but I C I+ S, then I + .5 =1, and so [ is a system
of generators of I. Let C'(S) be the conductor of the semigroup S, and let m be the minimal element of I.
For all a € I such that a > m + C(S), we have a = m + C(S) + n for some n > 1. Since C(S) +n > C(S5)
then C(S) 4+ n € S, hence a € m + S. Define the set A ={a € I, a <m + C(S)}. Since I has a minimum
then A is a finite set, say A = {a1 = m, ag, ..., a;}. Finally we get I = U_,(a; + S).1H

Let I be a relative ideal of S with a system of generators {ay, ..., a;}. If furthermore ay, ¢ U;2,(a; + ), then
we say that aq,...,a; is a minimal system of generators of 1.

Remark 14 Obviously any relative ideal I admits a minimal system of generators. Moreover, let <g be the
order defined on S as a <g b if b = a+ s for some s € S, then Min<,(I) is a minimal set of generators
of I. Indeed, let m(S) be the multiplicity of the semigroup S, and define for i = 0,...,m(S) — 1 the integer
a; to be the smallest integer in I which is congruent to i, which obviously exist. Let a + s be an element in
I, with a € I and s € S, then there exists some 0 < i < m(S) —1 and X\ € N such that a = dm(S) + a;,
then a +s = a; + (Am(S) +s) € a; +S. Hence I = U;Z((;g)_l(ai + S). If for some 0 < j < m(S)—1
aj ¢ Min<g{ao, ..., an5)-1}, then aj = a; + s for some i # j and s € S, and s0 a; + S C a; + 5. We
conclude that the set Min< {ao, ..., am(g)_l} 1s a minimal set of generators of I.

Corollary 3 Let I and J be two relative ideals of a numerical semigroup S, then I N J is a relative ideal.

Proof : It is required to prove that (INJ)+S CINJ.Let a € INJ, and let s € S. Since I, J are relative
ideals of S thena+s€ landa+s€ J,andsoa+s € INJ. Hence I NJ is a relative ideal.l

In particular, given a,b € N, (a4 S)N(b+.5) is a relative ideal. Assume that {a1, ..., a,} is the set of minimal
generators of (a +.5) N (b+ S). We set

R(a,b) = {(ax — a,ap —b), k=1,...,r}

Example 2 Let S = (3,4) = {0,3,4,6,7,—}, and let a = 3,b =5. We have 3+ S = {3,6,7,9,10, =} and
545 =1{58,9,11,12, —}. Hence (3+S)N(5+5) = {9,11,12, =} = (9 + S) U (11 + S). Note that {9, 11}
is the set of minimal elements of (3+ S) N (5+ S) with respect to <g and that R(3,5) = {(6,4), (8,6)}.

Let S = (aq,...,a,) be a numerical semigroup, and let I be a relative ideal of S. Let {a1,...,a,} be a
minimal system of generators of I. Let K be a field and consider the algebra A = K[t*1, ..., t*"] = K[S]. Let
M=t"A+.. -+t A and let

gb AT — M, qf)(fl, ...,fr) = talfl =+ .- —{—ta"'fr.

The kernel ker(¢) is a submodule of A”. The following result gives explicitly a generating system for ker(¢).
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Theorem 6 Let the notation be as above where I is the relative ideal generated by {ai,...,a,}. For all
1 <id,j <rwithi# j write R(a;,a;) = {(o?,8}), 1 <k < ¢ij}. Then ker() is generated by {to e; —
s ej, 1 <i#j<r 1<k<cj}, where {e1,...,e;} denotes the canonical basis of A”.

Proof : Let (f1,..., fr) € ker(¢), then Y, t% f; = 0. Let s; = deg(f;) denotes the degree of f; in ¢ which
obviously belongs to S for all ¢ = 1,...,7, and let s = max{deg(t*f;), ¢ = 1,...,7}, then there exists
at least 7,7 € {1,...,r} with i # j and s = a; + s; = a; + s;. Without loss of generality suppose that
s=a1+s = =ap+sp for some 2 < h <rand s # a;+s; forall h <i <r. Forall i =1,...,h write
fi = cit® + f; with deg(f;) < s;, then

h
Z cit® it = 0.
=1

There exists some (', 3'2) € R(a1,a2) and s12 € S such that (a;+s1, as+52) = (a1+s12+a'?, as+s12+51?),
Hence : b "
CLES I oS24 = o912 (12 40 — $B492) 4 ¢y 4 ¢ )220

Now we restart with (cg + ¢1)t%2¢%2 + 2?23 ¢;t*1t% which is obviously equal to 0. We finally get that :

h
D ettt = ettt 10 — 77 409)
i=1 ij
where for all (i, ), (o, %) € R(a;,a;). We have :

T

r h
Sotuf =3 eyt e — 1) £ 3 e+ Y g,
i=1 ij i=1

i=h+1

with 2?21 i fi 4 i pq t%fi = 0 and maxii#o(deg(ﬂ +a;)) < s and deg(3_i_; ., t* fi) < s. Then we
restart with Z?:l % f, + Soih 41t fi. This process will eventually stop, proving our assertion.l

Example 3 Let S = (3,4) and let I = (3+S)U (54 S). Let A = K[t3,t*] and consider ¢ : A?
BK[E3, 14 + t°K[t3, t4], defined by ¢(f1, f2) = t3f1 + 12 fo. Then ker(¢p) is generated by (1%, —t*), (8, —t°).
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3.2 Basis of K-Algebra

Let K be a field and let f1(t), ..., fs(t) be s polynomials of K[t]. Let A = K[f1, ..., fs] be a subalgebra of K[t],
and assume, without loss of generality, that f; is monic for all i = 1,...,s. Given f(t) =Y 7, cit’ € A, with
cp # 0, we set d(f) =p and M(f) = ¢,t?, the degree and leading monomial, respectively.

Let f be a polynomial in KJt|, we define the support of f to be the set supp(f) = {i, ¢; # 0}. The set
d(A) = {d(f), f € A} is a submonoid of N. We shall assume that [(K[t]/A) < oco. In this case d(A) is a

numerical semigroup.

Definition 48 Let A = K[f1, ..., fs] be a subalgebra of K[t]. { f1, ..., fs} is said to be a basis of A if {d(f1),...,d([fs)}
generates the numerical semigroup d(A).

Let K[M(f), f € A] be the polynomial ring generated by the leading monomials of the polynomials in A,
then clearly {fi,..., fs} is a basis of A if and only if K[M(f), f € A] = K[M(f1),..., M(fs)]

Proposition 55 Let A =K|[f1, ..., fs] be a subalgebra of K[t]. Consider f(t) € K[t], then there exist g(t) € A
and r(t) € K[t] such that the following conditions hold :

(i)  ft)=g@)+r@t) =2 cafit - f&+7r(t), witha = (ai,...,as) € N°.

(i) If g(t) # O(respectively (r(t)) # 0), then d(g) < d(f) (respectively d(r) < d(f))

(13i) Ifr(t) # 0, then supp(r(t)) € N\(d(f1),...,d(fs))-

Proof : If f € K, then the assertion is clear. Suppose that f ¢ K, and let f(¢) = Y?_, ¢;t* with p = d(f) > 0. If
p & (d(f1),....,d(fs)), then we set g' =0, r1 = cpt? and f! = f—c,t?. Otherwise if p € (d(f1), ..., d(fs)), then
there exists § = (61, ...,05) € N°® such that p = 61d(f1) + - - + 05d(fs), and so c,t? = cgM(f1)% -+ M(f5)%
with ¢y € ]K (Note that this expression is not unique). In this case we set g' = chlel ‘e ffS, r! =0 and
fr=rfr-g"

Finally we get f = f! 4 ¢g* + 7!, with ¢* € A and the following conditions hold :

(1) If r! £ 0, then supp(rl) C N\(d(f1),....d(fs))-

(2) 1t /1 ¢ K, then d(f") < d(f).

Then we restart w1th f! and apply the same process. In each step we will obtain fi! = fi + ¢* + 7%, with
g’ € A and f!,r! satisfying the above two conditions. Since d(f*1) < d(f?) , then clearly there exmts some
k > 1 such that d(f*) =0, and so f* € K. Weset g =¢' +---¢g¥ + f¥ and » = ' +--- 4+ ¥, which proves
our assertion.Hl

The polynomial r(t) obtained in the above proposition is called the remainder of f with respect to { f1, ..., fs},
and it is not unique. We denote this polynomial by R(f,{f1, ..., fs})-

Proposition 56 Let A = K[f1,..., 5| be a subalgebra of K[t], then {f1,..., fs} is a basis of A if and only if
R(f,{f1,., fs}) =0 for all f € A.

Proof : Suppose that {f1,..., fs} is a basis of A. Let f € A, then f(t) = g(t) + r(t) where g(¢t) and r(t) =

R(f,{f1,..., fs}) are as in Proposition and so r(t) € A. If r # 0 then d(r) € (d(f1),...,d(fs)), because
fi,---, fs is a basis of A. This is a contradiction.

Conversely, suppose that R(f,{f1,..., fs}) =0 for all f € A. Take f # 0, if d(f) ¢ (d(f1),...,d(fs)), then by
Proposition 55| we have R(f,{f1,..., fs}) # 0, which is a contradiction.ll

Proposition 57 Let the notation be as above and let {fi,..., fs} be a basis of A. Let f € K[t], then
R(f,{f1,., [s}) is unique.

Proof : Let f € K]t], and suppose that f = g1 + 1 = g2 + 2, where g1, g2 and 71,79 are as in Proposition
Suppose that r; # ro. We have 7o — 11 = g1 — g2 € A, then d(rq — 1) € (d(f1),...,d(fs)), which is a
contradiction since supp(r;) € N\(d(f1),...,d(fs)) fori=1,2.1

Let A =K][f1,..., fs], and consider the homomorphism :

¢ K[Xy,..., X = K[t], &(X;) = M(f;), forall i=1,..s

Let {Fl, ey B } be a system of generators of the kernel of ¢, then F; is a blnomlal for all t=1,..,r.To each

F;, = X1 e Xﬁ1 : XB in ker(¢), we associate the polynomial S; = fs f11 . -fsﬁg. The
polynomials Sy, ..., S, are called the S— polynomials associated with {fi, ..., fs} Slnce F; € ker(¢) for all
i=1,...,7, then obviously S abd(fr) =Y iy Bid(fr) = d, and so d(S;) < d.
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Theorem 7 let A = K|[fi, ..., fs] and let {S;}i=1,.., be the S—polynomials associated to {f1,..., fs}. Then
{f1,-, fs} is a basis of A if and only if R(S;,{f1,..., fs}) =0 foralli=1,...,r.

Proof : Suppose that {f1,..., fs} is a basis of A, then R(f,{f1,...,fs}) =0 for all f € A. In particular S; € A
for all i = 1,...,7, then R(S;, {f1,..., fs}) = 0.

Conversely suppose that R(S;, {f1,..., fs}) =0 for all i = 1,...,r, and let us prove that {f1,..., fs} is a basis
of A. Let f € A, and suppose to the contrary that d(f) ¢ (d(f1),...,d(fs)). Write :

f=2 cfl £
0

For all § = (61, ...,65) such that ¢y # 0, we set pg = d( fl s ffs) = >oi_1 0:d(fi). Let p = max{pg, cy # 0},

then there exists {0, ...,0'} with ¢y # 0 and d(ffi e ffé) =pforalli =1,...,1. Obviously Z§:1 chM(ffi e fseé)

0, otherwise we will have d(f) = p € (d(f1),...,d(fs)), which contradicts our hypothesis. Hence :
Zf;:1 CQiM(fl)ei e ]\4(]{;)32 =0, and so Zizl chXfi -~X§§ € ker(¢). Then :

l

S ep X X0 = Z Ao Fi

i=1 k=1
with A\, € K[X7, ..., Xs] and d(ApFy) = p for all k = 1,...,r. Substituting f; in X; for alli =1,...,7 we get :
D epfit o £ = Nelfrs o £o) Sk
=1 k=1

with d(Sk) + d(Ax) < p for all k = 1,...,7. By hypothesis, we have R(Sk,{f1,...,fs}) =0forall k =1,...,r,
then by Proposition [55] Sy can be written as :

Sp= cafit -
5

with d( fl -+ fs°) < d(S) for all B such that cg # 0. Hence we can write :

0 /
f:ZCQ,fll ...fss
o'

with max{d( ffl .. ff ;), cg' # 0} < p. We apply the same process to the new expression of f. After applying
this process more than p times, we will get a contradiction.ll
The following algorithm explains how to find a basis for an algebra A = K[f1, ..., fs].

Algorithm 1

Let A =K][f, ..., fs], and let Sy, ...., S, be the S—polynomials associated to { f1, ..., fs}. Then :

(1) If R(Sk, {f1,.., fs}) =0forall k =1,....,r, then { f1, ..., fs } is a basis of A.

(2) If r(t) = R(Sk,{f1,.--, fs}) # 0 for some 1 < k < r, then we set f;1; = r(t), and we restart with
{fb ) fs+1}' We will have <d(f1)7 o d(f8)> - <d(f1)7 s d(f)? d(fs+1)>'

Since N\(d(f1),-..,d(fs)) is finite, then this process will stop obtaining a subset {fi,..., fs, fs+1, -, fs+n}
of A. If {S],..., S} are the S—polynomials of {f1,..., fe+n}, then we have R(S!,{f1,.... fsxn}) = 0 for all
i =1,...,n. Obviously we have A = K[f1, ..., fs+1]. Finally by Theorem [7] we get that {f1, ..., fs1n} is a basis
of A.

Definition 49 Let A = K[f1, ..., fs] where {f1, ..., fs} is a basis of A. Then { f1, ..., fs} is said to be a minimal
basis of A if {d(f1),...,d(fs)} is a minimal system of generators of the semigroup d(A). Moreover we say
that { f1, ..., fs} is a reduced basis of A if supp(fi(t) — M(f;)) € N\d(A) for alli=1,...,s.
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An algebra A can have many different bases, since if { f1, ..., fs} is a basis of A, then if we take any polynomial
f € A with f # f; for all i = 1,...,s, then obviously {f1,..., fs, f} is also a basis of A. Now suppose
that {f1,..., fs} is a basis of A. If d(f;) € (d(f1),...,d(fi—1),d(fi+1),...,d(fs)) for some i € {1,...,s}, then
{f1, - fi—1, fix1, ..., fs} is also a basis of A. After repeating this process we obtain a minimal basis of A,
which is not unique.

Remark 15 Suppose that{ fi, ..., fs} and{gi, ..., g} are two minimal basis of A. The two sets (d(f1), ...,d(fs))
and (d(g1), ..., d(gt)) are minimal sets of generators of the numerical semigroup d(A), which is unique. Then
s =t and for each i € {1,...,s} there exists a unique j € {1,...,s} such that M(f;) = M(g;). Thus two
minimal basis of A have the same cardinality. The following corollary shows that a minimal reduced basis of
A is unique.

Corollary 4 Let the notation be as above. Then A has a unique minimal reduced basis up to constants.

Proof : Let {fi, ..., fs} be a minimal basis of A. Applying the division process of Propositionto fi—M(f;)
for each ¢ € {1,...,s}, we will obtain a reduced minimal basis of A. For uniqueness, let {f1,..., fs} and
{91, ..., g¢} be two minimal reduced basis of A, moreover we can suppose that these polynomials are monic. By
Remark we have s = t. Without loss of generality suppose that M(f;) = M(g;) foralli =1, ..., s. We have
d(fi) = d(g:), if fi—gi # 0, then d(f; —gi) € d(A). But d(f; —g:) € supp(fi(t) — M(f:))Usupp(gi(t) — M (g:))-
This is a contradiction since the bases are reduced. Finally we get f; = ¢; for all ¢ = 1, ..., s, and so A admits
a unique minimal reduced basis.ll

Example 4 Let f1 = t* +12 and fo = t3, and compute the reduced minimal basis of A = K[f1, f2]. First we
start by computing the kernel of ¢1 : K[X1, Xo] > K[t], with ¢1(X1) = t* and ¢1(X2) = 3. The kernel of
¢1 is generated by Fy = X3 — X5. Hence we check the S—polynomial Sy = f} — f3 = 3t10 + 3t8 +-15. We get
R(S1,{f1, f2}) = 0. Then {f1, f2} is a reduced basis of A and d(A) = (3,4).

Example 5 Let fi = t* 4+ 5t and fo = t2, and compute the reduced minimal basis of A = K[f1, fa].
First we start by computing the kernel of ¢1 : K[X1, Xa] — K[t], with ¢1(X1) = t* and ¢1(X2) = ¢2.
The kernel of ¢1 is generated by Fy = X1 — X3. Hence we check the S—polynomial Sy = fi — f2 = 5t3.
We get R(S1,{f1,f2}) = 5t3. Then we add f3 = t> to obtain a new generating set {f1, fa, f3}. Hence
A =K[f1, fo, f3] = K[t* + 5¢3,42, 3] = K[t2, 7]

Now we consider ¢ : K[X1,Xo] — K[t], defined by ¢o(X1) = t3,¢2(X2) = t2. We get ker(¢z) =
(Fp = X3 — X?). The associated S—polynomial to Fy is Sy = 0. Hence {t*,t3} is a reduced basis of A and
d(A) = (2,3).
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3.3 Modules over K-Algebras

Let A = K[f1,..., fs] be the subalgebra of K[t] generated by {f1,..., fs}. Let Fi,..., F. be a set of nonzero
elements of K[t], and consider the A—module M generated by Fi, ..., F} :

M—Zi;FiA.

We set d(M) = {d(F), F € M\{0}} and d(A) = {d(f), f € A\{0}}. Let i € d(M) and s € d(A), then
i = d(F) and s = d(f) for some F € M and f € A. Write F' = ), Fig; for some g1,...,g» € A, then
F.f =%, Fi(gif) € M.t follows that i+s = d(F)+d(f) = d(F+f) € d(M). Hence d(M)+d(A) C d(M),
and so d(M) is a relative ideal of d(A). From now on we denote by I the relative ideal d(M), and by S the
numerical semigroup d(A).

Definition 50 Let the notation be as above. Then {Fi, ..., F,.} is said to be a basis of M if I = U]_,(d(F;)+
S). In other words {Fi, ..., F}.} is a basis of M if {d(F}),...,d(F,)} is a basis of the relative ideal I of S.

Theorem 8 Let F, ..., F, € K[t] and consider the A-module M =%, | F;A. Let F be a non zero element
in K[t], then there exists g1, ...,gr, R € A satisfying the following conditions :

(1) F = 27;:1 giFi + R.

(2) Foralli=1,...,r, if g; # 0, then d(g;) + d(F;) < d(F).

(3) If R # 0, then d(R) < d(F) and d(R) € N\ U[_; (d(F;) +95).

Proof : If F' € K, then the assertion is clear. Let F' be a non constant polynomial in K[¢] with d(F) =p > 0,
and write F = Y0 jeit’. If p ¢ UT_, (d(F;) + S), then we set g' = ... = g" = 0,r! = ¢,t? and F! = F — ¢,tP.
Otherwise if p € Ul_; (d(F;) + S), then p € d(F;) + S for some i € {1,...,r}, and so p = d(F;) + s; for some
si € S, hence ¢,t? = ct** M (F;) with ¢ € K. Choose some g € A such that M(g) = ct* which obviously
exists. Set g! = g and gjl- =0forall j # i, R! =0and F! = F—gF;. Now we have ' = F1+Y7_, ¢! F; + R,
and the following conditions hold :

(1) g} € Afor alli € {1,...,7}.

(2) If R # 0, then supp(R') C N\ U_; (d(F;) + S).

(3) If F1 ¢ K, then d(F') < d(F) = p.

Now we apply the same procedure for F' as in the case of F. In each step we will obtain F* such that
d(F*¥+1) < d(F*), and so there exists some k& > 1 such that F¥ € K. We set g; = g} + --- + gF for all
ic{l,..,rfand R=R'+---+RF+ FF. I

From now on we denote the polynomial R of Theorem |8 by R4(F,{F1,..., F}}).

Proposition 58 Let M = F1A+ .-+ F. A with Fy,...,F, € K[t]. Then {Fy,..., F,} is a basis of M if and
only if Ra(F,{F1,...,Fy}) =0 for all F € M.

Proof : Suppose that {Fi, ..., F.} is a basis of M. Let F' € M, then by Theorem |§| F = Y, g;F; + R where
g1, .-, 9r, R satisfies the conditions of that theorem. We have Ra(F,{F1,....Fr}) =R=F -, g;Fi € M.
If R # 0, then d(R) € N\ Ul_; (d(F;) + S), which is a contradiction.

Conversely suppose that R4(F,{F1,...,F;}) =0 for all F' € M. Let F € M, and suppose to the contrary
that d(F) ¢ Ul_,(d(F;) +5), then by Theorem |8 we have R4 (F,{F1,..., F;.}) # 0. This is a contradiction.ll
Let the notation be as before with Fi,..., F, € K[t]. Assume without loss of generality that Fi,..., F, are
monic, and let M (F;) =t% for all i = 1,...,r. Consider the homomorphism of A—modules ¢ defined by :

¢ A" M =FiA+ -+ FA 6(f1, fr) = > [iM(F)
=1

Let (si,s5) € R(ai,aj), then s;,s; € d(A) with a; + s; = aj + s;. Hence there exists some g;,g; € A
with d(g;) = s; and d(g;) = s;(note that these polynomials are not unique). Write M(g;) = ¢,4t* and
M(gj) = cg4;t%. Obviously we have % M (F;) —t% M (F}) = 0, and so t*e; — t%e; € ker(¢) where {e1,...,e,}
is the canonical basis of A". Set :

F =cy,9iF; — cq,9; F;
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Since M (cy,9:F;) = M (cg,9iF}y), then d(F) < d(g;F;) = a;+s; = d(g;F};) = aj+s;. We call [ an S-polynomial
of (Fy, ..., F}). Every element of Ker(¢) gives rise to an S-polynomial. The set of all S-polynomials is denoted
by SP(Fy, ..., F,) and is constructed in the above way.

Theorem 9 Let the notation be as above, in particular Fy, ..., F, € K[t] and M = >";_| F;A. Then {Fy, ..., F,}
is a basis of M if and only if Ra(F,{F1,...,F;}) =0 for all F € SP(Fy, ..., F}).

Proof : Suppose that {Fi,...,F,} is a basis of M, then Ra(F,{F1,...,F,}) = 0 for all FF € M. But
SP(Fy,...,F,) C M, then Ra(F,{F,...,F,}) =0 for all F € SP(F}, ..., F}).

Conversely, let F' € M — {0} and suppose to the contrary that R = Ra(F,{F1,...,F.}) # 0. Since R € M,
then there exists g1, ..., g, € A such that R=¢g1F1 + - + g, F;. Let

p = maw; g,+0(d(g:) + d(F})).

Since R # 0, then by Theorem §|d(R) ¢ U!_, (d(F;)+d(A)), and so p # d(R). In particular p > d(R). Suppose
without loss of generality that p = d(g;) + d(F;) for i = 1,...,1 and p > d(g;) + d(F;) for i = 1+ 1,...,7.
Clearly [ > 2. We shall prove by induction on [ that we can rewrite R as R = g|F} + -+ + ¢g.F, with
p > mawx; g20(d(g;) + d(F})).

(1) Suppose that [ = 2, that is d(g1) + d(F1) = d(g2) + d(F2) = p and d(g;) + d(F;) < p for all i = 3, ..., r.
Let M(g1) = cg,t*', M(g2) = cg,t*?. By our hypothesis, we have M (g1 fi1) = —M(g2f2) and so ¢g, = —cg,
and a1 + a1 = ag + ag € (a1 +5) N (az + 5), and so there exists (s1,s2) € R(a1,ag) such that oy = s+ 1
and ag = s + s9. hence we have :

cgltaltal + Cthazta2 = ts(cgltsltal — CgltSQt@)
The polynomial t*(cg, t°11% — ¢4, t%2t%2) gives rise to the S—polynomial
h =g F1 + golh

with g1,g2 € A such that M(g1) = cg,t°" and M(g2) = cg,t* = —cq,t°'. We have d(gi1F1) = d(goF2) =
si+ar=a1+a—s=p—sand M(G1F1) = —M(g2F»), and so d(h) < p — s. Since h is an S—polynomial,
then by our hypothesis Ra(h,{Fi,..., F.}) =0, then h can be written as

h=gF +- - +gF;
with d(g;F;) < d(h) <p—sforalli=1,...,r. Hence

T
R=g 1+ @R+ t0Fi1 —t°F1 +t°g2F — t°gaFy + ZgiFi
i=3

-
= (g1 = t°g1)F1 + (92 — °G2) Fo + t°(G1 F1 + G2 F2) + ZgiFi
i=3
Since d((g1 —t°g1)F1) < p and d((g2 —t°G2) F>) < p and d(t°(g1 F1 + G2 F2)) = d(t° > _, §iF;) < s+p—s=p,
then R is of the form R = %", | §;F; with d(§;F;) < p for all i € {1,...,r}.
(1) Suppose that the hypothesis is true up to {—1, and let us prove it for I. For alli = 1,...,r set M (g;) = cg,t%.
Write :
T c c T
R=> gFi=gF - 2gFh+ (2 +1)gpkh+ Y gh
— Cg2 Cga —
i=1 =3
The polynomial g; F1 — % g2F5 satisfies the conditions of part (i), and so there exists gy, ..., g» € A such that
92
g1F1— %ggFg =g 1+ -+g.F, with mamm#od(giﬂ) < p. Hence R can be written as R = g1 F1+- - -+ G, F-
2
with g1 = g1 and where the set {i, d(g;F;) = p} has at most [ — 1 elements. It follows from the induction
hypothesis that

IS T
aF+ Z%’Fi =gk + Zngz
i—2 i=1

with d(g;F;) < p for all i such that g; # 0 and we have that d(giF1) < p. This proves our assertion.ll
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Algorithm 2

Let the notation be as above. In particular M = Y. | F;A.

(1) If Ra(F,{F,...,F,}) =0forall F € SP(F},..., F,), then by Theorem [J] { 1, ..., F} } is a basis of M.
(2) If Ra(F,{Fy,...,F.}) # 0 for some ' € SP(Fy,..., F,), then we set F,y = Ra(F,{F1,...,F,}) and
we restart with {F, ..., By, Fr11}.

Since the set N\ U]_; (d(F; + S)) is finite, then the process (2) in the algorithm cannot be infinite. Hence we
get a basis of M, after a finite number of steps.
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3.4 Curves with one place at infinity.

Let K be an algebraically closed field of characteristic zero, and let K((z)) denote the field of meromorphic
series in x.

Theorem 10 (Newton Puiseur Theorem) Let f(x,y) € K((x))[y] be a polynomial in y with coefficients in
K((x)) and suppose that f is irreducible. Then there exists an element y(t) € K((t)) such that f(t",y(t)) = 0.
Moreover :

(i) f(t"y) = [Lonoi (y — y(wit)).

(11) y(wt) # y(W't) for all w,w’ distinct n-th roots of unity.
(i) ged(n, Supp(y(t))) = 1.

To an irreducible polynomial f € K((z))[y], we will associate a special sequences of integers, namely the
characteristic sequences of f. Suppose that f is of degree n, then by Newton Puiseux theorem there exists
an element y(t) € K((¢)) such that f(t",y(t)) = 0. Write y(t) = >_, cpt?. Let di = n = degy(f) and set :

my = inf{p € Supp(y(t)), di tp} and d2 = gcd(di, mq).
Suppose we have defined my, ..., m;—1 and dy, ..., d; and set :
m; = inf{p € Supp(y(t)), d; tp} and d;y1 = gcd(d;, m;).

Then there exists some h > 1 such that dp,q = 1. This sequence m = (myq,...,my) is called the set of
Newton-Puiseux exponents of f. Now for alli =1, ..., h we set ¢; = dd; . Finally we define the r = (rq, ..., 1)
sequence associated to f as follows :

rog=mn,r1 =M

i =¢€_1ri—1 +m; —my—1 foralli=2,.. h.

The sequences m, r and d = (dy, ..., dp 1) are the characteristic sequences associated to f.

Moreover the set of Newton-Puiseux exponents of f can be defined in a similar manner to that in the case
of quasi-ordinary polynomials.

Now for all y € K((t)), let O(y) represent the order of y in ¢, that is the smallest element in supp(y), which
is obviously in Z.

Lemma 23 Let f be an irreducible polynomial in K((x))[y] of degree n, and let y(t) € K((t)) be such that
f&" y(t)) =0. Let {mq,...,mp} be the set of characteristic exponents of f. Then :

(i) {m1,...,mp} = {ordi(y(t) — y(wt)), w" =1 and w # 1}

(11) The cardinality of the set {y(wt), ord(y(t) — y(wt)) > my} is equal to djy1.

(i1i) The cardinality of the set {y(wt),ord;(y(t) — y(wt)) = my} is equal to dy — dj11.

Definition 51 Let f be as above with y(t) € K((t)) such that f(t",y(t)) = 0. Consider a nonzero polynomial
g i K((x))[y]. The intersection multiplicity of f and g, denoted by int(f,qg), is defined to be int(f,g) =

ord(g(t",y(t)))-

Note that if w is an n-th root of unity in K, then ord;(g(t",y(t))) = ordi(g(t", y(wt))). Thus the definition
of intersection multiplicity of f with a polynomial g is independent of the choice of the root of f(t",y) = 0.

Theorem 11 Let the notation be as above, and let d = (dy,...,dp11) be the ged-sequence associated to f.
Foralli=1,...,h let Appg,(f) be the d;-th approzimate root of f, then int(f, Appq,(f)) = ri.

n

For all i = 1,...,h let g; = Appq,(f), which is obviously a monic polynomial of degree 7. Let g € K((z))[y]
and remember that the expansion of g with respect to (g1, ..., gn, f) is defined to be :

0 0
9= colx)glt..gpn forr
0

where 0 = (01, ...,0n41) € NP1 with 0 < 6 < ep, for all k = 1,..., h, and cy(z) € K((2)).
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Proposition 59 Let the notation be as above, and let g € K((x))[y] such that g ¢ (f). Then int(f,g) =
ZZ:O AT for some Ag €Z and 0 < \; < e, forallk=1,... h.

Lemma 24 Let the notation be as above. Then for all i =1, ..., h we have :

i—1
€;r; = Z)\j’l”j
7=0
with \; € N for all j = 0,...,7 — 1.

Now suppose that f is an irreducible polynomial in K[[z]][y], then Appq, (f) € K[[z]][y] for all i = 1,..., h.
Moreover, r; = int(f, Appq,(f)) € Nfor all i =1,..., h.

Definition 52 Let f be as above. The semigroup of values of f is defined to be :

I'(f) ={int(f,9), 9 ¢ (/)}-

Proposition 60 Let f be an irreducible polynomial in K[[z]|[y], and let r = (ro,...,r) be its associated
r-sequence. Then T'(f) is a numerical seimgroup generated by ro, ...,r,. Moreover it is free with respect to the

arrangement (ro, ...,mn) and exgry < ryyq1 for allk =1,...;h where e}, = dzif

Theorem 12 Let the notation be as above with f an irreducible polynomial in K[[z]|[y], and T(f) its free
semigroup. Let C(I'(f)) be the conductor of I'(f), then int(fs, fy) = C(I'(f)).

Proof : Let f;, respectively f,, be the derivative of f with respect to x, respectively y. Write
fy=H{"'...H

where H; is irreducible of degree n; for alli € {1, ..., s}. By the Newton-Puiseux theorem H; = HJ (Y= Z; L)),
where z§ € K((t)) for all i € {1,...,s} and j € {1, ...,n;}. Using the chain rule of derivatives, we get that for
all i € {1, ..., s} we have :

df df

& G A ) = 20t )

d ng 7 n; 7 n; —
L) = e A ).t +
Hence int(f, H;) — 1 = int(fz, H;) + n; — 1 for all i € {1, ..., s}. It follows that :

int(f, fy) = int(f, H*...HS*)
=" wint(f, H Z aiint(fo, H;) + Z ain;
=1

= int(fo, HY'. HS) + deg(fy) = int(fe, fy) + 1 — 1.
=1

Now write f(t".y) = ITi(y = %(t). Then fy(t"y) = S Thuly — w(®). and s0 fy (" (1)) =
[Ti—s(y1(t) — yx(t)). Hence

h h
int(f, fy) Zordt y(t) —ye(t)) = Z (d — d11)m Z e, — L)ry = int(fz, fy) +n — 1.
k=1 k=1

It follows that int(f., fy) = Zzzl(ek —1)rp —n+ 1. But C(T'(f)) = Ek (e — 1)ry —n+ 1 since I'(f) is
free, and so C(I'(f)) = int(fz, fy).- M

Consider a polynomial f(z,y) € K[z][y] of degree n and assume that after a change of variable, f can be

written as
f=y"+ D> ey
4,J,i+j<n
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Definition 53 Let the notation be as above and let C = {f = 0} be the curve defined by f in K2. The
projective closure of C is defined to be the curve C = {H; =0} in P2, where Hy=qy" + M eju T xtyl €
Klu, z, y].

Definition 54 Let the notation be as above. Then f is said to be a curve with one place at infinity if
foo(u,y) = H(u,1,y) is irreducible in K[[u]][y].

To every polynomial f € K[z][y] we associate the polynomial F(z,y) = f(z~!,y). Obviously F(z,y) €

Klz~ly] € K((=))[y]-

Proposition 61 Let the notation be as above. Then F(x,x7'y) = 27" fx(x,y), moreover f has one place
at infinity if and only if F(x,y) is irreducible in K((z))[y].
Proof : Write f =y" +3_,. ., ¢i;z’ 'y, then F(z,y) = f(z7ly) =y + ditj<n iz 'yl Hence :

F(z,z7ly) = (@ )" + Z cijr (T y) = 2Ty + Z cijr Iyl

i+j<n i+i<n
Myt Y cgr™ Uy = e foo(w, ).
i+j<n

Now we want to prove that fo is irreducible in K[[z]][y] if and only if F(z,y) is irreducible in K((x))[y].
Suppose that fo is not irreducible in K[[z]][y], then there exists fi, fo € K[[z]][y] such that foo = f1.f2 and
deg(fi) = ni < deg(fso) for i = 1,2. We have

F(z,27'y) = 27" foo(w,y) = &~ M) fi(2,y). fo(w,y) = 27" fi(,y).2 7™ fo(w, y).
Hence :
F(z,y) = 27 fi(z, zy).2™" fa2, 2y).
Setting Fy = z~™ fi(x,zy) and Fy = 27 "2 fo(x, xy), we get that F' = Fy.F with Fi, Fy € K((x))[y] and

deg(F;) < deg(F) for i = 1,2, hence F' is not irreducible in K((z))[y]. Similarly we can prove that if F' is not
irreducible in K((z))[y], then fo is not irreducible in K[[z]][y].H

Definition 55 Let the notation be as above. The semigroup of F is defined to be the set
L (F) = {int(F,G) = O,G(t",y(t)), G(z,y) € Klz~"][y]}

Now let f,g € K[z|[y]. Note that the intersection multiplicity between f and g is the rank of the K—vector

space Hfj[fﬁ] and its denoted by Int(f,g).

Theorem 13 Let the notation be as above with f = y™+> .

and suppose that g can be written as g = yP+>
then Int(f,g) = —int(F,G).

Proof : Let y(t) be a root of F(t",y(t)) = 0. By Proposition [61] we have :

itj<n @ijT" 'yd. Consider a polynomial g € K[z, y],

ivjep @y’ andlet F(z,y) = f(z71y) and G(z,y) = g(=7",y),

ool y) = &"F(z,271y) and goo(z,y) = PGz, 2™ "y)
Hence foo (", t"y(t)) = t" F(t", ¢t "t"y(t)) = t" F(t",y(t)) = 0, and so t"y(t) is a root of fao(t™,y) = 0.
Hence :
INt(foos goo) = 0rdigoo (1", t"y(t)) = ord((t")PG(t", t " t"y(t)))
= ordi(t"P) + ordi(G(t",y(t))) = np + int(F,G).
On the other hand by Bezout’s Theorem we have :

int(foos goo) + Int(f, g) = np

Comparing both equations we get Int(f,g) = —int(F,G).R
More generally we can prove that if f is a curve with one place at infinity, then Int(f,g) = —int(F,G) for
all g € K[z,y] where F(z,y) = f(z",y) and G(z,y) = g(z™",y).



3.4. CURVES WITH ONE PLACE AT INFINITY. 69

Definition 56 Let the notation be as above with f € K[z, y| a curve with one place at infinity. The semigroup
of f is defined to be :

L(f) ={Int(f,9), g € K[z,y] and g & (f)}

Proposition 62 Let f be a polynomial in K[z, y] with one place at infinity, and let F(z,y) = f(z=1,y).
Let (ro,...,rn) be the r—sequence associated to F', then according to the previous propositions I'(f) is a free
numerical semigroup with respect to the arrangement (g, ...,rp).
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3.5 Kahler Differentials

Let {f1, ..., fr} be a set of polynomials of K[¢], and let A = K[fy, ..., f»| be the algebra generated by fi, ..., fr.
Set :

S =d(A) ={d(f), feA}
We shall assume that S is a numerical semigroup. For all i = 1, ..., 7 set F;(t) = f/(t), the derivative of f; with
respect to t, and let M = F1A+...+ F,A. Now let I = d(M) = {d(F), F € M}, then obviously I is a relative
ideal of S. Moreover, let g € A, then g = > cofi*...f¥, and so ¢ = > ca(>i oziflo‘l...ff‘i_l... or £,

hence ¢’ € M. Note that d(g') = d(g) — 1. It follows that for all s € S we have s — 1 € I. This leads to the
following definition :

Definition 57 Let the notation be as above. An element s € I is said to be an exact element if s+ 1 € S.
Other elements are called non exact elements of I, and they are denoted by NE(M), i.e

NEM)={icl, i+1¢5}.

Note that if s € NE(M), then s + 1 € G(S) where G(S5) is the set of gaps of S. Since S is a numerical
semigroup, then G(5) is a finite set, and so the number of non exact elements in I is finite. We denote the
cardinality of the set NE(M) by ne(M). It follows that :

ne(M) < g(s)

In what follows we will be interested in the case where r = 2. We will also use the notation of x(t), y(t) for
f1(), f2(t)-

Now write z(t) = t" + a;t" ' + ... + a5, and y(t) = t™ + bit™ ! + ... + by, and suppose without loss of
generality that m < n. Consider the map :

¥ KX Y] = K[, (X)) = a(t), oY) = y(t).

and let f € K[X,Y] be the monic generator of the kernel of this map. Then f is a curve with one place
at infinity. In this case we will denote S = d(A4) = d(K[z(t),y(t)]) by T'(f). Note that for any nonzero

polynomial g(X,Y) € K[X,Y], the element deg:(g(z(t),y(t))) of I'(f) coincides with the rank over K of the

. K[X,Y]
K-vector space i)

Let K be an algebraically closed field, and let f(X,Y’) be an irreducible plane curve in A = K[X, Y], where

A is the ring of polynomials in two variables over K. Let © = K[();’)Y] be the coordinate ring of f, and let

¢ KX,)Y] — K[();’)Y] be the canonical homomorphism defined by f. Let z = ¢(X) and y = ¢(Y), then
© =Kz, y].

Definition 58 The module of Kahler differentials of © is defined to be the ©-module generated by dx and
dy and subject to the relation fydx + f,dy = 0, where f., respectively f, represents the partial derivative of
f with respect to x, respectively y. This module is denoted by ©dO.

Note that elements in ©dO are of the form gdz + hdy for some g, h € K]z, y]. Moreover the module of Kahler
differentials associated to f is isomorphic to M = a/(t)A + v/ (t) A, where A = K[z(t),y(t)]. From now on we
write [(N) for the length of an ©-module N.

Definition 59 The torsion module of ©dO is defined to be the set :

T ={w € 0dO, gw =0, for some non zero element g € O}

Definition 60 The Tjurina number of f is defined to be l((f}fg)) = l((fzefy)), and is denoted by v(f).
Moreover, the jacobian ideal of © is defined as J := © f, + O f,, hence v(f) = l(%).

Lemma 25 Define the set U = {g € ©, gf, = hyfy for some hy € ©}. Then

U

(T =llg 7

).
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Proof : Note that for each g € U, there is a unique h, € © such that gf, = hyf,. Hence we can define the

©-homomorphism :
p: U BdO

by setting ¢(g) = hgdx + gdy. For all g € U, we have :

fo ‘P(g) = fzhgdm + fegdy = fmhgdw + hgfydy = hg(fxdx + fydy) =0

Similarly we can prove that f, - ¢(g) = 0. Supposing that f is non constant then f, # 0 or f, # 0, hence
e(g) €T.

Conversely let hdz + gdy € T', then there exists some A € O such that A(hdx + gdy) = 0 = k(fzdx + f,dy)
for some k € ©. Hence A\-h =k - f, and A- g = k- f,, and consequently A(h- f,) = Xg- fz) =k fo- fy.
Hence h- fy = g fz, and so g € U and ¢(g) = hdx + gdy. Whence Im(p) =T.

On the other hand if g € Ker(y), then ¢(g9) = hydx + gdy = 0, and so hydx + gdy = v(fedx + fydy) for
some v € O, hence g = v - f, € © - f,. Conversely if g € © - f,, then g = X - f, for some A\ € ©, and so
g.-fo = (M. fo).fy, hence p(g) = . fodx + gdy = A\(fedx + fydy) = 0. Thus Ker(y) = ©.f,. Finally we get :

U

T 2
0.1,

Consequently [(T') = Z(QLfy)I

Proposition 63 Let the notation be as above, where T' is the torsion module of ©dO. Then

Proof : Define the following ©-homomorphisms :

¥1: 0> 0O.fy, Y(h) = h.f, Vh € ©.

O.fz . L
1O fp > ————— to beth l tion.
o fa 0.7, N0, o be the canonical surjection
Since ﬁ ~ . Then we set the ©—homomorphism defined by :
J -
Y=oty : O+ W, to be the composition of Vo and .
Jy

We have w € Ker(y) if and only if w.f, =0 in @ify if and only if w.f, € ©.f, if and only if w € U. Hence

>~

[S]
U
C) J
(2)=1
) =l
Since ©.f, C J C ©, then I(9) = z(@%) ~U(g%;)- Also ©.f, C U C ©, then 0 = 5(9%) —(g7;), and
so l(@'Lfy) = l(eef ) — l(@). It follows from Equation that l(%) = l(@.Lfy). Hence by Lemma [25| we get

that v(f) = l( )= l(@f1 )=UT).1

Let © be the integral closure of ©, and let ©dO be the module of kahler differentials of © regarded as an
©- module. Note that if (z(t),y(t)) is a parametrization of the curve f, then © = K|z(t),y(t)]. Moreover
© = K[t]. In this case ©dO = K[t]dt, and an element hdz + gdy € OdO can be regarded as an element in
©d6 by taking h(z(t),y(t))d(z(t))+g(z(t),y(t))d(y(t)), keeping in mind that d(t") = nt"~'dt for all n € N*.
We define the conductor ideal of © in its integral closure © to be the set & r={g € 0, g6 C 6}, and we
write ¢ for its length.

Now let (f —\)xex be the family of translates of f, and for all A € Klet V(f—\) = {P € K2, (f—\)(p) = 0}
be the curve of K2 defined by f — A.

Definition 61 Let A € K and p = (a,b) € V(f — X). Let M, be the mazimal ideal defined by p, that is
M, = (X —a,X =b), and let F = K[X, Y], be the localization of K[X,Y] at M,. The local Milnor number
of (f = A) at p, denoted by ,u;‘, 1s defined to be the rank of the K-vector space %, where (fx, fy) is the
1deal generated by fx, fy considered as elements in F'.

) 3.1
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Note that a point p € V(f — ) is said to be a singular point of f — X if ,u;)‘ > 0, otherwise p is a smooth
point of f — A.

Definition 62 Let A € K. Then f — X\ is said to be singular if ,u;} >0 for somep e V(f—M\).

In our setting if f — A is singular, then it has only a finite number of singular points. Moreover, there is only

a finite number of A such that f — A is singular. Note that if u(f) = dimg (f[ N }) is the Milnor number of f,

then u(f) is the sum of local Milnor numbers at the singular points of the translates of f. That is

Zzﬂp

AeK peV (f—\)

Lemma 26 (Berger’s Formula) Let the notations be as above, where © is the coordinate ring of f, and
© its integral closure. Then : o o
0de c 0doe w(f)
l — )+ ==
=g 2= "G T

Let v denotes the natural valuation on ©. The valuation of an element ¢ in © is the valuation of g regarded
as an element of ©. Moreover v(g(t)dh(t)) = v(g(t)) + v(h(t)) — 1. Now we define the following sets :

I'(f) ={v(g), g non constant element in O}, the set of values of elements in the coordinate ring.

I'(f) ={v(g) — 1, g non constant element in O}, the set of values of exact differential forms.

I'*(f) = {v(w), w € ©dO}, the set of values of Kahler differentials.

Theorem 14 Let the notation be as above, where v(f) is the Tjurina number of f, and c is the length of
the conductor ideal of ©. Then :

v(f) <e.

Proof : Note that the number of missing integers in I'(f), (cardinality of N\I'(f)), is equal to l(%) = %,
which is obviously equal to the cardinality of N\I(f). Now consider an integer s — 1 = v(g) — 1 € I'(f)
for some g € O, then s — 1 = v(dg), but dg € ©dO, hence s — 1 € T*(f), and so I'"(f) C I'*(f). Hence
N\I*(f) € N\I"(f), and consequently :
édé ’ C
l r“(f)) < r ==
(200 = #(N\*(1)) < #NT (1) = &

It follows from Bergers formula that v(f) = l(ggg) +5<S+5=chl

Note that v(f) = ¢ if and only if 1(838) = ¢, that is every integer in I'*(f) is of the form v(g) — 1 for
some g € O. Hence if w is a differential form then there exists some g; € O such that v(w) = v(dg1),
moreover we can choose g; such that w; = w — dg; satisfies v(w1) < v(w), then we choose some g, € ©
such that v(wi) = v(dg2) and v(wes = w1 — dg2) < v(wy). We finally get a sequence g, ...,g, € © with
w=d(g1+ -+ gn), hence w is an exact differential form. Finally we conclude the following proposition :

Proposition 64 Let the notations be as above, with ¢ = I(Sy) and v(f) the Tjurina number of f. Then
v(f) = cif and only if every differential form is exact.

))) € I.1t follows that {s—1, s €
6) is the cardinality of the set

Note that if g(z,y) € K[z, y], then %g( (t),y(t)) € M, and so d(%g( (t),y

(t
I'(f)} €1 and d(%g(m(t),y(t))) is an exact element. In particular, l(®
{s €e G(I'(f)), s —1 ¢ S}. This cardinality is equal to

@l

o0(1)) — ne(ar) = M neqan
It follows from the Berger’s formula that
() =" neqan + 9 = ) — mea)
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Let the notation be as above with z(t) = t" + a1t" ! + ... + a, and y(t) = t™ + byt" ! + ... + b,, and
I(f) = d(K[z(t),y(t)]). Obviously n,m € T'(f). Suppose without loss of generality, that m < n and also (by
taking the change of variables t; =t + %1) that by = 0. Recall that a set of generators of I'(f) is constructed
as follows : 1o = m = d; and r1 = n, then we take do = gcd(dy,r1) and we let go = Appg,(f) to be
the do-th approximate root of f, we get that ro = d(g2(x(t),y(t))). Suppose that ro,r1,...,r; and di, ..., d;
are constructed, and let d;1 = ged(ry, d;), then we take g;y1 = Appq,,, (f) and ri11 = d(giv1(x(t),y(t))).
Consequently we get a finite system of generators ry, ..., 7y such that I'(f) = (ro, ..., ry). Moreover, I'(f) is
free with respect to this arrangement.

Lemma 27 Let q(t) =t + > .~ cit™" € K((t)) and consider the map I : K((T)) — K((t)) defined by
1(a(T)) = a(q(t)) for all a(T) € K((T)). In particular I(T) = q(t). Then I is an isomorphism.

Proof : Let o(T), B(T) € K((T)), then clearly we have [(a(T)+8(T)) = l(a(T'))+1(B(T)) and I(a(T")B(T)) =
(a(T))L(B(T)). Furthermore, I(1) = 1 and ker(l) = {0}. In order to prove that [ is an isomorphism we are
going to construct the inverse of I. More precisely we are going to prove that t = [(T 4+ b7~  +boT 2 +...)
for some T+ b1 T~ +bT2+ ... € K((T)). We shall prove this by induction on &k > 1. That is for all k > 1,
we shall prove that there exists by € K such that

degi(t —U(T + by T + ...+ bT %) < —k — 1.

Note that for all k € Z, we have
(TF) =8 4> cfth T,
i>1

If k =1, then we set by = —c1. We get
t—U(T+ 0TV =t —q(t)— by l(T™)
=t—(tdet tet 2. )bt gt et L)

= (e bt - Y = Yl

i>1 i>1

Where v} € K for all i > 1. It follows that deg(t — (T +b;T')) < —2. Hence the assertion is clear for k = 1.
Suppose that the assertion is true for k£ and let us prove it for k + 1. By hypothesis we have

t=UT+ 0T T F) = ekt

i>1
Where 4F € K for all 4 > 1. Then we set b1 = ~F. But [(T-%71) = ¢t7F=1 4 D1 ¢ "1k =1=2 and so

Dt l(T7F71) = byt ™81+ 300 ) begaey 7 1¢7F7172 Tt follows that

t—UT+b T . b T ) =t — 1T+ 0T 4+ 0 T7F) = b (TR

ky—k—i —k—1 —k—1,—k—i—2
= A tTE = byt =) b R
i>1 i>1

_ (,Y{c _ bk+1)t_k_1 + Z,Y’fﬁt—k—z - Z bk_‘rlcifkflt—k—i—Q

i>2 i>1
_ k+1,—k—1—1
=
i>1

Hence deg(t — (T + 0T~ + ... + b T%71)) < —k — 2. This proves the assertion for k + 1.
Let 1(T) =T+ 3 )5y bpT~* and let us define the mapping

L K(@) = K(T))

by setting 11 (8(t)) = B(q1(T)) (in particular I;(t) = q1(T)). Since deg,(t —1(q1(T))) < —k for all k£ > 0, then
t = I(q1(T)). This proves that [ is surjective, hence an isomorphism. Note that i1 = [~! because I(I1(t)) = t.H
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Now let us make the following change of variables, y(t) = y(T') = T™, that is :

3=

T =t(1+bot 24 ... + byt ™)m = (1 + %th_2 +...) =q(t).

This change of variables defines a map [ : K((T')) — K((¢)), with I(T) = ¢(t). It follows from Lemmal[27]that
[ is an isomorphism. Let Z(T) = z(I71(t)), then Z(T) = T" + > p<n ¢pIP. Note that for all g € K[X,Y] we
have d(g(z(t),y(t))) = d(g(z(T),y(T))). Furthermore the Newton-Puiseux exponents of f are constructed
as follows :

Let my = —n, and let Dy = ged(n, m) = dy. Then for all i > 2 set :

m; = inf{—p, p € supp(z(T)) and D; { p}, and D;y1 = ged(D;, m;).

Note that Dp4q = 1 and D; = d; for all i = 1,..., h. Moreover, the sequence {ro,...,r} is related to the
Newton-Puiseux exponents of f as follows : 1o = m,r1 = n, and for all £k > 1 we have :

—Thy1 = —€xTk + (Mpgp1 — Mmy).

where e, = dfil foralli=1,..., h.

Now write z(T) = T" + cxT* + ... and y(T) = T™, where A = max{p, p < n,c, # 0} and suppose that
A > —o0, that is x(¢) is not of the form x(7") = T™. Define the following differential form :

W(T) = ma'(T)y(T) — ny'(T)2(T)
which is equal to :

W(T) = mT™(nT" L+ X\ TN L4 ) — nmT™ YT + e\ T* + )

= (mnT™ "L L mAe, T 4 ) — (nmT™ T 4 e T 4 L)

T AL o terms of lower degree.

= (A —n)mey
It follows that if m + X\ ¢ T'(f), then W(T') is a non exact element of M. On the other hand if m 4+ A € T'(f)
we have the following proposition :

Proposition 65 Let the notation be as above, with W(T') = ma'(T)y(T) —ny'(T)x(T). Suppose that m+\ €
['(f), then A # —ma. Moreover, m + XA = an + bm for some a,b € N with a < 1.

Proof : Suppose to the contrary that A = —meo. In this case m + A is of the form an + bm + cro for
some a,b,c € N. We have —ro = —ejr1 + mg — my, then ro = e1r1 + mqy — mo, but r1 = —mg, and so
ro = (e1 —1)r1 —mg and —mgy = r9 — (e3 — 1)7r1. Hence m —mg = m+ro — (e1 — 1)r1 = an+bm+cry, and so
m—(e1—1)r1 =am+bm+(c—1)r1. If ¢ > 1, then m—(e; —1)r; > 0, but m—(e; —1)r1 =m—(e; —1)n <0
since m < n, which is a contradiction. It follows that ¢ = 0 and m + ro — (e; — 1)r1 = an + bm, hence
ro = (a+e; — 1)n+ (b—1)m, and so da2 = ged(n, m) divides rp which is a contradiction. We conclude that
A # —mg, and so A > —msy and A is in the group generated by n,m, hence m + A = an 4+ bm for some
a,b € N. We have n >m > X and A = (a — 1)n+ bm + (n —m), so if a > 1 it follows that A > n, which is a
contradiction, hence a < 1.1

Theorem 15 Let 2(t) = t" +a1t" ' + ...+ an and y(t) = t™ + b1t™ ' + ... + by, be the equations of a poly-
nomial curve in K2, and let f be as above. Let M = x'(t)A+1vy/'(t)A be the A-module generated by z'(t),y'(t).
Then the following conditions are equivalent :

() u(f) = v(f).

(1i) Every element in d(M) is ezact.

(13i) There exists an isomorphism Klz,y] — K[X,Y] thats sends f to the polynomial X™ — Y™, with
ged(m,n) = 1.
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Proof : The equivalence between (i) and (i7) is due to the fact that p(f) = C(I'(f)) = c(f) where ¢(f) is the
length of the conductor ideal, and Proposition [64]

Now let us prove that (ii) is equivalent to (iii). For the necessary condition, suppose that every element in
d(M) is exact, and let the notations be as in Proposition [65| with 2(T) = T" + c\T* + ... and y(T) = T™. By
assumption we have W (T') is exact, and so m + A € I'(f), then by Proposition [65| we have m + A = an + bm
for some a,b € N with a < 1. We will distinguish two cases :

(I) Suppose that a =1, then A =n+ (b —1)m. If b > 1 we will get A > n which is not true, hence b = 0 in
this case and m + X\ = n. Now let §(T) = y(T) + « with a € K*. We have :

W(T) = ma/(T)y(T) — ngf (T)=(T)
= (mnT" L+ mAex T4+ L )(T™ + @) — nmT™ YT + e\ T + ...)
= (amn + mAcy — nmex) T 4 L

=m(an + cx(A —n))T"A1 4

Then if we choose a = W, then d(W) < m4+A—1. Now let j = T = T™ +q, then & = T" +c¢y, T +...
with A\p < A.

(II) Now suppose that a = 0, then m + X\ = bm, and so A = (b — 1)m. Consider the change of variables
T=x—cyyt tand g =y Wewill get 7= (T" +c\T* +...) — exT®=Dm hence we will get either 7 = T7
or 7 =T"+ cyTY + ... with X < .

Following these two process we will get a new parametrization (z,y) with

(z,9) = (T",T™) or (Z,7) = (T" + ey T + ..., T™)

We shall prove that these two processes will eventually stop. In case (I), it is clear since A =n —m > 0, so
we are constructing a decreasing sequence of nonnegative integers. In case (II), if h > 2, then this is clear
since the set of integers in the interval [\, —msg] is finite. Suppose that h = 1, that is ged(m,n) = 1. If the
process is infinite, then after a finite number of steps we will obtain a new parametrization of the curve of
the form Z =T" + T 4+ ..., = T™ with | > nm, which is a contradiction.

It follows that either we will finally get a parametrization (x(T) = T",y(T) = T™), or a parametrization
(x(T),y(T)) such that W = ma’(T)y(T) — ny'(T)x(T) is non exact. By our assumption we have that every
element is exact, and so the new parametrization must be of the form (77,7™). Hence the equation of the
curve is of the form X™ — Y™ with ged(m,n) = 1.

For the sufficient condition, suppose that z(T') = T™ and y(T') = T". To prove that every element in M is
exact it is enough to prove that elements of the form ziy/2’ and z'y’y’ are exact for all 7, j € N. We have :

(l,iJrlyj)/ _ (Tn(iJrl)ij)/ — n(z + 1)Tn(i+1)flej + ijn(iJrl)ijfl
_ (n(z + 1) +mj)Tn(i+1)+mj—1
= (n(i+ 1)+ )y @yt = VI i gy

n
n(i+1) + msz'yi$/

n
Hence z'yia’ = (m:z”lyj ), and so it is exact. Similarly we can prove that :
. . m . .
2yly = (————~—2' gLy,
vy (m—i-(]+1)m v

It follows that every element in M is exact.ll

Proposition 66 Let the notation be as above with x(T) = T™ + cyT* + ... and y(T) = T™. Suppose that
ne(M) > 0, then ne(M) > 201,

Proof : Let w = ma'y — ny'z, then d(w) = m+ XA — 1 with m 4+ A ¢ S. Furthermore A > —my. We are going
to distinguish two cases
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(1) A= —mg. Since m+ X\ ¢ S, then m 4+ X\ =m —mg = —am + bn + ¢ry with a,b,c € Nand a > 0,0 < b <
e1,0 < ¢ < eg. But —mg =19 — (e1 — 1)ry and r; = n, then m + ro — (e1 — 1)n = —am + bn + cry, and so
(c—=1Dro=(a+1)m—(e; —1+b)n. If ¢ > 1, then ds = ged(m,n) divides (¢ — 1)y which is a contradiction
since ¢ < ez. Hence ¢ = 1, and (a + 1)m = (e; — 1 + b)n. If b = 0, then m divides (e; — 1)n, which is a
contradiction, hence b > 1, and so e; — 1 4+ b > 2. It follows that we should have a > 2. Finally we get :

m-—+ X=—am + bn + ro with a > 2.

Consider the following elements g5* - -- g,"w of M with a; € N and 0 < o; < ¢; for all i = 3,..., h, then
d(gs®---gp"w) + 1 =m+ A+ asrs + ... + aprp, = —am + bn + 19 + agrs + ... + o1y, Since a > 0, then
d(gs®---gp"w)+1 ¢ S for all a, ..., . Since e; > 2 for all i = 3, ..., h, then the cardinality of such elements
is at least 2/2.

Moreover d(yw) +1 = —(a — 1)m + bn + ry with a > 2, then yw is not exact. Then we can prove similarly
that ygs® - -- g, "w are non exact elements, and the cardinality of such elements is at least 2/=2 1t follows
that ne(M) > 2h—1,

(1i) A > —mg. In this case m + A = —am + bn with a,b € N, a > 0 and 0 < b < e7. Consider the
elements ¢52---gp"w with o € N and 0 < a; < ¢; for all i = 2,...,h. We have d(g5?---g,"w) +1 =
dw) + 14 agrg + ... + aprp = —am + bn 4+ agrg + ... + aprp ¢ S. Since e; > 2 for all i = 2, ..., h, it follows
that the number of such elements is at least 2"~!. Hence ne(M) > 211

Corollary 5 Let the notation be as above, and suppose that ne(M) = 1. Then S = d(A) =< m,n > with
ged(m,n) = 1. Moreover let F(S) be the Frobenius number of S, then NE(M) = {F(S) — 1}.

Proof : Suppose that ne(M) = 1. By Proposition we have 2/~1 < ne(M), and so 2"~ = 1. It follows that
h =1 and the ged sequence of f is (dj = m,dy = 1), and so S =< m,n > with ged(m,n) =ds =1 and e; =
dy =m. Let w = ma'y —nay = T "1 ... By Theoremwe can suppose that d(w)+1=A+m ¢ S.
Hence it is of the form A + m = —am + bn for some a,b € Nwitha >1and 0 <b<e; —1=m—1. Note
that we have F'(S) = —m+ (m —1)n. Now if a > 1, then d(yw) +1 = —am+bn+m = —(a+1)m+bn ¢ S,
and so yw is a non exact element different from w, which is a contradiction. Hence a = 1. If b < m — 1,
then d(aw) +1 = —am+bn+n = —m+ (b+ 1)n ¢ S since b+ 1 < m — 1, and consequently zw is
a non exact element different from w, which is again a contradiction. It follows that b = m — 1, and so
dw)+1=—-am+bn=—-m+ (m—1)n=F(S). Hence d(w) = F(S) — 1 and NE(M) ={F(S)—1}.1
Suppose that ne(M) = 1 , that is we have one non exact element. In this case h = 1, I'(f) =< m,n >
with m < n and ged(m,n) = 1. Furthermore, m+ X\ = F(S) = —m+ (m — 1)n < m+n because A < n. This
implies that (m — 2)n < 2m < 2n. In particular m < 4. If m = 2, then n = 2p + 1 for some p > 1. If m = 3,
then n < 2m = 6 and n > m = 3 implies that either n =4 or n = 5.

Proposition 67 Let the notation be as above, and suppose that ne(M) = 2. One of the following two
conditions holds :

(1) h =1. In this case S =< m,n > with ged(m,n) = 1. Moreover NE(M) = {F(S) —1,F(S) —m — 1} or
NE(M)={F(S)—-1,F(S) —n—1}.

(1i) h = 2. In this case S =< m,n,ry > with d3 = 1. Moreover we will have NE(M) = {F(S) —1,F(S) —
ro—1} or NE(M)={F(S)—1,F(S)—m—1} or NE(M)={F(S)—1,F(S) —n—1}.

Proof : By Proposition we have 271 < ne(M), and so 2"t =1 or 2"' =2, hence h =1 or h = 2. Let
w be a non exact element with d(w) +1 < F(S), and let d(w) be minimal in NE(M).

(i) h = 1. Since w is non exact, then d(w) +1 = —am + bn for some a > 1and 0 <b<m —1.If a > 2 and
b<m—1, then diyw)+1=—(a—1)m+bn ¢ S and d(aw) = —am + (b+ 1)n ¢ S, and so w,zw and yw
are three non exact elements, but ne(M) = 2. This is a contradiction. Hence we have :

(1) a =1 and b < m — 1. Hence, 2w, ..., z™ *"1w are non exact elements, but ne(M) = 2, then b = m — 2,
and so d(w)+1=-m+ (m—2)n=F(S) —n and d(aw) + 1 = —m + (m — 1)n = F(5). Finally we get :

NE(M) ={d(w),d(yw)} ={F(S) —1,F(S) —n—1}.
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(2) @ > 2 and b = m — 1. Hence, yw, ..., y* 'w are non exact elements, but ne(M) = 2, then a = 2, and so
dw)+1=-2m+ (m—1)n and d(yw) + 1 = —m+ (m — 1)n = F(S). Hence :

NE(M) = {F(S) — 1, F(S) —m — 1}.

(13) h = 2. In this case S =< m,n,ry > with d3 = 1. Furthermore d(w) + 1 = —am + bn + cry with a > 1,
0<b<e —1,and 0 <c<ey— 1 Ifa> 3 then yw and y?w are non exact elements, and so ne(M) > 3,
which is a contradiction. Hence a =1 or a = 2.

() a=1.1Ifb<e; —1and ¢ < eg — 1, then zw and gow are non exact elements, which is a contradiction.
Hence we have :

ea =1,b=1¢e —1and ¢c < e3 — 1. By a similar discussion as above, we get that the only possible
condition to get ne(M) = 2 is ¢ = e3 — 2. In this case w and gow are non exact elements, and d(gow) + 1 =
—m+(eg — 1)r1 + (e2 — 1)ro = F(S) and d(w) + 1 = —m + (e; — 1)r1 + (e2 — 2)ro = F(S) — ro. Hence :

NE(M) = {F(S) — 1, F(S) — 5 — 1}.

ea=1,b<e;—1and c=ey—1. As above we get b = e; — 2. In this case w and zw are non exact elements
with d(w)+1=—m+(e;1 —2)n+(e2—1)rg = F(S)—n and d(zw)+1 = —m+(e1 —1)n+(ea — 1)ry = F(9).
Hence :
NE(M)=A{F(S)—1,F(S)—n—1}.
(2) a =2 1fb < e —1orc<ey— 1, then yw,zw are non exact, or yw gow are non exact, which is a
contradiction. We get that a = 2,b = e; — 1 and ¢ = e3 — 1. In this case w and yw are non exact elements
with d(w)+1 = —2m+(e1—1)r1+(e2—1)re = F(S)—m and d(yw)+1 = —m+(e; —1)r1+(ea—1)ry = F(5).
Hence :
NE(M)={F(S)-1,F(S)—-m—-1}.1

Let the notations be as above and suppose that d(M) admits two non exact elements. We are going to
describe the semigroup S under this condition :

Suppose that h=1 : In this case, S =< m,n > with m < n and ged(m,n) = 1. By Proposition 67| we
have m + X\ € {F(S), F(S) — n, F(S) — m}. We distinguish the three different cases :
elf m+ A= F(S)=-m+ (m—1)n, then A = —2m + (m — 1)n. But A < n, then —2m + (m — 2)n < 0.
We have —2m + (m —2)n =m(n —2) —2n = (n — 2)(m — 2) — 4, and so (n —2)(m — 2) < 4. It follows that
m =2 or m=3.If m =2 then n =2k + 1 for some k > 1 since ged(m,n) = 1. Hence :

S=<22k+1>.
If m = 3, then (n — 2) < 4 and m < n implies that n = 4 or n = 5. Hence :
S=<3,4> orS=<4,5>.

elf m+A=F(S)—m = —2m+ (m—1)n. Hence A\ = —3m+ (m—1)n < n. It follows that (n—3)(m—2) < 6,
and so m = 2 or m = 3 or m = 4. Similar calculations as above leads to :

S=<22k+1> k>1, orS=<3,4> orS=<3,5> orS=<4,5>.

e If m+ A= F(S)—n=—m+ (m—2)n. Similar calculations as above implies that (n —2)(m —3) < 4, and
som=2orm=3or m=4. It follows that :

S=<22k+1> k>1, or S=<3,n> with ged(m,n) =1, or S =<4,5>.

Suppose that h=2 : Let S =< m,n,ry >. In this case m+ X € {F(S), F(S)—m, F(S)—n, F(S—ra)}.
We will distinguish the four cases :
e Suppose that m+ A = F(S) = —m+ (e; — 1)n+ (e2 — 1)ra. Since eg # 1, then A = —mgy =19 — (e1 — 1)n.
Hence :
m+A=m+ry—(e1—1)n=—-m+ (e1 —1)n+ (ea — 1)ro

and so (e2 —2)ry = 2m—2(e; —1)n, then do = ged(m, n) divides (e2 —2)ry. But dg firg for alli =1,...,ea—1,
and so (e — 2)rg = 0. It follows that m = (e; — 1)n, which is a contradiction.
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elf m+A=F(S)—ro=—-m+ (e1 — )n+ (e2 — 2)ry. If €3 # 2, then A = —my = 19 — (1 — 1)n, and so
m+re—(e1 —1)n=—m+ (e — 1)n + (e2 — 2)ra. It follows that :

(e2 —3)ra =2m —2(e; — 1)n

Hence dy = ged(m, n) divides (ez — 3)rg, but dg {ire for all i = 1,...,e2 — 1. Hence (ea — 3)re = 0, which is a
contradiction. It follows that es = 2,ds = €3 = 2 and e; = Z—;, then m+X = —m+(e1—1)n = —m+(F —1)n.
But m + A < m + n. It follows that :
ML )
2 2 2
m n

By similar calculations as above we obtain the inequality : (5 — 2)(5 — 2) < 4. Hence (7, %) is either
(2,2k + 1) with £ > 1, or (3,4) or (3,5). Since d2 = 2 { ra, then r2 is odd. Moreover we (m,n,rs) satisfies
one of the following conditions :

(1) m=4,n=4k+2,ro=2p+ 1 with2p+1 <8k +4

(1) m=6,n=8,ro=2p+ 1 and 2p+ 1 < 24.

(191) m =6,n =10,72 =2p+ 1 and 2p + 1 < 30.

elfm+A=F(S)—m=—-2m+ (eg —1)n+ (e2 — 1)re. Since eg # 1, then A = —mg = r3 — (e; — 1)n. This
implies that m + A=m+1ry — (e — 1)n = —2m + (e; — 1)n + (e — 1)r9. Hence :

(e2 —2)rg =3m —2(e; — 1)n (3.2)

It follows that dy = ged(m,n) divides (es — 2)r2, and so (ex — 2)ro = 0. Hence es = 2, do = e3 = 2 and
e1 = fj% = 3. Since (e2 — 2)rz = 0, then by Equation |i we get that 3m — 2(F — 1)n = 0, and so
B —5n+n=0,hence (F —1)(n—3) =3.If F >4, then n >m > 8, and so (¥ —1)(n —3) > 15, which
is a contradiction. Hence % = 2, and so m = 4 and n = 6, and it is the only solution. Moreover ro = 2p + 1
with ro < 12.
elfm+A=F(S)—n=—-m-+(e;1 —2)n+ (e2 — 1)rq. Since ey # 1, then A = —mg — (e; — 1)n. It follows
that :
(e2 — 2)ra =2m — (21 — 3)n (3.3)

Hence ez = do = 2 and e; = . Using Equation (3.3) we get that 2m—(m—3)n = 0, and so (m—3)(n—2) = 6.
The only possible case is m = 4 and n = 8.

These results can be summarized into the following theorem.

Theorem 16 Let X(t) = t" +ait" L + ...+ an, Y(t) = t™ + byt™ 1 + ... + by, and assume that m < n
and that ged(m,n) < m. Let f(x,y) be the monic polynomial of K[X,Y] such that f(X(t),Y(t)) = 0
and let T'(f) be the semigroup associated with f. Assume that T'(f) is a numerical semigroup and let
I(f) = (m = ro,n = r1,...,1) where ro,...,1, are constructed as above. Let p(f) and v(f) be the Mil-
nor number and the Tjurina number of f respectively. Assume that p(f) > v(f). We have the following :
(1) If u(f) =v(f)+ 1, then h =1.

(i5) If u(f) =v(f)+2, then h =1,2.

Furthermore we have :

(1)If u(f) =v(f) + 1, then T'(f) =< m,n > and one of the following conditions holds :

o (mmn)=1(2,2p+1), p>1.

o (m,n)=(3,4).

e (m,n)=(3,5).

(2) If u(f) =v(f) +2 and h =1 then I'(f) =< m,n > and one of the following conditions holds :

e (mmn)=(2,2p+1), p>1.

o (m,n)=(3,4).
e (m,n)=(3,5).
o (m,n)=(4,5).
e (m,n) = (3,n) with ged(3,n) = 1.

(3) If u(f) =v(f)+2 and h =2 then I'(f) =< m,n,ra > and one of the following conditions holds :
e (myn,re) = (4,4p+2,2g+1), p>1and 8p+4 > 2¢+ 1.
o (m,n,r2) = (6,8,2p+1), p<11.
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(m,n,re) = (4,6,2p+ 1), p <5.

(m,n,re) = (6,10,2p+ 1), p < 14.
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Combinatoire des singularités de certaines courbes et hypersurfaces

Combinatorics of singularities of some curves and hypersurfaces

Résumé

La thése est constituée de deux parties. Dans la
premiere partie on généralise la Théorie
d’Abhyankar-Moh a un type special de polynémes, les
polynémes libres. Soit f un polynéme non nul de
K[[z1, ..., z¢]][y] et supposons, moyennement un
changement des variables élémentaire, que la
composante homogeéne de plus bas degré du
discriminant de f contient une puissance de z;. Une
transformation mondémiale dans K[[z1, ..., z.]]
transforme f en un pczlyn()m? quasi-ordinaire avec

une racine dans K[[z}, ..., z&]], n € N. En prenant la
Préimage de f parle morPhisme, nous obtenons une
solution y € Kc[[mf, wxd]] de f(xy,...,ze,y) =0, OU
Kc[[xf, - xé]] est 'anneau des séries fractionnaires
dont le support appartient & un céne convexe C. Ceci
nous permet de construire 'ensemble des exposants
caractéristiques de y, et de généraliser certains des
résultats concernant les polynémes quasi-ordinaire au
polynéme f. Dans la deuxiéme partie, nous donnons
un algorithme pour calculer le monoide des degrés du
module M = F1A+...+ F.Aou

A=K[f1(t),..., fs(t)] et F1,..., F,. € K[t]. Nous
donnons ensuite des applications concernant le
probléme de la classification des courbes
polyndmiales (C’est-a-dire, des courbes algébriques
paramétrées par des polynémes) par rapport a
certains de leurs invariants, en utilisant le module de
différentielles Kahleriennes.

Mots clés

Polynémes quasi-ordinaires, Cénes sans droites,
Racines approchées, Semigroupes numériques,
Nombre de Milnor, Nombre de Tjurina

Abstract

The thesis is made up of two parts. In the first part we
generalize the Abhyankar-Moh theory to a special kind
of polynomials, called free polynomials. We take a
polynomial f in K[[z1, ..., z¢]][y] and by a preliminary
change of variables we may assume that the leading
term of the discriminant of f contains a power of ;.
After a monomial transformation we get a )
quasi-ordinary polynomial with a root in K[[:cl%, ez
for some n € N. By1 taking the preimage of f we get a
solution y € Ko[z] .. 22]] Of f(21, e, y) = 0,
where Kc[[mﬁ, - :cg%]} is the ring of formal fractional
power series with support in a specific line free cone
C. Then we construct the set of characteristic
exponents of y, and we generalize some of the results
concerning quasi-ordinary polynomials to f. In the
second part, we give a procedure to calculate the
monoid of degrees of the module

M=FA+...4+ F.Awhere A =XK]|f,..., fs] and
Fy,...,F. € K[t]. Then we give some applications to
the problem of the classification of plane polynomial
curves (that is, plane algebraic curves parametrized
by polynomials) with respect to some of their
invariants, using the module of K&hler differentials.

Key Words

Quasi-ordinary polynomials, Line-free cones,
Approximate roots, Numerical semigroups,
Tjurina number, Milnor number.
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