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i

Abstract. This thesis is devoted to the geometry of Fano varieties and projective
vector bundles over a smooth projective curve.

In the first part we study the geometry of mildly singular Fano varieties on which
there is a prime divisor of Picard number 1. By studying the contractions associated
to extremal rays in the Mori cone of these varieties, we provide a structure theorem
in dimension 3 for varieties with maximal Picard number. Afterwards, we address
the case of toric varieties and we extend the structure theorem to toric varieties of
dimension greater than 3 and with maximal Picard number. Finally, we treat the
lifting of extremal contractions to universal covering spaces in codimension 1.

In the second part we study Newton-Okounkov bodies on projective vector bundles
over a smooth projective curve. Inspired by Wolfe’s estimates used to compute the
volume function on these varieties, we compute all Newton-Okounkov bodies with
respect to linear flags and we study how these bodies depend on the Schubert cell
decomposition with respect to linear flags which are compatible with the Harder-
Narasimhan filtration of the bundle. Moreover, we characterize semi-stable vector
bundles over smooth projective curves via Newton-Okounkov bodies.

Résumé. Cette thèse est consacrée à la géométrie des variétés de Fano et des
fibrés projectifs sur une courbe projective lisse.

Dans la première partie on étudie la géométrie des variétés de Fano pas trop sin-
gulières admettant un diviseur premier de nombre de Picard 1. En étudiant les
contractions associées aux rayons extrémaux dans le cône de Mori de ces variétés
nous fournissons un théorème de structure en dimension 3 pour les variétés dont le
nombre de Picard est maximal. Ensuite, nous traitons le cas des variétés toriques et
nous étendons le théorème de structure aux variétés toriques de dimension supérieure
à 3 dont le nombre de Picard est maximal. Enfin, nous traitons les relèvements des
contractions extrémales aux espaces de revêtement universels en codimension 1.

Dans la deuxième partie on étudie les corps de Newton-Okounkov sur les fibrés
projectifs sur une courbe projective lisse. En nous inspirant des estimations de Wolfe
utilisées pour calculer la fonction de volume sur ces variétés, nous calculons tous
les corps de Newton-Okounkov par rapport aux drapeaux linéaires et nous étudions
comment ces corps dépendent de la décomposition en cellules de Schubert par rapport
aux drapeaux linéaires compatibles avec la filtration de Harder-Narasimhan du fibré.
De plus, nous caractérisons les fibrés vectoriels semi-stables sur une courbe projective
lisse à l’aide des corps de Newton-Okounkov.

Mots-clés. Variétés de Fano, Programme de Modèles Minimaux (MMP), Variétés
toriques, Schéma de Hilbert, Revêtements quasi-étales, Corps de Newton-Okounkov,
Semi-stabilité de fibrés vectoriels, Variétés de drapeaux.

Classification Mathématique. 14C20, 14E30, 14H30, 14H60, 14J45, 14M25,
14M99.





REMERCIEMENTS
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INTRODUCTION (VERSION FRANÇAISE)

Un des objectifs principaux de la géométrie algébrique est la classification
des variétés projectives. Dans le cas d’une courbe X, nous distinguons les cas
fonction du genre : g(X) = 0 (X ∼= P1 et −KX est ample), g = 1 (X est une
courbe elliptique et KX est trivial) et g ≥ 2 (X est une courbe générale et KX

est ample). En dimension 2, des résultats similaires peuvent être énoncés en re-
gardant la classification de Enriques-Kodaira qui prend en compte la négativité
(resp. trivialité, resp. positivité) de la classe canonique KX d’une surface X.
En dimension supérieure, le principe général pour la classification des variétés
projectives lisses devrait être de regarder si la classe canoniqueKX est négative,
triviale ou positive. Cela s’inscrit dans le contexte de la théorie de Mori ou
Programme de Modèles Minimaux (MMP).

Les principaux objets d’étude de cette thèse sont des exemples de variétés
projectives de dimension de Kodaira négative définies sur un corps k

algébriquement clos non-dénombrable de caractéristique zéro (1). Celle-ci
est une version générale du cas négatif KX < 0. Le Programme de Modèles
Minimaux pour une variété de dimension de Kodaira négative devrait se
terminer par un morphisme de type fibration dont les fibres générales sont des
variétés (éventuellement singulières) à fibré anti-canonique ample.

La première partie des travaux de l’auteur porte sur les variétés projectives
à fibré anti-canonique ample. Ces variétés sont appelées variétés de Fano et
elles ont une géométrie très riche. Par exemple, le nombre de Picard de X
qui est défini comme ρX = dimR N1(X)R, la dimension de l’espace de classes

1. La plupart des résults restent vrais sur un corps algébriquement clos de caractéristique
zéro quelconque, mais les préuves du Corollaire 2.3.2 et [LM09, §4.3] (utilisée implicitement
dans la préuve du Théorème H) reposent sur le fait que le corps de base est non-dénombrable.
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d’équivalence numérique de 1-cycles dans X à coefficients réels, cöıncide avec
le second nombre de Betti de X et donc c’est un invariant topologique. De
plus, pour tout n ≥ 1 il y a qu’un nombre fini de familles de variétés de Fano
à déformation près : ceci a été établi dans le cas lisse par Kollár, Miyaoka et
Mori dans son célèbre article [KMM92], tandis que le cas singulier (Conjecture
BAB) a été traité dans la pré-publication récente [Bir16] de Birkar.

Cependant, même dans le cas lisse, la classification de toutes les familles
à déformation près est loin d’être complète. En dimension 1, la seule courbe
de Fano est P1. En dimension 2, les surfaces de Fano lisses sont appelées
surfaces de del Pezzo et elles sont isomorphes à l’une des 10 surfaces suivantes :
P1 × P1 ou l’éclatement de P2 en 0 ≤ r ≤ 9 points généraux. En dimension
supérieure, la classification est beaucoup plus compliquée. Par exemple,
les variétés de Fano lisses de dimension 3 de nombre de Picard 1 ont été
classifiées par Iskovskikh dans la série d’articles [Isk77, Isk78, Isk80], et
celles pour lesquelles ρX ≥ 2 ont étés classifiées par Mori et Mukai dans
[MM81, MM03]; cette classification donne 105 familles à déformation près
de variétés de Fano lisses de dimension trois. La classification de variétés de
Fano lisses de dimension supérieure à 4 reste ouverte. Pourtant, il est connu
d’après l’article de Birkar, Cascini, Hacon et McKernan [BCHM10] que la
Théorie de Mori s’applique très bien aux variétés de Fano.

Le premier objectif de cette thèse est l’étude de la géométrie de variétés
de Fano pas trop singulières sur lesquelles il existe un diviseur de nombre
de Picard 1. Les résultats suivants peuvent aussi être trouvés dans la pré-
publication en ligne [Mon16].

Un premier résultat relié à ce problème a été établi par Bonavero, Campana
et Wísniewski dans les articles [Bon02] et [BCW02], où les auteurs ont clas-
sifié les variétés de Fano (toriques) de dimension n ≥ 3 sur lesquelles il existe
un diviseur isomorphe à l’espace projectif Pn−1, puis ils ont utilisé ce résultat
pour étudier des variétés (toriques) dont l’éclatement en un point est de Fano.
Par exemple, dans le cas torique ils démontrent le résultat suivant.

Théorème 0.0.1 ([Bon02, Theo. 2]). — Soit X une variété de Fano torique
de dimension n ≥ 3. Alors il existe un diviseur torique D dans X isomorphe
à Pn−1 si et seulement si l’une des situations suivantes se produit :

1. X ∼= Pn et D est un sous-espace linéaire de codimension 1 dans X.
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2. X ∼= P(OP1⊕OP1(1)⊕n−1) ∼= BlPn−2(Pn) et D est une fibre de la projection
vers P1.

3. X ∼= P(OPn−1 ⊕ OPn−1(a)), où 0 ≤ a ≤ n − 1, et D est soit le diviseur
P(OPn−1), soit le diviseur P(OPn−1(a)).

4. X est isomorphe à l’éclatement de P(OPn−1 ⊕ OPn−1(a + 1)) le long
d’un sous-espace linéaire Pn−2 contenu dans le diviseur P(OPn−1), où
0 ≤ a ≤ n− 2, et D est soit la transformée stricte du diviseur P(OPn−1),
soit la transformée stricte du diviseur P(OPn−1(a+ 1)).

En particulier, cette classification donne ρX ≤ 3. Quelques années plus
tard, Tsukioka a utilisé dans [Tsu06] quelques arguments inspirés de [And85]
et [BCW02] pour généraliser ces résultats et démontrer que toute variété de
Fano lisse X de dimension n ≥ 3 contenant un diviseur effectif premier de
nombre de Picard 1 doit satisfaire ρX ≤ 3.

La majoration ρX ≤ 3 a été récemment établie par Della Noce dans [Del14,
Rema. 5.5] lorsqu’on suppose que X est une variété de Fano Gorenstein Q-
factorielle de dimension n ≥ 3 à singularités canoniques, ayant au plus un
nombre fini de points non-terminaux, et sous l’hypothèse plus générale de
l’existence d’un diviseur effectif premier D ⊆ X tel que l’espace vectoriel réel
N1(D,X) := Im (N1(D)R → N1(X)R) de classes numériques de 1-cycles dans
X qui sont équivalents à 1-cycles contenus dans D, soit de dimension 1.

Dans le cas lisse, Casagrande et Druel fournissent dans [CD15] une classifi-
cation (et des exemples) de tous les cas de nombre de Picard maximal ρX = 3.

Théorème 0.0.2 ([CD15, Theo. 3.8]). — Soit X un variété de Fano lisse
de dimension n ≥ 3 telle que ρX = 3. Soit D ⊆ X un diviseur premier tel
que dimR N1(D,X) = 1. Alors X est isomorphe à l’éclatement d’une variété
de Fano lisse Y ∼= PZ(OZ ⊕ OZ(a)) le long d’une sous-variété irréductible de
dimension n − 2 contenue dans une section du P1-fibré π : Y → Z, où Z est
une variété de Fano lisse de dimension n− 1 telle que ρZ = 1.

Premièrement, nous rappelons dans la section §2.1 qu’une variété de Fano
X, pas trop singulière, admet toujours un rayon extrémal R ⊆ NE(X) dont
l’intersection avec un diviseur effectif donné est positive. Le reste de la section
§2.1 est consacré à l’étude de ces contractions extrémales dans le cas où le
diviseur donné est de nombre de Picard 1. Cela nous permet de prouver le
résultat suivant dans la section §2.2.

Théorème A. — Soit X une variété de Fano Gorenstein Q-factorielle de di-
mension n ≥ 3 à singularités canoniques, ayant au plus un nombre fini de
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points non-terminaux. Supposons qu’il existe un diviseur premier D ⊆ X tel
que dimR N1(D,X) = 1 et que ρX = 3. Alors il existe un diagramme commu-
tatif

X

σ̂

��

σ

��

ϕ

��

Ŷ

π̂
��

Y

π
��

Z

où σ (resp. σ̂) correspond à une contraction divisorielle d’un rayon extrémal
R ⊆ NE(X) (resp. R̂ ⊆ NE(X)) qui est donnée par l’éclatement en codimen-
sion 2 d’une sous-variété irréductible de dimension dimension n− 2, et ϕ est
une contraction de type fibration, finie sur D, qui correspond à la face extrémale
R+ R̂ ⊆ NE(X). De plus, D ·R > 0, Y et Ŷ sont variétés Q-factorielles à sin-
gularités canoniques, ayant au plus un nombre fini de points non-terminaux, Y
est une variété de Fano et Z est une variété de Fano Q-factorielle à singularités
klt. En particulier, les singularités de Z sont rationnelles.

Les résultats de Cutkosky [Cut88] sur les contractions extrémales de
variétés de dimension 3 à singularités Gorenstein terminales, ainsi que le
résultat précédent, impliquent le corollaire suivant.

Corollaire B. — Soit X une variété de Fano Gorenstein Q-factorielle de di-
mension 3 à singularités terminales. Supposons qu’il existe un diviseur premier
D ⊆ X tel que dimR N1(D,X) = 1 et que ρX = 3. Alors X est factorielle
et est isomorphe à l’éclatement d’une variété de Fano lisse Y le long d’une
courbe localement intersection complète C ⊆ Y . De plus, Y est isomorphe à
P(OP2 ⊕OP2(a)), où 0 ≤ a ≤ 2.

Dans le cas ρX = 2, nous obtenons dans la section §2.3 la généralisation
suivante de [CD15, Rema. 3.2, Prop. 3.3] dans le cas des variétés de Fano
pas trop singulières X telles que ρX = 2 et dans lesquelles il existe un diviseur
premier de nombre de Picard 1.

Théorème C. — Soit X une variété de Fano Gorenstein Q-factorielle de di-
mension n ≥ 3 à singularités canoniques, ayant au plus un nombre fini de
points non-terminaux. Supposons qu’il existe un diviseur premier D ⊆ X tel
que dimR N1(D,X) = 1 et que ρX = 2. Alors il existe deux possibilités :
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1. Si D n’est pas nef, alors il existe une contraction extrémale qui envoie D
sur un point.

2. Si D est nef, alors S = D⊥ ∩ NE(X) est un rayon extrémal. L’une des
assertions suivantes doit être satisfaite :
a) contS est de type fibration vers P1, et D est une fibre.
b) contS est une contraction divisorielle qui envoie son diviseur excep-

tionnel G sur un point, et telle que G ∩D = ∅.
c) contS est une petite contraction et il existe un flip X 99K X ′ et une

contraction de type fibration ψ : X ′ → Y ′ dont la fibre générale est
isomorphe à P1, de degré anti-canonique égal à 2. De plus, ψ est finie
sur la transformée stricte de D dans X ′.

Afin d’étendre les résultats de classification aux variétés de dimension
supérieure, nous allons nous restreindre au cas des variétés toriques. Dans
ce cas, la description combinatoire du MMP pour les variétés toriques, traité
dans la section §2.4, ainsi que certaines propriétés particulières aux variétés
toriques, nous permettront de démontrer le résultat suivant dans la section
§2.5.

Théorème D. — Soit X une variété torique qui est Fano Gorenstein Q-
factorielle de dimension n ≥ 3 à singularités canoniques, ayant au plus un
nombre fini de points non-terminaux. Supposons qu’il existe un diviseur
premier D ⊆ X tel que dimR N1(D,X) = 1 et que ρX = 3. Alors il existe deux
variétés toriques Y et Z qui sont Fano Gorenstein Q-factorielles à singularités
terminales et telles que :

1. X ∼= BlA(Y ), l’éclatement normalisé d’une sous-variété invariante
A ⊆ Y de dimension n− 2;

2. Y ∼= PZ(OZ ⊕OZ(a)) avec 0 ≤ a ≤ iZ − 1, où iZ est l’indice de Fano de
Z et OZ(1) est le générateur ample de Pic(Z).

Si dimX ≤ 4, alors X est lisse et nous sommes dans le cadre du Théorème
0.0.1, cas (4).

Dans le cadre torique, nous obtenons dans la section §2.6 des résultats qui
généralisent la description due à Bonavero des contractions extrémales dans
le cas ρX = 2 au cas des variétés toriques de Fano pas trop singulières. Si
on suppose que X a des singularités canoniques isolées alors nous obtenons la
classification suivante.
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Théorème E. — Soit X une variété torique qui est Fano Gorenstein Q-
factorielle de dimension n ≥ 3 à singularités canoniques isolées. Supposons
qu’il existe un diviseur premier D ⊆ X tel que dimR N1(D,X) = 1 et que
ρX = 2. Alors l’une des assertions suivantes doit être satisfaite :

1. X ∼= P(OPn−1 ⊕ OPn−1(a)), avec 0 ≤ a ≤ n − 1. Autrement dit, nous
sommes dans le cadre du Théorème 0.0.1, cas (3).

2. X est isomorphe à l’éclatement d’une variété torique Y le long d’une
sous-variété invariante A ⊆ Y de dimension n − 2, contenue dans le
lieu lisse de Y . De plus, Y est isomorphe à l’une des variétés toriques
suivantes :
(a) Pn,
(b) P(1n−1, 2, n+ 1) si n est pair, ou
(c) P(1n−1, a, b), où 1 ≤ a < b ≤ n sont deux nombres premiers entre eux

tels que a|(n− 1 + b) et b|(n− 1 + a).
En particulier, Y est une variété torique qui est Fano Gorenstein Q-
factorielle telle que ρY = 1, et elle a au plus deux points singuliers.
Réciproquement, l’éclatement d’une des variétés dans la liste précédente
le long d’une sous-variété invariante A ⊆ Y de dimension n−2 contenue
dans le lieu lisse de Y fournit une variété torique X qui satisfait les
hypothèses précédentes.

De plus, dans le cas où la contraction est de type fibration nous obtenons le
résultat suivant sans avoir besoin de l’hypothèse de singularités isolées.

Proposition F. — Soit X une variété torique qui est Fano Gorenstein Q-
factorielle de dimension n ≥ 3 à singularités canoniques, ayant au plus un
nombre fini de points non-terminaux. Supposons qu’il existe un diviseur pre-
mier D ⊆ X tel que dimR N1(D,X) = 1 et que ρX = 2. Soit R ⊆ NE(X) un
rayon extrémal tel que D ·R > 0 et supposons que la contraction extrémale cor-
respondante π : X → Y soit de type fibration. Alors X ∼= PY (OY ⊕OY (a)). De
plus, Y est une variété torique qui est Fano Gorenstein Q-factorielle de dimen-
sion n− 1 à singularités terminales et d’indice de Fano iY , où 0 ≤ a ≤ iY − 1.
En particulier, X est à singularités terminales.

Enfin, la section §2.7 est consacrée à la démonstration du fait que les contrac-
tions extrémales étudiées dans la section §2.6 se relèvent aux revêtements uni-
versels quasi-étales, introduits par Buczyńska dans [Buc08] lorsqu’elle étudiait
des variétés toriques de nombre de Picard 1. Voir Définition 2.7.8 pour la no-
tion de Poly Weighted Space (PWS), introduite par Rossi et Terracini dans
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[RT16] et le fait qu’elle cöıncide avec celle de revêtement universel quasi-étale
pour les variétés toriques Q-factorielles de nombre de Picard arbitraire.

En particulier, nous obtenons la description suivante pour les contractions
divisorielles des variétés toriques de Fano pas trop singulières de nombre de
Picard 2. Il mérite d’être noté que même si la description combinatoire de ces
contractions divisorielles est très simple (voir Lemme 2.4.1) et qu’elle cöıncide
avec celle de l’éclatement d’une sous-variété invariante de dimension n − 2

dans le cas lisse, il se peut que les morphismes ne soient pas globalement
l’éclatement d’un faisceau cohérent d’idéaux associé à une sous-variété (réduite
et irréductible), mais qu’ils soient seulement un éclatement en codimension 2
si les singularités ne sont pas isolées (voir Exemple 2.6.2).

Proposition G. — Soit X une variété torique qui est Fano Gorenstein
Q-factorielle de dimension n ≥ 3 à singularités canoniques, ayant au plus
un nombre fini de points non-terminaux. Supposons qu’il existe un diviseur
premier D ⊆ X tel que dimR N1(D,X) = 1 et que ρX = 2. Soit R ⊆ NE(X)

un rayon extrémal tel que D ·R > 0 et supposons que la contraction extrémale
correspondante π : X → Y soit birationnelle. Alors il existe des poids
λ0, . . . , λn ∈ Z>0 et un carré cartésien de variétés toriques

X̂
π̂ //

πX

��

P(λ0, . . . , λn)

πY

��

X
π // Y

où les flèches verticales désignent les revêtements universels quasi-étales canon-
iques correspondants, et X̂ est un PWS qui est Fano Gorenstein à singu-
larités canoniques, ayant au plus un nombre fini de points non-terminaux, tel
que ρ

X̂
= 2. De plus, π̂ : X̂ → P(λ0, . . . , λn) est une contraction divisorielle

qui envoie son diviseur exceptionnel Ê ⊆ X̂ sur une sous-variété invariante
Â ⊆ P(λ0, . . . , λn) de dimension n− 2.

La deuxième partie des travaux de l’auteur porte sur des fibrés projectifs.
Autrement dit, des variétés projectives lisses qui sont obtenues comme la
projectivisation d’un fibré vectoriel E de rang r ≥ 2 sur une variété de base
S. Ce sont des exemples de variétés de dimension de Kodaira négative. Nous
allons nous concentrer sur le cas le plus simple où la variété de base est une
courbe projective lisse.
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Le deuxième objectif de cette thèse est l’étude des corps de Newton-
Okounkov sur les fibrés projectifs sur une courbe. Les résultats suivants
peuvent aussi être trouvés dans la pré-publication en ligne [Mon17].

Soit C une courbe projective lisse et soit E un fibré vectoriel sur C de
rang r ≥ 2. Il est bien connu d’après le travail de Hartshorne [Har71]
que l’information numérique provenant des propriétés de semi-stabilité de E
peut être traduite en conditions de positivité. Plus précisément, Hartshorne a
démontré qu’un fibré E est ample si et seulement si la pente minimale µmin(E)

de E est positive. La forme du cône nef du fibré projectif P(E) peut être
déduite de ce résultat (voir [Laz04, §6.4.B], par exemple).

De même, Miyaoka a prouvé dans [Miy87, Theo. 3.1] le résultat suivant,
qui a été généralisé par Fulger dans [Ful11].

Théorème 0.0.3 (Miyaoka). — Soient C et E comme ci-dessus. Les con-
ditions suivantes sont équivalentes :

(1) E est semi-stable.
(2) Nef(P(E)) = Psef(P(E)).

En général, la forme du cône pseudo-effectif de P(E) a été déterminée par
Nakayama dans [Nak04, Chapter IV] au cours de la preuve du fait qu’il existe
une décomposition de Zariski faible pour les diviseurs pseudo-effectifs dans
P(E) (voir aussi [MDS15]). Ce cône est engendré par les classes numériques
f et ξ−µmax(E)f , où ξ est la classe du fibré en droites tautologique OP(E)(1),
f est la classe d’une fibre de π : P(E)→ C et µmax(E) est la pente maximale
de E.

Indirectement, le cône pseudo-effectif peut également être déduit des travaux
de Wolfe [Wol05] et Chen [Che11], qui ont calculé explicitement la fonction
de volume sur P(E). En fait, ils démontrent que pour tout t ∈ R, le vol-
ume de la classe numérique ξ − tf sur P(E) peut être exprimé en termes de
l’information numérique provenant de la filtration de Harder-Narasimhan de
E. Plus précisément, leurs résultats peuvent être résumés de la façon suivante.

Théorème 0.0.4. — Soient C et E comme ci-dessus. Soit

HN•(E) : 0 = E` ⊆ E`−1 ⊆ · · · ⊆ E1 ⊆ E0 = E
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la filtration de Harder-Narasimhan de E, avec quotients successifs semi-stables
Qi = Ei−1/Ei de rang ri et pente µi. Alors,

volP(E)(ξ − tf) = r! ·
∫

∆̂r−1

max


r∑
j=1

sjλj − t, 0

 dλ,

où ∆̂r−1 ⊆ Rr est le simplex standard de dimension r − 1 avec coordonnées
λ1, . . . , λr, dλ est la mesure de Lebesgue standard telle que le volume de ∆̂r−1

soit 1
(r−1)! , et s = (s1, . . . , sr) est le vecteur dans Rr tel que la valeur µi apparaı̂t

exactement ri fois comme coordonnée de s, et ces coordonnées apparaissent par
ordre croisant.

Compte tenu du principe que l’information numérique encodée par la filtra-
tion de Harder-Narasimhan de E doit être reliée aux invariants numériques
asymptotiques de P(E), nous étudions la géométrie des corps de Newton-
Okounkov sur P(E). Ces corps convexes et compacts ont été introduits par
Okounkov dans son article [Oko96] et ils ont été étudiés plus tard par Kaveh
et Khovanskii [KK12] et par Lazarsfeld et Mustaţă [LM09], qui associent à
chaque diviseur big sur une variété projective normale X de dimension r, et
toute drapeau complet de sous-variétés Y• dans X satisfaisant certaines con-
ditions, un corps convexe ∆Y•(D) ⊆ Rr dépendant uniquement de la classe
numérique du diviseur D. De plus, il existe un corps de Newton-Okounkov
global ∆Y•(X) ⊆ Rr × N1(X)R dont la fibre de ∆Y•(X) au-dessus de toute
classe rationnelle big η ∈ N1(X)Q est donnée par ∆Y•(η) ⊆ Rr × {η}.

Les corps de Newton-Okounkov des diviseurs big sur une surface réglée par
rapport à des drapeaux linéaires (voir Définition 3.3.1) peuvent être calculés
en utilisant la décomposition de Zariski (voir Example 3.3.2). En dimension
supérieure, un calcul analogue nous permet de calculer ces corps sur P(E)

lorsque le cône des diviseurs mobiles cöıncide avec le cône des diviseurs nef
(voir Remarque 3.3.5). En général, nous utiliserons des méthodes similaires à
celles utilisées par Wolfe pour calculer la fonction de volume dans [Wol05].
Plus précisément, nous devrons comprendre la filtration de Harder-Narasimhan
des puissances symétriques SmE pour m ≥ 1 et puis considérer certaines sous-
filtrations.

Soit Y HN
• un drapeau linéaire compatible avec la filtration de Harder-

Narasimhan de E (voir Définition 3.3.8) de composante divisorielle π−1(q) ∼= Pr−1

et notons Fr la variété de drapeaux complets qui paramètre les drapeaux com-
plets de sous-espaces linéaires de Pr−1. Le drapeau linéaire Y HN

• détermine
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une décomposition de Fr en cellules de Schubert (Voir §2 et Convention 3.3.9)

Fr =
∐
w∈Sr

Ωw.

Avec les notations du Théorème 0.0.4 ci-dessus, considérons

σ = (µ`, . . . , µ`︸ ︷︷ ︸
r` fois

, µ`−1, . . . , µ`−1︸ ︷︷ ︸
r`−1 fois

, . . . , µ1, . . . , µ1︸ ︷︷ ︸
r1 fois

) ∈ Qr

et définissons pour chaque permutation w ∈ Sr et chaque nombre réel t ∈ R
le polytope suivant contenu dans le simplex standard ∆r−1 de dimension r− 1

dans Rr−1

�wt =

{
(ν2, . . . , νr) ∈ ∆r−1

∣∣∣∣∣
r∑
i=2

σw(i−1)νi + σw(r)

(
1−

r∑
i=2

νi

)
≥ t

}
.

Alors nous démontrons le résultat suivant.

Théorème H. — Soient C une courbe projective lisse et E un fibré vecto-
riel sur C de rang r ≥ 2. Alors pour tout drapeau linéaire Y• sur P(E)

qui appartient à la cellule de Schubert Ωw et pour toute classe rationnelle big
η = a(ξ − µ`f) + bf on a

∆Y•(η) =
{

(ν1, . . . , νr) ∈ Rr≥0 | 0 ≤ ν1 ≤ b, (ν2, . . . , νr) ∈ a�wµ`− 1
a

(b−ν1)

}
,

et donc le corps de Newton-Okounkov global de P(E) par rapport à Y• est donné
par

∆Y•(P(E)) =
{

((a(ξ − µ`f) + bf), (ν1, . . . , νr)) ∈ N1(P(E))R × Rr tels que .

0 ≤ ν1 ≤ b et (ν2, . . . , νr) ∈ a�wµ`− 1
a

(b−ν1)

}
.

En particulier, le corps de Newton-Okounkov global ∆Y•(P(E)) est un cône ra-
tionnel polyédral et il dépend uniquement du fibré vectoriel gradué gr(HN•(E))

associé à la filtration de Harder-Narasimhan de E.

De plus, nous obtenons la caractérisation suivante de la semi-stabilité en
termes des corps de Newton-Okounkov.

Proposition I. — Soient C une courbe projective lisse et E un fibré vectoriel
sur C de rang r ≥ 2. Les conditions suivantes sont équivalentes :

(1) E est semi-stable.
(2) Pour toute classe rationnelle big η = a(ξ − µ`f) + bf sur P(E) et pour

tout drapeau linéaire Y• sur P(E) on a ∆Y•(η) = [0, b]× a∆r−1 ⊆ Rr.
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Ici a∆r−1 = {(ν2, . . . , νr) ∈ Rr−1
≥0 |

∑r
i=2 νi ≤ a} désigne le simplex standard

de dimension r − 1 dans Rr−1 de côté de longueur a.

Le schéma de la deuxième partie de cette thèse est le suivant. Tout d’abord,
nous rappelons dans section §3.1 quelques définitions et des résultats bien
connus sur les corps de Newton-Okounkov et sur la semi-stabilité de fibrés
vectoriels sur une courbe. Ensuite, la section §3.2 est consacrée aux différents
cônes des diviseurs sur P(E) ainsi qu’à des résultats concernant leur volume et
leur volume restreint. Enfin, nous démontrons le Théorème H et la Proposition
I dans la section §3.3.





INTRODUCTION

One of the main purposes of algebraic geometry is the classification of pro-
jective varieties. In the case of curves, there is a clear distinction in terms of the
genus of a given curve X, which leads to distinguish between the case g(X) = 0

(X ∼= P1 and −KX is ample), g = 1 (X is an elliptic curve and KX is trivial)
and g ≥ 2 (X is a general curve and KX is ample). In dimension 2, similar
results can be stated in regard of the so called Enriques-Kodaira classification
which takes account on the negativity (resp. triviality, resp. positivity) of the
canonical class KX of surfaces X. In higher dimension, the general principle
is the classification of projective manifolds should be carried out by looking on
whether the canonical class KX is negative, trivial or positive. This fits in the
context of the so called Mori theory or Minimal Model Program (MMP).

The main objects of study of this thesis are some particular projective alge-
braic varieties with negative Kodaira dimension defined over an uncountable
algebraically closed field k of characteristic zero (1). This is a general ver-
sion of the negative case KX < 0 above. The Minimal Model Program for a
variety with negative Kodaira dimension is expected to end up with a fiber
type morphism whose general fibers are possibly singular varieties with ample
anti-canonical class.

The first part of author’s work concerns projective varieties with −KX

ample. These varieties are called Fano varieties, and they have a very rich
geometry. For instance, the Picard number of X which is defined to be
ρX = dimR N1(X)R, the real dimension of numerical equivalence classes of

1. Most of the results are true over an arbitrary algebraically closed field of characteristic
zero, but for Corollary 2.3.2 and [LM09, §4.3] (implicitely used in the proof of Theorem H)
to hold, the field must be also uncountable.
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1-cycles on X with real coefficients, coincides with the second Betti number
of X and hence it is a topological invariant. Moreover, for every n ≥ 1 there
are only finitely many deformation families of Fano varieties: this was estab-
lished in the smooth case by Kollár, Miyaoka and Mori in their celebrated
article [KMM92], while the singular case (BAB Conjecture) was treated in
the recent pre-publication [Bir16] by Birkar.

However, even in the smooth case, the classification of all deformation
families is far for being complete. In dimension 1, the only Fano curve is
P1. In dimension 2, smooth Fano surfaces are commonly called del Pezzo
surfaces and they are isomorphic to one of the 10 following surfaces: P1 × P1

or to the blow-up of P2 in 0 ≤ r ≤ 9 general points. In higher dimension the
classification is much more involved. For instance, smooth Fano threefolds
with Picard number 1 where classified by Iskovskikh in the series of articles
[Isk77, Isk78, Isk80], while smooth Fano threefolds with ρX ≥ 2 where
classified by Mori and Mukai in [MM81, MM03]; this classification leads to
105 deformation families of Fano manifolds in dimension 3. The classification
of Fano manifolds of dimension ≥ 4 still open. However, it follows from the
work of Birkar, Cascini, Hacon and McKernan [BCHM10] that Fano varieties
are very well-behaved from the Mori theory point of view.

The first aim of this thesis is to study the geometry of mildly singular Fano
varieties on which there is a prime divisor of Picard number 1. This can be
found in author’s electronic pre-publication [Mon16].

A first related result is given by Bonavero, Campana and Wísniewski in the
sequel of articles [Bon02] and [BCW02], where the authors classified (toric)
Fano varieties of dimension n ≥ 3 on which there is a divisor isomorphic to
Pn−1 and later used these results to study (toric) varieties whose blow-up at a
point is Fano. For instance, in the toric case we have the following result.

Theorem 0.0.1 ([Bon02, Theo. 2]). — Let X be a smooth toric Fano variety
of dimension n ≥ 3. Then, there exists a toric divisor D of X isomorphic to
Pn−1 if and only if one of the following situations occurs:

1. X ∼= Pn and D is a linear codimension 1 subspace of X.

2. X ∼= P(OP1⊕OP1(1)⊕n−1) ∼= BlPn−2(Pn) and D is a fiber of the projection
on P1.

3. X ∼= P(OPn−1 ⊕ OPn−1(a)), where 0 ≤ a ≤ n − 1, and D is either the
divisor P(OPn−1) or the divisor P(OPn−1(a)).



INTRODUCTION 15

4. X is isomorphic to the blow-up of P(OPn−1⊕OPn−1(a+1)) along a linear
Pn−2 contained in the divisor P(OPn−1), where 0 ≤ a ≤ n − 2, and D is
either the strict transform of the divisor P(OPn−1) or the strict transform
of the divisor P(OPn−1(a+ 1)).

In particular, this classification leads ρX ≤ 3. Some years later, Tsukioka
in [Tsu06] used some arguments from [And85] and [BCW02] to generalize
these results and proved that a smooth Fano variety X of dimension n ≥ 3

containing an effective prime divisor of Picard number 1 must satisfy ρX ≤ 3.
The bound ρX ≤ 3 was recently proved by Della Noce in [Del14, Rema.

5.5], when X is supposed to be a Q-factorial Gorenstein Fano variety of
dimension n ≥ 3 with canonical singularities, with at most finitely many
non-terminal points, and under the more general assumption of the exis-
tence of an effective prime divisor D ⊆ X such that the real vector space
N1(D,X) := Im (N1(D)R → N1(X)R) of numerical classes of 1-cycles on X

that are equivalent to 1-cycles on D, is one-dimensional.
In the smooth case, Casagrande and Druel provide in [CD15] a classification

(and examples) of all cases with maximal Picard number ρX = 3.

Theorem 0.0.2 ([CD15, Theo. 3.8]). — Let X be a Fano manifold of
dimension n ≥ 3 and ρX = 3. Let D ⊆ X be a prime divisor with
dimR N1(D,X) = 1. Then X is isomorphic to the blow-up of a Fano manifold
Y ∼= PZ(OZ ⊕ OZ(a)) along an irreducible subvariety of dimension n − 2

contained in a section of the P1-bundle π : Y → Z, where Z is a Fano
manifold of dimension n− 1 and ρZ = 1.

Firstly, we recall in section §2.1 that a mildly singular Fano variety X always
has an extremal ray R ⊆ NE(X) whose intersection with a given effective
divisor is positive. The rest of section §2.1 is devoted to the study of these
extremal contractions in the case that the given divisor has Picard number 1.
This allows us to prove the following result in section §2.2.

Theorem A. — Let X be a Q-factorial Gorenstein Fano variety of dimension
n ≥ 3 with canonical singularities and with at most finitely many non-terminal
points. Assume that there exists an effective prime divisor D ⊆ X such that
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dimR N1(D,X) = 1 and that ρX = 3. Then, there is a commutative diagram

X

σ̂

��

σ

��

ϕ

��

Ŷ

π̂
��

Y

π
��

Z

where σ (resp. σ̂) corresponds to a divisorial contraction of an extremal ray
R ⊆ NE(X) (resp. R̂ ⊆ NE(X)) which is the blow-up in codimension 2 of an
irreducible subvariety of dimension n− 2, and ϕ is a contraction of fiber type,
finite over D, corresponding to the face R+ R̂ ⊆ NE(X). Moreover, D ·R > 0,
Y and Ŷ are Q-factorial varieties with canonical singularities and with at most
finitely many non-terminal points, Y is Fano and Z is a Q-factorial klt Fano
variety. In particular, Z has only rational singularities.

The results of Cutkosky on the contractions of terminal Gorenstein three-
folds [Cut88], together with the previous result imply the following corollary.

Corollary B. — Let X be a Q-factorial Gorenstein Fano threefold with ter-
minal singularities. Assume that there exists an effective prime divisor D ⊆ X
such that dimR N1(D,X) = 1 and that ρX = 3. Then, X is factorial and it can
be realized as the blow-up of a smooth Fano threefold Y along a locally com-
plete intersection curve C ⊆ Y . Moreover, Y is isomorphic to P(OP2⊕OP2(a)),
where 0 ≤ a ≤ 2.

In the case ρX = 2, we obtain in section §2.3 the following extension of
[CD15, Rema. 3.2, Prop. 3.3] to mildly singular Fano varietiesX with ρX = 2,
on which there is an effective prime divisor of Picard number 1.

Theorem C. — Let X be a Q-factorial Gorenstein Fano variety of dimension
n ≥ 3 with canonical singularities and with at most finitely many non-terminal
points. Assume that there exists an effective prime divisor D ⊆ X such that
dimR N1(D,X) = 1 and that ρX = 2. There are two possibilities:

1. If D is not nef, then there is an extremal contraction sending D to a
point.

2. If D is nef, then S = D⊥ ∩ NE(X) is an extremal ray. One of the
following assertions must hold:
a) contS is of fiber type onto P1, and D is a fiber.
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b) contS is a divisorial contraction sending its exceptional divisor G to a
point, and such that G ∩D = ∅.

c) contS is a small contraction and there is a flip X 99K X ′ and a contrac-
tion of fiber type ψ : X ′ → Y ′ such that the general fiber is isomorphic
to P1, with anticanonical degree 2. Moreover, ψ is finite over the strict
transform of D in X ′.

In order to extend the classification results to higher dimensions, we will
restrict ourselves to the case of toric varieties. In that case, the combinatorial
description of the MMP for toric varieties treated in section §2.4, as well as
some particular properties of them, will allow us to prove the following result
in section §2.5.

Theorem D. — Let X be a Q-factorial Gorenstein toric Fano variety of di-
mension n ≥ 3 with canonical singularities and with at most finitely many non-
terminal points. Assume that there exists an effective prime divisor D ⊆ X

such that dimR N1(D,X) = 1 and that ρX = 3. Then, there exist Q-factorial
Gorenstein toric Fano varieties Y and Z, with terminal singularities, such that

1. X ∼= BlA(Y ), the normalized blow-up of an invariant toric subvariety
A ⊆ Y of dimension n− 2;

2. Y ∼= PZ(OZ ⊕OZ(a)) with 0 ≤ a ≤ iZ − 1, where iZ is the Fano index of
Z and OZ(1) is the ample generator of Pic(Z).

If dimX ≤ 4, then X is smooth and we are in the situation of Theorem 0.0.1,
case (4).

In the toric setting, we obtain in section §2.6 results that extend Bonavero’s
description of the extremal contractions in the case ρX = 2 to mildly singular
toric Fano varieties. If X is supposed to have isolated canonical singularities
then we obtain the following classification.

Theorem E. — Let X be a Q-factorial Gorenstein toric Fano variety of di-
mension n ≥ 3 with isolated canonical singularities. Assume that there exists
an effective prime divisor D ⊆ X such that dimR N1(D,X) = 1 and that
ρX = 2. Then, either

1. X ∼= P(OPn−1 ⊕ OPn−1(a)), with 0 ≤ a ≤ n − 1. In other words, we are
in the situation of Theorem 0.0.1, case (3).

2. X is isomorphic to the blow-up of a toric variety Y along an invariant
subvariety A ⊆ Y of dimension n − 2, contained in the smooth locus of
Y . Moreover, Y is isomorphic to either
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(a) Pn,
(b) P(1n−1, 2, n+ 1) if n is even, or
(c) P(1n−1, a, b), where 1 ≤ a < b ≤ n are two relatively prime integers

such that a|(n− 1 + b) and b|(n− 1 + a).
In particular, Y is a Q-factorial Gorenstein Fano variety with ρY = 1

and it has at most two singular points. Conversely, the blow-up of any of
the listed varieties Y along an invariant irreducible subvariety A ⊆ Y of
dimension n− 2 and contained in the smooth locus of Y , leads to a toric
variety X satisfying the hypothesis.

Moreover, in the case of contractions of fiber type we obtain the following
result without the assumption of isolated singularities.

Proposition F. — Let X be a Q-factorial Gorenstein toric Fano variety of
dimension n ≥ 3 with canonical singularities and with at most finitely many
non-terminal points. Assume that there exists an effective prime divisor D ⊆ X
such that dimR N1(D,X) = 1 and that ρX = 2. Let R ⊆ NE(X) be an extremal
ray such that D ·R > 0 and assume that the corresponding extremal contraction
π : X → Y is of fiber type. Then, X ∼= PY (OY ⊕OY (a)). Moreover, Y is a Q-
factorial Gorenstein Fano variety of dimension n−1 with terminal singularities
and Fano index iY , and 0 ≤ a ≤ iY − 1. In particular, X has only terminal
singularities.

Finally, section §2.7 is devoted to show that the extremal contractions stud-
ied in section §2.6 lift to quasi-étale universal covers, introduced by Buczyńska
in [Buc08] in order to study toric varieties of Picard number 1. See Definition
2.7.8 for the notion of Poly Weighted Space (PWS), introduced by Rossi and
Terracini in [RT16] and proved to be universal covering spaces in codimension
1 for Q-factorial toric varieties of arbitrary Picard number.

In particular, we obtain the following description of divisorial contractions
of toric mildly Fano varieties with Picard number 2. It should be noticed
that even if the combinatorial description of these divisorial contractions is
very simple (see Lemma 2.4.1) and it coincides with the one of the blow-up
of a subvariety of dimension n − 2 in the smooth case, it may happen that
the morphisms are not globally a blow-up of the coherent sheaf of ideals of a
(irreducible and reduced) subvariety but only a blow-up in codimension 2 if
the singularities are not isolated (see Example 2.6.2).

Proposition G. — Let X be a Q-factorial Gorenstein toric Fano variety of
dimension n ≥ 3 with canonical singularities and with at most finitely many
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non-terminal points. Assume that there exists an effective prime divisor D ⊆ X
such that dimR N1(D,X) = 1 and that ρX = 2. Let R ⊆ NE(X) be an extremal
ray such that D · R > 0 and let us denote by π : X → Y the corresponding
extremal contraction. Assume that π is birational. Then there exist weights
λ0, . . . , λn ∈ Z>0 and a cartesian diagram of toric varieties

X̂
π̂ //

πX

��

P(λ0, . . . , λn)

πY

��

X
π // Y

where vertical arrows denote the corresponding canonical quasi-étale universal
covers, and X̂ is a Gorenstein Fano PWS with canonical singularities and
with at most finitely many non-terminal points such that ρ

X̂
= 2. Moreover,

π̂ : X̂ → P(λ0, . . . , λn) is a divisorial contraction sending its exceptional divisor
Ê ⊆ X̂ onto an invariant subvariety Â ⊆ P(λ0, . . . , λn) of dimension n− 2.

The second part of author’s work concerns projective manifolds X which
are projective vector bundles. Namely, obtained as the projectivization of
a vector bundle E of rank r ≥ 2 over a base variety S. They are examples
of varieties of negative Kodaira dimension. We will focus our attention in
simplest case where the base variety is a smooth projective curve.

The second aim of this thesis is to study Newton-Okounkov bodies on
projective vector bundles over curves. This can be found in author’s electronic
pre-publication [Mon17].

Let C be a smooth projective curve and let E be vector bundle over C of
rank r ≥ 2. It is well-known since Hartshorne’s work [Har71] that numerical
information coming from semi-stability properties of E can be translated into
positivity conditions. Namely, Hartshorne proved that E is an ample vector
bundle if and only if µmin(E), the minimal slope of E, is strictly positive. The
shape of the nef cone of the projective vector bundle P(E) can be deduced
from this result (see [Laz04, §6.4.B], for instance).

Similarly, Miyaoka proved in [Miy87, Theo. 3.1] the following result, which
was generalized by Fulger in [Ful11].

Theorem 0.0.3 (Miyaoka). — Let C and E be as above. The following con-
ditions are equivalent:

(1) E is semi-stable.
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(2) Nef(P(E)) = Psef(P(E)).

In general, the shape of the pseudo-effective cone of P(E) was determined
by Nakayama in [Nak04, Chapter IV] in the course of the proof of the fact
that exists a weak Zariski decomposition of pseudo-effective divisors on P(E)

(see also [MDS15]). This cone is spanned by the numerical classes f and
ξ − µmax(E)f , where ξ is the class of the tautological line bundle OP(E)(1), f
is the class of a fiber of π : P(E)→ C and µmax(E) is the maximal slope of E.

Indirectly, the pseudo-effective cone can be also deduced from the work of
Wolfe [Wol05] and Chen [Che11], who explicitly computed the volume func-
tion on P(E). In fact, they showed that for every t ∈ R, the volume of the
numerical class ξ − tf on P(E) can be expressed in terms of numerical infor-
mation coming from the Harder-Narasimhan filtration of E. More precisely,
their results can be summarized as follows.

Theorem 0.0.4. — Let C and E as above. Let

HN•(E) : 0 = E` ⊆ E`−1 ⊆ · · · ⊆ E1 ⊆ E0 = E

be the Harder-Narasimhan filtration of E with successive semi-stable quotients
Qi = Ei−1/Ei of rank ri and slope µi. Then,

volP(E)(ξ − tf) = r! ·
∫

∆̂r−1

max


r∑
j=1

sjλj − t, 0

 dλ,

where ∆̂r−1 ⊆ Rr is the standard r− 1-simplex with coordinates λ1, . . . , λr, dλ
is the standard induced Lebesgue measure for which ∆̂r−1 has volume 1

(r−1)! ,
and s = (s1, . . . , sr) is a vector in Rr such that the value µi appears exactly ri
times in the coordinates of s, and their appear in increasing order.

Following the idea that numerical information encoded by the Harder-
Narasimhan filtration of E should be related to asymptotic numerical
invariants of P(E), we study the geometry of Newton-Okounkov bodies on
P(E). These compact convex bodies were introduced by Okounkov in his
original article [Oko96] and they were studied later on by Kaveh and Kho-
vanskii [KK12] and Lazarsfeld and Mustaţă [LM09], who associated to any
big divisor D on a normal projective variety X of dimension r, and any
complete flag of subvarieties Y• on X satisfying suitable conditions, a convex
body ∆Y•(D) ⊆ Rr depending only on the numerical equivalence class of D.
Moreover, there exists a global Newton-Okounkov body ∆Y•(X) ⊆ Rr×N1(X)R



INTRODUCTION 21

such that the slice of ∆Y•(X) over any big rational class η ∈ N1(X)Q is given
by ∆Y•(η) ⊆ Rr × {η}.

Newton-Okounkov bodies of big divisors on ruled surfaces with respect to
linear flags (see Definition 3.3.1) can be computed via Zariski decomposition
(see Example 3.3.2). In higher dimension, an analogous computation allow us
to compute these bodies on P(E) whenever the cone of movable divisors and
the cone of nef divisors coincide (see Remark 3.3.5). In general, we will use
methods similar to those used by Wolfe to compute the volume function in
[Wol05]. More precisely, we will need to understand the Harder-Narasimhan
filtration of the symmetric products SmE for m ≥ 1 and then to consider
suitable refinements of these filtrations.

Let Y HN
• be a linear flag which is compatible with the Harder-Narasimhan

filtration of E (see Definition 3.3.8) with divisorial component π−1(q) ∼= Pr−1

and denote by Fr be the full flag variety parametrizing complete flags of linear
subspaces of Pr−1. The linear flag Y HN

• determines a decomposition of Fr into
Schubert cells (see §2 and Convention 3.3.9)

Fr =
∐
w∈Sr

Ωw.

With the notation of Theorem 0.0.4 above, let us consider

σ = (µ`, . . . , µ`︸ ︷︷ ︸
r` times

, µ`−1, . . . , µ`−1︸ ︷︷ ︸
r`−1 times

, . . . , µ1, . . . , µ1︸ ︷︷ ︸
r1 times

) ∈ Qr

and define for each permutation w ∈ Sr and each real number t ∈ R the
following polytope inside the full dimensional standard simplex ∆r−1 in Rr−1

�wt =

{
(ν2, . . . , νr) ∈ ∆r−1

∣∣∣∣∣
r∑
i=2

σw(i−1)νi + σw(r)

(
1−

r∑
i=2

νi

)
≥ t

}
.

Then, we prove the following result.

Theorem H. — Let C be a smooth projective curve and let E be a vector
bundle over C of rank r ≥ 2. Then, for every linear flag Y• on P(E) that
belongs to the Schubert cell Ωw and every big rational class η = a(ξ−µ`f)+ bf

we have that

∆Y•(η) =
{

(ν1, . . . , νr) ∈ Rr≥0 | 0 ≤ ν1 ≤ b, (ν2, . . . , νr) ∈ a�wµ`− 1
a

(b−ν1)

}
,
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and hence the global Okounkov body of P(E) with respect to Y• is given by

∆Y•(P(E)) =
{

((a(ξ − µ`f) + bf), (ν1, . . . , νr)) ∈ N1(P(E))R × Rr such that .

0 ≤ ν1 ≤ b and (ν2, . . . , νr) ∈ a�wµ`− 1
a

(b−ν1)

}
.

In particular, the global Okounkov body ∆Y•(P(E)) is a rational polyhedral cone
and it depends only on gr(HN•(E)), the graded vector bundle associated to the
Harder-Narasimhan filtration of E.

Moreover, we obtain the following characterization of semi-stability in terms
of Newton-Okounkov bodies.

Proposition I. — Let C be a smooth projective curve and let E be a vector
bundle over C of rank r ≥ 2. The following conditions are then equivalent:

(1) E is semi-stable.
(2) For every big rational class η = a(ξ−µ`f)+bf on P(E) and every linear

flag Y• on P(E) we have that ∆Y•(η) = [0, b]× a∆r−1 ⊆ Rr.
Here, a∆r−1 = {(ν2, . . . , νr) ∈ Rr−1

≥0 |
∑r

i=2 νi ≤ a} is the full dimensional
standard (r − 1)-simplex with side length a.

The outline of the second part of this thesis is as follows. First of all, we
recall in section §3.1 some definitions and well-known results about Newton-
Okounkov bodies and semi-stability of vector bundles over curves. Secondly,
section §3.2 is devoted to the different cones of divisors on P(E) as well as
results concerning their volume and restricted volume. Finally, we prove both
Theorem H and Proposition I in section §3.3.



CHAPTER 1

NOTATION AND PRELIMINARY RESULTS

This chapter is devoted to establish the notation that we will use through
this thesis and to recall some previous results.

For us, all varieties will be assumed to be reduced and irreducible schemes
of finite type over an uncountable algebraically closed field k of characteristic
zero. The smooth locus of an algebraic variety X will be denoted by Xreg ⊆ X,
while Sing(X) = X \Xreg denotes it singular locus.

By a P1-bundle we mean a smooth morphism all of whose fibers are isomor-
phic to P1.

Let E be a locally free sheaf on a variety X. We follow Grothendieck’s
convention and we define the projectivization PX(E) = P(E) of E to be
ProjOX ⊕m≥0 S

mE, where SmE denotes de mth symmetric power of E. This
variety is endowed with a natural projection π : P(E)→ X and a tautological
line bundle OP(E)(1).

1.1. Cones of curves and divisors

Let X be a normal projective variety. For us, a divisor will always be a Weil
divisor. A divisor is called Q-Cartier if there exist a positive multiple which
is Cartier, and we say that X is Q-factorial if every divisor is Q-Cartier. The
class group of X, denoted by Cl(X), is the group of Weil divisors on X modulo
linear equivalence. Similarly, the Picard group of X, denoted by Pic(X), is
the group of Cartier divisors on X modulo linear equivalence. For a normal
projective variety, there is a natural inclusion

Pic(X) −→ Cl(X),
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which is not an isomorphism in general. If X is smooth then Pic(X) ∼= Cl(X),
in which case we will not distinguish between Weil and Cartier divisors.

If C is a projective curve on X and D ∈ Pic(X), then we define the inter-
section number of D and C to be deg (ν∗D) ∈ Z, where ν : C → C is the
normalization of C. Let us denote by Z1(X) the free abelian group generated
by projective curves on X and let us call the elements in this group 1-cycles.
Then, we can extend by linearity the intersection product in order to obtain a
pairing

Pic(X)× Z1(X) −→ Z
(D,C) 7−→ D · C

We say that two Cartier divisors D1 and D2 are numerically equivalent if
D1 · C = D2 · C for every 1-cycle C, and we will use the notation D1 ≡ D2 in
that case. In the same way, we say that two 1-cycles C1 and C2 are numerically
equivalent if D · C1 = D · C2 for every Cartier divisor D, and we will use the
notation C1 ≡ C2 in that case. We denote by N1(X) the group of numerical
equivalence classes of divisors on X and we define N1(X)k = N1(X)⊗Z k, for
k = Q or R, to be the k-vector space spanned by Q-Cartier divisors modulo
numerical equivalence. Dually, we denote by N1(X) the group of numerical
equivalence classes of 1-cycles on X and N1(X)k = N1(X)⊗Z R, the k-vector
space spanned by 1-cycles modulo numerical equivalence, for k = Q or R.

The intersection pairing induce therefore a non-degenerated bilinear form

N1(X)R ×N1(X)R −→ R

([D], [C]) 7−→ [D] · [C]

where [C] (resp. [D]) denote the numerical class of C (resp. D) in N1(X)R
(resp. N1(X)R). We will only insist on the fact that we are considering nu-
merical classes of 1-cycles and hence [D] · [C] will be written as D · [C]. In
particular, dimR N1(X)R = dimR N1(X)R. This dimension is called the Picard
number of X, denoted by ρX , and it is a classical fact that it is finite.

Let Z ⊆ X be a closed subset and ι : Z → X be the natural inclusion, we
define

N1(Z,X) = ι∗N1(Z)R ⊆ N1(X)R.

Let NE(X) ⊆ N1(X)R be the convex cone generated by the classes of effec-
tive 1-cycles, i.e., 1−cycles with non-negative coefficients, and NE(X) be its
topological closure. The cone NE(X) is often called the Mori cone of X.
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Definition 1.1.1 (Nef divisor). — A Q-Cartier divisorD onX is said to be
numerically eventually free (or simply, nef) ifD·[C] ≥ 0 for every [C] ∈ NE(X).

We define Nef(X) (resp. Amp(X)) to be the convex cone in N1(X)R gen-
erated by the classes of nef divisors (resp. ample divisors). These cones are
related by Kleiman’s criterion of ampleness.

Theorem 1.1.2 ([Kle66, Prop. IV 2.2], [Laz04, Theo. 1.4.23])
A Cartier divisor D is ample if and only if D · [C] > 0 for every class
[C] ∈ NE(X)\{0}. In particular,

int (Nef(X)) = Amp(X) and Amp(X) = Nef(X).

Definition 1.1.3 (Big divisor). — A Q-Cartier divisor D on X is said to
be big if there exists an effective Q-divisor E such that D − E is ample.

We denote by Big(X) ⊆ N1(X)R the open convex cone of big numerical
classes.

Definition 1.1.4 (Pseudo-effective divisor). — A numerical class η in
N1(X)R is called pseudo-effective if can be written as the limit of classes of
effective R-divisors.

The pseudo-effective cone is the closure of the big cone: Big(X) = Psef(X)

(see [Laz04, Theo. 2.2.26], for instance).
One last important cone will be the movable cone (cf. modified nef cone in

[Bou04, §2.7]) defined by Y. Kawamata in [Kaw88, §2], and independently
used by S. Boucksom [Bou04] and N. Nakayama [Nak04] to introduce the
notion of divisorial Zariski decomposition or σ-decomposition. We follow N.
Nakayama’s presentation from [Nak04, Chapter III].

Definition 1.1.5 (Movable divisor). — Let X be a normal projective va-
riety. Let Mov′(X) be the convex cone in N1(X)R generated by the classes
c1(L) of all fixed part free line bundles L on X (namely, whose base locus has
codimension at least two). We denote its closure by Mov(X), which is called
the movable cone (1) of X.

We can also define ampleness in the relative setting. Let f : X → Y be
a projective morphism and let N1(X\Y )R be the real vector space generated
by irreducible curves C ⊆ X which are contracted to a point by f , modulo

1. The notation Mov(X) is often reserved to the interior of Mov(X), which is called the
strictly movable cone of X.
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numerical equivalence. Let NE(X\Y ) be the convex closed cone in N1(X\Y )R
generated by the classes of effective curves which are contracted by f . We say
that a Q-Cartier Q-divisor D on X is f -ample if the restriction of D to every
irreducible component of each fiber of f is an ample divisor. Equivalently, the
Relative Kleiman’s criterion of ampleness [KM98, Theo. 1.44] says that D is
f -ample if and only if D · [C] > 0 for every [C] ∈ NE(X\Y )\{0}.

Let us recall that the stable base locus of a Q-divisor D on X is the closed
set

B(D) =
⋂
m>0

Bs(mD)

where Bs(mD) is the base locus of the complete linear system |mD|. Following
[ELM+06], we define the augmented base locus of D to be the closed set

B+(D) =
⋂
A

B(D −A),

where the intersection runs over all ampleQ-divisorsA. Similarly, the restricted
base locus of D is defined by

B−(D) =
⋃
A

B(D +A),

where the union runs over all ample Q-divisors A. By [ELM+06, Prop. 1.4,
Exam. 1.8, Prop. 1.15, Exam. 1.16], both B−(D) and B+(D) depend only
on the numerical class of D, there is an inclusion B−(D) ⊆ B+(D), and for
any rational number c > 0 we have B−(cD) = B−(D) and B+(cD) = B+(D).
Moreover by [ELM+06, Exam. 1.7, Exam. 1.18] we have that B+(D) = ∅ if
and only if D is ample, and that B−(D) = ∅ if and only if D is nef.

Let f : Y → X be a morphism between normal projective varieties and let
C ⊆ Y be an irreducible projective curve. We define the 1-cycle f∗C to be
zero if C is contracted to a point by f , and to be deg (f |C : C → f(C)) f(C)

if f(C) is a curve on X. If D is a Cartier divisor on X, we have the projection
formula

f∗D · [C] = D · [π∗C]

that extends by linearity to Q-Cartier divisors and 1-cycles.

1.2. The Minimal Model Program (MMP)

We will use the notation and results of the Minimal Model Program (MMP
for short) in [KM98].
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1.2.1. Singularities of the MMP. — Let X be a normal projective variety.
In this case, we can define the class of a canonical divisor KX ∈ Cl(X). See
[Rei87, §1] for details.

The variety X is said to be Gorenstein if KX is a Cartier divisor and its
singularities are Cohen-Macaulay. The property of being Gorenstein is local
and open, so the Gorenstein locus of X is the open subset containing all the
Gorenstein points of X (it contains Xreg, in particular).

We follow the usual convention, and we say that X is a Q-Gorenstein variety
if some positive multiple of KX is a Cartier divisor; we do not require Cohen-
Macaulay singularities. In this case, the Gorenstein index of X is the smallest
positive integer ` ∈ Z>0 such that `KX is a Cartier divisor.

Let us recall the notion of singularities of pairs for Q-factorial varieties. See
[KM98, §2.3] for details.

Definition 1.2.1 (Singularities of pairs). — Let X be a Q-factorial nor-
mal projective variety, and ∆ =

∑
ai∆i an effective Q-divisor on X. Let

f : Y → X be a log-resolution of the pair (X,∆), i.e., a birational projective
morphism f whose exceptional locus Exc(f) is the union of the effective prime
divisors Ei’s and such that ∆Y +

∑
Ei is a simple normal crossing divisor,

where ∆Y is the strict transform of ∆ in Y by f . Using numerical equivalence,
we have

KY + ∆Y
∼= f∗(KX + ∆) +

∑
Ei

a(Ei;X,∆)Ei.

The numbers a(Ei;X,∆) ∈ Q are independent of the log-resolution and
depend only on the discrete valuation that corresponds to Ei. The discrepancy
of the pair (X,∆) is given by

discrep(X,∆) = inf
E
{a(E,X,∆) | E is an exceptional divisor of a resolution of X} .

Suppose that all ai ≤ 1 and that f is a log-resolution of (X,∆), we say that
the pair (X,∆) is

terminal

canonical

klt

if

discrep(X,∆) > 0

discrep(X,∆) ≥ 0

discrep(X,∆) > −1 and all ai < 1

Here klt means “Kawamata log terminal”. If the conditions above hold for one
log-resolution of (X,∆), then they hold for every log-resolution of (X,∆).
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We say that X is terminal (canonical,...) or that it has terminal (canonical,...)
singularities if (X, 0) is a terminal (canonical,...) pair.

An important class of examples is given by quotient singularities.

Definition 1.2.2 (Quotient singularity). — Let x ∈ X be a germ of a
complex analytic space. We say that X a has quotient singularity if there
is a smooth germ 0 ∈ Y and a finite group G acting on 0 ∈ Y such that
(x ∈ X) ∼= (0 ∈ Y )/G. We say that a complex algebraic variety has quo-
tient singularities if its associated complex analytic space has only quotient
singularities at every point.

Proposition 1.2.3 ([KM98, Prop. 5.15], [Kol13, §3.18])
Let X be a complex projective algebraic variety with quotient singularities.
Then X is Q-factorial and X has klt singularities.

Remark 1.2.4. — By definition, if X has Gorenstein klt singularities then it
has canonical singularities. In particular, Proposition 1.2.3 says that Goren-
stein quotient singularities are canonical.

The singularities of the Minimal Model Program behave well by taking hy-
perplane sections. We have the following Bertini type result.

Lemma 1.2.5 ([KM98, Lemm. 5.17]). — Let (X,∆) be a pair and |H| be a
free linear system on X. Then,

discrep(X,∆) ≤ discrep(Hg,∆|Hg)

for a general member Hg ∈ |H|.

We say that an algebraic variety X is smooth in codimension k if
codimX Sing(X) ≥ k + 1. From the previous result and the description
of terminal surface singularities in [KM98, Theo. 4.5], we can deduce that
terminal varieties are smooth in codimension 2.

Proposition 1.2.6 ([KM98, Cor. 5.18]). — Let X be a normal projective
variety with terminal singularities. Then, X is smooth in codimension 2.

For varieties with terminal Gorenstein quotient singularities the singular
locus is even smaller.

Proposition 1.2.7 ([CK99, Prop. A.2.2]). — Let X be a normal projective
variety with terminal Gorenstein quotient singularities. Then, X is smooth in
codimension 3.
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An other important class is given by rational singularities.

Definition 1.2.8 (Rational singularity). — Let X be a normal algebraic
variety and f : Y → X a resolution of singularities. We say that f is a rational
resolution if

Ri f∗OX = 0 for i > 0.

We say that X has rational singularities if every resolution of singularities is
rational.

In fact, if an algebraic variety X has a rational resolution then every reso-
lution will be rational (see [KM98, Theo. 5.10] for instance). Kawamata log
terminal pairs provide examples of rational singularities.

Theorem 1.2.9 ([KMM87, Theo. 1-3-6]). — Let (X,∆) be a klt pair. Then
X has rational singularities.

Moreover, Serre’s duality applies for rational singularities and hence for klt
pairs.

Proposition 1.2.10 ([KM98, Theo. 5.10]). — Let X be a variety with ra-
tional singularities. Then X has Cohen-Macaulay singularities.

Let us recall the following version of Kawamata-Viehweg Vanishing Theo-
rem.

Theorem 1.2.11 ([KM98, Theo. 2.70]). — Let (X,∆) be a klt pair. Let N
be a Q-Cartier divisor on X such that N ≡M + ∆, where M is a nef and big
Q-Cartier Q-divisor. Then

Hi(X,OX(−N)) = 0 for i < dimX.

1.2.2. Contraction of extremal rays. — Let X be a normal projective
variety. A contraction of X is a projective surjective morphism ϕ : X → Y

with connected fibers, where Y is a normal projective variety. In particular,
ϕ∗OX = OY .

Definition 1.2.12 (Extremal face). — Let V be a real vector space of fi-
nite dimension. A subset σ ⊆ V is called a cone if 0 ∈ σ and σ is closed under
multiplication by positive scalars. We say that a cone is convex if for every
u, v ∈ σ we have that u+ v ∈ σ. A extremal face τ of a cone σ is a non-empty
subset of σ which is convex and that for every u, v ∈ σ, if tu + (1 − t)v ∈ τ
for some t ∈]0, 1[ then tu+ (1− t)v ∈ τ for every t ∈ [0, 1]. A one-dimensional
extremal face is called an extremal ray.
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If D is a Q-Cartier divisor and F ⊆ NE(X) is an extremal face, then the
sign D · F > 0 (resp. =, <) is well defined. We can therefore define the
sets D≥0 = {[C] ∈ N1(X)R | D · [C] ≥ 0} (similarly for > 0,≤ 0, < 0) and
D⊥ = {[C] ∈ N1(X)R | D · [C] = 0}. We define

NE(X)D≥0 = NE(X) ∩D≥0,

similarly for > 0,≤ 0, < 0.
Let R ⊆ NE(X) be an extremal ray. We define the locus of R to be

Locus(R) =
⋃

[C]∈R

C ⊆ X.

One of the main tool in the study of extremal contractions is the Cone
Theorem (see [KM98, Theo. 3.7]).

Theorem 1.2.13 (Cone Theorem). — Let (X,∆) be a klt pair with X a
projective Q-factorial variety. Then

1. There are countably many rational curves {Ci}i∈I ⊆ X such that
(KX + ∆) · [Ci] < 0 for every i ∈ I, and

NE(X) = NE(X)(KX+∆)≥0 +
∑
i∈I

R≥0[Ci].

2. For any ε > 0 and ample Q-divisor H, there exists a finite subset I0 ⊆ I
such that

NE(X) = NE(X)(KX+∆+εH)≥0 +
∑
i∈I0

R≥0[Ci].

3. Let F ⊆ NE(X)(KX+∆)<0 be a extremal face. Then, there exists a unique
morphism contF : X → XF with connected fibers, called the extremal
contraction of F , from X onto a normal projective variety XF such that
the irreducible curves on X contracted by contF to points in XF are
exactly the curves whose classes in N1(X) belongs to F .

4. Let F ⊆ NE(X)(KX+∆)<0 be a extremal face with extremal contraction
contF : X → XF . Let D be a Cartier divisor on X such that D · F = 0.
Then, there exists a Cartier divisor DF on XF such that D ∼ cont∗F DF .

Let (X,∆) be a klt pair with X a projective Q-factorial variety and let
R ⊆ NE(X)(KX+∆)<0 be an extremal ray. We denote by Exc(contR) the excep-
tional locus of contR, i.e., the subset of X where contR is not an isomorphism.
Following [KM98, Prop. 2.5], there are three possibilities:
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1. dim(XR) < dim(X); we say that contR is of fiber type.

2. contR is birational and its exceptional locus is an effective prime divisor
E such that E ·R < 0; we say that contR is a divisorial contraction.

3. contR is birational and its exceptional locus has codimension > 1 in X;
we say that contR is a small contraction.

In order to study small contractions, the notion of flip was introduced. See
[KM98, Definition 3.33 and §6.1] for details.

Definition 1.2.14 (Flip). — Let (X,∆) be a klt pair with X a projective
Q-factorial variety. Let f : X → Y be a birational morphism onto a pro-
jective normal variety such that codimX Exc(f) ≥ 2 and that −(KX + ∆) is
f -ample. A normal projective variety X+ together with a birational morphism
f+ : X+ → Y is called a (KX + ∆)-flip of f if

1. (KX+ + ∆+) is Q-Cartier, where ∆+ is the strict transform of ∆ on X+,

2. (KX+ + ∆+) is f+-ample,

3. codimX+ Exc(f+) ≥ 2.

By a abuse of terminology, we say that the induced rational map X 99K X+

is a (KX + ∆)-flip.

As a consequence of the Cone Theorem and Negativity Lemma [KM98,
Lemm. 3.39] we obtain the following results.

Proposition 1.2.15 ([KM98, Prop. 3.36, Cor. 3.43])
Let (X,∆) be a klt pair with X a projective Q-factorial variety. Let

f : X → Y be the divisorial contraction of a (KX + ∆)-negative extremal ray
with exceptional divisor E. Then

1. Y is Q-factorial.

2. ρY = ρX − 1.

3. (Y,∆Y ) is a klt pair, where ∆Y is the strict transform of ∆ on Y .

4. If (X,∆) is terminal (resp. canonical) and E * Supp ∆, then (Y,∆Y ) is
also terminal (resp. canonical).

Proposition 1.2.16 ([KM98, Prop. 3.37, Cor. 3.42])
Let (X,∆) be a klt (resp. terminal, canonical) pair with X a projective

Q-factorial variety. Let f : X → Y be the small contraction of a (KX + ∆)-
negative extremal ray and X+ be a (KX + ∆)-flip of f . Then

1. X+ is Q-factorial.
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2. ρX+ = ρX .

3. (X+,∆X+) is a klt (resp. terminal, canonical) pair, where ∆X+ is the
strict transform of ∆ on X+.

Contractions of fiber type are more subtle.

Proposition 1.2.17 ([KM98, Prop. 3.36], [Fuj99, Cor. 4.5])
Let (X,∆) be a klt pair with X a projective Q-factorial variety. Let

f : X → Y be the contraction of a (KX + ∆)-negative extremal ray of fiber
type. Then

1. Y is Q-factorial.

2. ρY = ρX − 1.

3. There exists an effective Q-divisor ∆Y on Y such that (Y,∆Y ) is klt. In
particular, Y has only rational singularities.

1.2.3. MMP for Fano varieties. — Fano varieties have a very rich geom-
etry and give rise to more precise descriptions.

Definition 1.2.18 (Fano variety). — A complete normal variety X is said
to be a Fano variety if there exists a positive multiple of −KX which is Cartier
and ample. A Fano variety is therefore always projective.

Thanks to the Cone Theorem we have the following description of the Mori
cone of Fano varieties.

Proposition 1.2.19. — Let X be a klt Fano variety. Then, NE(X) is a poly-
hedral cone generated by finitely many classes of rational curves on X. In
particular,

NE(X) = NE(X).

Remark 1.2.20. — As a consequence of Proposition 1.2.19 and Kleiman’s
criterion of ampleness we have that if D is a Q-Cartier divisor on a klt Fano
variety X, then D is ample if and only if D · [C] > 0 for every irreducible curve
on X. This is not true in general (see [Laz04, Exam. 1.5.2], for instance).

Kawamata-Viehweg Vanishing Theorem implies the following well known
result in this case.

Proposition 1.2.21. — Let X be a klt Fano variety. Then,

Hi(X,OX) = {0} for every i > 0.

In particular, finite connected étale covers of klt Fano varieties are trivial.
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Proof. — We apply Theorem 1.2.11 to the ample divisor N = −KX . Serre’s
duality leads the first statement. In particular, we have that χ(X,OX) = 1. If
π : X̃ → X is any connected finite étale cover we have that π∗KX = K

X̃
and

that X̃ has klt singularities, by [Kol97, Prop. 3.16]. X̃ is therefore a klt Fano
variety and hence χ(X̃,O

X̃
) = 1. By Hirzebruch-Riemann-Roch Theorem we

have that χ(X̃,O
X̃

) = deg(π)χ(X,OX) hence π is an isomorphism.

Remark 1.2.22. — By Zariski-Nagata Purity Theorem [SGAI, Exposé X,
Théorème 3.1] we have that if X is a smooth Fano variety and π : X̃ → X

is a finite connected covering which is étale in codimension 1 (see Definition
2.7.1) then π is étale and hence trivial. This may not be true for singular Fano
varieties as we will discuss in §2.7.

After the works of Birkar, Cascini, Hacon and McKernan, if X is a klt
Fano variety, then X is a Mori Dream Space (see [BCHM10, Cor. 1.3.2] and
[HK00]). We will be specially interested in the case when X has canonical
singularities.

Theorem 1.2.23 ([Del14, Theo. 3.1]). — Let X be a Q-factorial Fano vari-
ety with canonical singularities. Then, for any prime divisor D ⊆ X, there
exists a finite sequence (called a special Mori program for the divisor −D)

X = X0
σ0
99K X1 99K · · · 99K Xk−1

σk−1
99K Xk

π→ Y

such that, if Di ⊆ Xi is the transform of D for i = 1, . . . , k and D0 := D, the
following hold:

1. X1, . . . , Xk and Y are Q-factorial projective varieties and X1, . . . , Xk

have canonical singularities.

2. for every i = 0, . . . , k, there exists an extremal ray Qi of Xi with
Di ·Qi > 0 and −KXi ·Qi > 0 such that:
(a) for i = 1, . . . , k− 1, Locus(Qi) ( Xi, and σi is either the contraction

of Qi (if Qi is divisorial), or its flip (if Qi is small);
(b) the morphism π : Xk → Y is the contraction of Qk and π is a fiber

type contraction.

Let us finish with the following result concerning extremal contractions of
smooth Fano varieties having at most one-dimensional fibers. We will address
the mildly singular case in §2.1.

Theorem 1.2.24 ([Wis91, Theo. 1.2], [And85, Theo. 2.3, Theo. 3.1])
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Let X be a smooth Fano variety and let π : X → Y be the contraction of an
extremal ray R ⊆ NE(X). If every fiber of π is of dimension ≤ 1 then Y is
smooth and either

1. π : X → Y is a (possibly singular) conic bundle.

2. π : X → Y is the blow-up of Y along a smooth subvariety A ⊆ Y of
codimension 2.

1.3. Toric varieties

We may refer the reader to [CLS11] for the general theory of toric varieties
and to [Mat02] for details of the toric MMP. We will keep the same notation
as [CLS11].

Let N ∼= Zn be a lattice, M = HomZ(N,Z) its dual lattice and let NR (resp.
NQ) and MR (resp. MQ) be their real scalar (resp. rational scalar) extensions.
Let us denote by 〈·, ·〉 : MR ×NR → R the natural R−bilinear pairing.

Let ∆X ⊆ NR ∼= Rn be a fan. As we will see, most of the properties of our
interest in the context of the MMP of the associated toric variety X = X(∆X),
can be translated into combinatorial properties of the fan ∆X .

Sometimes we will write NX instead of N in order to emphasize the depen-
dence of X(∆X) on the lattice where primitive generators of ∆X belong.

Let ∆X(k) be the set of k dimensional cones in ∆X . In the same way, if
σ ∈ ∆X is a cone, we will denote by σ(k) the set of its k−dimensional faces.
Usually, we will not distinguish between 1−dimensional cones ρ ∈ ∆X(1) (or
1−dimensional faces ρ ∈ σ(1)) and the primitive vector uρ ∈ N generating
them.

If σ ∈ ∆X(k) we will denote by Uσ the associated affine toric variety, and by
V (σ) ⊆ X(∆X) the closed invariant subvariety of codimension k. In particular,
each ρ ∈ ∆X(1) corresponds to an invariant Weil divisor V (ρ) on X (also noted
V (uρ)); such a cone is called a ray. Similarly, each cone of codimension one
ω ∈ ∆X(n − 1) corresponds to an invariant rational curve on X; such a cone
is called a wall.

Let us recall that an invariant Weil divisor D =
∑

ρ∈∆X(1) aρV (ρ) is Cartier
if and only if for each σ ∈ ∆X there is mσ ∈ M such that 〈mσ, uρ〉 = −aρ
for all ρ ∈ σ(1). We call {mσ}σ∈∆X

a Cartier data of D. See [CLS11, Theo.
4.2.8] for details.

It is a classical fact that every Weil divisor on a toric variety X is linearly
equivalent to an invariant toric divisor (see [CLS11, Theo. 4.1.3]). The same
holds for effective curves on complete toric varieties.
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Theorem 1.3.1 ([Rei83, Prop. 1.6]). — Let X = X(∆X) be a complete
toric variety of dimension n. Then

NE(X) =
∑

ω∈∆X(n−1)

R≥0[V (ω)].

In particular, NE(X) is a closed rational polyhedral cone and it is strictly
convex if and only if X is a projective variety.

Finally, we recall that if λ0, . . . , λn are positive integers with gcd(λ0, . . . , λn) = 1

then we define the associated Weighted Projective Space (WPS) to be

P(λ0, . . . , λn) =
(
An+1\{0}

)
/ ∼,

where ∼ is the equivalence relation

(x0, . . . , xn) ∼ (y0, . . . , yn)⇔ xi = ελiyi, i = 0, . . . , n for some ε ∈ Gm.

Moreover, P(λ0, . . . , λn) is a toric variety with Picard number one and torsion-
free class group. In general, we say that a Q-factorial complete toric variety
is a Poly Weighted Space (PWS) if its class group is torsion-free (see also
Definition 2.7.8).

1.3.1. Toric singularities. — All affine toric varieties associated to strongly
convex rational polyhedral cones are normal (see [CLS11, Theo. 1.3.5]). Thus,
a toric varietyX associated to a fan ∆X is also normal. Moreover, we can check
if a toric variety associated to a fan ∆X is smooth or not by looking at all the
cones σ ∈ ∆X . In fact, if we define that a cone σ ∈ ∆X is smooth if and only
if the associated affine toric variety Uσ is smooth, then we have the following
result.

Proposition 1.3.2 ([CLS11, Prop. 11.1.2, Prop. 11.1.8])
Let X be the toric variety associated to the fan ∆X . Then,

Sing(X) =
⋃

σ not smooth

V (σ)

and
Xreg =

⋃
σ smooth

Uσ.

Moreover, given a d−dimensional simplicial cone σ ⊆ NR with generators
u1, . . . , ud ∈ N , let Nσ = Span(σ) ∩N and define the multiplicity of σ by

mult(σ) = [Nσ : Zu1 + · · ·+ Zud].

Then,

1. σ is smooth if and only if mult(σ) = 1.
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2. mult(σ) is the number of points of Pσ ∩N , where

Pσ =

{
d∑
i=1

λiui | 0 ≤ λi < 1

}
.

3. Let e1, . . . , ed be a basis of Nσ and write ui =
∑d

i=1 aijej. Then,

mult(σ) = |det(aij)| .

4. If τ � σ is a face of σ, then

mult(σ) = mult(τ)[Nσ : Nτ + Zu1 + · · ·+ Zud].

In particular, mult(τ) ≤ mult(σ) whenever τ � σ.

Remark 1.3.3. — Let X be a n−dimensional toric variety associated to a
simplicial fan ∆X , i.e., a fan whose cones are all simplicial, admitting a cone
σ of full dimension n. If X is smooth in codimension k, namely the closed
invariant subset Sing(X) ⊆ X is such that codimX Sing(X) ≥ k + 1, then we
can choose a basis of Zn ∼= N in such a way the first k generators of the cone
σ corresponds to the first k elements of the canonical basis of Zn.

In general, most of the interesting kind of singularities can also be charac-
terized by looking at the (maximal) cones belonging to the fan.

Theorem 1.3.4. — Let σ be a strongly convex rational polyhedral cone and let
Uσ be the corresponding affine toric variety, then the following hold.

1. Uσ is Cohen-Macaulay.

2. Uσ is Q-factorial if and only if σ is simplicial.

3. Uσ is Q-Gorenstein if and only if there exists mσ ∈ MQ such that
〈mσ, uρ〉 = 1, for every ray ρ ∈ σ(1). In this case, the Gorenstein index
of Uσ is the smallest positive integer ` ∈ Z>0 such that `mσ ∈M .

4. If Uσ is Q-Gorenstein then Uσ has klt singularities.

5. If Uσ is Q-Gorenstein then Uσ has terminal singularities of Gorenstein
index ` if and only if there exists mσ ∈M such that

〈mσ, uρ〉 = ` for all uρ ∈ Gen(σ) and

〈mσ, uρ〉 > ` for all uρ ∈ σ ∩N \ ({0} ∪Gen(σ)).

The element mσ is uniquely determined whenever σ is of maximal dimen-
sion in the fan.



1.3. TORIC VARIETIES 37

6. If Uσ is Q-Gorenstein then Uσ has canonical singularities of Gorenstein
index ` if and only if there exists mσ ∈M such that

〈mσ, uρ〉 = ` for all uρ ∈ Gen(σ) and

〈mσ, uρ〉 ≥ ` for all uρ ∈ σ ∩N \ ({0} ∪Gen(σ)).

The element mσ is uniquely determined whenever σ is of maximal dimen-
sion in the fan.

7. If Uσ is Gorenstein then Uσ has canonical singularities.

Here, Gen(σ) denotes the set of primitive vectors uρ generating all the rays
ρ = {λuρ | λ ≥ 0} ∈ σ(1)

Proof. — We may refer the reader to the survey [Dai02] for proofs or references
to proofs.

Remark 1.3.5. — By Theorem 1.3.4 above, if X is a Q-factorial toric variety
with canonical singularities then we have the decomposition

Sing(X) =
⋃

σ canonical
non-terminal

V (σ) ∪
⋃

σ terminal
non-smooth

V (σ).

Therefore, if X is a Q-factorial toric variety with canonical singularities and
with at most finitely many non-terminal points, then the (finite) set of canon-
ical points is made up by some invariant points V (σ), where σ are of maximal
dimension in the fan.

1.3.2. Toric MMP. — Let us introduce now the necessary elements to run
the Toric MMP.

Definition 1.3.6 (Degenerate fan). — Let U ⊆ NR be a rational vector
subspace; a collection of cones ∆∗ is a degenerate fan with vertex U if it
satisfies the usual conditions of a fan with strict convexity of cones replaced
by

∀σ ∈ ∆∗, σ ∩ −σ = U.

This coincides with the usual notion of a fan ∆ = ∆∗/U in the quotient space
NR/U .

In our setting, we will always deal with Q-factorial complete toric varieties,
i.e., toric varieties having a simplicial fan whose support is the whole space
NR, by Theorem 1.3.4 above and [CLS11, Theo. 3.4.1]. In the toric case,
every extremal ray R ⊆ NE(X) of such a variety will correspond to a invariant
curve Cω such that R = R≥0[Cω] or, equivalently, to a wall ω ∈ ∆X(n− 1).
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Let us suppose that ω = cone(u1, . . . , un−1), where ui are primitive
vectors. Since ∆X is a simplicial fan, ω separates two maximal cones
σ = cone(u1, . . . , un−1, un) and σ′ = cone(u1, . . . , un−1, un+1), where un
and un+1 are primitive on rays on opposite sides of ω. The n + 1 vectors
u1, . . . , un+1 are linearly dependent. Hence, they satisfy a so called wall
relation:

bnun +

n−1∑
i=1

biui + bn+1un+1 = 0,

where bn, bn+1 ∈ Z>0 and bi ∈ Z for i = 1, . . . , n−1. By reordering if necessary,
we can assume that

bi < 0 for 1 ≤ i ≤ α
bi = 0 for α+ 1 ≤ i ≤ β
bi > 0 for β + 1 ≤ i ≤ n+ 1.

Let us introduce the notation

∆(ω) = σ + σ′ = cone(u1, . . . , un+1)

and
U(ω) = cone(u1, . . . , uα, uβ+1, . . . , un+1).

This wall relation and the signs of the coefficients involved allow us to de-
scribe the nature of the associated contraction.

Theorem 1.3.7 ([Rei83, Theo. 2.4, Cor. 2.5]). — Let X be a Q-factorial
complete toric variety of dimension n associated to the fan ∆X ⊆ NR, and sup-
pose that R ⊆ NE(X) is an extremal ray of X. Let us remove from ∆X(n− 1)

all the walls ω associated to curves from R and for each such ω replace the
two adjacent maximal cones σ and σ′ from ∆X(n) by the cone ∆(ω). Then,
α, β and UR = U(ω) are independent of ω and, by taking respectively their
faces in ∆X(i), where i ≤ n− 2, we get a complete fan ∆∗R ⊆ NR, degenerate
with vertex UR if α = 0, non-degenerate if α > 0. Moreover, if α = 0 then
∆R := ∆∗R/UR is a complete simplicial fan. If α = 1, then ∆R := ∆∗R is
simplicial.

Furthermore, the induced morphism of toric varieties ϕR : X(∆X)→ X(∆R)

is the contraction of the extremal ray R in the sense of Mori theory. Moreover,
the exceptional locus of ϕR corresponds to the irreducible closed invariant
subvariety A ⊆ X associated to the cone cone(u1, . . . , uα) ∈ ∆X(α), which is
contracted onto the irreducible closed invariant subvariety B ⊆ XR = X(∆R)

corresponding to the cone UR ∈ ∆∗X(n − β) (if α = 0 then both are equal to
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the whole variety X and XR, respectively). Therefore, dimA = n − α and
dimB = β.

In general, if ω ∈ ∆X(n − 1) is any wall of ∆X (not necessarily corre-
sponding to an extremal ray), we will also have a wall relation allowing us to
compute the intersection number of the curve Cω with every invariant divisor
Dρ, ρ ∈ ∆X(1).

Proposition 1.3.8 ([CLS11, Prop. 6.4.4]). — Let ∆X be a simplicial fan in
NR ∼= Rn and ω = cone(u1, . . . , un−1) ∈ ∆X(n−1) be a wall, separating the two
maximal cones σ = cone(u1, . . . , un−1, un) and σ′ = cone(u1, . . . , un−1, un+1),
satisfying the wall relation

bnun +

n−1∑
i=1

biui + bn+1un+1 = 0,

where bn, bn+1 ∈ Z>0 and bi ∈ Z for i = 1, . . . , n − 1. Then, if we denote
by V (uρ) := V (ρ) the invariant Weil divisor associated to the primitive vector
uρ ∈ N corresponding to ρ ∈ ∆X(1) and by C the invariant curve associated
to the wall ω, we have that

1. V (u) · C = 0 for all uρ 6∈ {u1, . . . , un, un+1}.

2. V (un) · C =
mult(ω)

mult(σ)
and V (un+1) · C =

mult(ω)

mult(σ′)
.

3. V (ui) · C =
bi mult(ω)

bn mult(σ)
=

bi mult(ω)

bn+1 mult(σ′)
for i ∈ {2, . . . , n− 1}.

1.4. Flag varieties and Schubert cell decomposition

We refer the reader to [Bri05] and [Man98] for the geometry and combi-
natorics of flag varieties. We will keep the same notation as [Man98, §3.6].

Let Fr be the set of complete flags of linear projective subspaces of Pr−1,

Y• : Y1 = Pr−1 ⊇ Y2 ⊇ · · · ⊇ Yr,

where Yi ∼= Pr−i for every i = 1, . . . , r. The set Fr can be endowed with a
structure of algebraic variety over k and it is shown in [Man98, §3.6.1] that it
is a smooth projective variety of dimension r(r−1)/2. The variety Fr is called
the full flag variety.
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Let us fix a reference complete linear flag Y• on Pr−1. Then, there is a
decomposition of Fr into Schubert cells

Fr =
∐
w∈Sr

Ωw.

Moreover, there is a combinatorial description of each Schubert cell in terms of
incidence conditions with respect to the reference flag Y•. See [Man98, §3.6.2]
for details on this point of view.

We will consider the following alternative description of the Schubert cells,
which is just a reformulation of [Bri05, Prop. 1.2.1].

Let us choose homogeneous coordinates [x1 : . . . : xr] on Pr−1 such that for
every i = 1, . . . , r − 1 we have

Yi = {x1 = . . . = xi = 0} ⊆ Pr−1

and regard the permutation group Sr as a subgroup of PGLr(k) via its natural
action on the standard basis points e1, . . . , er ∈ Pr−1. Then, Ωw is the orbit
B ·Ww

• , where B denotes the (Borel) subgroup of PGLr(k) that fixes the flag
Y• and Ww

• is the complete linear flag such that for every i = 1, . . . , r − 1 we
have

Ww
i = {xw(1) = . . . = xw(i) = 0} ⊆ Pr−1.



CHAPTER 2

FANO VARIETIES WITH A DIVISOR OF
PICARD NUMBER ONE

2.1. Study of extremal contractions

In this section we study extremal contractions of mildly singular Fano
varieties X that admits an effective prime divisor D ⊆ X such that
dimR N1(D,X) = 1.

Firstly, notice that klt Fano varieties always have an extremal ray whose
intersection with a given effective prime divisor is positive (cf. [BCW02,
Lemm. 2]).

Lemma 2.1.1. — Let X be a Q-factorial klt Fano variety and let D ⊆ X be
an effective prime divisor. Then, there exists an extremal ray R ⊆ NE(X) such
that D ·R > 0.

Proof. — The Cone Theorem 1.2.13 implies that NE(X) = NE(X) is a rational
polyhedral cone generated by a finite number of extremal rays R1, . . . , Rs. Let
C ⊆ X be any curve such that D · [C] > 0. Since C is numerically equivalent to
a positive sum of extremal curves, [C] =

∑s
i=1 ai[Ci] with ai ≥ 0 and [Ci] ∈ Ri,

we can pick one such that D ·Ri > 0.

Secondly, we have that the contraction of an extremal ray whose intersection
with an effective prime divisor of Picard number one is positive has at most
one-dimensional fibers.

Lemma 2.1.2. — Let X be a Q-factorial klt Fano variety and D ⊆ X be
an effective prime divisor such that dimR N1(D,X) = 1. Let us suppose that
ρX > 1 and let R ⊆ NE(X) be an extremal ray such that D · R > 0. Then,
R * N1(D,X). In particular, the extremal contraction contR is finite on D

and all the fibers of contR are at most of dimension 1.
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Proof. — We follow the proof of [CD15, Lemma 3.1]. Assume, to the contrary,
that R ⊆ N1(D,X). The numerical class of every irreducible curve C ⊆ D

must belong to R, since dimR N1(D,X) = 1. Thus, contR sends D to a point
and D ⊆ Locus(R). If contR is birational, then we would have that −D is
an effective divisor by the negativity lemma, a contradiction. The contraction
contR is then of fiber type and Locus(R) = X. As ρX > 1 and contR(D) is a
point, there exists a non-trivial fiber of contR disjoint of D, and then D ·R = 0,
a contradiction.

As a consequence we have that all the fibers of contR are at most of dimen-
sion 1. In fact, contR |D is a finite morphism: if there exists a curve C ⊆ D con-
tained in a fiber, we would have that [C] ∈ R and therefore R ⊆ N1(D,X).

G. Della Noce proved in [Del14, Theo. 2.2] that a mildly singular projective
variety (not necessarily Fano) has no small K-negative extremal contractions
having all the fibers of dimension at most 1 (cf. [Del14, Exam. 2.11] and
Theorem 1.2.24). In our context we have the following result.

Proposition 2.1.3. — Let X be a Q-factorial klt Fano variety of dimension
n ≥ 3. Let us suppose that ρX > 1 and that there exists an effective prime
divisor such that dimR N1(D,X) = 1. Let R ⊆ NE(X) be an extremal ray such
that D · R > 0 and let us denote by ϕR : X → XR the corresponding extremal
contraction. Then,

1. If ϕR is of fiber type, then XR is a Q-factorial klt Fano variety of di-
mension (n− 1) such that ρXR = 1. In particular, XR has only rational
singularities.

2. If ϕR is birational and we suppose that X has Gorenstein canonical sin-
gularities with at most finitely many non-terminal points, then ϕR is
a divisorial contraction and there exists a closed subset S ⊆ XR with
codimXR(S) ≥ 3 such that XR r S ⊆ XR,reg, codimX ϕ

−1
R (S) ≥ 2,

X r ϕ−1(S) ⊆ Xreg and

ϕR|Xrϕ−1
R (S) : X r ϕ−1

R (S) −→ XR r S

is the blow-up of a (n − 2)-dimensional smooth subvariety in XR r S.
Moreover, XR is a Q-factorial Fano variety with canonical singularities
with at most finitely many non-terminal points. In particular,

KX · [F ] = E · [F ] = −1,

for every irreducible curve F such that [F ] ∈ R, where E = Exc(ϕR) is
the exceptional divisor of ϕR.
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Proof. — Let us suppose that ϕR : X → XR is of fiber type. Then,
ϕR|D : D → XR is a finite morphism, by Lemma 2.1.2, and thus
dimXR = n − 1. Since XR is a Q-factorial projective variety, the pro-
jection formula and the fact that dimR N1(D,X) = 1 imply that ρXR = 1. In
particular, every big divisor on XR is ample.

Let us prove that XR is a klt Fano variety in this case. Since X is klt and
Fano, there exists an effective Q-divisor ∆XR on XR such that (XR,∆XR) is klt
and such that − (KXR + ∆XR) is ample, by [PS09, Lemm. 2.8]. In particular
XR has rational singularities, by Theorem 1.2.9, and −KXR is a big divisor,
and therefore ample. Finally, let us remark that since (XR,∆XR) is klt and
∆XR is an effective Q-divisor then it follows from [KM98, Cor. 2.35] that
(XR, 0) is klt as well.

Let us suppose now that ϕR : X → XR is a birational contraction. Then, it
follows from [Del14, Theo. 2.2] that ϕR is a divisorial contraction given by the
blow-up in codimension two of an irreducible subvariety of dimension (n− 2)

on XR, and that XR is a Q-factorial Fano variety with canonical singularities
with at most finitely many non-terminal points. Finally, the ampleness of the
anti-canonical divisor −KXR follows verbatim the proof in the smooth case
given in [CD15, Lemma 3.1].

Remark 2.1.4. — Let X be a Gorenstein Fano variety of dimension n ≥ 3

with canonical singularities with at most finitely many non-terminal points,
and let D ⊆ X be an effective prime divisor such that dimR N1(D,X) = 1.
Then, ρX ≤ 3, by [Del14, Rema. 5.5].

Remark 2.1.5 (Generalized conic bundles). — Following G. Della Noce
[Del14, p. 984], we say that a morphism ϕ : X → Y between Q-factorial
normal projective varieties is a generalized conic bundle if all its fibers are
one-dimensional, the general fiber Fg is isomorphic to P1 with anti-canonical
degree −KX · [Fg] = 2 and if F is an arbitrary fiber of ϕ then either:

1. F is an irreducible and generically reduced rational curve such that
Fred

∼= P1 and that −KX · [F ] = 2.

2. [F ] = 2[C] as 1-cycles, where C is an irreducible and generically reduced
rational curve such that Cred

∼= P1 and that −KX · [C] = 1.

3. F = C ∪ C ′, with C 6= C ′ irreducible and generically reduced rational
curves such that Cred

∼= C ′red
∼= P1 and that −KX · [C] = −KX · [C ′] = 1.

Moreover, it follows from [Kol96, Theo. II.2.8] that if all the fibers are of type
(1) then ϕ is in fact a P1-bundle. The main difference with the classical conic
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bundle case is that ϕ might not be flat. As observed in [Del14, p. 984] if
X is a Q-factorial Gorenstein Fano variety of dimension n ≥ 3 with canonical
singularities and with at most finitely many non-terminal points and

X = X0
σ0→ X1 → · · · → Xk−1

σk−1→ Xk
π→ Y

is a sequence of k ≥ 0 elementary divisorial contractions σi : Xi → Xi+1

sending its corresponding exceptional divisor onto a subvariety of codimen-
sion two (cf. [Del14, Definition 2.10]) followed by a contraction of fiber type
π : Xk → Y all whose fibers are one-dimensional, then π is a generalized
conic bundle in the above sense and, moreover, for every i = 0, . . . , k − 1, the
composition

ϕi : Xi
σi→ Xi+1 → · · · → Xk−1

σk−1→ Xk
π→ Y

is a generalized conic bundle. We will be mainly interested in the cases k = 0, 1.

The following result is a particular case of [Del14, Lemm. 3.3]. We include
the statement with our notation for completeness.

Lemma 2.1.6. — Let X0 be a Q-factorial Gorenstein Fano variety of dimen-
sion n ≥ 3 with canonical singularities and with at most finitely many non-
terminal points. Let D0 ⊆ X0 be an effective prime divisor and let us suppose
that there is a diagram

X0
σ0
99K X1

σ1
99K X2,

where σi is the birational map associated to the contraction of an extremal ray
Qi ⊆ NE(Xi) such that Di · Qi > 0, for i = 0, 1; as in Theorem 1.2.23. If
Qi 6⊆ N1(Di, Xi) for i = 0, 1, then both σ0 and σ1 are divisorial contractions,
Exc(σi) is contained in the Gorenstein locus of Xi and Exc(σ0) is disjoint from
the transform of Exc(σ1) in X0.

2.2. The extremal case ρX = 3

In this section we study the extremal contractions of mildly singular Fano
varieties X on which there is an effective prime divisor of Picard number one
and such that ρX = 3. As we pointed out in Remark 2.1.4, this is the largest
possible Picard number for such varieties. Compare with the smooth case
[CD15, Lemm. 3.1, Theo. 3.8].

Let us begin with the proof of Theorem A.

Proof of Theorem A. — Since X is a Q-factorial klt Fano variety, there is an
extremal ray R ⊆ NE(X) such that D · R > 0, by Lemma 2.1.1. We denote
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by σ := ϕR : X → Y the associated extremal contraction. We note that
Proposition 2.1.3 implies that σ is a divisorial contraction sending the effective
prime divisor E = Exc(σ) onto a subvariety A ⊆ Y of dimension (n − 2).
Moreover, Y is a Fano variety with canonical singularities and with at most
finitely many non-terminal points, such that if we denote by DY the image of
D by σ, then we have that A ⊆ DY and that dimR N1(DY , Y ) = 1.

Since Y is Q-factorial klt Fano variety, there is an extremal ray Q ⊆ NE(Y )

such that DY · Q > 0, by Lemma 2.1.1. We denote by π := ϕQ : Y → Z the
associated extremal contraction. Let us prove that π is of fiber type. Assume,
to the contrary, that π is a birational contraction. Hence, Lemma 2.1.6 implies
that both σ and π are divisorial contractions, and that the exceptional locus
Exc(π ◦σ) consists of two disjoint effective prime divisors. Since DY ·Q > 0 we
have that Exc(π) · [C] > 0 for every irreducible curve C ⊆ DY . In particular,
Exc(π) ∩ A 6= ∅, as dimA = n − 2 ≥ 1, contradicting the fact that the
exceptional divisors are disjoint.

Let R̂ ⊆ NE(X) be the extremal ray such that cont
R+R̂

= ϕ := π ◦ σ.
Then, ϕ can be factorized as ϕ = π̂ ◦ σ̂, where σ̂ := cont

R̂
: X → Ŷ and

π̂ := contπ̂(R) : Ŷ → Z. Since ϕ has fibers of dimension 1, both contractions
must have fibers of dimension at most 1. Notice that the general fiber of ϕ is
not contracted by σ̂, hence σ̂ must be divisorial and π̂ a contraction of fiber
type, by the same arguments as above.

The results of Cutkosky on the contractions of terminal Gorenstein three-
folds and Theorem A imply Corollary B.

Proof of Corollary B. — By Theorem A, there is a diagram

X
σ //

ϕ

77Y
π // Z ,

where σ : X → Y is a divisorial contraction sending a prime divisor
E = Exc(σ) ⊆ X onto a curve C ⊆ Y , and π and ϕ are both extremal
contractions of fiber type whose fibers are of dimension 1. All these varieties
are Q-factorial Fano varieties, and Y has terminal singularities. Moreover, X
is factorial by [Cut88, Lemm. 2].

By [Cut88, Lemm. 3, Theo. 4], C ⊆ Y is an irreducible reduced curve
which is a locally complete intersection, Y is a factorial threefold which is
smooth near the curve C, and σ : X → Y is the blow-up of the ideal sheaf IC .
In particular, Y is a Gorenstein Fano threefold with terminal singularities and
therefore [Cut88, Theo. 7] implies that Z is a smooth surface and π : Y → Z
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is a (possibly singular) conic bundle over Z. We note that Z is a rationally
connected (and therefore rational) surface with ρZ = 1, hence Z ∼= P2.

Let H = σ(C) ⊆ Z. Since π is finite on DY = σ(D) and C ⊆ DY , we
have that H is an effective prime divisor on P2, which is therefore ample.
Let us denote by Sπ the locus of points of P2 over which π is not a smooth
morphism. By [SGAI, Prop. II.1.1], is a closed subset of P2. Then, Sπ has
pure codimension 1 on P2 or Sπ = ∅, by [AR14, Theo. 3].

Let us suppose that Sπ is not empty. If we take z ∈ H ∩ Sπ and we denote
by Fz ⊆ Y its fiber by π, then we have that Fz ∩ C 6= ∅ (as z ∈ H) and that
the 1-cycle on Y associated to Fz is of the form [Fz] = [C] + [C ′], where C
and C ′ are (possibly equal) irreducible and generically reduced rational curves
such that Cred

∼= C ′red
∼= P1 (as z ∈ Sπ), by Remark 2.1.5. Thus, if we denote

by F̃z ⊆ X the strict transform of Fz on X by σ, we will have −KX · [F̃z] ≥ 3,
contradicting the fact that the anti-canonical degree of every fiber of ϕ = π◦σ is
2 (see Remark 2.1.5). We conclude in this way that π : Y → P2 is a P1-bundle,
and then Y is an smooth threefold by [AR14, Theo. 5].

Finally, let us notice that if DY is not nef then there is a birational con-
traction Y → Y0 sending DY to a point, by [CD15, Rema. 3.2], and hence
[CD15, Lemm. 3.9] implies that Y ∼= P(OP2 ⊕ OP2(a)), with 0 ≤ a ≤ 2

because Y is Fano. On the other hand, if DY is nef then we apply [CD15,
Prop. 3.3] to conclude that either there is a divisorial contraction Y → Y0

sending an effective prime divisor GY ⊆ Y to a point, or there is a contraction
of fiber type Y → P1; small contractions are excluded since Y is a smooth
Fano threefold (see for instance [Cut88] or [KM98, Theo. 1.32]). In the first
case [CD15, Lemm. 3.9] allows us to conclude, while in the second case we
have that Y ∼= P2 × P1, by [Cas09, Lemm. 4.9].

2.3. The case ρX = 2

In the case ρX = 2 we can describe the extremal contraction associated to
the other extremal ray in the Mori cone of X (compare with [CD15, Prop.
3.3]). We will need the following result of Ravindra and Srinivas (see [RS06]).

Theorem 2.3.1. — Let X be a normal projective variety and let L be an ample
and globally generated line bundle over X. Then there is a dense Zariski open
set of divisors E ∈ |L| such that the restriction map

Cl(X)→ Cl(E)
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is an isomorphism, if dimX ≥ 4, and is injective, with finitely generated cok-
ernel, if dimX = 3.

Corollary 2.3.2. — Let X be a Q-factorial Fano variety of dimension n ≥ 3

with klt singularities. If ρX > 1 and D is an effective prime divisor such that
dimR N1(D,X) = 1, then D is not an ample divisor.

Proof. — Assume, to the contrary, that D is an ample divisor. Let m ∈ Z>0

such that mD is a very ample Cartier divisor on X and use the complete
linear system |mD| to embed X ↪→ P(H0(X,mD)) = PN . Let us define the
projective incidence variety

D = {(x, [E]) ∈ X × |mD| | x ∈ E} ⊆ X × |mD| = X × (PN )∗,

and let π : D→ (PN )∗ be the second projection.
Let H be the relative Hilbert scheme of curves associated to the morphism

π : D→ (PN )∗, which is a projective scheme with countably many irreducible
components. Let us denote by Zi ⊆ (PN )∗ the image of the components of H
that do not dominate (PN )∗. They are closed subsets of (PN )∗.

Thus, if we take [E] ∈ (PN )∗ − ∪Zi (a very general point on (PN )∗), then
for every curve CE on E there is a dominant component of H such that CE
is one the curves parametrized by this component. Since the image of this
dominant component is in fact the whole projective space (PN )∗, then we have
that there is a curve CD on D which is also parametrized for this component.
In particular, CE and CD are numerically equivalent. But, since there is only
one curve on D up to numerical equivalence, we will have dimR N1(E,X) = 1.

On the other hand, Theorem 2.3.1 implies that we can also suppose that
this very general divisor E ∈ |mD| is chosen in such a way the restriction

Cl(X)→ Cl(E)

is injective. Since ρX > 1 and dimR N1(E,X) = 1, we have that the inclusion
N1(E)R → N1(X)R is not surjective. Therefore, the induced map on the dual
spaces obtained by restriction N1(X)R → N1(E)R is not injective.

Since X is a Q-factorial klt Fano variety, we have that numerical and linear
equivalence coincide, by [AD14, Lemm. 2.5]. Hence, we have the following
diagram

Cl(X)⊗Z R� _

��

Pic(X)⊗Z R? _
∼=oo

∼= // //
� _

��

N1(X)R

����

Cl(E)⊗Z R Pic(E)⊗Z R? _oo // // N1(E)R
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Therefore, N1(X)R → N1(E)R is not injective if and only if Pic(E)⊗ZR→ N1(E)R
is not injective.

Let us consider a line bundle L on E such that L ≡ 0. Notice that E has
klt singularities since it is a general member of the ample linear system |mD|,
by [KM98, Lemm. 5.17]. In particular, E has rational singularities and thus
if we consider a resolution of singularities ε : Ẽ → E, then the Leray spectral
sequence leads to hi(Ẽ,O

Ẽ
) = hi(E,OE) and hi(E,L) = hi(Ẽ, ε∗L) for all

i ≥ 0. On the other hand, the short exact sequence of sheaves

0→ OX(−E)→ OX → OE → 0

and the vanishing hi(X,OX) = 0 for i ≥ 1, give us h1(E,OE) = h2(X,OX(−E)).
Since X is a normal variety with Cohen-Macaulay singularities, Serre’s duality
implies

H2(X,OX(−E)) ∼= H2(X,OX(−mD)) ∼= Hn−2(X,OX(KX +mD))∨.

So, by taking m large enough at the beginning if necessary, we can suppose
that h1(E,OE) = 0 by the Kawamata-Viehweg vanishing theorem.

We get that h1(Ẽ,O
Ẽ

) = 0 and hence an inclusion Pic(Ẽ) ↪→ H2(Ẽ,Z).
Clearly ε∗L ≡ 0 and thus ε∗L ∼= OẼ . By the projection formula, L ∼= OE , a
contradiction.

We end this section by proving Theorem C, which is an extension of [CD15,
Rema. 3.2, Prop. 3.3] to mildly singular Fano varieties X with ρX = 2, on
which there is an effective prime divisor of Picard number one.

Proof of Theorem C. — If D is not nef, then there exists an extremal ray
R ⊆ NE(X) such that D · R < 0, and therefore Exc(contR) ⊆ D. Since
dimR N1(D,X) = 1 we must have that Exc(contR) = D and that contR(D) is
a point.

IfD is nef, then it is not ample by Corollary 2.3.2, and thus S = D⊥∩NE(X)

is an extremal ray, as ρX = 2. If we denote G = Locus(S) ⊆ X, the proof
follows almost verbatim the proof in the smooth case given in [CD15, Prop.
3.3]. For reader’s convenience, let us briefly sketch the proof:

If S ⊆ N1(D,X) then contS sendsD to a point. On the other hand, D·S = 0

and hence D is the pullback of a divisor via contS , from which we conclude
that the target of contS is P1 and hence that we are in case (a).

If S 6⊆ N1(D,X) we verify that G ∩ D = ∅ and hence contS is birational.
Moreover N1(G,X) ⊆ D⊥ has dimension 1 and hence contS sends G to points.
If contS is a divisorial contraction then we are in case (b).
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If contS is a small contraction, we consider the associated flip X 99K X ′ and
we denote by D′ the strict transform of D in X ′ and by S′ the correspond-
ing small extremal ray on X ′ with exceptional locus G′ ⊆ X ′ and satisfying
KX′ ·S′ > 0. Since X is Fano and G∩D = ∅ we have that X ′ has an extremal
ray T ⊆ NE(X ′) such that −KX′ ·T > 0 and D′ ·T > 0, from which we deduce
that if we denote contT =: ψ : X ′ → Y ′ then T 6⊆ N1(D′, X ′) and hence ψ
is finite both on D′ and G′. In particular, every non trivial fiber of ψ has
dimension 1, since D′ · T > 0. It only remains to prove that ψ is of fiber type.
Suppose, to the contrary, that ψ is a birational contraction. If we suppose that
Exc(ψ) ∩G 6= ∅ and we consider F0 to be an irreducible component of a fiber
of ψ that intersects G′ then it follows from the fact that X is Fano Gorenstein
that −KX′ · [F0] > 1, by [Del14, Lemm. 3.2] (which is the singular version of
[Cas09, Lemm. 3.8], used in step (3.3.5) of the proof of [CD15, Prop. 3.3]).
On the other hand, we notice that F0 6⊆ G′ since ψ is finite on G′ and hence
[Ish91, Lemm. 1.1] can be applied (since F0 contains a Gorenstein point of
X ′) in order to deduce that −KX′ · [F0] ≤ 1, a contradiction. We obtain there-
fore that Exc(ψ)∩G′ = ∅, so that Exc(ψ) is contained in the Gorenstein locus
of X ′ and therefore [Del14, Theo. 2.2] implies that Exc(ψ) is a divisor. But
in this case we would have that Exc(ψ) · S′ = 0 and Exc(ψ) · T < 0 implying
that −Exc(ψ) is nef, a contradiction. We conclude therefore that ψ is of fiber
type.

2.4. Study of toric extremal contractions

In the setting of toric varieties, we will be interested in analyzing the ex-
tremal contractions appearing in §2.1 in terms of the description given by
Theorem 1.3.7. Let us begin by the birational case.

Lemma 2.4.1. — Let X = X(∆X) be a Q-factorial Gorenstein toric variety
of dimension n ≥ 3. Let ϕR : X → XR be a divisorial contraction with
exceptional divisor Exc(ϕR) = E such that

1. A = ϕR(E) is an invariant subvariety of codimension two.

2. E · [F ] = KX · [F ] = −1 for every non-trivial fiber F of ϕR.

Let us suppose that ϕR : X → XR is defined by the contraction of the wall
ω = cone(u1, . . . , un−1) that separates the maximal cones σ = cone(u1, . . . , un−1, un)

and σ′ = cone(u1, . . . , un−1, un+1). Then, up to reordering if necessary, the
wall relation satisfied by these cones is of the form

un + un+1 = u1.
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If moreover X has isolated singularities, then XR has isolated Gorenstein sin-
gularities, A is contained in the smooth locus of XR, and X ∼= BlA(XR).

Proof. — By Theorem 1.3.7, up to reordering if necessary, we can suppose that
ϕR : X → XR is defined by the relation

(1) αun + λu1 + βun+1 = 0,

where α, β ∈ Z>0, λ ∈ Z<0 and E = V (u1). Let us denote by C = V (ω) the
invariant curve associated to the wall ω.

By Proposition 1.3.8, V (u) · [C] = 0 for u 6∈ {u1, . . . , un+1}. Moreover, the
wall relation gives us V (ui) · [C] = 0 for i ∈ {2, . . . , n− 1} and

V (u1) · [C] =
λ

α
V (un) · [C] =

λ

β
V (un+1) · [C].

By hypothesis, V (u1)·[C] = −1 and thus V (un)·[C] = −α
λ and V (un+1)·[C] = −β

λ .
It is well know that for a toric variety X = X(∆X) we have that

KX = −
∑

ρ∈∆X(1) V (ρ) is an invariant canonical divisor on X (see [CLS11,
Theo. 8.2.3]), and thus the condition −KX · [C] = 1 can be translated into

(2) −1 +
(
−α
λ

)
+

(
−β
λ

)
= 1⇔ α+ β = −2λ.

Let us note that we can suppose that gcd(λ, α) = gcd(λ, β) = gcd(α, β) = 1.
In fact, if gcd(α, β) = d > 1, then the equation (1) implies d|λ, as u1 is a
primitive vector. The same argument applies to the other two pairs.

By assumption, KX = −
∑

ρ∈∆X(1) V (ρ) is a Cartier divisor, i.e., for each
maximal cone σ ∈ ∆X(n), there is mσ ∈M with 〈mσ, uρ〉 = 1 for all ρ ∈ σ(1).
In our setting, this condition applied to the two maximal cones σ and σ′ tells
us that there exists two elements m,m′ ∈M such that

〈m,ui〉 = 1 for i ∈ {1, . . . , n},

〈m′, ui〉 = 1 for i ∈ {1, . . . , n− 1, n+ 1}.
From the equation (1) we obtain

(3) α+ λ+ β〈m,un+1〉 = 0, and

(4) α〈m′, un〉+ λ+ β = 0

By using the equation (2) and (3) we obtain that λ = β(〈m,un+1〉 − 1) and
thus β = 1, as β ∈ Z>0 and gcd(λ, β) = 1. In the same way, by using the
equation (2) and (4), we deduce that α = 1 and hence λ = −1. Finally, we get
the relation

un + un+1 = u1,
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and 〈m,un+1〉 = 〈m′, un〉 = 0.
Let us suppose now that X has isolated singularities. We note that there

are exactly n−1 walls satisfying this relation (corresponding to the fibers over
n− 1 invariant points of A), ωi with i = 1, . . . , n− 1, each of them separating
two maximal cones σi and σ′i. It follows from the wall relation above and
Proposition 1.3.8 that

E · [Cωi ] = −mult(ωi)

mult(σi)
= −mult(ωi)

mult(σ′i)
= −1,

and
−KX · [Cωi ] =

mult(ωi)

mult(σi)
=

mult(ωi)

mult(σ′i)
= 1.

Therefore, mult(ωi) = mult(σi) = mult(σ′i).
On the other hand, Remark 1.3.3 implies that mult(ωi) = 1 since X has

isolated singularities. Hence, both σi and σ′i are smooth cones in ∆X(n). We
get that the associated maximal cone τi ∈ ∆XR(n) obtained from σi and σ′i by
removing the ray corresponding to the exceptional divisor E = Exc(ϕR) is also
smooth, for i = 1, . . . , n−1. Thus, A = V (un, un+1) is contained in the smooth
locus of XR. The isomorphism X ∼= BlA(XR) follows from the description of
the blow-up of a smooth toric variety along an irreducible invariant smooth
subvariety (see [CLS11, Definition 3.3.17]). A posteriori, we note that XR

also have isolated Gorenstein singularities since A is contained in the smooth
locus of XR.

Let us consider now the case when ϕR : X → XR is a contraction of fiber
type.

Remark 2.4.2 (Flatness of toric fibrations). — Contrary to what was
originally written in [Rei83, Cor. 2.5], the restriction of an extremal con-
traction to its exceptional locus may not be flat in general, as Miles Reid
communicated to the author. See [AR14, Exam. 13] for a local counter-
example that can be compactified by [Fuj06]. We refer the interested reader
to Kato’s criterion of flatness for toric morphisms [Kat89, Prop. 4.1].

We will need the following result concerning extremal contractions of fiber
type.

Lemma 2.4.3. — Let X be a Q-factorial Gorenstein toric variety of dimen-
sion n ≥ 3 and let ϕR : X → XR be a proper toric morphism given by the
contraction of an extremal ray R ⊆ NE(X) of fiber type. Suppose that all the
fibers of ϕR are of dimension 1. If ϕR has a non-reduced fiber then Sing(X)
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has an irreducible component of codimension 2. In particular, if X has at
most finitely many non-terminal points then ϕR is a P1-bundle and there ex-
ists a split vector bundle E of rank 2 on XR and an isomorphism X ∼= PXR(E)

over XR.

Proof. — The statement is local on XR so we may suppose that XR = Uτ
is an affine simplicial toric variety. If follows from Theorem 1.3.7 that if
ϕR : X → XR is an extremal contraction of pure relative dimension one then
all the fibers of ϕR are irreducible, the fan of X = ϕ−1

R (Uτ ) has two maximal
cones σ = cone(u1, . . . , un) and σ′ = cone(u0, . . . , un−1) such that u0 = −un,
and ϕR is induced by the projection Φ : NX → NXR = NX/(Span(un) ∩NX)

onto τ = cone(t1, . . . , tn−1). Since X is smooth in codimension one, we can
always suppose that un = en and hence that ϕR is induced by the projection
Φ(x1, . . . , xn) = (x1, . . . , xn−1, 0).

It follows from [Kar99, Ch.2, Lemm. 5.2] that if ϕR has a non-
reduced fiber over Uτ then there exists ui such that Φ(ui) is not prim-
itive on NXR for some i = 1, . . . , n − 1. Let us suppose therefore
that Φ(ui) = λiti with ti ∈ Zn−1 × {0} primitive lattice vector and
λi ≥ 2. Let us suppose that ui = (a1, . . . , an) ∈ Zn and hence that
Φ(ui) = (a1, . . . , an−1, 0) = λi(a1, . . . , an−1, 0) with ti = (a1, . . . , an−1, 0)

primitive lattice vector.
SinceX is Gorenstein there are integer (dual) vectorsmσ = (m1, . . . ,mn) ∈ Zn

and m′σ = (m′1, . . . ,m
′
n) ∈ Zn such that 〈mσ, ui〉 = 1 for i = 1, . . . , n and

〈m′σ, ui〉 = 1 for i = 0, . . . , n − 1, by Theorem 1.3.4. In particular we have
that mn = 1, m′n = −1 and

(5) 〈mσ, ui〉 = m1a1 + . . .+mn−1an−1 + an = 1,

(6) 〈m′σ, ui〉 = m′1a1 + . . .+m′n−1an−1 − an = 1.

By adding equation (1) and (2) above, we get that λi〈mσ + m′σ, ti〉 = 2 and
hence λi = 2. We can write therefore ui = (2a1, . . . , 2an−1, an) ∈ Zn with an
odd number and ti = (a1, . . . , an−1, 0).

Let us produce now a lattice vector ui ∈ Zn lying over ti and belonging to
the hyperplane {u ∈ Rn | 〈mσ, u〉 = 1}. We have that

1 = m1a1 + . . .+mn−1an−1 + an

= m12a1 + . . .+mn−12an−1 + an

= m1a1 + . . .+mn−1an−1 + b = 〈mσ, ui〉,
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where ui = (a1, . . . , an−1, b) and b = a1 + . . . + mn−1an−1 + an ∈ Z. We note
that 2ui = ui + un and thus ui ∈ cone(ui, un). We conclude from Proposition
1.3.2 and Theorem 1.3.4 that X has canonical singularities along the codi-
mension two closed subvariety V (ui, un), which are therefore non terminal by
codimension reasons.

Finally, if X has at most finitely many non-terminal points we conclude
therefore that all the fibers of ϕR are irreducible and reduced and thus ϕR is
a P1-bundle. Moreover, the invariant divisors V (u0) and V (un) correspond to
two disjoint invariant sections s0 : XR → X and s∞ : XR → X passing through
the two invariant points of all the fibers of ϕ. Hence, [AR14, Rema. 8] implies
that there exists a rank 2 split vector bundle E such that X ∼= PXR(E).

2.5. The extremal case ρX = 3 for toric varieties

We are now able to prove the structure theorem for toric varieties with
Picard number 3.

Proof of Theorem D. — By Theorem A, we obtain a diagram

X
σ //

ϕ

77Y
π // Z ,

where σ : X → Y is a divisorial contraction sending a toric prime divisor E
onto an invariant subvariety A of codimension two on Y , and π and ϕ are both
extremal contractions of fiber type whose fibers are of dimension 1. All these
varieties are Q-factorial toric Fano varieties.

Let us first prove that π : Y → Z is a P1−bundle. It follows from [SGAI,
Prop. II. 1.1] that Sπ, the locus of points of Z over which π is not a smooth
morphism, is a closed subset of Z. Moreover, as we noticed in Remark 2.1.5, we
have that if X is a Q-factorial Gorenstein Fano variety of dimension n ≥ 3 with
canonical singularities and with at most finitely many non-terminal points then
π and ϕ are generalized conic bundles and therefore the 1-cycles associated to
singular fibers of π are of the form [F ] = [C] + [C ′] with C and C ′ (eventually
coincident) irreducible and generically reduced rational curves on Y such that
Cred

∼= C ′red
∼= P1 and −KX · [C̃] = −KX · [C̃ ′] = −KY · [C] = −KY · [C ′] = 1,

where C̃ (resp. C̃ ′) is the total transform of C (resp. C ′) on X via σ. In
particular, we observe as in the Proof of Corollary B that the singular fibers of
π must be disjoint from A ⊆ Y and hence they are contained in the Gorenstein
locus of Y . We conclude from Lemma 2.4.3 that π : Y → Z is a P1−bundle
isomorphic to the projectivization of the rank 2 split vector bundle E = L′⊕L.
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As PZ(E) ∼= PZ(E ⊗M) for any line bundleM ∈ Pic(Z), we can suppose
that L′ ∼= OZ . On the other hand, since Pic(Z) is isomorphic to Z, we can
consider an ample generator OZ(1) of Pic(Z) and an integer a ∈ Z such that
L ∼= OZ(a). Up to tensor by L∨, we can always suppose that a ≥ 0. In
particular, both Y and Z must have at most terminal singularities, since Y
has a most a finite number of canonical singularities and π is locally trivial.
Moreover, 0 ≤ a ≤ iZ − 1 by Proposition F below.

It should be noticed that in this case A ⊆ Y is contained in one of the two
disjoint invariant sections associated to the P1−bundle π : Y → Z. In fact,
by Theorem 1.3.7 (taking α = 0 and β = n − 1) we have that π : Y → Z is
defined by a wall relation of the form

bnun +
n−1∑
i=1

0 · ui + bn+1un+1 = 0,

where ω = cone(u1, . . . , un−1) is a wall generating the extremal ray as-
sociated to this contraction, which separates the two maximal cones
σ = cone(u1, . . . , un−1, un) and σ′ = cone(u1, . . . , un−1, un+1).

Thus U(ω) = cone(un, un+1) = Span(un) = Span(un+1) ∼= R and
π : Y → Z is induced by the quotient NR → NR/U(ω). Since A ⊆ DY = σ(D)

and π|DY is a finite morphism, A is sent onto an invariant subvariety of dimen-
sion n − 2, a divisor on Z. Thus, A ⊆ D(un) := D0 or A ⊆ D(un+1) := D∞,
otherwise it will be sent onto a subvariety of dimension n− 3.

If we suppose that A ⊆ D∞, where D∞ ∼= Z ⊆ Y is one of these disjoint
invariant sections, then for any invariant affine open subset U ⊆ Z such that
π−1(U) ∼= U × P1 we will have

π−1(U) \ (π−1(U) ∩D∞) ∼= U × A1.

The open set U ×A1 is therefore isomorphic to an open set on Y contained in
the locus where σ−1 : Y 99K X is an isomorphism. In particular, U ×A1 is an
affine Gorenstein toric variety and thus U is also Gorenstein. We conclude in
this way that both Y and Z are Gorenstein varieties.

As a consequence of the formulaKX = σ∗(KY )+E we have that E = Exc(σ)

is a Cartier divisor. Let us prove that X → Y verifies the universal property
of the blow-up. The short exact sequence of sheaves

0→ OX(−E)→ OX → OE → 0

gives

0→ σ∗OX(−E)→ σ∗OX → (σ|E)∗OE → R1 σ∗OX(−E)→ · · · ,
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where σ∗OX = OY since σ : X → Y is a contraction.
Notice that σ|E : E → A is a P1−bundle. In fact, since KX is a Cartier

divisor and −KX · [F ] = 1 for any non-trivial fiber F of σ, it follows that
the scheme theoretic fiber F is an irreducible and generically reduced rational
curve on X. Then, by [Kol96, Theo. II.2.8], σ|E : E → A is a P1−bundle and
thus (σ|E)∗OE = OA.

On the other hand, the Cartier divisor −(KX +E) is σ-ample and therefore
Ri σ∗OX(−E) = 0 for i > 0, by [AW97, Vanishing Theorem 1.1]. Hence, the
above long exact sequence becomes

0→ σ∗OX(−E)→ OY → OA → 0,

and thus IA ∼= σ∗OX(−E).
Let us follow [AW93] and notice that σ : X → Y is a local contraction

supported by the Cartier divisor KX −E. Let F be any non-trivial fiber of σ.
Then, by [AW93, Theo. 5.1], the evaluation morphism

σ∗σ∗OX(−E)→ OX(−E)

is surjective at every point of F . On the other hand, σ∗OX(−E) ∼= IA
and σ−1IA · OX is defined to be the image of σ∗IA → OX(−E). Thus,
σ−1IA ∼= OX(−E) is an invertible sheaf.

Then, by the universal property of the normalized blow-up, σ factorizes as

X
τ //

σ

55BlA(Y )
ν◦ε // Y ,

where ε : BlA(Y ) → Y is the blow-up of the coherent sheaf of ideals IA and
ν : BlA(Y )→ BlA(Y ) its normalization.

Since σ contracts only the irreducible divisor E, τ contracts no divisor. If τ
is not finite, it is a small contraction sending a curve C ⊆ E to a point. The
rigidity lemma [KM98, Lemm. 1.6] applied to the P1-bundle E → A and the
morphism τ(E) → A implies that τ contracts the divisor E, a contradiction.
Hence τ is a finite and birational morphism onto a normal variety, and therefore
τ is an isomorphism by Zariski’s Main Theorem.

Finally, it follows from [CLS11, Prop. 11.4.22] that if X = X(∆X)

is a Q-factorial toric variety with Gorenstein terminal singularities, then
codimX Sing(X) ≥ 4 (see also Proposition 1.2.7). Therefore, if we start with
a toric variety X of dimension 3 or 4 satisfying the hypothesis of Theorem D,
we will obtain that Z is a smooth toric variety, implying that Y and X must
be both smooth toric varieties too.
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2.6. The case ρX = 2 for toric varieties

In this section we study the extremal contractions described in §2.1 for toric
toric varieties with Picard number 2. Let us begin with the proof of Proposition
F, which describes extremal contractions of fiber type.

Proof of Proposition F. — The isomorphism X ∼= PY (OY ⊕ OY (a)), with
a ≥ 0, follows from Lemma 2.4.3 and the fact that ρY = 1. On the other hand,
the condition 0 ≤ a ≤ iY is in fact equivalent to the condition of X being
Fano. To see this, let us recall that the adjunction formula for projectivized
vector bundles [BS95, §1.1.7] gives

KX = π∗OY (a− iY )− 2ξ,

where ξ is the tautological divisor on PY (OY ⊕ OY (a)) and iY is defined in
such a way OY (−KY ) ∼= OY (iY ). Now, we notice that if F is any fiber π, then

−KX · [F ] = 2ξ · [F ] = 2 > 0.

On the other hand, if C ⊆ Y is an irreducible reduced curve and CX ⊆ X is
the image of C by the section associated to the quotient OY ⊕OY (a)→ OY ,
then

−KX · [CX ] = deg(C) · (iY − a).

Hence, X is Fano if and only if 0 ≤ a ≤ iY − 1, since the numerical classes
of these curves above generates the Mori cone of X. Finally, let us note that
the two invariant sections of π, s0 : Y → X and s∞ : Y → Z, provide divisors
D0 = s0(Y ) and D∞ = s∞(Y ) on X such that D0

∼= D∞ ∼= Y and hence
dimR N1(D0, X) = dimR N1(D∞, X) = 1.

If X is supposed to have isolated canonical singularities then we obtain a
precise classification in Theorem E.

Proof of Theorem E. — LetR ⊆ NE(X) be an extremal ray such thatD·R > 0

and let π : X → Y be the corresponding extremal contraction. If π is of fiber
type then Proposition F provides an isomorphism X ∼= PY (OY ⊕ OY (a)) for
some toric variety Y . Moreover, Y is a Q-factorial Gorenstein toric Fano
variety of dimension (n − 1) with terminal singularities and Fano index iY ,
and 0 ≤ a ≤ iY − 1. Since X has isolated singularities, and π : X → Y is
a locally trivial P1-bundle, both X and Y are smooth in this case. It follows
that Y ∼= Pn−1 and iY = n, which leads us to the first case.

Let us suppose that π : X → Y is a birational contraction. It follows from
Proposition 2.1.3 that π : X → Y is a divisorial contraction sending an irre-
ducible invariant divisor E = V (uE) onto a codimension two subvariety A ⊆ Y ,
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and Y is a Q-factorial toric Fano variety. Moreover, E · [F ] = KX · [F ] = −1

for every non-trivial fiber F of π. In particular, Lemma 2.4.1 implies that Y
has isolated Gorenstein singularities, A is contained in the smooth locus of Y ,
and X ∼= BlA(Y ). Additionally, it follows from the proof of Lemma 2.4.1 that
Y contains n− 1 smooth maximal cones, each of them containing the cone of
dimension two defining the subvariety A.

Since Y is a complete and simplicial toric variety of dimension n and Picard
number one, the fan of Y contains exactly n+1 maximal cones (corresponding
to n+1 invariant points), Y has at most 2 singular points and they are outside
A ⊆ Y .

Let us denote by u1, . . . , un+1 ∈ N the primitive lattice vectors generating
the rays in the fan of Y and suppose that A = cone(u1, u2), and thus that the
extremal contraction π is defined by the wall relation uE = u1 +u2. There are
exactly n− 1 walls in ∆X satisfying this relation (corresponding to the fibers
over the n− 1 invariants points of A). Namely, the walls

ωi = cone(uE , u3, . . . , ûi, . . . , un+1) with i ∈ {3, . . . , n+ 1},

separating the two maximal cones σi = cone(uE , u3, . . . , ûi, . . . , un+1, u1) and
σ′i = cone(uE , u3, . . . , ûi, . . . , un+1, u2).

Let us prove that Y is isomorphic to one of the listed varieties. Since the
fan of Y contains a smooth maximal cone, we can suppose that the vectors
u1, . . . , un correspond to the first n elements of the canonical basis of Zn, by
Remark 1.3.3.

Let us write un+1 = (−a1, . . . ,−an), with ai ∈ Z>0 for i ∈ {1, . . . , n}.
For each i ∈ {3, . . . , n + 1} we have that mult(σi) = 1. Therefore, Proposi-
tion 1.3.2 leads mult(σi) = |det(e1, e1 + e2, e3, . . . , êi, . . . , en, un+1)| = ai = 1,
for i ∈ {3, . . . , n}. Hence, we can write un+1 = (−a,−b,−1, . . . ,−1), with
a, b ∈ Z>0. It should be noticed that Y has isolated singularities if and only if
gcd(a, b) = 1.

Thus, Y ∼= P(1n−1, a, b) with a, b ∈ Z>0 relatively prime integers. Now, Y
is a Gorenstein Weighted Projective Space if and only if a|(n− 1 + a+ b) and
b|(n − 1 + a + b), by [CK99, Lemm. 3.5.6]. Equivalently, a|(n − 1 + b) and
b|(n−1 +a). If a = b the only possibility is a = b = 1, leading to (a): Y ∼= Pn.
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Let us suppose that 1 ≤ a < b and notice that ab|(n − 1 + a + b) since
gcd(a, b) = 1. On the other hand,

n− 1 + a+ b

ab
= 1⇔ n− 1 + a+ b

ab
< 2

⇔ (2b− 1)

(
a− 1

2

)
− n+

1

2
> 0.

Since a ≥ 1, this condition is fulfilled when (2b− 1) · 1
2 − n+ 1

2 > 0⇔ b > n.
Therefore, b ≥ n + 1 implies that n − 1 + a + b = ab or, equivalently,

n = (a − 1)(b − 1). This leads to a = 2, b = n + 1 and hence to (b):
Y ∼= P(1n−1, 2, n + 1) and n must be even. Finally, if 1 ≤ a < b ≤ n we
get the last case (c): Y ∼= P(1n−1, a, b).

Conversely, given one of these listed varieties Y with their fans as above
and considering X to be the blow-up of Y along A = V (e1, e2), we obtain a
projective toric variety satisfying the hypothesis.

In fact, since A is contained in the smooth locus of Y we obtain that X
is a Q-factorial Gorenstein toric variety with isolated canonical singularities.
In order to prove that X is Fano we need to analyze the second extremal
contraction that corresponds to the wall relation on X given by

buE + (a− b)e1 + e3 + · · ·+ en + un+1 = 0.

In any of the three listed cases we will obtain

−KX · [Cω] =
n− 1 + a

b
∈ Z>0,

proving that X is a Fano variety, by the Cone Theorem and Kleiman’s criterion
of ampleness. Finally, let us note that A ⊆ Y is the intersection of two invariant
prime divisors D1 = V (u1) and D2 = V (u2), whose strict transforms D̂1 and
D̂2 in X satisfy dimR N1(D̂1, X) = dimR N1(D̂2, X) = 1, which follows from
the wall relation uE = u1 + u2 and the description of the fans defining these
divisors as toric varieties (see for instance [CLS11, Prop. 3.2.7]).

As a consequence we obtain the following list of possible admissible weights
(a, b) ∈ Z2

>0 that corresponds to varieties Y ∼= P(1n−1, a, b) as in Theorem E.2.
Compare with [Kas13] and [Mir85].
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Table 1. Admissible Y ∼= P(1n−1, a, b) as in Theorem E.2

n Weights (a, b) ∈ Z2
>0

3 (1, 1), (1, 3)

4 (1, 1), (1, 2), (1, 4), (2, 5)

5 (1, 1), (1, 5)

6 (1, 1), (1, 3), (1, 6), (2, 7), (3, 4)

7 (1, 1), (1, 7)

8 (1, 1), (1, 2), (1, 4), (1, 8), (2, 3), (2, 9), (3, 5)

9 (1, 1), (1, 3), (1, 9)

10 (1, 1), (1, 2), (1, 5), (1, 10), (2, 11)

Remark 2.6.1. — From the wall relation

buE + (a− b)e1 + e3 + · · ·+ en + un+1 = 0

we can deduce the nature of the second extremal contraction ϕ : X → W . In
the smooth case it is a contraction of fiber type onto W ∼= P1. In the singular
case, it is a divisorial contraction sending its exceptional locus onto a point.
Moreover, W ∼= P(1n−1, a, b− a) since

auE + (b− a)e2 + e3 + · · ·+ en + un+1 = 0.

We conclude with an example showing that is the hypothesis of isolated
singularities in Theorem E.2 cannot be dropped. We exhibit an example of a
Q-factorial Gorenstein toric Fano fivefold X with terminal singularities, whose
singular locus is one-dimensional and that admits a birational extremal con-
traction π : X → Y which is not a blow-up, but only a blow-up in codimension
two, and where Y is a non-Gorenstein Q-factorial toric Fano fivefold.

Example 2.6.2. — Let us consider the fan ∆X ⊆ R5 generated by the vectors

e1, e2, e3, e4, e5, u6, uE ,

where {e1, . . . , e5} is the canonical basis of R5, u6 = (−1,−1,−1,−2,−3) and
uE = (−1,−1,−1,−2,−2).

It can be checked by using [Macaulay2] that X is a Q-factorial Gorenstein
Fano fivefold. Moreover, it can be checked by hand that its singular locus is
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one-dimensional, consisting only of terminal points, and given by

Sing(X) = V (e1, e2, e3, uE) ∪ V (e1, e2, e3, e4, u6).

The wall relation e5 + (−1)uE + u6 = 0 determines an extremal contraction
π : X → Y sending the Weil divisor V (uE) ⊆ X (which is not Cartier) onto
A = V (e5, u6) ⊆ Y . Finally, the relation

e1 + e2 + e3 + 2e4 + 3e5 + u6 = 0

implies that Y ∼= P(14, 2, 3), which is not Gorenstein, by [CK99, Lemm. 3.5.6].

2.7. Toric universal coverings in codimension 1

Let us recall that, every complete Q-factorial toric variety of Picard number
one can be seen as the quotient of a Weighted Projective Space by the action
of a finite group such that the corresponding quotient map is quasi-étale, i.e., a
finite surjective morphism which is étale in codimension 1 (see Definition 2.7.1
and Example 2.7.6). In this sense, Weighted Projective Spaces are the simplest
singular Q-factorial toric varieties of Picard number one. In the context of
classification of toric Fano varieties with mild singularities, we would like to
consider similar covers, but without the restriction on the Picard number. This
is because quasi-étale morphisms have no ramification divisor and thus we can
easily show that the resulting covering variety will be Fano and will have mild
singularities (see Proposition 2.7.3). Therefore, in principle, it would be enough
to consider the simplest toric varieties from the point of view of these quasi-
étale morphisms in order to give a classification for the general case. We also
refer the reader to the recent article of Greb, Kebekus and Peternell [GKP16]
where they constructed and studied these spaces for klt pairs.

The aim of this section is therefore to recall some recent results due to Rossi
and Terracini concerning the construction and combinatorics of these quasi-
étale universal covers in the toric setting and to describe the lifting of the
extremal contractions appearing in the previous sections to these spaces.

Let us recall some of the results and definitions introduced in [Buc08]. We
will follow the terminology of quasi-étale morphisms, introduced by Catanese
[Cat07].

Definition 2.7.1 (Quasi-étale morphism). — Let X be a normal alge-
braic variety. A quasi-étale morphism (or a 1-covering) is a finite surjective
morphism ϕ : Y → X which is unramified in codimension 1. Namely,
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there exists a subvariety V ⊆ X of codimension codimX(V ) ≥ 2 such that
ϕ|ϕ−1(X\V ) : ϕ−1(X \ V )→ X \ V is étale.

Moreover, a universal quasi-étale morphism is a quasi-étale morphism
ϕ : Y → X which is universal in the sense that for any quasi-étale morphism
f : Z → X there exists a (not necessarily unique) quasi-étale morphism
g : Y → Z such that ϕ = f ◦ g.

Proposition 2.7.2 ([Buc08, Cor. 3.10, Rem. 3.14]). — A quasi-étale mor-
phism ϕ : Y → X is universal if and only if π1(Yreg) is trivial.

Proposition 2.7.3. — Let ϕ : Y → X be a quasi-étale morphism between
normal projective varieties. Then,

1. If KX is a Cartier divisor, then KY is a Cartier divisor.

2. If X is a Fano variety, then Y is a Fano variety.

3. If X has terminal (resp. canonical) singularities, then Y also has terminal
(resp. canonical) singularities.

Proof. — As ϕ : Y → X is unramified in codimension 1, there is no ramification
divisor and hence ϕ∗KX = KY , implying (1). The point (2) follows from
[EGAII, Prop. 5.1.12], while (3) follows from [Kol97, Prop. 3.16].

In the case of toric varieties we can describe the ramification divisor of a
toric finite surjective morphism.

Lemma 2.7.4 ([AP13, Lemm. 3.3]). — Let ϕ : Y → X be a finite
morphism between toric varieties that corresponds to the map of fans
Φ : (NY ,∆Y ) → (NX ,∆X) given by the inclusion of lattices NY ⊆ NX

of finite index, so that NX ⊗Z R = NY ⊗Z R and ∆X = ∆Y . Then,

1. ϕ is equivariant with respect to the homomorphism of tori TY → TX .

2. ϕ is an abelian cover with Galois group G = ker (TY → TX) ∼= NX/NY .

3. The ramification divisor Ram(ϕ) is supported on the torus invariant divi-
sors V (ρ), with multiplicities dρ ≥ 1 defined by the condition that the inte-
gral generator of NY ∩R≥0uρ is dρuρ, for every ray ρ = R≥0uρ ∈ ∆X(1).

Moreover, we have the following theorem characterizing the fundamental
group of the smooth locus for Q-factorial toric varieties.

Theorem 2.7.5 ([Buc08, Cor. 3.10, Theo. 4.8] and [RT16, Theo. 2.4])
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Let X be a Q-factorial toric variety defined by the fan ∆X ⊆ NR and let
N∆X(1) ⊆ N be the sub-lattice of N generated by the primitive lattice generators
uρ ∈ N of all the rays ρ ∈ ∆X(1). Then,

π1(Xreg) ∼= N/N∆X(1)
∼= Tors(Cl(X)).

Example 2.7.6. — Let X = X(∆X) be a complete Q-factorial toric variety
of dimension n such that ρX = 1. Then, we will say that X is a Fake Weighted
Projective Space.

This name comes from the following observation: the fan ∆X has cone
generators u0, . . . , un ∈ ∆X(1), and the maximal cones of ∆X are generated
by the n-element subsets of {u0, . . . , un} ⊆ N ∼= Zn. As they are linearly
dependent,

n∑
i=0

λiui = 0,

for some λ0, . . . , λn ∈ Z≥1. Therefore, π1(Xreg) = {0} if and only if the
primitive lattice vectors u0, . . . , un ∈ N generate the lattice N . If it is the case
we will have that X ∼= P(λ0, . . . , λn), by [CLS11, Exam. 5.1.14].

From Lemma 2.7.4 and Theorem 2.7.5 we can deduce the following structure
theorem for Q-factorial toric complete varieties of Picard number one.

Theorem 2.7.7 ([Buc08, Theo. 6.4]). — Let X be a Fake Weighted Pro-
jective Space of dimension n. There exists a unique universal quasi-étale
morphism ϕ : P(λ0, . . . , λn) → X, canonically identifying X as a fi-
nite geometric quotient of P(λ0, . . . , λn) by the torus-equivariant action of
π1(Xreg) ∼= Tors(Cl(X)).

Following [RT16] and [RT17], it is natural to consider Q-factorial complete
toric varieties with torsion-free class group as analogs of Weighted Projective
Spaces.

Definition 2.7.8 (Poly Weighted Space). — Let X = X(∆X) be a Q-
factorial complete toric variety of dimension n. We define the canonical quasi-
étale universal cover of X to be the quasi-étale morphism πX : X̂ → X corre-
sponding to the map of fans

ΠX : (N∆X(1),∆X)→ (NX ,∆X).

Moreover, we say that X is a Poly Weighted Space (PWS) if

π1(Xreg) ∼= N/N∆X(1)
∼= Tors(Cl(X)) ∼= {0}.



2.7. TORIC UNIVERSAL COVERINGS IN CODIMENSION 1 63

After the recent works of Rossi and Terracini, there is an explicit combi-
natorial construction (via Gale duality) of the canonical quasi-étale universal
cover of any Q-factorial complete toric variety. This extends Example 2.7.6
and Theorem 2.7.7 to higher class group rank varieties (see [RT17, Theo. 2.2]
for details).

The remaining of the section will be devoted to study contractions X → Y

of extremal rays as in the previous section via universal quasi-étale morphisms,
and without the assumption of isolated singularities in the divisorial case.

The case of extremal contractions of fiber type was studied by Y. Kawamata
in [Kaw06, Lemm. 4.1] and it is commonly known as Kawamata’s covering
trick.

LetX be aQ-factorial projective toric variety and letR = R≥0[Cω] ⊆ NE(X)

be an extremal ray defining a contraction of fiber type ϕR : X → XR,
where Cω = V (u1, . . . , un−1) is an invariant curve contracted by ϕR.
Then, the wall ω = cone(u1, . . . , un−1) separates two maximal cones
σ = cone(u1, . . . , un−1, un) and σ′ = cone(u1, . . . , un−1, un+1).

Following the same notation as in Theorem 1.3.7, we have that (up to re-
ordering, if necessary) the contraction of R is defined by the projection

N := NX
Φ // NXR := NX/ (Span(uβ+1, . . . , un+1) ∩NX) .

Write Φ(ui) = diui for primitive vectors ui in NXR and positive integers di,
where 1 ≤ i ≤ β. Then, this ui define a β-dimensional cone σ0 ∈ ∆XR which
is of maximal dimension by Theorem 1.3.7 and hence it corresponds to an
invariant open affine subset XR,0 of XR.

In this setting, we have that the contraction of fiber type ϕR : X → XR

becomes (locally) trivial over the invariant open affine subset XR,0 ⊆ XR after
a finite morphism of toric varieties (possibly ramified in codimension 1).
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Lemma 2.7.9 ([Kaw06, Lemm. 4.1]). — Let XR,0 ⊆ XR be an invariant
open affine subset and let X0 = ϕ−1

R (XR,0) ⊆ X. Then, there is a commu-
tative diagram of toric morphisms

X̂0
ϕ̂R
//

πX0

��

X̃R,0

µ

!!

X̂R,0

πXR,0
||

X0
ϕR
// XR,0

that satisfies the following conditions:
(a) πX0 and πXR,0 are the corresponding canonical quasi-étale universal

covers.
(b) µ is a finite surjective morphism such that πXR,0 ◦ µ has ramification

order di over V (ui) ⊆ XR,0.
(c) ϕ̂R is a trivial fibration, whose fiber is a WPS.

In our context, Proposition F and Kawamata’s covering trick specialize to
the following result.

Proposition 2.7.10. — Let X be a Q-factorial Gorenstein toric Fano variety
of dimension n ≥ 3 with canonical singularities and with at most finitely many
non-terminal points. Assume that there exists an effective prime divisor D ⊆ X
such that dimR N1(D,X) = 1 and that ρX = 2. Let R ⊆ NE(X) be an extremal
ray such that D · R > 0 and let us denote by π : X → Y the corresponding
extremal contraction. Assume that π is of fiber type. Then there exist weights
λ0, . . . , λn−1 ∈ Z>0 and a cartesian diagram of toric varieties

X̂
π̂ //

πX

��

P(λ0, . . . , λn−1)

πY

��

X
π // Y

where vertical arrows denote the corresponding canonical quasi-étale universal
covers, and X̂ is a Gorenstein Fano PWS with terminal singularities such that
ρ
X̂

= 2. Moreover, π̂ : X̂ → P(λ0, . . . , λn−1) leads to an isomorphism

X̂ ∼= P(OP(λ0,...,λn−1) ⊕OP(λ0,...,λn−1)(a)).
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Proof. — By Proposition F, π : X → Y is a P1−bundle and X is
isomorphic to PY (OY ⊕ OY (a)), where Y is a Q-factorial Gorenstein
Fano variety with terminal singularities. Moreover, Theorem 1.3.7 im-
plies that we can always suppose that π is induced by the projection
Π : Zn → Zn−1 × {0}, (x1, . . . , xn) 7→ (x1, . . . , xn−1, 0).

Since π is locally trivial with reduced fibers, [Cd08, Rem. 3.3, Rem. 3.8]
imply that if σ = cone(u1, . . . , un−1, en) and σ′ = cone(u1, . . . , un−1,−en)

are maximal cones in ∆X(n) which are sent by Π onto a maximal cone
τ = cone(t1, . . . , ut−1) ∈ ∆Y (n− 1) then we have that, up reordering if
necessary, Π(ui) = ti for i = 1, . . . , n− 1.

This holds for every invariant open affine open subset of Y and hence it
follows that there is an induced morphism between the canonical quasi-étale
universal covers, π̂ : X̂ → Ŷ (cf. Lemma 2.7.9), which is an extremal contrac-
tion of fiber type. Moreover, the induced commutative diagram is cartesian in
the category of schemes by [Mol16, Lemm. 2.2.7].

Finally, we have Ŷ ∼= P(λ0, . . . , λn−1) for some weights λ0, . . . , λn−1 ∈ Z>0

since ρY = 1, while Proposition 2.7.3 and Proposition F imply that X̂ and Ŷ
are Fano Gorenstein varieties with terminal singularities and that there is an
isomorphism X̂ ∼= P(OP(λ0,...,λn−1) ⊕OP(λ0,...,λn−1)(a)).

Example 2.7.11. — Let X as in Proposition 2.7.10 and suppose that
Tors(Cl(X)) ∼= {0}, i.e., that X ∼= X̂. The extremal contraction of fiber type

X → P(λ0, . . . , λn−1)

leads to an isomorphism X ∼= P(OP(λ0,...,λn−1) ⊕OP(λ0,...,λn−1)(a)). Then,
(a) X is Gorenstein ⇔ P(λ0, . . . , λn−1) is Gorenstein ⇔ λi|h for every
i ∈ {0, . . . , n− 1}, by [CK99, Lemm. 3.5.6].

(b) X is terminal⇔ P(λ0, . . . , λn−1) is terminal⇔
∑n

i=0 {λiκ/h} ∈ {2, . . . , n−1}
for each κ ∈ {2, . . . , h− 2}, by [Kas13, Prop. 2.3].

(c) X is Fano⇔ 0 ≤ a ≤ iP(λ0,...,λn−1)−1 = h−1, by Proposition F and the
formula [Mor75, Prop. 2.3] for the canonical divisor of P(λ0, . . . , λn−1).

Here, h =
∑n−1

i=0 λi and {x} denotes the fractional part of x ∈ R.

The case of divisorial extremal contractions follows in a similar way.

Lemma 2.7.12. — Let X be a Q-factorial projective toric variety and
R ⊆ NE(X) an extremal ray defining a divisorial contraction ϕR : X → XR.
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Then, there is a commutative diagram of toric morphisms

X̂
ϕ̂R
//

πX

��

X̃R

µ

  

X̂R

πXR}}

X
ϕR
// XR

that satisfies the following conditions:
(a) πX and πXR are the corresponding canonical quasi-étale universal covers.
(b) µ is a quasi-étale morphism given by the inclusion of lattices N∆XR

(1) ⊆ N∆X(1)

of index dE ≥ 1, where dE is defined by the condition that the integral
generator of R≥0uE ∩N∆XR

(1) is dEuE, where V (uE) is the exceptional
divisor of ϕR.

Moreover,
(c) ϕ̂R : X̂ → X̃R is a divisorial contraction with (πX)∗ Exc(ϕ̂R) = Exc(ϕR)

and (πXR ◦ µ)∗ϕ̂R(Exc(ϕ̂R)) = ϕR(Exc(ϕR)).
(d) If X (resp. XR) is a Fano variety then X̂ (resp. X̂R and X̃R) is.
(e) If X (resp. XR) has Gorenstein singularities then X̂ (resp. X̂R and
X̃R) does.

(f) If X has terminal (resp. canonical) singularities, then all varieties in
the diagram have terminal (resp. canonical) singularities.

Proof. — Let us suppose that ϕR : X → XR is given by the contrac-
tion of the wall ω = cone(u1, . . . , un−1) separating the maximal cones
σ = cone(u1, . . . , un−1, un) and σ′ = cone(u1, . . . , un−1, un+1). Then, the wall
relation satisfied by these cones (defining the contraction) is given by

buun +
n−1∑
i=1

biui + bn+1un+1 = 0,

where bn, bn+1 ∈ Z>0 and bi ∈ Z.
Since ϕR is a divisorial contraction we can suppose that (up to reorder-

ing, if necessary) b1 < 0 and b2, . . . , bn−1 ≥ 0, by Theorem 1.3.7. Thus,
E = Exc(ϕR) = V (u1) and the contraction corresponds to the stellar subdivi-
sion of the cone

σ = cone(u2, . . . , un, un+1) ∈ ∆XR(n)

with respect to the primitive lattice vector u1 satisfying the wall relation above.
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The canonical quasi-étale universal cover of X (resp. XR) is given by the
fan ∆X (resp. ∆XR) but seen in the sub-lattice N∆X(1) (resp. N∆XR

(1)) of N .
Clearly we have the inclusion of lattices N∆XR

(1) ⊆ N∆X(1), which is of finite
index since (−b1)u1 ∈ N∆XR

(1), by the wall relation above. Hence, we obtain

an induced quasi-étale morphism µ : X̃R → X̂R, by Lemma 2.7.4.
Now, the fan of X̂ is obtained by the stellar subdivision of the fan of X̃R with

respect to the primitive vector u1 satisfying the wall relation above, obtaining
the desired commutative diagram that satisfies (a), (b) and (c) by construction.

Finally, the last three assertions follows from Proposition 2.7.3 together with
[KM98, Cor. 3.43].

We can now give the proof of Proposition G describing divisorial contractions
of toric mildly Fano varieties with Picard number two.

Proof of Proposition G. — The situation in Lemma 2.7.12 above becomes sim-
pler in this case because the extremal contraction π : X → Y is induced by
a wall relation of the form un + un+1 = u1, by Lemma 2.4.1. Therefore, we
have that N∆Y (1) = N∆X(1) and hence Ỹ ∼= Ŷ with the notation as in Lemma
2.7.12. In other words, there is an induced morphism between the canonical
quasi-étale universal covers, π̂ : X̂ → Ŷ , which is a divisorial extremal contrac-
tion. Moreover, the induced commutative diagram is cartesian in the category
of schemes by [Mol16, Lemm. 2.2.7].

Finally, we have that Ŷ ∼= P(λ0, . . . , λn) for some weights λ0, . . . , λn ∈ Z>0,
by Example 2.7.6. The result follows now directly from the second part of
Lemma 2.7.12.

Example 2.7.13. — Let X as in Proposition G and let us suppose that
Tors(Cl(X)) ∼= {0}, i.e., that X ∼= X̂. The extremal divisorial contraction

π : X → P(λ0, . . . , λn)

determines the shape of the fan of X in terms of the fan of P(λ0, . . . , λn) (which
is well known):

The fan of P(λ0, . . . , λn) is given by n+1 lattice primitive vectors u0, . . . , un
that generates the lattice N and that satisfy the relation

n∑
i=0

λiui = 0.

Let us suppose that π contracts E = V (uE) ⊆ X onto the invariant subvariety
A = V (ui, uj) ⊆ P(λ0, . . . , λn), of codimension two. Then, uE = ui + uj , by
Lemma 2.4.1.
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In particular, the same computation used to prove [CK99, Lemm. 3.5.6]
shows that X is a Fano Gorenstein variety if and only if λi|h, λj |h, λk|(h−λi)
and λk|(h− λj) for every k 6= i, j, where h =

∑n
i=0 λi.

However, to the best of the author’s knowledge, the characterization such
X having terminal singularities is more subtle. Indeed, if X is a Q-factorial
Fano Gorenstein toric variety then it corresponds to a simplicial reflexive lat-
tice polytope P ⊆ NR (see [Bat94] for details). In [Nil05, Cor. 3.7], Nill
characterizes all polytopes among these ones that correspond to varieties with
only terminal singularities, but it does not seem easy to translate this charac-
terization into a function of the weights λ0, . . . , λn.

Finally, it should be noticed that if one of the weights is equal to 1, say
λ0 = 1, then we have a coordinate-wise description of the primitive vectors
defining the fan of P(1, λ1, . . . , λn). Namely, the canonical basis of Zn together
with the vector (−λ1, . . . ,−λn) ∈ Zn. In this case, we can explicitly compute
the Cartier data {mσ}σ∈∆X(n) ⊆M of KX , allowing us to decide whether the
singularities of X are terminal or not.

In particular, we compute that X has only Gorenstein terminal singularities
if all the integers

h

λi
,
h

λj
,
h− λi
λk

,
h− λj
λk

considered before, are equal or greater than 3. The variety defined in Example
2.6.2 satisfy this condition.

Let us end by showing up the computations justifying these assertions. First
of all, we can suppose for simplicity that uE = u0 + un in order to check the
Gorenstein condition. If it is the case, then ∆X(n) is composed by the following
2n cones of maximal dimension:

σ0 = cone(u1, . . . , un),

σn = cone(u0, . . . , un−1),

σ′i = cone(u0, uE , u1, . . . , ûi, . . . , un−1)

and σ′′i = cone(un, uE , u1, . . . , ûi, . . . , un−1),

for i = 1, . . . , n− 1.
Given σ ∈ ∆X(n) as above, let mσ ∈ MQ be the unique element such that

〈mσ, u〉 = −1 for every u ∈ σ(1); such {mσ}σ∈∆X(n) ⊆ MQ correspond to the
Cartier data for the toric Weil divisor −KX . Then, X is Gorenstein if and
only if mσ ∈M for all σ ∈ ∆X(n).
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On the other hand, the relations uE = u0 + un and
∑n

i=0 λiui = 0 implies
that

〈mσ0 , u0〉 =
h

λ0
− 1,

〈mσn , un〉 =
h

λn
− 1,

〈mσ′i
, ui〉 =

h− λn
λi

− 1

and 〈mσ′′i
, ui〉 =

h− λ0

λi
− 1,

for i = 1, . . . , n−1. Since u0, . . . , un generate the lattice N , we get the desired
equivalence. From this computation, we get directly that −KX is an ample
divisor, since 〈mσ, uρ〉 > −1 for every ray ρ * σ, and every σ ∈ ∆X(n) (see
[CLS11, Lemm. 6.1.13, Theo. 6.1.14]).

Let us look now to (Gorenstein) terminality of singularities in the case when
one weight equals to 1, say λ0 = 1. It should be noticed that in this case the
fan of P(1, λ1, . . . , λn) is given explicitly by the canonical basis of Zn, together
with the primitive vector u0 = (−λ1, . . . ,−λn) ∈ Zn. We will illustrate how the
computations are made in the case where uE = u0 +un; the case uE = ui +uj
with both i, j ≥ 1 is similar but simpler.

By Theorem 1.3.4, we need to find {mσ}σ∈∆X(n) ⊆M such that 〈mσ, u〉 = 1

for all u ∈ σ(1) and such that 〈mσ, u〉 > 1 for all others lattice elements
u ∈ σ \ σ(1), u 6= 0. Notice that these {mσ}σ∈∆X(n) ⊆ M correspond to the
Cartier data for the toric divisor KX .

For k = 1, . . . , n, let us denote by (mσ)k the k-th coordinate of mσ with
respect to the canonical dual basis. Then, by the previous computations (but
with opposite sign) we have that:

(mσ0)k = 1 for all k,

(mσn)k =

 1− h
λn

if k = n

1 else
,

(mσ′i
)k =


1− h−λn

λi
if k = i

0 if k = n

1 else

,

(mσ′′i
)k =

 1− h−λ0
λi

if k = i

1 else
,
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for i = 1, . . . , n− 1.
We can check now terminality by definition. Notice that σ0 is a smooth cone

so there is nothing to prove. Clearly h
λ0

= h ≥ 3.
For σn it should be noticed that τn = cone(u1, . . . , un−1) ⊆ σn is such that

mult(τn) = 1 (smooth cone), while mult(σn) = λn = # (Pσn ∩N), where
Pσn is the fundamental lattice domain defined in Proposition 1.3.2. Hence,
we only need to check the terminality condition for non-zero lattice elements
u ∈ σn \ σn(1) that are not contained in τn. We can easily check that all
non-zero elements in Pσn are positive multiples of u = −un, while

〈mσn , u〉 =
h

λn
− 1 > 1⇔ h

λn
∈ Z≥3.

For σ′i we consider the cones τ ′i = cone(u1, . . . , ûi, . . . , un−1) ⊆ σ′i that sat-
isfies mult(τ ′i) = 1 (smooth cones), while mult(σ′i) = λi = #

(
Pσ′i ∩N

)
. As

before, we only need to check terminality for lattice elements u ∈ Pσ′i \ {0}
that are not contained in τ ′i . Again, we check that such an element u is of the
form

u = (0, . . . , 0,−a, 0, . . . , 0,−b),
where a, b ∈ Z are coprime positive integers appearing in the i-th and last
coordinate of u. The condition 〈mσ′i

, u〉 > 1 is therefore fulfilled if h−λnλi
≥ 3.

For σ′′i the same computation with τ ′′i = cone(u1, . . . , ûi, . . . , un) ⊆ σ′′i yields
that the terminality condition is fulfilled if and only if h−λ0λi

≥ 3.



CHAPTER 3

NEWTON-OKOUNKOV BODIES ON
PROJECTIVE VECTOR BUNDLES OVER

CURVES

3.1. Newton-Okounkov bodies and Semi-stability

3.1.1. Newton-Okounkov bodies. — LetX be a smooth projective variety
of dimension n and let L be a big line bundle on X. A full flag of closed
subvarieties of X centered at the point p ∈ X

Y• : X = Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · ⊇ Yn−1 ⊇ Yn = {p}

is an admissible flag if codimX(Yi) = i, and each Yi is smooth at the point p. In
particular, Yi+1 defines a Cartier divisor on Yi in a neighborhood of the point
p. Following the work of Okounkov [Oko96, Oko03], Kaveh and Khovanskii
[KK12] and Lazarsfeld and Mustaţă [LM09] independently associated to L
and Y• a convex body ∆Y•(X,L) ⊆ Rn encoding the asymptotic properties of
the complete linear series |L⊗m|. We will follow the presentation of [LM09]
and we refer the interested reader to the survey [Bou12] for a comparison of
both points of view.

Let D be any divisor on X and let s = s1 ∈ H0(X,OX(D)) be a non-
zero section. We shall compute successive vanishing orders of global sections
in the following manner: let D1 = D + div(s1) be the effective divisor in
the linear system |D| defined by s1 and set ν1(s) = ordY1(D1) the coeffi-
cient of Y1 in D1. Then D1 − ν1(s)Y1 is an effective divisor in the linear
system |D− ν1(s)Y1|, and does not contain Y1 in its support, so we can define
D2 = (D1 − ν1(s)Y1)|Y1 and set ν2(s) = ordY2(D2). We proceed inductively
in order to get νY•(s) = (ν1(s), . . . , νn(s)) ∈ Nd. This construction leads to a
valuation-like function

νY• : H0(X,OX(D)) \ {0} → Zn, s 7→ (ν1(s), . . . , νn(s)).
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We then define the graded semigroup of D to be the sub-semigroup of Nn ×N
defined by

ΓY•(D) =
{

(νY•(s),m) ∈ Nn × N | 0 6= s ∈ H0(X,OX(mD)
}
.

Finally, we define the Newton-Okounkov body of D with respect to Y• to be

∆Y•(D) = cone(ΓY•(D)) ∩ (Rn × {1}),

where cone(ΓY•(D)) denotes the closed convex cone in Rn × R spanned by
ΓY•(D).

These convex sets ∆Y•(D) are compact and they have non-empty interior
whenever D is big. Moreover, by [LM09, Theo. A], we have the following
identity

volRn(∆Y•(D)) =
1

n!
· volX(D),

where volX(D) = limm→∞
h0(X,OX(mD))

mn/n! . In particular, if D is big and nef,
then volRn(∆Y•(D)) = 1

n!D
n, by the Asymptotic Riemann-Roch theorem.

The Newton-Okounkov bodies of big divisors depend only on numerical
classes: if D ≡num D′ are big divisors then ∆Y•(D) = ∆Y•(D

′) for every
admissible flag Y• on X, by [LM09, Prop. 4.1] (see [Jow10, Theo. A] for the
converse). This fact, along with the identity ∆Y•(pD) = p ·∆Y•(D) for every
positive integer p, enables us to define an Newton-Okounkov body ∆Y•(η) ⊆ Rn
for every big rational class η ∈ Big(X)∩N1(X)Q. Moreover, by [LM09, Theo.
B], there exists a global Newton-Okounkov body: a closed convex cone

∆Y•(X) ⊆ Rn ×N1(X)R

such that for each big rational class η ∈ Big(X)Q = Big(X) ∩ N1(X)Q the
fiber of the second projection over η is ∆Y•(η). This enables us to define
Newton-Okounkov bodies for big real classes by continuity.

The above construction works for graded linear series a• associated to
a big divisor D on X. A graded linear series is a collection of subspaces
am ⊆ H0(X,OX(mD)) such that a• = ⊕m≥0am is a graded subalgebra of the
section ring R(D) = ⊕m≥0 H0(X,OX(mD)). The construction enables us to
attach to any graded linear series a• a closed and convex set ∆Y•(a•) ⊆ Rn.
This set ∆Y•(a•) will be compact and will compute the volume of the linear
series under some mild conditions listed in [LM09, § 2.3]. We will be specially
interested on restricted complete linear series of a big divisor D, namely
graded linear series of the form

am = H0(X|F,OX(mD)) = Im
(

H0(X,OX(mD))
rest−−→ H0(F,OF (mD))

)
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where F ⊆ X is an irreducible subvariety of dimension d ≥ 1. Under the
hypothesis that F 6⊆ B+(D), the conditions listed in [LM09, § 2.3] are satisfied
by [LM09, Lemm. 2.16]. Therefore, the Newton-Okounkov body associated
to a• above, the restricted Newton-Okounkov body (with respect to a fixed
admissible flag)

∆X|F (D) ⊆ Rd,
is compact and

volRd(∆X|F (D)) =
1

d!
volX|F (D),

where
volX|F (D) = lim

m→∞

dimk am
md/d!

is the restricted volume on F of the divisor D. In particular, if D is big and
nef, then volX|F (D) = (Dd · F ), by [ELM+09, Cor. 2.17]. Restricted Newton-
Okounkov bodies depend only on numerical classes (see [LM09, Rema. 4.25]),
so it is meaningful to consider ∆X|F (η) for every big rational class η such that
F 6⊆ B+(η).

As before, there exists a global Newton-Okounkov body ∆Y•(X|F ) that
enables us to define, by continuity, ∆X|F (η) for any big real numerical class η
such that F 6⊆ B+(η). See [LM09, Exam. 4.24] for details.

Restricted Newton-Okounkov bodies can be used to describe slices of
Newton-Okounkov bodies.

Theorem 3.1.1 ([LM09, Theo. 4.26, Cor. 4.27]). — Let X be a normal pro-
jective variety of dimension n, and let F ⊆ X be an irreducible and reduced
Cartier divisor on X. Fix an admissible flag

Y• : X = Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · ⊇ Yn−1 ⊇ Yn = {p}
with divisorial component Y1 = F . Let η ∈ Big(X)Q be a rational big class, and
consider the Newton-Okounkov body ∆Y•(η) ⊆ Rn. Write pr1 : ∆Y•(η) → R
for the projection onto the first coordinate, and set

∆Y•(η)ν1=t = pr−1
1 (t) ⊆ {t} × Rn−1

∆Y•(η)ν1≥t = pr−1
1 ([t,+∞)) ⊆ Rn

Assume that F 6⊆ B+(η) and let

τF (η) = sup{s > 0 | η − s · f ∈ Big(X)},

where f ∈ N1(X) is the numerical class of F . Then, for any t ∈ R with
0 ≤ t < τF (η) we have
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1. ∆Y•(η)ν1≥t = ∆Y•(η − tf) + t · ~e1, where ~e1 = (1, 0, . . . , 0) ∈ Nn is the
first standard unit vector. (1)

2. ∆Y•(η)ν1=t = ∆X|F (η − tf).

3. The function t 7→ volX(η + tf) is differentiable at t = 0, and
d

dt
(volX(η + tf)) |t=0 = n · volX|F (η).

Let us finish this section with the case of Newton-Okounkov bodies on sur-
faces (see [LM09, §6.2] for details). We will use this description in Example
3.3.2 in order to illustrate the shape of Newton-Okounkov bodies on ruled
surfaces.

Example 3.1.2 (Surfaces). — Let S be a smooth projective surface together
with a flag Y• : Y0 = S ⊇ Y1 = C ⊇ Y2 = {p}, where C ⊆ S is a smooth curve
and p ∈ C.

Let D be a big Q-divisor on S. Any such divisor admits a Zariski decompo-
sition, that is we can uniquely write D as a sum

D = P (D) +N(D)

of Q-divisors, with P (D) nef and N(D) either zero or effective with nega-
tive definite intersection matrix. Moreover, P (D) · Γ = 0 for every irre-
ducible component Γ of N(D) and for all m ≥ 0 there is an isomorphism
H0(S,OS(bmP (D)c)) ∼= H0(S,OS(bmDc)). In this decomposition P (D) is
called the positive part and N(D) the negative part. See [Laz04, §2.3.E] and
references therein for proofs and applications.

With the above notation, we have that

∆Y•(D) =
{

(t, y) ∈ R2 | ν ≤ t ≤ τC(D), α(t) ≤ t ≤ β(t)
}

where

1. ν ∈ Q the coefficient of C in N(D),

2. τC(D) = sup{t > 0 | D − tC is big},
3. α(t) = ordp(Nt · C),

4. β(t) = ordp(Nt · C) + Pt · C,

where D− tC = Pt +Nt is a Zariski decomposition, Pt being the positive and
Nt the negative part. Moreover, these bodies are finite polygons, by [KLM12,
Theo. B].

1. In fact, this statement remains true even if we do not assume that E 6⊆ B+(η). See
[KL15, Prop. 1.6].
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3.1.2. Semi-stability and Harder-Narasimhan filtrations. — Through-
out this section, C is a smooth projective curve and E is a locally free sheaf
on C of rank r > 0 and degree d = deg(E) = deg(c1(E)). Given such a bundle
we call the rational number

µ(E) =
d

r
the slope of E.

Definition 3.1.3 (Semi-stability). — Let E be a vector bundle on C of
slope µ. We say that E is semi-stable if for every non-zero sub-bundle S ⊆ E,
we have µ(S) ≤ µ. Equivalently, E is semi-stable if for every locally-free
quotient E � Q of non-zero rank, we have µ ≤ µ(Q).

Following [LP97, Prop. 5.4.2], there is a canonical filtration of E with
semi-stable quotients.

Proposition 3.1.4. — Let E be a vector bundle on C. Then E has an in-
creasing filtration by sub-bundles

HN•(E) : 0 = E` ⊆ E`−1 ⊆ · · · ⊆ E1 ⊆ E0 = E

where each of the quotients Ei−1/Ei satisfies the following conditions:

1. Each quotient Ei−1/Ei is a semi-stable vector bundle;

2. µ(Ei−1/Ei) < µ(Ei/Ei+1) for i = 1, . . . , `− 1.

This filtration is unique.

The above filtration is called the Harder-Narasimhan filtration of E.

Notation 3.1.5. — Let E be a vector bundle on a smooth projective curve
C. We will denote by Qi = Ei−1/Ei the semi-stable quotients of the
Harder-Narasimhan filtration of E, each one of rank ri = rank(Qi), degree
di = deg(c1(Qi)) and slope µi = µ(Qi) = di/ri. With this notation, µ1 and
µ` correspond to the minimal and maximal slopes, µmin(E) and µmax(E),
respectively.

From a cohomological point of view, semi-stable vector bundles can be seen
as the good higher-rank analogue of line bundles. For instance, we have the
following classical properties (see [RR84] or [But94, Lemm. 1.12, Lemm.
2.5]).

Lemma 3.1.6. — Let E and F be vector bundles on C and m ∈ N. Then,
1. µmax(E ⊗ F ) = µmax(E) + µmax(F ).
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2. µmin(E ⊗ F ) = µmin(E) + µmin(F ).

3. µmax(SmE) = mµmax(E).

4. µmin(SmE) = mµmin(E).

5. If µmax(E) < 0, then dimk H0(C,E) = 0.

6. If µmin(E) > 2g − 2, then dimk H1(C,E) = 0.

In particular, if E and F are semi-stable then SmE and E⊗F are semi-stable.

If E1, . . . , E` are vector bundles on C and m1, . . . ,m` be non-negative inte-
gers. By the splitting principle [Ful84, Rema. 3.2.3] we can prove the following
formula:

µ(Sm1E1 ⊗ · · · ⊗ Sm`E`) =
∑̀
i=1

miµ(Ei).

Moreover, we have that for every m ≥ 1 the Harder-Narasimhan filtration
of the symmetric product SmE can be computed in terms of the one for E
(see [Che11, Prop. 3.4] and [Wol05, Prop. 5.10], for instance).

Proposition 3.1.7. — Let E be a vector bundle on C with Harder-
Narasimhan filtration

HN•(E) : 0 = E` ⊆ E`−1 ⊆ · · · ⊆ E1 ⊆ E0 = E

and semi-stable quotients Qi = Ei−1/Ei with slopes µi = µ(Qi), for
i = 1, . . . , `. For every positive integer m ≥ 1, let us consider the vector
bundle SmE with Harder-Narasimhan filtration

HN•(S
mE) : 0 = WM ⊆WM−1 ⊆ · · · ⊆W1 ⊆W0 = SmE

and semi-stable quotients Wj−1/Wj with slopes νj = µ(Wj−1/Wj), for
j = 1, . . . ,M . Then, for every j = 1, . . . ,M we have that

Wj =
∑

∑
imiµi≥νj+1

Sm1E0 ⊗ · · · ⊗ Sm`E`−1

and
Wj−1/Wj

∼=
⊕

∑
imiµi=νj

Sm1Q1 ⊗ · · · ⊗ Sm`Q`,

where the sums are taken over all partitions m = (m1, . . . ,m`) ∈ N` of m, and
Sm1E0 ⊗ · · · ⊗ Sm`E`−1 denotes the image of the composite

E⊗m1
0 ⊗ · · · ⊗ E⊗m``−1 → E⊗m → SmE.



3.2. DIVISORS ON PROJECTIVE BUNDLES OVER CURVES 77

In particular, there is a refinement F• of HN•(S
mE) of length L = L(m)

and whose respective successive quotients are of the form

Fi−1/Fi ∼= Qm(i) = Sm1Q1 ⊗ · · · ⊗ Sm`Q`
for some partition m(i) = (m1, . . . ,m`) ∈ N` of m, and such that for every
i ∈ {1, . . . L} we have µ(Qm(i)) ≤ µ(Qm(i+1)). Moreover, given any partition
m ∈ N` of m, there is one and only one i ∈ {1, . . . , L} such that m(i) = m.

3.2. Divisors on projective bundles over curves

Let E be a vector bundle on a smooth projective curve C, of rank r ≥ 2

and degree d. In this section we study divisors on the projective bundle
π : P(E) → C of one-dimensional quotients. Let us recall that in this case
the Néron-Severi group of P(E) is of the form

N1(P(E)) = Z · f ⊕ Z · ξ,
where f is the numerical class of a fiber of π and ξ = ξE is the numerical class
of a divisor representing the tautological line bundle OP(E)(1). Moreover, if [pt]
denotes the class of a point in the ring N∗(P(E)) then we have the following
relations:

f2 = 0, ξr−1f = [pt], ξr = d · [pt].
The cone of nef divisors can be described via Hartshorne’s characterization

of ample vector bundles over curves [Har71, Theo. 2.4] (cf. [Ful11, Lemm.
2.1]).

Lemma 3.2.1. — Nef(P(E)) = 〈ξ − µminf, f〉.

The cone of pseudo-effective divisors was obtained by Nakayama in
[Nak04, Cor. IV.3.8], and it was indirectly computed by Wolfe [Wol05] and
Chen [Che11] who independently obtained the volume function volP(E) on
N1(P(E))R. A more general result on the cone of effective cycles of arbitrary
codimension can be found in [Ful11, Theo. 1.1].

Lemma 3.2.2. — Psef(P(E)) = 〈ξ − µmaxf, f〉.

In particular, we recover a result of Miyaoka [Miy87, Theo. 3.1] on semi-
stable vector bundles over curves that was generalized by Fulger in [Ful11,
Prop. 1.5].

Corollary 3.2.3. — A vector bundle E on a smooth projective curve C is
semi-stable if and only if Nef(P(E)) = Psef(P(E)).
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Fulger and Lehmann computed the movable cone of P(E) in [FL, Prop. 7.1
and Cor. 7.2].

Lemma 3.2.4. — With Notation 3.1.5, Mov(P(E)) = 〈ξ − µ`−1f, f〉 if
r` = 1, and Mov(P(E)) = Psef(P(E)) otherwise.

For the sake of completeness, we finish this section by including A. Wolfe’s
computation of the volume function on N1(P(E)). See also [Che11, Theo.
1.2].

Notation 3.2.5. — Let d ≥ 1 be an integer. We define the standard d-simplex
∆̂d with d+ 1 vertices in Rd+1 to be

∆̂d =
{

(x1, . . . , xd+1) ∈ Rd+1
∣∣∣ ∑d+1

i=1 xi = 1 and xi ≥ 0 for all i
}
.

By projecting ∆̂d onto the hyperplane x1 = 0, we can identify ∆̂d with the full
dimensional standard d-simplex (or just d-simplex) in Rd given by

∆d =
{

(x2, . . . , xd+1) ∈ Rd
∣∣∣ ∑d+1

i=2 xi ≤ 1 and xi ≥ 0 for all i
}
.

Via the previous identification, we will denote by λ the Lebesgue measure on
∆̂d induced by the standard Lebesgue measure on ∆d ⊆ Rd. In particular, we
will have λ(∆̂d) = 1

d! .
Given a positive real number a > 0, we define the d-simplex with side length

a by a∆d =
{

(x2, . . . , xd+1) ∈ Rd
∣∣ ∑d+1

i=2 xi ≤ a and xi ≥ 0 for all i
}
. Similar

for a∆̂d ⊆ Rd+1, the standard d-simplex with side length a.

Theorem 3.2.6 ([Wol05, Theo. 5.14]). — Let E be a vector bundle with
Harder-Narasimhan filtration of length ` and semi-stable quotients Qi of ranks
ri and slopes µi. Then, for any t ∈ R

volP(E)(ξ − tf) = r! ·
∫

∆̂`−1

max

{∑̀
i=1

µiβi − t, 0

}
βr1−1

1 · · ·βr`−1
`

(r1 − 1)! · · · (r` − 1)!
dβ

where ∆̂`−1 ⊆ R` is the standard (` − 1)-simplex with coordinates β1, . . . , β`,
and β be the standard induced Lebesgue measure.

Let us first recall the following inequality stated in [Wol05, Prop. 5.11].

Proposition 3.2.7 (Wolfe). — Let E = E• be a filtered vector bundle on C
with semi-stable quotients Q1, . . . , Q` such that µ(Q1) ≤ · · · ≤ µ(Q`). Then∑

µ(Qi)>2g−2

h0(C,Qi) ≤ h0(C,E) ≤
∑

µ(Qi)≥0

h0(C,Qi).
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Proof. — LetK• be the associated filtered complex of Čech cochains over some
open cover U computing the cohomology of each Ei :

0 = C•(U, E`) ⊆ · · · ⊆ C•(U, E1) ⊆ C•(U, E).

There is a spectral sequence associated to this filtered complex, whose first
page terms are

Ep,q1 = Hp+q(GrpK•) = Hp+q(C•(U, Qp+1)) = Hp+q(C,Qp+1).

This spectral sequence converges to E•,•∞ where Ep,q∞ = Grp(Hp+q(K•)) and
hence

H0(C,E) =

`−1∑
p=0

Grp(H0(K•)) =

`−1∑
p=0

Ep,−p∞ .

Since C is a projective curve and the length of the filtration is `, Ep,q1 = 0

unless p+ q ∈ {0, 1} and 0 ≤ p ≤ `− 1. On the other hand, h1(C,Qp+1) = 0 if
µ(Qp+1) > 2g−2 and then one sees that Ep,−p1 = Ep,−p∞ if µ(Qp+1) > 2g−2.

We will need the following estimate due to Wolfe (see [Wol05, Prop. 5.12]).

Lemma 3.2.8 (Wolfe). — Let C be a smooth projective curve, let E be a
non semi-stable vector bundle over C with successive semi-stable quotients
Q1, . . . , Q`, let a, b ∈ Q be two rational numbers such that a < b and let t ∈ Z
be any integer. Then, for every positive integer m ≥ 1 and every point q ∈ C,
the Harder-Narasimhan filtration of SmE ⊗OC(−mt · q) admits a refinement
F• of length L whose successive quotients are of the form

Fi−1/Fi ∼= Qm(i),t = Sm1Q1 ⊗ · · · ⊗ Sm`Q` ⊗OC(−mt · q)

for some partition m(i) = (m1, . . . ,m`) ∈ N` of m, and such that for every
i ∈ {1, . . . L} we have µ(Qm(i),t) ≤ µ(Qm(i+1),t). Moreover, the number of
vector bundles of the form Qm,t appearing as successive quotients with slopes
between a and b is O(m`−2).

Proof. — The existence of such a refinement follows from Proposition 3.1.7
applied to the bundle E ⊗OC(−t · q). For the last assertion we follow almost
verbatim Wolfe’s argument in the proof of [Wol05, Prop. 5.12].

Following Notation 3.2.5, let ∆̂`−1 ⊆ R` be the standard (` − 1)-simplex
with coordinates (x1, . . . , x`) and let ∆`−1 ⊆ {0} × R`−1 ∼= R`−1 be the full
dimensional (`− 1)-simplex obtained by projecting ∆̂`−1 onto the hyperplane
x1 = 0. Then, partitions m = (m1, . . . ,m`) ∈ N` of m correspond to integer
coordinate points (m1, . . . ,m`) ∈ m∆̂`−1 ⊆ R` and hence to integer coordinate
points in m∆`−1 ⊆ R`−1.
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We note that

|m∆̂ ∩ Z`| =
(
m+ `− 1

`− 1

)
= O(m`−1).

If we consider the function M(x1, . . . , x`) =
∑`

i=1 µixi − mt, then
µ(Qm,t) = M(m1, . . . ,m`) and hence vector bundles Qm,t with given slope µ0

correspond to integer coordinate points on the hypersurface Hµ0 = M−1({µ0})
in ∆̂`−1. We claim that

|m∆̂`−1 ∩Hµ0 ∩ Z`| ≤ |m∆̂`−2 ∩ Z`−1| = O(m`−2),

where

m∆̂`−2 =

{
(0, x2, . . . , x`) ∈ {0} × R`−1

∣∣∣∣∣ ∑̀
i=2

xi = m

}
⊆ m∆`−1.

In fact, if we consider the restriction to m∆̂`−1∩Hµ0 of the composite function
ϕ = ∂ ◦ p below

m∆̂`−1

p

��

ϕ

$$

m∆`−1
∂ // m∆̂`−2

where
p(x1, x2, . . . , x`) = (0, x2, . . . , x`)

and
∂(0, x2, x3, . . . , x`) =

(
0,m−

∑`
i=3 xi, x3, . . . , x`

)
,

then a straightforward computation shows that the equality

ϕ(x1, . . . , x`) = ϕ(y1, . . . , y`)

for (x1, . . . , x`), (y1, . . . , y`) ∈ m∆̂`−1 ∩ Hµ0 is equivalent to the equations
xi = yi for i ≥ 3,

µ1x1 + µ2x2 = µ1y1 + µ2y2

and
x1 + x2 = y1 + y2,

from which we deduce the injectivity of ϕ, since µ1 < µ2.
We note that there are only finite different values of M(m1, . . . ,m`) be-

tween a and b for (m1, . . . ,m`) ∈ m∆̂ ∩ Z` since every partition of m appears
only one time in the filtration and each increase in the value of M is at least
1/min{k ∈ N≥1 | kµj ∈ Z for all 1 ≤ j ≤ `} ∈ Q>0, and then only finitely
many hypersurfaces contains the integer coordinate points corresponding to
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vector bundles Qm,t with slopes between a and b. There are therefore at most
O(m`−2) vector bundles Qm,t with slopes between a and b.

For the convenience of the reader we include the proof of Theorem 3.2.6.

Proof of Theorem 3.2.6. — We follow A. Wolfe’s proof. For the reader’s con-
venience, the proof is subdivided into several steps. Let F = π−1(q) be any
fiber. As both sides of the volume formula are continuous in t we may (and
shall) assume that t ∈ Q. Let m ∈ N be such that mt ∈ Z. By the projection
formula,

H0(P(E),OP(E)(m)⊗OP(E) (−mt · F )) ∼= H0(C, Sm ⊗OC(−mt · q)).

Step 1. Bounds for h0(C, SmE⊗OC(−mt · q)). Given m = (m1, . . . ,m`) ∈ N`
a partition of m, we define

Qm,t = Sm1Q1 ⊗ · · · ⊗ Sm`Q` ⊗OC(−mt · q).

We consider the sets
A = {Qm,t | 0 ≤ µ(Qm,t) ≤ 2g − 2},
B = {Qm,t | µ(Qm,t) > 2g − 2}.

We claim that

∑
B
h0(C,Qm,t) ≤ h0(C, SmE ⊗OC(−mt · q)) ≤

∑
A∪B

h0(C,Qm,t).

In fact, applying Proposition 3.1.7 to the bundle SmE ⊗ OC(−mt · q)) we
get that the semi-stable quotients in the corresponding Harder-Narasimhan
filtration are direct sums of bundles of the form Qm,t, and all such bundles
appears as direct summands of the semi-stable quotients. Therefore, by refining
the Harder-Narasimhan filtration if necessary, we get a filtration

0 = FL ⊆ FL−1 ⊆ · · · ⊆ F1 ⊆ F0 = SmE ⊗OC(−mt · q))

whose successive quotients have the form

Fj−1/Fj ∼= Qm(j),t,

for some partition m(j) of m, and µ(Qm(j),t) ≤ µ(Qm(j+1),t) for every
j ∈ {1, . . . L}. Moreover, given any partition m ∈ N` of m, there is
j ∈ {1, . . . , L} such that m(j) = m. The claim follows therefore from
Proposition 3.2.7 applied to the filtration F•.
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Step 2. Cohomology growth. Let us prove that for a given partition
m = (m1, . . . ,m`) ∈ N` of m we have that hi(C,Qm,t) = O(mr−`+1) for
i = 0, 1.

We consider the fiber product Z = P(Q1)×C · · · ×C P(Q`) with projections
p : Z → C and pi : Z → P(Qi). Then

H0(C,Qm,t) = H0(Z,OZ(m1, . . . ,m`)⊗ p∗OC(−mt · q)),
H1(C,Qm,t) = H1(Z,OZ(m1, . . . ,m`)⊗ p∗OC(−mt · q))

= H0(Z, ωZ ⊗OZ(−m1, . . . ,−m`)⊗ p∗OC(mt · q)),

where OZ(m1, . . . ,m`) = p∗1OP(Q1)(m1) ⊗ · · · ⊗ p∗`OP(Q`)(m`) and ωZ is the
dualizing sheaf of Z.

Write t = u/v ∈ Q with u, v ∈ Z and let L1 = OZ(A1) be an ample
line bundle on Z such that L1 ⊗ p∗iOP(Qi)(−1) is generated by global sections
for all i ∈ {1, . . . , `} and such that L⊗v1 ⊗ p∗OC(u · q) is generated by global
sections. Then we have that H0(Z,L⊗m1 ⊗ OZ(−m1, . . . ,−m`)) 6= {0} and
that H0(Z,L⊗m1 ⊗ p∗OC(mt · q)) 6= {0}, so we can find a non-zero section
s ∈ H0(Z,L⊗2m

1 ⊗OZ(−m1, . . . ,−m`)⊗ p∗OC(mt · q)) leading to an inclusion

H0(Z,OZ(m1, . . . ,m`)⊗ p∗OC(−mt · q)) ⊆ H0(Z,L⊗2m
1 )

and hence to

h0(C,Qm,t) ≤ h0(Z,L⊗2m
1 ) ≤ C1(2mA1)dimZ = C12r−`+1Ar−`+1mr−`+1

for some constant C1 = C1(A1). Similarly, we can choose an ample line bundle
L2 = OZ(A2) on Z such that we have an inclusion

H0(Z, ωZ ⊗OZ(−m1, . . . ,−m`)⊗ p∗OC(mt · q)) ⊆ H0(Z,L⊗(2m+1)
2 )

and hence

h1(C,Qm,t) ≤ h0(Z,L⊗(2m+1)
2 ) ≤ C2((2m+ 1)A2)dimZ

≤ C23r−`+1Ar−`+1
2 mr−`+1

for some constant C2 = C2(A2).

Step 3. Asymptotic estimate. We claim that the following estimate holds

h0(P(E),OP(E)(m)⊗OP(E) (−mt · F )) =
∑

µ(Qm,t)≥0

χ(Qm,t) +O(mr−1),

where the sum runs over all partitions m ∈ N` of m.
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To prove this we define h(m) = h0(C, SmE⊗OC(−mt · q)) and we consider
the difference∣∣∣h(m)−

∑
µ(Qm,t)≥0 χ(Qm,t)

∣∣∣ = |h(m)−
∑
A χ(Qm,t)−

∑
B χ(Qm,t)|

≤
∣∣h(m)−

∑
B h

0(C,Qm,t)
∣∣+ |

∑
A χ(Qm,t)|

≤
∑
A(2h0(C,Qm,t) + h1(C,Qm,t)),

where the last inequality is obtained from Step 1. It follows from Step 2 that
both h0(C,Qm,t) and h1(C,Qm,t) grow at most as O(mr−`+1), while Lemma
3.2.8 applied to the integers 0 and 2g−2 implies that there are at most O(m`−2)

elements in A. It follows that the difference above is at most O(mr−1), which
implies the desired asymptotic estimate.

Step 4. Volume computation. Let t ∈ Q and consider the limit

volP(E)(ξ − tf) = lim
m→+∞

h0(C, SmE ⊗OC(−mt · q))
mr/r!

= lim
m→+∞

r!

mr

∑
µ(Qm,t)≥0

χ(Qm,t),

where the last equality follows from Step 4. On the other hand, the Hirzebruch-
Riemann-Roch theorem asserts that

χ(Qm,t) =

(∑̀
i=1

miµi −mt+ 1− g

)
rank(Qm,t).

We put βi = mi/m, and we notice that there are at most O(m`−2) summands
with βi = 0 (cf. Lemma 3.2.8). If none of the βi is zero, then we have that

rank(Qm,t) =
∏̀
i=1

(
mi + ri − 1

mi

)
= mr−` βr1−1

1 · · ·βr`−1
`

(r1 − 1)! · · · (r` − 1)!
+O(mr−`−1).

We obtain therefore that volP(E)(ξ − tf) is computed via the limit

lim
m→+∞

r!

m`

∑
µ(Qm,t)>0

(∑̀
i=1

miµi −mt+ 1− g

)
βr1−1

1 · · ·βr`−1
`

(r1 − 1)! · · · (r` − 1)!
.

Following Notation 3.2.5, we consider the (`−1)-standard simplex ∆̂ = ∆̂`−1 ⊆ R`

with coordinates β1, . . . , β` and we define the continuous function f : ∆̂ → R
by

f(β1, . . . , β`) = max

{∑̀
i=1

µiβi − t, 0

}
βr1−1

1 · · ·βr`−1
`

(r1 − 1)! · · · (r` − 1)!
.
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Finally, we have that

volP(E)(ξ − tf) = r! · lim
m→+∞

1

m`−1

∑
β∈∆̂∩ 1

m
Z`
f(β1, . . . , β`) = r! ·

∫
∆̂
f dβ,

where the last equality follows for instance from [Bou12, Théorème 1.12] or
[Wol05, Lemma 5.15].

Remark 3.2.9. — Alternatively, Chen computed in [Che11, Theo. 1.2] a
similar volume formula, but slightly simplified by integrating in Rr instead of
R` (cf. [Che11, Prop. 3.5]). More precisely, with the same notation as above

volP(E)(ξ − tf) = r! ·
∫

∆̂r−1

max


r∑
j=1

sjλj − t, 0

 dλ

where ∆̂r−1 ⊆ Rr is the standard (r − 1)-simplex with coordinates λ1, . . . , λr,
dλ is the standard induced Lebesgue measure (2), and s = (s1, . . . , sr) is a vec-
tor in Rr such that the value µi appears exactly ri times in the coordinates of
s as in Notation 3.2.10 below.

Notation 3.2.10. — Fix ` ≥ 1 and r ≥ 1 two integers, (r1, . . . , r`) ∈ N`
a partition of r and t ∈ R. We define for (µ1, . . . , µ`) ∈ Q` the following
polytopes:

�̂t =

{
(β1, . . . , β`) ∈ ∆̂`−1 ⊆ R`

∣∣∣∣∣ ∑̀
i=1

µiβi ≥ t

}
and

�t =

{
(λ1, . . . , λr) ∈ ∆̂r−1 ⊆ Rr

∣∣∣∣∣
r∑
i=1

siλi ≥ t

}
,

where
s = (µ1, . . . , µ1︸ ︷︷ ︸

r1 times

, µ2, . . . , µ2︸ ︷︷ ︸
r2 times

, . . . , µ`, . . . , µ`︸ ︷︷ ︸
r` times

) ∈ Qr.

Similarly, for every permutation w ∈ Sr we define

�wt =

{
(λ1, . . . , λr) ∈ ∆̂r−1 ⊆ Rr

∣∣∣∣∣
r∑
i=2

σw(i−1)λi + σw(r)λ1 ≥ t

}
,

where
σ = (µ`, . . . , µ`︸ ︷︷ ︸

r` times

, µ`−1, . . . , µ`−1︸ ︷︷ ︸
r`−1 times

, . . . , µ1, . . . , µ1︸ ︷︷ ︸
r1 times

) ∈ Qr.

2. Unlike Chen, we do not normalize the measure in order to have λ(∆r−1) = 1.
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By abuse of notation, we will also denote by �t and �wt the full dimensional
polytopes in Rr−1 obtained via the projection of ∆̂r−1 ⊆ Rr onto ∆r−1 ⊆ Rr−1.
Explicitly, if (ν2, . . . , νr) are coordinates in Rr−1 then

�t =

{
(ν2, . . . , νr) ∈ ∆r−1 ⊆ Rr−1

∣∣∣∣∣ s1

(
1−

r∑
i=2

νi

)
+

r∑
i=2

siνi ≥ t

}
and

(?) �wt =

{
(ν2, . . . , νr) ∈ ∆r−1

∣∣∣∣∣
r∑
i=2

σw(i−1)νi + σw(r)

(
1−

r∑
i=2

νi

)
≥ t

}
.

Corollary 3.2.11. — For any admissible flag Y• on P(E) and any big rational
class ξ − tf on P(E) we have that

volRr(∆Y•(ξ − tf)) =

∫
�̂t

(∑̀
i=1

µiβi − t

)
βr1−1

1 · · ·βr`−1
`

(r1 − 1)! · · · (r` − 1)!
dβ,

for �̂t ⊆ R` as in Notation 3.2.10.

Remark 3.2.12. — Let F = π−1(q) ∼= Pr−1 be any fiber of π : P(E) → C.
Then, for any big R-divisor D on P(E) we have that F 6⊆ B+(D). In fact,
if D ∼R A + E, with A ample R-divisor and E effective R-divisor, and if
F ⊆ Supp(E), then we can write E = aF +E′ with a > 0 and F 6⊆ Supp(E′),
which implies that F 6⊆ B+(D) since A+ aF is ample.

As a direct consequence, we compute the restricted volume function on a
fiber F = π−1(q) ∼= Pr−1.

Corollary 3.2.13. — Let F be a fiber of π : P(E) → C and let ξ − tf be a
big rational class. Then,

volP(E)|F (ξ − tf) = (r − 1)! ·
∫
�̂t

βr1−1
1 · · ·βr`−1

`

(r1 − 1)! · · · (r` − 1)!
dβ,

for �̂t ⊆ R` as in Notation 3.2.10. In particular, if 0 ≤ τ ≤ µ` − t then we
have that

volRr−1(∆Y•(ξ − tf)ν1=τ ) =

∫
�̂t+τ

βr1−1
1 · · ·βr`−1

`

(r1 − 1)! · · · (r` − 1)!
dβ,

where Y• is any admissible flag on P(E) with divisorial component Y1 = F . In
particular, these volumes depend only on gr(HN•(E)), the graded vector bundle
associated to the Harder-Narasimhan filtration of E.
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Proof. — We consider

v(τ) = volP(E)(ξ−tf+τf) = r!·
∫
�̂t−τ

(∑̀
i=1

µiβi − t+ τ

)
βr1−1

1 · · ·βr`−1
`

(r1 − 1)! · · · (r` − 1)!
dβ.

Since F 6⊆ B+(ξ − tf) by Remark 3.2.12, Theorem 3.1.1 and the Leibniz
integral rule give

volP(E)|F (ξ − tf) =
1

r
· d
dτ
v(τ)

∣∣∣∣
τ=0

= (r − 1)! ·
∫
�̂t

βr1−1
1 · · ·βr`−1

`

(r1 − 1)! · · · (r` − 1)!
dβ.

Lemma 3.2.14. — Following Notation 3.2.10 (?), we have that

volRr(∆Y•(ξ − tf)) =

∫
�t

 r∑
j=1

sjλj − t

 dλ

and
volRr−1(∆Y•(ξ − tf)ν1=τ ) =

∫
�t+τ

dλ = volRr−1(�t+τ ).

Moreover, volRr−1(�t+τ ) = volRr−1(�wt+τ ) for every w ∈ Sr.

Proof. — The first two equalities follow from Remark 3.2.9. For the last as-
sertion consider �t ⊆ Rr and �wt ⊆ Rr as in Notation 3.2.10. Then, there is
a linear transformation T : Rr → Rr, whose associated matrix in the canoni-
cal basis of Rr is given by a permutation matrix, such that T (�t) = �wt and
|det(T )| = 1.

3.3. Newton-Okounkov bodies on projective bundles over curves

Let E be a vector bundle on a smooth projective curve C, of rank r ≥ 2 and
degree d. In this section we study the geometry of Newton-Okounkov bodies
of rational big classes in N1(P(E)) in terms of the numerical information of
the Harder-Narasimhan filtration of E. In particular, Theorem H will be a
consequence of Lemma 3.3.4 and Theorem 3.3.10. We follow Notation 3.1.5.

Definition 3.3.1 (Linear flag). — A complete flag of subvarieties Y• on the
projective vector bundle P(E)

π−→ C is called a linear flag centered at p ∈ P(E),
over the point q ∈ C (or simply a linear flag) if Y0 = P(E), Y1 = π−1(q) ∼= Pr−1

and Yi ∼= Pr−i is a linear subspace of Yi−1 for i = 2, . . . , r, with Yr = {p}.
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Let us begin with the following example that illustrates the general case.
Namely, that the shape of Newton-Okounkov bodies on P(E) will depend on
the semi-stability of E.

Example 3.3.2 (Ruled surfaces). — Suppose that rank(E) = 2 and let
η = a(ξ − µ`f) + bf ∈ N1(P(E))Q be a big class. In other words, a, b ∈ Q>0.
Let

Y• : P(E) ⊇ F = π−1(q) ⊇ {p}
be the linear flag centered at p ∈ P(E), over q ∈ C. The Newton-Okounkov
body of η can be computed by applying [LM09, Theo. 6.4] (see Example
3.1.2)

Semi-stable case. If E is semi-stable then Corollary 3.2.3 implies that every big
class is ample. In particular, for every η ∈ Big(X)Q and every Q-divisor Dη

with numerical class η, we have that N(Dη) = 0 and P (Dη) = Dη. It follows
that, with the notation as in Example 3.1.2, ν = 0, τF (η) = b, α(t) = 0 for
every t ∈ [0, b] and β(t) = a for every t ∈ [0, b]. The Newton-Okounkov bodies
are given by rectangles in this case.

t

y

(0, 0)

(0, a)

(b, 0)

Figure 1. Newton-Okounkov body ∆Y•(η) for E semi-stable

Non semi-stable case. If E is not semi-stable we consider its Harder-
Narasimhan filtration

0→ E1 → E → Q1 → 0,

and we note that in this case E1 = Q`. The quotient E → Q1 → 0 corresponds
to a section s : C → P(E) with [s(C)] = ξ−µ`f in N1(P(E)). The curve s(C)

is the only irreducible curve on P(E) with negative self-intersection. On the
other hand, if Dη is any Q-divisor with numerical class η then, either η is inside
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the nef cone of P(E) and thus P (Dη) = Dη and N(Dη) = 0, or η is big and
not nef in which case we compute that

[P (Dη)] =
b

µ` − µ1
(ξ − µ1f) and [N(Dη)] =

(
a(µ` − µ1)− b

µ` − µ1

)
(ξ − µ`f)

in N1(P(E))Q.
We notice that N(Dη) =

(
a(µ`−µ1)−b
µ`−µ1

)
· s(C) as Q-divisor by minimality

of the negative part and by the fact that the negative part is unique in its
numerical equivalence class. See [Băd01, Lemm. 14.10, Cor. 14.13] for details.

Let t∗ = b− a(µ` − µ1). We have that η is big and nef if and only if t∗ ≥ 0,
in which case the class η − tf is big and nef for 0 ≤ t ≤ t∗. For t∗ ≤ t ≤ b,
the same computation above enables us to find the Zariski decomposition of
Dη − tF , which is big and not nef.

We notice that, with the notation as in Example 3.1.2, ν = 0. On the
other hand, the functions α(t) and β(t) will depend on whether or not we
have {p} = s(C)∩F . A straightforward computation shows that the Newton-
Okounkov bodies are given by the following finite polygons in R2.

t

y

(0, 0) (t∗, 0)

(0, a)

(b, 0)
t

y

(0, 0) (t∗, 0)

(0, a)

(b, 0)

Figure 2. ∆Y•(η) for E not semi-stable and η big and nef
(a) if {p} 6= s(C) ∩ F (b) if {p} = s(C) ∩ F
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t

y

(0, 0)

(0, b
µ`−µ1 )

(b, 0)
t

y

(0, 0)

(0, −t
∗

µ`−µ1 )

(0, a)

(b, 0)

Figure 3. ∆Y•(η) for E not semi-stable and η big and not nef
(a) if {p} 6= s(C) ∩ F (b) if {p} = s(C) ∩ F

We notice that Figure 3 provides examples of big and not nef divisors classes
η such that the origin ~0 ∈ ∆Y•(η) for almost every linear flag Y• except for one.
This shows in particular that condition (2) in the characterization of nefness
given in [KL15, Cor. 2.2] has to be checked for all linear flags.

We first observe that Proposition I states that the shape of Newton-
Okounkov bodies on projective semi-stable vector bundles will be similar
as in Example 3.3.2 above. Moreover, this provides a characterization of
semi-stability in terms of Newton-Okounkov bodies.

We will need the following observation by Küronya, Lozovanu and Maclean.

Proposition 3.3.3 ([KLM12, Prop. 3.1]). — Let X be a normal projective
variety together with an admissible flag Y•. Suppose that D is a big Q-divisor
such that Y1 6⊆ B+(D) and that D − tY1 is ample for some 0 ≤ t < τY1(D),
where τY1(D) = sup{s > 0 | D − sY1 is big}. Then

∆Y•(X,D)ν1=t = ∆Y•|Y1(Y1, (D − tY1)|Y1),

where Y•|Y1 : Y1 ⊇ Y2 ⊇ · · · ⊇ Yn is the induced admissible flag on Y1.
In particular, if Psef(X) = Nef(X) then we have that the Okounkov body

∆Y•(D) is the closure in Rn of the following set

{(t, ν2, . . . , νn) ∈ Rn | 0 ≤ t < τY1(D), (ν2, . . . , νn) ∈ ∆Y•|Y1(Y1, (D−tY1)|Y1)}.

Proof of Proposition I. — (1)⇒ (2). Let η = a(ξ−µ`f) + bf be a big rational
class on P(E) and Y• : X = Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · ⊇ Yr−1 ⊇ Yr = {p} be a linear
flag centered at p ∈ P(E), over the point q ∈ C. Since E is semi-stable we
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have that Big(P(E)) = Amp(P(E)) by Corollary 3.2.3. Equivalently, we have
that B+(η) = ∅ for every big rational class η.

We notice that τF (η) = sup{s > 0 | η − sf ∈ Big(P(E))} = b. The
implication follows from Proposition 3.3.3 and [Bou12, Cor. 4.11], by noting
that if Dη is a Q-divisor with numerical class η then

∆Y•(η)ν1=t = ∆Y•|F (F, (Dη − tF )|F ) = a∆Y•|F (F,H) = a∆r−1 ⊆ Rr−1,

where H ⊆ F ∼= Pr−1 is an hyperplane section.

(2)⇒ (1). We notice that if for all linear flags Y• the Newton-Okounkov body
of η = a(ξ−µ`f) + bf is given by ∆Y•(η) = [0, b]×a∆r−1 ⊆ Rr then η is a big
and nef class, by [KL15, Cor. 2.2]. We can therefore compute the volume of
η via the top self-intersection volP(E)(η) = ηr = rar−1 (b− a(µ` − µ(E))). On
the other hand, we have that

volRn (∆Y•(η)) = volRr ([0, b]× a∆r−1) =
ar−1

(r − 1)!
b,

and hence [LM09, Theo. A] leads to µ` = µ(E), implying the result.

We will first reduce our problem to computing the Newton-Okounkov body
of the big and nef divisor class ξ − µ1f .

Lemma 3.3.4. — Let E be a not semi-stable vector bundle on a smooth pro-
jective curve C, with rank(E) = r ≥ 2. Then the Newton-Okounkov body of
any big rational class η ∈ Big(P(E))Q can be expressed in terms of the Newton-
Okounkov body ∆Y•(ξ − µ1f) ⊆ Rr. More precisely, if η = a(ξ − µ`f) + bf is
a big rational class and Y• is a linear flag, then

(1) ∆Y•(η) = ([0, t∗]× a∆r−1) ∪ (a∆Y•(ξ − µ1f) + t∗~e1) if η is big and nef;
(2) ∆Y•(η) = a∆Y•(ξ − µ1f)ν1≥−t∗ + t∗~e1 if η is big and not nef.

Here t∗ = b − a(µ` − µ1) and a∆r−1 ⊆ Rr−1 is the (r − 1)-simplex with side
length a.

Proof. — If η is an ample rational class then ∆Y•(η)ν1=t = a∆r−1 for
0 ≤ t ≤ t∗, by Proposition 3.3.3 and [LM09, Exam. 1.1]. On the other
hand, we have that ∆Y•(η)ν1≥t∗ = a∆Y•(ξ − µ1f) + t∗~e1 by Theorem 3.1.1.

If η is big and not nef then t∗ < 0. Theorem 3.1.1 implies therefore that
a∆Y•(ξ − µ1f)ν1≥−t∗ = ∆Y•(η)− t∗~e1, which leads to (2).

As the following remark points out, Okounkov bodies can be computed via
divisorial Zariski decomposition whenever Mov(P(E)) = Nef(P(E)).



3.3. NEWTON-OKOUNKOV BODIES ON PROJECTIVE BUNDLES OVER CURVES 91

Remark 3.3.5 (σ-decomposition). — Let E be an unstable vector bundle
over C and let Dη be a big Q-divisor such that [Dη] = η = a(ξ − µ`f) + bf . If
we define for each Γ ⊆ P(E) prime divisor

σΓ(Dη) = inf{multΓ ∆ | ∆ effective such that ∆ ≡num Dη}

then, it follows from [Nak04, III.1.11] that σΓ(Dη) > 0 only for finitely many
Γ. N. Nakayama defined the σ-decomposition or divisorial Zariski decomposi-
tion of Dη to be Dη = Pσ(Dη) +Nσ(Dη), where

Nσ(Dη) =
∑

Γ prime

σΓ(Dη)Γ and Pσ(Dη) = Dη −Nσ(Dη).

It follows from [Nak04, III.1.14 and V.1.3] that

1. Pσ(Dη) is movable,

2. Nσ(Dη) = 0 if and only if Dη is movable, and

3. Supp(Nσ(Dη)) coincides with the divisorial part of B−(η).

Moreover, if Y• is a linear flag on P(E) centered at p ∈ P(E) then
∆Y•(Dη) = ∆Y•(Pσ(Dη)) whenever p 6∈ Supp(Nσ(Dη)), by [KL15, Theo. C].

On the other hand, Lemma 3.2.4 implies that the σ-decomposition of Dη is
non-trivial only if r` = 1 and m∗ := b − a(µ` − µ`−1) < 0, in which case we
have that

[Pσ(Dη)] =
b

µ` − µ`−1
(ξ − µ`−1f) and [Nσ(Dη)] =

−m∗

µ` − µ`−1
(ξ − µ`f)

in N1(P(E))Q, by [FL, Cor. 7.3].
In particular, if Mov(P(E)) = Nef(P(E)) (i.e. if r` = 1 and ` = 2) and Y•

is a linear flag centered at a general (3) point p ∈ P(E) then we have that for
0 ≤ t ≤ µ` − µ1 the slice at ν1 = t is given by

∆Y•(ξ − µ1f)|ν1=t = ∆P(E)|F (ξ − µ1 − tf) by Theorem 3.1.1

= ∆Y•(ξ − µ1f − tf)|ν1=0

= ∆Y•(Pσ(ξ − µ1f − tf))|ν1=0 as p is general

=
(

1− t
µ`−µ1

)
·∆Y•(ξ − µ1f)|ν1=0.

Lemma 3.3.4 and [KL15, Lemm. 1.7] lead to ∆Y•(ξ − µ1f)|ν1=0 = ∆r−1 and
hence

∆Y•(ξ−µ1f) =

{
(ν1, . . . , νr) ∈ Rr≥0 | 0 ≤ ν1 ≤ µ` − µ1,

r∑
i=2

νi ≤ 1− ν1

µ` − µ1

}
.

3. We need to assume that p does not belong to the divisorial part of B−(ξ − µ`f).
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We will need the following result concerning the Newton-Okounkov bodies
of some special graded algebras.

Lemma 3.3.6. — Fix A ∈ R, an integer r ≥ 2, σ = (σ1, . . . , σr) ∈ Rr and
homogeneous coordinates [x1 : . . . : xr] on Pr−1. Put b0 = k and consider for
every integer m ≥ 1 the vector subspace bm ⊆ H0(Pr−1,OPr−1(m)) generated by
monomials xα = xα1

1 · · ·xαrr of total degree |α| = m such that
∑r

i=1 σiαi > A.
Suppose that A ≥ 0 and σ1 ≥ σ2 ≥ · · · ≥ σr. Then

1. b• = ⊕m≥0bm is a graded subalgebra of the coordinate ring k[x1, . . . , xr].

2. Let us denote by V• the flag of linear subspaces

V• : V0 = Pr−1 ⊇ V1 ⊇ · · · ⊇ Vr−1,

where Vi = {x1 = . . . = xi = 0} for i = 1, . . . , r − 1 and consider the
Schubert cell decomposition of the full flag variety parametrizing complete
linear flag on Pr−1

Fr =
∐
w∈Sr

Ωw,

with respect to V•. Fix a permutation w ∈ Sr and let Y• ∈ Ωw. Then
∆Y•(b•) is given by the projection of the polytope{

(ν1, . . . , νr) ∈ Rr≥0

∣∣∣∣∣
r∑
i=1

νi = 1 and
r∑
i=1

σw(i)νi ≥ 0

}
onto the hyperplane {νr = 0}.

Proof. — Let us suppose that xα ∈ bm and xα′ ∈ bm′ , then xα+α′ belongs to
bm+m′ since we have

∑r
i=1 σi(αi+α′i) > 2A ≥ A as long as A ≥ 0. This proves

(1).
In order to prove (2) we will first show that every automorphism ϕ of Pr−1

that fixes the flag V• induces an automorphism of the graded algebra b•. For
this, we remark that automorphisms ϕ of Pr−1 fixing the flag V• correspond
to lower triangular matrices in PGLr(k) and hence, given ϕ = (ϕi,j)1≤i,j≤r
such a matrix, the image of the monomial xα ∈ bm via the induced action on
k[x1, . . . , xr] is given by

ϕ(xα) =

r∏
i=1

(ϕi,1x1 + . . .+ ϕi,ixi)
αi .

The above product can be written as a linear combination of monomials of
the form xα

′
= xk1+...+kr where ki = (ki,1, . . . , ki,i, 0, . . . , 0) ∈ Nr is such that
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|ki| = αi. Let us prove that all these monomials belong to bm as well. In fact,
we have that α′i =

∑r
j=i kj,i and hence∑r

i=1 σiα
′
i =

∑r
i=1

∑r
j=i σikj,i =

∑r
i=1

∑i
j=1 σjki,j

≥
∑r

i=1

∑i
j=1 σiki,j since σ1 ≥ · · · ≥ σr

=
∑r

i=1 σi|ki| =
∑r

i=1 σiαi > A.

It follows that ϕ induces an automorphism of the graded algebra b•.
In order to compute Newton-Okounkov bodies with respect to linear flags

on a given Schubert cell, we note that [Bri05, Prop. 1.2.1] implies that given
a permutation w ∈ Sr and a linear flag Y• ∈ Ωw there exists an automorphism
ϕ of Pr−1 that fixes the reference flag V• and such that the image of the flag
Ww
• via the induced action of ϕ on Fr is Y•, where Ww

• is the linear flag such
that for every i = 1, . . . , r − 1 we have

Ww
i = {xw(1) = . . . = xw(i) = 0} ⊆ Pr−1.

It follows from the previous paragraph that ϕ induces an automorphism of the
graded algebra b• and then for every m ≥ 1 and every P ∈ bm we have that

νY•(ϕ(P )) = νϕ(Ww
• )(ϕ(P )) = νWw

• (P ).

In particular, we have {νY•(P )}P∈bm = {νWw
• (P )}P∈bm ⊆ Nr−1 and conse-

quently ∆Y•(b•) = ∆Ww
• (b•). Therefore, we can suppose that Y• = Ww

• ∈ Ωw

in order to prove (2).
Since bm is generated by monomials we have that

∆Ww
• (b•) =

⋃
m≥1

{
νWw
• (xα)

m

∣∣∣∣ xα ∈ bm

}
.

We compute for every monomial xα = xα1
1 · · ·xαrr ∈ bm that

νWw
• (xα) = (αw(1), αw(2), . . . , αw(r−1)) ∈ Nr−1

and hence for every m ≥ 1 the set
{
νWw• (xα)

m

∣∣∣ xα ∈ bm

}
is given by the set of

points of the form
(
αw(1)

m , . . . ,
αw(r−1)

m

)
∈ Qr−1

≥0 where α = (α1, . . . , αr) ∈ Nr is
such that |α| = α1 + . . .+ αr = m and

∑r
i=1 σiαi > A. Equivalently, is given

by the set of points
(
αw(1)

m , . . . ,
αw(r−1)

m

)
∈ Qr−1

≥0 such that

◦ αw(1)

m + . . .+
αw(r−1)

m ≤ 1 and

◦
∑r

i=1 σi
αi
m =

∑r
i=1 σw(i)

αw(i)

m

=
∑r−1

i=1 σw(i)
αw(i)

m + σw(r)

(
1−

∑r−1
i=1

αw(i)

m

)
> A

m .
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We conclude therefore that

∆Ww
• (b•) =

{
(ν1, . . . , νr−1) ∈ ∆r−1

∣∣∣∣∣
r−1∑
i=1

σw(i)νi + σw(r)

(
1−

r−1∑
i=1

νi

)
≥ 0

}
,

from which (2) follows.

Remark 3.3.7. — The assumption σ1 ≥ σ2 ≥ · · · ≥ σr in Lemma 3.3.6 can
always be fulfilled by considering an automorphism of Pr−1 permuting the
chosen homogeneous coordinates.

Let us note that given q ∈ C, the Harder-Narasimhan filtration

HN•(E) : 0 = E` ⊆ E`−1 ⊆ · · · ⊆ E1 ⊆ E0 = E

induces a (not necessarily complete) flag on P(E) in the following way: let
Y0 = P(E) and for every i = 2, . . . , ` the exact sequence

0→ Qi → E/Ei → E/Ei−1 → 0

induces an inclusion P((E/Ei−1)|q) ↪→ P((E/Ei)|q). We obtain therefore the
following (possibly partial) flag of linear subvarieties

P((E/E1)|q) ⊆ P((E/E2)|q) ⊆ · · · ⊆ P((E/E`−1)|q) ⊆ P(E|q) = π−1(q) ⊆ P(E)

with codimP(E) P((E/Ei)|q) = rank(Ei) + 1. We also note that this flag
is complete if and only if all the semi-stable quotients Qi are line bundles.
In general, it will be necessary to choose a complete linear flag on each
P((Ei−1/Ei)|q) = P(Qi|q) in order to complete the flag above.

We shall consider linear flags that are compatible with the Harder-
Narasimhan filtration of E in the sense that they complete the previous
flag.

Definition 3.3.8 (Compatible linear flag). — A linear flag Y• on P(E)

over q ∈ C is said to be compatible with the Harder-Narasimhan filtration
of E if

YrankEi+1 = P((E/Ei)|q) ∼= Pr−rankEi−1 ⊆ P(E)

for every i = 1, . . . , `.

We will adopt the following convention.

Convention 3.3.9. — Let V• be a fixed linear flag on P(E) over q ∈ C and
consider the corresponding Schubert cell decomposition

Fr =
∐
w∈Sr

Ωw,
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where Fr is the full flag variety parametrizing complete flags of linear subspaces
of V1 = π−1(q) ∼= Pr−1. We say that a linear flag Y• on P(E) over q ∈ C

belongs to a Schubert cell Ωw if the induced linear flag Y•|Y1 belongs to Ωw.

We can prove now the main reduction step. Namely, compute the Newton-
Okounkov body of the big and nef class ξ − µ1f with respect to any linear
flag.

Theorem 3.3.10. — Let C be a smooth projective curve and let E be a vector
bundle over C of rank r ≥ 2. Fix a linear flag Y HN

• on P(E) over q ∈ C which
is compatible with the Harder-Narasimhan filtration of E and let

Fr =
∐
w∈Sr

Ωw

be the corresponding Schubert cell decomposition of the full flag variety Fr
parametrizing linear flags on π−1(q) ∼= Pr−1. Then, for every linear flag Y• on
P(E) over q ∈ C that belongs to Ωw we have that

∆Y•(ξ−µ1f) =
{

(ν1, . . . , νr) ∈ Rr≥0 | 0 ≤ ν1 ≤ µ` − µ1, (ν2, . . . , νr) ∈ �wµ1+ν1

}
,

where �wµ1+ν1 ⊆ Rr−1 is the full dimensional polytope defined in Notation 3.2.10
(?), with (µ1, . . . , µ`) and (r1, . . . , r`) given by the Harder-Narasimhan filtration
of E as in Notation 3.1.5.

Proof. — We follow Notation 3.1.5. We first note that if E is semi-stable then
µ1 = µ` = µ(E) and hence the Theorem follows from Proposition I. Let us
suppose from now on that E is not semi-stable.

It follows from Theorem 3.1.1 and Lemma 3.2.2 that the projection of the
Newton-Okounkov body of ξ − µ1f onto the first coordinate is given by

pr1(∆Y•(ξ − µ1f)) = [0, µ` − µ1].

By continuity of slices of Newton-Okounkov bodies (cf. [KL15, Lemm.
1.7]), it suffices to consider a fixed t ∈]0, µ`−µ1[∩Q and show that the slice of
∆Y•(ξ − µ1f) at t ∈]0, µ` − µ1[∩Q is given by

∆Y•(ξ − µ1f)|ν1=t = �wµ1+t ⊆ Rr−1

for linear flags Y• on P(E) that belong to the Schubert cell Ωw (see Convention
3.3.9).

Let us fix from now on a permutation w ∈ Sr and a linear flag Y• on P(E),
over q ∈ C, and let us denote by Y•|F the induced flag on F . Suppose that
Y•|F belongs to the Schubert cell Ωw with respect to the reference flag Y HN

• |F .
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Consider a Q-divisor D such that [D] = ξ − µ1f in N1(P(E))Q. For every
integer m ≥ 1, let us define the subspace

am = am,t = H0(P(E)|F,OP(E)(bm(D − tF )c))
= Im(H0(P(E),OP(E)(bm(D − tF )c)) rest−−→ H0(F,OF (m)))

⊆ H0(F,OF (m)).

If follows from [LM09, Prop. 4.1, Rem. 4.25] that the restricted algebra a•
above computes the desired slice

∆Y•|F (a•) = ∆Y•(ξ − µ1f)|ν1=t,

and that for every integer n ≥ 1 we have

∆Y•(nD)|ν1=nt = ∆Y•|F (n(D − tF )) = n∆Y•|F (D − tF ) = n∆Y•(D)|ν1=t.

We will consider an• = {anm}m≥0 instead of a• = {am}m≥0, for n fixed
and divisible enough such that nµ1 ∈ Z and nt ∈ Z. We also note that
for 0 < t < µ` − µ1 we have that

µmax(SmE ⊗OC(−m(µ1 + t) · q)) = m(µ` − µ1 − t) > 0

and
µmin(SmE ⊗OC(−m(µ1 + t) · q)) = −mt < 0.

Therefore, by considering n above large enough we may also assume that
µmax(SnmE ⊗OC(−nm(µ1 + t) · q)) > 2g − 1 for every m ≥ 1.

Let [x1 : · · · : xr] be homogeneous coordinates on F ∼= Pr−1. Since Y• is a
linear flag on P(E), there is an isomorphism of graded algebras

φ :
⊕
m≥0

H0(F,OF (m))→ k[x1, . . . , xr]

such that am can be regarded as a subspace of k[x1, . . . , xr]m, the k-vector
space of homogeneous polynomials of degree m in the variables x1, . . . , xr, for
all m ≥ 0. Via this identification, a• can be seen as a graded subalgebra of
k[x1, . . . , xr]. Moreover, the projection formula implies that we can identify
am with

Im
(

H0(C, SmE⊗OC(−m(µ1+t)·q)) rest−−→ H0(C, (SmE⊗OC(−m(µ1+t)·q))|q)
)
.

We shall define a graded subalgebra bn• ⊆ an• for which we can explicitly
compute that

∆Y•|F (bn•) = n�wµ1+t,

and we will prove that ∆Y•|F (bn•) = ∆Y•|F (an•) = n∆Y•|F (a•).
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In order to construct bn• let us note that Proposition 3.1.7 implies that for
every m ≥ 1 there is a filtration

F• : 0 = FL ⊆ FL−1 ⊆ · · · ⊆ F1 ⊆ F0 = SnmE ⊗OC(−nm(µ1 + t) · q)

whose successive quotients have the form

Fj−1/Fj ∼= Qm(j),µ1+t = Sm1Q1 ⊗ · · · ⊗ Sm`Q` ⊗OC(−nm(µ1 + t) · q)

for some partition m(j) ∈ N` of nm, and µ(Qm(j),µ1+t) ≤ µ(Qm(j+1),µ1+t) for
every j ∈ {1, . . . , L}.

Let us define J = J(m) ∈ {1, . . . , L} to be the largest index such that
µ(Qm(J),µ1+t) ≤ 2g − 1. We have that for every j ∈ {J, . . . , L − 1}, the short
exact sequence

0→ Fj+1 ⊗OC(−q)→ Fj+1 → Fj+1|q → 0

gives an exact sequence in cohomology

0→ H0(C,Fj+1 ⊗OC(−q))→ H0(C,Fj+1)→ H0(C,Fj+1|q)→ 0,

since we have that h1(C,Fj+1 ⊗OC(−q)) = 0, by Lemma 3.1.6. In particular,
we get for every j ∈ {J, . . . , L− 1} a surjection H0(C,Fj+1)→ H0(C,Fj+1|q).
Therefore, let us consider the subspaces

bnm = Im(H0(C,FJ+1)
rest−−→ H0(C,FJ+1|q)) = H0(C,FJ+1|q) ⊆ anm.

Let us choose homogeneous coordinates [x1 : . . . : xr] on F such that

Y HN
i+1 = {x1 = . . . = xi = 0} ⊆ P(E)

for i = 1, . . . , r − 1. In particular, we have that

Y HN
rankEi+1 = P((E/Ei)|q) = {x1 = . . . = xrankEi = 0} ⊆ P(E)

for i = 1, . . . , ` and therefore the degree 1 part of the isomorphism φ,

φ1 : H0(F,OF (1)) ∼= H0(C, (E ⊗OC(−(µ1 + t) · q))|q)→ k[x1, . . . , xr]1,

is such that for every i = 0, . . . , `− 1 the image of the subspace

H0(C, (Ei ⊗OC(−(µ1 + t) · q))|q) ⊆ H0(C, (E ⊗OC(−(µ1 + t) · q))|q)

via φ1 coincide with the subspace generated by the variables x1, . . . , xrankEi .
By taking symmetric powers it follows from Proposition 3.1.7 that for each
m ≥ 1 we have that bnm ⊆ k[x1, . . . , xr]nm, the image of the subspace
H0(C,FJ+1|q) ⊆ H0(C,F0|q), corresponds to the subspace of homogeneous
polynomials of degree nm generated by polynomials of the form

P (x) = P1(x1) · · ·P`(x`)
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where Pi is an homogeneous polynomial of degree mi ≥ 0 in the variables
xi = (xi,1, . . . , xi,ri), where (x1, . . . , xr) = (x`, . . . ,x1), and the mi are such
that m1 + . . .+m` = nm and

µ1m1 + . . .+ µ`m` > nm(µ1 + t) + 2g − 1.

In other words, bnm is the subspace generated by monomials xα = xα1
1 · · ·xαrr

of total degree |α| = nm such that
∑r

i=1(σi − µ1 − t)αi > 2g − 1, where
σ = (µ`, . . . , µ`︸ ︷︷ ︸

r` times

, µ`−1, . . . , µ`−1︸ ︷︷ ︸
r`−1 times

, . . . , µ1, . . . , µ1︸ ︷︷ ︸
r1 times

) ∈ Qr.

Then, it follows from Lemma 3.3.6 applied (4) to the collection of subspaces
{bnm}m≥1 that bn• is a graded subalgebra of k[x1, . . . , xr] whose Newton-
Okounkov body, with respect to a linear flag Y• that belongs to the Schubert
cell Ωw (see Convention 3.3.9) is given by

∆Y•|F (bn•) = n�wµ1+t,

where

�wµ1+t =
{

(ν2, . . . , νr) ∈ ∆r−1

∣∣ ∑r
i=2 σw(i−1)νi + σw(r) (1−

∑r
i=2 νi) ≥ µ1 + t

}
and σ = (µ`, . . . , µ`︸ ︷︷ ︸

r` times

, µ`−1, . . . , µ`−1︸ ︷︷ ︸
r`−1 times

, . . . , µ1, . . . , µ1︸ ︷︷ ︸
r1 times

) ∈ Qr. Finally, we have

that

volRr−1(∆Y•|F (bn•)) = volRr−1(n�wµ1+t)

= volRr−1(n∆Y•(ξ − µ1f)|ν1=t) by Lemma 3.2.14

= volRr−1(∆Y•|F (an•))

and hence the inclusion ∆Y•|F (bn•) ⊆ ∆Y•|F (an•) leads to the equality
∆Y•|F (bn•) = ∆Y•|F (an•), as the two convex bodies have equal volume. From
this we conclude that

∆Y•(ξ − µ1f)|ν1=t = �wµ1+t ⊆ Rr−1.

We notice that Theorem H is a immediate consequence of Theorem 3.3.10.

4. We note that if C ∼= P1 then all the slopes µi = µ(Qi) are integer numbers and hence
the inequality “> 2g − 1” becomes “≥ 0”.



3.3. NEWTON-OKOUNKOV BODIES ON PROJECTIVE BUNDLES OVER CURVES 99

Proof of Theorem H. — We note that if η = a(ξ − µ`f) + bf is a big rational
class on P(E) and the induced linear flag Y• belongs to the Schubert cell Ωw

with respect to a reference flag Y HN
• , then Theorem 3.3.10 gives

∆Y•(ξ−µ1f) =
{

(ν1, . . . , νr) ∈ Rr≥0 | 0 ≤ ν1 ≤ µ` − µ1, (ν2, . . . , νr) ∈ �wµ1+ν1

}
and hence

a∆Y•(ξ−µ1f) =
{

(ν1, . . . , νr) ∈ Rr≥0 | 0 ≤ ν1 ≤ a(µ` − µ1), (ν2, . . . , νr) ∈ a�wµ1+ 1
a
ν1

}
.

We compute that for t∗ = b− a(µ` − µ1) we have

a∆Y•(ξ−µ1f)+t∗~e1 =
{

(ν1, . . . , νr) ∈ Rr≥0 | 0 ≤ ν1 ≤ b, (ν2, . . . , νr) ∈ a�wµ1+ 1
a

(ν1−t∗)

}
with µ1 + 1

a(ν1−t∗) = µ`− 1
a(b−ν1). The result follows from Lemma 3.3.4.
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[AW97] M. Andreatta and J. A. Wísniewski. A view on contractions of
higher dimensional varieties. In Algebraic geometry. Proceedings
of the Summer Research Institute, Santa Cruz, CA, USA, July 9–
29, 1995, pages 153–183. Providence, RI: American Mathematical
Society, 1997.
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collaboration of Sándor Kovács. Cambridge: Cambridge Univer-
sity Press, 2013.

[Laz04] R. Lazarsfeld. Positivity in Algebraic Geometry, I & II, volume
48 & 49. Berlin: Springer, 2004.
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[SGAI] M. Raynaud. Séminaire de géométrie algébrique du Bois Marie
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