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Chapter 1

Introduction

This document presents a survey of my research work since I defended my PhD in 2007. Even though
I have been working a wide variety of subjects, my work basically falls in one of the following two
categories.

• Either, my papers propose and study new numerical methods for stochastic problems. These
papers are supported by a competitive C++ implementation of the proposed algorithms. When
the size of the targeted problems justified it, a parallel algorithm and implementation were even
proposed. See Sections 1.1 and 1.2.

• Or they target modeling issues and study how stochastic aspects can help modeling a given
phenomenon. See Section 1.3. My works on modeling have mainly tackled two applications:
finance and ferromagnetism. To keep this document coherent, I have chosen to only expose my
results on stochastic modeling for ferromagnetism as the mathematical analysis of the model
uses techniques related to stochastic approximation.

This document presents 9 articles of mine, which are all somehow related to stochastic optimization.

1.1 Adaptive numerical methods

Making numerical methods adaptive is usually achieved by solving a stochastic optimization problem
to automatically learn the context.

Consider the problem of computing E[f(X)] by a Monte Carlo method and assume it admits a
parametric representation of the form E[f(X)] = E[h(θ, Y )] for all θ. The key motivation for 6
articles of mine was to make the most of this free parameter, knowing that the goal is to choose the
value θ∗ minimizing v(θ) = E[h(θ, Y )2]. When this parametric representation comes from the use of
importance sampling, we proved that the function v was of class C1 and that we could find a function
H such that∇v(θ) = E[H(θ, Y )].

Two methods can be used to approximate θ∗ in such a framework: stochastic approximation
(see [37]) or sample average approximation (see [83]). These two approaches are detailed in the com-
ing two subsections. When, Y is a stochastic process, the parametric representation can be coupled
with multilevel Monte Carlo as explained in Section 1.1.3.

1.1.1 Stochastic approximation

The idea is to build the sequence

θn+1 = θn − γn+1H(θn, Yn+1) + "correction" (1.1)
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where (Yi)i is an i.id. sequence following the law of Y and (γn)n is a positive decreasing sequence.
In [L-15, L-7], we studied the asymptotic properties of the sequence (θn)n (convergence and central
limit theorem). A general framework for the study of the adaptive estimator of E[f(X)], defined by
1
n

∑n
i=1 h(θi−1, Yi), was developed in [L-11], which was a joint work with Bernard Lapeyre.

Chapter 2 presents the results obtained on stochastic approximation.

1.1.2 The sample average approximation approach

Instead of using stochastic approximation, one can apply deterministic optimisation techniques on
sample averages. The second moment v is approximated by vn(θ) = 1

n

∑
i=1 h(θ, Yi)

2 where the
sequence (Yi)i is i.i.d. according to the law of Y . Then, we compute θn = arg minθ vn(θ) by a
deterministic optimisation method and we build Mn = 1

n

∑
i=1 h(θn, Ȳi) where the sequence (Ȳi)i is

i.i.d. following the law of Y .
Two cases have been studied.

• In [L-12], Benjamin Jourdain and I considered the case where Ȳi = Yi for all i and Y is a
Gaussian vector.

• In [L-5], we considered the case where Y has a Gaussian part and a Poisson part. In this work,
we assumed that the sequences (Yi)i and (Ȳi)i were independent.

The algorithms developed in [L-12, L-5] and summarized in Chapter 3 are currently used by Mentor
Graphics and Natixis. While writing this chapter, I managed to improve some of the results originally
published in [L-5] and I chose to present them in the light of new strong laws of large numbers for
doubly indexed sequences (see Section 7.1), which were not available to us at the time we wrote the
original article.

1.1.3 Coupling Multilevel Monte Carlo with importance sampling

In [L-1], we studied with Ahmed Kebaier how to couple multilevel Monte Carlo with importance
sampling. This problem can fit in the framework of the above paragraph by considering the case in
which the Gaussian vector Y consists of the Brownian increments used in the time discretization of
an underlying process X . In this situation, a discretization error adds to the usual Monte Carlo error.
The multilevel Monte Carlo method enables us to better balance these two errors. We have studied
how to further improve the variance of the multilevel estimator by cleverly applying the technique
developed in [L-12, L-5] and summarized in Chapter 3.

Our contribution to importance sampling for multilevel Monte Carlo is detailed in Chapter 4.

1.2 A stochastic optimization point of view to American options

Consider an optimal stopping problem with finite time horizon T , defined on a filtered probability
space with Brownian filtration F = (Ft)0≤t≤T ,

U0 = sup
τ∈T

E[ψ(Xτ )]

where T denotes the set of all F stopping times and X is a Markov process. This optimal stopping
problem admits a dual formulation [48, 80]

U0 = inf
Y ∈L2(FT )

E

[
sup

0≤t≤T
(ψ(Xt)− E[Y |Ft])

]
. (1.2)
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The quality of the approximation depends on the parametrisation of the space of squared integrable
random variables, which has to allow the computation of the conditional expectations using closed
formulae. In [L-21], we proposed to use the vector space of truncated Wiener chaos to approximate
L2(FT ). Then, (1.2) can be approximated by a finite dimensional optimisation problem, whose
solution converges to U0 when both the degree and the order of the truncation tend to infinity. We
have studied the impact of the different parameters on the convergence rate of the approximation.
Then, we have proposed a parallel algorithm along with a C++ implementation with impressive
scaling properties on high performance computers.

This paper is summarized in Chapter 5.

1.3 Stochastic modelling for ferro–magnets

The behaviour of a magnetic moment µ submitted to an external field b is modeled by the Landau–
Lifshitz equation

dµ

dt
= −µ ∧ b− αµ ∧ (µ ∧ b),

where α > 0 and µ0 ∈ S(R3). With S. Labbé, we have worked on the introduction of stochastic
terms in this equation to take into account thermal effects.

• In [L-6], we proposed stochastic model preserving the norm of µ, which is a fundamental
property of the physical system.

dYt = −µt ∧ (b dt+ ε dWt)− αµt ∧ (µt ∧ (b dt+ ε dWt)) with µt =
Yt
|Yt|

(1.3)

where W is a Brownian motion in R3. In this model, µ converges to the unique stable equilib-
rium of the deterministic system and we determined the convergence rate in L2.

• In [L-22], we studied other stochastic models and finally focused on

∂µt = −µt ∧ (b dt+ εt ∂Wt)− αµt ∧ (µt ∧ (b dt+ εt ∂Wt)) (1.4)

where the operator ∂ denotes the Stratonovich differential operator and (εt)t is a deterministic,
positive and decreasing function. We showed that this stochastic system converges to b/ |b| and
obtained an Lp convergence rate. Now, we work on the link between the function (εt)t and the
decrease of the temperature.

Equations (1.3) and (1.4) can be seen as continuous time stochastic approximations. Therefore, it is
not surprising that the techniques developed in these works remind us of the methods used in the
beginning of Chapter 2.

These two papers are presented in Chapter 6.

1.4 Some key technical tools

In Chapter 7, we present several tools used at different places in the manuscript and which proved to
be particularly efficient. I believe that they deserve some special emphasis as they may well be applied
to other problems.
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• Section 7.1 is dedicated to some strong laws of large numbers for doubly indexed sequences,
which were proved in [L-1]. Based on these new laws, I managed to present some improved
results in Section 3.3.

• My proof of the a.s. convergence of randomly truncated stochastic approximation (Chapter 2)
relies on splitting the core of the martingale part from its remainder and then on carrying a
pathwise deterministic analysis related to the ODE method (see [65]). The key ideas of this
method further used in Chapter 6 are detailed in Section 7.2.

• My numerical experiments are all based on an open source scientific library PNL [L-19], which
I have been developing for 10 years. I present in Section 7.3 my motivation for developing such
a library and the key features I implemented in connection to my research activities.

1.5 High Performance Computing

Even though, I have finally decided not to write a dedicated chapter on High Performance Computing
(HPC) in this document, I would like to emphasize this aspect in my research works as it has been
playing a major role. Whenever I propose a new numerical method for high dimensional problems,
I feel concerned with providing a scalable algorithm usable in real life problems. For instance, the
algorithms developed in [L-8, L-1, L-21] were all successfully tested on clusters with several hun-
dreds of processors. As a good parallel algorithm can hardly be obtained by paralleling a sequential
algorithm, my will to propose HPC algorithms has often motivated my choices for one mathematical
methodology rather than an other. Here, I describe two such situations

• In Chapter 5, the stochastic optimization problem coming from the dual formulation of the
American option price is solved using sample average approximation rather than stochastic
approximation. Stochastic approximation is inherently sequential, whereas sample average ap-
proximation enables us to use a parallel evaluation of the cost function, which basically writes
as a Monte Carlo.

• In Chapter 4, we allowed for one importance sampling parameter per level instead of using
a single importance sampling parameter for all the levels, which would have made all them
dependent on one another as in [12]. In our approach, all the levels remain independent as
if there were no importance sampling and can be solved in parallel, which is a key feature of
multilevel Monte Carlo and makes it so popular.

All these HPC algorithms have been implemented in C++ with the help of PNL [L-19].
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Chapter 2

Stochastic approximation

This chapter presents my theoretical results on the convergence of stochastic algorithms [L-15], [L-7]
and an application to a general framework for adaptive Monte Carlo methods [L-11].

2.1 Introduction to stochastic approximation

The use of stochastic algorithms is widespread for solving stochastic optimization problems. These
algorithms are extremely valuable for a practical use and particularly well suited to localize the zero
of a function u. Such algorithms go back to the pioneering work of Robbins and Monro [79], who
considered the sequence

Xn+1 = Xn − γn+1u(Xn)− γn+1δMn+1 (2.1)

to estimate the zero of the function u. The gain sequence (γn)n is a decreasing sequence of positive
real numbers and (δMn)n represents a random measurement error. Since their work, much attention
has been drawn to the study of such recursive approximations. The first works were dealing with
independent measurement error on the observations. A great effort has been made in this direction to
weaken the conditions imposed on both the function u and the noise term δMn. Using the ordinary
differential equation technique, Kushner and Clark [65] proved a convergence result for a wider range
of measurement noises and in particular for martingale increments.

Nevertheless, the assumptions required to ensure the convergence — basically, a sub-linear growth
of u on average — are barely satisfied in practice, which dramatically reduces the range of applica-
tions. Chen and Zhu [29] proposed a modified algorithm to deal with fast growing functions. Their
new algorithm can be written as

Xn+1 = Xn − γn+1u(Xn)− γn+1δMn+1 + γn+1pn+1 (2.2)

where (pn)n is a truncation term ensuring that the sequence (Xn)n cannot jump too far ahead in a
single move.

I studied both the almost sure convergence and the convergence rate of such algorithms. Several
results already existed but the hypotheses considered differed quite significantly. The first result con-
cerning the almost sure convergence can be found in [29]. The convergence was further studied in
[30, 34]. All these studies were carried out using global assumptions on the noise, they basically re-
quired that the series

∑
n γn+1δMn+1 converges a.s. Note that these properties are intimately linked

to the paths of the algorithm itself, which makes them even harder to be checked in practice. Al-
though, some results [28, 33] relying on local assumptions were already available, I aimed at giving a
unified framework with no martingale structure for the noise terms δMn.
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2.2 Stochastic approximation with expanding truncations

Consider the problem of finding the root of a continuous function u : x ∈ Rd 7−→ u(x) ∈ Rd, which
is not easily tractable. We assume that we can only access u up to a measurement error embodied
in the following by the sequence (δMn)n and that the norm |u(x)|2 grows faster than |x|2 such that
the standard Robbins-Monro algorithm (see (2.1)) fails. Instead, we consider the alternative proce-
dure introduced by [29]. This technique consists in forcing the algorithm to remain in an increasing
sequence of compact sets (Kj)j such that

∞⋃
j=0

Kj = Rd and ∀j, Kj  int(Kj+1) . (2.3)

It prevents the algorithm from blowing up during the first iterates. The general idea is to monitor the
moves of the dynamical system (2.1) and to pull the dynamics back to a fixed compact set when the
algorithm makes too big steps. This mechanism ensures the stability of the algorithm — the existence
of a recurrent set — and is definitely essential to prove the convergence.

We introduce a bounded sequence of random vectors (Yn)n with values in Rd, which represents
the reinitialization values. Then, it is natural to impose that for all n, Yn ∈ Kn; actually the bounded-
ness of Yn ensures the existence of a deterministic integer N such that for all n ≥ N , Yn ∈ KN . Let
(γn)n be a decreasing sequence of positive real numbers satisfying

∑
n γn = ∞ and

∑
n γ

2
n < ∞.

For X0 ∈ Rd and σ0 = 0, we define the sequences of random variables (Xn)n and (σn)n by
Xn+ 1

2
= Xn − γn+1u(Xn)− γn+1δMn+1,

Xn+1 = Xn+ 1
2

and σn+1 = σn, if Xn+ 1
2
∈ Kσn

Xn+1 = Yσn and σn+1 = σn + 1, if Xn+ 1
2
/∈ Kσn .

(2.4)

Let F = (Fn)n be the σ−algebra generated by the noise terms, for all n, Fn = σ(δMk, k ≤ n). To
ensure that the sequence (Xn)n is F−adapted, we impose that the sequence (Yn)n is also F−adapted.
Note that Yn can in particular be any bounded measurable function of (X0, X1, · · · , Xn).

It is more convenient to rewrite Equation (2.4) as follows

Xn+1 = Xn − γn+1u(Xn)− γn+1δMn+1 + γn+1pn+1 (2.5)

where

pn+1 =

(
u(Xn) + δMn+1 +

1

γn+1
(Yσn −Xn)

)
1X

n+1
2
/∈Kσn .

2.2.1 Hypotheses

To study the a.s. convergence and the convergence rate of (Xn)n defined by (2.5), we introduce the
following assumptions

(H2.1) i. The function u is continuous.
∃x? ∈ Rd s.t. u(x?) = 0 and ∀x ∈ Rd, x 6= x?, (x− x?) · u(x) > 0.

ii. There exist a function y : Rd →Md×d satisfying lim|x|→0 |y(x)| = 0 and a repulsive1

matrix A ∈Md×d such that

u(x) = A(x− x?) + y(x− x?)(x− x?).
1A matrix is said to be repulsive if all its eigenvalues have positive real parts.
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(H2.2) For any q > 0, the series
∑

n γn+1δMn+11|Xn−x?|≤q converges almost surely.

(H2.3) The sequence (δMn)n is a sequence of martingale increments, ie. E[δMn+1|Fn] = 0 and
moreover

i. there exist two real numbers ρ > 0 and η > 0 such that

κ = sup
n
E
(
|δMn|2+ρ 1|Xn−1−x?|≤η

)
<∞;

ii. there exists a symmetric positive definite matrix Σ ∈Md×d such that

E
(
δMnδM

T
n

∣∣Fn−1

)
1|Xn−1−x?|≤η

P−−−→
n→∞

Σ.

(H2.4) There exists µ > 0 such that ∀n ≥ 0, d(x?, ∂Kn) ≥ µ.

Before investigating the long time behaviour of (Xn)n, it is worth having a closer look at these
assumptions to better understand the range of applicability.

• Hypothesis (H2.1-ii) is equivalent to saying that u is differentiable at x?. The Hypothesis
(H2.1-i) is satisfied as soon as u can be interpreted as the gradient of a strictly convex function
and in this case the matrix A is the Hessian matrix at x?.

• In [28], (H2.2) was replaced by a condition on the convergent subsequences of the algorithm.
We believe our assumption is easier to check in practice as it basically boils down to proving
the local a.s. convergence of a martingale. In Section 2.2.3, we provide a sufficient and simple
condition to ensure (H2.2) when the function u is given as an expectation.

• Hypothesis (H2.3-i) corresponds to some local uniform integrability condition and reminds
us of Lindeberg’s condition. (H2.3-ii) guaranties the convergence of the angle bracket of the
martingale and is key to obtain a central limit theorem. Assumption (H2.3) is only required to
study the convergence rate of (Xn)n.

• Hypothesis (H2.4) is only required for technical reasons but one does not need to be concerned
with it in practice. It reminds us of the case of constrained stochastic algorithms for which the
central limit theorem can only be proved for non saturated constraints.

2.2.2 Main results

Almost sure convergence For the a.s. convergence, no particular structure of the noise term is re-
quired, in particular we do not need any martingale assumption. Most of the time, the sequence (γn)n
is assumed to be deterministic or at least predictable whereas our proof can cope with anticipative
random sequences (γn)n. Obviously, it does not make sense to consider an anticipative gain sequence
but we can handle the case where (γn) is F-adapted but not F−predictable. Note that when (γn)n
is not predictable, assuming that (δMn)n are martingale increments does not ensure anymore that
(
∑n

k=1 γkδMk)n is still a martingale.

Theorem 2.2.1 Assume γn ↓ 0,
∑

n γn = ∞. Under Hypothesis (H2.1-i) and (H2.2), the sequence
(Xn)n defined by (2.5) converges a.s. to x? and moreover the sequence (σn)n is a.s. finite.
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Here, we only present the main ideas sustaining the proof of Theorem 2.2.1. They key tool we
developed to study a dynamical system as (2.5) is to split the core of the martingale from its remainder
in order to introduce an auxiliary system with no extra random term. See Section 7.2 for a detailed
presentation of the method.

Sketch of the proof (Theorem 2.2.1). Assume we have already proved that supn σn < ∞ a.s. and
there a.s. exists q > 0 s.t. for large enough n ≥ 0, |Xn − x?|2 ≤ q. Therefore, we deduce from
(H2.2) that

∑
n γn+1δMn+1 converges a.s. Consider the auxiliary sequence (X ′n)n defined by

X ′n = Xn −
∞∑

i=n+1

γiδMi.

Let ε > 0. There exists N s.t. for all n ≥ N ,
∣∣∑∞

i=n+1 γiδMi

∣∣ ≤ ε and (σn)n≥N is constant. For
n ≥ N , X ′n+1 = X ′n − γn+1u(Xn). Choosing ε > 1 guaranties that for all n ≥ N , |X ′n − x?|

2 ≤
q + 1. Let ū ∆

= sup|x−x?|2≤q+1 |u(x)|.∣∣X ′n+1 − x?
∣∣2 ≤ ∣∣X ′n − x?∣∣2 − 2γn+1(X ′n − x?) · u(Xn) + γ2

n+1 |u(Xn)|2 ,

≤
∣∣X ′n − x?∣∣2 − 2γn+1(Xn − x?) · u(Xn) + γ2

n+1ū
2 + 2γn+1ūε.

Let δ > 0, δ > ε. If |X ′n − x?| > 2δ, then |Xn − x?| > 2δ−ε > δ. We know from Hypothesis (H2.1)
that inf |x−x?|>δ(x− x? | u(x)) ≥ c > 0. Hence,∣∣X ′n+1 − x?

∣∣2 ≤ ∣∣X ′n − x?∣∣2 − 2γn+1(X ′n − x?) · u(Xn) + γ2
n+1 |u(Xn)|2 ,

≤
∣∣X ′n − x?∣∣2 − 2γn+1(c1|X′n−x?|>2δ − ūε) + γ2

n+1ū
2.

The integer N can be chosen large enough s.t. 2(c − εū) − γn+1ū
2 > 0. Since

∑
n γn = ∞, each

time |X ′n − x?| > 2δ, the sequence X ′n is driven back into the ball B̄(x?, δ) in a finite number of
steps. Moreover, limn→∞ 2γn+1ūε+ γ2

n+1ū
2 = 0. Hence, lim supn |X ′n − x?|

2 ≤ 4δ2 for all δ > 0.
This proves that X ′n → x?, which in turn implies that Xn → x?. �

Central limit theorem A central limit theorem can be obtained by centering the iterates around
their limit and applying the rescaling factor (γn)−1/2. An earlier version of the central limit theorem
could be found in [28] but some arguments of his proof deserved to be developed to make it crystal
clear and Chen could not afford the term 1|Xn−1−x?|≤η, which is essential for Section 2.2.3.

Theorem 2.2.2 Consider sequences (γn)n of the form γn = γ
(n+1)α , with 1/2 < α ≤ 1. Assume

Hypotheses (H2.1) to (H2.4) and one the following conditions

• If α = 1 and the matrix 1
2γ I −A is stable, set Q = A− I/(2γ);

• If 1/2 < α < 1, set Q = A.

Then, the sequence (nα/2(Xn − x?))n converges in distribution to a normal random variable with
mean 0 and covariance matrix

V = γ

∫ ∞
0

e−Qt Σ e−Q
T t dt,

which solves QV + V QT − Σ = 0.
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The proof of this result being quite technical, we refer the reader to [L-7]. The key tool we developed
was the introduction of the collection of sets

An =

{
sup

n≥m≥N0

|Xm − x?| ≤ η

}
satisfying that for every 1 > ε > 0 and η > 0, there exists N0, s.t. P(An) ≥ 1 − ε for all n > N0.
Then, we only needed to prove a “local” central limit theorem for the sequence (Xn − x?)1An . The
idea of introducing subsets of Ω with probabilities increasing to 1 to obtain central limit theorems is
used again in Chapters 3 and 4.

In the case α = 1, the assumption on the repulsive behaviour of γA − 1
2 I imposes to choose γ

sufficiently large in order to obtain a central limit theorem. Actually, we can afford more general step
sequences and consider γn = Γ

n+1 where Γ is a d× d invertible matrix. The matrix Γ can be absorbed
into the function u and the sequence (δMn)n such that A becomes ΓA and Σ becomes ΓΣΓT . As for
now, we assume that the assumptions of Theorem 2.2.2 are still valid after absorbing Γ in such a way.
Hence, the central limit theorem writes

√
n(Xn − x?)

D−−−→
n→∞

N (0, VΓ)

where

VΓ =

∫ ∞
0

e(I/2−ΓA)t ΓΣΓT e(I/2−ATΓT )t dt.

Clearly, we would like to choose Γ minimizing the asymptotic variance, a possible criterion could be
to minimize tr(VΓ), which corresponds to the sum of the marginal variances.

tr(VΓ) = tr

(∫ ∞
0

e(I/2−ΓA)t e(I/2−ATΓT )t ΓΣΓTdt

)
= tr

(∫ ∞
0

e(I−ΓA−ATΓT )t dt ΓΣΓT
)

= tr
(
(I − ΓA−ATΓT )−1ΓΣΓT

)
.

If we compute the differential form of the application Γ 7→ tr(VΓ) applied to the matrix H we find
after grouping terms

2 tr
(
−HTA(I − ΓA−ATΓT )−1ΓΣΓT (I − ΓA−ATΓT )−1 +HΣΓT (I − ΓA−ATΓT )−1

)
.

This quantity is zero for all H if and only if

A(I − ΓA−ATΓT )−1Γ + I = 0.

Then, we deduce that tr(VΓ) is minimum for Γ = A−1 and the asymptotically optimal covariance is

VA−1 = A−1Σ(A−1)
T
. (2.6)

2.2.3 A standard noise structure

In practical applications, the function u is very often defined as an expectation u(x) = E[U(x, Z)]
where Z is a random variable with values in Rm and one only has access to samples from U(x, Z).
In such a framework, the stochastic approximation writes

Xn+1 = Xn − γn+1U(Xn, Zn+1)
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where theZn’s are i.i.d according to the distribution ofZ. This equation naturally fits in the framework
defined (2.4) when choosing δMn+1 = U(Xn, Zn+1) − u(Xn). Let F be the filtration generated by
the Zn’s, then E[δMn+1|Fn] = 0. In this section, we assume that the sequence (γn)n is predictable.

Let q > 0, we define the sequence (M q
n)n by M q

n =
∑n

i=1 γiδMi1|Xi−1−x?|≤q, which is clearly a
F-martingale with angle bracket

〈M q〉n =
n∑
i=1

γ2
i E[δMiδM

T
i |Fi−1]1|Xi−1−x?|≤q,

=
n−1∑
i=0

γ2
i (E[U(Xi, Zi+1)U(Xi, Zi+1)T | Fi]− u(Xi)u(Xi)

T )1|Xi−1−x?|≤q.

If
∑

n γ
2
n <∞ and the function x 7−→ E[|U(x, Z)|2] is bounded on any compact set, we immediately

deduce that supn〈M q〉n < ∞ a.s. Then, the strong law of large numbers for square integrable
martingales (see for instance [46, 71]) yields the a.s. convergence of M q

n when n→∞ and therefore
(H2.2) is satisfied. Consequently, Theorem 2.2.1 takes a much simpler form

Corollary 2.2.3 Assume
∑

n γn = ∞ and
∑

n γ
2
n < ∞ a.s. Under Hypothesis (H2.1-i) and if the

function x 7−→ E[|U(x, Z)|2] is locally bounded, then the sequence (Xn)n defined by (2.5) converges
a.s. to x? and moreover the sequence (σn)n is a.s. finite.

The assumption (H2.3) required to obtain a central limit theorem can also be reformulated in a
much simpler way. Condition (H2.3-i) is satisfied as soon as the function x 7−→ E[|U(x, Z)|2+ρ]
is locally bounded and u is continuous. Moreover, if the function x 7−→ E[U(x, Z)U(x, Z)T ] is
continuous at x?, Assumption (H2.3-ii) holds with Σ = Cov(U(x?, Z)).

Corollary 2.2.4 Consider sequences (γn)n of the form γn = γ
(n+1)α , with 1/2 < α ≤ 1. Assume Hy-

potheses (H2.1-i) and (H2.4). Moreover, assume u is continuous, the function x 7−→ E[|U(x, Z)|2+ρ]
is locally bounded for some ρ > 0 and the function x 7−→ E[U(x, Z)U(x, Z)T ] is continuous at x?.
Then, the conclusion of Theorem 2.2.2 holds.

All the delicate assumptions involving (δMn)n take a much simpler form in this context as we
managed to narrow the required conditions to compact sets. These new assumptions are far easier to
check in practical applications and make the extra difficulty of the proofs worth it.

2.2.4 Averaging the iterates

When it comes to practically using stochastic approximation, people often implement an averaging
principle on top of it to smooth the convergence. It is based on the idea that if a sequence converges,
its Césaro mean converges more smoothly. Typically, we propose the following companion algorithm
to (2.5)

X̄n =
1

n−m+ 1

n∑
i=m

Xi

wherem is the starting index of the averaging process. Clearly, when (Xn)n converges so does (X̄n)n.
In practice, we would like (X̄n)n to converge faster and more smoothly, which makes the choice of m
not so easy. If m is too large, there is no smoothing process and if m too small, it takes ages to forget
the initial condition and therefore makes the convergence slower. At this point, it becomes clear that
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m should depend on n. Consider sequences (γn)n of the form γn = γ
(n+1)α , with 1/2 < α < 1 and a

moving window average

X̃n(τ) =
1

n−mn + 1

n∑
i=mn

Xi (2.7)

with mn = sup{k ≥ 1 : k + τkα ≤ n} ∧ n and τ > 0 being a real parameter monitoring the
length of the averaging window. For any τ > 0, the convergence of (X̃n(τ))n easily ensues from
Theorem 2.2.1 or Corollary 2.2.3. The asymptotic normality has been studied in [L-20].

Theorem 2.2.5 . Assume Hypotheses (H2.1) to (H2.4). Then, for any τ > 0, the sequence(
nα/2(X̃n(τ)− x?)

)
n

converges in distribution to a normal random vector with mean 0 and co-
variance matrix

Ṽ (τ) =
A−1ΣA

τ
+O(τ−2).

Note that the zero order approximation of τ Ṽ (τ) corresponds to the asymptotic variance obtained
with the best possible matrix valued gain sequence (see the discussion after Theorem 2.2.2 and Equa-
tion (2.6)). In practice, it is hardly feasible to use the best gain sequence as it requires to know
the minimizer x?. The averaging process presented in this paragraph enables us to almost reach
the asymptotically optimal variance and makes the numerical convergence of the algorithm much
smoother and more robust to the choice of γ.

2.3 Application to adaptive Monte Carlo methods

2.3.1 A general framework

Consider the problem of computing the expectation E[Y ] of a real valued random variable Y and
assume Y admits a parametric representation such that

E[Y ] = E[H(x, Z)] for all x ∈ Rd, (2.8)

where Z is a random vector with values in Rm and H : Rd × Rm 7−→ R is a measurable function
satisfying E |H(x, Z)| <∞ for all x ∈ Rd. We also impose that

x 7−→ v(x) = Var(H(x, Z)) is finite for all x ∈ Rd, (2.9)

We want to make the most of this free parameter x to settle an automatic variance reduction method,
see [55] for a recent survey on adaptive variance reduction. It consists in first finding a minimiser x?
of the variance v and then plugging it into a Monte Carlo method with a narrower confidence interval.
This technique heavily relies on the ability to find a parametric representation and to effectively min-
imize the function v. Many papers have been written on how to construct parametric representations
H(x, Z) for several kinds of random variables Z. We mainly have in mind examples based on control
variates (see [44, 61, 62]) or importance sampling (see [3, 4, 86]).

Assume we have a parametric representation of the form H(x, Z) satisfying Equations (2.8)
and (2.9). Let (Zn)n be an i.i.d. sequence of random vectors with the distribution of Z. Assume
we know how to use the sequence (Zn)n to build an estimator Xn of x? adapted to the filtration
F = (Fn = σ(Z1, . . . , Zn))n. Once such an approximation is available, there are at least two ways of
using it to devise a variance reduction method.
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The non-adaptive algorithm

Algorithm 2.3.1 (Non adaptive importance sampling (NADIS)) Let n be the number of samples
used for the Monte Carlo computation. Draw a second set of n samples (Z ′1, . . . , Z

′
n) independent of

(Z1, . . . , Zn) and compute

ξ̄n =
1

n

n∑
i=1

H(Xn, Z
′
i).

This algorithm has been studied in [4, 86] and required 2n samples. It may use less than 2n samples
if the estimation of x? is performed on a smaller number of samples but then it raises the question of
how many samples to use.

The adaptive algorithm The adaptive approach is to use the same samples (X1, . . . , Xn) to com-
pute Xn and the Monte Carlo estimator. Compared to the sequential algorithm, the adaptive one uses
half of the samples.

Algorithm 2.3.2 (Adaptive Importance Sampling (ADIS)) Let n be the number of samples used
for the Monte Carlo computation.
For X0 fixed in Rd, compute

ξn =
1

n

n∑
i=1

H(Xi−1, Zi). (2.10)

The sequence (ξi)i can be written in a recursive manner so that it can be updated online each time a
new iterate Xi is drawn

ξi+1 =
i

i+ 1
ξi +

1

i+ 1
H(Xi, Zi+1), with ξ0 = 0.

The online update of the sequence (ξi)i enables us to avoid storing the whole sequence (Z1, . . . , Zn)
for computing ξn. This adaptive algorithm was first studied in [4] under assumptions to be verified
along the path of (Xn)n, which makes them hard to check in practise. In [L-11], we have proved a
new convergence result under local integrability conditions on the function H , see Theorem 2.3.3.

2.3.1.1 Computing the optimal parameter

In this section, we are interested in effective ways to compute or at least approximate the optimal
parameter x?. To do so, we further assume that the function v is strictly convex, goes to infinity at
infinity and is continuously differentiable. Moreover, we suppose that ∇v admits a representation as
an expectation

∇v(x) = E[U(x, Z)].

When the function H is sufficiently smooth, U(x, Z) = 2H(x, Z)∇xH(x, Z) a.s. for all x ∈ Rd.
Then, the optimal parameter x? is uniquely determined by the equation E[U(x?, Z)] = 0, which fits
exactly in the framework of Section 2.2.3. Define the sequence (Xn)n as in (2.4)

Xn+1 = TKσn (Xn − γn+1U(Xn, Zn+1))

where TKσn denotes the truncation on the compact set Kσn . Corollary 2.2.3 yields the convergence
of the sequence (Xn)n to x?.
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2.3.2 Convergence of the adaptive Monte Carlo method

An adaptive strong law of large numbers

Theorem 2.3.3 (Adaptive strong law of large numbers) Assume Equation (2.8) and (2.9) hold. Let
(Xn)n≥0 be a (Fn)−adapted sequence with values in Rd such that for all n ≥ 0, Xn < ∞ a.s and
for any compact subset K ⊂ Rd, supx∈K E(|H(x, Z)|2) <∞. If

inf
x∈Rd

v(x) > 0 and
1

n

n∑
k=0

v(Xk) <∞ a.s., (2.11)

then ξn converges a.s. to E(Y ).

Proof. For any p ≥ 0, we define τp = inf{k ≥ 0; |Xk| ≥ p}. The sequence (τp)p is an increasing
sequence of F−stopping times such that limp→∞ τp ↑ ∞ a.s.. LetMn =

∑n−1
i=0 H(Xi, Zi+1)−E(Y ).

We introduce M τp
n = Mτp∧n defined by

M
τp
n =

n−1∧τp∑
i=0

H(Xi, Zi+1)− E(Y ) =

n−1∑
i=0

(H(Xi, Zi+1)− E(Y ))1i≤τp .

E(|H(Xi, Zi+1)− E(Y )|2 1i≤τp) ≤ E(1i≤τpE(|H(X,Z)− E(Y )|2)X=Xi). On the set {i ≤ τp}, the
conditional expectation is bounded from above by sup|X|≤p v(X). Hence, the sequence (M

τp
n )n is

square integrable and it is obvious that (M
τp
n )n is a martingale, which means that the sequence (Mn)n

is a locally square integrable martingale (i.e. a local martingale which is locally square integrable).

〈M〉n =

n−1∑
i=0

E((H(Xi, Zi+1)− E(Y ))2|Fi) =

n−1∑
i=0

v(Xi).

By Condition (2.11), we have a.s. lim supn
1
n〈M〉n < ∞ and lim infn

1
n〈M〉n > 0. The strong law

of large numbers for locally L2 martingales (see [71]) yields the result. �

The sequence (Xn)n can be any sequence adapted to (Zn)n≥1 convergent or not. For instance,
(Xn)n can be an ergodic Markov chain distributed around the minimizer x? such as Monte Carlo
Markov Chain algorithms.

Remark 2.3.4 When the sequence (Xn)n≥0 converges a.s. to a deterministic constant x∞, it is suffi-
cient to assume that v is continuous at x∞ and v(x∞) > 0 to ensure that (2.11) is satisfied. There is
no need to impose that x∞ = x? although it is undoubtedly wished in practice.

A Central limit theorem for the adaptive strong law of large numbers To derive a central limit
theorem for the adaptive estimator ξn, we need a central limit theorem for locally square integrable
martingales, whose convergence rate has been extensively studied. We refer to the works of Rebolledo
[77], Jacod and Shiryaev [53], Hall and Heyde [46] and Whitt [90] to find different statements of
central limit theorems for locally square integrable càdlàg martingales in continuous time, from which
theorems can easily be deduced for discrete time locally square integrable martingales.

Theorem 2.3.5 Assume Equation (2.8) and (2.9) hold. Let (Xn)n≥0 be a F−adapted sequence with
values in Rd such that for all n ≥ 0, Xn < ∞ a.s and converging to some deterministic value x∞.
Assume there exists η > 0 such that the function s2+η : x ∈ Rd 7−→ E

(
|H(x, Z)|2+η

)
is finite

for all x ∈ Rd and continuous at x∞. Moreover, if v is continuous at x∞ and v(x∞) > 0, then,
√
n(ξn − E(Y ))

law−−→ N (0, v(x∞)).
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Proof. We know from the proof of Theorem 2.3.3 that Mn =
∑n−1

i=0 H(Xi, Zi+1)−E(Y ) is a locally
square integrable martingale and that 1

n〈M〉n converges a.s. to v(x∞).

1

n

n−1∑
i=0

E(|H(Xi, Zi+1)− E(Y )|2+η|Fi) ≤ c

(
1

n

n−1∑
i=0

s2+η(Xi) + E(Y )2+η

)
.

The term on the r.h.s is bounded thanks to the continuity of s2+η at x∞. Hence, the local martingale
(Mn)n satisfies Lindeberg’s condition. The result ensues from the central limit theorem for locally L2

martingales. �

Remark 2.3.6 None of the assumptions of Theorems 2.3.3 and 2.3.5 are to be checked along the path
of (Xn)n, which makes these results valuable in practice. This improvement was possible without
adding integrability conditions on supx∈K |H(x, Z)| for any compact sets K by relying on the theory
on locally square integrable martingales and the asymptotic normality of ξn is proved under with very
light conditions, namely some integrability properties on |H(x, Z)| for any fixed x.

From a practical point of view, ti is desirable to have a central limit theorem using an estimator of
the limiting variance. In a crude Monte Carlo setting, it is sufficient to rescale the estimator by an
estimator of its variance after centering it. In our setting, the estimator is again obtained by martingale
arguments.

Corollary 2.3.7 Assume Equation (2.8) and (2.9) hold. Let (Xn)n≥0 be a Fn−adapted sequence
with values in Rd such that for all n ≥ 0, Xn < ∞ a.s and converging to some deterministic value
x∞. Assume there exists η > 0 such that the function s4+η : x ∈ Rd 7−→ E

(
|H(x, Z)|4+η

)
is

finite for all x ∈ Rd and continuous at x∞. Then, v2
n = 1

n

∑n−1
i=0 H(Xi, Zi+1)2 − ξ2

n
a.s.−−→ v(x∞). If

moreover v(x∞) > 0, then
√
n

vn
(ξn − E(Y ))

law−−−−−→
n→+∞

N (0, 1).

When x∞ = x?, which is nonetheless not required, the limiting variance is optimal in the sense
that a crude Monte Carlo computation with the optimal parameter x? would have led to the same
limiting variance.

2.3.3 A special case: importance sampling for normal random vectors

2.3.3.1 Theoretical framework

We end Section 2.3 by an example of a parametric framework as described in (2.8). We reviewed
several ways of building such parametrisations in [L-11] but we chose to focus only on the importance
sampling for normal random vectors as it will be further investigated in the next chapter.

Let G be a d−dimensional standard normal random vector. For any measurable function h :
Rd −→ R such that E(|h(G)|) <∞,

E [h(G)] = E
[
e−x·G−

|x|2
2 h(G+ x)

]
for all x ∈ Rd. (2.12)

Assume we want to compute E[f(G)] for a measurable function f : Rd −→ R such that f(G) is

integrable. By applying equality (2.12) to h = f and h(u) = f2(u) e−x·u+
|x|2
2 , one obtains that the

variance of the random variable f(G+ x) e−x·G −
|x|2
2 is given by

v(x) = E
[
f2(G) e−x·G+

|x|2
2

]
− E[f(G)]2.
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The strict convexity of the function v is already known from [86] for instance, but we can prove a
slightly improved version of this result.

Proposition 2.3.8 Assume that

E[f(G)] > 0, (2.13)

∃ε > 0, E[|f(G)|2+ε] <∞ (2.14)

Then, v is infinitely continuously differentiable and strongly convex.

2.3.3.2 Bespoke estimators of the optimal variance parameter

We know from Proposition 2.3.8 that the optimal variance parameter is uniquely characterised by
∇v(x?) = 0 with

∇v(x) = E
[
(x−G)f(G)2 e−x·G+

|x|2
2

]
. (2.15)

If we apply (2.12) again, we obtain an other expression for

∇v(x) = E
[
−Gf(G+ x)2 e−2x·G+|x|2

]
. (2.16)

Let us introduce the following two functions

U1(x,G) = (x−G)f(G)2e−x·G+
|x|2
2 ,

U2(x,G) = −Gf(G+ x)2e−2x·G+|x|2 .

Using either (2.15) or (2.16), we can write ∇v(x) = E(U2(x,G)) = E(U1(x,G)) and these two
functions U1 and U2 fit in the framework of Sections 2.2.3 and 2.3.1.1 and enable us to construct two
estimators of x? (X1

n)n and (X2
n)n following (2.4)

X1
n+1 = TKαn

(
X1
n − γn+1U

1(X1
n, Gn+1)

)
,

X2
n+1 = TKαn

(
X1
n − γn+1U

2(X2
n, Gn+1)

)
,

where Gn is an i.i.d sequence of random variables with the law of G. We also consider the averaged
versions (X̃1

n)n and (X̃2
n)n of these sequences defined as in (2.7). Based on (2.12), we define

H(x,G) = f(G+ x)e−x·G−
|x|2
2 .

Corresponding to the different estimators of x? listed above, we can define as many approximations
of E(f(G)) following (2.10)

ξ1
n =

1

n

n∑
i=1

H(X1
i−1, Gi), ξ2

n =
1

n

n∑
i=1

H(X2
i−1, Gi)

ξ̃1
n =

1

n

n∑
i=1

H(X̃1
i−1, Gi), ξ̃2

n =
1

n

n∑
i=1

H(X̃2
i−1, Gi)

where the sequence (Gi)i has already been used to build the estimators (X1
n)n, (X2

n)n, (X̃1
n)n and

(X̃2
n)n. From Proposition 2.3.8 and Corollary 2.2.3 and Theorems 2.3.3 and 2.3.5, we can deduce the

following result.

Theorem 2.3.9 If there exists ε > 0 such that E[f(G)4+ε] < ∞ then, the sequences (X1
n)n, (X2

n)n,
(X̃1

n)n and (X̃2
n)n converge a.s. to x? for any increasing sequence of compact sets (Kj)j satisfy-

ing (2.3) and the adaptive estimator (ξ1
n)n, (ξ2

n)n, (ξ̃1
n)n and (ξ̃2

n)n converge to E[f(G)] and are
asymptotically normal with optimal limiting variance v(x?).
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2.3.3.3 Complexity of the different approximations

From Theorem 2.3.9, we know that the adaptive estimators (ξ1
n)n, (ξ

2
n)n, (ξ̃

1
n)n, (ξ̃

2
n)n all converge

with the same rate
√
v(x?)/n but they do not have the same computational cost. First, let us

concentrate on (ξ1
n)n and (ξ̃1

n)n. At each iteration i, the function f has to be computed twice : once
at the point Gi+1 + X1

i (or Gi+1 + X̃1
i ) to update the Monte Carlo estimator and once at the point

Gi+1 to update X1
i+1. Hence, the computation of ξ1

n or ξ̃1
n requires 2n evaluations of the function f .

Similarly, the computation of ξ̃2
n requires 2n evaluations of the function f . Closely looking at the

computation of (ξ2
n)n immediately highlights the benefit of having put the parameter x back into the

function f in the expression of ∇v : the updates of ξ2
i+1 and X2

i+1 both use the same evaluation of
the function f . Hence, the computation of ξ2

n only needs n evaluations of the function f instead of
2n for all the other algorithms. Obviously, the computational costs of the different estimators cannot
really be reduced to the number of times the function f is evaluated so one should not expect that
computing ξ2

n is twice less costly than the other estimators but we will see in the examples below that
the estimator ξ2

n is indeed faster than the others.

To shortly conclude on the complexity of the different algorithms, be they sequential or adaptive,
one should bear in mind that all the estimators except (ξ2

n)n roughly require twice the computational
time of the crude Monte-Carlo method.

2.3.3.4 Application to the pricing of basket options in a local volatility model

Now, we compare the different algorithms on multi-asset options. The quantity “Var MC” denotes the
variance of the crude Monte Carlo estimator computed on-line on a single run of the algorithm. The
variance denoted “Var ξ2” (resp. “Var ξ̃2”) is the variance of the ADIS algorithm (see Algorithm 2.3.2)
which uses (X2

n)n (resp. (X̃2
n)n) to estimate x?. These variances are computed using the on-line

estimator given by Corollary 2.3.7.
We consider options with payoffs of the form (

∑d
i=1 ω

iSiT −K)+ where (ω1, . . . , ωd) is a vector
of algebraic weights (enabling us to consider exchange options).

ρ K γ Price Var MC Var ξ2 Var ξ̃2

0.1 45 1 7.21 12.24 1.59 1.10
55 10 0.56 1.83 0.19 0.14

0.2 50 0.1 3.29 13.53 1.82 1.76
0.5 45 0.1 7.65 43.25 6.25 4.97

55 0.1 1.90 14.74 1.91 1.4
0.9 45 0.1 8.24 69.47 10.20 7.78

55 0.1 2.82 30.87 2.7 2.6

Table 2.1: Basket option in dimension d = 40 with r = 0.05, T = 1, Si0 = 50, σi = 0.2, ωi = 1
d for

all i = 1, . . . , d and n = 100 000.

Estimators MC ξ2 ξ̃2

CPU time 0.85 0.9 1.64

Table 2.2: CPU times for the option of Table 2.1.

The results of Table 2.1 indicate that the adaptive algorithm using an averaging stochastic approx-
imation outperforms not only the crude Monte Carlo approach but also the adaptive algorithms using
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non-averaging stochastic approximation. Nonetheless, these good results in terms of variance reduc-
tion must be considered together with their computation costs reported in Table 2.2. As explained in
Section 2.3.3.3, we notice that the computational cost of the estimator ξ2 is very close to the one of the
crude Monte Carlo estimator because the implementation made the most of the fact that the updates
of ξ2

i+1 and X2
i+1 both need to evaluate the function f at the same point. Since this implementation

trick cannot be applied to ξ̃2, the adaptive algorithm using an averaging stochastic approximation is
twice slower. For a given precision, the adaptive algorithm is between 5 and 10 times faster.

2.4 Conclusion

In this chapter, we have presented theoretical results on the convergence of stochastic approximation
with random truncations to handle fast growing functions. These algorithms aim at computing the
minimum of strictly convex and continuously differentiable functions given as expectations, which
typically come up when using importance sampling. In the second half of the chapter, we have
explained how to use stochastic approximation to implement adaptive Monte Carlo methods based on
importance sampling and we have specially focused on the normal random vector framework. The
method has proved to be efficient but requires fine tuning of the gain sequence (γn)n. In the next
chapter, we will propose a more robust algorithm for computing the optimal importance sampling
parameter.
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Chapter 3

The Sample Average Approximation
approach to Importance Sampling

In this chapter, we develop a parametric approach to adaptive importance sampling, which uses Sam-
ple Average Approximation (see [83]) to compute the optimal importance sampling parameter. We
focus more specifically on two cases: the Gaussian vectors (see [L-12]) and jump diffusion processes
(see [L-5]). The algorithm developed for the Gaussian framework is currently being used by Natixis
for their foreign exchange derivative pricer and Mentor Graphics for rare event simulation when de-
signing electronic circuits.

3.1 The importance sampling framework

3.1.1 A parametric approach

Let E be a Polish space and ν a measure defined on E. We consider the problem of computing
E[ϕ(X)] where the random variable X taking values in E has a density function g : E 7−→ R+ with
respect to the measure ν. Consider a family of random variables (X(θ))θ∈Rp with values in E and
density functions (fθ)θ∈Rp with respect to ν satisfying supp(g) ⊂ supp(fθ) for all θ ∈ Rp. Then, we
can write

E[ϕ(X)] =

∫
E
ϕ(x)g(x)dν(x) =

∫
E
ϕ(x)

g(x)

fθ(x)
fθ(x)dν(x)

E[ϕ(X)] = E

[
ϕ(X(θ))

g(X(θ))

fθ(X(θ))

]
. (3.1)

From a practical point of view, one has to find the best density function h in order to maximize
the accuracy of the Monte Carlo estimator. First, we need to make precise how to measure the quality
of a density. Two criteria are usually considered to define the best density function: the variance or
the cross–entropy.

The variance. As the convergence of the Monte Carlo estimator is governed by the central limit
theorem, it is quite natural to try to find the density function fθ minimizing the variance of the esti-
mator

v(θ) = Var

(
ϕ(X(θ))

g(X(θ))

fθ(X(θ))

)
= E

ϕ(X(θ))2

(
g(X(θ))

fθ(X(θ))

)2
− (E[ϕ(X)])2 .
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Only the second moment depends on the density function fθ and moreover using (3.1) again, we
obtain

v(θ) = E
[
ϕ(X)2 g(X)

fθ(X)

]
− (E[ϕ(X)])2 . (3.2)

With this expression, we managed to decouple the objective function ϕ and the importance sampling
density function fθ. The second moment naturally writes as an expectation w.r.t the density function
g and the auxiliary density function fθ is only involved in the importance sampling weight. The
decoupling between ϕ and fθ will play a crucial role to prove regularity properties for the function v.

From (3.2), we easily deduce that the optimal change of measure minimizing

E
[
ϕ(X)2 g(X)

h(X)

]
over all possible functions h is defined by

h?(x) =
ϕ(x)g(x)

E[ϕ(X)]
. (3.3)

This choice actually leads to a zero variance estimator but cannot be used in practice as it involves the
expectation to be computed as a scaling factor. If the optimization problem minθ E

[
ϕ(X)2 g(X)

fθ(X)

]
is

well–posed (strongly convex for instance), we can solve it directly and efficiently. When this approach
reveals too difficult, the cross entropy method (see de Boer et al. [32]) can be used.

The cross entropy. It amounts to minimizing the distance between h? and the set of functions (fθ)θ
defined by

D(h∗, fθ) =

∫
E

log
h?(x)

fθ(x)
h∗(x)dν(x) =

∫
E
h?(x) log h(x)dν(x)−

∫
E
h∗(x) log f(x)dν(x).

Minimizing D(h?, fθ)) over θ boils down to solving

max
θ

∫
e
h?(x) log fθ(x)dν(x).

Substituting h? with its expression from (3.3), we obtain the equivalent maximization problem

max
θ

∫
E
ϕ(x)g(x) log fθ(x)dν(x) = max

θ
E[ϕ(X) log fθ(X)].

Remark. The cross entropy approach is generally better suited for rare event simulation than the vari-
ance criterion. However, these two approaches have been extensively tested in the Gaussian frame-
work for both variance reduction and rare event simulation in collaboration with Mentor Graphics and
we came to the conclusion that the variance criterion was more efficient. It leads to a far more robust
algorithm (see Section 3.3.3), which converges in very few gradient steps (usually 5 steps are enough
to claim convergence).
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3.1.2 The exponential change of measure

A very common way of building a set of parametrized densities is to use the Esscher transform leading
to the exponential change of measure. Let ψ(θ) = logE[eθ·X ] be the cumulative generating function
of X . We assume that ψ(θ) < ∞ for all θ ∈ Rd, which implies that ψ is infinitely differentiable.
Using Hölder’s inequality, one can prove that ψ is convex. We define the family (fθ)θ by

fθ(x) = g(x) eθ·x−ψ(x), x ∈ Rd.

From (3.1) and (3.2), we deduce that

E[ϕ(X)] = E
[
ϕ(X(θ)) e−θ·X

(θ)+ψ(θ)
]

v(θ) = E[ϕ(X)2 e−θ·X+ψ(θ)]− E[f(X)]2.

Proposition 3.1.1 Assume that

∃γ > 0, E[|ϕ(X)|2+γ ] <∞; (3.4)

lim
|θ|→∞

fθ(x) = 0 for all x ∈ Rd. (3.5)

Then, v is infinitely differentiable, convex, lim|θ|→∞ v(θ) =∞ and

∇v(θ) = E
[
(∇ψ(θ)−X)ϕ(X)2 e−θ·X+ψ(θ)

]
∇2v(θ) = E

[
(∇2ψ(θ) + (∇ψ(θ)−X)(∇ψ(θ)−X)T )ϕ(X)2 e−θ·X+ψ(θ)

]
.

From Proposition 3.1.1,

∇2v(θ) = E
[
∇2ψ(θ)ϕ(X)2 e−θ·X+ψ(θ)

]
+ E

[
(∇ψ(θ)−X)(∇ψ(θ)−X)Tϕ(X)2 e−θ·X+ψ(θ)

]
.

The second term on the r.h.s is a positive semi–definite matrix. Assume there exists δ > 0 such that
θ 7→ ψ(θ)− δ

2 |θ|
2 is convex, then

∇2v(θ) ≥ δE
[
ϕ(X)2 e−θ·X+ψ(θ)

]
Id ≥ δE[|ϕ(X)|]2Id

where the last part ensues from the Cauchy Schwartz inequality. Hence, v is strongly convex as soon
as ψ is strongly convex and P(ϕ(X) 6= 0) > 0.

Now, we focus on two specific examples, which will be further investigated in the coming sections.

The Gaussian distribution. Let X be a standard normal random vector with values in Rd and
choose for ν the Lebesgue measure on Rd. Then, g(x) = (2π)−

1
2d e−|x|

2/2 and ψ(θ) = |θ|2
2 for

θ ∈ Rd. The family (fθ)θ is defined by

fθ(x) = (2π)−
1
2d e−|x|

2/2 eθ·x−|θ|
2/2 = (2π)−

1
2d e|x−θ|

2/2,

which corresponds to the density function of normal random vector with mean θ and identity covari-
ance matrix. In the Gaussian case, the Esscher transform actually coincides with the well–known
mean shift approach.
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The Poisson distribution. Let X be a Poisson distribution with parameter λ > 0 and choose for ν
the counting measure on N. Then, g(x) = λx e−λ

x! for x ∈ N and ψ(θ) = λ(eθ −1) for θ ∈ R. The
family (fθ)θ is defined by

fθ(x) =
λx e−λ

x!
eθx−λ(eθ −1), for x ∈ N.

Take θ = log µ
λ for µ > 0, then

fθ(x) =
µx e−µ

x!
,

which corresponds to the probability mass function of a Poisson random variable with parameter µ.
This example can naturally be extended to the case of a random vector with independent Poisson
components.

3.2 Importance sampling for the mixed Gaussian Poisson framework

In the rest of this chapter, we focus on the specific Gaussian Poisson framework. Les G be a standard
Gaussian vector in Rd and Nµ = (Nµ1

1 , · · · , Nµp
p ) a vector of p independent Poisson random vari-

ables with parameters µ = (µ1, . . . , µp). The random variable Nm will be called a Poisson random
vector. Moreover, we assume that G and Nµ are independent. The motivation for studying such a
framework comes from the discretization of a jump diffusion process. In this case, the size p + d of
the problem can become very large as the effective dimension is the number of time steps times the
dimension of the driving Brownian and Poisson process. We focus on the computation of

E = E[f(G,Nµ)] (3.6)

where f : Rd×Np −→ R satisfies E[|f(G,Nµ)|] <∞. Based on the exponential change of measure,
we deduce the following importance sampling formula.

Lemma 3.2.1 For any measurable function h : Rd × Np −→ R either positive or such that
E[|h(G,Nµ)|] <∞, one has for all θ ∈ Rd, λ ∈ (]0,+∞[)p

E[h(G,Nµ)] = E

h(G+ θ,Nλ) e−θ·G−
|θ|2
2

p∏
i=1

eλi−µi
(
µi
λi

)Nλi
i

 (3.7)

where Nλ is a Poisson random vector with parameter λ = (λ1, . . . , λp).

When the expectation E is computed using a Monte Carlo method, the Central Limit Theorem
advises to use the representation of f(G,Nµ) with the smallest possible variance which
is achieved by choosing the parameters (θ, λ) which minimize the variance of of

f(G + θ,Nλ) e−θ·G−
|θ|2
2
∏p
i=1 eλi−µi

(
µi
λi

)Nλi
i

. This raises several questions which are investigated

in the chapter. Does the variance of f(G + θ,Nλ) e−θ·G−
|θ|2
2
∏p
i=1 eλi−µi

(
µi
λi

)Nλi
i

admits a unique
minimizer? If so, how can it be computed numerically and how to make the most of it in view of a
further Monte Carlo computation?
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These questions are quite natural in the context of Monte Carlo computations and have already
been widely discussed in the pure Gaussian framework. The first applications to option pricing of
some adaptive Monte Carlo methods based on importance sampling goes back to the papers of [3, 4].
These papers were based on a change of mean for the Gaussian random normal vectors and the
optimal parameter was searched for by using some stochastic approximation algorithm with random
truncations. This approach was investigated in Section 2.3. To circumvent the delicate tuning of
stochastic approximation, we propose to use sample average approximation instead, which basically
relies on deterministic optimization techniques. An alternative to random truncations was studied by
[70] who managed to modify the initial problem in order ta apply the more standard Robbins Monro
algorithm. Not only have they applied this to the Gaussian framework but they have considered a few
examples of Levy processes relying on the Esscher transform to introduce a free parameter. The idea
of using the Esscher transform was also extensively investigated by [56, 57, 58].

3.2.1 Computing the optimal importance sampling parameters

Thanks to Lemma 3.2.1, the expectation E can be written

E = E

f(G+ θ,Nλ) e−θ·G−
|θ|2
2

p∏
i=1

eλi−µi
(
µi
λi

)Nλi
i

 , ∀ θ ∈ Rd, λ ∈ R∗+
p.

Note that for the particular choice of θ = 0 and λ = µ, we recover Equation (3.6).
The convergence rate of a Monte Carlo estimator of E based on this new representation is governed

by the variance of f(G + θ,Nλ) e−θ·G−
|θ|2
2
∏p
i=1 eλi−µi

(
µi
λi

)Nλi
i

which can be written in the form

v(θ, λ)− E2 where

v(θ, λ) = E

[
f(G,Nµ)2 e−θ·G+

|θ|2
2

p∏
i=1

eλi−µi
(
µi
λi

)Nµi
i

]
. (3.8)

To keep equations a bit more concise, we introduce the function F : Rd×Rd×N×R∗+p×R∗+p −→ R
defined by

F (g, θ, n, λ, µ) = f(g, n)2 e−θ·g+
|θ|2
2

p∏
i=1

eλi−µi
(
µi
λi

)ni
. (3.9)

This expression of v is easily obtained by applying Lemma 3.2.1 to the function h(g, n) = f(g +

θ, n)2 e−2θ·g−|θ|2∏p
i=1 e2(λi−µi)

(
µi
λi

)2ni
. Applying the change of measure backward after computing

the variance enables us to write the variance in a form which does not involve the parameters θ and λ
in the arguments of the function f . From Proposition 3.1.1, we deduce

Proposition 3.2.2 Assume that

(H3.1) i. ∃(n1, . . . , np) ∈ N∗p, s.t. P(|f(G, (n1, . . . , np))| > 0) > 0

ii. ∃γ > 0, E
[
|f(G,Nµ)|2+γ

]
<∞.

Then, the function v is infinitely continuously differentiable, strongly convex and moreover the gradi-
ent vectors are given by

∇θv(θ, λ) = E [(θ −G)F (G, θ,Nµ, λ, µ)] ; ∇λv(θ, λ) = E [a(Nµ, λ)F (G, θ,Nµ, λ, µ)] (3.10)
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where the vector a(Nµ, λ) =
(

1− N
µ1
1
λ1
, . . . , 1− N

µp
p

λp

)T
. The second derivatives are defined by

∇2
θ,θv(θ, λ) =E

[(
Id + (θ −G)(θ −G)T

)
F (G, θ,Nµ, λ, µ)

]
, (3.11)

∇2
θ,λv(θ, λ) =E

[
(θ −G)a(Nµ, λ)TF (G, θ,Nµ, λ, µ)

]
, (3.12)

∇2
λ,λv(θ, λ) =E

[(
D + a(Nµ, λ)a(Nµ, λ)T

)
F (G, θ,Nµ, λ, µ)

]
(3.13)

where the diagonal matrix D is defined by D = diagp

(
N
µ1
1

λ21
, . . . ,

N
µp
p

λ2p

)
.

As a consequence, the function v admits a unique minimizer (θ?, λ?) defined by ∇θv(θ?, λ?) =
∇λv(θ?, λ?) = 0. The characterization of (θ?, λ?) as the unique minimizer of a strongly convex
function is very appealing but there is no hope to compute the gradient of v in a closed form, so we
will need to resort to some kind of approximations before running the optimization step. In many
situations, such as the discretization of a jump diffusion, it is advisable to reduce the dimension of the
space in which the optimization problem is solved. We will see in the examples that it leads to huge
computational time savings and do not deteriorate the optimal variance significantly.

Reducing the dimension of the optimization problem. Let 0 < d′ ≤ d and 0 < p′ ≤ p be
the reduced dimensions. Instead of searching for the best importance sampling parameter (θ, λ) in
the whole space Rd × R∗+p, we consider the subspace {(Aϑ,Bλ) : ϑ ∈ Rd′ , λ ∈ R∗+p

′} where
A ∈ Rd×d′ is a matrix with rank d′ ≤ d and B ∈ R∗+p×p

′
a matrix with rank p′ ≤ p. Since all the

coefficients of B are non negative, for all ϑ ∈ R∗+p
′
, Bϑ ∈ R∗+p.

For such matrices A and B, we introduce the function vA,B : Rd′ × R∗+p
′ 7−→ R defined by

vA,B(ϑ, λ) = v(Aϑ,Bλ). (3.14)

The function vA,B inherits from the regularity and convexity properties of v. Hence, from Propo-
sition 3.2.2, we know that vA,B is continuously infinitely differentiable and strongly convex. As a
consequence, there exists a unique couple of minimizers (ϑA,b? , λA,B? ) such that vA,B(ϑA,B? , λA,B? ) =
inf

ϑ∈Rd′ ,λ∈R∗+
p′ vA,B(ϑ, λ). For the particular choices A = Id, B = Ip, d = d′ and p = p′, the

functions vId,Ip and v coincide.

The Esscher transform as a way to reduce the dimension. Consider a two dimensional process
(Xt)t≤T of the formXt = (Wt, Ñ

µ̃
t ) whereW is a real Brownian motion and Ñ µ̃ is a Poisson process

with intensity µ̃. The Esscher transform applied to X yields that for any nonnegative function h, we
have the following equality ∀ α ∈ R, λ̃ ∈ R∗+,

E[h((Wt, Ñ
µ̃
t )t≤T )] = E

h((Wt + αt, Ñ λ̃)t≤T ) e−αWT− |α|
2T
2 eT (λ̃−µ̃)

(
µ̃

λ̃

)Ñ λ̃
T


Let 0 = t0 < · · · < tp = T be a time grid of [0, T ]. If we consider the vector G (resp. Nµ) as
the increments of W (resp. Ñ µ̃) on the grid, we can recover a particular form of Equation (3.7) with
A,B ∈ Rp given by

A =
(√
t1,
√
t2 − t1, . . . ,

√
tp − tp−1

)T
; B = (t1, t2 − t1, . . . , tp − tp−1)T .
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3.2.2 Tracking the optimal importance sampling parameter

The optimal importance sampling parameter (θ?λ?) are characterized as the unique zero of an expec-
tation, which is the typical framework for applying stochastic approximation, which was the point of
view adopted in Chapter 2. In this work, we adopt a totally different point of view often called sample
average approximation, which basically consists in first replacing expectations by sample averages
and then using deterministic optimization techniques on these empirical means.

Let (Gj)j≥1 be a sequence of d−dimensional independent and identically distributed standard
normal random variables. We also introduce (Nµ,j)j≥1 a sequence of p−dimensional independent
and identically distributed Poisson random vectors with intensity µ. For m ≥ 1, we introduce the
sample average approximation of the function vA,B defined by

vA,Bm (ϑ, λ) =
1

m

m∑
j=1

f(Gj , Nµ,j)2 e−Aϑ·G
j+
|Aϑ|2

2

p∏
i=1

e(Bλ)i−µi
(

µi
(Bλ)i

)Nµi,j
i

. (3.15)

For n large enough, f(Gj , Nµ,j) 6= 0 for some index j ∈ {1, . . . ,m} and the approximation vA,Bn is
also strongly convex and hence admits a unique minimizer (ϑA,Bm , λA,Bm ) defined by

(ϑA,Bm , λA,Bm ) = arginf
ϑ∈Rd′ ,λ∈R∗+

p′
vA,Bm (ϑ, λ). (3.16)

Proposition 3.2.3 Under Assumption (H3.1), the sequence of random functions (vA,Bn )n converges
a.s. locally uniformly to the continuous function vA,B .

To prove this result, we use the uniform strong law of large numbers recalled hereafter, see for instance
[83, Lemma A1]. This result is also a consequence of the strong law of large numbers in Banach
spaces [69, Corollary 7.10, page 189].

Lemma 3.2.4 Let (Xi)i≥1 be a sequence of i.i.d. Rm-valued random vectors, E an open set of Rd
and h : E × Rm → R be a measurable function. Assume that

• a.s., χ ∈ E 7→ h(χ,X1) is continuous,

• for all compact sets K of Rd such that K ⊂ E, E
(
supχ∈K |h(χ,X1)|

)
< +∞.

Then, a.s. the sequence of random functions χ ∈ K 7→ 1
n

∑n
i=1 h(χ,Xi) converges locally uniformly

to the continuous function χ ∈ E 7→ E(h(χ,X1)).

Proof (Proof of Proposition 3.2.3). It is sufficient to prove the result for vn and it will hold for vA,Bn .
Let M > m > 0. For all (θ, λ) such that |(θ, λ)| ≤M and d0(λ) > m, we have

e−θ·G+
|θ|2
2

p∏
i=1

eλi−µi
(
µi
λi

)Nµi
i

≤
d∏

k=1

(e−MGk + eMGk) e
M2

2

p∏
i=1

eM−µi
(
µi
m

)Nµi
i

.

The r.h.s. is integrable by (H3.1) and Hölder’s inequality; hence, we can apply Lemma 3.2.4. �

Proposition 3.2.5 Under Assumption (H3.1), the pair (ϑA,Bm , λA,Bm ) converges a.s. to (ϑA,B? , λA,B? )
as m→ +∞. Moreover, if

(H3.2) ∃δ > 0, E
[
|f(G,Nµ)|4+δ

]
<∞,
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√
m
(

(ϑA,Bm , λA,Bm )− (ϑA,B? , λA,B? )
)

converges in law to the normal distribution Nd+p(0,Γ) where

Γ =
(
∇2vA,B(ϑA,B? , λA,B? )

)−1
Cov(∇F (G,AϑA,B? , Nµ, BλA,B? ))

(
∇2vA,B(ϑA,B? , λA,B? )

)−1
.

Condition (H3.2) ensures that the covariance matrix Cov(∇F (G,AϑA,B? , Nµ, BλA,B? )) is well de-
fined. The non singularity of the matrix ∇2vA,B(ϑA,B? , λA,B? ) is guaranteed by the strict convexity
of v. By combining Propositions 3.2.3 and 3.2.5, we can state the following result

Corollary 3.2.6 Under Assumption (H3.1), vA,Bm (ϑA,Bm , λA,Bm ) converge a.s. to vA,B(ϑA,B? , λA,B? ) as
n→ +∞.

The second part of Proposition 3.2.5 is a consequence of [83, Theorem A2]. Hence, we only prove
the first a.s. convergence. If the sequence (ϑA,Bm , λA,Bm )m were obtained as the solution of a sequence
of optimization problems solved under the compactness constraint, the a.s. convergence would follow
from [83, Theorem A1] as a direct consequence of the uniform strong law of large numbers.

Proof (Proof of Proposition 3.2.5). Let ε > 0. We define a compact neighbourhood Vε of (ϑ?, λ?)

Vε
∆
=
{

(ϑ, λ) ∈ Rd′ × Rp′ : |(ϑ, λ)− (ϑ?, λ?)| ≤ ε
}
. (3.17)

In the following, we assume that ε is small enough, so that Vε is included in Rd′ × R∗+p
′
.

By the strict convexity and the continuity of vA,B ,

α
∆
= inf

(ϑ,λ)∈Vcε
vA,B(ϑ, λ)− vA,B(ϑA,B? , λA,B? ) > 0.

The local uniform convergence of vA,Bm to vA,B ensures that for some nα sufficiently large,

∀m ≥ mα, ∀(ϑ, λ) ∈ Vε, |vA,Bm (ϑ, λ)− vA,B(ϑ, λ)| ≤ α

3
. (3.18)

For m ≥ mα and (ϑ, λ) /∈ Vε, we define (ϑA,Bε , λA,Bε ) ∈ Vε by

(ϑA,Bε , λA,Bε )
∆
=

(
ϑA,B? + ε

ϑ− ϑA,B?

|(ϑ− ϑA,B? , λ− λA,B? )|
, λA,B? + ε

µ− λA,B?

|(ϑ− ϑA,B? , λ− λA,B? )|

)
.

Using the convexity of vA,Bm for the first inequality and Equation (3.18) for the second one, we deduce

vA,Bm (ϑ, λ)− vA,Bm (ϑA,B? , λA,B? ) ≥ |(ϑ− ϑ
A,B
? , λ− λA,B? )|

ε

[
vA,Bm (ϑA,Bε , λA,Bε )− vA,Bm (ϑA,B? , λA,B? )

]
≥
[
vA,B(ϑA,Bε , λA,Bε )− vA,B(ϑA,B? , λA,B? )− 2α

3

]
≥ α

3
.

The optimality of (ϑA,Gm , λA,Bm ) yields that vA,Bm (ϑA,Bm , λA,Bm ) ≤ vA,Bm (ϑA,B? , λA,B? ). So, we conclude
that (ϑA,Bm , λA,Bm ) ∈ Vε for m ≥ mα. Therefore, (ϑA,Bm , λA,Bm ) converges a.s. to (ϑA,B? , λA,B? ). �

The above proof essentially relies on the strong convexity of the function vA,B to prove that the
pair (ϑA,Bm , λA,Bm ) converges to the solution of the original problem. This proof can be adapted when
the objective function is only convex and not strictly convex but tends to infinity at infinity.
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3.3 The adaptive Monte Carlo estimator

In this section, we assume to have at hand a sequence of optimal solutions (ϑA,Bm , λA,Bm ) and want to
devise an adaptive Monte Carlo method taking advantage of of these parameters through the use of
Equation (3.7). We propose the following two stages algorithm.

Algorithm 3.3.1

First stage Generate a sequence (Gj)j=1,...,m of i.i.d random vector with the standard normal dis-
tribution in Rd and a sequence (N j = (N j

1 , . . . , N
j
p ))j=1,...,m of i.i.d Poisson random vectors

with parameter µ. Define

vA,Bm (ϑ, λ) =
1

m

m∑
j=1

f(Gj , N j)2 e−Aϑ·G
j+
|Aϑ|2

2

p∏
i=1

e(Bλ)i−µi
(

µi
(Bλ)i

)Nj
i

. (3.19)

Compute

(ϑm, λm) = argmin
(ϑ,λ)∈Rd′×R∗+

p′
vA,Bm (ϑ, λ).

Second stage: Generate a sequence (Ḡj)j=1,...,n of i.i.d random vector with the standard normal
distribution in Rd and a sequence (N̄ j)j=1,...,n of i.i.d Poisson random vectors with parameter
Bλm. Define

MA,B
n,m =

1

n

n∑
j=1

f(Ḡj +Aϑm, N̄
j) e−Aϑm·Ḡ

j− |Aϑm|
2

2

p∏
i=1

e(Bλm)i−µi
(

µi
(Bλm)i

)N̄j
i

. (3.20)

Note that nothing is said on the dependency structure between (Gj , N j)1≤j≤m and (Ḡj , N̄ j)1≤j≤n.
In the following, we will study two different cases. First, we assume that conditionally on λm,
(Gj , N j)1≤j≤m and (Ḡj , N̄ j)1≤j≤n are independent. Second, we prove that in the purely Gaussian
case, we can take Gj = Ḡj for all j.

3.3.1 SLLN and CLT in the independent case

In this section, we assume that conditionally on λm, (Gj , N j)1≤j≤m and (Ḡj , N̄ j)1≤j≤n are indepen-
dent. The conditional independence between the two stages combined with Lemma 3.2.1 immediately
shows that for any fixed m and n, the estimator MA,B

n,m is unbiased, ie. E[MA,B
n,m ] = E . Conditionally

on (Gj , Nj)j=1,...,m, the terms involved in the sum of Equation (3.20) are i.i.d., hence the standard
strong law of large numbers yields that limn→+∞M

A,B
n,m = E[f(G,Nµ)] a.s. for any fixed m by

applying Lemma 3.2.1. Similarly, the central limit theorem applies and we can state the following
result.

Proposition 3.3.2 For any fixed m, MA,B
n,m converges a.s. to E as n goes to infinity and moreover

conditionally on (ϑm, λm),
√
n(MA,B

n,m − E)
law−−−−−→

n→+∞
N (0, vA,B(ϑm, λm)).

This result is not fully satisfactory as from a practical point of view, we would like to let both m
and n go to infinity. It is convenient to rewrite MA,B

n,m(n) using an auxiliary sequence of i.i.d. random
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variables (Ū ji )1≤i≤p,j≥1 following the uniform distribution on [0, 1] and independent of all the other
random variables used so far. If we introduce

Ñ j
i (λ) =

∞∑
k=0

k1
P (λi;k)≤Uji <P (λi;k+1)

for all 1 ≤ i ≤ p, 1 ≤ j

where P (λ, ·) is the cumulative distribution function of the Poisson distribution with parameter λ,

then (N̄ j)j=1,...,n
Law
= (Ñ j(λm(n)))j=1,...,n. Since for all k ∈ N, the function λ ∈ R∗ 7−→ P (λ, k)

is continuous and decreasing, we get that limn→∞ Ñ
j(λm(n)) = N j(λ?) a.s. and for all λ ≤ λ′,

Ñ j(λ′) < Ñ j(λ) where the ordering has to be understood component wise.
We define

M̃n(θ, λ) =
1

n

n∑
j=1

f(Ḡj + θ, Ñ j(λ)) e−θ·Ḡ
j− |θ|

2

2

p∏
i=1

eλi−µi
(
µi
λi

)Ñj
i (λ)

.

It is obvious that MA,B
n,m(n)

Law
= M̃n(Aϑm(n), Bλm(n)).

Theorem 3.3.3 Let m : N → N be an increasing function tending to infinity. Then, under Assump-
tions (H3.1), MA,B

n,m(n) converges a.s. to E as n goes to infinity.

Proof. It is actually sufficient to prove the result for A and B being identity matrices. For the sake of
clear notations, when A = Id and B = Ip, we write Mn,m(n) instead of MA,B

n,m(n).
The proof relies on a localising argument combined with Proposition 7.1.1. For a fixed ε > 0, we

define Vε by
Vε

∆
=
{

(θ, λ) ∈ Rd × Rp : |(θ, λ)− (θ?, λ?)| ≤ ε
}
.

We assume that ε is small enough, such that Vε ⊂ Rd×R∗+p. Thanks the independence of the samples
used in the two stages of the algorithm, conditionally on ((Gj , N j), j ≥ 1), Mn,m writes as a sum of
i.i.d random variables and E[Mm,n] = E . Consider the sequence

Xj,m =

(
f(Ḡj + θm, N̄

j) e−θm·Ḡ
j− |θm|

2

2

p∏
i=1

e(λm)i−µi
(

µi
(λm)i

)N̄j
i

− E

)
1(θm,λm)∈Vε .

Note that 1
n

∑n
i=1Xj,m = (Mm,n − E)1(θm,λm)∈Vε . By conditioning w.r.t to (θm, λm), we easily

prove that E[Xj,m] = 0 and

E
[
(Mn,m − E)21(θm,λm)∈Vε

]
≤ 1

n

(
sup

(θ,λ)∈Vε
v(θ, λ)− E2

)
.

Applying Proposition 7.1.1 proves that (Mn,m(n) − E)1(θm(n),λm(n))∈Vε converges to zero a.s. Since,
(θm(n), λm(n))→ (θ?, λ?) a.s., we deduce that Mn,m(n) → E a.s. when n goes to infinity. �

Theorem 3.3.4 Let m : N→ N be an increasing function of n tending to infinity. Assume that

(H3.3) i. for all k ∈ Np, the function g ∈ Rd 7−→ f(g, k) is continuous;

ii. there exists a compact neighbourhood V of (ϑ?, λ?) included in Rd′ ×R∗+p
′

and η > 0

such that sup(ϑ,λ)∈V E
[
|f(Ḡ+Aϑ, Ñ1(Bλ))|2(1+η)

]
<∞.
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Then, under Assumptions (H3.1) and (H3.2),
√
n(M̃n(Aϑm(n), Bλm(n))− E)

law−−−−−→
n→+∞

N (0, vA,B(ϑ?, λ?)− E2).

In [L-5], we proved the result under more stringent assumptions. Here, we manage to
relax the assumption E

[
sup(ϑ,λ)∈V |f(Ḡ+Aϑ, Ñ1(Bλ))|2(1+η)

]
< ∞ and replace it by

sup(ϑ,λ)∈V E
[
|f(Ḡ+Aϑ, Ñ1(Bλ))|2(1+η)

]
< ∞. Putting the supremum outside of the expecta-

tion is a tremendous improvement in practical applications. Moreover, we required that m(n) ∼ nβ

with β > 0, which turns out to be unnecessary. We explain the general methodology of the proof for
A and B being identity matrices under these relaxed assumptions.

Proof.
√
n(M̃n(θm(n), λm(n))− E) =

√
n(M̃n(θ?, λ?)− E) +

√
n(M̃n(θm(n), λm(n))− M̃n(θ?, λ?))

From the standard central limit theorem,
√
n(M̃n(θ?, λ?)−E)

law−−−−−→
n→+∞

N (0, v(θ?, λ?)−E2). There-

fore, it is sufficient to prove that
√
n(M̃n(θm(n), λm(n))− M̃n(θ?, λ?))

Pr−−−−−→
n→+∞

0. Let ε > 0.

P
(√

n
∣∣∣M̃n(θm(n), λm(n))− M̃n(θ?, λ?)

∣∣∣ > ε
)
≤ P(m(n)1/4

∣∣(θm(n), λm(n))− (θ?, λ?)
∣∣ > 1)

+
n

ε2
E
[∣∣∣M̃n(θm(n), λm(n))− M̃n(θ?, λ?)

∣∣∣2 1|(θm(n),λm(n))−(θ?,λ?)|≤m(n)−1/4

]
. (3.21)

We deduce from Proposition 3.2.5, that P(m(n)1/4
∣∣(θm(n), λm(n))− (θ?, λ?)

∣∣ > 1) −→ 0. We
introduce

Q(θ, λ) = e−θ·Ḡ
1− |θ|

2

2

p∏
i=1

eλi−µi
(
µi
λi

)Ñ1
i (λ)

.

Conditionally on (θm(n), λm(n)), M̃n(θm(n), λm(n))− M̃n(θ?, λ?) is a sum of i.i.d. centered random
variables. Then, it is sufficient to monitor differences as∣∣∣f(Ḡ1 + θ?, Ñ

1(λ?))Q(θ?, λ?)− f(Ḡ1 + θm(n), Ñ
1(λm(n)))Q(θm(n), λm(n))

∣∣∣2
on the set

{∣∣(θm(n), λm(n))− (θ?, λ?)
∣∣ ≤ m(n)−1/4

}
, which is a subset of V for large enough n.

Assumption (H3.3-i) enables us to prove that it goes to 0 a.s. when n tends to infinity. Let δ < η, the
conditional independence combined with Hölder’s inequality yields that for large enough n

E
[∣∣∣f(Ḡ1 + θm(n), Ñ

1(λm(n)))Q(θm(n), λm(n))
∣∣∣2(1+δ)

1(θm(n),λm(n))∈V

]
≤ sup

(θ,λ)∈V
E
[∣∣∣f(Ḡ1 + θ, Ñ1(λ))Q(θ, λ)

∣∣∣2(1+δ)
]

≤ sup
(θ,λ)∈V

E
[∣∣∣f(Ḡ1 + θ, Ñ1(λ))

∣∣∣2(1+η)
] 1+δ

1+η

E
[
Q(θ, λ)

2(1+δ)(1+η)
η−δ

] η−δ
1+η

.

Using (H3.3-ii), we deduce that

sup
n
E
[∣∣∣f(Ḡ1 + θm(n), Ñ

1(λm(n)))Q(θm(n), λm(n))
∣∣∣2(1+δ)

]
<∞,

which proves the uniform integrability of the family (|f(Ḡ1+θm(n), Ñ
1(λm(n)))Q(θm(n), λm(n))|2)n.

Then, we deduce that the second term in (3.21) tends to zero. �
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3.3.2 Recycling the samples in the Gaussian case

In this section, we focus on the purely Gaussian framework, which writes

E = E
[
f(G+ ϑ) e−Aϑ·G−

|Aϑ|2
2

]
, ∀ ϑ ∈ Rd′ , ∀ A ∈Md×d′ .

The variance associated to the parametrized representation is given by v(θ)− E2 where

v(ϑ) = E
[
f(G)2 e−Aϑ·G+

|Aϑ|2
2

]
. (3.22)

In [L-12], we considered Algorithm 3.3.1 with the same samples in both stages instead of sampling
conditionally independent random vectors between the two stages. This is easily done and natural
since a normal random vector X with mean vector θ can be written as X = θ + G where G is a
standard normal random vector. No such simple relation exists for the Poisson distribution to link a
Poisson random variable with parameter µ to one with parameter λ, which explains why we have just
independent samples in Section 3.3.1.

Algorithm 3.3.5 Generate a sequence (Gj)j=1,...,m∨n of i.i.d random vectors following the standard
normal distribution in Rd.

First stage Define

vAm(ϑ) =
1

m

m∑
j=1

f(Gj)2 e−Aϑ·G
j+
|Aϑ|2

2 . (3.23)

Compute

ϑm = argmin
ϑ∈Rd′

vAm(ϑ).

Second stage: Compute

MA
n,m =

1

n

n∑
j=1

f(Gj +Aϑm) e−Aϑm·G
j− |Aϑm|

2

2 . (3.24)

Theorem 3.3.6 Letm : N→ N be an increasing function tending to infinity. Assume that P(|f(G)| >
0) > 0 and that there exists γ > 0 s.t. E[|f(G)|2+γ ] <∞. If the function f is continuous and

∀ K > 0, E

[
sup
|θ|≤K

|f(G+ θ)|

]
<∞, (3.25)

then MA
n,m(n) converges a.s. to E[f(G)] as n goes to infinity.

Compared to the case in which the samples used in both stages are independent, more stringent as-
sumptions are required to ensure the a.s. convergence. In Theorem 3.3.3, which is the counterpart of
Theorem 3.3.6 for the independent case, we did not require any continuity or conditions of the type of
(3.25). As before, we introduce

M̃n(θ) =
1

n

n∑
j=1

f(Ḡj + θ) e−θ·Ḡ
j− |θ|

2

2 .

The proof of Theorem 3.3.6 ensues from the locally uniform strong law of large numbers for M̃n.
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Theorem 3.3.7 Assume that P(|f(G)| > 0) > 0 and that there exists γ > 0 s.t. E[|f(G)|4+γ ] <∞.
Assume that the function f admits a decomposition f = f1 + f2 with f1 of class C1 satisfying

∀K > 0, E

[
sup
|θ|≤K

|f1(θ +G)|+ sup
|θ|≤K

|∇f1(θ +G)|

]
<∞

and f2 satisfies

∃β ∈ [0, 2), ∃λ > 0, ∀x, y ∈ Rd, |f2(x)− f2(y)| ≤ λe|x|β∨|y|β |x− y|α

for α ∈
(√

d′2+8d′−d′
4 , 1

]
. Then, for any increasing function m : N → N s.t. m(n) ∼ nδ for

δ > d′

α(d′+2α) ,
√
n(MA

n,m(n) − E)
law−−−→
n→∞

N
(
0, vA(ϑ?)− E2

)
.

By the standard central limit theorem,
√
n(Mn(Aϑ?) − E)

law−−−→
n→∞

N
(
0, vA(ϑ?)− E2

)
. As a conse-

quence, it is enough to check that
√
n(Mn(Aϑm(n)) −Mn(Aϑ?))

Pr−−→ 0. For a precise statement of
the different results and their proofs, we refer to [L-12].

Remark 3.3.8 (Comparison with the results of Section 3.3.1) In this section, we proved that in the
Gaussian case the same samples could be used to first compute an approximation of the optimal impor-
tance sampling parameter and then to compute the Monte Carlo estimator. This leads to an estimator
with no remarkable structure, which nonetheless satisfies a central limit theorem with optimal limiting
variance. When using the same samples, the convergence results require more stringent assumptions.
Instead of moment assumptions on the function f for the independent case, we need conditions as
∀ K > 0, E

[
sup|θ|≤K f(G+ θ)

]
< ∞ to prove the convergence and C1 regularity along with

∀K > 0, E
[
sup|θ|≤K |∇f1(θ +G)|

]
<∞ to obtain the asymptotic normality.

3.3.3 Practical implementation

The difficult part of Algorithm 3.3.1 is the numerical computation of the minimizing pair (θm, λm).
The efficiency of the optimization algorithm depends very much on the magnitude of the smallest
eigenvalue of ∇2v. For the sake of clearness, we present the methodology only in the pure Gaussian
case, the mixed Gaussian Poisson case is detailed in [L-5]. From (3.11), we deduce that the smallest
eigenvalue of∇2v is larger than

E
[
f(G)2 e−θ·G+

|θ|2
2

]
.

This lower bound depends on the function f whereas we would rather have a uniform lower bound.
We advice to rewrite∇v as

∇v(θ, λ) =E
[
θf(G)2 e−θ·G+

|θ|2
2

]
− E

[
Gf(G)2 e−θ·G+

|θ|2
2

]
Hence, θ? can be seen as the root of

∇u(θ) =θ −
E
[
Gf(G)2 e−θ·G

]
E [f(G)2 e−θ·G]

39



with u(θ) = |θ|2
2 + logE

[
f(G)2 e−θ·G

]
. The Hessian matrix of u is given by

∇2u(θ) = Id + "a positive semi–definite matrix" ≥ Id.

Our numerical experiments advocate the use of u instead of v to speed up the computation of θ?.

Using this new expression, we implement Algorithm 3.3.10 to construct an approximation xkm of
(θm, λm). Since um is strongly convex, for any fixed m, xkm converges to (θm, λm) when k goes to
infinity. The descent direction dkm at step k should be computed as the solution of a linear system.
There is no point in computing the inverse of ∇2um(xkm), which would be computationally much
more expensive.

Remark 3.3.9 (Remarks on the implementation) From a practical point of view, ε should be cho-
sen reasonably small ε ≈ 10−6. This algorithm converges very quickly and, in most cases, less than 5
iterations are enough to get a very accurate estimate of (θm, λm), actually within the ε−error. Since
the points at which the function f is evaluated remain constant through the iterations of Newton’s
algorithm, the values (f2(Gj , N j))1≤j≤m should be precomputed before starting the optimization
algorithm, which considerably speeds up the whole process. The Hessian matrix of our problem is
easily tractable so there is no point in using quasi Newton methods.

1 Choose an initial value x0
m ∈ Rd+p.

2 k ← 1

3 while
∣∣∇um(xkm)

∣∣ > ε do
4 Compute dkm such that (∇2um(xkm))dkm = −∇um(xkm)

5 x
k+1/2
m = xkm + dkm

6 for i = 1 : d+ p do
7 if xk+1/2

m (i) > 0 then
8 xk+1

m (i) = x
k+1/2
m (i)

9 else
10 xk+1

m (i) = xkm(i)
2

11 end
12 end
13 k ← k + 1

14 end
Algorithm 3.3.10: Projected Newton’s algorithm

3.4 Application to option pricing

We will apply our methodology to two different classes of jump processes: jump diffusion processes
and stochastic volatility processes with jumps, in this latter case the volatility itself may also jump.

We consider a filtered probability space (Ω, (Ft)0≤t≤T ,P) with a finite time horizon T > 0 and
N financial assets. We define on this space a Brownian motion W with values in RN and N + 1
independent Poisson processes (N1, . . . , NN+1) with constant intensities µ1, . . . , µN+1. We also
consider (N + 1) independent sequences (Y i

j )j≥1 for i = 1 . . . N + 1 of i.i.d. real valued random
variables with common law denoted Y in the following. The Poisson processes, the Brownian motions
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and the sequences (Y i
j )j are supposed to be independent of each other. Actually, we are interested

in considering the compound Poisson process associated to the Poisson process N i and to the jump
sequences Y i for i = 1, . . . , N + 1.

3.4.1 Black–Scholes model with jumps

In this class of models, we assume that the log-prices evolve according to the following equation

Xi
t =

(
βi − (σi)

2

2

)
t+ σiLiWt +

N i
t∑

j=1

Y i
j +

NN+1
t∑
j=1

Y N+1
j (3.26)

where β = (β1, . . . , βN )∗ is the drift vector and σ = (σi, . . . , σN )∗ the volatility vector. The row
vectors Li are such that the matrix L = (L1; . . . ;LN ) verifies that Γ = LL∗ is a symmetric definite
positive matrix with unit diagonal elements. The matrix Γ embeds the covariance structure of the
continuous part of the model. We have also chosen to take into account in the model the possibility

to have simultaneous jumps which explains the extra jump term
∑NN+1

t
j=1 Y N+1

j common to all the
underlying assets. This common jump term corresponds to the systemic risk of the market.

From (3.26), we deduce that the prices at time t Sit = eX
i
t are defined by

Sit = Si0 exp

{(
βi − (σi)

2

2

)
t+ σiLiWt

} N i
t∏

j=1

eY
i
j

NN+1
t∏
j=1

eY
N+1
j

which corresponds for each asset to a one dimensional Merton model with intensity µi + µN+1 when
the Y i

j are normally distributed.
As we assumed that P was the martingale measure associated to the risk free rate r > 0 supposed

to be deterministic, the processes (e−rt St)t must be martingales under P. This martingale condition
imposes that for every i = 1, . . . , N ,

βi = r − (µiE[Y i] + µN+1E[Y N+1]).

In the following, βi will always stand for this quantity.

Remark 3.4.1 In the one dimensional case, ie. when N = 1, we only consider a single compound
Poisson process as the systemic risk jump term becomes irrelevant. Hence, the log-price in dimension
one follows

Xt =

(
β − σ2

2

)
t+ σWt +

Nt∑
j=1

Yj .

For the sake of clearness, we will not treat the one dimensional case separately in the following, even
though the practical one dimensional implementation relies on a single Poisson process. So, we will
always consider that the Poisson process has values in RN+1.

In the numerical examples, we will need to discretize the multi dimensional price process on a
time grid 0 = t0 < t1 < · · · < tJ = T . We will assume that this time grid is regular and given by
tj = jT

J , j = 0, . . . , J .

41



The Merton jump diffusion model. The Merton model corresponds to the particular choice of a
normal distribution for the variables (Y i), Y i ∼ N (α, δ) where α ∈ R and δ > 0. In this framework,
the jump sizes in the price follow a log normal distribution.

The Kou model. In the Kou model [64], the variables Y i follow an asymmetric exponential distri-
bution with density

piµi+ e−µ
i
+x 1x>0 + (1− p)iµi− eµ

i
−x 1x<0

where pi ∈ [0, 1] is the probability of a positive jump for the i − th component and the variables
µi+ > 0, µi− > 0 govern the decay of each exponential part.

3.4.2 Stochastic volatility models with jumps

In this section, we consider the stochastic volatility model developed by [7, 8], in which the volatility
process is a non Gaussian Ornstein Uhlenbeck process driven by a compound Poisson process.

We consider that the log-prices satisfy for i = 1, . . . , N

dXi
t = (ai − σi/2)dt+

√
σi
t−dW

i
t + ψidZiκit + ψN+1dZN+1

κN+1t

where a ∈ RN , ψ ∈ RN+1 has non-positive components which account for the positive leverage
effect, Z is a (N + 1)-dimensional Lévy process defined by Zit =

∑N i
t

k=1 Y
i
k for i = 1, . . . , N + 1 and

the squared volatility process (σt)t is a Lévy driven Ornstein Uhlenbeck processus

Nσit = −(κi + κN+1)σitdt+ dZiκit + dZN+1
κN+1t

.

For the squared volatility process to remain positive, we assume that the components of Z only jumps
upward, which means that the random variables Y i

j are non-negative.
More specifically, the jump sequence Y i is i.i.d with the exponential distribution with parameter

βi > 0 for i = 1, . . . , N + 1. The drift vector a is chosen such that the discounted prices are
martingales under P. A straight computation shows that we need to set

ai = r − ψi κiµi

βi − ψi
− ψN+1 κN+1µN+1

βN+1 − ψN+1
, for i = 1, . . . , N

to ensure the martingale property of (e−rt expXt)t.
The extra Poisson process giving raise to the term dZN+1 in the dynamics of X and σ accounts

for modeling a systemic risk. When ZN+1 jumps, all the volatilities and possibly all the assets (when
there is a leverage effect) jump together. This parametrization of multi-dimensional stochastic volatil-
ity models with jumps corresponds to Section 5.3 of [9].

In the following, we compare the efficiencies of several different approaches based on the theo-
retical part of the paper in the context of option pricing with jumps. The problem always boils down
to computing the expectation of a function of a jump diffusion process.

3.4.3 Several importance sampling approaches

When dealing with jump diffusions, importance sampling can act only the Brownian part — referred
to hereafter as Gaussian importance sampling with an optimal variance denoted VarG, or only on the
Poisson part — referred to as Poisson importance sampling with an optimal variance denoted VarP,
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or on both of them at the same time. This last approach is named Gaussian+Poisson importance
sampling and leads to an optimal variance denoted VarGP. When only playing with the Gaussian
part, one can either use the same samples to compute the optimal θ? and the Monte Carlo estimator
as explained in Section 3.3.2 or use independent set of samples. Both approaches have the same
computational cost and leads to the same variance reduction.

For each of the three methods, we consider two approaches.

Full importance sampling. The first approach consists in allowing to optimize the parameters per
time steps, this means that d = d′ = N ×J and p = p′ = (N + 1)×J . In this setting, the matrices A
and B are identity matrices. This is the most general approach, but the dimension of the optimization
problem linked to the variance minimization increases linearly in the number of time steps J and in
the number of assets d. Then, it is worth trying to find a vector subspace with smaller dimension in
which the optimal variance is close the global minimum.

Reduced importance sampling. The idea of reducing the dimension of the problem is to search for
the parameter (θ, λ) in the subspace {(Aϑ,Bλ) : ϑ ∈ Rd′ , λ ∈ R∗+p

′} where A ∈ Rd×d′ is a matrix
with rank d′ ≤ d and B ∈ R∗+p×p

′
a matrix with rank p′ ≤ p.

We choose d′ = N , p′ = N + 1 and

A(j−1)N+i,i =
√
tj − tj−1, B(j−1)(N+1)+k,k = tj − tj−1

for j = 1, . . . , J , i = 1, . . . , N and k = 1, . . . , N + 1 , all the other coefficients of A and B being
zero. This choice corresponds to adding a linear drift to the Brownian motion and to keeping the
Poisson intensity time independent.

3.4.4 Numerical experiments

We compare the different importance sampling approaches on four different financial derivatives: the
first two examples are path-dependent single asset options while the last two examples are basket
option with or without barrier monitoring. To compare the different strategies, we have decided to fix
the number of samples for the Monte Carlo part, which implies that their accuracies only depend on
their variances, which we will compare in different examples. To determine which method is best, it
is convenient to compute their efficiencies defined as the ratio of the variance divided by the CPU
time.

In all the following examples, we use the same number of samples for the approximation of the
optimal importance sampling parameters and for the Monte Carlo computation, ie. m(n) = n.

Asian option. We consider a discretely monitored Asian option with payoff(
1

J

J∑
i=1

Sti −K

)
+

.

Our tests on one dimensional Asian options (see Tables 3.1 and 3.2) show that the Poisson and
Gaussian+Poisson importance sampling methods perform generally better than the pure Gaussian
importance sampling approach but they also require a longer computational time. When taking into
account this extra computational times along with the variance reduction we notice that the Poisson
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and Gaussian+Poisson importance sampling methods yield the same efficiency for the Merton model
(see Table 3.1). For the BNS model (see Table 3.2), the mixed Gaussian+Poisson importance sam-
pling approach achieves a better variance reduction than the two other methods for a comparable
computational time. By closely looking at the CPU times of the different strategies, it clearly appears
that the reduced approach shows the better efficiency and should be used in practice.

Strike Price Var VarG VarP VarGP
Full 90 17.88 2639 2395 636 529
Reduced 17.88 2639 2640 839 752
Full 100 14.37 2750 2624 720 622
Reduced 14.37 2750 2624 552 470
Full 110 12.11 2327 2301 470 420
Reduced 12.11 2327 2301 676 585

Table 3.1: Discrete Asian option in dimension 1 in the Merton model with S0 = 100, r = 0.05,
σ = 0.25, µ = 1, α = 0.5, δ = 0.2, T = 1, J = 12 and n = 50000. The CPU time for the
crude Monte Carlo approach is 0.08. The CPU times for the full importance sampling approach are
(0.21, 0.28, 0.39) and for the reduced approach (0.20, 0.21, 0.26).

Strike Price Var VarG VarP VarGP
Full 90 11.85 63 22.7 50 13.3
Reduced 11.85 63 28.7 52.7 22.1
Full 100 3.96 47 19 29.7 9.4
Reduced 3.96 47 22 33 14.7
Full 110 0.92 19 7.8 9 3.5
Reduced 0.92 19 10 11.1 5.56

Table 3.2: Discrete Asian option in dimension 1 in the BNS model with S0 = 100, r = 0.05,
λ0 = 0.01, µ = 1, κ = 0.5474, β = 18.6, T = 1, J = 12 and n = 50000. The CPU time for the
crude Monte Carlo approach is 0.13. The CPU times for the full importance sampling approach are
(0.36, 0.52, 0.93) and for the reduced approach (0.29, 0.29, 0.33).

Barrier option. We consider a discrete monitoring barrier option with payoff

(ST −K)+ × 1∀1≤j≤J, Stj<U

where U is the upper barrier.

Basket option. We consider a basket option on 10 assets with payoff(
N∑
i=1

ωiSiT −K

)
+

where the vector ω ∈ RN describes the weight of each asset in the basket.
The experiments on the one dimensional barrier option (see Table 3.3) lead to very similar conclu-

sions regarding the efficiencies of the different approaches. Roughly speaking, the Gaussian approach
does not bring any variance reduction but costs 2.5 times the CPU times of the crude Monte Carlo
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Strike Price Var VarG VarP VarGP
Full 90 17.88 2639 2395 636 529
Reduced 17.88 2639 2640 839 752
Full 100 14.37 2750 2624 720 622
Reduced 14.37 2750 2624 552 470
Full 110 12.11 2327 2301 470 420
Reduced 12.11 2327 2301 676 585

Table 3.3: Discrete barrier option in dimension 1 in the Merton model with S0 = 100, r = 0.05,
σ = 0.2, µ = 0.1, α = 0, δ = 0.1, T = 1, J = 12, U = 140 and n = 50000. The CPU time for the
crude Monte Carlo approach is 0.08. The CPU times for the full importance sampling approach are
(0.22, 0.26, 0.37) and for the reduced approach (0.20, 0.20, 0.23).

Strike Price Var VarG VarP VarGP
-10 10.61 112 85 66 48
0 3.66 85 66 33 25
10 1.17 111 52 12 10

Table 3.4: Basket option in dimension N = 10 in the Merton model with Si0 = 100, r = 0.05,
σi = 0.2, µi = 0.1, αi = 0.3, δi = 0.2, ρ = 0.3, T = 1, ωi = 1

N for i = 1, . . . , N/2, ωi = − 1
N for

i = N/2 + 1, . . . , N and n = 50000. The CPU time for the crude Monte Carlo approach is 0.06. The
CPU times for the importance sampling approach are (0.17, 0.20, 0.32).

approach. The Poisson and Gaussian+Poisson importance sampling approaches do provide impres-
sive variance reductions for equivalent computational times at least in the reduced size approach. The
improvement of the optimal variance obtained by the full size approaches does not look sufficient to
counter balance the extra computational time. Actually, the reduced size approaches show far better
efficiencies.

Strike Price Var VarG VarP VarGP
-10 10.21 60 41 48 29
0 3.35 30 21 22 13
10 0.68 8.3 5.9 5.2 2.8

Table 3.5: Basket option in dimension N = 10 in the Merton model with Si0 = 100, r = 0.05,
σi = 0.2, µi = 1, αi = 0.1, δi = 0.01, ρ = 0.3, T = 1, ωi = 1

N for i = 1, . . . , N/2, ωi = − 1
N for

i = N/2 + 1, . . . , N and n = 50000. The CPU time for the crude Monte Carlo approach is 0.06. The
CPU times for the importance sampling approach are (0.17, 0.20, 0.32).

Since basket options are not path dependent derivatives, the full and reduced size approaches
coincide and we do not distinguish between the two in Tables 3.4 and 3.5. In these tables, we can
see that the Gaussian+Poisson approach provides better variance reductions that the pure Poisson
approach, which in turn outperforms the pure Gaussian strategy. However, except for out of the
money options, the gain brought by the different importance sampling approaches do not compensate
the extra computational time in order to keep up with the crude Monte Carlo strategy. This lack of
efficiency mainly comes from the very simple form of the payoff, which makes the crude Monte Carlo
method very fast.
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Multidimensional barrier option. We consider a discrete monitoring down and out barrier option
on a basket of assets with payoff(

N∑
i=1

ωiSiT −K

)
+

1∀1≤i≤N, ∀1≤j≤J, Sitj>b
i

where the vector b ∈ RN denotes the lower barrier.

Strike Price Var VarG VarP VarGP
Full 0 0.59 7.00 4.03 4.36 1.98
Reduced 0.59 7.00 3.51 4.36 2.05
Full -5 1.06 13.33 8.43 9.64 4.79
Reduced 1.06 13.33 8.56 9.81 5.42
Full -10 1.64 24.26 16.57 18.39 10.57
Reduced 1.64 24.26 16.77 18.96 11.68

Table 3.6: Barrier option in dimension N = 10 in the Merton model with Si0 = 100, r = 0.05,
σi = 0.2, µi = 1, αi = 0.1, δi = 0.01, bi = 80, ρ = 0.3, T = 1, ωi = 1

N for i = 1, . . . , N/2,
ωi = − 1

N for i = N/2+1, . . . , N and J = 12, n = 50000. The CPU time for the crude Monte Carlo
approach is 0.76. The CPU times for the reduced importance sampling approach are (1.42, 1.44, 1.52)
and for the full importance sampling approach they are (1.53, 2.41, 3.05).

Strike Price Var VarG VarP VarGP
Full 100 2.97 36 37.8 16 16
Reduced 2.97 36 36.2 16 16
Full 90 12.52 36 36.4 14.5 14.5
Reduced 12.52 36 36 14.3 14.3
Full 110 1.64 12.1 13.3 6.1 5.5
Reduced 0.80 12.1 12 5.3 5.4

Table 3.7: Barrier option in dimension N = 5 in the BNS model with Si0 = 100, r = 0.05, λi = 0.01,
µi = 1, κi = 0.54, βi = 18.6, bi = 70, ρ = 0.2, T = 1, ωi = 1

N for i = 1, . . . , N and J = 12,
n = 50000. The CPU time for the crude Monte Carlo approach is 0.52. The CPU times for the
reduced importance sampling approach are (1.06, 1.1, 1.17) and for the full importance sampling
approach they are (2.1, 3.8, 10.5).

Our last two examples deal with multi-dimensional barrier options with discrete monitoring. The
first striking result to notice when looking at Tables 3.6 and 3.7 concerns the huge CPU times of the
full approaches which nonetheless do not significantly reduce the variance compared to the reduced
size methods. This remark definitely advocates the use of reduced size approaches. The variance is
always divided by a factor between 2 and 3, whereas the CPU time is only twice the one of the crude
Monte Carlo approach. In the Merton model case (Table 3.6), the Gaussian+Poisson approach always
provides the best variance reduction for a computational time very close to the other two methods,
while the Poisson and Gaussian+Poisson methods perform similarly in the BNS model (Table 3.7).
The efficiency of the pure Poisson approach comes from the particular form of the BNS model which
includes jumps in the volatility process. These jumps seem to have a larger impact on the overall
variance that the Brownian motion itself.
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3.5 Conclusion

In this chapter, we have presented adaptive Monte Carlo methods based on importance sampling. Un-
like most works on the topic which use stochastic approximation to compute the optimal importance
sampling parameter, we rely on sample average approximation, which basically consists in replacing
expectations by sample averages and then perform deterministic optimization on them. We proved
that the solution of the approximated problem converges to the solution of the original problem and
satisfies a central limit theorem. The computation of the best importance sampling distribution leads
to a strongly convex and infinitely differentiable optimization problem. The sample average approxi-
mation enables us to make the utmost of these regularity properties by relying on Newton’s algorithm
with optimal step size, which reveals so efficient while being easy to implement.

The numerical examples presented in Section 3.4 all involved the discretization of a stochastic
differential equation. It is well that, in this context, the total error can be split into two terms: the bias
term coming from the time discretization of the SDE and the variance term coming from the Monte
Carlo method. In this chapter, we focused only on the variance term, but the bias term should also be
taken into account. In the next chapter, we present how to couple importance sampling, which only
acts on the variance term, with multilevel Monte Carlo methods, which are known for reducing both
the bias and the variance.
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Chapter 4

Coupling Multilevel Monte Carlo with
importance sampling

In this chapter, we present how to couple multilevel Monte Carlo methods with importance sampling,
see [L-1].

4.1 Introduction

Expectations involving a stochastic process are often computed using a Monte Carlo method combined
with a discretization scheme. For instance, computing an hedging portfolio in finance uses these
tools. Generally, the asset price follows a diffusion process (Xt)0≤t≤T ∈ Rd with a non explicit
solution, whose simulation requires a discretization scheme (Xn

t )0≤t≤T with n ∈ N∗ time steps. The
error induced by such schemes is called the discretization error or the bias. Then, the valuation of a
financial derivative using a Monte Carlo method involves the simulation of N independent samples
of Xn

T . These methods are known to converge slowly. In particular, for a given discretization error
of order 1/nα, for α > 0, the optimal choice for the number of samples is given by N = n2α.
This leads to an overall complexity for the Monte Carlo method of order n3α. Nevertheless, a lot of
techniques have been developed in the recent years to speed up the method. Kebaier [59] proposed
the Statistical Romberg method to generate discretization schemes on two different time grids, using
a coarser grid to simulate a crude approximation and a finer one to tune the bias. More recently, Giles
[41] generalized the statistical Romberg method and proposed the multilevel Monte Carlo algorithm
in a similar approach to Heinrich’s multilevel method for parametric integration, see Heinrich [50].
It turns out that for the Euler scheme with a given discretization error of order 1/nα, α > 0, and
for a Lipschitz continuous payoff function, the optimal complexity of the Statistical Romberg and the
multilevel Monte Carlo methods are respectively of order n2α+1/2 and n2α(log n)2, which are clearly
better than a crude Monte Carlo method. We refer the reader to the extensive literature linked to
Multilevel Monte Carlo for more details on the rate of decrease of the mean squared error, see Dereich
[35], Giles [41], Giles and Szpruch [42], Giles et al. [43], Heinrich [49], Heinrich and Sindambiwe
[51].

The use of multilevel techniques clearly reduces the bias, but in many situations the high variance
also brings in a significant inaccuracy, which naturally leads to trying to couple multilevel Monte
Carlo with variance reduction techniques. In this work, we focus on importance sampling following
the ideas and the methodology developed in Chapter 3. Consider a parametric family (Xt(θ))0≤t≤T
driven by a Brownian motion with linear drift (θt)0≤t≤T . Coupling importance sampling and multi-
level Monte Carlo can be achieved by minimizing the asymptotic variance of the multilevel method,
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which involves a bespoke tangent process defined on an augmented probability space and the gradient
of the function whose expectation is to be computed, see Ben Alaya and Kebaier [12]. Hajji [45] used
a stochastic algorithm as presented in Chapter 2 to minimize the limiting variance. From our point of
view, this approach suffers from a major drawback. It requires some extra implementation to compute
the gradient and the auxiliary modified gradient process, which must also be discretized.

To circumvent this difficulty, we use one importance sampling parameter per level and choose it
as the minimizer of the variance of the level. This approach preserves the independence structure of
the levels, which makes our approach suitable for running on parallel architectures. From a practical
point of view, the use of as many importance sampling parameters as the number of levels represents
a huge improvement. Our approach is closely related to minimizing the multilevel estimator of the
limiting variance.

4.2 The importance sampling framework

Let (Xt)0≤t≤T be the solution of

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x ∈ Rd (4.1)

where W is a q-dimensional Brownian motion on some given probability space (Ω, (Ft)0≤t≤T ,P)
with finite time horizon T > 0. The functions b : Rd −→ Rd and σ : Rd −→Md×d are assumed to
be Lipschitz, which ensures the strong existence and uniqueness of a solution to (4.1). In many appli-
cations, in particular when pricing financial securities, we are interested in the effective computation
by Monte Carlo methods of the quantity E[ψ(XT )] for a given function ψ. From a practical point of
view, we have to discretize the process X . Let us consider the continuous time Euler approximation
Xn with time step δ = T/n given by

dXn
t = b(Xn

ηn(t))dt+ σ(Xn
ηn(t))dWt, ηn(t) = bt/δcδ.

It is well known that, under the Lipschitz condition,Xn converges toX in Lp with rate n−1/2 (see e.g.
Bouleau and Lépingle [19]). The weak error was first studied by Talay and Tubaro [87] who proved
that if ψ, b and (σj)1≤j≤q are four times differentiable and together with their derivatives have at most
polynomial growth, then E[ψ(Xn

T )] − E[ψ(XT )] = O(1/n). The same result was later extended by
Bally and Talay [6] for a measurable function ψ but with a non degeneracy condition of Hörmander’s
type on the diffusion. In the context of possibly degenerate diffusions, Kebaier [59] showed the rate of
convergence can be 1/nγ , for any γ ∈ [1/2, 1]. So, it is worth introducing the following assumption

∃ γ ∈ [1/2, 1], ∃Cψ(T, γ) ∈ R, nγ(Eψ(Xn
T )− Eψ(XT ))→ Cψ(T, γ). (4.2)

We define the family (Pθ)θ∈Rq of equivalent probability measures such that for all t > 0

Lθt =
dPθ
dP |Ft

= exp

(
θ ·Wt −

1

2
|θ|2t

)
.

From Girsanov’s theorem, the process (Bθ
t = Wt − θt)t≤T is a Brownian motion under Pθ and

moreover if the process X(θ) is the solution of

dXt(θ) = (b(Xt(θ)) + σ(Xt(θ))θ) dt+ σ(Xt(θ))dWt, (4.3)

then
E[ψ(XT )] = E

[
ψ(XT (θ)) e−θ·WT− 1

2
|θ|2T

]
, ∀θ ∈ Rq. (4.4)
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From now on, we assume that

P(ψ(XT ) 6= 0) > 0 and ∀θ ∈ Rq, E[ψ(XT )2 e−θ·WT ] < +∞. (4.5)

For α > 0, we introduce the space

Hα =
{
ψ : Rd → R s.t. ∃ c > 0, β ≥ 1, ∀x ∈ Rd, |ψ(x)| ≤ c(1 + |x|β)

and ∀x, y ∈ Rd, |ψ(x)− ψ(y)| ≤ c(1 + (|x|β ∧ |y|β))|x− y|α
}
. (4.6)

For any function ψ ∈ Hα, (4.5) implies that supn E[ψ(Xn
T )2 e−θ·WT ] < +∞. We also introduce the

continuous time Euler approximation Xn(θ) of the process X(θ). It is natural to choose the value of
θ minimizing Var

(
ψ(XT (θ)) e−θ·WT− 1

2
|θ|2T

)
, we set

θ? = argmin
θ∈Rq

v(θ) with v(θ) = E
[
ψ(XT )2e−θ·WT+ 1

2
|θ|2T

]
. (4.7)

From a practical point of view, the quantity v(θ) is not explicit so we use the Euler scheme to discretize
X(θ) and approximate θ? by

θn = argmin
θ∈Rq

vn(θ) with vn(θ) = E
[
ψ(Xn

T )2e−θ·WT+ 1
2
|θ|2T

]
. (4.8)

The functions v and vn are evaluated using the original diffusion X and their dependency on the shift
is restricted to the exponential weight, which will play a key role to obtain regularity properties for v
and vn; we already used this methodology in Chapter 3. Since the expectation is usually not tractable,
we aim at using a sample average approximation procedure to approximate θn

θn,N = argmin
θ∈Rq

vn,N (θ) with vn,N (θ) =
1

N

N∑
i=1

(
ψ(Xn

T,i)
2e−θ·WT,i+

1
2
|θ|2T

)
, (4.9)

where (Xn
T,i,WT,i)1≤i≤N are i.i.d. samples according to the law of (Xn

T ,WT ). The existence and
uniqueness of θ?, θn and θn,N are ensured by the following Lemma, which can be easily deduced
from Proposition 3.1.1 or Proposition 3.2.2.

Lemma 4.2.1 Under Condition (4.5), the functions v, vn and vn,N are infinitely continuously differ-
entiable for all n,N ≥ 1 and for all multi-index r ∈ Nq, we have

∂rθv(θ) = E
[
∂rθ

(
ψ(XT )2e−θ·WT+ 1

2
|θ|2T

)]
; ∂rθvn(θ) = E

[
∂rθ

(
ψ(Xn

T )2e−θ·WT+ 1
2
|θ|2T

)]
.

Moreover, the functions v, vn and vn,N are strongly convex for any n ≥ 1, and any N ≥ 1 such that
ψ(Xn

T,i) > 0 for some i ≤ N .

4.2.1 Convergence of the optimal importance sampling parameters

From [13, Theorem 2.2], we have the following result.

Theorem 4.2.2 Let ψ satisfy Condition (4.5) and belong to Hα for some α > 0. Then, θn → θ? a.s.
when n→∞.

From now on, we let N depend on n so that N = Nn is an increasing function of n and tends to
infinity with n.
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Proposition 4.2.3 Assume that ψ ∈ Hα for some α > 0. Then, for all K > 0, a.s.

sup
|θ|≤K

|vn,Nn(θ)− v(θ)| −−−−−→
n→+∞

0; sup
|θ|≤K

|∇vn,Nn(θ)−∇v(θ)| −−−−−→
n→+∞

0.

Proof. As the proof of the two results are very similar, we only focus on the uniform convergence for
vn,Nn . To do so, we will apply Proposition 7.1.3. Amongst the assumptions required to apply this
result, only (H7.4) needs some explanation. If we fix δ > 0 and θ ∈ Rd, then we have by the Cauchy
Schwartz inequality

sup
n
E

[
ψ(Xn

T )2 sup
|θ′−θ|≤δ

∣∣∣e−θ′·WT+ 1
2
|θ′|2T − e−θ·WT+ 1

2
|θ|2T

∣∣∣]2

≤

sup
n
E
[
ψ(Xn

T )4
]
E

[
sup
|θ−θ|≤δ

∣∣∣e−θ′·WT+ 1
2
|θ′|2T − e−θ·WT+ 1

2
|θ|2T

∣∣∣2] .
Using the elementary algebraic inequality |ex − ey| ≤ |x− y| (ex + ey), we easily deduce that the

quantity E
[
sup|θ′−θ|≤δ

∣∣∣e−θ′·WT+ 1
2
|θ′|2T − e−θ·WT+ 1

2
|θ|2T

∣∣∣2] can be made arbitrarily small. Finally,

we apply Remark 7.1.4 to show that Assumption (H7.4) holds. �

Theorem 4.2.4 Assume that ψ ∈ Hα for some α > 0. Then, θn,Nn
a.s.−−−−−→

n→+∞
θ∗,

vn,Nn(θn,Nn)
a.s.−−−−−→

n→+∞
v(θ?) and

√
Nn(θn,Nn − θ∗)

law−−−−−→
n→+∞

N(0,Γ) where

Γ = [∇2v(θ?)]
−1 Cov

[
(Tθ? −Wt)ψ(XT )2 e−θ?·WT+ 1

2
|θ?|2T

]
[∇2v(θ?)]

−1.

Sketch of the proof. We already know from Proposition 4.2.3 that a.s. vn,Nn converges local uni-
formly to v. We can reproduce the proof of Proposition 3.2.5 to obtain the a.s. convergence of
vn,Nn(θn,Nn). Moreover, for all K > 0

sup
|θ|≤K

∣∣∣∂θ(j)(ψ(XT )2 e−θ·WT+ 1
2
|θ|2T )

∣∣∣
≤ eK

2T/2 ψ(XT )2
(
K + (eKW

(j)
t + e−KW

(j)
t )
) q∏
i=1

(eKW
(i)
t + e−KW

(i)
t ).

The r.h.s is integrable by (4.5). Hence, E
[
sup|θ|≤K

∣∣∣∇θ(ψ(XT )2 e−θ·WT+ 1
2
|θ|2T )

∣∣∣] < +∞. Sim-

ilarly, one can prove that E
[
sup|θ|≤K

∣∣∣∇2
θ(ψ(XT )2 e−θ·WT+ 1

2
|θ|2T )

∣∣∣] < +∞. Then, to prove the
central limit theorem governing the convergence of θn,Nn to θ?, we reproduce the proof of Rubinstein
and Shapiro [83, Theorem A2, pp. 74], which is mainly based on the a.s. locally uniform convergence
of∇vn,Nn and on the asymptotic normality of vn,Nn(θ?) ensuing from the Lindeberg–Feller theorem
for triangular array of random variables (see [18]). �

4.2.2 Strong law of large numbers and central limit theorem

Based on the methodology developed in Section 3.3, we define a Monte Carlo estimator of E[ψ(XT )]
based on Equation (4.4). We introduce the σ-algebra G generated by the samples (Wi)i≥1 used to
compute θn and θn,Nn .
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Let (W̃i)i be i.i.d. samples according to the law of W but independent of G. We introduce the
i.i.d. samples (X̃i(θ))i following the law of X(θ) such that for each i, X̃i(θ) is the solution of the
SDE (4.3) driven by W̃i. We introduce (G̃k)k>0 the filtration defined by G̃k = σ(W̃i, 1 ≤ i ≤ k) and
G]k = G ∨ G̃k. For each i > 0, we also introduce the Euler discretization X̃n

i (θ) of X̃i(θ). Based on
these new sets of samples, we introduce the Monte Carlo estimator

Mn,Nn(θ) =
1

Nn

Nn∑
i=1

g(θ, X̃n
T,i(θ), W̃T,i)

where the function g : Rq × Rd × Rq → R is defined by

g(θ, x, y) = ψ(x) e−θ·y−
1
2
|θ|2T . (4.10)

Theorem 4.2.5 Assume that ψ ∈ Hα for some α > 0. Then, Mn,Nn(θn,Nn) −→ E[ψ(XT )] a.s.
when n→ +∞.

Proof. Using the conditional independence of the samples (X̃n
i (θn,Nn), W̃i)i, we have

E[g(θn,Nn , X̃
n
T,i(θn,Nn), W̃T,i)|G] = E[ψ(Xn

T )] = en for all i > 0.

Let V ⊂ Rq be a compact neighbourhood of θ?. We define the sequence

Yi,n =
(
g(θn,Nn , X̃

n
T,i(θn,Nn), W̃T,i)− en

)
1θn,Nn∈V

and its empirical average Y m,n = 1
m

∑m
i=1 Yi,n for allm > 0. It is obvious that E[Yi,n] = 0 and using

the conditional independence E[
∣∣Y m,n

∣∣2] = 1
mE[|Y1,n|2].

E[|Y1,n|2] ≤ E
[
E
[
|g(θn,Nn , X̃

n
T,i(θn,Nn), W̃T,i)− en|2

∣∣∣G]1θn,Nn∈V]
≤ E

[
vn(θn,Nn)1θn,Nn∈V

]
≤ sup

θ∈V
vn(θ).

We know that vn is convex and converges point-wise to v, which is also convex and continuous.
Hence, vn converges locally uniformly to v, which implies that for all compact sets K ⊂ Rq,
limn→+∞ supθ∈K vn(θ) = supθ∈K v(θ). Hence, supn supθ∈V vn(θ) < +∞. Applying Proposi-
tion 7.1.1 proves that Y Nn,n

a.s.−−−−−→
n→+∞

0. As θn,Nn converges a.s. to θ∗ ∈ K, this also implies that

limn→+∞Mn,Nn = E[ψ(XT )] a.s. �

Theorem 4.2.6 Under the assumptions of Theorem 4.2.5 and if (4.2) holds, we have√
Nn(Mn,Nn(θn,Nn)− E[ψ(XT )])

D−−−→
n→∞

N (Cψ(T, γ), v(θ?)− E[ψ(XT )]2).

Sketch of the proof. We can write the left hand side of the convergence result by introducing
Mn,Nn(θ?)√
Nn(Mn,Nn − E[ψ(XT )]) =

√
Nn(Mn,Nn(θn,Nn)−Mn(θ?)) +

√
Nn(Mn,Nn(θ?)− E[ψ(XT )])

The convergence of the last term on the r.h.s
√
Nn(Mn,Nn(θ?)−E[ψ(XT )]) is governed by the central

limit theorem for Euler Monte Carlo, which yields the announced limit (see [36]). It remains to prove
that
√
Nn(Mn,Nn(θn,Nn)−Mn,Nn(θ?)) converges to zero in probability, which is achieved by closely

following the methodology used in the proof of Theorem 3.3.4. �

52



4.3 The importance sampling multilevel estimator

4.3.1 The general setting

The multilevel idea. Multilevel Monte Carlo estimators smartly combine together discretization
schemes on nested time grids. Let m ∈ N such that m ≥ 2 be the number of ticks of the coarsest time
grid. Let L ∈ N∗, we consider the set of nested time grids with m` ticks for ` = 1, · · · , L. Write

E
[
ψ(XmL

T )
]

= E[ψ(Xm0

T )] +

L∑
`=1

E
[
ψ(Xm`

T )− ψ(Xm`−1

T )
]
. (4.11)

Each expectation is approximated by a Monte Carlo method independent of all the others, which leads
to the following estimator

QL =
1

N0

N0∑
k=1

ψ(X̃m0

T,0,k) +

L∑
`=1

1

N`

N∑̀
k=1

(
ψ(X̃m`

T,`,k)− ψ(X̃m`−1

T,`,k )
)

(4.12)

where for each ` ∈ {1, · · · , L}, N` is the number of samples used to build a Monte Carlo estimator
of the expectation involved in level ` and the random variables X̃m`

T,`,k (resp. X̃m`−1

T,`,k ) are the terminal
values of the Euler schemes of X with m` (resp. m`−1)) time steps built using the same Brownian
paths. The blocks of random variables used in two different levels are independent.

Its is known from Ben Alaya et al. [13] that for properly chosen N`’s, the estimator defined
by (4.12) satisfies a central limit theorem with limiting variance given by Var(∇ψ(XT ) · UT ) where
the process U is the limit of

√
n(Xn −X) (see [52]).

A smart multilevel importance sampling estimator. We define

∀x ∈ Rq, E−(x, θ) = e−θ·x−
1
2
|x|2T ; E+(x, θ) = e−θ·x+ 1

2
|x|2T .

One way of introducing importance sampling is to apply the multilevel approach to
ψ(XT (θ)) e−θ·WT−|θ|2T/2. Then, (4.11) becomes

E
[
ψ(XmL

T (θ))E−(WT , θ)
]

=

E[ψ(Xm0

T (θ))E−(WT , θ)] +
L∑
`=1

E
[{
ψ(Xm`

T (θ))− ψ(Xm`−1

T (θ))
}
E−(WT , θ)

]
.

Then, the optimal choice for θ would be argmin
θ

E[(∇ψ(XT ) · UT )2E+(W, θ)], which in turn needs

some discretization scheme to be approximated. This leads to lots of extra computations and imple-
mentations.

A smart way to circumvent this practical drawback is to apply importance sampling to each level
with its own parameter θ. We define the multilevel importance sampling estimator by

QL(λ0, . . . , λL) =
1

N0

N0∑
k=1

ψ(X̃m0

T,0,k(λ0))E−(W̃0,k, λ0)

+
L∑
`=1

1

N`

N∑̀
k=1

(
ψ(X̃m`

T,`,k(λ`))− ψ(X̃m`−1

T,`,k (λ`))
)
E−(W̃`,k, λ`)
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for any ΛL = (λ0, . . . , λL) ∈ (Rq)L. For every `, The random variables (W̃`,k)1≤k≤N` are inde-
pendent and are distributed according to the Brownian law. We assume that for `, `′ ∈ {1, · · · , L},
with ` 6= `′, the blocks (W̃`,k)1≤k≤N` and (W̃`′,k)1≤k≤N`′ are independent. The variables X̃m`

T,`,k and

X̃m`−1

T,`,k are built using the Brownian W̃`,k. The variance of the multilevel estimator is given by

Var[QL] = N−1
0 Var[ψ(Xm0

T (λ0))E−(W,λ0)] +

L∑
`=1

N−1
`

(m− 1)T

m`
σ2
` (λ`)

where

σ2
` (λ) =

m`

(m− 1)T
Var

[{
ψ(Xm`

T (λ))− ψ(Xm`−1

T (λ))
}
E−(W,λ)

]
.

The variance of level ` can be rewritten as σ2
` (λ) = v`(λ)− m`

(m−1)T E
[
ψ(Xm`

T )− ψ(Xm`−1

T )
]2

with

v`(λ) =
m`

(m− 1)T
E
[∣∣∣ψ(Xm`

T )− ψ(Xm`−1

T )
∣∣∣2 E+(W,λ)

]
. (4.13)

In the spirit of Chapter 3, we define the Sample Average Approximation of v` by

v`,N ′`(λ) =
1

N ′`

N ′∑̀
k=1

m`

(m− 1)T

∣∣∣ψ(Xm`

T,`,k)− ψ(Xm`−1

T,`,k )
∣∣∣2 E+(W`,k, λ) (4.14)

where the variables Wk are i.i.d. according to the Brownian law on [0, T ] and are independent of the
W̃k’s. Based on these new Brownian paths, we introduce the random variables Xm`

T,k, defined in the
same way as the tilde quantities but independent of them. Hence, the estimators v`,N ′` for ` = 1, . . . , L
are independent of QL(λ0, . . . , λL). The variance of level ` only depends on λ`, so minimizing the
total variance Var[QL] is achieved by independently minimizing the variance of each level.

Note that the number N ′` of samples used to build a Monte Carlo approximation of v` may differ
from the number N` of samples used in the computation of the level ` of QL. This point will be
discussed in details in the numerical section. For the moment, we just require N ′` to go to infinity with
`.

By Lemma 4.2.1, the functions v` and v`,N ′` are strongly convex and infinitely differentiable.
Hence, we can define

λ̂` = arg min
λ∈Rq

v`,N ′`(λ).

Theorem 4.3.1 Assume b and σ are C1 with bounded derivatives, ψ ∈ Hα for some α ≥ 1, ψ is C1

and ∇ψ has polynomial growth. Then, the sequence of random functions v`,N ′` converges a.s. locally
uniformly to the strongly convex function v : Rq → R defined by

v(λ) = E
[
(∇ψ(XT ) · UT )2 E+(W,λ)

]
. (4.15)

Moreover, λ̂` converges a.s. to λ? = arg minλ v(λ), when `→ +∞.

4.3.2 Strong law of large numbers and central limit theorem

In this section, we state our two main results dealing with the convergence of QL(λ̂0, · · · , λ̂L).
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We assume that the sample size N` has the following form

N`,L =
ρ(L)

m`a`

L∑
k=1

ak, ` ∈ {0, · · · , L} (4.16)

for some increasing function ρ : N → R and sequence (a`)`∈N of positive real numbers such that
limL→∞

∑L
`=1 a` =∞. We recall that for any sequence (x`)`≥1 converging to some limit x ∈ R,

lim
L→+∞

∑L
`=1 a`x`∑L
`=1 a`

= x.

Theorem 4.3.2 Assume that supL sup`
L2a`

ρ(L)
∑L
k=1 ak

< +∞. Then, under the assumptions of Theo-

rem 4.3.1, QL(λ̂0, . . . , λ̂L) −→ E[ψ(XT )] a.s. when L→ +∞.

For the choice a` = 1 for all `, the condition on ρ reduces to supL
L
ρ(L) < +∞. This result is proved

by applying Proposition 7.1.1 to each level. As the computations quickly become tedious, we refer
the reader to [L-1] for the complete proof of this result.

Theorem 4.3.3 Suppose that the assumptions of Theorem 4.3.1 hold and that (4.2) is satisfied. Then,
for N`,L given by (4.16) with ρ(L) = m2γL(m− 1)T and the sequence (a`)` satisfying

lim
L→∞

1(∑L
`=1 a`

)p/2 L∑
`=1

a
p/2
` = 0, for p > 2. (4.17)

We have
mγL(QL(λ̂0, . . . , λ̂L)− E[ψ(XT )])

D−−−−−→
L→+∞

N (Cψ(T, γ), v(λ∗))

where the function v is defined by (4.15).

The convergence rate does not depend on the numbers of samplesN ′` provided that they tend to infinity
with `. This convergence basically ensues from the central limit theorem for martingale arrays.

4.4 Numerical experiments

4.4.1 Practical implementation

Our approach cleverly mixes the famous multilevel Monte Carlo technique with importance sampling
to reduce the variance. A classical approach would have been to consider the multilevel approxima-
tion of E

[
ψ(XT (θ)) e−θ·WT− 1

2
|θ|2T

]
while choosing the value of θ which minimizes the variance of

the central limit theorem for multilevel Monte Carlo (see [12]). This asymptotic variances involves
both∇ψ and the process U . Hence, a classical approach to importance sampling for multilevel Monte
Carlo would require extra knowledge than the function ψ and the underlying process X , thus preclud-
ing any kind of automation.

We have chosen a completely different approach allowing for one importance sampling parameter
per level, which enables us to treat each level independently of the others. In each level, we use a
sample average approximation as in Chapter 3 to compute the optimal importance sampling parameter
defined as the one minimizing the variance of the current level. From Theorem 4.3.3, we know that
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this approach is optimal in the sense that our multilevel estimator QL(λ̂0, . . . , λ̂L) satisfies a central
limit theorem with a limiting variance given by inf v where v defined by (4.15) is the variance of the
standard multilevel Monte Carlo estimator. We managed to provide an algorithm reaching the optimal
limiting variance without computing ∇ψ nor the process U , hence our approach can be made fully
automatic. Our overall algorithm is described in Algorithm 4.4.1.

1 Generate Xm0

T,0,1, . . . , X
m0

T,0,N ′0
i.i.d. samples following the law of Xm0

T independently of the

other blocks.
2 Compute the minimizer λ̂0 of u0,N ′0

by solving∇u0,N ′0
(λ̂0) = 0.

3 for ` = 1 : L do
4 Generate (Xm`

T,`,1, X
m`−1

T,`,1 ), . . . , (Xm`

T,`,N ′`
, Xm`−1

T,`,N ′`
) i.i.d. samples following the law of

(Xm`

T , Xm`−1

T ) independently of the other blocks.
5 Compute the minimizer λ̂` of of u`,N ′` by solving ∇u`,N ′`(λ̂`) = 0.
6 end
7 Conditionally on λ̂0, generate X̃m0

T,0,1(λ̂0), . . . , X̃m0

T,0,N0
(λ̂0) i.i.d. samples with the law of

Xm0

T (λ̂0) independently of the other blocks. The tilde and non tilde quantities are
conditionally independent.

8 for ` = 1 : L do
9 Conditionally on λ̂`, generate (X̃m`

T,`,1(λ̂`), X̃
m`−1

T,`,1 (λ̂`)), . . . , (X̃
m`

T,`,N`
(λ̂`), X̃

m`−1

T,`,N`
(λ̂`))

i.i.d. samples with the law of (Xm`

T (λ̂`), X
m`−1

T (λ̂`)) independently of the other blocks.
The tilde and non tilde quantities are conditionally independent.

10 end
11 Compute the multilevel importance sampling estimator

QL(λ̂0, . . . , λ̂L) =
1

N0

N0∑
k=1

ψ(X̃m0

T,0,k(λ̂0))E−(W̃0,k, λ̂0)

+
L∑
`=1

1

N`

N∑̀
k=1

(
ψ(X̃m`

T,`,k(λ̂`))− ψ(X̃m`−1

T,`,k (λ̂`))
)
E−(W̃`,k, λ̂`).

Algorithm 4.4.1: Multilevel Importance Sampling (MLIS)

The minimization step (items 2 and 4 in Algorithm 4.4.1) is performed using a Newton algorithm.
Unlike what happens in a classical Monte Carlo method in which a new sample is drawn at each
iteration, here all the samples must be stored since the same random variables are used in all the
iterations of the Newton procedure. This feature is specific to the optimisation step and may make
the algorithm highly memory demanding as soon as the numbers N ′` become large. As the parameter
λ is not involved in the function ψ, all the quantities ψ(Xm`

T,`,k) − ψ(Xm`−1

T,`,k ) for k = 1, . . . , N`

can be precomputed before starting the minimization algorithm, which enables us to save a lot of
computational time. The efficiency of Newton’s algorithm very much depends on the convexity of the
v`,N` functions.

Complexity analysis. In this paragraph, we focus on the impact of the number of levels L on the
overall computational time of our algorithm. The computational cost of the standard multilevel esti-
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mator is proportional to

CML =
L∑
`=0

N`m
` = m2L+1L2.

The global cost of our algorithm writes as the sum of the cost of the computation of the (λ̂`)` and of
the standard multilevel estimator

CMLIS =
L∑
`=0

N ′`(m
` + 3K`) +

L∑
`=0

N`m
`

where K` is the number of iterations of Newton’s algorithm to approximate λ̂` and the factor 3 cor-
responds to the fact that building ∇u`,N ′` and ∇2u`,N ′` basically boils down to three Monte Carlo
summations. In practice, K` ≤ 5 as the problem is strongly convex. Because the same random vari-
ables are used at each iteration of the optimisation step, they must be stored, which makes the memory
footprint of our algorithm proportional to N ′`.

So, if we choose N ′` = N`m
`

m`+15
, the total cost of our MLIS algorithm should be roughly twice

the cost of the standard multilevel estimator. This choice of N ′` reduces the number of samples used
to approximate the variance of the first levels compared to using directly N`. However, when L
increases, N ′` can become extremely large for small values of ` which leads to an even larger memory
footprint (see Section 4.4.1). To avoid breaking the scalability of the algorithm, the values of N ′` have
to be kept reasonable depending on the amount of memory available on the computer. For instance,
enforcing N ′` ≤ 500000 is reasonable on a computer with 8Gb of RAM. Anyway, it is crystal clear
that a fairly good approximation of the variance v` is enough and running for an ultimately accurate
estimator would lead to a tremendous waste of computational time. Monitoring the convergence of
v`,N ′` would really help choosing sensible values for N ′`.

4.4.2 Experimental settings

We compare four methods in terms of their root mean squared error (RMSE): the crude Monte Carlo
method (MC), the adaptive Monte Carlo method proposed in Chapter 3 (MC+IS), the Multilevel
Monte Carlo method (ML) and our Importance Sampling Multilevel Monte Carlo estimator (ML+IS).
We recall that the RMSE is defined byRMSE =

√
Bias2 + Variance. In the computation of the bias,

the true value is replaced by its multilevel Monte Carlo estimator with L = 9 levels, which yields a
very accurate approximation. Not to mention, the CPU times showed on the graphs take into account
both the time for the search of the optimal parameter and the time for the second stage Monte Carlo,
be it multilevel or not.

4.4.3 Multidimensional Dupire’s framework

We consider a d−dimensional local volatility model, in which the dynamics, under the risk neutral
measure, of each asset Si is supposed to be given by

dSit = Sit(r dt+ σ(t, Sit)dW
i
t ), S0 = (S1

0 , . . . , S
d
0)

where W = (W 1, . . . ,W d), each component W i being a standard Brownian motion with values
in R. For the numerical experiments, the covariance structure of W will be assumed to be given
by 〈W i,W j〉t = ρt1i 6=j + t1i=j . We suppose that ρ ∈ (− 1

d−1 , 1), which ensures that the matrix
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C = (ρ1i 6=j+1i=j)1≤i,j≤d is positive definite. The maturity time and the interest rate are respectively
denoted by T > 0 and r > 0. The local volatility function σ we have chosen is of the form

σ(t, x) = 0.6(1.2− e−0.1t e−0.001(x ert−s)2) e−0.05
√
t, (4.18)

with s > 0. We know that there exists a duality between the variables (t, x) and (T,K) in Dupire’s
framework. Hence for formula (4.18) to make sense, one should choose s equal to the spot price
of the underlying asset so that the bottom of the smile is located at the forward money. We refer to
Figure 4.4.1 to have an overview of the smile.

Figure 4.4.1: Local volatility function

Basket option We consider options with payoffs of the form (
∑d

i=1 ω
iSiT − K)+ where

(ω1, . . . , ωd) is a vector of algebraic weights. The strike value K can be taken negative to deal with
Put like options. With no surprise, we can see on Figure 4.4.2 that multilevel estimators always out-
perform their classical Monte Carlo counterparts. The comparison for very little accurate estimators
may be meaningless as it is pretty difficult to reliably measure short execution times and the empirical
variance of the estimator is in this case even less accurate than the estimator itself. Note that the
points on the extreme right hand side are obtained for multilevel estimators with L = 2, respectively
for Monte Carlo estimators with 256 samples. For RMSE between 0.1 and 0.005, our MLIS estimator
is 10 times faster than the standard ML estimator. When a very high accuracy is required, namely
when RMSE is smaller than 0.001, the MLIS estimator remains between 3 and 4 times faster than the
standard multilevel estimator, which is already a great achievement since for this level of accuracy,
the ML estimator may need several dozens of minutes to yield its result.

4.4.4 Multidimensional Heston model

The multidimensional Heston model can be easily written by specifying on the one hand that each
asset follows a 1-D Heston model and on the other hand the correlation structure between the in-
volved Brownian motions. The asset price process S = (S1, . . . , Sd) and the volatility process
σ = (σ1, . . . , σd) solve

dSit = rSitdt+
√
σitS

i
tdB

i
t

dσit = κi(ai − σit)dt+ νit

√
σit(γ

idBi
t +
√

1− (γi)2dB̃i
t)
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Figure 4.4.2:
√
MSE vs. CPU time for a basket option in the local volatility model with I = 5,

r = 0.05, T = 1, S0 = 100, K = 100, m = 4.

where all the components of B = (B1, . . . , Bd) and B̃ = (B̃1, . . . , B̃d) are real valued Brownian
motions. The vectors κ = (κ1, . . . , κd) and a = (a1, . . . , ad) denote respectively the reversion rate
and the mean level of each volatility process, while the vector ν is the volatility of the volatility
process. The vector γ̄ = (γ1, . . . , γd) embodies the correlations between an asset and its volatility
process, with γi ∈] − 1, 1[ for all 1 ≤ i ≤ d. The vector valued processes B and B̃ are independent
and satisfy

d〈B〉t = ΓS dt and d〈B̃〉t = Id dt

where we assume for our experiments that the covariance matrix ΓS has the structure

ΓS =


1 ρ . . . ρ

ρ 1
. . .

...
...

. . . . . . ρ
ρ . . . ρ 1

 (4.19)

with ρ ∈
]
−1
I−1 , 1

[
, such that the matrix ΓS is positive definite. The processes B and B̃ are Wiener

processes with covariance matrices given by ΓS and Id respectively.
For the sake of simplicity, we decided not to add any extra correlation between the components of

B̃, hence the choice d〈B̃〉 = Id dt and we assume in the following that all the γi’s are equal, γi = γ for
1 ≤ i ≤ d. The correlations between the volatilities are entirely specified by the correlations between
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the assets. Even though we do not aim at discussing the correlation structure of the multidimensional
Heston model, we believe it is important to make precise the underlying correlation structure in the
multidimensional model so that the experiments are easily reproducible.

The model can be equivalently written

dSit = rSitdt+
√
σitS

i
tdB

i
t

dσit = κi(ai − σit)dt+ νit

√
σitdW

i
t

where the processes W and B are Wiener processes satisfying

d〈B〉t = ΓS dt; d〈B,W 〉t = γΓS dt; d〈W 〉t = (γ2ΓS + (1− γ2)Id) dt.

The process (B,W ) with values in R2d is a Wiener process with covariance matrix

Γ =

(
ΓS γΓS
γΓS γ2ΓS + (1− γ2)Id

)
.

Hence, the pair of processes (B,W ) can be easily simulated by applying the Cholesky factorization
of Γ to a standard Brownian motion with values in R2d.

Basket Option We consider a basket option as in the local volatility model. Figure 4.4.3 looks very
much the same as in the case of the local volatility model (see Figure 4.4.2). The MLIS estimator
always outperforms all the ML estimator by a factor of 3 to 4. Note that for small RMSE, the com-
putational time can go beyond several hours, hence cutting it down by two or three times represents a
real improvement.

Best of option We consider options with payoffs of the form (max1≤i≤d S
i
T − K)+. The payoff

of this option does obviously not satisfy the assumptions of Theorem 4.2.5 as the payoff of the “best
of” options is not Hölder with α ≥ 1. Nonetheless, the multilevel approach beats the standard Monte
Carlo technology by far (see Figure 4.4.4). Moreover, coupling importance sampling with the mul-
tilevel approach improves the accuracy. For a fixed RMSE, we can expect MLIS to be 3 faster that
ML. This example shows the robustness of the method, which performs well whereas the theoretical
assumptions are not satisfied.

4.5 Conclusion

We have presented a new estimator making the most of the recent works on multilevel Monte Carlo
and on adaptive importance sampling. As expected, this new estimator outperforms the standard
multilevel Monte Carlo estimator by a great deal. For a fixed accuracy measured in terms the mean
squared error, the MLIS estimator is between 3 and 10 times faster that the standard multilevel Monte
Carlo estimator. This efficiency of our MLIS approach could still be improved by monitoring the
number of samplesN ′` to be used to approximate the variance v`,N ′` in each level. Actually, we believe
that there is no need to compute a too accurate approximation of this variance as a slight decrease in
the accuracy of λ̂` would not lead to a serious deterioration of the accuracy of the MLIS estimator but
it could help to save a lot of computational time.
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Figure 4.4.3:
√
MSE vs. CPU time for a best of option in the multidimensional Heston model with

I = 10, r = 0.03, T = 1, S0 = 100, K = 100, ν = 0.01, κ = 2, a = 0.04, γ = −0.2, ρ = 0.3 and
m = 4.
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Figure 4.4.4:
√
MSE vs. CPU time for a best of option in the multidimensional Heston model with

I = 5, r = 0.03, T = 1, S0 = 100, K = 140, ν = 0.25, κ = 2, a = 0.04, γ = 0.2, ρ = 0.5 and
m = 4.
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Chapter 5

A stochastic optimization point of view to
American options

This chapter summarizes my paper [L-21] on the use of stochastic optimisation to price American
options using the dual representation of the price.

5.1 Introduction

The pricing of American options quickly becomes challenging as the dimension increases and the
payoff gets complex. Many people have contributed to this problem usually by considering its
dynamic programming principle formulation [88], [26], [89], [72], [23] and [5]. Among this so
extensive literature, the practitioners seem to prefer the iterative optimal policy approach proposed
by [72], which proves to be quite efficient in many situations. However, true path–dependent options
cannot be handled by this approach. Solving the dynamic programming principle requires the
computation of a conditional expectation, which is eventually handled by regression techniques.
These techniques are known to suffer from the curse of dimensionality: global regression methods
lead to high dimensional linear algebra problems, whereas the number of domains used by local
methods blows up with the dimension. Despite the numerous parallel implementations of these
techniques (see for instance [38]), we cannot expect to obtain a fully scalable algorithm. In this
work, we follow the dual approach initiated by [80], and [31], which can naturally handle path
dependent options. To make it implementable, we need a smart and finite dimensional approximation
of the set of uniformly integrable martingales. We chose the set of truncated Wiener chaos
expansions, which have some magic features in our problem: it regularizes the optimization problem
and computing its conditional expectation exactly is straightforward. Then, the pricing problem boils
down to a finite dimensional, convex and differentiable optimization problem. The optimization
problem is solved using a Sample Average Approximation (see [83] and Chapter 3), which can be
easily and efficiently implemented using parallel computing.

We fix some finite time horizon T > 0 and a filtered probability space (Ω,F , (Ft)0≤t≤T ,P),
where (Ft)0≤t≤T is supposed to be the natural augmented filtration of a d−dimensional Brownian
motion B. On this space, we consider an adapted process (St)0≤t≤T with values in Rd′ modeling
a d′–dimensional underlying asset. The number of assets d′ can be smaller than the dimension d of
the Brownian motion to encompass the case of stochastic volatility models or stochastic interest rate.
We assume that the short interest rate is modeled by an adapted process (rt)0≤t≤T with values in
R+ and that P is an associated risk neutral measure. We consider an adapted payoff process Z̃ and
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introduce its discounted value process
(
Zt = e−

∫ t
0 rsds Z̃t

)
0≤t≤T

. We assume that the paths of Z are

right continuous and that supt∈[0,T ] |Zt| ∈ L2. The process Z̃ can obviously take the simple form
(φ(St))t≤T but it can also depend on the whole path of S up to the current time. So, our framework
transparently deals with path–dependent option, which are far more difficult to handle using regression
techniques.

We consider the American option paying Z̃t to its holder if exercised at time t. Standard arbitrage
pricing theory defines the discounted time-t value of the American option to be

Ut = esssupτ∈Tt E[Zτ |Ftk ] (5.1)

where Tt denotes the set of F−stopping times with values in [t, T ]. The integrability properties of Z
ensure that U is a supermartingale of class (D) and hence has a Doob–Meyer decomposition

Ut = U0 +M?
t −A?t (5.2)

where M? is a martingale vanishing at zero and A? is a predictable integrable increasing process
also vanishing at zero. With our assumptions on Z, M? is square integrable. [48] and [80] found an
alternative representation of the price at time-0 of the American option as the minimum value of the
following optimization problem

U0 = inf
M∈H2

0

E

[
sup
t≤T

(Zt −Mt)

]
= E

[
sup
t≤T

(Zt −M?
t )

]
(5.3)

where H2
0 denotes the set of square integrable martingales vanishing at zero. A martingale reach-

ing the infimum is called an optimal martingale. As the dual price problem writes as a convex
minimisation problem, the set of all optimal martingales is a convex subset of H2

0 . Among the
martingales reaching the infimum in (5.3), some of them actually satisfy the pathwise equality
supt≤T Zt − Mt = U0. These martingales are called surely optimal. Any surely optimal martin-
gale reaches the lower bound in (5.3) but not all optimal martingales are surely optimal. We refer to
[85] for a detailed characterisation of optimal martingales. Anyway, [54] proved the uniqueness of
surely optimal martingales within the continuing region, ie. for any surely optimal martingale M and
any optimal strategy τ , (Mt∧τ )t = (M?

t∧τ )t a.s.
The most famous method using the dual representation (5.3) is probably the primal–dual approach

of [2], which heavily relies on the knowledge of an optimal exercising policy. The a priori knowledge
may take the form of nested Monte Carlo simulations as in [84], and [63]. To circumvent this difficulty,
[81] explained how to construct a good martingale. In a Wiener framework, [11] investigated this
approach by relying on the martingale representation theorem to build good martingales. When trying
to practically use the dual formulation (5.3), the first difficulty is to find a rich enough but finite
dimensional approximation of H2

0 and then we face a finite although potentially high–dimensional
minimization problem (see [10] for one way of handling this approach).

The minimization problem (5.3) can be equivalently formulated as

U0 = inf
X∈L2

0(Ω,FT ,P)
E

[
sup

0≤t≤T
(Zt − E[X|Ft])

]
(5.4)

where L2
0(Ω,FT ,P) is the set of square integrable FT− random variables with zero mean. In this

work, we suggest to use the truncated Wiener chaos expansion as a finite dimensional approximation
of L2(Ω,FT ,P). Since Wiener chaos are orthogonal for the L2 inner product, the computations of
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the conditional expectations E[X|Ft] become straightforward and boil down to dropping some terms
in the chaos expansion, which makes our approach very convenient. Based on this approximation, we
propose a scalable algorithm and study its convergence.

The chapter starts with a presentation of the Wiener chaos expansion and some of its useful prop-
erties in Section 5.2. Then, we can develop the core of our work in Section 5.3, in which we explain
how the price of the American option can be approximated by the solution of a finite dimensional
optimization problem. First, we analyze the properties of the optimization problem in order to prove
the convergence of its solution to the American option price. Second, we study its sample average
approximation, which makes the problem tractable, and prove its convergence. Based on all these
theoretical results, we present our algorithm in Section 5.4 and discuss its parallel implementation on
distributed memory architectures. Finally, some numerical examples are presented in Section 5.5.

Notation

• For α ∈ Nq, |α|1 =
∑q

i=1 αi.

• For n ≥ 1, 0 = t0 < t1 < · · · < tn = T is a time grid of [0, T ] satisfying
limn→∞ sup0≤k≤n−1 |tk+1 − tk| = 0.

• For n ≥ 1, the discrete time filtration G is defined by Gk = σ(Bti+1−Bti , i = 0, . . . , k−1) for
all 1 ≤ k ≤ n, while G0 is the trivial sigma algebra. Obviously, Gk ⊂ Ftk for all 0 ≤ k ≤ n.

• For 1 ≤ q ≤ d, I(r) ∈ {0, 1}n denotes the vector (0, . . . , 0︸ ︷︷ ︸
r−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−r

).

• For 1 ≤ q ≤ d, and 1 ≤ r ≤ n, I(r, q) ∈ Nn×d with all components equal to 0 except the
component with index (r, q) which is equal to 1.

We recall some useful definitions related to Malliavin calculus using the notation of [75].

• Let S denote the class of smooth random variables of the form F = f(W (h1), · · · ,W (h`))
where m ≥ 1, f ∈ C∞p (R`×d,R), for all j ≤ `, hj = (h1

j , · · · , hdj ) ∈ L2([0, T ],Rd) and for all

i ≤ d, W i(hij) =
∫ T

0 hij(t)dW
i
t .

• For F ∈ S, the Malliavin derivative of F denoted byDF = (D1, · · ·Dd) is a stochastic process
with values in Rd. For t ≤ T and 1 ≤ i ≤ d, Di

t is defined by

Di
tF =

∑̀
j=1

∂jf(W (h1), · · · ,W (hm))hij(t).

With this notation, Dt is a gradient operator.

• For m ≥ 1, a multi–index α ∈ {1, · · · , d}m and a tuple of dates (t1, · · · , tm), we write

Dα
t1,··· ,tmF = Dα1

t1
(· · · (Dαm

tm F )).

D(m)F = {Dα
t1,··· ,tmF : α ∈ {1, · · · , d}m, (t1, · · · , tm) ∈ [0, T ]m} can be seen as a

measurable function defined on Ω × [0, T ]m. When α1 = · · · = αm = 1, we drop the multi–
index and just write Dt1,··· ,tm .
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• Let Dm,2 be the closure of S w.r.t. the following norm

‖F‖2Dm,2 = E[|F |2] +
m∑
r=1

∑
|α|1=r

E

[∫
[0,T ]r

∣∣Dα
t1,··· ,trF

∣∣2 dt1 · · · dtr] .
5.2 Wiener chaos expansion

In this section, we recall some well known material about Wiener chaos expansion using the Hermite
polynomial point of view and state some results on the Malliavin derivative of a chaos expansion. We
refer the reader to [75] for further details.

5.2.1 The one–dimensional framework

For the sake of clearness, we first present the Wiener chaos expansion in the case d = 1 (ie. B is a
real valued Brownian motion).

Let Hi be the i− th Hermite polynomial defined by

H0(x) = 1; Hi(x) = (−1)i ex
2/2 di

dxi
(e−x

2/2), for i ≥ 1. (5.5)

They satisfy for all integer i, H ′i = Hi−1 with the convention H−1 = 0. We recall that if (X,Y ) is a
random normal vector with E[X] = E[Y ] = 0 and E[X2] = E[Y 2] = 1

E[Hi(X)Hj(Y )] = i! (E[XY ])i 1i=j . (5.6)

For all p ≥ 0, we define the spaces

Hp = span

{
Hp

(∫ T

0
ftdBt

)
: f ∈ L2([0, T ])

}
. (5.7)

It is well known that L2(Ω,FT ,P) =
⊕∞

p=0Hp, see [75, Theorem 1.1.1]. Let us introduce the gener-
alized Hermite polynomials defined for any multi–index α = (αi)i≥1 ∈ NN

Ĥα(x) =
∏
i≥1

Hαi(xi), for x ∈ RN. (5.8)

If (fi)i≥0 is an orthonormal basis of L2([0, T ]), then the random variables{
Ĥα

((∫ T

0
fi(t)dBt

)
i≥0

)
: α ∈ NN, |α|1 ≤ p

}

form a complete orthonormal system inHp, see [75, Proposition 1.1.1].
Consider the indicator functions of the grid 0 = t0 < t1 < . . . . < tn = T defined by

fi(t) = 1]ti−1,ti](t)/
√
ti − ti−1, i = 1, . . . , n, (5.9)

With this choice for the (fi)i, ∫ T

0
fi(t)dBt =

Bti −Bti−1√
ti − ti−1

= Gi.
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Note that the random variables Gi are i.i.d. following the standard normal distribution. We denote by
Cp,n the vector space generated by the random variables{

Ĥα (G1, · · · , Gn) : α ∈ Ap,n
}

where Ap,n = {α ∈ Nn : |α|1 ≤ p}. For a random variable F ∈ L2(Ω,FT ,P) we define its
truncated chaos expansion of order p as its projection on Cp,n and write

Cp,n(F ) =
∑

α∈Ap,n

λαĤα(G1, . . . , Gn)

5.2.2 The multi–dimensional framework

Now, we are back to our original multi–dimensional setting, as explained in Section 5.1. The process
B is a Brownian motion with values in Rd. The natural way to extend the Hermite polynomial expan-
sion to a higher dimensional setting is to consider a tensor product of Hermite polynomials evaluated
on a tensor basis of L2([0, T ],Rd).

Consider the functions (fi)i with values in Rd defined by

f ji (t) =
1]ti−1,ti](t)√
ti − ti−1

ej , i = 1, . . . , n, j = 1, . . . , d

where (e1, . . . , ed) denotes the canonical basis of Rd. The p− th Wiener chaos Cp,n is defined as the
vector space generated by the random variables

d∏
j=1

Ĥαj (G
j
1, . . . , G

j
n) : α ∈ A⊗dp,n


where Gji =

Bjti
−Bjti−1√
ti−ti−1

and A⊗dp,n =
{
α ∈ (Nn)d : |α|1 ≤ p

}
. Using the independence of the Brown-

ian increments and the orthogonality of the Hermite polynomials, the truncated chaos expansion of a
square integrable random variable F is given by

Cp,n(F ) =
∑

α∈A⊗dp,n

λαĤ
⊗d
α (G1, . . . , Gn)

where Ĥ⊗dα (G1, . . . , Gn) =
∏d
j=1 Ĥαj (G

j
1, . . . , G

j
n), ∀α ∈ (Nn)d. With an obvious abuse of nota-

tion, we write, for λ ∈ RA
⊗d
p,n ,

Cp,n(λ) =
∑

α∈A⊗dp,n

λαĤ
⊗d
α (G1, . . . , Gn).

We also introduce the set of multi–indices truncated after time tk

A⊗d,kp,n =
{
α ∈ A⊗dp,n : ∀j ∈ {1, . . . , d}, ∀` > k, αj` = 0

}
. (5.10)

Proposition 5.2.1 Let F be a real valued random variable in L2(Ω,FT ,P) and let k ∈ {1, . . . , n}
and p ≥ 0

E[Cp,n(F )|Ftk ] =
∑

α∈A⊗d,kp,n

λα Ĥ
⊗d
α (G1, . . . , Gn).
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Remark 5.2.2 Since the sum appearing in E[Cp,n(F )|Ftk ] is reduced to a sum over the set of multi–
indices α ∈ Akp,n, it actually only depends on the first k increments (G1, . . . , Gk). One can easily
check that E[Cp,n(F )|Ftk ] is actually given by the chaos expansion of F on the first k Brownian
increments. Hence, computing a conditional expectation simply boils down to dropping terms. While
it may look like a naive way to proceed, it is indeed correct in our setting.

Remark 5.2.3 The discrete time sequence (E[Cp,n(F )|Ftk ])0≤k≤n is of course adapted to the fil-
tration (Ftk)k but also to the smaller filtration (Gk)k. This property plays a crucial when approx-
imating a random variable F ∈ L2(Ω,Gn,P) as we know that in such a finite dimensional set-
ting limp→∞Cp,n(F ) = F in the L2−sense. This result holds for the fixed value n. If F were
only FT−measurable and not Gn−measurable, we would need to impose that F ∈ D1,2 to obtain
limp→∞,n→∞Cp,n(F ) = F . In this latter case, it is required to let n go to infinity to recover F .

Proposition 5.2.4 Let F be a real valued random variable in L2(Ω,FT ,P) and let k ∈ {1, . . . , n}
and p ≥ 1. For t > tk, DtE[Cp,n(F )|Ftk ] = 0.

For all t ∈]tr−1, tr] with 1 ≤ r ≤ k, and q = 1, . . . , d,

Dq
tE[Cp,n(F )|Ftk ] =

1√
tr − tr−1

∑
α∈A⊗d,kp,n ,αqr≥1

λα Ĥ
⊗d
α−I(r,q)(G1, . . . , Gn)

where (α− I(r, q))ji = αji − 1j=q,i=r.

Remark 5.2.5 The Malliavin derivative of a chaos expansion still writes as a chaos expansion and
hence is a Hermite polynomial of Brownian increments. The roots of a non zero polynomial being a
zero measure set and since the Brownian increments have a joined density, the Malliavin derivative
of a chaos expansion is almost surely non zero as soon as one of the coefficients λα is non zero for
α ∈ A⊗d,kp,n such that αjr ≥ 1 for some j ∈ {1, . . . , d}.

For i, k ∈ {1, . . . , n}, with i < k, we introduce the set A⊗d,i:kp,n defined as A⊗d,kp,n \A⊗d,ip,n .

A⊗d,i:kp,n =
{
α ∈ (Nn)d : |α|1 ≤ p, and ∀1 ≤ j ≤ d, ∀` /∈ {i+ 1, . . . , k}, αj` = 0

}
. (5.11)

5.3 Pricing American options using Wiener chaos expansion and sam-
ple average approximation

In this section, we aim at approximating the dual price (5.4) by a tractable optimization problem.
This involves two kinds of approximations: first, to approximate the space L2

0(Ω,FT ,P) by a finite
dimensional vector space; second, to replace the expectation by a sample average approximation.

The dual price writes

inf
X∈L2

0(Ω,FT ,P)
E

[
sup

0≤t≤T
(Zt − E[X|Ft])

]
.

In this optimization problem, we replace X by its chaos expansion Cp,n(X), which has no constant
term as E[X] = 0 and we approximate the supremum by a discrete time maximum. Then, we face a
finite dimensional minimization problem to determine the optimal solution within the subset Cp,n

inf
λ∈RA

⊗d
p,n , λ0=0

E
[

max
0≤k≤n

(Ztk − E[Cp,n(λ)|Ftk ])

]
. (5.12)
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In Section 5.3.1, we prove that this optimization problem is convex, has a solution (see Proposi-
tion 5.3.1) and converges to the price of the American option (see Proposition 5.3.2). Moreover, as
the cost function is differentiable, any minimizer is a zero of the gradient (see Proposition 5.3.4).

To come up with a fully implementable algorithm, Section 5.3.2 presents the sample average
approximation of (5.12), which consists in replacing the expectation by a Monte Carlo summation.
We prove in Proposition 5.3.5 that the solution of the sample average approximation converges to the
solution of (5.12) when the number of samples goes to infinity.

5.3.1 A stochastic optimization approach

We fix p ≥ 1 and define the random functions vp,n(·, ·;Z,G) : RA
⊗d
p,n × {0, . . . , n} by

vp,n(λ, k;Z,G) = Ztk −
∑

α∈A⊗dp,n

λαE
[
Ĥ⊗dα (G1, . . . , Gn)

∣∣∣Ftk] ,
With the help of Proposition 5.2.1, the random functions vp,n can be written

vp,n(λ, k, Z,G) = Ztk −
∑

α∈A⊗d,kp,n

λαĤ
⊗d
α (G1, . . . , Gn) . (5.13)

We consider the cost function Vp,n : RA
⊗d
p,n → R defined by

Vp,n(λ) = E
[

max
0≤k≤n

vp,n(λ, k;Z,G)

]
(5.14)

and we approximate the solution of (5.4) by

inf
λ∈RA

⊗d
p,n , λ0=0

Vp,n(λ). (5.15)

5.3.1.1 Convergence results

Proposition 5.3.1 The minimization problem (5.15) has at least one solution.

Proof. As the supremum of linear functions is convex, the random function λ 7−→
maxk≤n vp,n(λ, tk, Z,G) is almost surely convex. The convexity of Vp,n ensues from the linearity
of the expectation.

Let us prove that Vp,n(λ) → ∞ when |λ| → ∞. Note that Vp,n(λ) ≥ E [(Cp,n(λ))−] ≥
1
2 E [|Cp,n(λ)|], where we have used that |x| = 2x− + x and E[Cp,n(λ)] = 0.

E [|Cp,n(λ)|] = |λ|E [|Cp,n(λ/ |λ|)|] ≥ |λ| inf
µ∈RA

⊗d
p,n ,|µ|=1

E [|Cp,n(µ)|] . (5.16)

By a standard continuity argument, the infimum is attained. Moreover, it is strictly positive as other-
wise there would exist µ ∈ RA

⊗d
p,n with |µ| = 1 s.t. E [|Cp,n(µ)|] = 0. Using the orthogonality of the

family
(
H⊗dα

)
α∈A⊗dp,n

, we would immediately deduce that µ = 0. Hence, we show that Vp,n(λ)→∞
when |λ| → ∞. The growth at infinity of Vp,n combined with its convexity yields the existence of a
solution to the minimization problem (5.15). �
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Proposition 5.3.1 ensures the existence of λ]p,n solving (5.15), ie.

Vp,n(λ]p,n) = inf
λ s.t. λ0=0

Vp,n(λ). (5.17)

To study the convergence of the Vp,n(λ]p,n), we introduce the Bermudan option with exercising dates
t0, . . . , tn and with discounted payoff (Ztk)k. Let Ûnk be its time-tk price. The sequence (Ûnk )0≤k≤n
is a supermartingale admitting the Doob–Meyer decomposition Ûnk = Ûn0 + M̂?,n

k − Â?,nk where M̂n

is a square integrable (Ftk)k−martingale and Ân a predictable increasing process for the filtration
(Ftk)k. The time−0 price can be expressed as

Ûn0 = inf
X∈L2

0(Ω,FT ,P)
E
[

max
0≤k≤n

(Ztk − E[X|Ftk ])

]
= E

[
max

0≤k≤n
(Ztk −M

?,n
tk

)

]
. (5.18)

Note that Vp,n(λ]p,n) ≥ Ûn0 .

Proposition 5.3.2 We have∣∣∣Vp,n(λ]p,n)− U0

∣∣∣ ≤ 2 ‖M?
T − Cp,n(M?

T )‖2 +E
[
max
k

(Ztk −M
?
tk

)

]
− E

[
sup
t

(Zt −M?
t )

]
.

Moreover, assume that Ûn0 converges to U0 with n. Then, Vp,n(λ]p,n), converges to U0 when both p
and n go to infinity.

Note that E
[
maxk(Ztk −M?

tk
)
]
≥ Ûn0 , hence

E
[
max
k

(Ztk −M
?
tk

)

]
− E

[
sup
t

(Zt −M?
t )

]
≤ U0 − Ûn0 .

We refer to [27, 67] for results on the convergence of Ûn0 to U0. The convergence of∥∥M?,n
T − Cp,n(M?

T )
∥∥

2
to 0 when p, n go to infinity ensues from [75, Theorem 1.1.1, Proposition

1.1.1].

Corollary 5.3.3 Assume the discounted payoff (Ztk)k of the Bermudan option is G−adapted. Then,
Vp,n(λ]p,n) converges to the price of the Bermudan option when p goes to infinity.

5.3.1.2 Regularity of the optimization problem

Most convex optimization algorithms mainly rely on the gradient of the cost function. We end this
section by proving that Vp,n is almost everywhere differentiable, which implies that∇Vp,n(λ]p,n) = 0.
We introduce the set of random indices for which the pathwise maximum is attained

I(λ, Z,G) =

{
0 ≤ k ≤ n : vp,n(λ, k;Z,G) = max

`≤n
vp,n(λ, `;Z,G)

}
.

Proposition 5.3.4 Let p ≥ 1. Assume that

∀1 ≤ r ≤ k ≤ n, ∀F Ftk − measurable, F ∈ Cp−1,n, F 6= 0, ∃ q′ ∈ {1, . . . , d} s.t.

P
(
∀t ∈]tr−1, tr], D

q′

t Ztk + F = 0 | Ztk > 0
)

= 0. (5.19)
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Define the open set

Λ = {(λα)α ∈ RA
⊗d
p,n : ∀r ∈ {1, . . . , n}, ∃(α, q ∈ {1, . . . , d}) s.t. αqr ≥ 1 and λα 6= 0}.

Then, the function Vp,n is differentiable on the set Λ and the gradient∇Vp,n is given by

∇Vp,n(λ) = E
[
E
[
Ĥ⊗d(G1, . . . , Gn) | Fti

]
|{i}=I(λ,Z,G)

]
.

Sketch of the proof. For allZ andG, the function λ 7−→ maxk≤n vp,n(λ, k, Z,G) is subdifferentiable.
It ensues from [17] that the subdifferential ∂Vp,n(λ) writes as the expectation of the subdifferential of
its integrand

∂Vp,n(λ) =

E
 ∑
i∈I(λ,Z,G)

βiE[Ĥ⊗d(G1, . . . , Gn)|Fti ]

 : βi ≥ 0, FT −meas.,
∑
i

βi = 1

 .

It is sufficient to prove for any λ with no zero component, the set I(λ, Z,G) is almost surely
reduced to a single value as in this case the subdifferential ∂Vp,n(λ) contains a unique element, which
is then the gradient.

From (5.19) and [75, Theorem 2.1.3], we can prove that for any r < k, and any F ∈ Cp−1,n,
Ztk − Ztr + F has a density, which yields the differentiability of Vp,n. �

5.3.2 The Sample Average Approximation point of view

From Proposition 5.3.2, we can approximate U0 by solving the minimization problem (5.15), which
admits at least one solution λ]p,n, ie.

Vp,n(λ]p,n) = inf
λ∈A⊗dp,n, λ0=0

Vp,n(λ)

where Vp,n defined by (5.14) is an expectation, which is barely tractable. To practically solve such a
problem, two different approaches are commonly used. Either, one uses a stochastic algorithm or one
replaces the expectation by a sample average approximation. In this work, we target large problems,
which puts scalability as a primary requirement. The intrinsic sequential nature of stochastic
algorithms has led us to prefer the sample average approximation approach. Moreover, we are more
interested in the value function at the minimum rather than in its minimizer and unlike stochastic
algorithm, standard optimization algorithms provide both at once.

We introduce the sample average approximation of Vp,n defined by

V m
p,n(λ) =

1

m

m∑
i=1

max
0≤k≤n

vp,n(λ, k;Z(i), G(i))

where (Z(i), G(i))1≤i≤m are i.i.d samples from the distribution of (Z,G).
For large enough m, V m

p,n inherits from the smoothness of Vp,n and is in particular convex and a.s.
differentiable at any point with no zero component. Then, we easily deduce from Proposition 5.3.1
that there exits λmp,n such that

V m
p,n(λmp,n) = inf

λ∈RA
⊗d
p,n , λ0=0

V m
p,n(λ)
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and moreover ∇V m
p,n(λmp,n) = 0. The main difficulty in studying the convergence of V m

p,n(λmp,n) when

m goes to infinity comes from the non compactness of the set RA
⊗d
p,n . To circumvent this problem, we

adapt to non strictly convex problems the technique used in [L-12].

Proposition 5.3.5 The sequence V m
p,n(λmp,n) converges a.s. to Vp,n(λ]p,n) when m → ∞. Moreover,

the distance between λmp,n and the convex set of minimizers in (5.15) converges to zero as m goes to
infinity.

The proof of Proposition 5.3.5 very much looks like the proof of Proposition 3.2.5 with the strong
convexity assumption replaced by the coercivity condition (5.16).

Although V m
p,n is not twice differentiable and the classical central limit theorem for sample av-

erage approximations cannot be applied, we can study the variance of V m
p,n(λmp,n) and we obtain

some asymptotic bounds. Before stating our result, we introduce, for λ ∈ RA
⊗d
p,n , the notation

Mk(λ) = E[Cp,n(λ)|Ftk ] for 0 ≤ k ≤ n. We write M (i)
k (λ) for the value computed using the

sample G(i).

Proposition 5.3.6 Assume λ]p,n is unique. Then,

1

m

m∑
i=1

(
max

0≤k≤n
Z

(i)
tk
−M (i)

k (λmp,n)

)2

− V m
p,n(λmp,n)2

is a convergent estimator of Var(maxk≤0≤n Ztk − Mk(λ
]
p,n)) and moreover if λmp,n is bounded,

limm→∞mVar
(
V m
p,n(λmp,n)

)
= Var(maxk≤0≤n Ztk −Mk(λ

]
p,n)).

Proposition 5.3.6 enables us to monitor the variance of our estimator online as for a standard Monte
Carlo estimator. Even though the terms involved in V m

p,n(λmp,n) are not independent, the classical vari-
ance estimator gives the right result. In practice, one should not feel concerned with the boundedness
condition used in the proposition as we know from the proof of Proposition 5.3.5 that for large enough
m we can impose a compactness constraint to the optimization problem without changing its result.
Hence, one can pragmatically rely on the proposed variance estimator.

5.4 The algorithm

Any optimization algorithm requires to repeatedly compute V m
p,n and therefore the truncated chaos

expansion, which becomes the most time consuming part of our approach as the dimension and/or
p increase. A lot of computational time can be saved by considering slightly modified martingales,
which only start the first time the option goes in the money.

5.4.1 An improved set of martingales

We define the first time the option goes in the money by

τ0 = inf{k ≥ 0 : Ztk > 0} ∧ n,

which is a F− stopping time and becomes a G− stopping time when the sequence (Ztk)k is G−
adapted. To consider martingales only starting once the option has been in the money, we define

Nk(λ) =
k∑
`=1

(M`(λ)−M`−1(λ))1`−1≥τ0 = (Mk(λ)−Mτ0(λ))1k>τ0 = Mk(λ)−Mk∧τ0(λ).
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We easily check that N(λ) is a (Ftk)0≤k≤n− martingale. It is clear from the proof proposed by [80]
that in the dual price of a Bermudan option (see (5.3)) the maximum can be shrunk to the random
interval [τ0, n]. Hence, it is sufficient to consider

inf
λ∈RA

⊗d
p,n , λ0=0

E
[

max
τ0≤k≤n

(Ztk −Mk(λ))

]
.

Using Doob’s stopping theorem, we have, for any fixed λ,

E
[

max
τ0≤k≤n

(Ztk −Mk(λ))

]
= E

[
max
τ0≤k≤n

(Ztk − (Mk(λ)−Mτ0(λ)))

]
= E

[
max
τ0≤k≤n

(Ztk −Nk(λ))

]
.

We deduce from this equality that minimizing over either set of martingales M(λ) or N(λ) leads to
the same minimum value and that both problems share the same properties, which justifies why we
did not take into account the in–the–money condition for the theoretical study. However, considering
the set of martingales Nλ is far more efficient from a practical point of view.

In our numerical examples, we modify Vp,n and V m
p,n to take into account this improvement and

consider instead

Ṽp,n(λ) = E
[

max
τ0≤k≤n

(Ztk −Nk(λ))

]
and Ṽ m

p,n(λ) =
1

m

m∑
i=1

max
τ0≤k≤n

(Z
(i)
tk
−N (i)

k (λ)).

The idea of using martingales starting from the first time the option goes in the money is actually
owed to [80]. Although he did not discuss it much, this was his choice in the examples he treated.

5.4.2 Our implementation of the algorithm

To practically compute the infimum of Ṽ m
p,n, we advise to use a gradient descent algorithm, see Algo-

rithm 5.4.1. The efficiency of such an approach mainly depends on the computation of the descend
direction. When the problem is not twice differentiable, the gradient at the current point is used as a
descent direction but it often needs to be scaled, which makes the choice of the step size α` a burning
issue to ensure a fast numerical convergence. We refer to [20] for a comprehensive survey of sev-
eral step size rules. After many tests, we found that the step size rule proposed by [76] was the best
performing one in our context

α` =
Ṽ m
p,n(x`)− v]∥∥∥∇Ṽ m

p,n(x`)
∥∥∥2

where v] is the price of the American option we are looking for. In practice, we use the price of
the associated European option instead of v], which makes α` too large and explains the need of the
magnitude factor γ in Algorithm 5.4.2. The value of the European price does not need to be very
accurate. A decent and fast approximation can be computed with a few thousand samples within few
seconds no matter the dimension of the problem.

To better understand how this algorithm works, it is important to note that as N(λ) linearly de-
pends on λ, N(λ) = λ · ∇λN(λ) and therefore both the value function and its gradient are computed
at the same time without extra cost. So, ∇Ṽ m

p,n(x`+1) is not actually computed on line 9 but at the
same time as v`+1/2 on line 5.
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1 Generate (G(1), Z(1)), . . . , (G(m), Z(m)) m i.i.d. samples following the law of (Z,G)

2 x0 ← 0 ∈ RA
⊗d
p,n

3 `← 0, γ ← 1, d0 ← 0, v0 ←∞
4 while True do
5 Compute v`+1/2 ← Ṽ m

p,n(x` − γα`d`)
6 if v`+1/2 < v` then
7 x`+1 ← x` − γα`d`
8 v`+1 ← v`+1/2

9 d`+1 ← ∇Ṽ m
p,n(x`+1)

10 if |v`+1−v`|
v`

≤ ε then return
11 else
12 γ ← γ/2
13 end
14 end

Algorithm 5.4.1: Sample Average Approximation of the dual price

The HPC approach. Our method targets large problems with as many as several thousands of
components for λ. This requires to design a scalable algorithm capable of making the most of cluster
architectures with hundreds of nodes. At each iteration, the computation of Ṽ m

p,n and∇Ṽ m
p,n is nothing

but a standard Monte Carlo method and it inherits from its embarrassingly parallel nature.
A parallel algorithm for distributed memory systems based on the master/slave paradigm is pro-

posed in Algorithm 5.4.2. At the beginning, each process samples a bunch of the m paths (lines
1–3). Then, at each iteration the master process broadcasts the values of d`, x`, α` and γ (line 7 of
Algorithm 5.4.1). With these new values, each process computes its contribution to Ṽ m

p,n(x`− γα`d`)
and ∇Ṽ m

p,n(x` − γα`d`) (lines 8–9) and the Monte Carlo summations are obtained by two simple
reductions (line 11). Then, the master process tests whether the move is admissible and updates the
parameter for the next iteration or returns the solution if the algorithm is not moving enough anymore.
This part carried out by the master process is very fast compared to the rest of the code and we dare say
that there is no centralized computation in our algorithm. Moreover the communications are reduced
to fours broadcasts, which guarantees an almost perfect very good scalability. The number of com-
munications is monitored by the number of function evaluations, which remains quite small (between
10 and 20). We study the efficiency of our algorithm on a few examples at the end of Section 5.5.

Study of the complexity. Most of the computational time is spent computing the martingale part;
remember that the cardinality of Cp,n is given by

(
nd+p
nd

)
= (nd+p)...(nd+1)

p! . Using martingales only
starting once the option has been in the money enables us to only compute the martingale part on paths
going in the money strictly before maturity time. Depending on the product, this may allow for a lot
of computational time savings. The complexity of one iteration of the loop line 3 in Algorithm 5.4.1
is proportional to

]{paths in the money strictly before time T} ×
(
nd+ p

nd

)
.

The payoffs are computed once and for all before starting the descent algorithm. It is worth noting
that its computational cost becomes negligible compared to the optimization part when the dimension
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1 In parallel do
2 Generate (G(1), Z(1)), . . . , (G(m), Z(m)) m i.i.d. samples following the law of (Z,G)
3 end
4 x0 ← 0 ∈ RA

⊗d
p,n

5 `← 0, γ ← 1, d0 ← 0, v0 ←∞
6 while True do
7 Broadcast x`, d`, γ, α`
8 In parallel do
9 Compute maxτ0≤k≤n(Z

(i)
tk
−N (i)

k (x` − γα`d`)) for i = 1, . . . ,m

10 end
11 Make a reduction of the above contributions to obtain Ṽ m

p,n(x` − γα`d`) and
∇Ṽ m

p,n(x` − γα`d`)
12 v`+1/2 ← Ṽ m

p,n(x` − γα`d`)
13 if v`+1/2 < v` then
14 x`+1 ← x` − γα`d`
15 v`+1 ← v`+1/2

16 d`+1 ← ∇Ṽ m
p,n(x`+1)

17 if |v`+1−v`|
v`

≤ ε then return
18 else
19 γ ← γ/2
20 end
21 end
Algorithm 5.4.2: Parallel implementation of the Sample Average Approximation of the dual
price

of the model or the number of dates increase, the most demanding computation being the evaluation
of the martingale decomposition.

5.5 Applications

5.5.1 Some frameworks satisfying the assumption of Proposition 5.3.4

Let (rt)t be the instantaneous interest rate supposed to be deterministic.

5.5.1.1 A put basket option in the multi–dimensional Black Scholes model

The d−dimensional Black Scholes model writes for j ∈ {1, . . . , d}

dSjt = Sjt ((rt − δj)dt+ σjLjdBt)

where B is a Brownian motion with values in Rd, σt = (σ1
t , . . . , σ

d
t ) is the vector of volatilities,

assumed to be deterministic and positive at all times, δ = (δ1, . . . , δd) is the vector of instantaneous
dividend rates and Lj is the j-th row of the matrix L defined as a square root of the correlation matrix
Γ, ie. Γ = LL′. Moreover, we assume that L is lower triangular. Clearly, for every t, the random
vector St is an element of D1,2.

74



The payoff of the put basket option writes as φ(St) =
(
K −

∑d
i=1 ω

jSjt

)
+

where ω =

(ω1, . . . , ωd) is a vector of real valued weights. The function φ is Lipschitz continuous and hence
φ(St) ∈ D1,2 for all t. Moreover, for s ≤ t and q ∈ {1, . . . , d}, we have on the set {φ(St) > 0}

Dq
sφ(St) =

d∑
j=1

ωjSjt σ
jLj,q.

In particular for q = d, we get Dd
sφ(St) = ωdSdt σ

dLd,d.
Let 1 ≤ k ≤ n and F be a non zero and Ftk−measurable element of Cp−1,n, ie.

F =
∑

α∈A⊗d,kp−1,n

λαĤ
⊗d
α (G1, . . . , Gn)

for some λ ∈ RA
⊗d
p,n . Let 1 ≤ r ≤ k.

P
(
∀t ∈]tr−1, tr], D

d
t φ(Stk) + F = 0 | φ(Stk) > 0

)
= P

(
∀t ∈]tr−1, tr], ω

dSdtkσ
d
tLd,d + F = 0 | φ(Stk) > 0

)
≤
P
(
∀t ∈]tr−1, tr], ω

dSdtkσ
d
tLd,d + F = 0

)
P(φ(Stk) > 0)

. (5.20)

If p = 1, then F is a deterministic non zero constant. In this case, the numerator vanishes because Sdtk
has a density. Assume p ≥ 2, then F is a multivariate polynomial with global degree p− 1 ≥ 1. Then
we can find ` ∈ {1, . . . , k}, q ∈ {1, . . . , d} and α such that αq` ≥ 1 and λα 6= 0. Let Ĝ be the sigma
algebra generated by (Gji , 1 ≤ i ≤ k, 1 ≤ j ≤ d, (i, j) 6= (`, q)).

P
(
∀t ∈]tr−1, tr], ω

dSdt σ
d
tLd,d + F = 0

)
= E

[
P
(
∀t ∈]tr−1, tr], ω

dSdt σ
d
tLd,d + F = 0 | Ĝ

)]
.

Conditioning on Ĝ, the random variable ωdSdt σ
d
tLd,d+F only depends onGq` . Consider the algebraic

equation for x ∈ R
a ebx+c = P (x) (5.21)

where (a, b, c) ∈ R3, a 6= 0, b 6= 0 and P is polynomial with degree p − 1 ≥ 1. Let f(x) =
a ebx+c−P (x), f (p)(x) = abp ebx+c. Clearly, f (p) never vanishes, which ensures that f has at most
p different roots. Hence, we deduce that for any t ∈]tr−1, tr], P

(
ωdSdt σ

d
tLd,d + F = 0 | Ĝ

)
= 0.

Combining this result along with (5.20) proves that Equation (5.19) holds in this setting.

5.5.1.2 A put option on the minimum of a basket in the multi–dimensional Black Scholes model

We use the notation of the previous example. The payoff of the put option on the minimum of d
assets write φ(St) = (K − minj(S

j
t ))+. One can prove by induction on d that the function x ∈

Rd 7−→ minj(x
j) is 1−Lipschitz for the 1−norm on Rd. Hence, as the positive part function is also

Lipschitz, the payoff function φ is Lipschitz. Then, [75, Proposition 1.2.4] yields that for all t ∈ [0, T ],
φ(St) ∈ D1,2 and for all q ∈ {1, . . . , d},

Dq(φ(St)) =

d∑
j=1

∂xjφ(St)D
q(Sjt ) =

d∑
j=1

∂xjφ(St)S
j
t σ

jLj,q.
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With our choice for the matrix L,

Dd(φ(St)) = ∂xdφ(St)S
d
t σ

dLd,d = −Sdt σdLd,d1φ(St)>01minj(S
j
t )=Sdt

.

Let 1 ≤ k ≤ n and F be a non zero and Ftk−measurable element of Cp−1,n. For 1 ≤ r ≤ k,

P
(
∀t ∈]tr−1, tr], D

d
t φ(Stk) + F = 0 | φ(Stk) > 0

)
= P

(
∀t ∈]tr−1, tr], −Sdt σdLd,d + F = 0 | φ(Stk) > 0, min

j
(Sjt ) = Sdt

)
P
(

min
j

(Sjt ) = Sdt

)
+ P

(
∀t ∈]tr−1, tr], F = 0 | φ(Stk) > 0, min

j
(Sjt ) 6= Sdt

)
P
(

min
j

(Sjt ) 6= Sdt

)
Clearly, the second term in the above sum is zero as F has a density. Hence,

P
(
∀t ∈]tr−1, tr], D

d
t φ(Stk) + F = 0 | φ(Stk) > 0

)
≤
P
(
∀t ∈]tr−1, tr], −Sdt σdLd,d + F = 0

)
P(φ(Stk) > 0)

.

We conclude as in the case of the put basket option.

5.5.1.3 A put option in the Heston model

The Heston model can be written

dSt = St(rtdt+
√
σt(ρdW

1
t +

√
1− ρ2dW 2

t )

dσt = κ(θ − σt)dt+ ξ
√
σtdW

1
t .

For s ≤ t, D2
sSt = St

√
1− ρ2√σt. Conditionally on W 1, D2

sSt writes as a ebW
2
t +c and we can

unfold the same reasoning as after (5.21).

5.5.2 Numerical experiments

In this part, we present the results obtained from a sequential implementation of our approach as
described in Algorithm 5.4.1. The computations are run on a standard laptop with an Intel Core i5
processor 2.9 Ghz. For each experiment, we report the price obtained using Algorithm 5.4.1 along
with its computational time and standard deviation.

5.5.2.1 Examples in the Black Scholes models

We consider the d−dimensional Black Scholes as presented in Section 5.5.1.1. For the sake of sim-
plicity in choosing the parameters, we have decide to use the same correlation between all the assets,
which amounts to considering the following simple structure for Γ.

Γ =


1 ρ . . . ρ

ρ 1
. . .

...
...

. . . . . . ρ
ρ . . . ρ 1


where ρ ∈]− 1/(d− 1), 1] to ensure that Γ is positive definite.
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A basket option in the Black–Scholes model. We consider a put option on several assets as pre-
sented in Section 5.5.1.1. We report in Table 5.1 the price obtained with our approach form = 20, 000.
The last column reference price corresponds to the prices reported in [85] on the same examples.
These reference prices were obtained within a few minutes according to the authors whereas here we
manage to get similar values within a few seconds. We can see that a second order chaos expan-
sion, p = 2, already gives very accurate results within a few tenths of a second for a 5−dimensional
problem with 6 dates, which proves the impressive efficiency of our approach.

p n S0 price Stdev time (sec.) reference price
2 3 100 2.27 0.029 0.17 2.17
3 3 100 2.23 0.025 0.9 2.17
2 3 110 0.56 0.014 0.07 0.55
3 3 110 0.53 0.012 0.048 0.55
2 6 100 2.62 0.021 0.91 2.43
3 6 100 2.42 0.021 14 2.43
2 6 110 0.61 0.012 0.33 0.61
3 6 110 0.55 0.008 10 0.61

Table 5.1: Prices for the put basket option with parameters T = 3, r = 0.05, K = 100, ρ = 0,
σj = 0.2, δj = 0, d = 5, ωj = 1/d.

A call on the maximum of d assets in the Black–Scholes model. We consider a call option on
the maximum of d assets in the Black Scholes model. As in the previous example, the last column
reference price corresponds to the prices reported in [85] on the same examples. With no surprise,

d p m S0 price Stdev time (sec.) reference price
2 2 20, 000 90 10.18 0.07 0.4 8.15
2 3 20, 000 90 8.5 0.05 4.1 8.15
2 2 20, 000 100 16.2 0.06 0.54 14.01
2 3 20, 000 100 14.4 0.06 5.6 14.01
5 2 20, 000 90 21.2 0.09 2 16.77
5 3 40, 000 90 16.3 0.05 210 16.77
5 2 20, 000 100 30.7 0.09 3.4 26.34
5 3 40, 000 100 26.0 0.05 207 26.34

Table 5.2: Prices for the call option on the maximum of d assets with parameters T = 3, r = 0.05,
K = 100, ρ = 0, σj = 0.2, δj = 0.1, n = 9.

the computational time increases exponentially with the dimension n× d and the degree p. Whereas
a second order expansion provides very accurate results for the basket option, it only gives a rough
upper–bound for the call option on the maximum of d assets. Considering a third order expansion
p = 3 takes far longer but enables us to get very tight upper–bounds.

A geometric basket option in the Black–Scholes model Benchmarking a new method on high
dimensional products becomes hardly feasible as almost no high dimensional American options can
be priced accurately in a reasonable time. An exception to this is the geometric option with payoff
(K− (

∏d
j=1 S

j
t )

1/d)+ for the put option. Easy calculations show that the price of this d−dimensional
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option equals the one of the 1−dimensional option with parameters

Ŝ0 =

 d∏
j=1

Sj0

1/d

; σ̂ =
1

d

√∑
i,j

σiσjΓij ; δ̂ =
1

d

d∑
j=1

(
δj +

1

2
(σj)2

)
− 1

2
(σ̂)2.

Table 5.3 summarizes the correspondence values used in the examples.

d S0 σ ρ Ŝ0 σ̂ δ̂

2 100 0.2 0 100 0.14 0.01
10 100 0.3 0.1 100 0.131 0.036
40 100 0.3 0.1 100 0.105 0.039

Table 5.3: Correspondence table for the parameters of the geometric options with δj = 0.

d σj ρ p m price Stdev time(sec) 1−d price
2 0.2 0 2 5000 4.32 0.04 0.018 4.20
2 0.2 0 3 5000 4.15 0.04 1.3 4.20
10 0.3 0.1 1 5000 5.50 0.06 0.12 4.60
10 0.3 0.1 2 20000 4.55 0.02 17 4.60
40 0.3 0.1 1 10000 4.4 0.03 1.4 3.69
40 0.3 0.1 2 20000 3.61 0.02 170 3.69

Table 5.4: Prices for the geometric basket put option with parameters T = 1, r = 0.0488 (it corre-
sponds to a 5% annual interest rate), K = 100, δj = 0, n = 9.

The 1 − d price is computed using a tree method with several thousand steps. We can see in
Table 5.4 that a second order approximation gives very accurate result within a few seconds for an
option with 10 underlying assets, which proves the efficiency of our approach. We cannot beat the
curse of dimensionality, which slows down our algorithm for very large problems. For an option on 40
assets, we obtain a price up to a 3% relative error within 3 minutes which is already very fast for such
a high dimensional problem. The number of terms involved in the chaos expansion can become very
large: for d = 40 and p = 2, there are 65340 elements in Cp,n. Even though we are not working in a
linear algebra framework, it is advisable to ensure that the number of samples m used in the sample
average approximation is larger than the number of free parameters in the optimization problem.
When m becomes too small, we may face an over–fitting phenomenon as the number of parameters
is far too large compared to the information contained in the sample average approximation. This
probably explains why the price obtained for p = 2, d = 40 and m = 40 is slightly smaller than the
true price.

In the next paragraph, we test the scalability of Algorithm 5.4.2 on this particular examples for a
larger number of samples.

5.5.2.2 Scalability of the parallel algorithm

We consider the 40−dimensional geometric put option studied in Table 5.4 with p = 2 and test the
scalability of our parallel implementation for m = 200, 000. The tests are run on a BullX DLC super-
computer containing 190 nodes for a total of 3204 CPU cores. We report in Table 5.5 the results of
our scalability study using from 1 to 512 cores. Despite the two levels of parallelism available on this
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supercomputer, we have used a pure MPI implementation without any reference to multithread pro-
gramming. We might improve the efficiency a bit using nested parallelism, but the results are already
convincing enough and do not justify the need of a two level approach, which makes the implemen-
tation more delicate. The sequential Algorithm runs within one hour and a quarter whereas using 512
cores we manage to get the computational time down to a dozen of seconds, which corresponds to
a 0.6 efficiency. Considering the so short wall time required by the run on 512 cores, keeping the
efficiency at this level represents a great achievement. Note that with 128 cores, the code runs within
a minute with an efficiency of three quarters. These experiments prove the impressive scalability of
our algorithm.

#processes time (sec.) efficiency
1 4365 1
2 2481 0.99
4 1362 0.90
16 282 0.84
32 272 0.75
64 87 0.78
128 52 0.73
256 34 0.69
512 10.7 0.59

Table 5.5: Scalability of Algorithm 5.4.2 on the 40−dimensional geometric put option described
above with T = 1, r = 0.0488, K = 100, σj = 0.3, ρ = 0.1, δj = 0, n = 9, p = 2.

5.6 Conclusion

We have proposed a purely dual algorithm to compute the price of American or Bermudan options us-
ing some stochastic optimization tools. The starting point of our algorithm is the use of Wiener chaos
expansion to build a finite dimensional vector space of martingales. Then, we rely on a sample average
approximation to effectively optimize the coefficients of the expansion. Our algorithm is very fast:
for problems up to dimension 5, a price is obtained within a few seconds, which is a tremendous im-
provement compared to existing purely dual methods. For higher dimensional problems, we can use a
very scalable parallel algorithm to tackle very high dimensional problems (40 underlying assets). We
can transparently deal with complex path–dependent payoffs without any extra computational cost.
Event though, we restricted to a Brownian setting in this work, our approach could easily be extended
to jump diffusion models by introducing Poisson chaos expansion, which is linked to Charlier poly-
nomials (see [40]). We believe that our approach could be improved by cleverly reducing the number
of terms in the chaos expansion, the computation of which centralizes most of the effort.
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Chapter 6

Stochastic modelling of a ferromagnetic
nano particle

This chapter based on [L-6, L-22] summarizes my contributions on the stochastic modelling of fer-
romagnetic nanoparticles, whose goal is to provide a mathematical framework to understand thermal
effects. This is a joined work with Stéphane Labbé.

6.1 Introduction

The use of stochastic modelling for ferromagnetic particles goes back to the seminal paper [25] on the
physical aspects of the problem. In this work, we focus on a single ferromagnetic mono–domain parti-
cle submitted to an external field, whose behaviour is usually modelled by the following deterministic
dynamical system:

dµ

dt
= −µ ∧ b− αµ ∧ (µ ∧ b), µ0 ∈ S(R3) (6.1)

where b ∈ R3 is the external magnetic field, α ∈ R+ and S(R3) classically denotes the unit sphere in
R3. It is clear that |µt| = 1 for all t ≥ 0. We introduce the antisymmetric operator L : R3 7−→M3×3

associated to the cross product in R3

L(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .

Let A : R3 −→M3×3 be the operator defined by

A(x) = αxTxI − αxxT − L(x)

where I is the identity matrix inM3×3. Note that xTA(x) = 0 for all x ∈ R3. We can write (6.1) as

dµ

dt
= A(µ)b, µ0 ∈ S(R3). (6.2)

This chapter aims at introducing stochastic perturbations in order to model thermal effects. In
Section 6.2, we present three different ways of introducing a stochastic perturbation in (6.2) while
preserving the property |µt| = 1 for all t ≥ 0. In Section 6.3, we study the long time behaviour of the
stochastic model developed at the end of Section 6.2. Finally, we present some numerical simulations
illustrating the theoretical results.
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6.2 Stochastic modelling issues

Let (Ω,A,F = (Ft)t≥0,P) be a filtered probability space. We consider a standard F−Brownian
motion W with values in R3. Thermal effects can be embedded in the deterministic system (6.2) by
adding a stochastic perturbation to the external field b, which naturally leads to the following stochastic
system

dµt = A(µt)bdt+ εA(µt)dWt (6.3)

where ε > 0 controls the magnitude of the stochastic perturbation. If this SDE is interpreted in the Itô
sense, d |µt|2 = ε2 tr(A(µt)A

T (µt))dt > 0. Hence, the system is not physically consistent as it does
not preserve |µt| whereas this is a physical invariant of (6.2), see [24]. In this section, we investigate
several ways of modifying the stochastic model to ensure its consistency with the physical model.

6.2.1 Rescaling the Itô approach

In [L-6], we proposed to introduce a rescaling step in the above equation as we do when discretizing
the ODE (6.2) with a non conservative scheme. Consider the coupled SDE{

dYt = A(µt)bdt+ εA(µt)dWt, Y0 ∈ S(R3)

µt = Yt
|Yt| .

(6.4)

We can prove that the process (|Yt|)t is actually deterministic (see [L-6]).

Proposition 6.2.1 Let (Y, µ) be a pair of processes satisfying (6.4), then

d |Yt|2 = 2ε2(α2 + 1)dt

Let h(t) =
√

2ε2(α2 + 1)t+ 1. The process µ solves an autonomous equation

dµt =

(
−h
′(t)

h(t)
µt +

A(µt)

h(t)
b

)
dt+

ε

h(t)
A(µt)dWt,

from which it clearly appears that the noise added to the model vanishes at the rate εh(t)−1, which
looks quite arbitrary. The symmetry of the physical system suggests to focus on the component of µt
along the vector b.

d(µt · b) =

{
−(µt · b)

h′(t)

h(t)
+

α

h(t)

(
|b|2 − (µt · b)2

)}
dt

− ε

h(t)

(
− L(µ̄t)b+ α((µ̄t · b)µ̄t − b)

)
· dWt. (6.5)

The asymptotic behaviour of this model was studied in detail in [L-6]. Here, we prefer to develop two
other approaches which have been investigated more recently in [L-22] as we believe they are more
versatile.

6.2.2 Pulling back the Itô approach

If instead of trying to introduce some rescaling mechanism in (6.3), we simply move the dynamics
back on to the sphere with an extra term K, we get the following model

dµt = A(µt)bdt+ εA(µt)dWt +Ktdt.
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Using that xTA(x) = 0, we deduce that d |µt|2 = 2µt · Ktdt + tr(d〈µ〉t). An easy computation
shows that tr(d〈µ〉t) = 2ε2(α2 |µt|2 + 1) |µt|2 dt. Then, the condition |µt| = 1 imposes to choose
Kt = −ε2(α2 |µt|2 + 1)µt + K⊥t , where K⊥t is orthogonal to µt for all t. The final term Kt can be
thought of as a pull back onto the sphere. The minimum norm pull is obtained by choosing K⊥ = 0,
which leads to

dµt = A(µt)bdt+ εA(µt)dWt − ε2(α2 |µt|2 + 1)µtdt

and it simplifies into
dµt = (A(µt)b− ε2(α2 + 1)µt)dt+ εA(µt)dWt (6.6)

as |µt|2 = 1. This equation will show up later as the Itô form of the Stratonovich stochastic model.
The idea of taking for the Kt term the Euclidean projection has been used to define the spherical
Brownian motion, see [22].

6.2.3 The Stratonovich approach

As the Stratonovich stochastic calculus satisfy the standard differentiation rules, if we interpret (6.3)
in the Stratonovich sense, the process µ will automatically satisfy |µt| = 1 for all t ≥ 0.

Let ∂ denote the Stratonovich differential operator as in [82]. Let (µ̄t)t denote the stochastic
system with a Stratonovich perturbation. We assume that the magnitude of the stochastic perturbation
is given by a deterministic positive function (εt)t. In this section, we consider the stochastic model
defined by the following Stratonovich SDE

∂µ̄t = A(µ̄t)b∂t+ εtA(µ̄t)∂Wt. (6.7)

If we compute ∂|µ̄t|2 = 2µ̄t · ∂µ̄t using Equation (6.7), we immediately notice that ∂|µ̄t|2 = 0. Now,
we turn this Stratonovich SDE into its Itô form (see [82, V.30])

dµ̄t = (A(µ̄t)b− ε2
t (α

2 + 1)µ̄t)dt+ εA(µ̄t)dWt. (6.8)

This equation is similar to (6.6), which was obtained by pulling the Itô process back onto the sphere.
The similarity of the two equations actually advocates to interpret the noise in the Stratonovich sense
as it naturally preserves the norm of µ. However, it is easy to check that

(d(µ̄t · b))∣∣∣µ̄t=b/|b| = −ε2
t (α

2 + 1) |b| dt.

This implies that b cannot be an equilibrium point of the stochastic system (µ̄t)t unless εt goes to 0
for large t. It was proved in [L-6] that µ̄t could not converge to b. Actually, (6.8) very much looks like
a continuous time stochastic approximation and it is known from [15, 39] that to obtain a long time
stationary measure one has to let εt go to zero as well.

6.3 The Stratonovich model with decreasing noise

In this section, we assume that (εt)t is a decreasing function satisfying εt > 0 for all t ≥ 0 and
lim
t→∞

εt = 0.

dµ̄t = −(A(µ̄t)b+ ε2
t (α

2 + 1)µ̄t)dt+ εtA(µ̄t)dWt,
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where the operator A simplifies into A(x) = αI − αxx∗ − L(x) for x ∈ S(R3). Then, we deduce
that

d(µ̄t · b) =−
{
α
(

(µ̄t · b)2 − |b|2
)

+ ε2
t (α

2 + 1)µ̄t · b
}
dt

− εt
(
− L(µ̄t)b+ α((µ̄t · b)µ̄t − b)

)
· dWt. (6.9)

Remark 6.3.1 This model looks very much like (6.5) when taking εt = ε/h(t) since h′(t) = ε2(α2+
1)/h(t). The only difference is on the term α(|b|2− (µt · b)2), which is divided by h(t) in the rescaled
Itô approach while it is not in (6.9). The dynamics of (µ̄t · b)t writes as the one obtained when taking
the dot product between b and the deterministic system (6.1) plus an additive noise term.

6.3.1 The case α > 0

Proposition 6.3.2 Assume that one of the following conditions holds

(i)
∫∞

0 ε2
tdt =∞ and

∫∞
0 ε4

tdt <∞.

(ii)
∫∞

0 ε2
tdt <∞.

Then, µ̄t −−−→
t→∞

b
|b| a.s.

The proof of this result heavily relies on a bespoke version of the ODE method, which aims at linking
the behaviour of the SDE with the one of the ODE obtained by averaging the martingale part. A
general theory for the ODE method was developed in different frameworks by [14, 16, 66]. For more
results on the stability of SDE, we refer to [60]. The technique used in the second step of the proof
below is very similar to the one developed in the proof of Theorem 2.2.1 in Chapter 2.

Sketch of the proof. As |µ̄t| = 1, the result is equivalent to µ̄t · b→ |b| a.s.
First, we prove that the martingale part of (µ̄t · b)t (see (6.9)) converges a.s. to some random variable
M∞. We set Mt = E[M∞|Ft].

Second, defineXt = µ̄t ·b− (M∞−Mt). The processX solves the classical differential equation

dXt = −
{
α
(

(µ̄t · b)2 − |b|2
)

+ ε2
t (α

2 + 1)µ̄t · b
}
dt. (6.10)

Let η > 0, there exists T > 0 s.t. for all t ≥ T , ε2
t (α

2 + 1) |b| ≤ η and |µ̄t · b−Xt| ≤ η.
Let 0 < δ1 < δ2 < |b|. We can choose η small enough such that δ1 < δ2−2η and η ≤ α

2 (|b|2−δ2
2).

Figure 6.3.1 defines three regions: the two pole caps and the region in between; depending on the
position of µ̄t · b, we can bound from below the r.h.s of (6.10) to deduce that for t ≥ s > T .

Xt −Xs ≥
∫ t

s
(α2 + 1)ε2

uδ11µ̄u·b≤−δ1du+

∫ t

s

α

2
(|b|2 − δ2

2)1−δ2≤µ̄u·b≤δ2du

−
∫ t

s
|b| ε2

u(α2 + 1)1µ̄u·b>δ2du,

Xt −Xs ≥
∫ t

s
(α2 + 1)ε2

uδ11Xu≤−δ1−ηdu+

∫ t

s

α

2
(|b|2 − δ2

2)1−δ2+η≤Xu≤δ2−ηdu

−
∫ t

s
|b| ε2

u(α2 + 1)1Xu>δ2+ηdu.
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b

µ0

+
−δ2

+−δ1

+
δ2

Figure 6.3.1: We consider three zones on the sphere {µ̄ · b ≤ −δ1}, {−δ2 ≤ µ̄ · b ≤ δ2} and
{µ̄ · b ≥ δ2}.

Note that Xt is increasing on the set {u : Xu ≤ δ2 − η}. We can choose δ2 sufficiently close to |b|
such that there exists t1 for which

∫ t1
s (α2 + 1)ε2

uδ1 du = |b| − (δ2 − η) — remember that η can be
chosen as small as necessary. Hence, for all t ≥ t1, Xt ≥ −δ2 + η. Therefore,

Xt −Xt1 ≥
∫ t

t1

α

2
(|b|2 − δ2

2)1−δ2+η≤Xu≤δ2−ηdu−
∫ t

t1

|b| ε2
u(α2 + 1)1Xu≥δ2+ηdu.

From the continuity of X , we deduce that there exists t2 ≥ t1 such that for all t ≥ t2, Xt ≥ δ2 − η,
which implies that for all t ≥ t2, µ̄t · b ≥ δ2 − 2η. By choosing δ close to |b| and η close to 0, we
conclude that µ̄t · b→ |b|. �

Proposition 6.3.3 Assume µ̄t → b/ |b| a.s. If (εt)t is of class C1 and limt→∞
ε′t
εt

= 0, then, for all
p ∈ N,

lim
t→∞

E

[∣∣∣∣ b|b| − µ̄t
∣∣∣∣2p ε−2p

t

]
=

(
α2 + 1

α |b|

)p
p!.

Note that as |µ̄t| = 1,
∣∣∣ b|b| − µ̄t∣∣∣2 = 2

|b|(|b| − µ̄t · b). Hence, the proposition could equivalently write

limt→∞ E[(|b| − µ̄t · b)pε−2p
t ] =

(
α2+1

2α

)p
p!. For p = 1, this boils down to limt→∞ E[(|b| − µ̄t ·

b)ε−2
t ] = α2+1

2α . In the case of the rescaled Itô model, the convergence rate was given by h(t), which
actually monitors the magnitude of the noise. In the Stratonovich model, this role is played by εt.
Hence, we would have expected a convergence rate of ε−1

t whereas we obtained a much faster one,
namely the square of it — ε−2

t . Although in both models, the magnetic moment converges to b, the
rates governing the convergence significantly differ.

Proposition 6.3.4 Assume that

• there exists γ > 0 such that
∫ ∞

0
εγt dt <∞;

• the function (εt)t is C1, decreasing for large enough t and satisfies lim
t→∞

ε′t
εt

= 0.
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Then,

for all η > 0,
∣∣∣∣ b|b| − µ̄t

∣∣∣∣2 ε−2+η
t → 0 a.s.

Sketch of the proof. Step 1. Once anLp convergence rate has been established (see Proposition 6.3.3),
such an almost sure result is easily deduced from Borrel Cantelli’s Lemma for sequences indexed by
a countable set and we obtain that

lim
t∈N,t→∞

∣∣∣∣ b|b| − µ̄t
∣∣∣∣2 ε−2+η

t = 0 a.s. (6.11)

Extending this result to t ∈ R+ requires to monitor the behaviour in Lp(Ω) of
∣∣∣ b|b| − µ̄t∣∣∣2 ε−2

t for
t ∈ [n, n+ 1] for any n ∈ N.

Step 2. We aim at proving that limn→∞ supn≤t≤n+1

∣∣∣∣∣∣∣ b|b| − µ̄t∣∣∣2 ε−2+η
t −

∣∣∣ b|b| − µ̄n∣∣∣2 ε−2+η
n

∣∣∣∣ →
0 a.s. Define Xt = b

|b| − µ̄t. Let n ∈ N and n ≤ t ≤ n+ 1∣∣∣|Xt|2 ε−2+η
t − |Xn|2 ε−2+η

n

∣∣∣ ≤ C ∣∣∣|Xn|2 (ε−2+η
n − ε−2+η

t )
∣∣∣+ C

∣∣∣(|Xn|2 − |Xt|2)ε−2+η
t

∣∣∣
≤ C |Xn|2 ε−2+η

n + 4C |Xn −Xt| ε−2+η
n .

As we know from (6.11) that |Xn|2 ε−2+η
n → 0, it is sufficient to monitor

supn≤t≤n+1 |Xn −Xt| ε−2+η
n . Let p > 1. We deduce from Burkholder–Davis–Gundi’s inequality

that

E
[

sup
n≤t≤n+1

|Xt −Xn|2p
]
≤ CE

[∫ n+1

n
α2p

(
|b|2 − (µ̄u · b)2

)2p
+ ε4p

u (α2 + 1)2p du

]
+ CE

[(∫ n+1

n
ε2
u(α2 + 1)(|b|2 − (µ̄t · b)2)du

)p]
.

From Proposition 6.3.3, E[(|b|2 − (µ̄u · b)2)p] = O(ε2p
u ) and we deduce that

E
[

sup
n≤t≤n+1

(
ε−2+η
n |Xt −Xn|

)2p] ≤ Cεpηn .
For pη ≥ γ,

∫ ∞
0

εpηu du <∞ and once more Borel–Cantelli’s lemma yields that

lim
n→∞

sup
n≤t≤n+1

ε−2+η
n |Xt −Xn|2 = 0.

Then, we easily conclude that (6.11) holds for any real t and not only integers. �

6.3.2 The case α = 0

In this case, the process µ̄ solves the simplified equation

dµ̄t =
(
L(b)− ε2

t I
)
µ̄tdt− εtL(µ̄t)dWt. (6.12)
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We can integrate this SDE as a classical ODE to obtain

d
(

e−L(b)t+
∫ t
0 ε

2
udu µ̄t

)
= − e−L(b)t+

∫ t
0 ε

2
udu εtL(µ̄t)dWt

µ̄t − eL(b)t−
∫ t
0 ε

2
udu µ̄0 = − eL(b)t−

∫ t
0 ε

2
udu

∫ t

0
e−L(b)s+

∫ s
0 ε

2
udu εsL(µ̄s)dWs. (6.13)

Let us introduce the square integrable martingale N defined by

Nt =

∫ t

0
e−L(b)s+

∫ s
0 ε

2
udu εsL(µ̄s)dWs.

Proposition 6.3.5 The long time behaviour of (µ̄t)t depends on the integrability of (εt)t.

• If
∫∞

0 ε2
udu =∞, E[µ̄t]→ 0 when t→∞.

• When
∫∞

0 ε2
udu <∞, Nt converges a.s. to some random N∞ and

lim
t→∞

µ̄t − eL(b)t−
∫∞
0 ε2udu(µ̄0 −N∞) = 0 a.s

and moreover for all p ∈ N, there exists cp, such that E[|Nt|2p] ≤ cp

(
e2

∫ t
0 ε

2
sds−1

)p
for all

t ≥ 0.

When
∫∞

0 ε2
udu <∞, supt E[|Nt|2] <∞ and thenN converges a.s. toN∞ andNt = E[N∞|Ft].

Hence, we clearly have E[N∞] = 0 and we obtain that limt→∞ E[µ̄t]− eL(b)t−
∫ t
0 ε

2
udu µ̄0 = 0 a.s. The

term eL(b)t makes µ̄t move on the ring with level e−
∫∞
0 ε2udu(µ̄0 · b−N∞ · b).

If εt = ε
(t+1)1/2+η

where η > 0 and ε > 0, we can explicitly compute the upper–bound on

E[|Nt|2p] (
e2

∫ t
0 ε

2
sds−1

)p
=

(
e
ε2

η
(1−(t+1)−2η)−1

)p
→
(

e
ε2

η −1

)p
.

Usually, ε2 � η and therefore
(

e
ε2

η −1

)p
≈
(
ε2

η

)p
. Hence, with a very high probability, N∞

remains tiny, and then for large t, µ̄t oscillates as eL(b)t−
∫∞
0 ε2udu µ̄0, which is non random.

6.4 Numerical simulations

In this section, we illustrate the theoretical results of Section 6.3 for different values of α and func-
tions (εt)t with different decaying rates. To discretize the Stratonovich model (6.7), we would rather
consider its Itô form given by (6.8), on which we use an Euler scheme with time step ∆t. The Euler
scheme has the advantage of being fully explicit and is therefore easily to implement. We could have
straightaway discretized the Stratonovich form (6.7), but the discretization of the Stratonovich inte-
gral must be performed using a semi–implicit scheme, which requires the use of a numerical solver at
each iteration. In our case, the use of a semi–implicit scheme would have preserved the norm of the
discretized process, which is not guarantied by an explicit scheme. However, using the Euler scheme
on the Itô form did not raise any numerical difficulty.

Some of the graphs below have required to compute expectations, which were approximated using
a Monte Carlo method with 500 samples. This may seem few samples but it proved to be enough as
the quantities involved have little variance especially when focusing on the behaviour for large times.
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(a) A.s. convergence
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(b) Convergence rate in L2 of
∣∣∣ b|b| − µ̄t
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(c) Pathwise Convergence of
∣∣∣ b|b| − µ̄t
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(blue curve) or η = 0.1 (green curve)

Figure 6.4.1: Convergence of (µ̄t)t for α = 2, ∆t = 2× 10−2 and εt = 0.1/(t+ 1).

6.4.1 The case α > 0

Figure 6.4.1 shows the convergence of µ̄t for εt satisfying
∫∞

0 ε2
tdt < ∞ when µ̄0 is chosen such

that −1 < µ̄0 · b < 0. The blue curve of Figure 6.1(a) corresponds to the component of µ̄t along the
direction of b. We can see that the a.s. convergence of µ̄t to b/ |b| is very smooth and fast. We recover
in Figure 6.1(b) the L2 rate of Proposition 6.3.3. In particular, we notice that the transition phase is
quite short as for t = 10 we already observe the numerical convergence. For the same parameters,
Figure 6.1(c) illustrates the a.s. convergence rate result (see Proposition 6.3.4) for two values of η.
Non surprisingly, the larger η, the smoother the convergence.

When the magnitude of the noise decays slowly, the convergence should be less smooth as sug-
gested by Proposition 6.3.3, which corresponds to what we can see on Figure 6.4.2. Closely looking
at Figures 6.1(a) and 6.2(a), we notice that the component of µ̄ along b converges faster that the two
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others. Actually, from what we explained after Proposition 6.3.3, we have∣∣∣∣ b|b| − µ̄t
∣∣∣∣2 =

(
1− b

|b|
· µ̄t
)

+ (µ̄t · e2)2 + (µ̄t · e3)2

(1− µ̄t · e1) = (µ̄t · e2)2 + (µ̄t · e3)2.

From this last equation, it is clear that there is a power 2 difference between the rates of convergence
of µ̄t · b and of the two other components, which fully matches our numerical observations.
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(a) A.s convergence
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(b) Convergence rate in L1

Figure 6.4.2: A.s. convergence of (µ̄t)t for α = 2, ∆t = 2× 10−2 and εt = 0.1/(t+ 1)1/3.

From the theoretical results of Section 6.3, it is clear that the noise term has a stabilizing effect on
the system and is in particular responsible for escaping from −b, which is an unstable critical point
of the deterministic system. Figure 6.4.3 confirms that the stabilizing effect exists even when the
magnitude of the noise decays very fast — (εt)t belongs to L1([0,∞)) — and µ̄0 = −b/ |b|, which
is the worst case scenario. After a very short transition period during which µ̄ circles around on the
sphere while heading to b/ |b|, the process stabilizes around its limit and remains impressively smooth.

6.4.2 The case α = 0

As emphasized by the theoretical results, the behaviour of the process (µ̄t)t depends very much on the
value of α. When α = 0 and there is no noise, µ̄t evolves on a circle with constant latitude. Actually,
we recover a very similar behaviour in Figure 6.4.4 when the noise magnitude decays quickly —∫∞

0 εtdt < ∞. Clearly, µ̄t heads to a constant latitude level and keeps turning on this parallel circle
but unlikely to what happens in the deterministic case, the latitude is not exactly determined by µ̄0 · b
but is slightly randomly shifted as seen in Proposition 6.3.5. Closely looking at Figure 6.4.4, we can
see that the magnitude of the oscillations tends to increase a little with time, which is a consequence
of the discretized process not having a constant norm. This could be circumvented by considering a
smaller discretization step ∆t.

When the noise decreases slowly, ie.
∫∞

0 ε2
tdt =∞, its effect remains over time and prevents any

almost sure limiting behaviour to appear. The process (µ̄t) keeps wandering around on the sphere and
we see from Figure 6.4.5 that E[µ̄t]→ 0.
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Figure 6.4.3: A.s. convergence of (µ̄t)t for α = 2, ∆t = 2×10−3, µ̄0 = −b/ |b| and εt = 0.1/(t+1)2.

6.5 Conclusion

In this work, we have discussed issues on the stochastic modelling of a ferromagnetic nanoparticle.
Among the different approaches, the Stratonovich approach with a decaying noise magnitude showed
up as the most natural one. We investigated the long time behaviour of the model and proved its
convergence to the unique stable equilibrium of the deterministic system when α > 0. When α = 0,
the evolution of the system depends on the magnitude of the noise; when a limiting behaviour appears,
the process keeps revolving on a parallel ring. All these theoretical results have been illustrated
by numerical simulations, which help better understanding how thermal effects can be modelled in
micromagnetism.
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Figure 6.4.4: Convergence of (µ̄t)t for εt = 0.3/(t+ 1)2, ∆t = 2× 10−3.
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Figure 6.4.5: Convergence of E[µ̄t] for εt = 0.3/(t+ 1)0.1, ∆t = 2× 10−3.
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Chapter 7

Some key technical tools

In this chapter, we gather some technical tools, which proved to be essential for getting some results
presented in this manuscript and which we believe could be useful in other problems.

7.1 Strong law of large numbers for doubly indexed sequences

In this section, we state two corner stone results used at several places in this manuscript and proved
in [L-1]. We tackle the convergence of empirical averages of doubly indexed random sequences when
both indices tend to infinity together.

Proposition 7.1.1 Let (Xn,m)n,m be a sequence of vector valued random variables such that for all
n, E[Xn,m] = xm with limm→+∞ xm = x . We define Xn,m = 1

n

∑n
i=1Xi,m. Assume that the

following two assumptions are satisfied

(H7.1) i. supn supm nVar
(
Xn,m

)
< +∞.

ii. supn supm Var (Xn,m) < +∞.

Then, for all increasing functions ρ : N→ N, Xn,ρ(n) −−−−−→
n→+∞

x a.s. and in L2.

From this proposition, one can easily deduce the following corollary by extracting a bespoke subse-
quence.

Corollary 7.1.2 Assume that (Xi,m)i,m is a sequence of random vectors satisfying the assumptions
of Proposition 7.1.1. Then, for any strictly increasing function ξ : N → N, Xξ(n),n −−−−−→

n→+∞
x a.s.

and in L2.

Proof (Proof of Proposition 7.1.1). The proof of this result closely mimics the one of [78, Theorem
IV.1.1]. We introduce the sequence (Yi,m)i,m defined by Yi,m = Xi,m−xm, which satisfies E[Yi,m] =
0. As limm→∞ xm = x, it is sufficient to prove that Y n,ρ(n) −−−−−→

n→+∞
0 a.s.

Condition (H7.1-i) implies the L2 convergence to 0. We introduce the sequence (Zn,m)n defined
by Zn,m = sup{

∣∣Ȳk,m∣∣ : n2 ≤ k < (n+ 1)2}. Let k be such that n2 ≤ k < (n+ 1)2, then

∣∣Ȳk,m∣∣ ≤ n−2

n2
∣∣Ȳn2,m

∣∣+

k∑
i=n2+1

|Yi,m|

 ,

Zn,m ≤
∣∣Ȳn2,m

∣∣+
1

n2

(n+1)2∑
i=n2+1

|Yi,m| .
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Then,

E[Z2
n,m] ≤ E[Ȳ 2

n2,m] +

(n+1)2∑
i=n2+1

(
E[|Yi,m|2]

n4
+ 2

E[
∣∣Ȳn2,m

∣∣ |Yi,m|]
n2

)
+ 2

(n+1)2∑
i,j=n2+1;i 6=j

E[|Yj,m| |Yi,m|]
n4

.

Let κ > 0 denote the maximum of the upper bounds involved in Assumption (H7.1). Using the
Cauchy Schwartz inequality, we get

E[Z2
n,m] ≤ κ

n2
+
κ((n+ 1)2 − n2)

n4
+ 2

κ2((n+ 1)2 − n2)

n3
+ 2

κ2((n+ 1)2 − n2)2

n4

≤ κ

n2
+
κ(2n+ 1)

n4
+ 2

κ2(2n+ 1)

n3
+ 2

κ2(2n+ 1)2

n4
.

Hence, for any function ρ : N→ N, E[Z2
n,ρ(n)] ≤ Cn

−2 where C > 0 is a constant independent of ρ.

Therefore, we have P(Zn,ρ(n) ≥ n−1/4) ≤ Cn−3/2. This inequality implies using the Borel Cantelli
Lemma that, for n large enough Zn,ρ(n) ≤ n−1/4 a.s. which yields the a.s. convergence to 0. �

Proposition 7.1.3 Let (Fn,m)n,m be a sequence of random variables with values in the set of con-
tinuous functions, ie. for all n,m, Fn,m : Ω −→ C0(Rd). Moreover, we assume that there exists a
sequence of functions (fm)m satisfying E[Fn,m] = fm for all n. We define Fn,m = 1

n

∑n
i=1 Fi,m.

Assume that the two following assumptions are satisfied

(H7.2) One of the following criteria holds

i. The sequence (fm)m converges pointwise to some continuous function f .

ii. The sequence (fm)m converges locally uniformly to some function f .

(H7.3) For any compact set W ⊂ Rd,

i. supn supm nVar
(
supx∈W

∣∣Fn,m(x)
∣∣) < +∞.

ii. supn supm Var (supx∈W |Fn,m(x)|) < +∞.

(H7.4) For all y ∈ Rd, limδ→0 supn supm E
[
sup|x−y|≤δ |Fn,m(x)− Fn,m(y)|

]
= 0.

Then, for all functions ρ : N → N, the sequence of random functions Fn,ρ(n) converges a.s. locally
uniformly to the locally continuous function f .

Remark 7.1.4 When for every fixed m, the sequence (Fn,m)n is i.i.d., (H7.4) is ensured by

∀ y ∈ Rd, lim
δ→0

lim sup
m

E

[
sup
|x−y|≤δ

|F1,m(x)− F1,m(y)|

]
= 0

and Assumption (H7.3-ii) implies (H7.3-i).
As in Corollary 7.1.2, for any strictly increasing function ξ : N → N, the sequence F ξ(n),n

converges a.s. locally uniformly to the locally continuous function f .
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Proof. We can apply Proposition 7.1.1, to deduce that a.s. Fn,ρ(n) converges pointwise to the function
f . If we do not already know that f is continuous, then thanks to (H7.3-ii), we can apply Lebesgue’s
theorem to deduce that the functions fm are continuous. The uniform convergence of the sequence
fm to f (see (H7.2-ii)) proves that the function f is continuous.

Let W be a compact set of Rd, we can cover W with a finite number K of open balls Wk with
centers (xk)k and radiuses (rk)k, i.e. Wk = B(xk, rk) and W = ∪Kk=1Wk. We want to prove that
supx∈W

∣∣Fn,ρ(n)(x)− f(x)
∣∣ a.s.−−−−−→
n→+∞

0. We write

sup
x∈W

∣∣Fn,ρ(n)(x)− f(x)
∣∣ =

K∑
k=1

sup
x∈Wk

∣∣Fn,ρ(n)(x)− f(x)
∣∣ . (7.1)

We split each term

sup
x∈Wk

∣∣Fn,ρ(n)(x)− f(x)
∣∣ = sup

x∈Wk

∣∣Fn,ρ(n)(x)− Fn,ρ(n)(xk)
∣∣+ sup

x∈Wk

|f(x)− f(xk)|

+
∣∣Fn,ρ(n)(xk)− f(xk)

∣∣ . (7.2)

Let ε > 0. The idea is to choose the radiuses rk small enough to ensure that each term is controlled by
a function of ε. Now, we make the idea precise. For all k = 1, . . . ,K, the last term term can be made
smaller that ε/K for n larger that someNk using the pointwise convergence. For all n ≥ maxk≤K Nk,
and all 1 ≤ k ≤ K,

∣∣Fn,ρ(n)(xk)− f(xk)
∣∣ ≤ ε/K. The function f being continuous, it is uniformly

continuous on everyWk. If we choose theWk such that their radiuses are small enough (we may need
to increase K), we can ensure that for all 1 ≤ k ≤ K supx∈Wk

|f(x)− f(xk)| ≤ ε/K. The first term
on the r.h.s of (7.2) deserves more attention

sup
x∈Wk

∣∣Fn,ρ(n)(x)− Fn,ρ(n)(xk)
∣∣ ≤ 1

n

n∑
i=1

sup
x∈Wk

∣∣Fi,ρ(n)(x)− Fi,ρ(n)(xk)
∣∣ . (7.3)

Now, for every 1 ≤ k ≤ K, we want to apply Proposition 7.1.1 to the sequence of random variables(
supx∈Wk

|Fn,m(x)− Fn,m(xk)|
)
n,m

. Assumption (H7.1) is clearly satisfied using Minkowski’s in-
equality.

Let us define the sequence (Yn,m)n,m by

Yn,m = sup
x∈Wk

|Fn,m(x)− Fn,m(xk)| − E

[
sup
x∈Wk

|Fn,m(x)− Fn,m(xk)|

]
,

satisfying E[Yn,m] = 0 and the assumptions of Proposition 7.1.1. Hence, it yields that

lim
n→+∞

1

n

n∑
i=1

sup
x∈Wk

∣∣Fi,ρ(n)(x)− Fi,ρ(n)(xk)
∣∣− E[ sup

x∈Wk

∣∣Fn,ρ(n)(x)− Fn,ρ(n)(xk)
∣∣] = 0. (7.4)

From (H7.4), we know that if the Wk are chosen small enough,

sup
n
E

[
sup
x∈Wk

∣∣Fn,ρ(n)(x)− Fn,ρ(n)(xk)
∣∣] ≤ ε/K. (7.5)

Then, Combining with (7.3), (7.4) and (7.5) yields that supx∈Wk

∣∣Fn,ρ(n)(x)− Fn,ρ(n)(xk)
∣∣ ≤ ε/K.

Going back to Equations (7.1) and (7.2), we deduce that for n large enough

sup
x∈W

∣∣F̄n,ρ(n)(x)− f(x)
∣∣ ≤ 3ε,

which achieves the proof. �
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7.2 Stochastic approximation: the core martingale method

Consider a discrete time system satisfying for n large enough

Xn+1 = Xn − γn+1u(Xn)− γn+1δMn+1

where Mn is a martingale increment as studied in Chapter 2. We stick to the notation of that chapter.

Assume that the series
∑

n γn+1δMn+1 converges .a.s., then we can introduce the auxiliary se-
quence (X ′n)n defined by

X ′n = Xn −
∑
p≥n+1

γpδMp,

at least for n large enough.
Then, we obtain that X ′n+1 = X ′n − γn+1u(Xn). As limn→∞

∑
p≥n+1 γpδMp = 0 a.s., the

pathwise behaviour of Xn and X ′n should be close for large enough n and smooth functions u, which
means that this is reasonable to write

X ′n+1 = X ′n − γn+1u(X ′n) + γn+1(u(X ′n)− u(Xn))

and think that the last term can be neglected. If one can prove, then one can apply the well–known
ODE method introduced by Kushner and Clark [65] and further developed by Benaim [14], Ben-
veniste et al. [16], Kushner and Yin [66] to carry out a purely pathwise analysis of the stochastic
approximation.

To carry on our analysis, assume as in Chapter 2, that the function x 7−→ |x?|2 is a Lyapounov
function. Then, we write from the definition of X ′n that

∣∣X ′n+1 − x?
∣∣2 ≤ ∣∣X ′n − x?∣∣2 − 2γn+1(X ′n − x?) · u(Xn) + γ2

n+1 |u(Xn)|2 .

Now let n be large enough. We use the fact that Xn remains in a compact set and that u is locally
bounded with local upper bound ū. Moreover |X ′n −Xn| ≤ ε.∣∣X ′n+1 − x?

∣∣2 ≤ ∣∣X ′n − x?∣∣2 − 2γn+1(Xn − x?) · u(Xn) + γ2
n+1ū

2 + 2γn+1εū.

The rest of the analysis can be summarized as follows: if X ′n (or equivalently Xn) is far away from
x?, the term (Xn−x?) ·u(Xn) > 0 drives Xn back to x? until the remainder terms γ2

n+1ū
2 + 2γn+1ε

beat the retraction force. This cannot last long as the effect of the remainder terms vanish as soon
as Xn starts to walk away from x?. As this reasoning can be made rigorous for any arbitrary small
compact neighbourhood of x?, we conclude that X ′n converges to x? and so does Xn.

Obviously, this methodology has a continuous time counterpart. Consider the process dXt =
u(Xt)dt+dMt, whereM is a martingale converging a.s., then the processX ′ solves dX ′t = u(Xt)dt,
which does not have any martingale part and hence provided that X ′ and X are close enough, the
behaviour of X is determined by the stability properties of u.

This methodology is successfully applied in discrete time in Chapter 2 and in continuous time in
Chapter 6.
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7.3 PNL: An open source numerical library

This library is a general purpose numerical library with a special emphasis towards high performance
computing available under the LGPL (https://pnlnum.github.io/pnl/). I started devel-
oping PNL in 2007. I have been the main developer and welcomed a few external contributions since
then. PNL was originally designed as the numerical library used by PREMIA (a financial pricer devel-
oped by INRIA, https://pnlnum.github.io/pnl/) but its scope quickly became much wider and I have
kept introducing new features in connection to my research activities. The following publications
strongly relied on the PNL library: [L-1], [L-2], [L-5], [L-8], [L-9], [L-11].

A wide range of routines are available on the following topics

• Complex Numbers;
• Cumulative Distribution Functions;
• Fast Fourier Transforms;
• Hyper Matrices;
• Laplace Inversion;
• Least-Squares fitting;
• Linear Algebra;
• List / array containers;
• MPI bindings to transparently pass the library objects on clusters;
• Multidimensional root Finding
• Multivariate polynomial regression;
• Numerical Integration;
• Optimization with inequality constraints including linear programming;
• Permutations;
• Random number generators (including a parallel Mersenne Twister);
• Approximation of special functions.

For some topics, state of the art libraries already existed. When their licenses were LGPL compatible,
I integrated them into PNL. For instance, I can cite Lapack for linear algebra, QuadPack for numer-
ical integration, MinPack for multi–dimensional root finding, Amos and Cephes for special function
approximations.

Now, I would like to focus on two hot topics for future developments.

Multivariate regression Recently, I have mostly been working on multivariate regression, which
is a key tool for all applications involving conditional expectations and backward induction. I have
come up with a very efficient algorithm to build polynomial tensor representation. As an example, in
Chapter 5, I managed to solve polynomial regressions up to degree 3 with 300 variates on clusters.
The dimension of the vector space of polynomial tensors grows exponentially fast in particular when
dealing with Wiener chaos expansions, for which the effective dimension is the number of time steps
times the dimension of the underlying Brownian motion. Then, to tackle larger problems, it has
become a burning issue to introduce adapted sparse polynomial representation. In the context of
Wiener chaos expansion, some high order interactions between far time spaced Brownian increments
should be irrelevant. Adding sparse and probably also local representations will be an important part
of future developments. For this last example, the locality is obviously with respect to time and not
space.

Parallel random number generators. Parallel random number generators are the cornerstone of
any parallel stochastic algorithm. PNL already provides a parallel implementation of Mersenne
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Twister based on [74]. Although this generator is very efficient on several hundreds of cores, it can
not handle so efficiently architectures with several dozens of thousands of cores. To keep up with the
evolution of massively parallel architectures and the growing sizes of problems, generators built on
splitting approaches will be implemented, see [68] and [47].

These future developments will be extremely valuable for designing large scale parallel stochastic
optimization methods, which will be of my main research topics for the coming years.
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Chapter 8

Some prospects

As a conclusion, I would like to discuss some future works on a few topics presented in the document.

8.1 HPC for stochastic optimization

Many problems coming from financial mathematics eventually write as stochastic optimization prob-
lems. To tackle high dimensional problems, it has become a real stake to use high performance
computing. This led us to advocate the use of sample average approximation rather than stochastic
approximation in Chapter 5 to solve a minimization problem of the form

inf
θ
E[f(θ,X)],

which is then replaced by its sample average approximation

inf
θ

n∑
i=1

f(θ,Xi)

where theXi’s are i.i.d. with the distribution ofX . When the approximated problem is strictly convex
and twice differentiable, it can be solved very efficiently using a gradient descent approach with the
descent direction given by the inverse of the Hessian matrix applied to the gradient, which ensures
the decrease of the cost function. However, when the problem is only once differentiable or when the
Hessian matrix is not tractable, computing an acceptable move becomes an issue. It turned out to be
a major difficulty in the algorithm developed in Chapter 5. We also faced similar difficulties during
the collaboration with Mentor Graphics on rare event simulation for electronic circuit design using
importance sampling

In a deterministic context, line search techniques are commonly used to determine an acceptable
move along a given direction. As line search requires several evaluations of the cost function, it be-
comes barely usable in a stochastic context when the dimension of the problem increases and adapting
line search techniques to a probabilistic framework is an active research field, see for instance [73],
which was recently published in the NIPS conference. A lot of computational time could be saved
by not evaluating the complete cost function during the line search steps but only a rough approxima-
tion at least during the first iterations of the gradient method. Introducing such methods raises both
theoretical questions on the convergence of the algorithm but also practical questions especially when
the optimization problem is solved in a distributed environment. Collaborations with Franck Iutzeler
and Jérôme Malick, who are specialists of deterministic optimization will be fruitful to derive new
solutions making the most of both the stochastic and deterministic approaches.
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8.2 A stochastic optimization point of view to BSDE

Solving backward stochastic differential equations is a challenging problem. Many techniques have
been developed in the past 20 years based on at least one the following ingredients: Picard iterations,
dynamic programming principle and the associated semi–linear PDE in the Markovian case. Recently,
an approach based on Wiener chaos expansion has been developed.

Fruitful discussions with Philippe Briand led use to imagine a new approach to BSDE based on
stochastic optimization. Consider the following BSDE

Ȳt = ξ +

∫ T

t
f(s, Ȳs, Z̄s)ds−

∫ T

t
Z̄s · dBs, 0 ≤ t ≤ T (8.1)

where B is a d−dimensional Brownian motion. If the pair (Ȳ , Z̄) solves (8.1), then the unique
solution Y of the standard SDE

Yt = Ȳ0 −
∫ t

0
f(s, Ys, Z̄s)ds+

∫ t

0
Z̄s · dBs, 0 ≤ t ≤ T, (8.2)

satisfies YT = ξ and Ȳ = Y .
This observation is the starting point of the new methodology, we want to develop, which consists

in studying the BSDE (8.1) by solving the following minimization problem

inf
(y,Z)

E
[
|YT − ξ|2

]
(8.3)

under the constraints

Yt = y −
∫ t

0
f(s, Ys, Zs)ds+

∫ t

0
Zs dBs, 0 ≤ t ≤ T

y ∈ Rk, Z ∈ L2([0, T ]× Ω) (F)0≤t≤T adapted.

The pair (Ȳ0, Z̄) clearly solves the minimization problem. This new approach raises a wide range
of questions going from the theoretical properties of the minimization problem to simulation issues.
The numerical approach proposed here will directly benefit from the new advances of Section 8.1.
The main advantage of this new approach is to rely only on forward simulations. Once the process
Z is fixed, Y solves a forward SDE and can be discretized on a time grid using an Euler scheme for
instance, provided that we can jointly simulate Z and B on the same time grid.

We believe that this approach is very promising and will enable a major breakthrough in the field
of numerical simulation for high dimensional BSDE.

8.3 Dynamic programming principle and HPC

Many stochastic problems can be cast into a dynamic programming principle whose discretized ver-
sion writes {

PNN = ψ(XT )

PNn = max(ψ(Xtn),E[PNn+1|Ftn ]) for n < N.

In principle, such problems can be solved exactly when the underlying process X is a discrete state
space Markov chain even though it may become computationally intractable for high dimensional
processes X . For one or two dimensional problems, this approach has been widely exploited to solve
optimal stopping problems as it boils down to tree traversal. The exponential growth of the tree when
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the size of X increases makes the use of such techniques far too computationally demanding in high
dimensions.

Based on [91], we have already investigated the one dimensional case with Christophe Picard and
we obtained promising results by traversing the tree in a way that isolates independent sub–trees (sub–
problems), which can be solved in parallel. Extending this approach to multidimensional problems
requires the development of new design patterns related to the geometric structure of the problem
to come up with a generic parallel software for tree methods. The goal of all this research, which
lies more on the computer science field, is to solve high dimensional backward stochastic differential
equations using [21], in which the authors suggest to approximate the Brownian motion by a discrete
random walk.

8.4 Stochastic modeling for ferro–magnets

The works on stochastic modeling for ferro–magnets we started with Stéphane Labbé, are only at their
very beginning. We only studied the case of an isolated particle so far. When going from an isolated
particle to a net of particles, the potential function governing the evolution of the system changes to
take into account the interactions between particles, which makes the system far more complex as it
admits several equilibrium positions. The first step is to analyse which kinds of limiting behaviours
can be obtained from stochastic models with finitely many particles. In practice, particles tend to align
by blocks, which are the equilibriums of the deterministic system. We will specifically focus on how
to highlight switches between blocks, which corresponds to transitions from one equilibrium position
to an other. This problem will be studied in a PhD thesis we will propose next year with S. Labbé.

The second step is to let the number of particles within a fixed volume increase to infinity. If
properly scaled, we hope to obtain a stochastic partial differential equation governing the system,
which can reproduce the thermal effects observed in practice. I have already had the opportunity to
discuss some questions related to this extension with Andreas Prohl when he visited Laboratoire Jean
Kuntzmann in April.

We ultimately aim at relating the variation of temperature observed in physical experiments to
the quadratic variation of the stochastic model in order to understand how to control such a model,
which is a burning issue in many applications such as wave protection, electronic compatibility, nano-
electronics (see [1] for the deterministic case). The study of stochastic models for ferromagnetism
raises both theoretical questions but also numerical questions as the simulation of such large sys-
tems is highly demanding especially when we focus on long term behaviours. A high performance
C++ library will be developed to easily compare the different models and their behaviours in various
contexts.
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