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Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 27/09/2016 par :
Lionel LACOMBE

On dynamics beyond time-dependent mean-field theories

JURY
SEVE DINH P. M. Professeur des universités Directeur de thèse
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Chapter 1

Introduction

The many-body problem in quantum physics is a large and tough subject that never
ceased to interest the scientific community. The Schrödinger’s equation found in 1925
contains formally everything needed to describe any kind of microscopic behaviour in
the non-relativistic limit. Actually, the many-body wave function |Ψ〉 turns out to be
a very complicated object of 3N variables if one consider a 3D system of N electrons.
To handle this kind of object many theories with various levels of approximation have
been developed, allowing the treatment of a broad range of system sizes and excitations
energies. These approximations are even more needed when describing dynamics of
these systems which is our aim here. Examples of methods used to treat a microscopic
system of a given size N and a given excitation energy are sketched in Fig. 1.1. Of
course, this is not an exhaustive view and serves only to give orders of magnitude.
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Figure 1.1: Schematic view showing the (rough) domains of applicability of various
theories considering the system size and excitation energies of the microscopic systems
described (see text for details). From [1].

Let us introduce the acronyms appearing in this figure. The true solution of the
Schrödinger equation is tractable only in the case of very few particles. The next class
of approximations are the configuration interaction (CI) methods together with the
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CHAPTER 1. INTRODUCTION

multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach [2] [3]. They
consider the real Hamiltonian of the system, the only approximation being the size of
the considered Hilbert space. Though these methods are formally valid for any system,
the basis used to describe the Hilbert space drastically increases with the number of
particles or the excitation energy, making these approaches numerically affordable only
for small energies and limited sizes.

The (time-dependent) density functional theory or (TD)DFT is a reformulation of
the quantum many-body problem in terms of the electronic density alone. It stems
from a variational principle that maps a problem of interacting particles onto non-
interacting particles with an effective potential. This mapping has been proved to be
exact [4, 5, 6, 7] and would generate the solution of any problem provided that one
has access to the exact functional, which is currently out of reach. There is a large
range of available approximated functionals, (adiabatic) time-dependent local density
approximation (TDLDA) being the less numerically demanding and thus encompassing
the others in Fig. 1.1 [8].

For higher energies or number of electrons, we leave the realm of ab initio methods
and semi-classical approaches are considered. They are based on the description of the
phase-space density f(r,p). The Vlasov-Uehling-Uhlenbeck (VUU) [9] or Boltzmann-
Uehling-Uhlenbeck (BUU) equation read as:

∂tf + p
m
.∇rf −∇pf∇rV (r, t) = I(r,p) (1.1)

I(r,p) =
∫

dΩd3p1
|p− p1|

m

dσ(θ, |p− p1|)
dω

× [fp′fp′1(1− f̃p)(1− f̃p1)− fpfp1(1− f̃p′)(1− f̃p′1)]
. (1.2)

It contains a collision term of the Boltzmann type modified with a Pauli blocking
factors for fermions where f̃p = (2π~)3fp/2 is the occupation of an element of volume
of phase-space for a fermion of same spin. This kind of equation, though losing most of
the quantum effects such as tunneling, interferences and shell closures, contains binary
collisions between electrons and the resulting dissipative features. Such features become
increasingly important with excitation energies [1].

Molecular dynamics methods and fully classical treatment of the electrons allow to
treat higher energies where various trajectories have to be treated statistically. Con-
trary to the Vlasov equation, classical electrons allow one to plug back an electron-
electron correlation that was lost in the mean-field phase-space treatment. This is still
limited to a few thousands of atoms. Beyond that only macroscopic quantities related
with rate equations are usable [10].

The aim of this thesis is to address the areas at the frontiers of VUU and TDLDA.
At this point, we here draw a brief history of what will be presented. It has started with
an issue faced in the first time-dependent Hartree-Fock (TDHF) approaches in nuclear
physics. When describing fusion between heavy ions these calculations predicted a
lower limit for the angular momentum for fusion. Below this limit, i.e. when the
impact parameter was close to zero, there was no fusion occuring at all. However,
this behavior has never been observed experimentally. It has been concluded that the
amount of dissipation that was not accounted for in TDHF calculations was responsible
of this “fusion window” problem. This has been part of the motivation for a huge
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amount of work on the inclusion of dissipation in the TDHF theory. The handling
of two-body correlations were performed by adding a VUU-like collision term in the
evolution of the quantum density matrix. These theories are referred to as extended
time-dependent Hartree-Fock (ETDHF). This kind of term has been derived using
many approaches like time-dependent Green’s functions [11, 12, 13]. A review of the
methods discussed to include correlations can be found for example in [14]. As Green’s
functions are complicated objects to compute numerically, perturbative assumptions
were made to obtain usable equations or to obtain off-diagonal terms and short memory
effects [15]. The BBGKY hierarchy (after Bogolioubov, Born, Green, Kirkwood and
Yvon) is another approach that allows to deal directly with simpler density matrices
[16]. We give here as an example the first two terms of the hierarchy that will be
detailed in Sec. 2.4:

i∂tρ1 = [h0
1, ρ1] + Tr2[v12, ρ12]

i∂tρ12 = [h0
1 + h0

2 + v12, ρ12] + Tr3[v13 + v23, ρ123] .

The hierarchy links the 1-body density matrix ρ1 to the 2-body matrix ρ12, the 2-body
to the 3-body ρ123 and so on until the full N -body density matrix with the help of the
1-body Hamiltonian h0

1 of a non-interacting system, and vij the 2-body interaction.
In [16], starting from the BBGKY hierarchy, a cluster expansion of the reduced

density matrices is introduced and a truncation scheme is proposed that yields a col-
lision term similar to those previously obtained (see Sec. 2.5). This time, full memory
effects and non-diagonal terms are naturally included. This approach is non perturba-
tive in the sense that it is not based on small perturbation near an equilibrium state
as the aim is to obtain a theory for highly non-linear behavior to describe a collision.
However it truncates at a certain level of correlation. This approach serves as the basis
for the calculation of observables in heavy-ion collisions [17, 18] and more scattering-
theory oriented derivations can be found in [19, 20]. Actually a paper by Umar et
al. [21] showed in 1986 that the “fusion window” issue could be solved by including
the spin-orbit coupling. But ETDHF was still an improvement over a mere TDHF
propagation and a way to retrieve the spreading width of one particle operators that is
underestimated in TDHF. A truncation at the level of the Born term as done in ET-
DHF theories still yields a complicated memory term. To deal with this kind of terms
stochastic approaches have been developped such as stochastic TDHF (STDHF) [22].
This kind of theory adds a fluctuation term to the previous Boltzmann-like collision
term and can be reduced to a quantum Boltzmann-Langevin equation [23]. Reviews
of the stochastic methods in nuclear dynamics can be found in [24] or more recently in
[25].

In parallel of the development of ETDHF, the Runge-Gross theorem [7] lays the
foundations of the TDDFT that is now mostly used in its Kohn-Sham (KS) form [26].
The KS scheme uses N orbitals of non-interacting KS particles that reproduce the
exact electronic density %(r, t) of the N interacting electrons at any time t. These KS
particles evolve in an effective potential which is a functional of the initial state and
all the previous densities %(r, t′) with t′ ≤ t. The TDDFT theory brings the promise of
implicitly accounting for all exchange and correlation effects in a dynamical calculation.
TDDFT has been mostly used in the linear response regime [27] with reliable results
for a low calculation cost. Formally, the TDDFT approach is exact and also applies
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CHAPTER 1. INTRODUCTION

for ionization processes of clusters in strong laser fields which is our field of interest
[28, 1].

But TDDFT has many drawbacks. First of all, the exact exchange correlation
functional of % is unknown. Many approximations have been proposed from basic local
density approximation (LDA) to generalized gradient approximation (GGA) [29, 30].
The latest approximations contains hybrid functionals that are composed as the linear
commbination of functionals and exact exchange term computed as in Hartree-Fock
theory [31, 32]. How to obtain the observables is another encountered problem. The
Runge-Gross theorem ensures that all observables can be calculated from KS orbitals
in theory, as they are functionals of %(r), but the way to obtain such functionals is
unclear. The only case where it is obvious is if the observable is directly dependent
on %(r) as for example the dipole moment d =

∫
%(r, t)rd3r. In other cases, one can

choose as a first approximation to interpret the KS orbitals as actual electronic orbitals.
This approach fails to deal with dynamical problems that are basically based on two
electrons behaviour such as non-sequential double-ionization of a system as simple as
the He atom [33, 34]. In this precise case actually, classical calculations with two
fully correlated, but classically, electrons give much better results than any TDDFT
calculation. It is actually easy to understand: the time-dependent KS system deals with
effective uncorrelated particles. It can be represented by a single Slater determinant or
by a 1-body density matrix which eigenvalues (occupation numbers) are either 0 or 1.
On the other hand, the actual density matrix of the system possesses time-dependent
occupation numbers that are fractional due to the correlation. The physical orbitals
and the KS orbitals are very far from each other in such a case. Moreover, the exact
exchange-correlation potential exhibit very complicated structures to account for this
two-electron dynamics that are hardly reproduced in an approximation as those used
in TDDFT.

Electron thermalization of a system is another effect that is hard to capture with
standard TDDFT as it stems from collisions between electrons. This kind of feature
can be seen experimentally in properties of photoelectrons. More precisely, one shines
a cluster with a laser field and records the kinetic energy of the emitted electrons
(producing a photoelectron spectrum or PES) and/or the angle of the direction of
emission (giving a photoangular distribution or PAD). If a bound electron of given
energy ε absorbs either one photon of high energy or several photons with energy lower
than the ionization potential (IP) so that it reaches the continuum, then the electron
is emitted with the following kinetic energy

Ekin = ε+ ν~ωlaser (1.3)

where ν is the number of absorbed photons and ωlaser the laser frequency. For processes
involving one electron of energy higher than the IP, rearrangement and correlation
effects can be neglected in such a direct excitation, and the PES is usually interpreted
as the density of states shifted by the photon energy (even if dynamical features do
appear in a PES as the width of the peaks for instance).

At high photon density (i.e. high intensity of the laser), the electron can be excited
by several photons simultaneously and be emitted even when energy of one photon is
lower than the IP. The spectrum then exhibits the same peak structure but repeated
many times, each peak separated from the previous one by the energy of one photon.
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Such a structure is presented in panels a) [35] and b) [36] of Fig. 1.2 for C60 irradiated
by an intense infrared laser pulse. Panel b) compares the experimental measurements

0 2 4 6 10
Kinetic energy [eV]

24610

In
te
n
si
ty

Figure 1.2: Experimental and theoretical results obtained on C60 excited by a laser
with λ = 800 nm (ωlaser = 1.55 eV), pulse width of 60 fs. More precisely: a) Theoretical
photoelectron spectrum (full line) obtained in TDDFT with a laser of intensity 1.25×
1013 W/cm2 compared to the experimental results in b). b) Experimental results (black
curves) with a laser intensity of 2×1013 W/cm2 perpendicular (solid black) or parallel to
the the polarization axis (thin black) compared with single-active-electron calculations
(grey curves). c) Experimental PAD obtained with a laser with an intensity of 1013

W/cm2, a 60 fs duration and a 800 nm wavelength.

(thin black curve) with a theoretical single-active-electron calculation coupled to a
jellium model (thin grey curve) where only the HOMO electron is considered. Even
if the peak positions are well reproduced, this calculation produces much too large
a contrast of the peaks, probably resulting from the lack of either collisions with a
real ionic structure or dynamical electron collisions. When ions are explicitly taken
into account, as done in the calculation presented in panel a) and performed in our
group, the contrast of the peaks is dramatically reduced, even it remains too large
when compared to the experimental one (dotted curve).

A more decisive observable for electron thermalization is the PAD. Indeed, electrons
that evaporate by thermalization generate an isotropic emission. An isotropic emission
is visible in panel c) of the figure representing an experimental PAD from C60 irradiated
by a laser with λ = 800 nm, pulse width of 60 fs and intensity of 1013 W/cm2 [1]. The
thermal emission is stronger at low energies and electrons with kinetic energy close
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CHAPTER 1. INTRODUCTION

to zero take more time to leave the system and then interact more with the other
electrons. This question of characteristic time of the interaction can be studied also
by varying the duration of the laser pulse. For the effect of intensity and laser pulse
duration on thermalization emission, see e.g. [37].

We have presented here two examples of situations where including an efficient
2-body correlation is crucial. The first example has motivated the development of
time-dependent (reduced) density matrix functional theory or TD(R)DMFT. Instead
of expressing everything as a functional of the electronic density %(r, t), the functionals
are now dependent on the density matrix ρ(r, r′, t). The most obvious asset is that
1-body observables are now directly accessible and the single-particle wave functions
have a direct physical meaning. A lot of work has been focused on the static version
of the theory, the (R)DMFT, or the linear response approach [38, 39]. The adia-
batic functionals developed for the static calculation cannot lead to the time evolution
of the occupation numbers [40] which is basically the wanted feature. For real-time
time-dependent calculations, semiclassical methods are developed [41, 42] to include
correlation and the truncation of BBGKY hierarchy is adressed again [43] almost two
decades after the development in nuclear physics but this time in electronic systems.

In this thesis, we will focus on the inclusion of 2-body correlations in a mean-field
framework. The far end would be to obtain the thermalization features in PES and
PAD presented in the second example. The work presented here is the first steps in that
direction and is more in the continuity of what have been developed in nuclear physics,
though being applied in electronic systems. The thesis is organized as follows: first
we present in Chapter 2 the formalism of the approaches that have been mentioned in
this introduction. Three approaches, namely ETDHF, STDHF and collisional TDHF
(CTDHF) are introduced. Then a first study on a ansatz of a collision term on top of
TDDFT calculation to compute a rare reaction channel is presented in Chapter 3. The
last two chapters study the range of validity of the schemes introduced in Chapter 2:
that is the validity of STDHF in detail on a schematic two-band model (see Chapter 4)
and a quantitative comparison of ETDHF, STDHF and CTDHF in a 1D continuous
model closer to a realistic molecular model (see Chapter 5). We finally draw some
conclusion and give some perspectives in Chapter 6.
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CHAPTER 2. THEORETICAL FRAMEWORK

2.1 Introduction
Mean field theories are widely used as a first approach to describe a complex system.
The mean field approach is often the lightest theory in terms of computation time. But
most of such theories do not include correlation and provide only the main trajectories
among all possible ones (e.g.in a dissociation process). The only mean field theory that
would possess these features is the time-dependent density functional theory (TDDFT)
with the exact functional for both the wave functions of electrons and nuclei. For the
time being, such a theory is out of reach and functionals are approximated. On the
other hand a configuration interaction (CI) calculation or multiconfiguration time-
dependent Hartree-Fock (MCTDHF) contain all the needed correlation but are highly
limited in terms of propagated time, excitation energy and number of particles.

As we want to describe non-linear problems with medium to high excitation energy,
we need the computational efficiency of the mean field approach as well as effects
beyond mean field. The main effect beyond a mean field approach is the dissipation
induced by correlation. This can be interpreted as the effect of collisions between
electrons. We can include this effect with a heuristic approach on top of a density
functional theory, using an ansatz for a collision potential or derive more formally a
theory that contains a dissipative term.

In this chapter, we will first present mean field theories, namely TDDFT and
Hartree-Fock (HF). From HF, the residual interaction is introduced. Then, a den-
sity matrix functional is derived by truncating the BBGKY hierarchy. A collision
integral and a stochastic force are derived to yield a quantum Boltzmann-Langevin
equation. This equation being hard to numerically deal with, some approximations are
introduced and three different algorithms, namely extended, stochastic and collisional
time dependent HF (ETDHF, STDHF and CTDHF) are developed. Each of these
algorithms has its own range of applicability. We will discuss the reliability of each
scheme, compare the various levels of approximations involved and present how they
are actually implemented.

2.2 Density Functional Theory and its Time-Dependent
version

The time evolution of a quantum system is described by time-dependent Schrödinger
equation (TDSE). However, it is generally not possible to find solutions of TDSE for
realistic systems of more than a few particles. Density functional theory (DFT) and its
time-dependent counterpart (TDDFT) simplify the calculations by mapping an exact
interacting system of fermions on a non-interacting system in an effective potential that
only depends on %(r) (or %(r, t) and the initial-time N -body wave function |Ψ(t= 0)〉
for TDDFT). This mapping is exact as long as the exact functional of % is known [7]
which is not actually the case. We do not enter into the details of the derivation of
DFT and TDDFT that can be found in [26, 44, 45, 46, 7, 8] and only provide here the
practical equations and approximations.

We first consider the static case for the sake of simplicity. The non-interacting
system of electrons can be treated directly with % or in the Kohn-Sham (KS) scheme.
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2.2. DENSITY FUNCTIONAL THEORY AND ITS TIME-DEPENDENT
VERSION

In this scheme, a set of N non-interacting KS orbitals ϕi replace N interacting electrons
with the same total electronic density computed the following way:

%(r) =
N∑
i=1

∣∣∣ϕi(r)
∣∣∣2 . (2.1)

From this density, one can compute the energy using a functional of the form:

Etotal,el[%] = Ekin({ϕi}′ + EH[%] + Exc[%] + Eions + Eext , (2.2a)

Ekin ({ϕi}) = −
∫

d3r
N∑
i=1

ϕ∗i (r) ∇2 ϕi(r) , (2.2b)

EH[%] = e2

2

∫∫
d3r d3r ′

%(r)%(r ′)
|r− r ′|

= 1
2

∫
d3r %(r) UH[%] , (2.2c)

Eions =
∫

d3r
N∑
i=1

ϕ∗i (r) V̂ions ϕi(r) , (2.2d)

Eext =
∫

d3r %(r) Uext(r) . (2.2e)

Here the spin degree of freedom has not been noted for simplicity. Each of the terms
entering (2.2a) stands for:

• Ekin is the kinetic energy for non-interacting particles.

• EH[%] is the Hartree term associated with the Hartree potential UH. It represents
the direct charge repulsion of an electronic density.

• Eion is the energy from the coupling with the ions (nuclei + core electrons) gath-
ered in one term V̂ion. Explicit expressions of Eion will be given in Chapters 3
and 5.

• Eext is an external potential (for example an electric field).

• Exc is the exchange-correlation potential of the DFT that basically contains ev-
erything not accounted for in the other terms.

A simple and robust approximation consists in the Local Density Approximation
(LDA). It assumes that the exchange-correlation potential can be treated locally in
space:

ELDA
xc =

∫
exc[%(r)]%(r)dr . (2.3)

where exc is a local density of exchange-correlation energy. LDA is however plagued
with a self-interaction issue. This means that each electron interacts with its own
density participating to the total %(r). It leads to an exponentially decreasing tail of
the LDA potential for a charged system instead of being proportional to 1/r. Many
strategies have been developed to solve this issue and provide a self-interaction cor-
rection (SIC). They go from the most refined (e.g. 2setSIC [47]) to the simplest ones
(e.g. ADSIC [48]). In chapter 3 we will discuss more in details the SIC problem on
an example. Over the past decades, many functionals more advanced than LDA have
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been proposed. As the electron gas is not uniform (case where LDA is most suited),
the next step has been to introduce the gradient of the electronic in the functionals,
yielding the generalized gradient approximation (GGA). The most widely used func-
tional nowadays belongs to the class of hybrid functionals and is called B3LYP [49, 50].
Hybrid functionals are linear combination of other functionals and generally incorpo-
rate a certain amount of exact exchange. In this work, we use LDA mostly because of
its numerical efficiency, and occasionally ADSIC in Chapter 3.

For the time-dependent DFT, one can also consider LDA to be local in time, leading
to adiabatic LDA (ALDA) and replace %(r) by %(r, t). In the following, we will just
use the generic notation LDA for ALDA. (TD)LDA has been widely used in many
calculations of electronic structure and dynamics, see e.g. [51, 52, 46, 1].

Once this energy functional obtained, variation of the total energy with respect to
the single particle (s.p.) wave functions provides the KS equations:

ĥKS[%] |ϕi〉 = εi |ϕi〉 , (2.4a)

ĥKS[%] = −∇
2

2m + UKS[%] + V̂ions + Uext , (2.4b)

UKS[%] = UH[%] + Uxc[%] . (2.4c)

The local and density-dependent Kohn-Sham potential UKS consists in the direct
Coulomb term UH and the exchange-correlation potential, Uxc = δExc/δ%. Coupling
potentials to ions and to the external field are trivially given. The static problem is
self-consistent as the potential depends on %(r).

The time-dependent KS equations analogously read:

i ∂tϕi(r, t) = ĥKS[%]ϕi(r, t) , (2.5)

where ĥKS is composed in the same manner as above, provided that one replaces %(r)
by %(r, t)1. This assumes an instantaneous adjustment of the total electronic density,
although memory effects can play in some cases an important role, especially in Exc
[53].

2.3 Hartree Fock and collision term
Simpler than DFT, the famous HF approximation provides a first approximation of
the exact Hamiltonian. We derive here the HF Hamiltonian in order to introduce
the notations and the notion of residual interaction. We consider the non-relativistic
Hamiltonian for a system of interacting electrons that reads in second quantization

Ĥ =
∫
dx h0(x, t)Ψ̂†(x, t)Ψ̂(x, t) + 1

2

∫
dxdx′ v(x, x′)Ψ̂†(x, t)Ψ̂†(x′, t)Ψ̂(x′, t)Ψ̂(x, t)

h0(x, t) = −∆x/2 + uext(x, t) . (2.6)

We use here a general coordinate x and spinless particles for simpler notations but
it can be easily generalized. This Hamiltonian can also be written in any s.p. basis,

1Throughout this thesis, we have adopted the atomic units e = ~ = 1).
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leading to the general form:

Ĥ =
∑
i,j

h0
ij â
†
i âj︸ ︷︷ ︸

ĥ0

+ 1
2
∑
i,j,k,l

vijklâ
†
i â

+
j âlâk︸ ︷︷ ︸

V̂

=
∑
i,j

h0
ij â
†
i âj + 1

4
∑
i,j,k,l

ṽijklâ
†
i â
†
j âlâk (2.7)

where ṽijkl is the antisymmetrized interaction

ṽijkl = vijkl − vijlk . (2.8)

2.3.1 HF: factorization
A way to obtain the HF Hamiltonian is to factorize directly the interaction term V̂ :

V̂ = 1
2
∑
i,j,k,l

vijklâ
†
i â
†
j âlâk . (2.9)

Wick’s theorem with respect to the Fermi sea allows us to rewrite the product of the
four operators as

â†i â
†
j âlâk =〈â†i âk〉〈â

†
j âl〉 − 〈â

†
i âl〉〈â

†
j âk〉

− 〈â†i âl〉 : â†j âk :
+ 〈â†i âk〉 : â†j âl :
+ 〈â†j âl〉 : â†i âk :
− 〈â†j âk〉 : â†i âl :
+ : â†i â

†
j âlâk : .

(2.10)

The first term of Eq. (2.10) is a constant term leading to the HF energy of the
interaction. It is the only remaining term when taking the mean value of V̂ with
respect to the HF determinant. All other terms cancel out because of the ordered
products. The mean value of the last term equals zero: this is what we call residual
interaction in HF theory and it can be considered as quantum fluctuations. The HF
approximation consists in neglecting this term. The 1-body operators can be rewritten
making use of : â†i âl := â†i âl − 〈â

†
i âl〉. The constant terms are dropped and the only

remaining terms are the following:

â†i â
†
j âlâk ≈− 〈â

†
i âl〉â

†
j âk

+ 〈â†i âk〉â
†
j âl

+ 〈â†j âl〉â
†
i âk

− 〈â†j âk〉â
†
i âl .

(2.11)

This approximation enables to define the HF interaction term ŵ using 〈â†i âl〉 = δil if i
belongs to the occupied states (also called hole states) and zero otherwise:

ŵ = 1
2

− ∑
ijk
i∈occ

vijkiâ
†
j âk +

∑
ijl

i∈occ

vijilâ
†
j âl +

∑
ijk
j∈occ

vijkj â
†
i âk −

∑
ijl

j∈occ

vijjlâ
†
i âl

 . (2.12)
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Using that vijkl = vjilk it simplifies into

ŵ =
∑
kl

 ∑
j∈occ

ṽkjlj

 â†kâl . (2.13)

The HF Hamiltonian is then
ĥ = ĥ0 + ŵ (2.14)

with the matrix elements read as

hkl = h0
kl +

∑
j∈occ

ṽkjlj . (2.15)

We recall the expression of the HF energy and the mean value of ĥ:

EHF = 〈ΨHF|Ĥ|ΨHF〉 =
∑
m∈occ

tmm + 1
2

∑
m,n∈occ

ṽmnmn (2.16)

〈ΨHF|ĥ|ΨHF〉 =
∑
m∈occ

tmm +
∑

m,n∈occ
ṽmnmn (2.17)

2.3.2 Residual interaction
The residual interaction can be derived using Wick’s theorem. This is the neglected
fluctuation term in Eq. (2.10):

V̂res = 1
2
∑
i,j,k,l

vijkl : â†i â
†
j âlâk : . (2.18)

By definition, this term has a vanishing mean value. Applied to a determinant in the
same basis, this term is non zero only if l, k are hole (= occupied) states and i, j are
particle (= unoccupied) states respectively. In all other cases, there exists a creation or
an annihilation operator that cancels the determinant, and the normal ordering applies
them first to the determinant. The residual interaction generates only 2-particle-2-hole
(2p2h) excitations.

2.4 Basic derivation of BBGKY hierarchy
On top of this mean field approximation, particles develop n-body correlations which
must be taken care of, otherwise physical behaviors are lost. Reduced density matrix
theory is a useful formalism that allows one to have a direct access to a physical
interpretation and observable. The equations of motion of reduced density matrices
form a hierarchy of equations. This hierarchy is called BBGKY hierarchy after its
classical statistical counterpart developed by Born, Bogoliubov, Green, Kirkwood and
Yvon [54, 55, 56, 57]. From Green’s function formalism, it can also be refered as a
Martin-Schwinger hierarchy for density matrices. This hierarchy is totally equivalent
to TDSE but it enables a deeper understanding of the possible level of approximations
and truncations. We give here as an example the derivation of the first two terms
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of the hierarchy. The equations of motion for creation and annihilation operators in
Heisenberg picture are(

i∂t − h0(x, t)
)
Ψ̂(x, t) =

∫
dx̄ v(x, x̄)Ψ̂†(x̄, t)Ψ̂(x̄, t)Ψ̂(x, t) (2.19)(

− i∂t − h0(x, t)
)
Ψ̂†(x, t) = Ψ̂†(x, t)

∫
dx̄ v(x, x̄)Ψ̂†(x̄, t)Ψ̂(x̄, t) . (2.20)

The reduced density matrices are defined as follow
ρ(n)(x1 . . . xn;x1′ . . . xn′ ; t) = 〈Ψ̂†(x1′ , t) . . . Ψ̂†(xn′ , t)Ψ̂(xn, t) . . . Ψ̂(x1, t)〉 . (2.21)

In the following the 1-body density matrix ρ(1) is simply noted ρ and its diagonal
elements %(x, t) = ρ(x;x; t). The time index will be omitted most of the time for the
sake of simplicity. The equation of motion of ρ is straightforward:

i∂tρ(x1;x1′) =
(
h0(x1)− h0(x1′)

)
ρ(x1;x1′)

+
∫
dx2

(
v(x1, x2)− v(x1′ , x2)

)
ρ(2)(x1, x2;x1′ , x2) .

(2.22)

The equation of ρ(2) gives more details about what occurs in the general case:

i∂tρ(2)(x1, x2;x2′ , x1′) =
(
h0(x1)− h0(x1′) + h0(x2)− h0(x2′)

)
ρ(2)(x1, x2;x1′ , x2′)

+
∫
dx3

(
v(x2, x3)− v(x2′ , x3)

)
ρ(3)(x1, x2, x3;x1′ , x2′ , x3)

+
∫
dx3

(
v(x1, x3)〈Ψ̂†(x1′ , t)Ψ̂†(x2′ , t)Ψ̂(x2, t)Ψ̂†(x3, t)Ψ̂(x3, t)Ψ̂(x1, t)〉

− v(x1′ , x3)〈Ψ̂†(x1′ , t)Ψ̂†(x3, t)Ψ̂(x3, t)Ψ̂†(x2′ , t)Ψ̂(x2, t)Ψ̂(x1, t)〉
)

(2.23)
A few commutations are necessary in the last term to write everything in terms of the
3-body density matrix:
i∂tρ(2)(x1, x2;x2′ , x1′) =(

h0(x1)− h0(x1′) + h0(x2)− h0(x2′) + v(x1, x2)− v(x1′ , x2′)
)
ρ(2)(x1, x2;x1′ , x2′)

+
∫
dx3

(
v(x2, x3)− v(x2′ , x3) + v(x1, x3)− v(x1′ , x3)

)
ρ(3)(x1, x2, x3;x1′ , x2′ , x3′)

(2.24)
Here we derived only the first two equations of the hierarchy but one can easily gener-
alize the procedure to obtain the equations for ρ(n).

2.5 Truncation of BBGKY hierarchy

2.5.1 Cluster expansion
The general form of these equations reads as:(

i∂t − k(x1..xn) + k(x1′ ..xn′)
)
ρ(n)(x1..xn;x1′ ..xn′)

=
n∑
j=1

∫
dxn+1

(
v(xj, xn+1)− v(xj′ , xn+1)

)
ρ(n+1)(x1..xn, xn+1;x1′ ..xn′ , xn+1)

(2.25)
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where
k(x1..xn; t) =

n∑
i=1

h0(xi; t) + 1
2

n∑
i 6=j

v(xi, xj) . (2.26)

Time indices are implicit in Eq. (2.25). In the following i will stand for xi. The first
two equations of this hierarchy are written again explicitly:(

i∂t − h0(1) + h0(1′)
)
ρ(1; 1′) =

∫
d2
(
v(1, 2)− v(1′, 2)

)
ρ(2)(1, 2; 1′, 2) , (2.27)(

i∂t − h0(1) + h0(1′)− h0(2) + h0(2′)− v(1, 2) + v(1′, 2′)
)
ρ(2)(1, 2; 1′, 2′)

=
∫
d3
(
v(1, 3)− v(1′, 3) + v(2, 3)− v(2′, 3)

)
ρ(3)(1, 2, 3; 1′, 2′, 3) .

(2.28)

The BBGKY hierarchy is not solvable as it is. It has to be truncated for instance at level
n − 1 and the n-body density matrix has to be approximated as an antisymmetrized
product of p-body matrices, p < n. One way to truncate has been proposed by Wang
and Cassing [16]. It begins with a cluster expansion of the various reduced density
matrices. For example the 2-body density matrix reads

ρ(2)(1, 2; 1′, 2′) = ρ(1; 1′)ρ(2; 2′)− ρ(1; 2′)ρ(2; 1′) + c(2)(1, 2; 1′, 2′) . (2.29)

The advantage of this expression is to separate the various levels of correlation. For
the 2-body density matrix in Eq. (2.29), c(2) is the two-particle correlation term once
the mean field is substracted. In a more general way, the n-body density matrix can
be written in a compact form as:

ρ(n) = AS{
n−1∑
p=1

ρ(n−p)ρ(p)}+ c(n) , (2.30)

where S symmetrizes with respect to pair indices (i, i′) and A antisymmetrizes the i′
indices with the corresponding sign. Another rule is that every term appears only once.
For example, we have:

AS{ρρ(2)} = A
{
ρ(1; 1′)ρ(2)(2, 3; 2′, 3′) + ρ(2; 2′)ρ(2)(1, 3; 1′, 3′) + ρ(3; 3′)ρ(2)(1, 2; 1′, 2′)

}
= ρ(1; 1′)ρ(2)(2, 3; 2′, 3′)− ρ(1; 2′)ρ(2)(2, 3; 1′, 3′)− ρ(1; 3′)ρ(2)(2, 3; 2′, 1′)
+ ρ(2; 2′)ρ(2)(1, 3; 1′, 3′)− ρ(2; 1′)ρ(2)(1, 3; 2′, 3′)− ρ(2; 3′)ρ(2)(1, 3; 1′, 2′) (2.31)
+ ρ(3; 3′)ρ(2)(1, 2; 1′, 2′) + ρ(3; 1′)ρ(2)(1, 2; 3′, 2′) + ρ(3; 2′)ρ(2)(1, 2; 1′, 3′) .

This is quite a lengthy expression for just one term.
We introduce some compact notations here: superscripts correspond to the number

of particles of the element, subscripts enable to know which coordinates are coupled.
They are not directly related to the xi of the operator as we can write for example

c(2)(1, 2; 1′, 2′) = c12(1, 2; 1′, 2′) = c23(1, 2; 1′, 2′) . (2.32)

The number of indices giving the number of particles, superscripts are omitted when
subscripts are used. We will switch between both notations and omit the coordinates
when there is no ambiguity, leading sometimes to identify abusively a matrix element
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with the matrix itself. The notation Tr2(F12) corresponds to
∫
d2
(
F (1, 2; 1′, 2′)2=2′

)
for

a given function F . Permutation operators Pij will be used if convenient. They are
defined as

Pij|ij〉 = |ji〉 (2.33)
or P12(1, 2; 1′, 2′) = δ(1− 2′)δ(2− 1′) . (2.34)

For example, we have:

(P12ρ1ρ2)(1, 2; 1′, 2′) = ρ(2, 1′)ρ(1, 2′) ,
(ρ1ρ2P12)(1, 2; 1′, 2′) = ρ(1, 2′)ρ(2, 1′) = (P12ρ1ρ2)(1, 2; 1′, 2′) . (2.35)

Therefore P12 commutes with ρ1ρ2 and AS{ρρ} = ρ1ρ2(1 − P12). For instance, if ρ(2)

is replaced by AS{ρρ} = ρ1ρ2(1− P12) + c12 in Eq. (2.27), it reads

i∂tρ1 − [h1, ρ1] = Tr2[v12, c12] (2.36)

where
h1ρ1 = h0

1ρ1 + Tr2{v12ρ2}ρ1 − Tr2{v12ρ2ρ1P12} (2.37)

which is simply the HF Hamiltonian.

2.5.2 Deriving the Boltzmann-Langevin equation
The idea behind deriving a Boltzmann-Langevin equation from the BBGKY hierarchy
is the following: first the hierarchy is truncated at the 2-body level (c(3) = 0), then the
equation of evolution for the 2-body correlation is formally solved and then inserted in
the 1-body density matrix evolution. In the truncation, one can assume that

ρ(3) ≈ AS{ρ(2)ρ} (2.38)

since c(3) has been neglected. It is exactly the terms explicitly written in Eq. (2.31).
One can expand ρ(3) using ρ(2) = AS{ρρ}+ c(2). This yields

ρ(3) ≈ AS{ρρρ+ ρc(2)}
= ρ1c23(1− P12 − P13) + ρ2c13(1− P21 − P23) + ρ3c12(1− P31 − P32)
+ ρ1ρ2ρ3(1− P12)(1− P12 − P23) .

(2.39)

Thus only the equation of evolution for c(2) is needed. First of all, we need the evolution
of the term AS{ρρ}:

i∂tρ1ρ1(1− P12) = [h0
1, ρ1]ρ2(1− P12) + [h0

2, ρ2]ρ1(1− P12)
+ Tr3[v13, ρ13]ρ2(1− P12) + Tr3[v23, ρ23]ρ1(1− P12) .

(2.40)

It can be seen that it generates all unlinked terms. We give an example of unlinked
terms as v(2, 3)ρ(2)(2, 3; 2′, 3′)ρ(1; 1′) where v12 does not couple the two density matri-
ces. A more general result has been proved in [16], but here it is only needed to prove
it for the first two equations. Therefore the evolution of c(2) only takes into account
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the linked terms. After some cumbersome but straightforward calculations, one can
obtain

i∂tc12 − [h1 + h2, c12] =
1
2

(
ρ̄1ρ̄2(1− P12)v12ρ1ρ2(1− P12)− ρ1ρ2(1− P12)v12ρ̄1ρ̄2(1− P12)

)
+O(c12v12) (2.41)

where ρ̄1 = 1− ρ1. Most of the terms proportional to c12v12 are neglected here. For a
complete derivation, see [18]. These results can also be found in [58] with examples of
application on physical systems. The right hand side is the collision term or Born term
B12 that leads to the dissipative term in ETDHF theory (see Sec. 2.5.3). This term
stems entirely from AS{ρρρ}. The expression of two terms of Eq. (2.41) are given here
as examples to make the notations really clear:

ρ1ρ2P12v12ρ2 =
∫
d3v(1′; 3)ρ(1; 3)ρ(2; 1′)ρ(3; 2′) ,

−ρ2v12ρ1ρ2P12 = −
∫
d3v(1; 3)ρ(1; 2′)ρ(2; 3)ρ(3; 1′) . (2.42)

We remind the reader that v(i; j)↔ v(i, j; i′, j′)δ(i− i′)δ(j − j′) so the right hand side
is consistent with the 2-body operator notation. It has to be noticed that this term is
not derived by replacing ρ(3) directly by AS{ρρρ} but also by taking into account the
unlinked terms of Eq. (2.40) and some terms of ρ3c12(1− P13 − P23) that turn h0

1 + h0
2

into h1 + h2. Now it is possible to solve formally Eq. (2.41) to get

c12(t) = −i
∫ t

t0
dsU12(t, s)B12(s)U12(s, t) + δc12(t) (2.43)

where U12 = U1U2 with Ui = T exp
(
− i

∫ t
t0
hi(s)ds

)
and T the time ordering operator.

The second term δc12(t) = U12(t, t0)c12(t0)U12(t0, t) is the mean field propagation of
the initial correlation. It is now possible to insert c12 in Eq. (2.36):

i∂tρ = [h, ρ] +K[ρ] + δK(t) , (2.44)

K[ρ] = −i
∫ t

t0
dsTr2[v12, U12(t, s)B12(s)U12(s, t)] , (2.45)

δK(t) = Tr2[v12, δc12(t)] . (2.46)

In this equation K[ρ] is interpreted as a collision term and δK(t) as a stochastic force,
see [22] for more details.

We write again explicitly the collision integral:

K[ρ] = i
2

∫ t

t0
dsTr2

{ [
v, U(t, s)AS{ρρ}vAS{ρ̄ρ̄}U †(t, s)

]
−
[
v, U(t, s)AS{ρ̄ρ̄}vAS{ρρ}U †(t, s)

] }
.

(2.47)

Here we have omitted the subscripts (12). When a thermal equilibrium with respect
to the mean field Hamiltonian is reached the term c12 vanishes. Then Tr2[v12, c12] in
Eq. (2.36) cancels out and only the mean field drives the propagation of ρ. We can
expect a Fermi-Dirac distribution to remain stable over time. The relation between
the stochastic force and the collision term has been studied in details in [23].
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2.5.3 Extended TDHF
Extended TDHF has been introduced as a way to include dissipation due to collisions
between hadron in nuclei [14]. At the beginning, it has been introduced in a more
semiclassical approach based on VUU equations. What is presented here reduces to
the “historical” ETDHF in the Markovian limit (see Eq. 2.62).

To obtain ETDHF, the stochastic force term δK is set to zero. This amounts to
assume that there is no initial correlation in our system. Eq. (2.44) then reduces to:

i∂tρ = [h, ρ] +K[ρ] . (2.48)

It leads to the version of ETDHF with a non-Markovian collision term. Indeed the
collision term (2.47) includes an integral over the full past of the system. We introduce
the instantaneous natural basis, i.e. the basis that diagonalizes the 1-body density
matrix ρ(t):

ρ(t) =
∑
i

|i(t)〉ni(t) 〈i(t)| (2.49)

By defining
〈kj|ṽ|lm〉s = 〈kj|v|lm〉s − 〈kj|v|ml〉s (2.50)

we can write the matrix element of the collision integral (2.47) in this basis:

〈j|K|i〉 = i
2

∫ t

t0
ds
∑
klm

[
〈jk|ṽ|lm〉t〈lm|ṽ|ik〉s

(
nlnm(1− ni)(1− nk)− nink(1− nl)(1− nm)

)
s

+ 〈jk|ṽ|lm〉s〈lm|ṽ|ik〉t
(
nlnm(1− nj)(1− nk)− njnk(1− nl)(1− nm)

)
s

]
.

(2.51)

where the subscript indicates that we used the natural basis at time s 2.
Note that the propagator U in the collision integral K in Eq. (2.47) corresponds to

the mean field propagation of the density matrix and not the full propagation taking
into account K. Therefore the terms at time s are to be used with caution. Actually
|lm〉t = U(t, s)|lm〉s where |lm〉s is really in the instantaneous natural basis at time s
whereas |lm〉t is not as the mean field propagation does not equal the full one. More
details on the numerical implementation of this equation are given for example in [59].

2.5.4 Markovian approximation
The mean field propagator

Ui(t, s) = T exp
(
− i

∫ t

s
hi(t′)dt′

)
(2.52)

is a complicated term because the mean field Hamiltonian depends on ρ(t) and t and
there is an integration over time. We assume that the terms of the form 〈jk|ṽ|lm〉t〈lm|ṽ|ik〉s
vanish for s far from t. Therefore we can replace in the time interval [s, t]:

h(t′) ≈ h(t) for t′ in [s, t] , (2.53)
ρ(t′) ≈ ρ(t) for t′ in [s, t] . (2.54)

2The closure relation I = 1
2
∑

lm |lm〉〈lm|+ |ml〉〈ml| is used to make ṽ appear.
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The 2-body mean field propagator becomes:

U = e−i(t−s)(h1(t)+h2(t)) (2.55)

We now consider the instantaneous eigenbasis of the mean field Hamiltonian i.e. the
basis such as:

h(t)|i〉 = εi|i〉 (2.56)
at a given t. In this basis, the propagator is diagonal:

Uijkl = δikδjle
−i(t−s)(εi+εj) . (2.57)

We keep on assuming that the collision integral has a short memory. Therefore it
makes no difference to extend the lower integration limit t0 to −∞. We also make the
following approximation:∫ t

−∞
ds e−i(t−s)(εi+εj−εk−εl) ≈ πδ(εi + εj − εk − εl) . (2.58)

Here, the principal value has been dropped as it would generate only off-diagonal
elements. These elements add up to the mean field but we assume that the mean field
mainly prevales in the non-dissipative evolution. More formally it can be written with
the help of the mean field Liouvillian L0:∫ t

−∞
ds e−i(t−s)L0 = πδ(L0) (2.59)

where L0 fulfills L0A12 = [h1 + h2, A12]. Therefore in the Markovian approximation,
the collision integral is

K = iπ2 Tr2{[v, δ(L0)AS{ρρ}vAS{ρ̄ρ̄}]− [v, δ(L0)AS{ρ̄ρ̄}vAS{ρρ}]} . (2.60)

Now we consider again the ETDHF collision integral of Eq. (2.51). In addition to the
Markovian approximation, we assume that there exists a basis in which ρ is diagonal,
and h close to diagonal, i.e.

∆h =
√

Tr{hρ}2 − Tr{h2ρ} (2.61)

is small enough to be neglected. We also consider only the diagonal elements:

〈i|K|i〉 = iπ
∑
klm

|〈ik|ṽ|lm〉|2δ(εk + εi − εl − εm)

×
(
nlnm(1− ni)(1− nk)− nink(1− nl)(1− nm)

)
.

(2.62)

This term is actually the only diagonal term in the right hand side of Eq. (2.48). It
directly acts on the occupation numbers of the density matrix. The assumption of
a small ∆h is expected to be fulfilled in the case of low energy excitations. In the
following, ETDHF will always refer to this Markovian version restricted to diagonal
elements. In practice, the delta function that appears in Eq. (2.62) is replaced by a
door function with a certain width. This idea will be discussed more in details for
STDHF and CTDHF.
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2.5.5 Relation to the (Time-Dependent) Reduced Density Ma-
trix Functional Theory

In this work, we only deal with time-dependent theories. For any dynamical calculation
one could use as a starting point a density matrix obtained from a static calculation in
the Reduced Density Matrix Functional Theory (RDMFT) framework (see [38] and ref-
erences therein). Moreover, TD-RDMFT is also based on BBGKY hierarchy assuming
the 2-body density matrix is a functional of the 1-body density matrix. Runge-Gross
theorem [7, 44, 45] ensures that this is true for a local external potential. Actually,
Eq. (2.44) contains such a functional. The term K[ρ] as expressed in Eq. (2.47) only
depends on the 1-body density matrix ρ and δK is the dependence on the initial state.
This initial dependence is limited to the 2-body correlation as this is our level of trun-
cation of the BBGKY hierarchy. With this initial dependence it fulfills the criterium
derived in [60] on the compatibility between the memory and the initial state depen-
dence.

2.6 Stochastic TDHF

We now turn to the core of this thesis based on the seminal work of Reinhard, Suraud
and Ayik [23]. Stochastic TDHF (STDHF) is a theory that approximates the exact
propagation of a quantum state by an ensemble of Slater determinants which density
matrices are propagated in time in a mean field framework and incoherently added
up. This scheme has been presented and studied in [23, 24, 61, 62]. For the sake of
completeness, most of the demonstrations are done in this part.

2.6.1 Ensemble of trajectories

We first assume that our starting point at time t′ is a N -body density matrix of the
form

D(t′) =
∑
α

x(α)(t′)D(α)(t′) . (2.63)

Here D(α)(t′) = |Φ(α)(t′)〉〈Φ(α)(t′)|, |Φ(α)(t′)〉 being a Slater determinant, and α the
index in the ensemble of density matrices that are incoherently added up to form
D(t′). We now look at the evolution of the system over the time interval [t′, t] and define
τ = t− t′. To do so, only one uncorrelated density matrix D(α) will be considered first.
With no loss of generality, the initial time is taken as t′ = 0. Each D(γ) is propagated
in its own mean field, and this is what we call a “trajectory”.

2.6.2 Propagation of one trajectory

Let us first consider one trajectory, labeled by α, and starting from |Φ(α)(0)〉. The
corresponding mean field at any time s is denoted h(s) and can be complemented by a
residual interaction V (s) to get the exact Hamiltonian H(s) = h(s) + V (s). The time
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evolution operators are the following ones:

U(τ, ε) = T e−i
∫ τ
ε
H(s)ds

U0(τ, ε) = T e−i
∫ τ
ε
h(s)ds (2.64)

with τ > ε. In the same way as done in the interaction picture, one can obtain:

i∂ε
(
U(τ, ε)U0(ε, τ)

)
= −U(τ, ε)U0(ε, τ)Ṽ (ε) (2.65)

where
Ṽ (ε) = U0(τ, ε)V (ε)U0(ε, τ) . (2.66)

The formal expression of the product U(τ, ε)U0(ε, τ) is:

U(τ, ε)U0(ε, τ) = T e−i
∫ τ
ε
Ṽ (s)ds (2.67)

Now let ε → 0. The operator Ω+ = U(τ, 0)U0(0, τ) allows to go back and forth
between the exact evolution |Ψ(α)(τ)〉 and the mean field one |Φ(α)(τ)〉 of the initial
state |Φ(α)(0)〉:

|Ψ(α)(τ)〉 = Ω+|Φ(α)(τ)〉 . (2.68)
It can be approximated up to the second order in Ṽ as:

|Ψ(α)(τ)〉 ≈ |Φ(α)(τ)〉 − i
∫
Ṽ |Φ(α)(τ)〉 − 1

2T
{ ∫

Ṽ
∫
Ṽ
}
|Φ(α)(τ)〉 (2.69)

where
∫
Ṽ =

∫ τ
0 Ṽ (s)ds. The corresponding time-dependent N -body density matrix

D(α)(τ) reads:

D(α)(τ) = |Φ(α)(τ)〉〈Φ(α)(τ)|+
(
− i

∫
Ṽ |Φ(α)(τ)〉〈Φ(α)(τ)|+ h.c.

)
+
∫
Ṽ |Φ(α)(τ)〉〈Φ(α)(τ)|

∫
Ṽ −

(1
2T

{ ∫
Ṽ
∫
Ṽ
}
|Φ(α)(τ)〉〈Φ(α)(τ)|+ h.c.

)
(2.70)

Let us now consider an instantaneous orthonormal basis at time τ , denoted by |κ〉 =
|Φ(α)

κ (τ)〉. We also write |0〉 = |Φ(α)(τ)〉 to simplify the notations. Keeping only the
diagonal terms, the N -body density matrix simplifies as

D(α)(τ) ≈ |0〉〈0|+
∑
κ

|κ〉〈κ|
∫
Ṽ |0〉〈0|

∫
Ṽ |κ〉〈κ|

− 1
2 |0〉〈0|T

{ ∫
Ṽ
∫
Ṽ
}
|0〉〈0| − 1

2 |0〉〈0|T̄
{ ∫

Ṽ
∫
Ṽ
}
|0〉〈0|

(2.71)

where T̄ is the reverse time ordering. It is possible to get rid of the two time ordering
operators using T

{ ∫
Ṽ
∫
Ṽ
}

+ T̄
{ ∫

Ṽ
∫
Ṽ
}

= 2
∫
Ṽ
∫
Ṽ . As h and V depend a priori

on the initial Slater determinant, we use in the following a superscript H = h(α) +V (α).
Finally, we get

D(α)(τ) ≈ |0〉〈0|
(

1−
∑
κ6=0

∣∣∣〈κ| ∫ Ṽ (α)|0〉
∣∣∣2)+

∑
κ6=0
|0〉
∣∣∣〈κ| ∫ Ṽ (α)|0〉

∣∣∣2〈0| . (2.72)
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Before we proceed, we discuss a bit the physical validity of what is done here. We aim
at describing high energy situations where many transitions occur. The off-diagonal
matrix elements are then expected to have fast oscillations with random phases and to
average out to zero. The considered main process is dissipation that arises from the
diagonal terms when neglecting quantum fluctuations. To this point the scheme can be
interpreted as follows: the initial statistical and non-coherent state is our “molecular
chaos” hypothesis and, with the use of Ω+, we consider a collision mediated by V . We
then assume that τ is long enough so that the system has forgotten the correlations
and we can again consider only an incoherent sum, i.e. we are back to molecular chaos.

The transition matrix element
∣∣∣〈κ| ∫ Ṽ (α)|0〉

∣∣∣2 can be approximated by a Fermi’s
golden rule:∣∣∣〈κ| ∫ Ṽ (α)|0〉

∣∣∣2 =
∣∣∣〈Φ(α)

κ (τ)|
∫
Ṽ (α)|Φ(α)(τ)〉

∣∣∣2
≈ 2π

∣∣∣〈Φ(α)
κ (0)|V (α)(0)|Φ(α)(0)〉

∣∣∣2δ(E(α)
κ − E(α))τ = P (α)

κ τ = Pα→κ[α]τ
(2.73)

where E(α)
κ and E(α) are the HF energies of |Φ(α)

κ (τ)〉 and |Φ(α)(τ)〉 respectively. This
is an acceptable approximation if:
• ∑κ P

(α)
κ τ � 1, to justify the perturbative treatment.

• E(α) is large compared to the fluctuations ∆h(α) (as defined in Eq. (2.61)). In an
equivalent way, we can assume that the mean field is almost constant over τ , i.e.
τ � tMF where tMF ∝ 1/∆h. This also implies that V (α) does not vary too much
over [0, τ ].

• [0, τ ] is long enough so that there is a fully developed transition between |Φ(α)〉
and |Φ(α)

κ 〉. This means that the delta function is a relevant approximation. “Long
enough” can thus be interpreted as τ � 1/∆E where ∆E is the typical energy
separation in a discrete spectrum.

As the residual interaction V (α) is of 2p2h nature, the only terms taken into account
in the transition are 2p2h excitations from the ket |Φ(α)〉. Therefore κ is the index for
this kind of excitations i.e. κ ≡ pp′hh′. To be more precise, we have

V (α)|Φ(α)〉 =
∑
pp′hh′

Vpp′hh′ a
†
pa
†
p′ah′ah|Φ(α)〉︸ ︷︷ ︸
|Φ(α)
κ (τ)〉

(2.74)

where p, p′ are particle states and h, h′ are hole states with respect to |Φ(α)〉. In terms
of density matrices it yields:

V (α)D(α) =
∑

κ[α] 6=α
D(κ[α])V (α)D(α) (2.75)

where we have used the notations |0〉〈0| = D(α)(τ) and |κ〉〈κ| = D(κ[α])(τ). The index
κ[α] 6= α means that there is no diagonal term. The final equation for the density
matrix is

D(α)(τ) ≈ D(α)(τ) +
∑

κ[α] 6=α
[D(κ[α])(τ)−D(α)(τ)]Pα→κ[α]τ . (2.76)

This gives the evolution of the exact matrix in the form of a master equation with a
gain and loss term from the initial state |Φ(α)〉.
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2.6.3 General equation of motion for STDHF
Each trajectory α generates its own set of 2p2h density matrices D(α)

κ and the total
correlated N -body density matrix at time τ is taken as:

D(τ) =
∑
α

x(α)(0)D(α)(τ)

≈
∑
γ

x(γ)(τ)D(γ)(τ) .
(2.77)

This equation has to be read carefully: the first line is a sum over correlated N -body
density matrices, while the second line contains only uncorrelated matrices incoherently
added up at time τ . In Sec. 2.6.2, we perform the scheme from t = 0 to t = τ . It is
possible to do the same step again m times. The time can be discretized along those
steps and we write tm = mτ . Using Eq. (2.76), we rewrite D(tm) as

D(tm) =
∑
α

x(α)(tm−1)D(α)(tm)

≈
∑
α

x(α)(tm−1)
(
D(α)(tm) +

∑
κ6=α

[D(κ[α])(tm)−D(α)(tm)]Pα→κ[α]τ
)

(2.78)

≈
∑
γ

x(γ)(tm−1)D(γ)(tm) +
∑
γ,β
γ 6=β

(x(β)(tm−1)Pβ→γ − x(γ)(tm−1)Pγ→β)D(γ)(tm)τ (2.79)

where γ is a general index gathering both α and κ[α]. From Eq. (2.73) we have
Pβ→γ = Pγ→β but we keep the most general form at this point. Now we define the
coarse time derivative of any function f as:

∂tf ≈
f(tm)− f(tm−1)

τ
. (2.80)

This definition, together with D(tm−1) ≈ ∑
γ x

(γ)(tm−1)D(γ)(tm−1), allows us to write
the equation of motion for D:

i∂tD =
∑
γ

x(γ)[h(γ), D(γ)] + i
∑
γ,β
γ 6=β

(x(β)Pβ→γ − x(γ)Pγ→β)D(γ) (2.81)

The second term can be interpreted as:

∂tx
(γ) =

∑
β

γ 6=β

(x(β)Pβ→γ − x(γ)Pγ→β) . (2.82)

From Eq. (2.78) we can also write Eq. (2.81) the following way:

i∂tD =
∑
γ

x(γ)[h(γ), D(γ)] + i
∑
γ,β
γ 6=β

x(β)Pβ→γ(D(γ) −D(β)) . (2.83)

In the following, we need to introduce the 1-body projection operator e which definition
in an arbitrary s.p. basis is

Tr{eO} =
∑
ij

Tr{a†jaiO}a
†
iaj (2.84)
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where O is a N -body operator. Mind that this is an abusive notation as Tr{eO} is
not a number but a 1-body operator. The 1-body density matrices are then easy to
obtain:

ρ = Tr{eD} ,
ρ(γ) = Tr{eD(γ)} .

(2.85)

Note that ρ(γ) is the density matrix of a pure state (with 0 and 1 as occupation numbers)
whereas ρ is a mixed state density matrix (with partial occupation numbers). For any
1-body operator T , e has also the property

Tr{e[T,D]} = [T, ρ] (2.86)

and conserves the freedom to do circular permutations under the trace. We define h̄ as
the mean field corresponding to ρ = Tr{eD} and V̄ so that H = h̄+ V̄ = h(γ) + V (γ).

We now derive the equation of motion of the 1-body density matrix. First, we make
use of

[h(γ), D(γ)] = [h̄, D(γ)] + [V̄ , D(γ)]− [V (γ), D(γ)] (2.87)
to make h̄ appear in the first term of Eq. (2.83) and then we project this equation
using Tr{e...}. Note that the last term of (2.87) then vanishes:

V (γ)D(γ) =
∑

κ[γ]6=γ
D(κ[γ])V (γ)D(γ)

Tr{eD(κ[γ])V (γ)D(γ)}ji = 〈Φ(γ)|a†iaj|Φ(γ)
κ 〉︸ ︷︷ ︸

0

〈Φ(γ)
κ |V (γ)|Φ(γ)〉 = 0 . (2.88)

Altogether it yields

i∂tρ = [h̄, ρ] +K + δK (2.89)
K = i

∑
γ,β
γ 6=β

x(β)Pβ→γ(ρ(γ) − ρ(β)) (2.90)

δK =
∑
γ

x(γ) Tr{[e, V̄ ]D(γ)} . (2.91)

It can be shown [23] that the collision integral K and the stochastic force δK are to
some extent equivalent to those found in Eq. (2.44) in the Markovian approximation.

2.6.4 On the residual interaction in STDHF with DFT
The scheme presented so far used a residual interaction V (t). If one uses the simple
HF Hamiltonian hHF as mean-field Hamiltonian h then V (t) is equal to Vres defined in
Eq. (2.18). In the case one uses a KS Hamiltonian hKS for the mean field, the formal
justification of the choice of Vres can become a bit more tricky. One can write the very
formal equation:

i∂tρexact = [hKS[%], ρexact] + C[%] (2.92)
where C is a functional that corrects the difference between the KS propagation and
the exact one. Of course we still have ρexact(r, r) = %(r) = ρKS(r, r). C acts on the
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occupation numbers that the KS Hamiltonian kept untouched, and also on the natural
basis. Therefore one can assume it is possible to write C as an effective collision
integral Keff [ρexact], defined for example in Eq. (2.47), with an effective veff instead
of the interaction v. This veff is highly nontrivial and one can use an ansatz as for
example a screened Coulomb term. Because of the structure of K, one can expect to
reproduce qualitatively the dissipative features, provided that veff is not too unphysical.
This veff can be plugged for example into STDHF with a LDA functional to obtain a
Stochastic TDLDA. A quantitative reproduction of the exact solution may need further
development in the calculation of veff or a bit of tuning of the ansatz chosen.

2.6.5 STDHF in practice
The numerical implementation of STDHF is straightforward once the derivation has
been done. Every τ , this state generates as many density matrices D(κ[γ]) as allowed
2p2h transitions according to Eq. (2.73). This ensemble is however too huge to be
dealt with numerically. The idea of STDHF is to replace the ensemble of trajectories
weighted by Pβ→γτ by a fixed number N of trajectories chosen in a stochastic manner
with the probability Pβ→γτ defined in Eq. (2.73). The correlated density matrix D is
thus

D = 1
N

N∑
γ=1

D(γ)(t) (2.93)

where the same matrix D(γ) can appear several times in the sum. Let us denote by
N (γ) this number. We have:

N (γ)

N
−−−→
N→∞

x(γ) . (2.94)

N is of the order of some hundreds in our calculations to allow enough statistics. As
each trajectory has to be propagated using its own mean field, the calculation is still
numerically heavy. Since in a finite system the energy spectrum is discrete, the delta
function in Pβ→γ is replaced by a door function with a finite width Γ, as:

δΓ(x) =


1

2Γ if |x| ≤ Γ

0 otherwise
. (2.95)

We have observed that, for the sake of numerical efficiency, we need to preselect the
transition states with another delta function of width Γε > Γ. We typically take
Γε ≈ 5Γ. This preselection is done on the s.p. energies, i.e. for a state D(α) that jumps
to a state D(κ[α]). More precisely the preselection condition reads:

|εp + εp′ − εh − εh′| ≤ Γε . (2.96)

This whole process is sketched in Fig. 2.1 where the trajectories are represented in pur-
ple and every τ an instantaneous jump occurs (in red), choosing one transition D(κ[γ])

(full red) amongst all the possible transitions (dashed red) with a certain probability.
There is also a certain degree of freedom in the transition itself. Indeed all unitary
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2.7. CTDHF

Figure 2.1: Schematic view of the time propagation of Stochastic TDHF ensemble. See
text for more details.

transformations that conserve the subspaces of occupied (h-space) and empty states
(p-space) in one trajectory leave D(γ) unchanged but it does change the possible 2p2h
transitions. Before each transition we choose the s.p. wave functions |ϕ(γ)

ν 〉 that diago-
nalize the mean field Hamiltonian h(γ) in the h-space and p-space separately. The aim
of this process is to reduce the uncertainty on the s.p. energies and on the total energy
E(α)
κ of the 2p2h transition.

2.6.6 Limitations of STDHF
The STDHF scheme presented here has difficulties to deal with low excitation energies
(see Chapter 4). Indeed, when the excitation energy is low, the probability of transition
decreases and the number of trajectories has to be increased accordingly to capture the
right dynamics. The difference between the mean-field Hamiltonian of the ensemble of
trajectories become much smaller. In a numerical point of view, the cost of propagating
hundreds of trajectories even in a mean field manner can become prohibitive. This
motivated the choice to use only a unique mean field h̄ for the propagation. From
Eq. (2.89), we deduce this is equivalent to run a Markovian ETDHF calculation (where
the fluctuations are neglected) without the low-energy assumption that assumed there
is a common eigenbasis of h̄ and ρ. Therefore, as we kept only the collisional integral,
we call this method Collisional TDHF.

2.7 CTDHF
As just explained previously, the mean field Hamiltonian of each trajectory is replaced
in the CTDHF scheme by the common mean field h̄ which corresponds to neglecting
the term [V̄ , D(γ)] in Eq. (2.87). Therefore the stochastic force δK does not appear
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and we obtain only

i∂tρ = [h̄, ρ] +K (2.97)

as an equation of motion for ρ. With Eqs. (2.90) and (2.97) we note that CTDHF
does not actually need trajectories of D(γ) to be propagated. It only needs the “mixed
state” density matrix ρ(t) and the ensemble of pure state density matrices ρ(γ) to make
transitions every τ . This ensemble is reconstructed in an approximate way that will be
explained more in details in the following. In CTDHF the possible transitions are not
sampled as in STDHF but added up with their weight Pβ→γ. The scheme is then more
robust for small transitions probabilities. In STDHF the majority of the calculation
time is used to propagate the ensemble of trajectories. In CTDHF there is only one
trajectory and we have a calculation time that can be two orders of magnitude smaller
than that in STDHF.

2.7.1 Representation of the mixed states
The CTDHF scheme treats the state of aN -particle system in parallel by two equivalent
representations: a (mixed) 1-body density matrix ρ and an ensemble E of pure Slater
states,

ρ =
Ω∑
ν=1
|ϕν〉wν〈ϕν | ←→ E = {|Φ(α)〉, x(α), α = 1, ...,N} = {D(α), x(α)} (2.98)

where the x(α) are the weights with which the Slater state |Φ(α)〉 does contribute. The
latter reads in occupation number representation

|Φ(α)〉 = |n(α)
1 , n

(α)
2 , ..., n

(α)
Ω 〉 , n(α)

ν ∈ {0, 1} ,
∑
ν

n(α)
ν = N , (2.99)

where N is the total number of physical particles and Ω the total number of s.p.
wave functions considered. All |Φ(α)〉 are formed from the same basis of s.p. states
B = {|ϕν〉, ν = 1, ...,Ω} which is also the basis that builds ρ. One |Φ(α)〉 (or the
corresponding Dα) is thus uniquely characterized by the vectors n(α) and the ensemble
by the matrix A ≡ n(α)

ν of size Ω × N where n(α) represents the columns. We will
sometimes write

{B, A} = {|Φ(α)〉} = {D(α)} . (2.100)

In a same way we can define the vector X ≡ x(α) of size N . The ensemble defined in
(2.98) can then be written as

E = {B, A,X} = {|Φ(α)〉, X} = {D(α), X} . (2.101)

How to read {B, A,X} is sketched in Fig. 2.2. Each |Φ(α)〉 corresponds a 1-body density
matrix ρ(α):

|Φ(α)〉 ←→ ρ(α) =
Ω∑
ν=1
|ϕν〉n(α)

ν 〈ϕν | . (2.102)
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Figure 2.2: The E ensemble is represented by the triplet {B, A,X}. The matrix product
of A with X gives the diagonal terms of ρ that have to be read in the natural basis B.

And the connection from E to ρ is done by using

ρ =
N∑
α=1

x(α)ρ(α) =
Ω∑
ν=1
|ϕν〉

N∑
α=1

xαn(α)
ν︸ ︷︷ ︸

=wν

〈ϕν | . (2.103)

The variety of Slater states (2.99) with arbitrary distribution of n(α)
ν is huge. We

restrict, in fact, the ensemble E to those |Φ(α)〉 which remain close to the energy of the
state ρ. This will be detailed in Sec. 2.7.4 in connection with the stepping scheme.

2.7.2 From a mixed state to a sum of pure states
The mapping from E to ρ is straightforward as seen from Eq. (2.103). The reverse
mapping

wν −→ x(α) (2.104)
is ambiguous and has only approximate solutions. We determine the vector X by a
least squares fit minimizing

χ2 = ||W − AX||2 + η||X||2 =
∑
ν

(
wν −

∑
α

n(α)
ν x(α)

)2

+ η
∑
α

(
x(α)

)2
= minimal ,

(2.105)
where W ≡ wν and η is some small positive numerical parameter. The minimization is
done with the constraint 1 ≥ x(α) ≥ 0. The second term weighted by η serves to prefer
the solution with the most evenly distributed coefficients x(α). Finding X corresponds
to solving the non-negative least square (NNLS) problem. There are many algorithms
available to do that. We have modified the sequential coordinate-wise algorithm based
on an article of Franc et al. [63] for the NNLS problem to include the η||X||2 term. This
algorithm has been chosen because it is easy to modify and to implement. It is also
expected to be efficient when the dimension of X is a much larger than the dimension
of W which is precisely the case we are facing. Since this algorithm is gradient-descent-
based, it allows us to use a previous calculation as a starting point. This property is
used in our calculations.
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One option to find X(λn) consists in minimizing the following expression:

χ2(ηn) = ||W − AX||2 + ηn||X||2 (2.106)

and using X(ηn) as a starting point to find X(ηn+1) with ηn → 0. However this would
be numerically too demanding. Therefore this solution has been avoided.

Instead, during the gradient descent steps solving the NNLS problem, η is reduced
rapidly. Even if it does not ensure that X is a minimum of χ2, X remains a minimum
of ||W − AX||2 and we then expect X to be close to the optimal solution. However,
this solution may sometimes lead to a ρsampled too far from the original ρ, yielding
discontinuities in observables such as the energy. To solve this, we have introduced the
remaining density matrix ρrem defined as

ρrem = ρ− ρsampled =
∑
ν

(wν −
∑
α

n(α)
ν x(α))|ϕν〉〈ϕν | . (2.107)

We will always assume ρ = ρsampled in the following and use only ρ. In practice, all
the transformations of CTDHF in the dissipative step will be done on ρsampled. ρrem is
computed and stored after the sampling and finally added up at the end of the CTDHF
step to preserve the continuity of ρ. This matrix ρrem remains untouched during this
process. The effect of ρrem is illustrated in Fig. 2.3 on a typical exemple which will be
presented and discussed at length in Chapter 4.
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0 20 40 60 80 100 120

E
[e
V
]

t [fs]

without ρrem
with ρrem

Figure 2.3: Example of discontinuities in the total energy E in a time evolution of a
system (presented in chapter 5) propagated in the Collisional TDHF scheme, with ρrem
(solid magenta curve) and without it (green dashes).

2.7.3 Energy conservation
Before proceeding to the practical realization of CTDHF, we here give more words
about energy conservation. In STDHF, each Slater state |Φ(α)〉 is propagated during
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the TDHF part with its own mean field Hamiltonian h(α). Indeed CTDHF uses a
unique mean field deduced from the mixed state density matrix

ρ −→ %(r, t) =
∑
ν

wν |ϕν(r, t)|2 −→ h[%] (2.108)

where %(r, t) is the local density according to ρ and h[%] the KS mean field according to
this density (see Eq. (2.4)). This mean field is then used to generate the 1-body prop-
agator U(t2, t1) where the time dependence of h comes through the time dependence
of %.

There are actually different energies in the game. The total energy

Etot = E[ρ] ≡ E (2.109)

is computed from the total 1-body density matrix ρ. It is the single relevant energy for
the final result. As we will see later, the energy of state |Φ(α)〉 is nevertheless important
for the selection of the ensemble, namely

E(α) = E(α)[ρ(α)] , (2.110)

which is computed with the local density %(α) according to ρ(α) (or |Φ(α)〉). Mind that
E(α) has to be taken with care. The s.p. states |ϕν〉, and with it the |Φ(α)〉, are
propagated with the common mean field h[%]. For then, the energy E(α) of each |Φ(α)〉
is not necessarily conserved during TDHF propagation. In other words, we have

∂tE
(α)[ρ(α)] 6= 0 with ρ(α)(t) = U(t, t0)ρ(α)(t0)U(t0, t) . (2.111)

This raises, however, no principle problem. What counts here is to conserve the total
energy E[ρ]. This energy conservation will be discussed on typical examples in Chapter
5.

2.7.4 From one dissipative step to the next one
The propagation proceeds at two time scales: at a coarse time step τ for the evaluation
the 2-body jumps and a fine time step δt(< τ) for TDHF propagation. We consider
here the CTDHF procedure from tm−1 = (m− 1)τ to tm = mτ .

Mean field propagation

We start at tm−1 with a given state ρ(tm−1) and the ensemble E(tm−1) corresponding
to Eq. (2.98). We propagate the s.p. wave functions by TDHF

ϕν(tm−1) −→ ϕ̃ν = Uϕν(tm−1) . (2.112)

where U = U(tm, tm−1). This defines the set B̃ from B(tm−1). We also need the matrix
A which is constant as occupations n(α)

ν remain unchanged during the time propagation.
These occupation numbers are now read in the propagated basis ϕ̃ν . This is equivalent
to propagate the following set

{|Φ(α)(tm−1)〉} → {|Φ̃(α)〉} , |Φ̃(α)〉 = U |Φ(α)(tm−1)〉 . (2.113)
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The propagated mixed state reads:

ρ̃ =
Ω∑
ν=1
|ϕ̃ν〉wν〈ϕ̃ν | (2.114)

with unchanged occupations wν = wν(tm−1). Note that ϕ̃ν , Φ̃(α), and ρ̃ are prelim-
inary objects. The final quantities at tm are determined after the dissipative step is
performed.

Selecting an energy-matching ensemble

The |Φ̃(α)〉 may have developed during propagation a broad distribution of energies
Ẽ(α). We want to confine the sampling states to a narrow energy band again. Thus
we need first to extend the ensemble to produce enough choices of states in a narrow
energy band about the total energy E[ρ]. To this end we start from the |Φ̃(α)〉 and
consider for such each state all corresponding 2p2h states |Φ̃(α)

κ 〉 with κ ≡ pp′hh′. This
generates a temporary super ensemble

{B̃, Ã(S)} =
{
|Φ̃(α)

κ 〉
}
, |Φ̃(α)

κ 〉 ≡ c†p′c
†
pchch′ |Φ̃(α)〉 (2.115)

where κ = 0 stands for original 0p0h state. The creation-annihilation operators cor-
respond to the basis B̃. From this huge ensemble, we collect N states |Φ̃(γ)〉 amongst
those which verify

δE(γ) = E[ρ̃(γ)]− E[ρ̃] ≤ ΓE , (2.116)
where ΓE is a small numerical parameter, the allowed energy band for the ensemble
(as indicated by the index E). The choice of |Φ̃(γ)〉 to keep in the new set Ã is not an
easy task. We have tried two tactics.

(i) We only keep the first N states with the best energy matching. The procedure
ensures a good energy conservation of the considered states. Thus the set Ã is
constructed using only an energy criterium. χ2 and X are computed only once
at the end. Due to the non-negativity constraint, after the calculation of χ2, see
Eq. (2.106), it turns out that this choice results in most elements of the vector
X to be equal to zero. This means that we actually deal with a lot of excitations
that do not contribute at all in the calculation of ρ. Most of the ensemble is
useless then.

(ii) We scan the 2p2h transitions and we reject immediatly those which are too far
way in energy. And for the remaining ones, we look at minα x(α). Once the
corresponding α0 is found, we replace the column [n(α0)] in A and compute χ2

again (see Fig. 2.4). If the replacement lowers χ2 then the 2p2h excitation is
accepted. The calculation time is a bit increased comparing to the previous
tactics but N can be taken smaller and we obtain better numerical stability.

Once Ã = {|Φ̃(γ)〉} is obtained, the corresponding weights x̃(γ) are computed by reverse
engineering with respect to ρ̃ as outlined in Sec. 2.7.2. The ensemble Ẽ = {|Φ̃(γ)〉, x̃(γ)}
thus produced becomes the starting point for the following dissipative step. In figure
2.5, this ensemble of ρ̃(γ) corresponds to the first branching in purple.
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Figure 2.4: Schematic representation of the choice of the states |Φ(α)〉 to create Ã from
A and Ã(S). This is repeated as many times as there are states in Ã(S).

Figure 2.5: Schematic view of the time propagation of the Collisional TDHF scheme.
See text for details.
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Dissipative step

Starting from the |Φ̃(γ)〉 and its 1-body density matrix ρ̃(γ), all corresponding 2p2h
states |Φ̃(γ)

κ 〉 (or the density matrices D̃(κ[γ])) are built by flipping two ñ(γ)
ν = 0 ↗ 1

and two other ñ(γ)
ν = 1 ↘ 0. We remind that |Φ̃(γ)〉 is a pure state represented by

occupation numbers ñ(γ)
ν which are either 0 or 1. The considered 2p2h transitions are

now the physical ones and shall not be confused with the previous ones that are only
used to sample ρ. We focus here only on one specific γ. At that stage we have not
modified yet the s.p. wave functions ϕ̃(γ)

ν which are thus strictly the original ϕ̃ν at the
considered time step.

There are now 2 options: either we keep the ϕ̃ν or we diagonalize the mean-field
Hamiltonian h(γ) within p-space and h-space as we do in STDHF, thus leading to a
new basis ϕ̃(γ)

ν . The first option is called “diagonal CTDHF” because it only acts
on the diagonal elements of the density matrix and the second option is simply called
“CTDHF”. Without loss of generality we can consider the second option which actually
reduces to the diagonal CTDHF when (although delivering different transition rates)
when replacing ϕ̃(γ)

ν by ϕ̃ν .
For our particular |Φ̃(γ)〉 we evaluate the transition rates P (γ)

pp′hh′ ≡ P (γ)
κ defined in

Eq. (2.73) and the complement P (γ)
0 = 1−∑κ P

(γ)
κ . The delta function that appears in

the transition rate P (γ)
κ is replaced by an energy selection of the accessible transitions

split in two steps as in STDHF (see Sec. 2.6.5): Firstly, a fast energy preselector is
applied using the s.p. energies:

|εp + εp′ − εh − εh′ | ≤ Γε (2.117)

within a larger band Γε > Γ. Secondly, the preselected states are chosen according to
the conservation of total energies:∣∣∣E[ρ(γ)

κ ]− E[ρ(γ)]
∣∣∣ ≤ Γ . (2.118)

Having the set of allowed transition states |Φ̃(γ)
κ 〉, we compute ρ(γ):

ρ(γ) = P
(γ)
0
∑
ν

ñ(γ)
ν |ϕ̃(γ)

ν 〉〈ϕ̃(γ)
ν |+

∑
κ

P (γ)
κ

∑
ν

ñ(γ)
ν,κ|ϕ̃(γ)

ν 〉〈ϕ̃(γ)
ν | (2.119)

where ñ(γ)
ν,κ =


1 if ν = p or ν = p′

0 if ν = h or ν = h′

ñ(γ)
ν otherwise

.

This step is represented in Fig. 2.5 by the red branching from a purple line that
represents one particular γ. Once this is done for each γ, we add up incoherently the
various ρ(γ) as in Eq. (2.103) to obtain the final ρ(tm) with dissipation:

ρ =
N∑
γ=1

x̃(γ)ρ(γ) =
Ω∑
ν=1
|ϕν(tm)〉wν(tm)〈ϕν(tm)| . (2.120)

In the right hand side, B(tm) = {|ϕν(tm)〉} is obtained by diagonalization of the new
ρ. Before going further, we need to define which matrix A of occupation numbers
to use as a starting point for our ensemble for the next step. The simplest solution
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is to recycle the ensemble of occupations Ã = ñ(γ)
ν and combine it with B(tn). This

is possible because the changes |ϕ̃ν〉 −→ |ϕν(tn)〉 induced by the dissipative step can
be assumed to be small. This has to be taken with some care. Groups of states with
(nearly) degenerated wν may be rotated arbitrarily by the diagonalization routine. But
this is not harmful as these states have same weight and are thus exchangeable. We
can eventually start a new cycle and propagate to the next dissipative step.

2.8 Conclusion

BBGKY BL
truncation

non Markovian
ETDHF

collisi
on integral

only

ETDHF
Markovian
low energy

STDHF

Markovian

CTDHF
common

mean field

Figure 2.6: Relationship between the three approaches: Extended (ETDHF), Stochas-
tic (STDHF) and Collisional TDHF.

In this chapter, we have derived three approaches for the inclusion of dissipative
effects on top of a mean-field theory. They are summarized in Fig 2.6. The three
of them are reducible to a Boltzmann (or Boltzmann-Langevin for STDHF) equation
with different approximations. STDHF and ETDHF have already been studied in the
past by several groups [62, 61, 59]. CTDHF constitutes a new scheme which allows
to bridge the gap between STDHF and ETDHF. Indeed, CTDHF is expected to agree
with STDHF (but without the fluctuations) at high excitation energy and to have
the same behavior than ETDHF at low excitation energy. Numerically speaking, in
the systems explored in Chapter 5, CTDHF exhibits more or less twice the cost of
ETDHF, and at least two orders of magnitude less than STDHF. Therefore it should
be numerically tractable in 3D realistic systems. In the next chapters, we are testing
these schemes on physical systems. We begin with a perturbative approach on top of
mean field, then we study STDHF in details, and eventually we compare CTDHF to
STDHF and ETDHF.
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Chapter 3

Electron attachment as a rare
reaction channel
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3.1 Introduction
In this chapter we follow the approach discussed in Sec. 2.6.4. One of the goals is
to test an ansatz for veff (or V̂res here) for the two-particle collision and use the basic
elements of a STDHF treatment to obtain quantities that would not be accessible in
the mean field. Therefore, the present study also serves as a way to illustrate the basic
step in STDHF. This proof of concept is done on systems with a more general interest
in biology and medicine.

Hadron therapies and radiation therapy are broadly used as cancer treatments.
They act by transferring energy to the biological tissues and kill cells by provoking
strand breaks in DNA. However, the underlying mechanisms of strand breaking in
DNA are complex and still not fully understood. High energy radiations can lead
to strand breaking either by interacting directly with DNA or with the surrounding
environment producing radicals and secondary electrons of energy lower than 30 eV.
These indirect effects are responsible for at least half the damages caused on DNA [64].
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While most of the work has been focused on the effect of radicals, the seminal paper by
the group of L. Sanche [65] showed that those low-energy electrons (LEE) can produce
strand breaks in plasmid DNA. The use of metal clusters and molecules (as e.g. gold
and platinum) has enable to produce LEE in critical areas and thus enhance the effect
of radiation therapies [66]. Therefore the understanding of dynamics of irradiation
in living cells at microscopic level is of great interest in medical research in strong
connection with chemistry and physics.

LEE have a high probability to attach a molecule resonantly and produce a metastable
ion. This ion can emit again the electron, leaving the molecule in a dissociative ex-
cited state or results in the production of anion radical and a highly reactive neutral.
The latter process is called dissociative electron attachment (DEA). The theoretical
treatment of this process is generally done with static calculations using for example
R-matrix theory[67, 68] or perturbation theory [69, 70]. The few dynamical ones are
interested mostly to the dissociation following the attachment, using for example local
complex potential theory to describe the transient dissociative state [71].

We aim here at a microscopic picture of the attachment as such, which is a fast
process running at electronic time scale. To do so, we use the real-space and real-
time TDDFT briefly presented in Sec. 2.2. We here present a way to explore a rare
reaction channel, as electron attachment, in a mean field approach. Indeed TDDFT,
being a mean field theory, can only describe the leading reaction channel in an average
manner and does not resolve rare channels (here the electron attachment) such as
the dissociative channel we are interested in. In this study, we describe the electron
attachment as a result of a two-particle collision from the leading TDLDA trajectory
to the final state, a process often called “core-excited resonance”. The idea is thus
to estimate the attachment rates from time-dependent perturbation theory around
the TDLDA trajectory. This is what we shall explore in the following. We focus on
small water clusters as the simplest systems. In addition, in the quantum dynamical
calculation, the computation time as we perform here becomes relatively heavy and we
cannot afford bigger systems.

Part of the results presented here have already been published in [72] and will be
in a forthcoming book published by Springer. In this chapter, we first present the
theoretical and numerical framework and present some issues that must be tackled.
Then we discuss at length the results obtained on H2O on which most of the calculations
have been run and finally we show the results obtained on (H2O)2 and H3O+.

3.2 Theory

3.2.1 TDDFT framework
Real-time and real-space TDDFT is used for the description of electron dynamics, for
details see [51, 73] and Sec. 2.2. We summarize here briefly the main ingredients which
are specific to the present test case.

The colliding system is either H2O, (H2O)2 or H3O+. Only valence electrons (1
for H and 6 for O) are propagated. Core electrons and nuclei (=ions) are coupled
to the valence electrons by Goedecker-like pseudopotentials [74] (see below). Ions are
kept frozen in this study because the collision time, of the order of a few fs, is much
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smaller than the typical time scale of ionic motion (several tens of fs). The N valence
electrons of the water system plus the incoming electron are described by Nel(= N +1)
single-electron wave functions ϕα. These, and all other spatial fields, are discretized
on a 3-dimension cartesian grid of size 50 × 402 a3

0 with a mesh size of 0.412 a0. The
time-dependent Kohn-Sham equations are solved by accelerated gradient iterations for
the stationary solution [75], and by the time-splitting method [76] with a time step of
0.6 attosec for dynamical propagation. The Coulomb problem is solved on a double grid
to reproduce correctly the long range asymptotics [77, 78]. The exchange-correlation
functional is treated at the level of the adiabatic time-dependent local spin density
approximation (TDLDA) [79] with the parametrization from Perdew and Wang [80].
The somewhat involved formal and numerical details will be discussed in Sec. 3.2.2.

In the present calculation we handle nuclei and core electrons(=ions) with pseu-
dopotentials. They are inserted as V̂ions in Eq. (2.4b). These pseudopotentials have a
separable form and can be local (for metallic clusters for example) or non-local (for
covalent molecules). Pseudopotentials of the Goedecker form [74] have been adjusted
to allow the use of a unique length scale rloc. Each ion is described by a pseudopotential
VPsP which reads:

VPsP(~r)ϕj(~r) = Vloc(r)ϕj(~r) +
∫

d3~r ′ Vnloc(~r, ~r ′)ϕj(~r ′) , (3.1)

Vloc(r) = −Z
r

erf
(
x/
√

2
)

+ exp
(
−x2/2

) [
C1 + C2 x

2
]
, x = r

rloc
, (3.2)

Vnloc(~r, ~r ′) = p(r)h0 p(r ′) , (3.3)

p(r) =
√

2
rloc3/2

√
Γ (3/2)

exp
(
− r2

2rloc2

)
(3.4)

where Z is the valence of the atom, ϕj is a s.p. wave function in ~r representation, erf
the error function, Γ the Gamma function, and x = r/rloc. The parameters C1, C2,
rloc, and h0 are obtained by fitting to reproduce static properties like bond length and
dissociation energy. For H and O atoms, the parameters are the following ones:

atom C1 C2 rloc h0
H 0.5 0.0 0.35 −0.745
O −0.409 −1.876 0.35 4.480

To describe electron emission, we use absorbing boundary conditions [51, 73, 81]
which gently absorb all outgoing electron flow reaching the bounds of the grid and thus
prevent artifacts from reflection back into the reaction zone. This allows us to define
the total ionization, i.e. the number of escaped electrons Nesc, as

Nesc(t) =
Nel∑
α=1

(1− 〈ϕα(t)|ϕα(t)〉) . (3.5)

The initial state of the incoming electron ϕin(r, t=0) is a Gaussian wavepacket with
an average incident energy Ein. It is propagated by TDDFT like all other electron wave
functions of the target molecule. As we use a Gaussian wavepacket, the wave function
of the incoming electron carries some energy uncertainty given by

∆Ein = 3~2

8m∆r2 , (3.6)
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where ∆r2 is the spatial variance of the electron density of the wavepacket. Note that,
since we solve the time-dependent Kohn-Sham equations on a 3D spatial grid, one
has to find a compromise between the initial widths of momentum and position. Too
large a ∆r2 would quickly produce a non-physical absorption of the wavepacket at the
boundaries of the numerical box. Similarly, if the wavepacket possesses too small an
initial kinetic energy, due to Heisenberg inequality, the wavepacket would spread over
the whole numerical box almost instantaneously. In practice, we used a spatial width
of 5/

√
2 a0, producing an uncertainty of 0.82 eV on Ein. Note also that, because of

this spatial width which is larger than the molecule, changing the impact parameter
of the collision (as far as possible given the size of the numerical box) has basically no
impact on the results. Moreover, due to the finite size of our numerical box, we place
the incoming Gaussian at a finite distance d0 = 16 a0 from the center of mass of the
target. We make a scan in Ein between 3 and 16 eV. We perform the simulations up
to 9 fs, which is large enough since the incoming electron collides the target molecule
in about 1 fs.

3.2.2 Calculation of attachment probability
Since the cross-section of electron attachment to H2O is very small, that is less than
10−17 cm2 [82] (see figure 3.1), we evaluate it perturbatively. To that end, we consider

Figure 3.1: Cross section of various processes resulting from the collision of an electron
to a water molecule plotted against the energy of incoming electron. The cross section
of electron attachment is encircled in red. Adapted from [82].

all excited states of the target |Ψn〉 whose energy fulfills approximately En = Ein +E0,
where E0 is the ground state energy of the target. One has now to choose these excited
states which, in principle, should typically cover RPA excited states of the final system.

44



3.2. THEORY

However, rearrangement effects are probably rather small in the small water clusters
considered here, even if Ein ≤ 15 eV. We thus approximate the excitation spectrum
by “1-particle-1-hole” (1ph) states. In addition, we have the projectile electron which,
when captured, fills another particle (=unoccupied) state, thus leading to “2 particles-1
hole” (2p1h) excitations with a corresponding energy En approximated as follows :

|Ψn〉 ≈ |Φpp′h〉 , En ≈ E0 + εp + εp′ − εh , (3.7)

where the excited states |Φpp′h〉 are build from the Kohn-Sham wave functions of the
target molecule in its ground state. This kind of transitions are also called “core-
excited” resonances and constitute a candidate for the electron attachment process
(the other one being the so-called “shape” resonance in which the incoming electron is
temporarily trapped in an excited state of the target molecule).

The probability of attachment is computed by a Fermi’s golden rule as :

Patt(t) = 2π
~

∫ t

0
dτ

N2p1h∑
n=1

∣∣∣〈Ψn|V̂res|Φin(τ)〉
∣∣∣2 δ(En − Ein − E0) (3.8)

where N2p1h is the total number of 2p1h transitions matching the energy condition
En = Ein + E0, and V̂res is the residual interaction for the collision channel.

The standard formula in scattering theory deals with a stationary continuum state
for the incoming wave. The present recipe (3.8) uses a time-dependent wavepacket
and employs simple time integration to accumulate the total capture probability. The
simple time integration contains actually an approximation that has to be discussed.
Let us assume that the time evolution is discretized in finite intervals ∆t, each one
appropriate for evaluating a transition. At time step tν , we have a transition probability

tν : ην = 2π
~

∆t
∑
n

|〈Ψn|Vres|Φin(tν)〉|2 δ(En − Ein)

=⇒
{
|Φin(t)〉 with probability (1− ην)
|Ψn〉 with probability ην

(3.9)

During the next step at tν+1, we find the probability for capture as ην(1 − ην). This
is continued along the whole path. We finally accumulate the probabilities for capture
and employ the basic assumption that capture is a rare process, i.e. that ην � 1. This
yields

Patt =
∑
ν

ην
∏
µ

(1− ηµ) ≈
∑
ν

ην . (3.10)

Inserting the ην from Eq. (3.9) yields precisely a discretized from of the integral (3.8)
which proves the validity of Eq. (3.8).

There is also a spin conservation law which is implicitly accounted for in the cal-
culation of Patt. As a convention, the incoming electron is given a spin up, while the
target molecules considered here are always spin-saturated. For the electronic case, a
reasonable choice for V̂res is the Coulomb potential screened according to the actual
electron density of the system. For the sake of simplicity, we approximate it by a
genuine contact potential as V̂res(r1, r2) = V0 δ(r1 − r2) with an amplitude V0 which
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simulates roughly the in-medium cross section for electron-electron collisions (we chose
here V0 = 13.6 eV).

Once V̂res is chosen, there remains a question in Eq. (3.8) on the energy constraint :
the resolution of the δ function cannot be better than the initial energy uncertainty.
We therefore use a smoothed δ distribution as δ(En−Ein−E0) −→ δ∆Ein(En−Ein−E0)
with the initial width ∆Ein as given in Eq. (3.6). In practice, we use a box function.

3.2.3 Detailed evaluation of Slater states
The two-body matrix element in Eq. (3.8) can be easily evaluated if the initial and the
final states are Slater states like in our actual calculation. However, both states may
be defined with respect to different single-particle sets. Let us assume that

|Φin(t)〉 = â†αN ...â
†
α1|vac〉 , |Ψn〉 = b̂†βN ...b̂

†
β1|vac〉 (3.11)

where |vac〉 is the vacuum state. The two-body interaction can be expanded as

V̂res =
∑

i1<i2,j1<j2

(βi1βi2|Ṽres|αj1αj2)b̂†βi1 b̂
†
βi2
âβj2 âβj1 (3.12)

where
(βi1βi2|Ṽres|αj1αj2) = (βi1βi2 |Vres|αj1αj2)− (βi1βi2|Vres|αj2αj1) (3.13)

is the anti-symmetrized matrix element of Vres. This then yields

〈Ψn|V̂res|Φin(t)〉 =
∑

i1<i2,j1<j2

(βi1βi2|Ṽres|αj1αj2)〈Ψn|b̂†βi1 b̂
†
βi2
âβj2 âβj1 |Φin(t)〉 . (3.14)

We introduce the matrix of single-particle overlaps

Nij = 〈βi|αj〉 . (3.15)

The basic overlap between “in” and “out” states then reads:

〈Ψn|Φin(t)〉 = detN {Nij} (3.16)

where the index N indicates that this determinant is taken over a N×N matrix. For
the two-body transition element, we have to introduce a sub-matrix of dimension N−2
where two lines and two columns are annihilated, i.e.

N (i1i2j1j2)
ij =



N11 ... N1i1 ... N1i2 ... N1N
. ... . ... . ... .
Nj11 ... Nj1i1 ... Nj1i2 ... Nj1N
. ... . ... . ... .
Nj21 ... Nj2i1 ... Nj2i2 ... Nj2N
. ... . ... . ... .
NN1 ... NNi1 ... NNi2 ... NNN


(3.17)

The transition matrix element then becomes

〈Ψn|V̂res|Φin(t)〉 = 1
2

∑
i1<i2,j1<j2

(βi1βi2|Ṽres|αj1αj2)(−1)i1+i2+j1+j2 detN−2

{
N (i1i2j1j2)
ij

}
.

(3.18)
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3.2.4 Problem of self-interaction correction
LDA is plagued by a self-interaction error which still constitutes a great hindrance
in many applications, as typically a known underestimation of s.p. energies, and the
ionization potential in particular [83]. In dynamical processes, the self-interaction er-
ror can thus significantly affect the dynamics of electron emission, especially close to
threshold [1, 84, 85, 86]. In this study, we evaluate the probability of electron at-
tachment via 2p1h transitions (see Sec. 3.2.2). This implies to work with correct s.p.
energies on the one hand, and with a sufficient number of unoccupied states on the
other hand. LDA not only provides too weakly bound states but it is not able to supply
enough empty bound states. Therefore, a time-dependent self-interaction correction
(TDSIC) turns out to be compulsory in this study. We use here the technically inex-
pensive and very robust average-density SIC (ADSIC). It has been proposed already
in the 1930s [87] and has been revisited more recently [48]. The essence of ADSIC is to
treat the self-interaction contribution of each electron on the same footing by averaging
the SIC over all Nel electrons. More precisely, the SIC energy reads :

EADSIC = Ekin + ELDA[%]−Nel ELDA[%/Nel] . (3.19)

For the sake of simplicity, we do not write explicitly the spin degree of freedom, although
it is fully taken into account in our calculations. The first term in Eq. (3.19) is the
kinetic energy, the second one stands for the LDA energy, considered as a functional
of the total (time-dependent) electron density % = ∑Nel

α=1〈ϕα|ϕα〉 (see Eq. 2.1), and the
last (negative) one is the ADSIC term. The simplification consists in using the same
reference density %/Nel for all electrons. This automatically produces one common local
SIC potential which allows to treat occupied and unoccupied states the same way. This
SIC is by construction designed for metallic systems where the electron delocalization
over the whole system justifies to treat the SIC in an average way. It has been recently
demonstrated in a variety of atoms and molecules that ADSIC performs surprisingly
well also for covalent systems [88]. The effect of this kind of SIC on s.p. levels is
depicted in figure 3.2. This confirms that at the level of a mere LDA, we obtain only
two degenerated bound empty states for H2O, which is by far not sufficient to allow
for any core-excited resonance.

One hindrance of ADSIC is that it explicitly depends on the number of electrons
Nel in the system. This means that ADSIC is not suited for multi-centered electron
systems as those considered in this study (the remote incoming electron and the target
electrons of the molecule), where the wave functions by definition cover very different
regions of space.

More quantitatively, in Eq. (3.7), the 2p1h excitation states and their related en-
ergies are constructed from the N occupied bound states plus all possible unoccupied
bound states of the target alone, that is in the absence of the incoming electron. In
other words, we perform a static calculation (say, at t = 0−) on the target alone and
the corresponding ADSIC uses Nel(t = 0−) = N . Therefore the potential seen by the
electrons also exhibits a discontinuity and the s.p. energies are changed between t = 0−
and t = 0+. Now, for the dynamical calculation of the collision between the incoming
electron and the target, we switch on at t = 0+ the wave function of the remote elec-
tron. This thus produces a discontinuity of the number of electrons entering ADSIC,
for we have Nel(t = 0+) = N + 1. In figure 3.3, we show the evolution of this shift
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Figure 3.2: Comparison between the bound single particle levels for occupied
(black) and empty (red) obtained with a static calculation using plain LDA (left)
or LDA+ADSIC (right).

with d, the distance between the remote electron and H2O. The energy ε(0−) for the
electron stands for the simple kinetic energy of a Gaussian wavepacket with no poten-
tial and for the target s.p energies it corresponds to the s.p. energies obtained from a
static calculation. Its counterpart ε(0+) is the actual s.p energies in the code at t = 0.
In a perfect SIC, one expects the shift to tend to zero when d → ∞ which is clearly
not the case here. This effect is worsened while decreasing the width of the Gaussian
wavepacket (not shown here). However, apart from this nonphysical limit, the general
trend of the s.p. energies of the electron is not aberrant. ADSIC artificially tends to
delocalize the N + 1 wave functions between the two subparts of the whole system
which produces a large error when the two parts are far apart. For instance, with a
Gaussian wavepacket initially at 16 a0 from the center of mass of the target molecule
and with a spatial width of 5/

√
2 a0, the remote electron with an initial kinetic energy

of Ein possesses at t = 0+ an “effective” kinetic energy reduced by 2.3, 4.1 and 0.7 eV
in the presence of H2O, H3O+ and (H2O)2 respectively. We should also mention that,
as expected, the discontinuity of the s.p.e. of the target wave functions at t = 0 is
smaller for those which have a spin down, since the incoming electron has a spin up.

From now on, we will upshift all theoretical Ein by the right deviation computed
using the static calculation to account for this ADSIC artifact. Note that we have
elaborated a TDSIC applicable in any case (system in one or several pieces) [47]. But
it cannot be applied to our perturbative treatment of electron attachment because
unoccupied states, which we need for the final states, are undefined in this scheme. For
the present exploratory study, we thus live with the compromise offered by ADSIC.
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Figure 3.3: Shift in the single particle energies (s.p.e.) as a function of the distance d
between the incoming electron and the target molecule. Dashed green line: difference
between the static calculation of s.p.e. of the molecule ε(t = 0−) and its s.p.e. when
adding the electron ε(t = 0+) just before starting the dynamic. Full red line: difference
between the exact kinetic energy of a Gaussian wavepacket at infinite distance and the
s.p.e. of the Gaussian wavepacket in the numerical box at t = 0+. Dashed black line:
value used in dynamical calculations.

3.3 Results

3.3.1 Electron attachment to H2O

We start with the case of an electron colliding with H2O, since many detailed experi-
mental data of DEA exist for this combination, see e.g. [89, 90, 91, 92]. One identifies
three resonances located in the following ranges of incoming energies : 6.4–6.9, 8.4–
8.9, and 11.2–11.8 eV. There also exist detailed R-matrix calculations giving three
resonances around 6.5–6.994, 8.6–10.2 and 11.8–12.97 eV (see e.g. [67] and references
therein).

The leading physical process that TDDFT can describe is the following : the in-
coming electron colliding with the water molecule is diffracted and finally escapes the
numerical box. Therefore, as a first observable, we record the number of emitted elec-
trons Nesc defined in Eq. (3.5). In the case of an elastic collision, one expects to observe
at the end of the day Nesc(tfinal) = 1. On the contrary, if some electron attachment
occurs, we should get Nesc(tfinal) < 1. The lower panel of Fig. 3.4 shows the time
evolution of Nesc for three slightly different Ein around 13 eV. The results show at
drawing resolution Nesc −→ 1 for t > 3 fs in all three cases. This is not surprising
as our mean-field calculations provide the most probable pathway and that the faint
effects of electron attachment are not visible against the main stream. Remind that
the absolute cross-section of electron attachment is very small [82]. To make it visible,
we plot in the upper panel of Fig. 3.4 the time evolution of Patt as such. Even if
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Figure 3.4: Probability of attachment Patt (top) defined in Eq. (3.8) and total ioniza-
tion Nesc (bottom) defined in Eq. (3.5), as functions of time, for an incoming electron
of initial kinetic energy Ein colliding with a water molecule, at vanishing impact pa-
rameter, and for three values of Ein as indicated.

the values are small (of the order of 10−5), we do observe a dependence on Ein and
a non-monotonous behavior of the asymptotic value of the attachment probability :
Patt(14.0 eV) < Patt(11.9 eV) < Patt(12.6 eV). We therefore observe a resonance
around Ein = 12.6 eV.

We now varied Ein in finer steps from 5.7 to 16 eV. Figure 3.5 shows Nesc as a
function of Ein (dashed line). As already observed previously, the asymptotic value of
Nesc is invariably equal to 1 except for very small Ein for which the incoming electron,
with a very small initial velocity, has probably not completely escaped the numerical
box.

We complement Fig. 3.5 by comparing Nesc to the number of 2p1h transitions N2p1h,
that is the number of excited states fulfilling the energy constraint En ≈ Ein. This
number exhibits strong resonances at Ein = 9.8, 11.8 eV (and possibly around 16 eV).
This is a sign that the probability of attachment may exhibit strong resonances.

We now turn in figure 3.6 to the asymptotic value of Patt as a function of Ein. We
obtain three clear resonances, located at 6.8, 9.2, and 12.6 eV (that was already deduced
from Fig. 3.4), plus a faint one at 14.6 eV. We note that the position of these peaks
differs to that observed in N2p1h. This means that the matrix elements entering the
calculation of Patt in Eq. (3.8) significantly contribute, and that a mere combinatorial
calculation of the number of possible 2p1h transitions is not sufficient to quantitatively
determine the position of the resonances.

We also compare our results with experimental measurements of DEA [91] in
Fig. 3.6. The experimental curves correspond to the measurement of negatively charged

50



3.3. RESULTS

0

50

100

150

200

250

300

350

6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

N
2
p
1h

N
es
c

Ein (eV)

N2p1h

Nesc

Figure 3.5: Electronic density Nesc absorbed after 9 fs at the boundaries of the box
(dashes and vertical scale on the right) and number of 2p1h excitations N2p1h fulfilling
the energy criterion in Eq. (3.8) (full line and vertical scale on the left) plotted against
the energy of incoming electron Ein on H2O.

0

2

4

6

8

10

12

6 8 10 12 14 16

P a
tt
(×

10
5
)

ex
p.

io
n

yi
el

d
(l

og
.

sc
al

e)

Ein (eV)

e−+ H2O This work
H−

O−

OH−

Figure 3.6: Electron attachment to H2O as a function of energy of incoming electron
Ein. Black thick line and left (linear) vertical scale : asymptotic value of the calculated
probability of electron attachment Patt. Light curves and right (logarithmic) vertical
scale : experimental measurements of dissociative electron attachment yielding H−
(solid curve) O− (dashes), and OH− (dots) from [91].

51



CHAPTER 3. ELECTRON ATTACHMENT AS A RARE REACTION CHANNEL

fragments after DEA on H2O, that is either H− (full thin line), O− (dashes) or OH−
(dots), exhibiting three resonances approximately located at the same incident ener-
gies. Our theoretical peaks compare very well with the experimental resonances. This
is all the more true if we add an horizontal error of 0.82 eV corresponding to the uncer-
tainty on Ein due to the finite size of the Gaussian wavepacket describing the incoming
electron (see discussion related to Eq. (3.6)).

Note, however, that the absolute yield of our calculated resonances does not re-
produce the experimental ones, for the latter ones are plotted in logarithmic scale. It
should be reminded that we employ a very simple form of the residual interaction in
the rates (3.8) and a rough choice of its strength V0. We also tried the full Coulomb
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Figure 3.7: Asymptotic probability of attachment to H2O as a function of energy of
incoming electron Ein for two modeling of Vres: (red full line) δ function or (blue dashed
line) the Coulomb potential.

potential as an alternative. The size of the box has been reduced to 403 a3
0 as the

Coulomb potential is more numerically demanding. We also reduced a bit the width
of the Gaussian wavepacket to 4/

√
2 to ensure that not too much electronic density is

absorbed at t = 0+. The initial position of the electron is also closer to the molecule:
14 a0 instead of 16 a0. The results are displayed in Fig. 3.7. Qualitatively the results
are almost the same but the second resonance peak at 9.2 eV (which is now at 8.4 eV)
is less pronounced. The transition probability is three orders of magnitude higher for
the Coulomb potential. The δ potential is therefore an approximation that saves a lot
of computational effort and gives comparable results.

We now can check the effect of the width of the initial Gaussian wavepacket, the
effect of distance to the molecule being well described in Sec. 3.2.4. We explored
three different widths. The numerical box is also taken equal to 403 a3

0 and the initial
separation between the colliding electron and H2O to 14 a0. The corresponding results
are plotted in figure 3.8. Firstly, we note that a larger wavepacket gives a lower
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Figure 3.8: Asymptotic probability of attachment to H2O as a function of energy of
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probability of attachment. This behavior is obvious as the density of the wavepacket is
lower because it is more spread. Secondly, a larger width decreases the ADSIC artifact
and seems to induce a general red shift on the curve. Therefore, the numerical results
presented in figure 3.6 should be red-shifted a little to compensate again the ADSIC
error if one varies the impact parameter. We however note that, regardless the impact
parameter, the presence of three resonances is robust.

3.3.2 Exploration of other small water systems
We now extend the study to H3O+ and (H2O)2, and compare the results with those
obtained in H2O. Figure 3.9 summarizes the results on N2p1h (top panel) and the
asymptotic value of Patt (bottom) as functions of incident kinetic energy Ein, for H3O+

(long dashes), (H2O)2 (short dashes), and H2O (solid line).
Even if the occupied states of H3O+ are more bound than those of H2O, due to

the positive charge (our theoretical ionization potentials are 24.9 eV for H3O+ and
14.0 eV for H2O), the numbers of 2p1h transitions are comparable in both systems
(they possess the same number of electrons). On the contrary, N2p1h can be twice or
three times larger for the water dimer. This renders the computation of the attachment
probability in the latter case much more expensive, but still feasible. Results for Patt
are shown in the bottom panel : for the dimer (H2O)2, there are strong resonances at
very low energies (2.7 and 4.1 eV), a smaller one at 5.4 eV, and a very faint one at 9.5 eV.
There is unfortunately, to the best of our knowledge, no experimental measurements of
DEA specifically for the water dimer for comparison. As for H3O+, even if the energy
dependence of Patt is more fuzzy than in the neutral systems, clear resonances are
also observed in the ranges of 8.1–8.8, 12.1–13.6 and 15.6–16.3 eV. For the case of a
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cationic species, electron attachment leading to a break-up constitutes the dissociative
recombination (DR) instead of the DEA. Experimentally, DR have been measured on
H3O+ at 5.792 and 6.443 eV [93, 94], and also at 11 eV [95, 94], giving a less satisfactory
agreement with our calculations. Nevertheless, despite the ADSIC artifact being larger
in this case, clear resonances appear below 30 eV in electron attachment to the three
targets investigated here.

3.4 Conclusion and perspectives
We have presented a microscopic and dynamical calculation of the probability of elec-
tron attachment occuring in water-based systems using TDLDA augmented by ADSIC.
The physical described process is the collision of an electronic Gaussian wavepacket
with a target molecule, and the evaluation of 2p1h transitions via a time-dependent
perturbative treatment using a Fermi’s golden rule. This method is well suited when
the mean-field is a good approximation at the leading order of the propagation. It pro-
duces satisfying results for H2O and predict the existence of resonances in (H2O)2 and
H3O+. Because of the exponentially increasing number of 2p1h transitions involved,
this method is still restricted to small systems and does not enable yet to model electron
attachment in water clusters large enough to extract information for solvated DNA. A
calculation with a base pair of DNA surrounded by water is thus out of reach. From
a more technical point of view, we can improve our method by introducing rearrange-
ments that have been neglected and project on actual RPA states instead of ground
state states. We can also allow ions to move to see resonances due to interactions
with molecular parameters but that would mean, once again, to project on the target
states “on the fly” and this would be very numerically demanding. Finally the spurious
ADSIC effects could be solved by using a SIC in optimized effective potential (OEP)
formalism. However, regarding the number of empty states to deal with, a full TDOEP
treatment might also be too heavy numerically speaking.

Still, a true dynamical electron attachment is not expected to be described at all
in a mean-field calculation as rare events are screened by the most probable evolution
of the system. Nevertheless this calculation, being the first microscopic calculation
of this kind to the best of our knowledge, has also the advantage of introducing the
philosophy behind the algorithms that appear in the next chapters. Our approaches
proposed in chapter 2 to include dissipative features are probably not able to describe
DEA as they are not suited for multiple fragmentation paths. One can argue that
STDHF allows trajectories to diverge but its applicability for this kind of events will
probably be hindered by too low probabilities.
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Test of STDHF in a schematic
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4.1 Introduction
In this part we compare STDHF with an exact calculation in a schematic model.
This model is strongly inspired by a Lipkin-Meshkov-Glick model [96, 97, 98] of Ω
particles distributed into two bands of energy. This model has been used in nuclear
physics and produces many-body behaviors such as large-amplitude collective motion
or spontaneous symmetry breaking [99]. It contains a non-local 2-body interaction
that models in simple way collisions between two fermions. We use a slightly modified
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Figure 4.1: Illustration of the Stochastic Two-Band Model with the action of V̂ ,
defined in Eq. (4.3c), applied to the ground state of Ĥ0, defined in Eq. (4.3b), for
j = 9/2.

version of the interaction in this work. Indeed the original model is too coherent to
allow an efficient application of STDHF [100]. The advantage of such a model is the
numerical determination of the exact solution for small Ω. It can be therefore used as
a benchmark to test the performances of the STDHF scheme introduced in chapter 2.

This work is the subject of an article that will be published soon 1. This chapter is
organized as follows: we first introduce the modified model and how we compute the
various schemes in this special case. Then some observables are defined and a first test
case is discussed. We then discuss in more details the robustness of the scheme with
respect to the parameters of the model, either the numerical or the physical ones, as
excitation energies, bandwidth, system size. We finally conclude on the validity of the
STDHF scheme and its improvement compared to TDHF.

4.2 Theoretical framework

4.2.1 A stochastic two-band model
The Stochastic Two-Band Model (STBM) is sketched in fig. 4.1. It consists in two
bands of single-particle (s.p.) levels, the lower band denoted by the principle quantum
number s = −1 and the upper one by s = +1. Each band contains an even number of
Ω levels denoted by the secondary quantum number m running from −j to +j in steps
of 1 such that Ω = 2j + 1 (j is then half integer). In the example displayed in fig. 4.1,
the case j = 9/2 yields 10 different m values from −9/2 to +9/2. S.p. states are thus
represented by a combined quantum number :

α = (sα,mα) , sα ∈ {−1,+1} , mα ∈ {−j,−j+1, ..., j − 1, j} . (4.1)

1L. Lacombe, P. M. Dinh, E. Suraud, P.-G. Reinhard, “Stochastic TDHF in an exactly solvable
model”, accepted in Annals of Physics (2016).
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States are gathered into ±mα partners and we keep this symmetry to reduce the
complexity. For a compact notation, we introduce the following abbreviations wherever
convenient

m̄α = −mα , ᾱ = (sα, m̄α) = (sα,−mα) ≡ −α . (4.2)

The notation α > 0 then means mα > 0.
The model Hamiltonian consists in a 1-body Hamiltonian Ĥ0 plus a 2-body inter-

action V̂ . It is constructed in a standard manner on the basis of annihilation (and
creation) operators â(†)

sα,mα = â(†)
α for each s. p. state as :

Ĥ = Ĥ0 + V̂ , (4.3a)

Ĥ0 =
∑
α

sαεα
2 â†αâα , (4.3b)

V̂ = v0Ŝ+Ŝ− , (4.3c)
Ŝ+ =

∑
α>0

â†αâ
†
ᾱ = (Ŝ−)† , (4.3d)

εα = ∆ + δεα , (4.3e)

δεα :
∑
mα

δεα
Ω→+∞
−−−−→ 0 ,

1
Ω
∑
mα

(δεα)2 Ω→+∞
−−−−→ σ2 , (4.3f)

where ∆ stands for the average level spacing between the two shells s = −1 and s = +1
and the δεα are chosen randomly according to a Gaussian distribution with width σ
and centroid zero. The gap ∆ defines the energy unit and the time unit is accordingly
[∆−1]. We shall use these units all over this chapter. With σ = 0, the model reduces
to the case with fully degenerated bands. Finally, v0 describes the strength of the
coupling V̂ .

The original LMG model [96, 97, 98, 101] is very similar to this one except that it
allows only vertical jumps (from the lower band to the upper one) and there is no m/m̄
pair involved: each particle interacts with all the others. The LMG model has been
used in nuclear physics and has the advantage of being exactly solvable [102]. This
interaction in the model presented here is in the form of a pairing interaction as used
in the seniority model or BCS for the description of nuclei (see sections 6.2 and 6.3
of [102]). It models in most simple manner collisions between α-ᾱ pairs of fermions.
In the following, we always consider half-filled systems such that the particle number
becomes N = Ω. In addition, we only consider weak and repulsive interactions v0 > 0.
This minimizes the effect of V̂ on the ground state such that V̂ serves mainly to induce
correlations. From a more physical perspective, it also lies in typical systems in which
the mean-field provides a good description of ground state properties. This is also well
suited for our purpose to study the treatment of dynamical correlations with STDHF.
The ground state |Φ0〉 of the free Hamiltonian Ĥ0 possesses all electrons in the lower
band s = −1. This feature is still approximately correct for the weak interactions V̂
considered here and it remains even exact at Hartree-Fock (HF) level. More precisely,
for the exact ground state the weight of the determinant having all electrons in the
lower band is 0.990.
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4.2.2 The Hartree-Fock approach
The operator â†α creates a s.p. basis state and âα annihilates it. The creation operator
for any other s.p. state is obtained by the linear combination

b̂†κ =
∑
α>0

â†αAακ , b̂†κ̄ =
∑
α>0

â†ᾱAᾱκ̄ , (4.4)

where κ > 0 and κ̄ = −κ. The symmetry of Ĥ allows us to skip the cross couplings
α ↔ κ̄ and ᾱ ↔ κ. A general independent-particle state (Slater state) for N = Ω
particles is generated by applying b̂†κ :

|Φ〉 = b̂†κ1 b̂
†
κ2 . . . b̂

†
κΩ
|vac〉 . (4.5)

The energy expectation value of this state is the Hartree-Fock energy

EHF = 〈Φ|Ĥ|Φ〉

= 1
2
∑
mα>0

εmα (ρ1mα,1mα − ρ−1mα,−1mα) + v0
∑

α,α′>0
ρα′αρᾱ′ᾱ , (4.6a)

ρα′α = 〈Φ|â†αâα′|Φ〉 =
∑
κ>0

nκA
∗
ακAα′κ , (4.6b)

ρᾱ′ᾱ = 〈Φ|â†ᾱâᾱ′|Φ〉 =
∑
κ>0

nκ̄A
∗
ᾱκ̄Aᾱ′κ̄ , (4.6c)

where ρα′α is the 1-body density matrix and nκ is the occupation number of state κ.
The ground state of the mean-field approximation is obtained by minimizing EHF with
respect to the ρα′α or to Aα′κ. For the regime of weak v0 > 0 which we are studying, the
mean-field ground state |Φ0〉 of the interacting system is identical to the ground state
of Ĥ0 which is given by the trivial non-transformation Aακ = δακ. The time evolution
of s.p. states b̂†κ is given by the TDHF equations

i∂tb̂†κ = −
[
ĥ, b̂†κ

]
. (4.7)

They are driven by the mean-field Hamiltonian ĥ which is an effective 1-body operator
obtained by contracting the 2-body interaction V̂ over a particle-hole pair â†â. It reads

ĥ = Ĥ0 + v0
∑

α,α′>0

(
ρᾱ′ᾱâ

†
αâα′ + ρα′αâ

†
ᾱâᾱ′

)
, (4.8)

Note that we exploit again the ±m symmetry to ignore the mixing terms α↔ ᾱ′ and
ᾱ↔ α′ which correspond to the exchange terms. The same equations can be expressed
also in terms of the amplitudes Aακ(t), yielding

i∂tAακ =
∑
α′
hαα′Aα′κ , hαα′ = εmα

2 sαδαα′ + ρᾱ′ᾱ . (4.9)

The numerical solution is done using an implementation of the Crank-Nicolson scheme
[103]

Â(t+dt) =
1− idt

2 ĥ(t+ dt/2)
1 + idt

2 ĥ(t+ dt/2)
Â(t) , (4.10)
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where Â is a compact notation of the matrix Aακ of expansion coefficients. ĥ(t+ dt/2)
is computed in a predictor step which looks like the full step (4.10) but propagating
only by dt/2 and using ĥ(t). The Crank-Nicolson step maintains ortho-normality by
construction. To obtain satisfying energy conservation, one has to choose the step size
dt sufficiently small (see discussion in Sec. 4.2.7).

4.2.3 Stochastic Time-Dependent Hartree Fock (STDHF)
Mean-field propagation with TDHF, as outlined in Sec. 4.2.2, takes only part of the
2-body interaction V̂ into account. There remains a residual interaction from V̂ which
generates correlations. This V̂res is used to compute the transition probability entering
Eq. (2.73) in STDHF:

Pκ1κ2κ3κ4τ = 2π δΓ(EHF
κ1κ2κ3κ4 − E

HF
0 )

∣∣∣〈Φ(α)
κ1κ2κ3κ4|V̂res|Φ(α)〉

∣∣∣2 τ (4.11)

where δΓ is a δ function with finite width Γ and α is the index of the STDHF trajectory.
It turns out that the sole matrix elements of the residual interaction which are non-
vanishing for the STBM read :

〈Φ(α)
κ1κ̄2κ̄3κ4 |V̂res|Φ(α)〉 = v0

∑
α,α′>0

A(α)∗
ακ1 A

(α)∗
ᾱκ̄2 A

(α)
ᾱ′κ̄3

A
(α)
α′κ4

, (4.12)

where all κ’s entering the latter equation are now positive.

4.2.4 Exact propagation
The exact solution is conceptually the simplest but computationally the most expen-
sive. The fully correlated state is expanded into a complete basis of mean-field states

|Ψ〉 =
∑

αn,α′n>0
cα1...αΩ/2,ᾱ

′
1...ᾱ

′
Ω/2
â†α1 ...â

†
αΩ/2

â†ᾱ′1
...â†ᾱ′Ω/2

|vac〉 . (4.13)

The time-dependent Schrödinger equation

i∂t|Ψ〉 = Ĥ|Ψ〉 (4.14)

is solved by mapping it into a matrix equation for the expansion coefficients cα1...αΩ/2,ᾱ
′
1...ᾱ

′
Ω/2

.
For the solution, we use again the Crank-Nicolson scheme (4.10) but now with the full
Hamiltonian Ĥ.

4.2.5 Initial excitation
As a first step, we have to prepare the ground state of the stationary problem. This is
for TDHF and STDHF the Slater state with each sα = −1 s.p. state occupied and each
sα = +1 unoccupied. For the exact solution, we have to solve the static Schrödinger
equation with the full Hamiltonian Ĥ.
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The initial state for dynamical evolution is taken as follow: we apply an instanta-
neous boost excitation on the ground state.

|Φ(t=0)〉 = eiλ(D̂+γŴ )|Φgs〉 , (4.15a)
D̂ =

∑
mα

(
â†1mα â−1mα + â†−1mα â1mα

)
, (4.15b)

Ŵ = 1
2
∑

α,α′>0

(
â†αâα′ + â†ᾱâᾱ′

)
. (4.15c)

D̂ simulates a dipole operator of a typical many-particle system and the excitation
operator eiλD̂ induces initial 1p1h transitions within the same mα. For example, one
can consider the operator that couples a laser field to the electrons of an atom, and an
instantaneous boost is the most generic excitation simulating a short pulse.

The parameter λ tunes the strength of the initial excitation. The Ŵ operator
serves a different purpose. At the mean-field level, the interaction (4.3c) deals only with
vertical transitions which maintain the m quantum number. This emphasizes coherence
which, in turn, overlays dissipation with large memory effects as we will see. To explore
the level of dissipation in a more flexible manner, we initiate the interaction with
transition across different m’s by applying the unitary transformation eiλγŴ V̂ e−iλγŴ on
the coupling V̂ with the mixing operator Ŵ . This transformation maintains the overall
interaction strength without rescaling v0. For simplicity, we applied the transformation
to the initial state which turns out to be a good approximation to solving the dynamical
equations with the modified interaction. The parameter γ quantifies the amount of
mixing with respect to the dipole operator. We will detail the numerical values λ and
γ in Sec. 4.2.7.

4.2.6 Observables
Our main aim here is to study the dynamics of thermalization after initial excitation.
This is for instance quantified by the fermionic entropy

S = −kB Tr [ρ̂ ln ρ̂+ (1− ρ̂) ln(1− ρ̂)] , (4.16)

where ρ̂ is the one-body density operator whose matrix elements are ρα′α = 〈â†αâα′〉.
A pure mean field state has S = 0. The entropy thus stays zero at all time in any
TDHF calculation, while STDHF and the exact solution are expected to exhibit a
time-dependent S.

A further test observable is the difference between one-body matrices in all combi-
nations between TDHF, STDHF and the exact solution, quantified as

δρ = 2 ||ρ− ρex||
||ρ+ ρex||

, (4.17)

where ||...|| stands for the Frobenius matrix norm ||A|| =
√

Tr(Â†Â) and ρex is the
exact 1-body density matrix.

Because of the expression of the interacting term V̂ , see Eqs. (4.3) and fig. 4.1,
and the resulting ±m symmetry of the ground state, it is also worth looking at the
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time evolution of the total M = ∑
αmα, i.e. the sum over all occupied m values. The

corresponding observable M̂ is given by

M̂ =
∑
α

mα

(
a†1mαa1mα + a†−1mαa−1mα

)
. (4.18)

The initial excitation conserves 〈M̂〉 but not the ±m symmetry in each determinant
of the expansion (4.13). Since the exact propagation conserves the M of each deter-
minant, 〈M̂〉 is obviously conserved. On the contrary, the mean field propagation only
conserves the symmetry ρα′α = ρᾱ′ᾱ. This is enough to guarantee the conservation of
〈M̂〉. As for the STDHF scheme, nothing ensures that 〈M̂〉 is conserved. However one
expects a statistical conservation when averaging over all trajectories, because of the
symmetries of Pκ1κ̄2κ̄3κ4 . We will explore the time evolution of 〈M̂〉 in various schemes
in more details in Sec. 4.3.2.

4.2.7 Numerical and model parameters
We complete this section with specifying numerical details. We propagate TDHF and
the exact solution using the Crank-Nicolson scheme with a time step dt = 0.01 ∆−1.

To stay at the perturbative level for the correlations, the 2-body interaction is taken
relatively small, that is v0 = 0.05 ∆. In the calculation of the transition probabilities,
see Eq. (4.11), the δΓ function ensuring energy conservation is approximated by a fixed
window

δΓ(x) =
{

1/Γ for |x| < Γ/2
0 for |x| ≥ Γ/2 . (4.19)

As we will see, the results actually presented here depend very little on Γ. We have
checked their stability for 10−5∆ ≤ Γ ≤ 0.1∆. In most of the results, have chosen the
value Γ = 0.02 for reasons that will be explained in section 4.3.2.

The number of particles varies from Ω = 4 to 10 in the comparison between the
exact solution and the STDHF. Due to an exponentially increasing computing time for
the exact propagation, the cases from Ω = 12 to 20 have been explored in the STDHF
scheme only. The number of samples in the STDHF ensemble is always Nens = 100.
We have also checked larger ensembles and found practically the same results.

We have tested various values of the mixing parameter γ, from 0 to 0.6. In the
following results, it is set to 0.3 since such a value creates enough disorder at t = 0,
that is the needed transitions for STDHF to operate (see discussion in Sec. 4.2.5). The
excitation energy E∗ is defined as the difference between the ground state energy EGS
and the energy after the initial boost:

E∗ = E(0+)− EGS . (4.20)

Figure 4.2 shows the excitation energy E∗ attained as a function of λ in the case of
10 particles, a band width σ = 0.2 ∆ and an interaction strength v0 = 0.05 ∆. Three
cases are considered D̂ only (γ = 0), γ = 0.3 and W only. For Ŵ only, the range
of accessible excitation energy is limited to ≈ 2 ∆ which strongly reduces the range
of accessible E∗. For the two other cases the energy grows monotonously up to a
maximum where it turns to monotonous decrease. The upper limit of E∗ reflects the
fact that the model Hamiltonian is bound not only from below, as it should be for a
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Figure 4.2: Accessible excitation energy E∗ (in ∆ units) as a function of λ for the
initial excitation (4.15) Full black line: with γ = 0.3. Dashed red line: with D̂ only
(γ = 0). Full green line: with Ŵ only, γ = 0 and D̂ is set to zero. The other STBM
parameters are indicated.

non-relativistic Hamiltonian, but also from above. The relevant range of the STBM
stays in the region of λ safely below the turning point (which is at λ = π/2 for γ = 0).
In practice, we use 0.6 ≤ λ ≤ 0.8 close to π/4 which corresponds to a state with the
particles having half weight in the upper band and half weight in the lower band. This
value for λ is safely in the regime of increasing E∗. The cases γ = 0 and γ = 0.3 provide
moderate differences in E∗ and does not affect the general trend of the curve. This
corroborates the above statement that the overall interaction strength is little affected
by virtue of scanning interactions in terms of a unitary transformation.

4.3 Results

4.3.1 A first test case
We start with the analysis of a typical test case from the perspective of the difference
of s.p. density matrices, the entropy, and the expectation value of the dipole. The time
evolution of these observables is displayed in fig. 4.3. In the upper panel, we compare
the density matrix ρ obtained in TDHF and that in STDHF with respect to the exact
density matrix ρex in terms of norm of the difference δρ, defined in Eq. (4.17), of
TDHF or STDHF with respect to the exact solution. STDHF provides a much smaller
deviation δρ than TDHF. This indicates that STDHF is indeed able to incorporate a
great deal of the dynamical correlations. Both deviations are composed from a global
trend plus oscillations. The trend approaches a rather large stable deviation δρ for
TDHF and seems to indicate (slow) convergence to small deviation for STDHF.

These oscillations are also observed in the time evolution of the exact entropy per
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particle, see middle panel of Fig. 4.3. The entropy from STDHF entropy reproduces
the exact entropy in the average trend and in the asymptotic value rather well, see also
Fig 4.10 and the related discussion. The main discrepancies lie in the lack of oscillations.
Indeed, the instantaneous (Markovian) approximation when evaluating the stochastic
jumps in STDHF erases at once all coherence and memory effects. Similar features are
seen in semi-classical VUU models where the collision term is also treated in Markovian
approximation. The oscillating entropy for the exact solution shows that the STBM
still carries a substantial amount of memory effects which can only be coped with using
a frequency (or time) dependent kernel for the jump probability [104]. The TDHF
result (light green line) differs dramatically from STDHF. It maintains zero entropy
throughout and never relaxes to anything like a thermalized state. It cannot reproduce
at all the long-time behavior of system as soon as dissipation becomes relevant.

It is also interesting to note that the maximum value of entropy S/N = 2 log 2 '
1.38 corresponds to an equidistribution of N = 10 particles over all 2Ω = 20 states
with occupation probability wα = ραα = 1/2. To that extent, the agreement at the
maximum is trivial. However, the STDHF results follow the exact curve also down
to lower values and agree as long as the STDHF jumps have their grip. This is the
non-trivial result indicating that STDHF catches the basic statistical properties of the
system.

The lower panel of Fig. 4.3 shows the evolution of dipole momentum for the three so-
lution schemes. This confirms what we had seen already from the two other observables.
TDHF shows long standing oscillations and reverberations and thus stays far off the
exact solution. STDHF, on the other hand, constitutes a remarkable improvement,
in particular over the first 120 ∆−1 (see insert). STDHF is thus providing a reliable
description of dissipation. A slight difference comes up at later times. The exact solu-
tion shows some reverberations which are absent in STDHF. These reverberations are
related to the oscillations in entropy and thus an effect of quantum coherence deliber-
ately suppressed in STDHF. But this is a small effect and the generally good agreement
prevails.

This first example shows strengths and weaknesses of STDHF. It is a therefore
a great improvement as compared to TDHF in that it properly catches the dissipa-
tive aspects of many-dynamics and produces in due time the correct asymptotic state
(thermal equilibrium). However, STDHF implies a Markovian approximation (that is,
instantaneous jumps) and is unable to incorporate memory effects. It then depends
on the system and how important memory effects are in the dynamical regime. The
example of fig. 4.3 also shows that S contains most of the information on the other
observables: when the entropy increases, the dipole is damped and the difference be-
tween the entropies is highly correlated to the difference between the density matrices
δρ. Most of the time we confine the further examples to the entropy only.

4.3.2 Check of numerical parameters and conservation laws
So far we just asserted that the numerical parameters used are the suitable ones. Here
we justify a little more on this. First we check that the choice of τ does not change
drastically the results. Figure 4.4 confirms the stability of the results with respect to
τ which is varied from 0.01 to 1 ∆−1. The main issue was to fulfill the perturbative
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regime criterium
Pτ =

∑
κ1,κ2,κ3,κ4>0

Pκ1κ̄2κ̄3κ4 τ ≤ 1 (4.21)

first introduced in Eq. (2.73). It has been sometimes violated for large τ . In this case,
the calculation just stops. This has been the case for τ = 1 ∆−1 for the presented
excitation energy E∗ = 5.5 ∆. As we are testing many cases and energies, we take
the safe value of τ = 0.05 ∆−1 that almost ensures that we will never violate the
perturbative condition (4.21).

As recalled in Eq. (4.19), the delta function that appears in the transition probabil-
ity of STDHF possesses a finite width Γ because of the discrete spectrum and the finite
collision time. A perfect continuous system and a perfect delta function would ensure
an exact energy conservation in STDHF. In our case, we need a good compromise be-
tween a Γ which is small enough to have a reasonable energy conservation and as large
as possible to get the maximum number of transitions for a wide range of excitation
energies. Another problem arises: as the delta function is normalized by Γ there is a
factor 1/Γ in the probability of transition and again the perturbative criterium (4.21)
can be violated and the calculation can stop. In figure 4.5, we show the evolution of en-
tropy and energy for various Γ, the other STBM parameters being the standard ones.
We see that for Γ below 10−3∆, the entropy is not converged and the perturbative
regime is not guaranteed. There is still a wide range of possible Γ to pick depending on
whether one wants a better energy conservation or a more robust calculation that will
work for many energies. A good compromise is achieved with Γ = 2 × 10−2∆. More
generally, if one obtains too irregular a curve when using STDHF, the first thing to try
is to enlarge Γ.

A last thing to check is the conservation of 〈M̂〉 defined in Eq. (4.18). It is enforced
by the Hamiltonians themselves in TDHF and exact propagation. In STDHF, it is
expected to be statistically conserved if we have enough trajectories and the if initial
transitions do not lead to diverging trajectories. In figure 4.6 we plot 〈M̂〉 as a func-
tion of time for the three schemes: TDHF, exact and STDHF schemes. It confirms
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that TDHF and the exact solution indeed perfectly conserve 〈M̂〉 and for STDHF, it
fluctuates around 0 with an amplitude smaller than 0.5 in a system with Ω = 10 i.e.
mα varies between −9/5 to 9/5.

4.3.3 Varying the excitation energy
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Figure 4.7: Asymptotic entropy per particle Slim/Ω for the exact solution (thick
curves) and for STDHF (thin curves), as a function of the excitation energy E∗ obtained
by scan of initialization strength λ, see Eq. (4.15), and the other parameters of the
model as indicated. For STDHF, two δΓ have been used: the box definition of Eq. 4.19
(thin full curve) or a Gaussian of width Γ (thin dashed curve).

Dissipation is usually weak in the regime of low excitations and acquires importance
only for sufficiently large excitation energy [105]. Stochastic evaluation of dynamical
correlations as done in STDHF is designed for high excitation energies where the phase
space for jumps is (hopefully) dense enough. It is thus of interest to check the perfor-
mance with varying excitation energy E∗. Figure 4.7 shows the asymptotic one-body
entropy Slim = limt→∞ S(t) as a function of E∗ (in the branch of increasing excita-
tion energy, see discussion of fig. 4.2). Here Slim actually stands for value of S(t) at
t = 800 ∆−1.

The exact solution shows a smooth and monotonous increase. STDHF behaves
much different in that it shows a threshold behavior. It remains inactive for E∗ < 3.3 ∆
and suddenly switches to reproduce the exact value once the stochastic jumps get their
grip. The result confirms that STDHF is an approach for sufficiently high excitation
energy. On the same graph we also show the results obtained when using a Gaussian
of width Γ instead of the box function for the delta function. Apart from giving a
smoother transition near the threshold it delivers the same limit of the entropy.
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of time for two excitation energies E∗ = 3.30 ∆ and E∗ = 4.39 ∆. The other STBM
parameters are indicated and are the same as in figures 4.7 and 4.3.

It is also worth looking at dipole moments for other energies than E∗ = 5.47 ∆
tested in figure 4.3. Figure 4.8 displays the dipole moments with respect to time for
E∗ = 3.30 ∆ and E∗ = 4.39 ∆. Since the excitation energies are lower than that in
Fig. 4.3, the damping is weaker here. Again STDHF gives a result much closer to the
exact one than TDHF and the damping is qualitatively well reproduced.

The effect of the mixing parameter γ has not been discussed yet. It becomes clearer
while looking at figure 4.9. This figure shows Slim for exact and STDHF calculations
as a function of E∗ for various γ. We first observe that the exact limit of the entropy
is almost independent from the mixing parameter γ and thus from the way we excite
the system. Taking γ = 0 gives only one point (see blue square) where the asymptotic
entropy for STDHF is non zero. Here we see the effect of γ on the range of entropy
computable with STDHF scheme: it turns on the interaction between all the particles
and brings more disorder to the system, thus allowing more transitions and increases
the range of validity of STDHF. So γ 6= 0 is compulsory but its effect on Slim for
STDHF is not trivial nor predictible. For example, γ = 0.2 and γ = 0.3 seem to work
better than γ = 0.4.

4.3.4 Impact of band width
We now explore the effect of band width σ. We have studied four values : σ = 0.05,
0.2, 0.5 and 0.8 ∆. The other model parameters are kept fixed at Ω = 10, λ = 0.8 and
γ = 0.3. Figure 4.10 compares the time evolution of the entropy between exact solution
and STDHF. Decreasing σ reduces the oscillations of the exact entropy and yields
generally faster relaxation to equilibrium, i.e. maximum entropy. This is expected
because a smaller σ produces a larger density of states. This, in turn, enhances the
probability of jumps and thus produces more dissipation. A larger σ spreads the
spectrum instead and significantly reduces the phase space accessible to jumps. Only
few states remain in communication and then, only few frequencies compete. As a
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consequence, more oscillations are observed before reaching equilibrium.
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Figure 4.10: Entropy per particle S/Ω as a function of time as obtained from exact
solution (dashed lines) and STDHF (full lines). The four panels show results for four
different values of band width σ with a corresponding excitation energy E∗ as indicated.
The other parameters are : λ = 0.8, γ = 0.3, Ω = 10 and v0 = 0.05 ∆.

STDHF, as expected, is unable to follow the oscillations. But it nicely reproduces
the trend to increasing relaxation times with increasing σ. Indeed, for the same reasons
as before, increasing σ decreases the probability of 2p2h transitions and therefore, pro-
vides a slower relaxation time of the STDHF entropy as well. The average predictions
are thus still reliable.

4.3.5 Varying the number of particles

Variation of σ as done in the previous section changes the density of states together
with energy span for the jumps. We complement that by varying the particle number
Ω. Here, we keep the ratio σ/Ω constant (at the value of 0.02). In such a way,
the density of states is kept constant. Increasing Ω at constant σ would amount to
increase the density of states (as one does when increasing σ at constant Ω). Since the
corresponding results (not shown) are very similar to those presented below, we here
focus on the impact of increasing the number of particles at constant density of states.
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Figure 4.11 shows the time evolution of the entropy for the exact solution (left panel)
and for STDHF (right panel). We start at Ω = 6 because STDHF does not become
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Figure 4.11: Time evolution of the entropy per particle S/Ω for exact solution (left)
and STDHF (right) and for different numbers of particles Ω as indicated, while keeping
the ratio σ/Ω = 0.02. The other model parameters are indicated.

active for smaller Ω. At the upper end, we go up to Ω = 12 for the exact calculation
and checked two higher values of Ω for STDHF. The amplitude of oscillations of the
exact entropy shrinks with increasing Ω. Because we kept constant the ratio σ/Ω this
cannot be related to an increasing density of states but rather to an increasing number
of different s.p. energies. Indeed more s.p. energies lead to more disorder, more
transitions and a more incoherent behavior of the system. The diagonal assumption
of Eq. (2.71) is then more justified. We also see a faster relaxation when increasing Ω,
again related to the higher number of possible coupled states. This trend to decreasing
relaxation time with increasing Ω is also reproduced by STDHF. We therefore expect
that the larger the Ω, the better the agreement between the exact and the STDHF
dynamics. We also observe a convergence of the STDHF results at Ω ≥ 14.

There is a further interesting feature. The entropy indicates two phases of relax-
ation. It starts with a fast relaxation at early times and bends over to a different rate
at around 20–30 ∆−1. This property is probably also present in the exact solution
although masked by the oscillations.

To complement Fig. 4.11, Fig. 4.12 shows the time evolution of δρ, which compares
the STDHF and the exact 1-body density matrix in the same conditions as in Fig. 4.11.
It confirms that the 1-body density matrix is better reproduced when increasing Ω. At
first sight, it seems to stop improving at Ω = 10 but if we compare with figure 4.11 we
also see the STDHF entropy for Ω = 10 and Ω = 12 overlap almost perfectly. Therefore
we expect δρ to continue to decrease when Ω increases.

4.4 Conclusion
This first study confirms that STDHF is a good scheme to introduce dynamical cor-
relations in a finite quantum system, which allows a direct comparison with the exact
solution. Despite the simplicity of the model it has not been possible to go beyond
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12 particles for the exact calculation. Thus it forced us to stay in a regime where
memory effects are still important and the Markovian approximation is questionable.
Even in this case STDHF provides results that are undoubtedly better than a mere
Hartree-Fock and shows promising trends when approaching the situation it is designed
to describe: a large system with a quick loss of coherence. Besides, it shed light on
how to tune the numerical parameters for next calculations. This model could serve
in the future to test schemes accounting for memory effects and its extension to non
half-filled systems could provide more information on the time evolution of the 1-body
entropy.
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5.1 Introduction
In the previous chapter we have seen that STDHF reproduces qualitatively well the
dissipative effects and their consequences on the 1-body density matrix. However,
STDHF suffers from many limitations. For example, this theory needs too large a
number of trajectories to allow reasonable statistics at low energies when the probability
of transitions is too small to be correctly sampled. The STDHF algorithm is also
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numerically heavy and does not enable calculations in realistic 3D systems. We have
developed Collisional TDHF to tackle these issues. The goal of this chapter is to
establish whether it is possible to retrieve the results of STDHF even with the common
mean-field assumption of CTDHF. We thus compare CTDHF with STDHF in a 1D
system where the calculations are tractable. Since STDHF is expected to perform less
well for low energies, ETDHF has also been used as a reference in this regime. As a
side study it is then possible to examine the limits of ETDHF for high energies.

A first short publication has been submitted recently1 and a longer one is currently
in preparation. In this chapter we first present the studied model, then the results
obtained when varying the physical parameters are discussed. Once the validity of our
scheme is established we finally focus on numerical details and stability issues.

5.2 System under study

5.2.1 1D model
For the following calculations we consider a 1D model which Hamiltonian reads

h(x, t) = − ∆
2m + uext(x) + λ

(
%(x, t)

)σ
(5.1)

where uext is a Wood-Saxon potential:

uext(x) = u0

1 + e
(x−x0)

a

. (5.2)

This potential is used as a jellium representing the ionic background. The last term
of Eq. (5.1) plays the role of a density functional of the simplest form. The chosen
values of the parameters are u0 = −5 Ry, x0 = 15 a0, a = 2 a0 for what we call in
the following “potential 1”. The parameters of the self-consistent term will always be
λ = 5 Ry a2

0 and σ = 2. The system is composed of N = 9 spinless physical particles.
Figure 5.1 shows the potential and the ground state density for this set of parameters.
More realistic calculation in a 3D model could be run in CTDHF or ETDHF. However
comparing CTDHF and ETDHF to STDHF is our main purpose here and because of
the high computational cost of STDHF, we are then forced to use 1D model.

Starting from the ground state of the mean field Hamiltonian, we apply a instan-
taneous 1p1h excitation at time t = 0+ (see Fig. 5.2). This excitation is done by
switching the occupation numbers 0 ↔ 1. Other npnh excitations will be explored in
Sec. 5.3.5.

5.2.2 Collision term
A collision or residual potential has to be defined to perform the various calculations.
The ansatz we used is here vres(x − x′) = v(x − x′) = v0δ(x − x′) as in the electron
attachment case (see Sec. 3.2.2). However, this potential appears to be strictly zero

1L. Lacombe, P.-G. Reinhard, P. M. Dinh, E. Suraud, “A collisional extension of time-dependent
Hartree-Fock”, submitted to J. Phys. B (2016).
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Figure 5.1: External potential coined “1” (red and left vertical scale), ground state
density (green dashes and right vertical scale) and full potential (blue dots) plotted
against x in the 1D model.

on spinless particles because of the antisymmetrization: there is no possibility for
two spinless fermions to be at the same position x. Considering implicit spin in the
collision term is one way to circumvent this issue. Technically this is done by assuming
〈jk|ṽ|lm〉 = 〈jk|v|lm〉 6= 0 in Eq. (2.51) which is equivalent to cancel the possibility of
exchange. Computing this matrix element then simply yields

〈jk|v|lm〉 = v0

∫
dxϕj(x)ϕk(x)ϕ∗l (x)ϕ∗m(x) . (5.3)

In our calculations, we use v0 = 1.345 Ry = 18.29 eV.

5.2.3 Numerical parameters and error bars
Our schemes contain many numerical parameters that should not change significantly
the physical results of our calculations as long as we stay in the right range of values.
In Fig. 5.5, 5.6 and 5.15 the variations due to numerical parameters are represented
by shaded areas of the same color as the corresponding curve. These numerical error
bars shall not be misinterpreted: no physical behaviour such as quantum uncertainties
are represented this way. Indeed physical variations are represented by standard error
bars like for example in figure 5.2. Generally the shaded areas are created by taking
the lowest value and the highest value of an observable while exploring different sets of
parameters (see Chapter refchap:theory for the definition of the various parameters).
We have tested for STDHF:

• the number of trajectories N = 100, 200 and 300,

• the time interval between two jumps τ = 0.5, 1, 2 fs;

for CTDHF:
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• τ = 0.1, 0.2, 0.5 and 1 Ry−1,

• ΓE = 1.4, 4.1, 8.2 and 12.2 Ry;

and for ETDHF

• τ = 0.1, 0.2, 0.5 and 1 Ry−1,

• Γ = 0.68, 1.4, 2.7 Ry.

We also changed the number of single particle (s.p.) wave functions Nwfs. Except
when the number of wave functions is too restricted (for example Nwfs = 18) and the
majority of 2p2h transitions become inaccessible, there is no noticeable change in the
results. Γ is supposed to be of the order of half the energy difference between two s.p.
energy levels or lower. We have found that the numerical error bars are always very
small for ETDHF, dominated by ΓE for CTDHF, and by N in STDHF.

5.2.4 Numerical details
The size of the numerical box is 50 a0 with a grid of 256 points. The time-propagation of
the system is done using the time splitting algorithm involving a Fast Fourier Transform
(FFT). Reflecting boundary conditions are used and ensured by a harmonic potential
at the limit of the box. This potential is fitted such as its maximum value is not higher
than k2

max/2, i.e. the maximum energy accessible in the limit of the FFT. This is done
to avoid spurious effects when reflecting a wave function.

5.3 Physical results

5.3.1 First exploration
During a time evolution after some initial excitation, one expects correlations to lead
the system to a thermalized state for the reduced 1-body density matrix. A thermalized
state for an infinite systems of fermions follows a Fermi-Dirac distribution:

f(ε) = 1
(1 + e(ε−εF)/T) . (5.4)

In figure 5.2 we compare the limit of the occupation numbers of the density matrix
with respect to the s.p. energies at 120 fs in ETDHF (top), STDHF (middle) and
CTDHF (bottom). The initial 1p1h excitation at t = 0 fs is represented by the gray
shaded areas. We display here two initial excitations, one providing an excitation
energy E∗ = 18.1 eV (left column) and another providing E∗ = 29.8 eV (right column).

The different methods lead to the expected Fermi-Dirac distribution up to quantum
fluctuations. The fit of the final occupation number distribution with a Fermi-Dirac
distribution delivers the values of εF and T indicated on the figure. Because of the
sampling involved in the scheme, CTDHF explores a bigger phase space and generally
yields comparable or higher temperature than the two other schemes.

Let us comment on the quantum fluctuations mentioned above. As [h(t), ρ(t)] is
non-zero we face a choice: either we diagonalize the mean field Hamiltonian and the
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occupation numbers exhibit an error bar, or we diagonalize the density matrix and
∆h 6= 0. We opted for the second solution and thus placed the error bars on the s.p.
energies εi. Both error bars of CTDHF and STDHF schemes seem to have a stable
width while increasing excitation energies. On the contrary, the error bars of ETDHF
expand significantly if one considers high energy excitations. It is not an unexpected
behavior as we supposed in our derivation of ETDHF that the mean field Hamiltonian
and the density matrix to have the same eigenbasis. This approximation is reasonable
when dealing with low energies or if the initial excitation is close to a real excited state
of the mean field, which is not a priori predictible. Henceforth, the error bars here give
us an insight of what we can call “low energies” and at which point the approximation
of having the same eigenbasis for h and ρ in ETDHF fails.

Before going further, some details have to be discussed concerning the occupation
numbers in STDHF. The STDHF state is composed of many individual trajectories
of pure density matrices. There are two ways to define the mean field Hamiltonian
from those trajectories: the Hamiltonian can be defined on the mean ρ = ρ(α), i.e.
h̄ = h[ρ(α)] or computed on each ρ(α) and averaged afterwards h̄ = h[ρ(α)]. In CTDHF,
we only have access to the mean ρ. Thus to be consistent in our definition of h̄ we used
the first option.

Note also that in all cases presented in this chapter, the CTDHF calculation is
twice as long as a simple mean field propagation while a STDHF calculation is more
than a hundred times the mean field one. Therefore, whereas Fig. 5.2 provides a first
signature that CTDHF is able to allow the system to reach thermalization, numerically
speaking CTDHF is much more superior than STDHF. ETDHF provides almost the
same calculation time than a pure mean-field propagation but is not always reliable to
obtain a thermalized state at the limit.

5.3.2 Stability of a Fermi-Dirac distribution of occupation
numbers

As the CTDHF scheme accepts as an input partial occupation numbers, we can test
the time evolution of a state initially described by a Fermi-Dirac distribution. The
initial occupation numbers follow the rule of Eq. (5.4) with εF = 41.07727 eV, T =
4.896 eV. As demonstrated in Fig. 5.3 which displays snapshots of the occupation
numbers at different times, the CTDHF and ETDHF calculations conserve fairly well
the Fermi-Dirac distribution: it is indeed a fixed point of collision integral K[ρ] defined
in Eq. (2.51). There are some numerical fluctuations around this equilibrium. The
quantum fluctuations stay equal to zero in the case of ETDHF, and acceptably small
in CTDHF.

5.3.3 Short time evolution of occupation numbers
Let us come back to a 1p1h initial excitation. To have more insight of the dynamics
after this kind of excitation, we also look at a few snapshots of the occupation numbers
in CTDHF and STDHF at different times, see Fig. 5.4.

We observe the excitation progressively decaying and the holes disappearing to lead
to a smoother distribution of partial occupation numbers. Both schemes have the same

80



5.3. PHYSICAL RESULTS

0

0.2

0.4

0.6

0.8

1

−50 −40 −30 −20 −10

n

ε (eV)

εF = −41.1 eV
T = 4.90 eV

ETDHF

−50 −40 −30 −20 −10

ε (eV)

CTDHF

t = 0 fs
t = 30 fs
t = 60 fs
t = 90 fs
t = 120 fs

Figure 5.3: Time evolution of occupation numbers starting from a thermal state in
ETDHF (left), and CTDHF (right). Quantum error bars are displayed in both cases
at final time t = 120 fs but are not visible in ETDHF calculation.

0

0.2

0.4

0.6

0.8

1

−50 −40 −30 −20 −10

n

ε (eV)

STDHF

E∗ = 13.6 eV

−50 −40 −30 −20 −10

ε (eV)

CTDHF

t = 0 fs
t = 6 fs
t = 12 fs
t = 24 fs

Figure 5.4: Short time evolution of the occupation numbers in STDHF (left) and
CTDHF (right), after an initial 1p1h excitation delivering an excitation energy E∗ =
13.6 eV. For the sake of clarity, no error bar is displayed.

81



CHAPTER 5. COMPARISON BETWEEN CTDHF, STDHF AND ETDHF

kind of evolution although STDHF seems to be a little more erratic. The relaxation to a
“thermal” state also seems to be very quick. To estimate more precisely the relaxation
time and to describe in a more compact way the evolution of occupation numbers, we
now turn to the fermionic entropy defined in Eq. (4.16).

5.3.4 Effect of the excitation energies
We now plot in figure 5.5 the time evolution of the entropy, calculated in STDHF,
CTDHF and ETDHF for four excitation energies E∗ = 10.5 eV, 18.1 eV, 20.7 eV and
29.8 eV, two of them being the same as in Fig. 5.2.
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Figure 5.5: Time evolution of the ETDHF (full red curve), STDHF (short blue dashes)
and CTDHF (long pink dashes) entropy for four excitation energies E∗ as indicated
after an initial 1p1h excitation.

For E∗ = 18.1 eV the difference of temperature between STDHF and CTDHF
deduced from Fig. 5.2 is visible on the entropy of STDHF which is lower than both
CTDHF and ETDHF. For E∗ = 29.8 eV we have already discussed that ETDHF was
not appropriate and this is confirmed by the entropy of ETDHF which stays lower than
the other two. We can easily guess the behavior of the occupation numbers for the
other two energies. Obviously, a good agreement on occupation numbers corresponds
to a good agreement on the entropy. The agreement of the density matrices themselves
is not garanteed as seen in Sec. 4.3.1 though they are expected not to be far from each
other. STDHF and CTDHF not only have the same limit, but the curves also overlap
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almost perfectly. the ETDHF calculation produces the same results at low energy but
differs a lot at high energy.

A more systematic study has been done and we plot the asymptotic quantity S2
lim

with respect to the excitation energy for the three different schemes in figure 5.6. In an
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Figure 5.6: Asymptotic value of the square of entropy, S2
lim, plotted with respect to the

excitation energy for ETDHF, STDHF and CTDHF.

infinite gas of fermions, the equilibrium value S2
equi ≈ S2

lim is proportional to excitation
energy. In the model considered here, there is a priori no particular reason for this
relation to still hold. However it seems to be the case at least for STDHF or CTDHF.
Consistently with what has been observed before, for the potential used here, ETDHF
fails at energies higher than ∼ 18 eV and the equivalence between STDHF and CTDHF
is confirmed.

For the sake of completeness, we have also tested two other potentials: one with a
less dense spectrum than the first potential, the other one with a denser spectrum. The
different spectra are presented in figure 5.7. We remind that “potential 1” stands for
the potential of the previous calculations. The other two potentials have the following
parameters:

u0 x0 a box size ∆ε number of s.p. states
potential 1 −5 Ry 15 a0 2 a0 50 a0 ≈ 2 eV 23
potential 2 −4 Ry 25 a0 10 a0 80 a0 ≈ 1 eV 31
potential 3 −10 Ry 8 a0 1 a0 50 a0 ≈ 5 eV 17

Here ∆ε is the average energy difference between two successive states.
We look at S2

lim versus E∗ for potential 2 and 3 in Fig. 5.8. In the case of a
dense spectrum (potential 2), all the numerical schemes agree on the same limit for
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Figure 5.7: Single particle energy levels for the three tested potentials. The blue dotted
lines represent the Fermi level of the system. In each case, it corresponds to 9 physical
particles.

the entropy. Instead, the results obtained for potential 3 are more intriguing: at low
excitation energy, CTDHF gives different results from both STDHF and CTDHF and
at high excitation energy, the STDHF asymptotic entropy stays significantly lower than
those computed with CTDHF and ETDHF. We have here two behaviors which need
to be investigated to clarify which scheme we should trust in this case. To this end, we
plot in Fig. 5.9 for the two energies marked by a dashed vertical lines in Fig. 5.8 the
time evolution of the entropy for the three schemes, the probability of transition for a
sample of four typical STDHF trajectories and the final occupation numbers for both
ETDHF and CTDHF and the quantum error bars for ETDHF.

For the lowest energy, i.e. E∗ = 31.6 eV, both STDHF and ETDHF entropies stop
abruptly their increase. When looking at transition probabilities in the STDHF case,
we observe that strictly no transition occurs after 10 fs. This illustrates a problem
that can occur in STDHF and has already been encountered in Chapter 4: sometimes,
the statistics collapses and the entropy cannot reach the expected asymptotic value.
Concurrently, ETDHF also exhibits the signature of a failure of the scheme, character-
ized by the error bars and the irregular occupation numbers while CTDHF displays a
relatively smooth distribution.

For the higher energy E∗ = 82.1 eV, the behavior of the entropy is closer to what
would be expected. STDHF and CTDHF agree during the short time evolution of
the entropy but STDHF undergoes a spurious decrease after 40 fs. This, again, seems
somehow related to the statistics of STHDF that can be compared to a case where
STDHF and CTDHF have the same behavior. In Fig. 5.10, we also plot the time
evolution of the entropy and the probability of transition for a few trajectories. We
observe that, with a constant entropy, the trajectories continue to jump.
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Figure 5.8: Same as Fig. 5.6 but for potential 2 and 3 as indicated. Vertical black
dashed line point up the energies studied in Fig. 5.9.

If we now turn to ETDHF, we note that ETDHF entropy increases, as usual, a
bit slower than the other two, but still reaches the same limit than CTDHF. The
asymptotic occupation numbers exhibit a reassuring Fermi-Dirac shape while having
moderate quantum fluctuations. The agreement between CTDHF and ETDHF in
the asymptotic state is reproduced in the occupation numbers. All things considered,
CTDHF seems to be the only scheme giving a robust and expected behavior in the third
potential. Identifying exactly what can cause STDHF to decrease when the transitions
stop is still in progress.

5.3.5 Effect of initial excitations

So far we only considered a 1p1h excitation. Here 2p2h and 3p3h initial excitations
have been tested. In Fig. 5.11, we look at the occupation numbers at the end of the
calculation for a 1p1h excitation (left) and a 2p2h excitation (right), each excitation
delivering about the same E∗ ≈ 29.5− 29.8 eV. The fit of the final distribution with a
Fermi-Dirac distribution gives slightly different values i.e. εF = −40.6 eV, T = 7.6 eV in
a) and εF = −41.1 eV, T = 8.6 eV in b). This difference can also be observed in the time
evolution of the entropy in Fig. 5.12. Here we compare the entropy after a 1p1h, 2p2h
and 3p3h excitation, once again providing the same E∗. The 1p1h excitation, yielding
a smaller temperature, also exhibits a smaller asymptotic entropy. The dependence
of the type of the excitation is small and seems to be reduced with more complex
excitations.
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5.4 Numerical discussions

5.4.1 Effect of ρrem

In the previous section, we have demonstrated the performance of CTDHF, either at
low and high E∗. We now address in more details numerical technicalities to allow
such performances. For example one can check how ρrem defined in Eq. (7.106) is a
crucial ingredient in the implementation of CTDHF. To this end, we define an error
the following way:

Error = Tr{|ρrem|} =
∑
ν

∣∣∣∣∣wν −∑
α

n(α)
ν x(α)

∣∣∣∣∣ (5.5)

which is almost a χ2 as defined in Eq. (2.105) except that we choose the absolute value
instead of the square. The absolute value of the matrix |ρrem| here is a short-hand
notation for the absolute value of eigenvalues. This incidentally gives an idea on the
amount of particles created during the approximate sampling. In order to preserve
artificially the number of particles without ρrem, we renormalize by hand the density
matrices after the CTDHF step:

ρ = ρnon−ren

(
Tr{ρ̃}

Tr{ρnon−ren}

)
(5.6)

where ρnon−ren is the density matrix before renormalization and ρ̃ is the density matrix
before the sampling step consistently with notations in Sec. 2.7.4.
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In Fig. 5.13, we show the entropy S, the total energy E and the error on the density
matrix after the sampling step described in sec. 2.7.4. Without ρrem, the time evolution
of S and E exhibit discontinuities when the sampling is not able to reproduce well the
initial density matrix (see vertical dotted lines). The peaks in the error on the density
matrix correspond exactly to these discontinuities. Even if the error in the sampled
density appears only in a few time steps, they can cause dramatic effects in the energy
conservation. With ρrem instead, the piece which is not sampled is kept, just stored
at this time step and added to the density matrix once the dissipative step finished.
The continuity of the density matrix and of the various observables are thus ensured,
leading to a much more robust scheme. Therefore, in all results discussed previously,
the inclusion of ρrem is performed.

5.4.2 Effect of Γε
We have observed that the entropy and the energy of the system show a slight drift at
longer times thus giving a hint on the violation of the energy conservation. This drift is
all the more large if E∗ is high. This can be actually related to the s.p. energies filter,
see Eq. (2.117). The width Γε of the delta function on the single particle energies, if too
restrictive, hinders transitions that would be accepted if looking at the total mean-field
energy and could equilibrate the time evolution numerically speaking.

In figure 5.14 we show the time evolution of the total energy and the entropy
for three different Γε, that is 2.72, 5.44 and 10.8 eV after 1p1h excitation delivering
E∗ = 33.6 eV while keeping Γ, that is the width of the delta function on the mean-field
total energy, constant. The effect of the width Γε is clear: when more transitions are
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Figure 5.14: Effect of width Γε of the delta function on single particle energies (see
Eq. (2.117)) on the time evolution of the entropy and the total energy in CTDHF after
an initial 1p1h excitation delivering E∗ = 33.6 eV.

added, the entropy stabilizes and so does the energy. In the best case, the energy is
conserved up to 2.4 eV. But in these calculations, we have Γ ≈ 1.4 eV and Γε ≈ 8 eV
so an energy violation of this order of magnitude is not alarming.
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5.4.3 Diagonal CTDHF scheme
The CTDHF scheme also offers the possibility to conserve the same basis for each
element of the sampling. The density matrix stays diagonal during the dissipative
step and we are acting only on these diagonal elements (see Sec. 2.7.4). This diagonal
CTDHF is supposed to be closer to ETDHF than “standard” CTDHF. Figure 5.15
compares ETDHF, STDHF, CTDHF and diagonal CTDHF after a 1p1h excitation,
one giving E∗ = 18.1 eV (right) and another one giving E∗ = 45.6 eV (left). It
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Figure 5.15: Time evolution of the entropy for ETDHF, STDHF, diagonal CTDHF,
CTDHF for two initial excitation energies E∗ as indicated.

confirms our expectations: At low E∗, all schemes agree with each other. However,
at higher E∗, we observe the hierarchy SETDHF < Sdiagonal CTDHF < SSTDHF . SCTDHF.
This demonstrates the importance of the off-diagonal terms in the CTDHF scheme
which indeed contribute more at high energy.

5.5 Conclusion
We have presented a broad study on CTDHF through various observables as the time
evolution of the occupation numbers and the entropy. The CTDHF scheme does enable
an efficient inclusion of dissipative effects on top of a mean field propagation. This
study has to be completed. For instance, one can test what happens if we act on the
self-consistent term of Eq. (5.1) by changing its strength or its sign: an attractive self-
interaction with no external potential would give a model closer to the nucleus case
instead of a molecular one. The intriguing decrease of STDHF has to be studied more
in detail even if it has already been related to a problem in the statistics: does the
lack of transitions be related to the number of empty states ? In a calculation where
STDHF entropy is stable, if we set amplitude of transitions to zero “by hand” would
it begin to decrease ? Does this still holds the self-consistent term is set to zero ?
Work to address these questions is currently in progress and cannot be at that stage
presented in this manuscript.
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Apart these open questions, we have also confirmed that CTDHF produces results
that are very similar to STDHF but for a much lower numerical cost. This allows a
future study in realistic 3D systems where hundreds of STDHF trajectories are not on
option. Indeed CTDHF is of the order magnitude of a mere mean field or ETDHF
propagation while STDHF is at least a hundred times longer. Because it is basically
defined on a mixed density matrix, there is no formal reason to restrict ourselves to a
closed system. This encouraging feature allows us to consider ionization scenarios in
3D realistic systems. This is a crucial step in irradiation dynamics where dissipation
is known to play a key role for long time emission. However defining correctly our
scheme in open systems with absorbing boundaries raises other issues that have not
been solved yet. We will discuss in more details these issues in Sec. 6.2.
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Chapter 6

Conclusion and perpectives

6.1 Summary
In this thesis, we have presented and studied various quantal approaches for the ex-
ploration of dynamical processes in multielectronic systems. The aim of these ap-
proaches was to include dynamical effects beyond mean-field by taking into account
the 2-body correlation due to electron-electron collisions. This correlation has been
added in Markovian approximation on top of Hartree-Fock approach or in the DFT
framework. The thermalization of the system is one of the major effect we tried to
reproduce.

After an introductory chapter, we have presented in Chapter 2 the formalism of
the various schemes and how they allow to include part of the 2-body correlation on
top of a mean field theory. Connections between electronic and nuclear systems are
strong in that respect. The starting point was Stochastic Time-Dependent Hartree
Fock (STDHF). The derivation of Extended TDHF (ETDHF) has also been provided.
From STDHF, we have derived a new scheme, namely Collisional TDHF (CTDHF).
The latter scheme constitutes in some sense the main achievement of this thesis. The
numerical realizations and the limitations of each scheme have also been discussed in
detail.

In Chapters 3, 4 and 5, we have applied the approaches discussed in Chapter 2 but
in various systems. In Chapter 3, we have first explored a rare reaction channel, that
is the probability of an electron to attach on a molecule. Small water clusters have
been studied. These calculations are motivated by the understanding of irradiation
mechanisms in biological systems as this kind of process is one of those expected to
cause DNA strand breaks. To that end, a collision potential has been introduced in a
TDDFT calculation in a pertubative manner. We have showed that the probability of
attachment exhibits peaks that are consistent with experimental measurements, even
with a crude approximation made on the potential of interaction.

In Chapter 4, a schematic model has been derived from the Lipkin-Meshkov-Glick
model, which has been widely studied in nuclear physics to describe phase transitions
in nuclei. This model has been used here as the benchmark of STDHF as it allows
to numerically compute the exact solution. A thorough comparison between STDHF
and the exact solution with a small number of physical particles has been performed,
by playing with the physical and the numerical parameters entering the model. The
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time evolution of 1-body observables agrees well in both schemes, especially what
concerns thermal behavior. However coherent oscillations, present in the exact solution,
cannot be by nature reproduced by STDHF which treats 2-particle-2-hole jumps in
an incoherent way. The overall agreement is nevertheless very satisfactory and thus
provides a sound basis for STDHF applied in larger (and consequently less coherent)
systems. However, to allow a good description of the dynamics, one is bound to use
a large statistics, which can constitute a hindrance of the use of STDHF in larger
systems.

To overcome this problem, in Chapter 5, we have tested CTDHF developed in
Chapter 2 in a one-dimensional system (and without electronic emission). This system
consisted in electrons in a jellium potential with a simplified self-consistent interaction
expressed as a functional of the density. The advantage of this 1D model is that STDHF
calculations are numerically manageable and therefore allows a direct comparison with
CTDHF calculations. The collisional interaction potential used in this case was similar
to that introduced in Chapter 3. An initial excitation was produced by a 1-particle-1-
hole transition. Playing with this transition has allowed us to explore a large range of
excitation energy. In all cases, the system relaxed to a thermalized state described by
the famous Fermi-Dirac distribution from which we could extract a temperature. In
this proof of concept study, CTDHF compares remarkably well with STDHF.

6.2 Perspectives
Our three approaches have successfully included thermalization in model systems. We
however remind that one aim is to provide an efficient description of dissipation in real-
istic 3D systems to reproduce, for example, PES and PAD in the multiphoton regime,
where numerous experimental data already exist, as already mentioned in Chapter 1.
To do so, we need to apply our methods in“open” systems, i.e. systems with absorbing
boundaries. In this context, STDHF is not only numerically too demanding in 3D
calculations but it is also basically not applicable in open systems. Indeed, absorbing
boundaries can been seen in a equivalent way by the inclusion of a complex poten-
tial. Due to this potential, the time propagator loses its unitary nature. Therefore,
during a propagation with absorbing boundaries, the norm and the orthogonality of
the single particle wave functions are not conserved. One solution is to work with the
so-called natural orbitals which provide an orthonormal set of wave functions but with
non-integer occupation number. We have checked that the natural orbitals performs
surprisingly very well in highly excited open systems1. However, trajectories and tran-
sitions in STDHF are only defined if one works with an ensemble pure states, i.e. Slater
determinants. Applying STDHF as such in the case of an open system would therefore
lead to spurious features like creation of matter.

On the contrary, ETDHF and CTDHF basically work with non-integer occupation
numbers. Thus nothing formally prevents them from being applied in such a situation.
The transposition of ETDHF in this case is actually straightforward. In CTDHF
there are formal issues that still have to be solved. These issues are mostly related to

1M. Vincendon, L. Lacombe, P. M. Dinh, P-.G. Reinhard, E. Suraud, “Time-dependent DFT in
natural orbitals”, in preparation.
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the sampling of the mixed density matrix. One has to take into account the energy
absorbed at the boundaries concurrently with electronic density. To be consistent with
the incoherent approach, one has to expand the pure density matrix as an incoherent
sum of pure density matrices. Each of them have lost from 0 to N electrons that went
“out” of the numerical box (i.e. had been absorbed by the boundaries). It has the
constraint that the sum of the density matrices with their weight should provide the
right (non-integer) number of electrons lost at the boundaries. Defining well such a
set of density matrices is still under study. Once a well founded solution is found, if
any, we can tackle open 3D systems, with or without dissipation. Indeed, if we dispose
of an efficient and well founded scheme for the sampling of non-integer occupation
numbers, this will allow us to reinterprete and revisit the fact that electronic emission
in time-dependent density functional theory is not quantized.

As final words, we give here some formal and deeper questions which remain open
and constitute real theoretical challenges. For instance, how to derive formally a good
approximation for the collision potential in TDDFT ? How to include memory effects
and fluctuations that have been neglected in our scheme and how to deal with memory
effects in case of an open system ? Comparing our stochastic and quantal approaches
with semiclassical calculations would certainly shed some light in that respect.
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7.7.2 D’un état mixte à une somme d’états purs . . . . . . . . . . . 117

7.7.3 D’un pas dissipatif à l’autre . . . . . . . . . . . . . . . . . . . 117

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

97



CHAPTER 7. FRENCH SUMMARY

7.1 Introduction

Cette thèse présente différentes approches quantiques pour l’exploration de processus
dynamiques dans des systèmes multiélectroniques, en particulier après une forte exci-
tation qui peut aboutir à des effets dissipatifs. Les théories de champ moyen sont un
outil utile à cet égard. En effet, dans une telle approche, les cloupages individuels sont
remplacés par un couplage effectif avec un champ commun (ledit ”champ moyen”).
Cela permet de calculer l’évolution dynamique d’un système quantique avec un faible
coût numérique. Ces théories ont été améliorées dans les dernières décennies avec le
développement de la Density Functional Theory (DFT). Comme nous nous intéressons
principalement au phénomène non linéaire dépendant du temps, le cadre de cette thèse
est sa version dynamique, à savoir Time-Dependent DFT (TDDFT). On peut formelle-
ment montrer qu’il existe un champ moyen effectif qui reproduit l’évolution exacte de la
densité électronique du système. Aussi, tout observable électronique peut être exprimé
comme une fonctionnelle de la densité. Cependant, les fonctionnelles exactes restent
inconnues et, dans la pratique, il faut procéder à des approximations.

Une bonne partie des travaux sur ces approximations a été consacrée, dans les deux
dernières décennies, à les rendre de plus en plus précises. Néanmoins, ces théories
peinent à reproduire complètement la dynamique et la corrélation à deux corps. Et la
plupart des améliorations concerne la théorie de la réponse linéaire qui, en principe,
n’est fiable que dans les systèmes soumis à une faible perturbation. D’autre part, pour
les problèmes non linéaires, les fonctionnelles (quantiques) approximées donnent parfois
des résultats qui peuvent s’avérer pires que ceux obtenus avec un calcul semi-classique
(i.e. lorsque la dynamique à deux électrons est traitée classiquement).

La thermalisation est un des effets des collisions électron-électron. Les effets de
thermalisation ont par exemple été observés dans des expériences sur des agrégats ou
des molécules excités par un intense laser femtoseconde. En effet, l’énergie absorbée
par l’agrégat peut être, après un moment, répartie entre tous les électrons du système,
aboutissant au réchauffement de l’agrégat. La signature de l’émission thermique de
l’électron a été observée de façon expérimentale dans les agrégats métalliques et dans
le fullerène C60. Ces dernières années, notre groupe a conduit une étude systématique
des photoélectrons émis par le C60 et observé que les effets dissipatifs sont effectivement
sous-estimés dans l’approche champ moyen, en particulier dans le régime multiphoton.

Nous présentons ici le formalisme des différentes méthodes étudiées dans cette thèse,
dans la perspective de décrire un tel effet en incluant des termes collisionnels à la
théorie du champ moyen. A cet égard, il existe une forte connexion entre les sytèmes
électroniques et nucléaires. Nous commençons cette partie par la présentation de la
DFT en général puis par la dérivation du champ moyen version Hartree-Fock (HF). En
suivant, la dérivation de Extended TDHF (ETDHF) est également fournie. Stochastic
Time-Dependent Hartree Fock (STDHF) est ensuite dérivée. A partir de STDHF, nous
déduisons une nouvelle méthode, appelée Collisional TDHF (CTDHF). Cette dernière
représente d’une certaine façon le résultat principal de cette thèse. L’implémentation
numérique de chacune de ces méthodes est aussi examinée en détail. Les acronymes
sont écrits en anglais par souci de cohérence avec la littérature.
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7.2 Théorie de la Fonctionnelle de la Densité et sa
version Dépendante du temps

L’évolution temporelle d’un système est décrite par l’équation de Shrödinger dépendante
du temps (TDSE). Pourtant, il est en général impossible de trouver une solution de
cette équation pour des systèmes réalistes de plus de quelques particules. La théorie
de la fonctionnelle de la densité (DFT) et sa version dépendante du temps (TDDFT)
simplifient les calculs en faisant correspondre un système exact de fermions en inter-
action avec un système de particules fictives sans interactions percevant un potentiel
effectif qui ne dépend que de %(r) (ou %(r, t) et la fonction d’onde à N corps à l’instant
initial |Ψ(t= 0)〉 pour ce qui est de la TDDFT). Cette transformation est exacte si la
fonctionnelle de % est connue [7] ce qui n’est pas le cas. Nous n’entrerons pas ici dans
les détails de la dérivation de la DFT ou de la TDDFT qui peuvent être trouvés dans
[26, 44, 45, 46, 7, 8] mais fournirons seulement les équations pratiques et une idée des
différentes approximations.

Nous considérons d’abord le cas statique par souci de simplicité. Le système
d’électrons sans interaction peut être traité directement avec % ou dans le formalisme
Kohn-Scham (KS). Dans cette méthode, un ensemble de N orbitales KS sans inter-
action ϕi remplace les N électrons en interaction avec la même densité électronique
totale qui est calculée de la façon suivante :

%(r) =
N∑
i=1

∣∣∣ϕi(r)
∣∣∣2 . (7.1)

De cette densité, il est possible de calculer l’énergie en utilisant une fonctionnelle de la
forme :

Etotal,el[%] = Ekin({ϕi}′ + EH[%] + Exc[%] + Ecoupl + Eext , (7.2a)

Ekin ({ϕi}) = −
∫

d3r
N∑
i=1

ϕ∗i (r) ∇2 ϕi(r) , (7.2b)

EH[%] = e2

2

∫∫
d3r d3r ′

%(r)%(r ′)
|r− r ′|

= 1
2

∫
d3r %(r) UH[%] , (7.2c)

Eions =
∫

d3r
N∑
i=1

ϕ∗i (r) V̂ions ϕi(r) , (7.2d)

Eext =
∫

d3r %(r) Uext(r) . (7.2e)

Ici, les degrés de liberté de spin n’ont pas été écrits pour simplifier les notations. Nous
décrivons plus en détail chacun des termes apparaissant dans (7.2a) :

• Ekin est l’énergie cinétique des particules sans interaction.

• EH[%] est le terme de Hartree associé au potentiel de Hartree UH. Ce terme
représente la répulsion directe d’une densité de charge.

• Eion est l’énergie venant du couplage avec les ions (noyaux + électrons de coeur)
regroupé en un seul terme V̂ion. Une expression explicite de Eion sera donnée dans
les Chapitres 3 et 5.
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• Eext est le potentiel extérieur (par exemple le champ électrique).

• Exc est le potentiel d’échange-corrélation de la DFT qui contient tout ce qui n’a
pas été pris en compte dans les autres termes.

L’approximation locale de la densité (LDA) est une approximation simple est robuste.
Elle suppose que le potentiel d’échange-corrélation peut être traité localement dans
l’espace :

ELDA
xc =

∫
exc[%(r)]%(r)dr . (7.3)

La LDA souffre néanmoins d’un problème d’auto-interaction. Cela signifie que chaque
électron interagit avec sa propre densité participant à la densité totale %(r). Cela
aboutit à une queue de décroissance exponentielle du potentiel LDA pour un système
chargé au lieu que celle-ci soit proportionnelle à 1/r. Beaucoup de stratégies ont été in-
ventées pour résoudre ce problème et fournir une correction de l’auto-interaction (SIC).
Elles vont des méthodes les plus raffinées (par exemple la méthode 2setSIC [47]) aux
plus simples (par exemple ADSIC [48]). Dans le Chapitre 3 nous parlons de ce problème
plus en détail sur un exemple. Dans les dernières décennies, plusieurs fonctionnelles
plus avancées que la LDA ont été proposées. Comme un gaz d’électron n’est pas uni-
forme (situation idéale pour la LDA), l’étape suivante a été d’introduire un gradient
de la densité électronique dans la fonctionnelle, aboutissant à l’approximation du gra-
dient généralisé (GGA). La fonctionnelle la plus utilisée à ce jour appartient à la classe
des fonctionnelles hybrides et s’appelle B3LYP [49, 50]. Les fonctionnelles hybrides
sont des combinaisons linéaires d’autres fonctionnelles et contiennent généralement un
terme d’échange exact. Dans les travaux présentés ici, nous utilisons majoritairement
la LDA à cause de son efficacité numérique et parfois ADSIC (voir Chapitre 3).

En ce qui concerne la DFT dépendante du temps, on peut aussi considérer la LDA
locale en temps, que l’on nomme LDA adiabatique (ALDA) et remplacer %(r) par
%(r, t). Dans la suite nous utilisons aussi la notation standard de LDA pour la ALDA.

Une fois obtenue la fonctionnelle de l’énergie, la dérivée fonctionnelle de l’énergie
totale par rapport aux fonctions d’onde à une particule nous donne les équations KS :

ĥKS[%] |ϕi〉 = εi |ϕi〉 , (7.4a)

ĥKS[%] = −∇
2

2m + UKS[%] + V̂ions + Uext , (7.4b)

UKS[%] = UH[%] + Uxc[%] . (7.4c)

Le potentiel Kohn-Sham local et dépendant de la densité UKS est consitué d’un terme
coulombique direct UH et du potentiel d’échange-corrélation, Uxc = δExc/δ%. Le cou-
plage aux ions et champs externes est trivial. Le problème statique est un problème
auto-cohérent vu que le potentiel dépend de %(r).

L’équation KS dépendante du temps s’écrit de même :

i ∂tϕi(r, t) = ĥKS[%]ϕi(r, t) , (7.5)

où ĥKS est généré de la même façon qu’au-dessus à condition de remplacer %(r) par
%(r, t)1. Cela suppose que la densité électronique s’ajuste instantanément, bien que les
effets de mémoire puissent avoir des effets non-négligeables, spécialement dans Exc [53].

1Dans cette thèse nous utilisons les unités atomiques e2/2 = ~ = 1.
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7.3 Hartree Fock et terme de collision
Plus simple que la DFT, la célèbre approximation HF fournit une première approx-
imation du hamiltonien exact. Nous dérivons ici le hamiltonien HF pour introduire
les notations et la notion d’interaction résiduelle. Nous considérons un hamiltonien
non-relativiste pour une système d’électrons en interactions. Ce hamiltonien s’écrit en
seconde quantification de la manière suivante :

Ĥ =
∫
dx h0(x, t)Ψ̂†(x, t)Ψ̂(x, t) + 1

2

∫
dxdx′ v(x, x′)Ψ̂†(x, t)Ψ̂†(x′, t)Ψ̂(x′, t)Ψ̂(x, t)

h0(x, t) = −∆x/2 + uext(x, t) . (7.6)

Nous utilisons ici la coordonnée généralisée x et des particules sans spin pour simplifier
les notations mais ces calculs peuvent être facilement généralisés au cas avec spin.
Ce hamiltonien peut s’écrire dans n’importe quelle base de fonctions d’onde à une
particule, donnant la forme générale suivante :

Ĥ =
∑
i,j

h0
ij â
†
i âj︸ ︷︷ ︸

ĥ0

+ 1
2
∑
i,j,k,l

vijklâ
†
i â

+
j âlâk︸ ︷︷ ︸

V̂

=
∑
i,j

h0
ij â
†
i âj + 1

4
∑
i,j,k,l

ṽijklâ
†
i â
†
j âlâk (7.7)

où ṽijkl est l’interaction antisymétrisée :

ṽijkl = vijkl − vijlk . (7.8)

7.3.1 HF : factorisation
Il y a une façon d’obtenir le hamiltonien HF qui consiste à factoriser directement le
terme d’interaction V̂ :

V̂ = 1
2
∑
i,j,k,l

vijklâ
†
i â
†
j âlâk . (7.9)

Le théorème de Wick par rapport à la mer de Fermi permet de réécrire le produit
quatre opérateurs de la façon suivante

â†i â
†
j âlâk =〈â†i âk〉〈â

†
j âl〉 − 〈â

†
i âl〉〈â

†
j âk〉

− 〈â†i âl〉 : â†j âk :
+ 〈â†i âk〉 : â†j âl :
+ 〈â†j âl〉 : â†i âk :
− 〈â†j âk〉 : â†i âl :
+ : â†i â

†
j âlâk : .

(7.10)

Le premier terme de l’Eq. (7.10) est un terme constant produisant l’énergie HF de
l’interaction. C’est le seul terme qui reste lorsque l’on prend la valeur moyenne de V̂ sur
le déterminant HF. Tous les autres termes s’annulent à cause des produits normalement
ordonnés (: .. :). La valeur moyenne du dernier terme est égale à zéro : c’est ce
terme que l’on nommera interaction résiduelle dans la théorie HF. L’approximation
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HF consiste à négliger ce terme. Les opérateurs à un corps peuvent être réécrits en
utilisant : â†i âl := â†i âl−〈â

†
i âl〉. Nous oublions les termes constants et les seuls éléments

qui restent sont les suivants :

â†i â
†
j âlâk ≈− 〈â

†
i âl〉â

†
j âk

+ 〈â†i âk〉â
†
j âl

+ 〈â†j âl〉â
†
i âk

− 〈â†j âk〉â
†
i âl .

(7.11)

Cette approximation permet de définir le terme d’interaction HF ŵ en utilisant que
〈â†i âl〉 = δil si i est un état occupé (aussi appelé état trou) et zéro sinon:

ŵ = 1
2

− ∑
ijk
i∈occ

vijkiâ
†
j âk +

∑
ijl

i∈occ

vijilâ
†
j âl +

∑
ijk
j∈occ

vijkj â
†
i âk −

∑
ijl

j∈occ

vijjlâ
†
i âl

 . (7.12)

En utilisant vijkl = vjilk cette expression se simplifie en

ŵ =
∑
kl

 ∑
j∈occ

ṽkjlj

 â†kâl . (7.13)

Le hamiltonien HF est alors
ĥ = ĥ0 + ŵ (7.14)

dont les éléments de matrice sont définis par

hkl = h0
kl +

∑
j∈occ

ṽkjlj . (7.15)

Nous rappelons l’expression de l’énergie HF et de la valeur moyenne de ĥ:

EHF = 〈ΨHF|Ĥ|ΨHF〉 =
∑
m∈occ

tmm + 1
2

∑
m,n∈occ

ṽmnmn (7.16)

〈ΨHF|ĥ|ΨHF〉 =
∑
m∈occ

tmm +
∑

m,n∈occ
ṽmnmn (7.17)

7.3.2 Interaction résiduelle
L’interaction résiduelle est définie comme le terme négligé dans l’Eq. (7.10):

V̂res = 1
2
∑
i,j,k,l

vijkl : â†i â
†
j âlâk : . (7.18)

Par définition, la valeur moyenne de ce terme est zéro. Appliqué à un déterminant
dans cette base, ce terme est différent seulement si l, k sont des états trous (i.e. oc-
cupés) et i, j sont des états particules (i.e. inoccupés). Dans toute autre situation, il
existe un opérateur création ou annihilation qui annule le déterminant et l’ordre nor-
mal l’applique en premier à celui-ci. L’interaction résiduelle ne génère donc que des
excitations 2-particules-2-trous (2p2h).
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7.4 Dérivation basique de la hiérarchie BBGKY
Au-delà de cette approximation de champ moyen, les particules développent des corrélations
à N corps qui doivent être prises en compte sous peine de perdre certains effets
physiques. La théorie de la matrice densité réduite est un formalisme qui permet
d’avoir un accès direct aux observables à l’interprétation physique des approximations.
Les équations d’évolution des matrices densités forment une hiérarchie d’équations
appelée hiérarchie BBGKY sur la base de son pendant de physique statistique clas-
sique developpée par Born, Bogoliubov, Green, Kirkwood et Yvon [54, 55, 56, 57].
Par référence au formalisme des fonctions de Green, on peut aussi s’y référer en tant
que hiérarchie de Martin-Schwinger pour les matrices densités. Cette hiérarchie est
parfaitement équivalente à la TDSE mais permet une meilleure compréhension des
niveaux possibles d’approximation et de troncation. Nous donnons ici comme exemple
une dérivation des deux premiers termes de la hiérarchie. Les équations d’évolution
des opérateurs de création et d’annihilation dans la représentation d’Heisenberg sont
les suivants(

i∂t − h0(x, t)
)
Ψ̂(x, t) =

∫
dx̄ v(x, x̄)Ψ̂†(x̄, t)Ψ̂(x̄, t)Ψ̂(x, t) (7.19)(

− i∂t − h0(x, t)
)
Ψ̂†(x, t) = Ψ̂†(x, t)

∫
dx̄ v(x, x̄)Ψ̂†(x̄, t)Ψ̂(x̄, t) . (7.20)

Les matrices densités réduites sont définies de la manière suivante
ρ(n)(x1 . . . xn;x1′ . . . xn′ ; t) = 〈Ψ̂†(x1′ , t) . . . Ψ̂†(xn′ , t)Ψ̂(xn, t) . . . Ψ̂(x1, t)〉 . (7.21)

Dans la suite, la matrice densité à 1 corps est simplement notée ρ et sa diagonale
%(x, t) = ρ(x;x; t). La variable temporelle ne sera pas notée la plupart du temps pour
alléger l’écriture. L’équation d’évolution de ρ est évidente :

i∂tρ(x1;x1′) =
(
h0(x1)− h0(x1′)

)
ρ(x1;x1′)

+
∫
dx2

(
v(x1, x2)− v(x1′ , x2′)

)
ρ(2)(x1, x2;x1′ , x2′) .

(7.22)

L’équation de ρ(2) donne plus d’informations sur les étapes de calcul dans un cas général

i∂tρ(2)(x1, x2;x2′ , x1′) =
(
h0(x1)− h0(x1′) + h0(x2)− h0(x2′)

)
ρ(2)(x1, x2;x1′ , x2′)

+
∫
dx3

(
v(x2, x3)− v(x2′ , x3)

)
ρ(3)(x1, x2, x3;x1′ , x2′ , x3)

+
∫
dx3

(
v(x1, x3)〈Ψ̂†(x1′ , t)Ψ̂†(x2′ , t)Ψ̂(x2, t)Ψ̂†(x3, t)Ψ̂(x3, t)Ψ̂(x1, t)〉

− v(x1′ , x3)〈Ψ̂†(x1′ , t)Ψ̂†(x3, t)Ψ̂(x3, t)Ψ̂†(x2′ , t)Ψ̂(x2, t)Ψ̂(x1, t)〉
)

(7.23)
Quelques commutations sont nécessaires dans le dernier terme pour écrire l’ensemble
en fonction de la matrice densité à 3 corps :
i∂tρ(2)(x1, x2;x2′ , x1′) =(

h0(x1)− h0(x1′) + h0(x2)− h0(x2′) + v(x1, x2)− v(x1′ , x2′)
)
ρ(2)(x1, x2;x1′ , x2′)

+
∫
dx3

(
v(x2, x3)− v(x2′ , x3) + v(x1, x3)− v(x1′ , x3)

)
ρ(3)(x1, x2, x3;x1′ , x2′ , x3′)

(7.24)
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Ici nous n’avons dérivé que les deux premières équations de la hiérarchie mais la
procédure est aisément généralisable pour obtenir les équations pour ρ(n).

7.5 Troncation de la hiérarchie BBGKY

7.5.1 Développement en clusters
La forme générale de ces équations est la suivante :(

i∂t − k(x1..xn) + k(x1′ ..xn′)
)
ρ(n)(x1..xn;x1′ ..xn′)

=
n∑
j=1

∫
dxn+1

(
v(xj, xn+1)− v(xj′ , xn+1)

)
ρ(n+1)(x1..xn, xn+1;x1′ ..xn′ , xn+1)

(7.25)

où
k(x1..xn; t) =

n∑
i=1

h0(xi; t) + 1
2

n∑
i 6=j

v(xi, xj) . (7.26)

La variable temporelle est invisible dans l’Eq. (7.25). Dans la suite nous remplacerons
i par xi. Les deux premières équations de cette hiérarchie sont écrites à nouveau
explicitement :

(
i∂t − h0(1) + h0(1′)

)
ρ(1; 1′) =

∫
d2
(
v(1, 2)− v(1′, 2)

)
ρ(2)(1, 2; 1′, 2) , (7.27)(

i∂t − h0(1) + h0(1′)− h0(2) + h0(2′)− v(1, 2) + v(1′, 2′)
)
ρ(2)(1, 2; 1′, 2′)

=
∫
d3
(
v(1, 3)− v(1′, 3) + v(2, 3)− v(2′, 3)

)
ρ(3)(1, 2, 3; 1′, 2′, 3) .

(7.28)

La hiérarchie BBGKY est impossible à résoudre en l’état. Elle doit être tronquée par
exemple au niveau n − 1 et la matrice densité à n corps doit être approximée par un
produit de matrices à p corps antisymétrisé, avec p < n. Une façon de tronquer a
été proposée par Shun-Jin et Cassing [16]. On commence avec un développement en
clusters des différentes matrices densités réduites. Par exemple la matrice densité à 2
corps s’écrit

ρ(2)(1, 2; 1′, 2′) = ρ(1; 1′)ρ(2; 2′)− ρ(1; 2′)ρ(2; 1′) + c(2)(1, 2; 1′, 2′) . (7.29)

L’avantage de cette expression est de pouvoir séparer différents niveaux de corrélation.
Pour la matrice densité à 2 corps dans l’Eq. (7.29), c(2) correspond au terme de
corrélation à deux particules une fois le champ moyen soustrait. D’une manière plus
générale, la matrice densité à n corps peut être écrite d’une manière compacte de la
façon suivante :

ρ(n) = AS{
n−1∑
p=1

ρ(n−p)ρ(p)}+ c(n) , (7.30)

où S symétrise par rapport au couple d’indices (i, i′) et A antisymétrise les indices i′
avec le signe correspondant. Une autre règle est que chaque terme ne doit apparâıtre
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qu’une seule fois. Par exemple, on obtient :

AS{ρρ(2)} = A
{
ρ(1; 1′)ρ(2)(2, 3; 2′, 3′) + ρ(2; 2′)ρ(2)(1, 3; 1′, 3′) + ρ(3; 3′)ρ(2)(1, 2; 1′, 2′)

}
= ρ(1; 1′)ρ(2)(2, 3; 2′, 3′)− ρ(1; 2′)ρ(2)(2, 3; 1′, 3′)− ρ(1; 3′)ρ(2)(2, 3; 2′, 1′)
+ ρ(2; 2′)ρ(2)(1, 3; 1′, 3′)− ρ(2; 1′)ρ(2)(1, 3; 2′, 3′)− ρ(2; 3′)ρ(2)(1, 3; 1′, 2′) (7.31)
+ ρ(3; 3′)ρ(2)(1, 2; 1′, 2′) + ρ(3; 1′)ρ(2)(1, 2; 3′, 2′) + ρ(3; 2′)ρ(2)(1, 2; 1′, 3′) .

Ce qui est une expression assez longue pour un seul terme.
Nous introduisons des notations plus compactes ici : les indices en exposant corre-

spondent au nombre de particules du terme, les indices inférieurs permettent de savoir
quelles coordonnées sont couplées entre elles. Ces derniers ne sont pas directement
reliés aux xi de l’opérateur et nous pouvons par exemple écrire

c(2)(1, 2; 1′, 2′) = c12(1, 2; 1′, 2′) = c23(1, 2; 1′, 2′) . (7.32)

Le nombre d’indices fournissant le nombre de particules, les exposants sont abandonnés
quand les indices inférieurs sont utilisés. Nous passerons d’une notation à l’autre et
n’écrirons pas les coordonnées quand il n’y pas d’ambigüıté, ce qui mènera parfois à
identifier abusivement une matrice à ses éléments. La notation Tr2(F12) correspond à∫
d2
(
F (1, 2; 1′, 2′)2=2′

)
pour une fonction F donnée. Des opérateurs de permutation

Pij sont utilisés et définis de la façon suivante :

Pij|ij〉 = |ji〉 (7.33)
or P12(1, 2; 1′, 2′) = δ(1− 2′)δ(2− 1′) . (7.34)

Par exemple, nous avons :

(P12ρ1ρ2)(1, 2; 1′, 2′) = ρ(2, 1′)ρ(1, 2′) ,
(ρ1ρ2P12)(1, 2; 1′, 2′) = ρ(1, 2′)ρ(2, 1′) = (P12ρ1ρ2)(1, 2; 1′, 2′) . (7.35)

On en déduit que P12 commute avec ρ1ρ2 et AS{ρρ} = ρ1ρ2(1− P12). Par exemple, si
ρ(2) est remplacé par AS{ρρ} = ρ1ρ2(1− P12) + c12 dans l’Eq. (7.27), on obtient

i∂tρ1 − [h1, ρ1] = Tr2[v12, c12] (7.36)

où
h1ρ1 = h0

1ρ1 + Tr2{v12ρ2}ρ1 − Tr2{v12ρ2ρ1P12} (7.37)
ce qui est tout simplement le hamiltonien HF.

7.5.2 Dérivation de l’équation de Boltzmann-Langevin
L’idée derrière la dérivation de l’équation de Boltzmann-Langevin à partir de la hiérarchie
BBGKY est la suivante : d’abord, la hiérarchie est tronquée à l’équation à 2 corps
(c(3) = 0), puis la solution formelle de l’équation d’évolution de la matrice densité
à 2 est insérée dans l’équation d’évolution de la matrice à 1 corps. Pour faire cette
troncation, on peut supposer que

ρ(3) ≈ AS{ρ(2)ρ} (7.38)
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puisque c(3) a été négligé. On obtient exactement le terme explicitement écrit dans
l’Eq. (7.31). On peut développer ρ(3) en n”utilisant que ρ(2) = AS{ρρ} + c(2). On
obtient alors

ρ(3) ≈ AS{ρρρ+ ρc(2)}
= ρ1c23(1− P12 − P13) + ρ2c13(1− P21 − P23) + ρ3c12(1− P31 − P32)
+ ρ1ρ2ρ3(1− P12)(1− P12 − P23) .

(7.39)

Donc seule l’équation d’évolution pour c(2) est nécessaire. Tout d’abord, nous avons
besoin de l’équation d’évolution du terme AS{ρρ}:

i∂tρ1ρ1(1− P12) = [h0
1, ρ1]ρ2(1− P12) + [h0

2, ρ2]ρ1(1− P12)
+ Tr3[v13, ρ13]ρ2(1− P12) + Tr3[v23, ρ23]ρ1(1− P12) .

(7.40)

On peut voir que cela génère tous les termes non-liés. Une exemple de terme non-lié
est v(2, 3)ρ(2)(2, 3; 2′, 3′)ρ(1; 1′) où v12 ne couple pas les deux matrices densités. Une
généralisation de ce résultat a été donnée dans [16], mais ici seule la preuve pour les
deux premières équations est nécessaire. Nous en déduisons que l’évolution de c(2) ne
prend en compte que les termes liés. Après des calculs longs mais simples, on obtient

i∂tc12 − [h1 + h2, c12] =
1
2

(
ρ̄1ρ̄2(1− P12)v12ρ1ρ2(1− P12)− ρ1ρ2(1− P12)v12ρ̄1ρ̄2(1− P12)

)
+O(c12v12) (7.41)

où ρ̄1 = 1−ρ1. Presque tous les termes proportionnels à c12v12 sont négligés. Pour une
démonstration plus complète, voir [18]. Ces résultats peuvent aussi être obtenus dans
[58] qui contient aussi des exemples d’application sur des systèmes plus complexes. Le
terme de droite est le terme de collision ou terme de Born B12 qui aboutit au terme
dissipatif dans la théorie ETDHF (voir Sec. 7.5.3). Ce terme dérive entièrement de
AS{ρρρ}. L’expression explicite de deux des termes de l’Eq. (7.41) est donnée ici
comme exemple pour s’assurer que les notations sont claires :

ρ1ρ2P12v12ρ2 =
∫
d3v(1′; 3)ρ(1; 3)ρ(2; 1′)ρ(3; 2′) ,

−ρ2v12ρ1ρ2P12 = −
∫
d3v(1; 3)ρ(1; 2′)ρ(2; 3)ρ(3; 1′) . (7.42)

Nous rappelons au lecteur que v(i; j) ↔ v(i, j; i′, j′)δ(i − i′)δ(j − j′) de sorte que la
partie à droite du signe égal est cohérente avec un opérateur à 2 corps. Il faut souligner
que ce terme n’est pas dérivé en remplaçant ρ(3) directement par AS{ρρρ} mais aussi
en prenant en compte tous les termes non-liés de l’Eq. (7.40) et quelques termes de
ρ3c12(1− P13 − P23) qui permettent de transformer h0

1 + h0
2 en h1 + h2. Il est possible

de donner la solution formelle de l’Eq. (7.41) qui est

c12(t) = −i
∫ t

t0
dsU12(t, s)B12(s)U12(s, t) + δc12(t) (7.43)
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où U12 = U1U2 avec Ui = T exp
(
− i

∫ t
t0
hi(s)ds

)
et T l’operateur d’ordre temporel. Le

second terme δc12(t) = U12(t, t0)c12(t0)U12(t0, t) est la propagation en champ moyen de
la corrélation initiale. Maintenant nous pouvons insérer c12 dans l’Eq. (7.36):

i∂tρ = [h, ρ] +K[ρ] + δK(t) , (7.44)

K[ρ] = −i
∫ t

t0
dsTr2[v12, U12(t, s)B12(s)U12(s, t)] , (7.45)

δK(t) = Tr2[v12, δc12(t)] . (7.46)
Dans cette équation K[ρ] est interprété en tant que terme de collision et δK(t) comme
une force aléatoire, voir [22] pour plus de détails.

Nous écrivons à nouveau explicitement l’intégrale de collision :

K[ρ] = i
2

∫ t

t0
dsTr2

{ [
v, U(t, s)AS{ρρ}vAS{ρ̄ρ̄}U †(t, s)

]
−
[
v, U(t, s)AS{ρ̄ρ̄}vAS{ρρ}U †(t, s)

] }
.

(7.47)

Ici nous avons retiré les indices (12). Quand l’équilibre thermique par rapport au
hamiltonien de champ moyen est atteint, le terme c12 s’annule. Donc Tr2[v12, c12] dans
l’Eq. (7.36) s’annule de même et seul le champ moyen dirige l’évolution de ρ. On peut
s’attendre à ce qu’une distribution de Fermi-Dirac reste stable au cours du temps. La
relation entre la force aléatoire et le terme de collision a été étudiée en détail dans [23].

7.5.3 TDHF étendu (ETDHF)
TDHF étendu a été introduit comme façon d’inclure la dissipation due à la collision
entre hadrons dans les noyaux [14]. Au départ, cela a été déduit d’une approche plus
semi-classique basée sur les équations VUU. Ce qui est présenté par la suite se réduit
à la version ”historique” de ETDHF à la limite markovienne. (voir Eq. 7.62).

Pour obtenir ETDHF, le terme de force stochastique δK est mis à zéro. Cela revient
à considérer qu’il n’y a aucune corrélation initiale dans notre système. L’Eq. (7.44)
s’écrit alors :

i∂tρ = [h, ρ] +K[ρ] . (7.48)
Cela aboutit à la version de ETDHF avec un terme de collision non markovien. En effet,
le terme de collision (7.47) contient une intégrale sur tous les états passés du système.
Nous introduisons la base naturelle instantanée, c’est-à-dire la base qui diagonalise la
matrice densité à un corps ρ(t):

ρ(t) =
∑
i

|i(t)〉ni(t) 〈i(t)| (7.49)

En définissant
〈kj|ṽ|lm〉s = 〈kj|v|lm〉s − 〈kj|v|ml〉s (7.50)

on peut écrire les éléments de matrice de l’intégrale de collision (7.47) dans la base :

〈j|K|i〉 = i
2

∫ t

t0
ds
∑
klm

[
〈jk|ṽ|lm〉t〈lm|ṽ|ik〉s

(
nlnm(1− ni)(1− nk)− nink(1− nl)(1− nm)

)
s

+ 〈jk|ṽ|lm〉s〈lm|ṽ|ik〉t
(
nlnm(1− nj)(1− nk)− njnk(1− nl)(1− nm)

)
s

]
.

(7.51)
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où l’indice inférieur indique que nous avons utilisé la base naturelle au temps s 2

Il faut souligner que le propagateur U dans l’intégrale de collisionK dans l’Eq. (7.47)
correspond à la propagation champ moyen de la matrice densité et non à la propagation
totale prenant en compte K. De ce fait, les termes au temps s doivent être considérés
avec attention. En fait, nous avons |lm〉t = U(t, s)|lm〉s où |lm〉s et réellement la base
naturelle au temps s, alors que |lm〉t ne l’est pas, vu que la propagation champ moyen
n’est pas égale à la vraie. De plus amples détails sur l’implémentation numérique de
cette équation sont donnés par exemple dans [59].

7.5.4 Approximation markovienne
Le propagateur champ moyen

Ui(t, s) = T exp
(
− i

∫ t

s
hi(t′)dt′

)
(7.52)

est un terme compliqué parce que le hamiltonien champ moyen dépend de ρ(t) et
t, et du fait de l’intégration sur le temps. On suppose que les termes de la forme
〈jk|ṽ|lm〉t〈lm|ṽ|ik〉s s’annulent pour s loin de t. De ce fait, nous pouvons remplacer
sur l’intervalle de temps [s, t]:

h(t′) ≈ h(t) pour t′ dans [s, t] , (7.53)
ρ(t′) ≈ ρ(t) pour t′ dans [s, t] . (7.54)

Le propagateur à 2 corps en champ moyen devient :

U = e−i(t−s)(h1(t)+h2(t)) (7.55)

On considère maintenant la base propre instantanée du hamiltonien champ moyen,
c’est-à-dire la base telle que :

h(t)|i〉 = εi|i〉 (7.56)
à un temps t donné. Dans cette base, le propagateur est diagonal :

Uijkl = δikδjle
−i(t−s)(εi+εj) . (7.57)

On continue de supposer que l’intégrale de collision a une très courte mémoire. On
peut alors étendre la limite d’intégration t0 à −∞ sans changer le résultat. On fait
aussi l’approximation suivante :∫ t

−∞
ds e−i(t−s)(εi+εj−εk−εl) ≈ πδ(εi + εj − εk − εl) . (7.58)

Ici, la partie principale a été négligée vu qu’elle ne génère que des éléments hors-
diagonaux. Ces éléments s’ajoutent au champ moyen mais nous supposons que le
champ moyen prévaut dans l’évolution non dissipative. De manière plus formelle, cela
peut être écrit à l’aide du liouvillien du champ moyen L0:∫ t

−∞
ds e−i(t−s)L0 = πδ(L0) (7.59)

2La relation de fermeture I = 1
2
∑

lm |lm〉〈lm|+ |ml〉〈ml| est utilisée pour faire apparâıtre ṽ.
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où L0 vérifie L0A12 = [h1+h2, A12]. Donc dans l’approximation markovienne, l’intégrale
de collision est

K = iπ2 Tr2{[v, δ(L0)AS{ρρ}vAS{ρ̄ρ̄}]− [v, δ(L0)AS{ρ̄ρ̄}vAS{ρρ}]} . (7.60)

On considère maintenant de nouveau l’intégrale de collision de ETDHF de l’Eq. (7.51).
En plus de l’approximation markovienne, on suppose qu’il existe une base dans laquelle
ρ est diagonal, et h proche de la diagonale, c’est-à-dire

∆h =
√

Tr{hρ}2 − Tr{h2ρ} (7.61)

est suffisamment petit pour être négligé. Si on ne prend en compte que les éléments
diagonaux :

〈i|K|i〉 = iπ
∑
klm

|〈ik|ṽ|lm〉|2δ(εk + εi − εl − εm)

×
(
nlnm(1− ni)(1− nk)− nink(1− nl)(1− nm)

)
.

(7.62)

Ce terme est en fait le seul terme sur la diagonale à droite du signe égal de l’Eq. (7.48).
Il agit directement sur les nombres d’occupation de la matrice densité. On s’attend
à ce que l’hypothèse d’un petit ∆h soit remplie dans le cas de faibles excitations.
Dans la suite, ETDHF fera toujours référence à cette version markovienne réduite à
ses éléments diagonaux.

7.6 Stochastique TDHF
Nous nous tournons maintenant vers le coeur de cette thèse basée sur les travaux
précurseurs de [23]. Stochastique TDHF (STDHF) est une théorie qui approche la
propagation exacte d’un état quantique par un ensembe de déterminants de Slater
dont les matrices densités sont propagées en temps selon une théorie de champ moyen
et ajoutées de manière incohérente. Cette méthode a été présentée et étudiée dans
[24, 23, 61, 62]. La plupart des démonstrations seront faites dans cette partie.

7.6.1 Ensemble de trajectoires
Nous supposons que notre matrice densité à t′ est à N corps et de la forme

D(t′) =
∑
α

x(α)(t′)D(α)(t′) . (7.63)

Ici D(α)(t′) = |Φ(α)(t′)〉〈Φ(α)(t′)|, |Φ(α)(t′)〉 étant un déterminant de Slater, et α l’indice
pour l’ensemble des matrices densités qui sont additionnées de manière incohérente
pour former D(t′). Nous considérons maintenant l’évolution sur l’intervalle de temps
[t′, t] et definissons τ = t− t′. Pour ce faire, seulement une matrice densité non corrélée
D(α) sera considérée au départ. Sans perte de généralité, le temps initial est défini
comme t′ = 0. Chaque D(γ) est propagé selon son propre champ moyen, et ceci forme
ce que nous appelons une ”trajectoire”.
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7.6.2 Propagation d’une trajectoire
Nous considérons d’abord une seule trajectoire, d’indice α, et partant de l’état |Φ(α)(0)〉.
Le champ moyen correspondant à n’importe quel temps s est noté h(s) et peut être
complété par une interaction résiduelle V (s) pour obtenir le hamiltonien exact H(s) =
h(s) + V (s). Les opérateurs d’évolution temporelle sont les suivants :

U(τ, ε) = T e−i
∫ τ
ε
H(s)ds

U0(τ, ε) = T e−i
∫ τ
ε
h(s)ds (7.64)

avec τ > ε. De la même façon que pour la représentation interaction, on peut obtenir
:

i∂ε
(
U(τ, ε)U0(ε, τ)

)
= −U(τ, ε)U0(ε, τ)Ṽ (ε) (7.65)

où
Ṽ (ε) = U0(τ, ε)V (ε)U0(ε, τ) . (7.66)

L’expression formelle du produit U(τ, ε)U0(ε, τ) est :

U(τ, ε)U0(ε, τ) = T e−i
∫ τ
ε
Ṽ (s)ds (7.67)

A présent, faisons tendre ε → 0. L’opérateur Ω+ = U(τ, 0)U0(0, τ) permet de passer
de l’évolution exacte |Ψ(α)(τ)〉 à l’état propagé en champ moyen |Φ(α)(τ)〉 à partir de
l’état initial |Φ(α)(0)〉:

|Ψ(α)(τ)〉 = Ω+|Φ(α)(τ)〉 . (7.68)
Il peut être approximé jusqu’au second ordre en Ṽ comme :

|Ψ(α)(τ)〉 ≈ |Φ(α)(τ)〉 − i
∫
Ṽ |Φ(α)(τ)〉 − 1

2T
{ ∫

Ṽ
∫
Ṽ
}
|Φ(α)(τ)〉 (7.69)

où
∫
Ṽ =

∫ τ
0 Ṽ (s)ds. La matrice densité à N corps dépendant du temps D(α)(τ) se lit

:

D(α)(τ) = |Φ(α)(τ)〉〈Φ(α)(τ)|+
(
− i

∫
Ṽ |Φ(α)(τ)〉〈Φ(α)(τ)|+ h.c.

)
+
∫
Ṽ |Φ(α)(τ)〉〈Φ(α)(τ)|

∫
Ṽ −

(1
2T

{ ∫
Ṽ
∫
Ṽ
}
|Φ(α)(τ)〉〈Φ(α)(τ)|+ h.c.

)
(7.70)

Considérons à présent une base orthonormale instantanée au temps τ , dénotée par
|κ〉 = |Φ(α)

κ (τ)〉. Nous écrivons |0〉 = |Φ(α)(τ)〉 afin de simplifier la notation. En
conservant seulement les termes diagonaux, la matrice densité à N corps se simplifie
de la manière suivante

D(α)(τ) ≈ |0〉〈0|+
∑
κ

|κ〉〈κ|
∫
Ṽ |0〉〈0|

∫
Ṽ |κ〉〈κ|

− 1
2 |0〉〈0|T

{ ∫
Ṽ
∫
Ṽ
}
|0〉〈0| − 1

2 |0〉〈0|T̄
{ ∫

Ṽ
∫
Ṽ
}
|0〉〈0|

(7.71)

où T̄ est l’opérateur d’ordre temporel inversé. Il est possible de se débarrasser des deux
opérateurs d’ordre T

{ ∫
Ṽ
∫
Ṽ
}

+ T̄
{ ∫

Ṽ
∫
Ṽ
}

= 2
∫
Ṽ
∫
Ṽ . Comme h et V dépendent
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a priori du déterminant Slater initial, nous utilisons par la suite un superscript H =
h(α) + V (α). Enfin, nous obtenons

D(α)(τ) ≈ |0〉〈0|
(

1−
∑
κ6=0

∣∣∣〈κ| ∫ Ṽ (α)|0〉
∣∣∣2)+

∑
κ6=0
|0〉
∣∣∣〈κ| ∫ Ṽ (α)|0〉

∣∣∣2〈0| . (7.72)

L’élément de la matrice de transition
∣∣∣〈κ| ∫ Ṽ (α)|0〉

∣∣∣2 peut être approximé par une
règle d’or de Fermi :∣∣∣〈κ| ∫ Ṽ (α)|0〉

∣∣∣2 =
∣∣∣〈Φ(α)

κ (τ)|
∫
Ṽ (α)|Φ(α)(τ)〉

∣∣∣2
≈ 2π

∣∣∣〈Φ(α)
κ (0)|V (α)(0)|Φ(α)(0)〉

∣∣∣2δ(E(α)
κ − E(α))τ = P (α)

κ τ = Pα→κ[α]τ
(7.73)

où E(α)
κ et E(α) sont les énergies HF de |Φ(α)

κ (τ)〉 et |Φ(α)(τ)〉 respectivement.
Comme l’interaction résidueile V (α) est de nature 2p2h, les seuls termes pris en

considération dans la transition sont les excitations 2p2h du ket |Φ(α)〉. κ est l’index
pour ce type d’excitation, c’est-à-dire κ ≡ pp′hh′. Pour être plus précis, nous avons

V (α)|Φ(α)〉 =
∑
pp′hh′

Vmnji a
†
pa
†
p′ah′ah|Φ(α)〉︸ ︷︷ ︸
|Φ(α)
κ (τ)〉

(7.74)

où p, p′ sont des états de particules et h, h′ sont des états de trous en qui concerne
|Φ(α)〉. En termes de matrices densités, cela donne :

V (α)D(α) =
∑

κ[α] 6=α
D(κ[α])V (α)D(α) (7.75)

où nous avons utilisé les notations |0〉〈0| = D(α)(τ) et |κ〉〈κ| = D(κ[α])(τ). L’index
κ[α] 6= α signifie qu’il n’y a pas de terme diagonal. L’équation finale pour la matrice
densité est

D(α)(τ) ≈ D(α)(τ) +
∑

κ[α] 6=α
[D(κ[α])(τ)−D(α)(τ)]Pα→κ[α]τ . (7.76)

Cela donne l’évolution de la matrice exacte sous la forme d’une équation mâıtresse
avec un terme de gain et de perte par rapport à l’état initial |Φ(α)〉.

7.6.3 Equation générale de mouvement pour STDHF
Chaque trajectoire α génère son propre ensemble de 2p2h matrices densités D(α)

κ et la
matrice densité à N corps totale correspondante, à l’instant τ , est la suivante :

D(τ) =
∑
α

x(α)(0)D(α)(τ)

≈
∑
γ

x(γ)(τ)D(γ)(τ) .
(7.77)

Cette équation doit être lue avec précaution: la première ligne est une somme de
matrices densités corrélées à N corps, tandis que la seconde ligne contient uniquement
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des matrices décorrelées, additionnées de façon incohérente à l’instant τ . Dans la
Sec. 7.6.2, nous appliquons la méthode de t = 0 à t = τ . Il est possible de refaire la
même étape m fois. Le temps peut être discrétisé selon ces étapes et nous écrivons
tm = mτ . En utilisant l’Eq. (7.76), nous réécrivons D(tm) sous la forme

D(tm) =
∑
α

x(α)(tm−1)D(α)(tm)

≈
∑
α

x(α)(tm−1)
(
D(α)(tm) +

∑
κ6=α

[D(κ[α])(tm)−D(α)(tm)]Pα→κ[α]τ
)

(7.78)

≈
∑
γ

x(γ)(tm−1)D(γ)(tm) +
∑
γ,β
γ 6=β

(x(β)(tm−1)Pβ→γ − x(γ)(tm−1)Pγ→β)D(γ)(tm)τ (7.79)

où γ est un index général rassemblant à la fois α et κ[α]. De l’Eq. (7.73) nous avons
Pβ→γ = Pγ→β mais nous gardons la forme la plus générale à ce stade. Nous définissons
à présent la dérivée temporelle grossière de n’importe quelle fonction f sous la forme :

∂tf ≈
f(tm)− f(tm−1)

τ
. (7.80)

Cette définition utilisée avec D(tm−1) ≈ ∑γ x
(γ)(tm−1)D(γ)(tm−1), nous permet d’écrire

l’équation de mouvement pour D:

i∂tD =
∑
γ

x(γ)[h(γ), D(γ)] + i
∑
γ,β
γ 6=β

(x(β)Pβ→γ − x(γ)Pγ→β)D(γ) (7.81)

Le second terme peut être interprété comme :

∂tx
(γ) =

∑
β

γ 6=β

(x(β)Pβ→γ − x(γ)Pγ→β) . (7.82)

A partir de l’Eq. (7.78) nous pouvons donc écrire l’Eq. (7.81) de la façon suivante :

i∂tD =
∑
γ

x(γ)[h(γ), D(γ)] + i
∑
γ,β
γ 6=β

x(β)Pβ→γ(D(γ) −D(β)) . (7.83)

Dans ce qui suit, nous devons introduire l’opérateur de projection à 1 corps e dont la
définition dans une base de fonctions d’ondes à une particule arbitraire est

Tr{eO} =
∑
ij

Tr{a†jaiO}a
†
iaj (7.84)

où O est un opérateur à N corps. On remarque que ceci est une notation abusive, étant
donné que Tr{eO} n’est pas un nombre mais un opérateur à N corps. Les matrices
densités à 1 corps sont alors faciles à obtenir :

ρ = Tr{eD} ,
ρ(γ) = Tr{eD(γ)} .

(7.85)

Il faut aussi noter que ρ(γ) est la matrice densité d’un état pur (avec 0 et 1 comme
nombres d’occupation) tandis que ρ est une matrice densité à état mixte (avec des
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nombres d’occupation partiels). Pour tout opérateur à 1 corps, e a donc pour propriété

Tr{e[T,D]} = [T, ρ] (7.86)
et conserve la liberté de faire des permutations circulaires dans la trace. Nous définissons
h̄ comme le champ moyen correspondant à ρ = Tr{eD} et V̄ si bien que H = h̄+ V̄ =
h(γ) + V (γ).

Dérivons à présent l’équation de mouvement de la matrice densité à 1 corps. D’abord,
nous utilisons

[h(γ), D(γ)] = [h̄, D(γ)] + [V̄ , D(γ)]− [V (γ), D(γ)] (7.87)
pour faire apparâıtre h̄ comme premier terme de l’Eq. (7.83) puis nous projetons cette
équation en utilisant Tr{e...}. Il est à noter que le dernier terme de (7.87) disparâıt
alors :

V (γ)D(γ) =
∑

κ[γ] 6=γ
D(κ[γ])V (γ)D(γ)

Tr{eD(κ[γ])V (γ)D(γ)}ji = 〈Φ(γ)|a†iaj|Φ(γ)
κ 〉︸ ︷︷ ︸

0

〈Φ(γ)
κ |V (γ)|Φ(γ)〉 = 0 . (7.88)

Au total, cela donne

i∂tρ = [h̄, ρ] +K + δK (7.89)
K = i

∑
γ,β
γ 6=β

x(β)Pβ→γ(ρ(γ) − ρ(β)) (7.90)

δK =
∑
γ

x(γ) Tr{[e, V̄ ]D(γ)} . (7.91)

On peut montrer [23] que l’intégrale de collision K et la force stochastique δK sont dans
une certaine mesure équivalentes à celles trouvées dans l’Eq. (7.44) dans l’approximation
markovienne.

7.6.4 STDHF en pratique
La mise en œuvre numérique de STDHF est simple dès lors que la dérivation a été
faite. À chaque τ , cet état génère autant de matrices densité D(κ[γ]) que permettent
les transitions 2p2h d’après l’Eq. (7.73). Cet ensemble est cependant trop grand pour
être traité numériquement. L’idée de STDHF est de remplacer l’ensemble des trajec-
toires pondérées par Pβ→γτ par un nombre fixe N de trajectoires choisies de façon
stochastique avec la probabilité Pβ→γτ définie dans l’Eq. (7.73). La matrice densité
correspondante D est ainsi

D = 1
N

N∑
γ=1

D(γ)(t) (7.92)

où la même matrice D(γ) peut apparâıtre plusieurs fois dans la somme. Notons ce
nombre par N (γ). Nous avons :

N (γ)

N
−−−→
N→∞

x(γ) . (7.93)
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N est de l’ordre de quelques centaines dans nos calculs pour permettre suffisamment
de statistique. Comme chaque trajectoire doit être propagée en utilisant son propre
champ moyen, le calcul est encore lourd numériquement. Etant donné que dans un
système fini le spectre d’énergie est discret, la fonction delta de Pβ→γ est remplacée
par une fonction porte avec une largeur finie Γ, comme :

δΓ(x) =


1

2Γ if |x| ≤ Γ

0 otherwise
. (7.94)

Nous avons observé que, par souci d’efficacité numérique, nous avions besoin d’effectuer
une pré-sélection des états de transition avec une autre fonction delta de largeur Γε > Γ.
Nous prenons généralement Γε ≈ 5Γ. Cette pré-sélection se fait parmi les énergies à
une particule, c’est-à-dire pour l’état D(α) qui passe à un état D(κ[α]). Plus précisément,
la condition de pré-sélection se lit :

|εp + εp′ − εh − εh′| ≤ Γε . (7.95)

Tout ce processus est esquissé dans la Fig. 7.1 où les trajectoires sont représentées
en violet et, à chaque τ , un saut instantané se produit (en rouge), choisissant une
transition D(κ[γ]) (rouge plein) parmi toutes les transitions possibles (rouge pointillé)
avec une certaine probabilité. Il y a également un certain degré de liberté dans la

Figure 7.1: Vue schématique de la propagation temporelle de l’ensemble Stochastic
TDHF. Voir le texte pour plus de détails.

transition elle-même. En effet, toutes les transformations unitaires qui conservent
les sous-espaces des états occupés (espace h) et vides (espace p) dans une trajectoire
laissent D(γ) inchangé, mais cela change les transitions 2p2h possibles. Avant chaque
transition, nous choisissons les fonctions d’onde à une particule |ϕ(γ)

ν 〉 qui diagonalisent
le champ moyen hamiltonien h(γ) dans les espaces h et p séparément. Le but de ce
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processus est de réduire l’incertitude sur les énergies à une particule et sur l’énergie
totale E(α)

κ de la transition 2p2h.

7.6.5 Limitations de STDHF
Le régime de STDHF présenté ici présente des difficultés pour faire face aux excitations
de basse énergie (voir Chapitre 4). En effet, lorsque l’énergie d’excitation est faible,
la probabilité de transition diminue et le nombre de trajectoires doit être augmenté
en conséquence pour capturer la bonne dynamique. La différence entre le hamiltonien
de champ moyen de chacune des trajectoires devient beaucoup plus petit. D’un point
de vue numérique, le coût de la propagation de centaines de trajectoires même dans
une approche champ moyen peut devenir prohibitif. Ceci a motivé le choix d’utiliser
seulement un unique champ moyen h̄ pour la propagation. A partir de l’Eq. (7.89), nous
déduisons que ceci est équivalent à un calcul ETDHF markovien (où les fluctuations
sont négligeables) sans l’hypothèse de basse énergie qui supposait qu’il y a une base
commune à h̄ et ρ. Par conséquent, comme nous avons gardé seulement l’intégrale
collisionnelle, nous appelons cette méthode TDHF collisionnelle.

7.7 CTDHF
Comme expliqué précédemment, le hamiltonien de champ moyen de chaque trajectoire
est remplacé dans le régime CTDHF par le champ moyen commun h̄, ce qui revient à
négliger le terme [V̄ , D(γ)] dans l’Eq. (7.87). Aussi, la foce stochastique δK n’apparâıt
pas et nous obtenons seulement

i∂tρ = [h̄, ρ] +K (7.96)

comme équation de mouvement pour ρ. Avec les Eqs. (7.90) et (7.96) il est à noter
que CTDHF ne nécessite pas vraiment les trajectoires de D(γ) pour être propagé. Il
nécessite seulement la matrice densité d’“état mixte” ρ(t) et l’ensemble des matrices
de densité d’état pur ρ(γ) pour faire des transitions à chaque τ . Cet ensemble est
reconstruit d’une façon approximative qui sera expliquée plus en détail par la suite.
Dans CTDHF les transitions possibles ne sont pas échantillonnées comme dans STDHF,
mais ajoutées avec leur poids Pβ→γ. Le système est alors plus robuste pour les faibles
probabilités de transitions. Dans STDHF, l’essentiel du temps de calcul est utilisé pour
propager l’ensemble des trajectoires. Dans CTDHF, il n’y a qu’une seule trajectoire et
nous avons un temps de calcul qui peut être deux ordres de grandeur plus petit que
celui dans STDHF.

7.7.1 Représentation des états mixtes
Le régime CTDHF traite de l’état d’un système à N particules par deux représentations
équivalentes : une matrice densité ρ (mixte) à 1 corps et un ensemble E d’états de Slater
purs,

ρ =
Ω∑
ν=1
|ϕν〉wν〈ϕν | ←→ E = {|Φ(α)〉, x(α), α = 1, ...,N} = {D(α), x(α)} (7.97)
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où les x(α) sont les poids auxquels l’état de Slater |Φ(α)〉 contribue. Ce dernier s’écrit
en utilisant les nombres d’occupation

|Φ(α)〉 = |n(α)
1 , n

(α)
2 , ..., n

(α)
Ω 〉 , n(α)

ν ∈ {0, 1} ,
∑
ν

n(α)
ν = N , (7.98)

où N est le nombre total de particules physiques et Ω le nombre total de fonctions
d’onde à une particule considérées. Tous les |Φ(α)〉 sont formés sur la même base
d’états à une particule B = {|ϕν〉, ν = 1, ...,Ω} qui est aussi la base qui construit ρ.
Un |Φ(α)〉 (ou la matrice densité Dα correspondante) est ainsi uniquement caractérisé
par les vecteurs n(α) et l’ensemble par la matrice A ≡ n(α)

ν de taille Ω × N où n(α)

représente les colonnes. Nous écrirons parfois

{B, A} = {|Φ(α)〉} = {D(α)} . (7.99)

De la même façon, nous pouvons définir le vecteur X ≡ x(α) de taille N . L’ensemble
défini dans (7.97) peut alors s’écrire

E = {B, A,X} = {|Φ(α)〉, X} = {D(α), X} . (7.100)

La façon de lire {B, A,X} est représentée à la Fig. 7.2. Chaque |Φ(α)〉 correspond à

Figure 7.2: L’ensemble E est représenté par le triplet {B, A,X}. Le produit matriciel
de A par X donne les termes diagonaux de ρ qui doivent être lus dans la base naturelle
B.

une matrice densité à 1 corps ρ(α):

|Φ(α)〉 ←→ ρ(α) =
Ω∑
ν=1
|ϕν〉n(α)

ν 〈ϕν | . (7.101)

Et la connexion de E à ρ est réalisée en utilisant

ρ =
N∑
α=1

x(α)ρ(α) =
Ω∑
ν=1
|ϕν〉

N∑
α=1

xαn(α)
ν︸ ︷︷ ︸

=wν

〈ϕν | . (7.102)

La variété des états de Slater(7.98) avec distribution arbitraire de n(α)
ν est importante.

En fait, nous restreignons l’ensemble E aux |Φ(α)〉 qui restent proches de l’énergie de
ρ. Ceci sera détaillé au Sec. 7.7.3 dans le cadre du régime de progression.
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7.7.2 D’un état mixte à une somme d’états purs
Le passage de E à ρ est simple, comme vu à partir de l’Eq. (7.102). La transformation
inverse

wν −→ x(α) (7.103)
est ambiguë et possède seulement des solutions approximatives. Nous determinons le
vecteur X par une méthode des moindres carrés

χ2 = ||W − AX||2 + η||X||2 =
∑
ν

(
wν −

∑
α

n(α)
ν x(α)

)2

+ η
∑
α

(
x(α)

)2
= minimal ,

(7.104)
où W ≡ wν et η est un paramètre numérique positif proche de zéro. La minimisation
est réalisée avec la contrainte 1 ≥ x(α) ≥ 0. Le second terme pondéré par η permet de
privilégier la solution avec les coefficients x(α) distribués les plus uniformément. Trouver
X correspond à résoudre ce problème des moindres carrés non négatifs (NNLS).

Une option pour trouver X(λn) consiste à minimiser l’expression suivante :

χ2(ηn) = ||W − AX||2 + ηn||X||2 (7.105)

et à utiliser X(ηn) comme point de départ pour trouver X(ηn+1) avec ηn → 0. Cepen-
dant, ce serait numériquement trop exigeant. Par conséquent, cette solution a été
évitée.

Au lieu de cela, pendant les étapes de descente du gradient pour résoudre le
problème NNLS, η est rapidement réduit. Même si cela n’assure pas que X soit un
minimum de χ2, X reste un minimum de ||W −AX||2 et nous pouvons nous attendre
à ce que X soit proche de la solution optimale. Cependant, cette solution peut parfois
générer un ρsampled trop différent du ρ d’origine, pour produire des discontinuités dans
des observables tels que l’énergie. Pour résoudre ce problème, nous avons introduit la
matrice densité restante ρrem définie comme suit :

ρrem = ρ− ρsampled =
∑
ν

(wν −
∑
α

n(α)
ν x(α))|ϕν〉〈ϕν | . (7.106)

Nous supposerons toujours ρ = ρsampled dans ce qui suit et utiliserons uniquement ρ.
En pratique, toutes les transformations de CTDHF se feront sur ρsampled, et ρrem est
additionné seulement à la fin de l’étape CTDHF pour préserver la continuité de ρ.
L’effet de ρrem est illustré à la Fig. 7.3 sur un exemple typique qui a été présenté et
discuté plus longuement au Chapitre 4.

7.7.3 D’un pas dissipatif à l’autre
La propagation possède deux échelles de temps: à un pas de temps plus grossier τ pour
évaluer les sauts à 2 corps et un pas de temps plus fin δt(< τ) pour la propagation
TDHF. Nous considérons ici la procédure CTDHF de tm−1 = (m− 1)τ à tm = mτ .

Propagation en champ moyen

On commence à tm−1 avec un état donné ρ(tm−1) et l’ensemble E(tm−1) correspondant
à l’Eq. (7.97). On propage les fonctions d’onde à un corps par un calcul TDHF

ϕν(tm−1) −→ ϕ̃ν = Uϕν(tm−1) . (7.107)
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Figure 7.3: Exemple de discontinuités dans l’énergie totale E dans l’évolution tem-
porelle d’un système (presenté dans le Chapitre 5) propagé en CTDHF avec ρrem (lignes
magenta pleines) et sans (pointillés verts).

où U = U(tm, tm−1). Cela définit la base B̃ à partir de B(tm−1). On a aussi besoin de
la matrice A qui est constante vu que les nombres d’occupation n(α)

ν restent les mêmes
durant l’évolution temporelle. Ces nombres d’occupation sont maintenant lus dans la
base propagées ϕ̃ν . C’est équivalent de propager l’ensemble suivant :

{|Φ(α)(tm−1)〉} → {|Φ̃(α)〉} , |Φ̃(α)〉 = U |Φ(α)(tm−1)〉 . (7.108)

L’état mixte propagé est :

ρ̃ =
Ω∑
ν=1
|ϕ̃ν〉wν〈ϕ̃ν | (7.109)

avec les mêmes nombres d’occupation wν = wν(tm−1). Il faut remarquer que ϕ̃ν , Φ̃(α),
et ρ̃ sont des éléments temporaires d’un calcul préliminaire. Les véritables quantités
finales à tm sont déterminées après le pas dissipatif.

Sélection d’un ensemble ayant la bonne énergie

Les états |Φ̃(α)〉 ont pu diverger en une large distribution d’énergies différentes Ẽ(α) du-
rant la propagation. Nous voulons à nouveau réduire l’ensemble des états échantillonnés
à une bande d’énergie plus fine. Nous avons d’abord besoin d’étendre l’ensemble pour
produire suffisamment de choix d’états dans une bande d’énergie plus étroite autour de
l’énergie totale E[ρ]. Dans ce but nous partons des états |Φ̃(α)〉 et pour chacun d’entre
eux considérons les états 2p2h correspondants |Φ̃(α)

κ 〉 avec κ ≡ pp′hh′. Cela génère un
super ensemble temporaire

{B̃, Ã(S)} =
{
|Φ̃(α)

κ 〉
}
, |Φ̃(α)

κ 〉 ≡ c†p′c
†
pchch′ |Φ̃(α)〉 (7.110)
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où κ = 0 correspond à l’état 0p0h d’origine. Les opérateurs création-annihilation
correspondent à la base B̃. De ce grand ensemble, nous prélevons N états |Φ̃(γ)〉 parmi
ceux vérifiant

δE(γ) = E[ρ̃(γ)]− E[ρ̃] ≤ ΓE , (7.111)
où ΓE est un paramètre numérique pris suffisamment petit, et définit la bande d’énergie
autorisée de l’ensemble (noté par l’indice E). Le choix de |Φ̃(γ)〉 à garder dans la nouvelle
matrice Ã n’est pas évident. Nous avons essayé deux techniques :

(i) Nous gardons seulement les N premiers états avec l’énergie la plus proche de
celle d’origine. Cette procédure assure une bonne conservation de l’énergie des
états considérés. Ainsi l’ensemble Ã n’est construit que sur la base d’un critère
énergétique. χ2 et X ne sont calculés qu’une seule fois à la fin. A cause du critère
de positivité, après le calcul de χ2, voir Eq. (7.105), il s’avère que ce choix aboutit
à des valeurs nulles dans le vecteur X pour la majorité des éléments. Cela veut
dire que nous travaillons en fait avec beaucoup d’excitations qui n’interviennent
pas du tout dans le calcul de ρ. La plus grande partie de l’ensemble est alors
inutile.

(ii) On passe en revue les transitions 2p2h et on rejette immédiatement celles qui
sont trop loin en énergie. Pour celles restant, on regarde minα x(α). Lorsque le
α0 correspondant à ce minimum est trouvé, on remplace la colonne [n(α0)] dans
A et on calcule χ2 à nouveau (voir Fig. 7.4). Si χ2 diminue alors l’excitation
2p2h est acceptée. Le temps de calcul est quelque peu augmenté par rapport à
la précédente méthode mais N peut être pris plus petit et la stabilité numérique
est améliorée.

Une fois Ã = {|Φ̃(γ)〉} obtenu, les poids correspondants x̃(γ) sont calculés par ingénierie
inverse par rapport à ρ̃ comme souligné dans la Sec. 7.7.2. L’ensemble Ẽ = {|Φ̃(γ)〉, x̃(γ)}
ainsi produit devient le point de départ du pas dissipatif suivant. Dans la figure 7.5,
cet ensemble de ρ̃(γ) correspond à la première séparation en branches en violet.

Étape dissipative

Partant de |Φ̃(γ)〉 et de sa matrice densité à un corps ρ̃(γ), tous les états 2p2h corre-
spondants |Φ̃(γ)

κ 〉 (ou les matrices densités D̃(κ[γ])) sont construits en basculant deux
ñ(γ)
ν = 0 ↗ 1 et deux autres ñ(γ)

ν = 1 ↘ 0. Nous rappelons que |Φ̃(γ)〉 est un état pur
représenté par les nombres d’occupation ñ(γ)

ν qui sont soit 0, soit 1. Les transitions 2p2h
correspondantes ont maintenant un sens physique et ne doivent pas être confondues
avec les précédentes utilisées pour échantillonner ρ. On ne se concentre ici que sur un
γ spécifique. A ce stade nous n’avons pas encore modifié la fonction d’onde à un corps
ϕ̃(γ)
ν qui sont strictement les originales ϕ̃ν au pas de temps considéré.

Il y a maintenant 2 options : soit nous gardons ϕ̃ν ou nous diagonalisons le hamil-
tionien champ moyen h(γ) dans l’espace des particules et des trous comme nous le
faisons en STDHF, ce qui fournit une nouvelle base ϕ̃(γ)

ν . La première option est ap-
pelée “diagonal CTDHF” car elle agit seulement sur la partie diagonale de la matrice
densité et la deuxième option est simple appelée “CTDHF”. Sans perte de généralités
on peut considérer la seconde option qui éventuellement se réduit à diagonal CTDHF
(bien que fournissant des taux de transition différents) en remplaçant ϕ̃(γ)

ν par ϕ̃ν .
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Figure 7.4: Représentation schématique du choix des états |Φ(α)〉 pour créer Ã à partir
de A et Ã(S). Cela est répété autant de fois qu’il y a d’états dans Ã(S).

Figure 7.5: Vue schématique de l’évolution temporelle de la méthode du collisionnel
TDHF. Voir le texte pour les détails
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Pour notre état |Φ̃(γ)〉 en particulier on évalue les taux de transition P
(γ)
pp′hh′ ≡ P (γ)

κ

definis dans l’Eq. (7.73) et le complémentaire P (γ)
0 = 1 −∑κ P

(γ)
κ . La fonction delta

qui apparâıt dans le taux de transition P (γ)
κ est remplacée par une sélection en énergie

des transitions séparée en deux étapes comme en STDHF (voir Sec. 7.6.4). Une fois
l’ensemble des états accessibles |Φ̃(γ)

κ 〉, on calcule ρ(γ):

ρ(γ) = P
(γ)
0
∑
ν

ñ(γ)
ν |ϕ̃(γ)

ν 〉〈ϕ̃(γ)
ν |+

∑
κ

P (γ)
κ

∑
ν

ñ(γ)
ν,κ|ϕ̃(γ)

ν 〉〈ϕ̃(γ)
ν | (7.112)

où ñ(γ)
ν,κ =


1 if ν = p or ν = p′

0 if ν = h or ν = h′

ñ(γ)
ν otherwise

.

Cette étape est représentée dans la Fig. 7.5 par l’embrachement rouge partant d’une
ligne violette qui représente un γ particulier. Une fois ceci fait pour chaque γ, on ajoute
de manière incohérente les différents ρ(γ) comme dans l’Eq. (7.102) pour obtenir le ρ(tm)
final avec dissipation:

ρ =
N∑
γ=1

x̃(γ)ρ(γ) =
Ω∑
ν=1
|ϕν(tm)〉wν(tm)〈ϕν(tm)| . (7.113)

A droite du signe égal, B(tm) = {|ϕν(tm)〉} est obtenue par diagonalisation du nouveau
ρ. Avant de continuer, on doit définir la nouvelle matrice A des nombres d’occupation
à utiliser comme point de départ pour notre ensemble au pas suivant. La solution
la plus simple est de recycler l’ensemble de nombres d’occupation Ã = ñ(γ)

ν et de les
combiner avec B(tn). On peut finalement commencer un nouveau cycle et propager
jusqu’au prochain pas dissipatif.

7.8 Conclusion
Dans cette partie, les bases des théories utilisées dans cette thèse ont été dérivées.
Les trois approches présentées ici (CTDHF, STDHF, ETDHF) sont réductibles à une
équation de Boltzmann (ou de Boltzmann-Langevin pour STDHF) avec des approxima-
tions différentes STDHF et ETDHF ont déjà été étudiées dans le passé dans différents
travaux [62, 61, 59]. CTDHF est une nouvelle méthode à mi-chemin entre STDHF et
ETDHF. On s’attend que CTDHF s’accord avec les résultats de STDHF (les fluctu-
ations en moins) à de hautes énergies d’excitations et d’avoir le même comportement
que ETDHF à basse énergie.
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This thesis presents various quantal approaches for the exploration of dynamical processes in mul-
tielectronic systems, especially after an intense excitation which can possibly lead to dissipative effects.
Mean field theories constitute useful tools in that respect. Despite the existence of numerous works
during the past two decades, they have strong difficulties to capture full 2-body correlations. Ther-
malization is one of these effects that stems from electron-electron collisions. After an introductory
chapter, we present in Chapter 2 the formalism of the various schemes studied in this thesis toward
the description of such an effect by including collisional terms on top of a mean field theory. These
schemes are called Stochastic Time-Dependent Hartree Fock (STDHF), Extended TDHF (ETDHF)
and Collisional TDHF (CTDHF). The latter scheme constitutes in some sense the main achievement
of this thesis. The numerical realizations of each scheme are also discussed in detail. In Chapters 3,
4 and 5, we apply the approaches discussed in Chapter 2 but in various systems. In Chapter 3, we
first explore a rare reaction channel, that is the probability of an electron to attach on small water
clusters. Good agreement with experimental data is achieved. In Chapter 4, a model widely used
in nuclear physics is exactly solved and quantitatively compared to STDHF. The time evolution of
1-body observables agrees well in both schemes, especially what concerns thermal behavior. However,
to allow a good description of the dynamics, one is bound to use a large statistics, which can constitute
a hindrance of the use of STDHF in larger systems. To overcome this problem, in Chapter 5, we go
for a testing of CTDHF developed in Chapter 2 in a one-dimensional system (and without electronic
emission). This system consists in electrons in a jellium potential with a simplified self-consistent
interaction expressed as a functional of the density. The advantage of this 1D model is that STDHF
calculations are numerically manageable and therefore allows a direct comparison with CTDHF cal-
culations. In this proof of concept study, CTDHF compares remarkably well with STDHF. This thus
paves the road toward an efficient description of dissipation in realistic 3D systems by CTDHF.

Cette thèse présente différentes approches quantiques pour l’exploration de processus dynamiques
dans des systèmes multiélectroniques, en particulier après une forte excitation qui peut aboutir à des ef-
fets dissipatifs. Les théories de champ moyen sont un outil utile à cet égard. Malgré l’existence de nom-
breux travaux réalisés ces deux dernières décennies, ces théories peinent à reproduire complètement
la corrélation à deux corps. La thermalisation est un des effets des collisions électron-électron. Après
un chapitre introductif, on présentera dans le chapitre 2 le formalisme de plusieurs méthodes étudiées
dans cette thèse, ayant pour but la description de ces effets en ajoutant un terme de collision au champ
moyen. Ces méthodes sont appelées Stochastic Time-Dependent Hartree Fock (STDHF), Extended
TDHF (ETDHF) et Collisional TDHF (CTDHF). Cette dernière méthode représente d’une certaine
façon le résultat principal de cette thèse. L’implémentation numérique de chacune de ces méthodes
sera aussi examinée en détail. Dans les chapitres 3, 4 et 5, nous appliquerons à différents systèmes les
méthodes présentées dans le chapitre 2. Dans le chapitre 3, nous étudions d’abord un canal de réaction
rare, ici la probabilité d’un électron de s’attacher à un petit agrégat d’eau. Un bon accord avec les
données expérimentales a été observé. Dans le chapitre 4, un modèle fréquemment utilisé en physique
nucléaire est résolu exactement et comparé quantitativement à STDHF. L’évolution temporelle des
observables à un corps s’accorde entre les deux méthodes, plus particulièrement en ce qui concerne
le comportement thermique. Néanmoins, pour permettre une bonne description de la dynamique, il
est nécessaire d’avoir une grande statistique, ce qui peut être un frein à l’utilisation de STDHF sur
de larges systèmes. Pour surpasser cette difficulté, dans le chapitre 5 nous testons CTDHF, qui a été
introduit dans le chapitre 2, sur un modèle à une dimension (et sans émission électronique). Le modèle
se compose d’électrons dans un potentiel de type jellium avec une interaction auto-cohérente sous la
forme d’une fonctionnelle de la densité. L’avantage de ce modèle à une dimension est que les calculs
STDHF sont possibles numériquement, ce qui permet une comparaison directe aux calculs CTDHF.
Dans cette étude de validité du concept, CTDHF s’accorde remarquablement bien avec STDHF. Cela
pose les jalons pour une description efficace de la dissipation dans des systèmes réalistes en trois
dimensions par CTDHF.
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