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Abstract

Minimal partition problems consist in finding a partition of a domain into a given number of
components in order to minimize a geometric criterion. In applicative fields such as image processing
or continuum mechanics, it is standard to incorporate in this objective an interface energy that
accounts for the lengths of the interfaces between components. The present work is focused on the
theoretical and numerical treatment of minimal partition problems with interface energies. The
considered approach is based on a I'-convergence approximation and duality techniques.

Résumé

Les problemes de partition minimale consistent & déterminer une partition d’un domaine en un
nombre donné de composantes de maniére a minimiser un critere géométrique. Dans les champs
d’application tels que le traitement d’images et la mécanique des milieux continus, il est courant
d’incorporer dans cet objectif une énergie d’interface qui prend en compte les longueurs des interfaces
entre composantes. Ce travail est focalisé sur le traitement théorique et numérique de problemes de
partition minimale avec énergie d’interface. L’approche considérée est basée sur une approximation
par I'-convergence et des techniques de dualité.
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Résumé en francais

Description du probleme

Considérons une partition d’'un domaine borné D de R? par des ensembles relativement fermés
Qy,...,QN appelés phases qui peuvent s’intersecter seulement a leurs frontieres:

D = U;-vzlgj, et QL ﬂQj = 391 ﬂan NnD pour 7 7é j
On appelle I';; I'interface séparant €; et € :
I; =0Q;N0Q; N D pour i # j,

avec la convention supplémentaire I';; = () (voir Figure 0.1 pour une illustration).
Le probléme modele de partition minimale que nous étudions, défini sur les partitions de D, est:

N
o1, 2 [ N O ), 00

ol g1,...,9n € LY(D) et E(Q,...,Qn) est Pénergie totale d’interface. Cette énergie est choisie
de la manieére suivante:

1
E(Ql,... ;QN) = 5 Z aijE(Fij), (002)
1<i<j<N
ou «v;; est un coefficient appelé tension de surface associé a I';; pour 4,5 =1,..., N, et £(T';;) est la

longueur de I';;. Il est raisonnable de supposer que les tensions de surface satisfont a;; = a; > 0
lorsque i # j et a;; = 0. Nous noterons par la suite

SN = {(Olij) S RNXN,CEij = Qj; > Osiz #j et a;; = 0}

Figure 0.1: Partitionnement d'un domaine par des ensembles {2; qui s’intersectent seulement a
leurs frontieres. L’interface I';; sépare €; de ;.
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Afin de garantir la semi-continuité inférieure de I’énergie d’interface, il est nécessaire et suffisant de
supposer que les tensions de surface satisfont I'inégalité triangulaire [7]:

oy <oy oy VLG k. (0.0.3)
Cette condition est aussi discutée dans [19,21,35]. Nous travaillerons donc surtout dans la classe

de tensions de surface:

Tn = {(ij) € Sy = @iy < Qg + g Vi, j k)

Du point de vue mathématique, I’étude de la semi-continuité inférieure de (0.0.2) nécessite de se
placer dans le cadre des ensembles de périmetre fini [9,38]. L’énergie totale d’interface s’écrit alors

1

- Z Oéinl (8]\/192‘ N 8MQJ N D) 5 (004)
1<i<j<N
ou Q4,...,Qy sont maintenant supposés étre des ensembles de périmetre fini dans D tels que

D = UN Q; & un ensemble Lebesgue négligeable prés, [2; N Q;| = 0 pour tout i # j (| - | désigne la
mesure de Lebesgue), I';; = dpQ; N Op 2 N D pour tout 4, j, avec Oas la frontiere au sens de la
théorie géométrique de la mesure (ou frontiere essentielle) de §2; dans D, et H! est la mesure de
Hausdorff (unidimensionnelle) sur R2.

Nous noterons Per le périmeétre BV, i.e., si A C D est de périmetre fini dans D, Per(A) =
H? (61\/[14 n D)

Motivations

Traitement d’images

Le traitement d’image concerne principalement deux types de problemes: la restauration et la
segmentation. Dans ce deuxiéme cas nous voulons identifier les composantes d’une image, telles que
des régions présentant une homogénéité de texture, d’intensité, de couleur, etc. Dans la classe de la
segmentation d’image, les problemes de classification, ou un nombre donné de composantes doit
étre identifié, sont étroitement liés au probleme (0.0.1).

Science des matériaux

Un matériau polycristallin est constitué d’une réunion de grains, qui sont de petits morceaux
monocristallins. Beaucoup de métaux et céramiques sont de ce type. Entre deux grains €2; et €,
le décalage entre les orientations cristallographiques peut étre modélisé par une énergie du type
(0.0.2).

Contexte

Dans [12,13], une approximation du périmétre est obtenue & 'aide de la famille de fonctions:
F.:L*(D,[0,1) — R

. é /D (Low)(1 — u)da, (0.0.5)

ot L.u est la solution (faible) du probléme aux limites d’inconnue v € H'(D):

{—52AUE +v. =u dans D (0.0.6)

Opve =0 sur dD.
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Les auteurs prouvent que E. I'—converge, quand e tend vers 0, vers la fontionnelle

F(u) _ %Perp({u =1}) siue BV(D,{0,1})
400 sinon,

fortement dans L'(D).
De plus, par transformation de Legendre-Fenchel, on obtient la formulation

~ . 1
F.(u)= inf ) {sV’u%Z(D) Tz <||’U|%2(D) +/ u(l — 2Lsu)d1‘>}
D

u€H(D

qui convient bien & Putilisation d’algorithmes de minimisations alternées. La fonctionnelle F.
est utilisé dans [12] pour le partitionnement optimal multiphase avec des tensions superficielles
uniformes, i.e., a;; = a. Dans ce cadre, les auteurs prouvent des résultats de convergence et
développent des algorithmes d’optimisation pour la classification et le défloutage d’images.

Travail effectué

Le but de cette thése est d’étendre les résultats et les algorithmes de [12] au cas de tensions de
surface non uniformes. On définit la fonctionnelle G, : L>°(D, [0,1]) x L*=(D, [0,1]) — R par

1
Gulisy) = [ (Lawugds it j

ot L.u; est la solution faible de (0.0.6). On definit aussi la fonctionnelle

1
57—[1(31\/191 NoMS N D) siug,uj € BV(D,{0,1}), u; = Xa,,uj = Xa,,

+oo sinon.

G(ui,uj) =

Les problemes mathématiques abordés sont:
e la convergence ponctuelle de G, vers G,

e la semi-continuité inférieure de

1
5 > i H (0 N0, N D)
1<i<j<N

sous la condition (0.0.3) et sa relaxation,

e la I'-convergence, i.e.,

1
Z aijGE(ui7uj) i> 5 aijG(ui,uj),

1<i<j<N 1<i<j<N
e 1’équi-coercivité de

> i Ge(us,uf).

1<i<j<N

Sur le plan numérique sont considérées:
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e la résolution numérique efficace de (0.0.6),
e la conception d’algorithmes d’optimisation pour résoudre
N

1
min Z(gi,ui>+g Z a;;Ge(uiuj) o, (0.0.7)

(u1,-un)€en | i35 1<i<j<N

avec & n défini par
- N
En = {(uh...,uN) e L>(D,[0,1))", Zul = 1} )
i=1

Des applications variées sont étudiées, en particulier, nous examinons des probléemes de partition-
nement minimal multiphase, y compris la classification supervisée ou automatique d’images ou le
défloutage.



Chapter 1

Introduction

1.1 Problem description

Consider a partition of a bounded domain D of R? into relatively closed subsets Q,...,Qy
called phases that may intersect only through their boundaries:

D =U},Q;, and Q;NQ; = 09Q; NI ND fori# j.
Denote the interface separating 2; and €2; by I';;:
Fij :891089_701) fOI‘i?éj,

with the additional convention I'; ; = 0 (see Figure 1.1 for an illustration).
The model problem of minimal partition we study, defined on partitions of D, is:

min Z/Q‘gi(x)dx—i—E(Ql,...,QN), (1.1.1)

where g1,...,g98 € LY(D), and E(Q4,...,Qy) is the total interface energy. This energy is chosen
in the following way:

E(Ql,...7QN) = = Z aijLength(Fij), (112)
1<i<j<N

Figure 1.1: A partition of a domain into sets €; that intersect only at their boundaries. Interface
I';; separates €2; from ;.



1.2. Motivation

where «;; is a coefficient called surface tension associated with I';; for 4,5 = 1,...,N. It is
reasonable to assume that the surface tensions satisfy a;; = a;; > 0 whenever ¢ # j and «;; = 0.
We will denote in the sequel

SN = {(Cvij) € RNXN,Oéij = Qj; > 0if ¢ #] and «;; = 0}

In order to guarantee the lower semicontinuity of the N—phase perimeter, it is necessary and
sufficient to assume that the surface tensions satisfy the triangle inequality [7]:

ij < ik + agg Vi, g,k (1.1.3)

This condition is also discussed in [19,21,35]. We will therefore mostly work with the class of
surface tensions:
Ty = {(a;;) € Sy : vij < oy + oy Vi, 5, k} .

From the mathematical viewpoint, the study of the lower semicontinuity of (1.1.2) requires to
rephrase it in a suitable setting, namely the space of sets of finite perimeter [9,38]. In this setting,
the total interface energy can be written as

1
5 Z Oéierl (6MQz N 6MQJ N D) R (1.1.4)
1<i<j<N
where Q4,...,Qy are now assumed to be sets of finite perimeter in D such that D = valei up

to a Lebesgue negligible set, |€2; N Q;| = 0 for all ¢ # j (denoting as | - | the Lebesgue measure),
Ti; = 0mQ NOMQ,; N D for all ¢, j, with Ops is the measure theoretical (or essential) boundary of
Q; in D, and H! is the one-dimensional Hausdorff measure on R%. We refer to [9,38] for details on
functions of bounded variation BV and sets of finite perimeter. We shall denote as Per the BV
perimeter, i.e., if A C D has finite perimeter in D we denote Per(A) = H*(0pr AN D). In the BV
context, the lower semicontinuity of the perimeter holds with respect to the strong convergence in
L' of characteristic functions of sets.

1.2 Motivation

1.2.1 Image processing

Image processing concerns two main types of problems. Firstly, one is interested in image
restoration, in order to remove the causes of the deterioration of an image. Besides, questions
regarding image segmentation are addressed: we want to identify the components of an image, such
as texture regions, intensities, colors and so on.

Within the class of image segmentation, we recall the problems of image classification, where a
given number of components have to be identified.

In the standard greyscale image processing problem, one looks at f = Au + v, assuming
f:Q —[0,1] as the observed image, @ as the undamaged one, A as a mask operator (blur kernel
or a projection operator away from the missing parts of u), v as the noise, and one would like to
obtain a segmented version or a continuous restoration of the original image u. These classes of
issues are linked to ill-posed minimization problems of form

in J(u):=||Au —
uéﬂl}?m (u) [| Au fHH(m

where the difficulties arise both since unbounded variations in the solution could arise from small
perturbations in the data and since the convexity of the problem is not guaranteed. Complications



1.3. Mathematical and numerical methods

are increased if we are interested in a simultaneous segmentation and restoration problem. We
remark that an objective assessment of segmentation algorithms is difficult to find. The main
reason is that there is no unique ground-truth classification of an image with respect to which
the output an algorithm can be compared. In the literature many models for restoration and/or
segmentation of image have been developed, such as the Mumford-Shah [9,42] and the TV-L? and
TV-L! functionals [22,48].

Nowadays, the problem

min J(u) + a|Du|(),
u€H(Q)

is considered to obtain solutions which preserve the edges and are also smooth enough. The notation
| Du|(€2) refers to the total variation of u in €2, where Du is its distributional derivative, that is to
say a measure made of a concentrated part on the edges and of a diffuse one (that is Vu) outside
them, while « provides a weight on the total variation of the image. We refer to [9] for more details.

There are methods which use anisotropic variants of total variation [28,29,34], while others
study segmentation problems through moving interfaces, like level-sets [24,36,44] or snakes [5]. A
still different approach is developed by interpreting the image as a graph on which a minimal cut
problem is faced [26,49, 51].

1.2.2 Material sciences

A polycrystalline material is made up of a union of lots of grains, which are small single crystal
pieces. Lots of metals and ceramics are of this type. In model (1.1.2), single grains are presented
as connected components of €2;. Looking at two grains {); and ; , the mismatch between the
crystallographic orientations of them influences a;; which is the surface tension of the interface I';;
between the two grains. Actually, also the normal n;; to I';; affects the grains boundary energy,
even if throughout we will ignore this dependence. The grain boundary network of polycrystalline
materials determines important physical features of them such as conductivity and yield strength.
Hence, the simulation of these boundaries subjected to industrial processes is an interesting issue.
In some framework, a constant dependence of the energy density from misorientation has arisen,
for large enough misorientations. In such cases, a good description of the movement of the
grain boundary is achieved in model (1.1.2) taking all equal surface tensions «o;; = 1. Anyway,
other phenomena require the full generality of model (1.1.2), such as grain boundary character
distribution [47]. Some authors [31-33], in the equal surface tension case, managed to obtain large
scale simulations of grain growth and recrystallization in 3D through a diffusion generated motion,
using signed distance functions to represent phases.

In [19,35] a simulation of the evolution of the grain boundary is realized allowing the surface
tension parameters a;; to be different.

1.3 Mathematical and numerical methods

1.3.1 Relaxation

In the relaxation framework, we have an optimization problem such as

ulg( J(u) (1.3.1)

for which a solution may not exist. Hence we enlarge the set X into a bigger one X* and we
introduce the functional J* on X* such that J‘*; = J and also:

1. The "relaxed" problem inf,«¢x« J*(u*) has a solution.

9



1.3. Mathematical and numerical methods

2. infx J = minx- J*.

3. The minimization sequences of the problem (1.3.1) accumulate towards solutions of the
"relaxed" problem.

4. If the initial problem has a solution, it is also a solutions of the "relaxed" problem.

We usually enlarge X to X in a way such that X is dense in X* is the smallest possible space with
these properties. In order to do that, we have to well understand the behaviour of the minimizing
sequences of the initial problem.

To be sure of having a solution, we ask that X* is compact and J* is lower semicontinuous. To
gain other properties we also demand that if (u,) C X converge to u* € X* then

J*(v*) < liminf J(uy,) (1.3.2)
and that for every u* € X* there exist a sequence (u,) C X converging to u*, so that
J*(u*) = liminf J(uy,). (1.3.3)

It can be remarked that, actually, we do not impose that J* coincides with J on X and this enables
us to consider as J* the lower semicontinuous envelope (or closure) of J, i.e.

J*(w*) = inf{lim inf J(uy,), u, = u} = clJ(u). (1.3.4)

This choice clearly implies the previous properties (1.3.2) and (1.3.2). For more details, see [14,37].

1.3.2 Convexification

The convex envelope, denoted by conv f, of a function f: X — RU {+oo} U {—0c0}, is defined
as the greatest convex function majorized by f, or equivalently as the greatest convex function
whose epigraph contains conv(epif), i.e.,

(convf)(z) = inf{a : (x,a) € conv(epif)}.
The link between the convex envelope of a function f and its Legendre-Fenchel transform is made

explicit by Theorem 2.42 (Fenchel-Moreau-Rockafellar theorem), detailed in Section 2.4.
In [23] Chambolle, Cremers, and Pock define the following (convex) function

F:BV(D,RY) — [0,400)
1 N
v QZ;/DDW,

and they extend it to L?(D,RY) by imposing F = +oo if v ¢ BV (D,RY). Then, they introduce
the function J : L2(D,RY) — [0, +o0] as

400 otherwise.

J N ovi=1ae.
() = {]:(v) if ve BV(D,{0,1}), Si_ v =1 ’

A reformalized version of the minimal partition problem is

min  J(v)+ /D v(x) - g(z)de, (1.3.5)

vEL2(D,RN)

10



1.3. Mathematical and numerical methods

where g = (g1,...,gn) € L'(D,RY), which is nonconvex, because, even if the function F is convex,
the domain of J is not convex.
Anyway the authors already know that problem (1.3.5) has a solution. The strategy is to look
at the convex envelope of J (and so also of (1.3.5) because of the linearity of the other term).
By letting, for v € L?(D,RY)

T (w) = sup /D v(x) - w(x)dx — J(v)

veL2(D,RN)

be the Legendre-Fenchel conjugate of 7, and then, again, v € L?(D,RY)

J*™(v) = sup / v(z) - w(x)dx — T (w)
weL?(D,RN)JD
be the Legendre-Fenchel conjugate of J*, the function J** is the convex, lower-semicontinuous
envelope of J (see [30,46]).
On the one hand, they remark that the minimizers of problem (1.3.5) are also minimizers of

. *%
1)6Lg(1g17RN) T+ /D v(z) - g(x)dz. (1.3.6)
On the other hand, minimizers of (1.3.6) have to be convex combinations of minimizers of the
problem (1.3.5).
Anyhow, the function J** cannot be always made explicit. For this reason, the authors use a
notion of "local" convex envelope, which can be written roughly in a particular form and can be
easier implemented. For more details, see [23].

1.3.3 TI'-convergence

The notion of I'-convergence was introduced in a paper by E. De Giorgi and T. Franzoni in
1975 [27]. It has been largely used in the calculus of variations in particular in homogenization theory,
phase transitions, image processing, and material science. This type of convergence, together with
compactness (equicoercivity), guarantees us the convergence (up to subsequences) of minimizers
of the limiting functional. This converging property is not ensured by pointwise convergence,
which is quite different from the I'-convergence. The I'-convergence assures also the convergence
of the minimum energy of F. to that F. For this reasons, this type of convergence is said to be a
variational convergence.

The fundamental theorem of I'-convergence, is summarized by the implication

I" — convergence + equi-equicoercivity = convergence of minimum problems.

One of the first illustration of this concept was the work of Modica, Mortola [41]. In the
pioneering work by Modica and Mortola [40] (see also [1]), it is proved that the functional
efp|IVul+ 1 [, W(u) ifueHYD),
+o0 otherwise.

Fra(u) = {

where W is a double well potential, converges as ¢ — 0 in a sense to be precised, to the perimeter
functional

cPerp({u=1}) if uwe BV(D,{0,1}),

400 otherwise,

FMM(U) = {

11



1.3. Mathematical and numerical methods

where ¢ = 2 fol VW (x)dz.

The original motivation for Modica and Mortola was a mathematical justification of convergence
for some two phase problem based upon a model by Cahn and Hilliard [25,41].

Later, this procedure gave rise to a method to perform a numerical approximation of a wide
class of variational problems. Indeed, in order to minimize numerically the geometrical functional
given by the perimeter, one may find it convenient to minimize the more regular functionals Fy;,,,
which are of elliptic type. This idea was used by many authors in the last two decades, with quite
satisfactory results [4,15,19,45].

In [11] and [10], Ambrosio and Tortorelli proposed two elliptic approximations to the weak
formulation of the Mumford and Shah problem. The approach they presented in [11] is simpler
than the approximation proposed in [10]. Indeed in [11], the strategy of Ambrosio and Tortorelli

uses the particular potential W (u) = 1(1 — u)? and develops the approximation as follows.
Let X = L?(D)? and let us define

1— 2
Fir(u,v) :/ (“—Q)Qdﬂi-i-a/ UQ\VU\de—&-b/ (€Vv|2—|—(v)) dr
D D 4e

D
if (u,v) € WH3(D)2, 0 <wv <1, and Fir(u,v) = +oc otherwise.

Let us denote SBV (D) as the subset of BV (D) whose functions are such that their gradient
measure have no Cantor part in the Lebesgue decomposition.

The authors also define the limiting Mumford-Shah functional,

Fups(,0) = {fD (u—g)°dz+a [, |Vul?de +bHYS,) if ue SBY(D), v=1,
+o00 otherwise.

It can be shown that the functional F§, I'-converges to Fys as € tends towards 0 (in a decreasing
way) in L?(D). Moreover, F§; admits a minimizer (u.,v.) such that, up to subsequences, u.
converges to some u € SBV(D), which is a minimizer of Fass(u, 1), and such that inf F'§(ue, ve)
converges to Fyg(u,1).

In [2], Alberti and Bellettini studied the asymptotic behaviour as € — 0, of the nonlocal models
for phase transition described by the scaled free energy

1

Fip(u) = 1e

’ / 241 1 wlz)dx
/DXD T(2 — 2)ula’) — ula)2da’dz + E/DW( (2))da, (1.3.7)

where u is a scalar density function, W is a double-well potential which vanishes at +1, J is a
nonnegative interaction potential and J.(h) := e~V J (h/e). They proved that the functionals F§ 5
converge in a variational sense to the anisotropic surface energy

Fap(u) := /Su o(vy),

where u is allowed to take the values 41 only, v, is the normal to the interface Su between the
phases {u = +1} and {u = —1}, and o is the surface tension.

In [35], Esedoglu and Otto introduced an approximation of the weighted surface area functional
in dimension d

N
EOE(Ql7"'7QN) = ZaijArea(aQi ﬂan). (138)
i#]
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1.3. Mathematical and numerical methods

In the spirit of (1.3.7), the idea to approximate the surface area of the boundary (9€; N 0€;) in
(1.3.8) by the term:

1
Area(0Q; N 0;) ~ g/XQiGE * Xq,dr,

where

G*(z) = %ei =y
(4dme2)2

Therefore the approximate energy of (1.3.8) becomes:

N
1
ESE(Ql7-'-aQN) = gZaij/XQiGE *XdeJ’J.
7]

In [12,13], the authors use different techniques for several reasons: indeed, the functional of
Modica-Mortola does not accept the characteristic functions, and moreover the derivative with
respect to u involves —Aw, which can yield a high number of iterations in optimization processes
with fine grids (CFL condition). A gradient-free perimeter approximation is used with the following
functional:

F.:L*(D,[0,1) — R

u é/D(LEu)(l—u)dx, (1.3.9)

where L.u is the (weak) solution of the boundary value problem with unknown v € H'(D):

{€2AU€ +v. =u in D, (1.3.10)

Opve =0 on0D.

They prove that the functionals F. T'—converge, when e — 0, to the functional

Flu) = %Pera({u =1}) if ue BV(D,{0,1}),

400 otherwise,

strongly in L(D).
In [12,13], the authors also prove equicoercivity. In addition, the Legendre-Fenchel transformation
provides

i _ 1
Rt = int ) {elVolaoy + 2 (1ol + [ ult - 22a0d0) }.
D

uweEH (D

which fits well with the use of alternating algorithms. The functional F. is used in [12] for
multiphase optimal partitioning with uniform surface tensions, i.e., a;; = a. In this framework, the
authors prove convergence results and develop optimization algorithms for image classification and
deblurring.

13
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1.4 The present work

The aim of this thesis is to extend the results and algorithms of [12] to interface energies with
general surface tensions c;;. We define the functional G, : L>°(D, [0, 1]) x L*(D, [0,1]) — R by

1
Ge(ui,uj) = f/ (Lew)ujdr Vi # j,
D

3

where L.u; is the (weak) solution of (1.3.10). We also define the functional

1., .
G(ui,uj) — iH (aMQZmaJWQJ ﬂD) 'Lf Uiy Uj € BV(Da {Oal});uz = XQi> Uj = XQ;»
+00 otherwise.

where ;,; are two subsets of finite perimeter of D.
We address the following theoretical issues:

e pointwise convergence of G, to G,

e lower semicontinuity of
1
5 > iR (0m N0 N D)
1<i<j<N
under the condition (1.1.3) and relaxation,
e ['-convergence, i.e.,

r 1
Z Oéz‘st(Ui,Uj) e 5
1<i<j<N 1<i<j<N

ijG(ug, uy)

in appropriate space,

e equicoercivity of

Z aing(uf,uj).

1<i<j<N
The numerical issues are

e efficient numerical solution of (1.3.10),
e design of optimization algorithms to solve

N
1
min _ Z(gi,ui>+g Z a;;Ge(ui uj) o, (14.1)

(u1,-un)€en | i35 1<i<j<N

with £y defined by
~ N
e {(“1"-~’UN> e L=(D, 0, 1), 3 us = 1}.
i=1

Various applications are studied, in particular we look at binary and multilabel minimal partition
problems, including supervised or automatic image classification and deblurring.
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1.5 Thesis outline

The subsequent chapters of the thesis are organised as follows:

Chapter 2

In chapter 2 we introduce and present all the mathematical tools needed to develop the theory
of our procedure: in section 1 we recall some basic functional analysis, definitions and results.

In section 2 we introduce some basic geometry measure theory, while in section 3 we recall the
definition of I'-convergence as well as some properties of it.

The Legendre-Fenchel transform is introduced in section 4, where also the Fenchel-Moreau-
Rockafellar theorem is stated.

Section 5 recalls the Lax-Milgram theorem and classical notions on homogeneous elliptic
Neumann.

The operator L. which plays a central role, is introduced with some properties in section 6.

Chapter 3

Chapter 3 is devoted to the regularization approach: the classical Modica-Mortola theorem
is recalled, as well as the gradient-free perimeter approximation. Our approach is based on an
approximation of interface energy in which the functionals G. converges pointwise to G.

We provide then numerical validation for such a regularization approach (see Section 3.3.2),
as well as some numerical examples. The notions of lower semicontinuity and equicoercivity are
discussed. Theorem 3.11 states important results concerning the equicoercivity of functionals.

Chapter 4

In chapter 4 we focus on the surface tensions o;;. We show that the interface energy can
be rewritten as a linear combination of perimeters and we are able to compute the coeflicients.
Lemmas 4.1, 4.2 and 4.3 are technical results which allow us to obtain new coefficients that lead
to better properties. Moreover, an algorithm which searches for a conical combination provides
us new coefficients. Theorem 4.4 guarantees the existence of positive coefficients assuming that
N = 3,4 and the surface tensions «;; satisfy the condition (1.1.3). Theorem 4.5 ensure us that if
the new coefficients are nonnegative, then the surface tensions ¢, satisfy the condition (1.1.3) for
N =3,4,5.

The positiveness of the coefficients implies I'—convergence, as shown in Theorem 4.8. The sign
of the coeflicients lead us to choose a strategy among several optimization algorithms, such as

e primal algorithm, with a variant that incorporates a volume constraint,

e primal dual algorithm, which relies on Theorem 4.9,

e saddle point algorithm.
We show that the saddle point and primal algorithms are in fact identical under some assumptions.
In addition, some examples are described, using the primal algorithm with a volume constraint.

Finally, we show an example where the surface tensions ¢;; does not satisfy the condition (1.1.3).

15
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Chapter 5

Chapter 5 concerns an algorithm based on Legendre-Fenchel duality, which depends on the
conditional negative definiteness of the matrix @ of the coefficients (c;;). In Theorem 5.4 we
provide also a sufficient condition for the conditional negative definiteness of the coefficient matrix
Q@ if N = 3,4. The converse of this theorem is not true, that is to say the necessary condition does
not hold, as shown by Remark 5.3. Moreover, in Remark 5.4 an example with N > 5, for which the
theorem is not true, is presented. Then we present the dual formulation of the interface energy
by Legendre-Fenchel transformation, both in the continuous framework and in the discrete one.
Assuming that @ is conditionally negative definite, Theorem 5.7 and Corollaries 5.8, 5.9 allow us to
obtain an alternating algorithm to solve the minimal partition problem. Other numerical examples
are provided. We compare the primal algorithm and the algorithm based on Legendre-Fenchel
duality.

Chapter 6

In this chapter we begin by introducing the two technical Lemmas 6.2 and 6.3. These results
give us the framework on which we can apply the projected gradient algorithm. We focus on the
applications of this algorithm to

e image deblurring of greyscale image,
e image deblurring of colour image,
e medical imaging by Radon transform.

In the end, we present some numerical examples.
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Chapter 2

Mathematical tools

In the proof of our results we will need different theoretical tools, which are recalled in this
chapter.

2.1 Basic functional analysis

All the results of this section, except for Lemma 2.24, Corollary 2.25 and Theorem 2.27, are
detailed in [3].

2.1.1 Some results from integration

Let D be an open set of RV equipped with the Lebesgue measure. We define by L?(D) the
space of measurable functions which are square integrable in D. Under the scalar product

(f.g)e = /D f(@)g(x)da,

L?(D) is a Hilbert space. We denote the corresponding norm by

1/2
1 fllz2(py = </Df(a:)|2dx) .

We denote by C°(D) (or D(D)) the space of functions of class C* with compact support in D.

Theorem 2.1. The space C2°(D) is dense in L?(D), that is, for all f € L*(D) there exists a
sequence frn, € C(D) such that

ngg-loo ”f - anLz(D) = 0.

Corallary 2.2. Let us take f € L?(D). If for every function ¢ € C°(D), we have

then f(x) =0 almost everywhere in D.

17



2.1. Basic functional analysis

2.1.2 Weak differentiation

We will define the concept of the weak derivative in L?(D).

Definition 2.3. Let v be a function of L?(D). We say that v is differentiable in the weak sense
in L2(D) if there exist functions w; € L*(D), for i € {1,...,N}, such that, for every function
¢ € C(D), we have

[ vzt @ie = [ wi@otd.

Each w; is called the ith weak partial derivative of v and is written from now on as 6‘v .
Z;

Lemma 2.4. Let v be a function of L?>(D). If there exists a constant C > 0 such that, for every
function ¢ € C2°(D) and for all indices i € {1,..., N}, we have

9¢
/D v(x) oz, (z)dx

then v is differentiable in the weak sense.

< Cllollz2(p),

Definition 2.5. Let o be a function from D into RN with all components belonging to L?(D) (we
say o € L*(D)N ). We say that o has divergence in the weak sense in L*(D) if there exists a
function w € L?(D) such that, for every function ¢ € C°(D), we have

/ o(x) - Vo(z)dr = —/ w(z)p(z)de.
D D
The function w is called the weak divergence of o and from now on will be denoted as divo.

Lemma 2.6. Let o be a function of L?(D)N. If there exists a constant C > 0 such that, for every
function ¢ € C°(D), we have

/D o(x)-Vo(x)dx

then o has a divergence in the weak sense.

< Ol|ollL2(py,

2.1.3 The space H'(D)
Definition 2.7. Let D be an open set of RN. The Sobolev space H(D) is defined by

ov 9
el (D>}7

HY (D) = {v € L*(D) such that Vi € {1,...,N}

v
is the weak partial derivative of v in the sense of definition 2.5.
T

where

Proposition 2.8. Fquipped with the scalar product
(, 0 g1 = / (u(@)v(@) + Vu(z) - Vo(z)) d
D
and with the norm
1/2
fallnoy = ([ (o) + (Vuta)?) e
the Sobolev space H'(D) is a Hilbert space.
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2.1. Basic functional analysis

Theorem 2.9 (density). If D is a reqular open bounded set of class C1, or if D = Rf, or even if
D =RY then C(D) is dense in H' (D).

Theorem 2.10 (trace). Let D be an open bounded regular set of class C1, or D = Rf. We define
the trace mapping Yo

HY(D)nC(D) — L*0D)nC(dD)
v = (W) =vlsp.

This mapping o is extended by continuity to a continuous linear mapping of H'(D) into L*(0D),
again called vo. In particular, there exists a constant C' > 0 such that, for every function v € H(D),
we have

70 (V) 2oy < Cllvl| (D)

2.1.4 The space H'/?(0D)

Definition 2.11. Let D be an open bounded regular set of class C*, or D = Rj\_[. The space H/?
is defined by

H'(9D) =~ (H'(D))
Definition 2.12. Fquipped with the norm
[0l zr1/2(ap) = nf {[[v]l g1 (D) such that vo(¢) = v},
Hi;zgaD; is a Banach space (and even a Hilbert space). We then define H=/2(0D) as the dual of
H/=(0D).

2.1.5 The space HV(D)
Definition 2.13. The space HYY is defined by
HY(D) = {0 € L*(D)" such that dive € L*(D)},
where divo is the weak divergence of o in the sense of the definition 2.5.
Proposition 2.14. FEquipped with the scalar product
(0, T) praiv(py = (0, T) g2 + (div o,div 7) 2, (2.1.1)
and with the norm ||o|| gaie = \/{0, 0) gaiv, the space HY (D) is a Hilbert space.

Theorem 2.15. Let D be a Lipschitz open set in RN. Then the set of vector functions belonging
to D(D) is dense in H¥(D).

Theorem 2.16 (divergence formula). Let D be an open bounded regular set of class C1. We
define the 'normal trace’ mapping v,

HYWNnc(D) — HY*0D)nC(dD)
0= (0i)ici<y = (o) =(0-n)|sp,

where n = (n;)1<i<n s the outward unit normal to 0D. This mapping vy, is extended by continuity
to a continuous linear mapping from HYY into H=/2(0D). Further, if o € HY and ¢ € HY(D),
we have

/divagbder/ o.Vodr = <’yn(0),’)’0(¢)>H—1/2,H1/2(5D)~
D D
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2.1. Basic functional analysis

Definition 2.17. H{Y(D) is the closure of D(D) in HYV(D).

Theorem 2.18. H{V(D) =ker~, = {oc € H¥(D), v,(c) = 0}.

2.1.6 Linear operators

Throughout this subsection, ' and F' denote two Banach spaces.

Definition 2.19. Let T : E — F be a linear map. We say that T is bounded (or continuous)
if there is a constant C' > 0 such that

|Tul| < C|lu|| Yue E.

The norm of a bounded operator is defined by

[ Tu|
||T|| E,F) = Sup .
E5 =0 |l

Definition 2.20. The space of continuous linear operators from E into F, denoted by £ (E, F)
is equipped with the norm

||T||.,<£(E,F) = sup [|Tz|.
el

le]<1
As usual, one writes £ (F) instead of £ (E, E).

Definition 2.21. Let B = {z € E : ||z|| < 1}. A bounded operator T € L (E, F) is said to be
compact if T(Bg) has compact closure in F' (in the strong topology).

Definition 2.22. The dual space of E, denoted by E' := £ (E,R), is the space of all continuous
linear functionals on E. If M C E is a linear subspace we set

Mt ={feFE;{fa)mp =0 VYreM}.
If N C E' is a linear subspace we set
Nt = {z € E;(f,a)pr.p;y=0 VfeEN}.
Definition 2.23. Let T € Z(E, F). We define the adjoint operator T* € £ (F',E") by
(T*u,v) (g gy = (u, TV)(pr )y YueF' K YvekE.
Lemma 2.24. If E is reflevive and T € £ (E, F) is injective, then ImT* is dense in E'.
Proof. According to Remark 6 and Corollary 2.18 in [20], we have
ImT* = (ImT*)™" = (ker T)" = {0} = E'.
g

Corallary 2.25. Assume that E is a reflexive Banach space and let E C F with continuous
canonical injection. Then the canonical embedding from F' into E' has dense range.
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2.2. Basic geometric measure theory

Proof. Let I : E — F be the canonical injection from E into F' and I* : F/ — E’. Then we have
v@ S Fl7 Ve el <I*(§0),$>E/,E = <<pal(x)>F’7F = <§03 x>F’,F7

that is to say, I*(¢) = ¢|,.
Applying Lemma 2.24, we deduce that Im7* is dense in E’. U

Definition 2.26. Let H be a Hilbert space identified with its dual space H'. A bounded operator
T € L(H) is said to be self-adjoint if T =T*, i.e.,

(Tu,v)g = (u, Tv)g Yu,v € H.

Theorem 2.27 (Rellich). If D is an open bounded regular set of class C*, then for every bounded
sequence of H*(D) we can extract a convergent subsequence in L?(D) (we say that the canonical
injection of H*(D) into L*(D) is compact).

Remark 2.1. The above result can be generalized to Lipschitz domains (see section 1.3 in [39] on

this subjet).

2.2 Basic geometric measure theory

Throughout this section, D denotes an open subset of RY.

2.2.1 BV space

Definition 2.28. A function u € L'(D) whose partial derivatives in the sense of distributions are
measures with finite total mass in D is called a function of bounded variation. The vector
space of functions of bounded variation in D is denoted by BV (D). Thus u € BV (D) if and only if
u € LY(D) and there are Radon measures ji1, ..., iy with finite total mass in D such that

0
/u sDdac:—/cpdui Yo € CY(D), i=1,...,N.
D 8131 D

If w € BV(D), the total variation of the measure Du is
| Du|| = sup {/ udivedz : ¢ € CH(D,RN), |¢(x)| < 1 forz € D} < 0.
D

The space BV (D), endowed with the norm
lullBv = llullLt + [[Dull,
is a Banach space.

We also use |Du|(D) to denote the total variation || Du||. For a complete introduction to the
structure of BV functions in any dimension we refer to [9].
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Figure 2.1: The measure theoretical (or essential) boundary.

2.2.2 Sets of finite perimeter

We consider a N-dimensional Euclidean space RY, with N > 2. The Lebesgue measure of a
Lebesgue measurable set £ C RY will be denoted by |E].

Definition 2.29. A Borel set E C RN has finite perimeter in a open set D if XE,, € BV(D). The
perimeter of E in D in that case is

P(E, D) = [Dys|(D) = sup { [ divads s g € CRDRY, ot < 1}.

E is a set of finite perimeter if xg € BV (RY).

Definition 2.30 (Reduced boundary). We say a point xg € OF belongs to the reduced boundary
O*E if

. fBT Dxe
lim

7 = V(o)
r—0 fBT |DXE‘

for some unit vector v(xg) € SN~1. The function vg : 0*E — SN=1 is called the generalised inner
normal to E.

Definition 2.31 (Points of density t). For everyt € [0,1] and every LN -measurable set E C RN,
define

E'={xeRY:D(E,z) =t},
where D(E, x) is the density of E at x defined by

. |[ENnB(x,r)]
D(FE =1 _—
(Eo) = 1 R )

Then E* is the set of all points where E has density t.
We establish some elementary facts about the essential boundaries of arbitrary subsets of RY.

Definition 2.32 (The measure theoretical (or essential) boundary). Let E be an LV -
measurable set in RY. The essential boundary Oy E of E is the set

ouE =RN\(E°U E")
(see Figure 2.1 for an illustration).

We refer to [9] and [17] for the following theorems, respectively.
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Theorem 2.33 (Federer). If E C D is a set of finite perimeter, then

O*E C E? COyE, HN Y (D\(E°UO*EUE")) =0,
such that O*F is the reduced boundary of E. In particular, E has density either 0 or % or 1 at
HN "1 a.e. x €D, and HN"'- a.e. x € Oy E N D belongs to 0*E.

Theorem 2.34 (De Giorgi’s rectifiability theorem). Let E C RY be a set of finite perimeter
in D. Then Oy E is rectifiable; i.e., there exists a countable family (T;) of graphs of C' functions
of (N — 1) variables such that HN =1 (Oy E \ UL, T;) = 0. Moreover the perimeter of E in D' C D
is given by

P(E,D'y=HN"t(0yEND').

2.3 TI'—convergence

The notion of I'—convergence, introduced by de Giorgi, is a suitable tool for the study of
the convergence of variational problems. We recall the definition and some main properties of
I'—convergence from [14] and [18].

Definition 2.35. Let (X,d) be a metrizable space, or more generally a first countable topolog-
ical space, (Fp)nen a sequence of extended real-valued functions F, : X — R U {400}, and
F: X — RU{+4o00}. The sequence (Fy,)nen (sequentially) T'-converges to F at x € X iff both the
following assertions hold:

(1) (liminf inequality) for all sequences (Tn)nen converging to x in X, one has

F(z) <liminf F, (z,), (2.3.1)

n—-+oo

(i) (limsup inequality) there exists a sequence (yn)nen converging to x in X such that

F(z) > limsup F,, (yn), (2.3.2)
n—-+oo
Or,
(i)’ (existence of a recovery sequence) there exists a sequence (yn)nen converging to x in X
such that
F(z) = nllg-loo Fr(yn)- (2.3.3)

Here there are some main properties of the I'-convergence. We recall the following from [14].

Theorem 2.36. Let (Fy,)nen be a sequence of functions F,, : X — RU {400} which T'—converges
to some function F : X — RU {+o00}. Then the following assertions hold:

(i) Let x,, € X be such that F,(xz,) < inf{F,(x):z € X} + ,, where g, > 0, &, = 0 when
n — +o0o. Assume that {x,,n € N} is relatively compact; then every cluster point T of
{zn : n € N} is a minimizer of F and

lim inf{F,(z):2z € X} = F(x).

n—4oo
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(i) If G : X — R is continuous, then (Fy, + G)nen I'—converges to F + G.

Definition 2.37 (Equicoercivity). We say that the sequence (f:) is equicoercive (on X ), if for
every t € R there exists a closed countably compact subset K; of X such that {f. <t} C Ky for
every € € N.

For more precise details about I'—convergence or equicoercivity, we refer the reader to [14]
and [18].
2.4 Legendre-Fenchel transform

In this section, (V, || - ||v) is a general normed linear space with topological dual V”.
Definition 2.38. The (effective) domain of a function f : V — RU {400} is the set

domf ={xeV: f(x) < +oo}.

The function f is said to be proper if domf # ().

Definition 2.39 (Closed convex function). A convex function f : V — RU {400} is called
closed (or lower semicontinuous) if its epigraph is a closed set.

Definition 2.40. Let V be a normed linear space and let f:V — RU {+oo} be a proper function.
The Legendre-Fenchel conjugate of f is the function

¥V - RU{+o0}
defined by

f5(v*) = sup { (v*, V) (v vy — f(v)}.

veV

Theorem 2.41 (Fenchel-Moreau-Rockafellar). Assume that V is a reflexive Banach space.
Let f:V — RU {400} U{—00} be an extended real valued function. Then

= cl(convf),
where cl(f) is the closure of the function f and convf is its convex envelope.
For a proof we refer to [16].

Corallary 2.42. Let V be a normed space and let f : V — RU{+oc} be a closed convex proper
function. Then

f — f**.
i.e., f is equal to its biconjugate. Equivalently,

YoeV f(v)= §1611V>*{<v*,v><vuv>—f(v*)}-
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2.5 Elliptic boundary value problems

2.5.1 The Lax-Milgram theorem

The Lax-Milgram theorem is a very simple and efficient tool for solving linear elliptic partial
differential equations. We refer the following theorem from [14].

Theorem 2.43 (Lax-Milgram). Let V be a Hilbert space with the scalar product (-,-) and

-1 = m the associated norm.

Leta: V x V — R be a bilinear form which satisfies (i) and (ii):
(i) a is continuous, that is, there exists a constant C' € RT such that
Vu,v € H  a(u,v)| < [lul - [[o];
(ii) a is coercive, that is, there exists a constant a > 0 such that
Ywoe H a(v,v) > alvl?
Then for any L € V' (L is a linear continuous form on V' ) there exists a unique u € V such that

a(u,v) = L(v) YveV.

2.5.2 Homogeneous Neumann problem
Let D ¢ RN be a bounded domain of class C'. We look for a function u : D — R satisfying

—Au+u =f inD, (25.1)
Ontt =0 on 0D,

where f is given on D; 9,, denotes the outward normal derivative of u, i.e., d,u = Vu - n, where
n is the unit normal vector to D, pointing outward. The boundary condition d,u = 0 on 9D is
called the (homogeneous) Neumann condition.

Definition 2.44. A classical solution of (2.5.1) is a function u € C?*(D) satisfying (2.5.1). A
weak solution of (2.5.1) is a function u € H'(D) satisfying

/DVu-Vv+/Duv:/va vv € HY(D). (2.5.2)

We can apply the Lax-Milgram theorem 2.43, which proves the existence and uniqueness of the
solution of the variational formulation (2.5.2).

2.5.3 The maximum principle
We refer the following proposition from [20].

Proposition 2.45 (maximum principle for the Neumann problem). Let f € L?(D) and
u € HY(D) be such that

/DVu-Vga—F/pr:/thp Yo € H'(D).

Then we have, for a.e. x € D,

inf f <wu(z) <supf.
D D
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2.6. The operator L.

2.6 The operator L.

Let D C R? be a bounded Lipschitz domain. We look for a function v : D — R satisfying

—?Av+v =u in D, (2.6.1)
Onv =0 ondD, o
where u is given on D.
We define the operator P, € .& (Hl(D), (H! (D))’) by
<P€u7v>(H1(D)),,H1(D) = / E2Vu . VU =+ uv VU,'U S Hl(D), (262)
D

which is called the variational formulation of problem (2.6.1). Applying Lax-Milgram’s theorem (The-
orem 2.43), we deduce that P. is invertible. We then define L. = P-1 € ¥ ((Hl(D))I ,Hl(D)>.

Now, we present below some properties of the operator L..

(1) The operator L. is an isomorphism from (H'(D))" into H'(D) defined by

L.: (H(D)) — HYD)

u +— u=L.u,

with

/D (e?Va - Vo +tp) dz = (u, ) (g1 (py gy Ve € H (D). (2.6.3)
(2) Ifu,ve (Hl(D))/, U= L.u and ¥ = L.v, then we have

<U7LEU>(H1(D))/7H1(D) - /D((C.:Zva . VQ/}\—F %)dl‘ = <'U, L8u>(H1(D))/,H1(D) . (264)

(3) If u,v € HY(D), 4= L.u and ¥ = L.v, then we have
/ (e°Va - Vv + ) do = / wvde = / (e°Vu - VU + ud) da. (2.6.5)
D D D

(4) By restriction of the operator L., we can define L. € £ (L?), which is self-adjoint (this follows
from (2.6.4)) and compact (this follows from Rellich theorem, Theorem 2.27).

(5) If u,v € L3(D), 4 = L.u and choosing ¢ = 4 in (2.6.3) we obtain
fall < [ @var +@de = [ s
D D

We deduce by using the Cauchy-Schwarz inequality
fal3: < [ wdds < Julzall
D

which implies

|Lell ) < 1. (2.6.6)
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Chapter 3

Approximation of interface energies

In this chapter, we present the regularization approach developed for the problem in all details.
Our strategy will use in approximation of interface energy.

3.1 The Modica Mortola functional

A classical I'-convergence result is the Modica Mortola theorem. The result stated below is
due to Modica and Mortola [41], and it provides an approximation of the perimeter using I'—
convergence.

Theorem 3.1 (Modica-Mortola). Let D be a bounded open set and let W : R :— [0,00) be a
continuous function such that W( ) =0 if and only if z € {0,1}. Denote ¢ =2 fol VW (s)ds. We
define F5;0;, Fan 2 LY(D) — [0, +00] by

B fD|Vu|2 L, W) if ue HY(D),
MM otherwise,

and

+00 otherwise.

{cPerD =1}) if we BV(D,{0,1}),
Farn(u

Then F5;,; T—converge to Faray in the LY(D) topology.

3.2 A gradient-free perimeter approximation

Let us begin with some definitions and notation. Let D be an open rectangle of R%2. We define
the set

E=L>*(D,{0,1})
of characteristic functions in D and the functional F': £ — RU {400} such that

%|Du|(p) if we BV(D,{0,1}),

+00 otherwise.

F(u) =
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3.2. A gradient-free perimeter approximation

We recall that |Du|(D) = H' (0,2 N D) when u is a characteristic function of Q C D. We define
also

& =L>(D,[0,1]),
the convex hull of £, and the functional ' : £ — RU {+oc} such that
- F )
Flu) = (u) ifue 5
+o00 otherwise.
It is shown in [13] that a suitable approximation of F is provided by the functionals F. defined as

1

BN s 2 2
Fe(u) = Uegllf(D) {EHVULz(D) t2 <HU||L2(D) + (u, 1 - 2U>)} . (3.2.1)

In everything that follows we denote

(u,v) :/Du(x)v(x)dx

for every pair of functions u, v having suitable regularity. Now, we recall below some theoretical
tools needed to prove our results (Proposition 3.2 proved in [9], Theorem 3.3 and Theorem 3.4
proved in [12]).

The following proposition establishes the solution to the minimization problem (3.2.1).

Proposition 3.2. Let u € L?(D) be given and v. € H' (D) be the (weak) solution of

—?Av.+v. =u in D, (3.2.2)
Opve =0 on dD.
Then we have
~ 1
F.(u) = g<1 — Vg, u).
The following theorem establishes the I'—convergence of the approximating functionals.
Theorem 3.3. For any u € L*>(D,[0,1]), define
~ 1 1
F.(u) = E<L5u, 1—u)= g<1 — Lou,u). (3.2.3)

When & — 0, the functionals F. T'—converge in € endowed with the strong topology of L' (D) to the
functional

Fu) = %|Du|(D) if we BV(D,{0,1}),

+o00 otherwise.

The following theorem provides the pointwise convergence of F.(u).

Theorem 3.4. For all u € € it holds

lim F(u) = F(u). (3.2.4)

e—0
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3.3. Approximation of interface energy: pointwise convergence

3.3 Approximation of interface energy: pointwise convergence

In the previous section, we obtained an approximation of the perimeter H*(9,,22N D). Given two
subsets 2;, Q; of D, we look for an approximation of the interface energy H'(0p/Q; N Or Q2 N D).

3.3.1 Mathematical results

As a particular case of Proposition 1 in [8], let us consider the following situation: take (d=2).

Proposition 3.5. Let Q;,Q; be sets of finite perimeter. Then
HY (00 (2 UQ ) = HH(Om %) + HY (00Q5) — 2H (90 N O Q;)

whenever |Q; N Q;| = 0.

The following lemma is a variant of Proposition 3.5. The proof is adapted from [8].
Lemma 3.6. Let §2;,); be subsets of finite perimeter of D. Then

H (00 (U Q) N D) = H Oy N D) + H (9025 N D) — 2H* (90 N O N D)

whenever [Q; N Q;| = 0.
Proof. From the proof of Proposition 3.5 in [8], we have

aM(QZ U QJ) U 81\/[(Qi n Qj) C O U 8]\/19]‘ s
aM(QZ U QJ) n 8M(Qi n Qj) C oSl N 8MQJ

It follows that

8M(QZ U QJ) U 8M(Qz N Q]) NnDcC (BMQZ U 6MQ]-) nD,
8M(Qz U Qj) n 6M(Ql n Qj) NDC ((91\/192 N 3M§2j) NnD.

Here, we refer to Section 2.2.2 for the point of density 1/2. If |2; N ;| = 0, we denote by L the
H! —negligible set

((aMQi N D\(Q7 N Q)) n ((aMQj ND)\(QZ N D))
and notice that

On (2 UQ;) N D\L C (O0m Q2 N D)A(OMQ; N D),
(81\49z n D)A(QA{QJ* N D) C 6M(QZ U Q]) N D)

Hence, we have

H (00 (Q; UQ;) N D) = H' (912 N D)A(OQ; N D)
=H! (8MQZ n Q) + Hl(aMQj N D) — 27—[1(8MQZ- N 3MQJ- n D)

We now arrive at the desired pointwise convergence result.
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3.3. Approximation of interface energy: pointwise convergence

Theorem 3.7. Let ;,Q; be two subsets of finite perimeter of D. If u; = xq, and uj = xq,, then
H (0019 M O N D) = lim 2 (Lows, uy),
e—=0 €
whenever |; N ;] = 0.
Proof. By Lemma 3.6, we have

H (Om i N OMQ N D) = = [HY(Om% N D) +H (01 N D) — H (On (2 UQ;) N D)] .

1
2
According to Theorem 3.4 we get

H (00 00y 0 D) = lim [P (ws) + Fu(uy) = Fului + u)]

—_

. 1 1
= il_r}(l) g<]_ — Leui,ui> + g(l — LEUj,'LLj> — g<]. - Ls(ul + 'Ll/j),’LLi + Uj>

= gg% E<L5u,;,uj>.

From now on, for simplicity, we denote

1
Gs(ui,uj) = E<Lsui,uj>. (331)

3.3.2 Algorithm

We present an algorithm to check the pointwise convergence (see Algorithm 1).

Data: Given a partition Q1,...,Qxy.
set u; =xq, Vi=1,...,N;

set Emins Emax;

set € = €max;

repeat

solve

oA W N

—?Av.+v.=u inD
OpUe =0 on 0D;

1
compute Ge(u;, u;) = E<Lsui, Uj);

€
6 update € + 5;

7 until € > g,ip;

Algorithm 1: Check the pointwise convergence of the function Ge(u;, u;).

Remark 3.1. The parameter ¢ has the dimension of a length. In fact, in view of (3.2.2), it is
a characteristic width of the diffuse interface represented by the slow variable v. Thus we start
with a characteristic size of D, namely g9 = €02 = maz(m,n). Then we divide £ by two at each
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3.4. Lower semicontinuity

iteration of an outer loop, that is, we choose £; = €mas/2¢. In order to approximate (3.2.2) properly,
€ must not be taken significantly smaller than the grid size. In fact, when we use the FEM, the
discrete Maximum principle is not guaranteed if € is smaller than the mesh size. Thus we stop the
algorithm as soon as €; < €,,,;, = 1. In fact, numerical tests show that almost no more evolution
occurs when ¢ goes below this value (for more details see the appendix).

3.3.3 Numerical examples

We present four examples to illustrate the pointwise convergence of the functional G, in Figures
3.1 and 3.2. The values of the function G, are computed in two cases namely the finite element
method (FEM) and the finite difference method (FDM), and compared with the exact value. We
notice that when we use the FDM, the value of G, is less than the exact value, for the FEM it is
above.

3.4 Lower semicontinuity

Lower semicontinuity is very important in variational problems, because together with coercivity
it ensures the existence of minimizers.

Theorem 3.8. Let X be a metric space and f: X — RU{—o00,+00}. f be lower semicontinous (
or just lsc for short) if and only if

ue = u = f(u) < liminf f(u®).
e—0

The following important result is found in [7].

Theorem 3.9. The condition (1.1.8) is necessary and sufficient for the function

7: (Ql,...,QN) — Z Oéinl(aMQiﬂaMQj ﬂQ)
1<i<j<N

to be lower semicontinous (w.r.t. convergence in measure).

3.5 Equicoercivity
We refer to the following theorem from [12].

Theorem 3.10 (Equicoercivity). Let u® be a sequence of functions of € such that sup. Fo(uf) < +00.
There exists u € £ such that u® — u strongly in L*(Q) for a subsequence.

For simplicity, we denote

Iﬁ(uia"'vuﬁv) = Z aijGE(ufvuj)'

1<i<j<N
We now show the equicoercivity of the functionals Z.

Theorem 3.11. Let o;; > 0 and let (uf,...,u%y) be a sequence of functions of £ such that
supeZe(ui,...,us) < +oo for any i,j. For all i, there exists u; € € such that u — u; strongly in
LY(D) for a subsequence.

31



3.5. Equicoercivity

(a) (b)

FEM
- e o FDM e e o o o m owm m m mm - -

350 [| = = = Exactvalue b

250 [+

150

100
10° 102 10’ 10°
e—=0

(c)

140

FEM
130 ] = = =FDM
= = = Exactvalue

120

Moy

100

e—=0
(d)

Figure 3.1: (a) Example 1: given partition, (b) Example 2: given partition and (c), (d), convergence
history of G¢(u1,us) for example 1, 2, respectively with the FEM, the FDM and the exact values.
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3.5. Equicoercivity

G, FEM

(d)
Figure 3.2: (a) Example 3: given partition, (b) Example 4: given partition and (c), (d), convergence
history of G¢(u;, u;) for examples 3, 4, respectively with the FEM, the FDM and the exact values.
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3.5. Equicoercivity

Proof. By taking a;; > & > 0 and from (3.3.1), we obtain

1
> iGe(uf,uf) == > ag(Leus, uf)

3
1<i<j<N 1<i<j<N
a
e ,€
> = <L6ui7uj>
1<i<j<N
«
_ § €
- 276' <L5’LL,L,’LL]>
4,J=1
i#]
a N N
_ E € E €
- 275 <L5ui7 uj>
i=1 j=1
J#i

_ N
€ £ « 1 € €
Z aijGS(ui7uj) 2 9 Z g<L€ui71 —u)
1<i<j<N i=1
a
=03 Rw)
i=1

It is easy to see that if

Z a;jGe(ui,u5) < C, C >0,

1<i<j<N
then
~ 2C .
From Theorem 3.10, we get
Ll
€
u; —u; ,

for some u; € £.

We will study the I'—convergence in chapter 4.
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Chapter 4

Formulation of the interface energy as a
linear combination of perimeters

In this chapter, we will rewrite the surface tensions a;; in the form of linear combination that
allows us to rewrite the interface energy as a combination of perimeters and we will explain how
compute the coefficients. If all the coefficients are positive we will prove I'—convergence in Theorem
4.8. We will provide several optimization algorithms depending on the sign of the coefficients. In
the end, we will present some numerical illustrations.

4.1 Reformulation in terms of perimeters

For technical simplicity we restrict ourselves to the cases where N < 5.

4.1.1 Algebraic properties of interface energies

Lemma 4.1. Let Qy,...,Qn be subsets of finite perimeter of D such that D = UN ,Q;. Let
L,;j = 7‘[1(8]\491 n 8MQJ' N D), P, = 7‘[1(8ng n D) and Pij = Hl(aM(Qz U Qj) n D) Then

P, = Z Ll‘j and Pij = Z Lir + ij7
j#i k#i,j

whenever [Q; N Q| =0 fori# j.
Proof. By the definition of the essential boundary, we have
O = o (R*\ ) = 0m (jgiﬂj U (R? \D)> :
It follows from the proof of Proposition 3.5 in [8] that
OuQND C Oy (#iﬁj U (R?\ D)> NnDcC (jgéiaMQj) nD,
which implies that

oSN DC g(@MQJ Noy QN D),
V)
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4.1. Reformulation in terms of perimeters

and thus

oSN D = ‘L;i_(a]y[Qj N oy N D) (411)
e

Now, we need to prove that if i # j,i # k,j # k, then
Hl((aMQZ N 6MQ] n D) N (8M91 N o N D)) = ’Hl(aMQl N 8]V[Qj N o N D) =0. (4.1.2)

By the definition of points of density % for Q;,9=1,..., N, we underline the fact that if i # j,i #
k,j # k, then

Q2NQZNQZND =0
As a consequence, it follows that
1 1 1
H'(QF NQZNQZND)=0.
According to Theorem 2.33, we have that
H (90 N O N Oy N D) = 0. (4.1.3)

We deduce from (4.1.1),(4.1.2) and (4.1.3) that

From this fact and according to Lemma 3.6, we can obtain that
Pij = P7 + P]‘ — 2Llj

= ZLik +Z|—kj — 2L

ki kA
= Z Lx + ij.
ki,j

4.1.2 Algebraic properties of approximate interface energies

We now prove the approximate counterpart of Lemma 4.1.

Lemma 4.2. Let Q;,...,Qy be subsets of finite perimeter of D such that D = UN Q. Let
1 1

u; = xq, for alli, L§; = (Leui, uj), P = —(1 — Leug, u;) and Pj; = —(1 — Le(u; + uy), ui + uy).
€ €

Then

1 1
Pi=-> L5 and P == ) L5 + L5,
< i € kg

whenever [Q; N Q;| =0 fori # j.
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4.1. Reformulation in terms of perimeters

Proof. First, from Theorem 3.3 we have

1 1
Pf = *<1 — Laui,ui> = 7<L8ui, 1-— ul>
9 S

Using the fact that 1 —u; = Zj# u;, we obtain

LuZ,Zu] = ZLul,uJ ZL

J#i J;ﬁz J#l

Second, from Theorem 3.3 we have
1 1
Pij = 21— Le(us +uy), s +uj) = —(Le(ui + uy), 1= (us +uj)).

Using again the fact that 1 — (u; +u;) = >4, ; uk, we obtain

1 .
Pi; = = (Le(u; + uy), Z ukj)

€ ki,
= Z < (ui +uj), ug)
k#m
= - Z (Lewi, ug) + (Leuj, ug)
k;éij
k#1i,j

O

Remark 4.1. The algebraic properties given in Lemmas 4.1 and 4.2 are identical. This will allow
to obtain similar reformulations for the interface energy and its approximation.

4.1.3 Matrix representation of algebraic properties

For N <5, we define the column vector L made of the values (L;;) in a chosen order. Similarly
define the column vector « of the surface tensions («;;), P the vector of the values P, and P;;. We
will denote P; and P;; by Pg, S C {1,...,N}, 8; and f3;; by Bg. According to lemme 4.1, we can
define the matrix M = (m;;) € R(N"’(’w)xc2 by

P = ML.

Note that m;; € {0,1}.
To find the relationship between the values of the «;; and Bg, we start with

B-P=j3-ML=MT3-L.

Hence one has

Z aijLij = Z ﬂSPS (414)

1<i<j<N s5c{1,...,N}
whenever the columns of coefficients satisfy the linear system
MT3 = a. (4.1.5)
This system is square invertible if N = 3 and underdetermined if N > 3. The property of

complementation in [6] allows us to select the values of S (see Table 4.1).
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4.1. Reformulation in terms of perimeters

{1}, {2} and {3}
111, {27, (31, {4}, {12}, {13] and {14}.
{1}, {2}, {3}, {4}, {5}, {12}, {13}, {14} {15},
{23}, {24}, {25}, {34}, {35} and {45}.

2| 2| 2
CHRRRS

Table 4.1: The values of S.

Example 4.1. For N:5, let let us consider L = (|_127 |_137 |_147 |_157 |_237 |_247 |_257 L34, L35, L45)T and
P = (P1,P2,P3,P4,Ps5,P12,P13, P14, P15, P23, Pag, Pas, P34, P35, Pys)T. By lemma 4.1 we have

Py Lio + L3+ Lisa+Lis
P, Lio + Los + Lag + Los
P3 Liz+ Loz + Lss + Los
Py Liga+Los+ Lss + Lys
Ps Lis + Los + L3s + Lus
P12 Lig+ Log +Lig + Loy +Lis + Los
P13 Lig +Log+Lig+Las+Lis+Lss

P=] Puu | =| Lig+Loa+Lizs+Lssa+Lis+Las
Pis Lig+Los+Lis+Laa+Lis+Lys
Pas3 Lig+Liz+Lig+Las+Los+Lss
Pa4 Lig + Lig + Loz + L3y + Los + L3s
Pas Li2 +Lis +Los + Las +Log + Lys
P34 Lig+Lig+ Lo+ Loy +L3s +Lys
P35 Lis+Lis+Los+Los +Laa+ Las
Pas Lia+Lis+Los+Los +Las+ Lss

This can be written as

P 1111000000
Py 1000111000
Ps 0100100110 L
Py 0010010011 L”
Ps 0001001011 LB
P1s 0111111000 LM
P13 1011100110 Lw

P=| Py [=| 1101010101 L% = ML.
Pis 1101010101 LM
Pas 1110001110 L%
Pos 1010101110 L%
Pas 1001110011 L%
Pay 0110110011 45
Pas 0101101101
Pys 0011011110

We noticed that MT is surjective by Lemma 3.6:
Pij = Pl + Pj — 2Lij, i.e.,
H (Om (2 UQ;) N D) = H 0y N D) + H (9 Q; N D) — 2H (00Q: N OarQ; N D).

The issue is to find positive 5.
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4.1. Reformulation in terms of perimeters

4.1.4 Existence of conical combination

There are multiple ways to find the values of 5. In particular, for N = 3,4,5 we have the
following result.

Lemma 4.3. Let N=5,4,5. Let f;j = (—ayj + cin + ojn)/2 and B = 30 <;jon —Bij + @i
Then
Z aijli; = Z BijPij + Z BiP;.
1<i<j<N 1<i<j<N 1<i<N

Proof. We have

Z aiili; = Z ol + Z a;nLin.

1<i<j<N 1<i<j<N 1<i<N

It follows from Lemma 4.1 that

Z oyili; = Z oyl + Z a;n | Pi — Z Lik

1<i<j<N 1<i<j<N 1<i<N k£i,N
= E oyl + g a;NP; — E o;nLik — E ainLik
1<i<j<N 1<i<N 1<i<k<N 1<k<i<N
= g a;lg + E a;nP; — E ainLik — E agnLik
1<i<j<N 1<i<N 1<i<k<N 1<i<k<N
= E (vij — oiv — ajn) Lij + E a;nP;.
1<i<j<N 1<i<N

By using Lemma 3.6, we thus get

Z OzijLij = Z (aij — Oéi;\l — ajN) [Pi + Pj — Pij} + Z ;NP

1<i<j<N 1<i<j<N 1<i<N
= E Bij (Pij —Pi —Pj) + E a;nP;
1<i<j<N 1<i<N
= E BijPij + g Bij (—Pi — Pj) + E a;nP;,
1<i<j<N 1<i<j<N 1<i<N

which implies that

Z aijLij: Z 5ijpij*25¢jpi+ Z o NPy

1<i<j<N 1<i<j<N i 1<i<N
= E BijPij + E - E Bij + ain | Py,
1<i<j<N 1<i<N i

and thus

Z aiilij = Z BijPij + Z BiP;.

1<i<j<N 1<i<j<N 1<i<N
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4.1. Reformulation in terms of perimeters

Now, we define

By = (aij) € Sy 3(65) such that Zaijl—ij = Z Bs Ps
i<j S5c{L,...,N}
and
B, = ¢ (aij) € By : 3(Bs) > 0 such that Zaijl—ij = Z Bs Ps
i<j Sc{li,..N}

The following theorem allows us to find the nonnegative Sg for all S when the surface tensions
a; satisfy the triangle inequality.

Theorem 4.4. If N=38,4, then Ty C BJ‘\F,.

Proof. We distinguish the two cases:

e Case 1: N = 3. Using Lemma 4.3 for N = 3, we have

_ —aggt a2t o3 _ —azt a2+ o3
ﬂl - 9 ) 52 - 2

—Q12 + Q13 + Q23

3512: D)

If (o) € T5, then 1, B2, and (12 are nonnegative, which implies that T5 C B?Jj.
e Case 2: N = 4. Using once more Lemma 4.3 for N = 4, we have

_ —on2 + o4 + o _ —oagz+a1g + o _ —Qoz + ooa + Qs
ﬂlQ - 2 ) ﬁlB - 2 7523 - D) )

B1 = 12 + 13 — a4 — 34, B2 = o + o3 — g — agq and B3 = a3 + a3 — g — Qg

It is easy to see that if («;;) € T4, then B2, f13, and fa3 are nonnegative.

Now, We want to prove that if (c;;) € Ty, then £1, 82, and (3 are nonnegative. Let us define
fori=1,...,4, S; = Z;j aj;. Up to reordering S;, we assume that Sy < S35 < S < 5.
Then we have

Sy <5 14 + o4 + a3q < 1o+ a3 + g o4 + azq < 12 + Qa3
Sy <82 = qoauatastaz <apptagtay = o+ a3 <o+ ags
Sy <83 Q14 + 24 + 34 < @13 + @23 + a3y Q14 + a2q < 13 + Qo3
B1 >0
= {6220
B3>0
Thus we indeed have obtained Ty C BZ. O

Theorem 4.5. If N=3,4,5, then Bf; C Ty.
Proof. We distinguish the two cases:
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4.1. Reformulation in terms of perimeters

e Case 1: N =3. From (4.1.4) we have

3
> BiPi = Bi(L1z + Lig) + Ba(Laz + Los) + Bs(Laa + Laa)

i=1

= (B1 + B2)Liz2 + (B1 + B3)Liz + (B2 + B3)Las. (4.1.6)
Now, we identify
aij = Bi + Bj. (4.1.7)

If the values of 3 are nonnegative, then the surface tensions «;; are nonnegative.
Now, we want to prove that the surface tensions a;; satisfy the triangle inequality. From
(4.1.7) we have

a1z = B1 + B2 a2 < oz + s
a3 =p01+ B3 = a1z < og+ o
aog = B2+ B3 o3 < ang + o3,

which implies that B; CTs.

e Case 2: N =4,5. We have

N N
Z/Bipi +Zﬁz’jpz‘j = Zﬂi ZLij +Zﬁij Z Lik + Lk
i=1

i<y =1 \jA i< oy
= Z(Bz +5;) Lij + Zﬁij Z Lir + Zﬂij Z Li;
i<y i<j ki i<j ki
=Y (Bt 8L+ By Y Lu
i<j ] ki
:Z(ﬂiJrﬂj)LijJrZ Zﬁij Lik
i<j itk \ ji
=Y Bi+B)Li+ YD B | Lux
i<j itj \ ki
=> BB+ | D Bin+ B8k | Lij
i<j i<i \ ki

:Z Bi + B; + Z Bik + Brj | Lij-

i<j k#i,j
Now, we identify
ij = Bi + B + Z Bik + Brj- (4.1.8)
k#i,j

If the values of 3 are nonnegative, then the surface tensions a;; are nonnegative.
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4.1. Reformulation in terms of perimeters

Now, we want to prove that the surface tensions a;; satisfy the triangle inequality. We start
with

—ij + i+ g = =i — B — Z (Bin + Brj) + Bi + Br + Z (Bin + Bur)

he#i,j heti.k
+ B+ B+ Y (Bun + Brj)
h#k,j
=20k — Z (Bin + Bnj) — Bir — Brj + Z (Bin + Brx) + Bij
hitiojk oy
+Bik+ > (Bren+ Brs) + Bri + Bij
hitirj.k
=28k +2 Z Bhi + 2845
ey

Since the values of 5 are positive, we obtain
—Qij + i + ag; > 0,
which implies that B;{, CTy.
O

Now, we want to find positive values of B¢ in order to use the primal variational formulation of
(3.2.1) for the perimeters. Let us begin with the definition of conical combination and Carathéodory’s
theorem.

Definition 4.6. Given a finite number of vectors vi,va,...,vp in a real vector space, a conical
combination, of these vectors is a vector of the form

)\11}1 + )\2’02 + ...+ )\p’Up7
where the real numbers \; satisfy \; > 0.

Theorem 4.7 (Carathéodory). In a vector space of dimension n, all conical combination of m
vectors (m > n), can be written as conical combination of n of these vectors.

We refer to [50] for more details.

Remark 4.2. By the above theorem and the linear system in (4.1.5), when (a;;) € B, a can be
written as a conical combination of C3¥ columns of the matrix MT.
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4.2. T'—convergence with non negative coefficients

4.1.5 Algorithm to search for a conical combination

Theorem 4.7 lead us to Algorithm 2 in order to search for nonnegative values of 3.

Data: Given a = () € RC2 x1 M g R(C3 +N)xC3'
1 repeat
2 Loop on the set of square invertible submatrix A € RC2 XC2' of MT;
3 Compute 8 = Ao
4 until 5 > 0;

Algorithm 2: Find positive values of 3.

At each step we have to solve a linear system of form:
cy’
CN x oy

A

(4.1.9)

Remark 4.3. If N=5, then we have counterexample of Theorem 4.4. Consider the matrix:

01 3 2 2
1 0 3 2 2
(Oéij) = 3 3 0 3 3
2 2 3 0 2
2 2 3 20

It is clear to see that the matrix («;;) satisfies the triangle inequality, but for all possible values of
B found from (4.1.9) at least one coeflicient is negative.

4.2 I'—convergence with non negative coefficients

We now state the main result of this chapter. Let us recall the definition of the following set

N
gN = {(ul,...,uN) EgN7 Zui = 1}.
i=1

Theorem 4.8. Let D be an open rectangle of R%. If («;;) € BY;, then

1 . .
Z OlijGe(Ui,Uj> 2 — 2 Zl§i<j§N ainl(aMQi N 8JWQJ' n D) if u; € BV(D7 {07 1}) Vi, u; = X,
1<i<j<N 400 otherwise,

in En, strongly in L*(D)N.
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4.3. Primal algorithm

Proof. For simplicity of notation, we assume that NV < 5. First, we will prove the lim inf inequality.
Let (u$) € Ey such that (uf) converges to u; in L!. From (3.3.1), (4.1.4) and Remark 4.1 we have

N

1
Z @i Ge(ug, uj) Zﬁl Lul7ul>+g Z Bi;(1 (uf + uf),uf +uj5).
1<i<j<N 1<i<j<N
(4.2.1)
Passing to liminf as e — 0 in (4.2.1), we get
N | N
lim inf > iGe(uf,uf) = lim inf (5 > Bi(1 — Leus, uf)
1<i<j<N i=1
1 g g g g
+- Z Bij(1 = Le(uf +uj), ui +uj) |
1<i<j<N
which implies that
N N
liin_jglf Z @ijGe(ug, uj3) Z hmlnf (1 = Lous,us)
1<i<j<N i=1

1
+ ) B liminf — (1 — Le (uf +u5), uf +15).

1<i<j<N
We deduce from Theorem 3.3 and (4.1.4) that
al 1
lim inf Z i Ge(u, u5) > o Zﬁz (O QN Q) + 5 > BuH Q;UQ)NN)
1<i<j<N 1<i<j<N
1
= 5 Z aijl—ij-
1<i<j<N

Second, as we have the pointwise limit (Theorem 3.7), the lim sup inequality holds for the constant
recovery sequence. U

4.3 Primal algorithm

If the surface tension matrix satisfies (a;;) € ﬁj\}, then we can use the primal variational
formulation (3.2.1) for the interface energy. For ¢ fixed the approximate problem (1.4.1) becomes

N N
IEP = min < Z<ui7gi> + Zﬂzps(uz) + Z Bz] uz + uj) . (431)
(ur,un)€EN | 55 i=1 1<i<j<N
Recall that F. is defined by (1.3.5). Then from (3.2.1) we have
N N 1
IEP = min _ {Z(u“gz> + ;Biweilgllf(D) {EHVUZ"%Q(D) + g (Hviﬂiz(D) + <’U,i7 1-— 2Ui>)}

(u1,-un)€én | 725

. 1
+ Z »Bijwijel?[flw) {€||Vwij||%2(p) T (sz‘jH%?(D) + (i +uj, 1 — 2wij>)} ,
1<i<j<N

(4.3.2)
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4.3. Primal algorithm

with w;; = v; + v; for ¢ # j, which implies that

7P = min inf inf (4.3.3)
(u1,...,;un)€EN vi€EH (D) wweHl(D)

N N
1
{Zwi,g» + Y B eIVl + 2l + {1 - 20)|

i=1 i=1

1
Y By [enwj&z(m o = (i 3y + Gui + 5,1 - 2wij>)}

1<i<j<N
(4.3.4)
The simple structure of this problem with respect to each variable (ug,...,un), (v1,...,vn) and
(w12, ... ,w(N,l)N) leads us to use an alternating minimization algorithm. The superscript k is

used to designate variables computed at iteration k. The iteration k, k > 1, consists in the three
steps described below.

e The minimization with respect to (v1,...,vy) is straightforward. It consists in solving the
boundary value problems

—2AvF +oF =urt in D,
A (4.3.5)
Onv; =0 on 0D.
e The minimization with respect to (wja, ... 7w(N71)N) is straightforward. It consists in solving
the boundary value problems
- Awf; + wf] (uz +u;)*1 in D,
6nwfj on OD.

In fact wfj =uF +’U§-€ for i # j.

e The minimization with respect to (uq,...,un) is a linear programming problem in a convex
set. Therefore a minimizer can always be found among the extreme points of £. More precisely
here, we have to minimize at each point 2 € D the linear function Zf\il ¢i(s;) with

6u(s) = sgu(w) + 22020k @) + 2 37 fiy(1 - 2uly ()
1<j<N
i

over s; € [0,1] and Zf\il s; = 1. Set

Bi

€h@) = gi(e) + 21— b @) + 1 i1~ 2uly(a).

1<j<N
J#i
At each point « € D we find an index ¢(x) such that
ff(w) = min {ff(m), e ,{ﬁ,(m)} .
We then set

0 otherwise.

u’?(x)—{l if i=i(z),



4.4. Extension: volume constraints

This algorithm ensures a decrease of the objective function at each iteration. Moreover,
each cluster point (in the weak-* topology for u; and the H! norm topology for v;) is a
stationary point. Of course, as the coupled problem in (u;,v;) is not convex, local minimizers

are theoretically not excluded. An outstanding feature of this algorithm is that u¥ is always
a characteristic function during the iterations.

4.4 Extension: volume constraints

In this section we apply the previous algorithm with volume constraints. Given my,

.., my € RT
such that ZZ]\LI m; = |D|. We define the set

N
EN—{(ul,...,uN)egN,Zui—l,/ui—mi W}.
i=1 D

The problem (4.3.1) with volume constraints and g; = 0 for all ¢ becomes

N
IEP = min Zﬁzpa(uz) + Z ﬁijﬁ’s(ui + Uj)

(u1,..,un)EEN =1 1<i<j<N

After transformation as in (4.3.2) we obtain

N
1
7P = min inf inf E B; |:€ Vv, 2 + - ( V; 2 + (u;, 1 — 2v; ):l
€ (w1, )EE N Vi€H (D) wi;€HY(D) {i:1 H ||L2(D) c ” ||L2(D) < >

1
+ Y By [€|Vwij||%2(p) + 2 (”win%%D) + (us +uj,1 — 2wz‘j>)}

1<i<j<N

Now, we use again an alternating minimization algorithm with respect to (u1, ..., un), (v1,...,UN)
and (wlg, N 7w(N71)N)-

e The minimization with respect to (v1,...,vy) consists in solving the boundary value problem

—2AvF 4 of =t in D,
Ok =0 on 0D.

e The minimization with respect to (w1, ..., wv_1)n) consists in setting

k

_ ..k k ]

e The minimization with respect to (uq,.

..,uy) amounts to solving a linear programming
problem.

4.5 Primal dual formulation
The following theorem will allow us to deduce the primal dual algorithm.
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4.5. Primal dual formulation

Theorem 4.9. Consider the problems

(P) sup 2(u,v) — | Vol —|jv]?, (4.5.1)
veH(D)
(P*) inf |lu+ediv ¢|* + ||¢||*. (4.5.2)
qEHZY (D)

We have that
1. (P) is strictly concave and (P*) is strictly convex.
2. sol(P) = {v.} and sol(P*) = {eVv.} with v. = L.u.
3. val(P) = val(P*) = (v, u).
Proof. 1. It is clear that (P) is strictly concave and (P*) is strictly convex.

2. Let us start with the existence and uniqueness of a solution of problems (P) and (P*). Since
(P) strictly concave, continuous, coercive and (P*) strictly convex, continuous, coercive,
then (P) and (P*) admit one and only one solution. The Euler-Lagrange equations of the
minimization problem (P) are

€2<VU€,VQD> + (e, ) = (u, ) Vo € Hl(D)
This is the weak formulation of (3.2.2). Therefore sol(P) = {v.} and
[ Vvelliz(p) + lvellZa(py = (ve, ). (4.5.3)
We deduce from (4.5.1) and (4.5.3) that
val(P) = 2(ve, u) — (e, u) = (ve,u). (4.5.4)

The Euler-Lagrange equations of the minimization problem (P*) are

2<u + ediv g., ediv 90> + 2<Q€790> =0 Vype HgiV(D)
& e(div ge,div ¢) + (g 0) = ~c(u,div ¢) Vo€ HIV(D).  (455)

Let v. = L.u = sol(P) € HY(D), and denote by ¢. = eVv. € L?(D). We have
Vo € D(D), (ediv G, ) = —(Ge, Vo) = —€*(Ve, Vi) = (ve — u, ), (4.5.6)
which implies that
div ¢. = é(vs —u) € L*(D). (4.5.7)
From Theorem 2.16 and (4.5.6) we have
Ve D) [ (@) ¢ = (@ V0 + (iv dg) =0
Hence . € H§™V(D).

47



4.6. Primal dual algorithm

Now, we come back to (4.5.5) to prove that §. = sol(P*) . Let ¢ € HV(D), then

<u + ediv G, ediv 30> + <Cja7 ‘P> = <u + (Ue - u),ediv 90> + <8VUE, §0>
= &(ve, div ¢) + (Ve ¢).

Using Theorem 2.16, we get

(u + ediv §e, ediv @) + (G, ) = E/ (p-n) ve =0. (4.5.8)
oD

Therefore ¢. is solution of (P*). Moreover, by uniqueness we have
sol(P*) = {g:} = {q¢:}- (4.5.9)
3. From (4.5.2) and (4.5.9) we have
val(P*) = |ju + ediv gc[|* + [l¢c|1*.
In particular, from (4.5.8) we obtain

val(P*) = (u + ediv g, u) + (u + ediv ¢, ediv ¢.) +]|q:|*.

=—llg- I

It follows from (4.5.7) and (4.5.4) that
val(P*) = (u + ediv ¢, u)
= (u+ (ve —u),u)
= (v, u)
=v

al (P).

4.6 Primal dual algorithm

We now consider the problem (4.3.1) for N = 5, where one value of g is negative, let it /.
Then we have

5 5
IFP =  min Z(Wﬂi) + BiFx(ur) + Zﬁzﬁe(ui) + Z Bii Fe(ui + uy)
(u1,...,u5)EEs im1 = 1<izi<5
It follows from (3.2.3) that
5 1] 13
1P =  min {Z<ui>gi>_1<1_L6u17u1>+626i<1_Leuiaui>

(u1,eyus)€€s | 4 € i=2

1
+= > Bl = Le(ui + uj), ui + uy)
3 .

1<i<j<5
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4.6. Primal dual algorithm

According to the values of g, we can use the dual expression (4.5.2) for 5 and otherwise the
primal expression (4.5.1) for the positive (g, i.e.

5
kP = min Uj -—@1u +@ inf { 2 + |Juy + ediv q||? }
: (u1,...,u5)€Es {;< i291) € (L) € qeHIv(D) lallz2 ) + s a2 )
1 1
. 2 2
D DL o {90, + 7 (1t + 01— 20)}
> By inf Qe Vwyllizp) + ! (”win%?(D) + (ui +uy, 1 — 2wz‘j>>
1<icj<s  waHI(D) c
At e fixed and we use again an alternating minimization algorithm with respect to (u1,...,us), (v1,...,vs5),
(U)lg, e ,'LU45) and q.
e The minimization with respect to (v1,...,vs) consists in solving the 5 boundary value
problems
—2Avf +oFf =ut in D,
On vk =0 on 0D.
e The minimization with respect to (w2, ..., wss) consists in solving the C&¥ boundary value
problems
—e? Aw}; + w}; (uZ +uj)k=t in D,
3nwfj on 0D.

In fact wfj =vF+ vl;? for i # j.
e The minimization with respect to ¢ yields the Euler-Lagrange equation

2(qe, h) + 2(uy + ¢ div q.,e div h) =0, Vh € HJV(D)
(gey h) — e(V(uy +¢ div ¢.),h) =0, Vh e HJV(D) (4.6.1)

Let ¢. = eVol. Then a change of ¢. in the above equation entails

(eVue, h) — e(V(uy + ¢ div eVu.),h) =0, VYhe HV(D)
g <Ev (Us — Uy — EZAUE), h> =0 , Vh € H(c)hV(D)

0

(4.6.2)

We deduce from (4.6.2) that g. is solution of (4.6.1).

e The minimization with respect to (ug, ..., us5) consists in solving

min {'ﬁ” lug + ediv g |? +Z &ir i) } = g
655

UL y...,U5
s —
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4.6. Primal dual algorithm

with
pil 1
b= - 2L S 5,0 - 2w,
1<j<5
and
& = gi(x) + @(1 — 2u(x)) + ! > Bij(1 = 2wij(x)) for i =2,...,5
i i c 1 c : 7] iJ PR
1<5<5
J#i
Since us =1 — Z?Zl u;, then we have
4
PD : 1 : 2
TEP = (&, 1)+ _min < = [Bi]|Jus +ediv g + ) (& — &soua) ¢ - (4.6.3)
Z;l ui<1 | € i=1
In this situation we have two kinds of problems:
1. the minimization with respect to (ug,...,u4) is a linear programming problem,

2. the minimization with respect to u; is a quadratic programming problem.

It follows that

4
TP =(&,1) + min {i|51|||ul+€diV ¢|* + (& —557U1>+Z<§i—§5,ui>}-

min .

0<u1 <1 j

smsty i wsl-w i=2
uiZ()

This provides

4
. 1 . .
TP = (&,1) + T B1] llur + ediv ge||” + (&1 — &5, u1) + 5 min > (& - &ow)
2 = 1i=2
We define ©; for i=2,3,4 by
Us .
1
(_:)i _ 11—y Zf Uy 7é )
0 Zf Uy = 1,
which implies that u; = (1 — u1)0; V i. Let 5 =&, — &5, then we get
4

. 1 _ ~ . ~
TP = {6, 1)+ min § — 18] [lua +ediv ge[|* + (&, m) + Zgnlgiﬂz;&(l ~u1), ;)
i=2 T 1=
0,>0

The minimization with respect to ©; is a linear programming problem, it yields

(1 . =
TP = (&,1) + 0Zur<1 {5 B Il + ediv ge|* + (€1, u1)

+/Dmin<52(1—u1>,§3<1—u1>,53<1—u1>,o>}.
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4.7. Saddle point formulation and algorithm

This implies that

0<u;<1

1 ~ SO
TP = (&5,1) + min {s 1B1] [|ur + ediv ge||* + (€1, u1) + <min(§2,§3753,0)7 1- u1>} .
We denote £ by

5 = min(%;? éa 537 0)7
which implies that

. _
JfD=<&A»+@J>+wggﬂ{€wan+sﬁV%M”+@1—&uﬁ}

. 1 : >
G+ &0+ min {218 o +ediv el + 6 - )

2

1
=(&+6,1) +ogn%if£1 {5 |51

uy + {ediv g + ﬁ(é - f)]

2
|81 ediv g + (&1 — &)

€ 2 1 2
B - div g.|% b .
| +6WMkqu}

The minimization with respect to u; is a quadratic problem, whose solution is

3

UT = P[O,l] <2|61| (E 7&) —ediv QE> )
with

Pio,11(¢) = max (0, min(1, ¢)).
4.7 Saddle point formulation and algorithm

4.7.1 Saddle point formulation
Let us start by defining the functional

1
Ge(ui,uz) =  inf sup —e(Vur, Vug) + = ((u1, v2) + (ug,v1) — {(v1,v2))| - (4.7.1)
UleHl(D)UQEHl(D) £

Definition 4.10. Let L: X x Y — R be a bivariate function where X andY are arbitrary spaces.
A point (z,y) € X XY is called a saddle point of L if

L(Z,y) = L(%,7) = min L(z, §).
max L(Z,y) = L(Z,7) = min L(z,7)

Equivalently, (Z,y) is a saddle point of L if
L(z,y) < L(z,y) < L(z,9).
Another way to say this is

{(a) x is a solution of the minimization problem inf.cx L(x,y),

(b) y is a solution of the mazimization problem maxycy L(Z,y).
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4.7. Saddle point formulation and algorithm

Let us now define the function L : H*(D) x HY(D) — R as
1
L(v1,v9) = —e(Vv1, Vug) + g(<u17U2> + (ug,v1) — (v1, vVa)).

Lemma 4.11. Let uy, us € L*(D) be given and v, v5 € HY(D) be the (weak) solution of

(4.7.2)

—&2Avi +vf =w; in D, i=1,2,
On U5 =0 on 0dD.

Then L admits as unique saddle point (v§,v§) and
g € 1 € 1 €
L(vi,v3) = g<U17U2> = g<u2>U1>-

Proof. We first seek a stationary point of the functional (4.7.1). The Euler-Lagrange equations of
(4.7.1) with respect to vy, vy are respectively

~e(Vp, Vug) + < ((u, ) — (,05)) =0 Vip € H'(D)
—e (Vo5 V) + < (u,8) = (05, 9)) =0 Vi € H'(D).

We recognize the weak formulation of (4.7.2) for ¢ = 1,2. After simplification we have

e2(Vu3, Vo) + (v —uz,0) =0 Y € HY(D), (4.7.3)
£2(Vui, V) + (uf —ug,¢) =0 Vo € H'(D).
By the Lax-Milgram theorem the equations (4.7.3) and (4.7.4) admit unique solutions. We infer

the existence of a unique stationary point (v§,v§) of L.
Now, we need to prove that the stationary point is a saddle point. Note that

L0, 05) = —£{V0f, Vo) + 2 (ur,05) + {uz, o) — (v, v5))
and if vy, € H(D), then

L(vF, 03) = —£(VE, V) + é((ul,w) T (g, v5) — (U5, v3)).
Now, we calculate

D05, 08) — L(v5,v2) = — (V05 Vog) o+~ ((un, v5) + (i, 05) — (5, 05))
+(V0F, Vun) = = (o, va) + (i, 05) — (5, 02))
—e(V05, ¥ (02— 05)) + (o, (05 — v2)) — {05, (02 — v5)))
= [2(V05, 9 (v — u)) — (02 = 05) + (002~ 5)]

From (4.7.4) with ¢ = vy — v§ we get

L(vf,v3) = L(vf, va). (4.7.5)
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4.7. Saddle point formulation and algorithm

Similarly, from (4.7.3) we prove that
L(vi,v5) — L(v1,v5) = 0. (4.7.6)
The equations (4.7.5) and (4.7.6) satisfy the definition of saddle point, more specifically
L(v§,v3) = L(v5,v5) = L(vy,v5) Yui,ve € HY(D).

Next, from (4.7.1) and (4.7.3) with ¢ = v] we obtain that

L(UT,U;) — ¢ <<’UJ27UT>62 <UT>U§>) + §(<U1,US> + <u2,vf> - <Ui,U§>)

1 €
= E<u1,02>.

Similarly, from (4.7.1) and (4.7.4) with ¢ = v§ we can prove that

£ £ 1 £
L(vi,v5) = g<u2aU1>~

4.7.2 Saddle point algorithm

In this subsection, we introduce another algorithm for the minimal partition problem. We write
the minimal partition problem (1.4.1) as

N

750 = min Z(gi,ui>—|— Z i Ge (uis uy) (4.7.7)
(ur,un)€en |55 1<i<j<N
with
- 1
Ge(ui,u;) = inf su —e(Vugs, Vi) + = ((ui, vjs) + (g, vij) — (vij,v4i) |
)= s e, T+ )+ 00 ~ ()|
which implies that
750 = min _ inf sup
(u1,...,us)€EN Vi; €EHY (D) v, e H (D)
N
1
D dgnu)+ Yy {—E<Vvij7vvji>+€(<uz‘avﬁ>+<ug‘=vij>—(Uijyvg‘ﬁ)]
i=1 1<i<j<N
(4.7.8)
We use an alternating algorithm with respect to (u1, ..., un), (vi2,...,vv—1)n) and (va1, ..., Un(N—1))-

The superscript k is again used to designate these vectors at iteration k.

o The stationary with respect to (v;5,v;;) consists in solving simultaneously

K2

—52sz’»“j —l—vfj =u*' in D,
8nvfj =0 on 0D,
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4.8.

Comparison between saddle point and primal algorithms

4.8

and

J

Ok =0 on OD.

J

2 A,k koo k=1
{5 Avj + v, = in D,

g __ € g __ g
In fact vf; = vf and vj; = vj.

The minimization with respect to (ug,...,uy) is a linear programming problem. Minimizers
can be found by exploring the vertices of the polyhedron &y, that is, £x. The practical
procedure is the following. Set

1
& =g+ z Zoéij’uf-
J#i
At each point z € D we find an index i(x) such that
Eity = min {&1 (@), .. N (@)}
We then set

0 otherwise.

{1 if i=i(z),

Of course, there is no guarantee that the cost is decreased at each iteration. This issue is
addressed in the next section.

Comparison between saddle point and primal algorithms

We focus on the relationships between the saddle point algorithm and the primal algorithm.
We assume that in the primal algorithm the coefficients 3;, §;; are chosen according to lemma 4.3.
Let us start with the saddle point algorithm. From (4.7.7) and (4.7.8) we have the following

1.

Saddle point algorithm
We have the minimal partition problem (4.7.8)

750 = min _ inf sup
(u1,...,us)EEN 'UijeHl(D)vjieHl(D)
N
1
dgiu)+ Y oy |:—5<VUij7VUji>+E((“iy“ji>+<ujvvij>_<Uijﬁvji>)
i=1 1<i<j<N
(4.8.1)

Let us begin with the initial partition (uf,...,u%;). Take k = 1 (the first iteration), then the
stationary with respect to (v;;,v;;) consists in solving simultaneously

27,1 1 _ .0
—e 1Avij +v;; =u; in D, (4.8.2)
Onv;; =0 on 0D,
and
—e’Avj; +vj; =u) in D, (4.8.3)
8nU]1-i =0 on OD.
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4.8.

Comparison between saddle point and primal algorithms

We deduce from (4.8.1), (4.8.2) and (4.8.3) that the second step of the first iteration consists
in solving

N
, 1 1
min E <gi+ g E aijvjl-,ui> = jESD )

(u1,...;un)€EEN | S5 oy

It follows from (4.1.8) that

N
jESDl - min N Z <g7, + - Z Bz + B] + Z 51/0 + Bk] Ujl‘vui> . (484)

(u1,.un)€én | 55 Hél ki

. Primal algorithm

We have the minimal partition problem (4.3.3)

IF = min inf inf (4.8.5)
(urenyin )EEn ViEH (D) wiy €H (D)

N N
1
{Z@mgﬁ + Zﬂi {5||Vvi|%2(p) T2 (HUzHLZ(D) + (ug, 1 — 20;) ]

i=1 i=1

+ Z Bij [5||wa||L2 oyt = (||wwHL2(D) + (us 4 v, 1 = 2wgj) ] } .
8.

1<i<j<N
(4.8.6)
Let us begin with the initial partition (ul,...,u%). Take k = 1, then the minimization of
(4.8.5) with respect to (v1,...,vN) is straightforward. It consists in solving the boundary

value problem

_521A vitv =i D, (4.8.7)
Onv; =0 on 0D.
The minimization of (4.8.5) with respect to (w12, ..., wn_1)n) is straightforward. It consists
in solving the boundary value problem
—e2Aw}: + w} (ul +u;)° in D
A J : (4.8.8)
anwij on 0D,

: 1l .1
with w;; = v; + v;.

We deduce from (4.8.5), (4.8.7) and (4.8.8) that the second step of the first iteration consists
in solving

N
min Z<gl—|— 1—2U iZﬁij(l—Q(vi1+v]1»)),ui> ::JEPl.

(u1,un)een | 55 g
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4.8.  Comparison between saddle point and primal algorithms

3. Comparison

Since v} =1-3

ki J, then we get

: al Bi 2B 1
\7£P = min - { <gl—;+ glzvjll_FgZ( Bzy+262]zvk 2/817 ]>7 z>}

i=1 VD) VED) k#i
N . 2/3
=  min _ {) < b : Z — 7251] Z 285 Y vp — 2Byv] ,uz'>
(u1,..., un)EEN i—1 i i j;éi k#i
N |
= min Y (giw) — =Y | Billow) —26; Y (v],u)
(u1,..., un)EEN i—1 € i=1 i
| N
+= <Z 28i; Y vi — 2By5v; 7ui> = B (Lui)| ¢
i=1 J#i ki ki
Using the fact that Z] 1 J =1, we get
. ol 1<
JEP = min Z(gi,uz - = Z Z%»Uz —28; Z(v;,m)
(w1, un)€EN | 557 = i
N
+EZ QZBWZ ’Uk,ul QZﬁm <UJ,’U,2> Zﬁlk <Zv37u1>
i=1 VE) k#i VE k#i j=1
N 1 N
- min-- Z<glaul> - 72 6lz<v317u1> +ﬁl<vz7u1> 2BZZ<U317U’1>
(w1y..ey un)EEN i=1 € i=1 j#i Jj#i

+ii{22@k2 22513 vj, i) i(Z 5ik+5ij) <v§,ui>]}

ki g i G=1 \k#i.j

N 1 N N
= (ulwﬂiﬁ)e& {Z@muz’) + EZ (@Z@ Jui) — Bi(v} u») Z [ (Z Z Bir (v}, uq)

J#i &= J#i k#i,j

+Zﬂlj U uz) 225@ U uz ZZﬂku uz Zﬂzkv uz Zﬁzy U uz:|}

J#i J#i J#i k#i,j k#i

Using the fact that u; = 1 — Zf;l uj, we get

jPlz min {ﬁ:gu —l—li
€ ~ 19 7 5

(w1,eeey unN)EEN o P

( Z Bz< 1>+ﬁiz<vilauj>)

J#i J#i

i=1 | j#i k#i,j ki

iy [Z YDYIRCRINS SENERTES 33 <v;,ui>} }
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4.9. Numerical results

Using again the fact that u; =1 — ZjV=1 u;, we get

N N N N
1
Jr = min D g+ = B (vjus) = Bi(w, 1)+ Bilv) ug) — Bilv},ui)
(w1, un)€EN | 557 f = i j=1
L N
+2 ST Bu{vjw) =Y Bin(wl, 1)+ > Bk > (whug) = > By (v, ui)
=1 | i ki ki kA g =
N L N N
= min I (ghw)+ =D | B Y (vf,u) = Bl 1)+ > Bi (v, i) — Bilv), i)
(u1,-un)€en | 15 €4 j#i j=1
L N
+gz Z Z sz U]7u2>+22ﬁjk: ’UJ,UJ Z/Blk)<vzl71>_2/8’bj <’Uj1‘7ui>
=1 | j#i k#i,j J#i k#j k#i Jj=1

(u1,-un)€EN | i i=1 i i

N N N
=  min _ {Z<gi7ui +%Z 5ZZ<U],U2> Bi(v >+Zﬂj<vjl‘aui>+5i<vil7ui>_5i<vilyui>

N
+%Z ZZBZ’“ kul +Z Zﬁjk UJVU"L Zﬁik(v

i=1 | j£i ki, J#i k#i,g k#i
N N
= min B Z gzvuz ZZ ﬁz +ﬂ] ’Ujauz Zﬁz
(u1,..., un)EEN i=1 i=1 j#i
1 N
> MDIPBCETRICADED SERT:
i=1 | j#i ki ki

It follows that

N
jEPI: min Z<gi+iz Bi+5j+26ik+ﬂkj Ujl‘>ui>

(w1, un)eén | 55

J#i k#i,j
1 N
-3 (AT oo
k#i
(4.8.9)

We deduce that the minimizers of the problems (4.8.4) and (4.8.9) are identical.

4.9 Numerical results
Let Ey, F1, ..., En be a given partition of D. We define g;,i =1,..., N, by

Z Xe; =1—Xxg,;-

0<j<N
J#i
This means that, in the set E; , ¢« > 1, the label 7 is favored, whereas in the set Ey there is no
preference, or, said otherwise, no information on which label to choose. For the following example
we use the finite element method.

o7



4.9. Numerical results

We provide an example for the primal algorithm to show the evolution of the partition with
respect to € for a;; = 1, which is presented in Figure 4.1. The partition is as shown in Figure 4.1a.
The set Ey is the black disc, while each F; ;i =1, 2, 3, is assigned to a specific color, namely red,
green and blue, respectively.

In Figure 4.2 we can observe an analogous example for the saddle point algorithm where the
surface tensions «;; do not satisfy the condition (1.1.3). Finally, the example corresponding to Figure
4.3 is characterized by a volume constraint imposed for each phase for the primal algorithm. We
note that Figure 4.3f is coherent with Figure 2.5 in [15] for N = 3, where in [15] the Modica-Mortola
functional is used.
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4.9. Numerical results

(a) Data. (b) Initialization. (c) e = 512.

(d) e = 256. (e) e = 128.

(h) e =16.

—
=
=
®
Il
o

(j) e =4 k) e = 2. ) e=1.

Figure 4.1: Evolution of the partition for the primal algorithm with respect ¢ for a;; = 1.
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4.9. Numerical results

(a) Data. (b) Initialization.

(¢) Our solution.

Cost function

-8000 [

-WDDOD‘( &
|

‘ M gl A 1 ) A
ol | \VAAAAAAMAAAAAVAAARARAAARAAAAAMA

L L L L L L . .
10 20 30 40 50 60 70 80 90 100
Number of iterations

-14000
]

(d) The cost function.

Figure 4.2: Our solution of a triple point problem with a3 = 100 and «;; = 1 otherwise. Saddle

oint algorithm.
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4.9. Numerical results

(a) Initialization. (b) Initialization.

(c) ai2 =1/2 and a;; =1 otherwise.  (d) ar2 = 1/2 and «a;; = 1 otherwise.

(e) Qg5 = 1. (f) Q5 = 1.

(g) @12 =2 and o5 = 1 otherwise. (h) a12 = 2 and «a;; = 1 otherwise.

Figure 4.3: Minimal partitions with volume constraints for the primal algorithm.
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Chapter 5

An algorithm based on Legendre-Fenchel
duality

In this chapter we present an algorithm based on the Legendre-Fenchel duality. It requires the
conditional negative definiteness of the matrix @ of the coefficients (ay;).

5.1 Concavity of the approximate interface energy

5.1.1 Condition for concavity: conditional negative definiteness
Let us begin with defining the (N — 1) x (N — 1) submatrix of @ = («;) by

Q = (aij)lgi,jSNfl
and defining the column vector V' = (V;) by

V = (aun)1<i<n-1- (5.1.1)
We also define

Q=Q—-1VT—V1T, (5.1.2)
where 1 = (1,...,1)T.

Definition 5.1. A real symmetric N x N matriz Q = (asj) is said to be conditionally negative
semidefinite if Zﬁlj:l @i <0 for all € = (&1,...,&n)T € RY such that Zfil & = 0. We denote
Q =0. )

Definition 5.2. A real symmetric N —1x N —1 matriz Q = (Quij) ts said to be negative semidefinite
if 27];\,[3'—:11 ozijg}éj <0 forall€ = (€1,...,én_1)T € RN=1. We denote Q < 0.

The following result describes the relationship between conditionally negative semidefinite and
negative semidefinite matrices.

Lemma 5.3. Let Q € Sy. Then Q =< 0 if and only if Q <O0.
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5.1. Concavity of the approximate interface energy

Proof. Let &€ = (&1,...,&Nn)T € RY with Zfil &=0and € = (&)1<i<n—1. We have

Qg.gg;m)(;g)-(ff)

From (5.1.2), we obtain
Q¢-£=0Q¢- ¢
It is clear that @ =< 0 if and only if Q < 0. O

Now, we will provide two remarks needed to prove our results.

Remark 5.1. In the case Zf\;l & =1 where € = (&1,...,6n)T € RV and Q € Ty, we have the

following equations:
(@ 3 £
Qef‘(v )(1lf>'(1rs)

§-E+201—(1-9)(V-¢
-6-21-(V-§+2v-&
TQE—26TIVTE+2V - €
TQ—-1VT —VIT)E+2V - €.

Il
ol<

l\.’)

Il
I Qe

From (5.1.2), we get
Q€ £=QE-E+2V ¢

Remark 5.2. Let £ = (&,...,¢8)7, 9= (91,---,98)T, 1 =(1,...,1)T € RN, and Zf\;l & =1.
We have the following equations:

For simplicity, we denote

It follows that



5.1. Concavity of the approximate interface energy

5.1.2 Sufficient condition for conditional negative semidefiniteness

Theorem 5.4. If N=38,4 and if Q € Tn, then Q < 0.

Proof. We proceed similarly to Theorem 4.4. For clarity we provide the details.
Case 1: N = 3. Let &1,&,& € R with & + & + &3 = 0. Then we have

3
Z ;&€ = 012618 + a3éi (=& — &) + a23ba (=& — &2)
=1
1<J

= (o2 — o3 — an3)&16o — 3€] — sl

_ (Oém — 3 — 23

5 ) (61 +&)° — & — &3] — on3Ef — a3l

19 — (13 — & Q93 — (12 — Q93 — (V12 —
:( 12 213 23>(§1+§2)2+( 23 212 13)§%+< 23 212 13)§§~

Since Q S Tg, then (0412 — (13 — 0523), (Otgg — 12 — Oélg) and (Otgg — 12 — Oélg) are HOHpOSitiV@,
which implies that

3
Z @& < 0.
t,j=1
i<j

Case 2: N = 4. Let 51,§2,€3,£4 € R with 51 +§2 +§3 +€4 = 0. Then we have

4

Z aii&i€5 = 0126162 + 0136183 + @148 (=& — &2 — &3) + 23883
ij=1

i<j

+ ag4€o(—€1 — §2 — &3) + a3483(—&1 — &2 — €3)
= (0412 — 014 — 0424)5152 + (0413 — Q14 — 0424)5153

+ (o3 — i3 — 34)€3€4 — Q14€] — Q45 — 34E3

= (W) (&1 + &) - & - &) + (W) [(61+&)* — €7 - €]

Qi3 — (24 — Qi34
* <2

) [(&24 &) — & — &3] — 014€] — a24él — a3

_ (am —@214 - 0424> (51 +§2)2 + (0413 — Qg —CY34> (§1 +€3)2

2
Qa3 — Qg4 — Qi34 Qoq + Qi34 — Q12 — Q13
) &+ 53)2 + f%
2 2
Q14 + 34 — 12 — Q23 Q14 + Qo4 — Q13 — Q23
+( . )R . )é

Since Q € Ty, then (a2 — ang — aaq), (23 — @24 — a34) and (a3 — @24 — a34) are nonpositive.

The pI‘OOf for the values (Oé24+0434 — Q12 —0613), (0614—|—0634 — Q12 —Oz23) and (0414+0624—0413 —Otgg)
is essentially as the proof of Theorem 4.4, except replacing nonnegative values with nonpositive
values.
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5.2. Dual formulation of the interface energy by Legendre-Fenchel transform

Hence 24 ;€& < 0. O
ij=1
i<j
Remark 5.3. The converse of Theorem 5.4 is false. For N = 3 we have the following counterexample.
Consider the matrix

Q
I
— = O
w O =
S W =

From (5.1.2), we have
(-2 -3
o=(5 %)
It is easy to see that det(Q) = 12 and trace(Q) = —8, which implies that Q =< 0, but

Qo3 > (12 + Q3.

Remark 5.4. We have a counterexample to Theorem 5.4 for N = 5. Consider the matrix

O

Il
=N W N O
N WO
== O N W
N O =W N
ON — N

It is clear to see that the matrix @ satisfies the triangle inequality, but @ is not negative semidefinite,
because the eigenvalues are

Sp(Q) = {—6.2886, —3.4300, —2.5700, 0.2886}.

5.2 Dual formulation of the interface energy by Legendre-Fenchel
transform

5.2.1 Dual formulation in the continuous framework
From now on, we denote Q = thQ. Let us first of all give two technical lemmas.
Lemma 5.5. The operator Q : ImQ — ImQ is bijective.

Proof. For all x € ker Q, we have

z € ImQ,
Q) = 0.
Since @ is symmetric, we obtain
z € (ker Q)*,
z € ker Q,
which implies that 2 = 0, and thus Q is bijective. g
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5.2. Dual formulation of the interface energy by Legendre-Fenchel transform

To simplify the computations, we denote for all u,v € H'(D,RN)
(u,v) 1 = / (e°Vu - Vv + uv) du, (5.2.1)
D

and for all u,v € H*(D,RN—1)

N—-1
Z Uz,U, (522)
=1

From now on we will always assume that Q' is the inverse of Q and we recall that some properties
of the operator L. are given in Section 2.6.

Lemma 5.6. Let 7 € H' (D,ImQ). Then [Q'r,7] <0.
Proof. We have

N-1
[QT’D 7] = Z / (52V(QT7)Z- VT + (QTT)iTZ-) dz.
i=1 7D
Let ¢ = Q'r € H' (D,ImQ), then we get

N-—1
-y / 2V(QNG9)), - V(G + (QHOE):(Q€)) de,
=1

which implies that

2

—1

[Qir,7] = /D (2V(Q8); - V& + (Q€)6) do

i=1

N-1
:/ Y @iy (V& - V& + &) da
1,7=1
—1
/D 3 i (20,6 (20.6)) + (20,6)(0,,) + €66, da

i,j=1

U

We deduce from the definition of negative semidefiniteness of Q that

[QTT, 7'] <0.
U
Now, we define the function G. : L?(D,RY) — R as
| X
Ge(u) = % ,Zl aij(Leui,ug)  Yu € (D,RY). (5.2.3)
ij=

Since L. € Z(L?) is self-adjoint and compact, we get

N

Ge(u) = 21*5 Z Qi <L§Ui,L§uj>.

1,j=1
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5.2. Dual formulation of the interface energy by Legendre-Fenchel transform

Now, we use the fact that

N 1 1 N 1
ZLﬁui = L2 Zui =L21=1,
=1 =1

because 1 is an eigenfunction of L. for the eigenvalue 1. From the previous results and according
to Remark 5.1, we get

1 N-1 ) ) N-1 )

i,j=1 i=1

Using again the fact L. is self-adjoint, we get

1[N NoLo
Gew) = 5 | D gy {Lewiuy) +2 37 (L2Viu;)
ij=1 i=1
As V; is constant, then
1[N N-1
Ge(u) = % = @ij (Leui, uj) +2 ; (Vis i)

N-1 N-1
G.(a) = 1 > @y (Letis, i) +2 Y (Vi) |, Vi€ L*(D,RN7Y). (5.2.4)

i,j=1 i=1

It is clear that if Q = (@vij) <0, then G. is concave. ~
Now, we can use the Legendre-Fenchel transform for G. to get the following theorem.

1
Theorem 5.7. Let Q <0, w € L2(D,RN~1) and w = w — gV with V' defined by (5.1.1). Then
G (w) %[Qfﬂ),i;] if w(z) € ImQ a.e. x € D,
g w) =
—00 otherwise.

Proof. The sign-reversed definition of the Legendre-Fenchel transform of G, is

N-1
gz (w) = inf {Z(wivﬂi>_g_s(ﬂ) VwELQ(D,RN—l)},

acL?(DRN-1) |
i=

From (5.2.4), we have

_ N-1 T N-1
gz (w) = aeL?(iB,fRNfl) 2 (wi, @) — % i]zzjl i (Letly, 4j) + 2 ; (Vis @)
N-1 1 1 N-1
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5.2. Dual formulation of the interface energy by Legendre-Fenchel transform

which implies that

B N-1 ] Nl

g: (U)) = aeLZ(ié{fRNfl) 2 <1Di, ﬁz> - % = dij <L51:Li, ﬁj> . (525)
Since L. is self-adjoint, we obtain

B N-1 | Nl

G (w) = ﬁeLz(iBfRNil) 2_; Wi ) = - Py i (i, Leiiy) p - (5.2.6)

Here we consider two cases: either w; € H*(D) or w; ¢ H*(D).
e Case 1: If w; € HY(D) for all i, then we will show that
) N-1
Gl (w) = aefiﬁ{D)' { ; (@i, Wi) g1 (p,RN -1y HY(D,RN 1)
| Nl
5 > @ij (@, Letly) g p g1y g (o)

,j=1

For simplicity, we denote for all 4 € H'(D,RN 1Y

T
2

. U 1
F(u) = <ui;wi>H1(D,RN*1)’,H1(D,RN 1) 72* Z j (T, Le U] H1(D,RN-1) H!(D,RN-1) -

i=1 =

On the one hand, it is clear to see that

F@ >  inf  F(a). (5.2.7)

inf (
@€L?(D,RN-1) a€H(D,RN-1)

On the other hand, according to Corollary 2.25 and since F is continuous on H'(D,RVN~=1)’.

We have
inf F(u) = inf F(w).
@eL?(D,RN-1) GEH(D,RN -1/

In this case, the problem (5.2.6) becomes
B N-1
G (w) = aeHI(iLI)l,fRNfl)f {; (Ui, W) g1 (D RN -1y HY(D,RN-1)

| Nl

—52 D @ (W Lefiy) gy (p gy ar (p RN -1 (-
ij=1

As L. is bijective from H'(D,RY=1)" into H*(D,RN~1), then there exists h; € H*(D,RN 1Y
such that w; = L.h;. It follows that

N-1
Ge(w) = e By, { ; (thiy Lehi) o (p RN =1y, 17 (DRN 1)
1 N—-1
o > ay (@is Lels) g (p gv-1y, 11 (pRV-1) (0
ij=1
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5.2. Dual formulation of the interface energy by Legendre-Fenchel transform

From (2.6.4) and the fact that L. is an isomorphism from H'(D,RY~1)" into H'(D,RN 1),

we obtain
N-1
(W) EeHl(D,RNl)'{; D( )
| -1
i,j=1
Moreover, from (5.2.1) we have
N-1 | N-1
C;* w) = inf ’LI)z',’(’I:L' Hl — — Qi ﬂl,ﬂ H1 y
)= B = 5 3 i,
we rewrite as
B N-1 ;N
G (w) = weHléngN—l) 2 (@i, i) — 52 ; (@) i)
From (5.2.2), we obtain
_ 1. -
: = inf 0, 9] — — . 5.2.8
Gr(w) =, 1wl - 5 1Gv.) (5.2

Here, there are two cases depending on whether w € ImQ or not:

— Case 1-1: w(z) € ImQ a.e. x € D. By using Gauss reduction for (5.2.8) and Lemma 5.5,
we obtain

ge(w) =

= inf
$eH(D,RN-1)

{ [;QT (i@/’ - @> é@y; - m} + g [QTw, w] } . (5.29)

Using Lemma 5.6, we conclude that a solution of (5.2.9) is 1»* € H'(D,RN~1) such that

1Q@/}* —w=0 (ie. ¢¥* =eQ'w).

€

Equation (5.2.9) becomes now
G: (w) = 5[Qw, w]. (5.2.10)

— Case 1-2: There exists W C D such that w(z) ¢ ImQ for all 2 € W and |W| > 0. Tt is
straightforward that

w(z) ¢ (KerQ)t Vzew (5.2.11)
since the matrix @ is symmetric. Take in this case
P! = —Pyoow € H'(D,KerQ), (5.2.12)

where Py,,.ow is the orthogonal projection of w onto KerQ.
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5.2. Dual formulation of the interface energy by Legendre-Fenchel transform

Now, we will show that

1~ N
[, 9#] = 52 [QuF, 9*] 7% o0, (5.2.13)
where % = —kyt, k> 0.
First, let g1, ..., qa be an orthonormal basis of Ker@. Then we have
M
PKerQU_) = Z(qz ' ’LZJ)(]“
i=1

which implies that

i=1
It follows that
M M
P00 =Y (g;-0)(qi @) = Y (g~ w)* > 0. (5.2.14)
i=1 i=1
Moreover,
2
VPV =Y 05 Py oy g0-0510
j=1
2 M
=) (g 90)(g; - 9;w) > 0. (5.2.15)
j=1i=1
We deduce from (5.2.11),(5.2.12),(5.2.14) and (5.2.15) that the first term in (5.2.13)
satisfies
N-1
[@,9*] = =k ) / (e2Vw; - Vip; + wit] )da < 0.
i=1 7D
Hence,

[, p*] —=F—o00 . (5.2.16)

Now, we take the second term in (5.2.13)
Q=1 Y [ (E9QuN: - Vil + (@)l
i=1 /D
By the definition of ¢! in (5.2.12), it is clear to see that
[QuF M =k /D [(€°V(QPxero®)i - V(Piero®)i + (QPiero®)i(Piero®)i)] d
i=1
=0.

We deduce from (5.2.8), (5.2.16), and (5.2.17) that
G (w) = —oo0. (5.2.17)
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5.2. Dual formulation of the interface energy by Legendre-Fenchel transform

e Case 2: There exists ip such that w;, ¢ H*(D), then there exists a sequence (n*) € D(D)
such that

/ Wi, div n* — —o0, [|n*||2(py < 1. (5.2.18)
D

Here, we take

n divn® if =i,
u, =
¢ 0 otherwise,
and by continuity of L. we have
ILetif | i oy < Cllaf |l gy < Clln*llr2py < C,

where C' is a positive constant independent of k. From this, we infer that

_ kT ~k
; ‘/ ujLsui
D

Moreover, the second term in (5.2.5) is bounded. From (5.2.18) and (5.2.19), we infer that
Gl (w) = —oo. (5.2.20)

<@ | 2 (py | Let@f || g2 (py < C- (5.2.19)

O
Now, we take the concave biconjugate of G.(#) is defined by

G (a) = inf (w, 1) — G (w).

@eL?(D,RN-1)
From (5.2.10), (5.2.1) and (5.2.20) we have
SRR (T = 1 a1y — i .5 5
Gy = mf {<w,u> -lQ w,w]}. (5.2.21)

Corallary 5.8. If Q <0 and @ € L*(D,RN=V, then

G.(i)=  inf {(w,a) - %[Q%,w]}.

weH(D,ImQ)

Proof. Since G : L>(D,RYN~Y — R is a closed concave proper function, then by using the Corollary
of Fenchel-Moreau-Rockafellar theorem, Corollary 2.42, we have

G=(a) = G (a).
From (5.2.21) we have

5 €
~ — . f - &\ = T — —
Ge(u) meHll(r}:),ImQ) {(w,u) 2[Q mw]}
O
We have the following corollary.
Corallary 5.9. If Q <0 and u € En, then
€
€ = inf 7) u) — - f 77 U )
G-(w)= _ inf A (w,) - 5[Qw alf

where @ = (U1, ..., un—1).
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5.2. Dual formulation of the interface energy by Legendre-Fenchel transform

5.2.2 Dual formulation in the discrete framework

We define the function G. : RP*N — R as

Za” (Leu;) - uj Vu € RPN,

1,5=1

where p is the number of pixels, the dot (-) is the standard dot product of RN, L. = (2K + M)~ M
such that M is the global mass matrix and K the global stiffness matrix. We have

1N N-1 N—1
Ge(u) = % Z a;; M (Lew;) - uj + Z a;NM(Leu;) - uny + Z a;nM(Leun) - u
i,j=1 i=1 j=1

Since L. is symmetric and uy =1 — ZZ 1 m7 then we get

L= N-1 N-1
Ge(u) = % Z a;; M (Lew;) - uj + Z a;NM(L.u;) Z U
ij=1 i=1 =1
N-1 N-1
+ > ajnM(Louy) - ( m) )
j=1 i=1
which implies that
= N-1
Ge(u) = % Z o M (Leu;) - uj + Z o N M (Lous) - uj
Q=1 ij=1
N-1 N-1
+ Z ajNM(Lgui) s Uy +2 Z aZNM(LEuZ) -1
ij=1 i=1
1[N N-1
= % lzl(aij — OGN — ijN)M(LE’U,Z‘) . Uj =+ 2 Zl CYZNM(LEJ.) s Ug
1,j= 1=

For simplicity we denote &;; = a;; — ayn — ajn. 1t follows that

1= N-1
Qg(u): % Z &ijM(LEui)-uj+2ZaiNMl-ui
i,j=1 i=1
Now, we define the function G. (@) : RP*(V=1 — R by
B L[N N-1
Ge() = o > @ M(Leii;) - i +2 Y oinM1-di; |, Vi€ RPVED, (5.2.22)
i,j=1 i=1

It is clear that if Q = (a;;) <0, then G is concave.
Now, we can use the sign-reversed definition of the Legendre-Fenchel transform to get

N-1

G (0) = el { 2 M i - gf@} '
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5.2. Dual formulation of the interface energy by Legendre-Fenchel transform

From (5.2.22), we obtain

N-1 N— N-1
_* —_— 1 .. T —
G2 = o 4 3 M= | 3 auME) 542 5 oL
: (2
N-1 o | V-1
- . iN ~ ~ ~ O\
= endth | 2 M (e ) g 3 auM et
i=1 3,7=1
For simplify we denote
u’;i = Ww; — QN 1
€

It follows that

N—1
Gi(w)=  inf ZMH)ZW&,»— Za” (Let;) - 4y
i=1

ueRpx(N—l)
1,j=1

As M is symmetric, we obtain

N—1
G:(w) = _inf 4> M - 2% Zl iy (Loiia) - M, . (5.2.23)
i,j=
By the definition of u; := L.4;, we have
Mi,; = (K + M)u;. (5.2.24)
It follows that
B N-1 1 N
G (w) :ﬂeRgrxl(fN—U ; [SQK@- -w; + My, ~wl ~ 5 2:: 5 K, - u; + Mu; - uj]

To simplify the computations, we denote
<ui, Ul'>5 = €2Kui SV + Mu; - v;.
It follows that

N-1

N-1
S . ~ 1 o
Gl (w) = inf Z (U, w)e — % Z @ij (Wi, Uj)e
ij=1

~ N
wERPX(N—1) i—1

As L. is invertible, we obtain

) N-1 | V-1
gg (U)) = z/)eRII’IXI(fN—U : <"/}ivw>6 - % 2 Q5 <’l/}’i7’(/}j>6
i=1 i,j=1
N-1 L V=1 N-1
= inf (i, w)e — — < C%ﬂ/fi»%‘>
pERPX (D | i 2 - i=1 .
N-1 | V-l
= . f () I e 5 g, Kl ] .
weRPX<N b { - (1, w) 2 & ((Qv); ¢]>6}
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5.2. Dual formulation of the interface energy by Legendre-Fenchel transform

For simplicity, we denote

N—-1
[u,v]e = (u,v)e
=1
It follows that
e B 1
Ge(w) =, _int,_ {1o.0l - L@vul.f. (5.2.25)

Here, there are two subcases depending on whether w € Im@Q or not:
e Case 1-1: w; € ImQ for all i. By using Gauss reduction for (5.2.25) and Lemma 5.5, we obtain
€

G:(w =, i {[-50" (2av-w).lqu -] +5leta a.}. G2

Using the discrete counterpart of Lemma (5.6), we conclude that the solution of (5.2.26) is
Y* € RP*(N=1) quch that

1.
ngp* —w=0 (ie ¢* =eQ'w).
Equation (5.2.26) becomes now

G:(w) = S[Q'w, w).. (5.2.27)

e Case 1-2: There exists i such that w; ¢ ImQ. Take in this case

P! = —Pyoqw € RP¥VTD,

where Py, ow is the row-wise orthogonal projection of w on KerQ. By using the same
technique as in 5.7, we get

G (w) = —o0. (5.2.28)

Now, we take the concave biconjugate of G. (@) is defined by
Ge™ (@) = TIJER}’IXU(L:N—I) {Mw- @ -G (@)}

From (5.2.27) and (5.2.28), we obtain

G (0) = we(iﬁ@)p {Mﬁ; Sl — §[QT@,w]g} .

Using the discrete counterpart of Corollary 5.9, we have

- = €
i) =G*(u) = inf Mw-a—=[Q"w,w. }.
6.@) = 0@ = _jnt {Mw-a-51Q'w.al.}
The above result allows us to get
_ . € o
Ge(u) =  inf {Mw~uf§[QTw,w}s},

we(ImQ)”

where @ = (ug,...,un_1).
We shall now describe the algorithm.
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5.3. Algorithm

5.3 Algorithm

We have the minimal partition problem (1.4.1)

N

. 1
¢ = min Z(gi,ui>+g Z o (Lo, uj) . (5.3.1)

(u1,...un)€€N | i 1<i<j<N

We deduce from Corollary 5.9, Remark 5.2 and (5.3.1) that

I = inf (g +w,@) +gv - 5[Q"w,ul}. (5.3.2)
SN e <1 weH (DImQ) B
;>0

For this, we use an alternating minimization algorithm with respect to the two (N — 1)-tuples of
variables (uq,...,Un—1) and (wq,...,WN_1).
On the one hand, we have the minimization with respect to w:
€
inf {(w,a) - f[QTw,w]} .
@weH(D,ImQ) 2
We deduce from (2.6.5) that this is equal to
€

inf {[w, L.a] - S[QTw, w]} .

WEH (D, ImQ) 2

By using the same technique as in (5.2.9), we get the unique minimizer

1~
w=-QL.i. (5.3.3)
€
On the other hand, we can extend the minimization with respect to the (N —1)-tuple of variables
(@1, ...,un—1) to the N-tuple of variables (ug,...,un). We obtain
min  (¢,a) = min {({,0),u), (5.3.4)
HAETEAD S
;>0 u; >0

where ( = g + w.
Now, we arrive at the following alternating algorithm.

1. The equation (5.3.3) allows us to find the minimization with respect to (wy,...,wx_1). It

consists in solving the boundary value problems

(5.3.5)

and setting w"* = é@vk
2. Thanks to (5.3.4), we realize the minimization with respect to (uq,...,uy). Set
¢k =t + 3t
At each point x € D, we find an index j(z) such that
iy = min {¢F (), .., Ry (2), 0} .
We then set

0 otherwise.

u'.v(x)—{l if j=j),
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5.4. Numerical examples

(cij) 1,1,05 1, 1,1 1,1,2

(Bs) 0.75, 0.25, 0.25 0.5, 0.5, 0.5 0,1,1

Eigenvalues of ) -2.2071, -0.7929 | -3, -1 -5.2361, -0.7639

Primal algorithm

Figure 5.1d 5.1f 5.1h

Elapsed time 37s 32's 51's

Cost function -2.0873e+05 -2.0867e+-05 -2.0857e+-05
’ Legendre conjugate algorithm \

Figure 5.1d 5.1f 5.1h

Elapsed time 37s 3ls 50 s

Cost function -2.0873e+05 -2.0867e+05 -2.0857e+-05

Table 5.1: Triple point: comparison between the primal algorithm and the Legendre conjugate
algorithm for different values of (ay;).

5.4 Numerical examples

In the following examples we use the finite difference method (FDM) with the fast Fourier
transformation (FFT) (see Appendix A).

In Figure 5.1 and Table 5.1, we compare the primal algorithm and the Legendre conjugate
algorithm for different values of (a;;) on the triple point problem.

Figure 5.2 and Table 5.2 concern the comparison between the primal algorithm and the Legendre
conjugate algorithm for different values of (c;;) on the quadruple point problem (case 1). We
also compare the primal algorithm and the Legendre conjugate algorithm on the quadruple point
problem (case 2) in Figure 5.3 and Table 5.3, for the same values of («;;) as in case 1.

The primal algorithm and the Legendre conjugate algorithm for different values of (c;;) on the
Steiner tree problem with 4 phases are discussed in Figure 5.4 and Table 5.4.

In Figure 5.5 and Table 5.5, we compare the primal dual algorithm and the Legendre conjugate
algorithm for the same values of (a;;) on the Steiner tree problem with 5 phases.

Figure 5.6 provides an example for the Legendre conjugate algorithm for different values of (c;;)
on the Steiner tree problem with 5 phases.

We note that the Figures 5.6¢c and 5.4d are coherent with the Figures 2.6 and 2.7, respectively,
in [4], where in [4] the Modica-Mortola functional is used.

5.5 Image classification

5.5.1 Classification of greyscale images

Let f € L>(D,]0,1]) be a given image with N grey levels ¢1,...,cny € [0,1]. We consider the
piecewise constant image

N
w = E U; C;
i=1

T



5.5. Image classification

(a) Data. (b) Initialization.

(c) Primal algorithm for ag3=1/2 and  (d) Legendre conjugate algorithm for
a;;=1 otherwise. a23=1/2 and «;;=1 otherwise.

(e) Primal algorithm for a;; = 1. (f) Legendre conjugate algorithm for
a;; = 1.

(g) Primal algorithm for a23=2 and (h) Legendre conjugate algorithm for
;=1 otherwise. a23=2 and a;;=1 otherwise.

Figure 5.1: Triple point: comparison between the primal algorithm and the Legendre conjugate
algorithm for different values of (c;) (see Table 5.1 for more details).
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5.5. Image classification

(a) Data. (b) Initialization.

(c) Primal algorithm for a;; = 1. (d) Legendre conjugate algorithm for
ag; = 1.

(e) Primal algorithm for a12 = a34 = 1/2, (f) Legendre conjugate algorithm for
a3 = agq = 3/2 and a1q = a3 = 1. a2 = az4 = 1/2, a1z = agq = 3/2
and a4 = agz = 1.

(g) Primal algorithm for a3 =1/2 and  (h) Legendre conjugate algorithm i3
a;; = 1 otherwise. =1/2 and «a;; = 1 otherwise.

Figure 5.2: Quadruple point (case 1): comparison between the primal algorithm and the Legendre
conjugate algorithm for different values of (c;;) (see Table 5.2 for more details).
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5.5. Image classification

(a) Data. (b) Initialization.

(c) Primal algorithm for a;; = 1. (d) Legendre conjugate algorithm for
a;; = 1.

(e) Primal algorithm for a2 = aa (f) Legendre conjugate algorithm for
1/2, a13 = g4 = 3/2 and a4 = a3 = a12 = azs = 1/2, a1z = ags = 3/2
1. and a4 = a3 = 1.

(g) Primal algorithm a1z =1/2 and (h) Legendre conjugate algorithm ;s
ajj = 1 otherwise. =1/2 and «;; = 1 otherwise.

Figure 5.3: Quadruple point (case 2): comparison between the primal algorithm and the Legendre
conjugate algorithm for different values of (c;) (see Table 5.3 for more details).
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5.5. Image classification

(a) Data.

(b) Primal algorithm for a13=1/2 and a;;=1 (c) Legendre conjugate algorithm for
othewise. a13=1/2 and o;;=1 othewise.

(d) Primal algorithm for a;;=1. (e) Legendre conjugate algorithm for ov;;=1.

(f) Primal algorithm for a13=2 and a;;=1 (g) Legendre conjugate algorithm for cr;3=2
otherwise. and ;=1 otherwise.

Figure 5.4: Steiner tree problem: comparison between the primal algorithm and the Legendre

conjugate algorithm for different values of (cy;) with initialization: u; = us = ug = us = 1/4 (see
Table 5.4 for more details). 81



5.5. Image classification

m

(a) Data (b) Initialization

(c) Primal dual algorithm for Bg (casel). (d) Primal dual algorithm for Bg (case 2).

(e) Primal dual algorithm for Bg (case 3). (f) Legendre conjugate algorithm.

Figure 5.5: Steiner tree problem: comparison between the primal dual algorithm and the Legendre
conjugate algorithm for the same values of (c;;) (see Table 5.5 for more details).
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5.5. Image classification

m

(a) Data (b) Initialization

(c) ayj = 1. (d) o1z =2 and a;; = 1 otherwise.

(e) cu2 = a15 = a23 = az4 = g5 = 1 and oy = 2
otherwise.

Figure 5.6: Steiner tree problem: Legendre conjugate algorithm for different values of (cv;) (see
Table 5.6 for more details).
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5.5. Image classification

(aj) 1,1,1,1, 1,1 0.5,1.5,1,1,15,05 | 1,0.5,1,1,1, 1

(Bs) 0.5, 0.5, 0.5,0.5,0,0,0 | 0,0,0,0,1,0.5 0.25, 0.5, 0.25, 0.5, 0, 0.25, 0

Eigenvalues of Q) -4-1-1 -4.7321,-1.2679, 0 -4.3508, -1.1492, -0.5
’ Primal algorithm \

Figure 5.2d 5.2f 5.2h

Elapsed time 40 s 10 s 117 s

Cost function -2.0860e+4-05 -2.0872e+05 -2.0862e4-05

Legendre conjugate

algorithm

Figure 5.2d 5.2f 5.2h

Elapsed time 35's 8s 104 s

Cost function -2.0860e+-05 -2.0872e+05 -2.0862e+-05

Table 5.2: Quadruple point example 1: comparison between the primal algorithm and the Legendre
conjugate algorithm for different values of (cv;).

(aij) 1,1,1,1,1,1 0.5,1.5,1,1,1.5,05 | 1,05,1,1,1, 1

(Bs) 0.5, 0.5, 0.5,0.5,0,0,0 | 0,0,0,0,1, 0.5 0.25, 0.5, 0.25, 0.5, 0, 0.25, 0

Eigenvalues of Q 4,1, -1 4.7321, -1.2679, 0 ~4.3508, -1.1492, 0.5
’ Primal algorithm \

Figure 5.3d 5.3f 5.3h

Elapsed time 39 s 14 s 66 s

Cost function 670.6850 508.9342 643.7179

Legendre conjugate

algorithm

Figure 5.3d 5.3f 5.3h

Elapsed time 34S 12 S 58 S

Cost function 670.6850 508.9342 643.7179

Table 5.3: Quadruple point example 2: comparison between the primal algorithm and the Legendre
conjugate algorithm for different values of (c;).

where each u; is the characteristic function of a subset of §2; of D such that (Q,...

partition of D. We have for any LP norm on D:

[[w — inp(D) =

N
> wici — f
i=1

p

=1

L (D)

N
Zui(ci =)

p

L

,Qn) forms a

N
22/ uile; — f|Pdx.
»(py i=1"P

The difference between the piecewise constant and original images is measured by:

N

Hw - f”ip(p) =
=1

> (ui gi),

gi = |Ci_f|p'

When the levels ¢; are fixed, we can directly apply the three algorithms (primal, primal dual and
Legendre conjugate algorithms) mentioned in this chapter.

For the update of levels, it is often desirable to determine the grey levels within the classes
automatically. Thus, we include a third step in the alternating minimization algorithm, consisting
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5.5. Image classification

(eij) 1,05, 1,1, 1,1 1,1,1,1,1,1 1,2,1,1,1,1

(Bs) 0.25, 0.5, 0.25, 0.5, 0, 0.25, 0 | 0.5, 0.5, 0.5, 0.5, 0, 0, 0 | 0.5, 0, 0.5, 0, 0.5, 0, 0.5

Eigenvalues of ) -4.3508, -1.1492, -0.5 -4,-1, -1 -3.4142, -2, -0.5858
’ Primal algorithm \

Figure 5.4b 5.4d 5.4f

Elapsed time 71s T7s 178 s

Cost function -1.1128e4-05 -1.1122e4-05 -1.1122e4-05

Legendre conjugate al-

gorithm

Figure 5.4c 5.4e 5.4¢g

Elapsed time 68 s 72 s 167 s

Cost function -1.1128e+-05 -1.1122e+4-05 -1.1122e+4-05

Table 5.4: Steiner tree problem: comparison between the primal algorithm and the Legendre
conjugate algorithm for different values of (o).

(cij) 1,1,1,1,1,2,3,2,2,3 Figure | Elapsed| Cost function
time

Primal dual algo-
rithm

] (Bs) casel -0.5,0.5,0,1,1, 0,0, 0, 0.5,0.5,0,0,0,05,0 | 5.5¢c 55 -1.6064e+-05
(Bs) case2 -1, 0,0, 0.5, 1, 0.5, 0, 0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0 | 5.5d 5s -1.6064e+05
(Bs) case3 -1, 0.5, 0, 0.5, 0.5, 0, 0, 0.5, 1, 0, 0, 0, 0, 0.5, 0.5 | 5.5e 5s -1.6064e+-05
Legendre conjugate
algorithm

| Eigenvalues of Q | -14.5432, -2.3656, -0.9360, -0.1553 | 5.5f  [47s [ -1.6065e+05

Table 5.5: Steiner tree problem: comparison between the primal dual algorithm and the Legendre
conjugate algorithm for the same values of (a;;).

(cij) 1,1,1,1,1,1,1,1,1,1 { 1,1,2,1, 1,1, 1,1, 1,1 | 1,2,2,1,1,2,2,1,2, 1
Eigenvalues of ) -5, -1, -1, -1 -4.5616, -2, -1, -0.4384 | -8.4051, -2.618, -0.5949, -0.382
Figure 5.6¢ 5.6d 5.6e

Elapsed time 187 s 207 s 141 s

Cost function -1.6080e+4-05 -1.6080e+-05 -1.6077e+05

Table 5.6: Steiner tree problem: Legendre conjugate algorithm for different values of (ay;).
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5.5. Image classification

(a) Data.

(b) Unsupervised solution for a;;=1. (c) Unsupervised solution for a12=0.1 and a;j=1 otherwise.

Figure 5.7: Classification of greyscale images with L? norm, 4 phases and initialization: u;=1 and
u;=0 otherwise. Primal algorithm.

of solving
N N
(cl,...,i?vi)ré[o,l]f\’ ;<ui,gi> = ;/Dulm — flPda.
This problem is separable in its variables c1,...,cy, and each ¢; must satisfy

ci € argmince[o’l]/ uile; — f|Pdx.
D

Note that, since 0 < f < 1, the constraint 0 < ¢ < 1 can be removed. For p = 2, this is a standard
problem which results in computing the arithmetic mean

_fDuifd:v
- Jpuidx

&

In Figure 5.7, an example of unsupervised greyscale image classification with L? norm is shown.
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5.5. Image classification

5.5.2 Classification of color images

The original image f is represented by the three channels (f1, f2, f3) € L>(D, [0, 1])® representing
the intensity of red, green and blue, respectively. Each phase ; is associated to a color (¢;1, ¢;o, ¢i3) €
[0,1]% in the same RGB system. The reconstructed image

N
wj: E uicij
i=1

where wu; is the characteristic function of €2;. We have for each channel

N N
Zuicij*fj Zui(cij*fj)
i1

i=1
The difference between the segmented and original images is measured by

P p

ij - fj”ZL)p(D) =

N
Z/ uilcij — f5lP-
D

L»(D) i=1

Lr(D)

N

3 3
S lwy = £ = Slung)s g =S ley - 17
j=1 j=1

=1

We then apply the same algorithms as in this chapter. Note that the geometrical variable
u = (uy,...,uyn) as well as the auxiliary variable v = (v1,...,vx) remain N-dimensional vectors,
and the update of levels is separable in the channels.

In Figure 5.8, we compare between supervised and unsupervised solution for color image
classification for different values of a;; with L? norm.
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5.5. Image classification

(a) Original image.

(b) Supervised solution for a;; = 1. (c¢) Supervised solution for a12 = a13 = a4 = a15 =20
and «;; = 1 otherwise.

(d) Unsupervised solution for a;; = 1. (e) Unsupervised solution for a12 = a13 = a4 = a5 =20
and «;; = 1 otherwise.

Figure 5.8: Color image classification with L? norm, 5 phases and initialization: u;=1 and u;=0
otherwise.
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Chapter 6

Projected gradient algorithm and
applications

In this chapter, we present an algorithm based on the projected gradient and some applications.

6.1 Projected gradient algorithm

Let us start with the following lemma from [12].

Lemma 6.1. Let X be a Hilbert space and ® : X — R be a differentiable function such that V® is
A-Lipschitz. We have for all u € X:

A
®(u) = inf {(I)(ﬂ) +(Vo(a),u —a) + §||u — 11||2} . (6.1.1)
We want to minimize the right hand side of (6.1.1) using an alternating algorithm. The

minimization with respect to u is a projection problem as shown below.

Lemma 6.2. Let X be a Hilbert space. Let IC be a convex closed nonempty set of X, Px be the
orthogonal projection onto IC and ® : X — R be a differentiable function such that V® is A\-Lipschitz.
Let

P(u, 1) = (a) +(VO(a),u —a) + %Hu — il (6.1.2)
We have for allu € X:
inf (1) = ¢ (p,c (u - iW(ﬂ» . (6.1.3)

Proof. By using Gauss reduction, we can rewrite (6.1.2) in the form

W, ) = H\/g(u —a)+ \/%V@(a)

which implies that
i — SV (i)
u u- U

89

2
1 - -
- o5 V2@ + (@),

L2

— o5 IV®(@)3 + 2(a). (6.1.4)

Y=
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6.1. Projected gradient algorithm

The minimization with respect to u is

vt ) = (5 (- Lo@) ).

ue

Now, we define the standard simplex set

N
IC:{52(51,...,51\])1-ERNloggiSL i:l,...,Nand Zfzzl}
i=1

The minimal partition problem (1.4.1) reads

min  ®(u)

u€L>(D,K)
with @ : L2(D,RY) — R defined by
a 1
) = e Z - o 2 Ny
(w) =D i gi) + 2 Z i (Lews,uj) Yu € L2(D,RN)
i=1 1<i<j<N

We have
1
g1 + z Zi# ariLeu;
Vo (u) = :
1
gn + g Zi;ﬁ]\/’ ainLou;
We also define the constant C' by

— 2 2
C = max E ah—,...,g ol

i#1 i#N

To determine the lipschitz constant A of V&, we will use the following observation.

Lemma 6.3. The gradient V® is A\—lipschitz if

N-1
A YV -DE
€
Proof. We have
1 1 .
g1 + g Zi;él OZMLEUi a1 + g 2175 aliLsui
~\ 12 . .
[VE(u) = VO(a)||. = : - :
1 1 .
gN + z 2oizn CinLeu; gN + z 2izn QN Lt

90

(6.1.5)

(6.1.6)

(6.1.7)

(6.1.8)

(6.1.9)

(6.1.10)
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6.1. Projected gradient algorithm

It follows that

1 ~
g1+ 2 2z @1iLle(u; — ;)

IVe(u) — Ve (a)||7. =
1 -
gN + 2 > oien QN Le(ui — ;) Lo
2 2
1 _ 1 .
=z D anile(ui — )|+ |z > oinLe(ui — )|
i#1 12 i#N 12
which implies that
2 2
_ 1 -
IV®(u) — V(@)||72 <I|Lel% (12 Zah w— )| || > ain (u; — ;)
1751 12 1#=N 2
From (2.6.6) we infer that
2 2
1 .
HV(I)( ) V(I) ”LQ = Zalz Ui — Uz + + g Z oziN(ui — ui)
17&1 L2 i#=N 2
2 2 2 2
N -1 a4 ~ N -1 ;N ~
< . . ) .
_( - ) ZN_I(ul ;) + +< . > ‘ N—l(ul ;)
i#1 L2 i#=N L2
By convexity of || - ||2., we get
N -1 N-1
2 2 -2
Vo) - Vot < (T S atu - aitt+ o+ (E) X aty -l
i#1 i#N
N -1 ~ 12 1 ~ 2
< |2k - w4 o+ > oy | lluy — .
i#1 1#=N
Using (6.1.10) and taking the square root of both sides, we get
i (v -1)C i
[VO(u) = V()| < (a [(w = @) - -
Consequently, we obtain
A (N — 1)C’.
€
O

6.1.1 Projection onto a simplex

In order to use Lemma 6.2 we need to project onto the convex set K. We describe the procedure

for K being defined by ( 6.1.6) in the case N=3, i.e.,

3
K= {g: (€1,6,6)T€ER3:0<¢ <1, i=1,2,3 and Zgi = 1}.
i=1
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6.1. Projected gradient algorithm

3

Figure 6.1: The standard simplex in R® and a plane H.

Let
3
H= {E = (£1,6,63)T €R3: Zfi = 1} , (see Figure 6.1 for illustration).
i=1

Let £ € R® and define y = Py(€), where Py (€) is the orthogonal projection of ¢ onto the plane
H.
Here, there are two cases depending on whether y; > 0 Vi or not.

o If y; > 0 Vi, then y € K, which implies P () = Pr(§) = y.
e If there exists ig such that y;, <0, then Px(§) = Ps, (y) with
Sio :{SGICZ&O :0}
We define the line L;, = {{ € H : {;, =0} and y = Pr, (y). Now, we have two subcases:
— If y; > 0 Vi, then y € S;,, which implies Ps, (y) = Pr, (y)-
— If there exists igo such that y;,, <0, then Ps, (y) = Ps,  (y) = Siy, with the vertix
Sioo = {€ € Liy : &igo = 0}7

(i.e. project onto a vertex).

6.1.2 Algorithm
Plugging (6.1.1) into (6.1.7), we obtain that the subproblem at ¢ fixed consists in solving the

following two-level minimization problem

A
PG _ ; . - A
1." = welnth 1) ﬁeanzf(D) {@(u)+ (VO (i), u —u) + 2||u al }

with @ given by (6.1.8). The simple structure of this problem with respect to each variable v and @
allows us to use an alternating minimization algorithm. The two steps are described below.

e According to Lemma 6.1, we obtain the minimization with respect to @ is simply achieved by
setting @F = uF~1.

e Applying Lemma 6.2 we conclude that the minimization with respect to u is given by

uF(z) = Pe <ﬂk(x) _ %w(ak(gg))) .
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6.2. Image deblurring of greyscale image

6.2 Image deblurring of greyscale image

We will apply a variant of our minimal partition model for multilabel image deconvolution. The
blurring kernel is represented by a linear and continuous operator A : L?(D) — L?(D) such that
Al = 1. The given blurred (greyscale) image is f € L*°(D,[0,1]), and the reconstructed image is
w=ciu + -+ cyun, with u € £ and ¢; > 0 for all . We have

N
Aw = Z c; Au;.
i=1
We have for L? norm on D:
N 2
lMw = fl72 = || > eidui — f
=1 L2

The deblurring problem of greyscale image reads

min P (u)
ueL>(D,K)

with ® : L2(D,RY) — R defined by

2

1
+ - Z aij<L5ui,uj> Yu € L2(D, RN).
L2 1<i<j<N

O(u) =

N
Z ciAui - f
i=1

‘We have
1
2c1 A* (Zfil ciAu; — f) + - > iz 1iLleu;
Vo(u) = , (6.2.1)

1
2c3 A* (Zfil ciAu; — f) + g Zi;ﬁN ainLeu;
with A* the adjoint operator of A.
In our model the blurring kernel A is assumed to be known, which occurs in some practical

applications, like when the blur is generated by an optical device.
To determinate the lipschitz constant A of V&, we define the constant C by

C =max{cy, - ,cn}, (6.2.2)
and will use the following observation.

Lemma 6.4. The gradient V® is A\—lipschitz if
1
- 20N —1)C'\?
> (8N204||A*A2 + (52)>
with C, C defined by (6.1.10) and (6.2.2) respectively.
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6.2. Image deblurring of greyscale image

Proof. We have
2047 (LI cidu — f) + %2#1 ariLeu;
IV (u) - VO(@)|7= = :
2cy A* (ZZ 1 G A — f) + ézi#\/ a;nLeu;

1
2¢; A* (ZZ 1 AT — f) +o > izt Q1iLetl;

N1
9 A* (vazl e; Aty — f) + = Yy i Lt

L2
It follows that

1
2c1 A* (Zl 1 CiA(u; — ﬂz)) + - ZZ—# o Le(u; — @;)
IVe(u) - V()| = :
1
2en A* (Zz 1 CZA(U — ﬂ2)> + g Zi;ﬁN OZiNLE(’U,i — ﬂl)

2
N
=1{|2c; A* (Z Ci.A(Ui - ’l]l>> + é ZaliLe(Uz’ — @1)
i=1

i#1 12

L2

N
+ - 4 |[2epA47 (Z ciA(u; ) ZOQNL )

i=1 z;éN 12

By using ||z +y|* < 2[[z|* + 2ly[|*, we get

N
2 201./4* (Z C,‘.A(Ui - ’111)>

i=1

2
IVe(u) = V()72

‘|‘2 *Zalz U; — U l)

L2 i#l L2

N
1
+ 2||2cn A® (Z ciA(u; — @ ) +22 > qinLe(ui — @)
i=1 i#EN 2
Using the same technique in proof of Lemma 6.3 and from (6.2.2), we get
V8 (u) - (@) <sn2CA AR - als + 2 (T EE) - a2,

< (8N204|A*A||2 AN >C) o — a2

which implies that

1

o 2N —1)C\ )
I9000) - Vo), < (s2Ciaral + 22 209) - ..
Consequently, we obtain

A > <8N2é4||A*A|2 + W) .
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6.3. Image deblurring of colour image

2, White
02, Gery

(a) Damaged image with blur and noise effects.

(b) Reconstructed image for a;; = 10. (¢) Reconstructed image for ag3 = 1 and «a;; = 10
otherwis.

Figure 6.2: Image deblurring of greyscale image with initialization: us=1 and u;=0 otherwise
(example 1).

Algorithm

For ¢ fixed we have to solve the approximate problem

A
Ir¢ = i inf { ®( (i), u —a) + = |lu—
ro— i ot {80+ (V00— 0)+ G-l
with

2

1
D(u) = - E ij (Letti, uj).
(u) +€ aij(Leui, uj)

N
Z ciAu; — f
i=1 L2 1<i<j<N
We can directly apply the algorithm of Section 6.1.
We present in Figures 6.2 and 6.3 two examples of image deblurring of greyscale image with the

finite difference method (FDM).

6.3 Image deblurring of colour image

The blurred image f is represented by the three channels (f1, f2, f3) € L>=(D, [0,1])? representing
the intensity of red, green and blue, respectively. Each phase Q; is associated to a color (¢;1, ¢i2, ¢i3) €
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6.3. Image deblurring of colour image

9, White
0, Grey
9, Black

(a) Damaged image with blur and noise effects.

(b) Reconstructed image for a;; = 1. (c) Reconstructed image for a13=1 and a;;=2 other-
wise.

Figure 6.3: Image deblurring of greyscale image with initialization: us=1 and u;=0 otherwise
(example 2).

[0,1]% in the same RGB system. The reconstructed image w = (wy,ws,ws3) is given by

N
wj = E CigUis
i=1

where u; is the characteristic function of a subset Q; of D such that (Q4,...,Qy) forms a partition
of D. We have for each channel and L? norm on D:

N
> cijAu; — f
=1

where A is a linear and continuous operator defined by

A: L*(D) — L*(D) such that Al = 1.

2

[Aw; — £ =

)

L2

Using the fact that Zil Au; = 1, we get
2

[Aw; — £l =

n N
Z cijAui — Z Aulfj
=1

=1 L2
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6.4. Medical imaging

It follows that

3

lAw; = fll72 =)

j=1

N

The deblurring problem of colour image reads

min  ®(u)

uweL>(D,K)
with @ : L2(D,RY) — R defined by
3 || N 2 1
®(u) = Z ZAW(%‘ = f)
j=1|li=1 12 1<i<j<N
We have
* 3 N 1
24 (Zj:l >iz1 (c1j = fj) Aui (cij — fj)) + = g @riLeu
Vo(u) = :

with A* the adjoint operator of A.

Algorithm
For ¢ fixed we have to solve the approximate problem
A
Ir¢ = i inf { ®(@ (@), u—a) + = |lu—al?
€ ueLrgcn(ILI),IC) aelL%(D) { (@) + (V@) u =) + 2 lu=all”
with
3 | N 2
Ou) =D || Auilci; — f5)
j=1lli=1 12 1<i<j<N

We can directly apply the algorithm of Section 6.1.

Aui(cij — f;)
1

2

L2

+ g Z Olij<LEUi,Uj> Yu € LQ(D, RN)

' 1
2A7 (Y2520 L, (eny = £7) Aui (ei; = £)) + < Cay i Leus

1
- E ij{Leus, uj).
+5 ij(Leui, uj)

(6.3.1)

(6.3.2)

We present in Figure 6.4 an example of image deblurring of colour image with the finite difference

method (FDM).

6.4 Medical imaging

The (2-dimensional) Radon transform R maps a function w : R? — R into the set of its integrals

over the lines of R%. More specifically, if # € S* and s € R, then

Ru(0, s) = / wle)da = /9 (st -+ y)dy

is the integral of w € . (Rz)7 the Schwartz space, over the line perpendicular to 6 with (signed)
distance s from the origin. The Radon transform extends by continuity to functions w € L?(D)

with D bounded. We refer to [43] for more details.
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6.4. Medical imaging

(a) Damaged image with blur and noise effects.

(b) Reconstructed image for o;; = 1. (c) Reconstructed image for a12 = a23=2 and a;;=1 otherwise.

Figure 6.4: Image deblurring of colour image.

The measurement is f € L?(S! x R), and the reconstructed image is w = Zil ciu;, withu € €
and ¢; > 0 for all i. We have

2

N
Z ci’Rui — f

i=1

IRw — flI= =

L2

The imaging problem reads

min ~ D(u),
ueL>(D,K)

with @ : L2(D,RY) — R defined by

2

1
+ - E Ozij<L5U,i,’U,j> Yu € L2(D, RN)
12 1<i<j<N

P(u) =

N
Z ciRui — f
i=1
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6.4. Medical imaging

We have
. (N 1
261R (Zi:l CiR’LLZ' - f) + g Zi;ﬁl aliLsui
Vo(u) = , (6.4.1)
1
263R* (Zfil CiRUi — f) + g Zi;éN OZiNLEUi
with R* the adjoint operator of R.
To determinate the lipschitz constant A\, we will use the following observation.

Lemma 6.5. The gradient V® is A\—lipschitz if

, N-1))?
A > <8N204||R*R||2 + 0(52)>
with C, C defined by (6.1.10) and (6.2.2) respectively.

Proof. The proof is the same computation as in the proof of Lemma 6.4. (|

Algorithm

For ¢ fixed we have to solve the approximate problem

. . - _ . A .
T min et {90+ (90,0 Sl
with

2
1
=+ g Z ozij(LEui,uj>.

12 1<i<j<N

P(u) =

N
Z ciRui — f
=1

We can directly apply the algorithm of Section 6.1.
We present in Figure 6.5 an example of reconstruction with the finite difference method (FDM).
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6.4. Medical imaging

©, Black
0, Grey
9, White

(a) Source.

(b) Reconstructed image for a;; = 280. (c) Reconstructed image for a12=250 and a;;=280 other-
wise.

Figure 6.5: Medical imaging with initialization: us=1 and u;=0 otherwise.
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Appendix A

FEM, FDM and FFT

For solving the boundary value problem (2.5.1) we first use finite elements on a Cartesian mesh
with @1 shape functions. The mesh nodes coincide with the image pixels, and without any loss
of generality, the mesh size is fixed to 1. The discrete counterparts of the variables v and v are
therefore vectors of RP where p is the number of pixels.

The linear system (5.2.24) is solved in an efficient way with the help of the fast Fourier transform
(FFT), according to the following procedure. First, symmetries of the image u are performed in both
axial directions, in such a way that we consider a domain D with double width and height. Then
periodicity conditions are assumed on the boundary of D (see Figure A.1 for the symmetrization
of the mesh), which is a convenient way of implementing Neumann boundary conditions. In this
framework, the matrix products Kv and Mwv represent bidimensional discrete convolutions, which
are easily transferred to the Fourier domain. The Fourier transform of v is thus obtained, and v
itself is retrieved by inverse FFT.

We also use the standard finite difference method (FDM) with five-point stencil for solving the
boundary value problem (2.5.1). The periodicity conditions are assumed on the boundary of D (see
Figure A.2 for the symmetrization of the mesh).

101






Figure A.2: Construction of D in the FDM by mesh symmetrization (global node numbering in D).
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Appendix B

Index of notations

SN e e 8
N e 8
BN o 40
B 40
B e et 37
E 27
E 28
N oot 14, 43
F N S 46
O oo 63
O oo 63
Q oo 63
QF 66
Q =0 o 63
Q 0 o 63
72 63
H o 18
H 2 19
O 19
I 20
L oo 26
B, ) 20
() o 20
C20(0) 0T (D)) e ettt e e 17
IDU(S2) e 21
BV 21
P(E, ) 22
O 22
B 22
DM E 22
T R 28
<u, U>H1 ...................................................................................... 18
(Uy V) FL e 67
(Uy D) IV e et e e e e e e e 19



(U U] e 67
8 P 75
F o 28
e 28
G 14
G oo 14, 30
G oo 53
L7 AP T 73
£ G PP 73
P 35
P i et 35
i+ttt 35
P 36
P 36
L,’jé’ ......................................................................................... 36
P 37
M 37
L 37
Pl 89
B 89, 90
A 93
R e e 97
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Abstract

Minimal partition problems consist in finding a partition of a domain into a given number of
components in order to minimize a geometric criterion. In applicative fields such as image processing
or continuum mechanics, it is standard to incorporate in this objective an interface energy that
accounts for the lengths of the interfaces between components. The present work is focused on the
theoretical and numerical treatment of minimal partition problems with interface energies. The
considered approach is based on a I'-convergence approximation and duality techniques.

Résumé

Les problemes de partition minimale consistent & déterminer une partition d’un domaine en un
nombre donné de composantes de maniére a minimiser un critere géométrique. Dans les champs
d’application tels que le traitement d’images et la mécanique des milieux continus, il est courant
d’incorporer dans cet objectif une énergie d’interface qui prend en compte les longueurs des interfaces
entre composantes. Ce travail est focalisé sur le traitement théorique et numérique de problemes de
partition minimale avec énergie d’interface. L’approche considérée est basée sur une approximation
par I'-convergence et des techniques de dualité.



