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Résumé en français

Description du problème

Considérons une partition d'un domaine borné D de R 2 par des ensembles relativement fermés Ω 1 , . . . , Ω N appelés phases qui peuvent s'intersecter seulement à leurs frontières:

D = ∪ N j=1 Ω j , et Ω i ∩ Ω j = ∂Ω i ∩ ∂Ω j ∩ D pour i = j.
On appelle Γ ij l'interface séparant Ω i et Ω j : où α ij est un coefficient appelé tension de surface associé à Γ ij pour i, j = 1, . . . , N , et (Γ ij ) est la longueur de Γ ij . Il est raisonnable de supposer que les tensions de surface satisfont α ij = α ji > 0 lorsque i = j et α ii = 0. Nous noterons par la suite 

Γ ij = ∂Ω i ∩ ∂Ω j ∩ D pour i = j,
S N = {(α ij ) ∈ R N ×N , α ij = α ji > 0 si i = j et α ii = 0}. Ω 1 Ω 2 Ω 3 D Γ 23 Γ 13 Γ 12
ε ∇v 2 L 2 (D) + 1 ε v 2 L 2 (D) + D u(1 -2L ε u)dx
qui convient bien à l'utilisation d'algorithmes de minimisations alternées. La fonctionnelle Fε est utilisé dans [START_REF] Amstutz | Minimal partitions and image classification using a gradient-free perimeter approximation[END_REF] pour le partitionnement optimal multiphase avec des tensions superficielles uniformes, i.e., α ij = α. Dans ce cadre, les auteurs prouvent des résultats de convergence et développent des algorithmes d'optimisation pour la classification et le défloutage d'images.

Travail effectué

Le but de cette thèse est d'étendre les résultats et les algorithmes de [START_REF] Amstutz | Minimal partitions and image classification using a gradient-free perimeter approximation[END_REF] au cas de tensions de surface non uniformes. On définit la fonctionnelle

G ε : L ∞ (D, [0, 1]) × L ∞ (D, [0, 1]) → R par G ε (u i , u j ) = 1 ε D (L ε u i )u j dx ∀i = j,
où L ε u i est la solution faible de (0.0.6). On definit aussi la fonctionnelle

G(u i , u j ) =    1 2 H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D) si u i , u j ∈ BV (D, {0, 1}), u i = χ Ωi , u j = χ Ωj , +∞ sinon.
Les problèmes mathématiques abordés sont:

• la convergence ponctuelle de G ε vers G,

• la semi-continuité inférieure de

1 2 1≤i<j≤N α ij H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D)
sous la condition (0.0.3) et sa relaxation,

• la Γ-convergence, i.e., 1≤i<j≤N

α ij G ε (u i , u j ) Γ / / 1 2 1≤i<j≤N α ij G(u i , u j ),
• l'équi-coercivité de

1≤i<j≤N α ij G ε (u ε i , u ε j ).
Sur le plan numérique sont considérées:

Contents

• la résolution numérique efficace de (0.0.6),

• la conception d'algorithmes d'optimisation pour résoudre min Des applications variées sont étudiées, en particulier, nous examinons des problèmes de partitionnement minimal multiphase, y compris la classification supervisée ou automatique d'images ou le défloutage.

(u1,...,u N )∈ ẼN    N i=1 g i , u i + 1 ε 1≤i<j≤N α ij G ε (u i , u j )    , ( 0 
Chapter 1

Introduction 1.1 Problem description

Consider a partition of a bounded domain D of R 2 into relatively closed subsets Ω 1 , . . . , Ω N called phases that may intersect only through their boundaries:

D = ∪ N j=1 Ω j , and Ω i ∩ Ω j = ∂Ω i ∩ ∂Ω j ∩ D for i = j.
Denote the interface separating Ω i and Ω j by Γ ij : where g 1 , . . . , g N ∈ L 1 (D), and E(Ω 1 , . . . , Ω N ) is the total interface energy. This energy is chosen in the following way:

Γ ij = ∂Ω i ∩ ∂Ω j ∩ D for i = j,
E(Ω 1 , . . . , Ω N ) = 1 2 1≤i<j≤N α ij Length(Γ ij ), (1.1.2) Ω 1 Ω 2 Ω 3 D Γ 23 Γ 13 Γ 12
Figure 1.1: A partition of a domain into sets Ω j that intersect only at their boundaries. Interface Γ ij separates Ω i from Ω j .

Motivation

where α ij is a coefficient called surface tension associated with Γ ij for i, j = 1, . . . , N . It is reasonable to assume that the surface tensions satisfy α ij = α ji > 0 whenever i = j and α ii = 0. We will denote in the sequel

S N = {(α ij ) ∈ R N ×N , α ij = α ji > 0 if i = j and α ii = 0}.
In order to guarantee the lower semicontinuity of the N -phase perimeter, it is necessary and sufficient to assume that the surface tensions satisfy the triangle inequality [START_REF] Ambrosio | Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization[END_REF]:

α ij ≤ α ik + α kj ∀i, j, k. (1.1.3)
This condition is also discussed in [START_REF] Bretin | A new phase field model for inhomogeneous minimal partitions, and applications to droplets dynamics[END_REF][START_REF] Caraballo | The triangle inequalities and lower semi-continuity of surface energy of partitions[END_REF][START_REF] Esedoḡlu | Threshold dynamics for networks with arbitrary surface tensions[END_REF]. We will therefore mostly work with the class of surface tensions:

T N = {(α ij ) ∈ S N : α ij ≤ α ik + α kj ∀i, j, k} .
From the mathematical viewpoint, the study of the lower semicontinuity of (1.1.2) requires to rephrase it in a suitable setting, namely the space of sets of finite perimeter [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Maggi | Sets of finite perimeter and geometric variational problems[END_REF]. In this setting, the total interface energy can be written as

1 2 1≤i<j≤N α ij H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D) , (1.1.4)
where Ω 1 , . . . , Ω N are now assumed to be sets of finite perimeter in D such that D = ∪ N i=1 Ω i up to a Lebesgue negligible set, |Ω i ∩ Ω j | = 0 for all i = j (denoting as | • | the Lebesgue measure), Γ ij = ∂ M Ω i ∩ ∂ M Ω j ∩ D for all i, j, with ∂ M is the measure theoretical (or essential) boundary of Ω i in D, and H 1 is the one-dimensional Hausdorff measure on R 2 . We refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Maggi | Sets of finite perimeter and geometric variational problems[END_REF] for details on functions of bounded variation BV and sets of finite perimeter. We shall denote as Per the BV perimeter, i.e., if A ⊂ D has finite perimeter in D we denote Per(A) = H 1 (∂ M A ∩ D). In the BV context, the lower semicontinuity of the perimeter holds with respect to the strong convergence in L 1 of characteristic functions of sets.

Motivation

Image processing

Image processing concerns two main types of problems. Firstly, one is interested in image restoration, in order to remove the causes of the deterioration of an image. Besides, questions regarding image segmentation are addressed: we want to identify the components of an image, such as texture regions, intensities, colors and so on.

Within the class of image segmentation, we recall the problems of image classification, where a given number of components have to be identified.

In the standard greyscale image processing problem, one looks at f = Aū + ν, assuming f : Ω → [0, 1] as the observed image, ū as the undamaged one, A as a mask operator (blur kernel or a projection operator away from the missing parts of ū), ν as the noise, and one would like to obtain a segmented version or a continuous restoration of the original image ū. These classes of issues are linked to ill-posed minimization problems of form min u∈H(Ω)

J(u) := Au -f H(Ω ,
where the difficulties arise both since unbounded variations in the solution could arise from small perturbations in the data and since the convexity of the problem is not guaranteed. Complications are increased if we are interested in a simultaneous segmentation and restoration problem. We remark that an objective assessment of segmentation algorithms is difficult to find. The main reason is that there is no unique ground-truth classification of an image with respect to which the output an algorithm can be compared. In the literature many models for restoration and/or segmentation of image have been developed, such as the Mumford-Shah [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] and the TV-L 2 and TV-L 1 functionals [START_REF] Caselles | Total variation in imaging[END_REF][START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF].

Nowadays, the problem min u∈H(Ω)

J(u) + α|Du|(Ω),
is considered to obtain solutions which preserve the edges and are also smooth enough. The notation |Du|(Ω) refers to the total variation of u in Ω, where Du is its distributional derivative, that is to say a measure made of a concentrated part on the edges and of a diffuse one (that is ∇u) outside them, while α provides a weight on the total variation of the image. We refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for more details.

There are methods which use anisotropic variants of total variation [START_REF] Dobrosotskaya | A wavelet-Laplace variational technique for image deconvolution and inpainting[END_REF][START_REF] Dobrosotskaya | Wavelet analogue of the Ginzburg-Landau energy and its Γ-convergence[END_REF][START_REF] Esedoḡlu | Decomposition of images by the anisotropic Rudin-Osher-Fatemi model[END_REF], while others study segmentation problems through moving interfaces, like level-sets [START_REF] Chan | Active contours without edges[END_REF][START_REF] Getreuer | Chan-vese segmentation[END_REF][START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF] or snakes [START_REF] Alvarez | A real time morphological snakes algorithm[END_REF]. A still different approach is developed by interpreting the image as a graph on which a minimal cut problem is faced [START_REF] Chung | Spectral graph theory[END_REF][START_REF] Shi | Normalized cuts and image segmentation[END_REF][START_REF] Luxburg | A tutorial on spectral clustering[END_REF].

Material sciences

A polycrystalline material is made up of a union of lots of grains, which are small single crystal pieces. Lots of metals and ceramics are of this type. In model (1.1.2), single grains are presented as connected components of Ω i . Looking at two grains Ω i and Ω j , the mismatch between the crystallographic orientations of them influences α ij which is the surface tension of the interface Γ ij between the two grains. Actually, also the normal n ij to Γ ij affects the grains boundary energy, even if throughout we will ignore this dependence. The grain boundary network of polycrystalline materials determines important physical features of them such as conductivity and yield strength. Hence, the simulation of these boundaries subjected to industrial processes is an interesting issue. In some framework, a constant dependence of the energy density from misorientation has arisen, for large enough misorientations. In such cases, a good description of the movement of the grain boundary is achieved in model (1.1.2) taking all equal surface tensions α ij = 1. Anyway, other phenomena require the full generality of model (1.1.2), such as grain boundary character distribution [START_REF] Rollett | Recrystallization and related annealing phenomena[END_REF]. Some authors [START_REF] Elsey | Large-scale simulations and parameter study for a simple recrystallization model[END_REF][START_REF] Elsey | Diffusion generated motion for grain growth in two and three dimensions[END_REF][START_REF] Elsey | Large-scale simulation of normal grain growth via diffusion-generated motion[END_REF], in the equal surface tension case, managed to obtain large scale simulations of grain growth and recrystallization in 3D through a diffusion generated motion, using signed distance functions to represent phases.

In [START_REF] Bretin | A new phase field model for inhomogeneous minimal partitions, and applications to droplets dynamics[END_REF][START_REF] Esedoḡlu | Threshold dynamics for networks with arbitrary surface tensions[END_REF] a simulation of the evolution of the grain boundary is realized allowing the surface tension parameters α ij to be different.

Mathematical and numerical methods

Relaxation

In the relaxation framework, we have an optimization problem such as inf u∈X J(u) (1.3.1) for which a solution may not exist. Hence we enlarge the set X into a bigger one X * and we introduce the functional J * on X * such that J * | X = J and also:

1. The "relaxed" problem inf u * ∈X * J * (u * ) has a solution.

2. inf X J = min X * J * .

3. The minimization sequences of the problem (1.3.1) accumulate towards solutions of the "relaxed" problem.

4. If the initial problem has a solution, it is also a solutions of the "relaxed" problem.

We usually enlarge X to X * in a way such that X is dense in X * is the smallest possible space with these properties. In order to do that, we have to well understand the behaviour of the minimizing sequences of the initial problem.

To be sure of having a solution, we ask that X * is compact and J * is lower semicontinuous. To gain other properties we also demand that if (u n ) ⊂ X converge to u * ∈ X * then

J * (u * ) ≤ lim inf J(u n ) (1.3.2)
and that for every u * ∈ X * there exist a sequence (u n ) ⊂ X converging to u * , so that

J * (u * ) = lim inf J(u n ). (1.3.3)
It can be remarked that, actually, we do not impose that J * coincides with J on X and this enables us to consider as J * the lower semicontinuous envelope (or closure) of J, i.e.

J * (u * ) := inf{lim inf J(u n ), u n → u} = clJ(u). (1.3.4)
This choice clearly implies the previous properties (1.3.2) and (1.3.2). For more details, see [START_REF] Attouch | Variational analysis in Sobolev and BV spaces, volume 17 of MOS-SIAM Series on Optimization[END_REF][START_REF] Henrot | Variation et optimisation de formes[END_REF].

Convexification

The convex envelope, denoted by conv f , of a function f : X → R ∪ {+∞} ∪ {-∞}, is defined as the greatest convex function majorized by f , or equivalently as the greatest convex function whose epigraph contains conv(epif ), i.e., (convf )(x) = inf{a : (x, a) ∈ conv(epif )}.

The link between the convex envelope of a function f and its Legendre-Fenchel transform is made explicit by Theorem 2.42 (Fenchel-Moreau-Rockafellar theorem), detailed in Section 2. [START_REF] Almokdad | Méthodes de relaxation en calcul des variations[END_REF].

In [START_REF] Chambolle | A convex approach to minimal partitions[END_REF] Chambolle, Cremers, and Pock define the following (convex) function

F : BV (D, R N ) → [0, +∞) v → 1 2 N i=1 D |Dv i |,
and they extend it to

L 2 (D, R N ) by imposing F = +∞ if v / ∈ BV (D, R N ). Then, they introduce the function J : L 2 (D, R N ) → [0, +∞] as J (v) = F(v) if v ∈ BV (D, {0, 1}), N i=1 v i = 1 a.e., +∞ otherwise.
A reformalized version of the minimal partition problem is min

v∈L 2 (D,R N ) J (v) + D v(x) • g(x)dx, (1.3.5)
where g = (g 1 , . . . , g N ) ∈ L 1 (D, R N + ), which is nonconvex, because, even if the function F is convex, the domain of J is not convex.

Anyway the authors already know that problem (1.3.5) has a solution. The strategy is to look at the convex envelope of J (and so also of (1.3.5) because of the linearity of the other term).

By letting, for v ∈ L 2 (D, R N )

J * (w) = sup v∈L 2 (D,R N ) D v(x) • w(x)dx -J (v)
be the Legendre-Fenchel conjugate of J , and then, again

, v ∈ L 2 (D, R N ) J * * (v) = sup w∈L 2 (D,R N ) D v(x) • w(x)dx -J * (w)
be the Legendre-Fenchel conjugate of J * , the function J * * is the convex, lower-semicontinuous envelope of J (see [START_REF] Ekeland | Convex analysis and variational problems[END_REF][START_REF] Rockafellar | Convex analysis[END_REF]).

On the one hand, they remark that the minimizers of problem (1.3.5) are also minimizers of min

v∈L 2 (D,R N ) J * * + D v(x) • g(x)dx. (1.3.6)
On the other hand, minimizers of (1.3.6) have to be convex combinations of minimizers of the problem (1.3.5).

Anyhow, the function J * * cannot be always made explicit. For this reason, the authors use a notion of "local" convex envelope, which can be written roughly in a particular form and can be easier implemented. For more details, see [START_REF] Chambolle | A convex approach to minimal partitions[END_REF].

Γ-convergence

The notion of Γ-convergence was introduced in a paper by E. De Giorgi and T. Franzoni in 1975 [START_REF] Giorgi | Su un tipo di convergenza variazionale[END_REF]. It has been largely used in the calculus of variations in particular in homogenization theory, phase transitions, image processing, and material science. This type of convergence, together with compactness (equicoercivity), guarantees us the convergence (up to subsequences) of minimizers of the limiting functional. This converging property is not ensured by pointwise convergence, which is quite different from the Γ-convergence. The Γ-convergence assures also the convergence of the minimum energy of Fε to that F . For this reasons, this type of convergence is said to be a variational convergence.

The fundamental theorem of Γ-convergence, is summarized by the implication Γconvergence + equi-equicoercivity ⇒ convergence of minimum problems.

One of the first illustration of this concept was the work of Modica, Mortola [START_REF] Modica | Un esempio di Γ --convergenza[END_REF]. In the pioneering work by Modica and Mortola [START_REF] Modica | Il limite nella Γ-convergenza di una famiglia di funzionali ellittici[END_REF] (see also [START_REF] Alberti | Variational models for phase transitions, an approach via Γ-convergence[END_REF]), it is proved that the functional

F ε M M (u) = ε D |∇u| 2 + 1 ε D W (u) if u ∈ H 1 (D), +∞ otherwise.
where W is a double well potential, converges as ε → 0 in a sense to be precised, to the perimeter functional

F M M (u) = cPer D ({u = 1}) if u ∈ BV (D, {0, 1}), +∞ otherwise,
where c = 2 1 0 W (x)dx. The original motivation for Modica and Mortola was a mathematical justification of convergence for some two phase problem based upon a model by Cahn and Hilliard [START_REF] Chen | Generation and propagation of interfaces in reaction-diffusion systems[END_REF][START_REF] Modica | Un esempio di Γ --convergenza[END_REF].

Later, this procedure gave rise to a method to perform a numerical approximation of a wide class of variational problems. Indeed, in order to minimize numerically the geometrical functional given by the perimeter, one may find it convenient to minimize the more regular functionals F ε M M , which are of elliptic type. This idea was used by many authors in the last two decades, with quite satisfactory results [START_REF] Almokdad | Méthodes de relaxation en calcul des variations[END_REF][START_REF] Bogosel | Optimisation de formes et problèmes spectraux[END_REF][START_REF] Bretin | A new phase field model for inhomogeneous minimal partitions, and applications to droplets dynamics[END_REF][START_REF] Oudet | Approximation of partitions of least perimeter by Γ-convergence: around Kelvin's conjecture[END_REF].

In [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF] and [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF], Ambrosio and Tortorelli proposed two elliptic approximations to the weak formulation of the Mumford and Shah problem. The approach they presented in [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF] is simpler than the approximation proposed in [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence[END_REF]. Indeed in [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF], the strategy of Ambrosio and Tortorelli uses the particular potential W (u) = 1 4

(1 -u) 2 and develops the approximation as follows.

Let X = L 2 (D) 2 and let us define The authors also define the limiting Mumford-Shah functional,

F ε AT (u, v) = D (u -g) 2 dx + a D v 2 |∇u| 2 dx + b D ε|∇v| 2 + (1 -v) 2 4ε dx if (u, v) ∈ W 1,2 (D) 2 , 0 ≤ v ≤ 1,
F M S (u, v) = D (u -g) 2 dx + a D |∇u| 2 dx + bH d-1 (S u ) if u ∈ SBV(D), v ≡ 1, +∞ otherwise.
It can be shown that the functional F ε AT Γ-converges to F M S as ε tends towards 0 (in a decreasing way) in L 2 (D). Moreover, F ε AT admits a minimizer (u ε , v ε ) such that, up to subsequences, u ε converges to some u ∈ SBV (D), which is a minimizer of F M S (u, 1), and such that inf

F ε AT (u ε , v ε ) converges to F M S (u, 1).
In [START_REF] Alberti | A nonlocal anisotropic model for phase transitionspart ii: Asymptotic behaviour of rescaled energies[END_REF], Alberti and Bellettini studied the asymptotic behaviour as ε → 0, of the nonlocal models for phase transition described by the scaled free energy

F ε AB (u) := 1 4ε D×D J ε (x -x)|u(x ) -u(x)| 2 dx dx + 1 ε D W (u(x))dx, (1.3.7)
where u is a scalar density function, W is a double-well potential which vanishes at ±1, J is a nonnegative interaction potential and J ε (h) := ε -N J (h/ε). They proved that the functionals F ε AB converge in a variational sense to the anisotropic surface energy

F AB (u) := Su σ(ν u ),
where u is allowed to take the values ±1 only, ν u is the normal to the interface Su between the phases {u = +1} and {u = -1}, and σ is the surface tension.

In [START_REF] Esedoḡlu | Threshold dynamics for networks with arbitrary surface tensions[END_REF], Esedoḡlu and Otto introduced an approximation of the weighted surface area functional in dimension d

E OE (Ω 1 , . . . , Ω N ) = N i =j α ij Area(∂Ω i ∩ ∂Ω j ).
(1.3.8)

In the spirit of (1.3.7), the idea to approximate the surface area of the boundary (∂Ω i ∩ ∂Ω j ) in (1.3.8) by the term:

Area(∂Ω i ∩ ∂Ω j ) ≈ 1 ε χ Ωi G ε * χ Ωj dx,
where

G ε (x) = 1 (4πε 2 ) d 2 e -|x| 2 4ε 2 .
Therefore the approximate energy of (1.3.8) becomes:

E ε OE (Ω 1 , . . . , Ω N ) = 1 ε N i =j α ij χ Ωi G ε * χ Ωj dx.
In [START_REF] Amstutz | Minimal partitions and image classification using a gradient-free perimeter approximation[END_REF][START_REF] Amstutz | Topology optimization methods with gradient-free perimeter approximation[END_REF], the authors use different techniques for several reasons: indeed, the functional of Modica-Mortola does not accept the characteristic functions, and moreover the derivative with respect to u involves -∆u, which can yield a high number of iterations in optimization processes with fine grids (CFL condition). A gradient-free perimeter approximation is used with the following functional:

Fε : L ∞ (D, [0, 1]) → R u → 1 ε D (L ε u)(1 -u)dx, (1.3.9) 
where L ε u is the (weak) solution of the boundary value problem with unknown v ∈ H 1 (D):

-ε 2 ∆υ ε + υ ε = u in D, ∂ n υ ε = 0 on ∂D. (1.3.10)
They prove that the functionals Fε Γ-converge, when ε → 0, to the functional

F (u) =    1 2 Per D ({u = 1}) if u ∈ BV (D, {0, 1}), +∞ otherwise, strongly in L 1 (D).
In [START_REF] Amstutz | Minimal partitions and image classification using a gradient-free perimeter approximation[END_REF][START_REF] Amstutz | Topology optimization methods with gradient-free perimeter approximation[END_REF], the authors also prove equicoercivity. In addition, the Legendre-Fenchel transformation provides

Fε (u) = inf u∈H 1 (D) ε ∇v 2 L 2 (D) + 1 ε v 2 L 2 (D) + D u(1 -2L ε u)dx ,
which fits well with the use of alternating algorithms. The functional Fε is used in [START_REF] Amstutz | Minimal partitions and image classification using a gradient-free perimeter approximation[END_REF] for multiphase optimal partitioning with uniform surface tensions, i.e., α ij = α. In this framework, the authors prove convergence results and develop optimization algorithms for image classification and deblurring.

The present work

The aim of this thesis is to extend the results and algorithms of [START_REF] Amstutz | Minimal partitions and image classification using a gradient-free perimeter approximation[END_REF] to interface energies with general surface tensions α ij . We define the functional

G ε : L ∞ (D, [0, 1]) × L ∞ (D, [0, 1]) → R by G ε (u i , u j ) = 1 ε D (L ε u i )u j dx ∀i = j,
where L ε u i is the (weak) solution of (1.3.10). We also define the functional

G(u i , u j ) =    1 2 H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D) if u i , u j ∈ BV (D, {0, 1}), u i = χ Ωi , u j = χ Ωj , +∞ otherwise.
where Ω i , Ω j are two subsets of finite perimeter of D.

We address the following theoretical issues:

• pointwise convergence of G ε to G, • lower semicontinuity of 1 2 1≤i<j≤N α ij H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D)
under the condition (1.1.3) and relaxation,

• Γ-convergence, i.e., 1≤i<j≤N 
α ij G ε (u i , u j ) Γ / / 1 2 1≤i<j≤N α ij G(u i , u j )
in appropriate space,

• equicoercivity of

1≤i<j≤N α ij G ε (u ε i , u ε j ).
The numerical issues are

• efficient numerical solution of (1.3.10),

• design of optimization algorithms to solve min

(u1,...,u N )∈ ẼN    N i=1 g i , u i + 1 ε 1≤i<j≤N α ij G ε (u i , u j )    , (1.4.1)
with ẼN defined by

ẼN = (u 1 , . . . , u N ) ∈ L ∞ (D, [0, 1]) N , N i=1 u i = 1 .
Various applications are studied, in particular we look at binary and multilabel minimal partition problems, including supervised or automatic image classification and deblurring.

Thesis outline

The subsequent chapters of the thesis are organised as follows:

Chapter 2

In chapter 2 we introduce and present all the mathematical tools needed to develop the theory of our procedure: in section 1 we recall some basic functional analysis, definitions and results.

In section 2 we introduce some basic geometry measure theory, while in section 3 we recall the definition of Γ-convergence as well as some properties of it.

The Legendre-Fenchel transform is introduced in section 4, where also the Fenchel-Moreau-Rockafellar theorem is stated.

Section 5 recalls the Lax-Milgram theorem and classical notions on homogeneous elliptic Neumann.

The operator L ε which plays a central role, is introduced with some properties in section 6.

Chapter 3

Chapter 3 is devoted to the regularization approach: the classical Modica-Mortola theorem is recalled, as well as the gradient-free perimeter approximation. Our approach is based on an approximation of interface energy in which the functionals G ε converges pointwise to G.

We provide then numerical validation for such a regularization approach (see Section 3.3.2), as well as some numerical examples. The notions of lower semicontinuity and equicoercivity are discussed. Theorem 3.11 states important results concerning the equicoercivity of functionals.

Chapter 4

In chapter 4 we focus on the surface tensions α ij . We show that the interface energy can be rewritten as a linear combination of perimeters and we are able to compute the coefficients. Lemmas 4.1, 4.2 and 4.3 are technical results which allow us to obtain new coefficients that lead to better properties. Moreover, an algorithm which searches for a conical combination provides us new coefficients. Theorem 4.4 guarantees the existence of positive coefficients assuming that N = 3, 4 and the surface tensions α ij satisfy the condition (1.1.3). Theorem 4.5 ensure us that if the new coefficients are nonnegative, then the surface tensions α ij satisfy the condition (1.1.3) for N = 3, 4, 5.

The positiveness of the coefficients implies Γ-convergence, as shown in Theorem 4.8. The sign of the coefficients lead us to choose a strategy among several optimization algorithms, such as

• primal algorithm, with a variant that incorporates a volume constraint,

• primal dual algorithm, which relies on Theorem 4.9,

• saddle point algorithm.

We show that the saddle point and primal algorithms are in fact identical under some assumptions. In addition, some examples are described, using the primal algorithm with a volume constraint.

Finally, we show an example where the surface tensions α ij does not satisfy the condition (1.1.3).

Chapter 5

Chapter 5 concerns an algorithm based on Legendre-Fenchel duality, which depends on the conditional negative definiteness of the matrix Q of the coefficients (α ij ). In Theorem 5.4 we provide also a sufficient condition for the conditional negative definiteness of the coefficient matrix Q if N = 3, 4. The converse of this theorem is not true, that is to say the necessary condition does not hold, as shown by Remark 5.3. Moreover, in Remark 5.4 an example with N ≥ 5, for which the theorem is not true, is presented. Then we present the dual formulation of the interface energy by Legendre-Fenchel transformation, both in the continuous framework and in the discrete one. Assuming that Q is conditionally negative definite, Theorem 5.7 and Corollaries 5.8, 5.9 allow us to obtain an alternating algorithm to solve the minimal partition problem. Other numerical examples are provided. We compare the primal algorithm and the algorithm based on Legendre-Fenchel duality.

Chapter 6

In this chapter we begin by introducing the two technical Lemmas 6.2 and 6.3. These results give us the framework on which we can apply the projected gradient algorithm. We focus on the applications of this algorithm to

• image deblurring of greyscale image,

• image deblurring of colour image,

• medical imaging by Radon transform.

In the end, we present some numerical examples.

Chapter 2

Mathematical tools

In the proof of our results we will need different theoretical tools, which are recalled in this chapter.

Basic functional analysis

All the results of this section, except for Lemma 2.24, Corollary 2.25 and Theorem 2.27, are detailed in [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF].

Some results from integration

Let D be an open set of R N equipped with the Lebesgue measure. We define by L 2 (D) the space of measurable functions which are square integrable in D. Under the scalar product

f, g L 2 = D f (x)g(x)dx, L 2 (D)
is a Hilbert space. We denote the corresponding norm by

f L 2 (D) = D |f (x)| 2 dx 1/2 . We denote by C ∞ c (D) (or D(D)) the space of functions of class C ∞ with compact support in D. Theorem 2.1. The space C ∞ c (D) is dense in L 2 (D), that is, for all f ∈ L 2 (D) there exists a sequence f n ∈ C ∞ c (D) such that lim n→+∞ f -f n L 2 (D) = 0. Corallary 2.2. Let us take f ∈ L 2 (D). If for every function φ ∈ C ∞ c (D), we have D f (x)φ(x)dx = 0,
then f (x) = 0 almost everywhere in D.

Weak differentiation

We will define the concept of the weak derivative in L 2 (D). 

D σ(x) • ∇φ(x)dx = - D w(x)φ(x)dx.
The function w is called the weak divergence of σ and from now on will be denoted as divσ.

Lemma 2.6. Let σ be a function of L 2 (D) N . If there exists a constant C > 0 such that, for every function φ ∈ C ∞ c (D), we have

D σ(x) • ∇φ(x)dx ≤ C φ L 2 (D) ,
then σ has a divergence in the weak sense.

2.1.3

The space H 1 (D) 

H 1 (D) = v ∈ L 2 (D) such that ∀i ∈ {1, . . . , N } ∂v ∂x i ∈ L 2 (D) ,
where ∂v ∂x i is the weak partial derivative of v in the sense of definition 2.3.

Proposition 2.8. Equipped with the scalar product

u, v H 1 = D (u(x)v(x) + ∇u(x) • ∇v(x)) dx
and with the norm

u H 1 (D) = D |u(x)| 2 + |∇u(x)| 2 dx 1/2
the Sobolev space H 1 (D) is a Hilbert space.

Theorem 2.9 (density). + . We define the trace mapping γ 0

If D is a regular open bounded set of class C 1 , or if D = R N + , or even if D = R N , then C ∞ c (D) is dense in H 1 (D).
H 1 (D) ∩ C(D) → L 2 (∂D) ∩ C(∂D) v → γ 0 (v) = v| ∂D .
This mapping γ 0 is extended by continuity to a continuous linear mapping of H 1 (D) into L 2 (∂D), again called γ 0 . In particular, there exists a constant C > 0 such that, for every function v ∈ H 1 (D), we have 

γ 0 (v) L 2 (∂D) ≤ C v H 1 (D) .

The space H

H 1/2 (∂D) = γ 0 H 1 (D) .
Definition 2.12. Equipped with the norm

v H 1/2 (∂D) = inf v H 1 (D) such that γ 0 (φ) = υ , H 1/2 (
∂D) is a Banach space (and even a Hilbert space). We then define H -1/2 (∂D) as the dual of H 1/2 (∂D).

2.1.5

The space H div (D) Definition 2.13. The space H div is defined by

H div (D) = σ ∈ L 2 (D) N such that divσ ∈ L 2 (D) ,
where divσ is the weak divergence of σ in the sense of the definition 2.5. Proposition 2.14. Equipped with the scalar product 

σ, τ H div (D) = σ, τ L 2 + div σ, div τ L 2 , ( 2 
H div ∩ C(D) → H -1/2 (∂D) ∩ C(∂D) σ = (σ i ) 1≤i≤N → γ n (σ) = (σ • n)| ∂D ,
where n = (n i ) 1≤i≤N is the outward unit normal to ∂D. This mapping γ n is extended by continuity to a continuous linear mapping from H div into H -1/2 (∂D). Further, if σ ∈ H div and φ ∈ H 1 (D), we have 

D divσφdx + D σ.∇φdx = γ n (σ), γ 0 (φ) H -1/2 ,
T u ≤ C u ∀u ∈ E.
The norm of a bounded operator is defined by

T (E,F ) = sup u =0 T u u .
Definition 2.20. The space of continuous linear operators from E into F , denoted by L (E, F ) is equipped with the norm

T L (E,F ) = sup x∈E x ≤1 T x .
As usual, one writes L (E) instead of L (E, E). 

M ⊥ = f ∈ E ; f, x (E ,E) = 0 ∀x ∈ M .
If N ⊂ E is a linear subspace we set

N ⊥ = x ∈ E; f, x (E ,E) = 0 ∀f ∈ N .
Definition 2.23. Let T ∈ L (E, F ). We define the adjoint operator T * ∈ L (F , E ) by

T * u, v (E ,E) = u, T v (F ,F ) ∀u ∈ F , ∀v ∈ E. Lemma 2.24. If E is reflexive and T ∈ L (E, F ) is injective, then ImT * is dense in E .
Proof. According to Remark 6 and Corollary 2.18 in [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF], we have 

ImT * = (ImT * ) ⊥⊥ = (ker T ) ⊥ = {0} ⊥ = E .
D ϕdµ i ∀ϕ ∈ C 1 c (D), i = 1, . . . , N.
If u ∈ BV (D), the total variation of the measure Du is

Du = sup D udivφdx : φ ∈ C 1 c (D, R N ), |φ(x)| ≤ 1 for x ∈ D < ∞.
The space BV (D), endowed with the norm

u BV = u L 1 + Du , is a Banach space.
We also use |Du|(D) to denote the total variation Du . For a complete introduction to the structure of BV functions in any dimension we refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF].

Ω i ← ∂ M Ω i ∩ D Figure 2.1:
The measure theoretical (or essential) boundary.

Sets of finite perimeter

We consider a N -dimensional Euclidean space R N , with N ≥ 2. The Lebesgue measure of a Lebesgue measurable set E ⊆ R N will be denoted by |E|.

Definition 2.29. A Borel set E ⊂ R N has finite perimeter in a open set D if χ E | D ∈ BV (D). The perimeter of E in D in that case is P (E, D) = |Dχ E |(D) = sup E divgdx : g ∈ C ∞ 0 (D, R d ), |φ(x)| ≤ 1 . E is a set of finite perimeter if χ E ∈ BV (R N ).
Definition 2.30 (Reduced boundary). We say a point x 0 ∈ ∂E belongs to the reduced boundary

∂ * E if lim r→0 Br Dχ E Br |Dχ E | = ν(x 0 )
for some unit vector ν(x 0 ) ∈ S N -1 . The function ν E : ∂ * E → S N -1 is called the generalised inner normal to E.

Definition 2.31 (Points of density t).

For every t ∈ [0, 1] and every L N -measurable set E ⊆ R N , define

E t = x ∈ R N : D(E, x) = t ,
where D(E, x) is the density of E at x defined by

D(E, x) := lim r→0 |E ∩ B(x, r)| |B(x, r)| .
Then E t is the set of all points where E has density t.

We establish some elementary facts about the essential boundaries of arbitrary subsets of R N .

Definition 2.32 (The measure theoretical (or essential) boundary). Let E be an

L N - measurable set in R N . The essential boundary ∂ M E of E is the set ∂ M E = R N \(E 0 ∪ E 1 ) (see Figure 2.

for an illustration).

We refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] and [START_REF] Braides | Γ-convergence for beginners[END_REF] for the following theorems, respectively.

Theorem 2.33 (Federer). If E ⊆ D is a set of finite perimeter, then

∂ * E ⊂ E 1 2 ⊂ ∂ M E, H N -1 (D\(E 0 ∪ ∂ * E ∪ E 1 )) = 0, such that ∂ * E is the reduced boundary of E.
In particular, E has density either 0 or 1 2 or 1 at

H N -1 -a.e. x ∈ D, and H N -1 -a.e. x ∈ ∂ M E ∩ D belongs to ∂ * E.
Theorem 2.34 (De Giorgi's rectifiability theorem). Let E ⊂ R N be a set of finite perimeter in D. Then ∂ M E is rectifiable; i.e., there exists a countable family

(Γ i ) of graphs of C 1 functions of (N -1) variables such that H N -1 (∂ M E \ ∪ ∞ i=1 Γ i ) = 0. Moreover the perimeter of E in D ⊂ D is given by P (E, D ) = H N -1 (∂ M E ∩ D ) .

Γ-convergence

The notion of Γ-convergence, introduced by de Giorgi, is a suitable tool for the study of the convergence of variational problems. We recall the definition and some main properties of Γ-convergence from [START_REF] Attouch | Variational analysis in Sobolev and BV spaces, volume 17 of MOS-SIAM Series on Optimization[END_REF] and [START_REF] Braides | A handbook of Γ-convergence[END_REF]. Definition 2.35. Let (X, d) be a metrizable space, or more generally a first countable topological space, (F n ) n∈N a sequence of extended real-valued functions F n : X → R ∪ {+∞}, and

F : X → R ∪ {+∞}. The sequence (F n ) n∈N (sequentially) Γ-converges to F at x ∈ X iff

both the following assertions hold:

(i) (liminf inequality) for all sequences (x n ) n∈N converging to x in X, one has

F (x) ≤ lim inf n→+∞ F n (x n ), (2.3.1) 
(ii) (limsup inequality) there exists a sequence (y n ) n∈N converging to x in X such that

F (x) ≥ lim sup n→+∞ F n (y n ), (2.3.2) 
Or,

(ii) (existence of a recovery sequence) there exists a sequence (y n ) n∈N converging to x in X such that

F (x) = lim n→+∞ F n (y n ). (2.3.3)
Here there are some main properties of the Γ-convergence. We recall the following from [START_REF] Attouch | Variational analysis in Sobolev and BV spaces, volume 17 of MOS-SIAM Series on Optimization[END_REF].

Theorem 2.36. Let (F n ) n∈N be a sequence of functions F n : X → R ∪ {+∞} which Γ-converges to some function F : X → R ∪ {+∞}.
Then the following assertions hold:

(i) Let x n ∈ X be such that F n (x n ) ≤ inf {F n (x) : x ∈ X} + ε n , where ε n > 0, ε n → 0 when n → +∞. Assume that {x n , n ∈ N } is relatively compact; then every cluster point x of {x n : n ∈ N} is a minimizer of F and lim n→+∞ inf {F n (x) : x ∈ X} = F (x). 2.4. Legendre-Fenchel transform (ii) If G : X → R is continuous, then (F n + G) n∈N Γ-converges to F + G.
Definition 2.37 (Equicoercivity). We say that the sequence (f ε ) is equicoercive (on X), if for every t ∈ R there exists a closed countably compact subset K t of X such that {f ε ≤ t} ⊂ K t for every ε ∈ N.

For more precise details about Γ-convergence or equicoercivity, we refer the reader to [START_REF] Attouch | Variational analysis in Sobolev and BV spaces, volume 17 of MOS-SIAM Series on Optimization[END_REF] and [START_REF] Braides | A handbook of Γ-convergence[END_REF].

Legendre-Fenchel transform

In this section, (V, • V ) is a general normed linear space with topological dual V .

Definition 2.38. The (effective) domain of a function

f : V → R ∪ {+∞} is the set domf = {x ∈ V : f (x) < +∞}.
The function f is said to be proper if domf = ∅.

Definition 2.39 (Closed convex function). A convex function

f : V → R ∪ {+∞} is called closed (or lower semicontinuous) if its epigraph is a closed set.
Definition 2.40. Let V be a normed linear space and let f : V → R ∪ {+∞} be a proper function. The Legendre-Fenchel conjugate of f is the function

f * : V → R ∪ {+∞} defined by f * (v * ) = sup v∈V v * , v (V ,V ) -f (v) . Theorem 2.41 (Fenchel-Moreau-Rockafellar). Assume that V is a reflexive Banach space. Let f : V → R ∪ {+∞} ∪ {-∞} be an extended real valued function. Then f * * = cl(convf ),
where cl(f ) is the closure of the function f and convf is its convex envelope.

For a proof we refer to [START_REF] Bonnans | Perturbation analysis of optimization problems[END_REF].

Corallary 2.42. Let V be a normed space and let

f : V → R ∪ {+∞} be a closed convex proper function. Then f = f * * . i.e., f is equal to its biconjugate. Equivalently, ∀v ∈ V f (v) = sup v * ∈V * v * , v (V ,V ) -f (v * ) .

Elliptic boundary value problems

The Lax-Milgram theorem

The Lax-Milgram theorem is a very simple and efficient tool for solving linear elliptic partial differential equations. We refer the following theorem from [START_REF] Attouch | Variational analysis in Sobolev and BV spaces, volume 17 of MOS-SIAM Series on Optimization[END_REF].

Theorem 2. . Let V be a Hilbert space with the scalar product •, • and

• = •, • the associated norm. Let a : V × V → R be a bilinear form which satisfies (i) and (ii): (i) a is continuous, that is, there exists a constant C ∈ R + such that ∀u, v ∈ H |a(u, v)| ≤ u • v ; (ii) a is coercive, that is, there exists a constant α > 0 such that ∀v ∈ H a(v, v) ≥ α v 2 .
Then for any L ∈ V (L is a linear continuous form on V ) there exists a unique u ∈ V such that 

a(u, v) = L(v) ∀v ∈ V.

Homogeneous Neumann problem

Let D ⊂ R N be a bounded domain of class C 1 . We look for a function u : D → R satisfying -∆u + u = f in D, ∂ n u = 0 on ∂D, ( 2 

1). A weak solution of (2.5.1) is a function

u ∈ H 1 (D) satisfying D ∇u • ∇v + D uv = D f v ∀v ∈ H 1 (D). (2.5.2)
We can apply the Lax-Milgram theorem 2.43, which proves the existence and uniqueness of the solution of the variational formulation (2.5.2).

The maximum principle

We refer the following proposition from [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF].

Proposition 2.45 (maximum principle for the Neumann problem

). Let f ∈ L 2 (D) and u ∈ H 1 (D) be such that D ∇u • ∇ϕ + D uϕ = D f ϕ ∀ϕ ∈ H 1 (D).
Then we have, for a.e. x ∈ D,

inf D f ≤ u(x) ≤ sup D f.

The operator L ε

Let D ⊂ R 2 be a bounded Lipschitz domain. We look for a function v : D → R satisfying

-ε 2 ∆v + v = u in D, ∂ n v = 0 on ∂D, (2.6.1)
where u is given on D.

We define the operator

P ε ∈ L H 1 (D), H 1 (D) by P ε u, v (H 1 (D)) ,H 1 (D) = D ε 2 ∇u • ∇v + uv ∀u, v ∈ H 1 (D), (2.6.2)
which is called the variational formulation of problem (2.6.1). Applying Lax-Milgram's theorem (Theorem 2.43), we deduce that P ε is invertible. We then define

L ε = P -1 ε ∈ L H 1 (D) , H 1 (D)
. Now, we present below some properties of the operator L ε .

(1) The operator L ε is an isomorphism from H 1 (D) into H 1 (D) defined by

L ε : H 1 (D) → H 1 (D) u → u = L ε u, with D ε 2 ∇ u • ∇ϕ + uϕ dx = u, ϕ (H 1 (D)) ,H 1 (D) ∀ϕ ∈ H 1 (D). (2.6.3) (2) If u, v ∈ H 1 (D) , u = L ε u and v = L ε v, then we have u, L ε v (H 1 (D)) ,H 1 (D) = D (ε 2 ∇ u • ∇ v + u v)dx = v, L ε u (H 1 (D)) ,H 1 (D) . (2.6.4) (3) If u, v ∈ H 1 (D), u = L ε u and v = L ε v, then we have D ε 2 ∇ u • ∇v + uv dx = D uvdx = D ε 2 ∇u • ∇ v + u v dx.
(2.6.5) (4) By restriction of the operator L ε , we can define L ε ∈ L (L 2 ), which is self-adjoint (this follows from (2.6.4)) and compact (this follows from Rellich theorem, Theorem 2.27).

(

) If u, v ∈ L 2 (D), u = L ε u and choosing ϕ = u in (2.6.3) we obtain u 2 L 2 ≤ D (ε 2 |∇ u| 2 + u 2 )dx = D u udx. 5 
We deduce by using the Cauchy-Schwarz inequality

u 2 L 2 ≤ D u udx ≤ u L 2 u L 2 ,
which implies

L ε L (L 2 ) ≤ 1. (2.6.6)
Chapter 3

Approximation of interface energies

In this chapter, we present the regularization approach developed for the problem in all details. Our strategy will use in approximation of interface energy.

The Modica Mortola functional

A classical Γ-convergence result is the Modica Mortola theorem. The result stated below is due to Modica and Mortola [START_REF] Modica | Un esempio di Γ --convergenza[END_REF], and it provides an approximation of the perimeter using Γconvergence.

Theorem 3.1 (Modica-Mortola). Let D be a bounded open set and let

W : R :→ [0, ∞) be a continuous function such that W (z) = 0 if and only if z ∈ {0, 1}. Denote c = 2 1 0 W (s)ds. We define F ε M M , F M M : L 1 (D) → [0, +∞] by F ε M M (u) = ε D |∇u| 2 + 1 ε D W (u) if u ∈ H 1 (D), +∞ otherwise,
and

F M M (u) = cPer D ({u = 1}) if u ∈ BV (D, {0, 1}), +∞ otherwise. Then F ε M M Γ-converge to F M M in the L 1 (D) topology.

A gradient-free perimeter approximation

Let us begin with some definitions and notation. Let D be an open rectangle of R 2 . We define the set

E = L ∞ (D, {0, 1}) of characteristic functions in D and the functional F : E → R ∪ {+∞} such that F (u) =    1 2 |Du|(D) if u ∈ BV (D, {0, 1}), +∞ otherwise.

A gradient-free perimeter approximation

We recall that |Du|

(D) = H 1 (∂ M Ω ∩ D) when u is a characteristic function of Ω ⊂ D. We define also Ẽ = L ∞ (D, [0, 1]),
the convex hull of E, and the functional F : Ẽ → R ∪ {+∞} such that

F (u) = F (u) if u ∈ E +∞ otherwise.
It is shown in [START_REF] Amstutz | Topology optimization methods with gradient-free perimeter approximation[END_REF] that a suitable approximation of F is provided by the functionals Fε defined as

Fε (u) = inf υ∈H 1 (D) ε ∇υ 2 L 2 (D) + 1 ε υ 2 L 2 (D) + u, 1 -2υ . (3.2.1)
In everything that follows we denote

u, v = D u(x)v(x)dx
for every pair of functions u, υ having suitable regularity. Now, we recall below some theoretical tools needed to prove our results (Proposition 3.2 proved in [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF], Theorem 3.3 and Theorem 3.4 proved in [START_REF] Amstutz | Minimal partitions and image classification using a gradient-free perimeter approximation[END_REF]).

The following proposition establishes the solution to the minimization problem (3.2.1).

Proposition 3.2. Let u ∈ L 2 (D) be given and υ ε ∈ H 1 (D) be the (weak) solution of -ε 2 ∆υ ε + υ ε = u in D, ∂ n υ ε = 0 on ∂D. (3.2.2)
Then we have

Fε (u) = 1 ε 1 -υ ε , u .
The following theorem establishes the Γ-convergence of the approximating functionals.

Theorem 3.3. For any u ∈ L ∞ (D, [0, 1]), define Fε (u) = 1 ε L ε u, 1 -u = 1 ε 1 -L ε u, u . (3.2.3)
When ε → 0, the functionals Fε Γ-converge in Ẽ endowed with the strong topology of L 1 (D) to the functional

F (u) =    1 2 |Du|(D) if u ∈ BV (D, {0, 1}), +∞ otherwise.
The following theorem provides the pointwise convergence of Fε (u).

Theorem 3.4. For all u ∈ Ẽ it holds

lim ε→0 Fε (u) = F (u). (3.2.4)

Approximation of interface energy: pointwise convergence

In the previous section, we obtained an approximation of the perimeter H 1 (∂ M Ω∩D). Given two subsets Ω i , Ω j of D, we look for an approximation of the interface energy

H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D).

Mathematical results

As a particular case of Proposition 1 in [START_REF] Ambrosio | Connected components of sets of finite perimeter and applications to image processing[END_REF], let us consider the following situation: take (d=2). Proposition 3.5. Let Ω i , Ω j be sets of finite perimeter. Then

H 1 (∂ M (Ω i ∪ Ω j )) = H 1 (∂ M Ω i ) + H 1 (∂ M Ω j ) -2H 1 (∂ M Ω i ∩ ∂ M Ω j ) whenever |Ω i ∩ Ω j | = 0.
The following lemma is a variant of Proposition 3.5. The proof is adapted from [START_REF] Ambrosio | Connected components of sets of finite perimeter and applications to image processing[END_REF]. Lemma 3.6. Let Ω i , Ω j be subsets of finite perimeter of D. Then

H 1 (∂ M (Ω i ∪ Ω j ) ∩ D) = H 1 (∂ M Ω i ∩ D) + H 1 (∂ M Ω j ∩ D) -2H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D) whenever |Ω i ∩ Ω j | = 0.
Proof. From the proof of Proposition 3.5 in [START_REF] Ambrosio | Connected components of sets of finite perimeter and applications to image processing[END_REF], we have

∂ M (Ω i ∪ Ω j ) ∪ ∂ M (Ω i ∩ Ω j ) ⊂ ∂ M Ω i ∪ ∂ M Ω j , ∂ M (Ω i ∪ Ω j ) ∩ ∂ M (Ω i ∩ Ω j ) ⊂ ∂ M Ω i ∩ ∂ M Ω j .

It follows that

∂ M (Ω i ∪ Ω j ) ∪ ∂ M (Ω i ∩ Ω j ) ∩ D ⊂ (∂ M Ω i ∪ ∂ M Ω j ) ∩ D , ∂ M (Ω i ∪ Ω j ) ∩ ∂ M (Ω i ∩ Ω j ) ∩ D ⊂ (∂ M Ω i ∩ ∂ M Ω j ) ∩ D.
Here, we refer to Section 2.2.2 for the point of density 1/2.

If |Ω i ∩ Ω j | = 0, we denote by L the H 1 -negligible set (∂ M Ω i ∩ D)\(Ω 1 2 i ∩ Ω) ∩ (∂ M Ω j ∩ D)\(Ω 1 2 j ∩ D)
and notice that

∂ M (Ω i ∪ Ω j ) ∩ D)\L ⊂ (∂ M Ω i ∩ D)∆(∂ M Ω j ∩ D), (∂ M Ω i ∩ D)∆(∂ M Ω j ∩ D) ⊂ ∂ M (Ω i ∪ Ω j ) ∩ D).
Hence, we have

H 1 (∂ M (Ω i ∪ Ω j ) ∩ D) = H 1 ((∂ M Ω i ∩ D)∆(∂ M Ω j ∩ D) = H 1 (∂ M Ω i ∩ Ω) + H 1 (∂ M Ω j ∩ D) -2H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D).
We now arrive at the desired pointwise convergence result.

Theorem 3.7. Let Ω i , Ω j be two subsets of finite perimeter of D. If u i = χ Ωi and u j = χ Ωj , then

H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D) = lim ε→0 2 ε L ε u i , u j , whenever |Ω i ∩ Ω j | = 0.
Proof. By Lemma 3.6, we have

H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D) = 1 2 H 1 (∂ M Ω i ∩ D) + H 1 (∂ M Ω j ∩ D) -H 1 (∂ M (Ω i ∪ Ω j ) ∩ D) .
According to Theorem 3.4 we get

H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D) = lim ε→0 Fε (u i ) + Fε (u j ) -Fε (u i + u j ) = lim ε→0 1 ε 1 -L ε u i , u i + 1 ε 1 -L ε u j , u j - 1 ε 1 -L ε (u i + u j ), u i + u j = lim ε→0 2 ε L ε u i , u j .
From now on, for simplicity, we denote

G ε (u i , u j ) = 1 ε L ε u i , u j . (3.3.1)

Algorithm

We present an algorithm to check the pointwise convergence (see Algorithm 1).

Data: Given a partition Ω 1 , . . . , Ω N .

1 set u i = χ Ωi ∀i = 1, . . . , N ; 2 set ε min , ε max ; 3 set ε = ε max ; 4 repeat 5 solve -ε 2 ∆υ ε + υ ε = u in D ∂ n υ ε = 0 on ∂D; compute G ε (u i , u j ) = 1 ε L ε u i , u j ; 6 update ε ← ε 2 ;
7 until ε ≥ ε min ; Algorithm 1: Check the pointwise convergence of the function G ε (u i , u j ).

Remark 3.1. The parameter ε has the dimension of a length. In fact, in view of (3.2.2), it is a characteristic width of the diffuse interface represented by the slow variable υ. Thus we start with a characteristic size of D, namely ε 0 = ε max = max(m, n). Then we divide ε by two at each 3.4. Lower semicontinuity iteration of an outer loop, that is, we choose ε i = ε max /2 i . In order to approximate (3.2.2) properly, ε must not be taken significantly smaller than the grid size. In fact, when we use the FEM, the discrete Maximum principle is not guaranteed if ε is smaller than the mesh size. Thus we stop the algorithm as soon as ε i ≤ ε min = 1. In fact, numerical tests show that almost no more evolution occurs when ε goes below this value (for more details see the appendix).

Numerical examples

We present four examples to illustrate the pointwise convergence of the functional G ε in Figures 3.1 and 3.2. The values of the function G ε are computed in two cases namely the finite element method (FEM) and the finite difference method (FDM), and compared with the exact value. We notice that when we use the FDM, the value of G ε is less than the exact value, for the FEM it is above.

Lower semicontinuity

Lower semicontinuity is very important in variational problems, because together with coercivity it ensures the existence of minimizers. Theorem 3.8. Let X be a metric space and f : X → R ∪ {-∞, +∞}. f be lower semicontinous ( or just lsc for short) if and only if

u ε → u ⇒ f (u) ≤ lim inf ε→0 f (u ε ).
The following important result is found in [START_REF] Ambrosio | Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization[END_REF].

Theorem 3.9. The condition (1.1.3) is necessary and sufficient for the function

I : (Ω 1 , . . . , Ω N ) → 1≤i<j≤N α ij H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ Ω)
to be lower semicontinous (w.r.t. convergence in measure).

Equicoercivity

We refer to the following theorem from [START_REF] Amstutz | Minimal partitions and image classification using a gradient-free perimeter approximation[END_REF]. Theorem 3.10 (Equicoercivity). Let u ε be a sequence of functions of Ẽ such that sup ε Fε (u ε ) < +∞. There exists u ∈ E such that u ε → u strongly in L 1 (Ω) for a subsequence.

For simplicity, we denote

I ε (u ε 1 , . . . , u ε N ) = 1≤i<j≤N α ij G ε (u ε i , u ε j ).
We now show the equicoercivity of the functionals I ε .

Theorem 3.11. Let α ij > 0 and let (u ε 1 , . . . , u ε N ) be a sequence of functions of Ẽ such that sup ε I ε (u ε 1 , . . . , u ε N ) < +∞ for any i, j. For all i, there exists u i ∈ E such that u ε i → u i strongly in L 1 (D) for a subsequence. 

α ij G ε (u ε i , u ε j ) = 1 ε 1≤i<j≤N α ij L ε u ε i , u ε j ≥ ᾱ ε 1≤i<j≤N L ε u ε i , u ε j = ᾱ 2ε N i,j=1 i =j L ε u ε i , u ε j = ᾱ 2ε N i=1 L ε u ε i , N j=1 j =i u ε j .
By using the fact that

N j =i u ε j = 1 -u ε i and Theorem 3.2.3, we deduce that 1≤i<j≤N α ij G ε (u ε i , u ε j ) ≥ ᾱ 2 N i=1 1 ε L ε u ε i , 1 -u ε i = ᾱ 2 N i=1 Fε (u ε i ).
It is easy to see that if

1≤i<j≤N α ij G ε (u ε i , u ε j ) ≤ C, C > 0, then Fε (u ε i ) ≤ 2C ᾱ ∀i.
From Theorem 3.10, we get

u ε i L 1 / / u i ,
for some u i ∈ E.

We will study the Γ-convergence in chapter 4.

Chapter 4

Formulation of the interface energy as a linear combination of perimeters

In this chapter, we will rewrite the surface tensions α ij in the form of linear combination that allows us to rewrite the interface energy as a combination of perimeters and we will explain how compute the coefficients. If all the coefficients are positive we will prove Γ-convergence in Theorem 4.8. We will provide several optimization algorithms depending on the sign of the coefficients. In the end, we will present some numerical illustrations.

Reformulation in terms of perimeters

For technical simplicity we restrict ourselves to the cases where N ≤ 5. 

Algebraic properties of interface energies

= ∪ N i=1 Ω i . Let L ij = H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D), P i = H 1 (∂ M Ω i ∩ D) and P ij = H 1 (∂ M (Ω i ∪ Ω j ) ∩ D). Then P i = j =i L ij and P ij = k =i,j L ik + L kj , whenever |Ω i ∩ Ω j | = 0 for i = j.
Proof. By the definition of the essential boundary, we have

∂ M Ω i = ∂ M R 2 \ Ω i = ∂ M ∪ j =i Ω j ∪ R 2 \ D .
It follows from the proof of Proposition 3.5 in [START_REF] Ambrosio | Connected components of sets of finite perimeter and applications to image processing[END_REF] that

∂ M Ω i ∩ D ⊂ ∂ M ∪ j =i Ω j ∪ R 2 \ D ∩ D ⊂ ∪ j =i ∂ M Ω j ∩ D, which implies that ∂ M Ω i ∩ D ⊂ ∪ j =i (∂ M Ω j ∩ ∂ M Ω i ∩ D),
and thus

∂ M Ω i ∩ D = ∪ j =i (∂ M Ω j ∩ ∂ M Ω i ∩ D). (4.1.1)
Now, we need to prove that if i = j, i = k, j = k, then

H 1 ((∂ M Ω i ∩ ∂ M Ω j ∩ D) ∩ (∂ M Ω i ∩ ∂ M Ω k ∩ D)) = H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ ∂ M Ω k ∩ D) = 0. (4.1.2)
By the definition of points of density 1 2 for Ω i , i = 1, . . . , N , we underline the fact

that if i = j, i = k, j = k, then Ω 1 2 i ∩ Ω 1 2 j ∩ Ω 1 2 k ∩ D = ∅.
As a consequence, it follows that

H 1 (Ω 1 2 i ∩ Ω 1 2 j ∩ Ω 1 2 k ∩ D) = 0.
According to Theorem 2.33, we have that

H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ ∂ M Ω k ∩ D) = 0. ( 4.1.3) 
We deduce from (4.1.1),(4.1.2) and (4.1.3) that

P i = j =i L ij .
From this fact and according to Lemma 3.6, we can obtain that

P ij = P i + P j -2L ij = k =i L ik + k =j L kj -2L ij = k =i,j L ik + L kj .

Algebraic properties of approximate interface energies

We now prove the approximate counterpart of Lemma 4.1.

Lemma 4.2. Let Ω i , . . . , Ω N be subsets of finite perimeter of D such that D = ∪ N i=1 Ω i . Let u i = χ Ωi for all i, L ε ij = L ε u i , u j , P ε i = 1 ε 1 -L ε u i , u i and P ε ij = 1 ε 1 -L ε (u i + u j ), u i + u j . Then P ε i = 1 ε j =i L ε ij and P ε ij = 1 ε k =i,j L ε ik + L ε kj , whenever |Ω i ∩ Ω j | = 0 for i = j.
Proof. First, from Theorem 3.3 we have

P ε i = 1 ε 1 -L ε u i , u i = 1 ε L ε u i , 1 -u i .
Using the fact that 1 -u i = j =i u j , we obtain

P ε i = 1 ε L ε u i , j =i u j = 1 ε j =i L ε u i , u j = 1 ε j =i L ε ij .
Second, from Theorem 3.3 we have

P ε ij = 1 ε 1 -L ε (u i + u j ), u i + u j = 1 ε L ε (u i + u j ), 1 -(u i + u j ) .
Using again the fact that 1 -(u i + u j ) = k =i,j u k , we obtain

P ε ij = 1 ε L ε (u i + u j ), k =i,j u k j = 1 ε k =i,j L ε (u i + u j ), u k = 1 ε k =i,j L ε u i , u k + L ε u j , u k = 1 ε k =i,j L ε ik + L ε kj .
Remark 4.1. The algebraic properties given in Lemmas 4.1 and 4.2 are identical. This will allow to obtain similar reformulations for the interface energy and its approximation.

Matrix representation of algebraic properties

For N ≤ 5, we define the column vector L made of the values (L ij ) in a chosen order. Similarly define the column vector α of the surface tensions (α ij ), P the vector of the values P i and P ij . We will denote P i and P ij by P S , S ⊂ {1, . . . , N }, β i and β ij by β S . According to lemme 4.1, we can define the matrix

M = (m ij ) ∈ R (N +C N 2 )×C N 2 by P = ML. Note that m ij ∈ {0, 1}.
To find the relationship between the values of the α ij and β S , we start with

β • P = β • ML = M β • L.
Hence one has

1≤i<j≤N α ij L ij = S⊂{1,...,N } β S P S (4.1.4)
whenever the columns of coefficients satisfy the linear system

M β = α. (4.1.5)
This system is square invertible if N = 3 and underdetermined if N > 3. The property of complementation in [START_REF] Ambrosio | Fine properties of sets of finite perimeter in doubling metric measure spaces[END_REF] allows us to select the values of S (see 

P =                         
                          =                           L 12 + L 13 + L 14 + L 15 L 12 + L 23 + L 24 + L 25 L 13 + L 23 + L 34 + L 25 L 14 + L 24 + L 34 + L 45 L 15 + L 25 + L 35 + L 45 L 13 + L 23 + L 14 + L 24 + L 15 + L L 12 + L 23 + L 14 + L 34 + L 15 + L L 12 + L 24 + L 13 + L 34 + L 15 + L L 12 + L 24 + L 13 + L 34 + L 15 + L L 12 + L 13 + L 14 + L 34 + L 25 + L L 12 + L 14 + L 23 + L 34 + L 25 + L L 12 + L 15 + L 23 + L 35 + L 24 + L L 13 + L 14 + L 23 + L 24 + L 35 + L L 13 + L 15 + L 23 + L 25 + L 34 + L L 14 + L 15 + L 24 + L 25 + L 34 + L                           .
This can be written as 

P =                         
                          =                           1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0                                           L 12 L 13 L 14 L 15 L 23 L 24 L 25 L 34 L 35 L 45                 = ML.
We noticed that M is surjective by Lemma 3.6:

P ij = P i + P j -2L ij , i.e., H 1 (∂ M (Ω i ∪ Ω j ) ∩ D) = H 1 (∂ M Ω i ∩ D) + H 1 (∂ M Ω j ∩ D) -2H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D).
The issue is to find positive β.

Existence of conical combination

There are multiple ways to find the values of β. In particular, for N = 3, 4, 5 we have the following result. 

β ij = (-α ij + α iN + α jN )/2 and β i = 1≤i<j<N -β ij + α iN . Then 1≤i<j≤N α ij L ij = 1≤i<j<N β ij P ij + 1≤i<N β i P i . Proof. We have 1≤i<j≤N α ij L ij = 1≤i<j<N α ij L ij + 1≤i<N α iN L iN . It follows from Lemma 4.1 that 1≤i<j≤N α ij L ij = 1≤i<j<N α ij L ij + 1≤i<N α iN   P i - k =i,N L ik   = 1≤i<j<N α ij L ij + 1≤i<N α iN P i - 1≤i<k<N α iN L ik - 1≤k<i<N α iN L ik = 1≤i<j<N α ij L ij + 1≤i<N α iN P i - 1≤i<k<N α iN L ik - 1≤i<k<N α kN L ik = 1≤i<j<N (α ij -α iN -α jN ) L ij + 1≤i<N α iN P i .
By using Lemma 3.6, we thus get

1≤i<j≤N α ij L ij = 1≤i<j<N α ij -α iN -α jN 2 [P i + P j -P ij ] + 1≤i<N α iN P i = 1≤i<j<N β ij (P ij -P i -P j ) + 1≤i<N α iN P i = 1≤i<j<N β ij P ij + 1≤i<j<N β ij (-P i -P j ) + 1≤i<N α iN P i , which implies that 1≤i<j≤N α ij L ij = 1≤i<j<N β ij P ij - i =j β ij P i + 1≤i<N α iN P i = 1≤i<j<N β ij P ij + 1≤i<N   - i =j β ij + α iN   P i ,
and thus

1≤i<j≤N α ij L ij = 1≤i<j<N β ij P ij + 1≤i<N β i P i .
Now, we define

B N =    (α ij ) ∈ S N : ∃(β S ) such that i<j α ij L ij = S⊂{1,...,N } β S P S    ,
and

B + N =    (α ij ) ∈ B N : ∃(β S ) ≥ 0 such that i<j α ij L ij = S⊂{1,...,N } β S P S    .
The following theorem allows us to find the nonnegative β S for all S when the surface tensions α ij satisfy the triangle inequality. Proof. We distinguish the two cases:

• Case 1: N = 3. Using Lemma 4.3 for N = 3, we have Proof. We distinguish the two cases:

β 1 = -α 23 + α 12 + α 13 2 , β 2 = -α 13 + α 12 + α 23 2 , β 12 = -α 12 + α 13 + α 23 2 . If (α ij ) ∈ T 3 , then β 1 , β 2 ,
     S 4 ≤ S 1 S 4 ≤ S 2 S 4 ≤ S 3 ⇒      α 14 + α 24 + α 34 ≤ α 12 + α 13 + α 14 α 14 + α 24 + α 34 ≤ α 12 + α 23 + α 24 α 14 + α 24 + α 34 ≤ α 13 + α 23 + α 34 ⇒      α 24 + α 34 ≤ α 12 + α 13 α 14 + α 34 ≤ α 12 + α 23 α 14 + α 24 ≤ α 13 + α 23 ⇒      β 1 ≥ 0 β 2 ≥ 0 β 3 ≥ 0 .
• Case 1: N = 3. From (4.1.4) we have

3 i=1 β i P i = β 1 (L 12 + L 13 ) + β 2 (L 12 + L 23 ) + β 3 (L 13 + L 23 ) = (β 1 + β 2 )L 12 + (β 1 + β 3 )L 13 + (β 2 + β 3 )L 23 . (4.1.6)
Now, we identify

α ij = β i + β j . (4.1.7)
If the values of β are nonnegative, then the surface tensions α ij are nonnegative. Now, we want to prove that the surface tensions α ij satisfy the triangle inequality. From (4.1.7) we have

     α 12 = β 1 + β 2 α 13 = β 1 + β 3 α 23 = β 2 + β 3 ⇒      α 12 ≤ α 13 + α 23 α 13 ≤ α 12 + α 23 α 23 ≤ α 12 + α 13 , which implies that B + 3 ⊆ T 3 . • Case 2: N = 4, 5. We have N i=1 β i P i + i<j β ij P ij = N i=1 β i   j =i L ij   + i<j β ij   k =i,j L ik + L kj   = i<j (β i + β j ) L ij + i<j β ij k =i,j L ik + i<j β ij k =i,j L kj = i<j (β i + β j ) L ij + i =j β ij k =i,j L ik = i<j (β i + β j ) L ij + i =k   j =i β ij   L ik = i<j (β i + β j ) L ij + i =j   k =i β ik   L ik = i<j (β i + β j ) L ij + i<j   k =i,j β ik + β kj   L ij = i<j   β i + β j + k =i,j β ik + β kj   L ij .

Now, we identify

α ij = β i + β j + k =i,j β ik + β kj . (4.1.8)
If the values of β are nonnegative, then the surface tensions α ij are nonnegative. Now, we want to prove that the surface tensions α ij satisfy the triangle inequality. We start with

-α ij + α ik + α kj = -β i -β j - h =i,j (β ih + β hj ) + β i + β k + h =i,k (β ih + β hk ) + β k + β j + h =k,j (β kh + β hj ) = 2β k - h =i,j,k (β ih + β hj ) -β ik -β kj + h =i,j,k (β ih + β hk ) + β ij + β jk + h =i,j,k (β kh + β hj ) + β ki + β ij = 2β k + 2 h =i,j,k β hk + 2β ij .
Since the values of β are positive, we obtain

-α ij + α ik + α kj ≥ 0, which implies that B + N ⊆ T N .
Now, we want to find positive values of β S in order to use the primal variational formulation of (3.2.1) for the perimeters. Let us begin with the definition of conical combination and Carathéodory's theorem. Definition 4.6. Given a finite number of vectors v 1 , v 2 , . . . , v p in a real vector space, a conical combination, of these vectors is a vector of the form

λ 1 v 1 + λ 2 v 2 + . . . + λ p v p ,
where the real numbers λ i satisfy λ i ≥ 0. Theorem 4.7 (Carathéodory). In a vector space of dimension n, all conical combination of m vectors (m > n), can be written as conical combination of n of these vectors.

We refer to [START_REF] Temam | Navier-Stokes equations. Theory and numerical analysis[END_REF] for more details. Remark 4.2. By the above theorem and the linear system in (4.1.5), when (α ij ) ∈ B + N , α can be written as a conical combination of C N 2 columns of the matrix M .

Algorithm to search for a conical combination

Theorem 4.7 lead us to Algorithm 2 in order to search for nonnegative values of β.

Data: Given α = (α ij ) ∈ R C N 2 ×1 , M ∈ R (C N 2 +N )×C N 2 . 1 repeat 2 Loop on the set of square invertible submatrix Λ ∈ R C N 2 ×C N 2 of M ; 3 Compute β = Λ -1 α; 4 until β ≥ 0;
Algorithm 2: Find positive values of β.

At each step we have to solve a linear system of form:

    • • • Λ • • • • • • • • •            β . . .        =     α     .
(4.1.9)

C N 2 × C N 2 C N 2 .
Remark 4.3. If N=5, then we have counterexample of Theorem 4.4. Consider the matrix:

(α ij ) =       0 1 3 2 2 1 0 3 2 2 3 3 0 3 3 2 2 3 0 2 2 2 3 2 0       .
It is clear to see that the matrix (α ij ) satisfies the triangle inequality, but for all possible values of β found from (4.1.9) at least one coefficient is negative.

Γ-convergence with non negative coefficients

We now state the main result of this chapter. Let us recall the definition of the following set

ẼN = (u 1 , . . . , u N ) ∈ ẼN , N i=1 u i = 1 . Theorem 4.8. Let D be an open rectangle of R 2 . If (α ij ) ∈ B + N , then 1≤i<j≤N α ij G ε (u i , u j ) Γ / /    1 2 1≤i<j≤N α ij H 1 (∂ M Ω i ∩ ∂ M Ω j ∩ D) if u i ∈ BV (D, {0, 1}) ∀i, u i = χ Ωi , +∞ otherwise, in ẼN , strongly in L 1 (D) N .
Proof. For simplicity of notation, we assume that N ≤ 5. First, we will prove the lim inf inequality. Let (u ε i ) ∈ ẼN such that (u ε i ) converges to u i in L 1 . From (3.3.1), (4.1.4) and Remark 4.1 we have

N 1≤i<j≤N α ij G ε (u ε i , u ε j ) = 1 ε N i=1 β i 1 -L ε u ε i , u ε i + 1 ε 1≤i<j≤N β ij 1 -L ε (u ε i + u ε j ), u ε i + u ε j . (4.2.1)
Passing to lim inf as ε → 0 in (4.2.1), we get

lim inf ε→0 N 1≤i<j≤N α ij G ε (u ε i , u ε j ) = lim inf ε→0 1 ε N i=1 β i 1 -L ε u ε i , u ε i + 1 ε 1≤i<j≤N β ij 1 -L ε (u ε i + u ε j ), u ε i + u ε j   , which implies that lim inf ε→0 N 1≤i<j≤N α ij G (u ε i , u ε j ) ≥ N i=1 β i lim inf ε→0 1 ε 1 -L ε u ε i , u ε i + 1≤i<j≤N β ij lim inf ε→0 1 ε 1 -L ε (u ε i + u ε j ), u ε i + u ε j .
We deduce from Theorem 3.3 and (4.1.4) that lim inf

ε→0 N 1≤i<j≤N α ij G (u ε i , u ε j ) ≥ 1 2 N i=1 β i H 1 (∂ M Ω i ∩ Ω) + 1 2 1≤i<j≤N β ij H 1 (∂ M (Ω i ∪ Ω j ) ∩ Ω) = 1 2 1≤i<j≤N α ij L ij .
Second, as we have the pointwise limit (Theorem 3.7), the lim sup inequality holds for the constant recovery sequence.

Primal algorithm

If the surface tension matrix satisfies (α ij ) ∈ β + N , then we can use the primal variational formulation (3.2.1) for the interface energy. For ε fixed the approximate problem (1.4.1) becomes

I P ε = min (u1,...,u N )∈ ẼN    N i=1 u i , g i + N i=1 β i Fε (u i ) + 1≤i<j≤N β ij Fε (u i + u j )    . (4.3.1)
Recall that Fε is defined by (1.3.5). Then from (3.2.1) we have

I P ε = min (u1,...,u N )∈ ẼN N i=1 u i , g i + N i=1 β i inf υi∈H 1 (D) ε ∇υ i 2 L 2 (D) + 1 ε υ i 2 L 2 (D) + u i , 1 -2υ i + 1≤i<j≤N β ij inf wij ∈H 1 (D) ε ∇w ij 2 L 2 (D) + 1 ε w ij 2 L 2 (D) + u i + u j , 1 -2w ij    , ( 4.3.2) 
with w ij = v i + v j for i = j, which implies that

I P ε = min (u1,...,u N )∈ ẼN inf υi∈H 1 (D) inf wij ∈H 1 (D) (4.3.3) N i=1 u i , g i + N i=1 β i ε ∇υ i 2 L 2 (D) + 1 ε υ i 2 L 2 (D) + u i , 1 -2υ i + 1≤i<j≤N β ij ε ∇w ij 2 L 2 (D) + 1 ε w ij 2 L 2 (D) + u i + u j , 1 -2w ij    . (4.3.4)
The simple structure of this problem with respect to each variable (u 1 , . . . , u N ), (υ 1 , . . . , υ N ) and (w 12 , . . . , w (N -1)N ) leads us to use an alternating minimization algorithm. The superscript k is used to designate variables computed at iteration k. The iteration k, k ≥ 1, consists in the three steps described below.

• The minimization with respect to (υ 1 , . . . , υ N ) is straightforward. It consists in solving the boundary value problems

-ε 2 ∆υ k i + υ k i = u k-1 i in D, ∂ n υ k i = 0 on ∂D. ( 4.3.5) 
• The minimization with respect to (w 12 , . . . , w (N -1)N ) is straightforward. It consists in solving the boundary value problems

-ε 2 ∆w k ij + w k ij = (u i + u j ) k-1 in D, ∂ n w k ij = 0 on ∂D.
In fact w k ij = υ k i + υ k j for i = j. • The minimization with respect to (u 1 , . . . , u N ) is a linear programming problem in a convex set. Therefore a minimizer can always be found among the extreme points of Ẽ. More precisely here, we have to minimize at each point x ∈ D the linear function

N i=1 φ i (s i ) with φ i (s) = sg i (x) + β i s ε (1 -2υ k i (x)) + s ε 1<j≤N j =i β ij (1 -2w k ij (x)) over s i ∈ [0, 1] and N i=1 s i = 1. Set ξ k i (x) = g i (x) + β i ε (1 -2υ k i (x)) + 1 ε 1<j≤N j =i β ij (1 -2w k ij (x)).
At each point x ∈ D we find an index i(x) such that

ξ k i(x) = min ξ k 1 (x), . . . , ξ k N (x) .
We then set

u k i (x) = 1 if i = i(x), 0 otherwise.

Extension: volume constraints

This algorithm ensures a decrease of the objective function at each iteration. Moreover, each cluster point (in the weak-* topology for u i and the H 1 norm topology for υ i ) is a stationary point. Of course, as the coupled problem in (u i , υ i ) is not convex, local minimizers are theoretically not excluded. An outstanding feature of this algorithm is that u k i is always a characteristic function during the iterations.

Extension: volume constraints

In this section we apply the previous algorithm with volume constraints. Given m 1 , . . . , m N ∈ R + such that N i=1 m i = |D|. We define the set

E N = (u 1 , . . . , u N ) ∈ ẼN , N i=1 u i = 1, D u i = m i ∀i .
The problem (4.3.1) with volume constraints and g i = 0 for all i becomes

I P ε = min (u1,...,u N )∈E N    N i=1 β i Fε (u i ) + 1≤i<j≤N β ij Fε (u i + u j )    .
After transformation as in (4.3.2) we obtain

I P ε = min (u1,...,u N )∈E N inf υi∈H 1 (D) inf wij ∈H 1 (D) N i=1 β i ε ∇υ i 2 L 2 (D) + 1 ε υ i 2 L 2 (D) + u i , 1 -2υ i + 1≤i<j≤N β ij ε ∇w ij 2 L 2 (D) + 1 ε w ij 2 L 2 (D) + u i + u j , 1 -2w ij    .
Now, we use again an alternating minimization algorithm with respect to (u 1 , . . . , u N ), (υ 1 , . . . , υ N ) and (w 12 , . . . , w (N -1)N ).

• The minimization with respect to (υ 1 , . . . , υ N ) consists in solving the boundary value problem

-ε 2 ∆υ k i + υ k i = u k-1 i in D, ∂ n υ k i = 0
on ∂D.

• The minimization with respect to (w 12 , . . . , w (N -1)N ) consists in setting

w k ij = υ k i + υ k j ∀i, j.
• The minimization with respect to (u 1 , . . . , u N ) amounts to solving a linear programming problem.

Primal dual formulation

The following theorem will allow us to deduce the primal dual algorithm.

Theorem 4.9. Consider the problems

(P) sup υ∈H 1 (D)
2 u, υ -ε 2 ∇υ 2 -υ 2 , (4.5.1)

(P * ) inf q∈H div 0 (D)
u + εdiv q 2 + q 2 . (4.5.2)

We have that 1. (P) is strictly concave and (P * ) is strictly convex.

2. sol(P) = {υ ε } and sol(P * ) = {ε∇υ ε } with υ ε = L ε u.

val(P) = val(P

* ) = υ ε , u . Proof.
1. It is clear that (P) is strictly concave and (P * ) is strictly convex.

2. Let us start with the existence and uniqueness of a solution of problems (P) and (P * ). Since (P) strictly concave, continuous, coercive and (P * ) strictly convex, continuous, coercive, then (P) and (P * ) admit one and only one solution. The Euler-Lagrange equations of the minimization problem (P) are

ε 2 ∇υ ε , ∇ϕ + υ ε , ϕ = u, ϕ ∀ϕ ∈ H 1 (D).
This is the weak formulation of (3.2.2). Therefore sol(P) = {υ ε } and

ε 2 ∇υ ε 2 L 2 (D) + υ ε 2 L 2 (D) = υ ε , u . (4.5.3)
We deduce from (4.5.1) and (4.5.3) that

val(P) = 2 υ ε , u -υ ε , u = υ ε , u . (4.5.4)
The Euler-Lagrange equations of the minimization problem (P * ) are

2 u + εdiv q ε , εdiv ϕ + 2 q ε , ϕ = 0 ∀ϕ ∈ H div 0 (D) ⇔ ε 2 div q ε , div ϕ + q ε , ϕ = -ε u, div ϕ ∀ϕ ∈ H div 0 (D). (4.5.5) Let v ε = L ε u = sol(P) ∈ H 1 (D)
, and denote by qε = ε∇υ ε ∈ L 2 (D). We have

∀ϕ ∈ D(D), εdiv qε , ϕ = -ε qε , ∇ϕ = -ε 2 ∇υ ε , ∇ϕ = υ ε -u, ϕ , (4.5.6) which implies that div qε = 1 ε (υ ε -u) ∈ L 2 (D). (4.5.7)
From Theorem 2.16 and (4.5.6) we have

∀ϕ ∈ H 1 (D), ∂D (q ε • n) ϕ = qε , ∇ϕ + div qε , ϕ = 0.
Hence qε ∈ H div 0 (D). Now, we come back to (4.5.5) to prove that qε = sol(P * ) . Let ϕ ∈ H div 0 (D), then

u + εdiv qε , εdiv ϕ + qε , ϕ = u + (υ ε -u), εdiv ϕ + ε∇υ ε , ϕ = ε υ ε , div ϕ + ε ∇υ ε , ϕ .
Using Theorem 2.16, we get

u + εdiv qε , εdiv ϕ + qε , ϕ = ε ∂D (ϕ • n) υ ε = 0. (4.5.8)
Therefore qε is solution of (P * ). Moreover, by uniqueness we have

sol(P * ) = {q ε } = {q ε }. ( 4 
.5.9)

3. From (4.5.2) and (4.5.9) we have

val(P * ) = u + εdiv q ε 2 + q ε 2 .
In particular, from (4.5.8) we obtain

val(P * ) = u + εdiv q ε , u + u + εdiv q ε , εdiv q ε =-qε 2 + q ε 2 .
It follows from (4.5.7) and (4.5.4) that

val(P * ) = u + εdiv q ε , u = u + (υ ε -u), u = υ ε , u
= val (P).

Primal dual algorithm

We now consider the problem (4.3.1) for N = 5, where one value of β S is negative, let it β 1 . Then we have

I P D ε = min (u1,...,u5)∈ Ẽ5    5 i=1 u i , g i + β 1 Fε (u 1 ) + 5 i=2 β i Fε (u i ) + 1≤i<j≤5 β ij Fε (u i + u j )    .
It follows from (3.2.3) that

I P D ε = min (u1,...,u5)∈ Ẽ5 5 i=1 u i , g i - |β 1 | ε 1 -L ε u 1 , u 1 + 1 ε 5 i=2 β i 1 -L ε u i , u i + 1 ε 1≤i<j≤5 β ij 1 -L ε (u i + u j ), u i + u j    .
According to the values of β S , we can use the dual expression (4.5.2) for β 1 and otherwise the primal expression (4.5.1) for the positive β S , i.e.

I P D ε = min (u1,...,u5)∈ Ẽ5 5 i=1 u i , g i - |β 1 | ε 1, u 1 + |β 1 | ε inf q∈H div 0 (D) q 2 L 2 (D) + u 1 + εdiv q 2 L 2 (D) + 1 ε 5 i=2 β i inf υi∈H 1 (D) ε ∇υ i 2 L 2 (D) + 1 ε υ i 2 L 2 (D) + u i , 1 -2υ i + 1 ε 1≤i<j≤5 β ij inf wij ∈H 1 (D) ε ∇w ij 2 L 2 (D) + 1 ε w ij 2 L 2 (D) + u i + u j , 1 -2w ij    .
At ε fixed and we use again an alternating minimization algorithm with respect to (u 1 , . . . , u 5 ), (υ 1 , . . . , υ 5 ), (w 12 , . . . , w 45 ) and q.

• The minimization with respect to (υ 1 , . . . , υ 5 ) consists in solving the 5 boundary value problems

-ε 2 ∆υ k i + υ k i = u k-1 i in D, ∂ n υ k i = 0
on ∂D.

• The minimization with respect to (w 12 , . . . , w 45 ) consists in solving the C N 2 boundary value problems

-ε 2 ∆w k ij + w k ij = (u i + u j ) k-1 in D, ∂ n w k ij = 0 on ∂D.
In fact

w k ij = v k i + v k j for i = j.
• The minimization with respect to q yields the Euler-Lagrange equation

2 q ε , h + 2 u 1 + ε div q ε , ε div h = 0 , ∀h ∈ H div 0 (D) q ε , h -ε ∇(u 1 + ε div q ε ), h = 0 , ∀h ∈ H div 0 (D) (4.6.1)
Let q ε = ε∇υ 1 ε . Then a change of q ε in the above equation entails

ε∇υ ε , h -ε ∇(u 1 + ε div ε∇υ ε ), h = 0 , ∀h ∈ H div 0 (D) ⇔ ε∇ (υ ε -u 1 -ε 2 ∆υ ε ) 0 , h = 0 , ∀h ∈ H div 0 (D) (4.6.2)
We deduce from (4.6.2) that q ε is solution of (4.6.1).

• The minimization with respect to (u 1 , . . . , u 5 ) consists in solving min (u1,...,u5)∈ Ẽ5

|β 1 | ε u 1 + εdiv q ε 2 + 5 i=1 ξ i , u i =: J P D ε with ξ 1 = g 1 (x) - |β 1 | ε + 1 ε 1<j≤5 β 1j (1 -2w 1j (x)),
and

ξ i = g i (x) + β i ε (1 -2υ i (x)) + 1 ε 1<j≤5 j =i β ij (1 -2w ij (x)
) for i = 2, . . . , 5.

Since u 5 = 1 -4 i=1 u i , then we have

J P D ε = ξ 5 , 1 + min 4 i=1 ui≤1 ui≥0 1 ε |β 1 | u 1 + εdiv q ε 2 + 4 i=1 ξ i -ξ 5 , u i . (4.6.3)
In this situation we have two kinds of problems:

1. the minimization with respect to (u 2 , . . . , u 4 ) is a linear programming problem, 2. the minimization with respect to u 1 is a quadratic programming problem.

It follows that

J P D ε = ξ 5 , 1 + min 0≤u1≤1 min 4 i=2 ui≤1-u1 ui≥0 1 ε |β 1 | u 1 + εdiv q ε 2 + ξ 1 -ξ 5 , u 1 + 4 i=2 ξ i -ξ 5 , u i .
This provides

J P D ε = ξ 5 , 1 + min 0≤u1≤1        1 ε |β 1 | u 1 + εdiv q ε 2 + ξ 1 -ξ 5 , u 1 + min 4 i=2 ui≤1-u1 ui≥0 4 i=2 ξ i -ξ 5 , u i        .
We define Θ i for i=2,3,4 by

Θ i =    u i 1 -u 1 if u 1 = 1, 0 if u 1 = 1, which implies that u i = (1 -u 1 )Θ i ∀ i. Let ξ i = ξ i -ξ 5
, then we get

J P D ε = ξ 5 , 1 + min 0≤u1≤1        1 ε |β 1 | u 1 + εdiv q ε 2 + ξ 1 , u 1 + min 4 i=2 Θi≤1 Θi≥0 4 i=2 ξ i (1 -u 1 ), Θ i       
.

The minimization with respect to Θ i is a linear programming problem, it yields

J P D ε = ξ 5 , 1 + min 0≤u1≤1 1 ε |β 1 | u 1 + εdiv q ε 2 + ξ 1 , u 1 + D min( ξ 2 (1 -u 1 ), ξ 3 (1 -u 1 ), ξ 3 (1 -u 1 ), 0) .
This implies that

J P D ε = ξ 5 , 1 + min 0≤u1≤1 1 ε |β 1 | u 1 + εdiv q ε 2 + ξ 1 , u 1 + min( ξ 2 , ξ 3 , ξ 3 , 0), 1 -u 1 .
We denote ξ by ξ = min( ξ 2 , ξ 3 , ξ 3 , 0), which implies that

J P D ε = ξ 5 , 1 + ξ, 1 + min 0≤u1≤1 1 ε |β 1 | u 1 + εdiv q ε 2 + ξ 1 -ξ, u 1 = ξ 5 + ξ, 1 + min 0≤u1≤1 1 ε |β 1 | u 1 + εdiv q ε 2 + ξ 1 -ξ, u 1 = ξ 5 + ξ, 1 + min 0≤u1≤1 1 ε |β 1 | u 1 + εdiv q ε + ε 2 |β 1 | ( ξ 1 -ξ) 2 - ε 4 |β 1 | 2 ε |β 1 | εdiv q ε + ( ξ 1 -ξ) 2 + 1 ε |β 1 | εdiv q ε 2 .
The minimization with respect to u 1 is a quadratic problem, whose solution is

u * 1 = P [0,1] ε 2|β 1 | (ξ -ξ 1 ) -εdiv q ε ,
with

P [0,1] (ϕ) = max(0, min(1, ϕ)).

Saddle point formulation and algorithm

Saddle point formulation

Let us start by defining the functional 

Gε (u 1 , u 2 ) = inf υ1∈H 1 (D) sup υ2∈H 1 (D) -ε ∇υ 1 , ∇υ 2 + 1 ε ( u 1 , υ 2 + u 2 , υ 1 -υ 1 , υ 2 ) . ( 4 
A point (x, y) ∈ X × Y is called a saddle point of L if max y∈Y L(x, y) = L(x, ȳ) = min x∈X L(x, ȳ). Equivalently, (x, ȳ) is a saddle point of L if L(x, y) ≤ L(x, ȳ) ≤ L(x, ȳ).
Another way to say this is (a) x is a solution of the minimization problem inf x∈X L(x, ȳ), (b) y is a solution of the maximization problem max y∈Y L(x, y).

Similarly, from (4.7.3) we prove that

L(υ ε 1 , υ ε 2 ) -L(υ 1 , υ ε 2 ) = 0. (4.7.6)
The equations (4.7.5) and (4.7.6) satisfy the definition of saddle point, more specifically

L(υ ε 1 , υ 2 ) = L(υ ε 1 , υ ε 2 ) = L(υ 1 , υ ε 2 ) ∀v 1 , v 2 ∈ H 1 (D).
Next, from (4.7.1) and (4.7.3) with ϕ = υ ε 1 we obtain that

L(υ ε 1 , υ ε 2 ) = -ε u 2 , υ ε 1 -υ ε 1 , υ ε 2 ε 2 + 1 ε ( u 1 , υ ε 2 + u 2 , υ ε 1 -υ ε 1 , υ ε 2 ) = 1 ε u 1 , υ ε 2 .
Similarly, from (4.7.1) and (4.7.4) with ψ = υ ε 2 we can prove that

L(υ ε 1 , υ ε 2 ) = 1 ε u 2 , υ ε 1 .

Saddle point algorithm

In this subsection, we introduce another algorithm for the minimal partition problem. We write the minimal partition problem (1.4.1) as

I SD ε = min (u1,...,u N )∈ ẼN    N i=1 g i , u i + 1≤i<j≤N α ij Gε (u i , u j )    (4.7.7) with Gε (u i , u j ) = inf υij ∈H 1 (D) sup υji∈H 1 (D) -ε ∇υ ij , ∇υ ji + 1 ε ( u i , υ ji + u j , υ ij -υ ij , υ ji ) ,
which implies that

I SD ε = min (u1,...,u5)∈ ẼN inf υij ∈H 1 (D) sup υji∈H 1 (D)    N i=1 g i , u i + 1≤i<j≤N α ij -ε ∇υ ij , ∇υ ji + 1 ε ( u i , υ ji + u j , υ ij -υ ij , υ ji )    . (4.7.8)
We use an alternating algorithm with respect to (u 1 , . . . , u N ), (υ 12 , . . . , υ (N -1)N ) and (υ 21 , . . . , υ N (N -1) ). The superscript k is again used to designate these vectors at iteration k.

• The stationary with respect to (υ ij , υ ji ) consists in solving simultaneously

-ε 2 ∆υ k ij + υ k ij = u k-1 i in D, ∂ n υ k ij = 0
on ∂D, and

-ε 2 ∆υ k ji + υ k ji = u k-1 j in D, ∂ n υ k ji = 0 on ∂D.
In fact υ ε ij = υ ε i and υ ε ji = υ ε j .

• The minimization with respect to (u 1 , . . . , u N ) is a linear programming problem. Minimizers can be found by exploring the vertices of the polyhedron ẼN , that is, E N . The practical procedure is the following. Set

ξ k i = g i + 1 ε j =i α ij υ k j .
At each point x ∈ D we find an index i(x) such that

ξ k i(x) = min ξ k 1 (x), . . . , ξ k N (x) .
We then set

u k i (x) = 1 if i = i(x), 0 otherwise.
Of course, there is no guarantee that the cost is decreased at each iteration. This issue is addressed in the next section.

Comparison between saddle point and primal algorithms

We focus on the relationships between the saddle point algorithm and the primal algorithm. We assume that in the primal algorithm the coefficients β i , β ij are chosen according to lemma 4.3. Let us start with the saddle point algorithm. From (4.7.7) and (4.7.8) we have the following

Saddle point algorithm

We have the minimal partition problem (4.7.8)

I SD ε = min (u1,...,u5)∈ ẼN inf υij ∈H 1 (D) sup υji∈H 1 (D)    N i=1 g i , u i + 1≤i<j≤N α ij -ε ∇υ ij , ∇υ ji + 1 ε ( u i , υ ji + u j , υ ij -υ ij , υ ji )    . (4.8.1)
Let us begin with the initial partition (u 0 1 , . . . , u 0 N ). Take k = 1 (the first iteration), then the stationary with respect to (υ ij , υ ji ) consists in solving simultaneously

-ε 2 ∆υ 1 ij + υ 1 ij = u 0 i in D, ∂ n υ 1 ij = 0 on ∂D, (4.8.2)
and 

-ε 2 ∆υ 1 ji + υ 1 ji = u 0 j in D, ∂ n υ 1 ji = 0 on ∂D. ( 4 
g i + 1 ε j =i α ij υ 1 j , u i    =: J SD 1 ε .
It follows from (4.1.8) that

J SD 1 ε = min (u1,...,u N )∈ ẼN    N i=1 g i + 1 ε j =i   β i + β j + k =i,j β ik + β kj   υ 1 j , u i    . (4.8.4)

Primal algorithm

We have the minimal partition problem (4.3.3)

I P ε = min (u1,...,u N )∈ ẼN inf υi∈H 1 (D) inf wij ∈H 1 (D) (4.8.5) N i=1 u i , g i + N i=1 β i ε ∇υ i 2 L 2 (D) + 1 ε υ i 2 L 2 (D) + u i , 1 -2υ i + 1≤i<j≤N β ij ε ∇w ij 2 L 2 (D) + 1 ε w ij 2 L 2 (D) + u i + u j , 1 -2w ij    . (4.8.6)
Let us begin with the initial partition (u 0 1 , . . . , u 0 N ). Take k = 1, then the minimization of (4.8.5) with respect to (υ 1 , . . . , υ N ) is straightforward. It consists in solving the boundary value problem

-ε 2 ∆υ 1 i + υ 1 i = u 0 i in D, ∂ n υ 1 i = 0 on ∂D. (4.8.7)
The minimization of (4.8.5) with respect to (w 12 , . . . , w (N -1)N ) is straightforward. It consists in solving the boundary value problem

-ε 2 ∆w 1 ij + w 1 ij = (u i + u j ) 0 in D, ∂ n w 1 ij = 0 on ∂D, (4.8.8) with w 1 ij = v 1 i + v 1 j .
We deduce from (4.8.5), (4.8.7) and (4.8.8) that the second step of the first iteration consists in solving min

(u1,...,u N )∈ ẼN    N i=1 g i + β i ε 1 -2υ 1 i + 1 ε j =i β ij 1 -2(v 1 i + v 1 j ) , u i    =: J P 1 ε .

Comparison

Since v 1 i = 1j =i v 1 j , then we get

J P 1 ε = min (u1,...,u N )∈ ẼN    N i=1 g i - β i ε + 2β i ε j =i v 1 j + 1 ε j =i   -β ij + 2β ij k =i v 1 k -2β ij v 1 j   , u i    = min (u1,...,u N )∈ ẼN    N i=1 g i - β i ε + 2β i ε j =i v 1 j - 1 ε j =i β ij + 1 ε j =i   2β ij k =i v 1 k -2β ij v 1 j   , u i    = min (u1,...,u N )∈ ẼN    N i=1 g i , u i - 1 ε N i=1   β i 1, u i -2β i j =i v 1 j , u i   + 1 ε N i=1   j =i   2β ij k =i v 1 k -2β ij v 1 j   , u i - k =i β ik 1, u i      .
Using the fact that N j=1 v 1 j = 1, we get

J P 1 ε = min (u1,...,u N )∈ ẼN    N i=1 g i , u i - 1 ε N i=1   β i N j=1 v 1 j , u i -2β i j =i v 1 j , u i   + 1 ε N i=1   2 j =i β ij k =i v 1 k , u i -2 j =i β ij v 1 j , u i - k =i β ik N j=1 v 1 j , u i      = min (u1,...,u N )∈ ẼN    N i=1 g i , u i - 1 ε N i=1   β i N j =i v 1 j , u i + β i v 1 i , u i -2β i j =i v 1 j , u i   + 1 ε N i=1   2 k =i β ik j =i v 1 j , u i -2 j =i β ij v 1 j , u i - N j=1   k =i,j β ik + β ij   v 1 j , u i      = min (u1,...,u N )∈ ẼN    N i=1 g i , u i + 1 ε N i=1   β i N j =i v 1 j , u i -β i v 1 i , u i   + 1 ε N i=1   2   j =i k =i,j β ik v 1 j , u i + j =i β ij v 1 j , u i   -2 j =i β ij v 1 j , u i - j =i k =i,j β ik v 1 j , u i - k =i β ik v 1 i , u i - N j=1 β ij v 1 j , u i      .
Using the fact that u i = 1 -N j=1 u j , we get

J P 1 ε = min (u1,...,u N )∈ ẼN    N i=1 g i , u i + 1 ε N i=1   β i N j =i v 1 j , u i -β i v 1 i , 1 + β i N j =i v 1 i , u j   + 1 ε N i=1   j =i k =i,j β ik v 1 j , u i - k =i β ik v 1 i , u i - N j=1 β ij v 1 j , u i      .
Using again the fact that u i = 1 -N j=1 u j , we get

J P 1 ε = min (u1,...,u N )∈ ẼN    N i=1 g i , u i + 1 ε N i=1   β i N j =i v 1 j , u i -β i v 1 i , 1 + N j=1 β i v 1 i , u j -β i v 1 i , u i   + 1 ε N i=1   j =i k =i,j β ik v 1 j , u i - k =i β ik v 1 i , 1 + k =i β ik j =i v 1 i , u j - N j=1 β ij v 1 j , u i      = min (u1,...,u N )∈ ẼN    N i=1 g i , u i + 1 ε N i=1   β i N j =i v 1 j , u i -β i v 1 i , 1 + N j=1 β j v 1 j , u i -β i v 1 i , u i   + 1 ε N i=1   j =i k =i,j β ik v 1 j , u i + j =i k =j β jk v 1 j , u j - k =i β ik v 1 i , 1 - N j=1 β ij v 1 j , u i      = min (u1,...,u N )∈ ẼN    N i=1 g i , u i + 1 ε N i=1   β i N j =i v 1 j , u i -β i v 1 i , 1 + N j =i β j v 1 j , u i + β i v 1 i , u i -β i v 1 i , u i   + 1 ε N i=1   j =i k =i,j β ik v 1 j , u i + j =i k =i,j β jk v 1 j , u i - k =i β ik v 1 i , 1      = min (u1,...,u N )∈ ẼN    N i=1 g i , u i + 1 ε N i=1 N j =i (β i + β j ) v 1 j , u i - 1 ε N i=1 β i v 1 i , 1 + 1 ε N i=1   j =i k =i,j (β ik + β jk ) v 1 j , u i - k =i β ik v 1 i , 1      .
It follows that

J P 1 ε = min (u1,...,u N )∈ ẼN    N i=1 g i + 1 ε j =i   β i + β j + k =i,j β ik + β kj   υ 1 j , u i    - 1 ε N i=1   β i + k =i β ik   v 1 i , 1 .
(4.8.9)

We deduce that the minimizers of the problems (4.8.4) and (4.8.9) are identical.

Numerical results

Let E 0 , E 1 , . . . , E N be a given partition of D. We define g i , i = 1, . . . , N , by

g i = 0≤j≤N j =i χ Ej = 1 -χ Ei .
This means that, in the set E i , i ≥ 1, the label i is favored, whereas in the set E 0 there is no preference, or, said otherwise, no information on which label to choose. For the following example we use the finite element method. Proof. Let ξ = (ξ 1 , . . . , ξ N ) ∈ R N with N i=1 ξ i = 0 and ξ = (ξ i ) 1≤i≤N -1 . We have

Qξ • ξ = Q V V 0 ξ -1 • ξ • ξ -1 • ξ = Q ξ • ξ -2(1 • ξ)(V • ξ) = ξ Q ξ -2 ξ 1V ξ = ξ ( Q -1V -V 1 ) ξ.
From (5.1.2), we obtain

Qξ • ξ = Q ξ • ξ. It is clear that Q 0 if and only if Q ≤ 0.
Now, we will provide two remarks needed to prove our results.

Remark 5.1. In the case N i=1 ξ i = 1 where ξ = (ξ 1 , . . . , ξ N ) ∈ R N and Q ∈ T N , we have the following equations:

Qξ • ξ = Q V V 0 ξ 1 -1 • ξ • ξ 1 -1 • ξ = Q ξ • ξ + 2(1 -(1 • ξ))(V • ξ) = Q ξ • ξ -2(1 • ξ)(V • ξ) + 2V • ξ = ξ Q ξ -2 ξ 1V ξ + 2V • ξ = ξ ( Q -1V -V 1 ) ξ + 2V • ξ.
From (5.1.2), we get

Qξ • ξ = Q ξ • ξ + 2V • ξ.
Remark 5.2. Let ξ = (ξ 1 , . . . , ξ N ) , g = (g 1 , . . . , g N ) , 1 = (1, . . . , 1) ∈ R N , and N i=1 ξ i = 1. We have the following equations:

g • ξ = g g N • ξ 1 -1 • ξ = g • ξ + g N (1 -1 • ξ) = (g -g N 1) • ξ + g N .
For simplicity, we denote ḡ = g -g N 1.

It follows that

g • ξ = ḡ • ξ + g N .

Sufficient condition for conditional negative semidefiniteness

Theorem 5.4. If N=3,4 and if Q ∈ T N , then Q 0.

Proof. We proceed similarly to Theorem 4.4. For clarity we provide the details.

Case 1 : N = 3. Let ξ 1 , ξ 2 , ξ 3 ∈ R with ξ 1 + ξ 2 + ξ 3 = 0. Then we have 3 i,j=1 i<j α ij ξ i ξ j = α 12 ξ 1 ξ 2 + α 13 ξ 1 (-ξ 1 -ξ 2 ) + α 23 ξ 2 (-ξ 1 -ξ 2 ) = (α 12 -α 13 -α 23 )ξ 1 ξ 2 -α 13 ξ 2 1 -α 23 ξ 2 2 = α 12 -α 13 -α 23 2 (ξ 1 + ξ 2 ) 2 -ξ 2 1 -ξ 2 2 -α 13 ξ 2 1 -α 23 ξ 2 2 = α 12 -α 13 -α 23 2 (ξ 1 + ξ 2 ) 2 + α 23 -α 12 -α 13 2 ξ 2 1 + α 23 -α 12 -α 13 2 ξ 2 2 .
Since Q ∈ T 3 , then (α 12 -α 13 -α 23 ), (α 23 -α 12 -α 13 ) and (α 23 -α 12 -α 13 ) are nonpositive, which implies that

3 i,j=1 i<j α ij ξ i ξ j ≤ 0. Case 2 : N = 4. Let ξ 1 , ξ 2 , ξ 3 , ξ 4 ∈ R with ξ 1 + ξ 2 + ξ 3 + ξ 4 = 0. Then we have 4 i,j=1 i<j α ij ξ i ξ j = α 12 ξ 1 ξ 2 + α 13 ξ 1 ξ 3 + α 14 ξ 1 (-ξ 1 -ξ 2 -ξ 3 ) + α 23 ξ 2 ξ 3 + α 24 ξ 2 (-ξ 1 -ξ 2 -ξ 3 ) + α 34 ξ 3 (-ξ 1 -ξ 2 -ξ 3 )
= (α 12 -α 14 -α 24 )ξ 1 ξ 2 + (α 13 -α 14 -α 24 )ξ 1 ξ 3

+ (α 23 -α 23 -α 34 )ξ 3 ξ 4 -α 14 ξ 2 1 -α 24 ξ 2 2 -α 34 ξ 2 3 = α 12 -α 14 -α 24 2 (ξ 1 + ξ 2 ) 2 -ξ 2 1 -ξ 2 2 + α 13 -α 14 -α 34 2 (ξ 1 + ξ 3 ) 2 -ξ 2 1 -ξ 2 3 + α 23 -α 24 -α 34 2 (ξ 2 + ξ 3 ) 2 -ξ 2 2 -ξ 2 3 -α 14 ξ 2 1 -α 24 ξ 2 2 -α 34 ξ 2 3 = α 12 -α 14 -α 24 2 (ξ 1 + ξ 2 ) 2 + α 13 -α 14 -α 34 2 (ξ 1 + ξ 3 ) 2 + α 23 -α 24 -α 34 2 (ξ 2 + ξ 3 ) 2 + α 24 + α 34 -α 12 -α 13 2 ξ 2 1 + α 14 + α 34 -α 12 -α 23 2 ξ 2 2 + α 14 + α 24 -α 13 -α 23 2 ξ 2 3 .
Since Q ∈ T 4 , then (α 12 -α 14 -α 24 ), (α 

α ij ξ i ξ j ≤ 0.
Remark 5.3. The converse of Theorem 5.4 is false. For N = 3 we have the following counterexample. Consider the matrix

Q =   0 1 1 1 0 3 1 3 0   . From (5.1.2), we have Q = -2 -3 -3 -6 .
It is easy to see that det( Q) = 12 and trace( Q) = -8, which implies that Q 0, but

α 23 > α 12 + α 13 .
Remark 5.4. We have a counterexample to Theorem 5.4 for N = 5. Consider the matrix

Q =       0 2 3 2 1 2 0 2 3 2 3 2 0 1 1 2 3 1 0 2 1 2 1 2 0       .
It is clear to see that the matrix Q satisfies the triangle inequality, but Q is not negative semidefinite, because the eigenvalues are Sp( Q) = {-6.2886, -3.4300, -2.5700, 0.2886}.

Dual formulation of the interface energy by Legendre-Fenchel transform

Dual formulation in the continuous framework

From now on, we denote Q = Q| Im Q . Let us first of all give two technical lemmas.

Lemma 5.5. The operator

Q : Im Q → Im Q is bijective.
Proof. For all x ∈ ker Q, we have

x ∈ Im Q, Q(x) = 0.
Since Q is symmetric, we obtain

x ∈ (ker Q) ⊥ , x ∈ ker Q, which implies that x = 0, and thus Q is bijective.

To simplify the computations, we denote for all u, v ∈ H

1 (D, R N ) u, v H 1 ε = D ε 2 ∇u • ∇v + uv dx, (5.2.1) 
and for all u, v ∈ H

1 (D, R N -1 ) [u, v] = N -1 i=1 u i , v i H 1 ε . (5.2.2)
From now on we will always assume that Q † is the inverse of Q and we recall that some properties of the operator L ε are given in Section 2.6.

Lemma 5.6. Let τ ∈ H 1 D, Im Q . Then Q † τ, τ ≤ 0.
Proof. We have

Q † τ, τ = N -1 i=1 D ε 2 ∇(Q † τ ) i • ∇τ i + (Q † τ ) i τ i dx. Let ξ = Q † τ ∈ H 1 D, Im Q , then we get Q † τ, τ = N -1 i=1 D ε 2 ∇(Q † ( Qξ)) i • ∇( Qξ) i + (Q † ( Qξ)) i ( Qξ) i dx,
which implies that

Q † τ, τ = N -1 i=1 D ε 2 ∇( Qξ) i • ∇ξ i + ( Qξ i )ξ i dx = D N -1 i,j=1 ᾱij ε 2 ∇ξ i • ∇ξ j + ξ i ξ j dx = D N -1 i,j=1 ᾱij [(ε∂ x ξ i )(ε∂ x ξ j ) + (ε∂ y ξ i )(ε∂ y ξ j ) + ξ i ξ j ] dx.
We deduce from the definition of negative semidefiniteness of Q that

Q † τ, τ ≤ 0. Now, we define the function G ε : L 2 (D, R N ) → R as G ε (u) = 1 2ε N i,j=1 α ij L ε u i , u j ∀u ∈ (D, R N ). (5.2.3) Since L ε ∈ L (L 2
) is self-adjoint and compact, we get

G ε (u) = 1 2ε N i,j=1 α ij L 1 2 ε u i , L 1 2 ε u j .
Now, we use the fact that

N i=1 L 1 2 ε u i = L 1 2 ε N i=1 u i = L 1 2 ε 1 = 1,
because 1 is an eigenfunction of L ε for the eigenvalue 1. From the previous results and according to Remark 5.1, we get

G ε (u) = 1 2ε   N -1 i,j=1 ᾱij L 1 2 ε u i , L 1 2 ε u j + 2 N -1 i=1 V i , L 1 2 ε u i   .
Using again the fact L ε is self-adjoint, we get

G ε (u) = 1 2ε   N -1 i,j=1 ᾱij L ε u i , u j + 2 N -1 i=1 L 1 2 ε V i , u i   . As V i is constant, then G ε (u) = 1 2ε   N -1 i,j=1 ᾱij L ε u i , u j + 2 N -1 i=1 V i , u i   .
Now, we define the function Ḡε (ũ) :

L 2 (D, R N -1 ) → R by Ḡε (ũ) = 1 2ε   N -1 i,j=1 ᾱij L ε ũi , ũj + 2 N -1 i=1 V i , ũi   , ∀ũ ∈ L 2 (D, R N -1 ). (5.2.4)
It is clear that if Q = (ᾱ ij ) ≤ 0, then Ḡε is concave. Now, we can use the Legendre-Fenchel transform for Ḡε to get the following theorem.

Theorem 5.7.

Let Q 0, w ∈ L 2 (D, R N -1
) and w = w -1 ε V with V defined by (5.1.1). Then

Ḡ * ε (w) = ε 2 [Q † w, w] if w(x) ∈ Im Q a.e. x ∈ D, -∞ otherwise.
Proof. The sign-reversed definition of the Legendre-Fenchel transform of Ḡε is

Ḡ * ε (w) = inf ũ∈L 2 (D,R N -1 ) N -1 i=1 w i , ũi -Ḡε (ũ) ∀w ∈ L 2 (D, R N -1 ) .
From (5.2.4), we have

Ḡ * ε (w) = inf ũ∈L 2 (D,R N -1 )    N -1 i=1 w i , ũi - 1 2ε   N -1 i,j=1 ᾱij L ε ũi , ũj + 2 N -1 i=1 V i , ũi      = inf ũ∈L 2 (D,R N -1 )    N -1 i=1 w i - 1 ε V i , ũi - 1 2ε N -1 i,j=1 ᾱij L ε ũi , ũj    , which implies that Ḡ * ε (w) = inf ũ∈L 2 (D,R N -1 )    N -1 i=1 wi , ũi - 1 2ε N -1 i,j=1 ᾱij L ε ũi , ũj    . (5.2.5) Since L ε is self-adjoint, we obtain Ḡ * ε (w) = inf ũ∈L 2 (D,R N -1 )    N -1 i=1 wi , ũi - 1 2ε N -1 i,j=1 ᾱij ũi , L ε ũj    . ( 5.2.6) 
Here we consider two cases: either wi ∈ H 1 (D) or wi ∈ H 1 (D).

• Case 1: If wi ∈ H 1 (D) for all i, then we will show that

G * ε (w) = inf ũ∈H 1 (D) N -1 i=1 ũi , wi H 1 (D,R N -1 ) ,H 1 (D,R N -1 ) - 1 2ε N -1 i,j=1 ᾱij ũi , L ε ũj H 1 (D,R N -1 ) ,H (D,R N -1 )    .
For simplicity, we denote for all ũ ∈ H 1 (D, R N -1 )

F(ũ) = N -1 i=1 ũi , wi H 1 (D,R N -1 ) ,H 1 (D,R N -1 ) - 1 2ε N -1 i,j=1 ᾱij ũi , L ε ũj H 1 (D,R N -1 ) ,H (D,R N -1
) .

On the one hand, it is clear to see that inf

ũ∈L 2 (D,R N -1 ) F(ũ) ≥ inf ũ∈H 1 (D,R N -1 )
F(ũ).

(5.2.7)

On the other hand, according to Corollary 2.25 and since F is continuous on H 1 (D, R N -1 ) . We have inf

ũ∈L 2 (D,R N -1 ) F(ũ) = inf ũ∈H 1 (D,R N -1 )

F(ũ).

In this case, the problem (5.2.6) becomes

Ḡ * ε (w) = inf ũ∈H 1 (D,R N -1 ) N -1 i=1 ũi , w H 1 (D,R N -1 ) ,H 1 (D,R N -1 ) - 1 2ε N -1 i,j=1 ᾱij ũi , L ε ũj H 1 (D,R N -1 ) ,H (D,R N -1 )    , As L ε is bijective from H 1 (D, R N -1 ) into H 1 (D, R N -1 ), then there exists h i ∈ H 1 (D, R N -1 ) such that wi = L ε h i . It follows that Ḡ * ε (w) = inf ũ∈H 1 (D,R N -1 ) N -1 i=1 ũi , L ε h i H 1 (D,R N -1 ) ,H 1 (D,R N -1 ) - 1 2ε N -1 i,j=1 ᾱij ũi , L ε ũj H 1 (D,R N -1 ) ,H (D,R N -1 )    ,
From (2.6.4) and the fact that

L ε is an isomorphism from H 1 (D, R N -1 ) into H 1 (D, R N -1 ), we obtain Ḡ * ε (w) = inf u∈H 1 (D,R N -1 ) N -1 i=1 D ε 2 ∇ u i • ∇ wi + u i wi dx - 1 2ε N -1 i,j=1 ᾱij D ε 2 ∇ u i • ∇ u j + u i u j dx    .
Moreover, from (5.2.1) we have

Ḡ * ε (w) = inf u∈H 1 (D,R N -1 )    N -1 i=1 wi , u i H 1 ε - 1 2ε N -1 i,j=1 ᾱij u i , u j H 1 ε    , we rewrite as Ḡ * ε (w) = inf ψ∈H 1 (D,R N -1 )    N -1 i=1 wi , ψ i H 1 ε - 1 2ε N -1 j=1 ( Qψ) j , ψ j H 1 ε    . From (5.2.2), we obtain Ḡ * ε (w) = inf ψ∈H 1 (D,R N -1 ) [ w, ψ] - 1 2ε [ Qψ, ψ] . ( 5.2.8) 
Here, there are two cases depending on whether w ∈ Im Q or not:

-Case 1-1: w(x) ∈ Im Q a.e. x ∈ D. By using Gauss reduction for (5.2.8) and Lemma 5.5, we obtain

Ḡ * ε (w) = inf ψ∈H 1 (D,R N -1 ) - ε 2 Q † 1 ε Qψ -w , 1 ε Qψ -w + ε 2 Q † w, w . (5.2.9)
Using Lemma 5.6, we conclude that a solution of (5.2.9) is

ψ * ∈ H 1 (D, R N -1 ) such that 1 ε Qψ * -w = 0 (i.e. ψ * = εQ † w).
Equation (5.2.9) becomes now

Ḡ * ε (w) = ε 2 [Q † w, w].
(5.2.10)

-Case 1-2: There exists W ⊂ D such that w(x) ∈ Im Q for all x ∈ W and |W| > 0. It is straightforward that w(x) ∈ (Ker Q) ⊥ ∀x ∈ W (5.2.11)
since the matrix Q is symmetric. Take in this case

ψ 1 = -P Ker Q w ∈ H 1 (D, Ker Q), (5.2.12) 
where P Ker Q w is the orthogonal projection of w onto Ker Q. Now, we will show that

[ w, ψ k ] - 1 2ε [ Qψ k , ψ k ] k→∞ / / -∞ , ( 5.2.13) 
where

ψ k = -kψ 1 , k > 0.
First, let q 1 , . . . , q M be an orthonormal basis of Ker Q. Then we have

P Ker Q w = M i=1 (q i • w)q i ,
which implies that

∂ j P Ker Q w = M i=1 (q i • ∂ j w)q i .
It follows that

P Ker Q w. w = M i=1 (q i • w)(q i • w) = M i=1 (q i • w) 2 ≥ 0. (5.2.14) Moreover, ∇P Ker Q w.∇ w = 2 j=1 ∂ j P Ker Q w.∂ j w = 2 j=1 M i=1 (q i • ∂ j w)(q i • ∂ j w) ≥ 0. ( 5.2.15) 
We deduce from (5.2.11),(5.2.12),(5.2.14) and (5.2.15) that the first term in (5.2.13) satisfies

[ w, ψ k ] = -k N -1 i=1 D (ε 2 ∇ wi • ∇ψ 1 i + wi ψ 1 i )dx < 0. Hence, [ w, ψ k ] k→∞ / / -∞ . ( 5.2.16) 
Now, we take the second term in (5.2.13)

[ Qψ k , ψ k ] = k 2 N -1 i=1 D (ε 2 ∇( Qψ 1 ) i • ∇ψ 1 i + ( Qψ 1 ) i ψ 1 i )dx.
By the definition of ψ 1 in (5.2.12), it is clear to see that

[ Qψ k , ψ k ] = k 2 N -1 i=1 D (ε 2 ∇( QP Ker Q w) i • ∇(P Ker Q w) i + ( QP Ker Q w) i (P Ker Q w) i ) dx = 0.
We deduce from (5.2.8), (5.2.16), and (5.2.17) that Ḡ * ε (w) = -∞.

(5.2.17)

• Case 2: There exists i 0 such that wi0 ∈ H 1 (D), then there exists a sequence (η k ) ∈ D(D) such that

D wi0 div η k → -∞, η k L 2 (D) ≤ 1. (5.2.18) 
Here, we take

ũk i = div η k if i = i 0 , 0 otherwise,
and by continuity of L ε we have

L ε ũk i H 1 (D) ≤ C ũk i H 1 (D) ≤ C η k L 2 (D) ≤ C,
where C is a positive constant independent of k. From this, we infer that 

D L ε ũk i ũk j = D ũk j L ε ũk i ≤ ũk j H 1 (D) L ε ũk i H 1 (D) ≤ C. ( 5 
(w) = -∞. (5.2.20) 
Now, we take the concave biconjugate of Ḡε (ũ) is defined by

Ḡ * * ε (ũ) = inf w∈L 2 (D,R N -1 ) w, ũ -Ḡ * ε (w).
From (5.2.10), (5.2.1) and (5.2.20) we have

Ḡ * * ε (ũ) = inf w∈H 1 (D,Im Q) w, ũ - ε 2 [Q † w, w] .
(5.2.21)

Corallary 5.8. If Q 0 and ũ ∈ L 2 (D, R N -1) , then Ḡε (ũ) = inf w∈H 1 (D,Im Q) w, ũ - ε 2 [Q † w, w] . Proof. Since Ḡ : L 2 (D, R N -1)
→ R is a closed concave proper function, then by using the Corollary of Fenchel-Moreau-Rockafellar theorem, Corollary 2.42, we have

Ḡε (ũ) = Ḡ * * ε (ũ). From (5.2.21) we have Ḡε (ũ) = inf w∈H 1 (D,Im Q) w, ũ - ε 2 [Q † w, w] .
We have the following corollary.

Corallary 5.9. If Q 0 and u ∈ ẼN , then

G ε (u) = inf w∈H 1 (D,Im Q) w, ũ - ε 2 [Q † w, w] ,
where ũ = (u 1 , . . . , u N -1 ).

Dual formulation in the discrete framework

We define the function G ε : R p×N → R as

G ε (u) = 1 2ε N i,j=1 α ij M (L ε u i ) • u j ∀u ∈ R p×N ,
where p is the number of pixels, the dot (•) is the standard dot product of R N , L ε = (ε 2 K + M ) -1 M such that M is the global mass matrix and K the global stiffness matrix. We have

G ε (u) = 1 2ε   N -1 i,j=1 α ij M (L ε u i ) • u j + N -1 i=1 α iN M (L ε u i ) • u N + N -1 j=1 α jN M (L ε u N ) • u j   .
Since L ε is symmetric and

u N = 1 - N -1 i=1 u i , then we get G ε (u) = 1 2ε   N -1 i,j=1 α ij M (L ε u i ) • u j + N -1 i=1 α iN M (L ε u i ) •   1 - N -1 j=1 u j   + N -1 j=1 α jN M (L ε u j ) • 1 - N -1 i=1 u i   , which implies that G ε (u) = 1 2ε   N -1 i,j=1 α ij M (L ε u i ) • u j + N -1 i,j=1 α iN M (L ε u i ) • u j + N -1 i,j=1 α jN M (L ε u i ) • u j + 2 N -1 i=1 α iN M (L ε u i ) • 1   = 1 2ε   N -1 i,j=1 (α ij -α iN -α jN )M (L ε u i ) • u j + 2 N -1 i=1 α iN M (L ε 1) • u i   .
For simplicity we denote ᾱij = α ij -α iN -α jN . It follows that

G ε (u) = 1 2ε   N -1 i,j=1 ᾱij M (L ε u i ) • u j + 2 N -1 i=1 α iN M 1 • u i   .
Now, we define the function Ḡε (ũ) : R p×(N -1) → R by

Ḡε (ũ) = 1 2ε   N -1 i,j=1 ᾱij M (L ε ũi ) • ũj + 2 N -1 i=1 α iN M 1 • ũi   , ∀ũ ∈ R p×(N -1) . (5.2.22)
It is clear that if Q = (ᾱ ij ) ≤ 0, then Ḡ is concave. Now, we can use the sign-reversed definition of the Legendre-Fenchel transform to get

Ḡ * ε (w) = inf ũ∈R p×(N -1) N -1 i=1 M w i • ũi -Ḡε (ũ) .
From (5.2.22), we obtain

Ḡ * ε (w) = inf ũ∈R p×(N -1)    N -1 i=1 M w i • ũi - 1 2ε   N -1 i,j=1 ᾱij M (L ε ũi ) • ũj + 2 N -1 i=1 α iN M 1 • ũi      = inf ũ∈R p×(N -1)    N -1 i=1 M w i - α iN ε 1 • ũi - 1 2ε N -1 i,j=1 ᾱij M (L ε ũi ) • ũj    .
For simplify we denote

wi = w i - α iN ε 1.
It follows that

G * ε (w) = inf ũ∈R p×(N -1)    N -1 i=1 M wi • ũi - 1 2ε N -1 i,j=1 ᾱij M (L ε ũi ) • ũj    .
As M is symmetric, we obtain

G * ε (w) = inf ũ∈R p×(N -1)    N -1 i=1 M ũi • wi - 1 2ε N -1 i,j=1 ᾱij (L ε ũi ) • M ũj    . ( 5.2.23) 
By the definition of u i := L ε ũi , we have

M ũi = (ε 2 K + M ) u i . ( 5.2.24) 
It follows that

Ḡ * ε (w) = inf u∈R p×(N -1)    N -1 i=1 ε 2 K u i • wi + M u i • wi - 1 2ε N -1 i,j=1 ᾱij ε 2 K u i • u j + M u i • u j    .
To simplify the computations, we denote

u i , v i ε = ε 2 Ku i • v j + M u i • v i . It follows that Ḡ * ε (w) = inf u∈R p×(N -1)    N -1 i=1 u i , w ε - 1 2ε N -1 i,j=1 ᾱij u i , u j ε    . As L ε is invertible, we obtain Ḡ * ε (w) = inf ψ∈R p×(N -1)    N -1 i=1 ψ i , w ε - 1 2ε N -1 i,j=1 ᾱij ψ i , ψ j ε    = inf ψ∈R p×(N -1)    N -1 i=1 ψ i , w ε - 1 2ε N -1 i=1 N -1 j=1 ᾱij ψ i , ψ j ε    = inf ψ∈R p×(N -1) N -1 i=1 ψ i , w ε - 1 2ε N -1 i=1 ( Qψ) j , ψ j ε .
For simplicity, we denote

[u, v] ε = N -1 i=1 u, v ε . It follows that Ḡ * ε (w) = inf ψ∈R p×(N -1) [ w, ψ] ε - 1 2ε [ Qψ, ψ] ε . (5.2.25)
Here, there are two subcases depending on whether w ∈ Im Q or not:

• Case 1-1: wi ∈ Im Q for all i. By using Gauss reduction for (5.2.25) and Lemma 5.5, we obtain 

Ḡ * ε (w) = inf ψ∈R p×(N -1) - ε 2 Q † 1 ε Qψ -w , 1 ε Qψ -w ε + ε 2 Q † w, w ε . ( 5 
(w) = ε 2 [Q † w, w] ε .
(5.2.27)

• Case 1-2: There exists i such that wi ∈ Im Q. Take in this case 1) ,

ψ 1 = -P Ker Q w ∈ R p×(N -
where P Ker Q w is the row-wise orthogonal projection of w on Ker Q. By using the same technique as in 5.7, we get Ḡ * ε (w) = -∞.

(5.2.28)

Now, we take the concave biconjugate of Ḡε (ũ) is defined by

Ḡ * * ε (ũ) = inf w∈R p×(N -1) M w • ũ -Ḡ * ε ( w) .
From (5.2.27) and (5.2.28), we obtain

Ḡ * * ε (ũ) = inf w∈(Im Q) p M w • ũ - ε 2 [Q † w, w] ε .
Using the discrete counterpart of Corollary 5.9, we have

Ḡε (ũ) = Ḡ * * ε (ũ) = inf w∈(Im Q) p M w • ũ - ε 2 [Q † w, w] ε .
The above result allows us to get

G ε (u) = inf w∈(Im Q) p M w • ũ - ε 2 [Q † w, w] ε ,
where ũ = (u 1 , . . . , u N -1 ).

We shall now describe the algorithm.

Algorithm

We have the minimal partition problem (1.4.1)

I C ε = min (u1,...,u N )∈ ẼN    N i=1 g i , u i + 1 ε 1≤i<j≤N α ij L ε u i , u j    . (5.3.1)
We deduce from Corollary 5.9, Remark 5.2 and (5.3.1) that

I C ε = min N -1 i=1 ũi≤1 ũi≥0 inf w∈H 1 (D,Im Q) ḡ + w, ũ + g N - ε 2 [Q † w, w] . (5.3.2)
For this, we use an alternating minimization algorithm with respect to the two (N -1)-tuples of variables (ũ 1 , . . . , ũN-1 ) and ( w1 , . . . , wN-1 ).

On the one hand, we have the minimization with respect to w:

inf w∈H 1 (D,Im Q) w, ũ - ε 2 [Q † w, w] .
We deduce from (2.6.5) that this is equal to inf

w∈H 1 (D,Im Q) [ w, L ε ũ] - ε 2 [Q † w, w] .
By using the same technique as in (5.2.9), we get the unique minimizer

w = 1 ε QL ε ũ. (5.3.3) 
On the other hand, we can extend the minimization with respect to the (N -1)-tuple of variables (ũ 1 , . . . , ũN-1 ) to the N -tuple of variables (u 1 , . . . , u N ). We obtain where ζ = ḡ + w. Now, we arrive at the following alternating algorithm.

1. The equation (5.3.3) allows us to find the minimization with respect to ( w1 , . . . , wN-1 ). It consists in solving the boundary value problems

-ε 2 ∆υ k i + υ k i = ũk-1 i in D, ∂ n υ k i = 0
on ∂D, (5.3.5) and setting wk = 1 ε Qv k .

2. Thanks to (5.3.4), we realize the minimization with respect to (u 1 , . . . , u N ). Set 

ζ k i = wk i + ḡk i . At each point x ∈ D, we find an index j(x) such that ζ k j(x) = min ζ k 1 (x), . . . , ζ k N -1 (x), 0 . We then set u k i (x) = 1 if j = j(x), 0 otherwise. (α ij ) 1, 1, 0.5 1,

Numerical examples

In the following examples we use the finite difference method (FDM) with the fast Fourier transformation (FFT) (see Appendix A).

In Figure 5.1 and Table 5.1, we compare the primal algorithm and the Legendre conjugate algorithm for different values of (α ij ) on the triple point problem.

Figure 5.2 and Table 5.2 concern the comparison between the primal algorithm and the Legendre conjugate algorithm for different values of (α ij ) on the quadruple point problem (case 1). We also compare the primal algorithm and the Legendre conjugate algorithm on the quadruple point problem (case 2) in Figure 5.3 and Table 5.3, for the same values of (α ij ) as in case 1.

The primal algorithm and the Legendre conjugate algorithm for different values of (α ij ) on the Steiner tree problem with 4 phases are discussed in Figure 5.4 and Table 5.4.

In Figure 5.5 and Table 5.5, we compare the primal dual algorithm and the Legendre conjugate algorithm for the same values of (α ij ) on the Steiner tree problem with 5 phases.

Figure 5.6 provides an example for the Legendre conjugate algorithm for different values of (α ij ) on the Steiner tree problem with 5 phases.

We note that the Figures 5.6c and 5.4d are coherent with the Figures 2.6 and 2.7, respectively, in [START_REF] Almokdad | Méthodes de relaxation en calcul des variations[END_REF], where in [START_REF] Almokdad | Méthodes de relaxation en calcul des variations[END_REF] the Modica-Mortola functional is used. 

Image classification

Classification of greyscale images

N i=1 u i , g i = N i=1 D u i |c i -f | p dx.
This problem is separable in its variables c 1 , . . . , c N , and each c i must satisfy

c i ∈ argmin c∈[0,1] D u i |c i -f | p dx.
Note that, since 0 ≤ f ≤ 1, the constraint 0 ≤ c ≤ 1 can be removed. For p = 2, this is a standard problem which results in computing the arithmetic mean

c i = D u i f dx D u i dx .
In with Φ :

L 2 (D, R N ) → R defined by Φ(u) = N i=1 u i , g i + 1 ε 1≤i<j≤N α ij L ε u i , u j ∀u ∈ L 2 (D, R N ). (6.1.8) 
We have

∇Φ(u) =      g 1 + 1 ε i =1 α 1i L ε u i . . . g N + 1 ε i =N α iN L ε u i      . ( 6 
.1.9)

We also define the constant C by

C = max    i =1 α 2 1i , . . . , i =N α 2 iN    . ( 6 

.1.10)

To determine the lipschitz constant λ of ∇Φ, we will use the following observation.

Lemma 6.3. The gradient ∇Φ is λ-lipschitz if λ ≥ (N -1)C ε .
Proof. We have

∇Φ(u) -∇Φ(ũ) 2 L 2 =      g 1 + 1 ε i =1 α 1i L ε u i . . . g N + 1 ε i =N α iN L ε u i      -      g 1 + 1 ε i =1 α 1i L ε ũi . . . g N + 1 ε i =N α iN L ε ũi      2 L 2 . It follows that ∇Φ(u) -∇Φ(ũ) 2 L 2 =      g 1 + 1 ε i =1 α 1i L ε (u i -ũi ) . . . g N + 1 ε i =N α iN L ε (u i -ũi )      2 L 2 = 1 ε i =1 α 1i L ε (u i -ũi ) 2 L 2 + • • • + 1 ε i =N α iN L ε (u i -ũi ) 2 L 2
, which implies that

∇Φ(u) -∇Φ(ũ) 2 L 2 ≤ L ε 2 L (L 2 )    1 ε i =1 α 1i (u i -ũi ) 2 L 2 + • • • + 1 ε i =N α iN (u i -ũi ) 2 L 2    .
From (2.6.6) we infer that

∇Φ(u) -∇Φ(ũ) 2 L 2 ≤ 1 ε i =1 α 1i (u i -ũi ) 2 L 2 + • • • + 1 ε i =N α iN (u i -ũi ) 2 L 2 ≤ N -1 ε 2 i =1 α 1i N -1 (u i -ũi ) 2 L 2 + • • • + N -1 ε 2 i =N α iN N -1 (u i -ũi ) 2 L 2 . By convexity of • 2 L 2 , we get ∇Φ(u) -∇Φ(ũ) 2 L 2 ≤ N -1 ε 2 i =1 α 2 1i u i -ũi 2 L 2 + • • • + N -1 ε 2 i =N α 2 iN u i -ũi 2 L 2 ≤   N -1 ε 2 i =1 α 2 1i   u 1 -ũ1 2 L 2 + • • • +   N -1 ε 2 i =N α 2 iN   u N -ũN 2 L 2 .
Using (6.1.10) and taking the square root of both sides, we get

∇Φ(u) -∇Φ(ũ) L 2 ≤ (N -1)C ε (u -ũ) L 2 .
Consequently, we obtain λ ≥ (N -1)C ε .

Projection onto a simplex

In order to use Lemma 6.2 we need to project onto the convex set K. We describe the procedure for K being defined by ( 6.1.6) in the case N=3, i.e., Let ξ ∈ R 3 and define y = P H (ξ), where P H (ξ) is the orthogonal projection of ξ onto the plane H.

K = ξ = (ξ 1 , ξ 2 , ξ 3 ) ∈ R 3 : 0 ≤ ξ i ≤ 1, i = 1, 2,
Here, there are two cases depending on whether y i ≥ 0 ∀i or not.

• If y i ≥ 0 ∀i, then y ∈ K, which implies P K (ξ) = P H (ξ) = y.

• If there exists i 0 such that y i0 < 0, then P K (ξ) = P Si 0 (y) with

S i0 = {ξ ∈ K : ξ i0 = 0} .
We define the line L i0 = {ξ ∈ H : ξ i0 = 0} and ȳ = P Li 0 (y). Now, we have two subcases:

-If ȳi ≥ 0 ∀i, then ȳ ∈ S i0 , which implies P Si 0 (y) = P Li 0 (y).

-If there exists i 00 such that ȳi00 < 0, then P Si 0 (y) = P Si 00 (ȳ) = S i00 with the vertix S i00 = {ξ ∈ L i0 : ξ i00 = 0} , (i.e. project onto a vertex).

Algorithm

Plugging (6.1.1) into (6.1.7), we obtain that the subproblem at ε fixed consists in solving the following two-level minimization problem

I P G ε = min u∈L ∞ (D,K) inf ũ∈L 2 (D) Φ(ũ) + ∇Φ(ũ), u -ũ + λ 2 u -ũ 2 ,
with Φ given by (6.1.8). The simple structure of this problem with respect to each variable u and ũ allows us to use an alternating minimization algorithm. The two steps are described below.

• According to Lemma 6.1, we obtain the minimization with respect to ũ is simply achieved by setting ũk = u k-1 .

• Applying Lemma 6.2 we conclude that the minimization with respect to u is given by

u k (x) = P K ũk (x) - 1 λ ∇Φ(ũ k (x)) .

Image deblurring of greyscale image

We will apply a variant of our minimal partition model for multilabel image deconvolution. The blurring kernel is represented by a linear and continuous operator A : L 2 (D) → L 2 (D) such that A1 = 1. The given blurred (greyscale) image is f ∈ L ∞ (D, [0, 1]), and the reconstructed image is w

= c 1 u 1 + • • • + c N u N , with u ∈ E and c i ≥ 0 for all i. We have Aw = N i=1 c i Au i .
We have for L 2 norm on D:

Aw -f 2 L 2 = N i=1 c i Au i -f 2 L 2 .
The deblurring problem of greyscale image reads

min u∈L ∞ (D,K) Φ(u), with Φ : L 2 (D, R N ) → R defined by Φ(u) = N i=1 c i Au i -f 2 L 2 + 1 ε 1≤i<j≤N α ij L ε u i , u j ∀u ∈ L 2 (D, R N ).
We have

∇Φ(u) =      2c 1 A * N i=1 c i Au i -f + 1 ε i =1 α 1i L ε u i . . . 2c 3 A * N i=1 c i Au i -f + 1 ε i =N α iN L ε u i      , ( 6 

.2.1)

with A * the adjoint operator of A.

In our model the blurring kernel A is assumed to be known, which occurs in some practical applications, like when the blur is generated by an optical device.

To determinate the lipschitz constant λ of ∇Φ, we define the constant C by

C = max {c 1 , • • • , c N } , (6.2.2)
and will use the following observation.

Lemma 6.4. The gradient ∇Φ is λ-lipschitz if λ ≥ 8N 2 C4 A * A 2 + 2(N -1)C ε 2 1 2
with C, C defined by (6.1.10) and (6.2.2) respectively.

Proof. We have

∇Φ(u) -∇Φ(ũ) 2 L 2 =      2c 1 A * N i=1 c i Au i -f + 1 ε i =1 α 1i L ε u i . . . 2c N A * N i=1 c i Au i -f + 1 ε i =N α iN L ε u i      -      2c 1 A * N i=1 c i Aũ i -f + 1 ε i =1 α 1i L ε ũi . . . 2c N A * N i=1 c i Aũ i -f + 1 ε i =N α iN L ε ũi      2 L 2 . It follows that ∇Φ(u) -∇Φ(ũ) 2 L 2 =      2c 1 A * N i=1 c i A(u i -ũi ) + 1 ε i =1 α 1i L ε (u i -ũi ) . . . 2c N A * N i=1 c i A(u -ũi ) + 1 ε i =N α iN L ε (u i -ũi )      2 L 2 = 2c 1 A * N i=1 c i A(u i -ũi ) + 1 ε i =1 α 1i L ε (u i -ũi ) 2 L 2 + • • • + 2c N A * N i=1 c i A(u i -ũi ) + 1 ε i =N α iN L ε (u i -ũi ) 2 L 2
.

By using x + y 2 ≤ 2 x 2 + 2 y 2 , we get

∇Φ(u) -∇Φ(ũ) 2 L 2 (D) ≤2 2c 1 A * N i=1 c i A(u i -ũi ) 2 L 2 + 2 1 ε i =1 α 1i L ε (u i -ũi ) 2 L 2 + • • • + 2 2c N A * N i=1 c i A(u i -ũi ) 2 L 2 + 2 1 ε i =N α iN L ε (u i -ũi ) 2 L 2 .
Using the same technique in proof of Lemma 6.3 and from (6.2.2), we get

∇Φ(u) -∇Φ(ũ) 2 L 2 ≤8N 2 C4 A * A 2 u -ũ 2 L 2 + 2 (N -1)C ε 2 (u -ũ) 2 L 2 ≤ 8N 2 C4 A * A 2 + 2(N -1)C ε 2 u -ũ 2 L 2 , which implies that ∇Φ(u) -∇Φ(ũ) L 2 ≤ 8N 2 C4 A * A 2 + 2(N -1)C ε 2 1 2 (u -ũ) L 2 .
Consequently, we obtain 

λ ≥ 8N 2 C4 A * A 2 + 2(N -1)C ε 2 1 

Algorithm

For ε fixed we have to solve the approximate problem

I P G ε = min u∈L ∞ (D,K) inf ũ∈L 2 (D) Φ(ũ) + ∇Φ(ũ), u -ũ + λ 2 u -ũ 2 , with Φ(u) = N i=1 c i Au i -f 2 L 2 + 1 ε 1≤i<j≤N α ij L ε u i , u j .
We can directly apply the algorithm of Section 6.1. We present in Figures 6.2 and 6.3 two examples of image deblurring of greyscale image with the finite difference method (FDM).

Image deblurring of colour image

The blurred image f is represented by the three channels (f 1 , f 2 , f 3 ) ∈ L ∞ (D, [0, 1]) 3 representing the intensity of red, green and blue, respectively. Each phase Ω i is associated to a color (c i1 , c i2 , c i3 ) ∈ [0, 1] 3 in the same RGB system. The reconstructed image ω = (ω 1 , ω 2 , ω 3 ) is given by

w j = N i=1 c ij u i ,
where u i is the characteristic function of a subset Ω i of D such that (Ω 1 , . . . , Ω N ) forms a partition of D. We have for each channel and L 2 norm on D:

Aw j -f j 2 L 2 = N i=1 c ij Au i -f j 2 L 2
, where A is a linear and continuous operator defined by

A : L 2 (D) → L 2 (D) such that A1 = 1.
Using the fact that

N i=1 Au i = 1, we get Aw j -f j 2 L 2 = n i=1 c ij Au i - N i=1 Au i f j 2 L 2 . It follows that Aw j -f j 2 L 2 = 3 j=1 N i=1 Au i (c ij -f j ) 2 L 2 . (6.3.1)
The deblurring problem of colour image reads

min u∈L ∞ (D,K) Φ(u), with Φ : L 2 (D, R N ) → R defined by Φ(u) = 3 j=1 N i=1 Au i (c ij -f j ) 2 L 2 + 1 ε 1≤i<j≤N α ij L ε u i , u j ∀u ∈ L 2 (D, R N ).
We have

∇Φ(u) =      2A * 3 j=1 N i=1 (c 1j -f j ) Au i (c ij -f j ) + 1 ε i =1 α 1i L ε u i . . . 2A * 3 j=1 N i=1 (c N j -f j ) Au i (c ij -f j ) + 1 ε i =N α iN L ε u i      (6.3.2)
with A * the adjoint operator of A.

Algorithm

For ε fixed we have to solve the approximate problem

I P G ε = min u∈L ∞ (D,K) inf ũ∈L 2 (D) Φ(ũ) + ∇Φ(ũ), u -ũ + λ 2 u -ũ 2 , with Φ(u) = 3 j=1 N i=1 Au i (c ij -f j ) 2 L 2 + 1 ε 1≤i<j≤N α ij L ε u i , u j .
We can directly apply the algorithm of Section 6.1. We present in Figure 6.4 an example of image deblurring of colour image with the finite difference method (FDM).

Medical imaging

The (2-dimensional) Radon transform R maps a function w : R 2 → R into the set of its integrals over the lines of R 2 . More specifically, if θ ∈ S 1 and s ∈ R, then

Rw(θ, s) = x•θ=s w(x)dx = θ ⊥ w(sθ + y)dy
is the integral of w ∈ S R 2 , the Schwartz space, over the line perpendicular to θ with (signed) distance s from the origin. The Radon transform extends by continuity to functions w ∈ L 2 (D) with D bounded. We refer to [START_REF] Natterer | The mathematics of computerized tomography[END_REF] for more details. The measurement is f ∈ L 2 (S 1 × R), and the reconstructed image is w = N i=1 c i u i , with u ∈ E and c i ≥ 0 for all i. We have

Rw -f 2 L 2 = N i=1 c i Ru i -f 2 L 2 .
The imaging problem reads

min u∈L ∞ (D,K) Φ(u), with Φ : L 2 (D, R N ) → R defined by Φ(u) = N i=1 c i Ru i -f 2 L 2 + 1 ε 1≤i<j≤N α ij L ε u i , u j ∀u ∈ L 2 (D, R N ).
We have

∇Φ(u) =      2c 1 R * N i=1 c i Ru i -f + 1 ε i =1 α 1i L ε u i . . . 2c 3 R * N i=1 c i Ru i -f + 1 ε i =N α iN L ε u i      , ( 6.4.1) 
with R * the adjoint operator of R.

To determinate the lipschitz constant λ, we will use the following observation.

Lemma 6.5.

The gradient ∇Φ is λ-lipschitz if λ ≥ 8N 2 C4 R * R 2 + C(N -1) ε 2 1 2
with C, C defined by (6.1.10) and (6.2.2) respectively.

Proof. The proof is the same computation as in the proof of Lemma 6.4.

Algorithm

For ε fixed we have to solve the approximate problem

I P G ε = min u∈L ∞ (D,K) inf ũ∈L 2 (D) Φ(ũ) + ∇Φ(ũ), u -ũ + λ 2 u -ũ 2 , with Φ(u) = N i=1 c i Ru i -f 2 L 2 + 1 ε 1≤i<j≤N α ij L ε u i , u j .
We can directly apply the algorithm of Section 6.1. We present in Figure 6.5 an example of reconstruction with the finite difference method (FDM). 

2 1≤i<j≤Nα

 2 avec la convention supplémentaire Γ ii = ∅ (voir Figure 0.1 pour une illustration). Le problème modèle de partition minimale que nous étudions, défini sur les partitions de D, est: min Ω1,...,Ω N N i=1 Ωi g i (x)dx + E(Ω 1 , . . . , Ω N ), (0.0.1) où g 1 , . . . , g N ∈ L 1 (D) et E(Ω 1 , . . . , Ω N ) est l'énergie totale d'interface. Cette énergie est choisie de la manière suivante: E(Ω 1 , . . . , Ω N ) = 1 ij (Γ ij ), (0.0.2)
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 01 Figure 0.1: Partitionnement d'un domaine par des ensembles Ω j qui s'intersectent seulement à leurs frontières. L'interface Γ ij sépare Ω i de Ω j .

  .0.7) avec ẼN défini par ẼN = (u 1 , . . . , u N ) ∈ L ∞ (D, [0, 1]) N , N i=1 u i = 1 .

  with the additional convention Γ i,i = ∅ (see Figure 1.1 for an illustration). The model problem of minimal partition we study, defined on partitions of D, is: min Ω1,...,Ω N N i=1 Ωi g i (x)dx + E(Ω 1 , . . . , Ω N ), (1.1.1)

  and F ε AT (u, v) = +∞ otherwise. Let us denote SBV (D) as the subset of BV (D) whose functions are such that their gradient measure have no Cantor part in the Lebesgue decomposition.
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 2 10 (trace). Let D be an open bounded regular set of class C 1 , or D = R N

.5. 1 )Definition 2 . 44 .

 1244 where f is given on D; ∂ n denotes the outward normal derivative of u, i.e., ∂ n u = ∇u • n, where n is the unit normal vector to ∂D, pointing outward. The boundary condition ∂ n u = 0 on ∂D is called the (homogeneous) Neumann condition. A classical solution of (2.5.1) is a function u ∈ C 2 ( D) satisfying(2.5.
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 3 Figure 3.1: (a) Example 1: given partition, (b) Example 2: given partition and (c), (d), convergence history of G ε (u 1 , u 2 ) for example 1, 2, respectively with the FEM, the FDM and the exact values.
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 3 Figure 3.2: (a) Example 3: given partition, (b) Example 4: given partition and (c), (d), convergence history of G ε (u i , u j ) for examples 3, 4, respectively with the FEM, the FDM and the exact values. 33
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 41 Let Ω 1 , . . . , Ω N be subsets of finite perimeter of D such that D
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 43 Let N=3,[START_REF] Almokdad | Méthodes de relaxation en calcul des variations[END_REF]5. Let 

Theorem 4 . 4 .

 44 If N=3,4, then T N ⊆ B + N .

4 . 4 . 5 .

 445 Thus we indeed have obtainedT 4 ⊆ B + Theorem If N=3,4,5, then B + N ⊆ T N .
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 1410 Definition Let L : X × Y → R be a bivariate function where X and Y are arbitrary spaces.

  ε = 512. (d) ε = 256. (e) ε = 128. (f) ε = 64. (g) ε = 32. (h) ε = 16. (i) ε = 8. (j) ε = 4. (k) ε = 2. (l) ε = 1.
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 41 Figure 4.1: Evolution of the partition for the primal algorithm with respect ε for α ij = 1.

  Our solution. (d) The cost function.
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 42 Figure 4.2: Our solution of a triple point problem with α 23 = 100 and α ij = 1 otherwise. Saddle point algorithm. 60

  α 12 = 1/2 and α ij = 1 otherwise. (d) α 12 = 1/2 and α ij = 1 otherwise. (e) α ij = 1. (f) α ij = 1. (g) α 12 = 2 and α ij = 1 otherwise. (h) α 12 = 2 and α ij = 1 otherwise.
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 43 Figure 4.3: Minimal partitions with volume constraints for the primal algorithm. 61

  Let f ∈ L ∞ (D, [0, 1]) be a given image with N grey levels c 1 , . . . , c N ∈ [0, 1]. We consider the piecewise constant image w = N i=1 u i c i (a) Data. (b) Initialization. (c) Primal algorithm for α 23 =1/2 and α ij =1 otherwise. (d) Legendre conjugate algorithm for α 23 =1/2 and α ij =1 otherwise. (e) Primal algorithm for α ij = 1. (f) Legendre conjugate algorithm for α ij = 1. (g) Primal algorithm for α 23 =2 and α ij =1 otherwise. (h) Legendre conjugate algorithm for α 23 =2 and α ij =1 otherwise.

Figure 5 . 1 :

 51 Figure 5.1: Triple point: comparison between the primal algorithm and the Legendre conjugate algorithm for different values of (α ij ) (see Table5.1 for more details).

  Primal algorithm for α ij = 1. (d) Legendre conjugate algorithm for α ij = 1. (e) Primal algorithm for α 12 = α 34 = 1/2, α 13 = α 24 = 3/2 and α 14 = α 23 = 1. (f) Legendre conjugate algorithm for α 12 = α 34 = 1/2, α 13 = α 24 = 3/2 and α 14 = α 23 = 1. (g) Primal algorithm for α 13 =1/2 and α ij = 1 otherwise. (h) Legendre conjugate algorithm α 13 =1/2 and α ij = 1 otherwise.

Figure 5 . 2 :

 52 Figure 5.2: Quadruple point (case 1): comparison between the primal algorithm and the Legendre conjugate algorithm for different values of (α ij ) (see Table5.2 for more details).

  Primal algorithm for α ij = 1. (d) Legendre conjugate algorithm for α ij = 1. (e) Primal algorithm for α 12 = α 34 = 1/2, α 13 = α 24 = 3/2 and α 14 = α 23 = 1. (f) Legendre conjugate algorithm for α 12 = α 34 = 1/2, α 13 = α 24 = 3/2 and α 14 = α 23 = 1. (g) Primal algorithm α 13 =1/2 and α ij = 1 otherwise. (h) Legendre conjugate algorithm α 13 =1/2 and α ij = 1 otherwise.

Figure 5 . 3 :

 53 Figure 5.3: Quadruple point (case 2): comparison between the primal algorithm and the Legendre conjugate algorithm for different values of (α ij ) (see Table5.3 for more details).

  Primal algorithm for α 13 =1/2 and α ij =1 othewise. (c) Legendre conjugate algorithm for α 13 =1/2 and α ij =1 othewise. (d) Primal algorithm for α ij =1. (e) Legendre conjugate algorithm for α ij =1.(f) Primal algorithm for α 13 =2 and α ij =1 otherwise.(g) Legendre conjugate algorithm for α 13 =2 and α ij =1 otherwise.

Figure 5 . 4 :

 54 Figure 5.4: Steiner tree problem: comparison between the primal algorithm and the Legendre conjugate algorithm for different values of (α ij ) with initialization: u 1 = u 2 = u 3 = u 4 = 1/4 (see Table5.4 for more details). 81

  Primal dual algorithm for β S (case1). (d) Primal dual algorithm for β S (case 2).(e) Primal dual algorithm for β S (case 3).(f) Legendre conjugate algorithm.

Figure 5 . 5 :

 55 Figure 5.5: Steiner tree problem: comparison between the primal dual algorithm and the Legendre conjugate algorithm for the same values of (α ij ) (see Table5.5 for more details).

  α ij = 1. (d) α 13 =2 and α ij = 1 otherwise. (e) α 12 = α 15 = α 23 = α 34 = α 45 = 1 and α ij = 2 otherwise.

Figure 5 . 6 :

 56 Figure 5.6: Steiner tree problem: Legendre conjugate algorithm for different values of (α ij ) (see Table5.6 for more details).

  Unsupervised solution for α ij =1. (c) Unsupervised solution for α 12 =0.1 and α ij =1 otherwise.

Figure 5 . 7 :

 57 Figure 5.7: Classification of greyscale images with L 2 norm, 4 phases and initialization: u 1 =1 and u i =0 otherwise. Primal algorithm.

Figure 5 . 7 ,

 57 an example of unsupervised greyscale image classification with L 2 norm is shown.

  (a) Original image. (b) Supervised solution for α ij = 1. (c) Supervised solution for α 12 = α 13 = α 14 = α 15 =20 and α ij = 1 otherwise. (d) Unsupervised solution for α ij = 1. (e) Unsupervised solution for α 12 = α 13 = α 14 = α 15 =20 and α ij = 1 otherwise.

Figure 5 . 8 :

 58 Figure 5.8: Color image classification with L 2 norm, 5 phases and initialization: u 1 =1 and u i =0 otherwise.

Figure 6 . 1 :

 61 Figure 6.1: The standard simplex in R 3 and a plane H.

2 .

 2 (a) Damaged image with blur and noise effects. (b) Reconstructed image for α ij = 10. (c) Reconstructed image for α 23 = 1 and α ij = 10 otherwis.

Figure 6 . 2 :

 62 Figure 6.2: Image deblurring of greyscale image with initialization: u 2 =1 and u i =0 otherwise (example 1).

  (a) Damaged image with blur and noise effects. (b) Reconstructed image for α ij = 1.(c) Reconstructed image for α 13 =1 and α ij =2 otherwise.

Figure 6 . 3 :

 63 Figure 6.3: Image deblurring of greyscale image with initialization: u 2 =1 and u i =0 otherwise (example 2).

  (a) Damaged image with blur and noise effects. (b) Reconstructed image for α ij = 1. (c) Reconstructed image for α 12 = α 23 =2 and α ij =1 otherwise.

Figure 6 . 4 :

 64 Figure 6.4: Image deblurring of colour image.
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Definition 2.7. Let D be an open set of R N . The Sobolev space H 1 (D) is defined by

  

1/2 (∂D) Definition 2.11. Let

  D be an open bounded regular set of class C 1 , or D = R N + . The space H 1/2 is defined by

  H 1/2 (∂D) .

	Definition 2.17. H div 0 (D) is the closure of D(D) in H div (D).
	Theorem 2.18. H div 0 (D) = ker γ n = {σ ∈ H div (D), γ n (σ) = 0}.
	2.1.6 Linear operators
	Throughout this subsection, E and F denote two Banach spaces.
	Definition 2.19. Let T : E → F be a linear map. We say that T is bounded (or continuous)
	if there is a constant C ≥ 0 such that

Definition 2.21. Let

  

	Definition 2.22. The dual space of E, denoted by E := L (E, R), is the space of all continuous
	linear functionals on E. If M ⊂ E is a linear subspace we set

B E = {x ∈ E : x ≤ 1}. A bounded operator T ∈ L (E, F ) is said to be compact if T (B E ) has compact closure in F (in the strong topology).

Corallary 2.25. Assume

  that E is a reflexive Banach space and let E ⊂ F with continuous canonical injection. Then the canonical embedding from F into E has dense range.Proof. Let I : E → F be the canonical injection from E into F and I * : F → E . Then we have

	∀ϕ ∈ F , ∀x ∈ E I * (ϕ), x E ,E = ϕ, I(x) F ,F = ϕ, x F ,F ,
	that is to say, I * (ϕ) = ϕ | E . Applying Lemma 2.24, we deduce that ImI * is dense in E .
	Definition 2.26. Let H be a Hilbert space identified with its dual space H . A bounded operator
	T ∈ L (H) is said to be self-adjoint if T = T * , i.e.,
	T u, v H = u, T v H ∀u, v ∈ H.
	Theorem 2.27 (Rellich). If D is an open bounded regular set of class C 1 , then for every bounded
	sequence of H 1 (D) we can extract a convergent subsequence in L 2 (D) (we say that the canonical
	injection of H 1 (D) into L 2 (D) is compact).
	Remark 2.1. The above result can be generalized to Lipschitz domains (see section 1.3 in [39] on
	this subjet).

2.2 Basic geometric measure theory Throughout

  this section, D denotes an open subset of R N .

2.2.1 BV space Definition 2.28. A function

  u ∈ L 1 (D) whose partial derivatives in the sense of distributions are measures with finite total mass in D is called a

function of bounded variation. The

  

				vector
	space of functions of bounded variation in D is denoted by BV (D). Thus u ∈ BV (D) if and only if
	u ∈ L 1 (D) and there are Radon measures µ 1 , . . . , µ N with finite total mass in D such that
	D	u	∂ϕ ∂x i	dx = -

Table 4

 4 

	.1).

Table 4 .

 4 1: The values of S. For N=5, let let us consider L = (L 12 , L 13 , L 14 , L 15 , L 23 , L , L 25 , L 34 , L 35 , L 45 ) and P = (P 1 , P 2 , P 3 , P 4 , P 5 , P 12 , P 13 , P 14 , P 15 , P 23 , P 24 , P 25 , P 34 , P 35 , P 45 ) . By lemma 4.1 we have

	Example 4.1.

  

	P 1
	P 2
	P 3
	P 4
	P 5
	P 12
	P 13
	P 14
	P 15
	P 23
	P 24
	P 25
	P 34
	P 35
	P 45

  [START_REF] Chambolle | A convex approach to minimal partitions[END_REF] -α 24 -α 34 ) and (α 23 -α 24 -α 34 ) are nonpositive. The proof for the values (α 24 +α 34 -α 12 -α 13 ), (α 14 +α 34 -α 12 -α 23 ) and (α 14 +α 24 -α 13 -α 23 ) is essentially as the proof of Theorem 4.4, except replacing nonnegative values with nonpositive values.

	Hence	4
		i,j=1
		i<j

Table 5 .

 5 1: Triple point: comparison between the primal algorithm and the Legendre conjugate algorithm for different values of (α ij ).

	1, 1	1, 1, 2

  Construction of D in the FEM by mesh symmetrization (global node numbering in D).

	D 3 8 13 18 23 8 13 18 22 17 12 7 2 7 12 17 1 6 11 16 21 18 13 8 8 13 18 Figure A.1: D 1 2 4 5 6 7 9 10 11 12 14 15 16 17 19 20 21 22 24 25 6 7 9 10 11 12 14 15 16 17 19 20 21 23 24 16 18 19 11 13 14 6 8 9 1 3 4 5 8 9 11 13 14 16 18 19 2 3 7 8 12 13 17 18 22 23 D 17 19 12 14 7 9 7 9 12 14 17 19 17 18 19 12 13 14 7 8 9 7 8 9 12 13 14 17 18 19	D 19 14 9 9 14 19	25 20 15 10 5 10 15 20 4 9 14 19 24 19 14 9 9 14 19	18 13 8 8 13 18	4 9 14 19 24 9 14 19 24 19 14 9 4 9 14 19 5 10 15 20 25 18 13 8 8 13 18	17 12 7 7 12 17	3 8 13 18 23 8 13 18 23 18 13 8 3 8 13 18 17 12 7 7 12 17	2 7 12 17 22 7 12 17 22 17 12 7 2 7 12 17

Figure A.2: Construction of D in the FDM by mesh symmetrization (global node numbering in D).

Let us now define the function L : H 1 (D) × H 1 (D) → R as

Lemma 4.11. Let u 1 , u 2 ∈ L 2 (D) be given and υ ε 1 , υ ε 2 ∈ H 1 (D) be the (weak) solution of

Then L admits as unique saddle point (υ ε 1 , υ ε 2 ) and

Proof. We first seek a stationary point of the functional (4.7.1). The Euler-Lagrange equations of (4.7.1) with respect to υ 1 , υ 2 are respectively

We recognize the weak formulation of (4.7.2) for i = 1, 2. After simplification we have

)

By the Lax-Milgram theorem the equations (4.7.3) and (4.7.4) admit unique solutions. We infer the existence of a unique stationary point (υ ε 1 , υ ε 2 ) of L. Now, we need to prove that the stationary point is a saddle point. Note that

and if υ 2 ∈ H 1 (D), then

Now, we calculate

From (4.7.4) with ψ = υ 2 -υ ε 2 we get

We provide an example for the primal algorithm to show the evolution of the partition with respect to ε for α ij = 1, which is presented in Figure 4.1. The partition is as shown in Figure 4.1a.

The set E 0 is the black disc, while each E i , i = 1, 2, 3, is assigned to a specific color, namely red, green and blue, respectively.

In Figure 4.2 we can observe an analogous example for the saddle point algorithm where the surface tensions α ij do not satisfy the condition (1.1.3). Finally, the example corresponding to Figure 4.3 is characterized by a volume constraint imposed for each phase for the primal algorithm. We note that Figure 4.3f is coherent with Figure 2.5 in [START_REF] Bogosel | Optimisation de formes et problèmes spectraux[END_REF] for N = 3, where in [START_REF] Bogosel | Optimisation de formes et problèmes spectraux[END_REF] the Modica-Mortola functional is used.

Chapter 5

An algorithm based on Legendre-Fenchel duality

In this chapter we present an algorithm based on the Legendre-Fenchel duality. It requires the conditional negative definiteness of the matrix Q of the coefficients (α ij ).

Concavity of the approximate interface energy

Condition for concavity: conditional negative definiteness

Let us begin with defining the (N -1)

and defining the column vector V = (V i ) by

(5.1.1)

We also define

where 1 = (1, . . . , 1) .

Definition 5.1. A real symmetric

The following result describes the relationship between conditionally negative semidefinite and negative semidefinite matrices.

0.5, 0.5, 0.5, 0.5, 0, 0, 0 0, 0, 0, 0, 1, 0.5 0.25, 0.5, 0.25, 0.5, 0, 0.25, 0 Eigenvalues of Q -4,- 

0.5, 0.5, 0.5, 0.5, 0, 0, 0 0, 0, 0, 0, 1, 0.5 0.25, 0.5, 0.25, 0.5, 0, 0.25, 0 Eigenvalues of Q -4, - where each u i is the characteristic function of a subset of Ω i of D such that (Ω 1 , . . . , Ω N ) forms a partition of D. We have for any L p norm on D:

The difference between the piecewise constant and original images is measured by:

When the levels c i are fixed, we can directly apply the three algorithms (primal, primal dual and Legendre conjugate algorithms) mentioned in this chapter.

For the update of levels, it is often desirable to determine the grey levels within the classes automatically. Thus, we include a third step in the alternating minimization algorithm, consisting

0.25, 0.5, 0.25, 0.5, 0, 0.25, 0 0.5, 0.5, 0.5, 0.5, 0, 0, 0 0.5, 0, 0.5, 0, 0.5, 0, 0. (α ij )

Cost function

Primal dual algorithm (β S ) case1 -0.5, 0.5, 0, 1, 1, 0, 0, 0, 0.5, 0.5, 0, 0, 0, 0.5, 0 5.5c 5 s -1.6064e+05 (β S ) case2 -1, 0, 0, 0.5, 1, 0.5, 0, 0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0 5.5d 5 s -1.6064e+05 (β S ) case3 -1, 0.5, 0, 0.5, 0.5, 0, 0, 0.5, 1, 0, 0, 0, 0, 0.5, 0.5 5.5e 5 s -1.6064e+05

Legendre conjugate algorithm

Eigenvalues of Q -14.5432, -2.3656, -0.9360, -0.1553 5.5f 47 s -1.6065e+05 Table 5.5: Steiner tree problem: comparison between the primal dual algorithm and the Legendre conjugate algorithm for the same values of (α ij ). 

Classification of color images

The original image f is represented by the three channels (f 1 , f 2 , f 3 ) ∈ L ∞ (D, [0, 1]) 3 representing the intensity of red, green and blue, respectively. Each phase Ω i is associated to a color (c i1 , c i2 , c i3 ) ∈ [0, 1] 3 in the same RGB system. The reconstructed image

where u i is the characteristic function of Ω i . We have for each channel

The difference between the segmented and original images is measured by

We then apply the same algorithms as in this chapter. Note that the geometrical variable u = (u 1 , . . . , u N ) as well as the auxiliary variable υ = (υ 1 , . . . , υ N ) remain N -dimensional vectors, and the update of levels is separable in the channels.

In Figure 5.8, we compare between supervised and unsupervised solution for color image classification for different values of α ij with L 2 norm.

Chapter 6

Projected gradient algorithm and applications

In this chapter, we present an algorithm based on the projected gradient and some applications.

Projected gradient algorithm

Let us start with the following lemma from [START_REF] Amstutz | Minimal partitions and image classification using a gradient-free perimeter approximation[END_REF]. Lemma 6.1. Let X be a Hilbert space and Φ : X → R be a differentiable function such that ∇Φ is λ-Lipschitz. We have for all u ∈ X:

We want to minimize the right hand side of (6.1.1) using an alternating algorithm. The minimization with respect to u is a projection problem as shown below. Lemma 6.2. Let X be a Hilbert space. Let K be a convex closed nonempty set of X, P K be the orthogonal projection onto K and Φ : X → R be a differentiable function such that ∇Φ is λ-Lipschitz. Let

We have for all u ∈ X:

Proof. By using Gauss reduction, we can rewrite (6.1.2) in the form Appendix A

FEM, FDM and FFT

For solving the boundary value problem (2.5.1) we first use finite elements on a Cartesian mesh with Q1 shape functions. The mesh nodes coincide with the image pixels, and without any loss of generality, the mesh size is fixed to 1. The discrete counterparts of the variables u and v are therefore vectors of R p where p is the number of pixels.

The linear system (5.2.24) is solved in an efficient way with the help of the fast Fourier transform (FFT), according to the following procedure. First, symmetries of the image u are performed in both axial directions, in such a way that we consider a domain D with double width and height. Then periodicity conditions are assumed on the boundary of D (see Figure A.1 for the symmetrization of the mesh), which is a convenient way of implementing Neumann boundary conditions. In this framework, the matrix products Kv and M v represent bidimensional discrete convolutions, which are easily transferred to the Fourier domain. The Fourier transform of v is thus obtained, and v itself is retrieved by inverse FFT.

We also use the standard finite difference method (FDM) with five-point stencil for solving the boundary value problem (2.5.1). The periodicity conditions are assumed on the boundary of D (see Figure A.2 for the symmetrization of the mesh).

Abstract

Minimal partition problems consist in finding a partition of a domain into a given number of components in order to minimize a geometric criterion. In applicative fields such as image processing or continuum mechanics, it is standard to incorporate in this objective an interface energy that accounts for the lengths of the interfaces between components. The present work is focused on the theoretical and numerical treatment of minimal partition problems with interface energies. The considered approach is based on a Γ-convergence approximation and duality techniques.

Résumé

Les problèmes de partition minimale consistent à déterminer une partition d'un domaine en un nombre donné de composantes de manière à minimiser un critère géométrique. Dans les champs d'application tels que le traitement d'images et la mécanique des milieux continus, il est courant d'incorporer dans cet objectif une énergie d'interface qui prend en compte les longueurs des interfaces entre composantes. Ce travail est focalisé sur le traitement théorique et numérique de problèmes de partition minimale avec énergie d'interface. L'approche considérée est basée sur une approximation par Γ-convergence et des techniques de dualité.