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Résumé

La fiabilité est devenue un facteur essentiel pour la plupart des systèmes de cal-
cul intégrés. Malgré les avantages fournis par les circuits reconfigurables (FP-
GAs), à savoir une conception à faible coût et un délai rapide de commercialisation,
l’importance de la fiabilité risque de limiter leur large utilisation dans les systèmes
critiques. Par exemple, dans des missions spatiales non habités, la fiabilité d’un sys-
tème de calcul a un impact majeur sur le coût de la mission vu qu’il s’avère difficile
de remplacer un système s’il devient défectueux. Aujourd’hui, le besoin de systèmes
informatiques fiables s’est développé au-delà des applications militaires et spatiales
traditionnelles. Cette liste croissante de domaine inclut les systèmes de communica-
tion, les systèmes médicaux et de sauvetages (comme les machine cardio-pulmonaire,
les machines de ventilation mécaniques, les pompes de perfusion, les machines de ra-
diothérapie, machines de chirurgie robotique, . . . ), les réacteurs nucléaires et autres
systèmes de contrôle de centrales électriques, la signalisation dans le transport, et
cette liste n’est pas exhaustive.

Les progrès de la technologie CMOS engendrent de nouvelles contraintes en rai-
son des limites physiques et économiques de ces process. En particulier, les tailles
réduites des transistors impliquent une diminution du rendement et de la précision
des System-on- Chip (SoC) en raison de la présence (variabilité) ou l’apparition
(vieillissement) de défauts physiques dans le circuit. Ainsi, les défauts induits par
les radiations consistuent une grande menace pour les architectures reconfigurables
et surtout lorsqu’elles sont utilisées dans des environnements de rayonnement diffi-
ciles. La variabilité de fabrication impliquent aussi des complications telles que la
fuite sous le seuil, la dissipation de puissance, la sensibilité accrue du circuit au bruit.
Tous ces phénomènes induisent, soit des défaillances transitoires (par exemple, er-
reurs du logiciel radio-induites par un changement de valeur dans une mémoire), soit
permanentes (par exemple, le vieillissement du transistor). Ce besoin de fiabilité ap-
porte une révolution dans la pratique de la conception de circuits et requière la prise
en compte de la tolérance aux pannes ou l’inclusion de capacités de détection de
défauts. C’est un défi important pour les développeurs, quand ils utilisent des FP-
GAs du commerce en vue de concevoir des applications critiques. Des stratégies de
conception prenant en compte l’atténuation des effets des pannes doivent être mises
en œuvre, ainsi qu’un processus de conception adaptÃľ. Cela dépend considérable-
ment de plusieurs paramètres incluant la sensibilité de l’application, l’atmosphère
de déploiement et le niveau de fiabilité requis.

En termes de la mise en œuvre de systèmes complexes, les circuits FPGA re-
configurables font désormais partis de l’ordinaire grâce à leur flexibilité, leurs per-
formances et leur nombre élevé de ressources intégrées. Les architectures recon-
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figurables présentent un compromis subtil entre complexité et la flexibilité néces-
saire. Les champs récents d’applications des FPGA correspondent à des environ-
nements difficiles (rayonnement cosmique, ionisants, bruit électromagnétique) et
avec de hautes exigences de tolérance aux fautes. Les FPGAs récents ne sont pas
adaptés à ce type d’environnement à l’exception de circuits bien spécifiques ayant
été durci mais avec un prix de revient très élevé, ce qui les rend moins intéressant
d’un point de vue économique. Par conséquent, de nouvelles alternatives doivent
être envisagées.

La plupart des FPGA du commerce (COTS pour Components Of the Shelf) ne
parviennent pas à répondre aux exigences des systèmes critiques (sauf quelques dis-
positifs tels que les Virtex-5QV de Xilinx et le Microsemi RTG4). Ceci est dû à leur
grande sensibilité aux événements qui créent des fautes et des incertitudes notam-
ment dans la mémoire de configuration basée sur une technologie SRAM très sensible
aux radiations. Beaucoup de développeurs ont compris que les systèmes essentiels
à la mission doivent être conçus pour un fonctionnement fiable dans des conditions
environnementales extrêmes, mais constatent que la plupart des technologies FPGA
ne peuvent pas répondre à ces besoins. Pour supporter ces environnements agressifs,
les phénomènes transitoires et les effets d’un seul événement, les systèmes critiques
nécessitent des composants fiables.

Dans la majorité des cas, pour atteindre le niveau désiré de fiabilité dans les ap-
plications basées sur des circuits reconfigurables, deux stratégies traditionnelles sont
suivies, i) faire une architecture entièrement durcie au rayonnement par le processus
de fabrication lui-même et ii) par l’application de diverses stratégies de tolérance aux
fautes intégrés aux architectures COTS au stade de la conception de l’application.
Les deux solutions de durcissement et de conception sur lesquels les solutions sont
basées ont leurs propres avantages et inconvénients. Une solution alternative plus
intéressante, où les avantages des différentes approches pourraient être utilisés, en
termes de surcoût matériel, consommation d’énergie, l’amélioration de la fiabilité
et la souplesse de conception, etc. peut être envisagé. Nous proposons donc le
développement de nouvelles architectures fiables, où divers mécanismes de fiabilité
peuvent être intégrés à différents niveaux de l’architecture, y compris les processus
de fabrication, l’architecture matérielle, le plan de configuration, la conception de
l’application afin de soutenir le niveau de fiabilitÃľ requis mais sans payer le prix
du durcissement technologique du circuit.

Contributions
Ce travail de thèse a pour objectif de remédier à ces inconvénients et à ces défis
en proposant des stratégies de gestion de fautes appropriées, et adaptables. La
recherche présentée dans cette thèse fait partie intégrante du projet de recherche
ANR ARDyT ("Architecture Reconfigurable Dynamiquement Tolérante aux fautes").
Le but de ce travail est de développer des stratégies adhoc de tolÃľrances aux fautes
pour protéger les diverses ressources constitutives d’une architecture FPGA. Le tra-
vail dans cette thèse est principalement axé sur l’architecture matérielle et le pro-
cessus de gestion des fautes. Les contributions de ce travail de recherche sont les
suivantes :
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• les différents modèles de fautes qui se produisent dans les circuits reconfig-
urables ont été étudiés. Ainsi différents modèles d’erreurs associés aux dif-
férents éléments constitutifs de l’architecture FPGA ont été étudiés montrant
la nécessité d’adapter les stratégies aux différents scénarii. Les différents sys-
tèmes de détection et de correction de fautes de l’état de l’art sont ensuite
analysés et leurs avantages et inconvénients sont comparés les uns aux autres,
en fonction de différents paramètres important dans le cadre des architectures
reconfigurables. Les paramètres étudiés comprennent le surcoût matériel, le
coût de mise en œuvre, la complexité de la conception, les contraintes de
temps, et l’adaptabilité. Puis, il a été répondu à la question : "comment faire
une architecture FPGA fiable en faisant une classification générale significative
des différentes approches ?". Les différentes approches ont été classées en trois
grandes classes : i) conception de l’architecture durcie au rayonnement par
fabrication, ii) réalisation de la fiabilité en mettant en œuvre au niveau archi-
tecture des techniques de tolérances aux fautes iii) intégration de mécanisme
de fiabilité au niveau applicatif (i.e. sans modifier l’architecture).

• Par la suite, les blocs de base de construction de l’architecture matérielle
ARDyT sont définis. Des ressources spÃľcifiques pour la détection des fautes,
le diagnostic et la tolérance sont ajoutés aux composants logiques comme des
fonctionnalités intégrées. Les ressources logiques sont définies afin de per-
mettre des compromis entre densité d’intÃľgration et fiabilité fonctionnelle.
L’architecture est adaptable est permet de supporter les diffétes stratégies
de tolérance aux fautes proposées. Nous avons définie et spécifié une couche
d’abstraction fonctionnelle de la tolérance aux fautes (FTAL - Fault-Tolerant
Abstraction Layer) et l’algorithme de gestion et de tolÃľrance aux fautes pour
les différents modes adaptés sont intégrés dans le R3M (Run-time Reconfig-
urable Resource Manager), gestionnaire de la fiabilité centralisé de notre ar-
chitecture. La granularité de la détection des fautes et leur notification est
déterminée sur la base de régions reconfigurables partielles groupées (GPRR).
La première étape d’amélioration de la fiabilité concerne la détection de la
dite faute. La remontée d’informations pertinentes sur l’événement survenu
(changement de valeur / faute / erreur) contribue à une meilleure formulation
de la stratÃľgie de prise en compte de cet événement. Pour faciliter la lecture
de l’état de la faute (de sa notification) et de fournir le lien vers le R3M, un
registre d’état de faute (FSR - Fault Status Register) est défini dans chaque
GPRR. Un protocole d’interrogation est alors employé afin de remonter vers
le R3M le type de faute identifié et d’adapter la technique de gestion de la
faute appropriée. Ici, le terme "lecture de faute" se réfère à l’identification de
la faute qui a eu lieu dans les modules matériel "fault-aware". La nature de la
"lecture de faute" dans le cadre du projet ARDyT dépend de différents facteurs
tels que la granularité de l’identification de la faute, le mode de représentation
de la faute, le temps et le coût matériel requis par la technique de gestion de
la faute. Selon les spécifications architecturales proposées et la définition de
la FTAL, le protocole d’interrogation a l’accès aux FSR de chaque GPRR.

• Dans les FPGA à base de mémoire SRAM, Les cellules mémoires sauvegar-
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dent principalement des bits de configuration, occupant plus de 98% de toute
la mémoire de la plupart des composants du commerce. Ces bits de configura-
tion SRAM sont sujets à des radiations induites de type SEU (provoquant des
changements de valeur d’un seul bit SBU ou de plusieurs bits MBU). En raison
du fait que la fonctionnalité d’un FPGA à base de SRAM est déterminée par
le contenu de ces cellules de mémoire de configuration, chaque modification
des bits de configuration par un SEU modifie la fonctionnalité du dispositif
programmé dans le FPGA. Dans ce travail, un nouveau schéma de protection,
construit sur un codage de Hamming 3D (3DH - 3-Dimensional Hamming) per-
met de gérer les erreurs binaires multiples (SBU et MBU) causées par le rayon-
nement dans la mémoire de configuration. L’idée est de réaliser la protection
de la mémoire de configuration (bitstream) par le système 3D-Hamming pro-
posé s’exécutant en arrière-plan pendant l’exécution de l’application, comme
cela se fait dans les dispositifs Xilinx Virtex. Dans le système de protection
de proposé, la détection et la correction des erreurs se produisent comme un
processus cyclique continu, en raison du fait que les codes de Hamming ne dé-
tectent pas seulement l’erreur, mais localise sa position dans le mot binaire et
permettent une correction si une seule erreur est présente dans le mot en cours
de traitement. La principale différence et avantage du système proposé par
rapport à la méthode classique utilisée dans les architectures Xilinx, est que la
technique ne nécessite pas l’utilisation d’une copie externe des bits de config-
uration. Le schéma 3DH proposé est implémenté grâce aux ressources d’accès
internes au bitstream de configuration (ICAP - Internal Configuration Access
Port) et entièrement gérés par le gestionnaire centralisé de la fiabilité (R3M)
dans la FTAL. Il supporte une reconfiguration rapide des zones de mémoire
concernées par les erreurs multiples, parce que la correction peut être faite en
utilisant le bus interne seul, contrairement aux méthodes les plus connues qui
reposent sur la sauvegarde de la configuration en externe et qui nécessitent le
transfert des données via les lignes d’E/S.

• La tolérance aux fautes présentée ci-dessus gère seulement les changements de
valeurs qui affectent le flux binaire de configuration, malheureusement, il y
a d’autres sources de défauts qui peuvent affecter directement les ressources
matérielles du FPGA. Leurs natures et leurs conséquences sont différentes
de celles qui se produisent dans bitstream et leurs effets ne peuvent pas
être corrigés en effectuant une re-configuration. De fait, pour protéger ces
ressources logiques une nouvelle architecture, le FA-CLB (Fault-Aware Con-
figurable Logic Block), est proposée qui est capable de détecter en ligne (en
fonctionnement normal) des défauts a un niveau fin de granularité (à savoir le
niveau LUT pour Look-Up Table). L’approche proposée repose sur l’identifica-
tion des défauts des circuits combinatoires et séquentiels séparément, ce qui
aide à trouver un défaut et à adapter sa gestion en fonction de sa nature. En ce
qui concerne les multiplexeurs des blocs logiques combinatoires, ils ne peuvent
pas être directement affectés par un SEU radio-induit qui pourrait provoquer
des SBU et / ou MBU, car ils ne contiennent pas d’éléments de stockage. Les
modèles de fautes affectant les circuits combinatoires et les circuits séquentiels
sont différents. Par conséquent, différents schémas de détection de fautes sont
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proposés pour les éléments combinatoires et séquentiels. L’architecture globale
du FA-CLB résultante proposée est différente de la structure CLB classique
utilisée dans les FPGA commerciaux. Elle intègre notamment les ressources de
détection des fautes mais aussi aide la stratégie de gestion de ces fautes grâce
notamment á sa structure permettant la redondance temporelle d’un calcul.

Conclusions :
1. La constante mise à l’échelle de la technologie et les changements de carac-

téristiques des environnements de fonctionnement des applications augmentent
les erreurs dans la mémoire de configuration des architectures reconfigurables.
Les niveaux élevés de rayonnement implique l’apparition de fautes multiples
de type MBU (multi-bit upset). Ces niveaux de rayonnement déclenchant des
changements de valeurs ne se limite plus seulement à l’espace et aux hautes
altitudes. Même au niveau du sol, le rayonnement naturel et artificiel des par-
ticules est maintenant observé. De même les architectures sont elles même plus
sensible à ces rayonnements du fait de la diminution des tailles de transistors.
Par conséquent, les systèmes électroniques de haute fiabilité prennent de plus
en plus d’importance dans les applications au niveau du sol également.

2. Comme le marché est en pleine expansion au-delà des applications spatiales,
acceptant des coût élevé, il y a un besoin de développer une architecture fi-
able et flexible, ciblant une fiabilité à faible coût et permettant l’intégration
d’applications critiques. Les architectures durcies par un processus de fabrica-
tion spécifique représentent un coût élevé qui ne peut pas être abordable dans
de nombreuses applications grand public (comme l’automobile par exemple).
Les approches de la tolérance aux fautes utilisées dans les FPGA COTS à
base de redondance impliquent une complexité de conception supplémentaire
et réduisent la flexibilité de conception. Par conséquent, le développement de
nouveaux modèles d’architectures intégrant des mécanismes de support de la
fiabilité adaptées à différents niveaux (architecture, configuration, application
et logiciel) est nécessaire pour avoir des implémentations d’applications moins
complexes, flexibles et à des coûts acceptables pour le grand public.

3. Les effets du rayonnement cosmique ont différents modèles de défaut sur les
différents éléments des circuits reconfigurables qui entraînent des conséquences
diverses selon leur nature. De ce fait, les techniques de détection et de prise
en compte des défauts doivent être adaptées.

4. Le développement de modules logiques adaptables, où les circuits logiques
sont personnalisés pour soutenir les stratégies de détection et de correction
des fautes est nécessaire et a été réalisé dans ce travail pour le développement
d’une architecture reconfigurable. Cela permet de réduire considérablement la
complexité de la phase de développement de l’application et le temps d’accès
au marché, vu que le concepteur n’a pas à se concentrer sur "l’allocation et
l’utilisation des ressources" pour les aspects de fiabilité (comme dans le cas de
la conception d’applications fiables sur des architectures non fiables).
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5. Un compromis peut être obtenue entre "le niveau de fiabilité" et "le surcoût
matériel, la latence, l’efficacité énergétique". Il peut être représenté collective-
ment par le facteur d’évaluation de la fiabilité et de l’efficacité. Il est basé sur
divers aspects, y compris la sensibilité des différentes tâches ; le suivi et la non
surveillance dynamique de zones du circuit ; et la granularité de la détection
et de la correction des fautes. Dans le cadre du projet ARDyT un mécanisme
de compromis entre densité d’intégration et fiabilité est introduit permettant
tout un panel de niveau de fiabilité vs éfficacité (au sens large).
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Abstract in French

Les circuits reconfigurables (Field Programmable Gate Arrays - FPGAs) sont large-
ment utilisés dans divers domaines d’application en raison de leur flexibilité, de
leur haute densité d’intégration, de leur niveau de performance et du faible coût
de développement associé. Toutefois, leur grande sensibilité aux défauts dus aux
rayonnements électromagnétiques tels que les "Single Event Effets" (SEE), est un
défi qui doit être abordé pendant la conception du système. Ces SEE sont une
préoccupation majeure dans la sécurité et pour les systèmes critiques tels que les
systèmes automobile et avionique. En général, la plupart des FPGA d’aujourd’hui
ne sont pas conçus pour fonctionner dans ces environnements difficiles, sauf pour
les circuits spécifiques qui ont été durcis par construction au niveau du processus de
fabrication. Ces circuits ont un surcoût très élevé et des performances moindres, ce
qui les rend moins intéressants que leurs équivalents non protégés.

Le projet ARDyT vise à développer une architecture FPGA fiable à faible coût
avec une suite d’outils de conception, offrant un environnement complet pour la
conception d’un système tolérant aux fautes. Ce travail de thèse présente une con-
tribution à l’architecture du FPGA ARDyT, qui intègre des stratégies de prises
en charge des fautes adaptées aux différents éléments de l’architecture. L’un des
principaux objectifs du projet ARDyT est de gérer les changements de valeurs mul-
tiples (multi bit upsets (MBUs)) dans le flux binaire de configuration du FPGA.
Ces stratégies de tolérance aux fautes pour protéger les ressources logiques et le
flux binaire de configuration sont discutées en détail. Une architecture spécifique
du bloc logique élémentaire configurable est proposée afin de simplifier la stratégie
de prise en compte des fautes dans les ressources logiques. Un nouveau système
de correction d’erreur intégrée (3-Dimensional Hamming - 3DH) est proposé pour
gérer les MBU dans le flux binaire de configuration. L’ensemble de cette stratégie
de gestion de fautes est implémenté dans l’architecture au travers d’un manager de
la fiabilité centralisée nommée R3M (Run-time Reconfigurable Resource Manager).
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Abstract

Reconfigurable Field Programmable Gate Arrays (FPGAs) are extensively employed
in various application domains due to their flexibility, high–density functionality,
high performance and low–cost development compared to ASICs (Application Spe-
cific Integrated Circuits). However, the challenge that must be tackled during sys-
tem design is their high susceptibility to the radiation induced faults such as Single
Event Effects (SEEs). These radiation induced faults are a major concern in safety
and mission critical systems such as automotive and avionics systems. In general,
most of today’s commercial off-the shelf (COTS) FPGAs are not designed to work
under these harsh environments, except for specific circuits that have been radiation–
hardened at the fabrication process level, but at a very high cost overhead, which
makes them less interesting from an economic and performance point of view.

Design based techniques and architectural customization are the other ways to
achieve desired level of reliability in a system design. This thesis work is a part of
a multi-partner project–ARDyT, which aims to develop a low–cost reliable FPGA
architecture with supporting EDA tool-suite that offers a complete environment for a
fault tolerant system design. The ARDyT FPGA architecture plans to incorporate
appropriate fault mitigation strategies at different level of the architecture. The
work carried-out in this thesis focus mainly on developing reliability strategies at
hardware and configuration level. A fault-aware customized configurable logic block
architecture is proposed to support fault mitigation process in configurable logic
resources. One of the main objectives of ARDyT project is to handle multi-bit upsets
(MBUs) in the configuration bitstream. A new built–in 3–Dimensional Hamming
(3DH) error correcting scheme is proposed to handle MBUs in the configuration
bitstream. Proposed schemes are made adaptable in such a way that they are
integrated in the ARDyT architectural framework to support the global (centralized)
reliability management strategy.
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Chapter 1

Introduction

Prompted by the development of new types of sophisticated field-programmable
devices (FPDs), the process of designing digital hardware has changed dramatically
over the past few years. The most compelling advantages of FPDs are instant
manufacturing turnaround, low start-up costs, low financial risk and ease of design
changes. Field Programmable Device is a general term that refers to any type of
integrated circuit used for implementing digital hardware, where the chip can be
configured by the end-user to realize different designs. The FPD market has grown
over the past decade to the point, where there is now a wide assortment of devices
to choose from. To choose a product, designers face the daunting task of researching
the best uses of various chips and learning the intricacies of vendor-specific CAD
software. Adding to the difficulty is the complexity of the more sophisticated devices.
User-programmable switches are the key to user customization of FPDs.

A programmable logic device (PLDs) refers to any type of integrated circuit used
to build user-configurable digital circuits. A PLD has an undefined function at the
time of manufacturing. Since these logic devices can be programmed in the field,
they are also called field programmable logic devices (FPLDs). PLDs come in two
forms, complex programmable logic devices (CPLDs) and field programmable gate
arrays (FPGAs), both having their advantages and disadvantages with respect to
the specific application or design they are to be used in. The primary differences
between CPLDs and FPGAs are architectural. A CPLD has a somewhat restrictive
structure consisting of one or more programmable sum-of-products logic arrays feed-
ing a relatively small number of clocked registers, which results in less flexibility, with
the advantage of more predictable timing delays and a higher logic-to-interconnect
ratio. The FPGA architectures, on the other hand, are dominated by interconnec-
tions, which makes them far more flexible (in terms of the range of designs that are
practical for implementation within them) but also far more complex to design for.

In practice, the distinction between FPGAs and CPLDs is often one of size, as
FPGAs are usually much larger in terms of resources than CPLDs. Typically, only
FPGAs contain more complex embedded functions such as adders, multipliers, and
memory. Being the only type of FPD that supports very high logic capacity, FPGAs
have been responsible for a major shift in the way digital circuits are designed [1].
FPGAs provide many advantages such as:

• Field programmability: FPGAs in contrast to traditional computer chips
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are completely configurable. Updates and feature enhancement can be carried
out in the field, even after deployment.

• Extremely short time to market: Through the use of FPGAs, the devel-
opment of hardware prototypes is significantly accelerated since a large part
of the hardware development process is shifted to developing the core design,
which can be done in parallel. Additionally, because of the early availability of
hardware prototypes, time-consuming activities like the start-up and debug-
ging of hardware are brought forward concurrently to the overall development.

• Fast and efficient systems: Available standard components address a broad
user group and, consequently, often constitute a compromise between perfor-
mance and compatibility. With FPGAs, systems can be developed that are
exactly customized for the designated task, which henceforth can be highly
efficient.

• Performance gain for software applications: Complex tasks are often
handled through software implementations in combination with high-performance
processors. In this case, FPGAs provide a competitive alternative, which by
means of parallelization and customization for the specific task even establishes
an additional performance gain.

• Massively parallel data processing: The amount of data in contemporary
systems is ever increasing, which leads to the problem that systems working
sequential are no longer able to process the data on time. Especially by means
of parallelization, FPGAs provide a solution to this problem which, in addition,
scales excellently.

• Real time applications: FPGAs are perfectly suitable for applications in
time-critical systems. In contrast to software based solutions with real time op-
erating systems, FPGAs provide real deterministic behavior. By means of the
featured flexibility even complex computations can be executed in extremely
short periods.

In modern circuits, design flexibility is mandatory, as it enables fast evaluation
of design changes during the lifetime of applications, enhancement of functionality,
and so on. In counterpart, most of current applications are requiring more and more
high computation capability to offer advanced services. In terms of complex sys-
tems implementation, programmable FPGA circuits are now part of the mainstream
implementation solutions: thanks to their flexibility, good performances and high
number of integrated resources. Besides, FPGAs are entering new fields of applica-
tions such as aeronautics, military, automotive or confined control, thanks to their
ability to be remotely updated [2].

1.1 Field Programmable Gate Arrays (FPGAs)
FPGAs contain programmable logic blocks that can be wired in different configura-
tions. These blocks create a physical array of logic gates that can be used to perform
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different operations. Because the gates are customizable, FPGAs can be optimized
for any computing task.

Based on implementation technology, FPGA architecture could be broadly clas-
sified into three types: i) Antifuse-based, ii) Flash-based and iii) Static Random
Access Memory (SRAM)-based.

Antifuse-based FPGAs

They can be programmed only once. The antifuse is a device that doesn’t conduct
current initially, but can be "burned" to conduct current (the antifuse behavior is
thus opposite to that of the fuse, hence the name). The antifuse-based FPGAs can’t
be then reprogrammed anymore, since there is no way to return a burned antifuse
into the initial state. Antifuse-based device families include Axcelerator R©produced
by Microsemi [6].

Flash-based FPGAs

First of all, these type of FPGAs shouldn’t be confused with SRAM-based FPGAs,
as the internal flash memory of the latter ones uses flash only during startup to
load data to the SRAM configuration cells. On the contrary, a true flash-based
FPGA uses flash as a primary resource for configuration storage and doesn’t require
SRAM. The main advantages of this technology are low power consumption and
better tolerant to radiation effects. Flash-based FPGA families such as Igloo [7]
and ProASIC3 [8] are manufactured by Microsemi.

SRAM-based FPGAs

SRAM-based FPGAs store logic cells configuration data in the static memory (or-
ganized as an array of latches). Since SRAM is volatile and can’t keep data without
power source, such FPGAs must be programmed (configured) upon start. There are
two basic modes of programming:

• Master mode, when an FPGA reads configuration data from an external
source, such as an external flash memory chip.

• Slave mode, when an FPGA is configured by an external master device, such
as a processor. This can be usually done via a dedicated configuration interface
or via a boundary-scan (JTAG) interface.

SRAM-based configuration memory is more commonly used in today’s advanced
reconfigurable architectures. In this case, each configuration bit is presented as a
field-effect transistor (FET) that is controlled by an SRAM cell. Xilinx and Altera
are two major SRAM-based FPGA manufacturers. The V irtex family FPGAs from
Xilinx (V5 [13], V6 [14], and V7 [15]) and Stratix family FPGAs from Altera [16]
are examples of SRAM-based FPGAs. One disadvantage of this technology is that
an SRAM-based FPGA always has to be re-programmed at the power up of the
circuit board. There are a variety of techniques by which this programming may be
achieved; a very common alternative is to use an external serial flash memory chip,
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and for the FPGA to instigate the configuration process by reading the contents
of this flash memory and using it to program its SRAM based configuration cells.
An important advantage of SRAM-based FPGAs is that they can be manufactured
using a standard CMOS process, hence they become available right at the forefront
of each new technology, thereby offering the highest performance and lowest power
consumption. By comparison, flash-based and antifuse-based FPGAs require extra
processing steps during the manufacturing process, which means they typically lag
the state-of-the-art by one or two technology feature sizes.

Antifuse-based FPGAs have to be configured using a special programming device
before being attached to the circuit board. Flash-based FPGAs can be configured
off-board—using a special programmer, or on-board—using additional circuitry on
the circuit board. And, as previously noted, SRAM-based FPGAs always have to
be re-programmed when the board is powered up.

Some devices [10–12] have both a flash transistor and an SRAM cell associated
with each configuration bit [2]. Hence, on power-up, the contents of all of the
flash transistors are copied (in a massively parallel fashion) into their corresponding
SRAM cells. In addition to providing the advantages of non-volatility and instant-
on, this also means that the flash portion of the FPGA can subsequently be re-
programmed "on-the-fly" whilst the rest of the FPGA is performing its allotted
tasks.

1.1.1 Building Blocks and Architecture Details

Figure 2.1 shows a sample FPGA architecture. In general, FPGAs comprise an array
of uncommitted circuit elements, called programmable logic blocks, programmable
routing (interconnects) and programmable I/O blocks. A programmable logic block
provides the basic computation and storage elements used in digital systems. The
basic logic element contains some form of programmable combinational logic, a
flip-flop and some fast arithmetic carry logic. The programmable routing provides
connections among logic blocks and I/O blocks to complete a user defined design.
It consists of multiplexers, pass transistors and tri-state buffers, which form the
desired connections. Generally, pass transistors and multiplexers are used within a
logic cluster to connect logic elements together, while all three types of connection
elements are used for more global routing structures.

Configurable Logic Blocks (CLBs)

A configurable logic block (CLB) is the basic building block of an FPGA, capable
of realizing arbitrary logic functions. It contains a small memory for creating ar-
bitrary combinatorial logic functions, also known as look-up table (LUT). It also
contains flip-flops as clocked storage elements as well as multiplexers used to route
the logic within the block and to and from external resources. The multiplexers
also allow polarity selection as well as reset and clear input selection. Figure 2.5
shows a simplified sample structure of a CLB, which comprises only a 4-input LUT,
a multiplexer and a register. The multiplexer requires an associated configuration
cell to specify input to be selected. The register requires associated cells which al-
low to specify whether it acts as an edge-triggered flip-flop or a level-sensitive latch,
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Figure 1.1 – Generic structure of an FPGA [1].

whether it is positive- or negative-edge triggered (in the case of the flip-flop option),
whether an enable signal is active-low or active-high (if the register is instructed to
act as a latch), and whether it is initialized with a logic 0 or a logic 1. The 4-input
LUT is itself based on 16 configuration cells. In reconfigurable architectures these
memory cells are SRAM cells.

Figure 1.2 – Basic structure of a sample configurable logic element (CLB) [1].

In Xilinx Virtex 7 family FPGA devices, a CLB unit contains a pair of slices.
These two slices do not have direct connections to each other, and each slice is
organized as a column. Every slice contains: four logic-function generators (or
LUTs), eight storage elements, wide-function multiplexers and a carry chain logic.
Figure 2.6 shows a slice architecture of Xilinx 7 Series FPGA.
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Figure 1.3 – Slice architecture of Xilinx 7 Series FPGA [119].
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Figure 1.4 – High-level block diagram of the Stratix III ALM [9].

Similarly, Altera FPGAs have their logic array block (LAB) as their programmable
logic block with a small number of adaptive logic modules (ALMs) inside. Figure
1.4 shows a high-level block diagram of Stratix III ALM FPGA device. For exam-
ple, in Stratix III family of devices, each LAB consists of ten ALMs, carry chains,
shared arithmetic carry chains, LAB control signals, local interconnect, and regis-
ter chain connection lines. The local interconnect transfers signals between ALMs
within the same LAB. The direct link interconnect allows a LAB to drive into the
local interconnect of its left and right neighbors. Register chain connections trans-
fer the output of the ALM register to the adjacent ALM register in an LAB. Each
ALM contains a variety of LUT-based resources that can be shared by two combi-
national adaptive LUTs (ALUTs) and two registers. With up to eight inputs to the
two combinational ALUTs, one ALM can implement various combinations of two
functions. This adaptability allows an ALM to be completely backward compati-
ble with 4-input LUT architectures. One ALM can also implement any function of
up to six inputs and certain 7-input functions. In addition to the adaptive LUT-
based resources, each ALM contains two programmable registers, two dedicated full
adders, a carry chain, a shared arithmetic chain, and a register chain. Through these
dedicated resources, an ALM can efficiently implement various arithmetic functions
and shift registers. Each ALM drives all types of interconnects: local, row, column,
carry chain, shared arithmetic chain, register chain, and direct link interconnects.
Apart from these two (Xilinx and Altera) LUT-based architectures, there are also
available some multiplexer-based architecture (Microsemi FPGAs). However, com-
pared to multiplexer-based architectures, LUT-based logic block structures have the
advantage of implementing any of 2n n-input logic functions.

These commercially available FPGA’s logic block architectures do not have any
built-in fault-tolerance capabilities to support higher reliability. One axis of this
thesis work investigates the possibilities to design a customized logic block to support
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adapted fault mitigation scheme.

Programmable Routing

Programmable logic elements must be interconnected to implement more complex
digital functions. An SRAM-based FPGA uses SRAM to hold the information used
to program the interconnect. As a result, the interconnect can be reconfigured, just
as the logic elements can. A programmable connection between two wires is made
by a CMOS transistor (a pass transistor). The pass transistor’s gate is controlled
by a static memory program bit (cf. Fig. 1.5). When the pass transistor’s gate is
high, the transistor conducts and connects the two wires; otherwise, when the gate
is low, the transistor is off and the two wires are not connected.

Figure 1.5 – Interconnect points controlled by SRAM cells [98].

A CMOS transistor has a good off-state, although off-states worsen with shrink-
ing chip geometries. In this simple circuit, i.e. of Fig. 1.5, the transistor also con-
ducts bidirectionally, as it doesn’t matter which wire has the signal driver. However,
the pass transistor is relatively slow, particularly on a signal path that includes sev-
eral interconnection points in a row. FPGA wiring with programmable interconnect
is slower than typical wiring in a custom chip for two reasons: the pass transistor
and wire lengths. The pass transistor is not a perfect on-switch, so a programmable
interconnection point is somewhat slower than a pair of wires permanently connected
by a via. In addition, FPGA wires are generally longer than would be necessary for
a custom chip. In a custom layout, a wire can be made just as long as necessary. In
contrast, FPGA wires must be designed to connect a variety of logic elements and
other FPGA resources. A net made of programmable interconnect may be longer,
introducing extra capacitance and resistance that slows down the signals on the net.

An FPGA requires a large number of programmable wires to connect CLBs.
FPGAs use wires of varying lengths in order to minimize the delay through wires.
Wiring is often organized into different categories depending on its structure and
intended use:

• Short wires connect only local logic elements, so they don’t take up much space
and introduce less delay.

8



• Global wires are specially designed for long-distance communication. As with
high-speed highways with widely spaced exits, they have fewer connection
points than local connections, which reduces their impedance. Global wires
may also include built-in electrical repeaters to reduce the effects of delay.
Also, wire lengths differ thus creating a hierarchy in the global routing struc-
ture.

• Special wires may be dedicated to distribute clocks or other register control
signals.

Programmable Input/Output (I/O) Blocks

Input/Output (I/O) cells provide interface between internal FPGA circuits and
external environment. An I/O cell can be configured as an input, output, or bidi-
rectional port. D flip-flops are normally included in I/O cells to provide registered
inputs and outputs. A generic programmable I/O cell is shown in Fig. 2.7.

Figure 1.6 – Programmable input/output cell [1].

There is a programmable delay element on the input path, used to eliminate
variations in hold times from pin to pin. Propagation delays within the FPGA
cause the I/O block control signals to arrive at different times, causing that the
hold times of various pins vary. The programmable delay element is matched to the
internal clock propagation delay and, when enabled, eliminates skew-induced hold
time variations. The output path has a weak keeper circuit that can be selected by
programming. The circuit monitors the output value and weakly drives it to the
desired high or low value. The weak keeper is useful for pins that are connected to
multiple drivers; it keeps the signal at its last valid state after all the drivers have
disconnected.

Dedicated Functional Resources

Apart of array of CLBs and routing resources, most of today’s FPGAs have also
some additional functional resources, such as: arithmetic & logic circuits (ALCs),
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dedicated multiplexers, block random access memory (BRAM), carry logic and em-
bedded processors. Sometimes the LUTs are used as distributed RAMs or as storage
elements or as shift registers.

• Embedded Block RAM is available in most FPGAs, which allows for on-chip
memory in the design. Xilinx FPGAs provide up to 10 Mbits of on-chip
memory in 36 Kbit blocks that can support true dual-port operations.

• In addition to general-purpose interconnect resources, FPGAs have fast ded-
icated lines in between neighboring logic cells. The most common type of
fast dedicated lines are carry chains, which allow to realize arithmetic func-
tions (like counters and adders) efficiently (low logic usage and high operating
speed).
The carry chains are cascadable, to form wider add/subtract logic. The prop-
agation delay for an adder increases linearly with the number of bits in the
operand, as more carry chains are cascaded. The carry chain can be imple-
mented with a storage element or a flip-flop in the same logic element.

Finally, several FPGA devices offer various implementations of embedded proces-
sors. Compared to typical microprocessors, they enjoy many exceptional advantages
like: 1) customization, 2) obsolescence mitigation, 3) component and cost reduction,
and 4) hardware acceleration. Both Xilinx and Altera offer FPGA devices that em-
bed a dedicated physical processor core into the FPGA silicon, referred to as a ’hard’
processor. On the other hand, a ’soft’ processor can be configured using FPGA’s
general-purpose logic. The soft processor is typically described in a Hardware De-
scription Language (HDL) or as a netlist. Unlike the hard processor, a soft processor
must be synthesized and fit into the FPGA fabric.

Configuration Bitstream

State-of-the-art commercial FPGAs offer several hundred thousand logic cells along
with specialized function units connected via a configurable network. In SRAM-
based FPGAs, the functionality is specified by the contents of configuration memory.
To configure a circuit, the user needs to load configuration data into the SRAM of the
device. This data is generated by the CAD tools and is most often externally loaded
onto the device via a configuration port. The FPGA’s reconfiguration involves
updating the entire or a part of the configuration memory. Reconfiguration time
is roughly proportional to the amount of configuration data to be loaded onto an
FPGA. Most of memory bit cells in SRAM-based FPGA are configuration bits,
occupying more than 98% of memory. The configuration memory is organized into
a series of frames. A frame is the smallest unit of the configuration memory that
can be written to or read from the device. Because SRAM memory is volatile, the
SRAM cells must be loaded with configuration data each time the device powers up.
Once the FPGA device is configured, its registers and I/O pins must be initialized,
and afterwards the device enters user mode for in-system operation. Some SRAM-
based FPGAs with an internal flash memory (like for example Xilinx Spartan-3AN
family) do not need to use an external non-volatile memory. Using internal non-
volatile memory can be also useful to prevent unauthorized bitstream copying.
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1.2 Dependable Embedded Systems
Dependability has become an essential factor for most of computing systems. Al-
though FPGAs provide the advantages of low-cost design and fast time-to-market,
the importance of dependability issues limit their widespread use in mission-critical
applications [5]. For example, in unmanned space environments, dependability of
a computing system has a major impact on the cost of a mission, because unless
designed with some fault-tolerance mechanisms, it is difficult or even impossible to
replace the system, once it becomes faulty. Today, the need for dependable comput-
ing systems has expanded beyond traditional military and aerospace applications.
This steadily growing list includes telecommunications infrastructure systems, medi-
cal intensive care and life-support systems (such as heart-lung machines, mechanical
ventilation machines, infusion pumps, radiation therapy machines, robotic surgery
machines), nuclear reactor and other power station control systems, transportation
signaling and control systems, amusement ride control systems, and the list goes on.

For clear and unambiguous understanding of dependability issues, we present
define some of the key terms and concepts according to [19,20], whose relationships
are graphically visualized in Figure 2.2.

Figure 1.7 – Characterization of dependability and security by their attributes,
threats and means [19].

Dependability is defined as the quality of being able to be counted on or relied
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upon. In system engineering, dependability is characterized by the following sys-
tem’s attributes: availability, reliability, safety, confidentiality, integrity and main-
tainability [19]. These attributes can be assessed to determine overall dependability
of a system using qualitative or quantitative measures.

• Availability: is the probability that a system is functioning correctly at a
given time. The term "downtime" is used to refer to periods when a system is
unavailable for use. Availability is usually expressed as a percentage of up-time
over some specified period of functioning.

• Reliability: is the probability of a component or a system functioning cor-
rectly over a given period of time under given set of operating conditions; the
latter are usually defined in the technical specification of a component or a
system.

• Safety: is a property of a systems that will not endanger human life or the
environment.

• Confidentiality: is the property characterizing absence of unauthorized dis-
closure of information. The term confidentiality is also used when addressing
security.

• Integrity: involves maintaining the consistency, accuracy, and trustworthi-
ness of data over its entire life cycle (i.e., absence of improper system’s al-
terations). Data must not be changed in transit and steps must be taken to
ensure that data cannot be altered by any unauthorized/unexpected control.

• Maintainability: is the probability that a failed system can be repaired or
modified within a specified time (it characterizes how easily a system can be
repaired or modified). A highly maintainable system may also show a high
degree of availability.

Threats are events that can affect a system and negatively affect dependability.
The following three main threats are distinguished.

• Fault: A fault is a defect in a system. The presence of a fault in a system
may or may not lead to a failure. In the latter case, despite a system may
contain a fault, its input and state conditions may never cause this fault to
be activated, so that an error occurs; so, that particular fault do not causes a
system failure.

• Error: An error is a discrepancy between the intended behaviour of a system
and its actual behaviour inside the system boundary. Errors occur at run-time
when some part of the system enters an unexpected state due to the activation
of a fault. Since errors are generated from invalid states, they are hard to
observe without special mechanisms, such as error detectors or debuggers.

• Failure: A failure is an instance in time when a system displays behaviour
that is contrary to its specification. An error may not necessarily cause a

12



failure because, for instance, an exception may be signalled within a system,
but this may be caught and handled using fault-tolerance techniques, so the
overall operation of the system will still conform to the specification.

As a general rule: a fault, when activated, can lead to an error (which is an
invalid state) and the invalid state generated by an error may lead to another
error or a failure (which is an observable deviation from the specified behaviour
at the system boundary).

There are the following means to attain dependability of a system.

• Fault forecasting: is the process of estimating the presence, occurrence,
and the consequences of faults. It predicts likely faults, so that they can be
removed or their effects can be circumvented.

• Fault prevention (avoidance): is the process of preventing the fault oc-
currence. It increases reliability of a system by conservative design and use of
highly reliable components.

• Fault removal: is a process of minimizing the presence of faults in a system.
Once a system has been deployed, a mechanism is needed to record failures
and remove them via a maintenance cycle.

• Fault tolerance: relies on providing the service complying with the specifi-
cation in spite of faults having occurred or occurring. It deals with putting
mechanisms in place that will allow a system to still deliver the required service
in the presence of faults, although that service may be at a degraded level.

Safety and Mission Critical Systems

• Mission-Critical: A mission-critical design refers to those portions of a sys-
tem that are absolutely necessary. The concept originates from NASA, where
mission-critical elements were considered those items that had to work or a
billion dollar space mission would blow up. Mission-critical systems must be
able to handle peak loads, scale on demand and always maintain sufficient
functionality to complete the mission.

• Safety-Critical: A safety-critical or life-critical system is one whose failure or
malfunction may result in death or serious injury to people, loss of or severe
damage to equipment or damage to the environment. The main object of
safety-critical design is to prevent a system from responding to a fault with
wrong conclusions or wrong outputs. If a fault is severe enough to cause
a system failure, then the system must fail "gracefully", without generating
bad data or inappropriate outputs. For many safety-critical systems, such as
medical infusion pumps and cancer irradiation systems, the safe state upon
detection of a failure is to immediately stop and turn the system off. A safety-
critical system is one that has been designed to lose less than one life per
billion hours of operation.
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Most of the commercial-off-the-shelf FPGAs fail to address the key mission and
safety critical application requirements (except a few devices such as Xilinx’s Virtex-
5QV and Microsemi’s RTG4). It is due to their (SRAM-based FPGAs) high suscep-
tibility to the events that create faults and uncertainties. Many developers under-
stand that mission-critical systems must be designed for reliable operation even in
extremely harsh environmental conditions, but find that most FPGA technologies
are stressed to meet these needs. In addition to traditional mission and safety critical
applications like aerospace, nuclear and chemical processing, there are many other
application fields that are joining the list, such as automotive, home automation,
military and civil infrastructure.

However, most of current applications are requiring more and more computation
capabilities to offer advanced services. In terms of complex systems implementa-
tion, reconfigurable FPGA circuits are now part of the mainstream thanks to their
flexibility, performances and high quantities of integrated resources. Reconfigurable
architectures exhibit a subtle (and potentially domain-dependent) trade-off between
extra area and required flexibility. Extra area can be estimated by physical synthe-
sis tools (used to design a reconfigurable device), whereas flexibility is scored using
applicable synthesis tools (preforming the resource allocation in order to map the
tagged portion of the application to the reconfigurable architecture). Recent fields
of applications that the FPGAs seem to address, correspond to harsh environments
(cosmic radiation, ionizing, electromagnetic noise) and with high fault-tolerance re-
quirements. Current FPGAs are not adapted to these environments, except for
specific circuits that have been hardened but at a very high cost overhead, which
makes them less interesting from an economic point of view. As a consequence, new
alternatives should be considered.

1.2.1 Threats, Uncertainties and Challenges

Advances in CMOS technologies are hampered because of physical and economic lim-
its. In particular, shrinking transistor sizes imply a reduction in yield and reliability
of System-on-Chip (SoC) due to the presence (variability) or appearance ("aging")
of physical defects in the circuit. Also, radiation-induced faults are a great threat to
reconfigurable architectures, not only when they are used in radiation-prone harsh
environments but also in terrestrial applications. Specifically, these issues include
manufacturing variability, sub-threshold leakage, power dissipation, increased circuit
noise sensitivity and reliability concerns, due to transient (e.g., radiation-induced
soft errors) and permanent (e.g., transistor aging) failures. These changes bring a
revolution in design practices and impose designing of circuits with fault detection
or even fault-tolerant capabilities. Hence, application designers face great challenges
while designing systems for mission critical applications using COTS FPGAs. Ad-
ditional fault mitigation design strategies have to be implemented and integrated
into application design process. This task greatly depends on various parameters
including sensitivity of the design, deployment atmosphere and required level of
reliability.
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1.2.1.1 Aging

With CMOS technology aggressively scaling towards the 16-nm feature size, mod-
ern FPGA devices face tremendous aging-induced reliability challenges. Major ag-
ing mechanisms of CMOS technology include bias temperature instability (BTI),
hot carrier injection (HCI), electro-migration (EM), and time-dependent dielectric
breakdown (TDDB) [28]. All of these mechanisms are responsible for the gradual
oxide wear-out or interconnects failures that cause circuit performance degradation
and transistor failures. Furthermore, all of these mechanisms can be worsened by
high switching rate of a circuit, excess supply voltage or high operational temper-
ature. Eventually, with continuous usage, circuit components gradually undergo
structural degradation, resulting in hard faults. In standard circuits, these faults
cannot be rectified and make a chip unreliable and out of use. Ultimately, such
aging mechanisms will shorten the lifetime of the devices.

• Negative Bias Temperature Instability (NBTI): due to the applied electric field
across the gate oxide, dangling bonds are developed at the interface of the
channel and the oxide layer. This affects a transistor by increasing the thresh-
old voltage thus making switching difficult. The NBTI is enhanced by high
temperature and high supply voltage.

• Hot Carrier Injection (HCI): when carriers with high energy collide with the
gate oxide layer and remain trapped there, the oxide layer is damaged, resulting
in alteration of the transistor characteristics. High switching rate of a circuit
as well as excess supply voltage enhance this effect.

• Electro-migration (EM): it is an aging effect taking place in interconnect
wire(s), contact(s) and via(s) in an integrated circuit. The effect causes mate-
rial transport by gradual movement of the ions in a conductor due to the mo-
mentum transfer between conducting electrons and the diffusing metal atoms.
Integrated circuits are very prone to this effect.

• Temperature-Dependent Dielectric Breakdown (TDDB): due to the voltage ap-
plied across the gate oxide, conduction starts through it using the trapped
charges, resulting in gradual break-down of the oxide layer. A high operating
voltage as well as higher temperature accelerate TDDB.

1.2.1.2 Variability

As transistor densities continue to grow, the minimum feature sizes of semiconduc-
tor devices are approaching scales for which it is difficult and expensive to achieve
uniformity in manufacturing. This results in variability in the critical dimensions
of features such as transistor gate length and oxide thickness, which then mani-
fest themselves in the spread of parameters such as propagation delay and leakage
current.

Process variation causes the physical and electrical parameters of transistors in
fabricated ICs to have different values from the intended nominal values. Such
parameters include threshold voltage (Vth), effective gate length (Leff ) and width
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(Weff ), oxide thickness (Tox), etc. This variation in parameters stems from different
factors including fluctuations in dopant concentration and the inability to precisely
print the geometric features on silicon. There are two types of process variations:
(i) Die-to-die (D2D) variations affect all transistors in the same die by the same
amount; and (ii) Within-die (WID) variations cause transistors in the same die to
have different characteristics; these variations are more difficult to address, and they
are the main causes of yield reduction.

Like any other high-performance semiconductor device, advanced FPGAs are
also affected by process variability. However, the reconfigurable nature of FPGAs
gives them a unique advantage. It enables the actual performance variation in
each device to be measured and characterized through Built-In Self Test (BIST),
typically with ring oscillators [29] or critical path tests [31]. As this thesis work
focuses more on radiation-induced faults in reconfigurable architectures, the effects
and classifications of the latter faults are discussed in detail in the following section.

1.3 Radiation-induced Faults in Reconfigurable FP-
GAs

SRAM-based (as opposed to anti-fuse) FPGAs are especially appealing in many
application domains due to their in-situ reprogrammability and high performance
for signal processing tasks. However, Due to high radiation susceptibility nature
of SRAM cells, the use of commercial SRAM-based FPGAs in satellites and space-
crafts presents unique challenges in the presence of the space radiation environment.
Sensitivity to radiation effects depends on many factors, including transistor geom-
etry and cell layout. Radiation effects generally include, but may not be limited to:
Total Ionizing Dose (TID) and Single Event Effects (SEE). The TID represents the
cumulative effect of many ionized particles hitting a device throughout the course of
its mission life, slowly degrading the device until it ultimately fails. The second case
involves high-energy particles that penetrate deep into materials and components,
leaving a temporary trail of free charge carriers in their path. If these particles hit
sensitive nodes in the circuit, they can produce adverse effects, generically described
as SEEs).

1.3.1 Total Ionizing Dose (TID)

Ionization is a process of adding or removing electrons (or other charged particles)
from atoms. The creation of electron-holes pair in the semiconductor may cause long
term effects in the oxide (charge trapping), and thus alter electrical characteristics
of electronic devices.

The cumulative damage of the semiconductor lattice (lattice displacement dam-
age) caused by ionizing radiation over the exposition time (measured in rads) causes
slow gradual degradation of the device’s performance. Electronic devices suffer long-
term radiation effects, mostly due to electrons and protons. The main sources of
these particles are solar energetic particle events, which usually occur in association
with solar flares. Cumulative long term ionizing damage due to protons and elec-
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trons can cause devices suffer threshold shifts, increased device leakage (and power
consumption), timing changes, decreased functionality, etc.

The TID radiation has the capability to damage semiconductor materials due to
its ionizing capability. The energetic ions can cause damage to semiconductor ma-
terials by breaking and/or rearranging atomic bonds. After exposure to sufficiently
large total-dose radiation, most insulating materials such as capacitor dielectrics,
circuit-board materials, and cabling insulators become less insulating or become
more electrically leaky. Certain conductive materials, such as metal-film resistors,
can change their characteristics under exposure to total-dose radiation. As semicon-
ductor devices exhibit a number of effects, it is important to choose materials and
components for application electronics that have the necessary radiation tolerance
for the required mission. It is also necessary to design in margins or allowances for
the expected component changes induced by the radiation environment.

1.3.2 Single Event Effects (SEE)

Single event effects (SEEs), caused by a single, energetic particle, are the most
common source of faults in SRAM-based FPGAs. There are various events that fall
under the general category of SEEs, which can be divided into two broad categories:
soft errors and hard errors. Soft errors are those events that have no damaging effects
and are cleared by normal device operation. Hard errors are events that generally
result in lasting damage to the circuitry. Highly energetic ions such as cosmic rays
can easily penetrate the structure of the device, pass through internal components,
and exit the structure in a straight line. This single particle impact is often referred
as an SEE. Shielding against SEEs is simply not practical. Because heavy particles
are omnidirectional, they impinge on an integrated circuit at random times and
locations, with random angles of incidence. SEEs are of far greater concern to
military avionics systems than total ionizing dose (TID) [32].

An energetic ion passes through a semiconductor device in a few picoseconds,
leaving behind a "track" or column of ionized material, typically ranging from a
few tenths of a micron to a few microns in diameter. The ionized track contains
equal numbers of electrons and holes and is therefore electrically neutral. The total
amount of charges is proportional to the linear energy transfer of the incoming
particle. It is as if a conducting wire were suddenly inserted into the semiconductor
device, disturbing the electric fields and normal current paths.

If a cosmic ray passes through the drain region of an NMOS transistor, a
short path (short circuit) is momentarily created between the substrate (normally
grounded) and the drain terminal (normally connected to a positive power supply
voltage). If this happens, a spike of current flows for an instant at the event site.
The amount of charge that is "collected" from the ion track before it dissipates
or disappears by recombination is significant: every device has a certain critical
charge, which, if exceeded, results in a single-event upset (SEU), burnout, or other
undesirable phenomenon.

The impact of a high-energy particle is shown in Figure 2.4. When a high-energy
particle, such as a neutron, strikes the silicon substrate of an integrated circuit, it
collides with atoms in the substrate, liberating a shower of charged particles that
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Figure 1.8 – Impact of a high-energy particle: when a high-energy particle (such
as a neutron) strikes the silicon substrate of an integrated circuit, it collides with
atoms in the substrate [32].

leave an ionization trail. For example, a neutron striking a silicon atom can release
energy through elastic and inelastic scattering events or via spallation events that
release magnesium and aluminum ions along with alpha particles and protons.

If a device is large, it presents a greater target for cosmic rays. It is therefore
more likely to receive a "hit" than a smaller device. Two important parameters must
be considered to determine the sensitivity of a device to SEEs: the threshold linear
energy transfer, above which upsets or single events are seen, and the saturation
cross section. Various types of SEEs, varying in their degree of seriousness, have
been identified.

1.3.2.1 Recoverable and Non-recoverable Effects

The errors due to SEEs can be broadly classified as recoverable and non-recoverable,
depending on the impact of those effects on circuit elements. Recoverable errors
are cleared or their effects are mitigated by adapting appropriate fault mitigation
strategies. On the other hand, non-recoverable errors create firm impact in the
circuit element, called hard errors. Transients, upsets and functional interrupts are
some of the recoverable fault events and latch-ups, gate rupture and burn-outs are
non-recoverable fault events. Different SEEs are classified as shown in Figure 2.5
and their definitions are given below.

18



Figure 1.9 – Classes of Single event effects (SEEs) [3].

• Single Event Transient (SET): is a temporary spike or signal caused by a
heavy ion. In some cases, this spike can excite analog circuits into temporary
or permanent oscillation. In digital circuits, the spike may propagate through
many logic gates, causing system malfunction. In mixed-signal devices, a
transient generated in the analog part of the device can propagate into the
digital part, causing logic-level shifts.

• Single Event Upset (SEU): usually manifests itself as a "bit-flip" or change
of state in a logic circuit. If sufficiently large number of these upsets occur,
or if a single critical node is affected, a computing system can freeze up and
must be rebooted. SEUs also occur in computer memories, microprocessors,
controllers, and almost any digital circuit containing latches or memory ele-
ments. They do not cause lasting damage to the device, but may cause lasting
problems to a system which cannot recover from such an error. The conse-
quence of an SEU could be either a single bit upset (SBU), where a single bit
is corrupted or a multiple bit upset (MBU), where two or more number of bits
are corrupted. In very sensitive devices, a single ion can cause a multiple-bit
upset (MBU) in several physically adjacent memory cells.

• Single Event Functional Interrupt (SEFI): is a disruption to normal device
operation that falls beyond a simple corruption of user data. These types of
effects alter the functionality of the circuit and typically require reconfigura-
tion/reset or power cycling for recovery. SEUs can become SEFIs when they
upset control circuits, such as state machines, placing the device into an unde-
fined state, a test mode, or a halt, which would then need a reset or a power
cycle to recover.

• Single Event Latch-up (SEL): is triggered when a heavy ion causes current to
flow uncontrolled between components of an integrated circuit. When PMOS
and NMOS transistors which are integrated into the same area of a silicon
substrate are struck by an energetic ion, they can form a parasitic or undesired
circuit element (called a thyristor). A thyristor is an interconnected n-p-n and
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p-n-p bipolar transistor; the current amplified by the n-p-n transistor supplies
the p-n-p transistor, which in turn supplies it back to the n-p-n transistor, thus
creating a feedback loop. When an energetic particle traverses the region of a
CMOS integrated circuit containing the parasitic transistors, it can generate
enough current to trigger the thyristor, if this happens the affected portion of
the CMOS integrated circuit will be driven into what is called a "latch-up".

• Single Event Induced Burnout (SEB): is a short-circuiting caused when a high-
energy ion impacts a transistor source, causing forward biasing. SEBs are
typically a threat to power MOSFETs but are also seen in IGBTs, high-voltage
diodes, and similar circuits. They may occur in power MOSFETs when the
substrate right under the source region gets forward-biased and the drain-
source voltage is higher than the breakdown voltage of the parasitic structures.
The resulting high current and local overheating then may destroy the device.

• Single-Event Gate Rupture (SEGR): is a plasma spike caused by a high-energy
ion impact, resulting in rupture of the gate oxide insulation. SEGR leads to
damage of the gate oxide and the resulting current path.

1.3.3 Multiple Bit Upsets (MBUs)

As stated, a single particle strike can alter the content of several memory cells
(usually physically adjacent), called multi-bit upsets (MBUs), which are significantly
more difficult to handle than SBUs [21]. The results presented in [22] indicate that
the percentage of MBUs continues to increase with each generation of FPGA devices.
Recent experimental results on Xilinx Kintex7 FPGAs indicate that 9.9% of events
cause multiple upsets within a frame (7.5% are double upsets); i.e., the estimated
Configuration RAM (CRAM) MBU rate is 1.02 · 10−11, which corresponds to one
MBU every 1515 s (about 25 min) [23].

This problem is also common to any other FPGA device family and it will
continue to worsen, as devices increase in density and geometries continue to shrink.
The necessity of handling MBUs has become a serious problem, because an MBU
may affect redundancy-based fault mitigation schemes deployed in FPGA devices
(explained in Chapter 2). In particular, the so-called domain crossing events (the
special case of MBUs, when an SEE affects configuration bits of different redundant
modules) are the major threat to circuits protected using triple modular redundancy
(TMR) [21].

MBUs can be induced by direct ionization or nuclear recoil. The energy of
the particle is more likely to provoke double bit upsets, whereas MBUs of higher
multiplicity are caused by an increase of the particle incident angle. In [25], the
authors propose a methodology to quantify the occurrence of proton and heavy ion-
induced MBUs. Induced upset patterns are correlated to a physical layout of the
programming data to determine the adjacency of upset bits. The physical layout is
used to classify adjacent upset bits and their affected resources. A bit is classified
as adjacent to another if it lies within one of the eight neighboring memory cells
surrounding that bit. Figure 2.3(a) illustrates the adjacency neighborhood used.
Any adjacent upsets are classified as MBUs. In Figure 2.3(b) three upset bits are

20



grouped together in a single MBU. In this way, maximally sized MBUs are found
to give an understanding of the size of MBU events. MBUs in 150nm and 65nm
SRAM technology are respectively discussed in [27] and [26] and provide insight
about different MBU patterns along with their occurrence probabilities.

Figure 1.10 – a) Upset adjacency neighborhood; b) MBU of 3 upset bits [25].

There are two quite similar yet a little different multiple upsets: MBUs and
multiple cell upset (MCUs). Good understanding of the differences between them
will be useful in the context of addressing the upsets of the configuration bitstream.
An MBU is a multiple upset in a single logical word, resulting from a single strike.
An MCU is a multiple upset of various storage locations, also resulting from a single
strike. Thus, an MCU is considered more like a circuit level fault whereas an MBU
is treated as information corruption.

1.4 Contributions
Using unreliable COTS FPGAs for critical applications in radiation–prone environ-
ments by adapting design–based fault mitigation strategies may have several draw-
backs, as discussed in this chapter. At the same time, fabrication–based rad–hard
FPGA devices are not affordable in many cases, usually due to excessive manufac-
turing costs. The ARDyT project aims to address those drawbacks and challenges
by developing a new dependable FPGA architecture platform, incorporating various
suitable fault mitigation strategies, to have an acceptable trade-off between reliabil-
ity and cost. ARDyT project is a multi-partner research consortium funded by the
French National Research Agency (ANR) under the project identification number
- ANR-11-INSE-015. ARDyT stands for Reliable and Reconfigurable Dynamic Ar-
chitecture (in French: Architecture Reconfigurable Dynamiquement Tolérante aux
fautes). The research presented in this dissertation is a part ARDyT framework,
focused on developing reliability strategies for configurable building blocks, config-
uration bitstream and linking those strategies to the centralized reliability manager
in the fault tolerant abstraction layer (presented in Chapter 3). The contribution of
this research work is summarized as follows.

• Different fault models that could occur in reconfigurable FPGAs are investi-
gated. Fault models associated with different building blocks of FPGA archi-
tecture are studied. Different state-of-the-art fault detection and correction
schemes are analyzed and their advantages and disadvantages are compared
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with each other, according to different parameters, including: hardware over-
head, implementation cost, design complexity, timing constrains, adaptability,
etc. Then, the fundamental question: "How to make an FPGA architecture
reliable? is answered by presenting a classification of three broad essentially
different approaches: i) designing radiation hardened architecture (by fabri-
cation), ii) achieving reliability by implementing design based fault-tolerant
techniques and iii) designing a reliable architecture without changing the fab-
rication process.

• As the unified ARDyT architecture model is already been defined collectively
by the project partners, a systemic view of hardware building blocks and
their granularity is presented in this thesis work. Fault detection and notifi-
cation granularity is precised by defining grouped partial reconfigurable regions
(GPRRs). Functional specification of the dedicated fault tolerant abstraction
layer and their link to hardware architecture to establish an interaction is in-
troduced. Fault mitigation process flow algorithm for configurable logic blocks
and configuration bitstream is associated with the centralized reliability man-
agement strategy. To facilitate the fault status reading (notification) and to
provide link to the centralized reliability manager–R3M, a dedicated register
is defined at GPRR level, called fault status register (FSR). An interrogation
protocol (with access to FSRs) is outlined with an objective to adapt appro-
priate fault-reading technique and to notify the fault status to the R3M. Here,
the term fault-reading refers to getting knowledge about the fault occurrence
in the fault-aware hardware/application modules.

• The reconfiguration process based fault mitigation schemes can remove only
the upsets affecting the configuration bitstream. Unfortunately, there are other
sources of faults that might directly affect hardware resources of reconfigurable
FPGAs. Their nature and consequences differ from those which occur in the
configuration bitstream and their effects cannot be corrected by performing
configuration write-back. A new fault-aware configurable logic block (CLB)
is proposed, which is capable of on-line detection (i.e. during normal func-
tioning) of faults at the fine granular level (i.e. LUT level). The approach
proposed relies on identifying combinational and sequential circuit faults sep-
arately, which helps in finding a fault and its handling according to its nature.
As far as the multiplexers in CLBs are concerned, they cannot be directly
affected by radiation-induced SEUs which could cause SBUs and/or MBUs,
because they do not contain any storage elements. Nevertheless, as any other
combinational circuits, they can be affected by radiation-induced temporary
faults called Single Event Transients (SETs). Because fault models affect-
ing combinational circuits and sequential circuits are different, hence different
fault detection schemes are proposed to combinational and sequential circuit
elements, according to their fault models.

The proposed fault-aware CLB architecture is different from the conventional
CLB structure used in commercial off-the shelf (COTS) FPGAs. The pro-
posed CLB structure is customized in a way which supports ARDyT FPGA
architecture. Additionally, the proposed scheme provides flexibility in apply-
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ing the reliability mechanism, i.e., the designer can choose between either
using the complete resource in CLB for functional implementation or making
a fault-aware CLB by using internal resources.

• In SRAM-based FPGAs, memory bit cells are predominantly configuration
bits, occupying even more than 98% of all memory in most FPGA devices.
These configuration SRAM bits are prone to radiation-induced SEUs (both
SBUs and MBUs). Because the functionality of an SRAM-based FPGA is
determined by the contents of the configuration memory cells, any alteration
of the configuration bits by an SEU could change the functionality of the
FPGA device. Therefore, in this dissertation, a new built-in 3-dimensional
Hamming (3DH) multiple bit error correcting scheme is proposed to mitigate
the effects of SBUs and MBUs caused by radiation in the configuration mem-
ory. The idea is to perform the configuration bitstream protection by the
proposed 3D-Hamming scheme in the background during run-time, as it is
done in Xilinx Virtex FPGA devices. In the proposed configuration bitstream
protection scheme, detection and correction of errors happen as a continuous
cyclic process, by taking advantage that Hamming error detection and cor-
recting code, not just detects the error but also locates its bit position in the
(configuration) word being processed. The primary difference and advantage
of the proposed scheme over the conventional methodology used in Xilinx ar-
chitectures is that this technique does not uses the external golden copy of
the configuration bitstream. The proposed 3DH scheme is incorporated with
the internal configuration bitstream access resources (internal configuration
access port (ICAP), background read-back and write-back, etc.) and com-
pletely managed by the centralized reliability manager (R3M) in the FTAL.
It provides faster reconfiguration of frames affected by multiple errors/upsets,
because correction can be done using internal bus alone, unlike most known
methods that rely on the external configuration backup and the I/O lines.

1.5 Outline
This dissertation summarizes the propositions and results obtained in developing
fault mitigation strategies for configurable logic resources (CLBs) and configuration
bitstream, in the context of ARDyT framework. Detailed descriptions are presented
in the corresponding chapters.

• Chapter 2 presents a comparative study and deeper analysis about conven-
tional and state-of-the-art strategies used to achieve required level of reliability
in FPGA architectures. It covers techniques of fault detection, diagnosis, con-
tainment, and masking as well as error correction. Fault mitigation strategies
are discussed under three broad classifications: i) fabrication process based,
ii) design based and iii) custom architecture.

• Chapter 3 introduces the ARDyT framework, which aims to design a low-cost
reliable reconfigurable FPGA architecture with built-in fault-tolerant strate-
gies. Conceptual overview of ARDyT architecture is presented including func-
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tional description of hardware building blocks, features of dedicated reliability
management layer and fault mitigation decision making flow related to con-
figurable logic block and configuration bitstream protection.

• Chapter 4 focuses on fault mitigation in configurable logic resources. Fault
occurrence in primitive elements of a reconfigurable architecture and various
fault models affecting those primitive elements are discussed. A new fault–
aware customized configurable logic block (FA-CLB), proposed to support the
ARDyT architecture is presented. Fault–model–aware fault detection strate-
gies are proposed for combinational and sequential logic elements.

• Chapter 5 discusses the configuration bitstream protection in reconfigurable
FPGAs. It presents the proposed 3-dimensional hamming (3DH) based error
correcting scheme to tackle the radiation-induced multiple bit upsets (MBUs)
in the configuration bitstream. Possibilities and challenges of implementing the
proposed 3DH scheme in COTS as well as in the ARDyT FPGA architecture
are discussed.

• Chapter 6 concludes the dissertation by summarizing the results obtained and
with some conclusions. It presents some directions of future research which
are relevant to the work presented in this dissertation. It includes: i) the
definition of a unified model for the design of reliable FPGA architecture
with adaptive strategies, ii) identifying appropriate fault mitigation strategy
for routing resources, and iii) adapting the proposed 3DH scheme in real 3D
architectures.
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Chapter 2

Related Work

To endure functioning in harsh environments, including total dose radiation, tran-
sient phenomena and SEUs, critical systems require highly reliable components.
Reliability in FPGA based critical applications could be attained by implementing
the design:

• in radiation-hardened target devices (or)

• in radiation-tolerant architecture platforms (or)

• using design based radiation-tolerant (fault-tolerant) mechanisms.

There is a minor difference between the definition of the terms radiation-hardened
and radiation-tolerant. As its name implies, radiation-hardened means that the de-
vice is immune to the effects of radiation (up to a particular limit). A device that: i)
is immune to one-mega rad of dose, ii) exhibits immunity from single event destruc-
tive effects and iii) upsets at the rate inferior to 1x10−10 per bit-day in a geostationary
orbit (GEO) is almost universally considered radiation-hardened [33]. Radiation-
tolerant means that the device can operate as expected, in a particular radiation
environment, as long as certain precautions are taken. In other words, changes of
the fabrication process to mitigate the effects of radiation is called and radiation-
hardening or rad-hard, whereas changing the underlying architecture in terms of
logic design structure to mitigate the radiation effects is known as radiation-tolerant
or rad-tolerant. Table 2 in [34] shows the characteristics of the Actel Rad-Hard
and Rad-Tolerant and Xilinx Rad-Tolerant 4000XL series. Atmel’s ATF280E, Ac-
tel’s RH1020 and RH1280 are examples of rad-hard FPGAs. Xilinx’s XQR4013XL,
XQR4036XL and XQVR300 are examples of rad-tolerant FPGAs. According to
programming technology, both rad-hard and rad-tolerant FPGAs can either be ’one-
time configurable’ or ’reconfigurable’.

As reliability factors are not considered during the fabrication and architecture
designing process, ’design based radiation tolerance’ is completely different from the
above two categories. It employs design based fault-tolerant strategies ranging from
hardware redundancy, time redundancy to partial reconfiguration based approaches,
during the process of application design and implementation in any COTS FPGA
device. Indeed, most of the COTS FPGA architectures usually come with ’no’ or
’little’ built-in reliability support.
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2.1 Physical Radiation-Hardening
Physical radiation-hardening techniques rely on various physical means, such as
using insulating substrates and adopting rad-hard SRAM cells, etc., to achieve the
hardening. In the case of radiation hardening schemes based on insulating substrates,
hardened integrated circuits are often manufactured on insulating substrates instead
of the usual semiconductor wafers. Silicon on insulator (SOI) and silicon on sapphire
(SOS) are commonly adopted insulating substrate techniques.

2.1.1 Silicon on Insulator (SOI) [35]

Silicon on insulator (SOI) is an alternative way of chip making process, by replacing
the bulk silicon wafers (approximately 0.75 mm thick) with wafers which have three
layers: i) a thin surface layer of silicon (from a few hundred Angstrom to several
microns thick), where the transistors are formed, ii) an underlying layer of insulating
material, and iii) a support or "handle" silicon wafer. Another example of the rad-
hard FPGA based on the SOI process technology is Atmel ATF280E [37]. The
insulating layer is created by flowing oxygen onto a plain silicon wafer and then
heating the wafer to oxidize the silicon, thereby creating a uniform buried layer of
silicon dioxide. Transistors are encapsulated in SiO2 on all sides. The differences
between SOI-based devices and conventional silicon-built devices lie in that the
silicon junction is above an electrical insulator. Figure 2.1 shows a typical NMOS
transistor with bulk CMOS process and with SOI process.

Figure 2.1 – NMOS transistor with bulk CMOS process and with SOI process [38].

The advantages of various aspects of the SOI technology can be summarized as
follows.

• Substrate Noise: Due to today’s increased digital density, substrate noise
issue is dominant in the bulk process (especially the digital noise can affect
the sensitive circuits). In SOI technology, the buried oxide layer acts as a
die-electric barrier and it helps in reducing the substrate noise.
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• Latch-up: Bulk CMOS relies on junction isolation between devices, while SOI
uses dielectric isolation to surround the entire device sides and the bottom.
SOI has no wells into the substrate and therefore has no latch-up or leakage
paths.

• Temperature Sensitivity: SOI CMOS is much less sensitive to temperature
than bulk silicon process. In all SOI processes, the leakage to the substrate is
obviously suppressed. Furthermore, in SOI process, the threshold voltage (Vt)
varies by about twice less with temperature than in the bulk CMOS process.

In summary, the benefits of the SOI technique compared to conventional silicon
processing include: (1) lower parasitic capacitance due to isolation from the bulk
silicon; and (2) resistance to latch-up due to complete isolation of the n-and p-well
structures. From a manufacturing viewpoint, SOI substrates are compatible with
most conventional processes.

The results presented in [39, 40] show design and fabrication of a radiation-
hardened SRAM-based FPGA VS1000 with a 0.5µm partial-depletion SOI logic
process. The radiation test results of [39] indicate that the VS1000 chip has the
total dose tolerance of 100 krad(Si), a dose rate survivability of 1.5x1011 rad(Si)/s
and a neutron fluency immunity of 1x1014 n/cm2. The higher reliability of SOI
devices is mainly due to eliminating latch up effects. Referring to hardness, it has
been proven that SOI MOSFETs are extremely robust to radiation effects and other
physical exposure. This is supported by the fact that in exposed circuitry, most
of the electron-hole pairs are generated in thick silicon. The primary barrier to
SOI implementation is the drastic increase in substrate cost, which contributes an
estimated 10–15% increase to total manufacturing costs [36].

2.1.2 Silicon on Sapphire (SOS) [41]

As discussed above, CMOS technology can be hardened against radiation by fabri-
cating its doped single-crystal silicon substrate over an insulating layer. When the
insulator used is sapphire, the fabrication technology is called silicon on sapphire
(SOS). It is a hetero-epitaxial process for integrated circuit manufacturing that con-
sists of a thin layer (typically less than 0.6 µm) of silicon grown on a sapphire
(Al2O3) wafer. A film of single crystalline silicon film is grown over the substrate,
then etched into islands and doped to make a bipolar or FET transistor.

As the region between active devices is etched away in this technology, and the
devices sit on an insulating layer of sapphire, complete electrical isolation is created
between active devices as well as between the devices and the silicon substrate. As
the sensitive regions around the channel are insulated from the substrate, the fun-
neling effect that adds to the charge collection in bulk silicon can be neglected in
SOS. The only charge collection is in the silicon, as no charge can get collected in
the sapphire, thus the overall charge collection volume is smaller than that in bulk
CMOS processes. Figure 2.2 illustrates the difference between bulk CMOS and SOS
CMOS technology. The guard rings that are normally used to limit leakage current
between transistors are unnecessary. Further, there are no deep well diffusion, re-
moving the need for the additional separation and overlap rules associated with this
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feature, so neither well nor substrate contacts are necessary. The overall result is
higher packing density of the active devices, which can be equivalent to the density
gain from shrinking one full technology node. There are no parasitic transistors to
cause latch up and the interconnection capacitances are greatly reduced compared
to bulk CMOS.

Figure 2.2 – Bulk CMOS and Ultra CMOS (SOS) process [43].

Finally, its inherent resistance to radiation, high input impedance characteris-
tics, high noise immunity and relative insensitivity to voltage variation, which make
CMOS-SOS a good solution for high radiation environments. The sapphire pro-
tects the device against transients, neutrons, and SEEs. Radiation-induced leakage
currents cannot flow between devices because of the insulating substrate. A SOS
process technology based radiation hardened SRAM FPGA is presented in [42].

The SOS is mainly used in aerospace and military applications, because of its
inherent resistance to radiation. The first advantage of sapphire is that it is an
excellent electrical insulator, preventing stray currents caused by radiation from
spreading to nearby circuit elements. The second advantage of silicon on sapphire
over exotic technologies is that it is manufactured in the same factories that pro-
duce common bulk silicon wafers. A further advantage is that, because of its better
performance, it can be manufactured in a less advanced factory than similar devices
in bulk silicon. One disadvantage of SOS over bulk silicon is that it is by nature
a more complex process and sapphire substrates are expensive. SOS has seen little
commercial use to date because of difficulties in fabricating the very small transis-
tors used in modern high-density applications. They are physically heavy, causing
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problems with manufacturing machines not designed for their mass.

2.1.3 Rad-hard SRAM

Government and private agencies deploying spacecraft are turning increasingly to
SRAM-based FPGAs to perform vital processing tasks, because their capabilities
have dramatically outpaced the traditional custom application specific integrated
circuits (ASIC) or one-time programmable (OTP) FPGA approaches. Rad-hard
SRAM-based FPGAs offer space system designers a compelling set of performance,
feature, and flexibility advantages for their new projects. The all-programmable
nature of SRAM-based FPGAs enables the capabilities of a system to be remotely
improved and expanded even after launch, when physical access is no longer possible.
The hardware-programmable nature of FPGAs makes them even more flexible than
stand-alone processors such as microprocessors, DSPs, and microcontrollers that are
only software programmable. The largest FPGAs can provide the functionality of
multiple processors and other devices, all on a single chip.

SRAM-based devices enjoy a multiple-generation advantage in process geometry,
thus offering greater capacity and performance, while consuming less power per gate.
However, they require configuration each time they are powered-on and has to be
radiation-tolerant. Currently, leading vendors (namely Xilinx, Atmel, and Altera)
offer SRAM-based FPGAs as fully rad-hard components.

Figure 2.3 – Conventional 6T-SRAM bit-cell [44].

Figure 2.3 shows the conventional 6T-SRAM bit-cell structure, with: M1 and
M2—driver, M3 and M4—load, and M5 and M6—access transistors, respectively.
The two cross-coupled PMOS pull-up devices retain a value in the cell indefinitely
without any external refresh mechanism. Data storage nodes directly connect with
bit-line, which makes the voltage shared between access transistors and pull-down
transistors, so that the storage node data is susceptible to interference. Such direct
read-write mode can make the cell influenced by external noise, which may lead to
logical errors. The worst case is observed when a cell is read-accessed. Suppose that
the node Q carries a "zero". When the cell is read-accessed, the load transistor M3
is off and the saturated access transistor M5 effectively takes its place. The current
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of the driver transistor M1 now has to contend with the saturation current of the
access transistor M5, which degrades the level of logic "zero" stored in the node.

To create rad-hard SRAM-based FPGA devices, a variety of techniques are used
to implement the underlying FPGA sequential and combinational elements in the
device. One such technique involves implementing rad-hard SRAM cells. Rad-
hardening solutions include modification of the SRAM bit-cell, which is one the
most common circuit-level techniques used to achieve improved robustness to SEUs.

Figure 2.4 – The DICE memory bit-cell [47].

• DICE [47]: The dual interlocked storage cell (DICE) is the best known SEU
hardened bit-cell. The design concept of the DICE relies on using the dual
modular redundancy (DMR) of its internal circuit nodes to achieve immunity
to errors affecting a single node. This is achieved with 12 transistors, imple-
menting a dual node feedback control mechanism, as seen in Figure 2.4. It
has an area overhead close to l00%, compared to a standard 6-transistor static
RAM cell. The storage element utilizes four internal circuit nodes to store
one memory bit. When an SEE temporarily upsets one of these four nodes,
only one additional node is affected by the upset through positive feedback.
In this way, a single node upset (SNU) will not propagate the error to the
other nodes, and the unaffected nodes can correct the logic state stored by the
cell. However, it still remains sensitive to multi-node upsets (MNU) and also
suffers from high power consumption, due to its many transistors and leakage
paths.

• Quatro-10T [48]: Quad-node 10T or Quatro-10T bit-cell is shown in Fig.
2.5. Two access transistors, N5 and N6, connect the bit lines (BL and BLB)
to the storage nodes A and B. If the stored bit is ’0’, the logic values at nodes
A, B, C, and D are ’0’, ’1’, ’1’, and ’0’, respectively. Each of these nodes is
driven by an NMOS and a PMOS transistor, their gates being connected to
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Figure 2.5 – Quad-node 10T or Quatro-10T bit-cell [48].

two different nodes. As a result, if an SET pulls down (up) a node voltage,
the node voltage is restored by the ’ON’ PMOS (NMOS) transistor connected
to the node and driven by an unaffected node. If the SEU turns on a PMOS
(NMOS) transistor, the transistor has to work against an unaffected ’ON’
NMOS (PMOS) transistor to pull up (down) its drain voltage. Thus, a negative
feedback prevents any accidental flipping of the cell. On the other hand, in
a standard 6T cell (Figure 2.3), a positive feedback comes into play when an
SEU changes a node voltage, thus helping to flip the cell.

Figure 2.6 – 12T rad-hard SRAM bit-cell [47].

Accordingly, if the 6T bit-cell is sized up to occupy the same area as the
Quatro-10T cell, the 6T bit-cell will still remain more vulnerable to soft errors.
As opposed to the DICE which relies on four access transistors, the 10T bit-
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cell uses only two access transistors for functionality, as can be seen in the
circuit schematic of Fig. 2.5. This decreases the area and the leakage current
of the bit-cell through the access transistors but, unfortunately, it also results
in a much higher write access time and requires careful sizing for functionality.
In spite of the multiplication of the storage data nodes, the 10T bit-cell still
has a sensitive node that can flip it after a radiation particle hit. While it
still enjoys lower SEU rate than the standard 6T SRAM bit-cell, it is mainly
a candidate for sea-level SEU hardening, as its error resilience is insufficient
for space applications.

• 12T Rad-hard SRAM Cell [47]: According to the authors in [47], the
12T SRAM bit-cell of Figure 2.6 brings in the benefit of filtering not just mere
voltage division. It overcomes the need of a separate well for PMOS and it does
not need periodic refresh signals. To improve its SEU tolerance, the design of
Figure 2.6 uses two additional transistors compared to the 10T SRAM bit-cell.
The transistors P5, P6, N5, and N6 are always turned on, thus acting as a low
pass filter to reduce the magnitude of a transient pulse. Indeed, the amplitude
of the noise pulse is limited, thus ensuring that one side of the symmetric cell
will always have approximately the same potential on the drain and body of
one of its devices, which provides desired immunity to SEUs.

The main disadvantage of the 12T bit-cell is its high static power consumption,
caused by four always-on middle transistors P5, N5, P6 and N6, and four
weakly gated lateral transistors P1, N1, P2 and N2. Consequently, the 12T
bit-cell is unsuitable for use in low power applications.

Figure 2.7 – 13T rad-hard SRAM bit-cell [50].

• 13T Rad-hard SRAM Cell [50]: This bit-cell targeted robust low-voltage
operation under SEUs for ultra-low power applications. The 13T bit-cell of
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Figure 2.7 achieves radiation hardening by employing a dual-feedback, sepa-
rated storage mechanism to overcome the increased vulnerability due to supply
voltage scaling. The storage mechanism of this circuit comprises five separate
nodes: Q, QB1, QB2, A, and B, with the acute data value stored at Q. This
node is driven by a pair of CMOS inverters made up of transistors N3, P3, N4,
and P4 that are respectively driven by the inverted data level, stored at QB1

and QB2. The nodes QB1 and QB2 are respectively driven to VDD or GND
through devices P1, P2, N1, and N2 that are controlled by the weak feedback
nodes A and B, that are connected to Q through a pair of complementary de-
vices (P5 and N5) gated by QB2. By driving the acute data level with a pair
of equi-potentially driven, but independent, inverters, a strong, dual-driven
feedback mechanism is applied with node separation for SEU protection. This
setup effectively protects Q from an upset on QB1 or QB2, while achieving a
high critical charge at node Q.

Figure 2.8 – Extremely low power SRAM bit-cell (SHIELD) [49].

• The SHIELD SRAM Cell [49]: The SHIELD SRAM bit-cell of Figure 2.8
also targeted low-power critical applications. To mitigate SEU susceptibility,
SHIELD uses gated inverters M5-M1-M2-M6 and M7-M3-M4-M8. (A gated
inverter is an inverter with an additional input gate.) If both inputs are in the
same logical state, the output will be equivalent to that of a regular inverter.
When the inputs differ from each other, the output floats with the logical state
of the previous output. In the SHIELD bit-cell, a novel radiation tolerant
’cut-off’ network M11-M12 and M13-M14 is located between two gates of each
gated inverter. The SHIELD SRAM bit-cell has two of these upgraded gated
inverters, which are cross-coupled. This results in two sets of separate dual-
data nodes, which exhibit high SEU tolerance under scaled supply voltages.

In summary, rad-hard SRAM-based FPGAs reduce or eliminate the compulsion
of resource triplication in many critical applications, thus freeing resources of the
FPGA devices to implement more functionality with lower payload weight, power
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consumption, and system cost, thus allowing to implement more sophisticated sys-
tems. Unfortunately, rad-hard SRAM-based FPGAs are much more expensive than
COTS FPGAs, hence, the COTS devices are preferred when the cost is the major
issue,. Also, the total estimated area of the hardened SRAM configuration memory
is approximately 2.5 times larger than that of the basic memory using un-hardened
bit-cells [51]. Also, there is a considerable amount of performance degradation in
hardened memory cells compared to basic SRAM memory cells.

2.2 Design Based Fault Tolerant Techniques
Most of the aforementioned physical hardening techniques have their drawbacks.
Process hardening is expensive and often higher protection is not mandatory for the
entire design. Solutions at the circuit level depend on the tolerated critical charge
Qcrit which, in turn, depends on technology, design and electrical parameters. Sys-
tem design level solutions, such as error correcting codes and modular redundancy
schemes, better leverage their costs by adding soft error resilience features where
required and are technology independent.

Design based fault mitigation techniques represent a general approach which is
potentially easier to apply to achieve a desired reliability level of an FPGA-based
design intended for critical applications. In contrast to fabrication process level
strategies, design based techniques do not require any process level variations and
can be applied directly to any COTS FPGAs [52]. Important factors such as de-
sign complexity, overhead, latency and power utilization, greatly depend on the
chosen fault mitigation strategy and implementation methodologies. Redundancy
and Rewriting are two most common approaches used in design based fault mit-
igation, which can be applied at different levels and with different perspectives.
Redundancy is simply the addition of resources, information, or time beyond what
is needed for a normal system operation. Rewriting based techniques are mostly
used for clearing errors in memory elements. The use of redundancy can provide
additional capabilities within a system, although it can have important impact on
a system’s performance, size, weight and power consumption. The following two
classes of design based techniques can be distinguished.

• Static techniques rely on the concept of fault masking. They achieve fault-
tolerance by means of passive redundancy and comparator/voting mechanisms,
without requiring any action on the part of the system.

• Dynamic techniques achieve fault-tolerance by detecting the existence of
faults and performing some action to remove the faulty hardware (or fault)
from the system (that is why they are also called active redundancy). These
techniques rely on using concurrent fault detection, fault location, and fault
recovery.

The goal of using design based techniques can vary from simple detection of
the presence of an upset in the system to more complex detection and correction
of the system error in the presence of a fault. All design-based techniques rely on
some kind of redundancy, which can be provided by extra components (hardware
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redundancy) or by an extra execution time or by different instants of data sampling
(time redundancy). Obviously, very often, a combination of both approaches is
used. In today’s programmable logic components, such as SRAM-based FPGAs,
due to their advanced features such as partial reconfiguration, various rewriting-
based techniques are used. Examples of this technique are configuration scrubbing,
dynamic partial reconfiguration and rerouting design. They are able to clean out
quickly an upset from the programmable matrix, so that accumulation of multiple
upsets (which are significantly more difficult to handle) can be avoided.

Identifying the most appropriate fault mitigation solution for a specific applica-
tion design is a challenging task. It requires a comparative trade-off study focusing
on fast turnaround time, low cost, high performance and high reliability. A proper
set of fault mitigation strategies must deal perfectly with both SETs (which occur in
combinational circuitry) and SEUs (which occur occur in sequential elements). In
this way, transient faults in the combinational logic will not produce errors subse-
quently stored in memory cells, and bit flips in the storage cells will be immediately
corrected. Each technique has some advantages and drawbacks, and there is always
a compromise between area, performance, power dissipation and fault-tolerance ef-
ficiency.

2.2.1 Hardware Redundancy

Hardware redundancy relies on addition of extra hardware blocks for detecting
and/or tolerating faults. Functional blocks are physically replicated, so that the
system could monitor its functioning state on its own. The N -tuple (N ≥ 2) modu-
lar redundancy, also known as parallel redundancy, refers to the approach of having
functionally equivalent multiple units running in parallel and executing the same
task. All units are highly synchronized and receive the same input information at
the same time. Here, we will concentrate on three typologies the most frequently
used in real-world designs: dual modular redundancy (DMR), triple modular redun-
dancy (TMR), and quadruple modular redundancy (QMR).

Figure 2.9 – Dual modular redundancy (DMR) [53].
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Dual Modular Redundancy (DMR): is the simplest hardware redundancy
scheme, only capable of detecting errors. The DMR uses two identical copies of
a circuit and compares their outputs to determine if an error has occurred. The
comparator circuit signals any disagreement in the operation of the two circuits and
signals an error to the system. As shown in Figure 2.9, both primary and mirrored
blocks are identical functional elements, served with the same input signal (Data
In) and the output of both the blocks are connected to a logic comparator to find
the mismatch. The presence of a fault/error revealed by any output mismatch is
indicated by the status signal (Error). The functional output (Data Out) can be
derived from any of the duplicated blocks. The DMR scheme can be applied at
different granularity levels: from the bit level to device level as well as from the fine
to coarse granular level. It can be used for both combinational and sequential logic
respectively to detect SETs and SEUs. The cost increase of a DMR system over a
non-redundant system is over 100% for the additional hardware (redundant block
and the comparator) and possibly some extra software development time.

Figure 2.10 – Triple modular redundancy (TMR) and the majority 2-out-of-3 voter
with its truth table [53].

Triple Modular Redundancy (TMR): is the most common hardware redun-
dancy based mitigation technique in many critical application such as aerospace,
nuclear, and medical, where the cost of failure could be extremely high. TMR is
more practical than DMR, when immediate fault masking and continuous operation
(without any interruption) are required. In the case of TMR hardware redundancy
approach, all blocks are triplicated and voters are placed at their outputs to deter-
mine the correct value by means of voting. As shown in Figure 2.10, three identical
functional blocks are served with the same input (Data In) and their outputs feed
the majority voter. When there is no fault, all three outputs agree. When there is
a fault in one of replicated blocks, the majority voter chooses as the correct output
the identical output produced by two fault-free functional modules. The circuit can
be a mere flip flop or an entire logic design. The majority voter produces the logic
value ("1" or "0") output that corresponds to at least of two of its inputs. For
example, if two or more of the voter’s three inputs are a "1", then the output of the
voter is a "1". If the inputs of the voter are labeled A, B, and C, and the output
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V, respectively, then the Boolean equation for the voter is: V= AB + AC + BC,
according to the truth-table also shown in Figure 2.10.

Figure 2.11 – The Xilinx TMR—XTMR scheme [54].

XTMR: TMR deals with transients and upsets in both combinational and se-
quential logic, respectively. However, if an upset occurs in the voter, the TMR
scheme could be ineffective and a wrong value will be present at the output. An-
other problem of this approach is the possible accumulation of upsets, hence an extra
mechanism is necessary to correct the upset in each of triplicated modules before
the next fault occurs. The second upset in the same section of the design, but in a
different redundant module can lead to incorrect majority voter output. Common
mode failures (CMFs) [53] result from failures that affect more than one element
of a redundant system at the same time, generally due to a common cause. They
may be design faults or operational faults due to external (such as electromagnetic
interference (EMI) and radiation) or internal causes.

To facilitate the possibility of designing fault-tolerant systems by any users and
overcome the issues related to CMFs, Xilinx proposes the XTMR (Xilinx TMR)
supported by the CAD tool TMRTool [54], applicable to Xilinx FPGAs. TMRTool
can partially or fully triplicate a design, insert voters, synchronize feedback path
loops, and allow customized user-triplicated module insertion. A triplicated design
can mitigate SEU impact on the user design. However, a TMR design in a single
FPGA device is still vulnerable to SEFI. A TMR design also consumes significantly
more resources and power, and can suffer a significant performance degradation.
For example, system clock frequencies over 100 MHz in a Virtex-II device might be
difficult to achieve. Some other design considerations such as board layout com-
plexity, signal integrity analysis, and asynchronous applications are documented in
the TMRTool user guide which can be obtained with the evaluation TMRTool. To
note that Xilinx TMR approach supports: i) triplicating all inputs, including clocks
and throughput (combinational) logic; ii) triplicating feedback logic and inserting
majority voters on feedback paths; and iii) triplicating all outputs, using so called
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minority voters to detect and disable incorrect output paths.
The major difference between traditional TMR approaches and Xilinx TMR

approach is that the majority voter itself is also triplicated. Also, the minority
voters are also added, as shown in Figure 2.11. Thanks to these minority voters,
the output of the block which behaves differently will be disconnected by the tri-
state buffer (TBUF). If an upset occurs in the throughput logic or in a state machine
somewhere in the design, one of the redundant design domains will behave differently
from the others. Then, the output voter for that domain will detect that its domain is
behaving differently and disable the three-state buffer for that domain, placing its pin
in a high impedance state. The other two domains will continue to operate correctly,
driving the correct output off the chip. XTMR addresses various shortcomings of
a traditional TMR, because it eliminates single points of failure and makes the
design immune to SEUs and SETs, as well as is supported by means allowing to
avoids accumulation of errors. Although this technique is considered highly efficient,
it utilizes significantly larger design area (area overhead). Also, it is difficult to
implement this solution in large systems due to limited number of TBUFs in the
FPGA devices. Generally, the XTMR based designs require approximately from 3X
to 4.5X hardware overhead.

Quadruple Modular Redundancy (QMR): is fundamentally similar to TMR
but using four units instead of three to increase reliability. One of a very few
designs using QMR-based approach to reliability improvement is Honeywell’s 2oo4D
architecture [55].

2.2.2 Time Redundancy

Techniques based on time redundancy are usually used to detect a SETs, by taking
advantage of the transient pulse characteristic to compare the same signal at differ-
ent moments. Hardware redundancy based schemes require large amount of extra
hardware. In those applications in which time is less important than hardware, time
redundancy is a means to reduce the amount of extra hardware at the expense of
additional time. Due to their nature, transient faults can be detected by repeated
computations with comparison of the results obtained. Time redundancy schemes
can be classified as: 1) simple time redundancy and 2) full time redundancy, de-
pending on the actual implementation and how a system handles its transient faults.

Figure 2.12 – Simple time redundancy scheme [84].

39



Simple time redundancy takes advantage of the transient character of the spu-
rious pulse (SET) generated by the particle strike and relies on comparison of the
output signals at two different moments. The output of the combinational logic is
latched at two different times, where the clock edge of the second latch is shifted by
time d, which is assumed larger than the SET duration. Should a transient pulse
be present, a comparator would indicate its occurrence (an error detection signal),
because it does not arrives simultaneously at its two inputs. A single bit comparator
is nothing else but the 2-input XOR gate, as shown in Figure 2.12. Such a scheme
allows only to detect SETs and fault recovery can be done e.g. by re-execution of
the last operation.

Figure 2.13 – Full time redundancy scheme—An example [84]

Full time redundancy applied to the combinational logic relies on voting the
correct output value in the presence of a SET. The name full redundancy comes
from the complete N -modular redundancy, where usually N = 3, i.e. it is a kind of
TMR. In this case, the output of the combinational logic is latched at three different
moments, where the clock edge of the second latch is shifted by the time delay d
and the clock of the third latch is shifted by the time delay 2d. A voter chooses
the correct value. The full time redundancy scheme is shown in Figure 2.13. The
area overhead comes from the extra sample latches and the delay penalty is given
by clk + 2.d + tp, where d depends on the duration of the transient current pulse
and tp is the delay of the majority voter. Unlike simple time redundancy, where
only detection of transients is possible, the full time redundancy allows to tolerate
the effects of transients.

Actually, time redundancy can be applied to protect logic circuits in two different
ways. One case already described and illustrated by the examples shown in Figures
2.12 and 2.13 requires some hardware support (the duplication or triplication of
registers). Another way of applying time redundancy is known as re-computation
approach. In this case, transient effects are cleared from the circuit nodes by re-
computing the task with same set of inputs in the next operating cycle. This method
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helps to distinguishing between transients and permanent faults: if re-computing of
the task after the detection of the fault succeeds (i.e. a fault disappears0, then it
was transient; otherwise, the fault is declared permanent.

2.2.3 Configuration Scrubbing and Partial Reconfiguration

The re-programmability, read-back and run-time partial re-programmable capabilities
of modern FPGAs (e.g. of Xilinx Virtex family devices) allow for fast detection and
correction of SEUs in configuration memory [60].

Scrubbing: Programmable FPGAs contain a large number of memory cells which
are all susceptible to radiation-induced upsets.

Amongst them, the vast majority of memory cells are those of the configuration
memory (typically over 90%). Configuration memory upsets are particularly trou-
blesome, since they may change the user’s circuit, possibly altering the function of
configurable logic, I/O, or other resources as well as changing the structure of the
routing network. An important and most common technique used to reduce the
effects of upsets within the configuration memory is called scrubbing [60]. Config-
uration scrubbing does not contain any error detection mechanism but it relies on
periodic refreshing of the FPGA’s configuration memory during its normal opera-
tion. Its goal is to clean up configuration errors caused by SEUs and thus to prevent
the build-up of multiple configuration errors [63]. In this case, the refresh frequency
must be superior to the expected appearance rate of the SEUs. A through study
on upset rates should be done before applying scrubbing, which requires also to
take into account the device manufacturing technology as well as the environment
conditions. Scrubbing requires the availability of a golden backup copy of the whole
configuration data either inside or outside of the device. Obviously, memory which
holds the golden copy must be protected against radiation effects. The effectiveness
of internal and external scrubbing is discussed in [56].

Figure 2.14 – Architecture of a traditional scrubbing scheme [57].

Configuration scrubbing requires more infrastructure than that needed by an
unprotected FPGA-based systems. As shown in Figure 2.14, external memory and
a processor or a configuration controller are needed to support the scrubbing process.
The external memory is required to hold the "golden copy" (i.e. error-free) of the
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configuration bitstream, whereas the configuration controller is required to sequence
through the partial reconfiguration steps. More sophisticated scrubbing techniques
require a fully programmable processor. Because these components manage the
configuration of the FPGA, it is essential that they are also protected against SEUs
through appropriate mitigation or rad-hard by design techniques. The scrubbing
technique of Figure 2.14 is referred to as the "blind scrubbing" since it configures
the FPGA whether or not upsets have occurred (i.e. blindly). A variation of blind
scrubbing is called "read-back with correction".

Partial Reconfiguration: The read-back function is an efficient means for SEU
detection. If a particle penetrates the susceptible portion of a configuration SRAM
cell and thus alters its state, a read-back and verification of the configuration data
will detect the upset. To perform a verification (SEU detection), the configuration
data which is read back from the device, is compared with the configuration bit-
stream. Whenever an upset is detected, it is corrected by executing reconfiguration
operation [60]. In this method of error detection, bit by bit comparison of configura-
tion data is performed. This requires the use of a mask file and read-back file, each
of which has the same size as the original bitstream used to configure the FPGA.
Because this method would effectively triple amount of system memory required for
configuration and read-back operations, it is not generally considered applicable for
space applications [60]. Moreover that the read back interval, which is calculated in
function of the structure of the device as well as the space environment, could be a
crucial factor to be considered [64].

The time required for SEU correction may be dramatically decreased by using
partial reconfiguration. This is a significant point of consideration because complete
reconfiguration implies "de-configuration" which means bringing the part "off-line"
during the correction cycle and thus losing all internally stored data. Partial recon-
figuration allows individual frames to be written to the configuration memory. The
frame is the smallest reconfigurable unit for a given FPGA device. The number of
frames and the bits per frame vary for different devices). Therefore, only the frame
whose cell is affected by the SEU would need to be corrected. The fault mitigation
technique presented in [62] exploits this partial reconfiguration feature and is based
on using a cyclic redundancy code (CRC) checker for each FPGA frame. In this
method, CRC is periodically generated for each frame (during the read-back) and
compared to the expected CRC value. This method greatly reduces the amount of
system memory required to perform SEU detection. However, the above read-back
based techniques have some important limitations. An error-free read-back of the
configuration bitstream does not guarantee that an SEU did not occur. The FPGA
contains hidden state that cannot be read back, and upsets affecting the hidden
state can conceivably cause errors in the design without any bitstream errors being
detected [61]. For example, SEUs in the flip-flop states can occur without disturbing
the bitstream.

2.2.4 Error Detection and Correction Codes

Hardware redundancy based techniques are effective against errors affecting a single
module, but they could be prone to MBUs and accumulated SEU-induced multiple
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errors producing erroneous outputs when more than one copy of any redundant mod-
ule is affected by SEUs at the same time [84]. To avoid accumulation of SEU-induced
multiple errors, fault-tolerance techniques supported by some form of configuration
scrubbing can be the simplest way. An alternative to scrubbing is configuration
read-back which enables verification of the bitstream frame data by performing a
bit-by-bit comparison. However, the latter requires a mask and a read-back files,
a size of each is equal to the size of the original bitstream used to configure the
FPGA, which is time-consuming and triplicates the memory required to perform
the read-back and reconfiguration process.

To perform multi-bit error correction, scrubbing/reconfiguration based tech-
niques are considered more efficient. They can handle multiple upsets but require
continuous access to an external storage device which contains the original (golden)
configuration bitstream. Majority of reconfiguration based techniques rely on exter-
nal non-volatile memory devices which also must be protected against SEUs. Such
radiation-hardened memories can be expensive. Additionally, excessive access de-
lay for the external memory can degrade performance of the system. In the case
of multi-bit error detection, the reconfiguration process involves excessive delay in
accessing external storage device to recover the original configuration data through
limited I/Os in FPGAs. For instance, the internal FPGA system clock runs at sev-
eral hundred megahertz, while the slower I/O clock can use only one tenth of the
system clock.

Error detection and correction (EDAC) codes represent data redundancy, as a
number of redundant bits is added to the data, to facilitate error detection and cor-
rection. EDAC schemes are also used in reconfigurable FPGAs to mitigate internal
faults, especially SEUs. SEUs occur in memory elements in the form of single bit
and multi-bit upsets (SBU and MBU). Memory elements in reconfigurable FPGAs
can be classified as: 1) user data memory and 2) configuration memory. Most of
the memory bit cells in SRAM-based FPGA are configuration bits, occupying more
than 98% of memory in the device. Thus, the probability of SEU-induced errors in
configuration bits is much higher compared with that in user data.

There exists several multi-bit error correction codes, used in communication and
massive storage applications such as Hamming codes [68], low-density parity check
(LDPC) codes [69], turbo codes [70], Viterbi codes [72], and Reed-Solomon (RS)
codes [71]. Figure 2.15 illustrates hardware complexity of encoding and checking
circuitry and bit error rate (BER) efficiency of those error correcting codes [66].
Clearly, the Hamming code involves minimal hardware complexity compared to other
codes.

Hamming Codes: are an extension of simple parity checking method that can
be used to detect and correct errors. The basic idea is to have several parity bits
(called check bits in Hamming codes) and assign different bits to several overlapping
groups. If some parity bits are correct and others are not, the bit in error can be
deduced. The simple Hamming code permits correcting single-bit errors. Let k be
the number of information bits and m the number of check bits used. Because the
check bits must check themselves as well as the information bits, the value of p,
interpreted as an integer, must range from 0 to which is distinct values. Because m
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Figure 2.15 – EDAC: hardware complexity (logic gate count) vs. BER [66].

bits can distinguish 2m cases, the following inequality (known as the Hamming rule)
must hold:

2m ≥ m+ k + 1 (2.1)

It applies to any single error correcting (SEC) binary forward error correcting
(FEC) block code. The Hamming SEC code is the most common and the simplest
error correcting scheme, which is implemented by adding check bits to the data
according to the following pattern:

1. The data bits are numbered from left to right, starting with 1.

2. Every bit whose number is a power of 2 (i.e. 1, 2, 4, 8, ...) is a check bit.

3. The other output data bits (i.e. 3, 5, 6, 7, 9, 10, ...) contain the ordered data
bits.

Each check bit establishes even parity over itself and a group of data bits. A data
bit is in a check bit’s group if the binary representation of the data bit’s number
contains a 1 in the position of the check bit’s weight. For instance, the data bits
associated with the check bit 2 are all those with a 1 in the 2’s position of their
binary bit number-bits 2, 3, 6, 7, and so forth. More details about Hamming code
syndrome generation and error detection and correction can be found e.g. in [68].

Hamming SEC/DED: For many applications a SEC code could be considered
unsatisfactory, because it has been observed that more than single errors are also
likely. The Hamming code can be extended to correct single bit errors and detect
double errors in a data word by adding one global parity check bit (we assume even
parity) on all the bits of the SEC code word. Such a Single Error Correction and
Double Error Detection (SEC/DED) code, called an extended Hamming code, has
been used the most often in computing systems.
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Number of
data bits k

m for
SEC

m for
SEC/DED

1 2 3
2 to 4 3 4
5 to 11 4 5
12 to 26 5 6
27 to 57 6 7
58 to 120 7 8
121 to 247 8 9
248 to 502 9 10

Table 2.1 – Check bits for SEC and SEC/DED [68]

The number of check bits required for bothHamming SEC andHamming SEC/DED
codes is shown in Table 2.1. Obviously, the rightmost column simply shows that
one more bit is required for a SEC/DED code than for the simple Hamming SEC.
For example, from this table one can easily find that to protect a 64-bit memory
word using the SEC/DED ECC, eight check bits are required, giving a total memory
word size of 72 bits.

Perfect Hamming Code: Answering the question: "What is the minimum num-
ber of check bits required to protect the maximum number of data bits under the
occurrence of single bit error?" leads to the notion of the perfect Hamming code.
Table 2.1 shows the minimal and the maximal numbers of data bits k which can
be protected by a given number of check bits m. For instance, 7 check bits are
required to protect 27-bit data, whereas the same 7 bits are also required to protect
the maximum of 57-bit data. Therefor, the perfect Hamming code condition is

2m = m+ k + 1 (2.2)

By respecting the perfect Hamming code condition, given by equation (2.2), the
check bit overhead can be maximally reduced.

There are some effective ways of constructing a built-in EDAC scheme using per-
fect Hamming codes to mitigate radiation induced faults in configuration memory,
whose overhead is reduced compared to other EDAC schemes.

• In [65], the proposed detection/correction scheme is called Matrix codes (MC),
since the check bits are arranged in a matrix format. One important restriction
of error correction based on the MC is that if there are more than two errors in
each code word, MC can correct them if and only if there are only two errors
in each row of the matrix and one in each column.

• In [66], the Hamming based 2-D product code (2-D HPC) is introduced,
which performs SEC/DED in two different axis (two directions: row-wise and
column-wise) to deal with MBUs. It is shown that multi-bit error correction
capability of this built-in 2-D HPC can improve the reliability, and hence, sys-
tem availability, by orders of magnitude. However, there are the cases when
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Figure 2.16 – 2-D HPC: Non-detectable and non-repairable case [66].

the 2-D HPC fails to recover the data. As shown in Figure 2.16, when there are
multi-bit errors in both directions, the 2-D HPC may not be able to recover the
data. Due to advanced high-scaling technologies and shrinking device sizes,
the probability of occurrence of MBUs has highly increased and it will be even
higher in the future. So there is a strong urge to develop some error protection
techniques to attain 100% built-in multi-bit error recovery capability.

2.2.5 Hybrid Approaches

Traditional fault detection and mitigation techniques based on hardware redundancy
(such as DMR and TMR), time redundancy, and error detection and correction codes
can be combined with advanced features of today’s reconfigurable FPGA architec-
tures such as configuration read-back and write-back and run-time partial reconfigu-
ration, to obtain more sophisticated fault mitigation strategies allowing to achieve
maximal reliability and reduced area, time and power overhead. Such hybrid ap-
proaches helps in finding an acceptable trade-off between the overhead and the
reliability.

Redundancy with Partial Reconfiguration (PR)

Many fault mitigation approaches, which adopts combined techniques based on par-
tial reconfiguration and redundancy to achieve a reliable system, have been devised
in recent years. Generally, redundancy is used mainly to detect and/or mask errors
whereas the partial reconfiguration is used to reconfigure only the faulty portion
(faulty replica) of the design.

(i) Resource Duplication and PR: DMR is a simple hardware redundancy
scheme which uses two replicas (of the same logic) whose outputs are checked by
a comparator. However, the standalone DMR scheme cannot identify neither the
fault-free module—whose output is correct and can be used by a system, nor the
faulty module—whose state must be corrected or which must be reconfigured. It
needs an additional circuitry or mechanism to locate the affected resource.

• As in [79], a dedicated hardcore processor is used to detect the error as well
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as to decide when and which part need to be reconfigured.

• In [83], a dependable DMR system is developed based on dynamic recon-
figurable FPGAs, in which fault detection and mitigation is equipped with
redundant comparison test units and redundant encoding detection logic.

• Some techniques use combined approaches of DMR with concurrent error
detection (CED) based on time redundancy to achieve desired reliability as
in [84]. However, the possibility of using this method depends on the logic of
the circuit that is mapped onto the FPGA.

There are some approaches which use higher granular redundancy schemes as in
the case of fault-tolerant dynamic multi-processor system on chip (FT-DyMPSoC)
[81]. The FT-DyMPSoC uses a processor based redundancy and lockstep scheme.
This methods provides increased system performance by the utilization of parallel
computing. As for fault-tolerance, each processor in the device needs access to the
partial bitstream of the other processors, but only one processor has connectivity to
the compact flash memory (which holds the configuration bitstream). Hence, the
system is forced to use another shared memory to provide bitstream access to other
processors. Eventually, the size of consumed on-board memory has increased [90].
Also in such paired, mutually reconfigurable systems, reliability is ensured only
until the interfaces between the partially reconfigurable modules (PRM) are stable.
Generally, in resource duplication based techniques, the restoration time and input
rate are being crucial factors, which are application dependent [79].

(ii) Resource Triplication and PR: Initially, resource triplication based tech-
niques were developed just to mask the effects of the error without the aim of
identifying and correcting the fault. The results presented in [75, 76, 78] show that
dynamic reconfiguration and TMR seems to be the most effective way to mitigate
the effects of radiation induced faults by means of efficiently filtering the errors at
the voter stage. Such schemes avoid fault propagation, which has been considered
the most important issue to be addressed in the context of fault mitigation. TMR
can be adopted at different granularity levels. Area overhead, performance degra-
dation and reconfiguration timing characteristics change accordingly. Finding the
faulty module (faulty replica) and more precise localization of the fault is consid-
ered as an important key point in a fault-tolerant system based on TMR with partial
reconfiguration. It requires the complete design space exploration and it involves
partitioning of the entire system into independently controlled sub-systems, and
then placing this sub-systems into different reconfigurable regions of the FPGA [75].

EDAC with Partial Reconfiguration (PR):

In many architectures, EDAC codes are coupled with run-time partial reconfigura-
tion technique to protect configuration bitstream against SBUs and MBUs. In order
to detect errors in the content of configuration memory, some kind of parity bits for
error detection and correction codes are embedded within the memory content. In
the case of Xilinx’s FPGAs, SEC/DED parity bits are used [73]. Xilinx provides
a primitive, called FRAME_ECC, with the Virtex 5 devices. The FRAME_ECC
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primitive examines the data read back from the configuration memory and uses the
SEC/DED check bits to detect and correct errors in the bitstream. This scheme
significantly simplified the design of a scrubber (configuration scrubbing) with read-
back capabilities, as read-back is a background process. As the frame is the smallest
reconfigurable unit in the configuration bitstream plan of reconfigurable FPGAs,
it is sufficient to reload only the erroneous frame with the help of ’run-time par-
tial reconfiguration’. Internal and Hybrid scrubbing based configuration bitstream
protection schemes make use of ’EDAC + PR’ combination.

Figure 2.17 – ICAP-based internal scrubbing scheme [58].

• Internal Scrubbing [58]: it takes advantage of internal configuration ac-
cess port (ICAP) to implement the scrubbing controller in the FPGA fabric.
Thanks to the ICAP, the FPGA is capable of reading and modifying the config-
uration internally. The ICAP ports are built into several FPGAs from Xilinx
(Virtex II and above). Internal scrubbing process performs read-back of each
frame via ICAP interface: it uses Frame_ECC to detect errors, it corrects er-
rors using the Frame_ECC syndrome value, and writes corrected frame back
via ICAP interface. ICAP based internal scrubbing scheme architecture is
shown in Figure 2.17. This scheme does not require external memory, exter-
nal controller and external I/O pins.

The internal scrubber of Virtex 7 series FPGAs is capable of checking the
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entire device configuration every 30 ms. This hardware block provides an
excellent means to speed up device scrubbing speed, though multi-bit errors
will still need to be handled. Unfortunately, FPGA designs using the ICAP
are susceptible to the same radiation upsets they are developed to fix. For
such designs multiple copies of the scrubbing state machine will be needed.
There will still be a single point of failure where the logic connects with the
ICAP interface at which a single upset could hang the system.

Figure 2.18 – The hybrid scrubbing system [59].

• Hybrid Scrubbing [59]: By combining internal scrubbing and traditional
JTAG-based external scrubbing techniques, a fast yet robust scrubbing system
was developed [59]. In this hybrid scrubbing system, the internal scrubber unit
is configured to correct all single bit errors it encounters. During this operation
the internal scrubber also notifies if there is any multi-bit errors detected. The
internal scrubber will freeze on any error it does not correct until the configu-
ration is accessed through another port (external). Once the configuration has
been accessed externally, the internal scrubber begins scrubbing again starting
at the first frame of the device. A block diagram of the scrubber internal to the
FPGA is shown in Figure 2.18. For this design, many hardware components
have been connected to the BSCAN ports of the JTAG. The scrubber then
reads in information from these JTAG ports to get the status of the system.

2.2.6 Selective or Partial Mitigation

Although TMR based techniques impose greater overhead in-terms of area and
power, for some highly-critical applications TMR schemes are still considered more
efficient in terms of higher reliability than other mitigation methods [85]. Due to
resource constraints and/or system constraints, TMR of an entire user FPGA design
(full TMR) is not always feasible. If this is the case, partial triplication of the FPGA
design may be the next best alternative [86]. Mitigation of part of the design can
increase the overall reliability of the design at a lower cost than full TMR.

One such technique, called selective TMR (STMR) was proposed in [82]. It
identifies SEU "sensitive" gates in a given circuit and then applies TMR selectively
to those gates. The sensitivity of a gate to an SEU is determined by the signal
probabilities of its inputs. A gate is sensitive if an SEU on any one of the inputs is
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likely to be propagated to the output of the gate. The advantage of this technique
is that the area overhead is typically much smaller than that of the full TMR.

Figure 2.19 – Implementation of partial TMR: An example [63].

Another attractive alternative to full mitigation is to mitigate only the most
critical sections of a design. As proposed in [63], partial TMR classifies circuit
structures depending on their importance and applies TMR selectively according to
this classification. An example of a partial TMR implementation is shown in Figure
2.19, where the ’red’ color indicates critical logic and ’blue’ indicates non-critical or
less critical logic. Higher priority is given to structures causing "persistent" errors
within the design. (Persistent errors are caused by SEUs within the configuration
memory corresponding to sequential circuit structure; an incorrect state remains
until appropriate reset measures are taken.) By selectively applying mitigation to
a design, the most effective balance between mitigation cost and reliability can
be found. For certain applications, applying selective mitigation to components
with persistent errors can yield higher returns in reliability per unit cost than full
mitigation.

Any partial mitigation technique using TMR is based on the idea that only a
subset of a design’s components will be protected with TMR by triplicating them
when necessary. This subset must be carefully selected so that the resulting partially
mitigated design would be as reliable as possible. Basically, some other strategies like
time redundancy, EDAC and other hardening techniques, etc., can also be adapted
to obtain partial fault mitigation. Performance and overhead trade-off radio varies
case-to-case, according to the chosen fault mitigation technique and the critical
nature of implemented application.

2.2.7 Fine Granular vs. Coarse Granular Strategies

Fault mitigation schemes can be adopted at different granularity level but the ef-
fectiveness, implementation complexity and overall reliability of the system greatly
depend on the chosen granularity level. Many recent works discuss the effective-
ness of fault mitigation strategies with respect to the granularity in which they are
applied.
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High-granularity level (or coarse granularity) mitigation techniques do not pro-
vide simple and robust recovery mechanism after an error has been detected in one
of its internal modules. They can guarantee that an error will be detected only when
it is manifested on the output of the module, where it is compared/voted with the
outputs of the redundant modules, provided that some redundancy based scheme
was employed. The internal state of the erroneous module can at that stage be very
much different from the state of the remaining redundant modules. Any further
execution will be meaningless since the erroneous state will not be automatically re-
covered from. The likely consequence is that the application has to be reset or some
other means of action has to be taken to recover the faulty portion/module (the de-
cision can be made only by analyzing the outputs of the modules). It is required to
save the correct context and restore it after the error is corrected. Then the module
could resume the execution at the saved point. Normally, to bring the faulty por-
tion back to its recent stable state, additional mechanisms like check-pointing with
roll-back or roll-forward are needed [90]. Also, once the recovery process terminates,
an immediate resynchronization of the modules must be attempted, which is really
a challenging task. Even a small delay in doing this, will lead to loss of data and
extra operational downtime [89].

According to [86], the coarse level of granularity does not give much flexibility
and yields lower reliability. At this level of granularity, there could be a significant
amount of unused resources on the FPGA device. The BLTmr tool proposed in
[86], works at the possible fine granular logic (LUT) level rather than a higher-
granular level and shows how effectively the entire FPGA is used for comparatively
higher possible reliability at this particular fine granular level. Suitable redundancy
granularity level for fault mitigation is examined in [88], where it is shown that it
results that the homogeneous nature of reconfigurable architectures makes it easy
to achieve higher reliability using redundancy at fine grain level.

The authors of [88] propose Fine Grained TMR (FGTMR), which regards SRAM-
based FPGAs as a system composed of fine grains which include LUTs and corre-
sponding flip-flops. It applies TMR to these fine grain parts of the system. Obvi-
ously, every TMR-ed fine grain part needs a voter to select the correct output value,
which results in a longer critical path. To overcome this bottleneck, the methodol-
ogy based on quadded-logic is presented in [88], which uses inherent voting in fine
grain parts of FPGAs by wiring different copies of a grain in a special manner and
using them to vote for the correct value.

2.3 Architectural Customization for Reliability
To achieve the desired level of reliability in reconfigurable FPGA based applications,
two mainstream strategies have been followed: i) making the architecture fully ra-
diation hardened by the fabrication process itself (section 2.1), and ii) applying
various mitigation strategies to the COTS architectures at the application design
stage (section 2.2). Both radiation hardening and design based solutions have their
own advantages and disadvantages as discussed in previous sections. An alternative
solution would be more interesting, where advantages of different approaches could
be availed in terms of hardware overhead, power consumption, reliability improve-
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ment and design flexibility, etc. The latter is possible by developing new reliable
architectures, where various reliability mechanisms can be integrated at different
levels of architecture, including fabrication process, hardware architecture, configu-
ration bitstream plan, application design and supporting software tool level. There
are several research groups who work on designing reliable reconfigurable architec-
tures with the same goal like, for example, Xilinx’s space grade Virtex 5QV [92] and
DeSyRe project [93].

2.3.1 Xilinx Space-grade Virtex-5QV FPGA [91]

Virtex-5QV FPGA architectures are developed by Xilinx to meet the requirements
of space applications that demand both high performance and high reliability. It
uses second generation Advanced Silicon Modular Block (ASMBL) column-based
architecture. Virtex-5QV devices are user-programmable gate arrays with various
configurable elements and embedded cores optimized for high-density and high-
performance system designs. They implement various fault mitigation techniques in-
cluding process level variations, hardened memory elements, hardening latch, TMR,
SET filters and EDAC codes.

• At fabrication level, Virtex-5QV FPGA technology incorporates a thin epi-
taxial layer in the wafer manufacturing process for immunity against Single
Event Latch-ups (SELs).

• CLBs, the basic logic elements of Xilinx FPGAs, provide combinational and
sequential logic as well as distributed memory and SRL32 shift register capa-
bility. The CLB of Virtex-5QV FPGA is based on real 6-input LUT technology
and contains eight user registers implemented with RHBD dual-node latches,
thus providing the same protection from static SEU as with the configuration
latches. Additionally, protection from SET during dynamic operation is pro-
vided by transient filters placed on the inputs of each register, which provide
up to 800 ps of glitch filtration on the data, clock, clock enable, and set/reset
input paths of each register.

• I/O blocks (IOBs) provide the interface between package pins and the internal
configurable logic. The Virtex-5QV FPGA IOBs have RHBD dual-node latch
registers, which do not have SET filters. Thus, transient filtration is available
on CLB registers only.

• The Virtex-5QV FPGA configuration control logic and JTAG controller have
been hardened to SEUs and SETs with embedded TMR. Each control regis-
ter is implemented with independent and redundant EDAC circuits for au-
tonomous state correction. This mitigation combination eliminates most of
SEFIs.

• Fault mitigation in the configuration memory is handled in two ways, as the
uncertainty in the configuration bit could be either due to a fault in the mem-
ory cell or because of data corruption. In Virtex-5QV FPGA, the configuration
memory is implemented with RHBD dual-node latches that provide the SEU
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hardness nearly 1000 times higher than of the standard cell latches used in
the commercial devices. Additionally, the RHBD configuration latch is nearly
impervious to upsets caused by proton interaction. The programming data
corruption is handled by ECC and partial reconfiguration based approaches.

• Block RAM modules provide flexible 36 Kb true dual-port RAM that are
cascadable to form larger memory blocks. In addition, Virtex-5QV FPGA
block RAMs contain optional programmable FIFO logic for increased device
utilization. Each block RAM can also be configured as two independent 18
Kb true dual-port RAM blocks, thus providing lower memory granularity for
designs needing smaller RAM blocks. In Virtex-5QV FPGAs, block RAM
contains an integrated ECC and write-back function to autonomously detect
and correct SEU in the block memory content.

2.3.2 DeSyRe—On-Demand System Reliability [93]

Figure 2.20 – DeSyRe physical partitioning: fault free and fault prone area [93].

DeSyRe project builds an on-demand adaptive and reliable architecture, which
is partitioned across two design dimensions: a physical and logical abstraction. The
physical partitioning is based on different technological substrates with different
fault densities. The logical partitioning considers functional viewpoint.

Figure 2.20 illustrates the physical partitioning of the DeSyRe architecture. The
design area is physically divided into two, fault-free and fault-prone sections. The
fault-free section provides overall system management whereas the fault-prone sec-
tion provides the actual system functionality (application). The logic employed in
the fault-free section is responsible for: i) on-line testing and fault-tolerance, ii) run-
time task scheduling (being aware of task characteristics such as safety-criticality),
iii) resource allocation (under varying availability of computational resources) and

53



iv) scrubbing/reconfigurable schemes (to achieve flexible and fault-tolerant opera-
tion).

The fault-prone area is under the direct control of the fault-free area. The fault-
prone section has various reconfigurable components to implement desired func-
tionality based on target application. The resources in the fault-prone area are
supervised by the monitoring logic scheme implemented by the fault-free area. The
resources in the fault-prone area are designed with self-checking mechanisms to de-
tect and/or correct the faults by themselves. The fault detection and correction
mechanisms are managed and controlled by the fault-free section.

Figure 2.21 – DeSyRe logic partitioning: abstraction layers [93].

The logic partitioning organizes the DeSyRe architecture in three layers, as shown
in Figure 2.21: component, middle-ware and run-time. The division is based on
the abstraction level involved and the task handled by each layer. The bottom
layer (component) deals with the fault-tolerance issues of each functional component
present in the fault-prone section of the architecture. The middle layer is responsible
for hardware synthesis and reconfiguration of the components in order to provide
correct functioning of the underlying hardware to upper layers. Finally, the upper
layer (run-time management system) handles run-time issues of the system. Its
basic functionality is to schedule tasks to the components and to adapt the system
to function normally in the presence of a fault. In DeSyRe, permanent faults are
detected by ’on-line testing’ and mitigated by task re-positioning. Transient faults
are detected at software level ECC and corrected with help of check-pointing and
rollback mechanism.

2.4 Summary
Fault-tolerance must be guaranteed at an affordable cost by making use of simple
detection and efficient recovery techniques. Physical hardening techniques require
changes of the fabrication process whereas rad-hard SRAM cells require excess hard-
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ware causing power and performance degradation. Redundancy based techniques
are quite simple to implement but their effectiveness is questionable in today’s high
fault-rate scenario. Hardware redundancy schemes such as DMR and TMR are very
costly, because they involve respectively more than 100% and 200% hardware over-
head. Time redundancy is costly in terms of latency and cannot be applied several
applications. EDAC codes are applicable only to handle SEUs. EDAC codes prove
to be promising when they are coupled with partial reconfiguration to address SBUs
and MBUs in the configuration bitstream. Most of configuration bitstream pro-
tection schemes that rely on the complete or partial reconfiguration are dependent
on ’golden copy’ of the configuration data. Hamming codes based error correcting
schemes are quite interesting when an application cannot afford to spend resources
on keeping the configuration bitstream in the ’golden memory’. As MBUs are the
major reliability concern of memory systems, it is very important make sure that
the chosen EDAC scheme is capable of correcting the maximum of error patterns.

However, all the aforementioned techniques, physical hardening based and design
based, focus on specific fault models, restricted to the logic element or a module
to which they are applied. When COTS FPGAs are used for critical applications,
choosing various fault mitigation strategies (according to expected fault models) and
to adapt them to the application implementation is a time consuming and tedious
task. To simplify and fasten the design cycle of mission-critical applications, unified
reliable reconfigurable architecture models are required.

Section 2.3 discussed various issues of such reliability aware customized reconfig-
urable architectures. Virtex-5QV is the only reprogrammable and highest density
space-grade FPGA in the industry now. High-blend reliability mechanisms, applied
at various levels of the architecture, keep Virtex-5QV in a strong market place as far
as highly critical applications are concerned. However, to protect the configuration
bitstream, both Virtex-5QV and DeSyRe architectures adapt the concept of ’golden
memory’. Besides them, there are only a few other reliability-aware customized ar-
chitectures, such as those discussed in [94, 95]. The PAnDA architecture of [94] is
focused specifically to deal with physical substrate variations. The authors of [95]
propose customized fault-tolerant pipe-lined sequential and combinational circuit
architectures, which makes use of error detection circuits (EDC) instead of DMR
or TMR. Unfortunately, designing specific fault-aware logic circuits without sup-
porting tool-set and architectural adaptability will make fault-tolerant functional
implementation a complex task.
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Chapter 3

Dynamically Reconfigurable Reliable
Architecture—The ARDyT Project

3.1 The ARDyT Framework
The purpose of the ARDyT project is to provide a complete environment for the
design of a fault-tolerant and self-adaptable platform for a system development. In
other words, the ARDyT project is a framework, which includes the design of a re-
configurable architecture, its associated programming environment and management
methodologies for field programmability, diagnosis, testability, and reliability. The
techniques considered are focused on providing low-cost design solutions for critical
applications, such as aerospace, nuclear, and medical applications. In particular, its
aim is to develop a dynamically reconfigurable embedded architecture with specific
and flexible support mechanisms for the management of reliability. The recovery
aspect of dependable systems are studied in Chapter II, accordingly, fault detection
and diagnosis strategies are developed. An appropriate strategic coupling of par-
tial reconfiguration technology and advanced fault detection techniques promises a
self-adaptable fault-tolerant architecture (i.e., a self-healing architecture that is ca-
pable of detecting as well as correcting the faults, and then to recover the system
functionality from its faulty state as early as possible). This ability of keeping the
system available with correct working functionality, even during the presence of a
fault, is what most of the present day safety and mission critical applications need.

The project is organized around three main axes shown in Figure 3.1. The first
axis is the study and implementation of reconfigurable hardware with integrated
(read dedicated) resources for improving reliability and physical diagnosis of the
circuit. The architecture design requires development of a software environment en-
abling its exploitation, including design space exploration, which helps in tasks such
as rapid prototyping, optimization, and system integration. The second axis of the
project concerns the definition and development of a set of design tools (synthesis,
placement, and routing) for the proposed architecture. This software framework
also enables to synthesize the applications with the insertion of high-level diagnostic
mechanisms (such as duplication) to improve reliability at the system level. The
last axis of the project deals with the definition of test and fault mitigation method-
ologies dedicated to the proposed dynamic architecture. Adaptability and various
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Figure 3.1 – Introducing the vision of the ARDyT architecture.

ways of making use of these intrinsic properties are also studied. This study has the
following impact on architecture as well as its associated tools: on one hand, the
dedicated architecture resources simplifies the fault-tolerance implementation, and
on the other hand, it allows the tools to achieve synthesis for reliability.

The research work presented in this Thesis contributes to the definition of reliable
hardware architecture and dynamic management of reliability mechanisms involved
in the ARDyT project. It includes definition of a new fault-aware logic block,
modified basic building block structures, customized configuration bitstream plan
and strategies to mitigate the effects of various fault models through the centralized
reliability manager. More details of these aspects will be presented in the following
sections of this chapter.

3.1.1 Fault-tolerant Hardware Architecture

FPGA’s hardware architecture can be defined with the classical two-layer system
(computation and configuration layer). The computation layer includes all the logi-
cal resources required for functional computations. It contains basic building blocks
of the hardware architecture comprising Configurable Logic Blocks (CLBs), which
are interconnected via flexible channel of wires and switch matrices. This layer also
includes dedicated resources such as memory elements, DSP blocks and/or hard-
wired processor. The second layer has the configuration plan, which specializes the
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computation layer for a particular application. For the design of a fault-tolerant
architecture these two layers must be protected by more precise mechanisms. The
goal is to define the architecture with basic built-in capabilities, which would enable
dynamic management system to perform required operations to ensure reliability
and thereby the overall system availability. It also includes proper structuring and
efficient distribution of the bitstream. The configuration bitstream plan also has
a great impact on the proposed error correcting mechanism to be adapted by the
dynamic management system. The dynamic management system has significant
impact on the definition of underlying fault-aware hardware architecture. Logic re-
sources in the hardware architecture must be customized (or a new structure need to
be proposed) in such a way that the underlying hardware architecture would comply
with the strategies being carried out by the dynamic management system.

Homogeneous architecture has been assumed in order to promote the reallocation
of tasks and mechanisms for supporting the primitive configuration manager (fast
context switching, lock granularity of the configuration page etc.,), which is inte-
grated into hardware. It requires the design of a specific block embedding primitives
for reconfiguration process control and choice of an adapted recovery technique ac-
cording to the detected fault. The structures of different building blocks are adapted
in such a simplistic manner which would increase fault detection capabilities and di-
agnosis in the overall architecture. Dedicated resources for fault-detection, monitor-
ing and fault-mitigation are included with a trade-off in efficiency/cost integration.

3.1.2 Supporting Tool-set and Framework

Proposing a new architecture alone, without any supporting computer aided design
(CAD) tools, would be largely insufficient. Such a scenario would limit the impact
of the architecture even for the specially targeted groups. Therefore, it is mandatory
to set up a complete design framework allowing designers to program and use this
architecture. The framework includes defining and developing a customized tool-
set (synthesis, placement, and routing tools, etc.) for the targeted architecture.
Then, re-targetable compilation flow techniques can be adapted in the design process
by keeping some of the already available commercial architectures as a reference
target. In addition to all the aforementioned capabilities, the tool-set has been
enhanced to include in it the self-healing capabilities of the architecture. Also,
special mechanisms are incorporated to implement reliability methods at compile
time by supporting debug-friendly synthesis, which refers to the ability to inject
some diagnosis mechanisms (such as probes, breakpoints etc.,) into the netlist.

Designing and developing a new FPGA architecture is a tedious, expensive and
time-consuming task. Instead, the ARDyT approach relies on virtual prototyping—
which means the development of hardware/software systems without using a real
hardware prototype appears as an enabler for the domain space exploration. As a
result, rather than investing time to set-up a real prototype, the efforts are focused
on software development and model designs. These models exhibit agility and sup-
port fast re-factoring. Besides, reuse grows up, which contributes to cost reduction.
On the other hand, despite virtual prototyping allows taking early sound decisions
and cuts off development costs, it should also be associated with a second run that
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refines the design decisions in order to reach a real prototype prior to manufactur-
ing of the final product. Obviously, because this path may create a discontinuity
risk, it stresses up the necessity of sizing down any manual development phase, to
preserve the time-to-market gain. The proposed FPGA is intended to be fault-
tolerant with no (or with minimum) support of radiation hardening. This requires
the need for multilevel policies in order to guarantee self-healing capabilities: error
detection through bitstream and application monitoring, development of dedicated
fault-aware logic blocks and/or ALUs with specific encoding, bitstream relocation,
etc. These features drive the whole design process. For instance, ensuring that bit-
stream relocation is possible but it has a strong impact on the target architecture.
The virtual prototyping flow relies on the Biniou framework [96] that offers FPGA
modeling capabilities along with the programming environment. Biniou is a frame-
work that supports modeling of reconfigurable platforms. The platform designer
has to describe the platform (structure, topology, logic elements, etc.) using a pro-
prietary architecture description language (ADL), as illustrated by the code listed
in Fig. 3.2. On return, the Biniou framework generates adapted and customized
low level programming tools offering floor-planning, placement-routing, visualiza-
tion, editing, and other functionality. The framework is being extended to support
the new architectural patterns investigated in the ARDyT project.

(((ARRAY
(DOMAIN 1 1 50 50) "END of DOMAIN"
(((COMPOSITE "FA-CLB"

(((FUNCTION
(INPUTS ((WIRE(WIDTH 5)) NAMED in))
(OUTPUTS ((WIRE (WIDTH 3)) NAMED o)))

NAMED f)
((WIRE (WIDTH (VALUE chW ’30’)) EXPANDED )

NAMED south)
...

Figure 3.2 – Modeling code for a 50*50 FA-CLBs FPGA, with 5 inputs and 3
outputs logic elements, and 30-bit interconnection channels.

The ADL supports the uses of parameters and variables. The first benefit is
the possibility to link values (e.g. interconnection channel width). In the code
of Fig. 3.2, the variable chW is set and can be further reused to tailor another
architectural element. Another usage is to associate a variable to a list of possible
values (similar to enumerated typing); hence, in this scheme, exploration can be
automatically performed by itemizing the values. Figure 3.3 illustrates the global
flow of the supporting tool-suite.

In the Biniou framework, a reconfigurable unit is described as two different parts.
The modeling separates the resources specification (left side) from the configuration
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Figure 3.3 – Global flow supporting generation of a complete environment for re-
configurable unit prototyping.

plan specification (right side) in order to perform orthogonal DSE in each case.
The resource model corresponds to the routing and computing resources, which are
sized in terms of granularity, according to exploration results. The configuration
model gives the structure of the configuration plan as a set of zones. Every zone is
independently reconfigurable and supports multiple contexts implementations.

The programming flow starts with application partitioning. Applications are
broken down into partitions based on the sizing of zones. As the circuit in a zone
can be swapped in/out, a smart sizing prevents internal fragmentation, although at
the cost of increased placement complexity. Every partition is then implemented
(resources allocation) using place&route algorithms that explore dynamically the
architecture model. From it, a collection of partial bitstream (binary representation)
is issued. The bitstream model is automatically derived and is used for generating
configurations from placed&routed applications. As a result, dynamic partial and
multi-context reconfiguration modes can be explored to quantify their impact on the
execution performance.

From a practical point of view, both models contribute to deriving back-end
applicative tools, including a synthesizer that produces net-list, a placer-router in
charge of resources allocation and a bitstream model with a generator that outputs
the configuration file.

Prototype implementation relies on a generated VHDL design taken as the input
of cycle-accurate simulators, such as Modelsim, or synthesized on the state-of-art
FPGA. The configuration plan of the hardware prototype is connected to a special-
ized controller that supports both partial and multi-context reconfiguration modes.
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3.1.3 Dynamic Reliability Management

The architecture and design tools incorporate advanced and optimal mechanisms to
achieve high degree of flexibility and usage, and, more importantly, reliability of the
design. The third axis of the project concentrates more deeply on the definition and
the implementation of test methodologies and fault-tolerance approaches adapted to
the proposed dynamic architecture, and making use of built-in properties provided
in the architecture to support the reliability mechanisms to be carried out by the
decision making bodies of the system. The dedicated and focused study on dynamic
reliability management yields two results: i) an adaptive architecture that simplifies
the implementation of fault-tolerant design and ii) a dedicated tool-set to achieve
synthesis for design reliability.

There are various fault types that could occur in the design, which can create
different set of unexpected and unwanted consequences. Depending on each targeted
fault type, several strategies are developed and suitable decision making policies are
included. Those dedicated fault mitigation strategies include task migration, on-
line/dynamic scheduling, and re-execution support. To ensure reliable configuration
bitstream, run-time read-back and verification techniques are adapted, as used in
the conventional Xilinx’s and Altera’s configuration bitstream protection plans, with
adequate changes in the error correction phase to handle the maximal number of
MBUs. Apart from such issue specific fault mitigation strategies, ARDyT incorpo-
rates some system level strategies as well. All the reliability management strategies
adapted in the targeted architecture are supported by a built-in introspection plan
to have a bounded reliability monitoring.

To handle all the dynamic reliability management mechanisms in the architec-
ture, the third layer is proposed (besides the hardware and configuration layers),
called Fault Tolerant Abstraction Layer (FTAL). This layer accumulates all the re-
sources for fault-tolerance and includes a dedicated processor to manage reliability
(i.e. implementing the reliability policies) in the chip.

3.2 ARDyT Overall Architecture
Figure 3.4 shows the general scheme of the proposed architecture. Unlike the con-
ventional FPGA architecture, which is usually defined by the computation and con-
figuration layers, the proposed architecture is defined by the computational, config-
uration, and an additional layer called FTAL, dedicated for reliability management.
In Figure 3.4, the configuration layer is not shown separately, as both computational
and configuration layers are coupled together and named as "targeted hardware".
The reason for representing it in such a manner is that in the proposed architecture,
the hardware basic building blocks are viewed as collective units, which include logic
circuit components and their associated configuration bits.

The dedicated layer for reliability management (FTAL) is shown in Figure 3.4
with its functional representations. The main novelty of the proposed architecture in
the ARDyT framework is the definition of this new layer dedicated for the dynamic
reliability management. This additional layer takes the functional responsibility of
maintaining the required level of reliability in the underlying architecture. In other
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Figure 3.4 – Complete vision of the proposed ARDyT FPGA architecture.

words, the "fault reading" and "fault mitigation" are two principal operations that
the FTAL layer carries upon the hardware architecture in coordination with the
upper management control. The fault reading is performed by the interrogation
protocol employed, as a part of the introspection plan. "Fault mitigation" refers to
the set of strategies employed by the centralized reliability manager to deal with var-
ious fault types that occur in the underlying architecture. The centralized dynamic
reliability manager is named as R3M — Reliable Reconfigurable Resource Manager.
The three primary functional units of the FTAL: i) the fault status reading mecha-
nism, ii) the introspection plan, and iii) the R3M, work closely with each other. As
a whole, the proposed three-layer (computational, configuration, and FTAL) system
represents a unified architectural model for highly reliable applications.

3.3 Hardware Architecture and Building Blocks

Figure 3.5 – Physical architecture integration.

This section describes the architectural fundamentals of the proposed hardware
framework. In a consolidated view, the physical architecture of the proposed ARDyT
FPGA is an appropriate proportional integration of three required key resources, as
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shown in Figure 3.5. The array of logic elements is the primary resource to hard-
ware architecture plan. Dedicated reliability resources represent additional hard-
ware stock to support the reliability management mechanisms and configuration
bitstream plan to attain the required functional and reliability management of the
basic architecture.

Figure 3.6 – Hardware architectural hierarchy.

The proposed architecture’s hardware building block hierarchy based on its gran-
ularity (from the lowest to the highest level of granularity) is as follows:

• Computational (Configurable) logic block (FA-CLB)

• Basic building blocks (BB)

• Array of logic cells (ALC)

• Grouped partial reconfigurable region (GPRR)

• Clusters of grouped partial reconfigurable regions (monitoring and non-monitoring
GPRR clusters)

A simplified conceptual view of the hardware architectural hierarchy is shown in
Figure 3.6. Other dedicated hardware resources such as DSP blocks, ALUs, mul-
tipliers, dedicated IPs and supportive hardware units for reliability and testability
are not shown in the simplified hierarchical diagram. These dedicated hardware
resources are the intrinsic part of any one of these hierarchical levels. For instance,
dedicated hardware functional resources like DSPs and ALUs, and dedicated reli-
ability supportive register FSR are part of GPRRs. More detailed descriptions of
hardware building blocks of the proposed architecture are given in the following
sections.

3.3.1 Basic Building Blocks

In any typical FPGA architecture, the basic building blocks combine combinational
and sequential circuit elements which are put together in a desired way, whereas the
configuration bitstream is used to define the functionality of those basic building
blocks. The most common basic building block of an FPGA is a Cell or a Slice.
Typically, a slice has a few inputs, contains a Look-up Table (or LUT) which can
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Figure 3.7 – Architecture of basic building block.

be programmed to realize any Boolean function over those inputs, and has one or
more outputs, each of which can be configured to either update immediately when
the input updates (asynchronous) or update only on the next clock tick, using a
flip-flop built into the slice (synchronous). The architecture of basic building blocks
in ARDyT FPGA is quite different from those used in conventional FPGAs (for
example, CLB architecture of Xilinx or LAB architecture of Altera).

Unlike conventional FPGA architectures, the basic building blocks of the ARDyT
FPGA are not just compositions of combinational (LUT/MUX) and sequential logic
(D-FF) elements. The proposed ARDyT FPGA’s basic building block, shown in
Figure 3.7, contains three units: configurable logic elements, error detection and
correction analysis block (EDCA) and dedicated (separately identifiable) bitstream
for logic as well as routing resources of that particular basic building block.

• FA-CLB is used to implement a desired logic function (as in conventional
architectures), but with a modified structure to support the adaptability. FA-
CLBs of the proposed ARDyT architecture can be compared to CLBs of Xilinx
architectures. A CLB in Xilinx FPGAs has several slices in it. For instance,
in Xilinx Virtex 7 devices, a CLB has 2 slices named Slice(0) and Slice(1).
Similarly, the FA-CLB of the ARDyT architecture consists of four configurable
logic elements (CLE). The detailed description will be given in the following
section.

• EDCAs accompany CLEs to implement the reliability management mecha-
nisms, provided by the centralized reliability manager.

• The dedicated building block specific bitstream identification facilitates fault
localization and fault separation between logic and routing resources.

3.3.1.1 Fault-aware Configurable Logic Block (FA-CLB)

As a primary module of the basic building block, the FA-CLB’s structure and its
associated design parameters play a vital role in providing performance advantages
of the proposed architecture. Since reliability is of primary importance in the newly
proposed architecture, the FA-CLB fabric is customized to support reliability man-
agement mechanisms along with the required functionality implementations. Figure
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Figure 3.8 – Fault-aware Configurable logic block (FA-CLB).

3.8 shows the internal structure of the proposed FA-CLB in the ARDyT architec-
ture. It comprises functional a equivalent of four CLEs (i.e., LUT-D-FF pairs and
additional circuits like selection multiplexers, comparator circuitry, internal glue
logic and carry chain logic), arranged as shown in Figure 3.8.

The conventional FPGA’s logic cell structure (usually referred as the classic logic
cell structure) has combinational and sequential circuit elements in the same hard-
ware closet (a LUT-FF pair). However, in the proposed FA-CLB structure we prefer
to separate combinational and sequential circuit element(s). Such arrangement helps
in achieving flexible reliability mechanism implementation in the proposed architec-
ture. Each of sequential circuit elements (D-FF) arranged in a column, in the first
local zone of the FA-CLB associates itself with the corresponding combinational cir-
cuit element (LUT) in the following local zones of the same FA-CLB. The D−FF1

is associated with LUT1 to form CLE1. Similarly, D−FF2, D−FF3 and D−FF4

are respectively associated with LUT2, LUT3, and LUT4 to form CLE2, CLE3 and
CLE4. The D-FF is placed in such a way that it could be used for two purposes:

1. to hold the input value of the LUT to reinforce and re-execute the task (in-case
of fault identification), and

2. to hold the computed data output to assist in logic pipe-lining and data stor-
age.

The logical advantages, detailed functional modes, and mechanisms supporting
reliability of the proposed FA-CLB architecture are further elaborated in Chapter
4.

In Figure 3.8, it is seen that a set of sequential circuit elements (D-FFs) are ar-
ranged in a column manner in the first local zone and followed by the same number
of local partitions containing combinational circuit elements (LUTs), and separated
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Figure 3.9 – Interconnections among FA-CLBs.

by a rail of local connection lines. The local connection box (L.C.B) helps in making
appropriate internal connections between the sequential and combinational circuit
elements, to form the LUT-FF pair as in the conventional logic cell structure. Apart
from local connection boxes, there are programmable connection boxes (C.Bs) and
switch boxes (S.Bs) associated to the design implementation of the architecture. The
interconnection system of any FPGA is one of the most complex blocks, because
wiring is a global property of a logic design. Connections between logic elements may
require complex paths, since the FA-CLBs are arranged in a sort of two-dimensional
structure, as shown in Figure 3.9. Hence, it is necessary to make connections not
just between FA-CLBs and wires but also between the wires themselves. Wires are
typically organized in wiring channels or routing channels that run horizontally and
vertically through the chip. Each channel contains several wires; the designer or a
program chooses which wire will be used in each channel to carry a signal to make
a design connection. Configurable connection boxes (C.Bs) and switch boxes (S.Bs)
serve to this purpose. CLEs are connected to the routing network through connec-
tion boxes (CB). Horizontal and vertical routing tracks of the programmable routing
network are interconnected through switch boxes (SB) which handle the connections
through various wire structures, like segmented wiring and offset segments, accord-
ing to the routing structure topology. Connections must be made between wires
in order to carry a signal from one point to another. For example, the net in the
Figure 3.9 starts from the output of the FA-CLB in the upper-right-hand corner,
travels down the vertical channel 5 until it reaches the horizontal channel 2, then
moves down the vertical channel 2 to the horizontal channel 3. Finally, it uses the
vertical channel 1 to reach the input of the CLE at the lower-left-hand corner.

3.3.1.2 Built-in Error Detection and Correction Analysis (EDCA)

The built-in error correction and detection analysis (EDCA) unit is a conceptual
design block introduced as a part of the basic building block. The EDCA block
holds collective responsibility of handling reliability related issues in the hardware
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Figure 3.10 – Error detection and correction analysis (EDAC) unit.

functional units. Its detailed internal structure is shown in Figure 3.10. To note that
the EDCA block is actually not as isolated from the configurable circuit resources
as suggests Figure 3.10. Either a part or the whole EDCA unit makes part of the
architecture of the fault-aware configurable hardware (FA-CLB, DSP, multipliers,
etc.). It enables the logic circuit to detect an error in the presence of a fault in the
circuit. The content of the EDCA varies according to:

1. the architecture of the functional hardware (FA-CLB, DSP, ALU, multiplexer,
etc.) and

2. the reliability mechanism proposed to handle faults occurring in that particular
circuit element.

EDCA is closely associated to FA-CLB of that particular basic build block in all
aspects. To ensure an uniform, homogeneous structure of the basic building blocks,
the content of the FA-CLB is as proposed in Figure 3.8. Hence, the EDCA content
would also be the same and uniform. However, when the EDCA is associated to
other dedicated hardware functional units such as DSPs, ALUs, multipliers and
other hard IPs, its content is adapted, according to the error handling mechanisms
proposed to those dedicated hardware functional units. The dedicated fault handling
resource in EDCA would be:

• a simple comparator, in case of the duplication with comparison (DWC)
scheme;

• a majority voter, in case of the triple modular redundancy (TMR) scheme;

• a residue generator, in case of arithmetic operations;

• a syndrome generator, in case of error correction codes (ECC); or

• any other dedicated approach according to the selected fault mitigation strat-
egy.
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The choice of the EDCA content also depends on the reliability level required
through the adapted fault handling mechanism. In the minimal case, a simple
comparator is used as the dedicated EDCA resource, just to detect the fault by
comparing two identical circuits and activating a mismatch signal.

Besides that, the EDCA must also provide the ‘link to FTAL’. As mentioned
earlier, fault-tolerance abstraction layer is an additional layer meant for centralized
reliability management in the proposed architecture. The reliability management
by FTAL is handled through various means. However, the initial step is to getting
notified about the fault occurrence status. The communication must be established
from the functional units of the underlying architecture, so that the notification
could reach the FTAL. To mark the beginning and to facilitate this feature, the
EDCA unit of basic building blocks has a dedicated resource to notify the fault
occurrence status. In ARDyT architecture, according to the proposed hardware hi-
erarchy, GPRR is a reconfigurable partition comprising a group basic building blocks
and dedicated functional units. Each GPRR has a dedicated register called Fault
Status Register (FSR) to store the fault occurrence status from various hardware
blocks and to link the fault-aware hardware blocks to the FTAL. From the FSR,
the fault occurrence status is communicated to the centralized reliability manager
(R3M) in the FTAL. Updating fault occurrence status in the FSR is a hierarchical
process. The status signals from various functional units/EDCAs are encoded to
carry only the minimum of information required, and recoverable amount of status
signals of that GPRR are updated in the FSR.

3.3.1.3 Dedicated Identification of Logic and Routing Bitstream

The ARDyT architecture has a feature of identifying configuration bitstream associ-
ated to a particular basic building block. Additionally, it is capable of distinguishing
the configuration bitstream corresponding to logic and routing resources:

Figure 3.11 – Fault-aware configurable logic block (FA-CLB) with associated routing
elements.
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• Logic configuration bitstream: a group of configuration bits used to im-
plement logic design in FA-CLBs.

• Routing configuration bitstream: a group of configuration bits associated
with the implementation of routing structures/patterns in the FPGA architec-
ture. The routing configuration bitstream involves the configurable bits in the
horizontal as well as vertical local connection boxes (LCB), connection boxes
(CB) and switch boxes (SB) associated to a FA-CLB.

Identifying a configuration bitstream belongs to a particular basic block. The
possibility to distinguish the bitstream of implemented logic functionality and im-
plemented routing/switching associated with that implemented functionality signifi-
cantly helps in detecting and localizing faults at a required granularity level. This is
because upsets in the bits of ‘configurable logic’ create different consequences than
upsets in the bits of ‘configurable routing’. Distinguishing them greatly helps to
identify the nature and consequence of the fault.

For instance, consider Figure 3.11, where a simplified view of one FA-CLB along
with its associated routing elements are shown. The LCBs are those which make
local connections internal to the FA-CLB. CBs connect the FA-CLBs to the ex-
ternal routing network and SBs are used to make further horizontal and vertical
cross connections between FA-CLBs and/or other elements of the architecture. Pro-
grammable bits in LCBs, CBs and SBs are identified as configurable routing bit-
stream, whereas other programmable bits in FA-CLB are identified as configurable
logic bitstream.

3.3.2 Grouped Partial Reconfigurable Regions

A grouped partial reconfigurable region (GPRR) is a group of: (i) fault-aware basic
computational elements (FA-CLBs), (ii) dedicated functional hardware blocks such
as DSPs, ALUs, multipliers and other necessary IP cores, and (iii) dedicated fault
status register (FSR).

Array of Logic Cells (ALC): Fault-aware configurable logic blocks assembled
in an array format, in two-dimensional plane, with horizontal and vertical routing
channels running across, with provision to make connections among them, is called
array of logic cells (island-style). A little abstracted view of array of logic cells
(ALC) is shown in Figure 3.12, which depicts the arrangements of connection boxes
(CBs) and switch boxes (SBs) along the routing lines of the architecture. The
internal functional structures of both CB and SB remain the same as those used in
conventional FPGA architectures, such as shown in Figure 3.13.

• Connection Box (CB): the CBs connect the channel wires with the input
and output pins of the FA-CLBs. A CB has two major properties that can
affect the routability of a design: its flexibility, Fc, which is the number of
wires that each logic block pin can connect to; and its topology, which is the
pattern of switches that make the connection (especially if Fc is low).

• Switch boxes (SB): the SBs allow wires to switch between vertical and
horizontal wires. The flexibility of the SB, Fs, defines for a wiring segment
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Figure 3.12 – Array of logic cells.

Figure 3.13 – Connection box (CB) and switch box (SB) structure.

entering the SB the number of other wiring segments it can be connected to.
The topology of the SBs is very important, since it is possible to choose two
different topologies with the same flexibility Fs that result in very different
routability.

The CB is implemented with pass gates rather than multiplexers for input con-
nections. This allows two or more tracks to be electrically connected via the input
pin by turning on individual switches in the connection box. This is called input pin
doglegs [98]. The significance of this scenario will be explained in Chapter 4, where
the proposed FA-CLB architecture is presented. Each wiring segment spans only one
block before it terminates in a switch box. By enabling some of the programmable
switches within a switch box, longer paths can be constructed. Whenever vertical
and horizontal routing channels intersect, there is a switch box.

GPRR is a dynamic reconfigurable partition (DRP) in the architecture. This
hardware partition can be reprogrammed during the application run-time without
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Figure 3.14 – Grouped partial reconfigurable regions (GPRR).

halting the system. The size of the GPRR is determined by various factors, includ-
ing: the required number of basic building blocks, additional dedicated functional
resources, and the granularity of fault status reading. The frame is the smallest
unit of (re)configuration in any FPGA architecture. The number of frames required
to form a dynamic reconfigurable partition in the architecture could be a decisive
factor, in accordance with the size of the GPRR. Also the GPRR content size, its
internal versatility and the associated reliability support mechanism, play an impor-
tant role in defining the fault localizing granularity level in the hierarchical reliability
management scheme. Moreover, the size of the GPRR (the number of configuration
frames/bits involved in a single GPRR) must be a factor of the size of configuration
bits handled by the proposed configuration bitstream protection plan to achieve
optimized end results.

FSR: This register is an integral part of the GPRR to support the fault status
reading process through the interrogation protocol. It establishes communication
between the fault detection and the fault mitigation resources. All the fault-aware
functional blocks in the GPRR update their health status (fault status) in the corre-
sponding bits of the FSR. An unique set of configuration bits (partial bitstream) for
each defined GPRR is generated during the process of configuration bitstream gen-
eration by the CAD tools. The health status of the corresponding partial bitstream
of each GPRR is updated in the FSR. As a whole, the FSR holds the health status
of the complete GPRR. The overall health status bit (FSR[8]) informs (through in-
terrogation protocol) the R3M about the uncertainty in the corresponding GPRR’s
functionality.
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3.3.2.1 Dedicated Functional Units

Nowadays, to address the challenges of large scale safety and mission critical applica-
tions, FPGA devices integrate more and more dedicated advanced functional units
such as DSPs, ALUs, multipliers and hardcore processors. Most of the present day
applications demand the inclusion of microprocessors, DSPs and SRAM memory
resources, which are highly optimized structures, so they are radically more efficient
for computations that fit within their target model than any LUT-based implemen-
tation. The proposed ARDyT architecture aims to have an inclusive architecture, to
fulfill most of the requirements demanded by a self-reliable, high density, large-scale
applications.

Figure 3.15 – Dedicated functional units integrated in the FPGA device.

As discussed before, any functional unit of the proposed architecture has a dedi-
cated EDCA unit which provides reliability management support by various means.
Hence, it makes the dedicated functional blocks such as DSP, ALU and built-in
processors to be fault-aware—a feature that ARDyT FPGA proposes. The fault
detection (or any other reliability management support) circuitry provided by the
EDCA unit depends on the dedicated functional unit with which it is associated.
For instance, the DWC scheme is used make to the proposed FA-CLBs fault-aware,
hence a comparator circuitry is added to the EDCA unit; residue code generators
are used to handle faults in the DSP and other arithmetic blocks, therefore, the
residue code generators make part of the EDCA unit associated with any such a
block. At the moment, not all the resources shown in Figure 3.15 are expected to be
included in the final ARDyT architecture. As of now, it is aimed to included mini-
mum required dedicated functional units (such as DSPs). The fault-aware DSPs are
being developed by ARDyT consortium partners at IRISA laboratory (Lannion).

3.3.2.2 Fault Status Register (FSR)

As shown in Figure 3.14, the fault status register (FSR) is an integral part of the
GPRR. The FSR plays an important role in the introspection plan, which is crucial
to support the reliability management mechanisms included in the underlying archi-
tecture. The detailed bit-wise organization of the FSR is shown in Figure 3.16. To
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Figure 3.16 – Bit definition of the fault status register (FSR).

update their ’health status’ (i.e., fault detection status), various fault-aware func-
tional elements, present the corresponding bits of the FSR to the GPRR. Different
level of encoding is followed for different hardware functional units, to update the
fault detection status signal in the corresponding register (FSR) bit. For instant,
the fault detection status signals from all the FA-CLBs (considered 16 FA-CLBs as
in Figure 3.14) in GPRR are encoded into 2 bits to be updated in CS and SS bit of
the FSR.

• OS bit indicates the overall health status of a particular GPRR. This indicates
a condition of uncertainty in the GPRR. OS bit is updated, whenever there
is a change in the remaining bits of the FSR. Additional deeper interrogation
has to be done, once the OS bit is found asserted. It is possible through the
interrogation protocol which can access these registers with the help of the
ICAP.

Table 3.1 – Fault occurrence status and interpretation in FA-CLBs

State SS
(FSR[1])

CS
(FSR[2]) Interpretation

S0 0 0 Fault-free FA-CLBs

S1 0 1 Fault occurred in
combinational logic resources (e.g., transient effect)

S2 1 0 Fault occurred in
sequential logic resources (e.g., user data upset)

S3 1 1 S3(i) - Recoverable fault in FA-CLB
S3(ii) - Non-recoverable fault in FA-CLB

• SS and CS bits are associated with the FA-CLBs present in the GPRR.
The encoded combinational and sequential fault status signals are updated
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in FSR[2] and FSR[1] bit locations, respectively. These two status bits sup-
port the fault mitigation process developed for the proposed FA-CLBs. Table
3.1 shows four possible combinations of these status bits and their interpreta-
tions. Accordingly, the action needed to be taken by the centralized reliability
manager is determined.

• FSR[3] bit indicates the faulty status of the dedicated DSP units present in
the GPRR. The fault-aware DSP block, employed with built-in error detection
capability, raises a warning flag whenever it detects a faulty output. That flag
signal is updated in the FSR[3], in case of a single dedicated DSP block; other-
wise, warning flag signals from more than one dedicated DSP block undergoes
an encoding process.

• FSR[4] bit indicates the fault occurrence status of dedicated ALU present in
the GPRR. The fault-aware ALU block, adapted with built-in fault detection
operands, produces a mismatch signal to indicate a faulty operation in it.

• FSR[5] bit indicates the error occurrence in the configuration bitstream which
belongs to logic resources present in the GPRR (FA-CLBs, EDCA circuits,
dedicated DSPs, ALUs and other dedicated hardware units).

• FSR[6] bit indicates the error occurrence in the configuration bitstream which
belongs to routing resources present in the GPRR (local connection boxes,
switch matrices and connection boxed, horizontal and vertical routing chan-
nels, etc.).

• FSR[7] bit indicates the fault occurrence in dedicated IP blocks such as a
hardcore processors. Fault identification of such hardcore processors involves
schemes such as lock-step to identify the faulty behavior.

These FSRs serve as a linking medium between FTAL and the hardware blocks.
Each of them notifies the status of the hardware blocks to R3M through the status
bits. The FSRs are read with the help of the ICAP handled by the interrogation
protocol. The details of fault reading and interrogation protocol will be presented
in Section 3.4.2.

3.3.2.3 Cluster Based Health Monitoring

Granularity of fault detection in the architecture is one of the most important aspects
of fault mitigation. Cluster based grouping is suggested in the proposed ARDyT ar-
chitecture to have error notifications communicated to the decision making module,
as shown in Figure 3.17. A number of GPRR units are grouped together to form a
cluster, calledmonitoring GPRR cluster. Likewise, there can be more than onemon-
itoring GPRR cluster in the architecture. Such clustering is helpful, when a sensitive
process requires more than one GPRR unit to get its design implemented/mapped
in the hardware. In the context of reliability management, GPRR clusters are on
top of the granularity based reliability management hierarchy, as shown in Figure
3.6. When a sensitive process is implemented in such GPRR clusters, the aftermath
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Figure 3.17 – Cluster based health monitoring.

process of fault mitigation becomes relatively easy. For example, when a process
is divided among different GPRR units of a GPRR clusters and if one particular
GPRR unit detects a fault and overcomes (resolves) it some time, the task (a part
of the process implemented in the full GPRR cluster) implemented in that particu-
lar GPRR unit has to be synchronized with its fellow (associated) tasks running in
other GPRR units. This aftermath process of fault mitigation (i.e., task synchro-
nization) would be simpler when all the associated GPRRs are in an identifiable
group/cluster.

Monitoring and Non-monitoring Clusters: The designers working on reli-
able system-on-chip architectures argued that it is not always necessary to make
the complete architecture highly reliable. This is because if we breakdown the
functionality of a critical application into various tasks, not all of them need to be
monitored throughout their lifetime. Some tasks are real-time critical which requires
complete monitoring, whereas some are less critical and non-real-time. As for reli-
ability, the tasks can be classified on those with very high reliability requirements
to those with zero (or negligibly small) reliability requirements. In such cases, a
trade-off can be maintained by applying selective reliability measures in the archi-
tecture itself. The categorization of monitoring and non-monitoring clusters in the
proposed reliable architecture is one such a trade-off measure with the flexibility
provided to the designer, to place their application in the target architecture with
a balance between resource usage, reliability requirement level and design overhead.
Sensitive tasks can be implemented in any of the monitoring GPRR clusters hav-
ing built-in support for the reliability management and non-sensitive tasks can find
their place in the non-monitoring clusters. Partial reconfiguration process in the
architecture is supported by R3M and ’monitoring and non-monitoring clusters’ can
be dynamically managed according to the functional requirement.
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3.4 Dedicated Layer for Reliability Management
The discussion of achieving required reliability level for any critical application im-
plemented in FPGA always comes with a counterargument of the cost of extra
overhead, complexity and degraded overall performance. This is because commer-
cially available COTS FPGAs have no (or very limited) built-in support to cope
with reliability mechanisms developed by the application designer. Nevertheless,
some FPGA manufacturers targeted high reliable applications market by providing
some reliability support tools like functional triple modular redundancy (FTMR) [97]
and Xilinx triple modular redundancy (XTMR) [54]. However, TMR’ed design alone
could be insufficient in many critical applications, where different fault mitigation
strategies have to be adapted, according to the nature and consequences of the fault
occurrence. The newly proposed ARDyT architecture provides reliability support at
various levels, including hardware architecture level, configuration bitstream plan,
task/process level, application and system level, as shown in Figure 3.18. In ad-
dition to this distributed reliability support at various levels, the newly proposed
architecture has a dedicated layer called FTAL, which is responsible for the overall
reliability management.

Figure 3.18 – Reliability support at different levels.

This additional layer (FTAL) was introduced to protect hardware architecture,
configuration layer, and the implemented application. The FTAL coordinates the
supportive resources (for fault management) present at various levels of the design.
Proposing such a dedicated layer with a single large responsibility, called reliability
management, is addressing the main challenge posed by the COTS FPGAs, when
they are used for highly reliable and safe mission applications.

3.4.1 Fault Tolerant Abstraction Layer (FTAL) as Middle-
ware

This fault-tolerant abstraction layer serves as a middle-ware between the hardware
architecture, application and the software tools. The introspection plans provides
interface between the hardware architecture and R3M with the help of ICAP and
dedicated Application Programming Interfaces (APIs) for fault status reading.
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The proposed layer decouples the underlying architecture from the applications
and tools framework. Such a layer set-up facilitates generation of efficient tools
using the properties described in the FTAL, whereas the architecture includes ded-
icated resources to efficiently support the desired properties. This dedicated layer
supports the newly developed fault-tolerant strategies by defining correct API of
methodologies. The tool set uses those APIs to implement specified algorithms at
the compilation level for the usage on the underlying architecture. Fault-tolerant
abstraction layer is a virtual component of the overall design flow which serves as a
specification layer for the architecture and an API for the dedicated tools.

This additional layer serves to protect the resources in the configuration layer,
the hardware layer and the application implemented in the architecture. Because
not all the resources of the FPGA must be protected, a trade-off between the "hard-
ware cost, timing overhead" and "level of reliability provided" can be maintained.
This is where the concept of monitoring and non-monitoring clusters plays its role.
The FTAL manages the reliability mechanism integrated in the monitoring clusters
and coordinates monitoring and non-monitoring clusters in case of task of reloca-
tion and synchronization. The proposed hardware architecture has functional logic
implemented with fault identification capabilities. The identified faults from various
functional resources in the architecture are routed to the centralized controller (the
reliability manager – R3M) through the fault reading process, involving FSRs. The
hardware architecture (configurable resources + configuration bitstream) is dynamic
and being supervised by the dynamic fault-tolerant layer. The centralized reliability
manager in the FTAL performs decision-making and strategic planning for the ap-
propriate fault-mitigation, whereas the upper layer provides supportive tools to keep
control on the implemented fault-mitigation strategy through the reliability man-
ager (R3M). In a broader context, fault-mitigation starts with the fault localization
and faults are localized to their possible regional locality in the architecture.

3.4.2 Introspection Plan and Interrogation Protocol

The first step towards fault mitigation is to detect the presence of a fault (called
fault reading). Receiving as much as relevant knowledge about the event that has oc-
curred (upset/fault/error) helps in executing appropriate fault mitigation strategy.
In the proposed ARDyT architecture, the reliable reconfigurable resource manager
module (R3M) in the fault-tolerant abstraction layer (FTAL) is considered as the
decision-making authority. It employs an introspection plan to monitor the reli-
ability status of different building blocks in the architecture. The introspection
plan runs an interrogation protocol to facilitate the fault reading process. Here,
the term fault-reading denotes getting knowledge about the fault occurrence in the
fault-aware hardware/application modules. The nature of the fault-reading in the
ARDyT framework depends on various factors, like the granularity of fault identi-
fication, the mode of fault representation and timing and hardware overhead to be
involved in the employed fault-reading technique.

The underlying architecture is provided with mechanisms to support the intro-
spection plan. A simplified block diagram of the fault-reading process through the
interrogation protocol is shown in Figure 3.19. It is an hierarchical process. As
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Figure 3.19 – Introspection plan.

explained before, each GPRR has a fault status register where the reliability status
bits of different functional modules are updated. In the next level of the hierarchy,
the overall health status bits (OS) of FSRs are mirrored to the super node hash table.
The mirrored status bits stored in the super node hash table are called ’keys’. Each
’key’ in the super node is associated with the corresponding address of the FSR in
the hash table. Figure 3.20 shows the general structure of the super node hash table.
For instance, assuming that a monitoring cluster has 16 GPRRs, the super node
hash table length would be 16, with 4 address bits representing each FSR, ranging
from ’0000’ to ’1111’.

Figure 3.20 – Super node hash table.

The super node hash table interacts directly with the interrogation protocol.
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Whenever there is a change in the key values of the super node, an interrupt is
generated. The interrogation protocol reads the corresponding FSR address of the
interrupted key from the hash table. Should it identify an uncertainty (a fault oc-
curred) in the associated GPRR, it gains the access of the ICAP from the centralized
manager and reads that particular FSR register. Because the single bit health status
(OS) does not provide any more information about the faults and events which have
occurred in the GPRR, hence the introspection plan proceeds with deeper interroga-
tion. It checks all the remaining bits of a given FSR (FSR[1] to FSR[7]) to localize
the fault to the specific functional block of the GPRR. At this level, the interro-
gation protocol notifies the fault occurrence to the R3M with relevant information
such as the exact functional element in which a fault is detected (with the help of
the fault status bit values registered in FSR). From here, R3M initiates the process
of fault mitigation, starting from identifying the nature of the fault occurred.

3.4.3 Run-time Reconfigurable Resource Manager (R3M)

Decision making, reconfigurable resource management and reliability maintenance
in the architecture is completely handled by this centralized intelligence, R3M. It
monitors the hardware architecture and running application as well as provides run-
time support. The functionality of R3M includes:

• Monitoring the hardware architecture and the implemented tasks for fault-free
operation, with the help of different APIs and the introspection plan.

• Mechanisms to support the proposed configuration bitstream protection scheme,
fault detection and mitigation in configurable logic resources, and reliability
mechanisms in other dedicated functional modules of the architecture.

• Creating a link between the application tasks and the hardware architecture as
well as managing sensitive and non-sensitive application tasks in monitoring
and non-monitoring reconfigurable partitions of the architecture.

• Keeping record of different reconfigurable partitions of the architecture; and
the set of frame addresses of different GPRRs’ relocatable bitstream.

• Task management related operations such as task placement, task replacement,
task relocation, co-ordination among different tasks and task synchronization,
whose definitions are the following.

Task placement : choosing an appropriate location to implement a particular
task by considering different factors, including the sensitivity of the task, the
physical location of other related tasks, etc. Task replacement : implement-
ing a different task by replacing an existing task from a particular hardware
location, with the help of partial reconfiguration. Task relocation: moving a
particular task to another hardware location, due to permanent hardware fail-
ure in the current location. Task co-ordination: recall that tasks are sub-units
of a bigger function, output(s) of a particular task might be input(s) to one or
more other tasks, and some tasks need to be executed in parallel with certain
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timing requirements. In such cases, making inter-task communication and co-
ordinating different tasks to maintain internal state values intact is essential.
Task synchronization: after the task fault mitigation or fault relocation, the
state values of different inter-related tasks must be synchronized to avoid any
uncertain results.

• Managing shared resources such as ICAP, background read-back and write-
back mechanisms, among different fault mitigation strategies and APIs. Also,
co-ordinating different fault mitigation strategies in terms of providing access
to the shared resources.

Different APIs are employed in the R3M to support different reliability and re-
source management mechanisms. For instance, the LFM-API (explained in Chapter
4) is dedicated to handle the fault mitigation scheme for configurable logic resources,
whereas the CFM-API (explained in Chapter 5) is dedicated to handle the configu-
ration bitstream protection scheme. Upon getting notified about fault occurrence by
the introspection plan, the R3M initiates the fault mitigation process. The fault mit-
igation strategies defined are unique and vary from one to another functional unit.
The factors involving the definition of the fault mitigation strategies are: i) the na-
ture of a fault (temporary, hard or soft), ii) the fault model and its consequences in
that particular circuit/hardware, and iii) the severity of the malfunctioning.

In the case of fault mitigation in configurable logic resources, once the fault oc-
currence is detected, the R3M employs a 3-stage strategy. Initially, assuming that
a fault is transient, it attempts to recompute the task to clear the results of the
fault. If the presence of the fault is still signaled, assuming that some upsets (SBU
or MBU) are present in the associated configuration bits, it attempts to perform
partial reconfiguration to remove them. Finally, if the fault status still persists,
the permanent hardware fault is declared and the task is relocated to another lo-
cation. Through this strategy, R3M identifies the nature of the fault and it helps
in distinguishing temporary and permanent faults. Within the framework of the
configuration bitstream protection, it performs the proposed 3D Hamming based
multiple-bit error correcting scheme, discussed in Chapter 5. Although the config-
uration bitstream protection scheme operates as a background process locally at
the architecture level, it is controlled globally by the centralized reliability manager,
R3M.

Handling Shared Resources

The stages two and three of the configurable logic resource fault mitigation strategy
involve partial reconfiguration. Similarly, the configuration bitstream protection
scheme involves partial reconfiguration. The configuration bitstream protection
scheme handles the frames sequentially in the complete ARDyT FPGA architec-
ture, and its a cyclic process. However, at stage two (when the fault is still detected
after task re-computation) of configurable logic resource fault mitigation, the con-
figuration bitstream protection scheme has to be performed on these particular set
of configuration frames (associated to fault detected area) to clear the upsets.

These operations share the configuration frame access control, read-back and
write-back resources. The R3M co-ordinates different strategies and provides access
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to these shared resources among different APIs. For instance, if the LFM-API
enters the second stage of operation (where upsets in the associated configuration
bitstream have to be cleared), it sends an access request signal to the R3M, to get
the access of the configuration bitstream protection scheme. The R3M interrupts the
background configuration protection process and launches the same at the different
frame address provided by the LFM-API. As soon as the configuration bitstream
protection scheme completes serving the given set of configuration frames, it returns
to its previous location (frame address) to continue operation. The current and
the previous frame addresses are handled by the CFM-API. The R3M establishes
communication between the LFM-API and the CFM-API, and co-ordinates the
complete process.

3.5 Summary
The ARDyT framework is introduced and detailed in this chapter. The general
overview of the overall architecture is presented, including details of the hardware
and the dedicated FTAL layer. The functional description of the introspection plan
and the R3M are detailed in this chapter. Fault mitigation in other dedicated hard-
ware resources like DSP, ALU and BRAM, etc., relocatable bitstream and task man-
agement strategies, and supporting reliability-aware CAD tool-suits are developed
by other partners in the ARDyT project consortium.
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Chapter 4

Fault Aware Configurable Logic
Block (FA-CLB)

Configurable logic blocks (CLBs), which are the basic building blocks in reconfig-
urable FPGAs, comprise a set of combination and sequential logic circuit elements,
which are programmed by built-in SRAM cells to realize a desired function. These
circuit elements and programming memory cells are primitive elements of a CLB.
The behavior of these primitive circuit elements differs in case of radiation particle
hit so do the consequences of the latter. To mitigate the effects of radiation in-
duced faults in primitive elements of the CLB, here a fault-aware (FA) architecture
(FA-CLB) is proposed, which is aimed at fine granular level (i.e at the level of LUT
and D-FF inside the CLB). Obviously, the proposed architecture is customized to
adapt it to the ARDyT architectural framework. The fault mitigation process is
handled by the centralized reliability manager (R3M) in the ARDyT architecture.
The proposed FA-CLB architecture is fault-aware and mechanisms provided along
with the basic structure of the FA-CLB architecture support fault mitigation pro-
cess managed by the R3M. Each FA-CLB consists of a functional equivalent of four
"LUT:D-FF" pairs, called configurable logic elements (CLE).

As presented in Chapter III, the goal of the ARDyT architecture is to integrate
reliability strategy in different layers of the design: from hardware to application,
based on different abstraction levels. Fault tolerance in configurable logic elements
are realized by adapting techniques in hardware layer as well as in the fault tol-
erant abstraction layer. The techniques adapted in the hardware layer facilitate
fault detection and fault mitigation processes. On the other hand, the mechanism
integrated in the FTAL manages the fault status reading and initiates the fault
mitigation process. The combined approach of the ’architectural support’ and the
’fault management support by R3M’, aims to keep better trade-off between overhead
(hardware, time and power) and reliability.
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Table 4.1 – Fault models and their consequences in combinational and sequential
circuit elements

Combinational Circuit Elements Sequential Circuit Elements

Effect of
Radiation Induced

Charged Particle Hit

Radiation induced transistor/
logic circuit faults

Upset in the user data
memory elements

Fault Model
Single Event Transients,
Transistor Bridging and

Stuck-at-1/0 faults

Single Bit Upsets (SBUs) and
Stuck-at-logic value

Consequence Unpredictable/ undesired
combinational logic output

User data corruption
(State change in the user logic)

4.1 Primitive Elements, Fault Models and Their Con-
sequences

To apply efficiently fault mitigation schemes to any given logic resource, it is cru-
cial to understand the fault models and the consequences of their occurrence. Be-
fore proposing FA-CLB architecture, traditional logic cell architecture is analyzed,
to classify its primitive elements with respect to their behavior to different fault
models. Table 4.1 summarizes the effects of radiation induced charged particle in
combinational and sequential elements of reconfigurable FPGAs. In configurable
logic resources, combinational and sequential circuit elements are programmed by
configuration memory bits. As the configuration memory bitstream protection will
be introduced in Chapter V, this chapter focuses on fault models and the mitiga-
tion schemes of combinational and sequential circuit elements of the FA-CLB. The
nature of a fault and its consequences differ for combinational and sequential circuit
elements.

4.1.1 Consequences in Combinational Circuit Elements

As far as combinational logic is concerned, it does not contain any storage element to
get affected by radiation-induced SEUs and therefore to create single bit or multi-bit
upsets. Faults in combinational circuits are more of transient effects. As discussed
in [99–103], the circuit level faults in combinational logic include radiation-induced
transients, stuck-at-faults and transistor bridging faults. Unlike fabrication faults,
the effect of these radiation induction faults could be temporary as well as perma-
nent, depending on the nature and intensity of the radiation particle.

4.1.2 Consequences in Sequential Circuit Elements

To implement sequential circuit functionality and store user data bits, D-flip flops
(D-FFs) are commonly used in FPGA architectures. Unlike configuration memory
cells (SRAM), these user data memory cells are updated during task execution.
The effects of a radiation particle hit in these D-FFs can cause different faults with
different consequences.
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A radiation induced charged particle hit in a D-FF can cause: i) circuit level
internal transient fault and/or ii) user data corruption, which can also be called a
single bit upset (SBU) as it causes state change in the user logic.

4.2 Fault-aware Configurable Logic Element (CLE)
A logic cell/element, denoted here a CLE, refers to a simple functional equivalent of
a ’combinational and sequential element pair’. Conventionally, it is a ’LUT:D-FF’
pair, where LUT is for combinational and D-FF is for sequential circuit implemen-
tations. As discussed in Chapter I, a simple CLE structure is realized by coupling
a combinational circuit element and a sequential circuit element, provided with a
simple 2:1 output selection multiplexer. In contemporary architectures, the basic
building block (CLB in Xilinx and LAB in Altera FPGA devices) contains more
than one ’LUT:D-FF’ pair (CLE), due to today’s increased functional density re-
quirements. Similarly, in the ARDyT architecture the proposed FA-CLB has func-
tional equivalents of four CLEs. However, the reason is not just to meet increased
requirements of the functional density but also to provide reliability support.

Figure 4.1 – Configurable logic element (CLE) architecture of the ARDyT FA-CLB

By using fault-aware logic elements, configurable logic resources can be made
fault-aware, which can hence support reliability mechanism managed by R3M. The
fault-aware configurable logic blocks (FA-CLBs) are designed on the basis of:

• categorizing their primitive elements according to their logical nature (sequen-
tial or combinational) and

• analyzing the fault models and their consequences in the primitive elements
(as discussed in Table 4.1.

According to the discussion of the details listed in Table 4.1, it is understood that
each primitive element has a different circuit nature, experiencing different faults
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Figure 4.2 – Transistor-level structure of the 4-input self-checking multiplexer

which have different consequences. Hence, the well-adapted fault-model-aware fault
detection schemes are suggested for different primitive elements in the proposed
FA-CLB.

Figure 4.1 shows the functional diagram of the proposed fault-aware CLE (Each
FA-CLB has 4 CLEs; CLE is a simple ‘LUT:D-FF’ pair logic element), for a general
case. The n-input logic element comprises conventionally available combinational
and sequential logic elements: an n : 1 LUT, a pair of D-FFs, and the 2 : 1 multi-
plexer (to choose between combinational and sequential data output). In the pro-
posed CLE, the primitive elements are implemented as self-checking circuits by using
2-rail codes for multiplexers (similarly e.g. to [104,105]) and the DMR approach to
protect the D-FF.

4.2.1 Fault-aware Combinational Logic Element

A LUT-based logic element structure is used in the proposed scheme (similar to
Xilinx Virtex FPGA architectures), due to the possibility of implementing all 2n

n-bit logic functions in it, unlike, multiplexer-based architectures. However, the
proposed approach can also be adapted to multiplexer-based logic blocks, such as
Microsemi’s FPGA architectures [106], with smaller transistor overhead but limited
functional efficiency. The configuration data of LUT SRAM cells are part of FPGA’s
configuration bitstream and they can be protected using configuration bitstream
protection scheme discussed in Chapter 5 and the references therein. Here, we focus
on dealing with faults occurring in the selection multiplexers attached to the LUT
SRAM cells.

The self-checking 2 : 1 multiplexer built using four transmission gates and an
inverter can be found in [105]. Figure 4.2 shows a pass-transistor scheme of a self-
checking 4 : 1 multiplexer protected using 2-rail code, used in [104]. The transistor
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Figure 4.3 – Proposed structure of the 24 : 1 self-checking multiplexer

pairs (Q17/Q18 and Q19/Q20) used in the checker are characterized by different
aspect ratios to achieve different voltage thresholds VT1 and VT2, which can be
achieved in CMOS technology by various methods discussed in [107, 119]. If the
‘OUT’ node has an intermediate voltage, the checker outputs ’E1 and E2’ are with
different voltage levels; otherwise, E1 and E2 have the same voltage level. Indeed,
the ‘OUT’ node has an intermediate voltage when there is a fault in the circuit.
Hence, it is interpreted as in the absence of a fault, when the output of the checker
(E1 E2) produces the values (11) or (00). If a fault occurs in the multiplexer,
(E1 E2) shall assume either (01) or (10). According to (E1 E2), the comparator
(i.e. the 2-input XOR) generates the error status signal ‘Err_comp’ to indicate the
occurrence of a fault in the combinational logic.

The self-checking 4-input multiplexer of Figure 4.2 is the basic circuit for the
proposed fault-aware combinational logic element. The 4 : 1 multiplexer has two
functional logic levels 22 and 21 connected to the final 2-rail checker. The LUT
selection multiplexers of the 4-input, 6-input, and 8-input LUTs can be constructed
by introducing the 2-rail checker circuitry after every second functional logic level
of the multiplexer; i.e., larger self-checking multiplexers can be constructed using
the set of 4 : 1 self-checking multiplexers by connecting them appropriately. For
example, the 24 : 1 self-checking multiplexer can be constructed using five 4 : 1
multiplexers using 2-rail checker circuitry at two logic levels 21 and 23, as shown
in Fig. 4.3. The 24 : 1 or 16 : 1 combinational logic element has 16 SRAM cells
containing the LUT data (through configuration bits), to realize a desired Boolean
function, followed by a 16 × 1 selection multiplexer. The 16 × 1 multiplexer has 4
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logic levels 24, 23, 22, and 21. At the 23 logic level, it is evident that four distinct
(non-overlapping) outputs are coming from four 4 : 1 multiplexers. Similarly, at the
end of the 24 : 1 multiplexer, in the 21 logic level, the output is from a simple 4 : 1
multiplexer, if the circuit is considered after 23 logic level. Considering these five
4 : 1 multiplexers independently and implementing each of them as self-checking
will result in a self-checking 24 : 1 multiplexer.

4.2.2 Fault-aware Sequential Logic Element

D-flip flops are the most commonly used user data memory elements in FPGAs, to
support sequential circuit function implementations. As D-FFs are storage elements,
it is not possible to adapt self-checking circuit as in multiplexer checking, as it can
deal only with circuit faults but not with bit upsets. The contents of D-FFs is up-
dated during computation (run-time), hence the user data bits cannot be protected
using any of the built-in configuration bitstream protection schemes.

To deal with circuit faults as well as with user data upsets, it is worth to con-
sider some redundancy based technique. A simple duplication of D-FF with output
comparison suffices to identify/detect the fault. By taking advantage of the ratio
between basic combinational and sequential logic resources (e.g. LUTs and D-FFs,
respectively) in the contemporary FPGA logic block architectures, a simple DMR
could be an effective method to implement fault-aware sequential element. Often
the ratio of combinational and sequential elements is like 1 : 2 (for example, a stan-
dard CLB slice of Xilinx 7 Series architecture consists of 4 LUTs and 8 D-FFs [119]).
To note also that it is reported in [119] that the number of unused flip-flops is high
in most of applications. Hence, unused flip-flops of the logic block can be utilized
to detect faults in sequential elements by performing duplication with comparison,
as it is shown in Figure 4.1. The comparator is nothing else but the 2-input XOR
gate. In the presence of a fault causing an error, once the mismatch is detected
on the outputs of duplicated D-FFs, the comparator generates ‘Err_seq’ signal to
indicate the presence of error in the sequential logic. The cost of this strategy is one
additional XOR gate for each pair of D-FFs and associated routing wires inside the
FA-CLB.

4.2.3 Hardware Overhead Comparison

Table 4.2 shows the transistor count for the individual circuit elements used in the
proposed fault-aware CLE structure. These data will be helpful to estimate the
total hardware overhead.

The circuit elements in the proposed 4-input CLE include 16 SRAM LUT mem-
ory cells, the 16 : 1 self-checking multiplexer, two D-flip flops and the 1-bit com-
parator (2-input XOR), and the 2 : 1 self-checking output multiplexer. The 16 : 1
self-checking multiplexer is constructed using 5 4 : 1 multiplexers (the 4 : 1 multi-
plexer is constructed of 3 2 : 1 multiplexers).
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Table 4.2 – Transistor count of modules used

Module Name Transistor Count
SRAM cell of LUT 6T
2-pair 2-rail checker
+ Error evaluator 8T

D flip-flop 8T
XOR/Comparator 4T
2 : 1 multiplexer 6T

Table 4.3 – Hardware overhead: proposed scheme vs. TMR-protected scheme

LUT
Input size

Unprotected Proposed structure TMR-Protected
Transistor

count
Transistor count Overhead

%
Transistor count Overhead

%Total Overhead Total Overhead
4 178 238 60 33.70 560 382 214.60
6 662 850 188 28.39 2012 1350 203.92
8 2587 3287 700 27.05 7787 5200 201.00

Tables 4.3, 4.4, and 4.5 show hardware complexity estimations which allow to
compare the proposed fault-aware CLE against its unprotected version as well as
its three fault-aware counterparts: TMR-based, DMR-based and the scheme pro-
posed in [104]. Table 4.3 compares the estimated hardware complexity between the
TMR-based scheme and proposed CLE structure, by keeping the unprotected design
transistor count as reference.

Table 4.4 – Hardware overhead: proposed scheme vs. DMR-protected scheme

LUT
Input size

Unprotected Proposed structure DMR-Protected
Transistor

count
Transistor count Overhead

%
Transistor count Overhead

%Total Overhead Total Overhead
4 178 238 60 33.70 360 182 102.24
6 662 850 188 28.39 1328 666 100.60
8 2587 3287 700 27.05 5178 2591 100.15

The evaluation is performed for three logic block sizes: 4-input (24 × 1 SRAM
and 24 : 1 MUX), 6-input (26 × 1 SRAM and 26 : 1 MUX), and 8-input (28 ×
1 SRAM and 28 : 1 MUX). The TMR-based scheme triplicates every single circuit
element in the logic cell and the "supposedly" correct output is voted by the majority
voter at the output. On the other hand, the DMR-based scheme simply duplicates
the complete CLE resources and compares output results. The hardware complexity
comparison of the proposed fault-aware CLE and the DMR-based scheme is given in
Table 4.4. To note that both TMR and DMR schemes do not rely on any particular
fault-model of a cell, because they are directly applied to the entire CLE structure,
whereas the scheme proposed here relies on fault-model-aware detection.
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Table 4.5 – Hardware overhead: proposed scheme vs. scheme in [104]

LUT
Input size

Unprotected Proposed structure Scheme proposed in [104]
Transistor

count
Transistor count Overhead

%
Transistor count Overhead

%Total Overhead Total Overhead
4 178 238 60 33.70 312 134 75.28

The proposed fault-aware CLE applies self-checking at the fine granular level
(circuit level fault detection). Also, it applies different fault detection techniques
to combinational and sequential logic, according to their fault models and conse-
quences. Hence, the proposed scheme is able to detect and identify combinational
faults and sequential faults individually. Unlike redundancy based techniques such
as DMR and TMR, the proposed scheme does not have to wait till the signal reaches
the module outputs, so that a comparator or a voter can handle errors; thus it helps
to avoid accumulation of errors and enables faster fault detection.

Table 4.5 compares hardware complexity of the proposed fault-aware CLE and
the self-checking logic cell circuit proposed in [104]. Compared to the 4-input self-
checking logic cell proposed in [104] which requires a total of 312 transistors, our
fault-aware CLE requires only 238 transistors, i.e. 23.71% less overhead, due to
design optimization.

Figure 4.4 – Hardware complexity of various schemes of CLE

The hardware complexity characteristics given in Fig. 4.4 clearly show that the
proposed fault-aware CLE is significantly more hardware efficient compared to DMR
and TMR based schemes which require respectively about three and six times extra
hardware than the proposed architecture. For example, to implement the 6-input
CLE using the proposed fault checking mechanism, only extra 188 transistors are
required, i.e., 28.39% more, whereas in case of DMR and TMR the overhead reaches
100.60% and 203.92%, respectively.
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4.3 Fault-aware CLB for ARDyT FPGA
The detailed architecture of the proposed Fault-aware Configurable Logic Block (FA-
CLB) is shown in Figure 4.5. One can notice significant changes of its structure
compared to conventional COTS FPGA’s logic block architectures. In particular,
it comprises four CLEs (’LUT:D-FF’ pairs) with a unique arrangement of circuit
elements, as shown in Figure 4.5. The repositioning of the combinational and se-
quential logic elements in the proposed FA-CLB supports: i) built-in fault detection
scheme and ii) the fault mitigation scheme managed by the R3M.

Figure 4.5 – Fault-aware CLB (FA-CLB)

The entire FA-CLB architecture is divided into 6 local zones (Z1 to Z6). All
the sequential circuit elements (D-FFs) are arranged column-wise in the first local
zone Z1. Four combinational circuit elements (LUTs) are placed in the local zones
Z2 to Z5. Each D-FF in Z1 is associated with a corresponding LUT to form a
logic element (LUT:D-FF pair). The local zone Z6, called redundancy support and
carry logic block (RCB) comprises resources to support redundancy scheme and
carry logic. The internal connections among the local zones are made with the help
of simple internal connection boxes: horizontal local connection box (LCB-H) and
vertical local connection box (LCB-V).

The RCB is a dedicated reliability and carry logic support block built-in the
proposed FA-CLB, as shown in Figure 4.5, connected through the local connection
boxes and the routing lines. It includes the resources (XOR, for bit comparison) to
implement the DMR scheme, multiplexers for different output configurations and
for data selection between sequential data output and combinational data output
(according to the application requirement), and carry chain logic circuit to support
arithmetic operations. The carry chain is connected to other FA-CLBs through carry
in (Cin) and carry out (Cout) lines. It helps in performing arithmetic operations on
larger operands. A set of FA-CLBs connected with carry chain logic is used in
implementing larger tasks.
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CLBs can experience: i) temporary faults in the form of transient effects and/or
user data upsets (in D-FFs), ii) uncertain operation due to upsets in configuration
bits of the FA-CLB, and iii) permanent faults. In the ARDyT framework, configura-
tion bitstream upsets (SBUs and MBUs) are handled by the newly proposed 3DH er-
ror correcting scheme which will be presented in Chapter 5. Permanent faults create
lasting effects by damaging hardware resources which makes them non-recoverable,
hence relocating the task to other healthy design areas is the only possible solu-
tion. The scheme managed to handle temporary faults in the configurable logic
resource (FA-CLBs) is a 3-step process: detect-freeze-re-execute which consists
of detecting the fault, freezing (holding) the inputs of the faulty circuit modules,
and re-executing the task in the next operating cycle which possibly mitigates the
effect of the temporary fault. In the re-execution process, when a transient error
occurs and is detected during the operation, the system restores its input state to
the previous input and re-computes. The challenge in performing re-execution lies
in "how and where the previous input values of the task are kept to perform the
operation?" Traditionally, rollback [108] and roll-forward [109] techniques are used
to perform this task with the help of additional set of registers to keep the stable
state values. To facilitate the task re-execution process in the ARDyT architecture,
the conventional configurable logic block structure is modified in such a way that it
does not require any additional registers to hold the previous set of stable inputs.
The D-FFs grouped in the local zone Z1 facilitate two operations: i) holding the
input values of the LUT to reinforce and re-execute the task (in case of fault de-
tection) and ii) storing the user data output from the computed task (as it is done
conventionally).

As far as fault detection is concerned, there are two options through which built-
in fault detection support can be provided in the proposed FA-CLB.

• Case-I: Faults in sequential circuit elements are detected by DMR. Combi-
national circuit elements are made fault-aware by the realizing them as self-
checking circuits, as proposed in the previous section (provided that modifying
transistor parameters is possible).

• Case-II: DMR scheme is applied to both combinational and sequential cir-
cuit elements (LUT:D-FF pairs) (when modifying transistor parameters is not
possible).

The proposed FA-CLB architecture supports both cases. Arrangement of D-FFs
in the first local zone makes them independent from LUTs. In Case-I, to detect
faults in sequential circuit elements, the DMR scheme can be adapted easily with-
out any complex internal routing and selection bits. Inputs (Din) of redundant
D-FFs can be directly taken from the connection box (cf. Section 4.3.1) and the
corresponding outputs (Dout) can be compared at the RCB (Z6), driven through
local connection boxes. The designer can choose to utilize the logic resources with
or without the DMR scheme. In Case-II, there are three modes of working con-
figuration: i) without DMR, in which four D-FF and LUT pairs can be used for
functional implementation; ii) with DMR, in which two D-FF and LUT pairs can
be used for functional implementation with each pair having its duplicated resource;
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the outputs of both are connected to the comparator; and iii) with partial DMR,
in which selective resources are duplicated. The resource usage and reliability level
trade-offs are summarized in Table 4.6.

Table 4.6 – Resource usage vs. reliability trade-off

FA-CLB
Configuration

Functional Resource
Utilization (%)

Reliability
Level (%)

No DMR 100 0
Partial DMR 75 25
Full DMR 50 100

No DMR: 4 ‘D-Flip-flop - LUT Pair’

When a designer chooses to not apply DMR to a particular FA-CLB, all four ‘D-
FF and LUT’ pairs can be used independently to implement task functionality.
Each D-FF arranged in the first local zone of the FA-CLB is associated with its
corresponding LUT in the local zones Z2, Z3, Z4 and Z5, i.e. {D − FF1 : LUT1},
{D − FF2 : LUT2}, {D − FF3 : LUT3}, and {D − FF4 : LUT4}. In such a case,
the centralized manager R3M marks these FA-CLBs as unprotected and it does not
keep record of its fault status. Such unprotected CLBs can be switched to protected
ones, on the fly, by writing appropriate set of configuration bitstream using dynamic
partial reconfiguration.

DMR : 2 ‘D-Flip-flop - LUT Pair’

Should the complete DMR scheme be used, the functional density of that FA-CLB
is reduced by its half (i.e., 50% resources of a FA-CLB are used for functional
implementation and 50% for redundancy is). Each ‘D-FF and LUT’ pair gets
its duplicated resources: {D − FF2 : LUT2} duplicates {D − FF1 : LUT1} and
{D − FF4 : LUT4} duplicates {D − FF3 : LUT3}. During fault-free operation,
D-FF_1 and D-FF_2 receive the same input and LUT_1 and LUT_2 are expected
to produce the same output. The outputs of LUT_1 and LUT_2 are connected to
the comparator which can detect a mismatch. Similar connections are configured
for D-FF_3 and D-FF_4 in association with LUT_3 and LUT_4, respectively.

Partial DMR : 3 ‘D-Flip-flop - LUT Pair’

The proposed FA-CLB architecture also supports selective application of DMR,
where some two ‘D-FF and LUT’ pairs duplicate each other with their outputs
compared, whereas some other two ‘D-FF and LUT’ pairs are used for independent
functional implementation; e.g. {D − FF2 : LUT2} duplicates {D − FF1 : LUT1},
whereas {D−FF3 : LUT3} and {D−FF4 : LUT4} pairs are used independently. In
this case, the functional capacity of the FA-CLB is 75%, as 3 out of 4 of its ‘D-FF
and LUT’ pairs are used for functional implementation of the application task and
one ‘D-FF and LUT’ pair is used for redundancy. In such a case, this particular
FA-CLB becomes partially protected at the fine granular level.
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4.3.1 Input Connection Configuration to Adapt DMR

Figure 4.6 – DMR implementation of the input configuration cell

In a general case, to apply DMR-based fault detection scheme to any hardware
resource, extra routing lines are required to make redundant paths. In the proposed
architecture, the existing programmable routing lines in the connection box matrices
support the DMR input configuration functional implementation. As shown in Fig-
ure 4.6, every line passing through connection box has four configurable connections,
so the proposed FA-CLB structure can simply take advantage of this arrangement
to apply DMR by driving appropriate configuration bits in the connection box.

Figure 4.7 – Simplified connection box architecture

Figure 4.6 shows that the signals being carried by vertical lines 1 and 3 are served
as inputs to both the D-FFs (D-FF_1 and D-FF_2) at their respective inputs, by
making a primary and duplicate cross-point connections at the routing lines. In this
case, duplication of input lines are free of extra overhead. Figure 4.7 illustrates the
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internal architecture of proposed connection box (C.B). There are four horizontal
and vertical channel lines forming a 4×4 cross point (matrix) switch. Each horizontal
and vertical intersection is controlled by a pass transistor and a SRAM configuration
bit. Writing appropriate values in the configuration bits of connection box, drives
desired signals to the FA-CLB, to implement DMR’ed design. There are total 16
programmable connection points in the connection box. Lets consider, horizontal
lines H1 and H3 are connected to inputs of a redundant logic and the desired input
signal is available in the vertical channel line V2, then it is just sufficient to enable
the switching transistors 2&10 through their SRAM bits.

4.3.2 Output Connection Configuration to Adapt DMR

While adapting DMR (fully or partially) inside the FA-CLB, the outputs of the
‘D-FF and LUT’ pairs have to be configured properly to raise the fault status signal
efficiently. There are three possible ways of connecting the outputs of ‘D-FF and
LUT’ pairs to the fault detection comparators, as shown in Figures 4.8, 4.9, and
4.10.

Figure 4.8 – Static DMR configuration

The first scheme of Figure 4.8 directly connects the outputs of the duplicated
resources to the inputs of the comparator (XOR) and mismatch output is raised as
the status signal. As this scheme uses a static hardwired comparator, there is no
extra configuration bit used. In such a case, the comparator is always functional
and error detection status signal output responds to every change in the comparator
input. This scheme requires very little hardware (a XOR gate - 4T) compared to
other two output configuration schemes, but it is not efficient in terms of power
consumption.

The second scheme of Figure 4.9 also connects the outputs of the duplicated re-
sources directly to the inputs of the comparator but the output mismatch is raised
as the status signal by the output selection control through a multiplexer. The com-
parator output is controlled by the ’enable’ signal of the multiplexer selection line.
The output mismatch is notified to the R3M upon deciding and making control se-
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Figure 4.9 – DMR output configuration with output enabled

lection at this output multiplexer. This scheme requires one additional configuration
bit (enable signal) and the 2 : 1 selection multiplexer.

Figure 4.10 – Dynamic DMR output configuration with enabled input signal

The third scheme of Figure 4.10 separates the duplicated resources from the
comparator input by a configurable input selection control. Two selection multi-
plexers connected at the input lines of the comparator enable or disable the inputs
depending on the configuration provided. The advantage of this scheme is that the
comparator is not always functional, because its inputs are configured through input
multiplexers and enable lines.

Table 4.7 presents transistor count comparison of these three DMR output con-
figuration schemes, each of which also has its own advantages and disadvantages
in terms of hardware resources, power consumption and internal delay. The addi-
tional resources like XOR and extra multiplexers are integrated inside the proposed
FA-CLB architecture (in the RCB), similarly as dedicated resources to support the
DMR scheme. However, these built-in resources can be flexibly used according to the
design approach. A tradeoff can be maintained between hardware overhead, power
and propagation delay, while choosing appropriate output configuration scheme to
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Table 4.7 – DMR output configuration: transistor count comparison

Output Config. 1
Figure 4.8

Output Config. 2
Figure 4.9

Output Config. 3
Figure 4.10

XOR - 4T
XOR - 4T

2:1 Mux - 6T
SRAM Cell - 6T

XOR - 4T
2 × {2:1 Mux} - 12T

SRAM Cell - 6T
Total - 4T Total - 16T Total - 22T

adapt DMR.

4.3.3 Architectural Support for Task Re-execution

Any transient error has a limited time duration. The FA-CLB architecture facili-
tates the process of task re-execution. A task could span over one or more fault-
aware CLBs (FA-CLBs), depending on applications requirement to perform the task.
Hence, the challenge would be to freeze the inputs of all FA-CLBs involved with the
execution of a faulty task.

Figure 4.11 – Freezing the input: Re-execution of One-FA-CLB Task

In case of a small task which utilizes only one FA-CLB (1 FA-CLB = 4 CLE),
the error status signals from combinational and sequential circuit elements could
be OR-ed locally and routed to the enable (set) inputs of the D-FFs to freeze the
inputs, as shown in Figure 4.11. It does not require any external connection box or
switch box routing. The local error status signal from combinational and sequential
circuit elements are routed through the local connection box (LCB) placed between
the elements of the proposed FA-CLB. A dedicated OR gate provided inside the
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FA-CLB sums-up the error status signal and feeds it to the enable inputs of the
D-FFs to freeze the local inputs of the task.

Figure 4.12 – Freezing the input: Re-execution of Multi-FA-CLB Task

On the other hand, larger tasks which utilize more than one FA-CLB would re-
quire routing lines through connection and switch boxes to route out the error status
signal to freeze the inputs of other computational elements belonging to the same
task, as depicted in Figure 4.12. Similar to local OR-ing of the error status signal
in the case of one-cell task, different levels of hierarchical OR-ing are performed in
multi-cell task, to route a single error status signal line to freeze all corresponding
computational elements.

Additional OR gates are deployed in the architecture for the purpose OR-ing
the fault status signals from the combinational and sequential circuit elements of
different FA-CLBs related to the same task. The resulting (OR-ed) signal serves two
purposes: i) to act as a control signal to freeze the corresponding input signals (as
soon as the fault is detected), and ii) to update the fault status signal in the fault
status register (FSR). At each GPRR level, there is a fault status register which
has two dedicated bits to indicate the fault status values from combinational and
sequential circuit elements.

4.4 Fault Mitigation Through the R3M
The R3M, the centralized reliability and reconfigurable resource manager, acts as a
decision-making authority, whenever an uncertainty is detected in the implemented
design. In the ARDyT architecture, the complete cycle of fault mitigation pro-
cess in the FA-CLB is co-ordinated and handled by the R3M through logic fault
mitigation-application programming interface (LFM-API). The process includes sup-
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porting mechanisms for regular monitoring, fault detection, fault notification, fault
localization and fault mitigation.

The logic resources are being monitored regularly by the introspection plan run-
ning as a background process, without disturbing the application functionality. The
introspection plan runs an interrogation protocol which reads dedicated ’reliability
status registers’ deployed in the architecture. The interrogation protocol and the
details of those dedicated reliability status registers are explained in Chapter 3. At
each GPRR level, there is a status register called FSR which holds the reliability
status about different circuit elements available in that particular GPRR. The sta-
tus bits CS and SS in the FSR represents fault occurrence in combinational and
sequential circuit elements of the FA-CLB, respectively. The FA-CLB updates these
2 bits based on fault detection. The interrogation protocol reads these status bits
and raises notification to the R3M whenever required. The fault status bits CS and
SS are generated from ‘Err_comb’ and ‘Err_seq’ signals, respectively.

Figure 4.13 – Different stages of fault mitigation in the FA-CLB

The R3M handles faults in FA-CLBs according to the nature of the fault (re-
coverable and non-recoverable faults) indicated by the values of the CS and SS
bits in the FSR. Two bits (SSCS) can assume four combinations of the following
meanings: (00) – fault-free FA-CLB; (01) – a fault in the combinational circuit (e.g.
transient); (10) – a fault in the sequential circuit element (user data memory); and
(11) – an error in both combinational and sequential circuit elements. There are
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three fault mitigation stages defined in the LFM-API, to handle the faults in FA-
CLBs, as shown in Figure 4.13, including task re-execution, partial reconfiguration
and task relocation.

4.4.1 Mitigating Transient Effects

As soon as the fault occurrence in FA-CLB is notified through CS and SS bits of
the FSR, the fault status signal is routed to FTAL and then passed to the R3M
through the introspection plan. At the same time, a control signal is generated by
locally OR-ing the fault status signals at the GPRR level, to freeze the inputs of
all the FA-CLBs involved in the execution of the task being handled by the faulty
FA-CLB. Technically, this ‘freeze’ control signal is given to ‘set’ input lines of the
corresponding D-FFs. Now these D-FFs hold the previous set of input values of
which the generated output was faulty. Being the first stage of fault mitigation in
LFM-API, the fault is assumed to be temporary. Hence, instructions to perform
task re-execution are generated and that particular task is re-executed. As D-FFs
of the associated FA-CLBs hold the previous inputs, now they would be able to
compute for the same set of previous inputs. During this process, the effects of
time-bounded (temporary) faults are cleared, at the cost of a simple cycle.

4.4.2 Mitigating Upsets in Configuration Bits

If the fault notification about FA-CLB is still active in the FSR, the fault mitiga-
tion process enters the second stage, in which the fault is assumed to be upset(s)
of the programming bits of the FA-CLB. The complete configuration bitstream of
the architecture is protected by the proposed 3DH error correcting scheme, which is
running as a background process, performing error correction on the entire configu-
ration bitstream, with the help of the ICAP. The R3M has a dedicated application
programming interface (API), called Configuration bitstream Fault Mitigation API
(CFM-API), to handle this global configuration bitstream protection scheme in the
ARDyT architecture. At this second stage of fault mitigation in the configurable
logic resource, we require the 3DH configuration bitstream protection scheme to
be performed on this particular set of configuration frames. This change of access
control requires proper co-ordination and synchronization in managing frame ad-
dresses and the ICAP. The R3M manages the background read-back, configuration
bitstream partitions and frame addresses, time-shared usage of the ICAP and co-
ordinates different APIs to share the internal resources. Whenever LFM-API needs
the control over the ICAP, the 3DH scheme and the related resources to perform
error correction and then partial reconfiguration in a particular region of the archi-
tecture, it sends an interrupt to the R3M. The interrupt can be of different priority
levels, depending on the sensitivity and urgency of the requirement. (Priority lev-
els are based on the implemented application and the resource organization of the
architecture). The interrupts are served on their priority level basis: either it is
served immediately or it must wait till the running 3DH cycle terminates. Such an
interrupt service requests are handled in a prioritized pipeline structure in the R3M.
The interrupt service request by the LFM-API to get the control of the 3DH scheme
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includes the frame address at which the configuration bitstream error correction
scheme has to be launched. The corrected frames are written-back with the help of
partial reconfiguration and the concerned task is re-executed.

4.4.3 Dealing with Hard Errors

If even after performing partial reconfiguration (with corrected configuration bits)
and task re-execution, the fault status about FA-CLB persists in the FSR, it is
declared as permanent hardware fault. It means that affected hardware resource is
not recoverable from this kind of faults. In such a case, the faulty hardware is aban-
doned from the design and task implemented in that hardware is shifted/migrated
to a healthy hardware resource. The task relocation requires proper synchronization
of user states and local data, before and after the task migration. The LFM-API
includes features such as inter-task communication, flag setup, and buffered internal
states to achieving better synchronization of tasks during/after the task relocation.
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Chapter 5

Built-in 3-Dimensional Hamming
Multiple-Error Correcting Scheme

5.1 Proposed 3-Dimensional Hamming (3DH)Multiple-
Error Correcting Code

In this section, the construction of the proposed 3-Dimensional Hamming code is
described in detail. The basic idea is to arrange the information bits (to be pro-
tected) in a 3-dimensional format and applying simple, single bit error correcting
code in all 3 axis of the 3-dimensional arrangement. The ultimate aim of construct-
ing such code is to have an efficient, yet simple multiple-error correcting code. The
analysis of the hardware complexity (logic gate count) and error correction perfor-
mance (bit error rate (BER)) of various error correcting codes (ECCs), discussed
in [121], [117], [110], [112], [124], [111], clearly shows that Hamming codes require
the minimal hardware complexity compared to other ECCs. Hence, Hamming single
error correction and double error detection (SEC/DED) is adapted as the primary
error detection and correction scheme in the proposed 3DH code. The process of
Hamming SEC/DED syndrome (parity/check bits) generation and error detection
and correction is well explained in [123]. Hamming SEC/DED itself has no ability
to correct more than a single bit error and detect more than a double bit error
in a given data word. In other hand, the proposed 3DH scheme, which performs
Hamming SEC/DED in 3 different co-ordinates, can detect and correct more than
double bit errors, upto more complex multiple bit error patterns. The detailed al-
gorithm and an example of the proposed error correcting code, very well explains
the working flow of the proposed scheme.

The proposed 3DH code can be implemented to protect the configuration bit-

Figure 5.1 – General architecture that
implements the 3DH error correcting
scheme, proposed for SRAM-based FP-
GAs configuration memory protection.
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stream of an FPGA, provided that the architecture contains a 3D memory whose
buffer provides bit-wise access to memory bits in all three directions (X, Y, and
Z). This is in contrast with a conventional 2D memory which can provide only one
dimensional access to its data [113]. Should a similar solution be applied to the
3D memory, accessing configuration bits in the remaining two directions (Y and Z)
would require multiple swapping of error correcting buffer contents which would sig-
nificantly increase the access time. Because our work focuses on modeling a built-in
configuration fault mitigation scheme, the design aspects of the 3D SRAM memory
are omitted, as they can be found e.g. in recent works [114, 120], which discuss
both the design of 3D SRAMs and their performance improvements. The general
architecture that implements the proposed 3DH error correcting scheme to protect
the configuration memory of SRAM-based FPGA is shown in Fig. 5.1.

Figure 5.2 – Illustration of the 3D Hamming error correcting scheme: (a) Bit po-
sitions in terms of 3D co-ordinates (X, Y, and Z) and random errors introduced in
data frames; (b) Error correction results after X-axis computation; (c) Error cor-
rection results after Y-axis computation; (d) Error correction results after Z-axis
computation.

Bit Arrangements

The principles of error correction of the proposed scheme is illustrated in a simple
example of the 3 × 3 × 3 = 27 bit array, shown in Fig. 5.2. Fig. 5.2a shows the
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arrangements of configuration bits in the 3D buffer, how bit positions are enumerated
in terms of coordinate values (X, Y, and Z), and some randomly introduced multiple
errors (shown as black boxes in Figure 5.2). For the total of 27 data bits, 13 bit
errors are introduced which, despite they constitute almost 50% of all bits, still all
can be corrected.

X-axis Hamming SEC/DED Computation

Figure 5.3 – Sequence of X-axis Hamming SEC/DED Computation

As defined by the proposed 3DH algorithm, at first, the Hamming SEC/DED
codec, performs error correction along the X co-ordinate of the 3D buffer, word by
word. The error correction phase involves, check bit syndrome generation, error de-
tection, bit localization and single bit error correction (flipping the faulty bit). This
process is done in all the Z frames, word by word, starting from frame Z0 till frame
Zn−1, where ′n′ refers the value of the 3rd co-ordinate (Z). In the given example, the
3rd co-ordinate value, i.e, the depth of the 3D buffer is kept as 3. Hence, the hamming
SEC/DED operation is performed from the word {{000},{010},{020}} in the frame
Z0, till {{202},{212},{222}} in the frame Z2. The X-axis word accessing sequence is
given in the illustration fig 5.3. The single bit errors located in the bit locations 020,
110, 012 and 102 belongs to the words in the X co-ordinate {{000},{010},{020}},
{{100},{110},{120}}, {{002},{012},{022}} and {{102},{112},{122}} respectively,
are cleared during the process of X-axis hamming SEC/DED computations. Fig.
5.2b shows the results of the Hamming check bits generation along the X-axis, which
allow to correct all single bit errors along the X-axis.

Y-axis Hamming SEC/DED Computation

Once all the single bit errors are corrected along the X-axis, the same operation is
performed along the Y-axis word by word. It has to be noted that Y-axis words
are column based bit arrangements, contradictory to the previous X-axis words,
due to the nature of 3D arrangement and bit accessible memory buffer. The Y-
axis hamming SEC/DED computation is performed word by word starting from
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Figure 5.4 – Sequence of Y-axis Hamming SEC/DED Computation

frame Z0 till frame Zn−1. The single bit error correction is performed from the
word {{000},{100},{200}} in the frame Z0, till {{022},{122},{222}} in the frame
Z2. The Y-axis word accessing sequence is given in the illustration fig 5.4. Some
of the non-correctable errors in the X-axis hamming SEC/DED computation are
seen as correctable single bit errors in the column based (i.e, Y-axis) hamming
SEC/DED process. For example, the error bits in the positions 200 and 220 belonged
to the same word during X-axis hamming SEC/DED computation, where as, during
the Y-axis hamming SEC/DED computation, bit positions 200 and 220 belongs to
two different words, i.e., {{000},{100},{200}} and {{020},{120},{220}} respectively.
This virtual separation helps in clearing the errors of more than one bit. In the
similar way, the triple error in the bit positions 202, 212 and 222 belonged to the
same word during the X-axis computation, where as, it is seen as clearly single bit
errors during the Y-axis computation, hence it is cleared using the simple SEC/DED
operation. The results of Y-axis computation for the given example is shown in
fig 5.2c. It has to be noted that, even after the Y-axis computation, there are
still some error patterns which stay uncorrected. To achieve better reliability, such
complex patterns also has to be corrected. From the recent experimental results
[21, 22, 26, 115, 116, 118, 122], it is evident that bunch of adjacent bits are getting
affected more due to single radiation event. When such multiple bit upsets (MBUs)
are arranged in local buffer for error correction, it is more obvious that the possibility
of getting non-correctable error patterns are increased. This is a main reason to have
3rd (Z) axis data arrangement and correction plans.

Z-axis Hamming SEC/DED Computation

The Z-axis data arrangement virtually breaks/separates complex error patterns, so
that it can be treated as single bit errors in their respective words and corrected
eventually. As shown in the given example, after X and Y-axis hamming SEC/DED
computation, there is still a non-correctable 4-tuple error pattern, formed in the
bit positions 101, 111, 001 and 011 of the frame Z1. These bit positions are left
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Figure 5.5 – Sequence of Z-axis Hamming SEC/DED Computation

uncorrected by the X and Y-axis computation, because they correspond to a so far
non-correctable error pattern: multiple errors in adjacent bit positions in adjacent
rows and columns. This is due to the natural fact of the hamming SEC/DED error
correcting code, i.e., is the ability to correct only single bit error in any given word
to be processed.

To deal with such errors, the same hamming SEC/DED operation is performed
along the Z axis, word by word from {{000},{001},{002}} of frame Y0, to {{220},{221},{222}}
of frame Y2. The Y co-ordinate value is considered as the height of the 3D buffer.
The Z-axis word accessing sequence is given in the illustration fig 5.5. The result of
Z-axis hamming SEC/DED computation is shown in fig 5.2d.

5.1.1 Dealing with Non-correctable Error Pattern

The seemingly non-correctable 4-tuple error pattern are handled, as explained in
Fig. 5.6. Indeed, the same erroneous bits can be arranged in a correctable for-
mat, should this error pattern be viewed along the Y-axis (the latter can be seen
as nothing else but virtual breaking of the group of non-correctable errors and dis-
persing them in Y-frames, so they could become correctable). The error bit 101,
111, 001 and 011 looks adjacent and in the same frame (Z1), when it is viewed
from axis X as well as Y, hence it seems like a non-correctable 4-tuple error. When
the same bits are viewed from a 3rd angle (Z-axis) in the 3D buffer, the bits 001
and 011 belongs to frame Y0 and 101 and 111 belongs to frame Y1. Hence ap-
plying hamming SEC/DED to words {{000},{001},{002}} , {{010},{011},{012}},
{{100},{101},{102}} and {{110},{111},{112}} will eventually clear the errors in the
bit positions 001, 011, 101 and 111 respectively, considering them as single bit errors
in their respective words. Then, these errors can eventually be corrected along the
remaining 3rd axis Z.

In summary, the sample configuration data can be completely recovered even
from such a large number of errors. In this example of the window of size 3× 3× 3,
the proposed scheme has recovered the 27 (33) information bits out of randomly
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Figure 5.6 – Dealing with seem-
ingly non-correctable error pat-
terns: (a) Non-correctable 4-tuple
error pattern in Z-frame; and (b)
The same error pattern which is
correctable in Y-frames

introduced 13 errors. More complex error patterns can be corrected by performing
the 3DH correction iteratively and the actual number of iterations can be considered
as the performance parameter. There are also some cases for which the proposed
3DH scheme fails to recover the data, but the occurrence percentage of such non-
correctable error patterns is significantly smaller compared to other 1D and 2D
Hamming error correcting schemes.

5.1.2 Optimizing the Number of Computation

The number of hamming SEC/DED computations performed in the 3DH scheme
can be reduced/ optimized by involving an extra decision-making intelligence before
the Z-axis computation. It is nothing but being informed about the non-correctable
multiple errors detected during the Y-axis hamming SEC/DED computation.

Recording Y co-ordinate value (refer step 6 in the Section 5.1.3, 3DH algorithm),
when multiple error detected in Y-axis computation helps us in reducing the number
of computations in Z- axis. Let us consider an example, a error pattern after X and
Y axes Hamming SEC/DED computation, in Z planes as shown in figure 5.7.

Figure 5.7 – Example Error Pattern- Reducing No. of Computation

If we continue to perform Z-axis computation blindly, it takes 25 (5 × 5 words
in Z direction) Hamming SEC/DED computations to clear the errors. Instead of
that, performing Z-axis computation only on the recorded Y values, needs only 10
computations. The recorded Y co-ordinate values can be kept in a local temporary
register during the process of syndrome generation along the Y-axis and the recorded
values can be fetched back by the control register, to notify the current address of the
word to be processed in the Z-axis hamming SEC/DED computation. By this way,
the total number of computations can be optimized and the overall performance of
the proposed error correcting scheme can be improved.
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5.1.3 Detailed Algorithm of 3DH Code

The proposed 3DH error correcting scheme of the FPGA’s configuration bitstream
is summarized as the following algorithm.

Algorithm 1

Step 1) Read the N -bit configuration data frame through the serial read-back
bus along with corresponding parity bits stored in a separate parity memory
array.

Step 2) Perform the Hamming SEC/DED coding on the N -bit data and store
the resulting data in the 3D N -bit buffer. [Performing Hamming SEC/DED
computation in the X axis words of the 3D buffer]

Step 3) Repeat Steps 1) and 2) until the buffer is full (for the 3D buffer formatted
with suitable coordinate values see Fig. 5.2a).

Step 4) Read one by one the words of the 3D buffer along the Y axis and perform
Hamming SEC/DED coding on them (all single bit errors are corrected during
this operation).

Step 5) If no multiple bit error is detected, perform Step 4) until the 3D buffer
is fully scanned along the Y axis.

Step 6) If multiple bit error is detected, record the current Y coordinate value
and continue the same till the buffer is fully scanned along the Y axis.

Step 7) Take the recorded Y coordinate value and perform the Hamming SEC/DED
coding along the Z axis for that particular Y value.

Step 8) Repeat Step 7) for all previously recorded Y values.

Step 9) Once a full cycle of scanning of the 3D buffer along all three axes is
completed, proceed to Step 10) if additional iteration is required.

Step 10) Read the words one by one along the X axis and perform the Hamming
SEC/DED coding on them.

Step 11) Continue performing Hamming SEC/DED coding along the X axis until
the buffer is fully scanned in the X-direction, then proceed to Step 4).

Step 12) If any bit has been corrected, write back the corrected configuration
data through the programming bus (thanks to partial reconfiguration).

Step 13) Restart Step 1), for the next frame.
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5.2 Functional Implementation of Proposed 3DH Scheme
Implementing the proposed 3-dimensional hamming multiple-error correcting scheme
in any FPGA architecture to protect the configuration bitstream, requires some ad-
ditional considerations. The major point to be considered is the 3D buffer which
is being used in the proposed 3DH code. The 3D buffer plays a vital in role in
clearing complex multiple bit upset patterns and there by improving the reliabil-
ity to a greater extend. However, today’s conventional FPGA architectures are
2-dimensional by its physical fabrication nature. Hence, the hardware resources
and the configuration bitstream plan in the architecture is usually spread in a 2-
dimensional (X-Y) spatial plane. Adapting the proposed 3-dimensional hamming
scheme in such conventional 2D FPGAs, require additional supportive mechanisms.

5.2.1 Block Diagram and Description

The detailed block diagram of the proposed 3 dimensional multiple-bit error correct-
ing Hamming implementation scheme is shown in Fig. 5.8. The functional block
and the error correction scheme in the architecture is a tightly attached cyclic pro-
cess, exactly similar to the functional implementation of ‘configuration read-back
and verification process’ installed in Xilinx architectures. However, the difference
between both the configuration bitstream protection schemes comes in the form of
handling multiple bit upsets and the usage of configuration bitstream golden copy.

Functional Description

Its two main blocks are the 2D and 3D address decoders. The 2D address decoder is
a conventional one which is already available in most of the FPGA devices. Almost
in all cases, it is used along with the Internal Configuration Access Port (ICAP)
as in Xilinx FPGAs [125]. It is a serial access port used to read-back and verify
the configuration bitstream without disturbing the functionality of the FPGA. The
‘read-back’ is a background process, meant for checking the integrity of the con-
figuration bitstream. In recent FPGAs, the ICAP helps in performing ’CRC’ and
’Frame ECC’ (Frame Error Correction Coding). Here, in the proposed scheme, the
2D Address Decoder fetches the configuration data, frame by frame and arranges
them in the 3D Buffer of predefined size. Conventional ‘Frame ECC’ schemes, as
the one implemented in Xilinx virtex architectures, employ hamming SEC/DED to
correct the bit errors in the configuration frames. The ‘Frame ECC’ process, per-
forms the single bit error correction during the read-back phase of the configuration
frames. Usually, frame is the smallest readable/ writable (configurable) unit in the
configuration plan. It has to be noted that the 3D buffer’s word size need not to
be the same as of the configuration frame size. Hence, the hamming SEC/DED
computation size various accordingly. Choosing the optimal size of the 3D buffer
and SEC/DED scheme is discussed in the section 5.3.

The 3D Address Decoder is specifically designed to interact with the Hamming
SEC/DED Codec, to perform the proposed multiple bit error correction scheme on
the configuration data. It generates the address to access the words in all three
(X, Y and Z) directions of the 3D Buffer. Here, a ‘word’ refers to the size of the
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Figure 5.8 – Implementation block diagram of the 3D multiple bit error correcting
Hamming scheme

configuration data arranged in the 3D Buffer, to which Hamming SEC/DED coding
could be applied (the word sizes in X, Y, and Z axes are respectively n1, n2, and n3).
The configuration bits are fetched out word by word from the 3D Buffer according
to the address generated by the 3D Address Decoder. The fetched out words are
provided to the Hamming SEC/DED Codec. The corresponding set of parity bits are
provided to the Hamming SEC/DED Codec. The 3D Address Decoder synchronizes
the configuration data fetching (from the 3D Buffer) with the parity data fetching
(from the parity memory), to provide appropriate set of configuration and parity
bits to the Hamming SEC/DED Codec.

Thereby, the Hamming SEC/DED Codec can generate the syndrome, detect the
error, locate the faulty bit and perform the single bit error correction for each given
word. The Hamming SEC/DED Codec performs error correction on each word
fetched out from the 3D Buffer and generates a local control signal to indicate the
completion of error correction on the current word of the 3D Buffer.

The control signal is routed to the Control Block, which in turn, generates two
separate control signals to the 2D and 3D Address Decoders. The control signal to
the 2D Address Decoder is generated once the error correction is done on all words
of the 3D Buffer, which can then fetch the next set of configuration frames from the
FPGA configuration memory (2D). The control signal to the 3D Address Decoder
indicates the completion of error correction on the current word of the 3D Buffer,
which can then fetch the next word from the 3D Buffer to perform error correction.

The Current Address Register keeps the address of a current set of FPGA con-
figuration frames, which are being handled in the 3D Buffer. The Current Address
Register helps in re-writing the corrected configuration frames to their original po-
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sition in the FPGAs configuration plan, thanks to the partial reconfiguration and
configuration write-back features commonly available in contemporary FPGA de-
vices.

5.2.2 3D Virtualization of 2D Memory

As mentioned earlier, the 3D buffer plays an important and inevitable role in the pro-
posed multiple-bit error correcting configuration bitstream protection scheme. To
adapt this scheme, either the architecture itself should have the provision of having
3D buffer built-in, or, in the case of conventional 2D architectures, supportive mech-
anisms have to be added to facilitate the implementation of the proposed scheme.
The provision of having dedicated built-in 3D buffers are possible in the case of cus-
tom made architectures as of ARDyT FPGA. The prime motive of ARDyT FPGA
is to have a reliable architecture with some dedicated sources added to maintain the
desired reliability level.

Figure 5.9 – 3D Virtualization of 2D Memory

However, this section describes about achieving such 3D buffer functionality
in a 2D architecture itself, hence, making it feasible to apply the proposed 3DH
scheme to commercial off the shelf (COTS) FPGAs as well. The figure 5.9 explains
the scheme. Functionally, it shows, how the configuration frames arranged in 2D
form can be fetched and re-arranged in a 3D format, with the help of appropriate
address decoding. Be it the configuration bitstream memory or the 3D buffer, both
are physically 2 dimensional memories. The arrangement and addressing of both,
are going to make the difference. The smallest accessible unit of the configuration
bitstream (frame), is read by the conventional read-back port and the its been re-
arranged with the help of a address generator, in such a way that it virtually behaves
like a 3D buffer.

For instance, lets consider a configuration bitstream of total 1331 bits to be re-
arranged in such a format to form a virtual 3D-buffer, as shown in Figure 5.10 and
5.11.
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Figure 5.10 – 3D Virtualization Pattern

Figure 5.11 – 2D to 3D virtualization

The resultant 3D-buffer is 11 × 11 × 11 in size, with same co-ordinates values
for X, Y and Z. All-together, the 3D-buffer will have 121 X-axis words, 121 Y-axis
words and 121 Z-axis words, of 11 bit each, where every bit in the 3D-buffer is a
part of 3 words (one in each axis).
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5.2.3 Calculation & Storage of Parity Bits

Parity/ check bits are one of the prime and very important part of this whole
error correction scheme, without which, it is impossible to perform error detec-
tion/correction. Usually, parity bits are generated during the configuration bit-
stream generation process itself. There are some incorporated tool-set which gener-
ates corresponding parity bits along side the functional configuration bitstream. As
the leading FPGA vendors like Altera, Xilinx have already incorporated hamming
SEC/DED based error correcting schemes to protect the configuration bitstream,
their CAD tools have built-in support to generate these parity bits, with some pre-
defined design / input / functional constrains.

For the proposed 3DH scheme, the parity bits have to be generated for the words
in all three co-ordinates (X, Y and Z). This is contradictory to the conventional par-
ity generation, where the parity bits are generated only for one directional data.
More precisely, the parity bits are generated for the frame sized configuration bit-
stream. Along with frame ECC, checksum values are also generated for each frame,
to perform frame based CRC.

However, for the proposed scheme, apart from the configuration frame size, size
of the 3D buffer and number of frames/buffer, also need to be determined before
configuring the chip, to generate appropriate parity bits. Generally, parity bits are
generated by estimating the hamming syndrome for the given string of bits. It has
to be noted that, parity bits are used to protect the configuration bitstream, but
how the reliability of those parity bits could be maintained?. Thanks to Hamming,
by nature, the hamming code deals with the errors in information bits as well as
the parity bits. Hence, there is no need for another mechanism to protect the parity
bits.

The pre-calculated parity bits can be part of configuration data and it can be
loaded into the device during the power on. The generated parity bits can be stored
in a dedicated parity memory in the architecture or it can be kept in the internal
block random access memories (BRAM). Generating and programming parity bits
are not of a big concern, where as, the parity memory overhead would be. Hence,
the optimization of parity memory overhead is discussed in the following section.

5.3 Optimal Size of the 3D Buffer and the Parity
Memory Overhead

The size of the configuration data frame varies depending on the family of FPGA
devices. Consequently, the number of check bits depends directly on the size of the
configuration data frame and the error protection scheme used, like CRC and Frame
ECC; for instance, in all Virtex 7 series FPGA devices: (i) all frames have a fixed,
identical length of 3,232 bits and (ii) a 13-bit Hamming code and a 32-bit CRC with
read-back are used for error detection and correction [74,125].

Figure.5.12 shows three multi-dimensional organizations of data bits. Figure
5.12a represents a word of n1 bits, 5.12b represents a frame of n2 words, 5.12c rep-
resents a buffer (3D collection) of n3 frames. (Note: The ’frame’ mentioned here
is to describe the 2D arrangement of configuration bits, not be confused with the
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Figure 5.12 – Configuration organization: (a) 1D word; (b) 2D frame; and (c) 3D
buffer

term configuration ’Frame’ used in conventional configuration plan). Applying error
correcting codes like hamming SEC/DED, only in the horizontal word format (1- di-
rectional word by word) requires the parity bits generated only for horizontal words.
Such error correcting scheme is described as 1-directional hamming SEC/DED. For
instance, the Xilinx virtex 7 series FPGAs employs this scheme; generating 13 parity
bits for each frame of size 3232 bits to perform frame based hamming SEC/DED.
The 2-directional hamming SEC/DED schemes, performs the syndrome generation
in both horizontal as well as vertical axis of the 2D plane. That is, 2D schemes apply
hamming SEC/DED on row-wise words and column-wise words, hence row-wise and
column-wise parity bits also have to be generated. The parity memory overhead of
such 2D schemes are calculated as described in [66]. The proposed 3-directional
hamming scheme has the configuration bitstream arranged in 3-directional buffer
and the hamming SEC/DED is performed in all three direction word by word. Ap-
parently, the proposed 3DH scheme needs the parity bits to be generated, for the
correspond words, in all three direction.

In the 3D buffer scheme proposed here, the overall parity memory overhead is
given by

P3D = (n1 · k2 + n2 · k1)n3 + n1 · n2 · k3, (5.1)

where ki is the number of parity bits of the SEC/DED Hamming code for ni data
bits, i = 1, 2, 3. The total parity memory overhead of the proposed scheme for a
particular FPGA device is

TotalPOH = P3D ·
Total number of configuration frames in FPGA

Number of frames per 3D buffer
(5.2)

Perfect SEC/DED Hamming code

This overhead depends on the choice of the co-ordinate values of the 3D buffer.
Of particular interest is the so called perfect SEC/DED Hamming code for which
the condition n = 2k−1 − k holds, which protects the maximal number of data
bits n for a given number of parity bits k. For instance, the minimum of k = 6
parity bits suffice to protect n = 12 data bits (which is the minimum for k = 6)
although the same number of parity bits are also required to protect up to n = 26
data bits (the maximum for k = 6). To convey a reader with the importance of
using perfect Hamming codes (or codes as much close as possible to them), we have
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Figure 5.13 – Comparison of the parity memory overhead between 3D encoding
using perfect Hamming codes (PH) and standard Hamming codes (SH) applied to
n = 2j data bits.

considered two classes of 3DH schemes applied to 3D data cubes of size n (i.e. with
n1 = n2 = n3 = n and hence k1 = k2 = k3 = k): one for commonly used n = 2j

and the other for n corresponding to perfect Hamming codes.
Fig. 5.13 shows the parity memory overhead for either class of codes for k ranging

from 5 to 10. Clearly, choosing the sizes of the 3D buffer which meet the perfect
Hamming code condition can lead to significant overhead reduction.

Unfortunately, choosing the 3D buffer size which meets exactly the perfect Ham-
ming code condition is hardly feasible for existing devices. It greatly depends on
the frame size of the FPGA’s configuration plan. Nevertheless, it is desirable to
choose the co-ordinates (n1, n2, and n3) of three axes (see Fig.5.12) such that each
of three sizes of the 3D buffer match the perfect Hamming code condition as closely
as possible.

Figure 5.14 – Optimal values of the 3D buffer co-ordinates

To do this, a program has been developed which, upon providing the parameters
’Number of frames/buffer’ and ’frame size (bits/frame)’ of the FPGA, generates
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the list of possible near optimal solutions, as shown in Fig. 5.14. where ’Number
of frames/buffer’ is a design parameter which can be decided by the developer,
according to the application and the deploying environment. The time taken to
complete a full error correction cycle of the whole configuration memory depends
on the number of frames, bits/frame and the number of frames/buffer. Here, the
solution resulting in the minimal parity memory overhead is called optimal.

As an example, the best sizes (n1, n2, n3) of the 3D buffer for the parameters of
Virtex 7 series FPGAs [119] are estimated, by providing ’Number of frames/buffer’
and ’frame size (bits/frame)’ of the FPGA as the input parameters. Two best
arrangements of 64 configuration frames of 3232 bits in the 3D format found were (32,
64, 101) and (16, 101, 128), where all permutations of (n1, n2, n3) would obviously
result in the same overheads respectively 87488 and 108496 check bits. The first
triple involves the minimum parity overhead equal to 42.2%, which is significantly
larger than to implement error handling mechanisms used in the Virtex 7 series
devices (the Frame ECC and CRC). Nevertheless, the latter error correcting scheme
cannot handle multiple bit errors as effectively as the proposed scheme, because
CRC must be supported by read-back requiring external circuitry to perform error
correction.

5.3.1 Parity Memory Overhead Comparison

According to the theory of Hamming code,

2C ≥ N + C + 1 (5.3)

where, C - is the number of required parity bits ; N - is the total number of
data bits protected. The parity bits required for different data width (N) is shown
in table 5.1. An additional memory space is required in the FPGA, to keep this
parity bits. The memory overhead due to this additional parity bits decreases with
the increased size of data width. This is due to the logarithmic relationship of the
number of parity bits to the protected data as shown in table 5.1.

Table 5.1 – Parity bit estimation (based on equation 5.4)

Data width (N) Parity bit for SEC Parity bit for SEC/DED
1 2 3

2 - 4 3 4
5 - 11 4 5
12 - 26 5 6
27 - 57 6 7
58 - 120 7 8
121 - 247 8 9
248 - 502 9 10

SEC- Single Error Correction ; SEC/DED - Single Error Correction Double Error
Detection

The actual memory overhead of the proposed 3DH scheme is listed in table 5.2
for different parity bit size. The parity memory overhead can be further optimized
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by using the concept of perfect hamming. The condition of perfect hamming gives
"the minimum number of parity bits required to protect the maximum number of
data bits". According to Hamming theory, the perfect hamming condition is,

2C = N + C + 1 (5.4)

The table 5.2 and figure 5.15 shows, how the parity memory overhead is reduced
by utilizing the condition of perfect hamming. The memory overhead of the proposed
3DH scheme is almost equal to the overhead of 2DH scheme, whereas, in-terms of
error correcting efficiency, the 3DH scheme is better than the later one. Also, it
should be noted in the Figure 5.15 that, the parity memory overhead of the 3DH
is lesser than the 2DH scheme, when the computational data width increases for
perfect hamming.

Figure 5.15 – Comparison of parity memory overhead

Table 5.2 – Parity memory overhead comparison

Total parity memory overhead
Parity bits per word 1DH Scheme 2DH Scheme 3DH Scheme

Binary weighted Perfect hamming
5 38.46% 56.75% 65.21% 57.69%
6 27.27% 42.85% 52.94% 40.90%
7 17.94% 30.43% 39.62% 26.92%
8 11.11% 20.00% 27.27% 16.66%
9 06.56% 12.32% 17.41% 09.85%
10 03.75% 07.24% 10.48% 05.63%

Lets have an example case from the table 5.2. Considering the same co-ordinate
values to X, Y and Z, the parity bits required to perform hamming SEC/DED
computation on all the words in all three directions are same. Lets assume a parity
bit size of 7, and hence, the parity memory overhead is 17.94% , 30.43% , 39.62%
and 26.92% for 1D, 2D, binary weighted 3D and perfect hamming 3D respectively.
It is evident that the proposed 3D scheme poses significantly less parity memory
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overhead (i.e., 26.92%) when follows perfect hamming condition, compared to the
2D scheme (i.e., 30.43%). However, in a practical case, it is difficult to achieve exact
perfect hamming condition while determining the 3D buffer size. Nevertheless, a
nearest possible perfect hamming condition can be determined using the optimal
3D buffer size calculator as shown in figure 5.14.

5.3.2 Hardware Implementation Details

A test case evaluation is done by implementing the proposed 3DH configuration
bitstream protection scheme for the optimal 3D buffer size of (X, Y, Z) co-ordinates
{101, 32, 64 } for Xilinx Virtex 7 series device.

By adapting the proposed 3DH scheme to the Xilinx architecture, the already
existing internal configuration access port (ICAP) is used for accessing the config-
uration frames. The configuration bits are fetched by the conventional read-back
process frame by frame. The fetched configuration frames are mapped to a virtual
3D arrangement with the help of 3D-address decoder (designed for specifications of
optimum 3D buffer size). The 3D-address decoder generates (n,k,p) address, each
of 3 × (4) bits wide. Here, ‘n’ is the column component (along X-Axis), ‘k’ is the
line component (along Y-Axis) and ‘p’ is the frame component (along Z-Axis). The
three parameters, (n,k,p) represents an address in the 3D-Buffer. There is always a
parameter equal to null. The null parameter means that the word is along this axis
and other parameters indicates his position in the 3D-Buffer (e.g. (n,k,p) = (1,0,3)
means that the word is along the Y-Axis and it is positioned in column 1 of frame
3).

Slice logic utilization Logic distribution
(No. of LUT-FF pair used) Specific feature utilization

No. of slice
Registers

No. of slice
LUTs

No. with
unused

FF (73%)

No. with
unused

LUT (6%)

No. of
fully used

pairs

No. of
Block

RAM (2%)

No. of
DSP

444 /400K 1500 /204K 1244 /1688 108 /1688 336 /1688 21 /750 5 /1128

Table 5.3 – Hardware resource utilization summary

The parity bits are generated at the time of configuration bitstream generation
itself, with respect to the pre-calculated optimal co-ordinate values (X,Y,Z) of the
3D buffer. The generated parity bits are kept in Block RAMs (BRAMs) available in
the architecture. The Hamming codec circuit is implemented to generate syndrome
and to perform error detection and correction. The design summary report in Table
5.3 shows the hardware resource utilization to implement the proposed 3DH scheme
in a commercial FPGA; virtex 7 series device - 7vx330tffg1157-3 (with 3D buffer
coordinate size 101, 32 and 64 for X, Y and Z coordinates, respectively). The
design simulations are done by manual fault injection in the configuration bitstream.
According to timing summary, the maximum frequency of operation is 148.302 Mhz
(equivalent to 6.743ns clock period). As the reconstruction of words in virtual
3D-buffer requires more clock edges, it evident that the timing performance is not
so good. Better timing performance could be achieved by adapting some timing
optimization techniques. In fact, the more time consuming task of "2D-to-3D"
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and "3D-to-2D" word reconstruction can be avoided if the proposed 3DH scheme is
incorporated with real 3D memory architectures.

5.4 Reliability Improvement
The reliability improvement of the proposed scheme is evaluated by comparing the
percentages of non-correctable error patterns in 1D, 2D, and 3D Hamming code error
correcting schemes. Some figures are listed in Table 5.4 for 3D data cubes with n = 3,
4, and 5, where the occurrence percentage of Nep is the ratio of the total number of
non-correctable error patterns to the entire sum of correctable and non-correctable
error patterns for the given bit/word/window size of the data. All possible error
patterns were generated and the Nep values were obtained using MATLAB R©. Unfor-
tunately, estimating non-correctable patterns for n ≥ 6 turned out computationally
too complex. However, the trend of estimated 3 set of values help us in predicting
the Nep for the higher numbers.

Table 5.4 – Comparison: non correctable error patterns of 1D, 2D and 3D hamming
scheme

1DH scheme 2DH scheme 3DH Scheme
n Tb %Nep Tb %Nep Tb %Nep

3 3 0.5 9 0.1718 27 0.0086
4 4 0.6875 16 0.2368 64 0.0060
5 5 0.8125 25 0.2384 125 0.0053

Tb - Total bits protected (Hamming size) ; %Nep - % of non correctable error
patterns

Table 5.4 reveals decreasing nature of the percentage of non-correctable error
patterns with the increase of the 3D buffer size. Recall that the simple Hamming
SEC/DED scheme is capable of correcting only single-bit errors in a word and that
the percentage of non-correctable error patterns in it is very high. As for the 2D
Hamming code, any multiple bit error in more than one adjacent row/column is
uncorrectable [66]. The data listed in Table 5.4 show that the percentage of such
uncorrectable error patterns is relatively high. On one hand, Table 5.4 reveals that
the ratio of non-correctable error patterns in 1D and 2D schemes grows with the
increase of word and window size, respectively. On the other hand, it shows that
the ratio of non-correctable error patterns in the proposed 3D Hamming code is
not only very small (less than 1%) but also, unlike the other two schemes, it tends
to decrease with the increase of the window size. Clearly, the multiple bit error
correcting efficiency of the proposed scheme is significantly higher than of the other
schemes.
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5.5 Fault Mitigation through R3M: Integrating the
Proposed Configuration Protection Scheme in
ARDyT FPGA

In the proposed 3-dimensional hamming based configuration bitstream protection
scheme, detection and correction of errors happen as a continuous cyclic process, due
to the fact that hamming error detection correcting codes, not just detect the error,
but locates it’s bit position as well in the (configuration) word being processed. The
primary difference and advantage of the proposed scheme against the conventional
methodology used in Xilinx architectures, is the technique of not using the external
golden copy of the configuration bitstream as depicted in the Figure 5.16. The pro-
posed 3DH scheme provides faster reconfiguration of frames affected by the errors/
upsets, because correction can be done using internal bus alone, unlike most known
methods that rely on the external configuration backup and the I/O lines.

Figure 5.16 – (a) Conventional Xilinx CRC & ECC with external golden copy, (b)
Proposed built-in scheme without a golden copy

In ARDyT architecture, the proposed 3DH scheme is incorporated with the in-
ternal configuration bitstream access resources (internal configuration access port
(ICAP), background read-back and write-back etc.,). The proposed 3DH config-
uration bitstream protection scheme is locally operated at the architecture level
but globally controlled by the centralized reliability manager (R3M) through the
dedicated API - configuration fault mitigation–application programming interface
(CFM–API).

R3M plays an important role in managing the background read-back, configura-
tion bitstream verification, time-shared usage of internal configuration access ports
and the synchronization of various partial bitstream configuration. The R3M has
a detailed global view of the architecture and different partial bitstream. It also
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keeps the track record of the events related to the configuration bitstream in the
architecture, such as, tiling structure, dynamically reconfigurable partitions (DRPs)
with their list of associated bitstream, relocated tasks due to permanent errors and
present set of configuration frames being handled by the proposed 3DH scheme etc.,.

The proposed 3DH configuration bitstream protection scheme is a background
process, during run-time. The CFM-API interacts with the introspection plan (de-
tailed in Chapter 3), and co-ordinates the configuration bitstream protection process
with the other processes managed by R3M. The internal configuration frame access
resources used by the proposed configuration bitstream protection scheme are shared
resources, among different fault mitigation strategies through their respective APIs
(LFM-API, CFM-API and so on). Control over these shared resources to different
APIs are provided by R3M.

Upon system initialization (or system (re)start), R3M initiates the background
3DH configuration bitstream protection process, introspection scheme and other re-
lated APIs. The CFM-API instructs the 3DH scheme to start the error correction
from first frame address. The 3DH correcting code is performed to first set of frames
(from the initial address) and continues the process to the next set of frames and
so on, in a sequential manner. Whenever the logic fault mitigation strategy enters
the second stage (i.e, error correction in configuration bitstream associated with a
particular logic resource), the LFM-API requests the R3M to perform the 3DH error
correction in that particular logic area (in the associated set of configuration frames).
R3M then interrupts the CFM-API to gain the control over the background 3DH
configuration protection scheme and provides a new set of configuration frame ad-
dress on which the configuration bitstream protection scheme has to be performed.
CFM-API handles the interrupt by saving the current frame address of the 3DH
scheme and returns the control to R3M. As soon as the 3DH configuration protec-
tion scheme completes its operation in the given set of frame address, CFM-API
retrieves the previous frame address from where it will resumes the next cycle of
3DH correction.

Similarly, whenever a permanent hardware fault is detected in any logic resource
(stage 3 of logic fault mitigation), the LFM-API notifies R3M, to initiate task reloca-
tion. At this stage, the task relocation process requires the configuration bitstream
access control and relevant resources (ICAP, read-back and write-back control) which
are being used by the the 3DH configuration bitstream protection scheme. Hence,
R3M interrupts CFM-API to gain the control over the configuration bitstream ac-
cess resources, to perform task relocation. CFM-API handles the interrupt similar to
previous case (stage 2 of LFM-API) and the control over the configuration bitstream
access resources are provided to R3M, to perform task relocation in the logic fault
mitigation strategy. The R3M communicates and co-ordinates between CFM-API
and LFM-API for the time-shared resource usage.
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Chapter 6

Conclusions & Further Works

6.1 Main Conclusions & Remarks
Constant technology scaling, aging and characteristic changes in high intense radia-
tion environments increases multi-bit upset (MBU) fault models in the configuration
memory of the reconfigurable architectures. Particle radiation is not restricted only
to space environment. Even at ground level and high altitudes, natural and artificial
particle radiation is been observed. Artificial ground level radiation sources include
enriched radionuclides, accelerators, nuclear power plants and nuclear weapons. An
example could be Large Hadron Collider at CERN. Hence, high reliable electronic
systems gain their importance in ground level applications also.

As the market is expanding beyond high-cost space application, there is a need
for developing a complete reliable architecture, targeting low-cost safety and mission
critical applications. Fabrication process based rad-hard architectures pose high
cost and overhead which can not be affordable in many applications. Design based
fault tolerance in commercial-off-the-shelf (COTS) architectures pose extra design
complexity and reduces design flexibility. Hence, designing new architecture models
by adapting suitable reliability support mechanism at different levels (architecture,
configuration, application and software) is necessary to achieve less overhead, less
complex and flexible design implementations.

Radiation particle strike creates different fault models on different circuit ele-
ments which cause different consequences according to their circuit nature. Hence,
fault-model-aware fault detection techniques and consequence-aware fault correction
strategies are developed.

Recognized the need to develop adaptable fault-aware logic modules where the
logic circuits are customized to support fault detection and correction strategies.
This will greatly reduce the complexity in application development phase and time-
to-market, as the designer does not have to focus on ’resource allocation & utiliza-
tion’ for the reliability aspects (as in the case of designing reliable applications in
unreliable architectures).

A trade-off can be maintained between {Reliability level} and {Hardware Over-
head, Latency, Energy Efficiency}. It can be collectively represented as reliability
efficiency evaluation factor (REEF). It is based on various aspects, including sensi-
tivity of different tasks; monitoring and non-monitoring circuit area; and granularity
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of fault detection and correction.

6.2 Summary of Contributions
In ARDyT research consortium, different project partners work at different level of
the intended reliable architecture design. This dissertation is aimed at developing
reliability mechanisms at the hardware and the configuration layers of the architec-
ture; and linking the fault mitigation process to the dedicated reliability management
layer (FTAL). Contributions through this research work to the ARDyT project is
summarized here.

Conceptual view of ARDyT hardware architecture is developed. Basic building
blocks, hardware hierarchy, reconfigurable partitions and their granularity are de-
fined at the functional level. The architecture is made adaptable to support proposed
fault mitigation strategies for configurable logic resource protection and configura-
tion bitstream protection. Granularity of fault detection and notification is precised
by defining grouped partial reconfigurable regions (GPRRs) in the architecture.
Supportive mechanism to link the hardware modules with the dedicated reliabil-
ity management layer (FTAL) is detailed. Fault-status reading registers (FSRs)
are introduced at GPRR level. The fault occurrence (fault-status) notification is
facilitated with the help of an interrogation protocol (introspection plan).

To deal with logic circuit faults and user data upsets, fault-aware configurable
logic block (FA-CLB) architecture is proposed. Concept of fault-model-aware fault
mitigation strategy is introduced. According to fault models and their consequences,
different strategies are formulated separately for combinational and sequential circuit
elements. The proposed fault-aware logic block architecture has lesser hardware
overhead than DMR and TMR based designs.

To protect the configuration bitstream against single event upsets (SEU), three-
directional Hamming-based multiple bit error correcting scheme is proposed which
can effectively handle single and multiple bit upsets (SBU & MBU). The primary
difference and advantage of the proposed scheme against the conventional method-
ology used in Xilinx architectures, is the technique of not using the external golden
copy of the configuration bitstream. The proposed 3DH scheme is incorporated with
the internal configuration bitstream access resources (ICAP, background read-back
and write-back etc.,) and completely managed by the centralized reliability man-
ager (R3M) in the FTAL. It provides faster reconfiguration of frames affected by
the multiple errors/ upsets, because correction can be done using internal bus alone,
unlike most known methods that rely on the external configuration backup and the
I/O lines.

6.3 Proposed Topics for Future Research

6.3.1 3D-Hamming in 3D architectures

Feasibility study to adapt the proposed 3-directional hamming (3DH) based multiple-
bit error handling technique to real 3D architectures. Non-volatile 3D memory
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architectures are being experimented and developed by major players such as In-
tel’s 3D XPointTM memory technology [126] and ReRAM (Resistive Random Access
Memory) technology [127]. Integrating the 3DH-based MBU handling scheme and
emerging 3D memory architectures will have great potential in terms of performance
and reliability improvements.

6.3.2 Distinguishing Logic and Routing Bitstream

The concept of separately identifying configuration bitstream belongs to logic and
routing resources is introduced in Chapter III, as a preliminary proposition. The
main advantage of this proposition is the ability to differentiate ’logic circuit faults’
and ’routing faults’, as the fault models and consequences are uniquely different
for both logic circuit resources and routing resources. However the strategy to
distinguish and re-group the configuration bitstream is not investigated, as it is not
been covered in the scope of the project. However, it has the potential to be well
developed as a prospective research topic.

One solution could be, the configuration bitstream can be physically separated
in different layers; one layer containing configuration bits belong to logic resource
programming and another layer containing configuration bits belong to routing re-
source programming. Possibly, this could also scale the architecture density. There
are some research going on "multiple configuration layer" technology. For example,
Dynamic Random Access Memory (DRAM) based 3D stacked memory is proposed
as primary FPGA configuration data storage in [128], to store multiple sets of con-
figuration data and to enable high-speed dynamic reconfiguration. Similarly, the au-
thors in [129] propose stacked configuration memory based on nonvolatile Resistive
RAM (ReRAM) technology which is compatible and scalable with CMOS process
technology. Further research by co-relating this "multiple configuration layer" tech-
nology with the proposed "logic and routing configuration bitstream separation"
would lead to interesting results.

6.3.3 Fault Mitigation in Routing Resources

Routing resources are one of the important and sensitive resources in reconfigurable
architectures. It includes switch boxes, connection boxes, local connection boxes (in
ARDyT architecture) and programmable routing lines. It is important to consider
the reliability aspects of routing resources which are also prone to radiation-induced
faults. There are various fault models that could occur in a routing network. Pro-
grammable routing resources can experience single event upsets (SEU), transients
and bridging faults. The consequences of faults occurring in routing resources are ap-
parently different from logic circuit faults and configuration bit upsets. Techniques
has to be developed to mitigate the routing faults in reconfigurable architectures. A
simple solution could be physical duplication of routing lines. However, "duplication
with comparison (DWC)" can not be applied in all the cases, as it will drastically in-
crease the overhead and routing complexity. A detailed study has to be carried out,
to come up with feasible routing-fault mitigation strategies. Fault tolerant network-
on-chip (NoC) architectures; intelligent routing algorithms; self-reliable switch box
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and connection box architectures can be developed.
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FPGA . . . . . . . . Field-Programmable Gate Array

FSM . . . . . . . . . . Finite-State Machine

FSR . . . . . . . . . . Fault Status Register

FT-DyMPSoC Fault Tolerant-Dynamic Multi-Processor System-on-Chip

FTAL . . . . . . . . Fault Tolerant Abstraction Layer

GEO . . . . . . . . . . GEostationary Orbit

GPRR . . . . . . . . Grouped Partial Reconfigurable Region

HCI . . . . . . . . . . Hot Carrier Injection

ICAP . . . . . . . . . Internal Configuration Access Port

IP . . . . . . . . . . . . . Intellectual Property

JTAG . . . . . . . . Joint Test Action Group

LAB . . . . . . . . . . Logic Array Block
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LDPC . . . . . . . . Low-Density Parity-Check

LUT . . . . . . . . . . Look Up Table

MBU . . . . . . . . . Multi Bit Upset

MC . . . . . . . . . . . Matrix Codes

MCU . . . . . . . . . Multi Cell Upset

MNU . . . . . . . . . Multi-Node Upsets

NBTI . . . . . . . . . Negative-Bias Temperature Instability

NMOS . . . . . . . Negative Metal Oxide Semiconductor

PLD . . . . . . . . . . Programmable Logic Device

PMOS . . . . . . . . Positive Metal Oxide Semiconductor

PRM . . . . . . . . . Partially Reconfigurable Module

PRR . . . . . . . . . . Partial Reconfigurable Region

PTMR . . . . . . . Partial Triple Modular Redundancy

QMR . . . . . . . . . Quadruple Modular Redundancy

R3M . . . . . . . . . . Run-rime Reconfigurable Resource Manager

SBU . . . . . . . . . . Single Bit Upset

SEB . . . . . . . . . . Single Event Burnout

SEC . . . . . . . . . . Single-Error Correcting

SEC/DED . . . Single-Error Correcting and Double Error Detecting

SEE . . . . . . . . . . Single Event Effects

SEFI . . . . . . . . . Single-Event Functional Interrupt

SEGR . . . . . . . . Single-Event Gate Rupture

SEL . . . . . . . . . . . Single-Event Latch-up

SET . . . . . . . . . . Single-Event Transient

SEU . . . . . . . . . . Single-Event Upset

SHIELD . . . . . . SEU Hardening: Incorporating an Extreme Low–power Bitcell Design

SNHT . . . . . . . . Super-Node Hash-Table

SNU . . . . . . . . . . Single Node Upset
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SoC . . . . . . . . . . . System-on-Chip

SOI . . . . . . . . . . . Silicon-On-Insulator

SOS . . . . . . . . . . Silicon-On-Sapphire

SRAM . . . . . . . Static Random-Access Memory

STMR . . . . . . . . Selective Triple Modular Redundancy

TDDB . . . . . . . . Time-Dependent Dielectric Breakdown

TID . . . . . . . . . . Total Ionizing Dose

TMR . . . . . . . . . Triple Modular Redundancy

VHDL . . . . . . . . Very-High-Speed Integrated CircuitHardwareDescription Language

XTMR . . . . . . . Xilinx Triple Modular Redundancy
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