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Abstract 

Distributed data systems are becoming increasingly complex. They interconnect devices (e.g. 

smartphones, tablets, etc.) that are heterogeneous, autonomous, either static or mobile, and with 

physical limitations. Such devices run applications (e.g. virtual games, social networks, etc.) for the 

online interaction of users producing / consuming data on demand or continuously. The characteristics 

of these systems add new dimensions to the query optimization problem, such as multi-optimization 

criteria, scarce information on data, lack of global system view, among others.  

Traditional query optimization techniques focus on semi (or not at all) autonomous systems. 

They rely on information about data and make strong assumptions about the system behavior. 

Moreover, most of these techniques are centered on the optimization of execution time only. The 

difficulty for evaluating queries efficiently on nowadays applications motivates this work to revisit 

traditional query optimization techniques.   

This thesis faces the previous challenges by adapting the Case Based Reasoning (CBR) 

paradigm to query optimization process. This adaptation, associated to a pseudo-random exploration 

of the search of solutions provides a way to optimize queries when there is no prior knowledge of data. 

This approach focuses on the optimization of queries using cases generated from the evaluation of 

similar past queries. A query case comprises: (i) the query (the problem), (ii) the query plan (the 

solution)  and (iii) the measures of computational resources consumed during the query plan execution 

(the evaluation of the solution). This thesis also concerns the way the CBR process interacts with the 

query plan generation process, allowing the exploration of the space of solutions. This process uses 

classical query optimization heuristics and makes decisions randomly when information on data is not 

available (e.g. for ordering joins, selecting algorithms or choosing message exchange protocols). This 

process also exploits the CBR principle for generating plans for subqueries, thus accelerating the 

learning of new cases. The propositions of this thesis have been validated with the CoBRa optimizer 

developed in the context of the UBIQUEST project1. 

 

  

                                                      
1 The CoBRa optimizer was developed in the context of the UBIQUEST ANR-09-BLAN-0131-01 project. 
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Résumé 

Les systèmes de gestion de données distribuées deviennent de plus en plus complexes. Ils interagissent 

avec des réseaux de dispositifs fixes et/ou mobiles, tels que des smartphones ou des tablettes, 

dispositifs hétérogènes, autonomes et possédant des limitations physiques. Ces dispositifs exécutent 

des applications permettant l’interaction des usagers (i.e. jeux virtuels, réseaux sociaux). Ces 

applications produisent et consomment des données à tout moment voire même en continu. Les 

caractéristiques de ces systèmes ajoutent des dimensions au problème de l’optimisation de requêtes, 

telles que la variabilité des objectifs d’optimisation, l’absence d’information sur les données 

(métadonnées) ou le manque d’une vision globale du système. 

Les techniques traditionnelles d’optimisation des requêtes n’abordent pas (ou très peu) les 

systèmes autonomes. Elles se basent sur les métadonnées et font des hypothèses très fortes sur le 

comportement du système. En plus, la majorité de ces techniques d’optimisation ciblent uniquement 

l’optimisation du temps d’exécution. La difficulté d’évaluation des requêtes dans les applications 

modernes incite à revisiter les techniques traditionnelles d’optimisation. 

Cette thèse fait face aux défis décrits précédemment par l’adaptation du paradigme du 

Raisonnement à partir de cas (CBR pour Case-Based Reasoning) au problème de l’optimisation des 

requêtes. Cette adaptation, associée à une exploration pseudo-aléatoire de l’espace de solutions fournit 

un moyen pour optimiser des requêtes dans les contextes possédant très peu voire aucune information 

sur les données. Cette approche se concentre sur l’optimisation de requêtes en utilisant les cas générés 

précédemment dans l’évaluation de requêtes similaires. Un cas de requête et composé par : (i) la 

requête (le problème), (ii) le plan d’exécution (la solution) et (iii) les mesures de ressources utilisés par 

l’exécution du plan (l’évaluation de la solution). Cette thèse aborde également la façon que le 

processus CBR interagit avec le processus de génération de plan d’exécution de la requête qui doit 

permettre d’explorer l’espace des solutions. Ce processus utilise les heuristiques classiques et prennent 

des décisions de façon aléatoire lorsque les métadonnées viennent à manquer (e.g. pour l’ordre des 

jointures,  la sélection des algorithmes, voire même le choix des protocoles d’acheminement de 

messages). Ce processus exploite également le CBR pour générer des plans pour des sous-requêtes, 

accélérant ainsi l’apprentissage de nouveaux cas. Les propositions de cette thèse ont été validées à 

l’aide du prototype CoBRA développé dans le contexte du projet UBIQUEST.1.  
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11..  IINNTTRROODDUUCCTTIIOONN  

This chapter introduces the characteristics of nowadays distributed data systems and their impact on 

distributed query optimization. It recalls the basics of query processing for better understanding the 

responsibilities of the query optimization process. For motivating this work, it discusses the 

importance of efficient data querying for some applications (e.g. user interaction by data sharing), 

and the necessity to revisit traditional query optimization techniques to improve the functionality of 

applications development on complex distributed data systems. It presents the objective of this thesis, 

and our proposed approach for achieving such goal. Finally, it specifies the contributions of our work 

and the order in which they are presented in the remainder of this document.  

1.1 CONTEXT AND MOTIVATION 

The rapid evolution of information technologies drives us to an increasingly digitalized world, where 

applications support users cooperation producing/consuming data on demand or continuously. 

Distributed data systems are currently the technology for modeling, storing, managing and efficiently 

querying these large amounts of data. Nowadays distributed data systems are becoming increasingly 

complex. They face difficult challenges in the attempt to handle data of applications deployed on large 

number of distributed and heterogeneous computing devices (i.e. system nodes); which are also 

autonomous, either static or mobile, and that present physical limitations (e.g. energy, memory and 

computing capability). The reliability of distributed data systems depends critically on querying data 

efficiently. 

Distributed data systems enable users accessing and managing data transparently (i.e. 

separation of the higher-level semantics of a system from lower-level implementation issues) using a 

declarative query language (e.g. SQL [ElSh11] , OQL [Banc89], XQuery [Wadl03]) that the system 

traduces into the implementation of a plan for query execution. Given a declarative query there are 

several alternative execution plans for producing the query results. However, even if these plans 

produce the same final output, they may drastically differ in their execution time and resources 

consumption. The query optimization process selects the query execution plan that minimizes plans 

cost according to an optimization objective (e.g. time). The complexity of distributed data systems add 

new dimensions to the query optimization problem, such as multi-optimization criteria, unpredictable 
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system behavior, scarce information on data, lack of a global view of the system, little (or any) control 

over the execution of queries,  among others.  

The literature has proposed seminal heuristics-based and cost-based optimization techniques. 

The former relies on data information (e.g. data distribution, data value statistics, etc.) for estimating 

plans cost, which due to the environment characteristics there is no guarantee to be available. This lack 

of information leads to heuristic-based approaches, which comply with avoiding the worst plans, but 

do not achieve to find the optimal one. Optimization techniques based on query feedback also have 

been suggested to overcome both, the lack of information and query plan improvement. They have 

been applied on distributed data systems that trend to centralize the optimization process, and where 

its components lack of autonomy. Moreover, they still rely on the usage of data information difficult to 

count on. Most of these techniques focus on the optimization of execution time only.  

The difficulty for evaluating queries efficiently on nowadays applications motivates this work 

to revisit traditional query optimization techniques. This section presents the characteristics of 

distributed data systems, the query processing but particularly query optimization to analyze the 

challenges that must be faced. Finally, it addresses the particular query optimization problems that we 

tackle and that motivate this research.  

1.1.1 Distributed data systems 

A distributed data system comprises a number of autonomous and heterogeneous processing elements 

interconnected by a computer network that cooperate to perform some assigned tasks. The processing 

element referred to in this definition is a computing device that can execute a program on its own 

[OzVa11]. This section presents characteristics of distributed data systems, and highlights how such 

characteristics potentially difficult the optimization of queries. We focus on three main characteristics: 

(i) distribution, (ii) autonomy, and (iii) heterogeneity.  

The distribution dimensions deals with data; thus it is considered the distribution of data 

among multiple nodes (e.g. some few specific sites or all nodes of the system). Autonomy refers to the 

distribution of control among system nodes for executing a query. An autonomous node may join or 

leave the system at any time without restrictions, and can decide about the availability of its resources 

(e.g. data). Heterogeneity concerns, from a logical point of view, to the representation of data, and 

from a physical point of view, to the characteristics of computing devices and network technologies. 

There are variations in the distribution, autonomy and heterogeneity of system components. Figure 1.1 

positions representative distributed data systems, such as client-server [Scou95], multi-database 

[Ali09], and peer-to-peer [AkPV07], according to the previous characteristics.  

 

 

Figure 1.1 Characterization of distributed data systems [OzVa11] 



CHAPTER 1 

 

17 

 

During this time many innovations and extensions have been proposed to enhance distributed 

data systems in power, and spectrum of applications. For example cloud computing and grid 

technologies [TBBC07][WLGP08][JuXi09].  In its simplest form, a distributed data system comprises 

a single server that is accessed by several clients. In the client-server interaction, the client passes 

declarative queries to the server; the server does the most of work (i.e. data storage, query processing 

and optimization) and returns the result to the client. The client provides the user with an application 

interface; it also manages some specific data that is catch to the client. Thus, data is distributed in 

some few machines; the server has a global control of query execution. This approach has proved 

effective for applications that can benefit from centralized control and full-fledge data handle 

capabilities. However, it is not effective for large number of users.  

Multi-database systems and parallel database systems have extended the previous approach 

with the objective to manage huge amounts of data and to support much more client requests. They 

proposed, in some or another way, to distribute data management among several machines to enable 

parallel execution of queries: (i) Inter-query parallelism for executing of several queries at a time, and 

(ii) Intra-query parallelism for executing several operators within a query at a time. The queries and 

operators are executed by many processors/machines each one working on a subset of data. System 

components may present different capabilities and behavior; also data and query languages may be 

heterogeneous, which represent an additional difficulty for query optimization. However, such systems 

still rely on information of data and made strong assumptions about the availability of resources (e.g. 

data, communication and processing).  

In contrast P2P systems adopt a completely decentralized approach to data sharing by 

distributing data storage and processing across autonomous system nodes. Many domain specific P2P 

system have already been deployed [DKNW04], e.g. Gnutella, Kazaa, Napster [GBFR03], among 

others. However these P2P systems support simple functionality (e.g. file sharing) and the execution 

of straightforward queries (e.g. keyword search). In this systems, a lot of effort has been put into 

refining topologies and query routing functionalities e.g. CAN [RFHK01] and CHORD [SMKK01]; 

extending the query functionalities offered by such systems has been left little aside.  

Query optimization takes a central stage in data systems, nowadays environment 

characteristics make the task of enabling efficient  querying even more difficult. We can appreciate 

that the complexity of queries to be treated represents another complications for the query 

optimization issues.  Next section focuses on query processing steps to expose the process that are in 

tour to query optimization.  

1.1.2 Distributed query processing  

A user expresses a query (i.e. global query) in a high-level language and in terms of virtual global data 

sources. A global source is physically distributed across different sites by fragmenting and replicating 

the data. The distributed query processing traduces a global query into an equivalent lower-level query 

implementing an execution strategy.  

Processing a global query involves accessing data from several distributed and heterogeneous 

sources, as well as a complex process of data computation and exchange. Figure 1.2 shows a generic 

layering schema for distributed query processing scheme, it comprises four layers [OzVa11]: (i) query 

decomposition, (ii) data localization, (iii) global optimization, and (iv) distributed execution. 

Typically, this process is achieved in two phases, a compilation phases that includes from queries 

decomposition till code-generation steps, and an execution phase. 
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Figure 1.2. Generic layering schema for distributed query processing [OzVa11] 

Query decomposition 

The query decomposition process transforms a global query into an internal representation of the 

system, but still on global sources. The global query is expressed in a high-level declarative language, 

as mentioned before. The internal system representation typically corresponds to a query expression 

based in some algebra (e.g. relational algebra). Thus, the resulting query is represented as an algebraic 

tree where nodes correspond to operators for access and computation (e.g. filtering, projection, join, 

etc.) of data; the edges represent the relations between operators. The communication operations are 

not included yet since the query considers global sources.  

Data localization 

The data localization process takes as input the decomposed query on global relations and applies data 

distribution information to the query in order to localize the concerning data. So far in this chapter we 

elucidate that sources of data are actually split in subsets of data stored at different nodes of, each of 

these subsets is called fragment. Therefore, data localization determines the fragments of data that a 

global query includes, and transforms such query into a query on fragments.  

Global optimization 

The global optimization process aims to find an efficient plan for the distributed execution of a given 

query. The query plan comprises optimization decisions such as: the operations for executing the 

query, the order of such operators, the algorithms for executing the operations, and the system node 

where each operation is to be computed.  

Different decisions may lead to many equivalent query plans in the sense that all of them 

achieve the same query result; however such plans present different performance. The query 

optimization process enumerates such alternative plans and estimates their cost by applying a cost 

function. Typically, such cost function estimates the execution time. The (close to) optimal query plan 

is that one that minimizes the cost function; finding the optimal plan is computationally intractable 
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[IbKa84]. Important inputs for estimating the cost function are statistics about data fragments and 

formulas for estimating the cardinalities of intermediate operation results.  

 Distributed execution 

For executing a query, the optimal query plan is transformed in executable code that is computed in 

distributed way at several system nodes (e.g. the nodes having fragments involved in the query, all the 

nodes). Distributed execution techniques are integrated to query plans for improving queries 

execution. Such techniques mostly concern the exchange of queries/data trough the network; for 

example query shipping, data shipping and hybrid shipping [Bowm01]. Also they concern the 

computation of joining data stored at different nodes; semi-join [BGWR81], hash-join [WiAp93], 

horizontal join [EpSW78] and pointer-based joins [EiGK95] are some representative examples. 

Naturally, such techniques ought to be considered in the query optimization decisions to use them 

favorably.  

1.1.3 Motivation example 

This section presents two examples of social applications to highlight the motivation of this work. 

Both examples concern the problem of estimating plans cost due to the lack of information required by 

traditional query optimization techniques. The first one evokes data sharing e-science applications, 

which involve intensive data processing on highly distributed environments. The second one concerns 

the deployment of social networking application using a high-level declarative approach; applications 

functionality relies on efficient distributed query processing.  

Example 1 

E-science can be understood as the application of computing technology to the undertaking of modern 

scientific investigation [Tayl00]. It concerns large scale science that is carried out through scientists’ 

collaboration in highly distributed network environments. Such applications involve sharing and 

processing massive collections of data in different formats. Moreover scientific also share their own 

programs for specialized data processing.   

 The CARMEN project is an interesting example of e-science application [WLGP08]. This 

work designed a system to allow neuroscientists to share, integrate and analyze brain data. Such a data 

have multiple formats and are expensive to collect; thus they are rarely shared. Moreover the analysis 

tools built at each research laboratory have their own specifications.   

Thus, accessing and querying data in such distributed data system is quite challenging because 

of the nature, amount and distribution of data, scale of the network and the autonomy of resources. 

Most optimization techniques statically exploit data and network information; they do no longer 

accomplish the efficient evaluation of queries in this kind of complex environments. Moreover data 

processing includes a wide range of programs and services, with unknown properties and behavior. 

Most of highly distributed data systems support applications with simple well known functionalities 

that typically include the basic data management operators (e.g. algebraic operators [ElSh11]) 

[VaPa05].  

Example 2 

In modern networking environments, more and more applications rely on interaction between users 

that know each other, more precisely between the data stored on the devices the users own. Such social 
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links build wide logical networks of devices on which many applications are deployed. A way to 

facilitate the development of such applications is using a high-level declarative approach [ABCD12a]. 

For example, imagine a developer that wants develop virtual world game where user have own avatars 

that can interact if they are located in the same area. Avatars position in the virtual world can be 

represented as a single distributed table and the avatar actions can be expressed as queries and updates.  

Data of the application is stored on remote servers and on user devices. Maintaining a global 

view of the participant devices is a difficult task due to their autonomy to (dis)connection at any time. 

Maintaining a global view of data distribution is even more difficult because devices (or users) may 

not want to (or cannot) share metadata and statistics, e.g. for heterogeneity reason. Classical 

distributed query evaluation techniques necessitate in-deep knowledge on the whole distributed system 

(network and data). This lack of information on data, essential for traditional query optimization 

techniques is the main motivation of our research.  

1.2 OBJECTIVE 

The general objective of this thesis is to provide a technique for optimizing global queries with 

incomplete information on data/system, and according to multiple-customizable optimization 

objectives. The distribution of data and the autonomy of devices hinder the availability of information 

essential for typical query optimization techniques. Applications and devices have different 

performance requirements (e.g. minimize response time, save energy consumption), this fact demands 

multiple and customizable optimization objectives. The general objective of this thesis comprises the 

following sub-objectives: 

 Provide a query optimization technique independent of the information on data used by 

traditional query optimization techniques. Also, such technique must go one step further than 

heuristic-based query optimization techniques, which only avoid the worst query plans. The 

aim is to determine close to optimal query execution plans.  

 

 Provide a query optimization technique that facilitates the customization of optimization 

objectives according to the needs of applications and the physical limitations of devices. 

Optimizing queries usually concerns the minimization of execution time. Although, nowadays 

applications may have different priorities, these may include fees to access information, 

quality of the data, number of sources to access, etc.; computing devices may present different 

physical limitations (e.g. sensors have restrain energy consumption).  

 

 Provide a query optimization technique that progressively evolves with eventual changes of 

the environment. Availability and behavior of system components can change with most or 

less frequency over the time. The query optimization should avoid the deterioration of plans 

performance due to these variations. We consider environments where the frequency of 

changes allows correcting some optimization decisions to improve further query processing.  

1.3 APPROACH 

In this thesis we propose an approach for optimizing global queries based on feedback gathered from 

the execution of past queries. Such feedback is exploited to learn suitable query execution plans 

according to different (customizable) objectives. The optimization of queries is a complicated problem 

when complete information on data/system is not always available. We rely in the use of this query 
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feedback to face such problem that, as far we know, has not been fully addressed yet, particularly in 

distributed data systems with the characteristics that we exposed in the context of this work (Section 

1.1).  

Our optimization approach integrates the learning Case Based Reasoning (CBR) paradigm in the 

query processing [MCBD12]. CBR is a learning principle for problem solving within the artificial 

intelligence (AI) domain [LMBL05]. It proposes the exploitation of knowledge from solved past 

problems to improve further problems solving. The unit of knowledge is named case; the cases are 

stored in a repository called casebase. There is an expert in charge to feed the casebase with new cases 

and to evaluate the efficiency of proposed solutions.  

Much of the inspiration for the study of CBR came from cognitive science research on human 

memory, thus reflecting human use of remembered problems and solutions to improve further 

problems solving. Just as CBR provides a way for people to generate solutions; it also provides a way 

for a computer program to propose solutions efficiently when previous similar problem solutions have 

been encountered. It has been shown that such principle is useful for problem solving when knowledge 

is incomplete and or evidence is sparse [Kolo92].  

Our approach focuses on optimizing queries using cases generated from the evaluation of 

similar past queries; where a problem corresponds to a query, the problem solution corresponds to a 

query plan. A case also comprises global measures of time and computational resources (e.g. memory, 

energy, CPU) consumed during the execution of query plans. A global measure includes the total of 

computational resources consumed by all system nodes that participate in the evaluation of a query.  

The learning-based optimization process concerns the way the CBR reasoning process 

interacts with the query plan generation process. Such process uses classical heuristics and makes 

decisions randomly (e.g. when statistics on data are not available). It also (re)uses cases (existing 

query plans) in the generation of plans for similar queries.  

The general principle of our learning-based query optimization approach was presented in 

[MCBD12]. The CoBRa optimizer was developed in the context UBIQUEST project2 [ABCD12b]; it 

allowed carrying out the experimental phase for validating our approach. This proposal remains 

prospective to some degree due to the need of incorporating additional aspects out of the scope of our 

work. These include new cost models independent of metadata, an inspired example is in [ShKM00]. 

Also, the definition of alternative query similarity functions.  

1.4 CONTRIBUTIONS 

We summarize the contributions of this thesis as follow: 

 We adapt the Case Based Reasoning (CBR) paradigm to query processing, providing 

a way to optimize queries when there is no prior knowledge of data. Every query 

execution produces case(s) that includes the internal representation of the query, its 

plan, and measures of computational resources consumed during query plan 

execution. The optimization process then uses such cases to generate optimal 

execution plans for queries. Several steps are involved: (i) Query case retrieving, (ii) 

Query plan adaptation or generation, (iii) Query plan execution and monitoring and 

(iv) Query case storage. 

                                                      
2 The CoBRa optimizer was developed in the context of the UBIQUEST ANR-09-BLAN-0131-01 project. 
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 We revisit the query plan generation process. This process uses classical heuristics 

and makes decisions randomly (e.g. when there is no statistics for join ordering and 

selection of algorithms, routing protocols). The query plan generation process also 

exploits the case base (existing query plans) for generating query plan parts, 

improving the query optimization and evaluation efficiency. 

 

 We implement the CoBRa optimizer for validating our approach. Such optimizer 

prototype was implemented in the context of the ANR UBIQUEST project. The 

UBIQUEST approach provides a high level programming abstraction for developing 

networking applications [ABCD12b][ABCD12a]. It abstracts the network as a large 

distributed database that gives a unified view of "objects" handled by both networks 

and applications. The applications interact through declarative queries. Thus, such 

queries are posed in environments consisting of applications, servers and devices 

which can be heterogeneous, dynamic and autonomous. These elements are 

distributed in different locations and present physical limitations such as processing 

and storage capacity or energy consumption. The elements interact between them 

producing/consuming data on demand or continuously. In such environments there is 

no prior knowledge on data (sources) and certainly no related metadata such as data 

statistics. An instance of CoBRa was embedded at each node in network system for 

optimizing the evaluation of queries.   

1.5 DOCUMENT ORGANIZATION 

The remainder of this document is organized as follows: 

 Chapter 2 recalls the principle and representative techniques of distributed query 

optimization. It focuses on the study of query optimization approaches basing on query 

feedback for addressing the problem of incomplete information on data.  

 

 Chapter 3 introduces our learning-based distributed query optimization approach. It specifies 

the characteristics of data, queries, and the query language that we consider. It presents an 

overview of the Case-Based Reasoning principle, and concentrates on the adaptation of each 

of its components to our query optimization process.  

 

 Chapter 4 exposes first our representation of query case; afterward, our prospective definition 

of query similarity is described. This chapter also includes the organization of query cases 

within the casebase. Finally, it presents the mechanisms for retrieving and managing (i.e. 

insert, delete and update operations on the casebase) query case.   

 

 Chapter 5 is consecrated to present the query plan generation process and its interaction with 

the CBR paradigm: (i) the generation of query plans when no useful query cases exist within 

the casebase for solving a query, (ii) the exploitation of query cases for generating a query 

plan, and finally, (iii) an improvement strategy to avoid the overload and minimize the 

consumption of computing resources during this process.  

 

 Chapter 6 presents the design and implementation of the CoBRa optimizer. It comprises an 

overview of the optimizer architecture, followed by the specification of data and storage 
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structures corresponding to cases and the casebase. Then, it exposes the implementation 

details of our query optimization process. Finally, it explains the validation of our approach in 

the context of the UBIQUEST project and presents our experimental results.  

 

 Chapter 7 concludes the document. It summarizes the developed work, and discuses the 

challenges that remain open for extending our work.    

 

 





 

 

 

 

 

22..  QQUUEERRYY  OOPPTTIIMMIIZZAATTIIOONN  IINN  

DDIISSTTRRIIBBUUTTEEDD  DDAATTAA  SSYYSSTTEEMMSS  

Query optimization has received considerable attention in the context of both, centralized and 

distributed data systems. However, the query optimization problem is considerably more difficult in 

distributed environments due to the larger number of aspects that affect the evaluation of queries; in 

particular, because of the inherent necessity to move data from one place to another. The reliability of 

such systems depends critically on the efficient querying of data.  

The optimization process aims to find efficient strategies for the distributed execution of 

queries. The physical distribution of data in the system, the distribution of control for data access and 

query processing, and the heterogeneity in computing devices and applications requirements 

constitute the most important aspects that affect the distributed query optimization.  

This chapter evokes query optimization foundations and focuses on relevant distributed query 

optimization techniques. Such techniques must answer some questions such as how to generate 

efficient query execution strategies and select the appropriate moment and location to carry out the 

optimization process. Our study is centered structured data querying (e.g. relational or object-

oriented databases), and queries expressed on declarative languages as SQL-like and OQL-like. 

Nevertheless, some optimization approaches presented in this chapter can also be applied to other 

data models (e.g. semi-structured or unstructured).  

This study highlights the importance of information on data (i.e. metadata) for traditional 

query optimization techniques. It reviews the existent proposals to deal with the challenge of query 

optimization with incomplete metadata. These works are mostly bases on query feedback (i.e.  

supplementary information of data gathered during the execution of queries). This chapter compiles 

different proposals of query optimization based on query feedback, and discuses about their 

advantages and their drawbacks for accomplishing the problems that motivate this dissertation. 

The remainder of this chapter is structured as follows: Section 2.1 presents the basic 

principles of distributed query optimization. Section 2.2 reviews the query optimization techniques 

concerning: (i) the selection of efficient query evaluation strategies, (ii) the period of time for 

optimizing a query, and (iii) the element(s) in the system responsible to carry out the optimization 
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process. Section 2.3 studies in depth the traditional metadata used by mostly of classical optimization 

techniques. Section 2.4 focuses on relevant works that in some way or another have been based on 

query feedback to tackle the optimization of queries with incomplete (or unreliable) information on 

data. Section 2.5 concludes this chapter.  

2.1 BASIC PRINCIPLES 

The distributed query optimization aims to find efficient strategies, called query plans, for the 

distributed execution of queries. A query plan is a compilation of query optimization decisions that 

include: (i) the operators for executing the query, (ii) the ordering for executing such operators, (iii) 

the execution algorithms for computing each operator, (iv) the operators scheduling for their 

execution, and (v) the elements (i.e. nodes) of the system where each operation is to be computed.  

A query plan is typically represented as a tree. The nodes of a plan are operators and every 

operator carries out one particular operation (e.g. join, sort, scan, etc.). The edges of a plan represent 

consumer-producer relationships of operators.  

 

Figure 2.1 Example of a query plan 

Figure 2.1 shows an example of plan for a query that involves sources A and B. The plan 

specifies that source A is accessed at the node N1 using the index-scan (A) algorithm (uses a data 

index), B is accessed at node N2 using the scan (B) algorithm (without index). The sources A and B 

are shipped to N3 where are joined using a nested-loop-join algorithm. The send and receive operators 

encapsulate all the communication activity so that all other operators (e.g. nested-loop-join or scan) 

can be implemented and used in the same way as in a centralized data system. 

Query optimization includes three components [Ioan96]: a search space, a cost model, and a 

search strategy. The search space is the set of alternative execution plans for evaluating a query. 

Different decisions may lead to many equivalent query plans, in the sense that all of them achieve 

the same query result, but have different performance. The search space is generated by applying 

transformation rules (i.e. operation equivalences in such a way that the query result is not altered). For 

instance, permuting the order of operations (e.g. joins and unions) for combining data fragments 

within a query may vary the performance of the query plan in orders of magnitude.  

The query optimization process enumerates alternative query plans and estimates their cost by 

applying a cost function. The enumeration algorithm, well known as search strategy, defines which 

plans are examined and in which order. The search strategy explores the search space and selects the 

plan that optimizes the cost function. Typically, such cost function estimates the execution time. 

Important inputs for estimating the cost function are statistics about data fragments and formulas for 
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estimating the cardinalities of intermediate operation results. The characteristics of the environment 

(e.g. centralized versus distributed) are captured by the search space and the cost model. Next 

subsections briefly describe these three query optimization components.  

2.1.1 Search space 

The search space, or solution space, is the set of all equivalent query plans that the system considers 

for evaluating a given query. Such query plans correspond to different query evaluation strategies that 

naturally achieve the same result but usually present significant variations in their execution cost. A 

point within the search space corresponds to a specific query plan.  

The search space is divided in the logical space and the physical space. The logical space 

query plans composed of logical algebraic operators. The physical space comprises plans composed of 

physical operators, this is, an execution technique is assigned to each logical operator. For a complex 

query, the number of equivalent query plans can be very high. For instance, the number of alternative 

query plans that can be produced for joining n sources is O(n!), this because of the commutative and 

associative properties of the join operator [StMK97].  

The search space importantly increases when considering query plans for evaluating global 

queries. First, because the global query is expressed in terms of sources, when actually several source 

fragments are involved. A global source can be materialized by joining and/or unifying its fragments; 

this includes binary operator (i.e. join and union), both of them with associative and commutative 

properties. Thus a query that joins n global sources becomes in a query that combines a larger number 

of source fragments. Moreover, other distributed execution techniques (e.g. semi-join) and execution 

sites must be considered.  Efficient strategies for searching the space of alternative query plans are 

required.  

2.1.2 Search strategy 

The search strategy, or enumeration algorithm, refers the way to explore the search space for finding 

the (close to) optimal query plan. The search space is explored by generating query plans according to 

the search space restrictions (e.g. heuristics and shape), in different order, and by applying different 

construction strategies. The cost of such plans is estimated by applying a cost function, the optimal 

plan is that one that minimizes the function result. In most of cases, search strategies focus on the 

generation of join plan trees (i.e. ordering and implementation), since join is the most frequent and 

costly operation. 

Searching a very large space may turn the query optimization process prohibitive in terms of 

resources consumption, sometimes much more than the resources consumption during query 

execution. Therefore, search strategies restrict the size of the search space by applying heuristics (e.g. 

selection and projection first) upon the order of certain plan operators, and constraining the query plan 

shapes.  

For constraining the shape of plans is useful to concentrate on join tree plans. A join tree is a 

binary tree that comprises sources of data as lefts and joins as inner nodes. Linear and bushy trees are 

two kinds of distinguished join trees [AlAO05]. A linear tree comprises joins where at least one 

operand of each join is a source of data. A bushy tree may have operators with no base relations as 

operands. By considering only linear trees, the size of the search space is reduced to O(2N) [Chau98]. 

However, in a distributed environment, bushy trees are useful in exhibiting parallelism for executing a 
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query. Other shape of query plan called zigzag tree are mainly of interest in distributed and parallel 

database systems.The query plan generation techniques for searching the space of alternative plans are 

presented in Section 2.2.2. 

2.1.3 Distributed cost model 

The selection of the (close to) optimal query plan requires the estimation of the execution cost of the 

alternative candidate plans. A cost model specifies arithmetic formulas, so-called cost functions, for 

estimating the cost of executing such plans. A cost function is often defined in terms of time units, and 

is calculated taking into consideration the resources consumed during the plan execution. In a 

distributed environment, such execution cost is typically defined as a weighted combination of I/O, 

CPU and communication cost; and it is expressed with respect to either, the total time or the response 

time. The total time is the sum of all time (also referred to as cost) components, while the response 

time is the elapsed time from the initiation to the completion of the query. A general formula for 

determining the total time can be specified as follows [LMHD85]: 

Total_time = TCPU * #insts + TI/O * #I/Os + TMSG * #msgs + TTR * #bytes 

The two first components measure the local processing time, where TCPU is the time of a CPU 

instruction and TI/O is the time of a disk I/O. The communication time is depicted by the two last 

components. TMSG is the fixed time of initiating and receiving a message, while TTR is the time it takes 

to transmit a data unit from one site to another. The data unit is given here in terms of bytes (#bytes is 

the sum of the sizes of all messages), but could be in different units (e.g. blocks). Such cost model 

however does not consider intra-query parallelism. When the response time of the query is the 

objective function of the optimizer, parallel local processing and parallel communications must also be 

considered [BaBu90]. A general formula for response time is presented below; where seq #x, in which 

x can be instructions (insts), I/O, messages (msgs) or bytes, is the maximum number of x which must 

be done sequentially for the execution of the query. Thus any processing and communication done in 

parallel is ignored. 

Response_time = TCPU * seq_#insts+TI/O * seq_#I/Os +TMSG *seq_#msgs+TTR * seq_#bytes 

The main factor affecting the performance of an execution strategy is the size of the 

intermediate results that are produced as the output of each operator execution. In distributed 

environments when the operations must be computed at different nodes, intermediate results must be 

transmitted over the network. The time to transmit units of data (e.g. bytes, blocks) from one node to 

another is one of the major concerns for calculating the cost of a query plan. It is of prime interest to 

estimate the size of intermediate results. Such estimation is based on statistical information about 

source fragments and formulas to predict the size of operation results. For each of basic algebraic 

operators (selection, projection, Cartesian product, join, semi-join, union, and difference) a formula is 

defined for estimating the cardinalities the operator result. Such formula depends on the cardinality of 

the involved sources and on the operator selectivity factor, this is, the amount of data items (e.g tuples) 

that hold the operator predicate (e.g. a condition <attribute, comparison operator, value>).  

Given the complexity for estimating the cost of query plans, most of cost functions are based 

on simple approximations of what the system actually does. Also, such functions consider traditional 

assumptions, like uniform distribution of values and independence of attributes (i.e. the value of an 

attribute does not affect the value of any other attribute), and a uniform distribution of data among 
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nodes and not duplicates of data at the different nodes. These assumptions are often wrong in practice, 

but they make the problem tractable.  

In conclusion, global query optimization highly depends on the allocation and available 

information on source fragments. Some of most important information concern sources indexes, 

sources cardinality, statistics such as distribution of attributes-values, and operators selectivity. There 

is a direct trade-off between the precision of the statistics and the cost of managing them, the more 

precise statistics being the more costly [PiCo84] 

2.2 TECHNIQUES 

This section reviews the query optimization techniques for: (i) exploring the search space, (ii) deciding 

the site and (iii) deciding the moment for achieving the optimization process. This analysis aids the 

better understanding of query optimization techniques based on query feedback (Section 2.4). 

Optimization techniques using query feedback are variations, or extensions of the generic optimization 

techniques studied in this section.   

This section focuses on the query optimization part related to the search of alternative plans. 

The specification of the search space and the definition of a cost model are also essential parts of 

query optimization; however go deeper in these subjects is out of the scope of this thesis.  Another 

important aspect that this section analyzes corresponds to the optimization site; in distributed 

environments the query optimization responsibility may be assigned to a single node, to some specific 

nodes or each node in the system is in charge of optimizing the queries that it receives by their own 

means.  Finally, this investigation also concerns the optimization timing; this is, the moment when the 

optimization process is achieved. This aspect is fundamental for optimizing queries in environments 

where data, availability of resources and network topology change over time.   

2.2.1 Searching the optimal plan  

Traditional query optimization strategies have been classified in three main categories [OuBo04]: 

 Heuristic-based. Heuristic rules are used to re-arrange the different operations in a query 

execution plan. For example, to minimize the size of intermediate results. 

 Cost-based. The costs of different strategies are estimated and the best one is selected in order 

to minimize the objective cost function. For example, the number of I/Os. 

 Hybrid. Heuristic rules and cost estimates are combined together. 

This section particularly focuses on the optimization part related to plan generation for searching 

the space of alternative plans. The other optimization issues i.e. search space and cost model 

specifications are out of the scope of this thesis. A large number of alternative search strategies have 

been proposed; all of them based on heuristics and/or cost estimation. The most representative 

strategies are the deterministic strategies [SACL79][KoSt00] and the randomized strategies 

[IoWo87][NaSS86][SwGu88][Swam89]. Genetic algorithms [OwKS05] correspond to an artificial 

intelligence technique that even if seldom used; we include it in our studies because of its 

attractiveness to improve the performance of information retrieval systems [KuSV00].  

Deterministic strategies solve complex problems by splitting them in simpler parts (sub-

problems), solving such sub-problems separately and then combining the partial solutions to reach the 

overall solution. Randomized strategies concentrate on searching for the optimal solution around some 

particular points within the search space. They do not guarantee that the best solution is obtained, but 
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avoid the high cost of the optimization process, in terms of memory and time consumption. Genetic 

algorithms mimic the biological evolution in their search for the optimal solution [Mitc99]. The main 

idea is to starting from some initial set (i.e. population) of solutions, to generate offspring by random 

crossover and mutation. The best individuals in the population survive through different generations 

(until e.g. customizable number of generations, homogeneous population above some cost threshold). 

Next sections detail these strategies and seminal variations. 

Deterministic strategies 

Deterministic strategies perform some sort of deterministic search of the solution space, either through 

exhaustive search, or by applying some heuristics pruning the space. The algorithms based on the 

application of heuristics only typically have polynomial time and space complexity, but they produce 

plans that are often orders of magnitude more expensive than a plan generated by exhaustive search 

algorithm. All published exhaustive search algorithms have exponential time and space complexity, 

however they guarantee to find the optimal query plan according to a given cost model. 

The most popular deterministic strategy is dynamic programming proposed by P. Selinger et al. 

[SACL79] in the System R context. Such strategy suggests a bottom-up plan generation building more 

complex plans from those that have been previously constructed until achieving a complete plan. It 

comprises three phases.  

 phase 1: In the first phase, the dynamic strategy builds a partial plan for accessing each source 

in the query. Typically there are several different access plans for a source, thus all the 

possible plans per source are enumerated; the optimal plan for each plan is selected and 

retained for the next phase.  

 phase 2: In the second phase, the strategy enumerates all possible two-way join plans using the 

access plans from the previous phase as building blocks. Again, the algorithm would 

enumerate alternative join plans and select the optimal one. The algorithm continues iterating 

over the join operations in the query until it has enumerated all n-way join plans.  

 phase 3: In the third phase the selected query plan is completed attaching operators e.g. 

projection, sort or group-by if necessary.  

Dynamic programming is almost exhaustive building all possible plans (breadth-first) before it 

chooses the optimal plan. This property assures finding the optimal plan from all the plans that the 

search space includes. To reduce the optimization cost, partial plans that are not likely to lead to the 

optimal plan are discarded as soon as possible. It incurs an acceptable optimization cost (in terms of 

time and space) for optimizing a query that includes a reduced number of sources. While this 

algorithm produces good optimization results (i.e. optimal plans), its high complexity can be 

prohibitive for optimizing complex queries.  

Another appreciated property of dynamic programming is that it can easily be extended, for 

example for optimizing queries in distributed data systems, where in addition of deciding which access 

paths, join ordering and join methods use, is necessary to indicate the nodes of the system that must 

compute each operation. The dynamic programming for distributed data systems extends the basic 

dynamic programming phases as follows: 

 phase 1: If a source is distributed, different plans to access the fragments of such source at 

each site must be generated. 

 phase 2:The operators for combining such plans must be annotated  by specifying at which site 

the join must be carried out (e.g. at the site where the outer source is produced, at the site 

where the inner source is produced, or at other interesting site). 
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 phase 3: A data shipping operator must be attached if the top-level operator of a plan is not 

executed at the site at which the result of the query must be returned (i.e. client site).  

Greedy algorithms have been proposed as another deterministic strategy 

[SwGu88][ShYT93][LVZC91]. Just like dynamic programming, this algorithm has three phases and 

constructs plans in a bottom-up way. It uses the same partial access plans and join plans as bricks for 

generating a complete plan. However, during the second phase and for each join iteration this 

algorithm applies a rigorous evaluation plan function that dictates joins ordering (i.e. the next best 

join). Such evaluation plan functions can estimate the minimum cost, the minimum cardinality or the 

minimum selectivity. Another option is a function that peeks into the future for evaluating a subplan 

by generating a complete plan from a given subplan and uses the cost of this complete plan as a metric 

for evaluating the subplan. Greedy algorithms are faster than dynamic programming since avoids the 

enumeration of all possible join ordering for each n-way plan, but they typically produce sub-optimal 

query plans [StMK97].   

Kossmann and Stocker present another deterministic strategy called Iterative Dynamic 

programming (IDP) [KoSt00].  Such algorithm applies a greedy algorithm to find the set of sources 

that should be joined early. Then, the dynamic programming algorithm generates a good plan for 

joining the sources selected in the previous step. The algorithm continues to optimize the processing of 

the temporally source generated by the subplan generated previously, and all the other sources of the 

query by iteratively applying the greedy algorithm and dynamic programming until a complete plan 

for the query is achieved. It has reasonable complexity (i.e. polynomial) and produces in most 

situations very good plans. Experiments have shown that IDP produces better plans than other 

algorithms (e.g. random algorithms) in situations in which dynamic programming is not viable 

because of its high (exponential) complexity. 

Randomized  

Randomized strategies are desirable for complex queries, where dynamic programming becomes too 

expensive in terms of resources consumption. Such strategies do not guarantee to find the optimal 

query plan, but avoid the worst plans, as well as high cost of optimization in terms of memory and 

time consumption. These algorithms concentrate on searching for the optimal solution around some 

particular points in a solution space and connect these points by edges that are defined by a set of 

transformations.  

A randomized algorithm first generates one or more start plans by a greedy strategy. Then, random 

transformations are progressively applied with the objective to enumerate equivalent plans that improve the 

performance of the start plan. An example of typical transformation consists in exchanging two 

randomly chosen operand sources. The applied transformations depend on the solution restrictions.  

These kinds of algorithms were initially proposed in the context of extensible SGBD [ElSh11]. In this 

approach, the heuristics consist in the ordering of the applied transformations. The most used 

heuristics are “selection first”, “avoiding Cartesian product”, “diminishing of constituents” (i.e. apply 

the projections as soon as possible). Such heuristics reduce the size of intermediate results. Other 

algorithms utilize heuristics for exploring the search space with a randomly path (random walks). 

[BrGJ10] is a recent relevant work.  

Iterative improvement and Simulated annealing [StMK97] and are seminal examples of 

randomized algorithms. In the iterative improvement algorithm, once selecting a random starting 

point, the algorithm searches a minimum cost point using a strategy similar to hill-climbing. 

Beginning at the starting point, a random neighbor (i.e. a point that can be reached by exactly one 
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transformation) is selected. If the cost associated with the neighboring point is lower than the cost of 

the current point, the transformation is carried out and a new neighbor with the lower cost is sought. 

Simulated annealing is a variant on iterative improvement [IoWo87] [SwGu88]. In contrast to iterative 

improvement, it carries out the transformation of a plan even if the cost of the neighboring point is 

higher, but with certain probability that eventually the minimal cost will be reached.  

Two-phase optimization is another variation of the basic randomized strategy. First, for a number 

of randomly selected starting points, the neighbor with the minimal cost is sought by applying iterative 

improvement. Then, from the lowest of these local minima, the simulated annealing algorithm is 

started in order to search the neighborhood for better solutions. It has been shown experimentally that 

randomized strategies provide better performance than deterministic strategies as soon as the query 

involves more than several relations [IoKa90]. 

Genetic algorithms 

Genetic algorithms are designed to simulate the natural evolution process. They have been applied for 

join order optimization [BeFI91]. We provide a brief overview of genetic algorithms. One of the most 

important characteristics of genetic algorithms is that they do not work on a single solution, but on a 

set of solutions, the population.  

A genetic algorithm first generates a population comprising solutions randomly created. Such 

population corresponds to the “zero” generation of solutions. Then, each next generation is determined 

as follows:  

1. The solutions of the population minimizing a given cost function are propagated into the next 

generation (selection). 

2. Some solutions propagated in the previous step are combined (crossover). 

3. Some solutions generated in the previous step (not necessarily those minimizing the cost 

function) are altered randomly (mutation).  

This loop is iterated until the best solution in the population has reached the desired quality, certain 

predetermined number of generations has been produced or no improvement has been observed for a 

certain number of generations. Seminal works are presented in [ViPa11][OwKS05] [IbSS09]. 

2.2.2 Optimization timing 

An important aspect to be considered in query optimization (centralized and distributed) is the moment 

when the optimization process takes place. A query may be optimized statically at compilation time, 

dynamically at execution time, or using a hybrid approach that generates parts of the query plan at 

compilation and at execution time. This decision depends on the available information about the state 

of the system [OzVa11].  

The traditional approach is to optimize a query at compilation time. Such approach is called 

static-timing query optimization. In this approach, the query execution cannot adapt to changes, for 

example shifts in the load of sites. Therefore, it may lead to plans of poor performance in some 

situations (e.g. data systems with dynamic and autonomous nodes).  

To deal with this problem, an approach that optimizes queries at execution time has been 

proposed. Such approach is called dynamic-timing query optimization. The idea is to start executing a 

partial plan (the first operators); the selection of the next operators is based on information obtained 

from executing the precedent operators, thus taking into consideration last changes in the execution 
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environment, and minimizing the probability of choosing a bad plan. A hybrid approach has been 

proposed in order to taking the advantages of static and dynamic techniques. 

 

Static-timing query optimization 

The static query optimization clearly separates the generation of the query plan, which is done at 

compilation time as mentioned before, and its execution.  The input of the optimization process is an 

algebraic tree resulting from the preliminary query optimization steps (e.g. query decomposition and 

data localization in distributed data systems). The output is a query plan that implements the optimal 

strategy for executing a given query.  

The general optimization algorithm consists of two major steps. First, it selects the best access 

methods (e.g. partial plan, data access algorithm) for each source involved in the query. This choice is 

mostly based on the selectivity factor of the select predicates over a source. Second, it examines all 

possible permutations of joins ordering by applying commutative and associative rules; it estimates the 

cost of each alternative plan by applying a cost function, then it selects the plan that minimizes the 

cost function. To reduce the cost of the optimization process the search space is reduce by applying 

dynamic programming.   

Static query optimization is done once; in this sense static techniques amortize the cost of the 

optimization process. However, the cost of query plans is estimated basing on information, for 

example the size of intermediate results, which is known until run time. Errors in these estimates can 

lead to the selection of suboptimal query plans. Thus, an accurate cost model is especially important to 

predict the cost of alternative query plans; in consequence a proper maintenance of the information 

catalog is critical. This technique is mostly used by exhaustive enumeration algorithms. The most 

popular static query optimization algorithm is that of System R [AMPT76], one of the first relational 

database systems.  

Dynamic-timing query optimization 

In dynamic-timing query optimization the query plan generation process interleaves the optimization 

process with the execution process. A part of the plan is generated; it is executed while the generation 

of another part of the plan is carried out. In this technique there is no need for a cost model, since 

during the optimization process is possible to count on with some measures (e.g. the real size of 

intermediate results) gathered during partial plan execution.  

The general algorithm recursively decomposes a query expressed in some high-level declarative 

language (i.e. SQL query) into a sequence of subqueries having a single source in common. The 

condition for executing a resulting subquery is that it must be defined considering a single source. This 

decomposition uses two basic techniques: detachment and substitution.  

The detachment technique splits a query Q (comprising sources A, B, C) into Q1 (comprising 

source A) and Q2 (comprising sources B and C). The evaluation of Q2 produces the temporal result 

set D (D comprises the data from A and B that holds certain conditions). The detachment technique 

reduces the size of the source on which Q is defined (sources A, B, C versus A, D). Detachment 

extracts the select operations, which are usually the most selective ones. This can have adverse effects 

on performance if the selection has bad selectivity.  

There are queries comprising more than one source that cannot be reduced by applying the 

detachment technique (if its query graph is a chain with two nodes or a cycle with k nodes, where k>2 
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[WoYo76]). The substitution technique is applied in this case. This technique substitutes a source by 

some of its data items (e.g. tuple). For each item obtained the subquery is recursively processed by 

substitution. Finally, the subqueries (mono-source) are processed by selecting the best method for 

accessing the source (e.g. index, sequential scan). Then, the algorithm tries to minimize the sizes of 

intermediate results in ordering binary operations.  

Dynamic-timing query optimization can be done several times, at any point during the 

execution of a query. The selection of the best next operator to be added to the query plan is based on 

more accurate information from the result of the operators executed previously; thus minimizing the 

probability of choosing a bad plan. In contrast, it may be an expensive task because of its several 

occurrences. In dynamic query optimization, even if data statistics are not needed to estimate the size 

of intermediate results as static query optimization, they are still necessary for selecting the first 

operators of the query plan. This approach is best for ad-hoc queries. The most popular dynamic query 

optimization algorithm is that of INGRES [Ston86].  

Hybrid-timing query optimization 

Hybrid query optimization attempts to provide the advantages of static query optimization while 

avoiding inaccurate estimates of plans cost. The approach is basically static, but further optimization 

decisions may take place at run time during a re-optimization phase [CWYA81]. Thus, plans that have 

become infeasible (e.g., because indices have been dropped) or suboptimal (e.g. because of changes in 

relation sizes) are re-optimized. However, detecting suboptimal plans is hard and this approach tends 

to perform much more re-optimization than necessary.  

Some optimization decisions are made at runtime. Thus, plans are produced at compilation 

time using any static algorithm, but some of their parts (i.e. subplans) comprise partial order of 

operators. Partial order refers that the optimizer envisages alternative subplans that can be better or 

worst according to different execution parameters, but that their cost cannot be estimated at 

compilation time due to the lack of information. In such situation the cost of alternative plans is 

incomparable. The information required for costs estimation is retrieved at execution time.  

This approach was pioneered in System R by adding a conditional runtime re-optimization 

phase for execution plans statically optimized [CWYA81][Grae94]. Experimentation with the Volcano 

query optimizer [Grae94] has shown that this hybrid query optimization outperforms both dynamic 

and static query optimization. In particular, the overhead of dynamic query execution plan evaluation 

at startup time is significantly less than that of dynamic optimization, and the reduced execution time 

of dynamic query execution plans relative to static query execution plans more than offsets the startup 

time overhead. 

2.2.3 Optimization site  

In distributed data systems, a single or several nodes may be responsible of the query optimization 

process [OzVa11]. This subject is tightly related to the autonomy of control of a system, on the one 

hand we distinguishes systems that totally centralizes the control of query processing, thus query 

optimization in a single system element. On the other hand, there are systems where once a query is 

submitted; control over its processing is not longer possible. Thus, in such systems each of its 

elements is responsible for optimizing the queries that it receive. 

The centralized approach is simpler but requires knowledge of the entire distributed data, most 

distribute data systems centralizes the optimization responsibility to a single system entity. For 
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example, client/server architecture systems, where the server can have a global view of the system, a 

centralized control over queries execution, and full-fledge database capabilities. Other data systems 

partially distribute query optimization assigning major optimization decisions to some specific nodes 

of the system. However this technique still relies on strong assumptions about the state of the system. 

Multi-database systems are clear examples of this partial distribution of the optimization process.  

Database systems have evolved toward a higher degree of distribution. While it has been a 

long way from central databases to truly distributed databases, we currently see first explorations 

toward true peer-to-peer data management infrastructures which will have all characteristics of P2P 

systems. Such systems require complete decentralized approaches, where each node has local control 

of data, dynamic addition and removal of peers, only local knowledge of available data and schemas 

and self -organization and -optimization. Few efforts have been put into extending dedicated query 

optimization functionalities. Next sections summarize the distribution of query optimization 

responsibilities for the centralized, partially distributed, and full distributed techniques.   

Centralized 

In the centralized query optimization, some preliminary optimization processes are carried out at the 

client where the query is posed, for example, query decomposition. The server is responsible for 

optimizing and executing the query. This approach makes sense because operations such as query 

analysis and query rewrite can very well be executed at the clients so that they do not disturb the 

server, whereas steps such as query optimization require a good knowledge of the current state of the 

system i.e. the load on the server, and should therefore, be carried out by the server. 

Partially distributed  

In the partially distributed optimization, one site makes the major decisions and other sites can make 

local decisions are also frequent. For example, System R* [RDDP82] uses a hybrid approach.   

Distributed 

In systems with many servers, no single server has complete knowledge of the whole system.  In such 

systems one server needs to carry out query optimization; e.g. the server located closest to the client. 

This server needs to either guess the state of the network and other servers based on statistics of the 

past or try to discover the load of other servers by asking them for their current load. While asking is 

obviously better than guessing, in terms of generating good plans, asking involves at least two extra 

messages for every server that is potentially involved in a query. 

2.3 METADATA FOR QUERY OPTIMIZATION  

Query optimization highly relies on information about data; such information is typically called 

metadata and is stored in a catalog [Koss00]. It maintains the schema of data (i.e. definition of sources, 

views of such sources, user-defined types and functions, etc.), information about the fragmentation of 

global sources, as well as the replications of such fragments and instruction for materializing the 

global sources. In addition, the catalog includes the necessary information for the computation of the 

cost function.  

The catalog can be seen as to another data source, for instance, in relational database systems 

the catalog is stored like all other data tables. The way to storage and manage such catalog are 

important issues to consider in a data system. In a distributed system also must be considered the 

location for placing the catalogs.  



ERROR! USE THE HOME TAB TO APPLY TITRE 1 TO THE TEXT THAT YOU WANT TO APPEAR HERE. 

36 

 

2.3.1 Statistics and Histograms  

Statistical information about the data sources is fundamental for the computation of a cost function. In 

particular, they are used to estimate the cardinality of intermediate results product of the plan 

operators. For a source S defined over the attributes A = { a1, a2, …, an}, and fragmented as  S = {s1, s2, 

…, sn}, the statistical data typically are the following [ElSh11]: 

 For each attribute ai, its length (in number of bytes), denoted by length(ai), and for each 

attribute ai of each fragment sj, the number of distinct values of ai, with the cardinality of the 

projection of  fragment sj on ai, denoted by card(ai (sj)). 

 For the domain of each attribute ai, which is defined on a set of values that can be ordered 

(e.g., integers or reals), the minimum and maximum possible values, denoted by min(ai) and 

max(ai). 

 For the domain of each attribute ai, the cardinality of the domain of ai, denoted by 

card(dom[ai]). This value gives the number of unique values in the dom[ai]. 

 The number of tuples in each fragment sj, denoted by card(sj).   

For estimating the cardinalities of intermediate results of queries rely on the strong assumption 

that the distribution of attribute values in a relation is uniform. The advantage of this assumption is 

that the cost of managing the statistics is minimal since only the number of distinct attribute values is 

needed. However, this assumption is not practical. In case of skewed data distributions, it can result in 

fairly inaccurate estimations and query execution plans which are far from the optimal. An effective 

solution to accurately capture data distributions is to use histograms.  

A histogram on attribute a from the source S is a set of buckets. Each bucket bi describes a 

range of values of a, denoted by rangei, with its associated frequency fi and number of distinct values 

di. fi gives the amount of units of data (e.g. tuples) of S where S:a  rangei. di gives the number of 

distinct values of a where S:a  rangei.  

This representation of a source’s attribute can capture non-uniform distributions of values, 

with the buckets adapted to the different ranges. However, within a bucket, the distribution of attribute 

values is assumed to be uniform. Histograms can be used to accurately estimate the selectivity of 

selection operations. They can also be used for more complex queries including selection, projection 

and join. However, the precise estimation of join selectivity remains difficult and depends on the type 

of the histogram [PHIS96]. 

2.3.2 Catalog management approaches 

Efficient catalog management in (centralized and distributed) data systems is critical to ensure 

satisfactory performance in the execution of queries. Read and update the catalog information are the 

most common task involved in the catalog management. Three popular approaches have been 

proposed: centralized catalog, fully replicated catalogs, and partially replicated catalogs. The choice of 

the approach depends on the characteristics of the data system, as well as those of the applications 

turning over the system [Koss00][OzVa11].   

Centralized Catalogs  

In the centralized approach, the entire catalog is stored in one single site. Owing to its central nature, it 

is easy to implement. However, a centralized catalog can quickly become a bottleneck; it is not a good 

option for the scalability of the system. The regular read and update task in this approach are as 
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follow: For read operations from non-central sites, the requested catalog data is locked at the central 

site and is then sent to the requesting site. On completion of the read operation, an acknowledgement 

is sent to the central site, which in turn unlocks this data. All update operations must be processed 

through the central site.  

Sensor networks are the kind of systems where this approach is typically applied. In TinyDB 

[MFHH05], for instance, metadata correspond to statistics describing important physical information 

such as position, density and connectivity of sensors. It also comprises system information, such as 

system workload and network scalability. Moreover, it includes workload distribution of generated 

values, events and user functions handled at each node.  

Actually, due to the amount of required metadata, and the dynamicity of sensor networks, 

collect metadata in a central node seams not to be the best option. During the query optimization 

information about the status of the sensor network is required. The query optimization is centralized in 

the best station. The catalog is periodically updated by collecting metadata from the sensor nodes. This 

involves the transmission of important amounts of data that can provoke the congestion of the 

network.    

Fully Replicated Catalogs 

In the fully replicated approach, identical copies of the complete catalog are present at each site. This 

scheme facilitates faster reads by allowing them to be answered locally. However, all updates must be 

broadcast to all sites. Updates are treated as transactions and a centralized two-phase commit scheme 

is employed to ensure catalog consistency. As with the centralized scheme, write-intensive 

applications may cause increased network traffic due to the broadcast associated with the writes.  

Partially Replicated Catalogs  

The centralized and fully replicated schemes restrict site autonomy since they must ensure a consistent 

global view of the catalog. Under the partially replicated scheme, each site maintains complete catalog 

information on data stored locally at that site. Each site is also permitted to cache entries retrieved 

from remote sites. However, there are no guarantees that these cached copies will be the most recent 

and updated. The system tracks catalog entries for sites where the object was created and for sites that 

contain copies of this object. Any changes to copies are propagated immediately to the original (birth) 

site. 

 Retrieving updated copies to replace stale data may be delayed until an access to this data 

occurs. In general, fragments of relations across sites should be uniquely accessible. Also, to ensure 

data distribution transparency, users should be allowed to create synonyms for remote objects and use 

these synonyms for subsequent referrals. 

Such catalogs can be implemented in a hierarchical way as described in [EiKK97]. The main 

idea behind the distributed catalogs is that for many P2P applications, the distribution of the 

underlying data among servers is not random. It is often the case that data are stored, grouped, 

replicated and queried according to one or more categorization hierarchies that are natural for the 

application.  

2.4 OPTIMIZATION USING QUERY FEEDBACK 

In this section we review seminal optimization proposals based on feedback obtained from the 

execution of queries. This feedback serves for estimating plans cost when there is incomplete 

information on data at compilation time (Section 2.3 addresses the optimization timing techniques). 
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These approaches have considered different kinds of query feedback, such as statistical information 

(data production rates, number and frequency of data values, cardinality of sources, availability 

indices, etc.), measures of resources availability, resources consumption and plans for queries 

evaluation.  

 In the literature, the optimization approaches that exploit feedback on-the-fly are known as 

adaptive techniques. They are inspired on dynamic or hybrid (static-dynamic) optimization timing 

principles. We classify the optimization approaches that store feedback for its latter exploitation as 

evaluation, and use it to improve the processing of further queries. Such learning approaches involve 

new aspects to consider to accomplish a successful optimization process e.g. the selection of suitable 

storage structures, as well as mechanisms for feedback exploitation (i.e. retrieval and reuse) and 

management (i.e. advantageous organization, insertion, update and deletion). [KaDe98][INSS97] 

[UrFA98][VaKi00][AbCh99a][SLMK01] are some representative pioneer works. More recent 

learning-based optimization techniques have been proposed in [ChLH12] [BaBr10][AÇRU12], just to 

mention a few. 

For analyzing such works we divide this chapter in three major parts. The first part exposes 

adaptive query optimization techniques (Section 2.4.1). The second part focuses on optimization based 

on the storage and reutilization of query plans. This kind of query optimization techniques are well 

known as plan caching techniques (Section 2.4.2). Finally, the third part addresses optimization 

approaches centered on collecting, maintaining and repairing statistics and metrics about resources 

consumption with the objective to improve the accuracy of plans cost estimation (2.4.3).  

2.4.1 Adaptive query optimization  

Traditionally, there is a clear gap between query optimization and query execution: query plans are 

optimized at compilation time and sent to the execution engines for evaluation until all query results 

are completely computed [DeIR06]. Adaptive optimization takes decisions at compilation and at 

execution time. It is inspired on the dynamic and static-dynamic optimization techniques. This 

approach faces the lack of information and occurrence of unpredictable data characteristics and 

environment events during query execution [OuBo04]. 

The adaptive query optimization process comprises five generic stages [Liu00]: (i) Plan 

optimization (generating an initial plan for a query), (ii) Plan Monitoring (monitoring the plan status, 

system performance, as well as data characteristics), (iii) Plan Analysis (analyzing how well the 

current plan functions and deciding whether an adaptation is needed), (vi) Plan Re-optimization 

(finding a new plan that is better than the current plan), and (v) Plan Migration (migrating the current 

plan to the new plan). These stages form a loop and are continuously executed until complete query 

result is computed. The literature exposes these steps from an adaptive query process, and not 

specifically from the query optimization. However, the adaptation is based on optimization decisions 

(only); the current query plan (optimization output) is modified to improve the query evaluation 

(optimization objective). In summary, any adaptation actions are responsibility of the optimization 

process.   

Research on adaptive query optimization follows two main directions. The first approach 

responds to changes in the evaluation environment by modifying the execution plan at runtime (e.g. by 

changing the operators used or the order in which they are evaluated). The other approach involves the 

development of operators that deal more flexibly with unpredictable conditions and adapt their 

behavior by collecting and taking into consideration information that becomes available at query 



CHAPTER 2 

 

39 

 

runtime about how query evaluation is proceeding and about changes in the wider execution 

environment. Next sections present seminal works basing on this approach.  

An interesting characterization of adaptive query optimization process is given in 

[OuBo04][Liu00]. It states that query optimization is adaptive if: 

 it receives information from its environment 

 it uses that information to determine its behavior, and 

 this process iterates over time, generating a feedback loop between environment and 

behavior 

I would add to the previous characteristics that, query optimization is an adaptive process if 

the gathered feedback is keep for a short period of time, only while it is useful for taking some 

optimization decisions at execution time. This study refer to seminal works based on the adaptive 

query optimization principle, such as re-optimization foundations [KaDe98], parametric query 

optimization [INSS97] [AlDB12], dynamic query scrambling [UrFA98] because unavailable memory 

and dynamic query scheduling [BFMV00a] due to unexpected delays. It also survey ECA rules to face 

undesirable environment behavior [IFFL99], and Eddies [AvHe00][TiDe03] for the adaptive routing 

of bursty data-flows on execution time. 

In spite of their different adaptation mechanisms, all these works aim the improvement of the 

global evaluation of queries. Such approaches recourse to different kinds of feedback, for example 

system parameters, statistics and consumption of resources. Also, each of them is consecrated to the 

optimization of different objective e.g. minimizing time, saving memory. Adaptive query optimization 

includes several challenges, such as the detection of plans with poorer performance than the expected; 

identify the appropriate moment to re-optimize a query plan, and the temporary maintenance of query 

feedback.  

The remainder of this section presents a summary of such techniques: re-optimization 

principle and main contributions such as, parametric query optimization, query scrambling, dynamic 

query scheduling, Tukwila [IFFL99] and Telegraph [HFCD00] projects. Finally, we present a 

comparative synthesis to show the strengths and weaknesses.  

Re-optimization [KaDe98] 

This work describes a dynamic re-optimization algorithm that detects sub-optimality of a query 

execution plan during query execution in order to re-optimize and improve its performance. The basic 

idea is to collect statistics (Section 2.4 exposes classical statistics and histograms) at key points during 

the execution of complex queries. Thus, during the query optimization, the produced plan is annotated 

with the various estimates and statistics used by the optimizer.  

It is assume that a conventional query optimizer exists for producing an execution plan at 

compilation time for a given query. Current statistics are collected at-query execution time. Such 

statistics are compared with the annotated in the query plan. The difference between these statistics is 

taken as an indicator of whether the query execution-plan is suboptimal. The new statistics (much 

more accurate than the initial those estimated by the optimizer) are used to improve the execution of 

the remainder of the query. Such improvements correspond: (i) to re-allocate shared resources (e.g. 

memory) to the various operators of the query, (ii) to detect whether the remainder of the execution 

plan must be re-optimized.  

The collection of statistics at query execution time may result in a significant overhead. To 

prevent this problem the collected statistics, and the most effective points to collect them are 
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determined and statistic collection operators (i.e. StatisticCollector) are inserted into the query 

execution plan (see Figure 2.2).   

 

Figure 2.2 Query plan including the StatisticsCollector operator 

 

There is a filter operation that applies selection predicates to the Rel1 relation. Just after the 

filter operation, a statistics collector operator is inserted into the query execution plan. As the tuples 

are being produced by the filter operator, they can be examined by a statistics collection routine, and 

the required statistics can be gathered without interrupting the normal execution of the query. Thus, 

for example, the cardinality of the result of the filter operation can be computed by keeping a running 

count of the number of tuples that stream past the statistics collection routine, and the average tuple 

size can be computed by keeping a running average. 

The statistics-collectors insertion algorithm decides what statistics to collect, and where insert 

within the query plan StatisticsCollector operators. Such operators are inserted at compilation time 

after a conventional optimizer has produced a first query execution plan. To make this decisions, the 

algorithm generates a list of the potentially useful statistics, for instance, a histogram on a particular 

attribute is potentially useful if that attribute is part of a join or a selection predicate.  

Given this list, the algorithm determines those statistics that should to be discarded and those 

that should be retained. The retained statistics are those whose computation time is less than a 

parameter () that indicates a maximum acceptable overhead; and that are the most effective in 

determining the sub-optimality of the plan. Thus, it is required to estimate the time for computing each 

statistic, this is done using the optimizer estimates of size of intermediate results. Also, it is required to 

measure the effectiveness of statistics to detect sub-optimality of a plan. This is detected by two key 

factors: (i) the probability that the corresponding optimizer estimates are inaccurate (if the probability 

that the first estimates are accurate there is no much reason to gather such statistics); and the fraction 

of the query execution plan that might be affected by a statistic (if the part is minimal it is not required 

neither to collect such statistics). This approach was validated in the context of the Paradise Database 

System. The experiments report significant improvement in the performance of complex queries. 

Parametric query optimization [GrWa89][INSS97][CoGr94] 

Parametric query optimization proposes optimizing queries considering some parameter, important for 

estimating query plans cost, whose values can change between compilation-time and execution time. 

Such parameters may concern data (e.g. cardinality, indexes) and system environment (e.g. availability 

of resources like memory, disk, processing power, etc.). This approach attempts to identify at compile 
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time several execution plans, each one of which is optimal for a subset of all possible values of certain 

run-time parameters. At run time, when the actual parameter values are known, the appropriate plan 

should be identifiable with essentially no overhead [INSS97].   

The objective of this approach is twofold: (i) objectively explore the search space, and (ii) 

reduce the re-optimization occurrences (waist of computing resources). For the search space 

exploration certain assumptions about data are made (e.g. value distribution); however these 

assumptions may be violated at runtime (e.g. the database content change). This fact may lead to 

selecting query plans with poor performance, otherwise to re-optimize the plan. The parametric query 

optimization principle consider that a search space exploration by using run-time parameters (i.e. 

system, data and/or query parameters) for selecting the optimal query plan may avoid, or at least 

reduce the coincidences of the previous scenario.   

Figure 2.3 shows the global view of the parametric query optimization process. The choice of 

an optimal plan is carried out in two steps: (i) the generation of query plans (Parametric query 

optimizer) APi associated to possible parameter values (Pi); and (ii) the selection (Chooser) of the 

optimal query plan, the cost of query plans is estimated according to the parameter values reveled 

during the execution.  

 

Figure 2.3 Overall architecture of parametric query optimization 

The earliest significant work in this area is by Graefe and Ward [GrWa89]. They discuss the 

implementation of dynamic query plans in the Volcano optimizer generator [GrMc93]. These are plans 

that include a choose-plan operator, which chooses among multiple available conventional plans given 

the values of certain run-time parameters. The proposal is for choose-plan operators to be introduced 

in all places of a plan where the choice of subplans underneath is sensitive to the values of these 

parameters. This work includes many important concepts related to parametric query optimization but 

does not include a complete search strategy to identify the dynamic plans and the positions where the 

choose-plan operators should be place.  

To illustrate the benefits of dynamic plans over traditional, static plans consider a hash join of 

relations R and S. The size of S is predictable, while the join input from R can be very small or very 

large depending on a selection of R based on a user variable, Since hash joins perform much better if 

the smaller of the two inputs is used as the build input [Grae93], two join plans should be included in a 

dynamic plan for this query. A suitable dynamic plan for this query is shown in Figure 2.4. 
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Figure 2.4 Example of dynamic query plan 

In principle, the optimal plan generated by parametric query optimization may be different 

from each distinct combination of all the possible run-time parameter values. Naturally, the total cost 

of generating all these plans is prohibitive. Ioannidis Y. et al. present an approach to produce distinct 

plans for values of a selected subset of run-time parameters (i.e. buffer size parameter) [INSS97]. For 

the exploration of the search space they adopt randomized algorithms, and enhance them with a 

sideways information passing feature that increases their effectiveness in the new task. Such 

randomized algorithms correspond to: Simulated annealing (SA), [Kirk84][IoWo87], iterative 

improvement (II) [NSS86, SG88], and two-phase optimization (2PO) [IoKa90][IoKa91] for parametric 

query optimization of select-project-join queries; briefly explained in Section 2.3.1.2. 

Experimental results of these enhanced algorithms show that they optimize queries for large 

numbers of buffer sizes in the same time needed by their conventional versions for a single buffer size, 

without much sacrifice in the output quality and with essentially zero run-time overhead. Another 

method based on [GrWa89] was subsequently developed by Cole and Graefe [CoGr94]. Once again, 

the bulk of the optimization effort is done at compilation-time, and during delays carefully selected 

certain optimization decisions are made at execution-time. It focuses in the generation of dynamic 

query plans exploring the search space with a search strategy based on dynamic programming.  

One of the major proposals of this work is the notion of incomparability of plans cost at 

compilation time. Missing runtime binding may render impossible to calculate the cost of query plans. 

If so, alternative plans are only partially ordered by cost (instead of being totally ordered as in 

traditional query optimization). Thus, the choice of the optimal plan is delayed until start-up-time, 

when all the parameter values are known cost estimation and the comparison for selecting the optimal 

plan is feasible.  

If two or more alternative plans are incomparable at compilation-time, they are both included 

in the query plan and linked together by a choose-plan operator, thus creating a dynamic plan as 

defined in [GrWa89].  The choose-plan operator allows postponement of the choice among two or 

more equivalent, alternative plans until start-up-time, when the decision can be based on up-to-date 

knowledge, e.g., the bindings of user variables unbound at compile-time. 

In summary, this approach states to resolve the ambiguity in selectivity and cost estimation. 

The three most important ambiguity problems correspond to: errors in selectivity estimation [IoCh91], 

unknown run-time bindings for host variables in embedded queries, and unpredictable availability of 

resources at run-time. In order to validate the approach, they extend the Volcano optimizer generator 

[GrMc93]. While the prototype is based on the relational data model, the problem of uncertain cost-
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model parameters and its solution using incomparable costs are also applicable to other data models 

that require query optimization based on estimation of uncertain parameters. 

Query scrambling [UrFA98][ATFU96]  

A query scrambling approach is proposed in [ATFU96]. The goal is to react to delays by modifying 

the query execution plan on-the-fly. Unexpected delays are “hidden” by performing other useful 

works. Scrambling has a two-pronged action: rescheduling (scheduling other operators for execution) 

and operator synthesis (new operators are created when there is no other operator to execute). These 

two techniques are repeated as necessary to modify the query execution plan.  

Scrambling policies differ by the degree of parallelism they introduce or the aggressiveness 

with which scrambling changes the existing query plan. Three important trades-offs must be 

considered in re-scheduling: First, the number of operators to reschedule concurrently. This concerns 

the benefits of overlapping multiple delays and the cost of materializations used to achieve this 

overlapping. Second, scheduling individual operators or entire sub-trees. Finally, choice of specific 

operator(s) to reschedule.  

For operator synthesis, a significant amount of additional work may be added since the 

operations were not originally chosen by the optimizer. To avoid this problem a simple heuristic of 

avoiding Cartesian products to prevent the creation of overly expensive joins is used. However, the 

performance of this heuristic is highly sensitive to the cardinality of the new operators created. 

Dynamic query scheduling [BFMV00a][BFMV00b] 

Another dynamic scheduling strategy that deals also with memory limitation has been proposed in 

[BFMV00a][BFMV00a]. It is based on monitoring arrival rates at the information sources and memory 

availability. In the case of significant changes, the execution plan is revised. This means that planning 

and execution phases are interleaved. The query execution plan is represented by an operator tree with 

two particular edges: blocking and pipelinable. In a blocking edge, the consumption of data cannot 

start before it is entirely produced.  

In a pipelinable edge, data can be consumed one tuple at a time meaning that consumption can 

start as soon as one tuple is available. It is then possible to characterize the query execution plan by 

pipelinable chains which represent the maximal set of physical operators linked by pipelinable edges. 

The query engine will have to concurrently select, schedule, and execute several query fragments 

(pipelinable chains and partial materializations) while minimizing the response time. 

The query engine’s main components are the dynamic query optimizer, dynamic query 

scheduler, dynamic query processor, and communication manager. The dynamic query optimizer uses 

dynamic re-optimization techniques to generate an annotated query execution plan. Those annotations 

relate to blocking and pipelinable edges, memory requirements, and estimates of results’ sizes. The 

dynamic query scheduler builds a scheduling plan at each scheduling phase triggered by events from 

the query processor. Scheduling is based on some heuristics, the current execution status, and 

information about the benefits of materialization of pipelinable chains.  

The dynamic query processor concurrently processes query fragments while maximizing the 

processor use based on priorities defined in the scheduled plan. The execution may be interrupted in 

case there is no data arriving from sources, a query fragment has ended, or delivery rates have 

significantly changed. This is reported to the query scheduler and eventually to the query optimizer for 

scheduling or optimization changes. The communication manager receives data from the different 
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wrappers for the rest of the system. It also estimates delivery rates at the sources and reports 

significant changes to the query processor. 

Tukwila: ECA rules [IFFL99][ILWF00] 

Tukwila is another system addressing adaptiveness in data integration environment [IFFL99]. 

Adaptiveness is introduced at two levels: (1) between the optimizer and the execution engine, and (2) 

within the execution engine. In the first level, adaptiveness is deployed by annotating initial query 

plans by (event-condition-action) ECA rules. These rules check some conditions when certain events 

occur and subsequently trigger the execution of some actions.  

Examples of events include operator failure, time-out, and out of memory exceptions. 

Conditions include the comparison of actual cardinalities known at run-time and those estimated. 

Finally, actions include rescheduling of the query operator tree, re-optimization of the plan, and 

alteration of memory allocation. A plan is organized into a partially ordered set of fragments and a set 

of corresponding rules. Fragments are pipelined units of operators. When a fragment terminates, 

results are materialized and the rest of the plan can be re-optimized or rescheduled. In addition to data 

manipulation, operators perform two actions: statistics gathering for the optimizer, and event handler 

invocation in case a significant event occurs.  

The operator tree execution follows the top-down Iterator model described in [Grae93]. For 

the second level of adaptiveness, two operators are used: dynamic collectors and the double pipelined 

hash join operator. The collector operator dynamically chooses relevant sources when a union 

involves data from possibly overlapping or redundant sources. The optimizer specifies the order to 

access sources and alternative sources in case of unavailability or slow delivery. A collector will then 

include a set of children (wrapper calls or table-scans) and a policy for contacting them.  

The policy is expressed as a set of event-condition-action (ECA) rules. The double pipelined 

hash join is a symmetric and incremental join. It aims at producing tuples quickly and masking slow 

data sources transfer rates. This requires maintaining hash tables for in memory relations. The original 

double pipelined join has been implemented after a few adaptations. The first adaption was to retrofit 

the data-driven bottom-up execution model of that operator with the Tukwila’s query processing top-

down Iterator-based scheme. The second relates to the problem of memory overflow. Two strategies 

based on swapping are used. 

Adaptive join operators for minimizing partial response time [HaHe99][WiAp93][UrFr00][IFFL99] 

Join operators for accelerate the production of partial results have been proposed: (i) The Ripple join  

that is a physical pipelining join operators that maximize the flow of statistical information during 

processing [HaHe99];  (ii) the XJoin that is a variant of Ripple joins [UrFr00]; the symmetric hash join 

(SHJ) [WiAp93], and the double pipeline hash joins (DPHJ) that is  a family of memory adaptive hash 

joins [IFFL99]. 

The Ripple joins generalize block nested loops (in the sense that the roles of inner and outer 

relation are continually interchanged during processing) and hash joins. Ripple joins adapt their 

behavior during query evaluation according to gathered data statistics, the user preferences about the 

accuracy of the partial result, and the time between updates of the result aggregates. Given these user 

preferences, they adaptively set the rate by which they retrieve tuples from each input of the ripple 

join.  

XJoin is a variation of the Ripple joins, but with lower memory requirements.  Its execution 

comprises three steps. In the first step it builds two hash tables, one for each source. In the first stage, a 
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tuple, which may reside on disk or memory, is inserted into the hash table for that input upon arrival, 

and then is immediately used to probe the hash table of the other input. A result tuple will be produced 

as soon as a match is found. The second step begins when the first step blocks and it is used for 

producing tuples during delays. Tuples from the disk are then used to produce some part of the result, 

if the expected amount of tuples generated is above a certain activation threshold. The last step is a 

clean-up stage as the first two stages may only partially produce the final result. In order to prevent the 

creation of duplicates, special lists storing specific time-stamps are used. Apart from producing initial 

results quickly, XJoin is also optimized to hide intermittent delays in data arrival from slow and bursty 

remote sources by reactively scheduling background processing.  

The DPHJs initially splits source relations and holds them in memory. When memory is 

insufficient, one partition held in memory flushes its hash table to disk and deallocates all but one of 

its buffer pages. The most efficient variant of DPHJs for utilizing additional memory is when 

partitions of the inner relation are fetched in memory while the outer relation is being scanned and 

partitioned. This method reduces I/O and, consequently, the total response time of the query.  

Telegraph: Eddies on the River [AvHe00][TiDe03]  

The Telegraph project [CCDF03] aims to build a query engine over Web information sources based on 

an adaptive data-flow paradigm. The objective is to adaptively route unpredictable and bursty data-

flows through computing resources. The query processor continuously reorders applications of 

pipelined operators in a query plan at run-time on a tuple-by-tuple basis [AvHe00]. It uses the concept 

of eddy, defined as a n-ary tuple router interposed between n data sources and a set of query 

processing operators. 

An eddy encapsulates the ordering of operators by dynamically routing tuples through them. 

Figure 2.5 shows an example of an eddy operator. The idea is that there are times during the 

processing of a binary operator (e.g., join, union) when it is possible to modify the order of the inputs 

without modifying any state in the operator. Such times are called moments of symmetry. They occur 

at the so called synchronization barriers. For the case of merge join, this corresponds to one table-scan 

waiting until the other table-scan produces values larger than any one seen before. Most of the 

reported work for eddies is on the join operator due to its impact on query performance. 

 

Figure 2.5 An eddy operator in a pipeline 

The focus in Telegraph is on join algorithms with frequent times of symmetry, adaptive or 

non-existent barriers, and minimal ordering constraints. Efficiency of the system depends tightly on 

the routing policy used in the eddies. Different routing policies need to be used under different 

circumstances. They depend on operator selectivity, operator consumption and production rate, join 

implementation, and initial delays of input relations. Eddies have been implemented in the context of a 

shared-nothing parallel query processing framework called River [AATC99]. 
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Discussion 

This section exposes the basics of adaptive query optimization, as well as, the most representative 

works in this domain. Also, it identifies the opportunities that such approach offers to highly dynamic 

environment by modifying query plans on the fly. There is always a trade-off between the potential 

benefits from adapting to current conditions on the fly with very high frequency, and the risk of 

incurring large overheads.  

The techniques that have more extensive capabilities in terms of the modifications they can 

induce in the running plan are more expensive and risky than the others. On the other hand, less 

complex adaptive strategies (e.g. those that do not affect the logical plan of the query) are generally 

intended for single processor environments, where it is more common that satisfactorily accurate 

statistics can be obtained at compile-time. 

We distinguish that all these works focus on query evaluation improvement according to an 

unchanging and unique optimization objective. Such objective typically corresponds to the response 

time (i.e. providing first partial query results to the user) or the execution time (i.e. providing the 

complete query result to the user), and few of them on memory consumption, as [WiAp93]. Little 

attention has been paid to changes in the pool of available processors or may be to energy 

consumption. In any case, until our knowledge, adaptive query optimization techniques do not address 

the necessity nowadays applications of optimizing queries according to multiple and customizable 

objectives. 

These techniques are mostly applicable to parallel and distributed settings, taking the 

adaptation decisions at a global level and relying heavily on the materialization (temporary at 

execution time) of intermediate results. This happens because in parallel and distributed settings, 

network costs and resource availability need to be taken into consideration and not adapting to 

changes in data transfer rates or resources may have detrimental effects. Furthermore, they are applied 

to distributed data systems that centralized the query optimization process in a single server. They 

monitor and gather feedback in a system where there is an entity having a global view of the system 

elements. Thus, they do not consider the distribution of optimization decision to different autonomous 

system nodes.   

Techniques may collect and act on feedback between the executions of different operators in the 

query plan (i.e. inter-operator). Collection can be triggered after certain operators have been evaluated 

or after special events, like the arrival of partial results from local data sources in multi-database 

environments. Other techniques collect feedback during the evaluation of physical operators (i.e. intra-

operator). Check-points are added to the operator execution for this purpose. In general, feedback is 

collected after a block of tuples has been processed. In the limit, this block consists of a single tuple, 

resulting in a potentially different plan for each tuple. Such feedback is exploited as soon as it is 

acquired, or it is preserved for its further usage.  

The previous analysis considers the common aspects of adaptive optimization techniques; 

however, they differ in several aspects: (i) the particular problem that they address, (ii) the objective 

they focus on, (iii) the nature of feedback they collect, and (iv) the frequency at which they can adapt, 

and (v) their way to carried out adaptation. Table 2.1 summarizes the optimization techniques 

presented so far in this section according to the evoked dimensions.  

Reference Problem OpObj Feedback Frequency Realization 

Re-optimization [KaDe98] inaccurate 

plans cost 

execution 

time 

statistics inter-operator plan generation 

algorithm and 
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estimation operator (statistics-

collector) 

Parametric query optimization 

[GrWa98, CoGr94, INSS97, 

IoCh91] 

reduce re-

optimization 

occurrences 

execution 

time 

statistics 

and system 

parameters.  

intra-operator plan generation 

algorithm 

Query scrambling [UFA98, 

AFTU96] 

minimize data 

arrival rates 

response 

time 

delays  inter-operator algorithm of 

adaptation 

Dynamic query scheduling 

[BFMV00a, BFMV00b] 

minimize 

response time 

response 

time 

delays and 

memory 

inter-operator optimization 

algorithm 

(parallelism) 

Tukwila: ECA rules [IFFL99, 

ILWF00] 

adapt to 

environment 

changes 

response 

and exe. 

time 

events e.g. 

time-out, 

exe. 

failures 

inter-operator system and operator 

algorithm 

RippleJoin 

[HeHe99] 

satisfy user 

preferences 

response 

time 

delays, 

results size  

intra-operator operator algorithm 

XJoin [UrFr00] minimize data 

arrival rates 

response 

time 

delays, 

memory 

intra-operator operator algorithm 

Eddies [AvHe00, TiDe03] adapt to 

environment 

changes 

response 

time 

statistics intra-operator operator and data 

routing operator 

Table 2.1 Adaptive query optimization approaches  

2.4.2 Plan caching 

The storage and reuse of plans is the basis of plan caching, also known as plan memorization. In this 

approached the feedback from the evaluation of queries naturally corresponds to query plans (in some 

representation). Such feedback is typically complemented with supplementary information e.g. 

statistics, query description, etc.  

Some of the main concerns of plan caching are to select feedback representation and structures 

that favor its reuse. A plan can be reused for a single query or for several queries; the coverage of a 

plan concern the amount of queries that it is useful to solve. The reuse of plans is typically based on 

comparative functions between queries e.g. equivalence, equality, similarity, etc.; this turns in a 

queries classification problem, the definition of this function is fundamental. Another problem to 

consider is the adaptation of plans to fit to the specifications of the new query.  

Plan caching is useful to alleviate the optimization overhead for solving complex queries and 

the systematical necessity to scan the search space for query processing. Former, a query is optimized 

using typical techniques; the generated optimal plan P is stored in a cache and is reused for solving 

some further queries without the need to scan the search space. The access and retrieval of reusable 

plans must be efficient to minimize the overhead of the optimization process; appropriate storage 

structures are essential (e.g. hash tables, lattices, clusters).  

 In the eager to find the truly optimal plan (from an exhaustive exploration of the search 

space), some optimization approaches are very hard and time costly. Such approaches realize the 

optimization process during a preparation phase (previous to start the execution of queries) or during a 

backward processes. This is an appropriate approach for optimizing very complex queries or frequent 

queries, since it does not easy evolve with to changes in a very dynamic environment (as adaptive 
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query optimization does). Next sections summarize representative query optimization works basing on 

plan caching.  

Plan selection based on query clustering [GPSH02][SeHa03] 

This approach is based on plan caching for amortize the query optimization overhead by the fact that a 

new query is typically optimized afresh. It aims to improve the utility of the plan cache by identifying 

clusters of queries, in such a way that the queries that belong to a cluster have a common optimal plan 

template. They analyze the characteristics that queries shared when they fit (can be efficiently 

evaluated) with the same plan template. Thus, a query is represented as a feature vector that includes 

structural attributes such as the number of tables and joins in the query, as well as statistical quantities 

such as the sizes of the tables participating in the query. 

Using a distance function defined on these feature vectors, queries are grouped into clusters. 

Each cluster has a representative plan template of the query plan, initially generated by a classical 

optimizer. This plan template is used to execute all future queries assigned to the cluster. In short, this 

approach recycles plan templates based on the expectation that its clustering mechanism is likely to 

assign an execution plan that is identical to what the optimizer would have produced on the same 

query.  

Then, using this similarity definition, query clusters are dynamically formed in an incremental 

manner, with the distance threshold determining the maximum stretch of the cluster. Each cluster has a 

representative for whom the execution plan, as determined by the optimizer, is persistently stored. 

This plan is used to execute all future queries that are assigned to the cluster. Finally, when a sufficient 

number of clusters have been formed, a classifier is constructed on the clusters to support efficient 

identification of the cluster to which a new query may belong, thereby also determining its execution 

plan.  

 

Figure 2.6 The PLASTIC architecture 

PLASTIC [SeHa03] is the prototypation of this approach, a leader algorithm [Hart75] is used 

to determine cluster representatives, and a decision-tree [SaLa91] is constructed for classification 

purposes. A block-level diagram of such system components is shown in Figure 2.6 (the solid lines 

show the sequence of operations in the situation where a matching cluster is found for the new query, 

while the dashed lines represent the converse situation where no match is available and a fresh cluster 

is created). The reuse of plans basing on query similarity is the basis of plan caching. The contribution 

of this approach is the incorporation of a host of new features to the query similarity definition. The 

problem is the scarcity of such new features in highly distributed systems.  



CHAPTER 2 

 

49 

 

Accurate query optimization by sub-plan memorization [AbCh99a] [AlDB12] [SRRF08] [HeBa10] 

[AbCh99a] is a pioneer work proposes to provide the query optimizer with exact values for the result 

size of operators and operator trees (i.e. sub-plans), and for the number of distinct values in the output 

of these subplans. In this approach the query optimizer optimizes the query and records all the sub-

plans for which result size or distinct value estimates are required in a data structure, i.e. the sub-plan 

memo. Other works based on a similar plan caching principle are However, other interesting works can 

be found in [AlDB12] [SRRF08] [HeBa10]. 

Query optimization in [AbCh99a] is done in phases. In each phase, the query optimizer fully 

optimizes the query and produces a query execution plan. In the first phase, the optimizer optimizes 

the query using its traditional techniques for result size and distinct value estimation. During this 

optimization, the optimizer records all the sub-plans (operators or operator trees) for which result size 

or distinct value estimates are required in the sub-plan memo. After the optimization is completed, the 

sub-plans in the sub-plan memo are executed and their actual result sizes and the actual number of 

distinct values in their outputs are determined and recorded in the sub-plan memo. 

In the second phase, the query optimizer re-optimizes the query, but whenever it needs result 

size or distinct value estimates for a sub-plan for cost estimation, it looks for this sub-plan in the sub-

plan memo. If the sub-plan is found, the optimizer uses the accurate result size and distinct value 

information in the sub-plan memo.  

The algorithm used by the query optimizer for searching the plan space when optimizing the 

query in the second phase is the same algorithm used in the first phase. Thus, most of the sub-plans 

that the optimizer encounters in the second phase will be ones that were already encountered in the 

first phase, so they will be found in the sub-plan memo. However, since the second phase uses the 

more accurate result size and distinct value information found in the sub-plan memo, the optimizer 

may search parts of the plan space not searched in the first phase and encounter new sub-plans that are 

not in the subplan memo.  

If the optimizer encounters sub-plans that are not in the sub-plan memo, their cost is estimated 

using traditional techniques, and they are added to the sub-plan memo. At the end of the second phase, 

all these newly encountered sub-plans are executed and their actual result sizes and the number of 

distinct values in their outputs are recorded in the sub-plan memo. This process is repeated until the 

optimizer goes through a phase in which it does not encounter any new sub-plans. The output query 

execution plan is the one chosen by this last phase. This plan is chosen using completely accurate 

result size and distinct value information obtained from the sub-plan memo.  

The obvious drawback of query optimization by subplan memorization is that to optimize a 

single query, it is necessary to execute multiple sub-plans to determine their cost, thus found the truly 

“optimal” one, since this method incurs in a progressive and extensive exploration of the search space 

of alternative plans for executing a given query. Thus, query optimization will take a long time, and 

potentially much longer than the execution time of the query being optimized. This makes query 

optimization by sub-plan memorization too expensive for many queries.  

Query optimization by sub-plan memorization is a suitable approach only for embedded 

queries that are optimized once and executed many times over. For this important class of queries, the 

potential for choosing more efficient query execution plans by using accurate result size and distinct 

value information makes the long query optimization times acceptable. 

Subquery plan reuse [VaKi00] 
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This work propose an approach based on plan caching for minimizing the amount of memory 

consumed by the Dynamic Programming (DP) search strategy. DP is of the most popular search 

strategies (Section 2.2.1 explains in detail this algorithm), the inconvenient is that for queries with a 

large number of data sources is infeasible as the search space easily runs out of memory. Instead of 

fully generating the exponential search space this approach proposes to generate a part of the search 

space and reusing it for the remaining fraction, thus bringing about computational and memory 

savings, and getting a high quality query plan close to optimality. 

DP generates a query plan in a bottom–up manner. First, it creates the unary operators for 

accessing each source. Second it generates the alternative plans for joining two sources and selects the 

optimal one; then it generates a plan for joining another source with the sub-plan generated in the 

precedent step. This approach proposes to store in a lattice the sub-plans generated at each step, such 

lattice is called DP lattice. Thus, the first level of the lattice comprises the operators for accessing the 

sources, in the second level the sub-plan joining two sources, in the third one the sub-plan joining 

three sources and so on. Thus, the level of the lattice corresponds to the number of sources that have 

been joined.  

The central idea is to reduce the size of the set of sub plans Plansi for each level “i” in the DP 

lattice through sub plan reuse. For that is required to identify similar (sub) queries. A graph query 

representation is proposed, where relations being nodes and predicates being the edges between nodes. 

Hence, the problem is converted to a graph problem where the goal is to discover sub graph 

isomorphism internally, i.e. within a large graph. They define similar subgraphs fS; S′g as a pair of 

sibgraphs having the same structure and the same features i.e. each vertex, v in S should have a 

corresponding vertex v’ in S’ such that differences between table sizes and selectivity of the 

containing edges lie within the corresponding error bounds. The idea is to generate “sets” of similar 

sub-graphs so that the query plan generated for one representative subquery corresponding to the sub-

graph can be re-used by all other subqueries indicated by the remaining sub-graphs in the similar sΣet. 

 

 

Figure 2.7 Search space generation in DP lattice 

Figure 2.7 gives a pictorial representation of our scheme after the identification of similar 

subqueries. Similar subquery sets are fed to the DP lattice at each level. In the figure, during plan 

generation for level 3, the optimizer identifies from the similar subquery set that (1, 2, 3) is similar to 

(4, 5, 6) and hence the least cost plan of (1, 2, 3) is reused for (4, 5, 6). The plan for (4, 5, 6) is still 

constructed but in a light weight manner by imitating the join order, join methods and indexing 
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decisions at join node and scan node respectively, thus bringing upon computation savings by 

avoiding the conventional method of plan generation. Memory savings are brought about since the 

plans for the various join orders of (4,5,6) are not being generated. So this approach benefits from a 

mixture of CPU and memory savings. 

The collection of sets of similar sub-graphs from all levels in the DP lattice is termed as the 

cover set of similar sub-graphs. Once the cover set of sub-graphs is generated, construction of query 

plans for each level in the DP lattice begins and because of exhaustive re-use of sub query plans 

among the similar subqueries identified by similar sub-graphs present in the cover set, memory 

savings can be achieved after constructing the query graph from the join predicates participating in the 

query.  

The cover set of sub-graphs can be expressed as n lev=2 Setslev where Setslev =Σtotal i=1 

Subgraphseti. Here “total” indicates the total number of similar sub-graph sets at level “lev”. 

Subgraphseti indicates the ith similar sub-graph set. The summation or total collection of all such sub-

graph sets at level “lev” is represented by Setslev. The total collection of all such sub-graph sets over 

all levels gives the cover set of sub-graphs. 

Towards empirical driven query optimization [VaKH09] 

They propose a framework that collects statistics from the plans returned by the query optimizers and 

uses a distance function to select the least cost plan for a new query. In this work, the authors executed 

a large number of queries on a commercial DBMS and analyzed the structure (the order in which 

various operations are executed) and the cost of the optimizer plans. From their experiments they 

found that a large number of queries share the same join order. For instance, for a dataset, 8% of the 

join trees cover about 60% of the queries. They experiment with select-project-join queries randomly 

generated. For each query Q 2 Q, its optimizer plan, the optimizer join tree and the optimizer join 

order template were determined. 

They characterize the optimal plans of a huge number of queries in form of join trees and join 

ordering templates. Notice that the optimal plan is different to the optimizer plan. They use this 

characterization, and the collection of statistics associated to those plans and templates for discovering 

the optimal join tree of a test query. A Join tree of a query plan contains the join operations as the non-

leaf nodes and the base relations of the query as the leaf nodes (after applying the select conditions on 

the relations). On the other hand, a join order template of a join tree is obtained by replacing all its leaf 

nodes with arbitrary relations by traversing the tree in a particular order (for instance pre-order or post-

order). 

 
Figure 2.8 Empirically driven framework for QO 

Figure 2.8 shows the framework for the empirically driven query optimizer. It can be divided 

into two phases: the plan logs generation phase and the plan discovery phase. During the plan logs 
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generation phase, each query Qi is submitted to the query optimizer of the DBMS to obtain its 

optimizer plan Pi. By invoking the statistics collector which takes the query Qi and the optimizer plan 

Pi as input, the query related statistics FQi and the optimizer plan related statistics F Pi are collected.  

The query Qi, its optimizer Pi, the query features FQi and the plan features FPi constitute the 

plan reuse model L. Given a query to discover the optimal plan, Qdisc, the statistics collector module 

of the database can be used to collect the query related features FQdisc. Qdisc and FQdisc are given as 

input to the plan discovery algorithm which determines the optimal plan for Qdisc, P*disc. In order to 

compare the goodness of the discovered plan P*disc, Qdisc is also submitted to the query optimizer to 

get its actual optimizer plan Pdisc. The costs of Pdisc and P*disc can then be used to test the accuracy 

of the framework.  

Discussion 

In this section we have study query optimization techniques based on plan caching; we also have 

evoked their main strengths. Now, let us analyze why this solutions partially solve the motivation 

problem of this dissertation. Former, all these works relay on traditional cost-based optimization 

technique for the generation of plans that they latter reuse for the evaluation of further queries; some 

of these works propose techniques for the progressive improvement of plans. Traditional techniques 

for costs estimation are usually erroneous since query optimizer cost models are highly sensitive to 

data information errors (e.g. result size and distinct value estimates); or even works, such estimation it 

is not possible when the required data information is not available. In general, such cost functions 

estimate the execution time only.   

Some of these works aims to find the truly optimal plan. They argue that classical query 

optimizer use fast but possibly inaccurate estimation techniques since they lead to choosing acceptable 

query execution plans, even though these plans may not be truly optimal. They execute sub-optimal 

plans generated by traditional optimizers (cost estimation based on inaccurate information) for 

gathering accurate information for cost estimation. For example, result size and distinct value 

estimates play a very important role in cost estimation. More accurate information about these two 

quantities typically results in more accurate cost estimates, which helps the optimizer choose more 

efficient query execution plans.  

The problem is that discovering the truly optimal plan can be a very hard and time-consuming 

task. It is the correct approach for queries embedded in application programs, which comprise a large 

portion of the workloads handled by database systems. These queries are often optimized off-line to 

produce compiled query execution plans that are then used whenever the queries are executed. 

Optimization does not necessarily have to be fast since it is an offline process. Furthermore, these 

queries are typically executed frequently since the applications that they are part of are typically 

executed frequently. The in a static contexts where the truly optimal plan is unchangeable, otherwise 

this process takes a lot of time, what happens if the environment change, they never achieve to use it. 

They do not support even partially dynamic environments.  

Table 2.2 summarizes the characteristics of the studied works considering the following 

dimensions: (i) the plans granularity since some works take as feedback complete reusable query 

plans, while others make use of sub-plans too (even isolated operators). (ii) coverage of plans / sub-

plans, (iii) supplementary feedback apart from the query plan, (iv) the feedback representation 

structures, (v) feedback storage structure, (vi) the particular proposed techniques, and (vii) the moment 

when the optimization is executed.  

Reference Granularity Cover Feedback Representation Storage Realization  Timing 
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Table 2.2 Query optimization approaches based on plan caching 

2.4.3 Caching statistics and metrics 

This section exposes representative works based on the collection, maintenance and reparation of 

query feedback. Some examples are statistics for the accurate estimation of query plans cost, and 

metrics of the amount of computational resources consumed during queries execution. These statistics 

and metrics are permanently materialized, thus, their representation and management are aspects that 

are considered in the related works, for example in novel optimization approaches as 

[GaJu12][TKKP09][ChRo94].  

Some information correspond to cost function parameters (e.g. statistics); while another 

represent the real execution cost of query plans (e.g. measures of resources consumption), thus cost 

estimation formulas are not required. In general, approaches relying on statistics are useful for query 

optimization in distributed databases and multi-database systems. The autonomy in P2P systems can 

makes prohibitive the availability of such information, the monitoring of measures, and their usage to 

determine plans cost may be pertinent for these environments.  

Some works associate the feedback exploitation with a learning process. A seminal approach 

is LEO, a learning-based optimizer; it monitors the execution of queries and compares the optimizer’ 

estimates with the real once [SLMK01]. According to this comparison it computes adjustments to cost 

estimates and statistics allowing the optimizer to learn from its past mistakes. Thus, LEO proposes 

reparation of histograms; and other works propose caching techniques for learning sources response 

time, unknown operators’ performance. All of them propose flexible and simple representation of the 

gathered information, and also highlight their concerning for its inexpensive storage and management 

(e.g. summarization of tables for minimizing memory usage and accelerating information 

exploitation). Details of such works are presented in next section. Finally a discussion about the 

differences and particular contributions these works concludes this section.    

Repairing statistics [SLMK01] 

The Learning Optimizer proposes as a comprehensive way to repair incorrect statistics and cardinality 

estimates of a query execution plan. By monitoring previously executed queries, LEO compares the 

optimizer’s estimates with the real once at each step in a query plan, and computes adjustments to cost 

estimates and statistics that may be used during future query optimizations. This analysis can be done 

either on-line or off-line on a separate system and either incrementally or in batches. In this way, LEO 

introduces a feedback loop to query optimization that enhances the available information on the 

database where the most queries have occurred, allowing the optimizer to actually learn from its past 

mistakes. 
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Over time, LEO amasses experiential information that augments and adjusts the database 

statistics for the part of the database that enjoys the most user activity. Not only does this information 

enhance the quality of the optimizer’s estimates, but it also can suggest where statistics gathering 

should be concentrated or even can supplant the need for statistics collection. This technique is general 

and can be applied to any operation in a QEP, including joins; derived results after several predicates 

have been applied, and even to DISTINCT and GROUP-BY operators. As shown by performance 

measurements on a 10 GB TPCH data set, the runtime overhead of LEO’s monitoring is insignificant, 

whereas the potential benefit to response time from more accurate cardinality and cost estimates can 

be orders of magnitude. 

 

 

Figure 2.9 LEO architecture 

Figure 2.9 shows how LEO is integrated into the architecture of DB2 [SLMK01].The left part 

of the figure shows the usual query processing flow with query compilation, QEP generation and 

optimization, code generation, and code execution. The gray shaded boxes show the changes made to 

regular query processing to enable LEO’s feedback loop.  

LEO is comprised of four components: a component to save the optimizer’s plan, a monitoring 

component, an analysis component, and a feedback exploitation component. The analysis component 

is a standalone process that may be run separately from the DB2 server, and even on another system. 

The remaining three components are modifications to the DB2 server: plans are captured at compile 

time by an addition to the code generator, monitoring is part of the run-time system, and feedback 

exploitation is integrated into the optimizer. 

The four components can operate independently, but form a consecutive sequence that 

constitutes a continuous learning mechanism by incrementally capturing plans, monitoring their 

execution, analyzing the monitor output, and computing adjustments to be used for future query 

compilations.   

During the learning mechanism the LEO components interact as follows: for any query, the 

code generator dumps essential information about the chosen QEP (a plan “skeleton”) into a special 

file that is later used by the LEO analysis daemon. In the same way, the runtime system provides 

monitored information about cardinalities for each operator in the QEP. Analyzing the plan skeletons 

and the runtime monitoring information, the LEO analysis daemon computes adjustments that are 

stored in the system catalog. The exploitation component closes the feedback loop by using the 

adjustments in the system catalog to provide adjustments to the query optimizer’s cardinality 

estimates. 
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Learning response time for data sources [GRZZ00] 

This work presents a Multi-Dimensional Table (MDT) that is supplied with feedback from query 

execution to learn the response time (delay) of a particular web source. Such knowledge (delay of a 

web source) is used by a scrambling algorithm; the objective is to predict the delay moments when 

accessing a source and use them as critical points to scramble (modify) a query plan. The scrambling 

algorithm also aims to hide the expected delay by computing some other part or the query plan 

unaffected by such delay.  

The structure of the MDT is determined by (i) a set of dimensions, (ii) the ordering of such 

dimensions, and (iii) the ranges / scales of the dimensions. The MDT proposed in [GRZZ00], has three 

dimensions:   

The Day of the week: This dimension has a range of seven days, and the minimum scale for 

this dimension was chosen as one day 

 The Time of the day: This dimensions has a range of 24 hours, and the minimum scale for 

this dimension was chosen as one hour 

 The Quantity of data that is transferred: This dimension does not have fixed range. Based 

on our experimental data, the minimum scale that we chose was multiples of 100 

kilobytes, and the range was from [0 to 800 kilobytes] 

The dimensions of the MDT are significant for estimating the response time of a particular 

source. Those dimensions were selected by applying statistical tests to experiences that consisted in 

collecting data from different web sources. The ordering of dimensions is critical as is explained in the 

precedent of the section.  

The ordering of dimensions and scale of the dimensions are used to tune the MDT. Three 

other features are also used: (i) the allowed deviation of the error in response time, the value is 

specified for each dimension; (ii) the precision for each dimension; the smaller range of the individual 

cell, the greater is the precision; and (iii) the confidence associated to each dimension, the confidence 

range is [0.0 – 1.0]. 

The initial MDT consists of one cell, and the range of its dimensions corresponds to the range 

described above. During the learning process, each query feedback qfb is represented by a value for 

Time, Day, Quantity, and response time QryRT obtained after executing a query. Let us say that 

several queries accessing the source sw are executed, the obtained query feedback is used to predict 

the response time PredRT of sw. To the PredRT of each cell corresponds a degree of confidence 

predConf.   

The MDT is tuned to achieve PredRT as accurate as possible. For tuning the MDT, first the 

cell whose dimensions match with the qfb is identified. Then, the learning process consists in deciding, 

based on the query response time QryRT of qfb, if either, split the cell into two or more cells, or to 

adjust the concerning PredRT and predConf.  

For taking such decision, the error of the current qfb is compared with the allowed deviation 

for each dimension. Such comparison is carried out according to the order of dimensions in the MDT. 

If the error is greater than the deviation, the cell is split on that dimension (for simplicity the split is in 

two cells and the cells has equal range). Only one of the splits cells now matches the dimensions of the 

qfb. The new PredRT for the new cell is set to QryRT, and the new predConf is 0; the respective 

values of the other cell remain unchanged. Then, the learning algorithm is called recursively for each 

subsequent dimension. If the error is lower than the deviation the PredRT and predConf of the cell are 
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adjusted to reflect the qfb. We refer to the reader to [GRZZ00] for details in the mathematic formulate 

for the adjustments of predicted response time.  

The minimum scale of each of the dimensions determines the (final) MDT structure, when it 

can no longer split into more cells or any dimension. For example, when the Time dimension has been 

split into 24 cells, each with a one hour range, then no further splitting on that dimension is possible. 

An example of a MDT structure, at some intermediate point, is in Figure 2.10.  

 

Figure 2.10 Example of an intermediate MDT 

The MDT approach has some advantages over other learning based techniques, as regression 

techniques or neural networks. One advantage is the simplicity of the MDT prediction model. The 

second one is the flexibility provided to manipulate a number of parameters that control learning. The 

third advantage is that while the chosen dimensions may reflect the effects of sources and network 

usage, a (lack of) confidence reflects the unpredictable nature of predictions for web sources.  

Self-tuning histograms [AbCh99b] 

In [AbCh99b] the authors present a query feedback loop, in which actual cardinalities gleaned from 

executing a query are used to correct histograms. Although similar in structure to traditional 

histograms, these histograms infer data distributions not by examining the data or a sample thereof, 

but by using feedback from the query execution engine about the actual selectivity of range selection 

operators to progressively refine the histogram. These histograms are called self-tuning histograms or 

ST-histograms for short. 

Since the cost of building and maintaining ST-histograms is independent of the data size, such 

histograms provide a remarkably inexpensive way to construct histograms for large data sets with little 

up-front costs. ST-histograms are particularly attractive as an alternative to multi-dimensional 

traditional histograms that capture dependencies between attributes but are prohibitively expensive to 

build and maintain.  

The construction of a ST-histogram starts with an initial histogram built with whatever 

information we have about the distribution of the histogram attribute(s). For example, it is constructed 

an initial bi-dimensional histogram from two existing mono-dimensional histograms assuming 

independence of the attributes. As queries are issued on the database, the query optimizer uses the 

histogram to estimate selectivity in the process of choosing query execution plans.  

Whenever a plan is executed, the query execution engine can count the number of tuples 

produced by each operator. The core of the proposed approach is to use this “free” feedback 

information to refine the histogram. Whenever a query uses the histogram, we compare the estimated 

selectivity to the actual selectivity and refine the histogram based on the selectivity estimation error. 

This incremental refinement progressively reduces estimation errors and leads to a histogram that is 

accurate for similar workloads. A ST-histogram can be refined on-line or off-line. 

Catching statistics [ACPS96] 

One of the main contributions of this work is a cost-based optimization technique based on statistics 

caching. The cached statistics correspond to actual calls to data sources; the cost of query plans is 
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estimated basing on these statistics. [ACPS96] investigates the design of statistics cache and presents a 

mechanisms for its effective use. The interest of this proposal is to deal with the difficulty, in some 

cases such as in HERMES project [SABE94], to obtain accurate cost estimates of query plans because 

the involving of operators with unknown behavior and performance.  

In HERMES, external programs are referred as domains and they are viewed as black boxes 

that allow certain operations to be performed by outside sources. These operations are executed via 

domain calls of the form d:f, where d is the name of the domain and f is the name of a function 

corresponding to a predefined operation that can be performed in this domain. Domain calls are 

expressed uniformly in HERMES with the help of a special predicate of the form in 

(X,d:f(Args)), which is read as: “Execute the domain function d:f on arguments Args and return 

the set of results in variable X”. 

The statistics cache is stored and managed by the mediator. It is a database that records cost 

information about domain calls as they get executed by the mediator. In the simplest version for each 

domain call it contains a triple of the form (domain_call, cost_vector, recird_time), where 

record_time is the actual time that a call was recorded in the database. Hence, the cost database 

consists of tables for different domain call, where the columns correspond to the time to compute the 

first answer, time to compute all the answers, the cardinality of answer and the arguments to which 

these values correspond to. Figure 2.11 shows some tables by example. 

 

Figure 2.11 Tables in the cost vector database 

As an example, consider a mediator (M1), a query (Q7) and two candidate plans (P1) and 

(P2). In order to estimate the cost of the two plans it is precise to estimate the cost of the domain calls 

d1:p_bf, d1:p_bb, d2:q_bf and d2:q_ff that appear in the two plans. It is assumed that tables of 

the previous figure describe the total execution time and the cardinalities of the listed queries. The 

same value for an argument may appear more than once in the tables corresponding to different calls. 

Then, it is possible to estimate the cost of a domain call e.g., d1:p_bd (a), for the execution time to 

all the answers, by taking the average of the two entities in the table (T16, namely 2.00 and 2.20 to get 

2.10. Also it is possible to estimate the cost of a domain call here one or more parameters are 

unknown. For example, the average i.e. (2.00 + 2.20 + 2.80 + 2.84) /4. 

Though tables in Figure 2.12 have the necessary information, there are two important 

problems regarding their use and maintenance. First, full detailed statistics information represents a 

heavily bounden on storage. Second, expensive aggregation functions reputedly applied, like the 

average function of the previous example, thus the time for calculating the cost may be prohibitively 

long. For solving such problems they propose on-line summarizations of the statistic information 

stored in the cost vector database. Summarization has a dual purpose: reduce the storage space needed 
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for statistics and accelerate their exploitation. The challenge is summarize such tables without losing 

any information, thus they call this summarization loss-less.  

 

Figure 2.12 Table of summarization of statistics 

For example the summarization of table (T16) is in table (T20) in Figure 2.11. In this case the 

tuples A=’a’ (or A=’c’) have been aggregated into a single tuple. The 1 attributes indicate the 

number of original table tuples that correspond to the summarized table tuples. In general such 

summarization process consists in: (i) split the attributes of every statistics table into a set of 

dimensions that consists of all attributes of the corresponding call, and the set of metrics that reflects 

the response time of the call, and the cardinality of the results. (ii) For all tuples that have identical 

values d1, d2,…,dn on the dimension attributes, aggregate the metrics attributes into a single pair 

average response time and average cardinality and create a single tuple, where 1 is the number of 

original table tuples that have been aggregated into the specific tuple. Supplementary summarization 

actions correspond to drop the attributed that will never been instantiated, and the identification of 

access patterns for the tables and decide which ones are need very frequently and drop those that are 

not accessed very often.  

Discussion 

Several techniques for estimating result sizes and distinct values have been proposed in the literature. 

One technique for estimating result sizes is sampling the data at query optimization time [LiNS90] 

[GaJu12]. The main disadvantage of sampling is the overhead it adds to query optimization. 

Furthermore, sampling cannot be used to accurately estimate the number of distinct values of an 

attribute [ChMN98]. Sampling is more useful for other applications such as building histograms or 

approximate query processing. 

Another technique for estimating result sizes is histograms. Histograms for database systems 

were introduced in [Koo80], and most commercial database systems now use them for result size 

estimation. Although one-dimensional equi-depth histograms are used in most systems, more accurate 

histograms have been proposed in [PHIS96]. In [PoIo97], the techniques of [PHIS96]are extended to 

multiple dimensions. A novel approach for building histograms based on wavelets is presented in 

[MaVW98]. Efficient algorithms for constructing optimal histograms using dynamic programming, 

and for approximating these optimal histograms using heuristics, are presented in [JPKS00] [ChRo94] 

[SHMK06], they are particularly based on query feedback for histograms construction and/or 

histograms self-tuning. Histograms, by their nature, only capture an approximation of the data 

distribution, and they incur varying degrees of estimation errors.  

Table 2.1 summarizes the studied works based on caching of statistics and measures 

considering: (i) the problem, (ii) the feedback, (iii) when such monitoring is achieved, and (iv) at 

which moment. Moreover, it also includes (v) the monitored subject, (vi) the storage structure, and 

(vii) the issues that the process aims to learn.  
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Table 2.3 Query optimization approaches based on statistics / metrics caching 

2.5 CONCLUSIONS 

In this chapter, we presented different query optimization techniques in distributed data systems. 

Former, we addressed the basics of distributed query optimization, the generic techniques and the 

characteristics and importance of metadata for traditional query optimization. We focus query 

optimization approaches using query feedback to face the scarcity of metadata (lack of a global view 

of existent data sources, thus unavailable information on data) in distributed data systems. We analyze 

the different manner to use query feedback optimizing a query. According to this analysis, we propose 

to main classifications: adaptive approaches and learning approaches.  

On the one hand, works based on adaptive approaches collect and utilizes the feedback as 

soon as a given query Q is executed. Such feedback is temporary retained, only while it is required for 

the re-optimization of Q; it is not used for the optimization of other queries. Adaptive approaches 

monitor statistic information, availability and consumption of computational resources. On the other 

hand, works based on learning store query feedback permanently (some of them include reparation 

mechanisms for feedback improvement). Their main concerns are: feedback representation, storage 

structures, and management and exploitation mechanisms. We divide such works on those caching 

statistics and measures, and those caching plans.  

The study of such approaches confirms that most of proposed works address the optimization 

problem in tightly integrated systems, which the control of data access and query processing is 

centralized in a single system element (e.g. distributed databases) or partially distributed (multi-data 

base systems). Not quite an effort has been done for applying such optimization techniques (or 

variations of) to fully autonomous environments (e.g. P2P like systems) where there each entity of the 

system is responsible for optimizing the queries that it receives. These works mainly concern the 

optimization of execution time and response time only.   

Adaptive approaches consecrate their efforts on the optimization of queries in highly dynamic 

systems, where only real measures serve for an accurate prediction of (close to) optimal plans. The 

main disadvantage is that multiple re-optimizations of a query plan may take place during the query 

execution, the resources consumption and time employed for this re-optimization may cause important 

optimization overhead. Another disadvantage is the low coverage of query feedback, since it is useful 

for the optimization of a single query. 

The learning approach: (i) collect and repair statistics, or (ii) take sub-optimal plans and try to 

progressively improve them. Statistics serve for estimation of plans cost using traditional optimization 
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techniques. Plans are generated using traditional cost-based optimization techniques. In contrast to the 

adaptive approach, they consider that the execution environment does not change very often, or it does 

not change at all. Such approach is suitable for the evaluation of frequent queries aiming to retain 

feedback useful for the evaluation of several further queries.  

From this study we highlighted useful aspects to consider in our proposal: 

 Avoid unnecessary processes e.g. extensive exploration of search space at one-time 

when it is not possible to have accurate estimation of plans cost. Instead it is possible 

to apply other techniques, e.g. randomized or genetic algorithms, which do not obtain 

the optimal, but avoid the worst plans. These techniques are based on heuristics and 

random decisions. A first batch of plans may be obtained using these techniques, and 

then be progressively improved.  

 Use query feedback that, even if it is not valid for environments that change very 

frequently, it is useful for systems where the frequency of queries is reasonably higher 

than the environmental changes in such a way that there is time for the optimizer to 

learn and evolve with the environment. 

 Exploit different query feedback (other than classical metadata). 

 Allow independence of optimization responsibility due to the lack of a global view of 

the system.  

 Consider representation and storage structures that facilitate exploitation and 

management of feedback.  

 Envisage exploitation and management mechanisms simple as possible for 

minimizing the consumption of computational resources.  

 



 

 

 

33..  CCBBRR  FFOORR  QQUUEERRYY  OOPPTTIIMMIIZZAATTIIOONN  

Our optimization approach integrates the learning Case Based Reasoning (CBR) paradigm in the 

query processing. This chapter presents the general principle of our approach using an illustrative 

application scenario in Section 3.1. Also, it details the data model, and the distribution of data that we 

consider in Section 3.2. We propose an approach for the optimization of declarative global queries, 

for explaining our approach we consider queries expressed in a SQL-like query language that 

includes clauses for specifying the location of data to be queried; Section 3.3 describes the 

characteristics of such a language.  

Section 3.4 describes a scheduling to supply the queries to be optimized. Section 3.5 exposes 

in deep our CBR query optimization principle; it gives an overview of the CBR foundations (i.e. 

concepts and reasoning mechanisms), and details the adaptation of such elements to the query 

optimization process. Section 3.6 discuses the main differences between the classical query 

optimization principle and our learning-based query optimization proposal. Section 3.7 presents the 

conclusions of this chapter.  

3.1 GENERAL PRINCIPLE 

To illustrate the general principle of our learning-based query optimization approach, let us consider a 

virtual game application where players are owners of one or more avatars. The objective of the game 

may be social interaction or team fighting; this does not affect the understanding of our proposal. Such 

application runs on a distributed environment that interconnects –trough wireless technologies– 

devices (i.e. system nodes) e.g. smartphones, tablets, etc. that can be heterogeneous, autonomous, 

either static or mobile and that present physical limitations (e.g. energy, memory and processing).  

Avatars interact in a virtual world that is divided in areas; an avatar is located within a single 

area at a time. Every node in the system has information on its own avatars and their neighbors 

(avatars located in the same area). The application data are stored as Itemset data structures of the 

form: POSITIONS (Avatar avatar{key}, Int area, NodeID owner), as shown in Figure 3.1. For 

example, the Itemset at node D has two items i1: <Grey, 2, D> and i2: <Blue, 2, I>.  Thus, the node is 

the owner of the Grey avatar which is in the area 2; also the Blue avatar is in the same area but owned 

by node I in this example. Such a POSITIONS Itemset is actually a fragment of a virtual global Itemset 

that maintains all avatars information.  
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Figure 3.1 Virtual world game 

 

In this example, the global Itemset is horizontally partitioned. Actually, we consider the 

optimization of queries on distributed data systems that hold a global schema, and as a consequence, 

where data distribution is according to a horizontal partitioning. This means that a global Itemset is 

physically distributed over several (maybe all) nodes, and that every node stores a (local) Itemset 

fragment that respects a global schema. Itemset fragments may also be stored (i.e. replicated) in one or 

more nodes. In contrast, we do not consider the existence of a global data allocation schema, which is 

used in database systems for maintaining information about data storage (e.g. distribution of data 

values among the system nodes, size of fragments at every node, among other statistics). 

Avatar actions are carried out trough declarative global queries. A global query is expressed in 

terms of global Itemsets (physically stored in distributed fashion among system nodes as mentioned 

before). A global query can be posed at any node and the system will globally execute it, this means 

that data from local / remote nodes is accessed, exchanged and computed to construct a complete 

query result. An example of global query to select all avatars in the virtual world is shown below. It is 

expressed in a declarative SQL-like language. Such query is global since it considers the global 

Itemset POSITIONS.  

Example 3.1 -  SELECT Avatar FROM Positions; 

 

Alternatively, the application may also consider queries / updates over Itemset fragments at 

specific nodes. For such purpose we consider queries expressed in the Declarative Location Aware 

Query Language (DLAQL) [ABCD12b]. DLAQL is a SQL-like language that includes clauses to 

specify the nodes where data have to be selected, inserted, deleted or updated. These nodes are 

specified using the node identifiers, subqueries that return a list of node identifiers or keywords 

provided by the language. For instance, a DLAQL query for selecting the avatars located at the same 

area that the avatar of some user is shown in the Example 3.2.  

Example 3.2 -  SELECT Avatar FROM Positions SCOPE IS SELF; 

 

For evaluating the previous query is enough to consider the local Itemset fragment only, since 

the user posed the query at the node (e.g. personal tablet) that comprises information of its own 

avatar(s) and its avatar’s neighbors. Thus, the query should be executed at the current node. In the 
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previous example, the clause SCOPE IS is preceded by the node(s) that must be queried; the keyword 

SELF specifies that the query considers the fragment stored in the current node only. The SCOPE IS 

cause is not mandatory; by default it is GLOBAL as in Example 3.1. The DLAQL language also 

provides clauses to specify the nodes to carrying out update operations. Thus, data distribution is 

application-driven since the application supports data location functionality; the system executes 

insert, delete and update operations at the nodes specified in the update DLAQL expressions. Section 

3.3 details the DLAQL language and presents illustrative examples.  

A node receives a query from the application or from another node. The first processing step 

consists in validate the query syntax and semantic. If the query comprises subqueries, the next step is 

scheduling such subqueries to be optimized independently and in a specific order. Basically, 

subqueries are optimized and executed first; then they are replaced by their resulting values to 

continue the outer query processing (we refer as outer query to the query including subqueries).  

An optimal query plan has to be generated for evaluating each (sub) query; this is the goal of 

the query optimization process. To be evaluated, incoming global queries are to be rewritten on 

subqueries expressed in terms of local/distant Itemset fragments. For example a global query Q may 

be rewritten as Q = (SQL  SQD), where SQL is q subquery executed locally, and SQD a subquery 

executed at some remote node(s); the partial results of such subqueries compose the final query result. 

We consider that a query plan is a tree of physical operators for the manipulation and communication 

of data, but also for the exchange of (sub) queries. Chapter 4 details the representation of a query plan 

and exposes the full suit of data operators that a query plan may include.  

Thus, during the optimization process is essential to decide: (i) the parts of the query (i.e. 

subqueries) to be executed locally and those to be sent through the network to be executed at some 

remote node(s), (ii) the operators to be executed locally for combining the partial subquery results, and 

(iii) the execution strategies for computing the operators.   

We propose an optimization approach based on feedback gathered from the execution of 

queries. The final goal is to learn suitable plans for the evaluation of global queries optimizing 

different (customizable) objectives. The query feedback includes the optimization decisions made for 

executing the query, and the computational resources (e.g. memory, energy, CPU) consumed during 

its execution. Our optimization approach gathers, maintains and exploit such a query feedback by 

following the Case-Based Reasoning (CBR) principle, which states that problem solving can be 

improved by learning the quality of solutions used to solve past similar problems [MCBD12].     

We assume that the nodes in the system are instrumented for monitoring the consumption of 

computational resources during the evaluation of queries. Let us recall that several nodes participate 

for the evaluation of a global query. Every node measures the computational resources that it 

consumes by executing the part of the query (i.e. subqueries) that it concerns. For having a global view 

of the consumed resources, each remote node sends its own measures together with the query partial 

results to the requesting node. This allows integrating local and distant measures, thus, query-cases 

store global measures and not only those concerning to a single (local) node. 

To illustrate the collection of query feedback we use a more interesting query example (i.e. 

join query). For this purpose we extend the representation of our virtual world; in this case, 

information about each area is managed by a server. A client sends a query to the server that manages 

the area where a given avatar is located. Each client stores information concerning its own avatars. 

Therefore, the global schema is as follows: POSITIONS(Avatar avatar, Coordinate position, NodeID 
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ownerID), SERVERS(Int area, String serverID). The query Example 3.3 selects the avatars located in 

the areas 2 and 7. 

 

Example 3.3 -  SELECT Avatar 

FROM POSITIONS as p, SERVERS as s  

WHERE s.Area IN (7, 2) AND p.Position = s.Area;  

 

Figure 3.2 shows a (possible) plan P generated in a node, let’s say the node G, for executing 

the query Example 3.3. Such a plan includes an operator for accessing data from a distant server, and 

operators for accessing local and distant fragments of the Itemset POSITINS. The operators for 

accessing distant data fragments correspond to messages that comprise subqueries (e.g. the subquery 

SQ3) to be executed at remote nodes.  

In our example, we measure memory consumption; however other measures can be considered 

according to the system instrumentation for monitoring the execution of queries. Moreover, such 

measures may be used as parameters of more complex cost functions. The node G sends the 

subqueries to its neighbors, which in turn continue the propagation of subqueries. Then it receives the 

partial results from its neighbors, for example from node H and the aggregated measures of resources 

consumed by other remote nodes (e.g. node I that retrieved the avatars at the area 2).  

The amount of memory consumed for executing the global query corresponds to the 

aggregation of memory consumed at each participant note (e.g. node I - 80kB, node H - 25kB and 

node G – 105kB). The query-case at node G from executing the global query comprises a description 

of the query, the query execution plan and the global measure of memory (i.e. 180 kB) consumed for 

evaluating such a query using the proposed plan.  

  

Figure 3.2 Collection of feedback from evaluating a global query  

 

A node comprises a local repository (i.e. casebase) for storing and managing the query-cases. 

The optimization process exploits the query-cases that it has learned from the evaluation of similar 

previous queries. While there are not enough query-cases to be exploited, the optimization process 

generates query plans considering classical optimization heuristics and taking some random decision 

with the objective to try new query plans and learn about their global cost. The efficient management 

(e.g. delete of useless query-cases) of query-cases is fundamental in order to preserve within the 

casebase useful cases only. 

In our approach, the optimization of queries is de-centralized, each node in the system is 

responsible for optimizing the (sub) queries that it receives. Since each node participates for executing 

different (sub) queries, its learning is different and independent from each other. For example, node G 

received the original user query and learns about its execution. However, node H also participates for 
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the global execution of such a query by propagating some subqueries through the network, and node I 

learns from the subquery that it process.  

3.2  DATA MODEL AND DISTRIBUTION 

This section presents the assumptions we made concerning the representation of data and its 

distribution through the system. We consider generic Itemset data structures, which are described in 

Section 3.2.1. The considered distribution of data is discussed in Section 3.2.2.   

3.2.1 Data model  

Our data representation is based on the Itemset data model, which is a generic and minimalist data 

model originally proposed by G. Grafe in the Volcano System project [GrMc93]. In such model, the 

unit of data manipulation is an item. An item is composed of a sequence of data values that belong to 

predefined data types (e.g. integer, float, data, etc.).  

 An Itemset is defined by its name, and a description (i.e. schema). Such description is a 

sequence of attributes of the form <name, data type>. A subset of the attributes that composes the 

Itemset description is discriminatory (i.e. key attributes). Thus, two items in the same Itemset have 

different values while corresponding to key attributes. An example of Itemset is the Positions table in 

our application scenario (see Figure 3.2).  

3.2.2 Data distribution  

We suppose that each application is aware of the set of Itemset definitions that it manipulates. The 

nodes of the system that wish to cooperate for caring out a task, e.g. running a common application, 

agree a common schema description for data sharing. Thus, we made the strong assumption that the 

system counts on with a general description of data (i.e. global schema) for a specific application. 

Each application can add attributes to the shared Itemsets for its internal needs. Therefore, queries of a 

specific application are expressed according to the corresponding common schema.  

Our approach considers that every node in the system stores data corresponding to a subset of 

the global Itemsets that a specific application concerns. Such a global Itemset is physically stored in 

fragments (and probably replicated) distributed in several nodes. We suppose that there is horizontal 

fragmentation only. Thus, if a node stores part of a global Itemset, actually it stores a subset of items 

such that, an item comprises a value for each attribute that the Itemset definition includes.     

We make no assumptions about where Itemset fragments are distributed over the system 

nodes. Thus, in general data distribution is application-driven: applications decide on which node(s) 

items have to be stored. There is one exception to this rule: if a key attribute corresponds to the node 

identifier each node stores the items having the node identifier that it concerns. For example, let us say 

that the global Itemset that comprise the physical communication links between nodes is described as 

follows: Link(LocalID{key}, NodeID neighbor {key}). In this case, each node stores the list of its own 

neighbors.   
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3.3 DATA LOCATION AWARE QUERY LANGUAGE  

This section presents the Data Location Aware Query Language (DLAQL) for expressing declarative 

queries and updates over global schemas. The DLAQL language was specified in the context of the 

UBIQUEST project [ABCD12a]. It is extends part of the well-known SQL2 data manipulation 

language with clauses and keywords to indicate the nodes in the system where data has to be selected, 

inserted, deleted or updated.  

It includes the expression of classical SELECT-FROM-WHERE, INSERT-INTO, UPDATE-

SET-WHERE, DELETE-FROM-WHERE queries, using nested sub-queries, aggregation functions, 

arithmetic expressions, and selection, join and union operations. However, DLAQL extends only a 

subset of SQL2 functions since it does not include group by/having clauses, nested queries except in 

the WHERE clause, synchronous sub-queries. Also, it does not consider EXISTS and UNIQUE 

condition operators. 

In the DLAQL language, the nodes for selecting/updating data are specified using the node 

identifiers or keywords provided by the language (i.e. extensional specification), or by subqueries that 

return node identifiers (i.e. intentional specification). Next subsections detail the clauses for queries 

and updates, introduce the data location clauses, and present some examples of extensional and 

intentional specifications of data location. Thanks to this language facility, it is not required to known 

the distribution of data (i.e. count on with a data distribution schema); data location is thus application 

driven. The syntax of the DLAQL is presented in Annex A.  

3.3.1 Scope of a query 

A DLAQL expression is defined considering a global schema of Itemsets. It is evaluated considering 

global Itemsets (union of itemset fragments stored at different system nodes). DLAQL offers the 

possibility to restrict the set of nodes for selecting data using the SCOPE IS clause in query 

expressions of the form SELECT-FROM-WHERE.  

The SCOPE IS clause may be specified for any global itemset included in the FROM clause of 

the query. It takes as argument a list of NodeID values, the keyword SELF (meaning the locally stored 

itemset fragment), or subqueries returning NodeID values. The SCOPE IS clause is not mandatory. In 

that case, the scope is GLOBAL for the dataset and the fragments from all nodes are selected when 

evaluating the query.  Thus the SCOPE IS expressions can be as follows:  

 SCOPE IS SELF: only local dataset fragment is used.  

 SCOPE IS <expr>: the expression <expr> may be a list of NodeID values or a query 

expression returning a list of NodeID values.   

When the SCOPE IS clause is followed by the keyword SELF or by an expression <expr> 

corresponding to a list of nodes the scope is specified by extension, as shown in the query Example 

3.2 of the precedent section. In contrast, the query Example 3.5 presents a query where the scope of 

the source corresponds to the node identifier resulting from the evaluation of a subquery; thus, the 

scope is specified by intention.   
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3.3.2 Location of data 

The STORE ON clause is used in INSERT expressions to indicate where a new item has to be 

inserted. The STORED ON clause is used DELETE and UPDATE expressions to indicate the nodes 

where data must be eliminated or updated. Such nodes may be specified by intention or by extension, 

as for the selection queries in the president section.  

For instance, let us now assume that the Yellow avatar owned by node G, is moved from area 7 

(where avatar Green owned by node J is localized) to area 8 where the Red avatar (node E) is 

localized. The movement is coded by several updates executed at node G (owner of Yellow) for 

cleaning area 7, changing the Area attribute of the avatar and finally for storing the new area 

exploration.  

The query in Example 3.4.a deletes the Yellow avatar from the local POSITIONS fragments. 

In this example the clause STORED ON is specified by extension using the keyword SELF, which 

indicates that the delete operation is local, it must delete items from the local Itemset fragment only.   

Example 3.4.a -  DELETE FROM Positions 

WHERE Area = (SELECT Area  

FROM Positions SCOPE IS SELF 

WHERE Avatar = 'Yellow') 

AND Area NOT IN (SELECT Area  

FROM Positions SCOPE IS SELF 

WHERE Avatar <> 'Yellow' 

AND Owner = SELF) 

STORED ON SELF; 

 

A second operation to accomplish the movement of the Yellow avatar is shown in query as the 

query Example 3.4.b. It inserts the new item (‘MyAvatar’, 8, SELF) in the Positions Itemset stored at 

the local node SELF (the node that owns the Yellow avatar), and in the Positions Itemset of any node 

owning an avatar at area 8. In other words, such operation adds the Yellow avatar as a neighbor of any 

other avatar that is located at area 8.  

 

Example 3.4.b -  INSERT INTO Positions 

VALUES (‘MyAvatar’, 8, SELF) 

STORE ON SELF, ( 

SELECT Owner  

FROM Positions  

WHERE Area = 8); 

 

When the STORE ON clause is not specified the semantic of the query depends on the type of 

data manipulation operator.  If it is: 

 An INSERT: the new items are inserted in the local fragment of the Itemset. 

 A DELETE: items are deleted from the global Itemset (i.e. from all fragments). 

 An UPDATE: items are updated in place (i.e. on the node where items to be updated 

are stored). 
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3.4 QUERIES SCHEDULING 

A query may comprise one or more subqueries. Such subqueries may be explicitly specified by the 

user, or may result from some pre optimization process. Previous to the optimization process, a (user) 

global query is parsed, validated and possibly rewritten to simplify the latter processing steps (i.e. 

optimization and evaluation). These pre optimization processes are not the main concern of this work, 

but, the optimization of subqueries resulting from such processes. A query comprising subqueries is 

not optimized all at once; the optimization process starts by optimizing its subqueries according to a 

specific order. It is important to clarifying the scheduling for dispatching queries to the optimization 

process.  

According to the DLAQL query language, subqueries may be found within the WHERE 

clause comparing an attribute with a set of values (e.g. Area IN <subquery>) or with a specific value 

e.g. (Area = <subquery>) resulting from evaluating a subquery as shown in the query below. The 

clause STORE ON and STORED ON may also comprise subqueries as the queries in Example 3.4 and 

Example Z respectively. Finally, the INSERT INTO statement may concern explicit values, but also 

subquery result values.   

  Example 3.5 -  SELECT * 

    FROM Positions SCOPE IS SELF 

WHERE Area = (SELECT P.Area 

FROM Positions P 

WHERE P.Avatar = ‘MyAvatar); 
 

Each of such queries is optimized independently. Our approach includes a scheduling process 

for optimizing the most imbricated subqueries first. For example, in the query Example 3.5 the user 

asks for the avatars that are located in the same area than its avatar. For answering that query (Q), first 

is precise to process the subquery for obtaining the area where the avatar of the user is located. Thus, 

the subquery (SQ) it is optimized and evaluated. Once SQ has been executed, it is replaced by its 

resulting value in at the WHERE clause in Q; then the query Q is ready to be optimized and so on.  

3.5 QUERY OPTIMIZATION 

Our learning-based approach optimizes global queries on large distributed data systems. It focuses on 

the difficulty of optimizing queries when there is no complete information on data because of the 

distribution and autonomy system resources. It also addresses the necessity of customizable 

optimization objectives according to the requirements of different applications / devices. 

 The literature has proposed cost based and heuristic based seminal optimization approaches. 

The former one relies on data information (e.g. resources availability, data distribution, data value 

statistics, network topology, etc.) difficult to count on in large distributed data systems. Such lack of 

information on data leads to approaches based on heuristics only, which avoid the worst query 

execution plans, but still risk to be really far from the optimal plan. Typically, such approaches 

consider minimizing the execution time as the only optimization objective.  

 Optimization approaches have proposed the use of query feedback to overcome the lack of 

information on data. This, they collect different kind of feedback (e.g. data statistics, system 

parameters, query plans) from queries execution, and propose mechanisms for their management and 

exploitation. However, they have been mostly applied on distributed data systems that trend to 
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centralize the optimization process. Moreover, most of them still use classical metadata for plans cost 

computation, as discussed in Chapter 2.  

Our query optimization approach relies on query feedback (i.e. measures of consumed 

resources during query plan execution) gathered from the execution of global queries. Such feedback 

serves to learn the quality of query plans according to different parameters (e.g. some measured 

resource or a cost function that uses such measures as parameters). We based the learning process on 

the Case-Base Reasoning (CBR) paradigm. The CBR principle is to use knowledge (e.g. query 

feedback) from past problem solving experiences to improve the solving of further similar problems  

[AgPl94]. 

 The work also concerns the way the CBR process interacts with the query plan generation 

process. Such process uses classical heuristics and makes decisions randomly (e.g. when there is no 

statistics for join ordering and selection of algorithms, routing protocols); this technique is a pseudo-

random manner to explore the space of possible query plans. The optimization process learns the best 

query plans according to different optimization objectives during a learning phase. Then, it exploits 

such knowledge by reusing suitable query plans for the efficient evaluation of similar queries. This 

section presents and overview of the case based reasoning principle. Also, it discusses how we adapt 

the CBR principle to our learning-based query optimization approach.  

3.5.1 Case-Based Reasoning overview  

The Case-Based Reasoning (CBR) is a machine learning [Domi12] principle for problem solving. 

CBR learns from experiences (i.e. cases) that retain in a repository of knowledge (i.e. casebase). Such 

experiences correspond to previous problems and their solutions. The learning process consists in 

reuse previous experiences for solving further similar problems. It aims to take advantage of success 

problem solutions and to identify failed solutions to avoid the same future mistakes [Kolo92].  

Still, effective learning process in CBR requires a well worked out set of methods in order to 

extract relevant knowledge from past experiences and exploit it for problems solving. Figure 3.3 

illustrates the CBR reasoning principle proposed by Aamodt & Plaza's (1994) [AgPl94]. The input 

corresponds to the problem specification, and the output to the suggested solution. The CBR 

components include: (i) the cases, (ii) the similarity function, (iii) the casebase comprising past cases, 

and (iii) the suit of reasoning mechanisms: retrieve, reuse, review and retain steps. Next sections detail 

each of these components.  

 
Figure 3.3. The CBR mechanisms (inspired from Aamodt and Plaza [AgPl94]) 
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For a better understanding let us see an example that compares the human reasoning with 

case-based reasoning. To diagnose/repair cars malfunctions, an automotive engineering is trainer to 

use facts and knowledge to recognize the common signs and combinations of them. However, he 

cannot be trained to recognize all possible combination. When a car with unknown signs arrives, the 

engineering turn to its basic knowledge, but in this case, probably the process for generating a 

plausible diagnosis will be harder and time consuming. The advantage is that he has learned to 

recognize a novel combination of malfunctions, and to develop a solution that could be useful to solve 

a hard similar problem in the future.  

Just as CBR provides a way for people to generate solutions; it also provides a way for a 

computer program to propose solutions efficiently when previous similar problem solutions have been 

encountered. So, the previous example shows that CBR is useful for people and machines that know a 

lot about a task and domain because it gives them a way to reusing hard reasoning they have done in 

the past. However, it is equally useful to those who know little about a task or domain in since it 

promotes the adaptability of known solutions to new problems.  

Case based reasoning is also useful when knowledge is incomplete and or evidence is sparse. 

Logical systems have trouble dealing with this because they are strictly based on well known facts. In 

contrast, a case based reasoner makes assumptions to fill the incomplete knowledge based on what 

experiences suggest, going on from there. Solutions generated in this way won’t always be optimal; 

this depends on the learning gained from evaluating the proposed answers.  

Much of the inspiration for the study of CBR came from cognitive science research on human 

memory. However, the resulting methodology has been shown to be useful in a wide range of 

applications. Unlike most problem solving methodologies in artificial intelligence (AI), CBR is 

memory based, thus reflecting human use of remembered problems and solutions as a starting point 

for new problem solving. An observation on which problem solving is based in CBR, namely that 

similar problems have similar solutions, has been shown to hold in expectation for simple scenarios 

[LMBL05], and is empirically validated in many real-world domains. It has enjoyed considerable 

success in a wide variety of problem solving tasks and domains.  

 

Case  

A case is the unit of knowledge in the CBR principle. Kolodner defines in [Kolo92] a case as 

a “contextualized piece of knowledge representing an experience that teaches a lesson fundamental to 

achieving the goals of the reasoner”. Thus, a problem is posed by a user, a program or a system. The 

knowledge gained from solving the problem is encapsulated within a case; it is supposed that such 

knowledge must be helpful for solving further similar problems. The question is which should be this 

useful knowledge? 

Different kind of knowledge can be retained in a case. Very often it is only subdivided into a 

problem and a solution description, but additional knowledge might be necessary depending on the 

kind of intended reuse. Figure 3.4 shows an example of a case for our car workshop context. Let us 

say that the engineering receives a car whose front light doesn’t work. According to the problem 

description, the resulting diagnosis is that the front light is fused and must be replaced.  
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Figure 3.4 Example of a case 

[Kolo92] focuses on the role cases can play in helping people make decisions and on the kinds 

of things that should be represented in a case so that it can be productively used for reasoning. Thus, 

Kolodner proposes a comprehensive case structure consisting of the following five parts: (i) problem 

description, (ii) the solution that was proposed, and (iii) the outcome. 

The problem description may include the specific conditions placed on the problem and the 

goal(s) to be achieved, and if necessary/possible the current state of the context where the problem 

takes place. The solution includes the steps for solving the problem; it may also include an explanation 

of how / why such solution was derived. Finally, the outcome comprises information about the 

efficiency of the solution for solving the problem (e.g. the state of the context after the solution was 

carried out, how close was to what was expected, and lessons that can be learned from the experience).  

Similarity of problems 

The search of past similar problems for reusing their solutions requires a similarity function. The 

objective of such similarity function is to establish the resemblances between the problems; for 

example, car malfunctions in an automotive context, health disorders in a medical context, queries in 

the query optimization context. The similarity between problems is measured trough a similarity 

operator, or its inverse, a distance function. Two entities are as similar as higher is the similarity 

operator result, or inversely, as lower is the distance function result [Rich95][OsBr97]. 

There are many ways of measuring similarity and different approaches are appropriate for 

different representations of cases, particularly representations of problems within cases. For example, 

problems represented as feature vectors are typically compared through a vectors’ distance function, 

the comparison of problems based on a graph representation turns to a graph isomorphism problem.  

The final goal of determining similarity among entities is the accurate reuse of known solutions. 

 

Casebase 

The casebase is a repository for storing cases; often it is also referred as case memory. In 

general, it is created with a small amount of cases (e.g. first experiences); more cases (e.g. new 

experiences) are included progressively. It is an expert in charge to feed the casebase with cases 

related to expected problems, and provides new cases when new problems arrive.  

There are three general areas that have to be considered when creating a casebase [BeKP06]: 

(i) the representation of cases, (ii) the organization of the casebase, and (iii) the selection of indices. 

The objective of such elements is either to facilitate accuracy for searching useful cases, speed for 

searching cases, or both.  
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 The representation of cases. Cases in a casebase can represent knowledge in many 

different formats. This representation is greatly influenced by the type of knowledge 

that is stored. It may range from unstructured (e.g. binary files), to structured (e.g. 

vector of features, graphs), or ad-hoc representations where each component of case 

has a different format [BeKP06].  

 The organization of the casebase. The collection of cases itself has to be structured in 

some way to facilitate the retrieval of the appropriate case when queried. Numerous 

approaches have been proposed (e.g. flat [KrBa93] and hierarchical [Hamm89] are 

common structures). 

 The selection of indices. Casebase organization tends to be strongly linked to 

indexing; case indexing refers to assigning indices to cases to improve future retrieval 

and comparisons (e.g. similarity). Thus, such indices reflect the aspects of cases (e.g. 

attributes that influenced the outcome of the case) that determine in which context 

cases will be retrieved in future. [Kolo92] and [BiCo89] present representative 

examples of indices. Assigning indexes is typically a manual process relying on 

human experts, however various attempts of using automated methods were proposed 

in the literature. 

CBR reasoning mechanisms 

For solving a problem, the first step is to retrieve a useful case (i.e. that comprise a similar problem 

and provides a good solution). The solution from the retrieved case is reused for solving the new 

problem. Reusing such solution may involve some adjustments; account for differences between the 

case problem and the new problem. The solution is then evaluated and reviewed typically by an expert. 

The description of the new problem and its solution can then be retained as a new case, acquiring 

knowledge for solving a new problem. 

3.5.2 Adapting Case-Based Reasoning to query optimization 

This section presents how our approach adapts the concepts and mechanisms of the CBR principle to 

the query optimization process. Figure 3.5 illustrates our CBR-based query optimization approach; it 

includes the fundamental concepts: (i) query-case, (ii) query similarity function and (iii) casebase 

structure. Also, it includes the steps of the reasoning mechanism, which correspond to the four-step 

CBR basic mechanism. It is important to remark that our approach does not consider the interaction 

with an expert, as most of CBR-based systems.   

 

Figure 3.5 CBR based query optimization approach 
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CBR-based query optimization 

In our approach, the problem corresponds to a query and the problem solution to a query execution 

plan. For evaluating the quality of plan solutions we use global measures of the consumed 

computational resources; these measures are obtained as feedback from the execution of global 

queries. We encapsulate this information within a query-case, the unit of knowledge of our learning-

based optimization process. Thus, the first adaptation of CBR in our approach is the representation of 

query feedback as a case.  

Given a query Q, the Query case retrieving phase selects a case of a query similar to Q and 

that comprises the query plan that minimizes a given cost function. The Query plan generation process 

reuses the query plan P from the retrieved case by adjusting them according to the specifications of Q 

(such a plan was used for evaluating a query similar to Q, but not exactly the same). The generated 

query plan is then executed; the global measures of consumed computational resources are gathered 

during the Query plan monitoring phase. Finally, during the Case storage phase, a new case is created 

and insert into the casebase, or an already existent case is updated. When no useful case is retrieved 

for solving the query Q, the process decomposes Q into subqueries and tries to retrieve useful query-

cases for solve them.  

Well understood, the definition of similarity between queries is another fundamental aspect for 

our CBR-based optimization process, in particular for the query case retrieving step. We propose a 

qualitative query similarity function based on query features. It is important to consider that such a 

function should guaranty that retrieved cases are useful to improve query solving. Thus, it is expected 

that if a query plan had a low cost (e.g. memory consumption) for executing a query Q, it will remain 

low cost for evaluating a similar query Q’. The challenge is to identify the query features that provide 

accuracy for useful case retrieving, but that also extend cases usability. A very restrictive similarity 

function (e.g. equal queries) has a high accuracy (e.g. precise measures of resources consumption); 

however it makes difficult cases exploitation (e.g. a case serves for solving a single query). 

For the design of the casebase, we propose an ad-hoc structured representation of cases (a 

particular representation of each of its components i.e. query, query plan and measures). We take 

advantage of our query similarity function grouping cases in clusters of cases with similar queries. We 

refer to such a cluster as query family. This casebase organization accelerates the case retrieving 

process. We remain simple for the casebase structure and we use indices structures to still improving 

its access and management.  

Our CBR-based query optimization process comprises a learning phase and an exploitation 

phase. The learning phase supplies the casebase with new query cases. Typically, the CBR principle 

assumes that there is an expert in charge to feed the casebase with solutions for the expected problems. 

We propose a query plan generation technique that uses classical heuristics (e.g. selection and 

projection first) and that makes some random decisions (when classical query optimization techniques 

uses metadata). The plans cost is learned from real measures of resources consumed during the plan 

execution (instead of using some kind of metadata for plans cost estimation). Thus, our evaluation of 

plan solutions relies on learned measures, while in CBR it is the expert also in charge to evaluate the 

quality of solutions. The learning phase finishes when a threshold of knowledge (i.e. number of query-

cases) is reached.  

During the exploitation phase the query plans are generated by reusing and setting plans from 

learned query cases. The optimization process selects and reuses the plan that minimizes a given cost 
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function, the advantage is that such function is based on real measures of consumed computational 

resources. When no useful cases exist within the casebase for solving a query Q, our optimization 

process pursues to reuse cases for solving subqueries from decomposing Q. A complex plan setting 

may represent an overhead for the query optimization process; however we propose a simple setting 

process minimizing the consumption of resources.  

  For ensuring continuous improvement of the execution of queries the following actions are 

taken: 

 When a casebase does not comprises enough cases (customizable threshold) about a query, 

query plans are generated by pseudo-random to try and learn.  

 Once concluded the learning phase, the search space exploration continues by periodically 

generating the query plans by pseudo-random. The frequency is indicated by an adjustable 

variable (fv). For instance, fv = 10% means that from 100 query plans generated during the 

exploitation phase, 10 will be generated by pseudo-random.  

 The learned query plans may be executed several times (i.e. the optimizer has decided that is a 

suitable plan for executing a query), thus the measures of computational resources are 

systematically updated.  

Chapter 4 is consecrated to the representation and management of cases. Thus, it presents in 

detail the representation of case and its components. It also exposes the organization and indexes of 

the casebase. Chapter 5 focuses on the plans generation process.   

Distributed query optimization 

In our approach, global queries are optimized in a des-centralized manner. We assume that the nodes 

in the system provide functionalities for data management and processing. Each node in the system is 

responsible for optimizing the (sub) queries that it receives; naturally by applying the optimization 

process explained before.  

The optimizer at each node takes its own decisions according to its knowledge i.e. query-

cases. The optimizer in the node that receives Q determines the subquery(ies) to execute locally and 

those to be sent through the network. Also, it chooses the nodes for sending the subqueries (i.e. next-

hop), and the operators to be executed locally for combining the partial subquery results. 

In summary, the optimization of a query is the result of a cooperative optimization process 

among the nodes that participate in the execution of a query. Each node has a vision of its mini-world, 

it knows its neighbors, and maintains and exploits the query-cases from the execution of queries in 

which it has participated. Therefore, the type and amount query-cases vary from one node to another.  

The knowledge of queries varies at each node. In the best case, all nodes involved in the 

execution of a given query plan have enough cases to make appropriate choices. On the contrary, if 

some node(s) is (are) in learning phase, the corresponding sub-query plan most often is sub-optimal 

impacting the cost of the global query execution.  

For example, let’s say that a query Q is posed at node N1 that selects a plan P. Such plan 

decomposes the execution of Q in the execution of the subqueries SQ1 and SQ2 bound by a binary 

operator (i.e. union). Let’s say that the first subquery must be executed locally and the second one 

must be executed in a remote node N2. Let’s say now that N1 has reached the exploitation phase 

concerning SQ1, since it has already tried-learned several plans for executing such query. In contrast, 

N2 is still in learning phase concerning SQ2, thus the generated sub-query plan is sub-optimal affecting 

the global execution of Q.  
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We must consider that the consumed computational resources associated to the execution of P 

take into account those consumed by the execution of each subquery. Therefore, even if the execution 

of SQ1 is optimal, the execution of SQ2 may consume a lot of resources. In this case the optimizer 

learns that P is a sub-optimal plan with the risk of never reuses it. However, P can turn in an optimal 

plan when N2 moves to the exploitation phase for SQ2 generating an optimal sub-plan. In short, the 

optimizer makes hasty conclusions about the efficiency of the query plan P resulting in wrong 

knowledge. The pseudo-random generation of query plans once in a while after the learning phase 

reinforces this problem if occurs in some of the involved nodes.  

In order to solve this problem a boolean reliability variable is associated to query-cases. If all 

involved nodes are in exploitation phase, thus have enough knowledge to choose an efficient sub-

query plan, the reliability for the selected query-case is true; otherwise it is false. This mechanism 

greatly improves the global optimization because: (i) accurate measures about the cost of query plans 

i.e. when P is associated to a poor-performance because measures of computational resources are very 

high are not reliable since a sub-plan was selected without enough knowledge, (ii) exploration of the 

search space avoids to discard a part of the plan that can pursue to a optimal plan.  

3.6 CLASSICAL QUERY OPTIMIZATION VS LEARNING-BASED QUERY 

OPTIMIZATION   

For a better understanding of our approach, we consider interesting to analyze in detail the main 

aspects of classical query optimization techniques and discuss the main similarities and differences 

with our learning based query optimization approach. We address this analysis in three parts that 

correspond to the components of classical query optimization: (i) the space of possible plans for 

solving a query (i.e. search space), (ii) the model for estimating plans cost, and (iii) the search strategy 

for exploring the search space.   

 

3.5.1 Search space  

 

The search space comprises the possible execution query plans for solving a query. In classical query 

optimization, given a query a temporal search space is generated, once determined the optimal plan, 

the search space is discarded. If the same query is posed latter, the search space must be created from 

scratch again. In our approach, given a query we create physical query plans that are tested, analyzed 

and encapsulated within a query case. Such query case is strategically stored in the casebase, and 

remains it there according to the efficiency that the corresponding query plan as show through the 

learning query optimization process. 

Please consider that there are several plans for solving a query, but according to our approach, 

also several queries sharing some fundamental characteristics (i.e. similar queries) can be solved using 

the same plan with some few settings. Since another point of view, for us a search space is not only a 

set of possible plans for solving a single query, but a set of possible plans for solving a set of similar 

queries, where a family of cases corresponds to a part of that search space already explored for a set of 

similar queries. The management and exploitation of query cases aims the exploration of the search 

space to keep in the casebase only the best learned plans.  
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3.5.2 Plans cost 

A cost model comprises mathematic functions for estimating the plans cost; such functions 

reflect the optimization objective(s). These cost functions are based on information –typically called 

metadata- about data sources (e.g. cardinality and data statistics). In distributed query optimization, 

also is required information about the communication media (e.g. network topology) for calculating 

the data communication cost (i.e. cost of sending data from one node to another).  

The challenge of distributed query optimization with incomplete information on data is one of 

the main concerns of this thesis. If metadata is not available, we propose to gather/generate another 

type of knowledge (i.e. query cases) suitable for estimating the query execution cost.  

The query cases contain the measures of computational resources consumed during the 

execution of plans to measures their quality according to determine optimization objective. It is 

precise to define new cost models where computational measures are the parameters of the cost 

function, instead of the conventional metadata. The definition of a new cost model is not the goal of 

this thesis, however in this document we discussed about a very admittedly simplistic cost function to 

exemplify the usability of collected measures for determining the query execution cost.  

3.5.3 Search strategy  

A search strategy selects an optimal execution plan for a given query by exploring the search space. In 

classical query optimization techniques, given a query a search space is generated and explored until 

finding the optimal plan. In contrast to classical query optimization, in our approach the exploration of 

the search space is progressive. Given a query, a single physical plan is generated and evaluated; the 

experience is stored as a case within the casebase. 

 During the learning phase several plans are learned for solving queries from different query 

families. For example, let us say that during the learning phase 1000 queries from 10 different families 

were run. Let us say that a family QF1 was feed with 100 cases, each case comprises a possible plan 

for solving queries similar to query cases of that family. Thus, part of the search space was generated 

and evaluated during the learning phase. The selection of a suitable query plan from our search space 

takes place during the query case retrieving phase. Given a query, this phase happen once if  it is found 

a query case useful to solve the whole query, or several times if is required to look for query cases that 

concern the subqueries of the original query.  

3.7 CONCLUSIONS 

This chapter introduces the characteristics that we consider for the distributed query optimization 

context. It details our assumptions related to structures and distribution of data, and exposes the 

characteristics of queries that we address in this thesis. In a second part, it presents an overview of the 

case-based reasoning principle and highlights the adaptation of CBR to our query optimization 

approach. Finally, it discusses the differences between classical query optimization techniques and our 

learning-based query optimization technique.   

The objective of adapting CBR to query optimization is to keep knowledge useful (different of 

classical metadata) to find suitable plans, going further than simply using optimization heuristics. A 

query case highlights the optimizer decisions and their consequences (query plan and measures of 

query plan execution respectively). For example, a query case may contain knowledge about the most 

pertinent decomposition of a query (set of subqueries), the operators for composing the final result, 
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and a suitable order and execution techniques for computing such operators. Reasoning over this 

knowledge pursues to explore the space of possible plans progressively keeping useful solutions (i.e. 

efficient query plans) only.   

A query case can be used several times for solving similar queries instead of systematically 

generating plans from scratch (for each query that arrives) using only heuristics. During the 

optimization process it is learn that a given query plan is efficient according to certain optimization 

objective. Some CBR based works have proposed to use cases for solving sub-problems, when there 

are no cases for solving the whole problem. In our approach, we exploit cases for solving parts (i.e. 

sub-queries) from a given query when no cases exist for solving the whole query. Finally, measures 

(computational resources consumed by a query plan) within cases serves to learn the real cost of plans.  

The CBR process has been widely studied. While lot of techniques have been proposed for 

addressing some steps of this reasoning cycle, such as retrieve and reuse. Others have relay in the 

intervention of experts, for instance the generation of new solutions assuming that it is the expert that 

provides the casebase with new cases and that reviews the quality of the proposed solutions for solving 

a problem. 

 On one hand, we inspire our proposal on the CBR principle by adapting its main foundations 

(i.e. knowledge representation and reasoning process) to the query optimization process. On the other 

hand, we take advantage of some query optimization techniques that partially solve the query 

optimization problem (i.e. query optimization with incomplete metadata) that we face on this thesis. 

For example, the use of well known optimization heuristics, the consideration of random optimization 

decisions to improve progressively (from randomized search strategies [IoKa90][StMK97] and genetic 

algorithms [BeFI91] [ViPa11]), and the use of query feedback (from adaptive query optimization 

[GPFS02][DeIR06] and plan caching [GPSH02][VaKi00][AbCh99c] techniques).  

It is important to mention that our optimization process is independent of human interaction, 

in contrast to the generic CBR principle where it is assumed the intervention of experts for: (i) 

supplying the casebase with new cases, and (ii) for evaluating the quality of proposed solutions for 

problem solving. In our approach, the supplying of new solutions corresponds to the generation of new 

query plans. As one of the main contributions of this work, we propose a query plan generation 

technique that combines the casebase exploitation for taking advantage of learning, with classical 

query optimization heuristics (e.g. operator ordering) and random decisions (e.g. join ordering, 

operators’ algorithms) for a pseudo-random exploration of the space of possible solutions.    

Another role of the expert is to evaluate adapted solutions, as mentioned before. In our query 

optimization process, we evaluate the quality of solutions (i.e. query plans) by gathering measures 

about the computational resources consumed during queries execution. Such measures are exploited 

the query case retrieving phase; where the cases that optimize (i.e. minimize the consumption of 

resources according, for example memory, energy or time) the evaluation of similar queries are 

selected.  

Chapter 4 and Chapter 5 present in detail our learning-based distributed query optimization 

approach. Chapter 4 is consecrated to expose the query case representation, our definition of queries 

similarity, and the organization and management of cases within the casebase. Chapter 5 focuses on 

the generation of query plans in both, during the learning phase (plan generation from scratch) and 

during the exploitation phase (plan generation using cases).   

 





 

 

 

44..  RREEPPRREESSEENNTTAATTIIOONN  AANNDD  

MMAANNAAGGEEMMEENNTT  OOFF  QQUUEERRYY  CCAASSEESS  

Case representation is the most fundamental issue in case-based reasoning. Ascertaining the correct 

case features was viewed by Barletta [Barl91] as the most important task in building CBR systems. 

The steps of the CBR reasoning process depend on the case representation. Section 4.1 exposes our 

query case representation.  

The query similarity is the second foundation for the success of our CBR based approaches. It 

is the basis for retrieving useful cases for solving a query. Through the query similarity definition it is 

possible to determine the connections between features of the new query with those of previously 

solved queries. We take advantage of query similarity for the organization of the casebase by grouping 

cases in clusters that we term families. A family comprises cases that have similar queries. The 

definition of query similarity is presented in Section 4.2, and the clustering of query-cases according 

to queries similarity is defined in Section 4.3. 

Section 4.4 presents the casebase storage structure and organization of cases, followed by the 

operations for managing the casebase in Section 4.5. Such operations comprise the algorithms for 

case retrieving, storage (insert and update) and deletion.  

4.1 QUERY-CASE REPRESENTATION 

The representation of cases is the main foundation of the reasoning process. The efficiency of all steps 

of such process depends on it. Issues such as case components, contents of such components, and case 

structure all come into the picture. The first aspect to consider in our query case representation is that 

the content of the query case must be useful for the generation, evaluation and improvement of plans 

for evaluating queries efficiently. The second objective is to provide case structures that lead to an 

inexpensive optimization process, thus minimizing the consumption of resources for: storing, 

managing and exploiting cases.  

 

Our query case has the form QC:<Q,P,M>, thus it is composed of three following parts:  
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 The query Q solved in the past; we define an abstract representation of query, which 

independent of a specific high-level declarative query language. Section 4.1.1 details 

our abstract representation of query.  

 

 The plan P for solving a query; it is represented by a tree of physical operators. 

Section 4.1.2 exposes the representation of a plan in a query case.  

 

 The evaluation of the plan in form of a set of global measures M. A global measure 

correspond to the total amount of some computational resource (e.g. CPU, memory, 

energy, etc.) consumed by the nodes that participate for the execution of the plan P. 

Also, such global measures may include response time (i.e. time for obtaining the first 

query result) and execution time (i.e. time for obtaining the complete query result).   

 

In the query case components we include the representation of a query since the similarity 

between queries is assessed during useful case retrieving. Useful query cases comprise plans for the 

efficient evaluation of queries. The global measures serve to identify the plan that minimizes the 

consumption of resources or, a given cost function (using the global measures as function parameters). 

The accuracy of useful case retrieving depends on the similarity between queries and the evaluation of 

plans.  

The physical representation of cases is another important issue to consider, it varies from 

structured, semi-structured and unstructured representations. Also, there are specialized (e.g. hybrid, 

application ad-hoc) representations that combine the previous approaches for representing the different 

parts of a case. Major systems used case representation approaches extremely specific to the 

application. We must consider an approach flexible enough for representing our query case content 

and that economize the resources required by the optimization process, this is: (i) compact storage, and 

(ii) straightforward exploitation and management processes.  

For our query-case representation, we focused on a structural representation, appropriate for 

complex applications and that allows accurate retrieving of useful cases [Kowa91]. The unstructured 

(i.e. textual approach) and semi-structured case representation are hardly appropriate for the 

representation of our kind of problems (i.e. selection-projection-join queries) and solutions (i.e. query-

plans). Another disadvantage of such approaches is that the accuracy of retrieving useful cases is not 

very high [Berg02].  

There are different structural approaches; attribute-value, graph-oriented, database-oriented 

logic of predicates and object-oriented are of the most popular. In [Berg02], Bergmann details the 

advantages and inconvenient of these representations. However case representation for case-based 

planning are sometimes more specialized due to the specific structure problems (i.e. queries) and 

solutions (i.e. query plans). We propose ad-hoc structures for the different case components aiming to 

favor the processing steps to which they serve for, and to minimize the amount of memory required for 

cases storage.  

 For example, case retrieving is based on query similarity; where the comparison of queries is 

fundamental. We propose an abstract representation of query using a structure that pursues to go from 

a problem of complex queries comparison, to the comparison of specific elements of the query only 

(relevant according to the query similarity definition). This modularization of query representation is 

easy to adapt to different similarity functions. The comparison of specific query elements (and not all 

the complex query) minimizes the time and CPU consumption.  Next subsection details the 

representation of our query case components.  
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4.1.1 Query 

As major area of CBR applications is problem solving, it is unsurprising that cases contain a problem 

representation, where information describing the problem is stored. So far in this thesis we have 

exposed that in our approach queries correspond to the problems to solve. The rationale in our CBR 

optimization approach is to compare a new query to past queries using some matching method.  It is 

the query representation which is used in remembering a past case, and in determining its applicability 

to a new situation. 

Our abstract query representation is based on the specifications of the declarative DLAQL 

[ABCD12a][ABCD12a] query language, which extends SQL2  data manipulation language with 

clauses for specifying fragments of data in a query expression (the specifications of DLAQL is 

detailed in Section 3.3.2). However, it can be easily adapted to the specifications of other SQL-like 

languages. This thesis puts special attention to the optimization of Select-Project-Join queries, since 

are some of the most common queries and the order of binary operators (e.g. join) represent an 

important problem for the query optimization domain. Thus, this section focuses on the representation 

of queries only, even if the DLAQL language also includes updates.  

Given a user query (in some high-declarative language), it is translated to our abstract query 

representation, which comprises the following elements: (i) Projections, (ii) Sources, (iii) Joins and 

(iv) Subqueries. Such representation corresponds to a compact structure, easy to compare 

(computation of query similarity), and also easy to extent for including different query features. 

Detailing the query translation process is not the main concern of this section, basically it extracts 

information from the query (i.e. expressions, sources and conditions) to fulfill the elements in our 

abstract representation. The abstract representation of the query Q for selecting the avatars located in 

the area 7 (DLAQL query in Chapter 3 - Example 3.1) is as follows: 

 

Example 4.1 -   
Q: Query = < 

Projections = {Avatar}, 

Sources = {SP= <Positions P, {<Area, =, 7>}, {global}>}, 

Joins = {}  

Subqueries = {} 

     > 
 

The execution of such query only consider specific fragments of the global Positions Itemset, 

those stored at the node where Q is posed (local fragment), and those stored at nodes J and D (remote 

fragments). In the abstract representation, the Projection-expressions corresponds to a singleton that 

comprises attribute Avatar of the Itemset Positions. Sources corresponds to a singleton as well that 

comprises the source SP. Such source is specified by the Itemset Positions, the restriction condition 

<Area, =, 7> for filtering the data of avatars in area set only, and the scope {local, J, D} that specifies 

the data fragments (i.e. identifiers of nodes that store such data) to consider for answering the query. 

Since is a query with a single source, Joins is an empty set. The query does not comprises subqueries, 

thus the set Subqueries is also empty. 

The specification of our abstract query representation is defined in a context-free grammar 

because of its precision and clarity. The used grammar has the following notation: 

 The < > symbols represent a concept, for example <query> 
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 The := symbol is used as the assignment operator to separate a concept and its definition i.e. 

concept components or concept specializations 

 The symbol coma (,) separates the concept components 

 The | symbol separates the concept specializations 

 The [ ] symbols enclose optional concepts 

 The ( ) symbols group concepts  

 The * symbol indicates that a concept can be repeated several times 

 Constant keywords and symbols are represented in bolt font 

 

This section former exposes the representation of mono-source queries, which comprise a 

single source of data and may be some conditions/expressions for data filtering. Second, it presents 

multi-source queries, since they comprise two or more data sources, conditions for joining such 

sources, and may be some conditions/expressions for data filtering. Finally, it represents the union of 

mono-source and multi-source queries. For easy to reading, these queries are addressed in three 

subsections respectively: (i) Select query, (ii) Join query, and (iii) Union query.  

<Query> :=  <Select-query> | <Join-query> | <Union-query> 

Select query  

A select query selects data from a single source only. Thus, it includes just unary operators i.e. 

projection and rename operators, a source and a list of subqueries.    

 

<Select-query> := (<Projections>, <Sources>, <Subqueries>) 

 

The abstract representation of the query Q for selecting the avatars located in the same area as 

the avatar named ‘MyAvatar’ (DLAQL query in Chapter 3 - Example 3.5) is shown in Example 4.2: 

 

Example 4.2 -   
Q: Select-query = < 

Projections = {*}, 

Sources = {SP= <Positions P, {<Area, =, Q1>}, local>}, 

Subqueries = { 

  Q1: Select-query = < 

   Projections = {Area}, 

Sources = {SP1=<Positions P, {<Avatar,=,‘MyAvatar’>},    

           global >} > 

} 

     > 

 

In the query Q, the set of Sources is a singleton that comprises the source SP. Such source is 

specified by the Itemset Positions, the restriction condition <Area, =, Q1>, where Q1 is a subquery for 

selecting the location of ‘MyAvatar’. Thus, the restriction condition of SP filters data from Positions 

related to those avatars at the same area than ‘MyAvatar’. The source SP also specifies a local scope, 

which indicates that the query Q only considers the fragments of Positions that is stored at the node 

where Q was posed. Finally, the Projections comprise all the source-field of SP. The subquery Q1 also 

comprises a single source SP1. Such source is defined over the Itemset Positions; it has a restriction 

condition that looks for the Avatar named ‘MyAvatar’. This time, the source has the scope defined by 
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default (i.e. global), which means that may be required to access local and distant source fragments for 

finding the answer. The subquery projects the source-field Area only.  

Projections. The data to project are specified in a projection expression that includes values, source 

fields, functions (i.e. aggregation and arithmetic) and/or another projection expression.   

 

<Projections> :=  <value>*  

| [<source-name> | <alias>].<source-field>*  

| <function> | <projection> 

 

In the projection expression, a <value> belongs to different typed values (e.g. integer, strings, 

boolean, date, etc.) respecting some compatibility rules (e.g. the values of type integer are a subset of 

the values of type float). The <function> concerns aggregate or arithmetic operations. 

 

<function> :=    <arithmetic>  | <aggregation> 

 

An arithmetic function comprises operands and classical arithmetic operators. An operand 

may be a <value>, a <source-field> and/or other <function>.  

 

<arithmetic> := (<operand>, <operator>, <operand>) 

<operand> := <value> | <source-field> | <function>  

<operator> : = + | - | * | / 

 

An aggregation function receives as input parameter a set of <source-field> instances and 

returns a single <value> of the R domain.  It includes the common aggregation operations such as 

sum, max, min, avg and count.  

<aggregate> :=   min ( ([<source> | <alias>].) <source-field>)  

  | max ( ( [<source> | <alias>.] ) <source-field>) 

  | avg ( ( [<source> | <alias>.] ) <source-field>) 

  | count ( ( [<source> | <alias>.] ) ( <source-field> | *) ) 

 

Source. A source comprises a supply of data that may correspond to an Itemset or to a query resultset, 

an optional set of restriction conditions over such data, and a scope. The scope specifies the fragments 

of data (e.g. data stored in the local node, and in node J) that the source includes to select data; a 

source has a global scope (whole fragments) by default.  A source is described by a schema that is a 

sequence of source-fields. A source-field corresponds to an attribute of Itemset attribute or to a column 

of query resultset. 

 

<Sources> := <source> * 

<source> := ( (<dataset> | <sub-query>) [,<restriction-condition>] [,scope]) 

<source-schema> := (<source-field>*) 

 

A restriction condition is a propositional formula pf that consists of atoms and logical 

operators; it selects the data which holds pf.  An atom is composed of a <source-field>, a <cmp-

operator> and a <value>. An atomic restriction condition comprises a single atom; a conjunctive 
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restriction condition comprises a set of atoms or other conjunctive restrictions connected with the 

conjunctive operator (AND). 

<restriction-condition> := <atomic-rc> | <conjunctive-rc> 

<atomic-rc> := [<source> | <alias>].<source-field>, <operator>, <value>|<sub-query> 

<conjounctive-rc> := (<atomic-cr>, AND, (<atomic-rc> | conjunctive-rc>)) 

<cmp-operator> := < |  |  | > | = |  

 

The scope of a <source> specifies the nodes that store the fragments of data to select. The 

specification of nodes is explicit as a list of <value>(s) of nodes identifiers, or implicit as a <sub-

query> that returns a list of nodes identifiers.   

 

<scope> :=    (<value> | <sub-query>)* 

 

Subquery. A <sub-query> is a query (select, join or union) nested inside another query. Also it can be 

referred as inner-query and the query that includes it as outer-query. According to the so far defined 

query components, a subquery can correspond to an implicit dataset of a source, an implicit value in 

an atomic restriction condition, or an implicit value in a source scope. 

Join query 

A join query is a select-project-join query as the DLAQL query in Chapter 3 - Example 3.3. It adds a 

set of join-conditions to the characteristics of the select-query. This condition allows defining a 

criterion for selecting data from two or more sources (e.g. SP and SS).  

<Join-query> := <Projections>, <Sources>, <Joins>, <Subqueries>      

 

A join condition comprises a source-field of each source (e.g. SP.Area and SS.Area), and a 

comparison operator. A join query can comprise several join conditions connected with a conjunction 

operator ().  

 

 <join-condition> :=   [<source> | <alias>.]<source-field>,  

               <cmp-operator>, [<source> | <alias>.]<source-field>  

<Joins> := <join-condition> , [ AND, <join-condition> | Joins>]  

 

An example of the representation of a given join query is presented below (Example 4.3). 

 

Example 4.3 -   
Q:  Join-query = < 

Projections = {Avatar}, 

Sources = { 

SP= <Positions P, {<Area, =, 7>}, {local, J, D}>, 

SS= <Servers S, {}, {global}>} 

Joins = {<SP.Area, =SS.Area}  

Subqueries = {} > 

Union query 

The union query combines the result-set of two or more select queries connected with the union 

operator. Notice that the <Projections> of each <subquery> must have the same number of source-
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fields. The source-fields also must refer values pertaining to the same domain. Also, the source-fields 

must have the same order.  

<Union-query> :=  [<Projections>] , <subquery>,<subquery> 

 

The following example of union-query is the result from the query rewriting for expressing the 

original query Q in terms of the fragments of the decomposable source SP i.e. local fragments 

(subquery QG, where Q was posed at node G) and distant fragments (subqueries sent to remote nodes 

e.g. QJ and QD). 

 

Example 4.4 -   
Q :    union-query = <  

Projections = {*} 

QG: selection-query = < 

Projections = {*} 

     Sources = {Positions PG, {P.Area=7}, local} 

Joins = {} 

Subqueries = {}>, 

QJ: selection-query = < 

Projection = {*} 

Sources = { Positions PJ,D, {P.Area=7}, J, D} 

Joins = {}  

Subqueries = {} >, 

> 

4.1.2 Query plan 

In CBR system, where a problem is to be solved is store in each case a solution component (i.e. query 

plan) which describes the solution for that particular case. In our approach it is essential to include 

plans within query cases. These are reused for solving similar queries. Figure 4.1 depicts an example 

of query plan.  

 

Figure 4.1. Example of a query plan 

 

We represent a query plan as a tree structure where nodes correspond to physical operators 

(e.g. data manipulation operators) and the edges to the flow of data between nodes. Within the plan 

structure, the leaves of the tree serve for accessing local data or for exchange queries/data through the 

network. The inner nodes correspond to data manipulation operators and the root node prepares the 
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final or partial result to return to the user or to an intermediate node respectively. A plan may also 

include specialized operators (e.g. invocation of programs and functions) as inner or leaf nodes.    

The sample query plan comprises local data access (ldm) operators for the local execution of 

(sub) queries, and message (msg) operators to send (sub) queries wrapped within messages to be 

executed at remote nodes. The inner nodes are join (⋈ALGO) and union (∪) operators to compose a 

complete query result from local and distant partial result-sets. The root node is the print operator to 

return the final result to the user. The operators included by a query plan are described in detail below.  

 Leaf nodes 

 data-access (ldm). submits queries in a local data management system to retrieve 

partial data result-sets from the local node. 

 message (msg). corresponds to a send-receive operator for queries and data 

transfer. It sends queries to be executed at remote nodes, or sends partial data 

result-sets to requesting nodes. Once a query Q has been sent within a message, it 

is expected to receive the partial data result-sets from queries executed at remote 

nodes. A message operator may also comprise measures of computational 

resources consumed at the remote node during the execution of Q. A message can 

be sent using different strategies, for example synchronous (msgSY) or in 

asynchronous fashion (msgASY). 

 specialized operators, for example programs implementing ad-hoc strategies for 

executing frequent queries.  

 

 Inner nodes 

 filter (RC). determines the data values that hold with a restriction condition over a 

source. 

 sort. orders the data according to certain source-field.  

 join (⋈JC). combines two sources according to a given join condition. There are 

multiple algorithms for its computation i.e. nested-join (⋈NJ), merge-join (⋈MJ), hash-

join (⋈HJ) and semi-join (⋈SJ). 

 union (∪). puts together  the data from two or more sources.  

 specialized operators, for example distributed join algorithms ad-hoc to a specific 

application, user defined functions for data treatment, etc. 

 

 Root nodes 

 print. there are two types of print operator: one in charge to return the complete query 

result to the final user; and (ii) another that prepares a partial result-set from the up to 

now execution of a query Q, and the measures of computational resources currently 

consumed to be returned to a node (data and measures to further be send within a 

message). 

 project (E). determines the source-fields that hold with a projection expression 
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4.1.3 Global measures 

A case with only a query and a query plan gives no indication of whether or not a plan is suitable for 

evaluating a query efficiently. CBR suggests including within a case some additional information, 

called outcome, with the purpose to evaluate the efficiency of a given solution. In our approach we use 

global measures (e.g. computational resources, response time and execution time) of computational 

resources consumed during the execution of query plans to select the plan that minimizes a given cost 

function. We consider that such cost function uses global measures as parameters.  

 

Figure 4.2 Example of global measures 

 

A global measure is the total amount of some computational resource consumed during the 

execution of a query. Thus, it comprises the resources consumed at each node that participates for 

executing the query. Figure 4.2 depicts an example, where a query is posed at node H, which generates 

a plan that includes some subqueries (i.e. Q1 and Q2) that are sent through the network to be executed 

at some remote nodes (i.e. node I and node J). Each remote node is in charge of processing the 

subquery that it receives, and send the partial results-sets (RSn) and measures of consumed resources 

to the requesting node. The node H computes the global measures including the resources that it 

consumed locally ML, and the measure M1 and M2 that it receives from nodes I and J respectively.  

A measure is represented as a triplet of the form mn:<N, V, U> that comprises the resource 

name, the total amount of the consumed resource, and the unit of measure. The name (N) of the 

measure belongs to the S domain of strings. The value (V) corresponds to the amount of the consumed 

resource belongs to the domain R of real numbers (e.g. run-time, memory, CPU and energy), or the 

domain of N natural numbers e.g. messages and cardinality of result-set. The unit (U) of measure 

clearly depends on what is measured, e.g. milliseconds, kilobytes, hertz, IPS, messages transfer rate, 

among others).  

For instance, to process a query in a sensor network some measures to gather during the 

execution of the query plan could be the following: M={m1:<memory, 200, kB>, m2:<energy, 10.4, 

mA>, m3:< time, 150, ms>, m4:<messages, 2, integer>}. There are different possible measures to be 

hold within a case, for example, the computational resources that were consumed during the last 

execution of the query plan, or the average of computational resources consumed at the several plan 

executions. Global measures may also be represented in more complex forms such as histograms that 

register the computational resources consumed by a plan at each execution.  
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4.2 QUERY SIMILARITY 

The definition of query similarity is essential to retrieve promising candidate plans for evaluating a 

query. Its objective is to identify those queries that can be evaluated using the same (close to optimal) 

plans. Thus, given a query Q it can be evaluated reusing a plan P that was used for evaluating a 

previous similar query Q’, and that minimizes a cost function to accomplish some optimization 

objective.   

The literature is full of examples of similarity measures; in general, each running CBR 

approach comprises necessarily at least one way for measuring similarity. Even, sometimes the 

measure is not fixed and can be improved by a learning process, or customized by an expert. In 

particular, database literature has proposed to define query similarity basing on its syntactic properties 

and / or on its semantic properties.  

A straightforward query similarity definition is to consider that two queries are similar if they 

can be solved using the same plan shape [GPSH02]. Thus, such plans comprise the same operators, 

and the same operators order and implementation algorithms, but some values of operators’ 

parameters are replaced by variables. The problem is that plans having the same shape may serve for 

evaluating quite different queries. Thus, let us say that Q and Q’ are similar according to the previous 

similarity notion, thus a plan P that minimizes the cost function for evaluating Q but not for Q’. To 

alleviate this problem, our query similarity definition specifies some features that should be common 

to queries to denote them as similar. Thus, the query plans have the same shapes, but specific values 

for some operators’ parameters.   

Some works go further by including specific properties of different query features; for 

example, statistics (i.e. cardinality of sources, distribution of data values, etc), or indexing structures 

over attributes in join and selection conditions [ZhLa00][SeHa03][BaHM07][GuGO12]. The problem 

is that we cannot guarantee to account with such information due to the characteristics (e.g. autonomy 

of components and highly distribution of data) of the query execution environments that we consider.  

Let S be the set of all queries that can be evaluated using a plan P. In one extreme case, all 

values of operators in P are replaced by variables. P will not accomplish the optimization objective 

(minimize the cost) for evaluating any query Q pertaining to S. This is because is difficult to capture 

the performance of so many different queries using the same plan. In the other extreme, if each query 

in S was using a different plan, we could get a very accurate knowledge about the plan(s) that optimize 

the objective. However maintaining a separate plan for every possible query makes hard the 

exploitation of cases, a huge number of plans would be required. It is really difficult to determine the 

query features that dictate query similarity while maintaining a suitable trade-off between the margin 

of error and the exploitation of knowledge. 

Our query similarity definition is focused on the comparison of the query features. Section 

4.2.1 presents the definition of our similarity query definition. Section 4.2.2 formalizes our query 

similarity definition. 

4.2.1 Definition 

Our definition of query similarity is based on the absolute similarity approach, which classifies two 

objects as being similar or not similar [OsBr97]. E.g. Spanish beach holidays and Greek beach 

holidays are similar, but Spanish beach holidays and Alpine walking holidays are not. Given two or 

more measures of similarity of this kind, e.g., for different attributes of an object, it is easy to combine 
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them to give new similarities with obvious intuitive meanings; for example conjunction (x is similar to 

y only if it is similar on both attributes).  

A more complex definition of similarity assigns a numeric value, often normalized to an 

interval of values {0, 1}[Grif97]. Using this approach implies to determine the range of similarity for 

which a plan is still useful for solving similar queries. However assigning a numeric value to similarity 

is often arbitrary, and hard to justify in intuitive way. For example, let us say that a Greek beach 

holiday might be more similar to beach holiday than to alpine holiday, but it is hard to say the 

adequate number that characterizes this similarity. The assignation of numbers may associate arbitrary 

meaning to the definition of similarity [OsBr97].   

Given a query Qn, our similarity definition considers the query features Qni specified in our 

abstract query representation: (i) projections, (ii) sources, (iii) joins, and (iv) subqueries. The similarity 

of two queries is the conjunction of comparative functions over different query features. Each query 

feature is compared independently, and this comparison (i.e. equality, equivalence, similarity) may be 

different for each element.  

In the remainder of this section we expose a prospective definition of query similarity 

according to our previous explanation. However, different definitions of query similarity can be 

proposed basing on the introduced approach. For example, let us say that queries are similar if they 

have (i) similar sources, and (ii) the same join conditions. Two sources are similar if the restriction 

conditions over the sources include the same attributes, but not necessarily the same values. As 

mentioned before, we do not consider different similarity degrees, thus queries are similar or not. An 

example of two similar queries is presented below.  

The similar queries Q1 and Q2 have some variations; however, all of them acceptable sustain 

the similarity of queries according to the previous query similarity definition.  Q1 and Q2 have similar 

sources, since they refer the same itemsets (i.e. Positions and Servers), the same fragments of each 

itemset, and have restriction conditions over the same attributes. However, the projection expressions 

change; Q1 is interested in the name of Avatars, and Q2 request all the information all about the 

Avatars (not only the name). Also, the condition values change, from information of avatars at Area 7 

to the information of those at Area 3.  

 

 

 

 

 

 

 

The query Q3 presented below is non-similar with respect to Q1 and Q2. Q3 changes the scope 

of the source Positions, since it is not interested in the data fragment of the node D, in contrast of the 

other both queries. Q3 does not accomplish our definition of similarity since one of its sources does 

not match.  

 

 

Q2:  join-query = < 

      Projection-expression = {*}, 

      Sources = { 

        SP=<Positions P,{<Area, =, 3>}, 

            {local, J, D}>, 

         SS= <Servers S, {}, {global}>} 

       Joins = {<SP.Area, =SS.Area> }  

       Subqueries = {} 

> 

Q1:  join-query = < 

      Projection-expression = {Avatar}, 

      Sources = { 

        SP=<Positions P,{<Area, =, 7>}, 

            {local, J, D}>, 

         SS=<Servers S, {}, {global}>} 

      Joins = {<SP.Area, =SS.Area> }  

      Subqueries = {} 

     > 
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Q3:  join-query = < 

           Projections= {*}, 

           Sources = { 

              SP= <Positions P, {<Area, =, 7>}, {local, J}>, 

              SS= <Servers S, {}, {global}>} 

           Joins = {<SP.Area, =SS.Area> }  

           Subqueries = {} 

> 

 

The fact of considering only these query features remains some flexibility that can lead to cost 

estimation errors. For instance, the communication cost can drastically change in function of the size 

of query results, which is directly bound to the values of the condition restrictions. However, a very 

rigid similarity function leads to knowledge very difficult to exploit, since the gathered plan and 

measures will be useful for very few further queries.  

We try to compensate this margin of error at the query-case retrieving process that we explain 

in Section 4.5.1. As we mention in the introduction of our approach, a query case is exploited taking in 

consideration the similarity of queries in first instance, but also the cost estimation of preselected plans 

looking for that one that minimize the specified optimization objective. 

4.2.2 Formalization 

The previous prospective definition of query similarity specifies that two queries Q1 and Q2 are 

similar if they have similar Sources S1 and S2, and identical join conditions J1 and J2. The other query 

elements (i.e. projections) are not taken into consideration. If Q1 and Q2 comprise subqueries Sq1 and 

Sq2 respectively, the similarity function is applied recursively over such queries. Our similarity 

function () is a conjunction of comparative functions over the query features, specifically its sources 

and its join conditions. It is specified below, where 

(Q1,Q2)=FS(S1,S2)  FJ(J1,J2) 

 

The comparative function of similarity between sources is denoted by FS, the comparative 

function of equality between joins is denoted by FJ. Next subsections define and formalize the 

similarity of sources, and the equality of joins.  

The literature states that the absolute similarity model establishes a binary relation, i.e. 

:→→Bool; where the similarity function () takes as parameters two elements of type  and 

returns a boolean value. This relation is reflexive (x  x – or equivalently x  x = true), since any 

object is equivalent to itself, and symmetric (xy ⇔ yx), since if an object is similar to another, the 

reverse holds as well.  In our approach, this relation is also transitive(x  y and y  z, thus x  z), thus if 

a query Q is similar to two queries Q1 and Q1, thus these two queries are similar to.  

Similar Sources 

For determining the similarity of sources we analyze their components. According our abstract 

representation of query, such components are: an Itemset (I), (ii) a scope (Sc), and (iii) a set of 

restriction conditions (Rc). Two sources s1 and s2 are similar if they concern the same fragments of 

the same Itemset(s), and the restriction conditions over such Itemset(s) are similar. We formalize our 

definition of query similarity using the set theory.The similarity between two elements is denoted by 

the symbol () i.e. mathematical symbol of similarity. 
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s1  s2 iff I1 = I2 and Sc1 = Sc2 and Rc1  Rc2 

  

Where I1, Sc1 and Rc1 correspond to the components of the source s1; and I2, Sc2 and Rc2 

correspond to the components of the source s2. Two Itemsets are the equal if they concern the same 

Itemset identifier. The fragments of an Itemset are equal if s1 and s2 have the same scope. A scope Sc 

is a set that comprises a set of node identifiers Sc = {n1, n2, .. , ni}. Two scopes Sc1 and Sc2 are equal 

if both comprise exactly the same node identifiers: Sc1Sc2=   and   Sc2Sc1=.  

Two sets of restriction conditions Rc1 and Rc2 are similar if for any restriction condition ri 

in Rc1, exists a similar restriction condition rj in Rc2, and vice verse. The variables i and j belong to the 

domain N i.e. natural numbers. 

 

Rc1  Rc2  iff    riRc1    rjRc2  | rirj    and, 

  rjRc2  riRc1  |  rjri 

 

Our definition of query similarity remains flexible when comparing restriction conditions 

allowing that two queries are similar if their restriction conditions are similar as well, but not 

necessarily equal. A restriction condition comprises: an attribute, a comparison operator, and a value 

or subquery, as explained in our abstract query representation. Two restriction conditions r1 and r2 

are similar if they concern the same attribute (identifier) and the same comparison operator. r1  r2    

iff    attr1=attr2   and   co1=co2; where attr1 and co1 belong to r1 and attr2 and co2 belong to r2.  

Finally, two sets of sources S1 and S2 are similar if for any source si in S1 exist an equivalent 

(similar) source sj in S2, and vice versa.  The variables i and j belong to the domain N i.e. natural 

numbers. 

 

S1  S2   iff     siS1    sjS2 |  sisj   and, 

  sjS2    siS1  |  sjsi 

 Equal Joins 

If the set of sources of Q1 and Q2 are similar, then the set of join conditions binding such 

sources are analyzed. A join condition comprises a source-field from each of the both sources (left 

operand and right operand) to join, and the comparison operator, as previously defined in the abstract 

query representation. Two join conditions j1 and j2 are equal if they concern the same source-fields 

(identifier) and the same comparison operator:  

 

j1 = j2  iff sf1[left]=sf2[left] and sf1[right]=sf2[right]  and co1=co2 

 

Where sf1[left] and sf1[right] and co1 are the components of the join condition j1; and sf2[left] and 

sf2[right] and co2 are the components of the join condition j2.  

 

Finally, two sets of Joins J1 and J2 are equal if for any join condition ji in J1, there exist an 

equal join condition jj in J2, and vice versa. The variables i and j belong to the domain N i.e. natural 

numbers. 

J1 = J2   iff    jiJ1    jjJ2|ji = jj  and, 
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   jjJ2    jiJ1|jj = ji 

4.3 CASE FOR A QUERY FAMILY 

We take advantage of the query similarity function for clustering cases in families. A family comprises 

cases of similar queries. Thus, two query cases QCi: <Qi, Pi, Mi> and QCj: <Qj, Pj, Mj> belong to the 

same query family QF if Qi is similar to Qj, where i  j. The queries within cases from QF have some 

common features that we represent as a query template. The plan from any case within QF serves, with 

some settings, to evaluate any query that fits with such template. Such plan settings basically consist in 

replacing the parameter values of some plan operators, not worth to keep those parameter values for 

case storage; instead, the plan comprises empty parameters. Figure 4.3 depicts a query family.  

 

Figure 4.3. Alternative plan templates for solving a query family 

 

 The previous remarks bring us to review our original definition/representation of query case, 

since a case comprises query feedback to be exploited to improve the evaluation of a family of similar 

queries, and not only for a particular query. Thus, a slight variation of the case components is as 

follows: QCi : <QF, PF, MG>; where QF is the query template representative of a query family. PF is 

a template of a physical plan (since some of its operators have empty parameters) that is used for 

evaluating any query Q that fits with QF. Finally, MG corresponds to the global measures of resources 

consumed during the evaluation of Q using the plan template PF. Section 4.1.3 explains the content 

and representation of global measures, where we have already considered that such measures represent 

the resources consumed by a plan executed for evaluating several similar queries.  

 We conclude that a query family can be seen as an explored part of the space of possible plans 

(search space) for evaluating a family of queries; in contrast with the classical query optimization, 

where the search space is the set of possible plans for evaluating a single query. Two query-cases that 

belong to the same query family never comprise the same plan (no duplicates of solutions for 

executing queries). The size of a query family is specified by a customizable threshold that indicates 

the number of cases within the family. Next sections define the query template and the plan template 

for a query family.  
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4.3.1 Query template  

A query family is represented by a query template based in our abstract query representation. An 

example of query template for representing a query-family QF is presented below (Example 4.5): 

Example 4.5 - 

QF: query-template = < 

Projections = {var1: Expression} 

Sources = { 

SP= <Positions P, {<Area,=,var2:Value>}, {local,J, D}>, 

SS= <Servers S, {}, {global}>} 

Joins = {<SP.Area,= SS.Area }  

> 

 
Such template has specific and variable query features. It specifies the query features that are 

considered in the query similarity definition. According to our prospective definition of query 

similarity, this query template specifies: (i) the itemset (or query resultset) and scope of the source 

(e.g. the Itemset Position, specifically the fragments stored at the local node, and at nodes J and D); (ii) 

the attribute and operator of the restriction condition(s) e.g. <Area,=,>, and (iii) the join condition(s). 

The variables of the template correspond to: (i) the projection expressions e.g. var1, and (ii) the values 

of restriction conditions e.g. var2. Specific and variable features change for different definitions of 

query similarity. Similar queries fit with this template; they have different values for the template 

variables.  

4.3.2 Plan template  

A case is exploited for evaluating a family of queries (not a single query only). Thus, any query that 

fits with the template of certain query family QF can be evaluated using the plan from any case QCn 

that belongs to such family. Thus, this plan is not necessarily ad-hoc for solving a specific query Q; 

actually it serves for solving ay query similar to Q.  

We introduce the notion of plan template PF to designate a plan for evaluating similar queries. 

A plan template has identical structure and the same operators than a query execution plan; the only 

difference is that some of its operators have empty parameters. Such parameters correspond to the 

query properties that are not considered by the similarity definition. According to our prospective 

similarity definition, these operators are the print operators, the data access operators, and the message 

operators. In P, the parameters of a print operator correspond to specific projection expressions. In a 

query plan, the print operator has empty parameters that are adjusted according to the projection 

expressions of different queries. 
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Figure 4.4. Example of plan template 

 

The parameters of data access and message operators of a query execution plan correspond to 

subqueries of a given query. In a plan template, these operators receive templates representative of 

such subqueries. Figure 4.4 shows a local data access operator that receives as parameter the query 

template of a subquery, since some of its expressions and value conditions correspond to variables 

instead to specific values.  

4.4 CASEBASE 

In the CBR principle, the repository for storing cases is known as casebase or memory of knowledge. 

This section presents the structure of our casebase, and the organization and management operation 

that we propose for its maintenance and exploration.   

4.4.1 Indexing 

In this section we discuss the organization of the casebase for an efficient search and retrieval of cases. 

The organization of the casebase that favors the reasoning process depends on the application 

purposes. Some common approaches for organizing the casebase are: 

 Flat lists. It is inefficient for big casebases because of it requires exhaustive search of 

cases. The implementation of such structure is quiet simple. 

 

 Databases. This offers several advantages such as data security, data independence, 

data standardization and data integrity. However, this forces to represent cases as flat 

record of n-ary relations [ScBe00], in addition case retrieval is done through 

declarative queries e.g. SQL-like leading to our initial query optimization problem.  

 

 Nets. The net is composed by case-nodes and entities-of-information-nodes (IE). 

Cases are composed by an undefined number of IEs. In this approach the casebase 

and case structure are bound, which compromises the representation of cases to a 

particular structure. 
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 Index structures. Indexes are used to quickly and efficiently provide the exact 

location of data without exhaustive search. B-trees and Hash indexes are well known 

structures. The index of case may be seen as a case summarization and must encode 

the main case characteristics; it is say that the index represents the part of the problem 

which plays the direct role in the generation of the solution [Wort97][Bobe10]. 

The organization of our cases repository is based on the use of indexes. We create an 

(primary) index access structure based on hashing; where cases are indexed according to families. The 

index entries are of type where <QC, Pr>, where Pr is a pointer to the case containing the case QC. 

Such structure defines categories, also known as buckets (i.e. query families), and category samples 

(i.e. index entries). Thus, our index structure comprises buckets that correspond to query-families; a 

bucket groups entries according to the query-family to which the case belongs. Figure 4.5 depicts a 

casebase, and the casebase index structure. 

 

Figure 4.5. Casebase indexing 

 

The idea behind hashing is to provide a function h, called hash function, to determine the 

bucket to which an entry belongs. In our proposal, this function correspond to the definition of query 

similarity (a bucket comprises cases of similar queries). The advantage of this approach is that there is 

possible to maintain different indexes, each of them grouping entries according to different similarity 

functions, and without the need to modify the storage of cases, since this it does not matter, but only 

the organization of its pointers. The cases may be organized in a simple flat list (e.g. array structure), 

facilitating the implementation of this part.  

4.4.2 Management operations 

The management operations of a casebase include storage, retrieving and deletion of cases. The former 

inserts new cases to the casebase or updates some of the already existent cases within the casebase; 

this depends of the kind query feedback that is obtained during the query execution. The second 

selects relevant cases for evaluating a given query efficiently. The latter deletes useless cases to 

improve knowledge accuracy and to avoid the casebase overflow.  

Storage 
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Inputs: 

String feedback: The type of query feedback  

QueryCase case: The case to insert or to update 

CaseBase casebase: The casebase 

Query query: the submitted query 

 

Procedure: 

QueryCaseStorage(String feedback, QueryCase case, CaseBase casebase, Query 

query)  

BEGIN 

1 If (feedback = ‘query’)  

2  QueryFamily family = generateQueryFamily 

3  casebase.insert(family)  

4  family.insert(case) 

5 If (feedback = ‘plan’)  

6  QueryTemplate queryTemplate = query.getTemplate()/*template of  

7          submitted query*/ 

7  family = casebase.get(queryTemplate)/*searching within the  

8    casebase the family to which the case should belong*/ 

9  family.insert(case)  

10 If (feedback = ‘measures’)  

11  case.update(feedback)/*the used case temporally retains this  

12     feedback to recalculate its global measures*/ 

END 

For each query execution either, new cases are generated and inserted into the casebase, or some of the 

query-cases that already exist in the casebase are updated. This depends on the acquired feedback from 

the query execution:  

 A new query. The casebase does not comprise cases of queries similar to a given query. In this 

situation, the casebase is extended adding a new query family QF. A new query case is 

generated and inserted in QF.  

 

 A new query plan. The casebase comprises cases of queries similar to a given query Q, 

however a new plan is proposed for executing the given query. A new case is created and 

inserted into the corresponding query family. 

 

 A set of new global measures. A case from the casebase is used for executing the posed query. 

Therefore, the measures of such case are updated taken into consideration the computational 

resources consumed during this last query execution using the plan template that it comprises.   

 

The pseudo-algorithm presented below (Algorithm 4.1) exposes in straightforward manner the 

mechanisms for storing the different kinds of query feedback. It is required to insert a query case in 

two situations: (i) when a new query is evaluated, or (ii) when a new query plan is executed. In the 

first situation, inserting a case requires the preparation of the casebase to hold knowledge of a new 

type of queries. This preparation consists in generate a new query family QFn; then the bucket 

corresponding to QFn is added to the index. The case is stored and the pointer to such case is inserted 

into the corresponding QFn bucket.  

Algorithm 4.1. Storage (i.e. insertion or update) of a case within the casebase 

 

For inserting a case generated from the execution of a new query plan, the first step is to 

explore the index for identifying the query family to which the case should belong. To identify such 
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family we use a straightforward algorithm that analyzes the features of the posed query. The output of 

the algorithm is a string of characters that corresponds to the template of the query. Such string must 

correspond to the identifier (i.e. template of query family) of an index bucket. Once the query-family 

has been identified, the insertion process finishes by adding the new case within the casebase array 

structure, and inserting the corresponding case pointer within the casebase index structure.  

Updating a case specifically consists in updating its global measures. Thus, after a case has 

been used, the new global measures are temporally retained while recalculating the current global 

measures. This update method depends on the type of measures that have been decided to retain within 

cases. For example, global measures may correspond to computational resources consumed at the last 

plan, thus measures update consists in replacing the current case measures by the new ones. Another 

example of measures may be aggregated measures (e.g. the average); measures update consists in 

aggregating the new measures to the up to now measures within the case. Finally, if the measures are a 

little more complex, such as histograms, the new global measures are just added as new histogram 

values.  

Retrieving 

An important step of the CBR based optimization process is the retrieval of cases. Effective retrieval is 

the matter to find the query plan template that optimizes the execution of a given query. Our retrieving 

process is founded on the query similarity, and on the query plan optimality assessments. The pseudo 

algorithm of our retrieving process is presented below (Algorithm 4.2). 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4.2. Exploration of the casebase and retrieving of cases 

 

This approach takes advantage of the organization of cases in the casebase, and on the index 

structure for accelerating the access to cases. The case retrieving process is composed of two steps: (i) 

a pre-selection step that retrieve those cases that comprise queries similar to Q, and (ii) a selection step 

that retrieves the among the pre-selected cases the case having the query plan that minimizes a given 

cost function.  The second step is relevant only if there are enough cases containing similar queries.  

Inputs: 

Query query: The new query to solve 

CaseBase casebase: The casebase 

 

Outputs: 

QueryCase optimalCase: The query case that have the optimal plan template 

 

 

Procedure: 

QueryCaseRetrieving(Query query, CaseBase casebase) 

BEGIN 

1  /* Retrieving cases with similar queries */ 

2  QueryFamily family = casebase.get(query)  

3  if(family.size()  thresoldOfKnowledge)   

4  /* Retrieving the case with the optimal query plan */ 

5  Double optimalCost = max-value 

6  while (family.hasNext()) 

7   QueryCase case = family.next() 

9  Double queryPlanCost = computingCost(case)/*using a given cost  

10        function*/ 

11   if(queryPlanCost < optimalCost) 

12    optimalCost = queryPlanCost 

13    optimalCase = queryCase 

14  return optimalCase 

END 
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Retrieving cases with similar queries. This step consists in finding the cases that comprise queries 

similar to the query to be evaluated. This step is favored by the organization of the casebase, since it is 

enough to determine the query family to which the sought query cases belong. Recall that, all cases 

having similar queries are stored in a single query family.  

This straightforward process is an efficient way for detecting the cases that comprise all the 

learned query plans for executing the posed query, but not all of them are necessarily optimal 

according to a specific optimization objective. Nevertheless, the search space within the casebase has 

been reduced to a specific area. In the next retrieving step the searching for the optimal query plan will 

consider such reduced area only.   

Retrieving the case with the optimal query-plan. This step consists in finding among the pre-

selected cases the one that minimize the result of a given cost function. Such cost function is a 

mathematic formula that reflects an optimization objective, and that receives as parameters the 

measures of consumed computational resources (e.g. time, CPU, memory, energy, communication). 

The cost function may comprise a single measure, or a combination of them. For instance, the 

admittedly simplistic linear weight function presented below: 

OverallCost = <ExecutionTimeCost> + <MemmoryCost>+<CommCost> 

Where <ExecutionTimeCost> = α*t, <MemoryCost> = β*cpu, and <CommCost>= γ*msg. The 

coefficients: α, β and γ correspond to the weights associated to the parameter measures. Examples of 

such measures are: t:< time, 150, ms>, m:<memory, 200, kB>, and msg:<messages, 2, integer> 

saying that in this example the communication cost is measured in function of the number of exchange 

messages. In this function as more weight is associated to a parameter as more important is the 

optimization of the corresponding resources. The optimization objective is customized simply 

modifying the coefficients of weight in the cost function. We assume that exist other more elaborated 

cost functions that define different optimization objectives. The definition of a cost model is not one of 

the major aspects to address in this thesis.  

For better understanding the use of global measures to select the case having the query plan 

that minimizes a cost function let us analyze an example. For this example we suppose that the global 

measures of cases correspond to the average of computational resources consumed at several 

executions of their plans. We consider that measures average reflect the general behavior of a query 

plan; could be logic to think that as lower/higher are the average measures as less/more resources were 

consumed during the multiple executions of a plan. However, this is not always true as is shown next.  

Given a query Q that comprises the condition  c : <Area, = , ‘value’> where ‘value’=7, and 

the two cases QC1 and QC2 that belongs to the set of cases retrieved in the pre-selection step; let us 

consider that both query-cases have been already used for executing queries assigning three different 

values to c, as shown in the table below.  

 

Case 

value 
v1=5 v2=7 v3=3 

QC1= 131,6 ms 128 ms 115 ms 152 ms 

QC2= 124,6 ms 98 ms 147 ms 129 ms 

Figure 4.6 Global query execution time 
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In this table, the columns denote the values of the query condition, and the rows denote the 

case used for evaluating the query. The intersection of columns correspond to the time for executing a 

query with the condition value vi, and using the case QCi. Let us use the cost function presented before 

assigning the coefficient values α=1, γ=0 and β=0. Thus, the cost function is simplified to OverallCost 

= <ExecutionTimeCost>. The result of such cost function is equal to the average (i.e. the global 

measure within cases) of the execution time.  

Thus, if we take into consideration the average of measures for evaluating the plans cost, the 

retrieved case should be QC2. However, while QC2 has the plan that has minimized the execution time 

for the most of queries and that in consequence has the minimal time average; the case QC1 is the one 

that minimizes the time for the particular value of Q. This fact may lead to select cases with sub-

optimal plans. Other forms of global measures may also been used; for example histograms, which 

register the consumption of computational resources at each execution of a plan (instead of 

aggregating them in a single value).  

Deletion 

The query-case deletion process eliminates useless cases from the casebase. The final goal is to reduce 

the size of the casebase; this avoids the overflow of the casebase and accelerates the case retrieving 

process. Deletion policies in CBR correspond to selective retention filters. For instance elimination of 

redundancy and of knowledge producing unsuccessfully problem solving results. Such policies define 

when and how trigger the deletion action.   

 

 

 

 

 

 

 

 

 

 

Algorithm 4.3. Deletion of useless cases 

 

Our policy triggers the deletion of cases when a query family has reached a maximal size (i.e. 

threshold of knowledge). When this occurs, a set of cases within such a query family is deleted. The 

maximal number of cases may be different for each family (e.g. the size of families with cases of 

mono-source queries should be smaller than the size of families with cases of multi-source complex 

queries.  

The deleted cases are those that have been less used up to now for queries evaluation. This 

principle is based on the competence principle [Bobe10], that evaluate the utility of individual cases 

for problem solving. A case is annotated with a counter of the times that it has been used for queries 

Inputs: 

QueryFamily family: The query family that has reached its maximal size 

Integer threshold: A minimum number of case usages  

 

Procedure: 

QueryCaseDeletion(QueryFamily family, Integer threshold) 

BEGIN 

1  

2 while (family.hasNextCase){ 

3  QueryCase case = family.NextCase() 

4  Integer caseUsages = case.getCounter(); 

5  /*If the case does not reach the minimum number  

6  of usages specified by the threshold*/ 

7  If (caseUsages < threshold) 

8    family.delete(case.getIndex()) 

9  } 

10 } 

END 
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evaluation. The rare use of a case is due to it plan has reported high measures of consumed 

computational resources. 

The amount of cases to delete at each family may be specified in several ways, for example 

using a percentage of (e.g. 30%) in order to maintain a proportion between the number of deleted cases 

and the size of each query family. Another option is to delete the cases that do not reach a minimum 

number of usages; a prospective algorithm based on this approach is presented before. Whatever the 

threshold that indicates the cases that must be deleted, for deleting a case the casebase is explored 

exhaustively to find and delete the less used cases. This action stops when the casebase has been 

reduced in the number of cases specified in the percentage threshold.  

4.5 CONCLUSIONS 

In this chapter we specified the representation of a query case, and the representation of its 

components: (i) a query, (ii) a query plan, and (iii) global measures of resources consume during the 

plan execution. We based our query representation in the DLAQL query language; however our 

proposed representation can be easily adapted to SQL-like query languages. Such representation aims 

to simplify the comparison process to determine the similarity between queries.  Also, we recalled the 

representation of a query plan as a tree structure, and exposed the content and representation of global 

measures (different forms of queries may be used). 

We defined a similarity function between queries. Such similarity function allows us to 

generalize our case representation, as a case with feedback for solving a family of similar queries, 

instead to a particular query only. The casebase indexes cases in groups of families, this improve the 

operations for casebase management. In particular, the case retrieving process benefits from this 

casebase organization that accelerates the access to cases. Thus, the case retrieving process is 

decomposed in two steps, a pre-selection step that retrieves the cases with similar queries (family), and 

the selection step that computes the cost of plans using a given cost function. Such cost function is 

based on the global measures, which are essential to improve the accuracy of retrieving useful cases 

for solving a given query.  

The management of the casebase is fundamental to avoid its overflow and maintain up to date 

query cases. The management operations include storage and deletion of cases. The storage operation 

comprises insertion and update of cases, this depends of the feedback (i.e. new query, new query plan, 

or new global measures) gained from the execution of a query. The deletion operation eliminates 

useless cases. The cases are annotated with a counter of the times that they have been used. A 

customizable threshold specifies the amount of cases that must be deleted (e.g. specific number of 

cases, a percentage over the total number of cases within a family, the cases with a counter lower than 

some number of usages, etc.). 

So far we have presented the concepts and management mechanisms of our query 

optimization process. However, the mechanisms for the generation of plans and exploitation of query 

cases have not been addressed yet. Chapter 5 is consecrated to detail the query plan generation 

process.  

 

 

 

 



 

 

 

55..  QQUUEERRYY  PPLLAANN  GGEENNEERRAATTIIOONN    

This chapter presents our query plan generation process. Section 5.1 presents the general principle of 

such process that generates a query plan by retrieving a query-case and setting it according to the 

new query specifications. If no useful case is retrieved, we propose query plan generation process by 

applying well known query optimization heuristics and taking some random decisions (when classical 

query optimization techniques used metadata for estimating cost functions), for example the order of 

some operators, as well as their implementation algorithms. Section 5.2 details our pseudo-random 

top-down query plan generation, and Section 5.3 exposes our query plan setting process.  

Finally, Section 5.4 proposes a query plan summarization-regeneration process where a 

physical query plan is compressed to minimize the amount of memory required for storing a query-

case. The compact representation of a query plan is termed plan signature. The inverse process (i.e. 

plan regeneration) is to generate a physical query plan from a plan signature.  Section 5.5 concludes 

the chapter.  

5.1 PRINCIPLE 

Figure 5.1 depicts our query plan generation process through a flowchart. The input of the query plan 

generation process is a query expressed according to our query representation (see Chapter 4) and in 

terms of global sources. The generation of query plans for nested queries is independent and according 

to a specific scheduling (see Chapter 3). Basically, plans for low-level nested queries are generated 

first; such queries are evaluated and replaced by their resulting values before the generation of the top-

level queries.  

The query Example 5.1 presents a query for obtaining information of all the avatars located at the 

area 7, such query can be posed at any node and the system must globally executed it. This query will 

be used to illustrate our query plan generation process in the remainder of this chapter.  

Example 5.1   -     QEXAMPLE:join-query = < 

         Projections = {*} 

  Sources ={SP= <Positions P, {P.Area= 7},{local,J, D}> 

         SS = <Servers S, {}, {global}>} 

  Joins ={SP.OwnerID = SS.ServerID}> > 

 

Our query plan generation process comprises the following steps: (i) query-case retrieving, (ii) 

query-plan pseudo-random top-down generation and (iii) query-plan setting. Given a query Q, the 
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casebase is explored for retrieving a useful case (i.e. Query-case retrieving). When the process 

retrieves a case QC, the query plan generation process consists in setting plan template PF from the 

retrieved case according to the specifications of Q (i.e. Query-plan setting), the output of the process is 

the query execution plan P. 

 

Figure 5.1. Query plan generation process flowchart 

 

Please recall that cases are grouped in families; a family comprises cases generated from the 

execution of similar queries. Thus, a case is a triplet of the form QC:<QF, PF, GM>, where QF is a 

query template (comprises the common features of similar queries) representative of the query family 

to which the case belongs, PF is a template of query plan that can be set to any query that fits with the 

query template QF. PF has physical operators with some empty parameters that are adjusted during the 

plan setting process for generating the query execution plan P.  Figure 5.2 depicts an example of a 

query execution plan for evaluating our query example.  

When no relevant case is retrieved, a recursive process starts interleaving the Pseudo-random 

top-down generation and Query-case retrieving steps. The output of this recursive process is a plan 

PF. In this step, a binary operator (i.e. join and union) is selected by pseudo-random; and Q is 

decomposed in two subqueries Q1 and Q2. The selected binary operator is added to PF as a physical 

operator, the subqueries correspond to its operands (e.g. <subquery> ▷◁c
NJ <subquery> ). Section 

5.3.3 presents the query decomposition rules. Please notice that these subqueries are produced 

internally to the optimization process, thus are different from the nested queries (i.e. subqueries) at the 

original query expression (i.e. user query), which are independently optimized according to a specific 

schedule (see Chapter 3).    
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Figure 5.2 Alternative query execution plan 

 

The query-case retrieving process now searches relevant cases for Q1 and Q2, and so on. Let us 

consider our query sample Q, which comprises a join operation and two global sources (i.e. Positions 

and Servers). A global source corresponds to a union operation between subqueries for accessing local 

and distant source fragments. Thus, the optimizer may choose between the join operator, the union 

operator concerning to the global source Positions, or the union operator concerning to the global 

source Servers. Let’s say that the optimizer selects the join operator, the resulting partial plan template 

is shown in Figure 5.3.a.  

 

Figure 5.3. A plan template in different generation steps 

 

While Qn has at least one binary operator (i.e. join or union) the recursion (some branch) 

continues; generating part of the plan template by pseudo random and searching cases for the resulting 

subqueries. When a case for some subquery Qn is retrieved, the plan template PFn from such case (that 

solves the subquery Qn) is a construction block. In other words, it is a subplan that is reused as part of 

the complete plan template for solving Q. Figure 5.4 depicts an example of a plan template that were 

generated by reusing a subplan PFn.  

The generation of the query plan template is accomplished when there is no more subqueries 

with binary operators, as shown in Figure 5.3.b. Thus, all the leaf nodes of the tree are unary data-

access (local, distant or program invocation) operators. Once the plan template is completed, it is set 
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according to the specifications of the query during the plan setting process; the output is the plan for 

executing the query. The corresponding plan template is kept within a new case to be reused for 

further queries.  

 

Figure 5.4. A plan template that reuses a query case 

 

Our query plan generation process may generate or update several query-cases; one that 

correspond to the whole query Q, and others that correspond to the subqueries resulting from query-

plan generation process. A new query-case is generated when a new plan template is generated by 

applying the pseudo-random process. A query-case is updated when a plan is reused. 

 
Figure 5.5 A plan template and its subplans 

 

Thus, the generation of the plan template in Figure 5.4 triggers the generation / insertion of the 

new case QC:<QF, PF, M> within the casebase; but also of the query cases QC1:<QF1_id, PF1, M1> 

for the subquery Q1. Also, the already existent case QC2:< QF2_id, PF2, M2> (used as subplan for the 

construction of PF) must be updated. Figure 5.5 shows a query plan template and its subplans. Chapter 

4 presents the algorithms for storing (i.e. insert or update) cases within the casebase. The general 

pseudo-algorithm of our query plan generation process is presented below (Algorithm 5.1). 
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Input(s): 

Query query: A given query  

Output: 

QueryExecutionPlan P: A query executable plan 

Procedure 1: 

Plan_generation(Query query)  

BEGIN 

1  PlanTemplate PF /*Plan template*/ 

2  PF = generating_PF(query, PF) 

3  QueryExecutionPlan P = setting(PF, query)/*Pseudo algorithm in Section  

4         5.4*/ 

5  return P  

END 

 

Input(s): 

Query query: A given query  

PlanTemplate PF: Plan for a family of queries 

Output: 

PlanTemplate PF: Plan for a family of queries 

Procedure 2: 

generating_PF(Query query, PlanTemplate PF) 

1  QueryFamily family = query.getQueryFamily() 

2  QueryCase case = retrieving(family)/*Reuse of PF from retrieved case  

3      detailed algorithm in Section 4.4, Chapter 4*/ 

4  If (retrieving) 

5      return PF 

6  else 

7      PF = pseudo_random(Q, PF)/*Partial generation of PF by pseudo-random, 

8      detailed algorithm in Section 5.3*/ 

9    Query Q1 = PF.getLeftQuery  

10    Query Q2 = PF.getRightQuery  

11    If(Q1.hasBinaryOp) 

12       PF = generating_PF (Q1, PF) 

13    else  

14      return PF 

15    If(Q2.hasBinaryOp) 

16       PF = generating_PF (Q2, PF) 

17    else  

18       return PF 

19    return PF    

END 

 

 

Algorithm 5.1. Query plan generation process 

 

In summary, a query execution plan is generated during a recursive process that integrates a 

pseudo-random exploration of the search space (i.e. pseudo-random top-down generation technique) 

and the exploitation of query cases (i.e. query-case retrieving and plan setting). The query case 

retrieving process has been addressed in Chapter 4. This chapter presents in detail the pseudo-random 

plan generation and plan setting processes in Section 5.2 and Section 5.3 respectively.  
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Input(s): 

Query query: A given (sub) query  

PlanTemplate PF: (partial) Plan for a family of queries 

 

Output: 

PlanTemplate PF: (partial) Plan for a family of queries  

 

Procedure: 

pseudo_random(query, PF)  

BEGIN 

1    Operator binaryOp 

2    binaryOp = query.getBinaryOp() /*random selection of a binary operation*/ 

3    Operator o = generatePhyisicalOp(binaryOp) 

4    Vector <Query> subqueries = query.decompose(binaryOp) /*decomposition of Q 

5       according to rules in subsection 5.3*/ 

6    Operator Q1 = subqueries.get(0)  

7    Operator Q2 = subqueries.get(1) 

8    o.leftChild(Q1) 

9    o.rightChild(Q2) 

10   PF.add(o) /*add to the current PF the block: binary operator,  

11            Q1, Q2*/ 

12   Return PF 

END 

5.2 PSEUDO-RANDOM TOP-DOWN PLAN (TEMPLATE) GENERATION 

This section addresses the second step of our plan generation process, the pseudo random-random 

generation. It comprises two steps: (i) selects a binary operation of a given query Q, (ii) decompose Q 

in two subqueries Q1 and Q2 by applying rewriting rules; such subqueries are the operands of the 

selected operator. Section 5.3.3 presents the rules for rewriting a query from the selection of a join or a 

union operator. The application of such steps generates a partial plan template. These steps are 

recursively applied for a top-down generation of a full plan template as shown in Figure 5.3; the last 

recursion occurs when all the left nodes of the plan are unary operators.   

This generation process considers classical optimization heuristics for reducing the size of 

intermediate results. Such heuristics include: (i) applying selection conditions first, (ii) applying 

projections as soon as possible, and (iii) avoiding Cartesian products. When classical optimization 

uses metadata (e.g. selectivity factor for ordering join operators) this process does random decisions, 

specifically for the selection of binary operators (thus the ordering of joins and unions), and for the 

selection of execution techniques to implement the plan operators.  The pseudo-algorithm of our 

pseudo-random process for generating a plan template is presented below (Algorithm 5.2). 

Algorithm 5.2. Pseudo-random top-down generation process 

 

A plan template is generated by pseudo-random in the three following situations: (i) when the 

casebase does not comprise relevant cases for a given query Q (nor for subqueries of Q), (ii) during the 

learning process, when the casebase is supplied with query-cases until reach a customizable threshold 

of knowledge (i.e. number of cases by query-family), and (iii) to continue learning; even if the 

threshold of knowledge for a query family has been reached, a low percentage (e.g. 10%) of the plans 

are still generated by pseudo-random to try other alternative plans and this continue the search space. 
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5.2.1 Heuristics and random decisions  

Applying heuristics 

Classical query optimization techniques apply the mentioned heuristics by pushing-down selection 

conditions and distributing projection expressions over the leaf-nodes (i.e. data-access operators) of an 

algebraic query tree [ElSh11]. The leaf nodes of our plan are data-access operators or communication 

operators. The access-operator retrieves local data by executing (at the current node) a subquery 

resulting from the top-down decomposition of the query Q. The communication operator sends 

through the network some of such subqueries to be executed at some remote node.  

According to our query representation, these subqueries comprise: (i) a set of sources, (ii) a set 

of join conditions and (iii) a set of projection expressions. Each source comprises the selection 

conditions that it concerns as follows: <source>:= (<fragment>, [<select-condition>*], <scope>). 

The selection conditions are applied at the moment that a fragment of data is accessed. To fulfill the 

second heuristic, our query decomposition distributes the projection expressions according to the 

sources that a query comprises (our query representation is detailed in Section 4.1.1, Chapter 4).  

 

 

Figure 5.6. Example of query-plan and subqueries 

 

Figure 5.6 depicts part of the query execution plan for Q (right side), and the subqueries (left 

side), parameters of its data-access and communication operators. For instance, Q1.1 is a query 

executed at the local node, the access to the source is delegated to the local data management system; 

Q1.2 is wrapped in a message and sent through the network to be distantly executed at some remote 

node(s). Such subqueries filter sources data ipso facto at the moment and at the node where they are 

executed, achieving the minimization of partial results (and naturally, data exchanging through the 

network).  

Selecting binary operators 

The order of binary operators (i.e. join and union) is one of the main concerns in the 

optimization of a query. From their ordering depends the set of subqueries resulting from 

decomposing a given query. Naturally this also affects the necessary computation and exchange of 

partial results. Select the optimal order for these operators is a hard problem. Join and union operators 

can be ordered in several ways due to their commutative and associative properties [ElSh11][Liu00].  
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Our pseudo-random plan generation process selects binary operators by random, as exposed 

before. The rational of this random selection is due to the lack of information on data for the prior 

costs estimation, as used to be in classical query optimization techniques. Remain that the pseudo-

random plan generation is a process for learning the computational resources that a query plan 

demands during its execution, and reuse this knowledge for optimizing further queries (i.e. 

progressively discard query-plans with poor performance and/or detect promising query-plans).  

This idea approximates the basic principle of genetic algorithms [OwKS05], where a 

preliminary set of query-plans is randomly created, such set corresponds to the “zero” generation of 

solutions. Then, each next generation is determined by propagating the solutions that minimize a given 

cost function for the next generation, combining some query-plans propagated in the previous step, 

and randomly altering some others. Our query optimization process shares some of these ideals when 

exploiting query-cases from the learning process.   

Chapter 2 exposes a wide range of proposed search strategies; all of them put special attention 

on the order of binary operators (joins particularly). Seminal search strategies, such as deterministic 

strategies [SACL79] [KoSt00] [SwGu88][ShYT93][LVZC91], and randomized strategies [IoKa90] 

[StMK97] [IoWo87] [SwGu88] fully depend on specific information on data (e.g. location and 

cardinality of data sources, data values distribution, etc.). As discussed so far in this thesis, there is no 

guarantee that such information is available in a highly distributed data systems. Therefore, some 

distributed query optimization approaches simply assume that the required metadata exists, examples 

of such works are presented in [OuBo04]; others use feedback from queries execution for updating 

and tuning some metadata [SLMK01][AbCh99b]. More dynamic optimization techniques proposed to 

operators re-ordering during query execution [KaDe98][INSS97][IFFL99][AvHe00] [UrFA98]; they 

consider real-time parameter values pursuing to a query re-optimization process; however they use 

them and then forget them (instead of learning from them). 

Selecting execution techniques 

Query execution plans are typically abstracted by means of algebraic operator trees, which define the 

order in which the operations are executed. They are enriched with additional information, such as the 

best execution techniques for each operation. Our approach does not include this abstraction, our 

query plan generation algorithm selects the operators ordering (i.e. pseudo-random selection of binary 

operators), and the execution technique for its implementation (Figure 5.6 depicts a nested-join ⋈NJ) at 

one stroke.  

Selecting the execution techniques for implementing the operators in the query plan is mostly 

made by random; but when possible, we consider the advantages and disadvantages of distributed 

query execution techniques that the database literature has compiled, especially those of distributed 

join algorithms [Koss00]. For example, the parallel execution of join operands often leads to a faster 

execution; however a sequential execution can minimize the number of exchanged messages. 

Experimental work indicates that the semi-join is not the best option for standard (e.g. relational) 

distributed databases because of the additional computational overhead is usually higher that the 

savings in communication cost. However there are applications that involve tables with very large 

tuples where the semi-join technique can indeed be very attractive [SKBK00]. The advantages of the 

hash-join [WiAp93] algorithm (and its variants [IFFL99]) is the delivery of query partial result as 

early as possible and the fully exploit of parallel pipeline reducing the overall response. It is an 

unfavorable technique for optimizing the memory usage.  
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The optimization process ought to consider this information, in such a way to apply the most 

promising execution techniques according to the optimization objectives. It is hard to know which is 

the best combination; there are also many other variants that affect. In our query optimization 

approach, we learn how the different strategies work, and eventually consider the obtained knowledge 

for further optimization decisions. The exploitation of query knowledge (i.e. query-case) is presented 

in detail in Section 5.4. 

5.2.2 Localization 

For query plan generation we need to consider the localization of data to be queried. In our approach, 

data localization is determined by analyzing the scope of source(s) comprised by a given query. Such 

scope indicates the nodes storing the fragments of sources that must be queried (see our representation 

of queries in Chapter 4).  

The scope of a source may be: (i) local (i.e. fragment of S stored at the local node only), (ii) 

distant (i.e. fragments of S stored at remote nodes but not at the local node), or (iii) global (i.e. 

fragment of S stored the local node, but also fragments of S stored at remote nodes). The distant 

fragments may correspond to those stored in all the nodes of the system, or fragments from specific 

nodes indicated in a list of the corresponding node identifiers. 

A query may be evaluated locally, distantly or globally depending on the scope of its sources. 

Therefore, according to the localization of data to be queried, there are three situations to consider in 

our pseudo-random top-down plan generation process:  

1. If the source(s) of Q has (have) local scope only, the query must be locally evaluated. The 

query Q corresponds to the parameter of a local data access operator i.e. Loc(Q). Such 

operator is attached to the current plan. This also implies that that branch of recursion has 

been finished (part of the plan). Let us suppose that the query in our Example 5.2 has 

sources with local scope only; the plan comprises an operator for querying the local data, 

and a print operator for returning the query result.  

 

2. If the source(s) of Q has (have) distant scope only, the query must be remotely evaluated. 

The query Q correspond to the parameter of a message operator i.e. Msg(Q). A message 

operator is added for sending the query through the network to the pertinent node(s). This 

also implies that that branch of recursion has been finished (part of the plan). If the query in 

Example 5.2 should be evaluated distantly only, the generated query plan should comprise 

massage operator as leaf, and a print operator for returning to the user the query result. The 

optimizer selects the dissemination algorithms for the message propagation.  

 

3. If some source(s) of Q (at least one) has (have) global scope, the query must be globally 

evaluated. In this case, another recursion of the plan generation is carried out, by randomly 

selecting a top binary operator (and is execution technique) and decomposing the query 

once more, and so on. Let us recall that a source with a global scope corresponds to the 

union of subqueries for accessing local and distant source fragments.    
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5.2.3 Query decomposition 

The selection of a binary operator during the query plan generation involves the decomposition of the 

original query in two subqueries. Each subquery corresponds to an operand of the selected binary 

operator. This section explains the query decomposition rules from the selection of union and join 

operators. The query in Example 5.2 is used in the remainder of this section to illustrate our 

explanation of the decomposition of queries.  

 

Example 5.2   -     Q:  join-query = < 

Projection-expression = {Avatar}, 

Sources = { 

   SP= <Positions P, {<Area, =, 7>}, {local, J, D}>, 

   SS= <Servers S, {}, {global}>} 

Joins = {<SP.Area, =SS.Area>}  

     > 

Decomposition rule for union operation 

Until now we have talk about the selection of binary operators i.e. join and union. While the join 

operation is explicitly included in the specification of the query; this is not the case for the union 

operator. The union operator derives from decomposing a given query in terms of the fragments of 

sources to be queried. Thus a query that comprises global source(s) is decomposed in subqueries 

expressed on source fragments and operators (typically unions) for materializing a global source from 

the subquery partial results. 

Decomposing a global query in terms of fragments used to be a pre-optimization process; in 

our approach it is included within in the query plan generation. Thus, the pseudo-random process 

carries out the localization of the query (if required) at one stroke while selecting the when selecting 

the operators ordering. When a binary operator is selected, actually the optimizer decides between a 

global source and a join operator. The advantage of this approach is that once an operator is selected, 

its position is preserved in the remainder of the plan generation. Classical query optimization 

techniques receive as input a localized query, where the lefts of the algebraic query tree correspond to 

the operators for global sources materialization. During the query plan generation process some 

heuristics (i.e. pushing up union operators) are applied to re-order the operators of the received 

tentative plan [OzVa11]. 

Thus selecting a global source implies to add a union operator to the query-plan. Such 

operator unites partial results from local and distant data fragments. Thus, the first step is to 

decompose the concerned source in its local/distant fragments. Considering the sample query Q, the 

result of decomposing the source SP is as follows: 

SPL= <Positions P, {<Area, =, 7>}, {local}> 

SPD= <Positions P, {<Area, =, 7>}, {J, D}> 

 

Rule 1. The query Q is duplicated in Q1 and Q2. The source SP in Q1 is replaced by the source SPL (the 

local fragment of SP). The source SP in is replaced by the source SPD (the distant fragment of SP). The 

resulting queries Q1 and Q1 correspond to the operands of the union operator.   

 

Q1: join-query = < 

Projection-expression = {Avatar}, 
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Sources = { 

SPL= <Positions P, {<Area, =, 7>}, {local}>, 

SS= <Servers S, {}, {global}>} 

Joins = {<SP.Area, =SS.Area }  

Subqueries = {} 

> 

 

Q2:  join-query = < 

Projection-expression = {Avatar}, 

Sources = { 

SPD= <Positions P, {<Area, =, 7>}, {J, D}>, 

SS= <Servers S, {}, {global}>} 

Joins = {<SP.Area, =SS.Area }  

Subqueries = {} 

> 

 

Figure 5.7 presents the plan generated at this step.  This is an incomplete plan, since Q1 and Q2 

comprises binary operators, which means that (at least) another recursion of the plan generation 

process must be carried out. Let us recall that the process stops when subqueries concern to a single 

source, thus comprising unary operators only.      

 

 
Figure 5.7 Query plan after query decomposition by union selection 

 

Decomposing rule for join operation 

Let’ say that the optimizer selects the join of Q instead of the source with global scope. We add some 

components to Q to illustrate the example.  

Q = join-query = < 

Projection-expression = {Avatar}, 

Sources = { 

SP= <Positions P, {<Area, =, 7>}, {local, J, D}>, 

SS= <Servers S, {}, {global}> 

SC= <C, {...}, global> 

SD= <D, {...}, local> 

SE= <E, {...}, local}> 

} 

Joins = { 

JPS=<SP.Area, =SS.Area>  

JSC = <S, C, jcondBC> 

JCD = <C, D, jcondCD> 

JDE = <D, E, jcondDE> 
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}  

Subqueries = {} 

> 

 

Rule 2. The components of the query Q are split in two subsets Q1 and Q2, in such a way that Q1 

comprises the source S1 and any other component of Q directly or indirectly related to S1. In the same 

way, Q2 comprises the source S2, and any other component of Q directly or indirectly related to S2. No 

component of Q belongs to the two generated queries at the same time Q1  Q2 = {}. The resulting 

queries Q1 and Q1 correspond to the operands of the union operator.    

An indirect relation between query components is defined by transitivity, such that X → Z 

because of X → Y and Y → Z. For instance, let’s say that the optimizer selects the join JCD. In our 

query example, the source SC is directly related to JCD as a join operand. In the other sense, it is also 

true that JCD is directly related with the source SD as a computing operator over its data. Therefore we 

can say that SC → SD, because of SC → JCD and JCD → SD.   

The components of each subquery result from an extensive transition including all the query 

components. The transitions for generating Q1 are: SC → JSC → SS → JPS → SP. The transitions for 

generating Q2 are: SD → JDE → SE. This rewriting generates the following subqueries.  

 

Q1: join-query = < 

Projection-expression = {Avatar}, 

Sources = { 

SC= <C, {...}, global> 

SP= <Positions P, {<Area, =, 7>}, {local }>, 

SS= <Servers S, {}, {global}>} 

Joins = { 

JSC = <S, C, jcondBC> 

JPS=<SP.Area, =SS.Area>  

}  

> 

 

Q2: join-query = < 

Projection-expression = {Avatar}, 

Sources = { 

SD= <D, {...}, local> 

SE= <E, {...}, local}> 

} 

Joins = { 

JDE = <D, E, jcondDE> 

}  

> 

 

Figure 5.8 depicts the plan generated at this step.  This is partial plan not ready yet to be 

executed.  
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Figure 5.8 Query plan after query decomposition by join selection 

5.3 PLAN SETTING 

Plan setting is the third and last step of our CBR-based query plan generation process. It receives as 

input a plan template, and produces the (close to optimal) query execution plan. The plan setting 

process adjusts a plan template to the specifications of a given query. It succeeds the query-case 

retrieving (reusing the plan template from such case) or the top-down pseudo-random generation of a 

new plan template. This process fulfills the empty parameters of the operators in the plan template. Its 

output is an executable query plan. The plan setting does not modify the shape of the plan template 

(order of operators).  

Setting the print operator (root of the plan tree) of the plan template is a straightforward step; 

such operator receives as parameters the projection expression of the query to be evaluated. A 

projection expression may include attributes, aggregation/arithmetic functions, and values (see 

Chapter 4). Then, there is a recursive process for propagating projections among the remainder of the 

plan operators. The objective is to minimize the size (i.e. number of attributes) of intermediate results.  

The unit of data manipulation is an item, as explained in Chapter 3. Thus, any inner or leaf 

operator must output items comprising values of a subset of attributes included in the query projection 

expression. Such items also must include values of attributes (e.g. attributes in join conditions) 

required for the execution of operators (e.g. joins) at higher levels. Operators are set to the appropriate 

projection expressions.  On the other hand, data-access and communication operators also must be set 

according to the selection conditions of the new query. These conditions are extracted from the 

original query. Figure 5.9 shows an example of a plan operator setting.  
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Input(s): 

PlanTemplate PF: Template of a plan for a query family  

Query query: A given query  

Output: 

QueryExecutionPlan P: PF set to the specifications of Q 

Procedure 1: 

Plan_setting(PlanTemplate PF, Query query)  

BEGIN 

1 Operator print = PF.getTopOperator(); /*set projections for print  

2        operator*/ 

3 Vector <ProjectionExpression> exp = query.getProjectionExpression(); 

4 operator.set(exp); 

5 exp = tacke_off_values(exp); 

6 propagation(PF.getSubPlan(), query, exp)/*heuristic – propagation of  

7      projections and selection conditions*/ 

8 return (QueryEXecutionPlan)PF; 

END  

 

 
Figure 5.9 Setting a plan template 

 

Thus, the set of data-access or message operators is achieved in three steps: (i) identify the 

source(s) that the operator concerns, (ii) extract from the given query the projection expressions and 

selection conditions of such source(s), and the projection expressions required by the parent operators, 

(iii) finally, assign such values to the query template. Let us recall that in the plan template the 

parameters of these operators correspond to query templates, the setting process fulfill the missing 

parts of these templates.  

For example, the local data-access operator that has a query template that comprises an empty 

projection expression, and the source SPL = <Positions P, {<Area, =, Value>}, {local}>. To fulfill this 

template, we extract from the query example the selection condition <Area, =, 7> that concern to the 

global source SP (are applied for local SPL and distant SPD data). According the schema POSITIONS 

(Avatar avatar{key}, Int area, nodeID owner), the projection expression <Avatar> in the query also 

concerns to the source SPL. The general pseudo algorithm of our plan setting process is presented 

below (Algorithm 5.3). 
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Algorithm 5.3.  Plan setting process 

 

The setting process pursues to straightforward adjustment of the original plan template. It aims 

to make the most of the acquired query knowledge i.e. the query plan with the lowest execution cost 

for a given optimization objective. Complex adjustments of the plan template, like adding and/or 

removing operators, may drastically change (i.e. increase) the consummation of resources, defeating 

the purpose of the query optimization approach proposed in this thesis.  

It is important to evoke that the definition of query similarity plays an important role in a plan 

setting. Plans used for evaluating past queries are reused and set for evaluating further similar queries, 

how complex is such plan setting is determined by the query similarity definition. A very flexible 

definition of similarity yields to complex plan setting, since two queries are similar even if they have 

quite differences, for example different join operations. In contrast, if the similarity function is more 

restrictive, a simplistic plan setting is required as in our case.   

In some applications it is wise to use complex plan settings methods, while in others, the 

simple adjustments are the best option. Complex settings can yield to infeasible plans, then requiring 

recursive methods for verifying the plan feasibility and for re-adjusting the plan when required until 

achieving a viable plan (it is not always possible). In the worst case, plan setting can be harder than 

generating the plan from scratch. The benefit of a complex setting process is the diminishing of the 

complexity of other steps in the case-based reasoning process. For example, the more complex 

adaptation, the less cases are needed in the casebase; thus the coverage of each case increases. This 

may accelerates the query-case retrieving process and facilitates the casebase maintenance. 

A consequence of our admittedly straightforward plans setting method is the decrease of cases 

coverage and thus, the number of cases in the casebase augments to. Therefore, it is very important to 

accelerate the learning process and refine the strategies for maintaining the casebase. Chapter 4 

exposes our casebase management process. The pseudo algorithm for the recursive propagation of 

projection expressions is presented below. 
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Input(s): 

PlanTemplate PF: Template of a plan for a query family  

Query Q: A given query  

ProjectionExpression exp: … 

 

Output: 

Plan P: PF set to the specifications of Q 

 

Procedure: 

propagation(PlanTemplate PF, Query query, ProjectionExpression exp) 

/*propagation of projection expressions through   plan operators*/ 

BEGIN 

1 Operator operator = PF.getTopOperator(); 

2 ProjectionExpression proj; 

3 If (operator is biary) 

3 PFL = PF.getLeftSubtree(); 

4 PFR = PF.getRightSubtree(); 

5 If (operator is union)/*set projections for union operators*/  

6  proj = match (propagation(PFL, query, exp) 

7     propagation(PFR, query, exp) 

8  operator.set(proj) 

9 If (operator is join) /*set projections for join operators*/ 

10  expL = exp.add(operator.getLeftAttr()) 

11  expR = exp.add(operator.getRightAttr()) 

12  proj = intersect(exp, merge(propagation(PFL, query, expL), 

13        propagation(PFR, query, expR))) 

14  operator.set(proj) 

15 else  

16 If(operator is local-data-access or message)  

17  Query subquery = operator.getQuery() 

18  Source source = subquery.getSource() 

19  proj = intersect(exp, source.getAttributes()) 

20  RestrictionCondition cond= query.getConditions(source)    

21  operator.set(proj, conds) /*set projections and conditions for  

22      data access operators*/ 

23  return proj 

END  

 
Algorithm 5.3.  Plan setting process 

5.4 PLAN SUMMARIZATION AND REGENERATION 

The plan summarization and regeneration processes are supplementary steps that we include to the 

query plan generation process for minimizing the amount of memory used for the storage of query-

cases in the casebase. So far in this chapter, we have discussed the generation of several query-cases 

(and not a single one) from the execution of a query with the objective to learn more and faster. 

Storing such high amount of cases demands high memory consumption.  
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Figure 5.10 Expanded query plan generation process 

 

To alleviate the casebase overflow we proposed techniques for detecting and deleting useless 

query-cases. However, to minimize as much as possible the consumption of memory, we go one step 

further by proposing a compact way for representing and storing the plans in the query-cases. Figure 

5.10 illustrates the query-plan generation process including these supplementary steps. 

Currently, a query-case keeps: (i) the identifier of the query family to which it belongs, (ii) a 

list of values corresponding to the amount of consumed computational resources, and (iii) a physical 

query plan with some empty parameters. The memory for storing the two first elements is inexpensive, 

but storing a complex query plan (e.g. join of several sources) may require significant memory space. 

Thus, the summarization process generates a compact representation of a given physical plan PF, 

which we call plan signature. The generate query-case keeps such plan signature instead of the whole 

physical plan. The regeneration process makes the opposite to the summarization, it generates the plan 

PF from a given plan signature.  

 Query-plan summarization: Given a query Q from the query-family QF, a plan 

signature PS is generated by registering a summary of the optimizer decisions during 

the generation of the plan PF.  

 

 Query-plan regeneration. Given a query Q, from the query family QF, the plan 

template PF is generated by exploiting a query case QC. The process receives as input 

the plan signature PS extracted from QC. The plan template PF is generated by 

following the instructions in PS.  

A plan signature registers the decisions that the optimizer took for generating the plan 

template. Such decisions comprise the ordering of operators and the execution techniques for the 

operators’ implementation. For regenerating a plan template, the plan signature is interpreted as a set 
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of instructions to follow to build each operator of the plan and to bind the operators among them 

(parent-children relation) within the plan tree. The re-generation of the plan template is deterministic, 

the decisions for the first generation of the plan template are registered in the plan signature; the same 

decisions are made (followed) when such plan must be reused.  

Adding this supplementary steps represent a slight variation over the general query plan 

generation process presented in Section 5.2. The query plan generation process is carried out just after 

the query-case retrieving process. The plan signature is extracted from the retrieved case, a plan 

template is generated by following the instruction of the plan signature; the remainder of the plan 

generation process remains the same until the generation of the query execution plan. The 

summarization is a process triggered as background of the query plan generation process.    

We propose a summarization process for generating a compact representation of our query 

plan template that we call plan signature. The benefit is the minimization of the amount of memory 

requited for its storage. Such process is complemented with a regeneration process to generate a 

physical plan template from its compressed version. Next sections detail the integration of these two 

steps to our query plan generation process presented so far. Followed by a description of the plan 

signature, also we explain our plan summarization and plan regeneration processes. 

5.4.1 Plan signature  

A plan signature PS is a compact representation of a plan template PF. It registers the optimization 

decisions for generating PF. Such decisions concern the order of operators, and the algorithm for 

computing each operator. A plan signature is used to minimize the space of memory used for storing a 

case and for re-generating learned plans for evaluating further similar queries.  

A plan signature comprises a sequence of operators represented as tuples. Such tuples are 

listed in top-down order according to the levels of the plan template, i.e. the first tuple in the plan 

signature corresponds to the root operator. The plan signature registers the operators that were added 

to the query plan because of optimization decisions (some operators are added to the query plan just as 

a consequence of such decisions). Thus, the memory occupied is minimized by storing the essential 

knowledge only. For representing our plan signature, we use the context-free grammar that for queries 

representation in Chapter 4. A plan signature is represented as follows:  

 

<PlanSignature> := <(<operator>)*> 

<operator> := (<join > | <union> | <message>)  

 

A plan signature comprises join, union and message operators. It includes such operators since 

they involve inherent optimization decisions during the plan generation process, while other operators 

(i.e. local data-access operator and print) do not. For example, the optimization process must decide 

the order of binary operators (i.e. join and union). It also decides the execution techniques of operators 

for which a catalog of alternative algorithms exists (e.g. nested-join, semi-join algorithms for join 

operators, and synchronous our asynchronous send of messages).  

In our representation of plan signature, the operator identifier is a string of characters (i.e. J1 

for a join operator). The operators’ algorithms correspond to identifiers of programs; in our 

representation we will use string of characters (e.g. nested-join). A join operator comprises an operator 

identifier, a join condition and the execution technique for its implementation. The join condition 

comprises two source fields and a comparison operator (as the join condition of a query detailed in 
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Chapter 4). A union operator comprises an identifier and its execution technique. Finally, a message 

has an identifier, the protocol for its dissemination, and sometimes a next-hop (i.e. next destination 

node). 

<join>:= (<operator_Id> , <join_condition>, <join_algorithm>) 

<union> :=(<operator_Id>,<union_algorithm>) 

<message>:= (<operator_Id>, <QF_Id>,<dissemination_protocol>, [<next-hop>]) 

 

Some techniques considered for executing the join operator may be nested-join [ElSh11], 

semi-join [SKBK00], and pipelined hash-join [WiAp93]. The union operator is mostly parallel (i.e. 

invokes its operands at the same time), but also some times is sequential (i.e. invokes its operands in a 

certain order). A message can be send through the network by utilizing different data dissemination 

and query routing techniques [AlHM10][SuEt00], a simple example may be to send messages through 

the network in synchronous or asynchronous manner; also a message can follow different 

dissemination routes i.e. next-hop that corresponds to the identifier of the next destination node 

(intermediate or final). Finally, the query plan generation process ought to consider specialized 

algorithms i.e. programs for the distributed execution of frequent queries.  

 

 
Figure 5.11 Signature of a query plan template 

Figure 5.11 presents the plan signature (left side) of a plan template (right side). The join 

operator is the top of the plan template, within the plan signature such operator is identified as J1; it 

joins the global source SP (i.e. Positions) with the global source SS (i.e. Servers). The join condition is 

<SP.Area, =, SQ.Area>, and it will be computing using the nested-join execution technique. The 

operands of the join operator are the union operators U1 and U2. The union U1 is applied over the 

fragments of the source Position that are stored at the local node, and at nodes J and I, and that hold 

the condition Area=7. The output of U1 is the global source SP; such union operator invokes its 

operands in parallel.  

The union U2 is applied over the fragments of the source Servers that are stored at the local 

and at other remote nodes (not explicitly specified in the query); its output is the global source SS. The 

messages M1 and M2 are operands of U1 and U2 respectively. They send subqueries through the 

network to remote nodes for retrieving distant fragments of sources. The query in M1 fits with the 

query-family QF1, such message is send to node J, its next hope, using a synchronous dissemination 

protocol.  
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Some operators of the plan template are not specified in the corresponding plan signature, for 

example, the operators for accessing local data fragments. The plan signature keeps the essential 

information for the further regeneration of the plan template. The parameters of data access operators 

(local or distant) are subqueries that can be deduced from the order of join and union operators 

specified in the signature. Given a query Q, and an order of operators (i.e. joins and unions) for 

decomposing Q, the resulting subqueries will be systematically the same, thus the corresponding data-

access operators.  

Moreover, the order of some operators completely depends on heuristics or of the operator 

functionality itself. For instance, data access operators, and communication operators are the lefts of 

the tree (i.e. selection first, projection distribution, etc.).Thus, the subqueries within the message (i.e. 

distant data access) operators can also  automatically be deduce from the order of binary operators, 

however the message operators are included in the plan signature because of it is required to specify 

the execution technique that was used for its implementation.  

The previous operators and algorithms are those that we consider according to our definition 

of query plan in Chapter 3. However the specification of such operators can be modified for example 

by including other execution techniques; different operators can be included too. 

5.4.2 Summarization 

Summarization is the process for generating a plan signature from a plan template. Thus, the plan tree 

is traversed in breadth-first mode. Each reached operator (i.e. joins, unions and messages) is translated 

to our tuple representation and listed within the plan signature. Actually, the plan template is 

summarized, but also its subplans PFn. The corresponding plan signatures PSn are kept by the cases for 

the subqueries Qn. Please recall that our approach generates a case for the global query Q, but also for 

its subqueries (from the decomposition of Q during the plan generation process) while must be 

evaluated in distributed fashion.   
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Figure 5.12 Plan signatures PSn resulting from the query optimization process 

Figure 5.12 shows an example of a plan template, its subplans PFn, and the corresponding 

signatures. The plan template comprises the subplans PF1 and PF2, thus the plan signature (i.e. 

signature of PF) involves the signatures PS1 (i.e. signature of PF1) and PS2 (signature of PF2).  

The algorithm traverse the plan template (i.e. plan tree) in top-down fashion, it translates the 

operator that it is visiting into a tuple (plan signature representation). Such tuple is annotated with the 

identifier(s) of plan(s) to which it pertains. For example, the join operator belongs to the plan PF, the 

union operator belongs to the plan template PF, but also to PF1, thus it is annotated with the set {PF, 

PF1}. The algorithm verifies if the operator that it is visiting is a top operator, the root of a subplan 

PFn, for example, the union operator a top operator since is the root of PF1.  

  In general, the top operators are joins or unions. The rationale is that decomposition of a 

query Qn is triggered after selecting one of its binary operators; thus such operator is the root of the 

plan for evaluating Qn. The messages are also considered as top operators, since they also correspond 

to strategies for the distributed evaluation of queries. The output of the algorithm is the complete plan 

signature PS. The signatures PSn concerning the sub-plans PFn are generated by copying the tuples 

from PS that correspond to the subplan.   
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Inputs: 

PlanTemplate PF: Plan for a family of queries  

PlanSignature PS: Plan signature  

PlanID planIDs: Identifiers of subplans 

 

Outputs: 

   PlanSignature PS: Plan signature 

 

Procedure: 

summarize(PlanTemplate PF, PlanSignature PS, PlanID planIDs)  

BEGIN 

1 planIDs = PF.getID() 

2 Operator o = PF.NextOp /*First operator of the current PFn*/ 

3 Tuple t = translate (o) 

4 t.set(plansIDs) 

5 If(o.isTop()) 

6      PS.add(t) 

7      PF1 = PF.getPFleft() 

8      PF2 = PF.getPFright() 

9      If(PF1 != null) 

10           PS.add(summarize (PF1, PS, planIDs) 

11      If(PF2 != null) 

12           PS.add(summarize (PF2, PS, planIDs) 

13 else 

14      return t 

15 Return PS 

END 

Algorithm 5.4.  Summarization process 

 

PF may comprise new subplans, but also subplans from reusing query-cases; our process 

summarizes the new plans only. The subplans from reused query-cases are annotated to avoid its 

summarization (it is not worth since its PSn is already stored within the reused query-case).  Thus, PF2 

is regenerated using PS2, the top operator of PF2 is annotated as an already tested plan. PSn duplicates 

parts of PS; this represents a waist of memory. The advantage of this approach is that the query-cases 

are independent from each other. For example, the query-case QC is independent from QC1 and QC2, 

if some of these cases are deleted there is no impact for reusing QC.  

Another summarization approach consists in maintaining links to the signatures of subplans. 

Actually, such links correspond to the identifiers of query-cases that comprise the subplan signatures 

used for regenerating parts of a plan PF. A link is represented as a string of characters 

<QueryCase_ID>. The operators of the subplans are replaced by links to corresponding query-cases. 

For example, PS maintains references to the query-cases QC1:<QF1_id, PS1,M1>  and to 

QC2:<QF2_id, PS2,M2>. The advantage is the minimization of memory usage. In this approach, the 

query-cases are strongly bonded to each other, since the knowledge required for regenerating a plan 

PF may be spread in several query-cases. For example, the knowledge for regenerating our PF sample 

is spread among QC, QC1 and QC2 as shown in Figure 5.13.   
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Figure 5.13 Related plan signatures 

 

Thus, the difficulty is to handle the interdependence among query-cases. Maintaining the links 

among query-cases makes more complex the management of the casebase, particularly the query-case 

deletion process. A first attempt is delete query-cases in cascade. This is, if a query-case QC is deleted, 

all query-cases with which it maintains a link must be deleted too. The problem is that a query-case 

may be linked to more than one query-case, for instance a query-case QC2, which in our example is 

bound to QC, may also be bound to another query-case (e.g. QC’). If it is deleted in cascade when QC 

is deleted, the knowledge for regenerating the plan PF’ from QC’ will remain incomplete. Moreover, 

may be QC2 comprises the signature for regenerating a plan that minimizes some optimization 

objective; if QC2 is deleted, valuable knowledge will be lost.  

The proposed solution is to establish a bidirectional link, for example between QC and QC2. 

The objective is to avoid deleting those query-cases that are still referenced main query-cases.  Thus, 

the plan signature of a query-case comprises a list of the query-cases that utilize it <used-by>:= 

(<QueryCase_ID>)*.  If some of these query-cases are deleted, then the corresponding query-case 

identifier is deleted from the plan signature. A query-case can be deleted only if the used-by list is 

empty.  

5.4.3 Regeneration  

This process is based on the derivational analogy approach, where the goal is to replay previous 

solutions using a guide for the future reconstruction of the solution for subsequent similar problems 

[AuMN02]. There is an extensive research focused on different application techniques for solving 

planning problem; however as far as we know, we are the first to apply the derivational analogy 

approach in the query optimization domain. 

In derivational analogy, cases comprise derivational traces, the sequence of decisions made to 

obtain a plan, instead of the physical plan itself.  It is appropriate when the plan setting is one of the 

main tasks of system and the cost of saving the traces is relatively low [MuCo08]. It can be seen as a 

set of instructions for “reproducing” a query plan template, remaining flexible for replacing certain 

operator parameters, those bounded by the similarity function.  
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The input of our regeneration process is a plan signature. The plan template is regenerated 

following the instructions in the plan signature. As exposed before, the plan signature does not 

comprise explicit instructions for generating all the operators that should be in the plan signature, but 

the required for deducing them. We explain the generation process with an example using the plan 

signature presented below. For clarity reasons, we consider that all the instructions are in a single plan 

signature (and not split if several PSn of different query-cases QCn).  

The top operator is the union U1, the first operator listed in the plan signature. The union is a 

binary operator, and naturally has two operands. Such operands correspond to the next two operators 

in the plan signature, thus the joins J1 and J2. Because of the join condition it is possible to deduce that 

the left operand is a data access operator for accessing the local fragment of the source SP, and the 

right operand is a union operator for unifying the local and distant fragments of the global source SS. 

The operands of J2 are deduced in the same way, thus the left operand is the message M1 for retrieving 

distant fragments of the source SP, and the left operator is the union U3. 

5.5 CONCLUSIONS 

The generation of plans is a recursive process that combines heuristic-based 

[StMK97][Swam89] and randomized query optimization techniques [StMK97] [IoWo87] [SwGu88]. 

We go one step further including a learning process based on the CBR principle for reusing learned 

optimal plans for the evaluation of further similar queries. Thus, given a query, the query plan is 

generated by retrieving and adapting a query plan from a query-case; we propose a straightforward 

query plan adaptation algorithm.  

When no useful cases are retrieved, we propose a pseudo-random bottom-up technique for the 

partial generation of a query plan. This technique applies classical query optimization heuristics, and 

does some random decisions while classical techniques rely on a cost function based on metadata. It 

decomposes de original query in some subqueries; then, it purses to the exploration of the casebase for 

retrieving cases useful such subqueries.  

It is important to accelerate the query plan generation process (i.e. query-case structure and 

casebase structure presented in Chapter 4), as well as to minimize the consumption of computational 

resources. We propose a compact representation of a query plan template with the objective to 

minimize the memory used for maintaining the casebase. This involve summarization and 

regeneration processes. The former one summarizes the query plan generating a plan signature, the 

second one generate a physical plan from a plan signature. Adding these two steps to the query plan 

generation process involve additional time for carrying out plans generation, but may be a suitable 

option for devices with limited memory capability. 

 

 



 

 

 

66..  CCOOBBRRAA  FFOORR  OOPPTTIIMMIIZZIINNGG  

GGLLOOBBAALL  QQUUEERRIIEESS  

This chapter presents the CoBRa query optimizer, which implements and validates our CBR-based 

query optimization approach. First, Section 6.1 presents an overview and the architecture of our 

query optimizer. Next, Section 6.2 shows the implementation of the data structures handled by CoBRa. 

The interaction of the CoBRa modules for generating query-plans is presented in Section 6.3. 

Afterwards, Section 6.4 describes the UBIQUEST project as the context for validating our approach, 

and discusses the experimental results. Finally, Section 5.5 concludes the chapter.  

6.1 OVERVIEW AND ARCHITECTURE 

CoBRa implements a fully-functional query optimizer bringing together the various aspects of query 

optimization developed so far in this thesis. Figure 6.1 presents the architecture of the CoBRa 

optimizer. The optimizer was developed in the context of the UBIQUEST [ABCD12b][ABCD12a]. 

 
Figure 6.1 Architecture of the CoBRa optimizer 
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UBIQUEST proposes a high level programming abstraction (i.e. declarative queries) for the 

rapid prototyping of networking applications. Such applications run in a distributed environment that 

interconnects –typically through wireless technologies– computational devices (i.e. system node).  A 

UBIQUEST Virtual Machine (VM) is embedded at each node to support query processing. runs an 

instance of CoBRa for the optimization of global queries. The optimizer interacts with the Scheduler 

and the ExeEngine modules within the UBIQUEST VM. The Scheduler dispatchs queries to the 

optimizer with a specific order (see Chapter 3). The ExeEngine executes the query execution plans that 

the optimizer outputs. Section 6.4 presents the UBIQUEST project.  

The input of the CoBRa optimizer is a query expressed according to the internal system 

representation. Such a query results from the preliminary query optimization processes i.e. query 

parsing, validation and scheduling (Chapter 3 details the query scheduling process for dispatching the 

queries to be optimized with a specific order). The optimizer outputs the query execution plan. Our 

optimizer was developed using the Java platform. Object-oriented libraries were used to monitor the 

consumption of computational resources (e.g. execution time, memory consumption and CPU 

utilization) during the execution of queries. 

The modules of CoBRa correspond to the four steps of the query optimization process 

presented in Chapter 3. Such modules are: (i) the QCSearcher (Query case retrieving step), (ii) the 

QPGenerator (Query plan generation step), (iii) the QPMonitor (Query plan monitoring step), and 

(iv) the CBManager (Query case management step –insert, delete, update of cases–).  

6.2 DATA STRUCTURES 

The CoBRa prototype optimizes global queries expressed in the Data Location Aware Query 

Language (DLAQL) detailed in Chapter 3. This section presents the implementation of DLAQL 

queries and of the query execution plans. Also, it exposes the data structures that CoBRa handles for 

the implementation of cases and the casebase repository.   

6.2.1 DLAQL queries  

The UML diagram in Figure 6.2 illustrates the implementation of DLAQL queries – Query class–. The 

following query specializations derive from such class: (i) selection queries –QSelect class–, (ii) join 

queries –QJoin class– and (iii) union queries –QUnion class –.  The QSelect comprises a 

ProjectionExpression, SelectionConditions, a list of data Sources. It may also include a list of 

Subqueries. A subquery can be in turn any of the three query types mentioned before.  

 
Figure 6.2 UML class diagram of queries  



CHAPTER 6 

 

127 

 

A QJoin extends a selection query by including one or more JoinConditions. Since the join 

condition is a binary operator (i.e. includes two sources as operands) the list of sources must have at 

least two elements. The QUnion includes a list of two or more queries (of any of the three types), and 

its own ProjectionExpression.  

 

The classes for data management are the following: QInsert, QDelete, QUpdate; Figure 6.3 

show the corresponding UML class diagrams. These data management operations are applied over a 

single source. Particularly, QDelete and QUpdate include selection conditions to specify the data to be 

deleted or updated respectively. QInsert and QDelete have particular kind of Expressions. 

 

Figure 6.3 UML class diagram of updates 

We can distinguish that the main components of queries and updates correspond to: (i) 

Expressions, (ii) Sources and (iii) some Conditions. There are different expressions for queries and 

updates as shows the UML class diagram in Figure 6.4.  

 

Figure 6.4 UML class diagram of expressions 

A ProjectionExpression is specific for queries; it may correspond to a value, to a source field, 

to some function (i.e. arithmetic or aggregation), or to a query. The UpdateExpression is composed of 

a SourceField that corresponds to the name of the column to modify on the data source and an 

Expression that corresponds to the new value. The InsertExpression it can be a list of values or a 

Query that returns the list of values to insert.  
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A Source of data corresponds to an itemset ItemsetSource or to a subquery result 

SubuerySource (the Itemset data model is presented in Chapter 3). It comprises the subset of selection 

conditions in the query that it concerns, and a Scope that indicates the fragments of the source that 

should be queried/updated. The Scope is specified through the SCOPE IS or STORE ON clauses of 

the DLAQL query language. It also comprises a vector of SourceFields. A SourceField indicates the 

properties (i.e. name and data type) of source’s columns. Figure 6.5 depicts the UML class diagram of 

source components. 

 

Figure 6.5 UML class diagram of a source 

Finally, Conditions are classified in Boolean conditions (i.e. AND, OR) and Comparison 

conditions. A comparison condition can be a SelectCondition or a JoinCondition. Figure 6.6 shows the 

condition representation with an UML diagram. 

 

Figure 6.6 UML class diagram of a condition 
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6.2.2 Query plan 

A physical query plan is implemented according to the well-known Iterator model [Grae93]. 

Therefore, it is a tree structure, where the nodes correspond to Iterators. An Iterator is a code object 

that receives as input a vector of children (i.e. other Iterators); such parent-children relation denotes 

the edges of the tree, thus the flow of data during the execution of the query plan.  

The function of an Iterator is to iterate over a granule of data (i.e. Item) for applying an 

operation and producing a partial query result. We define an Item as granule of data; Chapter 3 

introduces the Item definition. An Iterator separates the implementation of an operator in three 

processes: (i) the operator is prepared for producing Items (e.g. establishes a connection with the 

source of data), (ii) the operator demands a new Item, it processes such Item and produces a result 

Item (e.g. if the Item does not hold a condition the operator produces a null result). Finally, (iii) the 

operator performs a final house-keeping (e.g. close the connection with the source of data). Such 

processes are called open, next and close and are the main operations of the Iterator interface.  

For executing a query plan the Iterators schedule each other within a single process. While an 

Iterator needs a new Item, it propagates a next-call through its child(ren) until reach the leafs of the 

tree. The leaf Iterators perform the first operations over the Items (i.e. access to data sources), and send 

the results to their parents. An Iterator is wrapped by a more complex object called QPNode. A 

QPNode comprises: (i) an Iterator, (ii) a buffer of Items, and (iii) a collection of measures.  Figure 6.7 

depicts the diagram of a query plan node.  

 
Figure 6.7 UML class diagram of a query plan node 

The Buffer of data serves for temporally storing partial results of a query. The Collection of 

measures stores the measures of resources consumed by the execution of the corresponding Iterator. 

Such measures serve for calculating the global measures of computational resources consumed during 

the execution of a query plan P, but also to isolate the measures of the subplans of P.   

Consider that an Iterator may correspond to a complete or a partial query plan for executing a 

query Q. The computational resources consumed by an Iterator are the result of those consumed by its 

children Iterators. The Collections of measures provide the measures of resources consumed by partial 

plans executed locally or distantly. From such partial measures is possible to calculate the global 

measure. Also, the partial plans may correspond to subqueries of Q resulting from the query plan 

generation process. Therefore, the measures of the execution of such partial plans correspond to the 

measures that must be kept within the query cases of the subqueries.   

The diagram in Figure 6.8 depicts the operators considered in the implementation of our query plan. 

Such operators correspond to implementation Interfaces, their codification correspond to specific 
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algorithms for their execution. For example, for a join operator may be implemented with a nested-

join, merge-join [ElSh11] or hash-join [UrFr00] [IFFL99].algorithms.   

 
Figure 6.8 UML class diagram of a query plan 

The bounds between the Iterators indicate the relation among the operators of the query-plan. 

They connect the operators maintaining a top-down parent-child(ren) relation and denote the flow of 

data among operators (e.g. item production-consumption). The operators accept one (unary) or more 

inputs (binary), and produce a single output.  

The position of the operators in the plan tree is specified by hierarchy of classes: (i) leaf 

operators descend from the class LeafNode: DMS, Message, Program and Subquery algorithms, (ii) 

intermediate operators descend from the class InnerNode: Union, Join, Select and Aggregate 

algorithms. Finally, (iii) the root operators descend from the class rootNode: Print, Delete and Insert 

algorithms. The inner nodes are classified according to the number of operator inputs (i.e. unary and 

binary). The functionalities of the implemented operators are explained in Table 6.1 below: 

 

Operator Description 

Leaf Iterators 

DMS Iterator 

It translates a query specified in the system representation to a language (i.e. SQL) 

used by some Local Data Management System (i.e. Oracle). Open - establishes a 

connection with the LDMS, poses the query and obtains a partial local data result-

set. Next - iterates over the result-set, at each iteration it generates an item and sends 

it to the Iterator that demands its execution.  Close - interrupt the connection with 

the LDMS.    

Message Iterator 

It sends a query through the network for the interaction between distributed nodes.  

Open - Creates a message, sends the message through the network according to a 

selected routing protocol and obtains distant data results-set. Next - iterates over the 

result-set (this time, is a set of items since the translation was made for the distant 



CHAPTER 6 

 

131 

 

nodes). 

Program Iterator 

It invokes a rule-based program that solves a query. Rule-based programs are 

defined explicitly for solving queries that are frequently posed. They are 

permanently stored in the casebase as special query-cases. Open - demands the 

execution of a rule-based program (such task can be delegated to a specialized 

engine). It obtains a partial local and/or distant result-set. The program is executed 

locally; however its execution can trigger queries that are sent through the network 

and solved by distant nodes.  Next - iterates over the result-set.  

Inner nodes 

Aggregation Iterator 

It executes aggregation operations (MIN, MAX, AVG, COUNT and SUM) over the 

item’s attributes specified in aggregation projection expressions. Next - Iterates over 

items generated by its Child Iterator and executes progressively the aggregation 

operation. It generates a single item with a unique attribute specified in the 

aggregation projection expression. 

Arithmetic Iterator 

It executes arithmetic operations (+, -, /, *) between item attributes. Next - Iterates 

over items generated by its Child Iterator and executes at each of them the specified 

arithmetic operation. At each iteration it generates an item with the previous 

attributes, replacing those attributes involved in the arithmetic expression by the 

operation result.   

Join Iterator 

It joins items obtained from the request to leftChild and rightChild Iterators. It joins 

these items according to a specified join condition. Open – Iterates over leftChild 

items. Next – Iterates over rightChild and checks the join condition comparing all 

items with the first leftChild item. If the condition is satisfied it generates a new 

item. When it finishes the rightChild iteration, requests for the next leftChild item 

and starts again the comparison. It repeats the process until there are no more 

leftChild items. 

Union Iterator 

It unifies several result-sets. It maintains a list of Child Iterators from which it 

verifies that are defined according to equivalent schemas (type of attributes and 

order i.e.  item from result-set A = <Int: 1, Char: ’a’ >, item from result-set B= <Int: 

2, Char: ’b’ >). Next - It starts by the first Child Iterator on the list, it iterates over 

its items, and then it performs the same operation until the last Iterator in the list 

Root nodes 

Project Iterator 

It prints the item’s attributes specified in projection expressions. Next - It iterates 

over items generated by its Child Iterator and generates an item that contains only 

the attributes specified in the projection expressions.   

Delete/Insert Iterators 

Their functionality is similar to DMS Iterator, but changing the type of queries that 

they support. They translate a query specified in the QOL query representation to a 

language used for some Local Data Management System. Open - They establish a 

connection to the local database. Next - They insert/delete an item. Close - They 

interrupt the database connection. 

Table 6.1 Query plan Iterator nodes 
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6.2.3 Query case 

Figure 5 shows a UML class diagram of the implementation of a query case –QueryCase 

class–.  Such class comprises objects that correspond to the query case components (see Chapter 4): (i) 

a query template, (ii) a plan template, and (iii) a set of global measures. 

 

 

 

Figure 6.9UML class diagram of a query case 

For a brief remainder, in Chapter 4 we present a possible definition of query similarity based 

on the query features. Also, we explained that we grouped cases comprising similar queries in clusters 

that we termed query families. A query family QF is represented by a query template –QueryTemplate 

class– that has the same components of a query –Query class–; but with the only difference that some 

of its feature parameters are empty (those that are neglected to consider that two queries are similar 

e.g. specific projection expression). A query template –QueryTemplate class– serves for evaluating a 

family of similar queries. Thus, it has the same structure than a query plan –QueryPlan class–, but 

with some empty parameters as explained in Chapter 4.   

The GlobalMeasures class implements the global measures of computational resources 

consumed during the query plan execution. A global measure comprises its name (i.e. type of 

measure), the value and the unit of metric. The types of measure are predefined using the Enum data 

structure [Orac11] from the Java API. In the current implementation they include: 

EXECUTION_TIME, NETWORK_ MSG_COUNT and NETWORK_HOP_COUNT. However, this 

measures can be easily modified or extent. Each Type such types is associated to a unit of measure 

denoted with the String: “seconds”, “messages” or “hops”, respectively. 

6.2.4 Casebase  

The Casebase class extends the HashMap<K, V> Java class [Orac13]. Such class implements a hash 

table, which maps keys to values. Any non-null object can be used as a key or as a value. It provides 

methods to insert and delete operators on the table. A Map is an object that maps keys to values. This 

class is based on the implementation of the Map<K,V> interface. The HashMap class receives as 

parameters: K that denotes the type of keys maintained by this map, and V that denotes the type of 

mapped values. A key can map at most one value. 
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Figure 6.10. UML class diagram of casebase 

This implementation provides constant-time performance for the basic operations (get and 

put), assuming the hash function disperses the elements properly among the buckets. Iteration over 

collection views requires time proportional to the "capacity" of the HashMap instance (the number of 

buckets) plus its size (the number of key-value mappings). A bucket corresponds to a query family. In 

the implementation of our casebase, a key ki corresponds to the identifier of the query family, a value 

vi corresponds to the query-family. 

A query family is a repository of cases with similar queries. It is implemented by extending the 

TreeSet <E> Java class. As implied by its name, this class implements the mathematical set 

abstraction, but providing a total ordering on its elements (i.e. sorted set) by using a Red-Black tree 

structure. A Red-Black tree is a type of self-balancing binary search tree (BST) [Pfaf04]. Such tree 

automatically keeps its height (maximal number of levels below the root) small when arbitrary 

insertions and deletions of elements.  

The organization of maps in this tree structure is transparent when the objects used as keys 

implements the Comparable interface responsible of control the order of the tree structure. The sorting 

methods of this class guaranty that the tree structure does not contain duplicate keys. Moreover, it 

provides methods for the navigation of such structure. The parameter E corresponds to the type of 

elements maintained by this set. Such elements correspond to the query cases. The implementation of 

a red-black tree offers access, insert and delete operations guaranting log(n) time cost. Such algorithms 

are adaptations of those in Cormen, Leiserson, and Rivest's Introduction to Algorithms 

[Orac13][Pfaf04]. 

The self-balancing BSTs have a number of advantages and disadvantages over their main 

competitors, hash tables. One advantage is that they allow fast enumeration of the items in key order, 

which hash tables do not provide. One disadvantage is that their lookup algorithms get more 

complicated when there may be multiple elements with the same key; this is not our case, since each 

query-family is related to a single key (i.e. query family identifier). Self-balancing BSTs have better 

worst-case lookup performance than hash tables (i.e. O(log n) compared to O(n)), but have worse 

average-case performance (i.e. O(log n) compared to O(1)) [Orac13][Pfaf04].  

Thus, for our experimentation we use hash tables that allows the easy implementation of 

clusters of cases (i.e. query families), and a BST for organizing cases within query families, since they 

do not require to have a specific order. If required, such structure facilitates the organization of its 

elements according to a specific parameter; we can exploit this property by organizing cases according 

to a specific measure. 

6.3 QUERY OPTIMIZATION PROCESS 

This section discus the interaction of the optimizer modules for the generation of query execution 

plans. We present three different interactions: (i) the learning phase, where the query plan is entirely 

generated by pseudo-random process since no useful cases for solving the query were retrieved from 

the casebase, (ii) the exploitation phase when a relevant case was retrieved for solving the posed 

query, thus the query plan was entirely generated by setting, and (iii) the exploitation phase, where 

useful cases for solving some subqueries (but not the entire subquery) where retrieved, thus  the query 

plan is generated combining the pseudo-random and the plan setting processes. 
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6.3.1 Learning phase 

Figure 6.11 Interaction of CoBRa modules during the learning phasedepicts the interaction of the 

CoBRa modules for generating a query-plan during the learning phase. The Optimizer receives a query 

from the Scheduler module that, given a query with subqueries it is in charge to dispatch such (sub) 

queries to be optimized in a specific order (i.e. in bottom-up order according to the imbrication level of 

queries). Then, the Optimizer sends the query to the QPGenerator module that generates the query 

plan by applying our pseudo-random generation technique (see Chapter 5). 

 

 

Figure 6.11 Interaction of CoBRa modules during the learning phase 

The QPGenerator communicates with the QPMonitor demanding to monitor the computational 

resources consumed while executing the query plan. The Optimizer sends to the ExeEngine the 

generated query plan to be executed. When the execution of the query plan has finished, the gathered 

global measures –GlobalMeasures class–, the template of the generated plan, and a description of the 

executed query are the inputs of the CBManager that builds a new QueryCase and inserts it into the 

Casebase, as explains in Chapter 4. 

Thus, let us suppose that the used summit a query Q that comprises two subqueries Q1 and Q2. Let 

us consider that both queries have the same imbrication level, thus the Scheduler dispatch them to the 

Optimizer in indistinct order. Let us say that the optimizer receives Q2, which during the optimization 
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process is decomposed on subqueries Q2.1 and Q2.2 on local and distant data fragments. Our 

optimization approach states the execution of a query generates may generate several cases, one that 

correspond to the query and some others that correspond to the subqueries from the query 

decomposition.  

Once the subqueries are optimized and executed, and then the resulting values are replaced in 

Q to continue its processing. The cases for Q1 and Q2 are generated including the pertinent 

information, and are stored into the casebase. However, it is required to maintain such information 

while the processing of Q finishes, the global measures consumed by the subqueries must be included 

in the global measures of resources consumed during the full execution of Q.   

shows the data structures handled for scheduling and optimize query (e.g. our query example 

Q). The QueriesSchedule object comprises the query that is posed by the user, followed by the 

subqueries that it comprises. The MeasuresCollection object is a list of global measures corresponding 

to the computational resources consumed during the evaluation of each (sub) query within the 

QueriesSchedule. The image also illustrates the generated query cases resulting from the whole 

optimization of Q, which apart from the global measures, also includes the query template QFn and the 

corresponding plan template PFn. 

 

 

Figure 6.12. Data structures for modules exchange 

6.3.2 Exploitation phase 

Figure 6.13 depicts the sequence diagram of the plan setting process, showing the interaction among 

the modules of CoBRa for generating a query plan QP by retrieving and setting a query case. Once 

again the Optimizer receives a (sub) query from the Scheduler module. This time, it communicates 

with the QCSearcher for exploring the casebase looking for a case useful for soling the given query. 

Such module implements a method to determine the query family comprising cases for queries similar 

to the given query; also it implements a CostFunction interface for the specification of different cost 

functions. 

The QCSearcher returns to the Optimizer the selected query case. Then, the Optimizer extracts 

the plan template and sends it to the QPGenerator. It applies the plan setting technique for generating 

the query plan.  We proposed two different ways for storing query cases; the first one stores the 
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complete plan template PF within a single case, the second one stores part of the plan template within 

a case and maintains references to other cases that store subplans of PF (Chapter 5 details the both 

storage approaches).  

When the entire plan is within a single case, the QPGenerator sets the retrieved plan template, 

and sends the generated query execution plan to the ExeEngine. Otherwise, the QPGenerator 

generates part of the query execution plan, and sends to the QCSearcher the references to the required 

cases. The interaction between these modules continues until the plan for executing the query is 

accomplished. The Optimizer sends the plan to the execution module and triggers the plan monitoring. 

Finally, the CBManager update the exploited query case(s) aggregating the new gathered global 

measures.  

 

Figure 6.13. Interaction of CoBRa modules during the exploitation phase -plan setting- 

6.3.3 Hybrid phase  

Figure 6.14 depicts a sequence diagram that shows the interaction of the CoBRa modules optimizing a 

query by combining the pseudo-random plan generation and the plan setting processes. This situation 

takes place when the casebase does not comprise a query-plan for solving a query, but for solving 

some of the subqueries generated from decomposing the given query during the query plan generation 

process.     

The Optimizer triggers the case retrieving process by communicating with the QCSearcher. 

Let us suppose that there is not a useful case within the casebase for solving the query. The 

QPGenerator selects a binary operator of the query randomly and decomposes the query in two 

subqueries (pseudo-random process detailed in Chapter 5). Then, it sends such subqueries to the 
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QCSearcher. This process is repeated until a useful case for some subquery is retrieved, or until it is 

not possible to decompose the query (i.e. the query does not comprise more binary operators).   

If the QCSearcher retrieves a case for some subquery, the QPGenerator sets the plan template 

from the retrieved case according to the specifications of the subquery. When the query plan is 

completed it is executed and monitored. This process produces some new cases to be inserted to the 

casebase; the cases that were exploited (by reusing their plans) must be updated.  

 

 

Figure 6.14 Interaction of CoBRa modules combining learning and exploitation 

 

6.4 OPTIMIZING GLOBAL QUERIES IN THE UBIQUEST SYSTEM  

6.4.1 UBIQUEST overview 

The UBIQUEST project proposes a high level programming abstraction for the rapid prototyping of 

networking applications. It merges the strengths of two areas: (i) databases, and (ii) declarative 

networking by abstracting the network as a large distributed database that stores information about the 

network characteristics and its configuration. 
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Networking applications produces/consumed data on demand or continuously. They run over 

heterogeneous devices interconnected between them – typically through wireless network-. These 

devices are autonomous, either, static or mobile, and present constraints such as energy or 

communication capabilities. A UBIQUEST node is a device that embeds a Virtual Machine (VM) in 

charge of data management, processing queries (data selection and updates) and messages propagation 

for the exchange of queries and data. Also, it comprises a device wrapper for the device/VM 

interaction.  

UBIQUEST nodes interact through declarative global queries i.e. DLAQL queries that must 

be optimized, but also through declarative networking programs i.e. rule-based programs. Such 

programs correspond for example to the implementation of algorithms for the total (i.e. specific 

program mapped to a query) or the partial (i.e. distributed join and message distribution protocols) 

distributed execution of queries.  

6.4.2 UBIQUEST VM  

Figure 6.15 shows a simplified architecture of the UBIQUEST Virtual Machine (VM) in a node within 

a UBIQUEST system. A detailed explanation of such system is not the major goal of this chapter, but 

positioning CoBRa within this architecture and explains its functionality and how it interacts within 

the VM modules during a global query processing. A detailed explanation of the UBIQUEST system 

can be found in. 

 

Figure 6.15. UBIQUEST VM architecture 

The UBIQUEST VM is composed of the following modules:  

 Local Data Management System (DMS). It stores and manages application data (e.g. sensed 

data, user data) and network data (e.g. table of routes, table of neighbor nodes).  

 UBIQUEST Engine. It is composed of specialized sub-engines for: evaluating global queries 

(i.e. Distributed Query Engine) optimized by CoBRa, executing rule-based programs (i.e. 

Rule Program Engine), maintaining sensed data (i.e. Sensing Engine), and maintaining the 

list of neighbor nodes (i.e. Topology engine). 

 UBIQUEST API. It manages the interactions of the internal modules (i.e. sub-engines) of 

the UBIQUEST Engine. Also, it handles the interactions of the UBIQUEST Engine with the 

rest of the world (i.e. local applications, device wrapper and sensors, and other Ubiquest 

VMs).  

The UBIQUEST VM comprises different engines as explained before. The Distributed Query 

Engine (DQE) is the module of the UBIQUEST VM responsible of executing global (DLAQL) 
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queries. The CoBRa optimizer is embedded into the DQE for optimizing the global execution of such 

queries. CoBRa generates query-plans that may include specialized programs as operators. For 

executing such operators the DQE may interact with other engines of the VM, specifically the Rule 

Program Engine (RPE).  

We focus specifically on the functionality of the DQE that is composed of: (i) a Query 

Scheduler, (ii) the CoBRa Query Optimizer and (iii) an Execution Engine. Error! Reference source 

not found.Error! Reference source not found.shows the architecture of the Distributed Query 

Engine. The functionality of the modules that compose the Distributed Query Engine is presented 

below:  

 The Query Scheduler rewrites a global query into a set of sub-queries and schedules their 

evaluation (e.g. a global UPDATE query is decomposed into a sequence of SELECT, DELETE 

and INSERT sub-queries to read the old value, delete it and insert the new value).  

 

 The CoBRa Query Optimizer generates query-plans for executing such queries efficiently 

(according to a given cost function). 

 

 The Execution Engine is responsible of executing the query-plans that CoBRa generates. It 

delegates the execution of local data access operators to the Local DMS, the execution of rule-

based programs to the Programs engine, and the execution of distant data access operators 

(send of messages) to the Communication engine that manages the message propagation 

programs, and to the UBIQUEST API that deals with the send/receive of messages with 

others UBIQUEST nodes. The execution of such operators produces partial results that the 

Execution Engine combines by executing the inner query-plan operators (i.e. joins and 

unions).   

6.4.3 Testbed platform  

For demonstrating the CoBRa behavior we used a platform for simulating networks of nodes over 

which we executed our queries. A screenshot of the simulation platform is depicted in Figure 14. The 

platform allows to create a network of nodes (add, remove or move nodes) running networking 

applications developed basing on the UBIQUEST paradigm.  
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Figure 6.16. Simulation platform 

Our simulation platform facilitates the development and monitoring of UBIQUEST 

applications. A network node corresponds to an UBIQUEST node. Such nodes are instrumented for 

the monitoring of computational resources consumed during the execution of queries. A DLAQL 

query can be posed at any node and the system globally optimizes it and executes it. Naturally, an 

instance of CoBRa runs within each node for optimizing such queries.  Partial results are sent as 

messages to the origin node. Such messages also include the measures of resources consumed by the 

remote nodes allowing to have global measures of resources consumed during the entire execution of 

Q. 

This platform offers tools for editing and compiling rule-based programs, allows the 

simulation of UBIQUEST nodes. The main components of the platform are the follow: 

 The Network Parameters Window, which allows to build and simulate a network with various 

UBIQUEST nodes 

 The Network Graphical Window, which allows to visualize and interact with the network at 

run time  

 The Log Window, which allows to display the log trace of a given node 

 The Node Settings Tabs, which allows to interact with a given node and monitor its activity 

The Network Parameters Window allows creating groups of nodes, displaying the status of the 

nodes in each group and installing rule programs on them. They can have different colours, radio 

range, and characteristics, such as mobile or fixed. The system creates the groups and displays the 

nodes on the left part of the screen. Each node is listed and for each node one can see its identifier, 

address, position and radio range. 

The Network Graphical Window offers the view of the groups of nodes, represented by 

different shapes and colours, the connections between nodes (if two nodes are close enough w.r.t. their 

radio range), the messages exchanged (network protocol messages are red, DLAQL messages are 

blue). A node has a unique identifier. The Network Graphical Window also allows to interact with the 

network, and to modify its configuration before starting or during the simulation, by moving nodes, 

changing their radio range, or deleting edges or nodes for instance.  
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The Log Window displays the log trace of a given node. It helps understanding the system 

behavior. The Node Settings Tabs is displayed on the right part of the screen and exhibits information 

about the node selected by the user. It contains the following tabs: DMS, API, Programs, DLAQL, 

Casebase, Coloration, Statistics and Messages. We are particularly interested on the terminal to 

summit DLAQL queries and on the tab to display the content within the casebase.  

 The DLAQL tab allows to type and to submit DLAQL queries. It also displays the concerning 

query results. 

 The Case Base tab displays the content of the local casebase and information about the query 

optimization by learning process. It lists the query families processed at the selected node 

including details about the performance of each query case (i.e. query plan). This data can be 

exported as a spreadsheet file for further analysis. The query plan is also represented 

graphically, as a tree of operators. When a query family is selected, an SQL-like description of 

the family is provided. This tab also displays a chart showing the evolution of the query 

execution cost in terms of different metrics and customizable cost functions. The cost values 

are normalized to the unit (values from 0 to 1) to use them as parameters of cost functions and 

obtain the overall cost.  

 

6.4.4 Experimental results 

6.5 CONCLUSIONS 

 

 

 

 

 

 

 

 

 

 





 

 

 

77..  CCOONNCCLLUUSSIIOONNSS  AANNDD  

PPEERRSSPPEECCTTIIVVEESS  

The characteristics of nowadays distributed data systems have change; they include powerful and 

sophisticated information technologies and hold exorbitant amounts of data. Most of applications 

running on such environments rely on the efficient querying and processing of such data. In this thesis 

we focus on the optimization of queries in distributed data systems where, due to their characteristics 

(e.g. highly distribution of data and autonomy of system resources), there is no guaranty to count on 

with the information on data used by classical query optimization techniques.   

The study in this query optimization domain presented in Chapter 2 highlight the necessity to 

revisit existent query optimization proposals. Section 7.1 presents the main results and contributions 

of this thesis. Section 7.2 exposes the perspectives of our feature work.   

7.1 MAIN RESULTS AND CONTRIBUTIONS 

In this thesis we have presented our approach for optimizing global queries with incomplete complete 

information on data.  This entails declarative querying over highly distributed data systems, taking 

advantage of query feedback (i.e. measures of consumed resources) to learn the cost of query 

execution plans. Concretely, in our solution we adapt the CBR principle to the query optimization 

process.  

We study the main foundations of CBR: (i) case content and representation, (ii) problem 

similarity, (iii) casebase organization, and (iv) reasoning mechanisms. From each of these aspects we 

select the approaches and techniques appropriate to the needs of our system: (i) minimizing the 

resources consumed and execution time of the optimization process, and (ii) maximize the accuracy of 

retrieving useful query cases for the optimization of queries, in consequence that allows efficiently 

learning optimal plans according to different (customizable) objectives. Although many challenges 

remain, our solution demonstrated to be efficient and adequate. Next we present our conclusions in 

regard to the specific contributions of this thesis and discuss about the remaining challenges: 
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Representation and management of query-cases 

One of our main contributions is the adaptation of CBR to query optimization. The addressed aspects 

for this adaptation are detailed below:  

 Specifying the content of a query case. The feedback comprises a representation of the 

query Q, a representation of the query plan P, and global measures M of the 

computational resources consumed during the evaluation of Q using P. Such measures 

are exploited to learn the cost of query plans. The cost may correspond to the gathered 

measures, or to a cost function that uses such measures as parameters. Also, this work 

suggests a straight forward manner for gathering global measures.    

 

 Representing a query case. We propose a structured representation ad-hoc to facilitate 

the rest of the query optimization process. In particular, we suggest a compact 

representation of a physical query plan, that we called plan signature, in order to 

minimize the memory consumption. Also, we include a couple of mechanisms (i.e. 

summarization and generation) to transform a physical plan template in a plan signature, 

as well as the inverse process.   

 

 Defining a query similarity function. We propose a boolean query similarity function 

based on query features. A wide variety of query similarity functions have been 

proposed, most of them relying on very information e.g. characteristics of sources, 

indexes over attributes, with which it is not easy to count on autonomous and highly 

distributed data systems. Our similarity function is based on the observation that even 

queries which differ in projection expressions and selection conditions may still have 

identical plan templates, that is, they share a common database operator tree. By 

identifying such similarities in the plan space, we can materially improve the utility of 

plan caching. While current commercial query optimizers do provide facilities for 

reusing execution plans generated for earlier queries (e.g. “stored outlines” in Oracle 

9i), the query matching is extremely restrictive – only if the incoming query has a close 

textual resemblance with one of the stored queries is the associated plan re-used to 

execute the new query.  

 

 Management of query cases. The case base is organised in groups of cases that comprises 

similar queries, we called these groups query families. The management operations over the 

casebase include case retrieving, and storage and deletion of cases.  

o The query case retrieving process explores the casebase to select a case useful 

for evaluating a given query. A useful case comprises a query similar to the 

posed query and a plan that minimizes a given cost function. Thus, this 

process involves the evaluation of queries similarity, and the computation of 

cost functions based on the global measures of query plans.  

o The evaluation of a query triggers case(s) storage, which involves either, the 

generation / insertion of a case(s) into the casebase, or the update of some 

existing case(s). This depends on the new gathered knowledge: (i) the 

evaluation of a new query for which no similar queries have been evaluated 

before, (ii) the execution of a new query plan that has not been already 

explored within the search space, (iii) or the collection of new global 

measures from executing a reused plan.  
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o The deletion of cases is triggered when a threshold of knowledge (number of 

cases within a query family) is reached. Basically, the deletion action consists 

in delete half cases that have been least used within the family. The objective 

is to avoid casebase overflow and to continue the exploration of the search 

while keeping useful cases. 

 

Query plan generation  

It is based on the pseudo-random exploration of the search space and the exploitation of cases from 

query plans evaluated in the past. Our query plan generation algorithm delimits the exploration of the 

search space by using classical query optimization heuristics. It makes some random decisions when 

metadata (e.g. data statistics), used by traditional query optimization is not available. It pursues the 

exploitation of cases to reuse the learned query plans that minimize a given cost function. During the 

CBR optimization process the quality of these plans is learned by monitoring their execution and 

gathering their global measures, and the best plans are identified. 

Given a query Q, this process tries to retrieve a case of a query similar to Q and that comprises 

a plan that minimizes a given cost function. If it succeeds, the process reused the plan from the 

retrieved case by setting it to the query specifications. Otherwise, it generates part of the plan by 

pseudo-random generating some subqueries. The generation process is recursive; thus it receives such 

subqueries as input of the recursion. This process is extended by the summarization-regeneration 

processes that aim to produce a compact representation (i.e. plan signature) of a physical plan to 

minimize the amount of memory needed for storing cases.  

 Pseudo-random top-down plan generation. If no useful case is retrieved for the 

evaluation of a given query, the plan generation process selects a binary operator (i.e. 

join, union) and its implementation algorithm randomly. The operands of the selected 

operator are subqueries resulting from the decomposition of the original query (this 

work specifies rules for query decomposition by join/union selection). The retrieving 

process is repeated, this time looking for cases useful for evaluating the subqueries.   

 

 Plan setting. If a useful query case is retrieved, the query plan generation process 

extracts the plan from the retrieved case, and sett such plan according to the query 

specifications. In the setting process the structure of the plan tree remains unchanged; 

instead, some operator parameters (i.e. projection expressions and selection 

conditions) are adjusted.  

 

 Summarization and regeneration. The summarization process receives as input a 

physical plan template and outputs a compact representation of the plan. Such a 

representation is termed (i.e. plan signature; it records the optimization decisions for 

generating a plan template as instructions. Thus, a case includes a plan signature 

(shipper in terms of memory consumption) instead of the physical plan template. The 

regeneration process follows the retrieving process; it is based on the instructions of 

the plan signature to generate the corresponding physical plan template.  

 

Implementation and validation  

We implement the CoBRa optimizer that allows efficient evaluation of global queries without having 

complete knowledge on data. The CoBRa prototype was developed in the context of the UBIQUEST 
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project [ABCD12a] that proposes a new high level programming abstraction for the rapid prototyping 

of networking applications. This optimizer advantageously applies the Case Based Reasoning 

paradigm to the query optimization process. The CoBRa optimizer acquires performance knowledge 

(other than classical metadata) while evaluating queries and exploits this knowledge for generating 

new execution plans for similar queries.  

We validate the efficiency of our proposal using a realistic example application, while 

showing the internal structures of the prototype (case base, case, query execution plans). We carried 

out our experiments on our testbed platform that supports network-oriented applications. Every node 

in the system runs an instance of the CoBRa optimizer that is responsible for optimizing the (sub) 

queries that it receives. 

 

Remaining challenges 

We demonstrated that our approach is adequate for data distributed environments with particular 

characteristics, thus many important challenges remain for the optimization of global queries facing 

the wide range of difficulties for efficient data querying in nowadays applications.    

 Static of partially dynamic environments. We present a query optimization approach that is 

sensible to environmental changes. Thus, our solution will be hardy applicable in highly 

dynamic and mobile environments where learning about the quality of query plans may easily 

becomes obsolete. Our approach may be useful only if the frequency of posed queries is 

considerably higher than the frequency of environmental changes, in such a way that is worth 

to learn and it is possible to evolve with the environment. 

 

 Global schema. We made strong assumptions about data representation, assuming that all 

nodes running a common application represent data according to a specific global schema. 

This assumption also restrains the way in which data is partitioned and distributed through the 

system nodes. Thus, we suppose that data is horizontally partitioned only. 

 

 Margin of error for computing plans cost. Our approach states that the cost of plans is 

learned by monitoring plans execution and gathering global measures of consumed 

computational resources. It learns the plan that minimize a given cost function (using global 

measures as parameters), and reuses it for the evaluation of similar queries. The process to 

select the (close to optimal) plan has two error incomes: (i) similarity function between 

queries, and (ii) global measures. It is difficult to determine a similarity function that 

guarantees that reused plans, that have shown to be efficient for a query Q, will be efficient for 

any query similar to Q. Another difficulty is to determine the kind of measures that reflect the 

quality of a plan in accurate manner. Different measures may be proposed like, the average, 

the last measures, histograms, statistics about resources consumed after several runs of a query 

plan.  

 

 Simulated applications. The experiences are carried out in a simulation environment; 

experiences in a real execution environment should be realized to consolidate the validation of 

our approach. 
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7.2 PERSPECTIVES 

The work carried out in this thesis constitutes the first step through the definition of a flexible and 

accurate learning-based query optimization approach. The flexibility refers to the easy customization 

of cost functions according to different applications needs. The accuracy concerns to minimize the 

margin of error in the computation of plans cost.  

Our query optimization approach is based on try-and-learn experiences to distinguish the 

query plans that minimize a given (customizable) cost function. To consolidate the validity of our 

approach should be required to conduct experiments on nowadays data applications and real execution 

environments. We evoke the perspectives of this work according to these dimensions.  

 

Development of our approach on real environments  

The experiences presented in this work were carried out in a simulation environment. The deployment 

and experimentation of our approach on a real execution environment should be interesting to 

consolidate our proposal. The data grid, sensor network, the web and scalable storage systems are 

some possible environments to conduct this work.  

For example, several research groups have focused on query processing and optimization in 

the domain of sensor networks. Typically, the optimization objective is to reduce the energy consumed 

by the sensors. Some of the main contributions of such works concern to routing and scheduling 

protocols to minimize energy consumption and communication cost (i.e. amount of data or number of 

exchanged message between sensors). TinyDB is a seminal project that proposed an acquisitional 

approach to query processing in sensor networks [MFHH05].The USC/ISI group proposes an energy-

efficient aggregation tree using data-centric reinforcement strategies [HeYW00].Cougar is another 

representative research project that proposed a communication wave-based scheduling approach for 

communication among sensors [DGRT03].  

However, all these works centralize the query optimization process in a single base station 

that maintains a registers of information about all sensors in the system. Could be interesting to 

distribute the query optimization responsibility; for example using a super-peer architecture where a 

supper-peer may be a smart-box (or some other device with more computation capabilities than 

sensors). The sensors act as sources of data. A super peer maintains information of a subset of the 

sensors in the system. A sensor communicates with its corresponding super peer only. The supper 

peers are in charge of monitoring the execution of queries to try and learn about the best execution 

strategies for the different queries that can be submitted in this kind of applications.  

 

Similarity function and cost function 

In our work is essential to determine the similarity between queries and to compute plans cost. We 

presented a prospective boolean query similarity function used to illustrate our optimization approach. 

However, there is a wide variety of similarity functions that may also be applied (e.g. distance 

functions) [OsBr97].  

 The variation of the similarity function may lead to important differences in the experimental 

results. It has a direct impact in the case retrieving process, where it determines the cases that are 

relevant for solving a problem. In our approach, the query similarity is critical for selecting cases 

comprising plans that minimize a given cost function during the evaluation of similar queries.   
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On the one hand, it determines the coverage of cases. As higher is the coverage of a case as 

larger is the amount of problems that the solution of case may solve. When cases have high coverage 

the number of cases within the casebase diminishes. A flexible similarity function increases the 

coverage of cases; however it does not guaranty that retrieved solutions will evaluate the different 

problems efficiently. Moreover, the similarity function is the basis for the organization of cases within 

the casebase in some CBR based systems (as in our approach). The organization of the casebase is 

critical for our optimization process; a bad organization (e.g. a flat list of huge amount of cases) may 

lead to a time consuming query optimization process.  

 Also, in this thesis we used a straightforward cost function (i.e. linear weight function), which 

uses global measures as parameters and associates a weight according to the importance of the 

computational resource that the measure parameter represents. The deployment and formalization of a 

cost model based on global measures remains an open research topic within the query optimization 

domain. 

    

Dataflow optimization 

We think that the utility of our approach may be demonstrated on data intensive applications, such as 

social networks [Wass94], e-science  [VeBW04][WLGP08], mashups [SoIS10]. Such applications 

have a growing demand for massive data sharing, analysis and processing. In data-intensive 

computing systems applications are expressed in terms of high-level operations on data, and the 

runtime system transparently controls the scheduling, execution, load balancing, communications, and 

movement of programs and data across the distributed computing cluster. The programming 

abstraction and language tools allow the processing to be expressed in terms of complex dataflows.  

Such dataflows are not restricted to classical arithmetic operators for query processing, they 

may also comprise arbitrarily operators on data with unknown semantics, algebraic properties and 

performance characteristics, for example the invocation of services or specialized programs. 

Traditional query optimization techniques cannot be applied due to the lack of information about the 

nature of operations on data.   Thus, this is an important characteristic of data-intensive computing 

systems for which we envisage that our approach may be appropriate for this domain. 
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ANNEX A  

DDAATTAA  LLOOCCAATTIIOONN  AAWWAARREE    

QQUUEERRYY  LLAANNGGUUAAGGEE    
 

The Data Location Aware Query Language (DLAQL) is a declarative data manipulation language for 

the UBIQUEST system. It is used to express declarative queries and updates over the global schema. 

Its syntax is based on SQL syntax with some specific operators and limitations. DLAQL 

queries/updates are sent to a node directly by applications or are automatically generated during query 

execution process (subqueries).  

With DLAQL, one can specify the scope of each individual query/update (whether local data 

of the node executing the query/update or all data available over the network). The node(s) on which 

updates are stored can also be specified on a per update basis. These storing nodes can be explicitly 

specified (i.e. node identifiers) or implicitly using a subquery returning node identifiers. DLAQL 

permits to express selection, projection, join and aggregate computation. Imbricated queries can also 

be explored. 

A.1 DLAQL SYNTAX 

This section presents the notations used for describing the syntax of the DLAQL language for 

querying data, inserting data, updating data and deleting data. 

A.1.1 Notations 

We will use some specific notations in the syntax descriptions. These ones are the following: 

 Concepts are represented like this: <concept>. 

 [This is an optional part]. 

 Parts like that * can be repeated several times. A coma (,) is used to separate them. The coma 

is part of the syntax. 

 Keywords and characters that are part of the syntax are represented in bold font. 
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A.1.2 Syntax for querying data 

The general syntax for a query is the following: 

<query> := 

SELECT <itemset> [SCOPE IS <scope>][DISTINCT] (*| (<itemset> | <alias>).* | 

<select expression>)* 

FROM (<itemset> [<alias>])* 

[WHERE <condition> ] 

[UNION [ALL] <query> ] ; 

 

<scope>:= (<value>)* | <query> 

 

<select expression> := 

<expression> 

| MIN( [(<itemset> | <alias>).]<attribute> ) 

| MAX( [(<itemset> | <alias>).]<attribute> ) 

| AVG( [(<itemset> | <alias>).]<attribute> ) 

| COUNT( [(<itemset> | <alias>).](<attribute> | *) ) 

| ( <select expression> ) 

| <select expression> <operator> <select expression> 

 

<expression> := 

[(<itemset> | <alias>).]<attribute> 

| <value> 

| ( <expression> ) 

| <expression> <operator> <expression> 

<operator> := 

+ 

| –   

| * 

| = 

 

<condition> := 

[(<itemset> | <alias>).]<attribute> <comparison operator> 

<expression> 

| [(<itemset> | <alias>).]<attribute> IN ( (<expression>)                              ) 

| [(<itemset> | <alias>).]<attribute> IN ( <query> ) 

| EXISTS ( <query> ) 

| ( <condition> ) 

| <condition> AND <condition> 

| <condition> OR <condition> 

| NOT <condition> 

 

<Comparison operator> := 

< 

| <= 
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| = 

| >= 

| > 

| <> 

 

The interpretation of a query is the following: 

1. The FROM clause computes a cartesian product of specified itemsets. Each itemset can be referred 

to with an optional alias. 

2. If specified, the WHERE clause apply a filter to the result of the Cartesian product. Selected items 

will participate in the remaining of the computation. Filtering conditions can include comparison 

between an item attribute and an expression, testing if an attribute belongs to a list of value (IN) – the 

list being extensionally or intentionally expressed –, an existence test which is verified when the 

subquery does not return an empty result, or any logical combination of conditions. 

3. The SELECT clause builds the resulting itemset for the query. Each item is composed by the 

specified list of select expressions computed on each selected item. Select expression can combine 

classical expression and aggregate function computation on attributes. The optional argument 

DISTINCT is used to eliminate duplicates in the result of the query. The SCOPE IS is an optional 

argument defines the scope of the sources that the query includes. The scope may correspond to one or 

more values of node identifiers, or a query that return such values. The keywords LOCAL and SELF 

indicate that only local data of the node where the query is evaluated will be considered. By default all 

data available over the network are queried (i.e. the scope is global). 

4. If specified, the set operators UNION (with duplicates if the ALL option is set) is applied on the 

result of two queries. Of course both resulting itemsets must have the same schema.  

A.1.3 Syntax for inserting data 

The syntax for inserting data is the following: 

<insert> := 

INSERT INTO <itemset> ( 

VALUES ( <value>* ) | ( <query> ) ) 

[STORE ON <location>*] ; 

<location> := 

SELF 

| <node identifier> 

| ( <query> ) 

 

The interpretation of an insertion is the following: 

1. The INSERT INTO clause specifies in which global itemset new items will be inserted. 

2. The items that are to be inserted can be specified extensionally (using VALUES and a list of values) 

or intentionally via a subquery. 

3. The optional clause STORE ON allows the user to specify on which node(s) data will be inserted. 

The parameter of this clause is a list of node identifiers that can be expressed extensionally - using 



DLAQL 

162 

 

node identifiers or SELF that corresponds to the identifier of the node where the query is evaluated) - 

or intentionally with a subquery returning node identifiers. 

A.1.4 Syntax for updating data 

The syntax for updating data is the following: 

<update> := 

UPDATE <itemset> 

SET (<attribute> = <expression>)* 

[WHERE <condition>] 

[STORE ON <location>]; 

 

The interpretation of an update is the following: 

1. The UPDATE clause specifies the itemset that is to be updated. 

2. The SET clause specifies the new value of attributes. The expression can exploit the old value of the 

attribute. 

3. The optional WHERE clause selects the items that are to be updated. 

4. The optional STORE ON clause specifies the location of updated items. Items can be moved from 

nodes to other nodes during an update. 

A.1.5 Syntax for deleting data 

The syntax for deleting data is the following: 

<delete> := 

[LOCAL] DELETE FROM <itemset> 

[WHERE <condition>] ; 

 

The interpretation of a delete is the following: 

1. The DELETE FROM clause specifies the itemset from which items will be deleted. The LOCAL 

optional argument specifies that only local data of the node where the delete is evaluated will be 

removed. 

2. The optional WHERE clause selects the items that are to be deleted.  

A.2 EXAMPLES 

This section presents some examples of DLAQL queries and updates. 

A.2.1 On demand routing 

A node is asking for the next hop to reach a destination D. Only local data are queried. 

Global schema: 

- Route(NodeId, NextHop, Dest, HopNumber) 
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Query: 

SELECT SCOPE IS LOCAL NextHop 

FROM Route 

WHERE Dest = D; 

 

This query is executed by the node demanding the route (NextHop).  

A.2.2 Adds distribution over vehicular networks 

The objective is to send the address of merchants that are located in a city to vehicles that will pass by 

this city. The path followed by vehicle is known (e.g. GPS). 

Global schema: 

- Merchants(MerchantName, City) 

- Ads(Ad, MerchantName) 

- PATH(NodeId, Order, City) 

- ReceivedAds(NodeId, Ad) 

Query: 

INSERT INTO ReceivedAds ( 

SELECT P.NodeId, A.Ad 

FROM Ads A, Merchants M, Path P 

WHERE A.MerchantName = M.MerchantName 

AND M.City = P.City; 

) 

STORE ON P.NodeId; 

 

This query is sent to all nodes containing Merchant data. 

A.2.3 Virtual world gaming 

The virtual world is divided in several zones. Participants (nodes) put their avatars into zones. All 

avatars that are located are neighbors.  

Centralized server 

There is only one server for all participants – its identifier is ServerId–. The server stores the position 

(i.e. a zone identifier) and the identifier of the owner for all avatars. All updates are done on the server. 

Clients send queries to the server to 

view the environment (i.e. avatars that are in the same zone) of their avatars or to 

update data (the result is not stored on the clients). Clients only store information 

about their own avatars. 

Global schema: 

- Positions(Avatar, Zone, OwnerId) 
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Queries: 

 Viewing avatars in the same zone than the avatar named MyAvatar 

SELECT * 

FROM SCOPE IS LOCAL Positions 

WHERE Zone = (SELECT P.Zone FROM Positions P WHERE P.Avatar = MyAvatar); 

 

This query is executed on the server only. 

 

 Entry of a new avatar –named MyAvatar– owned by MyId in the zone MyZone 

INSERT INTO Positions 

VALUES (MyAvatar, MyZone, SELF) 

STORE ON ServerId, SELF; 

 

This global query is initiated by the client. 

 

 Movement of the avatar named MyAvatar to the position NewZone 

 

UPDATE Positions 

SET Zone = NewZone  

WHERE Avatar = MyAvatar; 

 

Updates are done in place; in this case: on the client initiating the query and on the server. 

 

 The avatar named MyAvatar exits the game 

DELETE FROM Positions 

WHERE Avatar = MyAvatar; 

 

 

Peer-to-Peer environment 

 

We decide to store on one node all information about avatars that are in the same zone than their own 

avatars. Queries concerning a given avatar are issued by nodes that own it and are evaluated in a 

distributed fashion (except if specified in the query). 

Global Schema: 

- Positions(Avatar, PosX, PosY, NodeId) 

Queries: 

 Viewing avatars that are in the same zone as the avatar named MyAvatar 

SELECT DISTINCT * 

FROM SCOPE IS LOCAL Positions 

WHERE Zone = ( 

SELECT P.Zone 

FROM SCOPE IS LOCAL Positions P 

WHERE P.Avatar = MyAvatar ); 
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 Entry of a new avatar named MyAvatar, owned by the node emitting the query, in the 

zone MyZone 

 

-- Test if the zone corresponding to the new position is already known 

SELECT Avatar 

FROM SCOPE IS LOCAL Positions 

WHERE Zone = MyZone; 

-- If unknown zone (previous query returned no result) 

INSERT INTO Positions ( 

SELECT DISTINCT * 

FROM Positions 

WHERE Zone = MyZone 

) 

STORE ON SELF; 

-- Insert the new avatar 

INSERT INTO Positions 

VALUES (MyAvatar, MyZone, SELF) 

STORE ON SELF,( 

SELECT DISTINCT P.OwnerId 

FROM Positions P 

WHERE P.Zone = MyZone 

); 

 

 

 Movement of the avatar named MyAvatar to the position NewZone 

 

-- Test if the new zone is already known 

SELECT Avatar 

FROM SCOPE IS LOCAL Positions 

WHERE Zone = NewZone; 

-- If unknown zone 

INSERT INTO Positions ( 

SELECT DISTINCT * 

FROM Positions 

WHERE Zone = NewZone 

) 

STORE ON SELF; 

-- Update is done by delete/insert 

DELETE FROM Positions 

WHERE Avatar = MyAvatar; 
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INSERT INTO Positions 

VALUES (MyAvatar, NewZone, SELF) 

STORE ON SELF, ( 

SELECT DISTINCT P.OwnerId 

FROM Positions P 

WHERE P.Zone = NewZone 

); 

-- Cleaning of locally useless zones 

LOCAL DELETE FROM Positions 

WHERE Zone NOT IN ( 

LOCAL SELECT P.Zone 

FROM Positions P 

WHERE P.OwnerId = SELF 

); 

 

 The avatar named MyAvatar exits the game 

 

DELETE FROM Positions 

WHERE Avatar = MyAvatar; 

 

Hybrid approach 

In this case, there are some node per zone acting as servers in the virtual environment. Each client 

sends its queries to the servers where the avatar is. Each client stores information concerning its own 

avatars. 

Global Schema: 

- Positions(Avatar, PosX, PosY, NodeId) 

- Servers(Zone, ServerId) 

Queries: 

 Viewing avatars that are in the same zone than the avatar named MyAvatar 

SELECT DISTINCT * 

FROM Positions 

WHERE Zone = ( 

SELECT P.Zone 

FROM Positions P 

WHERE P.Avatar = MyAvatar 

); 

 

 Entry of a new avatar named MyAvatar owned by the query emitter in the zone MyZone 

 

INSERT INTO Postitions 

VALUES (MyAvatar, MyZone, SELF) 

STORE ON SELF, ( 

SELECT ServerId 
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FROM Servers 

WHERE Zone = MyZone 

); 

 

 Movement of the avatar named MyAvatar to the zone NewZone 

 

-- Update is done by delete/insert 

DELETE FROM Positions 

WHERE Avatar = MyAvatar; 

INSERT INTO Positions 

VALUES (MyAvatar, NewZone, SELF) 

STORE ON SELF, ( 

SELECT ServerId 

FROM Servers 

WHERE Zone = NewZone 

); 

 

 The avatar named MyAvatar exits the game 

 

DELETE FROM Positions 

WHERE Avatar = MyAvatar; 

 

 


