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Abstract

This thesis proposes NETAH, a framework for the construction of event stream composition

services in highly distributed contexts with limited resources such as smart grid, the Internet

of Things, etc. An event stream composition service instanciated using NETAH is a network

of event processing units, which can be deployed on a target architecture composed by a

set of connected processing nodes having different capacities. NETAH implements a model

for the representation and composition of different types of event streams, with appropriate

composition operators. Each event processing unit corresponds to a event stream composition

operator. NETAH provides an algorithm for the deployment of event processing units. The

deployment of event processing unit considers the resources available on network nodes,

as well as the latency of communication links, in order to satisfy the quality of service. Our

approach exploits the computing resources of heterogeneous devices distributed over the

network.

The NETAH framework has been instantiated to implement event stream composition net-

works in the context of smart grid monitoring. This experiment demonstrates the validity of

our proposal for event stream composition in the distributed and constrained environment

that is a smart grid.

Keywords: event stream processing, complex event processing, distributed systems, smart

grids, Quality of service .
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Résumé

Cette thèse propose NETAH, un framework pour la construction de services de composition

distribuée de flux d’événements dans des contextes hautement distribués et contraints en

ressources comme les smartgrids, l’internet des objets, etc. Un service instancié en utilisant

NETAH est un réseau d’unités de traitement qui peut se déployer sur une architecture cible

composée de noeuds de calcul avec des capacités différentes, connectés entre eux. NETAH

implémente un modèle pour la représentation et la composition de différents types de flux

d’événements, avec des opérateurs de composition adaptés. Chaque unité de traitement cor-

respond à un opérateur de composition de flux d’événements. NETAH fournit un algorithme

de déploiement d’unités de traitement. Le déploiement des unités de traitement prend en

compte les ressources disponibles sur l’environnement d’exécution cible (dispositifs de calcul,

réseau) afin de satisfaire la qualité de service (QoS) des applications. Notre approche exploite

les ressources de calcul des dispositifs hétérogènes et hautement distribués sur le réseau.

Le framework NETAH a été instancié pour implanter un réseau de composition de flux d’évé-

nements dans le contexte du monitoring d’un smartgrid. Cette expérimentation démontre

la validité de notre proposition pour la composition de flux d’événements dans les contextes

distribués et contraints que sont les smartgrids.

Mots clefs : Composition de flux d’événements, traitement d’événements complexes, systèmes

distribués, qualité de service, smartgrid.
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1 Introduction

1.1 Context and Problem

Many applications need to process event flows generated from a large number of geographi-

cally distributed sources, to obtain timely responses to complex queries. Examples of such

applications come from the most fields, including environmental monitoring, finance, smart

grids, smart cities, the Internet of Things, etc.

In environmental monitoring, users need to process data coming from sensors deployed in the

field to acquire information about the observed world, detect anomalies, or predict disasters

as soon as possible [BCMR09]. Similarly, several financial applications require a continuous

analysis of stocks to identify trends [DGH+06]. In new application domains such as the In-

ternet of Things (IoT) and smart grids, monitoring applications need to observe and process

event streams generated by a large variety of devices to detect and notify critical situations

such as faults, alerts, etc.

Event stream processing systems are well adapted to the programmation of such applications.

The components of an event stream processing system communicate by producing and

consuming event streams, where an event is the notification that a happening of interest has

occurred [VSC02]. An event stream composition service mediates producers and consumers

enabling loosely coupled communication among them. Producers publish event streams to

the service, and consumers express their interest in receiving certain types of event streams

by issuing subscriptions. A subscription is seen as a continuous query that allows consumers

to obtain event stream notifications. The service is then responsible for matching received

event streams with subscriptions and conveying event stream notifications to all interested

consumers.

New application domains such as the IoT and smart grids consist in a large number of comput-

ing devices (sensors, actuators, smart meters, data concentrators, etc.) with limited computing

resources (memory, CPU), connected by low capacity networks connections.

For example in a smart grid, the computing devices include smart meters, sensors, actuators,

data concentrators, servers and so on. These computing devices have different resource pro-

files, ranging from low memory and CPU devices like sensors, actuators and smart meters, to

high memory and CPU devices like data concentrators and computers. Similarly, the commu-

nication support connecting those devices includes low capacity network technologies like
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power line communication or radio, and high capacity network like ethernet or WIFI.

A vast amount of event streams are produced from the large variety of devices deployed

within such environments. The monitoring of these environment relies on the capacity to

observe, filter, aggregate, and compose those event streams in order to detect interesting

situations and notify them to interested applications. This requires the definition of event

stream composition systems that can be deployed in large scale distributed environments.

These systems must efficienly achieve event stream filtering, correlation, aggregation and

composition while adapting to the environment in terms of the multiplicity of data sources,

the heterogeneity of computing resources (memory, CPU, network) and the application quality

of services (e.g, notification latency, event priority).

In this thesis, we address the problem of efficiently achieving event stream composition in

highly distributed environments with limited computing resources. This implies accessing

and processing distributed event streams produced by different sources and notify the results

to interested parties, considering both the limitations of the runtime environment and the

application QoS requirements.

Our research is motivated by the observation that current event stream composition systems

are not appropriate in highly distributed contexts having limited computing devices. Central-

ized systems like [ABB+03, ACc+03, WDR06, Esp15] present scalability and single point of fail-

ure issues in these contexts. Clustered systems like [Aba05, SMMP09, STO13, ZCF+10, Apa16c,

Apa16a] resolve the issues of centralized systems by achieving the event stream processing

within a cluster of machines, ensuring high availability and a better scalability. Nevertheless,

clustered systems require the event streams to be routed to the remote cluster for processing.

This is not efficient from a network point of view as it induces latency, especially on limited

network connections. In addition, Clustered solutions consider that there is enough comput-

ing resources on the processing nodes, an assumption which is not feasible in contexts like

the IoT and smart grids, where limited capacity devices (sensors, smart meters, etc.) are part

of the runtime environment.

1.2 Objective and approach

In this thesis, we aim to leverage the computing resources offered by devices deployed in the

environment to enable a large scale distributed event stream composition that deals with QoS.

Our objective is to provide methods and tools for the programmation of applications that need

to process event streams from distributed sources, considering both the QoS requirements of

applications (e.g, event priority, latency, etc.) and the physical constraints of the heterogeneous

environment (e.g, resources limitation of compute nodes, network limitations).

Our approach is summarized in Figure 1.1. It consists in three layers of abstraction, namely

the runtime environment, event streams, and event stream composition network layers.

• The environment layer represents the distributed runtime environment, which consists

of a set of heterogeneous devices connected by communication networks technologies.
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Figure 1.1 – Approach overview

The runtime environment is described in terms of information being used and exchange

between functions, services and components. Those information are seen as events that

happen within the runtime environment.

• The event streams layer considers that data generated within the environment are event

streams. In this layer, some devices can act as producers that generate different types of

events in a continuous manner.

• The event stream composition network layer consists in a set of connected event pro-

cessing units. This network is created according to complex event stream subscriptions.

It may be deployed across multiple distributed computers and physical networks. The

complex event stream subscriptions are tagged with applications QoS requirements

such as event priority and notification latency. Those QoS requirements are translated

into constraints applicable to event processing units at execution time. In addition

to these constraints, inherent constraints of the runtime environment are also consid-

ered, such as limitations on computational resources (i.e., memory and CPU) and / or

communication networks (i.e., network latencies).

1.3 Main contributions

The main contributions of this thesis are:

• An event stream composition model. We propose an event stream composition model

3
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that proposes a set of concepts for the representation of event streams, and a set of

operators that operate on such event streams. We also propose a way of defining event

stream composition expressions representing complex event stream processing queries,

and the associated QoS requirements.

• An event stream composition framework. We propose an event stream composition

framework for the generation and deployment of event stream composition networks

in distributed and constrained runtime environments, considering QoS requirements

of applications. Our framework derives an event stream composition network from an

event stream composition expression. The event stream composition network consists

in a set of connected event processing units that implement stream operators. We

rely on a mapping algorithm for efficiently deploying event processing units on the

distributed runtime environment, considering QoS requirements such as latency and

memory occupation. We model the QoS requirements as a set of constraints that have

to be satified by such an algorithm. The proposed constraints are extensible, allowing to

take into account new QoS requirements.

• Event stream composition in a smart grid. We specialize the framework in the context of

a smart grid. We propose an algorithm for efficiently mapping event processing units

on smart grid devices, considering QoS dimensions memory, CPU and latency. The

specialized framework allows to build event stream composition networks in a smart

grid. We simulate the smart grid runtime environment, on top of which we implement a

business use case which validates our proposition.

1.4 Document organization

The remainder of this document is organized as follows.

Chapter 2 presents the background and existing works related to event stream processing.

The stream processing domain is presented as well as existing projects and systems,

with an emphasis on the adopted processing model, deployment architecture and QoS

support.The chapter concludes with a discussion on the inadequacy of existing solutions

in distributed execution contexts with constrained resources.

Chapter 3 presents our event stream composition model. It starts with our model for the

representation of event streams in distributed contexts. Then, event stream composition

operators are presented, followed by our model for expressing event stream composition

expressions and the associated QoS requirements.

Chapter 4 presents NETAH, our framework for building and deploying event stream composi-

tion networks in distributed contexts that are constrained in resources. First the chapter

presents the architecture of the framework, with the strategies to deal with event priority.

Then, it presents how to generate an event stream composition network from a user

subscription, as well as the deployment process of event stream composition networks

in the constrained runtime environment.
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Chapter 5 presents the specialization of NETAH in smart grids. It starts with an overview of a

smart grid, and then presents how to adopt NETAH in such a context. Then, it proposes

an algorithm for mapping event processing units to smart grid devices considering QoS

constraints in term of memory, CPU, latency. Finally, it presents a simulation of the

smart grid environment, which includes an API allowing to implement event stream

composition scenario in that environment.

Chapter 6 validates our proposal with the implementation of a use case related to the location

of resistive faults on the medium voltage network of a smart grid. It presents the event

stream composition expressions that models the detection of a resiste fault and its

location, with the associated QoS requirements. Then, it presents the use of NETAH for

generating and deploying the corresponding event processing network in a smart grid

topology. Finally, it discusses the experimental results.

Chapter 7 presents our conclusions and perspectives providing a discussion on the challenges

that remain and perspectives.
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2 Event Stream Composition Systems

This chapter presents existing works related to event stream processing. Section 2.1, introduces

the general stream processing domain,comprised of data stream processing systems and complex

event processing systems. Section 2.2, compares existing systems from the two categories, consid-

ering both their processing and deployment models, and the QoS support. Section 2.3, discusses

the limitation of current systems to fulfill our objectives, and finally, Section 2.4, concludes this

chapter.

Contents
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Chapter 2. Event Stream Composition Systems

2.1 Stream processing

The stream processing domain consists in a class of systems that process continuous event

(data) streams. They arise in telecommunications, health care, financial trading, and trans-

portation, among other domains. Timely analysis of such streams can be profitable (in finance)

and can even save lives (in health care). In the streaming model, events arrive at high rate, and

algorithms must process them under very strict constraints of space and time. Furthermore,

often the events volume is so high that it cannot be stored on disk or sent over low capacity

networks before being processed. Instead, a stream processing system can analyse continu-

ous event streams immediately, reducing large-volume input streams to low-volume output

streams for further storage, communication, or action.

For example, let us consider a microgrid1 which provides electricity to households using an

intelligent energy distribution system (see Figure 2.1). Households are equipped with smart

meters that measure each minute the energy consumption. The event streams generated by

smart meters are sent to the energy monitoring via the power line communication network.

Each event indicates the ID of the smart meter2, the energy consumed and the timestamp. Let

us assume this query from the network monitoring:

Q1: Notify me whenever the energy consumed either at house h1 or h2 on the last hour is

greater than 10 kWh.

Figure 2.1 – A microgrid.

In order to answer that query, the event stream processing system should continuously apply

filtering, windowing, aggregation and event stream composition in order to produce the

desired outputs and notify them to the network monitor.

Figure 2.2 presents a generic architecture of a stream processing system.

The system provides an interface where users can express continuous queries or rules using

1A small independent smart grid.
2We assume that this also identifies the house
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Figure 2.2 – Generic architecture of a stream processing system

a declarative adhoc language [CM94, LS03, ABW06, JMS+08, CM10]. Such queries are then

processed by a query parser that generates an execution plan3. The stream processing system

may also expose an API allowing users to directly program execution plans and submit them

to the system [ZCF+10, STO13, Apa16a]. The execution plan is then processed by a scheduler,

which creates and deploys the processing elements which actually process the input streams

according to the received execution plan. The result of such processing is an output stream,

which is notified to the user.

We distinguish between two categories of stream processing systems. The first one, data

stream processing systems(DSP), from the database community, focus on extending existing

database technologies and systems to deal with the characteristics of streams (continuous,

unpredictable rates, real time requirements, etc) [ABB+03, CDTW00, ACc+03]. The goal of

such systems is to execute SQL-like queries on continuous data streams. The second one,

3For sake of simplicity, we suppose the execution plan is optimal, such that we don’t need a query optimizer.
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complex event processing systems (CEP), from the middleware community, focus on extending

publish/subscribe middleware, allowing applications to subscribe to complex event patterns

within the event streams. The goal of such systems is to efficiently extract complex event

patterns within the event streams and notify them to interested applications.

In order to take benefits of both system categories, they have been integrated in some recent

systems [Apa16a, Esp15].

The remainder of this chapter focusses on three dimensions that characterize existing stream

processing systems: their processing model, deployment model and QoS support.

2.1.1 Event/Stream processing model

The processing model of a stream processing system refers to the way it implements stream

processing. We distinguish between three kinds of processing models (see Figure 2.3): dataflow,

finite state automata, and petri nets.

Figure 2.3 – Processing models

Dataflow

A dataflow model considers that the stream processing system is implemented by a set of

concurrent computational actors that transform and exhange data from the input sources to

the final destination. Such a model is well adapted for systems which need to apply contin-

uous transformations on data streams in order to produce results [ZCF+10, STO13, ABB+03,

CDTW00, ACc+03]. The event stream processing is implemented by a set of processing ele-

ments (PEs) organized as a directed acyclic graph(DAG), as illustrated in Figure 2.4. Upstream

to the DAG are the sources from which emanate event streams, and downstream is the ap-

plication which collects final results. Each processing element in the DAG implements an

operation, and forwards its results either to another processing element, or to an application.

Basically, a processing element can implement any operation. Examples of operations are

filters, windows, joins, aggregations, pattern matching, or user defined operations.

10
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Figure 2.4 – Implementation of an event stream processing as a DAG of processing elements

Finite state automata

Finite state automata (FSA) are well adapted for systems that need to detect complex event

patterns over event streams. The event detection is implemented using finite state automata

[ADGI08, WDR06].

Complex event patterns are expressed using operators like conjunction, disjunction, negation,

sequence, windows, iterations, etc. A complex event pattern represents a complex event type,

and is associated to an automaton. A state of such automaton represents a partial match of the

complex event pattern. The transition from one state to another represents a condition that

should be satistied on the input event stream in order to apply the transition. The incoming

event streams provides the sequence of input events to the automaton. If the automaton

reaches an accepting state, then the complex event implemented by the automaton occurs.

Figure 2.5 illustrates the finite state automata for the complex event type (A∧B ; C ) that occurs

whenever instances of A and B event types occur, followed by an instance of the C event type.

S1 

S4 

S2 

S6 

S5 

A 

B 

B 

A 
S3 

ε 

ε 

C 
S0 

Figure 2.5 – Implementation of complex event detection with finite state automata

Petri nets

Some systems adopted Petri nets for detecting complex event patterns within event streams

[CKAK94, Hin03, GD94, JLKY08]. A Petri net consists of places, transitions and arcs. Arcs con-

nect places with transitions and transitions with places. The places of a Petri net correspond to

the potential states of the net, and such states may be changed by the transitions. Transitions

correspond to the possible events which may occur (perhaps concurrently). In Coloured Petri

nets, tokens are of specific token types and may carry complex information.

When an event occurs, a corresponding token is inserted into all places representing its event
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type. The flow of tokens through the net is then determined; a transition can fire if all its input

places contain at least one token. Firing a transition means removing one token from each

input place and inserting one token into each output place. The parameters corresponding to

the token type of the output place are derived at that time. Certain output places are marked

as end places, representing complex events. Inserting a token into an end place corresponds

to the detection of a complex event. Figure 2.6 presents the Petri net for the sequence E1;E2.

  

  

  

E2 
  

  

  

E1 

E1 ; E2 
  

H 

t1 

t2 t3 

E1’ 

Figure 2.6 – Implementing an event stream processing with Petri nets

The choice between each of these processing models (dataflow, finite state automata and

Petri nets) depends on the target application. For example, the query Q1 defined in Section

2.1 requires continuous transformation of event streams (windows, aggregations and filters)

rather than event pattern recognition. Therefore, the dataflow model is the natural way to

implement such a query, as illustrated in Figure 2.7. Each smart meter produces an input

Filter 
(t_energy 

> 10) 

Window 
(1h) 

Window 
(1h) 

Union 

Sum 
(energy) 

Sum 
(energy) 

Smart meter h1 

Smart meter h2 

stream 1 

stream 2 Control center 

Figure 2.7 – Implementing the query Q1 using a dataflow model

stream, on which we compute one hour sliding windows. Then, we compute the sum of

the energy on each window. Then, we merge the resulting output streams into one using an

"union" operation. Then, we apply a filter on the merged stream to consider only energy sum

that are greather than 10 kWh. The resulting output stream is notified to the control center.

2.1.2 Deployment model

Several stream processing applications include a large number of sources and sinks, possibly

distributed over a wide geographical area, producing and consuming a large amount of event
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streams that have to be processed by the stream processing engine in a timely manner. Hence,

an important aspect to consider is the deployment architecture of the engine, that is, how

the processing elements that implement the event stream processing are deployed on target

physical architectures. We distinguish between centralized and distributed models (see Figure

2.8).

Figure 2.8 – Deployment models

Centralized model

In a centralized architecture, the stream processing is realized by a single node in the network,

in a pure client-server architecture. The stream processing engine acts as the server, while

event producers and consumers act as clients [ABB+03, ACc+03, WDR06, Esp15]. For example,

Figure 2.9 presents the adoption of a centralized architecture for the implementation of stream

processing within the microgrid (see Section 2.1). The event streams are conveyed to the

stream processing server, which implements the stream processing query Q1 and notifies the

results to the control center.

The main issue with a centralized model is the fact that event streams have to be acheminated

to the server in order to be processed, which is network consuming. In addition the server,

which can face scalability issues in large scale settings, is a single point of failure.

Distributed model

There is an increasing interest in extracting useful information from large scale, distributed

data streams, in realtime (smart grids, internet of things, etc.). Motivated by the fact that

centralized stream processing systems failed to scale in presence of large stream sources,

distributed stream processing systems have been investigated.

A distributed event stream processing system organizes the event stream processing in a set of

tasks which are executed accross different nodes of a computer network and collaborate to

produce the desired output [Aba05, SMMP09, STO13, ZCF+10, Apa16c, Apa16a]. The nature

of this network of tasks allows to further classify distributed event stream processing systems

into clustered and networked systems (see Figure 2.10).

In a clustered engine, scalability is pursued by sharing the effort of processing incoming event
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Figure 2.9 – A centralized stream processing model

Figure 2.10 – Distributed deployment models

streams among a cluster of strongly connected machines, usually part of the same local area

network. In a clustered event stream processing engine, the links connecting processing nodes

among themselves perform much better than the links connecting sources and sinks with the

cluster itself. Furthermore, the processing nodes are in the same administrative domain.

For example, Figure 2.11 presents the adoption of a clustered deployment architecture for

the implementation of stream processing within the microgrid (see Section 2.1). The stream

processing engine is deployed within a cluster at the control center. The cluster consists in a

set of computing nodes that provide computing resources to the stream processing engine.

Similarly to centralized architectures, a clustered architecture requires the event streams to

be conveyed to the cluster location for processing, which is network consuming. This is

undesirable when using low capacity networks such as power line communication in the

microgrid.

Conversely, a networked event stream processing engine focuses on minimizing network
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Figure 2.11 – A clustered stream processing model

usage by dispersing tasks over a wide area network, with the goal of processing information as

close as possible to the sources. In such a model, each network node can participate in the

stream processing. As a result, in a networked event stream processing engine, the links among

processing nodes are similar to the links connecting sources and sinks to the engine itself.

The processing nodes are widely distributed and potentially run in different administrative

domains.

For example, Figure 2.12 presents the adoption of a networked deployment architecture for the

implementation of stream processing within the microgrid (see Section 2.1). All the computing

node deployed within the microgrid can participate in the stream processing. This includes

smart meters at households, sensors over the electrical lines, data concentrators at substations,

etc. Processing event streams as close as possible to the sources can reduces the network

occupation. For example, executing the query Q1 within the substation would be a better

alternative4 than executing it at the control center, as this would reduce the data flow (and

thus, the network occupation) upstream to the substation.

In summary, seeking for better scalability, clustered and networked engines focus on different

aspects: the former on increasing the available processing power by sharing the workload

among a set of well connected machines, the latter on minimizing network usage by processing

event streams as close as possible to the sources.

The runtime environment is the environment on which stream processing tasks are executed.

4from a network occupation point of view
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Figure 2.12 – A networked stream processing model

2.1.3 QoS requirements

Stream processing systems must often meet particular QoS goals (as opposed to systems

working with batch style workloads), otherwise the quality of the output degrades or the

output becomes worthless at all. A number of QoS dimensions have been adopted in existing

event stream processing systems, including throughput, latency, memory, accuracy and high

availability [ASB10].

Latency It is the amount of time or the average amount of time it takes for an event or a

sequence of events to go through processing of a query and be notified to a consumer.

The latency considers the processing time of the operators, the waiting time on buffers,

and the network latency in case of distributed processing. For example in [LWK13],

latency is addressed using a task chaining strategy, which consists in chaining lightweight

operators together and execute them in a single thread or process. This eliminates the

communication between the concerned operators, and thus decreases the latency.

Memory It is the maximum amount of memory used by the stream processing system. This

can be defined for each operator or for the entire stream processing system. As stream

processing systems are generally classified as in-memory processing, the memory foot-

print of stream processing processes is a crucial concern, in particular in resource

constrained environments. For example, in order to reduce the memory requirements

during the processing, [DGP+07], proposed a memory management scheme which

allows objects to be shared as much as possible between operators, reducing the space

and time overhead for such objects. Storm[STO13] implements a resource aware sched-

uler, which assigns operators to computing nodes considering their memory and CPU

time requirements.
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Throughput It is the number of events that are output per unit of time. High throughput

generally goes with low latency. Therefore, strategies to achieve low latency stream

processing lead to a better (higher) throughput. Conversely, strategies to achieve high

throughput generally improve the latency. For example, the strategy used by [LWK13] to

improve the throughput is to dynamically adjust the size of operator buffers in order

to avoid long waits before event notification. This allows a fast event delivery, thus

decreasing the latency.

Accuracy It is the accuracy of results in terms of error tolerance. Stream processing systems

are often subject to data loss. Data loss can be triggered by the system itself, in the

context of load shedding in case of bursty event stream arrival. Data loss can also

be caused by the saturation of event buffers, or by the use of a non reliable transport

mechanism like UDP for event dissemination. Such data loss can affect the accuracy of

the stream processing results. For example in Aurora [CBB+03], the user indicates the

importance of tuples as part of its QoS specifications. This information is used by the

system to determine which tuples can be dropped, such that the accuracy of the results

is not altered.

High availability It is the capacity of the stream processing system to be operational even

in abnormal situations. In a centralized stream processing system for example, an

abnormal situation can be the failure of the server. In distributed stream processing

systems, this can be the failure of a processing node. For example, in Esper[Esp15], high

availability is ensured by adding redundancy to the system so that failure of a server can

be masked by an automatic switch to another server.

Some or all of the above can be specified with each continuous query. Given the QoS require-

ments for a continuous query or a set of continuous queries, it is the responsibility of the

stream processing system to satisfy them or indicate that they cannot be satisfied with the

available resources and the current load on the system.

It is important to stress that the QoS dimensions are not independent of each other. For

example, increase in average event latency is likely to increase the total memory requirement

in a stream processing system. As another example, decrease in memory usage due to dropping

of events will reduce the accuracy of results. Because of this tradeoff among QoS dimensions,

it is important to have a suite of techniques (e.g., scheduling algorithms, load shedding) for

optimizing each metric individually and for balancing them as needed.

2.2 Existing projects and systems

This section presents a survey of some existing stream processing projects and systems. We

first present some data (event) stream processing systems, which focus on applying continuous

transformations on data streams. Then, we present some complex event processing systems,

which focus on detecting complex event patterns within the event streams.
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2.2.1 Event/Data stream processing systems

Stream

Stream [ABB+03] is a general-purpose data stream processing system. It supports a declarative,

SQL-like query language called CQL [ABW06], which stands for continuous query language.

Stream considers streams of structured data records (tuples) that conform to a specific schema.

For example, if we denote by MeterStream, the event stream generated by smart meters in the

example introduced in Section 2.1, then we can define its schema as: MeterStream(meterID,

energy, ts).

CQL provides a unified syntax to query both streams and stored relations. To do so, CQL

distinguishes between three categories of operators: relation-to-relation operators, stream-to-

relation operators, and relation-to-stream operators.

Relation-to-relation operators derive from SQL: they are the core of the language, which

actually defines the processing. This has the advantage that a large part of the query definition

is realized by using the standard notation of a widely used language. In order to add support

for stream processing, CQL introduces the notion of windows, as a way to capture and store

portion of each input stream inside relation tables for processing; for this reason, CQL denotes

windows as stream-to-relation operators. Windows can be based both on time and on the

number of contained elements. The last kind of operators that CQL provides is that of relation-

to-stream operators, which define how processed tuples can become part of the output stream.

Three relation-to-stream operators exist: IStream put a tuple into the output stream when it is

added to the table, DStream considers only removed tuples, while RStream considers every

tuple contained in the table. For example, using CQL, we can answer the query Q1 (see Section

2.1) as follows:

select meterID, sum(energy) as t_energy
from MeterStream [Range 60 Minutes]
Where (meterID =’h1’ or meterID = ’h2’)
group by (meterID)
Having (sum(energy) > 10)

Notice the [Range 60 Minutes] CQL construct, which defines a 1 hour window on the Meter-

Stream event stream. This results is a relation containing the set of events received during the

last hour. The remaining of the query uses standard SQL constructs.

Starting from a CQL query, Stream computes a query plan. Query plans are composed of

operators, which perform the actual processing, connected by queues, which buffer tuples as

they move between operators, and synopses, which store operator state. Therefore, Stream

follows the dataflow processing model.

Stream is a centralized stream processing system. The query parser, the scheduler, and the

operators are colocated on a single server. The operator scheduling mechanism of Stream

focuses on memory minimization under user-specified latency constraints[BBD+04]. In order

to deal with resource overload problems on the Stream server, two major shedding techniques

have been proposed: the first addresses the problem of limited computational resources by

applying load shedding on a collection of sliding window aggregation queries [BDM04]; the
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second addresses the problem of limited memory, by discarding operator state for a collection

of windowed joins [SW04].

Stream is a centralized stream processing system. In consequence, all the event streams should

be routed to the Stream server node before actually being processed. This is not desirable

in resource constrained environments like smart grids as it increases the usage of network

resources, which are limited. Moreover, the centralized architecture suffers scalability issues

in presence of a large number of producers and consumers, and the Stream server is a single

point of failure.

NiagaraCQ

NiagaraCQ [CDTW00, NDM+01] is a data stream processing system for Internet databases.

The goal of the system is to provide a high-level abstraction to retrieve information, in the

form of XML data sets, from a frequently changing environment like Internet sites. NiagaraCQ

continuous query language is based on XML-QL [DFF+99], a declarative, SQL-like language

for specifying XML queries. The command to create an continuous query has the following

form:

CREATE CQ_name

XML-QL query

DO action

{START start_time} {EVERY time_interval} {EXPIRE expiration_time}

A query in NiagaraCQ combines an ordinary XML-QL query with additional time informations.

Each query has an associated time interval that defines its period of validity: the query starts

at start_time and ends at expiration_time. A query can be either timer-based or change-

based; the former is evaluated periodically, after each time_interval during its validity interval,

while processing of the latter5 is driven by notifications of changes received from information

sources. The defined action is performed upon the XML-QL query results.

As example, let us consider the query Q1 defined in Section 2.1. This query cannot be expressed

on NiagaraCQ, because XML-QL does not allow filters on aggregated values. Instead, we could

partially answer query Q1 by computing the sum of energy consumed by each house during the

last hour. The filter, which checks for energy sum greater than 10 kWh should be implemented

at the application level. The partial query is written as follows:

CREATE partialQ1
Where <MeterEvent>

<meterID>$id</meterID>
<energy>$e</energy>

</MeterEvent> IN eventstreams.xml
Construct

<result>

5The time_interval value is set to zero.
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<t_energy ID = meterID($id)> sum($e) </t_energy>
</result>

DO notifyControlCenter()
START 0 EVERY 1h EXPIRE 0

This query assumes that the event streams from smart meters are appended to a file named

eventstreams.xml. The Where clause of the XML-QL query matches each event in the eventstreams.xml

file. The Construct clause contruct results from the matched events, which is the sum of the

energy consumed for each group of events related to the same home (value of the meterID

property). This query is executed every hour as specified by the EVERY 1h clause. The continu-

ous query execution mechanism of NiagaraCQ ensures that only the delta file for the source

file eventstreams.xml will be processed each time.

NiagaraCQ processes continous queries in a central server. It associates to each query a

query plan, which is similar to a query execution plan in relational databases. To increase

scalability, NiagaraCQ uses an efficient caching algorithm, which reduces access time to

distributed sources and an incremental group optimization, which splits query plans into

groups; members of the same group share the same query plan, thus increasing performance.

Similarly to Stream, the main disadvantage of NiagaraCQ is its centralized architecture. In

addition, NiagaraCQ does not provide support for QoS.

Aurora/Borealis

Aurora [ACc+03] is a general-purpose data stream processing system. It allows the continuous

execution of queries over push-based input streams. Each input conforms to a particular

schema, similarly to a row in a relational database table. In Aurora, a developer creates

transforming rules with an imperative language called SQuAl, which stands for stream query

algebra. SQuAl defines rules in a graphical way, by adopting the boxes and arrows paradigm,

which makes connections between different operators explicit. The result is a dataflow graph

which corresponds to the execution plan, which Aurora executes in a centralized way. For

example, the dataflow graph associated to the query Q1 (see Section 2.1) is depicted at Figure

2.13. For each house, it computes the sum of energy over one hour sliding windows of the

smart meter event stream. Then, using a filter operator, it tests whether the energy sum is

greater than 10. It merges the results of both houses into one stream that represents the final

output stream of the query.

Interestingly, SQuAl allows users to associate a QoS specification to each output stream. This

specification indicates how much latency the connected application can tolerate, the tolerance

of the application regarding tuple drops, and the importance of the output tuples. In case

adequate responsiveness cannot be assured due to overload situations, Aurora attempts to

reduce the volume of input tuples via load shedding. The load shedding can be achieved by

randomly dropping tuples or by choosing a semantic dropping strategy where it does some

filtering before dropping tuples. The choice of the dropping technique depends on the user
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Figure 2.13 – Example of a dataflow graph in Aurora

QoS specification. For example, random drops are used to increase responsiveness, while

semantic drops are used to avoid loosing important tuples.

Like Stream and NiagaraCQ, the centralized architecture of Aurora is inappropriate in large

scale, resource constrained contexts like smart grids.

The Aurora project has been extended to investigate distributed processing both inside a single

administrative domain and over multiple domains [CBB+03]. In both cases, the goal is that

of efficiently distributing load between available resources. In these implementations, called

Aurora* (distribution within the same administrative domain) and Medusa (inter administra-

tive domain distribution), communication between operators takes place using an overlay

network, with dynamic bindings between operators and data streams. The two project have

merged their features into the Borealis stream processor [Aba05].

Gigascope

Gigascope [CGJ+02, CJSS03, JM05] is a data stream processing system specifically designed for

network applications, including traffic analysis, intrusion detection, performance monitoring,

etc. The main concern of Gigascope is to provide high performance for the specific application

field it has been designed for.

Gigascope defines a declarative, SQL-like language, called GSQL. All inputs to a GSQL are

streams, and the output is a data stream. A data stream is bound to a schema, which defines

the set of attributes exposed by its data items (tuples). The GSQL language includes only

filters, joins, group by, and aggregates. Interestingly, it uses processing techniques that are

very different from those of other data stream systems. In fact, to deal with the blocking

nature of some of its operators, it does not introduce the concept of windows. Instead, it

assumes that each tuple of a stream contains at least an ordered attribute, i.e. an attribute

that monotonically increases or decreases as items are produced by the source of the stream.

For example, a timestamp defined w.r.t. an absolute time, or a sequence number assigned at

source. Users can specify which attributes are ordered, as part of the data definition, and this
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information is used during processing.

For example, using GSQL, we can answer the query Q1 (see Section 2.1) as follows:

SELECT meterID, sum(energy) as t_energy
FROM MeterStream
WHERE (meterID = ’h1’ or meterID = ’h2’)
GROUP BY (ts/3600, meterID)
HAVING (sum(energy) > 10)

The attribute ts (timestamp) is a 1-second granularity timer, so ts/3600 defines groups of 1

hour, in other words, one hour windows. When a group (window) with a new value of ts is

produced, all of the pre-existing groups are closed, and therefore are aggregated and filtered.

These mechanisms make the semantics of processing easier to understand, and more similar

to that of traditional SQL queries. However, they can be applied only on a limited set of

application domains, in which strong assumptions on the nature of data and on arrival order

can be done. Gigascope translates an GSQL rule into basic operators, and composes them into

a query plan, which conforms to the dataflow model. Query plans are executed in Gigascope

in a centralized way, which is not appropriate in highly distributed, resource constrained

contexts like smart grids. In addition, there is not a support for QoS in Gigascope.

Spark Streaming

Spark [ZCF+10] is a general framework for large-scale data processing. The main abstraction

in Spark is that of a resilient distributed dataset (RDD) [ZCDD12], which represents a read-only

collections of objects partitioned across a set of machines that can be rebuilt if a partition

is lost. Every data are represented as RDD, which represents the generic data type in Spark.

To use Spark, developers write a driver program that implements the high-level control flow

of their application and launches various operations in parallel. RDDs support two types of

operations: transformations, which create a new dataset from an existing one, and actions,

which return a value to the driver program after running a computation on the dataset.

Spark includes the Spark Streaming library, which is an extension of the core Spark API

that enables scalable, high-throughput, fault-tolerant stream processing of live data streams.

Spark Streaming provides a high-level abstraction called discretized stream or DStream, which

represents a continuous stream of data. DStreams can be created either from input data

streams from sources, or by applying high-level operations on other DStreams. Internally,

a DStream is represented as a sequence of RDDs. Each RDD in a DStream contains data

from a certain interval. Any operation applied on a DStream translates to operations on the

underlying RDDs. Spark Streaming receives live input data streams and divides the data into

batches, which are then processed by the Spark engine to generate the final stream of results

in batches. This approach has the benefit that it allows programmers to write streaming jobs

the same way they write batch jobs.

For example, let us consider again the query Q1 (see Section 2.1). Assume a DStream named

meterStream, which contains smart meter events from a one hour interval. Then the query Q1

can be answered by the following Spark Streaming job:

22



2.2. Existing projects and systems

val ds1 = meterStream.map(e => (e.meterID, e))
val ds2 = ds1.reduceByKey((e1, e2) => e1.energy + e2.energy)
val res = ds2.filter((id, v) => { (id == "h1" || id == "h2") && v > 10})
res.print()

The spark execution engine is built around an acyclic dataflow model, and it runs on dedicated

servers in a cluster. Therefore, Spark achieves a localized distribution of stream processing

tasks over a set of homogeneous, resource-rich nodes connected with high-speed network links.

Our focus is on achieving large scale distribution over a network of heterogeneous devices,

some of them being potentially connected by low-speed network links. In consequence, Spark

Streaming is not appropriate in large scale, resource constrained contexts like smart grids.

Storm

Storm [STO13] is a distributed framework for reliable and realtime stream processing. In

Storm, streams are defined with a schema that names the fields in the stream’s tuples. The

logic for a realtime application is packaged into a Storm topology. A topology is a directed

acyclic graph of producers called spouts, and operators called bolts that are connected with

stream groupings. A stream grouping is a policy which defines how an output stream should be

partitioned among the bolt tasks. For example, Figure 2.14 presents a topology which answers

the query Q1 (see Section 2.1).
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10 

(meterID, t_energy) results  Smart 
meter 

h1 

(meterID, energy, ts) 
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Spout Bolt 

Smart 
meter 

h2 

Figure 2.14 – Example of a Storm topology

Storm topologies run on a cluster. Clients submit topologies to a master node, which is called

the Nimbus. Nimbus is responsible for distributing and coordinating the execution of the

topology accross the worker nodes in the cluster. Each worker node runs one or more worker

processes. At any point in time a single machine may have more than one worker processes,

but each worker process is mapped to a single topology.

Storm offers several different levels of guaranteed message processing, including best effort

(at most once), at least once, and exactly once. To do that, spouts keep the messages in
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their output queues until they are being acknowledged. The acknowledgement happens after

the successful processing of an event by the topology. If an acknowledgement comes for a

message within a reasonable amount of time spouts clear the message from output queue. If

an acknowledgement didn’t come within a predefined period (30 second default) the spouts

replay the message again through the topology. This mechanism guarantees that the messages

are processed at least once inside Storm. In order to address the lack of resource awareness

in Storm, [XCTS14, PCH+15] propose a task scheduling algorithm which increases overall

throughput, by maximizing resource utilization (CPU, memory) while minimizing network

latency.

Similarly to Spark, the clustered deployment model of Storm is inappropriate in large scale,

resource constrained contexts like smart grids.

Samza

Samza [Apa16c] is a Java based, general purpose stream processing framework. A Samza

data stream is an immutable unbounded collection of messages of same type. Samza data

model is pluggable, the structure of message types being defined by users. A stream can have

any number of consumers, and reading from a stream doesn’t delete the message . Samza

always persists streams in its brokering layer. An application in Samza is a logical collection of

processing units that act on a message streams and produce output streams. The application

creates a Samza job, which applies transformations on the input streams. It is possible to

compose multiple jobs to create a dataflow graph where the nodes are streams containing data,

and the edges are jobs performing transformations. This composition is done purely through

the streams the jobs take as input and output. The jobs are otherwise totally decoupled:

they need not be implemented in the same code base, and adding, removing, or restarting a

downstream job will not impact an upstream job.

For example, Figure 2.15 presents a dataflow graph corresponding to the query Q1 defined

in Section 2.1. It contains two aggregate jobs which compute the sum of energy on one hour

sliding windows of each input stream h1 and h2. Their results are appended in the stream

h12, which is processed by the filter job that detects events that report energy values that are

greater than 10. Those events are appended to the final stream, which can be consumed by

interested consumers.

Messages of a stream can optionally have an associated key which is used for partitioning.

Streams are partitioned into sub streams and distributed across the processing tasks running

in parallel.

A job is scaled by breaking it into multiple tasks. Each task consumes data from one partition

for each of the job’s input streams.

Samza supports a clustered deployment. It uses Apache Kafka [Apa16b] for messaging, and

Apache Hadoop YARN to provide fault tolerance, processor isolation, security, and resource

management. Message streams are handled by kafka, which provides a distributed publish/-

subscribe system with persistence for message streams.

Similarly to Spark, the clustered deployment model of Samza is inappropriate in large scale,
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Figure 2.15 – Example of a dataflow graph in Samza.

resource constrained contexts like smart grids.

Flink

Flink [Apa16a] is an open source platform for distributed stream and batch data processing,

based on the Stratosphere research project [ABE+14]. Flink’s core is a streaming dataflow

engine that provides data distribution, communication, and fault tolerance for distributed

computations over data streams. The Flink data model supports all primitive types, and makes

it possible to define event types using Java or Scala classes.

The Flink’s DataStream API makes it easy to write programs that implement transformations

on data streams (e.g., filtering, updating state, defining windows, aggregating) coming from a

variety of sources (sockets, files, Hadoop file system, Twitter, RabbitMQ, Kafka, ElasticSearch,

etc...).

For example, using the Flink’s DataStream API, the query Q1 defined in Section 2.1 can be

written as follows:

val evtStr : DataStream[MeterEvent] = getSmartMeterEventStreams()
val evtStr2 = evtStr.filter(e => e.meterID=="h1" || e.meterID == "h2")
val evtStr3 = evtStr2.map(e => (e.meterID, e.energy))
val evtStr4 = evtStr3.keyBy(0).timeWindow(Time.hours(1)).sum(1)
val res = evtStr4.filter((id, v)=> v > 10)
res.print

Flink also proposes FlinkCEP, a complex event processing library which is defined on top of

the Datastream API. FlinkCEP allows to detect complex event patterns within an event stream.

The pattern language allows only to specify sequences, type and content based filters, and

windows. There is no support for logical operators like conjuction and disjunction.

Flink supports both centralized and clustered deployments. Its runtime consists of two types

of processes: the master process also called JobManager, which coordinates the distributed

execution (tasks scheduling and recovery, etc.), and the worker processes also called TaskMan-

agers, which execute the tasks (or more specifically, the subtasks) of a dataflow. There is one
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worker process on each node of the cluster, and each worker process can have many processing

slots (threads). Flink executes a program in parallel by splitting it into subtasks and scheduling

these subtasks to processing slots. The task scheduling algorithm allows subtasks from the

same job to be executed within the same processing slot. The result is that one slot may hold

an entire pipeline of the job. This reduces the overhead of thread-to-thread handover and

buffering, and increases overall throughput while decreasing latency. The cluster deployment

model of Flink, associated to the lack of support for event priority, make it inappropriate in

large scale, resource constrained contexts like smart grids.

2.2.2 Complex event processing systems

Rapide

Rapide [Luc96, LV95] is considered as one of the first steps toward the definition of a complex

event processing system. It consists of a set of languages and a simulator that allows users to

define and execute models of system architectures.

Rapide enables users to capture the timing and causal relationships between events: in fact,

the execution of a simulation produces a causal history, where relationships between events

are made explicit.

Rapide models an architecture using a set of components, and the communication between

components using events. Event types are defined as tuples whose data represent such com-

munications. Rapide embeds a complex event detection system, which is used both to describe

how the detection of a certain pattern of events (so called complex events) by a component

brings to the generation of other events, and to specify properties of interest for the overall

architecture. Rapide defines a pattern language which includes conjunctions, disjunctions,

negations, sequences, and iterations, with timing constraints. There is no support for window-

ing and aggregations. Because of these limitations, the query Q1 cannot be answered using

Rapide. Instead, we can answer the following alternative query :

"Notify me whenever the smart meter at home h1 or h2 reports an energy consumption higher

than 2kWh."

This is written using the Rapide pattern language as follows:

(?E1, ?E2 : Integer)
MeterEvent(meterID is h1, energy is ?E1) where (?E1 > 2)
or
MeterEvent(meterID is h2, energy is ?E2) where (?E2 >2)

This pattern looks for events for which the value of the meterID attribute is h1 and the value of

the energy attribute is higher than 2, or events for which the value of the meterID attribute is

h2 and the value of the energy attribute is higher than 2.

The processing model of Rapide corresponds to the dataflow model. The system builds a

DAG which represents the causality relation between event and/or event patterns. Each event

pattern is detected using an event processing agent that implements its corresponding event
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processing rules. The event processing agents are executed in a centralized way, and there

is no support for QoS. Because of these limitations, Rapide is inappropriate in a large scale,

resource constrained context like a smart grid or the IoT.

Raced

Raced [CM09] is a distributed complex event processing middleware. Raced extends the

content-based publish-subscribe paradigm to provide a complex event detection service for

large scale scenarios. The Raced event definition language allows the definition of complex

event types using a few set of operators optimized for a distributed detection: message filters,

composition operators, parameters and windows. A limitation of the Raced event definition

language is that aggregations are not supported. In consequence, the query Q1 (see Section

2.1) cannot be answered using Raced. Let us consider the following alternative query:

"Notify me whenever there is an alert at home h1 and no energy consumption at home h2 within

a day."

This is written using the Raced event definition language as follows:

AlertEvent[meterID="h1"] AND NOT MeterEvent[(meterID="h2") AND energy > 0]
WITHIN 1 day

This pattern captures the occurrence of a alert at home h1 and the absence of events reporting

a positive energy consumption at home h2 within a day.

The processing model of Raced corresponds to the dataflow model. The detection of a complex

event is recursively decomposed into the detection of its parts, each part being handled by

a detecting node called broker. Brokers are organized in a shortest path tree which is used

to recursively assign event detection tasks to brokers. Using this approach, Raced gets the

benefits of distributed processing (load is split, and information is filtered near the sources),

while limiting the transmission of unneeded information from node to node. Therefore, the

Raced deployment model is distributed and networked. While such a deployment model is

appropriate in a highly distributed context, the limitation of Raced resides on the fact that

stream processing is realized on dedicated nodes which provides the computing resources.

In addition, there is no support for QoS. Our aim is to realize event stream composition on

multiple heterogeneous devices connected over the network, considering QoS goals such as

memory, CPU, latency and event priority.

Cayuga

Cayuga [DGP+07] is a general purpose event monitoring system. It is based on a language

called CEL (Cayuga Event Language). Its structure strongly resembles that of traditional

declarative languages for databases. Each CEL query has the following simple form:

SELECT < attributes >

FROM < stream expession >

PUBLISH < output_stream >
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A query consists in a SELECT clause that filters input stream, a FROM clause that specifies

a streaming expression, and a PUBLISH clause that produces the output. It includes typical

SQL operators and constructs, like selection, projection, renaming, union and aggregates.

The streaming expression contained in the FROM clause enables users to specify detection

patterns, including sequences as well as iterations. Notice that CEL does not introduce any

windowing operator. Therefore the query Q1 (see Section 2.1) cannot be answered using CEL.

Instead, let us consider the following query.

"Notify me whenever the smart meter at home h1 or h2 reports a energy consumption greater

than 1kWh."

This is written using CEL as follows:

SELECT meterID, energy
FROM
FILTER {(meterID=’h1’ OR meterID =’h2’) AND energy > 1} (MeterEvent)
PUBLISH Alert

The semantics of all operators is formally defined using a query algebra [DGH+06]. Cayuga

translates each rule into non deterministic automata for event evaluation. Cayuga does

not allow distributed processing, the automata associated to different rules being strictly

connected with each other. Furthermore, there is no support for QoS. Because of these

limitations, Cayuga is not appropriate in large scale and constrained environments like smart

grids.

NextCEP

NextCEP [SMMP09] is a distributed complex event processing system. Similarly to Cayuga, it

uses a language that includes traditional SQL operators, like filtering and renaming, together

with pattern detection operators, including sequences and iterations. There is no support for

windows and aggregations. Therefore, it is not possible to answer query Q1 (see Section 2.1)

using NextCEP. Instead, let us consider the following query:

"Notify me whenever the smart meter at home h1 reports an increase of the energy consumption

which is greater than 2kWh."

This is answered using the NextCEP language as follows:

SELECT * FROM MeterEvent E1; MeterEvent E2
WHERE FILTER(E1.meterID = E2.meterID),
E2.energy > E1.nergy + 2

The complex event detection is performed by translating rules into non deterministic au-

tomata, that strongly resemble those defined in Cayuga in structure and semantics. In Next-

CEP, however, detection can be performed in a distributed way, by a set of strictly connected

nodes in a cluster. The main focus of the NextCEP project is on rule optimization. In particular,

the authors provide a cost model for operators that defines the output rate of each operator ac-

cording to the rate of its input data. NextCEP exploits this model for query rewriting, a process
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that changes the order in which operators are evaluated without changing the results of rules.

The objective of query rewriting is that of obtaining the best possible evaluation plan, i.e. the

one that minimizes the usage of CPU resources and the processing delay. However, the cost

model does not captures the cost of sending events from event sources to processing nodes,

as the authors assume the network not to be a bottleneck. Such an assumption, along with

the clustered deployment restriction, are not acceptable in a large scale, resource constrained

environment like a smart grid or the IoT.

SASE / SASE+

SASE [WDR06, GWC+06] is a monitoring system designed to perform complex event pro-

cessing over real-time streams of RFID events. An event type is defined as a set of attributes.

The Sase language is based on patterns. Its overall structure is:

[FROM <stream name>]

EVENT <event pattern>

[WHERE <qualification>]

[WITHIN <window>]

[RETURN <return event pattern>]

The FROM clause provides the name of an input stream. If it is omitted, the query refers to

a default system input. The EVENT, WHERE and WITHIN clauses form the event matching

block. The EVENT clause specifies an event pattern to be matched against the input stream.

Patterns are expressed using logic operators and sequences. The WHERE clause, if present,

imposes value-based constraints on the events addressed by the pattern. The WITHIN clause

further specifies a sliding window over the event pattern. The event matching block transforms

a stream of input events to a stream of new composite events. Finally, the RETURN clause

transforms the stream of complex events for final output. The SASE language allows only

the detection of given patterns of RFID events; it does not include any notion of aggregation.

Therefore, the query Q1 (see Section 2.1) cannot be answered using the SASE language. Let us

consider the following query.

"Notify me whenever the smart meter at home h1 reports an increase of the energy consumption

which is greater than 2kWh within 1 hour."

This is answered using the SASE language as follows:

FROM MeterEventStream
EVENT SEQ(MeterEvent E1, MeterEvent E2)
WHERE [meterID=’h1’]

AND (E2.energy > E1.energy +2)
WITHIN 1 hour

SASE+ [ADGI08, GADI08] extends the expressiveness of SASE by including iterations and

aggregates in the pattern expressions. For example, using SASE+, it is possible to compute the

total energy consumed by house h1 during the last hour as follows:
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FROM MeterEventStream
EVENT SEQ(MeterEvent+ e[ ])
WHERE e[i].meterID=’h1’
WITHIN 1 hour
RETURN sum(e[ ].energy)

SASE and SASE+ are implemented using a query plan-based approach, that is, a dataflow

paradigm with pipelined operators as in relational query processing. A query plan is composed

of six blocks, which sequentially process incoming information elements realizing a of pipeline:

the first two blocks detect the events matching the pattern of the event clause by using finite

state automata. Successive blocks check selections constraints, windows and build the desired

output.

SASE and SASE+ execute query plans in a centralized way. In addition, there is no QoS support

in SASE and SASE+. Because of these limitations, SASE and SASE+ are not appropriate in large

scale, resource constrained contexts like smart grids or the IoT.

StreamBase

StreamBase [Str15] is a software platform that includes a data stream processing system, a set

of adapters to gather information from heterogeneous sources, and a developer tool based on

Eclipse. StreamBase has been built to commercialize the Aurora and Borealis systems. it uses

a declarative, SQL-like language for rule specification, called StreamSQL. Beside traditional

SQL operators, StreamSQL offers customizable windows operators. In addition, it includes a

simple pattern language that captures conjunctions, disjunctions, negations, and sequences

of events. For example, the query Q1 defined in Section 2.1 is written in StreamSQL as follows:

SELECT meterID, sum(energy) AS t_energy
FROM MeterStream [SIZE TIME 3600 ADVANCE TIME 3600]
WHERE (meterID = ’h1’ OR meterID =’h2’)
GROUP BY (meterID)
HAVING (sum(energy) > 10)

Operators defined in StreamSQL can be combined using a graphical plan-based rule spec-

ification language, called EventFlow, which conforms to the dataflow model. User-defined

functions, written in Java, C++ or Python, can be easily added as custom aggregates. Stream-

Base supports both centralized and clustered deployments, providing high availability in case

of failures. Here again, the centralized and clustered deployment models are not suited for

large scale, resource constrained contexts. In StreamBase, users can specify the maximum

load for each used server, but the documentation does not specify how the load is actually dis-

tributed to meet these constraints. Moreover, QoS dimensions like event priority and latency

are not considered. These QoS dimensions are required in our context, as we will see later in

the following chapters.
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Esper

Esper [Esp15] is a open-source software for complex event processing and event stream

analysis. Esper is integrated into Java and .Net (NEsper) as libraries. Users specify event types

using Java classes, Maps or XML. Esper defines a rich declarative, SQL-like language for rule

specification, called EPL (Event Processing Language). EPL includes all the operators of SQL,

adding custom constructs for windows definition, and output generation.

For example, the query Q1 (see Section 2.1) can be answered using EPL as follows:

SELECT meterID, sum(energy) AS t_energy
FROM MeterStream(meterID in (’h1’, ’h2’)).win:time_batch(1 hour)
WHERE (meterID = ’h1’ OR meterID =’h2’)
GROUP BY (meterID)
HAVING (sum(energy) > 10)

EPL embeds two different ways to express event patterns: the first one exploits so called

EPL patterns, that are defined as nested constraints including conjunctions, disjunctions,

negations, sequences, and iterations. The second one uses flat regular expressions on a single

event type.

The EPL pattern engine is a dynamic state machine in which states can have sub-states. The

term "delta networks", a network of objects in which only changes to data are communicated

across object boundaries and only when required, is at the foundation of the engine design.

The pattern matching functionality is built using nondeterministic finite automata.

Esper supports a centralized deployment. EsperHA (Esper High Availability) is a commercial-

ized version of Esper, which supports a clustered deployment. EsperHA combines Esper with

high performance resilience options, ensuring state recoverabilty upon a failure or orderly

shutdown.

The lack of QoS support, coupled with the centralized and clustered (for EsperHA) deployment

model, make Esper not appropriate in large scale, resource constrained contexts like smart

grids.

2.3 Discussion

Table 2.1 summarizes the studied stream processing systems.

As we can see, the dataflow model has been widely adopted as the processing model in data

stream processing engines. This is justified by its flexibility as it allows to implement a large

category of stream processing applications. In addition, the dataflow model is suitable for dis-

tributed stream processing, because it clearly separates the event processing implementation

from the event communication between processing components.

Early stream processing engines like STREAM, NiagaraCQ, Aurora and Gigascope were central-

ized systems that run the stream processing dataflows within a single node. Those systems are

not appropriate for large scale scenarios characterized by a large number of stream producers,
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Name Processing model Deployment model QoS Goals
Stream Dataflow Centralized memory, CPU
NiagaraCQ Dataflow Centralized response time
Aurora Dataflow Centralized latency, CPU, accuracy
Borealis Dataflow Clustered latency, CPU, accuracy, fault tolerance
Gigascope Dataflow Centralized -
Spark Streaming Dataflow Clustered latency, fault tolerance
Storm Dataflow Clustered latency, fault tolerance, throughput, memory, CPU
Samza Dataflow Clustered -

D
SP

Flink Dataflow Clustered fault tolerance, latency, memory, throughput
Rapide Dataflow Centralized -
Raced Dataflow Networked -
Cayuga FSA Centralized memory
NextCEP FSA Clustered CPU
Sase / Sase+ Dataflow, FSA Centralized -
StreamBase Dataflow Clustered high availability

C
E

P

Esper Dataflow, FSA Centralized -
NETAH Dataflow Networked memory, CPU, network, event priority

Table 2.1 – Comparison of existing systems

potentially distributed.

Recent systems such as Spark, Storm, Samza, and Flink addressed distributed event stream

processing within a cluster. Clusters generally provide certain levels of guarantee on the

computing resources availables and the network latency. Since the design of thoses system

relies on such guarantees, they are not suited for large scale distributed contexts like smart

grids or the internet of things, which consist in a large variety of processing nodes having

different computing resources, and which are connected by different network technologies

with different characteristics (latency, bandwidth, etc). A few number of systems (e.g, Borealis,

Raced) support the networked deployment model, which is needed in such contexts. Despite

their deployment model which is adapted in our context, those systems (Borealis and Raced)

have been designed under the assumption that the network bandwidth and the computing

resources on all the processing nodes are enough. Such assumptions cannot be made in

heterogenous contexts like smart grids, which consists in a large set of heterogeneous and

resource limited computing nodes connected by high latency networks. Therefore, the QoS

goals we are interested in are memory, CPU, latency and also event priority, the latter being

introduced by smart grid applications requirements.

2.4 Conclusion

In this chapter, we presented existing works related to the work addressed in this thesis. We

identified two systems categories which characterize the stream processing domain: data

stream processing systems and complex event processing systems. We focused our study on

the processing model and the deployment model adopted in each solution. We observed

that because of its simplicity and flexibility, the dataflow processing model has been widely

adopted for implementing stream processing engines.

The early stream processing systems like Stream, Aurora, Cayuga, etc., are centralized and

therefore, they present scalability and availability issues in presence of a high number of

stream sources. The new stream processing systems addressed these issues by implementing
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stream processing on distributed architectures. Systems like NextCEP, StreamBase, Spark

Streaming, Storm, Flink, etc., implemented stream processing on cluster architectures, taking

advantages of the large computing and network resources available. With the growth of

application domains such as the internet of things and smart grids, the demand for large scale

distributed stream processing increases. The characteristics of such runtime environments,

manifested by the heterogeneity of processing devices and network connections, requires to

address QoS needs regarding memory, CPU, latency and priority.

Therefore, it is important to have stream processing models and systems which allow to

implement stream processing applications on such contexts, considering the associated QoS.

In the next chapter, we will present the event stream composition model that is used by the

our NETAH framework.
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3 The NETAH Event Stream Composition Model

This chapter presents our model for representing an event stream composition. Section 3.1

introduces some formalisms that we use all along this chapter. Section 3.2 introduces the

concept of event, which is the basic entity manipulated in an event stream composition system,

and the concept of event type which allows to categorize event instances. Section 3.3 presents

the concept of event stream, which models unbounded sequence of event instances, and stream

based composition operators. Section 3.4 describes the concept of event stream composition

expression that models an event stream composition. Section 3.5 presents a model to represent

the QoS associated to event stream composition. Finally, Section 3.6 concludes this chapter.
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3.1 Preamble

This section introduces some formalisms to represent complex value types that are useful

for introducing the concepts presented in this chapter. The proposed formalization is an

adaptation of the one proposed in [CV11].

Let’s assume a finite set of domains, each consisting of a possibly infinite set of values. In

particular, we consider the domain S of strings, B of booleans ({tr ue, f al se}), Z of integers,

and R of real numbers. We also consider a domain T defined by the set N
⋃

{0}, i.e. the set

of natural numbers plus zero, which characterizes time values. These can be represented

alternatively as string, boolean, integer, real and time respectively. In addition, we assume a set

A= {A1, A2, ...} ⊆ S of type names.

Complex value types

Complex value types are represented by lower-case letters with hats (e.g. t̂) and are defined by

a pair A : de f , where A is the name of the type and de f its definition. In order to enable access

to both components we assume the functions name and def, which given a type will return

the respective component of the type. For instance, for the type Power : real, name(Power :

real) = Power whereas def(Power : real) = real. The set of all complex value types T is defined

inductively as follows.

1. if D is a domain, then A : D is an atomic type named A, where A ∈A;

2. if t̂ is a type, then A : {t̂ } is a type set named A;

3. if t̂1, ..., t̂n are types with distinct names, then A : 〈t̂1, ..., t̂n〉 is a tuple type named A, and

each t̂i is an attribute type;

4. if t̂1 and t̂2 are types with distinct names, then A : t̂1 ⊕ t̂2 is the alternative type.

Every type t̂ ∈ T denotes a set of complex value instances �t̂� which is defined inductively as

follows.

1. For each atomic type A : D, �A : D� = {A : d | d ∈ D}, where we assume the values of

the domain D given;

2. for set types of the form A : {t̂ }, �A : {t̂ }� = {A : S | S ∈ P (�t̂�)}, where P denotes the

power set;

3. for tuple types of the form A : 〈t̂1, ..., t̂n〉, �A : 〈t̂1, ..., t̂n〉� = {A : 〈A1 : v1, ..., An : vn〉 |Ai =
name(t̂i )

∧
vi ∈ �t̂i � ∧

i ∈ [1..n]};

4. for alternative type of the form A : t̂1⊕ t̂2, �A : t̂1⊕ t̂2� = {A : v | A : v ∈ �t̂1� ∨
A : v ∈ �t̂2�}
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Access to components of complex value instances

We write t ≡ t̂ , to denote that t is an instance of a complex value type t̂ . We define the function

val to obtain the value v associated to an instance t . In addition, for tuple values t of the

type A : 〈t̂1, ..., t̂n〉 such that name(t̂i ) = Ai , we adopt the dot notation t .Ai to access the

instance of the attribute type t̂i of t . In particular, if we have t = 〈A1 : v1, ..., An : vn〉, then

∀i ∈ [1..n], vi = val (t .Ai ).

Example 3.1. Let’s consider the tuple type Account : 〈i d : str i ng , bal ance : r eal〉. Then,

t = 〈i d : B14, bal ance : 500〉 is an instance of the type named Account . In addition, we have

val (t .i d) = B14 and val (t .bal ance) = 500.

For simplicity, we also adopt the notation t , to denote the value val (t ) of an instance t . The

difference between the value of the instance and the instance itself depends on the context.

In Example 3.1, we have t .i d = B14 and t .bal ance = 500.

3.2 Event, event type, event streams

3.2.1 Event

The literature proposes different definitions of an event. For example, in [MsSS97] an event is

a happening of interest, which occurs instantaneously at a specific time. Another definition

given by [RW97] characterizes an event as the instantaneous effect of the termination of an

invocation of an operation on an object. According to the first definition, an event exists

because some entity is interested in it; the second one defines events independently of any

interested party. The second definition also subsumes an object model while the first one is

neutral with respect to the model adopted for entities.

We adopt the following definition of event from [EN10].

Definition 3.1. (Event) An event is something that happened in a particular system or domain,

and that is particularly significant, interesting or unusual. The word event is also used to mean

a programming entity that represents such an occurrence in a computing system.

In computing systems the notion of event has a major importance since it provides a powerful

abstraction to model dynamic aspects of applications. For instance, events can represent state

changes in databases; signals in message systems; changes of existing objects or the creation

of new objects in object-oriented systems; or “real-world” events such as the departure or

arrival of vehicles, an alarm raised by a smart meter, or a smart meter measure. In event-

driven programming an event is a message that indicates a situation that happened, such as a

keystroke or a mouse click. In process control an event is an occurrence that happened and

that has been registered. Examples are a purchase order, an email confirmation of an airline

reservation, a stock tick message that reports a stock trade.
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3.2.2 Event type

Applications that manage and process events sometimes deal with event objects having a

similar structure and a similar meaning. Consider for example events coming from a current

sensor. Those events contain the same kind of information, though of course each event will

be associated to a different point in time, and will report a different current value. The event

type concept allows to specify the structure of this entire class of events. This is similar to

defining a reusable type in a programming language.

Definition 3.2. (Event type) An event type is an expression that characterizes a class of sig-

nificant facts (events) and the context under which they occur. Facts of the same nature are

denoted by events that have the same type. In the rest of this document we write EventType to

denote the set of all event types.

Event type representation

According to the complexity of the event model, the event types are represented as sequences

of strings [YBMM94], regular expressions [Bai94] or as expressions of an event algebra [CM94,

GD94, CC96]. Other models represent an event type as a collection of parameters or attributes,

allowing the type itself to contains implicitly the content of the message. This model is useful

when we need to reason about events content. For example, Meter Al ar m : 〈i d Meter :

str i ng , vol t ag e : r eal ,cur r ent : r eal〉 is an event type that represents a smart meter reading,

where the current and voltage values observed are represented by attributes named voltage

and current.

Event composition, or specifically event streams composition supports the idea of performing

operations on events. Some of those operations need to access event contents, as it will be

presented in Section 3.3. Therefore, we represent an event type named E as a tuple type

E : 〈A1 : D1, ..., An : Dn〉.
The event type attributes carry the information associated to the event type. We distinguish

between two kinds of attributes, namely meta-attributes and payload attributes.

Meta-attributes carry meta-information about the event. They are common to all event types.

Table 3.1 presents the meta-attributes associated to event types:

• the producerID attribute refers to the identifier of the entity that produced the event

occurrence;

• the detectionTime attribute refers to the time at which the event occurrence has been

detected by a source;

• The productionTime attribute refers to the time at which the event has been produced,

in case the event is the result of processing other events;

• the notificationTime attribute refers to the time at which the event is notified to inter-

ested component;
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• the receptionTime attribute refers to the time at which an interested consumer receives

the event.

It is worth to mention that meta-attributes can be extended according to applications and

domains.

Name Domain
producerID string
detectionTime time
productionTime time
notificationTime time
receptionTime time

Table 3.1 – Event type meta-attributes

On the other hand, payload attributes carry specific information about the event itself.

Example 3.2. (Event type) The event type named Meter Readi ng described in Figure 3.1)

represents a smart meter reading. Its payload attributes are vol t ag e : r eal and power : r eal

which are the voltage and power values associated to each reading.

Figure 3.1 – Example of an event type

For writing simplicity, we will sometimes omit the meta-attributes in the description of event

types and occurrences, when they are not relevant for the topic under consideration.

Example 3.3. (Omitting meta-attributes) For example, the Meter Readi ng event type pre-

viously defined can be simply defined as Meter Readi ng : 〈vol t ag e : r eal , power : r eal〉.

Event occurrence

An event occurrence (or event object, or simply event) e is an instance of an event type E, that

is e ≡ E . The event occurrence e specifies the value of each attribute of E .
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Example 3.4. (Event occurence) Let’s consider the event type Meter Readi ng : 〈vol t ag e :

r eal , power : r eal〉. Figure 3.2 gives an instance of this type produced by the source identified

as meter5 at time 1, notified at time 2, received at time 4, for which the voltage and current

values are 9 and 1 respectively.

Figure 3.2 – Example of an event instance

Defining event priority

In many applications such as smart grids, there is a notion of priority associated to events.

The goal is to allow events having higher priority to be processed and notified prior to events

having lower priorities. In order to allow the definition of event priorities, we introduce an

attribute pr i or i t y : i nteg er in the set of meta-attributes of event types (See Table 3.2). The

priority value of an event determines its level of prioriry: the higher is its priority value, the

lower is its priority level.

Name Domain
producerID string
detectionTime time
productionTime time
notificationTime time
receptionTime time
priority integer

Table 3.2 – Meta-attributes of prioritized event types

Example 3.5. (Prioritized events) The event instances e1 and e2 in Figure 3.3 represents two

event instances of the type Meter Readi ng , e1 being more priority than e2, since e1.pr i or i t y <
e2.pr i or i t y .
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Figure 3.3 – Example of prioritized event instances

3.2.3 Event stream

Definition 3.3. An event stream is a continuous, append-only sequence of events {e1, ..., en , ...}.

In this thesis, we consider a category of event streams in which events have the same type, and

we differentiate between event streams generated by a specific source.

Definition 3.4. (Typed stream) Let E be an event type. The typed stream induced by E, or

simply the event stream of type E is denoted Str eam(E). We have:

Str eam(E) = {e1, e2, ..., en , ... | ∀i , ei ≡ E }.

Therefore, t y pe(Str eam(E)) = {E }. This means that typed streams are represented as typed

sets.

Definition 3.5. (Bounded event stream) A bounded event stream is a typed stream generated

by a specific source. The event stream of type E generated by the source s is noted Str eam(E , s).

That is, Str eam(E , s) = {e1, ..., en | ∀ei , ei ≡ E
∧

ei .pr oducer I D = s}.

Str eam(E , s) denotes the event stream of type E, “bounded” to the source s.

Remark: If S is a set of sources, then we have Str eam(T ) = {
⋃

Str eam(T, s), s ∈ S}.

3.3 Event stream composition operators

Event stream composition operators specify the operations that can be performed on event

streams. An event stream composition operator op takes one or many input event streams of a

given type, and produces an output stream of a given type (see Figure 3.4). In the following, we

adopt the notation ESi to denote the stream of events of type Ei , that is ESi = Str eam(Ei ).
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Op 

Stream (E1) 

Stream (En) 

Stream (E2) …
 

Stream (E) 

Figure 3.4 – Operator synopsis

3.3.1 Filter

The filter operator selects events in an input stream that satisfy a given predicate.

Definition 3.6. (Filter) Let ESi be an event stream, and P be a predicate. Then, f i l terP (ESi )

denotes the event stream ESi filtered according to the predicate P . We have:

f i l terP (ESi ) = {e j | e j ∈ ESi
∧

P (e j ) i s tr ue}.

The predicate P is defined according to the following rules:

• Ai θ vi is a predicate, where

- Ai is the name of an attribute of Ei , that is ∃t̂ j such that t̂ j is an attribute type of

Ei and name(t̂ j ) = Ai

- θ ∈ {<, >, =, ≤, ≥} is a comparison operator,

- vi ∈ �t̂ j � is a value.

• if P1 and P2 are predicates, then

- P1
∧

P2 is a predicate. The symbol
∧

denotes the conjunction.

- P1
∨

P2 is a predicate. The symbol
∨

denotes the disjunction.

The output of the filter operator is an event stream having the same type as Ei .

Example 3.6. Let’s consider the event type Ei = Meter Measur e : 〈meterID : string, realPower

: double〉1 and some event instances of type Ei , e1 = 〈“meter 1“,7〉, e2 = 〈“meter 1“,5〉,e3 =
〈“meter 1“,4〉,e4 = 〈“meter 1“,6〉.
Let’s also consider the event stream ESi =Stream(MeterMeasure) = {e1,e2,e3,e4, ...}.

Then, f i l terr ealPower>5(ESi ) = {e1,e4, ...}. Events e2 and e3 have been filtered out by the filter

operator since they don’t satisfy the predicate “realPower > 5“.

3.3.2 Disjunction

The disjunction operator merges the input streams into one output stream.

Definition 3.7. (Disjunction) Let ES1,ES2, . . . ,ESn be n event streams. Then, OR(ES1, . . . ,ESn)

denotes the disjunction (merge) of event streams ES1,ES2, . . . ,ESn . We have:

1We omitted the meta-attributes
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OR(ES1, ...,ESn) = {e j | ∃i ∈ [1..n], e j ∈ ESi } =
⋃

ESi , i ∈ [1..n].

The disjunction operator produces events in the output stream at the occurrence of events in

any of the input streams ESi , i ∈ [1..n].

Example 3.7. Let’s consider the event streams ES1 and ES2 in Figure 3.5. In this example, the

output of OR(ES1,ES2) is the sequence {e1,1,e2,1,e2,2,e1,2, ...}.

Figure 3.5 – Example situation 1. The time associated to events represents the time at which
the events are processed by the operator.

3.3.3 Conjunction

The conjunction operator is used to ensure that at least one event occured in all input streams.

Definition 3.8. (Conjunction) Let ES1, . . . ,ESn be n event streams. Then, AN D(ES1, . . . ,ESn)

denotes the conjunction of event streams ES1,ES2, . . . ,ESn . We have:

e ∈ AN D(ES1, ...,ES2) iff ∀i ∈ [1..n], ∃ei , j | ei , j ∈ ESi .

The output of the disjunction operator is an event stream of type A : 〈context : {E1⊕...⊕En}2.

The attribute named context contains all the event ei , j that occur: e.context = {ei , j | ∀i ,ei , j ∈
ESi }.

In other words, an event e is produced in the output stream if events e1,e2, . . . ,en occur

respectively in input streams ES1,ES2, . . . ,ESn , regardless their occurrence order. The attribute

named context of the event e contains all events e1,e2, . . . ,en .

Example 3.8. By considering again the event streams ES1 and ES2 in Figure 3.5, the output of

AN D(ES1,ES2) will be:

• An event e1 at time t2 with the event parameters e1,1 and e2,1, such that e1.context =
{e1,1, e2,1}

• An event e2 at time t4 with the event parameters e2,2 and e1,2, such that e2.context =
{e2,2, e1,2}.

3.3.4 Sequence

The sequence operator captures precedence order of events in input streams.

2We omitted the meta-attributes
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Definition 3.9. (Sequence) Let ES1, . . . ,ESn be n event streams. Then, SEQ(ES1, . . . ,ESn)

denotes a sequence between events in event streams ES1, . . . ,ESn . We have:

e ∈ SEQ(ES1, ...,ES2) iff ∃ e1 ∈ ES1, ...,en ∈ ESn | ∀i ∈ [1..n −1], ei .r ecepti onT i me <
ei+1.r ecepti onT i me.

The output of the sequence operator is an event stream of type A : 〈context : {E1 ⊕E2 ⊕ ...⊕
En}〉3.

The attribute named context contains all the event ei , j that occur: e.context = {ei , j | ∀i ,ei , j ∈
ESi }.

In other words, the sequence operator produces an event e in output stream each time

instances e1 in ES1, e2 in ES2,. . . , en in ESn are received in the specified order. Then, sequence

denotes that ∀i , occurrence ei “is received before” occurrence ei+1. The attribute named

context of the event e contains all events e1,e2, . . . ,en .

Example 3.9. Let’s consider the event streams ES1 and ES2 in Figure 3.6, the output of

SEQ(ES1,ES2) will be:

• An event e1 at time t2 with the event parameters e1,1 and e2,1, such that e1.context =
{e1,1, e2,1};

• an event e2 at time t5 with the event parameters e1,2 and e2,3, such that e2.context =
{e1,2, e2,3}

Figure 3.6 – Example situation 2. The time associated to events represents the time at which
the events are processed by the operator.

3.3.5 Window operators

Window operators partition an event stream into finite parts of the original event stream. Let’s

consider an input stream Str eam(E ). We denote by Str eam f (E ), a finite part of Str eam(E ). A

window operator applied on Str eam(E ) results in a stream of finite streams, which we denote

Str eam(Str eam f (E)) = {ES f ,1,ES f ,2,ES f ,3, ...}. The way each finite stream is constructed

depends on the window specification, which can be time-based or tuple-based.

3We omitted the meta-attributes
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Time based windows

Time based windows define windows using time intervals.

Figure 3.7 – Example situation 3. The time associated to events represents the time at which
the events are received by the operator.

Definition 3.10. (Fixed Window) Let ES be an event stream, and [tb , te ] be a time interval.

Then, wi n : wi thi n(tb ,te )(ES) denotes the part of the event stream ES containing events

between tb and te . We have:

wi n : wi thi n(tb ,te )(ES) = ES f ,1, such that ∀e ∈ ES,e ∈ ES f ,1 iff tb ≤ ei .r ecepti onT i me ≤ te .

The output stream contains a single finite event stream ES f ,1.

Example 3.10. Let’s consider the example depicted in Figure 3.7. Therefore, the output of

wi n : wi thi n(tb ,te )(ES) is the finite event stream {e2,e3}

Definition 3.11. (Landmark window) Let ES be an event stream, and tb be a time span. Then,

wi n : si ncetb (ES) denotes the part of the event stream ES containing events from the time

point tb . We have:

wi n : si ncetb(ES) = {ES f ,1,ES f ,2..., }, such that∀i ,ei ∈ ES f ,i iff e ∈ ES
∧

tb ≤ ei .r ecepti onT i me.

A finite event stream ES f ,i is produced in output each time an event ei ∈ ES occurs, satisfying

ei .r ecepti onT i me ≥ tb .

Example 3.11. Let’s consider the example depicted in Figure 3.7. Therefore, the output of

wi n : si ncetb (ES) is the finite event streams {e2}, {e2,e3}, {e2,e3,e4}, ....

Definition 3.12. (Sliding window) Let ES be an event stream, tw and ts two time durations.

Then, wi n : sl i di ng(tw ,ts )(ES) denotes the sliding window of the event stream ES, having a

time width tw , which slides every ts time duration. We have:

wi n : sl i di ng(tw ,ts )(ES) = {ES f ,1,ES f ,2..., }, such that each ES f ,i contains events from stream

ES produced during last tw time units. The finite event streams in the sequence are produced

each ts time unit. That is, if ES f ,i is produced at time t, then ES f ,i+1 will be produced at time

t + ts .

Example 3.12. Let’s consider the example depicted in Figure 3.8. Therefore, the output of

wi n : sl i di ng(tw ,ts )(ES) are the finite event streams {e1,e2} and {e4}.

Size bounded windows

A size bounded window defines the number of events for each window. We distinguish between

size fixed windows and sliding size fixed windows.
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Figure 3.8 – Example situation 4. The time associated to events represents the time at which
the events are processed by the operator.

Definition 3.13. (Fixed size windows) Let ES be an event stream, and nb a number. Then,

wi n : batchnb(ES) denotes a partition of the event stream ES in finite event stream ES f ,1,ES f ,2, ...

such that each finite event stream contains nb most recent events from ES. The finite event

streams ES f ,1,ES f ,2, ... are non-overlapping.

Example 3.13. Let’s consider the event stream ES = {e1,e2,e3,e4,e5,e6, . . . }. Then, wi n :

batch3(ES) will result in finite event streams {ES f ,1,ES f ,2, ...} such that ES f ,1 = {e1,e2,e3},

ES f ,2 = {e4,e5,e6}, and so on.

Definition 3.14. (Sliding fixed size window) Let ES be an event stream, and nb,m two num-

bers. Then, wi n : mbatch(nb,m)(ES) denotes a sliding windows consisting in last nb events

from ES. The windows slides each time m event occurs. We have:

wi n : mbatch(nb,m)(ES) = {ES f ,1,ES f ,2, ...} such that each ES f ,i contains nb most recent

events from ES, and ES f ,i+1 is started after m events are received in ES f ,i (moving windows).

As result, an event instance may be part of many finite event streams, specifically if m ≤ nb. In

such cases, they are overlapping.

Example 3.14. If we consider windows of size nb=3 moving after each m = 2 events, that

is wi n : mbatch(3,2)(ES), the event stream ES = {e1,e2,e3,e4,e5,e6,e7, . . . } will be partitioned

into finite event streams {ES f ,1,ES f ,2,ES f ,3, . . . } such that ES f ,1 = {e1,e2,e3}, ES f ,2 = {e3,e4,e5},

ES f ,3 = {e5,e6,e7}, and so on.

Remark: In practice, window operators are used in conjunction with other operators. They

specify the scope over which the associated operators should operate.

3.3.6 Aggregation operators

Applied on a stream of finite streams Str eam(Str eam f (E)) = {ES f ,1,ES f ,2,ES f ,3, ...}, an ag-

gregator operator ag g r eg ateat tr, ag g r At tr (Str eam(Str eam f (E))) computes for each finite

stream ES f ,i , i ∈ {1,2, . . . ,n}, the aggregated value of the attribute attr over events occurrences

in ES f ,i . The attribute attr is the name of an attribute of E , that is ∃t̂ j such that t̂ j is an attribute

type of E and name(t̂ j ) = at tr .

The output is a event stream of type A : 〈ag g r At tr : D〉4 where D = de f (t̂ j ).

4We omitted the meta-attributes
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Aggregate operators include max, min, count, avg and sum.

Max

The max operator compute the maximum value of the attribute over the event instances in

ES f ,i .

Min

The mi n operator compute the minimum value of the attribute over the event instances in

ES f ,i .

Count

The count operator compute the number of event instances in ES f ,i with the specified at-

tribute.

Avg

The av g operator compute the average value of the attribute over the event instances in ES f ,i .

Sum

The sum operator compute the sum of the attribute’s values over the event instances in ES f ,i .

3.3.7 Selection operators

A selection operator takes as input a stream of finite streams Str eam(Str eam f (E)) =

{ES f ,1,ES f ,2, ...} and produce as output an event stream of type E , with values e1,e2, . . . such

that for all i, each ei is a selection of a particular event from ES f ,i . The choice of that particular

occurrence depends on the selection operator:

• First occurrence: f i r st (Str eam(Str eam f (E))).

For each finite stream ES f ,i , i ∈ {1,2, . . . ,n}, selects the first event occurrence. For exam-

ple, if we apply the first operator to the stream of finite streams {{e1,e2}, {e3,e4,e5,e6},

{e7,e8}, . . . }, we obtain as output the stream {e1,e3,e7, . . . }.

• Last occurrence: l ast (Str eam(Str eam f (E))).

For each finite stream ES f ,i , i ∈ {1,2, . . . ,n}, selects the last event occurrence. For exam-

ple, if we apply the last operator to the stream of finite streams {{e1,e2}, {e3,e4,e5,e6},

{e7,e8}, . . . }, we obtain as output the stream {e2,e6,e8, . . . }.
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3.3.8 Flatten

The flatten operator takes as input a stream of finite event streams Str eam(Str eam f (E)) =
{ES f ,1,ES f ,2,ES f ,3, ...} and produces as output an event stream of type E , which contains the

concatenation of events in ES f ,1,ES f ,2,ES f ,3, and so on. For example, if we consider the

stream of finite streams {{e1}, {e2,e3}, {e4,e5,e6}, . . . }, the flatten operator produces the output

stream {e1,e,e2,e3,e,e4,e5,e6,e, . . . } where e is a special “empty” event that indicates the end

of each finite stream in the output stream. We assume that for all event type E , the empty

event e satisfies e ≡ E .

3.3.9 Computing the meta-attributes of events in output streams

An event stream composition operator op(ES1, ...ESn) produces in output an event stream

ES′ = {e ′1, ...,e ′k , ...}. An event e ′k is produced by processing a finite set of events {ei , j |
∀i , j ei , j ∈ ESi } from the input streams. We say that the events ei , j are event parameters

for the event e ′k , and we write {ei , j } ` e ′k . This section specifies how to compute the value of

meta-attributes of an event e ′k from the event set {ei , j }.

Detection time

Whe have the following rule: {ei , j } ` e ′k ⇒ e ′k .detect i onT i me = mi ni , j {ei , j .detect i onT i me}.

Production time

The production time of an event e ′k is the time at which the operator produces the event e ′k ,

which is not related to the production time of its event parameters.

NotificationTime

The notification time of an event e ′k is the time at which the outputs the event e ′k in the output

stream, which is not related to the notification time of its event parameters.

Producer identifier

The producer identifier of a composite event e ′k is the the identifier of the component which

executes the operator, which is not related to the producer identifiers of its event parameters.

Priority

The priotity of an event e ′k can be defined in a fixed way by providing a priority value for all

events produced, or it can be derived from the priorities of its events parameters. In order to

allow to choose between the two strategies, we let the user specify a function f : {i nteg er } −→
i nteg er , which takes as input a set of integers and returns an integer, such that if {ei , j } ` e ′k ,
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then e ′k .pr i or i t y = f ({ei , j .pr i or i t y}). The function f is called a priority function. Examples

of priorities functions are:

• constant functions which define fixed priorities, that is f = c, c ∈N.

• aggregate functions like min, max sum, avg5.

3.4 Event stream composition

3.4.1 Complex event stream, simple event stream

As mentionned before, the output an event stream composition operator is also an event

stream. This makes us distinguish between two categories of event streams, namely simple

event streams and complex event streams.

Complex event streams are event streams generated by event stream composition operators, in

difference to simple event streams which are generated by event producers. As consequence,

the output of an event stream composition expression, is a complex event stream.

We adopt the same naming convention for event instances. In particular, we will refer to event

occurrences that feed complex event streams as complex events, and event occurrences that

feed simple event streams as simple events.

3.4.2 Event stream composition expression

Stream based operators can be chained in order to produce complex event streams that capture

particular situations. Event stream composition is defined by an event stream composition

expression which is defined as:

• A = ES is an event stream composition named A, where ES denotes an event stream.

• A = Op(A1, ...An) where Op is a stream based operator and ∀i ∈ [1..n], Ai is an event

stream composition expression. The components Ai are referred to as subexpressions of

the event stream composition expression A.

An event stream composition expression A defines an event stream having the same name A.

For examle, let’s consider the event type Meter Measur e : 〈 meterID : string, realPower : dou-

ble〉 and the simple event stream ES = Str eam(Meter Measur e), we can define a complex

event stream ComplexStream that computes the aggregated real power of meter ’AMI100’

between time 10 and 50 as follows:

ComplexStr eam = av gr ealPower, av g P (wi n : wi thi n(10,50)( f i l termeter I D=′AM I 100′(ES))). The

definition of the ComplexStream starts by filtering the event stream ES on the predicate me-

terID=’AMI100’. Then, the result is used to compute a fixed windows (win:within) of events

5The usual average function, but rounded to the closest integer value
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between time 10 and 50. The output stream, which is a finite stream is then aggregated on the

attribute realPower. The aggregated value can be retrieved by accessing the avgP attribute of

the complex event e in the ComplexStream complex output stream.

3.4.3 Labelled event stream composition expression

It is possible to assign an indentifier I D to each operator Op within an event stream compo-

sition expression as follow: I D@Op. We refer to this as a labelled event stream composition

expression.

For example, f @ f i l termeter I D=′AM I 100′(ES) is a labelled event stream composition expression,

where the filter operator is identified by f .

3.4.4 Well formed event stream composition expression

An event stream composition expression must be well formed. More precisely, the input of

each stream based operator Opi implicated in the event stream composition expression must

be consistent with the operator definition.

For example, the input of an aggregate operator is a stream of finite streams, which can be

computed using windows operators as in the ComplexStream example. Moreover, the result of

a windows operator, which is a stream of finite event streams, cannot be given directly as input

to a filter operator as in the expression F i l ter edStr eam = f i l terP (wi n : sl i di ng(tw ,ts )(ES)).

This is due to the fact that the filter operator takes as input an event stream, an not a

stream of finite event streams. In order to be consistent with the filter operator defini-

tion, the FilteredStream expression can be written F i l ter edStr eam = f i l terP ( f l at ten(wi n :

sl i di ng(tw ,ts )(ES))).

3.4.5 Representing an event stream composition expression as a directed graph

An event stream composition expression can be represented as a directed graph. Graph

representation of stream based event processing operations has been adopted in many systems

including [STO13, Str15]. While allowing an easy human interpretation of stream processing

operations, the graph representation is a good internal abstraction that allows to manipulate

event composition expression using graph operations.

Definition 3.15. (Graph representation of a event stream composition expression) Let A

be an event stream composition expression. Let OP be the set of event stream composition

operators, and ES be the set of event streams. Then, A can be represented as a directed graph

A = (V,E) where V ⊆ OP∪ES is the vertex set and E ⊆ ES×OP ∪ OP×OP is the edge set.

Let’s assume that given a graph G = (V ,E ), the functions vertexset and edgeset return its vertex

set and edge set respectively: ver texset (G) =V , ed g eset (G) = E . In particular, the vertex set

and edge set of A are defined as follows:
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• if A = ES | ES ∈ ES, then we have: ver texset (A) = {ES} and ed g eset (A) =;;

• if A = Op(A1, ...An) where Op ∈ OP and ∀i ∈ [1..n], Ai is an event stream composition

expression, then we have:

– ver texset (A) =
n⋃

i=1
ver texset (Ai )

⋃
{Op}

– ed g eset (A) =
n⋃

i=1
ed g eset (Ai )

⋃
{ ( f i r stcomponent (Ai ), op), ∀i ∈ [1..n]} where

the function f i r stcomponent (A) is defined as follows:

if A = ES where ES ∈ ES, then f i r stcomponent (A) = ES;

if A = Op(A1, ...An) where Op ∈ OP and ∀i ∈ [1..n], Ai is an event stream

composition, then f i r stcomponent (A) =Op.

For example, let’s consider the event type Meter Measur e : 〈 meterID : string, realPower : dou-

ble〉 and the simple event stream ES = Str eam(Meter Measur e). Let’s also consider the event

stream expression A = av gr ealPower, av g P (wi n : wi thi n(10,50)( f i l termeter I D=′AM I 100′(ES))).

The event stream composition expression A can be rewritten as follows:

A = av gr ealPower, av g P (A1), where

A1 = wi n : wi thi n(10, 50)(A2), where

A2 = f i l termeter I D=′AM I 100′(A3), where

A3 = ES.

Following Definition 3.15, we have:

• for A3:

- ver texset (A3) = {ES},

- ed g eset (A3) = ;.

• for A2:

- ver texset (A2) = { f i l termeter I D=′AM I 100′}
⋃

ver texset (A3)

= {ES, f i l termeter I D=′AM I 100′}

- ed g eset (A2) = ed g eset (A3)
⋃

{( f i r stcomponent (A3), f i l termeter I D=′AM I 100′)}

= ; ⋃
{(ES, f i l termeter I D=′AM I 100′)}

= {(ES, f i l termeter I D=′AM I 100′)}

• for A1:

- ver texset (A1) = {wi n : wi thi n(10,50)}
⋃

ver texset (A2)

= {ES, f i l termeter I D=′AM I 100′ , wi n : wi thi n(10, 50)}

- ed g eset (A1) = ed g eset (A2)
⋃

{( f i r stcomponent (A2), wi n : wi thi n(10, 50))}

= ed g eset (A2)
⋃

{( f i l termeter I D=′AM I 100′ , wi n : wi thi n(10, 50))}
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• for A:

- ver texset (A) = {av gr ealPower, av g P }
⋃

ver texset (A1)

={av gr ealPower, av g P , wi n : wi thi n(10,50), f i l termeter I D=′AM I 100′ , ES}

- ed g eset (A) = ed g eset (A1)
⋃

{( f i r stcomponent (A1), av gr ealPower, av g P )}

= ed g eset (A2)
⋃

{( f i l termeter I D=′AM I 100′ , wi n : wi thi n(10, 50))}
⋃

{( f i r stcomponent (A1), av gr ealPower, av g P )}

= {(ES, f i l termeter I D=′AM I 100′)}
⋃

{( f i l termeter I D=′AM I 100′ , wi n : wi thi n(10, 50))}
⋃

{( f i r stcomponent (A1), av gr ealPower, av g P )}

= {(ES, f i l termeter I D=′AM I 100′), ( f i l termeter I D=′AM I 100′ , wi n : wi thi n(10,50)),

(wi n : wi thi n(10,50), av gr ealPower, av g P )}

Then, A can be represented as a graph A = (V ,E), having:

V = {av gr ealPower, av g P , wi n : wi thi n(10,50), f i l termeter I D=′AM I 100′ , ES} and

E = {(ES, f i l termeter I D=′AM I 100′), ( f i l termeter I D=′AM I 100′ , wi n : wi thi n(10,50)),

(wi n : wi thi n(10,50), av gr ealPower, av g P )}.

The representation of A as a graph is given at Figure 3.9.

ES 
Filter 

meterID=‘
AMI100’ 

win: 
within 
(10, 50) 

Avg 
realPower, 

avgP 

Figure 3.9 – Example of a graph reresentation of an event stream composition expression.

3.4.6 Developed form of an event stream

As mentionned in Section 3.2.3, an event stream Str eam(E) can be defined in terms of

bounded event streams of type E. More precisely, if S is the set of source, then we have:

Str eam(E ) = {
⋃

Str eam(E , s), s ∈ S}. This can be rewritten as an event composition expres-

sion using the disjunction operator as:

Str eam(E) =OR(Str eam(E , s1), ...Str eam(E , sn)) such that ∀i , si ∈ S.

We refer to this as the developed form of the typed event stream Str eam(E). In the following,

we assume the function develop which returns the developed form of a typed event stream

ES = Str eam(E):

develop(ES) =OR(ESs1 , ...,ESsn ), having ∀i ∈ [1..n], si ∈ S ∧ ESsi = Str eam(E , si ).

3.5 QoS requirements

Event stream composition must often meet particular QoS requirements regarding dimensions

like latency, throughput, event priority etc. This section provides a model to represent the QoS
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that characterizes an event stream composition.

3.5.1 QoS expression

Let us consider a set of QoS dimensions D = {l atenc y, thr oug hput , memor y, pr i or i t y, ...}.

Each QoS dimension Q ∈D is associated to a domain DQ , which corresponds to a set of QoS

values. Given a domain DQ , we assume a function name(DQ ) that returns its name,and a

function value(DQ ) that returns the set of included values.

For example, if we consider the QoS dimension latency, then Dl atenc y ⊆ N, as the latency

corresponds to a time delay (an expected value for measuring time belongs to the set of natural

numbers). Thus, we have:

• name(Dl atenc y ) = latency,

• value(Dl atenc y ) =N.

Definition 3.16. (QoS expression)

A QoS expression is of the form (d : v) where

• d denotes a domain DQ , DQ ∈D,

• v ∈ value(DQ ),

For instance, the QoS expression (latency : 2000) specifies that the latency for notifying an

event equals 2000 ms, assuming that the time unit is the millisecond.

The QoS expression (priority : 10) specifies that the value of the event priority is 10.

3.5.2 QoS tagged event stream composition expression

Let ξ be the set of all event stream composition expressions. A QoS tagged event stream

composition expression is a 2-uplet s : 〈expr, qos_specs〉 where:

• expr ∈ ξ is a labelled event stream composition expression.

• qos_specs is a set of QoS specifications {qos_spec1, ..., qos_specn}, such that each QoS

specification qos_speci is associated to an operator in expr .

A QoS specification qos_speci is defined as I D[qos1, ..., qosn] where I D is the identifier of

an event stream composition operator within expr , and each qosi = (namei : valuei ) is a

QoS expression on a given QoS dimension named namei .

Example 3.15. Let us consider the labelled event stream composition expression expr =
f @ f i l terr ealPower>5(ES). Then, s : 〈expr, { f [(memor y : 10), (l atenc y : 100)]}〉 defines an

event stream composition expression expr, tagged with a QoS specification that defines the
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memory expectation of the filter operator f as 10 Mo (assuming the memory unit is the

megabyte), and its latency (processing time) as 100 ms (assuming the time unit is the millisec-

ond).

3.6 Conclusion

In this chapter, we presented our model for event streams composition. We focused on the

definition of concepts that are manipulated by an event stream composition system. First,

we presented the concepts of event, event types, event occurrence and event streams. Then,

we presented operators applicable to event streams with their associated semantic. After

that, we introduced event stream composition and event stream composition expressions,

as mechanisms for combining stream based operators in order to produce complex event

streams.

In the next chapter, we will go one step forward, by presenting how the proposed model can

be leveraged to define an event stream composition framework that deals with QoS.
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4 The NETAH Framework

NETAH considers as input a consumer subscription which contains an event stream composition

expression such as the one defined in Chapter 3, and generates the corresponding event stream

composition network. Then, using a mapping algorithm, it deploys the generated event stream

composition network on a distributed runtime environment, satisfying QoS requirements like

memory occupation and latency. Section 4.1 presents the overview of NETAH and its architecture.

Section 4.2 presents a subscription. Section 4.3 presents the main components of an event

processing network, which are producers, consumers and event processing units. Section 4.4

focuses on the properties of the runtime environment its constraints. Section 4.5 presents the

process used by NETAH for creating event stream composition networks from subscriptions.

Section 4.6 focuses on event processing unit mapping, which is the process by which event

processing units are associated to processing nodes on the runtime environment. Section 4.7

presents how NETAH deploys event processing units into their associated processing nodes on

the runtime environment. Finally, Section 4.8 concludes this chapter.
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4.1 Overview

NETAH is a framework which allows to implement event stream composition within a target

runtime environment. In such an environment, NETAH distinguishes between producers

which produce different types of event streams, and consumers which subscribe to complex

event streams using subscriptions. A subscription includes an event stream composition

expression (see Chapter 3), with the associated QoS requirements. When given a subscription

as input, NETAH creates an event stream composition network which implements the event

stream composition expression, and deploys it within the runtime environment in a way that

satisfies the QoS requirements (See Figure 4.1).

Figure 4.1 – Overview of NETAH

An event stream composition network consists of a set of event processing units (EPUs), pro-

ducers and consumers organized as a directed acyclic graph (DAG). An event processing unit

implements an event stream composition operator (see Section 3.3).
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4.1. Overview

The architecture of the NETAH framework is depicted in Figure 4.2. It consists of three layers:
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Figure 4.2 – Architecture of NETAH

• the application layer, which consists of producers which generate event streams, and

consumers which subscribe to complex event streams via subscriptions;

• the event stream composition network layer, consisting of:

- a set of distributed EPUs communicating via event channels. Those EPUs are

created from consumers subscriptions and deployed in processing nodes of the runtime

environment.

- an event stream composition builder (ECN Builder), which creates event stream

composition networks from subscriptions

- A scheduler, which deploys EPUs on distributed processing nodes

• the middleware layer, providing a publish/subscribe communication style for event

dissemination.

The class diagram associated to this architecture is presented in Figure 4.3.

The class Node represents a processing node of the runtime environment, and the class Link

represents a communication link between two processing nodes. A processing node can

host producers, consumers and EPUs. NETAH maintains information about the producers

and consumers contained in the environment, with their corresponding location (the pro-

cessing node on which they reside). Each processing node hosts a broker of a distributed

publish/subscribe service, which provides publish/subscribe communication style between

57



Chapter 4. The NETAH Framework

Figure 4.3 – Class diagram of a NETAH node

distributed producers, EPUs and consumers. Each processing node also hosts an event stream

composition builder component (ECNBuilder class) and a scheduler component (Scheduler

class).

4.2 Subscription

A subscription expresses the interest of a consumer in receiving an event stream of a specific

type, with some correlated QoS requirements. A subscription is specified as a QoS tagged

event stream composition expression (see Section 3.5).

We consider the following QoS domains:

• Dmemor y ⊆N, named memory, which denotes the memory requirement of the operator;

• D t i me ⊆N, named time, which denotes the execution time required by the operator;

• DpFuncti on ⊆N ⋃
{max,mi n, sum, av g }, named pFunction, which denotes the priority

function used by the operator (see Section 3.3.9);

• Dsel ect i onPoli c y = {r ecent ,chr onol og i c,conti nous, pr i or i t y}, named sPolicy, which

denotes the selection policy associated to the operator. More on this in Section 4.3.3.

We also assume the functions expression and qos such as, when given a subscription will return

the respective components of the subscription: expr essi on(s : 〈expr, qos_specs〉) = expr ,

whereas qos(s : 〈expr, qos_specs〉) = qos_specs.

Figure 4.4 represents the class diagram of a subscription. A subscription contains a direct
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acyclic graph which corresponds to the graph associated to its event stream composition

expression (see Section 3.4.5).

Figure 4.4 – Class diagram of a subscription

Example 4.1. Let us consider the event type Ei = Meter Measur e : 〈 meterID : string, re-

alPower : double〉1 and the event stream ES =Stream(MeterMeasure). Let us also consider the

labelled event stream composition expression expr = f @ f i l terr ealPower>5(ES).

Then, s : {〈expr, { f [memor y : 10, t i me : 2, pFuncti on : 2]}〉} determines a subscription

s for which the event stream composition expression is expr and the QoS specification

{ f [memor y : 10, t i me : 2, pFuncti on : 2, sPol i c y : r ecent ]} indicates that the filter op-

erator f requires 10 memory units, its execution time is 2, it selection policy is "recent" and its

priority function is the constant function f = 2, which defines the priority of complex events

produced by f as 2.

4.3 Event stream composition network

An event stream composition network (see Figure 4.5) is the implementation of an event stream

composition expression. It consists in a set of EPUs, producers and consumers organized into

a directed acyclic graph (DAG). The edges of the DAG represent event streams. The producers

produce event streams which are processed by EPUs. Each EPU receives some event streams

in input and produces an event stream in output. The result is notified to the consumer.

4.3.1 Producer

A producer (see Figure 4.6) is a component that produces an event stream of a given type. A

producer produces (the "publish" action) an event stream2 of a particular type. It is hosted

within the runtime environment, and the produced event stream reports on one or more

aspects of its runtime environment. A producer component is modelled as a 2-uplet P : 〈I D, E〉
where:

1We omitted the meta-attributes.
2More precisely, a bounded event stream
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Figure 4.5 – An event stream composition network

… 
Stream (E, P) 

en e3 e1 e2 

Publish 
P 

Figure 4.6 – A producer

• ID represents the identifier of the producer,

• E represents the type of events generated by the producer P.

A producer P : 〈I D, E〉 produces a bounded event stream denoted Str eam(E , I D).

Example 4.2. P : 〈meter 1, Meter Measur e〉 determines a producer identified as meter1

which generates an event stream of a type named MeterMeasure. The generated event stream

is refered to as Str eam(Meter Measur e, meter 1).

The class diagram of a producer is presented at Figure 4.7.

Figure 4.7 – Class diagram of a producer

4.3.2 Consumer

A consumer (see Figure 4.8) is a component that receives a specific type of event stream notifi-

cations. A consumer specifies the type of event stream it wants to receive using a subscription.

A subscription specifies the complex event stream the consumer is interested in, with a QoS

requirement (see Section 4.2). A consumer is modelled as a 2-uplet C : 〈I D, s〉 where:

• I D is the consumer identifier.
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… Stream (E) en e3 e1 e2 

Notify  

Subscribe 

C	

Figure 4.8 – A consumer

• s is the consumer subscription.

Figure 4.9 represents the class diagram associated to a consumer. The subscribe method is used

to issue a subscription. The consumer receives event stream notifications via the invocation of

its notify method, which implements the consumer reaction. We consider the processing logic

of event consumers in response to incoming event streams as out of the scope of the NETAH

framework.

Figure 4.9 – Class diagram of a consumer

4.3.3 Event processing unit

An event processing unit (EPU) is a component which implements an event stream composition

operator (see Section 3.3). An EPU is composed by three types of components (see Figure

4.10):

• a set of input queues, on which input event streams are maintained.

• an operator, which implements a three step event processing logic: fetch-process-notify.

In the first step (fetch), some events are selected from the input queues and marked

as ready to be used to produce new complex events. In the second step (process), the

events selected at step 1 are processed according to the operator semantic. Complex

events produced are stored in the output queue. In the third step (notify), events in the

output queue are notified either to other EPUs, or to interested consumers.

• an output queue, which contains events to be notified.

The class diagram associated to the event processing unit is depicted in Figure 4.11.
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produce	

Stream 1 

notify 

fetch 
Input queue 1 

Output 
 stream 

Stream 2 
Input queue 2 

output queue 
		

		

selection 

stream operator 

Figure 4.10 – Event processing unit

Figure 4.11 – Class diagram of an event processing unit

Selection policies

There are situations where an EPU has to choose among many events selected in input streams

in order to produce an event in output stream. For example, consider the situation depicted

in Figure 4.12 where an EPU implements the and operator on two event streams A and B.

Suppose that two event occurrences a1 and a2 are received from input stream A at time t1 and

t2 > t1 respectively. According to the operator definition, a complex event has to be produced

in the output stream when occurrences from input streams A and B are received. So, at time t2,

there is nothing produced in the output. Now let us suppose that an occurrence b1 is received

from input stream B at time t3 > t2. Now, the and operator should produce a composite event

in the output. For that, it must be specified which occurrence between a1 and a2 should be

considered for the construction of the complex event. It is the goal of selection policies, to

specify the events to be selected in such situations. The notion of selction policy has been

introduced in [CM94] with the name parameter context. We distinguish between four selection

policies: recent, chronologic, continuous and priority.
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AND 

Stream A 

Stream B 

a1 a2 

b1 

Figure 4.12 – Example situation where a selection policy should be applied

Recent Only the newest event occurrence is selected. In the example depicted in Figure 4.12,

the event a2 is selected between a1 and a2.

Chronologic Only the oldest event occurrence is selected. In the example depicted in Figure

4.12, the event a1 is selected between a1 and a2.

Continuous All the event occurrences are selected. In the example depicted in Figure 4.12,

the event a1 and a2 are selected. As result, two complex events are produced in the

output stream, with event parameters {a1, b1} and {a1, b2} respectively.

Priority the event with the higher priority is selected in order to produce the complex event.

In the example depicted in Figure 4.12, if we assume a2 is higher priority than a1, then

a2 is selected.

The selection policy of an operator is specified within the subscription.

Event Queue

An event queue is a component which is used to maintain a finite part of an event stream.

The event queue is a priority-based FIFO queue whith a limited capacity. The priority relation

noted ≺ is defined as follows:

Definition 4.1. (Priority relation) Let ei and e j be two events. Event ei is said to be less

priority than event e j , which is noted ei ≺ e j iff:

ei .pr i or i t y > e j .pr i or i t y ∨
ei .pr i or i t y = e j .pr i or i t y ∧ei .r ecepti onT i me ≥ e j .r ecepti onT i me

Let Q, Q ′ be two event queues, and n be a natural number. Let’s assume a function set(Q)

which returns the set of all events in Q. The main operations applicable to an event queue are

defined as follows:

size the function size(Q) returns the number of events in the queue:

si ze(Q) = |set (Q)|.

empty queue test the function isEmpty tests whether a queue is empty:

i sEmpt y(Q) =
{

tr ue if set (Q) = ;
f al se otherwise
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full queue test the function isFull(Q) tests whether the queue is full. If the capacity of the

queue is n, then we have:

i sFul l (Q) =
{

tr ue if si ze(Q) = n

f al se otherwise

insertion the function enqueue(Q, e) adds the e event into the queue:

enqueue(Q,e) = Q ′ ⇒ set(Q ′) = set(Q)
⋃

{e}; The position of the inserted event e in

Q ′ is defined as follows:

• if Q is empty, that is, i sEmpt y(Q) = tr ue, then e is the only element of Q ′.

• if Q is not empty, then

- if ∀e ′ ∈ set (Q), e ′ ≺ e, then e is the head of Q ′;
- if ∀e ′ ∈ set (Q), e ≺ e ′, then e is the tail of Q ′;
- if there is two consecutive events ei and ei+1 in Q such that ei ≺ e ∧ e ≺ ei+1,

then e is between ei and ei+1 in Q ′. In other words, the events ei , e and ei+1 are

consecutive in Q ′.

In particular for insertion into a full queue, we propose two strategies:

ignore : do nothing. The new event is ignored;

replace : remove the less priority event from the queue (the tail of the queue) and

insert the new event.

removal the function dequeue(Q) removes the higher priority event of a non empty queue,

which is the head of the queue:

dequeue(Q) = (Q ′,e) ⇒ e ∈ set (Q) ∧ set (Q ′) = set (Q) \ {e} ∧ ∀e ′ ∈ set (Q ′), e ′ ≺ e.

tail of the queue the function tail(Q) removes the lower priority event of a non empty queue:

t ai l (Q) = (Q ′,e) ⇒ e ∈ set (Q) ∧ set (Q ′) = set (Q) \ {e} ∧ ∀e ′ ∈ set (Q ′), e ≺ e ′.

4.4 Runtime environment

The event stream composition networks are deployed and executed in highly distributed and

contrained runtime environments (see Figure 4.13). This section presents a model of the

distributed runtime environment and its properties.

Figure 4.13 – The runtime environment

We consider that the distributed runtime environment is represented by an undirected graph

T = (N,L) consisting in a set of distributed processing nodes N and their communication
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links L. Processing nodes represent the device in which producers, consumers and EPUs are

deployed.

Processing node

A processing node is characterized by its availablememory and CPU speed coefficient.

The CPU speed coefficient is a number which indicates the relative speed of the processing

node compared to others. The reference CPU coefficient is 1. We call reference node a pro-

cessing node having CPU coefficient 1.

For example, a processing node having the CPU speed coefficient 2 is two times faster than a

reference node.

Different processing nodes may have different available memory capacities. The event stream

processing should be done on each processing node without violating its memory capacity.

Processing nodes that cannot host EPUs are simply given a zero memory capacity.

We assume that given a processing node n, the functions amem and cpuCoef return its

available memory and CPU coefficient respectively.

Network link

The network link l ∈ L between two distinct processing nodes ni and n j is bidirectional and

is characterized by its latency, which is the same for communication in both directions. We

assume the function lat returns the latency of a given communication link.

4.5 Event stream composition network creation

Let P , C and O be the set of producers, consumers and EPUs respectively. Let O = P ∪O ∪C .

For a given subscription s of a consumer c ∈C , NETAH derives an event stream composition

network EC Ns (see Figure 4.14), which is a DAG consisting in a set of producers Ps ⊆ P , a set

of EPUs Os ⊆O and a set of consumer Cs ⊆C , all connected by directed edges As ⊆ A.

That is, EP Ns = (Os , As), where Os = Ps ∪Os ∪Cs and As ⊆ (Ps ×Os)∪ (Os ×Cs).

The set of EPUs Os is created by NETAH. Each EPU in Os implements an operator in the

event stream composition expression contained in s. The producers Ps and consumer Cs are

application components, and thus are not created by NETAH. NETAH maintains the references

of all producers and consumers.

The component of NETAH which creates an event stream composition network from a sub-

scription is called the ECN Builder (see Figure 4.2).

Consider a consumer c and a subcription s of c. Then, the event stream composition network
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Figure 4.14 – Creation of EPUs from a subscription.

EC Ns associated to the subscription s can be derived from the graph representation of its

event stream composition expression. The idea behind such a derivation is that bounded

event streams define event producers, and stream operators define EPUs.

Let expr be the event stream composition expression associated to s, that is expr = expres-

sion(s). We assume that all the event streams in expr are in their developed form (see Section

3.4.6). Let G = (V,E) be the graph representation of expr .

In order to define how EC Ns can be derived by G , let us introduce a function h : V →O defined

as follows:

• if a is a bounded event stream (see Section 3.2.3), that is a = Str eam(E j , pi ) such that

E j is an event type and pi is the ID of a producer, then h(a) returns the event producer

Pi : 〈E j , pi 〉.

• if a is an event stream operator op, then h(a) is an EPU epuop which implements the

operator op and applies all the specified parameters (selection policy, priority function,

memory usage and processing time).

Then, EC Ns = (Os , As) where:

1. Os = { h(a) | a ∈ V }∪ { c }.

2. As = { (h(a), h(b)) | (a,b) ∈ E }∪ { (h(r ), c) }, where r is the downstream vertex of the

graph G, that is the vertex with no outgoing edge.

After the direct acyclic graph EP Ns is generated, NETAH configures each vertex of the graph to

subcribe to the appropriate input event streams. This is done according to the following rule:

• if a = (oi ,o j ) is an edge in EP Ns , that is a ∈ As , then o j subscribe to the output stream

of oi .

This mechanism ensures that, at the execution time, event streams will be disseminated in the

way dictated by the event stream processing network.

At the end of this process, the set Os contains the EPUs created for the subscription s. Those

EPUs are ready to be deployed and executed in the runtime environment.
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Example 4.3. Let us consider the event type E1 = Meter Measur e : 〈 meterID : string, re-

alPower : double〉 and the simple event stream ES1 = Str eam(Meter Measur e). Let’s also con-

sider event producers P1 : 〈E1,"sour ce1"〉 and P2 : 〈E1,"sour ce2"〉. Finally, let us assume the

event stream composition expression expr = a@av gr ealPower, av g P (w@wi n : wi thi n(10,50)(

f @ f i l terr ealPower>2(ES1))), and the event consumer c : 〈"consumer ", s〉 having a subscrip-

tion s such that expr essi on(s) = expr .

Let us compute the event stream composition network EC Ns = (Os , As) associated to the

subscription s.

By rewriting ES1 in its developped form in expr , we have:

expr = av gr ealPower, av g P ( wi n : wi thi n(10,50)( f i l terr ealPower>2( OR( ESP1
1 , ESP2

1 )))), ha-

ving ESP1
1 = Str eam(E1,P1), and ESP2

1 = Str eam(E1,P2). We assume that the QoS parameters

associated to the stream operators are given by Table 4.1.

Operators
Or Filter Window Avg

Priority Function max max max max
Processing time 5 5 20 20
Memory 10 10 50 50

Parameters

SelectionPolicy priority priority priority priority

Table 4.1 – Parameters associated to stream operators defined in expr.

The expression expr can be represented as a graph (see Figure 4.15).

Filter 
 

win: 
within 
(10, 50) 

Avg 
realPower, 

avgP 

ES1
 P2 

ES1 
P1 

OR realPower > 2 

Figure 4.15 – Graph associated to the event stream composition expression expr.

For each vertex of the graph we have:

• h(ESP1
1 ) = P1 : 〈E1,"sour ce1"〉, that we simply refer to as P1;

• h(ESP2
1 ) = P2 : 〈E1,"sour ce1"〉, that we simply refer to as P2;

• h(OR) = epuOR , such that epuOR is an EPU implementing the operator OR of the graph

G with the associated parameters;

• h(F i l terr ealPower>2) = epuF i l ter , such that epuF i l ter is an EPU implementing the op-

erator F i l terr ealPower>2 of the graph G with the associated parameters;
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• h(wi n : wi thi n(10,50)) = epuwi n , such that epuwi n is an EPU implementing the opera-

tor wi n : wi thi n(10,50) of the graph G with the associated parameters;

• h(Av gr ealPower,av g P ) = epuAv g , such that epuAv g is an EPU implementing the operator

Av gr ealPower,av g P of the graph G with the associated parameters;

Then we have EC Ns = (Os , As) where:

1. O = {P1, P2, epuOR , epuF i l ter , epuwi n , epuAv g , c}

2. A = {(P1, epuOR ), (P2, epuOR ), (epuOR , epuF i l ter ), (epuF i l ter , epuwi n),

(epuwi n , epuAv g ), (epuAv g ,c)}

The resulting event stream composition network EC Ns is given in Figure 4.16. Then, NETAH

configures EPUs and the consumer so that they subscribe to their corresponding input stream.

In particular:

• the EPU epuOR subscribes to the input streams Str eam(E1,P1) and Str eam(E1,P2);

• the EPU epuF i l ter subscribes to the output stream produced by epuOR ;

• the EPU epuwi n subscribes to the output stream produced by epuF i l ter ;

• the EPU epuAv g subscribes to the output stream produced by epuwi n ;

• the consumer c subscribes to the output stream produced by epuAv g .

epuFilter epuwin epuAvg epuOR 

P1 

P2 

C 

Figure 4.16 – The event stream composition network associated to the subscription s.

4.6 Event processing unit mapping

The EPUs created by NETAH have to be deployed in the runtime environment. Therefore,

NETAH should decide for each EPU, the processing node on which it should be deployed (see

Figure 4.17). We refer to this as the EPU mapping. The issue we face at this step is that there

are many possible way to map EPUs to processing nodes in the runtime environment. Each

possibility differs from others according to how it meets QoS requirements. We recall that the

QoS dimensions addressed here are memory occupation, and latency. For example, deploying
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Figure 4.17 – Operator mapping

EPUs on a single node may potentially minimize the latency of events processing. In fact, this

avoid the inter-node communication time, leading to a better latency. However, concentrating

the event stream processing on one processing node may overflow its memory capacity, thus

resulting in the violation of a QoS requirement (i.e., memory occupation). Therefore, the goal

of the EPU mapping is to map EPUs on processing nodes in the best possible way, considering

the memory limitation of each device while providing the better latency.

The component of NETAH which achieves EPU mapping is called the scheduler (see Figure

4.2).

In the following, we will focus on the EPU mapping problem. We will first illustrate the problem

with an example. Then, we will present the properties that have to be satisfied by an EPU

mapping algorithm. It is worth to mention that NETAH does not provides a default EPU

mapping algorithm, but instead relies on an algorithm provided by the user.

The EPU mapping refers to the (close to) optimal selection of the physical processing nodes

hosting the EPUs of an event stream composition network in order to satisfy a predefined

global cost function. The EPU mapping is an instance of a more general task-assignment

problem that addresses the (close to) optimal assignment of m tasks to n processors in a

network, which has an O (nm) complexity. The EPU mapping problem is NP-complete.

The EPU mapping algorithm takes as input a specification of a physical network topology

T = (N,L), which consists in a set of computing nodes N and their links L. The EPU mapping

also considers the specification of the resources (i.e., memory and CPU coefficient) available

on each processing node, and the latency of communication links. Figure 4.18 shows an

example of network topology that comprises 9 computing nodes, each communication link

being labeled with its corresponding latency. Table 4.2 shows the resources availability on

each computing node.

The EPU mapping algorithm also takes as input an event stream composition network EC N =
(O , A), which consists in a set of event streams producers P ∈ O , a set of EPUs O ∈ O and a

set of event stream consumers C ∈ O . A represents the set of edges that connect the EPUs.

Figure 4.19 shows an example of an event stream composition network, where P1 and P2

are two producers, C1 is a consumer, o1,o2,o3 and o4 are EPUs. The EPUs are associated

with measures or estimates of demand, such as the memory and CPU time that each EPU

expects for processing a single input event. In our approach, those values are provided by the

application developper. Table 4.3 shows the estimates associated to EPUs o1,o2,o3 and o4.
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Figure 4.18 – A physical network topology

Table 4.2 – Resources availability on computing nodes

Node Memory CPU coefficient
n1 10 1/2
n2 10 1/2
n3 15 1/2
n4 12 1/2
n5 10 1/2
n6 10 1/2
n7 50 1
n8 60 3
n9 30 2

We assume that each producer is permanently assigned to a network node. The same assump-

tion hold with consumers. We say that producers and consumers are mapped.

Figure 4.20 shows an example of mapping of producers P1,P2 and consumer C1, where P1, P2

and C1 are mapped to nodes n2, n1 and n9 respectively.

On the other hand, EPUs can be placed on arbitrary nodes having enough available resources

for their execution.

The output of the EPU mapping algorithm is a mapping function λ⊂ O ×N that associates

to each EPU, the node on the network topology in which it should be hosted. Figure 4.21

o1 

o2 

o3 o4 

P1 

P2 

C1 

Figure 4.19 – Example of an event stream composition network
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Table 4.3 – Estimates of the EPU resource requirements

Operator Memory Execution time
o1 8 4
o2 12 5
o3 10 6
o4 20 9

2 

2 

2 

2 

2 

1 

1 

0.5 

P1 

P2 

C1 

Figure 4.20 – Initial mapping of producers and consumers.

shows a possible mapping, where EPUs o1,o2,o3 and o4 are mapped to nodes n6,n4,n8 and

n8, respectively. An EPU mapping algorithm assigns EPUs to processing nodes in a way that

o1 

o2 

o3 o4 2 

2 

2 

2 

2 

1 

1 

0.5 

P1 

P2 

C1 

Figure 4.21 – Example of EPU mapping.

satisfies a set of specified constraints and optimize a given objective function. In our setting,

the constraint is to ensure that no processing node is overloaded beyond its memory capacity.

The objective function is the expected end-to-end latency between producers and consumers.

In order to formally define the EPU mapping problem, let us consider the notations presented

in Table 4.4.
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Table 4.4 – Notations

Operator Execution time
o event processing unit
n processing node
i ni t initial mapping of producers and consumers
t i me(o) execution time of o on a reference node
mem(o) memory required by event processing unit o
p(o,n) execution time of o on node n
cpuCoe f (n) CPU coefficient of node n
amem(n) memory available on a node n
l at (e) latency of the network link e
netPath(ni ,n j ) the network path between nodes ni and n j

c(a) latency of the communication between event processing units
connected by the edge a

λ(o) the mapped location of event processing unit o

We formalize the EPU mapping problem as follows:

minimize
λ

cost (λ) = ∑
o ∈ O

p(o,λ(o))+ ∑
a∈A

c(a)) (4.1)

subject to:

λ(o) = i ni t (o), i f o ∈ P ∪C (4.2)

∀n ∈ N
∑

o : λ(o)=n
mem(o) ≤ amem(n) (4.3)

where

p(o,n) = t i me(o)

cpuCoe f (n)
(4.4)

c(a) =
{

0 if for a = (oi ,o j ), λ(oi ) =λ(o j )

β(a) otherwise
(4.5)

a = (oi ,o j ), β(a) = ∑
ei ∈ netPath(λ(oi ), λ(o j ))

l at (ei ) (4.6)

Equation (4.1) states the cost of an EPU mapping λ, which is the estimated end-to-end latency

incurred by λ. It is calculated as the sum of the latency due to event processing (first part)

and the latency due to the network communication (second part). Equation (4.2) states

that the mapping should be consistent with respect to the initial mapping of producers and

consumers. Equation (4.3) states that the mapping should be defined such that no processing

node is overloaded beyond its memory capacity. Equation (4.4) shows the formula that allows
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to compute the processing time of a mapped EPU. Equations (4.5) and (4.6) show how to

compute the network latency incurred by the communication between EPUs.

By using these formulas, we can compute as example the cost of the EPU mapping presented

in Figure 4.21. First, note that this mapping is valid, since it does not violate Equation 4.2

and (4.3). Following Equation (4.4), we compute p(o,λ(o)) for EPUs o1 to o4 as 8, 10, 2 and 3,

respectively. The latency of event processing is then 23.

Now let us compute the latency due to the communication between EPUs. For the edge (P1,

o1), it equals 2. For the edge (P2,o2), it also equals 2. For the edge (o1,o3), it equals 1. For the

edge (o2,o3), it equals 2+1, so 3. For the edge (o3,o4) it equals 0. For the edge (o4,C1), it equals

0.5. The latency incurred by the communication between EPUs is then 7.5. Thus, the total cost

of the EPU mapping is cost (λ) = 23+7.5 = 30.5.

4.7 Event processing unit deployment

After NETAH computes the EPU mapping for a set of EPUs created after a subscription, it

deploys each of these EPUs on the corresponding processing node (see Figure 4.22). The

Figure 4.22 – Deployment of event processing units in the runtime environment

deployment is triggered by the scheduler collocated with the consumer which issued the sub-
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scription. In the case of the example at Figure 4.22, it is the scheduler at node n6 which triggers

the deployment. Figure 4.23 presents the sequence diagram associated to the deployment

phase.

Figure 4.23 – The deployment sequence

The deployment happens as follows:

1. The local3 scheduler computes for each designated processing node, its set of assigned

EPUs.

In the example at Figure 4.22, this results in {EPUni t 1,EPUni t 2,EPUni t 3} for node

n3, {EPUni t 4,EPUni t 5} for node n5 and {EPUni t 6} for the node n6.

2. Then, the local scheduler sends to the remote4 scheduler at each designated node its list

of assigned EPUs.

3. When each remote scheduler receives its list of EPUs, it adds and starts them locally and

sends a confirmation to the initial scheduler.

4. The process finishes when the initial scheduler receives all the confirmations from

remotes schedulers.

3Relatively to the consumer which issued the subscription.
4See footnote 3.
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4.8 Conclusion

This chapter described our framework for the generation and deployment of event stream

composition networks in distributed runtime environments. We presented the core compo-

nents of NETAH and its architecture. Producers represent components that produce event

streams. Consumers represent components that subscribe to complex event streams by is-

suing subscriptions. The event streams generated by producers are processed by distributed

event processing units (EPUs). The complex event stream generated in output is notified to

the consumer. The communication between producers, EPUs and consumers is implemented

by a publish subscribe middleware that provides a high level communication style which is

adapted for event based communications.

NETAH considers as input a consumer’s subscription, and generates an event stream com-

position network which implements the event stream composition expression contained in

the subscription. An event stream composition networks consists of a set of producers,EPUs

and consumers, organized into a directed acyclic graph. NETAH allows the definition of an

EPU mapping algorithm, which is used for assigning the generated EPUs to the processing

nodes of the runtime environment. Such an algorithm should satisfy the memory capacity

of each processing nodes while ensuring a minimum end to end latency. Using such an EPU

mapping algorithm, NETAH deploys the EPUs created for the given subscription in the runtime

environment.

The next chapter is dedicated to the adoption of NETAH for generating and deploying event

stream composition networks in smart grid environments.
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5 NETAH in Smart Grids

This chapter presents the application of the NETAH framework in a smart grid. Section 5.1

presents a quick introduction to smart grids and smart grid data management issues, and

details our approach for event stream composition in smart grids with NETAH. Section 5.2

presents an EPU mapping algorithm for NETAH in smart grids. Then, Section 5.3, presents a

simulation of the smart grid network. Section 5.4 details the implementation of NETAH in a

smart grid. Finally, Section 5.5 concludes this chapter.
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5.1 Smart grid and NETAH

5.1.1 Overview of a smart grid

What is a smart grid?

A smart grid (see Figure 5.1) is as a modernised electricity grid that uses information and

communications technology to monitor and actively control generation and demand in near

real-time, which provides a more reliable and cost effective system for transporting electricity

from generators to homes, businesses and industry [Dep14].

The smart grid is the result of the integration of sensing, embedded processing and digital

communications to the electricity grid, which becomes observable (able to be measured and

visualised), controllable (able to be manipulated and optimised), automated (able to adapt

and self-heal), fully integrated (fully interoperable with existing systems and with the capacity

to incorporate a diverse set of energy sources).

The literature [Eur06, Dep14] suggests the following attributes for the smart grid:

Minimise consumer bills: more efficient use of network assets helps reduce the need to invest

in costly infrastructure and ultimately reduces the costs passed through to consumer

bills.

Enable greater consumer and community participation: the smart grid can have a transfor-

mational impact on consumer and community interaction with the energy system.

Smart meter systems will provide consumers with more accurate information on their

energy use and suppliers will be able to offer more cost reflective tariffs that reward

consumers for using energy at off-peak and lower price times or generating energy at

peak times.

Enabling demand response and energy storage: with accurate and real time technical infor-

mation on supply and demand, and options for balancing supply locally, complemented

by new commercial arrangements such as flexible connection agreements, network

operators will be able to free up existing capacity and make better use of existing assets.

Improve energy security and reliability: a more intelligent network that increases the visibil-

ity of real-time network use, as well as a means to control and manage the network more

responsively, will improve the stability and reliability of the network. This will assist in

the timely and efficient replacement of equipment, reducing the risk of any localised

power outages or interruptions and ensure that power is restored more quickly when

faults do occur.

Enable new low carbon technology to be deployed: heat pumps and electric vehicles will de-

liver significant carbon reductions, but will increase demand on the electricity network.

Using smart grid technology to phase operating times, these devices can be incorpo-

rated into the network in conjunction with distributed generation to balance supply and

demand, reducing the need for costly network reinforcement.
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Figure 5.1 – A smart grid

Smart grid data management issues

Smart grid devices emanate huge amounts of data that can be exploited for a wide range of

applications like network traffic analysis, automation of operational control, prevention or

detection of dysfunctions, etc. Those data can be considered as event streams that refer to

happenings of interest produced within the smart grid environment. Strategies to handle

real-time event streams and notifications are critical for achieving smart grid utilities. Utility

applications requires event streams to be filtered, aggregated and correlated in order to infer

complex events that are sematically richer and useful. This requires event stream composition

systems to be implemented in smart grids.

In order to meet real-time requirements, event streams must be processed on the fly and

continuously, as they are flowing within the system. Therefore, event stream composition

must be achieved in a distributed way across the smart grid network, using smart grid devices.

Such devices include smart meters, data concentrators, smart sensors, etc. However, these

are very contrained devices in terms of computational resources (memory and CPU). Thus,

event stream composition should be distributed to these devices considering their resource

limitations.

In addition to the computational resource limitations, there are limitations on the network

resource, which generally integrates many communication channels, including power line

carrier, wireless communication, wired communication. These communication channels

are associated with different transmission delays which also have to be considered for event

stream composition.
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5.1.2 NETAH framework in a smart grid

The NETAH framework addresses the smart grid requirements in term of event stream compo-

sition:

Distribution level: The Smart grid requires the event stream composition to be distributed

accross the smart grid network. The smart grid network is a special case of runtime

environment on which NETAH can deploy event stream composition operators.

QoS constraints: The smart grid requires event stream composition to be done on each

device considering its resources limitations. NETAH deploys event stream composition

operators on each devices considering both their memory limitation and the expected

end to end latency.

Figure 5.2 presents the application of NETAH to a smart grid. The smart grid network is

considered as the runtime environment of NETAH. Smart grid devices (smart meters, data

concentrators, sensors, etc...) can act as event stream producers or consumers. Examples

of producers include smart meters, which generates event streams related to electricity con-

sumption, and sensors, which generate event streams related to the state of electrical line.

Examples of consumers are the utility servers, which consume complex event streams such as

alarms derived by processing simple event streams. A consumer specifies the event streams

he is interested in using a supscription. Such a subscription is processed by NETAH, which

generates the corresponding event stream composition network and deploys it in the smart

grid network in a way which is consistent with the resources limitations of smart grid devices.

5.2 Operator mapping algorithm

NETAH has to be provided with an EPU mapping algorithm which is used for assigning event

processing units to processing nodes on the runtime environment. Such an algorithms should

meet the constraints defined from Equations (4.1) to (4.6) at Section 4.6. In this subsection, we

propose algorithms for EPU mapping in a smart grid environment.

Brute force approach.

The EPU mapping problem can be modelled as a constraint satisfaction problem (CSP). CSPs

are mathematical problems defined as a set of objects whose state must satisfy a number of

constraints. The constraints that we consider are defined by Equations (4.2) and (4.3), and are

similar to the constraint defined by the bin packing problem, where items of different volumes

must be packed into a finite number of bins, each with a given volume. For the purpose of

EPU mapping, the bins represent the processing nodes, and their size represents their mem-

ory capacity. The items represent the operators, and their volume represents their memory

occupation. We can now rely on a CSP solver to find the set of valid mappings according to the

bin packing constraint. The optimal mapping is the one with the minimum cost among the
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subscrip(on	
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HTA coordinator 
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Event stream composition network 

Figure 5.2 – The NETAH approach in smart grid

set of valid mappings, as shown in the following algorithm.

OpMapping(EventCompositionNetwork ecn, NetworkTopology topo, InitialMapping init)

λopt ← null ;

sol ver ← Bi nPacki ng Sol ver ();

solver.constructBinPackingConstraint(ecn, topo, init);

if solver.hasSolution() then

λ← sol ver.nextSol uti on();

c ← cost (λ);

λopt ←λ;

while solver.hasSolution() do

λ← sol ver.nextSol uti on();

c2 ← cost (λ);

if c2 < c then

c ← c2;

λopt ←λ;
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end if

end while

end if

return λopt ;

The OpMapping algorithm browses the whole space of correct solutions (with respect to

the bin packing constraint) in order to find the optimal one. Then, it follows a brute force

approach. Because of its exponential complexity, the OpMapping algorithm is not appropriate

for producing a result in an acceptable period of time for large event stream composition

networks and network topologies. In order to deal with such large inputs, we proposed a

greedy approach for EPU mapping.

Greedy approach.

In order to reduce the size of the inputs of the OpMapping algorithm, our idea consists in

adopting a "divide and conquert" approach, in a greedy manner (see Figure 5.3).

Network	topology	 λinit	

Divide	 Divide	

OpMapping	

Event Stream  
Composition Network 

OpMappingGreedy 
λinitU λ 

λinit	

λ 

λfinal 

Partitions Partitions 

Figure 5.3 – Overview of the greedy approach

The idea is to incrementally map parts of the event stream composition network on specific

parts of the network topologies using the OpMapping algorithm, combining the founded

solutions, till all operators are mapped.

There are two main aspects that have to be considered here in order to apply this approach.
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First, it should be specified how to compute parts of the event stream composition network.

Then, it should be specified how to compute the part of the network topology where a com-

puted part of the event stream composition network should be mapped. In order to do that, we

rely on the following hypothesis on event stream composition network and network topology

respectively:

• Hypothesis 1: there is one consumer for each input event stream composition network.

This reduces the complexity of the problem, since considering many consumers in the

event stream composition network will lead to multi optimization with respect to each

consumer, especially when some consumers share a same part of the event stream

composition network.

• Hypothesis 2: the network topology has a tree structure. This is consistent with electrical

grid topologies, which are generally designed under a tree structure.

Computing subgraphs of the event stream composition network. Given the original event

stream composition network, a subgraph will consist of intermediates operators that are

reachable from a given producer to the consumer c. Therefore, they will be the same number

of subgraph than the number of producers in the original graph. In the following, we assume

the existence of a function subg r aph(EC N ,Pi ) that computes the subgraph associated to the

producer Pi .

Example 5.1. For example, considering the event stream composition network in Figure 5.4,

the result of the function subg r aph(EC N ,P2) is the subgraph that consists of the set of nodes

O ′ = {P2,o2,o3,o4,c} and the set of edges A′ = {(P2,o2), (o2,o3), (o2,o4), (o3,c), (o4,c)}.

o2 o3 

o4 

o1 

P2 

P1 

P0 

C1 

Figure 5.4 – Example of an event stream composition network

Computing a subgraph of the network topology. Once we compute a subgraph of an event

stream composition network for a given producer Pi using subg r aph(EC N , Pi ), we need

to compute the subgraph of the network topology where it should be mapped. In order to

do that, we consider the mapped location of the producer Pi and the consumer c as defined
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by the initial mapping init. The resulting subgraph is the one that includes the nodes in the

path between i ni t (Pi ) and i ni t (c). Since the network topology is a tree, there is only one path

between i ni t(Pi ) and i ni t (c). Also, the size of the subgraph is of the order of O (logm(n)),

where n corresponds to the number of nodes in the original network topology, assuming each

node is connected to at most m nodes.

We assume that this subgraph is computed by the function subg r aphTopo(T,ni ,n j ).

Example 5.2. For example, considering the network topology in Figure 5.5, and assuming that

the producer P2 and the consumer c are initially mapped at nodes n6 and n10, respectively,

the result of the function subg r aphTopo(T,n6,n10) is the subgraph that consists in the set of

nodes N ′ = {n6,n8,n9,n10} and the set of edges E ′ = {(n6,n8), (n8,n9), (n9,n10)}.

n5 

n2 

n6 

n7 

n8 

n9 n10 

n3 
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n1 

n4 
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Figure 5.5 – Network topology

Greedy algorithm The greedy version of the algorithm is presented as follows.

OpMappingGreedy(EventCompositionNetwork epg, NetworkTopology topo, InitialMap-

ping init)

λ← i ni t ;

for each producer Pi in epg do

epg ′ ← subg r aph(epg ,Pi );

topo′ ← subg r aphTopo(topo, i ni t (Pi ), i ni t (c));

λ′ ←OpM appi ng (epg ′, topo′,λ);

if λ′ != null then

λ←λ
⋃
λ′;

for each operator o in epg ′ do

if o is not mapped then

mark o as mappped;

update the availble memory in λ(o);

end if

end for

else

return null;
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end if

end for

return λ;

The OpMappingGreedy algorithm achieves local optimization for each computed subgraph

of the original event stream composition network. At each step, the solution is combined

with the previously found solutions and the result is used like the initial mapping for others

iterations. As it finds solutions during subgraph mappings, it marks all non-mapped operators

as mapped, and continues till all subgraphs are mapped. If the mapping of a subgraph of

the original event stream composition network fails, the algorithm stops and the mapping is

considered as failed.

The experimental evaluation of opMapping and OpMappingGreedy algorithms is presented in

Appendix A.

5.3 Simulating the smart grid network

This section presents the simulation of a smart grid network. Our simulation only considers

the components of the smart grid network that are relevant to NETAH: network devices and

communication links. Figure 5.6 presents the class diagram of smart grid network components.

Figure 5.6 – Class diagram: the smart grid environment

Modeling a smart grid device

The Device class represents a smart grid device. Smart grid devices includes smart meters,

sensors, data concentrators, HTA coordinators etc.
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A smart grid device is identifiable by its name, and it can be assigned a quantity of memory

(availableMemory attribute) and a CPU rate (cpuRate attribute).

A smart grid device also has an image (icon attribute) which will be used to display the device

on a graphical user interface.

A smart grid device can be connected to other smart grid devices by network links. The Device

class provides methods for data routing over the network, more on this in Section 5.3.1.

A smart grid device integrates the components of the NETAH architecture (See Section 4.1),

that is a publish/subscribe broker, a scheduler and an event stream composition network

builder (ECNBuilder). A smart grid device can host event producers, event consumers and

event processing units.

Modeling a communication link

The ComLink class represents a communication link between two devices. This can be a wired

link, wireless link or a power line link. The communication can happen in both directions. A

communication link is identifiable by a name (name attribute), and can be assigned a given

latency (latency attribute), a loss rate (lossRate attribute) and a state which indicates wether

the link is down or not (down attribute).

Latency The latency of the communication link is the data transfer time over the link. Instead

of having a fixed latency for every data transfer, we consider that the data transfert time is

a random variable having a normal distribution N (l atenc y,dev). The mean and standard

deviation of the distribution are respectivelly defined by the attributes latency and dev of the

ComLink class.

Loss rate The loss rate of a communication link defines the probability of a data loss during

a transmission. Data which are considered as lost are retransmitted, resulting in an increase of

the transmission latency. The communication link is then associated to a bernoulli variable,

which decides the frequency of data loss. The probability of success (data loss) of the bernoulli

variable is defined by the lossRate attribute of the ComLink class.

State The attribute down of a communication link is a boolean which indicates whether the

link is in its "down" state or not. A link in the down state cannot convey data, while a link

which is not in the down state can.

5.3.1 Routing data over the network

The data routing over the network is realized by the Device components. Data which are sended

over the network are encapsulated into objects of the type DataPacket, which is presented in

Figure 5.7.

The source attribute identifies the device at the origin of the message. The origin attribute
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Figure 5.7 – Class diagram: producer

identifies the last device which forwards the message on the network. This information is

useful for sending data in the right direction over bidirectional communication links. The

destination attribute identifies the final destination of the data. Finally, the data attribute

represents the data being transmitted.

In our setting, we assume that all smart grid devices share a global knowledge of the network

topology. The delivery of a message msg from a device dsour ce to a destination ddest happens

as follows:

1. The device dsour ce encapsulate the message into a DataPacket object d p, and sets the

source and destination attributes of d p as dsour ce and ddest respectively.

2. The origin attribute of the packet is set to dsour ce .

3. The device dsour ce computes the shortest path to reach its destination, using the Dijk-

stra’s shortest path algorithm.

4. The device dsour ce deduces the communication link over which the message should be

routed, and put the packet on that link.

5. The link convey the packet d p to the device dnei g hbor located on its opposite endpoint.

6. When the device dnei g hbor receives d p, it checks whether he is the final the destination

of the packet. If this is the case, the packet is arrived at its destination. In the opposite

case, the device sends the packet to the next hop, by repeating the procedure starting

from the instruction number 2.

5.3.2 Implementing a publish/subscribe communication style

In NETAH, publish/subscribe communication is topic based: a sender publishes a message to

a topic, and a subscriber subscribes to a particular topic, receiving all message being published

to that topic. Therefore the two main operations provided by a publish/subcribe service are

publish and subscribe (see Figure 5.8).

In order to implement the publish/subscribe service, we relied on event bus proposed in

[Eve16], which has been designed to replace traditional Java in-process event distribution
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Figure 5.8 – Topic based publish/subcribe broker

using explicit registration.

A publish/subscribe broker maintains a set of event bus objects, each being associated to one

topic (see the topicBus attribute). There is one publish/subcribe broker on each device.

We assume a shared1 variable topic2Device, of the type HashMap<String, Set<Device» which

maintains a correspondance between a topic and a set of devices.

Subscribing to a topic.

In order to subscribe to a topic, a subcriber calls the subscribe method of its publish/subscribe

broker2. The publish/subscribe broker then do the following:

1. retrieves the event bus associated to the topic in the topicBus variable. If there is no such

an event bus, a new event bus is created for the topic;

2. Register the consumer to the retrieved event bus. This allows the consumer to be notified

when an event is published into the retrieved event bus.

3. Adds the device hosting the subscriber into the set of devices associated to the topic in

the topic2Device variable. This information is useful for notifying the consumer in case

events are produced in the topic from remote devices.

Figure 5.9 shows the sequence diagram of a subscription.

Publishing a message to a topic.

In order to publish a message to a topic, a sender calls the publish method of its publish/sub-

scribe broker3. Then, the publish/subscribe broker retrieves the set of devices associated to

the topic and sends the message to the publish/subscribe broker on each of those devices.

When a publish/subscribe broker receives such a message, it retrieves the event bus associated

to the topic (topicBus attribute). The message in then published into the retrieved event bus,

which lets the event being notified to registered subscribers on that device.

1shared among all publish/subscribe brokers
2The one which is located on the same device
3The one which is located on the same device
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Figure 5.9 – Sequence diagram: subscribing to a topic

Figure 5.9 shows the sequence diagram of a publish.

Figure 5.10 – Sequence diagram: publishing an event

5.4 NETAH in the simulated smart grid network

This section presents the adoption of our framework in a simulated smart grid network. Our

goal is to allow the implementation of event stream composition scenarios in simulated smart

grid networks using NETAH. A scenario is defined by a user, and includes:

• a set of producers with their associated workload;

• a set of consumers with their associated workload;

• a set of subscriptions or event stream composition networks for each consumer;

• a smart grid topology.

The adoption of NETAH in a simulated smart grid network is summarized in Figure 5.11. The

simulation platform provides support for running user defined scenarios. It is implemented
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Figure 5.11 – NETAH for event stream composition in a simulated smart grid network

using the Java language, and is organized into two main modules called Smart Grid Network

and GUI. The Smart grid network module implements the physical smart grid network, and

the GUI module provides graphical user interfaces allowing to set, execute and visualize an

event stream composition scenario.

The simulation platform is provided as input a specification of an event stream composition

scenario.

As output, the simulation platform displays graphical user interfaces allowing to configure,

execute and visualize the scenario. The simulation platform also produces logs which can

be user defined (logs defined by producer code or consumer code) or logs generated by the

platform itself (statistics of network links for example).

5.4.1 Defining an event stream composition scenario

The simulation platform allows to setup a scenario for event stream composition in the smart

grid. Such a scenario is implemented by defining a set of producers, a set of consumers with

their associated subscriptions and a smart grid nerwork as the runtime environment of the

scenario.

Defining a custom producer

The class EventProducer (see Figure 5.12) is the base class for defining a producer. It defines

a method publish used for publishing event instances of the particular event type. An event

type is defined using a java class which conforms to the JavaBeans specification [Sun16]. A

concrete producer is defined by extending the EventProducer class and implementing the

logic of the concrete producer within the run method, as shown at Listing 5.1.
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Figure 5.12 – Base class for defining a producer

1 public class AConcreteProducer extends EventProducer {
2 AConcreteProducer (String ID, Class type){
3 super(ID , type);
4 }
5

6 public void run(){
7 // Custom producer code:
8 // Create and publish event objects using publish(obj)
9 }

10 }

Listing 5.1 – Defining a custom producer

When deployed on a device, an event producer class use the publish/subscribe broker of

that device to convey the published events to interested parties4. The publish method of the

EventProducer class publishes events in a topic named <typeName>@<ID> where <typeName>

is the name of the class representing the event type and <ID> is the identifier of the producer.

For example, an event producer identified as meter1 for which the event type is given by a

class named MeterMeasure will publish events 5 in a topic named MeterMeasure@meter1.

Defining a custom consumer

The class EventConsumer (see Figure 5.13) is the base class for defining a consumer. It contains

an abstract method named notify, which is called each time events are notified to the consumer.

A concrete consumer is defined by extending the EventConsumer class and implementing its

Figure 5.13 – Base class for defining a consumer

4This can be event processing units or consumers
5objects of the type MeterMeasure
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notify method with the consumer specific reaction, as shown at Listing 5.2.

1 public class AConcreteConsumer extends EventConsumer {
2 public void notify(Object [] evts){
3 // Consumer specific reaction: show events on the console
4 for(EventBean e: evts){
5 System.out.println(e);
6 }
7 }

Listing 5.2 – Defining a custom consumer

Defining a subscription

The class Subscription (see Figure 5.14)serves as the base class for defining a subscription. It

contains a directed acyclic graph which represents the event stream composition expression.

The node of the graph can be a event stream (which can be bounded) or a stream operator.

The method named addVertex allows to add stream operators and event stream to the graph.

The method named addEdge allows to add a connection between two vertices in the graph.

Figure 5.14 – Base class for defining a Subscription

For example, let us consider the subscription s created by the code at Listing 5.3. The directed

acyclic graph associated to s is depicted at Figure 5.15.

1 // assume we have two producers P1 and P2
2 AConcreteProducer P1 = new AConcreteProducer("P1", MeterMeasure.class);
3 AConcreteProducer P2 = new AConcreteProducer("P2", MeterMeasure.class);
4 // Create a subscription
5 Subscription s = new Subscription ();
6 s.setPriorityFunction(PriorityFunction.MAX);
7 // creation of operators and input streams
8 // the input streams
9 BoundedEventStream b1= new BoundedEventStream(P1);

10 BoundedEventStream b2= new BoundedEventStream(P2);
11 // The disjunction operator
12 Disjunction or = new Disjunction("or");
13 or.setProcessingTime (5);
14 or.setMemoryUsage (10);
15 or.setSelectionPolicy(SelectionPolicy.PRIORITY);
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16 // The filter operator
17 Filter f = new Filter("filter");
18 f.addPredicate(new GreatherThan("realPower", 2));
19 f.setProcessingTime (5);
20 f.setMemoryUsage (10);
21 f.setSelectionPolicy(SelectionPolicy.PRIORITY);
22 // The aggregate operator
23 Aggregate avg = new Aggregate("aggr");
24 avg.setProcessingTime (50);
25 avg.setMemoryUsage (10);
26 avg.setSelectionPolicy(SelectionPolicy.PRIORITY);
27 avg.setType(Aggregate.AVG);
28 avg.aggregateOn("realPower", "avgP");
29 avg.setWindow(new TimeBatchWindow (10, TimeUnit.SECONDS));
30 // building the directed acyclic graph
31 s.addVertex(b1);
32 s.addVertex(b2);
33 s.addVertex(or);
34 s.addVertex(f);
35 s.addVertex(avg);
36 s.addEdge(b1, or);
37 s.addEdge(b2, or);
38 s.addEdge(or, f);
39 s.addEdge(f, avg);

Listing 5.3 – Defining a subscription

Figure 5.15 – Directed acyclic graph associated to the subcription created by Listing 5.3

Implementing a scenario

In order to simulate a scenario, the user should:

• create producer instances, consumer instances with their associated subscriptions;

• create the smart grid network on which the scenario should be executed.

The class named Simulation (see Figure 5.16) is an API for the creation and the execution of a

scenario.

The methods addProducer and addConsumer allow to add producers instances and consumer

instances respectively. The methods addDevice and addComLink allow to build network

topology from the code. We mention that network topology can also be build via the graphical

user interface, using the mouse. The method run creates the event stream composition

network associated to each subscription using NETAH, and launches the simulation. This
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Figure 5.16 – The class Simulation

displayssimulator the simulator graphical user interface (see Section 5.4.2) on which the user

can :

• create a network topology if this has not be done via the code

• assign producers and consumers to smart grid devices

• manually or automatically6 deploy event processing units within the runtime environ-

ment

• execute the simulation

Listing 5.4 shows how to setup a simulation using the previously created producers, consumers

and subscription.

1 Simulation simu = new Simulation ();
2 // adding producers instances
3 simu.addProducer(P1);
4 simu.addProducer(P2);
5 // adding a consumer instance and its subscription
6 AConcreteConsumer c = new AConcreteConsumer("c");
7 c.setSubscription(s); // subscription s is created at Listing 5.3
8 simu.addConsumer(c);
9 // starting the simulation

10 simu.run();

Listing 5.4 – Setting and starting a simulation

5.4.2 The graphical user interface (GUI)

We implemented the GUI using the Java swing API [BRJ+02] in conjunction with the JUNG

library [JUN10] for graph manipumation and rendering. The graphical user interface of the

simulator (see Figure 5.17) allows to:

• manage network topologies, which includes:

6using NETAH
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- create and configure a new network topology

- save or load an existing network topology

• display the event stream composition networks created in a scenario

• run the simulation

Figure 5.17 – The simulator graphical user interface

5.5 Conclusion

In this chapter, we presented the use of NETAH for building and deploying event stream

composition networks in smart grids. First, we presented an overview of a smart grid, focusing

on the smart grid requirements in term of event stream composition. Then, we presented

event stream composition, as well as an EPU mapping for smart grids. Given that we cannot

operate on a real smart grid network, we proposed a simulation of the smart grid network.

Finally, we implemented our approach within simulator that allows to define and run event

composition scenarios on a simulated smart grid.

In the next chapter, we will present a real smart grid scenario and its implementation with

NETAH.
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6 NETAH for Location of Resistive Failures

This chapter demonstrates the validity of our approach for event stream composition, in the

context of a realistic use case, namely the location of resistive1 failures in an energy network.

This use case has been proposed by electrical energy experts within the SOGRID project [SOG16,

ENLC+15, ENLC+16]. This chapter is organized as follows: Section 6.1 gives a brief overview

of the energy supply chain. Section 6.2 presents the current practice of fault detection and

location in energy networks, and the approach for resistive fault location proposed in the

SOGRID project. Section 6.3 presents the implementation of such a scenario, using the NETAH

framework for smart grid. This includes the implementation of the producers, consumers and

event stream composition networks associated to this scenario. Section 6.4 presents the results of

our experimentation, and Section 6.5 concludes this chapter.
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1See Section 6.2.2

97



Chapter 6. NETAH for Location of Resistive Failures

6.1 Overview of the energy supply chain

The general flow of the energy over the electricity network is summarized in Figure 6.1. The

electricity produced at a source station is transported over long distances via medium-voltage

lines (HTA). Then, the electricity is transported to local HTA/BT substations where they are

being transformed into low voltage electricity (BT) before being distributed to consumers.

Figure 6.1 – Simplified view of a power grid

6.1.1 Source station

A source station tranforms the electricity produced at a high voltage (HTB, more than 50 KV)

into a medium voltage electricity (HTA, 20 KV). Figure 6.2 shows the main components of a

source station.

A source station includes a transformer which transforms the electricity high voltage electricity

into medium voltage electricity. The medium voltage electricity is transported to HTA/BT

substations before being delivered to consumers. A source station can feed many HTA/BT

substations. A source station is equipped with protective devices such as protection relays and

circuit breakers which observe the departure of the energy at the source station. The intelligent

mechanisms of protection relay allows to detect the existence of abnormal situations on an

HTA line. For example, a current or voltage which exceeds a threshold. The protection relay

can order the opening or closure of cicuit breakers in response to the detected situation.

In the smart grid architecture considered in the SOGRID project, a source station also includes

a device named HTA coordinator, which allows to communicate with other equipments

(servers at the control center, other telecom devices on the grid).

6.1.2 HTA/BT substation

A HTA/BT substation transforms medium voltage (HTA) electricity into low voltage (BT)

electricity and delivers it to consumers. Figure 6.3 shows the main components of a HTA/BT

substation.

In the smart grid architecture considered in SOGRID project, a HTA/BT substation includes a

coupler/sensor device named SA-COMUT, which embeds a sensor for gathering HTA measures
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Figure 6.2 – A source station

(current, voltage, power, etc) and a coupler allowing to communicate over HTA lines2. A

HTA/BT substation also includes a data concentrator (DC) which is connected to a set of smart

meters located at consumer residences.
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Figure 6.3 – A HTA/BT substation

In order to monitor the transmission network, some HTA/BT substation are also equipped

with:

• actuator which allows to open and close a HTA line. It is refered to as OMT (a french

abbreviation of "organe de manoeuvre télécommandé").

• a slave station (termed in french "poste asservi" or PA) which allows to control and query

an OMT state (open/closed).

2The SOGRID network is based on the third generation of power line communication technology, which allows
data to be transported over electrical lines
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• default detectors (DD) which allows to indicate the presence of a fault. A Default detector

can be communicating or luminous. A communicating default detector reports a failure

to a remote control center, whereas a luminous default detector indicates a failure using

a light signal.

6.2 Detection and location of resistive faults

6.2.1 The general practice of fault detection and location

The electrical network is subject to failures that can be caused by natural factors such as aging

materials, tree contact, birds, or by abnormal electrotechnical conditions in the network such

as an exceeded current or voltage threshold. Failures can result in outage and therefore they

must be located as soon as possible.

The protection relay of the source station is responsible for detecting faults on the HTA network,

with the identification of the HTA departure at the origin of the fault. The principle of fault

detection on electrical network relies on the crossing of a predefined threshold of an electrical

value. The threshold can be defined for the current, the voltage, or for their derivatives. The

detected fault is notified to the network manager, who has to find out the fault location. The

usual process of fault location consists in reconnecting the HTA departure at the origin of the

fault, and each segment of the HTA network behind that departure. The network reconnection

maneuverings (via telecommand or manual) exploit the information provided by default

detectors (via telesignalisations or the color code of light signals) located on the HTA network

in order to deduce suspicious segment on the HTA network.

When the segment in fault is connected, the fault reappears, and the segment in fault is located

(see Figure 6.4). It is then isolated in order to investigate the root of the fault.

DJ HTA 

Source 
station 

OMT 

HTA/BT 
substation 

OMT 

HTA/BT 
substation 

OMT 

HTA/BT 
substation 

OMT 

HTA/BT 
substation 
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HTA/BT 
substation 

OMT 

HTA/BT 
substation 

fault 

Figure 6.4 – Fault detection on a HTA network
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6.2.2 Resistive fault

A resistive fault is a particular case of fault characterized by a bad current that is not high

enough to be detected by the fault detectors located on the HTA network. While resistive faults

are fairly infrequent (10% of to total amount of faults), their location using the classical fault

location approach is extremely difficult and time consuming. This is due to the fact that when

the faulty segment is reconnected, the fault is not detected since the generated faulty current is

not high enough to be detected. In consequence, the network operator will wrongly designate

another segment of the network as the faulty segment when its reconnection will make the

fault reappear. Since the designated segment is not the faulty segment, the network operator

has to find the fault by looking at other segments, which is generally time consuming. In order

to reduce the location time of resistive faults, an approach proposed in the SOGRID project

consists in correlating resistive faults in the medium voltage (HTA) network with observations

of voltage imbalances in the low voltage (BT) network. The idea is to suggest locations that

have to be investigated in priority, because they present a voltage imbalance which appears in

a correlated way with respect to the resistive fault.

The voltage imbalance on a HTA/BT substation is characterized by an overtaking of the reverse

voltage threshold at that substation. If the HTA/BT substation is downstream a failure on the

medium voltage network, then the reverse voltage is systematically higher than the 5% of the

nominal voltage (230 V).

The slave station (PA) located in each HTA/BT substation (see Figure 6.3) periodically computes

the value of the inverse voltage. Values that are higher than 11.5 V indicate voltage imbalances

on the HTA/BT substation which have to be correlated with resistive faults. A resistive fault and

a voltage imbalance appearing within a 20 seconds time window are considered as relevant for

the location of a resistive fault. In fact, when a resistive fault occurs, the communication3 is

still possible on the faulty line for the next 20 seconds. After that time, the line is disconnected

by the protection relay, and the voltage imbalance cannot be notified.

Coupling a resistive fault and a voltage imbalance within a 20 seconds time window is a

complex event named "complex fault" that must be notified to the network manager in order

to inform:

1. the appearance of a resistive failure on the medium voltage network, and

2. the parameters related to the failure and to the voltage imbalance (e.g., concerned

equipments, values of registered voltage measures, etc.) that must allow to identify the

fault area.

6.3 Implementation

In this section, we present the implementation of the approach for resistive fault detection

and location, using the NETAH framework for smart grid (see Chapter 5). First, we present

3Here, the power line communication
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the main elements of the event stream composition approach, which are the event stream

types, the event producers, the event consumers and their subscriptions. Then, we present

the implementation of the approach on the simulation platform (See Section 5.4), and the

experimental results.

6.3.1 Event stream compositions

Simple event types

The simple event types involved in resistive fault detection and location are:

• the RV ol t ag e : 〈vol t ag e : doubl e〉 event type4, which corresponds to a measure of

the reverse voltage at a low voltage substation. The voltage attribute represents the value

of the measured reverse voltage. In the SOGRID project, the priority level associated to

RV ol t ag e event instances is 3.

• the Resi st i veF aul t : 〈l i neI D : Str i ng 〉 event type, which corresponds to a resis-

tive fault on a medium voltage line. The lineID attribute represents the HTA line on

which the default is detected. In the SOGRID project, the priority level associated to

Resi st i veF aul t event instances is 1.

Complex event types

The complex event types involved in resistive fault detection and location are:

• the UV ol t ag e event type, which corresponds to a voltage imbalance on a HTA/BT

substation. It is produced when a reverse voltage measure exceeds it threshold (11.5 V).

In the SOGRID project, the priority level associated to UV ol t ag e event instances is 1.

• the RFaultLocation event type, which corresponds to the occurrence of a voltage imbal-

ance ( a UVoltage event instance) and a resistive fault (a ResistiveFault event instance)

within a 20 seconds time window. The priority level associated to ResistiveFault event

instances is 1.

Producers

The event stream producers involved in the detection and location of resistive faults are:

• The slave station (PA), which produces an event stream of the type RVoltage. There is

one slave station PAi on each HTA/BT substation ht abti , i = 1..n and thus, there is one

bounded event stream Str eam(RV ol t ag e, PAi ) produced by each slave station PAi .

4We omitted meta-attributes
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• The data concentrator (DC), which produces an event stream of the type UVoltage. There

is one data concentrator DCi , i = 1..n on each HTA/BT substation ht abti , i = 1..n and

thus, there is one bounded event stream Str eam(UV ol t ag e,DCi ) produced by each

data concentrator DCi .

• The HTA coordinator, which produces an event stream of the type ResistiveFault. There

is one HTA coordinator on each source station. In this scenario, we consider only one

source station, so one HTA coordinator named HTACoord.

Consumers

The event stream consumers involved in the detection and location of resistive faults are the

data concentrator and the SIT-R information system (i.e, the network monitoring system).

Data concentrator (DC) The data concentrator, which is interested in receiving voltage

imbalance notifications (UVoltage event instances). For that, each data concentrator DCi

issues a subscription si such that:

• the event stream composition expression is:

expr essi on(si ) = f i @ f i l tervol t ag e>11.5 (Stream( RVoltage, PAi ) ).

• the QoS expression is qos(si ) = { fi[memory:1 time:1, pFunction:1, sPolicy:continous]},

which indicates that the memory and CPU time required by the filter operator are

1Mo and 1ms respectively, the priotity function is the constant function f = 1 and the

selection policy is continuous (see Section 4.3.3).

In our setting, the production rate of reverse voltage events by each slave station is 2

events per minutes. The processing time of the filter operator per event is less than 1ms.

This implies that the filter operator needs only to store one event (approximately 3Ko)

per processing cycle. Thus, its memory footprint is less than 1Mo.

The subscription issued by a DC is processed by NETAH, which generates the corresponding

event stream composition network and deploys it within the smart grid environment, as shown

at Figure 6.5.

SIT-R information system The SIT-R information system, which is interested in reveiving

RFaultLocation event notifications. For that, the SIT-R information system issues a subscrip-

tion sub such that:

• the event stream composition expression is:

a@AN D ( f 1@ f l at ten(w1@wi n : sl i di ng(20sec, 20sec)(Stream(UVoltage))),

f 2@ f l at ten(w2@wi n : sl i di ng(20sec, 20sec)(Stream(ResistiveFault))).

which is rewritten in developped form as:

a@AN D ( f 1@ f l at ten( w1@wi n : sl i di ng(20sec, 20sec)( o@OR(Stream(UVoltage, DC1),...,
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DC	subscrip+on	

Smart Grid environment Smart meters  

 Server 

Data concentrators Sensors 

HTA coordinator 

NETAH	

Event stream composition network 

Filter 
PA 

Data concentrator 

Stream(UVoltage) Stream(RVoltage) 

Figure 6.5 – Processing of a DC subscription

Stream(UVoltage, DC5)))), f 2@ f l at ten( w2@wi n : sl i di ng(20sec, 20sec)( Stream (

ResistiveFault, HTACoord))).

• the QoS parameters associated to the expression are presented in Table 6.1.

- Memory. In our setting, resistive faults and voltage imbalance events are pro-

duced sporadically, but with a maximum production rate of 2 events per minute for per

producer. So, in the worst case, the disjunction operator (identified by o) will store 10

reverse voltage alarms5. In our setting, an event takes approximately 3Ko memory. Thus,

the memory footprint of the disjunction operator is less than 1Mo. Furthermore, in

the worst case, the window operators w1 and w2 will store 2 and 10 events respectively,

which also requires less than 1Mo of memory. The flatten operators f1 and f2 process

events from w1 and w2 respectively, so they also require less than 1Mo memory. The

conjunction operator (identified by a) process events from flatten operators, that is 12

events in the worst case. So the memory footprint of the conjunction operator is also

5They are 5 data concentrators which produce voltage imbalance events.
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less than 1Mo.

- Processing time. Except the window operators w1 and w2 which requires 20000ms

of processing time, we set the processing time of remaining operators as 1ms since the

number of events to be processed is reduced, and those operators have a linear time

complexity.

- Selection policy. We specified the selection policy as continous in order to ensure

that all events will be processed in case where there are many concurrent event instances

at the input of an operator.

- Priority function. The priotity level associated to RFaultLocation event instances is

1. Setting the priotity function of the conjunction operator as the constant function f = 1

is enough to produce the expected behavior. The priority function of other operators

has been set for consistency.

QoS Parameters
memory (Mo) time (ms) sPolicy pFunction

w1 1 20000 continuous 1
f1 1 1 continuous 1
o 1 1 continuous 1
w2 1 20000 continuous 1
f2 1 1 continuous 1

Operators

a 1 1 continuous 1

Table 6.1 – QoS parameters of the subscription

The subscription issued by SIT-R is processed by NETAH, which generates the corresponding

event stream composition network and deploys it within the smart grid environment, as shown

at Figure 6.6.

6.3.2 Simulating a resistive fault detection and location scenario

This subsection presents the implementation of the event stream composition defined for

resistive fault detection and location. For that purpose, we define a scenario on NETAH, in

which we implement the event stream producers, consumers and subscriptions involved in

the detection and location of resistive faults within a smart grid topology.

Implementing event producers

The slave station A slave station produces an event stream of the type RV ol t ag e : 〈vol t ag e :

doubl e〉. Our approach for simulating its event stream production logic is described as follow:

The slave station is associated to an input file containing the event data. This file contains

one voltage value per line. These values are read sequentially for creating event instances of

the type RVoltage. Each voltage value corresponds to the value of the voltage attribute of an

RVoltage event instance. There is a time delay between two consecutive event creations.
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Figure 6.6 – Processing of the SIT-R subscription

For example, in the case of the input file depicted at Figure 6.7 containing five lines numbered

from 1 to 5, five event instances e1, e2, e3, e4 and e5 of type RVoltage will be produced such that

e1.vol t ag e = 8, e2.vol t ag e = 4.897, e3.vol t ag e = 6.2, e4.vol t ag e = 11.02 and e5.vol t ag e =
10.8.

Listing 6.1 shows the code which implements an event stream producer of the type RVoltage

associated to a slave station. Each line of the input file is read (line 14) and casted to a double

value (line 16). Then, from line 17 to 22, an event instance is created and its attribute are set

(voltage, priority, etc). The event is published (line 23) and the next line is processed after a

defined delay (line 24), until the end of file.

1 public class SlaveStation extends EventProducer {
2 private long delay;
3 private File inputFile;
4

5 SlaveStation (String name , long delay , File inputFile){
6 super(name , RVoltage.class);
7 this.delay = delay;
8 this.inputFile = inputFile;
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Figure 6.7 – Example of an input file for the slave station

9 }
10

11 public void run(){
12 BufferedReader input = new BufferedReader(new InputStreamReader(inputFile

));
13 do{
14 String line = input.readLine ();
15 if(line!=null){
16 double voltage = Double.parseDouble(line);
17 EventBean evt = new EventBean ();
18 evt.payload.put("voltage", voltage);
19 evt.getHeader ().setProducerID(name);
20 evt.getHeader ().setPriority (3);
21 evt.getHeader ().setDetectionTime(System.currentTimeMillis ());
22 evt.getHeader ().setProductionTime(System.currentTimeMillis ());
23 publish(evt);
24 sleep(delay);
25 }
26 } while(line!=null)
27 }
28 }

Listing 6.1 – The event producer of a slave station

The data concentrator producer. The event stream produced by each data concentrator

DCi is the result of the event stream composition contained in its subscription, that is

f i l tervol t ag e>11.5(Str eam(RV ol t ag e,PAi )). Therefore, the data concentrator DCi produces

event instances of the type UVoltage each time it consumes an event from the output stream

of the filter operator. A data concentrator is then associated with an event consumer DC-

Consumer (defined later) which subscribes to the UVoltage event type and an event producer

DCProducer which forwards the event stream consumed by the DCConsumer. Listing 6.2

presents the code of a DCProducer. A DCProducer has a queue (line 2) which contains the

events consumed by the DCConsumer. The DCProducer retrieves those events and publishes

them (lines 14 and 15).

1 public class DCProducer extends EventProducer {
2 private BlockingQueue <EventBean > queue;
3

4 DCProducer (String name){
5 super(name , UVoltage.class);
6 queue = new LinkedBlockingQueue ();
7 }
8 public BlockingQueue <EventBean > getQueue () {
9 return queue;

10 }
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11

12 public void run(){
13 while(true){
14 EventBean evt = queue.take();
15 publish(evt);
16 }
17 }

Listing 6.2 – The producer of a data concentrator

The HTA Coordinator producer. The HTA coordinator produces an event stream of the type

Resi st i veF aul t : 〈l i neI D : Str i ng 〉. Similarly to slave stations, we simulate resistive faults

on medium voltage lines (and the corresponding event stream) using input files. The HTA

coordinator is associated to a set of CSV files. Each file corresponds to a medium voltage line

connected to the HTA coordinator. Each line of the file indicates a line ID and a boolean value

between "true" or "false". When a line <lineID, boolean> is read, if the boolean value equals

"true", then a fault is declared on the medium voltage line identified by lineID. The lines are

read sequentially, and there is a delay between two consecutive readings.

For example, in the case of the input file depicted at Figure 6.8 containing five lines numbered

from 1 to 5, a ResistiveFault event instance e is produced after the reading of the line number

4, such that e.l i neI D = l i nk8.

Figure 6.8 – Example of an input file for the HTA coordinator

When a fault is declared on a HTA line, that line is declared as "down" (See Section 5.3) after 20

seconds.

In order to simulated faults over all its connected lines, the HTA coordinator reads its input

files in parallel. In order to simplify the simulation of such a process, we define a producer

which reads one input file, and thus simulating resistive faults on one medium voltage line. By

instantiating as many producers as there are medium lines connected to the hta coordinator,

and deploying them all on the HTA coordinator, we simulate faults on all the medium voltage

lines.

Listing 6.3 shows the code which implements an event stream producer of the type ResistiveFault

associated to a medium voltage line. Each line of the input file is parsed and the id of the

HTA line and a boolean value are retrieved (lines 16 and 17). In case the boolean indicates a

HTA fault (its value is true), then, an event instance is created and its attribute values (lineID,

priority, etc.) are set (lines from 19 to 24). Then, the event is published (line 25) and the next

line is processed after a defined delay (line 28), until the end of line.

1 public class ResistiveFaultProducer extends EventProducer {
2 private long delay;
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3 private File inputFile;
4

5 SlaveStation (String name , long delay , File inputFile){
6 super(name , RVoltage.class);
7 this.delay = delay;
8 this.inputFile = inputFile;
9 }

10

11 public void run(){
12 BufferedReader input = new BufferedReader(new InputStreamReader(inputFile

));
13 do{
14 String line = input.readLine ();
15 if(line!=null){
16 String [] data = line.split(",");
17 boolean fault = Boolean.parseBoolean(data [1]);
18 if(fault){
19 EventBean evt = new EventBean ();
20 evt.payload.put("lineID", data [0]);
21 evt.getHeader ().setProducerID(name);
22 evt.getHeader ().setPriority (1);
23 evt.getHeader ().setDetectionTime(System.currentTimeMillis ());
24 evt.getHeader ().setProductionTime(System.currentTimeMillis ());

25 publish(evt);
26 }
27 }
28 sleep(delay);
29 } while(line!=null)
30 }
31 }

Listing 6.3 – The resistive fault event producer of a medium voltage line

Implementing event consumers

The data concentrator consumer. Listing 6.4 presents the code of the consumer on a data

concentrator. A DCConsumer component in the data concentrator DCi receives RVoltage event

instances from the slave station PAi for which the value of voltage attribute is greather than

its threshold (11.5V) (line 8). It inserts those events into the event queue of theDCProducer

component (line 10), which will publish them.

1 public class DCConsumer extends EventConsumer {
2 DCProducer dcProducer;
3

4 public(DCProducer dcProducer){
5 this.dcProducer = dcProducer;
6 }
7

8 public void notify(Event[] evts){
9 for(EventBean evt: evts){

10 dcProducer.getQueue ().put(evt);
11 }
12 }
13 }

Listing 6.4 – The consumer of a data concentrator
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The information system (SIT-R) consumer. Listing 6.5 presents the code of the consumer

on the information system SIT-R. It receives notifications of RFaultLocation events via its notify

method (line 9). Then, it retrieves the data associated to each event (lines from 15 to 26). That

is:

• the medium voltage line in on which the resistive fault occurs

• the value of the reverse voltage

• the location of the voltage imbalance is given by the name of the device which measured

the reverve voltage

Then, its displays a user friendly message dialog for signaling the complex event (line 27), and

logs the retrieved data (line 28).

1 public class ISConsumer extends EventConsumer {
2 LoggerUtil logger;
3 String fileName ="complex_faults.txt";
4

5 public ISConsumer (){
6 logger = new LoggerUtil(fileName);
7 }
8

9 public void notify(EventBean [] evts){
10 for(EventBean evt: evts){
11 String htaline , deviceID;
12 double voltage;
13 long latency; // the event notification latency.
14

15 long latency = evt.getHeader ().getReceptionTime () - evt.getHeader ().
getDetectionTime ();

16 EventBean [] data = (EventBean []) evt.getValue("data");
17 if(data [0]. payload.containsKey("depart")){
18 htaline = (String) data [0]. getValue("depart");
19 deviceID = (String) data [1]. getValue("deviceID");
20 voltage = (double) data [1]. getValue("voltage");
21 }
22 else{
23 depart = (String) data [1]. getValue("depart");
24 deviceID = (String) data [0]. getValue("deviceID");
25 voltage = (double) data [0]. getValue("voltage");
26 }
27 JOptionPane.showMessageDialog(null , "Resistive Fault at "+depart+"

whith voltage imbalance ("+voltage+"V) at "+deviceID);
28 logger.log(htaline+", "+ voltage+", "+deviceID+", "+latency);
29 }
30 }
31 }

Listing 6.5 – The consumer of the information system

6.3.3 Defining the smart grid topology

The adopted topology is given in Figure 6.9. It is a subset of the smart grid topology adopted

in the SOGRID project. It consists in one source station represented by the HTA coordinator
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named "HTACOORD_0", which is connected to five HTA/BT substations via medium voltage

lines. Each HTA/BT substation ht abti , i = 0..4 is represented by a slave station PAi , a data

concentrator DCi and a sensor S ACOMU Ti . Each data concentrator is connected to a set of

smart meters. The device named server represents a server on the control center which hosts

the information system of the utility (SIT-R).

The characteristics of those devices are presented in Table 6.2. Those values are derived from

the characteristics of smart grid devices in the SOGRID project.

The slave stations which cannot host event processing units are given a zero memory capacity.

Table 6.2 – Resources availability on smart grid devices

Device type Memory CPU coefficient
Smart meter 128 1/4
Data Concentrator 512 1
Slave station 0 1/4
Sensor 1024 1
HTA coordinator 16384 4
Server 16384 8

6.3.4 Running the scenario

In order to launch the scenario, we instanciated the event producers and the event consumers

with their subscriptions. More precisely, we instantiated:

• Five producers of the type SlaveStation (see Listing 6.1). There is one producer per slave

station.

• Five producers of the type DCProducer (see Listing 6.2). There is one producer per data

concentrator.

• Five producers of the type ResistiveFaultProducer (see Listing 6.3). There are all located

on the HTA coordinator.

• Five consumers of the type DCConsumer (see Listing 6.4). There is one consumer per

data concentrator.

• One consumer of the type ISConsumer (see Listing 6.5), which is located on the control

center server.

111



C
h

ap
ter

6.
N

E
TA

H
fo

r
L

o
catio

n
o

fR
esistive

Failu
res

Figure 6.9 – The smart grid topology of the simulation

112



6.3. Implementation

Then using NETAH, we instantiated the event stream composition network associated to

each consumer subscription. The code at Listing 6.6 shows how to create the event stream

composition network associated to the subscription of the data concentrator DC0. The event

stream composition network associated to the subscription of data concentrators DC1 to DC4

is created by a similar code.

1 // Create a subscription
2 Subscription s = new Subscription ();
3 s.setPriorityFunction (1);
4 // Creation of operators and input streams
5 // The input stream
6 // Let us assume PA0 is the producer in the slave station PA0

7 BoundedEventStream b1= new BoundedEventStream(PA0);
8 // The filter operator
9 Filter f = new Filter("filter");

10 f.addPredicate(new GreatherThan("voltage", 11.5));
11 f.setProcessingTime (1);
12 f.setMemoryUsage (1);
13 f.setSelectionPolicy(SelectionPolicy.CONTINOUS);
14 // Building the directed acyclic graph
15 s.addVertex(b1);
16 s.addVertex(f);
17 s.addEdge(b1, f);
18 // Let us assume DC0 is the consumer in the data concentrator DC0

19 DC0.setSubscription(s);

Listing 6.6 – Defining a subscription for a consumer in a data concentrator

The code at Listing 6.7 shows how to create the subscription associated to the consumer on

the control center server.

1 // Create a subscription
2 Subscription s = new Subscription ();
3 s.setPriorityFunction (1);
4 // Creation of operators and input streams
5 // The input streams
6 // Let us assume P0..P4 are the producer in data concentrator DC0..DC4

7 BoundedEventStream b0= new BoundedEventStream(P0);
8 BoundedEventStream b1= new BoundedEventStream(P1);
9 BoundedEventStream b2= new BoundedEventStream(P2);

10 BoundedEventStream b3= new BoundedEventStream(P3);
11 BoundedEventStream b4= new BoundedEventStream(P4);
12 // Let us assume Pf0 , Pf1 are the producers in the HTA coordinator
13 BoundedEventStream pf0= new BoundedEventStream(Pf0);
14 BoundedEventStream pf1= new BoundedEventStream(Pf1);
15 // operators
16 // the operator OR(b0 ,b1 ,b2,b3,b4)
17 Disjunction or1 = new Disjunction("or");
18 or.setProcessingTime (1);
19 or.setMemoryUsage (1);
20 or.setSelectionPolicy(SelectionPolicy.CONTINOUS);
21 // the operator OR(pf0 ,pf1);
22 Disjunction or2 = new Disjunction("or");
23 or.setProcessingTime (1);
24 or.setMemoryUsage (1);
25 or.setSelectionPolicy(SelectionPolicy.CONTINOUS);
26 // the operator and(or1 , or2)
27 Conjunction and = new Conjunction("and");
28 and.setWindow(new TimeBatchWindow (20, TimeUnit.SECONDS));
29 and.setProcessingTime (1);
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30 and.setMemoryUsage (1);
31 // Building the directed acyclic graph
32 // the vertices
33 s.addVertex(b0); s.addVertex(b1); s.addVertex(b2); s.addVertex(b3);
34 s.addVertex(b4); s.addVertex(pf0); s.addVertex(pf1); s.addVertex(pf2);
35 s.addVertex(pf3); s.addVertex(pf4); s.addVertex(or1); s.addVertex(or2);
36 s.addVertex(and);
37 // the edges for OR(b0,b1,b2 ,b3,b4)
38 s.addEdge(b0, or1); s.addEdge(b1, or1); s.addEdge(b2, or1);
39 s.addEdge(b3, or1); s.addEdge(b4, or1);
40 // the edges for OR(pf0 ,pf1)
41 s.addEdge(pf0 , or2); s.addEdge(pf1 , or2);
42 // the edge for and(or1 , or2)
43 s.addEdge(or1 , and); s.addEdge(or2 , and);
44 // Let us assume SITR is the consumer in the control center server
45 SITR.setSubscription(s);

Listing 6.7 – Defining a subscription for a consumer in the control center server

Figure 6.10 shows the event stream composition network created by the defined subscriptions.

Figure 6.10 – Event stream composition networks for resistive faults detection and location
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6.4 Experimental results

Our focus was on the EPU mapping decisions computed by NETAH, and the effectiveness of

the deployed event stream composition networks in detection and location of resistive faults.

Using the EPU mapping algorithm proposed in Chapter 5, NETAH assigned the filter EPU

generated by each DC subscription to the DC itself, which was one of the expected loca-

tions6. Moreover, using the same algorithm, NETAH assigned the EPUs generated by the SIT-R

subscription to the SIT-R server itself. In fact, because of his highest computing power, the

execution of the EPUs on the SIT-R server will minimize the processing latency of the EPUs.

In order to validate the effectiveness of the system in detection and location of resistive

faults, we simulated a resistive fault on HTA lines, with some voltage imbalances on HTA/BT

substations in order to detect correlation between them, via event stream composition.

Therefore, we simulated a resistive fault events e1 and e2 on the HTA departures link9 and

link57 respectively (See Figure 6.9). We also simuated a voltage imbalance event e ′1 on the data

concentrator DC2, which happens at a timestamp which is close enough to the occurrence

of e1, that is |e1.pr oducti onT i me − e ′1.pr oducti onT i me| ≤ 2sec. This ensures that both

events are correlated. Such a correlation have to be captured during the simulation in order to

produce an instance of RFaultLocation event type. The event e2, which is not correlated to a

voltage imbalance should be ignored.

In Figure 6.11, the communication links colored in red (link9 and link57) indicate the oc-

curence of resistive faults at these lines, which are in the down state.

As expected, an RFaultLocation event instance is produced and notified to SIT-R, which

presents the related information on a message dialog (see Figure 6.11) as implemented in

Listing 6.5, line 27. The message indicates a correlation between the resistive fault on the HTA

line line9 and a voltage imbalance signaled on data concentrators DC2,DC3,DC4 with the

corresponding reverse voltage values. Using such an information, the network operator can

suggest a good starting point for the location of the resistive fault. For example, the HTA/BT

substation having the higher voltage imbalance (here, the substation hosting DC2) can be

checked in priority. The resistive fault that occurred at HTA line link57 is not notified as

expected.

6.5 Conclusion

This chapter presented a smart grid use case and its implementation using NETAH. The

considered use case addressed the critical issue of resistive fault location in the electrical

network, which is of particular interest for the industry. We showed how the resistive fault

location issue can be modelled in terms of event stream composition, identifying event types,

event stream producers, event stream consumers and subscriptions. We implemented the

event stream composition network associated to each subscription in a simulated smart grid

network. The results of the experimentation demonstrate the ability of NETAH to meet smart

6The other possible location was on the SACOMUT sensor.
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Figure 6.11 – Detection and location of a resistive fault

grids requirements in terms of event stream composition and notification.

However, the above experiment failed to demonstrate the scalibility of NETAH in terms of

deployed EPUs, having only 8 EPUs deployed. A better experimentation would be on a use

case involving a high number of EPUs. As shown in Appendix A, the EPU mapping algorithm

proposed in Chapter 5 can handle up to 100 operators. From our own experience, it was

difficult to have realistic use cases involving such a high number of EPUs.
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7.1 Summary

In this thesis, we have proposed an approach for event stream composition in highly dis-

tributed environments having limited computing resources like the IoT and smart grids. The

efficiency of such a solution relies on the ability to access and process distributed event

streams produced by different sources and notify the results to interested parties, consider-

ing both the limitations of the runtime environment and the application QoS requirements.

Before these issues could be addressed, it was necessary to review the research areas of data

stream processing systems and complex event processing systems, and to assess their ap-

plicability in large scale and resource-constrained environments. Centralized systems like

[ABB+03, ACc+03, WDR06, Esp15] present scalability and single point of failure issues in large

scale contexts. Clustered systems like [Aba05, SMMP09, STO13, ZCF+10, Apa16c, Apa16a]

resolve the issues of centralized systems, but requires the event streams to be routed to the

remote cluster for processing, which is not efficient using limited network connections. In

addition, these solutions consider that there is enough computing resources on the processing

nodes, an assumption which is not feasible in our context.

Our solution leverages the computing resources offered by the devices deployed within the

environment to enable a large scale distributed event stream composition that deals with QoS.

Event stream composition modeling was the subject of Chapter 3. We proposed formalisms

for representing different types of event streams. Then, we proposed a set of operators that

operate on event streams, as well as how to combine them to obtain complex event stream

composition expressions, which express complex queries. We also provided a way to describe

the QoS requirements associated to such queries.

Chapter 4 presented NETAH, an event stream composition framework in distributed and

QoS constrained runtime environments. NETAH considers as input a consumer subscription,

which consists in an event stream composition expression and the associated QoS require-

ment. then, it generates an event stream composition network, which consists in a set of

connected event processing units that implements stream operators. The event processing

units communicate via a distributed publish/subscribe middleware. NETAH uses a map-

ping algorithm which assigns event processing units to distributed processing nodes. This
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algorithm should consider the resources available on processing nodes, while minimizing

the end to end latency of event notification. Using such an algorithm, NETAH deploys the

generated event stream processing units on the computing nodes of the runtime environment.

We presented the architecture of NETAH, as well as the processes of event stream composition

network creation, mapping and deployment.

Chapter 5 and 6 have been dedicated to the application of NETAH in smart grid. Chapter

5 presented a specialization of NETAH in the context of a smart grid. We presented first an

algorithm for deploying event processing units on the smart grid network. After that, we

proposed a simulation of the smart grid network. This allowed us not to rely on a specific

smart grid implementation, while keeping us away from the complexity of dealing with a real

one. Then, we implemented NETAH for a simulated smart grid. Chapter 6 presented a real

smart grid use case proposed within the context of the SOGRID project, and how it can be

implemented using NETAH. The use case addressed the detection of resistive failures in a

smart grid. We described this issue in terms of event stream composition. Then, using NETAH,

we generated the corresponding event stream composition networks and we deployed them

on a simulated smart grid topology. The experimentation demonstrated the relevance of our

approach and solution.

7.2 Perspectives

Many challenges and possible improvements remain, covering various aspects of our solution.

The following details some of them.

Short-term perspective

• Event stream composition language. Currently in our solution, in order to specify an

event stream composition expression, a user should program the corresponding graph

using an API. That is, by creating the corresponding set of vertices and edges manually1.

This is fastiduous and not intuitive, and can be simplified with a query processing engine

that provides:

(i) A language that allows the definition of event stream composition expressions

and the associated QoS in a declarative way.

(ii) The parser that derives the event stream composition graph from the query

defined using the proposed language.

Mid-term perspectives

• Fault tolerance. Highly distributed environments like smart grids and the IoT are

subject to failures. The failure of a device can compromise the execution of a whole

event stream composition network. Therefore, the event stream composition framework

1See an example at Listing 6.7 in Chapter 6.
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should provide fault tolerance guarantees. More precisely, it should implement a failure

detection service like [SRGR06, vRMH98] for detecting nodes that fails and reassign their

event processing units on active nodes.

• Capacity planning. In our solution, a user specifies for each operator in an event stream

composition expression, the estimates of memory size and CPU time necessary for its

execution. Obtaining the corresponding values is a difficult task, as many aspects have

to be considered, like the input rate of event streams, the complexity of the operator, the

CPU rate of the target device, etc. This task can be delegated to a special component,

that we refer to as a capacity planner, for which the role is to automatically estimate the

memory and CPU time necessary for executing each operator of a given event stream

composition expression. This can be done using elements of the queuing theory[AR02].

In fact, it is possible to model the event stream composition network as queuing system.

Under this queuing model, both memory requirement and processing time of operators

can be estimated.

• Runtime QoS verification. In our solution, QoS requirements are only considered dur-

ing the deployment of event processing units, based on a static view of the environment

states (network topology, network latency, etc.). There are changes to the runtime en-

vironment that can lead to QoS violation, like the modification of the topology, or a

significant variation of the network latency. Therefore, a method for readapting the

deployed event stream composition networks in response to a QoS violation at runtime

is another possible extension of our work.

Long-term perspective

• Security. Security is another important aspect that has to be considered in a large scale

event stream composition system. As the event streams produced within these systems

report on the internal behavior of the system components (which can be sensitive), the

event stream composition system can be the target of malicous attacks. The security

issue needs to be addressed before event stream composition systems can be employed

on a widespread basis. An idea could be the implementation of a security service within

the event stream composition system, which could provide authentication for producers

and consumers, and allow to set up access restrictions (e.g, access control lists) on event

streams.
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algorithms

We implemented the OpMapping and OpMappingGreedy algorithms using the Java program-

ming language. We relied on the Jacop CSP solver [JaC15] to implement the bin packing

constraint. For our experiments, we defined different types of processing devices (smart

meters, data concentrators, sensors, etc.) with different resource profiles. A resource profile is

defined by a memory capacity and a CPU coefficient. Based on this, we generated network

topologies with various sizes, and containing devices with different profiles. The latency of the

communication links among the different devices was fixed too. We followed the same idea

with event processing units. We defined different kind of event processing units with their

associated memory and CPU time requirements. We generated event stream composition

networks of different sizes, and comprising the specified event processing units.

We conducted a first experiment to compare the results of the greedy algorithm with those

of the brute force algorithm. More precisely, we focused on the algorithm execution time,

and the quality of the resulting operator mapping, which is captured by its cost. We generate

20 different inputs for the algorithm, each consisting in a network topology and an event

stream composition network. Each network topology consisted in 15 nodes, and the number

of event processing units in each event stream composition networks ranged from 7 to 10. For

each input, we executed the OpMapping algorithm (brute force) and the OpMappingGreedy.

We choose to run this experiment over a small network topology and small event stream

composition networks in order to make sure that the optimal solution can be calculated.

We compared first the execution time of the algorithms. The result is depicted at Figure A.1,

which presents for each of the 20 executions (x axis), the time duration (y axis) of the brute

force algorithm, and the time duration of the greedy algorithm. Clearly, the greedy algorithm

performs faster than the brute force algorithm, being in average one order of magnitude faster.

Figure A.2 compares the cost of operator mapping computed by the greedy algorithm with

the optimal one, computed by the brute force algorithm. We can observe that the cost of the

operator mapping computed by the greedy algorithm is generally close to the optimal one.

Even more interesting, for this experiment, the accuracy of the greedy approach (computed as

the percentage of optimal solutions that were found) was 55%.

We conducted another experiment in order to test how the greedy algorithm behaves on
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Figure A.2 – Cost of operator mapping: comparison between brute force and greedy algorithm
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Figure A.3 – Scale up of the greedy algorithm
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large event stream composition networks. We execute the algorithm over a network topology

consisting in 50 nodes. The size of event stream composition networks ranged from 15 to

110 nodes. It is worth to mention that the brute force approach was not able to compute the

optimal result here, due to its time complexity. Figure A.3 presents the result of this experiment.

We notice that the time duration of the greedy algorithm does not necessarily increases when

the size of the event stream composition network growths. In fact, the structure of the event

stream composition network is another factor that impacts the performance of the algorithm.

In event stream composition networks for which operators are highly connected, the subgraph

associated to a producer can have a high number of operators. Therefore, the time to compute

the mapping of that subgraph can be longer. For example in the experiment, the event stream

composition networks having size 45 and 60 were dense, this explains the peaks we observed

in the duration time.
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