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Abstract

Nonlinear signals from metal and crystalline nanostructures are known to be highly polarization-
dependent, due to their local symmetry properties originating from their bulk and/or surface
responses. In nanostructures of sizes below the di�raction limit, polarized signals are generally
analyzed by averaging polarization dependencies over the spatial extent of their di�raction-
limited image spot (∼300 nm). This approach misses however the possibility to exploit the
spatial speci�city of their polarization response. In this work, we develop a novel polarized non-
linear microscopy method that exploits sub-di�raction resolution information. Fourier analysis
of the polarization modulated nonlinear signal is performed on over-sampled, drift-corrected
images (50 nm pixel size). Even though the resulting nonlinear image is a di�raction-limited
spot size, the information gained by polarization-induced modulation signals provides a higher
level of spatial selectivity that is directly related to the local optical response of the investigated
system, at a scale below the di�raction limit. The gain in spatial scale is due to the additional
spatial sensitivity brought by polarization. This approach is applied to polarized second har-
monic generation imaging in plasmonic nanostructures (150 nm size) of multi-branched shapes,
in which the vectorial nature of the local �eld con�nement can be retrieved with a resolution of
40 nm using polarized nonlinear microscopy. We also demonstrate the possibility to image spa-
tial heterogeneities within crystalline ferroelectric BaTiO3 nanoparticles of 100 nm to 500 nm
size, emphasizing in particular the existence of a centrosymmetric shell in small size structures.
At last, KTiOPO4 nanocrystals which are ideal candidates for well-reported e�cient nonlinear
emission, have been used as nanoprobes of spatial local polarization states of a focused beam.
We have developed a method based on phase and polarization wavefront shaping to create any
desired sub-resolution vectorial pattern and studied the possibility to measure locally such po-
larization state exploiting the sum frequency polarized signal from such crystals. These studies
show promising applications in the use of coherent vectorial probes in complex media.
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Résumé

Les signaux non linéaires venant de nanostructure métallique et cristallines sont connus pour
être fortement dépendant à la polarisation. Ceci est du à leur propriété de symétrie locale,
c'est a dire de leur réponse volumique ou surfacique. Les signaux de polarisation venant de
nanostructures de taille inférieur à la limite de di�raction sont mesurés avec un spot limité par
la di�raction (300 nm) ce qui représente la moyenne du signal. Cette technique a pour défaut
de perdre l'information spatiale du signal de polarisation. Nous avons développé une nouvelle
méthode de microscopie à polarisation non-linéaire qui exploite l'information en dessous de la
limite de di�raction. Une analyse de Fourier d'un signal non linéaire a été faite en dessous de la
limite de di�raction sur une image sur-échantillonnée et corrigé par translation (taille du pixel
= 50 nm). Le gain en résolution est du à la sensibilité spatiale de la polarisation. Pour ce faire,
nous avons mesuré un signal polarisé de seconde harmonique de nanostructures plasmoniques
de di�érentes formes (150 nm). En e�et la nature vectorielle du champs local con�né peut être
retrouvé avec une résolution de 40 nm en utilisant la nanoscopy polarisée non linéaire. Nous
avons par ailleurs montré que nous pouvons imager l'hétérogénéité spatiale de nanoparticules
ferroélétriques cristallines (BaTiO3) de taille allant de 70 nm à 500 nm. Ceci prouve l'existence
de coque centrosymétrique dans des petites structures. En�n, les nanocristaux de KTiOPO4

nanostructures sont les candidats idéaux pour la générations de signaux non linéaires bien
maîtrisée. Ils ont été utilisés comme nanosondes de la répartition spatiale des états de polari-
sation dans des faisceaux focalisés. Nous avons utilisé une méthode à base de contrôle de front
d'onde en phase et polarisation pour créer un quelconque faisceau vectoriel sub-résolu, et étudié
la possibilité de mesurer localement une telle polarisation en exploitant la génération de somme
de fréquence de tels cristaux. Ces études peuvent donner à des applications intéressantes pour
l'utilisation de sondes vectorielles cohérentes dans les milieux complexes.
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Introduction

Polarization is a property of light which has been amply exploited throughout the �eld of
microscopy with the purpose of enhancing imaging capabilities. The role that polarization plays
in this enhancement usually depends on the use that each imaging technique has for it. Indeed,
some studies have chosen to tune the polarization of the electric �eld applied to the object of
interest. Others have opted for analyzing the polarization properties of the emitted electric
�elds. Both control and analysis of polarization have been employed in multiple microscopy
techniques.

Highly organized molecular micro-assemblies are found in many organized biological systems
which are not fully understood. Research on such architectural attributes bene�ts by observa-
tional methods that employ polarization. In its simplest form, polarization optical microscopy
can use polarization to observe inherent dynamics in living cells undisturbed from exogenous
dyes or �uorescent markers [1].

A more complex technique, polarized �uorescence microscopy, can measure the 3D-orientation
of individual macromolecules using polarization. For instance, highly symmetric single chro-
mophores, CdSe nanocrystal quantum dots, have been characterized by measuring the �uores-
cence intensity as a function of polarization angle [2]. Also, polarized evanescent waves gener-
ated by total internal re�ection excite the dipole moment of individual �uorophores, thereby
probing their orientations [3].

While determining the organizational attributes of complex systems is a major reason to
employ polarization control and analysis, there are also studies that demonstrate other types of
bene�ts. In polarized �uorescence resonance energy transfer or P-FRET, using a simultaneous
combination of excitation wavelengths from two orthogonally polarized sources allows concur-
rent imaging at multiple wavelengths, thereby removing the delay of switching channels that is
needed in conventional FRET [4].

Stochastic optical reconstruction microscopy (STORM) is known for determining the molec-
ular localization with high precision. Still, the added control of the polarization allows to
measure the molecular orientation as well. This has been demonstrated for the case of double-
stranded DNA in vitro and microtubules and actin stress �bers in whole cells [5].

Also in scanning near-�eld optical microscopy there have been considerable developments in
the past decades to obtain polarization-resolved imaging beyond the di�raction limit. By rotat-
ing the direction of the polarized light, contrast is enhanced and optical properties like absorp-
tion anisotropy and lateral orientation of nanosamples can be simultaneously measured [6, 7, 8].

1



Apart from polarization, biology has found another essential tool in multiphoton laser scan-
ning microscopy. The study of biological functions bene�ts enormously from the techniques
that nonlinear microscopy o�ers. Nonlinear microscopy allows three-dimensional imaging with
high-resolution. This is in particular useful in the study of neurological samples, which are
inherently three-dimensional [9, 10]. The possibility of noninvasive imaging is an important
feature in nonlinear microscopy, since it allows for in vivo measurements [11, 12]. Finally, the
absence of background signal and the capability for chemical selectivity are other attractive
advantages, enabling the targeting of individual components [13, 14].

With the advent of polarized nonlinear microscopy, the �eld is again revolutionized as
retrieval of molecular orientation information is added to the functionalities of the already
versatile nonlinear imaging technique. It has been used to image collagen �bers [15, 16, 17, 18],
actin �bers [19], �uorphores [20], lipid membranes [21], liquid crystalline DNA [22], biological
�brils [23] and others [24, 25, 26, 27].

These are examples of interest for biosciences and it is clear that nonlinear optical microscopy
will remain popular. However, as this �eld keeps on developing, new tools are tested to help
improve the characterization capabilities of the microscope. In the search of better biomarkers
for example, inorganic nanostructures began to be considered. Indeed, several studies have
shown promising results [14, 28]. Metallic nanostructures can strongly enhance the detection of
nonlinear emission from molecules that would otherwise be too faint, using plasmonic absorption
of the excitation �eld [29, 30, 31, 32]. It has been shown that there are also many crystalline
nanoparticles that act as nonlinear labels by virtue of their noncentrosymmetric structures [33,
34, 35, 36, 37, 38]. This �eld has even expanded into medical and pharmacological research [39,
40].

These trials, incidentally, have given birth to a new �eld of research in its own right, con-
cerning the study of nanoparticles using light. Of course, nanoparticles have been studied for a
long time using other instrumental techniques, e.g. tip-based (such as Atomic Force Microscopy,
Scanning Electron Microscopy, Scanning Tunneling Microscopy, and other variants) and optical
(Follower, Heterodyne, Scanning, Holographic Interferometer, Di�raction) methods [41]. These
are however not ideal for study of interaction between nanomaterials and live cells.

The original motivation for studying nanoparticles using polarized nonlinear microscopy in
order to �nd better biomarkers remains valid, however fundamental questions in the �eld of
nanotechnology start to be addressed as well. The inherent challenge of using light in imaging
nanoparticles is however that by de�nition, nanoparticles are sized below the di�raction limit
of light. This is where the control and analysis of polarization can play an important role for
the nonlinear microscopy technique.

While the physical properties of many bulk materials are usually well de�ned, this infor-
mation is not valid anymore once these materials are used to compose nanostuctures. Sev-
eral studies have already shown that polarized nonlinear microscopy can investigate physical
nanoscale properties of well-known materials. Such are the crystallic and surface properties
of BaTiO3 nanoparticles of sizes below 70 nm [42], the spatial density of SHG signal on the
surface of gold nanostructures [43], and the existence of monocrystalline nanodomains within
the same nanoparticle [44].
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Polarized nonlinear microscopy reveals information on either orientation of a nanoparticle
(providing its symmetry is known) [45], its symmetry (providing its orientation is known) [46],
or its crystallinity [47].

In spite of showing very promising results, all of these studies are limited by the fact that
in their polarization analysis, the nonlinear signals emitted by their respective samples are
spatially averaged, therefore losing imaging information. It is our motivation to present a
method that overcomes this limitation.

Central to this thesis' work is the use of Polarization-Resolved Nonlinear Microscopy (PRNM).
This technique exploits the polarization response of a nonlinear signal from a nanoparticle. It
uncovers features of sizes below the di�raction limit and demonstrates the vectorial nature of
these localized responses. We employ the technique on metallic and crystalline nanoparticles,
which are particles with a size of the order of 100 nm.

Chapter 1 is dedicated to provide a thorough description of PRNM from a theoretical basis
and of the experimental implementation we have developed. It consists of a full documentation
of the experimental setup and the measurement method, as well as the theoretical model
needed for the analysis of the measurement data. The experiment is described using KTiOPO4

nanocrystals as samples. Furthermore, we present a simulation of such nanoparticles and the
results are compared with the experiment.

In Chapter 2, we continue to apply PRNM, now by imaging metal nanostructures. Even
though the treatment of the data will be in principle the same as with KTiOPO4, metal nanos-
tructures di�er in that the emitted SHG originates essentially from the surface, together with
higher-order bulk contributions from quadrupolar origins. We show that PRNM permits to spa-
tially map the vectorial nature of plasmonic nonlinear optical interactions in nanostructures.

Chapter 3 concentrates on a third type of sample, barium titanate nanocrystals. Barium
titanate is a highly e�cient nonlinear crystal that can show heterogeneous crystallography. This
property gives us the opportunity to further exploit the capabilities of PRNM. We introduce
the main characteristics of barium titanate, and we demonstrate vectorial imaging results that
highlight subdi�raction crystallic features that are still under investigation in the nanomaterials
community.

Chapter 4 addresses and tries to go beyond two limitations of PRNM. In the experiments
discussed in the preceding chapters, we used PRNM where polarization of the electric �eld lies
in the transverse plane, while thanks to high-NA objectives also longitudinal polarization can
be accessed. We will describe a method and preliminary results to attain PRNM where the
polarization rotates about an angle in 3D. Second, using wavefront shaping techniques, we aim
at exciting nanoparticles with a patterned focused electric �eld, since from our previous PRNM
measurements, we know that the nonlinear signal from nanoparticles depends on localized
optical polarization orientational behavior.

Finally, Chapter 5 explores a method to probe the polarization state pattern of a complex
electric �eld at the focus of an objective using characterized KTiOPO4 nanocrystals. While
mature methods exists to characterize the �eld in the back focal plane of the objective, it is
intrinsically hard to measure the state in the focus area. The method proposed is based on
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PRNM with Sum Frequency Generation. We show that PRNM analysis of two nonlinear signals
from a nanoparticle together with theoretical look-up tables allows identi�cation of the angle
and ellipticity of the polarization throughout the beam pro�le. The description of the method
is accompanied with preliminary results.
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Chapter 1

Polarization-Resolved Nonlinear

Microscopy

1.1 Introduction

In the introduction, we have stated that exploiting the polarization response of a nonlinear
signal of a nanoparticle can help us reveal information on either its orientation (providing its
symmetry is known), its symmetry (providing its orientation is known), or its crystallinity.

In this chapter, we introduce our approach of using spatial information, rather than av-
erages, to map nanoscale vectorial and molecular-scale properties in metallic and crystalline
nanoparticles. We will describe thoroughly the steps that we have followed in order to achieve
this goal, both theoretically and experimentally. To facilitate this description, we will use a
well-known nonlinear material, potassium titanyl phosphate, KTiOPO4 or KTP as it is com-
monly referred to. KTP is a material that is known for its high nonlinear response and is
especially useful in Second Harmonic Generation (SHG).

1.2 KTP P-SHG response: A model

In order to provide quantitative expectations for our experimental measurements, we have con-
structed a theoretical model re�ecting the second harmonic generated signal by KTP nanocrys-
tals as a function of polarization (P-SHG). We describe the model in this section.

1.2.1 Potassium titanyl phosphate

We start by introducing some useful information about potassium titanyl phosphate. KTP is
an e�cient nonlinear optical material [48] best known for its wide use as a frequency-doubling
device in Nd-doped laser systems [49]. KTP is also frequently used as an optical parametric
oscillator for near IR generation due to its high damage threshold and large crystal aperture
[50].

KTP is usually grown to bulk crystals of macroscopic dimensions (up to tens of millimeters)
[51, 52]. Their downsizing to the nanoscale regime is of more recent development [53]. KTP
nanocrystals have since been used for SHG monitoring [54], orientational investigation [55], and
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as nanoprobes for biology [33]. Further information about our speci�c samples will be given in
�1.3.1, where we discuss experimental details. Now we will focus on the model description.

1.2.2 P-SHG response

We describe the theoretical model in this section, since this will serve as an important start-
ing point for our nanoscale spatial investigation technique. Our formulation is founded on
conventional nonlinear optics theory [56, pp. 41-52].

The propagation (and generation) of light in dielectric media is governed by the induced
electrical polarization of the material as a response to the present electromagnetic �eld. Non-
linear optics is the study of e�ects that occur if the intensity of the �eld is strong enough to
generate higher-orders responses with respect to the incident �eld. The optical response to the
applied �eld are called �nonlinear� as the strength depends nonlinearly on the strength of the
applied �eld. In the case of SHG for example, a second-order nonlinear process, the intensity
of the generated light scales with the square of the intensity of the applied �eld.

To describe more accurately the nonlinear response of a medium to an applied �eld, we look
at the dipole moment per unit volume, or polarization (density) P in terms of an electrical �eld
E present in the medium. The polarization is described by the series expansion (written here
supposing monochromatic �elds, as a frequency-dependent function):

P = ε0χ
(1)E + ε0χ

(2)EE + ε0χ
(3)EEE + . . . (1.1)

where the coe�cients χ(n) are the n-th order susceptibilities of the dielectric material that
describe the e�ciency of the (n-th order) process. As the expansion consists of products of
three-dimensional vector �elds (E), the electric susceptibilities χ(n) are therefore tensors of rank
n.

Typically, the linear processes dominate over second- and higher-order nonlinear processes
(χ(1) > χ(n)). However, by employing high-intensity applied �elds (possible since the invention
of the laser), the nonlinear processes become signi�cant. Note also that multiple �elds Ek

can be applied and they need not to be of equal frequency ωk (omitted in Eq. 1.1 for brevity).
Therefore, the susceptibility tensors χ(n) are also dependent on the frequencies in the products of
EkEk′Ek′′ · · · . By selecting incident �elds of particular frequencies, a host of di�erent nonlinear
e�ects can be identi�ed.

Figure 1.1: The energy level diagram of the second harmonic generation process. Energy
conservation implies two photons of frequency ω1 are annihilated to produce one photon of
frequency ω2 = 2ω1.
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SHG is a coherent nonlinear process where the incident light with frequency ω1 is doubled
in the emitted light with frequency ω2 = 2ω1. The energy of these photons is therefore double
that of the incident photons (Fig. 1.1). SHG, as every other second-order nonlinear interaction,
can only be generated on crystals with a non-centrosymmetric lattice (no inversion symmetry)
[56, �1.5].

In our model for a KTP crystal, we are only concerned with the second-order term, which
expands to:

P 2ω
I = ε0

∑
JK

χ
(2)
IJKE

ω
JE

ω
K (1.2)

where the subscripts I, J,K are iterating over the axes {X, Y, Z} of the macroscopic coordinate
system of the lab. In this coordinate system, we de�ne an incident �eld that is linearly polarized
along an angle α (with respect to the horizontal X-axis) in the XY -plane (see Fig. 1.2):

E = (EX , EY , EZ) = E0(cosα, sinα, 0) (1.3)

The macroscopic coordinate system is di�erent from the microscopic coordinate system
{x, y, z}, which is chosen to be local to the crystal structure. We can de�ne the susceptibility
tensor of the crystal only relative to the crystal orientation. Since in the lab, the nanoscale KTP
crystal orientations are not known (multiple are deposited on the sample in any orientation),
we have to account for it by introducing a rotation. In order to calculate the susceptibility
χ(2) in the macroscopic frame, we �rst take the susceptibility tensor β of KTP crystals in the
microscopic coordinate frame [57]:

βx =

 0 0 βxxz
0 0 0
βxzx 0 0

 , βy =

0 0 0
0 0 βyyz
0 βyzy 0

 , βz =

βzxx 0 0
0 βzyy 0
0 0 βzzz

 (1.4)

with

βxxz = βxzx = 2.04 pm/V

βyyz = βyzy = 3.92 pm/V

βzxx = 2.76 pm/V

βzyy = 4.74 pm/V

βzzz = 18.5 pm/V

All the zero-terms in this matrix indicate no susceptibility in these directions. This is due
to the crystal structure and its symmetries.

As already mentioned, the di�erence between the microscopic frame {x, y, z} (in which the
crystal is de�ned) and the macroscopic frame {X, Y, Z} (in which the electric �eld is de�ned) is
a rotation of angle Ω = (θ, φ, ψ) that de�nes the 3D orientation of the crystal in the macroscopic
frame (Fig. 1.2). To obtain the χ(2) tensor in the macroscopic frame {X, Y, Z}, we apply the
following rotation operation [46]:

χ
(2)
IJK(Ω) =

∑
ijk

(I · i)(J · j)(K · k)(Ω)βijk (1.5)
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Figure 1.2: The microscopic frame is rotated relative to the macroscopic frame by 3D angle
Ω = (θ, φ, ψ).

where I, J,K are unit vectors iterating over {X, Y, Z} and i, j, k are unit vectors iterating
over {x, y, z}. The dot products are the projection of the crystalline axes {x, y, z} over the
macroscopic axes {X, Y, Z}. They are functions of Ω = (θ, φ, ψ), detailed here as components
of the global rotation matrix, which transforms the microscopic frame into the macroscopic
one:

(I · i)(J · j)(K · k)(Ω) = cosφ cos θ cosψ − sinψ sinφ cos θ cosψ + cosφ sinψ − cosψ sin θ
− cosφ cos θ sinψ − sinψ − sinφ cos θ cosψ + cosφ cosψ − sinψ sin θ

cosφ sin θ sinφ sin θ cos θ

 (1.6)

By plugging in Eq. 1.3 and Eq. 1.5 into Eq. 1.2, we can calculate1 the polarization P2ω.
Note that since the input light is a function of α and Ω, so is the calculated polarization. In the
planar wave approximation, the emitted SHG �eld is directly proportional to the second-order
polarization P2ω(α,Ω) and we thus have a formula to calculate the SHG intensity as a function
of (α,Ω):

I2ω(α,Ω) ∼ |E2ω(α,Ω)|2 ∼ |P2ω(α,Ω)|2 (1.7)

Note that this derivation corresponds to a planar-wave propagation that does not hold for
focused beams at high numerical aperture, for which the paraxial approximation is no more
valid. In such regime, the incident polarization is no more spatially homogeneous and conserved:
it contains elliptical distortions and possible longitudinal contributions that might a�ect the
model written here [58].

This crucial problem has been addressed in previous work [59] where theoretical calculations
for a KTP crystal show that when rotated to a high tilt (typically, an out-of-plane angle
of less than θ < 22.5◦), small deviations from the expected coe�cients of the planar-wave
approximation are induced using an objective with 1.2 NA. For any crystal orientation in the
macroscopic frame, the Z-coupling contributions to the χ(2) tensor can be quanti�ed by the
ratio between the part of the tensor norm containing Z-components and the full norm of the
tensor, χ(2)

out/χ
(2). When the KTP main axis z (microscopic frame) is oriented along the Z-

axis, the maximum value is χ(2)

out/χ
(2) = 0.96 (at its minimum, with z in the XY -plane, we

�nd χ(2)

out/χ
(2) = 0.26, i.e. there is always some Z-coupling for KTP). The results show that

the plane-wave approximation introduces an rms error to the Z-coupling contributions that is

1We let the computer calculate it, there is no need to tediously expand it here.
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below 4 % for values up to χ(2)

out/χ
(2) < 0.8. Note that above this value of 0.8, the error grows

rapidly, which makes the determination of in-plane tensorial coe�cients not reliable anymore.
This is for our purposes a reasonable range and these contributions are ignored in what follows.

1.2.3 Symmetry order decomposition

We have derived a calculation of I2ω(α,Ω), the SHG intensity signal of KTP crystal rotated
by an angle Ω under linearly polarized light along angle α. Now we will use this polarization
dependent signal to characterize the symmetry or orientation properties of our KTP crystal.
For this, we will decompose I2ω(α,Ω) into a Fourier series. Here, we derive the order param-
eters that form the basis of all our work. Later in this chapter (�1.4.4), we will revisit this
decomposition accounting for its spatial speci�cities.

The idea to decompose the measured SHG polarization dependence into Fourier functions
is essentially to facilitate the analysis of the complex angular dependence that is written in
the previous Equation 1.7. Indeed, the incident �eld is at a fourth power, which results in a
dependence of multiple orders of sinusoidal functions of α (see Eq. 1.3). To clarify how many
unknown parameters can be sorted out in such a polarization dependence, we decompose it
onto a basis of circular functions sin(nα), cos(nα), with n (integer) the order of decomposition.
From the previous equations, one can immediately exclude odd orders (n=0,2,4 only) thanks
to the periodicity of the signal with respect to the polarization angle2. This decomposition has
been used in several works, essentially dedicated to the analysis of collagen alignment in tissues
[60, 61, 62]. The decomposition is de�ned as:

I(α) =
A0

2
+ A2 cos(2α) +B2 sin(2α) + A4 cos(4α) +B4 sin(4α). (1.8)

In what follows, this polarization dependence will be denoted P-SHG, for polarization-
resolved SHG. Ak and Bk are coe�cients calculated by integrating the signal multiplied by its
k-th order component, as indicated below. The �rst term yields the average intensity 〈I〉 = A0/2
and can be used as the normalization constant to normalize Ak and Bk:

A0=
2
Nα

∫
I(α) dα

A2=
2
Nα

∫
I(α) cos 2α dα A2n = A2/ 〈I〉

A4=
2
Nα

∫
I(α) cos 4α dα A4n = A4/ 〈I〉

B2=
2
Nα

∫
I(α) sin 2α dα B2n = B2/ 〈I〉

B4=
2
Nα

∫
I(α) sin 4α dα B4n = B4/ 〈I〉

(1.9)

where Nα = αN − α0 is a constant representing the range of polarizations α to integrate over.
From these coe�cients we derive the following quantities:

I0 = Nα · 〈I〉

I2 =
√
A2

2n +B2
2n φ2 =

1

2
· tan−1(B2n/A2n)

I4 =
√
A4n.2 +B2

4n · cos(4(φ4 − φ2)) φ4 =
1

4
· tan−1(B4n/A4n)

(1.10)

2Polarization angle 0◦ . . . 170◦ is equivalent to 180◦ . . . 350◦
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where tan−1 denotes the four-quadrant inverse tangent function. I0 gives the total intensity,
summed over all incident polarization angles α, I2 is characteristic of the local anisotropy of
the response, while I4 represents the degree of multipolar symmetry in the involved nonlinear
coupling.
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Figure 1.3: Example (generated by pure simulation) of a typical P-SHG intensity signal as a
function of polarization angle for (a) a strong I2 response (dipolar nature) and (b) strong I4
(quadrupolar nature). Vertical lines in purple indicate the angles (a) φ2 and (b) φ4.

Note that whereas I2, φ2, and φ4 can be independently obtained from the Fourier coe�cients,
I4 (more precisely, its sign) depends on φ2. The phase factor cos 4(φ4 − φ2) adjusts the fourth
order strength so that it re�ects the fourth order contribution to the signal I(α), relative to the
angle φ2 of the second order intensity I2. This added coe�cient sets the sign of I4 such that
the fourth order response lies either along the second order (I4 > 0) response or it is shifted
with a phase of π/4 (I4 < 0) [20]. Note as well that φ2 and φ4 are symmetric about 180◦ and
90◦, respectively.

Overall, this decomposition shows that only four unknown parameters can be retrieved
from the measured intensity modulation (two symmetry order amplitudes and their respective
orientations). These symmetry orders permit to avoid any tensorial interpretation that relates
to nonlinear tensor values, but to rather access symmetry information that is more generic.
Note that the retrieved information is still a projection of the symmetry in the sample plane
XY , which therefore mix symmetry and orientation [62].

Figure 1.3 shows, for instance, two clear cases of highly second-order response (1.3a) and
fourth-order response (1.3b). The second-order case is characteristic of a crystal symmetry in-
plane projection/molecular arrangement that is strongly anisotropic in the φ2 direction, while
the fourth-order symmetry case reveals the presence of more complex features: either high-
order symmetry in a crystal, or high-order angular contributions in a molecular orientational
distribution [45, 62]. Interestingly, it can also refer to quadrupolar responses in plasmonic
structures, due to spatial retardance e�ects for instance, which is treated in Chapter 2.

In what follows, we investigate the relation between the measured symmetry orders and the
orientation of a KTP crystal. Since its symmetry is known from handbooks, we would like to
see in particular if the measurement of I2 and I4 is su�cient to retrieve 3D angular information
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of a nanocrystal of KTP in the sample. For this, the planar wave approximation was used
and then nonlinear tensor components in the macroscopic frame were calculated for a given set
of 3D orientations and plugged into the intensity polarization dependence, which was further
decomposed onto symmetry orders. Using the previous equations, we generated a list of values
for I2 and I4 (Fig. 1.4) for the following range of angles Ω of a model KTP crystal:

Ω =


θ = 0◦ . . . 90◦

φ = 0◦ . . . 90◦

ψ = 0◦ . . . 90◦
(1.11)

We chose these values as we know that KTP crystals belong to the symmetric group 2mm
[63, p.183], which implies that values for angles outside of this range will be equivalent. The data
are represented as (I2, I4) surface plots where the values explored are represented as functions
of the 3D crystal orientation (Fig. 1.4). This representation will serve us in following sections as
look-up tables to characterize the orientation of nanocrystals of KTP (which is used for speci�c
purposes in Chapter 5), or as a reference to study unknown situations (Ch. 3).

(a) θ = 0 . . . 90◦ (b) φ = 0 . . . 90◦

(c) ψ = 0 . . . 90◦

Figure 1.4: I4 vs I2 values for a P-SHG nonlinear signal of a KTP crystal, where we have
taken into account all possible orientations Ω = (θ, φ, ψ) (see Eq. 1.11). The three plots show
the totality of theses values with each plot emphasizing the dependence for a speci�c angle
variable, encoded in color and size. (b) shows color value of φ, (a) has color value of θ and (c)
is colored by ψ. The marker size is decreasing as color value increases. Note that the data set
is independent of φ, since all markers for di�erent φ are on top of each other.

Notice that we have plotted all the values for I2 and I4 three times, each time changing the
color of the markers according to the value of each Ω variable (θ, φ or ψ). This is made possible
because there is no redundancy in the orientation dependence of P-SHG for KTP, thanks to its
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symmetry. This allows to give us even further information about the unambiguous orientation
of the crystal, but also to make sure of the validity of the model used with respect to the
tensorial values taken for the crystal.

We can notice in particular that all (I2, I4) pairs of values are invariant under a φ-rotation
(Fig. 1.4b), which is intuitively correct since α will always change in the same plane as φ. The
φ dependence is rather visible in the φ2 value reported by the symmetry decomposition. We
veri�ed indeed that all reported φ2 values in various situations are directly related to the φ
in-plane orientation of the main crystal axis (Fig. 1.5). We �nd that the accuracy for retrieving
identical φ2 = φ is generally good, but it diminishes to having a di�erence up to ∼ 20◦ for
θ → 0◦ and ψ → 45◦.
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Figure 1.5: Comparing φ2 value from P-SHG response to φ value (from crystal orientation Ω,
for all θ (color axis) and (a) for ψ = 0◦, (b) for ψ = 45◦, (c) for ψ = 90◦. (d) demonstrates the
(normalized) I0 dependence on θ and ψ (color axis) for the set.

On the other hand, Fig. 1.4a clearly indicates that when a crystal axis is parallel to the
macroscopic Z-axis (θ = 0◦), the anisotropic nature of the coupling between the polarization
and the crystal of the beam with the crystal will be minimum (low I2 values), compared with
the case of θ = 90◦ that represents a crystal lying on the excitation plane (high I2). Indeed
from the KTP symmetry and tensor values (Eq. 1.4), it appears that the diagonal coe�cient
along the crystal unit cell main axis z predominates, while there is no clear preferential coupling
direction in the plane orthogonal to this axis (x, y). This also explains why the amplitude of
I4 is stronger for a crystal oriented in the longitudinal direction Z (together with smaller I2
values), as compared to an in-plane orientation.

In Figure 1.5d, we can observe that the total P-SHG intensity I0 depends heavily on θ.
This is expected as the P-SHG information is still a projection of the symmetry in the sample
plane XY . I0 is maximum for θ = 90◦, when the KTP crystal's main axis (z) lies in the XY
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sample plane, and I0 is minimum when θ = 0◦. Note that there is also a (small) dependence
on ψ (indicated in color), which is not surprising upon inspecting the x and y components in
(Eq. 1.4) the β tensor: βxxz and βyyz di�er (by a small amount, relative to βzzz).

Finally, we can see in Fig. 1.4c that changing the value of ψ will shift the (I2, I4) dependence
towards lower I2 values, without much change of the shape of this dependence. This is due to
the rather homogeneous polarization coupling directions in the plane orthogonal to the main
crystal axis. Overall, it seems that a measurement of (I2, I4, φ2) leads to an unambiguous
determination of the 3D orientation of a KTP crystal. This is particularly important since it
is this behavior which will help us predict the orientation of measured nanocrystals in the lab.

1.3 Experiment

In this section, we describe the polarization-resolved nonlinear microscopy experiment using
KTP nanocrystals as our sample.

1.3.1 KTP synthesis and sample preparation

KTP crystal structures are usually grown to a size too large for our application (> 1 mm). It is
in our interest to use nanoscale KTP crystals (∼ 100 nm). Therefore, we gratefully acknowledge
our collaborators Thierry Gacoin and Ludovic Mayer (École Polytechnique, France) for making
nanoscale KTP crystals available to us.

In their work, they have developed a state-of-the-art protocol for obtaining monocrystalline
KTP nanoparticles with size control, and they have also measured optical properties [34, 64]
which we will use as starting points for our work. In short, this is an e�cient colloidal synthesis
of KTP nanocrystals with excellent crystallinity, stability and controllable size (100− 150 nm)
in an aqueous solution. Figure 1.6 demonstrates a SEM-image of these KTP nanocrystals.

The �rst step in our experimental procedure is to prepare our samples. In our case, we
are interested in imaging individual nanocrystals, we therefore dilute the solution by a factor
10 000, sonicate it and place a droplet onto a cleaned cover slip #1.5. The coverslip had been
cleaned and set in a UV-Ozone bath, in order to make it hydrophobic, which helped to spread
the drop over a bigger area, avoiding undesirable KTP clusters. This is set to dry, �xating the
KTP nanocrystals on the coverslip. Once dry, the sample is easily handled and placed onto the
microscope holder.

Figure 1.6: SEM-image of KTP crystal nanoparticles with sizes 100-150 nm. Adapted from
[64].
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1.3.2 Experimental Setup

The setup (illustrated by Fig. 1.7) is based on a two-photon scanning microscope, which uses
a Ti:Sapphire femtosecond laser (150 fs, 80 MHz) at excitation wavelengths in the range 800−
1000 nm (Coherent Inc.). The total power delivered to the sample lies in the range of 3.0 −
8.0 mW. The laser beam size was expanded to �ll the back aperture of the objective (40×/1.15W
Nikon Instruments Inc.). Imaging was performed on an inverted microscope (Eclipse Ti, Nikon
Instruments Inc.) using a pair of galvonometric scan mirrors (6215H, Cambridge Technology
Inc.). The optical resolution is estimated to be 250 nm lateral. The pixel size is typically 40 nm
to 50 nm (�eld of view 5µm×5µm, 100× 100 pixels).

A polarized beam splitter (PBS252, Thorlabs Inc.) was used to make the excitation lasers
linearly polarized after the scan mirrors. This ensured that the dichroic mirror (T770SPXR,
AHF analysentechnik AG) received p-polarized laser light during the entire experiment. After
the dichroic mirror, the linear polarization angle of the excitation laser was controlled by an
achromatic half-wave plate (AQWP10M-980, Thorlabs Inc.) mounted on a motorized rotational
mount (PR50CC, Newport Corp.).

OPO,l
Ti:Sap

Ti:Sapphire
150fs

PMT
Detectors

O

DL

GM

M-HWP

Y

X

P

P

HWP

HWP

DM

DM
L

Sample

P

Figure 1.7: Experimental setup with a Ti:Sapphire pulsed laser (830 nm) and an Optical
parametric oscillator (OPO, 1064 nm), a Delay line for one of the beams (DL), Galvonometric
scan mirrors (GM), Dichroic mirrors (DM), a 40× 1.15 NA Objective lens (O), Sample (S),
Polarizers (P), Halfwave plates (HWP), one of which is Motorized (M-HWP), a Lens (L), and
the detection is done by a system of PMT detectors (PMT), which is detailed in Fig. 1.8.

The nonlinear signal collected in epi-detection by the objective was �ltered using a shortpass
�lter (ET750sp-2p8, Chroma Technology Corp.) before being detected by 4 photomultiplier
tubes (R9110, Hamamatsu Photonics K. K.) detecting separately four di�erent frequencies.
These detected signals vary from experiment to experiment depending on our samples and the
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Figure 1.8: Detail of the detection area in the experimental setup (Fig. 1.7). The signal is
deviated from the excitation path after the objective using a dichroic mirror (DM) at the
microscope and spectrally cleaned by a shortpass �lter (SP). It is then split by extra dichroic
mirrors and further �ltered by bandpass �lters (BP). There are four photo-multiplier tubes
(PMT) that collect the four di�erent nonlinear signals (FWM, SHG from each beam and SFG).

excitation wavelengths that we want to target. However, as an example, we show here a very
common arrangement: if one excitation beam is selected at 830 nm and the second one at 1088
nm, then we can collect four-wave mixing (FWM, 670 nm), second harmonic generation (SHG,
415 nm and 532 nm) and sum-frequency generation (SFG, 470 nm). Each PMT detects signal
over a speci�c spectral range depending on the combination of dichroic mirrors and �lters used
(Fig. 1.8). With a di�erent combination of �lters it is also common in our experiments to detect
2-photon �uorescence (TPF, 500 nm) as can be seen in Chapter 2.

The signal detection path consists of pairs of lenses (not shown in Fig. 1.8) which image the
back aperture of the objective on to the detector window. This con�guration keeps the signal
steady on the detector even though the excitation spot is continuously scanning the sample.
Scanning control and data acquisition is controlled by a data acquisition board (NI USB 6353,
National Instruments Corp.) using an in-house developed LabVIEW (National Instruments
Corp.) program [65].

1.3.3 Measurement protocol

Using galvonometric mirrors, the laser spot is scanned over the sample with high frequency.
Photomultiplier tubes triggered in synchrony with the galvo mirrors collect the nonlinear signal
through the objective in epi-detection. The incident linear polarization angle is rotated by an
achromatic half-wave plate mounted on a motorized rotational stage, in steps of 10◦ over the
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range of [0◦, 170◦].

The number of steps in angle is chosen in order to conserve a su�ciently high number of
photons so that the order, the symmetry and the orientation parameters can be retrieved from
P-SHG data with su�cient precision. It has been shown in particular [61] that the precision
in such measurement is governed uniquely by the total number of photons, therefore by the
integration time per angle or by the number of angles used (which still have to surpass 5 to
avoid ambiguous analysis).

At each incident polarization angle, an image of size 5µm×5µm is formed, covering a �eld
of view of multiple particles. A pixel size of 50 nm is chosen to intentionally over-sample the
images in view of the resolution gained by the polarization modulation. In the obtained polari-
metric image stack, each pixel contains a signal modulation that thus reports the polarization
dependent signal from the particle, at this pixel position. See Figure 1.9 for an animation3 of
raw KTP images in a stack before processing. In order to ensure a high precision on the data
analysis, we often perform several P-SHG stacks that are later averaged, this reduces noise
issues.

It is important to notice that all the examples provided in the rest of this chapter, refer to
various steps in the analysis of SHG of a 150 nm KTP crystal at 414 nm detection wavelength,
although the procedure is independent of these settings.

y

x

E(α)
α

Figure 1.9: Setup illustrating the measurement method. The inset shows an example record-
ing [or a animation in PDF] of intensity measured by PMT. The size of the spatial map is
5µm×5µm.

1.4 Analysis

To obtain a polarization-resolved microscope image of a nanoparticle, the raw 3D image stacks
are analyzed using Matlab. An important part of this program is to facilitate the �nding
of nanoparticles in a given image �eld of view (see for instance Fig. 1.9). To do so, one
has to rely on a �particle �nd� operation that automatically detects the presence of a particle
throughout the polarization tuning. Moreover, one wants to make sure that the P-SHG intensity
is su�ciently high to deduce proper order / symmetry / orientation information within a particle
image. Therefore a masking operation is implemented to discard the pixels whose total intensity
is too low to correspond to relevant data to be treated. The steps performed in the program
are:

3To view animations, use Adobe (Acrobat) Reader to open this PDF document.
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1. Read image stacks from �les.
2. Perform particle �nd operations.
3. Average over multiple measurements.
4. Decompose into a Fourier series.
5. Calculate standard deviation and �tting error.
6. De�ne particle mask.

1.4.1 Reading image stacks

Reading the image data is fairly straightforward. It involves reading all the image data �les
produced by the LabVIEW program, concatenating the frames to form image stacks and writing
them back to disk in Matlab save �les containing 3D-arrays (one array for each image stack).
Since we have repeated measurements, multiple image stacks I(x, y, α) are appended into an
4D-array for later processing, I(x, y, α,m) where m is measurement index.

1.4.2 Particle �nd operations

The scanning area of 5µm×5µm is larger than a single nanoparticle while the scanning step
size (50 nm) is smaller than one, we may therefore detect one or more particles in a single image.
All of the particles in the image can be automatically tracked. These operations are performed
on each frame within the stack because the particle position can drift between frames during
the measurement. The image is preprocessed by shifting values to reset the minimum value to
zero (removing background) and by applying a Gaussian �lter4 to suppress pixel noise.
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Figure 1.10: (a) Average of 8×18 images of four KTP particles after re-centering. Each stack
consist of 18 images of raw data, and 8 stacks of each set of particles is measured to decrease
the noise. (b) Peak �nder locations of particle #3 (of 4) marked by crosses.

In order to localize the nanoparticle in the scanned image, we employ a peak �nder algo-
rithm5 that seeks out every local maximum above a certain threshold and a certain distance

4bpass.m by David G. Grier et al. (University of Chicago)
5pkfnd.m by Eric R. Dufresne et al. (Yale University)
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apart from another local maximum. The peak �nder is applied not to the full frame, but to a
section of the preprocessed image, which we call particle window. This is a cropped version of
the �ltered image with �xed size (2r+1)2 = 21×21 pixels (typically r = 10, where r is a chosen
radius of interest) and is centered at a chosen initial position. This initial position is manually
provided by inspection of the stack's average image. By limiting the range of the peak �nder
algorithm to the window, we force preference for a particular maximum of the intensity and
prevent mixing of the particles if two (alternating) maxima (corresponding to two particles)
would be in range of the peak �nder.

When the peak �nder �nds a maximum above a prede�ned threshold in the �ltered particle
window, the pixel coordinates are written to the particle positions �le. If there is a weak peak
or a noisy background, it is possible that the algorithm �nds zero peaks or more than one peaks
within a window and in these cases, the coordinates are manually written after inspection by
eye. The threshold is set at 25% of the maximum of the full frame image. If this value is set too
high (e.g. 50% or more), a problem arises for particles that show two maxima (at either end),
as one of the two maxima is bound to be higher it will be wrongfully interpreted as the center
of the particle. A lower value makes the peak �nder locate two maxima even if one of them
is faint, the center coordinates are then provided by manual selection. Figure 1.10b shows an
example of the pixel locations of a particle through the stack.

After reading the multiple image stacks (a 4D-array), the full images are split into smaller
particle windows, yielding a 5-dimensional array for further analysis I(x, y, α,m, p), where p is
the particle index.

1.4.3 Signal average

The particle window stacks measured in the full image stacks are repeated (as discussed in
�1.4.1 and �1.3.3) and can therefore be averaged in order to increase the signal-to-noise ratio.
This is done after determining the particle positions described in the previous section and
before further analysis. This averaging yields a reduction of the 5D array back into a 3D array.
The average intensity stack calculated over repeated measurements m and repeated identical
particles p is therefore:

|I(x, y, α)| = 1

M

1

P

M∑
m

P∑
p

I(x, y, α,m, p) (1.12)

where M is the total number of measurement repetitions (each repetition is labeled m) and P
is the total number of identical particles within the full frame that we wish to include (each
particle is labeled p) in the averaging.

As we are averaging over a statistical dataset, we can also calculate the corresponding
standard deviation. The standard deviation yields the statistical error per pixel per image. We
calculate the standard deviation σ(x, y, α) by averaging the squared-di�erence between the raw
intensity and the averaged intensity, for each pixel in the stack (σ → 0 for M,P → 0):

σ(x, y, α) =

√√√√ 1

M

1

P

M∑
m

P∑
p

(I(x, y, α,m, p)− |I(x, y, α)|)2 (1.13)
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This σ(x, y, α) is later used to de�ne a mask of the particle, indicating a region where P-SHG
response information is considered meaningful.

1.4.4 Fourier analysis
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Figure 1.11: After Fourier decomposition of (b) the image stack, we can characterize the sig-
nal by its anisotropies (a) I2 (dipolar response) and (c) I4 (quadrupolar response) and their
orientations φ2 and φ4, indicated by the purple lines.

At this point, we have a 3D array per individual particle, or a particle window stack
(Fig. 1.11b). Each pixel of the stack represents a function of the nonlinear intensity with
respect to the excitation polarization angle (although we are still focusing on SHG only, this
analysis can be applied to other nonlinear signals as well). We �t the Fourier sine and cosine
series up to 4th order, considering only even terms, as thoroughly explained in Section 1.2.3:

I(α) = A0/2

+ A2 cos(2α) +B2 sin(2α)

+ A4 cos(4α) +B4 sin(4α)

(1.14)

The coe�cients are determined by integrating over the stack with N = 18 images:

An =
2

N

∑
αn

I(αn) cos(nαn)

Bn =
2

N

∑
αn

I(αn) sin(nαn)
(1.15)

From these coe�cients we can derive the order parameters and their phases (cf. Eq. 1.10):

I0 = A0N/2

I2 =
√
A2

2 +B2
2 φ2 = π/4− tan−1(A2/B2)/2 mod π

I4 =
√
A2

4 +B2
4 cos 4(φ4 − φ2) φ4 = 2π/4− tan−1(A4/B4)/4 mod π/2

(1.16)

where the total intensity I0 gives a direct measure for the total photon count. The second-order
phase φ2 and fourth-order phase φ4 are calculated with an o�set of nπ/4 so that they point
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to the polarization angle with maximum intensity, parallel to dipole orientation. The modulo
values of the measured phases φ2 and φ4 is taken to make sure that I2 and I4 are within the
ranges [0◦, 180◦] and [0◦, 90◦] respectively.

Since each of these parameters are calculated per pixel, we can use them to reconstruct the
image of the P-SHG parameters of the particle in three di�erent ways. First, we have an image
of the local anisotropy I2 (Fig. 1.12a) and second, an image of the local dipolar orientations
φ2 (Fig. 1.12b). Finally, we create a combined image I2&φ2 of the nanoparticle (Fig. 1.12c),
where the orientation φ2 is represented by a stick, having a color that encodes the value of I2.
Figs. 1.12d, 1.12e and 1.12f, concerning the fourth-order analysis of the P-SHG intensity are
created in a similar way.
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Figure 1.12: Example of anisotropy images of a KTP crystal, where we display the (a) dipolar
and (d) quadrupolar responses in each pixel, (b)(e) their respective orientations, and (c)(f) a
combined representation of both values. The sticks are oriented according with the phase φn
and color using the colormap of anisotropy IN .

1.4.5 Parameter error

It is clear that for low intensities (e.g. the regions at the border of the nanocrystal), the
determination of the I2, I4 parameters su�ers from a lower quality of estimation due to higher
level of noise [61]. Moreover, any external artifact that deviates from a pure sinusoidal P-
SHG dependence (e.g. spatial drift, defocusing, photobleaching) will make the determination
of the parameters erroneous. To circumvent these e�ects, the creation of an intensity mask
will make our images clearer, and the calculation of standard deviation and �tting error will
add con�dence to the measurements. Here we investigate three types of errors: experimental
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error (practically measurable if nanocrystals are measured several times), �tting quality (e.g.
deviations from the sinusoidal dependence) and noise e�ect.

1.4.5.1 Intensity level and noise

Note that it is important to ensure that the total intensity level measured in all expermiments
is high enough to ensure high precision and negligible bias in the retrieved parameters [61].
In order to quantify precision and bias for the I2 and I4 parameters, we performed a PRNM
experiment where we measure I2, I4 values and their standard deviation (noise) as a function of
overall signal level I0 for a macroscopic crystal of KTP under increasing incident power (keeping
gain and integration time constant). The I2, I4 values measured at the highest intensity is taken
as the reference. The bias of I2, I4 is estimated as the departure from the reference value. Both
bias and noise are found to roughly follow an inverse square root dependence on I0, which is
seen in measurements that are sensitive to Poisson noise. At the level of intensities I0 measured
in our experiments, the standard deviation on I2 (resp. I4) is expected to be around 0.02 (resp.
0.06), and the bias of I4 is below 0.06 (bias is negligible for I2) [66]. For I0 values below 50 V
(as measured from our analog detection at the gain for the PMTs in our experiments), the bias
is non-negligible (above 0.1 for I4) and we choose to systematically remove the bias value from
the measured value.

1.4.5.2 Model �t error

In order to derive a measure of the goodness-of-�t of the Fourier Series analysis above (�1.4.4),
we take the χ2-error6. It is based on the squared di�erence between the average stack intensity
I(x, y, αn) (Eq. 1.12) and the �tted intensity I�t(x, y, αn). The �tted intensity is equal to the
Fourier decomposition up to fourth order (Eq. 1.14), and is also used to normalize the error.
The χ2-error is thus de�ned:

χ2 =
1

N

N∑
n

{(
I(x, y, αn)− I�t(x, y, αn)

)2
I�t(x, y, αn)

}
(1.17)

where the summation is over the polarization angle αn. Figure 1.13c gives an illustration of
the χ2-error per pixel. This map is convenient to compare situations from case to case. In
particular, situations with photobleaching and/or strong sample motion will appear as high χ2

and should be discarded in the data analysis.

1.4.6 Particle mask

In order to prevent depicting data that arise from highly noisy situations, a particle mask is
de�ned, which goal is to show pixels representing signal with low enough noise to provide a
high precision on the P-SHG parameters. This mask is the product of two masks. Each of
these masks is a boolean 2D matrix (size equal to a particle window) that has pixels set to
1 if included, 0 if not. The �rst mask is a Gaussian mask (�1.4.6.1) that is based on the
bandpass �ltered image, selecting all pixels with intensity greater than a percentage (e.g. 5%)
of the maximum of the �ltered particle window. This mask acts more like a thresholding which

6The quantity χ2-error is not to be confused with the 2nd nonlinear susceptibility χ(2).
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Figure 1.13: (a) Total SHG intensity I0 (sum of photon count in stack of 18 frames), (b)
statistical standard deviation of I0 (in 8 repeated measurements) and (c) the goodness-of-�t
measure χ2 of the Fourier Series analysis.

selects high intensities. The second is a noise mask (�1.4.6.2) based on noise statistics gathered
from pixels located at the edge of the particle window, e.g. 4 × 2r = 80 border pixels. It
selects all pixels with intensity greater than the average of the border pixels plus a factor times
the standard deviation of the noise, e.g 5σ. This second mask allows to avoid, in the lowest
intensity regions, any pixel which signal to noise ratio is too low to ensure a high precision.

1.4.6.1 Gaussian mask

The Gaussian mask is based on the bandpass �ltered image, selecting all pixels above the
threshold of 5% of the maximum value. This is called a Gaussian mask because the bandpass
�lter we use is equivalent to convolving the image with a Gaussian function using the conv2

function (Matlab's 2D convolution function), which is de�ned as:

c(x, y) =
∞∑

kx=−∞

∞∑
ky=−∞

a(kx, ky)b(x− kx, y − ky)

where a is a 2D Gaussian function, b is the original image, and x and y are the image's pixel
index in two dimensions. The resulting �ltered image is then normalized and pixels above 0.05
are included in the mask. Figure 1.14b gives an example of a Gaussian mask.

1.4.6.2 Noise mask

The noise mask is based only on the particle image (not averaged and un�ltered). It collects
noise statistics (average and standard deviation) from the outermost columns and rows of the
(typically 21x21) particle window, i.e. the pixels in the �rst and last column and the pixels in
the �rst and last row of the particle window.

The average and standard deviation are calculated using mean and std Matlab functions,
respectively. Finally, the particle noise mask is determined from these noise statistics. A pixel
is included if the pixel intensity is greater than the average noise level plus 5σ, where σ is the
standard deviation of the background noise. Figure 1.14c gives an example of a Noise mask.

22



50 750 1450
Size (nm)

50

750

1450

Si
ze

 (n
m

)

Mask_Inten 1_50 Prtkl_1 3_ANA

0

5

10

(a) Intensity data

50 750 1450
Size (nm)

50

750

1450

Si
ze

 (n
m

)

Mask_Gauss 1_50 Prtkl_1 3_ANA

0.0

0.5

1.0

(b) Gaussian mask

50 750 1450
Size (nm)

50

750

1450

Si
ze

 (n
m

)

Mask_Noise 1_50 Prtkl_1 3_ANA

0.0

0.5

1.0

(c) Noise mask

Figure 1.14: Example of masking, showing the original intensity data for a single frame in the
averaged particle window stack in (a), the corresponding Gaussian mask in (b) and the Noise
mask in (c).

1.4.6.3 Particle mask average

The above particle mask is supposed to be applied for each single frame of the particle window
stack. However such a mask might be suitable for a given frame, it may not be so suitable for
another which signal level is extremely low: indeed, for one reason, we expect the signal to be
an oscillating function of α.

In order to calculate an overall mask which can be applied to all frames, we �rst calculate
the average of all particle masks. This yields an 2D array (per particle) with values in the range
{0, 1/NM, . . . , 1}, where N is the number of frames in each stack (e.g. 18) and M the number
of stacks (e.g. 8 repeated measurements). To create the overall mask, we simply include each
pixel which has an average mask value greater than some fraction. The typical fraction we
choose is 5/144, which means that a pixel has to be included in a particle mask more than 5
times out of a total number of frames of 144 = 8× 18.

1.4.7 Experimental results

Figure 1.15 demonstrates the results of polarization-resolved nonlinear microscopy on a KTP
nanocrystal with the mask (of the previous section) applied. As mentioned before, all the data
demonstrated in this chapter is taken from the same measurement of P-SHG (Ti:Sapphire laser
at 830 nm with 5 mW power, 2µs per pixel).

In 1.10b, we saw that there are four particles in the �eld of view. The particle window of
only one particle is chosen. We show the order parameters I2, φ2, I4, and φ4, and the sticks plots
that show I2&φ2 and I4&φ4. The sticks plots are particularly useful in giving an impression of
the strength and angle distribution of the dipolar and quadrupolar anisotropy in the image.

From the anisotropy images I2 and I4 (Figs. 1.15b and 1.15e), we can see the dipolar and
quadrupolar contributions to the nonlinear response. The average value from 25 pixels in the
center is I2 ≈ 0.85 and I4 ≈ 0.12. These values can be found to match with modeled I2, I4 value
pairs in Figure 1.4. From the model, we can actually deduce that the particle is oriented with a
certain orientation θ and ψ (and φ can be deduced from φ2, given below). Note that the spatial
extent of the anisotropy signal, I2, is larger than the extent of the I0 spot, which resembles
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Figure 1.15: Intensity and anisotropy images of a KTP crystal, where we display the (a)
dipolar and (d) quadrupolar responses in each pixel, (b,e) their respective orientations, and
(c,f) a combined representation of both values. The sticks are oriented according with the
phase φn and color using the colormap of anisotropy In. The window size is 1 µm× 1 µm.

the PSF. This is expected since the polarization modulation survives a much bigger spatial
extent than the intensity itself (in other words, a polarization modulation can be measured
even though the signal has dropped down, as long as the noise level is still low enough). This
e�ect will be visible in all the measurements presented throughout this work.

The angles φ2 and φ4 show the orientation of the anisotropy parameters I2 and I4, respec-
tively. From the images, we see that the angles are mostly uniform and the φ2 data shows that
the orientation of the nanocrystal is most probably ∼ 90◦ (Fig. 1.15c). The φ4 su�ers from
more noise, the angle is still quite homogeneous, φ4 ≈ 20◦ (Fig. 1.15f).

Figure 1.16 shows a measurement of P-SHG of another KTP nanocrystal, i.e. di�erent
from the example data shown so far in the chapter. If one were to inspect only the total SHG
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Figure 1.16: Intensity and anisotropy images of a similar, but di�erent, KTP nanocrystal to
that in Fig. 1.15. (a) displays I0, the total SHG intensity which appears as a featureless
di�raction-limited spot. (b�d) shows the dipolar anisotropy in the P-SHG signal. The window
size is 1 µm× 1 µm.

intensity I0, shown in Fig. 1.16a, this particle is indistinguishable from the previous, shown in
Fig. 1.15a. Both are likely a small singular KTP nanoscrystal.

However, the dipolar anisotropy orientation φ2 that is revealed by PRNM (Fig. 1.16d) is
clearly di�erent from the previous one. The P-SHG is strong and φ2 is very homogeneous. By
taking the center 25 pixels, we �nd φ2 ≈ 150◦. The value of I2 is close to 1.

The quadrupolar anisotropy value is more noisy and is less reliable, however, we average
I4 ≈ 0.1 in the center of the nanocrystal. The corresponding angle is still quite homogeneous
and φ4 ≈ 45◦ is most predominant in and around the center.

Let us now look at another sample. See Figure 1.17 for P-SHG measurement results on
a larger sample. The total SHG response I0 is somewhat larger than the previous examples,
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Figure 1.17: Intensity and anisotropy images of P-SHG data of an aggregate of KTP nanocrys-
tals. The window size is 1.5 µm× 1.5 µm. Note that the I0 is largely featureless, it is slightly
larger and brighter than the I0 of a single KTP nanocrystal (cf. Fig. 1.16a).

yet still featureless. Upon inspecting the anisotropy results of P-SHG, immediately it becomes
clear that this sample is most likely an aggregate of KTP nanocrystals. This is evident because
we have clear hot spots visible in the I2 and I4 spatial maps. It seems the aggregate consists of
at least four nanocrystals. A possible �fth hot spot is seen on the border of the particle window.
Moreover, the orientation angle of the dipolar and quadrupolar anisotropy (Figs 1.17d,g) shows
that the aggregate consists of KTP nanocrystals that each have their own distinct orientation.

1.4.8 Model

We have seen a few examples of experimental data (Fig. 1.15) that we wish to compare to the
KTP model we describe in Section 1.2. However, this calculation is the general P-SHG response
of a KTP crystal, without specifying size or shape.
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In this section, we will extend the model by introducing the physical structure of a crystal as
a nanoscale particle. This means that not only an averaged P-SHG response will be recorded, we
will also account for the spatial dependence of this P-SHG response while scanning a microscopy
focus spot over the sample. This model will allow us to calculate the expected P-SHG modula-
tion images that one would measure with PRNM and relate them to the orientation/structural
model detailed previously.

The shape of the model KTP nanoparticle is de�ned as a 2D disc with diameter 150 nm. We
do not account for the third spatial dimension, supposing that the nano-object is of spherical
symmetry and assuming the scan is only performed in 2D. The pixel size is set at 40 nm and
the total �eld of view of the explored (scanned) area is 2µm×2µm. The pixels inside of the
disc (core) are set to have a χ(2) = χKTP while the external pixels are set to have χ(2) = 0. The
following selection function determines the shape, i.e. whether a pixel is in the core Sc or not:

Sc(x, y) =

{
1 if

√
x2 + y2 < d/2

0 otherwise
(1.18)

where d is the diameter of the particle and x, y are Cartesian coordinates in the �eld of view of
the sample plane. Figure 1.18a gives an illustration of the shape of the nanoparticle, rendered
as a square due to pixelization of the model.

The response at the core of the particle is that of a pure KTP crystal, oriented at a chosen
angle Ω(θ, φ, ψ). The P-SHG intensity for the pixels inside the core is therefore equal to
Equation 1.8:

Ic(α) = I0 + A2 cos(2α) +B2 sin(2α) + A4 cos(4α) +B4 sin(4α) (1.19)

The resulting spatial map of the P-SHG expected intensity (not accounting yet for the
imaging part, which is treated below) is thus a product of this P-SHG response with the spatial
extension of the crystal:

I(x, y, α) = Ic(α)Sc(x, y) (1.20)

Note that the sum (Eq. 1.19) is written in an incoherent way, this is an approximation since
in reality it is the coherent sum of dipoles that are positioned in the focal volume. Since these
dipoles are all identical the result is the same. Note that for more complex structures such as
metal nanoparticles (Chapter 2), it will be important to account for the coherent nature of the
SHG process and write the spatial product on the SHG radiated �elds rather than the intensity.

The model described so far depicts the local spatial response of the crystal, it however does
not account for the imaging system used to report P-SHG microscopy images, which is limited
in particular by di�raction. In our P-SHG imaging scheme, the excitation spot is scanned over
the sample and the intensity is recorded at each position of the incident beam. This means that
an image is formed by convolving an excitation beam which shape is a Point Spread Function,
by the object itself, detecting the radiation from all nonlinear induced dipoles overlapped by this
excitation beam. The process writes therefore similarly as convolving a nonlinear intensity with
a spatial PSF shape which size is the one of a two-photon process (this PSF size is characterized
experimentally for instance in a two-photon �uorescence image of nanobeads).
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Figure 1.18: Preliminary results of the model for KTP nanoparticle. (a) depicts the crystal
structure, consisting of four pixels (green) on a background (dark blue), corresponding to a
size of 150 nm. (b) shows the PSF used in the convolution of the signal to simulate optical
di�raction, a 2D Gaussian function with σ = 250 nm. Finally, (c) displays the total intensity
I0, which is the average intensity of the result of this convolution. For this case, we oriented
the crystal in XY -plane and along X (θ = 90◦, φ = ψ = 0◦).

In order to introduce the e�ect of optical di�raction, each spatial map of the intensity
polarization responses are convolved with the excitation PSF of the microscope, represented
here by a Gaussian function:

GPSF(x, y) =
1

C
exp

(
−(x2 + y2

)
/σ2

PSF) (1.21)

where σPSF determines the size of the PSF and C is a normalization constant. We choose
σPSF = 250 nm as this matches the PSF of our setup. Figure 1.18b illustrates the PSF. Note
that here, the considered PSF is the shape of the excitation spot on the nano-object. The
imaging part of the microscope consists in detecting all signal that has been emitted from the
nano-object, intercepted by the scanning PSF.

The 2D convolution function is performed by using the conv2 function in Matlab. The
measured intensity per pixel is thus a new function de�ned by I ′:

I ′(x, y, α) =
∞∑

x′=−∞

∞∑
y′=−∞

I(x′, y′, α) ·GPSF(x− x′, y − y′) (1.22)

This function is to be applied to each frame within the stack (I(x, y, α)), but before we do
this, we add Poisson noise to both the intensity images and to the PSF, in order to simulate a
more realistic experimental situation. The intensity and PSF are thus:

I = |I + δI| (1.23)

GPSF =
∣∣GPSF + δGPSF

∣∣ (1.24)

where δI and δGPSF follow Poisson statistics. The Poisson noise is generated by multiplying
random numbers from a normal distribution. We use Matlab to provide the normal distributed
random numbers. After this, the convolution function with Poisson noise is calculated:

I ′(x, y, α) =
∞∑

x=−∞

∞∑
y=−∞

I(x′, y, α) ·GPSF(x′ − x, y′ − y) (1.25)
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Finally, the image stack is ready for analysis as it is done for any nanoparticle (see �1.4).
It will include the Fourier series decomposition (coe�cients Ak) and the derivation of I2, φ2

and I4, φ4 for each pixel. Figure 1.18c displays the I0, which is the total intensity
∫
I(α) dα.

As expected, the total intensity image reports a PSF-type shape which intensity is the total
number of photons from the nano-object.

1.4.9 Model Results

In this section, we compare some results of the KTP polarization-resolved microscopy experi-
ment described in section �1.3 with the expected results based on the KTP nanoparticle model
introduced in section �1.2.
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Figure 1.19: Numerical result of the polarization-resolved nonlinear microscopy model for a
KTP nanoparticle. For this example, we oriented the crystal along the X-axis (θ = 90◦, φ =
90◦, ψ = 0◦).

Displayed in Figure 1.19, we demonstrate results from the theoretical model described in
Section 1.2. To generate this result, we choose a particle size of 150 nm with a crystal orientated
along the X-axis (θ = 90◦ and φ = 90◦, ψ = 0◦). The point spread function has a size of 250 nm
which blurs the response originating from the particle shape and the Poisson noise through a
convolution. The obtained intensity stack I(x, y, α) is analyzed and plotted identically as with
measured data, described in Section 1.4.4.

Comparing the modeled anisotropy data I2 and I4 (Fig. 1.19) to the measured data (Fig. 1.15),
immediately we notice that the order parameters values match (value of ∼ 1 for I2 and a value
of ∼ 0.1 for I4).
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Note that the I2 and I4 images are more extended than the initial I0 image (Fig. 1.18c),
as expected (see discussion to Fig. 1.15b). The spatial extent of the modeled images seems to
surpass that of the experimental data, due to a purely numerical reason (the noise is very low
in the simulations). This e�ect does not change the quantitative aspects of the comparison
between experimental data and simulations.

Looking at the orientation angles φ2 and φ4 in the modeled data, we retrieve a homogeneous
value of 90◦, as expected. The φ4 data however does not match the orientation of the measured
φ4. The reason may be found in that the θ angle in the experiment is not equal to 90◦.
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Figure 1.20: Numerical result of the polarization-resolved nonlinear microscopy model for a
KTP nanoparticle. For this example, we oriented the crystal along (θ = 90◦, φ = 150◦, ψ = 0◦).

In Figure 1.20, we demonstrate the P-SHG results for the model using crystal orientation
Ω = (θ = 90◦, φ = 150◦, ψ = 0◦), which is chosen such as to mimic the angle φ2 of the
experimental data (Fig. 1.16c). Also for this comparison (between Fig. 1.20 and Fig. 1.16), we
�nd matching values for P-SHG signals I2 ∼ 1 and I4 ∼ 0.1. The expected angle of φ2 = 150◦

is retrieved.

1.5 Conclusions

In this chapter, we have introduced the experimental and theoretical methodology in order to
study nanoscaled particles with Polarization-resolved Nonlinear Microscopy.

The theoretical model of PRNM can be summarized as follows. Using conventional nonlin-
ear optics for second harmonic generation, together with a 3D-rotated second order nonlinear
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susceptibility χ(2) tensor, we model the response of SHG signal of a similarly rotated nanocrys-
tal. This signal is calculated as a function of incident electric �elds with linear polarization
that we rotate from 0◦ . . . 180◦. The PRNM model is completed with the Fourier Series analy-
sis of this oscillatory SHG signal, whose coe�cients are used to retrieve the original angles of
the nanocrystal, which are unknown. Moreover, the polarization-resolved nonlinear response
encodes spatial di�erences of the Fourier Series' order parameters at a higher resolution than
a singular di�raction-limited image of the particle can provide.

In order to illustrate its e�cacy, we show experimental results of PRNM on KTP nanocrys-
tals, which are chosen for their strong nonlinear susceptibility and homogeneous orientation. A
signi�cant challenge of the experiment was to obtain a high �delity of the measured signal and
to form a spatial map of its order parameters. The signal is retrieved by raster scanning the
sample and detection in photo-multiplier tubes. This is a relatively slow process and requires
post-processing such as particle �nding, averaging and masking.

We show examples of PRNM analysis on single KTP nanocrystals as well as an aggregate
of nanocrystals. The singular samples show that the in-plane angle of the crystal is readily
determined and the response corresponds well to the modeled results in terms of magnitude,
angle and spatial map of the order parameters. The aggregate of nanocrystal demonstrates
the ability of PRNM to resolve multiple particles with di�erent orientation distributed in area
similar to that of the di�raction-limited point spread function.
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Chapter 2

Polarization-Resolved Nonlinear

Microscopy of Gold Nanostars

2.1 Introduction

The previous chapter (Ch. 1) laid down the basis for systematically applying polarization-
resolved nonlinear microscopy to any nonlinear material of di�raction-limited size. We have
given a small demonstration of its e�ciency using KTP nanocrystals, but now we will explore
a new type of sample, metal nanostructures. Even though the treatment of the data will
be in principle the same, metal nanostructures di�er from KTP nanoparticles in that the
emitted SHG signal originates, not from the bulk of the material, but frfrom the surface (other
bulk contributions occur but from higher-order e�ects). In this chapter, we show that PRNM
permits to spatially map the vectorial nature of plasmonic nonlinear optical interactions in
nanostructures.

2.1.1 Gold nanostructures

Metal nanostructures are essential building blocks for nanophotonics, with the unique capacity
to tailor optical �elds at the nanometric scale. One of the key factors that control their nanoscale
optical properties is the polarization of incident electromagnetic �elds, which in�uences the
amplitude and polarization of scattered �elds. By varying the excitation polarization, one can
not only tune the spectral properties of metal nanostructures of complex shapes [67, 68] but
also the spatial and vectorial properties of their local �elds at the nanoscale.

Controlling these properties has opened new routes for optimized biosensors, contrast agents
and nano-antennas [69, 70, 71], dedicated to new device functions [72, 73, 74, 75, 76, 77], but also
for the exploration of fundamental light-matter coupling properties [78, 79]. The polarization
sensitivity of metal nanostructures at the nanoscale is delicate to monitor, despite being well
understood from numerical simulations [80, 81, 82]. Only a few experimental techniques give
access to vectorial properties of the optical �elds in the vicinity of metal nanostructures. Near
�eld scanning optical microscopy [83, 84, 85, 86, 87, 88, 89, 90], cathodoluminescence microscopy
and photoemission electron microscopy can image local �elds with high spatial resolution [91,
92, 93, 94]. However these techniques are delicate to implement, can be invasive, and need
special sample preparation which often does not �t the working conditions of optical devices.
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Polarized dark �eld polar pattern recognition [90] has been implemented as a less invasive
method and is able to report on nanoparticles' symmetry, but is not compatible with pure
imaging.

Nonlinear optical interactions can bring a way to report local �elds' properties. Not only
nonlinear quadratic e�ects are intrinsically background-free, their high-order dependence on
the incident �eld also makes them �ne probes for polarization e�ects as compared to linear
optics [46, 82, 95, 96, 97, 98, 99]. Second harmonic generation and two-photon luminescence
have been reported to be particularly sensitive to vectorial coupling between the excitation
�elds and the nanostructures [97, 100, 101]. However, such methods are intrinsically limited
in optical resolution to a few hundreds of nanometers (typically 200 to 300 nm). This spatial
averaging makes it di�cult to retrieve local vectorial local information [59, 97, 98].

In this chapter, we access nanoscale vectorial information in metal nanostructures using
PRNM. Understanding subresolution features and plasmon modes in the nanostructures allows
�ltering-out local symmetry responses that are directly related to the vectorial nature of the
nonlinear radiation sources. We show that the obtained sub-di�raction scale mapping relates
to the vectorial nanoscale distribution of plasmon modes in the structure.

2.2 Gold nanostars

Our nanostructures have been friendly called nanostars throughout the experimental work due
to the particular shape of them, although not all of them directly resemble the shape of a star.
For nostalgic reasons, we will continue naming these particles nanostars for the rest of the
chapter.

Gold nanostars of various shapes were fabricated by electron beam lithography by Esteban
Bermúdez Ureña, a PhD student of the group of R. Quidant at the Institute of Photonic
Sciences, Barcelona. We designed 8 di�erent classes of shape (labeled A-H). By changing the
arm size parameter we designed in total 27 di�erent shapes. These di�erent shapes of nanostars
have been designed to tune the behavior of spatial distribution as well as vectorial properties
of con�ned optical �elds. The plasmon resonances of these particles range between 800 nm and
1100 nm.

Figure 2.1 shows ten SEM images that illustrate a selection of six classes (A,B,C,D,E, and
H) and �ve variations of the arm size for one class (H1,H2,H3,H4,H5). Their radius parameter
is 100 nm, implying that the particles have a maximum extent of 200 nm, which is below the
di�raction limited lateral spot size.

Table 2.1 provides the exact polar equations that mark the contour of the particles. For
the set of H1�H5, we have aspect ratios of horizontal to vertical arm sizes vary from 1:1
(H1), 1:0.93 (H2), 1:0.86 (H3), 1:0.78 (H4), to 1:0.71 (H5). These equations are all normalized
functions, multiplied by radius R. They contain weight parameters w1, w2, w3, w4, w5, which
determine the amount of extrusion of the arms (and their number) versus w0, which is the
weight attributed to a circular shape. We ordered the fabrication of four classes (label A-D)
with three arm sizes (label su�x 1-3), three classes (F-H) with �ve arm sizes (1-5) and one
class (E) with a single arm size. As mentioned, not all nanostars fabricated were used in the
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(a) A1 (b) B1 (c) C1 (d) D1 (e) E

(f) H1 (g) H2 (h) H3 (i) H4 (j) H5

Figure 2.1: SEM images of di�erently shaped gold nanostars of radius parameter 100 nm
produced by electron beam lithography. Shapes are varied by the number of their arms (from
�ve to zero, shown in a-e) and the ratio of the size of the arms (from 1:1 to 1:0.71, shown in
(f-j). The area of these SEM images is 500×500 nm2. Table 2.1 lists the corresponding contour
functions of these shapes.

experiments.

(A) r(φ) = R (w5 cos 5φ+ w0) / (w5 + w0)

(B) r(φ) = R (w4 cos 4φ+ w0) / (w4 + w0)

(C) r(φ) = R (w3 cos 3φ+ w0) / (w3 + w0)

(D) r(φ) = R (w2 cos 2φ+ w0) / (w2 + w0)

(E) r(φ) = R

(F) r(φ) = R (w4 cos 4φ+ w3 cos 3φ+ w2 cos 2φ+ w1 cosφ+ w0) / (w4 + w3 + w2 + w1 + w0)

(G) r(φ) = R (w3 cos 3φ+ w1 cos 1φ+ w0) / (w3 + w1 + w0)

(H) r(φ) = R (w4 cos 4φ+ w2 cos 4φ+ w0) / (w4 + w2 + w0)

Table 2.1: Equations in polar coordinates that determine the shape of the nanostars. The
radius is set by R = 100 nm. Coe�cients wk determine the relative weight of the terms. For
the nanostars in Fig. 2.1 labeled with A1, B1, C1, and D1, we set w5 = w4 = w3 = w2 = 1 and
w0 = 2. For nanostars labeled H1, H2, H3, H4, and H5, we set w4 = 4, 3, 2, 1, 0, w2 = 0, 1, 2, 3, 4
and w0 = 8 (respectively).

The sample preparation is detailed as follows. Glass substrates were capped with a conduc-
tive 10 nm ITO layer deposited by electron beam evaporation. For the lithography step, a 950
PMMA at 4% (Microchem) solution was dissolved in Trichlorobenzene (3:1) and spincoated at
8000 rpm for 60 sec, yielding a resist thickness of ∼ 120 nm. The resist was baked at 175 ◦C for
5 min. The structures were de�ned by electron beam lithography in a FEI InspectF50 system
at 30 keV acceleration voltage. The geometry of the structures was de�ned by importing the
corresponding formula (Tbl. 2.1) describing the particle shape into the ELPHY plus design
software from Raith (Raith Gmbh). After the EBL exposure, the sample was developed in
a MIBK:IPA (1:3) mixture for 45 sec followed by immersion in IPA solution to stop the de-
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velopment. The substrate was �nally dried with a N2 gun. A 40 nm Au �lm was thermally
evaporated at a rate of 2 Å/s. The lift-o� was performed in acetone at 55 ◦C during 1 h followed
by rinsing in IPA before drying with N2.

The nanostars are positioned in a repetitive pattern and with equal orientation. This allows
not only measuring a large number of them at once, but also to precisely know their orientation,
which is an important parameter in vectorial investigations.

2.3 Setup

The setup for the PRNM measurement on KTP nanocrystals is largely identical to the setup
that we use here to measure nanostars and is fully described in Section 1.3.2. However, we do
have to modify the optical �lters used in the detectors part to match the wavelengths of emission
of these nanostars. We modify the excitation wavelength between 800 nm and 1084 nm. In
Figure. 2.2, we illustrate the setup of the detectors for a particular case.

DM
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DM
514 LP

DM
635 LP

414/46 BP

750 SP Block

P
M
T
4

P
M
T
3

TPL

SHG

Figure 2.2: Detectors setup using photo-multiplier tubes (PMT). This is a detail of the full
experimental setup, see Figure 1.7. The signal is spectrally cleaned by a shortpass �lter (SP)
and then split by dichroic mirrors (DM), and then further �ltered by bandpass �lters (BP).
There are two PMT that collect two di�erent nonlinear signals (SHG and TPL).

The detectors consist of two photo-multiplier tubes. One of them, PMT4, is dedicated to
collect SHG light with a wavelength ∼ 400 nm. Note that the Ti:Sapphire oscillator is tuned
to 800 nm in order to enable the SHG process. The other tube, PMT3, is used to collect
two-photon luminescence at a wavelength range 514 − 635 nm determined by the selection of
dichroic mirrors.
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2.4 Analysis

The method of analysis of the gold nanostars is identical to the PNRM analysis presented in
the previous chapter. Note that since we have nanostars positioned in a regular grid with
identical orientation, it permits us to use average functionality. As described in Section 1.4,
the nanoparticles analysis program has support for particle localization of multiple particles in
the same frame and support for averaging of these particle window stacks. In the experiment,
we �nd four nanostars in a single frame and with a measurement repetition of 8× to 10×, we
obtained stacks that contain the average of 32 to 40 individual particle window stacks. We
include averaging of four particle windows per image, and by measurements repeated 8× to
10× we systematically average over 32 to 40 stacks in order to gain in estimation quality for
the retrieved parameters.

In this analysis, we assume the �eld does not exhibit any longitudinal contribution along
Z, which is a strong approximation especially at high numerical aperture focusing [58]. As
mentioned before (�1.2.2), previous studies have shown that such a contribution is generally
negligible for dielectric particles [59], however the longitudinal coupling from the metal planar
surface of the nanoparticle might add an isotropic contribution to I(α) in the present case.
This would be of little concern to us, since we are mostly interested in the anisotropic response.

2.5 Results

Figure 2.3 shows the result of a single PRNM measurement and analysis on a symmetric four-
arm particle (B1) for SHG at 800 nm excitation. The total intensity image (I0) resembles a
symmetric spot without any speci�c feature, as is expected from a nanoparticle of size lower
than the di�raction limit (Fig. 2.3a).
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Figure 2.3: SHG response of a 200 nm four-arm symmetric structure (B1) at 828 nm excitation.
(a) shows the total SHG intensity I0 and (b,c) depict the dipolar and quadrupolar anisotropy
sticks plots. (d) B1 gold nanostar in a SEM image of size 500x500 nm, which is scaled equally
as the other plots.

Figure 2.3b shows a sticks plot1 of the dipolar anisotropy parameter I2 and its angle φ2. It
clearly reveals features that are not present in the total intensity image. We �nd shapes that
directly correlate with the four arms structure of the nanoparticle. Similarly in Fig. 2.3c, we

1The sticks plot representation is introduced in Ch. 1.
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show the quadrupolar anisotropy where one can clearly recognize the four features coinciding
with the four arms of the nanostar.

Figure 2.3d depicts a SEM image of a nanostar of the same shape B1. To aid comparison, it
is scaled equally as the anisoptropy plots I2&φ2 and I4&φ4. Note that the high-intensity spots
found in the anisotropy plots are located outside the physical extent of the nanostar and that
the I2 value is low in the center.

It is expected to �nd low intensity at the center of the particle window. When the exci-
tation spot is positioned at the center of the particle, it induces nonlinear dipoles distributed
centrosymmetrically, coming from surface dipoles that are orthogonal to the sample plane, or to
symmetrically arranged surface dipoles. In contrast, when the excitation spot is centered away
from the particle edge but still excites its contour, it interacts mostly with 1D distributions of
dipoles that are aligned in a well de�ned direction, which is along the arms were the optical
�elds are expected to be strong and anisotropic.

2.5.1 Nanostar arm size ratio

In Figure 2.4, we display an array of PRNM results at once. Here, we compare SHG intensity
as a function of arm size using the four-arm nanostar shape class H. The arm size ratio between
horizontal and vertical arms is 1:1 (H1), 1:0.93 (H2), 1:0.86 (H3), 1:0.78 (H4), to 1:0.71 (H5).
The excitation wavelength for these measurements is 800 nm, with a power of 4 mW.

First note that of all the shapes measured here, only the equally-sized four-arms nanostar
(H1) gives rise to the typical pattern discussed above for shape B1 (Fig. 2.3): four distinct
high intensity I2 regions outside the physical extent of the nanostar, with a low intensity center
region. Comparing this result to that of H2 and H3, we note that the signal strength is higher
in the case of H2 and H3. More noteworthy however, is that the faint I2 intensity in the
center is now bright as well, the entire center region of the nanostar takes part in the dipolar
emission. An interpretation of these �ndings is, as mentioned above, that the centrosymmetrical
distribution that was present with H1 (or indeed B1 above), is no longer present in H2 and H3,
where the inequality of the arm size allows anisotropic optical �elds in a well de�ned direction
along the vertical (shorter) arms of the nanostar.

We can furthermore note that the results of nanostar shape H5 in Fig. 2.4 is similar to H3,
but that H4 is an exceptional case. The dipolar anisoptropy sticks plot reveals that there is
strong vertical dipolar response coming from regions north and south, outside of the nanostar's
extent. The striking feature is that the relatively bright I2 intensity in the center of the particle
is clearly not vertically oriented, but diagonally.

The presence of distinct, highly dipolar responses at the tip of the arms shows that the
structure is expanded enough to con�ne optical �elds away from the particle center, suggesting
a negligible coupling between arms. Numerical electromagnetic simulations have shown that at
the excitation wavelength 800 nm in this structure, the electric �eld is indeed con�ned to the tips
of the arms, with a polarization direction along the arms [66]. The values of I2 and I4 at the tip
positions of the structure reach however magnitudes that are slightly lower than those of single,
isolated 1D dipole. In order to compare the obtained magnitudes I2, I4 to a known situation,
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Figure 2.4: Illustrating the arm size e�ect of SHG signals in PRNM of nanostar shapes H1�H5
(rows). In column (a), the total SHG intensity (I0), in (b and c) the dipolar and quadrupolar
anisotropy and angle (I2&φ2, I4&φ4), and in (d), SEM images of the shapes H1�H5.
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we modeled a purely 1D symmetry of parallel dipoles orientations, such as would happen
perpendicularly to a planar metal interface. In this case (using a single nonlinear coe�cient
βzzz), one would obtained I2 = 1.35 and I4 = 0.38. Here in the measured nanoparticles, the
magnitudes are slightly lower. Di�erent factors can explain this deviation; induced dipoles at
the tips of the structure might not be of purely 1D symmetry, the longitudinal contribution of
the metal surface might be strong, and phase shifts between the radiation of coherent dipoles
from opposite tips might exist. This last e�ect can modify the local symmetry of the polarization
response by introducing relative phases correlated with induced dipole positions, which end up
playing a role in the nonlinear phase-matched build up, as already mentioned in nonlinear
nanoparticles radiation [55].

2.5.2 Number of arms

After measuring the e�ect of the size of the arms, we are also interested in the e�ect of the
number of arms in the nanostars shapes. We perform PRNM measurements on the nanostar
shapes A1, B1, C1, D1, that have a decreasing number of arms from 5 to 2. We choose the
same excitation wavelength of 800 nm. Here again, a large dependence on the nanoparticle
shape can be observed. The symmetry of the structure is re�ected into the I2 map, except for
the 5-arms structure which seem to not re�ect any particular structure, probably because of
the poor spatial contrast of the �elds con�nement on the particle surface (in this case the I2
map probably re�ects shape defects). Interestingly, the 3-arms structure shape is also visible
in the I2 map, with a slight dissymetry which could be attributed to variations among shapes
in the observed particles.

In Figure 2.5, we demonstrate the measurement results of the SHG response.
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Figure 2.5: Illustrating the e�ect the number of arms in nanostar shapes A1,B1,C1,D1 (rows)
in SHG signals from PRNM measurements. In column (a), the total SHG intensity (I0), in (b)
and (c) the dipolar and quadrupolar anisotropy and angle (I2&φ2, I4&φ4), and in (d), SEM
images of the shapes A1�D1.
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2.5.3 Wavelength dependence

Figure 2.6 demonstrates an array of dipolar anisoptropy sticks plots (I2&φ2) in SHG signal
resulting from PRNM measurements performed on samples of nanostar shapes H1�H5, for
di�erent excitation wavelengths of the incident light: 800 nm, 820 nm, 828 nm and 1084 nm.

Tuning the excitation wavelength from 800 nm to 1084 nm induces drastic modi�cations of
the SHG anisotropic response, both in magnitudes and orientations. Figure 2.6 shows that not
all types of nanostars follow the same trend. For the symmetric four-arm shape (H1, top row),
while an 800 nm excitation shows well de�ned individual and separated hot spots as mentioned
above, increasing the excitation wavelength leads to a loss of contrast in the I2 images. This
decrease is likely due to an increased coupling between the arms.

In the one-arm nanostars (H5, bottom row), the behavior follows an opposite trend, with an
increase of I2 with wavelength. At 800 nm excitation, the orientation φ2 of second order dipoles
is perpendicular to the particle. Changing the incident wavelength towards 1084 nm shifts this
orientation to along the particle, obviously shifting from the excitation of the transverse mode
at 800 nm to the longitudinal mode at 1000 nm. In this mode, the I2 values obtained are
close to those of a single isolated dipole, which evidences the strongly dipolar nature of the
longitudinal plasmon mode.

Intermediate shapes H2�H4 follow intermediate behaviors. Note however that for all parti-
cles, a drop of I2 is found at the intermediate wavelength 820 nm. This reveals the presence of a
strong centrosymmetric contribution, which could originate from a quadrupolar mode or from
mixed dipolar excited modes which destructively interfere. Such behavior is usually delicate to
observe in far-�eld experiments, and PRNM could be a way to reveal its complexity.

42



50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H1  2_ANA

0.0

0.3

0.6

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H2  2_ANA

0.0

0.4

0.8

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H3  2_ANA

0.00

0.45

0.90

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H4  2_ANA

0.0

0.1

0.2

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H5  2_ANA

0.00

0.25

0.50

(a) 800 nm

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H1  4_ANA

0.0

0.1

0.2

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H2  4_ANA

0.00

0.35

0.70

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H3  4_ANA

0.0

0.2

0.4

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H4  4_ANA

0.0

0.2

0.4

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H5  4_ANA

0.00

0.05

0.10

(b) 820 nm

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H1  2_ANA

0.00

0.05

0.10

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H2  2_ANA

0.00

0.05

0.10

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H3  2_ANA

0.0

0.1

0.2

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H4  2_ANA

0.00

0.25

0.50

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H5  2_ANA

0.00

0.25

0.50

(c) 828 nm

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H1  3_ANA

0.0

0.1

0.2

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H2  3_ANA

0.00

0.05

0.10

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H3  3_ANA

0.00

0.15

0.30

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H4  3_ANA

0.00

0.35

0.70

50 750
Size (nm)

50

750

Si
ze

 (n
m

)

I2+Phi2 H5  3_ANA

0.00

0.35

0.70

(d) 1084 nm

Figure 2.6: Dipolar anisoptropy (I2&φ2) images of SHG signal from nanostars shapes with
varying arm size H1�H5 (rows) measured with PRNM at varying incident wavelengths 800�
1084 nm (columns).
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Figure 2.7: SHG Quadripolar anisoptropy (I4&φ4) images of nanostars shapes with varying
arm size H1�H5 (rows), measured with PRNM at varying incident wavelengths 800�1084 nm
(columns). Compare with dipolar anisotropy results in Fig. 2.6.
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2.5.4 Linear extinction measurements

The studied samples also comprised denser arrays of each of the structures to measure the
extinction resonance of each design. The optical setup consists of a standard microscope in a
bright �eld con�guration. The illumination was performed from the bottom side of the sample
by a 100 W halogen lamp with a linear polarizer aligned to the horizontal axis of the structures
and a bright �eld condenser (0.1 NA). The transmitted light was collected with a bright �eld
objective (10× magni�cation, 0.25 NA) and passed through a beam splitter into a CCD camera
for alignment and into a spectrometer (Andor, Shamrock SR-303i) via an optical �ber (200 µm
diameter).

In Figure 2.8, the results are shown in conjunction with nonlinear measurements. We
measure the SHG e�ciency, which is calculated by taking the pixel average of the I0 (the
total stack intensity), over the centermost 25 pixels in the particle window. On moving the
excitation wavelength from 800 nm to 1084 nm, the linear excitation is expected to approach a
longitudinal plasmon resonance. Upon incident wavelength change, the SHG e�ciency of the
studied nanostars is correlated to the linear excitation resonance in wavelength dependence, as
expected from the e�ects of SHG dependence on the linear incident �elds enhancements.
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Figure 2.8: Extinction spectra overlayed with SHG total intensity I0 response in PRNM of B1
and H5 nanostars.

In Figure 2.9, one can inspect the anisotropic intensity patterns (I2&φ2) as a function of
wavelength, with more �ner wavelengths steps than in the previous section. These results
illustrate the complex interplay between the spatial properties of localized plasmon modes and
their vectorial �elds properties.
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Figure 2.9: Illustrating the wavelength dependence for nanostar B1, from 800 nm to 1048 nm
(rows), in SHG signals from PRNM measurements. In column (a), the total SHG intensity
(I0), in (b and c) the dipolar and quadrupolar anisotropy and angle (I2&φ2, I4&φ4).
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2.6 Model

More quantitative information can be gained from a simple phenomenological model. The
model for nanostars introduced here is based on the KTP model described in Chapter 1. The
alterations are the shape and the calculation which necessitates a coherent addition of dipoles
sources' radiation in the structure. The shape is illustrated in Figure 2.10. We suppose four
1D dipolar structures of 40 nm size (one pixel) placed at the tip positions of the four-arm
nanostar, and pointing along the tips of the arms of the structure. A central structure is added
with polarization-independent response, mimicking a longitudinal dipole contribution from the
metal surface of the nanostar.
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Shape   

Figure 2.10: Simulated structure made of four dipoles (marked in di�erent colors) at the tips
that mimic the four-arm nanostar and a planar center that exhibits a SHG isotropic response.
The distance between the dipoles is 160 nm and the size of the dipoles is 40 nm, which is the
pixel size. The dipole orientation is along X (for the two dipoles on the horizontal X axis)
and Y (the two on the vertical axis). The center contains a structure that has SHG response
independent of polarization, simulating longitudinal dipole contribution from the metal surface
of the nanostar.

The SHG signal is modeled as a coherent superposition of those nonlinear dipolar responses,
convolved by the point spread function of the excitation spot. This simple model reproduces
the essential elements of the experimental results (Figure 2.11): the SHG total intensity image
is di�raction limited, and four spots are visible in the I2&φ2 and I4&φ4 images, with φ2 aligned
along the dipoles directions. We noticed that the magnitude of I2 in the anisotropic spots
increases with the distance between the dipoles; a distance of about 200 nm leads to I2 values
close to the experimental ones.

Even though this model is simpli�ed (it does not reproduce the full characteristics of the
electromagnetic modes in the particle), it shows that P-SHG responses strongly depend on
the dimension and local symmetry of the structure. From those results, it is clear that a
sole measurement of the SHG response averaged at the particle center would miss the spatial
speci�city of this response and possibly bias its interpretation.
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Figure 2.11: Simulation results for a structure made of planar center and four dipoles along
the four arms of the nanostar (see Fig. 2.10). The distance between the dipoles is 160 nm, the
physical size of the dipoles is 40 nm (one pixel), and the center of the structure exhibits an
SHG isotropic response, as expected from a pure longitudinal response. (a) Total intensity of
the SHG signal. (b,c) Resulting I2&φ2 and I4&φ4 images.

Interestingly, the experimental TPL images exhibit very similar properties, which supports
the fact that both SHG and TPL processes are governed by a common two-photon excitation
process. The incoherent nature of the emission is not probed in the present measurement since
the detection is unpolarized [97].
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Figure 2.12: Polarization-resolved two photon luminescence (TPL) data on the H1 nanostar,
depicting I2&φ2 and (I4&φ4) data similarly as for SHG (cf. Fig. 2.4). These results show the
similarity between coherent (SHG) and incoherent (TPL) processes with respect to a tunable
excitation polarization.

2.7 Gold nanorods

Apart from the gold nanostar shapes measurements described above, we have also investigated
so-called gold nanorods of a scale smaller than the nanostars. The purchased gold nanorod
samples (716839, Sigma Aldrich) have a length of 45 nm and aspect ratio of 4.5. We chose this
length and aspect ratio for their longitudinal plasmon resonance at 850 nm. At the incident
wavelength 800 nm, their SHG emission should thus behave as highly anisotropic with well
de�ned I2, I4 values.

The samples were prepared as follows. First, coverslips were thoroughly cleaned with ethanol
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Figure 2.13: SHG response of a gold nanorod structure sized below the di�raction limit at 828
nm excitation, showing intensity and anisotropy plots.

and acetone before UV/Ozone treatment. To each coverslip, 5 µl of 100 times diluted stock
solution of gold nanorods was added and the coverslips were air dried before imaging. Drop-
casting this solution of nanorods on a microscope coverslip allowed collecting di�erent types
of behaviors from single nanorods with di�erent orientations to aggregated structures made of
several nanorods.

In Figure 2.13, we illustrate the response for nanorods in the SHG signal of PRNM mea-
surements. Note the slightly enlongated spot seen in total SHG intensity I0. This elongation
is not attributed to the length of the nanorod, which is only 45 nm. Instead we will recognize
that two nanorods are present but their displacement cannot be resolved in the SHG I0 spot,
whose size is at or slight above the di�raction limit (PSF 250 nm).

The dipolar anisotriopy stick plot I2&φ2 (Fig. 2.13b) shows two hot spots along the same
line as the slightly elongated spot in I0. Thus, using PRNM we can resolve the presence of (at
least) two nanorods. Additionally, the PRNM measurement allows us to identify the orientation
of the individual nanorods by inspecting the angle of φ2. We �nd φ2 ≈ 15◦ for the nanorod in
the bottom right and φ2 ≈ 150◦ for the nanorod in the top left corner of this particle window.
It must be noted that PRNM is useful in highlighting the number of nanorods, but it is only
a lower limit, since it is possible that there are more nanorods hiding in very close proximity,
especially if they coalign.

The quadrupolar anisotriopy stick plot I4&φ4 (Fig. 2.13c) con�rms the two hot spots, with
a larger contrast than for I2. The I4 result may even be more sensitive to the position of the
supposed nanorods because of this. Unfortunately, we cannot con�rm the �ndings with SEM
imagery but it would be de�nitely interesting to pursue in the direction of correlative SEM /
P-SHG investigation.

2.7.1 Nanorods model

The I2&φ2 and I4&φ4 images of Figure 2.13 show that not only the relative orientations of
nanorods can be potentially revealed by such a method, but also some insight can be gained
in their relative distance. In an image reminiscent of the four-arms nanostars described earlier,
the I2&φ2 image would be very homogeneous for closely interacting dipoles (e.g. case of the
H3 to H5 nanostars), while distant dipoles reveal a drop of I2 and I4 at the center of the image
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(e.g. case of H1).
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Figure 2.14: Gold nanorods simulation construction. The model layout has two nanorods (a):
One nanorod is centered, oriented at 0◦, the other is positioned at a horizontal distance d,
vertical distance 0.6d, and oriented at angle θ. (b) An example shape de�nition, with 1 px
(40 nm) size rods displaced by d = 120 nm.

In order to con�rm this trend, we simulated two nanorods with a varying distance, with a
relative orientation of 120◦ in order to resemble the situation present in Figure 2.13b (120◦).
Using a similar approach as in Figure 2.11, the nanorods are taken of 40 nm size, and of
1D pure dipolar symmetry, to mimic their longitudinal response. We displaced the nanorods
horizontally by 40 nm to 120 nm and vertical distance is set to 0.6d
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Figure 2.15: Gold nanorods simulation results; Anisotropy plots I2&φ2 and I4&φ4 of distances
d = 40 nm and = 120 nm and angles θ = −60◦, 120◦.

The resulting I2&φ2 and I4&φ4 images depicted in Figure 2.15 show resemblance with the
measured results. The imaged area is set to size 1600 nm in order to avoid boundary e�ects
during the convolution step in the calculation.
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In order to reproduce the drop of the I4 value at the center of the structure, a phase shift has
to be introduced in the emission of the two dipoles (similarly to taking a relative orientation of
−60◦ without changing the relative spatial positions of the dipoles), evidencing the contribution
from spatial retardance in the nonlinear coherent build up. This highlights, as mentioned above,
the sensitivity of the method to phase.

2.8 Conclusions

In this chapter, we demonstrated that P-SHG and TPL microscopy exploit the spatial sensitivity
of polarized responses of the nonlinear emission from metal nanostructures. Its sensitivity
to local surface e�ects and plasmon mode symmetry has permitted to evidence the spatial
and vectorial properties of local nonlinear radiation sources. Even though far �eld microscopy
conditions are used, this method is sensitive to nanometric scales, allowing access to information
that cannot be revealed by pure linear or nonlinear imaging. P-SHG microscopy could be
extended to more complex structures such as coupled nano-antennas, designed to engineer
novel polarized optical properties.

In particular, we investigated the dependence of the PRNM signals on the shape of gold
nanoparticles, designed in shapes of a star with varying number of arms and multiple ratios
of arm length. The results show images of second- and third-order anisotropy in the polarized
nonlinear signal that are strongly related to the local shapes. We also demonstrated the de-
pendence on the wavelength of the excitation electric �eld, which is found to be very strong as
well. Furthermore, a model is developed that provides phenomenological agreement with the
experiment results. Finally, also samples of gold nanorods were measured and modeled with
fair agreement. Note that the method is of high sensistivity, even for small structural features
of 40 nm interdistance.
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Chapter 3

Polarization-Resolved Nonlinear

Microscopy of Barium Titanate

Nanocrystals

3.1 Introduction

In previous chapters, we have demonstrated the e�cacy of PRNM at gaining subresolution
information in gold nanostructures and KTP nanocrystals. This chapter will concentrate on
a third type of sample, Barium Titanate nanocrystals. Barium titanate (BaTiO3 or BTO) is,
like KTP, a highly e�cient nonlinear crystal [102], but unlike KTP, it can show heterogeneous
crystallography. This property gives us the opportunity to further exploit the capabilities of
our PRNM technique. This chapter will introduce the main characteristics of BTO, summarize
the results of imaging di�erent types of nanoparticles and compare them with theoretical data.

3.2 Barium titanate

Barium titanate is one of the �rst discovered and better-known ferroelectric crystals [103], which
are characterized by the presence of a spontaneous electric polarization. This spontaneous
polarization can be observed in 4 of the 5 crystalline phases that BTO is known to show. These
crystalline phases (hexagonal, cubic, tetragonal, orthorhombic, and rhombohedral) appear in
the BTO structure depending on its temperature [104]. The cubic phase, which can be observed
above the Curie temperature, is the only phase where spontaneous polarization disappears. It
is believed that some crystals can present 2 phases at once [38, 105]. This possible multiphase
structure gives us the main motivation to study BTO particles, as it allows to further test the
capabilities of PRNM to exhibit subresolution information. In this project, we will focus on
crystals at room temperature in which presumably only cubic and tetragonal phases exist.

Even when being one of the most known crystals, few of what is known for BTO has been
studied on small crystals (< 300 nm) [106] or on individual crystals. Indeed, studies are usually
performed on bulk substances of macroscopic crystals. The exploration of single nanoparticles
is thus relatively new. The most applied technique in studying the BTO composition has been
X-ray di�raction [37, 106, 107, 108, 109, 110]. Other techniques include heat measurements
[111, 112], TEM [113, 114, 115], Raman spectroscopy [112, 116] and AFM [117]. Nonlinear
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microscopy and the study of the nonlinear properties of small crystals, on the other hand, are
less explored [35, 36, 42, 118]. They have nevertheless shown su�ciently high e�ciencies to be
used as biomarkers in cells for instance, bene�ting from their non-bleaching, background free
signal as opposed to �uorescence [36]. Our goal to use BTO nanocrystals as study subject is
therefore, very ambitious. However, we will demonstrate that our method is robust enough to
reveal interesting properties.

The Curie temperature, the temperature at which the spontaneous polarization disappears,
is around 120◦C for BTO. This value can be increased or decreased depending on the synthe-
sis method [116, 119]. Above this temperature, BTO has a cubic lattice. This means it is
centrosymmetric and possesses no spontaneous dipole and generates no second order nonlinear
signal at the excitation by light.

Figure 3.1a shows the arrangement of the atoms in the cubic state. Below its Curie tem-
perature, the atoms change to the tetragonal phase (Fig. 3.1b). In this situation, it is believed
that the Ti atoms move farther from the center and are responsible for the dipole moment
[120]. This is one of the BTO phases where SHG emission is present (and the only one at room
temperature). It will be easy to assume that a particle at room temperature will therefore
emit SHG light, and that the behavior of the dipoles within the particle is homogeneous in
nature. However, there seems to be indication that this is not always true. Hoshina et al. [105]
found that for particles in the nanoscale, the SHG e�ciency decreases. They have used X-ray
crystallography to con�rm the hypothesis that a BTO nanoparticle is in fact, constituted of an
outer layer with a cubic phase, a core with a tetragonal phase and an in-between layer with a
gradient between these two phases (Fig. 3.2).

O
Ti

Ba

(a) Cubic lattice (b) Tetragonal lattice

Figure 3.1: Two possible atomic distributions for BaTiO3. (a) shows a cubic lattice where the
Ti atom is in the center of the unit cell, Ba atoms are on the corners, and O atoms are at the
faces. (b) shows a tetragonal lattice where the Ti atom has displaced out of the center and
it has �pushed� the atoms around it in the same direction, due to electric forces. An electric
dipole is thus created.

If their results are indeed true, SHG signal emitted by these crystals will change drastically
with size. More importantly for our study, the hypothesized di�erent lattices within the particle
may respond di�erently in SHG. With traditional nonlinear optics, this information would
be very di�cult to extract due to the average over the di�raction limit, but we will aim to
demonstrate that by using PRNM we can see a signature of this phenomenon.
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Figure 3.2: Particle size dependence of the thickness of inner tetragonal core, gradient lattice
strain layer, and surface cubic layer. Reproduced from [105].

3.3 Sample preparation

The BaTiO3 nanocrystals used in this study are commercially available in the form of a powder.
We chose particles of an average diameter of 100 nm, 300 nm and 500 nm. Note that the
size of the crystal stated in this work is deduced from preliminary Dynamic Light Scattering
experiments performed in the R. Grange group. This information is therefore an average and
the standard deviation depends on the sample. To give an indication, one batch of BTO
nanoparticles had a size distribution with an average of 137 nm and a FWHM of 69 nm. In this
section, we describe the preparation of samples containing the BTO nanocrystals in a manner
that suits our needs.

The methodology used to prepare the BTO samples is straightforward and similar to other
types of nanoparticle samples we have studied. The whole sample preparation procedure is
detailed below, in short: 1. Clean cover slip. 2. Dilute sample (in ethanol). 3. Place a drop on
a treated cover slip. 4. Allow to dry and �xate.

We mainly used thin cover slips (170 µm) to carry the samples. The cover slips are marked
with a big grid (easily visible in regular optical microscopy) di�erentiating columns with letters
and rows with number (e.g. 1A). Inside a square of the big grid, there exists a grid of crosses,
which are again marked with letters and numbers. This results in a two-tiered coordinate system
that identify a cross (e.g. 1A2F). This marking is useful to quickly �nd individual particles,
in particular when correlative studies are performed where AFM / SEM / SHG measurements
are done on the same nanoparticle.

We have also experimented with di�erent types of substrates to deposit the nanocrystals,
as suggested by the need to perform di�erent characterization steps (AFM, SEM, nonlinear
microscopy) on the same nanocrystal. Those substrates are described in the results, Sections 3.6
and 3.7, and may have some deviations in procedure than the generic details described below.

3.3.1 Procedure details

Here, we detail the steps to prepare the BTO nanoparticle samples. This sample preparation
is used for most of our BTO measurements.
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Cover slip cleaning

1. Submerge a cover slip and a magnetic egg in a petri dish �lled with acetone. Cover it and
magnetically stir it for ten minutes. Note that the stirring speed should be high enough
to mix the solution and low enough so it does not cause the egg to jump.

2. Repeat for another ten minutes, but in a second petri dish �lled with ethanol. Be sure to
transfer the cover slip quickly to avoid evaporation of the acetone, which leaves marks.

3. Repeat for another ten minutes, but this time in a petri dish �lled with ionized water.

4. Finally, use pressurized air to dry the cover slip.

Deposition of nanoparticles

1. Create the stock suspension by diluting BTO nanoparticle powder in ethanol with a ratio
1.2 mg to 1 mL.

2. Apply 30 minutes of sonication to the stock.

3. Take 1 µL of the stock suspension and dilute this by a factor 1:100. This intents to reduce
the bunching of nanoparticles in aggregates.

4. Drip one 10 µL droplet of the diluted BTO suspension onto the cleaned cover slip.

5. Place the cover slip in a vacuum spin coater to spread and dry the suspension. Set to
100 RPM for 9 s and then 2000 RPM for 30 s.

3.4 Setup

The setup used in the polarization resolved nonlinear microscopy experiments on BTO nanopar-
ticles is the same as the setup used in the case of KTP nanocrystals (Fig. 1.7). However, we
do modify the detection �lters used in the detectors part, illustrated in Fig. 3.3.

The idea was to �rst evaluate the strength of possible third order (Four Wave Mixing: FWM)
and second order (SHG and Sum Frequency Generation: SFG) signals, as a feasibility study.
FWM is indeed interesting for its capability to give complementary information to second order
signals, in terms of crystal symmetry orders. We had to tune, however, the wavelengths of the
Ti:Sapphire pulsed laser source and the OPO to improve the intensity of the emitted signal.

Our setup allows us to collect not only Second Harmonic Generation signals (two times,
for Ti:Sapphire and OPO excitation beams), but also Four-Wave Mixing and Sum-Frequency
Generation (� 1.3.2). During this project, we tuned the excitation wavelengths several times.

During the course of our experiments on BTO, we used three di�erent con�gurations (cor-
responding to the Results in �3.6, �3.7, and �3.9). The incident wavelengths used were:

#1 Ti:Sa at 828 nm, OPO at 1084 nm;

#2 Ti:Sa at 900 nm;
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#3 Ti:Sa at 950 nm;

In con�guration #1 where we used the two beams (Ti:Sa and OPO), we collected signals for
FWM at 670 nm, SHG at 414 nm, SHG(OPO) at 542 nm, and SFG at 469 nm, corresponding
to PMT 1, PMT 2, PMT 3, and PMT 4 detectors respectively, as illustrated in Fig. 3.3. In the
other con�gurations, we can only detect SHG signal.

PMT 1

DM 770 SP DM 512 LP DM 635 LP

DM 458 LP

475/40 BP

414/46 BP

750 SP 676/29 BP

PMT 2

PM
T
4

PM
T
3

FWM

SHG OPO

SFG

SHG

534/30 BP

Figure 3.3: Detail of the PMT Detectors in the experimental setup (Fig. 1.7). The signal is
spectrally cleaned by a Shortpass �lter (SP) and then split by Dichroic mirrors (DM), and fur-
ther �ltered by Bandpass �lters (BP). There are four Photo-multiplier tubes (PMT) that collect
four di�erent nonlinear signals (FWM, SHG Ti:Sa, SHG OPO and SFG). This combination of
�lters is changed accordingly when the excitation wavelengths are changed.

3.5 Additional imaging techniques

In addition to nonlinear imaging, we have employed other imaging techniques. The goal of these
extra measurements was to have as much information available for our individual particles,
starting with the not-so-small-issue of whether we are imaging BTO nanoparticles or not. It is
possible that we could be measuring other kinds of material contaminating our samples. For
allowing us to use their facilities, we would like to acknowledge our collaborator Prof. Dr. Rachel
Grange and her team, �rst at the Abbe Center of Photonics, Friedrich-Schiller-Universität in
Jena and then at the Institute for Quantum Electronics, ETH in Zürich. Here, we brie�y
describe the techniques we used.
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Dark �eld microscopy

In dark �eld microscopy, the sample is illuminated by a white light source that is focused onto
the sample exclusively under wide angles due to an annulus �lter in a conjugate focal plane.
The lens that images the sample onto the detector is designed so that is does not collect the
direct, unscattered light from the light source. The detected image therefore only contains light
that scattered o� of the sample.

Atomic force microscopy

Atomic force microscopy (AFM) works by measuring the de�ection of a microscopic cantilever
that has a sharp nanoscopic tip which is `touching' the surface of the sample as it scans. In the
vicinity of the surface, the tip is repelled by contact forces and the cantilever de�ects as a spring.
The de�ection is measured by detecting the displacement of a laser beam on a photo-diode,
that re�ects o� the cantilever.

Scanning electron microscopy

In scanning electron microscopy (SEM), a focused beam of high-energy electrons is raster
scanned across the sample. The electrons' interaction with the surface cause the detected
signal (of secondary electrons emitted from the excited surface) to vary. Combining this with
position information, a topography of the surface can be constructed.

3.6 Results (Con�guration # 1)

In this section, we present our tentative results on multiple polarized nonlinear signals combined
with AFM/SEM imaging on the BTO nanocrystal samples. The goal is to have all information
(third order, second order nonlinear, as well as AFM and SEM) on the same nanocrystal.

Because of the need for such multiple characterization on the same sample, the nanocrystals
are deposited on a substrate covered with the gold coordinate grid mentioned in Section 3.3.
We note that in this con�guration, we do make a small deviation from the generic sample
preparation (�3.3) as we are not using cover slips, but a thick glass substrate.

Initially, the glass substrate was not suitable for the microscope objectives we had, since
they are optically corrected for thin cover slips (170 µm). The way to go around this thick
substrate is to observe the sample upside down, using a thin coverslip to cover the nanocrystals.

This type of sample is however probably more delicate for polarization responses interpreta-
tions, since possible re�ection between glass interfaces might introduce distortions. Addition-
ally, the gold marks on the glass substrate can easily melt by the incident focused laser beam
in nonlinear microscopy, ruining the measurement of neighboring nanoparticles. A lot of care
had therefore to be given to the choice of the region suitable for the combined observation of
single nanocrystals under AFM, SEM and nonlinear microscopy.

We have performed Dark Field, AFM and SEM measurements on a few BTO nanoparticle
samples which size is on average labeled as 300 nm. The resultant images are displayed in
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Figure 3.4.

The �rst step, after preparing our samples, consists of taking them to the Dark Field
microscope. Here, we can quickly scan the whole cover slip to �nd the positions where it
is more likely to �nd individual particles. From the Dark Field image (Fig. 3.4a), we note
the presence of the gold crosses marked on the glass substrate for the location de�nition of
the nanoparticles. The small white dots are BTO nanocrystals and some of them are labeled
(digitally, afterwards). Dark Field microscopy has a �eld of view large enough to capture
numerous nanoparticles at once, but lacks the resolution to image the individual nanoparticles.

4
5

6

7
200 μm

(a) Dark Field

1 μm

(b) AFM

200 nm

(c) SEM

Figure 3.4: Example images of nanoparticle imaging using (a) Dark Field (area
176 µm×132 µm), (b) AFM (area 5 µm×5 µm), and (c) SEM (area 706 nm×529 nm). The
AFM and SEM images are from the same particle labeled #5 in the Dark Field image nearby
cross 2F.

Using AFM imaging, in Figure 3.4b we show an image of one particle labeled #5 in the
Dark Field image. AFM measurements are important because they can give precise height
information (in this case ∼ 300 nm) of the particle relative to the surface. A SEM image
(Fig. 3.4c) of the same particle gives more detail of the particle surface. This SEM image is
taken at electron energy 0.7 kV.

Comparing the SEM image with the AFM data, one can recognize that the AFM scans
from left to right and produces a small ghost-e�ect due to delay of the force-feedback on the
cantilever. The SEM image allows for a more precise measurement of the size of a particular
BTO nanoparticle. In this case, approximately 290 nm diameter while with AFM, we determine
the size to be 350 nm. Note that the SEM image also reveals some features that are not visible
otherwise : small parts of nanocrystal are attached to the top of particle #5 for instance. These
features can have important consequences on polarized nonlinear microscopy.

It is important to notice however, that while we do have certain particles characterized with
mentioned techniques and even with others (linear spectroscopy, phase imaging), repeating
these measurements in all of our studied particles is also technically very complicated and time
consuming. The main reason is the inherent limitations of the substrate and the total measuring
time. We therefore prefer the use of bare clean cover slips thanks to the higher suitability for
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our microscope, even though they are not suitable to use on AFM or SEM instruments. Overall
this sample preparation still allows measuring a high quantity of BTO single nanocrystal in
suitable optical conditions, which is appropriate to relate our P-SHG signals to a structural
interpretation.

3.6.1 Polarization-Resolved Nonlinear Microscopy

In Figures 3.5, 3.6 and 3.7, we demonstrate our measurement of the previously introduced
particle (#5) using polarization-resolved nonlinear microscopy. This polarized information is
depicted for FWM at 670 nm (Fig. 3.5), SHG at 542 nm (Fig. 3.6), and SFG at 470 nm
(Fig. 3.7). The excitation powers used in this experiment were identical for the Ti:Sa and OPO
sources, 4 mW, measured at the back focal plane of the objective. In each �gure, we display
the total intensity I0 and using sticks plots, we display the dipolar and quadrupolar anisotropy
parameters I2 and I4 together with their corresponding orientation angles φ2 and φ4. Note that
we apply the same masking as described in the previous chapter (Section 1.4.6), in order to
suppress pixels with low signal to noise.
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Figure 3.5: Intensity and anisotropy plots for FWM at 670nm.

Figure 3.5 shows the anisotropy of the nonlinear signal from the �rst detector, corresponding
to Four-Wave Mixing (FWM) intensity at 670 nm. It is clear from the I0 image that the signal
is faint and exhibit a relatively high background. The background might be due to a slight
FWM signal occuring from the glass substrate. Both e�ects (low signal and relatively high
background) will a�ect the precision of the symmetry parameter measurements, and induce
possible bias on their values (see Ch. 1). Under the conditions seen here, the I2 and I4 values
measured, even though apparently above noise, were not reliable enough for interpretation.
Note that other BTO nanocrystals exhibited similar FWM signatures. We therefore did not
pursue the study of such signals.

Displayed in Figure 3.6, we show the anisotropy signatures of the Second Harmonic Gener-
ation (SHG) measured intensity at 542 nm (originated from the OPO beam at 1084 nm). The
total intensity I0 peaks over 100 counts while background is about 50 counts, which is not much
better than FWM in terms of signal to background and signal to noise conditions. Here, we can
observe I2 and I4 values reaching about 0.07 with some extended features. These characteristics
are however still measured in low precision conditions. This signal is in particular too faint to
discern the orientation distribution of φ2 or φ4.

Figure 3.7 displays the strength of the anisotropy of the Sum-Frequency Generation signal
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Figure 3.6: Intensity and anisotropy plots for SHG at 542 nm.
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Figure 3.7: Intensity and anisotropy plots for SFG 469 nm.

at 469 nm. The total intensity I0 peaks over 600 on top of a background of about 50 (arb.
unit). Note also that the I2 and I4 images show signi�cant signal. As mentioned above, the
high SHG signal here is attributed to the presence of a resonance in the nanoparticles. This
high signal leads to considerable improvement of the symmetry order quanti�cation.

The pattern observed for I2&φ2 is remarkable. We note that the pattern shows a central
region of high I2 magnitude (reaching 0.3) with homogeneous orientation angle. It is surrounded
by a ellipsoidal ring of about half peak I2 magnitude with a φ2 angle orientated radially. The
central region is elongated and extents to the size of the ellipsoidal ring in the minor axis. The
orientation φ2 of the central region coincides with this axis. This �gure is considerably extended
spatially, much above the size of the di�raction limit PSF that is presented in the I0 image.

Let us point out that this pattern is a �rst indication of a particular crystalline organization
of BTO, since our experience with KTP and others homogeneous crystals had us expecting a
homogeneous pattern similar to the one observed in Fig. 1.15. Particularly, the radial ring in
Fig. 3.7b points intuitively to the existence of a structure at the surface of the nanocrystal that
is of di�erent symmetry from the non-centrosymmetric core, which could coincide with what
has been reported [105].

Being able to answer such an issue, however, requires a statistical exploration over a large
number of BTO nanocrystals, since the observed patterns can depend on size, structure and
orientation. Several nanocrystals were measured and show very similar results as the observed
pattern in Fig. 3.7, which seem to con�rm the speci�c features depicted here. However due
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to the di�culties encountered in handling the sample (in particular the poor robustness of the
metal grid to our incident laser beams), and the possible polarization distortions that might
occur from glass interfaces re�ections (see above), we opted for a modi�cation of the type of
substrate used. The following sections address our trials.

3.7 Results (Con�guration # 2)

This section describes our second attempt to prepare a sample that allows to work with when
changing imaging environments. In this preparation, we chose to use cover slips coated with
Indium Tin Oxide (ITO) instead of a glass substrate. Note that in what follows, we only focus
on SHG signals around 470 nm since we noticed in the previous section that this wavelength
was more appropriate to generate high signals. Practically speaking, we used here only the
Ti:Sapph laser set at 900 nm wavelength, which sets the SHG detection at 450 nm. In this case
only one PMT was required, using an appropriate band pass �lter (475/40 nm).

1 μm

(a) SEM

500 1000 1500
Size (nm)

500

1000

1500

Si
ze

 (n
m

)
I0 A17 Prtkl_1 4_ANA

0

300

600

(b) I0

500 1000 1500
Size (nm)

500

1000

1500

Si
ze

 (n
m

)

I2+Phi2 A17 Prtkl_1 4_ANA

0.0

0.1

0.2

(c) I2&φ2

500 1000 1500
Size (nm)

500

1000

1500

Si
ze

 (n
m

)

I4+Phi4 A17 Prtkl_1 4_ANA

0.00

0.15

0.30

(d) I4&φ4

Figure 3.8: Results for an example BTO nanocrystal. (a) SEM image showing the single
nanocrystal of spherical shape (the white bar indicates 1 µm). The total intensity of the stack
I0 for SHG at 450 nm is shown in (b). The dipolar and quadrupolar anisotropy sticks plots are
shown in (c) and (d), respectively.

ITO is a material used to make transparent conductive coatings, and it could allow us to
to work with cover slips instead of gold-coated glass substrate but it would give us the added
bene�t of being able to SEM-image directly. We performed the same imaging measurements
as before: Dark Field, AFM and SEM. After collecting these data, we tried PRNM on the
samples.

As mentioned in previous section, we tried to study particles of di�erent sizes to con�rm
whether or not we see a change in their anisotropy pattern. Since in the previous attempt we
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had enough examples of 300 nm particles, we decided to focus on samples of averaged size 500
nm and 100 nm. Unfortunately, explorations on smaller sized particles, require higher power
than previously, and we discovered that the ITO layer in our sample starts burning at 25 mW,
which is less than the power required to obtain signal from individual particles in this batch (we
will see however in the next section that this changes from manufacturer to manufacturer). Our
samples with 100 nm did not show any signal at low power and the larger particles (∼ 500 nm)
only emitted signal when being part of an aggregate (Fig. 3.9), with only one exception (Fig.
3.8).
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Figure 3.9: Results for an example BTO nanocrystal aggregate of 5 particles. The SEM image
(a) shows the aggregate formation (the white bar indicates 1 µm). The total intensity of the
stack I0 for SHG at 450nm is shown in (b). The dipolar and quadrupolar anisotropy sticks
plots are shown in (c) and (d), respectively.

Figure 3.8 provides the result of SEM and PRNM for a BTO nanoparticle of about 300 nm.
The dipolar anisotropy I2 shown in Fig. 3.8c has a mask, indicating the region of high signal
to noise. The I2 anisotropy values reach about 0.2 and its orientation φ2 is very homogeneous
with an angle of ∼ 45◦. The quadrupolar anisotropy I4 is very strong with a value of 0.3.

In Figure 3.9, we show a larger aggregate consisting of 5 particles. It is visible in the SEM
image (Fig. 3.9a) that the particles are roughly positioned along a line of about 1 µm.

From the total intensity I0 (Fig. 3.9b), we can see that the resolving power of direct SHG
imaging is not enough to identify all �ve particles. Exploiting the technique of PRNM however,
we can recover the signature of these �ve (or at least several) particles in the anisotropy image
of I2 (Fig. 3.9c) and in the quadrupolar I4 image.

The map of the orientation φ2 also shows us that the di�erent particles have clearly di�erent
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angles, which indicates that orientation of the BTO crystal lattice is oriented di�erently for
each particle.

We notice that the I2 values within this particle aggregate are not the same from region to
region. This observation is an indication that the crystal's out-of-plane angle θ could also be
di�erent for these particles.

Due to the limitations in the use of ITO substrate (in particular poor resistance to high
power), we could not perform statistical analysis on many single BTO nanocrystals with this
sample prepation.

3.8 Model

In the experimental results presented up to this point, we observed complex patterns (Fig. 3.7b).
In order to investigate the data in a more complete way we will develop a model that incorpo-
rates a substructure of the BTO nanoparticles. As mentioned in the introduction (�3.2), the
model is inspired by [105], and has a core and a shell of di�erent crystalline structure within
the nanoparticle.

The model for Polarization Resolved Nonlinear Microscopy on a BaTiO3 crystal is based on
the KTP model described in �1.2. The theory of nonlinear optics (�1.2.2) is identical, e.g. it
starts by de�ning a tensorial structure for the second-order nonlinear susceptibility β (in the
microscopic frame) which corresponds to the crystal unit cell frame. What we changed is the
construction of the nanoparticle. In this model, we assume that the crystal lattice and therefore
β, depends on its location in the particle: core or shell. This section will describe the details
of the BTO model.

3.8.1 Nonlinear susceptibility

As noted above, bulk BaTiO3 crystal is known to have a crystal phase transition from tetragonal
phase to cubic phase upon heating above 120◦. BTO as a tetragonal crystal assumes the point
group C4v (or 4mm), while as a cubic crystal it is Oh (or m3m). For the cubic crystal lattice
(m3m), all tensor components vanish, and we have β = 0. However, in the case of the tetragonal
crystal (4mm), the nonlinear response does not cancel out and we have the following nonzero
components in β [56]:

βx =

 0 0 βxxz
0 0 0
βxzx 0 0

 , βy =

0 0 0
0 0 βyyz
0 βyzy 0

 , βz =

βzxx 0 0
0 βzyy 0
0 0 βzzz


where the values are given1 by [121, Tbl. 18-2, p. 500]:

βxxz = βxzx = βyyz = βyzy = 38.66± 4.0 pm/V

βzxx = βzyy = 35.7± 4.0 pm/V

βzzz = 15.58± 2.34 pm/V

1Note that the contracted notation used in [121] contains a historical factor 2: β ∼ 2d
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Note that the tetragonal symmetry has been used in the past in numerous works on the
investigation of polarization SHG responses from single BTO nanocrystals, of sizes around
100 nm [118]. However, these works report on averaged responses over the whole nanocrystal
size. Most of the reported results seem to show relatively good agreement between the mea-
sured P-SHG responses and the tetragonal symmetry, however some recent work have pointed
out possible discrepancies [42], which might be explained by the results found by our P-SHG
microscopy approach.

3.8.2 Structure

Using these β values and the hypothesis on the size/shape of the cystalline domains in the
nanocrystal, we can calculate the general SHG response of a BTO nanocrystal.

We model the structure in 2D. Therefore, instead of nanospheres, we use nanodiscs. The
3D expansion of the structure might have consequences on deviation from this 2D model only
if there are couplings between longitudinal components of the �elds and nonlinear tensor in
the nanocrystal. Since the longitudinal components of the �elds are rather low in amplitude
for the NA used here (see Ch. 1), we believe that this 2D model is amply su�cient for a �rst
quantitative appreciation of our results.

As mentioned before, we follow the structure determined in [105] (see Fig. 3.2), and we will
ignore as a �rst approximation the gradient behavior between the inner and outer parts of the
nanocrystal. The inner disc represents the core of tetragonal symmetry, which is surrounded by
a ring (the shell) of cubic symmetry. The core takes 80% of the particle diameter, the shell takes
the remaining 20%. These proportions are chosen phenomenologically [105] (and are rounded
to the nearest pixel size of 40 nm).

In our experimental �ndings so far, we have already seen cases where the sample exhibits
very heterogeneous features, in particular with some radial components on their surface. We
attributed these components to surfacic e�ects, which are indeed likely to occur since BTO has
a high index of refraction (no ∼ 2.52, ne ∼ 2.46 at 470 nm [122]), especially once we consider
the fact that the current con�guration has the samples in air. This hypothesis of surfacic
contributions is further con�rmed using an immersion medium of higher index (oil) as we will
see later in Results (Fig. 3.24). Therefore, we �nalize the structural model of BTO nanocrystals
by a thin circle that represents the interface with the outside medium. The interface is an outer
layer with a thickness chosen to be as thin as possible (e.g. one pixel).

In summary, we de�ne three mask functions that determine whether a pixel is in the core
(Sc), shell (Ss), interface (Si), or outside all of them:

Sc(x, y) =

{
1 if

√
x2 + y2 < d/2

0 otherwise

Ss(x, y) =

{
1 if

√
x2 + y2 ≥ d/2 and

√
x2 + y2 < s/2

0 otherwise

Si(x, y) =

{
1 if

√
x2 + y2 ≥ s/2 and

√
x2 + y2 < s/2 + ε

0 otherwise

(3.1)
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where s is the size of the particle (diameter of the shell), d = 0.8s is the diameter of the core,
and ε is the smallest non-zero distance that can be modeled (e.g. one pixel size). We will
detail the SHG response of each region below. The shape of this BTO nanoparticle model is
illustrated with an example in Figure 3.10.
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Figure 3.10: Example of a modeled BTO nanoparticle substructure with total size s = 500 nm
and core diameter d = 0.8s. Colors indicate the type of SHG response a pixel generates. Dark
blue is the background with zero response. The dark green center represents the core with a
SHG response equal to BTO tetragonal crystal at a angle Ω. The core is surrounded by a shell
with cubic lattice that has zero SHG response. The core and shell are surrounded by a 1 pixel
thick interface that has a dipolar SHG response that is dependent only on the angle between
polarization and the surface normal vector.

Core

The response of the core of the particle is that of bulk BTO with a tetragonal crystal (with
the crystal lattice orientation rotated by Ω). The excitation intensity for the core is therefore
identical to the intensity as a function of polarization angle α as decomposed in Eq. 1.8:

Ic(α) = A0/2 + A2 cos(2α) +B2 sin(2α) + A4 cos(4α) +B4 sin(4α)

Shell

The di�erence between the core and the shell is the crystal lattice. Where the core has the
lattice of tetragonal BTO, the shell is BTO in the cubic crystal phase. A cubic lattice is, due
to its symmetries, unable to generate SHG light (β = 0) and the excitation intensity for the
shell is therefore identically zero:

Is(α) = 0

Interface

We model the SHG signal coming from the interface as a pure 1D nonlinear response oriented
normal to the surface, which means that for a sphere it is radially oriented. The nonlinearly
induced polarization by an electric �eldE is given by [cos(α− φ)]2, where the normal orientation
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is φ and the electric �eld polarization angle is α. The expected intensity is thus of the form
I(α) = a + b[cos(α − φ)]4. Upon expanding the cos4 term, in terms of position (x, y) on the
surface, we obtain:

Ii(x, y, α) = I0 · [3 + 4 cos (2(α− n(x, y))) + cos (4(α− n(x, y)))] (3.2)

where n(x, y) = − tan−1(x/y) is the angle normal to the interface surface at position (x, y).

Total intensity

Finally, the total intensity image stack (pixels (x, y), angle α) is obtained by summing all the
intensities multiplied with the shape mask functions:

I(x, y, α) = Ic(α)Sc(x, y) + Is(α)Ss(x, y) + Ii(x, y, α)Si(x, y)

Having de�ned the image stack function I(x, y, α) of the structure, we add Poisson noise
and convolve images with the Point Spread Function as is done for the KTP model (see �1.4.8).
Note that the noise addition is mainly due to numerical artifacts that would appear from
convolutions in a �nite space if no noise was included. After this step, the image stack is
subject to analysis as is done for any nanoparticle (see �1.4.4). It includes the Fourier Series
decomposition (coe�cients Ak) and the calculation of the symmetry order parameters I2 and
I4 with angles φ2 and φ4, respectively.

3.8.3 Model parameters

Let us summarize here the parameters of the BTO nanocrystal model and the range of the
typical values that we have chosen. The nanodisc shape is de�ned by Eq. 3.1. To con�gure the
shape, we have the parameters s (total diameter), d (core diameter), and whether we have a
1 px interface (Int = 1) or not (Int = 0). Table 3.1 lists the particular values we have chosen.

Shape size s = {50, 100, 300, 500}
Shell-core ratio 1− d/s = {0, 0.2, 0.6}
Interface factor Int = {0, 1}

Crystal Orientation Ω =


θ = 0◦, 45◦, 90◦

φ = 0◦

ψ = 0◦

Table 3.1: List of parameters used in the BTO nanoparticle SHG model.

3.8.4 Model results

In Figures 3.11�3.18, we show the BTO Model results extensively, for all parameters (with
interface) of Table 3.1. Here we will provide a discussion on these results.

In the 50 nm particles, we �nd no striking shell-dependence, i.e. the di�erences seen in
the patterns are mainly due to orientational e�ects, not to structural e�ects (note that the
I4 patterns here su�er from noise introduced in the numerical simulations, those are purely
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artifacts). This is most probably due to the small size of structures, that is not compatible
with the spatial selectivity of the method (we know from nanorods (Ch. 2) that below 10 nm
sizes, discrimination of structures is harder).

As we shall see in the observed data of BTO nanocrystals, we have repeatedly found similar
looking maps of I2 and I4. In the following sections, we will demonstrate these results and in
anticipation of these �ndings, we will discuss them here shortly with respect to the modeled
results. We have four groups: Bar, Radial, Dipolar and Eight. Their names re�ect the overall
geometric shape of high values in I2 and I4 maps.

Radial patterns (look mostly like a ring): At sizes from 100 nm and greater, we start seeing
radial patterns that occur only in structures that exhibit a shell. Other variations are purely
due to orientational e�ects. For sizes 300 nm and greater, this is still true, however we need a
larger shell size ratio (0.6) to evidence the pattern.

Eight-patterns (look like they have a �gure-of-eight): Can be visible on both cases (with
or without shell), especially for 100 nm size. Dipole-like patterns, showing mostly two spots
(happens mostly when θ = 90◦) and Bar-like patterns, two bright spots are connected by a
'bar' (happens only when θ = 0◦) can both occur in no-shell and shell cases. For Dipole-like
cases, I4 patterns cannot really help to di�erentiate them. For Bar-like cases, I4 patterns tend
to be less contrasted for the no-shell case but this is a quite small e�ect. Finally, we note that
only tracking radial dependences (and similarly, patterns with low I2 at the center) seems to
be the way to go to con�rm or not the existence of a shell.
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Figure 3.11: Dipolar anisotropy I2&φ2 results from PRNM of modeled BTO nanoparticles of size
50 nm, with shell ratios s = 0, 0.2, 0.6 (columns) and out-of-plane orientations θ = 90◦, 45◦, 0◦

(rows). Other angles of orientation are φ = ψ = 0◦.
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Figure 3.12: Quadrupolar anisotropy I4&φ4 results from PRNM of modeled BTO nanoparticles
of size 50 nm, with shell ratios s = 0, 0.2, 0.6 (columns) and out-of-plane orientations θ =
90◦, 45◦, 0◦ (rows). Other angles of orientation are φ = ψ = 0◦.
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Figure 3.13: Dipolar anisotropy I2&φ2 results from PRNM of modeled BTO nanoparticles of size
100 nm, with shell ratios s = 0, 0.2, 0.6 (columns) and out-of-plane orientations θ = 90◦, 45◦, 0◦

(rows). Other angles of orientation are φ = ψ = 0◦.
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Figure 3.14: Quadrupolar anisotropy I4&φ4 results from PRNM of modeled BTO nanoparticles
of size 100 nm, with shell ratios s = 0, 0.2, 0.6 (columns) and out-of-plane orientations θ =
90◦, 45◦, 0◦ (rows). Other angles of orientation are φ = ψ = 0◦.
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Figure 3.15: Dipolar anisotropy I2&φ2 results from PRNM of modeled BTO nanoparticles of size
300 nm, with shell ratios s = 0, 0.2, 0.6 (columns) and out-of-plane orientations θ = 90◦, 45◦, 0◦

(rows). Other angles of orientation are φ = ψ = 0◦.
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Figure 3.16: Quadrupolar anisotropy I4&φ4 results from PRNM of modeled BTO nanoparticles
of size 300 nm, with shell ratios s = 0, 0.2, 0.6 (columns) and out-of-plane orientations θ =
90◦, 45◦, 0◦ (rows). Other angles of orientation are φ = ψ = 0◦.
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Figure 3.17: Dipolar anisotropy I2&φ2 results from PRNM of modeled BTO nanoparticles of size
500 nm, with shell ratios s = 0, 0.2, 0.6 (columns) and out-of-plane orientations θ = 90◦, 45◦, 0◦

(rows). Other angles of orientation are φ = ψ = 0◦.
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Figure 3.18: Quadrupolar anisotropy I4&φ4 results from PRNM of modeled BTO nanoparticles
of size 500 nm, with shell ratios s = 0, 0.2, 0.6 (columns) and out-of-plane orientations θ =
90◦, 45◦, 0◦ (rows). Other angles of orientation are φ = ψ = 0◦.

76



In the following section (� 3.9), we will present a selection of new experimental PRNM results
in the �nal con�guration of BTO nanocrystal samples and setup. Alongside the experimental
data, we shall also include the results from the BTO model described in the present section.
This allows for a comparison and a demonstration of the model's validity and limits.

3.9 Results (Preparation # 3)

In this section, we demonstrate the results from the �nal choice of sample preparation, where
we chose to use bare cover slips, i.e. without ITO. The details of this sample preparation is
described above (�3.3). As well as displaying the PRNM measurements of the BTO nanoparti-
cles, we compare them with numerical results from the model described in the previous section
(�3.8).

Since this sample preparation proved more successful, we investigated various samples. In
total we performed 107 PRNM experiments on BTO nanocrystals. In these experiments, we
measured particles of di�erent size and from di�erent manufacturers. Table 3.2 summarizes the
types of particles investigated. The setback of this preparation is the lack of SEM images. We
obtained AFM images for only a few of them due to the long time that this technique takes.
Note that we shifted the incoming light from 900 nm to 950 nm to better match the resonances
of the BTO as we discovered in previous measurements.

Dataset # Exp. Average size

BTO 007 15 Size 500 nm.
BTO 008 12 Size 400− 500 nm.
BTO 300 11 Size 300 nm.
BTO TP 15 Size 100 nm.
BTO NA 15 Size 100 nm.
BTO NA Oil 9 Size 100 nm.
BTO NAA 15 Size 100 nm.
BTO 02 15 Size 100 nm.

Table 3.2: Table of particle sample types measured with PRNM. The name of the datasets are
arbitrarily assigned and do not indicate any particular trend. The column �# Exp.� lists the
number of PRNM experiments done on such nanoparticles, with each consisting of a number of
repeated measurements (∼ 8×) for averaging purposes. See text for a more complete description
of the types.

Of the datasets listed in Tbl. 3.2, the ones labeled BTO 008, BTO 007, BTO 02 and
BTO 300 are fabricated by the group of Vicenzo Buscaglia. Their fabrication of such BTO
nanospheres method is described in [124] and Figure 3.19a provides a SEM image of a batch of
BTO 007. The BTO TP nanoparticles are produced by Techpowder S.A., Fig. 3.19b shows a
SEM image of such a batch. The nanoparticles labeled BTO NA and BTO NAA are provided
by Nanostructured & Amorphous Materials, Inc. (NanoAmor), BTO NA Oil refers to BTO NA
type nanoparticles immersed in oil during PRNM experiments.

Among all BTO nanoparticles measured, we noticed that the I2&φ2 and I4&φ4 signatures
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1 μm

(a) BTO 007

200 nm

(b) BTO TP

Figure 3.19: SEM images of (a) a batch of 500 nm BTO 007 nanoparticles [image courtesy of
R. Grange group, EPFL], and (b) a batch of 100 nm BTO TP nanoparticles [of Techpowder
S.A.].

were very diverse from particle to particle. We therefore tried to classify them into several
speci�c behaviors, and to compare such behaviors with the model that is described above. We
will concentrate in what follows on 100 nm size particles, since very similar behaviors were also
seen on 300 nm particles.

We divide our results in four groups, according to their phenomenological similarities in the
way the I2 and I4 maps behave geometrically. As introduced earlier, we de�ne them as: Bar,
Radial, Dipolar, Eight. Figures 3.20, 3.21, 3.22 and 3.23 show PRNM measurement results of
di�erent samples compared to simulation plots. We will also present an example of results from
the measurements on Oil-immersed BTO nanoparticles, in Figure 3.24. For each sample, we
show the dipolar and quadrupolar anisotropy in sticks plot representation. As mentioned, the
theoretical results depend on di�erent model parameters (� 3.8.3) and we chose the result for
each sample that seems to best match the data by pure qualitative observation of the shape in
the I2&φ2 and I4&φ4 maps. All of them have the 1 px interface layer, except when indicated.

Bar-like pattern

Figure 3.20 displays an example result of a PRNM measurement on BTO nanoparticles. The
choice of sample represents a class of measurements whose I2&φ2 resembles the shape of a bar:
an elongated rectangular region of high I2 intensity in which the φ2 orientation is along the
length of the bar-shape (Fig. 3.20a). On either side of the bar, one can faintly see that there
exist two `singular' points of low I2 and around which the φ2 angle fans out radially over a
semicircle, on the outside of the bar.

A theoretical result of I2&φ2 that comes close to this result is displayed in Figure 3.20c.
The model parameters used to obtain this result are: Size s = 300 nm, Shell ratio 1−d/s = 0.2,
out-of-plane angle θ = 0◦. We can see that there is an elongated region of high intensity I2 that
has a φ2 angle in the same direction as the elongation. In the theoretical result, the `pinch' of
the singular points is more pronounced than in the data. Furthermore, the bar shape in the I2
intensity is not as strong in the center as it is in the end points of the bar, nevertheless these
responses are very close to each other.

The comparison of the quadrupolar anisotropy and its orientation (I4&φ4) between data
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Figure 3.20: Comparison of PRNM results (SHG at 475 nm) of a BTO particle vs. results
from the BTO model, displaying dipolar and quadrupolar anisotropy (I2&φ2 and I4&φ4). Even
though the experimental particle was from a batch of 100 nm sized nanoparticles, the theoretical
curve that best resembles its shape belonged to a 300 nm size particle. The theoretical model
also assumes the existence of a shell.

and theory is di�cult due to the larger noise in the data, yet, we can still notice a similarity
between the patterns. First, we have four low intensity spots in I4 (Fig. 3.20d), one of them
being reproduced in Fig. 3.20b. We also see a small increase in I4 in both images along the
edges resembling a pair of wings.

It is important to note that this behavior, which is observed for several particles, could not
be explained by a pure tetragonal phase of the nanocrystal, nor by a pure tetragonal+interface
structure for the nanocrystal. The existence of a centrosymmetric shell is necessary to explain
this result, which is further visible thanks to the existence of the surface response. We emphasize
indeed that it is thanks to the existence of this surfacic nonlinear induced dipoles that the
cubic shell can be evidenced, since it requires contributions from spatially distant and di�erent
nonlinear dipoles directions to a�ect the anisotropy patterns.

Radial pattern

Figure 3.21 shows an example of the �radial� pattern class of data. This class is characterized
by a radial pattern in the anisotropy plot I2&φ2 (Fig. 3.21a). One can see there is a ring-shape
of high magnitude I2, whereas the φ2 angle is oriented radially from the center of this ring. A
closer look reveals that within the ring, there are actually two `singular' points of low I2, as
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Figure 3.21: Comparison of PRNM results (SHG at 475 nm) of a BTO particle vs. results from
the BTO model, displaying the dipolar and quadrupolar anisotropy (I2&φ2 and I4&φ4). Even
when the experimental particle was 100 nm size, the theoretical curve that better resembles its
shape belonged to a 500 nm size particle. The theoretical model also assumes the existence of
a shell.

we have seen in the previous class. Between these points a faint resemblance of the bar shape
can be found as well. It is unclear why the circle of high intensity in I2 is not `closed', i.e. it is
visible that the right hand side does not have such intense pixels, compared to the model. The
reason is probably the lack of symmetry in the real particle, in contrast to the theoretical one.

The quadrupolar anisotropy (Fig. 3.21b) is relatively strong, and its pattern is also charac-
teristic for this class. We see that there exist four regions of high I4 that are positioned on a
very faint ring of equal size as the I2 ring shape. The orientations φ4 are somewhat radial as
well. Note that, as mentioned in �1.2.3, the φ4 order parameter has a 90◦ rotational symmetry,
(e.g. −45◦, 45◦, 135◦,−135◦ are indistinguishable).

The theoretical results of I2 and I4 (Figs. 3.21c, 3.21d) are generated by setting order
parameters to: Size s = 500 nm, Shell ratio 1− d/s = 0.6, and out-of-plane angle θ = 0◦. This
size of 500 nm is bigger than the measured particle (∼ 100 nm), but it illustrates the pattern
better. We cannot fully explain these apparent dissonance, although the reason could be that
the particle is indeed bigger (we have no AFM or SEM images for this particle).

Note that in the model, the radial pattern and ring-like shape in I2&φ2 are recovered,
including the two `singular' points in the center. However, the shape of the mask (based on I0)
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is somewhat elongated in the experimental results (again, possibly because of the deviation of
the physical shape from a perfect sphere), while it is perfectly circular in the theory.

Dipolar pattern

We call the third class of data �dipolar pattern�. An example is shown in Figure 3.22.
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Figure 3.22: Comparison of PRNM results (SHG at 475 nm) of a BTO particle vs. results from
the BTO model (size s = 100 nm), displaying the dipolar and quadrupolar anisotropy (I2&φ2

and I4&φ4). Since the pattern displays two strong intensity I2 spots, we call this the dipolar
pattern.

The name is chosen as such because we can see two regions of high I2 intensity located
opposite to each other. The quadupolar intensity I4 is very low for the most part with the
exception of four small spots that are somewhat reproduced in the experimental plot. In the
theory, we can generate a pattern that matches this class. In Figure 3.22c, we show the dipolar
anisotropy I2&φ2 as obtained from order parameters: Size s = 100 nm, Shell ratio 1−d/s = 0.0,
and out-of-plane angle θ = 0◦. Note that there is no shell in this case.

Even though there seems to be a di�erence in magnitude between the patterns, the ratios
I2/I4(data)=2 and I2/I4(theory)=2.2 are very similar. In the same manner as previous patterns,
we see two small singularities of low intensity I2 in both plots. It is remarkable that the �radius�
of this singularities is ∼1 pixel=50 nm, �ve to six times smaller than the di�raction limit. The
same can be said about the four high intensity islands in both I4 plots, these features are
discernible even when smaller than the di�raction limit.
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Finally, and as suggested before, the lack of symmetry between both sides in Figs. 3.22a
and 3.22b can be explained by the fact that the real particle is not completely symmetric.

Eight-like pattern

The next class is called �eight-like� pattern.
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Figure 3.23: Comparison of PRNM results (SHG at 475 nm) of a BTO particle vs. results from
the BTO model, displaying the dipolar and quadrupolar anisotropy (I2&φ2 and I4&φ4). This
model is based on a 300 nm particle, with a 0.6 shell-core ratio and out-of-plane θ = 0◦. We
name this an eight-like pattern.

While in principle we observe the same two low intensity singularities in Figs. 3.23a and
3.23c as in past cases, the main di�erence is that they are more pronounced in this pattern.
They are also surrounded by a higher intensity ring. We can clearly see a number �8� drawn in
these �gures, hence the name of the pattern.

Figure 3.23d resembles a �cross� with a very pronounced horizontal bar crossing the center.
Unlike the previous case (dipolar pattern), the ratio between I2 and I4 is not the same for
experiment vs theory data. Overall, the maximum value of I4 theory data seems very weak
compared to previous cases.

Note that the orientation of the theoretical I2 pattern (horizontal) is not the same as the
data (diagonal), but that the patterns nonetheless match. Inspecting the orientation of the
sticks in the I2 data, we �nd that the experimental data is somewhat twisted (it contains a
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azimuthal component), whereas the theoretical data is more purely radial. Also in I4 data, we
�nd the same overall orientation of the pattern in the data.

Removing the interface

A principal cause for the e�ect of the interface is the refractive index of the particle relative
to the outside medium. BTO has a high index of refraction (n ∼ 2.5) [122], which we think
results in a signi�cant increase of the interface e�ect. For comparison, KTP has n ∼ 1.8 [123]
and this lower value does not result in a strong e�ect. In order to �nd experimental evidence
of this notion, we modi�ed the index mismatch of the particle with the medium by imaging the
nanoparticles in oil rather than in air. An example of the results can be seen in Figure 3.24a,
where we can clearly see that all the patterns observed before have disappeared. As listed in
Table 3.2 we have measured 9 samples in oil. All of them have the same pattern.
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Figure 3.24: Comparison of PRNM measurements in Oil (SHG at 475 nm) of a BTO particle vs.
results from the BTO model with zero interface factor, displaying the dipolar and quadrupolar
anisotropy (I2&φ2 and I4&φ4).

Here, unlike the previous examples, the theoretical images where generated by removing
the interface (Int= 0), irrespectively of the other parameters. We observe a very good agree-
ment between the modeled responses and the observed ones (even though the magnitude of I4
seems overestimated, which we discuss in the next section). This points to the important role
that the interface plays in the creation of the observed sub-di�raction limited features. When
the interface signal is low, the tetragonal core will dominate. The result is a homogeneously
orientated response, since the core is a homogeneously oriented tetragonal crystal.
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3.9.1 Particle orientation

We have seen that small changes in the size of the particle, the existence or not of a shell,
and the size of such shell with respect to the core can make a big di�erence in the patterns
of the anisotropy images. However, there is one variable that have remained constant, the
out-of-plane orientation which was found to be in almost all cases θ = 0◦.

To summarize the e�ect of the orientation of the particle with respect to the excitation plane
XY , let us point out to the fact the value of βzzz is the lowest of the tensorial components
of the nonlinear susceptibility β in the tetragonal BTO symmetry. This implies that higher
coupling, and therefore SHG signal, is to be found when incident electric �eld components are
perpendicular to the axis of the βzzz term (i.e perpendicular to the microscopic frame's z-axis).

Since the incident light is polarized in-plane (XY ), the orientation of the z-axis of the
tetragonal core can be aligned with the E-�eld when θ = 90◦. In such a case, the signal of
the core is small and signals arising from the the core-shell interface and the shell-medium
interface come into play. The nonlinear signal is found to be comparable to the signal arising
from the shell and interface regions, which allows to manifest all the patterns mentioned above.
Otherwise, at θ = 0◦, the signal of the core could dominate and the anisotropy plot will look
more similar to a KTP pattern (seen in Ch. 1). This can be explained by the fact that real-life
particles oriented in-plane θ = 90◦ emit a signal too low to be properly analyzed (due to the
noise) or even too low to be captured, resulting in our most reliable data being out-of-plane
θ = 0◦.

3.10 Quantitative analysis

So far, we have focused on the qualitative behavior of our results. In this section, we will
summarize our results from a quantitative point of view. To perform such analysis, we need to
explore all ranges of possible I2, I4 values extracted from our model, for di�erent orientations of
the nanocrystals. Indeed not only the patterns change, the relative values of those symmetry
orders also vary. To access this information, we plot all possible reachable values when rotating
the nanocrystals in 3D, similarly as done for KTP in Chapter 1. Figure 3.25 shows the aggre-
gated result of all BTO measurements of particle size 100 nm, compared to the BTO model, in
terms of the second- and fourth-order anisotropy intensities I2 and I4.

To plot experimental results, we chose to separate the two most important results of the
I2&φ2 and I4&φ4 patterns: the center and the border (interface). Indeed these values are likely
to be related to very di�erent orientational models, since occuring from di�erent nonlinear
tensor symmetries.

The large open circles in blue represent the measured PRNM data of BTO nanoparticles of
size 100 nm, a subset of 59 measurements of all listed in 3.2. The �lled diamonds represent for
the �Oil� dataset, where the nanoparticles are immersed in oil. The values of I2, I4 shown here
are obtained from the data by averaging 25 pixels at the center of the particle window (i.e. the
center pixel and pixels within a radius of 2 px).

The small open circles in purple represent the same measured PRNM data of BTO nanopar-
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Figure 3.25: Plotting anisotropy data (I4 vs I2) for BTO nanoparticles of size 100 nm. Open
circles represent measured data, where large blue circles indicate the analysis of the center 25
pixels of the particle window and small purple circles represent the analysis on the pixels with
maximum I2, I4 intensity. Cyan diamonds represent measured nanoparticles immersed in oil.
Solid discs represent modeled pure tetragonal BTO crystal at an angle θ = 0◦ . . . 90◦ indicated
by colormapping. Finally, the heart symbol marks a perfect dipole, adapted from a 1D crystal
model (see text).

ticles of size 100 nm, but where the values of I2, I4 are calculated by averaging the 25 pixels of
maximum I2, I4 intensity. In Figure 3.25, a subset of ten results is shown, which are only those
with the brightest I2 values. The reason for including this analysis of the top-25 brightest pixels
of I2, I4 is the fact that the intensity patterns of BTO data are shown to have high intensity at
o�-center regions, presumably along the particle's interface. This analysis provides a method to
automatically select these signi�cant pixels, without prior knowledge of the size of the pattern.

The colormapped solid discs represent the BTO modeling results, as described in Section 3.8,
by only regarding the SHG response of bulk tetragonal BTO (i.e. disregarding the shell) as a
function of the crystal's out-of-plane angle θ = 0◦ . . . 90◦, which is indicated by the colorbar.
The dependence of I2, I4 on orientation angles φ and ψ for this model's de�nition of β is
constant. This is consistent with the fact that the crystal structure is centrosymmetric in the
(1,2) plane, therefore only theta a�ects the I2, I4 values.

The black heart in Figure 3.25 shows the result for an adapted 1D crystal model, which has
de�ned β as having one term only (βzzz):

βx = 0 βy = 0 βz =

0 0 0
0 0 0
0 0 1


This case will give I2, I4 values that do not depend on theta (since the symmetry is 1D, its
projection in the sample plane stays a 1D structure). Again, the dependence of I2, I4 on
orientation angles φ and ψ for this model's de�nition of β is constant.
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We note that the general trend of the measured data is reminiscent in the model data.
However, a shift of the I4 values as compared to the model can be seen. This shift could be due
to the systematic bias on I4 that is higher than the bias on I2, occuring because of noise issues.
Another probable reason for the slight discrepancy is that the model used stems from purely
paraxial approximations. Accounting for longitudinal coupling within the focal spot could
probably induced slight deviations of the order of those observed here. Nevertheless, the trend
is quite satisfactory and shows essentially that, (a) highest values are probably occurring from a
pure 1D tensor, visible at the interface of the nanocrystals, and (b) all measured nanoparticles
exhibited a quite low orientation θ (between 0◦ and 45◦), which is consistent with the patterns
described in the previous section.

3.11 Conclusions

We have applied the Polarization-Resolved Nonlinear Microscopy technique on Barium Titanate
nanoparticles. BTO nanoparticles are shown to be suitable samples to illustrate how PRNM
allows us to e�ectively uncover features with spatial extent below the di�raction limit.

Using the purely optical method of PRNM, we have classi�ed the BTO nanoparticles with
a phenomenological description of the subresolution pattern in the dipolar and quadrupolar
anisotropic intensity and angle (I2&φ2 and I4&φ4, respectively).

The measurement results of BTO nanoparticles have been compared to a model of spherical
BTO nanoparticles that includes the de�nition of a substructure with a core, a shell layer
and an interface layer composed of, respectively, homogeneously oriented tetragonal, cubic and
radially oriented tetragonal crystal lattices. It is shown that the model is rich enough to exhibit
the phenomenological classi�cation found in the measurements.

In addition to the model using the shape of a circular disc, we investigated regular polygons
with four and �ve sides. The primary interest was to see the e�ect of the nanoparticle not
having spherical surface interface but having �attened sides, as we noticed some of the bigger
particles (∼ 300 nm) where less likely to be completely spherical. These simulations however,
were not further explored and therefore not presented in this work. Nonetheless, we mention
this as a suggestion for future work.

Finally, we have provided a quantitative analysis on the collective results of the measured
BTO nanoparticles compared to the BTO tetragonal model as a function of crystal orientation
angle θ.
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Chapter 4

Polarization-Resolved Nonlinear

Microscopy using Focused Complex

Electric Fields

4.1 Introduction

In previous chapters, we have described Polarization-Resolved Nonlinear Microscopy and we
have shown the capabilities of the method when studying di�erent materials, using three types
of samples: Gold nanostars, KTP nanocrystals and BTO nanocrystals.

Although the PRNM technique has shown its strength, there are obviously also limitations.
The method is based on enhancing the contrast between the intensity of the nonlinear signal
as a function of the polarization angle of the excitation beam. However, this excitation beam
rotates only in the transverse plane XY and not in the longitudinal direction Z, therefore
�projecting� the overall result. Additional improvement of the signal may thus be found by the
enhanced coupling of an excitation electric �eld polarized along the longitudinal component of
the e�ective nonlinear susceptibility of the sample.

On the other hand, there is great potential in the approach of using nanoparticles in non-
linear microscopy to have local hot spots with enhanced generation of nonlinear emission, for
example in improving the imaging of biological samples. In our PRNM experiments, we have
shown that an even more localized pattern of nonlinear signal strength is found on the nanopar-
ticles themselves, which is dependent on the local shape and construction of the nanoparticle,
but also on polarization of the incident electric �eld. The limitation so far is that the elec-
tric �eld is generally homogeneously polarized, resulting in an averaged and therefore reduced
overall signal: some parts of the nanoparticles aligned with the polarization are bright in their
emission, while other parts are not. In the pursuit of optimizing emission while minimizing
excitation, this is a limitation, certainly for spatially and vectorially heterogeneous samples
such as metallic nanostructures.

In this chapter, we provide the basis to address these two limitations. We see possibilities
to do so by introducing wavefront shaping optics to the setup. We show in particular that it is
necessary to manipulate the focused wavefront in phase and/or amplitude and/or polarization
to be able to create the complex vectorial focused patterns that potentially can optimize light
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interaction with nanoparticles.

The chapter is organized as follows. First (�4.2), we present a theoretical treatment and
simulation of constructing complex electric �elds at the focus of a high-NA objective by initially
calculating the corresponding back focal plane (BFP) of the objective, considering a distribution
of well de�ned dipoles at the focus. The reverse calculation, obtaining the BFP given the �eld
at the focus is also described.

Second (�4.3.1), we describe the setup used in the experiments concerning wavefront shaping.
Included in this section is the description of a Spatial Light Modulator (SLM) and its calibration.
The SLM is a key component in the setup that provides the ability of wavefront shaping.
Additionally, we introduce the Polarimeter, a device that enables us to probe the polarization
state map of the wavefront at the BFP.

Then, we present our experiment of 3D polarization scanning (�4.4). In this experiment, we
investigate the possibility of extending PRNM by scanning the out-of-plane angle (longitudinal
polarization) instead of the in-plane angle of polarization. Preliminary results using a KTP
nanoparticle are demonstrated.

Finally, in another experiment of wavefront shaping (�4.5), we construct a complex patterned
excitation beam that is designed to couple strongly to the four-armed gold nanostars introduced
in Chapter 2 (Fig. 2.3). We demonstrate a method using two SLMs to produce such a wavefront
and we provide preliminary results of probing the resultant electric �eld at the focus using a
�uorescent polystyrene nanobead.

4.2 Simulating focused complex electric �elds

Controlling the polarization pattern at the focus of a high-NA objective has been already
proposed in the past. All strategies basically rely on the fact that high-NA focusing mixes-up
incident wavevectors coherently. Indeed, controlling the spatial pattern of the incident beam
in phase, amplitude and polarization gives considerable degree of freedom to modify the focus
at subresolution scales [125, 126, 127]. In this section, we will see theoretically how to predict
a given beam pattern that corresponds to a given spatio-vectorial focus.

We are interested in enhancing the coupling of the incident electric �eld to the nanoparticle
in the focus area by shaping the polarization pro�le. In order to understand the expected
electric �elds, we want to calculate the electric �eld of the focus plane given a �eld in the back
focal plane (BFP) and vice-versa (to calculate the �eld in the BFP, given an electric �eld in the
focus volume). To do so, we wrote Matlab scripts that calculate the electric �eld before and
after transformation by a high-NA objective. This work is based on the thesis of Xiao Wang
[128, Ch.4] and the thesis of Wei He [129], which developed simulations based on [58].

The �eld simulation originally consists of two functions: Get Focus and Get BFP. The Get
Focus script calculates the electric �eld in the vicinity of the focal point of an objective by an
incident focused beam. The incident beam is expressed as a vector �eld Ex, Ey, Ez in spherical
coordinates (θ, φ), where θ is the angle between the optical axis Z and the focused �eld by the
objective.
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Additionally, we extended Get BFP, such that it allows to construct the electric �eld char-
acteristics in phase, amplitude and polarization, based on radiation from a manually de�ned
distribution of dipoles (with given orientation) in the focus volume. This tool will be useful
to forecast for instance what should be the ideal BFP that should be focused to best to �t a
given vectorial nanostructure excitation. We will discuss in particular the limitations imposed
by di�raction limit when using such approach of �reverse engineering�.

4.2.1 High-NA objective

For these calculations, we model a high-NA objective. The following parameters de�ne the
properties of the objective used in the experiments which are used throughout:

n = 1.5 refractive index of immersion after objective

λ = 800 wave length (in nm)

NA = 1.40 numerical aperture

f = 4.10 · 106 focal length (in nm)

θmax = sin−1NA/n opening angle of objective

(4.1)

4.2.2 Get Focus

We start by calculating the focusing of the electric �eld by an objective. We take the electric
�eld at the back focal plane of the objective and calculate the corresponding electric �eld at the
focus of the objective. In Figure 4.1, we illustrate the geometry and angle de�nitions used in
the calculation. The spherical coordinates' origin is placed at the focal point of the objective.

Z

k X

θ

Y Z

X

Y

φ

Figure 4.1: The focusing by a high-NA objective in spherical coordinates. The two diagrams
show the projections on the XZ-plane and the XY -plane. Note that the propagation direction
is along Z, towards the right and towards the reader, respectively. The input electric �eld with
respect to the X axis is composed of plane waves, each de�ned by a wavevector ~k. The origin
of the axis is the focal point. The optical axis is along the Z direction, θ is the focusing angle
for wave vector ~k, and φ is the angle relative to X of the projection of the wave vector ~k in the
XY plane.

Due to the high-NA of the objective, the paraxial approximation is not valid anymore, we
must decompose the input �eld into plane waves. In the image space of the objective, the �eld
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out of the objective aperture is the superposition of plane waves taken by wavevector ~k. In
spherical coordinates (Fig. 4.1), ~k is expressed as:

~k(θ, φ) =
2πn

λ

sin θ cosφ
sin θ sinφ

cos θ

 (4.2)

For an arbitrary point ~S = (Sx, Sy, Sz) near the focus, the �eld is given by the coherent
superposition of all the plane waves ~Ek coming from the objective aperture. It can be expressed
as:

~E(~S) =

∫ 2π

0

∫ θmax

0

~Ek exp
[
i
(
~k ·
−−→
F ′S

)]
dΩ (4.3)

where θmax is the maximum focusing angle, dΩ = sin θ dθ dφ and ~k · −−→F ′S is the phase due to
the optical path distance from focus point ~F ′ (the Origin, as in Fig. 4.1) to nearby point ~S,
which is expressed by:

~k ·
−−→
F ′S =

2πn

λ
(− sin θ (Sx cosφ+ Sy sinφ) + Sz cos θ) (4.4)

4.2.3 Get BFP

Next, we take the electric �eld radiation from a distribution of dipole sources in the focal plane
and calculate the corresponding electric �eld in the BFP after the objective. Our calculations
accept an arbitrary spatial array of dipoles with arbitrary orientation. The program takes
as input �ve arrays (one for each coordinate) that de�ne the position ~d = (Px, Py, Pz) and
orientation ~P = (Pθ, Pφ) of the the dipoles.

In what follows, we will ignore the presence of interfaces that should be taken into account
to rigorously model the dipoles radiation when positioned on a glass substrate, for instance.
The presence of the interface can be accounted for using tools developed previously [130, 131],
which show in particular that polarization radiated patterns could be perturbed in particular at
high-NA collection, if the dipole radiation couples in the near �eld region of the glass interface.
Those perturbations do not however modify drastically the overall picture [130] and would
depend on the particle index which is not known in general. For this reason, we focus here
on a �rst approximation supposing that the dipoles emission does not encounter any interface
e�ect.

We will detail the emission �eld of a single dipole positioned in the focal volume. For
multiple dipoles, the �elds are coherently summed. Shown in Figure 4.2 is the light path of
a single wave-vector of radiation from the dipole source P, de�ned by a point M(θ, φ) on the
reference sphere of the objective.

The local frame (~er, ~eθ, ~eφ), carried by a vector ~r = f~er from the origin, is used to de�ne the
coordinates of any point M(θ, φ) on the entrance pupil, and is expressed by its unit vectors:

~er =

sin θ cosφ
sin θ sinφ

cos θ

 ~eθ =

cos θ cosφ
cos θ sinφ
− sin θ

 ~eφ =

− sinφ
cosφ

1

 (4.5)
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Figure 4.2: The scheme of the emission �eld from a single �uorescence dipole through a high-
NA objective. The dipole ~P is positioned by object vector ~d from the origin at the focus point,
which is determined by focal length f of the objective. Each dipole radiates from the dipole to
measurement point M along vector ~rd = ~r− ~d, where vector ~r is the vector between the origin
to any measurement point M(θ, φ) on the objective entrance pupil. The electric �eld after the
objective, at the back focal plane, is indicated by E ′(M).

Once light passes the objective, the corresponding local frame (~e′r, ~e′θ, ~e′φ), carried by vector
~e′r (corresponding to vector ~er), de�nes the unit vectors of the image space, and is given by:

~e′r =

0
0
1

 ~e′θ =

cosφ
sinφ

0

 ~e′φ =

− sinφ
cosφ

1

 (4.6)

Thus, a �eld on the entrance pupil ~E(M) at pointM can be projected onto the image space
using a transformation between bases to obtain the corresponding ~E ′(M) of the back focal
plane of the objective:

~E ′(M) = ( ~E(M) · ~er)~e′r + ( ~E(M) · ~eθ)~e′θ + ( ~E(M) · ~eφ)~e′φ (4.7)

In our case, the electric �eld ~E(M) is emitted by a dipole ~P at location ~d. We express it in
terms of the local frame (~erd, ~eθd, ~eφd) carried by vector ~rd = ~r− ~d from the dipole to point M :

~E(M) ∝ ~k × ~k × ~P = k2P sin(~P ,~erd)× ~eφd (4.8)

where (~P ,~erd) indicates the angle between dipole ~P and vector ~erd. The unit vectors ~erd and
~eφd of this local frame are de�ned by:

~erd =
f~er − ~d∣∣∣f~er − ~d

∣∣∣ ~eφd =
(~P · ~erd)~erd − ~P∣∣∣(~P · ~erd)~erd − ~P

∣∣∣ (4.9)

And �nally, we can calculate sin(~P ,~erd) in Eq. 4.8 as:

sin(~P ,~erd) =

√
1− (~P · ~erd)2 (4.10)

Now we have all the elements to model the emission �eld for a single dipole with arbitrary
position and orientation.
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4.2.4 Results

Here, we demonstrate some examples using the Get Focus and Get BFP calculations. Our
approach consists in trying to focus at the focal plane of a high-NA objective, the polarization
patterns that �ts best a �predetermined� pattern. This predetermined patten is, for instance,
inferred from numerical simulations in the case of plasmonic particles. To do so, we �rst
propagate the radiation of this pattern through the objective, and second, we send the calculated
BFP characteristics back into the objective.

The obtained BFP characteristics indeed correspond to what should be used ideally in an
SLM to produce the focus that corresponds closest to the expected one. Since some information
is lost through propagation (high spatial frequencies in particular), this double propagation
process permits us to estimate how close the expected and actual patterns would compare.
We present di�erent cases of dipole distributions in the focal volume. For each example, we
calculate the BFP electric �eld and subsequently from this result, we calculate the �eld in the
focal plane.

The type of plot used here is not a `Sticks' plot as we have demonstrated in earlier chapters,
but a so-called `Field Space' plot. Instead of sticks, it is composed of small ellipses which
represent the polarization ellipse (see Fig. 4.17) of the �eld at those locations. It illustrates
the angle θ (angle of the major axis of the ellipse), ellipticity φ (angle of the diagonal of the
rectangle inscribed by the ellipse, relative to θ) and intensity of the �eld I (length of the
diagonal squared, i.e. the size of the ellipse), all at once. Note that this representation does
not represent the Z-component of the electric �eld, but the projection onto the XY -plane.
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Figure 4.3: Results of the BFP and Focus calculations starting from one dipole oriented North-
North-East (67.5◦).

Figure 4.3 demonstrates the results for Get BFP and Get Focus calculations starting from
a single dipole de�ned at the origin with a dipole moment oriented along the direction North-
North-East (N-N-E, or 67.5◦ from the +X axis). At the BFP, we calculate an area of radius
∼ 6 mm, corresponding with the maximum opening angle of the objective (f · sin θmax). The
BFP �eld space plot shows the orientation of the polarization is overall N-N-E, but with a
slight curvature across the cross sectional area. Similarly, the intensity distribution is near
the maximum 1.0 but shows the existence of a weak saddle point. This e�ect is attributed to
the in-plane orientation of the dipole. By calculating the focus �eld space, we test if we can
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recover the signature of the initial dipole �eld de�nition. We indeed �nd a spot at the origin,
with polarization along N-N-E. The spot is di�racted and therefore its spatial extent is larger,
approximately λ/2NA ≈ 400 nm, as expected from the di�raction limit.
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Figure 4.4: Amplitude images and Phase images of the BFP (a�f) and Focus (g�l) calculations
from the dipole distribution shown in Fig. 4.3. The Amplitude images (a, b, c; g, h, i) are
mapped to a �xed range 0 . . . 1, and the Phase images (d, e, f; j, k, l) are mapped to −π . . . π.
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Figure 4.4 shows the amplitude and the phase images of the electric �eld. Inspecting the
amplitude images for the BFP (Figs. a�c), we �nd that |Ez| is negligible (it is expected to be
zero since Z is the direction of propagation), |Ex| is maximally 0.5 (of the normalized intensity)
and |Ey| takes up most of the intensity, which is con�rmed in the sticks plot of Fig. 4.5b, where
the sticks are vertically arranged. Also the faint pattern of a saddle point in the amplitude can
be discerned. Concerning the BFP electric �eld's phase distribution, we �nd that the phase is
equal to zero throughout the BFP area.

The next test is shown in Figure 4.5. It is similar to the test of Fig 4.3 and again for a
single dipole, except now it is positioned West of the center (x = −λ = −800 nm, y = 0 nm).
From the sticks plots, we �nd that the BFP �elds for these two cases are virtually identical.
The electric �eld at the focus clearly has a spot West of the origin with polarization aligned to
N-N-E, correctly retrieving the initial dipole de�nition. However, the BFP �eld as represented
in Fig. 4.5b, shows no indication of why the dipole is diplaced to the West, since it is completely
identical to the BFP �eld for a centered dipole, in Fig. 5.11c. In order to explain why the sticks
plots of the BFP electric �eld for the two tests seem equal while the Focus �eld clearly is not,
we have to compare the phase distribution plots.
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Figure 4.5: Results of the BFP and Focus calculations starting from a dipole �eld de�nition
with one dipole oriented North-North-East (67.5◦) and positioned West of center.
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Figure 4.6: Amplitude images and Phase images for simulation as in Fig. 4.5.
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The images of Figure 4.6 indicate that the electric �eld amplitudes of the BFP are indeed
identical as in the previous case (Figs. 4.4), but that the phase distribution is clearly di�erent.
Here, argEx, argEy, and argEz (Figs. d�f) show a wrapped linear ramp of 2π, decreasing from
West to East. This �nding is directly related to the fact that we placed the dipolar source West
from the center; the optical rays traveling West of the BFP area have a shorter path and are
therefore more advanced in phase than for the optical path to the East.

The electric �eld amplitude of the focus area (Figs. g�i) shows a clearly displaced spot,
West of the center, with the highest amplitude in the |Ey| component and signi�cantly less
amplitude in the |Ex| component, as expected. Here, the amplitude of the |Ez| spot is faint as
expected, but not zero and is actually composed of two spots.

Upon inspection of the corresponding phase images of the focus �eld (Figs. j�l), we note
that only in argEz we see a non-zero pattern where it becomes clear the two spots of |Ez|
are also separated in phase ±π/2. This e�ect is related to the high-NA collection, which also
focuses longitudinal components of the electric �eld radiation.

Let us now investigate the pattern for multiple dipoles. In Figure 4.7, we test a dipole
pattern consisting of three dipoles oriented N-N-E and located West (x = −λ), Centered and
East (x = +λ) relative to the origin.
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Figure 4.7: Results of the BFP and Focus calculations starting from a dipole �eld de�nition with
three dipoles oriented North-North-East (67.5◦) and positioned in a row along the horizontal
axis.
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Figure 4.8: Amplitude images and Phase images for Fig. 4.5.
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In the BFP �eld (Fig. 4.7b), we note that the polarization has the same orientation as
before, it is overall N-N-E, but with a slight curvature across the cross the sectional area. The
big di�erence is the intensity pattern that shows a fringe pattern along the horizontal axis.
There are bright fringes alternating with faint fringes. In the Focus �eld (Fig. 4.7c), we recover
three spots surrounded by di�racted light, as expected.

Figure 4.8 shows the amplitude and phase images corresponding to the third test (Fig. 4.7).
Inspecting the phase distributions of the BFP �eld's Ex and Ex, we learn that the bright fringes
and the faint fringes are in fact π out of phase with each other. Physically, the role of those
fringes will be to create a di�raction pattern that produces di�erent di�raction orders in the
focal plane, e.g. di�erently focused spots. The argEz of the BFP �eld is shown to have fringes
in phase as well, valued ±π/2.

Finally in Figure 4.9, we demonstrate another case for a single dipole in the focus, but now
with an orientation along Z, i.e. the dipole moment is fully longitudinal. Note that in the
dipole de�nition representation (Fig. 4.9a), there is no in-plane angle. The BFP electric �eld,
indicated by the �eld space plot in Figure 4.9b shows a striking radially polarized pattern with
high intensity in a ring around the center, where the intensity is zero. Now, the electric �eld in
the Focus (Fig. 4.9c) does not precisely resemble the initial dipole de�nition. In this �eld space
representation it appears as a small bright spot with a strongly radial polarized �eld, note that
the center stick has zero amplitude, while the background �eld strength is near maximum. This
is an indication that there is a strong out-of-plane component.

Figure 4.10 shows the additional amplitude and phase images corresponding Figure 4.9.
With a direct representation of the electric �eld components, in particular |Ez|, we can see that
we indeed recover a longitudinally polarized electric �eld in the focus, albeit only in the very
center of the focus. This point is immediately surrounded by non-zero |Ex| and |Ey| components
giving rise to the observed radial polarization pattern.
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Figure 4.9: Results of the BFP and Focus calculations starting from one dipole oriented Z
(θ = 0◦).
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Figure 4.10: Amplitude images and Phase images for Fig. 4.9.
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4.3 Engineering complex electric �elds

As we have seen in the previous section, in order to fully determine the pattern of an tightly
focused electric �eld, we need to control three optical properties: amplitude, polarization,
and phase. This implies that for the experimental realization of complex electric �elds at the
focus, we would need to shape each of these at the BFP of the objective. Conventional optical
components are able to control these only in a homogeneous fashion, modifying the cross section
of the beam as a whole. To encode a complex spatial dependency of these optical properties,
devices such as a Spatial Light Modulator has been used in the past [127, 132, 133, 134].

While SLMs have been originally designed to control the phase of a beam, numerous studies
make use of them, in combination with other optical components such as optical retarders and
polarizers, to control amplitude and polarization as well [125, 126, 135, 136]. It is important
to notice however, that a single (pass on an) SLM is only capable to modify one of these three
optical properties. The e�ect of an SLM depends on its position in the optical path (conju-
gate image plane or Fourier plane) and the conjunction with the selected optical component
(see � 4.3.2). To attain complete and absolute control therefore, three usages of an SLM are
necessary [126].

Previous works have nonetheless demonstrated the use of only one or two SLMs in order
to engineer complex patterns of light, even though one is limited to only a certain set of
patterns [125, 126, 135, 136].

In our work, we chose to work with two SLMs. Later sections depict such SLMs arranged in
di�erent con�gurations, depending on speci�c purposes. Particularly in Section 4.4, we explore
the use of a single SLM to control polarization. This allows us to perform PRNM in 3D,
with the possibility of using the second SLM to control phase in order to correct for optical
aberrations. In Section 4.5, we use two SLMs to shape the amplitude and polarization pattern.
This allows us to create optimized patterns that aim to enhance the coupling between light and
nanopaticle. Finally in the following chapter (Ch. 5), we use two SLMs controlling the phase of
two electric �eld components (along X and Y ) creating complex patterns at the focus. These
complex patterns are to be directly characterized with the help of nanoprobes excited in the
focus area.

4.3.1 Setup

This section will thoroughly describe the experimental setup used in the various beam control-
ling experiments that we have performed. These experiments have, of course, small variations
in their respective setups. However, the base of these setups remains the same. Figure 4.11
illustrates this base setup.

A continuous-wave 532 nm laser (Pump) (Verdi G10 10W, Coherent Inc.) pumps the ex-
ternally synchronized 200 fs Ti:Sapphire oscillator (Mira 900, Coherent Inc.), tuned to 800 nm.
The half-wave plate (HWP) and Polarizers (P) tune the power and set vertical linear polariza-
tion of the input laser beam. A telescope system expands the beam size, illuminating the entire
active area of the �rst SLM (Model HSP256-1064, Boulder Nonlinear Systems). Through more
telescope systems, the location of the �rst SLM is a conjugate image plane of the second SLM
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Figure 4.11: Base setup for beam controlling experiments, where the SLM con�guration part
is altered speci�cally to suit those experiments (highlighted area). Light from a pumped Ti:Sa
laser source at 800 nm is vertically polarized (P) and illuminates two SLMs in sequence, the
objective focuses it onto the sample that is mounted on a XY piezo scanner. The sample's
nonlinear response is collected by the same objective and is split from the excitation beam by
a dichroic mirror (DM), which it passes before another DM splits the signal into two channel
plate multipliers (CPM), detecting SHG and TPL frequencies.

in the path.

The modi�ed beam propagates through an inverted microscope (Eclipse Ti, Nikon Corp.)
and the rotated polarization pattern is imaged onto the back focal plane of the Oil-immersed
objective (NA 1.40, 60x plan apochromat, Nikon Corp.). A 3-axis piezo scanner (P-527.3CL,
Physik Instrumente) is used to translate the sample in the focus volume. The nonlinear sig-
nal of a sample is collected by the same objective and it is split by a dichroic mirror (DM).
Subsequently, it reaches the detection area with another DM that splits the signal to a pair
of channel plate multipliers (CPM) working in the photon counting mode (Perkin Elmer MP-
993-CL). Each CPM is placed after a bandpass �lter (BP). The CPM with a BP of 400 nm is
used for detecting Second Harmonic Generation and the CPM with a BP of 500 nm is used for
detection of Two Photon Luminescence of the sample.

The signals by the CPMs are acquired by a multi-channel counter (NI PCI-6601 connected
via NI BNC-2121, National Instruments Corp.) and we developed a LabVIEW program to
operate the 3-axis piezo scanner and process the data acquisition. A screen shot of the program
is shown in Figure 4.12.
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Figure 4.12: Screen shot of the LabVIEW program developed for the nonlinear setup and its
3-axis piezo scanner stage and double CPM detectors (Fig. 4.11).

4.3.2 SLM calibration

4.3.2.1 Introduction

Central to the optimization described in this chapter is the use of two Spatial Light Modulators
which allow optical beam pro�le adjustments. Their use is found in subsequent sections of this
chapter. This section is dedicated to the description of the SLM control and the required
calibration. In our setup, we have several con�gurations where we use the two SLMs. The
calibration is repeated for each of them.

An SLM is an electrically programmable device that modulates light according to a spatial
pattern. Its function is to modulate the optical phase delay of incident light by an array of liquid
crystal cells (pixels). A liquid crystal is a birefringent medium with a di�erence in refractive
index along its fast axis and its slow axis, of which the refractive index of the slow axis depends
on the electrical voltage applied to the cell. They are called fast and slow axes, similarly as
in a birefringent crystal, since the propagation speed of light is inversely proportional to the
refractive index. The refractive index of the slow axis decreases as the liquid crystals align to
the direction of the potential di�erence. At maximum voltage, the two axes have refractive
index equal to the fast axis. The e�ective phase delay therefore depends on the voltage applied
and the wavelength of the light. This section will describe the calibration we used to create a
mapping between desired optical delay and the voltage on SLM.
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We used SLM devices (Model HSP256-1064) by Boulder Nonlinear Systems. They are
constructed as an array of liquid crystals on top of a re�ective surface and have resolution of
256x256 pixels with a pixel size of 24 µm×24 µm. The SLMs can switch patterns at maximum
rates > 142 Hz. Each device controller is operated via an 8x PCIe card in a PC which allows
fast transfer of 16-bit gray scale images to the SLM.

4.3.2.2 Look-up tables

The device controller internally uses a Look-up Table (LUT) to convert from 16-bit input value
(i.e. a gray scale value between 0 − 65535) to a voltage state. The range of voltages that the
SLM can apply is also encoded as a 16-bit scale.1

It is possible to calibrate and overwrite the LUT of the controller so that gray scale values
(linear) can be mapped to a speci�c (nonlinear) scale of voltages that in turn re�ect a desirable
(linear) scale of optical delays (e.g. 0 . . . 2π). However, we decided not to change the LUT for
the device controller, but to use a standard LUT and use our calibration to correct the input
value before we send it to the controller. We use the shipped LUT (1HALF.lut) which is a linear
mapping from gray scale values to the second half of the range of voltage states: 215 . . . (216−1).
The range of voltage states is found to cover more than a range of a full wavelength of optical
delays (it is roughly 0 . . . 4π).2 All we need to address is an optical delay range of 2π, which
means this LUT is su�cient.

We construct a so-called Delay Table which lists the mapping between desired optical delay
(0 . . . 2π) and pixel gray value (16-bit) to be send to the driver. Since we always use the
1HALF.lut in the driver, the mapping between pixel gray value and voltage state remains �xed
and the calibration has to be done only once per SLM device, as well as for each wavelength
that the SLM is indented for.

4.3.2.3 Setup

The setup we use for calibrating our Delay Table is illustrated in Figure 4.13. The vertically
polarized incident light passes a polarizing beam splitter (PBS) and propagates through a
quarter-wave plate (QWP) oriented at 45◦. The light re�ects o� the SLM device (at normal
incidence) and travels back into the QWP, which appears oriented at −45◦ to the backwards
traveling light. The PBS re�ects the light into the detection path where it is focused by a lens
(L) into a photo diode (PD). An extra HWP is placed to modulate the incident intensity.

The linearly polarized light becomes (right-)circularly polarized after the QWP and hits
the SLM. The SLM has a vertically oriented fast-axis, but since the incident light is circular,
any axis is equally excited (over a full period). We therefore ensure that the fast and slow
axes are equally illuminated, which eases the alignment of the SLM (there is a version of this
setup where the light coming into the SLM is not normal to the surface). The SLM delays one
component and the light re�ects elliptical polarization. The QWP transforms the light back
into linearly polarized light, but at a rotated angle relative to the incident polarization angle.

1The voltage states are encoded as 16-bit, but the manual reports that the number of actually resolvable
voltage levels is in the range of 500− 1000.

2Another LUT �le (Linear.lut) covers all 0 . . . (216 − 1) voltage states, corresponding to approximately
0 . . . 8π optical delay for our wavelength.
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Figure 4.13: Setup used to calibrate the SLM using a polarizing beam splitter (PBS) and a
quarter-wave plate (QWP) at 45◦. The PBS enables measurement of the overall rotation of
polarization due to the SLM, which is done by a photo diode (PD).

The analyzer therefore will attenuate the intensity with a function I = I0 cos2(δ) (Malus' law),
where δ is the angle di�erence between the analyzer (vertical) and the resulting polarization
after the QWP�SLM pair. This setup can be related to the optical rotator described in [137].

4.3.2.4 Expected intensity

To calculate the detected intensity as a function of the delay in the SLM, we consider the SLM
as a compound of Mirror (MIR) and Linear Retarder (LR). We can calculate the Jones matrix
(M) corresponding to the full system of the calibration setup (excluding the elements HWP
and P1, which are used in setting up the input beam):

M = P2 ·QWP(−45◦) · LR(d) ·MIR ·QWP(45◦) (4.11)

where the Jones matrices of the individual components are:

P2 =

(
0 0
0 1

)
Vertical analyzer (4.12)

MIR =

(
1 0
0 −1

)
Mirror (4.13)

LR(d) =

(
1 0
0 e−id

)
Linear retarder by d rad (4.14)

QWP(45◦) =
1√
2

(
e−iπ/4 eiπ/4

eiπ/4 e−iπ/4

)
Quarter-wave plate at + 45◦ (4.15)

QWP(−45◦) =
1√
2

(
eiπ/4 e−iπ/4

e−iπ/4 eiπ/4

)
Quarter-wave plate at − 45◦ (4.16)

Upon expansion of Equation 4.11, and subsequent simplifying we obtain:

M =

(
0 0
0 1

)
1√
2

(
eiπ/4 e−iπ/4

e−iπ/4 eiπ/4

)(
1 0
0 e−id

)(
1 0
0 −1

)
1√
2

(
e−iπ/4 eiπ/4

eiπ/4 e−iπ/4

)
=

1

2

(
0 0

e−iπ/2 + e+iπ/2+iπ−id 1 + eiπ−id

) (4.17)

We can now calculate the intensity for a given input polarization by taking the norm.
Choosing vertical polarization input, the theoretical intensity as a function of d is found:
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TI(d) =

∣∣∣∣12
(

0 0
e−iπ/2 + e+iπ/2+iπ−id 1 + eiπ−id

)(
0
1

)∣∣∣∣2
=

1

2
(1− cos d)

(4.18)

This function is illustrated in Fig. 4.14a. We can con�rm that this result is equal to the
above-mentioned Malus' law, by identifying 2δ = π + d:

TI(d) = cos2 δ (4.19)

4.3.2.5 Sweep LUT values

Next, we scan the entire range of the 1HALF.lut and measure the intensity with the detec-
tor. The result is displayed in Figure 4.14b. It is visible that the range of 1HALF.lut covers
approximately 0 . . . 2π . . . 4π since these correspond to minima of Eq. 4.18, which is illustrated
in Figure 4.14a. Note however that the end points at gray values 0 and 65535 are not clear
minima (the slope does not seem zero), indicating that the extrema are not yet reached. This
is not a problem for us, since we will be using the center range between the two maxima. These
maxima correspond to 0◦ and 180◦ rotation of the polarization. In between these points, we
are addressing SLM retardations of π < d < 3π.
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Figure 4.14: (a) Theoretical intensity curve with cyan the region of interest in cyan. (b) The
measured intensity found by sweeping the LUT �le 1HALF.lut over the entire 16-bit gray value
range.

4.3.2.6 Create Delay Table

The measured intensity as a function of 16-bit gray value (Fig. 4.14b) contains the data to
make a Delay Table. We will cut and rescale the curve to make it �t with the theoretical curve
(Fig. 4.14a) and extract the Delay Table from it. We can then uniquely identify the two maxima
and the minimum in between them. A spline interpolation is used to �nd the extrema between
measured data points. The extrema to be found will correspond with delay values d1 = π (�rst

105



maximum at gray value x1), d2 = 2π (minimum at x2), and d3 = 3π (second maximum at x3).
The minimum (at x2) is used to split up the sections in two, labeled A and B:

XA = [x1; . . . ;x2)

XB = [x2; . . . ;x3)
(4.20)

And we normalize them individually:

IA =
I(XA)− I(x2)

I(x1)− I(x2)

IB =
I(XB)− I(x2)

I(x3)− I(x2)

(4.21)

The next step is to do a reverse-lookup of the theoretical intensity values in the normalized
intensity arrays (IA,IB) and the corresponding gray value (XA,XB). The theoretical intensity
arrays for the two sections are de�ned as functions of the delay value arrays between d1, d2,
and d3:

TIA = (1− cos(DA))/2 and DA = [π; . . . ; 2π)

TIB = (1− cos(DB))/2 and DB = [2π; . . . ; 3π)
(4.22)

Since the selected sections of the measured data (IA, IB) are not of constant array size (since
they depend on the location of the maxima), we will use linear interpolation to do the lookup.
We are using the Matlab function interp1(x,v,xq) to do the interpolation and extract the
array of gray values. Note that we are doing a reverse-lookup, i.e. the �rst argument is the
intensity and the second argument the coordinate. We obtain the gray values G which yield
intensities I that equal theoretical intensities TI:

GA = interp1(IA, XA, T IA)

GB = interp1(IB, XB, T IB)
(4.23)

Finally, the Delay Table is constructed by concatenating the two sections. The Delay Table
contains the two arrays of Delay values D and the corresponding gray values G:

D = [DA;DB]

G = [GA;GB]
(4.24)

Using this mapping D → G, we can write any delay value 0 ≤ d < 2π to the SLM by passing
the corresponding pixel gray value g to the driver. The correct pixel gray value to write must
be rounded to a (16-bit) integer and is now directly found with another linear interpolation:

g = round(interp1(D,G, d)) (4.25)

The Delay Table is saved to �le for later use in the SLM User Friendly Matlab library, which
is described in Appendix A. Note that such a calibrated Delay Table is unique for each SLM
and depends on wavelength and LUT �le chosen.
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4.3.3 Polarimeter

4.3.3.1 Introduction

As mentioned in Section 4.1, the optimization of our technique consists mainly in shaping the
input beam to be able to change the polarization within the focal spot in arbitrary ways. This
implies a manipulation of the light in phase, and/or amplitude and/or polarization, at di�erent
points in the wavefront that will be focused by the objective. In this section, we will not detail
how to get such a complex wavefront but we will describe how we characterize its complex
polarization in space. Indeed, it is very important to maintain a constant oversight of the
quality of the polarization and inspect the polarization as a function of position in the beam's
pro�le.

The Polarimeter is an optical measurement device that we have designed to analyze the
polarization state of incident light. A distinction has to be made between Mueller matrix
polarimeters [138, 139, 140, 141] and Stokes vector polarimeters [142, 143, 144]. The Mueller
matrix polarimeters are used to determine the Mueller transformation matrix associated with
the sample, while in Stokes vector polarimetry the polarization state of the light, ours is of
the latter type. Compact Stokes polarimeters have been designed for a �ber [145] and using a
CCD with wedge prisms [146]. Our Polarimeter is an optimization of a Polarimeter previously
designed in our lab. The speci�cations for this �rst Polarimeter can be found in the thesis
of Xiao Wang [128]. In our version, we exchanged the Detector for a CMOS camera, and we
developed a LabVIEW program to operate it.

With this device, we are able to create an image of the beam's cross section and its polariza-
tion state per pixel. It can characterize any polarization state: linear, circular or elliptical. This
is a useful and compact tool that can be inserted in the optical path anywhere to characterize
the �eld. This section will describe how it works.

4.3.3.2 Setup

Figure 4.15 illustrates the setup of the Polarimeter device consisting of three components, a
quarter-wave plate on a motorized stage (QWP), a linear vertical polarizer (P) and the CMOS
camera (Thorlabs DCC1545M with 1280× 1024 square pixels of size 5.2 µm).

CMOS

QWP P

Figure 4.15: Setup schematic of the polarimeter. The incoming light passes a quarter-wave
plate QWP which is mounted on a motorized rotation stage, rotating the fast axis of the QWP
to any angle α. After this, a vertical polarizer (P) only passes vertical polarized light which
falls onto an imaging device (CMOS).

The QWP is rotated in steps of 10◦ from 0◦ (horizontal) to 180◦. As the QWP makes a
rotation, the polarization changes depending on the input state. It traces a trajectory on the
Poincaré sphere. The analyzer (P), placed afterwards, projects the state of the polarization onto
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the linear vertical polarization state. The signature of the input polarization is now described
by the intensity signal measured on the detector:

I(x, y, α)

which is a function of QWP angle (α) and pixel coordinate (x, y). We call it an intensity stack,
since it is a stack of 2D images.

The LabVIEW program that we developed to operate the Polarimeter is illustrated by a
screen shot in Figure 4.16. Internally, the above-mentioned operation of the QWP rotation
and camera imaging is implemented in this program and it also records, displays and saves the
stack of 2D intensity images.

Figure 4.16: Screen shot of the LabVIEW program developed for controlling the Polarimeter
device and acquiring image data. The user speci�es the range of rotation of the QWP, the
exposure time and region of the camera as well as path to save the output. During recording,
the user can see the current image and a polar plot of the selected pixel's intensity vs angle of
rotation.

Once the intensity stack has been measured, the signal is processed using Fourier Series
decomposition up to fourth order. The coe�cients of this decomposition (together with a
model of the optical path) can be used to deduce the characteristic parameters of an unknown
elliptical polarization state of the input �eld. These parameters are the ellipticity φ(x, y), the
orientation of the major axis θ(x, y), and the original intensity pro�le I(x, y). The following
sections describe this in detail.

4.3.3.3 Model

In this section, we will derive the equations to calculate the measured intensity in the polarime-
ter device, which is composed of:
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1. A QWP rotating with an arbitrary angle α,

2. A vertical polarizer, and

3. A detector.

In the derivation that follows, we only consider a single pixel signal. The derivation is
identical for each pixel in the image of a detector (we use a CMOS camera).

Elliptically polarized light and the rotation matrix

We start with the beam of light at the input of the polarimeter. Any form of polarized light
can be described as elliptically polarized light, so let us use the general equation for elliptically
polarized light. We will use Jones' calculus to describe the (a priori unknown) input polarization
state3:

Ein(θ, φ) =

(
cos θ sin θ
− sin θ cos θ

)(
cos(φ)
i sin(φ)

)
(4.26)

where −π/4 ≤ φ ≤ π/4 is the ellipticity (or circularity) of the polarization state which consti-
tutes a phase di�erence between Ex and Ey components of the �eld. The polarization angle
0 ≤ θ < π is the angle of the major axis of the ellipsoid inXY -plane. See Figure 4.17 illustrating
the polarization ellipse and its angles.

Ey

Ex

θ
φ

a

b

Figure 4.17: Polarization ellipse (blue) in the xy-plane traced by electric �eld vector E(t) (cyan
vector), having major axis a and minor axis b that de�ne a rectangle (dashed lines). The
angle of the major axis with the x-axis is the polarization θ. The angle of the diagonal of the
rectangle, relative to θ, is the ellipticity −45◦ ≤ φ ≤ 45◦, where φ < 0 indicates clockwise
rotation and φ > 0 counter-clockwise rotation of the polarization with time.

Note that to rotate the ellipsoid, we are using the rotation matrix R(θ) which is de�ned by:

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
(4.27)

3Note that Jones' calculus is only able to describe fully polarized light. It is not su�cient to describe partially
polarized or unpolarized light. In such cases, Mueller calculus can be used instead.
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In order to clarify the convention used, we list the angles of a few particular states:(
1
0

)
Linear Horizontal φ = 0 θ = 0

1√
2

(
1
1

)
Linear 45◦ φ = 0 θ = π/4(

0
1

)
Linear Vertical φ = 0 θ = π/2

1√
2

(
1
i

)
Right Circular φ = π/4 θ = 0

1√
2

(
1
−i

)
Left Circular φ = −π/4 θ = 0

(4.28)

Quarter-wave plate

The incident light of unknown polarization initially propagates through the quarter-wave plate.
The QWP is a wave plate that delays the optical path between its two orthogonal components
thanks to the birefringent material it is made of. Its thickness is made such that the so-called
fast axis of the QWP has a delay of a quarter wavelength with respect to the other (slow) axis.
In the Jones formalism the QWP is a lossless operation which is described by this matrix:

QWP(0) =

(
1 0
0 −i

)
(4.29)

Note that this de�nition of the QWP has a �xed fast axis aligned along the X-axis (angle
0, horizontal), and the Y-axis is delayed by phase factor exp(−π/4) = −i, a quarter wave.
This QWP needs to be rotated by angle α and we reuse the rotation matrix (Eq. 4.27). The
rotation matrix rotates the incoming light, but can also be used to rotate the QWP (or any
optical element) by matrix multiplication:

QWP(α) = R(−α)QWP(0)R(α) (4.30)

Note that we �rst rotate the light polarization by a angle α, then the light hits the QWP(0),
and then we take the reverse the rotation −α. The result of the matrix multiplication is
QWP(α), the matrix of a QWP that is rotated by α. We can now calculate the �rst step, the
electric �eld after the QWP:

E1(α) = R(−α)QWP(0)R(α)× Ein (4.31)

Analyzer and Detector

After transmission through the rotated QWP, the light is incident on a vertical analyzer. The
Jones matrix of vertical polarization is given by:

Pv =

(
0 0
0 1

)
(4.32)

110



We can now write the full equation of the electric �eld passing through the polarimeter and
onto the detector:

Eout(α) = Pv ×R(−α)QWP(0)R(α)× Ein

=

(
0 0
0 1

)
×(

cosα − sinα
sinα cosα

)(
1 0
0 −i

)(
cosα sinα
− sinα cosα

)
×(

cos θ sin θ
− sin θ cos θ

)(
cosφ
i sinφ

)
(4.33)

Which we can expand and simplify by recognizing that the polarizer only passes the Y -
component:

Eout(α) =

(
0 0

− sin2 α + i sinα cosα sin2 α− i cos2 α

)
×(

cos θ cosφ− i sin θ sinφ
sin θ cosφ+ i cos θ sinφ

) (4.34)

Which results in a single component Eout(α) = Ey(α)ŷ.

Since the detector only measures intensity, we calculate I = |E|2 = EyE
∗
y . After calculation

steps that use the decomposition of powers 2 and 4 of cos and sin functions into the circular
Fourier functions cos 2α, sin 2α, cos 4α and sin 4α, the polarimeter intensity can be expressed
as a function of rotation angle α, given an input �eld described by intensity I0, polarization θ
and the ellipticity φ:

I(α) = I0

[
1

2
− 1

4
cos 2θ cos 2φ

− 1

2
sin 2φ sin 2α

− 1

4
cos 2θ cos 2φ cos 4α

− 1

4
sin 2θ cos 2φ sin 4α

]
(4.35)

As we can see in Eq. 4.35, the unknown parameters of the elliptic light θ and φ are contained
in the coe�cients of this Fourier decomposition.

4.3.3.4 Analysis

In this section, we explain the process of retrieving the characteristic parameters of an elliptical
beam by analyzing the intensity stack function as measured in the polarimeter. We do this
using the Fourier Series decomposition up to fourth order:

I(α) =
4∑
k

[Ak cos kα +Bk sin kα]

=
A0

2
+ A2 cos 2α +B2 sin 2α + A4 cos 4α +B4 sin(4α)

(4.36)

111



where the Fourier series coe�cients are de�ned by the following summations.

A0=
2
N

∑N
n I(αn)

A2=
2
N

∑N
n I(αn) cos 2αn A2n = A2/ 〈I〉

A4=
2
N

∑N
n I(αn) cos 4αn A4n = A4/ 〈I〉

B2=
2
N

∑N
n I(αn) sin 2αn B2n = B2/ 〈I〉

B4=
2
N

∑N
n I(αn) sin 4αn B4n = B4/ 〈I〉

(4.37)

In addition, we have de�ned the normalized coe�cients with normalization constant equal
to the �rst term in the decomposition 〈I〉 = A0/2, which is the average intensity.

By equating the Fourier series decomposition (Eq. 4.36) to the intensity equation of the
polarimeter (Eq. 4.35), we can write the parameters θ and φ in terms of the Fourier series
coe�cients.

A0 = I0 · (
1

2
− 1

4
cos 2θ cos 2φ) = I0 ·

1

2
+ A4

A4 = I0 · −
1

4
cos 2θ cos 2φ

B2 = I0 · −
1

2
sin 2φ

B4 = I0 · −
1

4
sin 2θ cos 2φ

⇒
θ =

1

2
tan−1

(
B4

A4

)
φ =

1

2
tan−1

(
B2 sin 2θ

2B4

) (4.38)

With these expressions, the polarization angle θ and ellipticity φ of the input polarization
state are retrieved without ambiguity. This analysis is done for each pixel in the the intensity
stack I(x, y, α) and with it, the full polarization state pro�le of the input beam of light is
determined.

The initial intensity of the electric �eld, i.e. the intensity at the entrance of the polarimeter
device (the quarter-wave plate) is calculated by:

I0 =
−4(B2 + A4 +B4)

2 sin 2φ+ cos 2φ · cos 2θ + cos 2φ · sin 2θ

4.3.3.5 Results

Example results from the polarimeter are shown in Figure 4.18. In these, we image the ana-
lyzed results of the input electric �eld, which is a linearly polarized beam that is rotated from
vertical polarization by 0◦ and −30◦ using one of the SLMs. We are using the Field Space Plot
representation of the �elds, as we did in displaying the results of the simulated focused complex
electric �elds (see �4.2.4).

Note that the most left and right pixel columns of these Field Space images are outside of
the active area of the SLM, it is clear that they keep a constant (diagonal) angle, irrespective
of the SLM's optical delay.

112



(a) V+0◦ (b) V−30◦

Figure 4.18: Example Polarimeter results of a (a) vertically polarized beam and a (b) −30◦-
rotated beam. While (a) is linearly polarized, (b) shows slightly elliptical polarization. Here
we do not scale the ellipses by amplitude to illustrate the entire �eld better.

4.4 3D polarization scanning

After a thorough description of the SLM and Polarimeter operation, we are ready to describe
the �rst objective in this chapter, 3D polarization scanning. So far in this project, the rotation
of the angle of polarization could only be in the transverse (XY ) plane. In this section, we
demonstrate that it is possible to use the SLM to shape the beam polarization pro�le such that,
when using a high-NA objective, the �eld has a strong longitudinal component in the focus
area. Furthermore, we illustrate the feasibility of performing PRNM in 3D by rotation of the
out-of-plane angle of the electric �eld in the focus.

We have seen in Section 4.3.2 that we can rotate the polarization pro�le of a light beam by
placing a quarter-wave plate in front of the SLM. The pixels of the SLM can be individually
set to any delay value (0 . . . 2π), which results in a rotation of (90◦ . . . 270◦) respectively (the
90◦ o�set is caused by the mirror in the SLM). This means that we can create a polarization
pattern in the beam with arbitrary angles.

In the case of tight focusing (which is the case with a high-NA objective), the paraxial limit
is not valid and we must vectorially add electric �eld vectors (Fig. 4.19). Since the light rays
are bent under large angles, they have signi�cant components in the transverse (XY -plane) and
axial (Z) directions. In the case of linear polarization, the Z-components of light rays from one
side of the objective will cancel against the Z-components of rays the other side. In the case of
a purely radial polarization pro�le however, the XY -components cancel and the Z-components
add.

The idea to create 3D polarized �elds at the focus of an objective is quite popular. In our
approach, we want to apply this manipulation for a more optimal nonlinear coupling of non-
linear nanocrystals oriented in 3D, however more generally the manipulation of a longitudinal
component can lead to the creation of complex polarized �elds that are not obtainable by tradi-
tional polarized microscopy. There have been many studies to the control of polarization with
high-NA polarization [147, 148, 149, 150]. Uses include creating spots with very small features
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Figure 4.19: Tightly focused light rays from (a) a linear polarization pro�le and (b) a radial
polarization pro�le. The electric �eld vector (in green) adds to its counterpart, the electric �eld
vector on the opposite side of the objective, to yield a superposition of the �eld in the focus
(cyan). The Z-components exist in the individual vectors after tight focusing, but then in the
focus they (a) cancel, whereas they add in (b).

in the focus �eld [150, 151] or complicated entire 3D structures [150, 152, 153, 154]. Many works
are based on numerical analysis, [148, 155, 156, 157, 158] others are interested in measuring
the local polarization �eld [159, 160], or use a polarized �eld to measure the orientation of a
quantum dot [161].

In what follows, we propose a scheme to tune the polarization at the center of the focused
spot in 3D. In our implementation, we construct this 3D polarization using a combination of a
linear polarization pro�le and a radial polarization pro�le. Changing the proportion between
these two components allows to achieve 3D polarization control in the focal point. Note that
what is proposed here is true only at the center of the focal spot, however the out-of-center
polarization distortions are expected to contribute less e�ciently to the nonlinear coupling
with a nanocrystal [59]. The polarization pro�le of the beam in the BFP, expressed in polar
coordinates (r, φ) is a linear combination of two vector �elds:

~P (r, φ) = AL(Θ)~L(Φ) + AR(Θ)~R(φ)

= sin Θ

(
cos Φ
sin Φ

)
+ cos Θ

(
cosφ
sinφ

) (4.39)

where (Θ,Φ) is the desired polarization angle in the focal point. Note that Θ is the angle that
the focused electric �eld will make with the optical axis (Z) and Φ is the in-plane projection
angle of the focused electric �eld polarization, relative to the in-plane axis X. It determines the
relative weight (tan Θ = AL/AR) of the linear combination between ~R(φ), the radial pattern (a
function of polar coordinate φ of the considered point in the BFP) and ~L(Φ), the linear pattern
oriented along desired polarization angle Φ in the XY -plane.

In Fig. 4.20, we demonstrate three examples of theoretically calculated �elds. In Fig. 4.20a,
Θ = 0◦ which yields a fully radial polarization beam pro�le and in turn, a maximum amplitude
along Z in the focal point. The other extreme is shown in Fig. 4.20c, where Θ = 90◦ makes the
�eld linearly polarized with an orientation set by Φ = 45◦. Note that here, we choose for the
�eld space plots to not have their ellipses scaled by amplitude in order to compare them with
the experimental result (below).
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(c) Φ = 45◦, Θ = 90◦

Figure 4.20: Theoretical polarization pro�les for 3D polarization control at the BFP before
focusing. These patterns are created with linear combinations of radial and linear �elds. From
left to right Θ = 0◦ (polarization fully radial), Θ = 45◦ (partially radial and linear), and
Θ = 90◦ (fully linear). For each of the three linear combinations, Φ = 45◦.

More interesting to see is a linear combination of the two polarization pro�les. In Fig. 4.20b,
an equally weighted superposition of a linear polarization �eld and a radial polarization �eld is
achieved by setting Θ = 45◦. The orientation of the linear polarization �eld is set by Φ = 45◦.
Note that the vector sum takes into account the full 360◦ angle of the vectors: the summed
�eld shows zero amplitude at points positioned along the −135◦ diagonal from the center as
the radially outward pointing vectors cancel the linear polarization vectors of directed with the
opposite angle 45◦.

Note that here, we did not consider an important factor, which is the dependence of the
focusing e�ciency to the tilt angle Θ. Indeed, it is known that purely radial and longitudinal
components do not have the same focusing e�ciency. This can however be accounted for as a
calibration process, as done in other works [129].

4.4.1 Setup

The setup is equal to the base setup (see Fig. 4.11), apart from a modi�cation of the SLM
con�guration part, which is illustrated in Figure 4.21.

SLM SLM

QWP

Figure 4.21: Detail of the SLM con�guration for 3D polarization control. This is the modi�ca-
tion of the base setup shown in Fig. 4.11. Here, the second SLM in the optical path is placed
after a quarter wave plate (QWP), which is rotated to 45◦.
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Note that here there is no speci�c need of two SLMs to produce the longitudinal and in-
plane components of the focused �eld. While the second SLM in the optical path is used for
the polarization rotation, as described above, the �rst SLM in the optical path can be used to
correct the phase front by imposing optical delay per pixel. We have followed a Zernike Mode
analysis which can be used to correct for strong aberrations [133] (see App. B for its description).
Applying this method we noticed, however, that we have few aberrations, there therefore was
no need for phase correction in this experiment. We note that this same con�guration can be
equally applied when imaging samples that are known to greatly distort the light, for example,
biological samples.

4.4.2 Results

In Fig. 4.22, we present experimental results of polarization patterns which should be compared
to the theoretical result displayed in Fig. 4.20. Here, we use the polarimeter (�4.3.3) to obtain
the experimental beam polarization pro�le. This device is located in the �rst image plane of
the second SLM. Note that the images appear inverted by an inversion symmetry with respect
to their center. This is caused by the telescope that images the SLM into the polarimeter.

Overall, the obtained patterns are in very good correspondence with the expected ones.
Note in particular the very low polarization distortions (very low ellipticity) which ascertains
that at the exit of the SLM paths, the polarization pattern is well controlled.
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Figure 4.22: Experimental polarization pro�les for 3D polarization control measured with the
polarimeter (�4.3.3). From left to right Θ = 0◦, 45◦, 90◦, and Φ = 45◦.

The purpose of shaping the beam's polarization pro�le with a partial radial pro�le is to
control the Z-component of the electric �eld vector in the focal point. In the following �gure
(Fig. 4.23), we present a series of SHG measurements of a KTP nanoparticle (see Ch. 1) where
the incident beam polarization pro�le is a linear combination as described above, with varying
Θ parameter. The resultant electric �eld vector is rotated from Θ = 90◦ (polarization in XY -
plane) to Θ = 0◦ (polarization along Z). The transverse polarization Φ is kept constant at 90◦.
Each image is created by scanning the focus spot over the sample by translating the sample
with the piezo stage and measuring the intensity of the SHG signal with the corresponding
CPM detector (Fig. 4.11).

Since we have performed an experiment with an incident �eld with a rotating polarization,
we can apply the same analysis we have done in PRNM experiments (�1). This time however,
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the angle of polarization is out-of-plane angle Θ whereas it was in-plane angle α before (Ch. 1).
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Figure 4.23: (a�j) Experimental SHG intensity measurement of a KTP nanoparticle excited by
an incident �eld with varying out-of-plane parameter Θ = 90◦, 80◦, . . . , 0◦ and �xed in-plane
angle Φ = 90◦. All colorbars are mapping the range 0 . . . 1.2·106, clipping some high peak values
(maximum is 1.8 ·106) but allowing comparing between images. (k,m) Calculated I0, I2&φ2 and
I4&φ4 results of PRNM analysis using this series of 90◦ rotation of polarization.

In Figures 4.23a�j, we depict the intensity images of the nonlinear signal as a function of Θ.
This data is used to perform the PRNM analysis and in Figures 4.23l and 4.23m, the results
of I2&φ2 and I4&φ4 are shown.

First, we notice that when Θ is decreased from in-plane to out-of plane, the shape of the
PSF seems to change with appearance of lobes at low Θ. These lobes are most probably due to
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remaining in-plane features of the focused polarized pattern, which still needs to be understood.

We concentrate on the central main spot for polarization analysis. Interestingly, the anisotropy
of the response (I2) is quite high and it shows an out-of plane angle (related to φ2) that is not
completely in-plane. This means that the maximum of the SHG response for this nanocrystal
is not obtained for an in-plane polarization but rather for a tilted one. The measured KTP
nanocrystal is thus thought to be a tilted one, demonstrating the potential of the technique to
better optimize SHG for such cases.

In comparison, we veri�ed that isotropic samples (e.g. Fig. 4.24) showed very low modula-
tion with a maximum at Θ = 90◦, this modulation being a consequence of the fact that in-plane
focusing is slightly more e�cient than longitudinal-radial focusing.
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Figure 4.24: Two photon �uorescence intensity of Fluorescein solution as a function of the
out-of-plane angle Θ = 0◦ . . . 90◦ of the incident �eld.

Figure 4.24 is a measurement of the two photon luminescence intensity as a function of
incident beam pro�le by parameter Θ = 0◦ . . . 90◦ on a sample consisting of a solution of
Fluorescein in water. The in-plane angle parameter is kept �xed Φ = 90◦. This measurement
gives a measure for the overall strength of the electric �eld in the focus volume as a function
of Θ.

Overall, these results show that the method has the potential to enhance the capacities of
polarization patterns control to optimize nonlinear coupling in for nanostructures with a strong
Z-components in the nonlinear susceptibility tensor. Alternatively, if a calibration of θ angles
is done, PRNM is also possible in 3D since the I2, φ2 and I4, φ4 patterns can be interpreted in
the same way as we have already presented in 2D (Ch. 1).

4.5 Customized polarization control at the focus

In Section 4.4, we looked into the possibility of constructing a longitudinal Z -polarization
in the focus of a high-NA objective using an SLM to shape the beam's polarization pro�le.
Now we investigate the construction of a multi-spot point spread function. Such a multi-spot
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will potentially enhance the coupling between incident light and any nanoparticle with multi-
directional dipoles. In particular, we want to create a focus that will match the dipolar behavior
of the four-lobed star nanoparticles (see Fig. 2.3). In this section, we illustrate a preliminary
method to construct a four-spot PSF.

There have been studies in which a specialized beam (radially polarized) and tight-focusing
is used to excite samples [132, 162]. More elaborate wave front shaping is used in adaptive optics
and SLMs are frequently used for this purpose [125, 127, 133, 134]. SLMs have also be used
as di�raction gratings which allow the creation of four spots in the focus [126]. The creation
of subresolution polarized beams patterns matching particular nanostructures for enhanced
e�ciency in nonlinear signal, is much less explored [135, 136, 163].

To create four spots in the focus area, we saw in Section 4.2 that it is necessary to control
both polarization and amplitude in the BFP of the objective. In this setup, both SLMs are
used. The �rst SLM in the path is used to pattern the intensity pro�le of the beam. It has
a QWP at 45◦ to rotate the polarization and is sandwiched between polarizers to tune the
intensity pixel-by-pixel. The second SLM in the optical path is used to rotate the polarization
per pixel such that a radial pattern is achieved, just like the setup in the 3D scanning, again,
using a QWP at 45◦ before the SLM.

4.5.1 Setup

As before, the base setup is illustrated in Figure 4.11. The SLM con�guration part of the
current experiment is displayed in Figure 4.25. This con�guration allows polarization and
amplitude control of the beam pattern by placement of a quarter wave plate (QWP) in front
of both SLMs and a analyzer (P) in between the SLMs. The combination of SLM�QWP acts
as a pixel-by-pixel polarization rotator as the incident polarization is vertical, having QWPs
at an angle of 45◦. By insertion of the analyzer after the �rst SLM�QWP, the rotator becomes
an intensity attenuator. The second SLM�QWP remains a polarization rotator. Thus, by
controlling both SLMs, we control the polarization and amplitude of the beam.

SLM SLM

QWP

P

QWP

Figure 4.25: Detail of the SLM con�guration for polarization and amplitude control using two
SLMs. This is the modi�cation of the base setup shown in Fig. 4.11. Here, each SLM has a
quarter wave plate in front of it (QWP), both are oriented at 45◦. An analyzer (P) is inserted
between the SLMs.

We measure the electric �eld of the focus by indirectly via two-photon luminescence at
500 nm, using the CPM after the 500 nm bandpass �lter. The sample we use is a �uorescent
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polystyrene nanobead which is known for its strong nonlinear response. The nanoparticle is
raster-scanned through the focus area. The SHG signal is collected by the objective in epi-
direction and detected by CPM after the dichroic mirror that acts as �lter.

4.5.2 Method

In order to predict a pattern needed on the two SLMs, we use the Get BFP and Get Focus
scripts (�4.2) to �nd a BFP �eld that yields a focus �eld with four spots. The four spots need
to be positioned around the origin and each spot must have a polarization that is pointing away
from the origin. This is to match with the �ndings of the gold nanostar samples discussed in
Chapter 2.

Figure 4.26 shows an example of a four-spot at the focus �eld, created by the �eld simulation
scripts with a de�nition of four dipoles around the origin, with dipole moments oriented radially
outward (Fig. 4.26a). The BFP �eld space �gure (Fig. 4.26b) is a fairly complex construction,
showing that it is non-trivial to predict what electric �eld yields a four-spot pattern in the
focus.

After calculating the BFP from the dipole distribution in the focus, we can con�rm whether
the calculation of the focus �eld using the BFP as input recovers an image of the dipole
distribution. Figure 4.26c demonstrates that it does, within a certain limit of distances between
the dipoles. Indeed the example shown here treats a case where the dipoles distance is above
the di�raction limit size. In the case of lower distance, high spatial frequencies are lost in the
focusing process and the focus might lose its �ne polarization pattern.

2000 0 2000
Size (nm)

2000

0

2000

Si
ze

 (n
m

)

Dipblob-FieldSpace

(a) Dipoles

6 0 6
Size (mm)

6

0

6

Si
ze

 (m
m

)

BFP-FieldSpace

0.0

0.5

1.0

(b) BFP

2000 0 2000
Size (nm)

2000

0

2000

Si
ze

 (n
m

)

Focus-FieldSpace

0.0

0.5

1.0

(c) Focus

Figure 4.26: Simulation of a four-dipole distribution, radially placed and radially oriented about
the origin at a distance of 400 nm. The back focal plane (BFP) shows a two-dimensional fringe
pattern. In the focus, we recover the four spots with a radial polarization.

Figure 4.27 demonstrates the corresponding amplitude and phase plots of the electric �eld
for the simulated four-spot dipole distribution. One can see that in this case the BFP has
fringes with a frequency of 2 in both directions, horizontal for the Ex component and vertical
for the Ey component. The fringes are alternating in phase, 0 and π rad. In the focus area,
the spots are clearly separated, two in Ex (horizontally), and two in Ey (vertically displaced
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Figure 4.27: Amplitude images and phase images of the BFP (a�f) and Focus (g�l) calculations
from the dipole distribution shown in for Fig. 4.26. The amplitude images (a, b, c; g, h, i) are
mapped to a �xed range 0 . . . 1, and the phase images (d, e, f; j, k, l) are mapped to −π . . . π.

from center). The residual intensity in the center is solely due to Ez being non-zero and with
a phase of −π/2 rad.

In the experiment, we take the intensity and polarization pro�le of the BFP calculated for
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four-spot de�nitions of di�erent sizes and convert it to the image format of the SLMs. The
angle of polarization is interpolated as a function of pixel coordinate and applied to the second
SLM that controls polarization. For the intensity distribution, we �rst need to convert it to an
angle of rotation in order to obtain the attenuation using the Malus' law, inverted:

α(I) = cos−1
√
I (4.40)

where α(I) is the angle of the output polarization relative to the analyzer and 0 < I < 1 is
fraction of attenuation of the intensity desired. This equation is implemented in the SLM User
Friendly Library (see the function SLM_WriteQWPSetAmplitude in Appendix A).

4.5.3 Results

In Figure 4.28, we demonstrate a preliminary result. We chose to use a four-spot BFP with
features larger than shown in Fig. 4.26, corresponding to a smaller Focus spot. It is generated
by a distribution of four dipoles at 1

4
λ = 200 nm away from the center (North, East, South,

and West of the center).
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Figure 4.28: Results of the four-spot experiment, where (a) shows the computed back focal
plane �eld that is used as input for the intensity and polarization control by SLM, and (b)
illustrates the corresponding calculated electric �eld in the focus plane. In (c), we show the
�eld space plot of the measured beam at the BFP by polarimeter, (d) is the corresponding
intensity plot of the nonlinear response of a polystyrene nanobead scanned through the focus
plane, and (e) shows the calculated Get Focus result using the polarimeter BFP (c) as input.

122



In Figure 4.28d, we show the result for the two-photon luminescence response of a polystyrene
nanobead that is raster scanned through the focal area. Although the result does not resemble
a modeled four-spot (Fig. 4.28b). It shows a center spot which dominates the intensity pattern
as well as four fainter spots visible around this central spot. It begs the question, what was the
initial BFP that caused this focus �eld?

We measured the beam pro�le's polarization before the objective is performed using the
Polarimeter device (�4.3.3) and the result shown in Figure 4.28c. We �nd that the result can
be described as a 2D braided pattern of horizontal an vertical polarization. It is clear that
this is not the BFP �eld that we expected to construct, since the radial components of the
polarization is not retrieved.

The reason why the BFP measured by the polarimeter is di�erent from the programmed
pattern on the SLM is not completely clear. We suspect a defect in the SLM quality that we
noticed at the end of this work, that in particular prevented us to reach voltages that produce
45◦ polarizations in the pattern. This issue is under investigation.

Given the distorted BFP image, we still questioned whether the measured focus �eld is
accurate for this input. Therefore, we have calculated the focus �eld by employing the Get
Focus program using the measured Polarimeter BFP as input (Fig. 4.28e). It is interesting
to see that the agreement with experiment (Fig. 4.28d) is signi�cant, both demonstrate a
maximum in the center of the spot, surrounded by four local maxima or lobes. This gives
con�dence that the wavefront shaping technique works. Moreover, it also hints that, given a
BFP �eld input that more closely resembles Fig. 4.28a, a four-spot focus �eld may be attainable
with this approach.

In conclusion, we stress that this measurement is a preliminary measurement. To improve
the result, the approach would be to optimize the control of the beam pro�le as the polarimeter
result does not match the expected pattern. We can do that by �rst checking the immediate
result of measurement of the polarimeter placed after the SLMs. Since we have obtained positive
test results from the SLMs ability to rotate polarization per pixel in Sections 4.3.3.5 and 4.4.2.

4.6 Conclusions

In this chapter, we have explored ways to optimize the technique of polarization resolved nano
microscopy using beam shaping with spatial light modulators and strong focusing by a high-NA
objective.

We described the calibration of the SLM that we used to control the beam pro�les as well
the Polarimeter device that is used to inspect the beam pro�les.

Another useful tool we used is the �eld simulations scripts to calculate the electric �eld at
the back focal plane and at the focus �eld. We modi�ed the existing scripts to allow for more
customization of the input dipole distribution and converting the output to write to SLM.

Using these tools, we were able to construct beams that result in an electric �eld in the
focus with a strong component along Z, illustrating the possibility to scan in 3D and couple
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strongly to nanostructures that have a large (e�ective) nonlinear susceptibility along out-of-
plane angles. It is possible to modify the PRNM technique and obtain subdi�raction resolution
of nanostructures by scanning the out-of-plane angle of polarization.

Finally, we expanded the 3D-scanning technique by adding amplitude control to the polar-
ization control of a beam pro�le. This allows, together with a high-NA objective, to create a
PSF that has multiple spots. The application of this is that it allows to create an incident elec-
tric �eld that has a structure matching the shape of nanostructures and thereby enhancing the
(nonlinear) response of them, especially the spatial sensitivity of the signal could be improved
this way.
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Chapter 5

Probing Complex Polarized Focused

Beams using Polarized Nonlinear

Microscopy

In previous chapters, we have discussed the enhancing possibilities that polarization brings to
nonlinear microscopy in order to reveal subresolution-sized features for a variety of nanostruc-
tures. We have also seen that we can manipulate the wavefront shape of a beam in order to
increase the light-nanoparticle coupling. In this chapter, we will use the gained information
about the orientation/crystallinity of KTP nanocrystals in order to use them as polarization
nanoprobes for complex tightly focused beams.

5.1 Introduction

The ability to fully determine the spatial distribution of a tightly focused beam is gaining in-
terest as more complex nanopatterns of light are used in the photonics �eld. Such experimental
results have been only possible through theoretical methods until very recently [164]. Previous
studies have used Scanning Near-�eld Optical Microscopy [165, 166] or the use of �uorescent
molecules [128] or gold nanospheres [152, 167].

We will present two experiments on characterizing the electric �eld polarization state (angle
and ellipticity) at the region of focus after an objective. In the �rst experiment, we take
conventional incident beams without any pattern, i.e. we take a polarization state that is
constant over the entire cross section. In the second experiment, we change this and choose one
beam to have a complex pattern with four spots of di�erent polarization. Preliminary results
are demonstrated for both experiments.

5.2 Nanoprobes characterizing polarization

In this �rst experiment, we use two polarized beams at the entrance pupil of a high-NA objec-
tive. The �rst one will be used as a probe for polarization resolved experiments, and the other
one exhibits a polarization state which is �xed and a priori unknown. At the focus, we position
a nanoprobe with a strong nonlinear anisotropy (KTP crystal), giving rise to both second har-
monic generation and sum frequency generation. The measurement of these and their analysis
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can be used to deduce the orientation of the nanocrystal, and with it, the polarizaton state of
the incident light, as we aim to demonstrate in this section.

5.2.1 Sum frequency generation of KTP

Sum Frequency Generation (SFG) is a nonlinear process where a photon is generated by the
annihilation of two photons. The name stems from the fact that the resulting photon has a
frequency that equals the sum of the two frequencies of the annihilated photons, i.e. ω3 =
ω2 + ω1, which is a consequence of energy conservation (where ~ω is the photon energy).

Second Harmonic Generation (SHG) is actually a special case of sum frequency generation
when the two frequencies in the sum are equal ω2 = ω1, however, SFG generally refers to the
case where ω2 6= ω1. SFG is also signi�cantly harder to achieve in the lab than SHG since it
requires two incident beams (instead of only one for SHG), overlapping in space and time, and
the phase-matching condition (that ~k3 = ~k2 + ~k1) is more di�cult to attain.

In this section, we need a theoretical description of SFG such that we can calculate the
expected intensity of this process. This process, which uses two di�erent �elds to generate the
nonlinear radiation, will involve two di�erent polarizations, among which one is known and
one is not. We will show that if the orientation of the KTP crystal is known, and if the �eld
with known linear polarization is rotated similarly as in a polarization resolved experiment,
such a result can be achieved under certain conditions. We note that most of the theoretical
development shown here is already discussed in the treatment of SHG response from KTP in
Section 1.2.2, but there are clear di�erences in the present case. Primarily, we have to start with
two distinct incident electric �elds at frequencies ω1 and ω2, in the equation for the polarization
of the medium:

P ω3
I = ε0

∑
JK

χ
(2)
IJKE

ω1
J E

ω2
K (5.1)

where the subscripts I, J,K are iterating over the axes {X, Y, Z} of the macroscopic coordinate
system of the lab.

Furthermore, in our experimental scheme, we set one of the excitation beams polarized
linearly at a varying angle, while the other is �xed in both angle of polarization and ellipticity.
While the �rst rotating polarization is well known and controlled, the second is unknown and
could be spatially varying within the focal spot, which will be scanned by the KTP nanoprobe.
The incident polarizations for the beams at the ω1 and ω2 frequencies that contribute to the
SFG process can be written:

Eω1 = (cosα, sinα, 0) (5.2)

where α denotes the orientation, relative to X, of the incident rotating linear �probe� polariza-
tion, and

Eω2 =
(
cos δ, sin δeiε, 0

)
(5.3)

where δ and ε denote the orientation and ellipticity of the �unknown� polarization, respectively.
Note that these de�ned �elds do not exhibit any polarization component in the Z direction (the
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beams are supposed to be polarized in the sample plane XY only). Extensions to 3D unknown
polarization could be investigated in the future.

The rest of the section can be straightforwardly adapted from what we have already derived
in the case of SHG for a KTP nanocrystal. Since here we tune the incident polarization of only
one of the beams, the technique is now called P-SFG (polarization-resolved SFG).

5.2.2 Method

Here, we describe the method to determine the polarization and ellipticity of the second beam
(frequency ω2) in the sum frequency setup (the �rst beam in our procedure is known). This
analysis is done on a KTP nanocrystal to illustrate the method, however it can be adapted to
other crystal structures as long as their symmetry is known. In our procedure �rst, the crystal
orientation is determined, and then using the crystal orientation information, the polarization
and ellipticity of the second incident beam is deduced from P-SFG data.

The analysis is based on collecting both SHG data and SFG data, since they are generated
by the two beams. The setup to provide such signals is detailed below. From the standard
PRNM analysis (Ch. 1) performed on the SHG data (detected at the frequency 2ω1), we collect
the following parameters: I2, I4, and φ2. Likewise, from the PRNM analysis performed on the
SFG data, new parameters can be derived from the SFG signal written as a function of the
tuning polarization α, by derivating Iω3 = |Pω3|2 for the �elds Eω1 and Eω2 written above:

Iω3 ∝
∑
I

∣∣∣∣∣∑
JK

χ
(2)
IJK(Ω)Eω1

J (α)Eω2
K (δ, ε)

∣∣∣∣∣
2

(5.4)

with (I, J,K) = (X, Y ) and Ω = (θ, φ, ψ), which is the Euler set of angles de�ning the 3D
orientation of the KTP nanocrystal. Since here the α dependence of the intensity relates to
a �eld at ω1 to the power 2, the P-SHG intensity can be still decomposed in Fourier series as
done previously for P-SHG, however only up to the power 2:

Iω3 = A0/2 + A2(δ, ε) cos(2α) +B2(δ, ε) sin(2α) (5.5)

where A0, A2 and B2 are calculated similarly as previously, by projection on the circular
functions cos(2α) and sin(2α). Since Ω is known from the previous P-SHG analysis performed
at the 2ω1 frequency, the coe�cients A2n = 2A2/A0 and B2n = 2B2/A0 are only functions of
(δ, ε), which are the parameters of the unknown elliptical polarization to be probed.

It is however not obvious that the relation from the experimentally determined (A2n , B2n)
and the parameters (δ, ε) is non-ambiguous. To study this question, we plotted systematically
look-up tables representing the exploration range of (A2n , B2n) for both parameters δ and ε.
These tables will of course depend on the orientation of the KTP crystal, and it is expected
that certain orientations will be more favorable than others: in particular if the KTP crystal
is strongly tilted o�-plane, there is no particular anisotropy in the nonlinear coupling and we
expect poor sensitivity to a variation in state of polarization. An example of such analysis is
illustrated below. For this analysis, we determine for each measured KTP crystal the di�erent
set of parameters. As a �rst approach where the spatial expansion of polarization states is not
explored yet, all these values are obtained by averaging the parameter over 25 pixels in the
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center of the particle window, i.e. a square of 5x5 pixels around the center pixel. In summary,
we collect the values of the parameters shown in Table 5.1.

Parameter Source
I2 SHG
φ2 SHG
I4 SHG
A2n SFG
B2n SFG

Table 5.1: Collected PRNM parameters from either the SHG detector or SFG detector (see
description in text). These parameters are used as the starting point for the second beam
analysis.

5.2.2.1 Determination of the crystal orientation
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Figure 5.1: Example I2, φ2 and I4 data for a SHG nonlinear signal of a KTP crystal with
unknown orientation Ω.

We begin by collecting the I2, φ2 and I4 parameters from PRNM analysis of SHG signal of
a KTP crystal with an a priori unknown crystal orientation Ω. In Figure 5.1, we provide an
example of measured data, which is similar to what we have seen before. From it, we extract
the average of the square centered area of 5× 5 pixels.

From the φ2 image, we can immediately deduce the φ orientation of the nanocrystal (see
demonstration in Chapter 1). In the speci�c case shown here, φ ∼ 80◦. From the SHG I2
and I4 input, we can approximate a value for θ and ψ. We do this by comparison to a lookup
table that contains a set of all I2, I4 values for an array of crystal orientations Ω = (θ, φ, ψ).
This table has been generated in advance by the PRNM model (described in Section 1.2.3, see
Figure 1.5).

The association of SHG I2, I4 data to theory is illustrated in Figure 5.2. It is done by
calculating the sum of squared error in I2 and in I4 between all points in the theory data set
(similarly as in a minimization method of search for the nearest neighbor solution). The point
on the theory curve that has the smallest error (i.e. the nearest point of the theory data set) is
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taken and we do a reverse-lookup to �nd the corresponding θ and ψ value that generated this
point. In the speci�c case shown here, we �nd θ = 40◦ and ψ = 30◦.

At this point, we have determined the θ, φ, and ψ orientation of the theoretical crystal that
matches closest to the data. We now take these as approximate values for the measured crystal
orientation.
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Figure 5.2: Approximating SHG I2, I4 data to theory by �nding nearest match. In this speci�c
case, the obtained values are θ = 40◦ and ψ = 30◦.

5.2.2.2 Determination of polarization orientation and ellipticity

The second part of the analysis is the determination of the polarization angle and the ellipticity
of the a priori unknown second beam that, together with the �rst (known) beam, is generating
the SFG data. In order to do so, we take the measured A2 and B2 of the SFG data. Figure 5.3
shows this measured data. Again, we take the average value of the center 5x5 pixels of this
particle window.
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Figure 5.3: Example A2 and B2 coe�cient data obtained from PRNM analysis of SFG nonlinear
signal of a KTP crystal with unknown orientation Ω.

We now can compare the measured SFG A2n , B2n (by normalizing A2, B2 by average inten-
sity) data with the theoretical curves for SFG using the nanocrystal orientation Ω deduced in
the �rst part of this analysis. At this point, we must generate a set of points A2n , B2n that are
obtained from theoretical SFG with a �xed Ω value and a trial set of parameters Orientation
δ and Ellipticity ε associated with the second incident beam. This results in SFG signal as a
function of α, to which the Fourier Series analysis is performed and we collect a set of A2n , B2n

value pairs corresponding to the δ, ε value pairs input.
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Figure 5.4 demonstrates the theoretical SFG A2n , B2n data for a collection of δ, ε parameters
as well as the singular point of the measured SFG A2n , B2n data (extracted from Fig. 5.3). We
now calculate what point of the theoretical curves has the least squared-sum error in A2n and
B2n value compared to the measured point. From it, we reverse-lookup the parameters of
orientation δ and ellipticity ε of the second beam. For this example, we obtain a polarization
orientation δ = 64◦ and ellipticity ε = 80◦.
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Figure 5.4: Maps of A2n , B2n of modeled SFG nonlinear signal of a KTP crystal, generated for
an array of δ and ε values, colormapped by δ (a) and colormapped by ε (b). The highlighted
cross indicates the measured values of A2n , B2n (of the SFG signal, Fig. 5.3) and the circle is the
nearest match found in the theoretical map. The retrieved polarization state of the secondary
beam from this measurement are δ = 64◦ and ellipticity ε = 80◦.

Note that the obtained shape of the contour graphs relating (A2n , B2n) to (δ, ε) is purely
related to the orientation of the KTP nanocrystal. It is visible that both δ and ε values can
be determined non ambiguously, however some regions of this plot seem to exhibit a lower
precision on the determined values. This is further discussed in the following sections.

5.2.3 Setup

In Figure 5.5, we illustrate the setup used in this experiment. It is based on the setup used in
Chapters 1, 2, and 3 of this thesis. We therefore refer to Section 1.3.2 (Fig. 1.7) for the full
description.

However, for the purpose of this experiment, two revisions are made. The �rst is the
introduction of a quarter-wave plate (QWP) in the secondary optical path (for frequency ω2).
The QWP, as we have seen in Section 4.3.3 (Eq. 4.29), introduces the ellipticity (or circularity)
in the optical beam. We therefore used this trick to produce an elliptical polarization of known
characteristics. Second, we also removed the polarizer before the motorized half-wave plate
(M-HWP) that would otherwise remove the ellipticity. The M-HWP here is now placed before
the dichroic mirror that combines the two ω1 and ω2 beams, and is used to rotate the incident
polarization which is essential to the PRNM measurement.
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Figure 5.5: Experimental setup with a Ti:Sapphire pulsed laser (830 nm) and an Optical
parametric oscillator (OPO, 1088 nm), a Delay line for one of the beams (DL), Galvonometric
scan mirrors (GM), Dichroic mirrors (DM), a 40× 1.15 NA Objective lens (O), Sample (S),
Polarizers (P), Halfwave plates (HWP), of one which is Motorized (M-HWP), a Lens (L), and
the detection is done by a system of PMT detectors (PMT), which is detailed in Fig. 5.6.

In the experiment, we will rotate the QWP to arbitrarily chosen angles 57◦ and 27◦, relative
to the polarization angle of the incident light (P). Therefore, the expected orientation of the
ellipses are δ = ε = 57◦ for the �rst case and δ = ε = 27◦ for the second case. We will
position multiple di�erent KTP nanoparticle samples, and for each angle of QWP we perform
the PRNM measurement, collecting both P-SHG and P-SFG signal using the PMT detectors,
shown in Figure 5.6.
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T
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414/46 BP

Figure 5.6: Detail of the PMT detector con�guration used for detecting SHG and SFG, as part
of the full setup in Figure 5.5.
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5.2.4 Results

We measure di�erent KTP nanoparticles by PRNM under incident electric �elds at 830 nm
and 1088 nm. Each time we measured P-SHG and P-SFG data twice, once for the setting with
QWP at 27◦ and once for QWP at 57◦. Here, we demonstrate the results of the PRNM analysis
and the reconstruction of the angle and ellipticity of the secondary beam.

Figure 5.7 shows the aggregate results of the the second- and fourth-order anisotropy signal
in SHG of all measurements. The background of this �gure is the familiar result of I4 vs I2 of
SHG PRNM (with crystal angle θ in color), as seen in Chapter 1 (Fig. 1.4). Here, we overlay
the results of this experiment. Magenta crosses denotes the set of I2, I4 for QWP at 27◦ and
blue crosses indicates the case for QWP at 57◦.

0.4 0.8 1.2
I2

0.2

0.0

0.2

I4

SHG_Theta

0

45

90

Figure 5.7: Collected SFG measured I2 I4 on top of theoretical I2 I4 data of the KTP cystal.
Shown with marks in magenta is the set of QWP at 27◦ and in blue for 57◦.

Immediately we notice that the results for both QWP settings but for identical KTP crystals
settings are mostly overlapping, which is promising for proper θ retrieval. We also notice that
the measured distribution of I2, I4 is quite broad, which is a sign that a lot of di�erent KTP
orientations have been explored in this experiment. For each point in this �gure, we retrieve
the nearest theoretical value, and thereby the orientation angles θ and ψ. The value of crystal
orientation φ is equated to the PRNM second order anisotropy angle φ2.

The continuation of the analysis is to collect A2n and B2n (normalized) and compare each
measurement with a generated map of A2n and B2n based on the crystal angle Ω = (θ, φ, ψ),
as a function of polarization angles δ and ellipticities ε. From these, we �nd again the closest
match and thus collect the values of δ and ε.

In Figure 5.8, the results are shown of the retrieved angles δ and ellipticities ε, colormapped
by the crystal angle θ. We separate the cases for QWP at 27◦ and 57◦.

We see that the results are not quite as expected. Both the set of QWP at 27◦ and at 57◦

have quite scattered results for δ and ε, where we ought to �nd two distinct sets, each in a well
bounded region of error.

5.2.5 Model

Since the results did not work out as expected, we have performed extensive testing of the SFG
analysis method. In order to do so, we construct test data with a large array of preset angle,
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Figure 5.8: Results of the SFG Angle+Ellipticity analysis performed on the data collected in
Fig. 5.7, displayed separately for the datasets with QWP at 27◦ and 57◦. The magenta cross
highlights the position of δ = ε = 27◦ or δ = ε = 57◦ respectively.

ellipticity, and crystal orientation. The test data consists of modeled P-SHG signal and P-SFG
signal, as described in Sections 1.2.2 (SHG) and 5.2.1 (SFG). We do not add any noise in this
treatment. The test data is subsequently fed into the same analysis program that analyzed the
SHG+SFG data in the measurement. In this section, we will describe our �ndings of the test
results.

We choose a large set of input parameters of the crystal orientation, θ, φ and ψ (in color)
to test where the analysis method is failing. Also, we modify the polarization angle δ of the
second electric �eld, and its ellipticity ε. The total number of test con�gurations is a cross
product of the following arrays:

θ = {15◦, 30◦, 45◦, 60◦, 90◦}
φ = {0◦, 30◦, 45◦, 60◦, 90◦}
ψ = {0◦, 45◦, 90◦}

δ = {30◦, 60◦, 90◦, 120◦, 150◦}
ε = {0◦, 30◦, 45◦, 60◦, 90◦} (5.6)
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Figure 5.9: Input vs Retrieved values for crystal orientation θ and φ.

In Figure 5.9a, we show the results for retrieving θ, which demonstrate perfect agreement for
the range of θ chosen. Note that we omitted θ = 0◦, since, as mentioned before, this orientation
along the longitudinal axes is known to deviate from the plane-wave approximation.

The results for retrieving φ, shown in Figure 5.9b, however are not in perfect agreement
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with the input parameters. Note that only for the case of ψ = 45◦, we have some disagreement,
which we already observed previously, in Fig. 1.5b.
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Figure 5.10: Input vs Retrieved values for beam polarization orientation δ and ellipticity ε, the
color indicates ψ (input).

Finally, we present in Figure 5.10, the results of the test data's orientation angle δ and
ellipticity degree ε. And here it becomes very clear that there is a mismatch between input and
retrieved value. Note however, that there is a faint trend to see along the (expected) diagonal,
which indicate that there is a range of KTP-orientation parameter values that does work.

A cause to why the program cannot properly retrieve the input parameter values may be
found upon inspection of the plots of A2n , B2n vs δ, ε (See Fig. 5.4). For the values chosen
here, it is fair to say that the nearest theoretical data point can be unambiguously found, but
for other values of A2n , B2n , the density of points of the theory becomes so high that a range
of δ, ε solutions seem valid from this perspective. This can get even more problematic when
noting that these A2n , B2n maps of δ, ε can become very skewed for certain values of crystal
orientation angle. In the end, this preliminary work shows that proper determination of full
elliptical polarization characteristics is possible, however only for nano-KTP orientations which
would fall in an appropriate range of orientations.

5.3 Polarized SFG of KTP with multipolar PSF

The experiment described in this section is inspired by the work of Kenny et al. [126] that
demonstrates a method for full polarization and phase control of the electric �eld at the focus
of a high-NA microscope, using two SLMs. We utilize it to create a pattern of multiple spots
with di�erent polarization angles.

5.3.1 Model

According to [126], one can create a four-spot pattern by using two SLMs of which the �rst in
the optical path is behind a half-wave plate at 22.5◦. The HWP is essentially a trick to virtually
rotate the two SLMs (or linear variable retarders) such that their fast axes are rotated 45◦ with
respect to each other. In their paper, it is proven that complete polarization state control is
possible with two linear retarders and one rotated by 45◦, i.e. the entire Poincaré sphere can
be accessed from a �xed initial polarization.
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We simulate the optical system using Jones calculus. We construct the following system
matrix M :

M = SLM(d2) · HWP(−22.5◦) · SLM(d1) · HWP(22.5◦) (5.7)

where the Jones matrices of the individual components are given by:

HWP(22.5◦) = R(−22.5◦)

(
1 0
0 −1

)
R(22.5◦)

=
1√
2

(
1 1
1 −1

)
SLM(d) = LR(d) ·MIR

=

(
1 0
0 e−id

)(
1 0
0 −1

)
(5.8)

in which d1, d2 designates phase delays applied to the pixels of the two SLMs, which are modeled
as a linear retarder (LR) and mirror (MIR). See also Sections 4.3.2.3 and 4.3.3 where we
introduced Jones calculus for these components.

We designed the delays d1, d2 to be position dependent, following a linear ramp pattern:

d1(x, y) = πk1(x, y)f1 + o1 mod 2π

d2(x, y) = πk2(x, y)f2 + o2 mod 2π

with

k1(x, y) = x cos a1 + y sin a1

k2(x, y) = x cos a2 + y sin a2

(5.9)

where parameters f1, a1, o1 and f2, a2, o2 denote the spatial frequency (i.e. tilt of the phase
ramp), angle and o�set of the �rst and second SLM, respectively. Here, (x, y) is the pixel
coordinate on the the SLM. For each pixel, the computer evaluates Equation 5.7 using an input
electric �eld vector. We choose vertically polarized incident light:

Ein =

(
0
1

)
(5.10)

Up to this point, the procedure provides us with the electric �eld at the back focal plane of
the objective. We constructed the program such that the results is compatible with the earlier
presented Get Focus program, which is fully described in Section 4.2.

In Figure 5.11, we provide an example of the results obtained from this model. In this test,
we chose f1 = a1 = o1 = 0 and f2 = 5, a1 = o1 = 0. Note that this ramp pattern causes two
spots to appear with approximately 90◦ di�erence in polarization.

5.3.2 Setup

The setup is illustrated by Figure 5.12. It is based on the setup used in the previous chapter
(see �4.3.1), with some important changes. First, we replaced the pump laser by a new one
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Figure 5.11: Example model results, with a constant phase delay π/2 on the �rst SLM (a) and
a horizontally ramped pattern on the second SLM (b). The corresponding BFP �eld space plot
calculated with Jones (c) and the corresponding Focus �eld (d).

(Verdi G, Coherent Inc.) since the previous one failed. It pumps two Ti:Sapphire pulsed laser
oscillators (Mira 900, Coherent Inc.) which are externally synchronized (Coherent Synchro-
Lock AP). The two lasers are tuned to 815 nm (200 fs pulsed) and 750 nm (2 ps), producing
the source for SFG and SHG (twice) excitation. A delay line (DL) is added on the path of the
750 nm beam in order to ensure spatial overlapping. In this experiment, we aim to rotate the
input polarization of the 750 nm beam, we do so by the HWP*, which is manually rotated to
perform the PRNM measurement per sample.
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Sample SLM SLM
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Oil Immersion
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P HWP

Ti:Sapphire
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CPM
Detectors
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HWP*

Figure 5.12: Experimental setup with two Ti:Sapphire pulsed lasers (one of 200 fs at 815 nm,
another of 2 ps at 750 nm), a Delay line for one of the beams (DL), piezo-translation stage
(Sample), Dichroic mirrors (DM), a 60× 1.40 NA Objective lens (O), Sample (S), Polarizers
(P), Halfwave plates (HWP), of one which is varied in the experiment (HWP*), a Lens (L),
and the detection is done by a system of Channel Plate Multiplier detectors (CPM), which is
detailed in Fig. 5.13.
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The 750 nm beam remains linearly polarized throughout while the second beam, 815 nm,
goes through the SLMs and it will be shaped such as to present a complex pattern in the focus
to be characterized by the P-SFG technique.

For this change of wavelength in the system, we need a di�erent set of detectors �lters. In
Figure 5.13, we display the CPM detector con�guration, consisting of a dichroic mirror (DM,
FF395/495/610-BiO1-25x36) that splits the SHG and SFG in two arms, each equipped with a
CPM and �lters (FF01-405/10-25 and FF02-379/34-25) collecting SHG at 407.5 nm and SFG
at 309.6 nm. We must note here that we are measuring the SHG of the �unknown� static,
patterned optical beam, but our setup was not optimized for this experiment since the �lters in
the detection path were not ideal. For future investigations, this limitation should be addressed.

CPM 3

DM
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700 SP
DM
395 LP

750 SP 405/10 BP

C
PM
3

SHG

SFG

379/34 BP

Figure 5.13: Detail of the CPM detector con�guration used for detecting SHG and SFG,
Fig. 5.12.

5.3.3 Results

In this section, we show some preliminary results. In Figure 5.14, we show results for a SLM
ramp con�guration of f1 = 5, a1 = π/2 and f2 = 5, a2 = 0, and o1 = o2 = 0, meaning that each
SLM has a linear ramp pattern with a frequency of �ve (�ve periods in the full window). The
�rst SLM has the ramp vertical (i.e. angle a1 = π/2). This gives rise to a more complicated
BFP pattern, as shown in Fig. 5.14c. Upon inspection of Figure 5.14d, one recognizes four
spots in the simulated electric �eld of the focus area, with di�erent angle of polarization for
the spots.

In Figure 5.14e, we measure the two-photon �uorescence signal of a nanobead that is scanned
through the focus area. This nanobead has uniform nonlinear response in all orientations. This
makes the �gure shown a measurement of the density of the incident �eld, con�rming the
existence of four clear spots of about 1 µm apart. Note that we do not expect to measure any
e�ect of polarization (since the �uorescence here is not sensitive to polarization), but rather
an intensity distribution of the four spots, which are shown to be unequal. The brightest spot
is the zeroth order di�raction near the center and brightness diminishes for spots farther away
from it. Note as well that the response of the center south spot even resembles somewhat the
shape of the theoretical spots, as seen in the simulated focus �eld.
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Figure 5.14: Example model results for a ramped pattern on both SLMs, (a) vertical, (a)
horizontal. (c) Corresponding BFP calculated with Jones and (d) the Focus electric �eld,
obtained with Get Focus program. (e) The experimental image is the result of a scan of a
�uorescence nanobead in the sample plane.

Figures 5.15a and 5.15b display the measurement of a KTP nanocrystal under illumination
of the simplest case, setting all ramp parameters to zero (f1 = f2 = a1 = a2 = o1 = o2 = 0).
Figure 5.15a shows SHG signal and Fig. 5.15b shows the SFG signal. Note that the SFG signal
looks a bit scattered, these small aberrations may be caused by the dichroic 720SP that we
used to send both beams to the sample.

Figures 5.15c and 5.15d show the same SHG and SFG signals emitted by the same particle
when the SLMs ramp parameters are changed to f1 = f2 = −3, a1 = π/2, a2 = 0, and
o1 = o2 = 0. As expected, the SHG signal is now transformed into 4 spots, since it is originating
from the direct excitation by the SLM pattern. The SFG signal shows a di�erent pattern with
only 2 spots. The SFG signal shows a di�erent pattern with only 2 spots, which is di�cult to
explain at this stage except by a possible instability of the SFG image scan (due to defocusing
in particular).

We then perform a preliminary PRNM experiment with several KTP nanocrystals placed
in the four-spot �eld as above. Figure 5.16 shows an example of these results.

This seems to indicate that the 2 detected spots are the signature of di�erent polarization
states at ω2, which was expected from the pattern created by the SLMs. Since we do not know
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Figure 5.15: Measurement of a KTP nanocrystal in a simple excitation �eld (f1 = f2 = a1 =
a2 = o1 = o2 = 0), collecting both SHG and SFG channels. Below, PRNM A0 results for a
measurement for a KTP nanocrystal in a four-spot excitation �eld at the focus (as in Fig. 5.14),
collecting both SHG and SFG channels.

the orientation of the KTP nanocrystal at this stage, we cannot quantify exactly which are
the two polarizations detected. Nevertheless, the observed magnitudes for A2n and B2n are
seen to be large, which is generally obtained for very low ellipticities whatever the nanocrystal
orientation (see for instance Fig. 5.4). Note that A2n and B2n surpass the expected normalized
value 1 for some pixels, which might be due to noise or to the fact that the incident rotating
polarization at 2ω1 contains small ellipticity distortions that were not fully characterized yet.
Because we suspect low precision due to the present experimental conditions (manual tuning
of the probed polarization at ω1, poor spatial stability during the measurement, etc), more
quantitative analysis was not pursued. For this reason, analysis and conclusions are paused
until better and more reliable data can be obtained. This will then be done outside this project,
however.

139



100 600 1100
Size (nm)

100

600

1100

Si
ze

 (n
m

)
A2n 1 Prtkl_1 Det2

0.000

0.737

1.473

(a) A2n SFG

100 600 1100
Size (nm)

100

600

1100

Si
ze

 (n
m

)

B2n 1 Prtkl_1 Det2

0.00

0.69

1.38

(b) B2n SFG

Figure 5.16: A2n and B2n anisotropy data of the same P-SFG measurement shown in Fig.
5.15d.

5.4 Conclusions

In this chapter, we investigated two experiments where we are using PRNM in a novel appli-
cation. There exists currently no direct way to measure the orientation and ellipticity of an
arbitrary electric �eld at the focus volume. We show the feasibility of using PRNM for this
purpose with two preliminary experiments.

Both experiments used P-SFG to probe the SFG response of a KTP nanocrystal of known
orientation. We are able to determine such orientation by virtue of the SHG emission enhanced
by a linearly polarized rotating beam.

In the �rst experiment, we demonstrate a simple case with an elliptically polarized beam
as a beam to be probed. We measured several KTP nanocrystals to determine what the
range of validity may be of such an approach. We provide preliminary results and found that
however some mismatches, there are several cases that con�rm our premise. These results were
dependent on the crystal orientation.

The second experiment attempts to characterize a more complicated beam. In order to
generate such an electric �eld at the focus, we employ two SLMs that can produce a multi-
polarization pattern by means of di�raction. Our results indicate clearly that we can control
the wavefront to create such patterns. The subsequent test was to convolute the focus area
with a nanocrystal and collect its response through PRNM. However, only preliminary images
were obtained due to time shortage.
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Conclusions and Perspectives

In this thesis, we have proposed a method to control and analyze polarized nonlinear excitations
in nanoparticles. We have demonstrated that this control and analysis opens the potential to
nanoscale visualization and excitation of nonlinear interaction with any type of nanoparticle.
With this aim, we have worked with two di�erent experimental con�gurations and three type
of materials.

First, we introduced the methodology theoretically and experimentally. We have built
a second order nonlinear model with a KTiOPO4 susceptibility tensor, and calculated the
excitation intensity when rotating such tensor. We have then used a sample with KTiOPO4

nanocrystals of 150 nm average size to test our model. We have illuminated the sample with
two synchronized and linearly polarized beams and we have detected several types of nonlinear
emissions. These include Second Harmonic generation, Sum Frequency Generation, Four Wave
Mixing and Two Photon Fluorescence.

We have rotated the polarization of the excitation beams along the excitation plane. We
have scanned these beams over the sample and recorded an intensity image for each of these
orientations, forming an intensity stack. In post-processing, we have corrected the drift of each
particle in the image stack and we have decomposed the intensity vs polarization orientation
functions of each pixel in a series of Fourier components. Then we have calculated the symmetry
order of such intensity vs polarization orientation functions, which gives a metric to determine
the anisotropy of each pixel together with the orientation of the excited dipoles of our sample.
Finally, we take this information and reconstruct anisotropy images in which we can visualize
the nanoscale localization and strength of oriented dipoles. We have �nally constructed a
KTiOPO4 nanocrystals model that found agreement with our experimental results.

Having con�dence in our method, we applied it over two other types of samples. First,
we used di�erent shapes of gold nanostructures, fabricated over a glass coverslip with electron
beam lithography. We obtained SHG and TPF anisotropy images that show the nanoscale
dipolar orientation and distribution of localized surface plasmons. We varied the excitation
wavelengths on our experiments to demonstrate that the distribution and orientation of such
dipoles depend on the resonances of the light with the sample, in agreement with existent
plasmonic studies.

We then sampled BaTiO3 nanocrystals and observed patterns di�erent from those expected
from a homogeneous crystal such the ones observed in KTiOPO4. We noted reports of experi-
ments suggesting a strong hypothesis that BTO nanoparticles are structured with a tetragonal
phase in their core, a centrosymmetric phase in their shell and an in-between layer of a gradient
phase between these two. We pursued our investigation by modeling a simpli�ed version of this
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structure and found out that our results match the models, giving strong support to the theory
that such shell exists.

Having proved the versatility of our technique at studying di�erent types of samples which
exhibit di�erent physical properties, we tried to address some of its limitations. We built a
setup where we are able to modify the wavefront of the optical beam such as when tightly
focused, we have an overall control of the electric �eld, in intensity, polarization and phase. We
did this with the addition of two Spatial Light Modulators to a Nonlinear Microscope. With
such experimental con�guration, we were able to replicate our Polarization-Resolved Nonlinear
Microscopy technique. This time however, we were able to scan the polarization orientation
in a 3D volume. While we proved that this works, we did not in fact performed a signi�cant
amount of data analysis. Future works need to systematically characterize nanoparticles with
this procedure in order to completely validate the e�ciency of the technique.

Because we built the theoretical and experimental methodology to create any desired pattern
at the focus, we tried to create a beam to match the dipolar behavior of one of our gold
nanostructures in order to enhance its nonlinear emission. The motivation to do this came from
the fact that our previous studies demonstrated that di�erent regions within a nanoparticle can
optimally generate nonlinear signal when interacting with a polarized beam oriented in di�erent
ways. While we e�ciently modeled such pattern, we could not unfortunately measure it in the
lab due to consistently observed malfunctions in the SLMs that could not be addressed in the
time scope of this project. It is our suggestion to solve these problems in the future so that
such patterns can be created, since we believe that the number of applications of this idea can
be signi�cant.

Finally in this project, we took our characterization tool and used it to probe the polarization
quality of a tightly focused complex beam. We used SFG, in conjunction with mapping polarized
information to theoretically prove that KTiOPO4 with certain given orientations can retrieve
the ellipticity and orientation of polarization of a elliptically polarized unknown beam. We have
also given preliminary measurements on the retrieval of a single polarization state and on the
mapping of a polarized pattern. The next step should focus on optimizing the stability of the
experimental setup given that the current conditions make it very di�cult to measure enough
data to obtain statistical back up to our claims. This is very important work, however, since
studies that have attempted such a goal are few and complicated.

Overall, this PhD project exploited the polarization of light in order to interact with
nanoparticles in nanoscalar way. We focused mainly in Second Harmonic Generation but we
have given the basis for a number of nonlinear contrast to be use in combination with other
imaging techniques. While the use of polarization is widely used in order to improve other
microscopy techniques, few has been done in the nanoscale and we believe that this will be an
important tool to assist in the �eld of nanoscopy and nanotechnology as the miniaturization of
science continues.
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Appendix A

SLM User Friendly Library

The SLM User Friendly Library is a collection of Matlab functions that implements control of
the Boulder Nonlinear Systems SLM device driver in a Matlab-user friendly way. We summarize
all functions in this section.

There was a need to write these Matlab functions since the provided functions were only
low-level C functions in a DLL library to the SLM device driver. These C functions can be
called using Matlab's calllib(library, function, ...) function, but often require special
preparation of the input variables so they exactly match the expected data type and format.
It is very tedious and error-prone to have to do this in every Matlab script to control the SLM.
Also, the error reporting is often mysterious. The SLM User Friendly Library does this special
formatting of data after checking of user input and provides helpful error messages to the user.

First, we wrote the low-level Matlab functions that are `wrappers' to the provided driver
library. They cleanly call the basic driver C functions (e.g. to initialize and close, set the LUT
and write a basic gray image to the SLM). Secondly, we wrote the function �Delay Image� that
implements the Delay Table lookup (Eq. 4.25) before writing the image. Once the Delay Table
is made for the setup, we can pass a high-level instruction like �create a beam with a pro�le of
linear polarizations according to this array of angles.�

After that, it became very useful to write a couple more high-level functions. They do a small
calculation based on the QWP�SLM setup described above, and then call the �Delay Image�
function in order to control: the rotation of polarization, the absolute output polarization and
the amplitude attenuation after analyzer. These last two functions are used for 3D Control of
the polarization in the focus �eld (see �4.4).

A.1 Functions

Below we summarize the functions in the SLM User Friendly Library.

• SLM_Close()

Close the SLM and DLL Interface properly.

• [NumDev] = SLM_Init()
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Initialize the DLL Interface and do basic con�guration of SLM. Returns NumDev, the
number of SLM devices initialized.

• SLM_Power(Power)

Switch Power ON/OFF for all SLM devices connected. Takes Power, the power state
(1 : On, 0 : O�).

• SLM_LoadLUTFile(Dev, File)

Load and con�gure the LUT �le for an SLM device. Takes Dev, the SLM device number
(1 : SLM1, 2 : SLM2); and File, the absolute path to the LUT �le.

• [ImageWritten] = SLM_WriteImage(Dev, ImageData)

Check, Sanitize and a write an image of 16-bit gray values directly to SLM. Takes Dev
as above; and ImageData, a 256x256 array or a (1x1) scalar which will be converted
to specially formatted 1D unsigned 8-bit array such that the driver accepts it. Returns
ImageWritten, the resultant 256x256 uint16 image array that has been sent to the SLM
and that can be directly saved to a .ti� �le. This .ti� �le is suitable for writing to SLM
using BNS' own Blink software (if using the same LUT).

• [ImageWritten] = SLM_WriteDelayImage(Dev, DelayTableFile, DelayImage_rad)

Use Eq. 4.25 and then call SLM_WriteImage() to write the result image to SLM. Takes
Dev as above; DelayTableFile, an absolute path to a .txt �le containing the Delay Ta-
ble; DelayImage_rad, a 256x256 or 1x1 array of desired delay values in radians. Returns
ImageWritten, the resultant gray image sent to the SLM.

• [ImageWritten] = SLM_WriteQWPPolarizationRotation(Dev, DelayTableFile,

RotationImage_deg)

Assume a QWP(45)�SLM setup; calculate the delay required to obtain relative polariza-
tion rotation:

DelayImage_rad = RotationImage_deg · 2 · π/180 (A.1)

Then call SLM_WriteDelayImage() (above) to write the result image to SLM. Takes Dev
and DelayTableFile as above; RotationImage_deg, a 256x256 or 1x1 array of desired
polarization rotation values in degrees. Returns ImageWritten as above.

• [ImageWritten] = SLM_WriteQWPSetAngle(Dev, DelayTableFile, AngleInput_deg,

AngleImage_deg)

Assume a QWP(45)�SLM setup, with a polarizer on the input. Calculate the delay
required to control absolute angle on the output:

RotationImage_deg = AngleImage_deg− AngleInput_deg (A.2)

Then call SLM_WriteQWPPolarizationRotation() (above) to write the result image to
SLM. Takes Dev and DelayTableFile as above; AngleInput_deg, the angle of the input
polarizer in degrees. Returns ImageWritten as above.
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• [ImageWritten] = SLM_WriteQWPSetAmplitude(Dev, DelayTableFile, AngleInput_-

deg, AngleOutput_deg, AmplitudeImage)

Assume a QWP(45)�SLM setup, between a polarizer and an analyzer. Calculate the
delay required to obtain attenuation control after analyzer:

αM = arccos
√
AmplitudeImage · 180/π (A.3)

AngleImage_deg = αM − AngleInput_deg + AngleOutput_deg (A.4)

where αM is Malus' angle in degrees. Then call SLM_WriteQWPPolarizationRotation()
to write the result image to SLM. Takes Dev, DelayTableFile, and AngleInput_deg as
above; AngleOutput_deg, the angle of the output analyzer in degrees; AmplitudeImage, a
256x256 or 1x1 array of attenuation values (in the range [0.0 . . . 1.0]). Returns ImageWritten
as above.

Usage: Here is an example code for writing an homogeneous image to result in an optical
delay of 3

4
π.

% Choose optical Delay to write to SLM (rad).

DelayValue_rad = 3*pi/4;

% Choose which SLM device.

SLM=1;

% Paths to LUT file and DelayTable file (see SLM Calibration)

LUT_file = 'C:\full\path\to\1HALF.lut';

DelayTable_file = 'C:\full\path\to\TheDuchess_DelayTableQWP.txt';

% Initialize SLM library, the device, and set blank calibration.

NumDevs = SLM_Init();

if NumDevs

% Load the chosen LUT file.

SLM_LoadLUTFile(SLM,LUT_file);

% Calculate and write an SLM image to produce a delay given in radians:

ImageWritten = SLM_WriteDelayImage(SLM,DelayTable_file,DelayValue_rad);

% Turn on the SLM devices

SLM_Power(1);

pause(); % Keep the Image on SLM.

SLM_Close(); % Close the SLM and deconstruct the library.

else

disp('Aborting due to failure loading SLM_Init...');

end
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Appendix B

Aberration Correction

Since we have two spatial light modulators (SLM) in our setup (Fig. 4.11), we have the possi-
bility to correct for wavefront errors in the focus plane that are the result of imperfect optical
elements and imperfect alignment. Here, we describe the method of aberration correction using
Zernike polynomials.

SLMs are used to introduce arbitrary spatial patterns of optical delay in the pro�le of a
beam of light. Therefore, we can use them to counteract wavefront errors in the beam pro�le.
In order to do so, we have to characterize the wavefront error.

The Zernike polynomials (or Zernike modes) is a complete set of functions that is orthonor-
mal over the continuous interior of the unit circle. Zernike modes are useful to represent
wavefront data since they have the same forms as the types of aberrations often observed in
optical tests. We can therefore use them to accurately �t the wavefront phase with a small
amount of terms.

The Zernike polynomials are de�ned as a product of a radial term and an azimuthal term.
In these equations, m is the azimuthal index and n the radial degree:

Zm
n (ρ, θ) =

{
Nm
n R

|m|
n (ρ) cosmθ if m ≥ 0

−Nm
n R

|m|
n (ρ) sinmθ if m < 0

(B.1)

where the radial term, R|m|n (ρ), and the normalization constant, N |m|n , are de�ned by:

R|m|n (ρ) =

(n−|m|)/2∑
s=0

(−1)2(n− s)!
s!
[
1
2
(n+ |m|)− s

]
!
[
1
2
(n− |m|)− s

]
!ρn−2s

(B.2)

N |m|n =

√
2n+ 2

1 + δm,0
(B.3)

Figure B.1 is an illustration of the �rst 20 Zernike modes. In our treatment, we choose to
follow the conventional ordering of the Zernike modes Zj = Zm

n with mode number j = n(n+2)+m
2

.

We characterize the wavefront of the setup (Fig. 4.11) up to Zernike mode Z15. That is, we
consider the wavefront Φ(ρ, θ) as an expression in terms of a Zernike polynomial decomposition,
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Figure B.1: The �rst 20 Zernike Modes, and Z0
0 . (Eq. B.2).

up to 15th order:

Φ(ρ, θ) =
15∑
j=0

ajZj(ρ, θ) + δΦ (B.4)

where the aj is the coe�cient of the j'th Zernike mode Zj and δΦ contains any residual errors
that are not captured by the �rst terms.

In our approach to �nding the aj coe�cients, we simply apply a series of trial aberrations
on the SLM and measure the SHG intensity of the entire focal area of the objective using
CPM detectors. We ensure the entire focal area is equally sensitive to SHG by employing a
�uorescent liquid as a sample. Since SHG intensity scales by square of the incident power,
this measurement method is more sensitive to power density on the sample and therefore focus
optimization than a linear measurement of incident power.

For every mode Zj (j = 0, . . . , 15), we measure the overall SHG intensity at the focus
as a function of amplitude aj, which is varied from −π to π with a step size of π/5. We
demonstrate an example measurement in Figure B.2a. Each time during these trial aberration
measurements, all coe�cients except one are kept zero (ak = 0, for k 6= j).
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(c) aj (d)
∑
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Figure B.2: Example result of Zernike Mode analysis. SHG signal is measured for each Zernike
mode Zj as a function of coe�cient amplitude aj = −π...π (a). The results are �tted with
a fourth order polynomial (b) to �nd the maximum intensity which determine the value of
coe�cients aj (c). These coe�cients together make up the composite wave front A(ρ, θ) =∑15

j ajZj(ρ, θ) shown in (d).

In the analysis, we �nd the values of aj that maximize the intensity for each mode number
j. In order to suppress noise and increase the precision in �nding the maximum value, we �t
the aj data using a fourth order polynomial �t (Fig. B.2b). In Figure B.2c, the obtained values
of aj are displayed in a bar plot.

Finally, we display the resultant composition of the Zernike modes
∑15

j=0 ajZj(ρ, θ) in Fig-
ure B.2d. This image represents the wave front that yields the maximum SHG intensity on the
�uorescent liquid sample. We can use it to correct other experiments on the same setup by
adding (mod 2π).
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