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Introduction

Microelectronics is based on three possible states of condensed matter: metallic,
insulating and semiconducting states. On top of these, there exists some materials

for which the bulk has a different state than the edge. They are called topological insu-
lators and have an electrically insulating bulk with conducting edges. One of the most
common system presenting such behavior is a two dimensional electron gas (2DEG) under
a strong perpendicular magnetic field [97]. While the bulk of the 2DEG is insulating, one-
dimensional conducting edge channels propagate at the border of the sample. This type
of state is called the quantum Hall effect. To fully grasp the physics describing this type
of system, the branch of mathematics named topology is adapted to condensed matter
physics.
Topology studies the invariance of certain quantities under smooth deformation of sys-

tems. For example, a doughnut and a coffee cup have both one hole. Therefore, according
to topology, they belong to the same class of materials as the first one can be smoothly
deformed into the other and vice-versa. However, a sphere and a doughnut are inequivalent
and to transform one into the other, a hole needs to be drilled. This idea of classifying
systems into different topological classes has been adapted to condensed matter physics.
This classification has led to the distinction between different energy gaps in electronic
band structures. Two energy gaps may not be equivalent with respect to topology. At
the interface between two topologically inequivalent gaps, the band structure must close
leading to gapless (conducting) surface states.
In 2007, the idea that the 2D quantum Hall effect could have an equivalent in three

dimensions has been developed by L. Fu, C.L. Kane and E.J. Mele. They have predicted
the existence of a new type of insulator : the three dimensional topological insulator (3D
TI)[65], which is a band insulator in the volume but is covered by metallic surface states.
These surfaces host electronic states with a linear energy dispersion relation, similarly
to the Dirac cone in graphene. Figure 1 displays the energy dispersion relation of these
surface states. The spin of the electron being always perpendicular to the momentum of
the electron which results in a peculiar spin-momentum locking. Such a spin polarization
is key as it brings a protection for the electrons against backscattering.
The linear energy dispersion relation and the spin momentum locking of the surface

states on a 3D TI have led to an abundance of theoretical predictions. One of the most
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Figure 1. – a) Schematic description of a three dimensional topological insulator (3D TI). b) Band structure
of the surface states on a 3D TI. The arrows represent the spin of the electrons and are always perpendicular
to its momentum. Adapted from [164].

exciting prediction is the emergence of new electronic excitations with peculiar topological
properties when a 3D TI is coupled to a superconductor [63]. These excitations would
behave exactly like the Majorana Fermion particle in high energy physics forecast by E.
Majorana in 1937 [118].
This excitation called in condensed matter physics the Majorana bound state is governed

by non-Abelian statistics and is thus expected to be the building block of the prospective
topological quantum computing. For this reason, Majorana physics has dragged major
attention recently from the condensed matter physics community. The Majorana bound
state could live in a region with non-conventional superconductivity that is induced at the
surface of a 3D TI in contact to a conventional superconductor.
In this thesis, we have fabricated Josephson junctions on topological insulators to unveil

possible signatures of this unconventional superconductivity and the associated Majorana
bound state. We first focus on the material growth and characterization. Then we investi-
gate the theoretical and experimental signatures of Majorana bound states in topological
Josephson junctions.

Chapter 1: We present a short introduction on topology in condensed matter physics.
We introduce a simple model of topological insulator in one dimension and then extend it
to two and three dimensions.

Chapter 2: We show in this chapter how Bi2Se3 has been the easy to grow and most
appealing material to study the physics of topological insulators. However, this compound
is intrinsically doped in the bulk leading to a bulk parallel conduction. Such a short-circuit
through the bulk parallel conduction precludes to properly study the physics of the surface
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states. That is why we develop in parallel another compound BiSbTeSe2 which was recently
identified as a truly bulk insulating topological insulator.
We first introduce the family of 3D TI based on bismuth to motivate our efforts. We

then present the method we have used to grow the quaternary compound. We show
how electronic transport in our compound is dominated by the surface states and thus is
appropriate to be used for topological Josephson junctions.

Chapter 3: This chapter presents the method we used to fabricate topological Josephson
junctions on bismuth based TI.

Chapter 4 : Placing two superconductors at the extremities of a normal metal can lead
to a non-dissipative current inside the metal. This geometry called Josephson junction is
introduced in this chapter. We present the associated physics, mainly the Andreev bound
states (ABS). We focus on the different regimes defining the transport properties.
Then we change the normal metal of the Josephson junction to a topological insulator.

We present the various and unexpected physics associated to such a topological Josephson
junction. The main new property is the change of periodicity from 2π to 4π of a peculiar
Andreev bound state (the previously mentioned Majorana bound state).
Probing this modification of periodicity is possible by performing Shapiro measurement,

in which radio frequency wave is shined on the junction while recording the voltage-current
characteristics. In conventional Josephson junctions, plateaus are formed at equidistant
voltages Vn. The 4π periodic ABS is expected to change the Shapiro map by presenting
only the even plateaus V2n.
We finish by reviewing the recent experiments reporting signatures of this new period-

icity.

Chapter 5: We simulate the VI characteristics of a topological Josephson junction using
a simple phenomenological model, the so-called resistively shunted junction model. We
observed two signatures of the 4π periodic ABS, one of which had never been reported in
literature. The frequency dependence observation of these signatures enables us to estimate
the amount of supercurrent carried by the 4π periodic ABS.
To improve this model, we include Joule heating effects. We start by developing this

model on conventional Josephson junctions. Finally we extend it to the case of the topo-
logical Josephson junctions and give a possible explanation of the experimental observation
of all Shapiro steps despite the presence of a 4π periodic ABS.

Chapter 6: We report in this chapter on the main experimental results of this thesis.
We present Shapiro measurements performed on topological Josephson junctions based
on Bi2Se3. We show two signatures of a 4π periodic ABS. The comparison between the
experimental observations and the simulations of previous chapter supports the presence
of such an unconventional ABS.
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Chapter7: This chapter focuses on the investigation of topological junctions made with
BiSbTeSe2 crystal, which shows insulating bulk transport. We demonstrate that, contrary
to metallic Bi2Se3 crystals, the supercurrent propagates only through the surface of the
crystal, without bulk conduction. However, no conclusion on the presence of a 4π ABS
could be drawn from Shapiro measurements due to electromagnetic resonances.
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This chapter is an introduction to topological insulators (TIs). We review the history
of TIs starting from the quantum Hall effect (QHE) to the zero-field TI in two and

three dimensions. This chapter is mainly based ref. [73, 171].

1 Context

The band theory of solids first developed by Bloch in 1929 [23] successfully described
the electronic conduction in metals, insulators and semi-conductors. It consists in

calculating the energy dispersion of electrons in a periodic lattice. Its synthetic represen-
tation in the first Brillouin zone gives information on the type of conducting material. The
schematic in figure 1.1 summarizes the three main types of band structure.
If the Fermi level lies inside a band gap, no electrons can conduct making the material an

insulator. For a small band gap in comparison to the thermal energy (kBT ), the material
is classified as a semi-conductor. If on the contrary, the Fermi level crosses the conduction
or the valence band, electrons can then respond to an external electrical field, giving rise
to a current. The material is a conductor.
Despite its powerful description of electrical conduction in condensed matter, the band

theory failed to explain the physics of disordered materials and the observation of Quantum

1
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Hall effect emerging in two dimensional electron gas (2DEG).
In the presence of a strong magnetic field perpendicular to a 2DEG, the electronic

energy dispersion splits into equidistant levels called Landau levels (see figure 1.2a). If the
Fermi energy is placed in-between two Landau levels, band theory predicts the 2DEG to be
insulating. However, in 1980 von Klitzing et al observed conducting behavior characterized
by a quantized Hall resistance in this type of system [97].
This observation is understood by the upward bending of the Landau levels close to the

edge of the sample as described in figure 1.2b-c. As the Landau levels gain energy on the
edges of the sample, the low index levels cross the Fermi energy enabling the existence of
conducting states at the border of the sample. These edge channels are unidimensional
states that are protected against local disorder. Indeed, an electron propagating in this
state cannot backscatter as the counter propagating channel is on the other side of the
sample.
It has been first understood by D.J. Thouless that this new state of matter, the quantum

Hall state, is related to an anomalous topology of the Fermi surface. Topology studies the
invariance of physical quantities under a smooth deformation of systems. The power of
topology was used recently by physicists to understand and predict the appearance of new
phases in condensed matter physics. The associated theory called the topological band
theory aims at studying the topology of the band structure.

2 The use of topology in condensed matter

In 2016 the Nobel prize was dedicated to Thouless, Duncan, Haldane and Kosterlitz for
use of topology in condensed matter physics[169]. The main purpose of this Nobel prize

was the prediction and understanding of the BKT transition. It is a phase transition from
one type of topological phase to another type of topology. This type of transition does
not originate from the breaking of a symmetry as usually described by the Landau theory.
Therefore, using topology in condensed matter opens new ways to study and understand

Figure 1.1. – The three main types electronic band structure in solids. The maximum energy of the
electrons is the Fermi energy EF. If EF lies inside the electronic band gap, then the material is an
insulator (large gap : Eg > kBT ) or a semi-conductor (small gap Eg ≤ kBT ). If EF crosses an energy
band, then the material is a metal.
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2. The use of topology in condensed matter

Figure 1.2. – Limitation of the Band theory in the case of Quantum Hall regime. a) Energy of the Landau
levels in the bulk of the quantum Hall regime, with ωc = eB

m the cyclotron orbit. The material is supposed
to be insulating in this configuration. b) Spatial dependence of the Landau levels. At the border of the
sample, due to the edge potential, the energy levels cross the Fermi energy (red circle). c) Sketch of the
edge channel circulating at the border of a sample from [73].

phenomena that have never been predicted before.

2.1 Classification of topological matter
The topological matters have been classified depending on the symmetries the Hamil-

tonian breaks or verifies [5, 94, 143, 154, 155]. Three symmetries were used: the Time-
Reversal symmetry Θ, the Particle-Hole symmetry Ξ and the Chiral symmetry Π = ΘΞ.
In total, there are ten topological classes that classifies the types of topology.
For a given topological class, depending on the dimension of the material (1D, 2D or

3D), the topology of the band structure can be trivial (weak TI) or non-trivial (strong TI).
In the case of a non-trivial topology, the material has protected edge states. In the case of
a trivial topology these edge states are not protected.
For example, the quantum Hall state (2D) does not verify any of the three symme-

tries whereas, the quantum spin Hall state that will be described in section 3.2 verifies
Time-Reversal symmetry but breaks the two others. Therefore, those two states do not
correspond to the same topological class. However both systems host one dimensional edge
states that are protected from disorder. On the contrary, vacuum verifies all symmetries
and therefore is classified as a trivial insulator.
The protection from backscattering is lost if there exists a counter propagating channel

close (in position, spin and energy) to the initial forward channel. Such system would allow
the elastic backscattering of electrons. This is the case for weak topological insulators that
have an even number edge states.
A different point of view is to associate some integer numbers for each topological classes.

They are called topological invariants and define the topology of the band structure. A
simple schematic presenting the topology of a material band structure and its associated
topological invariant is given in figure 1.3a. A doughnut has an integer number of holes
(one) representing the topological invariant. One can observe the continuous deformation
from a doughnut to a cup. Therefore, both objects belong to the same topological class
with the topological invariant ’number of hole = 1’.

3
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Figure 1.3. – a) Continuous deformation of a doughnut into a cup. They have the same number of holes,
hence belong to the same topological class. From [117]. b) Example of strings that do not have the same
topology. The trefoil knot (1) cannot be transformed into a ring (3) without cutting the string and thus
passing by a string with open ends (2). From [124].

S

top view

Figure 1.4. – Schematic of the chiral property of the quantum Hall edge state. The initial system (left)
has an edge state rotating clockwise. The symmetric with respect to a vertical plane changes the rotation
direction of the edge state. The right system is not identical to the left one.

In figure 1.3b are represented different material that do not belong to the same topolog-
ical classes. The trefoil knot belongs to a different class than the ring. From this analogy,
we understand that bringing in contact two systems that do not have the same topological
band structure results in the ’cutting’ of the band structure at the interface of the two
systems. This corresponds to edge states at zero energy. Each time the string in figure 1.3
needs to be cut to be transformed into a ring corresponds to the number of edge channels.
An even number of edge channel defines a weak topological insulator without protection
from back scattering whereas an odd number corresponds to a strong TI.

2.2 What is chirality ?
Edge states will exist at the interface between a topologically non-trivial phase and a

topologically trivial phase (as, for instance, vacuum). Because the two topological phases
do not break or verify the same symmetries, these states will be chiral 1.
The notion of symmetry is intrinsic to the Hamiltonian describing the system that is in-

variant or not under quantum transformation. Therefore, the presence of chiral edge states

1. Sometimes called helical. An helical state is simply a state with a chirality along an axis.
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at the border of a system is included in its microscopic description [10, 75]. However, we
choose here to introduce the notion of chiral edge states by the observation of the resulting
edge states of topological systems. This approach may be not rigorous nor complete but
aims at being accessible to non specialist readers.
Chirality is the general property of a system to change when mirrored by an axis or

plane of symmetry. For instance, the state in a quantum Hall regime is chiral. Indeed, as
described by figure 1.4, the left system has a state propagating clockwise. The symmetric
of this system with respect to a plane changes the direction of propagation. As the initial
system and its symmetric do not correspond, the edge state is chiral. This notion of
chirality always remains when talking about edge states of topological regions.

3 From one to three dimensions TI

In this section we present examples of strong topological insulators in one, two and three
dimensions. Each of them host edge states of zero, one and respectively two dimensions

that are protected from disorder.

3.1 One dimensional TI: the SSH model
To best understand the nature of a topological insulator, we present the simplest model

of one dimension that historically has been the first observed topological insulator. The
molecule of polyacetylene is a one dimensional chain that can host soliton states theoret-
ically studied by Su, Schrieffer and Heeger [164]. This molecule presented in figure 1.5
consists in a chain of carbon atoms linked by either single or double bonds. The remaining
covalent bond of the carbon atoms is linked to an atom of hydrogen.
The SSH model is described by a tight binding Hamiltonian of 2N sites with spinless

fermions. Only two parameters describe the hopping of electrons by their probability t1
and t2 depending if the bond is simple or double. The two limit cases are t1 = 1, t2 = 0
and t2 = 1, t1 = 0 that correspond to electrons that can hope only to a single side. The
left case of figure 1.5 is associated to intra-cell hopping of electrons whereas the right case
corresponds to inter-cells hopping.
The associated Hamiltonian is given by :

H =
2N∑
n=1

tnc
†
ncn+1 +H.c. (1.1)

with c†n being the creation operator of an electron on the site n and H.c. the Hermitian
conjugate of the first term in the sum.
The simplest model corresponds to tn = t1 and tn+1 = t2. Its energy dispersion is

presented in figure 1.6 for two different configurations. The red line corresponding to
t1 6= t2 describes a gapped band structure, whereas the blue dotted line for t1 = t2 is not
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Figure 1.5. – Schematic representation of a molecule of polyacetylene extracted from [171]. Atoms of
carbon are bond by either single or double bonds. The hopping term of electrons from one carbon to its
left (right) neighbour is t1 (t2). The two limit cases t1 = 1 and t1 = 0 are sketched in the lower schematic.

gapped. If we suppose a system with N conducting electrons, the Fermi levels is then
placed at zero energy. For this Fermi level, as long as t1 6= t2 the system is insulating.
Let us now focus on the topological nature of this system. We will see that the limit

cases of intra and inter-cell hopping are in-fact not topologically equivalent. We can first
notice that the case t1 > t2 is equivalent to t1 = 1, t2 = 0 and so is t1 < t2 equivalent to
t1 = 0, t2 = 1. Indeed, we can change continuously the Hamiltonian from t1 = 1, t2 = 0
to any value of t1 > t2 without closing the band gap. The same procedure can be done
between t1 = 0, t2 = 1 and any value of t1 < t2. However, to change the system from
t1 < t2 to t1 > t2, the gap closes and the chain becomes conducting. This gap closure
reveals the different affiliation of the two cases to two different topological classes. The
case of intra-cell hopping (t1 = 1, t2 = 0) is arbitrary called the trivial case whereas the
case of inter-cell hopping (t1 = 0, t2 = 1) is topologically non-trivial. Therefore, the gaps
of the two cases are not equivalent.
Now we consider a chain that is composed of intra-cell hopping on the left side of n = 3

and on the right side of n = 7 but contains a region of inter-cell hopping in-between n = 3
and n = 7 as described in figure 1.7. Away from the two interfaces (n = 3, 7), the region
can be denoted as the bulk of the chain. It has a gapped band structure and hence is
insulating. However, at the two interfaces, we observe that the electron sitting on the site
A3 does not bond to any neighbour whereas the two sites 6B and 7B share a single electron
from A7 representing a hole on a B site.
The energy of the two charges is zero for the electron sitting on A3 because it is isolated

from its neighbours, whereas the hole on site 6B and 7B also has zero energy from symmetry
argument. In addition, these charges are chiral because they do not share the same sub-
lattice (A and B).
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3. From one to three dimensions TI

Figure 1.6. – Energy dispersion of the states of the SSH model. The red curve corresponds to the case
t1 6= t2 whereas the dotted blue line to t1 = t2. Adapted from [164].

Figure 1.7. – Example of charge soliton in the SSH model. The system is composed of inter-cell hopping
in-between n = 3 and n = 7 and outside of this region the system has intra-cell hopping. Extracted from
[171].

To conclude on this model, the presence of a topologically non-trivial region leads to an
even number of interfaces hosting chiral edge states. Each interface contains zero energy
charges of one dimension lower (here 0D) than the one of the system (here 1D).
From the band structure point of view, the two band gaps of the intra-cell and the

inter-cell hopping are not equivalent. Therefore, the gap closes at the interface leading to
available conducting states at zero energy.
The effect observed in this simple 1D model remain for 2D and 3D topological insula-

tors. In the next section we describe the general idea of those types of systems and give
experimental example.

3.2 2D topological insulator: quantum spin Hall state
The quantum spin Hall (QSH) regime predicted by Kane & Mele in 2005 is the famous

example of two dimensional non-trivial topological phase, commonly named as the 2D
topological insulator [93].
The QSH regime has similarities to the quantum Hall regime. Indeed, both have an

insulating bulk and conducting edge channels as described by the figure 1.8a. However,
in comparison to the QH regime that does not differentiate the spin of the electrons, the
QSH does. The edge channels in the QSH regime are spin polarized and counter propagate
depending on their spin. Thus we can see the QSH as the superposition of two counter
propagating edge channels originating from spin polarized QH edge states of opposite
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magnetic field.
The band structure of such phase is presented in figure 1.8b. The structure is composed

of two linear branches that crosses at zero energy and zero wave vector which resembles
the Dirac cone of graphene. However, these branches are spin polarized. Hence at positive
energy, the spin up electrons (red line) propagate in a positive k direction whereas the spin
down electrons propagate to the opposite direction.
Similar to the protection of the edge states of the QH regime, these states are pro-

tected from backscattering of non-magnetic impurities 2. Indeed, for a spin up electron to
elastically backscatter, the only available state at the same energy is the one at opposite
momentum and opposite spin. Therefore, in the absence of magnetic interaction, the spin
cannot flip and hence the electron cannot switch to the branch of opposite momentum.
The band structure of the QSH is chiral in the sense that the symmetric with respect to

the k = 0 plane of the red branch in figure 1.8b is a spin up branch at the same position
of the blue branch. As the spin is not symmetric, these states are chiral.
In 2006 Bernevig et al proposed a quantum well structure of HgTe encapsulated by

CdTe to observe the quantum spin Hall regime[20]. Mercury telluride has an inverted gap
structure with respect to the one of cadmium telluride as presented in figure 1.9a. To be
continuous, the Γ6 and Γ8 bands have to cross each other at the interface between HgTe
and CdTe.
The band structure of the three regions interact and form subbands in the quantum

well. The most important ones, E1 and H1, are represented in figure 1.9b for two different
well thicknesses d. In the case of small quantum well (d < dc), the CdTe band structure
dominates and the sample is insulating. However, for a large sample (d > dc), the subbands
in the quantum well invert each other. In this configuration, the upper band H1 needs to
connect to the Γ8 band of CdTe. This connection leads to the crossing of the Fermi
level by the H1 subband. The same procedure happens for the E1 subband. Therefore,
the crossing of those bands leads to spin polarized edge channels. This is the previously
described quantum spin Hall effect.
To prove the proposed model of Bernevig et al, the group of L. W. Molenkamp measured

Figure 1.8. – Quantum Spin Hall state seen as the superposition of two spin polarized Quantum Hall
states. The edge states are counter propagating with opposite spins. from [126]. b) Energy dispersion of
the edge states.

2. Note that in the QH regime, the edge states are protected from all types of impurities including the
magnetic ones.
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3. From one to three dimensions TI

Figure 1.9. – Band structure of HgTe and CdTe close to the Fermi energy. The Γ8 band contains an heavy
and a light band. b) Band structure of a quantum well composed of CdTe-HgTe-CdTe. In continuous lines
are represented the position of Γ6 and Γ8 bands of the isolated materials. In dotted lines are presented
the subbands E1 and H1. For a small (large) well d < dc (d > dc), the two subbands are dominated by
the initial band structure of CdTe (HgTe). c) Longitudinal resistance of Hall bars fabricated on different
quantum wells of CdTe-HgTe-CdTe. The samples III and IV have a thickness larger than the critical
thickness dc whereas the other samples are smaller. The former samples display a quantized conductance
corresponding to two channels of conduction. d) Schematic representation of the sample measured in c).
Adapted from [20, 98, 99].

the conductance of such structure. Their main results is presented in figure 1.9c-d. They
observed the conduction of only two channels for a geometry of a large quantum well, as
expected by the proposed model.

3.3 3D topological insulator
In 2007 Fu, Kane and Mele discovered the three dimensional equivalence of the quantum

spin Hall regime [65]. As for 2D TIs, three dimensional topological insulators (3D TIs)
possess an insulating bulk with conducting edges. However, the edges of a 3D crystal are
its surfaces. Therefore, the 3D bulk of a 3D TI is insulating and only its surfaces are
conducting.
As described in figure 1.10a, the band structure of the bulk of a 3D TI is gapped whereas

its surfaces are gap-less which allows the formation of a metallic 2DEG. In addition, these
metallic surfaces have a linear dispersion relation, as the one of graphene, with a spin
polarization. This spin polarization is similar to the one of the QSH but here in 2D,
the dispersion relation in figure 1.10b presents a cone with a spin perpendicular to the
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momentum which rotates with it. This spin texture of the Dirac cone is called spin helicity
and describes chiral edge states.
For the same reason as for the QSH regime, these surface states are protected against

backscattering as long as no magnetic impurities are involved. Therefore, the main differ-
ence between these surface states and a simple 2D electron gas in semiconductors is that
it is not subject to localization due to disorder and thus remains metallic even at zero
temperature.
The first material identified as being a 3D TI was BixSb1–x in 2007 by Fu and Kane

[64]. In 2009, the three compounds Bi2Se3,Bi2Te3 and Sb2Te3 that have the same crystal-
lographic structure are identified to be 3D TI [181, 190]. Latter strained HgTe was also
classified as a 3D TI [30].
The bismuth based compound (Bi2Se3,Bi2Te3,Sb2Te3,...) materials have the same rhom-

bohedral crystal structure with the space group R3̄m. The crystal structure of Bi2Se3 is
presented in figure 1.11a. The unit cell is composed of five atoms forming quintuple layers.
Each quintuple layer is bond by Van-der-Waals interaction whereas the inner bonds are
covalent.
This layered crystal structure enables the exfoliation perpendicular to the c axis of such

material into thin flakes. This technique developed for graphene exfoliation is already
mature in research labs and has been quickly adapted to these types of materials.
The band structure of Bi2Se3 is presented in figure 1.11b-d. The computation and

ARPES measurement of its band structure shows a large gap of 0.3 eV that is 10 times
larger than the thermal energy at ambient temperature. The surface states are visible in
the band structure. They form a single Dirac cone at the Γ point inside the bulk band
gap.

Figure 1.10. – a) Schematic description of a three dimensional topological insulator (3D TI). b) Band
structure of the surface states on a 3D TI. The arrows represent the spin of the electrons and are always
perpendicular to its momentum. Adapted from [164].
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Figure 1.11. – Simulation and experiment on Bi2Se3. a) Crystal structure of the material. The red
rectangle points at the unit cell. b) Band structure calculated by ref [190]. c) Angle resolved photo emission
spectroscopy (ARPES) probing the band structure of Bi2Se3. BC(V)B: Bulk conduction (valence) band,
SS: Surface states. Extracted from [181]. d) Polarized ARPES measurement showing the helicity of the
Dirac cone at the surface of Bi2Se3. Extracted from [147]

Despite their very promising aspects, Bi-based 3D TI compounds have a major drawback
that is the residual doping of their bulk. Experimentally, none of the three compounds
has a Fermi level inside the band gap, which makes their bulk effectively metallic. That
is why we investigate in this thesis the growth of a bulk insulating TI based on the same
crystallographic structure : the quaternary compound BiSbTeSe2.
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4 Conclusion & outlook

After their discovery, 3D TIs were foreseen for the great purpose of being part of
the key element of topological quantum computers. Indeed, in 2008, Fu & Kane

predicted that a Josephson junction in which the weak link is the surface state of a 3D
topological insulator hosts a particular excitation at zero energy [63]. This excitation called
in condensed matter physics the Majorana bound state exhibits a non-Abelian statistics
which would allow one to perform topological quantum computing [3].
We therefore study in this work Josephson junctions fabricated on bismuth-based 3D TI

to investigate the Majorana bound state.
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Since 2009, Bi2Se3 appears as a very promising topological insulator due to its large bulk
band gap and the presence of a single Dirac cone for surface states. However, bismuth

selenide has a metallic bulk which makes difficult to disentangle in transport measurements
the signal of the surface from that of the bulk.
This chapter presents the crystal growth we have performed to fabricate crystals that

have vanishing bulk conduction: BiSbTeSe2 (BSTS). We start by presenting shortly the
bismuth based three dimensional (3D) topological insulators (TIs) then we describe the
procedure we followed for the growth of all compounds studied in this thesis. Finally we
describe the growth of the various crystals of BSTS that we made.

1 Introduction to Bi2Se3 and its family

After their theoretical prediction in 2007, lots of efforts have been made to obtain topo-
logical insulator crystals [64, 65]. In 2009, Bi2Se3, Bi2Te3 and Sb2Te3 were predicted

to be 3D TIs. Bismuth selenide has the largest energy gap with 0.3 eV and a Dirac point
located inside the gap, which made it the most appealing material to study topological
properties [190].
In this section we introduce the state of the art of the bismuth-based topological insu-

lators from the crystallographic structures and electronic properties point of view.

1.1 Crystallographic properties
Bismuth based 3D TIs are layered materials sharing the same rhombohedral crystallo-

graphic structure with the space group R3̄m. The latter is described in figure 2.1a-c with
the example of Bi2Se3. The stacking order of a quintuple-layer is Se1 - Bi1 - Se2 - Bi1’ - Se1’,
with Se1 and Se1’ respectively Bi1 and Bi1’ being equivalent sites in the lattice, whereas
Se1 and Se2 are two inequivalent sites.
The same year of the prediction of the topological nature of Bi2Se3 (BS), the group of

Hasan performed angle resolved photo-emission spectroscopy (ARPES) on a BS crystal
[181], see Figure 2.1d. One can notice the bulk band gap (between the yellow upper and
lower bands) and the surface states forming a Dirac cone in-between the band gap. A
similar measurement proved the spin polarization of those surface states [147].
The Fermi level of BS is in the conduction band, the bulk is thus n-doped. Therefore BS

has a metallic bulk with conducting surface states. To be able to probe only the surface
states, enormous efforts have been made to reduce the bulk conductivity.

1.2 Bismuth based topological insulators
The n-doping of Bi2Se3 originates from the selenium vacancies that act as electron donors

[78, 128]. On the other hand, Bi2Te3 is a p-doped material due to the anti-site defects of
tellurium: An atom of bismuth sitting on a tellurium site produces a negative charge
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Figure 2.1. – Extracted from [181, 190]. a) Crystal structure of Bi2Se3 with primitives lattices vectors
t1,2,3. The red square designates one unit cell of a quintuple layer of Bi2Se3. b) Top view of the lattice.
The triangular lattice has three different positions noted as A,B & C. c) Zoom on one quintuple layer. The
bond in-between two atoms inside the quintuple layer is a covalent bond, whereas two quintuple layers
are linked by Van der Waals bonds. d) Angle resolved photo-emission spectroscopy of Bi2Se3. One can
distinguish (from bottom to top) the bulk valence band (BVB), the surface states (SS) forming a Dirac
cone and the bulk conduction band (BCB).

which is compensated by a hole in the valence band [34, 149]. In order to reduce their bulk
conduction, both materials have been thoroughly studied by chemical doping (Bi2Se3 : [6,
31, 55, 80], Bi2Te3 : [34, 88, 137, 189]), ionic liquid gating [185], molecular beam epitaxy
deposition [76] or photon exposure [59]. However, none of these studies reported on the
sole observation of surface transport.
A different approach was carried out in parallel. It consists in producing a crystal where

the n and the p-doping compensate. For this reason, Bi2Te2Se, Bi2Se2Te and BiSbTeSe2
(BSTS) compounds were proposed as alternative [14, 131, 140, 141]. The exact ratios of
those materials have been tuned to shift the Dirac point and Fermi level location [9, 59,
132, 140, 168, 176, 180].
However, the only material based on bismuth that showed a clear signature of the surface

states in transport measurement was the stoichiometric BSTS [182] 1. Since this publication
in 2014, we investigated the growth of this quaternary compound. In this thesis we present
the procedure we followed to optimize the growth of the sole material BSTS.

1. For a short time, Bi2Te2Se was seen as a promising compound, that is why we put efforts in growing
it.
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2 Growth methods of stoichiometric crystals

In this thesis, we have grown several topological insulator crystals. We have followed the
same procedure for all the growth : First we study the existing phase diagrams of the

ternary or quaternary material we want to grow. Second we perform a thermal differential
analysis (TDA) on the compound to know its melting temperature and which ratio of the
raw elements one should put in the quartz tube/crucible. Finally, we perform a melting
growth method to produce the final crystal in a larger quantity and to optimize the quality.

2.1 Estimation of the possible reactions
We perform a thermal differential analysis (TDA) using the commercial set-up DSC 404S

from Netzsch presented in figure 2.2. It consists in a crucible in which we place a small
quantity of raw elements (500 mg). The crucible is heated up inside the oven of the set-up
while recording precisely its temperature Tsample and the temperature of the oven Toven.
When a reaction occurs in the crucible (fusion / crystallization), Tsample will differ from
Toven. DT = Tsample − Toven is then positive (negative) for an exothermic (endothermic)
reaction. During the experiment, the pressure is kept ambient with an argon flow of
150 mL/min.
Performing a TDA informs on the temperatures at which the reactions occur during

a growth. We also need to make sure that the observed reactions produce the desired
compound (BSTS). For that, we characterize the grown material with energy dispersive
X-ray spectroscopy (EDX) and powder X-ray diffraction (XRD). If needed, we can change
the stoichiometry of the raw elements to adjust the final composition.
To remove the oxide on the raw elements, we clean them within the day of growth

Figure 2.2. – Commercial set-up used to perform the thermal differential analysis. a) Picture of the
Netsch 404S. The furnace is 15 cm diameter. Inside the furnace is disposed a crucible (b) wherein the
growth elements are put.
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Figure 2.3. – Homemade set-up used to grow topological insulator crystals. a) Closure of a quartz tube
with a torch. b) Closed quartz tube. On the left, the crucible of the TDA is shown for comparison. c)
Quartz tube put in the adapted oven in which we have grown the crystals. In all pictures, the horizontal
black line is 1 cm for scale.

by diluting each element in the appropriate solution (cf table 2.1), then rinsing them in
distilled water and ultrasounds. Once dried, the elements are weighed with a precision of
0.01 mg and placed in a crucible (for the TDA) or in a quartz tube for crystal growth.

Element Bi Sb Te Se
Cleaning solution KOH H2O HCl Ethanol

Table 2.1. – Cleaning solution to remove the possible oxides on the raw elements.

2.2 Melting growth in quartz tube
Once we know the melting temperature and the initial composition to obtain a stoichio-

metric crystal, we can grow the desired compound in a larger amount (∼ 3 g). For that
we put the raw elements in an air-evacuated quartz ampoule. The procedure is shown in
figure 2.3.

3 Growth of BiSbTeSe2

Now that the general procedure to grow a new material has been presented, we discuss
the exact approach we followed for the growth of BSTS.
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Chapter 2. Growth and characterization of bismuth based topological insulators

Figure 2.4. – Binary phase diagrams between the four components of the material BiSbTeSe2. These graphs
are extracted from Massalski & Okamoto [119]. L represents the liquid phase and the other compounds
are labelled with their melting temperatures. We should recall that only the binary compounds Bi2Se3,
Bi2Te3 and Sb2Te3 are topological insulators with the rhombohedral crystallographic structure.
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3. Growth of BiSbTeSe2

3.1 Binary phase diagrams for BiSbTeSe2
Before growing a material, its phase diagram needs first to be studied. As BSTS is a

quaternary compound, there exists no phase diagram displaying the temperature depen-
dence of the different possible compounds between the four components. However, we can
still observe the 6 binary phase diagrams displayed in figure 2.4. In these diagrams, we
note that it is always possible to form the compound A2B3 with A=(Bi,Sb), B = (Se,Te)
that has a melting point between 585 ◦C and 706 ◦C. In addition to these main compounds,
bismuth reacts with tellurium and selenium to produce other compounds with a different
crystal structure : Bi2Se, BiSe, BiTe, Bi2Te and Bi4Te6. No defined compound is formed
between Se and Te or between Bi and Sb.
From these diagrams, one anticipates that the melting point of BSTS should be below

706 ◦C 2. The possible compounds that will be formed during the growth are the one listed
above as well as the ternary and quaternary compounds based on the structure of A2B3.

3.2 Thermal differential analysis on BiSbTeSe2
To determine the exact melting point of BSTS and which proportion we must use to

have a stoichiometric BiSbTeSe2, we performed TDA on the stoichiometric proportion of
elements :
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Figure 2.5. – a) Thermal differential analysis on the sample BSTSa. Each positive (negative) spike
corresponds to an exothermic (endothermic) reaction. All heatings and cooldowns were done at a speed of
300 ◦C/h. The red curve has been shifted down for clarity. b) Temperature evolution of the oven during
the TDA of a).

2. A binary compound is more stable than its quaternary equivalent. Hence Bi2Se3 is more stable than
BiSbTeSe2.
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1 Bi + 1 Sb + 1 Te + 2 Se = BSTSa
with index ’a’ denoting the first sample of BSTS.
The results of the TDA are shown in figure 2.5. The first heating cycle (red curve),

displays a minimum (endothermic reaction) which is the melting of selenium at ≈ 220 ◦C.
The two exothermic reactions (vertical black arrows) are most probably the production an
alloy between bismuth and tellurium at 253 ◦C and of Bi2Se at 508 ◦C. A last reaction of
fusion appears at 630 ◦C that is most probably the fusion of a compound based on Bi2Se3.
Once the sample is liquid, its composition is homogeneous and the growth of BSTS can
start by cooling down the sample. The temperatures are not exactly the same as the one
referenced in the binary phase diagram because all temperatures are shifted in the presence
of the four elements.
The first cooling cycle (blue curve in figure 2.5) displays only two maxima corresponding

to two unknown reactions.
Once the crystal is formed, the second heating (black curve) displays the same two

reactions at 530 ◦C and 570 ◦C that are reproducible. Above the upper temperature, no
reaction occurs anymore. Hence the solution is presumably liquid above 570 ◦C. We do not
know a priori which one of the two reactions produces the desired BSTS. To discriminate
between the two, we have reproduced a TDA with the same sample. During the cooldown,
we have waited 12h between the two reactions at 560 ◦C before quickly cooling down to
room temperature at 300 ◦C/h.
After EDX analysis, we concluded that the grown material is not homogeneous with

at least three phases. From XRD, we know that there are two types of crystallographic
structures. In addition, its global average composition is given in the table 2.2. In this
table the concentration are normalized relative to the composition of A2B3:

Element Bi /(Bi+Sb) Sb/ (Bi+Sb) Te(Te+Se) Se/(Te+Se)
Relative composition 1.24 0.76 0.81 2.19

Table 2.2. – Relative composition of sample BSTSa determined by EDX.

We observe the low ratio of antimony and tellurium with respect to the expected com-
position of BiSbTeSe2. Those elements have either evaporated or migrated to the border
of the crucible during the growth and therefore their concentration have decreased when
growing the main crystal.
From the TDA of BSTSa, we conclude that (1) there are two reactions occurring during

its growth, (2) starting with a stoichiometric proportion of BiSbTeSe2 does not produce a
stoichiometric crystal.
To compensate this shift in composition, we change the initial composition and perform

a second TDA:

1 Bi + 1.1 Sb + 1.1 Te + 2 Se = BSTSb
During this TDA, we followed the temperature evolution by first heating the whole material
above its melting temperature (620 ◦C), then in a second cycle, we stay below the two
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3. Growth of BiSbTeSe2

Figure 2.6. – a) Thermal differential analysis on the sample BSTSb. Each positive (negative) spike
corresponds to an exothermic (endothermic) reaction. The heating was at 300 ◦C/h and the cooling at
1200 ◦C/h. b) Scanning electron microscopy image of the surface of the sample BSTSb. The horizontal
white line is 50 µm for scale.

reactions previously identified, that is, a plateau at 520 ◦C, to promote the compound
stable below 530 ◦C :

30 ◦C 300 ◦C/h−−−−−→ 850 ◦C (1 h30 min) −1200 ◦C/h−−−−−−→ 30 ◦C
300 ◦C/h−−−−−→ 850 ◦C (30 min) −6000 ◦C/h−−−−−−→ 520 ◦C (12 h) −6000 ◦C/h−−−−−−→ 30 ◦C

The time in brackets represents the waiting time at the given temperature, whereas the
speed between two temperatures is written on top of the arrows.
The TDA results are shown in figure 2.6a for the first cooldown (−1200 ◦C/h) and the

second heating (300 ◦C/h), as highlighted by the colors above. We observe the same two
reactions as in figure 2.5 at T = 523 ◦C and T = 577 ◦C. The difference between the heating
and cooling speeds explains the shift in the reaction temperatures between the blue and
the red line.
In this growth, some whiskers of Bi2Se3 appeared at the surface of the material (see

figure 2.6b). They have grown during the landing at 520 ◦C.
From the EDX and XRD analysis, two phases are present with a similar composition

and the same crystallographic structure A2B3:

Element Bi /(Bi+Sb) Sb/ (Bi+Sb) Te(Te+Se) Se/(Te+Se)
Composition Phase 1 1.02 0.98 1.11 1.89
Composition Phase 2 0.90 1.10 1.07 1.93

We observe an almost equal composition of bismuth and antimony but now the compo-
sition of selenium is less than expected. This lack of selenium originates presumably from
the growth of the Bi2Se3 whiskers that drain the selenium out of the main crystal.
From the TDA on BSTSb, we conclude that (1) the reaction at ≈ 530 ◦C corresponds

to the growth of Bi2Se3 hence the reaction at ≈ 570 ◦C probably produces BSTS, (2) the
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final composition is still not the expected one but the deviation is easily understood by
the formation of Bi2Se3 whiskers.

To conclude on those two thermal differential analyses, we know that the reaction tem-
perature of BSTS is ≈ 570 ◦C and that we need to change the initial composition by putting
more tellurium (stoichiometry 1.1) and more antimony (stoichiometry 1.1) to obtain a sto-
ichiometric BSTS.

3.3 Growth of nearly stoichiometric BiSbTeSe2
We use an evacuated quartz tube to grow a crystal with a mass of 3 g and a more

stable oven to follow landing steps of several hours. The next sample has the composition
concluded in the previous subsection :

1 Bi + 1.1 Sb + 1.1 Te + 2 Se = BSTSc

During the melting growth method, we follow the time–temperature superposition prin-
ciple : to grow a crystal with a solidification temperature Tsol, either we wait a short time
just above Tsol or we stay a long time way above Tsol. The probability to obtain a seed is
large close to Tsol, hence the waiting does not need to be long at this temperature. The
probability decreases at higher temperature, therefore in that case we need to increase the
landing time to start the growth with a seed. In our case, TBSTSsol = 577 ◦C.
The temperature evolution we choose is:

30 ◦C 300 ◦C/h−−−−−→ 655 ◦C(2 h) −100 ◦C/h−−−−−−→ 620 ◦C(24 h) −50 ◦C/h−−−−−→ 30 ◦C
We expect the reaction measured at 577 ◦C to occur during the waiting at 620 ◦C.
The temperature of the quartz tube is also recorded to know the exact temperature

of the sample 4. It is displayed in figure 2.7a-b where we observe a reaction occurring at
625 ◦C. This means that during the landing of 24 h, the whole solution did not solidify. The
reaction at 625 ◦C produced a second unintended phase that is visible in scanning electron
microscopy image : in figure 2.7d, two phases with a different chemical composition are
visible. We present the chemical compositions of these two phases in table 2.3.
The reaction that occurs at 625 ◦C produces most probably the dark phase with a lower

density of heavy elements. This phase does not have the expected stoichiometric concen-
tration, therefore the reaction at 625 ◦C is unwelcome.

3. There is a shift between the setpoint (620 ◦C) and Tsample (628 ◦C) due to the non perfect home-
made set-up. We put efforts in having repeatable growth conditions. For that we tried two different ovens.
BSTSc and BSTSd are grown in two different ovens.

4. The attentive reader may wonder why we do not call this experiment a TDA as we record Tsample
and Toven. In fact, the only difference is the precision of the measurement. In the commercial TDA set-
up, Tsample is measured directly inside the crucible, whereas in this home-made set-up, Tsample is poorly
estimated by a thermometer placed near the quartz tube.
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Figure 2.7. – Details on BSTSc: a) Temperature of the quartz tube during the growth. b) Zoom of a)
during the cooldown. Highlighted by the black arrow, a reaction occurs at 625 ◦C after the landing at 3

628 ◦C. c) Powder X–ray diffraction of BSTSc. The expected hkl plane indexes are labeled. d) Scanning
electron microscopy image of BSTSc with an in-lens detector. Two phases are visible. The horizontal black
line is 50 µm for scale.

We characterized this sample by XRD presented in figure 2.7c. The index of the diffrac-
tion peaks expected for a rhombohedral structure are labelled. No extra peak is present,
therefore, in this growth, we managed to produce a crystal with only rhombohedral crys-
tallographic structures.
To avoid the second reaction at 625 ◦C, we choose to slightly change the ratio of selenium

and tellurium so that the reaction will be less favorable and second we stay longer at the
landing of 628 ◦C. This last growth has the following composition :

1 Bi + 1.1 Sb + 1 Te + 2.1 Se = BSTSd

The temperature evolution of the growth of BSTSd is the following :

30 ◦C 300 ◦C/h−−−−−→ 655 ◦C(2 h) −100 ◦C/h−−−−−−→ 620 ◦C(48 h) −50 ◦C/h−−−−−→ 30 ◦C
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Element Bi /(Bi+Sb) Sb/ (Bi+Sb) Te(Te+Se) Se/(Te+Se)
Composition Phase dark grey 0.84 1.16 1.12 1.88
Composition Phase light grey 1.04 0.96 1.04 1.96

Table 2.3. – Chemical composition of BSTSc.
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Figure 2.8. – Growth of BSTSd: a) Temperature of the quartz tube during the growth. b) Zoom of a)
during the cooldown. We add the temperature evolution of BSTSc shifted in time to compare the two
cooldowns.

Figure 2.8 displays the recorded temperature of the sample BSTSd (purple curve) and
compares with the one of BSTSc (blue curve). We observe no reaction during the cooldown
of BSTSd. Therefore, all material have reacted during the landing at 628 ◦C and we expect
the crystal to have a single phase.
We used this last crystal we have grown to produce topological Josephson junctions

detailed in chapter 7.

3.4 Characterization of the final crystal
We present in this section the full characterization of our crystal denoted BSTSd. We

first display its crystal structure with XRD measurement, its chemical composition with
EDX and neutron scattering and finally we report on its magneto-transport properties.

X-ray diffraction The XRD measurement is presented in figure 2.9. We observe spikes
at the expected diffraction angle. No extra phase is seen. Therefore, the material contains
only the rhombohedral crystal structure of A2B3, with the estimated lattice parameters
a = 0.416 nm and c = 2.94 nm.

Laue diffraction We performed a Laue diffraction measurement on an extracted sample
to know along which crystal surface the sample cleaves. The diffraction pattern is presented
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Figure 2.9. – Powder X-ray diffraction of BSTSd. The expected peaks are labeled by their hkl index.

in figure 2.10. By comparing the observed pattern with a calculated one for a surface
perpendicular to the 001 axis, we conclude that the crystal easily cleaves perpendicular to
the c-axis. This observation is compatible with the rhombohedral crystal structure that
has quintuple layers linked by Van-der-Waals bonds.

Energy Dispersive X-ray spectroscopy The scanning electron microscopy observa-
tion displayed clean cleaved surfaces presented in figure 2.11. The EDX measurements
at different positions on the sample informs on the homogeneity of the concentration of
elements. The average composition measured with standards at different locations is pre-
sented in the following table:

Element Bi /(Bi+Sb) Sb/ (Bi+Sb) Te(Te+Se) Se/(Te+Se)
Average composition 1.00 1.00 0.89 2.11

We estimate a perfect ratio between bismuth and antimony. However, there is a slight
over-concentration of selenium with respect to tellurium. We could reduce this shift by

a) b) c)

Figure 2.10. – Laue diffraction of BSTS. a) measurement of our BSTS. b) Prediction of the diffraction
pattern for a rhombohedral crystal structure cleaved orthogonal to the c axis. c) Superposition of a) and
b).
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Figure 2.11. – In-lens (a) and secondary electron (b) image of a scanning electron microscopy of a cleaved
sample from BSTSd. We observe a large flat area (a) that has a homogeneous composition (b). The black
line is 10 µm for scale.

slightly decreasing the amount of raw selenium placed in the quartz tube. This further
work should be done to improve the crystal quality.

Neutron scattering Thanks to a collaboration with Y. Suzuki and Prof. K. Kadowaki
at the University of Tsukuba, a neutron scattering experiment has been performed at
Ibaraki Materials Design Diffractometer on our BSTS to estimate the site occupancy of
the crystal structure. The results are presented in figure 2.12. This measurement concluded
on the following site occupancy of the crystal structure.

Site / Occupancy Bi Sb Te Se
Bi,Sb 50% 50% 0 0
Se(1) 0 0 0 100%
Se(2) 0 0 50% 50%

Table 2.4. – Site occupancy of BiSbTeSe2 determined by neutron scattering.

The occupancy of site Se(2) is a mix of selenium and tellurium. This mix could induce
defects at the surface of BSTS and be the reason why the transport properties of our
BSTS are not as good as the one reported by Xu et al [182]. However, as nobody in the
literature ever reported on this site occupancy, we cannot compare our results. However,
this estimation of the site occupancy is compatible with the one proposed for Bi2TeSe2
[87].
We also give a second estimation of the lattice parameters : a = 0.416 789 nm and

c = 2.950 04 nm.

Transport measurement Finally, the last characterization has been done by perform-
ing magneto-transport measurement on cleaved crystals of different geometries (thickness
t, width W , length L). The results are shown in figure 2.13 where we plot the resistiv-
ity, sheet resistance, carrier density and mobility of the samples versus temperature. The
resistivity and sheet resistance are calculated by estimating the crystal geometry with an
optical microscope. The carrier density and mobility are estimated by Hall measurements
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Figure 2.12. – Neutron scattering experiment on BiSbTeSe2.a) Measured (red cross) intensity of the diffrac-
tion profile. The position of the expected peaks has been calculated (light blue) by Rietveld refinement
analysis. The difference between simulation and measurement is displayed in dark blue. (inset) Schematic
of the crystal structure of BSTS. b) Calculated pattern for different site occupancy for various selenium
and tellurium ratios of the two sites Se(1) and Se(2). The closest match corresponds to the following
occupation. Bi site : 50% Bi, 50% Sb; Se(1) site (inside) : 100% Se ; Se(2) site (outside) : 50% Se, 50%
Te. Extracted from Suzuki et al [165].
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Figure 2.13. – Transport properties of samples extracted from BSTSd. All samples are manually cleaved
in the shape of a rectangle. The contact in silver paste are placed in the geometry of a Hall bar. Their
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using the crystal geometry : n3D = 1
teRH

, with e the electron charge and RH the Hall
resistance.
We observe an increase and saturation of resistivity and sheet resistance for decreasing

temperature. This behavior is typical of a truly bulk insulating topological insulator. The
insulating bulk contributes mostly to transport at room temperature. This contribution
evolves like a semiconducting material with diverging resistance at lower temperature,
thus reducing its contribution to transport. Below a threshold temperature, the resistance
saturates because the metallic surface states of the TI short-circuit the insulating bulk.
The resistivity saturates up to 1 Ω cm for thin samples. The thinner the sample, the higher
the resistivity and sheet resistance at low temperature. It is more appropriate to display
the sheet resistance when the resistance is dominated by surface transport. In this case,
the sheet resistance is supposed to be constant whatever the thickness. It is exactly what
we observe in figure 2.13b where the thin samples have a sheet resistance saturating around
500 Ω.
Sample BSTSd-E (orange curve) does not behaves like the other ones, which shows that

our crystal is not perfectly homogeneous.
We estimate the Hall carrier density at several temperatures presented in figure 2.13c-d.

We observe a decrease of the carrier density for thinner samples up to few 1× 1016 cm−3.
This small density is consistent with a large contribution from the surface transport at low
temperature. However, the carrier mobility is lower than 500 cm2/Vs, which is too small
to observe any Shubnikov-de-Haas oscillation from the surface states.
From this magneto-transport measurement we confirm the topological insulator char-

acter of the material we have grown. We have observed the low contribution from bulk
transport at low temperature.
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4 Conclusion on the growth

In this chapter we have presented the process to grow BiSbTeSe2 TI. We used two sepa-
rated steps to optimize the growth. First we performed a thermal differential analysis

to obtain the important reaction temperatures and second we grew in quartz tubes a larger
amount of material with larger monocrystals.
Thanks to thermal differential analysis and systematic characterization of the grown

materials, we have produced a homogeneous compound BiSbTeSe2.
Finally, we have obtained and characterized a 3D topological insulator that has an

electronic transport dominated by its surface states at low temperatures.
This material has been used to fabricate topological Josephson junctions that are pre-

sented in chapter 7.
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We present in this chapter the optimized fabrication process for topological Josephson
junctions with exfoliated Bi-based compounds.

We begin with a short description of the state-of-the-art on previous realization of topo-
logical junctions on bismuth based topological insulator crystals (Bi2Se3 and BiSbTeSe2).
Afterwards, we turn to our techniques of exfoliation of topological insulator crystals. In
the last part we emphasis our process to improve the contact between the flake and the
superconducting material.

1 State of the art of bismuth based Josephson junctions

The topological nature of bismuth chalcogenides compounds with the rhombohedral
crystal structure has been predicted in 2009 by Zhang et al [190] in Bi2Se3,Bi2Te3

and Sb2Te3. In these materials, the heavy elements have a large spin-orbit coupling that
induces in the bulk of the crystal a band inversion between the conduction and valence
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band. Due to band continuity, this inversion in the bulk has to be canceled at the borders
of the material which therefore produces some conducting surface states.
Since then, various other compounds with the same crystal structure and composed

of bismuth, antimony, selenium or tellurium have been proposed to have an electrically
insulating bulk and topological protected metallic surface states [115, 131, 175]. For a long
time, it was not possible, in these materials, to only probe the surface states in transport
measurement. This is due to the remaining conductance of the bulk in parallel to the
metallic surface states.
Only recently quantum Hall effect has been observed in the topological insulator BiSbTeSe2,

which makes it a very promising candidate to explore the Majorana physics in transport
measurements [182].
In the following section, we review the state of the art of Josephson junctions produced

on these bismuth based compounds and in particular two materials of which the cleaved
surface of the crystal is a layer of selenium 1: Bi2Se3 and BiSbTeSe2.

1.1 Josephson Junctions on Bi2Se3
Bi2Se3 has been widely used to produced Josephson junctions. In 2011, the first junctions

are produced with aluminum leads and a contact layer of titanium [145]. In their study,
the authors have been able to tune the Fermi level through the Dirac point while recording
the normal resistance and the critical current of the device. The RNIc product does not
vary much : RNIc ≈ 15 µeV and remains around 5% of the superconducting gap of the
electrodes.
Later, different superconducting electrodes were used to successfully induce supercon-

ductivity by proximity effect in Bi2Se3: Pb: [184], Nb: [105, 106] Al: [66, 67, 161, 179],
W: [188], Sn: [183].
Most of these contacts are improved by using an argon etching before depositing the

superconductor and depositing an intermediate layer of platinum or titanium between the
superconductor and the crystal [36, 66, 105, 112, 179].
It is also possible to have a superconducting proximity effect by depositing the leads

with sputtering deposition [105, 183] or with the focus ion beam [188] rather than the
usual metal vapor deposition.
Up to now, no clear hint of the topological nature of the induced superconductivity in

Bi2Se3 has been probed by AC transport measurement (neither Shapiro measurement nor
measurement of the AC Josephson effect by emission). This absence of signature may
come from the large contribution of the bulk conduction of this material that hides the
transport signal of the surface states. Indeed, in this material, the Fermi level often lies in
the conduction band making the bulk metallic. Therefore the bulk produces a very large
contribution in transport measurement that may hide the topological nature of the surface
transport.

1. According to the neutron diffraction of the previous chapter, the external layer of BiSbTeSe2 is in
fact a mix of selenium and tellurium atoms.
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Figure 3.1. – Pictures of the different steps in order to exfoliate a crystal. a) We grow the crystal by
placing the raw elements inside an evacuated quartz tube. b) Once grown, the crystal of Bi2Se3 is easily
cleavable and presents large shiny areas. c) We use the scotch tape technique to exfoliate the chunk of
crystal and bring in contact the scotch tape with a substrate of Silicon. d) Optical image of the substrate
after exfoliation. The substrate was prepared by depositing a marker-field: orange lines and dots.

1.2 Josephson Junctions on BiSbTeSe2
Only recently, the quantum Hall effect has been observed in the quaternary compound

BiSbTeSe2 [182] (named BSTS). This first observation of such clear signature from the
surface states of a bismuth-based topological insulator material is promising.
The associated Josephson junctions have been realized with aluminum [112] and niobium

[159] superconducting leads. In both cases, they have used a short (20 to 30s) ion argon
plasma etching prior to the superconductor deposition. Lee et al have used in addition a
contact layer of titanium between the BSTS and the aluminum.
Both groups observed the superconducting proximity effect on the surface states of the

crystal but did not prove its topological nature.
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Figure 3.2. – Steps to select and contact a flake of crystal that has been exfoliated on a silicon/silica
substrate. a) Bright field optical picture of the substrate with some flakes (light grey) dispersed around a
prepared substrate with a patterned markerfield (gold). b) Dark field image of a). We recognize the thin
flakes by their light green color. The white arrow points at one thin flake. c) Atomic force microscope
image of the selected flake of a-b). d) Line profile taken along the blue line in c). The flake is 20 nm thin
and has a surface with a low roughness. e) Scanning electron microscope image of the flake with false
colors after lithography.

2 Production of mesoscopic devices

In order to fabricate a Josephson junction on a micrometer scale flake, a raw crystal is
gradually cleaved and, hence, exfoliated onto a substrate. Superconducting leads are

then placed onto the obtained thin flakes. In the following section, we explain in detail
the different steps of the fabrication process starting with the crystal growth. Afterwards,
the exfoliation and metal deposition are described putting especially the focus on our
improvements to obtain high quality devices.

2.1 Crystal growth
Bi2Se3 crystals were synthesized by congruent melting growth method with high pu-

rity elements (5N) 2: Bi and Se in an evacuated quartz tube. The tube is heated up to
770 ◦C then slowly cooled down to room temperature. The grown material is a boule of
approximately 1 cm3 that is easily cleavable (cf figure 3.1).
We have optimized the growth of BSTS. The details are given in chapter 2.

2. N is the number of 9 in the percentage of composition 99.99...%
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2.2 Preparation of the substrate
We used degenerate Silicon substrate with 280 nm of thermal SiO2. In order to precisely

locate any device on the substrate, we have deposited a grid of gold markers that are visible
in figure 3.1c. This marker-field has been lithographed by using an interferometric moving
stage in order to have a precision better than 100 nm in the location of the device. We
have used alternatively laser or electron beam lithography.
After this step of lithography, we clean the substrate before exfoliation. The inorganic

dirt are removed by 10 minutes ultrasounds in a bath of acetone followed by a same duration
bath of isopropanol. Once the substrate is well dried with N2 , it is dipped in a Piranha
solution (H2SO4/H2O2 3:1) for 5 minutes to remove all the organic residues of resist.
The substrates have to be stored in DI water and dried only right before the exfoliation

of the crystal.

2.3 From chunk to flake
All the bismuth based topological insulators, are layered materials. Each layer is com-

posed of five atoms coupled by covalent bond forming a quintuple layer (see chapter 2
figure 2.1). Two quintuple layers are coupled by van-der-Waals bond that make them
easily cleavable perpendicularly to the c-axis. We use this property similar to the one of
graphene to exfoliate our bismuth based compounds following the scotch-tape technique
(see figure 3.1). This method consists in gradually cleaving the raw material using the glue
of a scotch tape and then pressing the latter on a substrate. It gives flakes of thickness
ranging from few nm to 1 µm randomly distributed on the substrate.
Once the exfoliation executed right after the piranha cleaning, we locate thin flakes with

dark field mode of an optical microscope (see figure 3.2). We can discriminate thin flakes
from their light green color (see figure 3.2b)
After optical search, we examine all selected flakes by atomic force microscopy (see figure

3.2c). Only flakes with atomically flat surfaces are suitable to build samples. In average,
we find optically about 30 flakes per substrate. After AFM characterization, we select from
4 to 10 flakes for the next steps of fabrication.

2.4 Lithography and deposition of the leads
We use optical images of the flakes to determine their positions with respect to the

designed markerfield. This step sets the precision of the alignment between the lithography
and the flakes, which is of the order of 100 nm.
Once the design prepared on all the selected flakes, we use a standard electron-beam

lithography technique with a PMMA 4% resist. The development is done with IPA/DI
water (1:3) during 1min30s at room temperature. The deposition of the superconductor
is performed by e-gun evaporation at a pressure of 1× 10−7 mbar for the vanadium and
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Figure 3.3. – a) Image of the design before lithography of the superconducting leads. b) Image of the
sample after lithography steps.

around 1× 10−6 mbar for the indium oxide. The lift-off is done in a bath of acetone
overnight.
A typical sample after lithography process with five flakes contacted is shown in figure

3.3. On each flake there are two junctions and one Hall-bar. In total, we have hence
patterned 75 lines and their associated pads to micro-bond the sample to the cryostat.

3 Superconducting contact on bismuth based
topological insulators

We have studied different processes in order to optimize the interface quality between
the crystal and the superconducting leads. These processes included different ma-

terials and surface preparations. The table 3.1 summarizes all samples of Bi2Se3 on which
we have fabricated Josephson junctions.
We observe from the bibliography in section 1.1 that superconductors with high critical

magnetic field (like amorphous indium oxide or NbN [17, 144] ) have not been used yet
to fabricated Josephson junctions on these bismuth based compounds. Moreover, we have
access to vanadium that also has not been yet used.
We have used three types of superconductor : amorphous indium oxide, vanadium and

aluminum.
Amorphous indium oxide (InOx) is a disordered superconductor with a low critical tem-

perature Tc ≈ 3 K, a superconducting energy gap ∆InOx = 0.55 meV and a critical field
that can be up to 14 T [144].
Vanadium is a refractory metal with a higher critical temperature Tc ≈ 5 K but a lower

critical field Hc ≈ 0.28 T and a superconducting energy gap ∆V = 0.8 meV [96, 156].
Aluminum is a superconductor with a low critical temperature Tc = 1.6 K and a low

critical field Hc ≈ 0.01 T [37].
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From table 3.1, we observe that it is not a straightforward process to obtain a supercon-
ducting proximity effect in such topological insulator. If we do not etch the crystal before
depositing the superconductor, only palladium is able to produce a superconducting cou-
pling between the crystal and indium oxide.
During the different attempts, we have encountered two samples in which the contact

presents a tunnel barrier (see figure 3.4a-b). This type of tunnel contact allows to probe the
superconducting energy gap of the electrodes which has been evaluated to ∆InOx ≈ 0.7 meV.
Preparing the surface of the crystal by a short argon etching (250 V excitation during

12 s), is the only way to have a high transparency contact with a superconducting coupling
between vanadium and bismuth based topological insulators. In that case, a contact layer
of titanium is not necessary. Using a titanium layer actually reduces the superconducting
coupling.
The best recipe we have found is to etch in-situ with ion argon plasma and directly

deposit vanadium and protect it with few nanometers of gold. The high quality contact
leads to a superconducting proximity effect into the crystal and a supercurrent can set in
(see figure 3.4c-d).

Sample Crystal Surface
preparation

Contact
material

Interface / Ic L
(nm)

LC046 Bi2Se3 ∅ InOx No contact
LC058 Bi2Se3 ∅ InOx No contact
LC059 Bi2Se3 ∅ Pd/InOx Ic = 60 nA 200
LC060 Bi2Se3 ∅ Ti/V/Au No proximity effect
LC066 Bi2Se3 ∅ InOx Tunnel contact
LC067 Bi2Se3 ∅ Ti/Al No contact
LC079 Bi2Se3 RIE O2 etching InOx Tunnel contact
LC081 Bi2Se3 IBE Ar etching Ti/V/Au Ic = 1 µA 450
LC099 Bi2Se3 IBE Ar etching Ti/V/Au Ic = 450 nA 200
LC106 Bi2Se3 IBE Ar etching V/Au Ic = 7.5 µA 150
LC092 BiSbTeSe2 IBE Ar etching Ti/V/Au Small proximity effect, no Ic 400
LC111 BiSbTeSe2 IBE Ar etching V/Au Small proximity effect, no Ic 150
LC134 BiSbTeSe2 IBE Ar etching V/Au Ic = 25 nA 70

Table 3.1. – Summary of the junctions built on Bi2Se3 with different types of contact recipes: surface
preparation and contact materials. RIE stands for reactive ion etching and IBE for ion beam etching. If
we have a supercurrent, L is the length and Ic the critical current in the low temperature limit of the best
Josephson junction of the sample. If not, we describe the type of interface there is between the leads and
the flake.
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Figure 3.4. – Example of voltage-current characteristics a,c) and differential resistance b,d) of two junc-
tions. The top line (a-b: sample LC079) displays a junction with a low quality contact that has pro-
duced a tunnel contact. The superconducting gap is half of the dip width in the differential resistance:
2∆InOx ≈ 1.5 µeV. The bottom line (c-d: sample LC099) presents a junction in which we managed to
induce superconductivity with a critical current of 450 nA.

Summary

In this chapter we have presented the fabrication process for our Josephson junction with
a good interface on a bismuth-based topological insulator. We have first drawn a state

of the art on the previous junctions made on the two materials Bi2Se3 and BiSbTeSe2. We
have noticed that vanadium has not been used yet as superconductor to produce junctions
on such materials.
We have presented the protocol used during this thesis to exfoliate a layered crystal and

then select and contact a nanometer range thin flake from it.
Finally we have reported on the optimization of the contact quality between the super-

conductor and Bi2Se3. The best recipe implies to in-situ argon etch the surface of the
crystal before depositing vanadium.
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A Josephson junction (JJ) consists in a weak link between two superconducting leads
(S) through which a dissipationless current can flow without voltage drop [90, 91].

The weak link can be an insulating layer (I), a constriction (c), a normal metal (N) or a
topological insulator (TI). The conventional Josephson junction (S-I-S, S-c-S and S-N-S)
has been widely experimentally and theoretically investigated since its prediction by Brian
D. Josephson in 1962. Since then the fundamental relation between the supercurrent
through the junction and the phase difference between the left and right superconducting
leads was believed to be a 2π periodic function (IS(φ) = Ic sinφ). Only recently with the
discovery of topological insulators, the uniqueness of this periodicity is put in doubt.
Indeed, theory predicts that a Josephson junction in which the weak link is the surface

state of a 3D topological insulator hosts a 4π periodic Andreev bound state (ABS) [63].
In this chapter, we first introduce the conventional Josephson junctions, which will be

essential for the basic analysis of the experimental data. Then we develop the recent
theories associated with Josephson junctions made of topological insulators: the so-called
topological Josephson junction (TJJ). We derive part of this theoretical prediction based
on ref [63, 107, 160]. First we show how a 3D topological insulator in contact with a
conventional superconductor induces p-wave superconductivity. Then we discuss different
possibilities to experimentally detect these topologically protected 4π periodic ABSs (4π-
tABS). We establish the state of the art on the detection of the 4π periodic ABS with the
AC Josephson effect. Finally, we review the physical phenomena called poisoning whose
effect can alter the visibility of the 4π periodic ABS in DC measurements but also when
probing the AC Josephson effect.

1 Introduction to Josephson junctions

We first introduce the Josephson effects and then discuss different transport regimes
and their associated characteristic length scales. (inspired by [42, 114])

1.1 Basic phenomena in a Josephson junction
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1.1.1 DC and AC Josephson effects
The simplest way to describe a Josephson junction [56] is by using a perturbative ap-

proach and define a weak coupling coefficient K between the two superconducting leads
Sj, with j referring to lead 1 or 2 (see figure 4.1). Each lead is defined by its supercon-
ducting complex order parameter Ψj. This order parameter is a complex function that is
uniform inside a homogeneous superconductor and vanishes outside the material over a
finite length. When two superconductors are brought close enough, their order parameters
can overlap leading to a Josephson coupling. The dynamics of the order parameters Ψ1
and Ψ2 is governed by the coupled Schrödinger equations [91]:

 i~∂Ψ1
∂t

= µ1Ψ1 +KΨ2

i~∂Ψ2
∂t

= µ2Ψ2 +KΨ1
(4.1)

with µj being the chemical potential of the side j, and ~ = h
2π the normalized Planck

constant.
A solution of Eq. (4.1) reads :

Ψj = √nj e
iφj (4.2)

with nj the density of Cooper pairs and φj the phase of the superconducting state . We
define the phase difference φ = φ2 − φ1 and the voltage difference V between the two
sides by µ2 − µ1 = qV with q = −2e the carrier charge. The supercurrent is defined
as the number of Cooper pairs transferred from one side to the other by unit of time :
IS = −2edn1

dt
. By assuming quasi-equilibrium, n1 ≈ n2, we obtain the celebrated AC & DC

Josephson relations :

dφ

dt
= 2eV

~
AC

IS(φ) = Ic sinφ DC

(4.3)

(4.4)

The critical current Ic defines the maximum supercurrent that the junction can withstand
before transitioning to the normal state. IS(φ) is the fundamental relation of a JJ that
relates the supercurrent flowing between the two leads to the phase difference across the
JJ, also called the current-phase relation (CPR).

Figure 4.1 – Schematic of a Josephson junction. The order parameters of
each lead decreases outside the superconducting region. The overlap be-
tween Ψ1 and Ψ2 defines the coupling constant K.
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Current phase relation From Eq. (4.4), we see that the phase gradient is the driving
force to supercurrent. The CPR has several straightforward, but important properties [71]:
— The current phase relation is 2π periodic.
— The supercurrent is an odd function with respect to the phase difference: IS(φ) =
−IS(−φ)

— At a phase difference φ = 0, π there is no supercurrent.
In the case of strong coupling between the two leads, Eq. (4.1) is no more valid because

higher order terms are involved. The CPR is no-longer sinusoidal and contains higher
harmonics 1 :

IS(φ) =
∑
n

Ic,n sin(nφ) (4.5)

The aforementioned properties of the CPR have been irrevocably established since the
discovery of the Josephson junction. We will see however that the discovery of topological
insulators has led to a paradigm change on the 2π periodicity of this CPR.

AC Josephson effect Equation Eq. (4.3) shows that if we apply a DC voltage between
the two leads, the phase will increase linearly with time and the supercurrent will oscillate
at a frequency fJ determined by the applied voltage:

IS(t) = Ic sin(2πfJt) (4.6)

with fJ ≡ 2eV
h

the Josephson frequency. This effect precisely relates voltage with frequency
and is used as a frequency standard for metrology [19].

1.1.2 Andreev Bound States
We now address the physics of S-N-S Josephson junctions. For that we need to introduce

a new effect that takes place at the interface between a normal metal and a superconduc-
tor: at an S-N interface, an electron coming from the N side with an energy below the
superconducting gap (∆) of the leads cannot enter the superconductor as a single electron
due to the zero density of states (DOS) at this energy. Instead an electron is transmitted
through the interface by a process called Andreev reflection [8, 45, 146], in which a hole
of opposite momentum is backreflected into the N part and a Cooper pair is transmitted
into the S region (cf figure 4.2). As this effect is present at both interfaces with the same
coherent electron / hole, a bound state sets in between the two leads: the so-called Andreev
Bound State (ABS) [24].
ABSs are key elements to describe supercurrent in a JJ. When occupied, each ABS of

energy-phase relation E(φ), is a conduction channel that can carry a supercurrent at zero
temperature given by [71]:

IS(φ) = 2e
~
∂E(φ)
∂φ

(4.7)

1. This possible expression depicts 2π/n periodic components. The total sum is still 2π periodic.
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Figure 4.2. – Schematic of an SNS Josephson junction. The two superconducting leads have a gap (2∆)
in their density of states (DOS). The Andreev reflection on the right interface is as followed: in the weak
link, a right moving electron (in green) has an energy EF + ε and a wave vector kF + q. It is back reflected
as a hole (in red) with opposite spin, an energy EF − ε and a wave vector −kF + q. At the same time,
a Cooper pair is transmitted into the S part. This phenomenon happening at both interfaces creates a
coherent state called Andreev bound state and carries a total charge of 2e per cycle.

The critical current associated with this current-phase relation of a single channel is
defined as the maximum value :

Ic = max |IS(φ)|. (4.8)

This physical quantity is easily accessible experimentally by standard DC transport mea-
surement.

1.1.3 Transport regimes of a Josephson junction
The ABSs spectrum depends on the regime in which the superconducting transport sets

in. That is why we want to focus on the different regime of transport in which a Josephson
junction can be classified.
The phase coherence length lφ is the mean distance over which an electron can travel

before loosing its phase coherence. It corresponds usually to the inelastic mean free path.
At low temperature this distance can be much greater than the elastic mean free path.
Electrons can indeed elastically scatter multiple times before loosing their phase coherence
through inelastic processes(phonons, electron-electron interaction, magnetic impurities).
lφ is the relevant length scale when talking about coherent effects in mesoscopic physics.
Following the discussion of Blanter and Büttiker [22], we consider a coherent mesoscopic

system of length L connected to two leads : As long as the size of the conductor is shorter
than the phase coherence length, it is possible to describe a conductor by a set of channels
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of conduction with transmission coefficient Ti. The set of coefficients {Ti} is called the
personal identification number and defines the transport properties of any conductor of
length L < lφ [22]
In order to have superconducting transport between the two leads, electrons have to be

coherent when traveling from the left to the right lead. Hence the condition L < lφ is
fulfilled as soon as we consider a Josephson junction.
The supercurrent transport of an SNS JJ can be divided into 2x2 different regimes:

long/short and diffusive/ballistic. Each regime exhibits different energy-phase dispersion
of the ABS.
Let us first define length scales that characterize these different regimes: ξNS the super-

conducting coherence length in the normal part and le the elastic mean free path.
le is the average distance between two scattering centers in a material. When a device is

smaller than le then the electron transport is ballistic. Conversely, when L > le, then the
electron transport is diffusive due to the multiple scattering 2.
ξNS is the characteristic length over which the superconducting order parameter extends

in the N region. When a junction is smaller (greater) than ξNS , then it is defined as a short
(long) junction. In a ballistic metal ξNS = ~vNF

∆ whereas in a diffusive metal, ξNS =
√

~DN
∆ with

vNF the Fermi velocity, DN the diffusion coefficient of the N part and ∆ the superconducting
gap of the S leads.
ξSS is the standard superconducting coherence length. It corresponds to the physical

extension of a Cooper pair in the leads.
These different regimes are summarized in the following table:

Short Long

Ballistic L < le, ξ
N
S ξNS < L < le

Diffusive le < L < ξNS le, ξ
N
S < L

In the following section, we will use the formalism that consider transport as a set of
channels with transmission coefficient {Ti} (so-called Landauer-Büttiker formalism) that
is valid in three out of four regimes (darken cells in previous table). For the long diffusive
regime, that we develop in section 1.3, a different approach is more appropriate.

1.1.4 Critical current at zero temperature
At zero temperature, the amplitude of the critical current depends on the resistance of

the normal metal RN. In fact, the product e · RN · Ic gives an energy scale that is related
to the energy gap or the Thouless energy of the junction. The Thouless energy is the
energy scale that governs the energy of the ABSs in the regime of long junction. A precise
definition of Eth is given in subsection 1.3.3. Here, we review the theoretical prediction for
the zero temperature e ·RN · Ic product in the four transport regimes.

2. Even in the case of ballistic transport, there can be a barrier of potential between the device and
the lead. Hence the transmission coefficient is not necessary equal to 1 in ballistic junctions.
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Short Long

Ballistic eRNIc = π∆ [103] eRNIc = Eth with Eth = ~vF/L [102]

Diffusive eRNIc = 2.07∆ [104] eRNIc = 10.82Eth with Eth = ~D/L2 [51]

This estimation of the critical current at zero temperature will be used to confirm the
transport regime and estimate the Thouless energy of the junctions measured in the ex-
perimental chapters (6 & 7).

1.2 Andreev bound states in ballistic short junctions
The regime of coherent transport (L < lφ) allows one to use the Landauer Büttiker

formalism which supposes independent conduction channels. Each channel defined in the
normal regime (without superconducting proximity effect) is able, once brought in contact
with the S leads, to produce a resonant Andreev bound state (ABS) close to the Fermi
energy. In this section we develop the Bogoliubov-de-Gennes equations that enables to
describe the superconducting proximity effect in each conduction channel and find the
energy dispersion of the ABSs.

1.2.1 Introduction to the Bogoliubov-de-Gennes equations
When the coupling between the two S leads is strong, the system cannot be described in

a perturbative approach (as in section 1.1.1). The density of states (DOS) of the N part is
strongly affected by the contact to the S part and vice-versa. The Bogoliubov-de-Gennes
equations (BdG) provides the useful framework to study an SNS junction and to calculate
the induced ABS [8, 16, 44]. These equations describe a single conduction channel defined
by the two components wave function Ψ which contains the excitations of electron-like(u)
and hole-like(v) quasi-particles:

Ψ =
(
u
v

)
(4.9)

u and v depend a priori on the energy E and position r. In one dimension, the evolution
of Ψ is governed by the coupled Schrödinger equations [1]: Eu(x,E) =

(
− ~2

2m
d2

dx2 + V (x)− EF
)
u(x,E) + ∆(x)v(x,E)

Ev(x,E) =
(
− ~2

2m
d2

dx2 + V (x)− EF
)
v(x,E) + ∆∗(x)u(x,E)

(4.10)

with ∆(x) the position dependent pair potential, ∆∗ its complex conjugate, m the ef-
fective mass of an electron, V (x) the position dependent electrical potential and EF the
Fermi level. This approach enables to find the spatial variation of the pairing potential
∆(x) and the electrical potential V (x) self-consistently [7]. Here we will not develop this
self-consistent determination.
In the following we discuss some applications and examples of the BdG equations.
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Uniform 1D ballistic superconductor In the case of a uniform one dimensional
ballistic superconductor, we can separate the fast oscillation (eikx−iEt~ ) from the slow vari-
ations in space of the electron and hole components. Then the BdG equations admit the
following solutions for ∆(x) = ∆0e

iφS , V (x) = 0 with φS being the superconducting phase
of the superconductor :

u = u0e
ikx−iEt~ , v = v0e

ikx−iEt~ (4.11)

with k the wave vector of the quasi-particles and E their energy. The solution gives the
usual energy dispersion of a superconductor with the opening of a superconducting gap ∆0
in the density of states at the Fermi level EF:

E = ±

√√√√(~2k2

2m − EF

)2

+ ∆2
0 (4.12)

By inverting the energy dispersion, one finds the two possible wave vectors corresponding
to the quasi-electron excitation k+ above the Fermi energy and the quasi-hole excitation
k− below the Fermi energy :

k± = kF

√√√√√1± ∆0

EF

√√√√( E
∆0

)2
− 1 (4.13)

We notice from Eq. (4.12) that quasi-electron and quasi-hole are symmetric in energy.
This symmetry will be again visible when studying the ABSs of a Josephson junction.

Interface between a superconductor and a normal metal In the case of an S-N
interface, one can solve the BdG equations in the ballistic regime for which an incoming
electron (Ψi) from the N part is either back reflected (Ψr) or transmitted( Ψt) to the S
part (cf figure 4.3):


Ψi =

(
1; 0

)
e−ik

N
+ x

Ψr = a
(
0; 1

)
eik

N
−x + b

(
1; 0

)
e−ik

N
+ x

Ψt = c
(
u; v

)
eik

S
+x + d

(
v;u

)
e−ik

S
−x

(4.14)

Figure 4.3. – Schematic of
an SN interface. An incoming
electron (green) can be back-
reflected or transmitted.

where kN (kS) corresponds to the wave vector of electrons
kN+ or holes kN− propagating in the N part (S part).
Using the Andreev approximation for EF � ∆, all wave

vectors are considered to be close to the Fermi wave vec-
tor :kN+ ≈ kN− ≈ kS+ ≈ kS− ≈ kF. If there is no barrier at the
interface, then Ψ and its spatial derivative dΨ

dx
are continuous.

These boundary conditions give a perfect retro-reflection of
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1. Introduction to Josephson junctions

the incoming electron into a back-reflected hole:

a = e−iφS

(
E

∆0
− i

√
1− E2

∆2
0

)
b = c = d = 0

(4.15)

with φS being the superconducting phase of the S side. This
perfect retro-reflection illustrates a perfect Andreev reflection meaning the perfect trans-
mission of a Cooper pair into the S part. Eq. (4.15) shows that the back-reflected hole is
coherent with the incoming electron with an extra phase

dφ = −φS − arccos(E/∆0) (4.16)

We notice that for an incoming electron at zero energy, the dephasing is dφ = −φS−π/2.
When the energy of the incoming electron is higher than the superconducting gap, the
Andreev reflection process is not possible. In that case, energies of the quasi-particles are
not discretized any-more and the dispersion relation is described by a continuum of states.

SNS junction In this subsection we review the properties of ABSs in the Landauer-
Büttiker formalism by describing the normal part by a single conduction channel with
a perfect transmission (Ti = 1), then we introduce a scattering center in the transport
channel (Ti 6= 1) and finally we find a general solution for a Josephson junction.
In the case of an SNS junction, the Andreev reflection process is repeated on both inter-

faces. This means that the same coherent quasi-particle travels back and forth inside the N
part making several loops. In order for this quasi-particle to generate a supercurrent, the
total phase of a single loop has to be a multiple of 2π to produce constructive interferences.

Ballistic transport In the case of a one dimensional ballistic N part, the interference
relation of channel i gives :

2πn = (kN+ − kN− )L+ φ− 2 arccos(Ei/∆) (4.17)

with L being the total length of the N part and n an integer. The left part of Eq. (4.17)
describes the constructive interference condition, the right part contains (1) the dephasing
that the electron and the associated counter-propagating hole acquire by traveling in the
N part over a distance L, (2) the two dephasings at the left and right interfaces according
to Eq. (4.16).

One scattering center According to [13], if a scattering potential V0 is present inside the
junction at position x = a : V (x) = V0 δ(x− a), φ in equation Eq. (4.17) is replaced by α
following :

cosα = Ti cosφ+ (1− Ti) cos
(

(L− 2a)
ξNS

2Ei

∆

)
(4.18)
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with Ti the transmission probability of the channel i that depends on the scattering po-
tential V0. Replacing φ by α in Eq. (4.17) gives:

2πn = (kN+ − kN− )L− 2 arccos(Ei/∆) + arccos
(
Ti cosφ+ (1− Ti) cos

(
(L− 2a)
ξNS

2Ei

∆

))
(4.19)

This equation does not have an analytical solution for the general case but would need
to be solved for each regime of transport defined in section 1.1.3. In this section we only
focus on the case of short Josephson junctions (L� ξNS ). The approximations associated
with the other transport regimes are used in section 1.3.

1.2.2 Energy-phase and current-phase relations
The knowledge of the energy-phase relation of the ABS allows one to deduce the current-

phase relation from equation Eq. (4.7). In this subsection we calculate those two relations
in the case of short junctions (L � ξNS ), using the Andreev approximation. Eq. (4.19)
simplifies to :

Ei(φ) = ±∆
√

1− Ti sin2(φ/2) (4.20)
For a given transmission Ti, there are two ABSs available denoted |−〉 and |+〉 of opposite

energies E− and E+ 3. Both |−〉 and |+〉 can be empty of full of electrons 4 (cf figure 4.4).
When both states are full or empty, the total energy of the system is zero and no net
supercurrent flows through the junction.
There is a gap in the energy dispersion of the ABSs between |−〉 and |+〉 that depends

on the phase difference Eg(φ). This gap is minimum at φ = π : Emin
g = 2∆

√
1− Ti. This

minimum gap is non zero because of the non perfect transmission: the two levels mix and
an avoided crossing opens a gap at φ = π. The opening of this gap leads to a 2π periodicity
of each state.
In the Landauer-Büttiker formalism, a normal metal is fully described by its set of

transmission channels {Ti} [109]. As the ABS do not mix the normal conducting channels,
we can apply the sum over all normal channels. Hence, using equation Eq. (4.7), the total
supercurrent across the junction reads:

IS = ±
∑
i

2e∆
~

Ti sinφ√
1− Ti sin2(φ/2)

f(Ei) (4.21)

The energy dispersion and supercurrent of a single ABS are shown in figure 4.5 for
different values of transmission Ti.
At zero temperature, only the energy states below EF (ground state |−〉) are populated

and the total current-phase relation simplifies to

3. Note the same symmetry of the states around zero energy as for the electron/hole symmetry
4. On top of the two available energy levels, both of them are spin degenerate.

48



1. Introduction to Josephson junctions

Figure 4.4. – Schematic of the possible occupancy of two Andreev bound states. For a given phase φ, E−
corresponds to a right moving electron and a left moving hole, whereas E+ is a state where the electron
moves to the left and the hole to the right. If the states E− and E+ are both occupied or empty, then the
total energy and supercurrent are zero. Inspired by [27].
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Figure 4.5. – a) Energy dispersion of ABSs of a short JJ for different transmission Ti. The zero energy
corresponds to the Fermi energy. b) Supercurrent carried by the ABSs of a).

IS =
∑
i

2e∆
~

Ti sinφ√
1− Ti sin2(φ/2)

(4.22)

We see in figure 4.5 ,that for T = 0 and φ = π, the supercurrent is zero for every ABS
of non perfect transmission (Ti < 1).
In the case of perfect transmission (Ti = 1, not shown in figure 4.5), the gap between E+

and E− vanishes and at a phase difference of φ = π, both states are available. Therefore
their resulting supercurrents compensate each other and no net supercurrent goes through
the junction. If the transmission is almost perfect (Ti ≈ 1), at finite temperature, some
lower energy states can jump to the excited states due to Landau-Zener transitions [108,
186]. This aspect is discussed in detail in Appendix C.

1.3 Andreev bound states in other transport regimes
Now that we have reviewed the simple case of a short ballistic Josephson junction, in

this section we describe the changes that arise in the three other transport regimes.
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Chapter 4. Topological Josephson junctions

Figure 4.6. – Dependence of the governing energy scale of the ABSs versus the length of the junction in a
diffusive Josephson junction. For L < ξNS (L > ξNS ), the junction is short (long).

1.3.1 ABS in short diffusive junctions
Experimentally, determining the personal identification number of a device with few

channels (like an atomic point contact) can be done by fitting the current-voltage charac-
teristic [153]. However, this technique is not adapted when the device has more channels.
The transmission distribution of the set of channels in a diffusive junction is given by [50,
130]:

P (T ) = π

2e2RN

1
T
√

1− T
(4.23)

We see that most channels have either a high transmission close to 1, or a poor trans-
mission close to 0. An example of the energy dispersion of the ABSs in the case of a short
ballistic JJ is shown in figure 4.7 c).

1.3.2 ABS in long ballistic junctions
The regime of long ballistic JJ has been theoretically studied by different groups [13, 15,

83, 102]. The basic idea of Andreev bound states living inside the junction is still correct.
However, the minigap Eg does not reach ∆ at φ = 0 but only ~vF

L
. This regime has been

recently observed in graphene [26].

1.3.3 Energy-phase relation of a long and diffusive Josephson junction
In a long and diffusive JJ, the BdG equations describing scattering of independent chan-

nels are not easily solvable. A better approach relies on the Usadel equations and the
Green functions formalism to describe the electronic transport [172]. We will not describe
them in this work but only summarize the changes in the final results of the ABSs.
In the diffusive regime, an electron needs a time tD = L2

D
in average to diffuse over a

distance L. On the other hand, at an energy ε, it keeps its phase coherence during a time 5

5. According to Heisenberg uncertainty.
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1. Introduction to Josephson junctions

Figure 4.7. – Energy–phase relations of Andreev bound states in different regimes of a Josephson junction.
a) Short and ballistic regime b) Long and ballistic regime [13] c) Short and diffusive regime d) Long and
diffusive regime. Extracted from [42].

tε = ~
ε
. Hence, in order to produce a coherent state between the two leads, the electron

has to travel from one lead to the other before loosing its phase coherence (tD < tε). This
is described in terms of energy by ε < ~D

L2 . In the case of short junctions, the energy of the
Andreev bound states is limited by the superconducting gap ∆. Here, in long junctions,
electrons at such high energy cannot produce coherent states. The maximum energy of the
ABSs is the Thouless energy Eth = ~D

L2 . The evolution of the governing energy scale of the
ABSs is shown in figure 4.6.
In contrast to short ballistic junctions, the diffusive regime brings a new aspect. The

density of states in the N part has a phase-dependent energy gap which closes at φ = π
[84, 192]:

Eg(φ) ' 3.1Eth| cos(φ/2)| (4.24)

This minigap has been confirmed experimentally by scanning tunneling microscopy [138]
in Al-Ag-Al junctions. An example of simulated JJ in the long diffusive regime has been
calculated in reference [42, 192] and is represented in figure 4.7 d). We see the gap in the
density of states almost closing at π and opening up to a maximal value which is smaller
than the superconducting gap (here about 0.07∆). The gap does not totally close because
the simulations have been done on a finite number of channels.
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2 Topological superconductivity

Atopological Josephson junction has been predicted to involve an unconventional su-
perconducting proximity effect which has a p-wave symmetry of the order parameter.

The association of this p-wave symmetry and the absence of spin degeneracy of the surface
states of a 3D TI leads to an appropriate environment to host an excitation at zero energy
which resembles the yet elusive Majorana fermion particle.
In this section we introduce the Majorana fermions and show how it emerges in p-

wave superconductors. We then describe the theoretical framework that predicts a p-
wave superconducting proximity effect on the surface of a 3D TI. Finally, we discuss the
possibility to distinguish the 4π-tABS from other conventional ABS also present inside a
TJJ.

2.1 px + ipy superconductivity and Majorana bound states
2.1.1 Majorana fermion vs Majorana bound state
The Dirac equation describes fermionic particles in high energy physics. In 1937, Ettore

Majorana developed a variation of Dirac equation with real solution which describes a spin
1/2 particle which is its own antiparticle : γ = γ† [118]. This fermionic particle named
Majorana fermion (MF) has not yet been observed as a fundamental particle.
In condensed matter, unlike high energy physics, a MF is not a particle but is predicted

to appear as a non trivial emergent excitation of quasi-particles : denoted Majorana bound
state (MBS). If these excitations do exist on a 2D surface 6, they are expected to obey a non-
Abelian statistic and could serve as the building block for topological quantum computing
[129]. Therefore finding the suitable experiment that would nail down the existence of
MBS in condensed matter systems has attracted tremendous attention from the scientific
community.
MBSs have been predicted to appear in the fractional quantum Hall effect ν = 5/2

[139], in half quantum vortices of the spinful p-wave superconductor Sr2RuO4 [86], in cold
atoms [148], superfluid Helium [122] and topological insulators [63]. The common theory
describing these systems is the spinless px + ipy superconductivity.
A MF is visible by the decomposition of a complex fermionic state into real and imaginary

parts:
c = 1

2(γa + iγb)

c† = 1
2(γa − iγb)

(4.25)

with c and c† being the annihilation and creation operators in the second quantization
formalism. From this decomposition, we can inverse the definition :

6. This 2D surface can be, for instance, the topological surface state of a 3D topological insulator.
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2. Topological superconductivity

Figure 4.8. – Schematic representation of the analogy between the Majorana fermion predicted as massless
fermionic particle and the Majorana bound state predicted in solid state physics.

γa = c† + c

γb = i(c† − c)
(4.26)

We clearly see that γa† = c + c† = γa (and same for γb). This decomposition of MF
shows that a MBS is the equal superposition of an electron and a hole in condensed matter.
The analogy between a MF and a MBS is shown in figure 4.8. A MF is composed of both
matter and anti-matter whereas a MBS is composed of both half an electron and half a
hole: the MBS is located at the zero energy point of a Dirac Cone 7.
Particles that are equal superposition of holes and electrons is the core idea of the

Bogoliubov formalism in superconductors. In this formalism, a quasiparticle is described
by uc†↑ + vc↓. Hence, a MBS would have an equal superposition 8: v = u.
This peculiar aspect translated into the Bogoliubov approach means that the annihilation

operator of a MBS reads : γ = uc†σ + u∗cσ.
So far we have not mentioned the spin of the electron. In fact, Eq. (4.26) reads γa↑ =

c†↑+c↑ for spin up electron and same for spin down electron. To create a MBS that behaves
exactly like a Majorana fermion, we need to consider a spinless particle. The fermions which
constitute the MBS are composed of a single spin. This condition is fulfilled by removing
all type of degeneracies (spin and valleys in the case of graphene).
A MBS does not exist alone. As it is half a fermion, MBSs always appear in pairs γa and

γb. If the two components of the pair interact, then both MBSs are destroyed and they
are not at zero energy any-more. For the pair of MBS to be safe, they have to be created

7. The Dirac cone in condensed matter is described by the same Dirac equation in particle physics.
The same equation that leads to the MF.

8. More precisely v = u∗
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at two separate locations: two extremities of a wire or two sides of a Josephson junction.
Finding a reliable experiment to prove the presence of a MBS is a very challenging task.

Recently, some experimentalists have claimed the observation of a MBS as a peak in the
tunneling conductance at zero bias [41, 47, 125, 142, 179].
In the next paragraph, we introduce the basic ideas of unconventional superconductivity

in order to better understand what is spinless px + ipy superconductivity. Then we show
how a Majorana bound state arises at the borders of a 1D p-wave superconductor.

2.1.2 Short introduction on unconventional superconductivity
In a superconductor, the Cooper pair condensate is described by its complex wave func-

tion Ψ and a (integer) spin component S. The Hamiltonian for conventional (s-wave)
superconductivity couples two electrons of opposite spins: HS = ∆ψ†k,↑ψ

†
−k↓ + ∆∗ψ−k↓ψk,↑.

It is also possible to form Cooper pairs of electrons of the same spin [121, 158]. The only
limitation on superconductivity comes from the symmetry of Ψ: the wave function has to
be anti-symmetric when inverting the two electrons of the Cooper pair [77]. The total spin
S of the Cooper pair wave function can be either singlet (S = 0), with pairs of opposite
spins or triplet (S = 1) with pairs of same spins and/or pairs of opposite spins. The general
Hamiltonian describing the coupling reads : HS = ∑

σ,σ′ ∆k,σ,σ′ψ
†
k,σψ

†
−k,σ′ + H.c. 9 with σ

and σ′ the spin components of the electrons. The associated gap function ∆k,σ,σ′ can be
expressed in term of a 2x2 matrix in the spin space :

HS =
(
ψ†k,↑;ψ

†
k,↓

)
∆k

(
ψ†−k,↑;ψ

†
−k,↓

)t
+H.c. with ∆k =

(
∆k,↑,↑ ∆k,↑,↓
∆k,↓,↑ ∆k,↓,↓

)
(4.27)

The structure of the components of the gap function is related to the symmetry of Ψ(k).
In the s-wave case, the wave function of the Cooper pair is constant in k-space : Ψs =√
neiφ = ∆0e

iφ (expression used in Eq. (4.2) ) and

∆s
k =

(
0 ∆0
−∆0 0

)
(4.28)

In the case of unconventional superconductivity, the superconducting gap is a 2x2 matrix
in the spin space and each component of ∆k is k-dependent. A type of superconductivity
is fully described by its superconducting gap ∆k.
With these notations, the superconducting gap of the px + ipy superconductivity reads :

∆px+ipy
k =

∆0(kx+iky
kF

) 0
0 −∆0(kx−iky

kF
)

 (4.29)

9. Hermitian conjugate
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Figure 4.9. – Schematic of the Kitaev chain. Upper panel: the fermion operator cj is composed of two
Majorana fermion operator on the same site j. Lower panel: in the case of µ = 0 and t = ∆, two
neighboring γ form a new fermion operator c̃ which sits on two different site. This new point of view leaves
two Majorana operators unpaired: γa1 and γbN. Extracted from [113].

2.1.3 The Kitaev toy model
The following part is mainly based on the review article [113]. In 2001, Kitaev proposed

a simple model based on a 1D chain of N interacting electrons in which two MBSs appear
at the end of the wire [95]. The Hamiltonian describes spinless electrons [113] :

Hchain = −µ
N∑

j=1
nj −

N−1∑
j=1

(tc†j cj+1 + ∆cjcj+1 +H.c.) (4.30)

with µ being the chemical potential, cj the electron annihilation operator for site j,
nj = c†j cj the associated number operator, t a hopping constant between the site j + 1 and
site j and ∆ the superconducting paring potential. This Hamiltonian is spinless because it
only operates on one type of spin . The coupling is p-wave because it pairs only electrons
of the same spin.
Let us focus on the low energy physics (µ = 0) in the simple case of t = ∆. We introduce

the γ and γ† operators from Eq. (4.25) which decomposes cj into two MBS sitting on the
same site j (cj = 1

2(γaj + iγbj )). This new basis diagonalizes the Hamiltonian to :

Hchain = −it
N−1∑
j=1

γaj γ
b
j+1 (4.31)

We can rewrite Hchain in another fermion basis composed of two MF that are located on
two different sites :

c̃j =
γaj+1 + iγbj

2 (4.32)

This new operator is sketched in figure 4.9 where we see that it couples electrons of
different sites. In this new basis, the Hamiltonian reads 10:

Hchain = 2t
N−1∑
j=1

c̃†j c̃j (4.33)

10. −iγaj γbj+1 = 2c̃†j c̃j
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Writing the Hamiltonian in the basis of c̃ allows to add a component binding γa1 and γbN.
The associated operator reads:

c̃MF = γbN + iγa1
2 (4.34)

This operator does not appear in the Hamiltonian because it does not cost energy to be
created. The energy of the resulting fermion is hence zero. It is the superposition of two
Majorana operators spatially located at the two ends of the wire. This fermion is non-
local and hence is protected from disorder: as long as the left Majorana exists, the right
Majorana cannot be destroyed by any small perturbation.
In general, two MBSs appear in pairs at the borders between a topological and a non-

topological superconducting region for instance at the edges of a nanowire [95], on the two
sides of a topological Josephson junction [63] or at the two extremities of a vortex core [82,
84, 101, 139].
We have shown so far how a Majorana bound state emerges from spinless p-wave super-

conductivity at the edge of the system. In the next section we will describe the consequence
of such peculiar excitation in the current-phase relation of a p-wave Josephson junction.

2.1.4 4π periodic current-phase relation in Josephson junctions with p-wave
superconductors

In this section we investigate the current-phase relation of a one dimensional S-I-S
Josephson junction with a p-wave superconducting coupling based on the article of Kwon,
Sengupta and Yakovenko [107] (cf figure 4.10).

Figure 4.10. – Schematic
a Josephson junction made of
two quasi-one dimensional su-
perconductors. Extracted from
[107].

We use the one dimensional Bogoliubov-de-Gennes (BdG)
Hamiltonian composed of a normal part HN:

HN(kx) = ~2k2
x

2m − µ+ U0δ(x) (4.35)

and the superconducting coupling part HS:

HS(kx) = ∆β
kx

kF
(4.36)

with m being the effective mass, µ the Fermi energy, U0
represents a barrier potential at the interface between the left

and right electrode, β refers to the left or right electrode : ∆L = ∆0 and ∆R = ∆0e
iφ.

The pairing potential changes its sign depending on the direction of propagation of the
electron: it is a p-wave pairing.
With this notation, the Hamiltonian reads:
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H =
(
HN,(kx) HS(kx)
H∗S(kx) −HN(kx)

)

=
~2k2

x
2m − µ+ U0δ(x) ∆β

kx
kF

∆∗β kx
kF

−~2k2
x

2m + µ− U0δ(x)

 (4.37)

We search solutions of the form :

ψβ = eβκx
[
Aβ

(
uβ,+; vβ,+

)
eikFx +Bβ

(
uβ,−; vβ,−

)
e−ikFx

]
(4.38)

when used as a factor β = +1 (−1) for the left (right) electrode 11, the index + (−) is
for right (left) moving quasi-particles and κ =

√
∆2

0−|E|
2

~vF
with E being the energy of the

quasiparticle 12. 1/κ represents the length scale over which the wave function decays away
from the interface.
The wave-vectors of the quasi-electron and quasi-hole in the limit of kF � κ and for zero

barrier at the interface (U0 = 0) are related by the conditions:

ηβ,+ = vβ,+
uβ,+

= E + iβκ~vF

∆β,+

ηβ,− = vβ,−
uβ,−

= E − iβκ~vF

∆β,−

(4.39)

with E the energy of the quasiparticle. In the case of p-wave superconductivity, we have:

∆L,+ = ∆0 , ∆R,+ = ∆0e
iφ

∆L,− =−∆0 , ∆R,− = −∆0e
iφ

(4.40)

The geometry of a junction constrains the solutions of Eq. (4.37) with two boundary
conditions at the interface (x = 0):

ψL(x = 0) = ψR(x = 0)
∂ψL

∂x
(x = 0) = ∂ψR

∂x
(x = 0)

(4.41)

Applying the boundary conditions to the solution implies the resolution of a 4x4 lin-
ear system whose determinant is zero 13. Using again the hypothesis kF � κ brings the
following condition:
11. When used as an index, β refers to L or R electrode.
12. The energy of the states are the eigenvalues of H
13. after using kF � κ, the 4x4 degenerated linear system of equation is :

ALuL,+ +BLuL,− = ARuR,+ +BRuR,−

ALvL,+ +BLvL,− = ARvR,+ +BRvR,−

Z(ALuL,+ +BLuL,−) = i(ARuR,+ −BRuR,− −ALuL,+ +BLuL,−)
Z(ALvL,+ +BLvL,−) = i(ARvR,+ −BRvR,− −ALvL,+ +BLvL,−)

(4.42)

with AL, BL, AR, BR the four unknown variables.
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Figure 4.11. – Andreev bound state energy-phase (a) and current-phase (b) relations of a p-wave Josephson
junction (drawn from eq. (4.44) ) for different transmission coefficient: 0.1 (solid), 0.7 (dashed) and 0.95
(dotted). The ground (excited) state E− (E+) is represented in blue (orange)

(ηR,− − ηL,−)(ηR,+ − ηL,+)
(ηR,+ − ηL,−)(ηR,− − ηL,+) = 1−D (4.43)

with D = 4
4+Z2 the transmission of the barrier and Z = 2mU0

~2kF

By combining Eq. (4.39) & Eq. (4.43) we obtain the energy-phase and current-phase
relations of the Andreev Bound states :

E(p) = −∆0
√
D cos(φ/2)

I
(p)
S = e∆0

~
√
D sin(φ/2)

(4.44)

We see that a p-wave Josephson junction produces Andreev Bound states with 4π pe-
riodicity (see figure 4.11), contrarily to the expected 2π periodicity (seen in section 1.1.1)
for conventional JJ. This 4π periodic ABS is composed of two interacting Majorana Bound
states. When the phase difference is φ = π, the two MBS are totally decoupled which sets
them at zero energy.
We can understand this unusual periodicity by the following. A MBS is composed of

half an electron and half a hole. After a conventional cycle of 2π by the phase, a single
charge e is transferred from one electrode to the other. However, a single charge is not
compatible with the 2e of the Cooper pair. Therefore, two cycles have to be executed by
the phase in order to transfer the complete charge of a Cooper pair.
A more rigorous picture is given by the fermion parity anomaly of TJJs [62, 139]. The

state of a Josephson junction is defined completely by the phase difference φ and the filling
of the ABSs, or more precisely its fermion parity (the parity of the number of electrons
inside the junction). In the particular case of TJJ, after a cycle of 2π, the fermion parity
changes (from even to odd) [95]. Hence, for the system to go back to its initial state, it
has to change its fermion parity two times, which makes it 4π periodic.
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2.2 Superconducting proximity effect in 3D Topological Insulators
In 2008, Fu & Kane [63] proposed a theory of the superconducting proximity effect in the

surface state of a 3D TI. They predicted that a superconductor with an s-wave symmetry
of the pairing potential induces spinless p-wave superconductivity by proximity effect at
the surface of the topological insulator.
The Hamiltonian describing the superconducting proximity effect in the surface states

of a 3D TI is composed of the surface Hamiltonian HTI and the superconducting part HS:
H = HTI +HS.
HS is diagonal in a basis of quasi-electron and quasi-hole 14, whereas HTI is diagonal in

a basis containing spin up and spin down components 15. To use a matrix notation for
H, we need to use a basis that incorporate both the spins and electron/hole components.
This basis called the Nambu space describes a quasiparticle by its spins and electron/hole
components:

Ψk =


ψk,↑
ψk,↓
ψ†k,↓
−ψ†k,↑

 (4.45)

with ψ (ψ†) the annihilation (creation) operator of an electron with a spin up ψ↑ (resp.
spin down ψ↓). Due to the spin-momentum locking effect at the surface of 3D TIs, a spin
up electron necessarily moves to the right direction and vice-versa for spin down.
The total Hamiltonian is expressed by H = tΨ†−kHΨk/2, with H being a 4x4 matrix in

the Nambu basis. We can write H in blocks of 2x2 elements. Each small block mixes the
spin components whereas the global matrix couples the creation/annihilation components:
ψ↑ and ψ↓ are coupled by the upper left small block of H and idem 3rd and 4th component
of Eq. (4.45) are mixed by the lower right block. With this notation we have :

H =
(
HTI,k HS
H∗S −σyH∗TI,−kσ

y

)
(4.46)

The 2x2 Hamiltonian of the topological surface state reads [63]:

HTI,k = ~vFσ.k − µ12 (4.47)

with µ being the chemical potential with respect to the Dirac point, k = (kx12, ky12)
the electronic wave vector, 12 the 2x2 unitary matrix and the 2x2 Pauli matrices 16 σ =
(σx, σy).

14. As described by the Bogoliubov-de-Gennes formalism of section 1.2.1
15. This is necessary to depict the spin-momentum locking in 3D TI.
16. let us recall the 2x2 Pauli matrices :

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
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The superconducting pairing potential part of H is HS = ∆12, with ∆ = ∆0e
iφ the

superconducting order parameter.
It is useful to reduce the Hamiltonian 17 H in a compact form in order to find the

associated eigenvalues. For that, we use the 2x2 Pauli matrices τ i mixing the annihila-
tion/creation components 18:

τx ⊗ 12 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , τ y ⊗ 12 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 , τ z ⊗ 12 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


(4.49)

with ⊗ being the tensor product. Let us recall the main property of the Pauli matrices:
σiσj = −σjσi = iεijkσ

k + 2δi,j12, where εijk is the Levi-Civita symbol 19 and δi,j is the
Kronecker symbol 20.
The use of the τ i matrices reduces the Hamiltonian to the following compact form :

H = ~vFτ
z ⊗ σ.k − µτ z ⊗ 12 + ∆0(τx cosφ− τ y sinφ)⊗ 12 (4.50)

We should comment on the fact that the scalar product σ.k between two vectors of 2x2
matrices produces a 2x2 matrix. Hence, τ z ⊗ σ.k is a 4x4 matrix. It is now easier to find
its eigenvalues by squaring H two times and thus transforming H into a diagonal matrix 21:

H2 − (~2v2
F|k|

2 + µ2 + ∆2
0) = −2~vFµσ.k

[
H2 − (~2v2

F|k|
2 + µ2 + ∆2

0)
]2

= 4~2v2
Fµ

2k2

The cross products between the same Pauli matrices give zero most of the time or 12.
The cross product between the σi and τ j matrices commutes because they do not act on
17. The expended notation of H taking in the Nambu basis is :

H =


−µ ~vF(kx − iky) ∆0e

iφ 0
~vF(kx + iky) −µ 0 ∆0e

iφ

∆0e
−iφ 0 µ −~vF(kx − iky)

0 ∆0e
−iφ −~vF(kx + iky) µ

 (4.48)

18. The σi and τ i Pauli matrices are both 2x2 matrices that have the same expressions. However, they
do not act on the same basis : σi acts on the spin (ψ↑, ψ↓) whereas τ i acts on the electron/hole components
(first two components of Ψ Eq. (4.45) with respect to the last two components of Ψ).

19. εijk =


+1 if (i,j,k) is (1,2,3), (2,3,1) or (3,1,2)
−1 if (i,j,k) is (3,2,1), (2,1,3) or (1,3,2)
0 if i=j, i=k or j=k

20. δi,j =
{

1 if i=j
0 else

21. We use the properties of the Pauli matrices: σiσj+σjσi = [σi, σj ] = 2δi,j. The complete calculation
is detailed in Appendix B.
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2. Topological superconductivity

Figure 4.12 – Energy dispersion rela-
tion for the 4 energy states of (4.51)
with the following parameters : µ =
1 meV, vF = 5× 105 m s−1 and ∆ =
800 µeV. Solid lines corresponds to, say,
up spin, and dashed line to the opposite
spin.
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the same basis which thus simplifies the calculation. We thus obtain the following energy
dispersion :

E±↑,↓ = ±
√

(µ± ~vF|k|)2 + ∆2
0 (4.51)

The E±↑,↓ of the 4 possible states is drawn in figure 4.12. The superconducting gap is
opened at ~vFk = µ. Far away from the chemical potential, the dispersion relation is
linear. There is a band crossing of spin polarized states around k = 0 at energy ±µ that
corresponds to the spin polarized Dirac cone.

Diagonalization of H Now that we have the energy of the eigenstates, we present
in the following paragraph a method that uses a new basis which transform H into an
effective p-wave superconducting Hamiltonian.
The normal part of the Hamiltonian can be more easily written using a basis that rotates

with the momentum k = k0(cos θk, sin θk). In this new basis ( ak,↑, ak,↓ ) the normal part
of the Hamiltonian reads (full calculation is shown in Appendix B) :

HTI =
∑

k
ψ†−k(~vFσ.k − µ)ψk

=
∑

k
a†−k(~vFk0σ

z − µ)ak
(4.52)

with

(
ak,↑; ak,↓

)
= 1√

2

(
eiθk/2 e−iθk/2

−eiθk/2 e−iθk/2

)(
ψk,↑;ψk,↓

)
(4.53)

The superconducting Hamiltonian in the same basis reads :
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HS =
∑
k

∆ψ†k,↑ψ
†
−k,↓ + ∆∗ψ−k,↓ψk,↑

= 1
2
∑
k

i∆
[
eiθka†k,↑a

†
−k,↑ − e−iθka

†
k,↓a

†
−k,↓

]
−i∆∗

[
e−iθka−k,↑ak,↑ − eiθka−k,↓ak,↓

]
HS = 1

2
∑
k

i∆
[

(kx + iky)
k0

a†k,↑a
†
−k,↑ −

(kx − iky)
k0

a†k,↓a
†
−k,↓ +H.c.

]
(4.54)

This Hamiltonian in the new basis couples a pair of fermions of same spin (↑↑ and ↓↓).
We see that depending on the direction of propagation (θk), the coupling changes its sign.
It describes a so-called px + ipy superconducting pairing symmetry. On top of that, as
only one spin is available on the surface states of a 3D TI 22, the induced superconducting
proximity effect is a spinless p-wave superconductivity.

2.3 S-TI-S Josephson junction
The model of the previous section considers the simple case of a 1D system. The gener-

alization to the case of a Josephson junction made of a 3D topological insulator (S-TI-S),
leads to similar conclusions with the formation of a 4π periodic topologically protected
Andreev bound state (4π-tABS).
The case of a S-TI-S Josephson junction has been theoretically investigated in the regime

of small doping (µ ≈ 0) [2, 61, 63, 116, 167] and large doping level (µ � ∆) [160]. Most
of the theory studied an S-TI-S JJ with a ferromagnetic layer deposited on top of the 3D
TI (cf figure 4.13). The results of Snelder [160] concluded that the ferromagnetic layer is
not necessary to produce the 4π-tABS. The energy phase relation of the associated ABSs
is drawn in figure 4.13a-d for different angles of incidence of the electronic modes on the
surface of the 3D TI (θ = 0 corresponds to a direction of propagation perpendicular to the
S-TI interface). The parameters of the calculation are µTI,S the chemical potential of the
topological insulator and of the superconducting leads, ∆ the superconducting gap, L the
length of the junction and mz the magnetization.
When no magnetization is applied and when the chemical potentials of the S leads and

the TI are equal (µS = µTI), all ABS are 4π periodic. However, when there is a mismatch
of the chemical potential at the interface, a barrier is formed and only the electronic mode
perpendicular to the S-TI interface (θ = 0) produces a 4π-tABS 23 (cf solid lines in figure
4.13 [a-c]).
The application of a magnetic field (mz 6= 0) breaks the time reversal symmetry and

decreases the superconducting coupling of the ABSs which causes a decrease of their maxi-
mum energy (orange arrow shows E(φ = 0) < ∆). Applying a magnetic field also decreases

22. The spin is determined by the momentum of the quasiparticle
23. The 4π-tABS is perfectly transmitted whatever the quality of the (non-magnetic) interface or the

mismatch of the chemical potential.
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3. Experimental signatures of Majorana bound state

Figure 4.13. – (upper left) Schematic an S-TI-S Josephson junction. A ferromagnetic layer is deposited
on top of the TI with a perpendicular magnetization. (right) Energy dependence of the ABS for different
angle of incidence θ of the electronic surface mode in a S-TI-S Josephson junction. The legend in (a)
applies for both graphs. (a) µTI/∆ = 100, µS/∆ = 1000 and L/L0 = 0.01 with L0 = ~vF/µTI. The arrows
follow the 4π periodic topologically protected ABS. (b) µTI/∆ = 100, µS/∆ = 120 and L/L0 = 0.01.(c)
µTI/∆ = 100, µS/∆ = 120 and L/L0 = 0.1.(d) µTI/∆ = 100, µS/∆ = 120, mz/∆ = 60 and L/L0 = 0.01.
Extracted from [160]

the transmission of all ABSs including the one of the 4π-tABS. This major aspect has an
impact on the interaction between the 4π-tABS and the continuum of states living above
the superconducting gap ∆. Indeed, at zero magnetic field and φ = 2π, the 4π-tABS has
a positive energy close to +∆. Around this position (π < φ < 3π) the 4π-tABS is not in
its lowest energy state. Any interaction between the 4π-tABS and the continuum of states
forces its relaxation to the lowest energy states : switching from E = +∆ to E = −∆.
This switching process, called quasiparticle poisoning, destroys the 4π periodicity of the
4π-tABS and will be discussed in details in section 4. Hence applying a magnetic field to
the TJJ decouples the 4π-tABS from the continuum and conserves its 4π periodicity.
In conclusion, a topological Josephson junction hosts a single topologically pro-

tected 4π periodic Andreev bound state. In order to effectively measure the 4π pe-
riodicity of this peculiar ABS, one needs to decouple it from the continuum of states by
applying a perpendicular magnetic field. On top of that, there will be other ABSs living
inside the junction which are not topologically protected and are hence 2π periodic.

3 Experimental signatures of Majorana bound state

In the previous section we have seen how MBSs emerge in topological JJs. In fact, they
are also predicted in many other geometries. To cite a few:
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– In semiconducting nanowire in proximity with a superconductor
– In the vortex core of a p-wave superconductor
– In a wire of ferromagnetic atoms coupled to a superconductor
– ...
In this section we present recent experiments that reports on the observation of a MBS

in proximity with superconductors. We first describe the detection of the zero energy mode
with tunneling measurement of the density of states. Then we discuss measurements of
energy-phase relation of the ABS of a TJJ. Finally we review the signature of MBS in the
AC Josephson effect which will be the main focus of this PhD work.

3.1 Tunneling experiment
MBS are not only expected to appear in topological Josephson junctions made of 3D

TIs. They are also predicted in semiconductors with strong spin-orbit coupling in proximity
with a superconductor and with an applied magnetic field [57].
As the MBS is a state at zero energy, it is possible to reveal its presence by probing

the density of states (DOS) of the junction and hence detecting a peak in the DOS at
zero energy [57, 110]. The first experimental report on MBS was done by the group of
Kouwenhoven (see figure 4.14) [125]. They measured the tunneling conductance through a
barrier induced by a local gate beneath an InSb nanowire in contact with a superconductor.
This pioneer measurement revealed a zero bias peak structure in the DOS at the extremity
of the structure (see figure 4.14d).
The controversy of this result is that the observed zero bias conductance peak is not

quantized at the value 2e2/h. Moreover, a MBS only exists if it is isolated from the
continuum of energy. Here we see that the superconducting gap is not a sharp BCS-like
gap and some states are present around zero energy. As many other physical phenomena
could potentially explain this zero bias peak, this experimental result has dragged lots of
attention to the scientific community in order to rule out other non-topological explanation
for this result [40]. Soon after this work, two other groups observed the same zero bias
anomaly in InAs nanowires [41, 111].
A second system revealing such clear and promising results is a chain of ferromagnetic

atoms deposited on a superconductor. In 2014, the group of Yazdani observed in scanning
tunneling spectroscopy a peak at zero energy in the DOS at the extremity of the chain (cf
figure 4.15). A state at zero energy, located at the two ends of such nanowire is exactly
the results of Kitaev’s toy model (cf section 2.1.3).
One of the controversy on this observation is the short spatial location of the state in

comparison to the expected size of a MBS, that is discussed in ref [135, 174].

3.2 Measurement of the current-phase relation
Instead of directly probing the Majorana zero mode in the density of states, one can

measure the current phase relation (CPR) of a topological Josephson junction. As ex-
plained by Eq. (4.44), the current phase relation of such topological Josephson junction
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3. Experimental signatures of Majorana bound state

Figure 4.14. – Tunneling experiment to detect a Majorana fermion. A semiconducting nanowire is coupled
to an s-wave superconductor (SC) on its right part. When no topological superconductivity is induced in
the nanowire (a), the conductance of the wire is zero. However, if the proximity effect induces topological
superconductivity, then the conductance of the wire at zero energy is G = 2e2

h . Extracted from [3].
(c-d) Experimental results of [125] based on the geometry of (b). (c) (upper) SEM picture of the device.
We see the nanowire connected to an S lead and a normal contact. Gates are numbered from 1 to 4. The
green gate is the one used to detect the zero bias anomaly. (lower) Schematic of the devices. d) Differential
conductance versus voltage bias of the nanowire for increasing magnetic field. Each solid line has been
shifted vertically for clarity. The green arrow points to the peak in the conductance at zero bias. This
robust peak appears when the magnetic field is switched on.

should be partially composed of a 4π periodic component among 2π periodic components.
This measurement can be done by using radiofrequency superconducting quantum inter-
ference device (RF-SQUID) [42, 60, 70], by direct measurement (DC-SQUID) [85] or by
scanning-SQUID measurements [100]. A complete review about this subject has been made
by Golubov [71].
CPRs have been measured by scanning SQUID on JJs made of Bi2Se3 [161] and on HgTe

[162] and by transport measurement on Bi2Se3 [106]. However, even if an anomalous CPR
has been detected in the latter measurement 24, no 4π periodic CPR on TJJs has been
reported yet. This absence of doubled periodicity in the CPR measurement is understood
to originate from the interaction between the 4π periodic ABS and the continuum of states

24. A 2π periodic non sinusoidal CPR is usually found in a short JJ with 2π/n periodic harmonics (cf
eq. Eq. (4.5))
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Chapter 4. Topological Josephson junctions

Figure 4.15. – Scanning tunneling experiment that has first measured a peak at zero energy in the density
of states at the edge of a topological nanowire. a) A line of ferromagnetic atoms coupled by proximity
to a superconductor is probed by an STM tip. b),c) and d) are theoretical simulations. e),f) and g) are
experimental data. b) and f) represents the topographic top view of the nanowire with the position of the
spectra shown in c) and g). d) and e) are the local density of states at zero biased. Extracted from [127]

at energy ∆ which limits its lifetime. This interaction called quasiparticle poisoning is
introduced in detail in section 4.

3.3 Fractional AC Josephson effect
The change of periodicity of the current phase relation in a TJJ implies a change in

the AC Josephson effect. This changes can be measured either by performing a Shapiro
measurement or by recording the electromagnetic environment of a biased JJ. After giving
a short theoretical background on this so-called fractional AC Josephson effect, we present
the state of the art on these two experimental techniques on topological JJ.
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3.3.1 Theoretical prediction
As described in section 1.1.1, when a constant voltage (VDC) is applied on a junction,

an oscillating current appears across the junction and emits photons at the Josephson
frequency fJ = 2eV/h.
In the case of a topological JJ, one expect to measure half the Josephson frequency, that

is, f 4π
J = eV

h
resulting from the AC Josephson effect of the 4π periodic mode.

On the other hand, we can reverse the process by irradiating the junction with mi-
crowaves at frequency fRF. The phase across the junction locks-in at the same frequency
and the measured current voltage characteristic displays steps of equidistant voltages
∆V = hfRF/2e. Those steps are nothing but the Shapiro steps [72, 157]. We now re-
fer to this probe of the so-called Shapiro steps by a Shapiro measurement. In the case
of a TJJ with only a 4π periodic ABS, Shapiro steps are expected with equidistant volt-
ages ∆V = hfRF/e instead. This doubling of the voltage increment can be viewed as the
presence of only even Shapiro steps :

Vn = 2nhfRF

2e n = 1, 2, 3, ... (4.55)

Therefore the absence of the odd Shapiro steps provides evidence for the 4π periodic
MBS. However, it is not obvious how a Josephson junction composed of one 4π periodic
ABS and several conventional 2π ABSs behaves when irradiated with radio frequencies.
Theory predicts that the even/odd effect only happens at low irradiation frequency [49]. In
the next chapter we will review this study by using the resistively shunted junction model.

Figure 4.16. – Left panel: The colored plot shows the differential resistance (unit of kΩ) with respect to
RF irradiation amplitude in mV at 3 GHz and DC current bias at zero magnetic field and dilution fridge
temperature. The white doted lines are linecuts of the |V (I)| characteristic at VRF = 0.2, 3, 4, 5 and 6 mV
drawn in white solid lines. The green line represents a scale of 12 µV on the |V (I)| curves. Right panel:
V (I) characteristics of the junction for increasing magnetic field. For B lower than 2 T, all Shapiro steps
are visible at voltages Vn = n · hfRF/2e = n · 6 µV. For magnetic field greater than 2 T, the step n = 1
at 6 µV disappears as emphasized by the dotted circles. This disappearance of an odd Shapiro step is an
evidence of a topological superconductivity. Adapted from [142].
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3.3.2 Shapiro measurement
Only two groups have been able to observe the fractional AC Josephson effect in Joseph-

son junctions made of 3D topological insulators by measuring the photon emission of JJ
or Shapiro steps.
The first experimental observation of this effect was reported by Rokhinson et al in 2012

[142]. They studied InSb nanowires in contact with superconducting niobium electrodes
forming a JJ. InSb is a semiconductor with strong spin-orbit coupling which is one of the
possible ingredients to produce a TJJ [151]. When applying a sufficiently high magnetic
field, it undergoes a topological transition with the creation of a 4π periodic ABS. The main
result of this work is described in figure 4.16. When the nanowire enters the topological
phase, under RF irradiation, the Shapiro step n = 1 is absent. Which sounds as the
beginning of the even/odd effect. However, all other odd Shapiro steps (n ≥ 3) were
observed. At that time, no explanation was given to explain the disappearance of only the
step n = 1 and not all the odd steps, as expected from Eq. (4.55).
The second observation of the even/odd effect in a 3D TI was reported in strained

HgTe by Molenkamp’s group in 2015 whose main result is shown in figure 4.17. They also
observed an unconventional effect of only the first Shapiro step (n = 1). At low irradiation
frequency (fRF = 5.3 GHz), the first step appears at a higher excitation amplitude than
the following steps (n = 2, 3, etc). Moreover, at lower frequency, the step n = 1 is totally
absent from the low excitation part (IRF < 0.7). This effect is also concomitant with the
absence of the first oscillation of the higher steps: diagonal dark blue region pointed by a
gray arrow in figure 4.17a,g.
Some open questions remain about this experiment. If we look carefully on graph (a),

the even step n = 4 also appears with a ’delay’ in the RF excitation in comparison with
the step n = 3 and n = 5 (see pink arrow). It is still unclear why only the first odd
Shapiro step would be affected by the topological superconductivity and not the higher

Figure 4.17. (facing page) – The left, middle and right columns are measurements of a Josephson junction
based on the 3D topological insulator HgTe in proximity with Nb superconducting leads irradiated with
microwaves at frequency respectively f = 2.7, 5.3 and 11.2 GHz. These graphs are base on the following
set-up: At a fixed RF irradiation amplitude, a DC current is applied across the junction and the V − I
characteristic is recorded.
The first line graphs represents colored plots of the amount of measured point counted by the binning
method with respect to the irradiation amplitude IRF and the measured DC voltage VDC in unit of the
expected Shapiro steps hfRF/2e. Light colors represent a high density of measured data point at the VDC
voltage. Meaning that a plateau is present in the V − I characteristic. Dark colored point in the graph
means few points measured at this voltage hence no plateau in the V − I. Middle line graphs represents
the differential resistance dV/dI versus the RF irradiation and the biased current I. Black area represent
plateaus in the V − I characteristic with zero differential resistance. The Shapiro step n = 0, 1 and 2 are
labeled.
Lower line graphs shows the extracted size of the firsts (0 to 4) Shapiro step in µA.
The red arrows in the middle column represents the unconventional appearance of the Shapiro step n = 1.
It is supposed to appear at a lower excitation than the step n = 2. The gray arrow in the left column
represents the side effect on higher steps of the very late appearance of step n = 1. Adapted from [178].
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odd steps (n = 3, 5, 7). The better visibility of the even/odd effect at lower frequency is
understood by the fact that the 4π periodic ABS has a much longer phase adjustment time
and therefore locks-in at the irradiation frequency only for a slow excitation.
We would expect to not see the effect of this single mode which carries a negligible

amount of current in comparison with the conventional modes. However, as the physics
describing this system is highly non-linear (cf chapter 5), when the driving irradiation fRF
becomes smaller than the characteristic frequency of the 4π periodic ABS f4π = eRnI4π/h,
its contribution becomes greater than the one of the conventional ABSs. This physical
effect will be extensively discussed in chapter 5.
It is worth mentioning the recent work of Bocquillon et al. They used HgTe as a 2D topo-

Figure 4.18. – a) Schematic of the device. The 2D topological insulator HgTe in contact with two s-wave
superconducting leads produces a quantum spin Hall effect: Two counter propagating modes circulated
at the border of the TI. These modes are spin polarized. b) Response to an RF excitation: Map of the
voltage distributions with voltage bins in normalized units (hfRF/2e) versus the RF excitation power.
Steps n = 1 and 3 are completely suppressed in the low power regime. In the oscillatory high RF power
regime, dark fringes (white dotted lines) develop as the first and third oscillations are suppressed. The
red dashed line indicates the RF power at which c) is applied. c) Histograms of the voltage distribution
obtained for different irradiation frequencies. At high frequency, all the steps are visible whereas for lower
frequencies, we observe the gradual disappearance of the odd steps. The red arrows point at the absence
of the odd steps.Legend and figure extracted from [25].
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Figure 4.19. – Measurement of the AC Josephson effect of a JJ by probing its electromagnetic emission.
The junction is made of a non-topological weak link on the left column and made of HgTe for the middle
and right columns at two different back-gate voltages.
Upper part: the graphs represent I−V characteristics (red lines) and emission spectrum at fixed detection
frequency fd = 3 GHz (blue lines). The gray dotted lines are guide line at frequency 2fJ (innermost), fJ
and fJ/2 (outermost lines).
Lower part: colored plot of the power emitted by the junction versus the detection frequency fd and the
biased DC voltage V . The white lines are guides that represents the emission of the fractional (fJ/2),
conventional (fJ) and doubled (2fJ) AC Josephson effect. Adapted from [46].

logical insulator in a quantum spin Hall regime. They performed Shapiro measurements
and observed the progressive disappearance of all the even Shapiro steps when decreasing
the irradiation frequency. Their results are shown in figure 4.18.
There exists no equivalent results as convincing as the latter on Josephson junctions on

3D topological insulators.

3.3.3 Emission measurement
The last observation of the fractional AC Josephson effect has been done by measuring

the electromagnetic environment of a voltage biased 2D TJJ fabricated on HgTe. The
results are shown in figure 4.19. One sees a conventional JJ on the left column which
emits only at the Josephson frequency fJ. Whereas the HgTe Josephson junction has two
regimes: at the gate voltage Vg = −0.55 V, there is a clear emission at half the Josephson
frequency that reduces drastically at lower gate voltage.
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Measuring the emission at half the Josephson frequency is a very promising results.
However, according to ref [152], the emission spectrum could resembles the fractional AC
Josephson effect even in a non-topological system. In particular, Landau-Zener transitions
can occur between high transmitted channels and have a similar signature as the 4π-tABS.
This subject is discussed in Appendix C of this thesis.
Now that we have presented the state of the art on the possible observations of the

coveted 4π-tABS, we present a phenomenon that explains the absence of signature of this
state in the current-phase relation: quasiparticle poisoning. It will also be used in the next
chapter to give a possible origin of the observation of the even/odd effect on only the first
Shapiro step.

4 Poisoning

Quasiparticle poisoning describes the interaction of Andreev bound states with a
continuum of states with the help of an external excitation (phonons, photons). This

process is responsible for the relaxation of excited states to their ground states.
Poisoning plays an important role for studying the dynamics of a single ABS, or when,

in particular, the junction parity has to be conserved.

4.1 What is Poisoning ?
The fermion parity of a Josephson junction is defined by the parity of the total number

of electrons populating the ABS. It can be even or odd. Poisoning can change this parity
when an excited Andreev bound state relaxes to a lower energy state by accepting or giving
a quasi-particle to the continuum (see figure 4.20). This process has been first observed in
1994 in single-Cooper-pair devices [92]. Later the noise created by this switching process
has been investigated theoretically in a quantum point contact by Averin [11, 12]. More re-
cently, it has been possible to measure the dynamic associated to poisoning in spectroscopy
measurements of the Andreev bound states [28, 187].
The case of conventional short ballistic JJ is drawn in figure 4.20 a). Excited ABSs

can relax by accepting an electron (giving a hole) from the lower continuum of state or
giving an electron to the upper continuum. This process is possible thanks to an external
excitation of energy higher than the energy difference between the ABS and the continuum.
The probability for this switching process is [11]:

psw(φ) ∝ e
∆−E(φ)
kBT (4.56)

This phase dependent switching probability has been used to simulate the impact of
poisoning on the current-voltage characteristic in ref [11].
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4.2 How poisoning affects the 4π periodic ABS
Poisoning happens in a particular way with the 4π t-ABS. It is shown in figure 4.20

b) and has been theoretically studied in the case of topological JJs by [62, 79, 173]. The
two main differences are (1) the state |−〉 is half of the time at a higher energy than
state |+〉. Which means that the ground state is not always the same state. (2) As the
state |+〉 is not spin degenerated, the two electrons of a Cooper pair can not populate
simultaneously the topological ABS. This later can be used as a signature of the 4π-tABS
by a fast measurement of the switching current of a TJJ [134].
In the case of a TJJ, the 4π-tABS has a maximum energy 25 E ′J = ∆0

√
D given in Eq.

(4.44) smaller than the conventional ABSs which have an energy close to the supercon-
ducting energy gap. Hence the topological ABS is isolated from the continuum of states
by an almost constant energy gap ∆mini (see figure 4.20 b)). The probability of switching
from the upper state to the lower state simplifies to [62]:

psw ∝ e
−∆mini

kBT (4.57)

During each poisoning process, the fermion parity of the 4π-tABS is changed. Hence
the resulting energy-phase relation becomes 2π periodic. This process explains why the
measurement of the current-phase relation of TJJs is up to now unsuccessful (cf section
3.2) The only way to keep the 4π periodicity of the 4π-tABS is by driving the system

Figure 4.20. – a) Schematic of the poisoning process in a conventional short JJ. Excited ABSs (orange or
green) can relax by interacting with available states present in the continuum (blue circles). Thanks to
external excitations (phonons or photons), electrons are taken out from the ABSs to the continuum which
changes the population of the ABSs. This process has a switching probability psw which depends on the
(phase dependent) energy difference between the ABS and the continuum. When an ABS has the same
energy as the continuum, it necessarily relaxes to its lowest energy state. b) In the case of a topological
JJ, the 4π-tABS is either empty (blue) or occupied (orange). When the phase π < φ < 3π, the occupied
state is not the lowest energy state. The system can relax thanks to an external excitation by feeding the
continuum with an electron.

25. The transmission is not perfect in the presence of a magnetic field.
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Chapter 4. Topological Josephson junctions

faster than the time of poisoning processes. This condition is provided when probing the
AC Josephson effect.
More precisely, the measurement time has to be shorter than the quasiparticle lifetime

of the 4π-tABS. These considerations have been investigated theoretically by Badiane et
al [79] in the case of a Shapiro measurement. They conclude that in order to detect
the fractional AC Josephson effect in a Shapiro measurement, the adjustment time of the
phase τR has to be shorter than the lifetime τMF of the 4π-tABS. τR depends on the driving
frequency fRF by the relation τR = 1

eRIn with R the resistance of the electrical circuit in
which the junction is embedded 26 and In is the height of nth the Shapiro step at Vn = nhfRF

2e .
In the case of a voltage biased junction, this height is given by : In = Ic|Jn(α)| with Ic
the critical current, Jn the Bessel function and α = eVRF

2πfRF
27. In the case of current biased

Josephson junction, In has to be calculated. This will be done in next chapter.
This condition sets a lower limit on the excitation frequency to detect the 4π-tABS by

Shapiro measurement. If we go too low in frequency, the 4π-tABS will be poisoned and
loose its 4π periodicity.

26. We will see in next chapter that we suppose R ≈ RN the normal state resistance of the junction.
27. This dependence is reviewed in detail in next chapter.
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Summary

In this chapter we have introduced the physics of Josephson junctions. We have focused
on the Bogoliubov-de-Gennes approach in the case of a short ballistic junction to study

the Andreev bound states and then we have detailed the difference between the short
junction regime and the other transport regimes.
Then we introduced the physics associated with the Majorana bound states in condensed

matter. We have first discussed topological superconductivity and in particular the uncon-
ventional px + ipy superconductivity. We have seen how a topological Josephson junction
exhibits a topologically protected 4π periodic Andreev bound state (4π-tABS) which leads
to a 4π periodic current phase relation and thus a fractional AC Josephson effect.
We have reviewed some existing experimental observation of Majorana bound state. One

of the best way to evidence the 4π-tABS is by performing a Shapiro steps measurement. A
convincing signature is the observation of the even/odd effect when lowering the frequency
of excitation fRF. This effect was clearly observed in a quantum spin Hall system based
on HgTe [25].
Finally, we have seen how quasiparticle poisoning can destroy the 4π-tABS. To prevent

this poisoning to affect the 4π periodicity of the topological state, we need to probe the
system in an AC experiment, like the Shapiro measurement, where the system is driven
faster than the time-scale of quasiparticle poisoning.
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Chapter 5. Resistively shunted junction model for topological Josephson junctions

Before presenting our experimental observation of the fractional AC Josephson effect
on a topological Josephson junction (TJJ), we introduce a simple model that gives,

as we will see, a good description of SNS Josephson junctions. The so-called resistively
shunted junction (RSJ) model is used to investigate the visibility of the fractional AC
Josephson effect of a single topologically-protected 4π-periodic Andreev bound state (4π-
tABS) among other conventional Andreev bound states (ABSs).
In this chapter we first introduce the RSJ model and use it to better understand a Shapiro

measurement and decipher the exact behavior of a Josephson junction when irradiated with
radio frequencies (RF).
A second aspect developed in this chapter is the impact of electron overheating. When

driven out-of-equilibrium, the electronic bath of a junction is heated up by Joule heating.
We include this consideration in the RSJ model in a self consistent manner.
Then we use the RSJ model to simulate a Shapiro measurement with (1) a single 4π-

periodic mode and (2) a mix of conventional 2π-periodic supercurrent with a small 4π-
periodic supercurrent. This leads us to a simple explanation to account for the absence of
only the n = 1 Shapiro step in the fractional AC Josephson effect.

1 Introduction to the RSJ model

The resistively Shunted Josephson junction (RSJ) model was first reported by McCum-
ber, Stewart and Johnson [89, 120, 163]. The model considers an ideal Josephson

junction in parallel with a resistor (cf figure 5.1). The resistor enables quasiparticle trans-
port through the junction. This model allows us to have access to the dynamics of the
superconducting phase φ and also to simulate the current-voltage (IV) characteristics of
Josephson junctions. The parallel resistor is a parameter that is usually approximated by
the normal state resistance RN of the JJ 1.

Figure 5.1. – a) Schematic of the RSJ model. The total current through the circuit is denoted by I and
the voltage across the JJ by V . b) VI characteristic of a current biased Josephson junction modeled by
the RSJ model.

1. In our experiments discussed in the next chapter, RN is in the order of tens of Ohms.
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1. Introduction to the RSJ model

In this section we use the RSJ model to simulate IV characteristics of a conventional
Josephson junction. After a brief example, we add the key ingredient for Shapiro measure-
ment: radio frequency (RF) irradiation.

1.1 DC biased junction
A Josephson junction can be either voltage or current biased. We review here both cases

in the DC regime. In the next section will be add an AC component to the biasing.

Voltage biased junction The case of DC voltage biased junction is straightforward,
using Eq. (4.3), the phase increases linearly with time and the supercurrent oscillates at
the Josephson frequency fJ ≡ 2eV

h
. The resistive current follows Ohm’s law. The total

current through the device is the sum of the supercurrent and the resistive current :

I = Ic sin(2πfJt+ φini) + VDC

R
(5.1)

with φini a phase offset that depends on the initial conditions. This equation has the
general solution:

IDC = Ic sinφini for VDC = 0

IDC = VDC

R
for VDC 6= 0

(5.2)

Current biased junction In the DC current biased case, with the Josephson relations,
the current flowing through the circuit follows:

IDC = V

R
+ Ic sinφ

dφ

dt
= 2eRIc

~
(iDC − sinφ)

(5.3)

with iDC = IDC
Ic

the reduced DC current. This first order differential equation in φ has a
characteristic relaxation time 2:

τJ = ~
2eRIc

(5.4)

For iDC > 1, an analytical solution exists for this equation 3, that is periodic in time with

2. We can find this relaxation time by simplifying Eq. (5.3) for IDC = 0 and using a first order
approximation of the sine function: dφ

dt = − 2eRIc
~ φ

3. The analytical solution of Eq. (5.3) reads [16]:

φ(t) = 2 atan
[
−iDC +

√
i2DC − 1
iDC

tan
(
t
√
i2DC − 1
2τJ

)]
(5.5)

with τJ = ~
2eRIc

.
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Chapter 5. Resistively shunted junction model for topological Josephson junctions

a period Tφ = h

eR
√
I2
DC−I2

c
. The average time derivative of φ gives the DC voltage across

the junction:

VDC = R
√
I2

DC − I2
c (5.6)

This simple VI characteristic is drawn in figure 5.1. We observe the absence of voltage
until IDC reaches the critical current. At high current bias, the voltage follows a linear
increase close to the Ohm’s law.

1.2 AC biased junction
The RSJ model becomes more complex when adding an AC component to the DC bias.

There still exists an analytical solution in the case of voltage biased junction. However, for
the current bias case, we need to use numerics to obtain the current-voltage characteristic.

1.2.1 Shapiro steps of a voltage biased junction : Analytical solution
In the case of a voltage biased junction, the RF irradiation is taken into account by

adding an oscillating voltage at frequency fRF : VRF cos(2πfRFt) to the DC voltage VDC.
The phase dynamic follows :

~
2e

dφ(t)
dt

= VDC + VRF cos(2πfRFt) (5.7)

Integrating over time gives :

φ(t) = φini + 2πfJ · t+ VRF

VDC

fJ

fRF
sin(2πfRFt) (5.8)

with φini an arbitrary phase shift and fJ = 2eVDC
h

the Josephson frequency. In a voltage
biased junction, the phase increases linearly (due to VDC) with an oscillatory part coming
from the RF irradiation. Thus, the supercurrent IS reads:

IS(t) = Ic sin
(
φ0 + 2πfJ · t+ VRF

VDC

fJ
fRF

sin(2πfRFt)
)

(5.9)

This expression can be rewritten as a sum of Bessel function (cf p.292 in [16]):

IS(t) = Ic

n=+∞∑
n=−∞

(−1)n · Jn

(
2eVRF

hfRF

)
· sin(φ0 + 2πt(fJ − nfRF)) (5.10)

with n ∈ N and Jn is the nth Bessel function of the first kind. In order for the supercurrent
to have a non zero average value ( < IS >t 6= 0 ) the sine should not oscillate in time :

nfRF = fJ ⇔ VDC = n · hfRF

2e ≡ Vn (5.11)
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Figure 5.2. – Simulation of a voltage (a) and current (b) biased Josephson junction irradiated with a 2 GHz
radio frequency, a bias resistance R = 30 Ω, a critical current Ic = 500 nA, an RF voltage VRF = 4 µV and
an RF current IRF = 0.3 µA.

If the applied voltage is VDC = Vn, a voltage plateau at Vn with a width in current In is
obtained :

In(VRF) = 2IcJn

(
2eVRF

hfRF

)
(5.12)

This analytical solution gives a general idea of the behavior of such a system: When
irradiating a JJ at a frequency fRF, the superconducting phase φ locks-in at multiples
of the irradiation frequency. In this case, the only possible DC voltages across the JJ
are Shapiro voltages Vn = nhfRF

2e . This results experimentally as equidistant steps in the
current-voltage (IV) characteristics [157]. Each step has a current width In (cf figure 5.2)
which follows a Bessel function.

1.2.2 Shapiro steps of a current biased junction: numerics
There is no analytical solution describing a current biased junction under radio frequen-

cies. However we can still use the RSJ model to predict its behavior. The RF irradiation
is taken into account in the RSJ model by adding an oscillating current ( IRF cos(2πfRFt) )
to the bias current (IDC). Summing up all contributions leads to :

Itot(t) = IDC + IRF sin(2πfRFt) = ~
2eR

dφ

dt
+ Ic sin(φ) (5.13)

which gives :

dφ

dt
= 1
τJ

[iDC + iRF sin(2πfRFt)− sin(φ)] (5.14)

with i being the reduced current i = I
Ic

and τJ = ~
2eRIc the phase relaxation time. This

is a non-linear first-order differential equation which has to be solved numerically for each
pair of variables (IDC, IRF).
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Figure 5.3. – Schematic of the tilted washboard potential. The motion of a particle in this potential has
the same behavior of a JJ described by the RSJ model. The linear tilt of the potential is proportional to
iDC and an RF component iRF changes slightly this tilt periodically in time.

Tilted washboard potential To have a better understanding of the system, we can
use the standard picture of a rolling massless particle at position φ on a tilted washboard
potential 4 U(φ) = φ(iDC + iRF sin(2πfRFt)) + cosφ represented in figure 5.3.
In the DC biased case, as long as iDC < 1, the particle is trapped inside a potential

minimum and the phase is constant over time: No voltage appears across the junction.
When iDC > 1, the tilt is large enough to cancel the barrier potential and the particle rolls
down the washboard. A finite voltage appears at the junction.
Applying an RF irradiation makes the washboard to oscillate in time with an amplitude

iRF. If during an RF oscillation the tilt of the washboard is larger than the barrier, the
particle will roll down by a few minima before the tilt decreases at the end of the RF
period. The number n of minima over which the particle has rolled down during an RF
period determines the voltage Vn across the junction.

Simulation of Shapiro steps We present in figure 5.4 the numerical simulation for
the RSJ model Eq. (5.14) with R = 30 Ω, Ic = 500 nA and an RF current at f = 2 GHz.
These parameters are close to the experimental ones seen in chapter 6 of sample LC099-
JJ4. We solved the time-differential equation by using the 4th order of the Runge-Kutta
algorithm.
The resulting VI characteristics (figure 5.4b) shows plateaus in voltage at the expected

values Vn for Shapiro steps. To study the evolution of these steps as a function of the RF
power and the DC biased current, a colored plot of the differential resistance dV/dI is shown
in figure 5.4a. Each black region corresponds to a Shapiro step in the VI characteristic.
At low RF power (lower part of the figure), the influence of the irradiation is negligible
and only the plateau at zero voltage is seen up to the critical current, corresponding to the
usual superconducting branch of a VI characteristic. On increasing RF power, the Shapiro

4. By integrating over the phase Eq. (5.14) we get : 1
2

(
dφ
dt

)2
= 2eRIc

~ [φ(iDC + iRF sin(2πfRFt)) + cosφ]
5. PRF[dB m] = 10 log

(
103 · PRF[W]

)
= 30 + 10 log

(
I2
RF[A]

)
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Figure 5.4. – Results of the RSJ model on current-biased junction irradiated at 2 GHz, with R = 30 Ω
and Ic = 500 nA. a) Differential resistance versus current bias and RF power 5. The black regions
correspond to plateaus in the voltage-current characteristic. The horizontal orange line indicates the
line-cut corresponding to b) and the first plateaus are indexed with their numbers. b) Current–voltage
characteristic of a JJ at an irradiation power of −100 dB m. The voltage is in units of hfRF/2e and the
bias current in units of Ic. c) Amplitude of each Shapiro step versus radio-frequency power.

steps appear gradually starting from step n = 1.
The amplitude in current of each voltage plateau In(PRF) is shown in figure 5.4c. This

amplitude does not follow the expected Bessel oscillations from the voltage-bias solution
(5.12). The system tends to the ’Bessel like’ dependency at a higher RF frequency (good
agreement at 5 GHz cf figure 5.12 right panel ).
This behavior can be explained by comparing the phase adjustment time τJ and the

period of the driving frequency 1/fRF through the parameter Ω defined as :

Ω = fRF · τJ (5.15)

When Ω� 1 the junction has enough time to relax and to be in quasi equilibrium during
one RF oscillation. For a faster driving frequency, Ω . 1, the system is close to the voltage
bias solution with In(IRF) that oscillates like Bessel functions with rounded lobes. However,
if we drive the system in a regime much faster than the phase relaxation time (Ω � 1),
then the Shapiro steps are suppressed 6.

6. We have simulated a JJ in a regime where Ω = 500 GHz · 0.14 ns = 69. The Shapiro steps are not
visible any more but only appear as kinks in the voltage–current characteristic.

83



Chapter 5. Resistively shunted junction model for topological Josephson junctions

−1 0 1 
−120

−110

−100

−90 

I (I
c
)

P
R

F
 (

d
B

m
)

Ω = 0,5 GHz ⋅ τ
J
 = 0,011a)

P
R

F
 (

d
B

m
)

0

−1 1

−2 2

−3 3

−4 4

−1 0 1 

I (I
c
)

Ω = 2,0 GHz ⋅ τ
J
 = 0,044b)

0

−1 1

−2 2

−3 3

−4 4

dV/dI (Ω)

0

20

40

60

80

100

−1 0 1 

I (I
c
)

Ω = 5,0 GHz ⋅ τ
J
 = 0,110c)

0

−1 1

−2 2

Figure 5.5. – Results of the RSJ model of a conventional JJ at three different frequencies with R = 30 Ω
and Ic = 500 nA. The power for which the critical current vanishes (red circle) depends on the frequency.

Finally, depending on the RF frequency, there is a varying minimum power for Shapiro
steps to show up. This power is less at low frequency than at high frequency, as be seen
in figure 5.5.
The red circle in figure 5.5 in the color-map indicates the RF power necessary to affect

the system. No theoretical prediction exists on its position in the (Ic, PRF) map. In fact,
the position of this point also depends on the phase adjustment time. The smaller the τJ,
the less the position of this point is shifted at high frequency.
Despite the simplicity of the RSJ model, it enables a dynamical description of the Joseph-

son junction. Experimentally, Josephson junctions cannot be always described by this RSJ
model. Hysteretic VI characteristics for instance are not compatible with the model de-
scribed in this section. In the next section, we introduce thermal effects that can account
for this hysteresis.

2 Hot electrons effect in the RSJ model

The thermodynamic of a mesoscopic electronic device can be decomposed into two
interacting subsystems: the electron bath and the phonon bath at the temperatures

Tel and Tph respectively. Most of the time, a device is resting on a substrate which has a
constant phonon temperature Tbath

7. A thermal equilibrium between the phonons of the
system and the one from the substrate is expected (cf figure 5.6).
The standard behavior of SNS junction described in figure 5.1b is only occasionally

observed. Frequently, the experimental VI characteristics is hysteretic as shown in figure
5.7. This behavior was interpreted by ref [38] to originate from electron overheating. The
interpretation is the following. Electrons heat up when the junction is in the resistive

7. This general bath also contains the temperature of the electrodes connected to the mesoscopic
system.
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branch (V 6= 0) and cool down to the phonon temperature in the superconducting branch
(V = 0). Hence, in the superconducting branch, the electrons have a temperature Tcold and
can withstand a large amount of supercurrent up to the switching current 8 Isw ≈ Ic(Tcold),
whereas in the resistive branch, the junction is hot and transitions only at the retrapping
current Ir ≈ Ic(Thot) < Ic(Tcold).

2.1 Thermal effects model
In this section we consider a current biased Josephson junction modeled by the RSJ

model. We estimate the power dissipated by Joule heating and calculate the heat bal-
ance inside this system to simulate the effective electronic temperature during a Shapiro
measurement.

Joule heating in Josephson junctions In a current biased junction, the source of
heat mainly originates from Joule heating 9.

PJoule(t) = I(t) · V (t) (5.16)

Using Eq. (5.14) with DC and AC current biasing, the Joule power reads:

PJoule(t) = ~
2e
dφ

dt
· Ic[iDC + iRF sin(2πfRFt)]

=RI2
c [iDC + iRF sin(2πfRFt)− sinφ(t)] · [iDC + iRF sin(2πfRFt)]

(5.17)

The time average of the heating power reads :

< PJoule >t= RI2
c

[
i2DC + i2RF

2 − iRF < sinφ(t) · sin (2πfRFt) >t

]
(5.18)

Figure 5.6. – Schematic of heat transfer between the three baths at different temperatures defined in a
mesoscopic system. Heating comes mainly from Joule heating and is dissipated through the phonons of
the system and the substrate.

8. The critical current is the theoretical maximal current a junction can withstand at finite temperature
whereas the switching current is the measured value. We have max Isw = Ic

9. This means that the bath temperature is constant. We will see that it is not always the case
experimentally.

85



Chapter 5. Resistively shunted junction model for topological Josephson junctions

−1 0 1
−60

−40

−20

0

20

40

60

I (µA)

V
(µ
V
)

IswIr

Figure 5.7. – Measured voltage–current characteristic of a Josephson junction. The up and down current
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If Shapiro steps are visible in the VI characteristics, then the phase is locked at a multiple
n of the RF frequency: φ(t) = n· hfRF

2e t. In that case, Joule heating has a specific expression :

< PJoule,n >t= RI2
c

[
i2DC + i2RF

2 − iRFδn,1/2
]

(5.19)

with δm,n the Dirac delta function. We can draw two conclusions from this equation: (1)
Even without DC voltage across the junction (n = 0), the RF irradiation has a heating
effect. (2) The plateau n = 1 is slightly less heated than the other Shapiro steps.

Heat balance When driven out of equilibrium, the Joule heating is compensated by the
electron-phonon coupling [68, 177]:

Pel−ph = ΣV(T 5
el − T 5

ph) (5.20)
with V being the volume of the Josephson junction and Σ the electron-phonon coupling

constant of the normal material 10.
As long as the RF excitation is faster than the electron-phonon scattering rate, the

temperature can be considered as almost constant at a given pair (IDC , IRF ). A constant
Tel means that Pel−ph =< PJoule >t. In conclusion, the electronic temperature can be
estimated by :

Tel = 5

√
T 5

ph + < PJoule >t

ΣVJJ
(5.21)

10. Σ is around 1× 109 WK−5m−3 in metals [54].
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Figure 5.8. – Schematic of the algorithm used to self-consistently determine the temperature for each pair
of parameter (IDC, IRF). We start by supposing a temperature Tn (The first iteration is with the bath
temperature T0 = Tbath = 100 mK) which gives a critical current Ic(Tn). We solve Eq. (5.14) during
a long period of time (greater than 1/fRF). From φ(t) we estimate the Joule heating which gives us a
new estimation of the temperature (Tn+1 using Eq. (5.21)). If |Tn+1 − Tn| is small enough, we exit the
convergence loop and start again for the next pair of parameter (IDC, IRF). If not, the calculation starts
again with Tn+1.

2.2 Application to the SNS junction

We have included a temperature dependence of the critical current in the RSJ model in
order to understand the role of heating on the AC Josephson effect.
The algorithm used in the simulations to estimate the electron temperature is presented

in figure 5.8. This algorithm calculates the theoretical temperature Tel for each couple
(IDC, IRF) in the color-map of figure 5.4. Assuming a given electronic temperature Tn,
we first estimate the critical current 11 Ic(Tn) and then solve the differential equation Eq.
(5.14) that governs φ(t). From this solution, we calculate the associated Joule heating,
which gives a new estimation of the electronic temperature Tn+1. If the new temperature
is different than the first estimated one, we iterate this process with the new temperature
Tn+1.
In the following paragraph, we compare this RSJ model with electron overheating to

data obtained by De Cecco et al on Nb/Au/Nb long SNS Josephson junctions. The results
shown in figure 5.9 are published in [43]. The junction is a gold island contacted with
niobium electrodes. In figure 5.9a we observe the temperature dependence of the switching
and retrapping currents. They differ below 3 K which is associated to an hysteretic behavior
visible in the VI characteristics (graph c & d). This phenomenon due to heating effects is
already well understood [38].
This hysteresis has an impact on the Shapiro measurement presented in graph b: We

identify a clear discontinuity at IRF = 0.04. The VI characteristic hysteresis shows up at
lower RF current but disappears above at higher RF current. We can easily presume that
the electronic temperature in the latter regime (IRF > 0.04) is higher than 3 K.
Let us now focus on the low RF power regime (IRF < 0.04): On the positive current bias

11. To best describe the experimental conditions, we have used the experimental Ic(T ) dependence in
figure 5.9a which does not correspond perfectly to one of the model described in chapter 1.
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Figure 5.9. – Adapted from [43] (a) Temperature dependence of the switching current Isw (black dots) and
retrapping current Ir (red dots). The green line corresponds to a fit of Eq. (3) from [51] with the normal
state resistance RN = 1.7 Ω and the Thouless energy Eth = 49.6 µeV. Inset: Atomic force microscopy image
of the Nb-Au-Nb Josephson junction. (b) Differential resistance map as a function of the DC current bias
I and the microwave excitation amplitude IRF for a frequency fRF = 6 GHz measured at 100 mK. The
white arrow indicates the sweeping direction of the DC current bias and the white numbers index the
Shapiro steps. The top black arrows point to the individual V-I curves taken at microwave drives of (c)
0.020, (d) 0.035, and (e) 0.056 (a.u.) where the measured voltage is normalized to hfRF

2e . (f) Simulated
differential resistance map, including thermal effects following procedure described in section 2.

side (I > 0), the low order Shapiro plateaus are not visible. Indeed, when the junction
transitions from the superconducting branch to the resistive branch, the voltage is V ≈
RNIsw = 1.7 Ω · 40 µA = 68 µV. This voltage corresponds to a Shapiro steps index n ≈

68 µV
hfRF/2e ≈ 5, which is the step that appears in line-cut d. On the negative current biased
side, the step n = −3 is the first step visible for increasing RF current. We find exactly
the same behavior in the simulations (f) and the experimental (b) Shapiro graphs.
Therefore, we believe our model provides a remarkably good description of the

VI characteristics under RF irradiation and DC bias.
We can now consider the temperature calculated during this simulation. The electronic

temperature is shown in figure 5.10a where we observe two distinct regions. At the zeroth
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Figure 5.10 – (a) Calculated electronic temperature
Tel map corresponding to the situation of figure 5.9,
i.e. for a device at Tbath = 100 mK. The first Shapiro
steps are labeled. The white arrow indicates the di-
rection of the sweep in the simulation. Inset: Line
cut of this map showing the electronic temperature at
zero DC bias current as a function of the microwave
current and calculated value of the critical current
at this electronic temperature. The dashed line in-
dicates the Ic(Tel) = IRF correspondence. (b) Line
cuts of the map (a) showing the dependence of the
electronic temperature as a function of the DC bias
current I at different values of the microwave cur-
rent IRF indicated by arrows at the top of the map.
Extracted from [43].

Shapiro step, Tel is below 1 K. As soon as Ic(Tel) = IRF, the system switches to a much
higher temperature (close to 2 K) and is not hysteretic any-more.
The large temperature difference between the step at zero voltage and the high order

steps is underlined by the graph 5.10b where line-cuts of the temperature profile are drawn.
To conclude on this study, an hysteretic behavior of a conventional JJ can be explained

by a simple overheating of the electrons bath. In that case, the first Shapiro steps are
absent at low radio frequency irradiation power. The very good agreement between the
two colormaps (experiment and theory) bears out the validity of our model which will be
insightful for our study on topological Josephson junctions.

3 RSJ model with 2π and 4π periodic current-phase
relations

Atopologically protected 4π periodic Andreev bound state (4π-tABS) is expected to
display a fractional AC Josephson effect : dφ

dt
= eV

~ with only even Shapiro steps.
This is the so-called even/odd effect or fractional AC Josephson effect.
However, in real devices, both 2π and 4π periodic ABSs can be present (as described

in chapter 4). Based on the RSJ model, this section aims at understanding the effect of
the mixing of 2π and 4π periodic CPRs and discusses the condition of visibility of the
even/odd effect in Shapiro measurements.

3.1 Frequency dependence of the even/odd effect
We model a TJJ composed of 2π and 4π periodic modes by two junctions in parallel (cf

Figure 5.11). The junction JJ1 is conventional : I2π
S = I2π

c sinφ and the junction JJ2 has
a 4π-periodic CPR : I4π

S = I4π
c sinφ/2.
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Following the same procedure as in section 1.2, the distribution of the current flowing
inside the circuit leads to a 1st order differential equation for the phase 12 :

dφ

dt
= 1
τ totJ

[
iDC + iRF sin(2πfRFt)− i2πc sin(φ)− i4πc sin(φ/2)

]
(5.22)

with τ totJ = ~
2eR(I2π

c +I4π
c ) and all currents are normalized by the total critical current

I totc = I2π
c + I4π

c . Here, i4πc = I4π
c

I2π
c +I4π

c
gives the relative contribution of the 4π periodic

supercurrent.
We have computed several simulations at a fixed normal state resistance R = 30 Ω and

critical current Ic = 500 nA for various contributions of 4π periodic supercurrent i4πc and
at different driving frequency fRF.
Figure 5.12 presents the results of simulations for 5% of 4π periodic supercurrent. At

a high excitation frequency fRF ≥ 2 GHz, the appearance order of the Shapiro steps is
regular : the first step appearing with raising RF power is step n = 1, then step n = 2
is visible in the VI characteristic, etc... At a lower driving frequency (fRF ≤ 0.5 GHz),
the appearance order is drastically changed. Only even steps are visible at a low driving
amplitude. Hence, the appearance order is step n = 2, then step n = 4 and, only after,
the odd steps are visible.
Thus the presence of a 4π periodic component leads at low enough frequency

to a delay in the appearance order of odd Shapiro steps upon increasing PRF.
Importantly, within our studies, we observe that, whatever tiny is the 4π contribution,

there will always be a driving frequency threshold below which the even/odd effect
is visible. This threshold can be determined by comparing the relevant time scales. For
a 4π periodic ABS the phase relaxation time is τ 4π

J = ~
eRI4π

c
(notice the absence of factor

1/2). As long as τ 4π
J > 1/fRF the effects of the 4π-ABS are not visible. However, as soon

as τ 4π
J < 1/fRF, the Shapiro pattern changes and the even steps appear at a lower driving

amplitude than the odd steps : the even/odd effect appears. The range of observation of
the even-odd effect is summarized in figure 5.13. The presence of only even Shapiro steps
is possible for a low excitation frequency (Ω4π < 1) and a low excitation power.

Figure 5.11. – RSJ model with two types of Josephson junctions: JJ1 has a 2π periodic current–phase
relation whereas JJ2 has a 4π periodic one.

12. We choose to not have any constant dephasing between JJ1 and JJ2. In fact, a constant dephasing
changes the simulations insignificantly.
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appearance
order:

2,4,1,3 1,2,3,4 1,2,3,4

Figure 5.12. – Results of the RSJ model with two types of current–phase relations with 5% (95%) of 4π
(2π) supercurrent at different irradiation frequencies. (top line graphs) Differential resistance versus DC
current bias and RF power. The orange arrows point at the non vanishing supercurrent at low current
bias denoted Ĩc and discussed in section 3.2. (bottom line graphs) Current amplitude In of each Shapiro
step versus radio frequency power. The numbers below each figure represent the appearance order of the
Shapiro steps when gradually increasing the RF power.

3.2 Anomaly at zero current bias at even Shapiro steps crossing
The crossing point between the switching and retrapping current is modified by the

inclusion of a 4π periodic component in the RSJ model. Indeed, as pointed out by the
orange arrows in figure 5.12, at low irradiation frequency, the supercurrent does not vanish
anymore at low current bias 13. The remaining supercurrent denoted Ĩc seems to originate
from the 4π periodic component and depends on the frequency fRF. This Ĩc is sketched in
figure 5.14a.
The figure 5.14b represents the ratio between the observed Ĩc and the 4π contribution

used for the simulation: Ĩc
I4π
c
. At low Ω4π = fRF · ~

eRI4π
c
, independently of the other pa-

rameters (R,Ic,I4π
c ), Ĩc saturates to about 70% of the 4π contribution. Therefore, if we

13. This effect is also visible on all even steps but we choose to focus on the most visible one in this
thesis.
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Figure 5.13 – Schematic description of the even–
odd effect: the appearance of the even Shapiro
steps at low RF power. The lines represent the
minimal RF power to observe Shapiro steps. A
large phase adjustment time τJ increases the
slope of a given line. The blue (resp. orange) one
corresponds to the limit to observe the Shapiro
steps associated to conventional (topological 4π
periodic) ABSs. As we have τ4π

J > τ2π
J , the or-

ange line has a steeper slope than the blue line.
For a frequency fRF < 1/τ4π

J , the even-odd effect
is visible.

observe experimentally the frequency dependence of Ĩc, we can deduce the associated 4π
supercurrent.
If we do not have access to the saturation of Ĩc(fRF), we can still estimate I4π

c by the
following method. We present in figure 5.14c the frequency dependence of the ratio Ĩc

max(I0) ,
with I0 being the amplitude of the Shapiro step n = 0. The simulated ratio presents an
exponential dependence versus Ω4π:

Ĩc

max(I0) ≈ αe−βΩ4π (5.23)

with α ≈ 1.3 a factor that apparently slightly increases with frequency fRF and β which
is independent close to β ≈ 2.2. As Ĩc and max(I0) are both measurable quantities,
we can estimate the ratio of the two and therefore estimate the associated Ω4π

by using Eq. (5.23) and deduce the contribution of the I4π
c supercurrent.

3.3 Discussion on the even-odd effect
Two effects justify the low-frequency appearance of the even/odd effects:
First, as long as I4π

c � I2π
c , the phase adjustment time of the 4π-tABS τ 4π

J is much
longer than the one from the conventional ABS τ 2π

J . Hence, at a given RF frequency, the
ratio Ω4π = fRF · τ 4π

J is much bigger than the Ω2π = fRF · τ 2π
J . At a given frequency, the

plateaus associated with the 4π-tABS will be less defined than the conventional ones (as
mentioned in footnote 6).
Second, depending on the RF frequency, the system needs a different minimum power to

exhibit Shapiro steps (see the description of figure 5.5)). If τJ is large, the RF frequency will
have a great impact on the shift of the position of the crossing point between the retrapping
and switching branch (red circle in figure 5.5). As we have τ 4π

J > τ 2π
J (Ω4π > Ω2π), a smaller

power is needed to induce Shapiro steps on the 4π-tABS than on the conventional ABS.
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Figure 5.14. – a) Definition of the remaining supercurrent Ĩc and the quantity max(I0) by presenting the
step amplitude of the Shapiro step n = 0 versus the RF power at two RF irradiations. b) Frequency
dependence of the ratio Ĩc over the 4π contribution versus Ω4π = fRF · τ4π

J for several 4π supercurrent
contribution I4π

c . With τ4π
J = ~

eRI4π
c

the phase adjustment time of the 4π-tABS. c) Relative amplitude of
Ĩc with respect to the amplitude of the first oscillation of I0 versus Ω4π for different irradiation frequencies
fRF.

4 Influence of thermal poisoning of the 4π periodic mode
to the even/odd effect

Recently, the absence of many odd Shapiro steps has been observed in a 2D quantum
spin hall insulator HgTe [25]. This observation confirms the presence of a 4π-tABS.

However, only the absence of the first step n = 1 has been seen in three dimensional
systems that are predicted to host a 4π-tABS [29, 178]. In fact, the step n = 1 appears
at a higher RF amplitude than the other steps (appearance order : 2,3,4,5,6,1 as shown
in figure 4.17 (a) and (b)). This Shapiro pattern cannot be explained by the simple RSJ
model with both 2π and 4π supercurrent contributions nor by the even-odd effect. The
aim of the following section is to find a model that can explain an effect of the 4π ABS
uniquely on the n = 1 Shapiro step. For that, we propose to include the overheating model
used in section 2 as a source of poisoning.
In this section we will describe how temperature decreases the efficiency of the 4π-tABS

to carry a supercurrent.

4.1 Switching probability of the 4π periodic mode
Figure 5.15 presents a schematic of the switching process on the 4π-tABS. This state

is either in the |+〉 state (orange line) or |−〉 state (blue line). When the system is in
the |+〉 state and −π < φ < π, then the system is excited. Any relaxation process,
like quasiparticle poisoning, could switch the system to its ground state. Temperature
activates such a quasiparticle poisoning and hence suppresses the supercurrent carried by
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Chapter 5. Resistively shunted junction model for topological Josephson junctions

Figure 5.15. – Energy dispersion of a topological Josephson junction containing multiple conventional
Andreev bound states (gray lines) and two topologically protected 4π periodic ABS (blue |−〉 and orange
|+〉 lines). The energy is defined with respect to the Fermi level.
Quasiparticle poisoning makes the system transition from |−〉 to |+〉 or conversely by interacting with the
continuum of conventional states close to ∆. The energy difference between the continuum of states and
the topological states referred to as ∆mini is almost constant.

the 4π-tABS.
We take into account quasiparticle poisoning in the RSJ by defining the lifetime τsw of

the 4π-tABS following Eq. (4.57):

τsw = τ0e
∆mini
kBT (5.24)

with ∆mini being the relevant energy scale of the poisoning process and τ0 a phenomeno-
logical time scale. ∆mini represents the energy difference between the 4π ABS and the
continuum of states. The latter is at ∆ for short junctions or at the Thouless energy for
long junctions. So that ∆mini < min{Eth,∆} cf (Eq. (4.24)).
Once the lifetime τsw is defined we solve the time dependent differential equation Eq.

(5.22) with a time sampling dt. For each time step the probability for the 4π-tABS to
switch is given by dt/τsw. The current associated with the 4π state switches sign according
to :

I4π
S (t) = (−1)nsw(t)I4π

c sin
(
φ(t)

2

)
(5.25)

with nsw being the number of switching events during the time of the simulation. Each
time a switching happens, the sign of the current–phase relation is changed. This corre-
sponds to a stochastic transition from |−〉 to |+〉 as illustrated in figure 5.15. To know the
time evolution of nsw, we pick a uniformly distributed random number x ∈ [0 1] and thus
have the next value of nsw :

nsw(t+ dt) = nsw(t) + integer(x+ 1− dt

τsw
) (5.26)

With this method, we can see how the 4π-tABS and its associated Shapiro steps survive
during a Shapiro measurement.
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Figure 5.16. – Shapiro simulation at 2 GHz using the RSJ model of a 4π periodic ABS subject to switching
processes. The switching time is, from left to right, 0.2 ns, 0.5 ns and 2 ns. (top line) Color-map of
the differential resistance versus biased current I and RF power PRF. (bottom line) Voltage–current
characteristic at a fixed RF power indicated by the orange line of the top line graphs.

Figure 5.17 – Schematic of vis-
ibility of the Shapiro steps.
When the switching time is
longer than the phase adjust-
ment time, then Shapiro steps
can form.

In figure 5.16 we have simulated a current-biased Josephson junction composed of only
a 4π-tABS (without conventional 2π-ABSs) that encounters a uniform poisoning with a
lifetime τsw fixed during a complete simulation. We observe, for a short lifetime, the
absence of any plateau in the VI characteristic. Shapiro steps gradually appear only for
a lifetime τsw > 2π · τ 4π

J with τ 4π
J = ~

eRI4π
c

the phase adjustment time of the topological
ABS (see figure 5.17). The plateaus are still noisy because of the finite time over which
the simulation has run.
In these simulations we also observe a spike in the differential resistance close to zero

current bias and low RF power. It is not clear why this spike appears in a system subject
to a lot of switching processes.
As we have found the threshold lifetime above which Shapiro steps are visible, we can

include the temperature dependence of τsw in a thermal model as used in section 2.
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Figure 5.18. – Result of RSJ model with one 4π-JJ irradiated at 2 GHz with R = 30 Ω, I4π
c = 500 nA,

V = 0.20 µm3, ∆mini = 160 µeV and τ0 = 0.01 ns. a) Differential resistance map vs biased current I and
RF power PRF. The orange lines show the line-cut corresponding to b) and the firsts plateaus are indexed
with their numbers. b) VI characteristic at two different irradiation powers. c) Amplitude of each Shapiro
step versus radio frequency power.

4.2 Thermally activated poisoning of the 4π state
We develop a model that aims at explaining the reduction the even-odd effect on high

index Shapiro steps (2n+ 1 with n ≥ 1) and hence the experimental observation in which
only the n = 1 Shapiro step is delayed. We have seen in the previous section that poisoning
due to finite temperature reduces the visibility of the Shapiro plateaus. As electronic tem-
perature Tel increases significantly on high index Shapiro steps, poisoning will be stronger,
thus reducing the even-odd effect. In this subsection we include heating effects in the RSJ
model modeling a Josephson junction comprising only a 4π-tABS.
The switching time has to be large so that one can observe clear plateaus: τsw > 2π ·τ 4π

J .
When a junction is biased, its electron bath is heated up and the associated switching time
is thus reduced following Eq. (5.24). During a single VI measurement, the temperature
and hence τsw will vary as a function of IDC. The higher the Shapiro index, the more
poisoning will destroy the 4π-contribution.
We have simulated the electron overheating in a 4π-periodic JJ following the same pro-

cedure as section 2 with a constant critical current I4π
c and thermally activated switching

processes. The results of RSJ simulation are shown in figure 5.18 with τ0 = 0.01 ns and

96



4. Influence of thermal poisoning of the 4π periodic mode to the even/odd effect

∆mini = 160 µeV, I4π
c = 500 nA. As expected, only the even Shapiro steps are present in

the VI characteristics. However the plateaus are more noisy than in the previous simula-
tions due to the poisoning (Figure 5.18b). As temperature increases on the high-indexed
plateaus, the lifetime is reduced and the plateaus are more and more smeared out.
The even/odd effect could then be strongly reduced on high order Shapiro plateaus due

to electron overheating and thermally activated poisoning. This heating effect could be
the reason why, experimentally, only the first Shapiro plateau is affected by the even/odd
effect.

4.3 Odd Shapiro steps recovery due to thermal poisoning in S-TI-S
Josephson junction

Let us now consider a Josephson junction containing both conventional (2π periodic)
and a topological (4π periodic) components of the current–phase relation with electron
overheating. In the simulations, temperature impacts the 4π-tABS through switching
processes following Eq. (5.24) whereas the conventional supercurrent is affected by tem-
perature through usual electronic overheating.
We have simulated a Josephson junction irradiated at 2 GHz with i4πc = 20% and the

parameters : R = 30 Ω, I totc = 500 nA, τ0 = 1.9 fs and ∆mini = 500 µeV. Figure 5.19 presents
the main result of this chapter. Figures 5.19a-c present the results of three simulations
with the same parameters. Figure a shows a simulation without heating effects. Figure b
includes heating effects only on the conventional ABS and finally figure c includes heating
effects and thermally activated poisoning on the 4π periodic ABS.
The difference between figure a and figure b is visible on the high excitation power part

(PRF > −95 dB m) by a broadening of the transition between the steps. In addition, the
appearance order of the Shapiro steps is similar for both simulations with a clear even/odd
effect on all steps: n = 2, 1, 4, 3, 6, 5, .... Therefore, our heating model applied only on
the conventional ABSs does not influence the even/odd effect.
Figure c shows the simulation with poisoning. We clearly see that the appearance order

of the steps has now changed under the influence of poisoning. We obtain an inversion
between n = 1 and 2, indicating that the even odd effect operates on the low-index steps,
but the sequence of appearance is regularized for any n > 2. We therefore obtain with
our thermal poisoning model the even/odd effect only on the first step, the
higher order plateaus appearing with regular order.
Quantitative analysis can be made by extracting the critical currents of each Shapiro

steps In for figure b and c. Those In are shown in figure 5.19g as dotted and continuous
lines respectively. The onset of the steps are pointed by vertical arrows, in gray for the
simulation without poisoning and in black for the simulation with poisoning. Without
poisoning (gray arrows), we observe a clear even/odd effect effect on all Shapiro steps with
an appearance order n = 2, 1, 4, 3, 6, 5, 8, 7.
When adding poisoning to the simulation, only the even steps are shifted to higher RF

amplitude. As the 4π mode contributes only to the even steps, leading to an appearance
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Figure 5.19. – Result of RSJ model of two JJ with 20% (80%) of 4π (2π) supercurrent, irradiated at 2 GHz,
with R = 30 Ω, I4π

c = 500 nA. a-c) Differential resistance maps vs the bias current IDC and the RF power
PRF of simulations a) without heating effects, b) with Joule heating on the conventional supercurrent, c)
with Joule heating and thermally activated poisoning. The thermodynamic parameters are the following :
V = 0.20 µm3, ∆mini = 500 µeV and τ0 = 1.9 fs. The indexes label the first Shapiro steps. The orange line
show the line-cut corresponding to d-f). d-f) Current dependence at −95 dB m of the switching time (d),
the electronic temperature (e) and the DC voltage (f). g) Amplitude of each Shapiro step versus radio
frequency amplitude. The continuous lines correspond to the extracted In from figure c) (with poisoning)
while the dotted lines correspond to the same simulation without poisoning effects b) (but still with heating
on the 2π supercurrent). We indicate the appearance of each steps by black (gray) arrows corresponding
to the simulation with (without) poisoning.
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at lower RF power of the even steps (that is usually seen as a delay in appearance of the
odd steps), suppressing the 4π contribution with poisoning restores the normal appearance
order of the 2π modes. The ensuing shift is highlighted by the black arrows in figure 5.19g.
The even/odd is still clear between steps 1 and 2 and is absent for the steps 3, and for all
other high order steps. Indeed, the appearance order is now n = 2, 1, 3, 4, 5, 6, 7, 8.
To gain further insight into our model, we display in figure 5.19d-f the switching time, the

electronic temperature and the DC voltage, all versus bias current. We see in figure 5.19e
that the electronic temperature raises from 0.4K (overheating at zero bias due to the ac
current), up to nearly 0.55K. This temperature raises leads to an exponential suppression
of the switching time, which becomes shorter than the typical phase relaxation time of
the 4π mode, 2π · τ 4π

J , when the bias current reaches the step n = 2. This transition
thus sets the suppression of the contribution of the 4π mode, and therefore leads to the
disappearance of the even/odd effect at higher current bias.
To conclude, our model provides a possible explanation for the experimental observation

of the even/odd effect on only the step n = 1 in topological Josephson junctions on 3D
topological insulators.

Summary

In this chapter we have introduced the resistively shunted Josephson junction model to
simulate a Shapiro experiment on a voltage- or current-biased Josephson junction. In

the voltage-biased case, we give an analytical solution, whereas the current-biased one
needs to be solved numerically.
We have then focused on the current biased model and have included a thermal model

that can explain hysteresis effects due to hot electrons. This model can precisely esti-
mate the electron temperature during a simple voltage–current characteristic or a more
complex Shapiro measurement. This model presents a convincing simulation of a Shapiro
experiment on a conventional Josephson junction.
Following the study of [49] we have evaluated the impact of a single topological 4π

periodic channel among many conventional ABSs. We concluded that the even/odd effect
appears more clearly at low frequency irradiation: The even Shapiro steps will be more
visible than the odd steps for fRF < 1/τ 4π

J .
We have then adapted the heating model to the topological Josephson junction case.

Indeed, temperature affects the topologically protected 4π periodic Andreev bound state by
inducing quasiparticle poisoning. This poisoning reduces the overall supercurrent carried
by the 4π-tABS and hence the associated Shapiro steps.
As we have assumed a thermally activated poisoning, hot electrons are more subject

to switching events. When a junction is biased, electrons are overheated and induce more
switching at high bias. Consequently, during a Shapiro experiment, the low index steps can
show the even/odd effect but not the high index ones. We have simulated a topological
Josephson junction subject to hot electron effects. We have been able to suppress the
even/odd effect for the high order Shapiro steps while keeping it for the first step n = 1.
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Therefore, our thermal poisoning model explains the elusive even/odd effect seen only on
the low index Shapiro steps.
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Josephson junctions formed by coupling superconducting electrodes (S) to topological
insulators (TI) have attracted considerable attention due to the prospect of observing

and manipulating Majorana fermions in suitably designed devices [63]. Experimentally,
indications of Majorana states in different systems and configurations were reported by
tunneling in superconductivity-proximitised semiconducting nanowires, vortices in 3D TIs,
and atomic chains of magnetic atoms. In transport measurement however, hunt for ev-
idences is still challenging mainly due to the fact that any parallel conduction channel
stemming from material imperfection can conceal the contribution of the Majorana bound
state.
Soon after the discovery of TIs, S-TI-S Josephson junction were proposed as a testbed

for Majorana physics. Theory indeed predicts that S-TI-S junctions covered with a fer-
romagnetic layer host Majorana fermions in the form of a perfectly transmitted Andreev
bound-state of 4π-periodic current-phase relation [63]. This 4π-periodicity can profoundly

101



Chapter 6. Even-odd effect in Bi2Se3 Josephson junctions

affect the a.c. Josephson effect and the resulting Shapiro steps that arise in current-biased
junctions under RF excitation. Whereas the usual 2π-periodic current-phase relation leads
to a series of steps at voltages Vn = nhfRF

2e (h the Planck constant, fRF the RF excitation
frequency, e the electron charge) where n is the integer index of the Shapiro step, the new
4π-periodic Andreev mode implies only even Shapiro step of index 2n [49, 79, 173].
Initial measurements performed on Bi-based TI showed usual Shapiro steps in current

biased S-TI-S Josephson junctions [66, 123, 145, 170]. Recently, two experiments performed
on InSb and strained HgTe have reported an anomalous sequence of Shapiro steps on
increasing RF power [142, 178]. In both cases, the n = 1 step is conspicuously absent
in a given range of RF power and frequencies, pointing to a possible, though incomplete,
contribution of the topological 4π-periodic Andreev bound state.
In this chapter we report on Josephson junctions made of the 3D topological insulator

Bi2Se3 with large bulk conduction exhibiting anomalous sequences of Shapiro steps.
We first present how we have produced Josephson junction on thin flakes of Bi2Se3. Then

we characterize the regime of conduction in which the superconducting proximity effect de-
velops. We show that the whole flake is coupled by proximity effect of the superconducting
leads. Finally we perform a Shapiro experiment and observe the even/odd effect on the
first Shapiro step. We compare the experimental observations and the simulations devel-
oped in previous chapter to evaluate the origin of this effect and answer the question : Is
the observed delay of the first step due to a 4π Andreev mode ?

1 Josephson junctions on Bi2Se3
1.1 Bi2Se3 a topological insulator with a conducting bulk
Before going into details of the superconducting transport occurring inside the topolog-

ical insulator crystal, we first present the electronic properties of our Bi2Se3 crystal.
Bi2Se3 is a widely used topological insulator with a large band gap of 300 meV. We

reviewed its crystallographic properties and history in chapter 2. The compound is known
to have its Fermi level in the conduction band. The material used in this thesis has been
grown by J. Marcus at Institut Néel. It has been characterized by angle resolved photo-
emission spectroscopy (ARPES) and magnetotransport measurements.
In ARPES measurement in figure 6.1, we see that the Fermi energy is located inside

the conduction band, which makes the bulk of Bi2Se3 conducting. The Dirac cone of the
surface states is clearly visible inside the band gap.
We have measured the electron transport properties in two different samples extracted

from the same mother crystal (figure 6.2). Both of them show Shubnikov-de-Haas oscilla-
tions. Sample 1 has been dedicated to Hall measurements and exhibits clear oscillations
at frequency fSdH = 123.7 T, whereas sample 2 is a Hall bar designed next to a Joseph-
son junction. From Hall measurement and Shubnikov-de-Haas oscillations we extract the
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1. Josephson junctions on Bi2Se3

Figure 6.1. – Angle resolved photo-emission spectroscopy of Bi2Se3 measured at SOLEIL (collaboration
J.-Y. Veuillen, J. Avila and M. C. Asensio). The energy is measured with respect to the Fermi level
(EF = 25.7 eV) versus the parallel wave vector. The surface states (SS) cross in a linear way at the Dirac
point (DP) 0.35 eV below the Fermi level. The latter is placed in the bulk conduction band (CB) which
leads to a bulk metallic behavior.

Sample fSdH (T) ne (cm−3) ρ (mΩ cm) µe (cm2/V/s) D (cm2/s) le (nm)
1 123.7 7.8× 1018 ∼ 0.5 1600 170 60
2 163 1.2× 1019 0.7 760 64 35

Table 6.1. – Transport properties of the two samples of figure 6.2.

Drude transport properties that are summarized in table 6.1 1.
The high electron density ne and the low resistivity ρ are consistent with a crystal that

has a metallic bulk. The short electron mean free path le of few tens of nanometers implies
practical Josephson junctions in the diffusive limit. The large dispersion of values indicates
the inhomogeneity of our crystal.
Now that we have characterized the normal transport properties of our Bi2Se3, we can

build Josephson junctions out of it. The sample fabrication is presented in chapter 3.

1.2 Long SNS junction in the diffusive regime
Josephson junction devices have been characterized by current biasing the junction and

measuring the voltage between the two leads. The following results have been similarly
observed on two different samples (chips LC099 and LC106 on which there are several
junctions). We mainly focus on sample LC099-JJ4. The junction is made out of a 20 nm
thick flake of Bi2Se3 (shown in Figure 6.3a ), is 140 nm long (spacing between electrodes)
and 1.45 µm wide. Superconducting electrodes are composed of vanadium capped with few
nanometers of gold.

1. From the 3D Drude model we have: the carrier density n3D
e = ( 2efSdH

~ )3/2, the electron mobility
µ3D

e = 1
ρn3D

e e
, the mean free path is le = ~kFµe

e and the diffusion coefficient D = 1
3vFle with vF = ~kF

me
the

Fermi velocity.
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Figure 6.2. – Shubnikov-de-Haas oscillations in two different samples extracted from the same crystal of
Bi2Se3.
Sample 1 (collaboration W. Escoffier and F. Iacovella LNCMI Toulouse) : a) Variation of longitudinal
resistance ∆Rxx versus perpendicular magnetic field at different temperatures. b) Variations of ∆Rxx
versus inverse magnetic field at 460 mK. c) Fourier transform of b). d) Temperature dependence the
oscillation amplitude. The red curve is a fit following ∆ρxx = αT

sinh(αT ) with α = 2π2m∗

he . It gives an
estimation of the electron mass m∗ = 0.15me.
Sample 2 (LC106) : magneto-transport performed next to Josephson junctions presented in this chapter:
e) Optical picture of sample 2. The Hall bar is defined by the current source (I+) and drain (I-) in-between
the voltage probes (V+ and V-). White line for scale is 10 µm. f) Variations of longitudinal resistance
versus inverse magnetic field. g) Fourier transform of f).
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Figure 6.3. – a) Scanning electron microscopy image of the sample LC099 with false colours. The crystal
of Bi2Se3 is in blue and the vanadium electrodes are in orange. The black line is 1 µm for scale. The
current source/drain and voltage probes indicate the location of the junction LC099-JJ4 b) Voltage versus
current measurement of the device at 80 mK.

Name L (nm) Rn (Ω) Ic (nA) eRnIc (µeV) Eth (µeV) eRnIc/Eth
LC099-JJ1 500 80 50 4 17 0.24
LC099-JJ2 400 60 80 5 27 0.19
LC099-JJ3 300 46 190 8.7 48 0.18
LC099-JJ4 140 30 450 13 220 0.06
LC106-JJ1 250 10 2600 26 68 0.38
LC106-JJ2 150 12 2750 33 190 0.17

Table 6.2. – Summary of the Josephson junctions fabricated on Bi2Se3 with their superconducting prop-
erties.

The length of the junction is much greater than the mean free path, which classifies the
junction in the diffusive limit. Figure 6.3b presents the current-voltage (IV) characteristics
at 80 mK. The IV shows a switching current Isw = 450nA and is non-hysteretic. The
e · Rn · Ic product at base temperature (80 mK) is 14.5 µeV. The estimated Thouless
energy is Eth = ~D

L2 = 220 µeV. As Eth is smaller than the superconducting energy gap
of vanadium [18] ∆V = 800 µeV, the junction is in the long limit. Table 6.2 summarizes
the properties of the different junctions studied. All of them belong to the long diffusive
limit. However, the base temperature ratio eRnIc/Eth is much smaller than 10.8 predicted
in a (non topological) JJ with perfect interfaces.

1.3 Estimation of interface transparency
To estimate the barrier transparency between the superconducting lead and the crystal,

we use two independent methods. The first method uses the temperature dependence of
the switching current that we fit with the Thouless energy and a prefactor. The second
uses the excess current in the framework of the Blonder-Tinkham-Klapwijk theory [24].
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Figure 6.4. – Sample LC099-JJ4. a) Switching current vs temperature (black circles). A fit of the high
temperature part according to Eq. (6.1) is added in red with the parameters: Efitth = 13 µeV and α = 14%.
b) Measurement of the excess current at high voltage bias. Dotted line is a linear fits at high (several
times the gap) voltage bias.

Transparency using Isw(T ) The temperature dependence Ic(T ) in the long and dif-
fusive regime at temperature T > Eth/kB reads [51]:

eRNIc(T ) = α
32

3 + 2
√

2
(2πkBT )3/2E

−1/2
th exp

−
√

2πkBT

Eth

 (6.1)

The phenomenological coefficient α characterizes the interface transparency. The mea-
sured Isw(T ) of LC099-JJ4 is presented in figure 6.4a with the associated fit according to
Eq. (6.1). We find a parameter α of 14%. We can notice the large discrepancy between the
calculated Thouless energy Eth = 220 µeV and the one obtained from the fit Efit

th = 13 µeV.

Transparency using the BTK theory A second estimation of the transparency
is possible by studying the excess current. Indeed, according to the Blonder-Tinkham-
Klapwijk theory [24], an interface between a normal metal and a superconductor has a
linear current voltage relation at high voltage bias with an offset called Iexcess that de-
pends on the interface transparency. An S-N-S junction seen as two N-S interfaces in
series gives I totexcess = INSexcess . The measured eI totexcessRN/∆ = 0.086 implies that the junc-
tion has two barriers with a mean strength value Z = 2.0 which means a transparency of
20 % (cf figure 6 in [24]). The superconducting gap of the thin film may be overestimated,
nevertheless the transparency little depends on it.

Through two different ways, in this section, we have found an interface transparency
between the superconductors and the topological insulator around 15%.
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Figure 6.5. – Differential resistance of the junction LC099-JJ4 under a perpendicular magnetic field.
The black line represents a fit of the Fraunhofer pattern with a uniform supercurrent distribution : Ic =
I0
c |sinc(πBS/φ0)|.

1.4 Uniformly distributed supercurrent
In order to estimate the spatial distribution of the supercurrent through the Josephson

junction, we apply a perpendicular magnetic field and measure the switching current.
The result is presented in figure 6.5. Under a perpendicular magnetic field, the switching

current of the junction displays a Fraunhofer interference pattern with a period 2 S =
1.45 µm × 465 nm. The difference between the geometrical length between the electrodes
L = 140 nm and the effective length 465 nm measured with the Fraunhofer pattern is
explained by the penetration of the magnetic field inside the leads on the superconducting
magnetic length. The good agreement between measured data and fit demonstrates an
homogeneous supercurrent inside the BS flake.

2 Fractional AC Josephson effect

Here we report on the non monotonic appearance of the Shapiro steps sequence on a
topological Josephson junction. We first present the results measured on two different

junctions, and then compare the measurement with the Shapiro simulation of previous
chapter. Finally we discuss the origin of this observed even/odd effect.

2. Theoretical explanation are given in appendix A.
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Figure 6.6. – (top graphs) Differential resistance of the junction LC099-JJ4 under RF irradiation at 1.6, 1.9
and 4 GHz. The first Shapiro steps are labeled. The orange arrow and the red circle point at an anomaly
at the crossing point between the switching branch and the retrapping branch. It is further discussed in
the main text. (bottom graphs) Amplitude In of the first Shapiro steps versus the RF power. The arrows
point at the RF power where every step appears.

2.1 Even/odd effect in the Shapiro measurement
We have shined radio frequencies on Bi2Se3 Josephson junction and recorded the dif-

ferential resistance versus bias current at various RF power. The results on the junction
LC099-JJ4 at three different frequencies are presented in figure 6.6. We first note that the
Shapiro map is non-hysteretic at all frequencies.

High frequency : fRF = 4 GHz At high frequency (right graphs of figure 6.6), the
first Shapiro step that forms at low RF power is the step n = ±1 at PRF = −29 dB m. At
PRF = −22 dB m, the second step n = 2 starts to be visible and so on for the next steps.
The steps are thus appearing in a monotonic way, as expected in a standard JJ.
On top of the expected oscillations, we observe at high RF power the decrease of the

step size: on the right lower graph, I1 (blue line) is significantly smaller at −11 dB m
than at −15 dB m. This can be understood by the increasing heating coming from the RF
irradiation which globally decreases Ic(T ).
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Intermediate frequency : fRF = 1.9 GHz At intermediate frequency (center graphs
of figure 6.6), the appearance order of the Shapiro steps is the same as the one at high
frequency: n = 1, 2, 3, 4, 5, .... However, we notice an anomaly which has not been antici-
pated in the simulations. The crossing point of the retrapping and switching branches (red
circle in the graphs) is not a point anymore but is rather stretched over a wide range of
RF power. This phenomenon is visible not only on the zeros step but for all the low index
Shapiro plateaus : n = 0, 1, 2, 3.

Low frequency : fRF = 1.6 GHz At low frequency (left graphs of figure 6.6), the
steps are less defined because the voltage ∆V = hfRF

2e is smaller and so is the associated
energy. However, two aspects are clearly visible in the two graphs.
At the crossing point between the retrapping and switching branch (indicated by an

orange arrow), the differential resistance decreases in comparison to the other crossings (it
is not as white as the other crossing points).
Second, if we focus on the amplitude of the Shapiro steps (bottom graph), we observe the

appearance of the step n = 1 only at RF power PRF = −12 dB m which is higher than the
one needed to observe the step n = 2 at PRF = −18 dB m. The appearance order is hence
n = 2, 3,1, 4, 5, 6. This behavior resembles the one measured on HgTe 3D TI [178] (in this
thesis Figure 4.17e). This non-monotonic appearance order of the Shapiro steps is visible
in this junction for an irradiation frequency lower than fRF ≤ 1.6 GHz. If this even/odd
effect stems from a 4π periodic ABS, the threshold frequency 1.6 GHz is then associated
to a relaxation time : τ 4π

J = ~
eRI4π

c
within the RSJ model. Considering the resistance of

the RSJ model as the measured normal resistance, then we can estimate the 4π periodic
current: I4π

c = 35 nA. Compared to the measured critical current, this corresponds to 7%
of the total supercurrent.
A single superconducting channel in a JJ can carry up to I theoryc = e∆

h
= 35 nA, with ∆ =

800 µeV the superconducting energy gap of the vanadium. This perfect consistency between
our estimation and the theoretical value is astonishing. To confirm this observation, we
measured a second Josephson junction (LC106-JJ2) and observed the same behavior.
This second sample has an hysteretic behavior and a larger switching current Isw =

2.7 µA. The Shapiro measurements are displayed in figure 6.7 with the same color code.
For this junction, the frequency threshold 1 GHz gives I4π

c = 55 nA which corresponds to
2% of the supercurrent.
For this second sample we also observe a remaining supercurrent at low current bias

pointed by the orange arrow in figure 6.7 at 1 GHz. From this clear feature, we can give a
second estimation of I4π

c following Eq. (5.23) which gives a ratio Ω4π = −1
β

ln
(

1
α

Ĩc
max I0

)
=

0.24 with α = 1.33, β = 2.2 and the ratio Ĩc
max I0 = 0.78. Therefore the 4π supercurrent

reads I4π
c = 220 nA.

There is thus a factor 4 between the last two estimations of the 4π periodic supercurrent.
This discrepancy could be explained by the large uncertainty of the method using the
remaining supercurrent Ĩc as seen in figure 5.14c.
Besides, we notice that the supercurrent does not vanish at the crossing points between
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Figure 6.7. – (top graphs) Differential resistance of the junction LC106-JJ1 under RF at 1.6, 1.9 and
4 GHz. The first Shapiro steps are labeled. The orange arrow and the red circle point at an anomaly at
the crossing point between the switching branch and the retrapping branch. It is furthered discussed in
the main text. (bottom graphs) Amplitude In of the first Shapiro steps versus the RF power. The arrows
points at the RF power where the step appear.

higher order lobes for the 3.5 GHz map. This remaining supercurrent is indicated by orange
arrows in figure 6.7. As this effect is visible at even and odd crossings of Shapiro steps,
it thus cannot originate from a possible 4π ABS. We do not have any explanation for this
gap opening.
The estimation of the supercurrent carried by a topologically protected 4π periodic ABS

for LC099 is consistent with the theoretical prediction, still both estimations of LC106 are
not consistent with the theoretical estimation. We do not have a clear explanation for this
unexpectedly large 4π periodic supercurrent.

2.2 Comparison experimental observation & simulation
Let us now use our thermal model introduced in chapter 5, to reproduce the Shapiro

map of our topological Josephson junctions.
We have estimated the phonon coupling constant of bismuth selenide ΣBi2Se3 using the

formula proposed in ref. [54] :
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with ul,t being the longitudinal and transverse sound velocities, vF the Fermi velocity le
the electronic mean free path, d the film thickness, Γ and ζ the gamma and zeta functions
and βl a dimensionless parameter. The estimated electron-phonon coupling constant is
then 3: ΣBi2Se3 = 27× 109 Wm−3K−5.
The JJ thermodynamics depends on the microwave excitation and on the electron-

phonon scattering time τel−ph. The latter is estimated from the electron-phonon coupling
constant at low temperature in Bi2Se3 by [69] τ−1

el−ph ≈ 1.08 T 2 GHz. At 100 mK, the rate
is 11 MHz. As long as the RF excitation is faster than the electron-phonon scattering rate,
the electronic temperature can be considered as almost constant at a given pair (IDC , IRF ).
A constant Tel means that the thermal balance can be written as Pel−ph =< PJoule >t.
To estimate the volume V of the system, we have used the experimental measurement of

Isw,r as a function of temperature and compared it with several simulations with different
volumes. Figure 6.8 presents the fits of Isw,r allowing for the final estimation of the volume
of the second topological JJ (LC106). The volume corresponds to product of the thickness t,
the widthW and the sum of L and two half of the electrodes width (400 nm). We observe a
good agreement between the simulation and the experimental measurement which validates
our estimation of the volume of the junction. One should note that for a temperature above
500 mK, both the simulation and the experiment show the merging of the switching and
retrapping currents. Hence the junction is not hysteretic anymore above this temperature.

Josephson junction LC099-JJ4 To determine the thermal dependence of the poi-
soning, we simulate the junction using our thermally activated poisoning model.

3. For comparison ΣAu = 2× 109 Wm−3K−5
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In the simulation we use the estimated amount of 4π periodic supercurrent of the junc-
tion : I4π

c = 35 nA and the transport parameters: R = 30 Ω and I totc = 450 nA. With
these parameter values, we have found an appropriate temperature dependence of the
switching time τsw = τ0e

∆mini
kBT with τ0 = 0.1 ns and 4 ∆mini = 160 µeV that reproduces

the measured Shapiro maps. The cooling power is calculated by using the estimated
electron-phonon coupling constant ΣBi2Se3 = 27× 109 Wm−3K−5 and a coupled volume of
VJJ = 20 nm · 1.45 µm · 540 nm = 0.016 µm3.
To our knowledge, the prefactor τ0 has not been estimated in literature. However, the

energy ∆mini is supposed to be in the order or smaller than the Thouless energy. Exper-
imentally Eth = 220 µeV which is consistent with the parameters used in the simulation
(∆mini = 160 µeV).
In figure 6.9, we display the experimental measurement of LC099-JJ4 and the associated

simulations at the same irradiation frequencies. We propose two types of simulations
both with the effect of heating on the contribution of the conventional supercurrent (as
for section 2 of chapter 5) and either a constant 4π supercurrent I4π

c = 35 nA, or with
thermally activated poisoning on the 4π supercurrent.
At 1.6 GHz, we observe in the first simulation that the appearance order of the Shapiro

steps is n = 2,1, 3, 4 which is not the same as the experiment: n = 2, 3,1, 4. However, the
steps n = 1 and n = 3 appear almost at the same irradiation power. Adding poisoning
does not change this appearance order, but rather slightly delays the appearance of step
n = 4.
Experimentally, the decrease of the resistance at zero current bias (orange arrow of graph

a) is observed in the simulation by the opening of a gap at the crossing of the resistive
branches (orange arrows of graph g). This effect is observed in experiment only at zero
current bias. However, the simulation with a constant 4π supercurrent displays a gap
opening at all the even crossings pointed by the orange arrows of graph g. Poisoning
removes this gap opening on the high index Shapiro steps (brown arrows in graph m).
At 1.9 GHz, the anomaly observed at zero current bias (red ellipse) cannot be reproduced

Figure 6.9. (facing page) – Differential resistance of the junction LC099-JJ4 under RF irradiation at 1.6, 1.9
and 4 GHz and the associated amplitude of the Shapiro first steps In. The first Shapiro steps are labeled.
The orange arrows and the red circle point at anomalies at the crossing point between the switching branch
and the retrapping branch. It is further discussed in the main text. The brown arrows point at the effect
of poisoning between the second and third line graphs. The black arrows points at the RF power where
the step appear.
(top row graphs) Experimental measurement of LC099-JJ4.
(middle row graphs) Simulations using the RSJ model with conventional Andreev bound states (ABSs)
that are subject to heating following the model presented in chapter 5 section 2. In addition to these
conventional modes, we add a 4π periodic mode that carries 35 nA.
(bottom row graphs) Simulations using the RSJ model similar to the middle row graphs. The 4π periodic
mode are here subject to thermally activated poisoning following (5.24).

4. A wrong estimation of Eth lead us to perform some simulations with ∆mini = 160 µeV. Currently,
we are repeating these simulation with the corrected estimation: ∆mini = Eth = 220 µeV.
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by the simulation neither with nor without poisoning. Furthermore, the simulation predicts
an even–odd effect on the appearance order of the Shapiro steps which is not observed
experimentally.
At 4 GHz, poisoning enables one to cancel the opening of the gap at zero current bias

(orange arrow in k becomes a brown arrow in graph r).

Josephson junction LC106-JJ2 In order to validate the model, we also compare the
experimental measurement of LC106-JJ2 to the simulation 5.
Before presenting the comparison between the simulations and experiment for the sec-

ond junction LC106-JJ2, we need to observe carefully the three Shapiro measurements of
LC106 in figure 6.7. We observe that the switching and retrapping current are not the
same depending on the irradiation frequency. In addition, the high frequency irradiation
(3.5 GHz) presents an hysteresis at low irradiation power (−10 dB m). This difference of be-
havior depending on fRF is explained by a change in the electronic temperature. Therefore,
the RF irradiation does not have the same impact on Tel depending on the RF frequency.
We estimate the electronic temperature at the low RF power part of the Shapiro mea-

surements by comparing the values of the switching and retrapping currents with the
experimental temperature dependence measured and shown in figure 6.8. The estimated
electronic temperatures are given in table 6.3.

fRF 1 GHz 2.2 GHz 3.5 GHz
min(PRF) −22 dB m −15 dB m −10 dB m

Tel( min(PRF) ) 500 mK 375 mK 200 mK

Table 6.3. – Temperatures of the electron bath estimated at low RF power for the three Shapiro measure-
ments on LC106.

To take into account this shift of the electronic temperature, we offset the phonon tem-
perature so that the electronic temperature is artificially elevated. This ad-hoc elevation
indicates the limitation of our thermal model. Indeed, without this offset, we underestimate
the electronic temperature during a Shapiro measurement.
Figure 6.10 compares the Shapiro measurement with the simulated one. We do not

include poisoning but it could be included for a deeper analysis. We include heating only.
At 1 GHz in the simulation figure g), the appearance order of the Shapiro steps shows

an the even-odd effect : n = 2, 4, 1, 3. This is not observed experimentally: only the step
n = 1 is shifted to higher RF power, see figure a).
The opening of a gap at zero current bias visible experimentally (orange arrow) is also

reproduced in the simulation at the same magnitude.
As for the previous junction, our simulation of the intermediate irradiation frequency

(2.2 GHz) does not explain the feature highlighted by the red circle. However, the appear-
ance order of the steps is regular both experimentally and in the simulation.

5. This last sample has been measured during the redaction of this manuscript. Therefore, the simu-
lations using poisoning are currently running.
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At 3.5 GHz, the Shapiro steps are conventional. We note that the hysteresis seen in the
experiment is reproduced by the heating model on the conventional ABS see figure k). The
appearance order of the steps should be studied on the retrapping side (I < 0) to remove
any artefact due to Joule heating.
The simulation does not predict every feature of the experimental observations, as the

elongated crossing point at intermediate irradiation frequency (red circle). However, poi-
soning could explain the absence of signatures of the 4π ABS at high irradiation power
and the closing of the gaps at the even crossing points (brown arrow).
Including heating effects to perfectly match the experimental observation is a delicate

task. We could estimate the temperature evolution of Tphonon(PRF) by a polynomial law but
there is no guaranty that this estimation reflects reality. This heating is poorly evaluated
by the thermometer placed on the sample holder that measures Tbath (cf figure 6.11). Our
thermal model supposed that Tbath = Tphonon = Cst, but apparently this hypothesis is not
valid anymore during Shapiro measurements. Tbath increases when increasing PRF and the
underestimation of Tel could originate from the non perfect coupling between Tphonons and
Tbath.
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Figure 6.10. – Differential resistance of the junction LC106-JJ2 under RF irradiation at 1, 2.2 and 3.5 GHz and the associated amplitude of
the Shapiro first steps In. The first Shapiro steps are labeled. The orange arrow and the red circle point at anomalies at the crossing point
between the switching branch and the retrapping branch. It is furthered discussed in the main text. The arrows points at the RF power where
the step appear.
(top row graphs) Experimental measurement of LC106-JJ2.
(bottom row graphs) Simulations using the RSJ model with conventional Andreev bound states (ABSs) that are subject to heating following
the model presented in chapter 5 section 2. In addition to these conventional modes, we add a 4π periodic mode that carries 50 nA.
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2. Fractional AC Josephson effect

Figure 6.11. – Schematic of heat transfer between the three baths at different temperatures defined in a
mesoscopic system. Heating comes mainly from Joule heating and is dissipated through the phonons of
the system and the substrate.

2.3 Discussions
Let us here discuss the validity of the signature of a possible 4π ABS in our systems. We

recall the estimated amounts of 4π ABS by using the observation of frequency threshold
of the even–odd effect and the gap opening Ĩc at the crossing point of the switching and
retrapping branches :

Josephson I totc (nA) I4π
c (nA) I4π

c (nA)
junction (from the even-odd effect) (from Ĩc)

LC099-JJ4 450 35
LC106-JJ2 2700 55 220

Partial description of Shapiro measurement The even-odd effect we have ob-
served is limited to the shift to higher RF power on the appearance of the Shapiro step
n = 1. We did not observe any even–odd effect on higher index steps. This sole observation
is a weak signature as it could originate from heating effects as observed in the lower parts
of figure 5.9b,f.
However, we have predicted and observed experimentally a second signature of the 4π

ABS, that is the opening of a gap at the crossing between the switching and retrapping
branches. This opening is supposed to reproduce at all even crossings which we did not
observe.
With our model of thermal poisoning we can explain the absence of the even-odd effect

and the gap opening on high order Shapiro steps. With our simulations, we can confidently
say that a 4π periodic ABS that is subject to thermal poisoning would give similar features
as the ones observed experimentally.
There is still a characteristics that does not match with the explanation we propose. In-

deed, a single ABS can theoretically carry up to 35 nA that is way less than our estimations
of I4π

c .

Where is the magnetic layer in our junctions? The attentive reader may have
noticed that the system we are dealing with does not contain a magnetic layer. As far as
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Chapter 6. Even-odd effect in Bi2Se3 Josephson junctions

we know, all theories predicting the presence of a 4π ABS require a magnetic layer.
As described in chapter 3, vanadium has never been used to induce superconductivity by

proximity effect in bismuth based TIs. In addition, the anomalous effects we have reported
here in Shapiro measurement have also never been observed in previous reports on bismuth
based TIs. We think vanadium could be the key ingredient that enabled the apparition of
a 4π periodic ABS in our system.
Indeed, vanadium doping is known to induce a quantum anomalous Hall regime in

BiSbTe3, Bi2Te3 and Sb2Te3 [32, 35, 52]. As we have etched the TI crystal prior to
vanadium deposition, the atoms of vanadium may have slightly doped the crystal at its
surface, thus inducing magnetic moment at the interface between Bi2Se3 and the vanadium.
Such particular geometry has not been simulated yet in literature but we can think that
it resembles the one studied in this thesis in section 2.3 of chapter 4.
Furthermore, even if we have deposited a protection layer of gold on top of the vanadium

electrodes, the side surfaces of the electrodes are in certainly oxidized. Vanadium is a
transition metal that oxides in various ways: VO (II), V2O3(III), VO2(IV), V2O5(V), and
others. Those oxides have been widely studied and are known for having various magnetic
order [81] (VO2 [191], VO3 [39]).
Therefore, there is most probably a strong magnetic field close to the junction that plays

the same role as the ferromagnetic layer used in the literature to decouple the topologically
protected 4π periodic ABS from the continuum of states and hence keep its 4π periodicity.
We thus believe that our JJ are actually S-M-TI-M-S (with M the magnetic barrier), a

geometry that has not yet been studied theoretically.
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2. Fractional AC Josephson effect

Summary

In this chapter we have presented the observation of the even/odd effect on the first step
of the Shapiro measurement on topological Josephson junctions designed on Bi2Se3.

Because of the short electronic mean free path in Bi2Se3 and the small Thouless energy
compared to the superconducting gap of the vanadium electrodes, the superconducting
transport occurs in the long diffusive regime.
We have probed the supercurrent profile of the junctions with Fraunhofer measurement

and concluded that the supercurrent flows uniformly inside the Josephson junction. This
can be understood by the superconducting coupling of the complete bulk of the crystal.
For the Shapiro measurement, we have observed, at high radio frequency irradiation

a conventional appearance order of the Shapiro steps. At low frequency irradiation we
observed the predicted even/odd effect by the non-monotonic appearance order of the
Shapiro steps : n = 2, 1, 3, 4, 5. This effect is however only visible on the low index steps :
there is no inversion between n = 3 and n = 4... This non regular appearance order can be
explained by our thermally activated poisoning model introduced in chapter 5. However,
at intermediate frequency, we observed anomalies in the Shapiro measurements at the
crossing point between the switching and the retrapping branch that cannot be explained
by the model.

119





Chapter 7
Superconducting proximity effect through
the surface states of BiSbTeSe2
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Most of bismuth based topological insulators have a metallic bulk. As a result, sig-
natures of surface states in transport are always spoiled by the bulk conductance.

With a significant bulk contribution, the observation of an even-odd effect in the Shapiro
measurement is thus delicate.
Recently, the TI BiSbTeSe2 (BSTS) has shown clear evidence of surface transport only

[182]. For this reason we have focused our growth efforts on this material (cf chapter 2) to
study topological Josephson junction.
In this chapter we present the observation of a superconducting proximity effect in the

surface states of a topological insulator without bulk conductivity. We first characterize the
transport properties of the BSTS crystal used to fabricate the junctions, then we study the
regime of conduction in which the superconducting proximity effect develops. By probing
the Fraunhofer pattern, we prove the two-dimensional nature of the superconducting prox-
imity effect. We observe resonances of the environment that affect the transport properties
of the junctions and forbid to properly perform Shapiro measurement.
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7. Superconducting proximity effect through the surface states of BiSbTeSe2

1 State-of-the-art of Josephson junctions on BiSbTeSe2

BSTS has been already used to fabricate topological Josephson junctions by Lee et
al [112] and Snelder et al [159]. Both groups have observed the superconducting

proximity effect inside the surface states of the crystal but did not prove its topological
nature.
While Lee et al [112] measured the non-local transport originating from the surface

states, Snelder et al [159] made small Josephson junctions (40 nm long). The authors have
shown a surface–dominated normal transport that turns into a superconducting transport
when coupled to superconducting leads.
Up to now, no clear evidence has been found for the topological nature of the proximity

induced superconductivity on the bismuth-based topological insulators. In addition, the
fractional AC Josephson effect was probed in BSTS Josephson junctions by the group of
A. Brinkmann but they did not observe the even-odd effect.

2 Josephson junctions on BiSbTeSe2

In this section we first describe the normal transport properties of BSTS. Then we find
the superconducting transport regime in which the superconducting proximity effect

occurs in a Josephson junction geometry.

2.1 BiSbTeSe2 a topological insulator without bulk conduction
BSTS as a topological insulator has been first grown and characterized in 2011 by Taskin

et al [168]. Only three years later, Xu et al have observed quantum Hall effect in this
material [182]. They characterized its electronic band structure by performing an ARPES
measurement displayed in figure 7.1. In this figure we see the Fermi level lying at the
Dirac point inside the bulk band gap. They also estimated the Fermi velocity vBSTSF =
3× 105 m/s, which is close to the one of Bi2Se3: vBi2Se3

F = 5× 105 m/s [190].
Our BSTS crystals also show surface conduction that has been characterized in chapter

2. In table 7.1 we summarize the transport properties of our material and compare them
with the properties of the one that displayed quantum Hall effect [182].

Material n2D µ2D D2D l2De
BSTS from Xu et al [182] 2× 1012 cm−2 3000 cm2/V/s 65 cm2/s 37 nm

our BSTS 2.5× 1013 cm−2 106 cm2/V/s 12 cm2/s 6.8 nm

Table 7.1. – Transport properties of two BiSbTeSe2, with n2D being the surface carrier density, µ2D the
surface electron mobility,D2D the associated diffusion coefficient and l2De the electronic mean free path.

We see that the quality of the two crystals is much different. There is a factor 10 in
the carrier densities. The electron mobility of our crystal is poor in comparison to the
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2. Josephson junctions on BiSbTeSe2

Figure 7.1 – Angle resolved photo-emission
spectroscopy of BiSbTeSe2. The blue
dashed lines are guide lines to highlight
the linear dispersion relation of the surface
states (SS) which are decoupled from the
bulk valence band (BVB). The energy is
measured with respect to the Fermi level.
The Dirac point (DP) is the crossing point
of the linear surface states. Extracted from
[182].

state of the art. This low mobility implies a low diffusion coefficient and a short mean free
path. This electron mobility explains the absence of any Shubnikov-de-Haas oscillations in
magneto-transport. Moreover, the short mean free path leads to a diffusive regime when
building a Josephson junction of few tens of nanometer long.

2.2 Long junction in diffusive regime
Despite the low mobility of our crystal, we have managed to produce Josephson junctions

with vanadium leads. Table 7.2 summarizes the geometric characteristics of the junctions
that present a supercurrent. In all cases, the supercurrent is small (≤ 50 nA for a width of
≈ 2 µm) in comparison to the junctions made on Bi2Se3 (≈ 1 µA with the same geometry).

Name L(nm) W (µm) t(nm) Ic(nA) RN(Ω) eRNIc(µeV) Eth(µeV) eRNIc
Eth

LC111 150 2 19 0 390 0 22 0
JJ2 60 1.6 39 35 335 11.7 81 0.15
JJ3 60 0.2 17 10 1200 12.0 178 0.067
JJ4 60 1.9 38 33 325 10.7 69 0.18
JJ5 50 1.9 38 47 280 3.2 97 0.14
JJ6 60 2.0 23 30 250 7.5 86 0.088
JJ7 70 2.0 23 12 470 5.6 40 0.14
JJ8 60 0.9 26 18 550 9.9 86 0.12
JJ9 70 0.9 26 21 225 4.7 181 0.026
JJ12 70 0.5 37 3 1250 3.1 59 0.053
JJ13 60 0.7 59 15 480 7.2 127 0.057

Table 7.2. – Table summarizing the characteristics of all the Josephson junctions we have produced on
BSTS. With L being the length between the superconducting electrodes, W and t the width and thickness
of the crystal, Ic the critical current at base temperature (60 mK) and RN the normal state resistance of
the junction. We estimate the Thouless energy Eth = ~D

L2 by using the normal state resistance to evaluate
the diffusion coefficient for each flake.

123



7. Superconducting proximity effect through the surface states of BiSbTeSe2

Figure 7.2. – a) Voltage-current characteristic of the Josephson junction JJ6 built on BiSbTeSe2 (BSTS).
A small hysteresis is noticeable between the up (blue) and down (red) current sweeps. (Inset) Scanning
electron microscopy image of the device with false colors. The vanadium contacts are in orange and the
blue flake is the BSTS crystal. The white line is 1 µm for scale. An arrow points at the junction JJ6. b)
Switching and retrapping current versus temperature. A fit is added following Eq.(6.1) with a Thouless
energy Efitth = 27 µeV and a prefactor α = 2.6%.

But the eRNIc product is comparable for both Bi2Se3 and BSTS material. We also had to
place the leads much closer on BSTS than on Bi2Se3 to have a measurable supercurrent.
We estimate the Thouless energy by using the equation Eth = ~D

L2 that gives an energy
much smaller (40− 180 µeV) than the superconducting energy gap of the electrodes ∆V ≈
800 µeV. This categorizes these junctions in the long diffusive limit.
The eRNIc product is much smaller (3 − 12 µeV) than the estimated Thouless energy

and does not follow the expected ratio of 10.8 (see chapter 1 section 1.1.4).
We can also estimate the Thouless energy with the temperature dependence of the critical

current. In figure 7.2, we present the voltage-current characteristic of one of the junctions
(JJ6) and its associated Ic(T ). We fit the dependence using the Usadel formula Eq. (6.1).
This gives a Thouless energy Efit

th = 27 µeV and a transparency coefficient α = 2.6%. This
second estimation of the Thouless energy ( 27 µeV) is much smaller than the calculated one
( 86 µeV). In both cases, the transport occurs across a long diffusive junction (Eth � ∆V).

3 Supercurrent in surface states

In order to show that the Josephson supercurrent is located on the surface of the BSTS
crystal, we first study the critical current dependence with respect to the thickness of the

different junctions. Then we analyze the supercurrent profile by performing a Fraunhofer
measurement of the junction.
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3. Supercurrent in surface states

Figure 7.3 – Critical current density Jc =
Ic/W versus the thickness of the crystal
for all junctions of length L = 60 nm pro-
duced on BSTS, with W being the width
of the crystal. In orange is the mean value
at 21 nA/µm. 0 2 0 4 0 6 00

1 0

2 0

3 0

4 0
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3.1 Thickness independent critical current
If the supercurrent develops in the whole crystal, then the critical current density Ic/W

would scale linearly with the thickness of the crystal 1. In figure 7.3, we have plotted this
quantity for different thickness for a fixed junction’s length. We observe that the quantity
Ic/W does not increase linearly but is rather constant. Having a supercurrent density
independent of the thickness of the crystal is consistent with a supercurrent flowing only
at the surface of the crystal.
To directly probe this non uniform supercurrent density, we can use the Fraunhofer

pattern to extract the spatial dependence of the supercurrent profile Jc(x).

3.2 Non conventional Fraunhofer pattern
We apply a magnetic field perpendicular to the surface of the normal part of the JJ (cf

figure 7.4a). If the supercurrent is homogeneous inside the BSTS crystal, then the critical
current dependence Ic(B) should follow the regular Fraunhofer pattern Ic

∣∣∣sinc(πWB
Lφ0

)
∣∣∣, with

the flux quantum φ0 = h
2e as presented in Appendix A section 1.

We focus in this section on the results of junction JJ6. The same phenomenon has been
observed on several junctions. The differential resistance versus perpendicular magnetic
field and the current bias is displayed in figure 7.5a. We observe many oscillations of the
critical current up to a large magnetic field. The critical current almost cancels at 80 mT
and increases again up to a maximum at 140 mT. This second oscillation is understood by
a SQUID 2-like profile of the supercurrent 3.
Following the method based on a Fourier transform described in Appendix A section 2,

we estimate the supercurrent profile Jc(x). It is shown in figure 7.5b. We observe a finite

1. We call current density the amount of current per unit of width W and not per unit of surface.
With W the width, t the thickness and L the length of the junction, the hypothesis eRNIc = Cst gives
Ic
W = tC

st

eρL .
2. Superconducting quantum interference device
3. A similar behavior has been observed in graphene [4], and 2D HgTe [74, 136] in a regime of quantum

spin Hall effect.
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Figure 7.4. – a) Schematic of the ideal set-up to probe the supercurrent profile Jc(x) inside the Josephson
junction. We apply a perpendicular magnetic field while recording the critical current Ic. b) Schematic
of the model we propose to explain the non uniform supercurrent distribution Jc(x). Side view of the
topological insulator (TI) flake in blue, contacted with a superconducting (S) electrode in orange. The
flake has a width W and a thickness t. Only the surface states of the TI are superconductively coupled.
The proximity effect extends in the surface states of the bottom surface over a distance λprox.

supercurrent in-between ±1 µm that corresponds to the physical boundary of the crystal
of BSTS. Outside this position, the supercurrent is supposed to be zero, which gives an
estimation of the uncertainty of the estimation.
In addition to the finite supercurrent density in the middle of the flake, we observe a

large current density at its border. Still in our system, no quantum spin Hall effect is
expected. We propose a simple model that explains this behavior: If the supercurrent only
flows in the surface states, then it can also flow at the bottom surface due to proximity
effect on the bottom over a small distance λprox. A schematic of this model is drawn in
figure 7.4b. The perfect theoretical supercurrent profile Jmodelc (x) and the critical current
Imodelc (B) of this model are drawn in figure 7.5 with black lines 4. The parameters used are
λprox = 75 nm and the supercurrent profile in the surface states is 13 nA/µm.

4 Resonances from the environment

In the previous section we have shown that the superconducting proximity effect in the
TJJ develops at the surface of the BSTS crystal. This system thus seems ideal to

investigate the even-odd effect without contribution from the bulk. However, the Josephson
junctions on our sample all displayed voltage steps as if they were irradiated by radio
frequencies. This unexpected behavior prevented us to properly observe any even-odd
effect in the Shapiro measurement at low frequency. In this section we first expose this
observation, then present the origin of the self resonant voltage steps and finally show the

4. Here we neglect the supercurrent which comes from the side surfaces. It has a negligible impact on
Imodelc (B) and cannot be the only explanation of the supercurrent profile.
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Figure 7.5. – Fraunhofer measurement of the topological Josephson junction JJ6 built on BSTS. a)
Differential resistance colored map versus the perpendicular magnetic field and the DC current bias. b)
Supercurrent profile estimated by using a) and following the method proposed in Appendix A. In a) and
b), the black line corresponds to the critical current and the supercurrent profile of the model proposed in
main text.

Shapiro measurement that we have performed.

4.1 Equidistant voltage steps in the VI characteristics
We have observed some self-induced voltage steps without RF irradiation in every junc-

tion of the sample. We focus here on the Josephson junction JJ6 whose voltage–current
characteristics is shown in figure 7.6. We see some plateau-like features. By plotting the dif-
ferential resistance versus the measured DC voltage, we see that the plateaus are equidistant
in voltage. We have found for JJ6 a distance between each plateau of ∆V = 8.66 µV. Such
voltage step would correspond to an irradiation by an antenna at fres = 2eVstep

h
= 4.1 GHz.

This value is different for each junction on the same substrate (LC134) and does not scale
with any estimated physical quantity of the junctions such as e ·RN · Ic, Eth, L, W or t.
The same type of resonances have already been observed and studied by Fiske et al

[58] where the Josephson junction itself forms a resonant electromagnetic cavity in which
the resonant modes interact with the Josephson effect. This type of resonance is visible
when the junction is under a perpendicular magnetic field or when the supercurrent profile
is inhomogeneous [33, 166]. A theoretical explanation is given in chapter 9 of ref [16].
However, the size of the cavity has to be a multiple of the electromagnetic wavelength. In
our case, the GHz frequency resonance would correspond to a cavity of size 5 3 cm, which
is 4 order of magnitude larger than the width of the junction. Therefore, our observation
cannot be compatible with the well known self resonant Fiske steps.

5. The so-called Fiske–steps or zero–field steps are voltage plateaus at voltage VFiske,n = h
2e

c̃
2W n with

n being an integer, W the length of the resonant cavity (the width of the Josephson junction) and the
wave velocity c̃ = c

√
L
εrt

, with c the speed of light, εr the relative permittivity of the normal metal of the
junction, L the length of the junction and d = L + 2λB, with λB the magnetic penetration depth inside
the superconducting electrodes.
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Figure 7.6. – Observation of self-induced voltage steps on junction JJ6. During this measurement, no
antenna is placed near the junction. We simply current bias the device and observe equidistant voltage
steps. a) Voltage–current characteristics. Some step-like features are visible above the critical current.
b) Differential resistance of the junction versus the measured DC voltage during a current biased sweep.
The dotted vertical lines are located at multiples of Vstep. c) Voltages of each extrema of the differential
resistance versus their index. In red is plotted a linear fit with a slope of Vstep = 8.66 µV.

4.2 Resonance from the environment to the junction
To understand the origin of the irradiation, we had to find a resonant cavity of size in

the centimeter range. The resonance frequency is independent of the cryostat geometry
and of the filter we use on the measurement lines.
Exceptionally, during the fabrication process of those Josephson junctions on BSTS, we

have used superconducting lines of vanadium from the junction up to the bonding pads
(see figure 7.7a). Those lines have a kinetic inductance Lkin ≈ 370 fH/� at 3.5 GHz 6 and
are capacitively coupled to the SiO2 back gate and between them forming LC resonators.
In collaboration with C. Hoarau (Institut Néel, pôle électronique), the RF response of

our sample design has been simulated. The circuit is composed of four input ports with
a 50 Ω impedance to which we send or receive a signal 7. The results are shown in figure
7.7. We choose to plot only the transmission coefficients from port 1 to port 2 which
presents the largest resonant dip in frequency. At 4.78 GHz, the system transmits poorly
the electromagnetic excitations. Therefore, any irradiation at this frequency will stay
trapped at the surface of the substrate. This resonance frequency is close to the observed
voltage plateau in the VI characteristics of JJ6: h·4.78 GHz

2e = 9.88 µeV.
Because of the AC Josephson relation Eq. (4.3), a biased junction irradiates photons at

the Josephson frequency fJ = 2eV
h
. During a current sweep, the junction will irradiate at

an increasing frequency fJ(V ). When the voltage across the junction reaches hfres
2e , then

the environment resonates and the phase locks-in at the same frequency fres, thus leading

6. Lkin = ~Rsq
π∆ with Rsq the sheet resistance. We have performed several simulation with different

value of the kinetic inductance by a factor 10 and 0.1 which gives a variation of the resonance frequency
of about 5%.

7. The input impedance is unknown and therefore induce an uncertainty on the resonance frequency.
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Figure 7.7. – a) Design of the electrodes patterned on the substrate that form the junction JJ6. The pads
are labeled from 1 to 4. The black line is 250 µm for scale. (inset) False colors image of an atomic force
microscopy. In blue is the flake of BSTS and in orange are the design of the superconducting electrodes.
The Junction JJ6 is formed in-between the two leads that are connected to the four labeled pads. The
white line is 1 µm for scale. b) Transmission matrix coefficient from line 1 to line 2 versus the frequency of
the input signal. A dip in the coefficient means a poor transmission of the signal that stays located inside
the sample.

to a voltage plateau.
As we can see from the transmission amplitude, there exists no resonance at multiple of

4.78 GHz. Therefore, the plateaus at multiple of 9.88 µeV in the VI characteristics cannot
be explained by harmonics from the resonance cavity. They can however be explained
by processes involving several photons at 4.78 GHz exciting multiple of the Josephson
frequency n · fJ [48].

4.3 Impossible observation of the even-odd effect
Due to the presence of the self induced voltage steps, the Shapiro measurement is more

difficult. Indeed, during this measurement, in addition to the presence of the resonant fre-
quency fres, we irradiate the junction with some external RF frequency fRF. The response
of a Josephson junction under two radio frequencies has already been observed by Grimes
and Shapiro [72]. They observe and explain the appearance of additional voltage steps
spaced by the difference frequency |fres − fRF|.
We could use the resistively shunted Josephson junction (RSJ) model, presented in

chapter 5, to predict the behavior of a topological Josephson junction under two radio
frequencies. However, we do not know the power at which the junction is irradiated at
fres. This study is possible but has not been done in this thesis due to a lack of time.
The results of the Shapiro measurements are presented in figure 7.8. The figure represent

the colormaps of the differential resistance as a function of the irradiation power for two
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Figure 7.8. – Differential resistance of the junction JJ6 under RF irradiation at 2 and 3.56 GHz. The first
Shapiro steps are labeled. The green circle delimits a region with features that unable the observation
of any even-odd effect. It is further discussed in the main text. The orange arrows points at the voltage
plateaus already present without any RF irradiation.

irradiation frequencies. The orange arrows points at the minima in the dV/dI that are
already present without RF irradiation.
At frequency fRF = 3.56 GHz, the Shapiro plateaus are well defined as labeled by the

indexes. The initial low power steps gradually disappear and are replaced by the Shapiro
steps. At high RF power, we observe the usual oscillations of the currents for each step In.
The appearance order of the Shapiro steps is regular: 0,1,2,3,...
At lower frequency (fRF = 2 GHz), the presence of the initial steps is forming complex

structures in the colored map (green circle). Those structures correspond to the appearance
of steps at the frequency difference fRF − fres as predicted by [72]. This mixing of the two
frequencies, hinders to identify the presence or absence of the even-odd effect.
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Summary

The previous chapter reported on the observation of the even-odd effect in long diffusive
Josephson junctions fabricated on Bi2Se3. This topological insulator has a metallic

bulk that reduces the visibility of the single 4π periodic topological Andreev Bound state
(4π-tABS). To increase the visibility of the 4π-tABS, we fabricated Josephson junctions
with bulk insulating topological insulator: BiSbTeSe2 (BSTS).
In this chapter we have observed the superconducting proximity effect at the surface of

such a BSTS crystal.
We present TJJs in the regime of long diffusive transport. The 2D nature of the super-

conducting proximity effect is proven by studying the thickness evolution of the critical
current density and by performing Fraunhofer measurement. The latter presents a non reg-
ular Fraunhofer pattern with two periodicities that make the critical current to re-increase
at a large perpendicular magnetic field. By applying a Fourier transform on the Ic(B),
we estimated the supercurrent profile inside the flake of BSTS. This profile shows a large
intensity at the two edges of the flake. We explain this profile by the presence of a proxim-
itized region on the bottom surface of the TI flake that causes as a SQUID-like behavior
in the Fraunhofer measurement.
Shapiro measurement has been performed on these topological Josephson junctions but

no conclusion could be drawn on the observation of the even-odd effect. Indeed, all junc-
tions presented a current-voltage characteristic with voltage steps induced by the resonant
circuit formed by the DC lines. To avoid this self irradiation, one must simply fabri-
cate new samples with measurement lines that are non superconducting and deposit short
superconducting lines only close to the topological insulator flake.
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Conclusion & outlook

The prospect of investigating the unconventional p-wave superconductivity that can host
a Majorana bound state led us to investigate Josephson junctions on three dimensional

topological insulators. We choose the compounds Bi2Se3 and BiSbTeSe2 as materials to
address the physics of topological Josephson junctions (TJJ).

With the resistively shunted junction (RSJ) model, we simulated the behavior of a TJJ
containing both 2π and 4π periodic current-phase relations.
We confirmed the change of the appearance order of the Shapiro steps when increasing

the irradiation power [49]. At high frequency the order is regular (0,1,2,3,4,...) whereas at
an irradiation frequency smaller than the phase adjustment frequency of the 4π-tABS, the
appearance order of the steps is subject to the even-odd effect (0,2,1,4,3,6,5,8,...). We also
observed an anomaly on the critical current at all closing of the even Shapiro steps. This
feature gives a second possibility to estimate the contribution of the 4π-tABS.
For the first time, we have introduced Joule heating in the RSJ model. Our heating

model has been validated in conventional JJs by the publication [43]. As heating effects on
the 4π-tABS cannot be handled in the same way as the conventional ABSs, we proposed a
thermally assisted stochastic population of the 4π-tABS to describe quasiparticle poisoning
leading to a gradual suppression of the supercurrent carried by this state. This thermally
assisted poisoning can explain the absence of the even-odd effect on high order Shapiro
steps observed in the literature.

The main experimental results of this thesis are the observation of possible signatures
of Majorana bound states in Shapiro measurements on Bi2Se3 TJJ. We detected an even-
odd effect in the Shapiro measurement at low RF frequency. In addition we observe the
same anomaly at the closing of the Shapiro step n = 0 as in the simulation. These two
features characteristic of the presence of the 4π-tABS provide convincing signature on the
presence of a 4π periodic ABS. The fact that vanadium may induce magnetic momenta at
the superconducting interface (contrary to usual aluminum or niobium electrodes) may be
the explanation for this first observation of the fractional AC Josephson effect in bismuth
based topological insulators Josephson junctions.
Yet, Bi2Se3 is a TI with a conducting bulk that hosts lots of conventional electronic
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7. Superconducting proximity effect through the surface states of BiSbTeSe2

modes that disguise the signature of the 4π-tABS. To decrease their contribution we also
worked with BiSbTeSe2 that has an insulating bulk.
We observed surface superconductivity by proximity effect in Josephson junctions fab-

ricated on BiSbTeSe2. However, because of a new technique of sample fabrication, every
junction embedded a resonant cavity formed by superconducting contacting lines that
spoiled the Shapiro measurement. This work could be reproduced with a different fabrica-
tion technique.

In conclusion, we have observed the fractional AC Josephson effect in topological Joseph-
son junctions fabricated on bismuth based topological insulators. We have included a Joule
heating model in the simple and well known resistively shunted Josephson junction model.
This new approach gives a quantitative explanation for the hysteresis observed in con-
ventional Josephson junctions. In addition, we developed a thermally activated poisoning
model to explain the observation of the even-odd effect on the n = 1 Shapiro step only.
This phenomenon was observed in recent experiments of Shapiro measurement on 3D TI
but no interpretation was given. Our model brings a possible explanation.

Despite a massive investment from the scientific community in bismuth based TI, up to
now, signatures of the Majorana Bound states in transport measurement were only observed
in InSb nanowires and Hg-based TI. Thanks to this work, the family of bismuth based
3D TI are brought back as serious candidates to be used in future topological quantum
computing schemes.

134



Appendix A
Effect of perpendicular Magnetic field
on a Josephson junction

1. Regular Fraunhofer pattern . . . . . . . . . . . . . . . . . . . . 135
2. Finding the current density profile . . . . . . . . . . . . . . . . 137

Applying a perpendicular magnetic field on a JJ will dephase the electronic wave func-
tion of the quasi-particles and thus modify the critical current of the junction. The

usual dependence of the critical current Ic(B) is a Fraunhofer pattern (x� |sin(x)/x| func-
tion) [16, 53]. For simplicity, we always refer to this dependence as the Fraunhofer pattern
even if the shape is different from x� |sin(x)/x|. This pattern enables to reconstruct the
profile of supercurrent Jc across a JJ.
In this chapter, we first derive the expected behaviour of the critical current vs magnetic

field of a uniformly distributed superconducting proximity effect and then explain the
approach to reconstruct an unknown profile of supercurrent according to [53].

1 Regular Fraunhofer pattern

Figure A.1 shows a typical geometry of a JJ under a perpendicular magnetic field. The
length, width and thickness of the normal metal are defined by L,W and t respectively.

The magnetic field will be non-zero on both inside the N region and also over a length scale
of the magnetic field penetration depth λB inside both S electrodes.
The supercurrent flows in the y direction and can be considered as constant along this

direction. The supercurrent density reads Jy(x, z) = Jc(x, z) sin(φ(x, z)) with Jc(x, z) the
maximum supercurrent density at the line between the two S electrodes at the coordinates
(x, z) and φ(x, z) is the phase difference at (x, z) between the order parameters of the
superconductors on either side of the junction.
Let us consider two points M1 and M2. The phase difference between the two points

reads φ(x2, z2) − φ(x1, z1) = 2πϕB/ϕ0, with ϕ0 = h/2e is the flux quantum and ϕB is
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A. Effect of perpendicular Magnetic field on a Josephson junction

Figure A.1 – (upper part) 3D Schematic of a JJ
with a perpendicular magnetic field applied. The
magnetic field is in the z direction and the flow
of electrons is in the y direction. (Lower part):
top view of the upper part.

the amount of flux enclosed by a loop linking the two points (dashed loop in figure A.1).
Hence, ϕB = B(2λB + L)(x2 − x1).
We define the origin of axes at the middle of the N region and fix the phase to be:

φ(0, 0) = φ0. The total supercurrent from the left to the right electrode reads :

IS(B, φ0) =
∫ t/2

−t/2
dz
∫ W/2

−W/2
dx Jy(x, z)

=
∫ t/2

−t/2
dz
∫ W/2

−W/2
dx Jc(x, z) sin

(2πxB(2λB + L)
ϕ0

− φ0

) (A.1)

We assume that the supercurrent is homogeneous along the z direction inside the normal
metal and define the supercurrent profile to be : J (x) =

∫ t/2
−t/2 dz Jc(x, z)

From Eq. (A.1) we obtain :

IS(β, φ0) = Im
[
e−iφ0

∫ W/2

−W/2
dx J (x)eiβx

]
(A.2)

with β = 2πB(2λB + L)/ϕ0 the normalized magnetic field and Im[] the imaginary part.
The measured critical current Ic(B) is the maximum of IS(B, φ0) (cf Eq. (4.8)). In the
case of a uniformly distributed supercurrent (J (x) = J0), the Fraunhofer pattern reads :

Ic(β) = |J0 Im
[∫ W/2

−W/2
dx eiβx

]
|

= |WJ0 sinc (βW/2)|
= WJ0 |sinc (πBW (2λB + L)/ϕ0)|

(A.3)

The Fraunhofer pattern is therefore:

Ic(B) = WJ0 |sinc
(
πϕB

ϕ0

)
| (A.4)

with ϕB = B W (2λB + L) the magnetic flux enclosed by the total area of the junction
extended by the magnetic penetration depth.
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2 Finding the current density profile

The profile J (x) depends on the exact geometry and characteristics of the N material.
With the following method we can estimate this profile. It is used in this thesis to

recover the profile of the Josephson junctions on Bi2Se3 and BiSbTeSe2 flakes in chapters
6 & 7.
We can extend the integral of Eq. (A.3) and transform it into a Fourier transform. J (x)

is now the supercurrent profile extended outside the physical limit of the normal region :

Ic(β) =
∣∣∣∣Im [∫ ∞

−∞
dx J (x)eiβx

]∣∣∣∣ (A.5)

Let us define the complex Fourier transform of J (x) by :

I(β) =
∫ ∞
−∞

dx J (x)eiβx (A.6)

The measured critical current profile is Ic(β) = |I(β)|. Hence we can define the ampli-
tude and the argument of the complex supercurrent by : I(β) = Ic(β)eiθ(β).
To reconstruct the current profile one needs to find θ(β). Two methods are possible [53].

The first one is based on a Hilbert transform procedure and the second simpler one uses
the parity of J (x) and Ic(β).

— Hilbert transform method
From [133], because J (x) has a "minimum-phase property", there is a relation be-
tween Ic(β) and θ(β) by :

θ(β) = β

2π

∫ ∞
−∞

db
ln(Ic(b))− ln(Ic(β))

β2 − b2 (A.7)

From this calculation, one can find the current profile by :

J (x) = 1
2π

∫ ∞
−∞

dβ Ic(β)ei(θ(β)−βx) (A.8)

Theoretically, the first method gives an exact solution. However, experimentally the
measured Ic(β) is noisy and this method does not give a convincing result of J (x)
when Ic(β) is not perfectly even.

— Parity method
The second approach is based on the fact that experimentally Ic(β) and J (x) are
almost even functions. Let us define Je(x) and Jo(x) the even and odd parts of J (x).
And their fourier transform :

E(β) =
∫ ∞
−∞

dxJe(x) cos βx

O(β) =
∫ ∞
−∞

dxJo(x) sin βx

137



A. Effect of perpendicular Magnetic field on a Josephson junction

Then I = E + iO and Ic = |I| =
√
O2 + E2.

If J is an even function. Then O = 0 and I = E is real. If J (x) is constant, then it
will result in a Fraunhofer pattern as seen in previous section with equidistant zeros.
Now if J (x) is not constant, then Ic(β) will oscillate and have the same zeros as E .
If J is almost an even function. It means that away from the roots of Je(x), we
have Jo(x) � Je(x) and thus J (x) ' Je(x). And for all zeros of Je(x), we have
J (x) = Jo(x). Hence, away from the minima of Ic, we have |E| = Ic as in the case
of a purely even J . At each minima of Ic, we have |O| = Ic. At first approximation,
we can linearly interpolate |O| between each zeros of |E|. This method gives a semi-
quantitative estimation of the odd part of I allowing us to recover the whole complex
information of I. From this estimation we can apply an inverse Fourier transform
and have an estimation of the supercurrent profile J (x).
This last method is used in this thesis to recover the profile of the Josephson junctions
on Bi2Se3 and BiSbTeSe2 flakes in chapters 6 & 7.
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Appendix B
Detailed calculations of chapter topologi-
cal Josephson junction

1. Finding the eigenvalues of H . . . . . . . . . . . . . . . . . . . 139

2. Diagonilization of HTI . . . . . . . . . . . . . . . . . . . . . . . 141

1 Finding the eigenvalues of H

We start with the compact form of the Hamiltonian describing superconducting prox-
imity effect on the surface of a 3D topological insulator :

H = ~vFτ
z ⊗ σ.k − µτ z ⊗ 12 + ∆0(τx cosφ− τ y sinφ)⊗ 12 (B.1)

To find the eigenvalues, it is easier to square the Hamiltonian. We use the properties of
the Pauli matrices : σiσj + σjσi = [σi, σj] = 2δi,j.
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B. Detailed calculations of chapter topological Josephson junction

H2 =~2v2
F(τ z ∗ τ z)⊗ (σ.k ∗ σ.k) + µ2(τ z ∗ τ z)⊗ (12 ∗ 12) + ∆2

0(τx cosφ− τ y sinφ)2 ⊗ (12 ∗ 12)
−~vFµ [(τ z ∗ τ z)⊗ (σ.k ∗ 12) + (τ z ∗ τ z)⊗ (12 ∗ σ.k)]
+~vF∆0 [(τ z ∗ (τx cosφ− τ y sinφ))⊗ (σ.k ∗ 12) + ((τx cosφ− τ y sinφ) ∗ τ z)⊗ (12 ∗ σ.k)]
−µ∆0 [(τ z ∗ (τx cosφ− τ y sinφ))⊗ (12 ∗ 12) + ((τx cosφ− τ y sinφ) ∗ τ z)⊗ (12 ∗ 12)]

=~2v2
F12 ⊗ (k2

x + k2
y)12 + µ2

14 + ∆2
0(cos2 φ+ sin2 φ)12 ⊗ 12

−~vFµ(12 ⊗ σ.k + 12 ⊗ σ.k)
+~vF∆0 [(iτ y cosφ+ iτx sinφ)− (iτ y cosφ+ iτx sinφ)]⊗ σ.k
−µ∆0 [(iτ y cosφ+ iτx sinφ)− (iτ y cosφ+ iτx sinφ)]⊗ 12

=~2v2
F|k|

2
14 + µ2

14 + ∆2
014 − 2~vFµ12 ⊗ σ.k

(B.2)
From this expression we can square a second time the Hamiltonian :

(
H2 − (~2v2

F|k|
2
14 + µ2

14 + ∆2
014)

)2
=4~2v2

Fµ
2
1

2
2 ⊗ (σ.k)2

=4~2v2
Fµ

2
12 ⊗ 12|k|2

=4~2v2
Fµ

2
14|k|2

(B.3)

This expression implies only unit matrices. Hence, applying a ket operator on the this
equation gives directly access to the eigenvalues of the matrice H:

(
H2 − (~2v2

F|k|
2
14 + µ2

14 + ∆2
014)

)2
|Ψ〉 =4~2v2

Fµ
2
14|k|2 |Ψ〉(

E2 − (~2v2
F|k|

2 + µ2 + ∆2
0

)2
|Ψ〉 =4~2v2

Fµ
2|k|2 |Ψ〉(

E2 − (~2v2
F|k|

2 + µ2 + ∆2
0

)2
=4~2v2

Fµ
2|k|2

E↑,↓
2 − (~2v2

F|k|
2 + µ2 + ∆2

0)2 =± 2~vFµ|k|
E↑,↓

2 =± 2~vFµ|k|+ ~2v2
F|k|

2 + µ2 + ∆2
0

E↑,↓
2 =(µ± ~vF|k|)2 + ∆2

0

E±↑,↓ =±
√

(µ± ~vF|k|)2 + ∆2
0

(B.4)

We find the energy dispersion of the four possible states available for a given |k|. This
energy dispersion is drawn in figure 4.12.
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2 Diagonilization of HTI

In order to diagonalise the normal part of the Hamiltonian HTI, one needs to use the
following notations

k = k0(cos θk, sin θk) (B.5)
Moreover, we can use the expressions :

eiφσ
j = 12 cosφ+ iσj sinφ

eiσ
jφ/2σj

′
e−iσ

jφ/2 = σj
′ cosφ+ iσjσj

′ sinφ
(B.6)

With theses expressions, we have

σx = e−iσ
yπ/4σzeiσ

yπ/4

σy = e−iσ
zπ/4σxeiσ

zπ/4

σz = e−iσ
xπ/4σyeiσ

xπ/4

(B.7)

Hence the diagonalization of the normal part of the Hamiltonian gives:

HTI = ~vFσ.k − µ
= ~vFk0(cos θkσ

x + sin θkσ
y)− µ

1 = ~vFk0e
−iσzθk/2σxeiσ

zθk/2 − µ
= ~vFk0e

−iσzθk/2e−iσ
yπ/4σzeiσ

yπ/4eiσ
zθk/2 − µ

= e−iσ
zθk/2e−iσ

yπ/4 (~vFk0σ
z − µ) eiσyπ/4eiσzθk/2

(B.8)

The aim of this change of reference frame is to have a fixed direction for the momentum
~k in the new frame. For that we use the rotating frame (rotation around z by an angle θk
done in the calculation by the matrices eiσzθk/2) drawn in figure B.1. The second rotation
around the y axis enables to have ~k along the 3rd direction of the final basis.
Therefore, in second quantification the Hamiltonian is given by:

HTI =
∑

k
ψ†k(~vFσ.k − µ)ψk

=
∑

k
a†k(~vFk0σ

z − µ)ak
(B.9)

with
ak = eiσ

yπ/4eiσ
zθk/2ψk (B.10)

1. −iσzσx = iσxσz = i(iεx,z,yσy) = −(−1)σy = σy
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Figure B.1 – Schematic of the change of reference frame useful to diagonalize
HTI. The energy dispersion of the electron is linear. The spin (orange arrow)
is in the (M,~kx,~ky) plane, perpendicular the momentum. After the first
rotation used in the diagonalization, the frame changes from (O,~kx,~ky,~kz)
to (O, ~uθ, ~vθ,~kz).

(
ak,↑; ak,↓

)
= 1√

2

(
1 1
−1 1

)(
eiθk/2 0

0 e−iθk/2

)(
ψk,↑;ψk,↓

)
(
ak,↑; ak,↓

)
= 1√

2

(
eiθk/2 e−iθk/2

−eiθk/2 e−iθk/2

)(
ψk,↑;ψk,↓

)
(
a†k,↑; a

†
k,↓

)
= 1√

2

(
e−iθk/2 −e−iθk/2
eiθk/2 eiθk/2

)(
ψ†k,↑;ψ

†
k,↓

)
(B.11)

(
ψk,↑;ψk,↓

)
= 1√

2

(
e−iθk/2 −e−iθk/2
eiθk/2 eiθk/2

)(
ak,↑; ak,↓

)
(
ψ†k,↑;ψ

†
k,↓

)
= 1√

2

(
eiθk/2 e−iθk/2

−eiθk/2 e−iθk/2

)(
a†k,↑; a

†
k,↓

) (B.12)

Hence the superconducting Hamiltonian in this new basis reads :
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HS =
∑
k

∆ψ†k,↑ψ
†
−k,↓

+∆∗ψ−k,↓ψk,↑

= 1
2
∑
k

∆(eiθk/2a†k,↑ + e−iθk/2a†k,↓)(−eiθ−k/2a†−k,↑ + e−iθ−k/2a†−k,↓)

+∆∗(eiθ−k/2a−k,↑ + eiθ−k/2a−k,↓)(e−iθk/2ak,↑ − e−iθk/2ak,↓)
2 = 1

2
∑
k

∆
[
ieiθka†k,↑a

†
−k,↑ − ia

†
k,↑a

†
−k,↓ − ia

†
k,↓a

†
−k,↑ − ie−iθka

†
k,↓a

†
−k,↓

]
+H.c. 3

4 = 1
2
∑
k

i∆
[
eiθka†k,↑a

†
−k,↑ − e−iθka

†
k,↓a

†
−k,↓

]
−i∆∗

[
e−iθka−k,↑ak,↑ − eiθka−k,↓ak,↓

]

(B.13)

This Hamiltonian in the new basis couples fermions with same spin (↑↑ and ↓↓) and
depending on the direction of propagation (θk), the coupling changes its sign. It describes
a so-called px + ipy superconducting pairing symmetry:

HS = 1
2
∑
k

i∆
[

(kx + iky)
k0

a†k,↑a
†
−k,↑ −

(kx − iky)
k0

a†k,↓a
†
−k,↓ +H.c.

]
(B.14)

2. θ−k = θk + π
3. Hermitian conjugate of previous line.
4. a†k,↑a

†
−k,↓ = −a†−k,↓a

†
k,↑
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Influence of Landau-Zener transitions on
the fractional AC Josephson effect
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In the case of high transmission channels (Ti ≈ 1), when the system evolves in a non-
adiabatic manner, some lower energy state can jump to an excited state thanks to

Landau-Zener transition. In this section we introduce the Landau-Zener transition (in-
spired by Appendix D of ref [27]) and describe the influence of this process on the detection
of the 4π periodic ABS.

1 Landau-Zener transition

Let us consider a system of two ABSs : |−〉 and |+〉. These states are eigenvectors of the
time independent Hamiltonian Eq. (4.10). Therefore, during an adiabatic (infinitely

slow) evolution of the phase φ, the final state of the system will be the same as the initial
one 1.
However, if the voltage across the junction is not small (i.e. the system does not have

the time to relax to its equilibrium), according to Eq. (4.3), the phase variation may lead
to non adiabatic transition of the ABS from |−〉 to |+〉 (cf figure C.1). This so-called
Landau-Zener transition has a probability given by [108, 186]:

pLZ = exp
−π |2ε12|2

2~
∣∣∣ d
dt

(ε1 − ε2)
∣∣∣
 (C.1)

1. If the initial state is an eigenvector of the Hamiltonian, then the final state is the same eigenvector
as the initial one.
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Figure C.1 – Schematic of a Landau-
Zener transition in a short JJ with a
transmission coefficient T1 = 0.97. When
the phase is close to π, the quasiparticle
at energy E− (blue) can transit to the
upper branch (green) with a probability
pLZ or remain in the ground state with a
probability 1−pLZ. The coloured dashed
lines represent the energy dispersion of
the states without interaction.

where 2ε12 is the energy gap between the two levels and ε1 − ε2 is the energy difference
between the levels in the case of non interacting states 2.
In the case of ABS, we have:

2ε12 = E+(Ti, π)− E−(Ti, π) = 2∆
√

1− Ti

ε1 − ε2 = 2
(
E+(1, π) + φ lim

φ→π

∂E+

∂t

)
= φ∆

(C.2)

where we have approximated the second term by a Taylor expansion.
Hence, at finite voltage V , we obtain

pLZ = exp
(
−π∆(1− Ti)

eV

)
(C.3)

Consequently, the Landau-Zener transition has a high probability for highly transparent
channels and high voltages (close to ∆/e). The LZ transition can hence transit a quasipar-
ticle from −∆ to +∆ during a 2π winding of the phase. We will see in paragraph 3 that
LZ transitions on a 2π periodic ABS can artificially produce the same signature as the 4π
periodic ABS.

2 Effect of Landau-Zener transitions on the 4π periodic
ABS

When two MBSs are located at a finite distance at the two extremity of a JJ, they
interact and a small gap Eg is created in the ABS spectrum. A priori, this gap

breaks the 4π periodicity of the zero energy Majorana mode. One could think that, from
this interaction, the two MBSs are not protected anymore. However, because of possible LZ

2. Time evolution of a perfect transmitted channel (Ti = 1)
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Figure C.2. – (a): Energy-phase relation of the 4π periodic ABS by taking into account LZ transitions.
The grey and red regions corresponds to the adiabatic and non-adiabatic evolution of the system. In
the adiabatic limit, the 4π periodic ABS is not subject to LZ transitions (dashed blue line), whereas in
the non-adiabatic limit, the 4π periodic ABS losses its 4π periodicity. (b): Zoom on the second Shapiro
step of the simulated current-voltage characteristic of a 1D topological Josephson junction hosting zero
energy Majorana modes. The junction is current biased and irradiated with radio-frequencies. The curves
are different simulations for an increasing gap Eg between the upper and lower energy states using the
resistively shunted junction model with a EJ/Eg = 500 (solid), 100 (dashed), 50(dotted), 30(dotted-
dashed). With EJ = ~Ic/2e being the Josephson energy. Extracted from [49].

transitions between the lower and the upper part of the ABS spectrum, the 4π periodicity
is restored and the fractional AC Josephson effect is still predicted to be measurable.
The only counterpart of the LZ transition in this case is that for large gap Eg, the

Shapiro steps are less defined and split in two non universal steps. This effect has been
simulated by [49, 178] and the result is shown in figure C.2. The zoom of the current-
voltage characteristic on the Shapiro step n = 2 shows a splitting of the plateau when the
gap Eg increases. Hence, the interaction of the two MBSs destroys the quantization of the
Shapiro steps.

3 Effect of Landau-Zener transitions on high transmit-
ted channels

In the case of non-topological JJ, high transmitted channels also have a small gap between
the excited and ground states (cf Eq. (4.20)). When the junction is driven out of

equilibrium, this small gap allows LZ transitions in between a ground and an excited 2π
periodic ABS. These LZ transitions could hence transform a 2π ABS into an artificial
4π periodic state that produces a fractional AC Josephson effect. This effect has been
measured in the photon emission of a Single Cooper-pair transistor [21]. Hence, a high
transmitted channel produces a false positive signature that could be confused with the
one from the 4π-tABS.
The difference between the 4π-tABS of previous paragraph and artificial 4π periodic ABS

of this paragraph is that in 2, the broken 4π ABS are not degenerated in spin and are still
associated with a spinless p-wave superconductivity. However, here, in the conventional
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JJ, each ABS is spin degenerated. Hence this artificial 4π periodic signal is not associated
with the coveted MBSs.
A major question stems from this observation: Experimentally, how do we distinguish

between a fractional Josephson effect coming from a 4π-tABS from a false positive signal
that originates from a high transmitted channel ?
This issue has been addressed by Sau et al [150, 152] who concluded that the best way

to distinguish those two signals is to perform a Shapiro measurement at different frequency
excitations. The non-topological 4π periodic signal is visible at high voltages and hence
high frequency excitation. The signal stemming from the 4π-tABS will be instead more
visible at low frequency when the system is in the adiabatic limit (fRF � RNIc).
In conclusion, a reliable signature of the 4π-tABS is the fractional Josephson effect

measured by Shapiro measurement at low frequency excitation.
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Résumé :
Les isolants topologiques 3D sont un nouvel état de la matière décrit par un volume iso-

lant électriquement et recouvert par des états de surface métalliques. Une jonction Joseph-
son topologique (TJJ) formée autour de ces états de surface peut théoriquement contenir
un mode lié d’Andreev ayant une périodicité doublée par rapport aux modes liés d’An-
dreev conventionnels 2π périodiques. Le mode d’Andreev 4π périodique serait la brique
élémentaire de l’ordinateur quantique topologique. Ainsi, nous étudions la dynamique de
ce mode particulier lors de mesures de Shapiro sur des jonctions Josephson fabriquées sur
des isolants topologiques à base de bismuth.
Afin d’identifier les effets d’un mode 4π-périodique dans une mesure de Shapiro, nous

utilisons un model phénoménologique permettant de simuler la caractéristique courant-
tension d’une TJJ lors de telles mesures. Nous prédisons deux signatures du mode 4π-
périodique et estimons leur robustesse face aux effets de chauffage par effet Joule et face à
un modèle d’empoisonnement thermiquement activé du mode 4π-périodique.
Par des mesures de Shapiro, nous étudions la dynamique des TJJ basées sur le matériau

simple qu’est le Bi2Se3. L’observation des deux mêmes signatures précédemment anticipées
par nos simulations, à savoir un ordre d’apparition non conventionnel des pas de Shapiro
ainsi que la persistance d’un supercourant à la fermeture du plateau de Shapiro n = 0
prouve la présence d’un mode 4π-périodique.
Notre étude s’est également portée sur un autre isolant topologique le BiSbTeSe2. Nous

avons effectué sa croissance par cristallisation liquide-solide et avons mis en évidence,
par des mesures d’interférométrie supraconductrice une supraconductivité de surface sans
transport électronique par le volume.
Abstract :
Three dimensional topological insulators (3D TI) are a new state of matter composed

of an electrically insulating bulk covered by metallic surface states. Theoretically, a topo-
logical Josephson junction composed of these surface states can host an Andreev Bound
state (ABS) that has twice the periodicity of the conventional 2π periodic ABSs. The
4π periodic ABS is expected to be the building block of topological quantum computing.
Therefore, we study the dynamic of this particular ABS by performing Shapiro measure-
ment on Josephson junctions built with bismuth based 3D TI.
To identify the effects of a 4π periodic ABS in a Shapiro measurement, we use a phe-

nomenological model that simulates the voltage-current characteristics of a TJJ. We predict
two signatures of the 4π periodic ABS and estimate their robustness against Joule heating
and thermally activated quasiparticle poisoning of the 4π periodic mode.
We study the Josephson junctions dynamics by performing Shapiro measurements on

junctions built on Bi2Se3. We observe the two previously anticipated signatures, which
are the non-conventional appearance order of the Shapiro steps and the remaining of a
supercurrent at the closing of the Shapiro step n = 0. They prove the presence of a 4π
periodic ABS.
We also study the topological insulator BiSbTeSe2 that we have grown by using the

melting growth method. By superconducting interferometric measurements, we show a
superconducting surface transport without bulk electronic conduction.
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