
HAL Id: tel-01572434
https://hal.science/tel-01572434v1

Submitted on 7 Aug 2017 (v1), last revised 24 Aug 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Structured differential equations and multiscale
approaches for human cell population dynamics

Samuel Bernard

To cite this version:
Samuel Bernard. Structured differential equations and multiscale approaches for human cell pop-
ulation dynamics. Dynamical Systems [math.DS]. Université Claude Bernard Lyon 1, 2017. �tel-
01572434v1�

https://hal.science/tel-01572434v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Institut Camille Jordan
UMR 5208 du CNRS

Structured differential equations and multiscale
approaches for human cell population dynamics

Samuel Bernard

Habilitation à diriger des recherches





Université Claude Bernard Lyon 1
École doctorale InfoMath, ED 512

Spécialité : Mathématiques
N. d’ordre 034–2017

Structured differential equations and multiscale
approaches for human cell population dynamics

Habilitation à diriger des recherches

Soutenue publiquement le 12 juin 2017 par

Samuel Bernard

devant le Jury composé de:

Mme. Angélique Stéphanou CR CNRS, Grenoble Examinatrice

M. Franck Delaunay PU, Nice Examinateur

Mme Fahima Nekka PR, Montreal Rapporteur

M. Laurent Pujo-Menjouet MCF, HDR, Lyon 1 Examinateur

M. David Rand PR, Warwick Rapporteur

M. Benoît Perthame PU, Paris 6 Rapporteur





Contents

1 Remerciements 1

2 Curriculum Vitae 5

3 Introduction 15

4 Delay equations 19
4.1 Differential equations with distributed delays . . . . . . . . . . . . . . . . . . . . . 20
4.2 G⟨n⟩[dM] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Stability results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Positive feedback loops and robustness of oscillations . . . . . . . . . . . . . . . . 25

5 Circadian clocks 27
5.1 The circadian clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Damped versus sustained oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Synchronization of biological oscillators . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Synchronization of circadian oscillators . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Cell proliferation 35
6.1 Birth-and-death models and 14C dating . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Renewal equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 14C model and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4 Nonlinear fitting strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.5 Cardiomyocyte renewal in humans . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6 Tumor-immune interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Integrative approaches 43
7.1 Multiscale modeling in biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2 The cell division cycle and the circadian clock . . . . . . . . . . . . . . . . . . . . 44
7.3 Circadian clock and liver renewal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4 Modulation of cell population growth under circadian clock control . . . . . . . . 45
7.5 Simuscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Outlook 49

9 Selected papers 53
9.1 Bernard S, Crauste F (2015) Optimal linear stability condition for scalar differential

equations with distributed delay. Discrete Contin Dynam Systems Ser B 20:1855–
1876 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.2 Bergmann O, Bhardwaj R, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupi-
cich J, Alkass K, Buchholz B, Druid H, Jovinge S, Frisén J (2009) Evidence for car-
diomyocyte renewal in humans. Science 324:98–102 . . . . . . . . . . . . . . . . . 79

5



6 CONTENTS

9.3 Bernard S, Gonze D, Čajavec B, Herzel H, Kramer A (2007)
Synchronization-induced rhythmicity of circadian oscillators in the suprachias-
matic nucleus. PLOS Comput Biol 3:e68 . . . . . . . . . . . . . . . . . . . . . . . . 85

9.4 Besse A, Clapp G, Bernard S, Nicolini F, Levy D, Lepoutre T (2017) Stability analysis
of a model of interaction between the immune system and cancer cells in chronic
myelogenous leukemia. Bull Math Biol in press . . . . . . . . . . . . . . . . . . . 99

9.5 Chauhan A, Lorenzen S, Herzel H, Bernard S (2011) Regulation of mammalian cell
cycle progression in the regenerating liver. J Theor Biol 283:103–112 . . . . . . . . 129

9.6 El Cheikh R, Bernard S, El Khatib N (2014) Modeling circadian clock-cell cycle in-
teraction effects on cell population growth rates. J Theor Biol 363:318–331 . . . . . 141



Chapter 1

Remerciements

1



2 CHAPTER 1. REMERCIEMENTS

There are somany people I would like to thank formaking this thesis possible. I am very grateful to
all of you. My first thanks go to the HDR thesis defence committee. To my reviewers, David Rand,
Benoît Perthame and Fahima Nekka, thank you for taking the time to read the thesis carefully and
review it in depth. I would like to thank the examiners, Franck Delaunay, Angélique Stéphanou
and Laurent Pujo-Menjouet for accepting to be part of the defence committee. Having your names
on the thesis cover means a great deal to me.

L’Institut Camille Jordan et le CNRS m’ont soutenu depuis mon arrivée à Lyon en 2007, je les
en remercie. Je remercie aussi la direction de l’ICJ, Frank Wagner et Elisabeth Mironescu par le
passé et maintenant Sylvie Benzoni, ainsi que Simon Masnou, chef de l’équipe MMCS à l’ICJ, pour
leur soutien aux biomathématiques; le support informatique à l’ICJ, Laurent Azema et Thierry
Dumont; et Régis Goiffon pour son enthousiasme à partager les maths à l’Université Ouverte. Je
voudrais remercier le centre Inria Grenoble et sa direction pour l’accueil dans l’équipe Dracula et
son soutien pour le développement de Simuscale, et David Parsons qui s’est investi personnelle-
ment dans ce projet. Un grand merci à l’IXXI pour son soutien financier et à son ex-directeur
Guillaume Beslon, pour avoir promu l’interdisciplinarité en Rhône-Alpes et aidé à créer une at-
mosphère propice à l’épanouissement des biomathématiques. Un grand merci à Mostafa Adimy,
directeur de l’équipe Inria Dracula, qui ne compte pas son temps pour que le nôtre puisse être
consacré à la science.

I have a special thought for my collaborators past and present: Kirsty Spalding, Jonas Frisén, the
14C data is the best application of renewal equations one could think of; Peter Arner, for the pre-
cious data in the freezer; Mikael Rydén, Olaf Bergmann, Hagen Huttner, Aurélie Ernst, such fruit-
ful collaborations; Henrik Druid, Brita Zilg, Kanar Alkass, I can’t watch CSI with the same eye now;
JeffMold, Pedro Réu, for the one last question; et Fanie Barnabé-Heider, pour l’accent duQuébec à
Stockholm. Didier Gonze, Hanspeter Herzel, Achim Kramer, Francis Lévi, Pål Westermark, mod-
elling the circadian clock raises so much interesting questions; Vitaly Volpert, Nader El Khatib et
Angélique vous avez motivé mon intérêt pour la modélisation multiéchelles/hybride.

La vie de labo ne serait pas lamême sans lesmembres de l’équipeDracula. FabienCrauste, Thomas
Lepoutre, Laurent, Céline Vial, Olivier Gandrillon, Léon Tine, vous êtes bien plus que des col-
lègues. Fabien, merci d’y avoir cru quand j’ai eu des doutes. Merci aussi pour ton écoute, tes
conseils et ton aide dans les bons moments comme dans les très mauvais, je n’oublierai pas les
virées à Ikea, par exemple. Laurent, je n’oublierai pas le canot sur le lac Pilon, les papiers écrits
sur la plage à Vancouver, et ton accueil à mon arrivée en France. Il y a aussi toutes celles et ceux
que je croise à la salle café. C’est rassurant de voir qu’on peut toujours y trouver quelqu’un en train
de se faire couler un espresso ou une infusion.

À mes doctorants et les étudiants avec qui j’ai travaillé, ici et ailleurs: Stephan Fischer, Charles
Rocabert, Catherine Foley, Paulina Kurbatova, Pauline Mazzocco, ainsi que tous les stagiaires,
c’est toujours un plaisir de travailler avec vous. Embla Steiner, Sofia Zdunek, thank you for the
stimulating discussions. Apollos Besse, Raouf El Cheikh, Anuradha Chauhan, certains de ces
chapitres n’auraient pas été possibles sans votre travail et votre persévérance. Merci de m’avoir
fait confiance.

To my thesis directors and postdoc supervisors Michael Mackey, Jacques Bélair, Hanspeter, and
Daphne Manoussaki, with whom it all got started. I learned a lot with you, thank you.

Un grand merci à toute l’équipe administrative de l’ICJ, et en particulier à Maria Konieczny, qui
a été de toutes mes aventures administratives avec une bonne humeur indéfectible. Merci in-
finiement à Caroline Lothe pour sa grande patience à mon égard, je sais que je peux m’améliorer.
Merci à Hédi Soula et Hubert Charles pour les opportunités d’enseignement en 3BIM INSA, et à
Anne-Laure Fougères pour avoir pris en charge la direction duMasterMaths enAction à l’UCBL.

Àma famille, Roseline, Sophie, Luc, Paul, Mélissa, François, Roxane, Marjolaine et Pierre, qui sont



3

toujours là même de loin. A Dora, Ella et Alex pour leur source inépuisable de joie et d’énergie,
et pour les “tangled monster plots”. Et enfin à Carole, sans qui cette thèse ne serait qu’un projet
flou.





Chapter 2

Curriculum Vitae

5



dernière mise-à-jour: juin 2017	

	

Samuel	Bernard			

Institut	Camille	Jordan	(CNRS	UMR5208)	
Bât.	Jean	Braconnier,	43	blvd	du	11	novembre	1918,		
F-69622	Villeurbanne-Cedex,	France	
Courriel:	bernard@math.univ-lyon1.fr	
Web:	math.univ-lyon1.fr/~bernard/	
Twitter:	@samu6ernard		
	
Né	le	13/06/1976,	Canada	
Langues	parlées:	français	et	anglais	courants,	allemand	intermédiaire	

	

Expérience	professionnelle	
	
CNRS,	France	
Depuis	octobre	2011	 Membre	de	l’Equipe-Projet	Dracula,	Inria	Grenoble	
	
Depuis	octobre	2007	 Chargé	de	Recherche	1re	classe	

CNRS	UMR5208	Institut	Camille	Jordan,	Université	de	Lyon	

Marie	Curie	Research	Training	Network,	Grèce	
2006	–	2007	 Chercheur	Expérimenté	(post-doctoral)	avec	Daphne	Manoussaki		

Marie	Curie	Research	Training	Network	on	Mathematical	Methods	and	Computer	
Simulation	of	Tumour	Growth	and	Therapy	
Institute	of	Applied	and	Computational	Mathematics	Foundation	for	Research	and	Technology—
Hellas,	P.O.	Box	1527,	71110	Héraklion,	Crète,	Grèce	

Institute	for	Theoretical	Biology,	Germany	
2004	–	2006,	2007	 Assistant	de	Recherche	(post-doctoral)	dans	le	groupe	de	Hanspeter	Herzel	

Institute	for	Theoretical	Biology,	Université	Humboldt,	Invalindenstr.	43,	10115	Berlin,	Allemagne	

	

Formation	académique		
	
Université	de	Montréal,	Canada	
2000	–	2003	 Ph.D.	en	Mathématiques	Appliquées	avec	Jacques	Bélair	(Université	de	Montréal)	et	

Michael	C.	Mackey	(Université	McGill)	
Équations	différentielles	à	retard	et	leur	application	en	hématopoïèse,	avec	étude	du	cas	de	
la	neutropénie	cyclique	(2003).	
	

Domaines	d’expertise	
	
Mathématiques	 Mathématiques	appliquées,	dynamique	non-linéaire,	equations	différentielles	à	retard,	

processus	stochastiques,	analyse	numérique,	modélisation	de	systèmes	physiologiques,	
pharmacodynamique/pharmacocinétique,	modélisation	multiéchelles	

	
Biology	théorique	 Horloge	circadienne,	désordres	hématopoïétiques,	cycle	cellulaire	et	croissance	tumorale,	

regulation	transcriptionnelle,	analyse	de	données	14C	pour	le	renouvellement	de	tissus	à	



dernière mise-à-jour: juin 2017	

faible	potential	régénératifs	
	
Programmation		 Matlab,	R,	C,	C++	

	
	

Prix	&	subventions		
	
2013	-	aujourd’hui	 Foreign	Adjunct	Professor,	Institut	Karolinska,	Stockholm,	Suède	
	
2014	-	aujourd’hui	 Coordonnateur	pour	le	projet	Inria	de	développement	logiciel	software	development	

project	(Inria	ADT)	Simuscale:	une	plateforme	de	simulation	multiéchelles	pour	la	
dynamique	de	populations	cellulaires.		
https://gforge.inria.fr/projects/simuscale/	

2013-2015		 Coordonnateur	Partenariat	Hubert	Curien,	Projet	Cèdre,	Campus	France,	30097ZA	(18,000	
€,	2	years)	

	
2004	 Prix	de	la	meilleure	thèse	en	sciences	pures	et	appliquées	de	l’Université	de	Montréal	

remis	par	la	Faculté	des	Études	Supérieures		
	
	

Enseignement	
	
Dynamique	des	populations	cellulaires	(Master	2)	Université	Lyon	1,	15h	par	an.		
http://math.univ-lyon1.fr/homes-www/bernard/popdyn.html	
	
Algèbre	linéaire	et	analyse	matricielle	(3e	année	de	licence)	INSA	Lyon,	30h	par	an.		
http://math.univ-lyon1.fr/homes-www/bernard/numalg.html	
	
EDO	pour	les	neurosciences	(3e	année	de	licence)	INSA	Lyon,	10h	par	an.		
http://math.univ-lyon1.fr/~bernard/edoneuro.html	
	
	

Direction	de	thèse	
	

2014-2017		 Directeur,	Apollos	Besse,	Université	Lyon	1	
Modélisation	mathématique	de	la	leucémie	myéloïde	chronique	et	de	ses	traitements	
	

2011-2015	 Co-directeur,	Raouf	El	Cheik,	Université	Lyon	1	
Modélisation	multiéchelles	de	la	regulation	du	cycle	cellulaire	par	l’horloge	circadienne:	
application	à	la	chronothérapie	

2011-2015	 Superviseur	scientifique,	Sofia	Zdunek,	Insitut	Karolinska,	Stockholm	
Analyse	du	renouvellement	de	cellules	cardiaque	chez	l’humain	par	datation	radiocarbone	et	
modélisation	mathématique	



dernière mise-à-jour: juin 2017	

2010-2013	 Co-directeur,	Stephan	Fischer,	INSA	Lyon	
Modélisation	de	l'évolution	de	la	taille	des	génomes	et	de	leur	densité	en	gènes	par	mutations	
locales	et	grands	réarrangements	chromosomiques	

2006-2010	 Superviseur	scientifique,	Anuradha	Chauhan,	Université	Humboldt,	Berlin	
Modèles	du	cycle	cellulaire	lors	de	la	régénération	d’hépatocytes	chez	les	mammifères	

	

Publications		
	

Chapitres	de	livre	&	revues	

Bernard,	S,	How	to	Build	a	Multiscale	Model	in	Biology	(2013)	Acta	biotheoretica,	61(3),	291-303.	

G	Bordyugov,	PO	Westermark,	A	Korencivc,	S	Bernard,	H	Herzel,	Mathematical	modeling	in	chronobiology,	in	
Circadian	clocks:	Handbook	of	Experimental	Pharmacology,	Volume	217,	pp.	335-357,	Springer,	2013.	

S	Bernard,	Modélisation	multi-échelles	en	biologie,	in	Le	vivant	discret	et	continu,	Éditions	Matériologiques	(Ed.)	
pp.	65-89,	2013.	

S	Bernar,	Nés	pour	sentir	?	(2012)	Med	Sci	(Paris)	28:937-939.	

R	El	Cheikh,	T	Lepoutre,	S	Bernard,	Modeling	biological	rhythms	in	cell	populations	(2012)	Math	Model	Nat	
Phenom,	7(06),	107-125.	

M	Adimy,	S	Bernard,	J	Clairambault,	F	Crauste,	S	Génieys,	L	Pujo-Menjouet,	Modélisation	de	la	dynamique	de	
l’hématopoïèse	normale	et	pathologique	(2008)	Hematologie	14:339-350.	

	

Articles	dans	des	journaux	internationaux	(à	comité	de	lecture)	

KL	Spalding,	S	Bernard,	E	Näslund,	M	Salehpour,	G	Possnert,	L	Appelsved,	K-Y	Fu,	K	Alkass,	H	Druid,	A	Thorell,	
M	Rydén	and	P	Arner,	Impact	of	fat	mass	and	distribution	on	lipid	turnover	in	human	adipose	tissue	(2017)	Nat	
Comm	8:15253	
		
R	El	Cheikh,	S	Bernard	and	N	El	Khatib,	A	multiscale	modelling	approach	for	the	regulation	of	the	cell	cycle	by	
the	circadian	clock	(2017)	J	Theor	Biol,	DOI:10.1016/j.jtbi.2017.05.021	
	
A	Besse,	GD	Clapp,	S	Bernard,	FE	Nicolini,	D	Levy,	T	Lepoutre,	Stability	analysis	of	a	model	of	interaction	between	
the	immune	system	and	cancer	cells	in	chronic	myelogenous	leukemia	(2017)	Bull	Math	Biol,	doi:10.1007/s11538-017-
0272-7	

A	Besse,	T	Lepoutre	and	S	Bernard,	Long-term	treatment	effects	in	chronic	myeloid	leukemia	(2017)	J	Math	Biol,	
DOI:10.1007/s00285-017-1098-5	

S	Bernard,	Moving	the	Boundaries	of	Granulopoiesis	Modelling	(2016)	Bull	Math	Biol	78:2358-2363.	

R	Yvinec,	S	Bernard,	E	Hingant	and	L	Pujo-Menjouet,	First	passage	times	in	homogeneous	nucleation:	
Dependence	on	the	total	number	of	particles	(2016)	J	Chem	Phys	144:034106		

GD	Clapp,	T	Lepoutre,	R	El	Cheikh,	S	Bernard,	J	Ruby,	H	Labussière-Wallet,	FE	Nicolini	and	D	Levy,	Implication	
of	the	autologous	immune	system	in	BCR-ABL	transcript	variations	in	chronic	myelogenous	leukemia	patients	



dernière mise-à-jour: juin 2017	

treated	with	imatinib,	(2015)	Cancer	Res	75:4053	

M	Rydén,	M	Uzunel,	JL	Hård,	E	Borgström,	JE	Mold,	E	Arner,	N	Mejhert,	DP	Andersson,	Y	Widlund,	M	Hassan,	CV	
Jones,	KL	Spalding,	B-M	Svahn,	A	Ahmadian,	J	Frisén,	S	Bernard,	J	Mattsson	and	P	Arner,	Transplanted	Bone	
Marrow-Derived	Cells	Contribute	to	Human	Adipogenesis	(2015)	Cell	Metabolism	22:408-417	

B	Zilg,	S	Bernard,	K	Alkass,	S	Berg	and	H	Druid,	A	new	model	for	the	estimation	of	time	of	death	from	vitreous	
potassium	levels	corrected	for	age	and	temperature	(2015)	Forens	Sci	Int	254:158-166	

O	Bergmann,	S	Zdunek,	A	Felker,	M	Salehpour,	K	Alkass,	S	Bernard,	SL	Sjostrom,	M	Szewczykowska,	T	
Jackowska,	C	dos	Remedios,	T	Malm,	M	Andrä,	R	Jashari,	JR	Nyengaard,	G	Possnert,	S	Jovinge,	H	Druid	and	J	
Frisén,	Dynamics	of	cell	generation	and	turnover	in	the	human	heart	(2015)	Cell	161:1566-1575		

S	Bernard	and	F	Crauste,	Optimal	linear	stability	condition	for	scalar	differential	equations	with	distributed	delay	
(2015)	Discr	Contin	Dyn	Sys	B	20:1855-1876	

R	El	Cheikh,	S	Bernard	and	N	El	Khatib,	Modeling	circadian	clock-cell	cycle	interaction	effects	on	cell	population	
growth	rates	(2014)	J	Theor	Biol	363:318-331		

S	Fischer,	S	Bernard,	G	Beslon	and	C	Knibbe,	A	model	for	genome	size	evolution	(2014)	Bull	Math	Biol		76(9):2249-
2291		

Prokopiou	SA,	Barbarroux	L,	Bernard	S,	Mafille	J,	Leverrier	Y,	Arpin	C,	Marvel	J,	Gandrillon	O	and	Crauste	F,	
Multiscale	Modeling	of	the	early	CD8	T-cell	immune	response	in	lymph	nodes:	an	integrative	study	(2014)	
Computation	2:159-181		

MSY	Yeung,	S	Zdunek,	O	Bergmann,	S	Bernard,	M	Salehpour,	K	Alkass,	S	Perl,	J	Tisdale,	G	Possnert,	L	Brundin,	H	
Druid,	J	Frisén,	Dynamics	of	Oligodendrocyte	Generation	and	Myelination	in	the	Human	Brain	(2014)	Cell	159:766-
774	

Ernst	A,	Alkass	K,	Bernard	S,	Salehpour	M,	Perl	S,	Tisdale	J,	Possnert	G,	Druid	H,	Frisén	J,	Neurogenesis	in	the	
Striatum	of	the	Adult	Human	Brain	(2014)	Cell	156(5),	1072-1083	

HB	Huttner,	O	Bergmann,	M	Salehpour,	A	Rácz,	J	Tatarishvili,	E	Lindgren,	T	Csonka,	L	Csiba,	T	Hortobágyi,	G	
Méhes,	E	Englund,	BW	Solnestam,	S	Zdunek,	C	Scharenberg,	L	Ström,	P	Ståhl,	B	Sigurgeirsson,	A	Dahl,	S	Schwab,	
G	Possnert,	S	Bernard,	Z	Kokaia,	O	Lindvall,	J	Lundeberg	and	J	Frisén,	The	age	and	genomic	integrity		of	neurons	
after	cortical	stroke	in	humans	(2014)	Nat	Neurosci	17:801-803	
	
Alkass	K,	Saitoh	H,	Buchholz	BA,	Bernard	S,	Holmlund	G,	Senn	DR,	Spalding	KL,	Druid	H,	Analysis	of	
radiocarbon,	stable	isotopes	and	DNA	in	teeth	to	facilitate	identification	of	unknown	decedents	(2013)	PLoS	One	
8:e69597	

Rydén	M,	Andersson	DP,	Bernard	S,	Spalding	K,	Arner	P,	Adipocyte	triglyceride	turnover	and	lipolysis	in	lean	and	
overweight	subjects	(2013)	J	Lipid	Res	54:2909-13.	

KL	Spalding,	O	Bergmann,	K	Alkass,	S	Bernard,	M	Salehpour,	HB	Huttner,	E	Boström,	I	Westerlund,	C	Vial,	BA	
Buchholz,	G	Possnert,	DC	Mash,	H	Druid,	J	Frisén,	Dynamics	of	Hippocampal	Neurogenesis	in	Adult	Humans	
(2013)	Cell	153:1219-1227	

Frayn	K,	Bernard	S,	Spalding	KL,	Arner	P,	Adipocyte	Triglyceride	Turnover	Is	Independently	Associated	With	
Atherogenic	Dyslipidemia	(2012)	Journal	of	the	American	Heart	Association	1:e003467	

Bergmann	O,	Liebl	J,	Bernard	S,	Alkass	K,	Yeung	MS,	Steier	P,	Kutschera	W,	Johnson	L,	Landén	M,	Druid	H,	
Spalding	KL,	Frisén	J,	The	age	of	olfactory	bulb	neurons	in	humans	(2012)	Neuron	74:634-639	



dernière mise-à-jour: juin 2017	

O	Bergmann,	S	Zdunek,	J	Frisén,	S	Bernard,	H	Druid,	S	Jovinge,	Cardiomyocyte	Renewal	in	Humans	(2012)	Circ	
Res	110:	e17-e18	

P	Kurbatova,	S	Bernard,	N	Bessonov,	F	Crauste,	I	Demin,	C	Dumontet,	S	Fischer,	V	Volpert,	Hybrid	Model	of	
Erythropoiesis	and	Leukemia	Treatment	with	Cytosine	Arabinoside	(2011)	SIAM	J	Appl	Math	71:2246-2268	

Arner	P,	Bernard	S,	Salehpour	M,	Possnert	G,	Liebl	J,	Steier	P,	Buchholz	BA,	Eriksson	M,	Arner	E,	Hauner	H,	
Skurk	T,	Rydén	M,	Frayn	KN,	Spalding	KL,	Dynamics	of	human	adipose	lipid	turnover	in	health	and	metabolic	
disease	(2011)	Nature	478:110-113	

A	Chauhan,	S	Lorenzen,	H	Herzel	and	S	Bernard,	Regulation	of	mammalian	cell	cycle	progression	in	the	
regenerating	liver	(2011)	J	Theor	Biol	283:103-112	

O	Bergmann,	S	Zdunek,	K	Alkass,	H	Druid,	S	Bernard	and	J	Frisén,	Identification	of	cardiomyocyte	nuclei	and	
assessment	of	ploidy	for	the	analysis	of	cell	turnover	(2010)	Exp	Cell	Res	317:188-194	

S	Bernard,	B	Čajavec	Bernard,	F	Lévi,	H	Herzel,	Tumor	growth	rate	determines	the	timing	of	optimal	
chronomodulated	treatment	schedules	(2010)	PLoS	Comput	Biol	6(3):	e1000712	

E	Arner,	PO	Westermark,	KL	Spalding,	T	Britton,	M	Rydén,	J	Frisén,	S	Bernard,	P	Arner,	Adipocyte	turnover:	
relevance	to	human	adipose	tissue	morphology	(2009)	Diabetes	59:105-109	

S	Bernard,	J	Frisén,	KL	Spalding,	A	mathematical	model	for	the	interpretation	of	nuclear	bomb	test	derived	14C	
incorporation	in	biological	systems	(2010)	Nucl	Instr	and	Meth	B	268:1295-1298		

O	Bergmann,	RD	Bhardwaj,	S	Bernard,	S	Zdunek,	F	Barnabé-Heider,	S	Walsh,	J	Zupicich,	K	Alkass,	BA	Buchholz,	
H	Druid,	S	Jovinge,	and	J	Frisén,	Evidence	for	cardiomyocyte	renewal	in	humans	(2009)	Science	324:98-102	

K	Sriram,	S	Bernard,	Complex	dynamics	in	the	Oregonator	model	with	linear	delayed	feedback,	(2008)	Chaos	
18:023126	

Spalding	KL,	Arner	E,	Westermark	PO,	Bernard	S,	Buchholz	BA,	Bergmann	O,	Blomqvist	L,	Hoffstedt	J,	Näslund	
E,	Britton	T,	Concha	H,	Hassan	M,	Rydén	M,	Frisén	J,	Arner	P,	Dynamics	of	fat	cell	turnover	in	humans,	(2008)	
Nature	453:783-787	

Bernard	S,	Gonze	D,	Čajavec	B,	Herzel	H,	Kramer	A,	Synchronization-induced	rhythmicity	of	circadian	oscillators	
in	the	suprachiasmatic	nucleus,	(2007)	PLoS	Comput	Biol	3(4):e68	

S	Bernard	and	H	Herzel,	Why	do	cells	cycle	with	a	24	h	period?	(2006)	Genome	Informatics	17:72-79	

S	Bernard,	B	Čajavec,	L	Pujo-Menjouet,	MC	Mackey,	and	H	Herzel,	Modelling	transcriptional	feedback	loops--The	
role	of	Gro/TLE1	in	Hes1	oscillations	(2006)	Philos	Transact	A	Math	Phys	Eng	Sci	364:1155-1170	

B	Čajavec,	H	Herzel,	and	S	Bernard,	Death	of	neuronal	clusters	contributes	to	variance	of	age	at	onset	in	
Huntington's	disease	(2006)	Neurogenetics	7:21-25	

B	Čajavec,	S	Bernard,	and	H	Herzel,	Aggregation	in	Huntington's	disease:	Insights	through	modelling	(2005)	
Genome	Inform	Ser	Workshop	Genome	Inform	16:262-271	

C	Foley,	S	Bernard,	and	MC	Mackey,	Cost-effective	G-CSF	therapy	strategies	for	cyclical	neutropenia:	
mathematical	modelling	based	hypotheses	(2006)	J	Theor	Biol	238:754-63	

D	Gonze,	S	Bernard,	C	Waltermann,	A	Kramer,	and	H	Herzel,	Spontaneous	synchronization	of	coupled	circadian	
oscillators	(2005)	Biophys	J	89:120-129	



dernière mise-à-jour: juin 2017	

L	Pujo-Menjouet,	S	Bernard,	and	MC	Mackey,	Long	period	oscillations	in	a	G0	model	of	hematopoietic	stem	cells	
(2005)	SIAM	J	Appl	Dyn	Sys	4:312-332	

S	Bernard,	J	Bélair,	and	MC	Mackey,	Bifurcations	in	a	white-blood-cell	production	model	(2004)	CR	Biologies	
327:201-210	

S	Bernard,	J	Bélair,	and	MC	Mackey,	Oscillations	in	cyclical	neutropenia:	new	evidence	based	on	mathematical	
modeling	(2003)	J	Theor	Biol	223:	283-298	

S	Bernard,	L	Pujo-Menjouet,	and	MC	Mackey	Analysis	of	cell	kinetics	using	a	cell	division	marker:	mathematical	
modeling	of	experimental	data	(2003)	Biophys	J	84:3414-3424	

S	Bernard,	J	Bélair,	and	MC	Mackey,	Sufficient	conditions	for	stability	of	linear	differential	equations	with	
distributed	delays	(2001)	Discrete	Contin	Dyn	Syst	Ser	B	1:233-256	

	

Développement	logiciel	
	
Simuscale	 Une	plateforme	de	simulation	multiéchelles	pour	la	dynamique	de	populations	cellulaires	

(C++),	https://gforge.inria.fr/projects/simuscale/	

Post-mortem	Predictor		 Un	outil	pour	la	prediction	d’intervalles	post-mortem	base	sur	la	concentration	de	
potassium	de	
l’humeur	vitreuse	

	 (R	/	shiny),	https://slbd.shinyapps.io/pmi_app/	

ODExp	 Un	solveur	EDO	léger	et	rapide	
(C),	https://github.com/samubernard/odexp	

cellDating	 Outils	de	modélisation	et	d’ajustement	non-linéaire	pour	l’estimation	des	taux	de	
renouvellement	pour	les	tissus	à	faible	potentiel	de	regeneration,	basés	sur	des	mesures	
d’incorporation	de	14C	dérivé	des	tests	nucléaires		
http://carbondating.gforge.inria.fr	

	

Conférences	invitées	
	
2016	Hambourg,	Allemagne,	Atelier	StemCellMathLab'16,	From	using	models	to	using	modelling	in	clinical	
applications	
Conférence	invitée:	Un	point	de	vue	dynamique	des	populations	de	la	rémission	sans	traitement	de	la	leucémie	
myéloïde	chronique	
	
2015	St-Etienne,	France,	Journées	MMCS	
Conférence	invitée:	Condition	optimale	pour	la	stabilité	asymptotique	linéaire	pour	les	équations	différentielles	
scalaires	avec	retards	distribués	
	
2015	Lyon,	France,		Séminaire	du	Laboratoire	de	Biométrie	et	Biologie	Évolutive	
Conférence	invitée:	Dynamique	du	renouvellement	lent	de	tissus	chez	l’humain	
	
2013	Paris,	France,	GDR	METICE	



dernière mise-à-jour: juin 2017	

Conférence	invitée:	Modélisation	multiéchelles	pour	l’hématopoïèse	-	l’Équipe	Inria	Dracula	
	
2013	Lyon,	France,	Séminaire	conjoint	Dracula-Beagle	
Conférence	invitée:	La	dynamique	du	renouvellement	cellulaire	chez	l’humain	
	
2013	Lyon,	France,	Semestre	thématique:	Mathématiques	et	biologie	
Conférence	invitée:	Des	boucles	de	rétroaction	linéaires	aux	distribution	de	retards:	applications	aux	réseaux	de	
signalisation	
	
2012	Stockholm,	Suède,	Nobel	Forum	Minisymposium	No.50	in	the	series	Frontiers	in	Medicine,	Lipid	mobilization	
from	adipose	tissue	-	novel	aspects	on	an	old	story	
Conférence	plénière:	Modelling	in	vivo	data	in	human	adipose	tissue	research	
	
2012	St-Flour,	France,	École	d’été	de	la	Société	francophone	de	biologie	théorique	(SFBT)	
Conférence	invitée:	Modélisation	multi-échelles	en	biologie	
	
2010	Rabat,	Maroc,	Conférence	internationale	de	la	Société	marocaine	de	mathématiques	appliquées	(SM2A)	
Conférence	invitée:	Un	modèle	mathématique	pour	l’interprétation	de	l’incorporation	dans	les	systèmes	biologiques	
de	14C	dérivé	des	tests	de	bombes	nucléaires		
	
2010	Brighton,	Angleterre,	Université	du	Sussex	
Conférence	invitée:	Optimisation	des	horaires	de	traitement	pour	la	chronothérapie	des	cancers	
	
2009	Stockholm,	Suède,	Institut	Karolinska	
Conférence	invitée:	Le	double	rôle	des	neuropeptides	dans	la	synchronisation	et	la	maintenance	des	rythmes	
circadiens	dans	le	noyau	suprachiasmatique	
	
2009	Lyon,	France,	Entretiens	Jacques	Cartier	
Conférence	invitée:	L’âge	de	nos	cellules	par	tests	nucléaires	
	
2009	Dubrovnik,	Croatie,	École	d’été	en	modélisation	mathématique	en	biologie	et	en	médecine	
Conférence	invitée:	Un	modèle	mathématique	pour	l’interprétation	de	l’incorporation	dans	les	systèmes	biologiques	
de	14C	dérivé	des	tests	de	bombes	nucléaires	
	
2009	Villejuif,	France,	BioSim	Network	Conference	
Conférence	invitée:	Horaires	de	traitement	chronomodulés	optimaux	
	

Organisation	d’événements	scientifiques	
	
2013	 Membre	du	comité	d’organisation	du	semestre	thématique:	Mathématiques	et	biologie,	

Lyon,	France.	
	
2009		 Co-directeur	du	comité	d’organisation	de	l’École	d’été	en	modélisation	mathématique	en	

biologie	et	en	médecine,	Dubrovnik,	Croatia.	
	

Communication	avec	le	publique	
	
2009	-	present	 Conférences	publiques	avec	l’Université	Ouverte	de	Lyon,	Lyon,	France.		



dernière mise-à-jour: juin 2017	

• L’âge	de	nos	cellules	par	tests	nucléaires	
• Garder	le	rythme,	c’est	garder	la	santé		

	

Responsibilités	
	

2011-2013	 Membre	du	comité	de	direction	de	l’institut	Rhône-alpin	des	systèmes	complexes	(IXXI,	
http://www.ixxi.fr).	

	

Comités	d’évaluation	
	

Jury	de	soutenance	de	thèse	

2013:	Anne-Cécile	Lesart,	Université	Joseph	Fourier,	Grenoble,	France	

	
Comités	de	recrutement	

2012,	2015	Grant	&	Fellowships	review,	FNRS,	Belgique	

2012	Comité	de	recrutement	pour	un	poste	de	maître	de	conférence,	Université	Joseph	Fourier,	Grenoble,	France	

	
Activité	de	relecture	

Rapporteur	dans	les	domaines	de	l’analyse	d’équations	différentielles,	biologie	computationnelle	et	dynamique	de	
populations	cellulaires	(J.	Math.	Anal.	Appl.,	J.	Theor.	Biol.,	Bull.	Math.	Biol.,	Biophys.	J.,	and	Math	Biosci.,	
Biophysical	Journal,	PLOS	One,	etc)	

	

	



14 CHAPTER 2. CURRICULUM VITAE



Chapter 3

Introduction

15



16 CHAPTER 3. INTRODUCTION

Thismanuscript is an overview of the research done in the past ten years or so. Themotivation be-
hindmost of the work I have done withmy collaborators is the observation that several interesting
biological properties of tissues and organisms cannot be reduced tomolecular mechanisms alone.
Cell proliferation and death, and intercellular interaction act as filters between what happens at
the cellular level and what is actually seen in at the cell population levels.

An illuminating example is the controversy that arose from the publication, two years ago, of a
paper by Tomasetti and Vogelstein explaining the lifetime risks of cancers across tissues by the
number of stem cell divisions in those tissues [61]. The paper failed to account for difference in
cancer incidence among populations, and neglected the fact that several environmental factors
are strongly correlated with cancer incidence, critics said [67, 6]. The correlation established by
Tomasetti and Vogelstein spans 6 orders of magnitude in the number of stem cell divisions and 5
orders of magnitude in the lifetime risks of cancer. This means that, independently of any other
factors, the risk of a cancer in a tissue is mainly determined by a cell proliferation index. By not
taking the measure of the importance of cell proliferation, we are left looking for external causes
to cancer [68]. In their most recent paper, Tomasetti and colleagues argue that even when there
is a strong environmental link such as in lung cancer, cell proliferation may account for as much
as 35% of all cancer driver mutations [62].

Another, less controversial example is the circadian clock pacemaker. The clock pacemaker is
located in a region of the brain called the suprachiasmatic nucleus. The suprachiasmatic nuclei
contain around 20,000 neurons. These neurons are circadian oscillators that synchronize to each
other to form a robust clock. At the cellular level, the oscillator is a genetic oscillator formed
by interlocked negative and positive post-translational feedback loops. Knock-out studies have
identified which of the proteins are necessary for the maintenance of the rhythms in behavior.
However, behavior does not necessarily reflect clock cell phenotype. In an elegant set of experi-
ments combinedwithmathematical modelling, Liu and colleagues [45] have shown that the genes
Per1 and Cry1 are not necessary for rhythmic behavior, but are necessary for individual clock neu-
ron rhythmicity, and that intercellular coupling preserves rhythmicity. This is a nice case where
cellular phenotype is masked by synchronization of a cell population.

The reductionist approach that has been used inmolecular biology for the past 30 years consists in
inferring biological function, often at the tissue or whole body level, frommolecular observations.
There are several areas where this approach does not work so well. If the average cellular phe-
notype is not representative of the whole population phenotype, no matter how finely individual
cells will be characterized, there will be a mismatch between the prediction and the observation.
For the reductionist approach to work, it must take into account what happens when cells are
brought together, that is, the tissue ecology. Cell population dynamics, in a broad sense, is inter-
ested in the phenomena that occurs when many cells are brought in together, interact, proliferate
and die. This is what we are interested in.

Presenting an overview of past research is not an easy task. Now that I look back at my publi-
cations, the temptation is great of trying to fix obvious holes in the studies that seemed so solid
at the time of publication. On the upside, I am quite happy to see that some of the modeling
predictions made 10 years ago seem to have been confirmed experimentally. Some other predic-
tions have failed. One such prediction concerned the regulation of a genetic negative feedback
loop by a co-repressor [19]. It was predicted that co-regulation was necessary to control transient
response of the system to external signals, but experimental data published shortly after showed
no evidence of such control.

Here is how this thesis is organized. In Chapter 4, we study the stability of a generic negative
feedback loop with a delay, which is known to be prone to instabilities and oscillations [16, Arti-
cle in Section 9.1]. The negative feedback loop can describes equally well genetic oscillators and
nonlinear feedback regulation of cell population numbers. Understanding what affects stabil-
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ity (or instability) is thus relevant for the two biological scales of interest here: the cell and the
population.

In Chapter 5, we show how interaction (cell-cell communication though a diffusible factor) can
transform a collection of sloppy oscillators into a robust, noise-resistant clock [20, Article in Sec-
tion 9.3]. There is evidence that the clock neurons follow this design principle.

In Chapter 6, we take a step back and look at the long-term renewal capacity of tissues in human.
We discuss howwe can estimate the extent of cell renewal in the human heart ventricle [11, Article
in Section 9.2]. The human heart has a limited capacity to regenerate after a stroke or during
chronic heart failure, but tens of clinical trials involving stem cells injection in the heart are being
conducted without clear understanding of fate of these cells after transplant. We also discuss a
recent model for the tumor-immune interaction, and the role of the immune system in long-term
remission in chronic myelogenous leukemia [22, Article in Section 9.4].

In Chapter 7, we discuss integrative approaches for multiscale (molecular/population) models. In
a first study [25, Article in Section 9.5], we looked at how cell division during liver regeneration
is gated by the circadian clock, based on a molecular model of the cell cycle. In a second study
[28, Article in Section 9.6], we looked at the effect of a disruption of the circadian clock of cell
proliferation.

The outlook in Chapter 8 is the opportunity to discuss the future. Finally, Chapter 9 contains the
reprints of 6 selected papers.
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4.1 Differential equations with distributed delays

Delay differential equations (DDEs), with their infinite-dimensional phase space, possess a rich
dynamics and are better suited to study complex objects with long life history. However, delays can
lead to non-biological solutions, evenwhen introducedwith care [15], which lead some researchers
to criticize the use of DDEs. We try here to show why DDEs can be useful.

Delay differential equations are equations where some of the dynamical variables depend not only
on present time t but also on the past. We consider here only scalar DDE, the idea being that any
extra equations can be eliminated by introducing a distributed time delay

dx

dt
= F

(
x,

∫ ∞

0
x(t− τ)f(τ)dτ

)
.

The history x(t− τ) is averaged against a probability density f on the positive real numbers. The
density f is non-negative,

∫∞
0 f(τ)dτ = 1, and has non-negative finite expectation s,

s =

∫ ∞

0
τf(τ)dτ < +∞. (4.1)

Solutions are in a function space, where xt : [−∞, 0] → R is the solution at time t. Initial condi-
tions are usually taken in the Banach space of bounded continuous functions on [−∞, 0] with the
supremum norm.

Steady-state solutions are constant functions xt = x̄ that satisfy F (x̄, x̄) = 0. For smooth nonlin-
ear right-hand-side function F , linearisation around a steady-state yields

dx

dt
= −ax− b

∫ ∞

0
x(t− τ)f(τ)dτ, (4.2)

with a and b the negatives of the derivatives of the instantaneous and the delayed parts of F .
Negatives are taken because in the general setting, a represents a loss rate and b, the gain of a
negative feedback loop, both of which are usually positive.

A much-studied delay distribution is theGamma distribution. As a probability law, the Gamma
delay distribution with parameters (q, β) represents the sum of q i.i.d. exponential laws of pa-
rameter β. Biologically, the Gamma distribution describes the time it take for the information
component x(t) to go through q successive stages, each with transition rate β. The delay can also
consist in a positive linear combination of m Gamma distributions. This represents r possible
paths for the information of x to go through, each having a probability pi i = 1, ...,m of being
picked up. By a suitable choice of each of the m Gamma distributions, we can approximate any
probability distribution.

It is possible to convert a DDE with a linear combination of Gamma distributions to an ODE
system consisting of a main nonlinear ODE ẋ = F (x, y) and a linear subsystem ẏ = Ay where y ∈
Rq̃ for some q̃ andA is a square of size q̃. This implies that the use of DDEs is not strictly necessary.
However, arbitrary small perturbations of the delay distribution will destroy the structure of the
corresponding ODE, in particular when q is not an integer. In that sense, ODEs are not robust
against delay perturbations. Therefore, the choice between using a scalar DDE or a nonlinear
ODE system is thus driven by what kind of perturbation to the system we are expecting. The DDE
formalism should be favoured when the delay distribution is not known precisely.

The characteristic equation associated to the scalar linear delay equation defined by equation
(4.2) is

λ+ a+ b

∫ ∞

0
exp(−λτ)f(τ)dτ = 0. (4.3)
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For a fixed delay distribution, the stability chart in the (a, b)-plane is easy to represent. When
a > |b| there is no root with positive real part, the leading root is negative. If (a, b) are varied
continuously, the only way for roots with positive real parts can appear is through the imaginary
axis (they cannot appear in the right half complex plane or at +∞). On the line b = −a there is
at least one root λ = 0. That root becomes positive when b < −a. When b > |a|, there are no
real roots, and roots with positive real part appear when they cross the imaginary axis. Assuming
b > |a|, and letting λ = iω (ω > 0), leads to two equations for the real and imaginary parts of the
characteristic equation:

a+ b

∫ ∞

0
cos(ωτ)f(τ)dτ = 0

ω − b

∫ ∞

0
sin(ωτ)f(τ)dτ = 0.

These equations can be solved parametrically for a and b:

a(ω) = −b(ω)

∫ ∞

0
cos(ωτ)f(τ)dτ

b(ω) =
ω∫∞

0 sin(ωτ)f(τ)dτ
.

The successive zeros ωk, k ≥ 0 of the function S(ω) = ω/
∫∞
0 sin(ωτ)f(τ)dτ delimit branches of

the curve (a(ω), b(ω)). Let the interval Ik = (ωk, ωk+1) and the branch

Bk = {
(
a(ω), b(ω)

)
|ω ∈ Ik}

For k odd and ω ∈ Ik, S(ω) < 0 and Bk lies below b < −|a|. Thus only branches with k even can
determine the stability. The branch B0 had two important properties

1. The branch B0 always starts at
(
a(0), b(0)

)
=

(
−s−1, s−1

)
.

2. The branch B0 always extends to +∞ along the b-axis. Even when S(ω) does not admit any
zero,

lim
ω→∞

S(ω) = 0.

Therefore, for b > s−1, loss of stability is always due to pairs of complex roots crossing the imagi-
nary axis.

Suppose that f is a single discrete delay at τ = s, i.e. f(τ) = δ(τ − s) is a Dirac mass. Then the
branches Bk, k even, are strictly ordered and the number of pairs of roots with positive real parts
added is equal to the number of branches that have been crossed from right to left when looking
in the direction of the branch for increasing values of ω. It follows that the first branchB0 defines
the boundary of stability of the linear scalar equation (4.2).

When f is not a Dirac mass, there is no such strict order on the branches. They can intersects at
several points, so that the boundary of the stability region will be determined by the first branch
crossed when moving continuously from the line a = b. For instance, when the delay distribution
takes three distinct discrete delay, at least the four first branches are needed to determine the
stability boundary (Figure 4.1). The stability chart in the (a, b)-space then becomes a tangled
monster plot1.

1This is how my daughter refers to her little brother’s colorful drawings.
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Figure 4.1: Tangledmonster plot (stability chart) for the characteristic equation with three discrete
delays λ+ a+ b

∑3
i=1 pi exp(−λτi) = 0, with τ = {0.3731, 0.7090, 5.9701} and p = {0.7, 0.2, 0.1}.

The mean delay is s = 1. The stability region (grey area: stable) is located below the union of the
branches (colored curves: B0, B2, B6, B8, and B12; the curves B4 and B10 are not visible on these
axes) onwhich the characteristic equation admits imaginary roots±iωwith increasing values ofω.
The stability boundary of the characteristic equation with a single delay at 1: λ+a+b exp(−λ) = 0
lies entirely in the stable region (grey curve: discrete delay). The stability region with three delay
is bounded by a non-trivial union of parametric curves (enlarged in right panel). For instance, at
the point (a, b) = (39.5, 59) (point +), the characteristic equation in unstable, but only because
of branch B6 (orange).

4.2 G⟨n⟩[dM]

The Goodwin model is perhaps the best-known model of a genetic oscillator. Introduced in the
1960’s by B. Goodwin [35], it describes the activity of a gene (mRNA expression x), its product
(protein concentration y) and the formation of a negative regulator complex z that inhibit gene
expression.

dx

dt
= P (z)− αx,

dy

dt
= β[x− y],

dz

dt
= β[y − z],

where the nonlinear function P is a Hill function

P (z) = k0
1

1 + zh
.

The parameters α, β, k0, h have all real, positive values. (The original Goodwin had different co-
efficients for each dynamical variable, but we keep things simple.) Parameter α is the mRNA
degradation rate, β is the degradation rate of the protein products, k0 is the maximal mRNA syn-
thesis rate. Parameter h is the Hill coefficient. There are parameters for which the Goodwin
model has unique, unstable, positive equilibrium, and a stable, positive limit cycle. However, the
limit cycle exists only for relatively large values of the Hill coefficient, h > 8. There are several
ways to modify the Goodwin model so that solutions will oscillate more easily. The reason the
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Goodwinmodel can oscillate is that it is a systemwith a delayed, negative feedback loop. The loop
is clear: x depends on z, which depends on x. It is negative because P is a decreasing function,
and it is delayed because z is a delayed version of x. We can increase the length of the delay by
adding more intermediary steps between x and z, i.e. by replacing y and z with y1, y2, ..., yq and
defining the corresponding ODEs

dyi
dt

= β(yi−1 − yi), i = 1, ..., q,

where, for ease of notation, y0 = x and yq = z.

I became interested in the Goodwin oscillator in 2004 while I was working with Hanspeter Herzel
at the Institute for Theoretical Biology in Berlin. There Imet Didier Gonze, whowas studying how
circadian clocks could synchronize to form a pacemaker. The Goodwin model had been applied
to the circadian clock already [56], and it seemed like a good compromise between the realism of
complexity and the simplicity of abstraction. Robust synchronization of nonlinear oscillators is
far from trivial, and we tried several versions of the Goodwin models as a core circadian oscillator
with varying degree of success. To keep up with these different model versions, we developed a
naming convention. We called the Goodwin model with one nonlinear equation and q auxiliary
linear equations G⟨q + 1⟩. Under this naming convention, the original Goodwin model is G3. It
is the smallest model that admits a stable limit cycle. Model G2 has only one auxiliary equation,
and it is a classical result that no such 2-dimensional negative feedback system can admit a limit
cycle. In general, the larger the q, the easier it is to produce stable limit cycles. In the limit q → ∞
(while q/β → τ > 0), the Goodwin model becomes a scalar equation with a discrete delay

dx

dt
= P (xs)− αx, (4.4)

where xs = x(t− s). This model is denoted G1d (d for delay), and is equivalent to G∞.

Another way to modify the Goodwin model is to replace linear degradation term with nonlinear
ones. We used in [34] a modified version of the Goodwin model where the degradation terms
followed Michaelis-Menten kinetics,

v
x

K + x
. (4.5)

These models are denoted G⟨n⟩M followed optionally with the indices of the variable for which
the degradation rate is nonlinear. Introduction of nonlinear degradation rates helps producing
sustained oscillations, but care must be taken to make sure solutions do not blow up.

4.3 Stability results

A Goodwin model G⟨n⟩ possesses exactly one positive equilibrium, given by the unique positive
solution of P (x) − αx = 0. Its asymptotic stability is determined by a characteristic polynomial
of degree n = q+1. In practice, the roots can be inconvenient to locate, especially when n is large
[18]. To avoid dealing with cumbersome high degree polynomials, we can use the linear chain
trick to convert the system G⟨n⟩ into a scalar differential with a distributed delay. The linear chain
trick consists in integrating the auxiliary variables yi successively, keeping the dependence on x.
This way z can be expressed as a linear functional on the history of x:

z(t) =

∫ ∞

0
x(t− τ)g(τ, q, β)dτ, (4.6)
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where g is the Gamma distribution

g(τ, q, β) =
βq

Γ(q)
τ q−1e−βτ . (4.7)

The mean delay s = q/β. Model G⟨n⟩ can then be expressed as

dx

dt
= P (z)− αx, (4.8)

with z defined by equation (4.6). We note that q, the number of auxiliary equations, is now a
ordinary parameter that can take any non-negative real value.

Let x̄ be the unique positive equilibrium of equation (4.8), then the characteristic equation of the
linear system at equilibrium is

λ+ a+ b

∫ ∞

0
g(τ, q, β)eλτdτ = 0. (4.9)

Coefficients are a = α and b = −dP/dx|x̄ ≥ 0. For q ∈ N, the characteristic equation has the same
n roots as the characteristic polynomial, so no advantage can be gained analytically with the linear
chain trick. The roots of the characteristic equation determine the asymptotic stability of the
equilibrium x̄. The equilibrium is asymptotically stable if and only if all roots have strictly negative
real parts. However, we know how the roots of the characteristic equation behave when q goes to
infinity, while q/β → s. By continuity, the roots of the characteristic equation will converge to the
roots of the characteristic equation associated to the model G1d. The characteristic equation for
model G1d is

λ+ a+ be−λs = 0. (4.10)

All roots of the equation (4.10) have strictly negative real parts if one of the conditions is satis-
fied

1. a ≥ |b| and a > −b,

2. b > a and

s <
arccos(−a/b)√

b2 − a2
. (4.11)

If none of the conditions are satisfied, there is at least one root with nonnegative real part. Our
main stability result [16, Article in Section 9.1] generalizes previous results [18]. It states that if
either of the above conditions is satisfied, all roots of the characteristic equation (4.9) for model
G⟨n⟩ also have strictly negative real parts. This stability results holds not only for delay equations
with Gamma distributions, but for any distribution with at least an exponential tail. These suffi-
cient conditions are also necessary when the distribution is a single discrete delay. Our stability
results are optimal in the sense that if the stability conditions are not met, we can find a delay
distribution with mean s such that the corresponding characteristic equation will possess a root
with a nonnegative real part. Put another way, replacing a discrete delay by a distribution of delay
cannot destabilize an equilibrium.

In practice, the bound defined by inequality (4.11) is quite conservative. Wide delay distributions
tend to expand the region of stability in the (a, b)-space at s fixed. In Figure 4.1, the shaded area
(stable) above the grey curve (discrete delay) is the region in the (a, b)-space that is stable for
the distributed delay, but unstable for the single delay. For instance, at a = 30, the stability
region is extended from b ≈ 30 to b ≈ 40. Despite the conservative conditions on a, b and s for
stability, there are obvious advantages to be able to draw stability conclusions based only on three
parameters: the coefficients a, b and the first moment of the distribution s.
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4.4 Positive feedback loops and robustness of oscillations

The Goodwin model and its variants have been used to model anything from small gene regu-
latory networks involving Hes1, p53, and NF-κB [50] (G2d), or the circadian clock [56] (G3), to
cell populations with density-dependent growth rates, as exemplified by a model for erythrocyte
production [10] (G1d).

We have identified the ingredients needed to obtain oscillations in terms of the characteristic
equation: a strong negative feedback loop b > |a|, and a significant delays. If the delay is dis-
crete, then for any a ≥ 0, there will be a critical value b for which a pair of complex roots of the
characteristic equation will cross the imaginary axis. The Hopf bifurcation theorem states that
(generically) a small amplitude limit cycle appears right there. There are often objections as to
whether the negative-feedback+delay combo is sufficient for oscillations in real genetic oscillators
and populations. The strength of the feedback is mostly determined by the Hill coefficient, and
only very specific mechanisms can produce values much larger than 4 [65]. Moreover, the delay
is likely to be smooth rather than “spiky”, and this increases the region of stability. Our stability
results tend to support these arguments that in practice it may be difficult to achieve a delay large
enough to make sustained oscillations possible.

How can biological oscillators be robust then? It has been suggested that adding positive feedback
could make an oscillator more robust [2, 63]. A simple positive feedback loop can be incorporated
by slightly modifying the nonlinear term

P (x, z) = k0
xr

1 + zh
.

The coefficient r is a cooperativity coefficient. When r < 1, cooperativity is negative, and the
positive feedback is most active for small values of x. When r > 1, cooperativity is positive, and
the loop is active for large values of x. When r = 1, cooperativity is neutral. The introduction
of a positive feedback loop can easily destabilize even a system that could never oscillate. This
happens because positive feedback loops shifts the parameter a to the left. Therefore, for any
b ≥ s−1 there will always be a value of a > −b, such that the characteristic equation has a pair of
imaginary roots, and destabilization will occur through a Hopf bifurcation.

For instance, the characteristic equation for the model G2 with a positive feedback loop is

λ+ α(1− r) +
α2h

k0
x̄h−r+1

∫ ∞

0
e−λτβe−βτdτ = 0.

The integral term simplifies to β/(λ+ β), and the characteristic equation reduces to the familiar
second-order polynomial

λ2 +
(
β + α(1− r)

)
λ+

α2h

k0
x̄h−r+1 + αβ(1− r) = 0.

We are looking for a pair of complex roots with positive real part. When r = 0, the case without
positive feedback loop, the roots cannot be complex and have a positive real part, since the trace
−α−β is negative. Another way to see that is that the characteristic equation possesses only one
branch of imaginary roots for b > |a|, which is exactly the line

(
a = −s−1, b > s−1

)
. Because

a = α > 0 the stability boundary cannot be reached.

When r > 1, however, the trace α(r−1)−β can be positive. At the same time, parameters k0 and
h can be chosen as to have a negative discriminant. Therefore, positive instantaneous feedback
loops with positive cooperativity can destabilize stable fixed points through a Hopf bifurcation.
As a rule of thumb, we can assume that increasing the cooperativity r has a destabilizing effect:
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Figure 4.2: Tangled monster plot (stability chart) for the characteristic equation with three
discrete delays with characteristic equation λ + α(1 − r) + b

∑3
i=1 pi exp(−λτi) = 0, with

τ = {0.3731, 0.7090, 5.9701} and p = {0.7, 0.2, 0.1} (delay parameters as in Figure 4.1, and
a = α(1−r)). Increasing the cooperativity coefficient rwhile keeping b constant always eventually
destabilizes a steady state, but stability switches can occur (×).

the real part of the leading eigenvalues of the characteristic equation increases with r. This is
not always true, because stability switches can occur, as evidence by a close up on the tangled
monster plots (Figure 4.2).

The main limitation of the sufficient condition for stability is that it cannot handle mixed delayed
feedback loops, i.e. loops with negative and positive delayed components. What happens when
the positive feedback loop is delayed is a bit more complicated. Intuitively, a positive loop with
a sufficiently large delay should be destabilizing. The characteristic equation of the scalar mixed
feedback loop equation would be

λ+ a+ beλτ1 − ceλτ2 = 0,

assuming bc > 0. This characteristic equation has been studied from different angles [36, 46, 24,
55]. We have recently obtained promising results concerning the locations of the roots (A Besse,
2017, Ph.D. thesis in preparation). Briefly, for τ1 fixed, and c not too large, there is a smooth curve
B in partitioning the region b ≥ | − a+ c| such that

1. If b < B, for any τ2 ≥ 0, all roots have negative real parts.

2. If b > B, there exists τ2 ≥ 0 such that the leading roots have positive real parts.

The inequality b < B is to be understood by the existence of b̄ > b such that
(
a, b̄

)
∈ B, and

b > B if there is no such value. This curve B is the “lower” part of the envelope of the limit set
of the parametric curve B0 (and only B0) when τ2 → ∞. This result should be generalizable
to delay distributions, where the curve B would be optimal when the negative feedback delay is
discrete.
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5.1 The circadian clock

The circadian clock is a biological clock that controls daily rhythms in physiology and behavior.
In mammals it is controlled by a pacemaker located in the suprachiasmatic nucleus (SCN) of the
hypothalamus. In mice, the SCN is composed of 20,000 densely packed neurons. Each of these
neurons possesses a gene regulatory network with interlocked positive and negative feedback
loops that can generate 24 hour-period oscillations in molecular concentrations. Neurons in the
SCN are organized in different regions, characterized by which neuropeptides or neurotransmit-
ters they express and whether they can receive direct light input from the retina. The ventrolateral
part of the SCN receives light from the retina and relays the information to the dorsomedial part.
As a whole, the SCN is capable of producing a coherent daily rhythm. The disparate intracellular
clocks form a coherent rhythm through mutual interaction, or coupling.

It was initially observed that neurons dispersed in cell culture mostly displayed cell-autonomous
oscillations [66], but a more recent study showed that when neurons are dispersed at a lower
density, most neurons display no or irregular oscillations [64]. When key circadian clock genes are
knocked-out, making isolated cells arrhythmic, animal behavior can still be rhythmic, indicating
that cell-cell interaction can rescue oscillations [45, 39].

So, based on available experimental data, we were looking for mechanisms to synchronize self-
sustained oscillators. However, from a mathematical point of view, damped oscillators would be
more appropriate. Damped oscillators can be entrained at any frequency, while entrainment of
sustained oscillators can show complex periodic and non-periodic solutions.

5.2 Damped versus sustained oscillators

The idea that circadian rhythms could be generated by mutually coupled damped oscillators was
already proposed by Enright in the 1980’s [30]. Enright used mutually triggered damped, noisy
relaxation oscillators, interconnected in such a way that when a given fraction of elements have
fire up, all connected elements are triggered and reset to phase 0. Enright defines a damped
relaxation oscillator so that when isolated, it will fire with an amplitude 1 at the first cycle, k < 1
at the second cycle, k2 at the third cycle, and so on. Amplitude is reset to 1 when the oscillator is
reset. It is intuitively clear such oscillators can become sustained through mutual entrainment, as
soon as enough oscillators fire at each cycle. Enright’s model shows how unreliable oscillators can
produce a reliable timekeeping. However, the assumption that individual clocks can be modeled
as relaxation oscillator is a strong one. Relaxation oscillators arise at short biological time scales.
For instance in neuron action potentials or pancreatic beta cell insulin secretion occur at a time
scales of milliseconds to minutes. It is not clear how much slower cycles, from circadian clocks
to menstrual cycles can be considered as relaxation oscillators. Relaxation oscillators, with a fast-
slow dynamics, such as the van der Pol oscillator, tend to have an all-or-none dynamics (Figure
5.1, left panels). The van der Pol oscillator is a non-linearly (negatively) damped oscillator

ẍ− εω0(1− x2)ẋ+ ω2
0x = 0.

The damping coefficient −εω0(1 − x2) is negative for small values of |x| and positive values of
ε (assuming ω0 > 0), and negative for larger values of |x|. Poincaré-Bendixson theorem can be
applied to show that the van der Pol oscillator admits a stable limit cycle.

Several experimental reports suggested that cellular clocks have sustained sinusoidal oscillations,
even in isolated cells [66, 51]. Multiple genetic regulation feedback loops, both positive and nega-
tive, have been identified, but the experimental and theoretical consensus is that a delayed nega-
tive loop is sufficient to generate and maintain a 24h cycle in molecular levels [53]. The Goodwin
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Figure 5.1: Van der Pol (top left, ε = 1, ω0 = 1) and G3 (top right, β = 1, α = 1, k0 = 2, h = 20)
phase spaces. The phase space of G3 has been projected onto the xz-plane, for y interpolated from
numerical solution: for (x, z), y was set to y(t), where ||(x, z) − (x(t), z(t))|| is minimized along
all times t. Bifurcation diagrams of the van der Pol oscillator with respect to ε (bottom left) and
G3 with respect to the Hill coefficient h (bottom right).

model G3, as defined in Section 4.2 is an instance of such a delayed negative loop, which for suit-
able parameter values, admits a stable limit cycle.

The generic process for the appearance of a limit cycle in Goodwin models is a Hopf bifurcation,
through which an asymptotically stable steady state becomes unstable an small, stable amplitude
limit cycle appears. The periodic solution is sinusoidal and there is no clear separation of time
scales (Figure 5.1, right panels) unlike in the van der Pol model. Sinusoidal and relaxation oscilla-
tors have different responses to external perturbations, so care should be taken when choosing a
system to study outside its equilibrium state. Here we have chosen to study sinusoidal oscillators,
because of their immediate biological interpretation in terms of mRNA and protein concentra-
tions. The observation that cellular clock are self-sustained indicates that the clocks should stand
away from the Hopf bifurcation.
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5.3 Synchronization of biological oscillators

Suppose we have a population ofN non-identical oscillators. Each of the oscillator is modeled by
a system of D ODEs

dxi
dt

= fi(xi),

with xi ∈ RD. We assume that the right-hand-side of the ODEs can be parametrized with param-
eter sets θi ∈ Rp: fi(x) = f(x, θi), where θi ̸= θj , for i ̸= j. We assume that there is a compact
subset Θi such that oscillator i admits a unique stable limit cycle for θi ∈ Θi. Associated to the
limit cycle is a unstable manifold that contains an unstable focus x̄i. In absence of any coupling
between the oscillators, there are at least N pairs of complex eigenvalues associated with the Ja-
cobian matrices of fi at x̄i with positive real parts. In the generic case the N oscillators orbit with
their intrinsic period τi on anN dimensional torus. There are two ways of coupling the oscillators
together, diffusive and direct coupling. A diffusive coupling term has a form

C
diff
i =

K

N

N∑
j=1

ci,jgi(xj − xi)

with gi(0) = 0, while a direct coupling has the form

Cdir
i =

K

N

N∑
j=1

ci,jhi(xj).

The parameter K is called coupling strength, and the n × n matrix c is a connectivity matrix
where ci,j is the directional connection from oscillator j to i. Here we are mainly concerned with
direct coupling. When gi is linear, the diffusive coupling can be rewritten as

−gi(xi)
K

N

N∑
j=1

ci,j +
K

N

N∑
j=1

ci,jgi(xj).

The first term can be collected into the ODE right-hand-side function fi, so both coupling types
are interchangeable to some extent. Phase synchronization occurs when some oscillators adopt
the same period. How can we achieve synchronization? All oscillators are phase synchronized if
the coupling reduces the N -dimensional torus to a limit cycle. Essentially, one way to achieve
that is to move all but one pair of the complex eigenvalues to the left half complex plane. Two dif-
ficulties arise when dealing with non-identical oscillators: partial phase synchronization, where
only a fraction of the oscillators do synchronize, while the rest runs freely, and quasi-periodic
solutions, where oscillators oscillate in coherence but not in phase.

We approached the problem by using weak sinusoidal oscillators, i.e. oscillators that are close
to a Hopf bifurcation. As an illustration, we consider the normal form equations for the Hopf
bifurcation, expressed in rectangular coordinates

dx

dt
= (µ− r2)x− ωy,

dy

dt
= (µ− r2)y + ωx,

r = x2 + y2.

For ω ̸= 0, the (0, 0) steady state is
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Figure 5.2: Number of complex eigenvalues with positive real parts (0: blue no self-sustained
oscillations; 2: green stable limit cycle, phase synchronization; 4: red quasi-periodic or stable limit
cycle; orange non-zero stable fixed-point. (Left) ω1 = 0.9, ω2 = 1.1. (Right) µ = −0.1, ω1 = 1.

• a stable focus if µ < 0,

• an unstable focus if µ > 0.

At µ = 0, there is a supercritical Hopf bifurcation and a stable limit cycle on appears the circle
r =

√
µ, with a frequency ω. Consider N such oscillators, with frequencies ωi and bifurcation

coefficient µi, i = 1, ..., N . We introduce the coupling term in x (the choice is semi-arbitrary: it
is easier to synchronize x with x rather than y with x).

dxi
dt

= (µi − r2i )xi − ωiyi +
K

N

N∑
i=1

xi,

dyi
dt

= (µi − r2i )yi + ωixi,

ri = x2i + y2i .

This is an instance of all-to-all, or global direct coupling. We compare how synchronization occurs
in two cases: i) damped oscillators µi < µ0 < 0, ii) sustained or weakly damped oscillators
µi > µ0.

When µi < 0, for sufficiently smallK, all eigenvalues are complex with negative real parts. When
µi > µ0 ≈ −0.08, the system can go through three regimes: damped oscillations and conver-
gence to 0 (Figure 5.2, Left panel, blue); quasi-periodic oscillations (red) and periodic, phase-
synchronized solutions (green or red). When µ < µ0, no sustained, quasi-periodic oscillations oc-
curs. The system converges to a fixed point (blue), or to a stable periodic phase-synchronized state
(green). Therefore, damped oscillators tend to exclude incoherent oscillatory solutions.

Simulations ofN = 100 coupled sustained or damped oscillators shows that oscillation amplitude
is much larger in sustained oscillators, but much less coherent. For the sustained oscillators, the
center of mass of the oscillators shows large amplitude, long-period oscillations (Figure 5.3, left
panel, orange), characteristic of quasi-periodic solutions (Figure 5.3, right panel, orange). For the
damped oscillators, the center of mass is constant over long time scales (Figure 5.3, left panel,
blue), indicating periodic solutions (Figure 5.3, right panel, blue).
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Figure 5.3: Synchronization of N = 100 globally-coupled (coupling matrix is one) non-identical
oscillators with coupling strength K = 0.4, random frequencies ω ∼ U [0.8, 1.2] and µ = 0.08
(orange, sustained oscillators), µ = −0.08 (blue, damped oscillators). (Left) Coherence parameter
R = ||⟨(x, y)⟩||. (Right) Orbits in the (x1, x2)-space.

5.4 Synchronizationof circadianoscillators in the suprachiasmatic
nucleus

Based on the previous section, it seems much easier to synchronize damped oscillators than sus-
tained oscillators. So what about circadian oscillators of the suprachiasmatic nucleus? They form
a dense coupled network with the following properties

1. Most if not all oscillating neurons are phase-synchronized [69].

2. Profiles are sinusoidal rather than “spiky” [69].

3. Individual amplitudes and phases vary among cells.

4. Loss of rhythmic behavior is due loss of rhythmicity in individual cells [7, 49], or loss of
synchrony [52].

In practice, it is not so easy to phase-synchronize non-identical systems of genetic oscillators. Sev-
eral modeling studies have explored the dynamics of coupled, non-identical circadian oscillators.
Some of them used van der Pol oscillators [41, 3, 4], while others used Goodwin-type oscillators
[34] or more realistic gene regulatory network models [60, 20]. It turns out van der Pol oscillators
could not be reliably phased-synchronized in any of thementioned studies, even if some degree of
coherence could be achieved. Whether the requirement for phase-synchronization is biologically
relevant remains an open question.

Our initial model [34] consisted of the core circadian oscillator G3M augmented with a fourth
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Figure 5.4: Synchronization of N = 2 coupled oscillators with with period ratio 0.9. (Left) Mean
field F for K = 1 (blue) and K = 0.3 (orange). (Right) (X1, X2) phase space (K = 1, blue;
K = 0.3, orange). The two oscillators are phase-synchronized for the two values of the coupling
strength K.

auxiliary equation for the putative couple agent vasointestinal polypeptide (VIP):

dXi

dt
= v1

Kn
1

Kn
1 + Zn

i

− v2
Xi

K2 +Xi
+ vc

KF

Kc +KF
+ L, (5.1)

dYi
dt

= k3Xi − v4
Yi

K4 + Yi
, (5.2)

dXi

dt
= k5Yi − v6

Zi

K6 + Zi
, (5.3)

dVi

dt
= k7Xi − v8

Vi

K8 + Vi
. (5.4)

The variables represent: X the mRNA concentration of a clock gene (Per or Cry); Y the resulting
protein PER or CRY concentration; and Z the concentration of the active (inhibitory) form of the
protein. The variable V is the putative coupling agent concentration released. Each neuron is
labeled i, i = 1, ..., N . We usedN = 10, 000. Coupling is assumed to be fast so as to make amean
field approximation for the concentration of the coupling agent

F =
1

N

N∑
i=1

Vi. (5.5)

The average concentration F of coupling agent V acts positively on the expression of the clock
gene, while the clock gene is repressed through the delayed formation of the repressor Z. The
ingredients are there to promote the existence of a clock. The parameter L is a light input, K is
the sensitivity of the cells to the mean field F . Default parameters were: Hill coefficient n = 4,
v1 = 0.7 nM/h; K1 = 1 nM; v2 = 0.35 nM/h; K2 = 1 nM; k3 = 0.7/h; v4 = 0.35 nM/h; K4 = 1
nM; k5 = 0.7/h; v6 = 0.35 nM/h; K6 = 1 nM; k7 = 0.35 nM/h; v8 = 1 nM/h; K8 = 1 nM;
vc = 0.4 nM/h; Kc = 1 nM; K = 0.5; and L = 0. Parameters were chosen so that individual
oscillators were sustained in absence of coupling. We obtained a random distribution of periods
by rescaling rate constants, i.e. by dividing v1, v2, k3, v4, k5, v6, k7 and v8 by τi, i = 1, ..., N ,
where τi follows a Gaussian distribution with mean 1.0 and standard deviation 0.05. This way, the
periods are distributed around 23.5h with a standard deviation of 5%. Coupling is direct, meaning
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that even in case of perfect synchronization, the coupling term in non-zero. A bifurcation analysis
showed the existence of a very small interval of phase-synchronization at low coupling strength,
where a small amplitude stable limit cycle exists. At mid-strength levels, no sustained oscillations
could occur. At larger coupling strengths, oscillators entered a regime of large-amplitude robust
phase-synchronization ([34, Figure 2C]). The difference between the small and large amplitudes
is quite striking (Figure 5.4)

To make sure the high-amplitude phase-synchronization regime was not due to sustained oscil-
lators, we checked that under constant mean fields in the range observed for synchronization, in-
dividual oscillators were outside the range were stable limit cycles exist ([34, Figure 2A,B]).

In a follow-up study [20, Article in Section 9.3], we used a more realistic, yet simple model by
Becker-Weimann and colleagues [9] for the circadian clock and spatially realistic coupling ma-
trices. Parameters in the original circadian clock model were set so that it could produce stable
large amplitude oscillations. We deliberately reduced the strength of the negative feedback loop
to generate damped oscillators. We showed that globally coupled circadian clock could be phase-
synchronized in a robust manner. However, when oscillators were only sparsely connected, a
wide range of behaviors could be seen, from no oscillations at all, to mutually de-synchronized
clusters of phase-synchronized cells. These results were robust to additive noise in the equations,
and were also robust to the specific model used. In addition to the Becker-Weimann model, we
also reproduced the same qualitative behavior with G1d, G3M and the 16-variable Leloup-Goldbeter
model [43].
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6.1 Birth-and-death models and 14C dating

Retrospective cell carbon dating is a method developed for dating long lived cells in humans by
Kirsty Spalding at Jonas Frisén’s lab [59]. Themethod is based on the variations in the atmospheric
14C levels over the past decades. Extensive atmospheric (above-ground) nuclear bomb testing
between 1945 and 1963 lead to a rapid rise of the 14C levels in the atmosphere. In 1963, the Limited
Test Ban Treaty signed in Moscow put an end to most atmospheric bomb testing. Since then, 14C
levels are steadily decreasing,mainly because of the absorption in the oceans. Atmospheric carbon
is integrated into the food chain through photosynthesis. 14C is incorporated into DNA during
cell division, in an amount corresponding to the atmospheric levels around the time of division.
Because DNA is a very stable molecule, the 14C content provides a date-stamp for the birth of the
cell.

Cellular Birth-and-death models describe the dynamics of a cell population in an individual,
in which cells can either be born or die. In an individual aged t years, we denote by N(t) the
cell number in the cell population. Keeping in mind that the atmospheric 14C data provides
information on the birth-date of the cells, we also want to track the chronological age of each cell.
The chronological age of a cell is defined as the time elapsed since its last division. To take into
account the age of the cells, we brake down the population N(t) into a continuum of age bins.
We say that the population is structured in chronological cell age a. The new dynamical variable
n(t, a) is the cell density at age a at time t. The cell number and the cell density are related in the
following way

N(t) =

∫ t

0
n(t, a)da. (6.1)

Atmospheric 14C levels have been measured in the northern and southern hemispheres over the
past decades (Figure 6.1, at distinct time points yi, expressed in calendar years, i = 1, ..., Ny. In
practice, we use an linear interpolation K(y) of yi. The function K is continuous and piecewise
linear. It is expressed in∆14C, a measure of the 14C levels expressed in per mil variation relative to
the baseline level of 1950 [54]. The level K(1950) = 0 by definition, and K = 300‰ corresponds
to an increase of 30 percent. The 14C content is determined by accelerator mass spectrometry,
normalized to a δ13C baseline, and corrected for radioactive decay. The 14C half-life of 5568 years
plays only a minor role for contemporary carbon dating. The 14C levels in a cells population
measured at calendar year d (the collection date) is found by averaging the atmospheric profileK
against the normalized density n(t, a) [21],

c(t) =

∫ t

0

n(a, t)

N(t)
K(d− a)da. (6.2)

To describe the Birth-and-Death model completely, we make a set of hypotheses:

H1 Time- and age-dependent cell death rate. We assume that γ ≥ 0, the death rate of a cell,
can depend on its age a and on the age of the individual t. We suppose γ(a, t) independent
from the state of the cell population.

H2 At time t0 ≥ 0 before birth, all N0 cells are aged 0. Tissues and organs start their develop-
ment before birth, and in slowly renewing tissues, some cells may never be replaced at all.
When t0 > 0, to simplify the notation, we will shift the age of the individual by t0, so that
t = 0 corresponds to the start of development.

H3 Time-dependent birth rate. Cell renewal can be affected by factors external to the tissue,
such as aging of the individual, change in lifestyle (diet, exercise, drug treatment), or acci-
dent. To reflect these extraneous factors, we assume that the birth rate β ≥ 0 depend on
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Figure 6.1: Atmospheric 14C, New Zealand and Austria. By Hokanomono. Data from the follow-
ing sources: Manning, M.R., and W.H. Melhuish. 1994. Atmospheric 14C record from Wellington. In
Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak
Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.Levin, I., B. Kromer, H.
Schoch-Fischer, M. Bruns, M. Münnich, D. Berdau, J.C. Vogel, and K.O. Münnich, 1994. δ14CO2 record
from Vermunt. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Anal-
ysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A., Public
Domain, https://commons.wikimedia.org/w/index.php?curid=634564

the age of the individual t. All cells are born with an age 0. We suppose β(t) independent
from the state of the cell population.

Under normal conditions, the time scale of the cell renewal dynamics is in years, but it may hap-
pen that sharp changes in cell number occurs almost instantly, after a stroke, or after a surgical
intervention. To account for that fact, in general we assume that γ and β are generalized functions
(or distributions).

6.2 Renewal equations

The Birth-and-Deathmodel can be implemented as a linear first-order transport PDEwith a linear
death rate. Let n be the density of cells of age a in an individual of age t. Cell age a is the chrono-
logical age, i.e. the time elapsed since their last division, so the rate of aging is da/dt = 1. The
renewal equation is

∂n

∂t
(a, t) +

∂n

∂a
(a, t) = −γ(a, t)n(a, t) (6.3)
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on a ∈ Ω =]0,+∞], for t > 0. We specify the initial boundary value problem with initial condi-
tions t = 0 on a ∈ Ω and the boundary conditions for t ≥ 0,

n(a, 0) = 0, for a ∈ Ω, (6.4)

n(0, t) =

{
N0δ(a) if t = 0,

β(t) if t > 0.
(6.5)

The death rate in the right-hand-side of equation (6.3) comes from H1. The Dirac mass δ in equa-
tion (6.5) comes fromH2. The boundary condition β(t) (6.5) comes fromH3. The initial boundary
value problem naturally satisfies the compatibility condition at (a = 0, t = 0), even though it is
not continuous at that point. Equation (6.3) is hyperbolic, and it propagates the regularity of the
initial and the boundary conditions. The solution n defined on Ω̄ is expected to have the same
regularity as the boundary condition. We want to make jumps (discontinuities) possible in the
solution, either by adding or removing a certain number of cells. An appropriate way to add cells
at certain points this is by letting β take singular values at a finite number of time points, i.e. β is
a sum of a locally integrable function and Dirac masses. In the same way, removing cells can be
done by letting γ be a sum of a locally integrable function and Dirac masses. We can choose β in
the space of distributionsHs(]0, T ])with s < −1/2, and γ ∈ Hs(]0, T ], ]0, T ]), spaces that contain
Dirac masses. This is suitable if we look for weak solutions, for we are interested in evaluating 14C
levels with equation (6.2). For all continuous and bounded functions f (∈ Hs(R), s > 1/2) and for
all t ≥ 0, the operator ⟨ut, f⟩, with ut = n(a, t)/N(t) is linear and continuous. It is easily checked
that C = ⟨ut, f⟩, with f(a) = K(d− a) satisfies mina∈[0,t]{f(a)} ≤ C ≤ maxa∈[0,t]{f(a)}.

There exists a weak solution n ∈ Hs(Ω×]0, T [) to the initial boundary value problem (6.3–6.5) if,
for any φ ∈ C∞

0 (Ω) and t ∈]0, T [,∫
Ω
∂tnφda−

∫
Ω
n∂aφda = −

∫
Ω
γnφda.

Theorem 1 Set −1 < s < −1/2 and T > 0. Let β ∈ Hs(]0, T [) and γ ∈ Hs(Ω×]0, T [) be positive
distributions. The initial boundary value problem (6.3–6.5) has a unique weak (or mild) solution
n ∈ Hs(Ω×]0, T [),

n(a, t) =

{
β(t− a) exp

(
−
∫ a
0 γ(t− a+ s, s)ds

)
if 0 < a < t,

N0δ(a− t) exp
(
−
∫ t
0 γ(s, s)ds

)
if a ≥ t.

(6.6)

The solution extends trivially to the boundary {0}×]0, T [, where n(0, t) = β(t). The total cell num-
berN(t) ∈ Hs+1(]0, T [) ⊆ Lq(]0, T [), for q ≤ +∞, and

N(t) = N0e
−

∫ t
0 γ(s,s)ds +

∫ t

0
β(t− a)e−

∫ a
0 γ(t−a+s,s)dsda.

Proof 1 The solution (6.6) is found by integrating along the characteristics t = a + t0, with 0 ≥
t0 < T . Note that if γ ∈ Hs(Ω×]0, T [), then exp

(
−
∫ a
0 γ(t−a+s, s)ds

)
∈ Hs+1(Ω) and take values

in [0, 1]. Multiplying β with this distribution does not change its regularity, so n is at least as regular
as β for a < t and as δ at a = t, and consequently, n ∈ Hs(Ω×]0, T [). Extension on the boundary is
obtained by extending along the characteristics.

A particular situation of interest is when the cell number is assumed not to change significantly:
dN(t)/dt = 0, for t > 0. This means that all dying cells are replaced, leading to a Volterra
equation (of the second kind) on β,

β(t) = N0v(t, t) +

∫ t

0
v(t− a, t)β(a)da, t > 0, (6.7)
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where

v(a, t) = γ(a, t) exp
(
−
∫ a

0
γ(t− a+ s, s)ds

)
. (6.8)

There is no closed form solution in general for this equation, but it can easily be solved numeri-
cally. Existence and uniqueness of the solution to the Volterra equation for a continuous function
v(a, t) can be shown, (see for instance [40]).

Another situation of interest is when different subsets of cells with different renewal capacities
are present in the sample. This happens for instance when the sample is spatially heterogeneous.
In that case, a spatial or type structure x ∈ [0, 1] can be introduced, so that nx(a, t)dx is the cell
density of type. In case a finite number of types are present, a discrete index j can be used: nj(a, t)
is the cell density of type j, j = 1, ..,m. For each cell type, β and γ and N0 are parametrized with
the cell type index j, but cell cannot move from one type or another (no-transdifferentiation or
movement) and each cell subset evolves independently of the other ones. Therefore the total cell
density

n(a, t) =

m∑
j=1

nj(a, t),

where each nj(a, t) is solved independently.

6.3 14C model and data

Samples come in the form (ci, bi, di), for individual i, i = 1, ..., n, where ci is the 14C level in the
sample of interest, bi is the birth date of the individual, and di is the date of collection of the
biological sample. The collection date is the date at which we can assume that there is no more
14C exchange in the sample. For individuals aged ti = di − bi, i = 1, ..., n at date of collection, the
problem is to find γ and β such that the predicted 14C levels c̃i are close to the measured levels ci.
We distinguish the global problem, in which we try to find a single γ and β that fits well the 14C
for the all individuals, in the least-square sense

SSE =
n∑

i=1

w2
i

(
ci − c̃i

)2 (6.9)

from the individual problem, in which we try to find γi and βi for individual i that matches the
14C levels, ci = c̃i. The weights wi, can be related to the experimental error on the measurement
ci, or to other “confidence” measure on the data. The mass of carbon measured, for instance, is a
good indicator of the confidence that can be put in a sample measurement.

Equation (6.2) suggests that, at best, the 14C level provides information on the average age of the
distribution n(a, t). Therefore, it is unlikely, in practice, that much information about the shape
of n(a, t) can be extracted from the 14C data, even when the 14C level is available for wide ranges
of ages t.

6.4 Nonlinear fitting strategies

Tofindbirth anddeath rates that reproducewell the experimental data, it seems fair to parametrize
β and γ: β = β(t; θ) and γ = γ(a, t; θ), where θ is a vector of real-valued parameters of size p.
The least-square problem becomes: find θ ∈ Rp such that the SSE (6.9) is minimized (locally).
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The individual problem becomes: find θ ∈ Rp such that c̃i(θ) = c. The least-square problem
has always at least one solution, but the individual problem has in general two solutions, even
for p = 1, given that the bomb curve is not monotonous. For the individual problem, we restrict
ourselves to parametric models with p = 1.

The general strategy for finding adequate rates is to start with simple models, or scenarios, with
few parameters, and to improve the goodness-of-fit by increasing the complexity of the scenarios.
The corrected Akaike Information Criterion (AICc) is a useful tool to compare scenarios that
have different numbers of parameters. The AICc is

AICc = n log
(SSE

n

)
+ 2p+

2K(K + 1)

n−K − 1
,

where n is the number of samples to fit and K the total number of parameters in the model,
which also includes the unknown variance of the least-square, SSE/n, so thatK = p+1, [23]. The
third term accounts for the correction in the AICc, and penalizes scenarios with large numbers of
parameters. This term is non-negligible when n is small, as it can be here.

The simplest model has a single parameter, a constant death rate: γ(a, t) = γ. The birth rate is
set so that the total cell number is constant: β = N0γ. In that case, the death rate γ is called
turnover rate. The turnover rate corresponds approximately to the fraction renewed each year.
The term turnover rate is also more loosely applied when the N(t) is not constant but is only
changing slowly.

6.5 Cardiomyocyte renewal in humans

The heart has a very limited regenerative capacity. After a stroke, the damaged tissue loses
cardiomyocytes, the heart muscle cells, and consequently the pumping capacity is impaired.
The heart heals by scaring and forming fibrous tissue instead of regenerating cardiomyocytes.
Stem cell-based therapies aim improving heart capacity by inducing cardiomyocyte regeneration.
Whether the heart has an endogenous potential for cardiomyocyte regeneration is fundamental
for the success of these therapies.

The renewal capacity of the heart in human has been debated over the past few years. The 14C
dating method provides a robust way to measure slow turnover rates. The method has been ap-
plied to measure the renewal rates in cardiomyocytes in healthy individual with wide range of
age [11, Article in Section 9.2] and [13]. We explored several scenarios for the dynamics of car-
diomyocyte renewal. The best scenario, based on goodness-of-fit, self-consistency and current
knowledge, showed that turnover rates vary from around 1–2% per year in young adults and de-
creases slowly to reach around 0.5% in older individuals. The main challenge regarding modeling
is to reconcile 14C samples from pre-bomb subjects (born before 1955) and from post-bomb sub-
ject (born after 1963). Fitting either group alone is very easy, but it is important to find a scenario
that can recapitulate both group in a consistent way. A further issue with cardiomyocytes is that
they polyploidize, i.e. they duplicate their DNA without mitosis or cell division, resulting in cell
nuclei with 4 or 8 pairs of chromosomes. This has a direct impact on the interpretation of the 14C
levels in DNA, which is likely to be much younger than the cell. A second issue is that one can
ususally find two different turnover rates for pre-bomb subjects, one corresponding to very young
cells and one corresponding to (very) old cells. This has been a source of confusion, leading some
to conclude to increasing renewal rates in older subjects [38, 29].

We applied renewal models to other tissues, adipocytes (fat cells) [57] and lipids [5]; neurons of
the hippocampus [58], striatum [31], and olfactory bulb [12], and the cortex [37]; oligodendrocytes
[70]. Most of the measurements have been done in healthy subjects. The challenge is now to
extend the results to pathological cases and to assess how cell renewal is affected.
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Figure 6.2: Atmospheric 14C profiles for different turnover rates. The atmospheric 14C levels be-
tween shows a steep rising phase between 1955 and 1963, and a slow decrease since then [44]. A
tissue formed at a given calendar year and turning over at a constant rate will show a 14C content
different from the atmospheric levels. The theoretical 14C levels are shown for 5 different turnover
rates (per year): 1e-3 (blue), 1e-2 (green), 2e-2 (orange), 4e-2 (red), 1e-1 (pink). 14C content in left
ventricle cardiomyocytes DNA from 12 subjects are plotted against the date of birth [11]. No single
turnover rate can fit 14C levels from subjects born before 1955.

6.6 Tumor-immune interaction in chronicmyelogenous leukemia

Chronic myelogenous leukemia (CML) is a haematopoietic stem cell disorder due to a chromo-
somal translocation that creates a chimeric gene from the fusion of genes Bcr and Abl. The de-
velopment of the targeted CML treatment Imatinib revolutionized cancer treatment paradigms.
Imatinib inhibits leukemic cell expansion durably, transforming a life-threatening disease into a
chronic but asymptomatic condition. There is evidence that Imatinib cannot eradicate the dis-
ease, as BCR-ABL transcripts can still be detected in the blood of otherwise asymptomatic pa-
tients. Yet, recent clinical trials showed that a significant fraction of patients who responded well
to Imatinib or similar drugs could discontinue treatment without compromising remission [47].
The immune system as been implicated in long-term remission.

A Besse [22, Article in Section 9.4] investigated under which conditions long-term remission could
be explained by the immune system. Themodel describes proliferation and expansion of leukemic
stem cells y1, circulating leukemic cells y2, and immune cells z. The three populations are de-
scribed by a system of ODEs,

dy1
dt

= ry1

(
1− y1

K

)
− µy1z, (6.10)

dy2
dt

=
a1
kinh

y1 − d2y2 − µy2z, (6.11)

dz

dt
= s− f(y2)z. (6.12)
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Figure 6.3: Log(BCR-ABL) levels during treatment (data from [27]).

This model is a reduced version of a model published previously [27]. The stem cell density self-
renews and produces circulating leukemic cells. Immune cells are activated at a basal rate s and
kill leukemic cells at a density-dependent rate µ. Immune cells also interact with leukemic cells
through the term f(y2)z. This term is the combination of two mechanisms. At low tumor density
(y2 small), f is just the natural immune cell death rate, so f(0) > 0. We assume that small
tumors can induce a immune response, but larger tumors inhibit immune system. In term of
functional form for f , this means that f is first decreasing (immune response) and then increasing
(inhibition). If d > µs/r, the disease-free steady state y1 = 0, y2 = 0, z = s/f(0) is unstable.
Then, the existence and stability of the steady states depend on the number of zeros of f :

i) No zero, inability of the immune system to mount a proper response. There is a single, large
stable disease steady-state ȳ2 > 0.

ii) One zero ymin, effective immune response at all tumor densities. There is possibly a single
low, stable disease steady state ȳ2 < ymin.

iii) Two zeros ymin ≤ ymax, effective immune response at low tumor density and inhibition at
high densities. There are possibly several disease steady-states with ȳ2 ≥ ymax. The low
disease steady-state ȳ2 ≤ ymin can co-exist.

Based on the above steady state analysis, we may speculate that the large steady states for y2
correspond to an untreated state, and that the low steady state corresponds to a remission state.
When treatment is applied, the large steady state disappear, leaving the low disease steady state as
the only stable state. It is hoped that treatment discontinuation preserves the low disease steady
state and the remission.

One prediction of this model is that for a wide range of parameters, the low disease steady state,
corresponding to remission, is a weakly attracting focus. This is similar to other tumor-immune
interactionmodels [42]. It looks like in some treated patients, BCR-ABL transcript oscillate around
low levels, even though the sampling frequency is not high enough to formally detect periodic be-
havior (Figure 6.3).
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Figure 7.1: Organisation and interaction scales in biology. The key question in multiscale mod-
eling is how to bridge the interaction (e.g. molecular networks) and the organization levels (e.g.
the cell).

7.1 Multiscale modeling in biology

In this chapter we discuss some thoughts onmultiscale and integrative modeling in biology. Most
of these ideas are presented in reference [14]. The main problem we face in building multiscale
models is linking or bridging the scales. Assuming the state of a cell at time t is X(t) ∈ Rd, what
can be said about the fate of the cell (Figure 7.1)? Even with a detailed model of the molecular
processes going on inside the cell, it is difficult to infer the fate of the cell unambiguously. This
is mainly because most of the existing data are based on average population measurements. If
we are interested in a finite set of phenotypes Φ (survival, death, division, migration, etc), can we
specify a deterministic function F : Rd → Φ, or should we specify transition intensities λi,j(X)
from phenotype i to phenotype j, and treat cell phenotype as a stochastic process? Averages do
not translate very well into discrete events such as cell division or death. It would seem best to
link the fate of a cell to a probabilistic law based on themolecular state rather than a deterministic
function.

Yet in practice assigning deterministic fate works quite well. In this chapter, we discuss two ap-
plications of integrative models: the regulation of mammalian cell cycle progression in the re-
generating liver [25, Article in Section 9.5] and the how interaction between the circadian clock
and cell cycle affects cell population growth rates [28, Article in Section 9.6]. Both are based on
deterministic fate functions.

7.2 The cell division cycle and the circadian clock

At the molecular level, cell division is orchestrated by cell-cycle dependent oscillations of cyclin
and cycling-dependent kinase (CDK) protein levels. Their sequential activation produces a well
ordered succession of cell cycle phases: growth or first gap phase G1, DNA synthesis S, second
gap phase G2, and mitosis M. Progression in the cell cycle is gated by the circadian clock. In
hepatocytes, cell cycle protein Wee1 expression is clock-controlled; its expression oscillates with a
24-h period. Wee1 delays entry of the cells into mitosis, and a 24-h modulation has been shown in
the timing of cell division [48]. Incidentally, reference [48] is one of two papers published within
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weeks by Okamura’s lab that provided much of my motivation for modeling the circadian clock.
The other is reference [69].

We have explored the link between the cell cycle and the circadian clock. In a study with A.
Chauhan [25, Article in Section 9.5], we looked at how cell division during liver regeneration is
gated by the circadian clock based on a molecular model of the cell cycle. In a second study with
R. El Cheikh [28, Article in Section 9.6], we looked at the effect of a disruption of the circadian
clock on cell proliferation. Both models are based on the regulation of Wee1 levels by circadian
clock genes.

7.3 Circadian clock and liver renewal

After partial hepatectomy (PH),whenpart of liver is removed,most of the hepatocytes de-differentiate
and re-enter the cell division cycle synchronously for one or two rounds to restore liver mass.
Matsuo and colleagues [48] have shown that the time of the day at which PH is performed af-
fects how long it takes for cells to enter mitosis, but not DNA synthesis. We have developed an
integrated model of the mammalian cell cycle based on sequential activation of cyclins [25]. The
model is composed of 26 ODEs and 92 parameters. This might seem rather large, but the model
is constructed in several modules: G1-S transition; E2F regulation; Wee1-gating; Mitosis, etc. The
model recapitulates the priming and activation of the cell cycle after damage, the entry into G1
and progression through S and M phases and back to the G1 phase.

The model exhibits “bandpass filter” properties that allow cells to be primed only if damage signal
is sustained and strong. Cyclin B controls M phase progression. First a switch-like increase in Cy-
clin B activity promotes entry into mitosis. Then Cyclin B proteolysis promotes exit from mitosis.
Cyclin B total concentration and activities are finely tuned by several mechanisms. Two feedback
loops control Cyclin B activity. First a double negative feedback loop from inhibitor Wee1, and
a positive feedback loop from the activating phosphatase Cdc25. Total Cyclin B concentration is
regulated through synthesis by E2F, and through degradation by APCCdh1 and APCCdc20. A bifur-
cation analysis showed the presence of two threshold mechanisms controlling the progression of
the cells through M phase. Cyclin B activation depends first on reaching a concentration high
enough. This occurs through a transcritical bifurcation with respect to E2F. Cyclin B activation
is maintained via positive loops. APCCdc20 is then responsible for Cyclin B degradation. This in-
duces a hysteresis, wherebyCyclin B activity shows bistability for awide range of degradation rates.
When we simulated the entrainment of the light-dark cycle by varying Wee1 synthesis, we could
reproduce the 8h-delay in mitotic entry observed experimentally by Matsuo et al. [48].

7.4 Modulationof cell populationgrowthunder circadian clock con-
trol

Cell population growth rate depends not only on the mean interdivision intervals but also on the
variability of the intervals. In a cell population with a distribution on interdivision intervals, faster
cells contribute more to the population than their nominal share, resulting in an asymmetry in
the growth rates. Likewise, variable (but determined) interdivision intervals also affect the pop-
ulation growth rate. Several studies have shown that in mammals, the cell cycle is gated by the
circadian clock. It has been suggested that this gating could serve as a tumor suppressor [33], or
enhance tissue regeneration after injury or during homeostasis [48]. The limited tissue regenera-
tion capabilities in mammals has been explained by the need to keep tumor growth in check, so
it is surprising that the same mechanism could account for both tissue regeneration and tumor
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suppression abilities. Two independent factors need to be accounted for in the circadian control:
the mean effect of the clock and the effect of the daily variation around the mean. Mathemat-
ically it has been shown that when the clock affect the proliferation rate (i.e. the interdivision
intervals), there is a natural comparison of the growth rates with and without a clock. At fixed
geometric mean effect, the presence of a clock speeds up the growth rate [26]. However, rather
than the geometric mean, it is the arithmetic mean we would like to keep constant. In this case
there is no systematic inequality in the growth rates, and a circadian variation of the proliferation
rate can either speed up or slow down the growth rate. One of the main parameter determining
whether the clock has a positive effect on the growth rate is the mean interdivision time. Growth
rates will be enhanced for an interdivision times around multiples of 24h, and impaired when
the interdivision times are far from multiples of 24h. It is tempting to speculate on an adap-
tive mechanism by which mammalian cells evolved to divide every 24h. Normal regeneration and
homeostasis would be favored by the clock, while abnormal cells with a shortened cell cycle would
be suppressed [17].

These theoretical results are based on age-structured population models, in which the cell cycle
oscillator is only implicitly defined through the succession of phase transition. In a recent com-
putational study, we explored how a molecular model of the cell cycle could be entrained by a
circadian clock oscillator, and how that affected the growth rate at the population level [28]. We
confirmed previous theoretical results that intrinsic interdivision times close to multiples of 24h
are beneficial. This is remarkable, because our results imply that absolute growth rates can be
slower in a population of fast cycling cells compared to slower cells. This effect is independent of
cell death. The reason for that is that by cell division gating by the clock prevent a certain fraction
of the otherwise fast cycling cells from progressing through the cell cycle. Therefore, although
both autonomous single cells and cell population show rapid cycling, the resulting growth rate
can be impaired. The opposite effect can also be seen, whereby slow cells can grow faster under
circadian entrainment compared to no clock. These computational results emphasize the need
for integrative models for understanding the link between molecular events and cell population
behavior.

7.5 Simuscale

We have developed over the last few years a modeling framework for simulating multiscale mod-
els. Simuscale is a versatile multiscale modeling tool for efficient simulation of large, heteroge-
neous populations of interacting cells. Cells are modeled by visco-elastic balls under mechanical
constraints. Each cell possesses an intrinsic intracellular dynamics. The intracellular states are
coupled through each other via biochemical signals expressed on the surface of the cells. Macro-
scopic cell fate (division, death, growth, movement) is entirely dictated by the intracellular state
of the cell. Physical and biochemical interactions evolves in a 3D environment. Simuscale takes
the form of a core simulation engine on top of which biological model plug-ins can be added.
Plug-ins are meant to be interoperable, so that different plug-ins (say, one for tumor cells and
one for immune cells) can be used together without any problem. This feature relies on the fact
that all cells share common properties: position, size, mechanical properties, and biochemical
signals. The intracellular dynamics is encapsulated in each cells, so different types of formalism
(e.g. Boolean networks, ODEs, stochastic differential equations, etc) can co-exist. This reduces
the need for re-implementing existing models.

Simuscale is still in active development (Simuscale is hosted at
https://gforge.inria.fr/projects/simuscale). As a proof-of-concept, we implemented the
circadian clock model developed in [20] and coupled the cells through the diffusible factor. In ad-
dition to possess a circadian clock, cells were endowed with a basic molecular cell-cycle network

https://gforge.inria.fr/projects/simuscale
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Figure 7.2: Synchronization of circadian clock in a proliferating cell population with Simuscale.
Cells (small balls) is modeled as an visco-elastic ball. They can move but adhere to each other.
They grow by random volume increments and divide according to a small cell-cycle network (ap-
proximately every 60h). The circadian clock comes from [20, Article in Section 9.3] Cells express a
clock marker (represented by cell shading: dark grey, low levels; light grey, high levels). The circa-
dian clock is coupled through cell-to-cell contact; cells sense the clock marker of their neighbors.
Cells show a high degree of synchronization with a period of ∼ 24h, despite the fact that they
grow, move and divide.

[8], which determined the timing of cell division. Model parameters in each cells were perturbed
to introduce cell-to-cell variability. Simulations show that cells divide in waves, and that the cir-
cadian clocks in each cell can synchronize when coupled locally, even in a population of several
hundred cells (Figure 7.2).
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I have tried while writing this thesis to patch holes in the published results, but I probably just
managed to paper over the cracks. I leave several unanswered questions behind. How can we
approximate nonlinear systemofODEs by scalar delay equations? What is the effect of distributed
delays on positive feedback loops? How to make more rigorous statements on the robustness of
synchronization of damped oscillators? Is it possible to make formal parameter identification for
the 14C data? Can we solve the inverse problem for general birth and death functions?

I have tried to give in this thesis a sense of direction in my research that leans towards integrative
and multiscale modeling. Multiscale modeling (in a wide sense) in biology is essential to under-
stand what emerges from the complex interactions at the different organization levels. There is
often a mismatch between available data or knowledge and the biological process of interest. For
instance, genomic data on cancer provide a detailed picture of the heterogeneity present in tumor
cells. However, cancer is a complex system, often likened to a ecological system, and the ques-
tion of interest, whether the tumor will grow, is only remotely linked to any particular genetic
profile.

We presented here two computational examples showing how problematic it can be to assign
any particular outcome at the population level from an intracellular state. In the first example,
we showed how a single-cell phenotype, a damped oscillator, could lead to a larger amplitude
oscillations and more robust synchronization when observed in a population (Figure 8.1, left).
Several experiments have supported this view of how clock neurons synchronize in the SCN.

In the second example, we have shown, using a computational model, that the growth rate of a
cell population could be slowed down or sped up depending on the status of the circadian clock, is
a way that cannot be inferred intuitively from the intracellular behavior of single cells (Figure 8.1,
right). Theses results show that, if growth rate is used as a proxy for tumorigenesis, the circadian
clock can be a tumor suppressor or promoter.
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Figure 8.1: (Left) Synchronization in clock neurons. Ensemble observation of period A = 24h
leads to best guess that each oscillator has a period similar to A. Model shows oscillators can be
damped (X). (Right) Growth under circadian clock. Ensemble observation of doubling times
B = 20h leads to best guess that single cells have an interdivision time similar to B. Model shows
interdivision times Y can be anywhere between 20 and 30h.

In the synchronization examples, cell-cell communication is the key factor, while in the cell pro-
liferation example, the key factor is the way the molecular network of the cell cycle couples with
the actual cell division. These two types of coupling, between objects at the same levels, and
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between levels, are the hallmarks of multiscale systems. Simuscale has been developed to make
coupling among and between levels easy. With the help of such simulation tools, I expect more
example of systems that are highly multiscale in nature to be uncovered. Two applications come
to mind. First, an integrated model for the regulation of the adipose tissue. The rising prevalence
of obesity in several parts of the world, and the difficulty to lose weight and maintain a healthy
weight shows that this is a complex problem with no easy solution. The second application is of
course cancer. How interactions between tumor cells and the host lead to malignant growth has
been an important topic inmathematical biology for decades. It is becoming clear that integrative
models are needed to progress in the understanding of the disease [1].

Even with all the potential for discovery, it is important to remain cautious about the real contri-
bution of multiscale models in understanding complex system. Multiscale models are difficult to
implement, and several non-trivial choices have to be made in terms of modeling formalism, cou-
pling methodologies, spatial characterization, etc. In contrasts to single-scale models, it is hard
even to list all the modeling assumptions. How do they affect the results is therefore impossible
to assess. This makes predictions risky. This is why the development of simulation frameworks
can help, by making modeling assumptions clearer, and speeding up the development and testing
phases. Multiscale models are also hard to replicate. The codes are not always available to the
community and the re-implementation of the model from scratch is usually impossible because
not all information is specified or accurate in the publications. There are welcomed initiatives
for curating multicellular data [32]. Such tools could be used to make simulation data and model
specification easier to share.

Interaction is at the heart of physiological and pathological cell population dynamics. The compu-
tational results presented here show that our intuition is not sufficient to deal even with relatively
simple interactions. Integrative computational models will be useful for exploring and testing hy-
potheses against our intuition.
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Abstract. Linear scalar differential equations with distributed delays appear
in the study of the local stability of nonlinear differential equations with feed-

back, which are common in biology and physics. Negative feedback loops tend

to promote oscillations around steady states, and their stability depends on
the particular shape of the delay distribution. Since in applications the mean

delay is often the only reliable information available about the distribution,

it is desirable to find conditions for stability that are independent from the
shape of the distribution. We show here that for a given mean delay, the lin-

ear equation with distributed delay is asymptotically stable if the associated

differential equation with a discrete delay is asymptotically stable. We illus-
trate this criterion on a compartment model of hematopoietic cell dynamics to

obtain sufficient conditions for stability.

1. Introduction. Models of self-regulating systems often include discrete delays
in the feedback loop to account for the finite time required to perform essential
steps before the loop is closed. Such mathematical simplifications are especially
welcome in biological applications, where knowledge about the loop steps is usually
sparse. This includes maturation and growth times needed to reach reproductive
age in a population [31, 40], signal propagation along neuronal axons [17], and post-
translational protein modifications [15, 44]. Introduction of a discrete delay in an
ordinary differential equation can destabilize steady states and generate complex
dynamics, from limit cycles to chaos [36]. Although the linear stability properties
of scalar equations with single discrete delays are fairly well characterized, lumping
intermediate steps into a delayed term can produce broad and atypical delay distri-
butions that deviate from discrete delays, and it is still not clear how that affects
the stability of the equation [18].

The delayed feedback differential equation of the form

ẋ = F
(
x,

∫ ∞
0

x(t− τ)dη(τ)
)
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is a model paradigm in biology and physics [1, 5, 25, 42, 44, 46]. The first argument
of F is the instantaneous part of the loop and the second one, the delayed or retarded
part, which closes the feedback loop. The integral is taken in the Riemann-Stieltjes
sense. The function η is a cumulative probability distribution function, it can be
continuous, discrete, or a mixture of continuous and discrete elements. In most
cases, the stability of the above equation is related to its linearized equation about
one of its steady states x̄,

ẋ = −ax− b
∫ ∞

0

x(t− τ)dη(τ) (1)

where the constants a and b ∈ R are the negatives of the derivatives of the instan-
taneous and the delayed parts of F at x = x̄,

a = − ∂

∂x
F (x, y)

∣∣∣
x=y=x̄

and b = − ∂

∂y
F (x, y)

∣∣∣
x=y=x̄

.

Eq. (1) is also called a linear retarded functional differential equation. Basic
theory for delay differential equations and functional differential equations can be
found in [9] and [28]. Additional applications can be found in previously mentioned
references and in [24, 36].

Stability analysis of Eq. (1), when the distribution function η differs from the
Dirac distribution, has been the subject of several works. In 1989, Boese [16] ana-
lyzed the stability of (1) for a Gamma distribution, and determined rather technical
sufficient conditions for its asymptotic stability. Kuang [37], in 1994, considered a
system of two differential equations with continuous distributed delay, possibly in-
finite. He focused on the existence of pure imaginary eigenvalues, and determined
conditions for their nonexistence, obtaining sufficient conditions for the asymptotic
stability of his system. In 2001, Bernard et al [13] considered (1) and determined
sufficient conditions for its stability, mainly in the case where the distribution is
symmetric about its mean. They then conjectured that the single Dirac measure
would be the most destabilizing distribution of delays for (1). Atay [6] recently
gave arguments in that direction. He focused on the stability of delay differential
equations near a Hopf bifurcation, and for linear delay differential equations, such
as (1), he showed that if the delay has a destabilizing effect, then the discrete delay
is locally the most destabilizing delay distribution.

Huang and Vandewalle [30] and Tang [50] also analyzed the stability of equations
similar to (1). The first authors were interested in the numerical stability of differen-
tial equations with distributed delay, but they proposed an interesting geometrical
approach to determine conditions for the stability of (1) for a special delay distri-
bution. Unfortunately, their method cannot be generalized to general distributions.
In [50], Tang determined sufficient stability conditions for very general differential
equations with distributed delay, but his results are very technical and not easy to
handle in practice. Adimy et al [1] and Crauste [23] obtained sufficient conditions
for the existence of a Hopf bifurcation when the delay density function is decreas-
ing. In [45], Ozbay et al. investigated the stability of linear systems of equations
with distributed delays, and applied their results to a model of hematopoietic stem
cell dynamics. Considering an exponential distribution of delays, they obtained
necessary and sufficient conditions for the stability using the small gain theorem
and Nyquist stability criterion. Solomon and Fridman, using Linear Matrix In-
equalities, also established sufficient conditions for exponential stability of systems
with infinite distributed delays [47]. Berezansky and Braverman recently obtained
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sufficient conditions for the stability of non-autonomous differential equations with
distributed delay [11, 12].

Finally, let us mention the work of Anderson [2, 3], who focused on the stability
of some delay differential equations, called regulator models, which are a particular
form of (1). The theory developed by Anderson [2, 3] focuses on the properties of
the probability distribution η. Although the results of Anderson are only valid for
some class of probability measures, they stress the importance of the shape of the
delay distribution. Moreover, Anderson mentions that “the more concentrated the
probability measure, the worse the stability property of the model” [3].

Although it has been observed that in general a greater relative variance provides
a greater stability, a property linked to geometrical features of the delay distribution
[2], there are counter-examples to this principle. Yet, as mentioned above, it has
been conjectured that among distributions with a given mean, the discrete delay
is the least stable one [6, 13]. If this were true, a theorem due to Hayes [29]
would provide a sufficient condition for the stability of the trivial solution of delay
differential equations independently from the shape of the delay distribution. This
conjecture has been proved by Krisztin using Lyapunov-Razumikhin functions when
there is no instantaneous part [35], and by different authors for distributions that are
symmetric about their means [6, 13, 33, 43]. It is possible to lump the non-delayed
term into the delay distribution and use the condition found in [35], but the resulting
stability condition is not optimal. Here we prove that the conjecture is true for all
delay distributions with exponential tails. That is, for a given mean delay, the scalar
linear differential equation with a distributed delay is asymptotically stable provided
that the corresponding equation with a single discrete delay is asymptotically stable.
This sufficient condition for stability is optimal in the sense that if it is not satisfied,
we can find a distribution with distributed delay for which the equation is not stable.
To illustrate this general result, we consider a compartment model of hematopoiesis
that can be expressed as a scalar differential equation with an arbitrarily complex
delay distribution, and we obtain a simple stability condition.

In section 2, we provide definitions and, in Section 3, we set the stage for the
main stability results. In section 4, we show that a distribution of discrete delays
is necessarily stable when the discrete distribution with a single delay equal to the
mean is stable. In section 5, we present the generalization to any distribution, hence
showing that distributions with distributed delays provide more stability than the
discrete distribution with the same mean. Section 6 is devoted to the presentation
of a model for hematopoiesis and the illustration of the stability problem.

2. Definitions. We consider the linear retarded functional differential equation

ẋ = −ax− b
∫ ∞

0

x(t− τ)dη(τ) (2)

with real constants a and b. We assume that η is a cumulative probability distri-
bution function: η : [0,∞) → [0, 1] is monotone nondecreasing, right-continuous,
η(τ) = 0 for τ < 0 and η(+∞) = 1. The corresponding probability density func-
tional f(τ) is given by the generalized derivative dη(τ) = f(τ)dτ . The following
definitions and Theorem 2.4 follow from Stépán [48].

Let B be the vector space of continuous and bounded functions on [−∞, 0]→ R.
With the norm ||φ|| = supθ∈[−∞,0] |φ(θ)|, φ ∈ B, B is a Banach space.
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Definition 2.1. The function x : R → R is a solution of Eq. (2) with the initial
condition

xσ = φ, σ ∈ R, φ ∈ B, (3)

if there exists a scalar δ > 0 such that xt ≡ x(t + θ) ∈ B for θ ∈ [−∞, 0] and x
satisfies Eqs. (2) and (3) for all t ∈ [σ, σ + δ).

The notation xt(σ, φ) is also used to refer to the solution of Eq. (2) associated
with the initial conditions σ and φ.

Definition 2.2. The trivial solution x = 0 of Eq. (2) is stable if for every σ ∈ R
and ε > 0 there exists δ = δ(ε) such that ||xt(σ, φ)|| < ε for any t ≥ σ and
for any function φ ∈ B satisfying ||φ|| < δ. The trivial solution x = 0 is called
asymptotically stable if it is stable, and for every σ ∈ R there exists ∆ = ∆(σ) such
that limt→∞ ||xt(σ, φ)|| = 0 for any φ ∈ B satisfying ||φ|| < ∆.

Definition 2.3. The function D : C→ C given by

D(λ) = λ+ a+ b

∫ ∞
0

e−λτdη(τ),

is called the characteristic function of the linear equation (2). The equation D(λ) =
0 is called the characteristic equation of (2).

The following theorem [26, 48] gives a necessary and sufficient condition for the
asymptotic stability of x = 0.

Theorem 2.4. Suppose that there exists ν > 0 such that the following inequality is
satisfied: ∫ ∞

0

eντdη(τ) <∞. (4)

The solution x = 0 of Eq. (2) is (exponentially) asymptotically stable if and only if
all roots of the characteristic equation D(λ) = 0 have <(λ) < 0.

Theorem 2.4 is equivalent to the statement that solutions of Eq. (2) of the form
x(t) =

∑∞
i=1 νi(t)e

λit where λi are the roots of the characteristic equation and νi(t)
polynomials, are enough to determine the stability of x = 0. Other solutions, the
small solutions, decay faster than any exponential; hence the exponential stability.

Inequality (4) implies that the mean delay value is finite,

E :=

∫ ∞
0

τdη(τ) <∞.

We assume in the following that inequality (4) is always satisfied. For more details
concerning retarded functional differential equations with infinite delays, see [26, 27].

When η represents a single discrete delay (η a heaviside function), the asymptotic
stability of the zero solution of Eq. (2) is fully determined by the following theorem,
originally due to Hayes [29].

Theorem 2.5. Let f(τ) = δ(τ−E) a Dirac mass at E. The zero solution of Eq. (2)
is asymptotically stable if and only if a > −b and a ≥ |b|, or if b > |a| and

E <
arccos(−a/b)√

b2 − a2
.

More generally, the following statements always hold for any delay distribution:

(i) When a ≤ −b, the characteristic equation of Eq. (2) has a positive real root.
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(ii) When a ≥ |b| and a > −b, the characteristic equation of Eq. (2) has no root
with positive real part.

Therefore, the stability of the solution x = 0 depends on the delay distribution only
in the parameter space region b > |a| and, from now on, we restrict the stability
analysis to that region.

Assuming b > 0 and making the change of timescale t → bt, we have a → a/b,
b→ 1 and η(τ)→ η(bτ). Eq. (2) can be rewritten as

ẋ = −ax−
∫ ∞

0

x(t− τ)dη(τ). (5)

The delay distributions affect the stability of Eq. (5) when a ∈]0, 1[.
The characteristic equation is called stable if all roots have <(λ) < 0 [48]. To

emphasize the relation between the stability and the delay distribution, we give a
similar definition for the delay distribution.

Definition 2.6. The delay distribution η (or the density f) is called stable if all
roots of the characteristic equation of Eq. (2), or Eq. (5), have <(λ) < 0. The delay
distribution η (or the density f) is called unstable if there exists a characteristic
root with <(λ) > 0.

According to Theorem 2.4 and using Definition 2.6, the solution x = 0 of Eq. (5)
is asymptotically stable if and only if the delay distribution is stable. The charac-
teristic equation of Eq. (5) is

D(λ) = λ+ a+

∫ ∞
0

e−λτdη(τ) = 0. (6)

The integral term in Eq. (6) is the Laplace transform L of the distribution η. Along
the imaginary axis λ = iω, the Laplace transform can be expressed as (Lη)(iω) =
C(ω)− iS(ω), where

C(ω) =

∫ ∞
0

cos(ωτ)dη(τ), S(ω) =

∫ ∞
0

sin(ωτ)dη(τ).

The strategy for determining the stability of distributed delays is the following.
We use a geometric argument to bound the roots of characteristic equation (6) by
the roots of the characteristic equation for a single discrete delay. More precisely,
we will show that if the leading roots associated to the discrete delay are a pair
of imaginary roots, then all the roots associated to the distribution of delays have
negative real parts. We first state, in Section 3, a criterion for stability: if S(ω) < ω
whenever C(ω) = −a, then the distribution is stable. We then show in Theorem
4.5 that a distribution of n discrete delays is more stable than a certain distribution
with two delays (in the sense that S(ω) ≤ S∗(ω), where the distribution with n
delays is denoted by η and the “special” distribution with two delays by η∗). We
construct this most “unstable” distribution and determine that only one of the
delays is positive, so that its stability can be determined using Theorem 2.5. We
then generalize for any distribution of delays in Section 5.

3. General stability criteria. Assume a ∈] − 1, 1[, and let η be a distribution
with mean E. We consider the family of distributions, scaled with the parameter
ρ ≥ 0,

ηρ(τ) =

{
η(τ/ρ), ρ > 0,

H(τ), ρ = 0,
(7)
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where H(τ) is the step or heaviside function at 0, corresponding to a single discrete
delay vanishing at τ = 0. The distribution ηρ has a mean ρE ≥ 0. The notation Dρ

is used to refer to the characteristic equation associated with the scaled distribution
ηρ. The characteristic equation for the distribution η0 is D0(λ) := λ+ a+ 1 = 0.

The next proposition provides a necessary condition for instability. It is a direct
consequence of Theorem 2.19 in [48].

Proposition 1. If the distribution η is unstable, then there exists ωs ∈ (0, ωc],

ωc =
√

1− a2, such that C(ωs) = −a and S(ωs) ≥ ωs.

Proof. Suppose that the distribution η is unstable, i.e. that the characteristic equa-
tion has roots λ with <(λ) ≥ 0. Consider the family of scaled distributions ηρ. The
roots of the characteristic equation Dρ = 0 depend continuously on the parameter
ρ and roots with positive real parts can only appear by crossing the imaginary axis.
The scaled distribution ηρ is stable for ρ = 0 (the only root is λ = −(a + 1) < 0)
and unstable for ρ = 1. Hence there exists a critical value 0 < ρ ≤ 1 at which ηρ
loses its stability, and this happens when the characteristic equation Dρ(λ) = 0 has
a pair of imaginary roots λ = ±iω, with ω ≥ 0. Splitting the characteristic equation
in real and imaginary parts, we have

<(Dρ(iω)) =

∫ ∞
0

cos(ωτ)dηρ(τ) + a = 0,

=(Dρ(iω)) = ω −
∫ ∞

0

sin(ωτ)dηρ(τ) = 0.
(8)

Since −ω satisfies the above system, we only look from now on and throughout
this manuscript to positive values of ω. The upper bound on ω, ωc =

√
1− a2, is

obtained by applying Cauchy-Schwartz inequality,

a2 + ω2 =
(∫ ∞

0

cos(ωτ)dηρ(τ)
)2

+
(∫ ∞

0

sin(ωτ)dηρ(τ)
)2

≤ 1.

Rewriting (8) in term of η, we have∫ ∞
0

cos(ωρτ)dη(τ) = −a,
∫ ∞

0

sin(ωρτ)dη(τ) = ω.

Finally, setting ωs := ρω, we obtain 0 < ωs ≤ ω ≤ ωc and

C(ωs) =

∫ ∞
0

cos(ωsτ)dη(τ) = −a, S(ωs) =

∫ ∞
0

sin(ωsτ)dη(τ) = ω ≥ ωs.

This completes the proof.

Proposition 1 provides a sufficient condition for asymptotic stability, stated in
the following corollary.

Corollary 1. The distribution η is stable if one of the two following conditions is
satisfied:

(i) C(ω) > −a for all ω ∈ [0, ωc],
(ii) C(ω) = −a, for ω ∈ ]0, ωc], implies that S(ω) < ω.

The condition S(ω) < ω is not necessary for stability, as there are cases where
S(ω) ≥ ω even though the distribution is stable. This happens when an unstable
distribution switches back to stability as E is further increased (see [10] or [16]).
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4. Stability of a distribution of discrete delays. In this section, we show that
a distribution with n discrete delays and mean E is more stable than the distribution
with a single discrete delay E. It is convenient to represent distributions of discrete
delays by their densities. We denote a density of n discrete delays τi ≥ 0, and
weights pi > 0, i = 1, ..., n, n ≥ 1, as

fn(τ) =
n∑
i=1

piδ(τ − τi)

where δ(τ − τi) is a Dirac mass at τi, and
n∑
i=1

piτi = E, and
n∑
i=1

pi = 1. (9)

The characteristic equation associated with the density fn is Dn(λ) = λ + a +∑n
i=1 pie

−λτi = 0. Likewise, we denote

Cn(ω) =
n∑
i=1

pi cos(ωτi), Sn(ω) =
n∑
i=1

pi sin(ωτi).

Following Corollary 1, for fn to be stable, it is enough to show that Sn(ωs) < ωs
whenever Cn(ωs) = −a, ωs ≤ ωc. We now show that among all distributions
satisfying Cn(ωs) = −a for a fixed ωs, there exists a density f∗ that maximizes the
values of Sn(ωs). This density f∗ has only one positive delay, making it easy to
show that S∗(ωs) < ωs. This would imply that all discrete delay distributions are
stable.

Definition 4.1. We define the constants c ≈ 0.7246 and θc ≈ 2.3311, where c is
the smallest positive value such that cos(θ) ≥ 1− cθ for all θ > 0, found by solving
the two equations c = sin(θ) and 1 − θ sin(θ) = cos(θ) for c > 0, θ > 0, and θc
is the positive value for which cos(θ) = 1 − cθ. We define the convex function
g(x) : [0, π]→ [−1, 1] by

g(x) =

{
1− cx, 0 ≤ x < θc,

cos(x), θc ≤ x ≤ π.

Convexity implies g(px1 + (1− p)x2) ≤ pg(x1) + (1− p)g(x2), for p ∈ [0, 1], and
x1, x2 ∈ [0, π]. In addition, we have g(x) ≤ cos(x).

The following lemmas show how to find the distribution that maximizes Sn(ωs)
for n = 2.

Lemma 4.2. Assume a ∈ ]−1, 1[ and E > 0 satisfies

E <
arccos (−a)

ωc
, (10)

with ωc =
√

1− a2. Suppose that there exists ωs ∈ [0, ωc] and a density f2 with
mean E, such that

C2(ωs) := p1 cos(ωsτ1) + p2 cos(ωsτ2) = −a. (11)

Then ωsE < θc and cos(ωsE) > −a.

Proof. From inequality (10), one gets ωcE < arccos(−a) < π, so cos(ωcE) > −a.
Moreover, since ωc ≤ 1, the inequality ωs ≤ ωc implies cos(ωsE) ≥ cos(ωcE).
Consequently, cos(ωsE) > −a and, using (11), we then deduce that cos(ωsE) >
C2(ωs).
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Furthermore, we have

C2(ωs) := p1 cos(ωsτ1) + p2 cos(ωsτ2) ≥ p1g(ωsτ1) + p2g(ωsτ2) ≥ g(ωsE).

The first inequality comes from the definitions of c and g (see Definition 4.1):
cos(x) ≥ 1 − cx for x ≥ 0. The second inequality is the convexity property of
g. Thus, we deduce cos(ωsE) > g(ωsE). Since g(x) = cos(x) for x ≥ θc, this means
that ωsE < θc.

Lemma 4.3. Assume a ∈ ]−1, 1[ and E > 0 satisfies (10). Suppose that there
exists ωs ∈ [0, ωc] and a density f2 with mean E, such that equality (11) is satisfied.
Then there exists a unique density f∗ with two discrete delays τ∗1 and τ∗2 , mean E,
such that τ∗1 = 0 and 0 < ωsτ

∗
2 ≤ θc ≤ π, and satisfying

C∗2 (ωs) = −a. (12)

Proof. Suppose there exists a density f ′2 with two discrete delays τ ′1 and τ ′2, weights
p′1 and p′2, mean E, satisfying τ ′1 = 0 and τ ′2 > 0. Necessarily, p′2τ

′
2 = E (so f ′2 has

mean E). We are going to show that

C ′2(ωs) = −a. (13)

By using p′1 = 1− p′2 and p′2 = E/τ ′2, Eq. (13) is equivalent to

cos(ωsτ
′
2) = 1− 1 + a

ωsE
ωsτ

′
2. (14)

From the definitions of the constant c and the function g (Definition 4.1), the
equation cos(x) = 1 − (1 + a)x/ωsE has positive solutions in [0, π] if and only if
cos(x) ≥ 1− cx, that is

c ≥ 1 + a

ωsE
. (15)

To see that inequality (15) is indeed satisfied, one can note that, using (11),

−a = C2(ωs) =
2∑
i=1

pi cos(ωsτi) ≥
2∑
i=1

pi(1− cωsτi) = 1− cωsE,

so −a ≥ 1 − cωsE. Thus (15) holds true. Consequently Eq. (14) has at least one
solution satisfying 0 ≤ ωsτ ′2 ≤ π.

Moreover, since θc is a tangent point (see Definition 4.1), there is exactly one
solution satisfying

0 ≤ ωsτ ′2 < θc < π.

Denote by τ∗2 the smallest value of τ ′2 that solves Eq. (14), and define f∗ =∑2
i=1 p

∗
i δ(τ − τ∗i ), with p∗2 = E/τ∗2 , p∗1 = 1 − p∗2, and τ∗1 = 0. From the definition

of τ∗2 , f∗ exists and is unique. It remains to show that f∗ is a well-defined density,
that is p∗2 ∈ [0, 1]. Since τ∗2 is the smallest and unique positive solution in the in-
terval [0, θc] of (14), the sign of cos(x)− (1− (1 + a)x/(ωsE)) determines whether
x is smaller or larger than τ∗2 in the interval [0, θc]. From Lemma 4.2, ωsE < θc
and cos(ωsE) > −a, or formulated equivalently, cos(ωsE) > 1− (1 + a)/(ωsE)ωsE.
Thus, cos(ωsE)−(1−(1+a)ωsE/(ωsE)) > 0, which implies that ωsE < ωsτ

∗
2 . Since

E = p∗2τ
∗
2 , we obtain the result 0 < p∗2 < 1, which shows that f∗ is a well-defined

density.
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Lemma 4.4. Assume a ∈ ]−1, 1[ and E > 0 satisfies (10). Suppose that there
exists ωs ∈ [0, ωc] and a density f2 with mean E, such that equality (11) is satisfied.
Then for any density f2 with mean E and satisfying Eq. (11), we have

S2(ωs) ≤ S∗(ωs),

where the density f∗ is defined in Lemma 4.3.

Proof. We recast the problem in a slightly different way. Consider a density with two
discrete delays τ1 and τ2 and mean E, such that C2(ωs) = −a. Writing u = ωsτ1,
v = ωsτ2 and T = ωsE, we can express the weights pi in terms of u and v:

p1 =
v − T
v − u

and p2 =
T − u
v − u

.

By convention, 0 ≤ u < T < v. We consider C2(ωs) and S2(ωs) as functions of u
and v; C, S : [0, T )× (T,∞)→ [−1, 1] with

C(u, v) =
v − T
v − u

cos(u) +
T − u
v − u

cos(v), (16)

S(u, v) =
v − T
v − u

sin(u) +
T − u
v − u

sin(v). (17)

The subscripts 2 have been dropped to ease the reading. Equation (17) is to be
maximized with the restriction C(u, v) = −a. The equation C(u, v) = −a defines
a one-parameter family of solutions. For u fixed, C(u, v) = −a has at most a finite
number of solutions v, with v > T . As shown in Lemma 4.3, there is always a
solution when u = 0 (equivalent to τ1 = 0). Fixing u and labeling the solutions in
increasing order vi, i = 1, ..., r, r ≥ 1, we have S(u, v1) ≥ S(u, vi) for all i. Indeed,
the equality C(u, v) = −a can be rewritten as

− a+ cos(u)

T − u
v +

au+ T cos(u)

T − u
= cos(v). (18)

Since 0 ≤ u < T < π, cos(u) is decreasing, cos(u) > cos(T ), and cos(T ) > −a
(From Lemma 4.2, we know that cos(ωsE) > −a), so cos(u) + a > 0. Eq. (18)
writes

cos(v) = α(u)− β(u)v, (19)

where β(u) > 0 for all u ∈ [0, T ), α(0) = 1 (in case u = 0, Eq. (19) reduces to Eq.
(14)) and α(u) is increasing for u ∈ [0, T ). The slope of the right hand side of (19) is
negative, cos(vi) is decreasing with solutions vi of (19) (Figure 1A). One may note
that the points

(
C(u, vi), S(u, vi)

)
are at the intersection of the chord i between

the unit circle points
(
cos(u), sin(u)

)
and

(
cos(vi), sin(vi)

)
and the vertical secant

at −a. From (16) with C(u, vi) = −a, it is easy to see that cos(vi) < −a since
cos(u) > −a. By displaying the above mentioned chords and the vertical secant on
a unit circle (Figure 1B), it follows that all the chords i, i > 1, lie below chord 1,
and thus S(u, v1) ≥ S(u, vi), i ≥ 1.

It is therefore enough to look, for each u, at the smallest solution v1 of the
equation C(u, v) = −a. The solution, which exists for u ∈ [0, T ), can be param-
eterized by u, with v1 = v1(u) = min{v|C(u, v) = −a}. At u = 0, the solution
v1(0) = ωsτ

∗
2 . Therefore, we need to show that S(0, v1(0)) maximizes S(u, v1(u)).

The total derivative of S with respect to u is

d

du
S(u, v1(u)) =

∂S

∂u
+
∂S

∂v

dv1

du
.
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Figure 1. Two solutions in v of Eq. (19) for fixed u, with density
f2(τ) = 0.8δ(τ − 0.625) + 0.2δ(τ − 3.5) and a = −0.5 (parame-
ter chosen to satisfy the conditions of Lemma 4.2). Then ωc =√

1− a2 = 0.8660, E = 1.2 < arccos(−a)/ωc = 1.2092. Eq. (11)
was solved for ωs = 0.8308 < ωc to yield T = ωsE = 0.9969
and u = ωsτ1 = 0.5192). The solution v2 = ωsτ2 = 2.9078
corresponds to the density f2 and v1 = 1.3056, to the density
f∗ = 0.3925δ(τ −0.625)+0.6075δ(τ −1.5715). (A) Solutions along
the cosine. (B) Solutions parametrized on the circle, illustrating
that at the intersection of the secant at −a, the value of S(u, v1)
(◦) is strictly larger than S(u, v2) (�).

If ∂S/∂v < 0, the total derivative is strictly negative if and only if

dv1

du
> −∂S

∂u
/
∂S

∂v
. (20)

The partial derivative with respect to v is

∂S

∂v
=
T − u
v − u

[
sin(u)− sin(v)

v − u
+ cos(v)

]
.

One can see that v1 always satisfies v1(u) ≤ π. Indeed, if one assumes by contra-
diction v1(u) > π, then first Eq. (19) has no root on the interval [T, π], and second,
since cos(T ) > −a = α(u) − β(u)T , one gets cos(v) > α(u) − β(u)v for v ∈ [T, π].
It follows that for all v > π,

α(u)− β(u)v < α(u)− β(u)π < cos(π) = −1 ≤ cos(v),

and Eq. (19) has no root, yielding a contradiction.
The sine function is strictly concave on the interval [0, π] and this implies that

sin(u) < sin(v) + (u− v)
d

dv
sin(v), (21)

or equivalently that (sin(u) − sin(v))/(v − u) + cos(v) < 0, for all 0 ≤ u < v ≤ π.
This shows that ∂S/∂v < 0. Now,

dv1

du
=
v − T
T − u

cos(v)− cos(u) + (v − u) sin(u)

cos(u)− cos(v)− (v − u) sin(v)
,

−∂S
∂u

/
∂S

∂v
=
v − T
T − u

sin(v)− sin(u)− (v − u) cos(u)

sin(u)− sin(v) + (v − u) cos(v)
.



DELAYED FEEDBACK LOOPS 1865

Inequality (20) can be re-expressed as

(v − u)
[
2− 2 cos(v − u)− (v − u) sin(v − u)

]
> 0.

It can be verified that this inequality is satisfied for v−u = z ∈ (0, π]. The left-hand
side vanishes when z → 0, and the derivative is strictly positive for 0 < z ≤ π:

d

dz

[
2− 2 cos(z)− z sin(z)

]
= sin(z)− z cos(z) > 0.

The last inequality is obtained with inequality (21). Therefore, dS/du < 0 and S is
maximized for u = ωsτ

∗
1 = 0 and v1(0) = ωsτ

∗
2 < π.

Now that we established the existence of a density f∗ with two delays, one equal
to zero the other one positive, and mean E which maximizes the quantity S2(ωs),
we prove in the next theorem the stability of all densities with n discrete delays and
mean E satisfying (10).

Theorem 4.5. Assume a ∈ ]−1, 1[ and E > 0 satisfies inequality (10). Let fn be
a discrete density with n ≥ 1 delays and mean E, then the density fn is stable.

Proof. Case n = 1. Single delay distributions (n = 1) are stable by Theorem 2.5.

Case n = 2. Consider a density f2 with two delays τ1 < τ2. If C2(ωs) > −a for
every ωs ∈ [0, ωc], Corollary 1 states that f2 is stable. Suppose C2(ωs) = −a for a
value ωs ∈ [0, ωc]. From Lemmas 4.3 and 4.4, there exists a density f∗ with τ∗1 = 0
and 0 < τ∗2 ≤ π/ωs such that C∗(ωs) = C2(ωs) and S∗(ωs) ≥ S2(ωs).

Since S∗ maximizes the value of S2, if we are able to show that any distribution
f∗ with a zero and a positive delay, and C∗(ωs) = −a, satisfies S∗(ωs) < ωs, then
from Corollary 1 all distributions with two delays will be stable.

Let the density f∗(τ) = (1 − p)δ(τ) + pδ(τ − τ∗) with p ∈ (0, 1] and τ∗ ∈
[E, π/ωs]. We have C∗(ωs) = 1 − p + p cos(ωsτ

∗) = −a. We must show that
S∗(ωs) = p sin(ωs) < ωs. Summing up the squares of the cosine and the sine, we

then obtain p2 = (−a+ p− 1)2 + S∗2(ωs), so S∗(ωs) =
√
p2 − (−a+ p− 1)2. Since

E satisfies inequality (10), then τ∗ < arccos(−a)/p
√

1− a2. From C∗(ωs) = −a we
get ωs = arccos(−(a+ 1− p)p−1)/τ∗. Thus,

p
√

1− a2
arccos

(
−(a+ 1− p)p−1

)
arccos(−a)

<
arccos

(
−(a+ 1− p)p−1

)
τ∗

= ωs.

Since (a + 1 − p)p−1 ≥ a for p ∈ (0, 1] and a ∈ ]−1, 1[, we have the following
inequality

arccos(−a)√
1− a2

≤
arccos

(
−(a+ 1− p)p−1

)√
1−

(
(a+ 1− p)p−1

)2 ,
which implies

p

√
1−

(
(a+ 1− p)p−1

)2 ≤ p√1− a2
arccos

(
−(a+ 1− p)p−1

)
arccos(−a)

.

Thus,

S∗(ωs) =
√
p2 − (−a+ p− 1)2 ≤ p

√
1− a2

arccos
(
−(a+ 1− p)p−1

)
arccos(−a)

< ωs.

This completes the proof for the case n = 2.

Case n > 2. For densities f with n > 2 delays, the strategy is also to find an upper
bound for the value of S(ωs) via a new distribution f∗ that keeps C(ωs) = −a
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constant. If, for the new distribution, S(ωs) ≤ S∗(ωs) < ωs holds true, then
Corollary 1 can be applied. The construction of f∗ requires two or three steps. In
the first step, all delays τi > π/ωs are replaced by smaller delays τ ′i < π/ωs, in
order to use the concavity of the sine function on the interval [0, π] as done in the
proof of Lemma 4.4, in the following way:

τ ′i =

{
τi − 2kiπ/ωs if sin(ωsτi) ≥ 0,

2(ki + 2)π/ωs − τi if sin(ωsτi) < 0,

where ki = max{j|2jπ/ωs ≤ τi}. This transformation preserves C(ωs): cos(ωsτ
′
i) =

cos(ωsτi), and ensures that S(ωs) increases: sin(ωsτ
′
i) = | sin(ωsτi)|. That way, we

obtain an associated delay density f ′ with C ′(ωs) = −a, S′(ωs) ≥ S(ωs), E
′ ≤ E

and τ ′i ≤ π/ωs.
In the second step, we reduce the number of strictly positive delays. All pairs of

delay τ ′i < τ ′j for which the inequality

pi cos(ωsτ
′
i) + pj cos(ωsτ

′
j)

pi + pj
≤ cos

(
ωs
piτ
′
i + pjτ

′
j

pi + pj

)
(22)

holds are iteratively replaced by one positive and one vanishing delay, as done in
Lemma 4.3. We note that inequality (22) reduces to

C(ωs) = p1 cos(ωsτ1) + p2 cos(ωsτ2) ≤ cos(ωsE)

for a two discrete delay distribution, with delays τ1 and τ2 satisfying (9). This
transformation preserves the values of mean E′ and C ′(ωs), and increases the value
of S′(ωs). This step is repeated until one of the two situations occurs: (i) There
remains one density f∗ with exactly one delay τ∗1 = 0 and one delay τ∗2 > 0. Then
the inequality S∗(ωs) < ωs follows from the first part of the proof. Therefore,
S(ωs) ≤ S′(ωs) ≤ S∗(ωs) < ωs, and, by Corollary 1 implies that f is stable. (ii)
There remains a density f̄ with one delay τ̄1 = 0 and two or more delays τ̄k > 0,
k = 2, . . . ,m, m ≥ 3, such that

p̄i cos(ωsτ̄i) + p̄j cos(ωsτ̄j)

p̄i + p̄j
> cos

(
ωs
p̄iτ̄i + p̄j τ̄j
p̄i + p̄j

)
,

for each pair i 6= j ∈ 2, . . . ,m. Since
∑m
k=1 p̄k = 1, the strictly positive delays now

satisfy

m∑
k=2

p̄k cos(ωsτ̄k)

1− p̄1
> cos

(
ωs

m∑
k=2

p̄k τ̄k
1− p̄1

)
, (23)

while C̄(ωs) :=
∑m
k=1 p̄k cos(ωsτ̄k) = −a ≤ cos(ωsĒ).

The third step is to replace all positive delays τ̄k, k = 2, . . . ,m, with the single
mean delay

τ ′′2 =
m∑
k=2

p̄k τ̄k
1− p̄1

.

Because the sine function is concave on the interval [0, π], any averaging of delays
can only increase the value of S. We now have a density f ′′ with τ ′′1 = 0 and τ ′′2 > 0,
p′′1 = p̄1 and p′′2 = 1 − p̄1, C ′′(ωs) < C̄(ωs) (from inequality (23)), E′′ = Ē ≤ E,
and S′′(ωs) ≥ S̄(ωs). We now replace τ ′′2 with a delay τ∗2 < τ ′′2 , so as to obtain a
density f∗ with C∗(ωs) = C̄(ωs) = −a, and E∗ = E′′.
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Indeed, this consists in finding (p∗2, τ
∗
2 ) such that p∗2τ

∗
2 = E′′ = p′′2τ

′′
2 , τ∗2 < τ ′′2 ,

and 1 − p∗2 + p∗2 cos(ωsτ
∗
2 ) = −a. Hence, this is equivalent to finding τ∗2 ∈ ]E′′, τ ′′2 [

such that

χ(τ∗2 ) := 1− p′′2τ
′′
2

τ∗2
+
p′′2τ
′′
2

τ∗2
cos(ωsτ

∗
2 ) = −a.

Since χ is continuous, with χ(E′′) = cos(ωsE
′′) = cos(ωsĒ) ≥ −a, and χ(τ ′′2 ) =

C ′′2 (ωs) < −a, there is at least one τ∗2 ∈ ]E′′, τ ′′2 [ satisfying the above conditions,
with p∗2 := p′′2τ

′′
2 /τ

∗
2 . Moreover, since τ∗2 < τ ′′2 and the function sin(x)/x is decreasing

on (0, π), one obtains, using p∗2τ
∗
2 = E′′ = p′′2τ

′′
2 , that p∗2 sin(ωsτ

∗
2 ) ≥ p′′2 sin(ωsτ

′′
2 ),

or equivalently, S∗(ωs) ≥ S′′(ωs).
Consequently, this last change of delay has the effect of increasing the value

S∗(ωs) ≥ S′′(ωs), while maintaining the condition C∗(ωs) = −a. Since the mean
E∗ of density f∗ satisfies inequality (10), we have S∗(ωs) < ωs as shown for the
case n = 2. Therefore S(ωs) ≤ S′(ωs) ≤ S̄(ωs) ≤ S′′(ωs) ≤ S∗(ωs) < ωs. Corollary
1 implies that f is stable.

5. Stability of a general distribution of delays. We now show that the sta-
bility of discrete delays implies the stability of general distributions. First we need
to bound the roots of the characteristic equation for general distributed delays.

Lemma 5.1. Assume a ∈ ]−1, 1[ and E > 0 satisfies inequality (10). Let η be a
delay distribution with mean E and characteristic equation D(λ) = 0. There exists
a sequence of distributions {ηn}n≥1 with mean E, such that ηn converges weakly
to η as n → ∞, and λ is a root of the characteristic equation if and only if there
exists a sequence of characteristic roots λn for ηn such that limn→∞ λn = λ. If
{µn}n≥1 is a sequence of real parts of characteristic roots λn for ηn, Dn(λn) = 0,
then lim supn→∞ µn < 0.

Proof. Existence of a sequence {ηn}n≥1 of distributions with n delays and mean
E, such that ηn converges weakly to η as n → ∞ is rather straightforward, this
sequence can be built explicitly. We do not detail this part here.

Consider λn = µn + iωn a root of the characterisitic equation for ηn. The mean
E satisfies inequality (10), so µn < 0. Then,∣∣∣D(λn)

∣∣∣ =
∣∣∣λn + a+

∫ ∞
0

e−λnτdη(τ)
∣∣∣

=
∣∣∣λn + a+

∫ ∞
0

e−λnτd[η(τ)− ηn(τ)] +

∫ ∞
0

e−λnτdηn(τ)
∣∣∣

=
∣∣∣∫ ∞

0

e−λnτd[η(τ)− ηn(τ)]
∣∣∣→ 0,

as n → ∞ by weak convergence. Thus any converging sub-sequence of roots con-
verges to a root for η. The same way, if λ is a root for η,∣∣∣Dn(λ)

∣∣∣ =
∣∣∣λ+ a+

∫ ∞
0

e−λτdηn(τ)
∣∣∣

=
∣∣∣λ+ a+

∫ ∞
0

e−λτd[ηn(τ)− η(τ)] +

∫ ∞
0

e−λτdη(τ)
∣∣∣

=
∣∣∣∫ ∞

0

e−λτd[ηn(τ)− η(τ)]
∣∣∣→ 0,
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as n → ∞. Convergence is guaranteed by inequality (4). Thus each root λn
lies close to a corresponding root λ, and µ = lim supn→∞ µn, with µn real part
of a characteristic root λn, is the real part of a characteristic root for η. Since
µn < 0, we have that µ is non-positive. Suppose µ = 0 and consider the scaled
distribution ηa,ρ(τ) defined by (7), and the associated real parts µa,ρ, where the
subscript a is there to emphasize the dependence of the stability on the parameter
a in the characteristic equation. Then, by continuity, there exists (ā, ρ) in an ε-
neighborhood of the point (a, 1) for which µā,ρ > 0. For sufficiently small ε > 0,
inequality (10) is still satisfied:

ρE <
arccos(−ā)√

1− ā2
.

Additionally, the scaled discrete distributions ηn,ā,ρ converge weakly to ηā,ρ, so that
the real parts µn,ā,ρ of the roots converging to µā,ρ become eventually positive.
That is, there is N > 1 such that ηn,ā,ρ is unstable for all n > N , a contradiction
to Theorem 4.5, since inequality (10) still holds. Therefore µ < 0.

Theorem 5.2. Assume a ∈ ]−1, 1[ and E > 0 satisfies inequality (10). Let η be a
delay distribution with mean E, then the distribution η is stable.

Proof. Consider a sequence of distributions with n delays {ηn}n≥1 where ηn con-
verges weakly to η. By Lemma 5.1, the roots of the characteristic equation of η
have strictly negative real parts. Therefore η is stable.

The results obtained above provide the most complete picture of the stability
of Eq. (2) when the only information about the distribution of delays is the mean.
These results are summarized in the following theorem and illustrated in Fig. 2.

Theorem 5.3. The zero solution of Eq. (2) is asymptotically stable if a > −b and
a ≥ |b|, or if b > |a| and the mean E of η satisfies

E <
arccos(−a/b)√

b2 − a2
. (24)

The zero solution of Eq. (2) may not be asymptotically stable (depending on the
particular distribution) if b > |a| and

E ≥ arccos(−a/b)√
b2 − a2

.

The zero solution of Eq. (2) is unstable if a ≤ −b.

6. Compartment model of hematopoiesis. Circulating blood cells are continu-
ously renewed by a hierarchical structure of cells maintained by hematopoietic stem
cells (HSCs). Hematopoiesis consists in a complex set of feedback loops that control
blood cell production. HSCs can either self-renew or differentiate to one of the three
main blood cell lineages: white blood cells, platelets and red blood cells. Through
successive division and differentiation stages, HSCs become progenitors (immature
cells), precursors (differentiated cells), and then fully mature cells. At every stage of
this hierarchy, feedback loops regulate cell differentiation, proliferation, and death.
The process of red blood cell production is tightly controlled by erythropoietin, a
growth factor released by the kidneys when blood oxygen is low, and whose action
inhibits cell death [34]. Platelet production and white blood cell production pro-
cesses are also controlled by growth factors (thrombopoietin [32] and G-CSF [7],
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Figure 2. Stability chart of distributions of delay in the (a, b)
plane, obtained from Theorem 5.3. The asymptotic stability re-
gion is composed of regions (1) to (3): a delay-independent stabil-
ity region (light grey, (1)), delimited by the condition a ≥ |b|; a
discrete-delay stability region (conditionally stable, light-grey, (2)),
delimited by condition 24; and a distributed-delay-dependent sta-
bility region (white, (3)). The instability region is composed of
a distributed-delay-dependent instability region (conditionally sta-
ble, white, (4)) and a delay-independent instability region (unsta-
ble, dark grey, (5)), delimited by the curve b = −a. The dis-
crete and distributed delay stability boundaries intersect at point
(a = −1/E, b = 1/E). The arrow pointing leftward shows that
there exists a region, for b > 1/E, where a stable steady state
can become unstable through a decrease of the value of a, indepen-
dently of the shape of the delay distribution. The distributed delay
is f(τ) = 0.8δ(τ − 0.625) + 0.2δ(τ − 3.5), with mean delay E = 1.2
(parameters as in Figure 1).

respectively). It is usually thought that mature blood cells act negatively, through
growth factor release, on precursors, progenitors and HSCs dynamics [19, 20].

From a modeling viewpoint, the hierarchical structure of hematopoiesis can be
described by a finite system of differential equations, each equation describing the
dynamics of one cell generation [8, 14, 19, 20, 40, 49]. Such a view is largely
accepted, both by modelers and biologists, even though mechanisms involved in cell
differentiation processes are complex and there is no reason to believe that cells
always go through a forward differentiation process.

In 2005, Colijn and Mackey [19, 20] proposed a compartment model of hemato-
poiesis, based on previous models of hematopoietic stem cell dynamics [40], white
blood cell dynamics [14], platelet dynamics [4] and red blood cell dynamics [8].
This model consists in a system of 4 differential equations with discrete delays.
Each equation describes the number of either HSCs, red blood cells, white cells or
platelets. Cells spend a finite amount of time in each of these compartments during
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which they mature and divide. Delays account for cell stage durations. Colijn and
Mackey’s model [19, 20] has been further justified and numerically analyzed by Col-
ijn and Mackey [21] and Lei and Mackey [38], who showed that it exhibits multiple
steady states. Stability analysis of this model is made difficult by the presence of
several discrete delays. A simpler model, based on ordinary differential equations,
can then be considered, similar to the one by Stiehl and Marciniak-Czochra [49].
However, even in this case, the structure of the system with several compartments
induces a natural delay, and the stability analysis is not straightforward.

We consider a compartment model of hematopoiesis that encompasses the main
dynamical properties existing hematopoiesis models, and focus on stability condi-
tions for this system. The compartment model can be expressed as a single equation
with a general distributed delay. We showed that among all delay distributions with
a given fixed mean, the distribution with a single discrete delay (that is, the delay
equals the mean) is the most unstable one. Consequently we can provide a condi-
tion for the stability of the hematopoiesis model by determining when the equation
with a single delay is stable.

Let denote by x(t) the number of HSCs at time t, and by zi(t), i = 1, 2, 3, the
densities of circulating platelets, white cells, and red blood cells, respectively. We
assume that x produces the quantities zi through a linear chain process, describing
the compartmental structure of each hematopoietic lineage. The number of mature
cells zi act on a negative feedback loop that represses the production of x. The
disappearance rate of HSCs, α, is assumed constant. The HSC production rate P is
a function that depends on x and a weighted average z of the repressors zi. Namely
z =

∑3
i=1 pizi, where pi ≥ 0 and

∑3
i=1 pi = 1. The HSC number x is governed by

the equation

ẋ = P (x, z)− αx. (25)

Each mature cell number zi(t), i = 1, 2, 3, is assumed to be the product of a linear
chain of differential equations of the type

ẏ
(1)
i = βi

(
x− y(1)

i

)
,

ẏ
(j)
i = βi

(
y

(j−1)
i − y(j)

i

)
, j = 1, . . . , qi − 1,

żi = βi
(
y

(qi−1)
i − zi

)
.

(26)

In the i-th hematopoietic lineage, the cell number in generation j-th is denoted

by y
(j)
i , j = 1, . . . , qi − 1. Mature cells zi form compartment qi, and immature

cells x compartment 0. System (25)–(26) describes a hierarchical structure with
parallel negative feedback loops of length qi, with kinetic parameters βi, i = 1, 2, 3.
This situation hypothesizes that each compartment in each hematopoietic lineage
depends only on the previous compartment and, except for the source term βix,
lineages are independent from each other.

This system is an instance of a nonlinear system with a linear subsystem [22, 39].
For each lineage i, thanks to the usual chain trick in System (26), the repressors zi
can be expressed in terms of the history of x convoluted by a Gamma distribution,

zi(t) =

∫ ∞
0

x(t− τ)g(τ, qi, βi)dτ, with g(τ, qi, βi) =
βqii

Γ(qi)
τ qi−1e−βiτ .

When one focuses only on one hematopoietic lineage, and z = zi (pj = 0 for
j 6= i), Eq. (25) can be expressed as a distributed delay equation with a Gamma
distribution with mean Ei = qi/βi and variance Vi = qi/β

2
i . Two limiting cases are

useful to consider. When qi = 1, mature cells are produced directly from HSCs,
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and the Gamma distribution becomes an exponential distribution with parameter
βi. When Ei = qi/βi is made constant and qi → ∞, the Gamma distribution
converges to a Dirac mass at Ei.

In addition to these three standard delay distributions, more general delay dis-
tributions are obtained by considering the above-mentioned linear parallel negative
feedback loops. From System (26), the weighted repressor z(t) remains a delayed
version of x(t),

z(t) =

∫ ∞
0

x(t− τ)fp(τ)dτ, (27)

where the density of the distributed delay is a weighted average of Gamma densities,

fp(τ) =
3∑
i=1

pig(τ, qi, βi).

The delay has a mean Ep =
∑3
i=1 piqi/βi. In the limiting case where the length qi of

each loop becomes infinite while keeping the ratio qi/βi constant, the distribution
becomes a combination of discrete delays. Therefore, by a suitable choice and
number of parallel negative feedback loops, one can obtain an arbitrary complex
distribution of delays.

After expressing the repressor z as a function of the history of x in (27), one can
then write the following equation for x, from (25) and (27),

ẋ = P

(
x,

∫ ∞
0

x(t− τ)fp(τ)dτ

)
− αx. (28)

The dynamics of System (25)–(26) is entirely contained in (28). Although the
production term depends continuously on the history of x, the initial conditions
need only to be known at a finite number of locations. Analyzing the stability of
Eq. (28) is however as difficult as the stability of the System (25)-(26).

As a nonlinear production term P , we consider the case of a mixed feedback
loop, observed when a repressor (mature cells) and an activator (immature cells)
are competing. The nonlinear term in equation (28) is then

P (x, z) =
k0x

r

1 + zh
. (29)

The parameter r is related to the degree of cooperativity of the positive loop. For
r > 1 the positive loop is positively cooperative and multiple stable steady states
are possible. When r = 1 the positive loop is neutrally cooperative and at most
one positive steady state exists. For 0 ≤ r < 1, the positive loop is negatively
cooperative and there is a single positive steady state. When r = 0, the dependence
on x of the production rate P is lost. To ensure solutions are bounded, we set
r ≤ h. The parameter h is the Hill coefficient describing the degree of cooperativity
of the negative loop. The higher the value of h, the steeper the negative control.
We assume h > 1. With these conditions, there is always at least one steady state
x̄ ≥ 0.

Eq. (28) linearized around a positive steady state x̄ > 0 is

ẋ = −α(1− r)x− α2h

k0
x̄h−r+1

∫ ∞
0

x(t− τ)fp(τ)dτ. (30)

For positive cooperativity (1 < r ≤ h), there is a stable steady state x̄0 = 0. In
addition, there are either zero, one or two positive steady states given by the roots
of the equation αx̄h − k0x̄

r−1 + α = 0. In terms of Eq. (1), a = α(1 − r) < 0
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and b(x̄) = α2hx̄h−r+1/k0 > 0. The smaller positive steady state x̄1 satisfies
a ≤ −b(x̄1) and, by Theorem 5.3, is always unstable. The larger steady state x̄2

satisfies a > −b(x̄2) and the sufficient condition on stability of Theorem 5.3 can be
applied in the following proposition.

Proposition 2 (positive cooperativity). Assume P is given by (29) and 1 < r ≤ h
(mixed feedback loop with positive cooperativity). When they exist and are distinct,
the smaller positive steady state x̄1 of (28) is unstable, and the larger positive steady
state x̄2 is linearly asymptotically stable if

Ep :=
3∑
i=1

pi
qi
βi
<

arccos
(

(r−1)k0
αh(x̄2)h−r+1

)
α
√

(αh(x̄2)h−r+1/k0)2 − (r − 1)2
. (31)

When x̄1 = x̄2, the positive steady state is unstable. The zero steady state x̄0 = 0
is always linearly stable.

For negative cooperativity (0 ≤ r < 1), there exists a steady state x̄0 = 0 only
if r > 0, in which case it is unstable. In addition, there is a unique positive steady
state given by the root of the equation α(1 + x̄h)x̄1−r = k0. The linear equation is
given by equation (30), and the instantaneous coefficient is a = α(1 − r) > 0, the
delayed coefficient is b = α2hx̄h−r+1/k0 > 0.

For neutral cooperativity (r = 1), there is a steady state x̄0 = 0, whose stability
depends on the existence of a positive steady state. There exists a positive steady
state x̄ = ((k0 − α)/α)1/h only if k0 > α, and in this case a = 0 and b = αh(k0 −
α)/k0 > 0. Theorem 5.3 can be applied in the following proposition to determine
stability .

Proposition 3 (neutral and negative cooperativity). Assume P is given by (29).
When r = 1 (mixed feedback loop with neutral cooperativity), a unique positive
steady state, x̄ = ((k0 − α)/α)1/h, of (28) exists if k0 > α. If it exists, it is linearly
asymptotically stable if

Ep :=

3∑
i=1

pi
qi
βi
<

k0π

2αh(k0 − α)
.

The zero steady state x̄0 = 0 is stable if k0 < α and unstable otherwise.
When 0 ≤ r < 1 (negative cooperativity), a unique positive steady state x̄ of

(28) exists. It is linearly asymptotically stable if x̄h+1−r ≤ k0(1 − r)/(αh), or if
x̄h+1−r > k0(1 − r)/(αh) and (31) holds true. The zero steady state x̄0 = 0 is
always unstable.

Similar models with negative (r = 0) and neutral cooperativity (r = 1) have been
considered before by Mackey and Glass [41, equations 4a and 4b therein] in the
context of blood cell production. The unique, positive, steady state of the negative
cooperativity model (r = 0) can be destabilised by a discrete delay. Replacing
the discrete delay by a general delay distribution cannot make the positive steady
state unstable, as illustrated in Fig. 3. Neutral cooperativity arises when HSCs
proliferate at a rate proportional to their number. In this situation, the steady
state can be solved explicitly and the stability condition is relatively simple to
state. The existence condition defines whether stem cells reproduce quickly enough
to maintain their population (k0 > α) or not. The original Mackey-Glass equation
contained a single discrete delay at Ep in both the negative and the positive loops.
This is a particular case of a model with delayed mixed feedback loops for which
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Figure 3. Comparison of solutions of Eq. (28) with a distributed
delay and with a discrete delay for varying values of r and h. Fixed
parameters values are α = 1 and k0 = 2 (so x = 1 is a steady state
of (28), whatever the values of r and h), and q = {2, 20, 60}, β =
{2, 10, 20}, p = {0.3, 0.4, 0.3}. (A) The distributed delay (shaded
area) is an average of three Gamma densities (grey lines) with
mean delay E = q/β = {1, 2, 3}. The discrete delay is the mean

delay Ep =
∑3
i=1 piEi = 2 (dashed). (B) Stability chart of the

positive steady state x̄ = 1, for varying r and h, and the stability
condition is given in Proposition 3. The distributed delay is stable
at points i, ii and iv, while the discrete delay is stable at points
i and iv. Color coding is as in Fig. 2. (C, D) Time series of
the system with distributed (solid) or discrete delay (dashed). (C)
Neutral cooperativity, increasing Hill coefficient: r = 1 and h = 1.5
(i), 1.9 (ii) and 3.0 (iii). (D) Constant Hill coefficient, increasing
cooperativity: h = 1.9 and r = 0 (iv), 1 (v) and 1.3 (vi).

stability results can be applied in a straightforward manner. This is not the case
when the delay of the positive loop differs from the negative loop.
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7. Conclusion. We have shown that for a given mean delay, the scalar linear
differential equation with a distributed delay is asymptotically stable provided that
the corresponding equation with a single discrete delay is asymptotically stable.
Hence, linear systems with a discrete delay are “more” unstable than linear systems
with distributed delay. This result provides a sufficient condition for the stability
of a large class of linear systems, as instanced by a model of hematopoiesis with
parallel lineages.

Quite often the aim of the modeling is not to reproduce stability but rather
instability, via periodic oscillations. Pathological cases in hematopoiesis (blood
diseases, leukemias) can for instance often be explained by the destabilization of
the steady state which starts oscillating periodically. Our result shows that it is
more difficult to reproduce periodic oscillations, observed experimentally, with a
distributed delay than with a discrete delay.
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09-JCJC-0100-01.

REFERENCES

[1] M. Adimy, F. Crauste and S. Ruan, A mathematical study of the hematopoiesis process with

applications to chronic myelogenous leukemia, SIAM J. Appl. Math., 65 (2005), 1328–1352.
[2] R. Anderson, Geometric and probabilistic stability criteria for delay systems, Math. Biosci.,

105 (1991), 81–96.

[3] R. Anderson, Intrinsic parameters and stability of differential-delay equations, J. Math. Anal.
Appl., 163 (1992), 184–199.

[4] R. Apostu and M. Mackey, Understanding cyclical thrombocytopenia: A mathematical mod-
eling approach, J. Theor. Biol., 251 (2008), 297–316.

[5] F. Atay, Distributed delays facilitate amplitude death of coupled oscillators, Phys. Rev. Lett.,

91 (2003), 094101.
[6] F. Atay, Delayed feedback control near Hopf bifurcation, Discrete Contin. Dynam. Systems

Ser. S, 1 (2008), 197–205.

[7] S. Basu, A. Dunn and A. Ward, G-CSF: Function and modes of action, Int. J. Mol. Med.,
10 (2002), 3–10.

[8] J. Bélair, M. C. Mackey and J. M. Mahaffy, Age-structured and two-delay models for ery-

thropoiesis, Math. Biosci., 128 (1995), 317–346.
[9] R. Bellman and K. Cooke, Differential-Difference Equations, Academic press, 1963.

[10] E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems

with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165.
[11] L. Berezansky and E. Braverman, Stability of linear differential equations with a distributed

delay, Comm. Pure Appl. Math., 10 (2011), 1361–1375.
[12] L. Berezansky and E. Braverman, Stability of equations with a distributed delay, monotone

production and nonlinear mortality, Nonlinearity, 26 (2013), 2833–2849.

[13] S. Bernard, J. Bélair and M. C. Mackey, Sufficient conditions for stability of linear differential
equations with distributed delay, Discrete Contin. Dynam. Systems Ser. B, 1 (2001), 233–

256.

[14] S. Bernard, J. Belair and M. C. Mackey, Oscillations in cyclical neutropenia: New evidence
based on mathematical modeling, J. Theor. Biol., 223 (2003), 283–298.
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Evidence for Cardiomyocyte
Renewal in Humans
Olaf Bergmann,1* Ratan D. Bhardwaj,1* Samuel Bernard,2 Sofia Zdunek,1
Fanie Barnabé-Heider,1 Stuart Walsh,3 Joel Zupicich,1 Kanar Alkass,4 Bruce A. Buchholz,5
Henrik Druid,4 Stefan Jovinge,3,6 Jonas Frisén1†

It has been difficult to establish whether we are limited to the heart muscle cells we are born
with or if cardiomyocytes are generated also later in life. We have taken advantage of the
integration of carbon-14, generated by nuclear bomb tests during the Cold War, into DNA to
establish the age of cardiomyocytes in humans. We report that cardiomyocytes renew, with a
gradual decrease from 1% turning over annually at the age of 25 to 0.45% at the age of 75.
Fewer than 50% of cardiomyocytes are exchanged during a normal life span. The capacity to
generate cardiomyocytes in the adult human heart suggests that it may be rational to work toward
the development of therapeutic strategies aimed at stimulating this process in cardiac pathologies.

Myocardial damage often results in chron-
ic heart failure due to loss and insuffi-
cient regeneration of cardiomyocytes.

This has prompted efforts to devise cardiomyo-
cyte replacement therapies by cell transplantation
or by the promotion of endogenous regenerative
processes. The development of cell transplanta-
tion strategies is advancing rapidly, and some are
currently being evaluated in clinical trials (1, 2).
Stimulating endogenous regenerative processes
is attractive as it potentially could provide a non-
invasive therapy and circumvent the immuno-
suppression required for allografts. However, it is
unclear whether such regenerative strategies are
realistic because it has been difficult to establish
whether cardiomyocytes can be generated after
the perinatal period in humans.

Stem/progenitor cells with the potential to
generate cardiomyocytes in vitro remain in the
adult rodent and human myocardium (3, 4).
Moreover, mature cardiomyocytes have been
suggested to be able to reenter the cell cycle
and duplicate (5). However, studies over several
decades in rodents with labeled nucleotide ana-
logs have led to conflicting results, ranging from
no to substantial generation of cardiomyocytes
postnatally (6). A recent genetic labeling study,
which enabled detection of cardiomyocyte gen-
eration by stem/progenitor cells (but not by cardio-
myocyte duplication), demonstrated cardiomyocyte
renewal after myocardial injury, but not during
1 year in the healthy mouse (7).

It is possible that humans, who live much
longer than rodents, may have a different require-
ment for cardiomyocyte replacement. Cell turn-
over has been difficult to study in humans because
the use of labeled nucleotide analogs and other
strategies commonly used in experimental animals
cannot readily be adapted for studies in humans
owing to safety concerns. The limited functional
recovery after loss of myocardium and the fact
that primary cardiac tumors are very rare indicate
limited proliferation within the adult human heart
(8). Several studies have described the presence
of molecular markers associated with mitosis in
the human myocardium (5), but this provides
limited information because it is difficult to de-

duce the future fate of a potentially dividing cell
in terms of differentiation and long-term survival.

We have measured carbon-14 (14C) from nu-
clear bomb tests in genomic DNA of human myo-
cardial cells, which allows retrospective birth
dating (9–11). 14C concentrations in the atmo-
sphere remained relatively stable until the Cold
War, when aboveground nuclear bomb tests caused
a sharp increase (12, 13). Even though the deto-
nations were conducted at a limited number of
locations, the elevated amounts of 14C in the at-
mosphere rapidly equalized around the world as
14CO2. After the Limited Nuclear Test Ban Treaty
in 1963, the 14C concentrations dropped exponen-
tially, not primarily because of radioactive decay
(half-life of 5730 years), but by diffusion from
the atmosphere (14). Newly created atmospheric
14C reacts with oxygen to form 14CO2, which is
incorporated by plants through photosynthesis.
Humans eat plants, and animals that live off plants,
so the 14C concentration in the human body mir-
rors that in the atmosphere at any given time
(15–18). Because DNA is stable after a cell has
gone through its last cell division, the concentra-
tion of 14C inDNA serves as a datemark for when
a cell was born and can be used to retrospectively
birth date cells in humans (9–11).

We first carbon-dated left ventricle myo-
cardial cells, including cardiomyocytes and other
cell types, to determine the extent of postnatal
DNA synthesis in the human heart. DNA was
extracted, and 14C concentrations were measured
by accelerator mass spectrometry (see tables S1
and S2 for 14C values and associated data). The
cellular birth dates can be inferred by determining
the time at which the sample’s 14C concentration
corresponded to the atmospheric concentration
(Fig. 1A). 14C concentrations from all individuals
born around or after the nuclear bomb tests cor-
responded to atmospheric concentrations several
years after the subjects’ birth (Fig. 1B), indicating
substantial postnatal DNA synthesis. Analysis of
individuals born before the period of nuclear
bomb tests allows for sensitive detection of any
turnover after 1955, due to themarked increase in
14C concentrations. By analyzing individuals
born at different times before 1955 it is possible
to establish the age up to which DNA synthesis
occurs, or whether it continues beyond that age.
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In all studied cases, born up to 22 years before the
onset of the nuclear bomb tests, 14C concen-
trations were elevated compared to the levels
before the nuclear bomb tests (Fig. 1C). Thus,
DNA of myocardial cells is synthesized many
years after birth, indicating that cells in the hu-
man heart do renew into adulthood.

Because cardiomyocytes constitute only about
20% of all cells within the human myocardium

(19), it is not possible to infer from these data
whether there is postnatal renewal of cardiomyo-
cytes, or whether cell turnover in the myocardium
is limited to other cell populations. We therefore
set out to specifically birth date cardiomyocytes.
Many cardiomyocytes are binucleated, and it is
difficult to distinguish a binucleated cell from
two aggregating mononucleated cells (of which
one could be a noncardiomyocyte) in the flow

cytometer. Hence, rather than separating myo-
cardial cells on the basis of cell surface or cyto-
plasmic markers, we developed a strategy to
isolate cardiomyocyte nuclei by flow cytometry.

We found that the well-characterized
cardiomyocyte-specific proteins cardiac troponin
I (cTroponin I, also known as TNNI3) and
cardiac troponin T (cTroponin T, also known as
TNNT2) [for review, see (20)] have evolutionar-

Fig. 1. Cell turnover in the heart. (A) Schematic figure demonstrating the
strategy to establish cell age by 14C dating. The black curve in all graphs shows
the atmospheric concentrations of 14C over the decades since 1930 [data from
(14)]. The vertical bar indicates the date of birth of the individual. The measured
14C concentration (1) is related to the atmospheric 14C concentration by use of
the established atmospheric 14C bomb curve (2). The average birth date of the
population can be inferred by determining where the data point intersects the x
axis (3). 14C concentrations in DNA of cells from the left ventricle myocardium in

individuals born after (B) or before (C) the nuclear bomb tests correspond to
time points substantially after the time of birth, indicating postnatal cell
turnover. The vertical bar indicates the date of birth of each individual, and the
similarly colored dots represent the 14C data for the same individual. For
individuals born before the increase in 14C concentrations, it is not possible to
directly infer an age because the measured concentration can be a result of 14C
incorporation during the rising and/or falling part of the atmospheric curve, and
thus the concentration is indicated by a dotted horizontal line.
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Fig. 2. Isolation of cardiomyocyte nuclei. (A to C) Flow cytometric analysis of
cardiomyocyte nuclei from the left ventricle of the human heart with an isotype
control antibody or antibodies to the cardiomyocyte-specific antigens cTroponin I
or T. Boxes denote the boundaries for the positive and negative sorted pop-
ulations. (D) cTroponin I and T are present in the same subpopulation of heart
cell nuclei. (E) Western blot analysis of flow cytometry–isolated nuclei demon-
strates nearly all detectable cTroponin T (analyzed with two different anti-
bodies) and I protein in the cTroponin T–positive fraction. Brain and heart
tissue were used as negative and positive controls, respectively. (F) The car-

diac troponin T–positive population is enriched for the cardiomyocyte-specific
transcription factors Nkx2.5 and GATA4. Both fractions contain similar amounts
of the nuclear protein histone 3 (loading control). (G) Gene expression analysis
of flow cytometry–isolated nuclei shows high expression of cardiomyocyte-
specific genes in the cTroponin T–positive fraction (cTroponin I and T, Nkx2.5),
whereas marker genes for endothelial cells (vWF), fibroblasts (vimentin),
smooth muscle (ACTA2), and leukocytes (CD45) are highly expressed in the
cTroponin T–negative fraction (H). Bars in (G) and (H) show the average from
three independent experiments (TSD).
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ily conserved nuclear localization signals and are
partly localized in the nuclei of cardiomyocytes
(figs. S1 and S2). Antibodies to cTroponin I and
T identify the same subpopulation of nuclei in the
myocardium (Fig. 2,A toD), and retrospective birth
dating of nuclei isolated with antibodies against
either epitope gave similar results (table S1). West-
ern blot and quantitative reverse transcription poly-
merase chain reaction analysis of sorted nuclei
demonstrated a high enrichment of cTroponin I and
T in the positive fraction and a depletion in the
negative, validating the efficiency of the strategy
(Fig. 2, E to H). We assessed the potential transfer
of cTroponin I and T during tissue processing by
mixing cardiac tissue with another tissue devoid of
these proteins, and found that there was negligible
transfer of cTroponin I or T to noncardiomyocyte
nuclei during tissue dissociation, nuclear prepara-
tion, or flow cytometric sorting (fig. S2).

We assessed the specificity of the isolation
procedure with known cardiomyocyte-specific
markers and markers of noncardiomyocytes present
in the myocardium. There was a high enrichment
of nuclei containing the known cardiomyocyte-
specific nuclear markers Nkx2.5 and GATA4 in
the cTroponin-positive fraction, with little con-
tamination of nuclei expressing markers for fibro-
blasts, smooth muscle cells, endothelial cells, or
hematopoietic cells (Fig. 2, F to H). Conversely,
cardiomyocyte markers were depleted in the
cTroponin-negative fraction (Fig. 2, F to H),
indicating that nearly all cardiomyocytes were
isolated in the positive fraction. Sorting whole
cells with antibodies to a nonnuclear cardiomyocyte-
specific epitope confirmed that nuclear cTroponin I
and Tare specific to cardiomyocytes, but resulted in
lower purity compared to sorting nuclei (fig. S3).
Flow cytometric reanalysis of all sorted samples
demonstrated aDNAcontent-corrected cardiomyo-
cyte purity of 96 T 1.8% (mean T SD; table S1 and
fig. S4). Thus, flow cytometry with antibodies
against cTroponin I or Tallows specific isolation of
cardiomyocyte and noncardiomyocyte nuclei.

We extracted DNA from cardiomyocyte nuclei
[(5 T 2) × 107, mean T SD] and measured the 14C
concentration in genomic DNA. By analyzing
the 14C concentration also in unsorted myocardial
nuclei (>108), we mathematically compensated for
any contamination in the cardiomyocyte fraction in
the individual cases, reducing the risk that con-
tamination with a cell population with a different
turnover rate would skew the result for cardio-
myocytes. In all individuals born before the onset
of the nuclear bomb tests, the 14C concentrations
in cardiomyocyte genomic DNAwere higher than
the pre-bomb atmospheric concentrations, demon-
strating DNA synthesis after 1955 (Fig. 3A). Sim-
ilarly, in all individuals born near or after the time of
the nuclear bomb tests, the 14C concentrations in
cardiomyocyte DNA corresponded to the concen-
trations several years after their birth, establishing
postnatal cardiomyocyte DNA synthesis (Fig. 3B).

There is no increase in the number of cardio-
myocytes after the postnatal period but rather a
slow, continuous decrease with age (21). About

25% of cardiomyocytes are binucleated in hu-
mans at birth, and this proportion stays constant
throughout life (22). Thus, the postnatal cardio-
myocyte DNA synthesis detected by 14C analysis
cannot be explained by an increase in cardio-
myocyte number or binucleation. However, the
heart grows during childhood, as the increasing
demand of contractile capacity is met by hyper-
trophy of cardiomyocytes. Almost all cardiomyo-
cyte nuclei are diploid at the time of birth, but the
DNA of most nuclei is duplicated to become tetra-
ploid in childhood when the cells undergo hy-
pertrophy (Fig. 3C and fig. S5) (23–25). After the
age of 10, there is no further increase in the DNA
content of cardiomyocyte nuclei (R = 0.135, P =
0.384, Fig. 3C). TheDNAsynthesis associatedwith
polyploidization of cardiomyocyte DNA results
in incorporation of 14C concentrations correspond-
ing to the atmospheric levels during childhood.

Three of the individuals born before the nuclear
bomb tests weremore than 10 years old at the onset
of the increase in atmospheric 14C. That their 14C
concentration in cardiomyocyte DNA was above
the prenuclear bomb test levels (Fig. 3A) cannot
be explained by DNA synthesis associated with
polyploidization, but indicates cardiomyocyte re-

newal after 1955. Moreover, in the individuals born
after the nuclear bomb tests, the difference between
the birth date of the person and the date correspond-
ing to the 14C concentration in cardiomyocyte
DNA increased with the age of the individual (fig.
S6 and table S1), demonstrating that cardiomyo-
cyte DNA synthesis is not restricted to a limited
period in childhood but continues in adulthood.

Polyploidization of cardiomyocyte DNA oc-
curs in a stereotypical manner during a rather
short period in childhood (Fig. 3C) (23–25),
making it possible to calculate its impact on 14C
values in each individual [see supporting online
text and (26)]. By subtracting the childhood
polyploidization-associated 14C incorporation from
the measured value in each case, we could estimate
polyploidization-independent 14Cvalues. In all cases,
the polyploidization-independent 14C values corre-
sponded to time points after birth for each individual
(Fig. 3D), indicating cardiomyocyte renewal. In the
five oldest individuals, who all were born before or
at the onset of the nuclear bomb tests, the 14C values
were lower than contemporary values (Fig. 3D), es-
tablishing that not all cardiomyocytes had been
exchanged after 1955 but that a substantial fraction
remains from early in life, even in the elderly.

Fig. 3. Cardiomyocyte turnover in adulthood. (A) The 14C concentrations in cardiomyocyte DNA from
individuals born before the time of the atmospheric radiocarbon increase correspond to time points after the
birth of all individuals. The vertical bar indicates year of birth, with the correspondingly colored data point
indicating theD14C value. (B) 14C concentrations in cardiomyocyte DNA from individuals born after the time
of the nuclear bomb test. (C) Average DNA content (2n= 100%) per cardiomyocyte nucleus from individuals
(without severe heart enlargement; see fig. S5) of different ages. Ploidy was measured by flow cytometry.
Colored data points identify individuals analyzed for 14C (n = 13). Black data points are from individuals
analyzed only with regard to ploidy level (n = 23), and white data points are taken from Adler et al. (n = 26)
(24, 26). The dashed lines indicate the 95% confidence interval for the regression curve. (D) 14C values
corrected for the physiologically occurring polyploidization of cardiomyocytes during childhood for
individuals born before and after the bomb-induced spike in 14C concentrations, calculated on the basis of
the individual average DNA content per cardiomyocyte nucleus. The 14C content is not affected in individuals
where the polyploidization occurred before the increase in atmospheric 14C concentrations.
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Increased cardiac workload in pathological
situations often results in cardiomyocyte hypertro-
phy and heart enlargement, and at late stages can
result in polyploidization in adulthood (fig. S5)
(24). Although a few subjects had cardiac pathol-
ogy (table S2), none had severe heart enlarge-
ment nor a pathological cardiomyocyte ploidy
profile, and there was no significant difference
in 14C integration in cardiomyocyte DNA in the
subjects with cardiac pathology (table S1, Fig. 3C,
and fig. S5). Moreover, mathematical modeling of
the kinetics of DNA synthesis and 14C integration
showed that the measured 14C concentrations in
cardiomyocyte DNA could not be a result of poly-
ploidization during adulthood (see supporting
online text). Furthermore, analysis of 14C concentra-
tions in DNA from only diploid or only polyploid
cardiomyocyte nuclei demonstrated similar degrees
of 14C integration after childhood in both compart-
ments, providing further evidence for cardiomyo-
cyte renewal independently of polyploidization
(see supporting online text, fig. S7, and table S3).

Several studies of sex-mismatched transplant
recipients have indicated fusion of human cardio-
myocytes with other cells (27). However, fusion
appears to mainly occur transiently after trans-
plantation, and even in the acute phase the fusion

rate is too low to explain the 14C data (fig. S8).
DNA damage and repair are very limited in dif-
ferentiated cells (28) and, at least in neurons, are
well below the detection limit of the method used
(10, 11). Although cell fusion and DNA repair
may affect 14C concentrations in cardiomyocyte
DNA, available data suggest that the magnitude
of these processes makes them negligible in the
current context and that the 14C data we report
here (after compensation for polyploidization)
likely accurately reflects cell renewal.

Mathematical modeling of 14C data from indi-
viduals born both before and after the nuclear
bomb tests, which provides slightly different and
complementary information, as well as of subjects
of different age within these groups, can provide
an integrated view on cell turnover (9). We used
an analytical model that includes polyploidization
in childhood to assess which one of many sce-
narios for cell birth and death best describes the
data. Times at which cells are born, ploidize, and
die are tracked. The atmospheric 14C values corre-
sponding to DNA synthesis events are integrated
to yield a calculated 14C level, on the basis of each
subject’s birth date, age at death, and DNA con-
tent. The calculated 14C levels were fitted to the
purity-corrected values to find the best renewal

rates for each scenario (see supporting online text
for a comprehensive description of the model-
ing). We first calculated what the annual turnover
rate would be in each individual if the rate was
constant throughout life. This indicated annual
turnover rates of 0.2 to 2% (Fig. 4A). However,
there was a clear negative correlation to age (R =
−0.84; P = 0.001), establishing that the turnover
rate declines with age. The strong negative cor-
relation to age also indicates that there is limited
interindividual variation in the cardiomyocyte turn-
over rate and its decrease with age.

We next tested a series of different models al-
lowing turnover rates to change with age. The best
fit was found with an inverse-linear declining turn-
over rate (Fig. 4B), in which younger cardiomyo-
cytes were more likely than older ones to be
replaced (see supporting online text). This model
predicts that cardiomyocytes are renewed at a rate
of ~1% per year at the age of 25 and 0.45% at the
age of 75 (Fig. 4B). With this turnover rate, most
cardiomyocytes will never be exchanged during a
normal life span (Fig. 4C). At the age of 50, 55%
of the cardiomyocytes remain from the time
around birth and 45% have been generated later
(Fig. 4C). The age of cardiomyocytes is on aver-
age 6 years younger than the individual (Fig. 4D).
The 14C data indicate a substantially higher re-
newal rate for noncardiomyocytes, with a median
annual turnover of 18% and a mean age of 4.0
years (see supporting online text). Our data do not
allow us to identify whether new cardiomyocytes
derive from cardiomyocyte duplication or from a
stem/progenitor pool, because both would result
in similar 14C integration in DNA.

Analysis of cell proliferation in the human
myocardium has previously indicated a cardio-
myocyte proliferation rate that could result in the
exchange of all cardiomyocytes within 5 years
(29), but the 14C concentrations in DNA exclude
such a high mitotic renewal rate. We asked whether
cardiomyocytes may be heterogeneous, with an
identifiable subpopulation turning over relatively
fast and the rest not turning over at all. This
scenario is incompatible with the data, and it is
most likely that the vast majority of cardiomyocytes
have a similar probability of being exchanged at a
given age (see supporting online text).

The limited functional recovery in humans
after myocardial injury clearly demonstrates in-
sufficient regeneration of cardiomyocytes. The
renewal of cardiomyocytes, indicated by the con-
tinuous integration of 14C, suggests that the devel-
opment of pharmacological strategies to stimulate
this process may be a rational alternative or com-
plement to cell transplantation strategies for cardio-
myocyte replacement.
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S-Nitrosylation of Drp1 Mediates
b-Amyloid–Related Mitochondrial
Fission and Neuronal Injury
Dong-Hyung Cho,1*† Tomohiro Nakamura,1* Jianguo Fang,1 Piotr Cieplak,2 Adam Godzik,2
Zezong Gu,1‡ Stuart A. Lipton1§

Mitochondria continuously undergo two opposing processes, fission and fusion. The disruption of
this dynamic equilibrium may herald cell injury or death and may contribute to developmental and
neurodegenerative disorders. Nitric oxide functions as a signaling molecule, but in excess it
mediates neuronal injury, in part via mitochondrial fission or fragmentation. However, the
underlying mechanism for nitric oxide–induced pathological fission remains unclear. We found
that nitric oxide produced in response to b-amyloid protein, thought to be a key mediator of
Alzheimer’s disease, triggered mitochondrial fission, synaptic loss, and neuronal damage, in part
via S-nitrosylation of dynamin-related protein 1 (forming SNO-Drp1). Preventing nitrosylation of
Drp1 by cysteine mutation abrogated these neurotoxic events. SNO-Drp1 is increased in brains of
human Alzheimer’s disease patients and may thus contribute to the pathogenesis of neurodegeneration.

Disrupting the balance between mitochon-
drial fission and fusion can lead to ex-
cessive mitochondrial fragmentation.

Fragmentation triggered by dysfunction of the
fission-inducing protein Drp1 (dynamin-related
protein 1), for example, contributes to synaptic
damage and subsequent neuronal loss because of
nitrosative/oxidative stress and impaired bioen-
ergetics (1–6). Excessive fission results in abnor-
mally small mitochondria with fragmented cristae

(2), as observed in electronmicroscopy studies of
neurons in human Alzheimer’s disease (AD) (7).
Drp1 homologs are S-nitrosylated, which regu-
lates their activity (8, 9). Furthermore, b-amyloid
protein (Ab) oligomers induce excessive mitochon-
drial fission and neuronal damage in a nitric
oxide (NO)–mediated fashion (2, 10). We sought
to determine whether Drp1 is S-nitrosylated and
thereby activated in AD.

Cerebrocortical neurons transfected with the
mitochondrial marker mito-DsRed2 were ex-
posed to theNOdonor S-nitrosocysteine (SNOC)
(11) and morphological changes in mitochondria
weremonitored by 3D-deconvolution fluorescence
microscopy (2). Mitochondria normally displayed
an elongated filamentousmorphology, but addition
of SNOC induced fragmented, smaller mitochon-
dria in a dose-dependent manner, due to fission
(Fig. 1, A and B) (2, 11). Using a biotin-switch
assay (12), we found that SNOC induced S-
nitrosylation of Drp1 (forming SNO-Drp1) in
neurons before inducing fission (Fig. 1C).

To investigate whether endogenously gener-
ated NO can induce SNO-Drp1, we used human
embryonic kidney (HEK) 293 cells stably ex-
pressing neuronal NO synthase (nNOS). These
cells were subjected to biotin-switch assay after
incubation with the calcium ionophore A23187
to activate nNOS. Endogenous Drp1 was S-
nitrosylated by endogenous NO; this reaction
was blocked by the NOS inhibitor N-nitro-L-
arginine (NNA; Fig. 2, A and B). SNO-Drp1 was
not detected in controls performed without ascor-
bate to removeNO, thus preventing replacement of
NO by biotin (which is detected in this assay), or
without biotin-HPDP (N-[6-(biotinamido)hexyl]-
3′-(2′-pyridyldithio)-propionamide).

Using the same conditions under which Ab
causes mitochondrial fragmentation and conse-
quent neuronal damage (2), we found thatAb could
induce SNO-Drp1 formation. Cerebrocortical neu-
rons were exposed to oligomers of the patholog-
ically active fragment Ab25-35 or, as a control,
reverse-sequence Ab35-25. Formation of SNO-
Drp1 was observed only in Ab25-35–treated neu-
rons, not in the control (Fig. 2C). Additionally, we
tested the effect of endogenously produced Ab,
generated from amyloid precursor protein (APP)
in conditioned medium of N2a/APP695 stable
neuronal cell lines or CHO cells stably expressing
human APP with the Val717 → Phe mutation
(designated 7PA2 cells). Exposing N2a cells to
SNOC or conditioned medium resulted in SNO-
Drp1 formation (Fig. 2C). We also found ele-
vated levels of SNO-Drp1 in vivo in brains of the
AD transgenic mouse model Tg2576, which ex-
presses high levels of the Swedish APP mutation
(Lys670 → Asn, Met671 → Leu) (fig. S1).

To extend these findings to humans, we ex-
amined brains obtained shortly after death from
patients manifesting AD (table S1). We found
increased SNO-Drp1 levels in 17 of 17 AD brains
studied, but not in brains of deceased Parkinson’s
disease patients or controls who died of non-CNS
causes (Fig. 2, D and E, and fig. S2). To determine
whether the level of SNO-Drp1 in AD human
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The suprachiasmatic nuclei (SCN) host a robust, self-sustained circadian pacemaker that coordinates physiological
rhythms with the daily changes in the environment. Neuronal clocks within the SCN form a heterogeneous network
that must synchronize to maintain timekeeping activity. Coherent circadian output of the SCN tissue is established by
intercellular signaling factors, such as vasointestinal polypeptide. It was recently shown that besides coordinating cells,
the synchronization factors play a crucial role in the sustenance of intrinsic cellular rhythmicity. Disruption of
intercellular signaling abolishes sustained rhythmicity in a majority of neurons and desynchronizes the remaining
rhythmic neurons. Based on these observations, the authors propose a model for the synchronization of circadian
oscillators that combines intracellular and intercellular dynamics at the single-cell level. The model is a heterogeneous
network of circadian neuronal oscillators where individual oscillators are damped rather than self-sustained. The
authors simulated different experimental conditions and found that: (1) in normal, constant conditions, coupled
circadian oscillators quickly synchronize and produce a coherent output; (2) in large populations, such oscillators either
synchronize or gradually lose rhythmicity, but do not run out of phase, demonstrating that rhythmicity and synchrony
are codependent; (3) the number of oscillators and connectivity are important for these synchronization properties; (4)
slow oscillators have a higher impact on the period in mixed populations; and (5) coupled circadian oscillators can be
efficiently entrained by light–dark cycles. Based on these results, it is predicted that: (1) a majority of SCN neurons
needs periodic synchronization signal to be rhythmic; (2) a small number of neurons or a low connectivity results in
desynchrony; and (3) amplitudes and phases of neurons are negatively correlated. The authors conclude that to
understand the orchestration of timekeeping in the SCN, intracellular circadian clocks cannot be isolated from their
intercellular communication components.

Citation: Bernard S, Gonze D, Čajavec B, Herzel H, Kramer A (2007) Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLoS Comput
Biol 3(4): e68. doi:10.1371/journal.pcbi.0030068

Introduction

In most mammalian cells, a set of ‘‘clock’’ genes and
proteins forms a regulatory network that produces oscilla-
tions with a circadian period (’24 h) [1]. Molecular and
physiological rhythms are coordinated with the daily changes
in the environment by a dominant circadian pacemaker, the
suprachiasmatic nuclei (SCN) of the hypothalamus. The SCN
neurons endogenously generate circadian rhythm and adapt
that rhythm according to light–dark (LD) cycles of the
environment (entrainment). The approximately 20,000 neu-
rons in the SCN [2,3] vary (1) in their ability to sense the
environmental timing cues, (2) in the neurotransmitters they
express or respond to, and (3) in their connectivity proper-
ties. A desire to understand how such a heterogeneous
network produces a coherent and synchronous circadian
output has motivated extensive experimental and theoretical
work.

Organotypic SCN slices or SCN neurons in high-density
dispersal cultures express a coordinated rhythmic activity for
as long as they are viable (a few weeks up to several months)
[2]. SCN neurons in low-density dispersal cultures, however,
do not show a coordinated activity but express a large
variation in their free-running periods [4,5]. This has led to

the conclusion that SCN neurons are self-sustained circadian
oscillators that need a synchronization signal to produce a
coherent output. Even before this experimental evidence, it
had been hypothesized that the coupling of ‘‘sloppy’’ clocks
improves the reliability of the output [6]. So far, all published
mathematical models of the synchronization of the SCN rest
on the coupling of self-sustained circadian oscillators.
Among candidate synchronization factors are the neuro-

peptides vasoactive intestinal polypeptide (VIP), gastrin-
releasing peptide (GRP), [7] and prokineticin 2 [8], and the
neurotransmitter GABA [9]. In addition, signals using the G-
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protein subunit Gi/o [10] as well as gap junctions [11] have
been implicated in the intra-SCN synchronization mecha-
nism. The concept of mutual coupling, in which the neuro-
transmitter is released in a circadian fashion and feeds back
on the clock, has been put forward by different authors [9,12–
18]. Two recent studies analyzed the consequences of targeted
disruption of genes coding for VIP or its receptor, VPAC2

[18,19]. In both cases, not only the synchrony between SCN
neurons was lost, but, surprisingly, a majority of neurons also
became arrhythmic. Similarly, inhibition of sodium channels
by tetrodotoxin (TTX) desynchronizes and suppresses oscil-
latory activity in clock neurons [20]. In Drosophila also, electric
disturbance of clock neurons can stop their free-running
activity [21]. Activity at the neuronal membrane thus seems to
play a role in maintenance of intracellular rhythms and
coordination of neuronal clocks [22].

Here, we show that these results can be reproduced by a
mathematical model of synchronization of coupled oscillators
that are damped rather than self-sustained. Our model
reproduces a number of experimental results well: (1) quick
and robust synchronization under normal conditions; (2) loss
of synchrony and rhythmicity in SCN slices after application
of TTX, or in the absence of VIP signaling; and (3)
entrainment by LD cycles. In addition, we show that if the
number of oscillators is large enough and/or the connectivity
between SCN neurons sufficiently strong, synchrony becomes
a condition sine qua non for rhythmicity (i.e., the loss of
coherent activity results in damped oscillations of individual
neurons). Far from being coincidental, we suggest that
synchrony-dependent rhythmicity in individual cells is a
defining property of robustly synchronized systems like the
SCN. Synchronization factors thus have a dual role in
maintaining rhythmicity and synchronizing circadian oscil-
lators.

Results

Structure of the Model
To simulate synchronization within the SCN, we con-

structed a network of coupled but damped molecular
circadian oscillators. The model is built in two levels. First,
on a single-cell level, we used a detailed molecular model to
describe (1) the intracellular dynamics of clock genes and
proteins, (2) the circadian neurotransmitter release by clock
proteins, and (3) a simplified two-step signaling cascade
leading to gene activation in response to neurotransmitter
release (Figure 1). Second, on the ‘‘tissue’’ level, we placed the
cells on a grid with the topology of a 2-D or 3-D SCN, and
coupled them. We considered several coupling schemes
mimicking different experimental conditions: (1) random
sparse coupling (type 1, Figure 2A), (2) nearest-neighbor
coupling (type 2, Figure 2B), and (3) SCN-like coupling
combining nearest-neighbor and sparse coupling (type 3,
Figure 2C).
Intracellular oscillator. The molecular oscillator consists of

a set of seven differential equations describing the time
evolution of the key genes of the circadian clock, including
Per/Cry and Bmal1, as proposed in a model by Becker-
Weimann et al. [23] (Figure 1; Materials and Methods). In
the present study we assume that in absence of synchroni-
zation signaling, intracellular oscillators are damped rather
than self-sustained (see Introduction). Damped oscillators
display a circadian rhythmic activity with gradually decreas-
ing amplitude; without extracellular signals, rhythms vanish
within a few days. To achieve damping, we slightly modified
the parameter values of the original Becker-Weimann model
(see Materials and Methods). In addition, to reflect
experimental findings [4], we randomly assigned to each
oscillator an individual, intrinsic period distributed around
24 h.
Coupling of oscillators. The coupling between the molec-

ular oscillators is assumed to be accomplished by a neuro-
transmitter released upon PER/CRY complex activity. The
neurotransmitter triggers a signaling cascade that activates
Per/Cry transcription both in the same cells as well as in
coupled neighbors (Figure 1; Materials and Methods). The
strength of the coupling signal depends on the average
concentrations of neurotransmitter released by all coupled
cells at a particular phase.
Topology of a population of oscillators. To simulate SCN-

like topology, the oscillators are disposed in a two-lobe–
shaped 2-D or 3-D grid (Figure 2C and 2D). Each lobe
represents one suprachiasmatic nucleus. The average random
periods of oscillators and the connection between oscillators
depend on their position within the grid. We simulated three
types of coupling to reproduce various experimental con-
ditions (see Materials and Methods). Type 1 is a random
coupling with a nominal connectivity c0, which is the
probability that two given oscillators are connected (Figure
2A). Such a coupling may be representative of conditions in
neuron cultures dispersed at low or medium densities. Type 2
is a nearest-neighbor coupling, with connections only
between oscillators that are separated by a distance smaller
than a threshold dmax. Type 2 coupling covers a broad class of
locally coupled networks, as in high-density neuronal cultures
(Figure 2B). Type 3 is aimed to reflect SCN-like coupling
entrained by a LD cycle, where the grid is divided into four
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Author Summary

Circadian rhythms, characterized by a period close to 24 h, are
observed in nearly all living organisms, from cyanobacteria to plants,
insects, and mammals. In mammals, the central circadian clock is
located in the suprachiasmatic nucleus (SCN) of the hypothalamus,
where it receives light signals from the retina. In turn, the SCN
controls circadian rhythms in peripheral tissues and behavioral
activity. The SCN is composed of about 20,000 neurons charac-
terized by a small size and a high density. Within each individual
neuron, clock genes and proteins compose interlocked regulatory
feedback loops that generate circadian oscillations on the molecular
level. SCN neurons dispersed in cell cultures display cell-autono-
mous oscillations, with periods ranging from 20 h to 28 h. The
ventrolateral part of the SCN receives light input from the retina,
serving as a relay for the dorsomedial part. Coupling and
synchronization among SCN neurons are ensured by neurotrans-
mitters. A desire to understand how such a network of heteroge-
neous circadian oscillators achieves a synchronous and coherent
output rhythm has motivated extensive experimental and theoret-
ical work. In this paper, we present a molecular model combining
intracellular and extracellular dynamics for the SCN circadian system,
and propose a novel synchronization mechanism. Our results predict
a dual role for the coupling factors within the SCN, both in
maintaining the rhythmicity and in promoting the synchronization
between the circadian oscillators.

Synchronization-Induced Rhythmicity



regions: each lobe is divided in a ‘‘ventrolateral’’ (VL) core
and ‘‘dorsomedial’’ (DM) shell region (Figure 2C). Thus, we
can simulate a different coupling type for each of the regions
as well as coupling between the regions.

Coupled Damped Oscillators Are Efficiently Synchronized
We studied the synchronization dynamics of coupled SCN

neurons under four different conditions: high-density cul-
ture, low-density culture, presence of TTX, and loss of VIP/
VPAC2 receptor.

First, we wanted to test how well coupled oscillators can
synchronize under normal conditions that mimic wild-type
SCN slices or neuronal cultures (high-density, no mutation).
We simulated this by a nearest-neighbor coupling (type 2;
Figure 3A, 3B, and Video S1) in a 2-D SCN slice geometry. In
these simulations, we ignored spatial heterogeneity of the
SCN except that we set the periods of the DM cells to be
slightly shorter (4%) than those of the VL cells, consistent
with experimental findings [24], and we distributed the
periods around 24 h with a standard deviation of 5% [4,5].
As a readout for synchrony, we defined an order parameter R
(Equation 18 in Materials and Methods). R is a normalized
variance of the average Per/Cry mRNA concentrations in all
cells, and varies between 0 (no oscillator synchronized) and 1
(all oscillators synchronized in phase). To describe the
strength of the synchronization signal, we introduced a
parameter K � 0 that controls the overall coupling strength,
and represents the sensitivity of cell to the neurotransmitter

(for details, see Materials and Methods). With the coupling
strength set to K ¼ 0.9, the slice is well synchronized (R ¼
0.83), and the overall period is 24.4 h. The whole slice reached
a stationary synchronized state less than 72 h after starting
the oscillators from random initial conditions (Figure 3A and
3B; the first 72 h transients are not shown). Thus, the model
reproduces well the high degree of synchrony seen in SCN
slices.
The connectivity, defined as the average of the ratio

between the number of connections and the maximal number
of connections, is higher in 3-D (0.16) than in 2-D (0.10), as
more neighbors are present within a given radius. Therefore,
a complete SCN should synchronize even better than a 2-D
slice. Indeed, simulations in a 3-D SCN geometry showed
extremely well-synchronized cells (R¼ 0.97) with only a 2.5-h
spread from the most advanced to the most delayed cells,
compared with more than 4 h for a 2-D slice (Figure S2 and
Video S2).
Second, having established that the model is well-synchron-

ized under normal conditions, we wanted to know whether it
could reproduce an SCN neuron culture dispersed at low
density. To test this, we simulated a population of oscillators
in which the neurotransmitter is only perceived by the cell
that releases it (autocrine activation). Although individual
oscillators are not self-sustained, simulations showed that
isolated cells with autocrine activation become self-sustained
oscillators, and oscillate with their intrinsic periods (Figure
3C and 3D). Thus, autocrine neurotransmitter activation
seems to be sufficient to sustain oscillations in a dispersed cell
culture. In addition, individual oscillators have an average
intrinsic period of 24.3 6 1.2 h that is very close to the period
of the synchronized cells.
Third, we wanted to reproduce the loss of synchrony and

rhythmicity in SCN slices after application of TTX. TTX
blocks voltage-gated sodium channels and desynchronizes
and suppresses oscillatory activity in clock neurons [20]. After
removing TTX, the clock neurons resumed their oscillation
and reestablished the same phase relationship as before TTX
application. We simulated TTX experiments by using a weak
coupling (K small) in a 2-D network with a nearest-neighbor
coupling. We transiently decreased K from 0.9, as in normal
conditions, to 0.3, and observed that all oscillators damped
out. They quickly resumed their high-amplitude oscillations
after restoration of full coupling (Figure 3E). Thus, the model
reproduces the TTX experiments well.
Fourth, we simulated an SCN neuron culture in the

absence of VIP signaling. Experimentally, in the absence of
VPAC2, neurons show desynchronized and low-amplitude
oscillations, or no oscillations [18]. In some cases, low-
amplitude behavioral rhythmicity is retained [10,18,19,25],
so we assumed that weak cell-to-cell interaction subsists [7,10]
and decreases with the distance between cells. With such a
severely impaired coupling, most of the oscillators rapidly
damped out, while a few remained irregularly rhythmic for a
longer time (Figure 3F). Simulations over a longer time of
multiple slices confirmed that these are not self-sustained
oscillations (i.e., single cells eventually become arrhythmic).
The rhythmic average output is preserved in the first 144 h,
with R ¼ 0.78. Later, from 144 h to 288 h, R is considerably
reduced (to 0.20), indicating a severe disruption of the
synchrony after a few days.

Figure 1. Scheme of the Single-Cell Circadian Oscillator, Including the

Coupling Mechanism

The intracellular oscillator consists of interlocked positive and negative
transcriptional/translational feedback loops. In the negative feedback
loop, Per and Cry genes (treated as a single variable) inhibit their own
transcription by preventing BMAL1 from promoting Per/Cry transcription.
In the positive feedback loop, the PER/CRY complex activates the
transcription of their common transcriptional activator, Bmal1 [23]. We
assumed that the release of the neurotransmitter in the extracellular
medium is activated by PER/CRY. In turn, the neurotransmitter activates a
signaling cascade (involving PKA and CREB) that activates Per/Cry
expression. In this schematic representation, solid arrows denote
transport, translation steps, or phosphorylation/dephosphorylation
reactions, while dashed arrows denote transcriptional regulations. The
stars indicate the active (phosphorylated or complexed) form of the
proteins. For a full reasoning of modeling assumptions see main text and
[23].
doi:10.1371/journal.pcbi.0030068.g001
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Single-Cell Rhythmicity and Synchrony Are Codependent
After having established that oscillators can be efficiently

synchronized, and that weak coupling leads to loss of
synchrony and rhythmicity in individual oscillators, we
wanted to investigate whether coupled damped oscillators
indeed only have two dynamic states: rhythmic and synchron-
ized, or arrhythmic and desynchronized. To do this, we first
recapitulated the simulations made in the previous sub-
section with only two coupled oscillators to explore all the
dynamic states they can take. We then confirmed that in a
large population, individual oscillators could not be rhythmic
if their neighbors are not synchronized.

We simulated possible dynamic outcomes of the coupling
of two damped oscillators with random periods. We varied
the coupling strength and the ability of the oscillators to
sense autocrine or paracrine synchronization signals. First, if
the oscillators sense strong autocrine and paracrine signals (K
high enough, intercellular coupling), they synchronize (Figure
4A). Second, if the oscillators sense only autocrine signals (K
high enough, no intercellular coupling), they oscillate, but do
not synchronize (Figure 4B). Third, if the oscillators sense
weak autocrine and paracrine signals (K small, intercellular
coupling), their oscillations die out (Figure 4C). Despite many
numeric simulations, we never encountered two normally
coupled oscillators that are rhythmic but desynchronized.
This indicates that in our model, rhythmicity is sufficient to
induce synchronization, and vice versa.

A single oscillator in a large enough neighborhood of
rhythmic but totally desynchronized cells would sense a
constant average synchronization signal. In our model, the

neurotransmitter activates the CREB protein in the signaling
cascade. In simulations with constantly activated CREB
protein (X2, Equation 9), oscillations stopped and a stable
steady state was reached (Figure 4D). Any transient oscillatory
activity damped out to that state (Figure 4E). Hence, a
variable input is required for sustained rhythmicity of
individual oscillators. In a large population of well-coupled
cells, the variable input can only come, by definition, from
synchronized neighbors. Noise is another source of variability
that might affect synchrony. Two kinds of noise can be
distinguished and can have different effects on the synchro-
nization of oscillators. First, the noise can affect individual
properties of oscillators (e.g., the successive periods of a given
oscillator) or their coupling (e.g., the neurotransmitter
released by each cell). Such a local noise impairs the
synchrony as the strength of noise increases (Figure S3A–
S3D). Alternatively, a spatially uniform extracellular noise
could contribute to synchronize the cells (Figure S3E and
S3F), even in the absence of synchronization signals, in much
the same way that was described by Zhou and coworkers [26].
This result shows that synchrony is necessary for rhythmicity
of single oscillators (i.e., single-cell oscillator rhythmicity and
synchrony are codependent).

Number of Oscillators and Connectivity Define
Synchronization Properties
So far, we have looked at a large number of oscillators and

found that robust synchronization is achieved when oscilla-
tors are appropriately coupled. To analyze the influence of the
number of oscillators as well as the connectivity on synchro-
nization dynamics, we used a uniform, random coupling (type

Figure 2. Organization of the Circadian Oscillator Networks

(A) Random coupling (type 1). The probability that two oscillators are connected is independent of their positions.
(B) Nearest-neighbor coupling (type 2). Oscillators are on a grid with a Euclidian distance d. Circle representing oscillators are color-coded for their
distance from the central black oscillator. Black, red, orange, blue, gray, and white circles are at distances d¼ 0, 1,

ffiffiffi
2
p

, 2,
ffiffiffi
5
p

, and 2
ffiffiffi
2
p

, respectively. Two
oscillators are connected if their distance is less than a threshold dmax.
(C) SCN-like coupling (type 3). The SCN is divided in four regions, left and right VL regions (dark blue and red, respectively), and left and right DM
regions (light blue and red, respectively; the green part is the intersection between left and right DM regions). Each dot represents an oscillator.
Projections from the VL regions to their respective DM regions are indicated by light gray arcs. Projections from one cell to another are assigned
randomly, with probability 0.5 for a DM cell to receive a projection.
(D) Representation of a 3-D SCN. Each dot is a cell, and the color gradient indicates the VL–DM axis (dark cells are on the VL side and light cells are on
the DM side, corresponding to the vertical axis in [C]). For type 3 coupling in a 3-D SCN, the regions are defined in the same way as in 2-D (C).
doi:10.1371/journal.pcbi.0030068.g002
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1), and we varied either the number of oscillators or the
nominal connectivity (Figure 5) and measured the R values.

First, we considered the synchronization of ensembles
consisting of six to 63 oscillators, with a nominal connectivity
c0¼ 0.1. For the larger ensembles, strong synchronization was
consistently achieved (R . 0.8 for n . 40). For smaller
ensembles, the order parameter R shows a high variance,
ranging from 0.15 to almost 1 for n¼ 27. High variability of R
values denotes poor, nonrobust, network-dependent synchro-
nization (Figure 5A). Representative average outputs for small
cell numbers are damped or irregular compared with larger
networks (Figure 5B, two top panels versus bottom panel).

Second, we tested the influence of the connectivity on
synchronization properties (c0 ranging from 0.005 to 1 with a
fixed number of cells n ¼ 12). For dense networks (c0 � 0.5),
synchronization was consistently excellent (R . 0.9). Sparsely
connected networks (c0 , 0.5) result in highly variable R
values, as for small numbers of oscillators. For small c0 values
(,0.1), we observed better synchronization, perhaps because
usually only one synchronized cluster forms (Figure 5C).
Sparsely coupled networks show dynamics similar to small
population networks, as the connectivity is varied (Figure 5D).
These results show that in random networks, both a sufficient

number of oscillators and connectivity contribute to strong
and robust synchronization. In weakly coupled networks, in
addition to a loss of rhythmicity, Per/CrymRNA concentration
decreases exponentially (Figure 5B and 5D, top panels),
consistent with the relative ‘‘dark’’ cells observed in VPAC2

receptor–deficient luciferase reporter mice [18].
For large numbers of SCN neurons, as in vivo (hundreds to

thousands), we found that synchrony is achieved even for very
small connectivity values. Therefore, a larger number of
neurons in the network ensures that even a great reduction in
connectivity will not impair synchrony.

Slow Oscillators Have a Higher Impact on the Period
Mutations in clock genes that modify the free-running

period of the SCN provide a way to test the synchronization
properties of neurons with different periods. Hamsters
homozygous for the tau mutation have free-running periods
of about 20 h compared with 24 h in wild-type hamsters [27].
The free-running periods in mutant and wild-type animals
are determined by the average of periods of dispersed
individual clock cells [28,29]. In a recent experiment by the
Herzog lab, when dispersed SCN neurons of tau mutants and
wild-type hamsters were mixed in cell cultures, the resulting
period of the total population turned out to be longer than

Figure 3. Synchronization of Damped Oscillators

(A) Simulated evolution of Per/Cry mRNA expression over 48 h of 309 coupled neurons in a 2-D SCN slice with a type 2 coupling (nearest-neighbor
coupling; dmax ¼ 3.5, K¼ 0.9). Dark brown corresponds to a low level of Per/Cry expression, while white corresponds to a high expression.
(B) Time series of ten randomly chosen oscillators from the slice shown in (A).
(C) Time series of ten randomly chosen uncoupled, free-running (dmax ¼ 0, K¼ 0.9) oscillators.
(D) Distribution of cell-intrinsic periods (black, VL neurons; white, DM neurons; total number of cells, n¼ 309).
(E) Time series of ten transiently weakly coupled oscillators (dmax ¼ 3.5, K¼ 0.3 between t ¼ 84 and 168 h; n¼ 309).
(F) Evolution of ten randomly picked oscillators simulating loss of VPAC2 receptor (f decreasing function of the distance, dmax¼1, K¼0.45, n¼309). The
decreasing f (see Equation 15) means that the signal is stronger for autocrine coupling. The thick black lines represent the average output. The resulting
period is 24.7 h, and the average period of individual oscillators is 24.6 6 1.2 h.
doi:10.1371/journal.pcbi.0030068.g003
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the average period of the two unmixed populations, which
would have been the naive prediction (S. Aton and E. Herzog,
personal communication).

With this experimental observation in mind, we tested
whether our model might be able to explain this nonintuitive
result. We randomly mixed and connected a 24 h–period
population with a 20 h–period population (total, n ¼ 100;
standard deviations of the periods, 0.1 h) in various ratios.
The resulting period of the synchronized population was
compared with the period that would have been expected
from averaging the individual oscillator periods. For ratios
between 0.2 and 0.8 (i.e., 20% and 80% wild-type cells), the
resulting population period was systematically longer than
expected (five runs per ratio, R . 0.8; Figure 6A and 6B).
Thus, in mixed population, slow oscillators seem to have a
higher impact on the period than the faster ones.

In a synchronized SCN neuron slice culture or a high-
density SCN neuron dispersal culture, the intrinsic periods of
the neurons (i.e., of the noncoupled neurons) cannot be
determined experimentally, only the phases and amplitudes.
Thus, we used our model to relate these two measures to the
intrinsic periods of the neurons. To this end, we extracted the
intrinsic periods of the neurons by uncoupling them and
calculating their free-running periods. We saw that, when
coupled, oscillators with short periods are phase-advanced,

and oscillators with long periods are phase-delayed compared
with the phase of the average output of the population
(Figure 6C and 6D), consistent with the observation that the
DM region is advanced with respect to the VL region [20]. We
also saw that the amplitudes of oscillators are higher when
their periods are longer (Figure 6E). Consequently, oscillators
with high amplitudes are phase-delayed, and oscillators with
low amplitudes are phase-advanced (Figure 6F). These
findings explain why synchronized oscillators have a period
longer than expected (i.e., because high-amplitude oscillators
contribute more to the population than those with small
amplitude).

The Light-Entrained Core Oscillators Can Entrain the Shell
Oscillators
An important property of the circadian clock is its

capability to be entrained by daily LD cycles. The light signal
is conveyed from the retina to the SCN via the retino-
hypothalamic tract [30]. Retino-hypothalamic cells release
glutamate and PACAP, which activate Per gene expression in
the target VL cells [31], which then relay the light signal to the
DM cells [17]. After a phase-shift in the LD cycle, the light-
responsive VL neurons re-entrain rapidly (;2 d) to the new
schedule, while the DM neurons take much longer to
readjust—up to 13 d after a 6-h advance in the LD cycle [32].

Figure 4. Single-Cell Rhythmicity Implies Synchrony

(A–C) Phase space of a network of two oscillators showing possible dynamic behaviors. Each panel represents a condition that was simulated in the
previous subsection. The inlets show what kind of coupling was considered (spirals, damped oscillators; solid arrows, normal coupling [K¼ 0.9]; dashed
arrows, weak coupling [K¼ 0.3]; red and green arrows, paracrine and autocrine coupling, respectively). The axes show the differences of Per/Cry mRNA
and PER/CRY complex concentrations between the two oscillators. This way, two oscillators can be represented in a 2-D space.
(A) Normal, wild-type condition. The oscillators are normally coupled (autocrine and paracrine coupling), and the result is a regular, clock-like cycle
denoting synchrony.
(B) Dispersed condition. Oscillators with autocrine activation only are rhythmic, but quickly run out of phase. The result is an irregular cycle as phase
differences are not constant.
(C) Weak coupling. Oscillators with weak paracrine and autocrine coupling damp out to a steady state.
(D) Stable steady state of Per/Cry mRNA under constant input. The minimal and maximal values of rhythmic input signals (variable X2) under normal
coupling conditions are indicated by the dashed lines.
(E) Phase space of a single oscillator with constant input. Because the intracellular oscillator is 7-D, we had to reduce the phase space from seven to two
dimensions, and we chose a projection plane for which the trajectory was closest to a spiral.
doi:10.1371/journal.pcbi.0030068.g004
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To test whether our model is able to entrain to LD cycles
and to analyze entrainment dynamics, we simulated a 12 h–12
h LD cycle in a 2-D SCN with a type 3 coupling by imposing a
periodic forcing on the expression of Per/Cry gene in the VL
cells. Through neuronal projections, VL cells entrained the
DM cells (Figure 7A and 7B, and Video S3). Starting from
completely desynchronized cells, high synchrony (R ¼ 0.92)
and phase-locking to the LD cycle (with a 24-h period) are
reached very fast, within 72 h. The phases of DM cells were
slightly more advanced than those of the light-inducible VL
cells (unpublished data), as observed experimentally [20].
After a 12-h phase-shift in the LD cycle, VL cells resumed
their phase quickly (after 2 d), while DM cells took more than
10 d to resynchronize to the LD cycle (Figure 7C). These
results are in agreement with experimental findings [32], and
show that entrainment by a LD cycle is efficient even if only a
fraction of the cells can respond to the light signal (102 out of
309), but also that the light-insensitive cells take a longer time
to adjust their phase.

Discussion

A Model for the SCN Circadian System
Recent technological advances made it possible to measure

the oscillation dynamics of single neurons within a SCN
tissue at a high resolution, thus providing experimental data
to construct and support more realistic SCN models [3,19].

Several papers proposed models for the molecular mecha-
nism underlying circadian oscillations at the single-cell level
[23,33–35], but without considering intercellular communi-
cation. Other studies considered intercellular coupling
mechanisms between generic oscillators without taking into
account the influence of the rhythmicity of the intercellular
coupling on the oscillators themselves. In two models, the
intracellular oscillator is a van der Pol oscillator, which is a
generic two-variable system displaying strong self-sustained
oscillations. The models differ in the way cells are coupled:
Kunz and Achermann [36] showed how uniformly locally
coupled networks can robustly synchronize, while Antle and
coworkers [37,38] proposed that a subset of gate cells provide
daily inputs to rhythmic oscillators. Rougemont and Naef
[39] used more abstract Kuramoto oscillators, in which only
the phase (not amplitude) is described, with periods and
phases randomly varying in time to characterize the source of
phase dispersion. The first attempt to describe synchroniza-
tion of circadian oscillators that are based on realistic genetic
network was by Ueda et al. [40], who showed that
synchronization factors confer noise resistance to circadian
rhythms in populations of oscillators. Roenneberg and
Merrow [41] proposed the concept of zeitnehmer, where
the cellular circadian oscillator feeds back on the input
pathways of the zeitgebers, blurring the distinction between
intra- and extracellular components. Here, we present a
molecular model for the SCN circadian system that combines
intracellular and extracellular dynamics at the single-cell
level.
So far, all published models assumed that individual

oscillators are self-sustained. Recent experimental observa-
tions challenge that assumption. SCN slices treated with TTX,
an inhibitor of sodium channels, lose both synchronization
and rhythmicity [20]. In VIP and VPAC2 receptor–deficient
high-density neuron dispersals, about 70% of the neurons are
no longer rhythmic [19]. Similarly, in the slices from mice
lacking the VPAC2 receptor, only a minority of neurons from
the dorsal shell is rhythmic, and shows poorly organized and
low-amplitude circadian gene expression [18]. These results
suggest that synchronization factors are not only required for
synchrony, but also for rhythmicity of individual cells.
Therefore, in the present model, we considered a population
of oscillators that are damped in the absence of synchroniza-
tion signals.
We built a heterogeneous network of coupled damped

circadian oscillators. On a single-cell level, we used a
molecular model of the circadian clock [23], neurotransmitter
release by clock proteins, and signaling cascade that leads to
clock gene activation. We obtained a damped intracellular
oscillator by reducing the steepness of the Per/Cry promoter
feedback loop (Hill coefficient). The Hill coefficient repre-
sents the cooperative character of the transcriptional
inhibition process. A lower Hill coefficient leads to a more
gradual inhibition of the promoter, whereas a high Hill
coefficient results more in a switch-like process. On a
population level, we placed the cells on a grid with a flexible
topology of a 2-D or 3-D SCN, and coupled them. The
phenotypes of the neurons (period, amplitude, sustained or
damped activity, neuropeptide release and receptor expres-
sion, connectivity, etc.) were specified according to their
position in the grid.

Figure 5. Effect of the Number of Oscillators as Well as the Connectivity

on Synchronization

(A) Synchronization properties of randomly coupled networks with
respect to the number of neurons n (c0¼ 0.10). Each dot represents the
order parameter R for one realization of a random network and a
simulation. Ten simulations were performed for each value of cell
number n. The total length of the simulations was 312 h after starting
with random initial conditions, and the order parameter was calculated
over the last 240 h.
(B) Three examples of average output for n ¼ 12, 24, and 101.
(C) Synchronization properties of randomly coupled networks with
respect to the connectivity c0 (n¼ 12). Ten simulations were performed
for each value of nominal connectivity c0. Other parameters as in (A).
(D) Three examples of average Per/Cry mRNA concentration for c0¼ 0.05,
0.10, and 0.15.
doi:10.1371/journal.pcbi.0030068.g005
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Comparison with Experimental Results and Predictions
We verified that our model reproduces well-known

behaviors of SCN. In high-density networks, the modeled
coupled oscillators are rhythmic and well synchronized in
absence of external cues (Figure 3A and 3B). We simulated
TTX treatment of neurons [20] by lowering the coupling
strength and showed that rhythmic activity in single
oscillators disappeared and resumed quickly after the full
coupling was restored (Figure 3E). Then, we simulated loss of
VIP and VPAC2 receptor [13,18,19] by lowering the coupling
strength and reducing the range of connectivity, and showed
that oscillators were slowly desynchronized and damped
(Figure 3F). We assumed the presence of a short-range
coupling because in the absence of the VPAC2 receptor, mice
express multiple circadian periods over more than 80 d when
kept in constant darkness [19], suggesting the existence of
isolated islands of synchronized, locally coupled SCN neu-
rons. We also verified that a periodically entrained subset of
neurons (the VL core) could entrain the rest of the neurons
(the DM shell) to a 24-h period (Figure 7A and 7B). After
simulating a 12-h phase-shift in the LD cycle, the light-
inducible VL region reset its phase much faster than the DM
region (2 d versus 10 d; Figure 7C).

Damped oscillators in a large coupled population can
adopt two and only two dynamic behaviors, depending on the
coupling: (1) damping if uncoupled or weakly coupled, or (2)
synchrony if normally coupled (Figure 4). A direct conse-
quence is that coupled cells cannot run out of phase and still

oscillate (individual cells dispersed at low density are viewed
as many independent synchronized systems). The coupling of
damped oscillators produces a circadian pacemaker that is
robustly synchronized: provided they are rhythmic, neurons
will synchronize. If some neurons lose synchrony, they will
damp out, leaving the rest of the SCN unperturbed.
We showed that to achieve robust synchronization, the

number of neurons and the connectivity matter (Figure 5). In
neuron dispersals, coherent rhythmic output is density-
dependent [4,5,19]. In addition, Yamaguchi et al. [20]
reported that the upper dorsal region of a SCN slice lost its
rhythmicity when cut out from the ventral region, perhaps
because of the small size of the separated region—25 neurons
were measured in the cut piece. In VPAC2 receptor–deficient
or VIP-deficient mice, simultaneous multiple free-running
periods in behavior could result from parallel, synchronized
clusters in loosely connected networks.
Ohta et al. [42] reported that after 3–5 mo, 10% of the mice

kept in constant light showed arrhythmicity. They showed
that the arrhythmicity is due to desynchronization between
rhythmic SCN neurons. The only way our model could
reproduce these results is by decreasing paracrine coupling
without interfering with autocrine coupling. But at present,
there is no evidence that constant light could induce such a
selective disruption.
In a driven harmonic oscillator like a pendulum, the

highest amplitude is achieved when the driving period and
the intrinsic period coincide [43]. Unexpectedly, in our

Figure 6. Effect of the Intrinsic Period on Amplitude and Phase

(A) Resulting periods of two mixed populations of oscillators, one with a 24 h period and one with 20 h period (type 1 coupling; c0¼ 0.1). The period
was calculated with proportions of 24 h period cells of 0.0, 0.1, 0.2, 0.5, 0.8, and 1.0, and results of five runs for each proportion were averaged (total n¼
100, [open circles] average period). The dashed line represents the average of the individual oscillators’ periods.
(B) Deviation of the resulting population periods shown in (A) from the average of the individual oscillator periods (the error bars are the standard
deviations).
(C) Three coupled oscillators with different intrinsic periods showing their phase and amplitude relationships: the short period oscillator (thick blue line)
is phase-advanced and low amplitude compared with the average period oscillator (green line) and the long period oscillator (dashed red line).
(D) Phase difference from the average Per/Cry mRNA concentration with respect to the intrinsic periods, from the simulations shown in Figure 3A and 3B
(dark blue 3, left VL neurons; light blue, left DM neurons; dark red 3, right VL neurons; light red, right DM neurons). A positive phase difference means
phase-advanced compared with the phase of the population.
(E) Amplitude with respect to the intrinsic period from the simulations shown in Figure 3A and 3B (color code as in [D]).
(F) Amplitude phase relationship for type 1 coupling (K ¼ 0.9, c0¼ 0.1, number of oscillators n¼ 100).
doi:10.1371/journal.pcbi.0030068.g006
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model, we obtained a monotonic curve in which the
amplitudes increase with the periods, possibly because of
the interaction between Per/Cry gene activation by the
synchronization signal and BMAL1 protein (Figure 6E). As a
result, slow oscillators have a higher impact on the period in a
mixed population, qualitatively reproducing the results from
a mixed-genotype experiment (E. Herzog and S. Aton,
personal communication). This contrasts with mutually
coupled threshold-activated oscillators, where the fastest
elements set the period [6]. In homogenous cell cultures,
the difference between the free-running period and the
average period of individual neurons is smaller than what is
statistically detectable [29]. Our simulations also showed no
statistical difference between average and synchronized
periods (simulations from Figure 3A–3D, two-sided t-test, p
¼ 0.20).

Based on our results, we propose three experimentally
testable predictions. (1) Oscillations in a majority of VPAC2

receptor–negative neurons dispersed at low density should
rapidly damp out after induction by serum shock. If validated,
this would confirm that loss of rhythmicity in a VPAC2

receptor–negative SCN slice is not due to unexpected cell–
cell interaction. To test that neurons need periodic synchro-
nization signals to be rhythmic, one could treat VIP-deficient
neurons with constant high levels of VPAC2 agonist. We
predict that arrhythmic neurons will stay arrhythmic. (2) A
low number of neurons or a low connectivity should result in
desynchrony. Medium-density neuron cultures with a small
number of neurons should display variability in their

synchrony levels (including nonoscillatory neurons as defined
by the order parameter R). Increasing the density or the
number of neurons would reduce the variability of synchro-
nization levels and increase the average synchrony. Knife cuts
in SCN slices to isolate different numbers of neurons could be
a way to test size dependency. We predict that pieces that
contain fewer than 40 neurons will display large variations in
synchronization levels. In mice heterozygous in the gene
coding for the VPAC2 receptor, SCN neurons seem to have
synchronization properties similar to those in wild-type mice
[18]. However, if connectivity is subtly altered in heterozygous
mice, a prediction is that asynchrony will occur in larger-cut
SCN pieces than for wild-type mice. (3) In high-density
dispersal cultures, normalized amplitudes [44] of oscillations
should be negatively correlated with the phases as in Figure
6F, provided there is a small variation in the natural
amplitudes of isolated neurons. This would be a way to
estimate the free-running periods of individual neurons
without the need to disperse them.

Synchronization Mechanism
The synchronization of damped oscillators is independent

from the particular intracellular model used. Systems with a
Goodwin-type model as used in [45], the Leloup-Goldbeter
model [33], and other simple negative feedback oscillators
have similar synchronization properties (Figure S4–S6).
Numeric exploration of such models suggests that positive
feedback loops facilitate, but are not necessary for, efficient
synchronization (unpublished data). The variability of behav-
ioral periods in Rev-Erba knockout mice, in which the positive

Figure 7. Simulation of Entrainment of a 2-D SCN Slice by a 12:12 LD Cycle

(A) Simulation of the evolution of Per/Cry mRNA over 48 h of 309 coupled cells (VL, n¼102; DM, n¼ 207) in a 2-D SCN slice with a type 3 coupling (dmax

¼ 3.5, 50% of neuronal projections, 4% average period gradient, K¼ 1.0, L0¼ 0.22). The black bars indicate a dark phase (color code as in Figure 3A).
Individual oscillators have an average period of 23.7 6 1.2 h. Initial conditions were chosen randomly. The first 72 h of transient were discarded, and the
time from 72 h to 144 h was retained.
(B,C) Raster plot of Per/Cry mRNA activity in oscillators, organized according to their regions (from bottom up: VLL, left VL region; VLR, right VL region;
DML, left DM region; DMR, right DM region; and Int, intersection between left and right DM regions). The concentration of Per/Cry mRNA for each
oscillator is represented by colors (blue, low concentration; red, high concentration).
(B) 12:12 LD cycle.
(C) 12:12 LD cycle with a 12 h phase shift at t ¼ 84 h.
doi:10.1371/journal.pcbi.0030068.g007
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loop is dysfunctional, could reflect that feature [46]. One
could test whether synchronization properties of SCN
neurons are altered in these mice by analyzing SCN neurons
from Rev-Erba�/�Per2:luc double-transgenic mice. We predict
that Rev-Erba knockout mice will have lower amplitude and
more spread-out synchronized SCN neurons. Li and cow-
orkers [47] introduced ‘‘transient resetting’’ as a possible
synchronization mechanism, in which uncoupled oscillators
are synchronized by a force (which may be noise) that
transiently moves them to a region where they have a stable
steady state. In our model, the driving force was generated
autonomously by the coupled oscillators. To our knowledge,
it is the first time that synchronization-induced rhythmicity is
described in a biological system. Damped but uncoupled
oscillators have been considered before in a model of
interaction between a clock and a zeitgeber input pathway
[41]. Temporal and spatial rhythms can occur when identical
stable systems are diffusively coupled together, giving rise to
well-studied Turing instabilities [48,49]. Oscillations can also
emerge from electrical coupling between nonoscillating cells
[50,51]. Nonetheless, two features distinguish our work from
that mentioned above. (1) In our system, temporal instabil-
ities do not arise from spatial heterogeneity or local coupling
because synchrony also holds in case of all-to-all coupling of
identical oscillators. (2) Oscillators are directly coupled,
instead of being diffusively coupled [52]. Direct coupling
means that even under perfect synchrony, the coupling term
is nonzero, unlike in the diffusive coupling case.

The question of how a coherent and robust circadian
output is generated from a heterogeneous network of 20,000
oscillators in the SCN has led to many surprising results
[2,3,18–20], bringing a better understanding of the inter-
action between the single-cell clock and its organization. To
understand the orchestration of timekeeping in the SCN,
intracellular circadian modules cannot be isolated from their
intercellular communication components.

Materials and Methods

Single-cell oscillator model. The intracellular oscillator is a seven-
variable model representing clock genes’ mRNA and proteins [23]. It
consists of interlocked transcriptional/translational feedback loops
and reflects the essential features of the mammalian circadian
oscillator (Figure 1). The circadian release of a neuropeptide
mediates intercellular coupling of circadian cells in the SCN [9,12–
18]. Here, we assumed that the release of the neuropeptide is induced
by the cytosolic PER/CRY protein complex. The neuropeptide
activates a two-step cascade in connected cells that leads to Per/Cry
mRNA transcription. The assumption that the PER/CRY complex
induces neuropeptide release was made to ensure that the trans-
mitter is released quickly after Per/Cry gene activation. The cascade is
schematized by PKA and CREB activation. With the neurotransmitter
and the two-step cascade, the complete single-cell system has ten
variables.

dY1

dt
¼ fPer=Cry � k1dY1 þ L; ð1Þ

dY2

dt
¼ k2bY

q
1 � ðk2d þ k2tÞY2 þ k3tY3; ð2Þ

dY3

dt
¼ k2tY2 � k3tY3 � k3dY3; ð3Þ

dY4

dt
¼ fBmal � k4dY4; ð4Þ

dY5

dt
¼ k5bY4 � ðk5d þ k5tÞY5 þ k6tY6; ð5Þ

dY6

dt
¼ k5tY5 � ðk6t þ k6dÞY6 þ k7aY7 � k6aY6; ð6Þ

dY7

dt
¼ k6aY6 � ðk7a þ k7dÞY7; ð7Þ

dV
dt
¼ k8Y2 � k8dV : ð8Þ

The nonlinear transcription functions are

fPer=Cry ¼ v1b
Y7 þ Xh

2

k1bð1þ ðY3=k1iÞpÞ þ ðY7 þ Xh
2Þ
; ð9Þ

fBmal ¼ v4b
Y r
3

kr4b þ Yr
3

ð10Þ

The coupling term Q induces a signaling cascade leading to
activation of Per/Cry promoter, and is proportional to the local mean
field F.

Q ¼ KF; ð11Þ

dX1

dt
¼ kx1QðX1T � X1Þ � kdx1X1; ð12Þ

dX2

dt
¼ kx2X1ðX2T � X2Þ � kdx2X2: ð13Þ

The variables represent the following species: Y1, Per/CrymRNA; Y2,
PER/CRY cytosolic complex; Y3, nuclear PER/CRY complex; Y4, Bmal1
mRNA; Y5, cytosolic BMAL1; Y6, nuclear BMAL1; Y7, transcriptionally
active BMAL1*; V, neurotransmitter; X1, PKA; and X2, CREB. F is the
local mean field as defined in Equation 17, and K is a scalar
determining the coupling strength. Equations for X and Y are
replicated n times, where n is the number of cellular oscillators (we
omitted the indices i for readability). The entry Qi corresponds to the
coupling term in cell i, i¼1,...,n. Furthermore, each system is scaled by
a factor ei to generate a distribution of periods. For ei, we generated a
sample gi drawn from a Gaussian distribution centered at 1 with a
standard deviation of 0.05. Additional heterogeneity was added in the
form of a vector ui that defines a linear or radial gradient of periods
according to the position of the cells in the SCN. The scaling factor ei
is defined as

ei ¼
1
giui

: ð14Þ

This produces a distribution of periods between 20 and 28 h.
The parameter values for the model are v1b ¼ 9.0, k1b ¼ 1.0, k1i ¼

0.56, p¼ 3, h¼ 2, k1d ¼ 0.18, k2b¼ 0.3, q¼ 2, k2d ¼ 0.1, k2t¼ 0.36, k3t¼
0.02, k3d¼0.18, v4b¼1.0, k4b¼2.16, r¼3, k4d¼1.1, k5b¼0.24, k5d¼0.09,
k5t¼0.45, k6t¼0.06, k6d¼0.18, k6a¼0.09, k7a¼0.003, k7d¼0.13, k8¼1.0,
k8d¼ 4.0, K¼ 1.0, kx1¼ 3.0, X1T¼ 15.0, kdx1¼ 4.0, kx2¼ 0.25, X2T¼ 15.0,
kdx2¼10.0, and L0¼0.22. Rates k are in h�1 except k2b (h

�1nM�(q�1)), k1b
(nM), k1i (nM), and v4b (nM), kx1 and kx2 (h

�1nM�1), v and L0 (nM h�1),
and XT (nM). Parameters were minimally adapted from the original
model [23] to satisfy the following conditions: individual oscillators
must be damped, and the coupled system must synchronize with a
circadian period. Specifically, we reduced the Hill coefficient p from 8
to 3. A small Hill coefficient makes the periods longer, so we
compensated the periods by increasing the degradation rates.

Coupling of neuronal circadian oscillators. Neuropeptide release
and action in the intercellular medium are fast compared with the 24-
h period of the neurons, allowing diffusion and transport delays
between connected cells to be neglected. For a given neuron, we
defined a local mean field as the average concentration of neuro-
transmitter released by the neighboring (connected) cells. This type
of coupling is termed direct, as opposed to a diffusive coupling [52].

We considered two different shapes for the SCN. (1) The whole
SCN is defined on a 3-D discrete cubic grid G, of size s, where each
nonempty node represents a neuron (Figure 2D). Each neuron (node)
is assigned a number from 1 to n, and empty nodes have a value 0.
Functional or physical regions of the SCN are defined by subgrid E of
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G by retaining as nonempty only the nodes belonging to the desired
region. This way, various overlapping regions can be defined. (2) An
SCN slice is defined on a 2-D square grid in a manner analog to the
whole SCN (Figure 2C). Regions of the slice are constructed the same
way as in 3-D. We used a Euclidian distance d(i,j) to measure the
distance between neurons i and j, with d ¼ 1 for adjacent neurons
(Figure 2B).

A coupling matrix M, which depends on the geometry of the SCN
and a connectivity map C, describes the connections between cells. A
neuron i, belonging to a population of size n, receives an input from
neuron j if Ci,j is 1. We considered three different types of coupling
for C (Figure 2A–2C and Figure S1).

Random coupling (type 1): Ci,j ¼ 1 with probability c0 (the nominal
connectivity) (Figures 2A and S1A). All-to-all coupling is a particular
case of sparse coupling when c0 ¼ 1.

Nearest-neighbor coupling (type 2): Ci,j¼ 1 if di,j , dmax and neuron i is
downstream of neuron j (Figures 2B and S1B).

SCN-like coupling (type 3): we divided the SCN into four regions: left
and right VL, and left and right DM regions. The VL part (the ventral
core) corresponds to the light-inducible cells and has many
projections into the DM region [3,53]. Neurons within the VL part
are not coupled and are not spontaneously rhythmic [3,18]. The DM
region (the dorsal shell) receives the input from the VL neuronal
projections. We used a uniform type 2 coupling (nearest-neighbor) to
couple DM cells (Figures 2C and S1C). We used this coupling type in
conjunction with an LD cycle.

In addition to the connectivity, a function f(d) determines the
relative coupling strength between neurons separated by a distance d.
Because of the mean field assumption, the effect of all neurons
upstream of neuron i is averaged, so the coupling matrix M 2 Rn3n is

M ¼ f ðdÞ � ~C ð15Þ

where the dot (�) denotes the element-wise matrix product and ~C is
normalized so that the sum of each line is 1,

~Ci ¼
CiXn

j¼1
Ci;j

; i ¼ 1; :::; n: ð16Þ

The matrix C is normalized as a result of the local mean field
assumption: the input to one cell is the average of the signal coming
from upstream neurons. The fraction of nonzero entry of C is the
connectivity, a scalar denoted by c. The input at each neuron in the
SCN is described by the mean field vector F 2 Rn,

F ¼ MV ð17Þ

where V is the transmitter concentration (Equation 8). To measure
synchrony, we used an order parameter R [54] defined as

R ¼ h �X2i � h �Xi2

1
n

Xn
i¼1
ðhX2

i i � hXii2Þ
¼ Vartð �XÞ

MeaniðVartð �XiÞÞ
; ð18Þ

where h...i denotes the average over time, and �X ¼
Pn

i¼1 Xi=n is the
average of the variable of interest among oscillators. For comparison
with bioluminescence recordings, we chose the variable of interest to
be Per/Cry mRNA concentration, Y1 in Equation 1 (half-lives of the
reporters are short enough for the reporter itself to be neglected [20]).

We simulated light entrainment by a clipped sine wave,

LðtÞ ¼ L0sin
ptmodtlight

tlight

� �
if ðtmodtlight þ tdarkÞ � tlight

0 otherwise
;

8<
: ð19Þ

(0 , L(t) � L0 and L(t) ¼ 0 alternating every tlight and tdark h).
Unless specified, initial conditions for each simulation were

randomly chosen, with each variable taking a value between 0 and
2 times the average value of the variable when the system is
synchronized. Simulations and analysis were performed in the
Matlab 6.5 environment (The MathWorks, http://www.mathworks.
com). The ordinary differential equations were simulated with the
medium-order adaptive step solver ode45. The codes are available on
request.

Supporting Information

Figure S1. Coupling Matrices C for the Three Types of Coupling

In the ‘‘spy’’ matrix representation, the presence of a dot at position

(i,j) denotes a directional coupling from cell j to cell i (Ci,j¼ 1), and a
blank space means that there is no coupling (Ci,j ¼ 0).
(A) Matrix C for the random coupling type (type 1).
(B) Matrix C for the nearest-neighbor coupling type (type 2). The
matrix is symmetrical; hence, all coupling is bidirectional.
(C) Matrix C for the SCN coupling type (type 3). The red and blue
shades represent DM intercellular coupling, and the black dots
represent projections from the VL to the DM regions.

Found at doi:10.1371/journal.pcbi.0030068.sg001 (148 KB PDF).

Figure S2. Raster Plot of 625 Oscillators with Nearest-Neighbor (Type
2) Coupling in a 3-D SCN Geometry

SCN geometry is organized according to their regions (from bottom
up, VLL: left VL region, VLR: right VL region, DML: left DM region,
DMR: right DM region, and Int: intersection between left and right
DM regions). The concentration of Per/Cry mRNA for each oscillators
is represented by colors (blue, low concentration; red, high concen-
tration). All other parameters are as in Figure 3A and 3B.

Found at doi:10.1371/journal.pcbi.0030068.sg002 (1.9 MB PDF).

Figure S3. Synchronization of Ten All-to-All Coupled Oscillators with
Noisy Coupling and Noisy Intrinsic Periods

We used a multiplicative noise described by stationary Gaussian
process (Ornstein-Uhlenbeck process; see Text S1) with noise
strength S.
(A,B) Synchronization-coupled oscillators with noisy transmitter
release and noisy intrinsic periods (S ¼ 0.03, K ¼ 0.9). Simulations
were made over 2,400 h ([A]; gray lines, individual oscillators; blue
line, average of the ten oscillators). Synchronization was good (R ¼
0.89) despite the variations in amplitudes and periods (B).
(C) Coupling improves temporal precision. Successive periods of the
average output of synchronized oscillators (black bars, label P) show a
better precision than individual oscillators in the synchronized state
(gray bars, label C) and uncoupled oscillators (white bars, label U).
The standard deviations were 0.5 h, 0.6 h, and 1.9 h, respectively, for
data from simulations shown in (A) and (B).
(D) Effect of noise strength S on the order parameter R and the
standard deviation of periods of the average output of coupled
oscillators. Synchronization was good (R . 0.8; blue lines) and
standard deviation limited (,2 h; red dashed lines) for S below 0.05.
For S larger than 0.05, synchronization was still achieved, but the
period became unreliable.
(E,F) Global noise can enhance synchrony. In the presence of strong
noise (S ¼ 0.2), weakly coupled oscillators (K ¼ 0.4) maintained
rhythmicity and synchrony (R¼ 0.94) (E). For weaker noise (S¼ 0.05),
the same weakly coupled oscillators did not maintain rhythmicity (F).

Found at doi:10.1371/journal.pcbi.0030068.sg003 (273 KB PDF).

Figure S4. Synchronization of 309 Goodwin-Type Damped Oscillators
with Nearest-Neighbor (Type 2) Coupling

The simulation is divided in four parts to show synchrony, damping,
restoration of synchrony, and damping under constant signal. First,
in constant darkness (DD) with normal coupling (K¼ 1.5), oscillators
are well-synchronized. Second, in DD without coupling (K ¼ 0),
oscillators lose synchrony and rhythmicity. Third, in DD, normal
coupling (K ¼ 1.5) restores synchrony and rhythmicity. Fourth, in
constant light (LL) without coupling, oscillators lose rhythmicity,
showing that they are damped in the absence of a variable signal.

Found at doi:10.1371/journal.pcbi.0030068.sg004 (20 KB PDF).

Figure S5. Synchronization of 100 One-Variable Negative Feedback
Loop Oscillators with Delay (All-to-All Coupling)

The simulation is divided into four parts to show synchrony,
damping, restoration of synchrony, and damping under constant
signal. First, in DD with normal coupling (K¼0.1), oscillators are well-
synchronized. Second, in DD without coupling (K¼0), oscillators lose
synchrony and rhythmicity. Third, in DD, normal coupling (K ¼ 0.1)
restores synchrony and rhythmicity. Fourth, in LL without coupling,
oscillators lose rhythmicity, showing that they are damped in the
absence of a variable signal.

Found at doi:10.1371/journal.pcbi.0030068.sg005 (21 KB PDF).

Figure S6. Synchronization of 40 Leloup-Goldbeter Oscillators with
All-to-All Coupling

The simulation is divided into four parts to show synchrony,
damping, restoration of synchrony, and damping under constant
signal. First, in DD with normal coupling (K¼ 1), oscillators are well-
synchronized. Second, in DD with weak coupling (K¼ 0.6), oscillators
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lose synchrony and rhythmicity. Third, in DD, normal coupling (K¼
1) restores synchrony and rhythmicity. We applied a light pulse to
shorten the transients. Fourth, in LL without coupling, oscillators
lose rhythmicity, showing that they are damped in the absence of a
variable signal.

Found at doi:10.1371/journal.pcbi.0030068.sg006 (128 KB PDF).

Text S1. Supplementary Materials and Methods

Found at doi:10.1371/journal.pcbi.0030068.sd001 (50 KB PDF).

Video S1. 2-D Slice with Nearest-Neighbor (Type 2) Coupling over 72
h (dmax ¼ 3.5, K¼ 0.9)

The time series are also shown in Figure 3A and 3B. Each dot is an
oscillator. The concentration of Per/Cry mRNA for each oscillator is
represented by colors (blue, low concentration, red, high concen-
tration) and size.

Found at doi:10.1371/journal.pcbi.0030068.sv001 (2.0 MB AVI).

Video S2. 3-D SCN with Nearest-Neighbor (Type 2) Coupling over 72
h (dmax ¼ 3.5, K¼ 0.9)

Except for the 3-D geometry, all parameters are as in Figure 3. Each
dot is an oscillator. The concentration of Per/Cry mRNA for each
oscillator is represented by colors (blue, low concentration; red, high
concentration) and size. The SCN is slowly rotating to show the 3-D
structure.

Found at doi:10.1371/journal.pcbi.0030068.sv002 (1.5 MB AVI).

Video S3. 2-D Slice with Type 3 Coupling over 72 h under a 12:12 LD
Cycle

Total n¼ 309, VL regions n¼ 102, DM regions n¼ 207 dmax¼ 3.5, 50%
of neuronal projections, 4% average period gradient, K ¼ 1.0, L0 ¼
0.22. The time series are also shown in Figure 7. Each dot is an
oscillator. The concentration of Per/Cry mRNA for each oscillator is
represented by color (blue, low concentration; red, high concen-
tration) and size.

Found at doi:10.1371/journal.pcbi.0030068.sv003 (2.0 MB AVI).
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2 Apollos Besse et al.

Abstract: We describe here a simple model for the interaction between
leukemic cells and the autologous immune response in chronic phase chronic
myelogenous leukemia (CML). This model is a simplified version of the model
we proposed in [Clapp et al., Cancer Research, 75:4053-4062, 2015]. Our sim-
plification is based on the observation that certain key characteristics of the
dynamics of CML can be captured with a three compartments model: two
for the leukemic cells (stem cells and mature cells) and one for the immune
response. We characterize the existence of steady states and their stability
for generic forms of immunosuppressive effects of leukemic cells. We provide
a complete co-dimension one bifurcation analysis. Our results show how clin-
ical response to tyrosine kinase inhibitors treatment is compatible with the
existence of a stable low-disease, treatment-free steady state.

1 Introduction

Chronic myeloid leukemia is a clonal disease that arises from a discrete pop-
ulation of hematopoietic stem cells residing in the bone marrow harmed by a
single fusion gene, BCR-ABL, encoding for a deregulated tyrosine kinase ac-
tivity responsible for the disease [7]. Unlike most cancers, the measurement of
the BCR-ABL transcripts can quantify precisely the tumor load and its evolu-
tion throughout time under targeted therapies (i.e. tyrosine kinase inhibitors
(TKI)) over time. The first-in-class TKI Imatinib (Glivec R©/Gleevec R©, No-
vartis) is a targeted therapy that inhibits the deregulated tyrosine kinase ac-
tivity of ABL in leukemic cells, and induces within 18 hours cell death by
apoptosis [9]. This TKI and the other TKIs derived since 2005 from IM rev-
olutionized the paradigms of treatment of CML and transformed this disease
from a mostly fatal illness into a life-long indolent pathology [16]. However, in
most cases, under TKI, the disease remains detectable at low levels. It is rare
when the CML becomes undetectable, possibly cured. After stopping targeted
therapies, most patients relapse and require a new TKI treatment. Yet, re-
cent clinical trials [14,17,20] have shown that a long TKI treatment duration
may result with remission after treatment withdrawal, and, in some cases, al-
though detectable levels of transcripts might reappear, patients may end up
in an indolent detectable disease not requiring further treatments.

There is increased evidence that such remissions (so-called treatment-free
remissions) do not require disease eradication [19]. Such coexistence of low-
level leukemic cell load and non-active relapse suggest the occurrence of leukemic
cell control mechanisms. In CML, it is well-known that the autologous or allo-
geneic immune responses against the tumor have a critical importance in dis-
ease cure or long-term control. In an autologous setting, complete hematologic
and cytogenetic remission, even in accelerated phase CML, has been observed
after generating ex-vivo autologous leukemia-reactive cytotoxic T-lymphocyte
infusions [8]. Nowadays, in successful treatment-free remission setting, elevated
counts of natural killer cells [10] and plasmacytoid dendritic cells [1] at time
of TKI withdrawal have been observed, supporting the hypothesis that the
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autologous immune system might play a critical role in controlling the disease
after TKI withdrawal.

Several mathematical models of the dynamics of CML during treatment
and after treatment cessation have provided insight into the mechanism of
remission and relapse. We briefly comment on some of these models. For a
more comprehensive review of mathematical models for CML we refer to [4].

Michor et al. used a mathematical model to explain the failure of com-
plete eradication of the disease under TKI treatments by the development of
resistance [15]. Komarova and Wodarz proposed a model that incorporates
the stem cell ability to become quiescent and to develop resistance to treat-
ment [13]. An alternative model was proposed by Roeder et al. [18]. There, an
agent-based model in which the fate of each cell is stochastically determined,
according to its characteristics and its environment. The model describes the
competition of leukemic stem cells versus disease-free stem cells in the bone
marrow, and the effect of TKIs on competition [18]. The potential long-term
effect of immune response was studied by Kim et al. in [12] by adding an
immune compartment to the model of [15].

Recently, we proposed a model describing the interactions between leukemic
cells and the autologous immune system in IM-treated patients [6] (see also [5]).
The model was motivated by an observation that many patients who otherwise
responded well to IM therapy still showed variations in their BCR-ABL tran-
scripts. Our modeling results suggested that, at diagnosis, a patient’s leukemic
load is able to partially or fully suppress immune response developed in a ma-
jority of patients towards the CML clone(s). IM therapy drives the residual
leukemic cell population into the ”immune window”, allowing the patient’s au-
tologous immune cells to expand and eventually mount an efficient recognition
of the residual leukemic burden. This TKI drives the leukemic load below this
immune window, allowing the residual leukemic population to partially recover
until another weaker immune response is initiated. Thus, we suspect that the
autologous immune response may explain the oscillations in the BCR-ABL
transcripts regularly observed in patients on IM.

In this paper we propose a new model for describing the interaction be-
tween leukemic cells and the autologous immune system in chronic phase CML.
This model is a simplified version of our original model from [6], in which we
reduce the number of equations and simplify some of the interaction terms.
Our simplification is based on the observation that certain key characteristics
of the dynamics of CML can be captured with a three compartments model:
two for the leukemic cells (proliferating stem cells and mature cells) and one
for the immune response.

The new model is sufficiently accessible to allow us to conduct mathemat-
ical analysis. Indeed, we characterize the existence of steady states and their
stability for generic forms of immunosuppressive effects of leukemic cells, and
provide a complete co-dimension one bifurcation analysis. Our results show
how clinical response to TKI treatment is compatible with the existence of a
stable low-disease, treatment-free steady state.
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The structure of this manuscript is as follows. In Section 2 we briefly
overview the mathematical model of [6] after which we introduce our new
model (4). The positive steady states of the system (4) are characterized in
Section 2. A stability analysis of these steady states in conducted in Section 3.
This section includes our main Theorems, Theorem 1 and 2, which describe the
bifurcation diagrams of the steady states. Applications of the stability analysis
are given in Section 4, and a concluding discussion is provided in Section 6.

2 The Model

2.1 The Clapp et al. model

The mathematical model of Clapp et al. described the dynamics of the interac-
tion between cancer cells and the immune response in CML [6]. This model is
given as a system of five ODEs, describing the dynamics of four states for the
leukemic cells (quiescent and cycling stem cells, progenitor cells, and mature
cells), and the dynamics of the immune response.

Let y0 and y1 represent the concentration of quiescent and cycling leukemic
stem cells, respectively, y2 the concentration of progenitor cells, y3 the con-
centration of mature leukemic cells, and z the concentration of active immune
cells. The model of [6] is written as the following system of ODEs:

y′0 = b1y1 − a0y0 −
µy0z

1 + εy2
3

,

y′1 = a0y0 − b1y1 + ry1

(
1− y1

K

)
− d1y1 −

µy1z

1 + εy2
3

,

y′2 =
a1

inh1
y1 − d2y2 −

µy2z

1 + εy2
3

,

y′3 =
a2

inh2
y2 − d3y3 −

µy3z

1 + εy2
3

,

z′ = s− dz +
αy3z

1 + εy2
3

.

(1)

The model equations (1) describe transitions between leukemic populations
(at rates b1, a0, a1 and a2). The different populations have associated death
rates (d1, d2, d3 and d). The cycling stem cells are assumed to grow logistically
with growth rate r and carrying capacity K. The last terms in the first four
equations in (1) represent the death of leukemic cells caused by an immune
response. The mass action term µyiz represents the killing of leukemic cells by
the immune system, where µ is the maximal rate (per immune cell) at which
an immune cell will engage and kill a leukemic cell.

The last equation in (1) represents the concentration of autologous immune
cells. The first term, s, is a constant source term for the immune cells, who die
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at rate d. The mass action term αy3z represents the expansion (proliferation)
of the immune cell pool in response to its leukemia stimulus, which occurs
with maximal rate per leukemic cell. Only the contributions of the mature
leukemic cells y3 to immune stimulation are included since they are a much
larger population than the immature leukemic cells.

This model is based on assuming that immunosuppression acts in two ways.
First, mature leukemic cells inhibit the expansion of immune cells. In the last
equation, the immune cell expansion term αy3z is divided by 1 + εy2

3 , where
the constant ε determines the strength of the immunosuppression. Second, ma-
ture leukemic cells are assumed to decrease the killing capacity µ of activated
immune cells, also by a factor of 1 + εy2

3 . By implementing immunosuppres-
sion in this way, Clapp et al. encoded an autologous immune response that
is effective only with intermediate levels of leukemic cells. When the leukemic
load is small, only a small number of immune cells is stimulated to respond.
On the other hand, although large leukemic loads provide a stronger stimulus,
the leukemic cells are able of suppressing the efficacy of the immune system.
Thus, the immune response will be negligible when the leukemic load is ei-
ther very small, at levels undetectable by the immune system, or very large,
at levels that overwhelm and suppress the immune system. A strong immune
response can occur only when the leukemic load y3 is at an intermediate level,
within a range [ymin, ymax], the so-called immune window. The immune win-
dow is defined as the range of y3 for which the rate of immune stimulation
exceeds the death rate. The parameters inh1 and inh2 represent the inhibition
of leukemic cell amplification by TKI treatment. TKI therapy may be used to
drive the leukemic load into this immune window, allowing the autologous
immune system to assist the drug in the elimination of the residual leukemic
cells.

2.2 Introducing a simplified model

In [6] we provided no theoretical analysis of the model (1). Analysis of the
model in its full generality is beyond the reach of this paper. Instead, we in-
troduce in this subsection a reduced model which captures some of the essential
features of the original model.

Our main simplification is to reduce the original system to three ODEs,
keeping only two states for the leukemic cells. In addition, we assume that
immunosuppression does not directly suppress the killing capacity µ of immune
cells. These assumptions make the theoretical analysis accessible.

Let y1 represent the concentration of cycling stem cells, y2 the concentra-
tion of mature leukemic cells, and z the concentration of immune cells. We
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consider the following system of ODEs:

y′1 = ry1

(
1− y1

K

)
− d1y1 − µy1z,

y′2 =
a1

kinh
y1 − d2y2 − µy2z,

z′ = s− f(y2)z.

(2)

We note that the system (2) is a simplified version of system (1). We also note
that y2 in the system (2) plays the role of y3 in the system (1). The parameter
a1 is the product of the stem cell differentiation rate and the amplification
factor between stem and mature cells. The effect of the treatment is repre-
sented by dividing a1 by an inhibition coefficient kinh. The parameters r and
K are the cycling stem cells growth rate and carrying capacity, respectively.
The natural death rates of each population are given by d, d1, d2, and µ is the
probability that an immune cell will interact with a leukemic cell and kill it.

The function f represents the net suppression effect of the leukemic cells on
the immune system. It mixes the natural death rate of immune cells d = f(0),
the competitive (immune response) and the immunosuppressive effect of cancer
cells. The suppression rate f can take negative values; in this case, immune
response outbalances immunosuppression.

In all what follows, we assume

f ∈ C2(R+),

and
∃Y > 0, f ′ < 0, on [0, Y ), f ′ > 0, on (Y,+∞) (3)

In words, we assume f to be strictly decreasing for low amount of cancer cells
and strictly increasing for high amount of cancer cells (its monotony changes
exactly once). An immediate important consequence of this hypothesis is the
following result:

Proposition 1 (Zeros of f) Let f ∈ C2(R+) satisfy (3), then either

1. f has no zero on R+,
2. f has one zero ymin ∈ (0, Y ],
3. f has two zeros ymin ∈ (0, Y ) and ymax ∈ (Y,+∞)

Notations of this proposition will be kept in the manuscript.
In order to eliminate the parameter d1 from (2), we make a change of

variables rnew ← rold − d1 and Knew ← (rnew/rold)Kold. We also set a1 ←
a1/kinh. This leads to the following system:

y′1 = ry1

(
1− y1

K

)
− µy1z,

y′2 = a1y1 − d2y2 − µy2z,

z′ = s− f(y2)z.

(4)
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3 Steady states for the simplified model

We want to determine the positive steady states of the system (4). We start
with a simple characterization.

Proposition 2 The system (4) always has a unique, disease-free non-negative
steady state (0, 0, s

f(0) ). Other positive steady states are given by the solutions

to the equations

ȳ1 =
(r + d2)ȳ2

a1 + r
K ȳ2

, (5)

z̄ =
s

f(ȳ2)
. (6)

Here, ȳ2 is a positive zero of the function P given by

P (X) = f(X)(X −M) +
µs

d2

(
M
d2

r
+X

)
, (7)

with M = a1K
d2

, such that f(ȳ2) > 0. For any positive steady state, we have

0 < ȳ2 6M. (8)

Proof The steady states of (4) are the solutions of the nonlinear system:
0 = ry1

(
1− y1

K

)
− µy1z,

0 = a1y1 − d2y2 − µy2z,

0 = s− f(y2)z.

(9)

The point (0, 0, s
f(0) ) is always a steady state. It corresponds to the disease-

free steady state, where the leukemic cell populations vanish and the immune
system is maintained at a basal, surveillance level s

f(0) .

The positivity of all coefficients provides bounds for ȳ1 and ȳ2:

ȳ1 6 K, ȳ2 6
a1K

d2
:= M.

Other steady states can be found by:
µz = r

(
1− y1

K

)
,

µy2z = a1y1 − d2y2,

f(y2)z = s,

(10)
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which leads to:

ȳ1 =
(r + d2) ȳ2

a1 + r
K ȳ2

, (11)

and

z̄ =
s

f(y2)
. (12)

As we are looking for non-negative steady states, equation (12) implies that
f(ȳ2) must be non-negative. Since the steady state values ȳ1 and z̄ are uniquely
determined by ȳ2, and we reduce the problem to an equation on ȳ2 alone. For
ȳ1, we have

1− ȳ1

K
=

M − ȳ2

M + r
d2
ȳ2
.

Then, equations (10) and (12) imply:

µs

f(ȳ2)
= r

M − ȳ2

M + r
d2
ȳ2
,

which means that,

µs

r

(
M +

r

d2
ȳ2

)
= f(ȳ2)(M − ȳ2).

This leads to the desired equation for ȳ2:

f(ȳ2)(ȳ2 −M) +
µs

d2

(
M
d2

r
+ ȳ2

)
= 0.

The following lemma precises the position of the steady states with respect to
the zeros of f .

Lemma 1 Keeping the notations of Proposition 1, positive steady states of
the system satisfy ȳ2 ∈ (0, ymin], or ȳ2 ∈ [ymax,+∞).

Let name the condition

(C1) : d >
µs

r
.

Proposition 3 Assume (C1) is satisfied, there exists a disease steady state
for (4) such that ȳ2 ∈ (0,M). Moreover, if f vanishes and (with notation of
Proposition 1) ymin < M , there is a unique steady state for (4) that satisfies

0 < ȳ2 < ymin < M.

All other steady states satisfy y2 > ymax and y2 < M
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Proof Assuming (C1), we have

P (0) = −
(
d− µs

r

)
M < 0,

P (M) =
µs

d2

(
d2

r
+ 1

)
M > 0.

Thus, P changes sign in the interval (0,M), which implies, from Proposi-
tion 2 that there is a steady state with ȳ2 ∈ (0,M). Moreover, f(ȳ2) must be
positive, so the solution for ȳ2 corresponds to a positive steady state, according
to Proposition 2.

Keeping notations of proposition 1, assume ymin ∈ (0,M). Because f(0) =
d is positive, f(y2) stays positive for y2 < ymin. From the definition of P in (7),
we have P (ymin) > 0. Since P (0) < 0 and since ymin < M , P admits at least
one zero ȳ2 ∈ (0, ymin).

To prove uniqueness, we highlight the fact that P is monotonous on [0; ymin]:

P ′(X) = f(X) + f ′(X)(X −M) + θ,

is positive on [0; ymin], since function f stays positive and strictly decreasing.
Moreover, at the unique zero ȳ2 < ymin, f(ȳ2) is still positive, and Propo-

sition 2 ensures that ȳ2 corresponds to a positive steady state x̄ = (ȳ1, ȳ2, z̄).

When d > µs
r , the smallest disease steady state (in terms of y2) is denoted

as the low disease steady state. When d = µs
r , P (0) = 0, and the low dis-

ease steady state becomes disease-free. For d 6 µs
r , the steady state becomes

negative, and does not exists anymore.

4 A stability analysis

In order to draw a complete picture of the dynamics of the system (4), it
is important to characterize the stability of the steady states. Because the
system is bounded (positive cell concentrations cannot grow unbounded), we
expect the system to converge either to a stable steady state or perhaps to a
non-steady-state bounded attractor, such as a limit cycle. We will show that
under biologically relevant assumptions, there always exists an asymptotically
stable steady state, and that none of the steady states can be destabilized by
a Hopf bifurcation. We are able to provide a complete local co-dimension 1
bifurcation diagram. Although more complex bifurcation diagrams are possi-
ble, they are non generic as they occur only for specific combinations of two
or more parameters.

4.1 Stability of the disease-free steady state

In the disease-free steady state (0, 0, sd ), where d = f(0), there are no leukemic
cells, but the concentration of immune cells is positive, due to a basal cell
production level s.
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Proposition 4 The disease-free steady state (0, 0, sd ) is asymptotically stable
if and only if r < µs

d . If r = µs
d , then this disease-free steady state is locally

attractive for positive solutions.

Proof The linearized system around the disease-free steady state is

y′1 = ry1 −
µs

d
y1,

y′2 = a1y1 − d2y2 −
µs

d
y2,

z′ = −dz +
s

d
f ′(0)y2.

(13)

The disease-free Jacobian matrix is

J0 =


r − µs

d 0 0

a1 −d2 − µs
d 0

0 s
df
′(0) −d

 . (14)

The matrix (14) is triangular, and its eigenvalues lie on the diagonal, which
are all real coefficients. Two eigenvalues are always strictly negative. The third
one, given by r− µs

d , can be either negative or positive. Therefore, the disease-
free steady state is asymptotically stable if rd < µs, and it is unstable if
rd > µs (condition (C1)).

In addition, if rd = µs, it is easy to verify that for ε > 0 small enough,
Dε = [0; ε] × [0; a1d2 ε] × [z̄ − r

Kµ ; +∞) is a stable set for the equations. For

solutions starting in Dε, since f is non-increasing on [0; a1d2 ε] and since z′ >
s− f(0)z, we have

lim inf
+∞

z > z̄.

Finally, since y′1 = −ry2
1/K + µy1(z̄ − z), we have

lim sup
+∞

y1 6
Kµ

r
lim sup

+∞
(z̄ − z) 6 0.

Hence, due to the non-negativity of y1, y1(+∞) = 0, and using the equa-
tions (4), we conclude that (y1(t), y2(t), z(t))→ (0, 0, z̄).

From now on, we assume that the disease-free steady state is unstable, and
we want to know if there are other stable steady states.

4.2 Stability of the disease steady states

We denote by (ȳ1, ȳ2, z̄) a non-negative steady state of system (4), with ȳ1

and/or ȳ2 positive. The Jacobian matrix is

J =


r − 2 r

K ȳ1 − µz̄ 0 −µȳ1

a1 −d2 − µz̄ −µȳ2

0 −f ′(ȳ2)z̄ −f(ȳ2)

 . (15)
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Using (10) the matrix (15) becomes

J =


− r
K ȳ1 0 −µȳ1

a1 −a1
ȳ1
ȳ2

−µȳ2

0 −f ′(ȳ2)z̄ −f(ȳ2)

 . (16)

In order to determine the stability of the steady state, we compute the
characteristic polynomial χJ

χJ(X) =
(
X +

r

K
ȳ1

)(
(X + a1

ȳ1

ȳ2
)(X + f(ȳ2))− µȳ2z̄f

′(ȳ2)

)
− a1µȳ1z̄f

′(ȳ2)

= X3 +

(
r

K
ȳ1 + a1

ȳ1

ȳ2
+ f(ȳ2)

)
X2

+

(
r

K
ȳ1

(
a1
ȳ1

ȳ2
+ f(ȳ2)

)
+ a1

ȳ1

ȳ2
f(ȳ2)− µȳ2z̄f

′(ȳ2)

)
X

+

(
r

K
ȳ1

(
a1
ȳ1

ȳ2
f(ȳ2)− µȳ2z̄f

′(ȳ2)

)
− a1µȳ1z̄f

′(ȳ2)

)
,

and using the relation r
K ȳ1 + a1

ȳ1
ȳ2

= r + d2,

χJ(X) =X3 +X2 (r + d2 + f(ȳ2))

+

(
(r + d2)f(ȳ2)− µz̄ȳ2f

′(ȳ2) +
r

K
ȳ1a1

ȳ1

ȳ2

)
X

+

(
r

K
ȳ1a1

ȳ1

ȳ2
f(ȳ2)− (r + d2)µz̄ȳ2f

′(ȳ2)

)
. (17)

In what follows we will again keep notation of Proposition 1. In case 3 of
proposition 1, we will distinguish the low steady state (ȳ2 6 ymin) and the
others (ȳ2 > ymax).

4.2.1 Stability of the low disease steady state

We are interested in proving the stability of the disease steady state given by
Proposition 3 under condition (C1). It is the only disease steady state (ȳ1, ȳ2, z̄)
such that ȳ2 6 ymin.

Proposition 5 Assume the low disease steady state of (4) exists. It is asymp-
totically stable if and only if the disease-free steady state is unstable, i.e., if
and only if rd > µs (condition (C1)). For rd = µs, there is a transcritical bi-
furcation between the disease-free steady state and the low disease steady state.

Proof We can assume that the disease-free steady state is unstable, which
implies that rd > µs and the existence of the low disease steady state. Either
f has no zero in (0,M), or f admits a smallest zero ymin ∈ (0,M). In either
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case, at the low disease steady state, we have f ′(ȳ2) < 0. This means that
the coefficients of χJ are all positive. We need to prove that χJ verifies the
condition of Lemma 4 (in Appendix).

aχbχ − cχ = (r + d2 + f(ȳ2))

(
(r + d2)f(ȳ2)− µz̄ȳ2f

′(ȳ2) +
r

K
ȳ1a1

ȳ1

ȳ2

)
−
(
r

K
ȳ1a1

ȳ1

ȳ2
f(ȳ2)− (r + d2)µz̄ȳ2f

′(ȳ2)

)
= (r + d2)

(
(r + d2)f(ȳ2) +

r

K
ȳ1a1

ȳ1

ȳ2

)
+f(ȳ2) ((r + d2)f(ȳ2)− µz̄ȳ2f

′(ȳ2)) > 0.

Here we used the fact that f ′(ȳ2) < 0.
By Lemma 4, we know that the dominating root of χJ has a negative real

part, which means that the dominating eigenvalue of J has a negative real
part. Hence the low steady state is asymptotically stable.

For rd = µs, the low disease steady state crosses the disease-free steady
state. At this point, the fusion steady state is locally stable for positive so-
lutions (as seen in Subsection 4.1). For rd < µs, it becomes negative, and is
necessarily unstable, i.e., it is a transcritical bifurcation.

The asymptotic stability of the low disease steady state corresponds to a
state where the immune system is able to keep the leukemic cell population
at a low level, even without treatment. However, we demonstrate numerically
that the basin of attraction of low disease steady state is small, and solutions
typically converge to the large disease steady state.

4.2.2 Stability of the other steady states

The existence of steady states other than the disease-free and the low disease
steady states depends on the exact shape of the leukemia-induced immuno-
suppression function f . We assume that we are in the case 3 of Proposition 1
and moreover ymax < M . We denote this couple of conditions (C2).

(C2): f has two zeros ymin and ymax such that 0 < ymin < ymax < M.

The assumption about the two zeros follows from the biological assumption
that there exists a range of leukemic cell concentrations for which the immune
system is able to mount an immune response (when f is negative, the growth
rate of z is strictly positive). If M 6 ymax, the only possible disease steady
state is the low disease steady state, which is asymptotically stable under (C1).
From now on, we assume that M > ymax, opening the door for other disease
steady states to exist. All these disease steady states verify f ′(ȳ2) > 0.

We give a function that does not depend on s and µ, that gives both steady
states and their stability.

Let denote A(X) = f(X)(M − X), B(X) = X + d2
r M , θ = µs/d2 and

θmax = supx∈(ymax,M){AB (x)}.
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All disease steady states are entirely determined by their component ȳ2

defined as a zero of the function P defined in (7). We express P as a parametric
linear combination of two functions A and B,

Pθ(X) = −A(X) + θB(X). (18)

Theorem 1 If the function
A

B
admits only one critical point, then the follow-

ing holds:

1. For all θ in [0, θmax) there exist two disease steady states x̄(1) and x̄(2) with

ymax 6 ȳ
(1)
2 < ȳ

(2)
2 6M . The disease steady state x̄(1) is unstable and x̄(2)

is asymptotically stable.
2. For all θ > θmax there is no steady state with ȳ2 in (ymax,M).
3. There is an saddle-node bifurcation for θ = θmax, the corresponding double

steady states is generically unstable.

Proof The proof is constructed as follows:

– We give a necessary and sufficient condition for stability, that is based on
condition (C2) (Lemma 1).

– We connect this condition to functions A and B, which are independent of
parameter θ (Lemma 2).

– We describe the bifurcation diagram depending on θ.

The parameter θ will be used as the bifurcation parameter. It has not
any biological meaning, but allow the polynomial B to be unitary, and thus
makes calculations simpler. Otherwise it could be feasible to use parameters
µ or s that represent the immune system aggressiveness and the immune cells
source, as we do in the Section 5. Parameter θ may vary in [0; rd/d2] to respect
condition (C1). The limit value θ = 0 is allowed to be reached when s = 0,
but not when µ = 0. Indeed, in this last case the link between steady state
and roots of polynomial P does not hold anymore.

The following lemma highlights the link between the stability of a steady
state x̄ and the sign of the jacobian matrix at x̄, under (C2). Its proof is given
in Appendix.

Lemma 1 Let x̄ = (ȳ1, ȳ2, z̄) be a steady state of (4) such that f ′(ȳ2) > 0.
The steady state x̄ is asymptotically stable if, and only if, det(J(x̄)) < 0.

This lemma affirms that the key to stability is the Jacobian matrix deter-
minant. The two following lemmas highlight the link between this determinant
and the polynomials A and B. Their proofs are given in Appendix.

Lemma 2 Let x̄ = (ȳ1, ȳ2, z̄) be a steady state of (4). The determinant of the
corresponding Jacobian matrix is:

det(J(x̄)) = − d2(r + d2)ȳ2(
M d2

r + ȳ2

)2 (A′B −AB′)(ȳ2).
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Lemma 3 Let x > 0. These following are equivalent:

– (A′B −AB′)(x) = 0

– x is a double root of Pθ, where θ := A(x)
B(x) .

We first note that the unique zero of f ′ must lie between the zeros ymin
and ymax of f . This implies that f is decreasing in [0; ymin] and increasing in
[ymax; +∞). Therefore, f ′ stays positive on [ymax;M ], steady states x̄(1) and
x̄(2) verify the condition (C2).

Hence, Lemma 1 ensures that stability of the steady state x̄ = (ȳ1, ȳ2, z̄) is
given by the sign of det(J(x̄)), which is equal to the sign of −(A′B−AB′)(ȳ2)
by Lemma 2.

The steady states are zeros of Pθ, so they satisfy A(x)
B(x) = θ. Since A and

B do not depend on θ, there exists a maximal value for θ such that this
equation admits a solution in (ymax;M), θmax = supx∈(ymax,M){AB (x)}. This

bound stands for a real x0 ∈ (ymax;M) because A
B (ymax) = A

B (M) = 0. The

function A′B − AB′ vanishes in x0 because it is an extremum for A
B .Then x0

is a double zero of Pθmax
.

We set θ < θmax. A double zero x1 for Pθ satisfies A
B (x1) = θ, and (A′ +

θB′)(x1) = 0. Then (A′B−AB′)(x1) = 0, so x1 is a critical point of AB . By our

hypothesis A
B admits a unique critical point, so x1 = x0. This is a contradiction

since θ < θmax. This means that Pθ admits only simple zeros in (ymax,M).
We have

Pθ(x0) = −A(x0) + θB(x0) = B(x0)

(
θ − A

B
(x0)

)
= B(x0)(θ − θmax) < 0.

Since Pθ(ymax) > 0 and Pθ(M) > 0, Pθ admits exactly two zero in (ymax,M),
distributed on both sides of x0. A third zeros would induce to a second critical
point for A

B , which is forbidden. The function A
B changes its direction only

at its critical point x0. It is easy to verify that (A′B − AB′)(M) < 0 and
(A′B−AB′)(ymax) > 0, hence A

B is strictly increasing on [ymax;x0] and strictly
decreasing on [x0;M ]. We can now explore the three cases of the theorem:

1. If θ < θmax, there exist two distinct steady states x̄(1) and x̄(2) such that

ȳ
(1)
2 < ȳ

(2)
2 . In addition x̄(1) is unstable and x̄(2) is asymptotically stable.

2. If θ > θmax, Pθ cannot vanish on [ymax,M ], so only the disease-free and
maybe the low disease steady state remains. We have seen in Proposition
5 that, as soon as the disease-free steady state is unstable, the low one is
asymptotically stable.

3. If θ = θmax, then there exists a unique steady state in [ymax,M ], resulting
from the fusion of two steady states with different stabilities: it is a saddle-
node bifurcation. Let x = (y1, y2, z) be a perturbation of the steady state
x̄ such that y2 stays in [ymax,M ]. We have

z′ = s− f(y2)z = s− d2

µ

A

B
(y2) > s− d2

µ

A

B
(ȳ2) = 0,
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Fig. 1: The left graph represents A
B as a function of y2 in the interval (0,M).

The right graph represents ȳ2 (corresponding to a steady state x̄) as a function
of θ. It is the bifurcation diagram, given by transposing the left graph. Stability
is given by the sign of

(
A
B

)′
. Both graphs correspond to the case where f is

given in Section 5.1.

because ȳ2 is the maximum of AB on [ymax,M ]. Hence z is always increasing
near the steady state which, therefore, cannot be stable.

The next theorem is a stronger form of Theorem 1.

Theorem 2 Denote by θ1 < · · · < θn = θmax the extrema of A
B . Then

1. For all θ in [0; θmax)\{θ1, . . . , θn}, there exist an positive even number of
steady states with ȳ2 in (ymax;M). Their stability is alternated, the largest
in term of value of ȳ2 is asymptotically stable.

2. For all θ > θmax there is no steady state with ȳ2 in (ymax;M).
3. Generically, there is a saddle-node bifurcation for each θ ∈ {θ1, . . . , θn}.

Corresponding double steady states are generically unstable.

Proof Using arguments identical to those used in proving Theorem 1, we con-
clude that x0 is a double zero of Pθ. We set θ ∈ [0; θmax)\{θ1, . . . , θn}. The
function Pθ cannot have any double root since θ does not correspond to a
critical point of A

B . At x0

Pθ(x0) = −A(x0) + θB(x0) = B(x0)

(
θ − A

B
(x0)

)
= B(x0)(θ − θmax) < 0.

Since Pθ(ymax) > 0 and Pθ(M) > 0, Pθ admits a positive even number of
zeros in (ymax;M). The function A

B stays monotonic between two consecutive
extrema. In addition, the sign of its derivative alternates between extrema.
Calculations give A

B (M) = 0 and (A′B−AB′)(M) < 0, so A
B is locally positive

and decreasing on the left side of M .
We fix θ < θmax, and denote xθ = max{x > 0/AB (x) = θ}, which exists by

continuity of A
B . Since A

B (xθ) = θ > 0 = A
B (M), A

B must be locally decreasing
near xθ. We can now explore the three cases of the theorem:
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1. If θ ∈ [0, θmax)\{θ1, . . . , θn}, the steady states set is

Sθ = {x̄ = (ȳ1, ȳ2, z̄) /
A

B
(ȳ2) = θ & ȳ1 and z̄ verify 5 and 6}.

Since A
B is decreasing in max{ȳ2 / x̄ ∈ Sθ), that steady state is asymptot-

ically stable by Lemmas 2 and 1. The stability of the other steady states
alternates in terms of ȳ2 value. Since #Sθ is even, the lower steady state
is unstable.

2. If θ > θmax, Pθ cannot vanish on [ymax,M ], so only the disease-free and
maybe the low disease steady state remains. We have seen in Proposition 5
that as soon as the disease-free steady state is unstable, the low one is
asymptotically stable.

3. If θ = θmax then there exists a unique steady state, resulting from the
fusion of two steady states with different stabilities: it is a saddle-node
bifurcation.

4. If θ ∈ {θ1, . . . , θn}, we let x = (y1, y2, z) be a perturbation of the steady
state x̄ such that y2 stays in [ymax,M ]. Since z′ = s−f(y2)z = s− d2

µ
A
B (y2),

z′ > s− d2
µ
A
B (y2) if θ is a maximum of AB on [ymax,M ], and z′ < s− d2

µ
A
B (y2)

if θ is a minimum of A
B on [ymax,M ]. In both cases, z is monotonic next

to the steady state which, therefore, cannot be stable.

Corollary 1 Let f be a rational fraction of the form f = N
D , where D is a

positive polynomial with degree two or less, and N is a quadratic polynomial
that admits two roots ymin and ymax in [0,M ], such that f ′ vanishes only once
in [0,M ]. Then there exists a value θmax such that:

1. For any θ in [0, θmax) there exist two disease steady states with ȳ2 in
(ymax,M). The lower one is unstable and the higher one is asymptotically
stable.

2. For any θ in (θmax,+∞) there is no steady state with ȳ2 in (ymax,M).
3. There is an unstable saddle-node bifurcation at θ = θmax.

Proof The function f admits two zeros in (0,M), which we denote as ymin
and ymax. We write f as f(x) = (x−ymin)(x−ymax)

D(x) , and adapt Theorem 2: The

first steady state is (0, 0, sd ). It is the disease-free steady state. Other steady
states are given by:

ȳ1 =
(r + d2)ȳ2

a1 + r
K ȳ2

, and z̄ =
sD(ȳ2)

(ȳ2 − ymin)(ȳ2 − ymax)
,

where ȳ2 is a positive zero of the cubic polynomial:

Pθ(X) = (X − ymin)(X − ymax)(X −M) + θ

(
M
d2

r
+X

)
D(X),

such that ȳ2 /∈ [ymin, ymax].
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Fig. 2: Functions f and P profiles. The part where P is positive is represented
in red.

We keep the previous notations: A(X) = (X − ymin)(X − ymax)(X −M)
and B(X) = (M d2

r +X)D(X). To prove the corollary, we only have to verify

that A
B has only one critical point in (ymax,M).

We assume that A
B admits a second critical point x1 in (ymax,M), and

denote θ1 = A
B (x1). Then x1 is a double root for Pθ1 . For all θ lower than

θmax, Pθ admits one root in [0, ymin] and two distinct roots in [ymax,M ].
Since it is a cubic polynomial, there are no more roots. Hence Pθ cannot have
any double root in [ymax,M ].

This means that θ1 = θmax. Since Pθmax
is a cubic polynomial that admits

x0 and x1 as double roots, necessarily x1 = x0. We showed that A
B admits one

and only one critical point. Applying Theorem 1 concludes the proof.

We have seen in this section that the bifurcation diagram is uniquely deter-
mined by transposing the function A

B graph. It induces that no other branch
could co-exist with the ones we highlight. An other consequence is that, at
ȳ2 fixed, the stability is known regardless of the value of parameters s and µ.
We conducted the whole analysis by privileging the variable y2 over y1 and z
because it is the only practical biologically measurable quantity. Our results
are especially convenient since they only depend on this quantity.

5 Application of the stability analysis

In this section we will apply the previous stability analysis with two different
functions modeling the immune system.

5.1 The original model

As in [6], we set f(x) = d− α x
1+εx2 . Its profile is represented in Figure 2.
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Fig. 3: Bifurcation diagram depending on parameter s variation (immune cells
source). Solid red curves are for asymptotically stable steady states with real
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states with complex dominant eigenvalue, and dotted curves are for unstable
steady states. On the left graph the disease-free steady state corresponds to
ȳ2 = 0, so it does not appear with the log-scale. For s big enough, the two
highest steady states disappear, then low and trivial steady states cross each
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In this case, the derivative f ′(x) = −α 1−εx2

(1+εx2)2 , vanishes only for x = ε−1/2.

We assume that α2 > 4εd2, and denote:

ymin =
α−
√
α2 − 4εd2

2εd
, ymax =

α+
√
α2 − 4εd2

2εd
.

As soon as M > ymax, we can apply Corollary 1. The function Pθ is then the
third-order polynomial,

Pθ = (X − ymin)(X − ymax)(X −M) +
θ

εd

(
X +M

d2

r

)
(1 + εX2).

With this particular example, we can give an upper bound for A
B on R+:

A

B
(X > 0) = d

(X2 − (ymin + ymax)X + 1
ε )(M −X)

(X + d2
r M)(X2 + 1

ε )
6 d

M −X
X + d2

r M
6
rd

d2
.

Hence, θmax is bounded by rd
d2

. This value corresponds to the transcritical
bifurcation between the low disease and the disease-free steady states. This
means that the saddle-node bifurcation occurs for lower values of θ than the
transcritical bifurcation.

The bifurcation diagram and stability chart given by Corollary 1 are re-
produced in Figures 3 and 4.

We applied the simplified model (4) to the patient data from [6] in order
to compare the relevance of two models in Figure 5.
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Fig. 5: Fits of the original (dashed line) and reduced (solid line) models to
six patients treated with first-line Imatinib. The base-10 log of the BCR-ABL
ratio is plotted against time, in months. Dots represent patient data. Dotted
lines approximate the minimum leukemic level that is detectable by RT-PCR.
Dots along this line represent zero measurements, meaning CML cells were
not detected. The parameters used for the fits to the original and simplified
model are respectively in Tables 2 and 3, universal parameters are in Table 1.
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Table 1: Universal parameters values used in the reduced model.

Parameter Value

r 0.007775
K 41.667
a1 1.350e5
d2 0.0375
s z(0) ∗ d

y1(0) K
y2(0) 1.5e8
z(0) 120

Table 2: Estimated parameters with the original model (1)

Patient inh1 inh2 d µ ymin ymax

1 4.612 92.3215 0.031 9.964e-7 4.994e4 5.598e5
2 1.456 545.150 0.099 1.504e-8 3.765e4 2.759e5
3 591.591 14.568 0.040 2.371e-7 3.132e3 2.228e4
4 486.315 226.000 0.075 2.879e-8 3.536e2 1.684e3
5 50.988 79.645 0.005 1.271e-6 1.182e3 5.482e4
6 30.208 359.979 0.371 2.263e-7 4.959e3 1.353e4

Table 3: Estimated parameters with the simplified model (4)

Patient kinh d µ ymin ymax

1 2.521e2 0.051 3.647e-6 6.610e4 3.624e5
2 1.133e3 0.026 2.405e-8 3.831e4 3.055e5
3 4.205e2 0.054 4.224e-7 1.617e4 3.133e5
4 5.691e3 0.181 8.499e-6 1.206e3 1.090e4
5 4.594e3 0.038 5.723e-9 1.841e3 3.401e4
6 2.853e3 0.058 1.358e-9 7.143e3 7.576e4

For many patients, the fits in Figure 5 are comparable between the com-
plete model (1) and the simplified model (4). Intriguingly, for some patients
(such as Patients 1, 3 and 5), the fits seem more satisfactory with the simplified
model. Typically when the initial decay is slow, it looks as if the oscillations
are better controlled by the simplified model (4). It might be due to the fact
that, in order to be consistent with [6], we decided to assume a priori that
ymin and ymax exist, which then constrains the parameters. Compared with
the full model, (1), the model (4) cannot capture rapid oscillations and sharp
decays.

5.2 A mechanistic model

We apply here our procedure to a second example, a mechanistic model for
describing the dynamics of CML [3]. In this model, there are no terms rep-
resenting immunosuppression of the immune-leukemia interactions. Instead,
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mature leukemic cells are assumed to have two contrasting effects on immune
cells: (i) a Michaelis-Menten term, αy2z/(1+εy2), that represents the stimula-
tion of immune cells by leukemic cells, with maximum rate αε−1 and Michaelis
constant ε−1; and (ii) a mass action term, νy2z, representing the killing of im-
mune cells by leukemic cells, at a rate ν.

For the immune dynamics, f is given by f(x) = d+ νx−α x
1+εx . Its profile

is represented in Figure 6.
In this case, the derivative f ′(x) = ν − α(1 + εx)−2, vanishes only for

x = 1
ε (
√

α
ν − 1). We assume that (α− εd− ν)2 − 4ενd > 0, and denote:

ymin =
(α− εd− ν)−

√
(α− εd− ν)2 − 4ενd

2εν
,

ymax =
(α− εd− ν) +

√
(α− εd− ν)2 − 4ενd

2εν
.

As soon as M > ymax, we can apply Corollary 1. The bifurcation diagram
and stability chart given by Corollary 1 are reproduced in Figures 7 and 8.

6 Discussion and conclusion

In this manuscript we presented a simplified, analytically tractable version of a
model for tumor-immune interaction recently proposed [6]. This simplification
allows us to conduct a complete analytic study of the model. We showed
the existence of a disease-free steady state and established conditions for the
existence of disease steady states. We characterized the stability of each of
these steady states, and identified the transitions in the number of steady
states and in their stability.

It was anticipated that the simplified model would possess a disease-free
steady state. This state corresponds to the asymptotic solution when treatment
is effective. Whether the leukemic cells completely vanishes under treatment is
a biological open question [2,19]. The model we analyze leads to a low disease
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. We
still have the possibility of having two stable steady states (one with y2 < ymin
one with y2 > ymax). One of the main difference is that a stable disease free
steady state may coexist with a stable disease steady state. In the first model,
this is mainly due to the fact that the immunosuppression is not saturated
and high levels of y2 leads to very small values of z, below s

f(0) .
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steady state (with leukemic load below the immune window) that corresponds
to the asymptotic solution when treatment is not sufficiently efficient to erad-
icate the disease, but is sufficient to allow the immune system to keep it under
control at a low level.

We obtained complete generic one-parameter bifurcation diagrams (Fig-
ures 3 and 7), and showed that a low-disease steady state exists for a wide
range of parameters. When such a state exists, it is stable. The low-disease
steady state becomes non-positive and disappear from the biologically rele-
vant phase-space at a transcritical bifurcation with an unstable disease-free
steady state, at which they exchange their stability. Large disease steady state
can coexist; they are generically created and destroyed through saddle-node
bifurcations. No steady state can ever be destabilized through a Hopf bifurca-
tion. Although we have not shown that no limit cycles can occur, we could not
find any non-local bifurcations leading to limit cycles, such homoclinic bifurca-
tions, or saddle-node bifurcation on an invariant cycle (SNIC). The low-disease
steady state is the only steady state that can be a focus, and it is always a
stable focus.

Two qualitatively different bifurcation diagrams were identified: (i) a stable
disease-free steady state and existence of a large disease steady state and
mutually exclusive; and (ii) co-existence of a stable disease-free steady state
and a large disease steady state possible.

The asymptotic stability we highlighted is a local stability of steady states,
which does not guarantee the convergence of any solution to the steady state.
We have not yet derived any theoretical result on the basin of attraction of
asymptotically stable steady states. Numerically, the low steady state basin
of attraction seems much smaller than the basin of attraction of the high
steady state. That could be interpreted by the scarcity of solutions converging
to the low disease steady state. For example, this model allows a state with
low amount of leukemic cells and high amount of immune cells to converge to
the highest disease steady state with high amount of leukemic cells and low
amount of immune cells.

The stability results obtained in this paper could help in interpreting the
clinical state of remission after treatment cessation. Indeed, remission could
correspond to attraction by the low disease steady state, while relapse could
correspond to attraction by a higher stable disease steady state. It is useful to
see the weight of each parameter in the dynamics of solutions. For example,
Figures 4 and 8 highlight the relevance controlling the autologous immune
system efficacy in order to constrain solutions to converge to a low disease
steady state or to a disease-free steady state.

Fitting either the original or the simplified model to individual patients
yields excellent results in most cases (Figure 5). The simplified model has a
tendency to predict oscillatory levels of BCR/ABL ratio, due to the focus
nature of the low disease steady state. Whether the fluctuations in clinical
BCR/ABL ratio correspond to deterministic oscillations or to stochastic fluc-
tuations is not clear, but our steady state analysis suggests that oscillations
are a signature of the immune control of the CML.
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The bifurcation diagrams suggest three possible scenarios for the outcome
of a treatment cessation. In any of these scenarios, relapse is possible. First,
if there is co-existence of a stable large disease steady state and a stable low
steady state, no cure is possible and the success of treatment cessation is
determined by how attractive the low-disease steady state is. Second, if there
is co-existence of a large disease steady state and a stable disease-free steady
state, it is possible that treatment cessation (or continuation) could actually
lead to eradication of the tumor. Third, no large steady state exists, and the
low-disease steady state is the clinical disease state. In this case, the disease-
free steady state is always unstable, and treatment cessation is bound to fail.

Our stability analysis is adaptable to a large class of functions modeling
the immune system degradation. The double-monotony of this function is a
biologically acceptable condition, corresponding to immune activation and im-
munosuppression.
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APPENDIX

The following equations are satisfied by positive steady states. They will be
used in technical lemmas.

z̄ =
s

f(ȳ2)
,

z̄ =
d2

µ

M − ȳ2

M d2
r + ȳ2

,

r

K
ȳ1 =

(r + d2)ȳ2

M d2
r + ȳ2

,

a1
ȳ1

ȳ2
= M

d2

r

(r + d2)

M d2
r + ȳ2

.

Lemma 1 Let x̄ = (ȳ1, ȳ2, z̄) be a steady state of (4) such that f ′(ȳ2) >
0. The steady state x̄ is asymptotically stable if, and only if, det(J(x̄)) < 0.

Proof The determinant of J(x̄) is the product of all its eigenvalues, so it is
equal to −χJ(0). We note that the polynomial χJ is convex on R+, and that

χ′J(0)− χJ(0)

r + d2
=

(
(r + d2)f(ȳ2)− µz̄ȳ2f

′(ȳ2) +
r

K
ȳ1a1

ȳ1

ȳ2

)
− 1

r + d2

(
r

K
ȳ1a1

ȳ1

ȳ2
f(ȳ2)− (r + d2)µz̄ȳ2f

′(ȳ2)

)
= (r + d2)f(ȳ2) +

r

K
ȳ1a1

ȳ1

ȳ2
− 1

r + d2

r

K
ȳ1a1

ȳ1

ȳ2
f(ȳ2)

=
r

K
ȳ1a1

ȳ1

ȳ2
+
f(ȳ2)

r + d2

(
(r + d2)2 − r

K
ȳ1a1

ȳ1

ȳ2

)

=
r

K
ȳ1a1

ȳ1

ȳ2
+
f(ȳ2)

r + d2

((
r

K
ȳ1 + a1

ȳ1

ȳ2

)2

− r

K
ȳ1a1

ȳ1

ȳ2

)

=
r

K
ȳ1a1

ȳ1

ȳ2
+
f(ȳ2)

r + d2

(( r
K
ȳ1

)2

+

(
a1
ȳ1

ȳ2

)2

+
r

K
ȳ1a1

ȳ1

ȳ2

)
> 0.

Here we used f(ȳ2) > 0 given by Proposition 2. We consider two cases:

Case 1: If χJ(0) < 0, then there exists a root in R∗+. In this case the steady
state x̄ is unstable.

Case 2: If χJ(0) > 0, then χ′J(0) > 0 and, by convexity, χJ stays non-negative
on R∗+. If χJ admits three real roots, they are all negative, and the steady
state is asymptotically stable. Otherwise, there exists two conjugate complex
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roots. In this case, we denote by x the negative real root, and by z one of the
two complex roots. First, note that since f ′(ȳ2) > 0, we have:

χJ(− r

K
ȳ1) = −a1ȳ1µz̄f

′(ȳ2) < 0.

As χJ has only one sign change on R, at x, we deduce that − r
K ȳ1 < x.

Yet,

2 Re(z) + x = − r

K
ȳ1 − a1

ȳ1

ȳ2
− s

f(ȳ2)
< x− a1

ȳ1

ȳ2
− s

f(ȳ2)
.

Hence

Re(z) < −1

2

(
a1
ȳ1

ȳ2
+

s

f(ȳ2)

)
< 0.

We showed that complex roots have negative real parts in the case where
f ′(ȳ2) is positive. Therefore, the steady state is asymptotically stable.

Lemma 2 Let x̄ = (ȳ1, ȳ2, z̄) be a steady state of (4). The determinant
of the corresponding Jacobian matrix det(J(x̄)) has a sign opposite to that of
A′B −AB′.

Proof We compute

A′B −AB′ = (f ′(X)(M −X)− f(X))

(
X +

d2

r
M

)
− f(X)(M −X)

= f ′(X)(M −X)

(
X +

d2

r
M

)
− f(X)M

(
1 +

d2

r

)
.

Let x̄ = (ȳ1, ȳ2, z̄) be a steady state for the system (4). The determinant
of the Jacobian matrix at x̄ is

det(J(x̄)) =
r

K
ȳ1a1

ȳ1

ȳ2
f(ȳ2)− (r + d2)µz̄ȳ2f

′(ȳ2)

=
(r + d2)ȳ2

M d2
r + ȳ2

M
d2

r

(r + d2)

M d2
r + ȳ2

f(ȳ2)− (r + d2)d2
M − ȳ2

M d2
r + ȳ2

ȳ2f
′(ȳ2)

=
d2(r + d2)ȳ2(
M d2

r + ȳ2

)2 (M (
1 +

d2

r

)
f(ȳ2)− (M − ȳ2)

(
M
d2

r
+ ȳ2

)
f ′(ȳ2)

)

= − d2(r + d2)ȳ2(
M d2

r + ȳ2

)2 (A′B −AB′)(ȳ2).

Hence sign(det(J(x̄))) = −sign((A′B −AB′)(ȳ2)).

Lemma 3 Let x > 0. These following are equivalent:

– (A′B −AB′)(x) = 0,

– x is a double root of Pθ, where θ := A(x)
B(x) .



28 Apollos Besse et al.

Proof Let x be a positive zero of A′B −AB′. We fix θ := A(x)
B(x) . Then,

Pθ(x) = −A(x) + θB(x) = 0,

P ′θ(x) = −A′(x) + θB′(x) = −A
′B −AB′

B
(x) = 0.

Hence x is a double zero of Pθ.
Reciprocally, let (θ, x) be such that x is a double zero of Pθ. Since Pθ(x) =

0, θ = A
B (x). Also, since P ′θ(x) = 0, (A′B −AB′)(x) = 0, which means that x

is a zero of A′B −AB′.

Lemma 4 Consider the polynomial P = X3+aX2+bX+c, where a, b, c ∈ R∗+.
If ab > c, then all roots of P have negative real part.

Proof First, positivity of all coefficients ensures that the real roots of P cannot
be positive. Second, as P (0) = c > 0, P necessarily admits a real, negative
root. It remains to characterize the two other roots. If real and negative, then
the dominating root is negative and the lemma is proven. Therefore we may
assume that the two remaining roots are complex, and we need to determine
the sign of their real part.

Let λ be the first negative root of P . We can factor

P =
(
X − λ

)(
X2 + (a+ λ)X + (b+ aλ+ λ2)

)
.

By our assumption, P admits a pair of complex roots. We want to compare(
X2 + (a+λ)X + (b+ aλ+λ2)

)
and (X − z)(X − z̄), where z ∈ C. Separating

the real and imaginary parts leads to

a+ λ = −2 Re(z),

b+ aλ+ λ2 = (Re(z))2 + (Im(z))2.

In order to find the sign of Re(z), we need to compare a and λ. We have
P (−a) = −ab+ c. Since we assume that, ab > c, we obtain P (−a) < 0. As P
has only one real root λ, we obtain −a < λ. This leads to Re(z) < 0, and the
dominating root of P has its real part negative.
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a b s t r a c t

The process of cell division in mammalian cells is orchestrated by cell-cycle-dependent oscillations of

cyclin protein levels. Cyclin levels are controlled by redundant transcriptional, post-translational and

degradation feedback loops. How each of these separate loops contributes to the regulation of the key

cell cycle events and to the connection between the G1-S transition and the subsequent mitotic events

is under investigation. Here, we present an integrated computational model of the mammalian cell

cycle based on the sequential activation of cyclins. We validate the model against experimental data on

liver cells (hepatocytes), which undergo one or two rounds of synchronous circadian-clock gated cell

divisions during liver regeneration, after partial hepatectomy (PH). The model exhibits bandpass filter

properties that allow the system to ignore strong but transient, or sustained but weak damages after

PH. Bifurcation analysis of the model suggests two different threshold mechanisms for the progression

of the cell through mitosis. These results are coherent with the notion that the mitotic exit in

mammalian cells is bistable, and suggests that Cdc20 homologue 1 (Cdh1) is an important regulator of

mitosis. Regulation by Cdh1 also explains the observed G2/M phase prolongation after hepatocyte

growth factor (HGF) stimulation during S phase.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The cell division cycle is a highly organized and structured
mechanism in mammals. Because of its dynamical nature, it has
been subject to several computational models. The first computa-
tional models pertained to the cell cycle in amphibian embryos
and yeast (Tyson, 1991; Goldbeter, 1991; Novak and Tyson, 1993;
Sha et al., 2003; Pomerening et al., 2003; Chen et al., 2004). More
recently, computational models were proposed for specific parts
of the mammalian cell cycle, particularly the G1/S phase transi-
tion and the restriction point (Aguda and Tang, 1999; Qu et al.,
2003a,b; Swat et al., 2004; Novak and Tyson, 2004). A generic
model for the eukaryotic cell cycle has also been presented
(Csikasz-Nagy et al., 2006).

Few detailed, integrative models coupling the main events of
the cell cycle, DNA synthesis and mitosis have been proposed.
Models of this sort have been proposed for yeast, in which growth
of cell mass is playing a key role in regulating mitosis (Chen et al.,
2004), and more recently for mammals (Gerard and Goldbeter,
2009). In mammals, however, cell mass is not a major determi-
nant for the control of cell cycle. Rather, mammalian cells possess

multiple control mechanisms that prevent them from proliferat-
ing outside specific conditions. Mammalian cells vary in type and
degree of differentiation, each one having different proliferative
potential and mechanism. This makes the task of modelling
mammalian cells challenging, as there is no universal experi-
mental model. In vitro systems of dividing cells provide a way to
study synchronized cell populations, which are suitable for
modelling cell cycle events. However, cell cycle specific events
are obtained under variable experimental conditions and different
cell cycle synchronization procedures, which are difficult to
reproduce on models. During liver regeneration, liver cells (hepa-
tocytes) divide in a highly synchronized manner. We have taken
advantage of the wealth of experimental data on the cell cycle
during liver regeneration to construct the first integrative model
of the mammalian cell cycle in the regenerating livers.

Liver regeneration is a process by which the liver can recover its
normal mass and function following injury. After the surgical
removal of two-third of the liver (partial hepatectomy), 90% of the
hepatocytes re-enter the cell cycle synchronously to complete one
or two divisions and restore the liver mass. Partial hepatectomy (PH)
triggers the release of pro-inflammatory cytokines (PICs). In the
presence of PICs, hepatocytes leave a quiescent state, denoted G0, to
enter a primed state, a process denoted priming. Primed cells, which
are in the early G1 phase, are then driven by growth factors (GFs) to
cross the restriction point, a point of no return beyond which they
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are irreversibly engaged in the cell cycle and do not require growth
factors any more to complete mitosis (Taub, 2004). Progression
within the cell cycle is controlled by the sequential activation of a
family of cyclin dependent kinases (cdks) that allow an ordered
succession of the cell cycle phases: G1, S, G2, and M (Morgan, 2007).
The cdk proteins are only active when they form a complex with
their corresponding cyclin proteins. Cyclin D/Cdk4-6, Cyclin E/Cdk2,
Cyclin A/Cdk2, and Cyclin B/Cdk1 complexes promote, respectively,
progression in G1 phase, the transition from G1 to S phase,
progression in S and G2 phase, and finally the G2/M phase transi-
tion, allowing entry into mitosis (Morgan, 2007). Cyclin/cdk com-
plexes are the workhorses of the cell cycle machinery, and as such,
they need regulators. Cyclin/cdk regulation, which we henceforth
mention as cyclin regulation for simplicity, is achieved through a
variety of mechanisms. These include transcriptional regulation [E2F
transcription factor 1 (E2F)], association with protein inhibitors
[cyclin dependent kinase inhibitor (CKI)], phosphorylation/depho-
sphorylation [Wee1 and cell division cycle 25 (Cdc25)] and cyclin
degradation [complexes formed with anaphase promoting complex
(APC) and Cdc20 homologue 1 (Cdh1) or Cell division cycle
20 (Cdc20) (APCCdh1, APCCdc20), Skp1/cullin/F-box protein related
complexes (SCF)] (Morgan, 2007) (Fig. 1).

2. The model

DNA synthesis and mitosis: After both PH and CCl4 treatment,
liver regeneration exhibits well-synchronized DNA synthesis and
mitosis (Deguchi et al., 2002). The temporal proliferation pattern
of the cells in regenerating rodent livers consists of two waves of
mitosis (Fabrikant, 1968). During the first round, hepatocytes
synchronously undergo DNA replication and mitosis. It is then
followed by a second round of division of less synchrony (Faktor,
1971). In mice, the first peak of DNA synthesis occurs 36 h after
PH and the mitotic peak, 4–12 h after the peak of DNA synthesis
(Matsuo et al., 2003).

E2Fs regulating sequential activation of cyclins: E2F activity is
tightly controlled by binding to the retinoblastoma protein (Rb).
Rb sequesters E2F and inhibits its transcriptional activity. Cyclins
sequentially phosphorylate Rb and activate E2F in a positive
feedback loop manner. Only hyperphosphorylated forms of
Rb-E2F transactivates Cyclin A and Cyclin B (Lundberg and
Weinberg, 1998) (see Appendix A.2 for the derivation of the
Rb/E2F equations).

CKI at the interphase of S phase and mitosis: CKI stoichiome-
trically inhibits Cyclin D, Cyclin E and Cyclin A by forming
complexes with their cdk partners (Harper et al., 1995). CKIs are
predominantly transcriptionally regulated by cytokine-dependent
signaling (Gartel and Tyner, 1999; Coller et al., 2000). For further
details on modelling CKI activation refer to (Chauhan et al., 2008).
Degradation of CKI is mediated by SCF and APC-Cdc20 (Bashir
et al., 2004; Amador et al., 2007). For simplicity, we do not model
SCF and/or APCCdc20 dependent degradation of CKI, but use a
general degradation term for CKI.

Cyclins: The whole process of cell division is orchestrated by
the sequential activation of cyclins. Cyclin D and Cyclin E are the
G1-S cyclins that trigger DNA synthesis. G1-S cyclins are induced
by cytokine- and growth factor-dependent pathways and their
degradation is controlled by SCF. For further details on Cyclin D
and Cyclin E modelling refer to (Chauhan et al., 2008). The rise of
G1-S cyclins is accompanied by the appearance of Cyclin A during
S phase. In the late G2 phase, a transient activation of Cyclin B is
observed enabling swift G2-M transition. This transient activation
is enabled by regulatory feedbacks imposed on Cyclin B by Cdc25
and Wee1. At metaphase, sufficiently high levels of active Cyclin B
phosphorylates Cdc20 to form an active complex with APC, which
in turn, degrades Cyclin B. Inactivation of Cyclin B allows mitotic
exit and return to the G1 phase (Morgan, 2007). Inactivation of
Cyclin B also leads to dephosphorylated Cdh1 which then forms
an active complex with APC to degrade Cyclin B and Cyclin A
during G1 phase.

APC and SCF: the degradators controlling the cell cycle: APC is
a proteasomal degradation machinery that needs to form
complexes with subunits to be activated. During the cell cycle,
APC is successively activated by two of its subunits, Cdc20 and
Cdh1, which have separate windows of activity, each regulated by
feedback loops. Cdc20 is activated by Cyclin B during mitosis
through a negative feedback loop. Cdh1 becomes active at the end
of mitosis through a positive feedback loop, when Cyclin B is
degraded, and assembles with APC to further degrade Cyclin A,
Cyclin B, Cdc20 and SCF (Wäsch et al., 2010). Cdh1 also acts as a
G1 regulator by destroying mitotic cyclins during G1 phase and
maintaining the cell in G1 by the destruction of SCF (Bashir et al.,
2004; Wei et al., 2004). Cdh1 controls Cyclin A and B at two
levels: first by a direct cyclin-Cdh1 double feedback loop and
second by a CyclinB-Cdc20 negative feedback. Cdh1 controls G1
cyclins, Cyclin D and E by degrading their degradator SCF.

SCF can degrade G1-S cyclins, Cyclin D and Cyclin E (Nakayama
and Nakayama, 2005). SCF is down-regulated during M and G1
phases and is induced by Cyclin E near the S phase when its

Cyclin A Cyclin B

Cdc25Cdc25

Cdc25Wee1

APC-Cdh1 APC-Cdc20

CKI E2F-FoxM1

Cytokines
Priming

G2/MM/G1

Damage

Fig. 1. Damage induced model of the cell cycle during liver regeneration based on

sequential cyclin activation and degradation. The PH-induced damage primes

quiescent cells via cytokine signaling. Primed cells then activate growth factor-

induced signaling cascades. Cytokine- and growth factor-induced pathways act in

concert to provide mitogenic signals for Cyclin D activation in early G1 phase. Cyclin

D initiates a chain of sequential phosphorylation of Rb/E2F which leads to sequential

transcription of further G1-S (Cyclin E), S (Cyclin A) and M (Cyclin B) phase cyclins. As

early as G1 phase, stoichiometric inhibitors of cyclins, CKI, are also activated by

cytokines. The G1-S proteolytic degradation machinery, SCF, is activated by Cyclin E.

Entry to mitosis is initiated by the abrupt activation of Cyclin B by Cdc25 and Wee1 in

a positive feedback loop fashion at G2-M transition. Cdc25- and Wee1-mediated

positive feedback loops also regulate the rapid exit from mitosis by swiftly

inactivating Cyclin B at M-G1 in coordination with a positive feedback loop from

the M-G1 degradator APCCdh1. Mitotic degradator APCCdc20 exerts a negative feedback

loop. All cyclin-cdk complexes are depicted by their respective activating cyclin

partner for simplicity. E2F in the scheme represents all three forms of E2F, viz,

unphosphorylated, hypophosphorylated and hyperphosphorylated.
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degradator Cdh1 is degraded (Bashir et al., 2004). Cdh1 connects
the SCF-driven G1-S proteolytic machinery with the APC-depen-
dent mitotic and G1 proteolysis. Therefore, at the core of the cell
cycle lies Cdh1-driven degradation that results in a proteolytic
oscillator setting the pace of the cell cycle progression.

Using the existing knowledge about cyclin control mechan-
isms and their temporal organization during liver regeneration,
we designed the network controlling the cyclin-dependent kinase
activity at all stages of the cell cycle (Fig. 1). The model is a system
of ordinary differential and algebraic equations describing the
concentration of key players of the cell cycle (see Appendix A for a
description of the model variables). To make the model as
tractable as possible, the variables were sorted according to the
time scale on which they evolve. The time-scale of reference is the
duration of one cell cycle (in hours). Variables that change on a
shorter time-scale were approximated by their steady state
(quasi-steady state assumption). For instance, concentrations
of phosphorylated proteins were approximated by their
steady states. To limit the number of variables in the model, we
considered explicitly protein concentrations but not their corre-
sponding mRNA concentrations. The kinetic parameters (see
Appendix B) were adjusted so that the model could represent
the experimentally observed temporal dynamics of respective
model species. The induction of gene expression by pro-inflam-
matory cytokines, growth factors and by Rb-E2F (here called E2F)
was incorporated directly by time-dependent input functions
modulating the synthesis of cyclins (see (Chauhan et al.,
2008) and Appendix A.2). Post-translational regulation through
phosphorylation-dephosphorylation or through complex forma-
tion is explicitly included in the model. For simplicity, we do not
distinguish between the nuclear and cytosolic compartments of
the cell. The model describes the dynamics of the intracellular
cyclin/cdk network and represents an average hepatocyte during
liver regeneration. Our aim is to address one cycle of division
during liver regeneration triggered by a decaying damage
(Hayashi et al., 2003; Blindenbacher et al., 2003). All concentra-
tions in the model are expressed in arbitrary units (a.u.) since for

most of the regulatory proteins, the actual concentrations are
not known.

Numerical simulations of the full model were performed with
Matlab. Bistability analysis of the model was done with the
numerical bifurcation continuation process of XPPAUT.

3. Results

3.1. Sequential activation of cyclins and proteolytic degradators

The computational model is able to reproduce the sequential
activation of cyclins and proteolytic degradators along the cell
cycle (Fig. 2). Damage activates cytokine- and growth factor-
induced pathways which lead to the activation of Cyclin D during
late G1 and the subsequent activation of Cyclin E, indicating entry
into S phase (Chauhan et al., 2008). Step-wise activation of E2F via
Cyclin D and Cyclin E leads to the sequential transcription of
Cyclin A in the S phase and Cyclin B during mitosis (Morgan,
2007) (for equations see Appendix A.2). CKI is activated in early
G1 and is maximally elevated at late S phase (Behrens et al.,
2002). E2F activity peaks at S phase (Chen et al., 2009). APCCdh1 is
active during late mitosis and early G1 phase, degrading Cyclin A
and Cyclin B. APCCdc20, which is a degradator of mitotic substrates,
is activated during late mitosis, once Cyclin B is sufficiently
activated. Degradator of G1-S cyclins, SCF, becomes active at the
end of S phase, leading to the degradation of Cyclin D and Cyclin
E. Also, mitotic regulators Cyclin B active, Wee1, Cdc25 and
APCCdc20 exhibit a delayed switch-like activation (Morgan, 2007)
(Fig. 2).

3.2. A switch in Cyclin B activity drives M phase progression

A switch-like increase in the activity of Cyclin B enables entry
into mitosis, whereas subsequent Cyclin B proteolysis promotes
exit from mitosis (Morgan, 2007). This switch-like behaviour is
made possible by the presence of controls on Cyclin B activation,
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Fig. 2. Sequential activation and degradation of cyclins and their key regulators. Cyclin D appears at the late G1, Cyclin E at the G1-S transition, Cyclin A in the S phase and

Cyclin B in the late S phase and mitosis. At the G2-M interface, transient activation of Cyclin B active, Cdc25 and inactivation of Wee1, leads to abrupt mitotic entry. At the

M-G1 interface, Cdc25 and Wee1 are, respectively, rapidly inactivated and activated, leading to swift exit from mitosis. APCCdc20 is also transiently activated once enough

Cyclin B has accumulated at mitosis. APCCdh1 is active from late mitosis to G1 phase keeping Cyclin A and Cyclin B degraded in a positive feedback loop fashion during late

mitosis and G1. SCF is activated by Cyclin E during G1-S phase leading to degradation of G1-S cyclins. All concentrations are normalized by their maximum concentrations.
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which conserves the total amount of Cyclin B, and on total Cyclin
B concentration.

Two feedback loops control Cyclin B activity: a double negative
feedback loop from the inhibitory kinase Wee1, which is itself
inhibited by Cyclin B, and a positive feedback loop from the
activating phosphatase Cdc25, which is further activated by
Cyclin B (Tyson et al., 2003). Recently, Potapova et al. (2009)
have shown that the exit from mitosis was also a switch
phenomenon, due to the Wee1 and Cdc25-dependent positive
feedback loops acting during G1 phase.

Total Cyclin B concentration is controlled through synthesis,
by E2F, and degradation, by APCCdh1 and APCCdc20. E2F promotes
Cyclin B synthesis. At low E2F activity, there is not enough Cyclin
B for any of it to be activated. If E2F reaches a threshold value,
Cyclin B gets activated. This threshold activation is achieved
through a transcritical bifurcation (Fig. 3a) (Guckenheimer et al.,
1997). At any E2F values, two steady states for Cyclin B exist, one
zero and one either negative (below the threshold) or positive
(above the threshold). The zero steady state is stable below the
threshold and the positive steady state is stable above it. This
transcritical bifurcation is possible because of the Cdc25 loop.
When this loop is switched off by setting Cdc25 to a low constant
level (set at 0.01), the transcritical bifurcation disappears. No
effect was observed when Wee1 loop was removed (results not
shown). Downregulation of APCCdh1 is responsible for the activa-
tion of Cyclin B, while APCCdc20 is mainly responsible for its
degradation at the exit of mitosis. Varying the strength of
the Cdh1-mediated Cyclin B degradation rate, dCdh1

CB , revealed a
bistable switch that allows rapid activation and inactivation of
Cyclin B (Fig. 3). At high degradation rate, there is a small total
amount of Cyclin B, and no active Cyclin B. When the degradation
rate is reduced, a second stable steady state appears through a
saddle-node bifurcation. These two stable steady states co-exist

until the low level steady state becomes unstable, through a
reverse pitchfork bifurcation (Guckenheimer et al., 1997). For
degradation rates below that level, there is only high Cyclin B
activity. This combination of bifurcations form a bistable switch
whereby low and high levels of Cyclin B are possible.

Thus, the model includes two mechanisms for controlling
Cyclin B activity: a transcritical activation by E2F and a bistable
switch induced by APCCdh1-mediated Cyclin B degradation. The
transcritical activation ensures active Cyclin B levels remain to
zero whenever total Cyclin B level are low, therefore preventing
accidental entry into mitosis. The bistable switch is responsible
for the rapid activation of Cyclin B at the entry to mitosis, and its
rapid elimination at the end of mitosis.

3.3. Liver regeneration and cell cycle progression are robust

processes

Liver regeneration is a robust process. After PH, the liver grows
back to its normal mass even in the absence of important cell
cycle players. Therefore, we expect Cyclin E and Cyclin B activity,
as a measure of total DNA synthesis and mitosis, respectively, to
be robustly activated. We analysed the sensitivity of Cyclin E
and Cyclin B activity with respect to changes in biochemical
parameters. Both Cyclin E and Cyclin B were robust to parameter
change except when parameters immediately downstream of
the damage, such as degradation of PIC, were varied. In case of
these sensitive parameters, Cyclin E and Cyclin B peaks showed a
bell-shaped response to systematic variation in these sensitive
parameters (results now shown).

We further went on to study the response of the model to
systematic changes in the damage. We varied the damage from
strong-transient to weak-sustained input keeping the the total
amount of damage, i.e. the integral under the curve, constant
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(Fig. 4a). Both DNA synthesis (Cyclin E) and mitosis (Cyclin B)
responded as a bandpass filter to such a systematic variation in
damage (Fig. 4b and c, upper panels). Weak-sustained and strong-
transient damages were rejected and the cells did not progress
through both DNA synthesis and mitosis in both cases. The timing
of cell cycle events was robust to varying nature of damage
(Fig. 4b and c, lower panels).

Bandpass filtering properties have been studied previously in a
G1/S model (Chauhan et al., 2008). The damage was transmitted
through two pathways: (1) direct ultrasensitive induction of
Cyclin E, which filtered out the weak-sustained damages and (2)
Cytokine mediated delayed pathway, which consisted of nested
feedforward loops. Incoherent feedforward loops via CKI and
HGF filtered out sharp-transient damages. In the present model,
changing the strength of feedback loops during G2/M/G1 phases
did not change bandpass filtering behaviour of the model.
However, the range of the bandpass filter was affected. Decreasing
the positive feedback loop strength of the Cdh1-Cyclin A loop by
reducing the two Cyclin A and Cdh1 mutual negative regulation
parameters to one-half, one-fourth and zero, respectively, had two
distinct filtering effects: it decreased the range of the filter in case of

Cyclin B (Fig. 5b), while for Cyclin E (Fig. 5a), it increased the range
of filter. This opposite control of cell cycle events: DNA synthesis
(Cyclin E) and mitosis (Cyclin B) with respect to varying damage, has
not been systematically studied to our knowledge.

3.4. The circadian clock gates mitosis but not DNA synthesis

Cell division in many mammalian tissues is associated with the
circadian clock, a � 24 h rhythm regulating physiology and beha-
viour (Reppert and Weaver, 2002). In hepatocytes, Wee1 is the
gatekeeper of this circadian control of cell cycle (Matsuo et al.,
2003). Wee1 is a clock-controlled gene (its expression is modulated
over 24 h), and regulates the timing and efficiency of the cell cycle. In
mice hepatocytes, Wee1 synthesis peaks around ZT12 (ZT0 represents
lights on and ZT12, lights off, in a 24 h light-dark cycle) (Matsuo et al.,
2003). To simulate the circadian expression of Wee1, we used a
sinusoidal-shaped synthesis rate of Wee1, with a maximal synthesis
rate at ZT12 (Fig. 6a, see Appendix A.6). We simulated PHs performed
on mice at ZT8 or ZT0, and used peak of activity in Cyclin B and E as
markers of mitosis and S phase. We found that mitotic activity
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induced by Cyclin B at ZT8 or ZT0 changes from 44.5 to 51.5 h
(Fig. 6b). These results reproduce well the gating properties of Wee1
observed experimentally (Matsuo et al., 2003).

In our model, DNA synthesis is directly coupled to mitosis via a
Cdh1-SCF loop. Nevertheless, Cyclin E activity, which is represen-
tative of DNA replication, was independent from Zeitgeber time
PH (Fig. 6c). Imposition of circadian control on Wee1 maintains
DNA synthesis as an independently controlled property of hepa-
tocytes (Matsuo et al., 2003).

3.5. HGF treatment at S phase causes prolonged Cyclin A and Cyclin

B activity

Growth factors are well known to promote the transition from
G1 to S phase in cell cycle progression. Beyond G1-S transition
though, growth factors have been considered non-essential
during the cell cycle (Jones and Kazlauskas, 2001). However,
when injected at S and G2 phases, hepatocyte growth factor
induces a prolongation of G2. Increased ERK activation and
delayed degradation of Cyclin A and Cyclin B are observed when
the cells are induced with HGF at S and G2 phase (Park et al.,
2007; Nam et al., 2008). It is not intuitive how HGF induction at S
phase might lead to delayed degradation of Cyclin A and Cyclin B,
but CKI up-regulation has been implicated (Dangi et al., 2006).

We went on to simulate growth factor induction at S phase by
giving an extra HGF pulse during S phase between 36 and 40 h
(see Appendix A.7). Our model was able to reproduce the
observed delay in the degradation of Cyclin A and Cyclin B
(Fig. 7e and f). Our simulations suggest that HGF treatment at S
phase prolongs CKI (Fig. 7b) and E2F-FoxM1 (Fig. 7c) expression
and delays APCCdh1 activation (Fig. 7d). Thus, growth factor leads
to E2F-FoxM1 dependent Cyclin A up-regulation. As long as Cyclin
A is active at G2, APC-Cdh1 cannot be activated due to its
antagonistic control by Cyclin A. This leads to delayed Cdh1
activation. Delayed Cdh1 activation leads to delayed degradation
of Cyclin A and Cyclin B (Fig. 7b–d). More recently, CKI (Dangi
et al., 2006), FoxM1 (Alvarez-Fernandez et al., 2010) and APCCdh1

(Holt et al., 2010) have been directly implicated in G2 arrest. CKI
and FoxM1 are activated through growth factor induced MAPK
signaling at G2 (Dangi et al., 2006; Ma et al., 2005).

4. Discussion

4.1. Computational model for mammalian cell cycle

We have developed a computational model for the cell cycle of
hepatocytes during liver regeneration that couples different
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cyclins and proteolytic degradators in a sequential manner. The
model recapitulates the temporal profile of dividing hepatocytes
following partial hepatectomy: the sequential activation of
cyclins and proteolytic degradators; the effect of the circadian
clock on the timing of mitosis; the G2 phase delay caused by HGF
treatment during S phase and the effect of Cdh1 on cell cycle
progression.

Gerard and Goldbeter (2009) recently presented a mammalian
cell cycle model describing the sequential cyclin-cdk activation.
The model demonstrates repetitive cell cycling in the presence of
suprathreshold amounts of growth factors. The emphasis was on
the Rb-E2F network during G1 phase and Cyclin A-dependent
activation of Cyclin B during mitotic entry. Our model is also
structurally able to generate sustained oscillations like many
other cell cycle models (Csikasz-Nagy et al., 2006; Gerard and
Goldbeter, 2009). However, the focus of the model presented here
is to simulate one or two cycles of cell division observed during
liver regeneration after injury.

4.2. Threshold activation of Cyclin B

Entry to and exit from M phase display a switch-like behaviour
in Cyclin B levels. It is rapidly switched on at the G2-M phase
transition and rapidly switched off at the end of mitosis. Thresh-
old activation provides a robust mechanism for switch. We have
shown that total Cyclin B concentration and activity is regulated
by two threshold processes: a transcritical bifurcation, mediated
by E2F and a bistable loop, mediated by APCCdh1. Both the
transcritical bifurcation and the bistable loop allowed active
Cyclin B to be kept at zero levels outside the specific time window
of activity during G2/M phases. Although transcritical activation
is qualitatively different from a bistable switch, it also provides a
sharp activation threshold.

4.3. Bandpass filter of damage input

The model exhibits bandpass filter properties which allows the
system to ignore strong-transient and weak-sustained damages
(Chauhan et al., 2008). Thus, if the damage is too transient (short)
or too weak, cells will not enter the cell cycle events of DNA
synthesis and mitosis. This is in agreement with observations that
liver regeneration is proportional to the amount of PH, but does not
occur if the PH is too small or too large (Lambotte et al., 1997). Also,
varying the feedback strength of the Cdh1-Cyclin A positive feed-
back loop in the model tunes the range of filtering for Cyclin E and
Cyclin B in an opposite manner. Such an opposite control of DNA
synthesis and mitosis with varying strength of the Cdh1-Cyclin A
positive feedback loop has not been systematically studied to our
knowledge. Opposite control of filtering range for Cyclin E and
Cyclin B can have some interesting physiological implications.
Certain environmental conditions promote DNA synthesis while
suppressing mitosis, inducing endoreplication and polyploidization
(Nevzorova et al., 2009). Cdh1-mediated control of cyclins during
endoreplication has been widely reported in mammals, Drosophila
and plants (Garcia-Higuera et al., 2008; Sorensen et al., 2000; Sigrist
and Lehner, 1997; Kasili et al., 2010). It would be interesting to
study Cdh1-mediated feedback loop control of cell cycle with
respect to endoreplication and polyploidization, which are common
forms of cell cycle progression during liver regeneration (Duncan
et al., 2010).

4.4. Circadian control of Wee1

Our model is consistent with a circadian control of Wee1
synthesis, affecting the timing of mitosis but not of DNA synth-
esis. When the entrainment to light-dark cycle is simulated by

varying Wee1 synthesis with a 24 h period, the time at which PH
is performed has a impact on the timing of mitosis. In agreement
with Matsuo et al. (2003) results, we found that in PH performed
at ZT0 and ZT8 (at lights on and 8 h later, respectively), cells enter
mitosis roughly at the same time (around 60 h after ZT0). This
shows that circadian regulation of Wee1 induces a gating process
by which cells cannot divide at any time of the day. The timing of
DNA synthesis was independent from the timing of PH, and
occurred 36 h after PH, coherent with experimental results. In
hepatocytes, Wee1 is a major link between the circadian clock
and the cell cycle and S phase is largely a circadian clock-
independent process, despite the presence of a feedback loop
linking G1/S and G2/M phases via Cdh1 and SCF. In continuously
dividing cells this independence might not be preserved as gating
mitosis might affect subsequent phases.

4.5. HGF treatment during S phase causes prolonged G2/M phase

HGF promotes and accelerates cell cycle progression but has
been mostly assumed to be non-essential beyond the G1-S transi-
tion. However, HGF injection during S phase leads to a prolongation
of G2 resulting in the delayed degradation of cyclins during G2-M
phase. The model was able to reproduce the prolonged activation of
Cyclin A and Cyclin B, caused by a delayed reactivation of APCCdh1

during M phase. Moreover, activation of Cyclin A and Cyclin B was
not delayed after HGF injection, consistent with experimental
results (Nam et al., 2008). The delay in G2-M transition is explained
by a delay in Cyclin B-associated kinase activity, due to a delay in
nuclear translocation. Our model is not refined enough to reproduce
intracellular compartimentalization results, although it is consistent
with total Cyclin B time courses.

Erk signaling is known to mediate G2 delay via CKI (Han et al.,
2005; Dangi et al., 2006; Park et al., 2007). Our simulations
suggest that CKI, APCCdh1 and E2F-FoxM1 contribute in delaying
the degradation of Cyclin A and Cyclin B. This leads us to the
conclusion that induction of growth factors during S phase might
lead to prolonged transcriptional activity of E2F-FoxM1 resulting
in increased Cyclin A activity. Since the antagonistic players
Cyclin A and APCCdh1 cannot coexist, APCCdh1 activation is delayed.
Thus the APCCdh1-dependent degradation machinery might also
be responsible for the delayed Cyclin A and Cyclin B degradation
during G2 phase delay.

4.6. Conclusion

Mounting evidences demonstrate that Cdh1 plays an impor-
tant role in the control of proliferation, differentiation and
maintenance of genomic integrity by timely and coordinated
degradation of several substrates (Wäsch et al., 2010). Cdh1
maintains the stability of G1 phase by degrading the degradator
of G1-S cyclins and SCF. Cdh1 is required for the G2 DNA-damage
checkpoint (Wäsch et al., 2010). Cdh1 is implicated in genomic
instability and cancers, and is under investigation as a therapeutic
target. Cdh1 also plays a role in specialised cell division cycles of
endoreplication and polyploidy, widely observed during liver
regeneration. These observations call for a better characterization
of the role of Cdh1 in the control of G2 phase. It will be interesting
to refine the model presented here around Cdh1 in order to
understand the G2 delay and get a better understanding of the
fate of the cell division cycle.
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edges support from Rhône-Alpes Complex Systems Institute (IXXI,
France). We thank two anonymous reviewers for their useful
suggestions.

Appendix A. Model equations

The model contains 25 dynamical variables and 84 para-
meters. The 25 variables are the concentrations of the follow-
ing players involved in the cell cycle control: Damage (D)
induced pro-inflammatory cytokine pathways (PIC and PGE);
pro-inflammatory cytokine induced growth factor pathways (PAI,
HGF, HB-EGF); Cyclins D, E, A, and B; the inhibitor CKI and its
complexes with the active cyclin-cdk complexes; the active and
inactive forms of phosphatase Cdc25 and of kinase Wee1; the SCF
proteasomal ligases involved in the degradation of cyclin D, Cyclin
E and CKI; and the active and inactive forms of the proteins Cdh1
and Cdc20 involved in the degradation of cyclins A and B.

A.1. G1-S model

½D� ¼ I0 � e
�d0 �t ðA:1Þ

d½PIC�

dt
¼

v1

1þ
½PGE�

k�1

� �2
�
½D�

k1þ½D�
�d1 � ½PIC� ðA:2Þ

d½PGE�

dt
¼ v2 � ½PIC��d2 � ½PGE� ðA:3Þ

d½IEG�

dt
¼

v3 � ½PIC�3

k3
3þ½PIC�3

�d3 � ½IEG� ðA:4Þ

d½PAI�

dt
¼

v4 � ½PIC�3

k3
4þ½PIC�3

�d4 � ½PAI� ðA:5Þ

d½HGF�

dt
¼

v5 � ½IEG�

1þ
½PAI�

k�5

� �4
� 1þ

f5 � ½HGF�

k5þ½HGF�

� �
�d5½HGF� ðA:6Þ

d½HBEGF�

dt
¼ v6 �

½D�4

k4
61þ½D�

4
�
½IEG�

k62þ½IEG�
�
½HGF�

k63þ½HGF�
ðA:7Þ

�d6½HBEGF� ðA:8Þ

d½CKI�

dt
¼ v7 �

PIC

k7þPIC
�d7 � ½CKI�

�
d½CycDjCKI�

dt
�

d½CycEjCKI�

dt
�

d½CycAjCKI�

dt
ðA:9Þ

d½CycD�

dt
¼

v8 � ½IEG� � ½HGF�

k8þ½IEG�
þd10 � ½CycDjCKI�

�ðd8 � ½SCF�þv10 � ½CKI�Þ � ½CycD� ðA:10Þ

d½CycE�

dt
¼

v91 � ½HBEGF�2

k2
91þ½HBEGF�2

þ
v92 � ½CycD�4

k4
92þ½CycD�4

þd11 � ½CycEjCKI�

�ðd9 � ½SCF�þv11 � ½CKI�Þ � ½CycE� ðA:11Þ

d½CycDjCKI�

dt
¼ v10½CKI�½CycD��d10½CycDjCKI� ðA:12Þ

d½CycEjCKI�

dt
¼ v11½CKI�½CycE��d11½CycEjCKI� ðA:13Þ

d½SCF�

dt
¼ v12 � CycE�d122 � SCF � ½APCjCdh1��d12 � SCF ðA:14Þ

A.2. E2F steady state

Rb phosphorylation is initiated by Cyclin D, releasing E2F in
sufficient quantity for Cyclin E activation. Cyclin E further phos-
phorylates Rb (RbP) resulting in hyperphosphorylated Rbpp, releas-
ing higher amounts of E2F required for transcriptional activation
of further Cyclins. Phosphorylation/dephsophorylation reactions
of Rb and association/dissociation of its three phosphorylated
forms with E2F are fast enough to be in the steady state
equilibrium:

½RbT � ¼ ½Rb�þ½Rbp�þ½Rbpp�þ½Rb � E2F�þ½Rbp � E2F�þ½Rbpp � E2F�

½E2FT � ¼ ½E2F�þ½Rb � E2F�þ½Rbp � E2F�þ½Rbpp � E2F�

½Rbp� ¼ p1 � ½Rb� � ½CycD�

½Rbpp� ¼ p1p2 � ½Rb� � ½CycD� � ½CycE�

½Rb � E2F� ¼ k1 � ½Rb� � ½E2F�

½Rbp � E2F� ¼ p1k2 � ½Rb� � ½CycD� � ½E2F�

½Rbpp � E2F� ¼ p1p2k3 � ½Rb� � ½CycD� � ½CycE� � ½E2F�

Substituting the steady state values, we solve the equation for
E2F as

E2F ¼�
RbT�E2FTþC

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRbT�E2FTþCÞ2

4
þC

s
ðA:15Þ

where

C ¼
1þp1 � ½CycD�þp1p2 � ½CycD� � ½CycE�

k1þk2p1 � ½CycD�þk3p1p2 � ½CycD� � ½CycE�

A.3. APC steady state

½APCT � ¼ ½APC�þ½APCjCdh1�þ½APCjCdc20p� ðA:16Þ

½APCjCdh1� ¼ kCdh1
APC � ½Cdh1� � ½APC� ðA:17Þ

½APCjCdc20p� ¼ kCdc20
APC � ½Cdc20p� � ½APC� ðA:18Þ

Substituting the steady state values, we solve the equation for
APC as

½APC� ¼
½APCT �

1þkCdh1
APC � ½Cdh1�þkCdc20

APC � ½Cdc20p�
ðA:19Þ

A.4. Cyclin B steady state

Cyclin B exists in two forms in our model: CycBact (active
Cyclin B) and CycBinact (inactive Cyclin B). Inactive Cyclin B
equation is adapted from Pomerening et al. (2005) with the
simplification that the phosphorylation/dephosphorylation of
the three inactive forms of Cyclin B viz transcribed Cyclin B
(CycB), Tyrosine phosphorylated (CycBY), and Tyrosine and Threo-
nine phosphorylated (CycBYT) is fast enough to be always in
equilibrium; so that equation for CycBYT can be algebraically
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solved:

½CycBinact � ¼ ½CycB�þ½CycBY
�þ½CycBYT

� ðA:20Þ

½CycB� ¼ k2 �
½Cdc25p�

½Wee1�
� ½CycBY

� ðA:21Þ

½CycBY
� ¼ k1 �

CycBYT

Wee1
ðA:22Þ

½CycBYT
� ¼

CycBinact �Wee12

Wee12
þk1 �Wee1þk1 � k2 � Cdc25p

ðA:23Þ

A.5. Mitosis

d½CycA�

dt
¼ vE2F

CA � E2F�dCdh1
CA � ½APCjCdh1� � ½CycA�

�dCA � ½CycA��
d½CycAjCKI�

dt
ðA:24Þ

d½CycAjCKI�

dt
¼ vCKI

CA � ½CycA� � ½CKI��dCKI
CA � ½CycAjCKI� ðA:25Þ

d½CycBinact�

dt
¼ vE2F

CB � E2F�ka1 � ½Cdc25p� � ½CycBYT
�

þPWee1
CB � ½Wee1� � ½CycBact ��dCdh1

CB � ½APCjCdh1� � ½CycBinact �

�dCdc20
CB � ½APCjCdc20p� � ½CycBinact��dCB � ½CycBinact�

ðA:26Þ

d½CycBT
act�

dt
¼�PWee1

CB � ½Wee1� � ½CycBact�þka1 � ½Cdc25p� � ½CycBYT
�

�dCdh1
CB � ½APCjCdh1� � ½CycBact�

�dCdc20
CB � ½APCjCdc20p� � ½CycBact��dCB � ½CycBact � ðA:27Þ

d½Wee1�

dt
¼Wee1b�PCB

Wee1 � ½CycBact� � ½Wee1�þPdephos
Wee1 � ½Wee1p�

�dWee1 � ½Wee1� ðA:28Þ

d½Wee1p�

dt
¼ PCB

Wee1 � ½CycBact� � ½Wee1��Pdephos
Wee1 � ½Wee1p�

�dWee1 � ½Wee1p� ðA:29Þ

d½Cdc25�

dt
¼ Cdc25b�PCB

Cdc25 � ½CycBact� � ½Cdc25�

þpdephos
Cdc25 � ½Cdc25p��dCdc25 � ½Cdc25� ðA:30Þ

d½Cdc25p�

dt
¼ PCB

Cdc25 � ½CycBact� � ½Cdc25��Pdephos
Cdc25 � ½Cdc25p�

�dCdc25 � ½Cdc25p� ðA:31Þ

d½Cdh1�

dt
¼ Cdh1b�PCA

Cdh1 � ½CycA� � ½Cdh1��PCB
Cdh1 � ½CycBact� � ½Cdh1�

þPdephos
Cdh1 � ½Cdh1p��kCdh1 � ½APC� � ½Cdh1��dCdh1 � ½Cdh1�

ðA:32Þ

d½Cdh1p�

dt
¼ PCA

Cdh1 � ½CycA� � ½Cdh1�þPCB
Cdh1 � ½CycBact� � ½Cdh1�

�Pdephos
Cdh1 � ½Cdh1p��dCdh1 � ½Cdh1p� ðA:33Þ

d½Cdc20�

dt
¼ Cdc20b�PCB

Cdc20 � ½CycBact� � ½Cdc20�þpdephos
Cdc20 � ½Cdc20p�

�dCdh1
Cdc20 � ½APCjCdh1� � ½Cdc20��dCdc20 � ½Cdc20� ðA:34Þ

d½Cdc20p�

dt
¼ PCB

Cdc20 � ½CycBact � � ½Cdc20��Pdephos
Cdc20 � ½Cdc20p�

�dCdh1
Cdc20 � ½APCjCdh1� � ½Cdc20p��kCdc20 � ½APC� � ½cdc20p�

�dCdc20 � ½Cdc20p� ðA:35Þ

A.6. Wee1 gated circadian regulation

d½Wee1�

dt
¼Wee1c � ð1þsinð2p=24 � ðt�6ÞÞÞ

�PCB
Wee1 � ½CycBact � � ½Wee1�þPdephos

Wee1 � ½Wee1p�

�dWee1 � ½Wee1� ðA:36Þ

A.7. HGF injection

d½HGF� ¼
V IEG

HGF � ½IEG�

1þ ½PAI�

KmPAI
HGF 4

� � � 1þ
f � ½HGF�

KmIEG
HGFþ½HGF�

 !

�dHGF � ½HGF�þhgfs � ðto40Þ � ðt436Þ ðA:37Þ

Appendix B. Parameters

G1�S v6 15 d12 0:025 k1 0:03 Pdephos
Cdh1 0:01

I0 4 k61 0:9 d122 0:75 k2 5 kCdh1 0:1

d0 0:05 k62 0:0005 E2F ka1 60 Cdc20b 15
v1 1:5 k63 1:0 E2FT 0:05 vE2F

CB 1:2 dCdc20 0:005

k�1 0:9 d6 0:05 RbT 1 dCB 0:01 dCdh1
Cdc20 20

k1 0:5 v7 8 p1 3 dCdh1
CB 0:8 PCB

Cdc20 10

d1 0:5 d7 8 p2 4 dCdc20
CB 0:2 Pdephos

Cdc20 0:01

v2 0:6 v8 3 k1 25 PWee1
CB 8 kCdc20 0:1

d2 0:006 k8 0:001 k2 1 Wee1b 1 HGF injection
v3 4:5 d8 0:03 k3 0:1 dWee1 0:5 hgfs 0:4

k3 0:7 v91 5 APC PCB
Wee1 3 Wee1–gated

d3 6 k91 30 APCT 1 Pdephos
Wee1 0:02 Wee1c 1:5

v4 45 v92 5 kCdh1
APC 0:5 Cdc25b 0:03 dphosCdc25 0:3

k4 0:5 k92 30 kCdc20
APC 0:1 dCdc25 0:2 Bifurcation E2F

d4 6 d9 0:01 Mitosis PCB
Cdc25 5 D 4

v5 5 v10 0:008 vE2F
CA 1:75 Pdephos

Cdc25 0:3 Bifurcation
Cdh1

f5 5 d10 0:0008 dCdh1
CA 1 Cdh1b 0:2 D 4

k5 0:25 v11 2 dCA 0:1 dCdh1 0:1 E2F 0:5

k�5 0:18 d11 6 vCKI
CA 0:01 PCA

Cdh1 0:2

d5 0:05 v12 0:56 dCKI
CA 0:1 PCB

Cdh1 0:01
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H I G H L I G H T S

� We develop a mathematical model for cell cycle–circadian clock coupling.
� We characterize multiple regions of cell cycle entrainment by the circadian clock.
� Influence of coupling on cell proliferation is studied.
� Coupling increases growth rate for cell cycle period around 24 h and 448 h.
� Effects of mutating clock genes on the growth rate are studied.
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a b s t r a c t

The circadian clock and the cell cycle are two tightly coupled oscillators. Recent analytical studies have

shown counter-intuitive effects of circadian gating of the cell cycle on growth rates of proliferating cells

which cannot be explained by a molecular model or a population model alone. In this work, we present a

combined molecular-population model that studies how coupling the circadian clock to the cell cycle,

through the protein WEE1, affects a proliferating cell population. We show that the cell cycle can entrain

to the circadian clock with different rational period ratios and characterize multiple domains of

entrainment. We show that coupling increases the growth rate for autonomous periods of the cell

cycle around 24 h and above 48 h. We study the effect of mutation of circadian genes on the growth rate

of cells and show that disruption of the circadian clock can lead to abnormal proliferation. Particularly,

we show that Cry 1, Cry 2 mutations decrease the growth rate of cells, Per 2 mutation enhances it and

Bmal 1 knockout increases it for autonomous periods of the cell cycle less than 21 h and decreases it

elsewhere. Combining a molecular model to a population model offers new insight on the influence of

the circadian clock on the growth of a cell population. This can help chronotherapy which takes benefits

of physiological rhythms to improve anti-cancer efficacy and tolerance to drugs by administering

treatments at a specific time of the day.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The circadian clock regulates body daily rhythmic activities, from

the wake–sleep phases succession and hormone production to blood

pressure and body temperature. Several epidemiological studies have

shed light on the fact that individuals with disrupted circadian

rhythms have increased risk of developing tumorigenic diseases

(Kubo et al., 2006; Filipski et al., 2002, 2004, 2009; Fu et al., 2002;

Gery et al., 2006; Grèchez-Cassiau et al., 2008). Studies made on

yeast revealed restriction of cell division to the reductive phases of

the yeast metabolic cycle. This type of control was shown to be

involved in circadian regulation and may be a general strategy for the

robust maintenance of cellular processes. This regulation insures that

the cell cycle evades the potentially mutagenic redox environment of

the oxidative respiratory phase, helping us to minimize the occur-

rence of futile reactions (Murray et al., 2007; Tu et al., 2005).

The circadian clock interacts with the cell cycle through multiple

molecular pathways (Edmunds, 1988; Johnson, 2010; Yang et al.,

2010; Pando and van Oudenaarden, 2010; Hunt and Sassone-Corsi,

2007; Nagoshi et al., 2004). Hence, a disruption of the circadian clock

can lead to abnormal cell proliferation and enhances tumor

development.

Circadian rhythms are generated at the cellular level by a finely

regulated gene network that produces sustained 24 h period
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oscillations in clock gene and protein expression. This network

involves several genes and relies on transcriptional, translational

and post-translational mechanisms. Oscillations arise from an

autoregulatory negative feedback loop system in which a clock

protein inhibits the expression of its own gene by inactivating a

transcription factor (Lee et al., 2001; Reppert and Weaver, 2002;

Eide et al., 2005; Cardone et al., 2005; Sato et al., 2006; Partch

et al., 2006; Gonze, 2011).

The cell cycle is usually divided into four phases G1, S, G2, M.

Progression through each phase depends on the activity of cyclins

and cyclin-dependent protein kinase complexes (Cdks) and a

mitosis promoting factor (MPF). When MPF activity is high, the

cell progresses through the cycle. When it is low, progression stops

(Morgan, 1995). Each phase of the cell cycle is controlled by a

different cyclin/Cdk complex: G1 is controlled by cyclin D/Cdk4-6,

G1/S transition by cyclin E/Cdk2, S phase by cyclin A/Cdk2 and

G2/M transition by cyclin B/Cdk1 (Hunt and Sassone-Corsi, 2007).

The circadian clock and the cell cycle are tightly connected. The

circadian clock gates the cell cycle through the regulation of

different Cdks. It has been reported that BMAL1/CLOCK activates

the transcription of the kinase WEE1 to regulate the G2/M

transition (Matsuo et al., 2003). The circadian clock, via the

protein REV-ERBα, regulates the transcription of p21, which

inhibits Cdk2 and blocks the G1/S transition (Grèchez-Cassiau et

al., 2008). The circadian clock is also involved in direct control of

DNA damage and apoptosis pathways by virtue of its regulation of

Chk2 and other related factors (Gery et al., 2006; Chen and

McKnight, 2007).

Two main approaches have been used to model the coupling

between the cell cycle and the circadian clock oscillators. The first

approach is to model the molecular machinery of the cell. It is

usually based on ordinary differential equations, where the

variables describe the intracellular molecular concentrations of

both oscillators. Chauhan and colleagues constructed such a

model to account for the regulation of mammalian cell cycle

progression and its gating by the circadian clock in the regener-

ating liver (Chauhan et al., 2011). Zamborszky and colleagues

used a minimal model for circadian rhythms coupled to a cell

cycle model that had been originally developed for the yeast cell

cycle. Their model revealed quantized cell cycles and they

suggested that cell size control is influenced by the clock

(Zamborszky et al., 2007). More recently, Gérard and colleagues

used a detailed computational model for the Cdk network driving

the mammalian cell cycle to study the effect of multiple mole-

cular links to the circadian clock (Gérard and Goldbeter, 2012).

They characterized the domains of autonomous periods where

the cell cycle can be brought to oscillate to 24 or 48 h periods,

and determined conditions for switching between these two

patterns of entrainment.

The second approach is to model a cell population, leaving aside

molecular details. This approach is based on PDEs, especially the

category of physiologically structured models, or on individual-

based models and cellular automata. In these models, the cell cycle

is divided into multiple, discrete phases and the circadian clock is

coupled via time-periodic parameters, such as the transition coeffi-

cients or phases duration. Altinok and colleagues used a cellular

automaton model to examine the entrainment of the cell cycle by

the circadian clock (Altinok et al., 2011). Clairambault and collea-

gues used an age-structured PDE system to model a population of

cells under the control of the circadian clock (Clairambault et al.,

2009, 2011). The circadian clock was taken into account through

periodic cell cycle phase transition coefficients into the equations.

Compared to population models, molecular models capture

more details of the fine regulation of the cell cycle, and in

particular, can predict the effect of mutations on the cell cycle

regulation. However, molecular models rarely describe explicitly

dividing cell populations and it is not clear how growth rates are

affected by disruptions at the molecular level.

Here, we present a mathematical model that combines the

molecular and the population levels, to study the influence of the

circadian clock on the growth of a population of cells. We study

the influence of circadian clock gene mutations on the net growth

rate of a dividing population. We show that disruption of circadian

rhythms can lead to abnormal proliferation. Depending on auton-

omous cell cycle properties and the nature of the disruption,

circadian clock gene mutations can lead to faster or slower growth

rates. We characterize the effect of circadian clock gene mutations,

and show that combined molecular/population model brings to

the dynamics of cell proliferation a picture more complete than a

molecular model alone.

2. Coupling the cell cycle and the circadian clock

Becker-Weimann and colleagues developed a simple model

that takes into consideration molecular information and analyzed

the roles of feedback loops on the oscillatory dynamics (Becker-

Weimann et al., 2004). This model was used to explore the role of

the negative feedback loop created by the transcription factor

complex BMAL1/CLOCK that activates the Period and Chrypto-

chrome genes (Per 1, Per 2, Cry 1 and Cry 2) (Fig. 1A). After several

hours, PER and CRY proteins form a complex in the cytoplasm, go

back to the nucleus and downregulate their own synthesis by

inhibiting BMAL1/CLOCK. Once the latter protein complex is

inhibited, transcription of PER and CRY stops. Hence, BMAL1/

CLOCK is no longer inhibited and the cycle starts its process again.

The model also includes a positive feedback loop where Bmal

1 transcription is positively regulated by PERs and CRYs because

the complex PER/CRY also inhibits the transcription of Rev-erbα,

which inhibits the transcription of Bmal 1.

Here, we focus on the coupling between the cell cycle and the

circadian clock through the protein WEE1. The combined mole-

cular/population model consists of two coupled systems of equa-

tions: one system of ordinary differential equations that describes

the molecular dynamics of the cell cycle and the circadian clock,

and one system of partial differential equations that describes the

growth of a cell population. The molecular model itself is a

coupled system of two core networks, one for the circadian clock,

and one for the cell cycle.

According to Nagoshi et al. (2004), cultured fibroblasts harbor

self-sustained and cell autonomous circadian clocks similar to

those operative in the neurons of the suprachiasmatic nuclei.

Similar results were obtained for yeast, where the regulation of

oscillations is not the result of a central oscillator, but rather it

emerges from numerous subgraphs with the potential to oscillate

with stable periodicity (Murray et al., 2007). Also, circadian gene

expression continues during cell division and daughter cells

resume the rhythms of mother cells after mitosis. We assume that

cell cycle divisions do not alter the molecular concentration of the

circadian components, neither their rhythms, which can be linked

to the fact that daughter cells inherit the same circadian expres-

sions of their mothers.

For the circadian clock, we used the model proposed by Becker-

Weimann and colleagues (2004). It consists of seven nonlinear

ordinary differential equations describing the concentrations of

Per/Cry mRNA and PER/CRY protein complexes, and Bmal 1/Clock

mRNA and protein complexes (yi, i¼ 1;…;7).

For the cell cycle, we used a system of three ordinary

differential equations based on MPF activity (zi, i¼ 8;…;10). This

model was inspired by a model by Novak et al. (2001) (The

original model is for fission yeast cell cycle, we adapt the

notations for mammalian cell cycle). The core of the Tyson and

R. El Cheikh et al. / Journal of Theoretical Biology 363 (2014) 318–331 319



Novak model is based on the activity of the cyclin-dependent

protein kinase complexes CyclinB/Cdk1 (also called MPF for

mitosis promoting factor), which are the engine needed to start

DNA replication and mitosis. The cell cycle is divided into three

phases: G1, S/G2, and M. Transitions from one phase to the other

depend on the concentration of MPF and its enemies. When the

activity of MPF is high, the cell progresses through the cell cycle;

when it is low, the cell blocks its progression. Each phase

transition of the cycle is regulated by specific enemies and

helpers, which decide whether MPF will win or lose. Transition

from G1 to S is governed by the antagonistic interaction between

MPF and its enemies APCG1 and CKI. In the G2/M transition, the

enemy of MPF is the tyrosine kinase WEE1, which can inactivate

Cdk1. At cell division, or M to G1 transition, MPF activity shuts

down to let the cell exit mitosis and enter the G1 phase. The

helper molecule for this transition is the APCM complex, which

promotes the degradation of CyclinB. In the model, three players

are included explicitly: MPF (z8), WEE1 (z9) and the inhibitor of

MPF (z10). We supposed that cells enter S/G2 phase when MPF

increases above a fixed threshold (θ1), enter mitosis (M phase)

when MPF activity rises above that of WEE1, and divide when

MPF reaches back a low threshold level (θ2), as it happens during

mitosis. Even though the cell cycle model presented here is not

quantitative due to the small number of kinetic parameters, it

still reproduces a correct qualitative behavior of the cell cycle

dynamics. Since we were interested in the effects of coupling the

circadian clock to the cell cycle through the protein WEE1, we

only considered the antagonistic relation of WEE1 and MPF to

avoid simulation artifacts, which may come from other interac-

tions that are not related to our study. Our model reproduces well

the evolution of MPF activity, which oscillates in an antagonistic

way with the activity of WEE1. Once MPF activity surpasses WEE1

activity, it activates its inhibitor (variable z10 in our model, which

can be associated with APCM in the Tyson and Novak model,

Fig. 1 in Novak et al., 2001) to help shutting down its own activity

and forces the cell to exit mitosis.

The full, 10-variable molecular system, reads

dy1
dt

¼
ν1bðy7þcÞ

k1bð1þ
y3
k1i

� �p

Þþy7þc

�k1dy1; ð1Þ

dy2
dt

¼ k2by
q
1�k2dy2�k2ty2þk3ty3; ð2Þ

dy3
dt

¼ k2ty2�k3ty3�k3dy3; ð3Þ

dy4
dt

¼
ν4by

r
3

k
r
4bþyr3

�k4dy4; ð4Þ

dy5
dt

¼ k5by4�k5dy5�k5ty5þk6ty6; ð5Þ

dy6
dt

¼ k5ty5�k6ty6�k6dy6þk7ay7�k6ay6; ð6Þ

dy7
dt

¼ k6ay6�k7ay7�k7dy7; ð7Þ

dz8
dt

¼
k0mpf k

n
1mpf

k
n
1mpf þzn8þszn10

ð1�z8Þ�dwee1z9z8; ð8Þ

Fig. 1. (A) Scheme of the circadian clock network: the activated heterodimer BMAL1/CLOCK (BMAL1⋆ , y7) activates Per 2 and Cry genes, which produce Per2/Cry mRNA (y1).

PER2 and CRY proteins are synthesized and bind in the cytosol to form a complex (y2) to be transported into the nucleus (y3). This complex inhibits the activity of BMAL1/CLOCK

complex, thus destroying its own source of transcription and closing the negative feedback loop. The nuclear complex PER2/CRY (y3) also activates Bmal 1 transcription, which

produces an increase in Bmal 1 mRNA (y4), and cytosolic protein concentration (y5). The BMAL1/CLOCK complex is then transported to the nucleus (y6), where it is activated. The

activated BMAL1/CLOCK complex (BMAL1⋆ , y7) restarts the activation process of Per2/Cry. (B) Schematic representation of the coupling between the cell cycle and the circadian

clock through the protein WEE1 (z9) (Matsuo et al., 2003). In the model, the cell cycle is divided into three successive phases G1, S/G2, M. Transitions from one phase to another

depend on the activity of MPF (z8). For cells to leave G1 and enter S/G2, MPF activity must exceed a fixed threshold θ1 ¼ 0:09. For cells to leave S/G2 and enter M phase, MPF

activity must exceed that of WEE1 (z9). In the M phase, MPF activates its inhibitor (z10), which represses MPF activity, letting it shut down and forcing the cell to exit mitosis.

Division occurs once MPF activity reaches a low threshold level θ2 ¼ 0:06. Coupling between the cell cycle and the circadian clock is achieved by the transcriptional activation of

Wee1, which induces WEE1 activity (z9) by the active BMAL1/CLOCK complex (y7).
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dz9
dt

¼
kactw

kactwþdw1
ðcwþCy7Þ

þ
kactw

kactwþdw1
�1

� �

kinactwz
n
8z9

k
n
1wee1þzn8

�dw2z9; ð9Þ

dz10
dt

¼ kactðz8�z10Þ: ð10Þ

The dynamical variables of the circadian clock are the following: y1
Per 2 or Cry mRNA and proteins; y2 PER2/CRY complex (cyto-

plasm); y3 PER2/CRY complex (nucleus); y4 Bmal 1 mRNA; y5
BMAL1 cytoplasmic protein; y6 BMAL1 nuclear protein; y7 Active

BMAL1. The dynamical variables of the cell cycle are the following:

z8 Active MPF; z9 Active WEE1; z10 Active MPF inhibitor.

For the cell population system, we used age-structured equa-

tions described in the next section. The molecular model entrains

the cell population system through cell cycle phase transition

rates, which depend on an average molecular state of the cells.

We first studied the influence of the coupling strength between

the circadian clock and the cell cycle. The coupling describes the

BMAL1/CLOCK-mediated rate of WEE1 activation (parameter C in

Eq. (9). Cell cycle durations reported in the literature range from

around 8 h for fast dividing lymphocytes to more than 60 h for slow

tumor cells (Milo et al., 2010). Thus, characteristic division times of

most mammalian cells coincide with the 24 h period of the day. To

see how cells could entrain to the circadian clock period, we chose a

cell cycle with an autonomous period (period without coupling to

the circadian clock) close, but not equal to 24 h. The cell cycle period

was set by scaling the time in the cell cycle equations to obtain the

right period. This means that all kinetic events (activation and

deactivation) are scaled uniformly. We simulated the influence of

the coupling on a cell cycle with an autonomous period of 18 h, for

different coupling strengths C ¼ 0;0:5;1;1:5. We observed that

when the coupling strength increases, the period of the cell cycle

increases (Fig. 2). This behavior was expected for two reasons:

(i) WEE1 blocks the cell cycle in G2 phase, and hence slows it down,

and (ii) the period of entrainment of the circadian clock is longer

than the autonomous period of the cell cycle.

We then asked whether coupling to the circadian clock always

slows down the cell cycle, or whether it could speed it up. To

answer this question, we looked at the influence of the coupling

strength on the cell cycle for autonomous cell cycle period ranging

from 8 to 60 h. Our simulations led to different modes of locking

between the circadian clock and the cell cycle. For certain combina-

tions of coupling strength and autonomous periods, the cell cycle

can entrain to the circadian clock with a rational period ratio,

referred to as n:m phase-locking or entrainment (Fig. 3A). For a n:m

locking, the cell divides n times each m days. These regions of the

coupling strength/autonomous periods are called Arnold tongues

(Pikovsky et al., 2001). Arnold tongues show that the cell cycle can
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Fig. 2. Cell cycle dynamics with coupling to the circadian clock. Autonomous period of the cell cycle is equal to 18 h in this example. Increasing the coupling strength tends to

regulate the cell cycle to 24 h. Coupling strength: (A) 0, (B) 0.5, (C) 1, (D) 1.5.
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phase-lock to a wide range of orders with m up to 5. 1:1 and 1:2

phase-locks have the widest range of entrainment, but other ratios

can be found for large coupling strengths, such as 2:1 and 3:2.

For a fixed coupling strength (C¼1.2), the graph of the domains

of entrainment leads to a devil's staircase (Fig. 3B). The devil's

staircase shows the frequencies (in number of cell cycles per day) of

the phase-locked cell cycles as a function of the autonomous period.

Phase-locked frequencies are distributed below (Fig. 3B, shaded

region) and above the autonomous frequencies (white region),

indicating that entrainment by the circadian clock can either slow

down, or speed up the cell cycle. The cell cycle is accelerated for

intervals of autonomous periods above 24 and 48 h. Therefore,

although in our model the circadian clock only acts as a break for

cell cycle progression, cells with autonomous periods above 24 or

48 h can cycle faster under circadian entrainment.

3. From molecular concentrations to population growth

The simulations so far show that the circadian clock could make

the cell cycle model run faster or slower, depending on its

autonomous period. How does this translate into a net growth rate

in a dividing cell population is unclear, and recent analytical results

have shown counter-intuitive effects of periodic forcing on growth

rates of proliferating cells. There is no systematic inequality when

comparing growth rates of a population under circadian control

versus a population with a constant, average control (Clairambault

et al., 2009, 2011), but it seems that populations under circadian

control that have a cell cycle period close to multiples of 24 h

proliferate faster (Bernard and Herzel, 2006).

We would expect the cell cycle period to be inversely propor-

tional to the growth rate, as in the devil's staircase (Fig. 3B). If this

were so, the knowledge of the clock-entrained period should be

enough to determine the cell population dynamics, without the

need of population models. To test that hypothesis, we set up a cell

population model entrained by the circadian clock. We used an

age-structured model that tracks the time elapsed by cells in each

cell cycle phase (Brikci et al., 2007, 2008; Doumic, 2007). We

divided the cell cycle model into three phases corresponding to

the three phases of the molecular model: G1, S/G2, and M phases.

The equations read

∂tniðt; xÞþ∂xniðt; xÞþK iðy; zÞniðt; xÞ ¼ 0; ð11Þ

niþ1ðt;0Þ ¼

Z 1

0

K iðy; zÞniðt; xÞ dx; ð12Þ

for i¼ 1;2, and

n1ðt;0Þ ¼ 2

Z 1

0

K3ðy; zÞn3ðt; xÞ dx; ð13Þ

The variable niðx; tÞ represents the density of cells in phase i.

The variable x represents the time spent by a cell in a phase. The

parameter Ki is the transition rate from phase i to the next phase.

The transition between phase i¼3 and phase i¼1 marks the cell

division, which accounts for the coefficient 2 in the boundary

condition for n1. Each transition rate Ki depends on an average

molecular state of the cells. The molecular state is given by the

coupled systems of ODEs for the circadian clock and the cell cycle

(Eqs. (1)–(10)). The functional form of the transition rates is a

Goldbeter–Koshland function:

Kðy; zÞ ¼
2yJi

z�yþzJaþyJiþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz�yþzJaþyJiÞ
2�4yJiðz�yÞ

q : ð14Þ

This function has been used to generate a switching behavior (Novak

et al., 2001). If the ratio y=z becomes larger than one, the function

switches to the upper state and the transition occurs. Ja and Ji are two

constants that determine the stiffness of the switch, if they tend to

zero, the switch tends to a step function. The transition rate from G1

(i¼1) to S/G2 (i¼2) is switched ON when the concentration of MPF

reaches a certain threshold value θ1 that instructs the cell to start

DNA synthesis (K1 ¼ Kðz8;θ1Þ). The G2 to M (i¼3) transition rate

depends on the balance between MPF and WEE1. The cell is blocked

in S/G2 and cannot transit to mitosis until MPF concentration exceeds

that of WEE1 (K2 ¼ Kðz8; z9Þ). The transition from M to G1, and cell

division, occurs when the activity of MPF goes back to baseline level

(K3 ¼ Kðθ3; z8Þ). The total cell number in each phase is given by

NiðtÞ ¼

Z 1

0

niðt; xÞ dx; ð15Þ

i¼ 1;…;3 and the total cell number is NðtÞ ¼∑3
i ¼ 1NiðtÞ.

To examine the effect of coupling on the growth rate, we made

simulations with andwithout coupling to the circadian clock. Based on
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Fig. 3. (A) Arnold tongues showing the regions of n:m entrainment for different coupling strengths and autonomous periods. Each region corresponds to an order of

entrainment. The order n:m means that cells divide n times every m days. Hence, the 1:1 phase-lock region contains all cell cycles that are entrained to one division per day,

or a cycle of 24 h, under an appropriate coupling strength. (B) The 24 h/T 0 vs T plot for a fixed coupling strength (C¼1.2) has a characteristic shape, the devil's staircase

(Pikovsky et al., 2001). T 0 is the period after entrainment by the circadian clock and T is the autonomous period of the cell cycle.
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the Arnold tongues for C¼1.2, the autonomous period of the cell cycle

was set to 20 h, inside the 1:1 phase-lock region (Fig. 3A). When

coupled to the circadian clock, the activity of MPF and WEE1 is well

entrained and follows a rhythm of 24 h (Fig. 4A and B). Driven by the

new rhythm of MPF and WEE1, the fraction of dividing cells follow a

rhythm of 24 h (Fig. 4C). Even though the coupling slows down the

cell cycle, the population growth rate stays practically unchanged

(Fig. 4D). This can be justified by the fact that not all cells divide at

each cycle. Indeed, there was 0.38 cell division per cell per cycle with

coupling, while there was 0.32 cell division per cell per cycle without

coupling. Therefore, a longer cell cycle can be compensated by a larger

number of division at each cycle, resulting in a higher growth rate than

would be inferred from the cell cycle duration only.

To gain more insight on this non-intuitive result, we examined

the impact of the coupling strength on the growth rate, for

autonomous cell cycle periods ranging from 8 to 60 h. In the

absence of circadian coupling, the growth rate decreases almost

linearly with the cell cycle period (Fig. 5A, solid line). In the

presence of circadian coupling, the growth rate is decreased for

most of the autonomous cell cycle periods (Fig. 5A, non-solid lines).

A notable exception is the interval between 20 h and 31 h, where

the growth rate is elevated compared to the growth rate without

coupling. This interval corresponds to the range of 1:1 phase-lock

(Fig. 3). For the larger coupling strengths (CZ1:2), the growth rate

is almost constant on this interval, as is to be expected from a

synchronized population. The elevated growth rate in phase-locked

populations is not systematic. For autonomous cell cycle periods

above 31 h, which include the 1:2 phase-lock region, the growth

rate is almost constant. In this phase-lock region, the cell cycle is

entrained on a 48 h period, and the growth rate is close to the

autonomous growth rate at 48 h. These results are in agreement

with previous theoretical studies made with population models

(Clairambault et al., 2009, 2011; Bernard and Herzel, 2006), which

showed that under circadian forcing, the growth rate was elevated

near 24 h. Taken together, these results show that the growth rate is

related to the entrainment of the molecular cell cycle, but that it is

not possible to compare the growth rates with or without coupling.

To test the robustness and genericity of these results, we

performed the same simulations on the effect of the coupling

strength with two other published models for the circadian clock,

one by Mirsky et al. (2009), and the other by Leloup and Goldbeter

(2004). For the Leloup and Goldbeter (2004) model, we used

parameter set 4. Both models showed the same qualitative result

for the impact of the coupling strength on the growth rate. The

coupling to the circadian clock increases the growth rate for periods

around 24 h, over 48 h and decreases it elsewhere (Fig. 5B and C).
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Fig. 4. Effects of coupling the circadian clock to the cell cycle with autonomous period of 20 h. (A) Without coupling (C¼0): MPF activity follows a 20-h autonomous cycle.

BMAL1/CLOCK period is equal to 24 h. (B) With coupling (C¼1.2): the cell cycle period is entrained to 24 h. (C) The population in M phase is entrained to 24 h, hence cells

have a division cycle of 24 h instead of 20 h. (D) With coupling, the growth rate does not decrease even though the cell cycle period becomes longer.
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4. Circadian clock and cancer

To investigate the role of the circadian clock in tumor devel-

opment, we looked at the effect of mutations or deletions of

circadian genes on the growth rate. Different types of mutations

were examined, namely Per 2, Bmal 1, Cry 2 mutations and Per 2/

Cry 2 double mutations. Per2 and Bmal1 mutations abolished

circadian clock rhythmicity, while Cry2 and Per2/Cry2 mutations

maintained rhythmicity, in agreement with experimental data (Table

1 and reference Becker-Weimann et al., 2004, details on simulating

mutants are below). Two cases were studied, one considering an

autonomous period of the cycle equal to 28 h and one equal to

20 h. By choosing an appropriate coupling strength (C¼1.2 for

example) to the circadian clock, these two cycles could be

entrained to a 1:1 cycle (Fig. 3). We looked at changes that

occurred after simulating a mutation in the circadian clock. Finally,

to have a more global view, we investigated the effect of mutations

for autonomous periods ranging from 8 to 60 h.

We studied the effect of mutating Per 2 gene by considering

that PER2 is a main actor in the negative feedback loop and

simulated Per 2 mutation by decreasing the rate of PER2/CRY

complex formation (we set k2b ¼ 0:01). Simulations showed that

Per 2 mutants have a slower division cycle (Fig. 6A and B, dash-

dotted lines). This mutation tends to increase the growth rate in

the case of 20 h autonomous cell cycle and keeps it almost equal to

that of wild type cells for autonomous period of 28 h (Table 2).

Even though the cell cycle becomes much slower in mutants, in the

case of 28 h autonomous period, 1.05 cell divisions occur during each

56 h-cycle, compared to 0.4 divisions per cycle in wild type cells. This

means that for Per2 mutants, some cells must divide more than once

during the cycle and explains why the mutants proliferate at the same

rate as the wild-type. We also supposed that PER2 activates Bmal

1 transcription and simulated Per 2 mutation by decreasing Bmal

1 transcription rate (we set ν4b ¼ 1:5). Similarly, we obtained that

Per 2 mutants have a slower division cycle and an increased

growth rate (Fig. 7, dot-dashed lines).
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Fig. 5. Effects of coupling on the growth rate. (A) Present model. (B and C) Effects of coupling on the growth rate with other models chosen from the literature for the

circadian clock: Mirsky et al. (2009) (B), and Leloup and Goldbeter (2004) (C).

Table 1

Effects of mutations on the period of the circadian clock: comparison between

experimental data and simulations.

Mutation Circadian clock period

Experimental Simulation

Per 2 Arrhythmic (Mirsky et al., 2009) Arrhythmic

Bmal 1 Arrhythmic (Mirsky et al., 2009) Arrhythmic

Cry 2 Rhythmic, long period (Mirsky et al., 2009) Rhythmic, T¼24.2 h

Per 2/Cry 2 Rhythmic (Oster et al., 2002) Rhythmic, T¼22.7 h
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We simulated Bmal1 knockout by setting the transcription rate

of Bmal1 ν4b equal to 0. Simulations showed that this mutation

tends to slow the cell division cycle for both 20 and 28 h

autonomous period (Fig. 6A and B, dotted lines). We observed

that this mutation decreases the growth rate for autonomous

periods of 28 h and increases it for autonomous periods of 20 h

(Table 2).

We simulated deficient Cry 2 mutants by decreasing the

strength of the negative feedback loop (the constant k1i was

increased to k1i ¼ 0:8). Cry 2 mutation preserves the periods of

mitotic divisions (Fig. 6A and B, gray-dashed lines), but decreases

the growth rate for both 20 and 28 h-autonomous the cell cycle

periods (Table 2).

We simulated Per 2/Cry 2 double mutants by assuming that Per

2 mutation decreases the rate of PER2/CRY complex formation,

and that Cry 2 mutation decreases the strength of the negative

feedback loop (we set k1i ¼ 0:8 and k2b ¼ 0:01). Our simulations

showed that these double mutants have recovered a mitotic

division cycle similar to that of wild type. They also have the same

growth rate (Fig. 6A and B, dashed lines; Table 2).

Finally, we compared the growth rates for mutants and wild type

cells for autonomous cell cycle periods ranging between 8 and 60 h.

Per 2 mutation generally increases the growth rate. Cry 2 mutation

decreases it, and Bmal 1 mutation increases it for autonomous

periods less than 21 h and decreases it elsewhere. Our simulations

also predict that Per 2/Cry 2 double mutants recover a normal

proliferation rate and have approximately the same growth rate for

all autonomous periods of the cell cycle (Fig. 7).

We tested the robustness and the genericity of these results by

performing the same simulations on the effect of circadian genes

mutations with the models proposed by Mirsky et al. (2009) and

Leloup and Goldbeter (2004). Results given by the model proposed

by Mirsky et al. (2009) were consistent with current model.

Namely, Per 2 mutation increases the growth rate, Cry 1 decreases

it, Bmal 1 mutation increases it for autonomous periods less than

22 h and decreases it elsewhere. Simulations on Per and Cry

mutations done with the model proposed by Leloup and

Goldbeter (2004) did not show a difference in growth rate

compared to the wild type (Fig. 8). These results may be explained

by the fact that this model is relatively robust to parameter

variations. For the parameter set 4 in Leloup and Goldbeter

(2004), the circadian clock was most sensitive to parameters

related to Bmal1, for which the effect on the population growth

rate was similar to the current model and the model by Mirsky

et al. (2009).

Taken together, these results predict a differential effect of

certain clock gene mutations, depending on the autonomous cell
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Fig. 6. Effects of mutating circadian genes on the fraction of cells entering mitosis. (A) Autonomous period of the cell cycle is equal to 28 h. (B) Autonomous period of the cell

cycle is equal to 20 h.

Table 2

Effects of mutations on the period of the M phase (column period) and the growth

rate (column g.r.).

Mutation Autonomous period 28 h Autonomous period 20 h

Period (h) g.r. (d�1) Period (h) g.r. (d�1)

Wild-type 28.0 0.3389 20.0 0.3282

Per 2 56.4 0.3364 38.4 0.3954

Bmal 1 60.0 0.2938 42.7 0.3558

Cry 2 24.2 0.1895 24.2 0.0986

Per 2/Cry 2 22.6 0.3348 22.7 0.3289

0 10 20 30 40 50 60
−0.1

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Autonomous period of the cell cycle (hours)

G
ro

w
th

 r
a

te

WT

mPer2 case1

mPer2 case2

mBmal1

mCry2

mPer2/mCry2

Fig. 7. Effects of mutating circadian genes on the growth rate. Mutation of Per 2,

assuming its role in the negative feedback loop (dot-dashed line), decreases the

growth rate for periods ranging from 27 to 31 h, for periods larger than 40 h and

increases it elsewhere. Mutation of Per 2 assuming its positive regulation of Bmal 1

(gray dot-dashed line) increases the growth rate almost everywhere. Bmal 1 knockout

(dotted line) increases the growth rate for periods shorter than 21 h and decreases it

elsewhere. Cry 2 mutation (gray dashed line) decreases the growth rate everywhere.

Per 2/Cry 2 double mutation (dashed line) maintains a normal proliferation.
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cycle period of the cell population. For instance, Per 2 mutant

populations grow faster when the autonomous period is shorter

than 40 h, but can also grow more slowly if their autonomous

period is longer. Other mutations, such as Cry 2, systematically

slow down the population growth rate.

These results can be explained by looking at the impact of

mutations on the MPF/WEE1 dynamics, which dictates the rhythm

for cells to enter into mitosis and then divide. Mutation-induced

change in BMAL1/CLOCK dynamics, either its period or concentra-

tion, directly influences WEE1 activity and the cell cycle dynamics.

For example, in case of a 28 h autonomous period, even though the

cell cycle becomes longer for Per 2 mutants, the growth rate does

not change. Per 2 mutation produces an arrhythmic clock with low

BMAL1/CLOCK concentration (Fig. A1B, dash-dotted line). A com-

parison of MPF/WEE1 dynamics between mutants and wild type

cells shows how the transition rates for the M phase differ

(Fig. A2). For Per 2 mutants, the transition rate is at a high level

for a longer time. This means that even though the cell cycle is

longer, much more cells will have the time to enter M phase and

divide. This explains why growth rates are similar in Per 2 mutants,

even though the cell cycle period is longer. For Cry 2 mutants,

growth rate decreases. Cry 2 mutation leads to higher rates of

BMAL1/CLOCK, which in turn increases WEE1 activity (Fig. A1B,

gray-dashed line). Increasing WEE1 activity will decrease the

activity of MPF (Fig. A1A, gray-dashed line), which means that

cells are blocked in G2 phase for a longer time and are prevented

from transiting into mitosis. A comparison of the transition rate

between wild type and Cry 2 mutants shows that transition rate

for wild type cells stays on a high level for a longer time than for

mutant cells (Fig. A3).

5. Discussion and conclusion

5.1. Mathematical model for the regulation of the cell cycle by the

circadian clock

We developed a combined molecular/population mathematical

model to study how the coupling of the circadian clock to the cell

cycle, through the protein WEE1, affects a proliferating cell population.

The model has the novelty of combining both intracellular and

population levels. We investigated the influence of coupling on the

period of the molecular cell cycle and on the growth rate of the

population. The molecular model displays wide ranges of entrainment

to the circadian clock, where there is a n:m ratio in the number of cell

cycles and the number of circadian oscillations. We found that

molecular information about the cell cycle was not always sufficient

to predict how the growth rate in a dividing cell population is affected.

The combined molecular/population could predict an increase in

growth rate in Per 2 mutants that could not be explained by the

molecular model alone. We used the combined model to look at the

influence of circadian clock gene mutations on the population growth

rate. We found a differential effect of clock gene mutations, depending

on the autonomous cell cycle period of the cell population.

5.2. Entraining the cell cycle by the circadian clock

We examined the influence of coupling the cell cycle to

the circadian clock on the number of cell cycle divisions per day.

We showed that for certain combinations of coupling strength and

autonomous periods, the cell cycle can entrain to the circadian

clock with a rational period ratio, referred to as n:m phase locking

or entrainment. These regions in the coupling strength/autono-

mous periods space are the Arnold tongues already introduced

(Fig. 3A). Gérard and colleagues characterized domains of entrain-

ment to 24 and 48 h periods (Gérard and Goldbeter, 2012), which

correspond to 1:1 and 1:2 phase-locking, respectively. While their

model and the current model both predict wide ranges of 1:1

and 1:2 entrainment, there are small differences. In the current

model, the 1:2 entrainment region is larger than the 1:1, while the

converse is true for the model by Gérard and Goldbeter (2012)

(their Fig. 4B, our Fig. 3A). In the current model, 1:2 entrainment

is observed at large coupling strength in an autonomous period

range where 2:3 occurs (around autonomous periods of 36 h).

It looks like that in the Gérard and Goldbeter model, the 1:1

entrainment takes over for larger coupling strengths. Recently,

Feillet et al. used multispectral imaging of single live cells

and mathematical modeling to investigate how the temporal
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organization of cell division at the single cell level produces daily

rhythms at the population level (Feillet et al., 2014). They demon-

strated that there are multiple coexisting robust oscillatory

dynamical states of the coupled clock and cell cycle in proliferating

mammalian cells, namely 1:1, 5:4 and 3:2 phase locking states. We

have characterized a wide range of entrainment modes, including
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high order phase-locking (3:5, 4:5, 5:4, 5:3), which is consistent

with the experimental data of Feillet et al. and which may partly

explain the observed quantized cell cycle times discussed pre-

viously (Zamborszky et al., 2007). The devil's staircase provides a

way to predict the frequency of cell divisions as a function of the

autonomous cell cycle period. Although the circadian clock acts as

a break by activating the inhibitor WEE1, for certain autonomous

periods, the cell cycle frequency can still be higher with the clock

than without (Fig. 3B).

5.3. Modulation of population growth rate by the clock

We investigated the influence of coupling on the growth rate

for autonomous periods of the cell cycle varying from 8 to 60 h.

Clairambault and colleagues (2011) showed, using population

models, that there is no general inequality between growth rates

with and without coupling to the circadian clock. Bernard and

Herzel (2006) found that cells under circadian control that have an

interdivision time close to multiples of 24 h proliferate faster.

Here, we showed that coupling increases the growth rate for

autonomous periods of the cell cycle around 24 h and above 48 h.

For most other periods, the growth rate is decreased. These results

could not have been obtained based only on the molecular model,

which predicted a smaller growth rate for autonomous periods

just below 24 h.

5.4. Effect of mutating clock genes on the growth rate

We investigated the effect of single or double circadian clock

gene mutations on a cell population growth rate. Fu and collea-

gues showed that loss of Per 2 functions increased tumor devel-

opment (Fu et al., 2002). The roles of PER2 in the circadian clock

mechanism have been unclear. It is usually considered as a main

actor in the negative feedback loop, repressing the activity of

BMAL1/CLOCK through the complex PER2/CRY. But some studies

also suggest that PER2 activates Bmal 1 transcription in an indirect

manner (Shearman et al., 2000; Yu et al., 2002; Akashi et al., 2014).

We first examined Per 2 mutation by considering that PER2 plays a

repressive role in the negative feedback loop. Our simulations are

in agreement with experimental results and show that

Per 2 mutation increases the growth rate for a wide range

of autonomous periods of the cell cycle. When a positive action

of PER2 on Bmal 1 was assumed, we also obtained an increased

growth rate for this mutation. We examined Cry 2 mutation. We

showed that Cry 2 mutation decreases the growth rate for almost

all periods of the cell cycle. This may explain the experimental

results obtained by Matsuo and colleagues, who showed that the

weight of regenerating liver in Cry deficient mice was significantly

lower than in wild type mice (Matsuo et al., 2003).

We examined Per 2/Cry 2 double mutation. We showed that Per

2/Cry 2 double mutants recover normal proliferation rates and

have similar growth rates for all autonomous periods of the cell

cycle. Oster et al. showed that inactivation of Cry 2 gene in Per

2 mutant mice restored circadian rhythmicity as well as normal

clock gene expression patterns (Oster et al., 2002). They showed

that both the period and the amplitude of Bmal 1 (also of Per 1 and

Cry 1) expressions in Per 2/Cry 2 double mutant animals were

comparable to those of wild types. Hence, if both period and

amplitude of Bmal 1 are comparable to those of wild type, WEE1

profile will not be changed for these double mutants, preserving

normal dynamics for the cell cycle.

We also explored Cry 1 mutation and Cry 1/Cry 2 double

mutation, based on the assumption that CRY1 plays a more

important role in the negative feedback loop (Langmesser et al.,

2008). In the current model, these mutations completely abolished

cell proliferation (data not shown). There is no experimental

evidence that disruption of the circadian clock can totally prevent

cell cycle progression, and it is likely that the cell cycle relies on

factors not included in the current model to proceed through

division.

5.5. Robustness of the results

To test the robustness of our results, we performed our main

simulations with two other models for the circadian clock (Mirsky

et al., 2009; Leloup and Goldbeter, 2004). We simulated the effect

of coupling and circadian genes mutation on the growth rate. Both

models show the same qualitative result that we obtain for the

impact of the coupling on the growth rate. Results on mutating

circadian genes obtained with the model proposed by Mirsky et al.

were more consistent with our results. The model proposed by

Leloup et al. did not show a difference between mutated and wild

type cells. This may be explained by the fact that the model

proposed by Mirsky et al. was designed to study the effects of

mutating circadian genes, whereas the model proposed by Leloup

et al. was designed to generate sustained oscillations, which

makes it more robust about parameter variation.
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Fig. A3. (A) Cry 2 mutants. (B) Wild type cells.
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The current circadian clock model (Becker-Weimann et al., 2004)

shows limitations in reproducing experimental data that are inherent

to models with simplifying assumptions and distinct molecular species

lumped together. To check how the simplifying assumptions affect the

results,we made a detailed comparison between the current model

and the model by Mirsky et al. (2009) on the effects of circadian gene

mutations. What it is critical in our model is the effect specific

mutations on the activity of BMAL1/CLOCK (period and concentra-

tion),which regulates directly WEE1 and the cell cycle. Hence,we

simulated the effects of circadian gene mutations on BMAL1/CLOCK

using Mirsky et al. model (in the same way the authors did it in the

original study,Table S3 in Mirsky et al., 2009) and compared the results

with those obtained by the current model. Both models showed

similar effects for Bmal 1 and Per 2 mutations. Bmal 1 mutation results

in an arrhythmic clock with zero concentration of BMAL1/CLOCK

and Per 2 mutation results in an arrhythmic clock with a low

BMAL1/CLOCK concentration (Fig. A1B and C, and Tables A2 and A3).

Consequently, Bmal 1 and Per 2 mutations have similar effects on the

growth rates (Figs. 7 and 8A, dotted and dash-dotted lines).

Cry 2 mutation results in a rhythmic clock with a longer period for

both models. However, the period obtained with the model of Mirsky

et al. is longer than with the current model (T¼32.1 h vs T¼24.2 h,

Table A2). The effect on BMAL1/CLOCK concentration is different: the

Mirsky et al. model showed a lower concentration compared to wild

type,while the current model showed a higher concentration (Fig. A1B

and C, and Table A3). This results in different growth rates for the two

models (Figs. 7 and 8A, gray dashed lines). Per 2/Cry 2 double mutation

results in a rhythmic clock with the current model (T¼22.7 h),with

a concentration similar to wild type,while it results in an arrhythmic

clock using the model of Mirsky et al. (Fig. A1B and C, and

Tables A2, A3). Finally, both models gave an arrhythmic clock for Cry

1 mutation, with higher BMAL1/CLOCK concentration compared to

wild type (Fig. A1B and C, gray solid line).

The main differences between the two models are the effects of

Cry 2 and Per 2/Cry 2 mutations. Mirsky et al. predict a longer period

for Cry 2 mutants, which may be more realistic in the case of lung

explants and fibroblasts. The model by Mirsky et al. predicts an

arrhythmic clock for Per 2/Cry 2 double mutation, in contrast to the

current model and experiments showing normal rhythmicity for

these double mutants (Oster et al., 2002). The model by Forger and

Peskin also predicts a rhythmic clock for this double mutation

(Forger and Peskin, 2003). The main limitation of the current model

is the way that Cry 1 mutation and Cry 1/Cry 2 double mutation are

approached. Both are simulated in the same way, by decreasing

further the strength of the negative feedback loop. This leads to an

arrhythmic clock with high constitutive BMAL1/CLOCK concentra-

tion inhibiting cell proliferation, which cannot be supported by

experimental data (data not shown). Results given on the growth

rate by the model of Mirsky et al. on Cry 1 mutation seems to be

more coherent. Cry 1 mutants have a decreased growth rate

compared to wild types for a wide interval of autonomous periods

of the cell cycle (Fig. 8A, gray solid line).

5.6. Conclusion

Combining a molecular model to a population model offers

new insight on the influence of the circadian clock on the growth

of a cell population. Disruption of the circadian clock can increase

or decrease the growth rate, as well as the period of mitotic

divisions, depending on which clock gene is affected. In some

cases, even though the cell cycle slows down, the growth rate can

still increase, making the combination of a molecular model

and population model unavoidable to study the effect of

circadian clock disruption. This can have beneficial impacts on

chronotherapy, which aims to develop new strategies in cancer

therapies by a better understanding of the circadian clock and its

impact on cell proliferation.

The combined model presented in this study is the first step in

developing a fully multiscale model for the interaction between

the circadian clock and the cell cycle. The multiscale model

describes a cell population p structured with a molecular content

(y,z) describing the circadian clock and the cell cycle. Heteroge-

neity among cells can be fully taken into account in a multiscale

model, but at the cost of a high-dimensional phase space (here

10D). Even though it has limitations, the current molecular model

is simple enough to be amenable to a multiscale description,

which, in our view, is essential.

Several studies have shown that the tolerance and the toxicity

of drugs vary according to their administration time (Focan, 1995;

Hrushesky and Bjarnason, 1993; Lévi, 2000). Clinical studies

showed that compared to standard chemotherapies, chronomo-

dulated chemotherapies, which aim to deliver drugs at an optimal

time of the day, could be more efficient and better tolerated by

patients (Focan et al., 1999, 2000). In a recent work, Bernard et al.

(2010) used a simple cell population model under chronomodu-

lated treatment and developed a quantitative method to identify

biological parameters important for the successful design of a

chronotherapy strategy. They found that optimal times depend not

only on the circadian status but also on the cell cycle kinetics of

the tumor. They suggested that the length of the cell cycle is

important to determine the best treatment times and intervals. For

fast growing tumors, with short S phase, administering a drug that

targets the S phase of the cell cycle at 28.8 h intervals may be safer

than treating at 24 h intervals, and that for slow growing tumors,

with a long S phase, treating at 24 h intervals would be the best

option. The circadian clock is often disrupted in advanced stage

cancers, perhaps because this gives a competitive advantage to

growing tumor cells (Savvidis and Koutsilieris, 2012). The current

model could be useful to predict how the cell cycle is modified

following circadian clock disruption. Combined with the method

proposed by Bernard et al. (2010), this may be of great importance

to determine the right time for drug delivery. By taking into

account complex interactions between the cell cycle, the circadian

clock and the treatment, the combined molecular/population

model can be a helpful tool for chronotherapy.
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Appendix A. Supplementary figures and tables

Effects of mutating circadian genes on MPF and BMAL1/CLOCK

activities and on transition rates are given in Figure A1 and Figure A2

respectively. The parameters description is given in Table A1, the

effects of mutations on circadian clock period and BMAL1/CLOCK

concentration are given in Tables A2 and A3.
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Table A1

Parameters description.

Parameters Values Units Description

Circadian clock

c 0.01 nM Concentration of constitutive activator

p 8 Unit less Hill coefficient

ν1b 9 nM h�1 Maximal rate of Per2/Cry transcription

k1b 1 nM Michaelis constant of Per2/Cry transcription

k1d 0.12 h�1 Degradation rate of Per2/Cry mRNA

k1i 0.56 nM Inhibition constant of Per2/Cry transcription

k2b 0.3 nM�1 h�1 Formation rate of cytoplasmic PER2/CRY

complex

k2d 0.05 h�1 Degradation rate of cytoplasmic PER2/CRY

complex

k2t 0.24 h�1 Nuclear import rate of PER2/CRY complex

k3t 0.02 h�1 Nuclear export rate of PER2/CRY complex

q 2 Unit less Number of PER2/CRY2 complex forming

subunits

k3d 0.12 h�1 Degradation rate of nuclear PER2/CRY

complex

ν4b 3.6 nM�1 h�1 Maximal rate of Bmal1 transcription

r 3 Unit less Hill coefficient of Bmal1 transcription

k4b 2.16 nM Michaelis constant of Bmal1 transcription

k4d 0.75 h�1 Degradation rate

k5b 0.24 h�1 Translation rate of BMAL1

k5d 0.06 h�1 Degradation rate of BMAL1

k5t 0.45 h�1 Nuclear import rate of BMAL1

k6t 0.06 h�1 Nuclear export rate of BMAL1

k6d 0.12 h�1 Degradation rate of nuclear BMAL1

k6a 0.09 h�1 Activation rate of nuclear BMAL1

k7a 0.003 h�1
Deactivation rate of nuclear BMAL1⋆

k7d 0.09 h�1
Degradation rate of nuclear BMAL1⋆

Cell cycle

k0mpf 10 h�1 Activation rate of MPF

k1mpf 0.05 nM Activation rate of MPF

s 20 nM Inhibition constant of MPF

dwee 1 5 h�1 Degradation rate

n 2 Unit less Hill coefficient

kactw 1 h�1 Activation rate of WEE1 due to BMAL1/

CLOCK

dw 1 1 nM Michaelis constant

cw 0.5 nM Concentration of constant activator

C 0 nM Coupling strength to the circadian clock

kinactw 200 h�1 Deactivation rate

k1wee1 0.5 nM Michaelis constant

dw 2 1 h�1 Degradation rate

kact 0.01 h�1 Activation rate of MPF inhibitor

Population model

θ1 0.09 nM Threshold value for G1 to S/G2 transition

θ2 0.06 nM Threshold value for mitotic division (M to

G1)

Ja 0.1 Unit less Stiffness of the switch

Ji 0.1 Unit less Stiffness of the switch

Table A2

Effects of mutations on the period of the circadian clock: comparison between the

current model (Becker-Weimann et al., 2004) and the model of Mirsky et al. (2009).

Mutation Circadian clock rhythmicity

Current Mirsky et al.

Per 2 Arrhythmic Arrhythmic

Bmal 1 Arrhythmic Arrhythmic

Cry 2 Rhythmic, T¼24.2 h Rhythmic, T¼32.1 h

Per 2/Cry 2 Rhythmic, T¼22.7 h Arrhythmic

Cry 1 Arrhythmic Arrhythmic

Table A3

Effects of mutations on the BMAL1/CLOCK concentration compared to wild type:

comparison between the current model (Becker-Weimann et al., 2004) and the

model of Mirsky et al. (2009).

Mutation BMAL1/CLOCK

Current Mirsky et al.

Per 2 Lower Lower

Bmal 1 Lower Lower

Cry 2 Higher Lower

Per 2/Cry 2 Similar Lower

Cry 1 Higher Higher
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Approches équations différentielles structurées et multiéchelles
pour la dynamique de populations cellulaires chez l’humain

Résumé: Tout d’abord, nous étudions la stabilité d’une boucle de rétroaction négative générique avec
retard, qui est sensible aux instabilités et aux oscillations. La boucle de rétroaction négative peut décrire
aussi bien des oscillateurs génétiques que la régulation négative d’une population de cellules. Compren-
dre ce qui affecte la stabilité (ou l’instabilité) est donc pertinent pour les deux échelles de modélisation
(intracellulaire et population de cellule) d’intérêt ici. Ensuite, nous montrons comment l’interaction
(communication cellule-cellule par un facteur diffusible) peut transformer une collection d’oscillateurs
mous en une horloge robuste et résistante au bruit. Des données expérimentales soutiennent cette in-
terprétation. Par la suite, nous évaluons le potentiel de renouvellement des tissus humains à long-terme.
Nous discutons comment estimer l’étendue du renouvellement cellulaire dans le muscle cardiaque. Nous
avons trouvé que le cœur humain avait une capacité limitée de se regénérer. Des dizaines d’essais clin-
iques basés sur des traitement d’accidents cardiaques par cellules souches sont en cours; nos résultats
montrent que ces thérapies sont sûrement sur-estimées. Nous étudions aussi un modèle récent pour
l’interaction tumeur-immune, et le rôle du système immunitaire dans la rémission à long terme de la
leucémiemyéloïde chronique. Enfin, nous discutons des approches intégratives etmultiéchelles (molécu-
laire/population). Dans une première étude, nous utilisons un modèle moléculaire du cycle cellulaire
pour explorer comment la division cellulaire est modulée par l’horloge circadienne. Dans une deuxième
étude, nous caractérisons les effets de la dérégulation de l’horloge circadienne sur la prolifération cellu-
laire.

Mots clés: Modèles de naissance-mort; Horloge circadienne; Synchronisation; Équations différentielles
à retard; Équations de transport; datation 14C; renouvellement cellulaire

Structured differential equations andmultiscale approaches for human cell pop-
ulation dynamics

Abstract: First, we study the stability of a generic negative feedback loop with a delay, which is known
to be prone to instabilities and oscillations. The negative feedback loop can describe equally genetic
oscillators and nonlinear feedback regulation of cell population numbers. Understanding what affects
stability (or instability) is thus relevant for the two biological scales (intracellular and cell population) of
interest here. Then, we show how interaction (cell-cell communication though a diffusible factor) can
transform a collection of sloppy oscillators into a robust, noise-resistant clock. There is evidence that the
clock neurons follow this design principle. We then look at the long-term renewal capacity of tissues in
human. We discuss how we can estimate the extent of cell renewal in the human hippocampus or the
heart ventricle. The humanheart has a limited capacity to regenerate after a stroke or during chronic heart
failure, and tens of clinical trials involving stem cells injection in the heart are being conducted without
clear understanding of fate of these cells after transplant. We also discuss a recent model for the tumor-
immune interaction, and the role of the immune system in long-term remission in chronic myelogenous
leukemia. Finally, we discuss integrative approaches for multiscale (molecular/population) models. In a
first study, we looked at how cell division during liver regeneration is gated by the circadian clock based
on a molecular model of the cell cycle. In a second study, we looked at the effect of a disruption of the
circadian clock of cell proliferation.

Keywords: Birth-and-death models; Circadian clock; Synchronization; Delay differential equations;
Transport equations; 14C dating; cell renewal

Image en couverture : Solutions quasi-périodiques d’oscillateurs couplés. Crédit image : S Bernard.
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