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Abstract

In this work, we propose a method to efficiently capture an arbitrary number of
fluid/solid or fluid/fluid interfaces, in a level-set framework. This technique, borrowed
from image analysis, is introduced in the context of the interaction of several bodies im-
mersed in a fluid.
A configuration of the bodies in the fluid/structure domain is described by three label
maps providing the first and second neighbours, and their associated distance functions.
Only one level set function captures the union of all interfaces and is transported with
the fluid velocity or with a global velocity field which takes into account the velocity of
each structure. A multi-label fast marching method is then performed in a narrow-band
around the interfaces allowing to update the label and distance functions.

Within this framework, the numerical treatment of contacts between the structures is
achieved by a short-range repulsive force depending on the distance between the closest
bodies.

The method is validated through the simulation of a dense suspension of rigid bodies
immersed in an incompressible fluid. A global penalization model uses the label maps to
follow the solid bodies altogether without a separate computation of each body velocity.
Consequently, the method shows its efficiency when dealing with a large number of rigid
bodies.
We also investigate the numerical simulation of vesicle suspensions for which a computa-
tion of elastic and bending forces on membranes is required. In the present model, only
one elastic and bending force is computed for the whole set of membranes according to
the level set function and the label maps.

Keywords: fluid/structure interaction, level set method, multiple bodies, collision
model
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Résumé

Dans ce travail, nous nous sommes intéressés à la simulation numérique de suspensions
denses d’objets immergés dans un fluide. En s’inspirant d’une méthode de segmentation
d’image, nous avons développé une méthode efficace de capture d’interface permettant
d’une part de localiser les structures immergées et d’autre part de gérer les contacts
numériques entre les structures.
Le domaine fluide/structure est représenté à l’aide de trois fonctions labels et deux fonc-
tions distances qui permettent de localiser chaque structure et son plus proche voisin. Les
interfaces sont capturées par une seule fonction level set, celle-ci est ensuite transportée
par la vitesse du fluide ou par la vitesse de chaque structure. Un algorithme de multi-
label fast marching permet de réinitialiser à chaque pas de temps les fonctions labels et
distances dans un périmètre proche des interfaces. La gestion des contacts numériques
est effectuée grâce à une force répulsive à courte portée prenant en compte l’interaction
entre les objets les plus proches.
Dans un premier temps, la méthode est appliquée à l’évolution de solides rigides immergés.
Un modèle de pénalisation global couplé aux fonctions labels permet de calculer en une
seule fois l’ensemble des vitesses des structures rigides. Les résultats obtenus montrent
l’efficacité de la méthode à gérer un grand nombre de solides.
Nous avons ensuite appliqué la méthode à des suspensions de vésicules immergées. Ce
type de simulation requiert le calcul des forces élastiques et de courbures exercées sur
les membranes. Grâce au modèle proposé, seulement une force élastique et une force de
courbure sont calculées pour l’ensemble des membranes à l’aide de la fonction level set et
des fonctions labels.

Mots clés: interaction fluide/structure, méthode level set, suspensions d’objets, mod-
èle de collision
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Notations

Physical and geometrical quantities

• d,2 ≤ d ≤ 3: the space dimension

• Id: the identity matrix

• Ω: the fluid/structure domain

• ∂Ω: the boundary of Ω

• Ωi: the region occupied by the ith structure

• Γi: the boundary of Ωi

• U : Eulerian velocity field

• P : Pressure field

• ρ: density

• µ: dynamical viscosity

• D(U): the deformation tensor

• σ, the Cauchy Stress tensor (σ = µ(∇U+∇Ut

2
)− P Id)

• g: gravity

• Re: the Reynolds number

• Hε: smooth Heaviside function of thickness 2ε

• ζε: smooth delta function of thickness 2ε

Numerical parameters

• ∆x, ∆y: the horizontal and vertical space step

• ∆t: the time step

• ε: the half interface thickness

• λ: the penalization parameter
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Introduction

Suspensions of particles in fluids can be found in many problems encountered in real
life. Typical examples of such problems are the motion of living cells in blood vessels
and the motion of fish swimming or dust particles. This type of flow exhibits very com-
plex behavior, in the case of blood vessels living cells can deform and aggregate to form
rouleaus, for fish swimming collective effects are observed (school of fish) even in the case
of many rigid particles the behavior and the motion of particles is not fully understood.
In fact, from chemistry, biology, physics to mathematics a large amount of research has
been developed to understand these complex flows.

From a mathematical and numerical point of a view, the first challenge for the sim-
ulation of these complex flow stems from the coupling of the fluid and the structures.
Indeed, the fluid is classically described in an Eulerian manner that is by the velocity of
the fluid at all points of the domain and at all times whereas to describe the evolution of
the structure the Lagrangian formulation is most suitable as it uses the evolution of each
point of the structure with respect to a reference configuration.
Monolithic methods have been developed and consists in treating the fluid and the struc-
ture in the same mathematical framework. In Lagrangian methods, a set of Lagrangian
markers or mesh cells are moving with the continuous medium. On the contrary, in Eule-
rian methods, a time independent mesh is used and represents the whole fluid/structure
domain. Hybrid methods have also been employed and consists in combining both the
Lagrangian description for the structure and the Eulerian one for the fluid.
Furthermore, the choice of the flow modeling has to be combined to the fluid/structure in-
terface modeling which could be classified in two major class: the front tracking and front
capturing methods. The front tracking approach consists in representing the interface by
a set of Lagrangian particles which carry the physical properties of the structures, these
markers are transported in a Lagrangian manner . In the front capturing methods, an
Eulerian scalar function allows to reconstruct the interface. The interface modeling and
flow modeling are then coupled to either form several coupled equations or a whole system.

Once these three criterias selected, a collision strategy is needed in order to avoid
numerical contacts between the structures. Indeed, in the case of two perfectly smooth
bodies evolving in a fluid, lubrication theory and experiments demonstrated that no con-
tacts can occur in finite time between those particles [2; 77; 193]. However, during nu-
merical calculations, the flow between two converging particles is not accurately resolved
which leads to contacts or inter-penetration of particles. The numerical handling of these
contacts and overlaps hence is crucial for the simulation of particles suspensions.
A natural approach proposed in [81] is to refine the mesh in the inter particle gap in order
to resolve accurately the flow fields. However, this strategy is highly expensive as several
refinements are necessary and in the case of multiple particles the cost of the simulation
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is highly increased.
Other techniques consists in adding the theoretical lubrication forces when the gap be-
tween the bodies is very small [39; 121]. Due to the singular behavior of the forces, and
the time discretization errors, this approach appears to be unsufficient and might still
lead to contacts and overlaps at low spatial resolution.
Other numerical strategies less respectful of the underlying physics have been employed.
These techniques consists in imposing a constraint on the particle motion by means for
instance of artificial short range repulsive forces [31; 65] or by directly enforce a minimal
distance between the particles maury1999direct. Contrary to the refinement strategy,
these last collision methods allow, in addition of handling overlaps and contacts between
particles, to use as coarse discretization as possible, reducing substantially the computa-
tional cost compared to the method proposed in [81].
An other major issue to be taken into consideration is the computational complexity due
to an increasing number of bodies. For instance, both short-range repulsive forces pro-
posed in [31; 65] are quadratically dependent on the number of particles if no special trick
is used. Moreover, depending on the numerical method used for the Fluid/Structure in-
teraction coupling the computational can be reduced. A typical example is the Boundary
integral method ([178; 179]), which by only discretizing the membrane boundaries allows
to obtain an efficient method to deal with several bodies.

In the present work, a fully eulerian formulation of the fluid-structure interaction is
adopted and combined to a level set method which is part of the front capturing meth-
ods. Within this framework, we investigate the two major difficulties we stated above: the
high computational complexity due to a large number of particles and contacts between
particles during numerical calculation.
We adapt in the context of Fluid-Structure interaction a model introduced by J.Bogovic
([11]) for image segmentation. In the context of fluid-structure interaction, this model
provides access to the location of each structure and its closest neighbors at each point
of the Fluid/Structure domain, it is thus a very desirable model for dealing with dense
suspensions of particles. Indeed, by evolving only five field functions, the proposed ap-
proach can (1) locate and evolve each structure in the domain (2) specify a speed or a
force independently for each structure (3) and handle numerical contacts between the
structures.
In order to validate the ability of this method to handle numerical contacts and its effi-
ciency to deal with a large number of structures, two applications are explored: rigid and
deformable bodies. The deformable bodies considered are vesicles which are simplified
model to study the behavior of red blood cells.

This work is organized as follows:

In Chapter 1, we provide an overview of popular numerical methods for fluid/structure
interaction as well as interface modeling techniques, in particular we focus on the level
set method. Then, the physical models considered are presented as well as the numerical
resolution of the fluid model combined to a level set method.

In Chapter 2, the capturing method proposed in [11] is presented in the context of
multiple bodies immersed in a fluid. The three label maps and two distance functions
which allows to locate the structures and their first neighbors are presented.
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Chapter 3 is devoted to the collision strategies, we present a brief overview of existing
methods to deal with numerical contacts. Then, a short-range repulsive force inspired by
[31] is proposed and depends on the relative velocities between the closest structures. The
influence of these two collision models on the dynamics of disks transported by steady
stokes fluid flows is compared.

In Chapter 4, we present the numerical algorithm used to evolve the structures in the
domain and to redefine the neighbors of the particles. This algorithm consists in evolving
a level set function which captures the union of all interfaces, in a neighborhood of the
interfaces, then a multi-label fast marching procedure is performed in these thin narrow-
bands to update the five field functions.

Chapter 5 proposes an application of the method to the simulation of rigid bodies
evolving in an incompressible fluid, we present a penalization model which is made inde-
pendent on the number of rigid bodies and a benchmark of numerical simulations of the
sedimentation of rigid bodies is proposed.

Finally, in Chapter 6 the numerical simulation of immersed vesicles is carried out.
The fluid/elastic membrane coupling is achieved by using the model introduced in [32],
only one elastic and curvature force is computed for the whole set of vesicles. In order to
compute correctly the elastic and curvature forces a finer grid for the level set function
is used and thanks to the label maps the forces exerted on the membrane are accurately
computed even if the elastic membranes are close.
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Chapter 1

Fluid/Structure Interaction and Level
set methods

Contents
1.1 Numerical methods for Fluid/Structure Interaction . . . . . . 9

1.2 Physical models . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Front tracking and Front capturing methods . . . . . . . . . . 23

1.4 Level set method . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Numerical resolution . . . . . . . . . . . . . . . . . . . . . . . . 34

The focus of this chapter is to present the context of this work. The numerical simula-
tion of fluid/structure interaction (FSI) involves to deal with three different problems: the
governing equations of each media (fluid or structure) and the coupling between the struc-
ture and the fluid which itself depends on the properties of the structure. The numerical
techniques devoted to the simulation of FSI can hence be classified according to different
criterias: the Eulerian or Lagrangian formulation for the fluid and/or the structure, the
interface modeling which can be achieved by tracking or following the interface and the
coupling between the structure and the fluid.

This chaper is organized as follows:
In a first section, an overview of numerical methods for fluid/structure interaction is
presented. Then, the physical models we are interested in are described. The third
section is dedicated to the existing numerical methods to capture and evolve interfaces
between these medias, in particular we focus on the level set method.
Finally, the discretization of the fluid/structure domain Ω and the numerical resolution
of the fluid equations is presented as well as the evolution of the interfaces using the level
set method.

1.1 Numerical methods for Fluid/Structure Interaction
The interaction between viscous fluid flow and structure is of great significance in

many natural processes such as in biomechanics (cell deformation, blood-heart valves
interaction, sperm motility), aerodynamics, sedimentation of particles. In fact, FSI prob-
lems play a key role in a large panel of fields, and there is a great deal of science works
devoted to these problems. Accordingly, increasingly sophisticated numerical techniques
have been developed over the past few years, making of numerical simulation an essential
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CHAPTER 1. FLUID/STRUCTURE INTERACTION AND LEVEL SET METHODS

tool to understand FSI problems.

The main difficulty in simulating this problem comes from the divergence in the mod-
elling approach for each medium : the Eulerian and Lagrangian description.
In the Eulerian approach, the physical variables are defined at all points of the domain
and at all times. From a numerical point a view, the continuum medium is discretized
with a mesh grid fixed in time. A Cartesian mesh grid can be used to represent the
medium and allows for instance to use finite difference method.
With the Lagrangian description, the physical variables are defined at points of the media
which moves over time. Numerically, the continuum media is discretized by a time-varying
mesh grid. Particles located at the mesh grid points are then displaced with their associ-
ated velocity. Denoting by X(a, t) the position of a particle a at time t, this particle will
be transported as:

∂X

∂t
(a, t) = u(X(a, t), t)

This type of description allows to better track the motion and deformation of a structure.
A major inconvenient of this approach is that after deformation the Lagrangian particles
accumulate or disperse in the domain. Consequently, additional procedures are required
in order to follow large distortions of the computational domain.

Generally, the fluid flow is described in an Eulerian manner whereas the evolution
of structures are more naturally handled in the Lagrangian formulation. To overcome
this difficulty, the existing methods have adopted three different points of view: purely
Lagrangian, Eulerian/Lagrangian and purely Eulerian.

As its name suggests, the first one consists in describing both the structure and the
fluid with a Lagrangian approach.

Two of the most widely used particle methods are the Smooth Particle Hydrodynamics
method and the Vortex Method.
The Smooth Particle Hydrodynamics method has been originally designed to study gas
dynamics for astrophysics [64; 113]. This particle method does not require a mesh grid
to discretize the domain, only the Lagrangian particles are handled. The variables of the
fluid and structure are updated simultaneously allowing to take into account easily large
displacement of the fluid/structure interfaces. This technique is accurate and stable for
the simulation of compressible flows and to capture interfaces. An extension for free-
surface incompressible fluid flow has been proposed by Monaghan in [131]. To impose
the incompressibility constraint, the pressure gradient is evaluated at each Lagrangian
markers. A force which takes into account the local variation of the density is carried by
each marker, the incompressibility constraint consists then to impose a constant value to
this density. With this technique, only an approximation of the incompressibility con-
straint is imposed. Improved SPH methods [48; 82] have hence been developed in order
to overcome the main weakness of this method which lies in its inaccuracy to achieve vol-
ume conservation. This technique has been widely used like fluid/fluid interactions ([28]),
fluid/structure interaction ([5]), to simulate interaction between different solids ([182])
and many others.

In the case of incompressible fluid flow, it is most convenient to use the Vortex Method.
Indeed, contrary to the SPH methods, the incompressibility constraint is explicitly en-
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CHAPTER 1. FLUID/STRUCTURE INTERACTION AND LEVEL SET METHODS

forced as thanks to the vortex formulation the velocity field computed is implicitly diver-
gence free. The Vortex Methods uses a velocity-vorticity formulation of the Navier-Stokes
equations, compared to SPH methods the set of Lagrangian particles are only located at
the regions where the vorticity is non zero providing efficiency in the case where these re-
gions represent small portions of the whole computational domain. The main drawback of
these methods comes from the treatment of the boundary conditions as a reformulation of
the velocity boundary conditions are required which can in some cases represent a source
of difficulties. As all the Lagrangian techniques, these two particle methods suffers from
particle distortion problem. To circumvent this problem problem, a widely used tech-
nique is the remeshing procedure originally designed in [84; 104]. These methods consist
in redistributing the Lagrangian markers in the domain at each iteration by means of high
order interpolation kernel allowing to control efficiently the distance between the particles.
This technique have been widely and successfully used in vortex methods [24; 34; 103].

An other approach is the boundary integral method which has been proposed in [146]
for the simulation of an immersed vesicle and then improved and extensively used in
several works, for instance in [178] where the numerical simulation of a suspension of
vesicles has been investigated. Thanks to the integral equation formulation, this method
is efficient to deal with interfacial flow and vesicles as only the interface is discretized.
However, this approach is limited to Stokes flow and simple structure geometries.

A popular and wide spread fluid/structure method is the Arbitrary Lagrangian Eule-
rian approach (ALE) introduced by Donea in 1982 (see [44]) and extensively studied by
several teams [54; 73; 80; 149; 187]. The ALE strategy is an hybrid method that combines
the Lagrangian and Eulerian descriptions using a mobile non structured grid that follows
the normal displacement of the fluid/structure interface. The fluid and solid equations
are solved individually and continuity conditions for the velocity and stress tensor are
explicitly discretized at the interface.
The main weakness of the ALE method is its difficulty of implementation, especially when
dealing with large displacements in dimension three. In addition the added mass effect
[29] has been a long standing difficulty which has been worked around only recently [51–
53; 55; 56]. Moreover, the computational grid has to be remeshed when the elements get
too distorted, which could be a very costly procedure in three-dimension.
An other popular Eulerian/Lagrangian method is the immersed boundary approach pro-
posed in [141; 142] by Peskin for the simulation of an immersed elastic membrane. In
this approach, an Eulerian grid represents the fluid and the membrane is discretized by a
set of Lagrangian particles. The fluid/structure coupling is then achieved by projecting
on the Eulerian grid points the forces carried by the Lagrangian particles. Since its in-
ception, this technique has found a large number of applications, it can deal with elastic
membranes as well as moving rigid bodies.

The fully Eulerian method is the point of view that we adopt in this work. The idea
is to use a purely Eulerian description of the fluid/structure problem. A popular set
of purely Eulerian methods is the fictitious boundary methods. Initially, in this set of
techniques, the fluid is defined in the all computational domain Ω including the regions
occupied by the particles. To take into account the immersed structures, a constraint
is applied to the fluid inside and at the interface of the structures. A global model is
defined in the fluid and structures regions allowing to use a fix grid mesh in the entire
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CHAPTER 1. FLUID/STRUCTURE INTERACTION AND LEVEL SET METHODS

fluid/structure domain (see Figure 1.1). Those techniques are generally easy to imple-
ment, allow to use fast solvers and the extension to several immersed structures is often
straightforward.
Numerous methods based on this conceptual framework have been developed, for instance
in [41], a mixing of the "Fictitious concept" and the ALE technique has been achieved,
adding to these methods the high accuracy of the ALE approach.

We present in what follows some popular existing methods for FSI that can be applied
to our problems. The first one is the well-known Immersed Boundary methods, then some
Fictitious domain methods are described.

Figure 1.1: Sketch of FSI problem discretized with an uniform Eulerian mesh grid at different
time. The red points represents the fluid.

1.1.1 The immersed boundary method

The immersed boundary technique has been firstly introduced by Peskin in [141–143]
to simulate immersed elastic membrane in the vicinity of heart valves. A fix uniform
Cartesian grid is used to represent the fluid region and the fluid/structure interface is
described by a set of Lagrangian particles. The elastic forces are computed on the La-
grangian markers and corresponds to a sum of discrete delta functions localized on each
marker. Then, a numerical technique is performed in order to spread these delta func-
tions on the Eulerian grid points. Peskin proposed to construct a discrete delta function
regularized at the interface making the forces spread on few Eulerian discretization points
around the interface. This delta function has to fulfil different properties: continuity at
the interface to avoid jump of the velocity and forces, allows to conserve the moment of the
forces across the interface, and sufficiently narrow support. Finally, the forces computed
on the Eulerian grid are then inserted in the right hand side of the governing equations of
the fluid flow. Once the fluid velocity field has been computed, the Lagrangian particles
are advected in order to evolve the interface.

Let Ω ∈ R2, and Γ1 be a closed curve parametrized overtime byX(s, t) where s ∈ [0, L].
We consider that the fluid is governed by the Navier-Stokes equations.
The forces projected on the Eulerian mesh grid are given by:

12



CHAPTER 1. FLUID/STRUCTURE INTERACTION AND LEVEL SET METHODS

f(x, t) =

∫ L

0

F (s, t)δ(x−X(s, t))ds

Then, the interface is evolved as:

∂X(s, t)

∂t
= u(X(s, t), t) =

∫
Ω

u(x, t)δ(x−X(s, t))ds

Finally, these forces are added to the Navier-Stokes equations giving the following fluid/structure
model. 

ρ(∂tU + (U · ∇)U)− µ∆U +∇p = ρg + f in Ω

f(x, t) =
∫ L

0
F (s, t)δ(x−X(s, t))ds in Ω

∂X(s, t)

∂t
= u(X(s, t), t) =

∫
Ω
u(x, t)δ(x−X(s, t))ds in Ω

(1.1)

The delta function locates the forces and provides the interface velocity in function of the
velocity of the fluid. The force F depends on the type of the considered structure. In the
case of an elastic membrane, this force will determine the elastic behaviour of the struc-
ture. An Eulerian formulation has been proposed in [32; 33], in the level set framework,
with application to immersed elastic membranes.

A first adaptation of this technique for moving particles has been performed in [57]
and then for rigid boundaries in [70; 71; 152]. Then, several improvements of this method
have been introduced to deal with moving rigid bodies for instance in [18; 175; 176]. In
fact, this technique gave born to a large number of methods, we can cite for instance the
immersed interface method (see [109; 111]), the extended immersed boundary method.

1.1.2 Fictitious domain methods

The original concept of the fictitious domain methods, have been firstly proposed by
Hyman in [85] and then developed by Saul’ev in [154] who gave the name "Fictitious
domain". In the context of FSI, the main idea of this set of methods is to extend the
fluid domain in a larger and geometrically simpler domain called the "Fictitious" domain
which contains the immersed structure. The advantages of these methods is that a time-
independent mesh can be used for the entire fluid/structure domain allowing to use fast
solution methods. We present in the following some popular approaches stemming from
this conceptual framework.

The Penalization method

The Penalization technique has firstly been introduced by [20] and further developed
in [4] for the study of a fixed rigid body immersed in a incompressible fluid.
The principle of this technique is to define the fluid in the whole computational domain
including the rigid bodies and then to penalize the fluid velocity inside the rigid body.
This is achieved by adding a penalization term in the Navier-Stokes equations, allowing
to impose a zero motion inside the solid and to solve the boundary value problem inside
the whole domain Ω including the bodies. So, there is no need for an adapted mesh to
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CHAPTER 1. FLUID/STRUCTURE INTERACTION AND LEVEL SET METHODS

the geometry of the bodies and a Cartesian mesh on a box domain can be used.

Let Ω1 denotes a fixed rigid body immersed in a fluid ΩNf
, the L2 penalization consists

in adding a penalization term in the Navier-Stokes equations as follows:

ρ(∂tU + (U · ∇)U)− µ∆U +∇p = ρg + f (1.2)

where the penalization term is given by:

f =
U

K

and the density function is provided by:

ρ =

{
ρ1 in Ω1

ρf in ΩNf

The parameter K represents the permeability of the medium. In the fluid region, the
permeability coefficient K tends to infinity giving the Navier Stokes equations. In the
solid body, the coefficient K tends to zero and we solve a Darcy Law with a velocity
proportional to K. The solid body can hence be viewed as a porous media with a very
small permeability.
Numerically, the permeability coefficient can either be defined on each grid point of the
computational domain with a very high value in the fluid and a very small one in the rigid
body or by using a characteristic function χ of the solid body, we can set 1

K
= λχ where

λ >> 1 is a fixed penalization coefficient. Inside the fluid the penalization term is exactly
zero and in the solid body f = λU ; numerically a smooth version of the characteristic
function is required in order to regularize the penalization term at the interface.

The numerical analysis of the penalization method is presented in [126], it is shown

that the L2 penalization method is of order one and
1

2
with the H1 penalization this is

due to the discontinuity of the normal derivatives of the velocity field at the interface. An
extension to a prescribed velocity has been proposed in [140], for a solid body Ω1 moving
with a velocity U1, the L2 penalization problem to solve is:

ρ(∂tU + (U · ∇)U)−∇ · (µ∇U) +∇p = ρg + λχ(U1 − U) in ΩNf
× (0, T )

∇ · U = 0 in ΩNf
× (0, T )

U1 = U t
1 + w1 × (x− xg1) on Γ1,

m1
dut1
dt

= F1

J1
dw1

dt
= T1

(1.3)

where J1 is the inertial matrix, xg1 the gravity center and m1 the mass, ut1 and w1 are the
translational and angular velocities of Ω1. The total force and torque F1 and T1 takes into
account the hydrodynamical forces and the external forces Fext exerted on the particle
Ω1: {

F1 = Fext +
∫

Γ1
σn1 on Γ1

T1 = Text +
∫

Γ1
(x− xg1)× σn1 on Γ1

(1.4)
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where σ denotes the Cauchy Stress tensor, n1 is the normal to Γ1 pointing outside the
rigid body Ω1.
The rigid velocity has to be computed before the resolution of the penalized Navier-Stokes
equation. This can be achieved by averaging the global velocity field inside the rigid body
providing:

U1 =
1

|Ω1|

∫
Ω1

ρχUdx+

(
J−1

1

∫
Ω1

ρχU × (z − xg1)dz

)
× (x− xg1) (1.5)

Fat boundary method

The fat boundary method has first been introduced in [123] to solve a Poisson problem
on a perforated domain and further developed in [86] for moving holes.
The main idea of this technique is to replace the initial problem defined in the entire
perforated domain by two sub-problems: a global model and a local one. The two sub
problems are resolved on two different meshes: a fixed in time global mesh grid defined
on the all perforated domain and a local mesh defined around the holes. The local mesh
is time-varying and finer than the global mesh grid. A Cartesian mesh grid can be used
to discretize the global model allowing to use fast solvers and efficient preconditioners.
Then, the two problems written on the different meshes are coupled, by using an iterative
domain decomposition method and a jump of the normal derivative at the interface is
prescribed. The final solution is computed so that the solution on both meshes match
and a continuity on the normal derivative at the interface is imposed. A mathematical
analysis of this method is presented in [6]. Better accuracy is obtained compared to the
penalization method H1 as the continuity of the normal derivatives is imposed. This
model has been applied to moving structures immersed in fluid.

Let us take the example of a perforated domain Ω like shown in Figure 1.2, where the
green zone represented the safety zone (S) in which the local model is computed.

Figure 1.2: 2D example of a perforated domain Ω. The hole is represented by Ω1, its boundary
Γ1 and the safety zone S.
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Using the Fat boundary method, the Poisson problem :
−∆U = F in Ω \ Ω1

U = 0 on Γ = ∂Ω

U = 0 on Γ1

(1.6)

is decoupled into the two following problems:

Local Problem:

{
−∆V = F in S
V = U∗ on Γ∗1

Global Problem:

−∆U∗ = F ∗ +
∂V

∂n
δΓ1 in Ω

U∗ = 0 on Γ

(1.7)

where Γ1 and Γ∗1 are the boundaries of the safety zone, F ∗ is the extension of F by 0 in Ω1.
The boundary condition on the structure boundary Γ1 is extended inside the structure by

the term
∂V

∂n
δΓ1 . An illustration of the global and local meshes for this problem is shown

on Figure 1.3 in very coarse configuration.

Figure 1.3: Illustration of the global and local meshes for FBM.

Lagrange multiplier method

This approach has been firstly proposed in [65; 67] in order to model the motion of a
rigid body immersed in a fluid. The principle of this method is to introduce lagrange mul-
tipliers to impose the rigidity constraint inside the rigid body and the Dirichlet boundary
condition at the interface of the rigid body.
In [65], the constraint used is the following:

U = U t
1 + w1 × (x− xg1) in Ω1 (1.8)

An improvement of this approach in term of implementation and computational saving is
proposed in [158] and uses the rigidity constraint:{

∇ · (D(u)) = 0 in Ωs

D(U) · ns = 0 on Γs
(1.9)
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which is equivalent to:
D(U) = 0 in Ωs (1.10)

Then, the Lagrangian multipliers are solutions of the following equations:{
∇ · (D(u)) = ∇ · (D(λ)) = 0 in Ωs(t)

D(u) · n = D(λ) · n = 0 on Γs(t)
(1.11)

The Navier Stokes equations:

ρ(∂tU + (U · ∇)U)−∇ · (µ∇U) +∇p = ρg + f

are then supplemented with the forcing term f = ∇ · (D(λ)), the incompressibility con-
straint and the boundary condition on the structure boundary.
In order to tackle this equation, a time splitting method is proposed in [158] like the
projection method of Chorin type.
The first step is to compute the Navier Stokes equations without the forcing term f giving
an intermediate velocity u∗ which is divergence free.
The second step is to impose the rigidity constraint, by computing the Lagrangian multi-
pliers. The obtained velocity is divergence free in the all domain and the rigidity constraint
is ensured inside and at the interface of the rigid body.
Two variants of the Lagrange multiplier method exists: Boundary and Distributed ap-
proachs.
With the Boundary approach, the Lagrangian multipliers are only computed on the sur-
face of the structure, thus a mesh defined over the surface is sufficient (see for instance
[68]).
With the second approach, the Lagrange multipliers are distributed all over the immersed
structure, the interior and the interface has to be meshed. The choice over these two
variants lies on the type of applications one wants to simulate, we represent on Figure 1.4
an illustration of these techniques.

Figure 1.4: Illustration of the Boundary (left) and Distributed (right) Lagrange multiplier meth-
ods. The Lagrange multipliers are applied at the blue nodes.
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1.1.3 Cut-cell methods

The methods presented above do not depend on the choice of the discretization schemes
used to solve the equations. On the contrary, in the "discrete forcing methods", the forc-
ing depends on the discretization and thus on the numerical schemes used. In particular,
this approach allows to control directly the numerical precision, stability and conservation
of the solvers. The most popular one is the Cut-Cell method.

This method also called Cartesian grid method has been firstly proposed in [27]
for inviscid flow computations and then applied to the simulation of viscous flow in
[173; 174; 190]. This technique has been designed to satisfy the conservation laws in
the grid cells located in a vicinity of the immersed boundary. In order to conserve locally
and globally the mass and the momentum, the cut-cell method is achieved in a Finite
Volume framework.
Then, the main idea is to reshape the grid cells crossed by the immersed boundary as
follows: if the center cell is located in the fluid part, the cell is reshaped by discarding
the portion that lies in the solid region. On the contrary, portions of grid cells whose
centers are part of the solid region, are absorbed by the surrounding cells. The obtained
cut-cells define the new control volumes in the vicinity of the structure boundary for the
finite-volumes discretization scheme.
In the case of staggered grid like MAC grid, the reconstruction of the cut-cells and the
position of the unknowns (the velocity field and the pressure field) has to be achieved
in accordance with the five point structure of a cell. If a structure is immersed in the
Cartesian grid, the five point structure of the cells is usually not preserved, even more if
one uses the merging technique.

In [25], Cheny and Bottela proposed a new cut cell method based on MAC schemes
which keeps the five point structure of the cells and satisfy the conservation laws. The
structure interface is accurately represented by a signed algebraic distance to the immersed
boundary. The staggered arrangement of both the velocity field and pressure is adapted
to the cut-cells geometry. From a computational point of view, this method is highly
efficient as it is based on MAC solvers on Cartesian grids. This method has been used by
Bouchon et al in [13] who proposed a global second order MAC scheme, the first order is
obtained in the vicinity of the immersed boundary.

1.2 Physical models

In this work we study the problem of N structures evolving in an incompressible fluid.
We consider a rectangular domain Ω ∈ Rd, d = 2, 3 filled with structures and a fluid as
illustrated in Figure 1.5. We denote by (Ωi)i=1,..,N the N structures and the surrounding
fluid is denoted by ΩNf where Nf = N+1. With these notations, the entire fluid/structures
domain Ω is partitioned into N + 1 objects as:

∀i 6= j,Ωi

⋂
Ωj = ∅

ΩNf = Ω\{⋃N
i=1 Ωi}

ΓNf =
⋃N
i=1 Γi.

(1.12)
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Figure 1.5: 2D example of a fluid/structure domain Ω represented by an Eulerian grid.

1.2.1 Fluid model

The fluid ΩNf
is a Newtonian viscous incompressible fluid. It is governed by the

incompressible Navier Stokes equations. Let T > 0, t ∈ [0, T ], and x ∈ ΩNf
(t), we denote

by:

• U(x, t): fluid velocity field

• P (x, t): pressure field

• µf (x, t): dynamic viscosity of the fluid

• ρf (x, t): fluid density

The incompressibility constraint is given by:

∇ · U = 0 in ΩNf
(t)

This constraint gives the following mass conservation equation:

∂tρf + U · ∇ρf = 0 in ΩNf
(t)

Then, the fundamental principles of dynamics gives the following equation :

ρf (∂tU + (U · ∇)U) = ∇ · σ in ΩNf(t)

Where σ is the Cauchy stress tensor and D(U) is the deformation tensor. Finally, the
incompressible Navier Stokes equations are given by:{

ρf (∂tU + (U · ∇)U)− µf∆U +∇P = ρff in ΩNf
× (0, T )

∇ · U = 0 in ΩNf
× (0, T )

(1.13)

where f represents the external forces exerted on the fluid. These equations have to be
supplemented with initial conditions and boundary conditions on Γ the boundary of Ω.
After non-dimensionnalization, one can obtain the dimensionless Navier-Stokes equations
: ρ(∂tU + (U · ∇)U))− 1

Re
∆U +∇P = 0 in Ω× (0, T )

∇ · U = 0 in Ω× (0, T )
(1.14)
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where the Reynolds number is given by:

Re =
LrUr
µr

Lr and Ur are the characteristic lenght and velocity of the model, µr denotes the char-
acteristic viscosity of the considered fluid. The Reynolds number is a physical parameter
which provides information on the type of flow. Depending on its values, the flow can
be classified in different categories. Mainly, if Re < 2000 the fluid is laminar meaning
that the viscous phenomenons are more important than the inertial effects. When the
Reynolds number is higher than 4000, the inertial effects are the most important, this is
called the turbulent regime.
In the case of small Reynolds number, one can neglect the convective term (U · ∇U), the
obtained system is the Stokes equations. In particular, the Stokes model has been widely
used for modeling blood flow at places where the Reynolds number is of order 10−4 (small
vessels or capillaries).

1.2.2 Immersed rigid bodies

The motion of a rigid body is obtained by means of the principle of conservation of
linear and angular momentum. For a body Ωi immersed in a fluid, the equation which
governs the translation is:

mi
dVi
dt

= Fi

In the above equation, mi denotes the mass of Ωi, Vi the translational velocity, t is the
time and Fi is the sum of all the forces exerted on the particle Ωi. The total force Fi
takes into account the hydrodynamical forces and the external forces Fext (for instance
the gravity force) :

Fi = Fext +

∫
Γi

σni

where ni is the normal to Γi pointing outside the particle Ωi and σ is the Cauchy Stress
tensor for a newtonian fluid. The conservation principle of angular momentum can be
stated as:

Ji
dwi
dt

= Ti

where Ji is the inertial matrix, xgi its gravity center, wi denotes the rotational velocity of
the rigid body Ωi.The total torque Ti due to hydrodynamical forces and external forces
is:

Ti = Text +

∫
Γi

(x− xgi )× σ

Then, the interaction between the structures and the fluid is modelled by the Navier
Stokes equations for the fluid, the rigid motions in the fluid for the solid bodies and the
no slip boundary conditions on each rigid body interface. The no-slip boundary condition
means that the fluid adheres to the solid boundaries, this condition reflects the fact the
considered bodies are rigid and thus do not deform.
Finally, the complete model can be expressed as follows:
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ρf (∂tU + (U · ∇)U)−∇ · (µ∇U) +∇p = 0 in ΩNf
(t) (1.15)

∇ · U = 0 in ΩNf
(t) (1.16)

U = Vi + wi(x− xgi )⊥ on Γi(t), (1.17)

mi
dVi
dt

= Fi (1.18)

Ji
dwi
dt

= Ti (1.19)

These equations have to be supplemented by boundary conditions for the fluid velocity
and initial conditions for the studied variables.

1.2.3 Immersed elastic membranes

We give here a general description of N immersed elastic membranes without precise
specification of the elastic behaviour of the membrane. Each structure Ωi is a closed curve
in dimension two or surface in dimension three which encloses an incompressible fluid of
dynamic viscosity µi and density ρi. The elastic forces are located on the membrane and
we consider impermeable membrane so that the jump of the velocity field at the interface
is zero:

∀i ∈ {1, .., N}, [U ] = 0 on Γi,

We first present the incompressible Navier-Stokes for multi-fluid flows and an approxima-
tion of these equations for small variation of the density before introducing the immersed
boundary model of immersed elastic membrane.

Navier Stokes equations with variable densities and viscosities

We describe the incompressible Navier-Stokes for variables densities and viscosities,
we consider N fluids immersed in a fluid contained in the region objects ΩNf

.
Each interface Γi is a closed curve in dimension two or surface in dimension three which
encloses an incompressible fluid of dynamic viscosity µi and density ρi. Defining the
density and viscosity function as:

ρ =

{
ρi in Ωi, ∀i
ρf in ΩNf

µ =

{
µi in Ωi, ∀i
µf in ΩNf

(1.20)

The Navier Stokes equations to model multi-fluid flows are given by:{
ρ(∂tU + (U · ∇)U)−∇ · (µD(U)) +∇P = ρg in Ω× (0, T )

∇ · U = 0 in Ω× (0, T )
(1.21)

where g is the gravity force, the surface tension between the two fluids has to be added
to these equations.

Boussinesq Approximations for the Navier-Stokes equations

In [14], Boussinesq proposed an approximation of the multi-fluid flows Navier Stokes
equations. In the case of two fluids with corresponding densities ρ1 and ρf (where ρf is
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the density of the lighter fluid), this approximation can be made if the variation of the
density is small that is if the Atwood number At = (ρ1 − ρf )/(ρ1 + ρf ) is negligible, and
if the densities ρ1 and ρf are uniform on each side of the interface. By neglecting the
density variation in the inertial terms this approximation consider that the leading force
(compared to other forces between two fluids) is the one due to gravity.

Considering that :

∀i ∈ {1, .., N},∀j ∈ {1, .., N}, ρi = ρj

and denoting by δρ = ρf − ρi the difference density between the surrounding fluid and
each fluid contains in the subdomain Ωi, if we suppose that:

δρ

(ρi + ρf )
<< 1

the Boussinesq approximation provides the following approximation of the system (1.21):{
ρm(∂tU + (U · ∇)U)−∇ · (µD(U)) +∇P = ρg in Ω× (0, T )

∇ · U = 0 in Ω× (0, T )
(1.22)

where ρm =
ρi+ρf

2
is the mean density and ρ is given by 1.20.

The advantage of this approximation is that the obtained system is easy to implement
and as the coefficient in the Poisson equation is constant, fast elliptic solvers can be used.
This approach has been used in many previous works (see for instance [74; 87; 171]).

Immersed boundary model

In addition to being submitted to hydrodynamical forces the elastic membrane has its
own mechanical properties modelled by elasticity laws which can depend on the stretch-
ing, the curvature of the surface etc.
We present here the immersed boundary model for an immersed elastic membrane in the
two dimensional case.
Consider N elastic closed curves Γi each enclosing an incompressible fluid domain Ωi with
corresponding viscosity µi and density ρi surrounded by the fluid ΩNf

of density ρf and
dynamic viscosity µf . The linear densities of the curves are assumed to be zero.
For each Γi, we denote by Γ0

i the initial position of the curve and s→ γi0(s) a parametriza-
tion of Γ0

i . Let Γti denotes the position of Γi at time t, and γi : [0,M ] × [0, T ] → γ(s, t)
denotes the regular parametrization of the curve Γt, denoting by X the flow associated
to the vector field U , we have:

γi(s, t) = X(t, γi0(s), 0)

Thus, the parametrization γ is solution of the following system::{
∂tγi(s, t) = U(γi(s, t), t), s ∈ [0,M ], t ∈]0, T ]

γi(s, 0) = γi0(s), s ∈ [0,M ]
(1.23)

where U is the velocity field of the continuous medium.
We denote by Γri , the configuration of Γi when it is at rest and by θi : [0,M ]→ R2,M > 0
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a regular parametrization of Γri .
For instance, we take for each curve the following elastic behaviour law :

Gi(s, t) = E ′
( |γi(s, t)|
|θi(s)|

)
γi(s, t)

|γi(s, t)|
(1.24)

where E ′ is a function which satisfy E ′(r) = 0 for r ≤ 1. Defining the density and
viscosity functions as in (1.20) the immersed boundary model for the N immersed elastic
membranes is:

ρ(∂tU + U · ∇U)−∇ · (µD(U)) +∇P =
∑i=N

i=1

1

|γi|
∂

∂s
(Gi) δΓi

+ ρf Ω× (0, T )

∇ · U = 0 Ω× (0, T )

∂tγi(s, t) = U(γi(s, t), t), s ∈ [0,M ], t ∈]0, T ],∀i
γi(s, 0) = γi0(s), s ∈ [0,M ]

(1.25)
This model of immersed elastic membrane consists in a model for multi-fluid flows

supplemented by the elastic force term. The model used in this work is described in
Chapter 7, it has been introduced in [32] it is inspired by the immersed boundary model,
a level set method is used in order to locate and evolve the interface and the elastic forces
are expressed in terms of the level set function. The obtained model is described in a fully
eulerian formulation allowing to use a Cartesian grid mesh to represent the fluid/structure
domain.

1.3 Front tracking and Front capturing methods

Two different approaches can be adopted to represent the interface: the Front tracking
and Front capturing method.

The Front tracking methods provide an explicit representation of the interface by
means of Lagrangian markers. The Lagrangian points are initially distributed on the
interface ("Surface" tracking) or inside the structure (or the fluid) ("Volume tracking
methods"). To evolve the structure, the velocity is interpolated from the Eulerian grid
points to the Lagrangian markers allowing to advect the Lagrangian points.

Unlike the Front-tracking methods, the Front capturing methods give an implicit rep-
resentation of the interface. In this class of methods, a scalar field captures the interface
and is transported in order to evolve the structure, those methods differ by the choice of
the scalar quantity and the technique to reconstruct the interface. For instance, in the
Volume of Fluid method [79], this function describes the volume fraction of a particular
phase in each grid cell of the all computational domain. At each time step, the function is
reconstructed according to the volume fraction of the phase, then it is advected and the
volume fraction is reinitialized. In the phase field method [3], the interface is regularized,
each phase is characterized by a constant physical parameter allowing to evolve and locate
each phase. Another popular approach is the level set method, this is the one we based
our work on, we will detail this approach in the next section.
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1.3.1 The Front-tracking methods

We consider that the fluid/structure domain Ω is discretized by a time-independent
Eulerian mesh grid. The interface is followed by a set of Lagrangian points. Denoting by
Xi the position of a particle i, this particle is advected by the local velocity Ui as:

dXi

dt
= Ui (1.26)

where the velocity Ui is interpolated from the Eulerian grid points to the Lagrangian
markers.

The Marker and Cells method

The Marker and Cells has been firstly introduced in [75] to simulate free surface
incompressible flows. The fluid/structure domain is discretized by a fix Cartesian grid.
Initially, the Lagrangian markers are uniformly distributed in the structure subdomain Ω1

and then advected by (1.26). The reconstruction of the interface is based on the presence
of marker fields in the Eulerian grid cells. Later, this method has been successfully and
widely applied to multi-fluid flows. This technique is efficient to conserve the volume and
to distinguish the different medias. However, compared to the resolution of the Eulerian
mesh, a large number of Lagrangian particles have to be introduced. Moreover, in the
presence of large deformations, additional procedures are required in order to distribute
regularly the markers on the interface and inside the structure. As a consequence, this
method can induce a high computational cost in particular if several immersed structures
are considered and/or in the three dimensional case.

The Surface tracking method

The Front tracking method, inspired by the MAC method has been developed by Dali
in [37]. Instead of distributing the particles in the all structure domain, the Lagrangian
markers are only located on the interface. Then, the interface is reconstructed by high
order interpolations of curves passing through these points. Thus, the location of the
interface is more precise. However, topological changes are not directly taken into account
and again procedures to distribute regularly the markers on the interface are required.

Figure 1.6: Volume tracking vs Surface tracking methods. The black points represent the la-
grangian markers.
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1.3.2 Front capturing methods

The basic idea of the Front capturing methods is to use a scalar function to locate
the interface, this scalar field takes different values in each media. A fix Eulerian mesh
grid represents the entire domain Ω and the scalar function is transported by the velocity
of the fluid or the structure. The topology changes are taken into account by the scalar
function. Moreover, the choice of this scalar quantity may allow to compute explicitly
normal or curvature of the curve, to conserve the physical properties of the structure like
mass conservation. We present in what follows three popular capturing methods: the
phase field method, the Volume of Fluid method and the Level set method which will be
present in the next section with more details.

VOF methods

The Volume of Fluid method ([79]) describes the volume fraction of the fluid in each
grid cell of the all computational domain. A volume fraction function φ is initially equal
to 0 in the structure and 1 in the fluid. This function is advected by the fluid velocity
field U as:

∂tφ+ U · ∇φ = 0 in Ω

The transport equation changes the values of the scalar field at the interface, its values
will be comprised between 0 and 1 at the grid cells close to the interface. As the volume
fraction field φ is discontinuous, standard upwind finite-difference schemes can not be
used as it would diffuse the interface. Instead, according to the volume fraction of each
grid cell, the interface is reconstructed.
There exist various methods for the geometric approximation of the interface. The most
famous approach consists either in reconstructing the segments parallel to the mesh grid
cells (Simple Line Interface Calculation), [150] or the segments obtained by means of
the normal to the interface (Piecewise Linear Interface Calculation). Several numerical
schemes have been designed to advect the reconstructed interface [150], those schemes are
mostly based on eulerian advection on structured grids. Although mass conservation is
accurately achieved with the VOF method, the computation of the geometrical properties
of the curve like normal or curvature is not accurate [150]. Moreover, this method is
difficult to implement for unstructured grids and in the three dimensional case.

Figure 1.7: Illustration of the VOF methods. The red curve is the fluid/structure interface.
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Phase field methods

The phase field approach belongs to the class of diffuse interface methods like for
instance the volume tracking method. A non physical scalar function is introduced in
order to distinguish between the interior of the structure and the fluid region. This
function assumes two distinct constant values in each region (for instance here −1 in the
fluid and 1 in the structure) and varies continuously from these two values across a thin
boundary layer, which is used to described the structure interface. Most of the phase field
models are based on a free energy functional which depends on the phase field φ and a
diffusive field, in its simplest form this energy is provided by:

E =
α

2
|∇φ|2 +

β

4
(φ2 − 1)2. (1.27)

The advantages of this approach is that the topology changes are automatically handled,
the geometric quantities are computed explicitly using the phase field and the extension to
dimension three is easily achieved. However, even if the phase field varies continuously at
the interface, a fine resolution is required close to the interface to capture high gradients.

1.4 Level set method

The level set method, pioneered by Osher and Sethian in [138], is very popular to
treat problems involving interfaces. It is widely used for numerical analysis of surfaces
and shapes and in the context of fluid/structure interaction.
The books [137] and [157] gives a detailed description of the method and an overview of
its possible applications.

The general idea of the level set method is to define a scalar function in the all
computational domain that assumes a 0 value on the location of the interface to capture.
Then, this function is transported in order to evolve the interface by taking into account
the governing equations of the model. At each moment, the 0 value of the level set function
gives the location of the interface. Usually, this function is defined or reconstructed as a
signed distance function to the interface, which is regular in each subdomains.

This implicit representation of the interfaces offers several advantages. An interesting
one is that it automatically takes into account topology changes and the global represen-
tation of the curve allows to consider a curve with several pieces. It permits in particular
to handle easily large deformations.
The dimensions two and and higher are treated very easily, in the three-dimensional case
the level line 0 is a surface.
Moreover, numerically, the level set function is discretized on a fixed grid, allowing to use
simple finite differences schemes to discretize quantities which depend on φ. However,
the accuracy of the information we have on the surface is not the same everywhere and
several procedures have to be considered in order to keep an accurate and robust method.

1.4.1 The level set function

To introduce the level set method we consider a bounded domain Ω ∈ Rd (d = 2 or d =
3) partitionned into two sub domains Ω1 and Ω2. We denote by Γ1 the boundary of Ω1 and
Γ the boundary of Ω, giving Ω = Ω1∪Ω2∪Γ. We denotes by φ the level set function which
captures the interface Γ1. This function is usually chosen to be negative (respectively
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positive) inside Ω1 and positive (respectively negative) outside, and to assume a 0 value
on the interface: 

φ(x) < 0 x ∈ Ω1

φ(x) = 0 x ∈ Γ1

φ(x) > 0 x ∈ Ω2

Moreover, in order to have a differentiable function in a neighborhood of the interface,
it is usually initialized as a signed distance function:

φ(x) =

{
−d(x,Γ1) x ∈ Ω1

d(x,Γ1) x ∈ Ω2

(1.28)

where
d(x,Γ1) = min

y∈Γ1

‖x− y‖.

By using a signed distance function, the obtained results avoid under-resolution prob-
lem and are more accurate., as the computation of geometrical properties of the curve
such as curvature or normal.

Figure 1.8: Representation of the level set function. The left picture shows the level set function
on a plane where the black contour is the zero value of the level set function.

1.4.2 Numerical tools

Using an implicit function to capture the interface tells us directly to which region
belongs a point x with the help of a Heaviside function H and its corresponding Dirac
function ζ applied to φ. The Heaviside function is defined as:

H(φ) =


0 if φ ≤ 0
1

2
if φ = 0

1 if φ > 0

(1.29)
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In practice, a regularized version of these functions Hε and ζε is used on the interface
in order to reduce grid effects:

Hε(φ) =


0 φ ≤ −ε

1

2
(1 +

φ

ε
+

sin(
πφ

ε
)

π
) |φ| ≤ ε

1 φ ≥ ε

(1.30)

ζε(φ)) =


0 φ ≤ −ε
1

2ε
(1 + cos(

πφ

ε
)) |φ| ≤ ε

0 φ ≥ ε

(1.31)

where ε represents the interface half thickness. The justification of this regularization is
described in [177] following the ideas introduced by Peskin in [143]. In the literature, this
value is usually taken equal to 1.5h where h denotes the space discretization step.

The geometrical characteristics of the curve such as normal vectors n and curvature κ
are obtained explicitly using the level set function:

n =
∇φ
|∇φ| , κ = ∇ ·

( ∇φ
|∇φ|

)
.

Figure 1.9: Representation of the regularized heaviside and delta functions Hε and ζε.

1.4.3 Transport equation

The evolution of the interface Γ1 is based on the transport of the level set function φ by
the velocity of the continuous medium. The velocity field can depend on the space, time,
geometric properties of the curve and/or the physics of the problem. For instance, in a
problem of fluid/structure interaction this velocity field corresponds to the fluid and/or
the structure velocity field. Denoting by U an incompressible velocity field, the level set
function is evolved by: {

∂tφ+ U · ∇φ = 0 in Ωt

φ(·, 0) = φ0 in Ω
(1.32)
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For general velocity field U , the solution of this equation may have a loss of regularity
with respect to the initial smoothness of φ0. It does not conserve the level set function as
a signed distance function (i.e. |∇φ| = 1). In order to solve this problem, several methods
have been introduced.

1.4.4 Reinitialization of the level set function

When φ is a signed distance function, its value gives a useful information on distance
to interface. However as stated above, this property could be lost while transporting φ.
We give here some existing methods to recover this information.

Renormalization of the level set function

In [33; 139], it has been shown that the function
φ

|∇φ| approaches the signed distance

function close to the interface (φ = 0).
This method is very useful as it gives the first order signed distance value close to the
interface, allowing to compute correctly the Heaviside and cut off function Hε, ζε.
It has been used in several applications, including numerical simulations of immersed
vesicles [32; 115]. In [115], one immersed vesicle is considered, the velocity is quite regular
and the information on the signed distance function is only required in a neighborhood

of the interface. Consequently, using
φ

|∇φ| is sufficient for this application.

If the values of the signed distance function is required far from the interface and/or if the
velocity is too irregular, this approach is no longer sufficient. Indeed, when the velocity is
too irregular, the gradient magnitude of the level set function can take large or very small

values leading to significant errors. For instance, if |∇φ| << 1, computation of
φ

|∇φ| could

lead to increasing numerical error, while for |∇φ| >> 1 so that the term
φ

|∇φ| becomes

close to zero, artificial new portion of interface could be created in the computational
domain. In this scenario, a reinitialization of the level set function is still required. As

the level set function will be updated it is more accurate to use the term
φ

|∇φ| for the

computation of Hε, ζε.

Modification of the transport equation

An other idea proposed in [72] is to replace the advection equation of φ by the following
equation:

∂tφ(x, t) + (U · ∇φ)(x− φ∇φ, t) = 0 (1.33)

With this advection equation, the interface φ = 0 is still evolved with the velocity field
U and φ is at each time a distance function. However, the non-locality of this equation
makes it difficult to use in the context of fluid mechanics.

Fast marching method

The fast marching method is a very robust method to reinitialize the level set func-
tion as a signed distance function. It has been presented in 1996 by Sethian in [156].
The principle of the fast marching method is to compute the distance function from the
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smallest values (close to the 0 value of the interface) to the greatest ones. The distance
is propagated from the interface to far regions by taking care of never recomputing the
points already assigned by a distance value. More precisely, we look for the solution of
the following eikonal equation: {

|∇φ| = 1 in Ω

φ = 0 on Γ
(1.34)

The numerical resolution of this equation presented in [156] is inspired by the Djikstra
method introduced by Tsitsiklis in [172]. The Djikstra algorithm developed in [172] allows
to compute the minimal short path between two points, by treating only one time each
grid point of the domain, its computational complexity is o(n log(n)) where n represents
the number of grid points.

The numerical scheme used to solve the equation (1.34) is the one introduced in [151].
In the two-dimensional case, denoting by ∆x, ∆y the horizontal and vertical discretization
space steps, the numerical scheme is formulated as follows:

max
(
max(D−x φij, 0)2,min(D+

x φij, 0)2) + max(max(D−y φij, 0)2,min(D+
y φij, 0)2)

)
= 1
(1.35)

D−x φij =
φij − φi−1,j

∆x
,D+

x φij =
φi+1,j − φi,j

∆x
,

D−y φij =
φij − φi,j−1

∆y
, D+

y φij =
φi,j+1 − φi,j

∆y
.

This is a first-order scheme.
The scheme (1.35) implies that the information moves in one direction only : from

the lowest values of φ to the highest ones. In order to propagate the distance inside and
outside the interface object, one can perform the algorithm twice, that is first compute
the distance function outside (the points inside the object are considered as Alive), then
multiply by −1 the distance function to propagate the distance inside.

To achieve the unique pass algorithm, the computational domain Ω is partitioned into
three subdomains: Alive, Narrow-Band and Far Away points (see Figure 1.10). Those
sets of points are defined by:

• Alive (A): set of points on which the values of φ are known

• Narrow-Band (NB): set of points were the values of d are unknown and the distance
to A is less than one space discretization step.

• Far away (F): all others points of the domain and at those points we set φ = −∞

In order to have a consistent initialization of the fast marching procedure, we take the
following boundary conditions for the eikonal equations:

φr =
φ

|∇φ| (1.36)

The procedure is sketched as in the following algorithm.
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Figure 1.10: Partition of the computational domain.

Algorithm 1Initialization phase
• Closest points at the interfaces are tagged as Alive and at those points the values
of φ are fixed by (1.36).

• Add the neighbors of the Alive points in the Narrow Band.

• At the Far Away points, assign the value ∞ to φ.

Algorithm 2Iterative phase
• Find the point xm such as φ(xm) = min(x∈NB) φ(x) .

• Delete xm from the NB.

• Compute the new values of φ at the neighbors of xm.

• If the neighbors of xm are in the Far away set, add them in the NB.

The speed of the fast marching procedure relies on the sorting algorithm to find the min-
imum value of the Narrow-Band set. The Narrow-Band set is defined as a Fibonnaci
binary heap. Thus, the first element of the NB heap directly gives the point xm at which
φ have the minimum value of the Narrow-Band set: φ(xm) = min{x∈NB} φ(x) .
Two procedures are required: one to suppress the minimum value of the NB and one to
add elements in the Narrow-Band. Numerically, a circular linked list is used to define the
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NB heap, allowing to reduce or increase the size of the heap and it provides access to the
first and last element directly.
When the first element is suppressed, the last element of the heap (having the maximum
distance value of NB) is placed at the head on the heap. Then, a heap sort procedure is
achieved, the element goes down in the list until it reaches its right position.
When an element is added to the NB, it is placed at end of the list, and the element goes
up in the list until its right position.
A detailed description of the implementation of this procedure can be found for instance
in [181].

The complexity of the Fast marching algorithm is O(n log(n)) where n denotes the
number of grid points of the domain, this complexity is given in the worst case that is
when all the points of the domain are contained in the Narrow-Band. Denoting by nb the
number of grid points in the Narrow-Band of one interface, the complexity is O(nb log(nb)),
if we propagate k interfaces this complexity becomes O(knb log(knb)), in this case it seems
better to achieve k fast marching procedures as the complexity is reduced O(knb log(nb)).
However, depending on the number of interfaces k, the fast marching procedure for the k
interfaces will stop propagation most fastly, as in the second case each interface propagates
in the all domain whereas in the first one the interfaces are propagated simultaneously.

Resolution of a Hamilton Jacobi equation

An other popular method to reinitialize the level set function φ consists in solving a
Hamilton-Jacobi equation on the level set field. This method has been introduced in [167]
and has been largely used and improved since then like for instance in [49; 165; 181]. The
Hamilton-Jacobi equation can be formulated as:

∂tφ− sgn(φ)(1−∇φ · ∇φ|∇φ|) = 0 (1.37)

The level set function is transported with a velocity
∇φ
|∇φ| where the sign function sgn

permits to propagate the front in the two directions (inside and outside), in [167] it is
defined as:

sgn(φ) =
φ√

φ2 + ε2
s

where εs is a smoothing parameter.
An advantage of this approach, is that it is easy to implement as the same schemes

used to transport the level set function are used. However, different parameters has to be
chosen like εs, the frequency of reinitialization and the time step used to discretize (1.37).
No explicit values exist, thus different numerical tests have to be performed in order to
find the right parameters.
Moreover, a significant loss of mass is observed after long time simulations.

Additionnal numerical procedure

Reinitialization procedures are not always sufficient to conserve the volume of the
structures. An additional numerical procedure introduced in [163] can be used and consists
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in using an iso line of the level set function in the vicinity of φ = 0 in order to keep a
constant volume without changing the form of the interface. At each time tn+1 = (n+1)∆t,
the distance between the two isolines is computed as:

Cn+1
φ =

V n+1 − V n∫
Γ1
dΓn1

(1.38)

where V n+1 − V n =
∫

Ωn+1
1

dx−
∫

Ωn
1
dx the new level set function is computed as:

φn+1 = φn + Cn+1
φ (1.39)

Indeed, at each time using the regularized Heaviside function, the volume is given by:

V (φ) =

∫
Ω

Hε(−φ)dx

and for C ∈ R close to zero we have:

V (φ+ C) = V (φ) + C
d

dC
V (φ+ C)|C=0 + o(C)

where :
d

dC
V (φ+ C)|C=0 =

∫
Ω

−1

ε
ζε(φ)dx

This last term corresponds to the length of the regularized interface. Thus this con-
dition is avalaible if Cφ is sufficiently small and the level set function has to be a signed
distance function close to the interface. This technique avoid the errors accumulations
which can lead to a great mass loss.

1.4.5 Hybrid methods

Hybrid level set methods were developed in order to overcome the main weakness of
the level set method which lies in its inaccuracy to achieve volume conservation. In regions
where the fluid flow is under-resolved, the level set function can not show accurately if
characteristics separate, merge or are parallel which leads to volume loss. To overcome
this problem, several techniques have been designed.

The coupled Level set/VOF methods [166] combines the advantage of the VOF meth-
ods for volume conservation while preserving those of the level set method for the geomet-
ric properties of the curve. Both a level set function and a volume fraction are advected
by the velocity field. Then, the VOF interface is reconstructed by using the normals
computed with the level set function. Finally, the level set function is reinitialized as a
signed distance function to the reconstructed interface.

Introduced in [49], the Particle Level set Method consists in using a level set function
to capture the interface and a set of a Lagrangian particles are seeded in a vicinity of the
interface to correct the location of the interface. The Lagrangian particles are initially
located on each side of the interface and are labelled with the sign of φ. Then, those
markers are transported in a Lagrangian manner, and the level set function is transported
with the continous velocity field. When a particle switchs to the other side of the interface
(for instance if a particle labelled by φ > 0 changes its label), the level set function is
corrected using an algorithm which takes into account the particle positions.
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1.5 Numerical resolution
We present here the numerical resolution of the Navier-Stokes equations and of the

transport equation of the level set functions with the fluid velocity. For a sake of simplicity
we place ourselves in two dimension Ω ∈ R2 and we consider the Navier-Stokes equations
for variable densities and viscosities :

ρ(∂tU + (U · ∇)U)−∇ · (µD(U)) +∇P = f in Ω× (0, T )

∇ · U = F in Ω× (0, T )

∂tφ+ U · ∇φ = 0 in Ω× (0, T )

(1.40)

where ρ and µ are defined in (1.20).
f is a force which depends on the level set function φ. Here, we do not take into

account the immersed structures, only their interfaces are captured and evolved by the
level set functions.

1.5.1 Discretization MAC and space discretization

The system is discretized by a finite difference method on a staggered grid (MAC
type). The pressure function is located at the center of the mesh cells and the velocity
at the center of the sides and the level set function is either located at the center of the
cells for a coarser grid or we use a finer grid for the level set function. The finer grid is
used when the model requires high derivatives of the level set functions see Figure 1.11
in particular we use this discretization for applications to elastic membranes.

The divergence free condition is computed at the pressure point which enforces the
volume constraint accurately.

Figure 1.11: Eulerian coarse (left) and fine (right) grid for the level set function.

1.5.2 WENO schemes for the transport equation

The level set function is transported by means of the equation (4.2). This equation
is either discretized with a WENO5 scheme or with ENO 3 scheme and an Euler explicit
scheme or a Runge Kutta of order 2 scheme in time are used.
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The ENO schemes introduced in [159; 160] use different stencils of the solution in
order to compute the derivatives, depending on the local regularity of the solution one of
this approximation is chosen. Later, in [112] the WENO schemes have been proposed to
improve the ENO schemes which suffers from unstable computation of the solution in the
regular regions. This is achieved by taking a convex combinaison of the three different ap-
proximations of the derivatives. The computation of the weights depends continuously on
the regularity of the solution on each candidate stencil. In the regions where the solution
is irregular the interpolations are affected with a weight close to zero, giving the robust
ENO schemes. In the regions where the solution is regular, the weights are homogeneous
for the three approximations. The weight depends on the local regularity of the solution.

To describe the WENO and ENO schemes we consider an explicit Euler scheme in time
of the transport equation in the two dimensional case. Let ∆x,∆y be the horizontal and
vertical discretization step of the Cartesian mesh. We denote by ∆t the time discretization
step, ui,j and vi,j the horizontal and vertical component of the velocity at the grid point
(i, j) and by φi,j the level set function at the grid point (i, j). The first order explicit
scheme of the transport equation 4.2 is formulated as:

(φn+1
i,j − φni,j)

∆t
+ uni,j∂x(φ

n
i,j) + vni,j∂y(φ

n
i,j) = 0

This scheme is stable under the CFL condition:

∆t <
∆x

max(|u|, |v|)
Adopting an upwing approach and denoting by D−x φ the derivatives at left and D+

x φ the
derivatives at right we get:

∂xφi,j '
{
D−x φi,j if ui,j < 0

D+
x φi,j if ui,j > 0

For the computation of the derivative D−x φ, the ENO 3 schemes choose one of the
three following discretizations:

D−x φ
1
i,j =

1

3
v1 −

7

6
v2 +

11

6
v3

D−x φ
2
i,j = −1

6
v2 +

5

6
v3 +

1

3
v4

D−x φ
3
i,j = −1

3
v3 +

5

6
v4 −

1

6
v5

where:

v1 =
(φi−2,j − φi−3,j)

∆x
, v2 =

(φi−1,j − φi−2,j)

∆x
, v3 =

(φi,j − φi−1,j)

∆x

v4 =
(φi+1,j − φi,j)

∆x
, v5 =

(φi+2,j − φi+1,j

∆x

For the computation of the derivative D+
x φ, the ENO 3 schemes choose one of the three

following discretizations:

D−x φ
1
i,j =

1

3
v1 −

7

6
v2 +

11

6
v3
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D−x φ
2
i,j = −1

6
v2 +

5

6
v3 +

1

3
v4

D−x φ
3
i,j = −1

3
v3 +

5

6
v4 −

1

6
v5

where:

v1 =
(φi+3,j − φi+2,j)

∆x
, v2 =

(φi+2,j − φi+1,j)

∆x
, v3 =

(φi+1,j − φi,j)
∆x

v4 =
(φi,j − φi−1,j)

∆x
, v5 =

(φi−1,j − φi−2,j)

∆x

whereas the WENO 5 schemes choose a convex combinaison of these three discretiza-
tions, the computation of ∂xφ with the WENO 5 scheme is provided by the algorithm 3.

1.5.3 Resolution of the fluid flow equations

The inertial terms of the Navier Stokes equation U · ∇U are either discretized with
a WENO5 schemes described above or with a centered scheme, the diffusion terms with
a second order centered schemes and a projection method is used to decouple the fluid
velocity field and the pressure field.

Explicit projection method

The projection method introduced in the 1960’s by Chorin and Temam, is a very pop-
ular and widely used method to solve the incompressible Navier-Stokes equations.
This efficient approach allows to decouple the fluid velocity and the pressure. Thanks to
the decoupling, fast elliptic solvers can be used to compute the equation on the pressure
field.
Instead of computing simultaneously the momentum equation and the incompressibility
constraint, this technique consists in first computing the momentum equation for an inter-
mediate velocity and then project this intermediate velocity on a space of divergence-free
velocities. Given a time step ∆t, we set tn = n∆t and Un ≈ U(., tn). The first order
explicit scheme is given by:

• Step 1 : Compute an intermediate state U∗

U∗ = Un + ∆t(−Un · ∇Un +
∇ · (µD(Un))

ρ
+
f

ρ
) (1.41)

• Step 2 : Solve the pressure

∇ ·
(∇pn+1

ρ

)
=
∇ · U∗

∆t
(1.42)

• Step 3 : Projection of the velocity on a space of divergence-free velocities.

Un+1 = U∗ − ∆t

ρ
∇pn+1 (1.43)

36



CHAPTER 1. FLUID/STRUCTURE INTERACTION AND LEVEL SET METHODS

Algorithm 3WENO 5 scheme
To compute D−x φ set:

v1 =
(φi−2,j − φi−3,j)

∆x
, v2 =

(φi−1,j − φi−2,j)

∆x
, v3 =

(φi,j − φi−1,j)

∆x

v4 =
(φi+1,j − φi,j)

∆x
, v5 =

(φi+2,j − φi+1,j

∆x

To compute D+
x φ set:

v1 =
(φi+3,j − φi+2,j)

∆x
, v2 =

(φi+2,j − φi+1,j)

∆x
, v3 =

(φi+1,j − φi,j)
∆x

v4 =
(φi,j − φi−1,j)

∆x
, v5 =

(φi−1,j − φi−2,j)

∆x

Compute the regularity coefficients as:

S1 =
13

12
(v1 − 2v2 + v3)2 +

1

4
(v1 − 4v2 + 3v3)2

S2 =
13

12
(v2 − 2v3 + v4)2 +

1

4
(v2 − v4)2

S3 =
13

12
(v3 − 2v4 + v5)2 +

1

4
(3v3 − 4v4 + v5)2

Setting:

a1 =
1

10

1

ε+ S1

, a2 =
1

10

1

ε+ S2

, a3 =
1

10

1

ε+ S3

The weights are given by: 

w1 =
a1

a1 + a2 + a3

w2 =
a2

a1 + a2 + a3

w3 =
a3

a1 + a2 + a3

Finally, the horizontal derivatives are computed by setting:

D+,−
x φ = w1

(
v1

3
− 7v2

6
+

11v3

6

)
+ w2

(
−v2

6
+

5v3

6
+
v4

3

)
+ w3

(
v3

3
+

5v4

6
− v5

6

)
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This ensures that div(Un+1) = 0. For a constant density, the equation (1.42) is a Poisson
equation and can be solved using fast Poisson solvers. The solver used is FISHPACK
which is adapted for MAC grid, it is a Poisson solver based on the Fast Fourier Transform
([168]). This solver allows to resolve numerically problems of the form: −∆U +BU = F
where B is a space constant function. In the case of a variable density function, the
equation (1.42) is solved with a preconditioned conjugate gradient method.

Boundary conditions have to be imposed to the pressure and intermediate velocity in
order to impose the correct boundary conditions on the exact velocity Un+1.
For instance, using the explicit scheme for the Navier Stokes equations with a homoge-
neous boundary condition on the velocity and constant density, we set:U

∗ = 0 on Γ
∂pn+1

∂n
= 0 on Γ

(1.44)

giving:
Un+1 · n = 0 on Γ

where n is the normal to Γ. Thus, an error of order one on time is introduced as Un+1.t 6= 0
where t is the tangential vector. As the diffusive terms are explicited, a condition on the
time step of the form ∆t ≤ CRe∆2

x has to be used. This type of schemes can be used for
moderate Reynolds number.

Implicit projection method

When the Reynolds number is small, in particular for biological applications, an im-
plicit scheme is required.
The first order implicit scheme for the diffusion term is written by:

U∗ = Un + ∆t

(
−(Un · ∇Un) +

(∇ · (µD(U∗)) + f)

ρ

)
(1.45)

∇ ·
(∇pn+1

ρ

)
=

divU∗

∆t
(1.46)

Un+1 = U∗ − ∆t

ρ
∇pn+1 (1.47)

When the viscosity is variable and the density function is constant ρ = ρc or if we can
apply a Boussineq Approximation, a trick is to decompose the viscous terms as:

∇ · (µD(U∗) ' ∆U∗ +∇ · ((µ− 1)D(Un)) (1.48)

so that using the FISCHPACK library, we can solve the following equation on U∗:

U∗ − ∆t

ρc
∆U∗ = Un + ∆t(−(Un · ∇Un) +

∆t

ρc

(
∇ · ((µ− 1)D(Un)) +

f

ρ
)

)
(1.49)

If on the contrary the viscosity is constant between two fluids we define the average of
the density as ρ0 = (ρ1 + ρf )/2 and we solve:

∇ · (µD(U∗) ' µ

ρ0

∆U∗ + (
µ

ρn
− µ

ρ0

)∆U∗ (1.50)
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Finally we can compute U∗ as:

U∗ −∆t
µ

ρ0

∆U∗ = Un −∆t(−(Un · ∇Un) + (
µ

ρn
− µ

ρ0

)∆U∗ +
f

ρ0

) (1.51)

When using the implicit scheme, one has to be careful with the imposed boundary con-
ditions imposed to the pressure and U∗.
Indeed, for the case of homogeneous boundary conditions, if we impose:

U∗ = 0,
∂pn+1

∂n
= 0 on Γ (1.52)

and denotes by n the normal to the boundary Γ and using the equations, we obtain:

Un+1 = 0 or
∂pn+1

∂n
= 0

This induces significant errors close the boundary Γ, see for instance [36; 66; 186]. To
remedy to this problem, a large amount of researchs has been dedicated to the improve-
ment of the Chorin Temam projection method. For instance, in [99; 130] the boundary
condition of the velocity U∗ is modified by introducing a pressure gradient. In [96; 136],
projection schemes based on an exact condition on the pressure field are developed.

Conclusion

In this chapter, we have described some numerical methods for fluid/structure
interaction. In this work, we adopt a fully eulerian formulation of the fluid/structure
interaction. Within this framework, we used the Level set method to capture inter-
faces. Among the various Front-capturing methods, the level set technique is the
most adapted to this work for several reasons. First, the level set function can be
defined as a signed distance function providing informations on the distance to the
interface. Secondly, geometrical properties of the curve like the normal and curvature
are explicitly provided by the derivatives of the level set function. Moreover, other
properties like the stretching are explicitly computed by means of the level set func-
tion as we will see in Chapter 6. An other advantage of this method for this work,
is that one level set function can captures several interfaces. Moreover, as we have
seen, the level set method is easy to implement and the obtained solvers can be fast
if the appropriate precautions are taken. We also present the numerical resolution
of the fluid equations and the transport equation of the level set function. A time-
independent Cartesian mesh is used to discretize the equations with two different
resolutions for the level set function: the finer grid will be used for the simulation
of immersed vesicles as high derivatives of the level set function are required. The
resolution of the incompressible Navier-Stokes equations is achieved by means of a
projection method of Chorin type, the implicit scheme for the diffusion term is used
for the simulation of immersed elastic membranes, whereas for moving rigid bodies
the explicit scheme is more convenient.
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In this chapter, we present the model that allows to locate each structure and its
neighbor in the all fluid/structure domain. This approach is an adaptation of the multi
geometric deformable model (MGDM) [11] that was introduced by J. Bogovic for image
analysis. The MGDM method is a multi-object extension to the conventional geometric
level set formulation of active contours [23].

We consider a bounded domain Ω ⊂ Rd (d = 2 or 3) that contains N structures
immersed in a fluid. We denote by (Ωi)i=1,..,N the N structures and the surrounding fluid
is denoted by ΩNf where Nf = N + 1. The entire fluid/structures domain Ω is partitioned
into N + 1 objects as follows:

∀i 6= j,Ωi ∩ Ωj = ∅
ΩNf = Ω\{⋃N

i=1 Ωi}
ΓNf =

⋃N
i=1 Γi

⋃
∂Ω.

(2.1)

2.1 Level set models to capture multiple interfaces

As discussed in the last chapter, the level set method is an efficient approach to
capture and evolve structures in a domain. When dealing with several structures one
has to choose the right level set model to capture all the structures and alleviate the
computational cost due to an increasing number of particles. Moreover, being able to
distinguish each structure in the domain and preventing numerical contacts is necessary
for the applications we aim at dealing with. We present here some existing level set models
which allows to capture and evolve multiple interfaces.
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2.1.1 One level set function

One level set function can capture an arbitrary number of interfaces between the cells
and the fluid. Let φ be the level set function which captures the union of the N cells Ωi,
i ∈ {1, ..., N}, it is defined by:

φ(x) =

{
−d(x,∪Ni=1Γi) x ∈ ∪Ni=1Ωi

d(x,∪Ni=1Γi) elsewhere.

Using one single level set function yields a very low computing time as it is independent
on the number of cells. In the fluid/structure framework, the level set function can be
transported by the fluid velocity. However, while an advantage of the level set method is
to handle automatically changes of topology, in our case this property is problematic as
splitting or merging of interfaces are directly taken into account by the level set function.
Indeed, if two cells are too close the curvature and the normal are not well computed and
a strong drawback is that we do not have any information on the distance between cells.
Moreover, it is not possible to specify a different velocity model and/or a force for each
cell only based on the level set value. So this capturing approach can lead to collision and
merging of the structures.

2.1.2 Level set decomposition

Another way to capture multiple interfaces is to use one level set function for each cell.
Then, each cell interface Γi is captured by one level set function φi. Thus, it is possible
to specify a different speed or force to a cell Ωi by using the level set function φi and we
get the distance between all the cells.
Indeed, the distance between two cells Ωj and Ωi is given by the level set functions φi and
φj as follows:

∀x ∈ Ωi, φj = d(x,Γj) or ∀x ∈ Ωj, φi = d(x,Γi)

This multiple level set decomposition has been widely used in image segmentation
and in fluid/structures interaction. A big inconvenient is its computational cost when
the number of cells increases as N transport equations and N reinitialization are required
to evolve the structures and to maintain the N level set functions as signed distance
functions.

2.1.3 log2(N) level set

An interesting approach has been introduced in [184] , log2(N) level set functions are
used to capture N interfaces. This idea is based on the four colour theorem. For instance
for seven particles, we have eight regions and these regions can be described by three level
set functions using the sign of these functions, see Figure 2.1. However, each level set
function captures multiple interfaces. As a result we do not have information on all the
distance between the particles.

For image segmentation where the distance is not required it is a very desirable model
as it reduces the computational cost compared to the level set decomposition (N level set
functions).
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Figure 2.1: log2N level set model.

2.2 Starting point of the method
As stated above, one can consider N level set functions to capture the N structures.

Let φi denotes the level set function which captures the interface Γi.
The starting idea of the MGDM method [11] is based on one simple observation: each
level set function φi(x) can be decomposed into several distance functions depending on
the location of x in the domain Ω.
Let us take the example of three bodies immersed in a fluid ΩNf

, as illustrated in Figure
2.2.
Let the level set function φ1 be a signed distance function :

∀x ∈ Ω, φ1(x) =

{
−d(x,Γ1) x ∈ Ω1

d(x,Γ1) otherwise
(2.2)

where:
d(x,Γ1) = min

y∈Γ1

‖x− y‖.

If a point x is in Ω1, then φ1(x) = −d(x,Γ1) = −d(x,ΓN+1). Therefore, the absolute
value of φ1(x) corresponds to the distance to the first closest object ΩN+1, that is the
object corresponding to the fluid.

If x is in Ω2, φ1(x) is either the distance to the second closest object to x (in the left
region of Ω2) or the distance to the third closest object to x (in the right region of Ω2).

Similarly, for a point x belonging to the body Ω3, φ1(x) identifies the distance to the
third closest object.

Therefore, depending on the location of x in the domain, the level set function φ1 is
either the distance to the first, the second or the third closest objects. In the same way,
φ2 and φ3 can be decomposed into these three distance functions.
To extend this approach to an arbitrary number of structures N , one can introduce a set
of label maps L0, L1, L2,..,LN as:
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∀x ∈ Ω,∀i ∈ {1, ..., N + 1},



L0(x) = i if x ∈ Ωi

L1(x) = arg min
j 6=L0(x)

d(x,Γj)

L2(x) = arg min
j /∈{L0(x),L1(x)}

d(x,Γj).

: :

. .

LN(x) = arg min
j 6=Lk(x),k=0,...,N−1

d(x,Γj).

The label map L0 provides a partition of the whole computational domain Ω into N + 1
different objects. The label maps Lk(x), k = 1, .., N identifies the index of the kth closest
object for any point x of the whole computational domain Ω. For each point x in Ω, if
Lk(x) = i then the object Ωi is the kth closest object to x.
By means of these label maps one can recover the N signed distance functions as follows.

∀x ∈ Ω,∀i ∈ {1, ..., N + 1}, φi(x) =



−d(x,ΓL1(x)) if i = L0(x)

d(x,ΓL1(x)) if i = L1(x)

d(x,ΓL2(x)) if i = L2(x)

: :

. .

d(x,ΓLN (x)) if i = LN(x)

For a point x in Ω, d(x,ΓLi(x)) is the distance to the ith closest object to x. In the

Figure 2.2: Partition of the domain Ω for a configuration of three bodies.

case of two immersed bodies, the label maps L0, L1 ,L2 allow to recover exactly the two
level set functions. The proposed model only use the three label maps L0, L1 and L2 and
there associated distance functions, in particular to recover the N level set functions in a
neighborhood of interfaces.
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2.3 The three label maps
At every point x of the fluid/structure domain Ω, the label maps L0, L1 and L2 are

defined as:

∀x ∈ Ω,∀i ∈ {1, ..., N + 1},
L0(x) = i if x ∈ Ωi

L1(x) = arg min
j 6=L0(x)

d(x,Γj)

L2(x) = arg min
j /∈{L0(x),L1(x)}

d(x,Γj).

or equivalently: 
L0(x) = i if x ∈ Ωi

L1(x) = j if the first closest object to x is Ωj

L2(x) = k if the second closest object to x is Ωk.

The label map L0(x) gives the object number to which the point x belongs. The label
map L1(x) and L2(x) identifies the index of the first and second closest object for any x
in the whole computational domain Ω. As a consequence, the label map function L2 gives
the index of the first closest cell for any x in the whole computational domain. Moreover,
for each point of a solid the label map L1 corresponds to the index of the fluid.

∀x ∈ Ω, ∀i ∈ {1, ..., N},


L0(x) = i if x ∈ Ωi

L1(x) = Nf

L2(x) = k if Ωk is the first closest structure to x.

The Figure 2.3 gives an illustration of the label maps L0, L1 and L2 related to the
Figure 2.2. The red color represents the object related to the fluid. For each point of a
cell the label map L1 corresponds to the red color. Moreover, the label map L2 gives the
index of the first closest cell for any x in the whole computational domain. For instance,
if a point x belongs to the green body ,the label map L2 corresponds to the closest cell
that is either the yellow one (in the left region) or the blue one (in the right region). For
all points x belonging to the blue body, the first closest cell is the green one. Likewise,
for all points x in the yellow body, the label map L2 corresponds to the green one.

The Figure 2.4 shows an illustration of the three label maps in the case of five struc-
tures.

We can see that for all points belonging to the surrounding four cells ( green, yellow,
purple and light blue objects), the closest structure is always the blue one. On the
contrary, the label map L2 has partitioned the blue object into four regions, each of
them giving the color of the closest structure. Therefore, the three label maps provide an
interesting local description of the entire fluid/structure domain Ω. At each point of the
fluid/structure domain we have the index of the first and second closest object. This local
representation of objects has to be completed with the two distance functions associated
to L1 and L2.
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Figure 2.3: Illustration of the three label maps L0, L1, L2 from left to right.

Figure 2.4: Illustration of the three label maps for a configuration of five cells, from left to right:
L0, L1 and L2. The white contour represents the boundary of the cells.

2.4 Distance functions
The distance functions associated to the first and second closest object are:

∀x ∈ Ω,

{
ϕ1(x) = d(x,ΓL1(x))

ϕ2(x) = d(x,ΓL2(x)).
(2.3)

The distance ϕ1(x) is the distance from x to the first closest object’s boundary ΓL1(x) and
ϕ2(x) is the distance from x to the second closest object’s boundary ΓL2(x). At any point
of the domain Ω, the distance function ϕ1 captures the union of all cells interfaces and ϕ2

provides the distance to the first closest cell. As a consequence, on each point of a cell,
we have the distance to the closest one allowing to define a collision model to the closest
interface. The Figure 2.5 shows an illustration of these two distance functions associated
to the label maps 2.3. The distance ϕ1 captures all interfaces and provides the distance
to the closest one at all points of the domain. For a point x belonging to the green object,
the distance function ϕ2 provides either the distance to the blue object (in the left region
where the label map L2 corresponds to the blue object) or to the yellow one (in the right
region where the label map L2 corresponds to the blue object). Similarly, for all points
belonging to the blue and the green object, ϕ1 is the distance to the green one.

Figure 2.6 shows an illustration of the two distance functions related to the label maps
of the Figure 2.4. If we take a point x belonging to the blue object, as this object is par-
titioned into four regions by the label map L2 (see figure 2.4), ϕ1 is in the yellow region
the distance to the yellow object, in the green region the distance to the green object and
so forth. For all points belonging to the four surrounding bodies that is the yellow, green,
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purple and light blue objects, ϕ1 is the distance to the blue object.

The three label maps, L0, L1, L2 and the two distance functions ϕ1 and ϕ2 provide
information concerning the location of each structure in the domain Ω and the distance
to the first closest structure (ϕ2).

These informations are sufficient to handle numerical collisions between cells as will
be shown later. In fact, avoiding contacts is equivalent to require:

∀x ∈ Ω , ϕ2(x) > 0.

Figure 2.5: Illustration of the two distance functions for a configuration of three circular cells,
from left to right: ϕ1 and ϕ2. The white contour represents the boundary of the cells.

Figure 2.6: Illustration of the two distance functions for a configuration of four ellipse, from left
to right: ϕ1 and ϕ2. The white contour represents the boundary of the circular cells.

2.5 Reconstituted level set functions
For some applications, we need to specify a speed or a force independently for each

structure, in that case it is more convenient to recover the N level set functions close to
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the bodies interfaces.
For instance, an application to rigid bodies requires the computation of the rigid velocities
for each structure.
Using the two distance functions the N level set functions can be defined as:

∀x ∈ Ω,∀i ∈ {1, ..., N + 1}, φi(x) =


−ϕ1(x) if i = L0(x)

ϕ1(x) if i = L1(x)

ϕ2(x) if i = L2(x)

C otherwise

where C >> 1. These functions are negative inside each object, positive outside and
Lipschitz continuous. Therefore, they are still level set functions, and in a neighbourhood
of each object, each level set function is a signed distance function. These functions
are explicitly defined by the distance ϕ1 and ϕ2, thus instead of evolving each level set
function one can also evolve the two distance functions and the three label maps.
An illustration of these functions is given in the Figure 2.7 in the case of three bodies
having the same configuration as in Figures 2.3 and 2.5. The white contour represents
the boundary of the cells. The constant C is fixed to one for illustration. We can see that
on the left region of the fluid/structure domain Ω, φ1 is a true signed distance function
to the boundary Γ1. In fact, inside the body Ω1 (the blue object) (L0 = 1), φ1 = −ϕ1

where ϕ1 is the distance to the interface Γ1. Then, while Ω1 is the first closest object
(L1 corresponds to the blue object), or the second closest object (L2 corresponds to the
blue object), the level set function φ1 corresponds to the signed distance function to the
boundary Γ1. Likewise, on the right part of the domain Ω, φ3 corresponds to the signed
distance function associated to the boundary of Ω3. In this configuration, the level set
field φ2 is a true signed distance function in the all computational domain, as for all point
x in Ω\Ω2, the green object Ω2 corresponds either to the first closest object (L1(x) = 2)
or to the second one (L2(x) = 2) (see Figure 2.3).

Figure 2.7: Illustration of the three reconstituted level set functions for a configuration of three
cells (Figure 2.2).
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Conclusion
In this chapter, we have described the interface capturing method proposed by J.
Bogovic and exploited it in the context of multiple structures immersed in a fluid.
The label L0 provides the location of each structure in the domain, the distance
function ϕ1 allows to capture the union of all interfaces by means of the label map L1

which gives the indice of the first closest object. The distance field ϕ2 associated to L2

provides the distance between the closest structures at all points of the fluid/structure
domain. These five functions will enable us to define a collision model in order to
avoid numerical contacts between the structures.
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For the numerical simulation of more than one particle evolving in a fluid, a numer-
ical strategy is required to avoid contacts and overlaps of the smooth particles although
theory [77; 78] demonstrated that two perfectly smooth particles can not enter in contact
in finite time, this phenomenon is due to the presence of a thin-layer of viscous fluid in
the interstitial gap between two close particles.

This chapter is organized as follows:
Section 1 is dedicated to the hydrodynamical interactions, in particular we present some
existing methods developed to prevent numerical contacts. In Section 2, the collision
model introduced in [31] is described. Section 3 is devoted to the description of the
proposed collision model to avoid contacts between the particles. Finally, in the last
section we give a comparison of the collision model [31] and the proposed model, an
estimation of the error between the two forces is given and the error induces on the
velocity flow is investigated by considering two Stokes problem.

3.1 Lubrication forces

Within a dense suspension of particles immersed in a fluid, different forces and phe-
nomena are responsible for the motion of the particles.

When the effect of the fluid is neglible, only the gravity force and the interaction be-
tween particles are responsible for their motion. This is called the frictional regime, and
corresponds to the case where the energy dissipated by friction is of the same order than
the energy dissipated by the relative motion of the particles. Two types of interactional
forces are possible between particles: the collision force and the friction force which obeys
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to the Coulomb Law.

Otherwise, the viscous regime corresponds to the case where the particles are driven
by the fluid flow. The velocity field of each moving particle is transmitted to the fluid
flow which induces forces and torques on the other particles. In the context of several
immersed structures, the hydrodynamical forces play an important role in the dynamic
of the bodies. In particular, these forces are responsible for the increase of the viscosity
in dense suspensions.

The Hydrodynamical Interactions (HIs) have different characteristics which render
them difficult to deal with. First, the behaviour of these forces is different if two particles
are close or far from each other. These forces are long-range attractive forces and become
repulsive forces when the gap between two particles is small. These repulsive forces are
called lubrication forces. Moreover, the HIs are changed between a pair of particles if
a third one is present in their vicinity. From a numerical point of view, in the context
of an Eulerian fluid/structure model, the HIs are well computed as long as the particles
are far enough from each other. We focus here on these short-range repulsive forces. We
first discuss the origins of the HIs. Then, we describe some theoretical and numerical
models used in the litterature to modelize these forces and to include them in numerical
simulations.

3.1.1 Origins of the lubrication forces

Lubrication forces play a key role when two or several bodies are close to each other.
When two particles are approaching each other, the interstitial fluid can not be evacuated,
as a consequence high pressure gradient develops in the interstitial gap in order to squeeze
out or push in the fluid, opposing the relative movement of the particles. High pressure
gradients develop in the form of Poiseuille-type flow and depend on the relative motion of
the particles, an illustration is given in Figure 3.1. The action of this force is dissipative
as there is no force if the particles are steady.

This force is proportional to the inverse of the separation distance between the parti-
cles, to the viscosity of the fluid, to the relative velocity and to the size of the particles.
Indeed, when the separation distance becomes smaller and the viscosity greater, the oppo-
sition of the fluid to the relative movement of the particles is more important. Moreover,
the greater the relative velocity between the particles is, the greater the force will be and
its sign is associated to the relative velocity. Its dependence on the size of the particles is
straightforward, as if we take the case of a particle Ω2 falling on an immobile sphere Ω1,
the larger the size of Ω2 is, more it is difficult for the interstitial fluid to get away leading
to an increase of the resistance of the fluid flow.
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Figure 3.1: Fluid flow between two smooth spherical particles near contact, for two different
relative motions.

3.1.2 Analytical models

To understand the lubrication interactions and to integrate them in numerical simu-
lations, analytical models were developed to compute these lubrication forces correctly.
These models were mostly developed in the context of low Reynolds number in order to
use Stokes equations. The basic idea is to expand the analytical solutions for the lubri-
cation forces when the distance between two solids tends to zero. Thanks to the linearity
of Stokes equations, the hydrodynamic forces/torques are linear functions of the transla-
tional and rotational velocity U of the particle.

The first analytical models were developed for the interaction of a sphere and a plane-
wall immersed in a Stokes flow.
In [16] and [120] the exact expression of the lubrication force is given, a development at
large distance values is achieved in the case of a sphere close to a wall evolving in a Stokes
flow.
In [69], an asymptotic development of the solutions of the Stokes equation for translational
and rotational motions of a sphere is achieved. The authors provide the second term of
the lubrication force when the distance between the sphere and the plane wall tends to
zero. The test case of a sphere falling on a inclined wall is numerically investigated, and
results confirm that the sphere can not be in contact with the wall.
All these models provide an exact solution of the lubrication forces in the dimension two
with a first term formulated as:

Flub,w,2D = −6πµ
rU

δ
(3.1)

where µ is the dynamic viscosity of the fluid, r is the radius of the particle, δ the separa-
tion distance between the particle and the wall and U the velocity of the particle.
In fact, the first term −6πµrU corresponds to the drag applied on a sphere moving in a
quiescent fluid given by Stokes in 1851. In [135] and [30] a correction of this approxima-
tion to δ ln(δ) is proposed.

The three-dimensional case has also been studied in [69], for a separation distance
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δ << r2, the authors obtain the following approximation:

Flub,w,3D ∼ −6πµr2U

δ
(3.2)

The lubrication force is proportional to the size of the particles, the viscosity of the fluid,
the inverse of the separation distance and the relative velocity of the particles. Several
experiments (see for instance[2; 193]) confirm these approximations.

For two spheres approaching each other, in [35], an asymptotic development on the
power of the separation distance gives an equivalent of this force when it tends to zero.
For an immobile sphere of radius r1 and sphere of radius r2 moving with a velocity U2,
one gets the first term of this force as:

Flub,p,2D = −6πµ
r2

1r
2
2

(r1 + r2)2

U2

δ
+O(ln(δ)) (3.3)

where µ is the dynamic viscosity of the fluid and δ the separation distance between
the two spheres. Correction to ln(δ) acting on the spheres have been determined in
[117; 134]. Then, the authors in [89] provide an asymptotic solution at order δ ln(δ) for
two converging spheres of different radii. The case of relative translation and rotation
has also been considered in [30; 134]. For two disks Ω1 and Ω2 having the same radius
r1 = r2 = r, the normal lubrication force [30] due to relative translation is expressed as:

F 2,1
n = −6πµr

(
1

2δ
− 9

20
ln(δ)− 3

56
δ ln(δ) +O(1)

)
× (U2,1 · e1,2)e1,2 (3.4)

where e1,2 denotes the normal vector along the line of the centers of the particles, δ is the
separation distance and U2,1 = U2 − U1 is the relative velocity.
Following [134], the tangential component of the lubrication force due to the relative
translation along the line of centers is:

F 2,1
t,n ' −6πµr(U2,1 − (U2,1 · e2,1).e2,1) ln(δ) (3.5)

Denoting by w1 and w2 the rotational velocity of the particles and w1,2 the relative rotation
about an axis perpendicular to the line of centers, the associated tangential force is:

F 2,1
t,w =

πµr2

5
(w1,2 − 4(w1 + w2))× e2,1) ln(δ) (3.6)

It appears that the component of the lubrication forces having the most effect on the
particles is the normal one as it is proportional to 1

δ
whereas the dominant term of the

translational and rotational component is ln(δ). Thus, it tends more slowly to infinity
when the distance δ tends to zero.
In fact, the tangential force exerted by the fluid on a body is a viscous shear force. That
is this force depends on the viscosity of the fluid and the roughness of the surface of the
particle. In this work, we only consider smooth particles.

Following [100] , the normal and tangential lubrication force acting on a particle Ωi

by the body Ωj can be expressed as:

Fi→j = −Fj→i = −k(Dij)(Uij.eij).eij − k⊥(Dij)(Uij.e
⊥
ij).e

⊥
ij (3.7)

52



CHAPTER 3. COLLISION STRATEGY

where:
Uij = Ui − Uj, k(Dij) =

Cij
Dij

, k⊥(Dij) = C⊥ij ln
ε

Dij

The coefficient Cij depends on the local radii of curvature of the particles and on the
viscosity of the fluid, ε corresponds to the characteristic size of the bodies and gives the
distance of activation of the forces. For two spherical particles Ωi and Ωj of radius ri and
rj immersed in a fluid of viscosity µ, the coefficient Cij is:

Cij = 6πµ
r2
i r

2
j

(ri + rj)2

This first order approximation of the lubrication force has been used for instance in
[121]. The first step of the method proposed in [121] is to compute the distance between
the particles, then the lubrication forces are computed one by one for each particle and
finally the velocities and particles positions are updated. In the case of a large number of
particles, this approach can induce a large computational cost and can lead to overlap.

3.1.3 Numerical strategies

The lubrication forces avoid collisions of bodies, during numerical calculations, the
accumulation of space and time discretization errors does not allow to capture accurately
these forces.

A first approach proposed in [81] is to refine the mesh in the inter particle gap in
order to resolve accurately these lubrication forces. However, this strategy leads to a high
computational cost as several refinements are necessary and the frequency of refinements
is not known a priori. Moreover, the interparticle distance can be very small (around
10−5 times the size of the particles [128]). Consequently, using this approach in the case
of a large number of particles in particular in three dimensions looks impossible, the only
application in three-dimensions has been achieved in [90] for five spheres. Even with the
body-fitted mesh approach, dealing with a large number of particles induces a high com-
putational cost.

An other technique is to add the theoretical lubrication forces only when the gap
between the bodies is less than a given distance. Thus, when the particles are far from
each other the hydrodynamical forces are well computed by the fluid solver, and when
the intertitial gap becomes small a correction of the uncomputed lubrication forces is
added. The value of the smaller gap width for which we can not compute correctly these
lubrication effects has been determined in the case of a sphere approaching a wall [16] or
for two spheres [30] by using asymptotic expansions of the analytical solutions. In [121],
the lubrication forces are added to the numerical model and act like a correction of the
lubrication forces when the particles get close. The considered lubrication forces are an
extension of the asymptotic expansion introduced in [100] for the case of multiple parti-
cles. In this approach overlap of the particles can occur and if it happens the particles
are artificially separated and kept at a certain small distance.
The same approach is used in [39], the lubrication forces are computed using the distances
between particles and then incorporating into the fluid equations. Only the pair-wise par-
ticles being at a critical distance are considered, in order to reduce the computational
cost. However, this approach is not sufficient to deal with numerical contacts. Indeed, as
the lubrication forces are singular, the obtained system is stiff and numerical errors due
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to time discretization leads to numerical contacts. To remedy this problem, a short-range
repulsive force is added.
The correction of the lubrication forces has been largely used in [17; 98; 133; 170; 192].
Most of these models authorize the physical contacts (rough particle are considered for
instance). So models to take into account particle collisions are added.

For N particles, all these approachs approximate these interactions as a sum of pair-
wise particles interactions. As the theoretical lubrication forces are only known for two
particles, the interactions between the N particles is considered as the sum of the all
possible interactions between all the possible pair of particles.
Even if these interactions are short range, it has been shown in [26], that in a system with
many particles, making this assumption leads to unprecise computation of the forces.
In particular, they show that the contribution of three particles is affected. Ignoring
the multi body effects in a dense colloidal suspension can completely change the dynam-
ics. This kind of problem has been observed in the case of the structure of some materials.

In [188], a more accurate method is proposed to compute correctly these forces for
three spheres immersed in a viscous fluid. The main drawback is that the proposed ap-
proach is difficult to apply for more than three particles.

In [108], the authors propose a method to compute very accurately the lubrication
forces without any approximation based on [107] . The main idea of this approach is
to decompose the initial velocity flow into a singular part which contains the lubrication
forces and a regular part . The regular part is solved using a fluid solver and the singular
one is decomposed over the set of pair-wise close particles. To compute the singular
lubrication part, the same approach as in [47] is used. Then, the velocities are corrected
using the initial velocities to obtain the original problem.

Other collision strategies less respectful of the underlying physics have been developed.
In [122], a minimal distance is imposed between cells to forbid overlaps, this was achieved
by using a minimization procedure on a global functional of the cells position, this tech-
nique represents an efficient way to control the distance between structures. The velocities
are projected into a space of admissible velocities which ensures that no contact between
the structures or overlaps will occur, the velocities are thus forced to stay into this space
at each time step. At each time step, distance between particles are calculated, if this
distance is smaller than a certain value, the minimization procedure is activated to com-
pute the new velocities and finally update the particles positions. The advantage of this
method is that a minimal distance between the particles is maintained in a global way
contrary to the approach in [121] for which the repulsive force are computed one by one
for each particle. This method can deal with multiple contacts and large time step. For N
particles in two dimension, the system of equations to solve consists of 2N +N((N −1)/2
components.
In [124] a scheme for inelastic collisions is developed allowing to impose a minimal distance
between the cells. It has been used to model crowd motion ([127]) for active suspensions
[42], for rigid particles[50; 180]. In [125] a gluey particle model is introduced for rigid
bodies immersed in a viscous, incompressible fluid. This model takes into account the
viscous effects between the particles. It is based on a first order approximation of the
lubrication forces and is built by considering a vanishing viscosity of the fluid.
The extension to multiple particles has been achieved in [107] and is based on the pro-
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jection of the velocities onto a set of admissible velocities. In order to reduce the com-
putational cost due to a large number of particles, the projection of the velocities is only
activated for close particles.

Other methods less popular exist like in [118] where the size of the particles are changed
in order to increase the size of the gap between the structures.

An other way to impose a minimal distance between particles is to add short range
repulsive forces. The short range repulsive forces try to mimic the behaviour of the
lubrication forces by avoiding them from entering in contacts.
In [65] artifical short range repulsive forces between spherical rigid bodies are introduced
and avoid overlapping of the particles. Smooth collisions are considered meaning that at
the contact points of the particles the rigid bodies velocities coincides.
In [162], a modified repulsive force is proposed and allows the particles to overlap slightly
each other, the repulsive force is only activated when the particles overlap. At each
grid point of the overlapping regions, the constraint of the closer particle to that point
is imposed. Different parameters have to be chosen like the intensity of the force, the
distance of activation or whether the value of the rebound. This is a big drawback as
according to the chosen parameters, the effect of these forces can completely change the
dynamics of the particles [19; 38; 46; 191]. In [43] a non-parametric model is proposed
to treat collisions. Following [65], a collision model is developed in [31] for rigid bodies
having more general shapes.

3.2 A collision model in the case of a level set decom-
position

We present in this section the collision model proposed in [31]. This model was de-
veloped within a level set framework in the context of fluid/rigid bodies interaction. The
level set decomposition is used in such a way that each body interface is captured by one
level set function. The advantage of capturing the N structures with N level set functions,
is that we know exactly at all points of the computational domain, the distance between
each structure. Moreover, the repulsive forces can be distributed on each body interface.
When two solid bodies immersed in a viscous fluid get in contact, a part of the energy is
diffused into the fluid in a neighborhood of the particles (boundary layer). This model
allows the conservation of the energy.
Moreover, in the case of small number of particle no parameters is required.

3.2.1 One dimensional model

These repulsive forces has been introduced by considering a one dimensional model
like in [65]. Let z(t) > 0 defined the position of a solid body and z = 0 represents the
location of a solid wall. The dynamical system chosen in [31] is:

..
z =

k

z
exp(− z

εb
)

This dynamical model acts on a width of order εb at the wall z = 0. It is short range
and singular at the contact point in order to avoid overlaps. Its potential energy is given
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by:

Ep(z) =

∫ z

εb
1

εb

k

s
exp(−s)ds

The coefficient εb is of the same dimension of the width of the rebound. Indeed, let us
take the following system : 

..
z = k

z
exp(− z

εb
)

z(0) = 1
.
z

(
0) = v0 < 0

(3.8)

If we denote by zmin the minimal location of the particle (a point at which the velocity is
zero), the energy conservation gives:

Ep(zmin) = −1

2
v2

0 (3.9)

leading to:

zmin = εbF
−1(

v2
0

2k
), for εb << 1 (3.10)

where F is given by:

F (z) =

∫ 1

εb
z

1

s
exp(−s)ds

Thus the coefficient k scales as the square of a velocity. Let z(t) be immersed in a fluid of
viscosity µ, z = 0 represents the location of the wall. Let r be the radius of the solid z(t),
using the first order development of the lubrication force and the fundamental principle
of the dynamics we have:

m
..
z = −6πµr2

.

z(t)

z(t)
+mgz(t)

Using this model, A. Lefebvre shows in [106] that no contact occurs in finite time.
Consequently, in order to mimic the behavior of the exact lubrication force when the

immersed solid body is approaching the wall, the coefficient k has to be proportional to
the size of the particle and to the relative velocity.

3.2.2 Level set framework

In the level set framework, multiple level set functions are used in order to partition
the entire computational domain with each level set representing a distinct structure.
Consider N bodies immersed in a fluid and denote Fj,i the force applied by the body Ωj

to the body Ωi and φi the level set function which captures the boundary Γi of the body
Ωi. The distance of a point x of Ωi to the body Ωj is given by φj(x) and the direction of
the force Fj,i is obtained directly by ∇φj.
Moreover, to localize the interface Γi one can use the delta function ζ regularized on a
thickness ε on each part of the interface. The short range repulsive force is formulated as:

∀x ∈ Ω, Fj,i(x) =
k

ε
ρ(x)ζ

(
φi(x)

ε

) ∇φj(x)

φj(x)
exp

(
−φj(x)

εb

)
(3.11)
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Consequently, we obtain the following collision model:

∀x ∈ Ω, Fglobal(x) =
N∑

i,j=1
i6=j

ρ(x)
k

ε
ζ(
φi(x)

ε
)
∇φj(x)

φj(x)
exp

(
−φj(x)

εb

)
(3.12)

where k is a repulsive constant proportional to the square of the relative velocities of the
corresponding bodies just before collision.

The density function ρ is given by:

ρ = ρf +
N∑
i=1

(ρf − ρi)χi.

where χi is the regularized characteristic function of the body Ωi:

χi = 1−H(
φi
ε

)

The coefficient ε represents the half thickness of the interface on which we apply the
repulsive force. The interaction forces tend to zero out of a cut-off radius reducing the
number of interacting neighbours (see Figure 3.2).
The coefficient εb represents the rebound coefficient. In [31], this value is fixed to ε. In
fact, when the distance is equal or higher to εb the repulsive force is almost zero like we
represent on Figure 3.2, thus increasing εb increase the activation distance of the force
leading to a higher minimal distance between particles.

The shape of the bodies is taken into account as it is applied on the surfaces of the
bodies. Thus, for two spheres Ωi and Ωj with radii ri > rj, the support of the regularized
delta function ζε(φi) is higher than the one of ζε(φj), thus the smallest particle will be
pushed with a higher intensity.

To a certain extent, this collision model try to mimic the lubrication forces as the
repulsive forces are short-range, the coefficient is proportional to the relative velocities of
the solid bodies and the shape of the bodies is taken into account.
This collision model accounts for all possible interactions between the N bodies. The
major drawback of this model is that for N bodies captured by N level set functions, N2

computations of the repulsive forces are required, which represents a huge computational
effort.

57



CHAPTER 3. COLLISION STRATEGY

Figure 3.2: Behaviour of the repulsive force according to the distance r and the rebound εb.

3.3 The proposed collision model using the two dis-
tance functions

We present in this section the collision model used in this work. This collision model
is an adaptation of the collision model described above. We first present the direct
application of the collision model using the label maps and distance functions. Then,
we describe how the repulsive coefficient is computed for several solid bodies and using
the distance function ϕ2. The short-range repulsive force avoid particles from merging, a
minimal distance is always kept between two particles.

3.3.1 Short-range repulsive force

To reduce the high computational cost of (3.12) we propose to adapt Fglobal so that it
depends only on the two distance functions ϕ1 and ϕ2. It comes:

∀x ∈ Ω, Flabel(x) =
k

ε
ρ(x)ζε (ϕ1(x))

∇ϕ2(x)

ϕ2(x)
exp

(
−ϕ2(x)

εb

)
(3.13)

The term ζε (ϕ1(x)) gives the location of the union of all interfaces. Thus, this force
has its support on a subset Γε = {x ∈ Ω, ϕ1(x) ≤ ε}. Moreover, it takes into account
the interaction between the closest cells at all points. Indeed, as ϕ2 is the distance to the
second closest object at all points of the fluid/structures domain, if a body is surrounded
by other bodies the interaction of the other structures are taken into account on different
part of its interface.

For instance, in Figure 3.3, two different configurations of bodies are illustrated.
In the first configuration, the repulsive force applied to the blue surrounded body comes
from the four surrounding bodies as the label map L2 has partitioned it into four parts.
On the yellow part, the force applied is the one exerted by the yellow cell and so forth.
On the four surrounding cell, only the forces exerted by the blue body is applied.
For the second configuration, only the green, purple and white blue particles exerted
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forces on the blue cell. As the yellow particle is far, the only forces exerted on it is the
one coming from the white blue particle.

The advantage of this formulation is that we get rid of the sum in (3.12) leading to a
considerable saving of the computation as there is only one repulsive force for an arbitrary
number of objects.

As proved in proposition 1 below, if two cells are at a distance greater than ε, the
force becomes small. Moreover, numerical tests provide evidence that, in that case, this
force does not change the dynamics of the bodies.
The parameter εb corresponds to the distance of activation of the force, numerically this

Figure 3.3: Illustration of the three label maps for two different configuration of five cells (top
and bottom), from left to right: L0, L1 and L2. The white contour represents the boundary of
the cells.

parameter is fixed to the minimal distance between two particles. The intensity of the
force is controlled by the repulsive parameter k.

3.3.2 Computation of the intensity of the repulsive force

The choice of the parameters involved in collision models is a difficult task, as accord-
ing to the choice of the parameters one can obtain different dynamics of the solid bodies,
in particular when one deals with dense suspensions.
Numerically, in [31] the repulsive coefficient k is chosen equal to the relative velocities
just before collision, then this coefficient is fixed for the rest of the simulation. It has
been applied to two immersed spherical rigid bodies falling under gravity and in the case
of an ellipsoid rotating around a fixed sphere. This approach gives good results for two
interacting bodies.

We want to extend this approach to the case of multiple interacting bodies, and using
the label maps and distance functions. In the case of multiple interacting bodies, it is not
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possible to compute the relative velocities just before collision and to keep this value until
the end of the simulation. Indeed, multiple collisions can occur between two bodies and
the relative velocities are different before each of them. During the numerical calculations,
for instance in the case of sedimenting particles, these relative velocities get smaller and
smaller. Consequently, numerical contacts and overlaps can occur. Thus, in addition of
taking into account the relative velocities we have to impose a minimal coefficient when
some particles are almost at rest.

The relative velocities are computed just before collision and kept until the distance
between the concerned bodies becomes higher than a certain distance for which the re-
pulsive force is negligible.
To achieve this we use the reconstituted level set functions ψ and the label map L0,1.

The first step consists in computing the minimal value of ϕ2 distance distmin(L0,1, L2),
on each regularized interface in order to know if the coefficient remains constant for two
closest bodies or has to be computed again.
To do this, we define the regularized interface as:

ΓεL0,1
=
{
y ∈ Ω, |ψL0,1(y)(y)| ≤ ε

}
The minimal distance is directly given by:

∀x ∈ Ω, distmin(L0,1(x), L2(x)) = min
x∈Γε

L0,1

(ϕ2(x))

Numerically, we observe that when the particles are approaching slowly from each other,
taking a coefficient proportional to the relative velocity before collision is sufficient. Oth-
erwise, we observed that the minimal intensity has to be proportional to the square of
the relative velocities.
At each time step ,the coefficient is computed as:
if (distmin(L0,1, L2) ≤ Dmin)

K(L0,1, L2) = max(Kmin, |(UL2 − UL0,1) · ∇ϕ2|, ((UL2 − UL0,1) · ∇ϕ2))2) (3.14)

otherwise :

K(L0,1, L2) = max(|(UL2 − UL0,1) · ∇ϕ2|, ((UL2 − UL0,1) · ∇ϕ2))2) (3.15)

The minimal separation distance Dmin is of the order of a mesh grid and the minimum
coefficient Kmin is fixed during numerical calculation.

Finally, the complete short range repulsive force considered for rigid bodies is:

∀x ∈ Ω, Flabel(x) =
KL0,1,L2

ε
ρ(x)ζε (ϕ1(x))

∇ϕ2(x)

ϕ2(x)
exp

(
−ϕ2(x)

εb

)
(3.16)

In a certain extent, the proposed collision model 3.16 is an approximation of the normal
component of the lubrication force provided in [100] in the case of small relative velocities
and between closest solid bodies.

3.4 Error estimation between the two collision models
This section is devoted to the comparison of the two collision models introduced above:

the collision model (3.12) and the short range repulsive force 3.16 and the influence of
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these forces on N disks immersed in Stokes fluid flow.

We consider a bounded domain Ω ∈ R2 which contains N disks evolving in an incom-
pressible fluid. We denote by R the radius of each disk, by k the intensity of the two
collision models and the value of the rebound parameter εb is fixed to εγ where γ > 1.
In order to study the influence of the two collision models on the dynamic of N disks , we
study two Stationnary Stokes models. The first one corresponds to the Stationnary Stokes
equations supplemented by the collision model (3.12). The second model corresponds to
the Stationnary Stokes equations with the short range repulsive force 3.16 as source term.
For both models, the N gravity centers of the disks are transported by the fluid velocity
field, and N level set function are reconstructed as signed distance functions. For all the
estimations, we assume that:

• (H1): the distance between disks is superior or equal to ε

• (H2): p > 2

3.4.1 Stokes model involving the collision model (3.12)

The first problem corresponds to the steady Stokes equations with the collision model
(3.12) as source term. For each disk Ω1

i , we denote by φ1
i the level set function that

captures the boundary Γ1
i and by X1

i its gravity center. At each time, the signed distance
function φ1

i to the interface Γ1
i is defined as a signed distance function:

∀x ∈ Ω, φ1
i (x, t) = |x−X1

i (t)| −R (3.17)

We denote by F 1
global the global collision model which takes into account the repulsive

forces between the N disks:

∀x ∈ Ω, F 1
global(x, t) =

N∑
i,j=1
i 6=j

k

ε
ζ

(
φ1
i (x, t)

ε

) ∇φ1
j(x, t)

φ1
j(x, t)

exp

(
−φ

1
j(x, t)

εb

)
(3.18)

so that denoting by U1 the fluid velocity field, P1 the pressure field and µ the viscosity
of the fluid, for a time T > 0, we obtain the following problem:

−µ∆U1 +∇P1 = F 1
global in Ω×]0, T )

∀i ∈ {1, .., N}, d
dt
X1
i = U1(X1

i ) in Ω×]0, T )

∇ · U1 = 0 in Ω

U1 = 0 on ∂Ω

(3.19)

An estimation of the velocity field is provided by the following proposition.

Proposition 1. Considering:

U1 ∈ W 2,p(Ω), P1 ∈ W 1,p(Ω), 2 < p <∞ (3.20)

are solutions of the Stokes problem (3.19) and that the distance between the disks is
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higher or equal to ε. There exists a constant C(p, µ,Ω) such that:

‖U1‖L∞(0,T,W 2,p(Ω)) ≤ C
k

ε
2p−1

p

(N − 1)(N(2πR + o(ε)))
1
p exp(−ε1−γ) (3.21)

where γ > 1.

Proof. Let ψ1 denotes the level set function which captures the union of all interfaces at
each time t, by definition we have:

∀x ∈ Ω, ψ1(x, t) = min(φ1
1(x, t), .., φ1

N(x, t)) = min(|x−X1
1 (t)|, .., |x−X1

n(t)|)−R (3.22)

Using the assumption on the distance between disks, since the support of the cut-off
functions do not intersect, it holds:

∀x ∈ Ω, ζε (ϕ1(x, t)) =
N∑
j=1

ζε(φ
1
j(x, t)),

Moreover, denoting by Li(x, t) the ith closest object to x at time t, the model (3.12)
can be formulated as:

∀x ∈ Ω, F 1
global(x, t) =

N∑
i=2

k

ε
ζε(ψ1(x, t))

∇φL1
i (x,t)(x, t)

φL1
i (x,t)(x, t)

exp

(
−
φL1

i (x,t)(x, t)

εb

)
. (3.23)

As all the φL1
i
are distance functions we have at each time t:

‖∇φL1
i (·,t)(·, t)‖L∞(Ω) ≤ 1

So that we get:

‖F 1
global(·, t)‖Lp(Ω) ≤ ‖

k

ε
ζε(ϕ1(·, t))‖Lp(Ω)‖

N∑
i=2

1

φL1
i (·,t)

exp(−
φL1

i (·,t)
ε

)‖L∞(Ω).

Moreover, using the definition of the label maps one gets:

∀x ∈ Ω,∀i ∈ {3, .., N}, φL1
i (x,t)(x, t) ≥ φL1

2(x,t)(x, t).

leading to :

‖F 1
global(·, t)‖Lp(Ω) ≤ (N − 1)‖k

ε
ζε(ϕ1)‖Lp(Ω)‖

1

φL1
2

exp(−
φL1

2

εb
)‖L∞(Ω).

It is a classical result from level-set theory that 1
ε
ζε(ϕ1(x)) is an approximation of the

length of the zero level-set of ϕ1. Namely, in the case of N disks, we can prove that there
exists a constant C(p) such that:

‖1

ε
ζ(
ϕ1

ε
)‖Lp(Ω) ≤

C

ε1− 1
p

(N(2πR +O(ε)))
1
p , (3.24)

so that we get:

‖F 1
global(·, t)‖Lp(Ω) ≤

Ck

ε1− 1
p

(N − 1)(N(2πR +O(ε)))
1
p

∥∥∥∥∥ 1

φL1
2(·,t)

exp(−
φL1

2(·,t)
ε

)

∥∥∥∥∥
L∞(Ω)

.
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Using the assumption that εb = εγ and that the minimal distance between the particles
is at each time t higher than ε, that is :

∀x ∈ Ω,∀t ∈ [0, T ], φL1
2(x,t)(x, t) ≥ ε,

we obtain:

‖F 1
global(·, t)‖Lp(Ω) ≤ (N − 1)

Ck

ε
2p−1

p

(N(2πR +O(ε)))
1
p exp(−ε1−γ). (3.25)

Following [169], we have: If U1 ∈ W 2,p(Ω), P1 ∈ W 1,p(Ω) are solution of the Stokes model
(3.19) and Flabel ∈ Lp(Ω), there exists a constant c0(p, µ,Ω) such as:

‖U1(·, t)‖W 2,p(Ω) + ‖P1(·, t)‖W 1,p(Ω) ≤ c0‖F 1
global(·, t)‖Lp(Ω)

Taking the L∞ norm on [0, T ] and using (3.25) we obtain the announced estimation.

3.4.2 Model involving the short range repulsive force (3.16)

The second model consists in the Stokes equations supplemented by the local short-
range repulsive force F 2

label. The evolution of each particle Ω2
i is based on the transport

of the gravity center X2
i by the fluid velocity at this point. Each particle interface Ω2

i is
captured by a level set field φ2

i . Let ψ2 be the level set function which captures the union
of all interfaces, at each time t this field is defined as:

∀x ∈ Ω, ψ2(x, t) = min(|x−X2
1 (t)|, .., |x−X2

n(t)|)−R (3.26)

and denoting by ϕ2 the distance between the closest structures, the short-range repulsive
force F 2

label is formulated as:

∀x ∈ Ω, F 2
label(x, t) =

k

ε
ζ

(
ψ2(x, t)

ε

) ∇ϕ2(x, t)

ϕ2(x, t)
exp

(
−ϕ2(x, t)

εb

)
(3.27)

Denoting by U2 the fluid velocity field, P2 the pressure field and µ the viscosity of the
fluid, for a time T > 0, the second model is provided by:

−µ∆U2 +∇P2 = F 2
label in Ω× [0, T )

∀i ∈ {1, .., N}, d
dt
X2
i = U2(X2

i ) in Ω× [0, T )

∇ · U2 = 0 in Ω

U2 = 0 on ∂Ω

(3.28)

As for the first problem, we obtain an estimation which depends on ε, R andN :

Proposition 2. Considering:

U2 ∈ W 2,p(Ω), P2 ∈ W 1,p(Ω), 2 < p <∞ (3.29)

are solutions of the Stokes problem (3.28) and that the distance between the disks is
higher to ε. There exist a constant C(p, µ,Ω) such that:

‖U2‖L∞(0,T,W 2,p(Ω)) ≤ C
k

ε
2p−1

p

(N(2πR +O(ε)))
1
p exp(−ε1−γ) (3.30)
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The proof is similar to the one provided for Proposition 1.

3.4.3 Error estimation between the two Stokes models

The model of interest is the comparison of the two models above, setting U = U1−U2

and P = P1 − P2, one gets the following system:
−µ∆U +∇P = F in Ω

∇ · U = 0 in Ω
d

dt
(X1

i −X2
i ) = U1(X1

i )− U2(X2
i )

U = 0 on Γ

(3.31)

where F = F 1
global − F 2

label is the difference between the two collision models. The global
force F 1

global depends on the level set functions φ1
L1
i
and ψ1 whereas F 2

label depends on ψ2

and ϕ2, thus the term F can not be estimated directly.
Instead, we define a short-range repulsive force F 1

label associated to the N disks Ω1
i , de-

noting by ϕ1 the distance function φ1
L2
, this force is expressed as:

∀x ∈ Ω,∀t ∈ [0, T ], F 1
label(x, t) =

k

ε
ζ

(
ψ1(x, t)

ε

) ∇ϕ1(x, t)

ϕ1(x, t)
exp

(
−ϕ1(x, t)

εb

)
(3.32)

so that the estimation of F will involve to estimate the two following terms:

‖F (·, t)‖Lp(Ω) ≤ ‖F 1
global(·, t)− F 1

label(·, t)‖Lp(Ω) + ‖F 1
label(·, t)− F 2

label(·, t)‖Lp(Ω) (3.33)

The first term corresponds to an error estimation between the two collision models for
a same configuration of disks (∀i ∈ {1, .., N},Ω1

i = Ω2
i ). The second term provides an

estimation of the short-range repulsive force Flabel, the disks dot not have necessarily the
same configuration.

In fact, we can demonstrate the following proposition:

Proposition 1. Considering:

U ∈ W 2,p(Ω), P ∈ W 1,p(Ω), 2 < p <∞ (3.34)

are solutions of the Stokes problem (3.31) and that propositions 1,2 hold. There exist
a constant C(p, µ,Ω) such that:

‖U‖W 2,p(Ω)) ≤ |I1 + I2|∞
(

1 +
|∇G|∞
R + ε

(
exp((|F 1

global|+ |∇G|∞
R+ε

)t)− 1

|F 1
global|+ |∇G|∞

R+ε

))
(3.35)

where:
|∇G|∞
R + ε

≤ Ck

(R + ε)ε
exp(− 1

εγ−1
)

|F 1
global| ≤ C

k

ε
2p−1

p

(N − 1)(N(2πR + o(ε)))
1
p exp(−ε1−γ)
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‖F 1
global − F 1

label‖Lp(Ω) ≤
k(N − 2)

αRε
p−1
p

(N(2πR +O (ε)))
1
p exp

(
−αR
εγ

)
|I1 + I2|∞ ≤

Ck

(R + ε)ε
exp(− 1

εγ−1
)(‖ϕ2‖Lp(Ω) +RC)) + ‖F 1

global − F 1
label‖Lp(Ω)

In what follows, we provide a proof of this proposition.

3.4.4 Estimation of the term ‖F 1
global − F 1

label‖Lp(Ω)

The following result provides an estimate of the difference introduced by using the
label force (3.16) instead of the collision model (3.12) for the same configuration. As
expected, the difference is smaller for large bodies and/or small ε. Moreover, it depends
on the intensity of the force.

Proposition 3. Assuming that the N bodies are disks, such as:

∀x ∈ Ω,∀t ∈ [0, T ], ϕ2(x, t) ≥ ε

then:

‖F 1
global − F 1

label‖Lp(Ω) ≤
k(N − 2)

αRε
p−1
p

(N(2πR +O (ε)))
1
p exp

(
−αR
εγ

)
where α =

√
13−3
2
≈ 0.3.

Proof. We have:

F 1
global =

N∑
i=3

k

ε
ζε(ψ1)

∇φLi

φLi

exp(−φLi

εb
). (3.36)

As ∀i ∈ {2, .., N}, φLi
are distance functions we have :

|∇φLi
|L∞Ω ≤ 1

Moreover, the definition of the label maps gives:

∀x ∈ Ω, ∀i ∈ {4, .., N}, φLi(x)(x) ≥ φL3(x)(x).

and we have seen that there exists a constant C(p)

‖1

ε
ζ(
ϕ1

ε
)‖Lp(Ω) ≤

C

ε
p−1
p

(N(2πR +O(ε)))
1
p ,

leading to :

‖F 1
global − F 1

label‖Lp(Ω) ≤
kC

ε
p−1
p

(N − 2)(N(2πR +O(ε)))
1
p‖ 1

φL3

exp(−φL3

εb
)‖L∞(Ω).
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Figure 3.4: Configuration of three bodies. The circles represented are of radius R+ ε.

We are looking for a lower bound of φL3 depending on the radius R. To that aim,
we consider the worst case of three disks which are enlarged by ε and are in contact like
shown in Figure 3.4. This configuration gives the minimum distance required between
two disks. Taking a point x on the boundary of one disk (without loss of generality,
Γ1) as shown in Figure 3.4, we compute the minimal distance of x to the second closest
disk. Once again, the worst case is obtained in the situation where x is as in Figure 3.4.
Through a simple calculation, we obtain as distance:

d =

√
13− 3

2
R

that is a lower bound for φL3 . As r → 1
r

exp(− r
ε
) is decreasing, we obtained the announced

estimate.

Let us point out to the reader that this difference tends to zero when R tends to∞ or when
ε tends to zero. Consequently, we can adjust ε depending upon R such as this difference
becomes negligible. Numerically, we take an ε that depends on the discretization space
step, thus the grid mesh size is selected in order to lower the difference.
Moreover, the influence of the repulsive force imposed by the first closest cell at all points
F 1

label, is the most influential on the dynamics of the cells as it is the largest. Therefore,
numerically it is better to compare the relative difference:

‖F 1
global − F 1

label‖Lp(Ω)

‖Flabel‖Lp(Ω)

.

3.4.5 Estimation of ‖F 1
label − F 2

label‖Lp(Ω)

The repulsive force F 1
label depends on ψ1, ϕ1 and ∇ϕ1 whereas F 2

label is associated to
the second problem and thus depends on the level set function ψ2, the distance function
ϕ2 and its gradient ∇ϕ2. We define two spaces Lpε(Ω)) and W 1,p

ε (Ω) as:

Lpε(Ω) = {f ∈ Lp(Ω),∀x ∈ Ω, f(x) ≥ ε}
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and :
W 1,p
ε (Ω) = {f ∈ Lpε(Ω),∇f ∈ Lp(Ω), ‖∇f‖Lp ≤ 1}

and the functions :G : (W 1,p(Ω),W 1,p
ε (Ω), Lpε(Ω)) −→ Lp(Ω)

(ψ, ϕ, ∇ϕ) 7−→ G(ψ, ϕ,∇ϕ) =
k

ε
ζ(
ψ

ε
)
∇ϕ
ϕ

exp(−ϕ
εb

)
(3.37)

So that using this function, the term ‖F 1
label − F 2

label‖Lp(Ω) can be valued as:

‖F 1
label − F 2

label‖Lp(Ω) ≤ ‖∇G‖L∞(Ω)|‖ψ1 − ψ2‖Lp(Ω), ‖ϕ1 − ϕ2‖Lp(Ω), ‖∇ϕ1 −∇ϕ2‖Lp(Ω)|L∞
(3.38)

We provide in what follows an estimation of |‖ψ1 − ψ2‖Lp(Ω), ‖ϕ1 − ϕ2‖Lp(Ω),‖∇ϕ1 −
∇ϕ2‖Lp(Ω)|L∞ and then ‖∇G‖L∞(Ω)

Estimation of ‖ψ1 − ψ2‖Lp(Ω), ‖ϕ1 − ϕ2‖Lp(Ω),‖∇ϕ1 −∇ϕ2‖Lp(Ω)

For each time t, there exists a constant C(p,Ω) such as:
‖ψ1(·, t)− ψ2(·, t)‖Lp(Ω) ≤ Cmax

i
|X1

i (t)−X2
i (t)|

‖ϕ1(·, t)− ϕ2(·, t)‖Lp(Ω) ≤ Cmax
i
|X1

i (t)−X2
i (t)|

‖∇ϕ1(·, t)−∇ϕ2(·, t)‖Lp(Ω) ≤
2

R + ε

(
2(‖ϕ2(·, t)‖Lp(Ω) + CR) + max

i
|X1

i (t)−X2
i (t)|)

)
(3.39)

• The level set functions which captures the union of all interfaces are defined by:

∀x ∈ Ω,∀t ∈ [0, T ], ψ1(x, t) = min
i

(|x−X1
i (t)|)−R, ψ2(x, t) = min

i
(|x−X2

i (t)|)−R

For a point x ∈ Ω and a time t, let ψ1(x, t) and ψ2(x, t) be given by:

ψ1(x, t) = |x−X1
i1

(t)| −R, ψ2(x, t) = |x−X2
i2

(t)| −R (3.40)

this means that:

∀i ∈ {1, ··, N}, |x−X1
i | ≥ |x−X1

i1
(t)|, |x−X2

i | ≥ |x−X2
i2

(t)|

if i1 = i2, the inequality is immediate, otherwise we have:

∀i, |X1
i −X2

i | ≥ |X1
i − x| − |x−X2

i | ≥ (ψ1(x, t) +R)− |x−X2
i |

in particular setting i = i2 we obtain:

max
i
|X1

i −X2
i | ≥ max |X1

i2
−X2

i2
| ≥ ψ1(x, t)− ψ2(x, t)

By symmetry and taking the Lp norm of ϕ1 − ϕ2, we obtain :

‖ψ1(·, t)− ψ2(·, t)‖Lp(Ω) ≤ |Ω|
1
p max

i
|X1

i (t)−X2
i (t)|

• The second term depends on the distance functions whichs are associated to the
label maps L1

2(x, t) and L2
2(x, t), mainly:

ϕ1(x, t) = |x−X1
L1

2(x,t)(t)| −R, ϕ2(x, t) = |x−X2
L2

2(x,t)(t)| −R (3.41)
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The level set functions ψ1(x, t) and ψ2(x, t) are signed distance functions to the closest
interfaces, thus by definition we have:

ϕ1(x, t) ≥ ψ1(x, t), ϕ2(x, t) ≥ ψ2(x, t)

in particular, setting:

ϕ1(x, t) = |x−X1
j1

(t)| −R, ϕ2(x, t) = |x−X2
j2

(t)| −R (3.42)

we have that i1 6= j1, i2 6= j2 and:

∀i 6= i1, |x−X1
i | ≥ |x−X1

j1
|, and ∀i 6= i2, |x−X2

i | ≥ |x−X2
j2
|

If L1
1(x) = L2

1(x) or L1
0(x) = L2

0(x) this means that i1 and i2 are equal and we get:

∀i 6= i1, |X1
i −X2

i | ≥ |X1
i − x| − |X2

i − x| ≥ ϕ1(x, t) +R− |X2
i − x|

and as i2 6= j2, we have:

max
i
|X1

i (t)−X2
i (t)| ≥ |X1

j2
−X2

j2
| ≥ ϕ1(x, t)− ϕ2(x, t)

by symmetry one gets the right estimation.

Otherwise if i1 6= i2 we have:

∀i 6= i2, |X1
i −X2

i | ≥ |X2
i − x| − |X1

i − x| ≥ ϕ2(x, t) +R− |X1
i − x|

Taking i = i1, we get:

max
i
|X1

i (t)−X2
i (t)| ≥ |X1

i1
−X2

i1
| ≥ ϕ2(x, t)− ψ1(x, t)

and as ψ1 − ϕ1 ≤ 0 one gets:

ϕ2 − ϕ1 ≤ ϕ2 − ψ1 − (ψ1 − ϕ1) ≤ max
i
|X1

i (t)−X2
i (t)| (3.43)

The same reasoning provides:

ϕ1 − ψ2 ≤ max
i
|X1

i (t)−X2
i (t)| (3.44)

so that taking the Lp norm, one finally obtains:

‖ϕ1(·, t)− ϕ2(·, t)‖Lp(Ω) ≤ |Ω|
1
p max

i
|X1

i (t)−X2
i (t)|

•The last term involves the gradient of the distance functions ϕ1 and ϕ2, for a point
x and a time t where these functions are defined as 3.42, the difference of the gradients
are provided by:

|∇ϕ1(x, t)−∇ϕ2(x, t)| =
x−Xj11

|x−Xj11
| −

x−Xj22

|x−Xj22
|

and as ε is a lower-bound of ϕ1 and ϕ2 , we have |x−Xj11
| ≥ R+ ε and |x−Xj22

| ≥ R+ ε
so that defining a function h as:

∀x ≥ R + ε, h(x) =
x

|x|
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we get:

|∇ϕ1 −∇ϕ2| ≤ |∇h|∞|Xj11
−Xj22

| ≤ 2

R + ε
|Xj11

−Xj22
|

Using the upper-bound of ϕ1 − ϕ2, we finally obtain:

|∇ϕ1 −∇ϕ2| ≤
2

R + ε
(2(ϕ2 +R) + max

i
|X1

i (t)−X2
i (t)|) (3.45)

As ϕ2 ∈ Lp(Ω) one can take the Lp norm to obtain the announced estimation. Finally,
we obtain:

|‖ψ1 − ψ2‖Lp(Ω), ‖ϕ1 − ϕ2‖Lp(Ω), ‖∇ϕ1 −∇ϕ2‖Lp(Ω)|∞
≤ 2

R + ε
(2(ϕ2 +R) + max

i
|X1

i (t)−X2
i (t)|) (3.46)

Estimation of |∇G|L∞.
The function G is defined as:G : (R,R \B(0, ε), B(0, 1)) −→ R2

(x, y, z) 7−→ k

ε
ζ(
x

ε
)
z

y
exp(− y

εb
)

(3.47)

The first partial derivative of this function is
∂G

∂x
is :

|∂G
∂x
|L∞ = | k

ε2
ζ
′
(
x

ε
)
z

y
exp(
−y
εb

)| ≤ |k
ε
ζ
′
(
x

ε
)|L∞|z|L∞|

exp(
−y
εb

)

y
|L∞

As z ∈ B(0, 1), y ≥ ε and the cut off function ζε is bounded, using εb = εγ we obtain:

|∂G
∂x
|L∞ ≤ C

k

ε2
exp(− 1

εγ−1
) (3.48)

Similarly, we have:

|∂G
∂y
|L∞ = |k

ε
ζ(
x

ε
)z(

1

y2
+

1

εb
) exp(

−y
εb

)| ≤ C(
k

ε2
+
k

εγ
) exp(− 1

εγ−1
) (3.49)

and the last partial derivative is given by:

|∂G
∂z
|L∞ = |k

ε
ζ(
x

ε
)
z

y
exp(
−y
εb

)| ≤ kC
exp(− 1

εγ−1
)

ε
(3.50)

Thus, there exists a constant C such as:

|∇G|L∞ ≤
Ck

ε
exp(− 1

εγ−1
) (3.51)
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Final estimation

The transport equation of the gravity centers gives:
d

dt
|X1

i −X2
i | ≤ |U1(X1

i )− U2(X2
i )| ≤ |U1(X1

i )− U1(X2
i )|+ |U1(X2

i )− U2(X2
i )|

As U1 ∈ W 2,p(Ω) and U ∈ W 2,p(Ω), using the injection W 2,p(Ω) ↪→ L∞(Ω) :
d

dt
|X1

i −X2
i | ≤ ‖∇U1‖L∞|X1

i −X2
i |+ |U |L∞(Ω) (3.52)

Moreover as W 2,p(Ω) ↪→ L∞(Ω), we have:

|U |L∞(Ω) ≤ ‖U‖W 2,p(Ω) ≤ ‖F 1
global − F 2

label‖Lp(Ω)

Using proposition 1 and the injection W 2,p(Ω) ↪→ W 1,∞(Ω) we get:

‖∇U1‖L∞([0,T ],L∞(Ω)) ≤ |F 1
global|L∞(0,T,Lp(Ω))

leading to:
d

dt
|X1

i −X2
i | ≤ |F 1

global|L∞(0,T,Lp(Ω))|X1
i −X2

i |+ ‖F 1
global − F 2

label‖Lp(Ω) (3.53)

Using a Gronwall inequality and as X1
i (0)−X2

i (0) = 0 we get:

|X1
i (t)−X2

i (t)| ≤
∫ t

0

‖F 1
global − F 2

label‖Lp(s) exp(|F 1
global|L∞,Lp(t− s))ds (3.54)

in particular:

max
i
|X1

i (t)−X2
i (t)| ≤

∫ t

0

‖F 1
global(·, s)− F 2

label(·, s)‖Lp exp
(
|F 1

global|L∞T ,Lp(t− s)
)

(3.55)

and as:

‖F 1
global−F 2

label‖Lp ≤ |∇G|∞
R + ε

max
i
|X1

i (t)−X2
i (t)|+ |∇G|∞

R + ε
(‖ϕ2‖Lp+RC)+‖F 1

global−F 1
label‖Lp

denoting by I1(t) and I2(t) the terms:

I1(t) =
|∇G|∞
R + ε

(‖ϕ2(·, t)‖Lp +RC), , I2 = ‖F 1
global − (·, t)F 1

label(·, t)‖Lp

and using the equation (3.55) we obtain:

‖F 1
global−F 2

label‖Lp ≤ |∇G|∞
R + ε

∫ t

0

‖F 1
global(·, s)−F 2

label(·, s)‖Lp exp(|F 1
global|L∞T ,Lp(t−s))ds+I1+I2

Using a second Gronwall inequality, we obtain:

‖F 1
global − F 2

label‖Lp ≤ I1(t) + I2(t)

+
|∇G|∞
R + ε

exp(|F 1
global|t)

∫ t

0

(I1(s) + I2(s)) exp(−|F 1
global|s) exp(

|∇G|∞
R + ε

(t− s))ds (3.56)

so that taking the L∞ norm on (0, T ) we finally obtain:

‖F 1
global − F 2

label‖Lp ≤ |I1 + I2|∞
(

1 +
|∇G|∞
R + ε

(
exp((|F 1

global|+ |∇G|∞
R+ε

)t)− 1

|F 1
global|+ |∇G|∞

R+ε

))
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3.5 Numerical validation of the error estimation

This section is devoted to the validation through numerical simulation of the error
estimation between the two stokes models. These models are supplemented by a gravity
term ρg where ρ takes into account the density of the fluid and of the disks. We fixed the
density of the fluid to one whereas the density of the disks is set to 2. The two stationnary
Stokes models are discretized by a finite difference method on a staggered grid where the
pressure and the level set function are located at the center of the mesh cells and the
velocity at the center of the sides.
The steady stokes equations are solved by means of a projection method of Chorin type
and a fixed point method. To solve the poisson equation on the intermediate velocity, the
solver FISHPACK is used.
In order to advect the gravity centers, the velocities are interpolated from the Cartesian
grid points to the gravity centers using the M ′

4 interpolation kernel introduced in [132] :

M ′
4(x) =


0 if |x| > 2
1
2
(2− |x|2)(1− |x|) if 1 ≤ |x| ≤ 2

1− 5
2x2 + 3|x|3

2
if |x| ≤ 1

The support of this kernel is of size 4, it is locally third order and globally second-
order. Owing to its regularity, accuracy and efficiency, this kernel has been widely used,
in particular for the simulation of vortex flows (see for instance [61]).
The time stepping scheme used to advect the gravity centers is a two-order Runge Kutta
scheme. We consider a rectangular computational domain Ω = [0, 2]× [0, 1]. The simula-
tions are performed on a grid of size (512× 256). The coefficient γ is set to 1× 1.10−10,
the viscosity µ = 0.1.

Three test cases are considered: the simulation of 6 disks of radius R = 0.1 and
R = 0.05 and the sedimentation of 14 of radius R = 0.05. By comparing the numerical
simulations obtained on Figure 3.5 and 3.6, we observe that for the disks of radius R = 0.1,
the dynamics of the disks are similar for both stokes models. For the greatest particles, we
can see that from time t = 0.5 to t = 0.6, we see a slight difference between the particles
Ω1
i and Ω2

i , then the particles reach a steady state and are located exactly at the same
places (for all i ∈ {1, ..6}, Ω1

i = Ω2
i ). On the contrary, after collision the configuration

of the smallest particles is completely different for the two Stokes models, thereafter the
relative difference increases, and the obtained stationnary state is different for both set
of particles. Contrary to what we expected, the estimation ‖F 1

global − F 1
label‖L∞((0,10),Lp(Ω)

is smaller in the case of particles of radius R = 0.05 than for the case R = 0.1, this may
be due to the fact that the particles for R = 0.05 stay far enough from each other.
The last simulation is shown on Figure 3.7, starting from t = 1.5 the particles take
different trajectories until the end of the simulation, the obtained estimation ‖F 1

global −
F 1

label‖L∞((0,10),Lp(Ω) is around twice higher than the one obtained when N = 6 which
confirms the dependence of the estimation on the number of particles.
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(a) t = 0.0 (b) t = 0.3 (c) t = 0.65

(d) t = 1.2 (e) t = 2.25 (f) t = 3.0

Figure 3.5: Sedimentation of 6 disks of radius R = 0.05, black lines correspond to the isoline
ψ1 = 0 and the red lines corresponds to the isoline ψ2 = 0 associated to the Stokes model 2.
We obtain the error estimation for the same configuration: ‖F 1

global − F 1
label‖L∞((0,10),Lp(Ω) =

3.48.10−4.

(a) t = 0.0 (b) t = 0.2 (c) t = 0.3

(d) t = 0.5 (e) t = 0.6 (f) t = 1.1

Figure 3.6: Sedimentation of 6 disks of radius R = 0.1, black lines correspond to the isoline ψ1 = 0
and the red lines corresponds to the isoline ψ2 = 0 associated to the Stokes model 2. We obtain
the error estimation for the same configuration: ‖F 1

global − F 1
label‖L∞((0,10),Lp(Ω) = 2.22.10−3.
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(a) t = 0.0 (b) t = 0.3 (c) t = 0.65

(d) t = 1.5 (e) t = 2.5 (f) t = 3.4

Figure 3.7: Sedimentation of 14 disks of radius R = 0.04, black lines correspond to the isoline
ψ1 = 0 and the red lines corresponds to the isoline ψ2 = 0 associated to the Stokes model 2.
We obtain the error estimation for the same configuration: ‖F 1

global − F 1
label‖L∞((0,10),Lp(Ω) =

7.54.10−4.

Conclusion

In this chapter, we have presented the numerical strategy adopted to handle con-
tacts between structures.
The proposed collision model consists in a short-range repulsive force which depends
on the two distance functions ϕ1 and ϕ2, it is an adaptation of the collision model
introduced in [31] for the case of a larger number of particles. The collision model
proposed in [31] takes into account the interaction between all the particles, whereas
our model is only active between the closest particles.
The intensity of the force is either controlled by a constant coefficient which depends
on the external forces exerted on the particles or is directly provided by the relative
velocities of the closest particles thanks to the label maps L2.
The short-range repulsive force with a constant intensity is compared to the collision
model [31] in the case of N disks. The estimation error depends on the size and the
number of disks. The impact of these forces on the solution of two Stokes problems
is also investigated.
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Evolution of the label maps and
distance functions
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This chapter is devoted to the evolution of the three label maps and the two associated
distance functions. We present the evolution algorithm in two-dimensions, the extension
to the 3D case is straightforward.

The evolution is based on the transport of one level set function that captures the
union of all interfaces, then a multi label fast marching method is performed enabling
a re-initialization of the label maps and distance functions. For our applications, the
informations of interest are:

• The location of each structure given by L0 inside and L1 outside close to the interface
and the distance ϕ1 which captures the union of the interfaces.

• The location of the first closest structure L2 and the distance ϕ2 when the particles
are nearby to avoid numerical contacts.

The proposed collision model is a short-range repulsive force, it is thus negligible when
the particles are far enough from each other. Consequently, we do not need the label and
distance functions in the all computational domain. Taking this into account, we only
evolved L1 and ϕ1 in a thin band close to the interfaces, we denote by NBL1 the size
of this narrow-band from each side of the interface. The computation of L2 and ϕ2 is
activated only if these thin bands met (just before collision) on a distance NBL2 . The
final step consists in updating the level set function φ as a signed distance function using
the new updated distance function ϕ1 where ϕ is less than the distance NBL1

4.1 Evolution of the label maps L0 and L1

We describe the evolution of L0 and L1 which is based on the transport of a level
set function φ which captures the union of all interfaces. We assume that the transport
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equation on the level set function is discretized in time by an explicit scheme which
involves that the displacement of a particle from one time step to another is less or equal
to one space grid.

4.1.1 Global level set function

Since the distance function ϕ1 and the label L1 are only of interest in a thin band
close to the interfaces, the level set function φ which captures the union of all interfaces
is defined as:

φ(x) =


−C x ∈ ∪Ni=1Ωi, d(x,∪Ni=1Γi) > NBL1

−d(x,∪Ni=1Γi) x ∈ ∪Ni=1Ωi, d(x,∪Ni=1Γi) ≤ NBL1

d(x,∪Ni=1Γi) x /∈ ∪Ni=1Ωi, d(x,∪Ni=1Γi) ≤ NBL1

C x /∈ ∪Ni=1Ωi, d(x,∪Ni=1Γi) > NBL1

(4.1)

where C >> 1. This level set field is a signed distance function close to the interfaces,
it is negative inside each structure and positive outside. In the context of fluid/structure
interaction, the level set function can be transported with the fluid velocity. Denoting
by U the fluid velocity in the entire computational domain Ω. The level set function is
defined as a signed distance function solution of the following scalar transport equation:{

∂tφ+ U · ∇φ = 0
φ(x, 0) = φ0(x)

(4.2)

in a neighboorhood of the interfaces. To transport accurately the interface using a
WENO5 scheme, the narrow-band size NBL1 is fixed to a value larger than six mesh
grid. At each time step and after the multi-label fast marching procedure, the level set
function φ is updated as a signed distance function as:

φ(x) =


−C x ∈ ∪Ni=1Ωi, d(x,∪Ni=1Γi) > NBL1

−ϕ1(x) x ∈ ∪Ni=1Ωi, d(x,∪Ni=1Γi) ≤ NBL1

ϕ1(x) x /∈ ∪Ni=1Ωi, d(x,∪Ni=1Γi) ≤ NBL1

C x /∈ ∪Ni=1Ωi, d(x,∪Ni=1Γi) > NBL1

(4.3)

4.1.2 Evolution of the label maps L0

The evolution of the label map L0 depends on the sign of the level set function. By
definition the region where the level set function is non negative corresponds to the fluid
providing at each time the label function L0 in the fluid region, that is:

∀x ∈ Ω, ∀i ∈ {1, ..., N}, Ln0 (x) =

{
i 6= Nf if φn(x) < 0

Nf if φn(x) ≥ 0
(4.4)

At each time step, we change the label value L0, near the interface at the points where
the condition (4.4) is not verified. Namely, if the level set function is positive, we set L0

to the label of the fluid (L0 = Nf) and if the level set function is negative and the label
function L0 is still the label of the fluid, we assign to L0 the value of its neighbours which
are different from Nf. For all x where the condition (4.4) is not true we look for the closest
neighbours. The proposed procedure is only adapted in the case of small displacements.
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Let dt denotes the time step. For all point x = (i, j) we denote by Neighbours(x) the set
which contains the four closest points to x:

Neighbours(x) = {(i+ 1, j), (i− 1, j), (i, j), (i, j − 1), (i, j + 1)}
.

As the displacement is less than one discretization step, the label values are directly
given by the algorithm (4). In the case of a displacement larger than one discretization
step, one has to look for the closest neighbors of a grid cell in order to assign the right
value of L0 at this point.

Algorithm 4Redefinition of L0

for (x ∈ Ω) do
if φn+1(x) ≥ 0 then

Ln+1
0 (x) = Nf

else
if (Ln+1

0 (x) = Nf) then
for (y ∈ Neighbours(x)) do

if (Ln+1
0 (y) 6= Nf) then

Ln+1
0 (x) = Ln+1

0 (y)
end if

end for
end if

end if
end for

Let us note that this simple strategy is allowed only if the distance between two cells is
strictly greater than one grid step. Here, this condition is imposed by our collision model.

Figure 4.1: Evolution of the label L0 when two cells move. The red color corresponds to the
object associated to the fluid.

4.1.3 Evolution of the label maps L1

Contrary to the label map L0 which is defined in the all computational domain, the
label map L1 is only defined close to the interface. At the points where L1 is not defined
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we assign to L1 the value −1. The same procedure than the one applied for the label L0

can be applied to L1 close to the interfaces .

Algorithm 5Update of the label map L1

for (x ∈ Ω) do
if (φn+1(x) ≤ 0) and (Ln+1

0 6= Nf) then
Ln+1

1 (x) = Nf

else
if (Ln+1

1 (x) = Nf) then
for ( y ∈ Neighbours(x)) do

if ((Ln+1
1 (y) 6= Nf)and(Ln+1

1 (y) 6= −1) then
Ln+1

1 (x) = Ln+1
1 (y)

end if
end for

end if
end if

end for

With this procedure the label map L1 has only been evolved close to the interface ( see
Figure 4.2) . To evolve the label map L1 outside the particle and far from the interfaces
a multi label fast marching method (MLBFMM) has to be performed.

Figure 4.2: Evolution of the label L1 when two cells move. The red color corresponds to the
object associated to the fluid. The white ones corresponds to the cells where L1 is not defined.

4.2 Multi Label Fast marching

We present here the multi label fast marching procedure which allows to update ϕ1,
ϕ2 and the label maps L1 and L2 in a vicinity of the structures’ boundaries. This local
fast marching is an extension of the fast marching method [156]. The idea of multi-label
fast marching was first introduced in [161]. However, the method used only two labels and
each of them was propagated individually (i.e. with a different speed). In [11], Bogovic
extended this approach to the case of multiple object segmentation.
Here, this procedure is performed to update the label map L1 and ϕ1 close to the inter-
faces in a narrow-band of size NBL1 . Then, if the narrow-band L1 met the fast marching
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algorithm to compute ϕ2 and L2 is activated.

To this end, we introduce a distance function d, for which we solve the eikonal equation
4.5 in the entire computational domain Ω. This equation is supplemented by an initial
boundary condition which will depend on ϕ1 or ϕ2.

∀x ∈ Ω, |∇d(x)| = 1 (4.5)

The discretization of this equation is achieved by a first order numerical scheme [151], so
that denoting by ∆x and ∆y an horizontal and a vertical space step in two-dimensions,
we solve:

max(max(D−x dij, 0)2,min(D+
x dij, 0)2) + max(max(D−y dij, 0)2,min(D+

y dij, 0)2) = 1 (4.6)

where

D−x dij =
dij − di−1,j

∆x
, D+

x dij =
di+1,j − di,j

∆x
, D−y dij =

dij − di,j−1

∆y
, D+

y dij =
di,j+1 − di,j

∆y
.

4.2.1 Computation of the label map L1 and ϕ1

The first step of the multi label fast marching procedure is the computation of the
distance function ϕ1 and the values L1 by solving the following equation:∀x ∈ Ω, |∇d(x)| = 1

∀x ∈ Γ, d(x) =
ϕ1(x)

|∇φ(x))|
(4.7)

Initialization phase

At initialization, the function d is equal to
ϕ1

|∇φ| close to the interfaces, this allows to

propagate all the interfaces simultaneously and to have a consistent initialization of the
fast marching procedure.

The scheme (4.6) implies that the information moves in one direction only : from the
lowest values of d to the highest values of d, the interfaces spread hence in two-directions:
inside and outside cells. Moreover, each contour is associated to the number of objects.
Thus, at initialization the computational domain Ω is partitioned into three sub domains:

• Alive (A) : set of points for which the values of d are known and at those points the
values of ϕ1 and L1 will not be changed.

• Narrow-Band (NB): set of points were the values of d are unknown and the distance
to A is less than one space discretization step.

• Far away (F) : all others points of the domain.

The Figure (4.3) provides an illustration of the domain decomposition at initializa-
tion for the spreading of one interface (boundary of the blue object). Inside the cell the
boundary that propagates is the one associated to the fluid (red points) as it is the clos-
est one. At initialization, the Alive set contains all the points of the N interfaces.The
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Narrow-Band set consists of the closest points to the interfaces. All others points are
considered as Far away and has to be computed and added to the narrow band if they
are at a distance smaller than NBL1 .
To achieve the storage and the sorting of the Narrow-Band according to the values of d,
each cell of the heap contains the following informations:

• the integers (i, j) that localize the grid point

• the logical alive(i, j) which indicates if the point is in the Alive set

• the integer lab(i, j) which corresponds to the number of the interfaces that spread.

• the distance value d(i, j): distance from the interface Γlab(i,j).

The steps performed during the initialization phase are provided by the algorithm6.

Algorithm 6Initialization phase
for (x ∈ Ω) do

visit(x) = 0
for (y ∈ Neighbours(x)) do

if (L0(x) 6= L0(y)) then points at the interfaces
if (alive(y) = false0) then
• Add y to the Narrow-Band

• d(y) =
ϕ1(y)

|∇φ(y))|
• lab(y) = L0(x)
• alive(y) = true The values L1(y) = lab(y) and ϕ1(y) = d(y) are fixed.

end if
else
• lab(x) = −1
• d(x) = −1
• alive(x) = false

end if
end for

end for
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Figure 4.3: Partition of the computational domain for the multi-label fast marching at initial-
ization. The interface spreads in two directions, inside and outside cells.

Iterative phase: Propagation of the interfaces

The direction of interfaces propagation depends on the values of the distance function
d (from the lowest to the greatest values) and on the label value, namely one point is only
added by its neighbors if it has the same label value.
During the propagation of the interfaces, the point xm for which d(xm) is the lowest
value of d in the narrow-band, is definitely deleted from the narrow-band and this point
is considered as alive. This minimum value corresponds to the distance ϕ1(xm) and we
assign the label lab(xm) to L1(xm). Then, the values of d at the neighbors of the point
xm are computed using the alive points which have the same label value, and these points
are added to the Narrow-Band.The algorithm stops when the distance d has reached the
narrow-band value NBL1 . The steps performed during the iterative phase are provided
by the algorithm 26.
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Algorithm 7Iterative phase: computation of ϕ1 and L1

while ((NB 6= ∅) and (dist ≤ NBL1)) do
Find xm such as d(xm) = min(x∈NB) d(x)
dist = max(dist, d(xm))
Delete xm from the NB
if (L1(xm) = lab(xm)) then

alive(xm)=true
end if
if (alive(xm)=false) then

ϕ1(xm) = d(xm)
L1(xm) = lab(xm)
alive(xm)=true
for (y ∈ Neighbours(xm)) do

ajout=true
if (L0(y) = lab(xm)) then

ajout=false
end if
if (L1(y) = lab(xm)) then

ajout=false
end if
if (ajout=true) then

Compute d(y) using Neighbors(y) such as L1(Neighbors(y))=lab(xm)
Add y in NB

end if
end for

end if
end while

4.2.2 Computation of the label map L2 and ϕ2

The same procedure is applied for the label map L2 and ϕ2, we solve the following
equation: {

∀x ∈ Ω, |∇d(x)| = 1

∀x ∈ ΓL1 , d(x) = ϕ2(x)
(4.8)

where a point x ∈ ΓL1 is defined by:

∀y ∈ Neighbours(x), L1(y) 6= L1(x), L0(x) = L0(y)

Activation and computation of the boundary condition

The computation of L2 and ϕ2 is activated between two particles if the narrow-bands
L1 met, this means that the distance between the two particles is less or equal to 2NBL1 .
If this happens, when L1 and ϕ1 are computed, the interfaces continue the propagation
on one space grid in order to get the distance function ϕ2 and the label map L2 at the
boundaries ΓL1 . For instance, for a configuration of four objects like shown in Figure 4.4,
the computation of L2 is only activated between the pairwise of bodies.
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Figure 4.4: Illustration of the multi label fast marching algorithm for a configuration of four
particles. The black color corresponds to the undefined values of L1 and L2. The white contours
corresponds to the zero value of the level set function φ.

Initialization phase

The initial narrow-band corresponds to the intersection of the closest objects in the
fluid domain. Then these new values computed are frozen and will correspond to the
alive points for which the values of ϕ2 and L2 are fixed. The initialization procedure is
summarized in algorithm 8.

Algorithm 8Initialization phase
for (x ∈ Ω) do

alive(x)=false
for (y ∈ Neighbours(x)) do

if (L1(x) 6= −1) and (L1(y) 6= −1) then
if (L1(x) 6= L1(y)) and (L0(x) = L0(y)) then points at interfaces of closest

objects in the fluid
• Add y to the Narrow-Band
• d(y) = ϕn+1

2 (y)
• lab(y) = L1(x)
• alive(y)=true The values L2(y) = lab(y) and ϕ2(y) = d(y) are fixed.

else
• lab(x) = −∞
• d(x) = −∞
• alive(x) = 0

end if
end if

end for
end for

Iterative phase

We denote by NBL2 the narrow-band distance for the computation of L2 and ϕ2. The
iterative phase is provided by algorithm 9.
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Algorithm 9Iterative phase: computation of ϕ2 and L2

while (NB 6= ∅) and (dist ≤ NBL2) do
• Find xm such as d(xm) = min(x∈NB) d(x)
dist = max(dist, d(xm))
• Delete xm from the NB
if (L1(xm) = lab(xm)) then

alive(xm)=TRUE
end if
if (alive(xm)=false) then
• ϕ2(xm) = d(xm)
• L2(xm) = lab(xm)
• alive(xm)=true
for ( y ∈ Neighbours(xm)) do

ajout=true
if (L0(y) = lab(xm) then

ajout=false
end if
if (L1(y) = lab(xm)) then

ajout=false
end if
if (L2(y) = lab(xm)) then

ajout=false
end if
if (ajout=true) then
• Compute d(y)
• Add y in NB

end if
end for

end if
end while

The present algorithm stops propagation when the distance function ϕ2 reachs the distance
value NBL2 . Only the points close to the interface L1 are visited. Figure 4.5 provides an
illustration of the results obtained for the label map L1 and L2 for a configuration of 20
rectangular particles. The narrow-band size for L1 is higher than the one for L2. As you
can see, that the computation of L2 is achieved only for the closest structures allowing to
reduce the CPU time.

4.2.3 Stop condition when NBL1
and NBL2

are not active

When the narrow-band is not active and so if the label maps and distance functions
are computed in the entire domain, it is more efficient to propagate the label L1 and L2

simultaneously by using one common priority queue. Figure 4.7 provides an illustration
of the multi-label fast marching procedure for three rectangular cells when the interfaces
propagate in the whole computational domain. The background is the red object and in
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Figure 4.5: Illustration of the multi label fast marching algorithm for 20 objects. The black color
corresponds to the undefined values of L1 and L2. The white contours corresponds to the zero
value of the level set function φ

our case will be the fluid. The image 4.7 (b) shows the initial Narrow-Band and Alive
points. The image (c) shows the expansion of the four interface at a step k. The red
object boundary has finished its propagation giving inside the cells the L1 map values
(already known) and the new distance function ϕ1. Outside the cells, the three bodies
interfaces have propagated giving the L1 map values and the white grid points correspond
to the Far away points which have not been visited yet. In the case of dense suspensions of
bodies, the stop condition can provide larger computational saving. This multi label fast
marching is in a certain extent a local fast marching for different regions of the domain.

Figure 4.6: Step k + 1. Values of the label map L2 at intersection of the interfaces.
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(a) Three rectangular cells immersed
in a fluid Ω4.

(b) Initialization phase: Narrow-band
and Alive points.

(c) Iteration k. The white cells rep-
resent the Far away points. Colours
correspond to the L1 map values.

(d) Step k+1. The interfaces continue
the propagation. Colours correspond
to the L1 map values.

(e) L2 map values at step k + 1.

(f) Final L1 map. (g) Final L2 map.

Figure 4.7: Illustration of the multi label fast marching algorithm. 85
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4.3 Computational complexity

This section focus on the computational complexity of the multi-label fast marching
(MLFMM) algorithm presented above. The only dependence on the number of particles
of the proposed approach to locate and deal with numerical contacts, comes from this
procedure.
Depending on the implementation of the MLFMM, the CPU time can be decreased. To
compare the CPU time of these procedures , we consider a rectangular computational
domain Ω = [0, 2] × [0, 1] and we add circular particles in the domain. The particles are
added next to each other until the half of the domain is almost filled with 400 particles.
The space grid is h = 1.95.10−3 and the size of the particles corresponds to ten discretiza-
tion space step.

4.3.1 Propagation in the whole computational domain

We first provide the CPU time of the procedure when the interfaces are propagated
in the entire computational domain, this means that the five field functions are defined
in the entire computational domain.

In the case of N particles and denoting byM the number of grid points in the domain,
the worst computational complexity of the fast marching procedure to compute ϕ1 and
L1 is NM log(NM).
The worst complexity of the fast marching procedure to compute ϕ2 and L2 is also
NM log(NM) leading to a complexity of MLFMM of 2NM log(NM). These algorithms
rely significantly on the number of particles.

An other way is to consider N different linked lists to propagate the N interfaces, the
same stop condition is applied in the sense that if the label map L1 and L2 are defined for
all points, the procedure stops. The N interfaces are propagated in parallel and stops prop-
agation when the label map L2 is defined at all points. Consequently, the interface Γi of a
particle only propagates in a neighborhood of the particle Ωi. However, one has to check
at each iteration of the procedure if the label map L2 is defined at all points, a browsing of
the list of all points of the domain is required, this induces a very high computational cost.

Instead, one can consider N lists which allows to propagate the N interfaces in the
whole computational domain. This procedure is equivalent to achieve N fast marching
procedures inside and outside the particles.
At initialization, each list LISTk corresponds to the interface Γk for which the label L0

is equal to k inside or L1 = k outside the particle. The distance associated to each list
LISTk corresponds to ϕ1 if L0 = k or L1 = k.
Then, when the interfaces are propagated in the all domain, the label L1, L2 and the
distance functions ϕ1 and ϕ2 are recovered by using the values of theN obtained distances.
We denote by LISTk the kth list which corresponds to the object Ωk. Using the N lists,

86



CHAPTER 4. EVOLUTION OF THE LABEL MAPS AND DISTANCE FUNCTIONS

the functions are explicitly provided by:

∀x ∈ Ω,∀k ∈ [1, .., N ],


L1(x) = argmink 6=L0

LISTk(x)

L2(x) = argmin(k 6=L0,k 6=L1) LISTk(x)

ϕ1(x) = LISTL1(x)(x)

ϕ2(x) = LISTL2(x)(x)

(4.9)

In the case of N lists, each interface is spread until all points are visited.
For each list, adding a point in the binary heap has a complexity of the order O(log(M))
as well as the deleting procedure. Thus, the N fast marching complexity is of order
(NM)O(log(M)) which is better than the MLFMM complexity.
Table 4.1 provides the CPU time of both algorithms. It appears that the procedure to
compute L1 using the MLFMM is faster than the N fast marching procedure.
The computation of the label map L2 is the most time consuming procedure, it represents
over 60% of the MLBFMM CPU time for 400 interfaces. For 400 particles, the CPU time
of the MLFMB has exceeded the N FMM. To lower the computational cost, we propose
to activate the computation of L2 only for the closest particles and to propagate the
interfaces in a vicinity of the particles’ boundaries.

N N FMM MLFMM
L1 L2 Total

10 1.5 0.5 1.4 2
50 8 1 4. 5.
100 16. 2.4 10.6 13
200 38.4 10. 22. 32.
400 78.2 40 75 115

Table 4.1: Comparison of the CPU time of the N FMM and the multi label fast marching
method.

4.3.2 Activation of the narrow-band NBL1
and NBL2

We compare the N lists procedures and the MLFMM when the narrow-band condition
NBL1 and NBL2 are activated. The N signed distances are computed in a narrow-band
of size NBL1 allowing to update the label maps and two distance functions inside these
narrow-bands. Likewise, the computation of ϕ1 and L1 is achieved in a narrow-band of
size NBL1 and if the particles are at a distance 2NBL1 , the computation ϕ2 and L2 is
activated in a narrow-band of size NBL2 .

To compare the CPU time, we add the particles next to each other in the domain, the
particles are close enough so that the computation of L2 is activated as soon as there are
two bodies in the domain.
Table 4.2 shows the CPU time of both algorithms for NBL1 = 10h and NBL2 = 5h
where h is the space discretization step. Using the narrow-band restriction, the N lists
procedure is highly less time consuming than the MLFMM. Moreover, the computation
of L2 with the MLFMM has significantly decreased.
The most optimal algorithm is hence to use the N lists procedure. However, after the N
lists procedure, the label map L2 is only defined at the overlapping regions of the narrow-
bands NBL1 , whereas with the MLFMM L2 is defined as soon as the isolines NBL1 are in

87



CHAPTER 4. EVOLUTION OF THE LABEL MAPS AND DISTANCE FUNCTIONS

contact, the computation of L2 is then activated and stops when ϕ2 reachs the distance
NBL2 . This difference is illustrated in Figure 4.9 for two configurations of particles. The
inconvenient is that as long as L2 is not defined on an interface, the short-range repulsive
force is not activated, and thus depending on the size NBL1 , the numerical contacts may
not be handled.
Instead of using the N lists procedure, we propose to use the N lists to compute ϕ1 and L1

and the MLFMM is activated if two particles are at a distance 2NBL1 to compute L2 and
ϕ2 on a distance NBL2 . The CPU time of this last algorithm is represented on Figure4.8
for different number of particles close to each other for NBL1 = 10h and NBL2 = 5h.

N N FMM MLFMM
L1 L2 Total

10 0.04 0.006 0.01 0.02
50 0.25 0.35 0.02 0.37
100 0.45 1.3 0.07 0.7
200 1.3 8.4 0.8 9.1
400 2.5 34 3.6 25

Table 4.2: Comparison of the CPU time of the N fast marching procedures and the multi label
fast marching method in a thin band around the particles (NBL1 = 10h,NBL2 = 5h).

Figure 4.8: CPU time of the most efficient algorithm: Computation of L1 and ϕ1 with N lists
and computation of L2 and ϕ2 like presented in section 5.3.2.
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(a) L1 after N FMM or
MLFMM.

(b) L2 after N FMM. (c) L2 after
MLFMM.

(d) L1 after N FMM
or MLFMM.

(e) L2 after N FMM. (f) L2 after MLFMM.

Figure 4.9: Label map L2 obtained after a multi-label fast marching or after the procedure using
N lists for two different configurations (a) and (d). The dashed lines represents the isolines
NBL1 .

Conclusion
In this chapter, we have described the numerical evolution of the label maps and
distance functions. A level set function φ which captures the union of all interfaces is
introduced, this level set field is a signed distance function in a vicinity of the inter-
faces, at a distance NBL1 from the interfaces. Inside these narrow-bands, the level
set function φ is transported with the fluid or structures velocities, allowing to evolve
explicity the label functions L0 and L1 close to the interfaces. Then, a multi-label
fast marching algorithm is performed in the vicinity of the particles.
First, the L1 map and distance function ϕ1 are updated by propagating the N in-
terfaces over a distance NBL1 , using N lists. When two particles are at a distance
smaller than 2NBL1 , that is when two L1 narrow-bands are in contact or overlapped,
a fast marching procedure is activated to define the Label function L2 and the dis-
tance function ϕ2. The interfaces of the second closest object L2 are propagated on a
distance NBL2 which has to be large enough to apply the short range repulsive force
to avoid numerical contacts between the particles.
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Chapter 5

Application to immersed rigid bodies
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This chapter proposes an application of the model to rigid bodies immersed in an
incompressible fluid.
In a first place, we describe the model adopted for the numerical simulations as well as its
numerical resolution. This model will be compared numerically to a penalization model
formulated in the context of a level set decomposition. The second part will be dedicated
to the numerical illustrations.
First, we will present a qualitative grid convergence in two and three dimensions through
the numerical simulation of spherical particles falling under gravity, two cases are con-
sidered: a constant intensity of the repulsive force and one depending on the relative
velocities between closest particles.
Then, the proposed model (5.17) and the model (5.11) which involves N level set functions
are compared in terms of computational complexity and the influence of the two collision
models on rigid bodies dynamics is explored. The proposed short-range repulsive force
is also compared to an algorithm proposed in [124] which enables to impose a minimal
distance between particles. Finally, some simulations of dense suspensions of circular rigid
bodies in two and three dimensions are presented.

5.1 Penalization models for fluid/"many rigid body"
coupling

A penalization method is used to take into account the rigid bodies immersed in the
fluid. In a first section, we present the penalization model for several immersed rigid
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bodies. Then, the penalization model formulated in a level set decomposition framework
is presented. Finally, a penalization model reformulated by means of the label maps and
distance functions is introduced. Two numerical algorithms to evolve the structures are
described and compared in terms of computational complexity.

5.1.1 Penalization model for many rigid bodies

The FSI technique adopted to take into account the rigid bodies immersed in a fluid
is the penalization method [4; 140]. We recall here the Penalized Navier Stokes equations
for N rigid bodies evolving in a fluid.
The computational domain Ω ∈ Rd, d = 2, 3 is decomposed as

Ω = ΩNf ∪
(

N⋃
i=1

Ωi

)
where ΩNf

is the fluid subdomain and Ωi is the region occupied by the ith rigid body
and Γi its boundary. The boundaries of the computational domain Ω are denoted by
∂Ωi, i ∈ [1, .., 2d], d = 2, 3.
The fluid density and viscosity are denoted by ρf and µ and U and P are the flow velocity
and pressure.

The interaction between the structures and the fluid is modelled by the Navier Stokes
equations for the fluid, the rigid motions in the solid bodies and the no slip boundary
conditions on each rigid body interface. The penalization model for N rigid bodies is
given by:{
ρ(∂tU + (U · ∇)U)−∇ · (∇U) +∇p = ρg + λ(

∑N
i=1 χi(Ui − U)) in ΩT = Ω× (0, T )

∇ · U = 0 in ΩT

(5.1)
where, λ >> 1 is the penalization coefficient, χi is the characteristic function of the solid
Ωi defined as:

χi =

{
0 in Ωi

1 in ΩNf

(5.2)

Denoting by ρi the density of the immersed bodies Ωi, the density function is given by:

ρ = ρf +
N∑
i=1

(ρf − ρi)χi. (5.3)

Numerically, a regularized version χεi of this function is used. As the rigid bodies move
with the fluid, the displacement of χi is:

∀x ∈ Ω, ∀i ∈ {1, ..., N}, ∂tχi + U · ∇χi = 0. or ∂tχi + Ui · ∇χi = 0.

Each rigid velocity Ui is obtained by averaging translation and angular velocities over the
solid body Ωi ([140]):Ui(x) = U t

i +Wi × (x− xgi )
=

1

|Ωi|
∫

Ωi
ρχiUdx+

(
J−1
i

∫
Ωi
ρχiU × (z − xgi )dz

)
× (x− xgi )

(5.4)
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where Ji is the inertial matrix of the body Ωi and xgi its gravity center. These equations
has to be supplemented by boundary conditions for the fluid velocity and initial conditions
for the studied variables.

5.1.2 The penalization model using a level set decomposition

The penalization model using a level set decomposition consists in the penalized Navier
Stokes equations supplemented by the collision model introduced in [31], we also add the
repulsive forces exerted by the wall on the structures. As each solid body Ωi is captured
by one level set function φi, the regularized characteristic function χεi is provided by:

χεi = 1−Hε(φi). (5.5)

The density function is expressed as:

ρ = ρf +
N∑
i=1

(ρf − ρi)χεi . (5.6)

Each level set function is transported either by the fluid or the rigid motion of the asso-
ciated body.

∀x ∈ Ω, ∀i ∈ {1, ..., N}, ∂tφi + U · ∇φi = 0. or ∂tφi + Ui · ∇φi = 0.

We recall that the repulsive forces exerted between the particles are provided by:

∀x ∈ Ω, Fglobal(x) =
N∑

i,j=1
i 6=j

k

ε
ζε(φi(x))

∇φj(x)

φj(x)
exp(−φj(x)

εb
). (5.7)

To avoid contacts between the particles and the walls, we define a repulsive force by using
a level set function φN+1 which captures the union of all interfaces, this level set function
corresponds to the minimum of the N level set functions provided by:

∀x ∈ Ω, φN+1(x) = min(φ1(x), φ2(x), ..., φN(x)) (5.8)

Denoting by ψi the distance functions to the boundary ∂Ωi as:

∀x ∈ Ω, ψi(x) = d(x, ∂Ωi) (5.9)

We define the repulsive forces exerted by the walls by:

∀x ∈ Ω, Fwall(x) =
2d∑
i=1

k

ε
ζε(φN+1(x))

∇ψi(x)

ψi(x)
exp

(
−ψi(x)

εb

)
. (5.10)

Finally, the system involving the N level set functions and the collision model Fglobal is
as the following:
ρ(∂tU + (U · ∇)U)−∇ · (µ∇U) +∇p = ρg + λ(

∑N
i=1 χ

ε
i (Ui − U)) + Fglobal + Fwall in ΩT

∇ · U = 0 in ΩT

∀i, ∂tφi + Ui · ∇φi = 0 in ΩT

(5.11)
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5.1.3 The proposed penalization model

The system (5.1) depends on the number of bodies N contained in the fluid.
Indeed, the computation of N rigid velocities as well as the N transport equations are
required in order to evolve the N structures.
In addition, the penalization term λ(

∑N
i=1 χi(Ui − U)) and the density function depends

also on the number of bodies.
In order to alleviate the high computational cost due to a large number of particles N
we take advantage of the label maps and distance functions to reformulate this model.
To achieve this, we define a label map L0,1 which allows to partition the computational
domain into N subdomains, each subdomain is associated to the first closest structure,
this function is defined as:

∀x ∈ Ω, L0,1(x) =

{
L0(x) if (L0(x) 6= Nf )

L1(x) otherwise
(5.12)

The regularized characteristic functions of the solid bodies are then expressed as:

∀x ∈ Ω,∀y ∈ Ω, χL0,1(x)(y) = 1−H(
φL0,1(y)

ε
)

Denoting by ρL0,1(x) the density of the body ΩL0,1(x) we obtain the following density
function:

ρx = ρf (1− χL0,1(x)) + χL0,1(x)ρL0,1(x)

Computation of the rigid velocities

To compute the penalization term, the values of the rigid velocities are only required
inside the particles and in a vicinity of the particle at a distance ε. Taking this in con-
sideration and the advantage of the formulation above, we define a global rigid velocity
which includes the N rigid velocities Ui, i ∈ {1, ..., N}.
More precisely, for each x ∈ Ω, y → UL0,1(x)(y) is the rigid velocity of the solid body
ΩL0,1(x) obtained by averaging the translation and angular velocities over the solid.

Setting:

∀x ∈ Ω, |ΩL0,1(x)| =
∫

ΩL0,1(x)

ρ(z)dz =

∫
Ω

ρ(z)χLε
0(x)(z)dz (5.13)

we obtain the following formulation .
∀x ∈ Ω, ∀y ∈ Ω,

UL0,1(x)(y) =
1

|ΩL0,1|

∫
Ω

ρx(z)χL0,1(x)(z)U(z)dz

+

(
J−1
L0,1(x)

∫
Ω

ρx(z)χL0,1(x)(z)U(z)× (z − xgL0,1(z))dz

)
× (y − xgL0,1(y)).

(5.14)

where JL0,1(x) and xgL0,1(x) are the inertial matrix and center of gravity of solid ΩL0,1(x).
In a neighboorhood of a particle Ωi that is when L0,1 = i, the defined global velocity
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corresponds exactly to the rigid velocity Ui.

On the implementation side, all rigid velocities are computed incrementally, involving
only one iteration on the mesh grid.
To compute the coefficient of the repulsive forces, which depends on the relative velocities
of the closest particles, we extend the velocities in each portion where the label map L2

is defined that is by setting:
∀x ∈ Ω, ∀y ∈ Ω,

UL2(x)(y) = U t(L2(x)) +W (L2(x))× (y − xg(L2(y))) (5.15)

where U t is the translational velocity and W the angular velocity.

Evolution of the solid bodies

To evolve the rigid bodies two algorithms are considered. The first one consists in
evolving the level set function which captures the union of all interfaces and then perform
the evolution introduced in Chapter 3. The second one, consists in reconstructing the N
level set functions by using the method proposed in [31] in order to evolve the structures
and recover the label maps and distance functions.

Transport of the level set function φ

The advection of the level set function can be achieved either with the global rigid
velocity or with the fluid velocity. Mainly, we have:

∂tφ+ U · ∇φ = 0 or ∂tφ+ UL0,1 · ∇φ = 0

To compare the results obtained with these two advection equations, we consider the
test case of a circular disk falling under gravity and we do not reinitalize the level set
function as a signed distance function. Figure 5.1 shows the obtained level set function
transported by the fluid velocity field and the rigid velocity for one particle, the isolines
corresponds to φ = ε and φ = 0. Inside the particle, the isolines are not deformed as the
fluid velocity field match the rigid one, whereas outside the fluid velocity field deforms
the isolines. It is thus more convenient to transport φ with the rigid velocity UL0,1 which
is more regular than the fluid velocity field in a vicinity of the rigid bodies.

Figure 5.1: Isolines φ = ε and φ = 0 transported by the fluid velocity (red lines) and by the rigid
velocities UL0,1 (white lines).
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Reconstruction of the N level set function

The transport equation of the level set function even with the rigid velocity does not
conserve exactly the signed distance function, as spatial and time discretization errors are
introduced during numerical calculations. As the considered bodies are rigid, an efficient
technique proposed in [31] is to evolve the structures by using the gravity centers and the
transformations over the solids. We present the technique in the case of one rigid body
captured by a level set function φ in three dimensions, the extension to several bodies is
straightforward.
Taking advantage of the rigidity property of the displacement, a simple interpolation of
the initial level set function φ0(x) is achieved using the characteristics of the velocity field.
Denoting by X(0, x, t) the characteristics of the velocity field we get:

φ(x, t) = φ0(X(0, x, t))

Setting :

θn = |wn|∆t, ,
wn

|wn| = (α, β, γ)

where θn is the step rotation and
wn

|wn| corresponds to the normalized rotation vector

around which the solid body turns, the rotational matrix is provided by:

Rn =

1− 2b2 − 2z2 2ab− 2cd 2ac+ 2bd
2ab+ 2cd 1− 2a2 − 2c2 2bc− 2ad
2ac− 2bd 2bc+ 2ad 1− 2a2 − 2b2


where

a = α sin(
θn

2
), , b = β sin(

θn

2
), , c = γ sin(

θn

2
), d = cos(

θn

2
)

The position at time tn+1 of a pointX which moves with the solid body can be deduced
in function of its position at time tn:

Xn+1 = cn + Un∆t+Rn(Xn − cn)

and by accumulation of rotations and translations we get:

Xn+1 =
i=n∏
i=0

Ri(x− x0
g) + xn+1

g

The position of the gravity center is directly obtained by translation as:

xn+1
g = xng + ∆tU t

Thus, the computation of the level set function φn+1 consists in first computing for all grid
points xi the characteristics X(0, xi, t

n+1) and then interpolate φ0(X(0, xi, t
n+1)) from the

grid values by bilinear interpolations giving:

φ(Xn+1, tn+1) = φ0

(
1∏i=n

i=0 R
i
(Xn+1 − xn+1

g )− x0
g

)
(5.16)
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At each time step, the error due to transport equation is constant and depends only
on the choice of the interpolation function. Moreover, the computation of the transport
equation is fast, only the interpolations can induces a high computational cost if high
order interpolation scheme are used.
A linear interpolation is not sufficient for this work, as the distance between the bodies is
required and has to be accurate. However, as the proposed collision model consists in a
short-range repulsive force, the signed distance function are only required in a vicinity of
the particles interfaces. In the case of a spherical particle, the gravity center is transported
:

xn+1
g = xng + ∆tU t

and we define φ as the distance to the gravity center as the distance to a sphere is a very
fast procedure. For more general shape like ellipsoids, the distance to the interface is not
explicit and it induces a very high computational cost in particular when dealing with
several bodies, it is thus faster to interpolate the initial level set function.

The complete penalization model

Finally, the proposed penalized model is provided by:
ρ(∂tU + (U · ∇)U)− µ∆U +∇P

= ρg + λ(χL0,1(UL0,1 − U)) + Flabel + Fwall in ΩT

∇ · U = 0 in ΩT

(5.17)

Denoting by φi the distance functions to the boundary ∂Ωi as:

∀x ∈ Ω, φi(x) = d(x, ∂Ωi) (5.18)

the repulsive forces exerted by the walls are given by:

∀x ∈ Ω, Fwall(x) =
2d∑
i=1

k

ε
ζε(φ(x))

∇ψi(x)

ψi(x)
exp

(
−ψi(x)

εb

)
. (5.19)

and we recall the particle-particle repulsive force:

∀x ∈ Ω, F label(x) =
KL0,1,L2

ε
ρ(x)ζε (φ(x))

∇ϕ2(x)

ϕ2(x)
exp

(
−ϕ2(x)

εb

)
(5.20)

where KL0,1,L2 is either a constant value fixed at the beginning of the simulation or it
depends on the relative velocities between the particles. This model has to be completed
with the evolution of the solid bodies and the initial and boundary conditions on the
velocities and pressure.
Thanks to the label maps, we have suppressed the dependence on the number of bodies
in the repulsive force, the penalization term, the density function and the computation of
the rigid velocities.

5.1.4 Discretization and Numerical implementation

This part elucidates the numerical resolution of the system (5.17), two algorithms are
considered for the evolution of the rigid bodies and we provide a comparison of these two
algorithms in terms of computational complexity.
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Resolution of a multi-fluid problem in the fluid/structures domain

The Navier-Stokes equations are solved using an incremental projection method of
Chorin type. Given a time step ∆t, we set tn = n∆t and Un ≈ U(., tn). First, we
compute an intermediate State U∗ from:

U∗ = Un −∆t(Un · ∇)Un +
∆tµ

ρn
∆Un + ∆tg − ∆t∇pn

ρn
. (5.21)

Then we solve the pressure from the equation:

∇ · (∇p
n+1

ρn
) =

div(U∗)

∆t
+∇ · (∇p

n

ρn
) (5.22)

so that the velocity:

U = U∗ − ∆t

ρ0

(∇pn+1 −∇pn) (5.23)

is divergence free. The pressure equation (5.22) can be solved directly by a conjugate
gradient algorithm or approximated with a relaxation procedure as follows:

∆pn+1 =
ρ0

∆t
div(U∗) + ∆pn

setting 1/ρn = 1/ρ0 − (1/ρ0 − 1/ρn) in order to get a Poisson equation much faster to
solve. In that case, the step u satisfies Navier-Stokes equations with a modification of the
pressure term (1/ρn− 1/ρ0)∇pn + 1/ρ0∇pn+1 instead of 1/ρn∇pn+1. It remains to choose
ρ0 in order to have the best approximation. We have tested three different values ρ0 = ρf ,
ρ0 = ρL0,1 and ρ0 = (ρL0,1 + ρf )/2. The Poisson solver is based on a classical 5 or 7 points
second order stencil according to the dimension, the viscous terms are discretized by a
second order central scheme and the convection term is discretized by a 5th order WENO
scheme.
To find the best value for ρ0, we perform a numerical test with six rigid disks falling
under gravity in two dimensions. The Figure 5.2 shows that the results obtained with
ρ0 = ρf gives the worst approximation whereas the two other values are very close to
the approximation of the exact solution computed with the conjugate gradient. In the
following we set ρ0 = (ρL0,1 + ρf )/2.

Concerning the penalization term an implicit treatment is adopted in order to use
larger penalization coefficient λ and therefore the interface boundary condition is satis-
fied with better accuracy.

Algorithm 1

In the general case the algorithm performs the following steps:

1. Compute and add the repulsive force Ucol = U + ∆tF lab
col ,

2. Compute the translation velocity U t
L0,1

of the body ΩL0,1 , U t
L0,1

=

∫
Ω
ρnUcol · χLn

0,1
dx∫

Ω
ρnχLn

0,1
dx

,
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Figure 5.2: Flow field for six rigid disks falling under gravity (left) and a zoom of the location of
the interface for different values of ρ0 (right). The conjugate gradient method is in red, ρ0 = ρf
in black, ρ0 = ρL0,1 in white and ρ0 = (ρL0,1 + ρf )/2 in blue. The background color shows the
level set amplitude.

3. Compute the angular velocity WL0,1 of the body ΩL0,1

WL0,1 = J−1
L0,1

∫
Ω

ρnrn × Ucol · χLn
0,1
dx× rn, where rn = (x− xgLn

0,1
)

4. Compute the rigid velocity UL0,1 of the body ΩL0,1 , UL0,1 = U t
L0,1

+W t
L0,1

5. Correct the velocity using an implicit treatment of the penalization term

Un+1 − Ucol
∆t

=
1

λ
χL0,1(UL0,1 − Un+1),

6. Transport the solid bodies with the fluid velocity or the rigid velocity φn+1 = φn −
∆tUn+1 · ∇φn,

7. Redefine the distance function ϕn+1
1 = |φn+1|,

Redefine Ln+1
0 ,Ln+1

1 using φn+1

Perform the multi label fast marching method described in Chapter 3

8. Redefine the gravity centers as:

xg(L0,1) =

∫
ΩL0,1

ρX∫
ΩL0,1

ρ
(5.24)

The implicit treatment of the penalization term allows to use a large penalization coeffi-
cient λ. Moreover with this algorithm, the incompressibility constraint is imposed before
the rigidity constraint. The two constraints are better imposed as:

D(U) = 0⇒ divU = 0
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Algorithm 2

The second algorithm consists in reconstructing the N level set functions using 5.16.
Then, the steps 6 and 7 of the previous algorithm are modified as follows:

6. Transport the solid bodies using (5.16).

7. Redefine the label maps and distance functions:

∀x ∈ Ω, ∀i ∈ {1, ..., N + 1},


Ln+1

0 (x) = i if φn+1
i ≤ 0

Ln+1
1 (x) = arg min

j 6=Ln+1
0 (x)

φn+1
j

Ln+1
2 (x) = arg min

j /∈{Ln+1
0 (x),Ln+1

1 (x)}
φn+1
j

∀x ∈ Ω,


ϕn+1

1 (x) = d(x,ΓLn+1
1 (x))

ϕn+1
2 (x) = d(x,ΓLn+1

2 (x))

Comparison of the two algorithms of evolutions

For circular rigid bodies, we compare the CPU time of both algorithms. In algorithm
1, the transport of the solid bodies with the help of one level set function is achieved
using a WENO5 scheme whereas in algorithm 2it is performed by direct explicit trans-
port of the center of the bodies. The redefinition of the label maps is performed either
with a multi label fast marching algorithm on a thin band around the particles or using
N signed distance functions that are updated directly thanks to the transport of the N
gravity centers. The narrow-band sizes are NBL1 = 10h and NBL2 = 5h where h is the
space discretization step.
To compare the CPU time of both algorithms, we fill the computational domain with par-
ticles next to each other so that the computation of L2 is active as soon as there are two
particles in the domain. Thus, the CPU time provided for the Multi Label fast marching
is the worst CPU time one can obtain according to the number of particles.

Table 5.1 shows the CPU time of both algorithms, we can see that the CPU time of
algorithm 2 is faster. Nevertheless, the difference is small and during numerical simu-
lations the CPU time of the Algorithm 1 will be lower as the particles can be far from
each other. Moreover, the Algorithm 2 is provided in the case of circular rigid disks, no
interpolations of the initial level set functions are required. For general shape of bodies,
interpolations of the N initial level set functions have to be achieved, the resulting CPU
time will be higher. It seems most efficient to use the algorithm 1 for large number of
particles.
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Number of Algorithm 1 Algorithm 2
disks CPU time CPU time
10 0.1 0.05
50 0.5 0.6
100 1.0 0.7
200 2.1 1.4
400 4.0 2.8

Table 5.1: Computational time of both algorithms.

5.2 Sensitivity to grid resolution

A grid convergence study is carried out in dimension two and three.

In dimension two, the grid convergence is performed on four grid levels (G1, G2, G3,G4)
which contain respectively : (128 × 128), (256 × 256), (512 × 512) and (1024 × 1024)
cells on a uniform mesh. The regularization parameter ε is fixed to ∆xG1 where ∆xG1

denotes the mesh size corresponding to the coarsest grid (128 × 128).
Three test cases are investigated, the first one deals with the sedimentation of a 2D cylin-
der in an infinite canal. Then, we consider eight circular bodies falling under gravity and
we present the grid convergence in the case of a constant intensity of the repulsive force
(k is a constant) and with a repulsive force depending on the relative velocities. Finally,
a qualitative grid convergence is presented for the sedimentation of 25 particles with a
constant intensity of the short-range repulsive force. For all these simulations, the density
of the fluid is set to 1, the dynamic viscosity µ = 0.01, the gravity force g = −980 and the
interfaces are regularized on thickness ε = 1/128, the rebound parameter is fixed to εb = ε.

The grid sensitivity in dimension three is achieved for a grid step h which varies from
0.015625 to 0.0039 and for the sedimentation of two hundred spherical rigid bodies.

5.2.1 Sedimentation of a 2D cylinder on a plane wall

We consider here the case of a 2D cylinder falling in an infinite canal and hitting a flat
plane. The parameters used are the same as the ones used in [67]. The computational
domain Ω is a square cavity of size [0, 2]× [0, 6], the density of the solid body ρs is set to
1.5. The particle of radii 0.125 is initially located at (1, 4). The repulsive coefficient k is
fixed to 100.
We show on Figure 5.3 the results obtained for two different resolutions h = 1/256 and
h = 1/512, we represent the trajectory of the y coordinate of the gravity center (top) and
the vertical velocity of the rigid body (bottom). We observe that the particle falls fastly
until it approaches the wall and it hits the bottom, then it bounces on the wall and finally
reachs a steady state.

For the two different grids, the results are almost similar. These results match almost
perfectly the one obtained in [67] and [31] for which two resolutions h = 1/256 and
h = 1/384 of this benchmark were presented. The only difference comes from the minimal
distance between the wall and the particle which is smaller here and thus the rebound
time is shifted compared to their simulations.
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Figure 5.3: Simulation of a 2D cylinder falling on a flat plane.

5.2.2 Collision model with constant repulsive intensity

We investigate here the grid sensitivity of our model in the case of multiple immersed
particles. The computational domain is a square Ω = [0, 1]2. The density of the rigid
particles is set to ρs = 2. The repulsive coefficient is fixed to k = 100 for all the bodies.
The same coefficient is chosen for the repulsive forces exerted by the four wall kwall = 100.
The repulsive forces are applied on a ring around the interface of thickness ε = ∆xG1 .
Two test cases are explored: the sedimentation of eight rigid disks of radii r = 0.05 and
25 circular rigid bodies having the same radius R = 0.025 + ε.

Results of the first benchmark are presented on Figure 5.4. Figures 5.5 and 5.6 show
the time history of the trajectory and velocity of the first particle. Before the collision
time t ' 0.1, a grid convergence is achieved as the three finer grids provide similar results.
Then, we observe the well-known phenomena of drafting, kissing and tumbling [58]. Once
collisions occur, one can not obtain similar results for the different resolutions, we should
note however that compared to the coarsest grids, the two finer grids seems to produce
results close.

The second simulation which deals with the sedimentation of 25 particles is represented
on Figure 5.7, the white line corresponds to the numerical size of the rigid particles (φ = ε).
At initialisation, the spheres are released from rest and fall because of gravity. As time
proceeds, the distance between spheres decreases until collision occurs that is kissing
process. The kissing phenomenon persists and then we can observe a tumbling stage .
The dynamic of the rigid bodies and the interaction between them is quite similar for the
different resolutions. By t = 0.48, all simulations have reached static equilibrium which
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represents different local minimum of the sedimentation of the 25 disks. We observe that
the two fine simulations are very close to each other until time t = 0.15 and keep a
symmetrical distribution. At the end of the simulation, a packing of the bodies is formed
at the bottom of the computational domain and is composed of three layers. Each layer
contains the same number of structures for the four different grids: eleven bodies on the
first one, ten bodies on the second one and four on the last one. The distribution of the
four bodies of the third layer is different for the various grids but is much closer on the two
finest simulations. From these two test cases, one can conclude that the grid convergence
is achieved for the grid G512, the corresponding discretization space step is h ' 1.95.10−3.

(a) t = 0.0 (b) t = 0.05 (c) t = 0.1 (d) t = 0.15

(e) t = 0.20 (f) t = 0.25 (g) t = 0.30 (h) t = 0.35

Figure 5.4: Study of the grid convergence with a test case of 8 rigid disks falling under gravity,
the repulsive coefficient k = 100. The red contour corresponds to the grid G256, the green contour
to G512 and the black contour to the grid G1024.

5.2.3 Collision model depending on the relative velocities

We investigate here the grid convergence in case in which the collision model depends
on the relative velocities of the closest particles . We consider again the test case of eight
disks of radius R = 0.05 falling under gravity force g = −980.
We denote by Dmin(i, j) the minimal distance between the ith and jth particle computed
by means of the distance function ϕ2 and by K(i, j) the intensity of the repulsive force.
When the particles get close from each other,Dmin(i, j) ≤ 2ε, the repulsive coefficient
k(i, j) is fixed until the distance between the particles is higher than a certain value, here
we take Dmin(i, j) ≤ 2ε + 4∆xG1 . When the relative velocities are close to zero, the in-
tensity of the force is fixed.
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Figure 5.5: Study of the grid convergence with a test case of 8 rigid disks falling under gravity,
the repulsive coefficient k = 100. Time history of the trajectory and velocity of the first particle.
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Figure 5.6: Study of the grid convergence with a test case of 8 rigid disks falling under gravity,
the repulsive coefficient k = 100. Time history of the trajectory and velocity of the first particle
just before the collision time t = 0.1.
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(a) t = 0.0 (b) t = 0.0 (c) t = 0.0 (d) t = 0.0

(e) t = 0.075 (f) t = 0.075 (g) t = 0.075 (h) t = 0.075

(i) t = 0.105 (j) t = 0.105 (k) t = 0.105 (l) t = 0.105

(m) t = 0.15 (n) t = 0.15 (o) t = 0.15 (p) t = 0.15

(q) t = 0.48 (r) t = 0.48 (s) t = 0.48 (t) t = 0.48

Figure 5.7: Study of the grid convergence with a test case of 25 rigid disks falling under gravity.
From left to right, grid 128 × 128, grid 256 × 256, grid 512 × 512 and grid 1024 × 1024. The
background color shows the level set amplitude.
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In Figure 5.8, we represent the vertical trajectory of the first and fifth particle obtained
for the three resolutions G256, G512, G1024. The particle one is located in the first layer
(from top to bottom) and is the first one starting from left, the 6th body is part of the
second layer and corresponds to the first one starting from left. In Figure 5.9, we represent
the minimal distance between these particles and the associated repulsive coefficient.
We can see, that the repulsive coefficient for the resolution h = 1/256 is higher than the
others. Moreover, we observe several rebounds for this resolution, the particles move away
and approach each other several times.
On the contrary, for G512 and G1024, only one high rebound is observed and then the
particles remain close from each other until the end of the simulation.
We also represent the results of the simulation on Figure 5.10. The grid convergence is
clearly achieved for the resolution G512.

Figure 5.8: Trajectory of the gravity center (y coordinate) of the first and fifth particle.

Figure 5.9: Minimal distance between the first and fifth particle (top) and the associated repulsive
coefficient (bottom) which depends on the relative velocities.
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(a) t = 0.0 (b) t = 0.05 (c) t = 0.1 (d) t = 0.15

(e) t = 0.2 (f) t = 0.25 (g) t = 0.3 (h) t = 0.4

Figure 5.10: Study of the grid convergence with a test case of 8 rigid disks falling under gravity,
the intensity of the force is proportional to the relative velocity. The red contour corresponds to
the grid G256, the green contour to G512 and the black contour to the grid G1024.

5.2.4 Grid convergence 3D

We consider a computational domain Ω = [0, 1]3 and we study the grid sensitivity using
three different grids which contain respectively : (643), (1283) and (2563) cells on a uniform
mesh. The half thickness of the interface is ε = 2∆x. The coefficient of gravity g is set
to -980. The repulsive coefficients are: kx = −g/10, ky = −g/10, kz = −g/10, kwall

x =
−g/40, kwall

y = −g/40, kwall
z = −g. The first simulation deals with the sedimentation

of a sphere falling on a plane wall. At initialization the gravity center of the sphere is
located (0.5, 0.8, 0.5). Figure 5.11 shows the time history of the vertical trajectory of the
gravity center and the vertical velocity performed with the three different grids, we can
see that for the two finer grids provides similar results, the sphere hits the bottom wall at
the same time, then the sphere rebounds on the wall, the obtained results for these two
resolutions are close before the second rebound, due to instabilities we observe thereafter
a delay between the two results.

Figures 5.12, 5.13 and 5.14 show the simulation of 200 rigid spheres of radius R = 0.01
falling under gravity. The results obtained with the finest grids are almost similar, the
particles fall down symmetrically no interaction occurs between the particles before hitting
the bottom wall. On the contrary, with the coarser grid, the particles interacts and falls
unsymmetrically, this is due to the fact that the short range repulsive forces are active
from the beginning as there are less discretization points in the interstitial gaps between
the particles.
Thus a 3D qualitative grid convergence is achieved for a large number of particles.
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Figure 1.5: Study of the grid convergence with a test case of 8 rigid disks falling under gravity,
the repulsive coefficient k = 100. Trajectory and velocity of the first particle.
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Figure 1.5: Study of the grid convergence with a test case of 8 rigid disks falling under gravity,
the repulsive coefficient k = 100. Trajectory and velocity of the first particle.
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Figure 1.5: Study of the grid convergence with a test case of 8 rigid disks falling under gravity,
the repulsive coefficient k = 100. Trajectory and velocity of the first particle.
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Figure 1.5: Study of the grid convergence with a test case of 8 rigid disks falling under gravity,
the repulsive coefficient k = 100. Trajectory and velocity of the first particle.
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Figure 5.11: Vertical trajectory and velocity of a sphere falling on a plane wall obtained with
three different resolutions.
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(a) t = 0.0 (b) t = 1.0 (c) t = 1.5 (d) t = 2.0

(e) t = 2.5 (f) t = 4.0 (g) t = 9.4 (h) t = 14.7

Figure 5.12: Simulation of 200 rigid spheres subject to gravity (grid resolution size 643). The
colors indicate the values of the label map L0 from dark blue for the first body to dark orange
for the 200th body and red for the fluid that is the 201th object.

(a) t = 0.0 (b) t = 1.0 (c) t = 1.5 (d) t = 2.0

(e) t = 2.5 (f) t = 4.0 (g) t = 9.4 (h) t = 14.7

Figure 5.13: Simulation of 200 rigid spheres subject to gravity (grid resolution size 1283). The
colors indicate the values of the label map L0 from dark blue for the first body to dark orange
for the 200th body and red for the fluid that is the 201th object.
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(a) t = 0.0 (b) t = 1.0 (c) t = 1.5 (d) t = 2.0

(e) t = 2.5 (f) t = 4.0 (g) t = 9.4 (h) t = 14.7

Figure 5.14: Simulation of 200 rigid spheres subject to gravity (grid resolution size 2563). The
colors indicate the values of the label map L0 from dark blue for the first body to dark orange
for the 200th body and red for the fluid that is the 201th object.

5.3 Comparison of the method with level set decompo-
sition

We provide here a comparison of our penalization model (5.17) and the penalization
model that uses a level set decomposition (5.11).

5.3.1 Computational time using the algorithm (2) for rigid disks

We give a comparison of the computational time in the case of N rigid disks. Instead of
transporting one level set function and performing the multi label fast marching method,
we transport the gravity centers of the N rigid structures and reconstruct their associated
level set functions. Then, the label and distance functions are reinitialized by using their
definition. It is most convenient to use this algorithm in order to compare the saving
computational time which is induced by changing the penalization model (3.12) and our
proposed penalization term. We average the computational time on the ten first iterations.
The averaged CPU time of our algorithm (table 2) is compared to the method using N
level set functions (table 1), according to the number of cells. As noticed before the
collision model (3.12) computes N2 repulsive forces which induced a high computational
cost as shown in the second column of table 1 whereas in the present algorithm, the CPU
time of the collision model is constant as it does not depend on the number of cells. The
CPU time of the penalization model is larger in (5.11) because it depends on the number
of cells. Indeed, N rigid velocities must be computed to get the right velocity of each cell.
In the present algorithm, we must add the label redefinition that depends almost linearly
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on the number of cells and so is quite cheap. For a low number of cells the CPU time of
both methods is close but increasing this number from 2 to 400 cells induces a total CPU
time 8000 larger for the model (5.11) whereas with the present model the CPU time is
only 25 times larger. The proposed model is hence around 340 times faster for 400 cells.

Number of Collision model (3.12) Penalization model (5.11) Total
disks CPU time CPU time CPU time
2 0.02 0.06 0.2
5 0.17 0.16 0.48
10 0.72 0.35 1.24
25 4.87 0.88 6
50 19.25 1.75 21.5
100 80.8 3.9 85.3
400 1583.4 19.75 1605.3

Table 5.2: Averaged CPU time using the N level set decomposition

Number of Model (3.16) Model (5.17) Label redefinition Total
disks CPU time CPU time CPU time CPU time
2 0.015 0.05 0.008 0.2
5 0.015 0.06 0.014 0.23
10 0.015 0.09 0.02 0.25
25 0.016 0.18 0.08 0.4
50 0.016 0.3 0.16 0.6
100 0.016 0.56 0.23 0.9
400 0.016 2.52 2.06 4.7

Table 5.3: Averaged CPU time using the algorithm of section 5.1.4

5.3.2 Numerical comparison of the two collision models

We provide here a comparison of the two collision model in the case of a constant
intensity of the repulsive forces to validate the proposition 1 presented in Chapter 3. This
proposition is also avalaible for p = 2, so that L2 norm can be used. To highlight the
differences between the two collision models we first focus on a a test case with three
circular rigid bodies falling on each other. The simulations are performed on a grid of
size (128 × 128) corresponding to a space step ∆x = 7.8125.10−2 in order to better see
the difference between the two models. The bodies have the same radius R = 0.1 and the
thickness of the interface is ε = 2∆x. The repulsive coefficients exerted by the wall are:
kx = −g/10, ky = −g/10, kwall

x = −g/40, kwall
y = −g.

On Figure 5.16, black and white lines represents the interfaces of the three different
objects. The black line stands for the collision model (3.12) and the white line for the
collision model (3.16) corresponding also to the colors that represent the values of the
level set function. We can see that the bodies have the same behaviour, as expected,
because on the one hand the radius is large and on the other hand the forces applied on
the bodies are very similar. So the difference is small. The Figure 5.17 shows the results
obtained with 6 rigid bodies. here we can see again that the behaviour is very similar for

111



CHAPTER 5. APPLICATION TO IMMERSED RIGID BODIES

a large radius. The last test concerns the same configuration with six smaller disks with
radius R = 0.03 leading to a higher difference in the dynamics even if the final state is
the same. The difference between the two models is stronger when the number of body
is larger or when the force coefficients are higher. The bottom plot in Figure 5.19 shows
the vorticity inside the fluid domain, when the bodies reached the bottom they move to
the right and induce a strong positive vortex that has a strong influence on the dynamics
of the bodies in its turn. We observe that the vorticity increases when the bodies are
close to each other as the repulsive force is higher. At time t = 0.5 the vorticity vanishes
because the six rigid bodies have reached the static equilibrium.

We represent on Figure 5.15, the estimation of the error
‖Fglobal − Flabel‖L2(Ω)

‖Flabel‖L2(Ω)

for

different number of particles. Then, we take the case of three particles and we vary their
radius, the results are presented in Table 5.4. These results validate numerically the
Proposition 1 that is the error estimation depends on the number and the size of the
particles. The larger are the particles the smaller will be the difference between the two
collision models.

Radius of Error
disks estimation

1.10−2 6.8.10−2

2.5.10−2 1.10−5

5.10−2 2.10−9

1.10−1 6.10−16

Table 5.4: Error estimation
‖Fglobal − Flabel‖L2(Ω)

‖Flabel‖L2(Ω)
for three particles according to their radius.

CHAPTER 1. APPLICATION TO IMMERSED RIGID BODIES

radius. The last test concerns the same configuration with six smaller disks with radius
R = 0.03 leading to a higher difference in the dynamics even if the final state is the same.
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inside the fluid domain, when the bodies reached the bottom they move to the right and
induce a strong positive vortex that has a strong influence on the dynamics of the bodies
in its turn. We observe that the vorticity increases when the bodies are close to each
other as the repulsive force is higher. At time t = 0.5 the vorticity vanishes because the
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A scheme for inelastic collisions is implemented imposing a minimal distance between
bodies
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(a) t = 0.0 (b) t = 0.08 (c) t = 0.1

(d) t = 0.12 (e) t = 0.15 (f) t = 0.23

Figure 5.16: Comparison of the two collision models for three disks of radius R = 0.1. The
background colors show the level set amplitude.
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(a) t = 0.0 (b) t = 0.08 (c) t = 0.15

(d) t = 0.25 (e) t = 0.38 (f) t = 0.50

Figure 5.17: Comparison of the two collision models for six disks of radius R = 0.1.The back-
ground colors show the level set amplitude.
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(a) t = 0.0 (b) t = 0.08 (c) t = 0.15

(d) t = 0.25 (e) t = 0.38 (f) t = 0.5

Figure 5.18: Comparison of the two collision models for six disks of radius R = 0.03. The
background colors show the level set amplitude.
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(a) t = 0.0 (b) t = 0.04 (c) t = 0.08

(d) t = 0.1 (e) t = 0.15 (f) t = 0.5

Figure 5.19: Six disks falling under gravity, colors represents the values of the vorticity field.
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5.4 Comparison of the collision model with the algo-
rithm to handle contacts introduced in [105]

In this part, we compare qualitatively our model to an existing method proposed in
[105]. We first describe briefly this method, then a numerical comparison on two test
cases are presented.

5.4.1 Description of the model

In that model, the solid bodies are taking into account by penalizing the strain tensor
to enforce the rigid body motion (see [88]).
A scheme for inelastic collisions is implemented imposing a minimal distance between
bodies and therefore avoiding contacts between the particles and the four walls (see [124]
). Only spherical particles are considered so that the projected velocities are the transla-
tional velocity of the particles. As the translational velocities are in the all computational
domain, only a loop on the number of particles is required to update them.

The principle of the contact algorithm is to project the velocities onto a set of ad-
missible velocities corresponding to the set of velocities for which the particles and the
particles and the walls are not in contact.
The first step is to compute the signed distance functions between the particles and their
gradient. Denoting by ri and rj the radius of the particles Ωi and Ωj and xi and xj
their gravity centers, at each time step the signed distance function between Ωi and Ωj is
defined by:

Di,j(x
n) = |xni − xnj | − ri − rj

Then, the gradient of this distance is given by:

∇Di,j(x
n) = (..., 0,−eni,j, ...., 0, eni,j, 0, ..)

where the normal eni,j is defined by:

eni,j =
xnj − xni
|xnj − xni |

The signed distance functions are computed between pair-wise particles, so for N
particles N(N−1)

2
distances and gradients are computed. The set of admissible velocities is

defined as:

G(xn) = {∀i < j, U ∈ R2n, Di,j(x
n) + ∆tU · ∇Di,j(x

n) ≥ 0}
If the velocities are projected onto this set, at the next time step, no overlapping can

occur. Indeed, denoting by Ui and Uj the velocities of the particles Ωi and Ωj, the signed
distance function Di,j is solution of the following transport equation:

∂tDi,j + U · ∇Di, j = 0

Thus, if the contraint G(xn) is checked we have:

Dn+1
i,j ≥ 0
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In practice, it is better to define a minimal distance between the particles, which avoid
the particles from being in contact, the constraint is changed as:

Di,j(x
n) + ∆tU ·Gi,j(x

n) ≥ Dmin

giving:
Dn+1
i,j ≥ Dmin

In order to project the velocities a priori Un
∗ onto the set G(xn) a vector of lagrange

multipliers is introduced. We denote by λ ∈ R
N(N−1)

2
+ the lagrange multipliers.

Then, the functional to be minimized is:

J(U,Λ) =
1

2
|U − Un

∗ |2 −
∑

1≤i,j≤N
λi,j(Di,j(x

n) + ∆tU · ∇Di,j(x
n)) (5.25)

Then, at each time step the saddle path problem resolved by an Uzawa algorithm is:

Find (Un, λn) ∈ R2N ×R
N(N−1)

2
+ such as:

∀(U,Λ) ∈ R2N ×R
N(N−1)

2
+ , J(Un,Λ) ≤ J(Un, λn) ≤ J(U, λn)

If there is no contact between the particles Ωi and Ωj, the lagrange multiplier λi,j = 0,
and thus the associated velocity is not projected.
Finally, the new projected velocities Un

i are used to transport the gravity centers as:

∀i ∈ {1, ..., N}, xn+1
i = xni + ∆tUn

i

5.4.2 Numerical comparison

Let us draw a comparison between the contact algorithm presented above and the
proposed collision model in the case of a constant intensity of the force. The fluid flow is
governed by the Navier Stokes equations with a dynamic viscosity µ = 0.01 and density
ρf = 1, the particles density is fixed to ρs = 2.
We first present a test case for which the contact algorithm is inserted in our code so that
the only error comes from the procedure to deal with numerical contacts.

The test case consists in the sedimentation of eight disks. The gravity force is g = −980
and the radius are R = 0.1. The repulsive coefficient for the walls and the particle/particle
contacts are fixed to 100. The computational domain Ω[0, 1]× [0, 1] is discretized with a
mesh grid which contains 512 × 512 nodes and the thickness of interface ε = 2h where
h = 1/512. For the contact algorithm of A.Lefebvre and B.Maury, we set the minimal
distance Dmin = 2ε.

The obtained simulations are presented in Figure 5.20 and 5.21. We observe that the
dynamic of the rigid bodies is completely different with these two procedures.
In Figure 5.21, the particles fall until collisions occurs at time t = 0.14, then the top par-
ticles roll on the bottom particles to finally hit the bottom and rebound at time t = 0.19.
At t = 0.24, all the particles are distributed on the bottom but keep moving until t = 0.4
where the particles have reached the steady state and are distributed symmetrically in
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the computational domain. The kissing process is very fast as it only lasted around 0.5
seconds.
The results represented in Figure 5.20 are different from t = 0.14 when the particles col-
lide. We observe the same kissing phenomenon, at t = 0.17 the top particles roll on the
bottom ones except for the green particle located at right which stands on the orange
rigid body. Then, instead of falling and stay close to the ground, we can see at t = 0.2
that the light blue particle rebounds on the wall until it hits the green particle located at
right. There are more interactions between the particles, at t = 0.25 the blue, light blue,
green and orange particles form a packing and move together to finally end up on the
bottom wall. Then, the particles keep moving until the steady state is reached at t = 0.6.
Consequently, the two simulations provides two completely different behavior of the par-
ticles. On one side, the particles just fall, rebound, kiss and hit the bottom whereas with
the contact algorithm the particles interact much more with each other in particular we
observe a collective motion of some particles. The final steady state is reached later t = 0.6
with the contact algorithm and the distributions of the particles are not the same at all
with the two procedures. With the contact procedure 5.20 the dynamic of the particles
seem physically unrealistic.
Concerning the CPU time of the contact algorithm and our model it is not possible to
make a comparison as the behavior is different. We should note however that the compu-
tation of the signed distance functions is very fast as it only uses the gravity centers, the
projection of the velocities is almost always active from t = 0.17 as the particles are close,
in particular from t = 0.25 to t = 0.6 it is active between the closest bodies inducing a
higher computational cost than just computing a short-range repulsive force, in addition
it may have an influence on the resulting late steady state.

We now investigate the sedimentation of 100 rigid particles of radius R = 0.01 subject
to the gravity force g = −70. The corresponding repulsive coefficient are:

kx = −g/7, ky = −g/7, kwall
x = −g/28, kwall

y = −g.

The Figure 5.22 shows the results obtained with the FreeFem ++code implemented by
B.Maury and A.lefebvre (see [105]) on a mesh with x elements. Using our model, the
simulations are performed on a grid of size (512 × 512), the half interface thickness ε is
set to the mesh size ∆x and the results are shown in Figure 5.23.
Despite a symmetrical configuration the results in Figure 5.22 are unsymmetric from the
beginning whereas our results stay symmetric until time t = 1.44. The only common
point between these two simulations is the time simulation corresponding to the static
equilibrium which is reached at the same time t = 4.8. Otherwise, with our model the
particles falls symmetrically, at t = 1.44 some particles have already hit the bottom, many
drafting, kissing and tumbling process take place at several times. At the final steady
state, a packing of the bodies is formed at the bottom composed of different layers where
the particles have tried to fulfill each layer.
On the contrary, on Figure 5.22, we observe a convection motion, the particles are carried
by the fluid and turns collectively in the domain, thus the particles fall more slowly. At
the steady state, the packing of the bodies is not uniform different layers are formed but
are not fulfilled by particles. We observe clusters of particles.
It is difficult to compare numerically the obtained simulation for the two procedures as the
dynamic of bodies is not of the same type, the gravity force seems to have more influence
in our case whereas for the other procedure the fluid and the interaction between particles
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have the most effect. We should note however, that the proposed method does not allow to
reproduced clusters of particles contrary to the contact algorithm proposed by B.Maury.

(a) t = 0 (b) t = 0.10 (c) t = 0.14 (d) t = 0.17

(e) t = 0.18 (f) t = 0.20 (g) t = 0.24 (h) t = 0.60

Figure 5.20: Simulation of 8 rigid particles submitted to gravity obtained with the contact
algorithm [105].

(a) t = 0 (b) t = 0.10 (c) t = 0.14 (d) t = 0.17

(e) t = 0.18 (f) t = 0.20 (g) t = 0.24 (h) t = 0.40

Figure 5.21: Simulation of 8 rigid particles submitted to gravity obtained with the proposed
collision model.
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(a) t = 0 (b) t = 0.64 (c) t = 1.04

(d) t = 1.44 (e) t = 1.68 (f) t = 2.08

(g) t = 2.4 (h) t = 2.88 (i) t = 4.8

Figure 5.22: Simulation of 100 rigid particles submitted to gravity obtained with the FreeFem
code [105]
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(a) t = 0 (b) t = 0.64 (c) t = 1.04

(d) t = 1.44 (e) t = 1.68 (f) t = 2.08

(g) t = 2.4 (h) t = 2.88 (i) t = 4.8

Figure 5.23: Simulation of 100 rigid particles submitted to gravity obtained with our model. The
background colors show the level set amplitude.
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5.5 Comparison of the repulsive force with or without
constant intensity

In this section is shown the dynamic of rigid bodies of various size, the numerical con-
tacts are either handled by using the short-range repulsive force with a constant intensity
or according to the relative velocity between closest bodies.

The simulations deal with the sedimentation of 30 rigid bodies for the case of disks
the radii are R = 0.05 and R = 0.025 and we also considered rigid squares each side is
equal to

√
πR.

The simulations are performed on a grid of size (512 × 512) and the half thickness of
the interface is ε = 1.5∆x. The coefficient of gravity g is set to −980. The repulsive
coefficients are fixed to 100 in the constant intensity force case.

Figures 5.25 and 5.24 show the sedimentation of 30 rigid squares of different sizes.
In the presence of rigid particles, the hydrodynamical instabilities are more prominent,
as initially the particles are close, the symmetry loss is almost immediate. Once, the
symmetry lost, we can not observe the same dynamics for these two simulations, as due
to instabilities the flow exhibits a very complex behavior, and it seems obvious that the
trajectories of rigid bodies can not be the same for the two simulations. This is even
more visible on Figures 5.27,5.26 where the vorticity field is represented at different time.
At first the vorticity is created by the falling of the bodies whereas, later, the vortices
convect the bodies, the bodies are then driven by the fluid flow.

Nevertheless, we can not that globally the behavior of the rigid bodies is in a sense
similar: we observe that until t = 0.17 for both collision model the obtained results are
similar, the particles are carried by the fluid flow and turns in the domain convected by
the created vortices. At t = 0.25 the minimal distance between the rigid bodies is smaller
for the simulation represented in Figure 5.24 than the particles in Figure 5.25, there are
more interactions between the particles. At t = 3.18, the steady state has been reached
for both simulations, the configuration of bodies are different. With the collision model
depending on the relative velocities, the particles have fulfilled the bottom of the compu-
tational domain whereas with the constant model we observe three layers of particles not
completely filled.

The same simulation for rigid disks having the same area has been carried out. The
results are presented on Figure 5.28. We only colored six particles to better track their
motions, we can see that at time t = 0.03 the models provide exactly the same results,
then at time t = 0.08, we observe a slight delay between the two simulations for the
orange and light blue particles. This slight delay is sufficient to change all the particles
trajectories. However, a collective motion of the big green particle and the smaller red
disks is observed for both simulations. Moreover, globally the motion of the bodies is
similar with the two models, the bodies are carried by the fluid, we observe the same
process of kissing, tumbling of particles. At the end of simulations, the final configuration
is different, here again with the model depending on the relative velocities, the particles
have completely fulfilled the domain. The model using the relative velocities allow the
particle to be close, meaning that the repulsive constant coefficient may not be well
calibrated.
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(a) t = 0 (b) t = 0.09 (c) t = 0.11 (d) t = 0.15

(e) t = 0.17 (f) t = 0.22 (g) t = 0.23 (h) t = 0.25

(i) t = 0.35 (j) t = 0.5 (k) t = 1. (l) t = 3.18

Figure 5.24: Simulation of 30 square rigid bodies of different size falling under gravity. The
intensity of the force depends on the relative velocities of the closest particles.
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(a) t = 0 (b) t = 0.09 (c) t = 0.11 (d) t = 0.15

(e) t = 0.17 (f) t = 0.22 (g) t = 0.23 (h) t = 0.25

(i) t = 0.35 (j) t = 0.5 (k) t = 1. (l) t = 3.18

Figure 5.25: Simulation of 30 square rigid bodies of different size falling under gravity. The
intensity of the force is constant k = 100.
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(a) t = 0.09 (b) t = 0.15 (c) t = 0.20

(d) t = 0.25 (e) t = 0.35 (f) t = 3.18

Figure 5.26: Simulation of 30 square rigid bodies of different size falling under gravity. The
intensity of the force depends on the relative velocities of the closest particles. The background
colors represents the vorticity field intensity.

(a) t = 0.09 (b) t = 0.15 (c) t = 0.20

(d) t = 0.25 (e) t = 0.35 (f) t = 3.18

Figure 5.27: Simulation of 30 square rigid bodies of different size falling under gravity. The
intensity of the force is constant. The background colors represents the vorticity field intensity.
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(a) t = 0.0

(b) t = 0.03 (c) t = 0.08 (d) t = 0.16 (e) t = 0.3 (f) t = 0.6

(g) t = 0.03 (h) t = 0.08 (i) t = 0.16 (j) t = 0.3 (k) t = 0.6

Figure 5.28: Simulations of 30 rigid bodies of different radii (R = 0.05 or R = 0.025) falling
under gravity. The top simulation has been achieved using a constant intensity of the force
whereas for the bottom one it depends on relative velocities.
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5.6 Dense suspensions of rigid bodies in 2D and 3D
In this part, we present some results of dense suspensions of rigid bodies evolving in

a fluid which was performed using our numerical model. The first simulations deal with
the sedimentation of 400 rigid bodies of radius R = 0.01 in the two dimensional case.
The simulations are performed on a grid of size (512× 512) and the half thickness of the
interface is ε = 1.5∆x. The white line shows the real numerical size of the particles cor-
responding to the isoline φ = ε. The coefficient of gravity g is set to −980, the associated
repulsive coefficients are −g/10. The 400 bodies fall down symmetrically to reach a dense
repartition at the bottom as can be seen in the Figure 5.29.

The second simulation addresses the 3D case. Figures 5.30 and 5.31 show the simu-
lation of 500 rigid spheres of radius R = 0.01 falling under gravity for two different grids
of size 643 and 1283. The half thickness of the interface is ε = 2∆x. The coefficient of
gravity g is set to -980. At initial step, there are five slices of 100 bodies at a distance
d = 0.1 (distance of two closest bodies’ centers). Consequently, on the coarser mesh there
is only one full mesh cell between the two numerical slices. Indeed, the numerical radius
is R + ε ≈ 0.041 and so the repulsive forces are active, whereas on the finer mesh there
are on average 6 mesh cells between the two numerical slices as R + ε ≈ 0.026. In that
case the repulsive forces are negligible. The interactions between bodies occur at once on
the coarse mesh while they start after t = 1.5 on the fine mesh. As a consequence, the
equilibrium state is reached much faster on the fine grid, around t = 2.5 instead of t = 9.4
for the coarse resolution.

The last simulation deals with the dynamics of 90 rigid disks suspended in a shear flow.
The intensity of the short-range repulsive force is proportional to the relative velocities
between the closest bodies. The computational domain Ω is a rectangular domain of size
[0, 2]× [0, 1], the grid resolution is (512× 256), the regularization parameter ε = 1.5∆x '
5.9.10−3. Figure shows the obtained results at different time, the disk are colored according
to the values of the label map L0 and the background color corresponds the magnitude of
the velocity. Until time t = 0.25, the rigid bodies moves horizontally through the canal.
Then, we observe a convective motion, the solids are carried by the fluid and rotates in
the domain. Thanks to the collision model, the numerical contacts between particles are
avoided. This test case confirms the ability of the proposed collision model to handle
collisions only by using the relative velocities of the closest cells.

128



CHAPTER 5. APPLICATION TO IMMERSED RIGID BODIES

(a) t = 0.0 (b) t = 0.75 (c) t = 1.5

(d) t = 2.25 (e) t = 3.0 (f) t = 6.9

Figure 5.29: Simulation of 400 rigid disks submitted to gravity (the white line corresponds to
the level line φ = ε). The background colors show the level set amplitude.
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(a) t = 0.0 (b) t = 1.0 (c) t = 1.5 (d) t = 2.0

(e) t = 2.5 (f) t = 4.0 (g) t = 9.4 (h) t = 14.7

Figure 5.30: Simulation of 500 rigid spheres subject to gravity (grid resolution size 643). The
colors indicate the values of the label map L0 from dark blue for the first body to dark orange
for the 500th body and red for the fluid that is the 501th object.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0 (d) t = 1.5

(e) t = 1.8 (f) t = 2.0 (g) t = 2.5 (h) t = 3.0

Figure 5.31: Simulation of 500 rigid spheres subject to gravity (grid resolution size 1283). The
colors indicate the values of the label map L0 from dark blue for the first body to dark orange
for the 500th body and red for the fluid that is the 501th object.
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(a) t = 0.0 (b) t = 0.25 (c) t = 0.5

(d) t = 0.75 (e) t = 1.0 (f) t = 1.5

(g) t = 1.75 (h) t = 2.0 (i) t = 2.25

(j) t = 2.5 (k) t = 3.0 (l) t = 3.75

Figure 5.32: Rigid spheres suspended in a shear flow. The rigid disks are colored with the values
of the label map L0 and the background colors indicates the magnitude of the velocity.
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Conclusion
The application performed in this chapter illustrated the capability and efficiency
of the present method to handle numerical contacts between structures at low reso-
lution. A penalization model formulated according to the label maps and distance
functions is proposed. This model is compared to the penalization model used in [31]
in a velocity and pressure formulation. The numerical results confirmed the proposi-
tion 1 presented in Chapter 3, the error estimation between the two collision models
depend on the size and the number of particles. Moreover, compared to this model
which is totally dependent on the number of bodies, the proposed penalization model
substancially reduces the CPU time. We also made a comparison between the influ-
ence of the proposed collision model and the contact algorithm proposed by B.Maury.
During numerical calculations, our model allows to maintain symmetry for a longer
time than with the contact algorithm. However, contrary to this contact algorithm,
the proposed method does not allow to reproduce particle clustering. A comparison
of simulations performed either with a collision model dependent on relative veloci-
ties or having a prescribed intensity is carried out. Due to instabilities, the dynamic
of the particles is different, we observed however a similar global motion for both
models. Moreover, the model depending on the relative velocities seems to provide
a more realistic final configuration of bodies as all the bottom domain is fulfilled by
the particles.
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Chapter 6

Numerical simulation of the dynamics
of a suspension of vesicles

Contents
6.1 Vesicles simulations . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Vesicle model in a level set framework . . . . . . . . . . . . . . 139

6.3 Numerical procedure . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . 148

The purpose of this chapter is to validate the proposed model which includes a short-
range repulsive force in the case of deformable bodies. An application to immersed vesicles
suspensions is proposed. We first introduce the properties of blood flow, red blood cells
and vesicles as well as an overview of existing numerical methods to simulate vesicles
suspensions. Then, the Eulerian fluid/elastic membrane coupling model introduced in
[32] is described. Finally, we describe the model used for the simulations, and a validation
of the model in the case of multiple vesicles under various flow are presented.

6.1 Vesicles simulations

6.1.1 Context

The mechanism of blood flow in micro capillaries is still not fully understood because
of its complex behaviour. Indeed, its main components are a fluid called plasma and
different cells, each of them having different mechanical properties. More precisely, blood
is composed of:

1. Plasma: Blood contains 54.3% of plasma which consists of 90% of water, 8% of
proteins and 2% of organic and inorganic salts.

2. Red blood cells: These cells are the main cellular components of blood. Indeed,
45% of red blood cells are present in blood, their mission is to transport oxygen via
hemoglobin components into the whole body.

3. White blood cells and cellular platelets represents 2% of the composition of blood.
The white blood cells play a role in the immune system, while the cellular platelets
control the blood cotting.
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The average density of blood is close to the density of water, it is around 1060kg/m3.
From experiments, to theory and numerical simulations, large researchs have been devoted
to the study of the behavior of blood flow in blood vessels.
In 1931, Fahraeus and Lindqvist observed a dependence of blood viscosity on the size
of capillaries, it has been shown that the blood viscosity decreases when blood flows
through capillaries of decreasing diameters. This phenomenon also known as the Fahraeus-
Lindqvist effect has been confirmed and explained later in [10; 102; 185]. It has been
observed that the red blood cells moving in small capillaries concentrate at the center of
the capillaries, thus along the capillary walls only the plasma is present. The effect of a
lubricating fluid layer along the capillary walls leads to a decrease of the global resistance
of the flow and thus of the viscosity.
Consequently, the viscosity, the velocity of the blood flow in a vessel is highly influenced
by the mechanical properties of the cells contained in plasma, the interaction between
cells and the interaction of cells with the vessel walls. The red blood cells constitute 99%
of the cells present in blood. Thus, the dynamic behaviour of blood flow is largely affected
by the properties of red blood cells. In particular, the non Newtonian behavior of blood
flow is mainly due to aggregation of RBCs.

Red blood cells

Contrary to other living cells which have nucleus and organelles, red blood cells have
the particularity to only contain a fluid called the hemoglobin and a cytoskeleton. This
particularity made them highly deformable allowing them to deform and pass through
micro capillaries. Their shape is a biconcave-disk of diameter close to 7.8µm with a thick-
ness of 2.5µm .

The membrane of RBC consists of a bi-layer of phospholipids with one layer composed
of hydrophilic head groups and the other of hydrophobic head groups and an elastic
cytoskeleton is fixed on the membrane. The physical properties of the RBC are: a fluid
membrane, a fixed surface area and a fixed cytoplasm volume [155]. Moreover, its shape is
controlled by a bending energy and the deformation of the cytoskeleton induces an elastic
force.

Figure 6.1: Shape of red blood cells.
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Vesicles

In aqueous solutions, lipids molecules can form bilayer preventing contacts between
hydrophobic groups of molecules and water. When these lipids bilayers formed a closed
membrane, they are called vesicles.
Like RBC, the membrane of a vesicle is composed of phospholipids bilayer formed by one
layer of hydrophilic head groups and a second layer composed of hydrophobic head groups
like illustrated in Figure 6.2. The bilayer size is around 4nm thick whereas the size of the
vesicle is around 10µm.
The physical properties of their membrane are similar to the membrane of red blood cells:
the membrane is fluid, inextensible, opposes the bending and is impermeable so that the
volume of fluid enclosed in the vesicle is conserved. The only difference comes from the
elasticity due to the cytoskeleton fixed on the RBC membrane. Nevertheless, this is a
very desirable model to understand the mechanical behaviour of living cells, in particular
in dimension two as due to the membrane inextensibility the elastic force coming from
the cytoskeleton is negligible.

Phospholipid 
bilayer

membrane

Hydrophilic
head

Hydrophobic
tail

Figure 6.2: Phospholipidic vesicle.

6.1.2 Vesicle simulation

The physical properties of vesicles involves to deal with two fluids and at the same time
impose the inextensibility constraint of the membrane, the resistance of the membrane to
bending and the conservation of the internal fluid volume.
The fluid enclosed by the vesicle and the external fluid can have different material prop-
erties, such as a different viscosity and density. The two fluids are governed by the
incompressible Navier-Stokes equations. In micro-capillaries, as the Reynolds number is
small (around 10−4), the incompressible Stokes equations are often used.

The dynamic of vesicles have been studied both experimentally [1; 22; 40; 93; 114; 164]
and theoretically [97]. Later, the deformation of the membrane has been taken into ac-
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count experimentally in [40]. Since then, experiments [1; 22; 40; 93; 114; 164; 183] have
become more and more quantitative. A transition from tumbling to tank-tread like motion
has been observed depending on the increase of the viscosity ratio between the external
fluid flow and the fluid enclosed by the vesicle membrane[92; 94].

Numerous mathematical models and computational techniques have been used to sim-
ulate vesicles in fluid flow. Most of vesicle simulations are derived from molecular dynam-
ics models [119] and continuum models. The continuum models are based on the Helfrich
energy [21; 76] provided by:

Eb =
α

2

∫
Γ1

k2 (6.1)

where k is the mean curvature of the surface and α is the bending modulus of the vesicle
and Γ1 is the vesicle boundary.

Among the numerous numerical methods derived from the continuum approach, the
Boundary Integral methods, the Immersed boundary method and Eulerian approachs such
as level set and phase field approach are the most popular.

Boundary integral method

The Boundary Integral Method is one of the most popular method for vesicle simu-
lation. This technique has been first used to study the behavior of capsules and drops
[110; 144; 145; 148; 197]. In [146], Posrikidis applied this approach to simulate an inex-
tensible vesicle suspended in a viscous fluid.
This technique consists in coupling the green tensor of the Stokes equations and the elastic
forces on the membrane. The inextensibility of the membrane is imposed either by means
of the tension force with a high value energy or by using a Lagrangian multiplier. The
bending force is derived from the Helfrich energy. A common expression of the elastic
energy of the membrane which takes into account bending and membrane tension is:

E(k, γ) =

∫
Γ1

αk2

2
+ γ (6.2)

where γ is the membrane tension, α its bending modulus and k its mean curvature. To
evolve the vesicle, the velocity has to be computed on each point of the interface, which
itself depends on an integral of all the other points of the interface. Indeed, the velocity
at a point x depends on the integral of the green tensor of the Stokes equations G on the
vesicle boundary, that is :

U(x) = U∞(x) +

∫
Γ1

G(s− x)feds

where fe is the total force derived from the elastic energy E and U∞ is the imposed
velocity. Thus, the complexity of this algorithm is M2 where M is the number of marker
points on the membrane. However, thanks to the integral equation formulation, this
method is still efficient as only the membrane is discretized. To lower the complexity, the
Fast Multipole Method can be used and allows to reduce the computational complexity
to M log(M).

In [178; 179], this method is used for the simulation of a dense suspension of vesicles,
the associate computational complexity is NM log(M) where N represents the number of
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vesicles. Numerous 2D simulations are explored including the simulation of 256 vesicles
suspended in a Poiseuille flow, the algorithm is very efficient, as for 64 points on each
vesicle membrane, the computational cost represents only 4s per time step. Different
numerical experiments of a suspension of vesicles in shear flow are also explored.
An extension to the three dimensional case has been achieved in [179; 195; 196].

An other extension of the method has been introduced in [91; 147]. Efficient and stable
algorithms for simulating accurately two-dimensional vesicle suspensions at low resolution
are proposed. These algorithms include adaptive time stepping, reparametrization of the
membrane, a correction of vesicles’ area and lenght is used to enforce the inextensibility
of the membrane and volume conservation. Moreover, to handle numerical contacts be-
tween vesicles, a collision detection algorithm is performed with spectral accuracy and a
repulsion force is implemented to keep a minimal distance between vesicles. The repulsive
force is inspired from collision model from contact mechanics. The model is in a polyno-
mial form and is developed for converging vesicles with low velocities. The parameters
of the repulsive force are calibrated by comparing its effect on a low resolution compared
to high resolution simulation for which the lubrication forces are correctly captured. Dif-
ferent bench are presented and show the efficiency of the method to deal with multiple
vesicles.

The Boundary integral approach has been extensively used for the simulation of vesi-
cles like in [95] where two and three dimension numerical experiments of vesicles suspended
in Poiseuille flow are presented. In [62], the study of a vesicle suspensed in a curve flow
revealed that the vesicle tends to migrate to the regions of high shear rate. In [63], the
behavior of a vesicle suspended in a shear flow is studied. The main drawback of this
method is its limitation to Stokes fluid flow.

Immersed Boundary method

The immersed boundary method uses an Eulerian description for the velocity and the
incompressibility of the system and a Lagrangian one for the membrane configuration
including the location of the membrane and the stretching. The immersed boundary
model for vesicles is based on an energy which depends on the mean curvature H, the
bending modulus α, the coefficient of membrane tension γ and the pressure θ between
the inner and outer fluids. This energy is expressed as:

E =

∫
Γ1

(2αH2 + γ) + θ

∫
Γ1

dx (6.3)

The interactions between the fluids and the membrane is taken into account by the
Willmore function:

W = ∆Γ1H + 2H(H2 − α)

where ∆Γ1 is the surface laplacian at the interface Γ1. The total force exerted on the
membrane is then given by:

F = W + 2γHn+∇Γ1γ + θn

where n is the normal to the interface pointing outside and ∇Γ1 the surface gradient. The
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immersed boundary model is then:

ρ(∂tU + (U · ∇)U)− µ∆U +∇p = f in Ω

f(x, t) =
∫ L

0
F (s, t)δ(x−X(s, t))ds in Ω

∂X(s, t)

∂t
= u(X(s, t), t) =

∫
Ω
u(x, t)δ(x−X(s, t))ds in Ω

(6.4)

The first application to vesicle of the immersed boundary approach has been per-
formed in [194] to study the behavior of vesicles in a shear flow and a Poiseuille flow.
A Lattice Boltzmman method is employed to solve the flow field over the Eulerian grid,
results obtained are in a good agreement with the experiments, in particular the Fahraeus
Lindviquist effect is reproduced.
In [101], an IBM method is developed, the inextensibility constraint is imposed by means
of a penalty immersed boundary method (pIB). The principle of the pIB technique is
to use two Lagrangian immersed boundaries to represent the vesicle membrane. One is
massless and interacts directly with the fluid flow. The second boundary is massive and
its motion is based on the vesicle dynamics including the inextensibility constraint. The
connection between the two boundaries is achieved by applying penalty forces on both
boundaries. Numerical simulations of 56 vesicles suspended in a shear flow are performed,
the computational time is almost independent on the number of vesicles, the computa-
tional complexity is similar to the Boundary Integral Method that is NM log(M) where
N is the number of vesicles. To avoid numerical contacts between vesicles fine grids are
used. The addition of a vesicle in a domain almost filled with vesicles requires to refine
the mesh grid.
In [59], the deformation and motion of red blood cells and vesicles passing through a
micro-channel is investigated.

Phase field approach

The first application of the phase field approach for vesicle and membrane has been
introduced in [7–9]. The description of the membrane is achieved by means of a scalar
function which assumes a constant value in each region (for instance −1 in the fluid and
1 in the structure) and varies continuously from these two values across a thin boundary
layer of thickness ε. This function namely the phase field, derived from a physical model,
provides an energy of the form:

Eb(φ) =
α

2

∫
Ωi

|f(φ)|2 (6.5)

where :
f(φ) = −ε∆φ+

1

ε
(φ2 − 1)φ

and ε is the thickness of the transition region between−1 and 1. Up to a constant multiple,
this energy tends to the bending energy 6.1 when ε tends to zero. The difference between
the inner fluid volume and the outside volume fluid is provided by:

A(φ) =

∫
Ω

φ(x)dx (6.6)
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and an approximation of the area is shown to be:

B(φ) =

∫
Ω

ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2dx (6.7)

Thus, the problem reduces to find a phase field φ which minimizes the energy 6.5 with
the constraints of fixed values α for A and β for B. Using a penalty method with penalty
coefficients M1 and M2, the problem becomes a minimization of :

E(φ) = Eb(φ) +
M1

2
(A(φ)− γ)2 +

M2

2
(B(φ)− β)2 (6.8)

The gradient of this energy is then added to multi-fluid flows Navier-Stokes equations.
An extension to dimension three is proposed in [7].

Level set approach

In [32], Cottet et Maitre proposed an application of the level set method to vesicles
simulation. They demonstrate that the stretching of the membrane can be explicitly
computed using the level set field . An elastic force is derived to impose the surface in-
compressibility. This force is explicited in the Navier-Stokes equations, which is coupled
to the advection equation of the level set function which captures the vesicle interface.
In [129], T. Milcent completes this model by adding a curvature force to model to the
resistance of the membrane to bending. The final model consists in the multi-fluid flow
Navier Stokes equations supplemented by two forces which depends on the level set func-
tion, and combined to a transport equation of the level set function φ by the fluid velocity
field. The validation of the model in dimension two and three has been achieved through
the simulation of a vesicle suspended in a shear flow.

An other level strategy has been proposed in [153]. Both the level set function and
its gradient are advected by the fluid velocity and a four-step projection method is de-
veloped to enforce the volume conservation and the membrane inextensibility. Numerical
experiments of dense suspension of vesicles under various flow conditions are explored.
The similarities of the phase field approach and the level set method for the simulation
of vesicle have been investigated in [116] where the two models are compared.

6.2 Vesicle model in a level set framework
This section is devoted to the description of the model used for the numerical simu-

lation of multiple vesicles evolving in a viscous fluid flow. In a first place, we recall the
Eulerian model introduced in [32; 33] in the case of one immersed vesicle. To model the
inextensibility of the membrane and its opposition to bending, two forces are exerted on
the membrane and depend on a level set function which captures the vesicle boundary.
Then, the combination of this model and the proposed capturing method is presented as
well as its numerical resolution. The following notations are used:

• n: the normal

• H: the mean curvature

• α: the bending modulus
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• λ: the rigidity of the membrane

• ∇s: the surfacic gradient

• ∆s: the surfacic laplacian

6.2.1 Case of one immersed vesicle

The computational domain Ω ∈ Rd, d = 2 is decomposed as Ω = ΩNf ∪ Ω1 where
ΩNf

is the fluid subdomain and Ω1 is the region occupied by the vesicle and Γ1 denotes
its boundary. The vesicle boundary is captured by a level set function φ1. The fluid
enclosed by the vesicle and the outer fluid are governed by the incompressible Navier-
Stokes equations.

Elastic force

A strong elastic force Fe is introduced in order to impose the inextensibility of the
membrane. This force derives from an elastic energy which depends on the variation of
surface area of the membrane and on a parameter that provides the intensity of the force
required in order to stretch the membrane.
In the level set context, it has been shown in [32; 33; 129] that in the case of incompressible
fluid, the level set function records the stretching. Indeed, at each time t, the variation

of the surface area is proportional to
|∇φ1(·, t)|
|∇φ1(·, 0)| . A part of the membrane elasticity is

defined from the local area variation thus, assuming that the initial level-set function is
a signed distance function (i.e. with modulus of gradient equal to one), one can consider
an elastic energy Ee depending on |∇φ1| defined as:

Ee =

∫
Ω

E(|∇φ1|)
1

ε
ζ(
φ1

ε
)dx (6.9)

The function E is a constitutive law for the membrane such as E(1) = 0 meaning that
there is no initial stretching. A model usually used for vesicles is :

Ee(r) = λ(r − 1)2 (6.10)

with λ >> 1. By differentiating this energy and using the advection equation of the level
set function, it has been proved in [32] that the elastic force is:

Fe =

{
∇(E ′(|∇φ1|))− div

(
E ′(|∇φ1|)

∇φ1

|∇φ1

) ∇φ1

|∇φ1|

}
|∇φ1|

1

ε
ζ

(
φ1

ε

)
(6.11)

Denoting by e1 = |∇φ1| the stretching and using a renormalization procedure, this
force can be reformulated as:

Fe = (∇(E ′(e1))−∇ · (E ′(e1)n(φ1))n(φ1))
1

ε
ζ

(
φ1

ε

)
(6.12)

An advantage of this reformulation is that it reduces the degree of derivation of φ in the
elastic force by one.
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Bending force

Using the level set function, the bending energy [21; 76] is expressed as:

Ec =

∫
Ω

G(H(φ1))
1

ε
ζ(
φ1

ε
)|∇φ1|dx (6.13)

where G is provided by:
G(r) =

α

2
r2

The expression of the curvature force Fc can be deduced by differentiation [115]:

Fc = ∇ ·
(
−G(H(φ1))

∇φ1

|∇φ1|
+

1

|∇φ1|
P|∇φ1|⊥ (∇ (|∇φ1|G′(H(φ1)))

)
|∇φ1|ζ

(
φ1

ε

)
.

(6.14)
where

P∇φ⊥1 = Id − n(φ1)⊗ n(φ1)

is the orthogonal projector operator. As the averaged curvature H is given by:

H(φ1) = ∇ · ( ∇φ1

|∇φ1|
)

the fourth order derivatives of the level set function are required to compute the bending
force.6 Numerical implementation

6.1 Implementation of WENO5 scheme using reconstituted level set functions

7 Numerical illustrations
7.1 Suspension of vesicles in a Poiseuille flow
7.2 Vesicles in a bifurcation:comparaison pantz: these elleras
7.3 Numerical comparison of the method with the case of level set decomposition
7.3.1 CPU time

7.3.2 Comparaison of the collision model

test case di�erent radius
„ = 0

„ = Á

Ò · U = 0
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5

Figure 6.3: Stretching |∇φ|.

Transport of the level set function and the stretching

To evolve the vesicle, the level set function is transported by the fluid velocity U :{
∂tφ1 + U · ∇φ1 = 0

φ1(·, 0) = φ0
1

(6.15)

As noticed before, the stretching of the membrane is recorded in the term |∇φ1|. The-
oretically, the elastic force, due to the high coefficient λ maintains the value |∇φ1| close
to one. However, during numerical calculations the gradient of the level set function can
take high values far from the membrane location resulting in an accumulation of errors
for the transport of the level set function. In this scenario, it is more convenient to solve
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an equation on the stretching e1 = |∇φ1| using the transport equation on the level set
function φ1: {

∂te1 + U · ∇e1 = −e1 (n(φ1)⊗ n(φ1)) : D(U)))

e1(·, 0) = |∇φ0
1|

(6.16)

As the stretching |∇φ1| can take large values, a procedure proposed by V. Doyeux [45]
is to reinitalize the stretching far enough from the interface, and to keep the right values
of the stretching e in a vicinity of the membrane to compute correctly the elastic force.
Denoting by eb and ea the values of the stretching before and after reinitialization, the
value of the stretching e is then provided by:

e = eb (Hε(φ1 + ε2)− (Hε(φ1 − ε2)) + ea

The parameter ε2 is fixed to a higher value than the interface thickness ε. Using this
procedure, the information on the stretching on the membrane is recorded, and as the
stretching e is close to one, this procedure does not induces larges discontinuities on e.

Complete model

The fluid-structure interaction system hence reduces to the incompressible Navier-
Stokes equations with source terms (elastic, curvature forces) combined with a scalar
transport equation of the level set function φ1 and the stretching e1.

Find (U, P, φ) solution of :
ρ(φ)(∂tU + (U · ∇)U)− div(µ(φ)D(U)) +∇P = Fe(φ) + Fc(φ) in ΩT = Ω× (0, T )

divU = 0 in ΩT = Ω× (0, T )

∂tφ+ U · ∇φ = 0 in ΩT = Ω× (0, T )

∂te+ U · ∇e = −e(n(φ)⊗ n(φ)) : D(U) in ΩT

(6.17)
The density and viscosity functions are provided by:

µ(φ1) = µ1 + (µf − µ1)Hε(φ1), ρ(φ1) = ρ1 + (ρf − ρ1)Hε(φ1)

where µ1 and ρ1 denotes the viscosity and density of the fluid enclosed by the vesicle.

6.2.2 Case of multiple vesicles

We consider here the case of N vesicles immersed in an incompressible fluid flow.
The computational domain Ω ∈ Rd, d = 2 is hence decomposed as

Ω = ΩNf ∪
(

N⋃
i=1

Ωi

)
where ΩNf

is the fluid subdomain and Ωi is the region occupied by the ith vesicle and Γi
denotes its boundary. Each vesicle boundary Γi encloses an incompressible fluid flow of
viscosity µi and density ρi governed by the incompressible Navier-Stokes equations as the
surrounded fluid ΩNf

.

For the simulation of multiple vesicles immersed in a fluid, with repulsion forces, one
can uses N level set functions to capture the N interfaces, and N elastic forces, N bending
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forces have to be computed inducing a substantial computational cost. These level set
functions are then transported by the fluid velocity in order to evolve the vesicles.
Instead of doing this, we propose to use the proposed capturing method. A level set
function φ captures the union of all interfaces and is defined as a signed distance function
in a vicinity of the vesicles interfaces. We introduce a function e = |∇φ| which takes into
account the stretching of each membrane.
According to the level set function, the stretching and the N reconstituted level set fields
which are defined using the label maps, only one elastic and bending force is computed
for the whole set of vesicles. To handle numerical contacts between vesicles, the short-
range repulsive force depending on the relative velocities is added to the equations, this is
combined with two transport equations: the advection of the level set function φ by the
fluid velocity and the transport equation of the stretching e.

Computation of the elastic and bending forces

In the context of multiple vesicles, the use of one level set function to capture the
union of all interfaces requires to maintain a sufficiently large minimal distance between
the vesicles in order to compute correctly the high order derivatives of the level set func-
tion which appear in the elastic and bending forces. Indeed, at each point x contained in
a regularized interface Γεi , the stencil used to compute the derivatives has to be included
in the subdomain which corresponds to L0,1 = i, so that the value φ(x) is the distance
from x to Γi.
To reduce the number of grid points required in the narrow-gap between two interfaces,
the high derivatives of the level set function can be computed by means of the recon-
structed level set functions. By doing this, the stencil required to compute a geometrical
property at a point x belonging to an interface Γεi is prolongated to the regions where
L2 = i.
Numerically, this procedure does not depend on the number of vesicles as one can intro-
duce a function F which indicates if a point y is associated to the right boundary:

∀x ∈ Ω,∀y ∈ Ω, F (x, y) =

{
L0,1(y) if L0,1(x) = L0,1(y)

L2(y) if L0,1(x) = L2(y)

For instance, to compute the partial derivative ∂xxφ at a grid point x = (i, j), if we denote
by x1 = (i + 1, j) and x2 = (i − 1, j) its neighbours, using a centered scheme, instead of
computing :

∂xxφ =
φ(x1)− 2φ(x) + φ(x2)

(∆x)2
(6.18)

we set:

∂xxφ =
φF (x,x1)(x1)− 2φF (x,x)(x) + φF (x,x2)(x2)

(∆x)2
.

where φF (x,x)(x) = φ(x), if F (x, x1) = L0,1(x) and F (x, x2) = L0,1(x), we compute exactly
(6.18). This procedure is used in order to compute the curvature and other derivatives of
order higher than two of the level set function φ. Finally, the elastic and bending forces
depend on the reconstituted level set functions, the stretching e and the level set function
φ, we denote by φF these functions which will use either the label map L2(x) or L0,1(x)
depending on the location of x.
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Fe = (∇(E ′(e))−∇ · (E ′(e)n(φF ))n(φF )) ζ(
φ

ε|∇φ|) (6.19)

and the bending force is computed as:

Fc = ∇ ·
(
−G(κ(φF ))

∇φF
|∇φF |

+
1

|∇φF |
P∇φ⊥ (∇ (|∇φF |G′(κ(φF )))

)
|∇φF |ζ

(
φ

ε

)
. (6.20)

where
P∇φ⊥ = Id − n(φ)⊗ n(φ)

is the orthogonal projector operator.

Collision model

The short-range repulsive force introduced in Chapter 3 is used here, to avoid numerical
contacts between vesicles. Moreover, to compute accurately the curvature and elastic
forces on the membranes, a minimal distance has to be maintained between the membranes
which corresponds to the interfaces Γεi of thickness ε. We hence fix the activation distance
of the repulsive force εb to 2ε. The intensity of the short-range repulsive force is computed
according to the relative velocities between closest vesicles just before collision. Each
vesicle velocity is computed by averaging the fluid velocity on each membrane Γεi , so that
setting:

∀x ∈ Ω, |ΓL0,1(x)| =
∫

ΓL0,1(x)

dz =

∫
Ω

1

ε
ζε(φL0,1(x)(z))dz (6.21)

we obtain the following average velocity over the membrane boundary:
∀x ∈ Ω,

Ua(L0,1(x)) =
1

|ΓL0,1|

∫
ΓL0,1(x)

U(z)dz =

∫
Ω

1

ε
ζε(φL0,1(x)(z))U(z)dz (6.22)

then, at all points x ∈ Γεi , i = (1, .., N) where the label map L2(x) is defined, the intensity
of the force is computed as:

KL2(x),L0,1(x) = |(Ua(L2(x))− Ua(L0,1(x))) · ∇ϕ2(x)|
where Ua(L2(x)) denotes the averaged velocity associated to the vesicle ΩL2(x), this term
provides the averaged velocity of the second closest vesicle to x. Then, at each point x
where ΩL0,1(x) and ΩL2(x) are at a distance εb this value is fixed. Finally, the short range
repulsive force is computed as:

∀x ∈ Ω, Flabel(x) =
|(Ua(L2(x))− Ua(L0,1(x))) · ∇ϕ2(x)|

ε
ρ(x)ζε (ϕ1(x))

∇ϕ2(x)

ϕ2(x)
exp

(
−ϕ2(x)

εb

)
(6.23)

The complete model

The fluid-structure interaction system hence reduces to the incompressible Navier-
Stokes equations with source terms (elastic, curvature forces) combined with a scalar
transport equation of the level set function φ and the stretching e.
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Find (U, P, φ) solution of :
ρ(φ)(∂tU + (U · ∇)U)− div(µ(φ)D(U)) +∇P = Fe + Fc + Flabel in ΩT = Ω× (0, T )

div u = 0 in ΩT = Ω× (0, T )

∂tφ+ U · ∇φ = 0 in ΩT = Ω× (0, T )

∂te+ U · ∇e = −e(n(φ)⊗ n(φ)) : D(U) in ΩT

(6.24)
Denoting by ρL0,1(x) the density of the vesicle ΩL0,1(x) we obtain the following density
function:

ρx = ρf (1− χL0,1(x)) + χL0,1(x)ρL0,1(x), µx = ρf (1− χL0,1(x)) + χL0,1(x)µL0,1(x)

This model involved several parameters, in order to achieve numerical simulations, it
is most convenient to introduce dimensionless parameters. For this purpose, we introduce
reference values. Let Lr, Ur, ρr and µr denote the characteristic lenght, velocity, density
and viscosity scales. Considering the following characteristic quantities :

x = Lrx
′, y = Lry

′, z = Lrz
′

U = UrU
′, P = ρr

Ur
Lr
P ′, t =

Lr
Ur
t′

µ = µrµ
′, ρ = ρrρ

′, ε = Lrε
′

φ = Lrφ
′, ϕ1 = Lrϕ

′
1, ϕ2 = Lrϕ

′
2

Differentiating (and dropping ’), we obtain the following dimensionless system:
ρ(φ)(∂tU + (U · ∇)U)− 1

Re

div(ν(φ)D(U)) +∇P =
1

We

F̄e(φ) +
1

Wc

F̄c(φ) + Flabel in ΩT

divU = 0 in ΩT

∂tφ+ U · ∇φ = 0 in ΩT

∂te+ U · ∇e = −e(n(φ)⊗ n(φ)) : D(U) in ΩT

(6.25)
The first physical parameter involved in this simulation is the Reynolds number Re cor-
responds to the ratio between the inertial and viscous effects:

Re =
LrUrρr
µr

The Weissenberg number We represents the ratio between the characteristic time of
the fluid and the relaxation time of the membrane submitted to the elastic force, it is
provided by :

We =
µrUr
λ

The third physical parameter Wc is the capillary number associated to the bending
force which measures the magnitude of the bending force over the hydrodynamic forces:

Wc =
µrUrL

2
r

α

The last dimensionless numbers involved in this simulation are the viscosity and den-
sity ratio between the fluids contained in the vesicles and the outer fluid ΩNf

.
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For the numerical simulations, we take as reference the outer fluid’s data: ρr = ρf
and µr = µf . Moreover, if one takes as characteristic lenght, the lenght of a capillary, one
obtains:

ρr = 1000, µr = 10−3, Lr = 10−5

The reference density and viscosity chosen corresponds to the material properties of
water, as plasma is mainly composed of water. The obtained Reynolds number is of
order 10−2, the parameter We has to be chosen in order to impose small variation of the
stretching of the membrane.
In order to impose the rigidity of the membrane λ one can look at the typical time scale of

the bending force tα =
µrL

3

α
and the elastic force tλ =

µrL

λ
. To ensure the inextensibility

of the membrane, the time scale associated to the elastic force has to be smaller than the
one which corresponds to the bending force. The ratio R between these two time scales
given by:

Rt =
α

λL2
r

has to take values between 10−3 and 10−5.

6.3 Numerical procedure

The system is discretized by a finite difference method on a staggered grid (MAC type)
with a finer resolution for the level set function as stated in Chapter 1. The fluid velocity
and pressure are discretized on the coarse grid while all the other functions (label maps,
distance functions and level set functions) are located on the finer grid. To compute the
fluid velocity a Projection method is used, the diffusion term are treated implicitly and
an explicit scheme is used for the forces and the convective term.

6.3.1 Stability conditions

The advection equation of the level set function is treated explicitly and to ensure the
stability of the scheme, we impose the stability condition CFL:

∆t ≤ ∆x

|U |

The explicit treatment of the elastic/coupling induces stability conditions. The Brack-
bill condition provided in [15] gives a stability condition in the case of perfect fluids
separated by an interface with surface tension, this condition is expressed as:

∆t ≤
√
We

2π
(∆x)

3
2 (6.26)

This condition does not take into account the viscosity of the fluid, moreover in the
case of small We, the time step has to be very small. In the case of viscous fluids, others
stability conditions have been found, in [60] the stability condition is provided by:

∆t ≤
√
We

Re

(∆x) (6.27)
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For small Reynolds number, this condition allows to use larger time step than with the
Brackbill condition. One can refer to [12] where the stability of schemes for immersed
elastic membranes have been studied.

For the curvature force, no condition exists, one can however take into account the
typical velocity induced by the bending force:

Uα =
α

µrL2
r

These lead to the condition:

∆t ≤ ∆x

max(|U |, Uα,
We

Re

)

6.3.2 Algorithm

The level set function φ and the distance functions are updated at each time step using
the multi-label fast marching on the finer grid. The narrow-band size set for the simula-
tions are: NBL1 = 10h where h corresponds to the discretization space step associated to
the coarser grid (the fluid grid) and we fix a high narrow-band size for the computation
of ϕ2 and L2 we set NBL2 = 10h this allows to compute correctly the bending and elastic
forces when the vesicles get closer by means of the reconstituted level set functions. In
the case of a variable density, we use a Boussinesq Approximation.

At each time step, the algorithm performed the following steps:

1. Computation of the fluid velocity Un+1 using an implicit scheme and a projection
method of Chorin type according to the forces F n

e , F
n
c , F

n
label

2. Interpolation of the fluid velocity Un+1 on the finer grid providing Un+1
g

3. Advection of the level set function φn with the interpolated fluid velocity in a vicinity
of the vesicles:

φn+1 = φn −∆tUn+1
g · ∇φn,

4. Transport of the stretching e with the interpolated fluid velocity:

en+1 = en −∆tUn+1
g · ∇en − en(n(φn)⊗ n(φn)) : D(Un+1

g ),

5. Update of the distance function ϕn+1
1 = |φn+1|,

Update Ln+1
0 ,Ln+1

1 using φn+1

Perform the multi label fast marching method described in Chapter 3

6. Update the level set function as a signed distance function in thin narrow-bands
around the vesicles

7. Update the N reconstituted level set functions
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6.4 Numerical illustrations
This section is dedicated to the numerical results obtained with the proposed model.

We present some numerical simulations of multiple vesicles in several type of external
hydrodynamical flow in order to validate the proposed collision model which depends
on the relative velocities between closest vesicles. For all the simulations presented in
this section, the rebound parameter εb = 2ε. We do not present the computational cost
according to the number of vesicles as the complexity of the algorithm is similar than in
the case of rigid bodies.

6.4.1 Grid sensitivity

Figure 6.4: Poiseuille flow

A grid convergence is carried out in the case of two vesicles evolving in a Poiseuille
type flow. The computational domain is a rectangle of size [0, 2]× [0, 1].
To study the grid convergence the simulations are performed on three grid levels (G1,
G2,G3) which contain respectively : (256 × 128), (512 × 256), (1025 × 512) cells on a
uniform mesh. The regularization parameter ε is fixed to ∆xG1 where ∆xG1 denotes the
mesh size corresponding to the coarsest grid ∆xG1 ' 0.0078. The three grids used to
discretize the level set functions, label maps, distance functions and the stretching are
twice finer than the three coarsest grid.

The velocity profile of the Poiseuille viscous fluid flow is parabolic as illustrated in
Figure 6.4. At initialization, the shape of the vesicles are Cassini Oval and are defined
using the implicit function:

((x− a)2 + y2)((x+ a)2 + y2) = b4

For both vesicles we set the parameters a = 0.18 and b = 0.1747, the associated reduced
area is around 0.8. Using a fast marching procedure we initialize φ to a signed distance
function to the interfaces defined as the minimum of the two implicit functions. The
physical parameters fixed in this study are:

Re = 1.10−1,We = 0.05,Wc = 200

At initialization, the vesicles are located at the entrance section of the domain. As illus-
trated in Figure 6.5, their shape progressively change during their motion in the canal.
Figure 6.6 shows the results obtained with the three resolutions at different times. We
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can see that the deformation of the vesicles are similar for the three resolutions, we note
however that at time t = 0.5 the deformation of the two finer grids are closer than the
one obtained with the coarsest grid. At the end of the simulations, the shape of the right
vesicle corresponds to the equilibrium shape of a vesicle having a reduced area around 0.8
whereas the second vesicle adopts a parachute shape. In light of these results, the grid
convergence is achieved for the coarsest grid.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.

(d) t = 1.25 (e) t = 1.5 (f) t = 2.0

Figure 6.5: Deformation of two vesicles in a Poiseuille flow performed on the grid G512 of size
(1024× 512).
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Figure 6.6: Simulation of two vesicles in a Poiseuille flow performed on three grid levels. From
top to bottom, the associated discretization space steps are :h = 7.81 × 10−3, h ' 3.90 × 10−3,
and h ' 1.95× 10−3.
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6.4.2 Vesicles in a shear flow

Next, we consider four vesicles in a shear flow of strenght 100 giving a Reynolds number
of Re = 10−2. The computational domain [0, 2]×[0, 1] is represented by a Cartesian grid of
size (512×256), the membrane thickness ε = 1.5h where h = 3.9.10−2 is the discretization
space step. Periodic boundary conditions in the x-direction and homogeneous Dirichlet
boundary in the y direction are imposed to the fluid velocity. Short time results are
shown in Figure 6.7. We can see that the vesicles rotate collectively in the domain while
deforming, at t = 0.53 the two centered vesicles have a biconcave shape, moreover the
symetry is kept.

(a) t = 0.0 (b) t = 0.2 (c) t = 0.3

(d) t = 0.53 (e) t = 0.7 (f) t = 0.75

Figure 6.7: Deformation of four vesicles in a shear flow.

6.4.3 Sedimentation of two vesicles

We are interested here in the sedimentation of two vesicles in a viscous fluid flow.
The computational domain Ω is a square of size [0, 1]× [0, 2]. Simulations are performed
on a grid of size (256 × 256) for the velocity and the pressure (the finer grid is hence
of size (512 × 512)) and the half thickness of the interface is ε = 1.5∆x. The coefficient
of gravity g is set to−9.8. The density ratio between the inner and outer fluids is set to 1.5.

First, highly deformable vesicles are considered We = 1 and the bending modulus is
very small so that the curvature forces are negligible. Results are shown on Figure 6.9.
At initialization, the level set function φ is defined as a signed distance function to the
interfaces of two ellipses of size a = 0.15, b = 0.1. We observe that the vesicle at the
top of the domain, progressively deform and elongate while the velocity increases whereas
the bottom vesicle at t = 0.08 adopts an ellipsoidal-cap shape. At t = 0.13, the two
vesicles have reached the bottom wall, the collision model is active and avoid the vesicles
from merging and being in contact with the wall, the two vesicles have a biconcave shape.
Then, their shapes progressively change, the shape of the top vesicle far away from the
second vesicle is spherical in order to maximize the area in contact with the bottom vesi-
cle. Finally, a symmetry loss leads to a tumbling of the vesicle, the two vesicles continue
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to deform until an equilibrium state is reached. The final shape of the vesicle is a typical
shape deformation induced by gravity [83].

For the second test case, we consider vesicles which are highly inextensible and a high
bending modulus, we set the following parameters:

Re = 0.01,We = 0.005,Wc = 30

Results of the simulations are shown in Figure 6.8. Contrary to the first simulation, the
vesicles deflect very slightly, the obtained deformed shape are different. Different vortices
are created in the domain and in the narrow-gap between the two vesicles. Moreover,
we can see that the intensity of the repulsive force is higher as compared to the first
simulation the minimal distance kept between the two vesicles is at least twice smaller,
this is due to the bending forces. The symmetry loss leads quickly to a tumbling of the
vesicles. The final shapes are similar for the two simulations.

(a) t = 0. (b) t = 0.2 (c) t = 0.3

(d) t = 0.4 (e) t = 0.6 (f) t = 0.7

(g) t = 0.8 (h) t = 1.2 (i) t = 1.5

Figure 6.8: Simulation of two vesicles falling under gravity. The background color shows the
magnitude of the vorticity. (from blue to red).
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(a) t = 0.0 (b) t = 0.08 (c) t = 0.13

(d) t = 0.15 (e) t = 0.18 (f) t = 0.2

(g) t = 0.27 (h) t = 0.28 (i) t = 0.34

(j) t = 0.35 (k) t = 0.37 (l) t = 0.50

Figure 6.9: Simulation of two vesicles falling under gravity. Re = 100,We = 1,Wc = 104.
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6.4.4 Vesicles passing through a bifurcation

We consider here the case of vesicles passing through a bifurcation, the velocity has
a parabolic profile at the entrance and outlet sections.The computational domain Ω =
[0, 2]× [0, 1]. In the case of a bifurcation, the proposed collision model failed at avoiding
numerical contacts between vesicles and the wall. Instead, the intensity of the force
is fixed, numerically we found that a coefficient k = 10 is sufficient to avoid contacts.
Between two vesicles, the dependence of the collision model on relative velocities is kept.
Two simulations are presented, for both simulations, we set the following parameters:

Re = 0.01,We = 0.005,Wc = 30

The first simulation represented on Figure 6.10 is performed on a grid of size (1024×
512). The initial shape of the vesicle is an ellipse of size a = 0.1 and b = 0.4, the height
of the bifurcation is around four times smaller than the vesicle height (b = 0.8). We can
see that the vesicle progressively deforms while passing through the bifurcation. During
the deformation, the vesicle adopts different shape in order to pass through the channel.
Finally, at the end of the simulation the vesicle has a parachute shape which is a typical
shape of vesicle deformed in a Poiseuille type flow.

We also consider a test case of four vesicles passing through a rectangular bifurcation.
At initialization, the interfaces are defined using an implicit function which corresponds
to a Cassini Oval shape. The short-range repulsive force between the closest vesicles
depends on the relative velocities. The obtained results are represented on Figure 6.11,
the vesicles progressively advanced in the channel while deforming. At t = 0.4, the
vesicles reached the bifurcation, then the right bottom vesicle goes up to pass through the
bifurcation. Due to the repulsive forces, the vesicles located at the top stays at the top of
the domain where the velocity magnitude is small. After passing through the bifurcation,
the deformed vesicles have a circular shape.

6.4.5 Multiple vesicles in a Poiseuille flow

Finally, to present the capability of the method to deal with a large number of vesicles,
we present a test case of 105 vesicles evolving in a Poiseuille flow. The computational
domain Ω = [0, 4]× [0, 2], as the size of the vesicles is small, the simulations are performed
using a fine resolution, the grid contains (2048× 1024) cells on an uniform mesh grid. As
the level set grid is twice finer, the induced computational time of this simulation is very
high, around 50 seconds per iteration. The obtained results are represented on Figure
6.12, colors indicate the value of the label map L0,the white lines correspond to the isolines
φ = 0 . At initialization, the region occupied by the vesicles represents around one-half of
the computational domain, the configuration of the vesicle is seven layers of 15 vesicles.
Each vesicle interface corresponds to a Cassini Oval with the parameters a = 0.076 and
b = 0.08. We observe that depending on the layer, the vesicles adopt different shapes,
these shapes are on one hand due to the pressure driven Poiseuille flow, to the elastic and
bending forces and the interactions between the vesicles. At t = 0.14, we can see that
the bottom blue left vesicle and the top red left vesicle advanced slowly than the other
vesicles and hence interacts with their neighbors, the symmetry is lost and while the cells
advances in the canal various shapes can be observed.
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(a) t = 0.0 (b) t = 0.05 (c) t = 0.07

(d) t = 0.12 (e) t = 0.18 (f) t = 0.25

(g) t = 0.28 (h) t = 0.30 (i) t = 0.41

Figure 6.10: Simulation of a vesicle passing through a bifurcation. The background color corre-
sponds to the magnitude of the velocity. The white contour represents the isoline φ = ε.
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(a) t = 0.0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.8 (e) t = 0.95 (f) t = 1.3

(g) t = 2.15 (h) t = 2.5 (i) t = 3.25

Figure 6.11: Simulation of four vesicles passing through a bifurcation. The background color
corresponds to the magnitude of the velocity. The white contour represents the isoline φ = ε.
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(a) t = 0.0 (b) t = 0.08

(c) t = 0.14 (d) t = 0.18

(e) t = 0.2 (f) t = 0.24

(g) t = 0.28 (h) t = 0.32

(i) t = 0.33 (j) t = 0.42

Figure 6.12: Simulation of 105 vesicles in a Poiseuille flow. The colors indicate the values of the
label map L0 from dark blue for the first body to dark orange for the 105th body and red for the
fluid that is the 106th object.
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Conclusion
In this chapter, an application of the method to immersed deformable vesicles have
been proposed. Using the level set function φ, the stretching e and the label maps one
elastic and bending forces are computed to impose the inextensibility of the whole
set of vesicles membranes as well as their resistance to bending. To handle numerical
contacts, the relative velocities are computed by using the averaged fluid velocity on
each vesicle membrane. Then, these obtained relative velocities provide the intensity
of the short-range repulsive forces. A convergence study in the case of two vesicles
evolving in a Poiseuille is presented. The dynamic behavior of vesicles under different
boundary conditions have been presented and confirms the capability of the proposed
method to deal with numerical contacts between vesicles at low resolution. In the
case of vesicles passing through a bifurcation, the short-range repulsive force failed
at avoiding contacts between vesicles and the wall, a constant intensity of the force
has been imposed.
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Conclusion

In this thesis, we have presented a numerical framework for the simulation of rigid and
deformable bodies moving in a fluid. A fully Eulerian formulation of the fluid-structure in-
teraction has been employed and combined to an efficient capturing method derived from
the level set approach and a model introduced for image segmentation in [11]. Within
this framework, a short-range repulsive force inspired by [31] is introduced in order to
handle numerical contacts between the structures. We then applied this method to the
simulation of rigid bodies and deformable vesicles in flow.

Chapter 1 was dedicated to an overview of the mathematical and numerical methods
chosen. We described the level set method and its advantages for the simulation to mul-
tiple rigid bodies and vesicles. We also presented the projection method of Chorin type
which we used to solve the fluid equations as well as the discretization of the fluid/structure
domain.

In Chapter 2, we presented the capturing method which consists in three label maps
and two distance functions. These five field functions allow to capture the whole set of
structures interfaces while providing the distance between closest structures at all points
of the computational domain. Moreover, the level set functions associated to each inter-
face are recovered explicitly according to these functions.

In Chapter 3, we described the numerical strategy used to avoid numerical contacts
between structures. A short-range repulsive force derived from [31] which depends on
the two distance functions is introduced. This short-range repulsive force is applied on
the surface of each structure and takes into account the interaction between closest cells.
The intensity of this force is proportional to the relative velocities between closest bodies
which are computed by means of the label maps. By considering multiple disks and a
constant intensity of the force, the impact of the proposed repulsive force and the collision
model [31] on the solution of two steady Stokes problems was investigated. We found that
the error estimation between these two Stokes model depends on the size, the number of
disks and the interface thickness of the disks where the forces are applied.

Chapter 4 was dedicated to the numerical procedure adopted to evolve the label maps
and distance functions. As the repulsive force is only applied when the particles are closed,
the evolution is only achieved in a thin-band around the bodies boundaries. A level set
function which captures the whole set of structures interfaces is advected and allows to
evolve explicity the label functions L0 and L1 close to the interfaces. Then, a multi-label
fast marching algorithm is performed in the vicinity of the particles to provide ϕ1 and L1

and update the level set function as a signed distance function. When two bodies become
close, a procedure to compute the distance between closest cells is activated.
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Finally, we presented two applications of this method.

In Chapter 5, the rigid case was investigated. To take into account the rigid bodies, a
penalization method was used and we proposed a penalization model which only depends
on the label maps and distance functions. This model is compared to the penalization
model used in [31] in a velocity and pressure formulation. The numerical results confirmed
the proposition 1 presented in Chapter 3, the error estimation between the two collision
models depend on the size and the number of particles. Moreover, compared to this model
which is totally dependent on the number of bodies, the proposed penalization model sub-
stancially reduces the CPU time. We also made a comparison between the influence of
the proposed collision model and the contact algorithm proposed by B. Maury. During
numerical calculations, compared to the contact algorithm the symmetry is kept for a
longer time with our collision model. However, on contrary to this contact algorithm, the
proposed method does not allow to reproduce particle clustering. A comparison of simu-
lations performed either with a collision model dependent on relative velocities or having
a prescribed intensity is carried out. Due to the inherent complexity of the system, the
dynamic of the particles is different, we observed however a similar global motion for both
models.

The last chapter illustrated the capability and efficiency of the method to handle
numerical contacts between deformable vesicles at low resolution. Using the level set
function φ, the stretching e and the label maps one elastic and bending force are com-
puted to impose the inextensibility of the whole set of vesicles membranes as well as their
resistance to bending. To handle numerical contacts, the relative velocities are computed
by using the averaged fluid velocity on each vesicle membrane. Then, these obtained
relative velocities provide the intensity of the short-range repulsive forces. A convergence
study in the case of two vesicles evolving in a Poiseuille is presented. The dynamic behav-
ior of vesicles under different boundary conditions have been presented and confirms the
capability of the proposed model to deal with numerical contacts between vesicles at low
resolution. In the case of vesicles passing through a bifurcation, the short-range repulsive
force failed at avoiding contacts between vesicles and the wall, a constant intensity of the
force has hence been imposed.

This work offers many different perspectives and several improvements could be achieved.

First, even if we have lowered the computational cost of the multi-label fast marching,
this procedure remains the most time consuming procedure when dealing with a high
number of rigid bodies or vesicles, this is even worst when using finer grids to discretize
the computational domain and in the three-dimensional case.
To reduce the computational cost of this procedure a parallel implementation seems nec-
essary.
Recently, an interesting and highly efficient parallel implementation of the fast marching
method has been proposed in [189]. This technique based on domain decomposition, is
easy to implement and has similarities with the sequential narrow-band fast marching
algorithm. The main idea is to partition the computational domain into several subdo-
mains, each subdomain being mapped to one process. Each subdomain has its own heap
structure and proceeds independently. At the points shared by different subdomains, each
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process has to exchange information with all neighboring processes. And as the usual fast
marching, a grid point is visited only once so that a grid point shared by two or several
process is visited by only one of them.
In the case of several interfaces, the exchange between the processes will only occurs for
particles shared by several subdomains, and as the interfaces are only propagated on thin
band around particles, these exchanges will not be excessive. Moreover, as the multi-label
fast marching can be viewed as a local fast marching for different regions of the compu-
tational domain (between closest bodies), an adaptation of this parallel implementation
could offer a large computational saving.

An other important point which has to be improved concerns the collision model.
The proposed short-range repulsive force allows to avoid numerical contact by mimic the
behaviour of the normal component of the lubrication force. In future works, it would
be interesting to study the influence of a tangential component of this force. Moreover,
to take into account the underlying physics, a lubrication model should be included at
the grid points contained in the interstitial gap between two closest particles, as even if
the contact is avoided at this point the fluid equations at these points are not accurately
solved.
We have presented an error estimation between the present repulsive force and the colli-
sion model [31] through simplified models of steady Stokes equations in two dimensions.
In future works, it could be interesting to study problems which involve the transport
equations of the level set functions. This will be a first step to study theoretically the
influence of the two collision models on immersed structures (rigid, fluid or deformable
bodies). First simplified models consist in replacing the advection of the gravity centers
in each Stokes equations by transport equations of the level set functions as:

∂tφ
1
i (x, t) + (U1 · ∇φ1

i )(x− φ1
i∇φ1

i , t) = 0, ∂tφ
2
i (x, t) + (U2 · ∇φ2

i )(x− φ2
i∇φ2

i , t) = 0

With these advection equations, the interfaces are still evolved with the right fluid
velocity and the level set functions are at each time distance functions.

Finally, the proposed method could be used as a basis to study the behavior of vesicles
suspensions. In this work, we only presented an illustration of the method to highlight
its efficiency and ability to deal with deformable bodies in two dimension. An extension
to dimension three and most realistic simulations could be performed and compared to
experiments.
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