
HAL Id: tel-01568920
https://hal.science/tel-01568920

Submitted on 26 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Bandwidth Allocation for an OFDMA based
RF Network-on-Chip

Eren Unlu

To cite this version:
Eren Unlu. Dynamic Bandwidth Allocation for an OFDMA based RF Network-on-Chip. Networking
and Internet Architecture [cs.NI]. CentraleSupélec, 2016. English. �NNT : �. �tel-01568920�

https://hal.science/tel-01568920
https://hal.archives-ouvertes.fr


No d’ordre : 2016-06-TH

CentraleSupélec
École Doctorale MATISSE

� Mathématiques, Télécommunications, Informatique, Signal, Systèmes

Electroniques �

THÈSE DE DOCTORAT

Domaine : STIC

Spécialité : Télécommunications

Soutenue le 21/06/2016

Présentée par :

Eren UNLU

Allocation Dynamique de Bande Passante pour
l’Interconnexion RF d’un Résau-sur-Puce

Directeur de thèse : Christophe Moy Professeur de IETR/CentraleSupélec

Composition du jury :

Président du jury :

Rapporteurs : Fabien Clermidy Chercheur CEA-Leti

Lionel Torres Professeur de

Université de Montpellier 2

Examinateurs : Myriam Ariaudo Mâıtre de Conférences

à ENSEA de Cergy/ETIS

Sébastien LeBeux Mâıtre de Conférences

à Ecole Centrale de Lyon

Yves Louët Professeur de IETR/CentraleSupélec



Contents

0 Résumé en Français : Allocation Dynamique de Bande Passante pour
l’Interconnexion RF d’un Résau-sur-Puce 1

1 Introduction 39

2 1000-core Era and On-Chip Challenge 44

2.1 Chip Multiprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1.1 Caches and Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.2 Cache Coherency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Network-on-Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.1 From buses to NoC . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.2 NoC topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.3 Tera-Scale Multi-core Processor Architecture (TSAR) . . . . . . . 50

2.3 RF and Optical Interconnects . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1 Optical Interconnects . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1.1 ATAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.1.2 Corona . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.2 RF Interconnects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3.2.1 Wireless RF Interconnects . . . . . . . . . . . . . . . . . 59

2.3.2.2 Wired RF Interconnects . . . . . . . . . . . . . . . . . . . 60

2.4 Characteristics of On-Chip Traffic . . . . . . . . . . . . . . . . . . . . . . 61

2.4.1 Temporal Burstiness : Hurst Parameter . . . . . . . . . . . . . . . 62

2.4.2 Spatial Burstiness : Standard Deviation . . . . . . . . . . . . . . . 63

2.4.3 Statistical Distance Property of on-chip Transactions . . . . . . . . 63

2.4.4 Bimodal on-chip Packets . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 WiNoCoD Project and Wired OFDMA Based RF Interconnect 67

3.1 WiNoCoD On-Chip Architecture . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.1 Need for independent communication layers . . . . . . . . . . . . . 69

3.1.2 3-level hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.2.1 A Tile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.2.2 A Tileset . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.2.3 Inter-tileset Communication . . . . . . . . . . . . . . . . 72

3.1.3 Details of Cache Coherence Protocol . . . . . . . . . . . . . . . . . 73

3.2 Basics of OFDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

i



Contents ii

3.2.1 OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.2 OFDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 OFDMA Based RF Interconnect . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.1 RF Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.2 RF Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.2.1 Transmitter Side . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.2.2 Receiver Side . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.2.3 Transmission Line and Access . . . . . . . . . . . . . . . 85

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 RF NoC Bandwidth Allocation Problem 88

4.1 WiNoCoD’s OFDMA RF Interconnect . . . . . . . . . . . . . . . . . . . 89

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.2 Cognitive Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.3 LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Dynamic Bandwidth Scheduling for Parallel Queues . . . . . . . . . . . . 92

4.2.1 Longest Queue First . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.2 Queue Length Proportional Scheduling . . . . . . . . . . . . . . . . 94

4.2.3 Square Root of Queue Length Proportional Scheduling . . . . . . . 94

4.2.4 Oldest Packet First Scheduling . . . . . . . . . . . . . . . . . . . . 95

4.3 Preliminaries of Bandwidth Allocation in WiNoCoD . . . . . . . . . . . . 95

4.3.1 Partitioning Bandwidth Statically . . . . . . . . . . . . . . . . . . 95

4.3.2 A Quasi-Static and Quasi-Dynamic Modification . . . . . . . . . . 97

4.3.3 Resource Blocks, Frames and QSI Signaling . . . . . . . . . . . . . 98

4.3.3.1 Resource Blocks . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.3.2 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.3.3 Decentralized and Centralized Allocation . . . . . . . . . 102

4.3.3.4 Direction of Resource Block Allocation in a Frame . . . . 104

4.3.3.5 Idle Resource Blocks-Default Frame Configuration . . . . 104

4.3.3.6 QSI Encoding and Signaling . . . . . . . . . . . . . . . . 105

4.3.3.7 Taking Into Account the Outdated QSI . . . . . . . . . . 106

4.3.4 Traffic Models and Evaluation Methods . . . . . . . . . . . . . . . 109

4.3.4.1 Metrics of Interest . . . . . . . . . . . . . . . . . . . . . . 109

4.3.4.2 Employed Traffic Models . . . . . . . . . . . . . . . . . . 110

4.4 Using Generic Cores for Bandwidth and Modulation Order Allocation
Algorithmss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 WiNoCoD Bandwidth Allocation Algorithms 116

5.1 Serial QSI Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1.1 Regular Serial QSI Allocation . . . . . . . . . . . . . . . . . . . . . 116

5.1.1.1 Decentralized Approach . . . . . . . . . . . . . . . . . . . 117

5.1.1.2 Centralized Approach . . . . . . . . . . . . . . . . . . . . 121

5.1.2 Serial QSI with 2-loop Allocation . . . . . . . . . . . . . . . . . . . 122

5.1.2.1 Decentralized Approach . . . . . . . . . . . . . . . . . . . 124

5.1.2.2 Centralized Approach . . . . . . . . . . . . . . . . . . . . 127

5.1.3 Serial QSI Allocation with DQSI and EQSI . . . . . . . . . . . . . 129



Contents iii

5.1.3.1 Decentralized Approach . . . . . . . . . . . . . . . . . . . 129

5.1.3.2 Centralized Approach . . . . . . . . . . . . . . . . . . . . 132

5.2 Queue Proportional Allocation . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2.1 Regular Queue Proportional Allocation . . . . . . . . . . . . . . . 134

5.2.1.1 Decentralized Approach . . . . . . . . . . . . . . . . . . . 137

5.2.1.2 Centralized Approach . . . . . . . . . . . . . . . . . . . . 139

5.2.2 QPS Allocation with DQSI and EQSI . . . . . . . . . . . . . . . . 140

5.2.2.1 Decentralized Approach . . . . . . . . . . . . . . . . . . . 141

5.2.2.2 Centralized Approach . . . . . . . . . . . . . . . . . . . . 144

5.3 Implementation of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4 Classification of Bandwidth Allocation Algorithms . . . . . . . . . . . . . 147

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Payload Channel Algorithm 150

6.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Regular Payload Channel Algorithm . . . . . . . . . . . . . . . . . . . . . 152

6.2.1 Description of Regular Payload Channel Algorithm . . . . . . . . . 152

6.2.2 An Illustrative Scenario . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.3 Analytic Approximation for Average Latency Calculation . . . . . 157

6.2.4 Experimental Results for Payload Channel Algorithm . . . . . . . 161

6.3 Dynamic Payload Channel Algorithm . . . . . . . . . . . . . . . . . . . . 165

6.3.1 Description of Dynamic Payload Channel Algorithm . . . . . . . . 165

6.3.1.1 Illustrative Scenario . . . . . . . . . . . . . . . . . . . . . 168

6.3.2 Experimental Results for Dynamic Payload Channel Algorithm . . 168

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7 Adaptive Modulation Order Selection 172

7.1 Delay-Power Trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2 Adaptive Modulation Option in OFDMA and Delay . . . . . . . . . . . . 175

7.3 Decentralized and Centralized Modulation Order Selection Policy . . . . . 175

7.3.1 Decentralized Modulation Order Selection . . . . . . . . . . . . . . 175

7.3.2 Centralized Modulation Order Selection . . . . . . . . . . . . . . . 177

7.4 Maximum Delay Bounded Scheduler . . . . . . . . . . . . . . . . . . . . . 178

7.4.1 Extension of Delay Bounded Scheduler to Multiple Channels . . . 179

7.4.2 Maximum Delay Bounded Scheduler for WiNoCoD . . . . . . . . . 181

7.4.2.1 Experimental Evaluation . . . . . . . . . . . . . . . . . . 182

7.5 Average Delay Bounded Scheduler . . . . . . . . . . . . . . . . . . . . . . 192

7.5.1 Average Delay Bounded Scheduling with Centralized Approach
Based on EQPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.5.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 197

7.6 Information Theoretic Study of the WiNoCoD RF Interconnect . . . . . . 202

7.6.1 U-Shaped Transmission Line . . . . . . . . . . . . . . . . . . . . . 206

7.6.1.1 Unicast communication . . . . . . . . . . . . . . . . . . . 206

7.6.1.2 Broadcast communication . . . . . . . . . . . . . . . . . . 210

7.6.2 Cross-Shaped Transmission Line . . . . . . . . . . . . . . . . . . . 213

7.6.2.1 Unicast communication . . . . . . . . . . . . . . . . . . . 213

7.6.2.2 Broadcast communication . . . . . . . . . . . . . . . . . . 217



Contents iv

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

8 Conclusions and Perspectives 221

A Personal Publications 226

B Explanation of OMNeT++ Codes 228

B.1 General Organization of the Main C++ Files and OMNeT++ Classes . . 228

B.1.1 Symbol Accurate Mechanism . . . . . . . . . . . . . . . . . . . . . 229

B.1.2 Regular Channel Allocation . . . . . . . . . . . . . . . . . . . . . . 229

B.1.3 Payload Channel Allocation . . . . . . . . . . . . . . . . . . . . . . 230

B.1.4 Dynamic Modulation Order Allocation . . . . . . . . . . . . . . . . 230

B.1.4.1 Maximum Delay Bounded Dynamic Modulation Order
Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 230

B.1.4.2 Average Delay Bounded Dynamic Modulation Order Al-
location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

B.2 Stochastic Packet Generation and Traffic Models . . . . . . . . . . . . . . 231

B.2.1 DPBPP packet generation . . . . . . . . . . . . . . . . . . . . . . . 232

B.3 Collection of Metrics of Interest . . . . . . . . . . . . . . . . . . . . . . . . 233

Bibliography 234

List of Figures 247

List of Tables 255

Abbreviations 256



Abstract v

Abstract

With increasing silicon manufacturing capabilities, it is expected that chip multipro-

cessors (CMPs) with thousands of cores will be ready before 2030. With increasing

number of cores, the main bottleneck for the CMPs is to sustain the communication

between these cores and traditional Network-on-Chip (NoC) interconnects start to be

not sufficient, as number of routers to traverse for packets, distances and congestion

increase. Recently, optical and RF communications have been proposed to overcome

these challenges for on-chip interconnects.

Wired RF interconnect seems the most feasible one compared to wireless RF connection

or optical interconnects, as it is full CMOS compatible and required high operating

frequency for signal modulation is available. Proposed state-of-the-art RF or optical

on-chip interconnects require high amount of CMOS or optical components to generate

orthogonal channels and lack the effective bandwidth reconfiguration capacity. Wired

RF Network-on-Chip Reconfigurable-on-Demand (WiNoCoD) project aims to break this

bottleneck by proposing an Orthogonal Frequency Division Multiple Access (OFDMA)

based on-chip RF interconnect, for the first time to the best of our knowledge. This

approach enables a fully flexible RF architecture managed in a pure digital manner.

This thesis, which contributes to WiNoCoD chip, proposes a 3-level hierarchical architec-

ture for a 2048-core generic CMP and OFDMA based RF interconnect. In this work, we

propose dynamic decentralized and centralized bandwidth reconfiguration schemes for

this interconnect, concerning the very specific constraints and requirements of the CMP

environment. Built on this framework, several effective RF bandwidth allocation algo-

rithms are proposed and examined using realistic stochastic on-chip traffic models. This

dynamic approach can achieve remarkably low latencies even under traffic loads near the

network capacity, without requiring elevated computational complexity. In addition to

these, a novel bandwidth allocation algorithm is introduced, which intends to decrease

transmission latency by exploiting the bimodal nature of on-chip cache-coherency pack-

ets. We have shown that, this specialized infrastructure can decrease average latency

up to 10 times further compared to previously proposed algorithms in this thesis under

lower traffic intensity and longer cache lines. We also consider the utilization of dynamic

modulation orders as an additional degree of freedom and propose intelligent selection

algorithms which seek optimal delay-energy trade-off. For instance, with this approach

average power can be decreased up to 15 times under certain circumstances, by relax-

ing average latency requirement to a few symbols long. Information theoretic capacity

analysis of this interconnect is done for different transmission line topologies.



Résume vi

Résume

L’essor des technologies micro-électroniques permet d’envisager que les puces de traite-

ment intégreront plusieurs milliers de coeurs dans la prochaine décennie. Le princi-

pal défis de conception de ces puces se situe alors au niveau des échanges de données

entre les cœurs cars les interconnexions NoC (Network on Chip) traditionnelles at-

teignent leurs limites en termes de congestion et de temps de latence. Les commu-

nications RF guidées préférés aux connexions RF non guidées pour leur plus faible

puissance d’émission requise ou optiques en raison de leur compatibilité avec la tech-

nologie CMOS, qui désormais peut supporter les fréquences de fonctionnement exigées

pour moduler les signaux RF. Mais, les solutions envisagées jusque là nécessitent une

circuiterie importante pour générer des canaux RF orthogonaux, avec des capacités

limitées en termes de flexibilité d’allocation de ces canaux. Pour y remédier, projet

WiNoCoD (Wired RF Neetwork-on-Chip Reconfigurable-on-Demand) propose pour la

première fois une approche basée sur l’OFDMA (Orthogonal Frequency Division Mul-

tiple Access) pour l’accès à l’interconnexion RF intra-puce. En effet, cette approche

permet une gestion purement numérique de l’allocation des ressources fréquentielles de

communication, apportant ainsi une grande flexibilité exploitable à la volée. La puce

WiNoCoD propose une architecture générique à 2048 coeurs de traitement répartis en

trois niveaux de hiérarchie dont les éléments du niveau supérieur sont reliés par une

interconnexion RF basée sur l’OFDMA. Dans cette thèse, nous proposons des schémas

de reconfiguration de l’allocation des ressources fréquentielles centralisés et décentralisés

adaptés aux contraintes spécifiques de l’environnement intra-puce à très grand nom-

bre de coeurs. Plusieurs algorithmes d’allocation de fréquence sont étudiés dans le cas

de modèles stochastiques de trafic réalistes. L’approche dynamique proposée permet

d’obtenir des performances remarquables en termes de latence, dans des conditions de

trafic à la limite de la capacité du NoC, pour une faible complexité de calcul. En outre,

un nouvel algorithme d’allocation est introduit pour décrôıtre la latence de transmis-

sion en tenant compte de la nature bimodale des paquets de cohérence de cache d’une

telle puce. Nous montrons que cela permet de diminuer la latence moyenne de livrai-

son des paquets d’un facteur 10 en comparaison des autres solutions étudiées dans un

contexte d’intensité de trafic modérée et pour des lignes de cache plus longues. Nous

étudions aussi l’utilisation dynamique d’ordres de modulation comme un degré de liberté

supplémentaire et nous proposons un algorithme de sélection du meilleur compromis en-

tre consommation d’énergie et délai de livraison des paquets. Nous montons ainsi que la

puissance moyenne peut être améliorée d’un facteur 15 en relaxant le délai de livraison

de quelques symboles. Une analyse de capacité au sens de la théorie de l’information est

aussi effectuée pour différentes topologies de la ligne guidée.



Dedicated to my parents

vii



Chapter 0

Résumé en Français : Allocation

Dynamique de Bande Passante

pour l’Interconnexion RF d’un

Résau-sur-Puce

Chapitre 1 : Introduction

L’accélération des traitements numériques a été portée depuis un demi-siècle par la

diminution de la géométrie des transistors, mais cette tendance est dorénavant freinée

en raison de problèmes thermiques et lithographiques liés aux dimensions nanométriques

actuelles. Par ailleurs, le compromis entre puissance de calcul et consommation a poussé

l’utilisation de plusieurs processeurs en parallèle sur une même puce pour exécuter des

applications à forte exigence en termes de calculs. Aujourd’hui, il est fréquent de voir des

puces avec plusieurs cœurs dans nos téléphones, ordinateurs, serveurs, terminaux ADSL,

appareils photo numériques, etc.. En électronique embarquée, on parle de systèmes sur

puces (System-on-Chip ou SoC) où les unités sont généralement de natures différentes

(hétérogènes). Dans le domaine informatique, cela se traduit par la mise en parallèle

de plusieurs voire nombreuses unités de traitement identiques (homogène), comme dans

les GPU (Graphical Processing Units), processeurs superscalaires, etc.. Dans un avenir

proche, on estime à quelques milliers le nombre de cœurs présents sur une seule puce. Ces

systèmes sont appelés généralement avec la dénomination anglaise Chip Multiprocesseurs

(CMPs) ou processeurs ManyCore.

1



Chapter 0. Résumé en Français 2

Avec l’augmentation du nombre de cœurs dans une même puce, le problème des commu-

nications entre les cœurs devient prépondérant. Il est devenu impossible d’implanter des

fils dédiés point à point entre tous les coeurs et des problèmes de congestion apparaissent

avec les bus conventionnels. Les chercheurs ont introduit un nouveau paradigme connu

sous le nom de réseau sur puce (Network-on-Chip ou NoC), où la couche de communica-

tion est détachée des coeurs et la transmission entre cœurs est effectuée par paquets via

des routeurs, comme dans un réseau. Même si les NoC ont démontré leur performance

en termes de latence et de bande passante, ils atteignent à leur tour des limites à partir

de plusieurs dizaines de cœurs.

Récemment, les interconnexions optiques et radiofréquence (RF) sur puce ont été pro-

posées pour fournir une solution à l’apparition de ce goulot d’étranglement. Ces inter-

connexions utilisent des ondes électromagnétiques pour transmettre des signaux à des

vitesses plus proches de celle de la lumière, à la différence du câblage de cuivre clas-

sique utilisé jusqu’ici. Cependant, ces deux architectures, optiques et RF, ont besoin

d’implanter des circuits spécialisés dans les émetteurs-récepteurs de chaque noeud (en

regroupe plusieurs cœurs entre eux car connecter chaque cœur serait trop complexe)

qui a un accès au canal de communication. En raison de la nature statique des archi-

tectures d’émission réception jusqu’à présent identifiées dans la littérature, l’allocation

dynamique des canaux de communication à différents noeuds, en fonction de leur de-

mande instantanée de bande passante est impossible. Cependant, en raison du trafic très

fluctuant généré par les applications entre les cœurs, les approches RF et optiques appor-

tent jusqu’à présent une solution limitée, ou surdimensionnée entre les capacités qu’elles

apportent et celles qui peuvent être exploitées effectivement en cours de fonctionnement.

Afin de remédier à ces limitations, le projet WiNoCoD (Wired RF Network-on-Chip

Reconfigurable-on-Demand) a été initié grâce au financement de l’Agence Nationale

de Recherche (ANR). Les partenaires du projet sont ETIS-ENSEA, LIP6 -UPMC,

NXP Semiconductors et IETR-CentraleSupélec. Ce travail de thèse contribue au pro-

jet WiNoCoD. La contribution majeure du projet WiNoCoD pour la communauté sci-

entifique des réseaux-sur-puce est son interconnexion de communication RF basée sur

l’OFDMA (Orthogonal Frequency Division Multiplexing Access). Contrairement aux in-

terconnexions sur puce existantes, la modulation OFDM, support de l’OFDMA, permet

de générer de nombreux canaux orthogonaux grâce à un nombres de circuits analogiques

réduit (non pas une châıne RF à bande étroite par canal, mais une seule châıne RF glob-

ale à large bande). En outre, l’encodage des données sur les canaux de fréquences or-

thogonales est une procédure purement numérique en OFDM et sa capacité intrinsèque

de diffusion est un atout très important en raison des caractéristiques particulières du

trafic des données dans un réseau sur puce.



Chapter 0. Résumé en Français 3

Les contributions de cette thèse sont :

• Une structure de contrôleur de RF est proposée pour l’interconnexion OFDMA de

WiNoCoD.

• Plusieurs algorithmes d’allocation de bande passante efficaces (distribués et cen-

tralisés) sont proposés et leurs performances évaluées, concernant les demandes et

contraintes très spécifiques de l’environnement sur-puce.

• Un protocole innovant pour l’arbitrage des sous-porteuses pour des longueurs bi-

modales de paquets sur-puce, qui ne nécessite aucune signalisation supplémentaire

est introduit.

• Une évaluation de l’utilisation des ordres de modulation élevés est étudiée en fonc-

tion du compromis entre délai et consommation d’énergie.

• Les algorithmes proposés ne sont pas restreints aux limites de WiNoCoD, mais

peuvent être étendus à d’autres interconnexions RF basées sur l’OFDMA pour les

architectures CMP ou des réseaux à haute vitesse.

Chapitre 2 : L’Ere des �1000 cœurs� et le défi des réseaux-

sur-puce

2.1 Multiprocesseurs

Les CMPs offrent une nouvelle réponse aux limitations des monoprocesseurs en util-

isant de nombreux cœurs relativement simples plutôt qu‘un seul cœur puissant, ce qui

augmente les performances à la fois en termes de puissance de calcul et d’efficacité

énergétique en exploitant le parallélisme. Un cœur est une unité de traitement arithmétique

qui effectue les opérations logiques et de commande, qui est généralement composé de

deux entités distinctes: unité arithmétique et logique (ALU) et une unité de commande

(CU).

2.1.1 Caches et Mémoire

Dans un processeur multi-cœurs, chaque cœur dispose d’une mémoire pour les données

et les instructions, sous la désignation Mémoire cache de niveau 1 (L1 - Level 1). La

mémoire cache (antémémoire) est composée de registres temporaires pour un volume

relativement faible de données, qui stocke les copies de la mémoire principale et qui



Chapter 0. Résumé en Français 4

offre un accès très rapide pour le cœur de traitement. En fonction de l’architecture, il

peut y avoir des niveaux plus élevés de caches tels que L2 et L3. Cependant, toutes les

architectures ne partagent pas cette hiérarchie. Par exemple, le CMP qui est envisagé

dans ce travail de thèse a seulement un cache L1 pour chaque cœur et une mémoire

RAM partagée et distribuée physiquement entre tous les coeurs, qui peut être considéré

comme un cache L2.

2.1.2 Protocole de Cohérence de Cache

Les cœurs d’un multiprocesseur peuvent accéder à tout endroit dans la mémoire partagée.

Cependant, quand un cœur modifie les données dans un emplacement d’adresse, il peut

y avoir déjà des copies des caches simultanées dans d’autres cœurs. Par conséquent,

lorsque les nouvelles données sont écrites, les cœurs (qui utilisent cette adresse) risquent

d’avoir une copie erronée pour cette ligne d’adresse. Par conséquent, ces cœurs doivent

être informés du changement de contenu. Ce problème d’incohérence est connu sous le

terme de cohérence de cache. Il existe différents protocoles pour résoudre le problème

de la cohérence de cache, mais les plus largement connus sont “espionnage de bus”

et “espionnage à répertoire”. Dans l’espionnage, à chaque fois qu’un cœur ne peut

pas retrouver les données dans son cache, il diffuse une requête de lecture sur le bus

reliant tous les cœurs et les caches. Comme chaque contrôleur de cache des autres cœurs

écoute ces émissions, ils invalident les copies dans leurs caches avec l’étiquette de la ligne

d’adresse dans cette demande. La deuxième approche est le protocole par répertoire

(directory), où les répertoires sont responsables de la mise à jour et de mémoriser les

états et les propriétaires de blocs mémoire (lignes d’adresse). Chaque cœur, qui veut

extraire la copie d’une adresse dans la mémoire principale, doit se référer au répertoire

en premier lieu. Afin d’orchestrer l’exécution d’applications et fournir la cohérence des

caches, les cœurs et les éléments de mémoire doivent communiquer entre eux. Ces

messages de cohérence de cache constituent la base du profile des communications sur

une telle puce.

2.2 Réseau-sur-Puce

2.2.1 Des Bus au Réseau-sur-Puce

Quand le nombre d’éléments reliés à un même bus augmente, la charge capacitive et

résistance parasite augmentant également, ce qui est une cause supplémentaire de retard

dans les transmissions sur le bus. Dans les architectures submicroniques classiques,

les informations numériques sont transmises entre les noeuds par des fils de cuivre en



Chapter 0. Résumé en Français 5

augmentant ou en diminuant la tension électrique sur ces fils. En outre, comme le nombre

d’unités qui veut accéder au bus augmente, la bande passante par unité diminue, ce qui

cause d’autant plus de risques de congestion. A l’échelle des CMPs, avec un nombre

de cœurs de plus en plus important, jusqu’à atteindre plusieurs milliers d’unités, un

cadre de communication de manière paquetisée a été introduit, connu sous le nom de

Réseau-sur-puce (NoC).

2.2.2 Topologies de NoC

Depuis les recherches initiales sur les NoC, différentes topologies ont été proposées : 2D-

grille, 2D-tore, octogone etc. (Fig 0.1). Malgré ses avantages, comme nous approchons

d’une ère avec des centaines, voire des milliers de cœurs, ces NoC classiques sont aux

prises avec un problème d’extensibilité. Par exemple, on peut voir que la distance entre

les deux cœurs les plus éloignés dans un réseau de grille est 2
√
Ncores, où Ncores est le

nombre de cœurs.

Figure 0.1: Trois des topologies les plus classiques pour les NoCs 2D, où les éléments
sont interconnectés via des routeurs tamponnées: (a) grille (b) tore (c) octogone

2.2.3 Tera-Scale Multi-core Processor Architecture (TSAR)

Il est important de mentionner ici le projet TSAR (Tera-Scale Multicore processeur

Architecture) [1]. Parmi les partenaires de ce projet, l’UPMC-LIP6 et NXP Semicon-

ductors sont aussi des partenaires du projet WiNoCoD. Dans un sens, ce projet peut

être considéré comme une base primordiale de WiNoCoD, comme ses principes archi-

tecturaux en termes de mémoire et de protocole de cohérence de cache a de nombreuses

caractéristiques communes avec TSAR. La différence fondamentale du projet WiNoCoD

est son infrastructure NoC. En effet, TSAR a été modélisé avec un réseau de grille-2D

classique pour la communication entre les tuiles (unité atomique de 4 cœurs avec sa

RAM, un contrôleur de répertoire).



Chapter 0. Résumé en Français 6

2.3 Interconnexion RF et Optiques

Avec un horizon où des milliers de cœurs seront concentrés sur une même puce, l’industrie

des semi-conducteurs a compris que les NoCs filaires classiques sont loin de fournir les

besoins attendus en termes de latence, de bande passante et de contrainte de puissance

électrique. Ainsi a émergé l’idée de communiquer par ondes électromagnétiques à une

vitesse plus proche de celle de la lumière. L’International Technology Roadmap for Semi-

conductors (ITRS) affirme que les interconnexions optiques et RF représentent l’avenir

pour satisfaire les besoins à long terme de bande passante, de latence, la puissance, con-

sidérant que l’on s’attend à ce que le nombre de cœurs sur une puce dépasse plusieurs

milliers avant la fin de la prochaine décennie (Fig. 0.2).

Figure 0.2: L’illustration d’options d’interconnexion sur puce innovante récemment
proposées

2.3.1 Interconnexions Optiques

Les développements récents de la nanophotonique ont permis l’implantation d’éléments

optiques tels que des guides d’ondes denses, des filtres, des modulateurs etc. sur une

seule puce. Toutefois, ces tentatives sont encore dans la phase de début. Récemment,

[2] a démontré sa faisabilité dans le cas d’un simple multiprocesseur avec 2 cœurs, avec



Chapter 0. Résumé en Français 7

une interconnexion optique sur puce complète. Pour permettre le transfert simultané

de plusieurs signaux sur le même guide d’ondes, des canaux orthogonaux (longueurs

d’onde) sont générés. Une source laser sur la puce ou hors de la puce génère et fait

circuler l’énergie photonique sur un guide d’onde dédié, capable de véhiculer toutes les

longueurs d’onde utilisées dans le système. Des résonateurs en micro-anneaux (micror-

ing resonators) sont utilisés en tant que modulateurs pour la transmission de données et

en tant que filtres pour la réception. Donc, nous pouvons comprendre que nous avons

besoin d’implanter un grands nombre de ces modules pour créer tous les canaux or-

thogonaux nécessaires, ce qui est encombrant et consommateur d’énergie d’une part et

peu évolutif d’autre part. Chacun de ces micro-anneaux est fabriqué pour une longueur

d’onde spécifique, qui est déterminée par traitement thermique, et par différence de

quantité de charge électrique injecté, ou en faisant varier le rayon de l’anneau au cours

du processus de fabrication. Ainsi, ce système est statique par nature et il est impos-

sible de redistribuer la bande dynamiquement entre les nœuds de traitement. ATAC et

Corona sont deux exemples de l’état de l’art des architectures optiques sur puce.

Les interconnexions photoniques sont considérées comme une technologie efficace pour

réduire la latence de manière significative grâce à leur grande bande passante, tout en

offrant une faible consommation électrique. Cependant, leur praticabilité est mise en

doute, au moins pour un avenir proche, à cause du bruit du couplage de guide d’ondes et

de la taille relativement importante des composants optiques pour les intégrer en grands

nombres dans une puce. La fabrication de composants photoniques sur puce est encore

confrontée à de nombreux défis. Il impose la juxtaposition de deux technologies differents

: la technologie CMOS pour l’architecture de traitement et la technologie optique pour

l’interconnexion. En outre, il n’existe pas d’éléments de stockage optique, ainsi un

tel système dépend d’une infrastructure électrique additionnelle. Comme mentionné

précédemment, les NoC optiques nécessitent des sources laser constantes soit sur la

puce, soit hors puce, avec un guide d’onde dédié séparé.

2.3.2 Interconnexions RF

En raison des inconvénients des interconnexions optiques, les chercheurs ont orienté

leurs investigations vers les interconnexions Radio Fréquence (RF), qui utilisent encore

les ondes électromagnétiques (EM). La fréquence de transition des transistors CMOS est

toujours dans une tendance d’augmentation exponentielle de génération en génération,

permettant désormais d’envisager des fréquences maximales jusqu’à 1 THz. Cela po-

sitionne les composants RF CMOS comme des candidats naturels pour les émetteurs



Chapter 0. Résumé en Français 8

récepteurs sur puce à haute fréquence. L’avantage de cette approche est sa compati-

bilité CMOS avec la partie traitement de la puce (cœurs, mémoires, etc.). De plus, c’est

une technologie beaucoup plus mature par rapport à l’optique sur puce.

Il y a deux propositions distinctes pour les interconnexions RF: par la propagation en

espace libre (sans fil mais avec une antenne d’émission et une antenne de réception)

ou la propagation guidée (RF filaire ou sur guide d’ondes). Pour la RF sans fil, l’idée

est de générer des liaisons à haut débit entre les cœurs distants, afin de réduire la

latence et la congestion, sans la nécessité d’un milieu de propagation supplémentaire

dédié. Le défi majeur dans ce paradigme est la difficulté de caractériser les effets de la

propagation, ainsi que la fabrication de petites antennes en nanotechnologies avec des

caractéristiques électromagnétiques adéquates. La viabilité des antennes sur puce sans fil

n’est pas encore démontrée et les propositions innovantes qui apparaissent, telles que les

antennes en nanotubes de carbone, ne sont pas encore des technologies matures. Ainsi, la

propagation RF via une ligne de transmission guidée (RF filaire) a reçu plus d’attention

dans la communauté de la recherche sur puce par rapport à son homologue sans fil.

Comme la distance de communication est faible, la méthode de couplage capacitif efficace

peut être utilisée pour réaliser la transmission. En outre, le guide d’ondes permet une

atténuation réduite, donc une puissance de transmission, qui est la plus consommatrice

d’énergie dans un système de communication, limitée au plus juste (et non dispersée

dans toutes les directions). C’est l’option qui sera considérée dans ce travail.

2.4 Caractéristiques du Trafic sur Puce

Comme première étape, les chercheurs se sont appuyés sur des modèles de trafic synthétiques

primitifs pour évaluer leurs conceptions, mais ces modèles se révèlent souvent trop näıfs

pour assurer la validité des simulations. D’autre part, il y a un nombre trop limité

d’applications sur multicœurs, telles que celles fournies par PARSEC ou Splash-2. Un

modèle statistique réaliste universel d’émulation du trafic d’un NoC est essentiel. Il existe

différents modèles stochastiques de trafic pour la simulation sur puce dans la littérature,

utilisant la notion d’auto-similarité, phénomène ayant pour origine la hiérarchie de cache

dans les systèmes à mémoire partagée. Nous nous basons sur ces modèles de l’état de

l’art dans notre travail.



Chapter 0. Résumé en Français 9

Chapitre 3 : Projet WiNoCoD et Interconnexion RF filaire

basée sur l’OFDMA

Nous avons vu que les interconnexions RF filaires apparaissent comme le candidat le plus

réaliste à court terme. Cependant, tout comme leurs homologues optiques, les intercon-

nexions RF proposées dans l’état de l’art reposent sur des circuits analogiques pour

générer des canaux fréquenciels, ce qui limite leurs capacités d’allocation dynamique des

ressources, notamment en termes de coût, de surface occupée et de consommation. Pour

surmonter tous ces désavantages et fournir une réelle avancée en termes de bande pas-

sante reconfigurable, le projet WiNoCoD (Wired RF Network-on-Chip Reconfigurable

on Demand) a été initié en 2013, en partenariat avec l’ANR, par ETIS-ENSEA, LIP6-

UPMC, Supelec-IETR et NXP Semiconductors.

3.1 L’architecture sur Puce de WiNoCoD

3.1.1 Niveaux de Communication

Le circuit issu de WiNoCoD est un multiprocesseur massivement parallèle et générique

de 2048 cœurs de traitement. Un principe de mémoire partagée est adopté, où tout

l’espace d’adresse est accessible par tous les cœurs (NUMA - Non Uniform Memory

Architecture). Il existe 3 niveaux hiérarchiques principaux, avec un type d’infrastructure

de communication particulier pour chaque niveau. Au niveau le plus bas se trouve la

tuile, constituée de 4 cœurs, 2 Go de RAM (une sous-partie de la mémoire globale du

système) et un contrôleur de mémoire. Tous ces éléments sont reliés entre eux par

un crossbar switch. Au niveau suivant, 16 tuiles sont interconnectés par un réseau en

quadrillage (mesh 2D). Ceux-ci sont appelés tuilesets (ou grappes de tuiles) et il y a 32

tuilesets au total. Au plus haut niveau, ces 32 tuilesets sont interconnectés par la ligne

de transmission RF. Par exemple, si un cœur veut transmettre des informations à un

autre cœur dans un tuileset différent, le message doit traverser les 3 différentes couches

de communications. L’architecture de WiNoCoD avec 2048 cœurs est illustrée sur la

Fig. 0.3.

3.1.2 Détails du Protocole de Cohérence de Mémoire Cache

Nous employons dans WiNoCoD un protocole de cohérence de cache hybride par répertoire

(Distributed Hybrid Cache Coherency Protocol), comme dans TSAR [1]. Une approche

similaire est adoptée pour ATAC [3], qui est une architecture à 1024 cœurs intercon-

nectés en optique. Une approche d’écriture transversale (Write Through) est adoptée,



Chapter 0. Résumé en Français 10

Core

I$ D$

Core

I$ D$

Core

I$ D$

Core

I$ D$

DMA
DIR

RAM

Mesh 
Router

A Tile A Tileset 

WiNoCoD CMP

RF Router

Figure 0.3: L’architecture à 3 niveaux de WiNoCoD, avec 2048 cœurs au total

c’est-à-dire que dans le cas où un cœur veut écrire une donnée à une ligne d’adresse, il

transmet une demande d’écriture dans le répertoire responsable de cette ligne d’adresse.

Par conséquent, si la ligne d’adresse destinataire est associée au répertoire de la même

tuile, le message ne va pas à l’extérieur de la tuile, et utilise uniquement le crossbar

switch. De même, si la ligne d’adresse est dans une tuile différente mais dans le même

tuileset, il utilise uniquement le réseau en quadrillage. Si la ligne d’adresse est dans une

tuile d’un tuileset différente, alors il doit utiliser l’interconnexion RF. Dans le protocole

DHCCP de WiNoCoD, lorsque le nombre de cœurs partagants d’une ligne d’adresse

dépasse un certain seuil (par exemple 8), le répertoire commence à garder le nombre de

partageurs, plutôt que de garder les identificateurs (ID) de chaque cœur explicitement.

Dans ce cas, pour chaque invalidation, le répertoire diffuse un message à chacun des

2048 cœurs et compte le nombre de messages d’ACK pour vérification. C’est la seule

façon d’être en mesure de suivre des milliers de partageurs possibles. Le répertoire dans

une tuileset est représenté sur la Fig. 0.4.

3.2 Notions Préliminaires sur l’OFDMA

L’OFDM (Orthogonal Frequency Division Multiplexing) est une technique de modula-

tion qui transforme un signal de bande passante large en plusieurs canaux orthogonaux

plus étroits. L’OFDM code ainsi l’information numérique sur le domaine des fréquences

plutôt que dans le domaine temporel. Pour le mettre en oeuvre, les données numériques



Chapter 0. Résumé en Français 11

Address Line
#0000000
#000000F

#0000100

Sharer Cores
C-0013 C-0048

Flag
0
1

C-1004
27 (Number of sharers)

0 C-0203

Memory Directory in a Tileset

Figure 0.4: Context du répertoire de la mémoire dans une tuileset

sont tout d’abord mises en symboles de constellations BPSK, QPSK, M-QAM, etc., et

chaque symbole de la constellation est associé à une sous-porteuse. La sous-porteuse

est l’unité de fréquence atomique dans un signal OFDM, ou en d’autres termes c’est

l’ensemble de toutes les sous-porteuses à bande étroite qui sont émises en parallèle.

C’est une transformée de Fourier discrète inverse (IDFT) qui est appliquée au vecteur

de N symboles pour les positionner sur N sous-porteuses en parallèle, où chacun d’eux est

maintenant un nombre complexe associé au symbole de la constellation codée (chaque

nombre complexe représente un certain nombre de bits). Le résultat de cette trans-

formation donne un vecteur de N nombres complexes. Après, ce vecteur de N points

est sérialisé et converti en un signal dans le domaine temporel. Ce signal s’est appelé

un symbole OFDM. A la réception, l’inverse de ces opérations est effectuée. Les blocs

élémentaires d’un émetteur-récepteur OFDM sont montrés sur la Fig. 0.5.

Les avantages de l’OFDM peuvent être énumérés comme suit :

• Robustesse contre les canaux sélectifs en fréquence et l’égalisation est simple pour

chaque sous-porteuse.

• Génération de canaux fréquentiels par un processus numérique, d’où l’économie de

nombreux circuits analogiques.

• Une bande passante reconfigurable grâce à une mise en œuvre numérique.

• Haute efficacité spectrale grâce à des sous-porteuses fenêtrées par des fonctions

sinc orthogonales.

L’OFDMA (Orthogonal Frequency Division Multiple Access), d’autre part est un schéma

d’accès multiple basé sur l’OFDM, avec tous les avantages de la couche physique de

l’OFDM dont une bande passante reconfigurable par utilisateur. Un utilisateur en-

code l’information sur ses sous-porteuses allouées à la transmission comme expliqué



Chapter 0. Résumé en Français 12

S/P IFFT

P/S

DAC

FFT ADCS/P

P/S

t

Constellation 
Mapping

Constellation 
Demapping

OFDM signal in 
time domain

a. Transmission

b. Reception

...010100…
(digital bits)

...010100…
(digital bits)

Figure 0.5: Les blocs de base d’un émetteur-récepteur OFDM

précédemment, et maintient les autres inactives (zéro avant IFFT) pour les laisser libres

à d’autres utilisateurs. Cette procédure est mise en oeuvre dans le domaine numérique,

simplement en manipulant le vecteur de bits avant l’IFFT. Cette tâche peut être réalisée

par un microprocesseur ou un circuit numérique. En outre, comme chaque noeud dans le

système doit décoder un symbole OFDM en entier pour extirper le signal le concernant,

l’OFDMA est doté de capacités de diffusion intrinsèques.

3.3 L’Interconnexion RF guidée de WiNoCoD basée sur l’OFDMA

La technologie des convertisseurs fournis par notre partenaire NXP a une bande passante

de 20 GHz. En raison des contraintes d’adaptation et de la propagation guidée, le spectre

le plus approprié a été choisi entre 20-40 GHz. Il est décidé d’avoir 1024 sous-porteuses

OFDM, ainsi des modules FFT et IFFT de 1024 points sont nécessaires. Comme

nous avons la bande passante est de 20 GHz, avec 1024 sous-porteuses l’espacement

de fréquence entre les sous-porteuses est de 19.53 MHz, soit une durée symbole de T =

1 / 19.53 MHz = 51.2 nanosecondes.



Chapter 0. Résumé en Français 13

3.3.1 Contrôleur RF

Un paquet qui doit être envoyé par une tuile dans la ligne guidée RF est routé à travers

le réseau en quadrillage du tuilset vers le contrôleur RF de ce tuileset. Ces paquets

sont traités si nécessaire, c’est-à-dire fragmentation ou défragmentation, extraction ou

insertion d’informations telles que l’identifiant de la source, etc., puis insérés dans la

file d’attente de transmission. Le contrôleur RF prend certaines décisions selon des in-

formations qu’il possède de l’état de sa file d’attente (Queue State Information - QSI)

de transmission (TX) et les informations de trafic en provenance d’autres tuilesets qu’il

peut recevoir directement des autres tuilesets, soit lui être fournis par une unité cen-

trale intelligente (Central Intelligent Unit-CIU). Le contrôleur RF modifie en fonction la

position et l’encodage en symboles des données dans son buffer précédent la IFFT et con-

figure ainsi son occupation des sous-porteuses du symbole OFDM qui va être transmis.

Chaque tuileset fait de même pour chaque symbole OFDM et les porteuses d’un sym-

bole OFDM sont ainsi réparties entre tous les tuilesets. La répartition de l’occupation

des sous-porteuses entre les tuilsets est l’enjeu de la thèse et plusieurs algorithmes vont

être proposés dans le manuscrit. L’un ou l’autre pourra être utilisé en changeant le

programme du ou des processeurs du contrôleur RF gérant le buffer d’émission.

3.3.2 Tête analogique RF

Cette partie est le travail de thèse de Frédéric Drillet et Lounis Zerioul du laboratoire

ETIS. Dans la tête d’émission analogique RF, les mélangeurs associent un signal OFDM

en bande de base avec la porteuse issue de l’oscillateur local. Le mélange se produit dans

un MOSFET, dont la grille et le drain sont respectivement alimentés par l’oscillateur

local et le signal en bande de base. La sortie de fréquence plus élevée est récupérée

dans la source de transistor MOSFET. Grâce aux sorties différentielles du convertisseur

numérique-analogique (CNA), deux modulateurs-I/Q sont combinés pour supprimer les

replicas de fréquences. Ensuite, ce signal est amplifié par un amplificateur et injecté

sur la ligne RF par un couplage à transistors qui a été préféré à un couplage capacitif

classique.

En réception, le signal reçu de la ligne de transmission est amplifié par un amplificateur

à faible bruit (LNA) et envoyé aux mélangeurs et l’oscillateur local de 30 GHz pour

obtenir les composantes en phase (I) et en quadrature (Q). Des filtres passe-bas (LPF)

sont également utilisés puis les composantes I et Q sont converties dans le domaine

numérique par les convertisseurs analogique-numérique (CAN). Apres une conversion

série vers parallèle, ce vecteur de valeurs I et Q est transposé dans le domaine fréquenciel

par un module de transformée de Fourier rapide (FFT). Les symboles de la constellation



Chapter 0. Résumé en Français 14

qui en résultent sont extraits sous forme de bits; sérialisés et finalement sont fournies au

contrôleur RF en réception. La tête d’émission et de réception analogique d’un tuileset

est illustrée sur la Fig. 0.6.

I

Q

I

Q

I

Q

I

I’

Q

Q’

π/2

π/2

π/2

I

Q

I

Q

I

Q

Figure 0.6: La tête numérique et la tête analogique RF pour la transmission et la
réception dans un tuileset

Les modules FFT et IFFT sont conçus en technologie CMOS 120 nm. Il a été estimé que

la superficie de chacun de ces modules est de 0,31 mm2 et la consommation d’énergie

de 67.5 mW. La durée de calcul pour FFT / IFFT est considérée comme une latence du

pipeline de la communication. Chacun des CAN et CNA sont conçus avec la technologie

120 nm et ont une superficie estimée de 0,12 mm² et leur consommation d’énergie de 81

mW.

L’étude de la ligne de transmission s’est effectuée dans le cadre de la thèse de Mohamad

HAMIEH du laboratoire ETIS. Une ligne de transmission en forme de croix, comme

illustré sur la Fig. 0.3 a été conçue pour minimiser la distance entre les deux tuilesets

plus éloignés du CMP. Dans cette configuration, la distance maximale entre deux noeuds

est de 80 mm. La forme en croix donne également un avantage supplémentaire, en four-

nissant une réponse en fréquence plate sur la bande passante de 20 GHz. Sur la gamme

de fonctionnement, entre 20 et 40 GHz, l’atténuation attendue (issue des simulations)

est de -10 dB à -42 dB entre les deux nœuds les plus éloignés et relativement linéaire

sur toute la gamme de fréquence. Ceci peut paraitre variable mais comparativement

au cas aérien qui connait beaucoup de variations fréquentielles et temporelles, on peut

faire l’approximation ici de une certaine stabilité. On retrouve cette quasi-invariabilité

en fréquence entre tous les autres noeuds, avec des atténuations plus faibles au fur



Chapter 0. Résumé en Français 15

et à mesure que la distance décrôıt entre les deux nœuds considérés. Cela simplifie

l’utilisation de l’OFDM puisque toutes les sous-porteuses subiront la même atténuation

quelle que soit la fréquence utilisée dans le système. Seule la position relative entre

les nœuds fera varier l’atténuation qui donc sera prévisible. Le choix des porteuses ne

nécessitera pas ainsi de modifier la puissance de transmission, mais seulement le choix

de l’ordre de modulation. Une ligne coplanaire en technologie CMOS à 0.25 micromètre

fournie par NXP semiconductor est utilisée. Un mécanisme d’accès par transistor est

préféré la celui d’un couplage capacitif classique pour accéder à la ligne de transmission

depuis les têtes analogiques d’émission et de réception des tuilesets. Le signal est trans-

mis entre la ligne guidée de transmission et la tête RF sans contact physique. Cette

méthode réduit le phénomène des réflexions et de l’atténuation fluctuante sur différentes

fréquences (désadaptation).

Chapitre 4 : Problème d’allocation de la bande passante

d’un RF NoC

4.1 Interconnection OFDMA de WiNoCoD et motivation

Nous avons vu que chaque tuileset a un point d’accès à la ligne de transmission via

un modulateur/démodulateur OFDMA. Grâce à la capacité de diffusion intrinsèque

de l’OFDMA, chaque paquet envoyé n’a pas besoin d’être dupliqué pour être diffusé,

comme toutes les transmissions effectuées par un utilisateur sont reçues par tous les

autres (SWMR). Ceci augmente considérablement la capacité du système compte tenu

de l’exigence particulière, dans le cas d’un système à cohérence de cache de répertoire,

en termes de nombre de paquets de diffusion / multidiffusion. Une sous-porteuse sur

un symbole OFDM peut être considérée comme un élément servant à la transmission de

l’information (1,2, etc. bits sur la base de l’ordre de modulation utilisé BPSK, QPSK,

etc.). Comme mentionné précédemment, la motivation principale derrière l’utilisation de

l’OFDMA sur puce est sa capacité de reconfiguration, qui se réfère à la facilité de changer

les utilisateurs de sous-porteuses, ou le nombre de porteuses par utilisateur, au cours du

temps. Par conséquent, notre problème peut être formulé sous la forme de l’attribution

des sous-porteuses au cours du temps (par exemple sur une durée de un ou plusieurs

symboles OFDM) aux différentes files d’attente de transmission des tuilesets. Dans

l’hypothèse où les files d’attente de réception en sortie de la ligne de transmission peuvent

être vidées avec une rapidité élevée, en tout état de cause supérieure à celle d’arrivée

des paquets, nous pouvons affirmer que l’allocation dynamique de sous-porteuses devrait

diminuer les latences dans les files d’attente du côté de la transmission. Il est à noter que

cette hypothèse est très légère, puisque cela signifie que les paquets reçus en sortie de



Chapter 0. Résumé en Français 16

la ligne de transmission peuvent être transmis dans le réseau intra-grille d’un tuileset à

haute vitesse, ce qui est le cas car le réseau en quadrillage est un réseau parallèle sur 32

ou 64 bits fonctionnant habituellement à plusieurs centaines de mégahertz de fréquence

d’horloge. Il peut donc drainer 64 bits toutes les nanosecondes à 1 GHZ d’horloge,

soit bien plus que des données sur 64 bits (ou un multiple de 64 bits inférieur à 10)

arrivant de la ligne de transmission toutes les 51.2 ns. Par conséquent, dans ce projet,

nous cherchons des mécanismes d’arbitrage de l’allocation des sous-porteuses afin de

minimiser le retard dans les files d’attente de transmission des tuilesest, en entrée de

la ligne de transmission, et les probabilités de dépassement de capacité des mémoires

tampons ou files d’attente de l’émetteur des tuilesets vers la ligne de transmission. Les

détails de la spécification des protocoles proposés dans le cadre de cette thèse, tels que

la structure détaillée des bits d’un paquet, etc., ne sont pas compris dans ce travail de

thèse. Un processus générique de mécanisme d’allocation de la bande passante est prévu,

qui peut être utilisé pour tout type d’architecture massivement multicoeurs, au-delà du

cas de WiNoCoD.

4.2 Ordonnancement dynamique de la bande passante pour les files

d’attente parallèles

La problème présenté précédemment est référencé dans la littérature comme “l’ordonnancement

multi-utilisateur multi-serveur” ou “l’ordonnancement des files d’attente parallèles”.

La recherche sur les politiques d’ordonnancement multi-utilisateurs pour le cas multi-

serveurs intègre les domaines de la théorie des files d’attente, la théorie des réseaux,

l’optimisation stochastique et les processus de décision markoviens. Considérant la

nature de notre interconnexion OFDMA, nous allons étudier les algorithmes les plus

efficaces en termes de politiques dynamiques d’ordonnancement. Ce type d’approches

réassignent habituellement les serveurs aux files d’attente à chaque (ou chaque multiple)

intervalle de temps, basé sur l’état instantané du système.

Pour le cas où il ya un seul serveur, qui doit être attribué à l’une des K files d’attente

à chaque intervalle de temps (multi-utilisateur/serveur unique), il a été prouvé que la

politique d’allocation prioritaire à la plus longue file d’attente (Longest Queue First:

LQF) fournit la plus faible latence moyenne, sachant que les arrivées des paquets aux

files d’attente sont indépendantes et identiquement distribuées. L’optimalité de cet algo-

rithme pour le cas de plusieurs serveurs est toujours valable sous l’hypothèse d’arrivées

indépendantes. L’inconvénient de cet algorithme est sa complexité de calcul. Il procède

par itérations sur les N serveurs, et à chaque itération, le serveur effectue une itération

pour toutes les files d’attente K. Après l’affectation, les longueurs des files d’attente sont

mises à jour. Même si sa mise en œuvre dans WiNoCoD est impossible, en raison de la



Chapter 0. Résumé en Français 17

puissance de calcul requise excessive et, plus important en raison du fait que l’algorithme

a besoin de connâıtre le temps d’attente instantanée de chaque paquet dans le système,

nous utilisons cet algorithme comme référence pour comparer les performances de nos

politiques d’allocation de bande passante.

4.3 Allocation de la bande passante dans WiNoCoD

L’innovation de l’interconnexion RF de type OFDMA de WiNoCoD nécessite de développer

de nouvelles techniques. La durée relativement longue des symboles OFDM à l’égard de

temps d’arrivée des paquets dans les files d’attente d’émission des tuilesets, les longueurs

des paquets et les exigences en termes de retard extrêmement strictes rendent cet en-

vironnement vraiment unique par rapport aux protocoles de communication existants,

basés sur l’OFDMA. Par conséquent, dans cette section, nous introduisons certaines no-

tions préliminaires liées à ce contexte particulier, et qui auront un impact sur l’allocation

de la bande passante dans WiNoCoD.

4.3.1 Bloc de ressources et trames

La première notion que nous présentons est le bloc de ressources (Resource Block: RB),

qui définit un groupe de sous-porteuses adjacentes sur un seul symbole. Considérant que

nous avons 1024 sous-porteuses, il est évident qu’une granularité très fine pour allouer la

bande passante avec une seule ou quelques sous-porteuses est coûteuse et inutile. Elle est

notamment coûteuse en termes d’adressage et nécessitera l’échange de nombreux bits

d’adresse pour informer les contrôleurs RF des tuilesets de leur allocation respective.

Nous avons choisi de définir un RB pour servir exactement 1 paquet court (1 flit - 64

bits), en supposant que la modulation QPSK est utilisée par défaut. Un RB correspond

donc à 32 sous-porteuses. Il est aussi à noter que comme le projet WiNoCoD prévoit

l’utilisation de 1024 porteuses et 32 tuilesets, il y a en moyenne un RB de 32 porteuses

disponible par tuileset. C’est une configuration qui pourra être utilisée par défaut, au

lancement notamment, avec un RB d’émission pour chaque tuileset.

Le spectre de 20 GHz est donc divisé en RBs de 32 porteuses soit 625 MHz. Etudions

maintenant les politiques de répartition des RB entre les tuilesets et le processus de

reconfiguration associé. Comme nous l’avons examiné précédemment, les algorithmes

efficaces d’allocation de bande passante nécessitent d’utiliser l’information de longueur

des files d’attente (QSI). En outre, il est nécessaire que cette information soit récente, afin

d’atteindre de faibles délais de livraison des paquets et de faibles tailles de files d‘attente

au niveau de l’émetteur d’accès à la ligne de transmission, géré par le contrôleur RF

de chaque tuileset. Cependant, l’échange de l’information de QSI entre les tuileset à



Chapter 0. Résumé en Français 18

chaque symbole n’est pas réaliste en raison des besoins de signalisation excessive qu’il

provoquerait d’une part. D’autre part, des paquets peuvent arriver à la file d’attente

d’émission pendant la durée d’un symbole OFDM de 51,2 ns. L’information de QSI

n’est donc par définition jamais complètement à jour quand elle est envoyée. Nous

envisageons un système, où les QSIs (ou d’autres indicateurs de trafic local, en tenant

compte d’autres algorithmes possibles) sont diffusés par les tuilesets tous les T symboles

et la nouvelle répartition des sous-porteuses est effectuée tous les T symboles. Grâce

à la capacité de diffusion de l’interconnexion OFDMA, les QSIs qui sont envoyés par

chaque tuileset peuvent être reçus par tous les autres. Nous appelons �trame� ce groupe

de T symboles. Ainsi, à la fin, nous avons un système d’allocation en mode pipeline,

c’est-à-dire décalé d’une trame au moins. L’allocation est calculée au début d’une trame

selon des informations de QSI envoyées T symboles avant par les autres tuilsets, comme

le montre la Fig. 0.7.

Dans le cas spécifique de WiNoCoD, où 1 symbole est d’environ 50 ns, le temps de

calcul apparâıt comme un paramètre important. Cette exigence temporelle stricte et peu

orthodoxe fait de ce problème d’attribution, qui est examiné dans cette thèse, un travail

original par rapport aux systèmes classiques. En effet, il n’est pas possible d’amortir

sur une durée inférieure à celle d’un symbole, non seulement le temps des calculs d’un

algorithme d’allocation, mais aussi le retard cumulé du temps de reconfiguration des

sous-porteuses, du traitement des paquets, la synchronisation, le temps de propagation

etc. D’où la nécessité de gérer le problème en trames de T symboles.

Q
S
I

Q
S
I

Q
S
I

Q
S
I

Q
S
I

Q
S
I

Q
S
I

Q
S
I

Q
S
I

1 RB : 32 
subcarriers

Certain number of RBs 
are used for signaling 
QSI

1 Frame : T OFDM symbols
time

frequency

Based on the QSI broadcasted at 
the start of the last frame, the 
allocation is done for tilesets, 
activating at the start of next 
frame.

This pipelined processing of QSI, 
allows both less QSI exchange and 
also the required amount of 
computation time and reconfiguration 
of digital elements of RF module.

Figure 0.7: Les trames et blocs de ressources (RBs) dans WiNoCoD



Chapter 0. Résumé en Français 19

4.3.2 Allocation décentralisée et centralisée

Les mécanismes d’arbitrage d’allocation des sous-porteuses que nous avons développé

pour l’interconnexion WiNoCoD, peuvent être divisés en deux catégories : décentralisés

et centralisés. Chacune des approches a des avantages et des inconvénients. Si une

allocation centralisée est préférée, une seule unité centrale intelligente (Central Intelligent

Unit: CIU), qui peut être soit un circuit numérique soit un microprocesseur simple, peut

être installé à l’intérieur de la tête RF d’un tuileset (avant les modules IFFT/FFT). De

cette façon, il peut utiliser les modulateur/démodulateur OFDM de ce tuileset. L’unité

centrale intelligente doit diffuser sur la ligne guidée le nombre de RBs alloués à chaque

tuileset. Ceci est une surcharge de signalisation supplémentaire évidente, ce qui n’est

pas souhaitable afin d’épargner au maximum la bande passante sur la ligne guidée pour

les échanges de données entre tuilesets.

Un autre inconvénient est la robustesse. D’une part si le CIU connâıt une panne, toute la

puce est en panne. Mais l’approche proposée ici peut permettre de choisir n’importe quel

tuileset pour héberger le CIU, ce qui atténue légèrement cet effet (l’étude de capacité

du dernier chapitre tempèrera cette affirmation en révélant qu’il faut mieux que le CIU

soit au centre la la ligne guidée). D’autre part, nous avons positionné la réponse du

CIU sur des sous-porteuses réservées sur quelques symboles avant la fin de la trame.

Nous nous réservons Tconfiguration symboles de temps pour que les processeurs de la

tête RF des tuilesets puissent recevoir et démoduler le nombre de RBs alloués à chaque

tuileset dans la trame suivante et reconfigurer leurs transmissions en conséquence. Nous

proposons deux approches différentes pour l’attribution des RBs de chaque trame entre

les tuilesets: l’allocation �en fréquence� ou �en temps�.

Cependant, par moments, la somme des demandes de RB de tuilesets peut être beaucoup

plus faible que le nombre total de RBs dans une trame. Dans ces cas là, il peut exister

des RBs inutilisés. Considérant que des nouveaux paquets peuvent arriver dans les files

d’attente d’émission des tuilesets pendant ces symboles inactifs, on répartit les RBs

vides uniformément entre les tuilesets, ce qui permet à un tuileset d’utiliser un RB par

symbole pour tout paquet qui arriverait pendant une trame. La nature numérique de la

répartition des RBs en OFDMA rend ce processus trivial.

4.3.3 Encodage et signalisation des QSIs

Un autre aspect important est l’encodage des QSIs des tuilesets au début d’une trame.

En cas de constellation QPSK, nous avons 2048 bits disponibles dans chaque symbole

OFDM. Sur la base de nos simulations, l’utilisation de 8 bits par tuileset et par trame



Chapter 0. Résumé en Français 20

pour coder les QSI s’est révélé offrir le meilleur compromis en termes de performance

globale. Avec 8 bits, il est possible de coder 256 niveaux différents. Bien sûr, la file

d’attente vide (0 QSI) doit aussi être codée. En regardant les résultats de simulation,

nous avons vu que le nombre de flits dans une file d’attente de transmission dépasse très

rarement 255 dans les scénarios évalués. Par conséquent, toutes les valeurs de longueur

de QSI entre 0 et 255 sont directement codées, et si le nombre de flits est supérieur à

255, il est codé par 255. Bien sûr, on peut choisir différentes approches et granularité

de codage des QSI. Chaque valeur de QSI pourrait aussi représenter plusieurs flits. Il y

a un compromis évident entre une surcharge de signalisation de QSI et la précision de

l’algorithme d’allocation. Cependant, à partir de nombreuses possibilités, et en prenant

en compte des configurations d’interconnexion réalistes, nos simulations ont révélé que

l’encodage sur 8-bits proposé semble viable et efficace.

Les contraintes très spécifiques des interconnexions sur puce en OFDMA imposent de

respecter certaines exigences. Compte tenu de la durée relativement longue des symboles

par rapport aux exigences de retard sur les paquets, même une latence de quelques

symboles est importante, contrairement aux cas classiques d’utilisation de l’OFDM. Dans

ce contexte particulier, la dynamique de la file d’attente peut changer radicalement en

quelques symboles. Comme expliqué ci-dessus, en raison des contraintes de temps de

calcul et de surcharge de signalisation, la répartition est effectuée en �pipeline� entre

trames. En d’autres termes, la répartition se fait avec sur des QSI ayant T symboles

de retard. Compte tenu du trafic temporellement très hétérogène, nous introduisons la

notion de “QSI Définitif” (Definitive QSI - DQSI). Au début de chaque trame, avant de

coder son QSI sur les sous-porteuses réservées, chaque tuileset connâıt déjà le nombre de

RBs attribué dans la trame actuelle. Par conséquent, plutôt que de coder directement

le QSI, il soustrait le nombre de RBs déjà alloué de son QSI courant. Une fois que le

nombre minimum de flits dans la file d’attente est déterminé, nous pouvons également

prendre en compte le nombre de flits qui arriveront au cours du processus d’allocation

(sur la durée de la trame actuelle). Pour ce faire, les tuilesets doivent estimer le nombre

de flits qui arriveront pendant une trame. Cela peut se faire en utilisant un filtre à

moyenne mobile. Nous appelons ce modèle comme “QSI prédit” (Expected Queue State

Information - EQSI ).

Avant de présenter nos algorithmes, il est essentiel d’introduire les techniques et les

scénarios que nous allons utiliser pour les évaluer. Nous utilisons OMNeT++, un simu-

lateur d’événements discrets qui est utilisé largement auprès la communauté réseau sur

puce. OMNeT++ est utilisé pour émuler la dynamique des files d’attente de transmission

des 32 tuilesets. Les simulations sont exécutées avec un pas temporel égal à celui d’un

symbole OFDM, qui est donc l’unité atomique temporelle. L’objectif est l’amélioration

des performances de l’interconnexion RF en termes de latence de délivrance des paquets



Chapter 0. Résumé en Français 21

présents dans les files d’attente d’émission des tuilest. la première métrique d’intérêt que

nous essayons d’améliorer est la latence moyenne. La latence moyenne d’un réseau sur

puce, pour différents modèles de trafic et des charges de trafic différentes, est la mesure

la plus significative de sa performance. L’importance du retard des paquets dans un

NoC est particulièrement sensible pour les applications temps réel. Par conséquent,

notre interconnexion RF est testée en premier pour cette métrique. En outre, pour

chaque simulation; nous traçons la courbe de la probabilité de dépassement de limite de

latence, qui indique la probabilité qu’un paquet dépasse une limite de latence spécifiée,

D0 : P (D > D0). La troisième métrique d’intérêt, est la courbe de probabilité de

dépassement de la limite de longueur de queue : P (L > L0).

Cependant, pour tester les performances du NoC, les benchmarks de référence actuels en

termes de génération de trafic sur la ligne guidée sont loin de représenter la charge générée

par les futurs algorithmes qui seront embarqués sur des architectures de plusiuers milliers

de cœurs de traitement. Par conséquent, pour évaluer la validité de notre interconnexion

OFDMA et des algorithmes d’arbitrage des ressources fréquentielles proposés, nous avons

choisi d’utiliser des modèles de trafic stochastiques et synthétiques.

Chapitre 5 : Algorithmes d’Allocation de bande passante

de WiNoCoD

5.1 Allocation Série avec QSI Directe

Le première algorithme que nous proposons est relativement simple à mettre en œuvre.

Après que les valeurs des QSIs soient diffusées dans la ligne guidée, puis acquises par

chaque tuileset, le contrôleur RF de ces derniers alloue simplement les RBs en série

dans la prochaine trame (matrice de RBs), en itérant sur les valeurs de QSI issues de

chaque tuilesets (puisque chaque tuileset peut décoder toutes les valeurs émises par tous

les autres tuilesets). L’algorithme se termine lorsqu’il n’y a plus de RBs vides ou si

toutes les demandes des tuilesets sont servies. Pour le cas où le QSI total de tous les

tuilesets est inférieur au nombre total de RBs dans la trame, les RBs restants sont

partagés entre les tuilesets en utilisant la matrice d’allocation par défaut. On peut se

demander si l’allocation des RBs peut également être faite unité par unité, en itérant

sur chaque tuilesets pour chaque RB à allouer ou avec une approche complètement

différente. Cependant, limiter le nombre d’itérations est essentiel. Considérant que le

budget temporel est de quelques centaines de cycles de processeur pour le calcul de

l’arbitrage de la bande passante entre les tuilesets, itérer sur 32 tuilesets n’est réalisable

qu’une seule fois.



Chapter 0. Résumé en Français 22

Comme l’algorithme d’allocation de QSI en série est de faible complexité (de calcul),

on peut le dupliquer dans chaque tuileset pour un surcoût négligeable et on s’affranchit

des problèmes déjà évoqués, inhérents à l’utilisation d’une unité centralisée. Cepen-

dant, nous effectuons la même expérimentation que pour le cas décentralisé, pour des

raisons de cohérence. Tout au long de cette thèse, quand nous comparons l’approche

centralisée à l’approche décentralisée, nous utilisons toujours un temps de reconfigura-

tion Tconfiguration = 2 symboles. Par exemple, lorsque l’on compare une longueur de

trame décentralisée de 4 symboles (principalement en raison du temps de calcul), nous

utilisons une longueur de trame de 6 symboles pour l’approche centralisée. Rappelons

que, dans l’approche centralisée, nous avons des RBs réservés pour la transmission des

paquets de réponse.

Par exemple, les Fig. 0.8 et Fig. 0.9 montrent les variations de la latence moyenne en

fonction du taux d’injection dans le cas d’un trafic réaliste non-uniforme (DPBPP) pour

l’allocation série, avec l’approche centralisée et décentralisée, pour différentes longueurs

de trame.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized Serial Allocation
DPBPP H=0.9

Figure 0.8: Latence moyenne en fonction de l’augmentation du taux d’injection
pour un trafic réaliste non-uniforme (DPBPP) pour l’allocation serie avec l’approche

décentralisée pour différentes longueurs de trame.

5.1.1 Allocation Série à Deux Itérations

L’algorithme serie ne permet pas d’approcher de près les performances idéales en termes

de capacité du réseau. Une allocation de bande passante très fréquente, donc avec des

longueurs de trames très courtes, provoque une augmentation significative de la latence

moyenne. Nous avons observé que cet effet contradictoire est dû au faible nombre de

RBs à allouer pour des longueurs de trames courtes. En utilisant la même priorité pour

tous les tuilesets, certains vont prendre les RBs, et vont priver de ressources d’autres

tuilesets qui en auraient besoin. Afin de résoudre ce problème d’équité, et d’augmenter



Chapter 0. Résumé en Français 23

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, Freq. Direction
T=4+2, Time Direction
T=8+2, Freq. Direction
T=8+2, Time Direction
T=16+2 Freq. Direction
T=16+2, Time Direction
T=32+2, Freq. Direction
T=32+2, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Centralized Serial Allocation
DPBPP H=0.9

Figure 0.9: Latence moyenne en fonction de l’augmentation du taux d’injection sous le
trafic réaliste non-uniforme (DPBPP) pour l’allocation serie avec l’approche centralisée

pour différentes longueurs de trame.

l’équité entre les files d’attente de transmission des tuilesets, nous avons établi une

modification de l’algorithme série. Cette fois, la répartition des RBs est effectuée en

2 étapes, comme le nom de l’algorithme l’indique. Tout d’abord après avoir reçu les

QSIs de chaque tuileset, les contrôleurs RF des tuilesets les additionnent et divisent le

résultat obtenu par le nombre de tuilesets afin d’obtenir le “QSI moyen” de la trame

courante. A la première étape de l’algorithme, une itération sur les 32 tuilesets est

effectuée comme dans l’allocation série précédente. Toutefois, lors de cette première

itération, seulement les tuilesets qui ont un QSI plus grand que le “QSI moyen” courant

peuvent prendre des RBs. Après cette première itération, les valeurs de QSI sont mises

à jour en soustrayant le nombre de RBs déjà alloués à cette itération. À la deuxième

étape, la même itération est effectuée sur les valeurs mises à jour de QSI des tuilesets,

mais cette fois avec l’algorithme d’allocation série par défaut. De cette manière, nous

nous assurons que les tuilesets qui ont vraiment besoin de RB vont obtenir leur part.

Cette extension de l’algorithme d’allocation de QSI série directe peut être considérée

comme une tentative pour compenser les déséquilibres dans les files d’attente.

Les Fig. 0.10 et Fig. 0.11 montrent la variation de la latence moyenne en fonction du

taux d’injection sous le trafic réaliste non-uniforme (DPBPP) pour l’allocation série avec

deux itérations, dans le cas de l’approche centralisée et décentralisée, pour différentes

longueurs de trame.

5.1.2 Allocation Série avec DQSI et EQSI

Nous avons vu qu’il était possible d’augmenter la capacité du réseau en utilisant une

modification de l’algorithme série, en le passant à deux iterations. Dans l’approche

décentralisée, chaque tuileset calcule sa propre valeur de DQSI ou EQSI en utilisant le



Chapter 0. Résumé en Français 24

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized Serial
Allocation with 2-Loop Alloc.
DPBPP H=0.9

Figure 0.10: Latence moyenne en fonction de l’augmentation du taux d’injection
pour un trafic réaliste non-uniforme (DPBPP) pour l’allocation serie (2 iterations) avec

l’approche décentralisée pour différentes longueurs de trame.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, Freq. Direction
T=4+2, Time Direction
T=8+2, Freq. Direction
T=8+2, Time Direction
T=16+2 Freq. Direction
T=16+2, Time Direction
T=32+2, Freq. Direction
T=32+2, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Centralized Serial
Allocation with 2-Loop Alloc.
DPBPP H=0.9

Figure 0.11: Latence moyenne en fonction de l’augmentation du taux d’injection
pour un trafic réaliste non-uniforme (DPBPP) pour l’allocation serie (2 iterations) avec

l’approche centralisée pour différentes longueurs de trame.

nombre de RBs actuellement alloués et/ou instantanés. Ensuite, cette valeur est diffusée

sur le premier symbole de la trame suivante. Mais dans l’approche centralisée, seuls les

tuilesets diffusent leurs valeurs de QSI instantanés et c’est le CIU qui est responsable

du calcul du DQSI/EQSI de chaque tuileset.

Les Fig. 0.12 et Fig. 0.13 montrent la variation de la latence moyenne en fonction du

taux d’injection dans le cas d’un trafic réaliste non-uniforme (DPBPP) pour l’allocation

série avec l’algorithme DQSI/EQSI, pourl’approche centralisée et décentralisée, et pour

différentes longueurs de trame.

En comparant ces résultats de l’allocation série simple et directe à ceux de l’allocation



Chapter 0. Résumé en Français 25

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, DQSI, Freq. Direction
T=4, DQSI, Time Direction
T=4, EQSI, Freq. Direction
T=4, EQSI, Time Direction
T=8, DQSI, Freq. Direction
T=8, DQSI, Time Direction
T=8, EQSI, Freq. Direction
T=8, EQSI, Time Direction
T=16, DQSI, Freq. Direction
T=16, DQSI, Time Direction
T=16, EQSI, Freq. Direction
T=16, EQSI, Time Direction
T=32, DQSI, Freq. Direction
T=32, DQSI, Time Direction
T=32, EQSI, Freq. Direction
T=32, EQSI, Time Direction

Decentralized Serial Allocation
DQSI and EQSI(alpha=0.95)
DPBPP H=0.9

Figure 0.12: Latence moyenne en fonction de l’augmentation du taux d’injection
pour un trafic réaliste non-uniforme (DPBPP) pour l’allocation serie (DQSI/EQSI)

avec l’approche décentralisée pour différentes longueurs de trame.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, DQSI, Freq. Direction
T=4+2, DQSI, Time Direction
T=4+2, EQSI, Freq. Direction
T=4+2, EQSI, Time Direction
T=8+2, DQSI, Freq. Direction
T=8+2, DQSI, Time Direction
T=8+2, EQSI, Freq. Direction
T=8+2, EQSI, Time Direction
T=16+2, DQSI, Freq. Direction
T=16+2, DQSI, Time Direction
T=16+2, EQSI, Freq. Direction
T=16+2, EQSI, Time Direction
T=32+2, DQSI, Freq. Direction
T=32+2, DQSI, Time Direction
T=32+2, EQSI, Freq. Direction
T=32+2, EQSI, Time Direction

Centralized Serial Allocation
DQSI and EQSI(alpha=0.95)
DPBPP H=0.9

Figure 0.13: Latence moyenne en fonction de l’augmentation du taux d’injection
pour un trafic réaliste non-uniforme (DPBPP) pour l’allocation serie (DQSI/EQSI)

avec l’approche centralisée pour différentes longueurs de trame.

en deux itérations, le résultat le plus remarquable est de constater la diminution sub-

stantielle de la latence moyenne, simplement en utilisant DQSI. Il n’élimine pas seule-

ment l’allocation de ressources inutiles, mais il compense également l’iniquité en raison

du petit nombre de RBs.

5.2 Allocation QPS

5.2.1 Allocation proportionelle aux longueurs des files d’attente

Dans la section précédente, nous avons proposé et examiné la faisabilité de probablement

l’option la plus simple, sous la forme de l’algorithme série avec QSI directe, où les tuile-

sets diffusent leur QSI et les RBs sont arbitrés séquentiellement en une seule (ou deux)



Chapter 0. Résumé en Français 26

itération pour la prochaine trame. La principale motivation derrière cette pratique est

d’être en mesure d’effectuer l’opération d’allocation en quelques centaines de nanosecon-

des, car s’y ajouteront tous les autres retards cumulatifs supplémentaires découlant de

la propagation, la synchronisation, la transformation, etc.. C’est une contrainte stricte

imposée, par les particularités de l’interconnexion OFDMA et de l’environnement sur

puce quand une bande passante de 20 GHz ou plus est utilisée (ce qui diminue la durée

des symboles OFDM à nombre de porteuses constant).

Dans cette section, nous évaluons la viabilité, dans notre contexte, de l’ordonnancement

proportionnel aux longueurs des files d’attente (Queue Proportional Scheduling-QPS ).

Il ajoute une complexité supplémentaire limitée par rapport à l’allocation série. L’idée

est d’allouer les RBs dans les trames de manière proportionnelle à la valeur des QSIs

des tuilesets.

Les Fig. 0.14 et Fig. 0.15 montrent les variations de la latence moyenne en fonction du

taux d’injection dans le cas d’un trafic réaliste non-uniforme (DPBPP) pour l’allocation

QPS, pour l’approche centralisée et décentralisée, et pour différentes longueurs de trame.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized QPS Allocation
DPBPP H=0.9

Figure 0.14: Latence moyenne en fonction de l’augmentation du taux d’injection
pour un trafic réaliste non-uniforme (DPBPP) pour l’allocation QPS avec l’approche

décentralisée pour différentes longueurs de trame.

L’algorithme QPS offre une bien meilleure performance pour les grandes valeurs de taux

d’injection, en particulier à proximité de la limite de capacité du medium, par rapport à

l’allocation série directe. En effet, allouer les RBs proportionnellement aux QSIs, élimine

naturellement la probabilité que certains nœuds �épuisent� tous les RBs d’une trame et

�affament� les autres nœuds. Même si l’allocation série avec DQSI fournit de meilleurs

résultats (en particulier pour des trames de courte longueur), QPS apparâıt comme une

approche plus évolutive et équitable.



Chapter 0. Résumé en Français 27

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, Freq. Direction
T=4+2, Time Direction
T=8+2, Freq. Direction
T=8+2, Time Direction
T=16+2 Freq. Direction
T=16+2, Time Direction
T=32+2, Freq. Direction
T=32+2, Time Direction

Centralized QPS Allocation
DPBPP H=0.9

Figure 0.15: Latence moyenne en fonction de l’augmentation du taux d’injection
pour un trafic réaliste non-uniforme (DPBPP) pour l’allocation QPS avec l’approche

centralisée pour différentes longueurs de trame.

5.2.2 Allocation QPS avec DQSI et EQSI

Nous cherchons à accrôıtre la performance de l’algorithme QPS en utilisant DQSI ou

EQSI, en particulier pour les taux d’injection faibles. Comme pour les cas précédents,

pour les approches décentralisées et centralisées, le calcul de DQSI et EQSI diffère.

Les Fig. 0.16 et Fig. 0.17 montrent la latence moyenne en fonction du taux d’injection

dans le cas d’un trafic réaliste non-uniforme (DPBPP) pour l’allocation QPS (avec

DQSI/EQSI), pour l’approche centralisée et décentralisée, et pour différentes longueurs

de trame.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, DQSI, Freq. Direction

T=4, DQSI, Time Direction

T=4, EQSI, Freq. Direction

T=4, EQSI, Time Direction

T=8, DQSI, Freq. Direction

T=8, DQSI, Time Direction

T=8, EQSI, Freq. Direction

T=8, EQSI, Time Direction

T=16, DQSI, Freq. Direction

T=16, DQSI, Time Direction

T=16, EQSI, Freq. Direction

T=16, EQSI, Time Direction

T=32, DQSI, Freq. Direction

T=32, DQSI, Time Direction

T=32, EQSI, Freq. Direction

T=32, EQSI, Time Direction

Decentralized QPS Allocation
DQSI and EQSI(alpha=0.95)
DPBPP H=0.9

Figure 0.16: Latence moyenne en fonction de l’augmentation du taux d’injection
pour un trafic réaliste non-uniforme (DPBPP) pour l’allocation QPS (DQSI/EQSI)

avec l’approche décentralisée pour différentes longueurs de trame.



Chapter 0. Résumé en Français 28

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, DQSI, Freq. Direction
T=4+2, DQSI, Time Direction
T=4+2, EQSI, Freq. Direction
T=4+2, EQSI, Time Direction
T=8+2, DQSI, Freq. Direction
T=8+2, DQSI, Time Direction
T=8+2, EQSI, Freq. Direction
T=8+2, EQSI, Time Direction
T=16+2, DQSI, Freq. Direction
T=16+2, DQSI, Time Direction
T=16+2, EQSI, Freq. Direction
T=16+2, EQSI, Time Direction
T=32+2, DQSI, Freq. Direction
T=32+2, DQSI, Time Direction
T=32+2, EQSI, Freq. Direction
T=32+2, EQSI, Time Direction

Centralized QPS Allocation
DQSI and EQSI(alpha=0.95)
DPBPP H=0.9

Figure 0.17: Latence moyenne en fonction de l’augmentation du taux d’injection
pour un trafic réaliste non-uniforme (DPBPP) pour l’allocation QPS (DQSI/EQSI)

avec l’approche centralisée pour différentes longueurs de trame.

5.2.3 Classification arbresencte des algorithmes d’allocation proposés

La Fig. 0.18 propose une classification des algorithmes introduits dans cette thèse sous

forme d’arbre. A gauche sont représentés les approches d’allocation statiques (comme

celui pouvant être utilisé par défaut avec une allocation équilibrée entre tous les tuilestes

à 32 sous-porteuse chacun). A droite figurent les algorithmes d’allocation de bande

passante dynamique proposés dans cette thèse. Ceux de ce chapitre 5 sont basées sur

une file d’attente de transmission unique (“single queue”) et se répartissent en deux

grandes familles : série et QPS. Dans le chapitre 6, nous présentons un nouveau type

d’algorithmes avec deux files d’attente de transmission, l’une pour les paquets courts

de 1 flit (paquet de contrôle de cache et en-tête d’un paquet long) et l’autre pour les

données des paquets longs ou “payloads” (ligne de cache). Ces derniers algorithmes sont

illustrés en grisé sur l’extrême droit de la Fig. 0.18.



Chapter 0. Résumé en Français 29

Figure 0.18: Arbre de classification des algorithmes d’allocation des ressources
fréquentielles proposés dans cette thèse.



Chapter 0. Résumé en Français 30

Chapitre 6 : Algorithme �Payload Channel�

Le trafic de cohérence de cache sur une puce à grand nombre de coeurs a des car-

actéristiques très spécifiques par rapport aux systèmes classiques. Comme mentionné

précédemment, une de ces caractéristiques est la longueur des paquets bimodaux. Ce

mécanisme de cohérence de cache pour les architectures à plusieurs milliers de cœurs

avec mémoire partagée impose un nombre élevé d’échange de messages de diffusion, et

par conséquent une charge de trafic sur le la ligne de transmission RF filaire, ce qui est

le prix à payer pour l’évolutivité. Il existe deux types de paquets de cohérence de cache

circulant dans un réseau sur puce :

• Des paquets de contrôle courts (demandes pour lire une ligne d’adresse etc.)

• Des paquets longs qui portent les lignes de cache ou charge utile (�payload� /

demandes pour écrire à une ligne d’adresse, réponse pour la lecture d’une ligne

d’adresse, etc.)

Dans le cadre de cette étude, la longueur d’un paquet court est choisie et fixée à 64

bits, ce qui peut changer selon l’architecture. Les paquets longs sont composés d’un

en-tête de commande (header) de 64 bits, qui contient les informations nécessaires à la

communication, comme les identificateurs (ID) de destination et de source, le type des

paquets, etc., et les données en ligne de cache (charge utile ou �payload�). La taille de

la ligne de cache est ici choisie et fixée à 64 octets (512 bits), soit des paquets longs de

576 bits. Compte tenu de la modulation QPSK utilisée par défaut, en cas d’attribution

statique et uniforme de 32 sous-porteuses par tuileset, chaque tuileset reçoit ou émet 1

RB de 64 bits par symbole, un paquet long prend 9 symboles pour être transmis, même

sans délai d’attente dans la file d’attente d’émission. Considérant qu’un symbole OFDM

dure un peu plus de 50 ns, on peut comprendre le goulot d’étranglement que les paquets

longs créent pour l’interconnexion sur puce.

La taille de la ligne de cache a un impact significatif sur la performance du système de

mémoire partagée. En cas de mémoires caches très grandes, utiliser de grandes lignes

de cache est essentiel. Plus les lignes de cache sont grandes, plus cela diminue le taux

de défaut de cache en général. Nous pouvons prédire que la meilleure performance sera

acquise pour de plus grandes lignes de cache dans les architectures à milliers de coeurs

avec mémoire partagée. En outre, une interconnexion reconfigurable et efficace, donc

à faible latence, amortit la difficulté de transport de grandes lignes de cache, ce qui

augmente les performances du système.

C’est en prenant tous ces aspects en considération que nous proposons un nouvel algo-

rithme d’allocation de la bande passante pour l’interconnexion RF OFDMA de WiNoCoD.



Chapter 0. Résumé en Français 31

L’objectif est de diminuer considérablement le temps de latence des paquets longs, en

transmettant les lignes de cache ou charges utiles (payload) en un seul symbole. Sont

exploités ici la capacité de diffusion intrinsèque et de reconfigurabilité de l’OFDMA. Ici,

nous choisissons de considérer une taille différente pour les paquets longs, afin de simpli-

fier notre explication, mais aussi parce que les paquets longs de charge utile ont avantage

à regrouper un grand nombre de flits. A la différence des lignes de cache utilisés dans la

première phase du projet (64 octets - 512 bits), cet algorithme est optimisé spécialement

pour les lignes de cache 256 octets (2048 bits).

Dans ce cas, l’algorithme statique transmet les paquets longs dans une durée minimale

égale à 33 symboles même sans délai d’attente en file d’attente (plus de 1650 ns), qui

est très prohibitif.

6.1 : Algorithme �Payload Channel� avec Bande Passante de Base Sta-

tique

Notre algorithme repose sur l’idée de transmettre des charges utiles de 2048 bits de pa-

quets longs dans un seul symbole OFDM, en utilisant des 1024 sous-porteuses modulées

en QPSK (toute labande passante). Les paquets de contrôle ont une taille de 64 bits

(un seul flit), ce qui correspond à 70-80% de tous les paquets et les paquets longs ont

un flit d’en-tête qui précède la charge utile (ligne de cache). Notre algorithme original

�payload channel� exploite ces bits indicateurs pour permettre la transmission de la

charge utile des paquets longs dans un seul symbole OFDM, sans utiliser de surcharge

de signalisation supplémentaire.

Initialement, 32 sous-porteuses sont allouées à chaque tuileset, et nous les nommons

canaux de base (home channel). Comme la modulation QPSK est utilisée, ces canaux

de base peuvent transporter 1 flit par symbole, soit un paquet court de contrôle ou

un en-tête de paquet long. Tout d’abord, à la différence des architectures et solu-

tions précédemment présentées, chaque tuileset a deux files d’attente de transmission

différentes au niveau de leurs interfaces RF. Chaque fois qu’un nouveau paquet long

arrive à l’interface RF pour être émis sur l’interconnexion RF, il est segmenté en deux

sous-parties :

• Son en-tête, qui est mis en mémoire dans la file d’attente primaire de paquets

courts

• Sa charge utile ou “payload”, qui est mise en mémoire la file d’attente secondaire

de charge utiles à la manière d’une FIFO.



Chapter 0. Résumé en Français 32

Short Packet & 
Long Header 
Queue

Payload Channel 
Register

Figure 0.19: Deux files d’attente de transmission séparées pour l’algorithme �payload
channel�.

Ceci est illustré sur la Fig. 0.19. La motivation de l’emploi de deux files d’attente

séparées pour les en-têtes et paquets courts d’une part, et les charges utiles d’autre part,

est d’éviter l’incohérence entre les en-têtes transmis et de leurs charges utiles, mais aussi

de permettre la transmission d’un nouveau paquet avant de transmettre la charge utile

d’un paquet précédent.

Quand un tuileset transmet un en-tête de paquet long sur son canal de base (home

channel), chaque tuileset peut le recevoir et décoder son contenu, grâce à la capacité de

diffusion intrinsèque de l’interconnexion OFDMA. Chaque tuileset peut utiliser de sim-

ples unités de traitement pour vérifier les bits indicateurs des paquets et ainsi déterminer

s’il s’agit d’un paquet long ou non. Quand les contrôleurs RF des tuilesets détectent un

en-tête de paquet long, ils enregistrent le tuileset-ID correspondant (tuileset qui souhaite

transmettre sa charge utile dans un seul symbole) en insérant l’ID dans le registre de

la charge utile (payload register). Le Registre de la charge utile est une file d’attente

simple de type FIFO au niveau de l’interface RF de chaque tuileset, qui met en mémoire

les IDs des tuilesets qui veulent transmettre des charges utiles. Le contenu des registres

de la charge utile est identique dans tous les tuilesets, afin d’éviter des incohérences.

Toutefois, l’acquisition du flit d’en-tête, le traitement et la reconfiguration de la bande

passante prennent un certain temps en raison des délais de propagation, de synchro-

nisation et de calcul des retards. Par conséquent, nous avons tenu compte d’un temps

d’attente de 1 symbole (50 ns) pour l’ensemble de ces retards et l’activation de l’algorithme.

Notez également que, plusieurs en-têtes de paquets longs de différents tuilesets peuvent

être détectés dans un symbole. Leurs identifiants sont enregistrés dans les registres de

la charge utile via leur Tuileset-ID reçus dans le même symbole. Au début de chaque

symbole, les tuilesets contrôlent leurs registres de charge utile. Si le registre de la charge

utile est vide, cela signifie qu’il n’y a pas de tuileset qui veut actuellement transmettre



Chapter 0. Résumé en Français 33

une charge utile. La transmission reprend alors sa configuration par défaut d’un RB par

tuileset. Toutefois, si le registre de la charge utile n’est pas vide, le premier ID dans le

registre transmet sa charge utile en prenant la place des canaux de base. Le système

retourne à la configuration de canaux de base, que si il n’y a pas tuileset reste dans le

registre de charge utile. Cette procédure est illustrée sur la Fig. 0.20 pour un scénario.

S LH LH

S S

Payload

Payload

LH S S

S

Payload

T-1 T-2 T-3 T-32
f

t

T-2
T-3

T-3

T-3

Payload 
Register

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

1 symbol long latency 
for reception and 
processing

Figure 0.20: La procédure de transmission pour l’algorithme �payload channel� est
illustrée pour un scénario.

Fig. 0.21 montre la latence moyenne de livraison des paquets en fonction de l’augmentation

du taux d’injection pour notre algorithme �payload channel� et un cas statique (où

chaque tuileset a un RB dans chaque symbole), sous trafic Poissonien uniforme. Nous

avons également tiré une approximation analytique de la latence moyenne de cet algo-

rithme, en utilisant les principes de la théorie des files d’attente de l’état de l’art. Notre

algorithme innovant peut diminuer la latence moyenne jusqu’à 10 fois dans certains cas,

grâce à son mécanisme simple, mais efficace.

6.2 : Algorithme �Payload Channel� avec Bande Passante de Base Dy-

namique

Le déséquilibre spatial du trafic de cohérence de cache a été discuté précédemment.

Notre algorithme �payload channel� a besoin d’une modification afin de faire face à

cette situation. À cette fin, nous proposons l’algorithme � payload channel � avec une



Chapter 0. Résumé en Français 34

Total Injection Rate (packets/symbol)
0 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
g

e 
L

at
en

cy
 (

sy
m

b
o

ls
)

0

10

20

30

40

50

60

70

80
Payload Channel Algorithm
Payload Channel Algorithm / Theoretical Approximation
Reference Static Allocation 

Uniform Poisson

Figure 0.21: Latence moyenne en fonction de l’augmentation du taux d’injection pour
un trafic poisson non-uniforme pour l’algorithme �payload channel�.

Figure 0.22: Arbitrage de RBs dans une trame pour l’algorithme �payload chan-
nel� dynamique.



Chapter 0. Résumé en Français 35

bande passante de base dynamique, en fusionnant l’algorithme � payload channel � avec

l’algorithme QPS centralisé, qui a été expliqué dans le chapitre 5. L’idée est de changer

le nombre de canaux de base de chaque tuileset, à l’aide d’une unité centrale intelli-

gente (CIU), de la même manière que dans les mécanismes dynamiques d’algorithmes

précédents. De la même manière qu’évoqué précédemment, sur le premier symbole

de chaque trame, chaque tuileset diffuse son QSI. Puis le CIU calcule les QSIs prédit

(EQSI) des tuilesets, et en déduit l’allocation des RBs (canaux de base dans ce cas)

pour les tuilesets selon l’algorithme QPS. Cependant, dans le cas où le canal de charge

utile n’est pas utilisé, selon les messages envoyés en réponse par le CIU sur certains

symboles et sous-porteuses pré-déterminés, les tuilesets reconfigurent leur allocation des

sous-porteuses pour les canaux de base à la trame suivante. Cette procédure est illustrée

en détail sur la Fig. 0.22.

Total Injection Rate (packets/symbol)
0 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
g

e 
L

at
en

cy
 (

sy
m

b
o

ls
)

0

50

100

150

Payload Channel Algorithm with Bandwidth Allocation (T=16)
Reference Decentralized Allocation (T=16)

Non-Uniform DPPBP H=0.9

Figure 0.23: Latence moyenne en fonction de l’augmentation du taux d’injection un
trafic réaliste non-uniforme (DPBPP) pour l’algorithme �payload channel� dynamique.

Fig. 0.23 montre l’évolution de la latence moyenne en fonction de l’augmentation du

taux d’injection pour l’algorithme �payload channel� dynamique et l’algorithme QPS

simple, dans le cas d’un trafic DPBPP non-uniforme, pour une longueur de trame de 16

symboles. Nous remarquons que nous pouvons diminuer la latence moyenne de paquets

de manière drastique en exploitant les longueurs bimodale des paquets sur puce.

Chapitre 7 : Choix Dynamique de l’Ordre de Modulation

En règle générale pour les communications numériques, on sait qu’il existe une relation

exponentielle entre la puissance de transmission et le nombre de bits par symbole trans-

mis, pour un taux d’erreur donné ou un rapport signal à bruit donné. Un autre avantage

de l’utilisation de l’OFDMA dans WiNoCoD est la possibilité de modifier les ordres de



Chapter 0. Résumé en Français 36

modulation dynamiquement sur différents symboles et différentes sous-porteuses. Dans

le cadre du projet WiNoCoD, quatre ordres de modulation ont été considérés: BPSK,

QPSK, 16-QAM et 64-QAM, soit 1,2,4 et 6 bits par sous-porteuse respectivement. Dans

notre étude, nous utilisons l’équation exponentielle, qui repose sur la relation issue de

la théorie de l’information entre ordre de modulation et puissance. Cela permet de

s’affranchir d’un taux d’erreur binaire spécifique, mais implique aussi l’utilisation de

techniques de codage de canal qui ne sont pas considérées dans le cadre de cette étude.

En outre, nous avons décidé d’employer les ordres de modulation jusqu’à 256-QAM,

incluant également 8-PSK, 32-QAM et 128-QAM.

Nous avons développé deux algorithmes inspirés de la littérature mais modifiés pour nos

besoins. Le premier algorithme vise à sélectionner dynamiquement l’ordre de modulation

le plus bas (par conséquent, la puissance d’émission minimale), tout en essayant de

respecter une limite sur la latence maximale d’un paquet. En raison de la nature multi-

canaux de WiNoCoD, nous avons redéfini cet algorithme, où il peut être également

considéré pour des communications génériques. Par exemple, sur la Fig. 0.24, on voit

qu’avec l’algorithme proposé, on peut diminuer la consommation d’énergie moyenne

jusqu’à 5 fois, mais cela au détriment de la latence maximale qui connait alors une

augmentation de quelques dizaines de symboles. Notre deuxième algorithme définit une

limite maximale sur la latence moyenne. Par exemple, dans cet exemple spécifique,

la Fig. 0.25 montre que nous pouvons diminuer la consommation moyenne d’énergie

jusqu’à 4 fois, en augmentant la latence moyenne de quelques symboles.

Une étude de capacité au sens de la théorie de l’information a aussi été menée.

Maximum Delay Bound (in Frames + 2 Frames)
1 2 3 4 5 6 7 8

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
p

o
w

er
 r

eq
u

ir
ed

 
fo

r 
1 

R
B

 w
it

h
 B

P
S

K
)

0

20

40

60

80

100
Inj Rate = 8 packets/symbols
Non-uniform Poisson

Figure 0.24: Le compromis entre latence maximale et puissance moyenne avec
l’algorithme de choix dynamique de l’ordre de modulation pour un trafic Poisson non-

uniforme.



Chapter 0. Résumé en Français 37

Average Delay Bound (symbols)
0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

5

10

15

20

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
P

B
P

S
K

/R
B

)

0

200

400

600

Average Delay
Average Power

T = 16+2 symbols
Inj Rate = 16 pkts/symbol
Non-Uniform DPBPP (H=0.9)

Figure 0.25: Le compromis entre latence moyenne et puissance moyenne avec
l’algorithme de choix dynamique de l’ordre de modulation pour un trafic DPBPP non-

uniforme.

Chapitre 8 : Conclusion

Dans ce travail de thèse qui a été effectué dans le cadre du projet WiNoCoD, nous avons

démontré la faisabilité de l’utilisation OFDMA comme mécanisme de modulation sur une

interconnexion RF filaire sur-puce pour une architecture massive manycore. Nous avons

expliqué et exploité les avantages que peuvent offrir l’OFDM et l’OFDMA, notamment

en termes de reconfiguration et de capacité de diffusion. Nous avons développé et analysé

les performances de plusieurs mécanismes et algorithmes efficaces d’allocation de la

bande passante, en tenant compte des contraintes et des exigences de l’environnement

sur puce très spécifique. Nous avons également etudié des algorithmes de sélection de

commande de modulation dynamiques qui offrent un compromis optimal entre la latence

et la consommation d’énergie. Les contributions de cette thèse sont :

• Une évaluation de la faisabilité d’une interconnexion RF OFDMA sur puce au

niveau de la couche réseau.

• Des algorithmes innovants d’allocation de bande pour cette interconnexion RF,

adaptées aux exigences tres spécifiques des puces ayant des milliers de coeurs.

• Un nouvel algorithme d’allocation de bande optimisé pour des longueurs bimodales

de paquets est proposé pour les réseaux sur puce.

• Deux algorithmes différents de sélection d’ordre de modulation sont proposés pour

un compromis entre la latence et la puissance consommée.



Chapter 0. Résumé en Français 38

• La puissance d’emission minimum sur l’interconnexion RF est evaluée par une

approche basée sur la théorie de l’information (non présenté dans ce résumé en

français).



Chapter 1

Introduction

Accelerating computation is a continous challenge that has been driving semiconductor

technology during the digital era. On the one hand, the previous tendency of shrinking

the transistor sizes continuously has been disrupted and faced the wall of thermal issues

and lithographic capabilities. On the other hand, the idea of utilizing multiple processing

elements (PEs) in parallel on the same chip to execute applications flourished and has

proven its viability. Today, it is common to see chips with multiple cores everywhere

from our smart phones to superscalar computers for running servers. Actually, we have

seen the constant increase of the number of cores from 2 to several tens throughout

the last 10 years. And this trend is going to continue even with an accelerated pace.

Number of cores on a single chip die is estimated to reach thousands in near future [4].

These systems are referred generally as Chip Multiprocessors (CMPs).

Traditional, relatively simple communication mediums for connecting on-chip process-

ing elements were buses or crossbars. However, with increasing number of cores it has

become impractical to implant dedicated point-to-point wires and congestion problem

has arised with the buses. Researchers had to introduce a new framework known as

Network-on-Chip (NoC), where communication layer is detached from the data gener-

ated by on-chip nodes, and packetized transmission is performed via buffered routers

[5].

Even though, the proposed NoC models (mesh network for instance) has provided good

performance in terms of latency and bandwidth, they are limited up to several tens of

cores. Firstly, multihop routers approach does not scale well as the required number

of routers to traverse increases with number of cores, causing unacceptable end-to-end

latencies and also congestion in the system. Second, the links between routers are

still built by traditional copper wires, where a digital bit is transmitted by Resistive-

Capacitive (RC) charging-discharging. This, not only increases transmission latency, but

39



Chapter 1. Introduction 40

also causes highly elevated energy consumption, becoming one of the major responsible

of NoC based chip power budget [6].

Recently, optical and RF on-chip interconnects have been proposed as interconnects to

provide the necessary breakthrough for this bottleneck. These interconnects use electro-

magnetic waves to transmit signals at near speed-of-light, rather than charging electri-

cally the copper wires [7][3]. Preliminary works demonstrated in the literature promise

for remarkable performance gains in terms of latency, bandwidth and power consumption

for thousands of cores. However, their implementability is questionable, as for some of

the proposed architectures enabling technologies are not mature yet. In addition, both

of these optical and RF architectures are plagued by the fact that they need to implant

dedicated circuits in nodes’ transceivers for each communication channel. One can see

that, this scheme is not scalable as core number will continue to increase. Furthermore,

due to static nature of these approaches, dynamic allocation of the communication chan-

nels to different on-chip nodes, depending on their instantaneous bandwidth demands

is not possible. However, the drastically fluctuating traffic intensities of cores is a well

understood phenomenon [8]. Hence, these architectures dimension the static bandwidth

allocation to on-chip nodes based on its traffic peak, e.g. worst case, which means a

significant waste of resources.

In order to alleviate these challenges, WiNoCoD Project (Wired RF Network-on-Chip

Reconfigurable-on-Demand) has been initiated by the funding of French National Re-

search Agency (ANR). Project partners are ETIS ENSEA laboratories, UPMC LIP6 lab-

oratories, NXP Semiconductors and IETR/CentraleSupelec-Rennes. This thesis work is

contributing to WiNoCoD Project. Project’s most distinguished contribution for on-chip

community is its OFDMA (Orthogonal Frequency Division Multiple Access) based RF

interconnect. Orthogonal Frequency Division Multiplexing (OFDM) has literally revo-

lutionized digital communication in previous decades, becoming the de facto modulation

for various wired and wireless standards from DSL to satellite communications, from 4G

LTE to optical data interconnects, from WiFi to digital TV broadcast. WiNoCoD is the

first attempt to bring OFDM to the on-chip medium, thanks to enabling state-of-the-art

technologies provided by NXP Semiconductors. However, the work of this thesis is not

restricted to the WiNoCoD project’s specific processor architecture and pretends to open

a new field for next generation manycore processors in terms of on-chip communications.

Unlike the existing optical or RF on-chip interconnects, OFDM does not rely on pro-

hibitively high amount of analog devices to generate orthogonal channels. Encoding of

data on multiple orthogonal frequency channels is a purely digital procedure for OFDM,

thus once the required transceiver exists, arbitrating bandwidth among on-chip nodes



Chapter 1. Introduction 41

based on their changing demands is trivial. In addition, its intrinsic broadcast nature is

the key to sustain special on-chip traffic characteristics.

My thesis work in WiNoCoD concerns the allocation of OFDM subcarriers (spectral

units-communication channels) to different tilesets based on their instantaneous de-

mands. For this purpose, a basic transceiver infrastructure is also presented alongside

these bandwidth allocation algorithms. In addition, the possibility of using intelligent

mechanisms to increase data rate with increasing demand concerning energy expendi-

ture is evaluated. This study revisits principles of queing theory, information theory,

optimal resource allocation algorithms and stochastic processes.

In the scope of this project several other theses connected with my work have been

prepared. One of these theses by Mohamad Hamieh (ETIS) concerns the design of

transmission line and access to transmission line from on-chip nodes. Two other thesis

of Lounis Zerioul (ETIS) and Frederic Drillet (ETIS) are focused on the feasiblity and

modeling of the intended OFDMA analog RF transceiver circuitry. In addition, a thesis

is entirely focused on the digital implementation of the RF bandwidth allocation and

testing of our multiprocessor by Alexandre Brière (LIP6).

The contributions of this thesis can be listed as :

• A new queuing problem formulation requiring to transform existing queuing strate-

gies concerning very specific requirements and constraints of on-chip environment.

• Several effective distributed and centralized bandwidth allocation algorithms are

developed as solutions of the introduced queuing problem.

• An innovative subcarrier arbitration protocol and necessary infrastructure for bi-

modal packet lengths of on-chip traffic, which requires no extra signaling overhead

is introduced. To the best of our knowledge, this is the first kind of attempt in

the literature.

• Information theoretical limits and required transmission powers are studied.

• Utilization of higher modulation orders at the extend of higher power consump-

tion is evaluated. Several near-optimal algorithms are proposed inspired from the

literature.

• An RF controller structure which is flexible and programmable to support all

proposed algorithms (and any other later) is proposed for WiNoCoD’s OFDMA

based RF interconnect.



Chapter 1. Introduction 42

• The introduced algorithms are not restricted to the limits of WiNoCoD, but also

other possible future OFDMA based RF interconnects for massive multiprocessors

or even generalized OFDMA based high speed networks in any kind of environ-

ment.

This thesis is organized as follows : In Chapter 2, we introduce the concept of Chip

Multiprocessors (CMPs) and Network-on-Chip (NoC). The memory organization and

programming principles of multicore systems are explained briefly. Concept of caches

and cache coherency is abstracted, which is the major responsible of circulating traffic

in on-chip networks. Several proposed protocols for cache coherency for the existing

architectures are revisited. Then, NoC paradigm is abstracted and the need for the

optical or RF interconnects are stated. Several proposed optical and RF architectures for

massive manycore generic CMPs in the literature are examined. Finally in the chapter,

the stochastic characteristics of on-chip traffic generated by cache coherency messages

stemming from memory hierarchy is evaluated. Certain accurate synthetic traffic models

from the literature are presented, emulating the self-similar nature of on-chip messages.

In Chapter 3, we present the details of project WiNoCoD. Our 2048-core generic CMP

is introduced along with its hierarchical 3-level interconnects, each with its dedicated

communication infrastructure. Following this, distributed hybrid cache coherency pro-

tocol designed for scaling 2048 cores is explained in detail, which produces packets that

circulate through the interconnection mechanism. Next, basic principles of OFDM and

OFDMA are reminded, which is the utilized modulation in our interconnect. Then,

physical and electrical properties of our novel wired RF interconnects are examined.

Chapter 4 introduces the problem of bandwidth allocation for an OFDMA system based

on instantaneous traffic demands, based on queuing theory principles. Preliminary no-

tions necessary for bandwidth allocation in WiNoCoD architecture are briefly explained.

These provide the basics to understand the proposed bandwidth allocation algorithms

in next chapter.

In Chapter 5, our proposed bandwidth allocation algorithms are explained both with a

centralized or decentralized coordination mechanism. Their performances are evaluated

by several realistic and stressing stochastic traffic. The necessary constraints shaping

the design of these algorithms are discussed.

Then, Chapter 6 introduces a novel and innovative algorithm called Payload Channel

Algorithm is introduced which allocates extra bandwidth to incoming cache-line carry-

ing packets without using any signaling overhead. To the best of our knowledge, this

algorithm is the first of its kind.



Chapter 1. Introduction 43

In Chapter 7, option of using higher constellation orders for OFDM is evaluated at

the expense of significantly higher power consumption. The trade-off between delays of

packets and energy expenditure is discussed by setting a bound on maximum latency and

average latency. In addition to this work, we have also studied the required minimum

transmission powers for acheiving information theory capacity for different topologies.

Finally, Chapter 8 concludes the thesis work. The gained insights from the information

exchange among WiNoCoD project partners are provided. Advantages and disadvan-

tages of the proposed scheme are discussed briefly.



Chapter 2

1000-core Era and On-Chip

Challenge

Silicon industry’s persistent progress on increasing transistor count by shrinking gate

size on a single processor surmounted the digital technology and transfigured our world

through the last half of the 20th century. In his seminal paper, Gordon Moore has

predicted this phenomenon with an astonishing accuracy back in 1965, that number of

transistors would double every 18 months [9], as seen in Fig 2.1. Similarly, clock rates

have been multiplied thousands fold since the begining, reaching several gigahertz. How-

ever, this incline which has fueled the higher computation powers has been disrupted,

as we are reaching towards the physical and thermal limits of nanometer design [10]. In

order to utilize silicon resources more efficiently and scale the processing power for the

market’s current and future demands, the processing design has focused on multicore

processors, or with a synonymous term Chip Multiprocessors (CMPs).

2.1 Chip Multiprocessors

CMPs overcome the limitations of uniprocessors by using relatively more simpler cores

rather than a prohibitively powerful single core, which also increases the performance by

exploiting thread level parallelism (TLP). By the year 2015, most powerful commercially

available CMPs include Rapport inc.’s Kilocore processor which is composed of a single

powerful core operating in harmony with 1024 8-bit 125 MHz cores [12], Tilera’s 72 core

64-bit multiprocessor [13] and PicoChip’s 300 cores 16-bit DSP processors [14].

A core is a processing unit which performs arithmetic, logical and control operations,

that is typically composed of two separate entities : arithmetic and logic unit (ALU)

44



Chapter 2. 1000-core Era and On-Chip Challenge 45

Figure 2.1: Number of transistors in a microprocessor over 40 years, validating
Moore’s prediction. (Image taken from [11].)

and a control unit (CU). A Floating Point Unit (FPU) can be implanted to perform

floating point operations.

2.1.1 Caches and Memory

In a multicore processor, each core on the die has a dedicated first level data and instruc-

tion cache, which is denoted as L1 (Level 1) cache. A cache is a relatively low volume

temporary register that stores the copies of main memory, but providing a faster access

for the core. Depending on the architecture, there may be higher levels of caches such as

L2 and L3 [15]. Based on the well known Von Neumann architecture, the workload of a

core (or a processing unit) can be abstracted as the sequences of arithmetical or logical

operations made on data copy in a L1 cache read from a memory address according to

instructions taken from its instruction cache, and writing the results on an associated

memory address. The generic simplified architecture of a 2-core multiprocessor is illus-

trated in Fig 2.2. In this specific example, each core has a dedicated L1 cache and they

share a L2 cache. Monolithic external memory can be regarded as a L3 cache, which

is accessed only in case the intended data is not found in L2 cache. However, not all

architectures share this hierarchy. For instance, the CMP considered in this thesis work,



Chapter 2. 1000-core Era and On-Chip Challenge 46

has only L1 caches for cores and a physically distributed shared RAM, which can be

regarded as a L2 cache.

When a core needs to access a certain data associated with a location tag, it first checks

whether it has a copy in its cache. Of course, this query starts from the closest L1

cache, and if there isn’t any, the core demands from the higher level caches step by step

until reaching the original data in main memory. There are two distinct approaches for

CMP’s main memory : first is to have a monolithic, single memory which is preferred for

low number of cores and second, to distribute the main memory among chip elements

which is referred as Distributed Memory Architecture [16]. For both of the cases, cores

of CMP use a shared address space, hence they can access, read, modify or copy to its

cache any part of the main memory. This scheme provides software developer a high

level and holistic view of the processor and the memory, so the programming can be

performed, as it is being done for a single-core case [17].

External Main 
Memory

L2 Data Cache

Arithmetic and 
Logic Unit 

(ALU)

Instruction Cache

L1 Data Cache

Control Unit

Core

Arithmetic and 
Logic Unit 

(ALU)

Instruction Cache

L1 Data Cache

Control Unit

Core

Bus / Interconnection

Figure 2.2: Simplified illustration of a 2-core CMP with 2 levels of cache and an
external memory

2.1.2 Cache Coherency

We have seen that, cores in a multiprocessor can access any location in the shared

memory. However, when a core modifies the data in an address location, it may have

already copies at caches of other cores. Therefore, when the new data is written, the

sharer cores will still have an erroneous copy for that address line. Hence, these cores



Chapter 2. 1000-core Era and On-Chip Challenge 47

should be notified about the content change. This inconsistency problem is known as

Cache Coherency.

There exists various protocols to resolve cache coherency problem, but most widely

known two are snooping and directory based. In snooping, whenever a core fails to read

data in its cache, it broadcasts a read request on the medium connecting all cores, caches

and main memory (such as bus, crossbar or any type of network) protocol. As each cache

controller in the system listens these broadcasts, they invalidate the copies in their caches

with the tag in this request. The second approach is the directory based protocol, where

directories or memory controllers are responsible for updating and keeping the states

and the owners of memory blocks. Any core, who wants to fetch a copy of an address in

main memory, must refer to the directory first. The snooping is faster but not scalable

for large number of cores, as it requires broadcasting for each invalidation [18]. For any

operation done in caches, the atomic unit of memory is a cache line. Cache memory is

divided into cache lines, where a data is written/read to/from a cache or system memory

as a single cache line. The size of a cache line depends on the architecture, but generally

it varies between 32 and 256 bytes.

In order to orchestrate the execution of applications and provide cache coherency, the

cores and the memory elements have to communicate with each other. Above mentioned

cache coherency messages constitute the basis of the on-chip communication and exe-

cution of CMPs. For instance, a cache directory may send an invalidation message to

an another cache controller, or a core may send a write request for an address space

to the directory controller. The length and content of these messages depend on the

architecture, used cache coherence protocol etc.

Today, experiencing the exponentially rapid development of semi-conductor technology,

with a corollary drawn from Moore’s Law, it is expected that the number of cores

will double every 18 months, reaching thousands in less than a decade [19]. Thus,

this introduces the coherence and communication of 1000-core era CMPs, as the main

theater of challenge for designers. Table 2.1 gives 3 examples of massive generic multicore

designs with their memory architectures and cache coherency mechanisms compared to

WiNoCoD.

2.2 Network-on-Chip

The interconnection of on-chip elements is an essential topic for the processor industry, as

it is the backbone for the harmony of parallelism. As it is stated in previous section, the

cores and memory elements have to exchange cache coherence messages to operate shared



Chapter 2. 1000-core Era and On-Chip Challenge 48

Table 2.1: Processor, memory and cache coherence details of 3 commercially available
or proposed CMP architectures compared to WiNoCoD.

Tile GX-72 [13] Corona [20] ATAC [3] WiNoCoD

Commercially
Available

Yes. No. No. No.

Core Count 72 256 1024 2048

Core Type 64-bit RISC @1 GHz RISC 32-bit RISC @1 GHz RISC

Caches

and

Memories

32 KByte Instruction
and Data Cache
per core

256 KByte private
L2 Cache per core

L2 caches have extra
lines for shared
18 Mbyte total L3 cache

1 TByte
external 4
DDR3 RAM Blocks

32 KByte Instruction
and Data Cache
per core

256 Kbye L2 cache
shared by
each 4 processors
(a tile)

External off-chip
DRAM block

32 KByte Instruction
and Data Cache
per core

32 Kbye L2 cache
shared by each
4 processors
(a tile)

External off-chip
DRAM block

32 KByte Instruction
and Data Cache
per core

1 TByte shared
and distributed
RAM
to each 4 cores
(a tile)

Cache
Coherence

Distributed Directory
Based Coherence

Distributed Directory
Based Coherence

Distributed Directory
Based Coherence

Distributed Directory
Based Coherence

memory mechanism consistently, which provides a simple, transcendental programming

interface for the software layer.

2.2.1 From buses to NoC

First multicore designs were including just a few number of cores, where all of them

share a simple bus, basically a bundle of copper wires. This design also supports the

aforementioned shared memory principle with snooping cache coherence due to broad-

casting. However, with the increasing number of cores, memory elements and I/O units,

the bus mechanism has faced certain electronic and bandwidth limitations.

As buses get longer to reach all the elements, the RC latency also increases with wire

lengths. With so many elements connected to a bus, the capacitive load has increased

which is an extra cause of delay. In these conventional deep sub-micron architectures,

the digital bits are transmitted between nodes through copper wires by increasing or

decreasing voltage (voltage level determines a 0 or 1). However, the latency of this

transition is determined primarily by resistance, capacitence and length of the wire

(even inductance to some extend) [21]. Because, in order to increase the DC voltage

at the other end of the wire, first the capacitance of the wire shall be charged which is

determined by the RC time constant (e.g. multiplication of resistance and capacitance).

It can be approximated, transmission delay increases with the square of the wire length

[22].



Chapter 2. 1000-core Era and On-Chip Challenge 49

In addition, as number of units accessing to the bus increases, bandwidth per unit

decreases, resulting in congestion [23]. As a solution, crossbars are proposed to connect

4 to 8 core processors. A crossbar is a simple switch, where multiple nodes are connected

in a matrix manner, thus enabling concurrent communications, originating from different

nodes, in contrast with the bus. Using tri-state buffer crossbar switches, multiple inputs

can transmit information to different output nodes. This scheme increases the bandwidth

compared to bus, however generally for more than 8 cores, it also fails to be sufficient

[24]. Fig. 2.3 depicts the on-chip nodes connected by a simple bus and a crossbar. The

chip architectures with more than 6-8 cores mandates the requirement for much more

efficient interconnects than crossbars in terms of bandwidth, latency and power. Even,

the design of on-chip interconnects have become the most challenging research interest

for silicon industry recently, due to the fact that they are now the main bottleneck of the

architectures with their delay, area and power expenditure. This phenomenon is known

as the computation to communication paradigm shift.

Core Core

L2 Cache I/O

Core

Core

Core

Core

L2 CacheI/O

Core

Crossbar Switch
Tri-state buffer

a. Simple Bus b. Crossbar

Figure 2.3: On-chip elements connected via a simple bus (a) and a crossbar (b).
Bus enables only a single transmission at a time, however with a crossbar multiple
transmissions between 2 nodes can be done, simultaneously (only to a single output at

a time)

In order to scale CMPs with more and more cores, a layered, packetized, router based

communication framework in a similar manner with the traditional data networks such

as internet or computer networks has been introduced, known as network-on-chip (NoC).

Another formal definition in literature exists : “An on-chip interconnect with decoupled

transaction layer, transport layer and physical layer” [24]. In a NoC, the higher layer

packets (messages from cores, memory units etc.) are packetized with overhead, which

is called a flow-unit (flit) in NoC terminology, and transmitted to destination node via

routers, hop-by-hop. This modular approach does not only increase bandwidth, but

also enables a wider spectrum of choice for designers, as various topologies, routing and

arbitration algorithms can be applied. Today, NoC is the de facto accepted approach

to design manycore systems. It has changed the approach of on-chip community to the



Chapter 2. 1000-core Era and On-Chip Challenge 50

problem, where brand new research interests have emerged such as optimization and

dimensioning these router based architectures.

2.2.2 NoC topologies

Since the initial research on NoC, various topologies have been proposed such as a

2D mesh, 2D-torus, octagon and many more [5]. Fig 2.4 illustrates the different NoC

topologies. It has already became the de facto communication fabric for many core

designs. Despite its tremendous advantages, as we are approaching to an era with

hundreds, even thousands of cores, these conventional NoCs are also plagued with the

scalability problem. For instance, one can see that the number of routers to traverse

between two most distant cores in a 2D mesh network is 2
√
N , where N is number of

cores. Taking into account the several cycles of delays at each router due to packet

processing, this implies the importance of decreasing the hop count. To further extend

these types of architectures, even 3D structures are provisioned, where a new spatial

dimension for routing is added [25]. However, one can see that this transitionary solution

scales the number of nodes which can be interconnected effeciently only a few more times.

To sustain the quadruple increase of cores, a breakthrough is needed. Not only the long

distance, but other problems such as deadlock routing (a case where flits are switched

between same routers in a vicious cycle due to routing and arbitration policy), not

being able to support broadcast and multicast etc. force researchers to find innovative

solutions.

Figure 2.4: 3 of most preferred 2D NoC topologies, where processing elements are
interconnected via buffered routers.

2.2.3 Tera-Scale Multi-core Processor Architecture (TSAR)

In this part of the manuscript, it is important to mention about the Tera-scale Multi-

core Processor Architecture (TSAR) project [1]. Among its project partners, there are



Chapter 2. 1000-core Era and On-Chip Challenge 51

UPMC-LIP6 Laboratories and NXP Semiconductors, which currently contribute the

WiNoCoD Project. In a sense, this project can be seen as a base of WiNoCoD, as its

core and memory architectures share many common features.

Like in WiNoCoD, TSAR also implements a distributed (physically separated but logi-

cally shared) memory architecture, that 1 TByte total RAM is distributed uniformly to

4-core tiles. There is no private L2 caches in TSAR and this distributed memory can

be seen as a L2 cache. Distributed Hybrid Directory Based Cache Coherence Protocol

(DHCCP) is utilized just as in WiNoCoD. There is no exclusive ownership for address

lines and a simple, yet scalable write-through policy is adopted, which is also the same

for WiNoCoD. Eventhough, the first prototype has been modeled for 128-cores, project

has opted for up to 4096 cores.

TSAR has been designed with a conventional 2D mesh network for communication

between tiles, whose scalability is limited. Fig. 2.5 illustrates the tiled architecture

of TSAR, where each tile contains 4 cores (actually depends on the choice), a local

RAM slice of the main memory, and a memory directory/controller. They are intercon-

nected by a local interconnect (a crossbar). A similar approach is adopted in WiNoCoD

due to its scalability, which we will present in next chapters in detail. These tiles in

TSAR are interconnected by a specialized electrical network called DSPIN, which is the

fundamental difference from the WiNoCoD project. WiNoCoD adds a higher level of

interconnection based on wired RF transmission.

Figure 2.5: TSAR’s tiled architecture and distributed memory



Chapter 2. 1000-core Era and On-Chip Challenge 52

2.3 RF and Optical Interconnects

With thousands of cores on the horizon, silicon industry has figured out that the con-

ventional wired NoCs are far away to furnish expected requirements in terms of latency,

bandwidth or power. This provokes designers to explore uncustomary interconnect de-

signs to meet the demands. First of all, as bit transmission through copper wires is

performed via RC charging-discharging, with increased lengths this type of signaling

caused unbearable latencies. In addition, these copper wires starts to constitute up

to 70% of total system capacitance, being responsible a significant part of power dis-

sipation. So, idea of communicating via electromagnetic waves at near speed of light

sparked [26]. This innovative idea has paved a new avenue of research on interconnects,

enabling numerous design options for 1000-core architectures. International Technology

Roadmap for Semiconductors (ITRS) has declared, optical and RF (Radio Frequency)

interconnects are the only viable approach to satisfy long term requirements of band-

width, latency, power and reliance [27]. In addition, these types of interconnects may

support broadcasting (we have emphasize the importance of broadcasting for scalable

cache coherency in Section 2.1.2) due to their signaling mechanism and allow concurrent

transmission from multiple nodes by creating orthogonal channels. Four of the proposed

new approaches are illustrated in Fig. 2.6. In fact, they can be seen as a come back

from mesh to bus, adding parallelism in frequency on the bus, then enabling concurrent

communications.

2.3.1 Optical Interconnects

Recent development in nanophotonics made implantation of optical elements such as

dense waveguides, filters, modulators etc. on a single silicon die available. With these

enabling technologies, on-chip optical interconnects have attracted a lot of attention

from both academia and industry as a potential to scale 1000-core CMPs, due to their

capability to provide up to Terabits per second bandwidth by using simple ON/OFF

modulators, minimizing cross-talk effect, and their relatively simple optical routing/sig-

naling [28]. Besides, their energy consumption is affordable. Even though, free space

intra-chip optical interconnects are investigated by various researchers [29],[30] the gen-

eral direction in designs is to connect cores (or group of multiple cores and memory

elements which is called as a tile) with an optical waveguide, serving as a fast informa-

tion highway. Nodes transmit their messages on the waveguide by converting electrical

signals to optical ones. At the reception these signals are reconverted.

Even though optical on-chip interconnects require some additional time to be practically

mature enough, recently [2] has demonstrated a single chip using optical communication.



Chapter 2. 1000-core Era and On-Chip Challenge 53

Figure 2.6: 4 of the recently proposed innovative on-chip interconnect options

Despite being a small scale architecture composed of 2 cores, this can be evaluated as a

significant achievement for paving the road for future optical chips.

To enable simultaneous transfer of multiple signals on the same waveguide, orthogo-

nal channels i.e. wavelengths are generated [31]. We speak about Wavelength Division

Multiplexing (WDM) in this specific case. An on-chip or off-chip laser source gener-

ates and circulates photonic energy on a dedicated waveguide, where it contains all the

wavelengths utilized in the system. Microring Resonators (MRRs) are circular nanopho-

tonic devices which are able to refract the light with the desired wavelength. Using this

property, they can be utilized as modulators for on-chip, where based on the incoming

electrical signal, nodes can refract the light with desired wavelength from the optical

source waveguide and drive it to the data waveguide as 1 or 0. Similarly, for reception,

they can be used as filters to detect data transmission on desired wavelength [6]. The

operation of MRRs as modulators at transmission and filters at reception for on-chip

interconnects is depicted in Fig. 2.7. Each of the MRRs is manufactured for a specific

single wavelength statically, where it is determined based on the thermal procedure,

injection of different amount of electrical charge, or varying the radius during the pro-

duction [32]. One can see that for transmitting each single bit orthogonally, a different

MRR on a seperate data waveguide is needed. And similarly for the reception, detecting



Chapter 2. 1000-core Era and On-Chip Challenge 54

each bit on a different wavelength requires another MRR as a filter. As number of on-

chip nodes increase, the required bandwidth increases as well, meaning for each bit in

reception and transmission, a new MRR is needed. As in [3] or [20], tens of waveguides

are bundled to implement required optical datawidth, and hundreds of MRRs are im-

planted to generate orthogonal channels. In addition, they are static, thus dynamically

allocating bandwidth to different nodes, according to changing demands is not feasible.

Also, the requirement for the constant laser source is another drawback.

data waveguide

electrical signal
1 or 0

laser source 

microring modulator
refracts only on tuned wavelength λi 
based on the electrical signal

contains all wavelengths : λ1, λ2, .. λN

microring filter
filter only the tuned 
wavelength λi 

electrical signal
1 or 0

to network

Figure 2.7: Microring Resonators (MRRs) which are able to refract light on the
pre-tuned wavelength are utilized both for transmission and reception. [32]

At this point, we wish to highlight an important concept in orthogonal channel im-

plementation. In literature there are two complementary approaches, which are called

Single Write-Multiple Read (SWMR) and Multiple Read-Single Write (MWSR). As il-

lustrated in Fig. 2.8, in SWMR, each node transmits their data on specific wavelength,

whereas at reception each node are tuned in to each channel. Thus, they can receive

others’ transmission. In MWSR, each node is allocated a specific channel, called home

channel, to receive information. At transmission side, each can modulate on every chan-

nel. Both schemes have specific advantages and drawbacks. Note that, SWMR supports

broadcast naturally, which is desirable for on-chip traffic. On the other hand MWSR

does not support broadcast, besides it has another disadvantage, that in order to avoid a

collision caused by concurrent transmissions of multiple sources to the same destination

node, an arbitration mechanism is needed. Despite these drawbacks, usually a MWSR

mechanism is preferred to SWMR, due to fact that its power consumption is less by only

activating a filter for a single channel at RX [33].

For this purpose, different paths can be followed such as using tunable ring resonators or

laser modulators at different frequencies. However, implanting these optical devices on

each node is required. Considering the fact that number of these devices shall increase

exponentially with increasing number of cores and channels, the scalability question



Chapter 2. 1000-core Era and On-Chip Challenge 55

arises with today’s technology. Besides its CMOS incompatibility raises concern on

feasibility [28].

Node-1 Node-2 Node-3 Node-4

Node-1 Node-2 Node-3 Node-4

ch-1

ch-2

ch-3

ch-4

ch-1

ch-2

ch-3

ch-4

a.  SWMR

b.  MWSR

Figure 2.8: Two different approaches of managing orthogonal channels in an on-chip
interconnect (a) Single Write Multi Read (SWMR) : each node transmits on a dedicated
channel, where each other node can receive. (b) Multi Write Single Read : each node is
allocated a specific channel called home channel, but they can transmit on any channel.

Those who want to transmit data to a node, transmits on its home channel.

There exists a vast literature on optical on-chip interconnects, however we present only

the two most relevant architectures, one representing a SWMR example and other a

MWSR one. In the following sections of this thesis, we will revisit these two architectures

to draw analogies with our system in order to explain it better.

2.3.1.1 ATAC

ATAC is a 1024-core CMP, with an SWMR optical interconnect, developed by MIT

[3]. It has a tiled structure, that 16 tiles (a core, a directory-memory controller and

a local cache) form a cluster, which are interconnected via an optical bus. They have

an innovative but costly design for intra-cluster communication : for outgoing messages

a regular 2D electrical mesh network is used, however for the incoming messages from

optical waveguide, a special electrical, tree-like broadcast network is built, which reaches

each tile directly. The monolithic memory is also connected to the waveguide.



Chapter 2. 1000-core Era and On-Chip Challenge 56

Researchers use a hybrid directory based cache coherency protocol, where if the number

of cores sharing an address block exceeds a certain threshold, directory only keeps the

number of sharers rather than keeping their IDs exclusively. Directory broadcasts any

cache coherency message regarding this address block to all 1024 cores in the system.

For responses coming from sharing cores following the previously transmitted cache

coherency message, the initiator directory just counts the number of ACK messages and

compare it to number of sharers for the related memory block. That’s why authors refer

this scheme as ACKwise cache coherence protocol. The strong broadcast infrastructure

of ATAC enables this protocol’s implementability. Authors mark that this type of cache

coherence protocol provides an efficient ease of programmability for 1000-core CMPs.

Even though, ATAC provides a terabit bandwidth with strong support for broadcast, it

has certain drawbacks. First of all, this SWMR bus requires significant optical circuitry

in each 64 clusters. In the optical receiver of clusters, an optical ring resonator filter for

each wavelength is needed. This means 64 ring resonators per cluster. In addition, each

cluster is dedicated one wavelength (64 bit channel) for transmission, statically. In case

of bursty traffic, these channels cannot be redistributed among clusters, thus the system

has to be dimensioned for the worst case. This significantly lowers this architecture’s

scalability, especially if the traffic load is not homogeneous. Indeed, there could be

some channels overloaded while others are unused. Then the global throughput can be

significantly lower than the theoretical total capacity of the optical NoC.

Figure 2.9: ATAC’s 2 level clustered architecture, where clusters are connected by
bundle of optical waveguides using WDMA. For reception, each cluster incorporates a

special electrical broadcast network. (Image taken from [3])

Fig. 2.9 shows the 2 level clustered architecture of ATAC. 16 generic cores are intercon-

nected by two separate conventional electrical networks for transmission and reception.



Chapter 2. 1000-core Era and On-Chip Challenge 57

2.3.1.2 Corona

Corona is a CMP with 256-cores using a MWSR optical interconnect, developed at

University of Wisconsin-Madison [20]. As previously mentioned in this section, MWSR

mechanisms require an arbitrator to resolve a potential conflict, caused by multiple

sources node trying to send messages to the same destination node at the same time, by

encoding data on its home channel. Corona, uses optical tokens to provide arbitration,

that is based on the optical diversion technology.

The system prefers a non-uniform memory architecture (NUMA), so that the memory

is distributed physically but logically shared as in ATAC. In other words, it is a dis-

tributed memory architecture. In Corona, tiles are composed of four cores and a common

L2 cache, a directory and a slice of main RAM. Each of 64 tiles are directly connected

to a serpentine, ring optical waveguide. The light travels unidirectional through the

waveguide, that emission sources from one end of the waveguide and sinks at the other

end. Each optical channel is composed of bundles of independent,thus orthogonal 64

waveguides using the same wavelength, at the end gives a 64-bits wide physical chan-

nel. Each tile has the necessary optoelectronic converters and optical circuitry : ring

resonator detectors (receiver) tuned to home channel, modulators (transmitter) tuned

to every channel (expect its home channel) and optical token diverters.

As Corona is an MWSR system, for multicasting and broadcasting,-which are required

for memory block invalidation messages intending a large pool of sharers, redundant

copies of the message has to be encoded on every receiver’s home channel. To avoid

congestion, the researchers employ an additional separate waveguide called broadcast

bus. It is a single end 2 times folded spiral like optical broadcast bus, which passes every

cluster 2 times. At first cycle on the broadcast bus, nodes modulates for invalidation

messages. On the second cycle invalidate messages becomes active and thanks to their

optical detectors, only concerned nodes snoop their caches.

To resolve the contention of MWSR optical bus, a single additional waveguide opti-

cal token arbitration channel is augmented to the system. Optical token is simply an

ON/OFF optical signal (or 1-bit) transmitted on all 64 wavelengths, representing the

right to transmission on the 64-bit channel with the associated wavelength. It can be

seen as an optical flag. When a node is not receiving any signal on its home channel, it

constantly modulates an optical signal on its token channel. If another node would like

to send a packet to this node, it has to acquire this token. To do so, with its optical

diverter circuit, it diverts and sinks the optical signal. Thus, any further node in the

system, may not send on this channel, as its token is already acquired by this node,

which resolves the contention problem.



Chapter 2. 1000-core Era and On-Chip Challenge 58

Authors claim their architecture is scalable for massive multicore systems and provide a

significantly low power dissipation thanks to its nanophotonics infrastructure. However,

the system requires prohibitive amount of optical circuitry and MWSR bus still poses

important drawbacks.

Figure 2.10: Corona has a similar serpentine optical interconnect similar to ATAC,
except the choice of MWSR rather than SWMR. Tiles, each are composed of 4 cores

are also illustrated (Image taken from [20]).

Fig. 2.10 illustrates Corona’s bundle of optical waveguides in a serpentine form similar

to ATAC and the tiled core architecture.

2.3.2 RF Interconnects

Photonic interconnects are considered as an effective technology to reduce the latency,

decreasing hop count between cores compared to traditional planar metallic NoCs, with

a significantly high bandwidth, while providing low power consumption. However, their

practicability is doubted, at least for near future, due to noise from waveguide coupling

and relative sizes of optical components. The fabrication of on-chip photonic compo-

nents faces challenges such as low quantum efficiency [34]. In addition, there exists

no optical storage elements, thus system depends on an electrical infrastructure [35].

As mentioned previously they require constant on-chip or off-chip laser sources with a

dedicated separate waveguide. There is also a fundamental incompatibility with CMOS



Chapter 2. 1000-core Era and On-Chip Challenge 59

technology which is the most common and cheapest chip technology. Integrating optics

in silicon chips is still cumbersome.

Concerning drawbacks of optical interconnects, academy has oriented towards Radio Fre-

quency (RF) interconnects, which still use Electromagnetic (EM) waves at near speed-

of-light. Present on-chip high frequency silicon technology permits implementation of

cut-off frequencies up to hundreds of GHz, thus a sufficient data bandwidth for CMPs.

The evident advantage of this approach is its CMOS compatibility, which is a much

more mature and viable technology compared to other alternatives [36].

[37] states that the switching frequency of CMOS transistors is still in the trend of

increase exponentially with each generation, therefore enabling maximum frequencies

up to 1 THz. This presents the RF CMOS devices as scalable candidates for high rate

on-chip data transmitters, even in the near future considering the increasing bandwidth

demand. In addition, it is demonstrated in this article that energy consumption of RF

interconnects is significantly lower than optical communications up to distances of 30

cm, which falls to the interest of on-chip network [37].

There are two distinct proposals for RF interconnects : free space (wireless) communi-

cation or waveguided communication (wired RF).

Figure 2.11: RF interconnects require a mixer circuit driven by a local oscillator to
modulate baseband signal to a specific frequency. Similarly at reception, for acquiring
data on a specific frequency, a Low Pass Filter which is centered to the desired frequency

by a local oscillator is needed.

2.3.2.1 Wireless RF Interconnects

Implanting miniature antennas on-chip and providing free space propagating commu-

nication links is referred as on-chip Wireless RF interconnects. The idea is to place



Chapter 2. 1000-core Era and On-Chip Challenge 60

high throughput wireless links between distant cores, thus reducing latency and con-

gestion, without the need of an extra propagation medium such as a waveguide. The

major design challenge in this paradigm is manufacturing such small antennas with de-

sired electromagnetic propagation characteristics [7]. Different central frequencies and

bandwidths are proposed in the literature, using completely divergent transmission and

reception antenna designs. [38] proposes Gaussian Monocycle short impulses based Ul-

tra Wideband (UWB) communications provided by Meander type dipole antennas. Due

to frequency and antenna characteristics this scheme can allow a transmission range of

1 mm, thus a multihop wireless mesh transmission infrastructure is proposed.

Another suggestion is to utilize zigzag shape miniature metal antennas to propagate

milimeter length waves [39]. A transceiver design of 16 Gbps using milimeter waves

is shown in [40]. Besides these, an additional proposal is to employ Carbon Nanotubes

(CNTs) as on-chip antennas [41]. Their special electrical and propagation characteristics

make them suitable for Terahertz (THz) wide on-chip communication. One advantage

of these wireless on-chip RF interconnections, is to exploit small world phenomenon,

decreasing congestion and latency significantly, by few additional links between distant

cores.

Even though wireless RF intra-chip interconnects need fundamental breakthroughs such

as CNT antennas etc., less complicated wireless inter-chip interconnects are already

being developed. For instance, [42] demonstrates a 3D stacked system-in-package (SiP)

interconnected by wireless signals.

2.3.2.2 Wired RF Interconnects

Viability of the aforementioned wireless on-chip antennas have not been demonstrated

yet and innovative proposals such as Carbon Nanotube antennas are still not mature

technologies. Thus, RF propagation via guided transmission line (wired RF) has received

more attention throughout research community compared to its wireless counterpart.

As communication distance is low, effective capacitive coupling method can be used to

realize transmission [43]. In addition, the waveguide allows for a recoverable attenuation.

Chang et al. have implemented a multiband wired RF CMP architecture, where small

distance communications is performed by conventional electrical routers and for long

distance destinations high speed RF line is used via local RF routers (switches) [44].

This scheme uses Frequency Division Multiple Access (FDMA), that 6 orthogonal 10

GHz bands are utilized to encode 6 different signals concurrently on the transmission line.

To do so, each 6 RF router uses mixers and local oscillators in transmission, and filters at

reception. Note that, this scheme can be classified as SWMR, and allows broadcasting



Chapter 2. 1000-core Era and On-Chip Challenge 61

up to a degree. The authors also mention about static or dynamic re-allocation of bands

for changing traffic demands. However, as RF routers has to include all local oscillators,

mixers and filters for each band, the reconfigurability and bandwidth division granularity

is limited. Wired RF transmission lines are considered as a suitable candidate for high

speed EM propagation based on-chip interconnects with current CMOS technology [45].

2.4 Characteristics of On-Chip Traffic

Network on Chip (NoC) is a relatively new research area. As a first step, researchers re-

lied on the primitive synthetic traffic patterns to evaluate their designs [46]. These mod-

els are too naive to ensure validity of the simulations. In addition, certain benchmarks

including limited number of multicore applications such as PARSEC [47] or Splash-2

[48] exist. However considering the fact that future CMPs will run applications from

a much more vast spectrum, a universal, realistic statistical model for imitating NoC

traffic is essential. The need for the synthetic models for testing future CMPs, rather

than relying on few limited benchmarks is emphasized also by [49].

On-chip traffic has similar properties with previous shared memory and inter-chip sys-

tems [50]. However, for single-chip multicore systems, with decreasing distance between

cores and smaller caches, traffic is much more frequent and shows different features. In

2002, Varatkar and Marculescu were the pioneers to identify self-similarity of intra-chip

traffic on a multicore system with NoC which is running an MPEG-2 application [51].

Following, Soteriou et al. have presented an empirically derived statistical model for

any kind and any scale of CMP NoCs, that captures the spatio-temporal characteristics

of on-chip traffic with only 5% of average deviation from real benchmarks [8]. It uses 3-

tuples (H,σ, p) representing temporal burstiness, spatial load distribution and hop-count

to destination, in order.

The self-similarity of on-chip traffic (in other words scale invariant burstiness [52]) has

been observed by academia extensively [53][54]. This roots from the cache hierarchy

in shared memory systems. In contrast with the Poisson model approach, self-similar

traffic shows temporal long range dependent features, and its characteristics are scale

invariant as in Fig 2.12. In different time intervals total number of packets injected by

a node in CMP shows statistical similarity.



Chapter 2. 1000-core Era and On-Chip Challenge 62

Figure 2.12: Self-similar traffic is scale invariant as seen for this example for the
number of packets generated by a node in different sizes of time bins. (Image taken

from [8])

2.4.1 Temporal Burstiness : Hurst Parameter

Self-similar or long-range dependent (LRD) traffic can be formalized mathematically,

as a stoachastic process with an auto-correlation function that is decaying hyperboli-

cally slower than an exponentical function (representing memorylessness of Markovian

processes) : r(k) ∼ a0k
−β, where a0 is a finite scalar and 0 < β < 1. In literature

H = 1− β
2 is known as Hurst parameter which reflects higher burtiness as it approaches

to 1. Among 30 different applications, authors found that the number of packets gener-

ated by a core throughout whole execution time is well fitted to Hurst parameter based

representation [8]. There are certain methods to generate Hurst parametric self-similar

traffic, though we explain two of them here.

The method explained in [55], aggregates multiple independent Pareto distributed ON-

OFF processes to produce self-similar traffic. Let us say that number of aggregated

independent processes are K, and the desired injection rate (average number of pack-

ets generated per time unit) is λ. Average injection rate is the ratio of ON process’s

mean duration to the sum of ON and OFF processes’ mean duration, which are Pareto

distributed : λ = TON
TON+TOFF

. So the location parameter for Pareto distribution of the

ON duration, bON is determined at first by the user, and the bOFF is set by the desired

injection rate as : bOFF = bON (1− λ
K )−1, where K is a scaling parameter.

Following this both of ON and OFF duration’s Pareto distribution shape parameter β

is determined according to desired Hurst parameter as : 3− 2H.



Chapter 2. 1000-core Era and On-Chip Challenge 63

The second method is called Discrete Pareto Burst Poisson Process (DPBPP) [56] [57].

In this approach, each node in the system at every instance, generates flows whose

number is determined by a Poisson distribution. Each flow generates packets or bits

at a constant rate when active. And the duration of each flow is Pareto distributed

with the desired Hurst parameters, as in the previous method. At each instance, the

aggregated throughput of the currently active flows gives the desired self-similar traffic

generated by a node.

2.4.2 Spatial Burstiness : Standard Deviation

Next tuple is the spatial injection rate distribution indicator, σ. In [8], authors have

discovered a remarkable phenomenon, that the total number of packets generated by

a certain node in the system can be well modeled by a Gaussian distribution. Thus,

they use standard deviation of normal distributions to represent an application’s spatial

traffic characteristics. For instance, Fig 2.13 shows the well fitting Gaussian distribution

to model spatial burstiness, for 3 different CMP architectures with different memory

hierarchy and cache coherency protocols running 3 different applications. One of the

CMPs have 25 cores and the rest have 16 cores.

Figure 2.13: Gaussian normal distribution fits well for 3 different applications under
different cache coherency protocols and CMP architectures. (Image taken from [8])

2.4.3 Statistical Distance Property of on-chip Transactions

Last tuple, p represents the source-destination distance (number of hops-routers to tra-

verse) of any generated packet. It was well observed previously that in CMPs and shared



Chapter 2. 1000-core Era and On-Chip Challenge 64

memory systems, the destination of packets tends to show a certain locality pattern, re-

ferred as Rentian locality [58]. This phenomenon roots from the memory hierarchy of

CMPs. As cores store frequently accessed data in nearer caches, they tend to reach

exponentially less to far memory locations [59]. In parallel with this observance, authors

derived the probability of a generated packet to have a probability P , of having a des-

tination equal or smaller than d hops : P = (1− p)s(d), where s(d) =
∑n

i=1 ni and ni is

the total number of nodes that has i distance from the source.

Even though, workload benchmarks such as PARSEC [47] and SPLASH [48] is still

widely used by on-chip research community, their coverage for the traffic characteris-

tics of vast spectrum of possible applications, as mentioned previously. Generally, the

considered applications in these benchmarks are highly specific to a limited group of

interest, such as scientific or industrial applications. Hence, their performance for eval-

uating interconnects is questionable for generic purpose massive CMPs. One can see

that, an accurate abstracted (decoupling traffic from application layer) stochastic model

which is easily parametraziable would be essential. Furthermore, they require exceed-

ingly prohibitive computation power and time to test them. Hence, researchers have

started to seek new, realistic stochastic models, which compromise between accuracy of

basic synthetic traffic models and complexity of benchmarks [60][8].

2.4.4 Bimodal on-chip Packets

Another important feature of CMP intra-chip communication is the bimodal packet

structure. In other words there are 2 different lengths : short and long packets. This

comes from the fact that on-chip traffic is composed of cache coherency messages. Short

packets are control packets just containing information such as source address, sharers

of memory block, memory address, destination address etc. For instance, a read request,

invalidation, write reply are short packets. The length of these packets depend on the

architecture, number of cores and used cache coherence protocol, however, it can be

stated, generally they are between 32 bits and 96 bits [1][24]. Long packets are simply

packets that carry cache lines with signaling overhead. As mentioned previously, cache

lines are the atomic unit of memory transactions of shared memory systems. Write

request, read reply are such examples. Size of a cache line depends on the architecture,

but generally they are between 32 bytes and 96 bytes (256 bits - 768 bits). In [61]

authors have examined through execution of diverse applications that the percentage of

long cache-line carrying packets constitute between 20%-30% of all generated packets.

Fig. 2.14 shows the percentages of short and long packets obtained by the research

in [61] for various PARSEC benchmark applications, where in their architecture short

packets are 8 bytes (64 bits) long and long packets are 72 bytes (576 bits) long.



Chapter 2. 1000-core Era and On-Chip Challenge 65

Figure 2.14: Percentages of short and long packets for various PARSEC benchmark
applications (Image taken from [61]).

Hence, we have chosen to face our proposed channel access policy to a realistic generic

model, which is composed of 25% of signaling packets and 75% of cache-line carrying

long packets, which will be explained further in Section 4.3.4.2.

2.5 Conclusion

In this chapter, we have presented a general context of the multicore processors. First,

the on-going trend for computational parallelism via integrating higher number of cores

has been discussed and the provisioned boom in the core count in next few decades has

been emphasized. Then, the architectural principals of shared memory CMPs has been

introduced, which is important to understand due to its effect on the NoC traffic. We

have explained the notion of general cache coherency briefly and referred to scalable

cache coherency protocols for massive CMPs. The paradigm shift of the on-chip re-

search community towards packetized NoCs and the primary electrical NoC topologies

previously proposed have been presented. Next, we have introduced the advantages and

disadvantages of several electromagnatic based solutions such as wired or wireless RF

and optical to scale interconnects for 1000-core massive multiprocessors. The feasibility

and scalability of wired RF technology was emphasized due to its mature and promised

CMOS manufacturability. And lastly, we have presented a brief literature survey on the

fundamental charachteristics of on-chip traffic rooted from the aforementioned cache

coherency of shared memory. The requirement for accurate stochastic models to stress

proposed NoC architectures has been pronounced.

We have then identified the following notions which will play a fundamental dimensioning

role for our project proposal :



Chapter 2. 1000-core Era and On-Chip Challenge 66

• Choice of RF-NoC for CMOS technology compliance.

• Preference for SWMR.

• Cache-coherency dominated traffic composed of bimodal packets.

• Choice for bimodal traffic model constituted of 75% small control packets and 25%

cache-line carrying long packets.

• TSAR-based tiled multi-core architecture and distributed memory, which is or-

chestrated by DHCPP.

Next chapter details the WiNoCoD CMP architecture and proposed radio access tech-

nology.



Chapter 3

WiNoCoD Project and Wired

OFDMA Based RF Interconnect

In Section 2.3, we review the state-of-the-art propositions for 1000-core interconnects.

Wired RF distinguishes itself with its viability with today’s technology due to CMOS

compatibility [44]. Both of the proposed RF and optical proposals seem to provide

necessary high bandwidth and scalable power budget, however there exists a significant

problem. These architectures rely on utilization of dedicated hardware circuitry to create

orthogonal channels, i.e. as many dedicated set of hardware circuits as number of chan-

nels. Optical interconnects require ring resonators, filters, modulators for composing

channels on different wavelengths. Whereas, in RF frequencies, electrical CMOS devices

such as local oscillators, filters and mixers are used. There are two important draw-

backs with this approach. First of all, intra-chip bandwidth demand keeps increasing

in parallel with increasing core count, which results in the quadratic increase for these

circuits to implant on-chip. Obviously, this tendency is not scalable in terms of area,

power and budget. Next, we see that this type of FDMA (or WDMA) implementation

is not reconfigurable or encloses a very limited reconfigurability. In other words, band-

width can not be distributed among nodes, according to instantaneous traffic demands.

We presented significant spatio-temporal heterogeneity of on-chip traffic in Section 2.4.

ATAC presented in Section 2.3.1.1, uses a SWMR scheme which is not reconfigurable

due to fact that modulators for each channel cannot be implanted in every transmitter

[3]. Even for the architectures with limited reconfigurability such as [44], the bandwidth

granularity is really low and channel allocation is done in analog level by switching cir-

cuitry which is not rapid and effective. Due to these constraints, state-of-the-art RF and

optical architectures are dimensioned for the worst-case traffic, i.e. an on-chip node is

guaranteed to have bandwidth which can sustain its peak traffic. However, we know that

for most of the time traffic intensity for on-chip nodes are far lower than this peak, thus

67



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 68

making this scheme non-efficient due to redundant bandwidth allocation [8]. Besides,

the only logical scheme supporting broadcast -which is the most vital requirement for

scalable cache coherence protocols- SWMR is prohibitive in energy and not preferred.

To overcome all of these on-chip drawbacks and provide the necessary breakthrough with

bandwidth reconfigurability, in 2012, WiNoCoD project (Wired RF Based Network on

Chip Reconfigurable on Demand) is initiated by the partnership of ANR, ETIS-ENSEA,

LIP6 laboratories, Supelec-IETR, NXP Semiconductors. At the heart of the project lies

the revolutionary Orthogonal Frequency Division Multiple Access (OFDMA) based RF

Interconnect for a NoC, which provides digital level, high granularity, rapid and effortless

bandwidth allocation.

Figure 3.1: WiNoCoD is a project funded by French National Research Agency (ANR)
with the aim of implementing the first OFDMA RF interconnect backed massive mul-
tiprocessor, with the partnership of ETIS-ENSEA laboratories, IETR-CentraleSupelec,

UPMC-LIP6 laboratories and NXP Semiconductors

3.1 WiNoCoD On-Chip Architecture

WiNoCoD provisions a 2048 core generic massive CMP. A shared memory principle is

adopted, so that the address space is accessible by all processing elements such as in

TSAR architecture developed by LIP6 laboratory partner (Section 2.2.3). As we have

mentioned previously, in general in Section 2.1, placing a single RAM block with a

dedicated single memory controller in one part of the multiprocessor is not scalable for

the future CMP systems with hundreds, thousands of cores [62]. In order to alleviate

this effect, researchers have developed the Non-Uniform Memory Architecture (NUMA)

principle [3]. WiNoCoD utilizes this type of a memory architecture, where physical



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 69

RAM of the system is partitioned over the chip, but any core can reach any part of

the memory, through the sharing of a general address space. WiNoCoD architecture is

composed of 512 tiles, including 4 processors and 2 Gbytes of RAM on each tile. Project

plans to employ 1 TBytes of memory in total, which is divided in to uniform 512 pieces,

2 Gbytes of RAM slices. Our CMP is arranged in 3 different hierarchical levels due to

sustain scalability and modularity, with each of its level containing a dedicated different

NoC infrastructure (Fig. 3.2). These choices, as well as the RF based topology will be

explained later. This approach provides a full modular scalability, so that new tiles can

be added if needed in future.

Figure 3.2: 3 level hierarchy of WiNoCoD architecture incorporating 2048 cores. Each
level has a different dedicated NoC infrastructure

3.1.1 Need for independent communication layers

We have mentioned previously that a standard electrical NoC lacks the scalability to

sustain the interconnection of hunderds of cores, especially due to high number of routers

to traverse. Particularly taking our architecture as an example, if 2048 cores would be

connected by a standard 2D mesh, we could have envisaged a topology configured as

64x32 mesh. Therefore, for the communication between the two farthest cores, a packet

would have to traverse 96 routers. Assuming few cycles of processing latency in each

router, one can see that this will lead to prohibitively large communication delays, even

under low traffic load. And additionally, even under a low traffic intensity, the mesh net-

work shall be congested easily, causing the saturation of the interconnection. However,

using RF to interconnect every one or few cores is not scalable also. As we will highlight

the details on the RF interconnection in next sections, the necessary transceivers lead to



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 70

significant amount of power consumption and surface area. For instance, the estimated

surface area of a core is 0.35mm2 and it has been estimated by other WiNoCoD’s other

partners that the necessary RF transceiver is 1.17mm2. Moreover, the estimated power

consumption of a core is 39mW and the power consumption of an RF transceiver is

309.5mW . We can understand the ineffectiveness of employing an RF transceiver for

each few number of cores, from these figures. In WiNoCoD, 2048 cores are provisioned,

so that we make a hypothetical comparison for different number of RF transceivers,

to understand the need of a hierarchical structure. Table 3.1 shows the percentage of

required surface area and power consumption for all required RF transceivers and their

percentages compared to total core and memory area and power consumption; assuming

different number of cores are grouped together to be served by the RF interconnect. For

instance, if 2 cores are grouped together, we need 1024 transceivers and if 1024 cores

grouped together we need only 2 transceivers. However note that, this assumption does

not include the area of the waveguide, which spans a considerable surface area, increas-

ing substantially by increasing number of RF accesses, as we will mention in incoming

sections.

From Table 3.1, we see that if each core has a transceiver, the total required surface

area for RF transceivers consitute 75.53% of total area including surface area of cores

and memory, and consume 88.09% of total power, which is quite unacceptable. Even

if each 16 cores are grouped to use RF interconnect, the transceivers span 16.36% of

total area and consume 31.62% of total power. In WiNoCoD, 64 cores are grouped at

the highest layer to communicate with RF interconnect, where it corresponds to 4.84%

of total surface area and 10.36% of total power consumption. These figures justify this

choice. Considering all of these, WiNoCoD employs a 3-level hierarchical architecture,

where each layer has a special type of interconnection.

3.1.2 3-level hierarchy

In this section, we present the 3 different modular hierarchical level of WiNoCoD, each

with its dedicated type of NoC infrastructure. To demonstrate the feasibility of the

proposed design, the surface and power consumption estimation is done [63]. 22 nm

technology is targeted to be utilized in the project, and based on the equations given

in [64], we estimate the normalized surface and power by using the characteristics of

technology used in state-of-the-art components. For instance, the surface and power of

a target technology’s gate length N can be estimated by using the values from reference

technology’s gate length Q, with equations below, respectively :



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 71

Table 3.1: Estimated total surface area and power consumption for different number
of RF transceivers, compared to total area and power consumption of 2048 cores and 1

TByte RAM.

Number of
aggregated
cores to
communicate
with RF.

Total area of
required RF
transceivers.
(mm2)

Percentage of
total area of
required RF
transceivers
compared to
total area of
cores and RAM

Total power of
required RF
transceivers.
(W)

Percentage of
total power of
required RF
transceivers
compared to
total power of
cores and RAM

1 2396.16 75.53% 633.855 88.09%

4 599.04 38.16% 158.464 64.91%

16 149.76 16.36% 39.616 31.62%

64 37.44 4.84% 9.904 10.36%

256 9.36 1.25% 2.476 2.80%

1024 2.34 0.31% 0.619 0.71%

SN = SQ (
N

Q
)2 (3.1)

PN = PQ 0.65log0.7(N/Q) (3.2)

For instance, as we are targeting a technology of 22 nm gate length for processors,

we have estimated the power and surface by using the ARM Cortex-A5 specifiactions

which is built with Q = 32 nm gate length [65]. FFT/IFFT blocks are based on [66]

and ADC/DAC circuits are based on [67], both with a target technology of 180 nm gate

length.

3.1.2.1 A Tile

A tile is our lowest hierarchical entity where each of them incorporates 4 processing

elements (cores) (each with their dedicated L1 instruction and data caches), a uniform

portion of the total RAM (2 GBytes) and a Direct Memory Access (DMA) controller. All

of these components share the same address space and are connected by a standard local

crossbar. Crossbars provide a low latency and simultaneous communication, but their

performance degrades drastically after the number of connected nodes increase a few.

Therefore number of elements accessing to crossbar is limited to 7 in our architecture

including 4 cores, memory directory, RAM slice and the mesh NoC router. We assume a



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 72

22 nm technology and a standard 32-bit core. However, our architecture is independent

of the processor type, that any existing standard processors such as MIPS32, PPC 405,

SPARC V8 etc. can be used. Each core has an estimated surface area of 0.35mm2 and

power consumption of 39mW . 2 GBytes of RAM slices in each tile has an estimated

surface area of 0.03mm2 and a power consumption of 11.29mW . At the end total tile

surfarce area is 0.91mm2 with all other elements including crossbar, routers, memory

controller etc. [68]. Each tile has a mesh router which is connected to the crossbar at

one end, where all elements in the tile can reach, that they can access the 2D mesh

network. Note that, the tile structure is based on the previous TSAR project (Section

2.2.3).

3.1.2.2 A Tileset

Next hierarchical element in our architecture is a tileset which is composed of 16 tiles

where they are interconnected with a conventional electrical 4x4 2D mesh network. The

packets travel using a simple x-y routing with virtual channels. Each router (except

edges) has 4 different interfaces to the adjacent tiles’ routers each with a dedicated

transmitting and receiving buffer. The nodes in tiles access this level, by a router

and wrapper inside the tile. As at this level we switch to packetized NoC paradigm,

the necessary fragmentation and defragmentation is done by these entities. We have

mentioned the viability of a 2D electrical mesh network with tens of nodes in Section

2.2. Concerning our provisioned latency constraint, the number of nodes in a tileset

is limited to 16. There are 32 tilesets in WiNoCoD CMP, each with an access to RF

transmission line. With all its elements, a tileset has an estimated surface area of

14.62mm2 [68].

3.1.2.3 Inter-tileset Communication

The most distinctive feature of our CMP architecture is its OFDMA based RF intercon-

nect. A core who wants to transmit a message to a memory controller in another tileset

(and vice versa), sends the message via crossbar to the mesh NoC, and finally using the

mesh to the RF transceiver. The message is propagated on the RF transmission line and

reach the RF transceiver of the destined tileset. Following this, using the reverse path

through the mesh network and crossbar, it reaches to the terminal position. We will

describe the enabling technology and the details of our OFDMA based RF interconnect

in following sections. Finally, with all its components including transmission line and

RF transecivers, whole estimated surface area of our CMP is 476.83mm2 and a total

power consumption of 95.27W [63].



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 73

Table 3.2: Estimated surface area and power consumption for certain elements in
CMP

Area (mm2) Power (mW)

Core 0.35 39

Tile (4 cores) 0.91 167.29

Tileset (16 tiles) 14.62 2977.25

RF Transceivers (x32) 1.17 309.5

Transmission Line 8.71 —

Total CMP (32 tilesets) 476.83 95272

Table 3.2 sums up the values for estimated surface area and power consumption for

certain elements in our CMP.

3.1.3 Details of Cache Coherence Protocol

We have described the notion of cache coherence and its importance for multiprocessors

in Section 2.1. NUMA type memory architecture explained previously, is the key to

programmablity of massive CMPs with thousands of cores [62]. An important design

goal for a cache coherence protocol and shared memory architecture is to introduce a

high usability, which refers to the abstraction of hardware to the programmer [69].

Our project draws many parallelism with the Tera-Scale Architecture (TSAR) project,

which is another 1024-core generic shared NUMA memory CMP design, but without

an RF interconnect as we have mentioned previously in Section 2.2.3 [1]. We employ

a Directory Based Hybrid Cache Coherence Protocol (DHCCP) in WiNoCoD, like in

TSAR. A similar approach is adopted in 1024-core, optically interconnected ATAC [3].

Each 2 GBytes of shared memory element in a tile (RAM slice) is associated with a

directory and access to this memory is regulated via a Direct Memory Access (DMA)

unit. Thus, the cache coherence is hardware initiated. A Write Through approach is

adopted, where in case of a core want to write a data to an address line, it transmits

a write request to the directory responsible for the corresponding address line. We

have mentioned previously in Section 2.1, that these type of write request messages

contain cache lines, which is including the raw data for computation. The address space

for 1 TBytes, where each line is represented with 40 bits, is evenly divided among 512

tilesets. A directory in a tileset is responsible for the address lines spanned in its interval.

Therefore, for instance, if the intended address line is spanned by the directory in the

same tileset, the message does not go outside tile, and only uses crossbar to reach DMA.

Similarly, if the adress line is in a different tile in the same tileset, it only uses the mesh

network to reach. If the address line is in a tile of a different tileset, it has to use RF

interconnect. Hence, exploiting spatial locality in memory programming is essential to



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 74

decrease traffic load in higher hierarchies. After receiving the write request, firstly the

directory checks whether other cores have a copy of this address line. If so, it transmits

invalidate message to the sharers, so they stop using the copy of this address line in

their L1 caches, as it will change by the modification of the core who wants to write

a new content to this address line [1]. This procedure is illustrated in Fig. 3.3, where

CPU-A sends a write request for ADDRESS-X; CPU-B and CPU-C have a copy of it.

The directory in charge of this address line, DIR sends invalidation messages to them.

In contrast, for the Write Back policy, when the core updates its L1 cache, the main

memory (directory) is updated only when the modified cache line is updated. Even

though write through policy is more bandwidth intensive, write back policy is preferred

due to its scalability.

Similarly for reading data, L1 caches of cores gather the copy of the main memory from

the responsible directory and DMA of the associated address line. In a sense, we can

state that the distributed main memory is a L2 cache for the cores.

A directory is a simple register, containing data associated to each cache line it is

responsible. For each cache line, it contains the IDs of the cores who has a copy of it.

And of course, in the associated line in RAM, it has the original raw data. When we

have thousands of cores, one can see that it is not possible for a directory to keep the

IDs of hundreds or thousands of sharer cores, for each cache line. Depending on the

length of a cache line, entries in a directory changes, however for instance for the case of

2048-cores and 64 bytes of cache lines, each directory in a tile with 512 Gbytes of RAM

is responsible of 8 billion cache lines. Assuming ID of each core is represented by 10

bits, each of the 8 billion cache line in a directory should have a 256 Kbyte of memory,

which is practically impossible.

In order to alleviate this, distributed hybrid cache coherence protocol (DHCCP) is

adopted in WiNoCoD, as in [1][3]. When the number of sharers exceeds a certain

threshold (for instance 8), the directory keeps the number of sharers, rather than ID of

each sharing core. The directory in a tileset is depicted in Fig. 3.4. If the number of

sharers are lower than the threshold, in case of an invalidation, directory transmits in-

validation messages to each of the sharing cores. However, if this threshold is exceeded,

directory simply broadcasts this invalidation message to all 2048 cores. Then, it counts

the number of acknowledgement messages from the intended cores and validates it by

comparing to the number of sharers it holds in the register. This bandwidth intensive

cache coherence protocol is a price to pay for the scalability of future massive CMPs.

One can understand the quest of developing an effective reconfigurable and broadcast

capable interconnect such as in WiNoCoD, due to this cache coherency protocol.



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 75

Figure 3.3: Illustration of a write request initiated by a core in WiNoCoD, where the
intended address is currently shared by 2 other cores (CPU-B and CPU-C).

Address Line
#0000000
#000000F

#0000100

Sharer Cores
C-0013 C-0048

Flag
0
1

C-1004
27 (Number of sharers)

0 C-0203

Memory Directory in a Tileset

Figure 3.4: Implementation of memory directory in a tileset. With hybrid cache
coherence protocol, for each cache line in the RAM, if the number of cores are lower
than a threshold, sharer core IDs are explicitly registered, if not, only number of sharers

are stored.



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 76

3.2 Basics of OFDMA

In this section, we explain the basics of OFDMA technology along with its possible bene-

fits for on-chip interconnects. OFDMA is a medium access scheme based on Orthogonal

Frequency Division Multiplexing (OFDM).

3.2.1 OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is a modulation technique that

transforms a large bandwidth signal into many, orthogonal narrow band channels and

encodes digital information on frequency domain rather than time domain. Since its first

standardization in 1995 for Digital Audio Broadcasting (DAB) [70], it has conquered and

revolutionized all fields of digital telecommunications and became the popular physical

layer solution due to its numerous advantages [71]. Main advantage is its capability to

resist to multipath issue, thanks to a simplified equalization. However, most appealing

advantage for on-chip application is the capability to multiplex several transmissions in

the same signal with a high level of flexibility and dynamicity.

S/P IFFT

P/S

DAC

FFT ADCS/P

P/S

t

Constellation 
Mapping

Constellation 
Demapping

OFDM signal in 
time domain

a. Transmission

b. Reception

...010100…
(digital bits)

...010100…
(digital bits)

Figure 3.5: Transmission and reception chain of an OFDM modulator/demodulator

OFDM is remarkably different than other conventional FDM systems, due to its method

of generating orthogonal channels. As stated previously, in OFDM, a large band signal



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 77

(high rate) is decomposed to many parallel narrow band (lower rate) symbols. To im-

plement this, the digital data is first mapped to constellation symbols such as BPSK,

QPSK, M-QAM etc. and each constellation symbol is associated with a subcarrier.

A subcarrier is the atomic frequency unit in an OFDM signal, or in other words it is

one of these parallel narrow band signals. Then an Inverse Discrete Frequency Trans-

form (IDFT) is applied to the parallel vector of N subcarriers, where each of them is

now a complex number associated with the encoded constellation symbol (each complex

number represents a certain number of bits). In order to perform the frequency transfor-

mation rapid, a Fast Fourier Transform (FFT) or Inverse Fast Fourier Transform (IFFT)

is applied [72]. The result of this transform gives again a vector of N complex numbers.

Following, this vector of N points is serialized and converted to a time-domain signal

with the appropriate data rate. This resulting signal is called as an OFDM symbol, and

unless stated else we will refer it as a symbol throughout the rest of this thesis. Fig. 3.5

shows the transmission and reception chain of a typical OFDM modulator-demodulator.

At reception the exact inverse of the aforementioned procedures are followed to decode

the received OFDM symbol, whereas FFT is used, instead of IFFT at the TX. The time

and frequency representation of an OFDM symbol can be illustrated as in Fig. 3.6.

Loosely speaking, in the frequency axis each subcarrier (orthogonal channel) of OFDM

symbol can be seen as a superposition of sinusoids with different amplitudes, phases and

frequencies. It is important to remark that an OFDM symbol is the atomic decodable

unit, in this system. The whole OFDM symbol should be decoded to extract the data,

as data are encoded not in time, but frequency domain.

f

t

Subcarriers

T : OFDM symbol 
duration
Δf: Frequency spacing 
between subcarriers

ΔfT  = 1/(Δf)

Figure 3.6: Representation of an OFDM symbol with duration T both on frequency
and time domain.



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 78

At this point we shall make certain points clearer on mathematical basis of OFDM. As

it can be seen from Fig 3.7, the frequency domain is spanned by subcarriers which are

formulated by a sinc function [73]. This comes from the fact that the sampling and

transformation to analog domain are done with rectangular pulses, and the frequency

transform of this gives a sinc(x) = sin(x)
x function. Another advantage of OFDM roots

from these sinc functions, as they are still orthogonal mathematically at the center

of frequency spacings, even they overlap. This allows for the maximum bandwidth

efficiency [74]. Reciprocal of the frequency interval between subcarriers ∆f gives an

OFDM symbol’s duration : T = 1/∆f .

t
f

f

Figure 3.7: (a) Subcarriers in frequency domain are represented by sinc function, as
it is the frequency transformation of a rectangular interpolator which is used to convert
digital samples to analog OFDM signal. (b) Even though sinc functions are superposed
in frequency domain, they are still mathematically orthogonal at the center of frequency

spacings. This gives the maximum spectral efficiency.

Note that, the resulting OFDM time domain analog signal still incorporates a vector

of digital data, however coded on frequency domain rather than time domain. This

property has numerous advantages. The multi-path effect in transmission channels is

the result of multiple constructive and destructive copies of the transmitted signal su-

perposed at receiver, distorting the content of the information. Thus an equalization

is needed. It results in different gains through the spectrum, which is also referred as

frequency selective channels. For OFDM signals, this means different channel gains for

each subcarrier, which can be mitigated by a simple multiplication with the inverse



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 79

channel gain, as mentioned previously. Apart from equalization, even just a portion of

digital data on subcarriers with relatively better channel gains can be recovered.

3.2.2 OFDMA

Orthogonal Frequency Division Multiple Access (OFDMA), on the other hand is an

OFDM based multiple access scheme, featuring all physical layer advantages of OFDM,

along with an efficient bandwidth reconfigurability [75]. In parallel with OFDM, it

gained popularity for the multiple user telecommunications standards. The key point

of OFDMA is its powerful dynamic bandwidth reconfigurability, which allows assigning

different subcarriers to different users, (thus data rate), on every symbol. A user only

encodes information on its allocated subcarriers at transmission as explained previously,

and nulls the rest (encodes zero information before IFFT) to allow other users in the

system access the medium. The encoding of digital data on allocated subcarriers is

illustrated in Fig. 3.8 via a simple example, where TX-2 is allocated the 32 subcarriers

between No. 32-64.

Data 
of TX-
2 

TX-2 0...0 TX-2 
Data 00…………….0

1 32 64 1024

subcarriers

I
F
F
T

0

0

TX-2
Data

S/P

TX-2 allocated subcarriers no. 
32-64.

Figure 3.8: Encoding of digital data by TX-2 on its allocated subcarriers, where it
pads 0s to remaining subcarriers.

This way, contention resolution in the system is greatly simplified. Note that, this

procedure can be implemented in digital domain, i.e. by just manipulating the bit

vector before the IFFT. This task can be performed by a simple microprocessor or a

digital circuit. In addition, as all nodes in the system decode the same received OFDM

symbol, they can receive the transmitted by all other nodes, thus OFDMA inherits an

intrinsic broadcast capability. The logical transmission and reception between nodes in

an OFDMA based medium (in case our RF interconnect) is illustrated in Fig. 3.9. For

instance, TX-1 (transmitter of Tileset-1) encodes its data on its allocated subcarriers,



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 80

TX-2 encodes its data on its allocated subcarriers etc. and RX-1 (receiver of Tileset-2),

RX-2, etc. receive all transmissions from each tileset.

⊘

⊘

⊘

⊘

Figure 3.9: Communication between nodes in an OFDMA medium using different
subcarriers. Note the intrinsic broadcast capability and nulled subcarriers.

In contrast to OFDMA, as explained in detail in Section 2.3 conventional FDMA (RF)

and WDMA (optical) networks rely on static, pre-tuned CMOS or optical circuits to

generate orthogonal channels. Only few of the proposals has a limited reconfigurability

option to allocate these channels to nodes dynamically, which is unacceptable for the

highly bursty on-chip traffic. In addition, as far as we know, a digital bandwidth allo-

cation has not been introduced before to this field of RF-NoC, which allows designers

to implement highly basic, adaptive, and rapid algorithms. Besides, the robustness and

bandwidth efficiency of OFDM signals makes it a good candidate for interconnects. Con-

sidering the strong spatio-temporal heterogeneity of on-chip traffic and the vitality of

multicast-broadcast cache coherence messages, we can better perceive the technological

leap that OFDMA can bring to 1000-core CMPs. In a way, we can claim that OFDMA

Interconnect implements a SWMR cross-bar which allows re-arbitrating the bandwidth

for each transmitter on every symbol.



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 81

3.3 OFDMA Based RF Interconnect

OFDM and OFDMA’s potential was already provisioned when it was first theorized in

1957 [76]. However at the time its implementation on field was limited to few military

applications. This was due to the fact that the realization of the system was costly

and not feasible with the technology of the era. Until 1980’s, OFDM and OFDMA was

not introduced to market, however it received attention from the academia and several

articles and patents were issued. With exponentially increasing abundance of silicon

resources, FFT chips have become a reality for OFDM and OFDMA to conquer the

market and become the standard modulation of many recent communication standard.

Examples of systems that use OFDM both on wire and wireless are ADSL, IEEE 802.11

(WLAN), 4G (LTE), digital TV and radio etc. With recent technology, even Ultra

Wideband systems (UWB) [77], or intra-data center OFDMA based optical interconnects

[78] are proposed.

Considering that the time for enabling technologies to implement OFDMA on-chip has

come too, WiNoCoD project was initiated to pioneer this field. We expect a similar

tendency with the above mentioned standards, that OFDM shall be the preferable mod-

ulation for on-chip communication in near future. As wired RF is a feasible approach

due to CMOS compatibility (Section 2.3), it is preferred for WiNoCoD’s interconnection.

As mentioned in Section 3.1, in WiNoCoD chip, 32 tilesets are interconnected via an

serpentine, cross-shaped RF transmission line for the inter-tileset communication as in

Fig 3.2. Each RF interface in tilesets, has an OFDM modulator and demodulator.

The packets that are generated inside a tile in tileset, which are destined to a tile in

another tileset, traverses the electrical mesh network and reaches to the RF access point.

Provided converter technology by our partner NXP envisions a 20 GHz bandwidth for the

system. Based on the design constraints and circuit simulations, most suitable spectrum

is chosen between 20-40 GHz [79]. It is decided to have 1024 subcarriers, thus 1024-point

FFT and IFFT blocks are required. Hence, as we have a 20 GHz bandwidth with 1024

subcarriers, we have subcarrier frequency spacing of 19.53MHz, where an OFDM symbol

duration is T = 1/19.53MHz = 51.2 nanoseconds. This value is approximated as 50

ns for ease of use throughout the manuscript. Table 3.2 summarizes these figures. One

may question the choice for 1024 subcarriers in the system as there are only 32 tilesets

are intended to use it. As number of subcarriers increase, the size of the FFT (and

IFFT) increases, which at the end increases the complexity and computation time for

the modules. More specifically, the complexity of FFT (IFFT) computation increases in

O(log2(Nsubcarriers)), with number of subcarriers [80]. Therefore, in a most basic sense,

having FFT (IFFT) blocks of 32 would simplify the complexity 5 times compared to

1024-size FFT/IFFT modules. However, at the start of the project, 1024 subcarriers



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 82

Table 3.3: Characteristic parameters of WiNoCoD’s OFDMA interconnect

Bandwidth

Number
of

subcarriers
(Nsubcarriers)

Sampling
Frequency

/ Bandwidth
Per Subcarrier

(∆f)

Symbol
Duration

(T = 1/(∆f))

20 GHz
(20-40 GHz spectrum)

1024 19.53 MHz 51.2 ns

are dimensioned, which allow for a finer granularity of bandwidth. For instance, as

we will investigate in Section 4.3.3.6, this resolution allows for the proper and effective

signaling in our system. In addition, with further development the OFDMA based RF

interconnect may need to sustain much more on-chip nodes, which require this fine

granularity scheme for bandwidth partition.

With ever increasing demand for computational power in following decades, 100s of

GHz of bandwidth shall be required for sustaining on-chip communication. In this

thesis and WiNoCoD project, the operational bandwidth is restricted to 20 GHz, due to

the currently feasible state-of-the-art technology provided by NXP. However, in parallel

with developing silicon technology, one can expect for the on-chip OFDM bandwidth to

increase, to keep up with the rising data rate demand. Actually, with its digital nature,

reconfigurability and reliance on less amount of circuitry, we can designate the proposed

on-chip OFDMA interconnect as a highly viable approach for the future trends.

3.3.1 RF Controller

A packet that is going to be transmitted by a tileset through RF is welcomed primarily

by the RF controller of this tileset. These packets (composed of flits) are processed if

necessary -fragmented or defragmented, extracted or padded information such as source

ID etc. and inserted into the transmission queue. As mentioned previously, most im-

portant reason of using OFDMA on-chip is to reallocate bandwidth among different

transmitters. There are varios approaches and algorithms to allocate subcarriers and

modulation orders among transmitters, through using a central arbiter or decentralized

synchronous decisions. These methods which constitute the backbone of this thesis work,

are explained in following chapters. Thus, RF controller makes certain decisions accord-

ing to information such as queue state coming from the transmission buffer (TX) and the

traffic information coming from other tilesets or a central intelligent unit, and changes

the configuration of subcarriers, where it will encode data. With the modulation order

on each subcarrier, this determines the throughput of the tileset on current symbol. As

it is reviewed in Section 3.2.2, the data in TX buffer is fetched and encoded on dedicated



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 83

subcarriers along with the chosen modulation order and the rest of the subcarriers are

leaved idle. In addition, RF controller can be also made responsible of scheduling and

sorting of packets, according to needs of architecture. Note that, this RF controller is

completely digital thanks to OFDM, which allows a vast range of possibilities for physi-

cal and link layer actions. This intelligent module can be implemented as a simple single

or multiple multiprocessors, or a basic digital circuit, based on requirements.

This thesis work focuses on the utilization of the frequency resources of the proposed

OFDMA interconnect optimally as possible, taking into account the constraints of the

on-chip environment. The main goal is to reduce the waiting times in the transmission

side queues as much as possible, as it is directly related to the allocated data rate

(i.e. subcarriers) to a tileset. The state of the receiver side queues, or the intra-tileset

communication (i.e. how flits transmit inside a tileset) is out of scope of this thesis. We

assume that the intra-tileset mesh network can serve the packets in the receiver queues

with a consdirably higher rate compared to OFDMA transmission. In other words, the

received packets can be sent to their destination tiles via the electrical mesh network

with a constantly operating router. Without loss of generality, we assume that the

packets do not have to wait for a long time to be transmitted. For instance, an OFDM

symbol is approximately 50 ns and we can assume a router can serve one flit every ns.

In addition, we do not also take into account the any other metric in the system other

than transmission queue states to allocate the subcarriers, such as traffic in intra-tileset

traffic etc..

3.3.2 RF Front-end

3.3.2.1 Transmitter Side

The number of flits to be transmitted by a tileset on waveguide, is fetched from the

TX queue in the RF Controller, according to number of subcarriers (and modulation

order) on that OFDM symbol. Then it is sent to RF Front-end which includes OFDM

modulation. In Section 3.2, we have examined OFDM and OFDMA from an upper-

layer perspective, abstracting over the underlying electronics. Now, we provide a more

in-depth view. At first step, the bits to transmit are parallelized and mapped to con-

stellation symbols with chosen modulation order. Constellation belongs to BPSK and

M-QAM modulation. This is a basic encoding mechanism in digital communication :

bits are represented by constellation symbols, which can be formalized as a complex

value, a + jb. Each of 2 indexes of this value, are the amplitude levels belonging to in

phase and quadrature components. Then these constellation symbols are mapped on

subcarriers. Rest of the subcarriers remain idle. Then IFFT gives a N element vector



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 84

of complex values. These I/Q values are serialized and fed to two seperate Digital-to-

Analog Converters (DAC).

I

Q

I

Q

I

Q

I

I’

Q

Q’

π/2

π/2

π/2

I

Q

I

Q

I

Q

Figure 3.10: The detailed illustration of transmission and reception RF interface of
a tileset.

The digital modelling and testing of the RF front-end is done by the thesis work which is

also in collobaration with WiNoCoD project of A. Briere [63]. Two other PhD students

working in the project, Frederic Drillet and Lounis Zerioul are responsible of the analog

design, parametrisation and the simulation of the utilized CMOS components in the RF

front-end.

The up-conversion mixers combine a baseband signal with a local oscillator signal. Mix-

ing occurs in a MOSFET, whose gate and drain are respectively fed by the local oscilla-

tor and the baseband signal. The higher frequency output is recovered in the MOSFET

source. A drawback of such a device is the weak LO/RF isolation. It leads to a high

power LO carrier in the output spectrum. As the local oscillator frequency is 30 GHz,

which is the middle of our 20 GHz bandwidth, it needs to be suppressed. Thanks to the

differential outputs of the DAC, two IQ-Modulators can work together to do so. Besides

avoiding interference caused by image frequencies they can reduce the LO level in the

output. As we use the same local oscillator for both of IQ-modulators and opposite I-Q

signals, the IQ-Modulators outputs are subtracted in a differential amplifier to perform

this suppression. Then this signal is amplified by a Low-Noise Amplifier (LNA) and

transmitted on waveguide. This procedure is illustrated in Fig 3.10.



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 85

Note that, this operation is done synchronously every T = 51.2 ns at every cluster’s RF

interface. At the end of this operation the resulting analog signal is the OFDM symbol.

All the analog components in the transceiver is projected to be manufactured in 250 nm

SiGe technology for demonstration purposes.

3.3.2.2 Receiver Side

The reception is done synchronously every T = 51.2 ns as transmission, too. The received

signal from the transmission line is amplified and fed to a separator circuit, mixers and

30 GHz local oscillator to obtain in-phase and quadrature components. Low Pass Filters

(LPF) are used for down-conversion. Then I and Q components are converted to digital

domain by our Analog-to-Digital (ADC) components. After Serial to Parallel conversion

this vector of I and Q values are converted to frequency domain by an FFT block. The

resulting constellation symbols are demapped to bits, serialized and finally switched to

the RF controller. The detailed reception chain of the RF Interface is shown in Fig.

3.10. Note that, the exact inverse of transmission operations is done to retrieve data.

Utilized FFT/IFFT processors are estimated to be manufactured with 22 nm CMOS

technology. We estimate the area of each of these modules as 0.31 mm2 and power

consumption of 67.5mW . FFT/IFFT computation duration can be omitted and treated

as a pipelined latency through symbol-by-symbol communication. Each of ADCs and

DACs are designed with 22 nm technology and have an estimated surface area of 0.12

mm2 and power consumption of 81mW [63].

3.3.2.3 Transmission Line and Access

M. Hamieh has developed and simulated transmission line and access for his thesis in

collaboration with WiNoCoD Project [79]. He has designed a cross-shape transmission

line, to minimize the distance between two farthest tilesets in CMP, as in Fig. 3.2. In

this configuration maximum distance between two nodes is 80 mm. Cross-shape design

also gives an additional advantage, by providing a near flat frequency response over

20 GHz bandwidth. Based on the simulations, through the spectrum of 20-40 GHz,

attenuation is measured in range of -40 dB and -50 dB between two farthest nodes and

relatively non-varying [79]. This simplifies the utilization of any subcarrier in the system

without changing transmission power drastically and does not require equalization.

A state-of-the-art silicon Microstrip Transmission Line delivered by NXP Semiconduc-

tors is used. The height of the transmission line is 8.78 µm with a permittivity of 4.2 and

loss tangent of 2.10−4. In order to minimize the metal loss, characteristic impedance



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 86

is determined as 30 Ω. A new access mechanism to transmission line via transistors

has been developed by M. Hamieh, preferred over existing capacitive coupling or di-

rect access schemes. This new method reduces the frequency reflections phenomenon,

frequency response fluctuations and attenuation compared to capacitive coupling and

direct access [79].

The linear attenuation through the transmission line is approximately 0.2-0.3 dB/mm.

For instance, assuming a bit error rate of 10−8, the required minimum transmission

power on a single subcarrier, between two farthest nodes is -39 dBm for BPSK, and -25

dBm for 64-QAM. Note that, the required power increases linearly with the number of

used subcarriers [79]. Fig. 3.11 illustrates the proposed access method via transistors.

In Fig. 3.12, the frequency response for the transmission between two farthest tilesets

is shown for the newly proposed access mechanism via transistors, compared to two

existing access schemes; direct access and capacitive coupling. As it can be seen from

Fig. 3.12, the proposed access mechanism results in much lower attenuation, between

-10 dB and -42 dB. As frequency increases the attenaution in dB increases linearly. We

see that capacitive coupling provides a relatively flat frequency response, but with a

much higher attenuation of approximately -60 dB.

Figure 3.11: Proposed access via transistor mechanism for WiNoCoD (Image taken
from [79]).

3.4 Conclusion

In this chapter, we have presented the WiNoCoD project along its contributing partners

and specified the intended 2048-core CMP architecture with the multi-level NoC. We

have defined the lowest hierarchical level composed of 4 cores with a system RAM slice

and responsible memory directory. Tilesets composed of 16 tiles, which are interconnect

with a conventional electrical 2D mesh network has been presented. These tilesets are

the highest hierarchical elemenets in the NoC, that they are interconnected by the wired

RF network, therefore they constitute the main interest of focus for this thesis work.



Chapter 3. WiNoCoD Project and Wired OFDMA Based RF Interconnect 87

Figure 3.12: The frequency response between two farthest tileset on transmission line
for the developed access mechanism via transistor compared to capacitive coupling and

direct access (Image taken from [79]).

The necessary information is derived from the thesis work of A. Briere, which is also in

collaboration with WiNoCoD project.

Next, we have explained the scalable hybrid cache coherency protocol to be used in

WiNoCoD. This is important for the goals of this thesis work, as cache coherency packets

constitute the traffic circulating in the NoC infrastructure, which also includes the RF

level.

Before presenting our OFDMA based RF interconnect, we have introduced the notion

and basics of OFDM. Its revolutionary advantages have been listed. It is important to

highlight the preliminary information on OFDM and OFDMA, as this project is to first

to consider OFDMA for an on-chip CMP interconnect, to the best of our knowledge.

Then, we have specified the details of the RF Front-ends and utilized transmission line.

The necessary information is derived from the thesis works of M. Hamieh, F. Drillet and

L. Zerouil which are also in collaboration with WiNoCoD project. The rest of this thesis

work focuses on the OFDMA based allocation issue for the WiNoCoD architecture, so

that it is essential to based on the parameters and details of the wired RF infrastructure,

we have seen in this chapter.



Chapter 4

RF NoC Bandwidth Allocation

Problem

In Chapter 3, we have presented the 2048-core architecture of WiNoCoD and features

of its OFDMA based RF interconnect. As mentioned previously, using OFDMA for

an RF interconnect is a pioneering attempt that would enable reconfiguring bandwidth

effectively and rapidly among tilesets, based on their changing demands. The purpose

of this chapter is to define the bandwidth demands of tilesets, in other words cache-

coherency packets created by each tileset which are destined to locations in other tilesets

to use this RF interconnect, more precisely from a queuing theory perspective. Each

symbol, each 1024 subcarrier of the interconnect, can be regarded as an element that can

serve these packets. Briefly, this thesis work aims to develop strong algorithms which

allocate subcarriers dynamically to tilesets effectively, while respecting the nanosecond

scale constraints of the architecture, thanks to the high bandwidth reconfigurability

of OFDMA. Therefore in this chapter, firstly we formulate this bandwidth allocation

problem we encounter, considering physical constraints of WiNoCoD and main metrics to

improve in terms of on-chip requirements. Then, we review the vast literature on similar

bandwidth allocation problems, belonging to diverse fields of cellular communications

to processor scheduling. Lastly, the required concepts and notions which we use for the

bandwidth scheduling in WiNoCoD, are explained in detail. In a nutshell, this chapter

forms a theoretical preliminary basis for our bandwidth allocation algorithms, which we

propose in following chapters.

88



Chapter 4. Understanding Bandwidth Scheduling 89

4.1 WiNoCoD’s OFDMA RF Interconnect

4.1.1 Motivation

WiNoCoD’s innovative OFDMA RF interconnect aims to improve the performance of

the network-on-chip laid on a 2048-core CMP architecture, by changing users of sub-

carriers dynamically. Recalling the specifications given in previous chapter, there are

32 tilesets, where each contain 64 cores. We have seen that each tileset has an access

point to transmission line via its OFDMA modulator. Thanks to the intrinsic broadcast

capability of OFDMA, any broadcast/multicast packet need not to be multiplied, as

transmissions by a user are received by all others (SWMR). This shall increase system

capacity drastically considering the requirement of large number of broadcast/multicast

packets of a threshold based hybrid directory based cache coherency system. In previous

section, we have seen that there exists a transmission buffer where packets coming from

intra-tileset mesh network which are destined to other tilesets are stored, and served

by OFDMA RF interconnect in a FIFO manner. Similarly a receiver buffer exists at

the end of the OFDMA demodulator, receiving all transmissions from other tilesets.

Wrappers process headers of these transmissions and store packets which are destined

in a tile in its tileset.

A subcarrier on an OFDM symbol can be seen as an element, serving transmission

of information of 1,2 etc. bits based on the utilized modulation order BPSK, QPSK

etc. As mentioned previously, primary motivation behind using OFDMA on-chip is

its high reconfigurability, which refers to the ability of changing owners of subcarriers

over time. Therefore main goal shall be to exploit this reconfigurability as much as

possible, concerning unique constraints of our OFDMA interconnect and unorthodox

requirements of on-chip traffic. Hence, our problem can be formulated as allocating

subcarriers in different time instants (i.e. one or several OFDM symbols) to different

transmission queues (Fig. 4.1). Assuming that receiver side queues can be served with

a constant high rate, (which means that received packets can be transmitted into the

intra-mesh network with high rate), we can claim that dynamic allocation of subcarriers

should target decrease of latencies in transmission side queues. Therefore, in this project,

we seek subcarrier arbitration mechanisms which tries to minimize the transmission side

delays and buffer capacities. The details of protocol specifications for on-chip packets,

such as detailed definition of packet bits etc., are out of scope of this thesis work. A

generic type of bandwidth allocation mechanism is envisaged, which can be utilized for

any type of massive multicore architecture.

Based on changing parameters such as queue lengths of on different instants, the al-

location algorithm may aim to minimize the average latency, a delay or buffer length



Chapter 4. Understanding Bandwidth Scheduling 90

K Queues

Packets waiting in 
transmission queues

How to allocate N subcarriers 
to K queues to minimize 
average latency, maximum 
buffer size required etc. ?

N Subcarriers

Figure 4.1: Bandwidth allocation problem in WiNoCoD can be formulated as arbi-
trating 1024 subcarriers to 32 transmission queues of tilesets on different symbols.

exceeding probability or a totally different cost function. Next, we revise a vast literature

on the similar problems of bandwidth allocation to parallel queues which is encountered

in very diverse fields such as space telecommunications, processor scheduling, optical

communications, cellular communications etc.

4.1.2 Cognitive Radio

Cognitive radio [81] is all about making a radio device which is self-adaptive to the

changes in its environment, in order to improve; or optimize if possible, its radio capa-

bilities [82]. For this purpose, it requires 3 functionalities :

• Sensors : to capture changes in its radio environment, which can be the absence of

transmission on certain part of spectrum (i.e. white space), detection of a certain

type pre-coded signal (e.g. a beacon signal), detection of a change in energy levels

or modulation of signals etc.

• Decision Making : The required intelligent and robust algorithms that perform

these optimization processes based on environmental stimuli. This can be change

of utilized spectrum, modulation type, transmission power etc.

• Adapt : Based on the taken decisions, cognitive radio equipments can change

their RF characteristics. As a digitally implemented modulation, OFDM provides

a great flexibility for this adaptation, such as changing utilized bandwidth etc..



Chapter 4. Understanding Bandwidth Scheduling 91

These 3 main steps of cognitive radio are continously implemented, such that after

adapting its RF properties, the intelligent node continues to sensing its environment as

illustrated in Fig. 4.2.

Sense the 
environment

Decide

Adapt

Figure 4.2: Cognitive radio cycle, illustrating the circular flow of 3 main steps [82].

In this work, from a certain perspective, we build an on-chip cognitive radio system,

which takes into account the instantaneous transmission queue lengths of tileset RF

transceivers (sensing by acquiring this information from other tilesets), run the algo-

rithms proposed in explained in Chapter 5, 6 and 7 to choose the required bandwidth

(number of subcarriers) and modulation order (decision step) and apply these to its

OFDMA based transceiver (adaption step).

4.1.3 LTE

As OFDMA is an ubiquitous modulation for wired and wireless standards, one may profit

by examining the existing solutions developed for these systems. Especially LTE 4G is

the recent cellular standard which utilizes OFDMA for its medium access scheme [83].

Existing literature for partition of bandwidth in spatial and temporal dimension among

mobile nodes, rate allocation mechanisms, coordination between the base station and

mobile nodes, carrier aggregation etc. can form a basis for current and future conception

of WiNoCoD and similar projects. Even though cellular systems have a much lower

bandwidth and less strict timing requirements, certain ideas from this domain can be

migrated to our problem. For instance, Fig. 4.3 shows the carrier aggregation concept,

where non-contiguous bands of spectrum can be aggregated by a node to increase data

rate. In a sense, this concept is also applied in WiNoCoD thanks to the OFDMA based

RF infrastructure.



Chapter 4. Understanding Bandwidth Scheduling 92

f

Figure 4.3: Carrier aggregation concept which is also used in LTE, where non-
contiguous and different widths of bands can be aggregated to be used by a node.

4.2 Dynamic Bandwidth Scheduling for Parallel Queues

Aforementioned problem is referred as “Multi-user Multi-server” or “Parallel Queues”

Scheduling in the literature. Countless number of varieties of this problem are encoun-

tered in different areas such as; multiprocessor scheduling (computational scheduling)

[84], satellite communications [85], optical networks [86] etc.. When formulating the op-

timal scheduling policy, generally the average delay (or identically average queue length

from Little’s Law [87]) is chosen as the function to minimize [88], which is also the main

metric of interest for on-chip networks.

Research on scheduling policies for multi-user multi-server case incorporates fields of

Queuing Theory, Network Theory, Stochastic Optimization and Markov Decision Pro-

cesses. Considering the nature of our OFDMA interconnect, we will investigate the most

effective algorithms which are referred as dynamic scheduling policies. These type of

policies reassign servers to the queues every single or multiple time slot(s), based on

the instantaneous state of the system. Even though certain state metrics such as re-

cently measured mean response time or mean queue lengths, or utilization of the servers

can be used to determine the new server allocation, generally algorithms who are using

instantaneous queue length state information (QSI) are best (queue aware policies) [88].

Even though this problem might appear as straight-forward, optimal solution generally

requires complex stochastic operations and only valid for very limited circumstances

with specific unrealistic assumptions. In this section, we present some of the approaches

for dynamic bandwidth scheduling, which are most convenient for WiNoCoD case.



Chapter 4. Understanding Bandwidth Scheduling 93

4.2.1 Longest Queue First

For the case where there is a single server, which has to be assigned to one of K queues

every time slot (i.e. multi-user single-server case). It was proven that Longest Queue

First (LQF) policy provides the lowest average latency, given that arrival processes to

queues are independently and identically distributed (i.i.d.). This policy simply assigns

the server to the queue who has most number of packets (i.e. longest queue). Although

it is straight-forward, this policy has received a wide attention from research community

for its stochastic analysis under certain circumstances and variables. [89] compares the

buffer flow exceeding probabilities of LQF with any other non-queue aware policy, and

also proves that it is also the optimal policy in terms of buffer exponents given that

arrivals are i.i.d..

The optimality of this algorithm for multiple server case is still valid under i.i.d. ar-

rivals assumption. [90] investigates the multi-queue multi-server problem in the con-

text of wireless communications, where connections between users (queues) and certain

frequency channels (servers) are not available for certain instances. This stochastic as-

sumption for frequency selective channels in wireless communications is common. They

prove that LQF among the connected servers is the optimal solution under i.i.d. arrivals

assumption. Explaining in detail, the suggested algorithm (Longest Connected Queue

First) iterates through all servers, and assigns each server to the longest queue among

users who are connected to it on that time slot. It is trivial to see that this optimality

is valid for the special case of full connectivity, where all queues are connected to all

servers always. Note that, this is the case for WiNoCoD’s OFDMA RF interconnect,

where each tileset can use any of the 1024 subcarriers. However, the literature generally

approached this queuing problem from the wireless communications point of view, where

channel conditions are considered and a joint power/rate scheduling is performed. Their

algorithms generally use complex maximization via utility functions [91][92]. Due to

static nature of channel and transmission dynamics, our problem in WiNoCoD is purely

a queuing optimization.

As stated previously, this algorithm is optimal in the sense of minimizing average la-

tency for the special case of symmetric queues, where stochastic arrivals to queues are

i.i.d. distributed. However, for most of the time this assumption is far to be accurate.

Especially for the on-chip traffic, as we have revised in Section 2.4. In addition, this

algorithm may cause a severe starvation, as certain nodes with high queue lengths may

starve all the resources (servers), and packets in small length queues may not acquire

any resource for a long period. Another drawback of this algorithm is its computational

complexity. It iterates through each N servers, and each iterated server iterates all K

queues. And after the assignment, the queue lengths are updated. Therefore it has a



Chapter 4. Understanding Bandwidth Scheduling 94

complexity order of O (KN), which increases with the number of queues and servers.

Execution of this algorithm may be feasible for certain scenarios such as cellular commu-

nications where bandwidth is reallocated every few hundred miliseconds, however time

required for computation in an on-chip context should be limited to nanoseconds.

4.2.2 Queue Length Proportional Scheduling

Another solution to multi-queue multi-server allocation problem is to divide the total

bandwidth proportional to instantaneous queue lengths. This approach is known as

“Queue Proportional Scheduling”(QPS) or “Buffer Length Proportional Rate” in the

literature [93]. Even though its delay optimality has not been proven, it provides a

very good compromise between fairness and low average queuing delay. It was shown

that this algorithm is capable of providing a proportional average delay differentiation

under high traffic load [93]. This means; the average delay of two different queues

can be guaranteed to have a desired arbitrary proportion as di
dj

= ci
cj

, where ci and cj

are two adjusted scalars, which are multiplied by instantaneous queue lengths, while

proportionally dividing total bandwidth. This may be a strong tool for the scenarios

where a Quality-of-Service (QoS) differentiation is required. In our case, all tileset queues

have the same priority, i.e. ci = 1 for all tilesets. Hence, it can be deduced that under

high input traffic close to the system capacity, this scheduling would yield to an equal

average latency at all tileset transmission queues.

4.2.3 Square Root of Queue Length Proportional Scheduling

Complexity of stochastic optimization without subtle assumptions, forces researchers

to approach the multi-queue multi-server problem via different methods. Especially,

without well defined arrival process distributions, queuing theory equations are hard to

derive. For instance, [94] approached this problem from a different perspective. The

authors intend to design a rate scheduler for classical ATM networks. The total service

rate (can be visualized bandwidth) of R should be divided among K ATM nodes, i.e.

queues as ri. They formulate this problem as dividing the total R to K queues such

that, it minimizes the time to drain all the backlog in K queues. In this case, they

assume no further packets arrive to the queues, so the optimal arbitration clears out all

the packets in the system as quick as possible. Writing the problem formally :

argmin

{
Q1

r1
+ ...+

QK
rK

}
s.t.,

K∑
i=1

ri = R (4.1)



Chapter 4. Understanding Bandwidth Scheduling 95

They also study the case for proportional service differentiation as we have mentioned

previously, where the total service acquired by two arbitrary nodes are proportional

to a constant. However, we investigate the case for no service differentiation, where all

queues have the same priority. After using dynamic programming (DP) techniques, they

reach an elegant analytic solution, where the optimal rate allocation is proportional to

square roots of the queues. The optimal rate should be allocated to two arbitrary nodes

has a relation to their current queue lengths as follows :

ri
rj

=

√
Qi√
Qj

(4.2)

However, recall that this assumption optimizes the queue draining times and assume no

further exogenous packet arrivals. Thus, this approach may be unsuitable for certain

cases.

4.2.4 Oldest Packet First Scheduling

Apart from scheduling algorithms using instantaneous queue length information of the

queues, we would like to introduce another approach. This scheduling is omniscient in

sense of knowing current delay of each packet in each queue, which is a non-realistic

assumption for most of the scenarios. At every scheduling instance, the proposed al-

gorithm allocates N resources to oldest N packets. If scheduling is performed every

time slot, it is straight-forward that this algorithm yields to the minimum average and

maximum delay. It is generally referred as “Oldest Packet First”(OPF) algorithm in

the literature [95]. This algorithm not only needs to know each delay of each packet

in the system, but also requires high number of iterations to choose the oldest head-of-

line (HoL) packet in each queue for each of the resource to allocate. Even though this

scheduling may seem unrealistic to apply in our case, we will use this algorithm as an

optimal reference to compare our proposed schedulers.

4.3 Preliminaries of Bandwidth Allocation in WiNoCoD

4.3.1 Partitioning Bandwidth Statically

A basic instinctual approach for allocation of subcarriers for transmission would be to

divide them equally among tilesets. ATAC [3], as mentioned in Chapter 2, is a thousand-

core hybrid cache coherent CMP architecture comparable to WiNoCoD but utilizes an



Chapter 4. Understanding Bandwidth Scheduling 96

optical interconnect. Similarly to WiNoCoD, for dimensionality purposes cores are clus-

tered and there exists 16 clusters, each containing 64 identical cores which can access

the optical waveguide. As explained in detail in Chapter 2, each cluster can transmit

their information on 128-bit wide channels, which is composed of a different wavelengths

(WDMA) on different separated parts of the waveguide. In reception part, all clusters

are tuned to whole dedicated bandwidth, that they can receive all packets transmitted

by others. This is similar to intrinsic broadcast capability of WiNoCoD’s OFDMA inter-

connect, where main motivation behind this SWMR approach is to support large amount

of broadcast cache-coherence packets of distributed hybrid memory. Recalling Chapter

2, this bandwidth intense cache coherence protocol and enabling SWMR interconnect,

helps to isolate programmer from the hardware, where scalable, easy programmation

can be done in thousand-core architectures. Due to static nature of these optical chan-

nels where they are generated by non-tunable circuitry, the researchers were obliged to

allocate a bandwidth portion statically to tilesets at TX. They have chosen to equally

partition the optical bandwidth to all 64 tilesets as in Fig. 4.4(a).

frequency

time

node-1

node-2

node-3

node-4

node-K

frequency

time

node-1

node-2

node-3

node-4

node-K

(a) Static and equal share (b)     Static and non-equal share

Figure 4.4: Static and equal or non-equal allocation of frequency resources among
multiple nodes.

The fundamental assumption behind this choice is that with non-uniform memory ar-

chitecture, with broadcast intense hybrid distributed cache coherence protocol will lead

to a uniform demand from tilesets on average. First of all, this assumption depends

on the chosen application, where we know they may be so diverse in terms of spatial

locality [8]. A more significant point is the instantaneous changing demands, that we

know cores produce highly different amount of cache coherence packets both in small

intervals of few cycles or much longer application phases [96]. Hence, designers of this

optical interconnect were obliged to dimension their photonic bandwidth concerning the

maximum load that a tileset generate. It is considerable to think this mechanism not



Chapter 4. Understanding Bandwidth Scheduling 97

as scalable and bandwidth efficient, even when the average load of sharing nodes are

equal, as generated number of packets by a tileset is a sporadic phenomenon and varies

significantly over time.

The projection of this approach on WiNoCoD, would be to allocate equal number of

subcarriers on each slot for each tileset. Considering we have 1024 subcarriers and 32

subcarriers, we could allocate 32 subcarriers per tileset per symbol for transmission. In

case QPSK used, this corresponds to a configuration where each tileset can transmit 64

bits per 50 ns, thus a 1.25 Gbps rate, constantly and equally allocated for each tileset.

Of course, this choice would require no reconfiguration mechanism or overhead but

would be far away to exploit the highly efficient and rapid reconfigurability of OFDMA.

Arbitrating bandwidth to nodes based on their instantaneous demands is a strong tool to

achieve much lower delays and buffer sizes, but conventional optical or RF interconnects

are limited by their static circuitry, where OFDMA alter this situation.

4.3.2 A Quasi-Static and Quasi-Dynamic Modification

Another perspective to partition the bandwidth is to be able to distribute it to nodes per

used application. Certain applications may demand much less computational power and

memory. Taking into account our 2048 cores and 1 TByte RAM, certain applications can

be executed using much smaller parts of CMP. For instance, in case 4 out of 32 tilesets

are guaranteed to be used by the application, whole RF bandwidth could be distributed

for transmission of 4 tilesets only through the execution, which effectively increases

available bandwidth by 8. In ATAC, where transmission channels are generated by non-

tunable optical rings, we can claim even an application based quasi-static bandwidth

arbitration cannot be effectuated.

In addition, even all applications are used, the total bandwidth demand of each tileset

would not be equal. This is mainly due to fractal locality of computation and memory

access patterns, which has received a wide attention from the research community. In

[97], it was shown that this locality of on-chip traffic (that becomes much more apparent

as core number reaches thousands) can be formulated accurately by Rent’s Law which

was actually developed to model the mathematical relation between number of output

terminals and number of components in an integrated circuit. This theory, basically

states that the traffic intensity between nearer cores is exponentially higher compared

to farther cores. Also in [98] the communication probability of a core to an another

core was tried to modeled by a negative exponential distribution. [99] attempts to

characterize this locality especially for a 3D NoC interconnect. Authors in [100] and

[101] proposes NoC architectures to exploit this locality. Finally, [8] analyzes various



Chapter 4. Understanding Bandwidth Scheduling 98

number of diverse application run on a CMP and a mesh NoC, where they find out that

total throughput generated by a core through whole execution time is distributed based

on a Gaussian distribution. Briefly, this means for certain applications, even whole

CMP cores and memory would be utilized, certain tilesets may use exponentially higher

bandwidth compared to other ones.

Considering much more complex schemes, where multiple different characteristic appli-

cations are embedded on CMP, the bandwidth demand difference of tilesets shall be

much more diverse. In a nutshell, if the demands of tilesets for certain applications and

configurations through the execution time can be foreseen at compilation time, different

number of subcarriers can be allocated to appropriate tilesets easily, thanks to basic

digital reconfigurability of our OFDMA based interconnect as in Fig. 4.4(b). Even this

configuration scheme does not exploit the temporal changes of traffic, this quasi-static

modification with no overhead and effort at run-time, shall provide much higher perfor-

mance compared to a fully static architecture like ATAC, where bandwidth allocated

to tilesets are always same and equal. Undoubtedly, using rapid, trivial and efficient

bandwidth arbitration mechanisms, our OFDMA interconnect can provide much more

performance using temporal locality as an additional dimension.

Another possible option OFDMA provides us the offline optimization of the bandwidth

allocation for execution of certain applications, especially non-real time ones. Actually,

we can draw a straight analogy between subcarrier arbitration for OFDMA on-chip

interconnect and multiple CPU resource allocation for applications. They both seek

the optimal allocation of a resource (first one being data rate, and the latter one being

computational resource) to reduce latencies. Especially, there exists a vast literature on

the allocation of multiple cores to workload in thread or instruction level [102].

Like for the offline multi-core job scheduling analysis [103], optimal number of subcarriers

and chosen modulation order for each tileset on each symbol can be determined. This

shall boost the communication performance of the architecture, decreasing latencies to

minimum. The previously presented Oldest Packet First (OPF) algorithm may be a

candidate for this kind of optimization. However, in this thesis work we deal with the

on-time dynamic allocation of resources, which is a more generic approach for all kind

of applications.

4.3.3 Resource Blocks, Frames and QSI Signaling

Peculiar limitations of WiNoCoD’s OFDMA RF interconnect require to develop new

techniques to cope with. As mentioned previously, the relatively long symbol duration



Chapter 4. Understanding Bandwidth Scheduling 99

with respect to inter-packet arrival times, short packet lengths, and extremely strict de-

lay requirements make this environment really unique compared to any existing OFDMA

based communication medium. Therefore, in this section we introduce certain prelimi-

nary notions rooted from these limitations, for bandwidth allocation in WiNoCoD. This

context shape a new allocation problem concept, where we have to derive new solutions,

as extensions of the ones presented here.

4.3.3.1 Resource Blocks

First notion we present is the Resource Block (RB), which defines a group of adjacent

subcarriers on a single symbol. This term is borrowed from LTE jargon, where it is used

for a group of adjacent subcarriers spanning multiple symbols in time [104]. Considering

we have 1024 subcarriers, it is obvious that a very fine granularity for bandwidth allo-

cation with one or few subcarriers is both computationally challenging and unnecessary.

As symbol duration is relatively long (consider the case cores are operating at 1 GHz

frequency, resulting in a symbol duration more than 50 cycles which is a remarkable time

interval in terms of processing), we can state that a bandwidth reconfiguration which

is performed every symbol would be an essential requirement. We choose to define a

RB to serve exactly 1 short packet (1 flit - 64 bits). This way, a short packet (which

constitutes most of the packets circulating on RF interconnect as mentioned in Section

2.1) can be served in one symbol, regarding the unique long duration of OFDM symbols.

Consider the case we define a RB of 16 subcarriers, where a flit is 64 bits. Assuming

QPSK is used, 1 RB corresponds to 32 bits. Taking the example for a tileset which is

allocated 5 RBs (80 bits) and it has 1 flit short packet of 64 bits in its queue. Therefore,

it would utilize only 64 subcarriers and left idle the remaining 16 subcarriers, which is a

waste of resources. For these reasons above, a RB is defined as 64 bits (integer multiple

of a packet) of service in 1 symbol (32 subcarriers in case of QPSK, and 64 subcarriers

in case of BPSK). Based on the progress of the project, flit size-packet fragmentation

shall be regulated, however to test our algorithms, QPSK has been chosen as the default

utilized modulation order and 64-bit flits, thus and a RB of 32 subcarriers is assumed,

allowing each tileset to have a chance to send 1 flit per symbol. Symbol-wise on-chip

packet scheduling with RBs is shown in Fig. 4.5.

4.3.3.2 Frames

After we partition our 20 GHz spectrum as RBs (in case of QPSK, 32 RBs per symbol),

now we have to define the structure of allocation. As we have reviewed in Section 4.2,

effective rate allocation algorithms require to utilize the recent queue length information



Chapter 4. Understanding Bandwidth Scheduling 100

time

Symbol-1

Symbol-0
frequency

32 subcarriers (64 bits with QPSK)
 = 1 flit

1024 subcarriers 
Messages are stored in 64-bit 
flits in transmission queues 
of tilesets.

Based on the number of reserved 
RBs on current symbol, a flit is 
encoded on a RB. If there are 3 
RBs reserved for tileset-X, it can 
transmit first 3 flits from its queue.

Figure 4.5: A Resource Block allows for the transmission of 1 flit during a 50 ns
symbol in WiNoCoD

(QSI) of queues, in order to attain low delays and buffer overflow probability. However,

taking into account the limited bandwidth per symbol, exchange of QSIs of each tile-

set every symbol seems not realistic due to overwhelming signaling. This cost of QSI

signaling overhead will be examined in Section 4.3.3.6. In addition, most important

requirement to perform re-arbitration of subcarriers is to give the microprocessors or

RF controller modules in tilesets (or central intelligent unit) the time for computation.

In conventional OFDMA networks, for instance LTE, computation time for allocation

algorithms is not a bottleneck. 1 symbol takes around 66 microseconds in LTE, and due

to reasons like channel coherence duration and propagation time (RBs are re-allocated

every 13-14 symbols), computation for allocation is assumed to be performed instantly

between symbols. However, in our specific case in WiNoCoD, where 1 symbol is 50 ns,

the computation time appears as a significant actor, as the temporal limits of semicon-

ductor technology is reached at the scale of nanoseconds. This strict and unorthodox

temporal requirement makes the allocation problem which is examined in this thesis an

original work compared to conventional networks. Not just the computation time, but

all the cumulative delay incurred by subcarrier reconfiguration time, packet processing,

synchronization, propagation time etc. can be treated in one frame. A generic micropro-

cessor can be employed for bandwidth allocation, whereas a dedicated digital circuitry

may be implemented in order to decrease computation time further. Also, we can expect

the scale of 20 GHz OFDM bandwidth to hundreds of GHz in several decades, shortening

symbol duration more and more, with rapidly developing semi-conductor technology. In



Chapter 4. Understanding Bandwidth Scheduling 101

case, economic, low-scale generic processors will be continued to be employed for band-

width reconfiguration, this bottleneck of computation time shall continue to tighten. As

mentioned previously, IFFT/FFT computation with effective state-of-the-art modules

and synchronization latency between tilesets due to propagation time are assumed to

be zero (or included in symbol time), however in case these aspects are decided to be

treated, this computation time can be assumed to include them, where queue length

information becomes outdated. Hence, we envision a system, where QSIs (or other in-

dicators of local traffic taking into account other possible algorithms) are broadcasted

by tilesets every T symbols and the new allocation of subcarriers are activated after T

symbols. Thanks to broadcast capable OFDMA interconnect, the QSI information sent

by each tileset can be received by others. We call this T symbols as a frame. Thus,

at the end, we have a pipelined allocation system, where allocation at the start of a

frame is calculated according to QSI information sent T symbols before. Of course, we

need certain number of subcarriers to be reserved on first symbol of a frame, in order

to allow tilesets to encode their QSI. Fig. 4.6 illustrates the structures of frames and

RBs in WiNoCoD. This time-frequency matrix composed by atomic temporal units of

symbols and spectral units of RBs constitutes the backbone of the bandwidth allocation

mechanism in WiNoCoD. We provision that tilesets have a certain digital circuitry and

microprocessing system that implements this time-frequency (RB-symbol) matrix, and

they modify it at the start of every frame, where each RB corresponds to a tileset ID.

At every symbol, they use this virtual matrix to encode their flits before IFFT phase, on

the subcarriers reserved to them (if there is any on that symbol). And for the receiver

side, they do the necessary packet treatment and routing on received flits on each RB,

with the ID associated with it. In other words, tilesets implement this imaginary matrix

notion in their RF controllers, therefore they know on which symbol and on which RB,

they shall transmit their flits and receive flits of other tilesets associated with their IDs.

Note that, in case a central allocation paradigm is adopted, where a central intelligent

unit (CIU) gathers local QSIs, deciding on the new configuration of this matrix must

signal other tilesets about the bandwidth partition with a response message. Hence,

additional subcarriers should be reserved at the end of the frame.

It is important to note that, the temporal delay mentioned here for allocation proce-

dure, does not only includes the computation for arbitration but also includes all delays

incurred by wave propagation, IFFT/FFT, serialization/parallelization, conversion and

synchronization, both in transmitter and receiver sides. Therefore, in extremely rapid

changing bandwidth demands of this specific configuration of WiNoCoD, with bimodal

packets and different number of packets created every cycle by different tilesets, we have

chosen to build this pipelined framework, where outdated QSI cannot be omitted as in

conventional networks. Recall that one symbol duration is approximately 50 ns, which



Chapter 4. Understanding Bandwidth Scheduling 102

Q
S
I

Q
S
I

Q
S
I

Q
S
I

Q
S
I

Q
S
I

Q
S
I

Q
S
I

Q
S
I

1 RB : 32 
subcarriers

Certain number of RBs 
are used for signaling 
QSI

1 Frame : T OFDM symbols
time

frequency

Based on the QSI broadcasted at 
the start of the last frame, the 
allocation is done for tilesets, 
activating at the start of next 
frame.

This pipelined processing of QSI, 
allows both less QSI exchange and 
also the required amount of 
computation time and reconfiguration 
of digital elements of RF module.

Figure 4.6: Frames and Resource Blocks (RBs) in WiNoCoD

corresponds to 50 clock cycles for processors running on 1 GHz. Rather than strictly

defining these delays explicitly and individually, we have chosen to set a cumulative

delay in terms of OFDM symbols, firstly because project is still in progress where these

values are not certain yet, and also to offer a generic comprehension of the allocation

algorithms, that their performances are evaluated under different frame lengths. More-

over, one can also determine different computation times based on chosen allocation

algorithms or used microprocessor(s) with different speeds or ASIC implementations

with different trade-offs between execution speed and power consumption, surface or

budget. However, chosen frame lengths in experimental evaluation are all feasible and

validated by the primal designs of the architecture.

4.3.3.3 Decentralized and Centralized Allocation

The subcarrier arbitration mechanism we have developed for WiNoCoD interconnect,

can be classified into two cases, such as decentralized and centralized approaches. Both

approaches have pros and cons. If a centralized allocation is preferred, a single central

intelligent unit (CIU), which either can be a digital circuitry or simple microprocessor(s)

installed inside a tileset’s RF front-end (Before IFFT/FFT module). This way, it can

use the OFDM modulator/demodulator of that tileset. It shall acquire the QSIs of each

tileset, process the necessary allocation algorithm, determine the arbitration of RBs for



Chapter 4. Understanding Bandwidth Scheduling 103

next frame and send to each tileset its allocation scheme. Thanks to this full broadcast

capable structure, we do not need any beacon signal or similar channels like for most

of the wireless cognitive radio or ad-hoc networks. To lower the transmission power

requirement and error probability, CIU shall be installed in a tileset which is physically

close to the center of transmission line. This is an obvious extra signaling overhead,

which is not desirable for our limited on-chip bandwidth. Another disadvantage is the

robustness. In case, a circuit failure happens, the bandwidth allocation infra-structure

of the system collapses. In addition, with request-response nature of allocation, the

response time of the system is increased. The main aim in central allocation is to

minimize the intelligence at tileset front-ends, thus lowering the area or cost budget.

The exact signaling of which tileset will use which RB is impossible due to extensive

overhead, thus CIU shall broadcast only the number of RBs allocated for each tileset,

and a simple circuitry in each tileset should map these to its allocation matrix, by

sequentially placing them starting from the first RB. For instance, indicating a tileset to

utilize RBs R1, R2.., on symbol t1 and RBs R3, R4.. on symbol t2 .. is overwhelmingly

bandwidth consuming, which is not feasible in our case. Hence, central unit shall only

indicate the number of RBs allocated for a tileset in next frame.

Q

Q

R

R

Pipelined Allocation

TCOMP
.

TRECONFIG.

Frame t Frame t+1 Frame t+2

1 RB = 32 
subcarriers

Sequential Arbitration of RBs in 
time (or frequency) direction

Q

Q

R

R

Q

Q

R

R

Figure 4.7: Allocation of RBs through a frame, in central bandwidth allocation

Also, note that we have positioned the response of CIU on reserved subcarriers on few

symbols before the end of the frame as in Fig. 4.7. We spare Treconfiguration symbols

of time for tilesets’ processors to receive the number of RBs allocated for each tileset in

next frame and compute the RB allocation pattern and reconfigure their transmissions.



Chapter 4. Understanding Bandwidth Scheduling 104

4.3.3.4 Direction of Resource Block Allocation in a Frame

After marking the headlines of the frame structure and the pipelined fashion of RB

allocation using recent QSI information, an important question arises : in which direction

these RBs should be allocated? In other words, when we start to allocate RBs from the

first RB in the frame, which one should be the next? This is a significant and thought-

worthy aspect, both considering the network layer due to variation of delays and physical

layer due to the fact that transmission power changes based on using adjacent subcarriers

or not. We propose 2 different approaches as illustrated in Fig. 4.8 : Allocating RBs in

frequency direction and time direction. We may claim that allocating RBs in frequency

direction starting from the requirements of a tileset would allow it to clear out its queue

in shortest duration as possible, however this would be unfair for the rest of the tilesets.

Especially, in case of long frame lengths, allocating all RBs for a tileset on just first few

symbols is disadvantageous, as this tileset would not have any RBs left in the rest of the

frame taking into account new packets shall arrive during the current frame (Consider a

relatively long frame, that new packets shall continue to arrive each symbol during the

frame). These newly arriving packets would require bandwidth also, and may disrupt

the latency performance dramatically. This situation may dramatically increase the

variance of packet service duration, which increases the overall latency as we know from

queuing theory. If we allocate RBs in explained frequency direction, a group of adjacent

RBs may be concentrated along one or few symbols. In contrast, allocating RBs in time

direction would increase the chance of a tileset to have at least one RB on each symbol

of a frame). Thus, allocating RBs in time direction appears as another solution, which

seems to allocate RBs more uniform in temporal manner. Therefore, as the performance

of two proposed approaches cannot be estimated analytically, we both test them under

various scenarios and configurations.

4.3.3.5 Idle Resource Blocks-Default Frame Configuration

In particular instants, sum of RB demands of tilesets (i.e. total QSI) may be much lower

than the total number of RBs in a frame. For these cases, there may exist RBs left idle.

Considering also the potential new packets which arrives during these idle symbols, where

all or certain RBs are not used by any tileset-, sharing them equally among tilesets seems

straightforward. In fact digital nature of OFDMA allocation makes this process quite

trivial. We envision a virtual default allocation matrix where RBs are arbitrated in an

FDMA fashion which allows for a RB to be utilized during each symbol for each tileset.

In other words, in a default allocation matrix, each 32 tilesets have 1 RB each. Especially

in case of time direction allocation, if we would keep the same FDMA configuration, this

would impose an unfairness on the tilesets which utilize the RBs on the upper side of the



Chapter 4. Understanding Bandwidth Scheduling 105

Q
S
I

Q
S
I

Q
S
I

Q
S
I

Q
S
I

Q
S
I

1 Frame : T OFDM symbols

time

frequency

time 
direction

frequency 
direction

Figure 4.8: Allocation of RBs through different directions inside a frame

frame (where RB allocation starts). Therefore, we decided to employ a basic rotating

mechanism for this default configuration as in Fig. 4.9.

Q
S
I

Q
S
I

Q
S
I

time

frequency

Q
S
I

Q
S
I

Q
S
I

After allocation is performed, and 
there still exists RBs, they are 
partitioned according to default 
FDMA allocation. For instance, 
here “A” signifies for the allocated 
RBs, which is done in frequency 
direction and rest is configured in 
default allocation. 

time

frequency

For default, RBs in a frame 
are allocated equally 
among tilesets in a FDMA 
fashion, which allows for 
each tileset to have a RB 
each symbol.

Each frame, the configuration 
of default allocation is 
changed such that the 
partition starts from a different 
tileset in a rotating fashion. 
Especially in a time direction 
allocation , this allows a more 
fair arbitration. 

Q
S
I

Q
S
I

Q
S
I

A

A

A

A

A

A

A

A

A

A

A

A

A

time

frequency

Figure 4.9: Default allocation matrix which is evenly distributed among tilesets in
an FDMA fashion, is modified by the scheduler based on the reported QSIs. The rest

of the RBs which are left idle, is partitioned according to this uniform distribution

4.3.3.6 QSI Encoding and Signaling

An important aspect is the encoding of QSIs of tilesets at the start of a frame. In case

of QPSK constellation, we have 2048 bits available on a symbol. Based on our extensive



Chapter 4. Understanding Bandwidth Scheduling 106

simulation campaign, 8 bits per tileset per frame to encode QSI has shown the best

overall performance. With 8 bits, it is possible to encode 256 different levels. Of course,

the empty queue (0 QSI) should also be indicated. By looking at simulation results,

we have seen that the number of flits in a transmission queue very rarely exceeds 255

under evaluated scenarios. Therefore any QSI between 0-255 is directly encoded, and if

the number of flits is larger than 255 it is encoded as 255. Of course, one can choose

different approaches and granularity of QSI encoding, such as representing multiple flits

by a single QSI level. There is an evident trade-off between QSI signaling overhead and

accuracy of the allocation algorithm. However, from these many possibilities, by taking

account the realistic interconnect configurations, proposed 8-bit encoding seems viable

and effective.

On first symbol of each frame, tilesets have to signal their instantaneous QSIs after

encoding the number of flits. Thanks to intrinsic broadcast capability of OFDMA, each

other tileset or -CIU in centralized case-, can receive all of the QSIs. For this purpose,

certain number of RBs on first subcarriers, on first symbol is reserved, as default. For

instance, consider the example, 1 RB is composed of 32 subcarriers (QPSK-64 bits) and

QSI for each tileset is encoded with 6 bits. Then, we need 32x6 = 192 bits (subcarriers),

which corresponds to 3 RBs in this specific case. One can see that, total number of

subcarriers for QSI encoding of 32 tilesets, should be an integer multiple of RBs, in order

to avoid waste of resources and invalidation of the RB based allocation mechanism. In

case, the QSI encoding would be done with 7 bits, with default QPSK mechanism, we

would need to allocate either 3 or 4 RBs, which corresponds to 6 or 8 bits of encoding

per tileset.

Another important aspect of QSI encoding and signaling is the robustness counter trans-

mission errors. QSI sent by a tileset may be received erroneously by different tilesets,

resulting in a discoordination of bandwidth allocation, causing collision at the end. We

assume, these kind of errors are out of scope of this thesis, however one can take pre-

cautions to decrease probability of errors on QSI channels further, by employing BPSK,

the lowest modulation order or a mechanism to allocate more power on these signaling

subcarriers.

4.3.3.7 Taking Into Account the Outdated QSI

Very specific constraints of on-chip OFDMA interconnect enforces certain requirements.

Considering the relatively long symbol duration compared to packet delay requirements,

even a latency of few number of symbols is important. In this special context, just

in few symbols, whole queue dynamics may change drastically. As explained above,



Chapter 4. Understanding Bandwidth Scheduling 107

due to constraint of computation time and signaling overhead, the allocation is done

in a pipelined manner through frames. In other words, the allocation is done with the

T symbols outdated QSI. Hence, when the new reconfiguration of the bandwidth is

activated, the QSI values may have changed significantly. For instance, consider the

example where a tileset’s demand is 8 RBs, and it has been already allocated 12 RBs

during current frame and no new arrivals has occured. As the allocation is done for QSI

of 8, it would be allocated unnecessary amount of resources, while it has no packets in its

queue at the start of the new frame. Considering the highly temporally heterogeneous

on-chip cache coherency traffic, we introduce the notion of Definitive QSI (DQSI). At

the beginning of each frame, before encoding its QSI on the subcarriers, each tileset

already knows the allocated number of RBs in the current frame. Therefore, rather

than encoding QSI directly, it subtracts newly allocated number of RBs (Sti ) from its

QSI (Qti). Of course, we eliminate the negative QSI, equating it to 0 for the negative

values. :

Qti = max(0, Qti − Sti ) (4.3)

This operation is fairly simple, negligible in computation time T and processing power,

but has a great potential to avoid unnecessary bandwidth allocation. Especially, when

the QSIs are small, this value will tend to be zero, approaching to a equal allocation

of RBs. In literature, various approaches like this to eliminate unnecessary bandwidth

allocation due to outdated QSI can be found in certain protocols [105][106]. Once the

minimum number of flits in the queue is determined, we may also take into account

the number of flits that will arrive during allocation process (i.e. current frame). To

do so, the tilesets has to estimate the number of flits that will arrive during a frame.

Considering the self-similar temporal nature of on-chip traffic, these estimations shall

be accurate enough. We refer this as the Expected QSI (EQSI), which is calculated as :

Q̂ti = max(0, Qt−1i − St−1i ) +At (4.4)

where At is the estimated number of flits that will arrive during a frame. For estimation

an Exponentially Weighted Moving Average (EWMA) filter can be used, which calculates

the moving average as follows :



Chapter 4. Understanding Bandwidth Scheduling 108

At = αAt−1 + (1− α)at−1 (4.5)

α is a scalar, which weighs the importance of recent observation and at−1 is the number

of flits arrived in last frame. The optimal value of α obviously depends on the traffic. Via

extensive simulations under various scenarios, it shall be determined. Another approach

is to take the number of arrivals in last frame as the estimation, which is the extreme

case of EWMA with α = 0. Note that, α depends on the nature of the traffic and may

be determined online or offline intelligent algorithms, however this is out of scope of this

work. Based on our simulations, we have determined and tested an α value of 0.95 in

this thesis. The resulting bandwidth demand is labeled as Expected QSI (EQSI). Even

though it is quite different, [107] also takes into account the average arrival rates for

allocating bandwidth in epochs.

For decentralized and centralized approaches, calculation mechanisms for DQSI and

EQSI differs. Firstly for the decentralized case, each tileset computes its own DQSI or

EQSI, and signals this value for the allocation process to other tilesets. This eliminates

the redundancy and greatly reduces the computational costs. Therefore, the QSI is

encoded just after the calculation of the number of RBs in next frame and few cycles

before the end of the current frame to allow the computation of DQSI or EQSI. Each

tileset governs an EWMA for estimating its own EQSI. At each frame, tileset front-

end is responsible of counting the number of flits that has arrived in last frame and

computation of the moving average.

In contrary, for centralized approach, in order to minimize the computational burden at

tileset front-ends, CIU is responsible for DQSI and EQSI calculation. Tilesets simply

signal their QSIs and CIU uses this information to calculate DQSI or EQSI for each

tileset before allocating RBs based on these values. For this purpose, CIU keeps the

number of allocated RBs for each tileset in last frame. CIU governs 32 EWMA registers

for each of the tilesets. As CIU cannot know the exact number of flits that has arrived

in a frame to each tileset, it estimates this value for each tileset by using the current

QSI value, last QSI value and allocated RBs in last frame :

Ait−1 = Qit−1 −Qit + Sit−1 (4.6)



Chapter 4. Understanding Bandwidth Scheduling 109

The computational cost of EQSI or DQSI for CIU is roughly more than 32 times for the

tilesets in decentralized mode. Note that these operations are parallel in nature, so they

can be exploited by multiple processors employed in CIU.

4.3.4 Traffic Models and Evaluation Methods

Before we present our algorithms, it is essential to introduce the techniques and scenarios

we will utilize to evaluate them. We use OMNeT++ [108], a discrete event simulator,

to mimic the dynamics of 32 tileset transmission side queues, which is utilized widely

among Network-on-Chip community. Simulations are run in a symbol-accurate manner,

that the atomic unit of time is one OFDM symbol. This means that we approach the

problem from the grounds of improving the latency performance of packets waiting to

be served at RF interconnect. Therefore, any traffic/congestion issues and latencies

incurred in intra-tileset network (2D electrical mesh, tile crossbars etc.) are omitted.

Also, content of the packets and their priorities are ignored, where they are treated as

subjects demanding bandwidth with certain quality of service. This approach is adopted

in this thesis work, because isolating RF interconnect and optimizing its performance

provides the possibility to employ a more generic massive CMP attached to it, opening

a whole new avenue for chip designers to consider OFDMA based RF interconnect as a

candidate for their specific designs. However, note that, a more holistic approach and

possible extensions to this work can be developed, taking also intra-tileset traffic into

account.

4.3.4.1 Metrics of Interest

First metric of interest, that we try to improve is the average latency. Through a deep

literature review, the average latency incurred by Network-on-Chip under different traffic

models and loads, appears as the most important metric of interest [109][110][111][112][101].

Delay between the time a cache-coherency packet is generated at a core/memory unit

till the time it reaches its destination point through the Network-on-Chip is defined as

its latency, where it includes all delays caused by waiting time at buffers of routers,

switching, packet processing, fragmentation and propagation time. The main motiva-

tion behind aiming to minimize average latency as a priority rather than setting strict

requirements for individual packet delays, is that this metric effects application total

execution time directly. However, for various real time applications with strict QoS re-

quirements, jitter of individual packet delays may be significant [113] also. Most of the

time, efficiency of the NoC is tested by investigating the curve showing the increasing

average latency under increasing average load (i.e. known as injection rate in literature -



Chapter 4. Understanding Bandwidth Scheduling 110

average number of packets generated by processing elements at an instance). Generally,

due to basics of network theory, the average latency starts to blow up after a certain

threshold of injection rate, where the system starts to be insufficient compared to gen-

erated load, where packets build-up at a faster rate than their serving at queues, hence

average latency increases exponentially at a massive rate. Generally most of the papers

in literature seek to increase this system blow up limit as much as possible, by their new

NoC designs. Therefore, as stated previously, in this thesis, we will investigate these

kind of curves, and try to increase the system limit and also decrease the average latency

under this limit, as much as possible with our novel bandwidth allocation algorithms.

We have mentioned the importance of individual packet delays in a NoC, especially for

run time applications. Therefore, our RF interconnect should also be tested for this

metric. For this purpose, for each simulation we evaluate the packet delay exceeding

probability curve, which shows the probability of any packet generated throughout the

simulation to exceed the given delay bound, D0, : P (D > D0).

And third metric of interest, is the buffer length exceeding probability curve, which gives

the probability for a tileset’s transmission queue to exceed a certain value in terms of

flits L0, at any symbol throughout the simulation; P (L > L0). One can see that, this

metric is significant for dimensioning buffer lengths of our interconnect.

We compare the latency performance of our algorithms to a pseudo-optimal scheduler

called “Oldest Packet First”(OPF) which is explained previously in Section 4.2.4. At

the start of each frame, this optimal algorithm allocates RBs one-by-one by choosing the

tileset queue with the highest head-of-line (HOL) delay. As it name suggests, it always

serves the oldest packet in the system first. If multiple oldest packets exists, a rotating

priority mechanism is applied. In this approach, aforementioned pipelined mechanism

is not used as this is a hypothetical reference algorithm. Only at each frame time a near

optimal arbitration of RBs is calculated.

4.3.4.2 Employed Traffic Models

Currently utilized application benchmarks to test NoC performance is far to represent

the load generated future embedded algorithms in 1000 core architectures [3][47][114].

There exists an intense attempt by the NoC research community to characterize the

on-chip traffic and generate reliable synthetic traffic to span a wide spectrum of diverse

applications to be used by future CMPs, as mentioned in Section 2.4. Therefore, to

evaluate the validity of our OFDMA interconnect and proposed arbitration algorithms,

we have chosen to use synthetic stochastic traffic models.



Chapter 4. Understanding Bandwidth Scheduling 111

To test our algorithms first we start with homogeneous traffic, where we model the

number of packets each tileset transmission queue generates every symbol as Poisson

process. The most utilized traffic model for synthetic packet generation in NoC literature

is the Bernoulli process where at any cycle, a tile or processor generates a packet with

probability p. As the number of packets that a tileset generates in a symbol is the sum

of generated packets by multiple tiles in multiple cycles, it can be modeled as Poisson

distribution, because superposition of multiple independent Bernoulli Random Variables

yields to a Poisson process.

Hence, firstly, we test our algorithms with uniformly distributed Poisson Process case,

where total injection rate, i.e. average number of total packets generated by each tileset

on each symbol, is equally divided among all tilesets (also denoted as “Uniform Poisson”

throughout the thesis). Therefore, the average load of tilesets throughout the simulation

is equal, but not the generated packets by them on each symbol as it is a Poisson Process.

Of course, this model is far away to provide the necessary benchmark for performance

evaluation of our algorithms, due to temporal and spatial heterogeneity of on-chip traffic,

which is explained in detail in Section 2.4.

In order to stress our interconnect and proposed algorithms, as a second stochastic

traffic model, we use the non-uniformly distributed Poisson Process, where we still use

the Poisson process to generate packets by each tileset on each symbol, but total injection

rate is distributed non-uniformly. In order to push the limits of performance evaluation,

without loss of generality, we set the injection rates of each first 8 tilesets to 1/120 of total

rate; each second 8 tilesets to 2/120 of total rate; each third 8 tilesets to 4/120 of total

rate and each last 8 tilesets to 8/120 of total rate. Hence, we make sure certain tilesets

generate geometrically larger amount of load on average compared to certain others.

One can also loosely relate our chosen ratios to the observations of [8], performed with

various applications, that the spatial distribution of total load to processing elements in

a CMP follows a Gaussian distribution, with different standard variations depending on

the application and architecture.

In Section 2.4, we have seen that nature of on-chip cache-coherency induces a highly

spatial and temporal heterogeneous traffic, that average load generated by certain pro-

cessing elements shall be significantly different than certain others in CMP. In addition

to these, there exists the temporal self-similar nature of traffic, which means a tileset

generates packets in a bursty sense. Of course, the degree of heterogeneity for both

temporal and spatial dimensions depends on the type of application, cache sizes, used

coherency protocols etc. However, this bursty self-similar temporal nature is a well ob-

served phenomenon for all types of NoCs and CMPs. In Section 2.4, it was mentioned

that a Hurst Parameter is used to measure the degree of temporal burstiness. Now, to



Chapter 4. Understanding Bandwidth Scheduling 112

form a third and more realistic traffic model, we seek methods to generate traffic with

desired Hurst parameter, H. Generation of traffic with accurate H is not trivial and

there exists a vast literature for it. [8] uses Discrete Fast Fourier Transform (DTFT)

to generate packets stochastically for a CMP with NoC with given H as a parameter.

Similarly to this work, authors of [115] also propose to generate stochastic traffic for

CMPs with given H, but by aggregating heavy tailed ON-OFF Pareto Processes. They

also propose to employ a recursive mechanism to further tune the traffic’s accuracy. This

phenomenon, that the aggregation of multiple heavy tailed ON-OFF processes will yield

to a approximate self-similar traffic with desired H, is well investigated by researchers

[116][117][118]. From a different perspective, in [119], authors use linear approximation

to form fractal Gaussian noise for this purpose. We use as the most feasible one for our

case, the method used in [56], Discrete Pareto Burst Poisson Process (DPPBP), where

authors utilized to dimension buffer sizes in a NoC. In this method, each node gener-

ates certain number of flows according to a Poisson Process. Then, the length of each

generated flow is determined stochastically according to Pareto distribution, which is a

discrete number of slots (in our case a symbol). Each flow generates packets at a constant

rate (1 packet/symbol in our case) and unlimited number of flows co-exist at any time.

Parameters of Poisson and Pareto processes are defined according to desired average

load and H. In our simulations, in order to stress our algorithms as much as possible,

we generally used a H parameter of 0.9 which is much higher than most of applications’

empirically derived H parameters in [8]. We use this realistic self-similar method with

large H, to test our algorithms, rather than simulating with existing benchmarks, be-

cause current limited number of applications are far away to stress our interconnect,

where WiNoCoD aims to serve a vast spectrum of diverse applications in future.

In addition, we also emulated the bimodal packet sizes of cache coherency. As previously

mentioned, authors in [61] found that short control packets constitute between 70%-80%

of all generated packets, where rest are the cache line carrying long packets. Therefore,

we set the ratio of long packets to 25%. Also, in [3] this ratio for bimodal packets is

used. Any generated packet is determined to be either a long or short packet based

on this probability, independently. Using information from literature and consulting

to memory architectures of WiNoCoD, we set short packet lengths to 64 bits and long

packet lengths to 576 bits (where 64 bits for control header, and 512 bits for cache line

payload), without loss of generality.



Chapter 4. Understanding Bandwidth Scheduling 113

4.4 Using Generic Cores for Bandwidth and Modulation

Order Allocation Algorithmss

In this chapter, we have demonstrated a dynamic bandwidth allocation principle, where

a dedicated intelligent component composed of one or several processors, is responsible

of computing bandwidth allocation algorithms. In case of decentralized allocation, these

intelligent units are implanted inside RF front-ends of each tileset, before the IFFT

block, executing the same algorithms. In case of centralized allocation, only a single

unit is implanted inside one tileset’s RF front-end.

Now, in this section, we introduce the possibility of using few of the generic 2048 cores

of the CMP, for the bandwidth allocation and modulation order selection as a concept.

As it can be seen from Fig. 4.9, one can utilize, for instance, the core (or several cores)

for bandwidth arbitration purposes, inside the tile, which is closest to the RF front-

end. This way a low latency communication between this tile and the RF front-end

can be attained. The information coming from the local transmission and reception

queues, information coming from other tilesets (QSI, utilization of subcarriers etc.) can

be transferred to the responsible cores of this tileset, with predefined packet formats.

After the necessary computation, the resulting allocation can be re-transferred to the

RF front-end, for bandwidth reconfiguration. Modulation order selection algorithms can

also be computed via this procedure.

Core

I$ D$

Core

I$ D$

Core

I$ D$

Core

I$ D$

DMA
DIR

RAM

Mesh 
Router

Tile 

Core

I$ D$

Core

I$ D$

Core

I$ D$

Core

I$ D$

DMA
DIR

RAM

Mesh 
Router

Tile 

QSIFFT

IFFTS/PADC P/S

Mesh 
Router

DAC S/P P/S

Up-
conversion

Down-
conversion

One or several cores of the 
most close tileset to the RF 
front-end can be used to 
process bandwidth allocation 
algorithms.

Figure 4.10: One or several cores inside the tile, which is closest to the RF Front-end
can be utilized to compute banwidth and modulation order allocation algorithms. This

implementation can be adopted both for decentralized or centralized approach.

With this approach both decentralized or centralized allocation can be performed. In

decentralized case, a tile in each tileset shall be responsible for bandwidth allocation,



Chapter 4. Understanding Bandwidth Scheduling 114

whereas for centralized case a tile inside just one tileset is necessary. Note that, applying

a centralized case for this specific way of bandwidth allocation seems more scalable and

efficient, as we only use just one tile. With this approach, we remove the extra area

and cost overhead of implanting microprocessors or dedicated circuits inside RF front-

ends, for computing allocation algorithms. However, note that, we have not studied the

detailed implementation of this option in the scope of this thesis.

In order to decrease the communication latency further between the RF front-end and

the responsible cores, their specific packets containing bandwidth allocation information

can be assigned priority inside the mesh router over the other NoC packets coming from

other tilesets to RF front-end.

With this approach, our previously presented pipelined and framed allocation paradigm

gains more importance. One can see that, if this approach is adopted for bandwidth

allocation, the reconfiguration and computation shall take more time. Therefore, in this

case the necessity of a pipelined framework is more underlined. We have examined the

proposed allocation algorithms for various frame lengths, hence this may consitute a

guideline for this kind of implementation.

4.5 Conclusion

In this chapter, we have defined the goals of this thesis work precisely, by basing on

the details of RF interconnect which was given in the previous chapter. It has been

emphasized that the main interest of this thesis work for WiNoCoD is to allocate sub-

carriers to different tilesets to minimize the transmission latency as much as possible. We

have justified our methodology for decoupling the effect of lower NoC layers and treat

the resource allocation problem solely on the grounds of transmission side inter-tileset

communication.

It has been remarked that the very specific constraints and features of the on-chip

architecture presented in WiNoCoD, such as very short OFDM symbol duration or

strict delay requirements, forces us to treat problem differently. We face an original

problem of multiple queues on multiple symbols. We have introduced our frame based

pipelined allocation scheme due to unorthodox, short OFDM symbol duration, which

mitigates the latency of reconfiguration and other procedures.

Two different approaches to this defined bandwidth allocation problem have been ex-

plained : a centralized allocation, where a single microprocessor(s) or device is respon-

sible for bandwidth arbitration computation or a decentralized allocation, where each

tileset has a microprocessor(s) or device to compute the same bandwidth arbitration.



Chapter 4. Understanding Bandwidth Scheduling 115

Pros and cons of these two complementary approaches have been listed. In addition, all

necessary details on signaling and allocation procedures have been defined.

Finally, the metrics of interest for this thesis work and the stochastic traffic models for

performance utilization have been presented. Note that, the information given in this

chapter, will constitute the base of the to be presented resource allocation algorithms in

next chapters.



Chapter 5

WiNoCoD Bandwidth Allocation

Algorithms

In Chapter 4, the new problem of service allocation to multiple parallel queues, in

multiple symbols is conceptualized, which is a fundamental projection of WiNoCoD

subcarrier arbitration issue. Main metrics and goals of interest such as minimizing

average latency, limiting delay-rate function or fairness have been discussed in detail also.

Several approaches to this problem from literature are proposed in Chapter 4, along with

their optimality under certain assumptions. Chapter 4 induces a broad sense of multi-

user scheduling in general. Furthermore, preliminary concepts of subcarrier allocation

for WiNoCoD due to unorthodox nature of on-chip architecture were presented in detail.

Chapter 5, covers the proposed effective bandwidth allocation for the new problem of

WiNoCoD’s OFDMA RF interconnect. Under various configurations and input traffic

models, pros-cons, feasibility and performance of proposed algorithms are evaluated

extensively and classified as a tree diagram at the end of the chapter.

5.1 Serial QSI Allocation

5.1.1 Regular Serial QSI Allocation

First algorithm we propose is a relatively straight-forward one. After QSIs are broad-

casted and acquired by each tileset, they allocate RBs in a frame (RB matrix) serially,

looping through the QSI values of tilesets, i.e. serving requests of tilesets one-by-one.

The algorithm terminates when there is no RBs left to allocate or if all requests of tile-

sets are served. In case, total QSI of all tilesets is fewer than the total number of RBs in

116



Chapter 5. WiNoCoD Bandwidth Allocation 117

the frame, the remaining RBs are shared using default allocation matrix as in Section

4.3.3.5.

One can claim that, RB allocation can also be done one-by-one, looping each time

through tilesets for each RB to allocate or with a completely different approach, how-

ever limiting the number of iterations is highly essential. Previously presented in Section

4.2.1, well known LQF requires high number of iterations like this. Considering our tem-

poral budget of few hundreds of processor cycles for bandwidth arbitration computation,

iterating through 32 tilesets only once is feasible.

Starting allocation from the same tileset in every allocation epoch will cause an un-

fairness, as first nodes will have priority for acquiring RBs. In these cases, if RBs are

taken by these priority nodes, the rest will likely to starve. In order to avoid this, we

propose a simple rotating priority scheme, that cyclically starts from the next tileset,

every allocation epoch.

As serial allocation is a simple consecutive assignment of RBs to tilesets, no mathemati-

cal or computational demand exists. Hence, employing this algorithm in a decentralized

allocation architecture is not too costly. However for the sake of coherency, we also

perform our experimentation on serial allocation algorithm with centralized approach.

5.1.1.1 Decentralized Approach

Tilesets broadcast their QSIs on reserved subcarriers each T symbols (frame) as in Fig.

4.5. Then starting from the tileset with the instantaneous priority, the RBs equal to

QSI demand of each tileset is allocated iteratively, based on the direction of allocation.

Allocation terminates when there are no RBs left or the iteration is finished (i.e. all

demands of tilesets are served). As allocation is performed on the default allocation

matrix, if there are remaining RBs after iteration, they are arbitrated as explained in

Section 4.3.3.5. Note that, in order to avoid inconsistency for bandwidth allocation and

reulting congestion, each tileset shall perform the same algorithm without any error.

Average Latency

First, we evaluate the average latency performance of decentralized serial allocation al-

gorithm with increasing injection rate for 4 different frame lengths (T = 4, 8, 16 and 32)

under 3 stochastic traffic models explained in Section 4.3.4.2. As mentioned previously,

different frame lengths may be imposed by the circuital constraints or be an intended

choice. Longer frame lengths decrease the signaling overhead eventually, increasing the

useful communication bandwidth. Framed and pipelined allocation is the result of the



Chapter 5. WiNoCoD Bandwidth Allocation 118

Table 5.1: Total number of RBs for different lengths of frames and associated QSI
signaling overhead percentage.

T (symbols) Number of RBs Overhead (%)

4 128 3.21

8 256 1.56

16 512 0.78

32 1024 0.39

short symbol durations, where we have to spare certain amount of time to micropro-

cessors and components to reconfigure bandwidth occupation. Table 5.1 lists the total

number of RBs for different lengths of frames and associated QSI signaling overhead

percentage. As there may be different choices for the processing speeds of bandwidth

reconfiguration units, we evaluate the proposed allocation algorithms for various frame

lengths.

Fig. 5.1 shows the average latency curves under Uniform Poisson Traffic model, where

the spatial or temporal variance is least. Before starting to evaluate the results, we

would like to highlight a previously mentioned important aspect, which is known as the

network capacity in queuing and network theory. When the average injection rate (in-

put) surpasses the average service rate (i.e. utilization ρ > 1), the queue backlogs start

to grow continuously, resulting in practically infinite average latency. Also, as average

latency of a system grows quadrically with the utilization, even ρ values approaching 1

may cause very high latencies. In our WiNoCoD interconnect, as we have 1024 subcar-

riers encoded by QPSK, it can serve 2048 bits or 32 flits per symbol. As 25% of packets

are 9 flits and 75% of packets are 1 flit long, the average service demand of a packet is 3

flits. Therefore, system capacity in our case is 32/3 = 10.66 packets/symbol. In Fig. 5.1,

we observe that near optimal OPF algorithm for each T values, is able to reach a point

near to this theoretical capacity. However, for lower injection rates, OPF is performing

remarkably worse compared to the allocation algorithm, because when the number of

packets present in the queues is low, infrequent repartition (not every symbol, but every

few symbols) of the bandwidth according to instantaneous latencies of the packets is not

a valid approach. Therefore, we can state OPF does not constitute an efficient reference

for low injection rates, but for the injection rates closer the system capacity.

Most remarkable results for uniform Poisson case with decentralized serial allocation is

the relatively worse performance for T = 4 symbols, for injection rates larger than 5

packets/symbol. One would expect to see the shortest frame length to perform best as a

result of more frequent, thus more accurate QSI information. As serial allocation, takes

the broadcasted QSIs and allocates RBs serially to tilesets without any sophisticated

treatment, when injection rate increases, tilesets’ QSI values starts to increase also.

Hence, when we have a short frame length, we have practically small number of RBs



Chapter 5. WiNoCoD Bandwidth Allocation 119

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized Serial Allocation
Uniform Poisson Traffic

Figure 5.1: Average latency curves under uniform Poisson traffic with increasing
injection rate for decentralized serial allocation algorithm.

to allocate. For T = 4 there are 124 RBs are available when QSI signaling subcarriers

are excluded. In this case, when the QSI demands of tilesets are large, only one or few

of the tilesets grab all the RBs in a frame. Even though, we have a rotating priority

mechanism, this unfairness results in very large waiting times for tilesets to be served.

We see from Fig. 5.1, this starvation effect deteriorates as frame length gets longer. In

contrary, for small injection rates, shorter frame length, thus more frequent allocation

shows better performance as expected.

Another interesting observation is on the direction of RB allocation. We observe that

generally frequency direction allocation incurs a lower average latency compared to time

direction. This roots from the default allocation matrix which reserves 1 RB for each

tileset, when all QSI demands are served. In first few symbols of a frame, QSI demands

of tilesets are served in chunks once at a time by using multiple RBs in a single symbol.

When all allocation is terminated, the rest is partitioned uniformly.

As a next step, we evaluate the same curves under non-uniform Poisson traffic and

non-uniform DPBPP traffic with H=0.9, in Fig. 5.2 and Fig. 5.3, respectively.

As it can be noticed from figures above, the most interesting result is the better perfor-

mance of T = 32 than others under non-uniform DPBPP traffic in terms of approaching

the system capacity. This is due to same starvation effect with lower frame lengths ex-

plained above. However, for smaller injection rates, still, the lower frame lengths show

better performance as expected. Only, in uniform and non-uniform Poisson process, we

see that T = 8 symbols of frame length is able to approach to system limit surprisingly,

possibly due to being an effective compromise between frequent QSI signaling and low

number of RBs to allocate once at a time.



Chapter 5. WiNoCoD Bandwidth Allocation 120

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized Serial Allocation
Non-Uniform Poisson Traffic

Figure 5.2: Average latency curves under non-uniform Poisson traffic with increasing
injection rate for decentralized serial allocation algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized Serial Allocation
DPBPP H=0.9

Figure 5.3: Average latency curves under non-uniform DPBPP traffic with increasing
injection rate for decentralized serial allocation algorithm.

Packet Delay and Queue Length Bound Exceeding Probabilities

Next, we evaluate the delay and queue length exceeding probability curves (i.e. inverse

cumulative probability distribution function) for different frame lengths for decentralized

serial allocation algorithm. These curves give a good understanding on maximum delay

a packet can experience or the necessary buffer capacity etc. as explained in Section

4.3.4.1. These curves are evaluated only for realistic and stressing non-uniform DPBPP

traffic due to absence of space. By looking at Fig. 5.3, we see that for injection rates

larger than 8 packets/symbol, all frame lengths fails (i.e. blows up), therefore we have

selected an injection rate of 7 packets/symbol for this evaluation, where each frame

length provides a reasonable average latency.

Fig. 5.4(a) and Fig. 5.4(b) show the probability graphs for a packet to exceed a certain

delay or a transmission queue to exceed a threshold on any symbol, respectively.



Chapter 5. WiNoCoD Bandwidth Allocation 121

D
0
 : Delay Bound (symbols)

0 10 20 30 40 50 60 70 80

P
(D

>
D

0
)

10-3

10-2

10-1

100

T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction

Decentralized Serial Allocation
DPBPP H=0.9
Inj. Rate = 7 packets/symbol

(a)

Q
0
 : Queue Length Bound

0 10 20 30 40 50 60 70 80

P
(Q

>
Q

0
)

10-3

10-2

10-1

100

T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction

Decentralized Serial Allocation
DPBPP H=0.9
Inj. Rate = 7 packets/symbol

(b)

Figure 5.4: Packet Delay (a) and Queue Length (b) exceeding probability graphs for
decentralized serial allocation algorithm under non-uniform DPBPP traffic (log-linear)

For instance, we observe in Fig. 5.4(a), that probability for a packet experiencing a delay

between 30 and 70 symbols, is smallest for the frame length of 16 symbols with time

direction allocation. However, for instance, probability of a packet experiencing a delay

larger than 20 is minimum for T = 4 symbols and time direction allocation is around

0.5. Recalling an OFDM symbol is larger than 50 ns, one can claim that decentralized

serial allocation does not perform well under an injection rate of 7 packets/symbol. For

queue length exceeding graph, best performance for all thresholds is by T=16 symbols

in time direction. For instance, under this configuration probability for a transmission

queue of a tileset to have more than 50 flits on a symbol is around 0.01.

5.1.1.2 Centralized Approach

Whereas we have mentioned utilizing serial QSI allocation algorithm in centralized ap-

proach is not that much interesting due to no computation, however we perform the

same experimentation procedure in previous section. As it was stated in Section 4.3.3.3,

we give a certain amount of time for tilesets to receive allocation response from the CIU

and reconfigure their transmissions. Throughout this thesis, when we are comparing

centralized approach to decentralized approach, we always used a Treconfig = 2 sym-

bols. Hence, when comparing a decentralized frame length of 4 symbols (mainly due

to computation time), we use a 6 symbols of frame length for the centralized approach.

Recall that, in centralized approach we additionally have RBs reserved for transmission

of response packets.

Fig. 5.5, Fig. 5.6 and Fig. 5.7 show the average latency with increasing injection rate un-

der 3 different stochastic models for centralized serial allocation algorithm. One cannot



Chapter 5. WiNoCoD Bandwidth Allocation 122

see any substantial difference between the decentralized case, except for the difference

between the decentralized allocation with T = 4 symbols under uniform Poisson traffic.

With centralized approach, we have a total frame length of 6 symbols, which eliminates

the aforementioned starvation effect.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, Freq. Direction
T=4+2, Time Direction
T=8+2, Freq. Direction
T=8+2, Time Direction
T=16+2 Freq. Direction
T=16+2, Time Direction
T=32+2, Freq. Direction
T=32+2, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Centralized Serial Allocation
Uniform Poisson Traffic

Figure 5.5: Average latency curves under uniform Poisson traffic with increasing
injection rate for centralized serial allocation algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, Freq. Direction
T=4+2, Time Direction
T=8+2, Freq. Direction
T=8+2, Time Direction
T=16+2 Freq. Direction
T=16+2, Time Direction
T=32+2, Freq. Direction
T=32+2, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Centralized Serial Allocation
Non-Uniform Poisson Traffic

Figure 5.6: Average latency curves under non-uniform Poisson traffic with increasing
injection rate for centralized serial allocation algorithm.

Packet delay and queue length exceeding probability graphs are also investigated, as for

the decentralized case. Fig. 5.8 shows the similar performance of centralized case to

decentralized case.

5.1.2 Serial QSI with 2-loop Allocation

Most unsatisfactory result from the regular serial QSI allocation algorithm was its signifi-

cantly low performance in terms of approaching the network capacity. Most interestingly,

frequent bandwidth allocation with very short frame length causes a significant increase



Chapter 5. WiNoCoD Bandwidth Allocation 123

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized Serial Allocation
DPBPP H=0.9

Figure 5.7: Average latency curves under non-uniform DPBPP traffic with increasing
injection rate for centralized serial allocation algorithm.

D
0
 : Delay Bound (symbols)

0 10 20 30 40 50 60 70 80

P
(D

>
D

0
)

10-3

10-2

10-1

100

T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction

Centralized Serial Allocation
DPBPP H=0.9
Inj. Rate = 7 packets/symbol

(a)

Q
0
 : Queue Length Bound

0 10 20 30 40 50 60 70 80 90 100

P
(Q

>
Q

0
)

10-3

10-2

10-1

100

T=4+2, Freq. Direction
T=4+2, Time Direction
T=8+2, Freq. Direction
T=8+2, Time Direction
T=16+2 Freq. Direction
T=16+2, Time Direction
T=32+2, Freq. Direction
T=32+2, Time Direction

Centralized QPS Allocation
DPBPP H=0.9
Inj. Rate = 10 packets/symbol

(b)

Figure 5.8: Packet Delay (a) and Queue Length (b) exceeding probability graphs for
centralized serial allocation algorithm under non-uniform DPBPP traffic (log-linear)

in average latency. For instance, for a frame length of 4 symbols, regular QSI allocation

causes to system to blow in terms of average latency, for injection rates larger than 6

packets/symbol. We have observed that this contradicting effect is due to low number

of RBs to allocate under short frame lengths. By using neutral priority, certain tilesets

exhaust RBs, starving tilesets who really need resources.

We have mentioned that the main motivation behind suggesting regular serial QSI al-

location algorithm was its very low computational requirements, where only a single

iteration of tilesets is performed. However, based our experiments, we have seen that

this algorithm shall be improved through further modifications. In order to solve this

fairness problem, and even increase the fairness among tileset transmission queues, we

have established a modification of serial QSI allocation algorithm.

This time allocation of RBs is performed in 2 stages, as the name suggests. Firstly



Chapter 5. WiNoCoD Bandwidth Allocation 124

after receiving QSIs of each tileset, they are summed and divided to number of tilesets

to obtain the “average QSI”on current frame. This average QSI value is an integer,

and found by upper rounding the result. At the first stage of the algorithm, 32 tilesets

are iterated as in the previous simple serial allocation. However on this first loop, only

tilesets who have a larger QSI than the current “average QSI”can grab RBs. After this

first iteration, QSI values are updated by substracting the already allocated RBs in this

frame. Followingly, at the second stage, the same iteration through tilesets are performed

by their updated QSI values, this time as the default serial allocation algorithm. By

this way, we make sure that tilesets who really need RBs get its share. This extension

to regular serial QSI allocation algorithm can be seen as an attempt to compensate

imbalances in queues. It is widely admitted in queuing theory that, optimal scheduling

algorithms in terms of latency minimization, are the ones who balances the queues more

effectively [90].

However, note that this algorithm may introduce another dimension of unfairness. If

certain high load tilesets keep being over the average QSI, and exhaust all the RBs in

first stage; other active tilesets with low QSI values may not grab resources for very long

time. This starvation issue can be solved simply by by-passing first stage periodically

every certain frames. However, this issue is not discussed in this thesis.

Note that, this modification does not only require an extra iteration, but also introduces

mathematical operations such as 32 32-bit summations, a single division, 32 binary

comparisons etc. Hence, it presents a certain degree of computational cost compared to

regular QSI allocation.

5.1.2.1 Decentralized Approach

In decentralized approach, each tileset first calculates the “average QSI”by themselves,

based on the broadcasted QSI values by all other tilesets. Then through the first iteration

RBs are arbitrated in allocation matrix in time or frequency direction. The second

iteration continues to allocate RBs from the last RB of the first iteration. This way,

allocation or RBs are pipelined and faster.

Average Latency

We perform our usual average latency experiments for this method to evaluate whether

proposed modification increases the performance.

Comparing Fig. 5.9, Fig. 5.10 and Fig. 5.11 to Fig. 5.1, Fig. 5.2 and Fig. 5.3,

respectively; we see a substantial performance increase. Thanks to its added fairness,

this algorithm is able to reach near the network capacity. Most remarkable result is for



Chapter 5. WiNoCoD Bandwidth Allocation 125

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized Serial
Allocation with 2-Loop Alloc.
Uniform Poisson Traffic

Figure 5.9: Average latency curves under uniform Poisson traffic with increasing
injection rate for decentralized serial 2-loop allocation algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized Serial
Allocation with 2-Loop Alloc.
Non-uniform Poisson Traffic

Figure 5.10: Average latency curves under non-uniform Poisson traffic with increasing
injection rate for decentralized serial 2-loop allocation algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized Serial
Allocation with 2-Loop Alloc.
DPBPP H=0.9

Figure 5.11: Average latency curves under non-uniform DPBPP traffic with increas-
ing injection rate for decentralized serial 2-loop allocation algorithm.



Chapter 5. WiNoCoD Bandwidth Allocation 126

the shortest frame length of T = 4 symbols. With 2-loop modification, now with a frame

length of T = 4 symbol performs best compared to longer frame lengths as expected.

We have seen in previous section that, even though exchanging QSI more frequently

should give lower average latencies, due to starvation phenomenon explained, it was de-

grading the performance. Now, by this simple modification with very limited additional

complexity, we have shown that this effect can be mitigated.

By inspecting, Fig. 5.9, Fig. 5.10 and Fig. 5.11, we can claim that proposed algorithm

induces reasonable and scalable average latencies, especially for short frame lengths.

Considering it has very limited computational requirements, we can state this algorithm

can be implemented easily for T = 4 or 8 symbols, while we are taking all other delays

incurred due to reconfiguration, propagation, serialization, packet treatment etc.

Another point to mention is on the direction of RB allocation. Different than the

previous case, we see that now both direction of allocation in frequency or time, achieves

nearly the same capacity. For lower injection rates, frequency direction provides lesser

average latency. This is due to the fact that by allocating RBs in frequency direction,

tilesets with large QSIs are able to be serve all packets in few symbols. Of course, as

frame lengths longer, the gap between frequency and time direction allocation widens.

Packet Delay and Queue Length Bound Exceeding Probabilities

Next, in order to compare the improvement of this 2-loop algorithm we evaluate the

packet delay and queue length exceeding probability graphs under realistic non-uniform

DPBPP traffic. However, instead of 7 packets/symbol injection rate we choose to inspect

the performance under higher traffic load. 7 packets/symbol of injection rate was a

threshold, where all different frame lengths were under network capacity. Thanks to

fairness with 2-loop algorithm, this threshold is further expanded. Hence, we choose

an injection rate of 10 packets/symbol for the evaluation of maximum delay and buffer

capacity.

Even under an injection rate of 10 packets/symbol with severe temporal and spatial

burstiness, by evaluating Fig. 5.12, we see that serial allocation with 2-loop modi-

fication provides reasonable delays for packets and buffer capacities, despite its low

computational complexity. However, considering an OFDM symbol is longer than 50 ns

and strict requirements of on-chip packets, one can argue this performance gain is not

sufficient, especially when the traffic load is high. For example, from Fig. 5.20(a), we

see that probability for a packet in any queue in the system to experience a delay larger

than 50 symbols is approximately 0.1, even under a frame length of 4 symbols.



Chapter 5. WiNoCoD Bandwidth Allocation 127

D
0
 : Delay Bound (symbols)

0 10 20 30 40 50 60 70 80 90 100

P
(D

>
D

0
)

10-3

10-2

10-1

100

T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction

Decentralized Serial Allocation
with 2-loop modification
DPBPP H=0.9
Inj. Rate = 10 packets/symbol

(a)

Q
0
 : Queue Length Bound

0 10 20 30 40 50 60 70 80 90 100

P
(Q

>
Q

0
)

10-4

10-3

10-2

10-1

100

T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction

Decentralized Serial Allocation
With 2-loop modification
DPBPP H=0.9
Inj. Rate = 10 packets/symbol

(b)

Figure 5.12: Packet Delay (a) and Queue Length (b) exceeding probability graphs
for decentralized serial 2-loop allocation algorithm under non-uniform DPBPP traffic

(log-linear) under 10 packets/symbol injection rate

5.1.2.2 Centralized Approach

In centralized version of the 2-loop serial allocation, CIU is responsible of acquiring

QSIs, calculate the average QSI, than perform the allocation in 2 iterations. However,

different than the decentralized approach, CIU first calculates the total number of RBs

allocated to each tileset and broadcasts them in response. Then tilesets reconfigure their

transmission matrix, simply by occupying RBs consecutively based on the direction

of allocation. Even though, the computational burden is minimal for this type of an

algorithm, we choose to implement the centralized version of it.

Average Latency

First, average latency performance with increasing injection rate under 3 different stochas-

tic models are evaluated.

From Fig. 5.13, Fig. 5.14 and Fig. 5.15, we see that despite having an extra signaling

overhead for response and 2 symbols of additional latency for reconfiguration, average

latency performance is degraded slightly.

Packet Delay and Queue Length Bound Exceeding Probabilities

To check the delay fairness and maximum buffer occupancy, next we inspect the packet

delay and queue length exceeding probability graphs under non-uniform DPBPP traffic

with 10 packets/symbol injection rate.

As it can be seen in Fig. 5.16, centralized version of the 2-loop serial allocation does not

provide drastically changed delay and queue length exceeding probability performance,

due to 2 symbol extra latency or additional overhead and block allocation of RBs.



Chapter 5. WiNoCoD Bandwidth Allocation 128

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized Serial
Allocation with 2-Loop Alloc.
Uniform Poisson Traffic

Figure 5.13: Average latency curves under uniform Poisson traffic with increasing
injection rate for centralized serial 2-loop allocation algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized Serial
Allocation with 2-Loop Alloc.
Non-uniform Poisson Traffic

Figure 5.14: Average latency curves under non-uniform Poisson traffic with increasing
injection rate for centralized serial 2-loop allocation algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized Serial
Allocation with 2-Loop Alloc.
DPBPP H=0.9

Figure 5.15: Average latency curves under non-uniform DPBPP traffic with increas-
ing injection rate for centralized serial 2-loop allocation algorithm.



Chapter 5. WiNoCoD Bandwidth Allocation 129

0 10 20 30 40 50 60 70 80 90 100

P
(D

>
D

0
)

10-3

10-2

10-1

100

D
0
 : Delay Bound (symbols)

T=4+2, Freq. Direction
T=4+2, Time Direction
T=8+2, Freq. Direction
T=8+2, Time Direction
T=16+2 Freq. Direction
T=16+2, Time Direction
T=32+2, Freq. Direction
T=32+2, Time Direction

Centralized Serial Allocation
with 2-loop modification
DPBPP H=0.9
Inj. Rate = 10 packets/symbol

(a)

Q
0
 : Queue Length Bound

0 10 20 30 40 50 60 70 80 90 100

P
(Q

>
Q

0
)

10-4

10-3

10-2

10-1

100

T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction

Decentralized Serial Allocation
With 2-loop modification
DPBPP H=0.9
Inj. Rate = 10 packets/symbol

(b)

Figure 5.16: Packet Delay (a) and Queue Length (b) exceeding probability graphs for
centralized serial 2-loop allocation algorithm under non-uniform DPBPP traffic (log-

linear) under 10 packets/symbol injection rate

5.1.3 Serial QSI Allocation with DQSI and EQSI

We have previously introduced the notion of Definitive Queue State Information (DQSI)

and Expected Queue State Information (EQSI) in Section 4.3.3.7, to cope the outdated

QSI due to pipelined allocation. We have seen the possible augmentation of capacity

by employing a simple 2-loop modification. Now, we will investigate serial allocation

algorithm under DQSI and EQSI modification. As α can take a vast amount of different

values, due to absence of space, we only investigate the performance under α = 0.95,

which is generally provides the best performance in most of the scenarios.

5.1.3.1 Decentralized Approach

As mentioned in Section 4.3.3.7, in decentralized approach, each tileset computes its own

DQSI or EQSI value by using currently allocated number of RBs and/or instantaneous

moving average. Then, this value is broadcasted on the first symbol of the next frame.

Then, as in the plain serial allocation in Section 5.1.(a), the RB allocation is performed

in frequency or time direction, using these values.

Average Latency

Firstly, we investigate the average latency with increasing injection rate with DQSI and

EQSI based serial allocation algorithm, for different frame lengths under 3 different

stochastic models.

Evaluating Fig. 5.17, Fig. 5.18 and Fig. 5.19 and comparing them to simple regular

serial allocation, the most remarkable outcome is to see the substantial average latency



Chapter 5. WiNoCoD Bandwidth Allocation 130

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, DQSI, Freq. Direction
T=4, DQSI, Time Direction
T=4, EQSI, Freq. Direction
T=4, EQSI, Time Direction
T=8, DQSI, Freq. Direction
T=8, DQSI, Time Direction
T=8, EQSI, Freq. Direction
T=8, EQSI, Time Direction
T=16, DQSI, Freq. Direction
T=16, DQSI, Time Direction
T=16, EQSI, Freq. Direction
T=16, EQSI, Time Direction
T=32, DQSI, Freq. Direction
T=32, DQSI, Time Direction
T=32, EQSI, Freq. Direction
T=32, EQSI, Time Direction

Decentralized Serial Allocation
DQSI and EQSI(alpha=0.95)
Uniform Poisson Traffic

Figure 5.17: Average latency curves under uniform Poisson traffic with increasing
injection rate for decentralized serial allocation with DQSI and EQSI algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, DQSI, Freq. Direction
T=4, DQSI, Time Direction
T=4, EQSI, Freq. Direction
T=4, EQSI, Time Direction
T=8, DQSI, Freq. Direction
T=8, DQSI, Time Direction
T=8, EQSI, Freq. Direction
T=8, EQSI, Time Direction
T=16, DQSI, Freq. Direction
T=16, DQSI, Time Direction
T=16, EQSI, Freq. Direction
T=16, EQSI, Time Direction
T=32, DQSI, Freq. Direction
T=32, DQSI, Time Direction
T=32, EQSI, Freq. Direction
T=32, EQSI, Time Direction

Decentralized Serial Allocation
DQSI and EQSI(alpha=0.95)
Non-uniform Poisson Traffic

Figure 5.18: Average latency curves under non-uniform Poisson traffic with increasing
injection rate for decentralized serial allocation with DQSI and EQSI algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, DQSI, Freq. Direction
T=4, DQSI, Time Direction
T=4, EQSI, Freq. Direction
T=4, EQSI, Time Direction
T=8, DQSI, Freq. Direction
T=8, DQSI, Time Direction
T=8, EQSI, Freq. Direction
T=8, EQSI, Time Direction
T=16, DQSI, Freq. Direction
T=16, DQSI, Time Direction
T=16, EQSI, Freq. Direction
T=16, EQSI, Time Direction
T=32, DQSI, Freq. Direction
T=32, DQSI, Time Direction
T=32, EQSI, Freq. Direction
T=32, EQSI, Time Direction

Decentralized Serial Allocation
DQSI and EQSI(alpha=0.95)
DPBPP H=0.9

Figure 5.19: Average latency curves under non-uniform DPBPP traffic with increas-
ing injection rate for decentralized serial allocation with DQSI and EQSI algorithm.



Chapter 5. WiNoCoD Bandwidth Allocation 131

decrease by just utilizing DQSI. It is not only eliminating the unnecessary resource allo-

cation, but also compensates the unfairness due to small number of RBs. For instance,

comparing Fig. 5.8 and Fig. 5.22, we see that for plain serial allocation algorithm with

a frame length of 4 symbols, queues blow up for injection rates higher than 7 packet-

s/symbol, whereas DQSI based allocation can still provide average latency smaller than

10 symbols, for injection rates up to 10 packets/symbol. We see that for this case, EQSI

provides a capacity around up to 9 packets/symbol.

The main motivation behind DQSI’s strong improvement lies at its ability to avoid

redundant service allocation, thus making sure only highly loaded queues gets their

appropriate share from bandwidth. Apparently, it is even providing better fairness under

these evaluated scenarios than 2-loop allocation mechanism. DQSI encoding requires

only a single subtraction operation before broadcast of QSIs, which can be performed

in a single cycle. In addition default allocation matrix mechanism, makes sure the

non-utilized RBs are evenly arbitrated among all tilesets.

As expected, as frame gets longer, EQSI provides much better results compared to DQSI.

However note that, DQSI just only require a single cycle subtraction operation which

makes it feasible for short frame lengths such as 4 symbols.

Packet Delay and Queue Length Bound Exceeding Probabilities

Next, we evaluate the queue length and packet delay exceeding probability graphs for

DQSI and EQSI under non-uniform DPBPP traffic.

D
0
 : Delay Bound (symbols)

0 10 20 30 40 50 60 70 80 90 100

P
(D

>
D

0
)

10-4

10-3

10-2

10-1

100

T=4, DQSI, Freq. Direction
T=4, DQSI, Time Direction
T=4, EQSI, Freq. Direction
T=4, EQSI, Time Direction
T=8, DQSI, Freq. Direction
T=8, DQSI, Time Direction
T=8, EQSI, Freq. Direction
T=8, EQSI, Time Direction
T=16, DQSI, Freq. Direction
T=16, DQSI, Time Direction
T=16, EQSI, Freq. Direction
T=16, EQSI, Time Direction
T=32, DQSI, Freq. Direction
T=32, DQSI, Time Direction
T=32, EQSI, Freq. Direction
T=32, EQSI, Time Direction

Decentralized Serial Allocation
DQSI and EQSI(alpha=0.95)
Injection Rate = 10 packets/symbol
DPBPP H=0.9

(a)

Q
0
 : Queue Length Bound

0 10 20 30 40 50 60 70 80 90 100

P
(Q

>
Q

0
)

10-3

10-2

10-1

100

T=4, DQSI, Freq. Direction
T=4, DQSI, Time Direction
T=4, EQSI, Freq. Direction
T=4, EQSI, Time Direction
T=8, DQSI, Freq. Direction
T=8, DQSI, Time Direction
T=8, EQSI, Freq. Direction
T=8, EQSI, Time Direction
T=16, DQSI, Freq. Direction
T=16, DQSI, Time Direction
T=16, EQSI, Freq. Direction
T=16, EQSI, Time Direction
T=32, DQSI, Freq. Direction
T=32, DQSI, Time Direction
T=32, EQSI, Freq. Direction
T=32, EQSI, Time Direction

Decentralized Serial Allocation
DQSI and EQSI(alpha=0.95)
Injection Rate = 10 packets/symbol
DPBPP H=0.9

(b)

Figure 5.20: Packet Delay (a) and Queue Length (b) exceeding probability graphs
for decentralized serial allocation with DQSI and EQSI algorithm under non-uniform

DPBPP traffic (log-linear)

Evaluating Fig. 5.20(a), we see the strong performance of DQSI in terms of minimizing

delay exceeding probability. For delay bounds larger than 40 symbols, the probability of



Chapter 5. WiNoCoD Bandwidth Allocation 132

exceeding with DQSI for T=4, T=8, and T=16 follows practically the curve. Comparing

DQSI to 2-loop algorithm (Fig. 5.12), we see the dramatic performance augmentation.

For instance, with T=4 symbols of frame length, the probability of having a packet

delay larger than 10 symbols for decentralized DQSI algorithm (both frequency and time

direction) is around 0.1 while for decentralized 2-loop allocation it is around 0.8. We do

not observe the same performance extension for queue length exceeding probabilities.

Even though, for small queue length bounds probabilities are smaller for DQSI compared

to 2-loop extension, for instance probability of a queue length to exceed 90 flits is

practically the same.

Another result from Fig. 5.20(a) signifies that EQSI provides lesser delay exceeding

probability (for delay bounds smaller than 80 symbols), compared to DQSI, with a

frame length of 32 symbols. This is quite convenient as, with larger frames, QSI gets

outdated more severly and the average input traffic has to be included in the allocation

procedure. However, recall that, DQSI requires only a subtraction operation before QSI

encoding, which makes it viable for short frame lengths.

5.1.3.2 Centralized Approach

In this section, centralized version of the DQSI and EQSI extension is evaluated with

2 symbols of additional reconfiguration delay and extra overhead for responses. As

mentioned in Section 4.3.3.7, tilesets only broadcast their instantaneous QSI every frame,

whereas CIU keeps the number of RBs of allocated in previous frame, QSIs reported in

previous frame for each tileset, moving averages and computes the DQSI and EQSI.

Average Latency

The average delay with increasing injection rate and probability graphs for delay bound

and queue length bound exceeding probabilities are examined to check whether a subtle

degradation occurs due to centralization.

By comparing Fig. 5.17, Fig. 5.18 and Fig. 5.19 with Fig. 5.21, Fig. 5.22 and Fig.

5.23 respectively, we do not observe any intense increase in average latency (except few

symbols) or any observable pattern change. Therefore, we can claim if DQSI or EQSI

based serial allocation would be implemented, a centralized approach can be taken to

decrease the computational complexity at the tileset front-ends. Similarly as for the

decentralized case, EQSI provides much better performance especially for larger frame

lengths.



Chapter 5. WiNoCoD Bandwidth Allocation 133

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, DQSI, Freq. Direction
T=4+2, DQSI, Time Direction
T=4+2, EQSI, Freq. Direction
T=4+2, EQSI, Time Direction
T=8+2, DQSI, Freq. Direction
T=8+2, DQSI, Time Direction
T=8+2, EQSI, Freq. Direction
T=8+2, EQSI, Time Direction
T=16+2, DQSI, Freq. Direction
T=16+2, DQSI, Time Direction
T=16+2, EQSI, Freq. Direction
T=16+2, EQSI, Time Direction
T=32+2, DQSI, Freq. Direction
T=32+2, DQSI, Time Direction
T=32+2, EQSI, Freq. Direction
T=32+2, EQSI, Time Direction

Centralized Serial Allocation
DQSI and EQSI(alpha=0.95)
Uniform Poisson Traffic

Figure 5.21: Average latency curves under uniform Poisson traffic with increasing
injection rate for centralized serial allocation with DQSI and EQSI algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, DQSI, Freq. Direction
T=4+2, DQSI, Time Direction
T=4+2, EQSI, Freq. Direction
T=4+2, EQSI, Time Direction
T=8+2, DQSI, Freq. Direction
T=8+2, DQSI, Time Direction
T=8+2, EQSI, Freq. Direction
T=8+2, EQSI, Time Direction
T=16+2, DQSI, Freq. Direction
T=16+2, DQSI, Time Direction
T=16+2, EQSI, Freq. Direction
T=16+2, EQSI, Time Direction
T=32+2, DQSI, Freq. Direction
T=32+2, DQSI, Time Direction
T=32+2, EQSI, Freq. Direction
T=32+2, EQSI, Time Direction

Centralized Serial Allocation
DQSI and EQSI(alpha=0.95)
Non-uniform Poisson Traffic

Figure 5.22: Average latency curves under non-uniform Poisson traffic with increasing
injection rate for centralized serial allocation with DQSI and EQSI algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, DQSI, Freq. Direction
T=4+2, DQSI, Time Direction
T=4+2, EQSI, Freq. Direction
T=4+2, EQSI, Time Direction
T=8+2, DQSI, Freq. Direction
T=8+2, DQSI, Time Direction
T=8+2, EQSI, Freq. Direction
T=8+2, EQSI, Time Direction
T=16+2, DQSI, Freq. Direction
T=16+2, DQSI, Time Direction
T=16+2, EQSI, Freq. Direction
T=16+2, EQSI, Time Direction
T=32+2, DQSI, Freq. Direction
T=32+2, DQSI, Time Direction
T=32+2, EQSI, Freq. Direction
T=32+2, EQSI, Time Direction

Centralized Serial Allocation
DQSI and EQSI(alpha=0.95)
DPBPP H=0.9

Figure 5.23: Average latency curves under non-uniform DPBPP traffic with increas-
ing injection rate for centralized serial allocation with DQSI and EQSI algorithm.



Chapter 5. WiNoCoD Bandwidth Allocation 134

Packet Delay and Queue Length Bound Exceeding Probabilities

Delay bound and queue length bound exceeding probability graphs are also evaluated for

the centralized DQSI or EQSI based serial QSI allocation, under non-uniform DPBPP

traffic with a total injection rate of 10 packets/symbol.

D
0
 : Delay Bound (symbols)

0 10 20 30 40 50 60 70 80 90 100

P
(D

>
D

0
)

10-4

10-3

10-2

10-1

100

T=4+2, DQSI, Freq. Direction
T=4+2, DQSI, Time Direction
T=4+2, EQSI, Freq. Direction
T=4+2, EQSI, Time Direction
T=8+2, DQSI, Freq. Direction
T=8+2, DQSI, Time Direction
T=8+2, EQSI, Freq. Direction
T=8+2, EQSI, Time Direction
T=16+2, DQSI, Freq. Direction
T=16+2, DQSI, Time Direction
T=16+2, EQSI, Freq. Direction
T=16+2, EQSI, Time Direction
T=32+2, DQSI, Freq. Direction
T=32+2, DQSI, Time Direction
T=32+2, EQSI, Freq. Direction
T=32+2, EQSI, Time Direction

Centralized Serial Allocation
DQSI and EQSI(alpha=0.95)
Injection Rate = 10 packets/symbol
DPBPP H=0.9

(a)

Q
0
 : Queue Length Bound

0 10 20 30 40 50 60 70 80 90 100
P

(Q
>

Q
0
)

10-3

10-2

10-1

100

T=4+2, DQSI, Freq. Direction
T=4+2, EQSI, Freq. Direction
T=4+2, EQSI, Time Direction
T=8+2, DQSI, Freq. Direction
T=8+2, DQSI, Time Direction
T=8+2, EQSI, Freq. Direction
T=8+2, EQSI, Time Direction
T=16+2, DQSI, Freq. Direction
T=16+2, DQSI, Time Direction
T=16+2, EQSI, Freq. Direction
T=16+2, EQSI, Time Direction
T=32+2, DQSI, Freq. Direction
T=32+2, DQSI, Time Direction
T=32+2, EQSI, Freq. Direction
T=32+2, EQSI, Time Direction

Centralized Serial Allocation
DQSI and EQSI(alpha=0.95)
Injection Rate = 10 packets/symbol
DPBPP H=0.9

(b)

Figure 5.24: Packet Delay (a) and Queue Length (b) exceeding probability graphs for
centralized serial allocation algorithm with DQSI and EQSI under non-uniform DPBPP

traffic (log-linear)

We see in Fig. 5.24, that probability of exceeding delay bounds (especially small delay

bounds such as 10-20 symbols) is slightly larger for centralized approach both for DQSI

and EQSI, especially for the small frame lengths (4-8 symbols), which is an expected

outcome. Besides this small performance degradation, centralized and decentralized

DQSI or EQSI shows close performance under these circumstances, which may be a

good reason to choose centralized version of it to concentrate computational power in a

single part of the CMP.

5.2 Queue Proportional Allocation

5.2.1 Regular Queue Proportional Allocation

In previous section (5.1), we have proposed and examined the feasibility of possibly the

simplest option, serial QSI allocation algorithm, where tilesets broadcast their instanta-

neous QSI and RBs iniside a frame are arbitrated sequentially in a single loop. The major

motivation behind this kind of a practice is to be able to effectuate allocation operation

in few hundreds of nanoseconds including all other extra cumulative delays stemming

from propagation, synchronization, processing etc., which is a strict constraint imposed

by the 20 GHz OFDMA interconnect and on-chip environment. On-chip packets demand



Chapter 5. WiNoCoD Bandwidth Allocation 135

delays as low as possible, tens of nanoseconds. Allocating RBs in a single loop can also

be performed in small frame lengths, thus more and more up-to-date QSIs, which shall

enhance the performance further. However, we have observed that this simple allocation

pattern is not suitable to approach the capacity of the system, contradictory for smaller

frame lengths, due to the starvation of all RBs in a frame by certain nodes. We were able

to augment the performance of this algorithm by adding a second iteration. However,

we have seen that most of the performance from this algorithm can be gained through

using DQSI with small frame lengths such as 4 or 8 symbols.

In this section, we evaluate the viability of the Queue Proportional Scheduling (QPS)

algorithm with additional limited complexity compared to serial allocation. The main

idea is to allocate RBs in a frame proportionally to QSIs of the tilesets.

Formally, these operations can be written as :

St+1
i =

N
Qti
K∑
j=1

Qtj

 (5.1)

where N is the number of RBs, K is the number of tilesets and St+1
i is the number

of RBs allocated to tileset i in next frame. Note that, as the resulting ratio can be a

fractional, it is always upper rounded. By this way, first we make sure that even a node

with a QSI of 1 would be allocated a RB (thus preventing starvation) and second we

avoid any RB left unassigned (therefore, there is no notion of default allocation matrix

for as in previous serial allocation algorithm). However, one can see that, this would

cause the calculated total number of RBs to exceed the total available number of RBs,

N. This is simply resolved by the sequential RB allocation through a frame in time

or frequency direction, just as in the previous section. This time, rather than using

directly the emitted QSI values, recently calculated St+1
i values are taken from tilesets

in a loop, and RBs are allocated as for the serial allocation algorithm. Hence, allocation

terminates when there is no RBs left to assign. One can see that, the tilesets which

are sequenced last may have a certain degree of disadvantage. Therefore, just as in the

serial allocation algorithm a simple rotating priority mechanism is employed.

Another important point to highlight is on the computational complexity of the algo-

rithm. First, QSIs of K (32 for our case) tilesets are summed. In case of 8 bits encoding

is preferred as evaluated in this thesis work, for 32 tilesets, this operation yields to a

13-bit summation. Hence, 16 bit simple processors can be used, or in case of using 32 or



Chapter 5. WiNoCoD Bandwidth Allocation 136

64 bit processor(s), summation can be performed in parallel, thus in lesser time. As can

be seen in equation (5.1), the division of N and QSI summation is multiplied by the QSI

of each tileset, therefore this value can be calculated once and kept in a register, and

utilized repeatedly. This shall save a significant amount of computation time. At the

end, there is one division operation (minimum 13-bits with 8-bit QSI), 32 summations

and 32 multiplications. Multiplications and divisions can be performed in fixed point

manner as numerical accuracy is not a problem for this specific allocation, which would

ease further the task of the RB allocation processor(s).

Optimality Issue of Queue Proportional Scheduling

In Section 4.2.3, while reviewing the literature for rate scheduling, we have mentioned

about the arbitration of bandwidth among multiple parallel queues proportional to

square root of their QSIs. This was the solution to an optimization problem intending

to solve the “minimum draining time”, i.e. to minimize the time required to clear out a

vector of K queues, by allocating the appropriate fraction of the whole rate (bandwidth)

:

argmin

{
Q1

r1
+ ... +

QK
rK

}
s.t.,

K∑
i=1

ri = R (5.2)

This problem intends to minimize the total draining time of the queues, whereas we are

more interested in minimizing the total delays experienced by packets in these parallel

queues. Consider this illustrative simple example that a queue has P packets at t = 0

and it has a constant service rate of 1 packet/slot. The draining time for the queue is

obviously P slots. In contrast, the individual delays for each packet is 1 slot for the first

packet served, 2 slots for the second packet served, ... , and P slots for the last packet

served, due to waiting time for service. Hence, at the end total (or average if divided by

the total number of packets) delay experienced by all packets, Dtotal is :

Dtotal =
P∑
i=1

i =
P (P + 1)

2
(5.3)

In a nutshell, we observe a cumulative effect for total delay experienced by packets with

the instantaneous number of packets in a queue. By looking at the above equation,

we understand that total (average) delay for the packets in a queue is related with the

square of the instantaneous queue state.



Chapter 5. WiNoCoD Bandwidth Allocation 137

Returning back to the equation (5.2), for the minimization of the draining time, we can

reformulate this equation loosely to minimize the “square of the QSIs”, for minimizing

average packet delay. As solution to the previous problem is to divide the total rate

proportionally to the square root of QSIs, the solution to the new problem is simply to

divide the total rate proportional to the instantaneous QSIs.

5.2.1.1 Decentralized Approach

First, decentralized version of the QPS algorithm is evaluated, where each tileset execute

the same operation to arbitrate RBs in a frame, proportional to broadcasted QSI values.

RBs are assigned both in frequency and time direction. As for the previously proposed

serial QSI allocation algorithm, identical experiments and traffic models are evaluated.

Average Latency

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized QPS Allocation
Uniform Poisson Traffic

Figure 5.25: Average latency curves under uniform Poisson traffic with increasing
injection rate for decentralized QPS allocation algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized QPS Allocation
Non-Uniform Poisson Traffic

Figure 5.26: Average latency curves under non-uniform Poisson traffic with increasing
injection rate for decentralized QPS allocation algorithm.



Chapter 5. WiNoCoD Bandwidth Allocation 138

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Decentralized QPS Allocation
DPBPP H=0.9

Figure 5.27: Average latency curves under non-uniform DPBPP traffic with increas-
ing injection rate for decentralized QPS allocation algorithm.

First thing we notice in these average latency curves is the remarkably high average

latency under low injection rates, especially for longer frame lengths. Comparing these

figures (Fig. 5.25, Fig. 5.26 and Fig. 5.27) to serial QSI allocation, we do not observe

this high latency offset for low injection rates. This effect roots from the nature of QPS.

If a tileset has zero QSI at the start of a frame, it will be allocated no RBs during

the whole next frame, as allocation is done proportional to QSIs. Due to the pipelined

allocation, if a packet arrives to an idle queue, it has to wait until the start of next frame

to get a share of the total bandwidth. However, in regular serial QSI allocation, as we

have mentioned, there exists the notion of “default frame allocation”, which arbitrates

unassigned RBs evenly among all 32 tilesets. Thus, even a tileset has zero QSI, it will be

allocated certain amount of RBs, which avoids this phenomenon. Note that, obviously

this effect gets more evident under lower injection rates.

In contrast, QPS provides a much better performance for larger injection rates, especially

near system capacity compared to serial allocation (without any modification). Because,

naturally allocating RBs proportionally to QSIs, eliminates the probability that certain

nodes to exhaust all the RBs in a frame and starve other nodes.

From these figures, we observe that, QPS algorithm can approach to near the system

limit even without any modification. Especially for small frame lengths, we observe that

QPS provides reasonably low average latencies.

Packet Delay and Queue Length Bound Exceeding Probabilities

As a next step, packet delay bound and queue length exceeding probability graphs are

evaluated under non-uniform DPBPP traffic with an injection rate of 10 packets/symbol.



Chapter 5. WiNoCoD Bandwidth Allocation 139

D
0
 : Delay Bound (symbols)

0 10 20 30 40 50 60 70 80 90 100

P
(D

>
D

0
)

10-4

10-3

10-2

10-1

100

T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction

Decentralized QPS Allocation
DPBPP H=0.9
Inj. Rate = 10 packets/symbol

(a)

Q
0
 : Queue Length Bound

0 10 20 30 40 50 60 70 80 90 100

P
(Q

>
Q

0
)

10-4

10-3

10-2

10-1

100

T=4, Freq. Direction
T=4, Time Direction
T=8, Freq. Direction
T=8, Time Direction
T=16 Freq. Direction
T=16, Time Direction
T=32, Freq. Direction
T=32, Time Direction

Decentralized QPS Allocation
DPBPP H=0.9
Inj. Rate = 10 packets/symbol

(b)

Figure 5.28: Packet Delay (a) and Queue Length (b) exceeding probability graphs for
decentralized QPS allocation algorithm under non-uniform DPBPP traffic (log-linear)

5.2.1.2 Centralized Approach

In centralized version of the QPS algorithm, calculation of RBs proportional to QSIs are

performed by the CIU and based on the response messages, bandwidth is reconfigured

with 2 symbol latency as for the serial allocation algorithm.

Average Latency

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, Freq. Direction
T=4+2, Time Direction
T=8+2, Freq. Direction
T=8+2, Time Direction
T=16+2 Freq. Direction
T=16+2, Time Direction
T=32+2, Freq. Direction
T=32+2, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Centralized QPS Allocation
Uniform Poisson Traffic

Figure 5.29: Average latency curves under uniform Poisson traffic with increasing
injection rate for centralized QPS allocation algorithm.

Fig. 5.29, Fig. 5.30 and Fig. 5.31 show the slight increase in average latencies with

centralizing the algorithm due to extra latency and signaling overhead, however perfor-

mance patterns are similar with the decentralized case.



Chapter 5. WiNoCoD Bandwidth Allocation 140

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, Freq. Direction
T=4+2, Time Direction
T=8+2, Freq. Direction
T=8+2, Time Direction
T=16+2 Freq. Direction
T=16+2, Time Direction
T=32+2, Freq. Direction
T=32+2, Time Direction
T=4 OPF
T=8 OPF
T=16 OPF
T=32 OPF

Centralized QPS Allocation
Non-Uniform Poisson Traffic

Figure 5.30: Average latency curves under non-uniform Poisson traffic with increasing
injection rate for centralized QPS allocation algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, Freq. Direction
T=4+2, Time Direction
T=8+2, Freq. Direction
T=8+2, Time Direction
T=16+2 Freq. Direction
T=16+2, Time Direction
T=32+2, Freq. Direction
T=32+2, Time Direction

Centralized QPS Allocation
DPBPP H=0.9

Figure 5.31: Average latency curves under non-uniform DPBPP traffic with increas-
ing injection rate for centralized QPS allocation algorithm.

Packet Delay and Queue Length Bound Exceeding Probabilities

Next, we evaluate the packet delay and queue length exceeding probability graphs for

centralized QPS algorithm. The slight performance degradation due to centralization

can be observed in Fig. 5.32.

5.2.2 QPS Allocation with DQSI and EQSI

We seek to increase the performance of QPS algorithm by using DQSI or EQSI en-

coding especially for small injection rates. As for the previous cases, decentralized and

centralized version of DQSI and EQSI differs.



Chapter 5. WiNoCoD Bandwidth Allocation 141

D
0
 : Delay Bound (symbols)

0 10 20 30 40 50 60 70 80 90 100

P
(D

>
D

0
)

10-4

10-3

10-2

10-1

100

T=4+2, Freq. Direction
T=4+2, Time Direction
T=8+2, Freq. Direction
T=8+2, Time Direction
T=16+2 Freq. Direction
T=16+2, Time Direction
T=32+2, Freq. Direction
T=32+2, Time Direction

Centralized QPS Allocation
DPBPP H=0.9
Inj. Rate = 10 packets/symbol

(a)

Q
0
 : Queue Length Bound

0 10 20 30 40 50 60 70 80 90 100

P
(Q

>
Q

0
)

10-3

10-2

10-1

100

T=4+2, Freq. Direction
T=4+2, Time Direction
T=8+2, Freq. Direction
T=8+2, Time Direction
T=16+2 Freq. Direction
T=16+2, Time Direction
T=32+2, Freq. Direction
T=32+2, Time Direction

Centralized QPS Allocation
DPBPP H=0.9
Inj. Rate = 10 packets/symbol

(b)

Figure 5.32: Packet Delay (a) and Queue Length (b) exceeding probability graphs
for centralized QPS allocation algorithm under non-uniform DPBPP traffic (log-linear)

5.2.2.1 Decentralized Approach

Average Latency

First, we investigate the average latency with increasing injection rate for decentralized

QPS with DQSI and EQSI under different traffic models.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80 T=4, DQSI, Freq. Direction
T=4, DQSI, Time Direction
T=4, EQSI, Freq. Direction
T=4, EQSI, Time Direction
T=8, DQSI, Freq. Direction
T=8, DQSI, Time Direction
T=8, EQSI, Freq. Direction
T=8, EQSI, Time Direction
T=16, DQSI, Freq. Direction
T=16, DQSI, Time Direction
T=16, EQSI, Freq. Direction
T=16, EQSI, Time Direction
T=32, DQSI, Freq. Direction
T=32, DQSI, Time Direction
T=32, EQSI, Freq. Direction
T=32, EQSI, Time Direction

Decentralized QPS Allocation
DQSI and EQSI(alpha=0.95)
Uniform Poisson Traffic

Figure 5.33: Average latency curves under uniform Poisson traffic with increasing
injection rate for decentralized QPS allocation with DQSI and EQSI algorithm.

In Fig. 5.33, Fig. 5.34 and Fig. 5.35, we see that average latencies are significantly

lowered with EQSI or DQSI for small injection rates. Arbitrating bandwidth propor-

tionally to expected QSIs allow the allocation of resources for nodes who are likely to

have packets in their queues on next frame.

Another important remark for QPS algorithm is on the direction of allocation. We

observe that for most of the cases, assigning RBs in time direction is much better than



Chapter 5. WiNoCoD Bandwidth Allocation 142

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, DQSI, Freq. Direction
T=4, DQSI, Time Direction
T=4, EQSI, Freq. Direction
T=4, EQSI, Time Direction
T=8, DQSI, Freq. Direction
T=8, DQSI, Time Direction
T=8, EQSI, Freq. Direction
T=8, EQSI, Time Direction
T=16, DQSI, Freq. Direction
T=16, DQSI, Time Direction
T=16, EQSI, Freq. Direction
T=16, EQSI, Time Direction
T=32, DQSI, Freq. Direction
T=32, DQSI, Time Direction
T=32, EQSI, Freq. Direction
T=32, EQSI, Time Direction

Decentralized QPS Allocation
DQSI and EQSI(alpha=0.95)
Non-uniform Poisson Traffic

Figure 5.34: Average latency curves under non-uniform Poisson traffic with increasing
injection rate for decentralized QPS allocation with DQSI and EQSI algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4, DQSI, Freq. Direction

T=4, DQSI, Time Direction

T=4, EQSI, Freq. Direction

T=4, EQSI, Time Direction

T=8, DQSI, Freq. Direction

T=8, DQSI, Time Direction

T=8, EQSI, Freq. Direction

T=8, EQSI, Time Direction

T=16, DQSI, Freq. Direction

T=16, DQSI, Time Direction

T=16, EQSI, Freq. Direction

T=16, EQSI, Time Direction

T=32, DQSI, Freq. Direction

T=32, DQSI, Time Direction

T=32, EQSI, Freq. Direction

T=32, EQSI, Time Direction

Decentralized QPS Allocation
DQSI and EQSI(alpha=0.95)
DPBPP H=0.9

Figure 5.35: Average latency curves under non-uniform DPBPP traffic with increas-
ing injection rate for decentralized QPS allocation with DQSI and EQSI algorithm.

frequency direction. In serial allocation, this was the reverse. This is due to the fact

that, in serial allocation not all of the RBs are allocated but just the total demand of all

tilesets. And the rest was divided evenly among tilesets. Therefore, serving all demands

in few symbols by allocating them in frequency direction was more favorable. However,

in QPS all of the RBs are always allocated proportional to QSIs of non-idle queues.

Hence, allocation in time direction, which allows for a more temporally uniform pattern,

is better for QPS algorithm.

Packet Delay and Queue Length Bound Exceeding Probabilities

Following this, we investigate the packet delay bound and queue length exceeding prob-

ability graphs for decentralized QPS algorithm with DQSI and EQSI encoding under

DPBPP traffic, with 10 packets/symbol injection rate.



Chapter 5. WiNoCoD Bandwidth Allocation 143

D
0
 : Delay Bound (symbols)

0 10 20 30 40 50 60 70 80 90 100

P
(D

>
D

0
)

10-4

10-3

10-2

10-1

100

T=4, DQSI, Freq. Direction
T=4, DQSI, Time Direction
T=4, EQSI, Freq. Direction
T=4, EQSI, Time Direction
T=8, DQSI, Freq. Direction
T=8, DQSI, Time Direction
T=8, EQSI, Freq. Direction
T=8, EQSI, Time Direction
T=16, DQSI, Freq. Direction
T=16, DQSI, Time Direction
T=16, EQSI, Freq. Direction
T=16, EQSI, Time Direction
T=32, DQSI, Freq. Direction
T=32, DQSI, Time Direction
T=32, EQSI, Freq. Direction
T=32, EQSI, Time Direction

Decentralized QPS Allocation
DQSI and EQSI(alpha=0.95)
Injection Rate = 10 packets/symbol
DPBPP H=0.9

(a)

Q
0
 : Queue Length Bound

0 10 20 30 40 50 60 70 80 90 100

P
(Q

>
Q

0
)

10-4

10-3

10-2

10-1

100

T=4, DQSI, Freq. Direction
T=4, DQSI, Time Direction
T=4, EQSI, Freq. Direction
T=4, EQSI, Time Direction
T=8, DQSI, Freq. Direction
T=8, DQSI, Time Direction
T=8, EQSI, Freq. Direction
T=8, EQSI, Time Direction
T=16, DQSI, Freq. Direction
T=16, DQSI, Time Direction
T=16, EQSI, Freq. Direction
T=16, EQSI, Time Direction
T=32, DQSI, Freq. Direction
T=32, DQSI, Time Direction
T=32, EQSI, Freq. Direction
T=32, EQSI, Time Direction

Decentralized QPS Allocation
DQSI and EQSI(alpha=0.95)
Injection Rate = 10 packets/symbol
DPBPP H=0.9

(b)

Figure 5.36: Packet Delay (a) and Queue Length (b) exceeding probability graphs for
decentralized QPS allocation algorithm under non-uniform DPBPP traffic (log-linear)

Among the serial QSI algorithms, best performance was shown by the DQSI encoded

allocation with the lowest frame length of 4 symbols. Comparing Fig. 5.23 with Fig.

5.35, we see that QPS allocation with DQSI encoding with 4 symbols frame length

provides nearly the same performance. However, for longer frame lenghts, EQSI encoded

frame lengths perform better compared to serial allocation algorithm. One may ask,

what is the purpose of introducing more computational complexity by employing QPS

algorithm, rather than serial allocation, if it provides the same performance for the small

frame lengths. However, we have observed that QPS algorithms is also capable to provide

better performance. In addition, it provides better performance than serial allocation

for delay bound and queue length exceeding probabilities under certain circumstances.

Let us compare serial allocation with DQSI to the secondly proposed QPS algorithm.

Under non-uniform DPBPP traffic, for the average latencies we see that best one is

DQSI encoded serial allocation with T=4 (both in frequency and time direction) (Fig.

5.19) which shows actually the same performance with DQSI encoded QPS with T=4

symbols. However, we observe difference up to a degree for delay and queue length ex-

ceeding probabilities for two different algorithms. For instance, probability of a packet

exceeding a delay of 60 symbols is approximately 10−3 for DQSI encoded QPS with

T=4 (Fig. 5.36(a)), whereas for DQSI encoded serial allocation with T=4 is approxi-

mately 10−2 (Fig. 5.20(a)). Similarly, exceeding an instantaneous queue length of 90 is

approximately 10−4 for DQSI encoded QPS with T=4 (Fig. 5.36(b)), whereas for DQSI

encoded serial allocation with T=4 is approximately 10−3 (Fig. 5.20(b)). We can claim

that even though average latency performances are equal, delay and queue length ex-

ceeding performance of QPS may be remarkably higher than serial allocation. Besides,

apart from scenarios covered in this thesis, QPS algorithm shall provide a more reliable



Chapter 5. WiNoCoD Bandwidth Allocation 144

performance in most of the cases compared to serial allocation, as it proportionally di-

vides the bandwidth. Despite its additional computational complexity, a designer may

choose QPS over DQSI encoded serial allocation, where both options may be optimal

depending on the situation.

5.2.2.2 Centralized Approach

Average Latency

Following this, centralized version of DQSI and EQSI encoding enhanced QPS algorithm

is evaluated. Fig. 5.37, Fig. 5.38 and Fig. 5.39 shows the average latency with increasing

injection rate under 3 different traffic models. We observe a very slight but not evident

performance degradation for centralization.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80 T=4+2, DQSI, Freq. Direction
T=4+2, DQSI, Time Direction
T=4+2, EQSI, Freq. Direction
T=4+2, EQSI, Time Direction
T=8+2, DQSI, Freq. Direction
T=8+2, DQSI, Time Direction
T=8+2, EQSI, Freq. Direction
T=8+2, EQSI, Time Direction
T=16+2, DQSI, Freq. Direction
T=16+2, DQSI, Time Direction
T=16+2, EQSI, Freq. Direction
T=16+2, EQSI, Time Direction
T=32+2, DQSI, Freq. Direction
T=32+2, DQSI, Time Direction
T=32+2, EQSI, Freq. Direction
T=32+2, EQSI, Time Direction

Centralized QPS Allocation
DQSI and EQSI(alpha=0.95)
Uniform Poisson Traffic

Figure 5.37: Average latency curves under uniform Poisson traffic with increasing
injection rate for centralized QPS allocation with DQSI and EQSI algorithm.

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, DQSI, Freq. Direction
T=4+2, DQSI, Time Direction
T=4+2, EQSI, Freq. Direction
T=4+2, EQSI, Time Direction
T=8+2, DQSI, Freq. Direction
T=8+2, DQSI, Time Direction
T=8+2, EQSI, Freq. Direction
T=8+2, EQSI, Time Direction
T=16+2, DQSI, Freq. Direction
T=16+2, DQSI, Time Direction
T=16+2, EQSI, Freq. Direction
T=16+2, EQSI, Time Direction
T=32+2, DQSI, Freq. Direction
T=32+2, DQSI, Time Direction
T=32+2, EQSI, Freq. Direction
T=32+2, EQSI, Time Direction

Centralized QPS Allocation
DQSI and EQSI(alpha=0.95)
Non-Uniform Poisson Traffic

Figure 5.38: Average latency curves under non-uniform Poisson traffic with increasing
injection rate for centralized QPS allocation with DQSI and EQSI algorithm.



Chapter 5. WiNoCoD Bandwidth Allocation 145

Injection Rate (packets/symbol)
0 2 4 6 8 10 12

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

30

40

50

60

70

80
T=4+2, DQSI, Freq. Direction
T=4+2, DQSI, Time Direction
T=4+2, EQSI, Freq. Direction
T=4+2, EQSI, Time Direction
T=8+2, DQSI, Freq. Direction
T=8+2, DQSI, Time Direction
T=8+2, EQSI, Freq. Direction
T=8+2, EQSI, Time Direction
T=16+2, DQSI, Freq. Direction
T=16+2, DQSI, Time Direction
T=16+2, EQSI, Freq. Direction
T=16+2, EQSI, Time Direction
T=32+2, DQSI, Freq. Direction
T=32+2, DQSI, Time Direction
T=32+2, EQSI, Freq. Direction
T=32+2, EQSI, Time Direction

Centralized QPS Allocation
DQSI and EQSI(alpha=0.95)
DPBPP H=0.9

Figure 5.39: Average latency curves under non-uniform DPBPP traffic with increas-
ing injection rate for centralized QPS allocation with DQSI and EQSI algorithm.

Packet Delay and Queue Length Bound Exceeding Probabilities

And lastly, packet delay bound and queue length bound exceeding probabilities are

shown in following figures.

D
0
 : Delay Bound (symbols)

0 10 20 30 40 50 60 70 80 90 100

P
(D

>
D

0
)

10-4

10-3

10-2

10-1

100

T=4+2, DQSI, Freq. Direction
T=4+2, DQSI, Time Direction
T=4+2, EQSI, Freq. Direction
T=4+2, EQSI, Time Direction
T=8+2, DQSI, Freq. Direction
T=8+2, DQSI, Time Direction
T=8+2, EQSI, Freq. Direction
T=8+2, EQSI, Time Direction
T=16+2, DQSI, Freq. Direction
T=16+2, DQSI, Time Direction
T=16+2, EQSI, Freq. Direction
T=16+2, EQSI, Time Direction
T=32+2, DQSI, Freq. Direction
T=32+2, DQSI, Time Direction
T=32+2, EQSI, Freq. Direction
T=32+2, EQSI, Time Direction

Centralized QPS Allocation
DQSI and EQSI(alpha=0.95)
Injection Rate = 10 packets/symbol
DPBPP H=0.9

(a)

Q
0
 : Queue Length Bound

0 10 20 30 40 50 60 70 80 90 100

P
(Q

>
Q

0
)

10-4

10-3

10-2

10-1

100

T=4+2, DQSI, Freq. Direction
T=4+2, EQSI, Freq. Direction
T=4+2, EQSI, Time Direction
T=8+2, DQSI, Freq. Direction
T=8+2, DQSI, Time Direction
T=8+2, EQSI, Freq. Direction
T=8+2, EQSI, Time Direction
T=16+2, DQSI, Freq. Direction
T=16+2, DQSI, Time Direction
T=16+2, EQSI, Freq. Direction
T=16+2, EQSI, Time Direction
T=32+2, DQSI, Freq. Direction
T=32+2, DQSI, Time Direction
T=32+2, EQSI, Freq. Direction
T=32+2, EQSI, Time Direction

Centralized QPS Allocation
DQSI and EQSI(alpha=0.95)
Injection Rate = 10 packets/symbol
DPBPP H=0.9

(b)

Figure 5.40: Packet Delay (a) and Queue Length (b) exceeding probability graphs for
centralized QPS allocation algorithm with DQSI and EQSI under non-uniform DPBPP

traffic (log-linear)

5.3 Implementation of Algorithms

As we have designed RF controller in software executed on a dedicated tile of each tileset,

all allocation algorithms can be implemented in a software way. We propose here the

algorithm view to be programmed in order to implement our proposals.



Chapter 5. WiNoCoD Bandwidth Allocation 146

Fig. 5.41 depicts the decentralized allocation scheme from a view of a single tileset,

for serial or QPS allocation, with regular, definitive or expected QSI encoding. On the

first symbol of each frame, a tileset acquires the QSI of other tilesets on the pre-defined

subcarriers. If it is a serial allocation, these acquired QSI values are not treated further,

and the allocation algorithm starts. However, if QPS is preferred, first the summation

of all QSI values is computed. Then the value of the division of total number of RBs, N

is divided with this total QSI value and stored temporarily. Using this, proportionally

allocated number of RBs for each tileset are calculated, by upper rounding the results.

Next, starting from the rotating priority ID tileset, and using the default allocation

matrix, RBs are allocated to these calculated values of tileset in a loop, until all the RBs

are exhausted, or all tilesets are served. At the end of the frame, tileset reconfigure their

transmissions according to this computation, and broadcast their QSIs for next frame. If

definitive QSI encoding is chosen; they broadcast the difference between current number

of flits in transmission queue and the currently allocated number of RBs (minimal value

can be 0). If expected QSI encoding is chosen; they also calculate the moving average

value of the mean arrivals by using the number of flits has arrived in last frame; and

broadcast the expected QSI values.

Acquired
QSIs : Q 

if 
Serial 

Allocation

Γ = Q

if 
QPS

Allocation

Sum of QSIs
ΣQ

Γ = ceil(NQ / ΣQ)

Start from the 
Rotating Priority 

Node

(While N > 0 or i < K)
Si = min(Γi  , N)

N = N - Si
Γi = Γi - Si

if 
Regular

QSI

if 
DQSI

if 
EQSI

Encode QSI
Qi

Encode DQSI
DQi = (Qi - Si , 0)

Encode EQSI
Ai = αAi + (1-α)A’i  
EQi = (Qi - Si , 0)

Ai : Mov. Avg. of Input A’i: 
Mov. Avg. of Input α : 

EWMA scalar
Si : Number of RB 

allocated to i
Qi : QSI of i

N : Total Number of RBs

New Frame Decentralized
Allocation

Figure 5.41: Flow-chart of decentralized subcarrier arbitration algorithms of serial or
QPS with regular, definitive or expected QSI encoding.

Fig. 5.42 depicts a similar flow-chart for the centralized approach from the view of the

Central Intelligent Unit. On the first symbol of each frame, the CIU acquires QSIs from



Chapter 5. WiNoCoD Bandwidth Allocation 147

tilesets on the reserved subcarriers. However, this time CIU is responsible of calculating

DQSI or EQSI, in contrast the local computation in decentralized approach. Then the

allocation is performed and the responses are broadcasted to tilesets.

Acquired
QSIs : Q 

if 
Serial 

Allocation

if 
QPS

Allocation

if 
Regular

QSI

if 
DQSI

if 
EQSI

Ai : Mov. Avg. of Input A’i: 
Mov. Avg. of Input α : 

EWMA scalar
Si : Number of RB 

allocated to i
Qi : QSI of i

N : Total Number of RBs

New Frame Centralized
Allocation

Central Intelligent Unit

Γ = Q

Qi

Calculate DQSI
DQi = (Qi - Si , 0)

Calculate EQSI
Ai = αAi + (1-α)A’i  
EQi = (Qi - Si , 0)

Calculate Sum of 
QSIs
ΣQ

Γ = ceil(NQ / ΣQ)

Start from the 
Rotating Priority 

Node

(While N > 0 or i < K)
Si = min(Γi  , N)

N = N - Si
Γi = Γi - Si

Response to 
Tilesets

Figure 5.42: Flow-chart of centralized subcarrier arbitration algorithms of serial or
QPS with regular, definitive or expected QSI encoding.

5.4 Classification of Bandwidth Allocation Algorithms

Fig. 5.43 depicts the classification of mentioned radio resource allocation in WiNoCoD,

with a tree diagram. It gives a global view of the proposed algorithms in the right side,

and also the possible static approaches as mentioned in Section 4.3 on the left side. Note

that, Chapter 5 only dealt with a single transmission queue where both long and short

packets are treated in common flits. In Chapter 6, we will present a new dual queue

approach in order to improve the previous algorithms, where a seperate queue buffers

payloads of long packets. This type of algorithms are shown in gray in Fig. 5.43.



Chapter 5. WiNoCoD Bandwidth Allocation 148

W
iN

oC
oD

 R
ad

io
 R

es
ou

rc
e 

A
llo

ca
tio

n

S
ta

tic
 

D
yn

am
ic

S
ta

tic
 

Q
ua

si
-S

ta
tic

Q
ua

si
-D

yn
am

ic
(o

ffl
in

e)

S
in

g
le

 Q
ue

ue
(C

ha
p

te
r 

5)
D

ua
l Q

ue
ue

(C
ha

p
te

r 
6)

S
er

ia
l

(5
.1

)
Q

P
S

(5
.2

)

R
eg

ul
ar

(5
.1

.1
)

2-
lo

op
(5

.1
.2

)
D

Q
S

I-
EQ

S
I

(5
.1

.3
)

R
eg

ul
ar

(5
.2

.1
)

D
Q

S
I-

EQ
S

I
(5

.2
.2

)

R
eg

ul
ar

P
ay

lo
ad

C
ha

nn
el

(6
.1

)

D
yn

am
ic

P
ay

lo
ad

C
ha

nn
el

(6
.2

) 

Figure 5.43: Classification of the proposed algorithms for dynamic bandwidth allo-
cation for OFDMA RF NoC.



Chapter 5. WiNoCoD Bandwidth Allocation 149

5.5 Conclusion

The primary criterion on the development of bandwidth allocation algorithms for WiNoCoD

RF interconnect is low computational complexity. This obligation stems from the very

short OFDM symbol duration of 50 ns, where bandwidth arbitration shall be effectu-

ated in few symbol durations. Considering the processing speeds of current semicon-

ductor technology, this time constraint imposes that the proposed allocation algorithm

should be executed in few hundreds of ns. Therefore, proposed solutions should avoid

large number of iterations and complex operations, but should be implementable with

basic mathematical processor operators or Look-up Tables (LUTs). Considering this

algorithm execution time and also other delays regarding reconfiguration, a pipelined

allocation scheme is adopted for WiNoCoD. However, the latency performance of the

algorithms are at the paramount of importance, even though OFDM symbols are short,

ironically they are long for the on-chip packets. Hence, saving average delay by few

symbols may increase the on-chip performance drastically.

For this purpose, first proposed algorithm was serial QSI allocation algorithm, which

practically needs any mathematical operations and lowest number of iterations. How-

ever, we have discussed the starvation issue due to certain nodes acquiring all RBs, thus

causing an early system fail, especially for short frame lengths. We have tried to mitigate

this effect by employing a 2-loop queue balancing mechanism, but the best results for

serial allocation algorithm is taken with DQSI encoding. This basic operation avoids the

redundant allocation of RBs, and makes sure for a fairer arbitration of the bandwidth.

Next, we introduce the QPS algorithm, which divides bandwidth among tilesets propor-

tional to their instantaneous QSIs. First thing we observe for the performance of this

algorithm is the relatively high average latency for small injection rates. We discuss

that this was due to the fact that, when a QSI is 0 for a tileset, it is allocated 0 RBs on

that frame, and any newly arrived packet has to wait for the next frame. By employing

EQSI and DQSI mechanisms, we are able to mitigate this high average latency under

low injection rate.

DQSI encoded serial QSI allocation provides really good performance, and needs practi-

cally the lowest computational complexity. This mechanism is feasible to be implemented

with short 4-8 symbols frame lengths. Apart from scenarios covered in this thesis, QPS

algorithm shall provide a more reliable performance in most of the cases compared to

serial allocation, as it proportionally divides the bandwidth. Despite its additional com-

putational complexity, a designer may choose QPS over DQSI encoded serial allocation,

where both options may be optimal depending on the situation.



Chapter 6

Payload Channel Algorithm

In previous chapter, we have proposed a framework for dynamic bandwidth allocation

among tilesets, concerning on-chip time constraints and investigated certain algorithms

for arbitrating bandwidth for minimizing transmission latency. However, these algo-

rithms do not take into account the lengths of packets and just consider the instanta-

neous total number of flits in the queue. We have noticed that bimodal packet lengths

of on-chip cache coherency packets can be exploited in order to further decrease trans-

mission latencies in certain circumstances. Especially, when traffic load is low, so that

most of the nodes do not transmit on their allocated bandwidth and cache-lines carry-

ing packets are considerably long, these packets can be transmitted instantly by using

under-utilized channels. Based on this principals, we build a new context for exploitation

of bimodal packet lengths, taking into account the coordination among tilesets. These

new type of algorithms can perform better compared to algorithms proposed in Chapter

5, and also they can be combined together to increase dynamicity further.

6.1 Context

On-chip cache coherency traffic has an unorthodox nature compared to conventional

networks due to its very specific features. As mentioned previously, in Section 2.4, one

of these features is bimodal packet lengths. We are using a Distributed Hybrid Directory

Based Cache Coherency, where its detailed description is given in Section 3.1.3. This

viable coherence mechanism for 1000-core shared memory architectures imposes high

number of broadcast messages, therefore a traffic burden on the wired RF interconnect,

which is a ransom to pay for scalability. There are two types of cache coherency packets

circulating in a network-on-chip, which are short control packets (i.e. request to read an

150



Chapter 6. Payload Channel Algorithm 151

address line, acknowledgement etc.) and cache-line carrying long packets (i.e. request

to write to an address line, response for reading an address line etc.).

In the scope of the project, a short packet length of 64 bits is chosen as feasible. Long

packets are composed of a control header, which contain the necessary information

such as destination/source ID, packet type etc. and the data in cache line. Cache

line size is determined as 64 bytes (512 bits), therefore making long packets 576 bits

long. Considering the default QPSK modulation, in case of simple static and uniform

allocation of subcarriers (where each tileset acquires 1 RB- i.e. 64 bits), a long packet

would take 9 symbols to transmit even under zero queuing delay. Considering 1 OFDM

symbol is longer than 50 ns (50 clock cycles if a 1 GHz core frequency is assumed),

one can understand the bottleneck long packets create for the on-chip interconnection

in terms of transmission latency. Even the basic mathematical and logical operations

take several cycles. Considering also into account the OFDM signal reception, decoding,

reconfiguration etc., one can see that bandwidth allocation needs multiple symbols to

be processed.

Cache line (block) size has a significant impact on the performance of the shared memory

system. Not just large cache size but larger cache lines decrease the cache miss rate

generally (the case, a core cannot find referenced copy of required datum in its own

L1 cache.) [120]. One of the reasons behind is the spatial locality of the information

distribution, so that a fetched larger cache line upon a miss will include more data close

to the referenced address, which are likely to be referenced soon. Obviously, there exists

a trade-off between the miss rate and the bandwidth overhead, as longer cache line means

larger data to traverse through network-on-chip in case of cache miss. Another important

point about the performance of chosen cache line size is its mutual dependency on cache

size also. For instance, inside a relatively smaller cache, very long cache lines even

increase the miss rate [120]. The reason behind this phenomenon is the limited size of

data structure of the program. However, this is not the case for every CMPs, where they

can exploit spatial locality more effectively. In [47], authors had examined the effect of

larger cache lines on miss rates for a 8-core CMP and different application from PARSEC

benchmark. Certain applications had shown much lower miss rates compared to others

with 256 bytes of cache lines, as they are more relying on spatial locality of the data.

We can predict that a better performance can be gained via larger cache lines for future

shared memory 1000-core architectures and optimized application running on them.

Also in case of very large caches are utilized, larger cache lines would be essential. In

addition, a reconfigurable, effective low latency interconnect would amortize the penalty

of carrying large cache lines, increasing system performance further. In [121], it was

shown that the benefit of long cache lines as much as 256 bytes is more apparent on



Chapter 6. Payload Channel Algorithm 152

shared memory massive multicore architectures, especially for applications with higher

locality.

Taking into account all of these aspects mentioned above, we have developed a novel

bandwidth allocation algorithm for WiNoCoD’s OFDMA based RF interconnect, which

decreases the latency of long packets substantially by transmitting payloads (cache line)

in a single symbol. It exploits the intrinsic broadcast capability and elevated reconfig-

urability of OFDMA. This algorithm is designed especially for large cache lines which

may be preferred by the programmer based on the characteristics of the application(s).

Different than the used 64 bytes (512 bits) long cache lines throughout the project and

the thesis, this algorithm is optimized especially for 256 bytes (2048 bits) long cache

lines. In this case, the static algorithm would have to transmit long packets in 33 sym-

bols even under zero queuing (more than 1650 ns) which is highly prohibitive. We also

fuse the bandwidth allocation algorithms mentioned in Chapter 5 with this packet size

aware policy, in order to increase its performance further under heterogeneous traffic.

6.2 Regular Payload Channel Algorithm

6.2.1 Description of Regular Payload Channel Algorithm

The proposed algorithm relies on the basic idea of transmitting 2048-bits payloads of long

packets in a single OFDM symbol by using all 1024 subcarriers modulated with QPSK.

The 64-bit single flit control packets (which corresponds to 70-80% of all packets) and 64-

bit header flit of long packets contain the necessary source/destination ID, corresponding

address line etc. information, but also the flag bits marking the type of packet (whether

it is a short or long packet). Our novel Payload Channel Algorithm exploits these flag

bits to allow transmission of long packet payloads in a single OFDM symbol without

using any extra signaling overhead.

In this proposal, initially, each tileset is allocated 32 subcarriers, where we refer them as

home channels, with a terminology used in literature as in static case of Section 4.3.1.

As QPSK modulation is utilized, these home channels can serve 1 flit per each symbol,

either a short control packet or a long packet header.

Different than the previously presented architecture, for Payload Channel Algorithm,

each tileset has two different transmission queues at their RF interfaces. Primary trans-

mission queue buffers short packets or headers of long packets only in a FIFO manner.

Whenever a new long packet arrives to RF interface from the interior mesh network, it is

segmented into its header (which is buffered in the primary short queue) and its payload



Chapter 6. Payload Channel Algorithm 153

(which is buffered in the secondary payload queue in a FIFO manner). This 2-queue

architecture is depicted in Fig. 6.1. Motivation behind employing two different queues

for headers/short packets and payloads is to avoid the inconsistency between transmit-

ted headers and their payloads and also to allow transmission of a new packet before

transmitting a payload of a previous packet. This notion will be explained further in

detail within next paragraphs. The idea is to give priority to long packets’ payloads, so

that they can be transmitted fast, by using other tilesets’ allocated channels, especially

if they are under-occupied.

Short Packet & 
Long Header 
Queue

Payload Channel 
Register

Figure 6.1: FIFO “Short Queue” for 1-flit short packets and long packet headers and
FIFO “Long Queue” for payloads at the front-end of each tileset. FIFO short queue
is sent on the RF-NoC channel until a long packet header is detected from any tileset
including itself. Then ID of the tileset is inserted to Payload Channel Register. Note

that, each tileset keeps the same payload channel register content.

When a tileset transmits a long packet header in its home channel, each tileset can

acquire and decode this thanks to intrinsic broadcast capability of the OFDMA inter-

connect. Each tileset can use simple packet processing units to check the flag bits to

understand whether this is a long packet or not. Upon tilesets detect a long packet

header, they record the corresponding tileset-ID by inserting the ID in the payload reg-

ister. Payload register is a simple FIFO queue at RF interface of each tileset, which

buffers IDs of tilesets to transmit payloads. Note that, content of the payload registers

is identical in all tilesets, in order to avoid incoherence.

However, acquiring the header flit, processing it and reconfiguring the bandwidth takes

certain amount of time due to propagation, synchronization and computation delays.

Therefore, we have determined a 1 symbol latency (50 ns) for all delays and activation of

algorithm. Also note that, multiple long packet headers can be detected in a symbol from



Chapter 6. Payload Channel Algorithm 154

different tilesets, that their IDs are enregistered to payload registers by their Tileset-No

order in the same symbol.

At the start of each symbol, tilesets control their payload registers. If the payload

register is empty, this means there is no tileset currently wanting to transmit a payload.

Therefore, home channel configuration is applied and each tileset can use it 64-bit home

channel. However, if payload register is not empty, first ID in the register transmits its

payload. If it not the tileset’s own ID, it does not use its home channel in this symbol to

allow the transmission of payload. System returns to home channel configuration only

if there is no tileset remains in the payload register. Fig. 6.2 and Fig. 6.3 illustrate the

flow-charts of the payload channel algorithm from the view of a transmitter and receiver

side of a tileset, respectively.

if 
New Long 

Packet 
arrives

Defragment Header 
and Payload

Send to different 
queues

if 
New Short 

Packet 
arrives

Regular Payload Channel 
Algorithm
Transmission Side of a 
Tileset

if 
Payload 

Register is 
empty

if 
Payload 

Register is 
not empty

Payload to 
Payload Queue

Header to 
Short Queue

Short Packet to 
Short Queue

Sent 1 Flit on Home 
Channel

if
Sent flit is 
Payload 
Header

if
Sent flit is 

Short 
Packet 

if
First ID in 
Register is 

your ID

if
First ID in 
Register is 
not your ID

Send Payload Do Nothing Send Payload 
Header

Send 1-packet 
Short Packet

Payload 
Register ID 
Queue

Payload 
Queue

Short
Queue

Figure 6.2: Flow-chart of regular payload channel algorithm from the view of the
transmission side of a tileset.



Chapter 6. Payload Channel Algorithm 155

Regular Payload Channel 
Algorithm
Receiver Side of a Tileset

Payload 
Register ID 
Queue

if 
Payload 

Register is 
not empty

if 
Payload 

Register is 
empty

Acquire 1-flit Packets 
from each home 

channel of tilesets

if
Received flit 
is Payload 

Header

if
Received  

flit is Short 
Packet 

Add ID (even if yours) to the 
Payload Register

if 
first ID of 
payload 

register is 
you

if 
first ID of 
payload 

register is 
not you

Receive Payload of the 
Source Tileset 

Do Necessary Packet 
Processing

Send to Receive Queue

All subcarriers are 
used for a single 
payload transmission

Do Necessary Packet 
Processing

Send to Receive Queue

Receiver 
Queue

Every symbol

Figure 6.3: Flow-chart of regular payload channel algorithm from the view of the
reception side of a tileset.

6.2.2 An Illustrative Scenario

These procedures are shown in Fig. 6.4 with a scenario. In order to explain illustratively,

in this example only Tileset-1,2 and 3 are active (rest of the nodes do not transmit

any packets). On symbol t=0, Tileset-2 and Tileset-3 transmits a long packet header

and Tileset-1 completes the transmission of a short packet. As it takes 1 symbol long

latency to receive and process long packet headers, they are registered on symbol t=2

(Note that, this 1 symbol latency includes all delays concerning reception, propagation,

synchronization, processing but also enregistering to payload register and reconfiguration

of transmission just before the next symbol. In this graphic, for simplicity purposes,

register contents are illustrated just at the same time with current symbol).

As Tileset-2 and Tileset-3 had sent long packet headers, they are enregistered in the

payload register with respect to their Tileset-No on the same symbol. Note that, tilesets

are still in home channel configuration on symbol t=1, as long packet headers are not

processed and Payload Channel Algorithm is not activated, yet. Even though, Tileset-2

has sent a long packet header in previous symbol (and not yet sent the rest of it, i.e.

the payload), it can transmit a short packet on symbol t=1. This is possible, thanks to

the separate queues for short packets/headers and payloads. On symbol t=2, it can just



Chapter 6. Payload Channel Algorithm 156

f

t

Figure 6.4: Illustration of our Payload Channel Algorithm both in frequency and
time domain through a simple scenario, where only 3 tilesets are active.

transmit the payload of the previous packet and at reception, other tilesets can process

and perform the necessary desegmentation without inconsistency.

After Tileset-2’s payload is transmitted on symbol t=2, it is deleted from the payload

register. On next symbol t=3, Tileset-3 is transmitted. As there is no ID pending left

at the payload register, on symbol t=4, system returns to home channel configuration,

where tileset can again transmit headers and short control packets. Remark that, they

had to stall their transmissions until the transmission of payloads is terminated.

This algorithm is decentralized in its nature and only reconfigurable in terms of payload

transmission. One can argue that this algorithm does not provide enough home channels

to tilesets with fluctuating bandwidth demands due to heterogeneous on-chip traffic. We

will present a “more dynamic” version of our algorithm in next section, however first,

we present experimental results for Regular Payload Channel Algorithm under spatially

uniform traffic scenarios (where injection rate of tilesets are equal).



Chapter 6. Payload Channel Algorithm 157

6.2.3 Analytic Approximation for Average Latency Calculation

Before we present the simulation results for average latency induced by our algorithm,

we investigate the possibility of deriving a closed form equation for the average latency

under specific scenarios. We revisit certain aspects of Queuing Theory and develop

reasonable approximations.

First of all, we build a queuing theoretical model of our system as in Fig. 6.5. Assuming

a uniform Poisson traffic, any incoming 1-flit packet (long packet header or short packet)

to short queue of a tileset obeys a Poisson process. The service time of a short queue

is 1 symbol when the payload channel register is empty (home channel configuration).

However, for other times service time for this queue is equal to number of tilesets waiting

in the payload channel plus 1 symbols, as its transmission is stalled until all current

waiting payloads are served. Hence, we can model the short queues at tilesets’ front-end

as M/G/1 queues based on Kendall’s notation (one can refer to [122] for the basics of

queuing theory and Kendall’s notation based queue models).

Short Queue

Payload Queue

T-1

Short Queue

Payload Queue

T-2

Short Queue

Payload Queue

T-32
Payload Channel 
Register

M/G/1 queues where service 
time is 1 symbol, when 
payload register is empty and 
equal to 
(1+current_length_of_Payload
Register), as it has to wait until 
payload channel gets empty.

(λ/32)pLong

(λ/32)pLong

(λ/32)pLong λpLong

λ : total injection rate 
pLong : proportion of long 
packets 

Figure 6.5: Modeling of Payload Channel Algorithm as a 33 M/G/1 queuing network



Chapter 6. Payload Channel Algorithm 158

Next, we try to derive a queuing model for the payload channel register. We can vi-

sualize a Payload Channel Register is serving 1 payload per symbol by using all of the

subcarriers, whenever there is a tileset ID in the register. Therefore, service time in

payload channel register is “deterministic” and equal to 1 symbol. Modeling the arrival

process to payload register is more complicated. It acquires the long packet headers de-

parting from 32 tileset short queues (M/G/1 queues). Deriving a reasonable departure

process model from an M/G/1 queue is not straightforward and requires very complex

Markov Process analysis. We do know that departure process from an M/M/1 queue

(inter-arrival and service times are exponentially distributed) is a Poisson process [123].

An interesting article, [124] investigates the characteristics of departure process from

an M/G/1 queue with heavy tailed service time distribution and finds that departure

process is heavy tailed with the same Hurst parameter.

As we wish to model the all arrivals to the payload channel register (as an aggregation of

32 tilesets’ outputs), rather than individual departure processes, we derive an approxi-

mation for it. We know that Poisson distribution is derived as an infinite approximation

of binomial for very large number of elements with very small Bernoulli probability [125].

In order to explain in detail, when we have N random values, each independently and

identically distributed (i.i.d.) and can be 1 with probability p or 0 otherwise. When

N is very large (going to infinite) and p is very small (going to zero), the probability

distribution of the number of 1’s at any time is a Poisson distribution. Our case is

similar to this scenario for long packet header arrivals to payload channel, as we have 32

random variables, each can be ’1’ (i.e. long packet header is transmitted) with a certain

probability. Although either N is not very large (32) or p is very small (probability of

having a long packet header), we think modeling the arrivals to the payload channel

register as a Poisson Process seems highly reasonable. Therefore, at the end, we have

modeled the Payload Channel Register as an M/D/1 queue. We may guess that this

approximation would be much valid when injection rate is low, lowering p.

Firstly, we derive the service time probability distribution for the 1-flit packets (either

long packet headers or short control packets) in the short queues at tilesets’ front-ends,

Sshort. As noted previously, service time for short packets is equal to 1+Lpayload (current

number of elements waiting in payload register). We have mentioned that payload regis-

ter is modeled as an M/D/1 queue and we have to have its Queue Length distribution in

order to derive service time distribution of short packets. This distribution was derived

for the special case where service time is equal to 1 unit, which is exactly the same case

for the payload register [126]. By adding 1 symbol to these equations in [126], as service

time in a short queue is 1 plus the number of elements waiting in the register, we can

rewrite the distribution for the service time of short packets as :



Chapter 6. Payload Channel Algorithm 159

p(Sshort) =



1− λpayload if Sshort = 1

(1− λpayload)(eλpayload − 1) if Sshort = 2

... ...

(1− λpayload)
(
e(n−1)λpayload +

n−2∑
k=1

ekλpayload(−1)(n−k−1)[
(kλ)(n−k−1)

(n−k−1)! + (kλ)(n−k−2)

(n−k−2)!

])
if Sshort = n

where λpayload is the mean arrival rate (i.e. injection rate) to the payload register. Note

that, λpayload = λplong, i.e. total injection rate multiplied by the proportion of long

packets in the system. Here, for instance, for a 1-flit packet to be served in the short

queue in 1 symbol (either a header of a long packet or a 1-flit short packet), the payload

queue has to be empty when the packet has arrived. In other words there should not be

any long packet transmission, so that the home channels can be used and a short packet

can be served in 1 symbol. This probability equals to 1− λpayload, as this is also equal

to the probability of payload queue to be empty. As service time for a short packet,

Sshort increases, the associated probability, p(Sshort) =, increases with exponentially

(and oscillatory due to Taylor’s series expansion) with service time and average input

to the payload queue.

We can derive the mean of service time of short packets from this analytical distribution

as :

µshort =
∞∑
i=1

ip(Sshort = i) (6.1)

and using (6.1) and taken M/D/1 distribution, we can also derive the variance as :

V ar(Sshort) =

∞∑
i=1

(i− µshort)2p(Sshort = i) (6.2)

Having the probability of service time distribution of short packets (either long packet

headers or 1-flit control packets), we can continue to derive the average queuing plus ser-

vice time in M/G/1 modeled short queues in tilesets’ interface using Pollaczek-Khinchine

Formula [127] :



Chapter 6. Payload Channel Algorithm 160

Wshort =
ρshort + λshortµshortV ar(Sshort)

2(µshort − λshort)
+

1

µshort
(6.3)

where µshort (mean service rate) is the reciprocal of mean service time of short pack-

ets which can be derived by taking the expectation over the service time distribution

given previously. Similarly variance of the service time can also be calculated from

this distribution. ρshort signifies the utilization in these short queues which is equal to

λshort/µshort. λshort is simply the average injection rate to each of the short queues which

is total injection rate divided by the number of tilesets, as both long packet headers and

short control packets arrive to these queues.

In parallel, as long packets are composed of a header firstly served at short queue and a

payload served by the payload register queue model; average queuing plus service time

of a long packet can be calculated as the sum of the average queuing plus service time

of a short packet and payload : Wlong = Wshort +Wpayload.

We have stated previously that payload register queue is simply an M/D/1 model where

D=1. Thus, its average queuing plus service time (average delay) can easily be calculated

from the Pollaczek-Khinchine Formula :

Wpayload =
2− λpayload

2(1− λpayload)
(6.4)

At the end, we can write the approximated average delay in the system as the propor-

tional sum of long and short packets as a function of total injection :

W = (1− plong)Wshort + plongWlong (6.5)

Due to the Taylor series expansion based derivation of the stationary distribution of

M/D/1 queue, we cannot write down the resulting average latency formula in closed from

here, as it requires too much space. The analytic approximation is calculated by Matlab

using loops for series. Note that, in definition these series expansions go to infinity in

alternating directions. Using too large expansions may cause instabilities, therefore we

have calculated these values up to several hundreds. In addition, probability of having

too large values for the service of short packets, such as larger than 100 symbols, is too

small.



Chapter 6. Payload Channel Algorithm 161

6.2.4 Experimental Results for Payload Channel Algorithm

We test the performance of our payload channel algorithm by comparing it to the sce-

nario where bandwidth is allocated statically and equal among tilesets. Understandably,

this version of the payload channel algorithm is only tested for the uniform Poisson and

uniform burst traffic models.

Average Latency

Fig. 6.6 shows the average latency with increasing total injection rate under uniform

Poisson traffic, along with the our theoretically derived approximation. Note that,

thanks to its effective reconfiguration to transmit payloads in single symbols it can

provide up to 10 times lesser average latency, compared to static case. Also note that,

our queuing theory approximation well fits to resulting average delay, except for large

injection rates close to system limit. This shall root from the success of Poisson distri-

bution with low injection rate, as previously explained. Results provide a slightly lower

injection rate limit compared to theoretical one, which we can speculate that it is due

to higher variance of service and arrival rates compared to Poisson distribution (higher

variance increases average latency [127]). Also, as we are considering 256 bytes long

payloads for long packets now, the average length of a packet is 8.75 flits, which explains

the new system limit for static allocation Fig. 6.6, injection rate approximately equal

to 32/8.75 = 3.6 packets/symbol.

Total Injection Rate (packets/symbol)
0 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
g

e 
L

at
en

cy
 (

sy
m

b
o

ls
)

0

10

20

30

40

50

60

70

80
Payload Channel Algorithm
Payload Channel Algorithm / Theoretical Approximation
Reference Static Allocation 
Reference Dynamic EQPS Allocation with T=16

Uniform Poisson

Figure 6.6: Average latency under uniform Poisson traffic with increasing injection
rate for Payload Channel Algorithm, analytic approximation and the reference static

case.

Fig. 6.7 shows the same performance measure for our algorithm and reference static and

dynamic QPS allocation under uniform DPBPP traffic with H=0.9 presenting a much

higher temporal heterogeneity. Note that, even under this much of temporal burstiness,

our algorithm is still able to induce up to x10 less average latency, thanks to its separate



Chapter 6. Payload Channel Algorithm 162

payload queues and novel subcarrier reconfiguration without requiring any signaling

overhead.

Total Injection Rate (packets/symbol)
0 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
g

e 
L

at
en

cy
 (

sy
m

b
o

ls
)

0

20

40

60

80

100

120

140

160
Payload Channel Algorithm
Reference Static Allocation 
Reference Dynamic EQPS Allocation with T=16

DPBPP H=0.9

Figure 6.7: Average latency under uniform DPBPP traffic (H=0.9) with increasing
injection rate for Payload Channel Algorithm and the reference static case.

Packet Delay and Queue Length Bound Exceeding Probabilities

Next, we investigate the probability of exceeding given delays for packets for our payload

channel algorithm and the reference static algorithm.

D
0
 : Delay Bound (symbols)

0 10 20 30 40 50 60 70 80 90 100

P
(D

>D
0)

10-4

10-3

10-2

10-1

100

Payload Channel (Uniform Poisson)
Reference Static (Uniform Poisson) 
Payload Channel (DPPBP)
Reference Static (DPPBP) 
Reference Dynamic EQPS
Allocation with T=16 (Uniform Poisson)
Reference Dynamic EQPS
Allocation with T=16 (DPPBP)

Uniform 
Injection Rate = 3 packets /symbol

Figure 6.8: Delay exceeding probability graphs for our payload channel algorithm
under uniform Poisson and DPPBP (H=0.9) traffic

Fig. 6.8 shows the delay exceeding probabilities under 2 uniform policies, highlighting

the absolute performance gain of our payload channel algorithm. For instance, under

uniform Poisson traffic, the probability of a packet to have a delay larger than 30 symbols

is x100 lesser compared to static allocation. Under uniform DPBPP traffic, with intro-

duced burstiness our algorithm’s performance degrades significantly, but it still provides

approximately x5 times lesser probability to exceed a delay of 30 symbols.



Chapter 6. Payload Channel Algorithm 163

Q
0
 : Queue Length Bound 

0 10 20 30 40 50 60 70 80 90 100

P
(Q

>Q
0)

10-4

10-3

10-2

10-1

100

Payload Channel (Short Packet Queue)
Payload Channel (Payload Queue)
Payload Channel (Payload Register)
Reference Static (Single Queue) 
Reference Dynamic EQPS
Allocation with T=16 (Single Queue)

Uniform Poisson 
Injection Rate = 3 packets /symbol

Figure 6.9: Queue Length exceeding probability graphs for our payload channel al-
gorithm under uniform Poisson traffic

Q
0
 : Queue Length Bound 

0 10 20 30 40 50 60 70 80 90 100

P
(Q

>Q
0)

10-4

10-3

10-2

10-1

100

Payload Channel (Short Packet Queue)
Payload Channel (Payload Queue)
Payload Channel (Payload Register)
Reference Static (Single Queue) 
Reference Dynamic EQPS
Allocation with T=16 (Single Queue)

Uniform DPPBP (H=0.9)
Injection Rate = 3 packets /symbol

Figure 6.10: Queue Length exceeding probability graphs for our payload channel
algorithm under uniform DPBPP traffic (H=0.9)

And finally the queue exceeding probabilities are compared. Payload channel algorithm

requires 3 separate queues to be install at each tileset’s front-end : a short queue for

control packets and long packet headers, a payload queue for 32-flit long payloads and

a payload register to keep the ID of the tilesets dynamically, demanding to use payload

channel (which stores the copy of the same information all time at each tileset). And

conventional static allocation requires only a single queue. Note that, given queue lengths

are in terms of units, that for payload queue it is the number of payloads (means one

has to multiply it by 32 in order to calculate the capacity in terms of flits), for payload

register it is the current number of tileset IDs (as there are 32 tilesets we need 5 bits

storage to represent each).

Fig. 6.9 and Fig. 6.10 shows the queue length exceeding probabilities under uniform

Poisson and DPBPP traffic, respectively. Let us remark that, in Fig. 6.9 and Fig. 6.10,

the x-axis does not represent the number of flits, particularly. For payload queue, x-axis

represents the number of payloads of 32 flits long (cache line); for short packet queue, it



Chapter 6. Payload Channel Algorithm 164

Figure 6.11: Frame structure and centralized bandwidth allocation mechanism of the
proposed dynamic payload channel algorithm

represents the number of 1-flit long short packets; for payload register, it represents the

number of IDs in a payload register at a time (for 32 tilesets, it is 5-bit long number)

and for reference algorithm, it represents the number of flits in a transmission queue as

in Chapter 5. We have combined these different indicators in a single graph in order to

provide a conceptual coherence. One can dimension and compare the required memory

for each of these 3 different queues for payload channel algorithm by looking at these

probabilities of exceeding. For instance, in Fig. 6.10, with a probability of 10−2, for the

payload channel algorithm, the number of payloads (where each is 32 flits long) in the

payload queue exceeds 8 (256 flits), for the short packet queue (where each is 1 flit), the

number of packets exceeds 30 (30 flits) and finally the instantaneous number of tileset-

IDs waiting (where each is 5 bits for 32 tilesets) exceeds 10 with this probability. For

the same probability of 10−2, for instance reference dynamic allocation algorithm with

a single queue, the instantaneous number of flits can only exceed 90, where for payload

channel algorithm total required capacity is 286 flits. As you can see even though,

the proposed payload channel algorithm can provide less average latency compared to

reference, it may require higher buffer capacity, as we need to store 32 flits long payload



Chapter 6. Payload Channel Algorithm 165

for relatively longer durations.

One can see the reasonably high performance of our algorithm in terms of requiring

small buffer lengths, even under the spikes of bursty traffic. Most importantly, payload

queue, where each element is composed of 2048 bits, does not require prohibitively large

capacity, thanks to effectiveness of our algorithm.

6.3 Dynamic Payload Channel Algorithm

6.3.1 Description of Dynamic Payload Channel Algorithm

Spatial imbalance of cache coherence traffic was discussed intensively through the thesis

manuscript. With additional temporal burstiness, our payload channel algorithm needs a

modification in order to cope with this situation. For this purpose, we develop Dynamic

Payload Channel Algorithm by merging previously mentioned payload channel algorithm

with centralized queue length proportional (QPS) algorithm.

if 
New Long 

Packet 
arrives

Defragment Header 
and Payload

Send to different 
queues

if 
New Short 

Packet 
arrives

Dynamic Payload Channel Algorithm
Transmission Side of a Tileset

if 
Payload 

Register is 
empty

if 
Payload 

Register is 
not empty

Payload to 
Payload Queue

Header to 
Short Queue

Short Packet to 
Short Queue

Sent 1 Flit Packets 
on Home Channel

(s)

if
Sent flit is 
Payload 
Header

if
Sent flit is 

Short 
Packet 

if
First ID in 
Register is 

your ID

if
First ID in 
Register is 
not your ID

Send Payload Do Nothing Send Payload 
Header(s)

Send 1-packet 
Short Packet(s)

Payload 
Queue

Short
Queue

Count Non-
Payload 
Symbols ++

if
Count Non-

Payload 
Symbols == 

Frame Length

Broadcast 
QSI

Figure 6.12: Flow-chart of dynamic payload channel algorithm from the view of the
transmission side of a tileset.



Chapter 6. Payload Channel Algorithm 166

Dynamic Payload Channel Algorithm
Receiver Side of a Tileset

Payload 
Register ID 
Queue

if 
Payload 

Register is 
not empty

if 
Payload 

Register is 
empty

Acquire 1-flit Packets 
from each home 

channel of tilesets

if
Received flit 
is Payload 

Header

if
Received  

flit is Short 
Packet 

Add ID (even if yours) to the 
Payload Register

if 
first ID of 
payload 

register is 
you

if 
first ID of 
payload 

register is 
not you

Receive Payload of the 
Source Tileset 

Do Necessary Packet 
Processing

Send to Receive Queue

All subcarriers are 
used for a single 
payload transmission

Do Necessary Packet 
Processing

Send to Receive Queue

Receiver 
Queue

Every symbol

if
Count Non-

Payload Symbols 
== Frame Length + 

TCOMP

Receive 
Response from 

CIU

Reconfigure
Home 

Channels

if
Decentralized

if
Centralized

Reconfigure
Home 

Channels

Figure 6.13: Flow-chart of dynamic payload channel algorithm from the view of the
receiver side of a tileset.



Chapter 6. Payload Channel Algorithm 167

The idea is to change the number of home channels of each tileset has within a frame, by

the help of a central intelligent unit (CIU) as in previous dynamic algorithm mechanisms.

Similarly, on the first symbol of the each frame, each tileset encodes its QSI. CIU,

calculating expected QSIs (EQSI) of tilesets, it allocates the RBs (i.e. home channels

in this case) to tilesets according to QPS algorithm. Different than the conventional

QPS algorithm, the symbols where payloads are being transmitted is not counted, while

determining the length of a frame. Therefore, length of a frame is indefinitive. However,

its minimum value, where payload channel is never used, is defined by the required

computation and reconfiguration time as in QPS algorithm. Based on the response

messages sent by CIU on pre-determined symbol and subcarriers, tilesets reconfigure

their arbitration for home channels in next frame. This procedure is illustrated in detail

in Fig. 6.11.

Fig. 6.12 and Fig. 6.13 illustrate the flow-charts of the dynamic payload channel algo-

rithm from the view of a transmitter and receiver side of a tileset, respectively.

f

t

Figure 6.14: Illustration of our Dynamic Payload Channel Algorithm both in fre-
quency and time domain through a simple scenario, where only 3 tilesets are active.



Chapter 6. Payload Channel Algorithm 168

Note that, encoded QSIs in this case do not represent the real number of flits waiting in

the front-end, but the number of packets (short and long), in other words the elements

in the short queue. This is due to fact that, each time payload channel is being used it

serves one payload and by allocating home channels proportionally to the number of all

packets. We make sure that bandwidth demand is shared proportionally, as each home

channel serves a short packet or give access to the payload channel for a long packet.

6.3.1.1 Illustrative Scenario

Fig. 6.14 shows a simple illustrative scenario for dynamic payload channel algorithm

where only 3 tilesets are active. For instance, on symbol t=0, Tileset-1 has 3 home

channels, where it has transmitted 2 long packet headers and a short packet. As men-

tioned previously, thanks to separate payload channel queues, inconsistency between

long packet headers and payloads is resolved. Therefore, a tileset may also send mul-

tiple long packet header on the same symbol and stall the transmission of payloads in

payload channel queue, while continuing to use next home channels it acquired. Due to

the system latency, both of these payload channel requests are activated on symbol t=2.

As Tileset-1 has sent 2 payload channel requests, in the payload channel register its ID

is inserted twice. Then, on symbol t=2 and t=3 it transmits the payloads of these 2

packets. And on symbol t=4, the configuration of tilesets’ home channels are changed

due to distribution in the frame.

6.3.2 Experimental Results for Dynamic Payload Channel Algorithm

We test the performance of our proposed dynamic payload channel algorithm for non-

uniform Poisson and DPBPP traffic. In order to ensure a reliable competence, we

compare the results to the basic centralized QPS algorithm mention in 5.2, where we

also base our algorithm on.

Average Latency

Fig. 6.15 and Fig. 6.16 shows the average latency with increasing total injection rate un-

der non-uniform Poisson and DPBPP (H=0.9) traffic, respectively. The most interesting

observation from these points is the better performance of conventional QPS algorithm

compared to Dynamic Payload Channel Algorithm after a certain injection rate (For

non-uniform Poisson around 2 packets/symbol and for non-uniform DPBPP around 2.5

packets/symbol). This shall root from the requirement of more rapid response to the

fluctuations of QSIs under higher injection rates. In higher traffic load, dynamic payload

channel algorithm induces more and more payload channel utilization, which disrupts



Chapter 6. Payload Channel Algorithm 169

Total Injection Rate (packets/symbol)
0 0.5 1 1.5 2 2.5 3 3.5

A
ve

ra
g

e 
L

at
en

cy
 (

sy
m

b
o

ls
)

0

10

20

30

40

50

60

70

80
Payload Channel Algorithm with Bandwidth Allocation (T=16)
Reference Decentralized Allocation (T=16)

Non-Uniform Poisson

Figure 6.15: Average latency under non-uniform Poisson traffic with increasing in-
jection rate for Payload Channel Algorithm and the reference basic QPS allocation.

Total Injection Rate (packets/symbol)
0 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
g

e 
L

at
en

cy
 (

sy
m

b
o

ls
)

0

50

100

150
Payload Channel Algorithm with Bandwidth Allocation (T=16)
Reference Decentralized Allocation (T=16)

Non-Uniform DPPBP H=0.9

Figure 6.16: Average latency under non-uniform DPBPP traffic (H=0.9) with in-
creasing injection rate for Payload Channel Algorithm and the reference basic QPS

allocation.

the default home channel configuration and also makes frame lengths much longer (as

payload channel symbols are not counted in frame length). This causes to reconfig-

uration of subcarriers much less frequently and with outdated QSI. However, for low

injection rates, the performance of the payload channel algorithm is evident, especially

for Poisson traffic.

Packet Delay and Queue Length Bound Exceeding Probabilities

Next, we evaluate the delay and queue length exceeding probability graphs, as usual.

Fig. 6.17 shows the delay exceeding probability for proposed dynamic payload channel

algorithm and the normal QPS algorithm, under both non-uniform Poisson and DPBPP

(H=0.9) traffic with a total injection rate of 3 packets/symbol. Interestingly, we see some

better performance (lower probability of exceeding) of conventional QPS compared to

dynamic payload channel algorithm, especially for packet delays larger than 30 symbols.



Chapter 6. Payload Channel Algorithm 170

Thus, we can deduce dynamic payload channel algorithm may induce larger delays under

relatively high load of traffic. However, we do have shown the better performance of the

proposed payload channel algorithm for lower traffic rates.

0 10 20 30 40 50 60 70 80 90 100

P
(D

>D
0)

10-4

10-3

10-2

10-1

100

Dynamic Payload Channel (Non-Uniform Poisson)
Reference Dynamic (Non-Uniform Poisson) 
Dynamic Payload Channel (DPPBP)
Reference Dynamic (DPPBP) 

Non-Uniform 
Injection Rate = 3 packets /symbol

Figure 6.17: Delay exceeding probability graphs for our payload channel algorithm
under non-uniform Poisson and DPBPP traffic (H=0.9) compared to reference QPS

algorithm

Fig. 6.18 and 6.19 shows the queue length exceeding probability graphs for dynamic pay-

load channel algorithm and conventional QPS under non-uniform Poisson and DPBPP

(H=0.9) traffic, respectively. Let us remark that, in Fig. 6.18 and Fig. 6.19, the x-axis

does not represent the number of flits, particularly. For payload queue, x-axis represents

the number of payloads of 32 flits long (cache line); for short packet queue, it represents

the number of 1-flit long short packets; for payload register, it represents the number of

IDs in a payload register at a time (for 32 tilesets, it is 5-bit long number) and for refer-

ence algorithm, it represents the number of flits in a transmission queue as in Chapter

5. We have combined these different indicators in a single graph in order to provide a

conceptual coherence. One can dimension and compare the required memory for each of

these 3 different queues for payload channel algorithm by looking at these probabilities

of exceeding.

We observe that, even for the relatively high bursty input traffic of 3 packets/symbol

rate, 1-flit short queue exceeds the 80 flits capacity with a probability around 10−4.

Compared to reference conventional QPS, the real bottleneck is the payload queues, as

each element is 32 flits long. However, even for a 3 packets/symbol DPBPP traffic,

number of payloads being buffered in a tilesets payload queue exceeds 10 with only a

probability of 10−4, which shows the feasibility and robustness of the proposed algorithm.



Chapter 6. Payload Channel Algorithm 171

0 10 20 30 40 50 60 70 80 90 100

P
(Q

>Q
0)

10-4

10-3

10-2

10-1

100
Dynamic Payload Channel (Short Packet Queue)
Dynamic Payload Channel (Payload Queue)
Dynamic Payload Channel (Payload Register)
Reference Dynamic (Single Queue) 

Non-Uniform Poisson
Injection Rate = 3 packets /symbol

Figure 6.18: Queue length exceeding probability graphs for our payload channel
algorithm under non-uniform Poisson traffic compared to reference QPS algorithm

0 10 20 30 40 50 60 70 80 90 100

P
(Q

>Q
0)

10-4

10-3

10-2

10-1

100
Dynamic Payload Channel (Short Packet Queue)
Dynamic Payload Channel (Payload Queue)
Dynamic Payload Channel (Payload Register)
Reference Dynamic (Single Queue) 

Non-Uniform DPBPP H=0.9
Injection Rate = 3 packets /symbol

Figure 6.19: Queue length exceeding probability graphs for our payload channel algo-
rithm under non-uniform DPBPP traffic (H=0.9) compared to reference QPS algorithm

6.4 Conclusion

We have presented an innovative bandwidth allocation mechanism called “Payload Chan-

nel Algorithm”, which exploits the bimodal nature of on-chip coherence packets. To the

best of our knowledge, this is the first approach of this kind. Using strong reconfigurabil-

ity and broadcast support of OFDMA, proposed algorithm can decrease average latency

up to 20 times compared to a static one, under certain specific scenarios. This novel

algorithm requires no additional signaling overhead, and is implemented with signifi-

cantly low complexity. The algorithm is specially intended for the on-chip architectures

with longer cache lines. We have also presented a dynamic version of this algorithm, by

merging a centralized bandwidth allocation proposed in Chapter 5; which adapts band-

width allocation according to spatial traffic fluctuations. We believe proposed Payload

Channel Algorithm would constitute an important pioneer work for the management of

bimodal on-chip packets.



Chapter 7

Adaptive Modulation Order

Selection

Until now, we have reviewed only two degrees of freedom for assigning transmission

rates : time (different OFDM symbols) and frequency (different subcarriers). Now,

we introduce modulation order as a third degree of freedom, giving the possibility of

encode higher number of bits in order to decrease the latencies of packets, at the ex-

pense of higher power consumption. We provide in this chapter 2 dynamic modula-

tion order selection algorithms : Maximum delay bounded scheduler and average delay

bounded scheduler, both inspired from the literature for generic wireless communications

[128][129]. They give a trade-off between latency and power consumption relatively to

BPSK case, where we do not impose a real transmission power in Watts. Next in this

chapter, an information theoretic analysis investigates required transmission powers to

achieve certain capacities on different transmission line topologies.

7.1 Delay-Power Trade-off

A widely known rule of thumb of digital communications is the need for exponentially

larger power transmission for higher rates. If we project this rule on a constellation

diagram, we see that the Additive White Gaussian Noise (AWGN) drifts locations of

received symbols, which causes decoding errors. Since his seminal paper in 1949 [130],

Claude Shannon had founded a new paradigm in telecommunications, Information The-

ory, which sets a bound on the achievable rate for a communications channel with

arbitrarily small error probability, given a specific Signal-to-Noise Power Ratio (SNR).

Another way to approach this to problem is the other way around, i.e. given a desired

172



Chapter 7. Adaptive Modulation Order Selection 173

probability of error, what is the required minimum transmission power. The well known

transmission capacity formula from Shannon is as :

C0 = Blog2(1 +
PR
PN

) (7.1)

where C0 is capacity in bits/sec, B is bandwidth in Hz, PR is received signal power in

Watts and PN is the ambient white noise power in Watts. C = C0
B is spectral capacity

density in bits/sec/Hz. PN can be calculated as :

PN = BN0 (7.2)

where N0 is the noise spectral density in Watts/Hz (scalar), which we assume as -174

dBm/Hz. PR/PN is referred as received Signal-to-Noise Ratio (SNR). Note that even

though N0 is called noise power spectral density, we have chosen to denote the capacity

spectral density as C, and capacity as C0. This is because, we use capacity spectral

density as a more important metric, which is associated to modulation orders.

After manuplating these equations, we can achieve the required minimum received signal

power for achieving a transmission rate capacity (Note that we are using information

theoretic rate capacity (C0) and transmission rate (R) as interchangable terms ) :

PR
PN

= 2C B − 1 (7.3)

In case of quantized digital communications, such as OFDM, we can transform this

equation to the relation, showing the ratio of minimum transmission power required with

increasing modulation order (i.e. rate-bits/subcarrier/symbol) compared to minimum

modulation order BPSK (1 bit/subcarrier/symbol), where M is the modulation order

rate (e.g. if 16-QAM : 4 bits/subcarrier/symbol) :

PR
PN

= 2M B − 1 (7.4)



Chapter 7. Adaptive Modulation Order Selection 174

We have seen that required power transmission is an exponentially increasing cost for

higher rates. Taking into account how energy is a valuable resource, a voluminous lit-

erature on energy efficient optimal rate selection has been created by researchers, from

cellular communications to satellite communications, from optical fiber connections to

wireless sensor networks [131][132][133][134]. Rate, actually, is a tool, not the ultimate

goal. In other words, a designer would like to control the metrics of Quality-of-Service

(QoS) such as average latency, maximum delay, maximum buffer length required, prob-

ability of buffer overflow etc., which are results of the selected rate. It is interesting to

see that, optimality of delay-power relation is rather an under-exploited subject. The

main idea is simple : packets in queues can be delayed in order to send them in longer

durations, with slower rates (lower modulation orders), thus to save power. Fig. 7.1

shows the typical Pareto like delay-power relation, which can be potentially exploited.

Delay

P
o

w
er

Area of Interest for
desired performance
comprimise

Information

Theoretic

Rate-Power Relation :

P =
e
r
−1

r−1

Figure 7.1: Typical Convex Delay-Power relation, which gives designer to exploit
large energy savings by trading latency

Various researchers approached this issue from different perspectives. At first, param-

eters and metrics of interest are relatively defined; i.e. one may desire to minimize

average delay while setting a bound for the transmission power budget, or vice-versa.

One other may wish to set bounds on the maximum delay due to Quality-of-Service

requirements or maximum transmission power due to circuit restrictions. In addition,

this rate scheduler shall be designed based on different paradigms depending on the

mode of transmission, environment, nature of traffic etc. In this chapter, we provide 2

dynamic modulation order selection algorithms for WiNoCoD, trying to minimize the

average energy expenditure, while first one is setting a bound on maximum delay of the

packets, second one average delay of the packets.



Chapter 7. Adaptive Modulation Order Selection 175

7.2 Adaptive Modulation Option in OFDMA and Delay

Another revolutionary advantage of using OFDMA in WiNoCoD is the option of using

higher modulation orders dynamically on different symbols and subcarriers. In addition

to frequency and time, this option provides a third dimension of flexibility. In design

phase of WiNoCoD project, 4 modulation orders : BPSK, QPSK, 16-QAM and 64-

QAM are selected to be implemented, which provides 1,2,4 and 6 bits per subcarrier

respectively. It was shown in M. Hamieh’s work that, for our transmission line (see

Section 3.3.2.3), between two farthest tilesets, minimum required power for transmission

on a single subcarrier with a bit error rate set to 10−8 using BPSK is -88 dBm and using

64-QAM is -74 dBm [79]. Noise Factor of Low Noise Amplifiers (LNAs) are set to be 3

dB over whole spectrum. Therefore, using 64-QAM needs 14 dB more power than using

BPSK, in other words approximately more than 25 times in linear scale. However, in

our simulations while testing our proposed solutions, we will stick to the equation 7.1,

which gives the information theoretic rate-power relation. This would allow any kind

of different channel coding techniques to be applied, without considering a specific bit

or packet error rate. In addition, we have decided to employ modulation orders up to

256-QAM, including also 8-PSK, 32-QAM and 128-QAM, which may be available in

further phases of the project. While testing our simulations, we considered the power

consumption metric as the linear ratio to the power of lowest modulation order, BPSK.

In this thesis work, adaptive modulation order selection is performed on the dynamic

bandwidth allocation algorithms, that reconfiguration in all 3 dimensions are exploited.

7.3 Decentralized and Centralized Modulation Order Se-

lection Policy

7.3.1 Decentralized Modulation Order Selection

In decentralized algorithms, just as in previous chapters, on the first symbol of each

frame, tilesets broadcast their QSIs. After each tileset receives information on buffer

lengths of each other tileset, all tilesets process the same algorithm on the same QSI data

to reach the same decision on the arbitration of subcarriers. This process is assumed to

take 1 frame length, thus new configuration of the bandwidth is activated for the next

frame. We introduce here a set of decentralized dynamic modulation order selection

policies on to this framework, where at each frame, each tileset decides on its modulation

order for the next frame using its QSI and also newly calculated number of subcarriers

to be used in next frame. As other tilesets must learn this chosen modulation order to



Chapter 7. Adaptive Modulation Order Selection 176

successfully decode this tileset’s transmissions on its dedicated RBs, after deciding on

the modulation order each tileset encodes its modulation order on the last symbol of the

current frame. The possibility for computing and activating different modulation orders

on each frame (coherent with the framed structure explained in previous chapters) in a

decentralized setting, is illustrated in Fig. 7.2.

Q

Q

M Q

Q

M Q

Q

M

Based on the QSIs emitted by tilesets at the 
start of a  frame, arbitration of RBs is decided 
for the next frame.  At the same time, 
computation of Modulation Order to be used in 
next frame by tileset j, Mj

t+1
 is calculated. 

t-1Frame : t+1

After each tileset decides on the allocation of 
subcarriers, each of them computes also the optimal 
modulation order for next frame and broadcasts it:

At the start of the frame, the computation process of 
modulation order selection also starts. Each tileset decides its 
own modulation order, then broadcasts it on last symbol of the 
frame. Note, that modulation order selection requires, the 
current QSI and the newly total number of allocated RBs in 
next frame of this tileset. 

t

Figure 7.2: Framed structure of decentralized RB allocation and modulation order
selection in WiNoCoD

Note that, a tileset needs the total number of RBs it will use during the next frame.

OFDMA gives the possibility to encode different modulation orders on each subcarrier,

every symbol. However, in an on-chip environment like WiNoCoD with bandwidth

and computation restrictions, we constructed a paradigm, where a tileset decides on

its modulation order to be used, through whole next frame. Therefore, if a tileset has

S RBs (say which can serve S flits with the lowest modulation order, BPSK) in next

frame, and if it decides to use a modulation order of 16-QAM, it can serve up to 4S

flits. Hence, modulation order selection should be done carefully, provisioning power

expenditure, based on the instantaneous QSI and traffic characteristics. Remind that,

a tileset selects its modulation order based on the total number of RBs it will have in

next frame, therefore through the current frame, it shall perform this operation after

the computation of bandwidth allocation. After selecting its modulation order, a tileset

broadcasts this modulation order on dedicated subcarriers, so that other tilesets which

decode RBs of this tileset can use this moduation order for successful decoding. As you

can see, the tileset receivers should activate this operation, matching RBs and decoding

modulation order via a circuitry or processing unit, just in one symbol. In next symbol,

the new frame starts with the new RB arbitration and used modulation orders. We also

assume, tilesets are able to tune their transmission powers in one symbol duration.



Chapter 7. Adaptive Modulation Order Selection 177

Another important point is that each tileset, after deciding its modulation order, should

tune their transmission power according to this new modulation order. Fig. 7.3 illus-

trates the process of power tuning and constellation mappings in a tileset’s OFDMA

transmission chain.

S/P I
F
F
T

Encoding with chosen modulation 
order for tileset j

Map-
ping

Zero 
Energy
on Idle 
Subcarriers

Allocated subcarriers for 
tileset j

P
/
S

L
N
A

T
r
a
n
s
m
i
s
s
i
o
n
 

L
i
n
e

0010..1

Digital Data fetched 
from the transmission 
queue of tileset j, 
according to number 
of subcarriers and 
chosen modulation 
order.

Power allocation for chosen 
modulation order for tileset j

Figure 7.3: Transmission power tuning for the chosen constellation order

7.3.2 Centralized Modulation Order Selection

For the centralized modulation order selection, Central Intelligent Unit (CIU) is also

responsible for the chosen modulation order of each tileset. After acquiring the QSIs

of the tilesets, CIU determines the number of RBs allocated to each tileset for the

next frame, as explained in previous chapters. However, this time, after calculating the

number of RBs allocated to each tileset, it determines the selected modulation order for

the next frame using this information and QSI. Following this, it broadcasts the selected

modulation order along with the number of allocated RBs on the reserved subcarriers.

As there are 8 possible modulation orders, this means an extra 3 bits are required for

overhead. Just as in the centralized approach explained in Section 4.3.3, after receiving

this information tilesets reconfigure their transmission for the next frame in Treconfig

symbols. Additionally, tilesets also tune their transmission power for the next frame,

and reconfigure their receiver for proper decoding subcarriers from each tileset with

different modulation orders. This procedure is illustrated in Fig. 7.4.



Chapter 7. Adaptive Modulation Order Selection 178

Q

Q

R

R

M

Q

Q

R

R

M

Q

Q

R

R

M

t-1Frame : t+1

Tilesets configure their transmission pattern and power 
according to response coming from CIU in TRECONFIG symbols. 
They also decode transmission of other tilesets by using the 
broadcasted modulation order list.

t

TRECONFIG
TCOMPUTATIO

N

Figure 7.4: Framed structure of centralized RB allocation and modulation order
selection in WiNoCoD

7.4 Maximum Delay Bounded Scheduler

We have mentioned the possibility of saving energy, by sending data at lower rates,

hence more delayed. One shall formulate this compromise elegantly in order to exploit

the trade-off efficiently. One method to approach this aspect is to setting a maximum

delay bound on every generated packet in the system, guaranteeing them to depart the

queues in less than Dmax time, and choosing the transmission rate every instant, such

that the average power is minimized. Authors in [128] has investigated this subject

for single user and single Gaussian channel case with slotted transmission. They have

shown that an optimal rate scheduler of this type is actually a Low Pass Filter. This

is intuitive as main idea of energy saving is to lower the instantaneous output rate

compared to instantaneous input rate, thus lowering transmission power at the expense

of delay. The dual of this perspective is the smoothing of output rate by a time averager,

a linear low-pass filter. Authors have assumed arbitrary distribution of input statistics,

therefore bursty arrivals. In case of linear time-invariant scheduler, where coefficients

of scheduler are constant, not depending on time, they have proved that filter has a

length of Dmax and all coefficients are equal to 1/Dmax, regardless of the statistics of

input traffic. In other words, for each number of packets that arrived at time t, the

optimal allocation of rate is to divide the rate equally in this slot and further Dmax − 1

slots. This gives the minimum transmission power for time-invariant case due to convex

relation between power and rate. For instance, when a message of 6 packets arrive and

we set a delay bound of 6 slots, optimal rate allocation is to serve 1 packet on current

and next 5 slots, because power is an exponential function of rate. The formulation of



Chapter 7. Adaptive Modulation Order Selection 179

this optimal scheduler, including also all inputs arrived up to Dmax − 1 slots before, is

as follows :

Rt =
Xt +Xt−1 + ..+Xt−(Dmax−1)

Dmax
(7.5)

An example of this scheduler is shown in Fig. 7.5, where theoretically it can save up to

25 times of energy, by delaying the transmission by 5 slots, in this specific case. Further

in [135], authors extend the case to linear time-varying filters, proving that they may

improve the performance. However, in limited computational constraints of on-chip

environment, we evaluate the possibility of adapting this basic optimal time-invariant

scheduler to WiNoCoD, where there is no single channel per tileset, but changing number

of multiple channels per frame. We believe, this adaptation not only improves the energy

efficiency of WiNoCoD, but also extends the delay bounded optimal scheduler for all

generic communication systems with varying number of channels.

6 packets arrived 
in time t0

If we divide the transmission into 6 slots, we can 
save approximately e6 / (6.e1) ~ 25 times power.

t0

Rate : 6
(64-QAM)

t0

Rate : 1
(BPSK)

If we formulate this, optimal Rate Function, which gives the minimum 
transmission power, while providing a delay bound of D, we get a Low 
Pass Filter form, where Xt ,signifies the number of packets arrive on time t : 

Rt = (1/D) (Xt-(D-1) + Xt-(D-2)  + .. +Xt )

t1

Rate : 1
(BPSK)

t2

Rate : 1
(BPSK)

t3

Rate : 1
(BPSK)

t4

Rate : 1
(BPSK)

t5

Rate : 1
(BPSK)

Figure 7.5: Maximum delay bounded rate scheduler can save substantial amount of
power, as shown in this example

7.4.1 Extension of Delay Bounded Scheduler to Multiple Channels

In a scenario, where a transmitter can have more than one channel, -say where each

of them can serve one packet with the lowest modulation order -, the aforementioned

scheduler is not valid. This roots from the fact that, transmitter can serve more than

the already scheduled rate for current symbol as it may have larger number of channels,

thus optimal scheduling should be updated such that lowering rate in next slots, while



Chapter 7. Adaptive Modulation Order Selection 180

ensuring serving all data in Dmax slots. Let us explain this in a basic example which

is illustrated in Fig. 7.6. Say for an example that 8 packets arrive at a transmitter’s

queue on a slot t and maximum delay bound is 4 slots. Also, say that this transmitter

has 1 channel on current symbol and 3,0,2 channels in next 3 slots, respectively. Note

that each channel can serve 1 packet with the lowest modulation order. According to

the maximum delay bounded optimal scheduling explained above, we should choose the

lowest modulation order on every slot, such that allocating 8/4 = 2 packets/slot rate

on each slot. In this case, we should choose the second modulation order (i.e. QPSK,

2 packets per channel) on the first slot, as we have 1 channel. According to equation,

we should choose the lowest modulation order on second slot, as we should schedule 2

packets/slot and we have 3 channels, we can serve 3 packets on this slot, even with the

lowest modulation order. Note that, we have served more packets than the scheduled

2 packets/slot. On third slot, we have no channels, therefore we cannot transmit any

packets. And finally, on last slot, we have 2 channels and we should choose the lowest

modulation order to schedule 2 packets/slot. However, note that a packet left in the

queue which violates the maximum delay bound.

Rt = (1/D) (Xt-(D-1) + Xt-(D-2)  + .. +Xt )

Xt : Number of packets arrived on symbol t
Rt : Optimal Allocated Rate on symbol t Maximum delay-bounded  optimal rate allocation 

equation is not valid for the case for varying number 
of channels !  

We need a modified new equation !

t0

8 packets arrive on t0. 

t1

There are 1 channel on 
t0. 

6 packets remains 
on t1. 

Assume only 8 
packets arrive on 
t0 and no other 
packets are 
generated before 
or after t0

Then according to equation we 
should serve 2 packets on slots 
t0, t1, t2, t3

We need a rate of 2 
packets/slot. Then, 
QPSK should be 
chosen. 

There are 3 channels 
on t1. 

We need a rate of 2 
packets/slot. Even if we 
choose, the lowest 
modulation, BPSK, we 
have a rate of 3 
packets/slot. Which is 
larger than the scheduled 
one! 

There are 0 channels 
on t2. 

According to 
equation, we should 
allocate a rate of 2 
packets/slot, as we 
have no channels, 
the rate is zero !

3 packets remains 
on t3. 

t3

There are 2 channels 
on t3. 

According to 
equation, we should 
allocate a rate of 2 
packets/slot, as we 
have 2 channels, we 
choose the lowest 
modulation order, 
which provides this 
rate, BPSK. Thus 2 
packets are served. 

t4

There is 1 
packet left, 
which 
exceeds the 
maximum 
delay of 4 !

t2

3 packets remains 
on t3. 

Figure 7.6: Standard low-pass filter equation is not valid for the multichannel case.

Hence, this encouraged us to re-formulate the scheduler for changing number of chan-

nels. Another approach to look to this problem is not scheduling according to arriving

number of packets in previous Dmax slots, but according to current number of packets

with different deadlines (i.e. remaining time for the packet till violating delay bound).

Therefore, system needs to profile all packets in the queue, according to their deadlines.

As, main idea of the optimal time-invariant scheduler is to divide the total transmission

uniformly in further Dmax slots, we may think this as to allocate a total rate on cur-

rent symbol, summing the different rates allocated to packets with different deadlines,



Chapter 7. Adaptive Modulation Order Selection 181

dividing the number of packets to their deadline. This is formulated as follows, where

Qτ symbolizes the number of packets with a deadline of τ on slot t :

Rt = Q1 +
Q2

2
+ ..+

Qτ
τ

+ ..+
QDmax

Dmax
(7.6)

The duality of this new formula is illustrated in Fig. 7.7, with the previous example.

Note how this basic modification is valid under multiple channel case.

Xt : Number of packets arrived on 
symbol t
Rt : Optimal Allocated Rate on symbol t

t0 t1

The dual of this 
equation can be 
written according to 
number of packets 
exist with different 
deadlines !

t3t2

Rt = (1/D) (Xt-(D-1) + Xt-(D-2)  + .. +Xt ) Rt = ( Q0 + (1/2) Q1  + .. + (1/[D-1]Q(D-1))<=>

Qt : Number of packets in the queue on 
symbol t, with deadline of t slots
Rt : Optimal Allocated Rate on symbol t

8 packets arrive on 
t0. 

Assume only 8 
packets arrive on t0. 
and no other packets 
are generated before 
or after t0

There are 8 packets 
in the queue with a 
deadline of 4 slots. 
According to new 
equation we need a 
rate of 8/4 = 2 
packets/slot  on t0

There are 6 packets 
in the queue with a 
deadline of 3 slots. 
According to new 
equation we need a 
rate of 6/3 = 2 
packets/slot  on t1

There are 4 packets 
in the queue with a 
deadline of 2 slots. 
According to new 
equation we need a 
rate of 4/2 = 2 
packets/slot  on t2

There are 2 packets in 
the queue with a 
deadline of 1 slots. 
According to new 
equation we need a 
rate of 2/1 = 2 
packets/slot  on t3

Figure 7.7: The proposed dual equation for maximum delay bounded scheduler using
instantaneous queue length

7.4.2 Maximum Delay Bounded Scheduler for WiNoCoD

Using the principle proposed in the previous section, we design a maximum delay

bounded scheduler for WiNoCoD, with a decentralized approach. Upon receiving QSI

on the first symbol of a frame, tilesets run the conventional bandwidth allocation algo-

rithm to determine their RBs to use in next frame, as previously explained pipelined

fashion. Then, using its own QSI and newly allocated number of RBs, each tileset also

determines its modulation order based on the maximum delay bounded rate scheduling

principle and broadcasts it on the last symbol of the frame.

As scheduling is done in frames, setting delay bounds to packets can only be effectuated

in terms of frames. In other words, a packet can be guaranteed to have a maximum delay

as an integer multiple of symbols in a frame. Furthermore, as new modulation order

and bandwidth allocation is activated in next frame and based on the QSI broadcasted

on the first symbol of current frame, we can only guarantee a minimum value for the



Chapter 7. Adaptive Modulation Order Selection 182

maximum delay of 3 frames. In order to better explain this situation, we depict it in

Fig. 7.8 with an example. The currently broadcasted QSI may include a packet arrived

in any symbol in last frame. Therefore, the QSI may be contributed by a packet arrived

T symbols before. And on the other hand, as the new rate is scheduled for the next

frame and all the packets are guaranteed to be served by the end of this frame, we can

only guarantee the service of a packet with a maximum bound of 3 frames length.

Q

Q

M Q

Q

M Q

Q

M

t-1Frame : t+1

The new modulation order and RB allocation based on this 
QSI, will be effectuated for the next frame. This rate can only 
guarantee the service of the packets contributing to QSI by 
the end of the frame.

t

A packet contributing to this QSI may have arrived in the first 
symbol of the previous frame. Thus, it may have already a 
delay of T symbols.

A packet may be served on any 
symbol of the next frame, thus it 
can wait to be served up to T 
symbols, just in this frame.

Hence, in this case, the maximum delay can be bounded 
minimum for 3 frames (3T symbols). In other words, with a 2 
frames long addition to desired bound with the proposed 
scheduler

Figure 7.8: With the proposed scheduler, the delay of packets can only be guaranteed
to have a desired maximum bound with a 2 frame length addition.

7.4.2.1 Experimental Evaluation

We have tested the proposed maximum delay bounded scheduler with the aforemen-

tioned decentralized context, by using Expected Queue Proportional Scheduling (EQPS)

explained in 5.2.1 with allocation in time direction. The main reason behind that it al-

lows the allocation of at least 1 RB to every tileset which is likely not to be idle. If a

tileset is not allocated any frequency resource in a frame, setting the modulation order,

therefore the necessary instantaneous rate is not possible. In addition, we have shown

that EQPS provides remarkably good performance under high injection rates. 8 modu-

lation orders from BPSK (1 bit/subcarrier) to 256-QAM (8 bits/subcarrier) are utilized,

as mentioned previously. However, we remind that any other kind of subcarrier arbi-

tration algorithm can be implemented on this decentralized maximum delay bounded

modulation order selection framework. Due to limited space, only a few experiments

are demonstrated. Note that, this time the lowest modulation order is BPSK. We have



Chapter 7. Adaptive Modulation Order Selection 183

QSIs from tilesets
[Q1

t, .. Qi
t .. , QN

t]

Determine 
number of 
RBs for next 
frame

New calculated #RB 
Si

t+1
 

Mi
t+1= Ri

t+1/Si
t+1

 

Choose modulation order

Broadcast chosen Modulation 
Order

each frame
Based on new flits coming from 
mesh network and served flits in 
last frame modify the number of 
packets in transmission queue 

according to their countdown to 
maximum delay bound : D0

Tileset-i

(Required rate in next frame) Ri
t+1 = 

Q1 + (Q2 / 2) + ..  (Qτ / τ)  + .. + QD0-1 /(D0-1)

Figure 7.9: Flow chart of the maximum delay bounded scheduler with distributed
subcarrier allocation.

used QPSK as default in previous chapters, thus this means the capacity of the system

is halved if only BPSK is utilized. In addition, QSI and modulation order signaling

is always done in BPSK for minimizing probability of error. Therefore, the required

number of RBs allocated for signaling is two times more in this case. For total injection

rate values of 4, 6 and 8 packets/symbol, the simulation for a frame length of 8 symbols

is executed under non-uniform Poisson and DPBPP traffic with H=0.9, for different

maximum delay bounds.

Injection Rate = 4 packets/symbol

Before testing our algorithm for the injection rate of 4 packets/symbol non-uniform

Poisson and DPBPP traffic, in Fig. 7.10(a) and in Fig. 7.10(b), we provide the delay

exceeding probability graphs for the framed EQPS allocation with static modulation

order under these scenarios. The reference static modulation order for modulation or-

ders from BPSK to 256-QAM uses the same frame length and bandwidth allocation

mechanism, and consitutes a reference for the proposed dynamic modulation order. Re-

mind that, utilizing higher modulation orders constantly gives much more lower delay

exceeding probabilities at the expense of exponentially higher modulation orders. The

resulting average power in terms of power required for BPSK with constant modulation

order utilization is shown in Fig. 7.11.



Chapter 7. Adaptive Modulation Order Selection 184

Delay Bound (D
0
)

0 10 20 30 40 50 60 70 80

P
(D

>D
0)

10-4

10-3

10-2

10-1

100
BPSK
QPSK
8-PSK
16-QAM
32-QAM
64-QAM
128-QAM
256-QAM

Non-uniform Poisson
Injection Rate = 4 packets/symbol

(a) Non-Uniform Poisson

Delay Bound (D
0
)

0 10 20 30 40 50 60 70 80

P
(D

>D
0)

10-4

10-3

10-2

10-1

100
BPSK
QPSK
8-PSK
16-QAM
32-QAM
64-QAM
128-QAM
256-QAM

Non-Uniform DPBPP
Injection Rate = 4 packets/symbol

(b) Non-Uniform DPBPP (H=0.9)

Figure 7.10: Packet delay exceeding probability graphs for non-uniform Poisson and
DPBPP traffic with injection rate of 4 packets/symbol for a static modulation order
system for different utilized modulation orders (EQPS(α = 0.95), time direction allo-

cation, T=8 symbols)

Fig. 7.12(a) shows the probability of a packet exceeding a given delay for each tried

maximum delay bound with the proposed scheduler under non-uniform Poisson traffic

with an injection rate of 4 packets/symbol. As mentioned previously, the delay bounds

can be quantified in our algorithm in terms of frame lengths and 2 frames length shall be

added to this initially given bound due to the structure of the algorithm. For instance,

in this case we have assumed a frame length of 8 symbols; therefore one can start to

guarantee a minimum value for maximum delay bound as 3 frames (24 symbols). By

inspecting Fig. 7.12(a), we see that except for the 1 (1+2) frame length (24 symbols), all

the given delay bounds have been validated (For a delay bound of 24 symbols, probabil-

ity of exceeding 24 symbols is around 0.0003). In addition, after 24 symbols bound, the

algorithm operated with 2 (2+2) frame length (32 symbols) perform even better com-

pared to 1 (1+2) frame length bound. This is because, when we impose a delay bound

of 1 frame (where it is a single length filter), most of the time the algorithm can not per-

form coherently, as it can not sustain the necessary instantaneous rate with the highest



Chapter 7. Adaptive Modulation Order Selection 185

Used Modulation Order (bits)

1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 P

o
w

e
r 

(i
n

 t
e

rm
s

 o
f 

p
o

w
e
r 

re
q

u
ir

e
d

 

fo
r 

1
 R

B
 w

it
h

 B
P

S
K

)

0

200

400

600

800

1000

1200

1400

1600

1800

Figure 7.11: The average transmission power increases drastically, if higher modula-
tion orders are used constantly.

modulation order of 256-QAM. Also, frame structure causing outdated information on

queue lengths, makes tight delay bounds almost impossible.

In Fig. 7.12(b), we see the resulting average power expenditure for 8 different delay

bounds (from 24 symbols/1+2 frames to 80 symbols/8+2 frames). We can see that, as we

are increasing the maximum delay bound, we can decrease the consumed avarage power.

For a 1 (1+2) frame length (24 symbols) maximum delay bound, the resulting average

power is slightly above 10 units (in terms of minimum transmission power required for

a single RB (32 subcarriers) coded with BPSK); whereas for a delay bound of 4 (4+2)

frame length (48 symbols), the resulting average power is around 2 power units. This

means, by increasing average delay bound 2 times for this scenario, we can decrease the

total energy expenditure by 5 fold. For higher delay bounds, we observe that there are

no more substantial power gains. This scheme is predictable and consistent with the

previously explained Pareto like delay-power relation.

Then, we evaluate our algorithm for the same injection rate of 4 packets/symbol, but

for realistic non-uniform DPBPP traffic with H=0.9 as in Fig. 7.13. First of all, we

see that intended delay bounds of 1 (1+2) frame (24 symbols), 2 (2+2) frames (32

symbols), 3 (3+2) frames (40 symbols) and 4 (4+2) frames (48 symbols) could not have

been achieved, with a suitable probability of error. We observe that the probability of

exceeding these delay bounds are 0.0413, 0.0067, 0.0025, 0.0012 respectively (See Table

7.1). We also observe that, delay bound of 1 frame is even performing worse than a

delay bound of 2 frames. This inconsistency is similar to the previous non-uniform



Chapter 7. Adaptive Modulation Order Selection 186

Delay Bound (D
0
)

0 10 20 30 40 50 60 70 80

P
(D

>
D

0
)

10
-4

10
-3

10
-2

10
-1

10
0

D
max

 = 1+2 frames

D
max

 = 2+2 frames

D
max

 = 3+2 frames

D
max

 = 4+2 frames

D
max

 = 5+2 frames

D
max

 = 6+2 frames

D
max

 = 7+2 frames

D
max

 = 8+2 frames

Inj. Rate = 4 packets/symbol

Non-Uniform Poisson

(a) Packet delay exceeding probability graph. For each tried maximum
delay bound (in frames + 2 frame length addition).

Maximum Delay Bound (in Frames + 2 Frames)
1 2 3 4 5 6 7 8

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
p

o
w

er
 r

eq
u

ir
ed

 
fo

r 
1 

R
B

 w
it

h
 B

P
S

K
)

0

2

4

6

8

10

12
Inj Rate = 4 packets/symbols
Non-uniform Poisson

(b) The resulting average power in terms of transmission power required
for a single RB with BPSK, for each tried maximum delay bound in

frames. (Actual delay bound is 2 frames more)

Figure 7.12: Decentralized maximum delay bounded scheduler performance under
non-uniform Poisson traffic with injection rate of 4 packets/symbol (EQPS(α = 0.95),

time direction allocation, T=8 symbols)

Poisson case, but even worse. This is due to the more temporal burstiness of DPBPP

traffic. Our algorithm can not provide the instantaneous peaks in traffic demands, as

the highest modulation order is limited and pipelined/framed structure does not allow

for efficient rate allocation, especially under rapidly fluctuating traffic. At this point, it

is also important to note that for delay bounds larger than 60 symbols, all algorithms

(except for delay bound with 1 frame), converge to nearly same exceeding probabilities.

We observe that, even larger delay bounded algorithms provide lesser probabilities of

exceeding delays larger than 60 symbols. This is also an unexpected and erroneous

result. One of the reasons behind this is that even for delay bounds with several frames,

the packets experiencing delays larger than 60 symbols is a relatively rare case. Due to

highly bursty traffic, queue dynamics would not evolve consistently, with dynamic rate

allocation. However, we can still claim that the proposed algorithm provides a maximum



Chapter 7. Adaptive Modulation Order Selection 187

Delay Bound (D
0
)

0 10 20 30 40 50 60 70 80 90 100

P
(D

>D
0)

10-4

10-3

10-2

10-1

100
D

max
 = 1+2 frames

D
max

 = 2+2 frames

D
max

 = 3+2 frames

D
max

 = 4+2 frames

D
max

 = 5+2 frames

D
max

 = 6+2 frames

D
max

 = 7+2 frames

D
max

 = 8+2 frames

Inj. Rate = 4 packets/symbol

DPBPP 

(a) Packet delay exceeding probability graph. For each tried maximum
delay bound (in frames + 2 frame length addition).

Maximum Delay Bound (in Frames + 2 Frames)
1 2 3 4 5 6 7 8

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
p

o
w

er
 r

eq
u

ir
ed

 
fo

r 
1 

R
B

 w
it

h
 B

P
S

K
)

0

5

10

15

20

25

30

35

40
Inj Rate = 4 packets/symbols
Non-uniform DPBPP (H=0.9)

(b) The resulting average power in terms of transmission power required
for a single RB with BPSK, for each tried maximum delay bound in

frames. (Actual delay bound is 2 frames more)

Figure 7.13: Decentralized maximum delay bounded scheduler performance non-
uniform DPBPP traffic (H=0.9) with injection rate of 4 packets/symbol (EQPS(α =

0.95), time direction allocation, T=8 symbols)

delay bounded energy minimization with a reliability up to a degree.

In Fig. 7.13(b), we see the resulting average power expenditure for 8 different delay

bounds (from 24 symbols/1+2 frames to 80 symbols/8+2 frames). First noteworthy

result from this figure, is that 1 frame length maximum delay bound has even consumed

less power, compared to 2 frame length maximum delay bound. This proves an invalidity

for the performance of the algorithm with 1 frame length bound. This errenous result is

also highly consistent with the observation we made for Fig. 7.13(a), for the probability

of exceeding a packet delay; that it looks like the algorithm with 2 frame length bound

has chosen even higher rates compared to 1 frame length bound. However, we observe

that, as we are increasing the maximum delay bound above 2 frames, we can decrease

the consumed average power substantially. For instance, by decreasing maximum delay



Chapter 7. Adaptive Modulation Order Selection 188

Delay Bound (D
0
)

0 10 20 30 40 50 60 70 80

P
(D

>D
0)

10-4

10-3

10-2

10-1

100

BPSK
QPSK
8-PSK
16-QAM
32-QAM
64-QAM
128-QAM
256-QAM

Non-Uniform Poisson
Injection Rate = 6 packets/symbol

(a) Non-Uniform Poisson

Delay Bound (D
0
)

0 10 20 30 40 50 60 70 80

P
(D

>D
0)

10-4

10-3

10-2

10-1

100

BPSK
QPSK
8-PSK
16-QAM
32-QAM
64-QAM
128-QAM
256-QAM

Non-Uniform DPBPP
Injection Rate = 6 packets/symbol

(b) Non-Uniform DPBPP (H=0.9)

Figure 7.14: Packet delay exceeding probability graphs for non-uniform Poisson and
DPBPP traffic with injection rate of 6 packets/symbol for a static modulation order
system for different utilized modulation orders (EQPS(α = 0.95), time direction allo-

cation, T=8 symbols)

bound from 2 (2+2) frames to 8 (8+2) frames we can save up to 8 times of energy.

As a last point, also note that with bursty traffic, the average power expenditure is

significantly higher for all different delay bounds compared to Poisson traffic; as higher

modulation orders are selected much more frequently under fluctuating traffic demands.

Injection Rate = 6 packets/symbol

We perform the same experiments by increasing total injection rate to 6 packets/symbol.

Fig. 7.14 shows the packet delay exceeding probabilities for the static modulation EQPS

order case for different modulation orders under if statically used. Fig 7.15(a) shows the

propbability of delay exceeding for different delay bounds for non-uniform Poisson and

DPBPP traffic, under 6 packets/symbol total injection rate. Similarly, only the bound

of algorithm with delay bound of 1 frame is violated. We observe from Fig. 7.15(b)

that, by decreasing maximum delay bound from 1 (1+2) frames to 4 (4+2) frames we



Chapter 7. Adaptive Modulation Order Selection 189

Delay Bound (D
0
)

0 10 20 30 40 50 60 70 80

P
(D

>
D

0
)

10
-4

10
-3

10
-2

10
-1

10
0

D
max

 = 1+2 frames

D
max

 = 2+2 frames

D
max

 = 3+2 frames

D
max

 = 4+2 frames

D
max

 = 5+2 frames

D
max

 = 6+2 frames

D
max

 = 7+2 frames

D
max

 = 8+2 frames

Inj. Rate = 6 packets/symbol

Non-Uniform Poisson

(a) Packet delay exceeding probability graph. For each tried maximum
delay bound (in frames + 2 frame length addition).

Maximum Delay Bound (in Frames + 2 Frames)
1 2 3 4 5 6 7 8

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
p

o
w

er
 r

eq
u

ir
ed

 
fo

r 
1 

R
B

 w
it

h
 B

P
S

K
)

0

5

10

15

20

25

30
Inj Rate = 6 packets/symbols
Non-uniform Poisson

(b) The resulting average power in terms of transmission power required
for a single RB with BPSK, for each tried maximum delay bound in

frames. (Actual delay bound is 2 frames more)

Figure 7.15: Decentralized maximum delay bounded scheduler performance under
non-uniform Poisson traffic with injection rate of 6 packets/symbol (EQPS(α = 0.95),

time direction allocation, T=8 symbols)

can save up to 5 times of energy. And next, in Fig. 7.15(a), exceeding probabilities

with different delay bounds for non-uniform DPBPP traffic is evaluated. This time,

all the tried delay bounds are violated and have probabilities of violation between 0.1

and 0.01. As expected, when the average traffic load and temporal burstiness increase,

performance of the algorithm degrades. By increasing delay bound from 1 (1+2) frame

to 8 (8+2) frames, up to 7 times of average power can be saved.

Injection Rate = 8 packets/symbol

And lastly, we evaluate the proposed maximum delay bounded modulation order selec-

tion and bandwidth allocation algorithm for a total injection rate of 8 packets/symbol.

Fig. 7.17 shows the packet delay exceeding probabilities for the static modulation orders



Chapter 7. Adaptive Modulation Order Selection 190

Delay Bound (D
0
)

0 10 20 30 40 50 60 70 80 90 100

P
(D

>D
0)

10-4

10-3

10-2

10-1

100
D

max
 = 1+2 frames

D
max

 = 2+2 frames

D
max

 = 3+2 frames

D
max

 = 4+2 frames

D
max

 = 5+2 frames

D
max

 = 6+2 frames

D
max

 = 7+2 frames

D
max

 = 8+2 frames

Inj. Rate = 6 packets/symbol

DPBPP 

(a) Packet delay exceeding probability graph. For each tried maximum
delay bound (in frames + 2 frame length addition).

Maximum Delay Bound (in Frames + 2 Frames)
1 2 3 4 5 6 7 8

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
p

o
w

er
 r

eq
u

ir
ed

 
fo

r 
1 

R
B

 w
it

h
 B

P
S

K
)

0

10

20

30

40

50

60

70

80
Inj Rate = 6 packets/symbols
Non-uniform DPBPP (H=0.9)

(b) The resulting average power in terms of transmission power required
for a single RB with BPSK, for each tried maximum delay bound in

frames. (Actual delay bound is 2 frames more)

Figure 7.16: Decentralized maximum delay bounded scheduler performance under
under non-uniform DPBPP traffic (H=0.9) with injection rate of 6 packets/symbol

(EQPS(α = 0.95), time direction allocation, T=8 symbols)

EQPS order case for different modulation orders under. Fig 7.18(a) shows the propba-

bility of delay exceeding for different delay bounds for non-uniform Poisson and DPBPP

traffic, under 8 packets/symbol total injection rate. First of all, we highlight this impor-

tant point : theoretically, our interconnect should support a total injection rate up to 45

packets/symbol with highest modulation order of 256-QAM. However, we have seen that

proposed maximum delay bounded algorithm fails for every given delay bound for total

injection rates higher approximately 8 packets/symbol. This stems from the exact same

reason behind the violations observed in previous experiments. Due to framed nature of

the algorithm and limited rate, most of the time certain traffic peaks cannot be served,

thus queue dynamics fail. However, we again note that, this algoirthm may provide an

efficient scheduling for energy expenditure minimization, especially under lower traffic



Chapter 7. Adaptive Modulation Order Selection 191

Delay Bound (D
0
)

0 10 20 30 40 50 60 70 80

P
(D

>D
0)

10-4

10-3

10-2

10-1

100

BPSK
QPSK
8-PSK
16-QAM
32-QAM
64-QAM
128-QAM
256-QAM

Non-Uniform Poisson
Injection Rate = 8 packets/symbol

(a) Non-Uniform Poisson

Delay Bound (D
0
)

0 10 20 30 40 50 60 70 80

P
(D

>D
0)

10-4

10-3

10-2

10-1

100

BPSK
QPSK
8-PSK
16-QAM
32-QAM
64-QAM
128-QAM
256-QAM

Non-Uniform DPBPP
Injection Rate = 8 packets/symbol

(b) Non-Uniform DPBPP (H=0.9)

Figure 7.17: Packet delay exceeding probability graphs for non-uniform Poisson and
DPBPP traffic with injection rate of 8 packets/symbol for a static modulation order
system for different utilized modulation orders (EQPS(α = 0.95), time direction allo-

cation, T=8 symbols)

loads and heterogeneity.

In Fig. 7.18(a), delay exceeding probabilities for algorithms with different maximum

delay bounds are shown, for a total injection rate of 8 packets/symbol under non-uniform

Poisson traffic. For another time, we observe that the algorithm with 1 (1+2) frame

length bound is far to provide the desired performance. Fig. 7.18(b), shows that we can

decrease the average power by 3 times, by increasing delay bound from 2 (2+2) frames

to 4 (4+2) frames.

And finally, we evaluate our algorithm under non-uniform DPBPP traffic. Fig. 7.19(a)

shows that all intended delay bounds are violated with a probability of between 0.1 and

0.01, which is quite undesired. However, we can still claim, even under highly bursty

traffic and higher loads, this algorithm can save power while providing not a strict delay

bound, but a reasonable expectation of maximum delay violation. Fig. 7.19(b) shows



Chapter 7. Adaptive Modulation Order Selection 192

Delay Bound (D
0
)

0 10 20 30 40 50 60 70 80 90 100

P
(D

>D
0)

10-4

10-3

10-2

10-1

100
D

max
 = 1+2 frames

D
max

 = 2+2 frames

D
max

 = 3+2 frames

D
max

 = 4+2 frames

D
max

 = 5+2 frames

D
max

 = 6+2 frames

D
max

 = 7+2 frames

D
max

 = 8+2 frames

(a) Packet delay exceeding probability graph. For each tried maximum
delay bound (in frames + 2 frame length addition).

Maximum Delay Bound (in Frames + 2 Frames)
1 2 3 4 5 6 7 8

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
p

o
w

er
 r

eq
u

ir
ed

 
fo

r 
1 

R
B

 w
it

h
 B

P
S

K
)

0

20

40

60

80

100
Inj Rate = 8 packets/symbols
Non-uniform Poisson

(b) The resulting average power in terms of transmission power required
for a single RB with BPSK, for each tried maximum delay bound in

frames. (Actual delay bound is 2 frames more)

Figure 7.18: Decentralized maximum delay bounded scheduler performance under
non-uniform Poisson traffic with injection rate of 8 packets/symbol (EQPS(α = 0.95),

time direction allocation, T=8 symbols)

that, we can save approximately 3 times of power by reducing the maximum delay bound

from 2 (2+2) frames to 7 (7+2) frames.

7.5 Average Delay Bounded Scheduler

We propose to develop another modulation order scheduler for WiNoCoD, which is based

on [129]. This time the main motivation is to minimize transmission power, while setting

a bound on average delay of the packets, which is a more valuable metric of interest, as

mentioned previously. [129] presents a scheduler for a single user single AWGN chan-

nel under bursty arrivals, which gives the minimum transmission power, while setting a

bound on average delay. Optimal solution includes complex processes and operations.



Chapter 7. Adaptive Modulation Order Selection 193

Delay Bound (D
0
)

0 10 20 30 40 50 60 70 80 90 100

P
(D

>D
0)

10-4

10-3

10-2

10-1

100

D
max

 = 1+2 frames

D
max

 = 2+2 frames

D
max

 = 3+2 frames

D
max

 = 4+2 frames

D
max

 = 5+2 frames

D
max

 = 6+2 frames

D
max

 = 7+2 frames

D
max

 = 8+2 frames

(a) Packet delay exceeding probability graph. For each tried maximum
delay bound (in frames + 2 frame length addition).

Maximum Delay Bound (in Frames + 2 Frames)
1 2 3 4 5 6 7 8

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
p

o
w

er
 r

eq
u

ir
ed

 
fo

r 
1 

R
B

 w
it

h
 B

P
S

K
)

0

20

40

60

80

100

120
Inj Rate = 8 packets/symbols
Non-uniform DPBPP (H=0.9)

(b) The resulting average power in terms of transmission power required
for a single RB with BPSK, for each tried maximum delay bound in

frames. (Actual delay bound is 2 frames more)

Figure 7.19: Decentralized maximum delay bounded scheduler performance under
under non-uniform DPBPP traffic (H=0.9) with injection rate of 8 packets/symbol

(EQPS(α = 0.95), time direction allocation, T=8 symbols)

In addition, in order to apply these stochastic optimization techniques, unrealistic as-

sumptions on arrival traffic have to be made, such as no temporal correlation.

The authors make a remarkable observation on the optimal scheduler that rate (modula-

tion order) is chosen approximately proportional to natural logarithm of instantaneous

queue state. They explain this behavior with the tendency of scaling rate linearly pro-

portional to consumed power (Note that, required transmission power is proportional

to exponential of scheduled rate). Then, they propose a near optimal heuristics based

scheduler called log-linear scheduler, which chooses the modulation order proportional to

instantaneous queue state. To perform this, they multiply queue state before taking its

natural logarithm, by a scalar κ, which is incremented by a small step size if the current

estimated average delay is larger than the desired average delay bound. Similarly, if



Chapter 7. Adaptive Modulation Order Selection 194

Table 7.1: Probability of exceeding the intended delay bound of the algorithm for
different traffic intensities and models.

Given
Delay
Bound

Probability
of
Exceding
Delay Bound

1+2 Frames
(24 symbols)

2+2 Frames
(32 symbols)

3+2 Frames
(40 symbols)

4+2 Frames
(48 symbols)

5+2 Frames
(56 symbols)

6+2 Frames
(64 symbols)

7+2 Frames
(72 symbols)

8+2 Frames
(80 symbols)

Inj. Rate = 4
pkts/sym
(Non-Uni. Poiss.)

0.0003 0 0 0 0 0 0 0

Inj. Rate = 4
pkts/sym
(DPBPP)

0.0413 0.0067 0.0025 0.0012 0.0005 0.0002 0.0001 0

Inj. Rate = 6
pkts/sym
(Non-Uni. Poiss.)

0.0017 0 0 0 0 0 0 0

Inj. Rate = 6
pkts/sym
(DPBPP)

0.0958 0.0176 0.008 0.0053 0.0039 0.0024 0.0015 0.0007

Inj. Rate = 8
pkts/sym
(Non-Uni. Poiss.)

0.0069 0.0001 0 0 0 0 0 0

Inj. Rate = 8
pkts/sym
(DPBPP)

0.2409 0.0473 0.0278 0.0278 0.0339 0.0446 0.0441 0.0321

Table 7.2: Achieved average power with the intended delay bound in terms of power
required for 1 RB with BPSK for different traffic intensities and models.

Given
Delay
Bound

Average
Power

1+2 Frames
(24 symbols)

2+2 Frames
(32 symbols)

3+2 Frames
(40 symbols)

4+2 Frames
(48 symbols)

5+2 Frames
(56 symbols)

6+2 Frames
(64 symbols)

7+2 Frames
(72 symbols)

8+2 Frames
(80 symbols)

Inj. Rate = 4
pkts/sym
(Non-Uni. Poiss.)

10.52 8.72 4.09 1.97 1.46 1.27 1.17 1.11

Inj. Rate = 4
pkts/sym
(DPBPP)

36.77 38.51 29.88 18.97 11.85 7.74 5.4 3.97

Inj. Rate = 6
pkts/sym
(Non-Uni. Poiss.)

28.94 27.58 15.25 6.67 4.4 3.56 3.17 2.93

Inj. Rate = 6
pkts/sym
(DPBPP)

64.58 69.6 56.73 38.89 26.57 18.78 13.88 10.78

Inj. Rate = 8
pkts/sym
(Non-Uni. Poiss.)

58.25 59.56 38.49 18.95 12.37 9.65 8.32 7.55

Inj. Rate = 8
pkts/sym
(DPBPP)

98.11 109.48 93.49 68.53 50.72 39.01 30.99 25.37

the currently estimated average delay meets the desired bound, κ is decremented by a

small step size. As κ gets larger, the resulting logarithm would be larger, thus choosing

higher rates. This way, the minimum transmission power is tried to be achieved while

respecting the average delay bound. This near-optimal scheduler hugely simplifies mod-

ulation order selection procedure, as it just requires few number of basic mathematical

operations.

7.5.1 Average Delay Bounded Scheduling with Centralized Approach

Based on EQPS

Using the strong efficiency of this computationally trivial tool, we would like apply it to

WiNoCoD. But as previously stated, this scheduler is for the single-user, single-channel

case, therefore it shall be adapted to multi-user, multi-channel nature of WiNoCoD. In



Chapter 7. Adaptive Modulation Order Selection 195

contrast with the previous section, average delay bounded modulation order selection

algorithm is demonstrated with the centralized paradigm. The reason behind this is first

to show the ability of using fully centralized intelligence including also modulation order

selection and second is the nature of average delay bounded scheduler which enables

centralized computation. The algorithm is executed as explained in 7.3.2, that the

each tileset broadcasts its QSI and CIU calculates the number of RB allocated to each.

Then using these information, CIU also calculates the optimal modulation order for

each tileset, using average delay bounded scheduler. Finally, CIU broadcasts number of

allocated RBs and selected modulation order for each tileset, 2 symbols before the end

of the frame. Hence, tilesets can reconfigure their transmission patterns and powers at

the start of next frame. Similarly for the maximum delay bounded algorithm, EQPS

(α = 0.95) in time direction is chosen to allocate frequency RBs.

The idea of the algorithm is straightforward; as in [129], modulation order (thus rate) is

chosen proportional to natural logarithm of the QSI for each tileset. However, different

from this, a tileset shall have different number of RBs (each can serve 32 bits flit with

BPSK, 2 flits with QPSK, 3 flits with 16-QAM, .. , 8 flits with 256-QAM). Hence, if

there are S RBs allocated to a tileset, and the chosen modulation rate can serve M flits

(32 bits) per RB, the total service rate of this tileset will be MS through the whole

frame. Therefore, we have modified the algorithm such that CIU choose the modulation

order of tileset i, proportional to the natural logarithm of its QSI divided by the number

of RBs allocated :

M t+1
i =

⌈
log

(
κiQ̂

t
i

St+1
i

)⌉
(7.7)

Just as in [129], κi is a dynamic scalar in order to achieve the desired average delay

bound Davg. CIU keeps a κi value for each tileset and updates every frame. If currently

calculated average delay D̂t
i is under the delay bound it is decreased by a constant

differential, ∆κ multiplied by the difference (D̂t
i − Davg) to tune the algorithm. This

way, the chosen modulation order, therefore the transmission power can be minimized as

much as possible given that we are not violating the average delay bound. If calculated

instantaneous average delay sample is exceeding the Davg, κi is increased by ∆κ(D̂t
i −

Davg). As you can see, increasing κi values tend to choose higher modulation orders.

So in order to update κi, CIU has to compute instantaneous average delay sample for

each tileset. As in the reference paper, Little’s Law [129] is used to estimate average

waiting time. Little’s Law states that for any kind of queuing system with any kind of

input process, division of average queue state by average number of packets arrive gives



Chapter 7. Adaptive Modulation Order Selection 196

the average waiting time in the system. Note that CIU keeps already average arrival

rates (estimated number of flits per frame) with a exponential moving averaging filter.

In addition to it, another 32 Exponentially Weighted Moving Average (EWMA) filters

are kept for averaging QSIs. Then division of this two values gives the moving average

of the estimated average delay of the tileset :

D̂t
i =

Q̂ti
Âti

(7.8)

Then for each 32 tilesets, κi values are updated as follows :

κi = κi + ∆κ(D̂t
i −Davg) (7.9)

Log-linear algorithm uses just basic mathematical operators to give a solution to complex

average delay bounded power minimization problem, except the logarithm. This can be

performed by a simple look-up table which decreases its latency to few cycles. And as

for EQPS, division can be done by a simple reciprocal multiplication. For each tileset,

CIU has to perform 1 float division (1 time division to calculate the reciprocal of Q̂ti),

3 float multiplications, 1 division-by-2 (bit shifting) operation, 1 natural logarithm by

look-up table and finally an upper-rounding.

In addition to this, the computation for estimated average delay and κi updates shall be

performed. At first, as for (7.2), the 32 EWMA calculations for QSIs had to be done,

which includes 2 float multiplications and 1 addition. Then 1 division is done for (7.6).

Next, for κi updates, 1 float multiplication, 1 subtraction and 1 addition is done. Note

that, these computations for estimating average delay and κi updates can be done in the

period where tilesets reconfigure their transmissions (as for EWMA calculations of aver-

age arrivals). We remind parallelism can be exploited for these operations for 32 tilesets

by employing multiple simple cores at CIU, which decreases required computation time

further and further.

Fig. 7.20 illustrates the flow chart of the proposed average delay bounded scheduler

inside the CIU, including the estimation of arriving number of flits in each tileset, esti-

mation of instantaneous average delays and update of the κ values.



Chapter 7. Adaptive Modulation Order Selection 197

Figure 7.20: Flow chart of the average delay bounded scheduler algorithm executed
at CIU every frame.

7.5.2 Experimental Evaluation

Now, we will test the performance of the proposed scheduler for various frame lengths

and for each tried average delay bound from 1 to 20 symbols, and under different injection

rates. Due to lack of space, only realistic and highly bursty non-uniform DPBPP traffic

case is considered. Log-linear algorithm was shown to operate with a performance close

to optimal scheduler for the single-user, single-channel case. One assumption that the

authors had made, was the i.i.d. nature of the bursty arrival model. Therefore, with self-

similarity we can accept to divert from optimality, however scaling transmission power

linearly with increasing backlog shall still provide an effective delay-power trade-off.

Frame Length = 4+2 symbols

First, we evaluate results for T=4+2 symbols of frame length. Fig. 7.21, Fig. 7.22 and

Fig. 7.23 shows the resulting actual average latency of the packets and resulting average

power in terms of minimum transmission power required for 1 RB with BPSK encoding,

with a 2-y plot, for an injection rate of 8, 12 and 16 packets/symbol respectively. As

you can see from the figures, a diagonal line cuts the plot, which is placed in order to

show if the resulting average delay is below the desired average delay bound.

Firstly, from the figures, we see that for all injection rates, one cannot guarantee an

average delay bound lower than 4 symbols due to limited rate and nature of the traffic.

Even the algorithm tries its best (with largest κ values) it can only provide the lowest



Chapter 7. Adaptive Modulation Order Selection 198

Average Delay Bound (symbols)
0 2 4 6 8 10 12 14 16 18 20

A
v

e
ra

g
e

 D
e

la
y

 (
s

y
m

b
o

ls
)

0

10

20

A
v

e
ra

g
e

 P
o

w
e

r 
(i

n
 t

e
rm

s
 o

f 
P

B
P

S
K

/R
B

)

0

200

400

Average Power

Average Delay

T = 4+2 symbols

Inj Rate = 8 pkts/symbol

Non-Uniform DPBPP (H=0.9)

First average delay

below the 

given bound 

Figure 7.21: Resulting average delay and average power is shown with a 2-y plot,
with T =4+2 symbols, under non-uniform DPBPP traffic under an injection rate of 8

packets/symbol.

Average Delay Bound (symbols)
0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

5

10

15

20

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
P

B
P

S
K

/R
B

)
0

100

200

300

400

Average Delay
Average Power

T = 4+2 symbols
Inj Rate = 12 pkts/symbol
Non-Uniform DPBPP (H=0.9)

Figure 7.22: Resulting average delay and average power is shown with a 2-y plot,
with T =4+2 symbols, under non-uniform DPBPP traffic under an injection rate of 12

packets/symbol.

possible average delay of approximately 3 symbols, with the highest transmission power,

which is convenient. As we increase the average delay bound, we see that we are able

to well provide the desired average latency just below the input bound. This shows

the strong efficiency of the proposed algorithm. As we expected, increasing the average

delay bound makes great power gains. Due to the exponential relation between power

and rate, the Pareto like delay-power trade-off is evident in these cases as can be seen

from the figures. Even though increasing the average delay provides substantial amount

of energy, increasing further and further does not provide the same scale of return as

mentioned previously. For instance, for injection rate of 16 packets/symbol, increasing

average delay bound from 4 symbols to just 6 symbols, decreases the average power up

to 4 times. As expected, with increasing injection rate required average power to provide



Chapter 7. Adaptive Modulation Order Selection 199

Average Delay Bound (symbols)
0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
P

B
P

S
K

/R
B

)

0

500

1000
Average Delay
Average Power

T = 4+2 symbols
Inj Rate = 16 pkts/symbol
Non-Uniform DPBPP (H=0.9)

Figure 7.23: Resulting average delay and average power is shown with a 2-y plot,
with T =4+2 symbols, under non-uniform DPBPP traffic under an injection rate of 16

packets/symbol.

Average Delay Bound (symbols)
0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
P

B
P

S
K

/R
B

)
0

200

400
Average Delay
Average Power

T = 8+2 symbols
Inj Rate = 8 pkts/symbol
Non-Uniform DPBPP (H=0.9)

Figure 7.24: Resulting average delay and average power is shown with a 2-y plot,
with T =8+2 symbols, under non-uniform DPBPP traffic under an injection rate of 8

packets/symbol.

the same average delay bound gets larger.

Frame Length = 8+2 symbols

Next, we continue our evaluation with longer frame lengths, in order to provide different

options for computational power for WiNoCoD. Fig. 7.24, Fig. 7.25 and Fig. 7.26 shows

the same performance graphs for T=8+2 symbols, under injection rates of 8, 12 and 16

packets/symbol respectively.

We see similar performance for T=8+2 symbols, but with a slightly degraded perfor-

mance due to more outdated QSI and more infrequent rate re-allocation. Now, average

delay bounds lower than 7 symbols cannot be guaranteed. Similarly, after this point

increasing average delay bound a few symbols can provide dramatically lower energy



Chapter 7. Adaptive Modulation Order Selection 200

Average Delay Bound (symbols)
0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

4

6

8

10

12

14

16

18

20

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
P

B
P

S
K

/R
B

)

0

50

100

150

200

250

300

350

400

Average Delay
Average Power

T = 8+2 symbols
Inj Rate = 12 pkts/symbol
Non-Uniform DPBPP (H=0.9)

Figure 7.25: Resulting average delay and average power is shown with a 2-y plot,
with T =8+2 symbols, under non-uniform DPBPP traffic under an injection rate of 12

packets/symbol.

Average Delay Bound (symbols)
0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

5

10

15

20

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
P

B
P

S
K

/R
B

)
0

200

400

600

Average Delay
Average Power

T = 8+2 symbols
Inj Rate = 16 pkts/symbol
Non-Uniform DPBPP (H=0.9)

Figure 7.26: Resulting average delay and average power is shown with a 2-y plot,
with T =8+2 symbols, under non-uniform DPBPP traffic under an injection rate of 16

packets/symbol.

expenditure. Also as expected, with longer frame length, to attain the same average

delay bound, we have to spend more power for the same injection rate.



Chapter 7. Adaptive Modulation Order Selection 201

Average Delay Bound (symbols)
0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

0

10

20

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
P

B
P

S
K

/R
B

)

0

200

400

Average Delay
Average Power

T = 16+2 symbols
Inj Rate = 12 pkts/symbol
Non-Uniform DPBPP (H=0.9)

Figure 7.28: Resulting average delay and average power is shown with a 2-y plot,
with T =16+2 symbols, under non-uniform DPBPP traffic under an injection rate of

12 packets/symbol.

Average Delay Bound (symbols)
0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

5

10

15

20

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
P

B
P

S
K

/R
B

)

0

100

200

300
Average Delay
Average Power

T = 16+2 symbols
Inj Rate = 8 pkts/symbol
Non-Uniform DPBPP (H=0.9)

Figure 7.27: Resulting average delay and average power is shown with a 2-y plot,
with T =16+2 symbols, under non-uniform DPBPP traffic under an injection rate of 8

packets/symbol.



Chapter 7. Adaptive Modulation Order Selection 202

Average Delay Bound (symbols)
0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e 
D

el
ay

 (
sy

m
b

o
ls

)

5

10

15

20

A
ve

ra
g

e 
P

o
w

er
 (

in
 t

er
m

s 
o

f 
P

B
P

S
K

/R
B

)

0

200

400

600

Average Delay
Average Power

T = 16+2 symbols
Inj Rate = 16 pkts/symbol
Non-Uniform DPBPP (H=0.9)

Figure 7.29: Resulting average delay and average power is shown with a 2-y plot,
with T =16+2 symbols, under non-uniform DPBPP traffic under an injection rate of

16 packets/symbol.

Frame Length = 16+2 symbols

And finally, the simulations are executed for T=16+2 symbols. As frame lengths gets

even longer, performance continues to degrade as it can be seen from Fig. 7.27, Fig.

7.28 and Fig. 7.29.

7.6 Information Theoretic Study of the WiNoCoD RF In-

terconnect

Previously in this chapter, we have proposed intelligent modulation order selection poli-

cies, which increases modulation orders only when necessary, to keep delays of packets

bounded. The primary motivation behind this was the exponentially increasing energy

expenditure with the modulation orders. We have calculated the required minimum

transmission powers according to Shannon’s capacity formula [130]. As mentioned pre-

viosuly, capacity defines the maximum trasmission rate on a channel, guaranteeing a

probability of error approaching to 0, with any protective, reconstructive channel cod-

ing.

We have experimented our proposed algorithms by comparing the resulting average

power to the case where the lowest modulation order (BPSK) would be utilized con-

stantly. This has provided us an insight on how much energy can be saved while satis-

fying certain service demands.

In this section, we intend to determine minimum required transmission powers (in terms

of dBm) for defined information theoretic capacities. For instance, defining transmission



Chapter 7. Adaptive Modulation Order Selection 203

powers for spectral capacity densities as 1 bits/sec/Hz, 2 bits/sec/Hz, etc. may provide

a good perspective for the respective modulation orders BPSK, QPSK, etc.. For that

we make the hypothesis that the transceiver access via transistors to the microstrip

transmission line provides a relatively non-varying (non-frequency selective) attenuation

over the 20-40 GHz spectrum, in Section 3.3.2.3. If this hypothesis is strong for the

via transistor access proposed by M. Hamieh, Fig. 3.12 shows that it is valuable for

capacitive coupling but with more attenuation.

In this section, firstly we examine the topology of a U-shaped transmission line, which

was previously proposed in the first phase of the project and then we evaluate the cross-

shaped transmission line, which was chosen finally due to its much better performance.

We will try to dimension the required powers for different communication configurations

between tilesets for having spectral capacity densities corresponding to modulation or-

ders. These configurations are unicast communication occuring only between two ar-

bitrary tilesets and the broadcast communication, where a tileset’s transmission shall

achieve the necessary capacity density even to the farthest node (Any destination tileset

should receive packets sent from this tileset with a minimum defined capacity density).

In addition to these two configurations, required power for a tileset to achieve an overall

capacity density (overall of capacity capacity densities to all other 31 tilesets).

M. Hamieh has determined that attenuation in the transmission line varies between

-0.20 and -0.30 dB/mm over 20-40 GHz spectrum, thus without loss of generality we

have chosen to set an average attenuation of -0.25 dB/mm. Wired RF provides not

only the advantage of CMOS compatibility, but also significantly less power attenuation

compared to wireless interconnects.

The adjacent transceivers have 8 mm spacing (thus, the signal power attenautes 2 dB

between two neighboring tilesets.) And we have assumed a 1 mm of distance for facing

tilesets (such as tilesets 1-9, 2-10 etc. in Fig. 7.30). Before this, we revisit the well

known information theoretic capacity formula of Shannon, defining the highest achiev-

able transmission rate on a channel ensuring a lossless communication, C0 in bits/s:

C0 = Blog2(1 + SNR) (7.10)

where, B is bandwidth in Hz and SNR is Signal-to-Noise Power Ratio in linear. The

power of the noise depends on the ambient temperature and bandwidth. For our cal-

culations, we will assume the equally shared scheme where each tileset is allocated 32

subcarriers, thus 640 MHz, uniformly. In other words SNR is the ratio of received signal

power PR to the noise power PR
PN

. It’s assumed that noise power PN has a spectral density

of -174 dBm/Hz at room temperature [136], which we also accept for our calculations.



Chapter 7. Adaptive Modulation Order Selection 204

-174 dBm/Hz is equal approximately to 4 10−21 W/Hz in linear scale. Therefore, we can

rewrite the capacity formula as :

C0 = Blog2(1 +
PR

B 4 10−21
) (7.11)

Assuming the only attenuation of transmitted signal is due to the losses with distance

through the transmission line, which is -0.25 dB/mm, we can rewrite the capacity formula

as a function of transmission power :

C0 = Blog2(1 +
PT

100.025dB 4 10−21
) (7.12)

where, d is distance in mm.

Capacity density in bits/sec/Hz, C = C0/B, is also used, which defines the achievable

transmission rate per bandwidth.

By inverting these formulas, one can also find the required minimum transmission power

for our tilesets for a desired capacity density :

PT = 100.025dB 4 10−21 (2C − 1) (7.13)

Required Minimum Transmission Power for desired Bit Error Rate

As mentioned above, information theoretic capacity is a tool to dimension the commmu-

nication on a channel, defining the upper bound of transmission rate, where probability

of error approaches to 0. This is an analytical bound and does not imply any method

how to achieve this rate. For instance, theoretically a channel correcting code can achive

this rate, where probability of error at the end approaches to 0. As the channel frequency

response is flat, we can make an AWGN hypothesis whatever the subcarrier is in 20-40

GHz band. Under this AWGN condition, we can derive the probability of bit error, or

with a more common reference, Bit Error Rate (BER) with given transmission power,

noise power and transmission rate on a uncoded channel. However, it is important to

highlight this point : if we use the minimum transmission power for a desired capacity

on these BER formulas, we would not get a probability of error of 0. This is because,

capacity defines the maximum rate for a coded channel. However, defining required

minimum transmission powers for various BER values is still important.

For BPSK and QPSK, the BER or probability of bit error (pb) can be written as [137]:



Chapter 7. Adaptive Modulation Order Selection 205

pb = Q(
√

2SNRb) (7.14)

where Q(.) is the Gaussian tail function and SNRb is the received SNR per bit. For

instance if we are using QPSK (2 bits per constellation symbol) on a bandwidth of 640

MHz, SNRb is calculated by dividing SNR value to 1320 Mbits/s.

For square M-QAM constellation symbols (such as 16-QAM, 64-QAM ..), pb can be

written approximately as [137]:

pb = Q

(√
3SNRb b

2b − 1

)
(7.15)

where b is the number of bits per constellation such as 4 bits for 16-QAM, 8 bits for

256-QAM etc.

Let us calculate the SNR per bit at first. As we did in capacity formula in (7.12), we

can write the received SNR as the ratio of transmission power to ambient noise power

and attenuation by distance. For BPSK and QPSK :

pb = Q

(√
2PT

100.025dB 4 10−21

)
(7.16)

and for M-QAM :

pb =
4

b
Q

(√
3 b PT

100.025dB 4 10−21 (2b − 1)

)
(7.17)

By inverting these equations we can calculate the required minimum transmission powers

with a given BER. The minimum required transmission power for BPSK and QPSK :

PT = 0.5 100.025dB 4 10−21(Q−1(pb)
2) (7.18)

and minimum required transmission power for M-QAM constellations :

PT =
1

3
100.025dB 4 10−21(Q−1(0.25 pb b))

2 (2b − 1) (7.19)



Chapter 7. Adaptive Modulation Order Selection 206

7.6.1 U-Shaped Transmission Line

The first topology proposed was a U-shaped transmission line as in Fig. 7.30. Not

having a circular loop (close ends) avoids interfering reflections of the tranmitted signal.

Figure 7.30: U-shaped transmission line

7.6.1.1 Unicast communication

Fig. 7.31 shows the distances from any tileset to any other tileset in U-shaped transmis-

sion line (32x31 combinations of unicast communications). As it can be seen from Fig.

7.31 that the largest distance (between tilesets at the opposite ends of the transmission

line) is 120 mm, which causes an attenuation of -40 dB. Even though our OFDMA

based RF interconnect is intended to provide a fully broadcast capable communication

infrastructure, firstly we have analyzed the information theoretic limits for each of the

32x31 unicast communication combination between tilesets.

For these unicast communication combinations we can write the capacities in a matrix

form for source-destination tileset pairs, Cij0 , where N is the number of tilesets :



0 Blog2(1 + PT

100.025d12 B 4 10−21 ) Blog2(1 + PT

100.025d13 B 4 10−21 ) . . Blog2(1 + PT

100.025d1N B 4 10−21 )

Blog2(1 + PT

100.025d21 B 4 10−21 ) 0 Blog2(1 + PT

100.025d23 B 4 10−21 ) . . Blog2(1 + PT

100.025d2N B 4 10−21 )

Blog2(1 + PT

100.025d12 B 4 10−31 ) Blog2(1 + PT

100.025d32 B 4 10−21 ) 0 . . Blog2(1 + PT

100.025d3N B 4 10−21 )

. . . . . .

. . . . . .

Blog2(1 + PT

100.025dN1 B 4 10−21 ) Blog2(1 + PT

100.025dN2 B 4 10−21 ) . . 0



Assuming a transmission power of -80 dBm per tileset the received capacities for unicast

communication combinations are shown in Fig. 7.32. Note that, with this transmission

power while neighboring nodes can achieve capacities up to 3 Gbps on their 640 MHz



Chapter 7. Adaptive Modulation Order Selection 207

35
30

25

Source Tileset ID

20
15

10
5

00

10
Destination Tileset ID

20

30

0

120

80

20

60

100

40

40

D
is

ta
n

ce
 (

m
m

)

Linear or U-Shaped Transmission Line

Figure 7.31: Distance between each 32x31 unicast communication in U-shaped trans-
mission line

35
30

25
20

Source ID

15
10

5
00

10Destination ID

20

30

×109

1

2.5

0.5

0

3.5

3

2

1.5

40

C
a
p

a
c
it

y
 (

b
p

s
)

Linear or U-Shaped

Transmission Line

Noise Spectral Density at

Room Temperature = -174 dBm

Each tileset has 32 subcarriers

Transmission power over 32

subcarriers = -80 dBm

Figure 7.32: Capacity between each 32x31 unicast communication in U-shaped trans-
mission line

bandwidth, the farthest nodes’ capacity approaches to 0. From an information theoretic

perspective, this means that with this transmission power these nodes cannot have a

reliable communication.

Next, based on this distances, we calculate the required transmission power for each

of 32x31 unicast communication combination between tilesets. We assume that, each

tileset uses 32 subcarriers (thus, 640 MHz) for transmission and the noise spectral density

at standard room temperature is assumed (-174 dBm/Hz). Note that, the required



Chapter 7. Adaptive Modulation Order Selection 208

transmission power can be calculated simply by adjusting these results linearly with

increasing or decreasing bandwidth (number of subcarriers). The required transmission

powers for unicast source-destination tileset pairs as a function of distance and channel

capacity spectral density is as follows :



0 PT = 100.025d12 B 4 10−21 (2C − 1) PT = 100.025d13 B 4 10−21 (2C − 1) . . PT = 100.025d1N B 4 10−21 (2C − 1)

PT = 100.025d21 B 4 10−21 (2C − 1) 0 PT = 100.025d23 B 4 10−21 (2C − 1) . . PT = 100.025d2N B 4 10−21 (2C − 1)

PT = 100.025d31 B 4 10−21 (2C − 1) PT = 100.025d32 B 4 10−21 (2C − 1) 0 . . PT = 100.025d3N B 4 10−21 (2C − 1)

. . . . . .

. . . . . .

PT = 100.025dN1 B 4 10−21 (2C − 1) PT = 100.025dN2 B 4 10−21 (2C − 1) . . 0



Based on the attenuation values due to distances in Fig. 7.31, the required transmission

power for each of these unicast communication combinations in dBm are calcuated and

shown in Fig. 7.33, for different spectral channel densities between 1 bits/sec/Hz and 8

bits/sec/Hz, corresponding to different modulation orders.

35
30

25

Source ID

20
15

10
5

00

10
Destination ID

20

30

-80

-60

-40

-20

0

40

M
in

im
u

m
 T

ra
n

s
m

is
s
io

n
 

P
o

w
e
r 

(d
B

m
)

U-Shaped Transmission Line

32 subcarriers (640 MHz) per tileset

Noise Spectral Density = -174 dBm

attenuation = 0.25 dB/mm

Capacity Density = 1-8 bits/s/Hz

Figure 7.33: Required Transmission Power for each 32x31 unicast communication for
the U-shaped shaped transmission line for capacity densities 1-8 bits/s/Hz

We have determined the required transmission powers for attaining the channel capac-

ity densities for each possible 32x31 unicast communication. However, assuming that a

tileset may communicate any other tileset throughout the execution of the application

(not only one), providing an average value of the previously determined minimum trans-

mission power values is utile. In other words, for each of 32 tilesets, we shall give an

average of the unicast required transmission power values over each 31 distance tilesets

as :



Chapter 7. Adaptive Modulation Order Selection 209

P avgT (i) =
1

31

∑
i 6=j,1<i<32

PT (d(i, j)) (7.20)

Fig. 7.34 shows the average required transmission power for each tileset over its 31

destination tilesets, for the U-shaped topology, for capacity densities 1-8 bits/s/Hz.

Note that, as tilesets position gets nearer to the center of transmission line (i.e. near

tileset-16), required trasnmission power decreases and as its position gets nearer to the

edges of transmission line (i.e. near tileset-1 or tileset-32), required transmission power

increases. This is due to the fact that average distance to tilesets gets higher as we

approach to the edges, and gets lower as we approach to the center. And as attenuation

in dB increases linearly with distance, this significantly affects the transmission power.

From this figure, we can understand that if a centralized mechanism is used, it is much

more efficient to place the CIU inside the RF transceiver of Tileset-15, Tileset-16, Tileset-

17 or Tileset-18, as they require much less transmission power due to their distances to

other tilesets.

Tileset ID

0 5 10 15 20 25 30 35

M
in

im
u

m
 T

ra
n

s
m

is
s
io

n
 P

o
w

e
r 

(d
B

m
)

-65

-60

-55

-50

-45

-40

-35

-30
1 bits/s/Hz

2 bits/s/Hz

3 bits/s/Hz

4 bits/s/Hz

5 bits/s/Hz

6 bits/s/Hz

7 bits/s/Hz

8 bits/s/Hz

U-Shaped 

Transmission Line

Overall Minimum Power 

Figure 7.34: Average required transmission power (to 31 destinations) for each tileset
for the U-shaped shaped transmission line for capacity densities 1-8 bits/s/Hz

Following this, we provide the average minimum transmission power of each tileset

(average to 31 destinations), for BERs of 10−1, 10−3, 10−5, 10−7 for BPSK and 256-

QAM (the lowest and highest modulation orders). In order to have a reference, we also

include the average required minimum transmission powers for information theoretic

channel capacity densities of 1 bits/s/Hz and 8 bits/s/Hz, corresponding to BPSK and

256-QAM. Again, we remind that information theoretic capacity defines the maximum



Chapter 7. Adaptive Modulation Order Selection 210

rate on a coded channel where probability of error approaches to 0 (whereas, it does

not define this hypothetical error correcting code explicitly). However, the average

power values given here for different probabilities of error are for uncoded channels.

Hence, it is possible that we might need larger minimum transmission powers for certain

probabilities of error larger than 0, compared to channel capacities (where probability

of error approaches to 0).

Tileset ID

0 5 10 15 20 25 30 35

M
in

im
u

m
 T

ra
n

s
m

is
s
io

n
 P

o
w

e
r 

(d
B

m
)

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20
BPSK, p

b
 = 10-1

BPSK, p
b
 = 10-3

BPSK, p
b
 = 10-5

BPSK, p
b
 = 10-7

Capacity 1 bits/s/Hz

256-QAM, p
b
 = 10-1

256-QAM, p
b
 = 10-3

256-QAM, p
b
 = 10-5

256-QAM, p
b
 = 10-7

Capacity 8 bits/s/Hz

U-Shaped 

Transmission Line

Overall Minimum Power 

Figure 7.35: Average required transmission power (to 31 destinations) for each tileset
for the U-shaped shaped transmission line for probabilities of error : 10−1, 10−3, 10−5,

10−7 for BPSK and 256-QAM

Observing Fig. 7.35, we see that for BPSK, for a probability of error of 10−1, tilesets

require a little bit less average transmission power compared to power required for in-

formation theoretic channel capacity of 1 bits/s/Hz. For probabilities of error of 10−3,

10−5 and 10−7, we see that we need higher transmission powers. Even though these

probability of errors are larger than 0, they require larger powers as these formulas are

for uncoded transmission. Of course, in order to obtain results in accordance of intra-

chip communication requirements, channel coding should be added. Hence, for a BER

of 10−7 before decoding, an order of 10−14 can be achieved after usual realistic coding;

but this is out of scope of this study.

7.6.1.2 Broadcast communication

As we have reviewed in this thesis previously, tilesets broadcast their packets and the

other tilesets check the associated flags in header flits to understand whether this packet



Chapter 7. Adaptive Modulation Order Selection 211

is for it or not. Therefore, we must ensure a reliable communication for packets concern-

ing every other possible destination. In addition to this, we have mentioned that the

on-chip traffic possess high amount of broadcast packets. Hence, determining required

minimum transmission power by concerning a capacity density even to the farthest des-

tination tileset is essential. Fig. 7.36 shows the required transmission powers for each

tileset to its farthest destination, for the U-shaped topology, for capacity densities 1-

8 bits/s/Hz. As we have stated in previous section, as tilesets position gets more to

the center of the transmission line, its distance to the farthest destination node also

decreases, which is decreasing the required transmission power significantly.

Tileset ID

0 5 10 15 20 25 30 35

M
in

im
u

m
 T

ra
n

s
m

is
s
io

n
 P

o
w

e
r 

(d
B

m
)

-55

-50

-45

-40

-35

-30

-25

-20

-15

1 bits/s/Hz

2 bits/s/Hz

3 bits/s/Hz

4 bits/s/Hz

5 bits/s/Hz

6 bits/s/Hz

7 bits/s/Hz

8 bits/s/Hz

U-Shaped 

Transmission Line

Farthest Distance from a

tileset 

Broadcast

Figure 7.36: Minimum required transmission power for broadcasting (to maximum
distance) for each tileset for the U-shaped shaped transmission line for capacity densities

1-8 bits/s/Hz

Fig. 7.37 shows the required minimum transmission powers for tilesets for broadcasting

(to farthest destination node), for probabilities of error of 10−3, 10−5 and 10−7, under

BPSK and 256-QAM, compared to powers required for correspending channel capacities

1 bits/s/Hz and 8 bits/s/Hz. We see a similar pattern as we observed for average unicast

transmission power values.



Chapter 7. Adaptive Modulation Order Selection 212

Tileset ID

0 5 10 15 20 25 30 35

M
in

im
u

m
 T

ra
n

s
m

is
s
io

n
 P

o
w

e
r 

(d
B

m
)

-60

-50

-40

-30

-20

-10

0
BPSK, p

b
 = 10-1

BPSK, p
b
 = 10-3

BPSK, p
b
 = 10-5

BPSK, p
b
 = 10-7

Capacity 1 bits/s/Hz

256-QAM, p
b
 = 10-1

256-QAM, p
b
 = 10-3

256-QAM, p
b
 = 10-5

256-QAM, p
b
 = 10-7

Capacity 8 bits/s/Hz

U-Shaped 

Transmission Line

Farthest Distance from a

tileset 

Broadcast

Figure 7.37: Required transmission power for broadcasting (farthest destination) for
each tileset for the U-shaped shaped transmission line for probabilities of error : 10−1,

10−3, 10−5, 10−7 for BPSK and 256-QAM

Table 7.3 gathers the total values (total of all 32 tilesets) for maximum transmission

powers (i.e. required power for transmission to farthest node in broadcast case) for

Table 7.3: Total of maximum transmission powers (broadcast case) for various capac-
ity densities and BER values with BPSK or 256-QAM with cross-shaped transmission

line.

U-Shaped
Total of Maximum

Transmission Powers
(Broadcast case) - dBm

Capacity 1 bits/s/Hz -30.75

Capacity 2 bits/s/Hz -25.97

Capacity 3 bits/s/Hz -22.29

Capacity 4 bits/s/Hz -18.98

Capacity 5 bits/s/Hz -15.83

Capacity 6 bits/s/Hz -12.75

Capacity 7 bits/s/Hz -9.71

Capacity 8 bits/s/Hz -6.68

BPSK pb = 10−1 -31.6

BPSK pb = 10−1 -23.96

BPSK pb = 10−1 -21.16

BPSK pb = 10−1 -19.44

256-QAM pb = 10−1 -12.95

256-QAM pb = 10−1 -2.27

256-QAM pb = 10−1 0.81

256-QAM pb = 10−1 2.64



Chapter 7. Adaptive Modulation Order Selection 213

capacity densities between 1-8 bits/s/Hz and various BERs with BPSK or 256-QAM

with a U-shaped transmission line. In other words, this table represents the total of

values in Fig. 7.36 and Fig. 7.37. From this table, we can have an idea on the worst

case, where highest transmission power budget is required. For instance, total required

power for providing broadcasting with our CMP, for a capacity density of 8 bits/s/Hz

is -6.68 dBm.

7.6.2 Cross-Shaped Transmission Line

We have mentioned previously in Section 3.3.2.3 that a cross-shaped transmission line

topology was chosen later on the simple U-shaped topology. This cross-shaped topology

decreases distances among tilesets and also diminishes the frequency selective channel

attenuation. The chosen cross-shaped topolgy with positioned tileset-IDs is illustrated

in Fig. 7.38.

Figure 7.38: Cross-shaped transmission line

Next, we determine the required transmission powers for attaining desired capacity

densities for our cross-shaped transmission line and compare them to the previous U-

shaped transmission line.

7.6.2.1 Unicast communication

Finding distances among tilesets is not trivial as for the U-shaped transmission line due

to irregularity of the topology. Firstly, we define a symmetry among tilesets, that who’s

distances to the 31 other tilesets would be same. For instance, from Fig. 7.35, we see

that tileset-4 and tileset-29 have a positional symmetry. Tileset-4’s distance to tileset-5



Chapter 7. Adaptive Modulation Order Selection 214

is same with tileset-29’s distance to tileset-28 etc. Fig. 7.39 shows the distances in

mm among 32x31 combinations of unicast communication on cross-shaped transmission

line. Note that, the maximum distance in cross-shaped transmission line is 80 mm,

while maximum distance in U-shaped transmission line is 120 mm. With an average

attenaution of -0.25 dB/mm, this means that the largest attenaution is 10 dB more (10

times in scalar) for the U-shaped transmission line.

35
30

25

Source ID

20
15

10
5

00

10Destination ID

20

30

60

80

20

0

40

40

D
is

ta
n

ce
 (

m
m

)

Cross Shaped Transmission Line

Figure 7.39: Distance between each 32x31 unicast communication in cross-shaped
transmission line

Similarly we did for the U-shaped transmission line, we present the achievable capacities

for transmitting-recepting tileset pairs with -80 dBm of transmission for power on the

cross-shaped transmission line. By comparing Fig. 7.40 to 7.32, we see that on both

of the topologies neighboring tilesets achieve a capacity of 3 Gbps as expected and far-

thest nodes’ capacity still approaches to 0, however the achieved capacities for distances

between these two extremum points are remarkably improved.



Chapter 7. Adaptive Modulation Order Selection 215

35
30

25
20

Source ID

15
10

5
00

10

Destination ID

20

30

×109

1

1.5

2

2.5

3

3.5

0

0.5

40

C
a
p

a
c
it

y
 (

b
it

s
)

Cross shaped

Transmission Line

Noise Spectral Density at

Room Temperature = -174 dBm

Each tileset has 32 subcarriers

Transmission power over 32

subcarriers = -80 dBm

Figure 7.40: Capacity between each 32x31 unicast communication in cross-shaped
transmission line

Fig. 7.41 shows the required transmission power in dBm for 32x31 unicast communi-

cation combination on the cross-shaped transmission line for capacity densities between

1-8 bits/s/Hz. We observe that required transmission powers are lowered by comparing

it to U-shaped transmission line.

40
30

Source ID

20
10

00

10Destination ID

20

30

-80

-40

-20

-60

40

M
in

im
u

m
 T

ra
n

s
m

is
s
io

n
 

P
o

w
e
r 

(d
B

m
)

Cross-Shaped Transmission Line

32 subcarriers (640 MHz) per tileset

Noise Spectral Density = -174 dBm

attenuation = 0.25 dB/mm

Capacity Density = 1-8 bits/s/Hz

Figure 7.41: Required Transmission Power for each 32x31 unicast communication for
the cross-shaped shaped transmission line for capacity densities 1-8 bits/s/Hz

Fig. 7.42 shows the average required transmission power for each tileset over its 31

destination tilesets, for the U-shaped topology, for capacity densities 1-8 bits/s/Hz.



Chapter 7. Adaptive Modulation Order Selection 216

One can see the reduction of the energy expenditure thanks to lower distances. From

this figure, we can understand that if a centralized mechanism is used, it is much more

efficient to place the CIU inside the RF transceiver of Tileset-3, Tileset-10, Tileset-20 or

Tileset-29, as they require much less transmission power due to their distances to other

tilesets.

Tileset ID
0 5 10 15 20 25 30 35

M
in

im
u

m
 T

ra
n

s
m

is
s
io

n
 P

o
w

e
r 

(d
B

m
)

-70

-65

-60

-55

-50

-45

-40

-35

-30
1 bits/s/Hz

2 bits/s/Hz

3 bits/s/Hz

4 bits/s/Hz

5 bits/s/Hz

6 bits/s/Hz

7 bits/s/Hz

8 bits/s/Hz

Cross-Shaped 

Transmission Line

Overall Minimum Power 

Figure 7.42: Average required transmission power (to 31 destinations) for each tileset
for the cross-shaped shaped transmission line for capacity densities 1-8 bits/s/Hz

As we did for the U-shaped transmission line, we present the average minimum trans-

mission power for each tileset (average of 31 destinations) for BPSK and 256-QAM, for

probability of bit errors 10−1, 10−3, 10−5, 10−7. We observe similar patterns in Fig 7.43.



Chapter 7. Adaptive Modulation Order Selection 217

Tileset ID
0 5 10 15 20 25 30 35

M
in

im
u

m
 T

ra
n

s
m

is
s
io

n
 P

o
w

e
r 

(d
B

m
)

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20
BPSK, p

b
 = 10-1

BPSK, p
b
 = 10-3

BPSK, p
b
 = 10-5

BPSK, p
b
 = 10-7

Capacity 1 bits/s/Hz

256-QAM, p
b
 = 10-1

256-QAM, p
b
 = 10-3

256-QAM, p
b
 = 10-5

256-QAM, p
b
 = 10-7

Capacity 8 bits/s/Hz

Cross-Shaped 

Transmission Line

Overall Minimum Power 

Figure 7.43: Average required transmission power (to 31 destinations) for each tileset
for the cross-shaped shaped transmission line for probabilities of error : 10−1, 10−3,

10−5, 10−7 for BPSK and 256-QAM

7.6.2.2 Broadcast communication

Fig. 7.44 shows the required transmission powers for each tileset to its farthest des-

tination, for the cross-shaped topology, for capacity densities 1-8 bits/s/Hz. We see

the improvements due to reduction of maximum distances. For instance, compared to

U-shaped transmission line, required transmission powers for broadcast communications

are reduced between 15 and 16 dBm.

And finally, Fig. 7.45, shows the minimum transmission power for various probabilities

of error for BPSK and 256-QAM for broadcasting, concerning the farthest destination

for each tileset on the cross-shaped transmission line.

Table 7.4 gathers the total values (total of all 32 tilesets) for maximum transmission

powers (i.e. required power for transmission to farthest node in broadcast case) for

capacity densities between 1-8 bits/s/Hz and various BERs with BPSK or 256-QAM

with a cross-shaped transmission line. In other words, this table represents the total

of values in Fig. 7.44 and Fig. 7.45. For instance, total required power for providing

broadcasting with our CMP, for a capacity density of 8 bits/s/Hz is -18.14 dBm, which

is approximately 12 dB lower compared to U-shaped topology.



Chapter 7. Adaptive Modulation Order Selection 218

Tileset ID
0 5 10 15 20 25 30 35

M
in

im
u

m
 T

ra
n

s
m

is
s
io

n
 P

o
w

e
r 

(d
B

m
)

-65

-60

-55

-50

-45

-40

-35

-30

-25

1 bits/s/Hz

2 bits/s/Hz

3 bits/s/Hz

4 bits/s/Hz

5 bits/s/Hz

6 bits/s/Hz

7 bits/s/Hz

8 bits/s/Hz

Cross-shaped 

Transmission Line

Farthest Distance from a

tileset 

Broadcast

Figure 7.44: Minimum required transmission power for broadcasting (to maximum
distance) for each tileset for the cross-shaped shaped transmission line for capacity

densities 1-8 bits/s/Hz

Tileset ID
0 5 10 15 20 25 30 35

M
in

im
u

m
 T

ra
n

s
m

is
s
io

n
 P

o
w

e
r 

(d
B

m
)

-70

-60

-50

-40

-30

-20

-10
BPSK, p

b
 = 10-1

BPSK, p
b
 = 10-3

BPSK, p
b
 = 10-5

BPSK, p
b
 = 10-7

Capacity 1 bits/s/Hz

256-QAM, p
b
 = 10-1

256-QAM, p
b
 = 10-3

256-QAM, p
b
 = 10-5

256-QAM, p
b
 = 10-7

Capacity 8 bits/s/Hz

Cross-Shaped 

Transmission Line

Farthest Distance from a

tileset 

Broadcast

Figure 7.45: Required transmission power for broadcasting (farthest destination) for
each tileset for the U-shaped shaped transmission line for probabilities of error : 10−1,

10−3, 10−5, 10−7 for BPSK and 256-QAM



Chapter 7. Adaptive Modulation Order Selection 219

Table 7.4: Total of maximum transmission powers (broadcast case) for various capac-
ity densities and BER values with BPSK or 256-QAM with cross-shaped transmission

line.

Cross-Shaped
Total of Maximum

Transmission Powers
(Broadcast case) - dBm

Capacity 1 bits/s/Hz -42.21

Capacity 2 bits/s/Hz -37.44

Capacity 3 bits/s/Hz -33.76

Capacity 4 bits/s/Hz -30.45

Capacity 5 bits/s/Hz -27.29

Capacity 6 bits/s/Hz -24.21

Capacity 7 bits/s/Hz -21.17

Capacity 8 bits/s/Hz -18.14

BPSK pb = 10−1 -43.06

BPSK pb = 10−1 -35.42

BPSK pb = 10−1 -32.62

BPSK pb = 10−1 -30.9

256-QAM pb = 10−1 -24.41

256-QAM pb = 10−1 -13.73

256-QAM pb = 10−1 -10.64

256-QAM pb = 10−1 -8.81

7.7 Conclusion

OFDMA not only provides the oppurtunity of digitally and rapidly re-arbitrate the

frequency resources, i.e. subcarriers, but also the chance of selecting different modulation

orders, therefore different rates as a new flexible dimension of scalable rates for future

on-chip interconnects with a trivial digital procedure.

Due to computational/circuitral difficulty and additional bandwidth overhead of signal-

ing between tilesets, we have constructed a framework, where a single modulation order

is selected for each tileset every frame. This modulation order selection procedure is

completely based on the framed bandwidth allocation framework, explained in previous

chapters. In this chapter, we have evaluated the relation between delay and power for

the on-chip RF interconnect of WiNoCoD.

Based on our experiments, we can state firmly that average delay bounded algorithm is

robust and provides much more reliable results compared to maximum delay bounded

algorithm. We believe, setting bounds on averaged delays may be a more convenient

way for the highly dynamic and fluctuating on-chip traffic. We have shown that, average

power can be reduced up to 10 times, by increasing average delay bound by a few

symbols. As a last remark, we should emphasize that this algorithm bases itself on the



Chapter 7. Adaptive Modulation Order Selection 220

equations from the reference paper, except we have added the number of channels to

them and modified for the WiNoCoD’s framed structure.

For these proposed intelligent modulation order selection policies, the required trans-

mission power for different modulation orders were quantified as a multiple of the power

required for BPSK. This omits the calculations of the real transmission powers that tile-

sets shall supply. Therefore, we have determined the destinations between tilesets for the

previously proposed U-shaped topology and the improved latest cross-shaped topology.

Based on these, by using the determined signal attenuation with respect to distance in

our state-of-the-art transmission line, we have calculated the required minimum trans-

mission powers concerning the information theoretic bounds. Required transmission

powers for different channel capacity densities between 1-8 bits/sec/Hz are determined,

which correspond to modulation orders between BPSK to 256-QAM.



Chapter 8

Conclusions and Perspectives

In this thesis work which has been performed in parallel with Project WiNoCoD, we

have demonstrated the feasibility of utilizing OFDMA as a modulation mechanism on

an on-chip wired RF interconnect for a massive manycore architecture. By using newly

enabled necessary CMOS technology for the development of fast enough components,

WiNoCoD Project aims to be the first attempt to bring OFDMA on-chip.

In Chapter 2, we have explained the emerging Chip Multiprocessor (CMP) paradigm and

its basic computational structure. The need for cache coherency was discussed briefly,

which is the contributor of the traffic between on-chip elements. However, electrically

wired NoCs cannot sustain the traffic demand of the CMPs with hundreds of cores. The

current estimation predicts that number of cores on a single CMP may reach several

thousands before the end of next decade. Therefore, the state-of-the-art optical and RF

interconnects are proposed for CMPs with hundreds and thousands of cores. However,

these interconnects are static due to their reliance on analog circuits for generating or-

thogonal frequency channels. Hence, these interconnects shall be dimensioned according

to peak traffic of a node. Further in the chapter, we discuss the statistical properties and

burst nature of on-chip traffic and present certain synthetic traffic models to emulate

cache coherency traffic.

Chapter 3 presents the Project WiNoCoD and its 2048-core CMP. First, we explain the

scalable 3-level NoC hierarchy, along with each layer’s specific communication infrastruc-

ture. We also mention the utilized scalable distributed hybrid cache coherency protocol

(DHCCP) and its intensive demand of broadcast messages. Later in the chapter, be-

fore presenting the details of our wired RF interconnect, we briefly explain the basics

of OFDM and OFDMA, and its potential advantages for the proposed on-chip archi-

tecture. OFDMA is broadcast capable intrinsically and orthogonal channel generation

and bandwidth allocation in OFDMA is purely digital, rapid and efficient in contrast

221



Chapter 8. Conclusions and Perspectives 222

with the previously mentioned optical and RF interconnects. Furthermore, circuitry and

parameters of our wired RF interconnect are presented in detail.

Chapter 4 firstly formulates the main problem of this thesis from queuing and network

theory perspective, which is to find the right algorithms to distribute frequency resources

to the multiple transmission queues, such that certain metrics of interest like average

latency is minimized. Certain algorithms from the literature approaching this issue

from different grounds and their theoretical basis are discussed. Next, the infrastructure

of WiNoCoD’s OFDMA based RF interconnect and certain preliminary concepts are

introduced. For instance, due to signaling and computational constraints, the subcar-

riers in the system are grouped to serve 1 flit on a single system. The unusually large

OFDM bandwidth compared to most of the existing in our system, forces resource al-

location algorithms to be done in few hundrerds of nanoseconds. Taking into account

other additional factors increasing the cumulative latency for the effectuating band-

width allocation, such as digital reconfiguration of the components, propagation time,

computation time of OFDM components such as IFFT etc., a pipelined mechanism for

subcarrier arbitration is adopted. The frame based bandwidth allocation based on this

pipelined fashion is explained in detail. Two cardinally different methods for bandwidth

allocation are considered in WiNoCoD : Decentralized mechanism, where each tileset

broadcasts their QSIs and execute the same algorithm or centralized mechanism where

a central intelligent unit (CIU) is responsible for this. The coordination between tilesets

and other tilesets or between tilesets and the CIU for signaling is discussed for both of

the cases. Pros and cons of two different methods are listed. In addition, utilized meth-

ods and realistic traffic models to stress algorithms are explained. Different granularity

levels for signaling and resource partition was discussed and best option was chosen to

implement bandwidth allocation algorithms.

In Chapter 5 we present and evaluate our proposed algorithms experimentally. First

proposed method is called serial QSI allocation algorithm, where resource blocks (RBs)

are sequentially allocated in blocks by iterating through QSI demands of tilesets. A

major motivation behind this algorithm is to minimize the computational complexity

and number of iterations as much as possible. Even though this algorithm provides very

low average latencies and delay or queue exceeding probabilities, we have observed that

it has a limited capacity due to its unfair nature. This phenomenon was examined and

certain extension to enhance the algorithm with minimum additional complexity are

presented. Next proposed algorithm was queue proportional scheduling (QPS), which

allocates the available frequency resources proportional to queue lengths of tilesets. The

capacity of the system was proven to be efficient, however we have observed that under

lower traffic loads, the average latencies were unacceptably high. Using modified QSIs

such as deterministic or expected QSI to combat outdated QSI and allow for a fairer



Chapter 8. Conclusions and Perspectives 223

resource allocation are evaluated for both of these methods for both centralized and

decentralized mechanisms. We conclude that there is no ultimate best algorithm, where

they offer different good performances for different metrics of interest under different

configurations and traffic statistics. However, using serial allocation algorithm with

definitive QSI encoding was proven to provide the lowest average latency in general.

This basic algorithm which does not require any computation complexity is feasible to

be implemented with very low frame lengths such as few OFDM symbols. However,

especially under higher traffic loads, we have observed QPS algorithms was able to

outperform basic serial allocation in terms of remarkably lower packet delay and queue

length exceeding probabilities.

In Chapter 6, one of the most innovative bandwidth allocation infrastructure we have

developed for an on-chip interconnect is presented, where there exists no similar attempt

in the literature, to the best of our knowledge. This novel Payload Channel Algorithm

allocates all the subcarriers on a symbol to the payloads of cache line carrying long

cache coherency packets. Thanks to intrinsic broadcast nature of OFDMA, this algo-

rithm does not require any extra signaling overhead, as the type of the packet is encoded

in header flits. Additionaly, two separate queues are used to avoid any inconsistency

between headers and packets and also to be able to utilize resources while waiting for

payload transmission. This algorithm was proven to decrease average latency up to 10

times under certain cases compared to a static counterpart. In addition, we derived an

analytical expression for the average latency of this algorithm as a function of injection

rate by using certain approximations and queuing theory. Furthermore, a more sophis-

ticated dynamic version of this algorithm is developed, which allocates base resources

to tilesets according to traffic fluctuations. We believe this algorithm may provide sub-

stantial performance increase for the future CMPs using OFDMA, especially with longer

cache lines.

Chapter 7 is dedicated to option of using different modulation orders for WiNoCoD’s

OFDMA interconnect. Firstly, information theoretic relation between delay and power

was revisited. Then, the necessary mechanism for using higher modulation order for

extra transmission power in WiNoCoD was explained, briefly. Both inspired from the

existing schedulers from the literature but designed for general wireless telecommunica-

tions, two novel modulation order selection algorithms are introduced. First one aims to

minimize transmission power while setting a maximum delay of the packets. The original

algorithm was designed for a single user-single channel case, which was not applicable

to our case directly. Therefore, we have modified this scheduler for this special case,

which we believe can also be applied to more generic multi-user multi-channel cases in

wireless telecommunications. This algorithm is able to provide 3 times lower average

power by increasing delay bound by just 16 symbols under certain scenarios. Moreover,



Chapter 8. Conclusions and Perspectives 224

our scheduler is not able to provide the necessary delay bound especially under bursty

traffic due to limited rate of the system, however it was shown that a probabilistic guar-

antee can be achieved. Second algorithm was also based on an existing scheduler from

the literature, which we have modified to our case. Different than the previous one,

this algorithm aims to minimize the average transmission power while setting a bound

on average delay. The proposed scheduler was able to decrease the average energy ex-

penditure 4 times by just increasing the average latency by few symbols. Algorithm

was shown to be efficient in terms of tracing and obeying the average delay bound. We

have also conducted an information theoretic analysis on two different transmission line

topologies in this chapter. Proposed algorithms for intelligent modulation order choice

seek to select lowest modulation order (BPSK) as possible as long as the service criteria

on latency are met and give the resulting power consumption relative to BPSK. We have

not given explicit transmission power values previously, however by this information the-

oretic analysis part we aim to determine the required minimum transmission power to

achieve certain capacity and uncoded bit error rate.

Perspectives

WiNoCoD Project is an ambitious endeavor to break the reconfigurable bandwidth al-

location bottleneck for massive manycore systems. We believe the proposed algorithms

and discussed concepts shall be a pioneering guideline for the future OFDMA based

on-chip interconnects.

In addition to this work conducted throughout the project, there exists a great potential

for further contribution. With its reconfigurability, once OFDMA RF on-chip intercon-

nects have become feasible for production, researchers may develop certain extensive

algorithms and infrastructures. For instance, carrier aggregation paradigm from cellular

communications may be investigated, that deals with the allocation of non-contiguous

subcarriers to nodes, which can decrease peak-to-average power ratio problem and pro-

vide other certain benefits. Another perspective can be the offline optimization of

subcarrier and modulation order allocation, by inspecting the traffic demand of nodes,

after executing applications on the CMP.

Further work could try to evaluate the transmission power consumption both for static

modulation order or dynamic modulation order case, for various traffic patterns. New

energy aware intelligent modulation order selection algorithms can be developed.

By developing silicon technology in future, we can expect to have several hundreds

of GHz of bandwidth which results in much shorter OFDM symbol durations. The

proposed pipelined framework and bandwidth allocation mechanism can be extended

to these extreme cases. In addition, we can expect to have more number of processing



Chapter 8. Conclusions and Perspectives 225

elements, thus more elements accessing the RF transmission line. Also higher number

of subcarriers can be implemented with future technology to sustain communication for

this much number of RF nodes. The work conducted in this thesis can be extended to

these cases as well.

Further work can be done on the physical layer aspects of this OFDMA based inter-

connect. The Peak-to-Average Power Ratio (PAPR) problem can be investigated and

optimization on arbitration of subcarriers and modulation can be performed concern-

ing this problem. In addition, channel coding and other error detection and correction

techniques can be developed taking in to account the very specific constraints of this

interconnect. Even though we have not taken into account the variation of attenua-

tion between the 20-40 GHz spectrum, and assumed an average flat frequency response;

further optimal subcarrier allocation algorithms can be developed, which also try to

minimize the attenuation.



Appendix A

Personal Publications

Capacity Analysis of Radio Frequency Interconnect for Manycore Multipro-

cessor Chips (to be submitted)

Eren Unlu, Christophe Moy, Yves Louet, Jacques Palicot.

—

Bimodal Packet Aware Scheduling for an OFDMA Based On-Chip RF In-

terconnect (to be submitted)

Eren Unlu, Christophe Moy.

—

A Novel Bandwidth and Power Allocation Mechanism for an OFDMA Based

On-Chip RF Interconnect (submitted)

Eren Unlu, Christophe Moy.

Elseiver Journal of Microprocessors and Microsystems

Reconfigurable Traffic-Aware Radio Interconnect for a 2048-core Chip Mul-

tiprocessor

Eren Unlu, Christophe Moy.

Digital System Design (DSD), 2015 18th Euromicro Conference on, Aug 2015, Funchal,

Portugal. pp. 139-145.

A Dynamically Reconfigurable RF NoC for Many-Core

Alexandre Brière, textbfEren Unlu, Julien Denoulet, Andrea Pinna, Bertrand Granado,

Francois Pêcheux, Yves Louët, Christophe Moy.

Great Lakes Symposium on VLSI, May 2015, Pittsburgh, United States. pp.139-144,

Proceedings of the 25th edition on Great Lakes Symposium on VLSI

Flexible Radio Interface for NoC RF-Interconnect

Frédéric Drillet, Mohamad Hamieh, Lounis Zerioul, Alexandre Briere, Eren Unlu,

226



Appendix A. Personal Publications 227

Myriam Ariaudo, Yves Louet, Emmanuelle Bourdel, Julien Denoulet, Andréa Pinna,

Bertrand Granado, Patrick Garda, François Pêcheux, Cédric Duperrier, Sébastien Quin-

tanel, Philippe Meunier, Christophe Moy, Olivier Romain.

Digital System Design (DSD), 2014 17th Euromicro Conference on, Aug 2014, Verona,

Italy. pp.6.

An OFDMA Based RF Interconnect for Massive Multi-core Processors

Eren Unlu, Mohamad Hamieh, Christophe Moy, Myriam Ariaudo, Yves Louët, Frédéric

Drillet, Alexandre Brière, Lounis Zerioul, Julien Denoulet, Andrea Pinna, Bertrand

Granado, François Pécheux, Patrick Garda, Cédric Duperrier, Sébastien Quintanel,

Olivier Romain.

NOCS 2014, Sep 2014, Ferrara, Italy. 2 p., 2014.

Bandwidth Allocation for Massive Multicore CMP RF Interconnect

Allocation des Fréquences pour les Interconnexions RF dans un Réseau sur

Puce Multi-Coeurs Massivement Parallèle

Eren Unlu, Christophe Moy.

XXVe Colloque GRETSI 2015, Sep 2015, Lyon, France. Actes du XXV Colloque GRETSI,

4 p., 2015.

WiNoCoD : A Hierarchical RF Interconnection Network for MPSoCs

WiNoCoD : Un réseau d’interconnexion hiérarchique RF pour les MPSoC

Alexandre Brière, Julien Denoulet, Andrea Pinna, Bertrand Granado, François Pêcheux,

Patrick Garda, Myriam Ariaudo, Frédéric Drillet, Cédric Duperrier, Mohamad Hamieh,

Sébastien Quintanel, Olivier Romain, Lounis Zerioul, Yves Louët, Christophe Moy, Eren

Unlu, E.Bourdel.

ComPAS’2014 : Conférence d’informatique en Parallélisme, Architecture et Système,

Apr 2014, Neuchâtel, Switzerland. pp.track architecture.



Appendix B

Explanation of OMNeT++ Codes

OMNeT++ is a C++ based, event driven network simulator. It includes libraries, there-

fore C++ objects for simulating dynamics of queues, packet transmission and network

related aspects. Event driven simulation means that any type of event (e.g. arrival of a

packet, timeout of a downcounter etc.). Therefore, we have modeled an OFDM symbol

based simulation (slotted communication paradigm/after finishing of an OFDM symbol,

new symbol starts) as mentioned previously.

B.1 General Organization of the Main C++ Files and OM-

NeT++ Classes

Rather than compiling different C++ files for each tileset, we have chosen to implement

a single long main C++ file composed of approximately 1500 lines. By exploiting certain

pre-defined libraries of OMNeT++, with this single file we can accelarate the execution

of our codes significantly.

As mentioned previously throughout the thesis, a transmitter queue at the RF front-end

of each tileset is utilized as the main scope of our research, whereas other aspects are

exluded for bandwidth allocation. And due to the temporal quantized nature of OFDM

based communication, queue dynamics and bandwidth allocation related procedures are

executed in a symbol accurate manner. We have implemented codes in 4 different main

C++ files due to their structures for bandwidth allocation algorithms : (i) Regular

Channel Allocation algorithms presented in Chapter 5, (ii) Payload Channel Allocation

algorithms explained in Chapter 6, (iii) Maximum Delay Bounded Dynamic Modulation

Order Allocation algorithm, (iv) Average Delay Bounded Dynamic Modulation Order

Allocation algorithm.

228



Appendix B. Explanation of OMNeT++ Codes 229

At the first section in this general file, the user determines the duration of simulation in

symbols, number of RBs per symbol, frame duration (for centralized allocation, reconfig-

uration time for tilesets and computation time for CIU can be determined separetely.),

number of bits to encode QSI and the required number of RBs to reserve for signaling.

Each of tilesets’ (where number can be determined according to user parameter) trans-

mission queues are OMNeT++ queue objects (cQueue), and they are stored in a C++

vector.

As stated before, OMNeT++ is an event driven network simulator, where there exists

message class (cMessage) objects, which imitate the behaviour of packets and these

message objects can be transpassed between modules throughout the simulation. Events

are also a subclass of this OMNeT++ message class. The structure and parameters of

message objects are pre-defined in a special OMNeT++ file called msg file. For our

simulations, we have defined one type of msg file, which emulates the flits.

B.1.1 Symbol Accurate Mechanism

A created OMNeT++ event object called OFDM symbol triggers a start of a new symbol,

which executes the necessary codes. Each time a new OFDM symbol starts, first certain

amount of packets are generated stochastically for each of the tilesets and inserted to the

transmission queues, with a dedicated function called generate pkts(). After this, a

second function called serve pkts() determines the number of RBs each tileset has on

this symbol, and serves the respective amount of flits from each of tileset’s queues. Every

new symbol, a counter is incremented and if this is a new frame, necessary bandwidth

allocation algorithm is performed with function allocateRBs(). Finally, at the end of

these operations, a new symbol event is called (switch to next symbol).

B.1.2 Regular Channel Allocation

Firstly proposed dynamic bandwidth allocation algorithms in Chapter 5 are all written

in a single main C++ file. Firstly user chooses with a parameter whether a serial RB

allocation (Section 5.1) or Queue Proportional Scheduling (Section 5.2) will be used.

Next, a parameter determines whether a centralized or decentralized scheme is adopted.

If a centralized scheme is adopted, certain subcarriers are reserved for CIU response

and the necessary reconfiguration time for activating new subcarrier arbitration is taken

account to frame structure as explained in the thesis. As mentioned in previous section,

at the start of each symbol, if this is the first symbol of a frame, the function who is



Appendix B. Explanation of OMNeT++ Codes 230

responsible of bandwidth allocation, allocateRBs() is called. A matrix describes the

identification of each RB for each symbol of a frame.

Then based on the chosen parameter, 2 different processes allocate RBs inside a frame

to tilesets according to serial allocation or QPS allocation. For QPS allocation, the

algorithm computes the total QSI and associated proportional allocation as explained in

thesis. If serial allocation is chosen, a parameter defines whether a second loop will be

applied in the arbitration procedure as mentioned in Section 5.1.1. By using necessary

temporary variables the pipelined mechanism presented in the thesis is applied, that the

new arbitration of RBs are activated in next frame.

B.1.3 Payload Channel Allocation

Different than the previous regular channel allocation mechanism, this time for payload

channel allocation algorithm, we implement two different queues for each tileset, stored

in seperate vectors. First vector stores the short 1-flit packets and header flits of the

long packets, whereas the second one stores the payloads of the long packets. In addition

to this, a single, global cQueue object is utilized for the representation of the register.

The demands of tilesets for payload channel transmission are represented by generated

cMessage objects and inserted into register queue. Similarly for the previous case,

every symbol, generate pkts() function is called to generate packets for each tilesets

stochastically and serve pkts() funtion is called to clear flits inside the short queue. If

a tileset has the payload channel on a “specific symbol”, , its payload message is served

from its payload queue.

B.1.4 Dynamic Modulation Order Allocation

Different than the regular payload channel allocation algorithm, a counter is incremented

on every symbol where payload channel is not utilized, and if this symbol is the start of

a frame, allocateRBs() function is called to artbitrate home channels in next frame.

B.1.4.1 Maximum Delay Bounded Dynamic Modulation Order Allocation

A different main C++ file was created for each of the dynamic modulation order alloca-

tion algorithm as mentioned previously. Actually dynamic modulation order is just an

extension to the bandwidth allocation algorithms presented in Chapter 5. Additionally,

it has special functions and variables for modulation order purposes.



Appendix B. Explanation of OMNeT++ Codes 231

For Maximum Delay Bounded Dynamic Modulation Order Allocation, for each tileset

there is a vector containing the number of flits with current time left to violation of

delay bound, between 1 and D0 − 1. Each vector for each tileset is also stored in a

vector in a nested manner. A function named updateDmaxVectors() is called every

symbol to update the new number of packets inside the transmission queues of tilesets

with respective time left for delay bound violation, as explained in Section 7.4.2.

Every frame, bandwidth allocation is performed as in Chapter 5, however additionally

each tileset determines its new modulation order to be used in next frame, with a

function called chooseModulationOrder MaxDelayBound(). The necessary signaling

overhead for the modulation order broadcasting is also taken into account. Therefore

with newly chosen modulation order and new number of RBs on each symbol, a frame

can calculate how many flits it can serve. The generate pkts() and serve pkts()

functions are utilized every symbol as for the bandwidth allocation algorithms.

B.1.4.2 Average Delay Bounded Dynamic Modulation Order Allocation

For Average Delay Bounded Dynamic Modulation Order Allocation Algorithm, in addi-

tion to structure for the dynamic bandwidth allocation algorithms in Chapter 5, the main

file includes a chooseModulationOrder AvgDelayBound() function, which is called at

the start of every frame. Using recently obtained QSIs and computed number of RBs

in a frame, it determines the modulation order for each tileset. The necessary signaling

overhead for the modulation order broadcasting is also taken into account. Therefore

with newly chosen modulation order and new number of RBs on each symbol, a frame

can calculate how many flits it can serve. The generate pkts() and serve pkts()

functions are utilized every symbol as for the bandwidth allocation algorithms.

B.2 Stochastic Packet Generation and Traffic Models

We are using stochastic and statistical models to emulate the number of packets coming

to RF transmitters of tilesets. Without loss of generality, this procedure is modeled as

an exogeneous packet generation in a symbol accurate manner based on the assump-

tions made in Section 4.3.4. At the start of each symbol the generate pkts() function

is called, which calculates the number of packets generated for packets and insert them

into the transmission cQueue object of the associated tileset. For each generated packet

a binary random value is drawn to determine the length of the packet (short or long).



Appendix B. Explanation of OMNeT++ Codes 232

Based on the length of the packet, that specific number of flits are generated (as a sub-

class of cMessage objects), and each of these flits are associated with a packet number.

The last flit of a packet is marked with a flag, to determine the ending of a packet.

OMNeT++ provides a large class of statistical tools and C++ libraries for the generation

of random values based on pre-defined or user-defined distributions. As mentioned

previously in Section 4.3.4, we are using 2 main stochastic models : (i) Poisson and (ii)

Discrete Pareto Burst Poisson Process (DPBPP). Before simulation user chooses whether

a uniform or non-uniform spatial injection rate distribution is chosen (as mentioned in

Section 4.3.4.2). Another parameter defines whether a Poisson or DPBPP model is

preferred. If Poisson model is chosen, in generate pkts() function, OMNeT++’s pre-

defined poisson() function with the associated injection rate is used to determine the

number of packets generated on each symbol for each tileset. However, implementing

the DPBPP model taken from the literature is not possible with pre-defined functions,

therefore we have written another function named generate packetsDPBPP(). This

function is called in generate pkts() function if the DPBPP is chosen.

B.2.1 DPBPP packet generation

DPBPP traffic model was explained in Section 4.3.4.2. generate packetsDPBPP() func-

tion is used for this purpose. First a Poisson random value drawn by pre-defined

poisson() function determines the number of flows. Each flow is an entity with a

duration, where it generates 1 packet per symbol throughout its execution. Multiple

number of flows shall be active during an instance. For example, let us say that at

time t0 2 flows are generated with durations 2 and 3 symbols, respectively. And in next

symbol , t1, 1 flow is generated with a duration of 1 symbol. Therefore, with aggregation

of these flows; 2 packets are generated on t0, 3 packets are generated on t1, 1 packet

is generated on t2, and no packets are generated on t3 and after, as there is no active

flows left. We have emulated this aggregation of active queues in OMNeT++ by using

cQueue and cMessage objects.

The duration of a flow is also determined stochasitcally, which is Pareto distributed.

There is no such a pre-defined Pareto distribution, as we have desired exactly, therefore

we have created a function named flowLengthGenDPPBP(). For this purpose we have

used a feature of OMNeT++, which allows the generation of discrete random values

based on a user defined distribution. For creation of this pre-defined Pareto distribu-

tion, we have created a function named initDPPBP() which is called one time at the

start of the simulation, if DPBPP traffic model is chosen. This Pareto distribution is

defined inside this function according to mathematical definition with desired Hurst (H)



Appendix B. Explanation of OMNeT++ Codes 233

parameter. Based on these, injection rate is normalized, which is used for the Poisson

random value to generate flows.

B.3 Collection of Metrics of Interest

OMNeT++ provides a large variety of metrics to be evaluated at the end of the simu-

lation. For instance, each time we generate a packet (therefore flits) based on cMessage

class, we can stamp the time of generation (in symbols). When these flits are being

served from the transmission queue, we check whether this flit is the last flit of a packet

by checking the associated flag of cMessage class. If this is an ending flit of a packet,

we calculate the transmission delay by subtracting current simulation time from the

stamped time of generation. For evaluation of scalar metrics, OMNeT++ has a cSignal

class, which collects desired parameters (such as delay of packets) and provide the users

information such average, maximum etc. of these metrics at the end of simulation. In

addition to these, in order to obtain the distribution of packet delays or queue lengths,

we have used cHistogram objects of OMNeT++, where we have converted to csv files

at the end.



Bibliography

[1] Alain Greiner. Tsar: a scalable, shared memory, many-cores architecture with

global cache coherence. In 9th International Forum on Embedded MPSoC and

Multicore (MPSoC’09), 2009.

[2] Chen Sun, Mark T Wade, Yunsup Lee, Jason S Orcutt, Luca Alloatti, Michael S

Georgas, Andrew S Waterman, Jeffrey M Shainline, Rimas R Avizienis, Sen Lin,

et al. Single-chip microprocessor that communicates directly using light. Nature,

528(7583):534–538, 2015.

[3] George Kurian, Jason E Miller, James Psota, Jonathan Eastep, Jifeng Liu, Jurgen

Michel, Lionel C Kimerling, and Anant Agarwal. Atac: a 1000-core cache-coherent

processor with on-chip optical network. In Proceedings of the 19th international

conference on Parallel architectures and compilation techniques, pages 477–488.

ACM, 2010.

[4] Shekhar Borkar. Thousand core chips: a technology perspective. In Proceedings

of the 44th annual Design Automation Conference, pages 746–749. ACM, 2007.

[5] Érika Cota, Alexandre de Morais Amory, and Marcelo Soares Lubaszewski. Reli-

ability, Availability and Serviceability of Networks-on-chip. Springer, 2011.

[6] Cheng Li, Paul V Gratz, and Samuel Palermo. Nano-photonic networks-on-chip for

future chip multiprocessors. In More than Moore Technologies for Next Generation

Computer Design, pages 155–186. Springer, 2015.

[7] Sujay Deb, Amlan Ganguly, Partha Pratim Pande, Benjamin Belzer, and Deukhy-

oun Heo. Wireless noc as interconnection backbone for multicore chips: Promises

and challenges. Emerging and Selected Topics in Circuits and Systems, IEEE

Journal on, 2(2):228–239, 2012.

[8] Vassos Soteriou, Hangsheng Wang, and Li-Shiuan Peh. A statistical traffic model

for on-chip interconnection networks. In Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems, 2006. MASCOTS 2006. 14th IEEE

International Symposium on, pages 104–116. IEEE, 2006.

234



Bibliography 235

[9] Gordon E Moore et al. Cramming more components onto integrated circuits, 1965.

[10] Kunle Olukotun, Basem A Nayfeh, Lance Hammond, Ken Wilson, and Kunyung

Chang. The case for a single-chip multiprocessor. ACM Sigplan Notices, 31(9):

2–11, 1996.

[11] Edward J. Correia. Sorry, moore’s law: Multicore is the new game in town, 2012.

URL http://i.crn.com/misc/2012/moores_law_chart.jpg. [Online; accessed

October 16, 2015].

[12] Mark L James, Andrew A Shapiro, Paul L Springer, and Hans P Zima. Adaptive

fault tolerance for scalable cluster computing in space. International Journal of

High Performance Computing Applications, 23(3):227–241, 2009.

[13] Tile-gx processor family. URL http://www.tilera.com/products/processors/

TILE-Gx_Family.

[14] Lina J Karam, Ismail AlKamal, Alan Gatherer, Gene Frantz, David V Ander-

son, Brian L Evans, et al. Trends in multicore dsp platforms. Signal Processing

Magazine, IEEE, 26(6):38–49, 2009.

[15] Kunle Olukotun, Lance Hammond, and James Laudon. Chip multiprocessor ar-

chitecture: techniques to improve throughput and latency. Synthesis Lectures on

Computer Architecture, 2(1):1–145, 2007.

[16] Bryan Schauer. Multicore processors–a necessity. ProQuest discovery guides, pages

1–14, 2008.

[17] András Vajda, Mats Brorsson, and Diarmuid Corcoran. Programming many-core

chips. Springer, 2011.

[18] David J Lilja. Cache coherence in large-scale shared-memory multiprocessors:

issues and comparisons. ACM Computing Surveys (CSUR).

[19] Anant Agarwal and Markus Levy. The kill rule for multicore. In Design Automa-

tion Conference, 2007. DAC’07. 44th ACM/IEEE, pages 750–753. IEEE, 2007.

[20] Dana Vantrease, Robert Schreiber, Matteo Monchiero, Moray McLaren, Norman P

Jouppi, Marco Fiorentino, Al Davis, Nathan Binkert, Raymond G Beausoleil, and

Jung Ho Ahn. Corona: System implications of emerging nanophotonic technology.

In ACM SIGARCH Computer Architecture News, volume 36, pages 153–164. IEEE

Computer Society, 2008.

[21] Li-Rong Zheng and Hannu Tenhunen. Wires as interconnects. In Interconnect-

Centric Design for Advanced SoC and NoC, pages 25–54. Springer, 2005.

http://i.crn.com/misc/2012/moores_law_chart.jpg
http://www.tilera.com/products/processors/TILE-Gx_Family
http://www.tilera.com/products/processors/TILE-Gx_Family


Bibliography 236

[22] Jari Nurmi, Hannu Tenhunen, Jouni Isoaho, and Axel Jantsch. Interconnect-

centric design for advanced SoC and NoC. Springer, 2004.

[23] Chrysostomos Nicopoulos, Vijaykrishnan Narayanan, and Chita R Das. Network-

on-Chip Architectures: A Holistic Design Exploration, volume 45. Springer, 2009.

[24] SA Arteris. From” bus” and” crossbar” to” network-on-chip”. Arteris, Inc, 1741,

2009.

[25] Abbas Sheibanyrad, Frédéric Pétrot, and Axel Jantsch. 3D integration for NoC-

based SoC Architectures. Springer, 2011.

[26] Sudeep Pasricha and Nikil Dutt. On-chip communication architectures: system on

chip interconnect. Morgan Kaufmann, 2010.

[27] Wolfgang Arden. Future semiconductor material requirements and innovations as

projected in the itrs 2005 roadmap. Materials Science and Engineering: B, 134

(2):104–108, 2006.

[28] Mikhail Haurylau, Guoqing Chen, Hui Chen, Jidong Zhang, Nicholas A Nelson,

David H Albonesi, Eby G Friedman, and Philippe M Fauchet. On-chip opti-

cal interconnect roadmap: challenges and critical directions. Selected Topics in

Quantum Electronics, IEEE Journal of, 12(6):1699–1705, 2006.

[29] Jing Xue, Alok Garg, Berkehan Ciftcioglu, Jianyun Hu, Shang Wang, Ioannis

Savidis, Manish Jain, Rebecca Berman, Peng Liu, Michael Huang, et al. An intra-

chip free-space optical interconnect. In ACM SIGARCH Computer Architecture

News, volume 38, pages 94–105. ACM, 2010.

[30] Joseph W Goodman, Frederick J Leonberger, Sun-Yuan Kung, and Ravindra A

Athale. Optical interconnections for vlsi systems. Proceedings of the IEEE, 72(7):

850–866, 1984.

[31] David AB Miller. Rationale and challenges for optical interconnects to electronic

chips. Proceedings of the IEEE, 88(6):728–749, 2000.

[32] Vilson R Almeida, Carlos A Barrios, Roberto R Panepucci, and Michal Lipson.

All-optical control of light on a silicon chip. Nature, 431(7012):1081–1084, 2004.

[33] Yan Pan, John Kim, and Gokhan Memik. Featherweight: low-cost optical arbitra-

tion with qos support. In Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 105–116. ACM, 2011.

[34] Robert H Havemann and James A Hutchby. High-performance interconnects: An

integration overview. Proceedings of the IEEE, 89(5):586–601, 2001.



Bibliography 237

[35] Sujay Deb. Millimeter-wave Wireless Network-on-Chip: A CMOS compatible in-

terconnection infrastructure for future many-core processors. PhD thesis, Wash-

ington State University, 2012.

[36] Xiaomeng Shi, Jian-Guo Ma, Kiat Seng Yeo, AV Do, and Erping Li. Equivalent

circuit model of on-wafer cmos interconnects for rfics. Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, 13(9):1060–1071, 2005.

[37] Sai-Wang Tam, M Frank Chang, and Jongsun Kim. Wireline and wireless rf-

interconnect for next generation soc systems. In Circuits and Systems (MWSCAS),

2011 IEEE 54th International Midwest Symposium on, pages 1–3. IEEE, 2011.

[38] Dan Zhao and Yi Wang. Sd-mac: Design and synthesis of a hardware-efficient

collision-free qos-aware mac protocol for wireless network-on-chip. Computers,

IEEE Transactions on, 57(9):1230–1245, 2008.

[39] Jau Lin Jr, Hsin-Ta Wu, Yu Su, Li Gao, Aravind Sugavanam, Joe E Brewer, et al.

Communication using antennas fabricated in silicon integrated circuits. Solid-State

Circuits, IEEE Journal of, 42(8):1678–1687, 2007.

[40] Xinmin Yu, Suman P Sah, Sujay Deb, Partha Pratim Pande, Benjamin Belzer,

and Deukhyoun Heo. A wideband body-enabled millimeter-wave transceiver for

wireless network-on-chip. In Circuits and Systems (MWSCAS), 2011 IEEE 54th

International Midwest Symposium on, pages 1–4. IEEE, 2011.

[41] Amlan Ganguly, Kevin Chang, Sujay Deb, Partha Pratim Pande, Benjamin Belzer,

and Christof Teuscher. Scalable hybrid wireless network-on-chip architectures for

multicore systems. Computers, IEEE Transactions on, 60(10):1485–1502, 2011.

[42] Noriyuki Miura, Daisuke Mizoguchi, Mari Inoue, Takayasu Sakurai, and Tadahiro

Kuroda. A 195-gb/s 1.2-w inductive inter-chip wireless superconnect with transmit

power control scheme for 3-d-stacked system in a package. Solid-State Circuits,

IEEE Journal of, 41(1):23–34, 2006.

[43] Xiaomeng Shi and Kiat Seng Yeo. On-chip interconnects of rfics.

[44] M Frank Chang, Jason Cong, Adam Kaplan, Mishali Naik, Glenn Reinman,

Eran Socher, and S-W Tam. Cmp network-on-chip overlaid with multi-band rf-

interconnect. In High Performance Computer Architecture, 2008. HPCA 2008.

IEEE 14th International Symposium on, pages 191–202. Ieee, 2008.

[45] Sujay Deb, Kevin Chang, Amlan Ganguly, and Partha Pande. Comparative per-

formance evaluation of wireless and optical noc architectures. In SOC Conference

(SOCC), 2010 IEEE International, pages 487–492. IEEE, 2010.



Bibliography 238

[46] Kanishka Lahiri, Anand Raghunathan, and Sujit Dey. Evaluation of the traffic-

performance characteristics of system-on-chip communication architectures. In

VLSI Design, 2001. Fourteenth International Conference on, pages 29–35. IEEE,

2001.

[47] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec

benchmark suite: Characterization and architectural implications. In Proceed-

ings of the 17th international conference on Parallel architectures and compilation

techniques, pages 72–81. ACM, 2008.

[48] Christian Bienia, Sanjeev Kumar, and Kai Li. Parsec vs. splash-2: A quantitative

comparison of two multithreaded benchmark suites on chip-multiprocessors. In

Workload Characterization, 2008. IISWC 2008. IEEE International Symposium

on, pages 47–56. IEEE, 2008.

[49] Umit Y Ogras and Radu Marculescu. Modeling, Analysis and Optimization of

Network-on-Chip Communication Architectures, volume 184. Springer Science &

Business Media, 2013.

[50] Frederica Darema-Rogers, Gregory F Pfister, and Kimming So. Memory access

patterns of parallel scientific programs, volume 15. ACM, 1987.

[51] Girish V Varatkar and Radu Marculescu. On-chip traffic modeling and synthesis

for mpeg-2 video applications. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 12(1):108–119, 2004.

[52] Kihong Park and Walter Willinger. Self-similar network traffic and performance

evaluation. Wiley Online Library, 2000.

[53] Paul Bogdan and Radu Marculescu. Statistical physics approaches for network-on-

chip traffic characterization. In Proceedings of the 7th IEEE/ACM international

conference on Hardware/software codesign and system synthesis, pages 461–470.

ACM, 2009.

[54] Antoine Scherrer, Antoine Fraboulet, Tanguy Risset, et al. Analysis and synthesis

of cycle-accurate on-chip traffic with long-range dependence. 2005.

[55] Walter Willinger, Murad S Taqqu, Robert Sherman, and Daniel V Wilson. Self-

similarity through high-variability: statistical analysis of ethernet lan traffic at the

source level. Networking, IEEE/ACM Transactions on, 5(1):71–86, 1997.

[56] Ahmad Khonsari, Mohammad R Aghajani, Arash Tavakkol, and Moham-

mad Sadegh Talebi. Mathematical analysis of buffer sizing for network-on-chips



Bibliography 239

under multimedia traffic. In Computer Design, 2008. ICCD 2008. IEEE Interna-

tional Conference on, pages 150–155. IEEE, 2008.

[57] Boris Tsybakov and Nicolas D Georganas. Overflow and losses in a network queue

with a self-similar input. Queueing systems, 35(1-4):201–235, 2000.

[58] Daniel Greenfield, Arnab Banerjee, J-G Lee, and Simon Moore. Implications of

rent’s rule for noc design and its fault-tolerance. In Networks-on-Chip, 2007.

NOCS 2007. First International Symposium on, pages 283–294. IEEE, 2007.

[59] Daniel L Greenfield. Communication Locality in Computation: Software, Chip

Multiprocessors and Brains. Citeseer, 2010.

[60] Mario Badr and Natalie Enright Jerger. Synfull: synthetic traffic models capturing

cache coherent behaviour. In Computer Architecture (ISCA), 2014 ACM/IEEE

41st International Symposium on, pages 109–120. IEEE, 2014.

[61] Yan Pan, John Kim, and Gokhan Memik. Tuning nanophotonic on-chip network

designs for improving memory trafics. PICA@ MICRO2009.

[62] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. A

case for numa-aware contention management on multicore systems. In Proceed-

ings of the 19th international conference on Parallel architectures and compilation

techniques, pages 557–558. ACM, 2010.

[63] Alexandre Brière, Julien Denoulet, Andrea Pinna, Bertrand Granado, Francois

Pêcheux, Eren Unlu, Yves Louët, and Christophe Moy. A dynamically reconfig-

urable rf noc for many-core. In Proceedings of the 25th edition on Great Lakes

Symposium on VLSI, pages 139–144. ACM, 2015.

[64] Semiconductor Industry Association et al. Itrs: International technology roadmap

for semiconductors, 2013.

[65] Korey Sewell, Ronald G Dreslinski, Thomas Manville, Sudhir Satpathy, Nathaniel

Pinckney, Geoffrey Blake, Michael Cieslak, Reetuparna Das, Thomas F Wenisch,

Dennis Sylvester, et al. Swizzle-switch networks for many-core systems. Emerging

and Selected Topics in Circuits and Systems, IEEE Journal on, 2(2):278–294, 2012.

[66] Tze-Yun Sung, Hsi-Chin Hsin, and Shengyong Chen. Reconfigurable vlsi archi-

tecture for fft processor. In WSEAS International Conference. Proceedings. Math-

ematics and Computers in Science and Engineering, number 9. World Scientific

and Engineering Academy and Society, 2009.



Bibliography 240

[67] Chi-Hang Chan, Yan Zhu, Sai-Weng Sin, RP Martins, et al. A 3.8 mw 8b 1gs/s

2b/cycle interleaving sar adc with compact dac structure. In VLSI Circuits (VL-

SIC), 2012 Symposium on, pages 86–87. IEEE, 2012.

[68] Alexandre Briere, Julien Denoulet, Andrea Pinna, Bertrand Granado, François

Pêcheux, Patrick Garda, Myriam Ariaudo, Frédéric Drillet, Cédric Duperrier, Mo-

hamad Hamieh, et al. Winocod: Un réseau d’interconnexion hiérarchique rf pour

les mpsoc. In ComPAS’2014: Conférence d’informatique en Parallélisme, Archi-

tecture et Système, pages track–architecture, 2014.

[69] Nakul Manchanda and Karan Anand. Non-uniform memory access (numa). New

York University, 2010.

[70] Ronald Bruno, John E Miller, and Leonard Schuchman. Digital audio broadcasting

system, February 1 1994. US Patent 5,283,780.

[71] Shengli Zhou and Zhaohui Wang. Ofdm basics. OFDM for Underwater Acoustic

Communications, pages 23–38.

[72] W COOLEY JAMES, AW Lewis, and D WELCH. Historical notes on the fast

fourier transform. Proceedings of the IEEE, 55(10):1675, 1967.

[73] Carlos E. Davilla. Fourier transform of common signals, November 2009.

URL http://cnx.org/contents/7549bfa0-d833-4795-a522-60269735215a@

8/Fourier_Transform_of_Common_Si.

[74] Mérouane Debbah. Short introduction to ofdm. White Paper, Mobile Communi-

cations Group, Institut Eurecom, 2004.

[75] Slawomir Pietrzyk. OFDMA for Broadband Wireless Access (Artech House Mobile

Communications). Artech House, Inc., 2006.

[76] RR Mosier and RG Clabaugh. Kineplex, a bandwidth-efficient binary transmission

system. American Institute of Electrical Engineers, Part I: Communication and

Electronics, Transactions of the, 76(6):723–728, 1958.

[77] Ebrahim Saberinia and AH Tewfik. Pulsed and non-pulsed ofdm ultra wideband

wireless personal area networks. In Ultra Wideband Systems and Technologies,

2003 IEEE Conference on, pages 275–279. IEEE, 2003.

[78] Philip N Ji, Dayou Qian, Karthik Sethuraman, Junqiang Hu, Yoshiaki Aono, Tsu-

tomu Tajima, William Blakney, and Ting Wang. First demonstration of real-time

all-optical software-defined intra-data center star network using ofdm and burst

switching. In OptoElectronics and Communications Conference and Photonics in

Switching, page PD3 3. Optical Society of America, 2013.

http://cnx.org/contents/7549bfa0-d833-4795-a522-60269735215a@8/Fourier_Transform_of_Common_Si
http://cnx.org/contents/7549bfa0-d833-4795-a522-60269735215a@8/Fourier_Transform_of_Common_Si


Bibliography 241

[79] Mohamad Hamieh, Myriam Ariaudo, Sébastien Quintanel, and Yves Louët. Sizing

of the physical layer of a rf intra-chip communications. In Electronics, Circuits and

Systems (ICECS), 2014 21st IEEE International Conference on, pages 163–166.

IEEE, 2014.

[80] Wang Hongwei. Fft basics and case study using multi-instrument. Virtins Tech-

nology, Rev, 1, 2009.

[81] Joseph Mitola. Cognitive radio—an integrated agent architecture for software

defined radio. 2000.

[82] Jacques Palicot. Radio engineering: From software radio to cognitive radio. John

Wiley & Sons, 2013.

[83] Jim Zyren and Wes McCoy. Overview of the 3gpp long term evolution physical

layer. Freescale Semiconductor, Inc., white paper, 2007.

[84] Niranjan G Shivaratri, Phillip Krueger, and Mukesh Singhal. Load distributing

for locally distributed systems. Computer, 25(12):33–44, 1992.

[85] Anand Ganti, Eytan Modiano, and John N Tsitsiklis. Tranmission scheduling

for multi-channel satellite and wireless networks. In Proceedings of the Annual

Allerton Conference on Communication Control and Computing, volume 40, pages

1319–1328. Citeseer, 2002.

[86] Philip Ji, Dayou Qian, Konstantinos Kanonakis, Christoforos Kachris, and Ioannis

Tomkos. Design and evaluation of a flexible-bandwidth ofdm-based intra-data

center interconnect. Selected Topics in Quantum Electronics, IEEE Journal of, 19

(2):3700310–3700310, 2013.

[87] John DC Little and Stephen C Graves. Little’s law. In Building Intuition, pages

81–100. Springer, 2008.

[88] Thomas Kunz. The influence of different workload descriptions on a heuristic load

balancing scheme. Software Engineering, IEEE Transactions on, 17(7):725–730,

1991.

[89] Krishna Jagannathan and Eytan Modiano. The impact of queue length informa-

tion on buffer overflow in parallel queues. Information Theory, IEEE Transactions

on, 59(10):6393–6404, 2013.

[90] Somsak Kittipiyakul and Tara Javidi. Delay-optimal server allocation in multi-

queue multiserver systems with time-varying connectivities. Information Theory,

IEEE Transactions on, 55(5):2319–2333, 2009.



Bibliography 242

[91] Beier Li, Paschalis Tsiaflakis, Marc Moonen, Jochen Maes, and Mamoun Guenach.

Dynamic resource allocation based partial crosstalk cancellation in dsl networks.

In Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, pages

1–5. IEEE, 2010.

[92] Atilla Eryilmaz and R Srikant. Fair resource allocation in wireless networks using

queue-length-based scheduling and congestion control. In INFOCOM 2005. 24th

Annual Joint Conference of the IEEE Computer and Communications Societies.

Proceedings IEEE, volume 3, pages 1794–1803. IEEE, 2005.

[93] Constantinos Dovrolis, Dimitrios Stiliadis, and Parameswaran Ramanathan. Pro-

portional differentiated services: Delay differentiation and packet scheduling. ACM

SIGCOMM Computer Communication Review, 29(4):109–120, 1999.

[94] Hoon-Tong Ngin, Chen-Khong Tham, and Wee-Seng Soh. Generalised minimum

queuing delay: an adaptive multi-rate service discipline for atm networks. In

INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE, volume 1, pages 398–404. IEEE,

1999.

[95] Peter Homan and Janez BESTER. Enhanced synchronous packet switching for ip

packets. IEICE transactions on communications, 85(1):247–256, 2002.

[96] George P Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, and Srinivasan

Seshan. On-chip networks from a networking perspective: Congestion and scal-

ability in many-core interconnects. ACM SIGCOMM computer communication

review, 42(4):407–418, 2012.

[97] DL Greenfield. Rentian locality in chip multiprocessors. PhD thesis, University of

Cambridge, 2010.

[98] Amir-Mohammad Rahmani, Iman Kamali, Pejman Lotfi-Kamran, Ali Afzali-

Kusha, and Saeed Safari. Negative exponential distribution traffic pattern for

power/performance analysis of network on chips. In VLSI Design, 2009 22nd

International Conference on, pages 157–162. IEEE, 2009.

[99] Poona Bahrebar and Dirk Stroobandt. Characterizing traffic locality in 3d noc-

based cmps using a path-based partitioning method. In High-Performance Inter-

connects (HOTI), 2014 IEEE 22nd Annual Symposium on, pages 63–70. IEEE,

2014.

[100] Ran Manevich, Israel Cidon, and Avinoam Kolodny. Handling global traffic in

future cmp nocs. In Proceedings of the International Workshop on System Level

Interconnect Prediction, pages 40–47. ACM, 2012.



Bibliography 243

[101] Ankit More. Network-on-Chip (NoC) Architectures for Exa-scale Chip-Multi-

Processors (CMPs). PhD thesis, Drexel University, 2013.

[102] Eitan Frachtenberg and Uwe Schwiegelshohn. Job scheduling strategies for parallel

processing. Springer, 2009.

[103] Mihai Pricopi and Tulika Mitra. Task scheduling on adaptive multi-core. Com-

puters, IEEE Transactions on, 63(10):2590–2603, 2014.

[104] Stefania Sesia, Issam Toufik, and Matthew Baker. LTE: the UMTS long term

evolution. Wiley Online Library, 2009.

[105] Xinen Zhu, Bo Yang, Ci Chen, Liang Xue, and Xiangyu Guan. Cross-layer schedul-

ing for ofdma-based cognitive radio systems with delay and security constraints.

2014.

[106] Pierre Ansel, Qiang Ni, and Thierry Turletti. Fhcf: a simple and efficient schedul-

ing scheme for ieee 802.11 e wireless lan. Mobile Networks and Applications, 11

(3):391–403, 2006.

[107] Amr Rizk and Markus Fidlerz. Queue-aware uplink scheduling: Analysis, imple-

mentation, and evaluation. In IFIP Networking Conference (IFIP Networking),

2015, pages 1–9. IEEE, 2015.

[108] András Varga et al. The omnet++ discrete event simulation system. In Proceedings

of the European simulation multiconference (ESM’2001), volume 9, page 65. sn,

2001.

[109] Hyung Gyu Lee, Naehyuck Chang, Umit Y Ogras, and Radu Marculescu. On-

chip communication architecture exploration: A quantitative evaluation of point-

to-point, bus, and network-on-chip approaches. ACM Transactions on Design

Automation of Electronic Systems (TODAES), 12(3):23, 2007.

[110] Radu Marculescu, Umit Y Ogras, Li-Shiuan Peh, Natalie Enright Jerger, and

Yatin Hoskote. Outstanding research problems in noc design: system, microarchi-

tecture, and circuit perspectives. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 28(1):3–21, 2009.

[111] Santiago Gonzalez Pestana, Edwin Rijpkema, Andrei Rădulescu, Kees Goossens,

and Om Prakash Gangwal. Cost-performance trade-offs in networks on chip: A

simulation-based approach. In Design, Automation and Test in Europe Conference

and Exhibition, 2004. Proceedings, volume 2, pages 764–769. IEEE, 2004.



Bibliography 244

[112] Paul Gratz, Changkyu Kim, Robert McDonald, Stephen W Keckler, and Doug

Burger. Implementation and evaluation of on-chip network architectures. In

Computer Design, 2006. ICCD 2006. International Conference on, pages 477–484.

IEEE, 2006.

[113] Praveen Vellanki, Nilanjan Banerjee, and Karam S Chatha. Quality-of-service and

error control techniques for network-on-chip architectures. In Proceedings of the

14th ACM Great Lakes symposium on VLSI, pages 45–50. ACM, 2004.

[114] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The splash-2 programs: Characterization and methodological con-

siderations. In ACM SIGARCH Computer Architecture News, volume 23, pages

24–36. ACM, 1995.

[115] Jun Ho Bahn and Nader Bagherzadeh. A generic traffic model for on-chip inter-

connection networks. Network on Chip Architectures, page 22, 2008.

[116] Parag Pruthi and Ashok Erramilli. Heavy-tailed on/off source behavior and self-

similar traffic. In Communications, 1995. ICC’95 Seattle,’Gateway to Globaliza-

tion’, 1995 IEEE International Conference on, volume 1, pages 445–450. IEEE,

1995.

[117] Glen Kramer. On generating self-similar traffic using pseudo-pareto distribution.

Technical brief, Department of Computer Science, University of California, Davis.¡

http://wwwcsif. cs. ucdavis. edu/˜ kramer/papers/self sim. pdf, 2000.

[118] Ronald G Addie, Timothy D Neame, and Moshe Zukerman. Modeling superposi-

tion of many sources generating self similar traffic. In In Proceedings of ICC’99.

Citeseer, 1999.

[119] Sergio Ledesma and Derong Liu. Synthesis of fractional gaussian noise using lin-

ear approximation for generating self-similar network traffic. ACM SIGCOMM

Computer Communication Review, 30(2):4–17, 2000.

[120] N. Carter. Schaum’s Outline of Computer Architecture. Schaum’s Outline Se-

ries. McGraw-Hill Education, 2001. ISBN 9780071399623. URL https://books.

google.fr/books?id=24V00tD7HeAC.

[121] Takatsugu Ono, Koji Inoue, and Kazuaki Murakami. Adaptive cache-line size man-

agement on 3d integrated microprocessors. In SoC Design Conference (ISOCC),

2009 International, pages 472–475. IEEE, 2009.

[122] Donald Gross and Carl Harris. Fundamentals of queueing theory. 1998.

https://books.google.fr/books?id=24V00tD7HeAC
https://books.google.fr/books?id=24V00tD7HeAC


Bibliography 245

[123] Paul J Burke. The output of a queuing system. Operations research, 4(6):699–704,

1956.

[124] Ahmed Mokhtar. Characterization of the departure process of m/g/1 queue with

heavy-tailed service time distribution. In High Performance Switching and Rout-

ing, 2000. ATM 2000. Proceedings of the IEEE Conference on, pages 373–376.

IEEE, 2000.

[125] Frank A Haight and Frank A Haight. Handbook of the poisson distribution. 1967.

[126] Kenji Nakagawa. On the series expansion for the stationary probabilities of an

m/d/1 queue. Journal of the Operations Research Society of Japan-Keiei Kagaku,

48(2):111–122, 2005.

[127] A Ya Khinchin. The mathematical theory of a stationary queue. Technical report,

DTIC Document, 1967.

[128] Mohammad Khojastepour and Ashutosh Sabharwal. Power optimal scheduling

with maximum delay constraints. 2003.

[129] Dinesh Rajan, Ashutosh Sabharwal, and Behnaam Aazhang. Delay-bounded

packet scheduling of bursty traffic over wireless channels. Information Theory,

IEEE Transactions on, 50(1):125–144, 2004.

[130] Claude E Shannon and Warren Weaver. The mathematical theory of information.

1949.

[131] Seema Bandyopadhyay and Edward J Coyle. An energy efficient hierarchical clus-

tering algorithm for wireless sensor networks. In INFOCOM 2003. Twenty-Second

Annual Joint Conference of the IEEE Computer and Communications. IEEE So-

cieties, volume 3, pages 1713–1723. IEEE, 2003.

[132] Alvin C Fu, Eytan Modiano, and John N Tsitsiklis. ’optimal energy allocation

and admission control for communications satellites. Networking, IEEE/ACM

Transactions on, 11(3):488–500, 2003.

[133] Yi Zhang, Pulak Chowdhury, Massimo Tornatore, and Biswanath Mukherjee. En-

ergy efficiency in telecom optical networks. Communications Surveys & Tutorials,

IEEE, 12(4):441–458, 2010.

[134] Fredrik Berggren and Seong-Lyun Kim. Energy-efficient control of rate and power

in ds-cdma systems. Wireless Communications, IEEE Transactions on, 3(3):725–

733, 2004.



Bibliography 246

[135] Mohammad Ali Khojastepour and Ashutosh Sabharwal. Delay-constrained

scheduling: Power efficiency, filter design, and bounds. In INFOCOM 2004.

Twenty-third AnnualJoint Conference of the IEEE Computer and Communica-

tions Societies, volume 3, pages 1938–1949. IEEE, 2004.

[136] P Mohana Shankar. Introduction to wireless systems. Wiley New York, 2002.

[137] Andrea Goldsmith. Wireless communications. Cambridge university press, 2005.



List of Figures

0.1 Topologies NoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

0.2 L’illustration d’options d’interconnexion . . . . . . . . . . . . . . . . . . . 6

0.3 L’architecture à 3 niveaux de WiNoCoD, avec 2048 cœurs au total . . . . 10

0.4 Contexte du répertoire de la mémoire dans une tuileset . . . . . . . . . . 11

0.5 Les blocs de base d’un émetteur-récepteur OFDM . . . . . . . . . . . . . 12

0.6 La tête numérique et la tête analogique RF pour la transmission et la
réception dans un tuileset . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

0.7 Les trames et blocs de ressources (RBs) dans WiNoCoD . . . . . . . . . . 18

0.8 Latence moyenne en fonction de l’augmentation du taux d’injection pour
un trafic réaliste non-uniforme (DPBPP) pour l’allocation serie avec l’approche
décentralisée pour différentes longueurs de trame. . . . . . . . . . . . . . . 22

0.9 Latence moyenne avec l’augmentation du taux d’injection sous le trafic
réaliste non-uniforme (DPBPP) pour l’allocation serielle avec l’approche
centralisée pour différentes longueurs de trame. . . . . . . . . . . . . . . . 23

0.10 Latence moyenne en fonction de l’augmentation du taux d’injection pour
un trafic réaliste non-uniforme (DPBPP) pour l’allocation serie (2 itera-
tions) avec l’approche décentralisée pour différentes longueurs de trame. . 24

0.11 Latence moyenne avec l’augmentation du taux d’injection pour un trafic
réaliste non-uniforme (DPBPP) pour l’allocation serie (2 iterations) avec
l’approche centralisée pour différentes longueurs de trame. . . . . . . . . . 24

0.12 Latence moyenne en fonction de l’augmentation du taux d’injection pour
un trafic réaliste non-uniforme (DPBPP) pour l’allocation serie(DQSI/EQSI)
avec l’approche décentralisée pour différentes longueurs de trame. . . . . . 25

0.13 Latence moyenne en fonction de l’augmentation du taux d’injection pour
un trafic réaliste non-uniforme (DPBPP) pour l’allocation serie (DQSI/E-
QSI) avec l’approche centralisée pour différentes longueurs de trame. . . . 25

0.14 Latence moyenne en fonction de l’augmentation du taux d’injection pour
un trafic réaliste non-uniforme (DPBPP) pour l’allocation QPS avec l’approche
décentralisée pour différentes longueurs de trame. . . . . . . . . . . . . . . 26

0.15 Latence moyenne en fonction de l’augmentation du taux d’injection pour
un trafic réaliste non-uniforme (DPBPP) pour l’allocation QPS avec l’approche
centralisée pour différentes longueurs de trame. . . . . . . . . . . . . . . . 27

0.16 Latence moyenne en fonction de l’augmentation du taux d’injection pour
un trafic réaliste non-uniforme (DPBPP) pour l’allocation QPS (DQSI/E-
QSI) avec l’approche décentralisée pour différentes longueurs de trame. . . 27

0.17 Latence moyenne en fonction de l’augmentation du taux d’injection pour
un trafic réaliste non-uniforme (DPBPP) pour l’allocation QPS (DQSI/E-
QSI) avec l’approche centralisée pour différentes longueurs de trame. . . . 28

247



List of Figures 248

0.18 Arbre de classification des algorithmes d’allocation des ressources fréquentielles
proposés dans cette thèse. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

0.19 Deux files d’attente de transmission séparées pour l’algorithme de canal
de charge utile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

0.20 La procédure de transmission sur �payload channel� est illustrée pour
un scénario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

0.21 Latence moyenne en fonction de l’augmentation du taux d’injection pour
un trafic poisson non-uniforme pour l’algorithme �payload channel�. . . . 34

0.22 Arbitrage de RBs dans une trame pour l’algorithme �payload channel� dy-
namique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

0.23 Latence moyenne en fonction de l’augmentation du taux d’injection un
trafic réaliste non-uniforme (DPBPP) pour l’algorithme �payload chan-
nel� dynamique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

0.24 Le compromis entre latence maximale et puissance moyenne avec l’algorithme
de choix dynamique de l’ordre de modulation pour un trafic Poisson non-
uniforme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

0.25 Le compromis entre latence moyenne et puissance moyenne avec l’algorithme
de choix dynamique de l’ordre de modulation pour un trafic DPBPP non-
uniforme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1 Transistor Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Simplified illustration of a 2-core CMP . . . . . . . . . . . . . . . . . . . . 46

2.3 Bus and Crossbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Different NoC Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 TSAR’s tiled architecture and distributed memory . . . . . . . . . . . . . 51

2.6 4 new NoC interconnect proposals . . . . . . . . . . . . . . . . . . . . . . 53

2.7 Microring Resonators and on-chip optical interconnects . . . . . . . . . . 54

2.8 SWMR and MWSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.9 ATAC’s 2 level clustered architecture . . . . . . . . . . . . . . . . . . . . . 56

2.10 Corona has a similar serpentine optical interconnect similar to ATAC,
except the choice of MWSR rather than SWMR. . . . . . . . . . . . . . . 58

2.11 RF on-chip interconnects . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.12 Scale invariant self-similar traffic . . . . . . . . . . . . . . . . . . . . . . . 62

2.13 Gaussian normal distribution to model spatial injection for on-chip cores . 63

2.14 Percentages of short and long packets for various PARSEC benchmark
applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1 WiNoCoD Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 3 level hierarchy of WiNoCoD architecture . . . . . . . . . . . . . . . . . . 69

3.3 Illustration of a write request initiated by CPU-A in WiNoCoD, where
the intended address is currently shared by 2 other cores. . . . . . . . . . 75

3.4 Memory directory in a tileset . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Transmission and reception chain of an OFDM modulator/demodulator . 76

3.6 Representation of an OFDM symbol with duration T both on frequency
and time domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Subcarriers in frequency domain . . . . . . . . . . . . . . . . . . . . . . . 78

3.8 Encoding of digital data by TX-2 on its allocated subcarriers. . . . . . . . 79

3.9 Communication between nodes in an OFDMA medium . . . . . . . . . . . 80



List of Figures 249

3.10 transmission and reception RF interface . . . . . . . . . . . . . . . . . . . 84

3.11 Proposed access via transistor mechanism for WiNoCoD. . . . . . . . . . 86

3.12 transmission and reception RF interface . . . . . . . . . . . . . . . . . . . 87

4.1 Bandwidth allocation problem in WiNoCoD can be formulated as arbi-
trating 1024 subcarriers to 32 transmission queues of tilesets on different
symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Cognitive radio cycle, illustrating the circular flow of 3 main steps. . . . . 91

4.3 Carrier aggregation concept which is also used in LTE, where non-contiguous
and different widths of bands can be aggregated to be used by a node. . . 92

4.4 Static and equal or non-equal allocation of frequency resources among
multiple nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Frames and Resource Blocks (RBs) in WiNoCoD . . . . . . . . . . . . . . 102

4.7 Central Unit Bandwidth Allocation . . . . . . . . . . . . . . . . . . . . . . 103

4.8 Allocation of RBs through different directions inside a frame . . . . . . . 105

4.9 Default allocation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.10 One or several cores inside the tile, which is closest to the RF Front-end
can be utilized to compute banwidth and modulation order allocation
algorithms. This implementation can be adopted both for decentralized
or centralized approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1 Decentralized Serial Allocation Average latency under uniform Poisson . . 119

5.2 Decentralized Serial Allocation Average latency under non-uniform Poisson120

5.3 Decentralized Serial Allocation Average latency under non-uniform DPBPP120

5.4 Packet Delay (a) and Queue Length (b) exceeding probability graphs
for decentralized serial allocation algorithm under non-uniform DPBPP
traffic (log-linear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Centralized Serial Allocation Average latency under uniform Poisson . . . 122

5.6 Centralized Serial Allocation Average latency under non-uniform Poisson 122

5.7 Centralized Serial Allocation Average latency under non-uniform DPBPP 123

5.8 Packet Delay (a) and Queue Length (b) exceeding probability graphs for
centralized serial allocation algorithm under non-uniform DPBPP traffic
(log-linear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.9 Decentralized Serial 2-loop allocation average latency under uniform Poisson125

5.10 Decentralized Serial 2-loop allocation average latency under non-uniform
Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.11 Decentralized Serial 2-loop allocation average latency under non-uniform
DPBPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.12 Packet Delay (a) and Queue Length (b) exceeding probability graphs
for decentralized serial 2-loop allocation algorithm under non-uniform
DPBPP traffic (log-linear) under 10 packets/symbol injection rate . . . . 127

5.13 Centralized Serial 2-loop allocation average latency under uniform Poisson 128

5.14 Centralized Serial 2-loop allocation average latency under non-uniform
Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.15 Centralized Serial 2-loop allocation average latency under non-uniform
DPBPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.16 Packet Delay (a) and Queue Length (b) exceeding probability graphs for
centralized serial 2-loop allocation algorithm under non-uniform DPBPP
traffic (log-linear) under 10 packets/symbol injection rate . . . . . . . . . 129



List of Figures 250

5.17 Decentralized Serial allocation with DQSI and EQSI average latency un-
der uniform Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.18 Decentralized Serial DQSI and EQSI allocation average latency under
non-uniform Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.19 Decentralized Serial DQSI and EQSI allocation average latency under
non-uniform DPBPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.20 Packet Delay (a) and Queue Length (b) exceeding probability graphs for
decentralized serial allocation with DQSI and EQSI algorithm under non-
uniform DPBPP traffic (log-linear) . . . . . . . . . . . . . . . . . . . . . . 131

5.21 Centralized Serial allocation with DQSI and EQSI average latency under
uniform Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.22 Centralized Serial DQSI and EQSI allocation average latency under non-
uniform Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.23 Centralized Serial DQSI and EQSI allocation average latency under non-
uniform DPBPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.24 Packet Delay (a) and Queue Length (b) exceeding probability graphs for
centralized serial allocation algorithm with DQSI and EQSI under non-
uniform DPBPP traffic (log-linear) . . . . . . . . . . . . . . . . . . . . . . 134

5.25 Decentralized QPS Allocation Average latency under uniform Poisson . . 137

5.26 Decentralized QPS Allocation Average latency under non-uniform Poisson 137

5.27 Decentralized QPS Allocation Average latency under non-uniform DPBPP138

5.28 Packet Delay (a) and Queue Length (b) exceeding probability graphs for
decentralized QPS allocation algorithm under non-uniform DPBPP traffic
(log-linear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.29 Centralized QPS Allocation Average latency under uniform Poisson . . . 139

5.30 Centralized QPS Allocation Average latency under non-uniform Poisson . 140

5.31 Centralized QPS Allocation Average latency under non-uniform DPBPP . 140

5.32 Packet Delay (a) and Queue Length (b) exceeding probability graphs for
centralized QPS allocation algorithm under non-uniform DPBPP traffic
(log-linear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.33 Decentralized QPS allocation with DQSI and EQSI average latency under
uniform Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.34 Decentralized QPS DQSI and EQSI allocation average latency under non-
uniform Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.35 Decentralized QPS DQSI and EQSI allocation average latency under non-
uniform DPBPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.36 Packet Delay (a) and Queue Length (b) exceeding probability graphs for
decentralized QPS allocation algorithm under non-uniform DPBPP traffic
(log-linear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.37 Centralized QPS allocation with DQSI and EQSI average latency under
uniform Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.38 Centralized QPS DQSI and EQSI allocation average latency under non-
uniform Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.39 centralized QPS DQSI and EQSI allocation average latency under non-
uniform DPBPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.40 Packet Delay (a) and Queue Length (b) exceeding probability graphs for
centralized QPS allocation algorithm with DQSI and EQSI under non-
uniform DPBPP traffic (log-linear) . . . . . . . . . . . . . . . . . . . . . . 145



List of Figures 251

5.41 Flow-chart of decentralized subcarrier arbitration algorithms of serial or
QPS with regular, definitive or expected QSI encoding. . . . . . . . . . . . 146

5.42 Flow-chart of centralized subcarrier arbitration algorithms of serial or
QPS with regular, definitive or expected QSI encoding. . . . . . . . . . . . 147

5.43 Classification of the proposed algorithms for dynamic bandwidth alloca-
tion for OFDMA RF NoC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.1 Payload Channel Algorithm Tileset Front-end . . . . . . . . . . . . . . . . 153

6.2 Flow-chart of regular payload channel algorithm from the view of the
transmission side of a tileset. . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3 Flow-chart of regular payload channel algorithm from the view of the
reception side of a tileset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4 Payload Channel Algorithm Illustration . . . . . . . . . . . . . . . . . . . 156

6.5 Payload Channel Algorithm Analytic Model . . . . . . . . . . . . . . . . . 157

6.6 Payload Channel Average latency under uniform Poisson . . . . . . . . . . 161

6.7 Payload Channel Average latency under uniform DPBPP traffic (H=0.9) 162

6.8 Delay exceeding probability graphs for our payload channel algorithm
under uniform traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.9 Queue Length exceeding probability graphs for our payload channel algo-
rithm under uniform Poisson traffic . . . . . . . . . . . . . . . . . . . . . . 163

6.10 Queue Length exceeding probability graphs for our payload channel algo-
rithm under uniform DPBPP traffic . . . . . . . . . . . . . . . . . . . . . 163

6.11 Frame structure and centralized bandwidth allocation mechanism of the
proposed dynamic payload channel algorithm . . . . . . . . . . . . . . . . 164

6.12 Flow-chart of dynamic payload channel algorithm from the view of the
transmission side of a tileset. . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.13 Flow-chart of dynamic payload channel algorithm from the view of the
receiver side of a tileset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.14 Illustration of our Dynamic Payload Channel Algorithm both in frequency
and time domain through a simple scenario, where only 3 tilesets are active.167

6.15 Dynamic Payload Channel Average latency under uniform Poisson Traffic 169

6.16 Dynamic Payload Channel Average latency under non-uniform DPBPP
traffic (H=0.9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.17 Delay exceeding probability graphs for our dynamic payload channel al-
gorithm under uniform DPBPP traffic . . . . . . . . . . . . . . . . . . . . 170

6.18 Queue length exceeding probability graphs for our payload channel al-
gorithm under non-uniform Poisson traffic compared to reference QPS
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.19 Queue length exceeding probability graphs for our payload channel algo-
rithm under non-uniform DPBPP traffic (H=0.9) compared to reference
QPS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.1 Typical Convex Delay-Power relation . . . . . . . . . . . . . . . . . . . . . 174

7.2 Decentralized RB allocation and modulation order selection in WiNoCoD 176

7.3 Transmission power tuning for the chosen constellation order . . . . . . . 177

7.4 Centralized RB allocation and modulation order selection in WiNoCoD . 178

7.5 Maximum delay bounded rate scheduler example . . . . . . . . . . . . . . 179

7.6 Standard low-pass filter equation is not valid for the multichannel case . . 180

7.7 The proposed dual equation for maximum delay bounded scheduler . . . . 181



List of Figures 252

7.8 With the proposed scheduler, the delay of packets can only be guaranteed
to have a desired maximum bound with a 2 frame length addition. . . . . 182

7.9 Flow chart of the maximum delay bounded scheduler with distributed
subcarrier allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.10 Packet delay exceeding probability graphs for non-uniform Poisson and
DPBPP traffic with injection rate of 4 packets/symbol for a static mod-
ulation order system for different utilized modulation orders (EQPS(α =
0.95), time direction allocation, T=8 symbols) . . . . . . . . . . . . . . . . 184

7.11 The average transmission power increases drastically, if higher modulation
orders are used constantly. . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.12 Decentralized maximum delay bounded scheduler performance under non-
uniform Poisson traffic with injection rate of 4 packets/symbol (EQPS(α =
0.95), time direction allocation, T=8 symbols) . . . . . . . . . . . . . . . . 186

7.13 Decentralized maximum delay bounded scheduler performance non-uniform
DPBPP traffic (H=0.9) with injection rate of 4 packets/symbol (EQPS(α =
0.95), time direction allocation, T=8 symbols) . . . . . . . . . . . . . . . . 187

7.14 Packet delay exceeding probability graphs for non-uniform Poisson and
DPBPP traffic with injection rate of 6 packets/symbol for a static mod-
ulation order system for different utilized modulation orders (EQPS(α =
0.95), time direction allocation, T=8 symbols) . . . . . . . . . . . . . . . . 188

7.15 Decentralized maximum delay bounded scheduler performance under non-
uniform Poisson traffic with injection rate of 6 packets/symbol (EQPS(α =
0.95), time direction allocation, T=8 symbols) . . . . . . . . . . . . . . . . 189

7.16 Decentralized maximum delay bounded scheduler performance under un-
der non-uniform DPBPP traffic (H=0.9) with injection rate of 6 packet-
s/symbol (EQPS(α = 0.95), time direction allocation, T=8 symbols) . . . 190

7.17 Packet delay exceeding probability graphs for non-uniform Poisson and
DPBPP traffic with injection rate of 8 packets/symbol for a static mod-
ulation order system for different utilized modulation orders (EQPS(α =
0.95), time direction allocation, T=8 symbols) . . . . . . . . . . . . . . . . 191

7.18 Decentralized maximum delay bounded scheduler performance under non-
uniform Poisson traffic with injection rate of 8 packets/symbol (EQPS(α =
0.95), time direction allocation, T=8 symbols) . . . . . . . . . . . . . . . . 192

7.19 Decentralized maximum delay bounded scheduler performance under un-
der non-uniform DPBPP traffic (H=0.9) with injection rate of 8 packet-
s/symbol (EQPS(α = 0.95), time direction allocation, T=8 symbols) . . . 193

7.20 Flow chart of the average delay bounded scheduler algorithm executed at
CIU every frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.21 Resulting average delay and average power is shown with a 2-y plot, with
T =4+2 symbols, under non-uniform DPBPP traffic under an injection
rate of 8 packets/symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.22 Resulting average delay and average power is shown with a 2-y plot, with
T =4+2 symbols, under non-uniform DPBPP traffic under an injection
rate of 8 packets/symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.23 Resulting average delay and average power is shown with a 2-y plot, with
T =4+2 symbols, under non-uniform DPBPP traffic under an injection
rate of 16 packets/symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



List of Figures 253

7.24 Resulting average delay and average power is shown with a 2-y plot, with
T =8+2 symbols, under non-uniform DPBPP traffic under an injection
rate of 8 packets/symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.25 Resulting average delay and average power is shown with a 2-y plot, with
T =8+2 symbols, under non-uniform DPBPP traffic under an injection
rate of 12 packets/symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.26 Resulting average delay and average power is shown with a 2-y plot, with
T =8+2 symbols, under non-uniform DPBPP traffic under an injection
rate of 16 packets/symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.28 Resulting average delay and average power is shown with a 2-y plot, with
T =16+2 symbols, under non-uniform DPBPP traffic under an injection
rate of 8 packets/symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.27 Resulting average delay and average power is shown with a 2-y plot, with
T =16+2 symbols, under non-uniform DPBPP traffic under an injection
rate of 8 packets/symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.29 Resulting average delay and average power is shown with a 2-y plot, with
T =16+2 symbols, under non-uniform DPBPP traffic under an injection
rate of 16 packets/symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.30 U-shaped transmission line . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.31 Distance between each 32x31 unicast communication in U-shaped trans-
mission line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.32 Capacity between each 32x31 unicast communication in U-shaped trans-
mission line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.33 Required Transmission Power for each 32x31 unicast communication for
the U-shaped shaped transmission line for capacity densities 1-8 bits/s/Hz 208

7.34 Average required transmission power (to 31 destinations) for each tile-
set for the U-shaped shaped transmission line for capacity densities 1-8
bits/s/Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.35 Average required transmission power (to 31 destinations) for each tileset
for the U-shaped shaped transmission line for probabilities of error : 10−1,
10−3, 10−5, 10−7 for BPSK and 256-QAM . . . . . . . . . . . . . . . . . . 210

7.36 Minimum required transmission power for broadcasting (to maximum dis-
tance) for each tileset for the U-shaped shaped transmission line for ca-
pacity densities 1-8 bits/s/Hz . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.37 Required transmission power for broadcasting (farthest destination) for
each tileset for the U-shaped shaped transmission line for probabilities of
error : 10−1, 10−3, 10−5, 10−7 for BPSK and 256-QAM . . . . . . . . . . 212

7.38 Cross-shaped transmission line . . . . . . . . . . . . . . . . . . . . . . . . 213

7.39 Distance between each 32x31 unicast communication in cross-shaped trans-
mission line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.40 Capacity between each 32x31 unicast communication in cross-shaped trans-
mission line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.41 Required Transmission Power for each 32x31 unicast communication for
the cross-shaped shaped transmission line for capacity densities 1-8 bit-
s/s/Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.42 Average required transmission power (to 31 destinations) for each tileset
for the cross-shaped shaped transmission line for capacity densities 1-8
bits/s/Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216



List of Figures 254

7.43 Average required transmission power (to 31 destinations) for each tileset
for the cross-shaped shaped transmission line for probabilities of error :
10−1, 10−3, 10−5, 10−7 for BPSK and 256-QAM . . . . . . . . . . . . . . 217

7.44 Minimum required transmission power for broadcasting (to maximum dis-
tance) for each tileset for the cross-shaped shaped transmission line for
capacity densities 1-8 bits/s/Hz . . . . . . . . . . . . . . . . . . . . . . . . 218

7.45 Required transmission power for broadcasting (farthest destination) for
each tileset for the U-shaped shaped transmission line for probabilities of
error : 10−1, 10−3, 10−5, 10−7 for BPSK and 256-QAM . . . . . . . . . . 218



List of Tables

2.1 Processor, memory and cache coherence details of 3 commercially avail-
able or proposed CMP architectures compared to WiNoCoD. . . . . . . . 48

3.1 Estimated total surface area and power consumption for different number
of RF transceivers, compared to total area and power consumption of
2048 cores and 1 TByte RAM. . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Estimated surface area and power consumption for certain elements in
CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Characteristic parameters of WiNoCoD’s OFDMA interconnect . . . . . . 82

5.1 Total number of RBs for different lengths of frames and associated QSI
signaling overhead percentage. . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1 Probability of exceeding the intended delay bound of the algorithm for
different traffic intensities and models. . . . . . . . . . . . . . . . . . . . . 194

7.2 Achieved average power with the intended delay bound in terms of power
required for 1 RB with BPSK for different traffic intensities and models. . 194

7.3 Total of maximum transmission powers (broadcast case) for various capac-
ity densities and BER values with BPSK or 256-QAM with cross-shaped
transmission line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.4 Total of maximum transmission powers (broadcast case) for various capac-
ity densities and BER values with BPSK or 256-QAM with cross-shaped
transmission line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

255



Abbreviations

ADC Analog-to-Digital Converter

BPSK Binary Phase Shift Keying

CIU Central Intelligent Unit

CMOS Complementary Metal Oxide Semiconductor

CMP Chip Multiprocessor

DAC Digital-to-Analog Converter

DFT Discrete Fourier Transform

DHCCP Distributed Hybrid Cache Coherency Protocol

DPBPP Discrete Pareto Burst Poisson Process

DQSI Definitive Queue State Information

EQPS Expected Queue Proportional Scheduling

EQSI Expected Queue State Information

FFT Fast Fourier Transform

FIFO First-in First-out

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

LO Local Oscillator

LQF Longest Queue First

MTL Microstrip Transmission Line

MWSR Multiple-Write Single-Read

NoC Network-on-Chip

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

OPF Oldest Packet First

P/S Parallel-to-Serial

256



Abbreviations 257

QAM Quadrature Amplitude Modulation

QPS Queue Proportional Scheduling

QPSK Quadrature Phase Shift Keying

QSI Queue State Information

RB Resource Block

RF Radio Frequency

RX Receiver

S/P Serial-to-Parallel

SNR Signal-to-Noise Ratio

SoC System-on-Chip

SWMR Single-Write Multiple-Read

TX Transmitter


	0 Résumé en Français : Allocation Dynamique de Bande Passante pour l'Interconnexion RF d'un Résau-sur-Puce
	1 Introduction
	2 1000-core Era and On-Chip Challenge 
	2.1 Chip Multiprocessors
	2.1.1 Caches and Memory
	2.1.2 Cache Coherency

	2.2 Network-on-Chip
	2.2.1 From buses to NoC
	2.2.2 NoC topologies
	2.2.3 Tera-Scale Multi-core Processor Architecture (TSAR)

	2.3 RF and Optical Interconnects
	2.3.1 Optical Interconnects
	2.3.1.1 ATAC
	2.3.1.2 Corona

	2.3.2 RF Interconnects
	2.3.2.1 Wireless RF Interconnects
	2.3.2.2 Wired RF Interconnects


	2.4 Characteristics of On-Chip Traffic
	2.4.1 Temporal Burstiness : Hurst Parameter
	2.4.2 Spatial Burstiness : Standard Deviation
	2.4.3 Statistical Distance Property of on-chip Transactions
	2.4.4 Bimodal on-chip Packets

	2.5 Conclusion

	3 WiNoCoD Project and Wired OFDMA Based RF Interconnect 
	3.1 WiNoCoD On-Chip Architecture
	3.1.1 Need for independent communication layers
	3.1.2 3-level hierarchy
	3.1.2.1 A Tile
	3.1.2.2 A Tileset
	3.1.2.3 Inter-tileset Communication

	3.1.3 Details of Cache Coherence Protocol

	3.2 Basics of OFDMA
	3.2.1 OFDM
	3.2.2 OFDMA

	3.3 OFDMA Based RF Interconnect
	3.3.1 RF Controller
	3.3.2 RF Front-end
	3.3.2.1 Transmitter Side
	3.3.2.2 Receiver Side
	3.3.2.3 Transmission Line and Access


	3.4 Conclusion

	4 RF NoC Bandwidth Allocation Problem
	4.1 WiNoCoD's OFDMA RF Interconnect 
	4.1.1 Motivation
	4.1.2 Cognitive Radio
	4.1.3 LTE

	4.2 Dynamic Bandwidth Scheduling for Parallel Queues
	4.2.1 Longest Queue First
	4.2.2 Queue Length Proportional Scheduling
	4.2.3 Square Root of Queue Length Proportional Scheduling
	4.2.4 Oldest Packet First Scheduling

	4.3 Preliminaries of Bandwidth Allocation in WiNoCoD
	4.3.1 Partitioning Bandwidth Statically
	4.3.2 A Quasi-Static and Quasi-Dynamic Modification
	4.3.3 Resource Blocks, Frames and QSI Signaling
	4.3.3.1 Resource Blocks
	4.3.3.2 Frames
	4.3.3.3 Decentralized and Centralized Allocation
	4.3.3.4 Direction of Resource Block Allocation in a Frame
	4.3.3.5 Idle Resource Blocks-Default Frame Configuration
	4.3.3.6 QSI Encoding and Signaling
	4.3.3.7 Taking Into Account the Outdated QSI

	4.3.4 Traffic Models and Evaluation Methods
	4.3.4.1 Metrics of Interest
	4.3.4.2 Employed Traffic Models


	4.4 Using Generic Cores for Bandwidth and Modulation Order Allocation Algorithmss
	4.5 Conclusion

	5 WiNoCoD Bandwidth Allocation Algorithms
	5.1 Serial QSI Allocation
	5.1.1 Regular Serial QSI Allocation
	5.1.1.1 Decentralized Approach
	5.1.1.2 Centralized Approach

	5.1.2 Serial QSI with 2-loop Allocation
	5.1.2.1 Decentralized Approach
	5.1.2.2 Centralized Approach

	5.1.3 Serial QSI Allocation with DQSI and EQSI
	5.1.3.1 Decentralized Approach
	5.1.3.2 Centralized Approach


	5.2 Queue Proportional Allocation
	5.2.1 Regular Queue Proportional Allocation
	5.2.1.1 Decentralized Approach
	5.2.1.2 Centralized Approach

	5.2.2 QPS Allocation with DQSI and EQSI
	5.2.2.1 Decentralized Approach
	5.2.2.2 Centralized Approach


	5.3 Implementation of Algorithms
	5.4 Classification of Bandwidth Allocation Algorithms
	5.5 Conclusion

	6 Payload Channel Algorithm
	6.1 Context
	6.2 Regular Payload Channel Algorithm
	6.2.1 Description of Regular Payload Channel Algorithm
	6.2.2 An Illustrative Scenario
	6.2.3 Analytic Approximation for Average Latency Calculation
	6.2.4 Experimental Results for Payload Channel Algorithm

	6.3 Dynamic Payload Channel Algorithm
	6.3.1 Description of Dynamic Payload Channel Algorithm
	6.3.1.1 Illustrative Scenario

	6.3.2 Experimental Results for Dynamic Payload Channel Algorithm

	6.4 Conclusion

	7 Adaptive Modulation Order Selection
	7.1 Delay-Power Trade-off
	7.2 Adaptive Modulation Option in OFDMA and Delay 
	7.3 Decentralized and Centralized Modulation Order Selection Policy
	7.3.1 Decentralized Modulation Order Selection
	7.3.2 Centralized Modulation Order Selection

	7.4 Maximum Delay Bounded Scheduler
	7.4.1 Extension of Delay Bounded Scheduler to Multiple Channels
	7.4.2 Maximum Delay Bounded Scheduler for WiNoCoD
	7.4.2.1 Experimental Evaluation


	7.5 Average Delay Bounded Scheduler
	7.5.1 Average Delay Bounded Scheduling with Centralized Approach Based on EQPS
	7.5.2 Experimental Evaluation

	7.6 Information Theoretic Study of the WiNoCoD RF Interconnect
	7.6.1 U-Shaped Transmission Line
	7.6.1.1 Unicast communication
	7.6.1.2 Broadcast communication

	7.6.2 Cross-Shaped Transmission Line
	7.6.2.1 Unicast communication
	7.6.2.2 Broadcast communication


	7.7 Conclusion

	8 Conclusions and Perspectives
	A Personal Publications
	B Explanation of OMNeT++ Codes
	B.1 General Organization of the Main C++ Files and OMNeT++ Classes
	B.1.1 Symbol Accurate Mechanism
	B.1.2 Regular Channel Allocation
	B.1.3 Payload Channel Allocation
	B.1.4 Dynamic Modulation Order Allocation
	B.1.4.1 Maximum Delay Bounded Dynamic Modulation Order Allocation
	B.1.4.2 Average Delay Bounded Dynamic Modulation Order Allocation


	B.2 Stochastic Packet Generation and Traffic Models
	B.2.1 DPBPP packet generation

	B.3 Collection of Metrics of Interest

	Bibliography
	List of Figures
	List of Tables
	Abbreviations

